survival/0000755000176200001440000000000013571515632012135 5ustar liggesuserssurvival/NAMESPACE0000644000176200001440000001403413560125213013344 0ustar liggesusersuseDynLib(survival, .registration = TRUE) importFrom(splines, spline.des, ns) importFrom(Matrix, expm) importFrom(stats, anova, approx, as.formula, coef, coefficients, contr.treatment, cor, density, delete.response, extractAIC, formula, family, fitted, lm, logLik, makepredictcall, median, model.extract, model.frame, model.matrix, model.offset, model.response, model.weights, na.fail, na.pass, napredict, naprint, naresid, nobs, pchisq, pnorm, printCoefmat, predict, qnorm, quantile, qgamma, reformulate, setNames, terms.formula, resid, residuals, rnorm, runif, stat.anova, terms, weights, var, vcov, .checkMFClasses, .getXlevels) importFrom(graphics, arrows, axis, barplot, box, clip, matlines, matplot, hist, frame, identify, image, par, plot, points, lines, segments, strheight, strwidth, text) importFrom(Matrix, expm) importFrom(methods, as) importFrom(utils, getS3method, type.convert, methods, head, tail) export(Surv, aeqSurv, aareg, agreg.fit, agexact.fit, attrassign, basehaz, cch, clogit, cipoisson, cluster, concordance, concordancefit, coxph, cox.zph, coxph.control, coxph.detail, coxph.fit, coxph.wtest, finegray, format.Surv, frailty, frailty.gamma, frailty.gaussian, frailty.t, is.Surv, is.na.Surv, is.ratetable, labels.survreg, match.ratetable, neardate, psurvreg, qsurvreg, dsurvreg, pspline, pyears, ratetableDate, ratetable, ridge, rsurvreg, statefig, strata, survSplit, survcheck, survdiff, survexp, survfit, survfit0, survfit.formula, coxsurv.fit, survfitKM, survfitCI, survobrien, survpenal.fit, survreg, survreg.control, survreg.fit, survreg.distributions, survregDtest, tcut, tmerge, untangle.specials, yates, yates_setup, survConcordance, survConcordance.fit, survfitcoxph.fit) S3method('[', aareg) S3method('[', Surv) S3method('[', cox.zph) S3method('[', coxph.penalty) S3method('[', ratetable) S3method('[', survfit) S3method('[', survfitms) S3method('[', tcut) S3method(Math, Surv) S3method(Math, ratetable) S3method(Ops, Surv) S3method(Ops, ratetable) S3method(Summary, Surv) S3method(anyDuplicated, Surv) S3method(anova, coxph) S3method(anova, coxphlist) S3method(anova, survreg) S3method(anova, survreglist) S3method(as.character, Surv) S3method(as.data.frame, Surv) S3method(as.integer, Surv) S3method(as.logical, Surv) S3method(as.matrix, ratetable) S3method(as.matrix, Surv) S3method(as.numeric, Surv) S3method(attrassign, default) S3method(attrassign, lm) S3method(barplot, Surv) S3method(c, Surv) S3method(coef, concordance) S3method(coef, coxphms) S3method(concordance, formula) S3method(concordance, lm) S3method(concordance, coxph) S3method(concordance, survreg) S3method(density, Surv) S3method(dim, survfit) S3method(duplicated, Surv) S3method(extractAIC,coxph.penal) S3method(fitted, coxph) S3method(fitted, survreg) S3method(format, Surv) S3method(head, Surv) S3method(hist, Surv) S3method(identify, Surv) S3method(image, Surv) S3method(is.na, Surv) S3method(is.na, coxph.penalty) S3method(is.na, ratetable) S3method(labels, survreg) S3method(levels, Surv) S3method(levels, tcut) S3method(lines, aareg) S3method(lines, Surv) S3method(lines, survexp) S3method(lines, survfit) S3method(logLik, coxph) S3method(logLik, coxph.null) S3method(logLik, survreg) S3method(makepredictcall, pspline) S3method(median, Surv) S3method(model.frame, coxph) S3method(model.frame, survreg) S3method(model.matrix, coxph) S3method(model.matrix, survreg) S3method(nobs, coxph) S3method(nobs, survreg) S3method(pairs, Surv) S3method(plot, aareg) S3method(plot, cox.zph) S3method(plot, Surv) S3method(plot, survfit) S3method(points, Surv) S3method(points, survfit) S3method(predict, coxph) S3method(predict, coxph.penal) S3method(predict, pspline) S3method(predict, survreg) S3method(predict, survreg.penal) S3method(print, Surv) S3method(print, aareg) S3method(print, cch) S3method(print, clogit) S3method(print, concordance) S3method(print, cox.zph) S3method(print, coxph) S3method(print, coxph.null) S3method(print, coxph.penal) S3method(print, pyears) S3method(print, ratetable) S3method(print, summary.cch) S3method(print, summary.coxph) S3method(print, summary.coxph.penal) S3method(print, summary.survexp) S3method(print, summary.survfit) S3method(print, summary.survfitms) S3method(print, summary.survreg) S3method(print, survdiff) S3method(print, survcheck) S3method(print, survexp) S3method(print, survfit) S3method(print, survfitms) S3method(print, survreg) S3method(print, survreg.penal) S3method(print, yates) S3method(quantile, survfit) S3method(quantile, survfitms) S3method(ratetableDate, POSIXt) S3method(ratetableDate, Date) S3method(ratetableDate, date) S3method(ratetableDate, chron) S3method(ratetableDate, default) S3method(rep, Surv) S3method(rep.int, Surv) S3method(rep_len, Surv) S3method(residuals, coxph) S3method(residuals, coxph.null) S3method(residuals, coxph.penal) S3method(residuals, survreg) S3method(residuals, survreg.penal) S3method(rev, Surv) S3method(summary, aareg) S3method(summary, cch) S3method(summary, coxph) S3method(summary, coxph.penal) S3method(summary, ratetable) S3method(summary, pyears) S3method(summary, survexp) S3method(summary, survfit) S3method(summary, survfitms) S3method(summary, survreg) S3method(survfit, coxph) S3method(survfit, coxphms) S3method(survfit, formula) S3method(survfit, matrix) S3method(survfit, Surv) S3method(t, Surv) S3method(tail, Surv) S3method(text, Surv) S3method(unique, Surv) S3method(vcov, cch) S3method(vcov, concordance) S3method(vcov, coxph) S3method(vcov, survreg) S3method(weights, coxph) S3method(weights, survreg) S3method(yates_setup, default) S3method(yates_setup, glm) S3method(yates_setup, coxph) S3method('[', ratetable2) S3method(is.na,ratetable2) # xtfrm.Surv was moved out of base into survival at one point if(getRversion() >= "3.6.0") S3method(xtfrm, Surv) # Make Surv objects have their logical length. S3method(length, Surv) S3method(names, Surv) S3method("names<-", Surv) survival/noweb/0000755000176200001440000000000013570775575013264 5ustar liggesuserssurvival/noweb/noweb.sty0000644000176200001440000000240513570772300015117 0ustar liggesusers% % The format files for the noweave package % It looks like a short form of Sweave.sty % \NeedsTeXFormat{LaTeX2e} \RequirePackage{graphicx,fancyvrb,hyperref} %forward, backward, and both hyperlinks % nwhypf{my label}{text to put here}{label of forward link} % nwhypb{my label}{text to put here}{label of backwards link} % nwhyp {my label}{text to put here}{label of backwards link}{forward link label} \newcommand{\nwhypf}[3]{\hypertarget{#1}{$\langle$\textit{#2}}\hyperlink{#3}{$\rangle$}} \newcommand{\nwhypb}[3]{\hyperlink{#3}{$\langle$}\hypertarget{#1}{\textit{#2}$\rangle$}} \newcommand{\nwhyp}[4]{\hyperlink{#3}{$\langle$}\hypertarget{#1}{\textit{#2}}\hyperlink{#4}{$\rangle$}} % no hyperlink code reference \newcommand{\nwhypn}[1]{$\langle$\textit{#1}$\rangle$} % dummy out noweboptions, in case someone used them (they are part % of Ramsay's standalone version \newcommand{\noweboptions}[1]{} % The standard font for ~ used in formulas is ugly, redefine it % to the math mode symbol by making use of an active charcter trick % Leave the \, {, and } characters active %\newcommand{\twiddle}{\ensuremath{\sim}} \newcommand{\twiddle}{\textasciitilde} \DefineVerbatimEnvironment{nwchunk}{Verbatim}{commandchars=\\\{\},% codes={\catcode`~=\active},defineactive=\def~{\twiddle}} survival/noweb/code.toc0000644000176200001440000000437513570772302014677 0ustar liggesusers\contentsline {section}{\numberline {1}Introduction}{2}{section.1} \contentsline {section}{\numberline {2}Cox Models}{2}{section.2} \contentsline {subsection}{\numberline {2.1}Coxph}{2}{subsection.2.1} \contentsline {subsection}{\numberline {2.2}Exact partial likelihood}{26}{subsection.2.2} \contentsline {subsection}{\numberline {2.3}Andersen-Gill fits}{36}{subsection.2.3} \contentsline {subsection}{\numberline {2.4}Predicted survival}{55}{subsection.2.4} \contentsline {subsubsection}{\numberline {2.4.1}Multi-state models}{78}{subsubsection.2.4.1} \contentsline {section}{\numberline {3}The Fine-Gray model}{84}{section.3} \contentsline {subsection}{\numberline {3.1}The predict method}{90}{subsection.3.1} \contentsline {section}{\numberline {4}Concordance}{102}{section.4} \contentsline {subsection}{\numberline {4.1}Main routine}{102}{subsection.4.1} \contentsline {subsection}{\numberline {4.2}Methods}{109}{subsection.4.2} \contentsline {section}{\numberline {5}Expected Survival}{132}{section.5} \contentsline {subsection}{\numberline {5.1}Parsing the covariates list}{140}{subsection.5.1} \contentsline {section}{\numberline {6}Person years}{148}{section.6} \contentsline {subsection}{\numberline {6.1}Print and summary}{156}{subsection.6.1} \contentsline {section}{\numberline {7}Accelerated Failure Time models}{166}{section.7} \contentsline {subsection}{\numberline {7.1}Residuals}{166}{subsection.7.1} \contentsline {section}{\numberline {8}Survival curves}{174}{section.8} \contentsline {subsection}{\numberline {8.1}Kaplan-Meier}{178}{subsection.8.1} \contentsline {subsection}{\numberline {8.2}Kaplan-Meier}{183}{subsection.8.2} \contentsline {subsection}{\numberline {8.3}Competing risks}{205}{subsection.8.3} \contentsline {subsubsection}{\numberline {8.3.1}C-code}{215}{subsubsection.8.3.1} \contentsline {subsubsection}{\numberline {8.3.2}Printing and plotting}{223}{subsubsection.8.3.2} \contentsline {section}{\numberline {9}Plotting survival curves}{239}{section.9} \contentsline {section}{\numberline {10}State space figures}{251}{section.10} \contentsline {section}{\numberline {11}tmerge}{257}{section.11} \contentsline {section}{\numberline {12}Linear models and contrasts}{270}{section.12} \contentsline {section}{\numberline {13}The cox.zph function}{291}{section.13} survival/noweb/pyears2.Rnw0000644000176200001440000004310013537676563015337 0ustar liggesusers\subsection{Print and summary} The print function for pyear gives a very abbreviated printout: just a few lines. It works with pyears objects with or without a data component. <>= print.pyears <- function(x, ...) { if (!is.null(cl<- x$call)) { cat("Call:\n") dput(cl) cat("\n") } if (is.null(x$data)) { if (!is.null(x$event)) cat("Total number of events:", format(sum(x$event)), "\n") cat ( "Total number of person-years tabulated:", format(sum(x$pyears)), "\nTotal number of person-years off table:", format(x$offtable), "\n") } else { if (!is.null(x$data$event)) cat("Total number of events:", format(sum(x$data$event)), "\n") cat ( "Total number of person-years tabulated:", format(sum(x$data$pyears)), "\nTotal number of person-years off table:", format(x$offtable), "\n") } if (!is.null(x$summary)) { cat("Matches to the chosen rate table:\n ", x$summary) } cat("Observations in the data set:", x$observations, "\n") if (!is.null(x$na.action)) cat(" (", naprint(x$na.action), ")\n", sep='') cat("\n") invisible(x) } @ The summary function attempts to create output that looks like a pandoc table, which in turn makes it mesh nicely with Rstudio. Pandoc has 4 types of tables: with and without vertical bars and with single or multiple rows per cell. If the pyears object has only a single dimension then our output will be a simple table with a row or column for each of the output types (see the vertical argument). The result will be a simple table or a ``pipe'' table depending on the vline argument. For two or more dimensions the output follows the usual R strategy for printing an array, but with each ``cell'' containing all of the summaries for that combination of predictors, thus giving either a ``multiline'' or ``grid'' table. The default values of no vertical lines makes the tables appropriate for non-pandoc output such as a terminal session. <>= summary.pyears <- function(object, header=TRUE, call=header, n= TRUE, event=TRUE, pyears=TRUE, expected = TRUE, rate = FALSE, rr = expected, ci.r = FALSE, ci.rr = FALSE, totals=FALSE, legend=TRUE, vline = FALSE, vertical = TRUE, nastring=".", conf.level=0.95, scale= 1, ...) { # Usual checks if (!inherits(object, "pyears")) stop("input must be a pyears object") temp <- c(is.logical(header), is.logical(call), is.logical(n), is.logical(event) , is.logical(pyears), is.logical(expected), is.logical(rate), is.logical(ci.r), is.logical(rr), is.logical(ci.rr), is.logical(vline), is.logical(vertical), is.logical(legend), is.logical(totals)) tname <- c("header", "call", "n", "event", "pyears", "expected", "rate", "ci.r", "rr", "ci.rr", "vline", "vertical", "legend", "totals") if (any(!temp) || length(temp) != 14 || any(is.na(temp))) { stop("the ", paste(tname[!temp], collapse=", "), "argument(s) must be single logical values") } if (!is.numeric(conf.level) || conf.level <=0 || conf.level >=1 | length(conf.level) > 1 || is.na(conf.level) > 1) stop("conf.level must be a single numeric between 0 and 1") if (is.na(scale) || !is.numeric(scale) || length(scale) !=1 || scale <=0) stop("scale must be a value > 0") vname <- attr(terms(object), "term.labels") #variable names if (!is.null(object$data)) { # Extra work: restore the tables which had been unpacked into a df # All of the categories are factors in this case tdata <- object$data[vname] # the conditioning variables dname <- lapply(tdata, function(x) { if (is.factor(x)) levels(x) else sort(unique(x))}) # dimnames dd <- sapply(dname, length) # dim of arrays index <- tapply(tdata[,1], tdata) restore <- c('n', 'event', 'pyears', 'expected') #do these, if present restore <- restore[restore %in% names(object$data)] new <- lapply(object$data[restore], function(x) { temp <- array(0L, dim=dd, dimnames=dname) temp[index] <- x temp} ) object <- c(object, new) } if (is.null(object$expected)) { expected <- FALSE rr <- FALSE ci.rr <- FALSE } if (is.null(object$event)) { event <- FALSE rate <- FALSE ci.r <- FALSE rr <- FALSE ci.rr <- FALSE } # print out the front matter if (call && !is.null(object$call)) { cat("Call: ") dput(object$call) cat("\n") } if (header) { cat("number of observations =", object$observations) if (length(object$omit)) cat(" (", naprint(object$omit), ")\n", sep="") else cat("\n") if (object$offtable > 0) cat(" Total time lost (off table)", format(object$offtable), "\n") cat("\n") } # Add in totals if requested if (totals) { # if the pyear object was based on any time dependent cuts, then # the "n" component cannot be totaled up. tcut <- if (is.null(object$tcut)) TRUE else object$tcut object$n <- pytot(object$n, na=tcut) object$pyears <- pytot(object$pyears) if (event) object$event <- pytot(object$event) if (expected) object$expected <- pytot(object$expected) } dd <- dim(object$n) vname <- attr(terms(object), "term.labels") #variable names <> if (length(dd) ==1) { # 1 dimensional table <> } else { # more than 1 dimension <> } invisible(object) } <> @ <>= # Put the elements to be printed onto a list pname <- (tname[3:6])[c(n, event, pyears, expected)] plist <- object[pname] if (rate) { pname <- c(pname, "rate") plist$r <- scale* object$event/object$pyears } if (ci.r) { pname <- c(pname, "ci.r") plist$ci.r <- cipoisson(object$event, object$pyears, p=conf.level) *scale } if (rr) { pname <- c(pname, "rr") plist$rr <- object$event/object$expected } if (ci.rr) { pname <- c(pname, "ci.rr") plist$ci.rr <- cipoisson(object$event, object$expected, p=conf.level) } rname <- c(n = "N", event="Events", pyears= "Time", expected= "Expected events", rate = "Event rate", ci.r = "CI (rate)", rr= "Obs/Exp", ci.rr= "CI (O/E)") rname <- rname[pname] @ If there is only one dimension to the table we can forgo the top legend and use the object names as one of the margins. If \code{vertical=TRUE} the output types are vertical, otherwise they are horizontal. Format each element of the output separately. <>= cname <- names(object$n) #category names if (vertical) { # The person-years objects list across the top, categories up and down # This makes columns line up in a standard "R" way # The first column label is the variable name, content is the categories plist <- lapply(plist, pformat, nastring, ...) # make it character pcol <- sapply(plist, function(x) nchar(x[1])) #width of each one colwidth <- pmax(pcol, nchar(rname)) +2 for (i in 1:length(plist)) plist[[i]] <- strpad(plist[[i]], colwidth[i]) colwidth <- c(max(nchar(vname), nchar(cname)) +2, colwidth) leftcol <- list(strpad(cname, colwidth[1])) header <- strpad(c(vname, rname), colwidth) } else { # in this case each column will have different types of objects in it # alignment is the nuisance newmat <- pybox(plist, length(plist[[1]]), nastring, ...) colwidth <- pmax(nchar(cname), apply(nchar(newmat), 1, max)) +2 # turn the list sideways plist <- split(newmat, row(newmat)) for (i in 1:length(plist)) plist[[i]] <- strpad(plist[[i]], colwidth[i]) colwidth <- c(max(nchar(vname), nchar(rname)) +2, colwidth) leftcol <- list(strpad(rname, colwidth[1])) header <- strpad(c(vname, cname), colwidth) } # Now print it if (vline) { # use a pipe table cat(paste(header, collapse = "|"), "\n") cat(paste(strpad("-", colwidth, "-"), collapse="|"), "\n") temp <- do.call("paste", c(leftcol, plist, list(sep ="|"))) cat(temp, sep= '\n') } else { cat(paste(header, collapse = " "), "\n") cat(paste(strpad("-", colwidth, "-"), collapse=" "), "\n") temp <- do.call("paste", c(leftcol, plist, list(sep =" "))) cat(temp, sep='\n') } @ When there are more than one category in the pyears object then we use a special layout. Each 'cell' of the printed table has all of the values in it. <>= if (header) { # the header is itself a table width <- max(nchar(rname)) if (vline) { cat('+', strpad('-', width, '-'), "+\n", sep="") cat(paste0('|',strpad(rname, width), '|'), sep='\n') cat('+', strpad('-', width, '-'), "+\n\n", sep="") } else { cat(strpad('-', width, '-'), "\n") cat(strpad(rname, width), sep='\n') cat(strpad('-', width, '-'), "\n\n") } } tname <- vname[1:2] #names for the row and col rowname <- dimnames(object$n)[[1]] colname <- dimnames(object$n)[[2]] if (length(dd) > 2) newmat <- pybox(plist, c(dd[1],dd[2], prod(dd[-(1:2)])), nastring, ...) else newmat <- pybox(plist, dd, nastring, ...) if (length(dd) > 2) { newmat <- pybox(plist, c(dd[1],dd[2], prod(dd[-(1:2)])), nastring, ...) outer.label <- do.call("expand.grid", dimnames(object$n)[-(1:2)]) temp <- names(outer.label) for (i in 1:nrow(outer.label)) { # first the caption, then data cat(paste(":", paste(temp, outer.label[i,], sep="=")), '\n') pyshow(newmat[,,i,], tname, rowname, colname, vline) } } else { newmat <- pybox(plist, dd, nastring, ...) pyshow(newmat, tname, rowname, colname, vline) } @ Here are some character manipulation functions. The stringi package has more elegant versions of the pad function, but we don't need the speed. No one is going to print out thousands of lines. <>= strpad <- function(x, width, pad=' ') { # x = the string(s) to be padded out # width = width of desired string. nc <- nchar(x) added <- width - nc left <- pmax(0, floor(added/2)) # can't add negative space right <- pmax(0, width - (nc + left)) # right will be >= left if (all(right <=0)) { if (length(x) >= length(width)) x # nothing needs to be done else rep(x, length=length(width)) } else { # Each pad could be a different length. # Make a long string from which we can take a portion longpad <- paste(rep(pad, max(right)), collapse='') paste0(substring(longpad, 1, left), x, substring(longpad,1, right)) } } pformat <- function(x, nastring, ...) { # This is only called for single index tables, in vertical mode # Any matrix will be a confidence interval if (is.matrix(x)) ret <- paste(ifelse(is.na(x[,1]), nastring, format(x[,1], ...)), "-", ifelse(is.na(x[,2]), nastring, format(x[,2], ...))) else ret <- ifelse(is.na(x), nastring, format(x, ...)) } @ Create formatted boxes. We want all the decimal points to line up, so the format calls are in 3 parts: integer, real, and confidence interval. If there are confidence intervals, format their values and then paste together the left-right ends. The intermediag form \code{final} is a matrix with one column per statistic. At the end, reformat it as an array whose last dimension is the components. <>= pybox <- function(plist, dd, nastring, ...) { ci <- (substring(names(plist), 1,3) == "ci.") # the CI components int <- sapply(plist, function(x) all(x == floor(x) | is.na(x))) int <- (!ci & int) real<- (!ci & !int) nc <- prod(dd) final <- matrix("", nrow=nc, ncol=length(ci)) if (any(int)) { # integers if (any(sapply(plist[int], length) != nc)) stop("programming length error, notify package author") temp <- unlist(plist[int]) final[,int] <- ifelse(is.na(temp), nastring, format(temp)) } if (any(real)) { # floating point if (any(sapply(plist[real], length) != nc)) stop("programming length error, notify package author") temp <- unlist(plist[real]) final[,real] <- ifelse(is.na(temp), nastring, format(temp, ...)) } if (any(ci)) { if (any(sapply(plist[ci], length) != nc*2)) stop("programming length error, notify package author") temp <- unlist(plist[ci]) temp <- array(ifelse(is.na(temp), nastring, format(temp, ...)), dim=c(nc, 2, sum(ci))) final[,ci] <- paste(temp[,1,], temp[,2,], sep='-') } array(final, dim=c(dd, length(ci))) } @ This function prints out a box table. Each cell contains the full set of statistics that were requested. Most of the work is the creation of the appropriate spacing and special characters to create a valid pandoc table. <>= pyshow <- function(dmat, labels, rowname, colname, vline) { # Every column is the same width, except the first colwidth <- c(max(nchar(rowname), nchar(labels[1])), rep(max(nchar(dmat[1,1,]), nchar(colname)), length(colname))) colwidth[2] <- max(colwidth[2], nchar(labels[2])) ncol <- length(colwidth) dd <- dim(dmat) # vector of length 3, third dim is the statistics rline <- ceiling(dd[3]/2) #which line to put the row label on. if (vline) { # use a grid table cat("+", paste(strpad('-', colwidth, pad='-'), collapse='+'), "+\n", sep='') temp <- rep(' ', ncol); temp[2] <- labels[2] cat("|", paste(strpad(temp, colwidth), collapse="|"), "|\n", sep='') cat("|", paste(strpad(c(labels[1], colname), colwidth), collapse="|"), "|\n", sep='') cat("+", paste(strpad('=', colwidth, pad='='), collapse="+"), "+\n", sep='') for (i in 1:dd[1]) { for (j in 1:dd[3]) { #one printout line per stat if (j==rline) temp <- c(rowname[i], dmat[i,,j]) else temp <- c("", dmat[i,,j]) cat("|", paste(strpad(temp, colwidth), collapse='|'), "|\n", sep='') } cat("+", paste(strpad('-', colwidth, '-'), collapse='+'), "+\n", sep='') } } else { # use a multiline table cat(paste(strpad('-', colwidth, '-'), collapse='-'), "\n") temp <- rep(' ', ncol); temp[2] <- labels[2] cat(paste(strpad(temp, colwidth), collapse=" "), "\n") cat(paste(strpad(c(labels[1], colname), colwidth), collapse=" "), "\n") cat(paste(strpad('-', colwidth, pad='-'), collapse=" "), "\n") for (i in 1:dd[1]) { for (j in 1:dd[3]) { #one printout line per stat if (j==rline) temp <- c(rowname[i], dmat[i,,j]) else temp <- c("", dmat[i,,j]) cat(paste(strpad(temp, colwidth), collapse=' '), "\n") } if (i< dd[1]) cat(" \n") #blank line } cat(paste(strpad('-', colwidth, '-'), collapse='-'), "\n") } } @ This function adds a totals row to the data, for either the first or first and second dimensions. The ``n'' component can't be totaled, so we turn that into NA. <>= pytot <- function(x, na=FALSE) { dd <- dim(x) if (length(dd) ==1) { if (na) array(c(x, NA), dim= length(x) +1, dimnames=list(c(dimnames(x)[[1]], "Total"))) else array(c(x, sum(x)), dim= length(x) +1, dimnames=list(c(dimnames(x)[[1]], "Total"))) } else if (length(dd) ==2) { if (na) new <- rbind(cbind(x, NA), NA) else { new <- rbind(x, colSums(x)) new <- cbind(new, rowSums(new)) } array(new, dim=dim(x) + c(1,1), dimnames=list(c(dimnames(x)[[1]], "Total"), c(dimnames(x)[[2]], "Total"))) } else { # The general case index <- 1:length(dd) if (na) sum1 <- sum2 <- sum3 <- NA else { sum1 <- apply(x, index[-1], sum) # row sums sum2 <- apply(x, index[-2], sum) # col sums sum3 <- apply(x, index[-(1:2)], sum) # total sums } # create a new matrix and then fill it in d2 <- dd d2[1:2] <- dd[1:2] +1 dname <- dimnames(x) dname[[1]] <- c(dname[[1]], "Total") dname[[2]] <- c(dname[[2]], "Total") new <- array(x[1], dim=d2, dimnames=dname) # say dim(x) =(5,8,4); we want new[6,-9,] <- sum1; new[-6,9,] <- sum2 # and new[6,9,] <- sum3 # if dim is longer, we need to add more commas commas <- rep(',', length(dd) -2) eval(parse(text=paste("new[1:dd[1], 1:dd[2]", commas, "] <- x"))) eval(parse(text=paste("new[ d2[1],-d2[2]", commas, "] <- sum1"))) eval(parse(text=paste("new[-d2[1], d2[2]", commas, "] <- sum2"))) eval(parse(text=paste("new[ d2[1], d2[2]", commas, "] <- sum3"))) new } } @ survival/noweb/yates2.Rnw0000644000176200001440000007336313556071275015165 0ustar liggesusersNow for the primary function. The user may have a list of tests, or a single term. The first part of the function does the usual of grabbing arguments and then checking them. The fit object has to have the standard stuff: terms, assign, xlevels and contrasts. Attributes of the terms are used often enough that we copy them to \code{Tatt} to save typing. We will almost certainly need the model frame and/or model matrix as well. In the discussion below I use x1 to refer to the covariates/terms that are the target, e.g. \code{test='Mask'} to get the mean population values for each level of the Mask variable in the solder data set, and x2 to refer to all the other terms in the model, the ones that we average over. These are also referred to as U and V in the vignette. <>= yates <- function(fit, term, population=c("data", "factorial", "sas"), levels, test =c("global", "trend", "pairwise"), predict="linear", options, nsim=200, method=c("direct", "sgtt")) { Call <- match.call() if (missing(fit)) stop("a fit argument is required") Terms <- try(terms(fit), silent=TRUE) if (inherits(Terms, "try-error")) stop("the fit does not have a terms structure") else Terms <- delete.response(Terms) # y is not needed Tatt <- attributes(Terms) # a flaw in delete.response: it doesn't subset dataClasses Tatt$dataClasses <- Tatt$dataClasses[row.names(Tatt$factors)] if (is.list(predict) || is.function(predict)) { # someone supplied their own stop("user written prediction function are not yet supported") } else { # call the method indx <- match(c("fit", "predict", "options"), names(Call), nomatch=0) temp <- Call[c(1, indx)] temp[[1]] <- quote(yates_setup) mfun <- eval(temp, parent.frame()) } if (is.null(mfun)) predict <- "linear" # we will need the original model frame and X matrix mframe <- fit$model if (is.null(mframe)) mframe <- model.frame(fit) Xold <- model.matrix(fit) if (is.null(fit$assign)) { # glm models don't save assign xassign <- attr(Xold, "assign") } else xassign <- fit$assign nvar <- length(xassign) nterm <- length(Tatt$term.names) termname <- rownames(Tatt$factors) iscat <- sapply(Tatt$dataClasses, function(x) x %in% c("character", "factor")) method <- match.arg(casefold(method), c("direct", "sgtt")) #allow SGTT if (method=="sgtt" && missing(population)) population <- "sas" if (is.character(population)) { population <- match.arg(tolower(population[1]), c("data", "factorial", "sas", "empirical", "yates")) if (population=="empirical") population <- "data" if (population=="yates") population <- "factorial" } else { if (!inherits(population, "data.frame")) stop("the population argument must be a data frame or character") } test <- match.arg(test) if (method=="sgtt" && (population !="sas" || predict != "linear")) stop("sgtt method only applies if population = sas and predict = linear") beta <- coef(fit, complete=TRUE) nabeta <- is.na(beta) # undetermined coefficients vmat <- vcov(fit, complete=FALSE) if (nrow(vmat) > sum(!nabeta)) { # a vcov method that does not obey the complete argument vmat <- vmat[!nabeta, !nabeta] } # grab the dispersion, needed for the writing an SS in linear models if (class(fit)[1] =="lm") sigma <- summary(fit)$sigma else sigma <- NULL # don't compute an SS column # process the term argument and check its legality if (missing(levels)) contr <- cmatrix(fit, term, test, assign= xassign) else contr <- cmatrix(fit, term, test, assign= xassign, levels = levels) x1data <- as.data.frame(contr$levels) # labels for the PMM values # Make the list of X matrices that drive everything: xmatlist # (Over 1/2 the work of the whole routine) xmatlist <- yates_xmat(Terms, Tatt, contr, population, mframe, fit, iscat) # check rows of xmat for estimability <> # Drop missing coefficients, and use xmatlist to compute the results beta <- beta[!nabeta] if (predict == "linear" || is.null(mfun)) { # population averages of the simple linear predictor <> } else { <> } result$call <- Call class(result) <- "yates" result } @ Models with factor variables may often lead to population predictions that involve non-estimable functions, particularly if there are interactions or the user specifies a factorial population. If there are any missing coefficients we have to do formal checking for this: any given row of the new $X$ matrix, for prediction, must be in the row space of the original $X$ matrix. If this is true then a regression of a new row on the old $X$ will have residuals of zero. It is not possible to derive this from the pattern of NA coefficients alone. Set up a function that returns a true/false vector of whether each row of a matrix is estimable. This test isn't relevant if population=none. <>= if (any(is.na(beta)) && population != "none") { if (inherits(fit, "coxph")) X.qr <- qr(rbind(1, t(Xold))) else X.qr <- qr(t(Xold)) # QR decomposition of the row space estimcheck <- function(x, eps= sqrt(.Machine$double.eps)) { temp <- abs(qr.resid(X.qr, t(x))) # apply(abs(temp), 1, function(x) all(x < eps)) # each row estimable all(temp < eps) } estimable <- sapply(xmatlist, estimcheck) } else estimable <- rep(TRUE, length(xmatlist)) @ When the prediction target is $X\beta$ there is a four step process: build the reference population, create the list of X matrices (one prediction matrix for each for x1 value), column means of each X form each row of the contrast matrix Cmat, and then use Cmat to get the pmm values and tests of the pmm values. <>= if (is.na(match(contr$termname, colnames(Tatt$factors)))) stop("term '", contr$termname, "' not found in the model") Cmat <- t(sapply(xmatlist, colMeans))[,!nabeta] # coxph model: the X matrix is built as though an intercept were there (the # baseline hazard plays that role), but then drop it from the coefficients # before computing estimates and tests. if (inherits(fit, "coxph")) { Cmat <- Cmat[,-1, drop=FALSE] offset <- -sum(fit$means[!nabeta] * beta) # recenter the predictions too } else offset <- 0 # Get the PMM estimates, but only for estimable ones estimate <- cbind(x1data, pmm=NA, std=NA) if (any(estimable)) { etemp <- estfun(Cmat[estimable,,drop=FALSE], beta, vmat) estimate$pmm[estimable] <- etemp$estimate + offset estimate$std[estimable] <- sqrt(diag(etemp$var)) } # Now do tests on the PMM estimates, one by one if (method=="sgtt") { <> } else { if (is.list(contr$cmat)) { test <- t(sapply(contr$cmat, function(x) testfun(x %*% Cmat, beta, vmat, sigma^2))) natest <- sapply(contr$cmat, nafun, estimate$pmm) } else { test <- testfun(contr$cmat %*% Cmat, beta, vmat, sigma^2) test <- matrix(test, nrow=1, dimnames=list(contr$termname, names(test))) natest <- nafun(contr$cmat, estimate$pmm) } if (any(natest)) test[natest,] <- NA } if (any(estimable)){ # Cmat[!estimable,] <- NA result <- list(estimate=estimate, test=test, mvar=etemp$var, cmat=Cmat) } else result <- list(estimate=estimate, test=test, mvar=NA) if (method=="sgtt") result$SAS <- Smat @ In the non-linear case the mfun object is either a single function or a list containing two functions \code{predict} and \code{summary}. The predict function is handed a vector $\eta = X\beta$ along with the $X$ matrix, though most methods don't use $X$. The result of predict can be a vector or a matrix. For coxph models we add on an ``intercept coef'' that will center the predictions. <>= xall <- do.call(rbind, xmatlist)[,!nabeta, drop=FALSE] if (inherits(fit, "coxph")) { xall <- xall[,-1, drop=FALSE] # remove the intercept eta <- xall %*% beta -sum(fit$means[!nabeta]* beta) } else eta <- xall %*% beta n1 <- nrow(xmatlist[[1]]) # all of them are the same size index <- rep(1:length(xmatlist), each = n1) if (is.function(mfun)) predfun <- mfun else { # double check the object if (!is.list(mfun) || any(is.na(match(c("predict", "summary"), names(mfun)))) || !is.function(mfun$predic) || !is.function(mfun$summary)) stop("the prediction should be a function, or a list with two functions") predfun <- mfun$predict sumfun <- mfun$summary } pmm <- predfun(eta, xall) n2 <- length(eta) if (!(is.numeric(pmm)) || !(length(pmm)==n2 || nrow(pmm)==n2)) stop("prediction function should return a vector or matrix") pmm <- rowsum(pmm, index, reorder=FALSE)/n1 pmm[!estimable,] <- NA # get a sample of coefficients, in order to create a variance # this is lifted from the mvtnorm code (can't include a non-recommended # package in the dependencies) tol <- sqrt(.Machine$double.eps) if (!isSymmetric(vmat, tol=tol, check.attributes=FALSE)) stop("variance matrix of the coefficients is not symmetric") ev <- eigen(vmat, symmetric=TRUE) if (!all(ev$values >= -tol* abs(ev$values[1]))) warning("variance matrix is numerically not positive definite") Rmat <- t(ev$vectors %*% (t(ev$vectors) * sqrt(ev$values))) bmat <- matrix(rnorm(nsim*ncol(vmat)), nrow=nsim) %*% Rmat bmat <- bmat + rep(beta, each=nsim) # add the mean # Now use this matrix of noisy coefficients to get a set of predictions # and use those to create a variance matrix # Since if Cox we need to recenter each run sims <- array(0., dim=c(nsim, nrow(pmm), ncol(pmm))) if (inherits(fit, 'coxph')) offset <- bmat %*% fit$means[!nabeta] else offset <- rep(0., nsim) for (i in 1:nsim) sims[i,,] <- rowsum(predfun(xall %*% bmat[i,] - offset[i]), index, reorder=FALSE)/n1 mvar <- var(sims[,,1]) # this will be used for the tests estimate <- cbind(x1data, pmm=unname(pmm[,1]), std= sqrt(diag(mvar))) # Now do the tests, on the first column of pmm only if (is.list(contr$cmat)) { test <- t(sapply(contr$cmat, function(x) testfun(x, pmm[,1], mvar[estimable, estimable], NULL))) natest <- sapply(contr$cmat, nafun, pmm[,1]) } else { test <- testfun(contr$cmat, pmm[,1], mvar[estimable, estimable], NULL) test <- matrix(test, nrow=1, dimnames=list(contr$termname, names(test))) natest <- nafun(contr$cmat, pmm[,1]) } if (any(natest)) test[natest,] <- NA if (any(estimable)) result <- list(estimate=estimate,test=test, mvar=mvar) else result <- list(estimate=estimate, test=test, mvar=NA) # If there were multiple columns from predfun, compute the matrix of # results and variances if (ncol(pmm) > 1 && any(estimable)){ pmm <- apply(sims, 2:3, mean) mvar2 <- apply(sims, 2:3, var) # Call the summary function, if present if (is.list(mfun)) result$summary <- sumfun(pmm, mvar2) else { result$pmm <- pmm result$mvar2 <- mvar2 } } @ Build the population data set. If the user provided a data set as the population then the task is fairly straightforward: we manipulate the data set and then call model.frame followed by model.matrix in the usual way. The primary task in that case is to verify that the data has all the needed variables. Otherwise we have to be subtle. \begin{enumerate} \item We have ready access to a model frame, but not to the data. Consider a spline term for instance --- it's not always possible to go backwards and get the data. \item We need to manipulate this model frame, e.g., make everyone treatment=A, then repeat with everyone treatment B. \item We need to do it in a way that makes the frame still look like a correct model frame to R. This requires care. \end{enumerate} For population= factorial we create a population data set that has all the combinations. If there are three adjusters z1, z2 and z3 with 2, 3, and 5 levels, respectively, the new data set will have 30 rows. If the primary model didn't have any z1*z2*z3 terms in it we likely could get by with less, but it's not worth the programming effort to figure that out: predicted values are normally fairly cheap. For population=sas we need a mixture: categoricals are factorial and others are data. Say there were categoricals with 3 and 5 levels, so the factorial data set has 15 obs, while the overall n is 50. We need a data set of 15*50 observations to ensure all combinations of the two categoricals with each continuous line. An issue with data vs model is names. Suppose the original model was \code{lm(y \textasciitilde ns(age,4) + factor(ph.ecog))}. In the data set the variable name is ph.ecog, in the model frame, the xlevels list, and terms structure it is factor(ph.ecog). The data frame has individual columns for the four variables, the model frame is a list with 3 elements, one of which is named ``ns(age, 4)'': notice the extra space before the 4 compared to what was typed. <>= yates_xmat <- function(Terms, Tatt, contr, population, mframe, fit, iscat) { # which variables(s) are in x1 (variables of interest) x1indx <- apply(Tatt$factors[,contr$termname,drop=FALSE] >0, 1, any) x2indx <- !x1indx # adjusters if (inherits(population, "data.frame")) pdata <- population #user data else if (population=="data") pdata <- mframe #easy case else if (population=="factorial") pdata <- yates_factorial_pop(mframe, Terms, x2indx, fit$xlevels) else if (population=="sas") { if (all(iscat[x2indx])) pdata <- yates_factorial_pop(mframe, Terms, x2indx, fit$xlevels) else if (!any(iscat[x2indx])) pdata <- mframe # no categoricals else { # mixed population pdata <- yates_factorial_pop(mframe, Terms, x2indx & iscat, fit$xlevels) n2 <- nrow(pdata) pdata <- pdata[rep(1:nrow(pdata), each=nrow(mframe)), ] row.names(pdata) <- 1:nrow(pdata) # fill in the continuous k <- rep(1:nrow(mframe), n2) for (i in which(x2indx & !iscat)) { j <- names(x1indx)[i] if (is.matrix(mframe[[j]])) pdata[[j]] <- mframe[[j]][k,, drop=FALSE] else pdata[[j]] <- (mframe[[j]])[k] attributes(pdata[[j]]) <- attributes(mframe[[j]]) } } } else stop("unknown population") # this should have been caught earlier # Now create the x1 data set, the unique rows we want to test <> xmatlist } @ Build a factorial data set from a model frame. <>= yates_factorial_pop <- function(mframe, terms, x2indx, xlevels) { x2name <- names(x2indx)[x2indx] dclass <- attr(terms, "dataClasses")[x2name] if (!all(dclass %in% c("character", "factor"))) stop("population=factorial only applies if all the adjusting terms are categorical") nvar <- length(x2name) n2 <- sapply(xlevels[x2name], length) # number of levels for each n <- prod(n2) # total number of rows needed pdata <- mframe[rep(1, n), -1] # toss the response row.names(pdata) <- NULL # throw away funny names n1 <- 1 for (i in 1:nvar) { j <- rep(rep(1:n2[i], each=n1), length=n) xx <- xlevels[[x2name[i]]] if (dclass[i] == "factor") pdata[[x2name[i]]] <- factor(j, 1:n2[i], labels= xx) else pdata[[x2name[i]]] <- xx[j] n1 <- n1 * n2[i] } attr(pdata, "terms") <- terms pdata } @ The next section builds a set of X matrices, one for each level of the x1 combination. The following was learned by reading the source code for model.matrix: \begin{itemize} \item If pdata has no terms attribute then model.matrix will call model.frame first, otherwise not. The xlev argument is passed forward to model.frame but is otherwise unused. \item If necessary, it will reorder the columns of pdata to match the terms, though I try to avoid that. \item Toss out the response variable, if present. \item Any character variables are turned into factors. The dataClass attribute of the terms object is not consulted. \item For each column that is a factor \begin{itemize} \item if it alreay has a contrasts attribute, it is left alone. \item otherwise a contrasts attribute is added using a matching element from contrasts.arg, if present, otherwise the global default \item contrasts.arg must be a list, but it does not have to contain all factors \end{itemize} \item Then call the internal C code \end{itemize} If pdata already is a model frame we want to leave it as one, so as to avoid recreating the raw data. If x1data comes from the user though, so we need to do that portion of model.frame processing ourselves, in order to get it into the right form. Always turn characters into factors, since individual elements of \code{xmatlist} will have only a subset of the x1 variables. One nuisance is name matching. Say the model had \code{factor(ph.ecog)} as a term; then \code{fit\$xlevels} will have `factor(ph.ecog)' as a name but the user will likely have created a data set using `ph.ecog' as the name. <>= if (is.null(contr$levels)) stop("levels are missing for this contrast") x1data <- as.data.frame(contr$levels) # in case it is a list x1name <- names(x1indx)[x1indx] for (i in 1:ncol(x1data)) { if (is.character(x1data[[i]])) { if (is.null(fit$xlevels[[x1name[i]]])) x1data[[i]] <- factor(x1data[[i]]) else x1data[[i]] <- factor(x1data[[i]], fit$xlevels[[x1name[i]]]) } } xmatlist <- vector("list", nrow(x1data)) if (is.null(attr(pdata, "terms"))) { np <- nrow(pdata) k <- match(x1name, names(pdata), nomatch=0) if (any(k>0)) pdata <- pdata[, -k, drop=FALSE] # toss out yates var for (i in 1:nrow(x1data)) { j <- rep(i, np) tdata <- cbind(pdata, x1data[j,,drop=FALSE]) # new data set xmatlist[[i]] <- model.matrix(Terms, tdata, xlev=fit$xlevels, contrast.arg= fit$contrasts) } } else { # pdata is a model frame, convert x1data # if the name and the class agree we go forward simply index <- match(names(x1data), names(pdata), nomatch=0) if (all(index >0) && identical(lapply(x1data, class), lapply(pdata, class)[index]) & identical(sapply(x1data, ncol) , sapply(pdata, ncol)[index])) { # everything agrees for (i in 1:nrow(x1data)) { j <- rep(i, nrow(pdata)) tdata <- pdata tdata[,names(x1data)] <- x1data[j,] xmatlist[[i]] <- model.matrix(Terms, tdata, contrasts.arg= fit$contrasts) } } else { # create a subset of the terms structure, for x1 only # for instance the user had age=c(75, 75, 85) and the term was ns(age) # then call model.frame to fix it up x1term <- Terms[which(x1indx)] x1name <- names(x1indx)[x1indx] attr(x1term, "dataClasses") <- Tatt$dataClasses[x1name] # R bug x1frame <- model.frame(x1term, x1data, xlev=fit$xlevels[x1name]) for (i in 1:nrow(x1data)) { j <- rep(i, nrow(pdata)) tdata <- pdata tdata[,names(x1frame)] <- x1frame[j,] xmatlist[[i]] <- model.matrix(Terms, tdata, xlev=fit$xlevels, contrast.arg= fit$contrasts) } } } @ The decompostion based algorithm for SAS type 3 tests. Ignore the set of contrasts cmat since the algorithm can only do a global test. We mostly mimic the SAS GLM algorithm. For the generalized Cholesky decomposition $LDL' = X'X$, where $L$ is lower triangular with $L_{ii}=1$ and $D$ is diagonal, the set of contrasts $L'\beta$ gives the type I sequential sums of squares, partitioning the rows of $L$ into those for term 1, term 2, etc. If $X$ is the design matrix for a balanced factorial design then it is also true that $L_{ij}=0$ unless term $j$ includes term $i$, e.g., x1:x2 includes x1. These blocks of zeros mean that changing the order of the terms in the model simply rearranges $L$, and individual tests are unchanged. This is precisely the definition of a type III contrast in SAS. With a bit of reading between the lines the ``four types of estimable functions'' document suggests the following algorithm: \begin{enumerate} \item Start with an $X$ matrix in standard order of intercept, main effects, first order interactions, etc. Code any categorical variable with $k$ levels as $k$ 0/1 columns. An interaction of two categoricals with $k$ and $l$ levels will have $kl$ columns, etc. \item Create the dependency matrix $D = (X'X)^-(X'X)$. If column $i$ of $X$ can be written as a linear combination of prior columns, then column $i$ of $D$ contains that combination. Other columns of $D$ match the identity matrix. \item Intitialize $L = D$. \item For any row $i$ and $j$ such that $i$ is contained in $j$, make $L_i$ orthagonal to $L_j$. \end{enumerate} The algorithm appears to work in almost all cases, an exception is when the type 3 test has fewer degrees of freedom that we would expect. Continuous variables are not orthagonalized in the SAS type III approach, nor any interaction that contains a continuous variable as one of its parts. To find the nested terms first note which rows of \code{factors} refer to categorical variables (the \code{iscat} variable); columns of \code{factors} that are non-zero only in categorical rows are the ``categorical'' columns. A term represented by one column in \code{factors} ``contains'' the term represented in some other column iff it's non-zero elements are a superset. We have to build a new X matrix that is the expanded SAS coding, and are only able to do that for models that have an intercept, and use contr.treatement or contr.SAS coding. <>= # It would be simplest to have the contrasts.arg to be a list of function names. # However, model.matrix plays games with the calling sequence, and any function # defined at this level will not be seen. Instead create a list of contrast # matrices. temp <- sapply(fit$contrasts, function(x) (is.character(x) && x %in% c("contr.SAS", "contr.treatment"))) if (!all(temp)) stop("yates sgtt method can only handle contr.SAS or contr.treatment") temp <- vector("list", length(fit$xlevels)) names(temp) <- names(fit$xlevels) for (i in 1:length(fit$xlevels)) { cmat <- diag(length(fit$xlevels[[i]])) dimnames(cmat) <- list(fit$xlevels[[i]], fit$xlevels[[i]]) if (i>1 || Tatt$intercept==1) { if (fit$contrasts[[i]] == "contr.treatment") cmat <- cmat[, c(2:ncol(cmat), 1)] } temp[[i]] <- cmat } sasX <- model.matrix(formula(fit), data=mframe, xlev=fit$xlevels, contrasts.arg=temp) sas.assign <- attr(sasX, "assign") # create the dependency matrix D. The lm routine is unhappy if it thinks # the right hand and left hand sides are the same, fool it with I(). # We do this using the entire X matrix even though only categoricals will # eventually be used; if a continuous variable made it NA we need to know. D <- coef(lm(sasX ~ I(sasX) -1)) dimnames(D)[[1]] <- dimnames(D)[[2]] #get rid if the I() names zero <- is.na(D[,1]) # zero rows, we'll get rid of these later D <- ifelse(is.na(D), 0, D) # make each row orthagonal to rows for other terms that contain it # Containing blocks, if any, will always be below # this is easiest to do with the transposed matrix # Only do this if both row i and j are for a categorical variable if (!all(iscat)) { # iscat marks variables in the model frame as categorical # tcat marks terms as categorical. For x1 + x2 + x1:x2 iscat has # 2 entries and tcat has 3. tcat <- (colSums(Tatt$factors[!iscat,,drop=FALSE]) == 0) } else tcat <- rep(TRUE, max(sas.assign)) # all vars are categorical B <- t(D) dimnames(B)[[2]] <- paste0("L", 1:ncol(B)) # for the user if (ncol(Tatt$factors) > 1) { share <- t(Tatt$factors) %*% Tatt$factors nc <- ncol(share) for (i in which(tcat[-nc])) { j <- which(share[i,] > 0 & tcat) k <- j[j>i] # terms that I need to regress out if (length(k)) { indx1 <- which(sas.assign ==i) indx2 <- which(sas.assign %in% k) B[,indx1] <- resid(lm(B[,indx1] ~ B[,indx2])) } } } # Cut B back down to the non-missing coefs of the original fit Smat <- t(B)[!zero, !zero] Sassign <- xassign[!nabeta] @ Although the SGTT does test for all terms, we only want to print out the ones that were asked for. <>= keep <- match(contr$termname, colnames(Tatt$factors)) if (length(keep) > 1) { # more than 1 term in the model test <- t(sapply(keep, function(i) testfun(Smat[Sassign==i,,drop=FALSE], beta, vmat, sigma^2))) rownames(test) <- contr$termname } else { test <- testfun(Smat[Sassign==keep,, drop=FALSE], beta, vmat, sigma^2) test <- matrix(test, nrow=1, dimnames=list(contr$termname, names(test))) } @ The print routine places the population predicted values (PPV) alongside the tests on those values. Defaults are copied from printCoefmat. <>= print.yates <- function(x, digits = max(3, getOption("digits") -2), dig.tst = max(1, min(5, digits-1)), eps=1e-8, ...) { temp1 <- x$estimate temp1$pmm <- format(temp1$pmm, digits=digits) temp1$std <- format(temp1$std, digits=digits) # the spaces help separate the two parts of the printout temp2 <- cbind(test= paste(" ", rownames(x$test)), data.frame(x$test), stringsAsFactors=FALSE) row.names(temp2) <- NULL temp2$Pr <- format.pval(pchisq(temp2$chisq, temp2$df, lower.tail=FALSE), eps=eps, digits=dig.tst) temp2$chisq <- format(temp2$chisq, digits= dig.tst) temp2$df <- format(temp2$df) if (!is.null(temp2$ss)) temp2$ss <- format(temp2$ss, digits=digits) if (nrow(temp1) > nrow(temp2)) { dummy <- temp2[1,] dummy[1,] <- "" temp2 <- rbind(temp2, dummy[rep(1, nrow(temp1)-nrow(temp2)),]) } if (nrow(temp2) > nrow(temp1)) { # get rid of any factors before padding for (i in which(sapply(temp1, is.factor))) temp1[[i]] <- as.character(temp1[[i]]) dummy <- temp1[1,] dummy[1,] <- "" temp1 <- rbind(temp1, dummy[rep(1, nrow(temp2)- nrow(temp1)),]) } print(cbind(temp1, temp2), row.names=FALSE) invisible(x) } @ Routines to allow yates to interact with other models. Each is called with the fitted model and the type of prediction. It should return NULL when the type is a linear predictor, since the parent routine has a very efficient approach in that case. Otherwise it returns a function that will be applied to each value $\eta$, from each row of a prediction matrix. <>= yates_setup <- function(fit, ...) UseMethod("yates_setup", fit) yates_setup.default <- function(fit, type, ...) { if (!missing(type) && !(type %in% c("linear", "link"))) warning("no yates_setup method exists for a model of class ", class(fit)[1], " and estimate type ", type, ", linear predictor estimate used by default") NULL } yates_setup.glm <- function(fit, predict = c("link", "response", "terms", "linear"), ...) { type <- match.arg(predict) if (type == "link" || type== "linear") NULL # same as linear else if (type == "response") { finv <- family(fit)$linkinv function(eta, X) finv(eta) } else if (type == "terms") stop("type terms not yet supported") } @ For the coxph routine, we are making use of the R environment by first defining the baseline hazard and then defining the predict and summary functions. This means that those functions have access to the baseline. <>= yates_setup.coxph <- function(fit, predict = c("lp", "risk", "expected", "terms", "survival", "linear"), options, ...) { type <- match.arg(predict) if (type=="lp" || type == "linear") NULL else if (type=="risk") function(eta, X) exp(eta) else if (type == "survival") { # If there are strata we need to do extra work # if there is an interaction we want to suppress a spurious warning suppressWarnings(baseline <- survfit(fit, censor=FALSE)) if (missing(options) || is.null(options$rmean)) rmean <- max(baseline$time) # max death time else rmean <- options$rmean if (!is.null(baseline$strata)) stop("stratified models not yet supported") cumhaz <- c(0, baseline$cumhaz) tt <- c(diff(c(0, pmin(rmean, baseline$time))), 0) predict <- function(eta, ...) { c2 <- outer(exp(drop(eta)), cumhaz) # matrix of values surv <- exp(-c2) meansurv <- apply(rep(tt, each=nrow(c2)) * surv, 1, sum) cbind(meansurv, surv) } summary <- function(surv, var) { bsurv <- t(surv[,-1]) std <- t(sqrt(var[,-1])) chaz <- -log(bsurv) zstat <- -qnorm((1-baseline$conf.int)/2) baseline$lower <- exp(-(chaz + zstat*std)) baseline$upper <- exp(-(chaz - zstat*std)) baseline$surv <- bsurv baseline$std.err <- std/bsurv baselinecumhaz <- chaz baseline } list(predict=predict, summary=summary) } else stop("type expected is not supported") } @ survival/noweb/coxsurv.Rnw0000644000176200001440000006416213555621170015456 0ustar liggesusers \subsection{Predicted survival} The \code{survfit} method for a Cox model produces individual survival curves. As might be expected these have much in common with ordinary survival curves, and share many of the same methods. The primary differences are first that a predicted curve always refers to a particular set of covariate values. It is often the case that a user wants multiple values at once, in which case the result will be a matrix of survival curves with a row for each time and a column for each covariate set. The second is that the computations are somewhat more difficult. The input arguments are \begin{description} \item[formula] a fitted object of class `coxph'. The argument name of `formula' is historic, from when the survfit function was not a generic and only did Kaplan-Meier type curves. \item[newdata] contains the data values for which curves should be produced, one per row \item[se.fit] TRUE/FALSE, should standard errors be computed. \item[individual] a particular option for time-dependent covariates \item[stype] survival type for the formula 1=direct 2= exp \item[ctype] cumulative hazard, 1=Nelson-Aalen, 2= corrected for ties \item[censor] if FALSE, remove any times that have no events from the output. This is for backwards compatability with older versions of the code. \item[id] replacement and extension for the individual argument \item[start.time] Start a curve at a later timepoint than zero. \item[id] replacement for the individual option \item[influence] whether to return the influence matrix \end{description} All the other arguments are common to all the methods, refer to the help pages. Other survival routines have id and cluster options; this routine inherits those variables from coxph. If coxph did a robust variance, this routine will do one also. <>= survfit.coxph <- function(formula, newdata, se.fit=TRUE, conf.int=.95, individual=FALSE, stype=2, ctype, conf.type=c("log", "log-log", "plain", "none", "logit", "arcsin"), censor=TRUE, start.time, id, influence=FALSE, na.action=na.pass, type, ...) { Call <- match.call() Call[[1]] <- as.name("survfit") #nicer output for the user object <- formula #'formula' because it has to match survfit <> <> <> <> <> if (missing(newdata)) risk2 <- 1 else { if (length(object$means)) risk2 <- exp(c(x2 %*% beta) + offset2 - xcenter) else risk2 <- exp(offset2 - xcenter) } <> <> } @ The third line \code{as.name('survfit')} causes the printout to say `survfit' instead of `survfit.coxph'. %' The setup for the has three main phases, first of course to sort out the options the user has given us, second to rebuild the data frame, X matrix, etc from the original Cox model, and third to create variables from the new data set. In the code below x2, y2, strata2, id2, etc. are variables from the new data, X, Y, strata etc from the old. One exception to the pattern is id= argument, oldid = id from original data, id2 = id from new. If the newdata argument is missing we use \code{object\$means} as the default value. This choice has lots of statistical shortcomings, particularly in a stratified model, but is common in other packages and a historic option here. If stype is missing we use the standard approach of exp(cumulative hazard), and ctype is pulled from the Cox model. That is, the \code{coxph} computation used for \code{ties='breslow'} is the same as the Nelson-Aalen hazard estimate, and the Efron approximation the tie-corrected hazard. One particular special case (that gave me fits for a while) is when there are non-heirarchical models, for example \code{~ age + age:sex}. The fit of such a model will \emph{not} be the same using the variable \code{age2 <- age-50}; I originally thought it was a flaw induced by my subtraction. The routine simply cannot give a sensible curve for a model like this. The issue continued to surprise me each time I rediscovered it, leading to an error message for my own protection. I'm not convinced at this time that there is a sensible survival curve that \emph{could} be calculated for such a model. A model with \code{age + age:strata(sex)} will be ok, because the coxph routine treats this last term as though it had a * in it, i.e., fits a stratified model. <>= Terms <- terms(object) robust <- !is.null(object$naive.var) # did the coxph model use robust var? if (!is.null(attr(object$terms, "specials")$tt)) stop("The survfit function can not process coxph models with a tt term") if (!missing(type)) { # old style argument if (!missing(stype) || !missing(ctype)) warning("type argument ignored") else { temp1 <- c("kalbfleisch-prentice", "aalen", "efron", "kaplan-meier", "breslow", "fleming-harrington", "greenwood", "tsiatis", "exact") survtype <- match(match.arg(type, temp1), temp1) stype <- c(1,2,2,1,2,2,2,2,2)[survtype] if (stype!=1) ctype <-c(1,1,2,1,1,2,1,1,1)[survtype] } } if (missing(ctype)) { # Use the appropriate one from the model temp1 <- match(object$method, c("exact", "breslow", "efron")) ctype <- c(1,1,2)[temp1] } else if (!(ctype %in% 1:2)) stop ("ctype must be 1 or 2") if (!se.fit) conf.type <- "none" else conf.type <- match.arg(conf.type) tfac <- attr(Terms, 'factors') temp <- attr(Terms, 'specials')$strata has.strata <- !is.null(temp) if (has.strata) { stangle = untangle.specials(Terms, "strata") #used multiple times, later # Toss out strata terms in tfac before doing the test 1 line below, as # strata end up in the model with age:strat(grp) terms or *strata() terms # (There might be more than one strata term) for (i in temp) tfac <- tfac[,tfac[i,] ==0] # toss out strata terms } if (any(tfac >1)) stop("not able to create a curve for models that contain an interaction without the lower order effect") Terms <- object$terms n <- object$n[1] if (!has.strata) strata <- rep(0L, n) else strata <- object$strata missid <- missing(id) # I need this later, and setting id below makes # "missing(id)" always false if (!missid & !missing(individual)) warning("the `id' option supersedes `individual'") if (!missid) individual <- TRUE else if (missid && individual) id <- rep(0,n) #dummy value else id <- NULL if (individual & missing(newdata)) { stop("the id and/or individual options only make sense with new data") } @ In two places below we need to know if there are strata by covariate interactions, which requires looking at attributes of the terms object. The factors attribute will have a row for the strata variable, or maybe more than one (multiple strata terms are legal). If it has a 1 in a column that corresponds to something of order 2 or greater, that is a strata by covariate interaction. <>= if (has.strata) { temp <- attr(Terms, "specials")$strata factors <- attr(Terms, "factors")[temp,] strata.interaction <- any(t(factors)*attr(Terms, "order") >1) } @ I need to retrieve a copy of the original data. We always need the $X$ matrix and $y$, both of which might be found in the data object. If the fit was a multistate model, the original call included either strata, offset, weights, or id, or if either $x$ or $y$ are missing from the \code{coxph} object, then the model frame will need to be reconstructed. We have to use \code{object['x'}] instead of \texttt{object\$x} since the latter will pick off the \code{xlevels} component if the \code{x} component is missing (which is the default). <>= coxms <- inherits(object, "coxphms") if (coxms || is.null(object$y) || is.null(object[['x']]) || !is.null(object$call$weights) || !is.null(object$call$id) || (has.strata && is.null(object$strata)) || !is.null(attr(object$terms, 'offset'))) { mf <- stats::model.frame(object) } else mf <- NULL #useful for if statements later @ For a single state model we can grab the X matrix off the model frame, for multistate some more work needs to be done. We have to repeat some lines from coxph, but to do that we need some further material. We prefer \code{object\$y} to model.response, since the former will have been passed through aeqSurv with the options the user specified. For a multi-state model, however, we do have to recreate since the saved y has been expanded. In that case observe the saved status of timefix. Old saved objects might not have that element, if missing assume TRUE. <>= position <- NULL Y <- object[['y']] if (is.null(mf)) { weights <- rep(1., n) offset <- rep(0., n) X <- object[['x']] } else { weights <- model.weights(mf) if (is.null(weights)) weights <- rep(1.0, n) offset <- model.offset(mf) if (is.null(offset)) offset <- rep(0., n) X <- model.matrix.coxph(object, data=mf) if (is.null(Y) || coxms) { Y <- model.response(mf) if (is.null(object$timefix) || object$timefix) Y <- aeqSurv(Y) } oldid <- model.extract(mf, "id") if (length(oldid) && ncol(Y)==3) position <- survflag(Y, oldid) else position <- NULL if (!coxms && (nrow(Y) != object$n[1])) stop("Failed to reconstruct the original data set") if (has.strata) { if (length(strata)==0) { if (length(stangle$vars) ==1) strata <- mf[[stangle$vars]] else strata <- strata(mf[, stangle$vars], shortlabel=TRUE) } } } @ If a model frame was created, then it is trivial to grab \code{y} from the new frame and compare it to \code{object\$y} from the original one. This is to avoid nonsense results that arise when someone changes the data set under our feet. We can only check the size: with the addition of aeqSurv other packages were being flagged for tiny discrepancies. Later note: this check does not work for multi-state models, and we don't \emph{have} to have it. Removed by using if (FALSE) so as to preserve the code for future consideration. <>= if (FALSE) { if (!is.null(mf)){ y2 <- object[['y']] if (!is.null(y2)) { if (ncol(y2) != ncol(Y) || length(y2) != length(Y)) stop("Could not reconstruct the y vector") } } } type <- attr(Y, 'type') if (!type %in% c("right", "counting", "mright", "mcounting")) stop("Cannot handle \"", type, "\" type survival data") if (type=="right" || type== "mright") individual <- FALSE if (!missing(start.time)) { if (!is.numeric(start.time) || length(start.time) > 1) stop("start.time must be a single numeric value") # Start the curves after start.time # To do so, remove any rows of the data with an endpoint before that # time. if (ncol(Y)==3) { keep <- Y[,2] > start.time Y[keep,1] <- pmax(Y[keep,1], start.time) } else keep <- Y[,1] > start.time if (!any(Y[keep, ncol(Y)]==1)) stop("start.time argument has removed all endpoints") Y <- Y[keep,,drop=FALSE] X <- X[keep,,drop=FALSE] offset <- offset[keep] strata <- strata[keep] if (length(id) >0 ) id <- id[keep] if (length(position)) position <- position[keep] n <- nrow(Y) } @ In the above code we see id twice. The first, kept as \code{oldid} is the identifier variable for subjects in the original data set, and is needed whenever it contained subjects with more than one row. The second is the user variable of this call, and is used to define multiple rows for a new subject. The latter usage should be rare but we need to allow for it. If a variable is deemed redundant the \code{coxph} routine will have set its coefficient to NA as a marker. We want to ignore that coefficient: treating it as a zero has the desired effect. Another special case is a null model, having either ~1 or only an offset on the right hand side. In that case we create a dummy covariate to allow the rest of the code to work without special if/else. The last special case is a model with a sparse frailty term. We treat the frailty coefficients as 0 variance (in essence as an offset). The frailty is removed from the model variables but kept in the risk score. This isn't statistically very defensible, but it is backwards compatatble. %' A non-sparse frailty does not need special code and works out like any other variable. Center the risk scores by subtracting $ \overline x \hat\beta$ from each. The reason for this is to avoid huge values when calculating $\exp(X\beta)$; this would happen if someone had a variable with a mean of 1000 and a variance of 1. Any constant can be subtracted, mathematically the results are identical as long as the same values are subtracted from the old and new $X$ data. The mean is used because it is handy, we just need to get $X\beta$ in the neighborhood of zero. <>= if (length(object$means) ==0) { # a model with only an offset term # Give it a dummy X so the rest of the code goes through # (This case is really rare) # se.fit <- FALSE X <- matrix(0., nrow=n, ncol=1) xcenter <- mean(offset) coef <- 0.0 varmat <- matrix(0.0, 1, 1) risk <- rep(exp(offset- mean(offset)), length=n) } else { varmat <- object$var beta <- ifelse(is.na(object$coefficients), 0, object$coefficients) xcenter <- sum(object$means * beta)+ mean(offset) if (!is.null(object$frail)) { keep <- !grepl("frailty(", dimnames(X)[[2]], fixed=TRUE) X <- X[,keep, drop=F] } risk <- c(exp(X%*% beta + offset - xcenter)) } @ The \code{risk} vector and \code{x} matrix come from the original data, and are the raw data for the survival curve and its variance. We also need the risk score $\exp(X\beta)$ for the target subject(s). \begin{itemize} \item For predictions with time-dependent covariates the user will have either included an \code{id} statement (newer style) or specified the \code{individual=TRUE} option. If the latter, then \code{newdata} is presumed to contain only a single indivual represented by multiple rows. If the former then the \code{id} variable marks separate individuals. In either case we need to retrieve the covariates, strata, and repsonse from the new data set. \item For ordinary predictions only the covariates are needed. \item If newdata is not present we assume that this is the ordinary case, and use the value of \code{object\$means} as the default covariate set. This is not ideal statistically since many users view this as an ``average'' survival curve, which it is not. \end{itemize} When grabbing [newdata] we want to use model.frame processing, both to handle missing values correctly and, perhaps more importantly, to correctly map any factor variables between the original fit and the new data. (The new data will often have only one of the original levels represented.) Also, we want to correctly handle data-dependent nonlinear terms such as ns and pspline. However, the simple call found in predict.lm, say, \code{model.frame(Terms, data=newdata, ..} isn't used here for a few reasons. The first is a decision on our part that the user should not have to include unused terms in the newdata: sometimes we don't need the response and sometimes we do. Second, if there are strata, the user may or may not have included strata variables in their data set and we need to act accordingly. The third is that we might have an \code{id} statement in this call, which is another variable to be fetched. At one time we dealt with cluster() terms in the formula, but the coxph routine has already removed those for us. Finally, note that there is no ability to use sparse frailties and newdata together; it is a hard case and so rare as to not be worth it. First, remove unnecessary terms from the orginal model formula. If \code{individual} is false then the repsonse variable can go. The dataClasses and predvars attributes, if present, have elements in the same order as the first dimension of the ``factors'' attribute of the terms. Subscripting the terms argument does not preserve dataClasses or predvars, however. Use the pre and post subscripting factors attribute to determine what elements of them to keep. The predvars component is a call objects with one element for each term in the formula, so y ~ age + ns(height) would lead to a predvars of length 4, element 1 is the call itself, 2 would be y, etc. The dataClasses object is a simple list. <>= if (missing(newdata)) { # If the model has interactions, print out a long warning message. # People may hate it, but I don't see another way to stamp out these # bad curves without backwards-incompatability. # I probably should complain about factors too (but never in a strata # or cluster term). if (any(attr(Terms, "order") > 1) ) warning("the model contains interactions; the default curve based on columm means of the X matrix is almost certainly not useful. Consider adding a newdata argument.") if (length(object$means)) { mf2 <- as.list(object$means) #create a dummy newdata names(mf2) <- names(object$coefficients) mf2 <- as.data.frame(mf2) x2 <- matrix(object$means, 1) } else { # nothing but an offset mf2 <- data.frame(X=0) x2 <- 0 } offset2 <- 0 found.strata <- FALSE } else { if (!is.null(object$frail)) stop("Newdata cannot be used when a model has frailty terms") Terms2 <- Terms if (!individual) Terms2 <- delete.response(Terms) <> } @ For backwards compatability, I allow someone to give an ordinary vector instead of a data frame (when only one curve is required). In this case I also need to verify that the elements have a name. Then turn it into a data frame, like it should have been from the beginning. (Documentation of this ability has been suppressed, however. I'm hoping people forget it ever existed.) <>= if (is.vector(newdata, "numeric")) { if (individual) stop("newdata must be a data frame") if (is.null(names(newdata))) { stop("Newdata argument must be a data frame") } newdata <- data.frame(as.list(newdata), stringsAsFactors=FALSE) } @ Finally get my new model frame mf2. We allow the user to leave out any strata() variables if they so desire, \emph{if} there are no strata by covariate interactions. How does one check if the strata variables are or are not available in the call? My first attempt at this was to wrap the call in a try() construct and see if it failed. This doesn't work. \begin{itemize} \item What if there is no strata variable in newdata, but they do have, by bad luck, a variable of the same name in their main directory? \item It would seem like changing the environment to NULL would be wise, so that we don't find variables anywhere but in the data argument, a sort of sandboxing. Not wise: you then won't find functions like ``log''. \item We don't dare modify the environment of the formula at all. It is needed for the sneaky caller who uses his own function inside the formula, 'mycosine' say, and that function can only be found if we retain the environment. \end{itemize} One way out of this is to evaluate each of the strata terms (there can be more than one) one at a time, in an environment that knows nothing except "list" and a fake definition of "strata", and newdata. Variables that are part of the global environment won't be found. I even watch out for the case of either "strata" or "list" is the name of the stratification variable, which causes my fake strata function to return a function when said variable is not in newdata. The variable found.strata is true if ALL the strata are found, set it to false if any are missing. <>= if (has.strata) { found.strata <- TRUE tempenv <- new.env(, parent=emptyenv()) assign("strata", function(..., na.group, shortlabel, sep) list(...), envir=tempenv) assign("list", list, envir=tempenv) for (svar in stangle$vars) { temp <- try(eval(parse(text=svar), newdata, tempenv), silent=TRUE) if (!is.list(temp) || any(unlist(lapply(temp, class))== "function")) found.strata <- FALSE } if (!found.strata) { ss <- untangle.specials(Terms2, "strata") Terms2 <- Terms2[-ss$terms] } } tcall <- Call[c(1, match(c('id', "na.action"), names(Call), nomatch=0))] tcall$data <- newdata tcall$formula <- Terms2 tcall$xlev <- object$xlevels[match(attr(Terms2,'term.labels'), names(object$xlevels), nomatch=0)] tcall[[1L]] <- quote(stats::model.frame) mf2 <- eval(tcall) @ Now, finally, extract the \code{x2} matrix from the just-created frame. <>= if (has.strata && found.strata) { #pull them off temp <- untangle.specials(Terms2, 'strata') strata2 <- strata(mf2[temp$vars], shortlabel=TRUE) strata2 <- factor(strata2, levels=levels(strata)) if (any(is.na(strata2))) stop("New data set has strata levels not found in the original") # An expression like age:strata(sex) will have temp$vars= "strata(sex)" # and temp$terms = integer(0). This does not work as a subscript if (length(temp$terms) >0) Terms2 <- Terms2[-temp$terms] } else strata2 <- factor(rep(0, nrow(mf2))) if (!robust) cluster <- NULL if (individual) { if (missing(newdata)) stop("The newdata argument must be present when individual=TRUE") if (!missid) { #grab the id variable id2 <- model.extract(mf2, "id") if (is.null(id2)) stop("id=NULL is an invalid argument") } else id2 <- rep(1, nrow(mf2)) x2 <- model.matrix(Terms2, mf2)[,-1, drop=FALSE] #no intercept if (length(x2)==0) stop("Individual survival but no variables") offset2 <- model.offset(mf2) if (length(offset2) ==0) offset2 <- 0 y2 <- model.extract(mf2, 'response') if (attr(y2,'type') != type) stop("Survival type of newdata does not match the fitted model") if (attr(y2, "type") != "counting") stop("Individual=TRUE is only valid for counting process data") y2 <- y2[,1:2, drop=F] #throw away status, it's never used } else if (missing(newdata)) { if (has.strata && strata.interaction) stop ("Models with strata by covariate interaction terms require newdata") offset2 <- 0 if (length(object$means)) { x2 <- matrix(object$means, nrow=1, ncol=ncol(X)) } else { # model with only an offset and no new data: very rare case x2 <- matrix(0.0, nrow=1, ncol=1) # make a dummy x2 } } else { offset2 <- model.offset(mf2) if (length(offset2) >0) offset2 <- offset2 else offset2 <- 0 x2 <- model.matrix(Terms2, mf2)[,-1, drop=FALSE] #no intercept } @ <>= if (individual) { result <- coxsurv.fit(ctype, stype, se.fit, varmat, cluster, Y, X, weights, risk, position, strata, oldid, y2, x2, risk2, strata2, id2) } else { result <- coxsurv.fit(ctype, stype, se.fit, varmat, cluster, Y, X, weights, risk, position, strata, oldid, y2, x2, risk2) if (has.strata && found.strata) { if (is.matrix(result$surv)) { <> } } } @ The final bit of work. If the newdata arg contained strata then the user should not get a matrix of survival curves containing every newdata obs * strata combination, but rather a vector of curves, each one with the appropriate strata. It was faster to compute them all, however, than to use the individual=T logic. So now pick off the bits we want. The names of the curves will be the rownames of the newdata arg, if they exist. <>= nr <- nrow(result$surv) #a vector if newdata had only 1 row indx1 <- split(1:nr, rep(1:length(result$strata), result$strata)) rows <- indx1[as.numeric(strata2)] #the rows for each curve indx2 <- unlist(rows) #index for time, n.risk, n.event, n.censor indx3 <- as.integer(strata2) #index for n and strata for(i in 2:length(rows)) rows[[i]] <- rows[[i]]+ (i-1)*nr #linear subscript indx4 <- unlist(rows) #index for surv and std.err temp <- result$strata[indx3] names(temp) <- row.names(mf2) new <- list(n = result$n[indx3], time= result$time[indx2], n.risk= result$n.risk[indx2], n.event=result$n.event[indx2], n.censor=result$n.censor[indx2], strata = temp, surv= result$surv[indx4], cumhaz = result$cumhaz[indx4]) if (se.fit) new$std.err <- result$std.err[indx4] result <- new @ Finally, the last (somewhat boring) part of the code. First, if given the argument \code{censor=FALSE} we need to remove all the time points from the output at which there was only censoring activity. This action is mostly for backwards compatability with older releases that never returned censoring times. Second, add in the variance and the confidence intervals to the result. The code is nearly identical to that in survfitKM. <>= if (!censor) { kfun <- function(x, keep){ if (is.matrix(x)) x[keep,,drop=F] else if (length(x)==length(keep)) x[keep] else x} keep <- (result$n.event > 0) if (!is.null(result$strata)) { temp <- factor(rep(names(result$strata), result$strata), levels=names(result$strata)) result$strata <- c(table(temp[keep])) } result <- lapply(result, kfun, keep) } result$logse = TRUE # this will migrate further in if (se.fit && conf.type != "none") { ci <- survfit_confint(result$surv, result$std.err, logse=result$logse, conf.type, conf.int) result <- c(result, list(lower=ci$lower, upper=ci$upper, conf.type=conf.type, conf.int=conf.int)) } if (!missing(start.time)) result$start.time <- start.time result$call <- Call class(result) <- c('survfitcox', 'survfit') result @ survival/noweb/exact.nw0000644000176200001440000004125013537676563014740 0ustar liggesusers\subsection{Exact partial likelihood} Let $r_i = \exp(X_i\beta)$ be the risk score for observation $i$. For one of the time points assume that there that there are $d$ tied deaths among $n$ subjects at risk. For convenience we will index them as $i= 1,\ldots,d$ in the $n$ at risk. Then for the exact parial likelihood, the contribution at this time point is \begin{align*} L &= \sum_{i=1}^d \log(r_i) - \log(D) \\ \frac{\partial L}{\partial \beta_j} &= x_{ij} - (1/D) \frac{\partial D}{\partial \beta_j} \\ \frac{\partial^2 L}{\partial \beta_j \partial \beta_k} &= (1/D^2)\left[D\frac{\partial^2D}{\partial \beta_j \partial \beta_k} - \frac{\partial D}{\partial \beta_j}\frac{\partial D}{\partial \beta_k} \right] \end{align*} The hard part of this computation is $D$, which is a sum \begin{equation*} D = \sum_{S(d,n)} r_{s_1}r_{s_2} \ldots r_{s_d} \end{equation*} where $S(d,n)$ is the set of all possible subsets of size $d$ from $n$ objects, and $s_1, s_2, \ldots$ indexes the current selection. So if $n=6$ and $d=2$ we would have the 15 pairs 12, 13, .... 56; for $n=5$ and $d=3$ there would be 10 triples 123, 124, 125, \ldots, 345. The brute force computation of all subsets can take a very long time. Gail et al \cite{Gail81} show simple recursion formulas that speed this up considerably. Let $D(d,n)$ be the denominator with $d$ deaths and $n$ subjects. Then \begin{align} D(d,n) &= r_nD(d-1, n-1) + D(d, n-1) \label{d0}\\ \frac{\partial D(d,n)}{\partial \beta_j} &= \frac{\partial D(d, n-1)}{\partial \beta_j} + r_n \frac{\partial D(d-1, n-1)}{\partial \beta_j} + x_{nj}r_n D(d-1, n-1) \label{d1}\\ \frac{\partial^2D(d,n}{\partial \beta_j \partial \beta_k} &= \frac{\partial^2D(d,n-1)}{\partial \beta_j \partial \beta_k} + r_n\frac{\partial^2D(d-1,n-1)}{\partial \beta_j \partial \beta_k} + x_{nj}r_n\frac{\partial D(d-1, n-1)}{\partial \beta_k} + \nonumber \\ & x_{nk}r_n\frac{\partial D(d-1, n-1)}{\partial \beta_j} + x_{nj}x_{nk}r_n D(d-1, n-1) \label{d2} \end{align} The above recursion is captured in the three routines below. The first calculates $D$. It is called with $d$, $n$, an array that will contain all the values of $D(d,n)$ computed so far, and the the first dimension of the array. The intial condition $D(0,n)=1$ is important to all three routines. <>= double coxd0(int d, int n, double *score, double *dmat, int dmax) { double *dn; if (d==0) return(1.0); dn = dmat + (n-1)*dmax + d -1; /* pointer to dmat[d,n] */ if (*dn ==0) { /* still to be computed */ *dn = score[n-1]* coxd0(d-1, n-1, score, dmat, dmax); if (d>= double coxd1(int d, int n, double *score, double *dmat, double *d1, double *covar, int dmax) { int indx; indx = (n-1)*dmax + d -1; /*index to the current array member d1[d.n]*/ if (d1[indx] ==0) { /* still to be computed */ d1[indx] = score[n-1]* covar[n-1]* coxd0(d-1, n-1, score, dmat, dmax); if (d1) d1[indx] += score[n-1]* coxd1(d-1, n-1, score, dmat, d1, covar, dmax); } return(d1[indx]); } double coxd2(int d, int n, double *score, double *dmat, double *d1j, double *d1k, double *d2, double *covarj, double *covark, int dmax) { int indx; indx = (n-1)*dmax + d -1; /*index to the current array member d1[d,n]*/ if (d2[indx] ==0) { /*still to be computed */ d2[indx] = coxd0(d-1, n-1, score, dmat, dmax)*score[n-1] * covarj[n-1]* covark[n-1]; if (d1) d2[indx] += score[n-1] * ( coxd2(d-1, n-1, score, dmat, d1j, d1k, d2, covarj, covark, dmax) + covarj[n-1] * coxd1(d-1, n-1, score, dmat, d1k, covark, dmax) + covark[n-1] * coxd1(d-1, n-1, score, dmat, d1j, covarj, dmax)); } return(d2[indx]); } @ Now for the main body. Start with the dull part of the code: declarations. I use [[maxiter2]] for the S structure and [[maxiter]] for the variable within it, and etc for the other input arguments. All the input arguments except strata are read-only. The output beta vector starts as a copy of ibeta. <>= #include #include "survS.h" #include "survproto.h" #include <> SEXP coxexact(SEXP maxiter2, SEXP y2, SEXP covar2, SEXP offset2, SEXP strata2, SEXP ibeta, SEXP eps2, SEXP toler2) { int i,j,k; int iter; double **covar, **imat; /*ragged arrays */ double *time, *status; /* input data */ double *offset; int *strata; int sstart; /* starting obs of current strata */ double *score; double *oldbeta; double zbeta; double newlk=0; double temp; int halving; /*are we doing step halving at the moment? */ int nrisk =0; /* number of subjects in the current risk set */ int dsize, /* memory needed for one coxc0, coxc1, or coxd2 array */ dmemtot, /* amount needed for all arrays */ ndeath; /* number of deaths at the current time point */ double maxdeath; /* max tied deaths within a strata */ double dtime; /* time value under current examiniation */ double *dmem0, **dmem1, *dmem2; /* pointers to memory */ double *dtemp; /* used for zeroing the memory */ double *d1; /* current first derivatives from coxd1 */ double d0; /* global sum from coxc0 */ /* copies of scalar input arguments */ int nused, nvar, maxiter; double eps, toler; /* returned objects */ SEXP imat2, beta2, u2, loglik2; double *beta, *u, *loglik; SEXP rlist, rlistnames; int nprotect; /* number of protect calls I have issued */ <> <> <> <> } @ Setup is ordinary. Grab S objects and assign others. I use \verb!R_alloc! for temporary ones since it is released automatically on return. <>= nused = LENGTH(offset2); nvar = ncols(covar2); maxiter = asInteger(maxiter2); eps = asReal(eps2); /* convergence criteria */ toler = asReal(toler2); /* tolerance for cholesky */ /* ** Set up the ragged array pointer to the X matrix, ** and pointers to time and status */ covar= dmatrix(REAL(covar2), nused, nvar); time = REAL(y2); status = time +nused; strata = INTEGER(PROTECT(duplicate(strata2))); offset = REAL(offset2); /* temporary vectors */ score = (double *) R_alloc(nused+nvar, sizeof(double)); oldbeta = score + nused; /* ** create output variables */ PROTECT(beta2 = duplicate(ibeta)); beta = REAL(beta2); PROTECT(u2 = allocVector(REALSXP, nvar)); u = REAL(u2); PROTECT(imat2 = allocVector(REALSXP, nvar*nvar)); imat = dmatrix(REAL(imat2), nvar, nvar); PROTECT(loglik2 = allocVector(REALSXP, 5)); /* loglik, sctest, flag,maxiter*/ loglik = REAL(loglik2); nprotect = 5; @ The data passed to us has been sorted by strata, and reverse time within strata (longest subject first). The variable [[strata]] will be 1 at the start of each new strata. Separate strata are completely separate computations: time 10 in one strata and time 10 in another are not comingled. Compute the largest product (size of strata)* (max tied deaths in strata) for allocating scratch space. When computing $D$ it is advantageous to create all the intermediate values of $D(d,n)$ in an array since they will be used in the derivative calculation. Likewise, the first derivatives are used in calculating the second. Even more importantly, say we have a large data set. It will be sorted with the longest times first. If there is a death with 30 at risk and another with 40 at risk, the intermediate sums we computed for the n=30 case are part of the computation for n=40. To make this work we need to index our matrices, within any strata, by the maximum number of tied deaths in the strata. We save this in the strata variable: first obs of a new strata has the number of events. And what if a strata had 0 events? We mark it with a 1. Note that the maxdeath variable is floating point. I had someone call this routine with a data set that gives an integer overflow in that situation. We now keep track of this further below and fail with a message. Such a run would take longer than forever to complete even if integer subscripts did not overflow. <>= strata[0] =1; /* in case the parent forgot (e.g., no strata case)*/ temp = 0; /* temp variable for dsize */ maxdeath =0; j=0; /* start of the strata */ for (i=0; i0) { /* assign data for the prior stratum, just finished */ /* If maxdeath <2 leave the strata alone at it's current value of 1 */ if (maxdeath >1) strata[j] = maxdeath; j = i; if (maxdeath*nrisk > temp) temp = maxdeath*nrisk; } maxdeath =0; /* max tied deaths at any time in this strata */ nrisk=0; ndeath =0; } dtime = time[i]; ndeath =0; /*number tied here */ while (time[i] ==dtime) { nrisk++; ndeath += status[i]; i++; if (i>=nused || strata[i] >0) break; /*tied deaths don't cross strata */ } if (ndeath > maxdeath) maxdeath = ndeath; } /* data for the final stratum */ if (maxdeath*nrisk > temp) temp = maxdeath*nrisk; if (maxdeath >1) strata[j] = maxdeath; /* Now allocate memory for the scratch arrays Each per-variable slice is of size dsize */ dsize = temp; temp = temp * ((nvar*(nvar+1))/2 + nvar + 1); dmemtot = dsize * ((nvar*(nvar+1))/2 + nvar + 1); if (temp != dmemtot) { /* the subscripts will overflow */ error("(number at risk) * (number tied deaths) is too large"); } dmem0 = (double *) R_alloc(dmemtot, sizeof(double)); /*pointer to memory */ dmem1 = (double **) R_alloc(nvar, sizeof(double*)); dmem1[0] = dmem0 + dsize; /*points to the first derivative memory */ for (i=1; i>= sstart =0; /* a line to make gcc stop complaining */ for (i=0; i0) { /* first obs of a new strata */ maxdeath= strata[i]; dtemp = dmem0; for (j=0; j=nused || strata[i] >0) break; } /* We have added up over the death time, now process it */ if (ndeath >0) { /* Add to the loglik */ d0 = coxd0(ndeath, nrisk, score+sstart, dmem0, maxdeath); R_CheckUserInterrupt(); newlk -= log(d0); dmem2 = dmem0 + (nvar+1)*dsize; /*start for the second deriv memory */ for (j=0; j 3) R_CheckUserInterrupt(); u[j] -= d1[j]; for (k=0; k<= j; k++) { /* second derivative*/ temp = coxd2(ndeath, nrisk, score+sstart, dmem0, dmem1[j], dmem1[k], dmem2, covar[j] + sstart, covar[k] + sstart, maxdeath); if (ndeath > 5) R_CheckUserInterrupt(); imat[k][j] += temp/d0 - d1[j]*d1[k]; dmem2 += dsize; } } } } @ Do the first iteration of the solution. The first iteration is different in 3 ways: it is used to set the initial log-likelihood, to compute the score test, and we pay no attention to convergence criteria or diagnositics. (I expect it not to converge in one iteration). <>= /* ** do the initial iteration step */ newlk =0; for (i=0; i> loglik[0] = newlk; /* save the loglik for iteration zero */ loglik[1] = newlk; /* and it is our current best guess */ /* ** update the betas and compute the score test */ for (i=0; i> } /* ** Never, never complain about convergence on the first step. That way, ** if someone has to they can force one iter at a time. */ for (i=0; i>= halving =0 ; /* =1 when in the midst of "step halving" */ for (iter=1; iter<=maxiter; iter++) { newlk =0; for (i=0; i> /* am I done? ** update the betas and test for convergence */ loglik[3] = cholesky2(imat, nvar, toler); if (fabs(1-(loglik[1]/newlk))<= eps && halving==0) { /* all done */ loglik[1] = newlk; <> } if (iter==maxiter) break; /*skip the step halving and etc */ if (newlk < loglik[1]) { /*it is not converging ! */ halving =1; for (i=0; i> @ The common code for finishing. Invert the information matrix, copy it to be symmetric, and put together the output structure. <>= loglik[4] = iter; chinv2(imat, nvar); for (i=1; i>= cch <- function(formula, data, weights, subset, na.action, subcoh, id, stratum, cohort.size, method=c("Prentice", "SelfPrentice", "LinYing", "I.Borgan", "II.Borgan"), robust = FALSE, control, ...) { method <- match.arg(method) Call <- match.call() if (missing(control)) control <- coxph.control(...) for (i in c("subcoh", "id", "stratum")) { if (inherits(Call[[i]], 'formula')) { if (length(Call[[i]]) != 2 || !is.name(Call[[i]][[2]]) stop("a formula used for ", i, "must have a single variable and no response") Call[[i]] <- Call[[i]][[2]] } } # Grab the data. This is identical to coxph, but with 3 # more matching arguments indx <- match(c("formula", "data", "weights", "subset", "na.action", "subcoh", "id", "stratum"), names(Call), nomatch=0) if (indx[1] ==0) stop("a formula argument is required") temp <- Call[c(1,indx)] # only keep the arguments we wanted temp[[1L]] <- quote(stats::model.frame) # change the function called special <- c("strata", "cluster") temp$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) mf <- eval(temp, parent.frame()) if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) Y <- model.extract(mf, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") type <- attr(Y, "type") if (type!='right' && type!='counting') stop(paste("Cox model doesn't support \"", type, "\" survival data", sep='')) if (control$timefix) Y <- aeqSurv(Y) <> strats <- attr(Terms, "specials")$strata if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) strats <- as.numeric(strata.keep) } cluster<- attr(Terms, "specials")$cluster if (length(cluster)) { robust <- TRUE #flag to later compute a robust variance tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] if (any(ord>1)) stop ("Cluster can not be used in an interaction") cluster <- strata(mf[,tempc$vars], shortlabel=TRUE) #allow multiples dropterms <- tempc$terms #we won't want this in the X matrix # Save away xlevels after removing cluster (we don't want to save upteen # levels of that variable, which we will never need). xlevels <- .getXlevels(Terms[-tempc$terms], mf) } else { dropterms <- NULL if (missing(robust)) robust <- FALSE xlevels <- .getXlevels(Terms, mf) } <> <> <> <> <> } @ Now we have the main ingredients. The first task is to see if any of the \code{id, subcoh, or stratum} arguments were present. The \code{stratum} argument is not the same as the strata term in the model. The asymptotic variance formula requires knowlege of $n$, which is found in the \code{cohort.size} argument, the robust variance does not require this. <>= n <- nrow(Y) id <- model.extract(mf, "") subcoh <- model.extract(mf, "") stratum <- model.extract(mf, "") weight <- model.weights(mf) if (length(weight)==0)) weight <- rep(1.0, n) offset <- model.offset(mf) if (length(offset) ==0) { has.offset <- FALSE offset <- rep(0., n) } else has.offset <- TRUE status <- Y[,ncol(Y)] if (is.null(subcoh)) stop("a subcoh argument is required") else { if (is.logical(subcoh)) subcoh <- as.numeric(subcoh) else if (!is.numeric(subcoh)) stop("subcoh must be numeric or logical") else if (any(subcoh!=0 & subcoh !=1)) stop("numeric subcoh values must be 0 or 1") if (any(status==0 & subcoh==0)) stop("all observations outside the subcohort must be events") } if (length(stratum) > 0) { if (missing(cohort.size)) stop("the estimates for stratified sampling require cohort.size") scount <- table(stratum) indx <- match(names(cohort.size), names(scount)) phat <- scount/cohort.size[indx] if (any(is.na(phat))) stop("no cohort.size element found for strata", (names(scount))[is.na(phat)]) if (any(phat <=0 | phat >1)) stop("strata sampling fraction that is <=0 or > 1") windex <- match(stratum, names(scount)) weight[status==0] <- (weight /phat[windex])[status==0] } @ The computation has 3 branches, Prentice, Self-Prentice, and Lin-Ying. <>= if (ncol(Y) ==2) { etime <- Y[,1] status <- Y[,2] } else { etime <- Y[,2] status <- Y[,3] } if (method=="Prentice" || method=="II.Borgan") { # construct fake entry times for the non-cohort delta <- min(diff(sort(unique(etime[status==1])))) # min time between times fake <- etime[subco==0] - delta/2 if (ncol(Y) ==2) { temp <- rep(0., n) temp[subco==0] <- fake Y <- cbind(temp, Y) } else Y[subco==0, 1] <- fake fit <- agreg.fit(X, Y, strata, offset, init, control, weights, method, rownames) } else if (method== "Self-Prentice" || method= "I.Borgan") { # Use an offset offset[subco==1] <- offset[subco==0] - 100 if (ncol(Y) ==2) fit <- coxph.fit(X, Y, strata, offset, init, control, weights, method, rownames) else fit <- coxph.fit(X, Y, strata, offset, init, control, weights, method, rownames) } else { # Lin-Ying method if (missing(cohort.size)) stop("Lin-Ying method requires the cohort size") else if (!numeric(cohort.size)) stop("cohort size must be numeric") else if (length(cohort.size) > 1) stop("cohort size must be numeric, with one value per stratum") nd <- sum(status) # number of events nc <- sum(subcoh) # number in subcohort ncd <- sum(status*subcoh) # number of events in subcohort lyweight <- (cohort.size - nd)/(nc - ncd) weight[status==0] <- weight[status==0]* lyweight if (ncol(Y) ==2) fit <- coxph.fit(X, Y, strata, offset, init, control, weights, method, rownames) else fit <- coxph.fit(X, Y, strata, offset, init, control, weights, method, rownames) } @ There are two possible variances for the estimate. The asymptotic variance survival/noweb/finegray.Rnw0000644000176200001440000003101313537676563015556 0ustar liggesusers\section{The Fine-Gray model} For competing risks with ending states 1, 2, \ldots $k$, the Fine-Gray approach turns these into a set of simple 2-state Cox models: \begin{itemize} \item (not yet in state 1) $\longrightarrow$ state 1 \item (not yet in state 2) $\longrightarrow$ state 2 \item \ldots \end{itemize} Each of these is now a simple Cox model, assuming that we are willing to make a proportional hazards assumption. There is one added complication: when estimating the first model, one wants to use the data set that would have occured if the subjects being followed for state 1 had not had an artificial censoring, that is, had continued to be followed for event 1 even after event 2 occured. Sometimes this can be filled in directly, e.g., if we knew the enrollment dates for each subject along with the date that follow-up for the study was terminated, and there was no lost to follow-up (only administrative censoring.) An example is the mgus2 data set, where follow-up for death continued after the occurence of plasma cell malignancy. In practice what is done is to estimate the overall censoring distribution and give subjects artificial follow-up. The function below creates a data set that can then be used with coxph. <>= finegray <- function(formula, data, weights, subset, na.action= na.pass, etype, prefix="fg", count="", id, timefix=TRUE) { Call <- match.call() indx <- match(c("formula", "data", "weights", "subset", "id"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") temp <- Call[c(1,indx)] # only keep the arguments we wanted temp$na.action <- na.action temp[[1L]] <- quote(stats::model.frame) # change the function called special <- c("strata", "cluster") temp$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) mf <- eval(temp, parent.frame()) if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) Y <- model.extract(mf, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") type <- attr(Y, "type") if (type!='mright' && type!='mcounting') stop("Fine-Gray model requires a multi-state survival") nY <- ncol(Y) states <- attr(Y, "states") if (timefix) Y <- aeqSurv(Y) strats <- attr(Terms, "specials")$strata if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata <- mf[[stemp$vars]] else strata <- survival::strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.numeric(strata) mf[stemp$vars] <- NULL } else istrat <- rep(1, nrow(mf)) id <- model.extract(mf, "id") if (!is.null(id)) mf["(id)"] <- NULL # don't leave it in result user.weights <- model.weights(mf) if (is.null(user.weights)) user.weights <- rep(1.0, nrow(mf)) cluster<- attr(Terms, "specials")$cluster if (length(cluster)) { stop("a cluster() term is not valid") } # If there is start-stop data, then there needs to be an id # also check that this is indeed a competing risks form of data. # Mark the first and last obs of each subject, as we need it later. # Observations may not be in time order within a subject delay <- FALSE # is there delayed entry? if (type=="mcounting") { if (is.null(id)) stop("(start, stop] data requires a subject id") else { index <- order(id, Y[,2]) # by time within id sorty <- Y[index,] first <- which(!duplicated(id[index])) last <- c(first[-1] -1, length(id)) if (any(sorty[-last, 3] != 0)) stop("a subject has a transition before their last time point") delta <- c(sorty[-1,1], 0) - sorty[,2] if (any(delta[-last] !=0)) stop("a subject has gaps in time") if (any(Y[first,1] > min(Y[,2]))) delay <- TRUE temp1 <- temp2 <- rep(FALSE, nrow(mf)) temp1[index[first]] <- TRUE temp2[index[last]] <- TRUE first <- temp1 #used later last <- temp2 } } else last <- rep(TRUE, nrow(mf)) if (missing(etype)) enum <- 1 #generate a data set for which endpoint? else { index <- match(etype, states) if (any(is.na(index))) stop ("etype argument has a state that is not in the data") enum <- index[1] if (length(index) > 1) warning("only the first endpoint was used") } # make sure count, if present is syntactically valid if (!missing(count)) count <- make.names(count) else count <- NULL oname <- paste0(prefix, c("start", "stop", "status", "wt")) <> <> } @ The censoring and truncation distributions are \begin{align*} G(t) &= \prod_{s \le t} \left(1 - \frac{c(s)}{r_c(s)} \right ) \\ H(t) &= \prod_{s > t} \left(1 - \frac{e(s)}{r_e(s)} \right ) \end{align*} where $c(t)$ is the number of subjects censored at time $t$, $e(t)$ is the number who enter at time $t$, and $r$ is the size of the relevant risk set. These are equations 5 and 6 of Geskus (Biometrics 2011). Note that both $G$ and $H$ are right continuous functions. For tied times the assumption is that event $<$ censor $<$ entry. For $G$ we use a modified Kapan-Meier where any events at censoring time $t$ are removed from the risk set just before time $t$. To avoid issues with times that are nearly identical (but not quite) we first convert to an integer time scale, and then move events backwards by .2. Since this is a competing risks data set any non-censored observation for a subject is their last, so this time shift does not goof up the alignment of start, stop data. For the truncation distribution it is the subjects with times at or before time $t$ that are in the risk set $r_e(t)$ for truncation at (or before) $t$. $H$ can be calculated using an ordinary KM on the reverse time scale. When there is (start,stop) data and hence multiple observations per subject, calculation of $G$ needs use a status that is 1 only for the \emph{last} row row of a censored subject. <>= find2 <- function(x, vec, left.open=FALSE, ...) { if (!left.open) findInterval(x, vec, ...) else { # the left.open arg is a recent addition to findInterval, and I want # this to work in 3.2.0 (my employer's default). In another cycle or # so we can drop this workaround and call findInterval directly # length(vec) - findInterval(-x, rev(-vec), ...) } } if (ncol(Y) ==2) { temp <- min(Y[,1], na.rm=TRUE) if (temp >0) zero <- 0 else zero <- 2*temp -1 # a value less than any observed y Y <- cbind(zero, Y) # add a start column } utime <- sort(unique(c(Y[,1:2]))) # all the unique times newtime <- matrix(findInterval(Y[,1:2], utime), ncol=2) status <- Y[,3] newtime[status !=0, 2] <- newtime[status !=0,2] - .2 Gsurv <- survfit(Surv(newtime[,1], newtime[,2], last & status==0) ~ istrat, se.fit=FALSE) @ The calculation for $H$ is also done on the integer scale. Otherwise we will someday be clobbered by times that differ only in round off error. The only nuisance is the status variable, which is 1 for the first row of each subject, since the data set may not be in sorted order. The offset of .2 used above is not needed, but due to the underlying integer scale it doesn't harm anything either. Reversal of the time scale leads to a left continuous function which we fix up later. <>= if (delay) Hsurv <- survfit(Surv(-newtime[,2], -newtime[,1], first) ~ istrat, se.fit =FALSE) @ Consider the following data set: \begin{itemize} \item Events of type 1 at times 1, 4, 5, 10 \item Events of type 2 at times 2, 5, 8 \item Censors at times 3, 4, 4, 6, 8, 9, 12 \end{itemize} The censoring distribution will have the following shape: \begin{center} \begin{tabular}{rcccccc} interval& (0,3]& (3,4] & (4,6] & (6,8] & (8,12] & 12+\\ C(t) & 1 &11/12 & (11/12)(8/10) & (11/15)(5/6)& (11/15)(5/6)(3/4)& 0 \\ & 1.0000 & .9167 & .7333 & .6111 & .4583 \end{tabular} \end{center} Notice that the event at time 4 is not counted in the risk set at time 4, so the jump is 8/10 rather than 8/11. Likewise at time 8 the risk set has 4 instead of 5: censors occur after deaths. When creating the data set for event type 1, subjects who have an event of type 2 get extended out using this censoring distribution. The event at time 2, for instance, appears as a censored observation with time dependent weights of $G(t)$. The type 2 event at time 5 has weight 1 up through time 5, then weights of $G(t)/C(5)$ for the remainder. This means a weight of 1 over (5,6], 5/6 over (6,8], (5/6)(3/4) over (9,12] and etc. Though there are 6 unique censoring intervals, in the created data set for event type 1 we only need to know case weights at times 1, 4, 5, and 10; the information from the (4,6] and (6,8] intervals will never be used. To create a minimal sized data set we can leave those intervals out. $G(t)$ only drops to zero if the largest time(s) are censored observations, so by definition no events lie in an interval with $G(t)=0$. If there is delayed entry, then the set of intervals is larger due to a merge with the jumps in Hsurv. The truncation distribution Hsurv ($H$) will become 0 at the first entry time; it is a left continuous function whereas Gsurv ($G$) is right continuous. We can slide $H$ one point to the left and merge them at the jump points. <>= status <- Y[, 3] # Do computations separately for each stratum stratfun <- function(i) { keep <- (istrat ==i) times <- sort(unique(Y[keep & status == enum, 2])) #unique event times if (length(times)==0) return(NULL) #no events in this stratum tdata <- mf[keep, -1, drop=FALSE] maxtime <- max(Y[keep, 2]) if (dim(Gsurv)==1) { # the phrase Gsurv[1] gives a warning when there is only one curve # keep only the event times, and convert back to the original time units if (delay) { dtime <- rev(-Hsurv$time[Hsurv$n.event > 0]) dprob <- c(rev(Hsurv$surv[Hsurv$n.event > 0])[-1], 1) ctime <- Gsurv$time[Gsurv$n.event > 0] cprob <- c(1, Gsurv$surv[Gsurv$n.event > 0]) temp <- sort(unique(c(dtime, ctime))) # these will all be integers index1 <- findInterval(temp, dtime) index2 <- findInterval(temp, ctime) ctime <- utime[temp] cprob <- dprob[index1] * cprob[index2+1] # G(t)H(t), eq 11 Geskus } else { ctime <- utime[Gsurv$time[Gsurv$n.event > 0]] cprob <- Gsurv$surv[Gsurv$n.event > 0] } } else { Gtemp <- Gsurv[i] if (delay) { Htemp <- Hsurv[i] dtime <- rev(-Htemp$time[Htemp$n.event > 0]) dprob <- c(rev(Htemp$surv[Htemp$n.event > 0])[-1], 1) ctime <- Gtemp$time[Gtemp$n.event > 0] cprob <- c(1, Gtemp$surv[Gtemp$n.event > 0]) temp <- sort(unique(c(dtime, ctime))) # these will all be integers index1 <- findInterval(temp, dtime) index2 <- findInterval(temp, ctime) ctime <- utime[temp] cprob <- dprob[index1] * cprob[index2+1] # G(t)H(t), eq 11 Geskus } else { ctime <- utime[Gtemp$time[Gtemp$n.event > 0]] cprob <- Gtemp$surv[Gtemp$n.event > 0] } } ct2 <- c(ctime, maxtime) cp2 <- c(1.0, cprob) index <- find2(times, ct2, left.open=TRUE) index <- sort(unique(index)) # the intervals that were actually seen # times before the first ctime get index 0, those between 1 and 2 get 1 ckeep <- rep(FALSE, length(ct2)) ckeep[index] <- TRUE expand <- (Y[keep, 3] !=0 & Y[keep,3] != enum & last[keep]) #which rows to expand split <- .Call(Cfinegray, Y[keep,1], Y[keep,2], ct2, cp2, expand, c(TRUE, ckeep)) tdata <- tdata[split$row,,drop=FALSE] tstat <- ifelse((status[keep])[split$row]== enum, 1, 0) tdata[[oname[1]]] <- split$start tdata[[oname[2]]] <- split$end tdata[[oname[3]]] <- tstat tdata[[oname[4]]] <- split$wt * user.weights[split$row] if (!is.null(count)) tdata[[count]] <- split$add tdata } if (max(istrat) ==1) result <- stratfun(1) else { tlist <- lapply(1:max(istrat), stratfun) result <- do.call("rbind", tlist) } rownames(result) <- NULL #remove all the odd labels that R adds attr(result, "event") <- states[enum] result @ survival/noweb/survfitms.Rnw0000644000176200001440000006634413570767322016022 0ustar liggesusers\subsubsection{Printing and plotting} The \code{survfitms} class differs from a \code{survfit}, but many of the same methods nearly apply. <>= # Methods for survfitms objects <> <> @ The subscript method is a near copy of that for survfit objects, but with a slightly different set of components. The object could have strata and will almost always have multiple columns. Following convention, if there is only one subscript we treat the object as though it were a vector. The \code{nmatch} function allow the user to use either names or integer indices. <>= "[.survfitms" <- function(x, ..., drop=FALSE) { nmatch <- function(i, target) { # This function lets R worry about character, negative, # or logical subscripts # It always returns a set of positive integer indices temp <- seq(along=target) names(temp) <- target temp[i] } x <- survfit0(x, x$start.time) # otherwise influence and pstate don't align # ndots <- ...length() # the simplest, but not avail in R 3.4 # ndots <- length(list(...))# fails if any are missing, e.g. fit[,2] ndots <- if (missing(drop)) nargs()-1 else nargs()-2 # a workaround dd <- dim(x) dtype <- match(names(dd), c("strata", "data", "states")) if (is.null(x$states)) stop("survfitms object has no states component") if (ndots==0) return(x) # no subscript given if (ndots >0 && !missing(..1)) i <- ..1 else i <- NULL if (ndots> 1 && !missing(..2)) j <- ..2 else j <- NULL if (ndots> 2 && !missing(..3)) k <- ..3 else k <- NULL if (ndots >3) stop("too many subscripts for survfit object") if (is.null(i) & is.null(j) & is.null(k)) return(x) # Make a new object newx <- vector("list", length(x)) names(newx) <- names(x) for (kk in c("logse", "version", "conf.int", "conf.type", "type", "call")) if (!is.null(x[[kk]])) newx[[kk]] <- x[[kk]] class(newx) <- class(x) if (ndots==1 && length(dd[dd>1]) > 1) { # the 'treat it as a vector' case if (!is.numeric(i)) stop("single subscript must be numeric") # when subscripting a mix, these don't endure newx$cumhaz <- newx$std.chaz <- newx$influence.chaz <- NULL newx$transitions <- newx$states <- newx$newdata <- NULL # what strata and columns do I need? itemp <- matrix(1:prod(dd), nrow=dd[1]) jj <- (col(itemp))[i] # columns ii <- (row(itemp))[i] # this is now the strata id if (dtype[1]!=1 || dd[1]==1) # no strata or only 1 irow <- rep(seq(along= x$time), length(ii)) else { itemp2 <- split(1:sum(x$strata), rep(1:length(x$strata), x$strata)) irow <- unlist(itemp2[ii]) # rows of the pstate object } inum <- x$strata[ii] # number of rows in each ii indx <- cbind(irow, rep(jj,ii)) # matrix index for pstate # The n.risk, n.event, .. matrices dont have a newdata dimension. if (all(dtype!=2) || dd["data"]==1) kk <- jj else { # both data and states itemp <- matrix(1:(dd["data"]*dd["states"]), nrow=dd[2]) kk <- (col(itemp))[jj] # the state of each selected one indx2 <- cbind(irow, rep(k, irow)) } newx$n <- x$n[ii] newx$time <- x$time[irow] for (z in c("n.risk", "n.event", "n.censor", "n.enter")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[indx2] for (z in c("pstate", "std.err", "upper", "lower")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[indx] newx$strata <- x$strata[ii] names(newx$strata) <- seq(along=ii) return(newx) } # not a single subscript, i.e., the usual case if (dd[1]==1 && (ndots+1 == length(dd)) && is.null(x$strata)) { # if there is only one curve, no 'strata', then we allow users # to ignore the first dimension k <- j; j <- i; i <- 1 ndots <- ndots +1 } else if (ndots != length(dd)) stop("incorrect number of dimensions") if (is.null(i)) i <- seq.int(dd[1]) else if (length(x$strata)) i <- nmatch(i, names(x$strata)) if (dd[1]==1) # no strata or only 1 irow <- rep(seq(along= x$time), length(i)) else { itemp <- split(1:sum(x$strata), rep(1:length(x$strata), x$strata)) irow <- unlist(itemp[i]) # rows of the pstate object } newx$n <- x$n[i] newx$time <- x$time[irow] # The n.censor and n.enter values do not repeat with multiple X values for (z in c("n.censor", "n.enter")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow, drop=FALSE] # two cases: with newx or without newx (pstate is always present) nstate <- length(x$states) if (dtype[2] !=2) { # j indexes the states if (is.null(j)) j <- seq.int(nstate) else j <- nmatch(j, x$states) if (length(i) ==1 && drop) newx$strata <- NULL else newx$strata <- x$strata[i] # in the rare case of a single strata with 1 obs, don't drop dims if (length(irow)==1 && length(j) > 1) drop2 <- FALSE else drop2 <- drop for (z in c("n.risk", "n.event")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,j, drop=drop2] for (z in c("pstate", "std.err", "upper", "lower")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,j, drop=drop2] if (!is.null(x$influence.pstate)) { if (is.list(x$influence.pstate)) { if (length(i)==1) newx$influence.pstate <- x$influence.pstate[[i]] else newx$influence.pstate <- lapply(x$influence.pstate[i], function(x) x[,,j, drop= drop]) } else newx$influence.pstate <- x$influence.pstate[,,j, drop=drop] } if (length(j)== nstate && all(j == seq.int(nstate))) { # user kept all the states, in original order newx$states <- x$states for (z in c("cumhaz", "std.chaz")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,, drop=drop2] if (!is.null(x$influence.chaz)) { if (is.list(x$influence.chaz)) { newx$influence.chaz <- x$influence.chaz[i] if (length(i)==1 && drop) newx$influence.chaz <- x$influence.chaz[[i]] } else newx$influence.chaz <- x$influence.chaz } } else { newx$cumhaz <- newx$std.chaz <- newx$influence.chaz <- NULL if (length(j)==1 & drop) { newx$states <- NULL temp <- class(newx) class(newx) <- temp[temp!="survfitms"] } else newx$states <- x$states[j] } } else { # j points at newdata, k points at states if (is.null(j)) j <- seq.int(dd[2]) else j <- nmatch(j, seq.int(dd[2])) if (is.null(k)) k <- seq.int(nstate) else k <- nmatch(k, x$states) if (length(irow)==1) { if (length(j) > 1) drop2 <- FALSE else drop2<- drop if (length(k) > 1) drop3 <- FALSE else drop3 <- drop } else drop2 <- drop3 <- drop for (z in c("n.risk", "n.event")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow, k, drop=drop3] for (z in c("pstate", "std.err", "upper", "lower")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,j,k, drop=drop2] if (!is.null(x$influence.pstate)) { if (is.list(x$influence.pstate)) { if (length(i)==1) newx$influence.pstate <- (x$influence.pstate[[i]])[,,j,k, drop=drop] else newx$influence.pstate <- lapply(x$influence.pstate[i], function(x) x[,,j,k, drop= drop]) } else newx$influence.pstate <- x$influence.pstate[,,j,k, drop=drop] } if (length(k)== nstate && all(k == seq.int(nstate))) { # user kept all the states newx$states <- x$states for (z in c("cumhaz", "std.chaz")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,j,, drop=drop2] if (!is.null(x$influence.chaz)) { if (is.list(x$influence.chaz)) { newx$influence.chaz <- (x$influence.chaz[i])[,j,] if (length(i)==1 && drop) newx$influence.chaz <- x$influence.chaz[[i]] } else newx$influence.chaz <- x$influence.chaz[,j,] } } else { # never drop the states component. Otherwise downstream code # will start looking for x$surv instead of x$pstate newx$states <- x$states[k] newx$cumhaz <- newx$std.chaz <- newx$influence.chaz <- NULL x$transitions <- NULL } if (length(j)==1 && drop) newx$newdata <- NULL else newx$newdata <- x$newdata[j,,drop=FALSE] #newdata is a data frame } newx } @ The summary.survfit and summary.survfitms functions share a significant amount of code. One part of the code that once was subtle is dealing with intermediate time points; the findInterval function in base R has made that much easier. Since the result does not involve interpolation, one should be able to create a special index vector i and return \code{time[i]}, \code{surv[i,]}, etc, to subscript all the curves in a survfit object at once. But that approach, though efficient in theory, runs into two problems. First is the extrapolated value for the curves at time points before the first event, which is allowed to be different for different curves in survfitms objects. The second is that there is interpolation of a sort: the n.event and n.censor components are summed over intervals when the selected time points are sparse, and that process is very tricky for multiple curves at once. At one point the code took that approach, but it became too complex to maintain. The current approach is slower but more transparent: do the individual curves one by one, then paste together the results. <>= summary.survfit <- function(object, times, censored=FALSE, scale=1, extend=FALSE, rmean=getOption('survfit.rmean'), ...) { fit <- object #save typing if (!inherits(fit, 'survfit')) stop("summary.survfit can only be used for survfit objects") if (is.null(fit$logse)) fit$logse <- TRUE #older style # The print.rmean option is depreciated, it is still listened # to in print.survfit, but ignored here if (is.null(rmean)) rmean <- "common" if (is.numeric(rmean)) { if (is.null(fit$start.time)) { if (rmean < min(fit$time)) stop("Truncation point for the mean time in state is < smallest survival") } else if (rmean < fit$start.time) stop("Truncation point for the mean time in state is < smallest survival") } else { rmean <- match.arg(rmean, c('none', 'common', 'individual')) if (length(rmean)==0) stop("Invalid value for rmean option") } # adding time 0 makes the mean and median easier fit0 <- survfit0(fit, fit$start.time) #add time 0 temp <- survmean(fit0, scale=scale, rmean) table <- temp$matrix #for inclusion in the output list rmean.endtime <- temp$end.time if (!is.null(fit$strata)) { nstrat <- length(fit$strata) } delta <- function(x, indx) { # sums between chosen times if (is.logical(indx)) indx <- which(indx) if (!is.null(x) && length(indx) >0) { fx <- function(x, indx) diff(c(0, c(0, cumsum(x))[indx+1])) if (is.matrix(x)) { temp <- apply(x, 2, fx, indx=indx) # don't return a vector when only 1 time point is given if (is.matrix(temp)) temp else matrix(temp, nrow=1) } else fx(x, indx) } else NULL } if (missing(times)) { <> } else { fit <- fit0 <> times <- sort(times) #in case the user forgot if (is.null(fit$strata)) fit <- findrow(fit, times, extend) else { ltemp <- vector("list", nstrat) for (i in 1:nstrat) ltemp[[i]] <- findrow(fit[i], times, extend) fit <- unpacksurv(fit, ltemp) } } # finish off the output structure fit$table <- table if (length(rmean.endtime)>0 && !any(is.na(rmean.endtime[1]))) fit$rmean.endtime <- rmean.endtime # A survfit object may contain std(log S) or std(S), summary always std(S) if (!is.null(fit$std.err) && fit$logse) fit$std.err <- fit$std.err * fit$surv # Expand the strata if (!is.null(fit$strata)) fit$strata <- factor(rep(1:nstrat, fit$strata), 1:nstrat, labels= names(fit$strata)) if (scale != 1) { # fix scale in the output fit$time <- fit$time/scale } class(fit) <- "summary.survfit" fit } @ The simple case of no times argument. <>= if (!censored) { index <- (rowSums(as.matrix(fit$n.event)) >0) for (i in c("time","n.risk", "n.event", "surv", "pstate", "std.err", "upper", "lower", "cumhaz", "std.chaz")) { if (!is.null(fit[[i]])) { # not all components in all objects temp <- fit[[i]] if (is.matrix(temp)) temp <- temp[index,,drop=FALSE] else if (!is.array(temp)) temp <- temp[index] #simple vector else temp <- temp[index,,, drop=FALSE] # 3 way fit[[i]] <- temp } } # The n.enter and n.censor values are accumualated # both of these are simple vectors if (is.null(fit$strata)) { for (i in c("n.enter", "n.censor")) if (!is.null(fit[[i]])) fit[[i]] <- delta(fit[[i]], index) } else { sindx <- rep(1:nstrat, fit$strata) for (i in c("n.enter", "n.censor")) { if (!is.null(fit[[i]])) fit[[i]] <- unlist(sapply(1:nstrat, function(j) delta(fit[[i]][sindx==j], index[sindx==j]))) } # the "factor" is needed for the case that a strata has no # events at all, and hence 0 lines of output fit$strata[] <- as.vector(table(factor(sindx[index], 1:nstrat))) } } #if missing(times) and censored=TRUE, the fit object is ok as it is @ To deal with selected times we first define a subscripting function. For indices of 0, which are requested times that are before the first event, it fills in the initial value. <>= ssub<- function(x, indx) { #select an object and index if (!is.null(x) && length(indx)>0) { if (is.matrix(x)) x[pmax(1,indx),,drop=FALSE] else if (is.array(x)) x[pmax(1,indx),,,drop=FALSE] else x[pmax(1, indx)] } else NULL } @ This function does the real work, for any single curve. The default value for init is correct for survival curves. Say that the data has values at time 5, 10, 15, 20 \ldots, and a user asks for \code{times=c(7, 15, 20, 30)}. In the input object \code{n.risk} refers to the number at risk just before time 5, 10, \ldots; it is a left-continuous function. The survival is a right-continuous function. So at time 7 we want to take the survival from time 5 and number at risk from time 10; \code{indx1} will be the right-continuous index and \code{indx2} the left continuous one. The value of n.risk at time 30 has to be computed. For counts of events, censoring, and entry we want to know the total number that happened during the intervals of 0-7, 7-15, 15-20 and 20-30. Technically censorings at time 15 happen just after time 15 so would go into the third line of the report. However, this would lead to terrible confusion for the user since using \code{times=c(5, 10, 15, 20)} would lead to different counts than a call that did not contain the times argument, so all 3 of the intermediates are computed using indx1. A report at time 30 is made only if extend=TRUE, in which case we need to compute a tail value for n.risk. <>= findrow <- function(fit, times, extend) { if (FALSE) { if (is.null(fit$start.time)) mintime <- min(fit$time, 0) else mintime <- fit$start.time ptimes <- times[times >= mintime] } else ptimes <- times[is.finite(times)] if (!extend) { maxtime <- max(fit$time) ptimes <- ptimes[ptimes <= maxtime] } ntime <- length(fit$time) index1 <- findInterval(ptimes, fit$time) index2 <- 1 + findInterval(ptimes, fit$time, left.open=TRUE) # The pmax() above encodes the assumption that n.risk for any # times before the first observation = n.risk at the first obs fit$time <- ptimes for (i in c("surv", "pstate", "upper", "lower")) { if (!is.null(fit[[i]])) fit[[i]] <- ssub(fit[[i]], index1) } for (i in c("std.err", "cumhaz")) { if (!is.null(fit[[i]])) fit[[i]] <- ssub(fit[[i]], index1) } if (is.matrix(fit$n.risk)) { # Every observation in the data has to end with a censor or event. # So by definition the number at risk after the last observed time # value must be 0. fit$n.risk <- rbind(fit$n.risk,0)[index2,,drop=FALSE] } else fit$n.risk <- c(fit$n.risk, 0)[index2] for (i in c("n.event", "n.censor", "n.enter")) fit[[i]] <- delta(fit[[i]], index1) fit } # For a single component, turn it from a list into a single vector, matrix # or array unlistsurv <- function(x, name) { temp <- lapply(x, function(x) x[[name]]) if (is.vector(temp[[1]])) unlist(temp) else if (is.matrix(temp[[1]])) do.call("rbind", temp) else { # the cumulative hazard is the only component that is an array # it's third dimension is n xx <- unlist(temp) dd <- dim(temp[[1]]) dd[3] <- length(xx)/prod(dd[1:2]) array(xx, dim=dd) } } # unlist all the components built by a set of calls to findrow # and remake the strata unpacksurv <- function(fit, ltemp) { keep <- c("time", "surv", "pstate", "upper", "lower", "std.err", "cumhaz", "n.risk", "n.event", "n.censor", "n.enter", "std.chaz") for (i in keep) if (!is.null(fit[[i]])) fit[[i]] <- unlistsurv(ltemp, i) fit$strata[] <- sapply(ltemp, function(x) length(x$time)) fit } @ Repeat the code for survfitms objects. The only real difference is the preservation of \code{pstate} and \code{cumhaz} instead of \code{surv}, and the use of survmean2. <>= summary.survfitms <- function(object, times, censored=FALSE, scale=1, extend=FALSE, rmean= getOption("survfit.rmean"), ...) { fit <- object # save typing if (!inherits(fit, 'survfitms')) stop("summary.survfitms can only be used for survfitms objects") if (is.null(fit$logse)) fit$logse <- FALSE # older style # The print.rmean option is depreciated, it is still listened # to in print.survfit, but ignored here if (is.null(rmean)) rmean <- "common" if (is.numeric(rmean)) { if (is.null(fit$start.time)) { if (rmean < min(fit$time)) stop("Truncation point for the mean is < smallest survival") } else if (rmean < fit$start.time) stop("Truncation point for the mean is < smallest survival") } else { rmean <- match.arg(rmean, c('none', 'common', 'individual')) if (length(rmean)==0) stop("Invalid value for rmean option") } fit0 <- survfit0(fit, fit$start.time) # add time 0 temp <- survmean2(fit0, scale=scale, rmean) table <- temp$matrix #for inclusion in the output list rmean.endtime <- temp$end.time if (!missing(times)) { if (!is.numeric(times)) stop ("times must be numeric") times <- sort(times) } if (!is.null(fit$strata)) { nstrat <- length(fit$strata) sindx <- rep(1:nstrat, fit$strata) } delta <- function(x, indx) { # sums between chosen times if (is.logical(indx)) indx <- which(indx) if (!is.null(x) && length(indx) >0) { fx <- function(x, indx) diff(c(0, c(0, cumsum(x))[indx+1])) if (is.matrix(x)) { temp <- apply(x, 2, fx, indx=indx) if (is.matrix(temp)) temp else matrix(temp, nrow=1) } else fx(x, indx) } else NULL } if (missing(times)) { <> } else { fit <-fit0 # easier to work with <> times <- sort(times) if (is.null(fit$strata)) fit <- findrow(fit, times, extend) else { ltemp <- vector("list", nstrat) for (i in 1:nstrat) ltemp[[i]] <- findrow(fit[i,], times, extend) fit <- unpacksurv(fit, ltemp) } } # finish off the output structure fit$table <- table if (length(rmean.endtime)>0 && !any(is.na(rmean.endtime))) fit$rmean.endtime <- rmean.endtime if (!is.null(fit$strata)) fit$strata <- factor(rep(names(fit$strata), fit$strata)) # A survfit object may contain std(log S) or std(S), summary always std(S) if (!is.null(fit$std.err) && fit$logse) fit$std.err <- fit$std.err * fit$surv if (scale != 1) { # fix scale in the output fit$time <- fit$time/scale } class(fit) <- "summary.survfitms" fit } <> <> @ Printing for a survfitms object is different than for a survfit one. The big difference is that I don't have an estimate of the median, or any other quantile for that matter. Mean time in state makes sense, but I don't have a standard error for it at the moment. The other is that there is usually a mismatch between the n.event matrix and the n.risk matrix. The latter has all the states that were possible whereas the former only has states with an arrow pointing in. We need to manufacture the 0 events for the other states. <>= print.survfitms <- function(x, scale=1, rmean = getOption("survfit.rmean"), ...) { if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } omit <- x$na.action if (length(omit)) cat(" ", naprint(omit), "\n") x <- survfit0(x, x$start.time) if (is.null(rmean)) rmean <- "common" if (is.numeric(rmean)) { if (is.null(x$start.time)) { if (rmean < min(x$time)) stop("Truncation point for the mean is < smallest survival") } else if (rmean < x$start.time) stop("Truncation point for the mean is < smallest survival") } else { rmean <- match.arg(rmean, c('none', 'common', 'individual')) if (length(rmean)==0) stop("Invalid value for rmean option") } temp <- survmean2(x, scale=scale, rmean) if (is.null(temp$end.time)) print(temp$matrix, ...) else { etime <- temp$end.time dd <- dimnames(temp$matrix) cname <- dd[[2]] cname[length(cname)] <- paste0(cname[length(cname)], '*') dd[[2]] <- cname dimnames(temp$matrix) <- dd print(temp$matrix, ...) if (length(etime) ==1) cat(" *mean time in state, restricted (max time =", format(etime, ...), ")\n") else cat(" *mean time in state, restricted (per curve cutoff)\n") } invisible(x) } @ This part of the computation is set out separately since it is called by both print and summary. <>= survmean2 <- function(x, scale=1, rmean) { nstate <- length(x$states) #there will always be at least 1 state ngrp <- max(1, length(x$strata)) if (is.null(x$newdata)) ndata <- 0 else ndata <- nrow(x$newdata) if (ngrp >1) { igrp <- rep(1:ngrp, x$strata) rname <- names(x$strata) } else { igrp <- rep(1, length(x$time)) rname <- NULL } # The n.event matrix may not have nstate columms. Its # colnames are the first elements of states, however if (is.matrix(x$n.event)) { nc <- ncol(x$n.event) nevent <- tapply(x$n.event, list(rep(igrp, nc), col(x$n.event)), sum) dimnames(nevent) <- list(rname, x$states[1:nc]) } else { nevent <- tapply(x$n.event, igrp, sum) names(nevent) <- rname } if (ndata< 2) { outmat <- matrix(0., nrow=nstate*ngrp , ncol=2) outmat[,1] <- rep(x$n, nstate) outmat[1:length(nevent), 2] <- c(nevent) if (ngrp >1) rowname <- c(outer(rname, x$states, paste, sep=", ")) else rowname <- x$states } else { outmat <- matrix(0., nrow=nstate*ndata*ngrp, ncol=2) outmat[,1] <- rep(x$n, nstate*ndata) outmat[, 2] <- rep(c(nevent), each=ndata) temp <- outer(1:ndata, x$states, paste, sep=", ") if (ngrp >1) rowname <- c(outer(rname, temp, paste, sep=", ")) else rowname <- temp nstate <- nstate * ndata } # Caculate the mean time in each state if (rmean != "none") { if (is.numeric(rmean)) maxtime <- rep(rmean, ngrp) else if (rmean=="common") maxtime <- rep(max(x$time), ngrp) else maxtime <- tapply(x$time, igrp, max) meantime <- matrix(0., ngrp, nstate) if (!is.null(x$influence)) stdtime <- meantime for (i in 1:ngrp) { # a 2 dimensional matrix is an "array", but a 3-dim array is # not a "matrix", so check for matrix first. if (is.matrix(x$pstate)) temp <- x$pstate[igrp==i,, drop=FALSE] else if (is.array(x$pstate)) temp <- matrix(x$pstate[igrp==i,,,drop=FALSE], ncol= nstate) else temp <- matrix(x$pstate[igrp==i], ncol=1) tt <- x$time[igrp==i] # Now cut it off at maxtime delta <- diff(c(tt[tt nrow(temp)) delta <- delta[1:nrow(temp)] if (length(delta) < nrow(temp)) delta <- c(delta, rep(0, nrow(temp) - length(delta))) meantime[i,] <- colSums(delta*temp) if (!is.null(x$influence)) { # calculate the variance if (is.list(x$influence)) itemp <- apply(x$influence[[i]], 1, function(x) colSums(x*delta)) else itemp <- apply(x$influence, 1, function(x) colSums(x*delta)) stdtime[i,] <- sqrt(rowSums(itemp^2)) } } outmat <- cbind(outmat, c(meantime)/scale) cname <- c("n", "nevent", "rmean") if (!is.null(x$influence)) { outmat <- cbind(outmat, c(stdtime)/scale) cname <- c(cname, "std(rmean)") } # report back a single time, if there is only one if (all(maxtime == maxtime[1])) maxtime <- maxtime[1] } else cname <- c("n", "nevent") dimnames(outmat) <- list(rowname, cname) if (rmean=='none') list(matrix=outmat) else list(matrix=outmat, end.time=maxtime/scale) } @ survival/noweb/agreg.Rnw0000644000176200001440000010666513556546404015046 0ustar liggesusers\subsection{Andersen-Gill fits} When the survival data set has (start, stop] data a couple of computational issues are added. A primary one is how to do this compuation efficiently. At each event time we need to compute 3 quantities, each of them added up over the current risk set. \begin{itemize} \item The weighted sum of the risk scores $\sum w_i r_i$ where $r_i = \exp(\eta_i)$ and $\eta_i = x_{i1}\beta_1 + x_{i2}\beta_2 +\ldots$ is the current linear predictor. \item The weighted mean of the covariates $x$, with weight $w_i r_i$. \item The weighted variance-covariance matrix of $x$. \end{itemize} The current risk set at some event time $t$ is the set of all (start, stop] intervals that overlap $t$, and are part of the same strata. The round/square brackets in the prior sentence are important: for an event time $t=20$ the interval $(5,20]$ is considered to overlap $t$ and the interval $(20,55]$ does not overlap $t$. Our routine for the simple right censored Cox model computes these efficiently by keeping a cumulative sum. Starting with the longest survival move backwards through time, adding and subtracting subject from the sum as we go. The code below creates two sort indices, one orders the data by reverse stop time and the other by reverse start time, each within strata. The fit routine is called by the coxph function with arguments \begin{description} \item[x] matrix of covariates \item[y] three column matrix containing the start time, stop time, and event for each observation \item[strata] for stratified fits, the strata of each subject \item[offset] the offset, usually a vector of zeros \item[init] initial estimate for the coefficients \item[control] results of the coxph.control function \item[weights] case weights, often a vector of ones. \item[method] how ties are handled: 1=Breslow, 2=Efron \item[rownames] used to label the residuals \end{description} If the data set has any observations whose (start, stop] interval does not overlap any death times, those rows of data play no role in the computation, and we push them to the end of the sort order and report a smaller $n$ to the C routine. The reason for this has less to do with efficiency than with safety: one user, for example, created a data set with a time*covariate interaction, to be used for testing proportional hazards with an \code{x:ns(time, df=4)} term. They had cut the data up by day using survSplit, there was a long no-event stretch of time before the last censor, and this generated some large outliers in the extrapolated spline --- large enough to force an exp() overflow. <>= agreg.fit <- function(x, y, strata, offset, init, control, weights, method, rownames, resid=TRUE) { nvar <- ncol(x) event <- y[,3] if (all(event==0)) stop("Can't fit a Cox model with 0 failures") if (missing(offset) || is.null(offset)) offset <- rep(0.0, nrow(y)) if (missing(weights)|| is.null(weights))weights<- rep(1.0, nrow(y)) else if (any(weights<=0)) stop("Invalid weights, must be >0") else weights <- as.vector(weights) # Find rows to be ignored. We have to match within strata: a # value that spans a death in another stratum, but not it its # own, should be removed. Hence the per stratum delta if (length(strata) ==0) {y1 <- y[,1]; y2 <- y[,2]} else { if (is.numeric(strata)) strata <- as.integer(strata) else strata <- as.integer(as.factor(strata)) delta <- strata* (1+ max(y[,2]) - min(y[,1])) y1 <- y[,1] + delta y2 <- y[,2] + delta } event <- y[,3] > 0 dtime <- sort(unique(y2[event])) indx1 <- findInterval(y1, dtime) indx2 <- findInterval(y2, dtime) # indx1 != indx2 for any obs that spans an event time ignore <- (indx1 == indx2) nused <- sum(!ignore) # Sort the data (or rather, get a list of sorted indices) # For both stop and start times, the indices go from last to first if (length(strata)==0) { sort.end <- order(ignore, -y[,2]) -1L #indices start at 0 for C code sort.start<- order(ignore, -y[,1]) -1L strata <- rep(0L, nrow(y)) } else { sort.end <- order(ignore, strata, -y[,2]) -1L sort.start<- order(ignore, strata, -y[,1]) -1L } if (is.null(nvar) || nvar==0) { # A special case: Null model. Just return obvious stuff # To keep the C code to a small set, we call the usual routines, but # with a dummy X matrix and 0 iterations nvar <- 1 x <- matrix(as.double(1:nrow(y)), ncol=1) #keep the .C call happy maxiter <- 0 nullmodel <- TRUE if (length(init) !=0) stop("Wrong length for inital values") init <- 0.0 #dummy value to keep a .C call happy (doesn't like 0 length) } else { nullmodel <- FALSE maxiter <- control$iter.max if (is.null(init)) init <- rep(0., nvar) if (length(init) != nvar) stop("Wrong length for inital values") } # the returned value of agfit$coef starts as a copy of init, so make sure # is is a vector and not a matrix; as.double suffices. # Solidify the storage mode of other arguments storage.mode(y) <- storage.mode(x) <- "double" storage.mode(offset) <- storage.mode(weights) <- "double" agfit <- .Call(Cagfit4, nused, y, x, strata, weights, offset, as.double(init), sort.start, sort.end, as.integer(method=="efron"), as.integer(maxiter), as.double(control$eps), as.double(control$toler.chol), as.integer(0)) # internally rescale <> <> rval } @ Upon return we need to clean up three simple things. The first is the rare case that the agfit routine failed. These cases are rare, usually involve an overflow or underflow, and we encourage users to let us have a copy of the data when it occurs. (They end up in the \code{fail} directory of the library.) The second is that if any of the covariates were redudant then this will be marked by zeros on the diagonal of the variance matrix. Replace these coefficients and their variances with NA. The last is to post a warning message about possible infinite coefficients. The algorithm for determining this is unreliable, unfortunately. Sometimes coefficients are marked as infinite when the solution is not tending to infinity (usually associated with a very skewed covariate), and sometimes one that is tending to infinity is not marked. Que sera sera. Don't complain if the user asked for only one iteration; they will already know that it has not converged. <>= vmat <- agfit$imat coef <- agfit$coef if (agfit$flag[1] < nvar) which.sing <- diag(vmat)==0 else which.sing <- rep(FALSE,nvar) if (maxiter >1) { infs <- abs(agfit$u %*% vmat) if (any(!is.finite(coef)) || any(!is.finite(vmat))) stop("routine failed due to numeric overflow.", "This should never happen. Please contact the author.") if (agfit$flag[4] > 0) warning("Ran out of iterations and did not converge") else { infs <- (!is.finite(agfit$u) | infs > control$toler.inf*(1+ abs(coef))) if (any(infs)) warning(paste("Loglik converged before variable ", paste((1:nvar)[infs],collapse=","), "; beta may be infinite. ")) } } @ The last of the code is very standard. Compute residuals and package up the results. One design decision is that we return all $n$ residuals and predicted values, even though the model fit ignored useless observations. (All those obs have a residual of 0). <>= lp <- as.vector(x %*% coef + offset - sum(coef * colMeans(x))) if (resid) { score <- as.double(exp(lp)) residuals <- .Call(Cagmart3, nused, y, score, weights, strata, sort.start, sort.end, as.integer(method=='efron')) names(residuals) <- rownames } # The if-then-else below is a real pain in the butt, but the tccox # package's test suite assumes that the ORDER of elements in a coxph # object will never change. # if (nullmodel) { rval <- list(loglik=agfit$loglik[2], linear.predictors = offset, method= method, class = c("coxph.null", 'coxph') ) if (resid) rval$residuals <- residuals } else { names(coef) <- dimnames(x)[[2]] if (maxiter > 0) coef[which.sing] <- NA # always leave iter=0 alone flag <- agfit$flag names(flag) <- c("rank", "rescale", "step halving", "convergence") if (resid) { rval <- list(coefficients = coef, var = vmat, loglik = agfit$loglik, score = agfit$sctest, iter = agfit$iter, linear.predictors = as.vector(lp), residuals = residuals, means = colMeans(x), first = agfit$u, info = flag, method= method, class = "coxph") } else { rval <- list(coefficients = coef, var = vmat, loglik = agfit$loglik, score = agfit$sctest, iter = agfit$iter, linear.predictors = as.vector(lp), means = colMeans(x), first = agfit$u, info = flag, method = method, class = "coxph") } rval } @ The details of the C code contain the more challenging part of the computations. It starts with the usual dull stuff. My standard coding style for a variable zed to to use [[zed2]] as the variable name for the R object, and [[zed]] for the pointer to the contents of the object, i.e., what the C code will manipulate. For the matrix objects I make use of ragged arrays, this allows for reference to the i,j element as \code{cmat[i][j]} and makes for more readable code. <>= #include #include "survS.h" #include "survproto.h" SEXP agfit4(SEXP nused2, SEXP surv2, SEXP covar2, SEXP strata2, SEXP weights2, SEXP offset2, SEXP ibeta2, SEXP sort12, SEXP sort22, SEXP method2, SEXP maxiter2, SEXP eps2, SEXP tolerance2, SEXP doscale2) { int i,j,k, person; int indx1, istrat, p, p1; int nrisk, nr; int nused, nvar; int rank=0, rank2, fail; /* =0 to keep -Wall happy */ double **covar, **cmat, **imat; /*ragged array versions*/ double *a, *oldbeta; double *scale; double *a2, **cmat2; double *eta; double denom, zbeta, risk; double dtime =0; /* initial value to stop a -Wall message */ double temp, temp2; double newlk =0; int halving; /*are we doing step halving at the moment? */ double tol_chol, eps; double meanwt; int deaths; double denom2, etasum; /* inputs */ double *start, *tstop, *event; double *weights, *offset; int *sort1, *sort2, maxiter; int *strata; double method; /* saving this as double forces some double arithmetic */ int doscale; /* returned objects */ SEXP imat2, beta2, u2, loglik2; double *beta, *u, *loglik; SEXP sctest2, flag2, iter2; double *sctest; int *flag, *iter; SEXP rlist; static const char *outnames[]={"coef", "u", "imat", "loglik", "sctest", "flag", "iter", ""}; int nprotect; /* number of protect calls I have issued */ /* get sizes and constants */ nused = asInteger(nused2); nvar = ncols(covar2); nr = nrows(covar2); /*nr = number of rows, nused = how many we use */ method= asInteger(method2); eps = asReal(eps2); tol_chol = asReal(tolerance2); maxiter = asInteger(maxiter2); doscale = asInteger(doscale2); /* input arguments */ start = REAL(surv2); tstop = start + nr; event = tstop + nr; weights = REAL(weights2); offset = REAL(offset2); sort1 = INTEGER(sort12); sort2 = INTEGER(sort22); strata = INTEGER(strata2); /* ** scratch space ** nvar: a, a2, oldbeta, scale ** nvar*nvar: cmat, cmat2 ** nr: eta */ eta = (double *) R_alloc(nr + 4*nvar + 2*nvar*nvar, sizeof(double)); a = eta + nr; a2= a + nvar; scale = a2 + nvar; oldbeta = scale + nvar; /* ** Set up the ragged arrays ** covar2 might not need to be duplicated, even though ** we are going to modify it, due to the way this routine was ** was called. But check */ PROTECT(imat2 = allocMatrix(REALSXP, nvar, nvar)); nprotect =1; if (MAYBE_REFERENCED(covar2)) { PROTECT(covar2 = duplicate(covar2)); nprotect++; } covar= dmatrix(REAL(covar2), nr, nvar); imat = dmatrix(REAL(imat2), nvar, nvar); cmat = dmatrix(oldbeta+ nvar, nvar, nvar); cmat2= dmatrix(oldbeta+ nvar + nvar*nvar, nvar, nvar); /* ** create the output structures */ PROTECT(rlist = mkNamed(VECSXP, outnames)); nprotect++; beta2 = SET_VECTOR_ELT(rlist, 0, duplicate(ibeta2)); beta = REAL(beta2); u2 = SET_VECTOR_ELT(rlist, 1, allocVector(REALSXP, nvar)); u = REAL(u2); SET_VECTOR_ELT(rlist, 2, imat2); loglik2 = SET_VECTOR_ELT(rlist, 3, allocVector(REALSXP, 2)); loglik = REAL(loglik2); sctest2 = SET_VECTOR_ELT(rlist, 4, allocVector(REALSXP, 1)); sctest = REAL(sctest2); flag2 = SET_VECTOR_ELT(rlist, 5, allocVector(INTSXP, 4)); flag = INTEGER(flag2); for (i=0; i<4; i++) flag[i]=0; iter2 = SET_VECTOR_ELT(rlist, 6, allocVector(INTSXP, 1)); iter = INTEGER(iter2); /* ** Subtract the mean from each covar, as this makes the variance ** computation much more stable. The mean is taken per stratum, ** the scaling is overall. */ for (i=0; i0) temp = temp2/temp; /* 1/scale */ else temp = 1.0; /* rare case of a constant covariate */ scale[i] = temp; for (person=0; person> <> } @ As we walk through the risk sets observations are both added and removed from a set of running totals. We have 6 running totals: \begin{itemize} \item sum of the weights, denom = $\sum w_i r_i$ \item totals for each covariate a[j] = $\sum w_ir_i x_{ij}$ \item totals for each covariate pair cmat[j,k]= $\sum w_ir_i x_{ij} x_{ik}$ \item the same three quantities, but only for times that are exactly tied with the current death time, named denom2, a2, cmat2. This allows for easy compuatation of the Efron approximation for ties. \end{itemize} At one point I spent a lot of time worrying about $r_i$ values that are too large, but it turns out that the overall scale of the weights does not really matter since they always appear as a ratio. (Assuming we avoid exponential overflow and underflow, of course.) What does get the code in trouble is when there are large and small weights and we get an update of (large + small) - large. For example suppose a data set has a time dependent covariate which grows with time and the data has values like below: \begin{center} \begin{tabular}{ccccc} time1 & time2 & status & x \\ \hline 0 & 90 & 1 & 1 \\ 0 & 105 & 0 & 2 \\ 100 & 120 & 1 & 50 \\ 100 & 124 & 0 & 51 \end{tabular} \end{center} The code moves from large times to small, so the first risk set has subjects 3 and 4, the second has 1 and 2. The original code would do removals only when necessary, i.e., at the event times of 120 and 90, and additions as they came along. This leads to adding in subjects 1 and 2 before the update at time 90 when observations 3 and 4 are removed; for a coefficient greater than about .6 this leads to a loss of all of the significant digits. The defense is to remove subjects from the risk set as early as possible, and defer additions for as long as possible. Every time we hit a new (unique) death time, and only then, update the totals: first remove any old observations no longer in the risk set and then add any new ones. One interesting edge case is observations that are not part of any risk set. (A call to survSplit with too fine a partition can create these, or using a subset of data that excluded some of the deaths.) Observations that are not part of any risk set add unnecessary noise since they will be added and then subtracted from all the totals, but the intermediate values are never used. If said observation had a large risk score this could be exceptionally bad. The parent routine has already dealt with such observations: their indices never appear in the sort1 or sort2 vector. The three primary quantities for the Cox model are the log-likelihood $L$, the score vector $U$ and the Hessian matrix $H$. \begin{align*} L &= \sum_i w_i \delta_i \left[\eta_i - \log(d(t)) \right] \\ d(t) &= \sum_j w_j r_j Y_j(t) \\ U_k &= \sum_i w_i \delta_i \left[ (X_{ik} - \mu_k(t_i)) \right] \\ \mu_k(t) &= \frac{\sum_j w_j r_j Y_j(t) X_{jk}} {d(t)} \\ H_{kl} &= \sum_i w_i \delta_i V_{kl}(t_i) \\ V_{kl}(t) &= \frac{\sum_j w_j r_j Y_j(t) [X_{jk} - \mu_k(t)] [X_{jl}- \mu_l(t)]} {d(t)} \\ &= \frac{\sum_j w_j r_j Y_j(t) X_{jk}X_{jl}} {d(t)} - d(t) \mu_k(t) \mu_l(t) \end{align*} In the above $\delta_i =1$ for an event and 0 otherwise, $w_i$ is the per subject weight, $\eta_i$ is the current linear predictor $X\beta$ for the subject, $r_i = \exp(\eta_i)$ is the risk score and $Y_i(t)$ is 1 if observation $i$ is at risk at time $t$. The vector $\mu(t)$ is the weighted mean of the covariates at time $t$ using a weight of $w r Y(t)$ for each subject, and $V(t)$ is the weighted variance matrix of $X$ at time $t$. Tied deaths and the Efron approximation add a small complication to the formula. Say there are three tied deaths at some particular time $t$. When calculating the denominator $d(t)$, mean $\mu(t)$ and variance $V(t)$ at that time the inclusion value $Y_i(t)$ is 0 or 1 for all other subjects, as usual, but for the three tied deaths Y(t) is taken to be 1 for the first death, 2/3 for the second, and 1/3 for the third. The idea is that if the tied death times were randomly broken by adding a small random amount then each of these three would be in the first risk set, have 2/3 chance of being in the second, and 1/3 chance of being in the risk set for the third death. In the code this means that at a death time we add the \code{denom2}, \code{a2} and \code{c2} portions in a little at at time: for three tied death the code will add in 1/3, update totals, add in another 1/3, update totals, then the last 1/3, and update totals. The variance formula is stable if $\mu$ is small relative to the total variance. This is guarranteed by having a working estimate $m$ of the mean along with the formula: \begin{align*} (1/n) \sum w_ir_i(x_i- \mu)^2 &= (1/n)\sum w_ir_i(x-m)^2 - (\mu -m)^2 \\ \mu &= (1/n) \sum w_ir_i (x_i -m)\\ n &= \sum w_ir_i \end{align*} A refinement of this is to scale the covariates, since the Cholesky decomposition can lose precision when variables are on vastly different scales. We do this centering and scaling once at the beginning of the calculation. Centering is done per strata --- what if someone had two strata and a covariate with mean 0 in the first but mean one million in the second? (Users do amazing things). Scaling is required to be a single value for each covariate, however. For a univariate model scaling does not add any precision. Weighted sums can still be unstable if the weights get out of hand. Because of the exponential $r_i = exp(\eta_i)$ the original centering of the $X$ matrix may not be enough. A particular example was a data set on hospital adverse events with ``number of nurse shift changes to date'' as a time dependent covariate. At any particular time point the covariate varied only by $\pm 3$ between subjects (weekends often use 12 hour nurse shifts instead of 8 hour). The regression coefficient was around 1 and the data duration was 11 weeks (about 200 shifts) so that $eta$ values could be over 100 even after centering. We keep a time dependent average of $\eta$ and renorm the weights as necessary. This should be very rare. The last numerical problem is when one or more coefficients gets too large, leading to a huge weight exp(eta). This usually happens when a coefficient is tending to infinity, but can also be due to a bad step in the intermediate Newton-Raphson path. In the infinite coefficient case the log-likelihood trends to an asymptote and there is a race between three conditions: convergence of the loglik, singularity of the variance matrix, or an invalid log-likelihood. The first of these wins the race most of the time, especially if the data set is small, and is the simplest case. The last occurs when the denominator becomes $<0$ due to round off so that log(denom) is undefined, the second when extreme weights cause the second derivative to lose precision. In all 3 we revert to step halving, since a bad Newton-Raphson step can cause the same issues to arise. The next section of code adds up the totals for a given iteration. This is the workhorse. For a given death time all of the events tied at that time must be handled together, hence the main loop below proceeds in batches: \begin{enumerate} \item Find the time of the next death. Whenever crossing a stratum boundary, zero cetain intermediate sums. \item Remove all observations in the stratum with time1 $>$ dtime. When survSplit was used to create a data set, this will often remove all. If so we can rezero temporaries and regain precision. \item Add new observations to the risk set and to the death counts. \end{enumerate} <>= for (person=0; person> /* ** add any new subjects who are at risk ** denom2, a2, cmat2, meanwt and deaths count only the deaths */ denom2= 0; meanwt =0; deaths=0; for (i=0; i> <> } /* end of accumulation loop */ @ The last step in the above loop adds terms to the loglik, score and information matrices. Assume that there were 3 tied deaths. The difference between the Efron and Breslow approximations is that for the Efron the three tied subjects are given a weight of 1/3 for the first, 2/3 for the second, and 3/3 for the third death; for the Breslow they get 3/3 for all of them. Note that \code{imat} is symmetric, and that the cholesky routine will utilize the upper triangle of the matrix as input, using the lower part for its own purposes. The inverse from \code{chinv} is also in the upper triangle. <>= /* ** Add results into u and imat for all events at this time point */ if (method==0 || deaths ==1) { /*Breslow */ denom += denom2; newlk -= meanwt*log(denom); /* sum of death weights*/ for (i=0; i>= /* ** subtract out the subjects whose start time is to the right ** If everyone is removed reset the totals to zero. (This happens when ** the survSplit function is used, so it is worth checking). */ for (; indx1> } @ The next bit of code exists for the sake of rather rare data sets. Assume that there is a time dependent covariate that rapidly climbs in such a way that the eta gets large but the range of eta stays modest. An example would be something like ``payments made to date'' for a portfolio of loans. Then even though the data has been centered and the global mean is fine, the current values of eta are outrageous with respect to the exp function. Since replacing eta with (eta -c) for any c does not change the likelihood, do it. Unfortunately, we can't do this once and for all: this is a step that will occur at least twice per iteration for those rare cases, e.g., eta is too small at early time points and too large at late ones. I've seen this issue in about 1 data set per decade, by the way. <>= /* ** We must avoid overflow in the exp function (~750 on Intel) ** and want to act well before that, but not take action very often. ** One of the case-cohort papers suggests an offset of -100 meaning ** that etas of 50-100 can occur in "ok" data, so make it larger ** than this. ** If the range of eta is more then log(1e16) = 37 then the data is ** hopeless: some observations will have effectively 0 weight. Keeping ** the mean sensible suffices to keep the max in check for all other * data sets. */ if (fabs(etasum/nrisk) > 200) { flag[1]++; /* a count, for debugging/profiling purposes */ temp = etasum/nrisk; for (i=0; i>= /* main loop */ halving =0 ; /* =1 when in the midst of "step halving" */ fail =0; for (*iter=0; *iter<= maxiter; (*iter)++) { R_CheckUserInterrupt(); /* be polite -- did the user hit cntrl-C? */ <> if (*iter==0) { loglik[0] = newlk; loglik[1] = newlk; /* compute the score test, but don't corrupt u */ for (i=0; i0) break; } fail =0; for (i=0; i1 && ((newlk -loglik[1])/ loglik[1]) < -eps) { /* ** "Once more unto the breach, dear friends, once more; ..." **The last iteration above was worse than one of the earlier ones, ** by more than roundoff error. ** We need to use beta and imat at the last good value, not the ** last attempted value. We have tossed the old imat away, so ** recompute it. ** It will happen very rarely that we run out of iterations, and ** even less often that the Newton-Raphson is getting worse. */ for (i=0; i> rank2 = cholesky2(imat, nvar, tol_chol); } break; } if (fail >0 || newlk < loglik[1]) { /* ** The routine has not made progress past the last good value. */ halving++; flag[2]++; for (i=0; i>= flag[0] = rank; loglik[1] = newlk; chinv2(imat, nvar); for (i=0; i y_j, x_i > x_j$ or $y_i < y_j, x_i < x_j$. For a Cox model remember that the predicted survival $\hat y$ is longer if the risk score $X\beta$ is lower, so we have to flip the definition and count ``discordant'' pairs at the end of the routine. The concordance is the fraction of concordant pairs. One wrinkle is what to do with ties in either $y$ or $x$. Such pairs can be ignored in the count (treated as incomparable), treated as discordant, or given a score of 1/2. \begin{itemize} \item Kendall's $\tau$-a scores ties as 0. \item Kendall's $\tau$-b and the Goodman-Kruskal $\gamma$ ignore ties in either $y$ or $x$. \item Somers' $d$ treats ties in $y$ as incomparable, pairs that are tied in $x$ (but not $y$) score as 1/2. The AUC from logistic regression is equal to Somers' $d$. \end{itemize} All three of the above range from -1 to 1, the concordance is $(d +1)/2$. For survival data any pairs which cannot be ranked with certainty are considered incomparable. For instance $s_i$ is censored at time 10 and $s_j$ is an event (or censor) at time 20. Subject $i$ may or may not survive longer than subject $j$. Note that if $s_i$ is censored at time 10 and $s_j$ is an event at time 10 then $s_i > s_j$. Observations that are in different strata are also incomparable, since the Cox model only compares within strata. The program creates 4 variables, which are the number of concordant pairs, discordant, tied on time, and tied on $x$ but not on time. The default concordance is based on the AUC definition, but all 4 values are reported back so that a user can recreate the others if desired. Here is the main routine. <>= concordance <- function(x, ...) UseMethod("concordance") concordance.formula <- function(formula, data, weights, subset, na.action, group, ymin=NULL, ymax=NULL, timewt=c("S", "n", "S/G", "n/G", "n/G2"), influence=FALSE, id, reverse) { Call <- match.call() # save a copy of of the call, as documentation timewt <- match.arg(timewt) index <- match(c("formula", "data", "weights", "subset", "na.action", "group"), names(Call), nomatch=0) temp <- Call[c(1, index)] temp[[1L]] <- quote(stats::model.frame) special <- c("strata", "cluster") temp$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) mf <- eval(temp, parent.frame()) # model frame if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) Y <- model.response(mf) if (!inherits(Y, "Surv")) { if (is.numeric(Y) && is.vector(Y)) Y <- Surv(Y) else stop("left hand side of the formula must be a numeric vector or a surival") } n <- nrow(Y) wt <- model.weights(mf) offset<- attr(Terms, "offset") if (length(offset)>0) stop("Offset terms not allowed") stemp <- untangle.specials(Terms, "strata") if (length(stemp$vars)) { if (length(stemp$vars)==1) strat <- m[[stemp$vars]] else strat <- strata(m[,stemp$vars], shortlabel=TRUE) Terms <- Terms[-stemp$terms] } else strat <- NULL id <- model.extract(mf, "id") cluster<- attr(Terms, "specials")$cluster if (length(cluster)) { if (length(id)) stop("cannot have both a cluster() term and an 'id' argument") tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] if (any(ord>1)) stop ("Cluster can not be used in an interaction") cluster <- strata(mf[,tempc$vars], shortlabel=TRUE) #allow multiples Terms <- Terms[-tempc$terms] # toss it away } else if (length(id)) cluster <- id x <- model.matrix(Terms, m)[,-1, drop=FALSE] #remove the intercept if (ncol(x) > 1) stop("Only one predictor variable allowed") if (!is.null(ymin) & (length(ymin)> 1 || !is.numeric(ymin))) stop("ymin must be a single number") if (!is.null(ymax) & (length(ymax)> 1 || !is.numeric(ymax))) stop("ymax must be a single number") cfit <- concordance.fit(Y, x, strat, wt, ymin, ymax, timewt, influence, cluster) concordance <- (cfit$tau +1)/2 if (missing(reverse)) reverse <- (concordance < .5) if (!is.logical(reverse)) stop ("the reverse argument must be TRUE/FALSE") if (reverse) concordance <- 1- concordance fit <- c(concordance= concordance, cfit, call=Call) na.action <- attr(m, "na.action") if (length(na.action)) fit$na.action <- na.action class(fit) <- 'concordance' fit } print.concordance <- function(x, ...) { if(!is.null(cl <- x$call)) { cat("Call:\n") dput(cl) cat("\n") } omit <- x$na.action if(length(omit)) cat(" n=", x$n, " (", naprint(omit), ")\n", sep = "") else cat(" n=", x$n, "\n") cat("Concordance= ", format(x$concordance), " se= ", format(x$std.err), '\n', sep='') print(x$stats) invisible(x) } @ The concordance.fit function is broken out separately, since it is called by the \code{coxph} routine. If $y$ is not a survival quantity, then all of the options for the \code{timewt} parameter lead to the same result, so use the simplest one to compute in that case. <>= concordance.fit <- function(y, x, strata, weight, ymin, ymax, timewt, influence) { # The coxph program may occassionally fail, and this will kill the C # routine below if (any(is.na(x)) || any(is.na(y))) return(NULL) # these should only occur if something outside survival calls this routine n <- length(y) if (length(x) != n) stop("x and y are not the same length") if (missing(strata) || is.null(strata)) strata <- rep(0L, n) else if (length(strata) != n) stop("y and strata are not the same length") if (length(weight) != n) stop("y and weight are not the same length") # sort y and x, and get the weights if (!is.Surv(y)) { if (any(diff(order(strata, y)) < 1)) { ord <- order(strata, y) # y within strata y <- y[ord] x <- x[ord] wt <- wt[ord] strata <- strata[ord] sfit <- survfitKM(strata, Surv(y), wt, se.fit=FALSE) timewt <- "S" } } else { type <- attr(stime, "type") if (type %in% c("left", "interval")) stop("left or interval censored data is not supported") if (type %in% c("mright", "mcounting")) stop("multiple state survival is not supported") sfit <- survfitKM(strata, y, wt, se.fit=FALSE) if (timewt %in% c("S/G", "n/G", "n/G2")) { if (type != "right") stop("weights involving 1/G are only valid for right censored data") y2 <-y y2[,2)] <- 1- y[,2] gfit <- survfitKM(strata, y2, wt, se.fit=FALSE) } if (attr(stime, "type") %in% c("counting", "mcounting")) { sort.stop <- order(strata, -stime[,2], stime[,3]) sort.start <- order(strata, -stime[,1]) } else { ord <- order(strata, y[,1], -y[,2]) # death before censoring y <- y[ord,] x <- x[ord] wt <- wt[ord] strata <- strata[ord] } } # weights involve S(t) and G(t-), so we need to interpolate G per # stratum nstrat <- max(stratum) if (timewt %in% c("S/G", "n/G", "n/G2")) { gwt <- unlist(lapply(1:nstrat, function(i) { stemp <- sfit[i] gtemp <- gfit[i] etime <- stemp$time[stemp$nevent>0] e2 <- etime - min(diff(etime))/2 summary(gfit[i], times=e2, extend=TRUE)$surv })) } etime <- sfit$time[sfit$nevent>0] swt <- sfit$surv[sfit$nevent>0] nwt <- (sfit$nrisk- sfit$nevent)[sfit$nevent>0] twt <- switch(timewt) { "S" = swt "S/G" = swt/gwt, "n" = nwt, "n/G"= nwt/gwt, "n/G2" = nwt/gwt^2 } # match each score to the unique set (to deal with ties) uindex <- lapply(1:nstrat, function(i) { temp <- x[strata==i] match(temp, sort(unique(temp)))}) nindx <- sapply(uindex, max) # number of unique time values in each strata # create the indexing vectors <> temp <- btree(max(nindx)) parent <- as.integer(temp/2L) # node number of parent rchild <- as.integer(temp %%2) # is this node the right child? parent <- unlist(lapply(unidex, function(i) parent[i])) rchild <- unlist(lapply(unidex, function(i) rchild[i])) if (ncol(y) ==3) counts <- .Call(Cconcordance1, stime, x, wts, parent, child) else counts <- .Call(Ccondordance2, stime, x, wts, sort.start, sort.stop, parent, child) counts } @ The C code looks a lot like a Cox model: walk forward through time, keep track of the risk sets, and add something to the totals at each death. What needs to be summed is the rank of the event subject's $x$ value, as compared to the value for all others at risk at this time point. For notational simplicity let $Y_j(t_i)$ be an indicator that subject $j$ is at risk at event time $t_i$, and $Y^*_j(t_i)$ the more restrictive one that subject $j$ is both at risk and not a tied event time. The values we want at time $t_i$ are \begin{align} n_i &= \sum_j w_j Y^*_j(t_i) \nonumber \\ C_i &= (v_i/n_i) \delta_i w_i \sum_j w_j Y^*_j(t_i) \left[I(x_i < x_j) \right] \label{C} \\ D_i &= (v_i/n_i) \delta_i w_i \sum_j w_j Y^*_j(t_i) \left[I(x_i > x_j)\right] \label{D} \\ T_i &= (v_i/n_i) \delta_i w_i \sum_j w_j Y^*_j(t_i) \left[I(x_i = x_j) \right] \label{T} \\ m_i &= \delta_i \sum_j w_j (Y_j - Y^*_j) \nonumber \end{align} In the above $n$ is the number of comparable values at event time $t_i$ and $m$ is the number of exact ties, $(v_i/n_i)$ is treated as a fixed time-dependent weight (with no censoring it is a constant). $C$, $D$, and $T$ are the number of concordant, discordant, and tied pairs, respectively. The primary compuational question is how to do this efficiently, i.e., better than a naive algorithm that loops across all $n(n-1)/2$ possible pairs. There are two key ideas. \begin{enumerate} \item Rearrange the counting so that we do it by death times. For each death we count the number of other subjects in the risk set whose score is higher, lower, or tied and add it into the totals. This neatly solves the question of time-dependent covariates. \item Counting the number with higher, lower, and tied $x$ can be done in $O(\log_2 n)$ time if the $x$ data is kept in a binary tree. \end{enumerate} \begin{figure} \myfig{balance} \caption{A balanced tree of 13 nodes.} \label{treefig} \end{figure} Figure \ref{treefig} shows a balanced binary tree containing 13 risk scores. For each node the left child and all its descendants have a smaller value than the parent, the right child and all its descendents have a larger value. Each node in figure \ref{treefig} is also annotated with the total weight of observations in that node and the weight for all its left and right children (not shown on graph). Assume that the tree shown represents all of the subjects still alive at the time a particular subject ``Smith'' expires, and that Smith has the risk score of 19 in the tree. The concordant pairs are those with a risk score $>19$, i.e., both $\hat y$ and $y$ are larger, discordant are $<19$, and we have no ties. The totals can be found by \begin{enumerate} \item Initialize the counts for discordant, concordant and tied to the values from the left children, right children, and ties at this node, respectively, which will be $(C,D,T) = (1,1,0)$. \item Walk up the tree, and at each step add the (parent + left child) or (parent + right child) to either D or C, depending on what part of the tree has not yet been totaled. At the next node (8) $D= D+4$, and at the top node $C=C + 6$. \end{enumerate} There are 5 concordant and 7 discordant pairs. This takes a little less than $\log_2(n)$ steps on average, as compared to an average of $n/2$ for the naive method. The difference can matter when $n$ is large since this traversal must be done for each event. The classic way to store trees is as a linked list. There are several algorithms for adding and subtracting nodes from a tree while maintaining the balance (red-black trees, AA trees, etc) but we take a different approach. Since we need to deal with case weights in the model and we know all the risk score at the outset, the full set of risk scores is organised into a tree at the beginning, updating the sums of weights at each node as observations are added or removed from the risk set. If we internally index the nodes of the tree as 1 for the top, 2--3 for the next horizontal row, 4--7 for the next, \ldots then the parent-child traversal becomes particularly easy. The parent of node $i$ is $i/2$ (integer arithmetic) and the children of node $i$ are $2i$ and $2i +1$. In C code the indices start at 0 of course. The following bit of code arranges data into such a tree. <>= btree <- function(n, id=1L) { if (n==1) id else if (n==2) c(2L*id, id) else if (n==3) c(2L*id, id, 1L*id + 2L) else { split <- ceiling(n/2) c(btree(split-1, 2L*id), id, btree(n-split, 1L + 2L*id)) } } @ Referring again to figure \ref{treefig}, \code{btree(13)} yields the vector \code{ 8 4 2 10 5 7 1 12 6 3 14 7 9} meaning that the smallest element will be in position 8 of the tree, the next smallest in position 2, etc. This function does not fill the bottom row of the tree from left to right, which is okay; what is important in the algorithm is that the parent of each node has an index which is $\le n$. The next question is how to compute a variance for the result. One approach is to compute an infinitesimal jackknife (IJ) estimate, for which we need derivatives with respect to the weights. Looking back at equation \eqref{C} we have \begin{align} C &= \sum_i (v_i/m_i) w_i \delta_i \sum_j Y^*_j(t_i) w_j I(x_i < x_j) \nonumber\\ % \frac{\partial C}{\partial w_k} &= % (v_k/m_k)\delta_k \sum_j Y^*_{j}(t_k) I(x_k < x_j) + % \sum_i (v_i/m_i) w_i Y^*_k(t_i) I(x_i < x_k) \label{partialC} \end{align} A given subject's weight appears in two places, once when they are an event ($w_i \delta_i)$, and the second as part of the risk set for other's events. The solution is to keep two trees. One contains all of the subjects at risk and provides the multiplier for the first type. The second tree holds only the deaths. It it updated at each death, with subtotals of concordant, discordant, and tied. Just before a given subject enters the risk set add -1 times the current sums of concordant, discordant, tied, and total to their counter, and then just before they leave add the new totals. Deaths cause a separate addition when they occur. Keeping tied survival times and tied predictors as separate totals is a bit of a PITA. We can keep a separate total for current ties easily enough. But at the end of the tie we need to reset that entire tree to zero, which is one of the O(n) steps we are trying to avoid. The basic algorithm is to move through an outer and inner loop. The outer loop moves across unique death times, the inner for all obs that share a time. Move from largest to smallest time. \begin{enumerate} \item Move to a new event time \item For all data rows which leave the risk set at this time, add the current deaths triple to their IJ estimate (only applicable to start, stop data). \item For all subjects with an endpoint at this time \begin{enumerate} \item Add -1 times the deaths triple to the subject's IJ estimate \item If not an event, add the subject to the first total in the tree \item If an event, add the first triple to their IJ estimate, and also increment the global totals for $C$, $D$, and $T$. \end{enumerate} \item Go through the deaths at this event time again, adding their totals to both the overall and death triples in the tree \item At the end of each stratum, add the current deaths triple to all subjects still in the stratum. \end{enumerate} A second variance estimate is based on the Cox model. The insight used here is to consider a Cox model with time dependent covariates, where the covariate $x$ at each death time has been transformed into ${\rm rank}(x)$. It is easy to show that the Cox score statistic contribution at each death is $(D-C)/2$ where $C$ and $D$ are the number of concordant and discordant pairs contributed at that death time (for a Cox fit using the Breslow approximation). The contribution to the variance of the score statistic is $V(t) =\sum (r_i - \overline{r})^2 /n$, the $r_i$ being the ranks at that time point and $n$ the number at risk. How can we update this sum using an update formula? First remember the identity \begin{equation*} \sum w_i(x_i - \overline{x})^2 = \sum w_i(x_i-c)^2 - \sum w_i(c - \overline{x})^2 \end{equation*} true for any set of values $x$ and centering constant $c$. For weighted data define the rank of an observation with risk score $r_k$ as \begin{equation*} {\rm rank} = \sum_{r_ik} w_i(r_i - \mu_n)^2 - \sum_{i>k} w_i(r_i - \mu_g)^2 &= (\sum_{i>k} w_i) [(\mu_u -\mu_n)^2 - ((\mu_u-w_k) - \mu_g)^2] \nonumber \\ &= (\sum_{i>k} w_i) (\mu_n + z - 2\mu_u)(\mu_n -z) \label{upper1} \\ &= (\sum_{i>k} w_i) (\mu_n+z - 2\mu_u) (-w_k/2) \label{upper}\\ z&\equiv \mu_g+ w_k \nonumber \end{align} For items of tied rank, their rank increases by the same amount as the overall mean, and so their contribution to the total SS is unchanged. The final part of the update step is to add in the SS contributed by the new observation. An observation is removed from the tree whenver the current time becomes less than the (start, stop] interval of the datum. The ranks for observations of lower risk are unchanged by the removal so equation \eqref{lower1} applies just as before, but with the new mean smaller than the old so the last term in equation \eqref{lower} changes sign. For the observations of higher risk both the mean and the ranks change by $w_k$ and equation \eqref{upper1} holds but with $z=\mu_0- w_k$. We can now define the C-routine that does the bulk of the work. First we give the outline shell of the code and then discuss the parts one by one. This routine is for ordinary survival data, and will be called once per stratum. Input variables are \begin{description} \item[n] the number of observations \item[y] matrix containing the time and status, data is sorted by ascending time, with deaths preceding censorings. \item[indx] the tree node at which this observation's risk score resides %' \item[wt] case weight for the observation \item[sum] scratch space, weights for each node of the tree: 3 values are for the node, all left children, and all right children \item[count] the returned counts of concordant, discordant, tied on x, tied on time, and the variance \end{description} <>= #include "survS.h" SEXP concordance1(SEXP y, SEXP wt2, SEXP indx2, SEXP ntree2) { int i, j, k, index; int child, parent; int n, ntree; double *time, *status; double *twt, *nwt, *count; double vss, myrank, wsum1, wsum2, wsum3; /*sum of wts below, tied, above*/ double lmean, umean, oldmean, newmean; double ndeath; /* weighted number of deaths at this point */ SEXP count2; double *wt; int *indx; n = nrows(y); ntree = asInteger(ntree2); wt = REAL(wt2); indx = INTEGER(indx2); time = REAL(y); status = time + n; PROTECT(count2 = allocVector(REALSXP, 5)); count = REAL(count2); /* count5 contains the information matrix */ twt = (double *) R_alloc(2*ntree, sizeof(double)); nwt = twt + ntree; for (i=0; i< 2*ntree; i++) twt[i] =0.0; for (i=0; i<5; i++) count[i]=0.0; vss=0; <> UNPROTECT(1); return(count2); } @ The key part of our computation is to update the vectors of weights. We don't actually pass the risk score values $r$ into the routine, %' it is enough for each observation to point to the appropriate tree node. The tree contains the weights for everyone whose survival is larger than the time currently under review, so starts with all weights equal to zero. For any pair of observations $i,j$ we need to add [[wt[i]*wt[j]]] to the appropriate count. Starting at the largest time (which is sorted last), walk through the tree. \begin{itemize} \item If it is a death time, we need to process all the deaths tied at this time. \begin{enumerate} \item Add [[wt[i] * wt[j]]] to the tied-on-time total, for all pairs $i,j$ of tied times. \item The addition to tied-on-r will be the weight of this observation times the sum of weights for all others with the same risk score and a a greater time, i.e., the weight found at [[indx[i]]] in the tree. \item Similarly for those with smaller or larger risk scores. First add in the children of this node. The left child will be smaller risk scores (and longer times) adding to the concordant pairs, the right child discordant. Then walk up the tree to the root. At each step up we add in data for the 'not me' branch. If we were the right branch (even number node) of a parent then when moving up we add in the left branch counts, and vice-versa. \end{enumerate} \item Now add this set of subject weights into the tree. The weight for a node is [[nwt]] and for the node and all its children is [[twt]]. \end{itemize} <>= for (i=n-1; i>=0; ) { ndeath =0; if (status[i]==1) { /* process all tied deaths at this point */ for (j=i; j>=0 && status[j]==1 && time[j]==time[i]; j--) { ndeath += wt[j]; index = indx[j]; for (k=i; k>j; k--) count[3] += wt[j]*wt[k]; /* tied on time */ count[2] += wt[j] * nwt[index]; /* tied on x */ child = (2*index) +1; /* left child */ if (child < ntree) count[0] += wt[j] * twt[child]; /*left children */ child++; if (child < ntree) count[1] += wt[j] * twt[child]; /*right children */ while (index >0) { /* walk up the tree */ parent = (index-1)/2; if (index & 1) /* I am the left child */ count[1] += wt[j] * (twt[parent] - twt[index]); else count[0] += wt[j] * (twt[parent] - twt[index]); index = parent; } } } else j = i-1; /* Add the weights for these obs into the tree and update variance*/ for (; i>j; i--) { wsum1=0; oldmean = twt[0]/2; index = indx[i]; nwt[index] += wt[i]; twt[index] += wt[i]; wsum2 = nwt[index]; child = 2*index +1; /* left child */ if (child < ntree) wsum1 += twt[child]; while (index >0) { parent = (index-1)/2; twt[parent] += wt[i]; if (!(index&1)) /* I am a right child */ wsum1 += (twt[parent] - twt[index]); index=parent; } wsum3 = twt[0] - (wsum1 + wsum2); /* sum of weights above */ lmean = wsum1/2; umean = wsum1 + wsum2 + wsum3/2; /* new upper mean */ newmean = twt[0]/2; myrank = wsum1 + wsum2/2; vss += wsum1*(newmean+ oldmean - 2*lmean) * (newmean - oldmean); vss += wsum3*(newmean+ oldmean+ wt[i]- 2*umean) *(oldmean-newmean); vss += wt[i]* (myrank -newmean)*(myrank -newmean); } count[4] += ndeath * vss/twt[0]; } @ The code for [start, stop) data is quite similar. As in the agreg routines there are two sort indices, the first indexes the data by stop time, longest to earliest, and the second by start time. The [[y]] variable now has three columns. <>= SEXP concordance2(SEXP y, SEXP wt2, SEXP indx2, SEXP ntree2, SEXP sortstop, SEXP sortstart) { int i, j, k, index; int child, parent; int n, ntree; int istart, iptr, jptr; double *time1, *time2, *status, dtime; double *twt, *nwt, *count; int *sort1, *sort2; double vss, myrank; double wsum1, wsum2, wsum3; /*sum of wts below, tied, above*/ double lmean, umean, oldmean, newmean; double ndeath; SEXP count2; double *wt; int *indx; n = nrows(y); ntree = asInteger(ntree2); wt = REAL(wt2); indx = INTEGER(indx2); sort2 = INTEGER(sortstop); sort1 = INTEGER(sortstart); time1 = REAL(y); time2 = time1 + n; status= time2 + n; PROTECT(count2 = allocVector(REALSXP, 5)); count = REAL(count2); twt = (double *) R_alloc(2*ntree, sizeof(double)); nwt = twt + ntree; for (i=0; i< 2*ntree; i++) twt[i] =0.0; for (i=0; i<5; i++) count[i]=0.0; vss =0; <> UNPROTECT(1); return(count2); } @ The processing changes in 2 ways \begin{itemize} \item The loops go from $0$ to $n-1$ instead of $n-1$ to 0. We need to use [[sort1[i]]] instead of [[i]] as the subscript for the time2 and wt vectors. (The sort vectors go backwards in time.) This happens enough that we use a temporary variables [[iptr]] and [[jptr]] to avoid the double subscript. \item As we move from the longest time to the shortest observations are added into the tree of weights whenever we encounter their stop time. This is just as before. Weights now also need to be removed from the tree whenever we encounter an observation's start time. %' It is convenient ``catch up'' on this second task whenever we encounter a death. \end{itemize} <>= istart = 0; /* where we are with start times */ for (i=0; i= dtime; istart++) { wsum1 =0; oldmean = twt[0]/2; jptr = sort1[istart]; index = indx[jptr]; nwt[index] -= wt[jptr]; twt[index] -= wt[jptr]; wsum2 = nwt[index]; child = 2*index +1; /* left child */ if (child < ntree) wsum1 += twt[child]; while (index >0) { parent = (index-1)/2; twt[parent] -= wt[jptr]; if (!(index&1)) /* I am a right child */ wsum1 += (twt[parent] - twt[index]); index=parent; } wsum3 = twt[0] - (wsum1 + wsum2); lmean = wsum1/2; umean = wsum1 + wsum2 + wsum3/2; /* new upper mean */ newmean = twt[0]/2; myrank = wsum1 + wsum2/2; vss += wsum1*(newmean+ oldmean - 2*lmean) * (newmean-oldmean); oldmean -= wt[jptr]; /* the z in equations above */ vss += wsum3*(newmean+ oldmean -2*umean) * (newmean-oldmean); vss -= wt[jptr]* (myrank -newmean)*(myrank -newmean); } /* Process deaths */ for (j=i; j 0) { /* walk up the tree */ parent = (index-1)/2; if (index &1) /* I am the left child */ count[1] += wt[jptr] * (twt[parent] - twt[index]); else count[0] += wt[jptr] * (twt[parent] - twt[index]); index = parent; } } } else j = i+1; /* Add the weights for these obs into the tree and compute variance */ for (; i0) { parent = (index-1)/2; twt[parent] += wt[iptr]; if (!(index&1)) /* I am a right child */ wsum1 += (twt[parent] - twt[index]); index=parent; } wsum3 = twt[0] - (wsum1 + wsum2); lmean = wsum1/2; umean = wsum1 + wsum2 + wsum3/2; /* new upper mean */ newmean = twt[0]/2; myrank = wsum1 + wsum2/2; vss += wsum1*(newmean+ oldmean - 2*lmean) * (newmean-oldmean); vss += wsum3*(newmean+ oldmean +wt[iptr] - 2*umean) * (oldmean-newmean); vss += wt[iptr]* (myrank -newmean)*(myrank -newmean); } count[4] += ndeath * vss/twt[0]; } @ One last wrinkle is tied risk scores: they are all set to point to the same node of the tree. This part of the compuation is a separate function, since it is also called by the coxph routines. Although we are very careful to create integers and/or doubles for the arguments to .Call I still wrap them in the appropriate as.xxx construction: ``belt and suspenders''. Also, referring to the the mathematics many paragraphs ago, the C routine returns the variance of $(C-D)/2$ and we return the standard deviation of $(C-D)$. If this routine is called with all the x values identical, then $C$ and $D$ will both be zero, but the calculated variance of $C-D$ can be a nonzero tiny number due to round off error. Since this can cause a warning message from the sqrt function we check and correct this. <>= survConcordance.fit <- function(y, x, strata, weight) { # The coxph program may occassionally fail, and this will kill the C # routine below if (any(is.na(x)) || any(is.na(y))) return(NULL) <> docount <- function(stime, risk, wts) { if (attr(stime, 'type') == 'right') { ord <- order(stime[,1], -stime[,2]) ux <- sort(unique(risk)) n2 <- length(ux) index <- btree(n2)[match(risk[ord], ux)] - 1L .Call(Cconcordance1, stime[ord,], as.double(wts[ord]), as.integer(index), as.integer(length(ux))) } else if (attr(stime, 'type') == "counting") { sort.stop <- order(-stime[,2], stime[,3]) sort.start <- order(-stime[,1]) ux <- sort(unique(risk)) n2 <- length(ux) index <- btree(n2)[match(risk, ux)] - 1L .Call(Cconcordance2, stime, as.double(wts), as.integer(index), as.integer(length(ux)), as.integer(sort.stop-1L), as.integer(sort.start-1L)) } else stop("Invalid survival type for concordance") } if (missing(weight) || length(weight)==0) weight <- rep(1.0, length(x)) storage.mode(y) <- "double" if (missing(strata) || length(strata)==0) { count <- docount(y, x, weight) if (count[1]==0 && count[2]==0) count[5]<-0 else count[5] <- 2*sqrt(count[5]) names(count) <- c("concordant", "discordant", "tied.risk", "tied.time", "std(c-d)") } else { strata <- as.factor(strata) ustrat <- levels(strata)[table(strata) >0] #some strata may have 0 obs count <- matrix(0., nrow=length(ustrat), ncol=5) for (i in 1:length(ustrat)) { keep <- which(strata == ustrat[i]) count[i,] <- docount(y[keep,,drop=F], x[keep], weight[keep]) } count[,5] <- 2*sqrt(ifelse(count[,1]+count[,2]==0, 0, count[,5])) dimnames(count) <- list(ustrat, c("concordant", "discordant", "tied.risk", "tied.time", "std(c-d)")) } count } @ survival/noweb/code.nw0000644000176200001440000215130513570775402014540 0ustar liggesusers\documentclass{article} \usepackage{noweb} \usepackage{amsmath} \usepackage{fancyvrb} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \newcommand{\myfig}[1]{\resizebox{\textwidth}{!} {\includegraphics{figures/#1.pdf}}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\xbar}{\overline{x}} \newcommand{\sign}{{\rm sign}} \noweboptions{breakcode} \title{Survival Package Functions} \author{Terry Therneau} \begin{document} \maketitle \tableofcontents \section{Introduction} \begin{quotation} Let us change or traditional attitude to the construction of programs. Instead of imagining that our main task is to instruct a \emph{computer} what to do, let us concentrate rather on explaining to \emph{humans} what we want the computer to do. (Donald E. Knuth, 1984). \end{quotation} This is the definition of a coding style called \emph{literate programming}. I first made use of it in the \emph{coxme} library and have become a full convert. For the survival library only selected objects are documented in this way; as I make updates and changes I am slowly converting the source code. The first motivation for this is to make the code easier for me, both to create and to maintain. As to maintinance, I have found that whenver I need to update code I spend a lot of time in the ``what was I doing in these x lines?'' stage. The code never has enough documentation, even for the author. (The survival library is already better than the majority of packages in R, whose comment level is abysmal. In the pre-noweb source code about 1 line in 6 has a comment, for the noweb document the documentation/code ratio is 2:1.) I also find it helps in creating new code to have the real documentation of intent --- formulas with integrals and such --- closely integrated. The second motivation is to leave code that is well enough explained that someone else can take it over. The source code is structured using \emph{noweb}, one of the simpler literate programming environments. The source code files look remakably like Sweave, and the .Rnw mode of emacs works perfectly for them. This is not too surprising since Sweave was also based on noweb. Sweave is not sufficient to process the files, however, since it has a different intention: it is designed to \emph{execute} the code and make the results into a report, while noweb is designed to \emph{explain} the code. We do this using the \code{noweb} library in R, which contains the \code{noweave} and \code{notangle} functions. (It would in theory be fairly simple to extend \code{knitr} to do this task, which is a topic for further exploration one day. A downside to noweb is that like Sweave it depends on latex, which has an admittedly steep learning curve, and markdown is thus attractive.) \section{Cox Models} \subsection{Coxph} The [[coxph]] routine is the underlying basis for all the models. The source was converted to noweb when adding time-transform terms. The call starts out with the basic building of a model frame and proceeds from there. The aeqSurv function is used to adjucate near ties in the time variable, numerical precision issues that occur when users base caculations on days/365.25 instead of days. A cluster term in the model is an exception. The variable mentioned is never part of the formal model, and so it is not kept as part of the saved terms structure. The analysis for multi-state data is a bit more complex. \begin{itemize} \item If the formula statement is a list, we preprocess this to find out any potential extra variables, and create a new global formula which will be used to create the data frame. \item In the above case missing value processing needs to be deferred, since some covariates may apply only to select transitions. \item After the data frame is constructed, the transitions matrix can be used to check that all the state names actually exist, construct the cmap matrix, and do missing value removal. \end{itemize} <>= #tt <- function(x) x coxph <- function(formula, data, weights, subset, na.action, init, control, ties= c("efron", "breslow", "exact"), singular.ok =TRUE, robust, model=FALSE, x=FALSE, y=TRUE, tt, method=ties, id, cluster, istate, statedata,...) { ties <- match.arg(ties) Call <- match.call() ## We want to pass any ... args to coxph.control, but not pass things ## like "dats=mydata" where someone just made a typo. The use of ... ## is simply to allow things like "eps=1e6" with easier typing extraArgs <- list(...) if (length(extraArgs)) { controlargs <- names(formals(coxph.control)) #legal arg names indx <- pmatch(names(extraArgs), controlargs, nomatch=0L) if (any(indx==0L)) stop(gettextf("Argument %s not matched", names(extraArgs)[indx==0L]), domain = NA) } if (missing(control)) control <- coxph.control(...) # Move any cluster() term out of the formula, and make it an argument # instead. This makes everything easier. But, I can only do that with # a local copy, doing otherwise messes up future use of update() on # the model object for a user stuck in "+ cluster()" mode. if (missing(formula)) stop("a formula argument is required") ss <- c("cluster", "offset") if (is.list(formula)) Terms <- if (missing(data)) terms(formula[[1]], specials=ss) else terms(formula[[1]], specials=ss, data=data) else Terms <- if (missing(data)) terms(formula, specials=ss) else terms(formula, specials=ss, data=data) tcl <- attr(Terms, 'specials')$cluster if (length(tcl) > 1) stop("a formula cannot have multiple cluster terms") if (length(tcl) > 0) { # there is one # subscripting of formulas is broken at least through R 3.5, if the # formula contains an offset. Adding offset to the "specials" above # is just a sneaky way to find out if one is present, then call # reformulate ourselves. tt is a correct index into the row labels # of the factors attribute, tt+1 to the variables attribute (which is # a list, so you have to skip the "list" call). The term.labels attr # contains neither the response nor the offset, but does contain the # interactions, which we need. factors <- attr(Terms, 'factors') if (any(factors[tcl,] >1)) stop("cluster() cannot be in an interaction") if (attr(Terms, "response") ==0) stop("formula must have a Surv response") # reformulate with the response option puts ` ` around Surv, which messes # up evaluation, hence the fancy dance to replace a piece rather # than recreate temp <- attr(Terms, "term.labels") oo <- attr(Terms, 'specials')$offset if (!is.null(oo)) { # add the offset to the set of labels ooterm <- rownames(factors)[oo] if (oo < tcl) temp <- c(ooterm, temp) else temp <- c(temp, ooterm) } if (is.null(Call$cluster)) Call$cluster <- attr(Terms, "variables")[[1+tcl]][[2]] else warning("cluster appears both in a formula and as an argument, formula term ignored") if (is.list(formula)) formula[[1]][[3]] <- reformulate(temp[1-tcl])[[2]] else formula[[3]] <- reformulate(temp[1-tcl])[[2]] Call$formula <- formula } # create a call to model.frame() that contains the formula (required) # and any other of the relevant optional arguments # but don't evaluate it just yet indx <- match(c("formula", "data", "weights", "subset", "na.action", "cluster", "id", "istate"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") tform <- Call[c(1,indx)] # only keep the arguments we wanted tform[[1L]] <- quote(stats::model.frame) # change the function called # if the formula is a list, do the first level of processing on it. if (is.list(formula)) { <> } else { multiform <- FALSE # formula is not a list of expressions covlist <- NULL dformula <- formula } # add specials to the formula special <- c("strata", "tt") tform$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) # Make "tt" visible for coxph formulas, without making it visible elsewhere if (!is.null(attr(tform$formula, "specials")$tt)) { coxenv <- new.env(parent= environment(formula)) assign("tt", function(x) x, envir=coxenv) environment(tform$formula) <- coxenv } # okay, now evaluate the formula mf <- eval(tform, parent.frame()) if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) # Grab the response and id variables Y <- model.extract(mf, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") type <- attr(Y, "type") multi <- FALSE if (type=="mright" || type == "mcounting") multi <- TRUE else if (type!='right' && type!='counting') stop(paste("Cox model doesn't support \"", type, "\" survival data", sep='')) data.n <- nrow(Y) #remember this before any time transforms if (!multi && multiform) stop("formula is a list but the response is not multi-state") if (control$timefix) Y <- aeqSurv(Y) <> # The time transform will expand the data frame mf. To do this # it needs Y and the strata. Everything else (cluster, offset, weights) # should be extracted after the transform # strats <- attr(Terms, "specials")$strata hasinteractions <- FALSE dropterms <- NULL if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.integer(strata.keep) for (i in stemp$vars) { #multiple strata terms are allowed # The factors attr has one row for each variable in the frame, one # col for each term in the model. Pick rows for each strata # var, and find if it participates in any interactions. if (any(attr(Terms, 'order')[attr(Terms, "factors")[i,] >0] >1)) hasinteractions <- TRUE } if (!hasinteractions) dropterms <- stemp$terms } else istrat <- NULL if (hasinteractions && multi) stop("multi-state coxph does not support strata*covariate interactions") timetrans <- attr(Terms, "specials")$tt if (missing(tt)) tt <- NULL if (length(timetrans)) { if (multi) stop("the tt() transform is not implemented for multi-state models") <> } xlevels <- .getXlevels(Terms, mf) # grab the cluster, if present. Using cluster() in a formula is no # longer encouraged cluster <- model.extract(mf, "cluster") id <- model.extract(mf, "id") if (!is.null(id) && is.null(cluster) && (missing(robust) || robust)) cluster <- id if (missing(robust)) robust <- !is.null(cluster) else if (robust && is.null(cluster)) { if (ncol(Y) ==2) cluster <- seq.int(1, nrow(mf)) else stop("one of cluster or id is needed") } contrast.arg <- NULL #due to shared code with model.matrix.coxph attr(Terms, "intercept") <- 1 # always have a baseline hazard # Grab the id variable to check out multi-state data id <- model.extract(mf, "id") if (multi) { <> } <> <> if (multi) { <> } # infinite covariates are not screened out by the na.omit routines # But this needs to be done after the multi-X part if (!all(is.finite(X))) stop("data contains an infinite predictor") # init is checked after the final X matrix has been made if (missing(init)) init <- NULL else { if (length(init) != ncol(X)) stop("wrong length for init argument") temp <- X %*% init - sum(colMeans(X) * init) + offset # it's okay to have a few underflows, but if all of them are too # small we get all zeros if (any(exp(temp) > .Machine$double.xmax) || all(exp(temp)==0)) stop("initial values lead to overflow or underflow of the exp function") } <> <> <> } @ Multi-state models have a multi-state response, optionally they have a formula that is a list. If the formula is a list then the first element is the default formula with a survival response and covariates on the right. Further elements are of the form from/to ~ covariates / options and specify other covariates for all from:to transitions. Steps in processing such a formula are \begin{enumerate} \item Gather all the variables that appear on a right-hand side, and create a master formula y ~ all of them. This is use to create the model.frame. We also need to defer missing value processing, since some covariates might appear for only some transitions. \item Get the data. The response, id, and statedata variables can now be checked for consistency with the formulas. \item After X has been formed, expand it. \end{enumerate} Here is code for the first step. <>= multiform <- TRUE dformula <- formula[[1]] # the default formula for transitions if (missing(statedata)) covlist <- parsecovar1(formula[-1]) else { if (!inherits(statedata, "data.frame")) stop("statedata must be a data frame") if (is.null(statedata$state)) stop("statedata data frame must contain a 'state' variable") covlist <- parsecovar1(formula[-1], names(statedata)) } # the term.labels + reformulate + environment trio is used in [.terms; # if it's good enough for base R it's good enough for me tlab <- unlist(lapply(covlist$rhs, function(x) attr(terms.formula(x$formula), "term.labels"))) tlab <- c(attr(terms.formula(dformula), "term.labels"), tlab) newform <- reformulate(tlab, dformula[[2]]) environment(newform) <- environment(dformula) formula <- newform tform$na.action <- na.pass # defer any missing value work to later @ <>= # remove strata from dformula, before any further processing if (length(dropterms)){ Terms2 <- Terms[-dropterms] dformula <- formula(Terms2) } else Terms2 <- Terms # check for consistency of the states, and create a transition # matrix if (length(id)==0) stop("an id statement is required for multi-state models") istate <- model.extract(mf, "istate") mcheck <- survcheck2(Y, id, istate) # error messages here if (mcheck$flag["overlap"] > 0) stop("data set has overlapping intervals for one or more subjects") transitions <- mcheck$transitions istate <- mcheck$istate states <- mcheck$states # build tmap, which has one row per term, one column per transition if (missing(statedata)) covlist2 <- parsecovar2(covlist, NULL, dformula= dformula, Terms2, transitions, states) else covlist2 <- parsecovar2(covlist, statedata, dformula= dformula, Terms2, transitions, states) tmap <- covlist2$tmap if (!is.null(covlist)) { <> } @ For multi-state models we can't tell what observations should be removed until any extra formulas have been processed. There may still be rows that are missing \emph{some} of the covariates but are okay for \emph{some} transitions. Others could be useless. Those rows can be removed from the model frame before creating the X matrix. Also identify partially used rows, ones where the necessary covariates are present for some of the possible transitions but not all. Those obs are dealt with later by the stackup function. <>= # first vector will be true if there is at least 1 transition for which all # covariates are present, second if there is at least 1 for which some are not good.tran <- bad.tran <- rep(FALSE, nrow(Y)) # We don't need to check interaction terms termname <- rownames(attr(Terms, 'factors')) trow <- (!is.na(match(rownames(tmap), termname))) # create a missing indicator for each term termiss <- matrix(0L, nrow(mf), ncol(mf)) for (i in 1:ncol(mf)) { xx <- is.na(mf[[i]]) if (is.matrix(xx)) termiss[,i] <- apply(xx, 1, any) else termiss[,i] <- xx } for (i in levels(istate)) { rindex <- which(istate ==i) j <- which(covlist2$mapid[,1] == match(i, states)) #possible transitions for (jcol in j) { k <- which(trow & tmap[,jcol] > 0) # the terms involved in that bad.tran[rindex] <- (bad.tran[rindex] | apply(termiss[rindex, k, drop=FALSE], 1, any)) good.tran[rindex] <- (good.tran[rindex] | apply(!termiss[rindex, k, drop=FALSE], 1, all)) } } n.partially.used <- sum(good.tran & bad.tran & !is.na(Y)) omit <- (!good.tran & bad.tran) | is.na(Y) if (all(omit)) stop("all observations deleted due to missing values") temp <- setNames(seq(omit)[omit], attr(mf, "row.names")[omit]) attr(temp, "class") <- "omit" mf <- mf[!omit,, drop=FALSE] attr(mf, "na.action") <- temp Y <- Y[!omit] id <- id[!omit] if (length(istate)) istate <- istate[!omit] # istate can be NULL @ For a multi-state model, create the expanded X matrix. Sometimes it is much expanded. The first step is to create the cmap matrix from tmap by expanding terms; factors turn into multiple columns for instance. Also create the initial values vector. The stacker function will create a separate block of observations for every unique value in \code{cmat[1,]}. Now say that two transitions A:B and A:C share the same baseline hazard. Then either a B or a C outcome will be an ``event'' in that stratum; they would only be distinguished by perhaps having different covariates. <>= cmap <- parsecovar3(tmap, colnames(X), attr(X, "assign")) xstack <- stacker(cmap, as.integer(istate), X, Y, strata=istrat, states=states) X <- xstack$X Y <- xstack$Y istrat <- xstack$strata if (length(offset)) offset <- offset[xstack$rindex] if (length(weights)) weights <- weights[xstack$rindex] if (length(cluster)) cluster <- cluster[xstack$rindex] @ The next step for multi X is to remake the assign attribute. It is a list with one element per term, and needs to be expanded in the same way as \code{tmap}, which has one row per term (+ an intercept row). For \code{predict, type='terms'} to work, no label can be repeated in the final assign object. If a variable `fred' were common across all the states we would want to use that as the label, but if it appears twice, as separate terms for two different transitions, then we label it as fred\_x:y where x:y is the transition. <>= t2 <- tmap[-1,,drop=FALSE] # remove the intercept row r2 <- row(t2)[!duplicated(as.vector(t2))] c2 <- col(t2)[!duplicated(as.vector(t2))] a2 <- lapply(seq(along=r2), function(i) {cmap[1+assign[[r2[i]]], c2[i]]}) # which elements are unique? tab <- table(r2) count <- tab[r2] names(a2) <- ifelse(count==1, row.names(t2)[r2], paste(row.names(t2)[r2], colnames(cmap)[c2], sep="_")) assign <- a2 @ An increasingly common error is for users to put the time variable on both sides of the formula, in the mistaken idea that this will deal with a failure of proportional hazards. Add a test for such models, but don't bail out. There will be cases where someone has the the stop variable in an expression on the right hand side, to create current age say. The \code{variables} attribute of the Terms object is the expression form of a list that contains the response variable followed by the predictors. Subscripting this, element 1 is the call to ``list'' itself so we always retain it. My \code{terms.inner} function works only with formula objects. <>= if (length(attr(Terms, 'variables')) > 2) { # a ~1 formula has length 2 ytemp <- terms.inner(formula[1:2]) xtemp <- terms.inner(formula[-2]) if (any(!is.na(match(xtemp, ytemp)))) warning("a variable appears on both the left and right sides of the formula") } @ At this point we deal with any time transforms. The model frame is expanded to a ``fake'' data set that has a separate stratum for each unique event-time/strata combination, and any tt() terms in the formula are processed. The first step is to create the index vector [[tindex]] and new strata [[.strata.]]. This last is included in a model.frame call (for others to use), internally the code simply replaces the \code{istrat} variable. A (modestly) fast C-routine first counts up and indexes the observations. We start out with error checks; since the computation can be slow we want to complain early. <>= timetrans <- untangle.specials(Terms, 'tt') ntrans <- length(timetrans$terms) if (is.null(tt)) { tt <- function(x, time, riskset, weights){ #default to O'Brien's logit rank obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } } if (is.function(tt)) tt <- list(tt) #single function becomes a list if (is.list(tt)) { if (any(!sapply(tt, is.function))) stop("The tt argument must contain function or list of functions") if (length(tt) != ntrans) { if (length(tt) ==1) { temp <- vector("list", ntrans) for (i in 1:ntrans) temp[[i]] <- tt[[1]] tt <- temp } else stop("Wrong length for tt argument") } } else stop("The tt argument must contain a function or list of functions") if (ncol(Y)==2) { if (length(strats)==0) { sorted <- order(-Y[,1], Y[,2]) newstrat <- rep.int(0L, nrow(Y)) newstrat[1] <- 1L } else { sorted <- order(istrat, -Y[,1], Y[,2]) #newstrat marks the first obs of each strata newstrat <- as.integer(c(1, 1*(diff(istrat[sorted])!=0))) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount1, Y[sorted,], as.integer(newstrat)) tindex <- sorted[counts$index] } else { if (length(strats)==0) { sort.end <- order(-Y[,2], Y[,3]) sort.start<- order(-Y[,1]) newstrat <- c(1L, rep(0, nrow(Y) -1)) } else { sort.end <- order(istrat, -Y[,2], Y[,3]) sort.start<- order(istrat, -Y[,1]) newstrat <- c(1L, as.integer(diff(istrat[sort.end])!=0)) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount2, Y, as.integer(sort.start -1L), as.integer(sort.end -1L), as.integer(newstrat)) tindex <- counts$index } @ The C routine has returned a list with 4 elements \begin{description} \item[nrisk] a vector containing the number at risk at each event time \item[time] the vector of event times \item[status] a vector of status values \item[index] a vector containing the set of subjects at risk for event time 1, followed by those at risk at event time 2, those at risk at event time 3, etc. \end{description} The new data frame is then a simple creation. The subtle part below is a desire to retain transformation information so that a downstream call to \code{termplot} will work. The tt function supplied by the user often finishes with a call to \code{pspline} or \code{ns}. If the returned value of the \code{tt} call has a class for which a \code{makepredictcall} method exists then we need to do 2 things: \begin{enumerate} \item Construct a fake call, e.g., ``pspline(age)'', then feed it and the result of tt as arguments to \code{makepredictcall} \item Replace that componenent in the predvars attribute of the terms. \end{enumerate} The \code{timetrans\$terms} value is a count of the right hand side of the formula. Some objects in the terms structure are unevaluated calls that include y, this adds 2 to the count (the call to ``list'' and the response). <>= Y <- Surv(rep(counts$time, counts$nrisk), counts$status) type <- 'right' # new Y is right censored, even if the old was (start, stop] mf <- mf[tindex,] istrat <- rep(1:length(counts$nrisk), counts$nrisk) weights <- model.weights(mf) if (!is.null(weights) && any(!is.finite(weights))) stop("weights must be finite") tcall <- attr(Terms, 'variables')[timetrans$terms+2] pvars <- attr(Terms, 'predvars') pmethod <- sub("makepredictcall.", "", as.vector(methods("makepredictcall"))) for (i in 1:ntrans) { newtt <- (tt[[i]])(mf[[timetrans$var[i]]], Y[,1], istrat, weights) mf[[timetrans$var[i]]] <- newtt nclass <- class(newtt) if (any(nclass %in% pmethod)) { # It has a makepredictcall method dummy <- as.call(list(as.name(class(newtt)[1]), tcall[[i]][[2]])) ptemp <- makepredictcall(newtt, dummy) pvars[[timetrans$terms[i]+2]] <- ptemp } } attr(Terms, "predvars") <- pvars @ This is the C code for time-transformation. For the first case it expects y to contain time and status sorted from longest time to shortest, and strata=1 for the first observation of each strata. <>= #include "survS.h" /* ** Count up risk sets and identify who is in each */ SEXP coxcount1(SEXP y2, SEXP strat2) { int ntime, nrow; int i, j, n; int stratastart=0; /* start row for this strata */ int nrisk=0; /* number at risk (=0 to stop -Wall complaint)*/ double *time, *status; int *strata; double dtime; SEXP rlist, rlistnames, rtime, rn, rindex, rstatus; int *rrindex, *rrstatus; n = nrows(y2); time = REAL(y2); status = time +n; strata = INTEGER(strat2); /* ** First pass: count the total number of death times (risk sets) ** and the total number of rows in the new data set. */ ntime=0; nrow=0; for (i=0; i> /* ** Pass 2, fill them in */ ntime=0; for (i=0; i> } @ The start-stop case is a bit more work. The set of subjects still at risk is an arbitrary set so we have to keep an index vector [[atrisk]]. At each new death time we write out the set of those at risk, with the deaths last. I toyed with the idea of a binary tree then realized it was not useful: at each death we need to list out all the subjects at risk into the index vector which is an $O(n)$ process, tree or not. <>= #include "survS.h" /* count up risk sets and identify who is in each, (start,stop] version */ SEXP coxcount2(SEXP y2, SEXP isort1, SEXP isort2, SEXP strat2) { int ntime, nrow; int i, j, istart, n; int nrisk=0, *atrisk; double *time1, *time2, *status; int *strata; double dtime; int iptr, jptr; SEXP rlist, rlistnames, rtime, rn, rindex, rstatus; int *rrindex, *rrstatus; int *sort1, *sort2; n = nrows(y2); time1 = REAL(y2); time2 = time1+n; status = time2 +n; strata = INTEGER(strat2); sort1 = INTEGER(isort1); sort2 = INTEGER(isort2); /* ** First pass: count the total number of death times (risk sets) ** and the total number of rows in the new data set */ ntime=0; nrow=0; istart =0; /* walks along the sort1 vector (start times) */ for (i=0; i= dtime; istart++) nrisk--; for(j= i+1; j> atrisk = (int *)R_alloc(n, sizeof(int)); /* marks who is at risk */ /* ** Pass 2, fill them in */ ntime=0; nrisk=0; j=0; /* pointer to time1 */; istart=0; for (i=0; i=dtime; istart++) { atrisk[sort1[istart]]=0; nrisk--; } for (j=1; j> } @ <>= /* ** Allocate memory */ PROTECT(rtime = allocVector(REALSXP, ntime)); PROTECT(rn = allocVector(INTSXP, ntime)); PROTECT(rindex=allocVector(INTSXP, nrow)); PROTECT(rstatus=allocVector(INTSXP,nrow)); rrindex = INTEGER(rindex); rrstatus= INTEGER(rstatus); @ <>= /* return the list */ PROTECT(rlist = allocVector(VECSXP, 4)); SET_VECTOR_ELT(rlist, 0, rn); SET_VECTOR_ELT(rlist, 1, rtime); SET_VECTOR_ELT(rlist, 2, rindex); SET_VECTOR_ELT(rlist, 3, rstatus); PROTECT(rlistnames = allocVector(STRSXP, 4)); SET_STRING_ELT(rlistnames, 0, mkChar("nrisk")); SET_STRING_ELT(rlistnames, 1, mkChar("time")); SET_STRING_ELT(rlistnames, 2, mkChar("index")); SET_STRING_ELT(rlistnames, 3, mkChar("status")); setAttrib(rlist, R_NamesSymbol, rlistnames); unprotect(6); return(rlist); @ We now return to the original thread of the program, though perhaps with new data, and build the $X$ matrix. Creation of the $X$ matrix for a Cox model requires just a bit of trickery. The baseline hazard for a Cox model plays the role of an intercept, but does not appear in the $X$ matrix. However, to create the columns of $X$ for factor variables correctly, we need to call the model.matrix routine in such a way that it \emph{thinks} there is an intercept, and so we set the intercept attribute to 1 in the terms object before calling model.matrix, ignoring any -1 term the user may have added. One simple way to handle all this is to call model.matrix on the original formula and then remove the terms we don't need. However, \begin{enumerate} \item The cluster() term, if any, could lead to thousands of extraneous ``intercept'' columns which are never needed. \item Likewise, nested case-control models can have thousands of strata, again leading many intercepts we never need. They never have strata by covariate interactions, however. \item If there are strata by covariate interactions in the model, the dummy intercepts-per-strata columns are necessary information for the model.matrix routine to correctly compute other columns of $X$. \end{enumerate} On later reflection \code{cluster} should never have been in the model statement in the first place, something that became painfully apparent with addition of multi-state models. In the future we will discourage it. For reason 2 above the usual plan is to also remove strata terms from the ``Terms'' object \emph{before} calling model.matrix, unless there are strata by covariate interactions in which case we remove them after. If anything is pre-dropped, for documentation purposes we want the returned assign attribute to match the Terms structure that we will hand back. (Do we ever use it?) In particular, the numbers therein correspond to the column names in \code{attr(Terms, 'factors')} The requires a shift. The cluster and strata terms are seen as main effects, so appear early in that list. We have found a case where terms get relabeled: <>= t1 <- terms( (x1 + x2):x3 + strata(x4)) t2 <- t1[-1] colnames(attr(t1, "factors")) colnames(attr(t2, "factors")) @ In t1 the strata term appears first, as it is the only thing that looks like a main effect, and the column labels are strata(x4), x1:x3, x2:x3. In t2 the column labels are x1:x3 and x3:x2 --- note left-right swap of the second. This means that using match() on the labels is not a reliable approach. We instead assume that nothing is reordered and do a shift. <>= if (length(dropterms)) { Terms2 <- Terms[ -dropterms] X <- model.matrix(Terms2, mf, constrasts=contrast.arg) # we want to number the terms wrt the original model matrix temp <- attr(X, "assign") shift <- sort(dropterms) temp <- temp + 1*(shift[1] <= temp) if (length(shift)==2) temp + 1*(shift[2] <= temp) attr(X, "assign") <- temp } else X <- model.matrix(Terms, mf, contrasts=contrast.arg) # drop the intercept after the fact, and also drop strata if necessary Xatt <- attributes(X) if (hasinteractions) adrop <- c(0, untangle.specials(Terms, "strata")$terms) else adrop <- 0 xdrop <- Xatt$assign %in% adrop #columns to drop (always the intercept) X <- X[, !xdrop, drop=FALSE] attr(X, "assign") <- Xatt$assign[!xdrop] attr(X, "contrasts") <- Xatt$contrasts @ Finish the setup. If someone includes an init statement or offset, make sure that it does not lead to instant code failure due to overflow/underflow. <>= offset <- model.offset(mf) if (is.null(offset) | all(offset==0)) offset <- rep(0., nrow(mf)) else if (any(!is.finite(offset) | !is.finite(exp(offset)))) stop("offsets must lead to a finite risk score") weights <- model.weights(mf) if (!is.null(weights) && any(!is.finite(weights))) stop("weights must be finite") assign <- attrassign(X, Terms) contr.save <- attr(X, "contrasts") <> @ Check for a rare edge case: a data set with no events. In this case the return structure is simple. The coefficients will all be NA, since they can't be estimated. The variance matrix is all zeros, in line with the usual rule to zero out any row and col corresponding to an NA coef. The loglik is the sum of zero terms, which we set to zero like the usual R result for sum(numeric(0)). An overall idea is to return something that won't blow up later code. <>= if (sum(Y[, ncol(Y)]) == 0) { # No events in the data! ncoef <- ncol(X) ctemp <- rep(NA, ncoef) names(ctemp) <- colnames(X) concordance= c(concordant=0, discordant=0, tied.x=0, tied.y=0, tied.xy=0, concordance=NA, std=NA, timefix=FALSE) rval <- list(coefficients= ctemp, var = matrix(0.0, ncoef, ncoef), loglik=c(0,0), score =0, iter =0, linear.predictors = offset, residuals = rep(0.0, data.n), means = colMeans(X), method=method, n = data.n, nevent=0, terms=Terms, assign=assign, concordance=concordance, wald.test=0.0, y = Y, call=Call) class(rval) <- "coxph" return(rval) } @ Check for penalized terms in the model, and set up infrastructure for the fitting routines to deal with them. <>= pterms <- sapply(mf, inherits, 'coxph.penalty') if (any(pterms)) { pattr <- lapply(mf[pterms], attributes) pname <- names(pterms)[pterms] # # Check the order of any penalty terms ord <- attr(Terms, "order")[match(pname, attr(Terms, 'term.labels'))] if (any(ord>1)) stop ('Penalty terms cannot be in an interaction') pcols <- assign[match(pname, names(assign))] fit <- coxpenal.fit(X, Y, istrat, offset, init=init, control, weights=weights, method=method, row.names(mf), pcols, pattr, assign) } @ <>= else { if( method=="breslow" || method =="efron") { if (grepl('right', type)) fitter <- get("coxph.fit") else fitter <- get("agreg.fit") } else if (method=='exact') { if (type== "right") fitter <- get("coxexact.fit") else fitter <- get("agexact.fit") } else stop(paste ("Unknown method", method)) fit <- fitter(X, Y, istrat, offset, init, control, weights=weights, method=method, row.names(mf)) } @ <>= if (is.character(fit)) { fit <- list(fail=fit) class(fit) <- 'coxph' } else { if (!is.null(fit$coefficients) && any(is.na(fit$coefficients))) { vars <- (1:length(fit$coefficients))[is.na(fit$coefficients)] msg <-paste("X matrix deemed to be singular; variable", paste(vars, collapse=" ")) if (!singular.ok) stop(msg) # else warning(msg) # stop being chatty } fit$n <- data.n fit$nevent <- sum(Y[,ncol(Y)]) fit$terms <- Terms fit$assign <- assign class(fit) <- fit$class fit$class <- NULL # don't compute a robust variance if there are no coefficients if (robust && !is.null(fit$coefficients) && !all(is.na(fit$coefficients))) { fit$naive.var <- fit$var # a little sneaky here: by calling resid before adding the # na.action method, I avoid having missings re-inserted # I also make sure that it doesn't have to reconstruct X and Y fit2 <- c(fit, list(x=X, y=Y, weights=weights)) if (length(istrat)) fit2$strata <- istrat if (length(cluster)) { temp <- residuals.coxph(fit2, type='dfbeta', collapse=cluster, weighted=TRUE) # get score for null model if (is.null(init)) fit2$linear.predictors <- 0*fit$linear.predictors else fit2$linear.predictors <- c(X %*% init) temp0 <- residuals.coxph(fit2, type='score', collapse=cluster, weighted=TRUE) } else { temp <- residuals.coxph(fit2, type='dfbeta', weighted=TRUE) fit2$linear.predictors <- 0*fit$linear.predictors temp0 <- residuals.coxph(fit2, type='score', weighted=TRUE) } fit$var <- t(temp) %*% temp u <- apply(as.matrix(temp0), 2, sum) fit$rscore <- coxph.wtest(t(temp0)%*%temp0, u, control$toler.chol)$test } #Wald test if (length(fit$coefficients) && is.null(fit$wald.test)) { #not for intercept only models, or if test is already done nabeta <- !is.na(fit$coefficients) # The init vector might be longer than the betas, for a sparse term if (is.null(init)) temp <- fit$coefficients[nabeta] else temp <- (fit$coefficients - init[1:length(fit$coefficients)])[nabeta] fit$wald.test <- coxph.wtest(fit$var[nabeta,nabeta], temp, control$toler.chol)$test } # Concordance. Done here so that we can use cluster if it is present # The returned value is a subset of the full result, partly because it # is all we need, but more for backward compatability with survConcordance.fit if (length(cluster)) temp <- concordancefit(Y, fit$linear.predictors, istrat, weights, cluster=cluster, reverse=TRUE, timefix= FALSE) else temp <- concordancefit(Y, fit$linear.predictors, istrat, weights, reverse=TRUE, timefix= FALSE) if (is.matrix(temp$count)) fit$concordance <- c(colSums(temp$count), concordance=temp$concordance, std=sqrt(temp$var)) else fit$concordance <- c(temp$count, concordance=temp$concordance, std=sqrt(temp$var)) na.action <- attr(mf, "na.action") if (length(na.action)) fit$na.action <- na.action if (model) { if (length(timetrans)) { stop("'model=TRUE' not supported for models with tt terms") } fit$model <- mf } if (x) { fit$x <- X if (length(timetrans)) fit$strata <- istrat else if (length(strats)) fit$strata <- strata.keep } if (y) fit$y <- Y fit$timefix <- control$timefix # remember this option } @ If any of the weights were not 1, save the results. Add names to the means component, which are occassionally useful to survfit.coxph. Other objects below are used when we need to recreate a model frame. <>= if (!is.null(weights) && any(weights!=1)) fit$weights <- weights names(fit$means) <- names(fit$coefficients) if (multi) { fit$transitions <- transitions fit$states <- states fit$cmap <- cmap fit$resid <- rowsum(fit$resid, xstack$rindex) names(fit$coefficients) <- seq(along=fit$coefficients) if (x) fit$strata <- istrat # save the expanded strata class(fit) <- c("coxphms", class(fit)) } fit$formula <- formula(Terms) if (length(xlevels) >0) fit$xlevels <- xlevels fit$contrasts <- contr.save if (any(offset !=0)) fit$offset <- offset fit$call <- Call fit @ The model.matrix and model.frame routines are called after a Cox model to reconstruct those portions. Much of their code is shared with the coxph routine. <>= # In internal use "data" will often be an already derived model frame. # We detect this via it having a terms attribute. model.matrix.coxph <- function(object, data=NULL, contrast.arg=object$contrasts, ...) { # # If the object has an "x" component, return it, unless a new # data set is given if (is.null(data) && !is.null(object[['x']])) return(object[['x']]) #don't match "xlevels" Terms <- delete.response(object$terms) if (is.null(data)) mf <- stats::model.frame(object) else { if (is.null(attr(data, "terms"))) mf <- stats::model.frame(Terms, data, xlev=object$xlevels) else mf <- data #assume "data" is already a model frame } cluster <- attr(Terms, "specials")$cluster if (length(cluster)) { temp <- untangle.specials(Terms, "cluster") dropterms <- temp$terms } else dropterms <- NULL strats <- attr(Terms, "specials")$strata hasinteractions <- FALSE if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.integer(strata.keep) for (i in stemp$vars) { #multiple strata terms are allowed # The factors attr has one row for each variable in the frame, one # col for each term in the model. Pick rows for each strata # var, and find if it participates in any interactions. if (any(attr(Terms, 'order')[attr(Terms, "factors")[i,] >0] >1)) hasinteractions <- TRUE } if (!hasinteractions) dropterms <- c(dropterms, stemp$terms) } else istrat <- NULL <> X } @ In parallel is the model.frame routine, which reconstructs the model frame. This routine currently doesn't do all that we want. To wit, the following code fails: \begin{verbatim} > tfun <- function(formula, ndata) { fit <- coxph(formula, data=ndata) model.frame(fit) } > tfun(Surv(time, status) ~ age, lung) Error: ndata not found \end{verbatim} The genesis of this problem is hard to unearth, but has to do with non standard evaluation rules used by model.frame.default. In essence it pays attention to the environment of the formula, but the enclos argument of eval appears to be ignored. I've not yet found a solution. <>= model.frame.coxph <- function(formula, ...) { dots <- list(...) nargs <- dots[match(c("data", "na.action", "subset", "weights", "id", "cluster", "istate"), names(dots), 0)] # If nothing has changed and the coxph object had a model component, # simply return it. if (length(nargs) ==0 && !is.null(formula$model)) return(formula$model) else { # Rebuild the original call to model.frame Terms <- terms(formula) fcall <- formula$call indx <- match(c("formula", "data", "weights", "subset", "na.action", "cluster", "id", "istate"), names(fcall), nomatch=0) if (indx[1] ==0) stop("The coxph call is missing a formula!") temp <- fcall[c(1,indx)] # only keep the arguments we wanted temp[[1]] <- quote(stats::model.frame) # change the function called temp$xlev <- formula$xlevels # this will turn strings to factors temp$formula <- Terms #keep the predvars attribute # Now, any arguments that were on this call overtake the ones that # were in the original call. if (length(nargs) >0) temp[names(nargs)] <- nargs # Make "tt" visible for coxph formulas, if (!is.null(attr(temp$formula, "specials")$tt)) { coxenv <- new.env(parent= environment(temp$formula)) assign("tt", function(x) x, envir=coxenv) environment(temp$formula) <- coxenv } # The documentation for model.frame implies that the environment arg # to eval will be ignored, but if we omit it there is a problem. if (is.null(environment(formula$terms))) mf <- eval(temp, parent.frame()) else mf <- eval(temp, environment(formula$terms), parent.frame()) if (!is.null(attr(formula$terms, "dataClasses"))) .checkMFClasses(attr(formula$terms, "dataClasses"), mf) if (is.null(attr(Terms, "specials")$tt)) return(mf) else { # Do time transform tt <- eval(formula$call$tt) Y <- aeqSurv(model.response(mf)) strats <- attr(Terms, "specials")$strata if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.numeric(strata.keep) } <> mf[[".strata."]] <- istrat return(mf) } } } @ \subsection{Exact partial likelihood} Let $r_i = \exp(X_i\beta)$ be the risk score for observation $i$. For one of the time points assume that there that there are $d$ tied deaths among $n$ subjects at risk. For convenience we will index them as $i= 1,\ldots,d$ in the $n$ at risk. Then for the exact parial likelihood, the contribution at this time point is \begin{align*} L &= \sum_{i=1}^d \log(r_i) - \log(D) \\ \frac{\partial L}{\partial \beta_j} &= x_{ij} - (1/D) \frac{\partial D}{\partial \beta_j} \\ \frac{\partial^2 L}{\partial \beta_j \partial \beta_k} &= (1/D^2)\left[D\frac{\partial^2D}{\partial \beta_j \partial \beta_k} - \frac{\partial D}{\partial \beta_j}\frac{\partial D}{\partial \beta_k} \right] \end{align*} The hard part of this computation is $D$, which is a sum \begin{equation*} D = \sum_{S(d,n)} r_{s_1}r_{s_2} \ldots r_{s_d} \end{equation*} where $S(d,n)$ is the set of all possible subsets of size $d$ from $n$ objects, and $s_1, s_2, \ldots$ indexes the current selection. So if $n=6$ and $d=2$ we would have the 15 pairs 12, 13, .... 56; for $n=5$ and $d=3$ there would be 10 triples 123, 124, 125, \ldots, 345. The brute force computation of all subsets can take a very long time. Gail et al \cite{Gail81} show simple recursion formulas that speed this up considerably. Let $D(d,n)$ be the denominator with $d$ deaths and $n$ subjects. Then \begin{align} D(d,n) &= r_nD(d-1, n-1) + D(d, n-1) \label{d0}\\ \frac{\partial D(d,n)}{\partial \beta_j} &= \frac{\partial D(d, n-1)}{\partial \beta_j} + r_n \frac{\partial D(d-1, n-1)}{\partial \beta_j} + x_{nj}r_n D(d-1, n-1) \label{d1}\\ \frac{\partial^2D(d,n}{\partial \beta_j \partial \beta_k} &= \frac{\partial^2D(d,n-1)}{\partial \beta_j \partial \beta_k} + r_n\frac{\partial^2D(d-1,n-1)}{\partial \beta_j \partial \beta_k} + x_{nj}r_n\frac{\partial D(d-1, n-1)}{\partial \beta_k} + \nonumber \\ & x_{nk}r_n\frac{\partial D(d-1, n-1)}{\partial \beta_j} + x_{nj}x_{nk}r_n D(d-1, n-1) \label{d2} \end{align} The above recursion is captured in the three routines below. The first calculates $D$. It is called with $d$, $n$, an array that will contain all the values of $D(d,n)$ computed so far, and the the first dimension of the array. The intial condition $D(0,n)=1$ is important to all three routines. <>= double coxd0(int d, int n, double *score, double *dmat, int dmax) { double *dn; if (d==0) return(1.0); dn = dmat + (n-1)*dmax + d -1; /* pointer to dmat[d,n] */ if (*dn ==0) { /* still to be computed */ *dn = score[n-1]* coxd0(d-1, n-1, score, dmat, dmax); if (d>= double coxd1(int d, int n, double *score, double *dmat, double *d1, double *covar, int dmax) { int indx; indx = (n-1)*dmax + d -1; /*index to the current array member d1[d.n]*/ if (d1[indx] ==0) { /* still to be computed */ d1[indx] = score[n-1]* covar[n-1]* coxd0(d-1, n-1, score, dmat, dmax); if (d1) d1[indx] += score[n-1]* coxd1(d-1, n-1, score, dmat, d1, covar, dmax); } return(d1[indx]); } double coxd2(int d, int n, double *score, double *dmat, double *d1j, double *d1k, double *d2, double *covarj, double *covark, int dmax) { int indx; indx = (n-1)*dmax + d -1; /*index to the current array member d1[d,n]*/ if (d2[indx] ==0) { /*still to be computed */ d2[indx] = coxd0(d-1, n-1, score, dmat, dmax)*score[n-1] * covarj[n-1]* covark[n-1]; if (d1) d2[indx] += score[n-1] * ( coxd2(d-1, n-1, score, dmat, d1j, d1k, d2, covarj, covark, dmax) + covarj[n-1] * coxd1(d-1, n-1, score, dmat, d1k, covark, dmax) + covark[n-1] * coxd1(d-1, n-1, score, dmat, d1j, covarj, dmax)); } return(d2[indx]); } @ Now for the main body. Start with the dull part of the code: declarations. I use [[maxiter2]] for the S structure and [[maxiter]] for the variable within it, and etc for the other input arguments. All the input arguments except strata are read-only. The output beta vector starts as a copy of ibeta. <>= #include #include "survS.h" #include "survproto.h" #include <> SEXP coxexact(SEXP maxiter2, SEXP y2, SEXP covar2, SEXP offset2, SEXP strata2, SEXP ibeta, SEXP eps2, SEXP toler2) { int i,j,k; int iter; double **covar, **imat; /*ragged arrays */ double *time, *status; /* input data */ double *offset; int *strata; int sstart; /* starting obs of current strata */ double *score; double *oldbeta; double zbeta; double newlk=0; double temp; int halving; /*are we doing step halving at the moment? */ int nrisk =0; /* number of subjects in the current risk set */ int dsize, /* memory needed for one coxc0, coxc1, or coxd2 array */ dmemtot, /* amount needed for all arrays */ ndeath; /* number of deaths at the current time point */ double maxdeath; /* max tied deaths within a strata */ double dtime; /* time value under current examiniation */ double *dmem0, **dmem1, *dmem2; /* pointers to memory */ double *dtemp; /* used for zeroing the memory */ double *d1; /* current first derivatives from coxd1 */ double d0; /* global sum from coxc0 */ /* copies of scalar input arguments */ int nused, nvar, maxiter; double eps, toler; /* returned objects */ SEXP imat2, beta2, u2, loglik2; double *beta, *u, *loglik; SEXP rlist, rlistnames; int nprotect; /* number of protect calls I have issued */ <> <> <> <> } @ Setup is ordinary. Grab S objects and assign others. I use \verb!R_alloc! for temporary ones since it is released automatically on return. <>= nused = LENGTH(offset2); nvar = ncols(covar2); maxiter = asInteger(maxiter2); eps = asReal(eps2); /* convergence criteria */ toler = asReal(toler2); /* tolerance for cholesky */ /* ** Set up the ragged array pointer to the X matrix, ** and pointers to time and status */ covar= dmatrix(REAL(covar2), nused, nvar); time = REAL(y2); status = time +nused; strata = INTEGER(PROTECT(duplicate(strata2))); offset = REAL(offset2); /* temporary vectors */ score = (double *) R_alloc(nused+nvar, sizeof(double)); oldbeta = score + nused; /* ** create output variables */ PROTECT(beta2 = duplicate(ibeta)); beta = REAL(beta2); PROTECT(u2 = allocVector(REALSXP, nvar)); u = REAL(u2); PROTECT(imat2 = allocVector(REALSXP, nvar*nvar)); imat = dmatrix(REAL(imat2), nvar, nvar); PROTECT(loglik2 = allocVector(REALSXP, 5)); /* loglik, sctest, flag,maxiter*/ loglik = REAL(loglik2); nprotect = 5; @ The data passed to us has been sorted by strata, and reverse time within strata (longest subject first). The variable [[strata]] will be 1 at the start of each new strata. Separate strata are completely separate computations: time 10 in one strata and time 10 in another are not comingled. Compute the largest product (size of strata)* (max tied deaths in strata) for allocating scratch space. When computing $D$ it is advantageous to create all the intermediate values of $D(d,n)$ in an array since they will be used in the derivative calculation. Likewise, the first derivatives are used in calculating the second. Even more importantly, say we have a large data set. It will be sorted with the longest times first. If there is a death with 30 at risk and another with 40 at risk, the intermediate sums we computed for the n=30 case are part of the computation for n=40. To make this work we need to index our matrices, within any strata, by the maximum number of tied deaths in the strata. We save this in the strata variable: first obs of a new strata has the number of events. And what if a strata had 0 events? We mark it with a 1. Note that the maxdeath variable is floating point. I had someone call this routine with a data set that gives an integer overflow in that situation. We now keep track of this further below and fail with a message. Such a run would take longer than forever to complete even if integer subscripts did not overflow. <>= strata[0] =1; /* in case the parent forgot (e.g., no strata case)*/ temp = 0; /* temp variable for dsize */ maxdeath =0; j=0; /* start of the strata */ for (i=0; i0) { /* assign data for the prior stratum, just finished */ /* If maxdeath <2 leave the strata alone at it's current value of 1 */ if (maxdeath >1) strata[j] = maxdeath; j = i; if (maxdeath*nrisk > temp) temp = maxdeath*nrisk; } maxdeath =0; /* max tied deaths at any time in this strata */ nrisk=0; ndeath =0; } dtime = time[i]; ndeath =0; /*number tied here */ while (time[i] ==dtime) { nrisk++; ndeath += status[i]; i++; if (i>=nused || strata[i] >0) break; /*tied deaths don't cross strata */ } if (ndeath > maxdeath) maxdeath = ndeath; } /* data for the final stratum */ if (maxdeath*nrisk > temp) temp = maxdeath*nrisk; if (maxdeath >1) strata[j] = maxdeath; /* Now allocate memory for the scratch arrays Each per-variable slice is of size dsize */ dsize = temp; temp = temp * ((nvar*(nvar+1))/2 + nvar + 1); dmemtot = dsize * ((nvar*(nvar+1))/2 + nvar + 1); if (temp != dmemtot) { /* the subscripts will overflow */ error("(number at risk) * (number tied deaths) is too large"); } dmem0 = (double *) R_alloc(dmemtot, sizeof(double)); /*pointer to memory */ dmem1 = (double **) R_alloc(nvar, sizeof(double*)); dmem1[0] = dmem0 + dsize; /*points to the first derivative memory */ for (i=1; i>= sstart =0; /* a line to make gcc stop complaining */ for (i=0; i0) { /* first obs of a new strata */ maxdeath= strata[i]; dtemp = dmem0; for (j=0; j=nused || strata[i] >0) break; } /* We have added up over the death time, now process it */ if (ndeath >0) { /* Add to the loglik */ d0 = coxd0(ndeath, nrisk, score+sstart, dmem0, maxdeath); R_CheckUserInterrupt(); newlk -= log(d0); dmem2 = dmem0 + (nvar+1)*dsize; /*start for the second deriv memory */ for (j=0; j 3) R_CheckUserInterrupt(); u[j] -= d1[j]; for (k=0; k<= j; k++) { /* second derivative*/ temp = coxd2(ndeath, nrisk, score+sstart, dmem0, dmem1[j], dmem1[k], dmem2, covar[j] + sstart, covar[k] + sstart, maxdeath); if (ndeath > 5) R_CheckUserInterrupt(); imat[k][j] += temp/d0 - d1[j]*d1[k]; dmem2 += dsize; } } } } @ Do the first iteration of the solution. The first iteration is different in 3 ways: it is used to set the initial log-likelihood, to compute the score test, and we pay no attention to convergence criteria or diagnositics. (I expect it not to converge in one iteration). <>= /* ** do the initial iteration step */ newlk =0; for (i=0; i> loglik[0] = newlk; /* save the loglik for iteration zero */ loglik[1] = newlk; /* and it is our current best guess */ /* ** update the betas and compute the score test */ for (i=0; i> } /* ** Never, never complain about convergence on the first step. That way, ** if someone has to they can force one iter at a time. */ for (i=0; i>= halving =0 ; /* =1 when in the midst of "step halving" */ for (iter=1; iter<=maxiter; iter++) { newlk =0; for (i=0; i> /* am I done? ** update the betas and test for convergence */ loglik[3] = cholesky2(imat, nvar, toler); if (fabs(1-(loglik[1]/newlk))<= eps && halving==0) { /* all done */ loglik[1] = newlk; <> } if (iter==maxiter) break; /*skip the step halving and etc */ if (newlk < loglik[1]) { /*it is not converging ! */ halving =1; for (i=0; i> @ The common code for finishing. Invert the information matrix, copy it to be symmetric, and put together the output structure. <>= loglik[4] = iter; chinv2(imat, nvar); for (i=1; i>= agreg.fit <- function(x, y, strata, offset, init, control, weights, method, rownames, resid=TRUE) { nvar <- ncol(x) event <- y[,3] if (all(event==0)) stop("Can't fit a Cox model with 0 failures") if (missing(offset) || is.null(offset)) offset <- rep(0.0, nrow(y)) if (missing(weights)|| is.null(weights))weights<- rep(1.0, nrow(y)) else if (any(weights<=0)) stop("Invalid weights, must be >0") else weights <- as.vector(weights) # Find rows to be ignored. We have to match within strata: a # value that spans a death in another stratum, but not it its # own, should be removed. Hence the per stratum delta if (length(strata) ==0) {y1 <- y[,1]; y2 <- y[,2]} else { if (is.numeric(strata)) strata <- as.integer(strata) else strata <- as.integer(as.factor(strata)) delta <- strata* (1+ max(y[,2]) - min(y[,1])) y1 <- y[,1] + delta y2 <- y[,2] + delta } event <- y[,3] > 0 dtime <- sort(unique(y2[event])) indx1 <- findInterval(y1, dtime) indx2 <- findInterval(y2, dtime) # indx1 != indx2 for any obs that spans an event time ignore <- (indx1 == indx2) nused <- sum(!ignore) # Sort the data (or rather, get a list of sorted indices) # For both stop and start times, the indices go from last to first if (length(strata)==0) { sort.end <- order(ignore, -y[,2]) -1L #indices start at 0 for C code sort.start<- order(ignore, -y[,1]) -1L strata <- rep(0L, nrow(y)) } else { sort.end <- order(ignore, strata, -y[,2]) -1L sort.start<- order(ignore, strata, -y[,1]) -1L } if (is.null(nvar) || nvar==0) { # A special case: Null model. Just return obvious stuff # To keep the C code to a small set, we call the usual routines, but # with a dummy X matrix and 0 iterations nvar <- 1 x <- matrix(as.double(1:nrow(y)), ncol=1) #keep the .C call happy maxiter <- 0 nullmodel <- TRUE if (length(init) !=0) stop("Wrong length for inital values") init <- 0.0 #dummy value to keep a .C call happy (doesn't like 0 length) } else { nullmodel <- FALSE maxiter <- control$iter.max if (is.null(init)) init <- rep(0., nvar) if (length(init) != nvar) stop("Wrong length for inital values") } # the returned value of agfit$coef starts as a copy of init, so make sure # is is a vector and not a matrix; as.double suffices. # Solidify the storage mode of other arguments storage.mode(y) <- storage.mode(x) <- "double" storage.mode(offset) <- storage.mode(weights) <- "double" agfit <- .Call(Cagfit4, nused, y, x, strata, weights, offset, as.double(init), sort.start, sort.end, as.integer(method=="efron"), as.integer(maxiter), as.double(control$eps), as.double(control$toler.chol), as.integer(0)) # internally rescale <> <> rval } @ Upon return we need to clean up three simple things. The first is the rare case that the agfit routine failed. These cases are rare, usually involve an overflow or underflow, and we encourage users to let us have a copy of the data when it occurs. (They end up in the \code{fail} directory of the library.) The second is that if any of the covariates were redudant then this will be marked by zeros on the diagonal of the variance matrix. Replace these coefficients and their variances with NA. The last is to post a warning message about possible infinite coefficients. The algorithm for determining this is unreliable, unfortunately. Sometimes coefficients are marked as infinite when the solution is not tending to infinity (usually associated with a very skewed covariate), and sometimes one that is tending to infinity is not marked. Que sera sera. Don't complain if the user asked for only one iteration; they will already know that it has not converged. <>= vmat <- agfit$imat coef <- agfit$coef if (agfit$flag[1] < nvar) which.sing <- diag(vmat)==0 else which.sing <- rep(FALSE,nvar) if (maxiter >1) { infs <- abs(agfit$u %*% vmat) if (any(!is.finite(coef)) || any(!is.finite(vmat))) stop("routine failed due to numeric overflow.", "This should never happen. Please contact the author.") if (agfit$flag[4] > 0) warning("Ran out of iterations and did not converge") else { infs <- (!is.finite(agfit$u) | infs > control$toler.inf*(1+ abs(coef))) if (any(infs)) warning(paste("Loglik converged before variable ", paste((1:nvar)[infs],collapse=","), "; beta may be infinite. ")) } } @ The last of the code is very standard. Compute residuals and package up the results. One design decision is that we return all $n$ residuals and predicted values, even though the model fit ignored useless observations. (All those obs have a residual of 0). <>= lp <- as.vector(x %*% coef + offset - sum(coef * colMeans(x))) if (resid) { score <- as.double(exp(lp)) residuals <- .Call(Cagmart3, nused, y, score, weights, strata, sort.start, sort.end, as.integer(method=='efron')) names(residuals) <- rownames } # The if-then-else below is a real pain in the butt, but the tccox # package's test suite assumes that the ORDER of elements in a coxph # object will never change. # if (nullmodel) { rval <- list(loglik=agfit$loglik[2], linear.predictors = offset, method= method, class = c("coxph.null", 'coxph') ) if (resid) rval$residuals <- residuals } else { names(coef) <- dimnames(x)[[2]] if (maxiter > 0) coef[which.sing] <- NA # always leave iter=0 alone flag <- agfit$flag names(flag) <- c("rank", "rescale", "step halving", "convergence") if (resid) { rval <- list(coefficients = coef, var = vmat, loglik = agfit$loglik, score = agfit$sctest, iter = agfit$iter, linear.predictors = as.vector(lp), residuals = residuals, means = colMeans(x), first = agfit$u, info = flag, method= method, class = "coxph") } else { rval <- list(coefficients = coef, var = vmat, loglik = agfit$loglik, score = agfit$sctest, iter = agfit$iter, linear.predictors = as.vector(lp), means = colMeans(x), first = agfit$u, info = flag, method = method, class = "coxph") } rval } @ The details of the C code contain the more challenging part of the computations. It starts with the usual dull stuff. My standard coding style for a variable zed to to use [[zed2]] as the variable name for the R object, and [[zed]] for the pointer to the contents of the object, i.e., what the C code will manipulate. For the matrix objects I make use of ragged arrays, this allows for reference to the i,j element as \code{cmat[i][j]} and makes for more readable code. <>= #include #include "survS.h" #include "survproto.h" SEXP agfit4(SEXP nused2, SEXP surv2, SEXP covar2, SEXP strata2, SEXP weights2, SEXP offset2, SEXP ibeta2, SEXP sort12, SEXP sort22, SEXP method2, SEXP maxiter2, SEXP eps2, SEXP tolerance2, SEXP doscale2) { int i,j,k, person; int indx1, istrat, p, p1; int nrisk, nr; int nused, nvar; int rank=0, rank2, fail; /* =0 to keep -Wall happy */ double **covar, **cmat, **imat; /*ragged array versions*/ double *a, *oldbeta; double *scale; double *a2, **cmat2; double *eta; double denom, zbeta, risk; double dtime =0; /* initial value to stop a -Wall message */ double temp, temp2; double newlk =0; int halving; /*are we doing step halving at the moment? */ double tol_chol, eps; double meanwt; int deaths; double denom2, etasum; /* inputs */ double *start, *tstop, *event; double *weights, *offset; int *sort1, *sort2, maxiter; int *strata; double method; /* saving this as double forces some double arithmetic */ int doscale; /* returned objects */ SEXP imat2, beta2, u2, loglik2; double *beta, *u, *loglik; SEXP sctest2, flag2, iter2; double *sctest; int *flag, *iter; SEXP rlist; static const char *outnames[]={"coef", "u", "imat", "loglik", "sctest", "flag", "iter", ""}; int nprotect; /* number of protect calls I have issued */ /* get sizes and constants */ nused = asInteger(nused2); nvar = ncols(covar2); nr = nrows(covar2); /*nr = number of rows, nused = how many we use */ method= asInteger(method2); eps = asReal(eps2); tol_chol = asReal(tolerance2); maxiter = asInteger(maxiter2); doscale = asInteger(doscale2); /* input arguments */ start = REAL(surv2); tstop = start + nr; event = tstop + nr; weights = REAL(weights2); offset = REAL(offset2); sort1 = INTEGER(sort12); sort2 = INTEGER(sort22); strata = INTEGER(strata2); /* ** scratch space ** nvar: a, a2, oldbeta, scale ** nvar*nvar: cmat, cmat2 ** nr: eta */ eta = (double *) R_alloc(nr + 4*nvar + 2*nvar*nvar, sizeof(double)); a = eta + nr; a2= a + nvar; scale = a2 + nvar; oldbeta = scale + nvar; /* ** Set up the ragged arrays ** covar2 might not need to be duplicated, even though ** we are going to modify it, due to the way this routine was ** was called. But check */ PROTECT(imat2 = allocMatrix(REALSXP, nvar, nvar)); nprotect =1; if (MAYBE_REFERENCED(covar2)) { PROTECT(covar2 = duplicate(covar2)); nprotect++; } covar= dmatrix(REAL(covar2), nr, nvar); imat = dmatrix(REAL(imat2), nvar, nvar); cmat = dmatrix(oldbeta+ nvar, nvar, nvar); cmat2= dmatrix(oldbeta+ nvar + nvar*nvar, nvar, nvar); /* ** create the output structures */ PROTECT(rlist = mkNamed(VECSXP, outnames)); nprotect++; beta2 = SET_VECTOR_ELT(rlist, 0, duplicate(ibeta2)); beta = REAL(beta2); u2 = SET_VECTOR_ELT(rlist, 1, allocVector(REALSXP, nvar)); u = REAL(u2); SET_VECTOR_ELT(rlist, 2, imat2); loglik2 = SET_VECTOR_ELT(rlist, 3, allocVector(REALSXP, 2)); loglik = REAL(loglik2); sctest2 = SET_VECTOR_ELT(rlist, 4, allocVector(REALSXP, 1)); sctest = REAL(sctest2); flag2 = SET_VECTOR_ELT(rlist, 5, allocVector(INTSXP, 4)); flag = INTEGER(flag2); for (i=0; i<4; i++) flag[i]=0; iter2 = SET_VECTOR_ELT(rlist, 6, allocVector(INTSXP, 1)); iter = INTEGER(iter2); /* ** Subtract the mean from each covar, as this makes the variance ** computation much more stable. The mean is taken per stratum, ** the scaling is overall. */ for (i=0; i0) temp = temp2/temp; /* 1/scale */ else temp = 1.0; /* rare case of a constant covariate */ scale[i] = temp; for (person=0; person> <> } @ As we walk through the risk sets observations are both added and removed from a set of running totals. We have 6 running totals: \begin{itemize} \item sum of the weights, denom = $\sum w_i r_i$ \item totals for each covariate a[j] = $\sum w_ir_i x_{ij}$ \item totals for each covariate pair cmat[j,k]= $\sum w_ir_i x_{ij} x_{ik}$ \item the same three quantities, but only for times that are exactly tied with the current death time, named denom2, a2, cmat2. This allows for easy compuatation of the Efron approximation for ties. \end{itemize} At one point I spent a lot of time worrying about $r_i$ values that are too large, but it turns out that the overall scale of the weights does not really matter since they always appear as a ratio. (Assuming we avoid exponential overflow and underflow, of course.) What does get the code in trouble is when there are large and small weights and we get an update of (large + small) - large. For example suppose a data set has a time dependent covariate which grows with time and the data has values like below: \begin{center} \begin{tabular}{ccccc} time1 & time2 & status & x \\ \hline 0 & 90 & 1 & 1 \\ 0 & 105 & 0 & 2 \\ 100 & 120 & 1 & 50 \\ 100 & 124 & 0 & 51 \end{tabular} \end{center} The code moves from large times to small, so the first risk set has subjects 3 and 4, the second has 1 and 2. The original code would do removals only when necessary, i.e., at the event times of 120 and 90, and additions as they came along. This leads to adding in subjects 1 and 2 before the update at time 90 when observations 3 and 4 are removed; for a coefficient greater than about .6 this leads to a loss of all of the significant digits. The defense is to remove subjects from the risk set as early as possible, and defer additions for as long as possible. Every time we hit a new (unique) death time, and only then, update the totals: first remove any old observations no longer in the risk set and then add any new ones. One interesting edge case is observations that are not part of any risk set. (A call to survSplit with too fine a partition can create these, or using a subset of data that excluded some of the deaths.) Observations that are not part of any risk set add unnecessary noise since they will be added and then subtracted from all the totals, but the intermediate values are never used. If said observation had a large risk score this could be exceptionally bad. The parent routine has already dealt with such observations: their indices never appear in the sort1 or sort2 vector. The three primary quantities for the Cox model are the log-likelihood $L$, the score vector $U$ and the Hessian matrix $H$. \begin{align*} L &= \sum_i w_i \delta_i \left[\eta_i - \log(d(t)) \right] \\ d(t) &= \sum_j w_j r_j Y_j(t) \\ U_k &= \sum_i w_i \delta_i \left[ (X_{ik} - \mu_k(t_i)) \right] \\ \mu_k(t) &= \frac{\sum_j w_j r_j Y_j(t) X_{jk}} {d(t)} \\ H_{kl} &= \sum_i w_i \delta_i V_{kl}(t_i) \\ V_{kl}(t) &= \frac{\sum_j w_j r_j Y_j(t) [X_{jk} - \mu_k(t)] [X_{jl}- \mu_l(t)]} {d(t)} \\ &= \frac{\sum_j w_j r_j Y_j(t) X_{jk}X_{jl}} {d(t)} - d(t) \mu_k(t) \mu_l(t) \end{align*} In the above $\delta_i =1$ for an event and 0 otherwise, $w_i$ is the per subject weight, $\eta_i$ is the current linear predictor $X\beta$ for the subject, $r_i = \exp(\eta_i)$ is the risk score and $Y_i(t)$ is 1 if observation $i$ is at risk at time $t$. The vector $\mu(t)$ is the weighted mean of the covariates at time $t$ using a weight of $w r Y(t)$ for each subject, and $V(t)$ is the weighted variance matrix of $X$ at time $t$. Tied deaths and the Efron approximation add a small complication to the formula. Say there are three tied deaths at some particular time $t$. When calculating the denominator $d(t)$, mean $\mu(t)$ and variance $V(t)$ at that time the inclusion value $Y_i(t)$ is 0 or 1 for all other subjects, as usual, but for the three tied deaths Y(t) is taken to be 1 for the first death, 2/3 for the second, and 1/3 for the third. The idea is that if the tied death times were randomly broken by adding a small random amount then each of these three would be in the first risk set, have 2/3 chance of being in the second, and 1/3 chance of being in the risk set for the third death. In the code this means that at a death time we add the \code{denom2}, \code{a2} and \code{c2} portions in a little at at time: for three tied death the code will add in 1/3, update totals, add in another 1/3, update totals, then the last 1/3, and update totals. The variance formula is stable if $\mu$ is small relative to the total variance. This is guarranteed by having a working estimate $m$ of the mean along with the formula: \begin{align*} (1/n) \sum w_ir_i(x_i- \mu)^2 &= (1/n)\sum w_ir_i(x-m)^2 - (\mu -m)^2 \\ \mu &= (1/n) \sum w_ir_i (x_i -m)\\ n &= \sum w_ir_i \end{align*} A refinement of this is to scale the covariates, since the Cholesky decomposition can lose precision when variables are on vastly different scales. We do this centering and scaling once at the beginning of the calculation. Centering is done per strata --- what if someone had two strata and a covariate with mean 0 in the first but mean one million in the second? (Users do amazing things). Scaling is required to be a single value for each covariate, however. For a univariate model scaling does not add any precision. Weighted sums can still be unstable if the weights get out of hand. Because of the exponential $r_i = exp(\eta_i)$ the original centering of the $X$ matrix may not be enough. A particular example was a data set on hospital adverse events with ``number of nurse shift changes to date'' as a time dependent covariate. At any particular time point the covariate varied only by $\pm 3$ between subjects (weekends often use 12 hour nurse shifts instead of 8 hour). The regression coefficient was around 1 and the data duration was 11 weeks (about 200 shifts) so that $eta$ values could be over 100 even after centering. We keep a time dependent average of $\eta$ and renorm the weights as necessary. This should be very rare. The last numerical problem is when one or more coefficients gets too large, leading to a huge weight exp(eta). This usually happens when a coefficient is tending to infinity, but can also be due to a bad step in the intermediate Newton-Raphson path. In the infinite coefficient case the log-likelihood trends to an asymptote and there is a race between three conditions: convergence of the loglik, singularity of the variance matrix, or an invalid log-likelihood. The first of these wins the race most of the time, especially if the data set is small, and is the simplest case. The last occurs when the denominator becomes $<0$ due to round off so that log(denom) is undefined, the second when extreme weights cause the second derivative to lose precision. In all 3 we revert to step halving, since a bad Newton-Raphson step can cause the same issues to arise. The next section of code adds up the totals for a given iteration. This is the workhorse. For a given death time all of the events tied at that time must be handled together, hence the main loop below proceeds in batches: \begin{enumerate} \item Find the time of the next death. Whenever crossing a stratum boundary, zero cetain intermediate sums. \item Remove all observations in the stratum with time1 $>$ dtime. When survSplit was used to create a data set, this will often remove all. If so we can rezero temporaries and regain precision. \item Add new observations to the risk set and to the death counts. \end{enumerate} <>= for (person=0; person> /* ** add any new subjects who are at risk ** denom2, a2, cmat2, meanwt and deaths count only the deaths */ denom2= 0; meanwt =0; deaths=0; for (i=0; i> <> } /* end of accumulation loop */ @ The last step in the above loop adds terms to the loglik, score and information matrices. Assume that there were 3 tied deaths. The difference between the Efron and Breslow approximations is that for the Efron the three tied subjects are given a weight of 1/3 for the first, 2/3 for the second, and 3/3 for the third death; for the Breslow they get 3/3 for all of them. Note that \code{imat} is symmetric, and that the cholesky routine will utilize the upper triangle of the matrix as input, using the lower part for its own purposes. The inverse from \code{chinv} is also in the upper triangle. <>= /* ** Add results into u and imat for all events at this time point */ if (method==0 || deaths ==1) { /*Breslow */ denom += denom2; newlk -= meanwt*log(denom); /* sum of death weights*/ for (i=0; i>= /* ** subtract out the subjects whose start time is to the right ** If everyone is removed reset the totals to zero. (This happens when ** the survSplit function is used, so it is worth checking). */ for (; indx1> } @ The next bit of code exists for the sake of rather rare data sets. Assume that there is a time dependent covariate that rapidly climbs in such a way that the eta gets large but the range of eta stays modest. An example would be something like ``payments made to date'' for a portfolio of loans. Then even though the data has been centered and the global mean is fine, the current values of eta are outrageous with respect to the exp function. Since replacing eta with (eta -c) for any c does not change the likelihood, do it. Unfortunately, we can't do this once and for all: this is a step that will occur at least twice per iteration for those rare cases, e.g., eta is too small at early time points and too large at late ones. I've seen this issue in about 1 data set per decade, by the way. <>= /* ** We must avoid overflow in the exp function (~750 on Intel) ** and want to act well before that, but not take action very often. ** One of the case-cohort papers suggests an offset of -100 meaning ** that etas of 50-100 can occur in "ok" data, so make it larger ** than this. ** If the range of eta is more then log(1e16) = 37 then the data is ** hopeless: some observations will have effectively 0 weight. Keeping ** the mean sensible suffices to keep the max in check for all other * data sets. */ if (fabs(etasum/nrisk) > 200) { flag[1]++; /* a count, for debugging/profiling purposes */ temp = etasum/nrisk; for (i=0; i>= /* main loop */ halving =0 ; /* =1 when in the midst of "step halving" */ fail =0; for (*iter=0; *iter<= maxiter; (*iter)++) { R_CheckUserInterrupt(); /* be polite -- did the user hit cntrl-C? */ <> if (*iter==0) { loglik[0] = newlk; loglik[1] = newlk; /* compute the score test, but don't corrupt u */ for (i=0; i0) break; } fail =0; for (i=0; i1 && ((newlk -loglik[1])/ loglik[1]) < -eps) { /* ** "Once more unto the breach, dear friends, once more; ..." **The last iteration above was worse than one of the earlier ones, ** by more than roundoff error. ** We need to use beta and imat at the last good value, not the ** last attempted value. We have tossed the old imat away, so ** recompute it. ** It will happen very rarely that we run out of iterations, and ** even less often that the Newton-Raphson is getting worse. */ for (i=0; i> rank2 = cholesky2(imat, nvar, tol_chol); } break; } if (fail >0 || newlk < loglik[1]) { /* ** The routine has not made progress past the last good value. */ halving++; flag[2]++; for (i=0; i>= flag[0] = rank; loglik[1] = newlk; chinv2(imat, nvar); for (i=0; i>= survfit.coxph <- function(formula, newdata, se.fit=TRUE, conf.int=.95, individual=FALSE, stype=2, ctype, conf.type=c("log", "log-log", "plain", "none", "logit", "arcsin"), censor=TRUE, start.time, id, influence=FALSE, na.action=na.pass, type, ...) { Call <- match.call() Call[[1]] <- as.name("survfit") #nicer output for the user object <- formula #'formula' because it has to match survfit <> <> <> <> <> if (missing(newdata)) risk2 <- 1 else { if (length(object$means)) risk2 <- exp(c(x2 %*% beta) + offset2 - xcenter) else risk2 <- exp(offset2 - xcenter) } <> <> } @ The third line \code{as.name('survfit')} causes the printout to say `survfit' instead of `survfit.coxph'. %' The setup for the has three main phases, first of course to sort out the options the user has given us, second to rebuild the data frame, X matrix, etc from the original Cox model, and third to create variables from the new data set. In the code below x2, y2, strata2, id2, etc. are variables from the new data, X, Y, strata etc from the old. One exception to the pattern is id= argument, oldid = id from original data, id2 = id from new. If the newdata argument is missing we use \code{object\$means} as the default value. This choice has lots of statistical shortcomings, particularly in a stratified model, but is common in other packages and a historic option here. If stype is missing we use the standard approach of exp(cumulative hazard), and ctype is pulled from the Cox model. That is, the \code{coxph} computation used for \code{ties='breslow'} is the same as the Nelson-Aalen hazard estimate, and the Efron approximation the tie-corrected hazard. One particular special case (that gave me fits for a while) is when there are non-heirarchical models, for example \code{~ age + age:sex}. The fit of such a model will \emph{not} be the same using the variable \code{age2 <- age-50}; I originally thought it was a flaw induced by my subtraction. The routine simply cannot give a sensible curve for a model like this. The issue continued to surprise me each time I rediscovered it, leading to an error message for my own protection. I'm not convinced at this time that there is a sensible survival curve that \emph{could} be calculated for such a model. A model with \code{age + age:strata(sex)} will be ok, because the coxph routine treats this last term as though it had a * in it, i.e., fits a stratified model. <>= Terms <- terms(object) robust <- !is.null(object$naive.var) # did the coxph model use robust var? if (!is.null(attr(object$terms, "specials")$tt)) stop("The survfit function can not process coxph models with a tt term") if (!missing(type)) { # old style argument if (!missing(stype) || !missing(ctype)) warning("type argument ignored") else { temp1 <- c("kalbfleisch-prentice", "aalen", "efron", "kaplan-meier", "breslow", "fleming-harrington", "greenwood", "tsiatis", "exact") survtype <- match(match.arg(type, temp1), temp1) stype <- c(1,2,2,1,2,2,2,2,2)[survtype] if (stype!=1) ctype <-c(1,1,2,1,1,2,1,1,1)[survtype] } } if (missing(ctype)) { # Use the appropriate one from the model temp1 <- match(object$method, c("exact", "breslow", "efron")) ctype <- c(1,1,2)[temp1] } else if (!(ctype %in% 1:2)) stop ("ctype must be 1 or 2") if (!se.fit) conf.type <- "none" else conf.type <- match.arg(conf.type) tfac <- attr(Terms, 'factors') temp <- attr(Terms, 'specials')$strata has.strata <- !is.null(temp) if (has.strata) { stangle = untangle.specials(Terms, "strata") #used multiple times, later # Toss out strata terms in tfac before doing the test 1 line below, as # strata end up in the model with age:strat(grp) terms or *strata() terms # (There might be more than one strata term) for (i in temp) tfac <- tfac[,tfac[i,] ==0] # toss out strata terms } if (any(tfac >1)) stop("not able to create a curve for models that contain an interaction without the lower order effect") Terms <- object$terms n <- object$n[1] if (!has.strata) strata <- rep(0L, n) else strata <- object$strata missid <- missing(id) # I need this later, and setting id below makes # "missing(id)" always false if (!missid & !missing(individual)) warning("the `id' option supersedes `individual'") if (!missid) individual <- TRUE else if (missid && individual) id <- rep(0,n) #dummy value else id <- NULL if (individual & missing(newdata)) { stop("the id and/or individual options only make sense with new data") } @ In two places below we need to know if there are strata by covariate interactions, which requires looking at attributes of the terms object. The factors attribute will have a row for the strata variable, or maybe more than one (multiple strata terms are legal). If it has a 1 in a column that corresponds to something of order 2 or greater, that is a strata by covariate interaction. <>= if (has.strata) { temp <- attr(Terms, "specials")$strata factors <- attr(Terms, "factors")[temp,] strata.interaction <- any(t(factors)*attr(Terms, "order") >1) } @ I need to retrieve a copy of the original data. We always need the $X$ matrix and $y$, both of which might be found in the data object. If the fit was a multistate model, the original call included either strata, offset, weights, or id, or if either $x$ or $y$ are missing from the \code{coxph} object, then the model frame will need to be reconstructed. We have to use \code{object['x'}] instead of \texttt{object\$x} since the latter will pick off the \code{xlevels} component if the \code{x} component is missing (which is the default). <>= coxms <- inherits(object, "coxphms") if (coxms || is.null(object$y) || is.null(object[['x']]) || !is.null(object$call$weights) || !is.null(object$call$id) || (has.strata && is.null(object$strata)) || !is.null(attr(object$terms, 'offset'))) { mf <- stats::model.frame(object) } else mf <- NULL #useful for if statements later @ For a single state model we can grab the X matrix off the model frame, for multistate some more work needs to be done. We have to repeat some lines from coxph, but to do that we need some further material. We prefer \code{object\$y} to model.response, since the former will have been passed through aeqSurv with the options the user specified. For a multi-state model, however, we do have to recreate since the saved y has been expanded. In that case observe the saved status of timefix. Old saved objects might not have that element, if missing assume TRUE. <>= position <- NULL Y <- object[['y']] if (is.null(mf)) { weights <- rep(1., n) offset <- rep(0., n) X <- object[['x']] } else { weights <- model.weights(mf) if (is.null(weights)) weights <- rep(1.0, n) offset <- model.offset(mf) if (is.null(offset)) offset <- rep(0., n) X <- model.matrix.coxph(object, data=mf) if (is.null(Y) || coxms) { Y <- model.response(mf) if (is.null(object$timefix) || object$timefix) Y <- aeqSurv(Y) } oldid <- model.extract(mf, "id") if (length(oldid) && ncol(Y)==3) position <- survflag(Y, oldid) else position <- NULL if (!coxms && (nrow(Y) != object$n[1])) stop("Failed to reconstruct the original data set") if (has.strata) { if (length(strata)==0) { if (length(stangle$vars) ==1) strata <- mf[[stangle$vars]] else strata <- strata(mf[, stangle$vars], shortlabel=TRUE) } } } @ If a model frame was created, then it is trivial to grab \code{y} from the new frame and compare it to \code{object\$y} from the original one. This is to avoid nonsense results that arise when someone changes the data set under our feet. We can only check the size: with the addition of aeqSurv other packages were being flagged for tiny discrepancies. Later note: this check does not work for multi-state models, and we don't \emph{have} to have it. Removed by using if (FALSE) so as to preserve the code for future consideration. <>= if (FALSE) { if (!is.null(mf)){ y2 <- object[['y']] if (!is.null(y2)) { if (ncol(y2) != ncol(Y) || length(y2) != length(Y)) stop("Could not reconstruct the y vector") } } } type <- attr(Y, 'type') if (!type %in% c("right", "counting", "mright", "mcounting")) stop("Cannot handle \"", type, "\" type survival data") if (type=="right" || type== "mright") individual <- FALSE if (!missing(start.time)) { if (!is.numeric(start.time) || length(start.time) > 1) stop("start.time must be a single numeric value") # Start the curves after start.time # To do so, remove any rows of the data with an endpoint before that # time. if (ncol(Y)==3) { keep <- Y[,2] > start.time Y[keep,1] <- pmax(Y[keep,1], start.time) } else keep <- Y[,1] > start.time if (!any(Y[keep, ncol(Y)]==1)) stop("start.time argument has removed all endpoints") Y <- Y[keep,,drop=FALSE] X <- X[keep,,drop=FALSE] offset <- offset[keep] strata <- strata[keep] if (length(id) >0 ) id <- id[keep] if (length(position)) position <- position[keep] n <- nrow(Y) } @ In the above code we see id twice. The first, kept as \code{oldid} is the identifier variable for subjects in the original data set, and is needed whenever it contained subjects with more than one row. The second is the user variable of this call, and is used to define multiple rows for a new subject. The latter usage should be rare but we need to allow for it. If a variable is deemed redundant the \code{coxph} routine will have set its coefficient to NA as a marker. We want to ignore that coefficient: treating it as a zero has the desired effect. Another special case is a null model, having either ~1 or only an offset on the right hand side. In that case we create a dummy covariate to allow the rest of the code to work without special if/else. The last special case is a model with a sparse frailty term. We treat the frailty coefficients as 0 variance (in essence as an offset). The frailty is removed from the model variables but kept in the risk score. This isn't statistically very defensible, but it is backwards compatatble. %' A non-sparse frailty does not need special code and works out like any other variable. Center the risk scores by subtracting $ \overline x \hat\beta$ from each. The reason for this is to avoid huge values when calculating $\exp(X\beta)$; this would happen if someone had a variable with a mean of 1000 and a variance of 1. Any constant can be subtracted, mathematically the results are identical as long as the same values are subtracted from the old and new $X$ data. The mean is used because it is handy, we just need to get $X\beta$ in the neighborhood of zero. <>= if (length(object$means) ==0) { # a model with only an offset term # Give it a dummy X so the rest of the code goes through # (This case is really rare) # se.fit <- FALSE X <- matrix(0., nrow=n, ncol=1) xcenter <- mean(offset) coef <- 0.0 varmat <- matrix(0.0, 1, 1) risk <- rep(exp(offset- mean(offset)), length=n) } else { varmat <- object$var beta <- ifelse(is.na(object$coefficients), 0, object$coefficients) xcenter <- sum(object$means * beta)+ mean(offset) if (!is.null(object$frail)) { keep <- !grepl("frailty(", dimnames(X)[[2]], fixed=TRUE) X <- X[,keep, drop=F] } risk <- c(exp(X%*% beta + offset - xcenter)) } @ The \code{risk} vector and \code{x} matrix come from the original data, and are the raw data for the survival curve and its variance. We also need the risk score $\exp(X\beta)$ for the target subject(s). \begin{itemize} \item For predictions with time-dependent covariates the user will have either included an \code{id} statement (newer style) or specified the \code{individual=TRUE} option. If the latter, then \code{newdata} is presumed to contain only a single indivual represented by multiple rows. If the former then the \code{id} variable marks separate individuals. In either case we need to retrieve the covariates, strata, and repsonse from the new data set. \item For ordinary predictions only the covariates are needed. \item If newdata is not present we assume that this is the ordinary case, and use the value of \code{object\$means} as the default covariate set. This is not ideal statistically since many users view this as an ``average'' survival curve, which it is not. \end{itemize} When grabbing [newdata] we want to use model.frame processing, both to handle missing values correctly and, perhaps more importantly, to correctly map any factor variables between the original fit and the new data. (The new data will often have only one of the original levels represented.) Also, we want to correctly handle data-dependent nonlinear terms such as ns and pspline. However, the simple call found in predict.lm, say, \code{model.frame(Terms, data=newdata, ..} isn't used here for a few reasons. The first is a decision on our part that the user should not have to include unused terms in the newdata: sometimes we don't need the response and sometimes we do. Second, if there are strata, the user may or may not have included strata variables in their data set and we need to act accordingly. The third is that we might have an \code{id} statement in this call, which is another variable to be fetched. At one time we dealt with cluster() terms in the formula, but the coxph routine has already removed those for us. Finally, note that there is no ability to use sparse frailties and newdata together; it is a hard case and so rare as to not be worth it. First, remove unnecessary terms from the orginal model formula. If \code{individual} is false then the repsonse variable can go. The dataClasses and predvars attributes, if present, have elements in the same order as the first dimension of the ``factors'' attribute of the terms. Subscripting the terms argument does not preserve dataClasses or predvars, however. Use the pre and post subscripting factors attribute to determine what elements of them to keep. The predvars component is a call objects with one element for each term in the formula, so y ~ age + ns(height) would lead to a predvars of length 4, element 1 is the call itself, 2 would be y, etc. The dataClasses object is a simple list. <>= if (missing(newdata)) { # If the model has interactions, print out a long warning message. # People may hate it, but I don't see another way to stamp out these # bad curves without backwards-incompatability. # I probably should complain about factors too (but never in a strata # or cluster term). if (any(attr(Terms, "order") > 1) ) warning("the model contains interactions; the default curve based on columm means of the X matrix is almost certainly not useful. Consider adding a newdata argument.") if (length(object$means)) { mf2 <- as.list(object$means) #create a dummy newdata names(mf2) <- names(object$coefficients) mf2 <- as.data.frame(mf2) x2 <- matrix(object$means, 1) } else { # nothing but an offset mf2 <- data.frame(X=0) x2 <- 0 } offset2 <- 0 found.strata <- FALSE } else { if (!is.null(object$frail)) stop("Newdata cannot be used when a model has frailty terms") Terms2 <- Terms if (!individual) Terms2 <- delete.response(Terms) <> } @ For backwards compatability, I allow someone to give an ordinary vector instead of a data frame (when only one curve is required). In this case I also need to verify that the elements have a name. Then turn it into a data frame, like it should have been from the beginning. (Documentation of this ability has been suppressed, however. I'm hoping people forget it ever existed.) <>= if (is.vector(newdata, "numeric")) { if (individual) stop("newdata must be a data frame") if (is.null(names(newdata))) { stop("Newdata argument must be a data frame") } newdata <- data.frame(as.list(newdata), stringsAsFactors=FALSE) } @ Finally get my new model frame mf2. We allow the user to leave out any strata() variables if they so desire, \emph{if} there are no strata by covariate interactions. How does one check if the strata variables are or are not available in the call? My first attempt at this was to wrap the call in a try() construct and see if it failed. This doesn't work. \begin{itemize} \item What if there is no strata variable in newdata, but they do have, by bad luck, a variable of the same name in their main directory? \item It would seem like changing the environment to NULL would be wise, so that we don't find variables anywhere but in the data argument, a sort of sandboxing. Not wise: you then won't find functions like ``log''. \item We don't dare modify the environment of the formula at all. It is needed for the sneaky caller who uses his own function inside the formula, 'mycosine' say, and that function can only be found if we retain the environment. \end{itemize} One way out of this is to evaluate each of the strata terms (there can be more than one) one at a time, in an environment that knows nothing except "list" and a fake definition of "strata", and newdata. Variables that are part of the global environment won't be found. I even watch out for the case of either "strata" or "list" is the name of the stratification variable, which causes my fake strata function to return a function when said variable is not in newdata. The variable found.strata is true if ALL the strata are found, set it to false if any are missing. <>= if (has.strata) { found.strata <- TRUE tempenv <- new.env(, parent=emptyenv()) assign("strata", function(..., na.group, shortlabel, sep) list(...), envir=tempenv) assign("list", list, envir=tempenv) for (svar in stangle$vars) { temp <- try(eval(parse(text=svar), newdata, tempenv), silent=TRUE) if (!is.list(temp) || any(unlist(lapply(temp, class))== "function")) found.strata <- FALSE } if (!found.strata) { ss <- untangle.specials(Terms2, "strata") Terms2 <- Terms2[-ss$terms] } } tcall <- Call[c(1, match(c('id', "na.action"), names(Call), nomatch=0))] tcall$data <- newdata tcall$formula <- Terms2 tcall$xlev <- object$xlevels[match(attr(Terms2,'term.labels'), names(object$xlevels), nomatch=0)] tcall[[1L]] <- quote(stats::model.frame) mf2 <- eval(tcall) @ Now, finally, extract the \code{x2} matrix from the just-created frame. <>= if (has.strata && found.strata) { #pull them off temp <- untangle.specials(Terms2, 'strata') strata2 <- strata(mf2[temp$vars], shortlabel=TRUE) strata2 <- factor(strata2, levels=levels(strata)) if (any(is.na(strata2))) stop("New data set has strata levels not found in the original") # An expression like age:strata(sex) will have temp$vars= "strata(sex)" # and temp$terms = integer(0). This does not work as a subscript if (length(temp$terms) >0) Terms2 <- Terms2[-temp$terms] } else strata2 <- factor(rep(0, nrow(mf2))) if (!robust) cluster <- NULL if (individual) { if (missing(newdata)) stop("The newdata argument must be present when individual=TRUE") if (!missid) { #grab the id variable id2 <- model.extract(mf2, "id") if (is.null(id2)) stop("id=NULL is an invalid argument") } else id2 <- rep(1, nrow(mf2)) x2 <- model.matrix(Terms2, mf2)[,-1, drop=FALSE] #no intercept if (length(x2)==0) stop("Individual survival but no variables") offset2 <- model.offset(mf2) if (length(offset2) ==0) offset2 <- 0 y2 <- model.extract(mf2, 'response') if (attr(y2,'type') != type) stop("Survival type of newdata does not match the fitted model") if (attr(y2, "type") != "counting") stop("Individual=TRUE is only valid for counting process data") y2 <- y2[,1:2, drop=F] #throw away status, it's never used } else if (missing(newdata)) { if (has.strata && strata.interaction) stop ("Models with strata by covariate interaction terms require newdata") offset2 <- 0 if (length(object$means)) { x2 <- matrix(object$means, nrow=1, ncol=ncol(X)) } else { # model with only an offset and no new data: very rare case x2 <- matrix(0.0, nrow=1, ncol=1) # make a dummy x2 } } else { offset2 <- model.offset(mf2) if (length(offset2) >0) offset2 <- offset2 else offset2 <- 0 x2 <- model.matrix(Terms2, mf2)[,-1, drop=FALSE] #no intercept } @ <>= if (individual) { result <- coxsurv.fit(ctype, stype, se.fit, varmat, cluster, Y, X, weights, risk, position, strata, oldid, y2, x2, risk2, strata2, id2) } else { result <- coxsurv.fit(ctype, stype, se.fit, varmat, cluster, Y, X, weights, risk, position, strata, oldid, y2, x2, risk2) if (has.strata && found.strata) { if (is.matrix(result$surv)) { <> } } } @ The final bit of work. If the newdata arg contained strata then the user should not get a matrix of survival curves containing every newdata obs * strata combination, but rather a vector of curves, each one with the appropriate strata. It was faster to compute them all, however, than to use the individual=T logic. So now pick off the bits we want. The names of the curves will be the rownames of the newdata arg, if they exist. <>= nr <- nrow(result$surv) #a vector if newdata had only 1 row indx1 <- split(1:nr, rep(1:length(result$strata), result$strata)) rows <- indx1[as.numeric(strata2)] #the rows for each curve indx2 <- unlist(rows) #index for time, n.risk, n.event, n.censor indx3 <- as.integer(strata2) #index for n and strata for(i in 2:length(rows)) rows[[i]] <- rows[[i]]+ (i-1)*nr #linear subscript indx4 <- unlist(rows) #index for surv and std.err temp <- result$strata[indx3] names(temp) <- row.names(mf2) new <- list(n = result$n[indx3], time= result$time[indx2], n.risk= result$n.risk[indx2], n.event=result$n.event[indx2], n.censor=result$n.censor[indx2], strata = temp, surv= result$surv[indx4], cumhaz = result$cumhaz[indx4]) if (se.fit) new$std.err <- result$std.err[indx4] result <- new @ Finally, the last (somewhat boring) part of the code. First, if given the argument \code{censor=FALSE} we need to remove all the time points from the output at which there was only censoring activity. This action is mostly for backwards compatability with older releases that never returned censoring times. Second, add in the variance and the confidence intervals to the result. The code is nearly identical to that in survfitKM. <>= if (!censor) { kfun <- function(x, keep){ if (is.matrix(x)) x[keep,,drop=F] else if (length(x)==length(keep)) x[keep] else x} keep <- (result$n.event > 0) if (!is.null(result$strata)) { temp <- factor(rep(names(result$strata), result$strata), levels=names(result$strata)) result$strata <- c(table(temp[keep])) } result <- lapply(result, kfun, keep) } result$logse = TRUE # this will migrate further in if (se.fit && conf.type != "none") { ci <- survfit_confint(result$surv, result$std.err, logse=result$logse, conf.type, conf.int) result <- c(result, list(lower=ci$lower, upper=ci$upper, conf.type=conf.type, conf.int=conf.int)) } if (!missing(start.time)) result$start.time <- start.time result$call <- Call class(result) <- c('survfitcox', 'survfit') result @ % % Second part of coxsurv.Rnw, broken in two to make it easier for me % to work with emacs. Now, we're ready to do the main compuation. %' The code has gone through multiple iteration as options and complexity increased. Computations are separate for each strata, and each strata will have a different number of time points in the result. Thus we can't preallocate a matrix. Instead we generate an empty list, %' one per strata, and then populate it with the survival curves. At the end we unlist the individual components one by one. This is memory efficient, the number of curves is usually small enough that the "for" loop is no great cost, and it's easier to see what's going on than C code. The computational exception is a model with thousands of strata, e.g., a matched logistic, but in that case survival curves are useless. (That won't stop some users from trying it though.) First, compute the baseline survival curves for each strata. If the strata was a factor produce output curves in that order, otherwise in sorted order. This fitting routine was set out as a separate function for the sake of the rms package. They want to utilize the computation, but have a diffferent process to create the x and y data. <>= coxsurv.fit <- function(ctype, stype, se.fit, varmat, cluster, y, x, wt, risk, position, strata, oldid, y2, x2, risk2, strata2, id2, unlist=TRUE) { if (missing(strata) || length(strata)==0) strata <- rep(0L, nrow(y)) if (is.factor(strata)) ustrata <- levels(strata) else ustrata <- sort(unique(strata)) nstrata <- length(ustrata) survlist <- vector('list', nstrata) names(survlist) <- ustrata survtype <- if (stype==1) 1 else ctype+1 vartype <- survtype for (i in 1:nstrata) { indx <- which(strata== ustrata[i]) survlist[[i]] <- agsurv(y[indx,,drop=F], x[indx,,drop=F], wt[indx], risk[indx], survtype, vartype) } <> if (unlist) { if (length(result)==1) { # the no strata case if (se.fit) result[[1]][c("n", "time", "n.risk", "n.event", "n.censor", "surv", "cumhaz", "std.err")] else result[[1]][c("n", "time", "n.risk", "n.event", "n.censor", "surv", "cumhaz")] } else { <> } } else { names(result) <- ustrata result } } @ In an ordinary survival curve object with multiple strata, as produced by \code{survfitKM}, the time, survival and etc components are each a single vector that contains the results for strata 1, followed by strata 2, \ldots. The strata compontent is a vector of integers, one per strata, that gives the number of elements belonging to each stratum. The reason is that each strata will have a different number of observations, so that a matrix form was not viable, and the underlying C routines were not capable of handling lists (the code predates the .Call function by a decade). The underlying computation of \code{survfitcoxph.fit} naturally creates the list form, we unlist it to \code{survfit} form as our last action unless the caller requests otherwise. <>= temp <-list(n = unlist(lapply(result, function(x) x$n), use.names=FALSE), time= unlist(lapply(result, function(x) x$time), use.names=FALSE), n.risk= unlist(lapply(result, function(x) x$n.risk), use.names=FALSE), n.event= unlist(lapply(result, function(x) x$n.event), use.names=FALSE), n.censor=unlist(lapply(result, function(x) x$n.censor), use.names=FALSE), strata = sapply(result, function(x) length(x$time))) names(temp$strata) <- names(result) if ((missing(id2) || is.null(id2)) && nrow(x2)>1) { temp$surv <- t(matrix(unlist(lapply(result, function(x) t(x$surv)), use.names=FALSE), nrow= nrow(x2))) dimnames(temp$surv) <- list(NULL, row.names(x2)) temp$cumhaz <- t(matrix(unlist(lapply(result, function(x) t(x$cumhaz)), use.names=FALSE), nrow= nrow(x2))) if (se.fit) temp$std.err <- t(matrix(unlist(lapply(result, function(x) t(x$std.err)), use.names=FALSE), nrow= nrow(x2))) } else { temp$surv <- unlist(lapply(result, function(x) x$surv), use.names=FALSE) temp$cumhaz <- unlist(lapply(result, function(x) x$cumhaz), use.names=FALSE) if (se.fit) temp$std.err <- unlist(lapply(result, function(x) x$std.err), use.names=FALSE) } temp @ For \code{individual=FALSE} we have a second dimension, namely each of the target covariate sets (if there are multiples). Each of these generates a unique set of survival and variance(survival) values, but all of the same size since each uses all the strata. The final output structure in this case has single vectors for the time, number of events, number censored, and number at risk values since they are common to all the curves, and a marix of survival and variance estimates, one column for each of the distinct target values. If $\Lambda_0$ is the baseline cumulative hazard from the above calculation, then $r_i \Lambda_0$ is the cumulative hazard for the $i$th new risk score $r_i$. The variance has two parts, the first of which is $r_i^2 H_1$ where $H_1$ is returned from the \code{agsurv} routine, and the second is \begin{align*} H_2(t) =& d'(t) V d(t) \\ %' d(t) = \int_0^t [z- \overline x(s)] d\Lambda(s) \end{align*} $V$ is the variance matrix for $\beta$ from the fitted Cox model, and $d(t)$ is the distance between the target covariate $z$ and the mean of the original data, summed up over the interval from 0 to $t$. Essentially the variance in $\hat \beta$ has a larger influence when prediction is far from the mean. The function below takes the basic curve from the list and multiplies it out to matrix form. <>= expand <- function(fit, x2, varmat, se.fit) { if (survtype==1) surv <- cumprod(fit$surv) else surv <- exp(-fit$cumhaz) if (is.matrix(x2) && nrow(x2) >1) { #more than 1 row in newdata fit$surv <- outer(surv, risk2, '^') dimnames(fit$surv) <- list(NULL, row.names(x2)) if (se.fit) { varh <- matrix(0., nrow=length(fit$varhaz), ncol=nrow(x2)) for (i in 1:nrow(x2)) { dt <- outer(fit$cumhaz, x2[i,], '*') - fit$xbar varh[,i] <- (cumsum(fit$varhaz) + rowSums((dt %*% varmat)* dt))* risk2[i]^2 } fit$std.err <- sqrt(varh) } fit$cumhaz <- outer(fit$cumhaz, risk2, '*') } else { fit$surv <- surv^risk2 if (se.fit) { dt <- outer(fit$cumhaz, c(x2)) - fit$xbar varh <- (cumsum(fit$varhaz) + rowSums((dt %*% varmat)* dt)) * risk2^2 fit$std.err <- sqrt(varh) } fit$cumhaz <- fit$cumhaz * risk2 } fit } @ In the lines just above: I have a matrix \code{dt} with one row per death time and one column per variable. For each row $d_i$ separately we want the quadratic form $d_i V d_i'$. The first matrix product can %' be done for all rows at once: found in the inner parenthesis. Ordinary (not matrix) multiplication followed by rowsums does the rest in one fell swoop. Now, if \code{id2} is missing we can simply apply the \code{expand} function to each strata. For the case with \code{id2} not missing, we create a single survival curve for each unique id (subject). A subject will spend blocks of time with different covariate sets, sometimes even jumping between strata. Retrieve each one and save it into a list, and then sew them together end to end. The \code{n} component is the number of observations in the strata --- but this subject might visit several. We report the first one they were in for printout. The \code{time} component will be cumulative on this subject's scale. %' Counting this is a bit trickier than I first thought. Say that the subject's first interval goes from 1 to 10, with observed time points in that interval at 2, 5, and 7, and a second interval from 12 to 20 with observed time points in the data of 15 and 18. On the subject's time scale things happen at days 1, 4, 6, 12 and 15. The deltas saved below are 2-1, 5-2, 7-5, 3+ 14-12, 17-14. Note the 3+ part, kept in the \code{timeforward} variable. Why all this ``adding up'' nuisance? If the subject spent time in two strata, the second one might be on an internal time scale of `time since entering the strata'. The two intervals in newdata could be 0--10 followed by 0--20. Time for the subject can't go backwards though: the change %` between internal/external time scales is a bit like following someone who was stepping back and forth over the international date line. In the code the \code{indx} variable points to the set of times that the subject was present, for this row of the new data. Note the $>$ on one end and $\le$ on the other. If someone's interval 1 was 0--10 and interval 2 was 10--20, and there happened to be a jump in the baseline survival curve at exactly time 10 (someone else died), that jump is counted only in the first interval. <>= if (missing(id2) || is.null(id2)) result <- lapply(survlist, expand, x2, varmat, se.fit) else { onecurve <- function(slist, x2, y2, strata2, risk2, se.fit) { ntarget <- nrow(x2) #number of different time intervals surv <- vector('list', ntarget) n.event <- n.risk <- n.censor <- varh1 <- varh2 <- time <- surv hazard <- vector('list', ntarget) stemp <- as.integer(strata2) timeforward <- 0 for (i in 1:ntarget) { slist <- survlist[[stemp[i]]] indx <- which(slist$time > y2[i,1] & slist$time <= y2[i,2]) if (length(indx)==0) { timeforward <- timeforward + y2[i,2] - y2[i,1] # No deaths or censors in user interval. Possible # user error, but not uncommon at the tail of the curve. } else { time[[i]] <- diff(c(y2[i,1], slist$time[indx])) #time increments time[[i]][1] <- time[[i]][1] + timeforward timeforward <- y2[i,2] - max(slist$time[indx]) hazard[[i]] <- slist$hazard[indx]*risk2[i] if (survtype==1) surv[[i]] <- slist$surv[indx]^risk2[i] n.event[[i]] <- slist$n.event[indx] n.risk[[i]] <- slist$n.risk[indx] n.censor[[i]]<- slist$n.censor[indx] dt <- outer(slist$cumhaz[indx], x2[i,]) - slist$xbar[indx,,drop=F] varh1[[i]] <- slist$varhaz[indx] *risk2[i]^2 varh2[[i]] <- rowSums((dt %*% varmat)* dt) * risk2[i]^2 } } cumhaz <- cumsum(unlist(hazard)) if (survtype==1) surv <- cumprod(unlist(surv)) #increments (K-M) else surv <- exp(-cumhaz) if (se.fit) list(n=as.vector(table(strata)[stemp[1]]), time=cumsum(unlist(time)), n.risk = unlist(n.risk), n.event= unlist(n.event), n.censor= unlist(n.censor), surv = surv, cumhaz= cumhaz, std.err = sqrt(cumsum(unlist(varh1)) + unlist(varh2))) else list(n=as.vector(table(strata)[stemp[1]]), time=cumsum(unlist(time)), n.risk = unlist(n.risk), n.event= unlist(n.event), n.censor= unlist(n.censor), surv = surv, cumhaz= cumhaz) } if (all(id2 ==id2[1])) { result <- list(onecurve(survlist, x2, y2, strata2, risk2, se.fit)) } else { uid <- unique(id2) result <- vector('list', length=length(uid)) for (i in 1:length(uid)) { indx <- which(id2==uid[i]) result[[i]] <- onecurve(survlist, x2[indx,,drop=FALSE], y2[indx,,drop=FALSE], strata2[indx], risk2[indx], se.fit) } names(result) <- uid } } @ Next is the code for the \code{agsurv} function, which actually does the work. The estimates of survival are the Kalbfleisch-Prentice (KP), Breslow, and Efron. Each has an increment at each unique death time. First a bit of notation: $Y_i(t)$ is 1 if bservation $i$ is ``at risk'' at time $t$ and 0 otherwise. For a simple surivival (\code{ncol(y)==2}) a subject is at risk until the time of censoring or death (first column of \code{y}). For (start, stop] data (\code{ncol(y)==3}) a subject becomes a part of the risk set at start+0 and stays through stop. $dN_i(t)$ will be 1 if subject $i$ had an event at time $t$. The risk score for each subject is $r_i = \exp(X_i \beta)$. The Breslow increment at time $t$ is $\sum w_i dN_i(t) / \sum w_i r_i Y_i(t)$, the number of events at time $t$ over the number at risk at time $t$. The final survival is \code{exp(-cumsum(increment))}. The Kalbfleish-Prentice increment is a multiplicative term $z$ which is the solution to the equation $$ \sum w_i r_i Y_i(t) = \sum dN_i(t) w_i \frac{r_i}{1- z(t)^{r_i}} $$ The left hand side is the weighted number at risk at time $t$, the right hand side is a sum over the tied events at that time. If there is only one event the equation has a closed form solution. If not, and knowing the solution must lie between 0 and 1, we do 35 steps of bisection to get a solution within 1e-8. An alternative is to use the -log of the Breslow estimate as a starting estimate, which is faster but requires a more sophisticated iteration logic. The final curve is $\prod_t z(t)^{r_c}$ where $r_c$ is the risk score for the target subject. The Efron estimate can be viewed as a modified Breslow estimate under the assumption that tied deaths are not really tied -- we just don't know the %' order. So if there are 3 subjects who die at some time $t$ we will have three psuedo-terms for $t$, $t+\epsilon$, and $t+ 2\epsilon$. All 3 subjects are present for the denominator of the first term, 2/3 of each for the second, and 1/3 for the third terms denominator. All contribute 1/3 of the weight to each numerator (1/3 chance they were the one to die there). The formulas will require $\sum w_i dN_i(t)$, $\sum w_ir_i dN_i(t)$, and $\sum w_i X_i dN_i(t)$, i.e., the sums only over the deaths. For simple survival data the risk sum $\sum w_i r_i Y_i(t)$ for all the unique death times $t$ is fast to compute as a cumulative sum, starting at the longest followup time and summing towards the shortest. There are two algorithms for (start, stop] data. \begin{itemize} \item Do a separate sum at each death time. The problem is for very large data sets. For each death time the selection \code{(start=t)} is $O(n)$ and can take more time then all the remaining calculations together. \item Use the difference of two cumulative sums, one ordered by start time and one ordered by stop time. This is $O(2n)$ for the intial sums. The problem here is potential round off error if the sums get large. This issue is mostly precluded by subtracting means first, and avoiding intervals that don't overlap an event time. \end{itemize} We compute the extended number still at risk --- all whose stop time is $\ge$ each unique death time --- in the vector \code{xin}. From this we have to subtract all those who haven't actually entered yet %' found in \code{xout}. Remember that (3,20] enters at time 3+. The total at risk at any time is the difference between them. Output is only for the stop times; a call to approx is used to reconcile the two time sets. The \code{irisk} vector is for the printout, it is a sum of weighted counts rather than weighted risk scores. <>= agsurv <- function(y, x, wt, risk, survtype, vartype) { nvar <- ncol(as.matrix(x)) status <- y[,ncol(y)] dtime <- y[,ncol(y) -1] death <- (status==1) time <- sort(unique(dtime)) nevent <- as.vector(rowsum(wt*death, dtime)) ncens <- as.vector(rowsum(wt*(!death), dtime)) wrisk <- wt*risk rcumsum <- function(x) rev(cumsum(rev(x))) # sum from last to first nrisk <- rcumsum(rowsum(wrisk, dtime)) irisk <- rcumsum(rowsum(wt, dtime)) if (ncol(y) ==2) { temp2 <- rowsum(wrisk*x, dtime) xsum <- apply(temp2, 2, rcumsum) } else { delta <- min(diff(time))/2 etime <- c(sort(unique(y[,1])), max(y[,1])+delta) #unique entry times indx <- approx(etime, 1:length(etime), time, method='constant', rule=2, f=1)$y esum <- rcumsum(rowsum(wrisk, y[,1])) #not yet entered nrisk <- nrisk - c(esum,0)[indx] irisk <- irisk - c(rcumsum(rowsum(wt, y[,1])),0)[indx] xout <- apply(rowsum(wrisk*x, y[,1]), 2, rcumsum) #not yet entered xin <- apply(rowsum(wrisk*x, dtime), 2, rcumsum) # dtime or alive xsum <- xin - (rbind(xout,0))[indx,,drop=F] } ndeath <- rowsum(status, dtime) #unweighted death count @ The KP estimate requires a short C routine to do the iteration efficiently, and the Efron estimate needs a second C routine to efficiently compute the partial sums. <>= ntime <- length(time) if (survtype ==1) { #Kalbfleisch-Prentice indx <- (which(status==1))[order(dtime[status==1])] #deaths km <- .C(Cagsurv4, as.integer(ndeath), as.double(risk[indx]), as.double(wt[indx]), as.integer(ntime), as.double(nrisk), inc = double(ntime)) } if (survtype==3 || vartype==3) { # Efron approx xsum2 <- rowsum((wrisk*death) *x, dtime) erisk <- rowsum(wrisk*death, dtime) #risk score sums at each death tsum <- .C(Cagsurv5, as.integer(length(nevent)), as.integer(nvar), as.integer(ndeath), as.double(nrisk), as.double(erisk), as.double(xsum), as.double(xsum2), sum1 = double(length(nevent)), sum2 = double(length(nevent)), xbar = matrix(0., length(nevent), nvar)) } haz <- switch(survtype, nevent/nrisk, nevent/nrisk, nevent* tsum$sum1) varhaz <- switch(vartype, nevent/(nrisk * ifelse(nevent>=nrisk, nrisk, nrisk-nevent)), nevent/nrisk^2, nevent* tsum$sum2) xbar <- switch(vartype, (xsum/nrisk)*haz, (xsum/nrisk)*haz, nevent * tsum$xbar) result <- list(n= nrow(y), time=time, n.event=nevent, n.risk=irisk, n.censor=ncens, hazard=haz, cumhaz=cumsum(haz), varhaz=varhaz, ndeath=ndeath, xbar=apply(matrix(xbar, ncol=nvar),2, cumsum)) if (survtype==1) result$surv <- km$inc result } @ The arguments to this function are the number of unique times n, which is the length of the vectors ndeath (number at each time), denom, and the returned vector km. The risk and wt vectors contain individual values for the subjects with an event. Their length will be equal to sum(ndeath). <>= #include "survS.h" #include "survproto.h" void agsurv4(Sint *ndeath, double *risk, double *wt, Sint *sn, double *denom, double *km) { int i,j,k, l; int n; /* number of unique death times */ double sumt, guess, inc; n = *sn; j =0; for (i=0; i>= #include "survS.h" void agsurv5(Sint *n2, Sint *nvar2, Sint *dd, double *x1, double *x2, double *xsum, double *xsum2, double *sum1, double *sum2, double *xbar) { double temp; int i,j, k, kk; double d; int n, nvar; n = n2[0]; nvar = nvar2[0]; for (i=0; i< n; i++) { d = dd[i]; if (d==1){ temp = 1/x1[i]; sum1[i] = temp; sum2[i] = temp*temp; for (k=0; k< nvar; k++) xbar[i+ n*k] = xsum[i + n*k] * temp*temp; } else { temp = 1/x1[i]; for (j=0; j>= survfit.coxphms <- function(formula, newdata, se.fit=TRUE, conf.int=.95, individual=FALSE, stype=2, ctype, conf.type=c("log", "log-log", "plain", "none", "logit", "arcsin"), censor=TRUE, start.time, id, influence=FALSE, na.action=na.pass, type, ...) { Call <- match.call() Call[[1]] <- as.name("survfit") #nicer output for the user object <- formula #'formula' because it has to match survfit se.fit <- FALSE #still to do <> <> <> <> <> <> <> cifit$call <- Call class(cifit) <- c("survfitms", "survfit") cifit } @ The third line \code{as.name('survfit')} causes the printout to say `survfit' instead of `survfit.coxph'. %' Notice that setup is almost completely shared with survival for single state models. The major change is that we use survfitCI (non-Cox) to do all the legwork wrt the tabulation values (number at risk, etc.), while for the computation proper it is easier to make use of the same expanded data set that coxph used for a multi-state fit. <>= # Rebuild istate using the mcheck routine istate <- model.extract(mf, "istate") mcheck <- survcheck2(Y, oldid, istate) transitions <- mcheck$transitions istate <- mcheck$istate if (!identical(object$states, mcheck$states)) stop("failed to rebuild the data set") # Let the survfitCI routine do the work of creating the # overall counts (n.risk, etc). The rest of this code then # replaces the surv and hazard components. if (missing(start.time)) start.time <- min(Y[,2], 0) # If the data has absorbing states (ones with no transitions out), then # remove those rows first since they won't be in the final output. t2 <- transitions[, is.na(match(colnames(transitions), "(censored)")), drop=FALSE] absorb <- row.names(t2)[rowSums(t2)==0] if (length(absorb)) droprow <- istate %in% absorb else droprow <- FALSE if (any(droprow)) { j <- which(!droprow) cifit <- survfitCI(as.factor(strata[j]), Y[j,], weights[j], oldid[j], istate[j], stype=stype, ctype=ctype, se.fit=FALSE, start.time=start.time) } else cifit <- survfitCI(as.factor(strata), Y, weights, oldid, istate, stype=stype, ctype=ctype, se.fit=FALSE, start.time=start.time) # For computing the actual estimates it is easier to work with an # expanded data set. # Replicate actions found in the coxph-multi-X chunk, cluster <- model.extract(mf, "cluster") xstack <- stacker(object$cmap, as.integer(istate), X, Y, as.integer(strata), states= object$states) if (length(position) >0) position <- position[xstack$rindex] # id was required by coxph X <- xstack$X Y <- xstack$Y strata <- strata[xstack$rindex] transition <- xstack$transition if (length(offset)) offset <- offset[xstack$rindex] if (length(weights)) weights <- weights[xstack$rindex] if (length(cluster)) cluster <- cluster[xstack$rindex] oldid <- oldid[xstack$rindex] if (robust & length(cluster)==0) cluster <- oldid @ The survfit.coxph-setup3 chunk, shared with single state Cox models, has created an mf3 model frame and an x2 matrix. Create a matrix of risk scores, number of subjects by number of transitions. The reason is that different transitions often have different coefficients. <>= risk2 <- exp(x2 %*% coef(object, type="matrix") - xcenter) @ The first step in the computation is to compute the hazard functions for each of the transtions. Each of these hazards a completely independent computation: nothing is shared. A subject sitting in some state A, at risk for transition to B and C, might have different covariates and/or coefficients, and thus different risk scores for the two transitions. Because of this, there is no difference, for the first part of the code, between computing single endpoint or multiple endpoint curves, their variance, or their influence functions. The second step of creating p(state) curves uses all of the state1:state2 hazard functions at once, however. For this reason we use a particular hazard routine, which returns those hazard functions at a common set of time points. <>= if (individual) { stop("time dependent survival curves not yet supported for multistate") result <- coxsurv.fit2(ctype, stype, se.fit, varmat, cluster, start.time, object$cmap, object$transitions, object$states, Y, X, weights, risk, position, strata, oldid, transition, y2, x2, risk2, strata2, id2) } else { if (is.null(cifit$strata)) p0 <- cifit$pstate[1,, drop=FALSE] else { last <- cumsum(cifit$strata) # last obs of each strata first<- 1 + c(0, last[-length(last)]) p0 <- cifit$pstate[first,, drop=FALSE] } cifit <- coxsurv.fit2(ctype, stype, se.fit, varmat, cluster, start.time, object$cmap, object$transitions, object$states, Y, X, weights, risk, position, strata, oldid, transition, y2, x2, risk2, cifit=cifit) cifit$newdata <- mf2 } <>= coxsurv.fit2 <- function (ctype, stype, se.fit, varmat, cluster, start.time, cmap, tmat, states, y, x, weights, risk, position, strata, id, transition, y2, x2, risk2, strata2, id2, cifit) { # args are the options (ctype, stype, se.fit), args info from the prior fit # (varmat, ..., tmat), original data (Y, ..., transition), and data for the # new subjects if (length(strata)==0) strata <- rep(0L, nrow(y)) if (is.factor(strata)) ustrata <- levels(strata) else ustrata <- sort(unique(strata)) nstrata <- length(ustrata) # make the expansion map. # cmap[1,] will contain integers 1, 2,... which match the values in # the transtion vector, which in turn is the set of hazard functions that # come back from the .Call # The H matrices we will need are nstate by nstate, at each time, with # elements that are non-zero only for observed transtions. Some elements # may be the same: cmat[1,] can have repeats. nstate <- length(states) tmat <- tmat[,is.na(match(colnames(tmat), "(censored)")), drop=FALSE] from <- row(tmat)[tmat>0] # tmat contains fit$transitions matrix from <- match(rownames(tmat), states)[from] # actual row of H to <- col(tmat)[tmat>0] to <- match(colnames(tmat), states)[to] # actual col of H hfill <- cbind(from, to) if (nstrata==1) { temp <- multihaz(y, x, position, weights, risk, transition, ctype, stype, hfill, cmap[1,], x2, risk2, varmat, nstate, se.fit, cifit$pstate[1,], cifit$time) cifit$pstate <- temp$pstate cifit$cumhaz <- temp$cumhaz } else { itemp <- rep(1:nstrata, cifit$strata) timelist <- split(cifit$time, itemp) firstrow <- match(1:nstrata, itemp) ustrata <- names(cifit$strata) survlist <- vector("list", nstrata) for (i in 1:nstrata) { indx <- which(strata== ustrata[i]) # divides the data survlist[[i]] <- multihaz(y[indx,,drop=F], x[indx,,drop=F], position[indx], weights[indx], risk[indx], transition[indx], ctype, stype, hfill, cmap[1,], x2, risk2, varmat, nstate, se.fit, cifit$pstate[firstrow[i],], timelist[[i]]) } cifit$pstate <- do.call(rbind, lapply(survlist, function(x) x$pstate)) cifit$cumhaz <- do.call(rbind, lapply(survlist, function(x) x$cumhaz)) } cifit } @ This is the final target. Variables are \begin{itemize} \item y survival time for each observaion \item x covariates for each observatio \item position: a flag for each obs. Is it the first of a connected string such as (10, 12) (12,19) (19,21), the last of such a string, both, or neither. 1*first + 2* last \item weight case weight \item risk score \item transtion: which stratum each observation belongs to. At this point that is a unique baseline hazard in the state space. \item ctype, stype = type of hazard and survival \item hfill: the starting and ending states for each transition, on row per observed transtion type \item cmap: a vector giving the stratum number for each transtion. \item x2, risk2 = covariates and risk scores for the predicted values \item vmat = variance matrix of the coxph model \item se.fit: do or do not compute standard errors \item p0 = starting values for the states \item utime = the set of time points at which to give the results \end{itemize} <>= # Compute the hazard and survival functions multihaz <- function(y, x, position, weight, risk, transition, ctype, stype, hfill, cmap, x2, risk2, vmat, nstate, se.fit, p0, utime) { if (ncol(y) ==2) { sort1 <- seq.int(0, nrow(y)-1L) # sort order for a constant y <- cbind(-1.0, y) # add a start.time column, -1 in case # there is an event at time 0 } else sort1 <- order(transition, y[,1]) -1L sort2 <- order(transition, y[,2]) -1L ntime <- length(utime) # this returns all of the counts we might desire. storage.mode(weight) <- "double" #failsafe # for Surv(time, status) data position is 2 (last) for all obs if (length(position)==0) position <- rep(2L, nrow(y)) fit <- .Call(Ccoxsurv2, utime, y, weight, sort1, sort2, position, transition, x, risk) cn <- fit$count # 1-3 = at risk, 4-6 = events, 7-8 = censored events # 9-10 = censored, 11-12 = Efron, 13-15 = entry if (ctype ==1) { denom1 <- ifelse(cn[,4]==0, 1, cn[,3]) denom2 <- ifelse(cn[,4]==0, 1, cn[,3]^2) } else { denom1 <- ifelse(cn[,4]==0, 1, cn[,11]) denom2 <- ifelse(cn[,4]==0, 1, cn[,12]) } hazard <- matrix(cn[,5] / denom1, ncol = fit$ntrans) varhaz <- matrix(cn[,5] / denom2, ncol = fit$ntrans) if (any(cmap != seq(along=cmap))) { hazard <- hazard[, cmap] varhaz <- varhaz[, cmap] } # Expand the result, one "hazard set" for each row of x2 nx2 <- nrow(x2) h2 <- array(0, dim=c(nrow(hazard), nx2, ncol(hazard))) if (se.fit) v2 <- h2 S <- matrix(0, nrow(hazard), nstate) S2 <- array(0, dim=c(nrow(hazard), nx2, nstate)) H <- matrix(0, nstate, nstate) for (i in 1:nx2) { h2[,i,] <- apply(hazard %*% diag(risk2[i,]), 2, cumsum) if (se.fit) { d1 <- fit$xbar - rep(x[i,], each=nrow(fit$xbar)) d2 <- apply(d1*hazard, 2, cumsum) d3 <- rowSums((d2%*% vmat) * d2) # v2[jj,] <- (apply(varhaz[jj,],2, cumsum) + d3) * (risk2[i])^2 } S[1,] <- p0 for (j in 2:ntime) { H[,] <- 0.0 H[hfill] <- hazard[j,] *risk2[i,] if (stype==1) { diag(H) <- pmin(0, 1 + diag(H)- rowSums(H)) S[j,] <- drop(S[j-1,] %*% H) } else { diag(H) <- diag(H) - rowSums(H) S[j,] <- as.vector(S[j-1,] %*% expm(H)) # dgeMatrix issue } } S2[,i,] <- S } rval <- list(time=utime, xgrp=rep(1:nx2, each=nrow(hazard)), pstate=S2, cumhaz=h2) if (se.fit) rval$varhaz <- v2 rval } @ \section{The Fine-Gray model} For competing risks with ending states 1, 2, \ldots $k$, the Fine-Gray approach turns these into a set of simple 2-state Cox models: \begin{itemize} \item (not yet in state 1) $\longrightarrow$ state 1 \item (not yet in state 2) $\longrightarrow$ state 2 \item \ldots \end{itemize} Each of these is now a simple Cox model, assuming that we are willing to make a proportional hazards assumption. There is one added complication: when estimating the first model, one wants to use the data set that would have occured if the subjects being followed for state 1 had not had an artificial censoring, that is, had continued to be followed for event 1 even after event 2 occured. Sometimes this can be filled in directly, e.g., if we knew the enrollment dates for each subject along with the date that follow-up for the study was terminated, and there was no lost to follow-up (only administrative censoring.) An example is the mgus2 data set, where follow-up for death continued after the occurence of plasma cell malignancy. In practice what is done is to estimate the overall censoring distribution and give subjects artificial follow-up. The function below creates a data set that can then be used with coxph. <>= finegray <- function(formula, data, weights, subset, na.action= na.pass, etype, prefix="fg", count="", id, timefix=TRUE) { Call <- match.call() indx <- match(c("formula", "data", "weights", "subset", "id"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") temp <- Call[c(1,indx)] # only keep the arguments we wanted temp$na.action <- na.action temp[[1L]] <- quote(stats::model.frame) # change the function called special <- c("strata", "cluster") temp$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) mf <- eval(temp, parent.frame()) if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) Y <- model.extract(mf, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") type <- attr(Y, "type") if (type!='mright' && type!='mcounting') stop("Fine-Gray model requires a multi-state survival") nY <- ncol(Y) states <- attr(Y, "states") if (timefix) Y <- aeqSurv(Y) strats <- attr(Terms, "specials")$strata if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata <- mf[[stemp$vars]] else strata <- survival::strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.numeric(strata) mf[stemp$vars] <- NULL } else istrat <- rep(1, nrow(mf)) id <- model.extract(mf, "id") if (!is.null(id)) mf["(id)"] <- NULL # don't leave it in result user.weights <- model.weights(mf) if (is.null(user.weights)) user.weights <- rep(1.0, nrow(mf)) cluster<- attr(Terms, "specials")$cluster if (length(cluster)) { stop("a cluster() term is not valid") } # If there is start-stop data, then there needs to be an id # also check that this is indeed a competing risks form of data. # Mark the first and last obs of each subject, as we need it later. # Observations may not be in time order within a subject delay <- FALSE # is there delayed entry? if (type=="mcounting") { if (is.null(id)) stop("(start, stop] data requires a subject id") else { index <- order(id, Y[,2]) # by time within id sorty <- Y[index,] first <- which(!duplicated(id[index])) last <- c(first[-1] -1, length(id)) if (any(sorty[-last, 3] != 0)) stop("a subject has a transition before their last time point") delta <- c(sorty[-1,1], 0) - sorty[,2] if (any(delta[-last] !=0)) stop("a subject has gaps in time") if (any(Y[first,1] > min(Y[,2]))) delay <- TRUE temp1 <- temp2 <- rep(FALSE, nrow(mf)) temp1[index[first]] <- TRUE temp2[index[last]] <- TRUE first <- temp1 #used later last <- temp2 } } else last <- rep(TRUE, nrow(mf)) if (missing(etype)) enum <- 1 #generate a data set for which endpoint? else { index <- match(etype, states) if (any(is.na(index))) stop ("etype argument has a state that is not in the data") enum <- index[1] if (length(index) > 1) warning("only the first endpoint was used") } # make sure count, if present is syntactically valid if (!missing(count)) count <- make.names(count) else count <- NULL oname <- paste0(prefix, c("start", "stop", "status", "wt")) <> <> } @ The censoring and truncation distributions are \begin{align*} G(t) &= \prod_{s \le t} \left(1 - \frac{c(s)}{r_c(s)} \right ) \\ H(t) &= \prod_{s > t} \left(1 - \frac{e(s)}{r_e(s)} \right ) \end{align*} where $c(t)$ is the number of subjects censored at time $t$, $e(t)$ is the number who enter at time $t$, and $r$ is the size of the relevant risk set. These are equations 5 and 6 of Geskus (Biometrics 2011). Note that both $G$ and $H$ are right continuous functions. For tied times the assumption is that event $<$ censor $<$ entry. For $G$ we use a modified Kapan-Meier where any events at censoring time $t$ are removed from the risk set just before time $t$. To avoid issues with times that are nearly identical (but not quite) we first convert to an integer time scale, and then move events backwards by .2. Since this is a competing risks data set any non-censored observation for a subject is their last, so this time shift does not goof up the alignment of start, stop data. For the truncation distribution it is the subjects with times at or before time $t$ that are in the risk set $r_e(t)$ for truncation at (or before) $t$. $H$ can be calculated using an ordinary KM on the reverse time scale. When there is (start,stop) data and hence multiple observations per subject, calculation of $G$ needs use a status that is 1 only for the \emph{last} row row of a censored subject. <>= find2 <- function(x, vec, left.open=FALSE, ...) { if (!left.open) findInterval(x, vec, ...) else { # the left.open arg is a recent addition to findInterval, and I want # this to work in 3.2.0 (my employer's default). In another cycle or # so we can drop this workaround and call findInterval directly # length(vec) - findInterval(-x, rev(-vec), ...) } } if (ncol(Y) ==2) { temp <- min(Y[,1], na.rm=TRUE) if (temp >0) zero <- 0 else zero <- 2*temp -1 # a value less than any observed y Y <- cbind(zero, Y) # add a start column } utime <- sort(unique(c(Y[,1:2]))) # all the unique times newtime <- matrix(findInterval(Y[,1:2], utime), ncol=2) status <- Y[,3] newtime[status !=0, 2] <- newtime[status !=0,2] - .2 Gsurv <- survfit(Surv(newtime[,1], newtime[,2], last & status==0) ~ istrat, se.fit=FALSE) @ The calculation for $H$ is also done on the integer scale. Otherwise we will someday be clobbered by times that differ only in round off error. The only nuisance is the status variable, which is 1 for the first row of each subject, since the data set may not be in sorted order. The offset of .2 used above is not needed, but due to the underlying integer scale it doesn't harm anything either. Reversal of the time scale leads to a left continuous function which we fix up later. <>= if (delay) Hsurv <- survfit(Surv(-newtime[,2], -newtime[,1], first) ~ istrat, se.fit =FALSE) @ Consider the following data set: \begin{itemize} \item Events of type 1 at times 1, 4, 5, 10 \item Events of type 2 at times 2, 5, 8 \item Censors at times 3, 4, 4, 6, 8, 9, 12 \end{itemize} The censoring distribution will have the following shape: \begin{center} \begin{tabular}{rcccccc} interval& (0,3]& (3,4] & (4,6] & (6,8] & (8,12] & 12+\\ C(t) & 1 &11/12 & (11/12)(8/10) & (11/15)(5/6)& (11/15)(5/6)(3/4)& 0 \\ & 1.0000 & .9167 & .7333 & .6111 & .4583 \end{tabular} \end{center} Notice that the event at time 4 is not counted in the risk set at time 4, so the jump is 8/10 rather than 8/11. Likewise at time 8 the risk set has 4 instead of 5: censors occur after deaths. When creating the data set for event type 1, subjects who have an event of type 2 get extended out using this censoring distribution. The event at time 2, for instance, appears as a censored observation with time dependent weights of $G(t)$. The type 2 event at time 5 has weight 1 up through time 5, then weights of $G(t)/C(5)$ for the remainder. This means a weight of 1 over (5,6], 5/6 over (6,8], (5/6)(3/4) over (9,12] and etc. Though there are 6 unique censoring intervals, in the created data set for event type 1 we only need to know case weights at times 1, 4, 5, and 10; the information from the (4,6] and (6,8] intervals will never be used. To create a minimal sized data set we can leave those intervals out. $G(t)$ only drops to zero if the largest time(s) are censored observations, so by definition no events lie in an interval with $G(t)=0$. If there is delayed entry, then the set of intervals is larger due to a merge with the jumps in Hsurv. The truncation distribution Hsurv ($H$) will become 0 at the first entry time; it is a left continuous function whereas Gsurv ($G$) is right continuous. We can slide $H$ one point to the left and merge them at the jump points. <>= status <- Y[, 3] # Do computations separately for each stratum stratfun <- function(i) { keep <- (istrat ==i) times <- sort(unique(Y[keep & status == enum, 2])) #unique event times if (length(times)==0) return(NULL) #no events in this stratum tdata <- mf[keep, -1, drop=FALSE] maxtime <- max(Y[keep, 2]) if (dim(Gsurv)==1) { # the phrase Gsurv[1] gives a warning when there is only one curve # keep only the event times, and convert back to the original time units if (delay) { dtime <- rev(-Hsurv$time[Hsurv$n.event > 0]) dprob <- c(rev(Hsurv$surv[Hsurv$n.event > 0])[-1], 1) ctime <- Gsurv$time[Gsurv$n.event > 0] cprob <- c(1, Gsurv$surv[Gsurv$n.event > 0]) temp <- sort(unique(c(dtime, ctime))) # these will all be integers index1 <- findInterval(temp, dtime) index2 <- findInterval(temp, ctime) ctime <- utime[temp] cprob <- dprob[index1] * cprob[index2+1] # G(t)H(t), eq 11 Geskus } else { ctime <- utime[Gsurv$time[Gsurv$n.event > 0]] cprob <- Gsurv$surv[Gsurv$n.event > 0] } } else { Gtemp <- Gsurv[i] if (delay) { Htemp <- Hsurv[i] dtime <- rev(-Htemp$time[Htemp$n.event > 0]) dprob <- c(rev(Htemp$surv[Htemp$n.event > 0])[-1], 1) ctime <- Gtemp$time[Gtemp$n.event > 0] cprob <- c(1, Gtemp$surv[Gtemp$n.event > 0]) temp <- sort(unique(c(dtime, ctime))) # these will all be integers index1 <- findInterval(temp, dtime) index2 <- findInterval(temp, ctime) ctime <- utime[temp] cprob <- dprob[index1] * cprob[index2+1] # G(t)H(t), eq 11 Geskus } else { ctime <- utime[Gtemp$time[Gtemp$n.event > 0]] cprob <- Gtemp$surv[Gtemp$n.event > 0] } } ct2 <- c(ctime, maxtime) cp2 <- c(1.0, cprob) index <- find2(times, ct2, left.open=TRUE) index <- sort(unique(index)) # the intervals that were actually seen # times before the first ctime get index 0, those between 1 and 2 get 1 ckeep <- rep(FALSE, length(ct2)) ckeep[index] <- TRUE expand <- (Y[keep, 3] !=0 & Y[keep,3] != enum & last[keep]) #which rows to expand split <- .Call(Cfinegray, Y[keep,1], Y[keep,2], ct2, cp2, expand, c(TRUE, ckeep)) tdata <- tdata[split$row,,drop=FALSE] tstat <- ifelse((status[keep])[split$row]== enum, 1, 0) tdata[[oname[1]]] <- split$start tdata[[oname[2]]] <- split$end tdata[[oname[3]]] <- tstat tdata[[oname[4]]] <- split$wt * user.weights[split$row] if (!is.null(count)) tdata[[count]] <- split$add tdata } if (max(istrat) ==1) result <- stratfun(1) else { tlist <- lapply(1:max(istrat), stratfun) result <- do.call("rbind", tlist) } rownames(result) <- NULL #remove all the odd labels that R adds attr(result, "event") <- states[enum] result @ \subsection{The predict method} The [[predict.coxph]] function produces various types of predicted values from a Cox model. The arguments are \begin{description} \item [obejct] The result of a call to [[coxph]]. \item [newdata] Optionally, a new data set for which prediction is desired. If this is absent predictions are for the observations used fit the model. \item[type] The type of prediction \begin{itemize} \item lp = the linear predictor for each observation \item risk = the risk score $exp(lp)$ for each observation \item expected = the expected number of events \item survival = predicted survival = exp(-expected) \item terms = a matrix with one row per subject and one column for each term in the model. \end{itemize} \item[se.fit] Whether or not to return standard errors of the predictions. \item[na.action] What to do with missing values \emph{if} there is new data. \item[terms] The terms that are desired. This option is almost never used, so rarely in fact that it's hard to justify keeping it. \item[collapse] An optional vector of subject identifiers, over which to sum or `collapse' the results \item[reference] the reference context for centering the results \item[\ldots] All predict methods need to have a \ldots argument; we make no use of it however. \end{description} %\subsection{Setup} The first task of the routine is to reconsruct necessary data elements that were not saved as a part of the [[coxph]] fit. We will need the following components: \begin{itemize} \item for type=`expected' residuals we need the orignal survival y. This %'` is saved in coxph objects by default so will only need to be fetched in the highly unusual case that a user specfied [[y=FALSE]] in the orignal call. \item for any call with either newdata, standard errors, or type='terms' the original $X$ matrix, weights, strata, and offset. When checking for the existence of a saved $X$ matrix we can't %' use [[object$x]] since that will also match the [[xlevels]] component. \item the new data matrix, if any \end{itemize} <>= predict.coxph <- function(object, newdata, type=c("lp", "risk", "expected", "terms", "survival"), se.fit=FALSE, na.action=na.pass, terms=names(object$assign), collapse, reference=c("strata", "sample"), ...) { <> <> if (type=="expected") { <> } else { <> <> } <> } @ We start of course with basic argument checking. Then retrieve the model parameters: does it have a strata statement, offset, etc. The [[Terms2]] object is a model statement without the strata or cluster terms, appropriate for recreating the matrix of covariates $X$. For type=expected the response variable needs to be kept, if not we remove it as well since the user's newdata might not contain one. %' The type= survival is treated the same as type expected. <>= if (!inherits(object, 'coxph')) stop("Primary argument much be a coxph object") Call <- match.call() type <-match.arg(type) if (type=="survival") { survival <- TRUE type <- "expected" #this is to stop lots of "or" statements } else survival <- FALSE n <- object$n Terms <- object$terms if (!missing(terms)) { if (is.numeric(terms)) { if (any(terms != floor(terms) | terms > length(object$assign) | terms <1)) stop("Invalid terms argument") } else if (any(is.na(match(terms, names(object$assign))))) stop("a name given in the terms argument not found in the model") } # I will never need the cluster argument, if present delete it. # Terms2 are terms I need for the newdata (if present), y is only # needed there if type == 'expected' if (length(attr(Terms, 'specials')$cluster)) { temp <- untangle.specials(Terms, 'cluster', 1) Terms <- object$terms[-temp$terms] } else Terms <- object$terms if (type != 'expected') Terms2 <- delete.response(Terms) else Terms2 <- Terms has.strata <- !is.null(attr(Terms, 'specials')$strata) has.offset <- !is.null(attr(Terms, 'offset')) has.weights <- any(names(object$call) == 'weights') na.action.used <- object$na.action n <- length(object$residuals) if (missing(reference) && type=="terms") reference <- "sample" else reference <- match.arg(reference) @ The next task of the routine is to reconsruct necessary data elements that were not saved as a part of the [[coxph]] fit. We will need the following components: \begin{itemize} \item for type=`expected' residuals we need the orignal survival y. This %'` is saved in coxph objects by default so will only need to be fetched in the highly unusual case that a user specfied [[y=FALSE]] in the orignal call. We also need the strata in this case. Grabbing it is the same amount of work as grabbing X, so gets lumped with that case in the code. \item for any call with either standard errors, reference strata, or type=`terms' the original $X$ matrix, weights, strata, and offset. When checking for the existence of a saved $X$ matrix we can't %' use [[object$x]] since that will also match the [[xlevels]] component. \item the new data matrix, if present, along with offset and strata. \end{itemize} For the case that none of the above are needed, we can use the [[linear.predictors]] component of the fit. The variable [[use.x]] signals this case, which takes up almost none of the code but is common in usage. The check below that nrow(mf)==n is to avoid data sets that change under our feet. A fit was based on data set ``x'', and when we reconstruct the data frame it is a different size! This means someone changed the data between the model fit and the extraction of residuals. One other non-obvious case is that coxph treats the model [[age:strata(grp)]] as though it were [[age:strata(grp) + strata(grp)]]. The untangle.specials function will return [[vars= strata(grp), terms=integer(0)]]; the first shows a strata to extract and the second that there is nothing to remove from the terms structure. <>= have.mf <- FALSE if (type == "expected") { y <- object[['y']] if (is.null(y)) { # very rare case mf <- stats::model.frame(object) y <- model.extract(mf, 'response') have.mf <- TRUE #for the logic a few lines below, avoid double work } } # This will be needed if there are strata, and is cheap to compute strat.term <- untangle.specials(Terms, "strata") if (se.fit || type=='terms' || (!missing(newdata) && type=="expected") || (has.strata && (reference=="strata") || type=="expected")) { use.x <- TRUE if (is.null(object[['x']]) || has.weights || has.offset || (has.strata && is.null(object$strata))) { # I need the original model frame if (!have.mf) mf <- stats::model.frame(object) if (nrow(mf) != n) stop("Data is not the same size as it was in the original fit") x <- model.matrix(object, data=mf) if (has.strata) { if (!is.null(object$strata)) oldstrat <- object$strata else { if (length(strat.term$vars)==1) oldstrat <- mf[[strat.term$vars]] else oldstrat <- strata(mf[,strat.term$vars], shortlabel=TRUE) } } else oldstrat <- rep(0L, n) weights <- model.weights(mf) if (is.null(weights)) weights <- rep(1.0, n) offset <- model.offset(mf) if (is.null(offset)) offset <- 0 } else { x <- object[['x']] if (has.strata) oldstrat <- object$strata else oldstrat <- rep(0L, n) weights <- rep(1.,n) offset <- 0 } } else { # I won't need strata in this case either if (has.strata) { stemp <- untangle.specials(Terms, 'strata', 1) Terms2 <- Terms2[-stemp$terms] has.strata <- FALSE #remaining routine never needs to look } oldstrat <- rep(0L, n) offset <- 0 use.x <- FALSE } @ Now grab data from the new data set. We want to use model.frame processing, in order to correctly expand factors and such. We don't need weights, however, and don't want to make the user include them in their new dataset. Thus we build the call up the way it is done in coxph itself, but only keeping the newdata argument. Note that terms2 may have fewer variables than the original model: no cluster and if type!= expected no response. If the original model had a strata, but newdata does not, we need to remove the strata from xlev to stop a spurious warning message. <>= if (!missing(newdata)) { use.x <- TRUE #we do use an X matrix later tcall <- Call[c(1, match(c("newdata", "collapse"), names(Call), nomatch=0))] names(tcall)[2] <- 'data' #rename newdata to data tcall$formula <- Terms2 #version with no response tcall$na.action <- na.action #always present, since there is a default tcall[[1L]] <- quote(stats::model.frame) # change the function called if (!is.null(attr(Terms, "specials")$strata) && !has.strata) { temp.lev <- object$xlevels temp.lev[[strat.term$vars]] <- NULL tcall$xlev <- temp.lev } else tcall$xlev <- object$xlevels mf2 <- eval(tcall, parent.frame()) collapse <- model.extract(mf2, "collapse") n2 <- nrow(mf2) if (has.strata) { if (length(strat.term$vars)==1) newstrat <- mf2[[strat.term$vars]] else newstrat <- strata(mf2[,strat.term$vars], shortlabel=TRUE) if (any(is.na(match(newstrat, oldstrat)))) stop("New data has a strata not found in the original model") else newstrat <- factor(newstrat, levels=levels(oldstrat)) #give it all if (length(strat.term$terms)) newx <- model.matrix(Terms2[-strat.term$terms], mf2, contr=object$contrasts)[,-1,drop=FALSE] else newx <- model.matrix(Terms2, mf2, contr=object$contrasts)[,-1,drop=FALSE] } else { newx <- model.matrix(Terms2, mf2, contr=object$contrasts)[,-1,drop=FALSE] newstrat <- rep(0L, nrow(mf2)) } newoffset <- model.offset(mf2) if (is.null(newoffset)) newoffset <- 0 if (type== 'expected') { newy <- model.response(mf2) if (attr(newy, 'type') != attr(y, 'type')) stop("New data has a different survival type than the model") } na.action.used <- attr(mf2, 'na.action') } else n2 <- n @ %\subsection{Expected hazard} When we do not need standard errors the computation of expected hazard is very simple since the martingale residual is defined as status - expected. The 0/1 status is saved as the last column of $y$. <>= if (missing(newdata)) pred <- y[,ncol(y)] - object$residuals if (!missing(newdata) || se.fit) { <> } if (survival) { #it actually was type= survival, do one more step if (se.fit) se <- se * exp(-pred) pred <- exp(-pred) # probablility of being in state 0 } @ The more general case makes use of the [agsurv] routine to calculate a survival curve for each strata. The routine is defined in the section on individual Cox survival curves. The code here closely matches that. The routine only returns values at the death times, so we need approx to get a complete index. One non-obvious, but careful choice is to use the residuals for the predicted value instead of the compuation below, whenever operating on the original data set. This is a consequence of the Efron approx. When someone in a new data set has exactly the same time as one of the death times in the original data set, the code below implicitly makes them the ``last'' death in the set of tied times. The Efron approx puts a tie somewhere in the middle of the pack. This is way too hard to work out in the code below, but thankfully the original Cox model already did it. However, it does mean that a different answer will arise if you set newdata = the original coxph data set. Standard errors have the same issue, but 1. they are hardly used and 2. the original coxph doesn't do that calculation. So we do what's easiest. <>= ustrata <- unique(oldstrat) risk <- exp(object$linear.predictors) x <- x - rep(object$means, each=nrow(x)) #subtract from each column if (missing(newdata)) #se.fit must be true se <- double(n) else { pred <- se <- double(nrow(mf2)) newx <- newx - rep(object$means, each=nrow(newx)) newrisk <- c(exp(newx %*% object$coef) + newoffset) } survtype<- ifelse(object$method=='efron', 3,2) for (i in ustrata) { indx <- which(oldstrat == i) afit <- agsurv(y[indx,,drop=F], x[indx,,drop=F], weights[indx], risk[indx], survtype, survtype) afit.n <- length(afit$time) if (missing(newdata)) { # In this case we need se.fit, nothing else j1 <- approx(afit$time, 1:afit.n, y[indx,1], method='constant', f=0, yleft=0, yright=afit.n)$y chaz <- c(0, afit$cumhaz)[j1 +1] varh <- c(0, cumsum(afit$varhaz))[j1 +1] xbar <- rbind(0, afit$xbar)[j1+1,,drop=F] if (ncol(y)==2) { dt <- (chaz * x[indx,]) - xbar se[indx] <- sqrt(varh + rowSums((dt %*% object$var) *dt)) * risk[indx] } else { j2 <- approx(afit$time, 1:afit.n, y[indx,2], method='constant', f=0, yleft=0, yright=afit.n)$y chaz2 <- c(0, afit$cumhaz)[j2 +1] varh2 <- c(0, cumsum(afit$varhaz))[j2 +1] xbar2 <- rbind(0, afit$xbar)[j2+1,,drop=F] dt <- (chaz * x[indx,]) - xbar v1 <- varh + rowSums((dt %*% object$var) *dt) dt2 <- (chaz2 * x[indx,]) - xbar2 v2 <- varh2 + rowSums((dt2 %*% object$var) *dt2) se[indx] <- sqrt(v2-v1)* risk[indx] } } else { #there is new data use.x <- TRUE indx2 <- which(newstrat == i) j1 <- approx(afit$time, 1:afit.n, newy[indx2,1], method='constant', f=0, yleft=0, yright=afit.n)$y chaz <-c(0, afit$cumhaz)[j1+1] pred[indx2] <- chaz * newrisk[indx2] if (se.fit) { varh <- c(0, cumsum(afit$varhaz))[j1+1] xbar <- rbind(0, afit$xbar)[j1+1,,drop=F] } if (ncol(y)==2) { if (se.fit) { dt <- (chaz * newx[indx2,]) - xbar se[indx2] <- sqrt(varh + rowSums((dt %*% object$var) *dt)) * newrisk[indx2] } } else { j2 <- approx(afit$time, 1:afit.n, newy[indx2,2], method='constant', f=0, yleft=0, yright=afit.n)$y chaz2 <- approx(-afit$time, afit$cumhaz, -newy[indx2,2], method="constant", rule=2, f=0)$y chaz2 <-c(0, afit$cumhaz)[j2+1] pred[indx2] <- (chaz2 - chaz) * newrisk[indx2] if (se.fit) { varh2 <- c(0, cumsum(afit$varhaz))[j1+1] xbar2 <- rbind(0, afit$xbar)[j1+1,,drop=F] dt <- (chaz * newx[indx2,]) - xbar dt2 <- (chaz2 * newx[indx2,]) - xbar2 v2 <- varh2 + rowSums((dt2 %*% object$var) *dt2) v1 <- varh + rowSums((dt %*% object$var) *dt) se[indx2] <- sqrt(v2-v1)* risk[indx2] } } } } @ %\subsection{Linear predictor, risk, and terms} For these three options what is returned is a \emph{relative} prediction which compares each observation to the average for the data set. Partly this is practical. Say for instance that a treatment covariate was coded as 0=control and 1=treatment. If the model were refit using a new coding of 3=control 4=treatment, the results of the Cox model would be exactly the same with respect to coefficients, variance, tests, etc. The raw linear predictor $X\beta$ however would change, increasing by a value of $3\beta$. The relative predictor \begin{equation} \eta_i = X_i\beta - (1/n)\sum_j X_j\beta \label{eq:eta} \end{equation} will stay the same. The second reason for doing this is that the Cox model is a relative risks model rather than an absolute risks model, and thus relative predictions are almost certainly what the user was thinking of. When the fit was for a stratified Cox model more care is needed. For instance assume that we had a fit that was stratified by sex with covaritate $x$, and a second data set were created where for the females $x$ is replaced by $x+3$. The Cox model results will be unchanged for the two models, but the `normalized' linear predictors $(x - \overline x)'\beta$ %` will not be the same. This reflects a more fundamental issue that the for a stratified Cox model relative risks are well defined only \emph{within} a stratum, i.e. for subject pairs that share a common baseline hazard. The example above is artificial, but the problem arises naturally whenever the model includes a strata by covariate interaction. So for a stratified Cox model the predictions should be forced to sum to zero within each stratum, or equivalently be made relative to the weighted mean of the stratum. Unfortunately, this important issue was not realized until late in 2009 when a puzzling query was sent to the author involving the results from such an interaction. Note that this issue did not arise with type='expected', which has a natural scaling. An offset variable, if specified, is treated like any other covariate with respect to centering. The logic for this choice is not as compelling, but it seemed the best that I could do. Note that offsets play no role whatever in predicted terms, only in the lp and risk. Start with the simple ones <>= if (is.null(object$coefficients)) coef<-numeric(0) else { # Replace any NA coefs with 0, to stop NA in the linear predictor coef <- ifelse(is.na(object$coefficients), 0, object$coefficients) } if (missing(newdata)) { offset <- offset - mean(offset) if (has.strata && reference=="strata") { # We can't use as.integer(oldstrat) as an index, if oldstrat is # a factor variable with unrepresented levels as.integer could # give 1,2,5 for instance. xmeans <- rowsum(x*weights, oldstrat)/c(rowsum(weights, oldstrat)) newx <- x - xmeans[match(oldstrat,row.names(xmeans)),] } else if (use.x) newx <- x - rep(object$means, each=nrow(x)) } else { offset <- newoffset - mean(offset) if (has.strata && reference=="strata") { xmeans <- rowsum(x*weights, oldstrat)/c(rowsum(weights, oldstrat)) newx <- newx - xmeans[match(newstrat, row.names(xmeans)),] } else newx <- newx - rep(object$means, each=nrow(newx)) } if (type=='lp' || type=='risk') { if (use.x) pred <- drop(newx %*% coef) + offset else pred <- object$linear.predictors if (se.fit) se <- sqrt(rowSums((newx %*% object$var) *newx)) if (type=='risk') { pred <- exp(pred) if (se.fit) se <- se * sqrt(pred) # standard Taylor series approx } } @ The type=terms residuals are a bit more work. In Splus this code used the Build.terms function, which was essentially the code from predict.lm extracted out as a separate function. As of March 2010 (today) a check of the Splus function and the R code for predict.lm revealed no important differences. A lot of the bookkeeping in both is to work around any possible NA coefficients resulting from a singularity. The basic formula is to \begin{enumerate} \item If the model has an intercept, then sweep the column means out of the X matrix. We've already done this. \item For each term separately, get the list of coefficients that belong to that term; call this list [[tt]]. \item Restrict $X$, $\beta$ and $V$ (the variance matrix) to that subset, then the linear predictor is $X\beta$ with variance matrix $X V X'$. The standard errors are the square root of the diagonal of this latter matrix. This can be computed, as colSums((X %*% V) * X)). \end{enumerate} Note that the [[assign]] component of a coxph object is the same as that found in Splus models (a list), most R models retain a numeric vector which contains the same information but it is not as easily used. The first first part of predict.lm in R rebuilds the list form as its [[asgn]] variable. I can skip this part since it is already done. <>= else if (type=='terms') { asgn <- object$assign nterms<-length(asgn) pred<-matrix(ncol=nterms,nrow=NROW(newx)) dimnames(pred) <- list(rownames(newx), names(asgn)) if (se.fit) se <- pred for (i in 1:nterms) { tt <- asgn[[i]] tt <- tt[!is.na(object$coefficients[tt])] xtt <- newx[,tt, drop=F] pred[,i] <- xtt %*% object$coefficient[tt] if (se.fit) se[,i] <- sqrt(rowSums((xtt %*% object$var[tt,tt]) *xtt)) } pred <- pred[,terms, drop=F] if (se.fit) se <- se[,terms, drop=F] attr(pred, 'constant') <- sum(object$coefficients*object$means, na.rm=T) } @ To finish up we need to first expand out any missings in the result based on the na.action, and optionally collapse the results within a subject. What should we do about the standard errors when collapse is specified? We assume that the individual pieces are independent and thus var(sum) = sum(variances). The statistical justification of this is quite solid for the linear predictor, risk and terms type of prediction due to independent increments in a martingale. For expecteds the individual terms are positively correlated so the se will be too small. One solution would be to refuse to return an se in this case, but the the bias should usually be small, and besides it would be unkind to the user. Prediction of type='terms' is expected to always return a matrix, or the R termplot() function gets unhappy. <>= if (type != 'terms') { pred <- drop(pred) if (se.fit) se <- drop(se) } if (!is.null(na.action.used)) { pred <- napredict(na.action.used, pred) if (is.matrix(pred)) n <- nrow(pred) else n <- length(pred) if(se.fit) se <- napredict(na.action.used, se) } if (!missing(collapse) && !is.null(collapse)) { if (length(collapse) != n2) stop("Collapse vector is the wrong length") pred <- rowsum(pred, collapse) # in R, rowsum is a matrix, always if (se.fit) se <- sqrt(rowsum(se^2, collapse)) if (type != 'terms') { pred <- drop(pred) if (se.fit) se <- drop(se) } } if (se.fit) list(fit=pred, se.fit=se) else pred @ \section{Concordance} \subsection{Main routine} The concordance statistic is the most used measure of goodness-of-fit in survival models. In general let $y_i$ and $x_i$ be observed and predicted data values. A pair of obervations $i$, $j$ is considered condordant if either $y_i > y_j, x_i > x_j$ or $y_i < y_j, x_i < x_j$. The concordance is the fraction of concordant pairs. For a Cox model remember that the predicted survival $\hat y$ is longer if the risk score $X\beta$ is lower, so we have to flip the definition and count ``discordant'' pairs, this is done at the end of the routine. One wrinkle is what to do with ties in either $y$ or $x$. Such pairs can be ignored in the count (treated as incomparable), treated as discordant, or given a score of 1/2. \begin{itemize} \item Kendall's $\tau$-a scores ties as 0. \item Kendall's $\tau$-b and the Goodman-Kruskal $\gamma$ ignore ties in either $y$ or $x$. \item Somers' $d$ treats ties in $y$ as incomparable, pairs that are tied in $x$ (but not $y$) score as 1/2. The AUC from logistic regression is equal to Somers' $d$. \end{itemize} All three of the above range from -1 to 1, the concordance is $(d +1)/2$. For survival data any pairs which cannot be ranked with certainty are considered incomparable. For instance $y_i$ is censored at time 10 and $y_j$ is an event (or censor) at time 20. Subject $i$ may or may not survive longer than subject $j$. Note that if $y_i$ is censored at time 10 and $y_j$ is an event at time 10 then $y_i > y_j$. Observations that are in different strata are also incomparable, since the Cox model only compares within strata. The program creates 4 variables, which are the number of concordant pairs, discordant, tied on time, and tied on $x$ but not on time. The default concordance is based on the Somers'/AUC definition, but all 4 values are reported back so that a user can recreate Kendall's or Goodmans values if desired. Here is the main routine. <>= concordance <- function(object, ...) UseMethod("concordance") concordance.formula <- function(object, data, weights, subset, na.action, cluster, ymin, ymax, timewt=c("n", "S", "S/G", "n/G", "n/G2", "I"), influence=0, ranks=FALSE, reverse=FALSE, timefix=TRUE, keepstrata=10, ...) { Call <- match.call() # save a copy of of the call, as documentation timewt <- match.arg(timewt) if (missing(ymin)) ymin <- NULL if (missing(ymax)) ymax <- NULL index <- match(c("data", "weights", "subset", "na.action", "cluster"), names(Call), nomatch=0) temp <- Call[c(1, index)] temp[[1L]] <- quote(stats::model.frame) special <- c("strata", "cluster") temp$formula <- if(missing(data)) terms(object, special) else terms(object, special, data=data) mf <- eval(temp, parent.frame()) # model frame if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) Y <- model.response(mf) if (inherits(Y, "Surv")) { if (timefix) Y <- aeqSurv(Y) } else { if (is.factor(Y) && (is.ordered(Y) || length(levels(Y))==2)) Y <- Surv(as.numeric(Y)) else if (is.numeric(Y) && is.vector(Y)) Y <- Surv(Y) else stop("left hand side of the formula must be a numeric vector, survival object, or an orderable factor") if (timefix) Y <- aeqSurv(Y) } n <- nrow(Y) wt <- model.weights(mf) offset<- attr(Terms, "offset") if (length(offset)>0) stop("Offset terms not allowed") stemp <- untangle.specials(Terms, "strata") if (length(stemp$vars)) { if (length(stemp$vars)==1) strat <- mf[[stemp$vars]] else strat <- strata(mf[,stemp$vars], shortlabel=TRUE) Terms <- Terms[-stemp$terms] } else strat <- NULL # if "cluster" was an argument, use it, otherwise grab it from the model group <- model.extract(mf, "cluster") cluster<- attr(Terms, "specials")$cluster if (length(cluster)) { tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] if (any(ord>1)) stop ("Cluster can not be used in an interaction") cluster <- strata(mf[,tempc$vars], shortlabel=TRUE) #allow multiples Terms <- Terms[-tempc$terms] # toss it away } if (length(group)) cluster <- group x <- model.matrix(Terms, mf)[,-1, drop=FALSE] #remove the intercept if (ncol(x) > 1) stop("Only one predictor variable allowed") if (!is.null(ymin) & (length(ymin)> 1 || !is.numeric(ymin))) stop("ymin must be a single number") if (!is.null(ymax) & (length(ymax)> 1 || !is.numeric(ymax))) stop("ymax must be a single number") if (!is.logical(reverse)) stop ("the reverse argument must be TRUE/FALSE") fit <- concordancefit(Y, x, strat, wt, ymin, ymax, timewt, cluster, influence, ranks, reverse, keepstrata=keepstrata) na.action <- attr(mf, "na.action") if (length(na.action)) fit$na.action <- na.action fit$call <- Call class(fit) <- 'concordance' fit } print.concordance <- function(x, digits= max(1L, getOption("digits") - 3L), ...) { if(!is.null(cl <- x$call)) { cat("Call:\n") dput(cl) cat("\n") } omit <- x$na.action if(length(omit)) cat("n=", x$n, " (", naprint(omit), ")\n", sep = "") else cat("n=", x$n, "\n") if (length(x$concordance) > 1) { # result of a call with multiple fits tmat <- cbind(concordance= x$concordance, se=sqrt(diag(x$var))) print(round(tmat, digits=digits), ...) cat("\n") } else cat("Concordance= ", format(x$concordance, digits=digits), " se= ", format(sqrt(x$var), digits=digits), '\n', sep='') if (!is.matrix(x$count) || nrow(x$count < 11)) print(round(x$count,2)) invisible(x) } <> <> @ The concordancefit function is broken out separately, since it is called by all of the methods. It is also called directly by the the \code{coxph} routine. If $y$ is not a survival quantity, then all of the options for the \code{timewt} parameter lead to the same result. <>= concordancefit <- function(y, x, strata, weights, ymin=NULL, ymax=NULL, timewt=c("n", "S", "S/G", "n/G", "n/G2", "I"), cluster, influence=0, ranks=FALSE, reverse=FALSE, timefix=TRUE, keepstrata=10) { # The coxph program may occassionally fail, and this will kill the C # routine further below. So check for it. if (any(is.na(x)) || any(is.na(y))) return(NULL) timewt <- match.arg(timewt) # these should only occur if something other package calls this routine if (!is.Surv(y)) { if (is.factor(y) && (is.ordered(y) || length(levels(y))==2)) y <- Surv(as.numeric(y)) else if (is.numeric(y) && is.vector(y)) y <- Surv(y) else stop("left hand side of the formula must be a numeric vector, survival object, or an orderable factor") if (timefix) y <- aeqSurv(y) } n <- length(y) if (length(x) != n) stop("x and y are not the same length") if (missing(strata) || length(strata)==0) strata <- rep(1L, n) if (length(strata) != n) stop("y and strata are not the same length") if (missing(weights) || length(weights)==0) weights <- rep(1.0, n) else if (length(weights) != n) stop("y and weights are not the same length") type <- attr(y, "type") if (type %in% c("left", "interval")) stop("left or interval censored data is not supported") if (type %in% c("mright", "mcounting")) stop("multiple state survival is not supported") nstrat <- length(unique(strata)) if (!is.logical(keepstrata)) { if (!is.numeric(keepstrata)) stop("keepstrat argument must be logical or numeric") else keepstrata <- (nstrat <= keepstrata) } if (timewt %in% c("n", "I") && nstrat > 10 && !keepstrata) { # Special trickery for matched case-control data, where the # number of strata is huge, n per strata is small, and compute # time becomes excessive. Make the data all one strata, but over # disjoint time intervals stemp <- as.numeric(as.factor(strata)) -1 if (ncol(y) ==3) { delta <- 2+ max(y[,2]) - min(y[,1]) y[,1] <- y[,1] + stemp*delta y[,2] <- y[,2] + stemp*delta } else { delta <- max(y[,1]) +2 m1 <- rep(-1L, nrow(y)) y <- Surv(m1 + stemp*delta, y[,1] + stemp*delta, y[,2]) } strata <- rep(1L, n) nstrat <- 1 } # This routine is called once per stratum docount <- function(y, risk, wts, timeopt= 'n', timefix) { n <- length(risk) # this next line is mostly invoked in stratified logistic, where # only 1 event per stratum occurs. All time weightings are the same # don't waste time even if the user asked for something different if (sum(y[,ncol(y)]) <2) timeopt <- 'n' sfit <- survfit(y~1, weights=wts, se.fit=FALSE, timefix=timefix) etime <- sfit$time[sfit$n.event > 0] esurv <- sfit$surv[sfit$n.event > 0] if (length(etime)==0) { # the special case of a stratum with no events (it happens) # No need to do any more work return(list(count= rep(0.0, 6), influence=matrix(0.0, n, 5), resid=NULL)) } if (timeopt %in% c("S/G", "n/G", "n/G2")) { temp <- y temp[,ncol(temp)] <- 1- temp[,ncol(temp)] # switch event/censor gfit <- survfit(temp~1, weights=wts, se.fit=FALSE, timefix=timefix) # G has the exact same time values as S gsurv <- c(1, gfit$surv) # We want G(t-) gsurv <- gsurv[which(sfit$n.event > 0)] } npair <- (sfit$n.risk- sfit$n.event)[sfit$n.event>0] temp <- ifelse(esurv==0, 0, esurv/npair) # avoid 0/0 timewt <- switch(timeopt, "S" = sum(wts)*temp, "S/G" = sum(wts)* temp/ gsurv, "n" = rep(1.0, length(npair)), "n/G" = 1/gsurv, "n/G2"= 1/gsurv^2, "I" = rep(1.0, length(esurv)) ) if (!is.null(ymin)) timewt[etime < ymin] <- 0 if (!is.null(ymax)) timewt[etime > ymax] <- 0 timewt <- ifelse(is.finite(timewt), timewt, 0) # 0 at risk case # order the data: reverse time, censors before deaths if (ncol(y)==2) { sort.stop <- order(-y[,1], y[,2], risk) -1L } else { sort.stop <- order(-y[,2], y[,3], risk) -1L #order by endpoint sort.start <- order(-y[,1]) -1L } # match each prediction score to the unique set of scores # (to deal with ties) utemp <- match(risk, sort(unique(risk))) bindex <- btree(max(utemp))[utemp] storage.mode(y) <- "double" # just in case y is integer storage.mode(wts) <- "double" if (ncol(y) ==2) fit <- .Call(Cconcordance3, y, bindex, wts, rev(timewt), sort.stop, ranks) else fit <- .Call(Cconcordance4, y, bindex, wts, rev(timewt), sort.start, sort.stop, ranks) # The C routine gives back an influence matrix which has columns for # concordant, discordant, tied on x but not y, tied on y, and tied on # both x and y. dimnames(fit$influence) <- list(NULL, c("concordant", "discordant", "tied.x", "tied.y", "tied.xy")) if (ranks) { if (ncol(y)==2) dtime <- y[y[,2]==1, 1] else dtime <- y[y[,3]==1, 2] temp <- data.frame(time= sort(dtime), fit$resid) names(temp) <- c("time", "rank", "timewt", "casewt", "variance") fit$resid <- temp[temp[,3] > 0,] # don't return zeros } fit } if (nstrat < 2) { fit <- docount(y, x, weights, timewt, timefix=timefix) count2 <- fit$count[1:5] vcox <- fit$count[6] fit$count <- fit$count[1:5] imat <- fit$influence if (ranks) resid <- fit$resid } else { strata <- as.factor(strata) ustrat <- levels(strata)[table(strata) >0] #some strata may have 0 obs tfit <- lapply(ustrat, function(i) { keep <- which(strata== i) docount(y[keep,,drop=F], x[keep], weights[keep], timewt, timefix=timefix) }) temp <- t(sapply(tfit, function(x) x$count)) fit <- list(count = temp[,1:5]) count2 <- colSums(fit$count) if (!keepstrata) fit$count <- count2 vcox <- sum(temp[,6]) imat <- do.call("rbind", lapply(tfit, function(x) x$influence)) # put it back into data order index <- match(1:n, (1:n)[order(strata)]) imat <- imat[index,] if (ranks) { nr <- lapply(tfit, function(x) nrow(x$resid)) resid <- do.call("rbind", lapply(tfit, function(x) x$resid)) resid$strata <- rep(ustrat, nr) } } npair <- sum(count2[1:3]) somer <- (count2[1] - count2[2])/npair dfbeta <- weights*((imat[,1]- imat[,2])/npair - (somer/npair)* rowSums(imat[,1:3])) if (!missing(cluster) && length(cluster)>0) { dfbeta <- tapply(dfbeta, cluster, sum) dfbeta <- ifelse(is.na(dfbeta),0, dfbeta) # if cluster is a factor } var.somer <- sum(dfbeta^2) if (!keepstrata && is.matrix(fit$count)) fit$count <- colSums(fit$count) rval <- list(concordance = (somer+1)/2, count=fit$count, n=n, var = var.somer/4, cvar=vcox/(4*npair^2)) if (is.matrix(rval$count)) colnames(rval$count) <- c("concordant", "discordant", "tied.x", "tied.y", "tied.xy") else names(rval$count) <- c("concordant", "discordant", "tied.x", "tied.y", "tied.xy") if (influence == 1 || influence==3) rval$dfbeta <- dfbeta/2 if (influence >=2) rval$influence <- imat if (ranks) rval$ranks <- resid if (reverse) { # flip concordant/discordant values but not the labels rval$concordance <- 1- rval$concordance if (!is.null(rval$dfbeta)) rval$dfbeta <- -rval$dfbeta if (!is.null(rval$influence)) { rval$influence <- rval$influence[,c(2,1,3,4,5)] colnames(rval$influence) <- colnames(rval$influence)[c(2,1,3,4,5)] } if (is.matrix(rval$count)) { rval$count <- rval$count[, c(2,1,3,4,5)] colnames(rval$count) <- colnames(rval$count)[c(2,1,3,4,5)] } else { rval$count <- rval$count[c(2,1,3,4,5)] names(rval$count) <- names(rval$count)[c(2,1,3,4,5)] } if (ranks) rval$ranks$rank <- -rval$ranks$rank } rval } @ \subsection{Methods} Methods are defined for lm, survfit, and coxph objects. Detection of strata, weights, or clustering is the main nuisance, since those are not passed back as part of coxph or survreg objects. Glm and lm objects have the model frame by default, but that can be turned off by a user. This routine gets the X, Y, and other portions from the result of a particular fit object. <>= cord.getdata <- function(object, newdata=NULL, cluster=NULL, need.wt, timefix=TRUE) { # For coxph object, don't reconstruct the model frame unless we must. # This will occur if weights, strata, or cluster are needed, or if # there is a newdata argument. Of course, if the model frame is # already present, then use it! Terms <- terms(object) specials <- attr(Terms, "specials") if (!is.null(specials$tt)) stop("cannot yet handle models with tt terms") if (!is.null(newdata)) { mf <- model.frame(object, data=newdata) y <- model.response(mf) if (!is.Surv(y)) { if (is.numeric(y) && is.vector(y)) y <- Surv(y) else stop("left hand side of the formula must be a numeric vector or a survival object") } if (timefix) y <- aeqSurv(y) rval <- list(y= y, x= predict(object)) # the type of prediction does not matter, as long as it is a # monotone transform of the linear predictor } else { mf <- object$model y <- object$y if (is.null(y)) { if (is.null(mf)) mf <- model.frame(object) y <- model.response(mf) } if (!is.Surv(y)) { y <- Surv(y) if (timefix) y <- aeqSurv(y) } # survival models will have already called timefix x <- object$linear.predictors # used by most if (is.null(x)) x <- object$fitted.values # used by lm if (is.null(x)) {object$na.action <- NULL; x <- predict(object)} rval <- list(y = y, x= x) } if (need.wt) { if (is.null(mf)) mf <- model.frame(object) rval$weights <- model.weights(mf) } if (!is.null(specials$strata)) { if (is.null(mf)) mf <- model.frame(object) stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) rval$strata <- mf[[stemp$vars]] else rval$strata <- strata(mf[,stemp$vars], shortlabel=TRUE) } if (is.null(cluster)) { if (!is.null(specials$cluster)) { if (is.null(mf)) mf <- model.frame(object) tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] rval$cluster <- strata(mf[,tempc$vars], shortlabel=TRUE) } else if (!is.null(object$call$cluster)) { if (is.null(mf)) mf <- model.frame(object) rval$cluster <- model.extract(mf, "cluster") } } else rval$cluster <- cluster rval } @ The methods themselves, which are near clones of each other. There is one portion of these that is not very clear. I use the trick from nearly all calls to model.frame to deal with arguments that might be there or might not, such as newdata. Construct a call by hand by first subsetting this call as Call[...], then replace the first element with the name of what I really want to call -- quote(cord.work) --, add any other args I want, and finally execute it with eval(). The problem is that this doesn't work; the routine can't find cord.work since it is not an exported function. A simple call to cord.work is okay, since function calls inherit from the survival namespace, but cfun isn't a function call, it is an expression. There are 3 possible solutions \begin{itemize} \item bad: change eval(cfun, parent.frame()) to eval(cfun, evironment(coxph)), or any other function from the survival library which has namespace::survival as its environment. If the user calls concordance with ymax=zed, say, we might not be able to find 'zed'. Especially if they had called concordance from within a function. We need the call chain. \item okay: use cfun[[1]] <- cord.work, which makes a copy of the entire cord.work function and stuffs it in. The function isn't too long, so this is okay. If cord.work fails, the label on its error message won't be as nice since it won't have ``cord.work'' in it. \item speculative: make a function and invoke it. This creates a new function in the survival namespace, but evaluates it in the current context. Using parent.frame() is important so that I don't accidentally pick up 'nfit' say, if the user had used a variable of that name as one of their arguments. \\ temp <- function(){} \\ body(temp, environment(coxph)) <- cfun\\ rval <- eval(temp(), parent.frame()) \end{itemize} <>= concordance.lm <- function(object, ..., newdata, cluster, ymin, ymax, influence=0, ranks=FALSE, timefix=TRUE, keepstrata=10) { Call <- match.call() fits <- list(object, ...) nfit <- length(fits) fname <- as.character(Call) # like deparse(substitute()) but works for ... fname <- fname[1 + 1:nfit] notok <- sapply(fits, function(x) !inherits(x, "lm")) if (any(notok)) { # a common error is to mistype an arg, "ramk=TRUE" for instance, # and it ends up in the ... list # try for a nice message in this case: the name of the arg if it # has one other than "object", fname otherwise indx <- which(notok) id2 <- names(Call)[indx+1] temp <- ifelse(id2 %in% c("","object"), fname, id2) stop(temp, " argument is not an appropriate fit object") } cargs <- c("ymin", "ymax","influence", "ranks", "keepstrata") cfun <- Call[c(1, match(cargs, names(Call), nomatch=0))] cfun[[1]] <- cord.work # or quote(survival:::cord.work) cfun$fname <- fname if (missing(newdata)) newdata <- NULL if (missing(cluster)) cluster <- NULL need.wt <- any(sapply(fits, function(x) !is.null(x$call$weights))) cfun$data <- lapply(fits, cord.getdata, newdata=newdata, cluster=cluster, need.wt=need.wt, timefix=timefix) rval <- eval(cfun, parent.frame()) rval$call <- Call rval } concordance.survreg <- function(object, ..., newdata, cluster, ymin, ymax, timewt=c("n", "S", "S/G", "n/G", "n/G2", "I"), influence=0, ranks=FALSE, timefix=FALSE, keepstrata=10) { Call <- match.call() fits <- list(object, ...) nfit <- length(fits) fname <- as.character(Call) # like deparse(substitute()) but works for ... fname <- fname[1 + 1:nfit] notok <- sapply(fits, function(x) !inherits(x, "survreg")) if (any(notok)) { # a common error is to mistype an arg, "ramk=TRUE" for instance, # and it ends up in the ... list # try for a nice message in this case: the name of the arg if it # has one other than "object", fname otherwise indx <- which(notok) id2 <- names(Call)[indx+1] temp <- ifelse(id2 %in% c("","object"), fname, id2) stop(temp, " argument is not an appropriate fit object") } cargs <- c("ymin", "ymax","influence", "ranks", "timewt", "keepstrata") cfun <- Call[c(1, match(cargs, names(Call), nomatch=0))] cfun[[1]] <- cord.work cfun$fname <- fname if (missing(newdata)) newdata <- NULL if (missing(cluster)) cluster <- NULL need.wt <- any(sapply(fits, function(x) !is.null(x$call$weights))) cfun$data <- lapply(fits, cord.getdata, newdata=newdata, cluster=cluster, need.wt=need.wt, timefix=timefix) rval <- eval(cfun, parent.frame()) rval$call <- Call rval } concordance.coxph <- function(object, ..., newdata, cluster, ymin, ymax, timewt=c("n", "S", "S/G", "n/G", "n/G2", "I"), influence=0, ranks=FALSE, timefix=FALSE, keepstrata=10) { Call <- match.call() fits <- list(object, ...) nfit <- length(fits) fname <- as.character(Call) # like deparse(substitute()) but works for ... fname <- fname[1 + 1:nfit] notok <- sapply(fits, function(x) !inherits(x, "coxph")) if (any(notok)) { # a common error is to mistype an arg, "ramk=TRUE" for instance, # and it ends up in the ... list # try for a nice message in this case: the name of the arg if it # has one other than "object", fname otherwise indx <- which(notok) id2 <- names(Call)[indx+1] temp <- ifelse(id2 %in% c("","object"), fname, id2) stop(temp, " argument is not an appropriate fit object") } # the cargs trick is a nice one, but it only copies over arguments that # are present. If 'ranks' was not specified, the default of FALSE is # not set. We keep it in the arg list only to match the documentation. cargs <- c("ymin", "ymax","influence", "ranks", "timewt", "keepstrata") cfun <- Call[c(1, match(cargs, names(Call), nomatch=0))] cfun[[1]] <- cord.work # a copy of the function cfun$fname <- fname cfun$reverse <- TRUE if (missing(newdata)) newdata <- NULL if (missing(cluster)) cluster <- NULL need.wt <- any(sapply(fits, function(x) !is.null(x$call$weights))) cfun$data <- lapply(fits, cord.getdata, newdata=newdata, cluster=cluster, need.wt=need.wt, timefix=timefix) rval <- eval(cfun, parent.frame()) rval$call <- Call rval } @ The next routine does all of the actual work for a set of models. Note that because of the call-through trick (fargs) exactly and only those arguments that are passed in are passed through to concordancefit. Default argument values for that function are found there. The default value for inflence found below is used in this routine, so it is important that they match. <>= cord.work <- function(data, timewt, ymin, ymax, influence=0, ranks=FALSE, reverse, fname, keepstrata) { Call <- match.call() fargs <- c("timewt", "ymin", "ymax", "influence", "ranks", "reverse", "keepstrata") fcall <- Call[c(1, match(fargs, names(Call), nomatch=0))] fcall[[1L]] <- concordancefit nfit <- length(data) if (nfit==1) { dd <- data[[1]] fcall$y <- dd$y fcall$x <- dd$x fcall$strata <- dd$strata fcall$weights <- dd$weights fcall$cluster <- dd$cluster rval <- eval(fcall, parent.frame()) } else { # Check that all of the models have the identical Y and weights n <- length(data[[1]]$x) for (i in 2:nfit) { if (length(data[[i]]$x) != n) stop("all models must have the same sample size") if (!identical(data[[1]]$y, data[[i]]$y)) stop("all models must have the exact same response vector") if (!identical(data[[1]]$weights, data[[i]]$weights)) stop("all models must have the same weight vector") } if (influence==2) fcall$influence <-3 else fcall$influence <- 1 flist <- lapply(data, function(d) { temp <- fcall temp$y <- d$y temp$x <- d$x temp$strata <- d$strata temp$weights <- d$weights temp$cluster <- d$cluster eval(temp, parent.frame()) }) for (i in 2:nfit) { if (length(flist[[1]]$dfbeta) != length(flist[[i]]$dfbeta)) stop("models must have identical clustering") } count = do.call(rbind, lapply(flist, function(x) { if (is.matrix(x$count)) colSums(x$count) else x$count})) concordance <- sapply(flist, function(x) x$concordance) dfbeta <- sapply(flist, function(x) x$dfbeta) names(concordance) <- fname rownames(count) <- fname wt <- data[[1]]$weights if (is.null(wt)) vmat <- crossprod(dfbeta) else vmat <- t(wt * dfbeta) %*% dfbeta rval <- list(concordance=concordance, count=count, n=length(flist[[1]]$x), var=vmat, cvar= sapply(flist, function(x) x$cvar)) if (influence==1) rval$dfbeta <- dfbeta else if (influence ==2) { temp <- unlist(lapply(flist, function(x) x$influence)) rval$influence <- array(temp, dim=c(dim(flist[[1]]$influence), nfit)) } if (ranks) { temp <- lapply(flist, function(x) x$ranks) rdat <- data.frame(fit= rep(fname, sapply(temp, nrow)), do.call(rbind, temp)) row.names(rdat) <- NULL rval$ranks <- rdat } } class(rval) <- "concordance" rval } @ Last, a few miscellaneous methods <>= coef.concordance <- function(object, ...) object$concordance vcov.concordance <- function(object, ...) object$var @ The C routine returns an influence matrix with one row per subject $i$, and columns giving the partial with respect to $w_i$ for the number of concordant, discordant, tied on $x$ and ties on $y$ pairs. Somers' $d$ is $(C-D)/m$ where $m= C + D + T$ is the total number of %' comparable pairs, which does not count the tied-on-y column. For any given subject or cluster $k$ (for grouped jackknife) the IJ estimate of the variance is \begin{align*} V &\ \sum_k \left(\frac{\partial d}{\partial w_k}\right)^2 \\ \frac{\partial d}{\partial w_k} &= \frac{1}{m} \left[\frac{\partial{C-D}}{\partial w_k} - d \frac{\partial C+D+T}{\partial w_k} \right] \\ \end{align*} The C code looks a lot like a Cox model: walk forward through time, keep track of the risk sets, and add something to the totals at each death. What needs to be summed is the rank of the event subject's $x$ value, as compared to the value for all others at risk at this time point. For notational simplicity let $Y_j(t_i)$ be an indicator that subject $j$ is at risk at event time $t_i$, and $Y^*_j(t_i)$ the more restrictive one that subject $j$ is both at risk and not a tied event time. The values we want at time $t_i$ are \begin{align} C_i &= v_i \delta_i w_i \sum_j w_j Y^*_j(t_i) \left[I(x_i < x_j) \right] \label{C} \\ D_i &= v_i \delta_i w_i \sum_j w_j Y^*_j(t_i) \left[I(x_i > x_j)\right] \label{D} \\ T_i &= v_i \delta_i w_i \sum_j w_j Y^*_j(t_i) \left[I(x_i = x_j) \right] \label{T} \\ \end{align} In the above $v$ is an optional time weight, which we will discuss later. The normal concordance definition has $v=1$. $C$, $D$, and $T$ are the number of concordant, discordant, and tied pairs, respectively, and $m= C+D+T$ will be the total number of concordant pairs. Somers' $d$ is $(C-D)/m$ and the concordance is $(d+1)/2 = (C + T/2)/m$. The primary compuational question is how to do this efficiently, i.e., better than a naive algorithm that loops across all $n(n-1)/2$ possible pairs. There are two key ideas. \begin{enumerate} \item Rearrange the counting so that we do it by death times. For each death we count the number of other subjects in the risk set whose score is higher, lower, or tied and add it into the totals. This neatly solves the question of time-dependent covariates. \item Counting the number with higher, lower, and tied $x$ can be done in $O(\log_2 n)$ time if the $x$ data is kept in a binary tree. \end{enumerate} \begin{figure} \myfig{balance} \caption{A balanced tree of 13 nodes.} \label{treefig} \end{figure} Figure \ref{treefig} shows a balanced binary tree containing 13 risk scores. For each node the left child and all its descendants have a smaller value than the parent, the right child and all its descendents have a larger value. Each node in figure \ref{treefig} is also annotated with the total weight of observations in that node and the weight for itself plus all its children (not shown on graph). Assume that the tree shown represents all of the subjects still alive at the time a particular subject ``Smith'' expires, and that Smith has the risk score of 19 in the tree. The concordant pairs are those with a risk score $>19$, i.e., both $\hat y=x$ and $y$ are larger, discordant are $<19$, and we have no ties. The totals can be found by \begin{enumerate} \item Initialize the counts for discordant, concordant and tied to the values from the left children, right children, and ties at this node, respectively, which will be $(C,D,T) = (1,1,0)$. \item Walk up the tree, and at each step add the (parent + left child) or (parent + right child) to either D or C, depending on what part of the tree has not yet been totaled. At the next node (8) $D= D+4$, and at the top node $C=C + 6$. \end{enumerate} There are 5 concordant and 7 discordant pairs. This takes a little less than $\log_2(n)$ steps on average, as compared to an average of $n/2$ for the naive method. The difference can matter when $n$ is large since this traversal must be done for each event. The classic way to store trees is as a linked list. There are several algorithms for adding and subtracting nodes from a tree while maintaining the balance (red-black trees, AA trees, etc) but we take a different approach. Since we need to deal with case weights in the model and we know all the risk score at the outset, the full set of risk scores is organised into a tree at the beginning, updating the sums of weights at each node as observations are added or removed from the risk set. If we internally index the nodes of the tree as 1 for the top, 2--3 for the next horizontal row, 4--7 for the next, \ldots then the parent-child traversal becomes particularly easy. The parent of node $i$ is $i/2$ (integer arithmetic) and the children of node $i$ are $2i$ and $2i +1$. In C code the indices start at 0 of course. The following bit of code arranges data into such a tree. <>= btree <- function(n) { tfun <- function(n, id, power) { if (n==1L) id else if (n==2L) c(2L *id + 1L, id) else if (n==3L) c(2L*id + 1L, id, 2L*id +2L) else { nleft <- if (n== power*2L) power else min(power-1L, n-power%/%2L) c(tfun(nleft, 2L *id + 1L, power%/%2), id, tfun(n-(nleft+1L), 2L*id +2L, power%/%2)) } } tfun(as.integer(n), 0L, as.integer(2^(floor(logb(n-1,2))))) } @ Referring again to figure \ref{treefig}, \code{btree(13)} yields the vector \code{7 3 8 1 9 4 10 0 11 5 12 2 6} meaning that the smallest element will be in position 8 of the tree, the next smallest in position 2, etc, and using indexing that starts at 0 since the results will be passed to a C routine. The code just above takes care to do all arithmetic as integer. This actually made almost no difference in the compute time, but it was an interesting exercise to find that out. The next question is how to compute a variance for the result. One approach is to compute an infinitesimal jackknife (IJ) estimate, for which we need derivatives with respect to the weights. Looking back at equation \eqref{C} we have \begin{align} C &= \sum_i w_i \delta_i \sum_j Y^*_j(t_i) w_j I(x_i < x_j) \nonumber\\ % \frac{\partial C}{\partial w_k} &= % (v_k/m_k)\delta_k \sum_j Y^*_{j}(t_k) I(x_k < x_j) + % \sum_i (v_i/m_i) w_i Y^*_k(t_i) I(x_i < x_k) \label{partialC} \end{align} A given subject's weight appears multiple times, once when they are an event ($w_i \delta_i)$, and then as part of the risk set for other's events. I avoided this for some time because it looked like an $O(nd)$ process to separately update each subject's influence for each risk set they inhabit, but David Watson pointed out a path forward. The solution is to keep two trees. Tree 1 contains all of the subjects at risk. We traverse it when each subject is added in, updating the tree, and traverse it again at each death, pulling off values to update our sums. The second tree holds only the deaths and is updated at each death; it is read out twice per subject, once just after they enter the risk set and once when they leave. The basic algorithm is to move through an outer and inner loop. The outer loop moves across unique times, the inner for all obs that share a death time. We progress from largest to smallest time. Dealing with tied deaths is a bit subtle. \begin{itemize} \item All of the tied deaths need to be added to the event tree before subtracting the tree values from the ``initial'' influence matrix, since none of the tied subjects are in the comparison set for each other. \item Changes to the overall concordance/discordance counts need to be done for all the ties before adding them into the main tree, for the same reason. \item The Cox model variance just below has to be added up sequentially, one terms after each addition to the main tree. \end{itemize} Thus the inner loop must be repeated at least twice. A second variance computation treats the data as a Cox model. Create zero-centered scores for all subjects in the risk set: \begin{align} z_i(t) &= \sum_{j \in R(t)} w_j \sign(x_i - x_j) \nonumber D-C = \sum_i \delta_i z_i(t_i) \label{zcord} \end{align} At any event time $\sum w_i z_i =0$. Equation \eqref{zcord} is the score equation for a Cox model with time-dependent covariate $z$. When two subjects have an event at the same time, this formulation treats each of them as being in the other's risk set whereas the concordance treats them as incomparable --- how can they be the same? The trick is that $D-C$ does not change: the tied pairs add equally to $D$ and $C$. Under the null hypothesis that the risk score is not related to outcome, each term in \eqref{zcord} is a random selection from the $z$ scores in the risk set, and the variance of the addition is the variance of $z$, the sum of these over deaths is the Cox model information matrix, which is also the variance of the score statistic. The mean of $z$ is always zero, so we need to keep track of $\sum w_i z^2$. How can we do this efficiently? First note that $z_i$ can be written as sum(weights for smaller x) - sum(weights for larger x), and in fact the weighted mean for any slice of $x$, $a < x < b$, is exactly the same: mean = sum(weights for x values below the range) - sum(weights above the range). The second trick is to use an ANOVA decomposition of the variance of $z$ into within-slice and between-slice sums of squares, where the 3 slices are the $z$ scores at a given $x$ value (node of the tree), weights for score below that cutpoint, and above. Assume that a new observation $k$ has just been added to the tree. This will add $w_k$ to all the $z$ values above, and to the weighted mean of all those above, $-w_k$ to the values and means below, and 0 to the values and means of any tied observations. Thus none of the current `within' SS change. Let $s_a$, $s_b$ and $s_0$ be the current sum of weights above, below, and at the node of the tree. The mean for the above group was $(s_b + s_0)$ with between SS contribution of $s_a (s_b + s_0)^2$. The below mean was $-(s_a + s_0)$ with between SS contribution of $s_b(s_a + s_0)^2$. The change to the between SS from adding the new subject is $$ s_a\left( (s_b+s_0 + w_k)^2 - (s_b + s_0)^2 \right) = s_a (2w_k (s_b + s_0) + w_k^2) $$ while the change in between SS for the below group is $s_b(2w_k(s_a + s_0) + w_k^2)$, and there is no change for the prior observations in the middle group. Last we add $w_kz_k^2 = w_k(s_b- s_a)^2$ to the sum for the new observation. Putting all this together the change is $$ w_k \left(s_a (w_k + (s_b + s_c)) + s_b(w_k + (s_a + s_c)) + (s_a-s_b)^2 \right) $$ We can now define the C-routine that does the bulk of the work. First we give the outline shell of the code and then discuss the parts one by one. This routine is for ordinary survival data, and will be called once per stratum. Input variables are \begin{description} \item[n] the number of observations \item[y] matrix containing the time and status, data is sorted by descending time, with censorings precedint deaths. \item[x] the tree node at which this observation's risk score resides %' \item[wt] case weight for the observation \end{description} The routine will return list with three components: \begin{itemize} \item count, a vector containing the weighted number of concordant, discordant, tied on $x$ but not $y$, and tied on y pairs. The weight for a pair is $w_iw_j$. \item resid, a three column matrix with one row per event, containing the score residual at that event, its variance, and the sum of weights. The score residual is a rescaled $z_i$ so as to lie between 0 and 1: $(1+ z/\sum(w))/2$. The concordance is then a weighted sum of the residuals. \item influence, a matrix with one row per observation and 4 columns, giving that observation's first derivative with respect to the count vector. \end{itemize} <>= #include "survS.h" <> SEXP concordance3(SEXP y, SEXP x2, SEXP wt2, SEXP timewt2, SEXP sortstop, SEXP doresid2) { int i, j, k, ii, jj, kk, j2; int n, ntree, nevent; double *time, *status; int xsave; /* sum of weights for a node (nwt), sum of weights for the node and ** all of its children (twt), then the same again for the subset of ** deaths */ double *nwt, *twt, *dnwt, *dtwt; double z2; /* sum of z^2 values */ int ndeath; /* total number of deaths at this point */ int utime; /* number of unique event times seen so far */ double dwt, dwt2; /* sum of weights for deaths and deaths tied on x */ double wsum[3]; /* the sum of weights that are > current, <, or equal */ double temp, adjtimewt; /* the second accounts for npair and timewt*/ SEXP rlist, count2, imat2, resid2; double *count, *imat[5], *resid[4]; double *wt, *timewt; int *x, *sort2; int doresid; static const char *outnames1[]={"count", "influence", "resid", ""}, *outnames2[]={"count", "influence", ""}; n = nrows(y); doresid = asLogical(doresid2); x = INTEGER(x2); wt = REAL(wt2); timewt = REAL(timewt2); sort2 = INTEGER(sortstop); time = REAL(y); status = time + n; /* if there are tied predictors, the total size of the tree will be < n */ ntree =0; nevent =0; for (i=0; i= ntree) ntree = x[i] +1; nevent += status[i]; } nwt = (double *) R_alloc(4*ntree, sizeof(double)); twt = nwt + ntree; dnwt = twt + ntree; dtwt = dnwt + ntree; for (i=0; i< 4*ntree; i++) nwt[i] =0.0; if (doresid) PROTECT(rlist = mkNamed(VECSXP, outnames1)); else PROTECT(rlist = mkNamed(VECSXP, outnames2)); count2 = SET_VECTOR_ELT(rlist, 0, allocVector(REALSXP, 6)); count = REAL(count2); for (i=0; i<6; i++) count[i]=0.0; imat2 = SET_VECTOR_ELT(rlist, 1, allocMatrix(REALSXP, n, 5)); for (i=0; i<5; i++) { imat[i] = REAL(imat2) + i*n; for (j=0; j> UNPROTECT(1); return(rlist); } @ The key part of our computation is to update the vectors of weights. We don't actually pass the risk score values $r$ into the routine, %' it is enough for each observation to point to the appropriate tree node. The tree contains the weights for everyone whose survival is larger than the time currently under review, so starts with all weights equal to zero. For any pair of observations $i,j$ we need to add [[wt[i]*wt[j]]] to the appropriate count, $w_j$ to subject $i$'s row of the leverage matrix and $w_i$ to subject $j$'s row. We use two trees to do this efficiently, one with all the observations to date, one with the events to date. Starting at the largest time (which is sorted last), walk through the tree. \begin{itemize} \item If the current observation is a censoring time, in order: \begin{itemize} \item Subtract event tree information from the influence matrix \item Update the Cox variance \item Add them into the main tree \end{itemize} \item If the current observation is a death, care for all deaths tied at this time point. Each pass covers all the deaths. \begin{itemize} \item Pass 1: In any order \begin{itemize} \item Add up the total number of deaths \item Update the tied.y count and tied.xy count \\ tied.xy subtotals reset each time x changes \item Count concordant, discordant, tied.x counts, both total and for the observation's influence \item Add the subject to the event tree \item Compute the first 3 columns of the residuals. \end{itemize} \item Finish up the tied.xy influence, for the last unique x in this set. \item Pass 2: \begin{itemize} \item Subtract the event tree information from the influence matrix \item Add the tied.y part of the influence for each obs \item Increment the Cox variance \item Add the subject into the main tree \end{itemize} \end{itemize} \item When all the subjects have been added to the tree, then add the final death tree's data for to the influence matrix. \end{itemize} For concordant, discordant, and tied.x there are three readouts: the total tree before any additions, the death tree after the addition of the tied events, and the death tree at the very end. Increments to the Cox variance occur just before each addition to the total tree, and are saved out after each batch of events. The above discussion counts up all pairs that are not tied on the response $y$. Though not used in the concordance the routine counts up tied.y pairs as well, with a separate count for those that are tied on both $x$ and $y$. The algorithm for this part is simpler since the data is sorted by $y$. Say that there were 5 obs tied at some time point with weights of $w_1$ to $w_5$. The total count for ties involves all 5-choose-2 pairs and can be written as $$ w_1 w_2 + (w_1 + w_2)w_3 + (w_1 + w_2 + w_3)w_4 + (w_1 + w_2 + w_3 + w_4)w_5 $$ which immediately suggests a simple summation algorithm as we go through the loop. In the below \code{dwt} contains the running sum 0, $w_1$, $w_1 + w_2$, etc and we add \code{w[i]*dwt} to the total just before incrementing the sum. The influence for observation 1 is $w_2 + w_3 + w_4 + w_5$, which can be done at the end as \code{dwt - wt[i]}. The temporary accumulator \code{dwt} is reset to 0 with each new $y$ value. To compute ties on both $x$ and $y$ the data set is sorted by $x$ within $y$, and we use the same algorithm, but reset \code{dwt2} to zero whenever either $x$ or $y$ changes. <>= z2 =0; utime=0; for (i=0; i>= void walkup(double *nwt, double* twt, int index, double sums[3], int ntree) { int i, j, parent; for (i=0; i<3; i++) sums[i] = 0.0; sums[2] = nwt[index]; /* tied on x */ j = 2*index +2; /* right child */ if (j < ntree) sums[0] += twt[j]; if (j <=ntree) sums[1]+= twt[j-1]; /*left child */ while(index > 0) { /* for as long as I have a parent... */ parent = (index-1)/2; if (index%2 == 1) sums[0] += twt[parent] - twt[index]; /* left child */ else sums[1] += twt[parent] - twt[index]; /* I am a right child */ index = parent; } } void addin(double *nwt, double *twt, int index, double wt) { nwt[index] += wt; while (index >0) { twt[index] += wt; index = (index-1)/2; } twt[0] += wt; } @ The code for [start, stop) data is almost identical, the primary call simply has one more index As in the agreg routines there are two sort indices, the first indexes the data by stop time, longest to earliest, and the second by start time. The [[y]] variable now has three columns. <>= SEXP concordance4(SEXP y, SEXP x2, SEXP wt2, SEXP timewt2, SEXP sortstart, SEXP sortstop, SEXP doresid2) { int i, j, k, ii, jj, kk, i2, j2; int n, ntree, nevent; double *time1, *time2, *status; int xsave; /* sum of weights for a node (nwt), sum of weights for the node and ** all of its children (twt), then the same again for the subset of ** deaths */ double *nwt, *twt, *dnwt, *dtwt; double z2; /* sum of z^2 values */ int ndeath; /* total number of deaths at this point */ int utime; /* number of unique event times seen so far */ double dwt; /* weighted number of deaths at this point */ double dwt2; /* tied on both x and y */ double wsum[3]; /* the sum of weights that are > current, <, or equal */ double temp, adjtimewt; /* the second accounts for npair and timewt*/ SEXP rlist, count2, imat2, resid2; double *count, *imat[5], *resid[4]; double *wt, *timewt; int *x, *sort2, *sort1; int doresid; static const char *outnames1[]={"count", "influence", "resid", ""}, *outnames2[]={"count", "influence", ""}; n = nrows(y); doresid = asLogical(doresid2); x = INTEGER(x2); wt = REAL(wt2); timewt = REAL(timewt2); sort2 = INTEGER(sortstop); sort1 = INTEGER(sortstart); time1 = REAL(y); time2 = time1 + n; status = time2 + n; /* if there are tied predictors, the total size of the tree will be < n */ ntree =0; nevent =0; for (i=0; i= ntree) ntree = x[i] +1; nevent += status[i]; } /* ** nwt and twt are the node weight and total =node + all children for the ** tree holding all subjects. dnwt and dtwt are the same for the tree ** holding all the events */ nwt = (double *) R_alloc(4*ntree, sizeof(double)); twt = nwt + ntree; dnwt = twt + ntree; dtwt = dnwt + ntree; for (i=0; i< 4*ntree; i++) nwt[i] =0.0; if (doresid) PROTECT(rlist = mkNamed(VECSXP, outnames1)); else PROTECT(rlist = mkNamed(VECSXP, outnames2)); count2 = SET_VECTOR_ELT(rlist, 0, allocVector(REALSXP, 6)); count = REAL(count2); for (i=0; i<6; i++) count[i]=0.0; imat2 = SET_VECTOR_ELT(rlist, 1, allocMatrix(REALSXP, n, 5)); for (i=0; i<5; i++) { imat[i] = REAL(imat2) + i*n; for (j=0; j> UNPROTECT(1); return(rlist); } @ As we move from the longest time to the shortest observations are added into the tree of weights whenever we encounter their stop time. This is just as before. Weights now also need to be removed from the tree whenever we encounter an observation's start time. %' It is convenient ``catch up'' on this second task whenever we encounter a death. <>= z2 =0; utime=0; i2 =0; /* i2 tracks the start times */ for (i=0; i= time2[ii]); i2++) { jj = sort1[i2]; /* influence */ walkup(dnwt, dtwt, x[jj], wsum, ntree); imat[0][jj] += wsum[1]; imat[1][jj] += wsum[0]; imat[2][jj] += wsum[2]; addin(nwt, twt, x[jj], -wt[jj]); /*remove from main tree */ /* Cox variance */ walkup(nwt, twt, x[jj], wsum, ntree); z2 -= wt[jj]*(wsum[0]*(wt[jj] + 2*(wsum[1] + wsum[2])) + wsum[1]*(wt[jj] + 2*(wsum[0] + wsum[2])) + (wsum[0]-wsum[1])*(wsum[0]-wsum[1])); } ndeath=0; dwt=0; dwt2 =0; xsave=x[ii]; j2= i; adjtimewt = timewt[utime++]; /* pass 1 */ for (j=i; j>= survexp <- function(formula, data, weights, subset, na.action, rmap, times, method=c("ederer", "hakulinen", "conditional", "individual.h", "individual.s"), cohort=TRUE, conditional=FALSE, ratetable=survival::survexp.us, scale=1, se.fit, model=FALSE, x=FALSE, y=FALSE) { <> <> <> <> } @ The first few lines are standard. Keep a copy of the call, then manufacture a call to [[model.frame]] that contains only the arguments relevant to that function. <>= Call <- match.call() # keep the first element (the call), and the following selected arguments indx <- match(c('formula', 'data', 'weights', 'subset', 'na.action'), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") tform <- Call[c(1,indx)] # only keep the arguments we wanted tform[[1L]] <- quote(stats::model.frame) # change the function called Terms <- if(missing(data)) terms(formula, 'ratetable') else terms(formula, 'ratetable',data=data) @ The function works with two data sets, the user's data on an actual set of %' subjects and the reference ratetable. This leads to a particular nuisance, that the variable names in the data set may not match those in the ratetable. For instance the United States overall death rate table [[survexp.us]] expects 3 variables, as shown by [[summary(survexp.us)]] \begin{itemize} \item age = age in days for each subject at the start of follow-up \item sex = sex of the subject, ``male'' or ``female'' (the routine accepts any unique abbreviation and is case insensitive) \item year = date of the start of follow-up \end{itemize} Up until the most recent revision, the formula contained any necessary mapping between the variables in the data set and the ratetable. For instance \begin{verbatim} survexp( ~ sex + ratetable(age=age*365.25, sex=sex, year=entry.dt), data=mydata, ratetable=survexp.us) \end{verbatim} In this case the user's data set has a variable `age' containing age in years, along with sex and an entry date. This had to be changed for two reasons. The primary one is that the data in a [[ratetable]] call had to be converted into a matrix in order to ``pass through'' the model.frame logic. With the recent updates to coxph so that it remembers factor codings correctly in new data sets, it is advantageous to keep factors as factors. The second is that a coxph model with a large number of covariates induces a very long ratetable clause; at about 40 variable it caused one of the R internal routines to fail due to a long expression. A third reason, perhaps the most pressing in reality, is that I've always %' felt that the prior code was confusing since it used the same term 'ratetable' for two different tasks. The new process adds the [[rmap]] argument, an example would be [[rmap=list(age =age*365.25, year=entry.dt)]]. Any variables in the ratetable that are not found in [[rmap]] are assumed to not need a mapping, this would be [[sex]] in the above example. For backwards compatability we allow the old style argument, converting it into the new style. The [[rmap]] argument needs to be examined without evaluating it; we then add the appropriate extra variables into a temporary formula so that the model frame has all that is required. The ratetable variables then can be retrieved from the model frame. The [[pyears]] routine uses the same rmap argument; this segment of the code is given its own name so that it can be included there as well. <>= rate <- attr(Terms, "specials")$ratetable if(length(rate) > 1) stop("Can have only 1 ratetable() call in a formula") <> mf <- eval(tform, parent.frame()) @ <>= if(length(rate) == 1) { if (!missing(rmap)) stop("The ratetable() call in a formula is depreciated") stemp <- untangle.specials(Terms, 'ratetable') rcall <- as.call(parse(text=stemp$var)[[1]]) # as a call object rcall[[1]] <- as.name('list') # make it a call to list(.. Terms <- Terms[-stemp$terms] # remove from the formula } else if (!missing(rmap)) { rcall <- substitute(rmap) if (!is.call(rcall) || rcall[[1]] != as.name('list')) stop ("Invalid rcall argument") } else rcall <- NULL # A ratetable, but no rcall argument # Check that there are no illegal names in rcall, then expand it # to include all the names in the ratetable if (is.ratetable(ratetable)) { varlist <- names(dimnames(ratetable)) if (is.null(varlist)) varlist <- attr(ratetable, "dimid") # older style } else if(inherits(ratetable, "coxph") && !inherits(ratetable, "coxphms")) { ## Remove "log" and such things, to get just the list of # variable names varlist <- all.vars(delete.response(ratetable$terms)) } else stop("Invalid rate table") temp <- match(names(rcall)[-1], varlist) # 2,3,... are the argument names if (any(is.na(temp))) stop("Variable not found in the ratetable:", (names(rcall))[is.na(temp)]) if (any(!(varlist %in% names(rcall)))) { to.add <- varlist[!(varlist %in% names(rcall))] temp1 <- paste(text=paste(to.add, to.add, sep='='), collapse=',') if (is.null(rcall)) rcall <- parse(text=paste("list(", temp1, ")"))[[1]] else { temp2 <- deparse(rcall) rcall <- parse(text=paste("c(", temp2, ",list(", temp1, "))"))[[1]] } } @ The formula below is used only in the call to [[model.frame]] to ensure that the frame has both the formula and the ratetable variables. We don't want to modify the original formula, since we use it to create the $X$ matrix and the response variable. The non-obvious bit of code is the addition of an environment to the formula. The [[model.matrix]] routine has a non-standard evaluation - it uses the frame of the formula, rather than the parent.frame() argument below, along with the [[data]] to look up variables. If a formula is long enough deparse() will give two lines, hence the extra paste call to re-collapse it into one. <>= # Create a temporary formula, used only in the call to model.frame newvar <- all.vars(rcall) if (length(newvar) > 0) { temp <- paste(paste(deparse(Terms), collapse=""), paste(newvar, collapse='+'), sep='+') tform$formula <- as.formula(temp, environment(Terms)) } @ If the user data has 0 rows, e.g. from a mistaken [[subset]] statement that eliminated all subjects, we need to stop early. Otherwise the .C code fails in a nasty way. <>= n <- nrow(mf) if (n==0) stop("Data set has 0 rows") if (!missing(se.fit) && se.fit) warning("se.fit value ignored") weights <- model.extract(mf, 'weights') if (length(weights) ==0) weights <- rep(1.0, n) if (class(ratetable)=='ratetable' && any(weights !=1)) warning("weights ignored") if (any(attr(Terms, 'order') >1)) stop("Survexp cannot have interaction terms") if (!missing(times)) { if (any(times<0)) stop("Invalid time point requested") if (length(times) >1 ) if (any(diff(times)<0)) stop("Times must be in increasing order") } @ If a response variable was given, we only need the times and not the status. To be correct, computations need to be done for each of the times given in the [[times]] argument as well as for each of the unique y values. This ends up as the vector [[newtime]]. If a [[times]] argument was given we will subset down to only those values at the end. For a population rate table and the Ederer method the times argument is required. <>= Y <- model.extract(mf, 'response') no.Y <- is.null(Y) if (no.Y) { if (missing(times)) { if (is.ratetable(ratetable)) stop("either a times argument or a response is needed") } else newtime <- times } else { if (is.matrix(Y)) { if (is.Surv(Y) && attr(Y, 'type')=='right') Y <- Y[,1] else stop("Illegal response value") } if (any(Y<0)) stop ("Negative follow up time") # if (missing(npoints)) temp <- unique(Y) # else temp <- seq(min(Y), max(Y), length=npoints) temp <- unique(Y) if (missing(times)) newtime <- sort(temp) else newtime <- sort(unique(c(times, temp[temp>= ovars <- attr(Terms, 'term.labels') # rdata contains the variables matching the ratetable rdata <- data.frame(eval(rcall, mf), stringsAsFactors=TRUE) if (is.ratetable(ratetable)) { israte <- TRUE if (no.Y) { Y <- rep(max(times), n) } rtemp <- match.ratetable(rdata, ratetable) R <- rtemp$R } else if (inherits(ratetable, 'coxph')) { israte <- FALSE Terms <- ratetable$terms # if (!is.null(attr(Terms, 'offset'))) # stop("Cannot deal with models that contain an offset") # strats <- attr(Terms, "specials")$strata # if (length(strats)) # stop("survexp cannot handle stratified Cox models") # if (any(names(mf[,rate]) != attr(ratetable$terms, 'term.labels'))) stop("Unable to match new data to old formula") } else stop("Invalid ratetable") @ Now for some calculation. If cohort is false, then any covariates on the right hand side (other than the rate table) are irrelevant, the function returns a vector of expected values rather than survival curves. <>= if (substring(method, 1, 10) == "individual") { #individual survival if (no.Y) stop("for individual survival an observation time must be given") if (israte) temp <- survexp.fit (1:n, R, Y, max(Y), TRUE, ratetable) else { rmatch <- match(names(data), names(rdata)) if (any(is.na(rmatch))) rdata <- cbind(rdata, data[,is.na(rmatch)]) temp <- survexp.cfit(1:n, rdata, Y, 'individual', ratetable) } if (method == "individual.s") xx <- temp$surv else xx <- -log(temp$surv) names(xx) <- row.names(mf) na.action <- attr(mf, "na.action") if (length(na.action)) return(naresid(na.action, xx)) else return(xx) } @ Now for the more commonly used case: returning a survival curve. First see if there are any grouping variables. The results of the [[tcut]] function are often used in person-years analysis, which is somewhat related to expected survival. However tcut results aren't relevant here and we put in a check for the %' confused user. The strata command creates a single factor incorporating all the variables. <>= if (length(ovars)==0) X <- rep(1,n) #no categories else { odim <- length(ovars) for (i in 1:odim) { temp <- mf[[ovars[i]]] ctemp <- class(temp) if (!is.null(ctemp) && ctemp=='tcut') stop("Can't use tcut variables in expected survival") } X <- strata(mf[ovars]) } #do the work if (israte) temp <- survexp.fit(as.numeric(X), R, Y, newtime, method=="conditional", ratetable) else { temp <- survexp.cfit(as.numeric(X), rdata, Y, method, ratetable, weights) newtime <- temp$time } @ Now we need to package up the curves properly All the results can be returned as a single matrix of survivals with a common vector of times. If there was a times argument we need to subset to selected rows of the computation. <>= if (missing(times)) { n.risk <- temp$n surv <- temp$surv } else { if (israte) keep <- match(times, newtime) else { # The result is from a Cox model, and it's list of # times won't match the list requested in the user's call # Interpolate the step function, giving survival of 1 # for requested points that precede the Cox fit's # first downward step. The code is like summary.survfit. n <- length(temp$time) keep <- approx(temp$time, 1:n, xout=times, yleft=0, method='constant', f=0, rule=2)$y } if (is.matrix(temp$surv)) { surv <- (rbind(1,temp$surv))[keep+1,,drop=FALSE] n.risk <- temp$n[pmax(1,keep),,drop=FALSE] } else { surv <- (c(1,temp$surv))[keep+1] n.risk <- temp$n[pmax(1,keep)] } newtime <- times } newtime <- newtime/scale if (is.matrix(surv)) { dimnames(surv) <- list(NULL, levels(X)) out <- list(call=Call, surv= drop(surv), n.risk=drop(n.risk), time=newtime) } else { out <- list(call=Call, surv=c(surv), n.risk=c(n.risk), time=newtime) } @ Last do the standard things: add the model, x, or y components to the output if the user asked for them. (For this particular routine I can't think of %' a reason they every would.) Copy across summary information from the rate table computation if present, and add the method and class to the output. <>= if (model) out$model <- mf else { if (x) out$x <- X if (y) out$y <- Y } if (israte && !is.null(rtemp$summ)) out$summ <- rtemp$summ if (no.Y) out$method <- 'Ederer' else if (conditional) out$method <- 'conditional' else out$method <- 'cohort' class(out) <- c('survexp', 'survfit') out @ \subsection{Parsing the covariates list} For a multi-state Cox model we allow a list of formulas to take the place of the \code{formula} argument. The first element of the list is the default formula, later elements are of the form \code{transitions ~ formula/options}, where the left hand side denotes one or more transitions, and the right hand side is used to augment the basic formula wrt those transitions. Step 1 is to accumulate all the terms that appear on the right hand side(s) into a single ``pseudo formula'' that is used to drive the model.frame process. After the model frame is constructed we have the necessary data to check that state names given in the formulas actually exist in the data and that initial value strings are the right length. We can then construct the \code{cmap} matrix. After this first step the left hand side ends up as a complicated structure: \begin{itemize} \item a list with one element per formula in the covariates list \item each element is a list, with one element per term: multiple a:b terms are allowed separated by + signs on the left hand side of the ~ \item each of these level 3 elements is a list with two elements ``left'' and ``right'', for the two sides of the : operator \item left and right will be one or two element lists containing the stateid and/or the values. Any word that doesn't match one of the column names of statedata ends up as a set of values. \end{itemize} <>= parsecovar1 <- function(flist, statedata) { if (any(sapply(flist, function(x) !inherits(x, "formula")))) stop("an element of the formula list is not a formula") if (any(sapply(flist, length) != 3)) stop("all formulas must have a left and right side") # split the formulas into a right hand and left hand side lhs <- lapply(flist, function(x) x[-3]) rhs <- lapply(flist, function(x) x[-2]) <> <> list(rhs = rh2, lhs= lterm) } @ First look at the right hand side of each formula. There are 4 possble options of common, fixed, clear, and init. The first 3 appear just as words, the last should have a set of values attached which become the \code{ival} vector. The end result is a list for each formula containing the actual right hand side formula along with the options. <>= # take apart the right hand side of each formula # the function below is applied to each formula in turn. rh2 <- lapply(rhs, function(form) { parts <- strsplit(deparse(form, width.cutoff=300, control=NULL), '/', fixed=TRUE)[[1]] if (length(parts) ==1) { # nothing after a / ival <- NULL; common <- FALSE; fixed <- FALSE; clear <- FALSE; } else{ # treat the right hand side as though it were a formula optterms <- terms(formula(paste("~", parts[2]))) ff <- rownames(attr(optterms, "factors")) index <- match(ff, c("common", "fixed", "init", "clear")) if (any(is.na(index))) stop("option not recognized in a covariates formula: ", paste(ff[is.na(index)], collapse=", ")) common <- any(index==1) fixed <- any(index==2) clear <- any(index==3) if (any(index==3)) { optatt <- attributes(optterms) j <- optatt$variables[1 + which(index==3)] j[[1]] <- as.name("list") ival <- unlist(eval(j, parent.frame())) } else ival <- NULL } # and now the terms before the slash, which is the actual formula # a formula of -1 +1 is recorded as intercept=TRUE, pasting a -1 on # allows us to tell if a 1 was included. (But don't add a second ~). form <- formula(paste("~ -1 +", substring(parts[1], 2, nchar(parts[1])))) list(common=common, fixed=fixed, clear=clear, ival=ival, formula = form) }) @ The left hand side of each formula specifies the set of transitions to which the covariates apply, and is more complex. Say instance that we had 7 states and the following statedata data set. \begin{center} \begin{tabular}{cccc} state & A& N& death \\ \hline A-N- & 0& 0 & 0\\ A+N- & 1& 0 & 0\\ A-N1 & 0& 1 & 0\\ A+N1 & 1& 1 & 0\\ A-N2 & 0& 2 & 0\\ A+N2 & 1& 2 & 0\\ Death& NA & NA& 1 \end{tabular} \end{center} Here are some valid transitions \begin{enumerate} \item 0:state('A+N+'), any transition to the A+N+ state \item state('A-N-'):death(0), a transition from A-N-, but not to death \item A(0):A(1), any of the 4 changes that start with A=0 and end with A=1 \item N(0):N(1,2) + N(1):N(2), an upward change of N \item 'A-N-':c('A-N+','A+N-'); if there is no variable then the overall state is assumed \item 1:3 + 2:3; we can refer to states by number, and we can have multiples \end{enumerate} <>= # deal with the left hand side of the formula # the next routine cuts at '+' signs pcut <- function(form) { if (length(form)==3) { if (form[[1]] == '+') c(pcut(form[[2]]), pcut(form[[3]])) else if (form[[1]] == '~') pcut(form[[2]]) else list(form) } else list(form) } lcut <- lapply(lhs, function(x) pcut(x[[2]])) @ We now have one list per formula, each list is either a single term or a list of terms (case 4 above). To make evaluation easier, create functions that append their name to a list of values. I have not yet found a way to do this without eval(parse()), which always seems clumsy. A use for the labels without an argument will arise later, hence the double environments. Repeating the list above, this is what we want to end with \begin{itemize} \item a list with one element per formula in the covariates list \item each element is a list, with one element per term: multiple a:b terms are allowed separated by + signs \item each of these level 3 elements is a list with two elements ``left'' and ``right'', for the two sides of the : operator \item left and right will be one of 3 forms: a simple vector, a one element list containing the stateid, or a two element list containing the stateid and the values. Any word that doesn't match one of the column names of statedata ends up as a vector. \end{itemize} <>= env1 <- new.env(parent= parent.frame(2)) env2 <- new.env(parent= env1) if (missing(statedata)) { assign("state", function(...) list(stateid= "state", values=c(...)), env1) assign("state", list(stateid="state")) } else { for (i in statedata) { assign(i, eval(list(stateid=i)), env2) tfun <- eval(parse(text=paste0("function(...) list(stateid='" , i, "', values=c(...))"))) assign(i, tfun, env1) } } lterm <- lapply(lcut, function(x) { lapply(x, function(z) { if (length(z)==1) { temp <- eval(z, envir= env2) if (is.list(temp) && names(temp)[[1]] =="stateid") temp else temp } else if (length(z) ==3 && z[[1]]==':') list(left=eval(z[[2]], envir=env2), right=eval(z[[3]], envir=env2)) else stop("invalid term: ", deparse(z)) }) }) @ The second call, which builds tmap, the terms map. Arguments are the results from the first pass, the statedata data frame, the default formula, the terms structure from the full formula, and the transitions count. <>= parsecovar2 <- function(covar1, statedata, dformula, Terms, transitions,states) { if (is.null(statedata)) statedata <- data.frame(state = states, stringsAsFactors=FALSE) else { if (is.null(statedata$state)) stop("the statedata data set must contain a variable 'state'") indx1 <- match(states, statedata$state, nomatch=0) if (any(indx1==0)) stop("statedata does not contain all the possible states: ", states[indx1==0]) statedata <- statedata[indx1,] # put it in order } # Statedata might have rows for states that are not in the data set, # for instance if the coxph call had used a subset argument. Any of # those were eliminated above. # Likewise, the formula list might have rules for transitions that are # not present. Don't worry about it at this stage. allterm <- attr(Terms, 'term.labels') nterm <- length(allterm) <> # if there is no formula extension, the middle part of the work is skipped if (!is.null(covar1)) { <> } <> } @ Create a map for every transition, even the ones that are not used; this simply makes the indexing easier. At the end we will dispose of unneeded ones. The very first term is the intercept or strata. <>= # create the map and fill it in with the default formula nstate <- length(states) tmap <- array(0L, dim=c(nterm+1, nstate, nstate)) dterms <- match(attr(terms.formula(dformula), "term.labels"), allterm) dterms <- c(1L, 1L + dterms) # add the intercept k <- seq(along=dterms) for (i in 1:nstate) { for (j in 1:nstate) { tmap[dterms,j,i] <- k # fill in in column major order k <- k + length(k) } } ncoef <- max(tmap) # number of coefs used so far inits <- NULL @ Now go through the formulas one by one. The left hand side tells us which state:state transitions to fill in, the right hand side tells the variables. The code block below goes through lhs element(s) for a single formula. That element is itself a list which has an entry for each term, and that entry can have left and right portions. <>= state1 <- state2 <- NULL for (x in lhs) { # x is one term if (is.null(x$left)) stop("term found without a :", x) # left of the colon if (!is.list(x$left) && length(x$left) ==1 && x$left==0) temp1 <- 1:nrow(statedata) else if (is.numeric(x$left)) { temp1 <- as.integer(x$left) if (any(temp1 != x$left)) stop("non-integer state number") if (any(temp1 <1 | temp1> nstate)) stop("numeric state is out of range") } else if (is.list(x$left) && names(x$left)[1] == "stateid"){ if (is.null(x$left$value)) stop("state variable with no list of values: ",x$left$stateid) else { if (any(k= is.na(match(x$left$stateid, names(statedata))))) stop(x$left$stateid[k], ": state variable not found") zz <- statedata[[x$left$stateid]] if (any(k= is.na(match(x$left$value, zz)))) stop(x$left$value[k], ": state value not found") temp1 <- which(zz %in% x$left$value) } } else { k <- match(x$left, statedata$state) if (any(is.na(k))) stop(x$left[k], ": state not found") temp1 <- which(statedata$state %in% x$left) } # right of colon if (!is.list(x$right) && length(x$right) ==1 && x$right ==0) temp2 <- 1:nrow(statedata) else if (is.numeric(x$right)) { temp2 <- as.integer(x$right) if (any(temp2 != x$right)) stop("non-integer state number") if (any(temp2 <1 | temp2> nstate)) stop("numeric state is out of range") } else if (is.list(x$right) && names(x$right)[1] == "stateid") { if (is.null(x$right$value)) stop("state variable with no list of values: ",x$right$stateid) else { if (any(k= is.na(match(x$right$stateid, names(statedata))))) stop(x$right$stateid[k], ": state variable not found") zz <- statedata[[x$right$stateid]] if (any(k= is.na(match(x$right$value, zz)))) stop(x$right$value[k], ": state value not found") temp2 <- which(zz %in% x$right$value) } } else { k <- match(x$right, statedata$state) if (any(is.na(k))) stop(x$right[k], ": state not found") temp2 <- which(statedata$state %in% x$right) } state1 <- c(state1, rep(temp1, length(temp2))) state2 <- c(state2, rep(temp2, each=length(temp1))) } @ The inits need to wait a little longer, until the X matrix is in hand. <>= for (i in 1:length(covar1$rhs)) { rhs <- covar1$rhs[[i]] lhs <- covar1$lhs[[i]] # the two are the same length rterm <- terms.formula(rhs$formula) rindex <- 1L + match(attr(rterm, "term.labels"), allterm, nomatch=0) if (any(rindex== 1L)) stop("dterm mismatch bug 2") if (attr(rterm, "intercept")==1) rindex <- c(1L, rindex) <> npair <- length(state1) if (rhs$clear) { for(k in 1:npair) tmap[-1, state1[k], state2[k]] <- 0 } if (length(rhs$ival)) inits <- c(inits, list(term=rindex, state1=state1, state2= state2, init= rhs$ival)) j <- ncoef + seq_len(length(rindex)) if (rhs$common) { for(k in 1:npair) tmap[rindex, state1[k], state2[k]] <-j } else { for(k in 1:npair){ tmap[rindex, state1[k], state2[k]] <-j j <- j + length(rindex) } } ncoef <- max(j) } @ Fold the 3-dimensional tmap into a matrix with terms as rows and one column for each transition that actually occured. <>= i <- match("(censored)", colnames(transitions), nomatch=0) if (i==0) t2 <- transitions else t2 <- transitions[,-i, drop=FALSE] # transitions to 'censor' don't count indx1 <- match(rownames(t2), states) indx2 <- match(colnames(t2), states) tmap2 <- matrix(0L, nrow= 1+nterm, ncol= sum(t2>0)) trow <- row(t2)[t2>0] tcol <- col(t2)[t2>0] for (i in 1:nrow(tmap2)) { for (j in 1:ncol(tmap2)) tmap2[i,j] <- tmap[i, indx1[trow[j]], indx2[tcol[j]]] } # relabel as 1-k tmap2[1,] <- match(tmap2[1,], unique(c(0L, tmap2[1,]))) -1L if (nrow(tmap2) > 1) tmap2[-1,] <- match(tmap2[-1,], unique(c(0L, tmap2[-1,]))) -1L dimnames(tmap2) <- list(c("(Baseline)", allterm), paste(indx1[trow], indx2[tcol], sep=':')) list(tmap = tmap2, inits=inits, mapid= cbind(indx1[trow], indx2[tcol])) @ Last is a helper routine that converts tmap, which has one row per term, into cmap, which has one row per coefficient. Both have one column per transition. It uses the assign attribute of the X matrix along with the column names. Be careful to make 0 stay as a 0. <>= parsecovar3 <- function(tmap, Xcol, Xassign) { # sometime X will have an intercept, sometimes not, tmap and cmap # always do hasintercept <- (Xassign[1] ==0) cmap <- matrix(0L, length(Xcol) + !hasintercept, ncol(tmap)) cmap[1,] <- tmap[1,] xcount <- table(factor(Xassign, levels=1:max(Xassign))) mult <- 1+ max(xcount) #used to keep the coefs in the same oder ii <- 1 for (i in 2:nrow(tmap)) { k <- seq_len(xcount[i-1]) for (j in 1:ncol(tmap)) cmap[ii+k, j] <- if(tmap[i,j]==0) 0 else tmap[i,j]*mult +k ii <- ii + max(k) } # renumber coefs as 1, 2, 3, ... cmap[-1,] <- match(cmap[-1,], sort(unique(c(0L, cmap[-1,])))) -1L colnames(cmap) <- colnames(tmap) if (hasintercept) rownames(cmap) <- Xcol else rownames(cmap) <- c("(Baseline)", Xcol) cmap } @ \section{Person years} The person years routine and the expected survival code are the two parts of the survival package that make use of external rate tables, of which the United States mortality tables \code{survexp.us} and \code{survexp.usr} are examples contained in the package. The arguments for pyears are \begin{description} \item[formula] The model formula. The right hand side consists of grouping variables and is essentially identical to [[survfit]], the result of the model will be a table of results with dimensions determined from the right hand variables. The formula can include an optional [[ratetable]] directive; but this style has been superseded by the [[rmap]] argument. \item [data, weights, subset, na.action] as usual \item[rmap] an optional mapping for rate table variables, see more below. \item[ratetable] the population rate table to use as a reference. This can either be a ratetable object or a previously fitted Cox model \item[scale] Scale the resulting output times, e.g., 365.25 to turn days into years. \item[expect] Should the output table include the expected number of events, or the expected number of person-years of observation? \item[model, x, y] as usual \item[data.frame] if true the result is returned as a data frame, if false as a set of tables. \end{description} <>= pyears <- function(formula, data, weights, subset, na.action, rmap, ratetable, scale=365.25, expect=c('event', 'pyears'), model=FALSE, x=FALSE, y=FALSE, data.frame=FALSE) { <> <> <> } @ Start out with the standard model processing, which involves making a copy of the input call, but keeping only the arguments we want. We then process the special argument [[rmap]]. This is discussed in the section on the [[survexp]] function so we need not repeat the explantation here. <>= expect <- match.arg(expect) Call <- match.call() # create a call to model.frame() that contains the formula (required) # and any other of the relevant optional arguments # then evaluate it in the proper frame indx <- match(c("formula", "data", "weights", "subset", "na.action"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") tform <- Call[c(1,indx)] # only keep the arguments we wanted tform[[1L]] <- quote(stats::model.frame) # change the function called Terms <- if(missing(data)) terms(formula, 'ratetable') else terms(formula, 'ratetable',data=data) if (any(attr(Terms, 'order') >1)) stop("Pyears cannot have interaction terms") rate <- attr(Terms, "specials")$ratetable if (length(rate) >0 || !missing(rmap) || !missing(ratetable)) { has.ratetable <- TRUE if(length(rate) > 1) stop("Can have only 1 ratetable() call in a formula") if (missing(ratetable)) stop("No rate table specified") <> } else has.ratetable <- FALSE mf <- eval(tform, parent.frame()) Y <- model.extract(mf, 'response') if (is.null(Y)) stop ("Follow-up time must appear in the formula") if (!is.Surv(Y)){ if (any(Y <0)) stop ("Negative follow up time") Y <- as.matrix(Y) if (ncol(Y) >2) stop("Y has too many columns") } else { stype <- attr(Y, 'type') if (stype == 'right') { if (any(Y[,1] <0)) stop("Negative survival time") nzero <- sum(Y[,1]==0 & Y[,2] ==1) if (nzero >0) warning(paste(nzero, "observations with an event and 0 follow-up time,", "any rate calculations are statistically questionable")) } else if (stype != 'counting') stop("Only right-censored and counting process survival types are supported") } n <- nrow(Y) if (is.null(n) || n==0) stop("Data set has 0 observations") weights <- model.extract(mf, 'weights') if (is.null(weights)) weights <- rep(1.0, n) @ The next step is to check out the ratetable. For a population rate table a set of consistency checks is done by the [[match.ratetable]] function, giving a set of sanitized indices [[R]]. This function wants characters turned to factors. For a Cox model [[R]] will be a model matix whose covariates are coded in exactly the same way that variables were coded in the original Cox model. We call the model.matrix.coxph function so as not to have to repeat the steps found there (remove cluster statements, etc). <>= # rdata contains the variables matching the ratetable if (has.ratetable) { rdata <- data.frame(eval(rcall, mf), stringsAsFactors=TRUE) if (is.ratetable(ratetable)) { israte <- TRUE rtemp <- match.ratetable(rdata, ratetable) R <- rtemp$R } else if (inherits(ratetable, 'coxph') && !inherits(ratetable, "coxphms")) { israte <- FALSE Terms <- ratetable$terms if (!is.null(attr(Terms, 'offset'))) stop("Cannot deal with models that contain an offset") strats <- attr(Terms, "specials")$strata if (length(strats)) stop("pyears cannot handle stratified Cox models") if (any(names(mf[,rate]) != attr(ratetable$terms, 'term.labels'))) stop("Unable to match new data to old formula") R <- model.matrix.coxph(ratetable, data=rdata) } else stop("Invalid ratetable") } @ Now we process the non-ratetable variables. Those of class [[tcut]] set up time-dependent classes. For these the cutpoints attribute sets the intervals, if there were 4 cutpoints of 1, 5,6, and 10 the 3 intervals will be 1-5, 5-6 and 6-10, and odims will be 3. All other variables are treated as factors. <>= ovars <- attr(Terms, 'term.labels') if (length(ovars)==0) { # no categories! X <- rep(1,n) ofac <- odim <- odims <- ocut <- 1 } else { odim <- length(ovars) ocut <- NULL odims <- ofac <- double(odim) X <- matrix(0, n, odim) outdname <- vector("list", odim) names(outdname) <- attr(Terms, 'term.labels') for (i in 1:odim) { temp <- mf[[ovars[i]]] if (inherits(temp, 'tcut')) { X[,i] <- temp temp2 <- attr(temp, 'cutpoints') odims[i] <- length(temp2) -1 ocut <- c(ocut, temp2) ofac[i] <- 0 outdname[[i]] <- attr(temp, 'labels') } else { temp2 <- as.factor(temp) X[,i] <- temp2 temp3 <- levels(temp2) odims[i] <- length(temp3) ofac[i] <- 1 outdname[[i]] <- temp3 } } } @ Now do the computations. The code above has separated out the variables into 3 groups: \begin{itemize} \item The variables in the rate table. These determine where we \emph{start} in the rate table with respect to retrieving the relevant death rates. For the US table [[survexp.us]] this will be the date of study entry, age (in days) at study entry, and sex of each subject. \item The variables on the right hand side of the model. These are interpreted almost identically to a call to [[table]], with special treatment for those of class \emph{tcut}. \item The response variable, which tells the number of days of follow-up and optionally the status at the end of follow-up. \end{itemize} Start with the rate table variables. There is an oddity about US rate tables: the entry for age (year=1970, age=55) contains the daily rate for anyone who turns 55 in that year, from their birthday forward for 365 days. So if your birthday is on Oct 2, the 1970 table applies from 2Oct 1970 to 1Oct 1971. The underlying C code wants to make the 1970 rate table apply from 1Jan 1970 to 31Dec 1970. The easiest way to finess this is to fudge everyone's enter-the-study date. If you were born in March but entered in April, make it look like you entered in Febuary; that way you get the first 11 months at the entry year's rates, etc. The birth date is entry date - age in days (based on 1/1/1970). The other aspect of the rate tables is that ``older style'' tables, those that have the factor attribute, contained only decennial data which the C code would interpolate on the fly. The value of [[atts$factor]] was 10 indicating that there are 10 years in the interpolation interval. The newer tables do not do this and the C code is passed a 0/1 for continuous (age and year) versus discrete (sex, race). <>= ocut <-c(ocut,0) #just in case it were of length 0 osize <- prod(odims) if (has.ratetable) { #include expected atts <- attributes(ratetable) datecheck <- function(x) inherits(x, c("Date", "POSIXt", "date", "chron")) cuts <- lapply(attr(ratetable, "cutpoints"), function(x) if (!is.null(x) & datecheck(x)) ratetableDate(x) else x) if (is.null(atts$type)) { #old stlye table rfac <- atts$factor us.special <- (rfac >1) } else { rfac <- 1*(atts$type ==1) us.special <- (atts$type==4) } if (any(us.special)) { #special handling for US pop tables if (sum(us.special) > 1) stop("more than one type=4 in a rate table") # Someone born in June of 1945, say, gets the 1945 US rate until their # next birthday. But the underlying logic of the code would change # them to the 1946 rate on 1/1/1946, which is the cutpoint in the # rate table. We fudge by faking their enrollment date back to their # birth date. # # The cutpoint for year has been converted to days since 1/1/1970 by # the ratetableDate function. (Date objects in R didn't exist when # rate tables were conceived.) if (is.null(atts$dimid)) dimid <- names(atts$dimnames) else dimid <- atts$dimid cols <- match(c("age", "year"), dimid) if (any(is.na(cols))) stop("ratetable does not have expected shape") # The format command works for Dates, use it to get an offset bdate <- as.Date("1970-01-01") + (R[,cols[2]] - R[,cols[1]]) byear <- format(bdate, "%Y") offset <- as.numeric(bdate - as.Date(paste0(byear, "-01-01"))) R[,cols[2]] <- R[,cols[2]] - offset # Doctor up "cutpoints" - only needed for (very) old style rate tables # for which the C code does interpolation on the fly if (any(rfac >1)) { temp <- which(us.special) nyear <- length(cuts[[temp]]) nint <- rfac[temp] #intervals to interpolate over cuts[[temp]] <- round(approx(nint*(1:nyear), cuts[[temp]], nint:(nint*nyear))$y - .0001) } } docount <- is.Surv(Y) temp <- .C(Cpyears1, as.integer(n), as.integer(ncol(Y)), as.integer(is.Surv(Y)), as.double(Y), as.double(weights), as.integer(length(atts$dim)), as.integer(rfac), as.integer(atts$dim), as.double(unlist(cuts)), as.double(ratetable), as.double(R), as.integer(odim), as.integer(ofac), as.integer(odims), as.double(ocut), as.integer(expect=='event'), as.double(X), pyears=double(osize), pn =double(osize), pcount=double(if(docount) osize else 1), pexpect=double(osize), offtable=double(1))[18:22] } else { #no expected docount <- as.integer(ncol(Y) >1) temp <- .C(Cpyears2, as.integer(n), as.integer(ncol(Y)), as.integer(docount), as.double(Y), as.double(weights), as.integer(odim), as.integer(ofac), as.integer(odims), as.double(ocut), as.double(X), pyears=double(osize), pn =double(osize), pcount=double(if (docount) osize else 1), offtable=double(1)) [11:14] } @ Create the output object. <>= has.tcut <- any(sapply(mf, function(x) inherits(x, 'tcut'))) if (data.frame) { # Create a data frame as the output, rather than a set of # rate tables if (length(ovars) ==0) { # no variables on the right hand side keep <- TRUE df <- data.frame(pyears= temp$pyears/scale, n = temp$n) } else { keep <- (temp$pyears >0) # what rows to keep in the output # grap prototype rows from the model frame, this preserves class # (unless it is a tcut variable, then we know what to do) tdata <- lapply(1:length(ovars), function(i) { temp <- mf[[ovars[i]]] if (inherits(temp, "tcut")) factor(outdname[[i]]) else temp[match(outdname[[i]], temp)] }) tdata$stringsAsFactors <- FALSE # argument for expand.grid df <- do.call("expand.grid", tdata)[keep,,drop=FALSE] names(df) <- ovars df$pyears <- temp$pyears[keep]/scale df$n <- temp$pn[keep] } row.names(df) <- NULL # toss useless 'creation history' if (has.ratetable) df$expected <- temp$pexpect[keep] if (expect=='pyears') df$expected <- df$expected/scale if (docount) df$event <- temp$pcount[keep] # if any of the predictors were factors, make them factors in the output for (i in 1:length(ovars)){ if (is.factor( mf[[ovars[i]]])) df[[ovars[i]]] <- factor(df[[ovars[i]]], levels( mf[[ovars[i]]])) } out <- list(call=Call, data= df, offtable=temp$offtable/scale, tcut=has.tcut) if (has.ratetable && !is.null(rtemp$summ)) out$summary <- rtemp$summ } else if (prod(odims) ==1) { #don't make it an array out <- list(call=Call, pyears=temp$pyears/scale, n=temp$pn, offtable=temp$offtable/scale, tcut = has.tcut) if (has.ratetable) { out$expected <- temp$pexpect if (expect=='pyears') out$expected <- out$expected/scale if (!is.null(rtemp$summ)) out$summary <- rtemp$summ } if (docount) out$event <- temp$pcount } else { out <- list(call = Call, pyears= array(temp$pyears/scale, dim=odims, dimnames=outdname), n = array(temp$pn, dim=odims, dimnames=outdname), offtable = temp$offtable/scale, tcut=has.tcut) if (has.ratetable) { out$expected <- array(temp$pexpect, dim=odims, dimnames=outdname) if (expect=='pyears') out$expected <- out$expected/scale if (!is.null(rtemp$summ)) out$summary <- rtemp$summ } if (docount) out$event <- array(temp$pcount, dim=odims, dimnames=outdname) } out$observations <- nrow(mf) out$terms <- Terms na.action <- attr(mf, "na.action") if (length(na.action)) out$na.action <- na.action if (model) out$model <- mf else { if (x) out$x <- X if (y) out$y <- Y } class(out) <- 'pyears' out @ \subsection{Print and summary} The print function for pyear gives a very abbreviated printout: just a few lines. It works with pyears objects with or without a data component. <>= print.pyears <- function(x, ...) { if (!is.null(cl<- x$call)) { cat("Call:\n") dput(cl) cat("\n") } if (is.null(x$data)) { if (!is.null(x$event)) cat("Total number of events:", format(sum(x$event)), "\n") cat ( "Total number of person-years tabulated:", format(sum(x$pyears)), "\nTotal number of person-years off table:", format(x$offtable), "\n") } else { if (!is.null(x$data$event)) cat("Total number of events:", format(sum(x$data$event)), "\n") cat ( "Total number of person-years tabulated:", format(sum(x$data$pyears)), "\nTotal number of person-years off table:", format(x$offtable), "\n") } if (!is.null(x$summary)) { cat("Matches to the chosen rate table:\n ", x$summary) } cat("Observations in the data set:", x$observations, "\n") if (!is.null(x$na.action)) cat(" (", naprint(x$na.action), ")\n", sep='') cat("\n") invisible(x) } @ The summary function attempts to create output that looks like a pandoc table, which in turn makes it mesh nicely with Rstudio. Pandoc has 4 types of tables: with and without vertical bars and with single or multiple rows per cell. If the pyears object has only a single dimension then our output will be a simple table with a row or column for each of the output types (see the vertical argument). The result will be a simple table or a ``pipe'' table depending on the vline argument. For two or more dimensions the output follows the usual R strategy for printing an array, but with each ``cell'' containing all of the summaries for that combination of predictors, thus giving either a ``multiline'' or ``grid'' table. The default values of no vertical lines makes the tables appropriate for non-pandoc output such as a terminal session. <>= summary.pyears <- function(object, header=TRUE, call=header, n= TRUE, event=TRUE, pyears=TRUE, expected = TRUE, rate = FALSE, rr = expected, ci.r = FALSE, ci.rr = FALSE, totals=FALSE, legend=TRUE, vline = FALSE, vertical = TRUE, nastring=".", conf.level=0.95, scale= 1, ...) { # Usual checks if (!inherits(object, "pyears")) stop("input must be a pyears object") temp <- c(is.logical(header), is.logical(call), is.logical(n), is.logical(event) , is.logical(pyears), is.logical(expected), is.logical(rate), is.logical(ci.r), is.logical(rr), is.logical(ci.rr), is.logical(vline), is.logical(vertical), is.logical(legend), is.logical(totals)) tname <- c("header", "call", "n", "event", "pyears", "expected", "rate", "ci.r", "rr", "ci.rr", "vline", "vertical", "legend", "totals") if (any(!temp) || length(temp) != 14 || any(is.na(temp))) { stop("the ", paste(tname[!temp], collapse=", "), "argument(s) must be single logical values") } if (!is.numeric(conf.level) || conf.level <=0 || conf.level >=1 | length(conf.level) > 1 || is.na(conf.level) > 1) stop("conf.level must be a single numeric between 0 and 1") if (is.na(scale) || !is.numeric(scale) || length(scale) !=1 || scale <=0) stop("scale must be a value > 0") vname <- attr(terms(object), "term.labels") #variable names if (!is.null(object$data)) { # Extra work: restore the tables which had been unpacked into a df # All of the categories are factors in this case tdata <- object$data[vname] # the conditioning variables dname <- lapply(tdata, function(x) { if (is.factor(x)) levels(x) else sort(unique(x))}) # dimnames dd <- sapply(dname, length) # dim of arrays index <- tapply(tdata[,1], tdata) restore <- c('n', 'event', 'pyears', 'expected') #do these, if present restore <- restore[restore %in% names(object$data)] new <- lapply(object$data[restore], function(x) { temp <- array(0L, dim=dd, dimnames=dname) temp[index] <- x temp} ) object <- c(object, new) } if (is.null(object$expected)) { expected <- FALSE rr <- FALSE ci.rr <- FALSE } if (is.null(object$event)) { event <- FALSE rate <- FALSE ci.r <- FALSE rr <- FALSE ci.rr <- FALSE } # print out the front matter if (call && !is.null(object$call)) { cat("Call: ") dput(object$call) cat("\n") } if (header) { cat("number of observations =", object$observations) if (length(object$omit)) cat(" (", naprint(object$omit), ")\n", sep="") else cat("\n") if (object$offtable > 0) cat(" Total time lost (off table)", format(object$offtable), "\n") cat("\n") } # Add in totals if requested if (totals) { # if the pyear object was based on any time dependent cuts, then # the "n" component cannot be totaled up. tcut <- if (is.null(object$tcut)) TRUE else object$tcut object$n <- pytot(object$n, na=tcut) object$pyears <- pytot(object$pyears) if (event) object$event <- pytot(object$event) if (expected) object$expected <- pytot(object$expected) } dd <- dim(object$n) vname <- attr(terms(object), "term.labels") #variable names <> if (length(dd) ==1) { # 1 dimensional table <> } else { # more than 1 dimension <> } invisible(object) } <> @ <>= # Put the elements to be printed onto a list pname <- (tname[3:6])[c(n, event, pyears, expected)] plist <- object[pname] if (rate) { pname <- c(pname, "rate") plist$r <- scale* object$event/object$pyears } if (ci.r) { pname <- c(pname, "ci.r") plist$ci.r <- cipoisson(object$event, object$pyears, p=conf.level) *scale } if (rr) { pname <- c(pname, "rr") plist$rr <- object$event/object$expected } if (ci.rr) { pname <- c(pname, "ci.rr") plist$ci.rr <- cipoisson(object$event, object$expected, p=conf.level) } rname <- c(n = "N", event="Events", pyears= "Time", expected= "Expected events", rate = "Event rate", ci.r = "CI (rate)", rr= "Obs/Exp", ci.rr= "CI (O/E)") rname <- rname[pname] @ If there is only one dimension to the table we can forgo the top legend and use the object names as one of the margins. If \code{vertical=TRUE} the output types are vertical, otherwise they are horizontal. Format each element of the output separately. <>= cname <- names(object$n) #category names if (vertical) { # The person-years objects list across the top, categories up and down # This makes columns line up in a standard "R" way # The first column label is the variable name, content is the categories plist <- lapply(plist, pformat, nastring, ...) # make it character pcol <- sapply(plist, function(x) nchar(x[1])) #width of each one colwidth <- pmax(pcol, nchar(rname)) +2 for (i in 1:length(plist)) plist[[i]] <- strpad(plist[[i]], colwidth[i]) colwidth <- c(max(nchar(vname), nchar(cname)) +2, colwidth) leftcol <- list(strpad(cname, colwidth[1])) header <- strpad(c(vname, rname), colwidth) } else { # in this case each column will have different types of objects in it # alignment is the nuisance newmat <- pybox(plist, length(plist[[1]]), nastring, ...) colwidth <- pmax(nchar(cname), apply(nchar(newmat), 1, max)) +2 # turn the list sideways plist <- split(newmat, row(newmat)) for (i in 1:length(plist)) plist[[i]] <- strpad(plist[[i]], colwidth[i]) colwidth <- c(max(nchar(vname), nchar(rname)) +2, colwidth) leftcol <- list(strpad(rname, colwidth[1])) header <- strpad(c(vname, cname), colwidth) } # Now print it if (vline) { # use a pipe table cat(paste(header, collapse = "|"), "\n") cat(paste(strpad("-", colwidth, "-"), collapse="|"), "\n") temp <- do.call("paste", c(leftcol, plist, list(sep ="|"))) cat(temp, sep= '\n') } else { cat(paste(header, collapse = " "), "\n") cat(paste(strpad("-", colwidth, "-"), collapse=" "), "\n") temp <- do.call("paste", c(leftcol, plist, list(sep =" "))) cat(temp, sep='\n') } @ When there are more than one category in the pyears object then we use a special layout. Each 'cell' of the printed table has all of the values in it. <>= if (header) { # the header is itself a table width <- max(nchar(rname)) if (vline) { cat('+', strpad('-', width, '-'), "+\n", sep="") cat(paste0('|',strpad(rname, width), '|'), sep='\n') cat('+', strpad('-', width, '-'), "+\n\n", sep="") } else { cat(strpad('-', width, '-'), "\n") cat(strpad(rname, width), sep='\n') cat(strpad('-', width, '-'), "\n\n") } } tname <- vname[1:2] #names for the row and col rowname <- dimnames(object$n)[[1]] colname <- dimnames(object$n)[[2]] if (length(dd) > 2) newmat <- pybox(plist, c(dd[1],dd[2], prod(dd[-(1:2)])), nastring, ...) else newmat <- pybox(plist, dd, nastring, ...) if (length(dd) > 2) { newmat <- pybox(plist, c(dd[1],dd[2], prod(dd[-(1:2)])), nastring, ...) outer.label <- do.call("expand.grid", dimnames(object$n)[-(1:2)]) temp <- names(outer.label) for (i in 1:nrow(outer.label)) { # first the caption, then data cat(paste(":", paste(temp, outer.label[i,], sep="=")), '\n') pyshow(newmat[,,i,], tname, rowname, colname, vline) } } else { newmat <- pybox(plist, dd, nastring, ...) pyshow(newmat, tname, rowname, colname, vline) } @ Here are some character manipulation functions. The stringi package has more elegant versions of the pad function, but we don't need the speed. No one is going to print out thousands of lines. <>= strpad <- function(x, width, pad=' ') { # x = the string(s) to be padded out # width = width of desired string. nc <- nchar(x) added <- width - nc left <- pmax(0, floor(added/2)) # can't add negative space right <- pmax(0, width - (nc + left)) # right will be >= left if (all(right <=0)) { if (length(x) >= length(width)) x # nothing needs to be done else rep(x, length=length(width)) } else { # Each pad could be a different length. # Make a long string from which we can take a portion longpad <- paste(rep(pad, max(right)), collapse='') paste0(substring(longpad, 1, left), x, substring(longpad,1, right)) } } pformat <- function(x, nastring, ...) { # This is only called for single index tables, in vertical mode # Any matrix will be a confidence interval if (is.matrix(x)) ret <- paste(ifelse(is.na(x[,1]), nastring, format(x[,1], ...)), "-", ifelse(is.na(x[,2]), nastring, format(x[,2], ...))) else ret <- ifelse(is.na(x), nastring, format(x, ...)) } @ Create formatted boxes. We want all the decimal points to line up, so the format calls are in 3 parts: integer, real, and confidence interval. If there are confidence intervals, format their values and then paste together the left-right ends. The intermediag form \code{final} is a matrix with one column per statistic. At the end, reformat it as an array whose last dimension is the components. <>= pybox <- function(plist, dd, nastring, ...) { ci <- (substring(names(plist), 1,3) == "ci.") # the CI components int <- sapply(plist, function(x) all(x == floor(x) | is.na(x))) int <- (!ci & int) real<- (!ci & !int) nc <- prod(dd) final <- matrix("", nrow=nc, ncol=length(ci)) if (any(int)) { # integers if (any(sapply(plist[int], length) != nc)) stop("programming length error, notify package author") temp <- unlist(plist[int]) final[,int] <- ifelse(is.na(temp), nastring, format(temp)) } if (any(real)) { # floating point if (any(sapply(plist[real], length) != nc)) stop("programming length error, notify package author") temp <- unlist(plist[real]) final[,real] <- ifelse(is.na(temp), nastring, format(temp, ...)) } if (any(ci)) { if (any(sapply(plist[ci], length) != nc*2)) stop("programming length error, notify package author") temp <- unlist(plist[ci]) temp <- array(ifelse(is.na(temp), nastring, format(temp, ...)), dim=c(nc, 2, sum(ci))) final[,ci] <- paste(temp[,1,], temp[,2,], sep='-') } array(final, dim=c(dd, length(ci))) } @ This function prints out a box table. Each cell contains the full set of statistics that were requested. Most of the work is the creation of the appropriate spacing and special characters to create a valid pandoc table. <>= pyshow <- function(dmat, labels, rowname, colname, vline) { # Every column is the same width, except the first colwidth <- c(max(nchar(rowname), nchar(labels[1])), rep(max(nchar(dmat[1,1,]), nchar(colname)), length(colname))) colwidth[2] <- max(colwidth[2], nchar(labels[2])) ncol <- length(colwidth) dd <- dim(dmat) # vector of length 3, third dim is the statistics rline <- ceiling(dd[3]/2) #which line to put the row label on. if (vline) { # use a grid table cat("+", paste(strpad('-', colwidth, pad='-'), collapse='+'), "+\n", sep='') temp <- rep(' ', ncol); temp[2] <- labels[2] cat("|", paste(strpad(temp, colwidth), collapse="|"), "|\n", sep='') cat("|", paste(strpad(c(labels[1], colname), colwidth), collapse="|"), "|\n", sep='') cat("+", paste(strpad('=', colwidth, pad='='), collapse="+"), "+\n", sep='') for (i in 1:dd[1]) { for (j in 1:dd[3]) { #one printout line per stat if (j==rline) temp <- c(rowname[i], dmat[i,,j]) else temp <- c("", dmat[i,,j]) cat("|", paste(strpad(temp, colwidth), collapse='|'), "|\n", sep='') } cat("+", paste(strpad('-', colwidth, '-'), collapse='+'), "+\n", sep='') } } else { # use a multiline table cat(paste(strpad('-', colwidth, '-'), collapse='-'), "\n") temp <- rep(' ', ncol); temp[2] <- labels[2] cat(paste(strpad(temp, colwidth), collapse=" "), "\n") cat(paste(strpad(c(labels[1], colname), colwidth), collapse=" "), "\n") cat(paste(strpad('-', colwidth, pad='-'), collapse=" "), "\n") for (i in 1:dd[1]) { for (j in 1:dd[3]) { #one printout line per stat if (j==rline) temp <- c(rowname[i], dmat[i,,j]) else temp <- c("", dmat[i,,j]) cat(paste(strpad(temp, colwidth), collapse=' '), "\n") } if (i< dd[1]) cat(" \n") #blank line } cat(paste(strpad('-', colwidth, '-'), collapse='-'), "\n") } } @ This function adds a totals row to the data, for either the first or first and second dimensions. The ``n'' component can't be totaled, so we turn that into NA. <>= pytot <- function(x, na=FALSE) { dd <- dim(x) if (length(dd) ==1) { if (na) array(c(x, NA), dim= length(x) +1, dimnames=list(c(dimnames(x)[[1]], "Total"))) else array(c(x, sum(x)), dim= length(x) +1, dimnames=list(c(dimnames(x)[[1]], "Total"))) } else if (length(dd) ==2) { if (na) new <- rbind(cbind(x, NA), NA) else { new <- rbind(x, colSums(x)) new <- cbind(new, rowSums(new)) } array(new, dim=dim(x) + c(1,1), dimnames=list(c(dimnames(x)[[1]], "Total"), c(dimnames(x)[[2]], "Total"))) } else { # The general case index <- 1:length(dd) if (na) sum1 <- sum2 <- sum3 <- NA else { sum1 <- apply(x, index[-1], sum) # row sums sum2 <- apply(x, index[-2], sum) # col sums sum3 <- apply(x, index[-(1:2)], sum) # total sums } # create a new matrix and then fill it in d2 <- dd d2[1:2] <- dd[1:2] +1 dname <- dimnames(x) dname[[1]] <- c(dname[[1]], "Total") dname[[2]] <- c(dname[[2]], "Total") new <- array(x[1], dim=d2, dimnames=dname) # say dim(x) =(5,8,4); we want new[6,-9,] <- sum1; new[-6,9,] <- sum2 # and new[6,9,] <- sum3 # if dim is longer, we need to add more commas commas <- rep(',', length(dd) -2) eval(parse(text=paste("new[1:dd[1], 1:dd[2]", commas, "] <- x"))) eval(parse(text=paste("new[ d2[1],-d2[2]", commas, "] <- sum1"))) eval(parse(text=paste("new[-d2[1], d2[2]", commas, "] <- sum2"))) eval(parse(text=paste("new[ d2[1], d2[2]", commas, "] <- sum3"))) new } } @ \section{Accelerated Failure Time models} The [[surveg]] function fits parametric failure time models. This includes accerated failure time models, the Weibull, log-normal, and log-logistic models. It also fits as well as censored linear regression; with left censoring this is referred to in economics \emph{Tobit} regression. \subsection{Residuals} The residuals for a [[survreg]] model are one of several types \begin{description} \item[response] residual [[y]] value on the scale of the original data \item[deviance] an approximate deviance residual. A very bad idea statistically, retained for the sake of backwards compatability. \item[dfbeta] a matrix with one row per observation and one column per parameter showing the approximate influence of each observation on the final parameter value \item[dfbetas] the dfbeta residuals scaled by the standard error of each coefficient \item[working] residuals on the scale of the linear predictor \item[ldcase] likelihood displacement wrt case weights \item[ldresp] likelihood displacement wrt response changes \item[ldshape] likelihood displacement wrt changes in shape \item[matrix] matrix of derivatives of the log-likelihood wrt paramters \end{description} The other parameters are \begin{description} \item[rsigma] whether the scale parameters should be included in the result for dfbeta results. I can think of no reason why one would not want them --- unless of course the scale was fixed by the user, in which case there is no parameter. \item[collapse] optional vector of subject identifiers. This is for the case where a subject has multiple observations in a data set, and one wants to have residuals per subject rather than residuals per observation. \item[weighted] whether the residuals should be multiplied by the case weights. The sum of weighted residuals will be zero. \end{description} The routine starts with standard stuff, checking arguments for validity and etc. The two cases of response or working residuals require a lot less computation. and are the most common calls, so they are taken care of first. <>= # # Residuals for survreg objects residuals.survreg <- function(object, type=c('response', 'deviance', 'dfbeta', 'dfbetas', 'working', 'ldcase', 'ldresp', 'ldshape', 'matrix'), rsigma =TRUE, collapse=FALSE, weighted=FALSE, ...) { type <-match.arg(type) n <- length(object$linear.predictors) Terms <- object$terms if(!inherits(Terms, "terms")) stop("invalid terms component of object") # If the variance wasn't estimated then it has no error if (nrow(object$var) == length(object$coefficients)) rsigma <- FALSE # If there was a cluster directive in the model statment then remove # it. It does not correspond to a coefficient, and would just confuse # things later in the code. cluster <- untangle.specials(Terms,"cluster")$terms if (length(cluster) >0 ) Terms <- Terms[-cluster] strata <- attr(Terms, 'specials')$strata intercept <- attr(Terms, "intercept") response <- attr(Terms, "response") weights <- object$weights if (is.null(weights)) weighted <- FALSE <> <> <> <> } @ First retrieve the distribution, which is used multiple times. The common case is a character string pointing to some element of [[survreg.distributions]], but the other is a user supplied list of the form contained there. Some distributions are defined as the transform of another in which case we need to set [[itrans]] and [[dtrans]] and follow the link, otherwise the transformation and its inverse are the identity. <>= if (is.character(object$dist)) dd <- survreg.distributions[[object$dist]] else dd <- object$dist ytype <- attr(y, "type") if (is.null(dd$itrans)) { itrans <- dtrans <-function(x)x # reprise the work done in survreg to create a transformed y if (ytype=='left') y[,2] <- 2- y[,2] else if (type=='interval' && all(y[,3]<3)) y <- y[,c(1,3)] } else { itrans <- dd$itrans dtrans <- dd$dtrans # reprise the work done in survreg to create a transformed y tranfun <- dd$trans exactsurv <- y[,ncol(y)] ==1 if (any(exactsurv)) logcorrect <-sum(log(dd$dtrans(y[exactsurv,1]))) if (ytype=='interval') { if (any(y[,3]==3)) y <- cbind(tranfun(y[,1:2]), y[,3]) else y <- cbind(tranfun(y[,1]), y[,3]) } else if (ytype=='left') y <- cbind(tranfun(y[,1]), 2-y[,2]) else y <- cbind(tranfun(y[,1]), y[,2]) } if (!is.null(dd$dist)) dd <- survreg.distributions[[dd$dist]] deviance <- dd$deviance dens <- dd$density @ The next task is to decide what data we need. The response is always needed, but is normally saved as a part of the model. If it is a transformed distribution such as the Weibull (a transform of the extreme value) the saved object [[y]] is the transformed data, so we need to replicate that part of the survreg() code. (Why did I even allow for y=F in survreg? Because I was mimicing the lm function --- oh the long, long consequences of a design decision.) The covariate matrix [[x]] will be needed for all but response, deviance, and working residuals. If the model included a strata() term then there will be multiple scales, and the strata variable needs to be recovered. The variable [[sigma]] is set to a scalar if there are no strata, but otherwise to a vector with [[n]] elements containing the appropriate scale for each subject. The leverage type residuals all need the second derivative matrix. If there was a [[cluster]] statement in the model this will be found in [[naive.var]], otherwise in the [[var]] component. <>= if (is.null(object$naive.var)) vv <- object$var else vv <- object$naive.var need.x <- is.na(match(type, c('response', 'deviance', 'working'))) if (is.null(object$y) || !is.null(strata) || (need.x & is.null(object[['x']]))) mf <- stats::model.frame(object) if (is.null(object$y)) y <- model.response(mf) else y <- object$y if (!is.null(strata)) { temp <- untangle.specials(Terms, 'strata', 1) Terms2 <- Terms[-temp$terms] if (length(temp$vars)==1) strata.keep <- mf[[temp$vars]] else strata.keep <- strata(mf[,temp$vars], shortlabel=TRUE) strata <- as.numeric(strata.keep) nstrata <- max(strata) sigma <- object$scale[strata] } else { Terms2 <- Terms nstrata <- 1 sigma <- object$scale } if (need.x) { x <- object[['x']] #don't grab xlevels component if (is.null(x)) x <- model.matrix(Terms2, mf, contrasts.arg=object$contrasts) } @ The most common residual is type response, which requires almost no more work, for the others we need to create the matrix of derivatives before proceeding. We use the [[center]] component from the deviance function for the distribution, which returns the data point [[y]] itself for an exact, left, or right censored observation, and an appropriate midpoint for interval censored ones. <>= if (type=='response') { yhat0 <- deviance(y, sigma, object$parms) rr <- itrans(yhat0$center) - itrans(object$linear.predictor) } else { <> <> } @ The matrix of derviatives is used in all of the other cases. The starting point is the [[density]] function of the distribtion which return a matrix with columns of $F(x)$, $1-F(x)$, $f(x)$, $f'(x)/f(x)$ and $f''(x)/f(x)$. %' The matrix type residual contains columns for each of $$ L_i \quad \frac{\partial L_i}{\partial \eta_i} \quad \frac{\partial^2 L_i}{\partial \eta_i^2} \quad \frac{\partial L_i}{\partial \log(\sigma)} \quad \frac{\partial L_i}{\partial \log(\sigma)^2} \quad \frac{\partial^2 L_i}{\partial \eta \partial\log(\sigma)} $$ where $L_i$ is the contribution to the log-likelihood from each individual. Note that if there are multiple scales, i.e. a strata() term in the model, then terms 3--6 are the derivatives for that subject with respect to their \emph{particular} scale factor; derivatives with respect to all the other scales are zero for that subject. The log-likelihood can be written as \begin{align*} L &= \sum_{exact}\left[ \log(f(z_i)) -\log(\sigma_i) \right] + \sum_{censored} \log \left( \int_{z_i^l}^{z_i^u} f(u)du \right) \\ &\equiv \sum_{exact}\left[g_1(z_i) -\log(\sigma_i) \right] + \sum_{censored} \log(g_2(z_i^l, z_i^u)) \\ z_i &= (y_i - \eta_i)/ \sigma_i \end{align*} For the interval censored observations we have a $z$ defined at both the lower and upper endpoints. The linear predictor is $\eta = X\beta$. The derivatives are shown below. Note that $f(-\infty) = f(\infty) = F(-\infty)=0$, $F(\infty)=1$, $z^u = \infty$ for a right censored observation and $z^l = -\infty$ for a left censored one. \begin{align*} \frac{\partial g_1}{\partial \eta} &= - \frac{1}{\sigma} \left[\frac{f'(z)}{f(z)} \right] \\ %' \frac{\partial g_2}{\partial \eta} &= - \frac{1}{\sigma} \left[ \frac{f(z^u) - f(z^l)}{F(z^u) - F(z^l)} \right] \\ \frac{\partial^2 g_1}{\partial \eta^2} &= \frac{1}{\sigma^2} \left[ \frac{f''(z)}{f(z)} \right] - (\partial g_1 / \partial \eta)^2 \\ \frac{\partial^2 g_2}{\partial \eta^2} &= \frac{1}{\sigma^2} \left[ \frac{f'(z^u) - f'(z^l)}{F(z^u) - F(z^l)} \right] - (\partial g_2 / \partial \eta)^2 \\ \frac{\partial g_1}{\partial \log\sigma} && - \left[ \frac{zf'(z)}{f(z)} \right] \\ \frac{\partial g_2}{\partial \log\sigma} &= - \left[ \frac{z^uf(z^u) - z^lf(z^l)}{F(z^u) - F(z^l)} \right] \\ \frac{\partial^2 g_1}{\partial (\log\sigma)^2} &=& \left[ \frac{z^2 f''(z) + zf'(z)}{f(z)} \right] - (\partial g_1 / \partial \log\sigma)^2 \\ \frac{\partial^2 g_2}{\partial (\log\sigma)^2} &= \left[ \frac{(z^u)^2 f'(z^u) - (z^l)^2f'(z_l) } {F(z^u) - F(z^l)} \right] - \partial g_1 /\partial \log\sigma(1+\partial g_1 / \partial \log\sigma) \\ \frac{\partial^2 g_1}{\partial \eta \partial \log\sigma} &= \frac{zf''(z)}{\sigma f(z)} -\partial g_1/\partial \eta (1 + \partial g_1/\partial \log\sigma) \\ \frac{\partial^2 g_2}{\partial \eta \partial \log\sigma} &= \frac{z^uf'(z^u) - z^lf'(z^l)}{\sigma [F(z^u) - F(z^l)]} -\partial g_2/\partial \eta (1 + \partial g_2/\partial \log\sigma) \\ \end{align*} In the code [[z]] is the relevant point for exact, left, or right censored data, and [[z2]] the upper endpoint for an interval censored one. The variable [[tdenom]] contains the denominator for each subject (which is the same for all derivatives for that subject). For an interval censored observation we try to avoid numeric cancellation by using the appropriate tail of the distribution. For instance with $(z^l, z^u) = (12,15)$ the value of $F(x)$ will be very near 1 and it is better to subtract two upper tail values $(1-F)$ than two lower tail ones $F$. <>= status <- y[,ncol(y)] eta <- object$linear.predictors z <- (y[,1] - eta)/sigma dmat <- dens(z, object$parms) dtemp<- dmat[,3] * dmat[,4] #f' if (any(status==3)) { z2 <- (y[,2] - eta)/sigma dmat2 <- dens(z2, object$parms) } else { dmat2 <- dmat #dummy values z2 <- 0 } tdenom <- ((status==0) * dmat[,2]) + #right censored ((status==1) * 1 ) + #exact ((status==2) * dmat[,1]) + #left ((status==3) * ifelse(z>0, dmat[,2]-dmat2[,2], dmat2[,1] - dmat[,1])) #interval g <- log(ifelse(status==1, dmat[,3]/sigma, tdenom)) #loglik tdenom <- 1/tdenom dg <- -(tdenom/sigma) *(((status==0) * (0-dmat[,3])) + #dg/ eta ((status==1) * dmat[,4]) + ((status==2) * dmat[,3]) + ((status==3) * (dmat2[,3]- dmat[,3]))) ddg <- (tdenom/sigma^2) *(((status==0) * (0- dtemp)) + #ddg/eta^2 ((status==1) * dmat[,5]) + ((status==2) * dtemp) + ((status==3) * (dmat2[,3]*dmat2[,4] - dtemp))) ds <- ifelse(status<3, dg * sigma * z, tdenom*(z2*dmat2[,3] - z*dmat[,3])) dds <- ifelse(status<3, ddg* (sigma*z)^2, tdenom*(z2*z2*dmat2[,3]*dmat2[,4] - z * z*dmat[,3] * dmat[,4])) dsg <- ifelse(status<3, ddg* sigma*z, tdenom *(z2*dmat2[,3]*dmat2[,4] - z*dtemp)) deriv <- cbind(g, dg, ddg=ddg- dg^2, ds = ifelse(status==1, ds-1, ds), dds=dds - ds*(1+ds), dsg=dsg - dg*(1+ds)) @ Now, we can calcultate the actual residuals case by case. For the dfbetas there will be one column per coefficient, so if there are strata column 4 of the deriv matrix needs to be \emph{un}collapsed into a matrix with nstrata columns. The same manipulation is needed for the ld residuals. <>= if (type=='deviance') { yhat0 <- deviance(y, sigma, object$parms) rr <- (-1)*deriv[,2]/deriv[,3] #working residuals rr <- sign(rr)* sqrt(2*(yhat0$loglik - deriv[,1])) } else if (type=='working') rr <- (-1)*deriv[,2]/deriv[,3] else if (type=='dfbeta' || type== 'dfbetas' || type=='ldcase') { score <- deriv[,2] * x # score residuals if (rsigma) { if (nstrata > 1) { d4 <- matrix(0., nrow=n, ncol=nstrata) d4[cbind(1:n, strata)] <- deriv[,4] score <- cbind(score, d4) } else score <- cbind(score, deriv[,4]) } rr <- score %*% vv if (type=='dfbetas') rr <- rr %*% diag(1/sqrt(diag(vv))) if (type=='ldcase') rr<- rowSums(rr*score) } else if (type=='ldresp') { rscore <- deriv[,3] * (x * sigma) if (rsigma) { if (nstrata >1) { d6 <- matrix(0., nrow=n, ncol=nstrata) d6[cbind(1:n, strata)] <- deriv[,6]*sigma rscore <- cbind(rscore, d6) } else rscore <- cbind(rscore, deriv[,6] * sigma) } temp <- rscore %*% vv rr <- rowSums(rscore * temp) } else if (type=='ldshape') { sscore <- deriv[,6] *x if (rsigma) { if (nstrata >1) { d5 <- matrix(0., nrow=n, ncol=nstrata) d5[cbind(1:n, strata)] <- deriv[,5] sscore <- cbind(sscore, d5) } else sscore <- cbind(sscore, deriv[,5]) } temp <- sscore %*% vv rr <- rowSums(sscore * temp) } else { #type = matrix rr <- deriv } @ Finally the two optional steps of adding case weights and collapsing over subject id. <>= #case weights if (weighted) rr <- rr * weights #Expand out the missing values in the result if (!is.null(object$na.action)) { rr <- naresid(object$na.action, rr) if (is.matrix(rr)) n <- nrow(rr) else n <- length(rr) } # Collapse if desired if (!missing(collapse)) { if (length(collapse) !=n) stop("Wrong length for 'collapse'") rr <- drop(rowsum(rr, collapse)) } rr @ \section{Survival curves} The survfit function was set up as a method so that we could apply the function to both formulas (to compute the Kaplan-Meier) and to coxph objects. The downside to this is that the manual pages get a little odd, but from a programming perspective it was a good idea. At one time, long long ago, we allowed the function to be called with ``Surv(time, status)'' as the formula, i.e., without a tilde. That was a bad idea, now abandoned. A note on times: one of the things that drove me nuts was the problem of ``tied but not quite tied'' times. As an example consider two values of 24173 = 23805 + 368. These are values from an actual study with times in days. However, the user chose to use age in years, and saved those values out in a CSV file, resulting in values for the above of 66.18206708000000 and 66.18206708000001. The R phrase \code{unique(x)} sees these two values as distinct but \code{table(x)} and \code{tapply} see it as a single value since they first apply \code{factor} to the values, and that in turn uses \code{as.character}. A transition through CSV is not necessary: <>= tfun <- function(start, gap) { as.numeric(start)/365.25 - as.numeric(start + gap)/365.25 } test <- logical(200) for (i in 1:200) { test[i] <- tfun(as.Date("2010/01/01"), 29) == tfun(as.Date("2010/01/01") + i, 29) } table(test) @ The number of FALSE entries in the table depends on machine, compiler, and a host of other issues. There is discussion of this general issue in the R FAQ: ``why doesn't R think these numbers are equal''. The Kaplan-Meier and Cox model both pay careful attention to ties, and so both now use the \code{aeqSurv} routine to first preprocess the time data. It uses the same rules as \code{all.equal} to adjudicate ties and near ties. <>= survfit <- function(formula, ...) { UseMethod("survfit") } <> <> <> @ The result of a survival curve will have a \code{surv} or \code{pstate} component that is a vector or a matrix, and an optional strata component. From a user's point of view this is an object with [strata, newdata, state] as dimensions, where only 1, 2 or all three of these may appear. The first is always present, and is essentially the number of distinct curves created by the right-hand side of the equation (or by the strata in a coxph model). The newdata portion appears for survival curves from a Cox model, when curves for multiple covariate patterns were requested; the state portion only from a multi-state model; or both for a multi-state Cox model. The \code{surv} component contains the time points for the first stratum, the second, third, etc stacked one above the other. As with R matrices, if only 1 subscript is given for an array or matrix of curves, we treat the collection of curves as a vector of curves. We need to make sure that the new object has the same order of elements as the old -- users count on this. <>= dim.survfit <- function(x) { d1name <- "strata" d2name <- "data" d3name <- "states" if (is.null(x$strata)) d1 <- 1 else d1 <- length(x$strata) if (is.null(x$newdata)) {d2 <- d2name <- NULL} else d2 <- nrow(x$newdata) if (is.null(x$states)) {d3 <- d3name <- NULL} else d3 <- length(x$states) if (inherits(x, "survfitcox") && is.null(d2) && is.null(d3) && is.matrix(x$surv)) { # older style survfit.coxph object, before I added newdata to the output d2name <- "data" d2 <- ncol(x$surv) } dd <- c(d1, d2, d3) names(dd) <- c(d1name, d2name, d3name) if (is.null(dd)) 1 else dd } # there is a separate function for survfitms objects "[.survfit" <- function(x, ... , drop=TRUE) { nmatch <- function(indx, target) { # This function lets R worry about character, negative, or # logical subscripts. # It always returns a set of positive integer indices temp <- 1:length(target) names(temp) <- target temp[indx] } if (!inherits(x, "survfit")) stop("[.survfit called on non-survfit object") # ndots <- ...length() # the simplest, but not avail in R 3.4 # ndots <- length(list(...))# fails if any are missing, e.g. fit[,2] ndots <- if (missing(drop)) nargs()-1 else nargs()-2 # a workaround dd <- dim(x) dtype <- match(names(dd), c("strata", "data", "states")) if (ndots >0 && !missing(..1)) i <- ..1 else i <- NULL if (ndots> 1 && !missing(..2)) j <- ..2 else j <- NULL if (ndots > length(dd)) stop("incorrect number of dimensions") if (length(dtype) > 2) stop("invalid survfit object") # should never happen if (is.null(i) && is.null(j)) { # called with no subscripts given -- return x untouched return(x) } # Code below is easier if "i" is always the strata if (dtype[1] !=1) { dtype <- c(1, dtype) j <- i; i <- NULL dd <- c(1, dd) ndots <- ndots +1 } # We need to make a new one newx <- vector("list", length(x)) names(newx) <- names(x) for (k in c("logse", "version", "conf.int", "conf.type", "type", "call")) if (!is.null(x[[k]])) newx[[k]] <- x[[k]] class(newx) <- class(x) if (ndots== 1 && length(dd)==2) { # one subscript given for a two dimensional object # If one of the dimensions is 1, it is easier for me to fill in i and j if (dd[1]==1) {j <- i; i<- 1} else if (dd[2]==1) j <- 1 else { # the user has a mix of rows/cols index <- 1:prod(dd) itemp <- matrix(index, nrow=dd[1]) keep <- itemp[i] # illegal subscripts will generate an error if (length(keep) == length(index) && all(keep==index)) return(x) ii <- row(itemp)[keep] jj <- col(itemp)[keep] # at this point we have a matrix subscript of (ii, jj) # expand into a long pair of rows and cols temp <- split(seq(along=x$time), rep(1:length(x$strata), x$strata)) indx1 <- unlist(temp[ii]) # rows of the surv object indx2 <- rep(jj, x$strata[ii]) # return with each curve as a separate strata newx$n <- x$n[ii] for (k in c("time", "n.risk", "n.event", "n.censor", "n.enter")) if (!is.null(x[[k]])) newx[[k]] <- (x[[k]])[indx1] k <- cbind(indx1, indx2) for (j in c("surv", "std.err", "upper", "lower", "cumhaz", "std.chaz", "influence.surv", "influence.chaz")) if (!is.null(x[[j]])) newx[[j]] <- (x[[j]])[k] temp <- x$strata[ii] names(temp) <- 1:length(ii) newx$strata <- temp return(newx) } } # irow will be the rows that need to be taken # j the columns (of present) if (is.null(x$strata)) { if (is.null(i) || all(i==1)) irow <- seq(along=x$time) else stop("subscript out of bounds") newx$n <- x$n } else { if (is.null(i)) indx <- seq(along= x$strata) else indx <- nmatch(i, names(x$strata)) #strata to keep if (any(is.na(indx))) stop(paste("strata", paste(i[is.na(indx)], collapse=' '), 'not matched')) # Now, indx may not be in order: some can use curve[3:2] to reorder # The list/unlist construct will reorder the data temp <- split(seq(along=x$time), rep(1:length(x$strata), x$strata)) irow <- unlist(temp[indx]) if (length(indx) <=1 && drop) newx$strata <- NULL else newx$strata <- x$strata[i] newx$n <- x$n[indx] if (length(indx) ==1 & drop) x$strata <- NULL else newx$strata <- x$strata[indx] } if (length(dd)==1) { # no j dimension for (k in c("time", "n.risk", "n.event", "n.censor", "n.enter", "surv", "std.err", "cumhaz", "std.chaz", "upper", "lower", "influence.surv", "influence.chaz")) if (!is.null(x[[k]])) newx[[k]] <- (x[[k]])[irow] } else { # 2 dimensional object if (is.null(j)) j <- seq.int(ncol(x$surv)) # If the curve has been selected by strata and keep has only # one row, we don't want to lose the second subscript too if (length(irow)==1) drop <- FALSE for (k in c("time", "n.risk", "n.event", "n.censor", "n.enter")) if (!is.null(x[[k]])) newx[[k]] <- (x[[k]])[irow] for (k in c("surv", "std.err", "cumhaz", "std.chaz", "upper", "lower", "influence.surv", "influence.chaz")) if (!is.null(x[[k]])) newx[[k]] <- (x[[k]])[irow, j, drop=drop] } newx } @ \subsection{Kaplan-Meier} The most common use of the survfit function is with a formula as the first argument, and the most common outcome of such a call is a Kaplan-Meier curve. The id argument is from an older version of the competing risks code; most people will use [[cluster(id)]] in the formula instead. The istate argument only applies to competing risks, but don't print an error message if it is accidentally there. <>= survfit.formula <- function(formula, data, weights, subset, na.action, stype=1, ctype=1, id, cluster, istate, timefix=TRUE, etype, error, ...) { Call <- match.call() Call[[1]] <- as.name('survfit') #make nicer printout for the user # create a copy of the call that has only the arguments we want, # and use it to call model.frame() indx <- match(c('formula', 'data', 'weights', 'subset','na.action', 'istate', 'id', 'cluster', "etype"), names(Call), nomatch=0) #It's very hard to get the next error message other than malice # eg survfit(wt=Surv(time, status) ~1) if (indx[1]==0) stop("a formula argument is required") temp <- Call[c(1, indx)] temp[[1L]] <- quote(stats::model.frame) mf <- eval.parent(temp) Terms <- terms(formula, c("strata", "cluster")) ord <- attr(Terms, 'order') if (length(ord) & any(ord !=1)) stop("Interaction terms are not valid for this function") n <- nrow(mf) Y <- model.extract(mf, 'response') if (!is.Surv(Y)) stop("Response must be a survival object") casewt <- model.extract(mf, "weights") if (is.null(casewt)) casewt <- rep(1.0, n) else { if (!is.numeric(casewt)) stop("weights must be numeric") if (any(!is.finite(casewt))) stop("weights must be finite") if (any(casewt <0)) stop("weights must be non-negative") casewt <- as.numeric(casewt) # transform integer to numeric } if (!is.null(attr(Terms, 'offset'))) warning("Offset term ignored") id <- model.extract(mf, 'id') istate <- model.extract(mf,"istate") cluster <- model.extract(mf, "cluster") temp <- untangle.specials(Terms, "cluster") if (length(temp$vars)>0) { if (length(cluster) >0) stop("cluster appears as both an argument and a model term") if (length(temp$vars) > 1) stop("can not have two cluster terms") cluster <- mf[[temp$vars]] Terms <- Terms[-temp$terms] } ll <- attr(Terms, 'term.labels') if (length(ll) == 0) X <- factor(rep(1,n)) # ~1 on the right else X <- strata(mf[ll]) if (!is.Surv(Y)) stop("y must be a Surv object") # Backwards support for the now-depreciated etype argument etype <- model.extract(mf, "etype") if (!is.null(etype)) { if (attr(Y, "type") == "mcounting" || attr(Y, "type") == "mright") stop("cannot use both the etype argument and mstate survival type") if (length(istate)) stop("cannot use both the etype and istate arguments") status <- Y[,ncol(Y)] etype <- as.factor(etype) temp <- table(etype, status==0) if (all(rowSums(temp==0) ==1)) { # The user had a unique level of etype for the censors newlev <- levels(etype)[order(-temp[,2])] #censors first } else newlev <- c(" ", levels(etype)[temp[,1] >0]) status <- factor(ifelse(status==0,0, as.numeric(etype)), labels=newlev) if (attr(Y, 'type') == "right") Y <- Surv(Y[,1], status, type="mstate") else if (attr(Y, "type") == "counting") Y <- Surv(Y[,1], Y[,2], status, type="mstate") else stop("etype argument incompatable with survival type") } # Deal with the near-ties problem if (!is.logical(timefix) || length(timefix) > 1) stop("invalid value for timefix option") if (timefix) newY <- aeqSurv(Y) else newY <- Y # Call the appropriate helper function if (attr(Y, 'type') == 'left' || attr(Y, 'type') == 'interval') temp <- survfitTurnbull(X, newY, casewt, ...) else if (attr(Y, 'type') == "right" || attr(Y, 'type')== "counting") temp <- survfitKM(X, newY, casewt, stype=stype, ctype=ctype, id=id, cluster=cluster, ...) else if (attr(Y, 'type') == "mright" || attr(Y, "type")== "mcounting") temp <- survfitCI(X, newY, weights=casewt, stype=stype, ctype=ctype, id=id, cluster=cluster, istate=istate, ...) else { # This should never happen stop("unrecognized survival type") } if (is.null(temp$states)) class(temp) <- 'survfit' else class(temp) <- c("survfitms", "survfit") if (!is.null(attr(mf, 'na.action'))) temp$na.action <- attr(mf, 'na.action') temp$call <- Call temp } @ Once upon a time I allowed survfit to be called without the `\textasciitilde 1' portion of the formula. This was a mistake for multiple reasons, but the biggest problem is timing. If the subject has a data statement but the first argument is not a formula, R needs to evaluate Surv(t,s) to know that it is a survival object, but it also needs to know that this is a survival object before evaluation in order to dispatch the correct method. The method below helps give a useful error message in some cases. <>= survfit.Surv <- function(formula, ...) stop("the survfit function requires a formula as its first argument") @ The last peice in this file is the function to create confidence intervals. It is called from multiple different places so it is well to have one copy. If $p$ is the survival probability and $s(p)$ its standard error, we can do confidence intervals on the simple scale of $ p \pm 1.96 s(p)$, but that does not have very good properties. Instead use a transformation $y = f(p)$ for which the standard error is $s(p) f'(p)$, leading to the confidence interval \begin{equation*} f^{-1}\left(f(p) +- 1.96 s(p)f'(p) \right) \end{equation*} Here are the supported transformations. \begin{center} \begin{tabular}{rccc} &$f$& $f'$ & $f^{-1}$ \\ \hline log & $\log(p)$ & $1/p$ & $ \exp(y)$ \\ log-log & $\log(-\log(p))$ & $1/\left[ p \log(p) \right]$ & $\exp(-\exp(y)) $ \\ logit & $\log(p/1-p)$ & $1/[p (1-p)]$ & $1- 1/\left[1+ \exp(y)\right]$ \\ arcsin & $\arcsin(\sqrt{p})$ & $1/(2 \sqrt{p(1-p)})$ &$\sin^2(y)$ \\ \end{tabular} \end{center} Plain intervals can give limits outside of (0,1), we truncate them when this happens. The log intervals can give an upper limit greater than 1, but the lower limit is always valid, and the log-log and logit. The arcsin require truncation in the middle of the formula. In all cases we return NA as the CI for survival=0: it makes the graphs look better. Some of the underlying routines compute the standard error of $p$ and some the standard error of $\log(p)$. The \code{selow} argument is used for the modified lower limits of Dory and Korn. When this is used for cumulative hazards the ulimit arg will be FALSE: no upper limit of 1. <>= survfit_confint <- function(p, se, logse=TRUE, conf.type, conf.int, selow, ulimit=TRUE) { zval <- qnorm(1- (1-conf.int)/2, 0,1) if (missing(selow)) scale <- 1.0 else scale <- ifelse(selow==0, 1.0, selow/se) # avoid 0/0 at the origin if (!logse) se <- ifelse(se==0, 0, se/p) # se of log(survival) = log(p) if (conf.type=='plain') { se2 <- se* p * zval # matches equation 4.3.1 in Klein & Moeschberger if (ulimit) list(lower= pmax(p -se2*scale, 0), upper = pmin(p + se2, 1)) else list(lower= pmax(p -se2*scale, 0), upper = p + se2) } else if (conf.type=='log') { #avoid some "log(0)" messages xx <- ifelse(p==0, NA, p) se2 <- zval* se temp1 <- exp(log(xx) - se2*scale) temp2 <- exp(log(xx) + se2) if (ulimit) list(lower= temp1, upper= pmin(temp2, 1)) else list(lower= temp1, upper= temp2) } else if (conf.type=='log-log') { xx <- ifelse(p==0 | p==1, NA, p) se2 <- zval * se/log(xx) temp1 <- exp(-exp(log(-log(xx)) - se2*scale)) temp2 <- exp(-exp(log(-log(xx)) + se2)) list(lower = temp1 , upper = temp2) } else if (conf.type=='logit') { xx <- ifelse(p==0, NA, p) # avoid log(0) messages se2 <- zval * se *(1 + xx/(1-xx)) temp1 <- 1- 1/(1+exp(log(p/(1-p)) - se2*scale)) temp2 <- 1- 1/(1+exp(log(p/(1-p)) + se2)) list(lower = temp1, upper=temp2) } else if (conf.type=="arcsin") { xx <- ifelse(p==0, NA, p) se2 <- .5 *zval*se * sqrt(xx/(1-xx)) list(lower= (sin(pmax(0, asin(sqrt(xx)) - se2*scale)))^2, upper= (sin(pmin(pi/2, asin(sqrt(xx)) + se2)))^2) } else stop("invalid conf.int type") } @ \subsection{Kaplan-Meier} This routine has been rewritten more times than any other in the package, as we trade off simplicty of the code with execution speed. This version does all of the oranizational work in S and calls a C routine for each separate curve. The first code did everything in C but was too hard to maintain and the most recent function did nearly everything in S. Introduction of robust variance prompted a movement of more of the code into C since that calculation is computationally intensive. <>= survfitKM <- function(x, y, weights=rep(1.0,length(x)), stype=1, ctype=1, se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none', 'logit', "arcsin"), conf.lower=c('usual', 'peto', 'modified'), start.time, id, cluster, influence=FALSE, type) { if (!missing(type)) { if (!is.character(type)) stop("type argument must be character") # older style argument is allowed temp <- charmatch(type, c("kaplan-meier", "fleming-harrington", "fh2")) if (is.na(temp)) stop("invalid value for 'type'") type <- c(1,3,4)[temp] } else { if (!(ctype %in% 1:2)) stop("ctype must be 1 or 2") if (!(stype %in% 1:2)) stop("stype must be 1 or 2") type <- as.integer(2*stype + ctype -2) } conf.type <- match.arg(conf.type) conf.lower<- match.arg(conf.lower) if (is.logical(conf.int)) { # A common error is for users to use "conf.int = FALSE" # it's not correct, but allow it if (!conf.int) conf.type <- "none" conf.int <- .95 } # The user can call with cluster, id, both, or neither # If only id, treat it as the cluster too # If influence is requested, this implies clustering has.cluster <- !(missing(cluster) || length(cluster)==0) has.id <- !(missing(id) || length(id)==0) if (has.id) id <- as.factor(id) if (influence && !(has.cluster || has.id)) { cluster <- seq(along=x) has.cluster <- TRUE } if (has.cluster) { if (is.factor(cluster)) { clname <- levels(cluster) cluster <- as.integer(cluster) } else { clname <- sort(unique(cluster)) cluster <- match(cluster, clname) } ncluster <- length(clname) } else { if (has.id) { # treat the id as both identifier and clustering clname <- levels(id) cluster <- as.integer(id) ncluster <- length(clname) } else { ncluster <- 0 # has neither clname <- NULL } } if (is.logical(influence)) { # TRUE/FALSE is treated as all or nothing if (!influence) influence <- 0L else influence <- 3L } else if (!is.numeric(influence)) stop("influence argument must be numeric or logical") if (!(influence %in% 0:3)) stop("influence argument must be 0, 1, 2, or 3") else influence <- as.integer(influence) if (!se.fit) { # if the user asked for no standard error, skip any robust computation ncluster <- 0L influence <- 0L } if (!is.Surv(y)) stop("y must be a Surv object") if (attr(y, 'type') != 'right' && attr(y, 'type') != 'counting') stop("Can only handle right censored or counting data") ny <- ncol(y) # Will be 2 for right censored, 3 for counting # The calling routine has used 'strata' on x, so it is a factor with # no unused levels. But just in case a user called this... if (!is.factor(x)) stop("x must be a factor") xlev <- levels(x) # Will supply names for the curves x <- as.integer(x) # keep the integer index if (missing(start.time)) time0 <- min(0, y[,ny-1]) else time0 <- start.time <> <> } @ At each event time we have \begin{itemize} \item n(t) = number at risk = sum of weigths for those at risk \item d(t) = number of events = sum of weights for the deaths \item e(t) = unweighted number of events \end{itemize} From this we can calculate the Kapan-Meier and Nelson-Aalen estimates. The Fleming-Harrington estimate is the analog of the Efron approximation in a Cox model. When there are no case weights the FH idea is quite simple. Assume that the real data is not tied, but we saw a coarsened version. If we see 3 events out of 10 subjects at risk the NA increment is 3/10 but the FH is 1/10 + 1/9 + 1/8, it is what we would have seen with the uncoarsened data. If there are case weights we give each of the 3 terms a 1/3 chance of being the first, second, or third event \begin{align*} KM(t) &= KM(t-) (1- d(t)/n(t) \\ NA(t) &= NA(t-) + d(t)/n(t) \\ FH(t) &= FH(t-) + \sum_{i=1}^{3} \frac{(d(t)/3}{n(t)- d(t)(i-1)/3} \end{align*} When one of these 3 subjects has an event but continues, which can happen with start/stop data, then this gets trickier: the second $d$ in the last equation above should include only the other 2. The idea is that each of those will certainly be present for the first event, has 2/3 chance of being present for the second, and 1/3 for the third. If we think of the size of the denominator as a random variable $Z$, an exact solution would use $E(1/Z)$, the FH uses $1/E(Z)$ and the NA uses $1/\max(Z)$ as the denominator for each of the 3 deaths. One problem with survival is near ties in Y: table, unique, ==, etc. can do different things in this case. Luckily, the parent survfit routine has dealt with that by using the \code{aeqSurv} function. The underlying C code allows the sort1/sort2 vectors to be a different length than y, weights, and cluster. When there is only one curve we use that to our advantage to avoid creating a new copy of the last 3, passing in the original data. When there are multiple curves I had an internal debate about efficiency. Is is better to make a subset of y for each curve = more memory, or keep the original y and address a different subset in each C call = worse memory cache performance? I don't know the answer. In either case the cluster vector needs to be re-done for each group. Say that curve 1 uses subjects 1-10 and curve 2 uses 11-n: we don't want the first curve to compute or keep the zero influence values for all the subjects who are not in it. Especially when returning the influence matrix, which can get too large for memory. If ny==3 and has.id is true, then do some extra setup work, which is to create a position vector of 1=first obs for the subject, 2 = last, 3=both, 0= other, for each set of back to back times. This is used to prevent counting a subject with data of (0,10], (10,15] in both the censored at 10 and entered at 10 totals. We assume the data has been vetted to prevent overlapping intervals, so that it suffices to sort by ending time. If a subject has holes in their timeline they will have more than one first and last indicator. <>= if (ny==3 & has.id) position <- survflag(y, id) else position <- integer(0) if (length(xlev) ==1) {# only one group if (ny==2) { sort1 <- NULL sort2 <- order(y[,1]) } else { sort2 <- order(y[,2]) sort1 <- order(y[,1]) } toss <- (y[sort2, ny-1] < time0) if (any(toss)) { # Some obs were removed by the start.time argument sort2 <- sort2[!toss] if (ny ==3) { index <- match(which(toss), sort1) sort1 <- sort1[-index] } } n.used <- length(sort2) if (ncluster > 0) cfit <- .Call(Csurvfitkm, y, weights, sort1-1L, sort2-1L, type, cluster-1L, ncluster, position, influence) else cfit <- .Call(Csurvfitkm, y, weights, sort1-1L, sort2-1L, type, 0L, 0L, position, influence) } else { # multiple groups ngroup <- length(xlev) cfit <- vector("list", ngroup) n.used <- integer(ngroup) if (influence) clusterid <- cfit # empty list of group id values for (i in 1:ngroup) { keep <- which(x==i & y[,ny-1] >= time0) if (length(keep) ==0) next; # rare case where all are < start.time ytemp <- y[keep,] n.used[i] <- nrow(ytemp) if (ny==2) { sort1 <- NULL sort2 <- order(ytemp[,1]) } else { sort2 <- order(ytemp[,2]) sort1 <- order(ytemp[,1]) } # Cluster is a nuisance: every curve might have a different set # We need to relabel them from 1 to "number of unique clusters in this # curve for the C routine if (ncluster > 0) { c2 <- cluster[keep] c.unique <- sort(unique(c2)) nc <- length(c.unique) c2 <- match(c2, c.unique) # renumber them if (influence >0) { clusterid[[i]] <-c.unique } } if (ncluster > 0) cfit[[i]] <- .Call(Csurvfitkm, ytemp, weights[keep], sort1 -1L, sort2 -1L, type, c2 -1L, length(c.unique), position, influence) else cfit[[i]] <- .Call(Csurvfitkm, ytemp, weights[keep], sort1 -1L, sort2 -1L, type, 0L, 0L, position, influence) } } @ <>= # create the survfit object if (length(n.used) == 1) { rval <- list(n= length(x), time= cfit$time, n.risk = cfit$n[,4], n.event= cfit$n[,5], n.censor=cfit$n[,6], surv = cfit$estimate[,1], std.err = cfit$std[,1], cumhaz = cfit$estimate[,2], std.chaz = cfit$std[,2]) } else { strata <- sapply(cfit, function(x) nrow(x$n)) names(strata) <- xlev # we need to collapse the curves rval <- list(n= as.vector(table(x)), time = unlist(lapply(cfit, function(x) x$time)), n.risk= unlist(lapply(cfit, function(x) x$n[,4])), n.event= unlist(lapply(cfit, function(x) x$n[,5])), n.censor=unlist(lapply(cfit, function(x) x$n[,6])), surv = unlist(lapply(cfit, function(x) x$estimate[,1])), std.err =unlist(lapply(cfit, function(x) x$std[,1])), cumhaz =unlist(lapply(cfit, function(x) x$estimate[,2])), std.chaz=unlist(lapply(cfit, function(x) x$std[,2])), strata=strata) if (ny==3) rval$n.enter <- unlist(lapply(cfit, function(x) x$n[,8])) } if (ny ==3) { rval$n.enter <- cfit$n[,8] rval$type <- "counting" } else rval$type <- "right" if (se.fit) { rval$logse = (ncluster==0 || (type==2 || type==4)) # se(log S) or se(S) rval$conf.int = conf.int rval$conf.type= conf.type if (conf.lower != "usual") rval$conf.lower = conf.lower if (conf.lower == "modified") { nstrat = length(n.used) events <- rval$n.event >0 if (nstrat ==1) events[1] <- TRUE else events[1 + cumsum(c(0, rval$strata[-nstrat]))] <- TRUE zz <- 1:length(events) n.lag <- rep(rval$n.risk[events], diff(c(zz[events], 1+max(zz)))) # # n.lag = the # at risk the last time there was an event (or # the first time of a strata) # } std.low <- switch(conf.lower, 'usual' = rval$std.err, 'peto' = sqrt((1-rval$surv)/ rval$n.risk), 'modified' = rval$std.err * sqrt(n.lag/rval$n.risk)) if (conf.type != "none") { ci <- survfit_confint(rval$surv, rval$std.err, logse=rval$logse, conf.type, conf.int, std.low) rval <- c(rval, list(lower=ci$lower, upper=ci$upper)) } } else { # for consistency don't return the se if std.err=FALSE rval$std.err <- NULL rval$std.chaz <- NULL } # Add the influence, if requested by the user # remember, if type= 3 or 4, the survival influence has to be constructed. if (influence > 0) { if (type==1 | type==2) { if (influence==1 || influence ==3) { if (length(xlev)==1) { rval$influence.surv <- cfit$influence1 row.names(rval$influence.surv) <- clname } else { temp <- vector("list", ngroup) for (i in 1:ngroup) { temp[[i]] <- cfit[[i]]$influence1 row.names(temp[[i]]) <- clname[clusterid[[i]]] } rval$influence.surv <- temp } } if (influence==2 || influence==3) { if (length(xlev)==1) { rval$influence.chaz <- cfit$influence2 row.names(rval$influence.chaz) <- clname } else { temp <- vector("list", ngroup) for (i in 1:ngroup) { temp[[i]] <- cfit[[i]]$influence2 row.names(temp[[i]]) <- clname[clusterid[[i]]] } rval$influence.chaz <- temp } } } else { # everything is derived from the influence of the cumulative hazard if (length(xlev) ==1) { temp <- cfit$influence2 row.names(temp) <- clname } else { temp <- vector("list", ngroup) for (i in 1:ngroup) { temp[[i]] <- cfit[[i]]$influence2 row.names(temp[[i]]) <- clname[clusterid[[i]]] } } if (influence==2 || influence ==3) rval$influence.chaz <- temp if (influence==1 || influence==3) { # if an obs moves the cumulative hazard up, then it moves S down if (length(xlev) ==1) rval$influence.surv <- -temp * rep(rval$surv, each=nrow(temp)) else { for (i in 1:ngroup) temp[[i]] <- -temp[[i]] * rep(cfit[[i]]$estimate[,1], each=nrow(temp[[i]])) rval$influence.surv <- temp } } } } if (!missing(start.time)) rval$start.time <- start.time rval @ Now for the real work using C routines. My standard for a variable named ``zed'' is to use zed2 for the S object and zed for the data part of the object; the latter is what the C code works with. <>= #include #include "survS.h" #include "survproto.h" SEXP survfitkm(SEXP y2, SEXP weight2, SEXP sort12, SEXP sort22, SEXP type2, SEXP id2, SEXP nid2, SEXP position2, SEXP influence2) { int i, i1, i2, j, k, person1, person2; int nused, nid, type, influence; int ny, ntime; double *tstart=0, *stime, *status, *wt; double v1, v2, dtemp, haz; double temp, dtemp2, dtemp3, frac, btemp; int *sort1=0, *sort2, *id=0; static const char *outnames[]={"time", "n", "estimate", "std.err", "influence1", "influence2", ""}; SEXP rlist; double *gwt=0, *inf1=0, *inf2=0; /* =0 to silence -Wall */ int *gcount=0; int n1, n2, n3, n4; int *position=0, hasid; double wt1, wt2, wt3, wt4; /* output variables */ double *n[10], *dtime, *kvec, *nvec, *std[2], *imat1=0, *imat2=0; /* =0 to silence -Wall*/ double km, nelson; /* current estimates */ /* map the input data */ ny = ncols(y2); /* 2= ordinary survival 3= start,stop data */ nused = nrows(y2); if (ny==3) { tstart = REAL(y2); stime = tstart + nused; sort1 = INTEGER(sort12); } else stime = REAL(y2); status= stime +nused; wt = REAL(weight2); sort2 = INTEGER(sort22); nused = LENGTH(sort22); type = asInteger(type2); nid = asInteger(nid2); if (LENGTH(position2) > 0) { hasid =1; position = INTEGER(position2); } else hasid=0; influence = asInteger(influence2); /* nused was used for two things just above. The first was the length of the input data y, only needed for a moment to set up tstart, stime, and status. The second is the number of these observations we will actually use, which is the length of sort2. This routine can be called multiple times with sort1/sort2 pointing to different subsets of the data while y, wt, id and position can remain unchanged */ if (length(id2)==0) nid =0; /* no robust variance */ else id = INTEGER(id2); /* pass 1, get the number of unique times, needed for memory allocation Number of xval groups (unique id values) has been supplied Data is sorted by time */ ntime =1; temp = stime[sort2[0]]; for (i=1; i>= /* Allocate memory for the output n has 6 columns for number at risk, events, censor, then the 3 weighted versions of the same, then optionally two more for number added to the risk set (when ny=3) */ PROTECT(rlist = mkNamed(VECSXP, outnames)); dtime = REAL(SET_VECTOR_ELT(rlist, 0, allocVector(REALSXP, ntime))); if (ny==2) j=7; else j=9; n[0] = REAL(SET_VECTOR_ELT(rlist, 1, allocMatrix(REALSXP, ntime, j))); for (i=1; i0 ) { /* robust variance */ gcount = (int *) R_alloc(nid, sizeof(int)); if (type <3) { /* working vectors for the influence */ gwt = (double *) R_alloc(3*nid, sizeof(double)); inf1 = gwt + nid; inf2 = inf1 + nid; for (i=0; i< nid; i++) { gwt[i] =0.0; gcount[i] = 0; inf1[i] =0; inf2[i] =0; } } else { gwt = (double *) R_alloc(2*nid, sizeof(double)); inf2 = gwt + nid; for (i=0; i< nid; i++) { gwt[i] =0.0; gcount[i] = 0; inf2[i] =0; } } /* these are not accumulated, so do not need to be zeroed */ if (type <3) { if (influence==1 || influence ==3) imat1 = REAL(SET_VECTOR_ELT(rlist, 4, allocMatrix(REALSXP, nid, ntime))); if (influence==2 || influence==3) imat2 = REAL(SET_VECTOR_ELT(rlist, 5, allocMatrix(REALSXP, nid, ntime))); } else if (influence !=0) imat2 = REAL(SET_VECTOR_ELT(rlist, 5, allocMatrix(REALSXP, nid, ntime))); } <> <> UNPROTECT(1); return(rlist); } @ Pass 2 goes from the last time to the first and fills in the \code{n} matrix. <>= R_CheckUserInterrupt(); /*check for control-C */ /* ** person1, person2 track through sort1 and sort2, respectively ** likewise with i1 and i2 */ person1 = nused-1; person2 = nused-1; n1=0; wt1=0; for (k=ntime-1; k>=0; k--) { dtime[k] = stime[sort2[person2]]; /* current time point */ n2=0; n3=0; wt2=0; wt3=0; for (; person2 >=0; person2--) { i2= sort2[person2]; if (stime[i2] != dtime[k]) break; n1++; /* number at risk */ wt1 += wt[i2]; /* weighted number at risk */ if (status[i2] ==1) { n2++; /* events */ wt2 += wt[i2]; } else if (hasid==0 || (position[i2]& 2)) { /* if there are no repeated obs for a subject (hasid=0) ** or this is the last of a string (a,b](b,c](c,d].. for ** a subject (position[i2]=2 or 3), then it is a 'real' censor */ n3++; wt3 += wt[i2]; } } if (ny==3) { /* remove any with start time >=dtime*/ n4 =0; wt4 =0; for (; person1 >=0; person1--) { i1 = sort1[person1]; if (tstart[i1] < dtime[k]) break; n1--; wt1 -= wt[i1]; if (hasid==0 || (position[i1] & 1)) { /* if there are no repeated id (hasid=0) or this is the ** first of a string of (a,b](b,c](c,d] for a subject, then ** this is a 'real' entry */ n4++; wt4 += wt[i1]; } } if (n4>0) { n[6][k+1] = n4; n[7][k+1] = wt4; } } n[0][k] = n1; n[1][k]=n2; n[2][k]=n3; n[3][k] = wt1; n[4][k]=wt2; n[5][k]=wt3; } if (ny ==3) { /* fill in number entered for the initial interval */ n4=0; wt4=0; for (; person1>=0; person1--) { i1 = sort1[person1]; if (hasid==0 || (position[i1] & 1)) { n4++; wt4 += wt[i1]; } } n[6][0] = n4; n[7][0] = wt4; } @ The rest of the code is identical for simple survival or start-stop data. The cumulative hazard estimates are the Nelson-Aalen-Breslow (same estimate, three different papers) or the Fleming-Harrington. \begin{align*} \Lambda_A(t) &\ \sum{u_j \le t} d_j/r_j \\ \Lambda_{FH}(t) &= \sum{u_j \le t} \frac{d_j} {f_j \sum_{k=0}^{f_j-1} (r_j - kd_j/f_j)} \end{align*} To understand the Fleming-Harrington estimate, suppose that at some time point we had three deaths out of 10 at risk. The Aalen estimate gives a hazard estimate of 3/10. The FH estimate assumes that the deaths didn't actually all happen at once, even though rounding in the data collection process makes it appear that way, so the better estimate is 1/10 + 1/9 + 1/8. The third person to die, whoever that was, would have had only 8 at risk when their event happened. The estimate of survival is either the Kaplan-Meier or the exponential of the hazard. \begin{equation*} KM(t) = \prod_{u_j \le t} \frac{r_j - d_j}{r_j} \end{equation*} The third pass goes from smallest time to largest. 99 times out of 100 the user will choose type=1, so we try to avoid testing those expression n times. <>= R_CheckUserInterrupt(); /*check for control-C */ nelson =0.0; km=1.0; v1=0; v2=0; if (nid==0) { /* simple variance */ if (type==1 || type==3) { /* Nelson-Aalen hazard */ for (i=0; i0 && n[4][i]>0) { /* at least one event with wt>0*/ nelson += n[4][i]/n[3][i]; v2 += n[4][i]/(n[3][i]*n[3][i]); } nvec[i] = nelson; std[0][i] = sqrt(v2); std[1][i] = sqrt(v2); } } else { /* Fleming hazard */ for (i=0; i0 && n[4][i]>0) { /* at least one event */ km *= (n[3][i]-n[4][i])/n[3][i]; v1 += n[4][i]/(n[3][i] * (n[3][i] - n[4][i])); /* Greenwood */ } kvec[i] = km; std[0][i] = sqrt(v1); } } else { /* exp survival */ for (i=0; i< ntime; i++) { kvec[i] = exp(-nvec[i]); std[0][i] = std[1][i]; } } } else { /* infinitesimal jackknife variance */ <> } @ The robust variance is based on an infinitesimal jackknife (IJ). Let $S_{-i}(t)$ be the survival curve without subject $i$ and $J_i(t) = S_i(t) - S_{-i}(t)$ be the change in the survival curve from adding subject $i$ back in. Then the jackknife estimate of variance is $$ \sigma^2_J(t) = \sum \left( J_i(t) - \overline J(t) \right)^2 $$ The IJ estimate instead uses the linear approximation to the jackknife, since it is normally less work to compute the derivative than a whole new estimate. Notice that if all the weights were doubled the expression below will stay the same since the derivative will drop by 1/2. \begin{align*} \sigma^2_{IJ}(t_k) & = \sum_i U_{ik}^2 \\ U_{ik} & = \frac{\partial S(t_k)}{\partial w_i} \end{align*} The big problem with the IJ estimate is that a first derivative matrix $U$ will have one row per subject and one column per event time. Since the number of unique event times tends to grow with $n$, this matrix very rapidly becomes too large to manage. Instead use a grouped jackknife with $g$ groups, $g$ will often be on the order of 20--50. The 0/1 design matrix $B$ has $n$ rows and $g$ columns, one column per group, marking which subject is in each group. The grouped jackknife can be written as \begin{align*} U'WBB'W U &= V'V \end{align*} Our goal is to accumulate and use $V$ instead of $U$. The working vectors \code{inf1} and \code{inf2} contain the current estimate for the survival S and cumulative hazard H, at a given time. They are saved into the \code{imat} array for users, if desired. First work this out for the cumulative hazard, which is simpler, and a single subject $k$. \begin{align} H(t) &= \sum_{s\le t} \frac{\sum w_i dN_i(s)}{\sum w_i Y_i(s)} \nonumber\\ &= \sum _{s\le t} h(s) \nonumber \\ U_k(t) &= U_k(t-) + \frac{\partial h(t)}{\partial w_k} \nonumber \\ &= U_k(t-) + \frac{1}{\sum w_i Y_i(t)} \left(dN_k(t) - Y_k(t)h(t) \right) \label{Una} \\ \sum_k w_k U_k(t) &= 0 \nonumber \end{align} using the counting process notation of $N(t)$ for events and $Y(t)$ for at risk. The weighted sum of the first derivatives is zero, so we don't need a mean when computing the variance estimate. (This is true for all IJ estimators.) $V$ involves the weighted sum of this over groups, for the increment to each row of $V$ the rightmost term of \eqref{Una} is replaced by the weighted sum over each group. Since $h$ is the same for every subject at risk, we only need accumulate the sum of subjects in and sum of events in each group. The first can be kept as a running sum with $O(n)$ effort. When using the FH2 estimate tied deaths are different. Say that subject $i$ dies at some time $t$ where there are 2 other tied deaths. Let $w_i$ for $i=1,2,3$ be the weight of those who die and $s$ the sum of weights for all the others. The contribution to the cumulative hazard and derivative at this time point is \begin{align*} h &= \frac{w_1+w_2+w_3}{3} \frac{1}{s+w_1+w_2+w_3} + \frac{w_1+w_2+w_3}{3} \frac{1}{s+ 2(w_1+w_2+w_3)/3} + \frac{w_1+w_2+w_3}{3} \frac{1}{s+ (w_1 + w_2 + w_3)/3} \\ &\equiv a(b_1 + b_2 + b_3) \frac{\partial h}{\partial w_i} &= &= \left\{ \begin{array}{cl} \frac{b_1 + b_2 + b_3}{3} - a b_1^2 - (2/3)a b_2^2 - (1/3)a b_3^2 & i\le 3 \\ -a(b_1^2 + b_2^2 + b_3^2) & i> 3 \end{array} \right . \end{align*} The idea is that if the data had been gathered with more precision, then there would not be ties. The first death has 1/3 chance of being subject 1,2, or 3 and all are in the denominator. The second also has 1/3 chance of being 1--3, and each of these has 2/3 chance of still being in the denominator, etc. The standard variance will be $ab_1^2 + ab_2^2 + ab_3^2$. For the Kaplan-Meier we have \begin{align} KM(t) &= KM(t-) [1 - h(t)] \nonumber\\ U_k(t) &= \frac{\partial KM(t)}{\partial w_k} \nonumber\\ &= U_k(t-) [1- h(t)] - KM(t-)\frac{\partial h(t)}{\partial w_k} \label{Ukm} \end{align} The $V$ matrix is again a weighted sum. The first term of \eqref{Ukm} does not change, it multiplies the current value times $1-h$. The second term involves the same summation as the cumulative hazard. When using $\exp(-H)$ as the survival estimate then \begin{align*} \frac{partial S(t)}{\partial w_k} &= \frac{\partial e^{-H(t)}}{\partial w_k}\\ &= e^{-H(t)} \partial{H(t)}{\partial w_k} \end{align*} so in this case only the robust variance for the cumulative hazard $H$ is needed, and the parent R routine can fill in the rest. The variance for a given survival time is $\sum V^2$, which is always returned. The code keeps the current $V$ vector for the hazard $H$ in \code{inf2}, and if necessary that for the KM in \code{inf1}. A last step is to add up the squares of all of these, so the algorithm is $O(gp)$ where $p$ is the number of unique event times and $g$ is the number of groups. The sum of weights for each group is kept in a vector \code{gwt}, which is updated as subjects enter and leave. Say that a study had n= 10 million subjects in g=100 groups with d = 1 million deaths. At each death we update the 'hazard' part of the influence for all 100 groups, which is O(gd). The deaths at that time point have a second increment, to whichever group each is in, but since time is sorted that adds O(n) for indexing and O(d) for the work. The most important thing is to avoid doing anything that would be O(ng) or O(nd). For method=3 the hazard part of the increment is also different for a death, the solution is to do an ordinary increment for everyone in the O(gd) step, then correct it when doing the O(d) update. <>= v1=0; v2 =0; km=1; nelson =0; person2=0; if (ny==3) { person1 =0; } else { /* at the start, everyone is at risk */ for (i=0; i< nused; i++) { i2 = id[i]; gcount[i2]++; gwt[i2] += wt[i]; } } if (type==1) { for (i=0; i< ntime; i++) { if (ny==3) { /* add in new subjects */ for (; person1 < nused; person1++) { /* add in those whose start time is < dtime */ i1 = sort1[person1]; if (tstart[i1] >= dtime[i]) break; gcount[id[i1]]++; gwt[id[i1]] += wt[i1]; } } if (n[1][i] > 0 && n[4][i]>0) { /* need to update the sums */ haz = n[4][i]/n[3][i]; for (k=0; k< nid; k++) { inf1[k] = inf1[k] *(1.0 -haz) + gwt[k]*km*haz/n[3][i]; inf2[k] -= gwt[k] * haz/n[3][i]; } for (; person2 dtime[i]) break; /* those at this time */ if (status[i2]==1) { inf1[id[i2]] -= km* wt[i2]/n[3][i]; inf2[id[i2]] += wt[i2]/n[3][i]; } gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } km *= (1-haz); nelson += haz; v1=0; v2=0; for (k=0; k dtime[i]) break; gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } } kvec[i] = km; nvec[i] = nelson; std[0][i] = sqrt(v1); std[1][i] = sqrt(v2); if (influence==1 || influence ==3) for (k=0; k= dtime[i]) break; gcount[id[i1]]++; gwt[id[i1]] += wt[i1]; } } if (n[1][i] > 0 && n[4][i] >0) { /* need to update the sums */ dtemp =0; /* the working denominator */ dtemp2=0; /* sum of squares */ dtemp3=0; temp = n[3][i] - n[4][i]; /* sum of weights for the non-deaths */ for (k=n[1][i]; k>0; k--) { frac = k/n[1][i]; btemp = 1/(temp + frac*n[4][i]); /* "b" in the math */ dtemp += btemp; dtemp2 += btemp*btemp*frac; dtemp3 += btemp*btemp; /* non-death deriv */ } dtemp /= n[1][i]; /* average denominator */ if (n[4][i] != n[1][i]) { /* case weights */ dtemp2 *= n[4][i]/ n[1][i]; dtemp3 *= n[4][i]/ n[1][i]; } nelson += n[4][i]*dtemp; haz = n[4][i]/n[3][i]; for (k=0; k< nid; k++) { inf1[k] = inf1[k] *(1.0 -haz) + gwt[k]*km*haz/n[3][i]; if (gcount[k]>0) inf2[k] -= gwt[k] * dtemp3; } for (; person2 dtime[i]) break; if (status[i2]==1) { inf1[id[i2]] -= km* wt[i2]/n[3][i]; inf2[id[i2]] += wt[i2] *(dtemp + dtemp3 - dtemp2); } gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } km *= (1-haz); v1=0; v2=0; for (k=0; k dtime[i]) break; gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } } kvec[i] = km; nvec[i] = nelson; std[0][i] = sqrt(v1); std[1][i] = sqrt(v2); if (influence==1 || influence ==3) for (k=0; k= dtime[i]) break; gcount[id[i1]]++; gwt[id[i1]] += wt[i1]; } } if (n[1][i] > 0 && n[4][i]>0) { /* need to update the sums */ haz = n[4][i]/n[3][i]; for (k=0; k< nid; k++) { inf2[k] -= gwt[k] * haz/n[3][i]; } for (; person2 dtime[i]) break; if (status[i2]==1) { inf2[id[i2]] += wt[i2]/n[3][i]; } gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } nelson += haz; v2=0; for (k=0; k dtime[i]) break; gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } } kvec[i] = exp(-nelson); nvec[i] = nelson; std[1][i] = sqrt(v2); std[0][i] = sqrt(v2); if (influence>0) for (k=0; k= dtime[i]) break; gcount[id[i1]]++; gwt[id[i1]] += wt[i1]; } } if (n[1][i] > 0 && n[4][i] >0) { /* need to update the sums */ dtemp =0; /* the working denominator */ dtemp2=0; /* sum of squares */ dtemp3=0; temp = n[3][i] - n[4][i]; /* sum of weights for the non-deaths */ for (k=n[1][i]; k>0; k--) { frac = k/n[1][i]; btemp = 1/(temp + frac*n[4][i]); /* "b" in the math */ dtemp += btemp; dtemp2 += btemp*btemp*frac; dtemp3 += btemp*btemp; /* non-death deriv */ } dtemp /= n[1][i]; /* average denominator */ if (n[4][i] != n[1][i]) { /* case weights */ dtemp2 *= n[4][i]/ n[1][i]; dtemp3 *= n[4][i]/ n[1][i]; } nelson += n[4][i]*dtemp; for (k=0; k< nid; k++) { if (gcount[k]>0) inf2[k] -= gwt[k] * dtemp3; } for (; person2 dtime[i]) break; if (status[i2]==1) { inf2[id[i2]] += wt[i2] *(dtemp + dtemp3 - dtemp2); } gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } v2=0; for (k=0; k dtime[i]) break; gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } } kvec[i] = exp(-nelson); nvec[i] = nelson; std[1][i] = sqrt(v2); std[0][i] = sqrt(v2); if (influence>0) for (k=0; k>= <> survfitCI <- function(X, Y, weights, id, istate, cluster, stype=1, ctype=1, se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none', 'logit', "arcsin"), conf.lower=c('usual', 'peto', 'modified'), influence = FALSE, start.time, p0, type){ if (!missing(type)) { if (!missing(ctype) || !missing(stype)) stop("cannot have both an old-style 'type' argument and the stype/ctype arguments that replaced it") if (!is.character(type)) stop("type argument must be character") # older style argument is allowed temp <- charmatch(type, c("kaplan-meier", "fleming-harrington", "fh2")) if (is.na(temp)) stop("invalid value for 'type'") type <- c(1,3,4)[temp] } else { if (!(ctype %in% 1:2)) stop("ctype must be 1 or 2") if (!(stype %in% 1:2)) stop("stype must be 1 or 2") type <- as.integer(2*stype + ctype -2) } conf.type <- match.arg(conf.type) conf.lower<- match.arg(conf.lower) if (conf.lower != "usual") warning("conf.lower is ignored for multi-state data") if (is.logical(conf.int)) { # A common error is for users to use "conf.int = FALSE" # it's illegal per documentation, but be kind if (!conf.int) conf.type <- "none" conf.int <- .95 } if (is.logical(influence)) { # TRUE/FALSE is treated as all or nothing if (!influence) influence <- 0L else influence <- 3L } else if (!is.numeric(influence)) stop("influence argument must be numeric or logical") if (!(influence %in% 0:3)) stop("influence argument must be 0, 1, 2, or 3") else influence <- as.integer(influence) if (!se.fit) { # if the user asked for no standard error, skip any robust computation ncluster <- 0L influence <- 0L } type <- attr(Y, "type") # This line should be unreachable, unless they call "surfitCI" directly if (type !='mright' && type!='mcounting') stop(paste("multi-state computation doesn't support \"", type, "\" survival data", sep='')) # If there is a start.time directive, start by removing any prior events if (!missing(start.time)) { if (!is.numeric(start.time) || length(start.time) !=1 || !is.finite(start.time)) stop("start.time must be a single numeric value") toss <- which(Y[,ncol(Y)-1] <= start.time) if (length(toss)) { n <- nrow(Y) if (length(toss)==n) stop("start.time has removed all observations") Y <- Y[-toss,,drop=FALSE] X <- X[-toss] weights <- weights[-toss] if (length(id) ==n) id <- id[-toss] if (!missing(istate) && length(istate)==n) istate <- istate[-toss] } } n <- nrow(Y) status <- Y[,ncol(Y)] ncurve <- length(levels(X)) # The user can call with cluster, id, both, or neither # If only id, treat it as the cluster too # If influence is requested, this implies clustering has.cluster <- !(missing(cluster) || length(cluster)==0) has.id <- !(missing(id) || length(id)==0) if (has.id) id <- as.factor(id) else { if (ncol(Y) ==3) stop("an id statement is required for start,stop data") id <- 1:n } if (influence && !(has.cluster || has.id)) { cluster <- seq(along=X) has.cluster <- TRUE } if (has.cluster) { if (is.factor(cluster)) { clname <- levels(cluster) cluster <- as.integer(cluster) } else { clname <- sort(unique(cluster)) cluster <- match(cluster, clname) } ncluster <- length(clname) } else { if (has.id) { # treat the id as both identifier and clustering clname <- levels(id) cluster <- as.integer(id) ncluster <- length(clname) } else { ncluster <- 0 # has neither clname <- NULL } } if (missing(istate) || is.null(istate)) mcheck <- survcheck2(Y, id) else mcheck <- survcheck2(Y, id, istate) if (any(mcheck$flag > 0)) stop("one or more flags are >0 in survcheck") states <- mcheck$states istate <- mcheck$istate nstate <- length(states) smap <- c(0, match(attr(Y, "states"), states)) Y[,ncol(Y)] <- smap[Y[,ncol(Y)] +1] # new states may be a superset status <- Y[,ncol(Y)] if (mcheck$flag["overlap"] > 0) stop("a subject has overlapping time intervals") # if (mcheck$flag["gap"] > 0 || mcheck$flag["jump"] > 0) # warning("subject(s) with time gaps, results may be questionable") # The states of the status variable are the first columns in the output # any extra initial states are later in the list. # Now that we know the names, verify that p0 is correct (if present) if (!missing(p0)) { if (length(p0) != nstate) stop("wrong length for p0") if (!is.numeric(p0) || abs(1-sum(p0)) > sqrt(.Machine$double.eps)) stop("p0 must be a numeric vector that adds to 1") } else p0 <- NULL @ The status vector will have values of 0 for censored. <>= curves <- vector("list", ncurve) names(curves) <- levels(X) if (ncol(Y)==2) { # 1 transition per subject # dummy entry time that is < any event time t0 <- min(0, Y[,1]) entry <- rep(t0-1, nrow(Y)) for (i in levels(X)) { indx <- which(X==i) curves[[i]] <- docurve2(entry[indx], Y[indx,1], status[indx], istate[indx], weights[indx], states, id[indx], se.fit, influence, p0) } } else { <> <> } <> } @ In the multi-state case we can calculate the current P(state) vector $p(t)$ using the product-limit form \begin{align*} p(t) &= p(0)\prod_{s<=t} [I + dA(s)] \\ &= p(0) \prod_{s<=t} H(s) \end{align*} Where $p$ is a row vector and $H$ is the multi-state hazard matrix. $H(t)$ is a simple transition matrix. Row $j$ of $H$ describes the outcome of everyone who was in state $j$ at time $t-0$; and is the fraction of them who are in states $1, 2, \ldots$ at time $t+0$. Let $Y_{ij}(t)$ be the indicator function which is 1 if subject $i$ is in state $j$ at time $t-0$, then \begin{equation} H_{jk}(t) = \frac{\sum_i w_i Y_{ij}(t) Y_{ik}(t+)} {\sum_i w_i Y_{ij}(t)} \label{H} \end{equation} Each row of $H$ sums to 1: everyone has to go somewhere. This formula collapses to the Kaplan-Meier in the simple case where $p(t)$ is a vector of length 2 with state 1 = alive and state 2 = dead. The variance is based on per-subject influence. Since $p(t)$ is a vector the influence can be written as a matrix with one row per subject and one column per state. $$ U_{ij}(t) \equiv \frac{\partial p_j(t)}{\partial w_i}. $$ This can be calculate using a recursive formula. First, the derivative of a matrix product $AB$ is $d(A)B + Ad(B)$ where $d(A)$ is the elementwise derivative of $A$ and similarly for $B$. (Write out each element of the matrix product.) Since $p(t) = p(t-)H(t)$, the $i$th row of U satisfies \begin{align} U_i(t) &= \frac{\partial p(t)}{\partial w_i} \nonumber \\ &= \frac{\partial p(t-)}{\partial w_i} H(t) + p(t-) \frac{\partial H(t)}{\partial w_i} \nonumber \\ &= U_i(t-) H(t) + p(t-) \frac{\partial H(t)}{\partial w_i} \label{ci} \end{align} The first term of \ref{ci} collapses to ordinary matrix multiplication. The second term does not: each at risk subject has a unique matrix derivative $\partial H$; $n$ vectors of length $p$ can be arranged into a matrix, making the code simple, but $n$ $p$ by $p$ matrices are not so neat. However, note that \begin{enumerate} \item $\partial H$ is zero for anyone not in the risk set, since their weight does not appear in $H$. \item Each subject who is at risk will be in one (and only one) of the states at the event time, their weight only appears in that row of $H$. Thus for each at risk subject $\partial H$ has only one non-zero row. \end{enumerate} Say that the subject enters the given event time in state $j$ and ends it in state $k$. (For most subjects at most time poinnts $k=j$: if there are 100 at risk at time $t$ and 1 changes state, the other 99 stay put.) Let $n_j(t)= \sum_i Y_{ij}(t)w_i$ be the weighted number of subjects in state $j$, these are the contributers to row $j$ of $H$. Using equation \ref{H}, the derivative of row $j$ with respect to the subject is $(1_k - H_j)/n_j$ where $1_k$ is a vector with 1 in position $k$. The product of $p(t)$ with this matrix is the vector $p_j(t)(1_k - H_j)/n_j$. The second term thus turns out to be fairly simple to compute, but I have not seen a way to write it in a compact matrix form The weighted sum of each column of $U$ will be zero (if computed correctly) and the weighted sum of squares for each column will be the infinitesimal jackknife estimate of variance for the elements of $p$. The entire variance-covariance matrix for the states is $U'W^2U$ where $W$ is a diagonal matrix of weights, but we currently don't report that back. Note that this is for sampling weights. If one has real case weights, where an integer weight of 2 means 2 observations that were collapsed in to one row of data to save space, then the variance is $U'WU$. Case weights were somewhat common in my youth due to small computer memory, but I haven't seen such data in 20 years. Below is the function for a single curve. For the status variable a value if 0 is ``no event''. One nuisance in the function is that we need to ensure the tapply command gives totals for all states, not just the ones present in the data --- a call using the \code{subset} argument might not have all the states --- which leads to using factor commands. Another more confusing one is for multiple rows per subject data, where the cstate and U objects have only one row per subject; any given subject is only in one state at a time. This leads to indices of [[atrisk]] for the set of rows in the risk set but [[aindx]] for the subjects in the risk set, [[death]] for the rows that have an event this time and [[dindx]] for the corresponding subjects. The setup for (start, stop] data is a bit more work. We want to ensure that a given subject remains in the same group and that they have a continuous period of observation. If the input data was the result of a tmerge call, say, it might have a lot of extra 'censored' rows. For instance a subject whose state pattern is (0, 5, 1), (5,10, 2), i.e., a transition to state 1 at day 5 and state 2 on day 10 might input as (0,2,0), (2,5,1), (5,6,0), (6,8,0), (8,10,2) instead. These extra censors cause an unnecessary row of output on days 2, 6, and 8. Remove these before going further. <>= # extra censors indx <- order(id, Y[,2]) # in stop order extra <- (survflag(Y[indx,], id[indx]) ==0 & (Y[indx,3] ==0)) # If a subject had obs of (a, b)(b,c)(c,d), and c was a censoring # time, that is an "extra" censoring/entry at c that we don't want # to count. Deal with it by changing that subject # to (a,b)(b,d). Won't change S(t), only the n.censored/n.enter count. if (any(extra)) { e2 <- indx[extra] Y <- cbind(Y[-(1+e2),1], Y[-e2,-1]) status <- status[-e2] X <- X[-e2] id <- id[-e2] istate <- istate[-e2] weights <- weights[-e2] indx <- order(id, Y[,2]) } @ <>= # Now to work for (i in levels(X)) { indx <- which(X==i) # temp <- docurve1(Y[indx,1], Y[indx,2], status[indx], # istate[indx], weights[indx], states, id[indx]) curves[[i]] <- docurve2(Y[indx,1], Y[indx,2], status[indx], istate[indx], weights[indx], states, id[indx], se.fit, influence, p0) } @ <>= # Turn the result into a survfit type object grabit <- function(clist, element) { temp <-(clist[[1]][[element]]) if (is.matrix(temp)) { do.call("rbind", lapply(clist, function(x) x[[element]])) } else { xx <- as.vector(unlist(lapply(clist, function(x) x[element]))) if (inherits(temp, "table")) matrix(xx, byrow=T, ncol=length(temp)) else xx } } # we want to rearrange the cumulative hazard to be in time order # with one column for each observed transtion. nstate <- length(states) temp <- matrix(0, nstate, nstate) indx1 <- match(rownames(mcheck$transitions), states) indx2 <- match(colnames(mcheck$transitions), states, nomatch=0) #ignore censor temp[indx1, indx2[indx2>0]] <- mcheck$transitions[,indx2>0] ckeep <- which(temp>0) names(ckeep) <- outer(1:nstate, 1:nstate, paste, sep='.')[ckeep] #browser() if (length(curves) ==1) { keep <- c("n", "time", "n.risk", "n.event", "n.censor", "pstate", "p0", "cumhaz", "influence.pstate") if (se.fit) keep <- c(keep, "std.err", "sp0") kfit <- (curves[[1]])[match(keep, names(curves[[1]]), nomatch=0)] names(kfit$p0) <- states if (se.fit) kfit$logse <- FALSE kfit$cumhaz <- t(kfit$cumhaz[ckeep,,drop=FALSE]) colnames(kfit$cumhaz) <- names(ckeep) } else { kfit <- list(n = as.vector(table(X)), #give it labels time = grabit(curves, "time"), n.risk= grabit(curves, "n.risk"), n.event= grabit(curves, "n.event"), n.censor=grabit(curves, "n.censor"), pstate = grabit(curves, "pstate"), p0 = grabit(curves, "p0"), strata= unlist(lapply(curves, function(x) length(x$time)))) kfit$p0 <- matrix(kfit$p0, ncol=nstate, byrow=TRUE, dimnames=list(names(curves), states)) if (se.fit) { kfit$std.err <- grabit(curves, "std.err") kfit$sp0<- matrix(grabit(curves, "sp0"), ncol=nstate, byrow=TRUE) kfit$logse <- FALSE } # rearrange the cumulative hazard to be in time order, with columns # for each transition kfit$cumhaz <- do.call(rbind, lapply(curves, function(x) t(x$cumhaz[ckeep,,drop=FALSE]))) colnames(kfit$cumhaz) <- names(ckeep) if (influence) kfit$influence.pstate <- lapply(curves, function(x) x$influence.pstate) } if (!missing(start.time)) kfit$start.time <- start.time kfit$transitions <- mcheck$transitions @ <>= # # Last bit: add in the confidence bands: # if (se.fit) { kfit$conf.int <- conf.int kfit$conf.type <- conf.type if (conf.type != "none") { ci <- survfit_confint(kfit$pstate, kfit$std.err, logse=FALSE, conf.type, conf.int) kfit <- c(kfit, ci, conf.type=conf.type, conf.int=conf.int) } } kfit$states <- states kfit$type <- attr(Y, "type") kfit @ The updated docurve function is here. One issue that was not recognized originally is delayed entry. If most of the subjects start at time 0, say, but one of them starts at day 100 then that last subject is not a part of $p_0$. We will define $p_0$ as the distribution of states just before the first event. The code above has already ensured that each subject has a unique value for istate, so we don't have to search for the right one. The initial vector and leverage are \begin{align*} p_0 &= (\sum I{s_i=1}w_i, \sum I{s_i=2}w_i, \ldots)/ \sum w_i \\ \frac{\partial p_0}{\partial w_k} &= [(I{s_k=1}, I{s_k=2}, ...)- p_0]/\sum w_i \end{align*} The input data set is not necessarily sorted by time or subject. The data has been checked so that subjects don't have gaps, however. The cstate variable for each subject contains their first istate value. Only those intervals that overlap the first event time contribute to $p_0$. Now: what to report as the ``time'' for the initial row. The values for it come from (first event time -0), i.e. all who are at risk at the smallest \code{etime} with status $>0$. But for normal plotting the smallest start time seems to be a good default. In the usual (start, stop] data a large chunk of the subjects have a common start time. However, if the first event doesn't happen for a while and subjects are dribbling in, then the best point to start a plot is open to debate. Que sera sera. <>= docurve2 <- function(entry, etime, status, istate, wt, states, id, se.fit, influence=FALSE, p0) { timeset <- sort(unique(etime)) nstate <- length(states) uid <- sort(unique(id)) index <- match(id, uid) # Either/both of id and cstate might be factors. Data may not be in # order. Get the initial state for each subject temp1 <- order(id, entry) temp2 <- match(uid, id[temp1]) cstate <- (as.numeric(istate)[temp1])[temp2] # initial state for each # The influence matrix can be huge, make sure we have enough memory if (influence) { needed <- max(nstate * length(uid), 1 + length(timeset)) if (needed > .Machine$integer.max) stop("number of rows for the influence matrix is > the maximum integer") } storage.mode(wt) <- "double" # just in case someone had integer weights # Compute p0 (unless given by the user) if (is.null(p0)) { if (all(status==0)) t0 <- max(etime) #failsafe else t0 <- min(etime[status!=0]) # first transition event at.zero <- (entry < t0 & etime >= t0) wtsum <- sum(wt[at.zero]) # weights for a subject may change p0 <- tapply(wt[at.zero], istate[at.zero], sum) / wtsum p0 <- ifelse(is.na(p0), 0, p0) #for a state not in at.zero, tapply =NA } # initial leverage matrix nid <- length(uid) i0 <- matrix(0., nid, nstate) if (all(p0 <1)) { #actually have to compute it who <- index[at.zero] # this will have no duplicates for (j in 1:nstate) i0[who,j] <- (ifelse(istate[at.zero]==states[j], 1, 0) - p0[j])/wtsum } storage.mode(cstate) <- "integer" storage.mode(status) <- "integer" # C code has 0 based subscripts if (influence) se.fit <- TRUE # se.fit is free in this case fit <- .Call(Csurvfitci, c(entry, etime), order(entry) - 1L, order(etime) - 1L, length(timeset), status, as.integer(cstate) - 1L, wt, index -1L, p0, i0, as.integer(se.fit) + 2L*as.integer(influence)) if (se.fit) out <- list(n=length(etime), time= timeset, p0 = p0, sp0= sqrt(colSums(i0^2)), pstate = fit$p, std.err=fit$std, n.risk = fit$nrisk, n.event= fit$nevent, n.censor=fit$ncensor, cumhaz = fit$cumhaz) else out <- list(n=length(etime), time= timeset, p0=p0, pstate = fit$p, n.risk = fit$nrisk, n.event = fit$nevent, n.censor= fit$ncensor, cumhaz= fit$cumhaz) if (influence) { temp <- array(fit$influence, dim=c(length(uid), nstate, 1+ length(timeset)), dimnames=list(uid, NULL, NULL)) out$influence.pstate <- aperm(temp, c(1,3,2)) } out } @ \subsubsection{C-code} (This is set up as a separate file in the source code directory since it is easier to make the code stay in C-mode if the file has a .nw extension.) <>= #include "survS.h" #include "survproto.h" #include SEXP survfitci(SEXP ftime2, SEXP sort12, SEXP sort22, SEXP ntime2, SEXP status2, SEXP cstate2, SEXP wt2, SEXP id2, SEXP p2, SEXP i02, SEXP sefit2) { <> <> <> } @ Arguments to the routine are the following. For an R object ``zed'' I use the convention of [[zed2]] to refer to the object and [[zed]] to the contents of the object. \begin{description} \item[ftime] A two column matrix containing the entry and exit times for each subject. \item[sort1] Order vector for the entry times. The first element of sort1 points to the first entry time, etc. \item[sort2] Order vector for the event times. \item[ntime] Number of unique event time values. This fixes the size of the output arrays. \item[status] Status for each observation. 0= censored \item[cstate] The initial state for each subject, which will be updated during computation to always be the current state. \item[wt] Case weight for each observation. \item[id] The subject id for each observation. \item[p] The initial distribution of states. This will be updated during computation to be the current distribution. \item[i0] The initial influence matrix, number of subjects by number of states \item[sefit] If 1 then do the se compuatation, if 2 also return the full influence matrix upon which it is based, if 0 the se is not needed. \end{description} Declare all of the variables. <>= int i, j, k, kk; /* generic loop indices */ int ck, itime, eptr; /*specific indices */ double ctime; /*current time of interest, in the main loop */ int oldstate, newstate; /*when changing state */ double temp, *temp2; /* scratch double, and vector of length nstate */ double *dptr; /* reused in multiple contexts */ double *p; /* current prevalence vector */ double **hmat; /* hazard matrix at this time point */ double **umat=0; /* per subject leverage at this time point */ int *atrisk; /* 1 if the subject is currently at risk */ int *ns; /* number curently in each state */ int *nev; /* number of events at this time, by state */ double *ws; /* weighted count of number state */ double *wtp; /* case weights indexed by subject */ double wevent; /* weighted number of events at current time */ int nstate; /* number of states */ int n, nperson; /*number of obs, subjects*/ double **chaz; /* cumulative hazard matrix */ /* pointers to the R variables */ int *sort1, *sort2; /*sort index for entry time, event time */ double *entry,* etime; /*entry time, event time */ int ntime; /* number of unique event time values */ int *status; /*0=censored, 1,2,... new states */ int *cstate; /* current state for each subject */ int *dstate; /* the next state, =cstate if not an event time */ double *wt; /* weight for each observation */ double *i0; /* initial influence */ int *id; /* for each obs, which subject is it */ int sefit; /* returned objects */ SEXP rlist; /* the returned list and variable names of same */ const char *rnames[]= {"nrisk","nevent","ncensor", "p", "cumhaz", "std", "influence.pstate", ""}; SEXP setemp; double **pmat, **vmat=0, *cumhaz, *usave=0; /* =0 to silence -Wall warning */ int *ncensor, **nrisk, **nevent; @ Now set up pointers for all of the R objects sent to us. The two that will be updated need to be replaced by duplicates. <>= ntime= asInteger(ntime2); nperson = LENGTH(cstate2); /* number of unique subjects */ n = LENGTH(sort12); /* number of observations in the data */ PROTECT(cstate2 = duplicate(cstate2)); cstate = INTEGER(cstate2); entry= REAL(ftime2); etime= entry + n; sort1= INTEGER(sort12); sort2= INTEGER(sort22); status= INTEGER(status2); wt = REAL(wt2); id = INTEGER(id2); PROTECT(p2 = duplicate(p2)); /*copy of initial prevalence */ p = REAL(p2); nstate = LENGTH(p2); /* number of states */ i0 = REAL(i02); sefit = asInteger(sefit2); /* allocate space for the output objects ** Ones that are put into a list do not need to be protected */ PROTECT(rlist=mkNamed(VECSXP, rnames)); setemp = SET_VECTOR_ELT(rlist, 0, allocMatrix(INTSXP, ntime, nstate)); nrisk = imatrix(INTEGER(setemp), ntime, nstate); /* time by state */ setemp = SET_VECTOR_ELT(rlist, 1, allocMatrix(INTSXP, ntime, nstate)); nevent = imatrix(INTEGER(setemp), ntime, nstate); /* time by state */ setemp = SET_VECTOR_ELT(rlist, 2, allocVector(INTSXP, ntime)); ncensor = INTEGER(setemp); /* total at each time */ setemp = SET_VECTOR_ELT(rlist, 3, allocMatrix(REALSXP, ntime, nstate)); pmat = dmatrix(REAL(setemp), ntime, nstate); setemp = SET_VECTOR_ELT(rlist, 4, allocMatrix(REALSXP, nstate*nstate, ntime)); cumhaz = REAL(setemp); if (sefit >0) { setemp = SET_VECTOR_ELT(rlist, 5, allocMatrix(REALSXP, ntime, nstate)); vmat= dmatrix(REAL(setemp), ntime, nstate); } if (sefit >1) { /* the max space is larger for a matrix than a vector ** This is pure sneakiness: if I allocate a vector then n*nstate*(ntime+1) ** may overflow, as it is an integer argument. Using the rows and cols of ** a matrix neither overflows. But once allocated, I can treat setemp ** like a vector since usave is a pointer to double, which is bigger than ** integer and won't overflow. */ setemp = SET_VECTOR_ELT(rlist, 6, allocMatrix(REALSXP, n*nstate, ntime+1)); usave = REAL(setemp); } /* allocate space for scratch vectors */ ws = (double *) R_alloc(2*nstate, sizeof(double)); /*weighted number in state */ temp2 = ws + nstate; ns = (int *) R_alloc(2*nstate, sizeof(int)); nev = ns + nstate; atrisk = (int *) R_alloc(2*nperson, sizeof(int)); dstate = atrisk + nperson; wtp = (double *) R_alloc(nperson, sizeof(double)); hmat = (double**) dmatrix((double *)R_alloc(nstate*nstate, sizeof(double)), nstate, nstate); chaz = (double**) dmatrix((double *)R_alloc(nstate*nstate, sizeof(double)), nstate, nstate); if (sefit >0) umat = (double**) dmatrix((double *)R_alloc(nperson*nstate, sizeof(double)), nstate, nperson); /* R_alloc does not zero allocated memory */ for (i=0; i>= if (sefit ==1) { dptr = i0; for (j=0; j1) { /* copy influence, and save it */ dptr = i0; for (j=0; j>= itime =0; /*current time index, for output arrays */ eptr = 0; /*index to sort1, the entry times */ for (i=0; i> <> /* Take the current events and censors out of the risk set */ for (; i0) cstate[id[j]] = status[j]-1; /*new state */ atrisk[id[j]] =0; } else break; } itime++; } @ The key variables for the computation are the matrix $H$ and the current prevalence vector $P$. $H$ is created anew at each unique time point. Row $j$ of $H$ concerns everyone in state $j$ just before the time point, and contains the transitions at that time point. So the $jk$ element is the (weighted) fraction who change from state $j$ to state $k$, and the $jj$ element the fraction who stay put. Each row of $H$ by definition sums to 1. If no one is in the state then the $jj$ element is set to 1. A second version which we call H2 has 1 subtracted from each diagonal giving row sums are 0, we go back and forth depending on which is needed at the moment. If there are no events at this time point $P$ and $U$ do not update. <>= for (j=0; j0) { newstate = status[k] -1; /* 0 based subscripts */ oldstate = cstate[id[k]]; if (oldstate != newstate) { /* A "move" to the same state does not count */ dstate[id[k]] = newstate; nev[newstate]++; wevent += wt[k]; hmat[oldstate][newstate] += wt[k]; } } else ncensor[itime]++; } else break; } if (wevent > 0) { /* there was at least one move with weight > 0 */ /* finish computing H */ for (j=0; j0) { temp =0; for (k=0; k0) { <> } <> } @ The most complicated part of the code is the update of the per subject influence matrix $U$. The influence for a subject is the derivative of the current estimates wrt the case weight of that subject. Since $p$ is a vector the influence $U$ is easily represented as a matrix with one row per subject and one column per state. Refer to equation \eqref{ci} for the derivation. Let $m$ and $n$ be the old and new states for subject $i$, and $n_m$ the sum of weights for all subjects at risk in state $m$. Then \begin{equation*} U_{ij}(t) = \sum_k \left[ U_{ik}(t-)H_{kj}\right] + p_m(t-)(I_{n=j} - H_{mj})/ n_m \end{equation*} \begin{enumerate} \item The first term above is simple matrix multiplication. \item The second adds a vector with mean zero. \end{enumerate} If standard errors are not needed we can skip this calculation. <>= if (sefit >0) { /* Update U, part 1 U = U %*% H -- matrix multiplication */ for (j=0; j>= /* Finally, update chaz and p. */ for (j=0; j>= /* store into the matrices that will be passed back */ for (j=0; j0) { temp =0; for (k=0; k 1) for (k=0; k>= /* return a list */ UNPROTECT(3); return(rlist); @ \subsubsection{Printing and plotting} The \code{survfitms} class differs from a \code{survfit}, but many of the same methods nearly apply. <>= # Methods for survfitms objects <> <> @ The subscript method is a near copy of that for survfit objects, but with a slightly different set of components. The object could have strata and will almost always have multiple columns. Following convention, if there is only one subscript we treat the object as though it were a vector. The \code{nmatch} function allow the user to use either names or integer indices. <>= "[.survfitms" <- function(x, ..., drop=FALSE) { nmatch <- function(i, target) { # This function lets R worry about character, negative, # or logical subscripts # It always returns a set of positive integer indices temp <- seq(along=target) names(temp) <- target temp[i] } x <- survfit0(x, x$start.time) # otherwise influence and pstate don't align # ndots <- ...length() # the simplest, but not avail in R 3.4 # ndots <- length(list(...))# fails if any are missing, e.g. fit[,2] ndots <- if (missing(drop)) nargs()-1 else nargs()-2 # a workaround dd <- dim(x) dtype <- match(names(dd), c("strata", "data", "states")) if (is.null(x$states)) stop("survfitms object has no states component") if (ndots==0) return(x) # no subscript given if (ndots >0 && !missing(..1)) i <- ..1 else i <- NULL if (ndots> 1 && !missing(..2)) j <- ..2 else j <- NULL if (ndots> 2 && !missing(..3)) k <- ..3 else k <- NULL if (ndots >3) stop("too many subscripts for survfit object") if (is.null(i) & is.null(j) & is.null(k)) return(x) # Make a new object newx <- vector("list", length(x)) names(newx) <- names(x) for (kk in c("logse", "version", "conf.int", "conf.type", "type", "call")) if (!is.null(x[[kk]])) newx[[kk]] <- x[[kk]] class(newx) <- class(x) if (ndots==1 && length(dd[dd>1]) > 1) { # the 'treat it as a vector' case if (!is.numeric(i)) stop("single subscript must be numeric") # when subscripting a mix, these don't endure newx$cumhaz <- newx$std.chaz <- newx$influence.chaz <- NULL newx$transitions <- newx$states <- newx$newdata <- NULL # what strata and columns do I need? itemp <- matrix(1:prod(dd), nrow=dd[1]) jj <- (col(itemp))[i] # columns ii <- (row(itemp))[i] # this is now the strata id if (dtype[1]!=1 || dd[1]==1) # no strata or only 1 irow <- rep(seq(along= x$time), length(ii)) else { itemp2 <- split(1:sum(x$strata), rep(1:length(x$strata), x$strata)) irow <- unlist(itemp2[ii]) # rows of the pstate object } inum <- x$strata[ii] # number of rows in each ii indx <- cbind(irow, rep(jj,ii)) # matrix index for pstate # The n.risk, n.event, .. matrices dont have a newdata dimension. if (all(dtype!=2) || dd["data"]==1) kk <- jj else { # both data and states itemp <- matrix(1:(dd["data"]*dd["states"]), nrow=dd[2]) kk <- (col(itemp))[jj] # the state of each selected one indx2 <- cbind(irow, rep(k, irow)) } newx$n <- x$n[ii] newx$time <- x$time[irow] for (z in c("n.risk", "n.event", "n.censor", "n.enter")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[indx2] for (z in c("pstate", "std.err", "upper", "lower")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[indx] newx$strata <- x$strata[ii] names(newx$strata) <- seq(along=ii) return(newx) } # not a single subscript, i.e., the usual case if (dd[1]==1 && (ndots+1 == length(dd)) && is.null(x$strata)) { # if there is only one curve, no 'strata', then we allow users # to ignore the first dimension k <- j; j <- i; i <- 1 ndots <- ndots +1 } else if (ndots != length(dd)) stop("incorrect number of dimensions") if (is.null(i)) i <- seq.int(dd[1]) else if (length(x$strata)) i <- nmatch(i, names(x$strata)) if (dd[1]==1) # no strata or only 1 irow <- rep(seq(along= x$time), length(i)) else { itemp <- split(1:sum(x$strata), rep(1:length(x$strata), x$strata)) irow <- unlist(itemp[i]) # rows of the pstate object } newx$n <- x$n[i] newx$time <- x$time[irow] # The n.censor and n.enter values do not repeat with multiple X values for (z in c("n.censor", "n.enter")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow, drop=FALSE] # two cases: with newx or without newx (pstate is always present) nstate <- length(x$states) if (dtype[2] !=2) { # j indexes the states if (is.null(j)) j <- seq.int(nstate) else j <- nmatch(j, x$states) if (length(i) ==1 && drop) newx$strata <- NULL else newx$strata <- x$strata[i] # in the rare case of a single strata with 1 obs, don't drop dims if (length(irow)==1 && length(j) > 1) drop2 <- FALSE else drop2 <- drop for (z in c("n.risk", "n.event")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,j, drop=drop2] for (z in c("pstate", "std.err", "upper", "lower")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,j, drop=drop2] if (!is.null(x$influence.pstate)) { if (is.list(x$influence.pstate)) { if (length(i)==1) newx$influence.pstate <- x$influence.pstate[[i]] else newx$influence.pstate <- lapply(x$influence.pstate[i], function(x) x[,,j, drop= drop]) } else newx$influence.pstate <- x$influence.pstate[,,j, drop=drop] } if (length(j)== nstate && all(j == seq.int(nstate))) { # user kept all the states, in original order newx$states <- x$states for (z in c("cumhaz", "std.chaz")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,, drop=drop2] if (!is.null(x$influence.chaz)) { if (is.list(x$influence.chaz)) { newx$influence.chaz <- x$influence.chaz[i] if (length(i)==1 && drop) newx$influence.chaz <- x$influence.chaz[[i]] } else newx$influence.chaz <- x$influence.chaz } } else { newx$cumhaz <- newx$std.chaz <- newx$influence.chaz <- NULL if (length(j)==1 & drop) { newx$states <- NULL temp <- class(newx) class(newx) <- temp[temp!="survfitms"] } else newx$states <- x$states[j] } } else { # j points at newdata, k points at states if (is.null(j)) j <- seq.int(dd[2]) else j <- nmatch(j, seq.int(dd[2])) if (is.null(k)) k <- seq.int(nstate) else k <- nmatch(k, x$states) if (length(irow)==1) { if (length(j) > 1) drop2 <- FALSE else drop2<- drop if (length(k) > 1) drop3 <- FALSE else drop3 <- drop } else drop2 <- drop3 <- drop for (z in c("n.risk", "n.event")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow, k, drop=drop3] for (z in c("pstate", "std.err", "upper", "lower")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,j,k, drop=drop2] if (!is.null(x$influence.pstate)) { if (is.list(x$influence.pstate)) { if (length(i)==1) newx$influence.pstate <- (x$influence.pstate[[i]])[,,j,k, drop=drop] else newx$influence.pstate <- lapply(x$influence.pstate[i], function(x) x[,,j,k, drop= drop]) } else newx$influence.pstate <- x$influence.pstate[,,j,k, drop=drop] } if (length(k)== nstate && all(k == seq.int(nstate))) { # user kept all the states newx$states <- x$states for (z in c("cumhaz", "std.chaz")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,j,, drop=drop2] if (!is.null(x$influence.chaz)) { if (is.list(x$influence.chaz)) { newx$influence.chaz <- (x$influence.chaz[i])[,j,] if (length(i)==1 && drop) newx$influence.chaz <- x$influence.chaz[[i]] } else newx$influence.chaz <- x$influence.chaz[,j,] } } else { # never drop the states component. Otherwise downstream code # will start looking for x$surv instead of x$pstate newx$states <- x$states[k] newx$cumhaz <- newx$std.chaz <- newx$influence.chaz <- NULL x$transitions <- NULL } if (length(j)==1 && drop) newx$newdata <- NULL else newx$newdata <- x$newdata[j,,drop=FALSE] #newdata is a data frame } newx } @ The summary.survfit and summary.survfitms functions share a significant amount of code. One part of the code that once was subtle is dealing with intermediate time points; the findInterval function in base R has made that much easier. Since the result does not involve interpolation, one should be able to create a special index vector i and return \code{time[i]}, \code{surv[i,]}, etc, to subscript all the curves in a survfit object at once. But that approach, though efficient in theory, runs into two problems. First is the extrapolated value for the curves at time points before the first event, which is allowed to be different for different curves in survfitms objects. The second is that there is interpolation of a sort: the n.event and n.censor components are summed over intervals when the selected time points are sparse, and that process is very tricky for multiple curves at once. At one point the code took that approach, but it became too complex to maintain. The current approach is slower but more transparent: do the individual curves one by one, then paste together the results. <>= summary.survfit <- function(object, times, censored=FALSE, scale=1, extend=FALSE, rmean=getOption('survfit.rmean'), ...) { fit <- object #save typing if (!inherits(fit, 'survfit')) stop("summary.survfit can only be used for survfit objects") if (is.null(fit$logse)) fit$logse <- TRUE #older style # The print.rmean option is depreciated, it is still listened # to in print.survfit, but ignored here if (is.null(rmean)) rmean <- "common" if (is.numeric(rmean)) { if (is.null(fit$start.time)) { if (rmean < min(fit$time)) stop("Truncation point for the mean time in state is < smallest survival") } else if (rmean < fit$start.time) stop("Truncation point for the mean time in state is < smallest survival") } else { rmean <- match.arg(rmean, c('none', 'common', 'individual')) if (length(rmean)==0) stop("Invalid value for rmean option") } # adding time 0 makes the mean and median easier fit0 <- survfit0(fit, fit$start.time) #add time 0 temp <- survmean(fit0, scale=scale, rmean) table <- temp$matrix #for inclusion in the output list rmean.endtime <- temp$end.time if (!is.null(fit$strata)) { nstrat <- length(fit$strata) } delta <- function(x, indx) { # sums between chosen times if (is.logical(indx)) indx <- which(indx) if (!is.null(x) && length(indx) >0) { fx <- function(x, indx) diff(c(0, c(0, cumsum(x))[indx+1])) if (is.matrix(x)) { temp <- apply(x, 2, fx, indx=indx) # don't return a vector when only 1 time point is given if (is.matrix(temp)) temp else matrix(temp, nrow=1) } else fx(x, indx) } else NULL } if (missing(times)) { <> } else { fit <- fit0 <> times <- sort(times) #in case the user forgot if (is.null(fit$strata)) fit <- findrow(fit, times, extend) else { ltemp <- vector("list", nstrat) for (i in 1:nstrat) ltemp[[i]] <- findrow(fit[i], times, extend) fit <- unpacksurv(fit, ltemp) } } # finish off the output structure fit$table <- table if (length(rmean.endtime)>0 && !any(is.na(rmean.endtime[1]))) fit$rmean.endtime <- rmean.endtime # A survfit object may contain std(log S) or std(S), summary always std(S) if (!is.null(fit$std.err) && fit$logse) fit$std.err <- fit$std.err * fit$surv # Expand the strata if (!is.null(fit$strata)) fit$strata <- factor(rep(1:nstrat, fit$strata), 1:nstrat, labels= names(fit$strata)) if (scale != 1) { # fix scale in the output fit$time <- fit$time/scale } class(fit) <- "summary.survfit" fit } @ The simple case of no times argument. <>= if (!censored) { index <- (rowSums(as.matrix(fit$n.event)) >0) for (i in c("time","n.risk", "n.event", "surv", "pstate", "std.err", "upper", "lower", "cumhaz", "std.chaz")) { if (!is.null(fit[[i]])) { # not all components in all objects temp <- fit[[i]] if (is.matrix(temp)) temp <- temp[index,,drop=FALSE] else if (!is.array(temp)) temp <- temp[index] #simple vector else temp <- temp[index,,, drop=FALSE] # 3 way fit[[i]] <- temp } } # The n.enter and n.censor values are accumualated # both of these are simple vectors if (is.null(fit$strata)) { for (i in c("n.enter", "n.censor")) if (!is.null(fit[[i]])) fit[[i]] <- delta(fit[[i]], index) } else { sindx <- rep(1:nstrat, fit$strata) for (i in c("n.enter", "n.censor")) { if (!is.null(fit[[i]])) fit[[i]] <- unlist(sapply(1:nstrat, function(j) delta(fit[[i]][sindx==j], index[sindx==j]))) } # the "factor" is needed for the case that a strata has no # events at all, and hence 0 lines of output fit$strata[] <- as.vector(table(factor(sindx[index], 1:nstrat))) } } #if missing(times) and censored=TRUE, the fit object is ok as it is @ To deal with selected times we first define a subscripting function. For indices of 0, which are requested times that are before the first event, it fills in the initial value. <>= ssub<- function(x, indx) { #select an object and index if (!is.null(x) && length(indx)>0) { if (is.matrix(x)) x[pmax(1,indx),,drop=FALSE] else if (is.array(x)) x[pmax(1,indx),,,drop=FALSE] else x[pmax(1, indx)] } else NULL } @ This function does the real work, for any single curve. The default value for init is correct for survival curves. Say that the data has values at time 5, 10, 15, 20 \ldots, and a user asks for \code{times=c(7, 15, 20, 30)}. In the input object \code{n.risk} refers to the number at risk just before time 5, 10, \ldots; it is a left-continuous function. The survival is a right-continuous function. So at time 7 we want to take the survival from time 5 and number at risk from time 10; \code{indx1} will be the right-continuous index and \code{indx2} the left continuous one. The value of n.risk at time 30 has to be computed. For counts of events, censoring, and entry we want to know the total number that happened during the intervals of 0-7, 7-15, 15-20 and 20-30. Technically censorings at time 15 happen just after time 15 so would go into the third line of the report. However, this would lead to terrible confusion for the user since using \code{times=c(5, 10, 15, 20)} would lead to different counts than a call that did not contain the times argument, so all 3 of the intermediates are computed using indx1. A report at time 30 is made only if extend=TRUE, in which case we need to compute a tail value for n.risk. <>= findrow <- function(fit, times, extend) { if (FALSE) { if (is.null(fit$start.time)) mintime <- min(fit$time, 0) else mintime <- fit$start.time ptimes <- times[times >= mintime] } else ptimes <- times[is.finite(times)] if (!extend) { maxtime <- max(fit$time) ptimes <- ptimes[ptimes <= maxtime] } ntime <- length(fit$time) index1 <- findInterval(ptimes, fit$time) index2 <- 1 + findInterval(ptimes, fit$time, left.open=TRUE) # The pmax() above encodes the assumption that n.risk for any # times before the first observation = n.risk at the first obs fit$time <- ptimes for (i in c("surv", "pstate", "upper", "lower")) { if (!is.null(fit[[i]])) fit[[i]] <- ssub(fit[[i]], index1) } for (i in c("std.err", "cumhaz")) { if (!is.null(fit[[i]])) fit[[i]] <- ssub(fit[[i]], index1) } if (is.matrix(fit$n.risk)) { # Every observation in the data has to end with a censor or event. # So by definition the number at risk after the last observed time # value must be 0. fit$n.risk <- rbind(fit$n.risk,0)[index2,,drop=FALSE] } else fit$n.risk <- c(fit$n.risk, 0)[index2] for (i in c("n.event", "n.censor", "n.enter")) fit[[i]] <- delta(fit[[i]], index1) fit } # For a single component, turn it from a list into a single vector, matrix # or array unlistsurv <- function(x, name) { temp <- lapply(x, function(x) x[[name]]) if (is.vector(temp[[1]])) unlist(temp) else if (is.matrix(temp[[1]])) do.call("rbind", temp) else { # the cumulative hazard is the only component that is an array # it's third dimension is n xx <- unlist(temp) dd <- dim(temp[[1]]) dd[3] <- length(xx)/prod(dd[1:2]) array(xx, dim=dd) } } # unlist all the components built by a set of calls to findrow # and remake the strata unpacksurv <- function(fit, ltemp) { keep <- c("time", "surv", "pstate", "upper", "lower", "std.err", "cumhaz", "n.risk", "n.event", "n.censor", "n.enter", "std.chaz") for (i in keep) if (!is.null(fit[[i]])) fit[[i]] <- unlistsurv(ltemp, i) fit$strata[] <- sapply(ltemp, function(x) length(x$time)) fit } @ Repeat the code for survfitms objects. The only real difference is the preservation of \code{pstate} and \code{cumhaz} instead of \code{surv}, and the use of survmean2. <>= summary.survfitms <- function(object, times, censored=FALSE, scale=1, extend=FALSE, rmean= getOption("survfit.rmean"), ...) { fit <- object # save typing if (!inherits(fit, 'survfitms')) stop("summary.survfitms can only be used for survfitms objects") if (is.null(fit$logse)) fit$logse <- FALSE # older style # The print.rmean option is depreciated, it is still listened # to in print.survfit, but ignored here if (is.null(rmean)) rmean <- "common" if (is.numeric(rmean)) { if (is.null(fit$start.time)) { if (rmean < min(fit$time)) stop("Truncation point for the mean is < smallest survival") } else if (rmean < fit$start.time) stop("Truncation point for the mean is < smallest survival") } else { rmean <- match.arg(rmean, c('none', 'common', 'individual')) if (length(rmean)==0) stop("Invalid value for rmean option") } fit0 <- survfit0(fit, fit$start.time) # add time 0 temp <- survmean2(fit0, scale=scale, rmean) table <- temp$matrix #for inclusion in the output list rmean.endtime <- temp$end.time if (!missing(times)) { if (!is.numeric(times)) stop ("times must be numeric") times <- sort(times) } if (!is.null(fit$strata)) { nstrat <- length(fit$strata) sindx <- rep(1:nstrat, fit$strata) } delta <- function(x, indx) { # sums between chosen times if (is.logical(indx)) indx <- which(indx) if (!is.null(x) && length(indx) >0) { fx <- function(x, indx) diff(c(0, c(0, cumsum(x))[indx+1])) if (is.matrix(x)) { temp <- apply(x, 2, fx, indx=indx) if (is.matrix(temp)) temp else matrix(temp, nrow=1) } else fx(x, indx) } else NULL } if (missing(times)) { <> } else { fit <-fit0 # easier to work with <> times <- sort(times) if (is.null(fit$strata)) fit <- findrow(fit, times, extend) else { ltemp <- vector("list", nstrat) for (i in 1:nstrat) ltemp[[i]] <- findrow(fit[i,], times, extend) fit <- unpacksurv(fit, ltemp) } } # finish off the output structure fit$table <- table if (length(rmean.endtime)>0 && !any(is.na(rmean.endtime))) fit$rmean.endtime <- rmean.endtime if (!is.null(fit$strata)) fit$strata <- factor(rep(names(fit$strata), fit$strata)) # A survfit object may contain std(log S) or std(S), summary always std(S) if (!is.null(fit$std.err) && fit$logse) fit$std.err <- fit$std.err * fit$surv if (scale != 1) { # fix scale in the output fit$time <- fit$time/scale } class(fit) <- "summary.survfitms" fit } <> <> @ Printing for a survfitms object is different than for a survfit one. The big difference is that I don't have an estimate of the median, or any other quantile for that matter. Mean time in state makes sense, but I don't have a standard error for it at the moment. The other is that there is usually a mismatch between the n.event matrix and the n.risk matrix. The latter has all the states that were possible whereas the former only has states with an arrow pointing in. We need to manufacture the 0 events for the other states. <>= print.survfitms <- function(x, scale=1, rmean = getOption("survfit.rmean"), ...) { if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } omit <- x$na.action if (length(omit)) cat(" ", naprint(omit), "\n") x <- survfit0(x, x$start.time) if (is.null(rmean)) rmean <- "common" if (is.numeric(rmean)) { if (is.null(x$start.time)) { if (rmean < min(x$time)) stop("Truncation point for the mean is < smallest survival") } else if (rmean < x$start.time) stop("Truncation point for the mean is < smallest survival") } else { rmean <- match.arg(rmean, c('none', 'common', 'individual')) if (length(rmean)==0) stop("Invalid value for rmean option") } temp <- survmean2(x, scale=scale, rmean) if (is.null(temp$end.time)) print(temp$matrix, ...) else { etime <- temp$end.time dd <- dimnames(temp$matrix) cname <- dd[[2]] cname[length(cname)] <- paste0(cname[length(cname)], '*') dd[[2]] <- cname dimnames(temp$matrix) <- dd print(temp$matrix, ...) if (length(etime) ==1) cat(" *mean time in state, restricted (max time =", format(etime, ...), ")\n") else cat(" *mean time in state, restricted (per curve cutoff)\n") } invisible(x) } @ This part of the computation is set out separately since it is called by both print and summary. <>= survmean2 <- function(x, scale=1, rmean) { nstate <- length(x$states) #there will always be at least 1 state ngrp <- max(1, length(x$strata)) if (is.null(x$newdata)) ndata <- 0 else ndata <- nrow(x$newdata) if (ngrp >1) { igrp <- rep(1:ngrp, x$strata) rname <- names(x$strata) } else { igrp <- rep(1, length(x$time)) rname <- NULL } # The n.event matrix may not have nstate columms. Its # colnames are the first elements of states, however if (is.matrix(x$n.event)) { nc <- ncol(x$n.event) nevent <- tapply(x$n.event, list(rep(igrp, nc), col(x$n.event)), sum) dimnames(nevent) <- list(rname, x$states[1:nc]) } else { nevent <- tapply(x$n.event, igrp, sum) names(nevent) <- rname } if (ndata< 2) { outmat <- matrix(0., nrow=nstate*ngrp , ncol=2) outmat[,1] <- rep(x$n, nstate) outmat[1:length(nevent), 2] <- c(nevent) if (ngrp >1) rowname <- c(outer(rname, x$states, paste, sep=", ")) else rowname <- x$states } else { outmat <- matrix(0., nrow=nstate*ndata*ngrp, ncol=2) outmat[,1] <- rep(x$n, nstate*ndata) outmat[, 2] <- rep(c(nevent), each=ndata) temp <- outer(1:ndata, x$states, paste, sep=", ") if (ngrp >1) rowname <- c(outer(rname, temp, paste, sep=", ")) else rowname <- temp nstate <- nstate * ndata } # Caculate the mean time in each state if (rmean != "none") { if (is.numeric(rmean)) maxtime <- rep(rmean, ngrp) else if (rmean=="common") maxtime <- rep(max(x$time), ngrp) else maxtime <- tapply(x$time, igrp, max) meantime <- matrix(0., ngrp, nstate) if (!is.null(x$influence)) stdtime <- meantime for (i in 1:ngrp) { # a 2 dimensional matrix is an "array", but a 3-dim array is # not a "matrix", so check for matrix first. if (is.matrix(x$pstate)) temp <- x$pstate[igrp==i,, drop=FALSE] else if (is.array(x$pstate)) temp <- matrix(x$pstate[igrp==i,,,drop=FALSE], ncol= nstate) else temp <- matrix(x$pstate[igrp==i], ncol=1) tt <- x$time[igrp==i] # Now cut it off at maxtime delta <- diff(c(tt[tt nrow(temp)) delta <- delta[1:nrow(temp)] if (length(delta) < nrow(temp)) delta <- c(delta, rep(0, nrow(temp) - length(delta))) meantime[i,] <- colSums(delta*temp) if (!is.null(x$influence)) { # calculate the variance if (is.list(x$influence)) itemp <- apply(x$influence[[i]], 1, function(x) colSums(x*delta)) else itemp <- apply(x$influence, 1, function(x) colSums(x*delta)) stdtime[i,] <- sqrt(rowSums(itemp^2)) } } outmat <- cbind(outmat, c(meantime)/scale) cname <- c("n", "nevent", "rmean") if (!is.null(x$influence)) { outmat <- cbind(outmat, c(stdtime)/scale) cname <- c(cname, "std(rmean)") } # report back a single time, if there is only one if (all(maxtime == maxtime[1])) maxtime <- maxtime[1] } else cname <- c("n", "nevent") dimnames(outmat) <- list(rowname, cname) if (rmean=='none') list(matrix=outmat) else list(matrix=outmat, end.time=maxtime/scale) } @ \section{Plotting survival curves} This version of the curves uses the newer form of the survfit object, which fixes an original design decision that I now consider to have been a mistake. That is, an ordinary survival curve did not store the intial (time=0, S=1) point in the survfit object, leaving it up to plotting and/or printing routines to glue it back on. Later additions of delayed starting time and multi-state curves meant that I had to store those values anyway, sticking them into appended objects. The version3 survfit object puts the intial time back where it belongs, and makes this routine easier to write. The plot, lines, and points routines use several common code blocks in order to maintain consistency. <>= plot.survfit<- function(x, conf.int, mark.time=FALSE, pch=3, col=1,lty=1, lwd=1, cex=1, log=FALSE, xscale=1, yscale=1, xlim, ylim, xmax, fun, xlab="", ylab="", xaxs='r', conf.times, conf.cap=.005, conf.offset=.012, conf.type=c('log', 'log-log', 'plain', 'logit', "arcsin"), mark, noplot="(s0)", cumhaz=FALSE, firstx, ymin, ...) { dotnames <- names(list(...)) if (any(dotnames =='type')) stop("The graphical argument 'type' is not allowed") x <- survfit0(x, x$start.time) # align data at 0 for plotting <> <> <> <> <> <> <> type <- 's' <> if (resetclip) { xx <- par("usr") clip(xx[1], xx[2], xx[3], xx[4]) # undo the clipping } invisible(lastx) } lines.survfit <- function(x, type='s', pch=3, col=1, lty=1, lwd=1, cex=1, mark.time=FALSE, fun, conf.int=FALSE, conf.times, conf.cap=.005, conf.offset=.012, conf.type=c('log', 'log-log', 'plain', 'logit', "arcsin"), mark, noplot="(s0)", cumhaz=FALSE, ...) { x <- survfit0(x, x$start.time) xlog <- par("xlog") <> <> <> <> do.clip <- options("plot.survfit") if (!is.null(xx <- do.clip$plotclip)) clip(xx[1], xx[2], xx[3], xx[4]) <> <> if (!is.null(xx <- do.clip$plotreset)) clip(xx[1], xx[2], xx[3], xx[4]) invisible(lastx) } points.survfit <- function(x, fun, censor=FALSE, col=1, pch, noplot="(s0)", cumhaz=FALSE, ...) { conf.int <- FALSE # never draw these with 'points' x <- survfit0(x, x$start.time) <> <> do.clip <- options("plot.survfit") if (!is.null(xx <- do.clip$plotclip)) clip(xx[1], xx[2], xx[3], xx[4]) if (ncurve==1 || (length(col)==1 && missing(pch))) { if (censor) points(stime, ssurv, ...) else points(stime[x$n.event>0], ssurv[x$n.event>0], ...) } else { c2 <- 1 #cycles through the colors and characters col <- rep(col, length=ncurve) if (!missing(pch)) { if (length(pch)==1) pch2 <- rep(strsplit(pch, '')[[1]], length=ncurve) else pch2 <- rep(pch, length=ncurve) } for (j in 1:ncol(ssurv)) { for (i in unique(stemp)) { if (censor) who <- which(stemp==i) else who <- which(stemp==i & x$n.event >0) if (missing(pch)) points(stime[who], ssurv[who,j], col=col[c2], ...) else points(stime[who], ssurv[who,j], col=col[c2], pch=pch2[c2], ...) c2 <- c2+1 } } } if (!is.null(xx <- do.clip$plotreset)) clip(xx[1], xx[2], xx[3], xx[4]) } @ <>= # decide on logarithmic axes, yes or no if (is.logical(log)) { ylog <- log xlog <- FALSE if (ylog) logax <- 'y' else logax <- "" } else { ylog <- (log=='y' || log=='xy') xlog <- (log=='x' || log=='xy') logax <- log } if (!missing(fun)) { if (is.character(fun)) { if (fun=='log'|| fun=='logpct') ylog <- TRUE if (fun=='cloglog') { xlog <- TRUE if (ylog) logax <- 'xy' else logax <- 'x' } } } @ <>= # The default for plot and lines is to add confidence limits # if there is only one curve if (missing(conf.int) && missing(conf.times)) conf.int <- (!is.null(x$std.err) && prod(dim(x) ==1)) if (missing(conf.times)) conf.times <- NULL else { if (!is.numeric(conf.times)) stop('conf.times must be numeric') if (missing(conf.int)) conf.int <- TRUE } if (!missing(conf.int)) { if (is.numeric(conf.int)) { conf.level <- conf.int if (conf.level<0 || conf.level > 1) stop("invalid value for conf.int") if (conf.level ==0) conf.int <- FALSE else if (conf.level != x$conf.int) { x$upper <- x$lower <- NULL # force recomputation } conf.int <- TRUE } else conf.level = 0.95 } # Organize data into stime, ssurv, supper, slower stime <- x$time std <- NULL yzero <- FALSE # a marker that we have an "ordinary survival curve" with min 0 smat <- function(x) { # the rest of the routine is simpler if everything is a matrix dd <- dim(x) if (is.null(dd)) as.matrix(x) else if (length(dd) ==2) x else matrix(x, nrow=dd[1]) } if (cumhaz) { # plot the cumulative hazard instead if (is.null(x$cumhaz)) stop("survfit object does not contain a cumulative hazard") if (is.numeric(cumhaz)) { dd <- dim(x$cumhaz) if (is.null(dd)) nhazard <- 1 else nhazard <- prod(dd[-1]) if (cumhaz != floor(cumhaz)) stop("cumhaz argument is not integer") if (any(cumhaz < 1 | cumhaz > nhazard)) stop("subscript out of range") ssurv <- smat(x$cumhaz)[,cumhaz, drop=FALSE] if (!is.null(x$std.chaz)) std <- smat(x$std.chaz)[,cumhaz, drop=FALSE] } else if (is.logical(cumhaz)) { ssurv <- smat(x$cumhaz) if (!is.null(x$std.chaz)) std <- smat(x$std.chaz) } else stop("invalid cumhaz argument") } else if (inherits(x, "survfitms")) { i <- (x$states != noplot) if (all(i) || !any(i)) { # the !any is a failsafe, in case none are kept then ignore noplot ssurv <- smat(x$pstate) if (!is.null(x$std.err)) std <- smat(x$std.err) } else { i <- which(i) # the states to keep # we have to be careful about subscripting if (length(dim(x$pstate)) ==3) { ssurv <- smat(x$pstate[,,i, drop=FALSE]) if (!is.null(x$std.err)) std <- smat(x$std.err[,,i, drop=FALSE]) } else { ssurv <- x$pstate[,i, drop=FALSE] if (!is.null(x$std.err)) std <- x$std.err[,i, drop=FALSE] } } } else { yzero <- TRUE ssurv <- as.matrix(x$surv) # x$surv will have one column if (!is.null(x$std.err)) std <- as.matrix(x$std.err) # The fun argument only applies to single state survfit objects # First deal with the special case of fun='cumhaz', which is here for # backwards compatability; people should use the cumhaz argument if (!missing(fun) && is.character(fun) && fun=="cumhaz") { cumhaz <- TRUE if (!is.null(x$cumhaz)) { ssurv <- as.matrix(x$cumhaz) if (!is.null(x$std.chaz)) std <- as.matrix(x$std.chaz) } else { ssurv <- as.matrix(-log(x$surv)) if (!is.null(x$std.err)) { if (x$logse) std <- as.matrix(x$std.err) else std <- as.matrix(x$std.err/x$surv) } } } } # set up strata if (is.null(x$strata)) { nstrat <- 1 stemp <- rep(1, length(x$time)) # same length as stime } else { nstrat <- length(x$strata) stemp <- rep(1:nstrat, x$strata) # same length as stime } ncurve <- nstrat * ncol(ssurv) @ If confidence limits are to be plotted, and they were not part of the data that is passed in, create them. Confidence limits for the cumulative hazard must always be created, and they don't use transforms. <>= conf.type <- match.arg(conf.type) if (conf.type=="none") conf.int <- FALSE if (conf.int== "none") conf.int <- FALSE if (conf.int=="only") { plot.surv <- FALSE conf.int <- TRUE } else plot.surv <- TRUE if (conf.int) { if (is.null(std)) stop("object does not have standard errors, CI not possible") if (cumhaz) { if (missing(conf.type)) conf.type="plain" temp <- survfit_confint(ssurv, std, logse=FALSE, conf.type, conf.level, ulimit=FALSE) supper <- as.matrix(temp$upper) slower <- as.matrix(temp$lower) } else if (is.null(x$upper)) { if (missing(conf.type) && !is.null(x$conf.type)) conf.type <- x$conf.type temp <- survfit_confint(ssurv, x$std.err, logse= x$logse, conf.type, conf.level, ulimit=FALSE) supper <- as.matrix(temp$upper) slower <- as.matrix(temp$lower) } else { supper <- as.matrix(x$upper) slower <- as.matrix(x$lower) } } else supper <- slower <- NULL @ <>= if (!inherits(x, "survfitms") && !cumhaz & !missing(fun)) { yzero <- FALSE if (is.character(fun)) { tfun <- switch(tolower(fun), 'log' = function(x) x, 'event'=function(x) 1-x, 'cumhaz'=function(x) -log(x), 'cloglog'=function(x) log(-log(x)), 'pct' = function(x) x*100, 'logpct'= function(x) 100*x, #special case further below 'identity'= function(x) x, 'f' = function(x) 1-x, 's' = function(x) x, 'surv' = function(x) x, stop("Unrecognized function argument") ) if (tolower(fun) %in% c("identity", "s") && !inherits(x, "survfitms") && !cumhaz) yzero <- TRUE } else if (is.function(fun)) tfun <- fun else stop("Invalid 'fun' argument") ssurv <- tfun(ssurv ) if (!is.null(supper)) { supper <- tfun(supper) slower <- tfun(slower) } } @ The \code{mark} argument is a holdover from S, when pch could not have numeric values; mark has since disappeared from the manual page for \code{par}. We honor it for backwards compatability. To be consistent with matplot and others, we allow pch to be a character string or a vector of characters. <>= if (missing(mark.time) & !missing(mark)) mark.time <- TRUE if (missing(pch) && !missing(mark)) pch <- mark if (length(pch)==1 && is.character(pch)) pch <- strsplit(pch, "")[[1]] # Marks are not placed on confidence bands pch <- rep(pch, length.out=ncurve) mcol <- rep(col, length.out=ncurve) if (is.numeric(mark.time)) mark.time <- sort(mark.time) # The actual number of curves is ncurve*3 if there are confidence bands, # unless conf.times has been given. Colors and line types in the latter # match the curves # If the number of line types is 1 and lty is an integer, then use lty # for the curve and lty+1 for the CI # If the length(lty) <= length(ncurve), use the same color for curve and CI # otherwise assume the user knows what they are about and has given a full # vector of line types. # Colors and line widths work like line types, excluding the +1 rule. if (conf.int & is.null(conf.times)) { if (length(lty)==1 && is.numeric(lty)) lty <- rep(c(lty, lty+1, lty+1), ncurve) else if (length(lty) <= ncurve) lty <- rep(rep(lty, each=3), length.out=(ncurve*3)) else lty <- rep(lty, length.out= ncurve*3) if (length(col) <= ncurve) col <- rep(rep(col, each=3), length.out=3*ncurve) else col <- rep(col, length.out=3*ncurve) if (length(lwd) <= ncurve) lwd <- rep(rep(lwd, each=3), length.out=3*ncurve) else lwd <- rep(lwd, length.out=3*ncurve) } else { col <- rep(col, length.out=ncurve) lty <- rep(lty, length.out=ncurve) lwd <- rep(lwd, length.out=ncurve) } @ Create the frame for the plot. We draw an empty figure, letting R figure out the limits. <>= # check consistency if (!missing(xlim)) { if (!missing(xmax)) warning("cannot have both xlim and xmax arguments, xmax ignored") if (!missing(firstx)) stop("cannot have both xlim and firstx arguments") } if (!missing(ylim)) { if (!missing(ymin)) stop("cannot have both ylim and ymin arguments") } # Do axis range computations if (!missing(xlim) && !is.null(xlim)) { tempx <- xlim if (xaxs == 'S') tempx[2] <- tempx[2] + diff(tempx)*1.04 } else { temp <- stime[is.finite(stime)] if (!missing(xmax) && missing(xlim)) temp <- temp[temp <= xmax] if (xaxs=='S') { #special x- axis style for survival curves if (xlog) tempx <- c(min(temp[temp>0]), max(temp)+ diff(temp)*1.04) else tempx <- c(min(temp), max(temp)) * 1.04 } else if (xlog) tempx <- range(temp[temp > 0]) else tempx <- range(temp) } if (!missing(ylim) && !is.null(ylim)) tempy <- ylim else { skeep <- is.finite(stime) & stime >= tempx[1] & stime <= tempx[2] if (ylog) { if (!is.null(supper)) tempy <- range(c(slower[is.finite(slower) & slower>0 & skeep], supper[is.finite(supper) & skeep])) else tempy <- range(ssurv[is.finite(ssurv)& ssurv>0 & skeep]) if (tempy[2]==1) tempy[2] <- .99 # makes for a prettier axis if (any(c(ssurv, slower)[skeep] ==0)) { tempy[1] <- tempy[1]*.8 ssurv[ssurv==0] <- tempy[1] if (!is.null(slower)) slower[slower==0] <- tempy[1] } } else { if (!is.null(supper)) tempy <- range(c(supper[skeep], slower[skeep]), finite=TRUE, na.rm=TRUE) else tempy <- range(ssurv[skeep], finite=TRUE, na.rm= TRUE) if (yzero) tempy <- range(c(0, tempy)) } } if (!missing(ymin)) tempy[1] <- ymin # # Draw the basic box # temp <- if (xaxs=='S') 'i' else xaxs plot(range(tempx, finite=TRUE, na.rm=TRUE)/xscale, range(tempy, finite=TRUE, na.rm=TRUE)*yscale, type='n', log=logax, xlab=xlab, ylab=ylab, xaxs=temp,...) if(yscale != 1) { if (ylog) par(usr =par("usr") -c(0, 0, log10(yscale), log10(yscale))) else par(usr =par("usr")/c(1, 1, yscale, yscale)) } if (xscale !=1) { if (xlog) par(usr =par("usr") -c(log10(xscale), log10(xscale), 0,0)) else par(usr =par("usr")*c(xscale, xscale, 1, 1)) } @ The use of [[par(usr)]] just above is a bit sneaky. I want the lines and points routines to be able to add to the plot, \emph{without} passing them a global parameter that determines the y-scale or forcing the user to repeat it. Use clipping to get a nice limit to the plot, without having any of the lines touch the edge. <>= if (xaxs=='i') resetclip <- FALSE else resetclip <- !(missing(xlim) & missing(ylim) & missing(xmax) & missing(firstx)& missing(ymin)) if (resetclip) { # yes, do it if (xaxs=='S') tempx <- c(tempx[1], temp[1]) clip(tempx[1], tempx[2], tempy[1], tempy[2]) options(plot.survfit = list(plotclip=c(tempx, tempy), plotreset=par('usr'))) } else options(plot.survfit = NULL) #remove any notes from a prior plot @ The next functions do the actual drawing. <>= # Create a step function, removing redundancies that sometimes occur in # curves with lots of censoring. dostep <- function(x,y) { keep <- is.finite(x) & is.finite(y) if (!any(keep)) return() #all points were infinite or NA if (!all(keep)) { # these won't plot anyway, so simplify (CI values are often NA) x <- x[keep] y <- y[keep] } n <- length(x) if (n==1) list(x=x, y=y) else if (n==2) list(x=x[c(1,2,2)], y=y[c(1,1,2)]) else { # replace verbose horizonal sequences like # (1, .2), (1.4, .2), (1.8, .2), (2.3, .2), (2.9, .2), (3, .1) # with (1, .2), (.3, .2),(3, .1). # They are slow, and can smear the looks of the line type. temp <- rle(y)$lengths drops <- 1 + cumsum(temp[-length(temp)]) # points where the curve drops #create a step function if (n %in% drops) { #the last point is a drop xrep <- c(x[1], rep(x[drops], each=2)) yrep <- rep(y[c(1,drops)], c(rep(2, length(drops)), 1)) } else { xrep <- c(x[1], rep(x[drops], each=2), x[n]) yrep <- c(rep(y[c(1,drops)], each=2)) } list(x=xrep, y=yrep) } } drawmark <- function(x, y, mark.time, censor, cex, ...) { if (!is.numeric(mark.time)) { xx <- x[censor>0] yy <- y[censor>0] if (any(censor >1)) { # tied death and censor, put it on the midpoint j <- pmax(1, which(censor>1) -1) i <- censor[censor>0] yy[i>1] <- (yy[i>1] + y[j])/2 } } else { #interpolate xx <- mark.time yy <- approx(x, y, xx, method="constant", f=0)$y } points(xx, yy, cex=cex, ...) } @ The code to actually draw curves for the plot. The code to draw the lines and confidence bands. <>= c1 <- 1 # keeps track of the curve number c2 <- 1 # keeps track of the lty, col, etc xend <- yend <- double(ncurve) if (length(conf.offset) ==1) temp.offset <- (1:ncurve - (ncurve+1)/2)* conf.offset* diff(par("usr")[1:2]) else temp.offset <- rep(conf.offset, length=ncurve) * diff(par("usr")[1:2]) temp.cap <- conf.cap * diff(par("usr")[1:2]) for (j in 1:ncol(ssurv)) { for (i in unique(stemp)) { #for each strata who <- which(stemp==i) # if n.censor is missing, then assume any line that does not have an # event would not be present but for censoring, so there must have # been censoring then # otherwise categorize is 0= no censor, 1=censor, 2=censor and death if (is.null(x$n.censor)) censor <- ifelse(x$n.event[who]==0, 1, 0) else censor <- ifelse(x$n.censor[who]==0, 0, 1 + (x$n.event[who] > 0)) xx <- stime[who] yy <- ssurv[who,j] if (plot.surv) { if (type=='s') lines(dostep(xx, yy), lty=lty[c2], col=col[c2], lwd=lwd[c2]) else lines(xx, yy, type=type, lty=lty[c2], col=col[c2], lwd=lwd[c2]) if (is.numeric(mark.time) || mark.time) drawmark(xx, yy, mark.time, censor, pch=pch[c1], col=mcol[c1], cex=cex) } xend[c1] <- max(xx) yend[c1] <- yy[length(yy)] if (conf.int && !is.null(conf.times)) { # add vertical bars at the specified times x2 <- conf.times + temp.offset[c1] templow <- approx(xx, slower[who,j], x2, method='constant', f=1)$y temphigh<- approx(xx, supper[who,j], x2, method='constant', f=1)$y segments(x2, templow, x2, temphigh, lty=lty[c2], col=col[c2], lwd=lwd[c2]) if (conf.cap>0) { segments(x2-temp.cap, templow, x2+temp.cap, templow, lty=lty[c2], col=col[c2], lwd=lwd[c2] ) segments(x2-temp.cap, temphigh, x2+temp.cap, temphigh, lty=lty[c2], col=col[c2], lwd=lwd[c2]) } } c1 <- c1 +1 c2 <- c2 +1 if (conf.int && is.null(conf.times)) { if (type == 's') { lines(dostep(xx, slower[who,j]), lty=lty[c2], col=col[c2],lwd=lwd[c2]) c2 <- c2 +1 lines(dostep(xx, supper[who,j]), lty=lty[c2], col=col[c2], lwd= lwd[c2]) c2 <- c2 + 1 } else { lines(xx, slower[who,j], lty=lty[c2], col=col[c2],lwd=lwd[c2], type=type) c2 <- c2 +1 lines(xx, supper[who,j], lty=lty[c2], col=col[c2], lwd= lwd[c2], type= type) c2 <- c2 + 1 } } } } lastx <- list(x=xend, y=yend) @ \section{State space figures} The statefig function was written to do ``good enough'' state space figures quickly and easily. There are certainly figures it can't draw and many figures that can be drawn better, but it accomplishes its purpose. The key argument \code{layout}, the first, is a vector of numbers. The value (1,3,4,2) for instance has a single state, then a column with 3 states, then a column with 4, then a column with 2. If \code{layout} is instead a 1 column matrix then do the same from top down. If it is a 2 column matrix then they provided their own spacing. <>= statefig <- function(layout, connect, margin=.03, box=TRUE, cex=1, col=1, lwd=1, lty=1, bcol= col, acol=col, alwd = lwd, alty= lty, offset=0) { # set up an empty canvas frame(); # new environment par(usr=c(0,1,0,1)) if (!is.numeric(layout)) stop("layout must be a numeric vector or matrix") if (!is.matrix(connect) || nrow(connect) != ncol(connect)) stop("connect must be a square matrix") nstate <- nrow(connect) dd <- dimnames(connect) if (!is.null(dd[[1]])) statenames <- dd[[1]] else if (is.null(dd[[2]])) stop("connect must have the state names as dimnames") else statenames <- dd[[2]] # expand out all of the graphical parameters. This lets users # use a vector of colors, line types, etc narrow <- sum(connect!=0) acol <- rep(acol, length=narrow) alwd <- rep(alwd, length=narrow) alty <- rep(alty, length=narrow) bcol <- rep(bcol, length=nstate) lty <- rep(lty, length=nstate) lwd <- rep(lwd, length=nstate) col <- rep(col, length=nstate) # text colors <> <> <> dimnames(cbox) <- list(statenames, c("x", "y")) invisible(cbox) } <> @ The drawing region is always (0,1) by (0,1). A user can enter their own matrix of coordinates. Otherwise the free space is divided with one portion on each end and 2 portions between boxes. If there were 3 columns for instance they will have x coordinates of 1/6, 1/6 + 1/3, 1/6 + 2/3. Ditto for dividing up the y coordinate. The primary nuisance is that we want to count down from the top instead of up from the bottom. A 1 by 1 matrix is treated as a column matrix. <>= if (is.matrix(layout) && ncol(layout)==2 && nrow(layout) > 1) { # the user provided their own if (any(layout <0) || any(layout >1)) stop("layout coordinates must be between 0 and 1") if (nrow(layout) != nstate) stop("layout matrix should have one row per state") cbox <- layout } else { if (any(layout <=0 | layout != floor(layout))) stop("non-integer number of states in layout argument") space <- function(n) (1:n -.5)/n # centers of the boxes if (sum(layout) != nstate) stop("number of boxes != number of states") cbox <- matrix(0, ncol=2, nrow=nstate) #coordinates will be here n <- length(layout) ix <- rep(seq(along=layout), layout) if (is.vector(layout) || ncol(layout)> 1) { #left to right cbox[,1] <- space(n)[ix] for (i in 1:n) cbox[ix==i,2] <- 1 -space(layout[i]) } else { # top to bottom cbox[,2] <- 1- space(n)[ix] for (i in 1:n) cbox[ix==i,1] <- space(layout[i]) } } @ Write the text out. Compute the width and height of each box. Then compute the margin. The only tricky thing here is that we want the area around the text to \emph{look} the same left-right and up-down, which depends on the geometry of the plotting region. <>= text(cbox[,1], cbox[,2], statenames, cex=cex, col=col) # write the labels textwd <- strwidth(statenames, cex=cex) textht <- strheight(statenames, cex=cex) temp <- par("pin") #plot region in inches dx <- margin * temp[2]/mean(temp) # extra to add in the x dimension dy <- margin * temp[1]/mean(temp) # extra to add in y if (box) { drawbox <- function(x, y, dx, dy, lwd, lty, col) { lines(x+ c(-dx, dx, dx, -dx, -dx), y+ c(-dy, -dy, dy, dy, -dy), lwd=lwd, lty=lty, col=col) } for (i in 1:nstate) drawbox(cbox[i,1], cbox[i,2], textwd[i]/2 + dx, textht[i]/2 + dy, col=bcol[i], lwd=lwd[i], lty=lty[i]) dx <- 2*dx; dy <- 2*dy # move arrows out from the box } @ Now for the hard part, which is drawing the arrows. The entries in the connection matrix are 0= no connection or $1+d$ for $-1 < d < 1$. The connection is an arc that passes from the center of box 1 to the center of box 2, and through a point that is $dz$ units above the midpoint of the line from box 1 to box 2, where $2z$ is the length of that line. For $d=1$ we get a half circle to the right (with respect to traversing the line from A to B) and for $d= -1$ we get a half circle to the left. If $d=0$ it is a straight line. If A and B are the starting and ending points then AB is the chord of a circle. Draw radii from the center to A, B, and through the midpoint $c$ of AB. This last has length $dz$ above the chord and $r- dz$ below where $r$ is the radius. Then we have \begin{align*} r^2 & = z^2 + (r-dz)^2 \\ 2rdz &= z^2 + (dz)^2 \\ r &= \left[z (1+ d^2) \right ]/ 2d \end{align*} Be careful with negative $d$, which is used to denote left-hand arcs. The angle $\theta$ from A to B is the arctan of $B-A$, and the center of the circle is at $C = (A+B)/2 + (r - dz)(\sin \theta, -\cos \theta)$. We then need to draw the arc $C + r(\cos \phi, \sin \phi)$ for some range of angles $\phi$. The angles to the centers of the boxes are $\arctan(A-C)$ and $\arctan(B-C)$, but we want to start and end outside the box. It turned out that this is more subtle than I thought. The solution below uses two helper functions \code{statefigx} and \code{statefigy}. The first accepts $C$, $r$, the range of $\phi$ values, and a target $y$ value. It returns the angles, within the range, such that the endpoint of the arc has horizontal coordinate $x$, or an empty vector if none such exists. For an arc there are sometimes two solutions. First calculate the angles for which the arc will strike the horizontal line. If the arc is too short to reach the line then there is no intersection. The return legal angles. <>= statefigx <- function(x, C, r, a1, a2) { temp <-(x - C[1])/r if (abs(temp) >1) return(NULL) # no intersection of the arc and x phi <- acos(temp) # this will be from 0 to pi pi <- 3.1415926545898 # in case someone has a variable "pi" if (x > C[1]) phi <- c(phi, pi - phi) else phi <- -c(phi, pi - phi) # Add reflection about the X axis, in both forms phi <- c(phi, -phi, 2*pi - phi) amax <- max(a1, a2) amin <- min(a1, a2) phi[phi amin] } statefigy <- function(y, C, r, a1, a2) { pi <- 3.1415926545898 # in case someone has a variable named "pi" amax <- max(a1, a2) amin <- min(a1, a2) temp <-(y - C[2])/r if (abs(temp) >1) return(NULL) # no intersection of the arc and y phi <- asin(temp) # will be from -pi/2 to pi/2 phi <- c(phi, sign(phi)*pi -phi) # reflect about the vertical phi <- c(phi, phi + 2*pi) phi[phi amin] } @ <>= phi <- function(x1, y1, x2, y2, d, delta1, delta2) { # d = height above the line theta <- atan2(y2-y1, x2-x1) # angle from center to center if (abs(d) < .001) d=.001 # a really small arc looks like a line z <- sqrt((x2-x1)^2 + (y2 - y1)^2) /2 # half length of chord ab <- c((x1 + x2)/2, (y1 + y2)/2) # center of chord r <- abs(z*(1 + d^2)/ (2*d)) if (d >0) C <- ab + (r - d*z)* c(-sin(theta), cos(theta)) # center of arc else C <- ab + (r + d*z)* c( sin(theta), -cos(theta)) a1 <- atan2(y1-C[2], x1-C[1]) # starting angle a2 <- atan2(y2-C[2], x2-C[1]) # ending angle if (abs(a2-a1) > pi) { # a1= 3 and a2=-3, we don't want to include 0 # nor for a1=-3 and a2=3 if (a1>0) a2 <- a2 + 2 *pi else a1 <- a1 + 2*pi } if (d > 0) { #counterclockwise phi1 <- min(statefigx(x1 + delta1[1], C, r, a1, a2), statefigx(x1 - delta1[1], C, r, a1, a2), statefigy(y1 + delta1[2], C, r, a1, a2), statefigy(y1 - delta1[2], C, r, a1, a2), na.rm=TRUE) phi2 <- max(statefigx(x2 + delta2[1], C, r, a1, a2), statefigx(x2 - delta2[1], C, r, a1, a2), statefigy(y2 + delta2[2], C, r, a1, a2), statefigy(y2 - delta2[2], C, r, a1, a2), na.rm=TRUE) } else { # clockwise phi1 <- max(statefigx(x1 + delta1[1], C, r, a1, a2), statefigx(x1 - delta1[1], C, r, a1, a2), statefigy(y1 + delta1[2], C, r, a1, a2), statefigy(y1 - delta1[2], C, r, a1, a2), na.rm=TRUE) phi2 <- min(statefigx(x2 + delta2[1], C, r, a1, a2), statefigx(x2 - delta2[1], C, r, a1, a2), statefigy(y2 + delta2[2], C, r, a1, a2), statefigy(y2 - delta2[2], C, r, a1, a2), na.rm=TRUE) } list(center=C, angle=c(phi1, phi2), r=r) } @ Now draw the arrows, one at a time. I arbitrarily declare that 20 segments is enough for a smooth curve. <>= arrow2 <- function(...) arrows(..., angle=20, length=.1) doline <- function(x1, x2, d, delta1, delta2, lwd, lty, col) { if (d==0 && x1[1] ==x2[1]) { # vertical line if (x1[2] > x2[2]) # downhill arrow2(x1[1], x1[2]- delta1[2], x2[1], x2[2] + delta2[2], lwd=lwd, lty=lty, col=col) else arrow2(x1[1], x1[2]+ delta1[2], x2[1], x2[2] - delta2[2], lwd=lwd, lty=lty, col=col) } else if (d==0 && x1[2] == x2[2]) { # horizontal line if (x1[1] > x2[1]) # right to left arrow2(x1[1]-delta1[1], x1[2], x2[1] + delta2[1], x2[2], lwd=lwd, lty=lty, col=col) else arrow2(x1[1]+delta1[1], x1[2], x2[1] - delta2[1], x2[2], lwd=lwd, lty=lty, col=col) } else { temp <- phi(x1[1], x1[2], x2[1], x2[2], d, delta1, delta2) if (d==0) { arrow2(temp$center[1] + temp$r*cos(temp$angle[1]), temp$center[2] + temp$r*sin(temp$angle[1]), temp$center[1] + temp$r*cos(temp$angle[2]), temp$center[2] + temp$r*sin(temp$angle[2]), lwd=lwd, lty=lty, col=col) } else { # approx the curve with 21 segments # arrowhead on the last one phi <- seq(temp$angle[1], temp$angle[2], length=21) lines(temp$center[1] + temp$r*cos(phi), temp$center[2] + temp$r*sin(phi), lwd=lwd, lty=lty, col=col) arrow2(temp$center[1] + temp$r*cos(phi[20]), temp$center[2] + temp$r*sin(phi[20]), temp$center[1] + temp$r*cos(phi[21]), temp$center[2] + temp$r*sin(phi[21]), lwd=lwd, lty=lty, col=col) } } } @ The last arrow bit is the offset. If offset $\ne 0$ and there is a bidirectional arrow between two boxes, and the arc for both of them is identical, then move each arrow just a bit, orthagonal to a segment connecting the middle of the two boxes. If the line goes from (x1, y1) to (x2, y2), then the normal to the line at (x1, x2) is (y2-y1, x1-x2), normalized to length 1. The -1 below (\code{-offset}) makes the shift obey a left-hand rule: looking down a line segement towards the arrow head, we shift to the left. This makes two horizontal arrows stack in the normal typographical order for chemical reactions, the right facing one above the left facing. A user can use a negative value for offset to reverse this if they wish. <>= k <- 1 for (j in 1:nstate) { for (i in 1:nstate) { if (i != j && connect[i,j] !=0) { if (connect[i,j] == 2-connect[j,i] && offset!=0) { #add an offset toff <- c(cbox[j,2] - cbox[i,2], cbox[i,1] - cbox[j,1]) toff <- -offset *toff/sqrt(sum(toff^2)) doline(cbox[i,]+toff, cbox[j,]+toff, connect[i,j]-1, delta1 = c(textwd[i]/2 + dx, textht[i]/2 + dy), delta2 = c(textwd[j]/2 + dx, textht[j]/2 + dy), lty=alty[k], lwd=alwd[k], col=acol[k]) } else doline(cbox[i,], cbox[j,], connect[i,j]-1, delta1 = c(textwd[i]/2 + dx, textht[i]/2 + dy), delta2 = c(textwd[j]/2 + dx, textht[j]/2 + dy), lty=alty[k], lwd=alwd[k], col=acol[k]) k <- k +1 } } } @ \section{tmerge} The tmerge function was designed around a set of specific problems. The idea is to build up a time dependent data set one endpoint at at time. The primary arguments are \begin{itemize} \item data1: the base data set that will be added onto \item data2: the source for new information \item id: the subject identifier in the new data \item \ldots: additional arguments that add variables to the data set \item tstart, tstop: used to set the time range for each subject \item options \end{itemize} The created data set has three new variables (at least), which are \code{id}, \code{tstart} and \code{tstop}. The key part of the call are the ``\ldots'' arguments which each can be one of four types: tdc() and cumtdc() add a time dependent variable, event() and cumevent() add a new endpoint. In the survival routines time intervals are open on the left and closed on the right, i.e., (tstart, tstop]. Time dependent covariates apply from the start of an interval and events occur at the end of an interval. If a data set already had intervals of (0,10] and (10, 14] a new time dependent covariate or event at time 8 would lead to three intervals of (0,8], (8,10], and (10,14]; the new time-dependent covariate value would be added to the second interval, a new event would be added to the first one. A typical call would be <>= newdata <- tmerge(newdata, old, id=clinic, diabetes=tdc(diab.time)) @ which would add a new time dependent covariate \code{diabetes} to the data set. <>= tmerge <- function(data1, data2, id, ..., tstart, tstop, options) { Call <- match.call() # The function wants to recognize special keywords in the # arguments, so define a set of functions which will be used to # mark objects new <- new.env(parent=parent.frame()) assign("tdc", function(time, value=NULL) { x <- list(time=time, value=value); class(x) <- "tdc"; x}, envir=new) assign("cumtdc", function(time, value=NULL) { x <- list(time=time, value=value); class(x) <-"cumtdc"; x}, envir=new) assign("event", function(time, value=NULL, censor=NULL) { x <- list(time=time, value=value, censor=censor); class(x) <-"event"; x}, envir=new) assign("cumevent", function(time, value=NULL, censor=NULL) { x <- list(time=time, value=value, censor=censor); class(x) <-"cumevent"; x}, envir=new) if (missing(data1) || missing(data2) || missing(id)) stop("the data1, data2, and id arguments are required") if (!inherits(data1, "data.frame")) stop("data1 must be a data frame") <> <> <> } @ The program can't use formulas because the \ldots arguments need to be named. This results in a bit of evaluation magic to correctly assess arguments. The routine below could have been set out as a separate top-level routine, the argument is where we want to document it: within the tmerge page or not. I decided on the former. <>= tmerge.control <- function(idname="id", tstartname="tstart", tstopname="tstop", delay =0, na.rm=TRUE, tdcstart=NA, ...) { extras <- list(...) if (length(extras) > 0) stop("unrecognized option(s):", paste(names(extras), collapse=', ')) if (length(idname) != 1 || make.names(idname) != idname) stop("idname option must be a valid variable name") if (!is.null(tstartname) && (length(tstartname) !=1 || make.names(tstartname) != tstartname)) stop("tstart option must be NULL or a valid variable name") if (length(tstopname) != 1 || make.names(tstopname) != tstopname) stop("tstop option must be a valid variable name") if (length(delay) !=1 || !is.numeric(delay) || delay < 0) stop("delay option must be a number >= 0") if (length(na.rm) !=1 || ! is.logical(na.rm)) stop("na.rm option must be TRUE or FALSE") if (length(tdcstart) !=1) stop("tdcstart must be a single value") list(idname=idname, tstartname=tstartname, tstopname=tstopname, delay=delay, na.rm=na.rm, tdcstart=tdcstart) } tname <- attr(data1, "tname") firstcall <- is.null(tname) #first call to the function if (!firstcall && any(is.null(match(unlist(tname), names(data1))))) stop("data1 does not match its own tname attribute") if (!missing(options)) { if (!is.list(options)) stop("options must be a list") if (!is.null(tname)) { # If an option name matches one already in tname, don't confuse # the tmerge.control routine with duplicate arguments temp <- match(names(options), names(tname), nomatch=0) topt <- do.call(tmerge.control, c(options, tname[temp==0])) if (any(temp >0)) { # A variable name is changing midstream, update the # variable names in data1 varname <- tname[c("idname", "tstartname", "tstopname")] temp2 <- match(varname, names(data1)) names(data1)[temp2] <- varname } } else topt <- do.call(tmerge.control, options) } else if (length(tname)) topt <- do.call(tmerge.control, tname) else topt <- tmerge.control() # id, tstart, tstop are found in data2 if (missing(id)) stop("the id argument is required") if (missing(data1) || missing(data2)) stop("two data sets are required") id <- eval(Call[["id"]], data2, enclos=emptyenv()) #don't find it elsewhere if (is.null(id)) stop("id variable not found in data2") if (any(is.na(id))) stop("id variable cannot have missing values") if (firstcall) { if (!missing(tstop)) { tstop <- eval(Call[["tstop"]], data2) if (length(tstop) != length(id)) stop("tstop and id must be the same length") # The neardate routine will check for legal tstop data type } if (!missing(tstart)) { tstart <- eval(Call[["tstart"]], data2) if (length(tstart)==1) tstart <- rep(tstart, length(id)) if (length(tstart) != length(id)) stop("tstart and id must be the same length") if (any(tstart >= tstop)) stop("tstart must be < tstop") } } else { if (!missing(tstart) || !missing(tstop)) stop("tstart and tstop arguments only apply to the first call") } @ Get the \ldots arguments. They are evaluated in a special frame, set up earlier, so that the definitions of the functions tdc, cumtdc, event, and cumevent are local to tmerge. Check that they are all legal: each argument is named, and is one of the four allowed types. <>= # grab the... arguments notdot <- c("data1", "data2", "id", "tstart", "tstop", "options") dotarg <- Call[is.na(match(names(Call), notdot))] dotarg[[1]] <- as.name("list") # The as-yet dotarg arguments if (missing(data2)) args <- eval(dotarg, envir=new) else args <- eval(dotarg, data2, enclos=new) argclass <- sapply(args, function(x) (class(x))[1]) argname <- names(args) if (any(argname== "")) stop("all additional argments must have a name") check <- match(argclass, c("tdc", "cumtdc", "event", "cumevent")) if (any(is.na(check))) stop(paste("argument(s)", argname[is.na(check)], "not a recognized type")) @ The tcount matrix keeps track of what we have done, and is added to the final object at the end. This is useful to the user for debugging what may have gone right or wrong in their usage. <>= # The tcount matrix is useful for debugging tcount <- matrix(0L, length(argname), 8) dimnames(tcount) <- list(argname, c("early","late", "gap", "within", "boundary", "leading", "trailing", "tied")) tevent <- attr(data1, "tevent") # event type variables tcens <- attr(data1, "tcensor")# censor code for variables if (is.null(tcens)) tcens <- vector('list', 0) @ The very first call to the routine is special, since this is when the range of legal times is set. We also apply an initial sort to the data if necessary so that times are in order. There are 2 cases: \begin{enumerate} \item Adding a time range: tstop comes from data2, optional tstart, and the id can be simply matched, by which we mean no duplicates in data1. \item The more common case: there is no tstop, one observation per subject, and the first optional argument is an event or cumevent. We then use its time as the range. \end{enumerate} One thing we could add, but didn't, was to warn if any of the three new variables will stomp on ones already in data1. <>= newdata <- data1 #make a copy if (firstcall) { # We don't look for topt$id. What if the user had id=clinic, but their # starting data set also had a variable named "id". We want clinic for # this first call. idname <- Call[["id"]] if (!is.name(idname)) stop("on the first call 'id' must be a single variable name") # The line below finds tstop and tstart variables in data1 indx <- match(c(topt$idname, topt$tstartname, topt$tstopname), names(data1), nomatch=0) if (any(indx[1:2]>0) && FALSE) { # warning currently turned off. Be chatty? overwrite <- c(topt$tstartname, topt$tstopname)[indx[2:3]] warning("overwriting data1 variables", paste(overwrite, collapse=' ')) } temp <- as.character(idname) if (!is.na(match(temp, names(data1)))) { data1[[topt$idname]] <- data1[[temp]] baseid <- data1[[temp]] } else stop("id variable not found in data1") if (any(duplicated(baseid))) stop("for the first call (that establishes the time range) data1 must have no duplicate identifiers") if (length(baseid)== length(id) && all(baseid == id)) newdata <- data1 else { # Note: 'id' is the idlist for data 2 indx2 <- match(id, baseid) if (any(is.na(indx2))) stop("'id' has values not in data1") newdata <- data1[indx2,] } if (missing(tstop)) { # case 2 if (length(argclass)==0 || argclass[1] != "event") stop("neither a tstop argument nor an initial event argument was found") tstop <- args[[1]][[1]] } # at this point newdata and data2 are in the same order, same # rows if (any(is.na(tstop))) stop("missing time value, when that variable defines the span") if (missing(tstart)) { indx <- which(tstop <=0) if (length(indx) >0) stop("found an ending time of ", tstop[indx[1]], ", the default starting time of 0 is invalid") tstart <- rep(0, length(tstop)) } if (any(tstart >= tstop)) stop("tstart must be < tstop") newdata[[topt$tstartname]] <- tstart newdata[[topt$tstopname]] <- tstop n <- nrow(newdata) if (any(duplicated(id))) { # sort by time within id indx1 <- match(id, unique(id)) newdata <- newdata[order(indx1, tstop),] } temp <- newdata[[topt$idname]] if (any(tstart >= tstop)) stop("tstart must be < tstop") if (any(newdata$tstart[-n] > newdata$tstop[-1] & temp[-n] == temp[-1])) stop("first call has created overlapping or duplicated time intervals") } else { #not a first call if (any(is.na(match(id, data1[[topt$idname]])))) stop("id values were found in data2 which are not in data1") } @ Now for the real work. For each additional argument we first match the id/time pairs of the new data to the current data set, and categorize each into a type. If the time value in data2 is NA, then that addition is skipped. Ditto if the value is NA and options narm=TRUE. This is a convenience for the user, who will often be merging in a variable like ``day of first diabetes diagnosis'' which is missing for those who never had that outcome occur. <>= saveid <- id for (ii in seq(along.with=args)) { argi <- args[[ii]] baseid <- newdata[[topt$idname]] dstart <- newdata[[topt$tstartname]] dstop <- newdata[[topt$tstopname]] argcen <- argi$censor # if an event time is missing then skip that obs etime <- argi$time if (length(etime) != length(saveid)) stop("argument ", argname[ii], " is not the same length as id") if (!is.null(argi$value)) { if (length(argi$value) != length(saveid)) stop("argument ", argname[ii], " is not the same length as id") if (topt$na.rm) keep <- !(is.na(etime) | is.na(argi$value)) else keep <- !is.na(etime) if (!all(keep)) { etime <- etime[keep] argi$value <- argi$value[keep] } } else { keep <- !is.na(etime) etime <- etime[keep] } id <- saveid[keep] # Later steps become easier if we sort the new data by id and time # The match() is critical when baseid is not in sorted order. The # etime part of the sort will change from one ii value to the next. indx <- order(match(id, baseid), etime) id <- id[indx] etime <- etime[indx] if (!is.null(argi$value)) yinc <- argi$value[indx] else yinc <- NULL # indx1 points to the closest start time in the baseline data (data1) # that is <= etime. indx2 to the closest end time that is >=etime. # If etime falls into a (tstart, tstop) interval, indx1 and indx2 # will match # If the "delay" argument is set and this event is of type tdc, then # move any etime that is after the entry time for a subject. if (topt$delay >0 && argclass[ii] %in% c("tdc", "cumtdc")) { mintime <- tapply(dstart, baseid, min) index <- match(id, names(mintime)) etime <- ifelse(etime <= mintime[index], etime, etime+ topt$delay) } indx1 <- neardate(id, baseid, etime, dstart, best="prior") indx2 <- neardate(id, baseid, etime, dstop, best="after") # The event times fall into one of 5 categories # 1. Before the first interval # 2. After the last interval # 3. Outside any interval but with time span, i.e, it falls into # a gap in follow-up # 4. Strictly inside an interval (does't touch either end) # 5. Inside an interval, but touching. itype <- ifelse(is.na(indx1), 1, ifelse(is.na(indx2), 2, ifelse(indx2 > indx1, 3, ifelse(etime== dstart[indx1] | etime== dstop[indx2], 5, 4)))) # Subdivide the events that touch on a boundary # 1: intervals of (a,b] (b,d], new count at b "tied edge" # 2: intervals of (a,b] (c,d] with c>b, new count at c, "front edge" # 3: intervals of (a,b] (c,d] with c>b, new count at b, "back edge" # subtype <- ifelse(itype!=5, 0, ifelse(indx1 == indx2+1, 1, ifelse(etime==dstart[indx1], 2, 3))) tcount[ii,1:7] <- table(factor(itype+subtype, levels=c(1:4, 6:8))) # count ties. id and etime are not necessarily sorted tcount[ii,8] <- sum(tapply(etime, id, function(x) sum(duplicated(x)))) <> } @ A \code{tdc} or \code{cumtdc} operator defines a new time-dependent variable which applies to all future times. Say that we had the following scenario for one subject \begin{center} \begin{tabular}{rr|rr} \multicolumn{2}{c}{current} & \multicolumn{2}{c}{addition} \\ tstart & tstop & time & x \\ 2 & 5 & 1 & 20.2 \\ 6 & 7 & 7 & 11 \\ 7 & 15 & 8 & 17.3 \\ 15 & 30 \\ \end{tabular} \end{center} The resulting data set will have intervals of (2,5), (6,7), (7,8) and (8,15) with covariate values of 20.2, 20.2, 11, and 17.3. Only a covariate change that occurs within an interval causes a new data row. Covariate changes that happen after the last interval are ignored, i.e. at change at time $\ge 30$ in the above example. If instead this had been events at times 1, 7, and 8, the first event would be ignored since it happens outside of any interval, so would an event at exactly time 2. The event at time 7 would be recorded in the (6,7) interval and the one at time 8 in the (7,8) interval: events happen at the ends of intervals. In both cases new rows are only generated for new time values that fall strictly within one of the old intervals. When a subject has two increments on the same day the later one wins. This is correct behavior for cumtdc, a bit odd for cumevent, and the user's problem for tdc and event. We report back the number of ties so that the user can deal with it. Where are we now with the variables? \begin{center} \begin{tabular}{cccc} itype& class & indx1 & indx2 \\ \hline 1 & before & NA & next interval \\ 2 & after & prior interval & NA \\ 3 & in a gap & prior interval & next interval \\ 4 & within interval & containing interval & containing interval \\ 5-1 & on a join & next interval & prior interval \\ 5-2 & front edge & containing & containing \\ 5-3 & back edge & containing & containing \\ \end{tabular} \end{center} If there are any itype 4, start by expanding the data set to add new cut points, which will turn all the 4's into 5-1 types. When expanding, all the event type variables turn into ``censor'' at the newly added times and other variables stay the same. A subject could have more than one new cutpoint added within an interval so we have to count each. In newdata all the rows for a given subject are contiguous and in time order, though the data set may not be in subject order. <>= indx4 <- which(itype==4) n4 <- length(indx4) if (n4 > 0) { # we need to eliminate duplicate times within the same id, but # do so without changing the class of etime: it might # be a Date, an integer, a double, ... # Using unique on a data.frame does the trick icount <- data.frame(irow= indx1[indx4], etime=etime[indx4]) icount <- unique(icount) # the icount data frame will be sorted by second column within first # so rle is faster than table n.add <- rle(icount$irow)$length # number of rows to add for each id # expand the data irep <- rep.int(1L, nrow(newdata)) erow <- unique(indx1[indx4]) # which rows in newdata to be expanded irep[erow] <- 1+ n.add # number of rows in new data jrep <- rep(1:nrow(newdata), irep) #stutter the duplicated rows newdata <- newdata[jrep,] #expand it out dstart <- dstart[jrep] dstop <- dstop[jrep] #fix up times nfix <- length(erow) temp <- vector("list", nfix) iend <- (cumsum(irep))[irep >1] #end row of each duplication set for (j in 1:nfix) temp[[j]] <- -(seq(n.add[j] -1, 0)) + iend[j] newrows <- unlist(temp) dstart[newrows] <- dstop[newrows-1] <- icount$etime newdata[[topt$tstartname]] <- dstart newdata[[topt$tstopname]] <- dstop for (ename in tevent) newdata[newrows-1, ename] <- tcens[[ename]] # refresh indices baseid <- newdata[[topt$idname]] indx1 <- neardate(id, baseid, etime, dstart, best="prior") indx2 <- neardate(id, baseid, etime, dstop, best="after") subtype[itype==4] <- 1 #all the "insides" are now on a tied edge itype[itype==4] <- 5 } @ Now we can add the new variable. The most common is a tdc, so start with it. The C routine returns a set of indices: 0,1,1,2,3,0,4,... would mean that row 1 of the new data happens before the tdc variable, 2 and 3 take values from the first element of yinc, etc. By returning and index, the yinc variable can be of any data type. Using is.na() on the left side below causes the \emph{right} kind of NA to be inserted (this trick was stolen from the merge routine). <>= # add a tdc variable newvar <- newdata[[argname[ii]]] # prior value (for sequential tmerge calls) if (argclass[ii] == "tdc") { if (argname[[ii]] %in% tevent) stop("attempt to turn event variable", argname[[ii]], "into a tdc") #if (!is.null(newvar)) #warning(paste0("replacement of variable '", argname[ii], "'")) # id can be any data type; feed integers to the C routine storage.mode(dstop) <- storage.mode(etime) <- "double" #if time is integer uid <- unique(baseid) index <- .Call(Ctmerge2, match(baseid, uid), dstop, match(id, uid), etime) if (is.null(yinc)) newvar <- ifelse(index==0, 0L, 1L) # add a 0/1 variable else { newvar <- yinc[pmax(1L, index)] if (any(index==0)) { if (is.na(topt$tdcstart)) is.na(newvar) <- (index==0L) else { if (is.numeric(newvar)) newvar[index=0L] <- as.numeric(topt$tdcstart) else { if (is.factor(newvar)) { # special case: if tdcstart isn't in the set of levels, # add it to the levels if (is.na(match(topt$tdcstart, levels(newvar)))) levels(newvar) <- c(levels(newvar), topt$tdcstart) } newvar[index== 0L] <- topt$tdcstart } } } } } @ Events and cumevents are easy because each affects only one interval. <>= # add events if (argclass[ii] %in% c("cumtdc", "cumevent")) { if (is.null(yinc)) yinc <- rep(1L, length(id)) else if (is.logical(yinc)) yinc <- as.numeric(yinc) # allow cumulative T/F if (!is.numeric(yinc)) stop("invalid increment for cumtdc or cumevent") ykeep <- (yinc !=0) # ignore the addition of a censoring event yinc <- unlist(tapply(yinc, match(id, baseid), cumsum)) } if (argclass[ii] %in% c("event", "cumevent")) { if (!is.null(newvar)) { if (!argname[ii] %in% tevent) { #warning(paste0("non-event variable '", argname[ii], "' replaced by an event variable")) newvar <- NULL } else if (!is.null(yinc)) { if (class(newvar) != class(yinc)) stop("attempt to update an event variable with a different type") if (is.factor(newvar) && !all(levels(yinc) %in% levels(newvar))) stop("attemp to update an event variable and levels do not match") } } if (is.null(yinc)) yinc <- rep(1L, length(id)) if (is.null(newvar)) { if (is.numeric(yinc)) newvar <- rep(0L, nrow(newdata)) else if (is.factor(yinc)) newvar <- factor(rep(levels(yinc)[1], nrow(newdata)), levels(yinc)) else if (is.character(yinc)) newvar <- rep('', nrow(newdata)) else if (is.logical(yinc)) newvar <- rep(FALSE, nrow(newdata)) else stop("invalid value for a status variable") } keep <- (subtype==1 | subtype==3) # all other events are thrown away if (argclass[ii] == "cumevent") keep <- (keep & ykeep) newvar[indx2[keep]] <- yinc[keep] # add this into our list of 'this is an event type variable' if (!(argname[ii] %in% tevent)) { tevent <- c(tevent, argname[[ii]]) if (is.factor(yinc)) tcens <- c(tcens, list(levels(yinc)[1])) else if (is.logical(yinc)) tcens <- c(tcens, list(FALSE)) else if (is.character(yinc)) tcens <- c(tcens, list("")) else tcens <- c(tcens, list(0)) names(tcens) <- tevent } } else if (argclass[ii] == "cumtdc") { # process a cumtdc variable # I don't have a good way to catch the reverse of this user error if (argname[[ii]] %in% tevent) stop("attempt to turn event variable", argname[[ii]], "into a cumtdc") keep <- itype != 2 # changes after the last interval are ignored indx <- ifelse(subtype==1, indx1, ifelse(subtype==3, indx2+1L, indx2)) # we want to pass the right kind of NA to the C code if (is.na(topt$tdcstart)) topt$tdcstart <- as.numeric(topt$tdcstart) if (is.null(newvar)) { # not overwriting a prior value if (is.null(argi$value)) newvar <- rep(0.0, nrow(newdata)) else newvar <- rep(topt$tdcstart, nrow(newdata)) } # the increment must be numeric if (!is.numeric(newvar)) stop("data and options$tdcstart do not agree on data type") # id can be any data type; feed integers to the C routine storage.mode(yinc) <- storage.mode(dstop) <- "double" storage.mode(newvar) <- storage.mode(etime) <- "double" newvar <- .Call(Ctmerge, match(baseid, baseid), dstop, newvar, match(id, baseid)[keep], etime[keep], yinc[keep], indx[keep]) } newdata[[argname[ii]]] <- newvar @ Finish up by adding the attributes and the class <>= attr(newdata, "tname") <- topt[c("idname", "tstartname", "tstopname")] attr(newdata, "tcount") <- rbind(attr(data1, "tcount"), tcount) if (length(tevent)) { attr(newdata, "tevent") <- tevent attr(newdata, "tcensor" ) <- tcens } row.names(newdata) <- NULL #These are a mess; kill them off. # Not that it works: R just assigns new row names. class(newdata) <- c("data.frame") newdata @ The print routine is for checking: it simply prints out the attributes. <>= print.tmerge <- function(x, ...) { print(attr(x, "tcount")) } "[.tmerge" <- function(x, ..., drop=TRUE){ class(x) <- "data.frame" NextMethod(,x) } @ \section{Linear models and contrasts} The primary contrast function is \code{yates}. This function does both simple and population contrasts; the name is a nod to the ``Yates weighted means'' method, the first population contrast that I know of. A second reason for the name is that the word ``contrast'' is already overused in the S/R lexicon. Both \code{yates} and \code{cmatrix} can be used with any model that returns the necessary portions, e.g., lm, coxph, or glm. They were written because I became embroiled in the ``type III'' controversy, and made it a goal to figure out what exactly it is that SAS does. If I had known that that quest would take multiple years would perhaps have never started. Population contrasts can result in some head scratching. It is easy to create the predicted value for any hypothethical subject from a model. A population prediction holds some data values constant and lets the others range over a population, giving a mean predicted value or population average. Population predictions for two treatments are the familiar g-estimates of causal models. We can take sums or differences of these predictions as well, e.g. to ask if they are significantly different. What can't be done is to work backwards from one of these contrasts to the populations, at least for continuous variables. If someone asks for an x contrast of 15-5 is this a sum of two population estimates at 15 and -5, or a difference? It's always hard to guess the mind of a user. Therefore what is needed is a fitted model, the term (covariate) of interest, levels of that covariate, a desired comparison, and a population. First is cmatrix routine. This is called by users to create a contrast matrix for a model, users can also construct their own contrast matrices. The result has two parts: the definition of a set of predicted values and a set of contrasts between those values. The routine requires a fit and a term; the default test will be for the entire term. The result will be a matrix or list that has a label attribute containing the name of the term; this is used in printouts in the obvious way. Suppose that our model was \code{coxph(Surv(time, status) ~ age*sex + ph.ecog)}. Someone might want the matrix for the age, sex, age*sex (2 df), age:sex or ph.ecog term. The first task is to parse the user's formula and match it to the terms structure found in the data: we should be a proper subset of it. <>= cmatrix <- function(fit, term, test =c("global", "trend", "pairwise"), levels, assign) { # Make sure that "fit" is present and isn't missing any parts. if (missing(fit)) stop("a fit argument is required") Terms <- try(terms(fit), silent=TRUE) if (inherits(Terms, "try-error")) stop("the fit does not have a terms structure") else Terms <- delete.response(Terms) # y is not needed Tatt <- attributes(Terms) # a flaw in delete.response: it doesn't subset dataClasses Tatt$dataClasses <- Tatt$dataClasses[row.names(Tatt$factors)] test <- match.arg(test) if (missing(term)) stop("a term argument is required") if (is.character(term)) term <- formula(paste("~", term)) else if (is.numeric(term)) { if (all(term == floor(term) & term >0 & term < length(Tatt$term.labels))) term <- formula(paste("~", paste(Tatt$term.labels[term], collapse='+'))) else stop("a numeric term must be an integer between 1 and max terms in the fit") } else if (!inherits(term, "formula")) stop("the term must be a formula, character string, or integer") fterm <- delete.response(terms(term)) fatt <- attributes(fterm) user.name <- fatt$term.labels # what the user called it indx <- match(fatt$term.labels, Tatt$term.labels) if (any(is.na(indx))) { # allow partial matching. If the fit had factor(x) but user said "x", # pretend they said "factor(x)". Fail for ns(x) + log(x) though. # but match the first for factor(x) + factor(x):z temp <- fatt$term.labels temp2 <- Tatt$term.labels temp2[grepl(":", temp2)] <- "" for (i in 1:length(temp)) { j <- grep(temp[i], Tatt$term.labels) k <- grep(temp[i], temp2) if (length(j)==1) temp[i] <- Tatt$term.labels[j] else if (length(k)==1) temp[i] <- Tatt$term.labels[k] else stop("term '", temp[i], "' not found in the fit") } fterm <- terms(formula( paste("~", paste(temp, collapse="+")))) fatt <- attributes(fterm) indx <- match(fatt$term.labels, Tatt$term.labels) } # match these up with the columns via the assign attribute if (missing(assign)) assign <- fit$assign if (missing(assign)) stop("the fit is missing an assign component") if (is.list(assign)) { # old style assign as used in Splus, and still used in coxph assign <- rep(1:length(assign), sapply(assign, length)) } ncoef <- length(assign) whichcol <- which(assign %in% indx & !is.na(coef(fit))) ntest <- length(whichcol) if (ntest ==0) stop("no non-missing coefficients in the estimate") termname <- Tatt$term.labels[indx] # to label the output # What kind of term is being tested. It can be categorical, continuous, # an interaction of only categorical terms, interaction of only continuous # terms, or a mixed interaction. parts <- row.names(Tatt$factors)[Tatt$factors[,indx] !=0] types <- Tatt$dataClasses[parts] iscat <- as.integer(types=="factor" | types=="character") if (length(parts)==1) termtype <-iscat else termtype <- 2 + any(iscat) + all(iscat) # Were levels specified? If so we either simply accept them (continuous), # or double check them (categorical) if (missing(levels)) { temp <- fit$xlevels[match(parts, names(fit$xlevels), nomatch=0)] if (length(temp) ==0) stop("continuous variables require the levels argument") levels <- do.call(expand.grid, c(temp, stringsAsFactors=FALSE)) } else { #user supplied if (is.data.frame(levels)) { temp <- match(names(levels), parts) if (any(is.na(temp))) stop("not found in levels data frame:", parts) else levels <- levels[temp] # reorder it if (any(duplicated(levels))) stop("levels data frame has duplicates") } else if (is.list(levels)) { if (length(levels) != length(parts)) stop("levels list should have", length(parts), "components") if (!is.null(names(levels))) { temp <- match(names(levels), parts) if (any(is.null(temp))) stop("names of levels does not match the terms") else levels <- levels[temp] #reorder them } if (any(sapply(levels, function(x) any(duplicated(x))))) stop("one or more elements of the levels list has duplicates") levels <- do.call("expand.grid", levels) } else if (is.matrix(levels)) { if (ncol(levels) != length(parts)) stop("levels matrix has the wrong number of columns") if (!is.null(dimnames(levels)[[2]])) { temp <- match(dimnames(levels)[[2]], parts) if (any(is.na(temp))) stop("matrix column names do no match the terms") } else dimnames(levels)[[2]] <- parts if (any(duplicated(levels))) stop("levels matrix has duplicated rows") levels <- data.frame(levels, stringsAsFactors=FALSE) } else if (length(parts) > 1) stop("levels should be a data frame or matrix") else levels <- data.frame(x=unique(levels), stringsAsFactors=FALSE) names(levels) <- user.name } # check that any categorical levels are legal for (i in which(iscat==1)) { xlev <- fit$xlevels[[parts[i]]] if (is.null(xlev)) stop("xlevels attribute not found for", parts[i]) temp <- match(levels[[parts[i]]], xlev) if (any(is.na(temp))) stop("invalid level for term", parts[i]) } rval <- list(levels=levels, termname=termname) # Now add the contrast matrix between the levels, if needed if (test=="global") { <> } else if (test=="pairwise") { <> } else { <> } rval <- list(levels=levels, termname=termname, cmat=cmat, iscat=iscat) class(rval) <- "cmatrix" rval } @ The default contrast matrix is a simple test of equality it there is only one term. If the term is the interaction of multiple categorical variables then we do an anova type decomposition. In other cases we currently fail. <>= if (TRUE) { #if (length(parts) ==1) { cmat <- diag(nrow(levels)) cmat[, nrow(cmat)] <- -1 # all equal to the last cmat <- cmat[-nrow(cmat),, drop=FALSE] } else if (termtype== 4) { # anova type stop("not yet done 1") } else stop("not yet done 2") @ The \code{pairwise} option creates a set of contrast matrices for all pairs of a factor. <>= if (length(parts) > 1) stop("pairwise tests must be for a single term") tindex <- match(levels[[1]], levels[[1]]) #convert to integer nlev <- length(tindex) # this is the number of groups being compared if (nlev < 2) stop("pairwise tests need at least 2 levels") npair <- nlev*(nlev-1)/2 if (npair==1) cmat <- matrix(c(1, -1), nrow=1) else { cmat <- vector("list", npair +1) k <- 1 cname <- rep("", npair) for (i in 1:(nlev-1)) { temp <- double(nlev) temp[tindex[i]] <- 1 for (j in (i+1):nlev) { temp[tindex[j]] <- -1 cmat[[k]] <- matrix(temp, nrow=1) temp[tindex[j]] <- 0 cname[k] <- paste(i, "vs", j) k <- k+1 } } # global test temp <- diag(nlev) temp[,nlev] <- -1 cmat[[k]] <- temp[-nlev,] names(cmat) <- c(cname, termname) } @ The \code{linear} option is of interest for terms that have more than one column; the two most common cases are a factor variable or a spline. It forms a pair of tests, one for the linear and one for the nonlinear part. For non-linear functions such as splines we need some notion of the range of the data, since we want to be linear over the entire range. <>= cmat <- vector("list", 2) cmat[[1]] <- matrix(1:ntest, 1, ntest) cmat[[2]] <- diag(ntest) attr(cmat, "nested") <- TRUE if (is.null(levels[[1]])) { # a continuous variable, and the user didn't give levels for the test # look up the call and use the knots tcall <- Tatt$predvars[[indx + 1]] # skip the 'call' if (tcall[[1]] == as.name("pspline")) { bb <- tcall[["Boundary.knots"]] levels[[1]] <- seq(bb[1], bb[2], length=ntest) } else if (tcall[[1]] %in% c("ns", "bs")) { bb <- c(tcall[["Boundary.knots"]], tcall[["knots"]]) levels[[1]] <- sort(bb) } else stop("don't know how to do a linear contrast for this term") } @ Here are some helper routines. Formulas are from chapter 5 of Searle. The sums of squares only makes sense within a linear model. <>= gsolve <- function(mat, y, eps=sqrt(.Machine$double.eps)) { # solve using a generalized inverse # this is very similar to the ginv function of MASS temp <- svd(mat, nv=0) dpos <- (temp$d > max(temp$d[1]*eps, 0)) dd <- ifelse(dpos, 1/temp$d, 0) # all the parentheses save a tiny bit of time if y is a vector if (all(dpos)) x <- drop(temp$u %*% (dd*(t(temp$u) %*% y))) else if (!any(dpos)) x <- drop(temp$y %*% (0*y)) # extremely rare else x <-drop(temp$u[,dpos] %*%(dd[dpos] * (t(temp$u[,dpos, drop=FALSE]) %*% y))) attr(x, "df") <- sum(dpos) x } qform <- function(var, beta) { # quadratic form b' (V-inverse) b temp <- gsolve(var, beta) list(test= sum(beta * temp), df=attr(temp, "df")) } @ The next functions do the work. Some bookkeeping is needed for a missing value in beta: we leave that coefficient out of the linear predictor. If there are missing coefs then the variance matrix will not have those columns in any case. The nafun function asks if a linear combination is NA. It treats 0*NA as 0. <>= estfun <- function(cmat, beta, varmat) { nabeta <- is.na(beta) if (any(nabeta)) { k <- which(!nabeta) #columns to keep estimate <- drop(cmat[,k] %*% beta[k]) # vector of predictions evar <- cmat[,k] %*% varmat %*% t(cmat[,k, drop=FALSE]) list(estimate = estimate, var=evar) } else { list(estimate = drop(cmat %*% beta), var = cmat %*% varmat %*% t(cmat)) } } testfun <- function(cmat, beta, varmat, sigma2) { nabeta <- is.na(beta) if (any(nabeta)) { k <- which(!nabeta) #columns to keep estimate <- drop(cmat[,k] %*% beta[k]) # vector of predictions temp <- qform(cmat[,k] %*% varmat %*% t(cmat[,k,drop=FALSE]), estimate) rval <- c(chisq=temp$test, df=temp$df) } else { estimate <- drop(cmat %*% beta) temp <- qform(cmat %*% varmat %*% t(cmat), estimate) rval <- c(chisq=temp$test, df=temp$df) } if (!is.null(sigma2)) rval <- c(rval, ss= unname(rval[1]) * sigma2) rval } nafun <- function(cmat, est) { used <- apply(cmat, 2, function(x) any(x != 0)) any(used & is.na(est)) } @ Now for the primary function. The user may have a list of tests, or a single term. The first part of the function does the usual of grabbing arguments and then checking them. The fit object has to have the standard stuff: terms, assign, xlevels and contrasts. Attributes of the terms are used often enough that we copy them to \code{Tatt} to save typing. We will almost certainly need the model frame and/or model matrix as well. In the discussion below I use x1 to refer to the covariates/terms that are the target, e.g. \code{test='Mask'} to get the mean population values for each level of the Mask variable in the solder data set, and x2 to refer to all the other terms in the model, the ones that we average over. These are also referred to as U and V in the vignette. <>= yates <- function(fit, term, population=c("data", "factorial", "sas"), levels, test =c("global", "trend", "pairwise"), predict="linear", options, nsim=200, method=c("direct", "sgtt")) { Call <- match.call() if (missing(fit)) stop("a fit argument is required") Terms <- try(terms(fit), silent=TRUE) if (inherits(Terms, "try-error")) stop("the fit does not have a terms structure") else Terms <- delete.response(Terms) # y is not needed Tatt <- attributes(Terms) # a flaw in delete.response: it doesn't subset dataClasses Tatt$dataClasses <- Tatt$dataClasses[row.names(Tatt$factors)] if (is.list(predict) || is.function(predict)) { # someone supplied their own stop("user written prediction function are not yet supported") } else { # call the method indx <- match(c("fit", "predict", "options"), names(Call), nomatch=0) temp <- Call[c(1, indx)] temp[[1]] <- quote(yates_setup) mfun <- eval(temp, parent.frame()) } if (is.null(mfun)) predict <- "linear" # we will need the original model frame and X matrix mframe <- fit$model if (is.null(mframe)) mframe <- model.frame(fit) Xold <- model.matrix(fit) if (is.null(fit$assign)) { # glm models don't save assign xassign <- attr(Xold, "assign") } else xassign <- fit$assign nvar <- length(xassign) nterm <- length(Tatt$term.names) termname <- rownames(Tatt$factors) iscat <- sapply(Tatt$dataClasses, function(x) x %in% c("character", "factor")) method <- match.arg(casefold(method), c("direct", "sgtt")) #allow SGTT if (method=="sgtt" && missing(population)) population <- "sas" if (is.character(population)) { population <- match.arg(tolower(population[1]), c("data", "factorial", "sas", "empirical", "yates")) if (population=="empirical") population <- "data" if (population=="yates") population <- "factorial" } else { if (!inherits(population, "data.frame")) stop("the population argument must be a data frame or character") } test <- match.arg(test) if (method=="sgtt" && (population !="sas" || predict != "linear")) stop("sgtt method only applies if population = sas and predict = linear") beta <- coef(fit, complete=TRUE) nabeta <- is.na(beta) # undetermined coefficients vmat <- vcov(fit, complete=FALSE) if (nrow(vmat) > sum(!nabeta)) { # a vcov method that does not obey the complete argument vmat <- vmat[!nabeta, !nabeta] } # grab the dispersion, needed for the writing an SS in linear models if (class(fit)[1] =="lm") sigma <- summary(fit)$sigma else sigma <- NULL # don't compute an SS column # process the term argument and check its legality if (missing(levels)) contr <- cmatrix(fit, term, test, assign= xassign) else contr <- cmatrix(fit, term, test, assign= xassign, levels = levels) x1data <- as.data.frame(contr$levels) # labels for the PMM values # Make the list of X matrices that drive everything: xmatlist # (Over 1/2 the work of the whole routine) xmatlist <- yates_xmat(Terms, Tatt, contr, population, mframe, fit, iscat) # check rows of xmat for estimability <> # Drop missing coefficients, and use xmatlist to compute the results beta <- beta[!nabeta] if (predict == "linear" || is.null(mfun)) { # population averages of the simple linear predictor <> } else { <> } result$call <- Call class(result) <- "yates" result } @ Models with factor variables may often lead to population predictions that involve non-estimable functions, particularly if there are interactions or the user specifies a factorial population. If there are any missing coefficients we have to do formal checking for this: any given row of the new $X$ matrix, for prediction, must be in the row space of the original $X$ matrix. If this is true then a regression of a new row on the old $X$ will have residuals of zero. It is not possible to derive this from the pattern of NA coefficients alone. Set up a function that returns a true/false vector of whether each row of a matrix is estimable. This test isn't relevant if population=none. <>= if (any(is.na(beta)) && population != "none") { if (inherits(fit, "coxph")) X.qr <- qr(rbind(1, t(Xold))) else X.qr <- qr(t(Xold)) # QR decomposition of the row space estimcheck <- function(x, eps= sqrt(.Machine$double.eps)) { temp <- abs(qr.resid(X.qr, t(x))) # apply(abs(temp), 1, function(x) all(x < eps)) # each row estimable all(temp < eps) } estimable <- sapply(xmatlist, estimcheck) } else estimable <- rep(TRUE, length(xmatlist)) @ When the prediction target is $X\beta$ there is a four step process: build the reference population, create the list of X matrices (one prediction matrix for each for x1 value), column means of each X form each row of the contrast matrix Cmat, and then use Cmat to get the pmm values and tests of the pmm values. <>= if (is.na(match(contr$termname, colnames(Tatt$factors)))) stop("term '", contr$termname, "' not found in the model") Cmat <- t(sapply(xmatlist, colMeans))[,!nabeta] # coxph model: the X matrix is built as though an intercept were there (the # baseline hazard plays that role), but then drop it from the coefficients # before computing estimates and tests. if (inherits(fit, "coxph")) { Cmat <- Cmat[,-1, drop=FALSE] offset <- -sum(fit$means[!nabeta] * beta) # recenter the predictions too } else offset <- 0 # Get the PMM estimates, but only for estimable ones estimate <- cbind(x1data, pmm=NA, std=NA) if (any(estimable)) { etemp <- estfun(Cmat[estimable,,drop=FALSE], beta, vmat) estimate$pmm[estimable] <- etemp$estimate + offset estimate$std[estimable] <- sqrt(diag(etemp$var)) } # Now do tests on the PMM estimates, one by one if (method=="sgtt") { <> } else { if (is.list(contr$cmat)) { test <- t(sapply(contr$cmat, function(x) testfun(x %*% Cmat, beta, vmat, sigma^2))) natest <- sapply(contr$cmat, nafun, estimate$pmm) } else { test <- testfun(contr$cmat %*% Cmat, beta, vmat, sigma^2) test <- matrix(test, nrow=1, dimnames=list(contr$termname, names(test))) natest <- nafun(contr$cmat, estimate$pmm) } if (any(natest)) test[natest,] <- NA } if (any(estimable)){ # Cmat[!estimable,] <- NA result <- list(estimate=estimate, test=test, mvar=etemp$var, cmat=Cmat) } else result <- list(estimate=estimate, test=test, mvar=NA) if (method=="sgtt") result$SAS <- Smat @ In the non-linear case the mfun object is either a single function or a list containing two functions \code{predict} and \code{summary}. The predict function is handed a vector $\eta = X\beta$ along with the $X$ matrix, though most methods don't use $X$. The result of predict can be a vector or a matrix. For coxph models we add on an ``intercept coef'' that will center the predictions. <>= xall <- do.call(rbind, xmatlist)[,!nabeta, drop=FALSE] if (inherits(fit, "coxph")) { xall <- xall[,-1, drop=FALSE] # remove the intercept eta <- xall %*% beta -sum(fit$means[!nabeta]* beta) } else eta <- xall %*% beta n1 <- nrow(xmatlist[[1]]) # all of them are the same size index <- rep(1:length(xmatlist), each = n1) if (is.function(mfun)) predfun <- mfun else { # double check the object if (!is.list(mfun) || any(is.na(match(c("predict", "summary"), names(mfun)))) || !is.function(mfun$predic) || !is.function(mfun$summary)) stop("the prediction should be a function, or a list with two functions") predfun <- mfun$predict sumfun <- mfun$summary } pmm <- predfun(eta, xall) n2 <- length(eta) if (!(is.numeric(pmm)) || !(length(pmm)==n2 || nrow(pmm)==n2)) stop("prediction function should return a vector or matrix") pmm <- rowsum(pmm, index, reorder=FALSE)/n1 pmm[!estimable,] <- NA # get a sample of coefficients, in order to create a variance # this is lifted from the mvtnorm code (can't include a non-recommended # package in the dependencies) tol <- sqrt(.Machine$double.eps) if (!isSymmetric(vmat, tol=tol, check.attributes=FALSE)) stop("variance matrix of the coefficients is not symmetric") ev <- eigen(vmat, symmetric=TRUE) if (!all(ev$values >= -tol* abs(ev$values[1]))) warning("variance matrix is numerically not positive definite") Rmat <- t(ev$vectors %*% (t(ev$vectors) * sqrt(ev$values))) bmat <- matrix(rnorm(nsim*ncol(vmat)), nrow=nsim) %*% Rmat bmat <- bmat + rep(beta, each=nsim) # add the mean # Now use this matrix of noisy coefficients to get a set of predictions # and use those to create a variance matrix # Since if Cox we need to recenter each run sims <- array(0., dim=c(nsim, nrow(pmm), ncol(pmm))) if (inherits(fit, 'coxph')) offset <- bmat %*% fit$means[!nabeta] else offset <- rep(0., nsim) for (i in 1:nsim) sims[i,,] <- rowsum(predfun(xall %*% bmat[i,] - offset[i]), index, reorder=FALSE)/n1 mvar <- var(sims[,,1]) # this will be used for the tests estimate <- cbind(x1data, pmm=unname(pmm[,1]), std= sqrt(diag(mvar))) # Now do the tests, on the first column of pmm only if (is.list(contr$cmat)) { test <- t(sapply(contr$cmat, function(x) testfun(x, pmm[,1], mvar[estimable, estimable], NULL))) natest <- sapply(contr$cmat, nafun, pmm[,1]) } else { test <- testfun(contr$cmat, pmm[,1], mvar[estimable, estimable], NULL) test <- matrix(test, nrow=1, dimnames=list(contr$termname, names(test))) natest <- nafun(contr$cmat, pmm[,1]) } if (any(natest)) test[natest,] <- NA if (any(estimable)) result <- list(estimate=estimate,test=test, mvar=mvar) else result <- list(estimate=estimate, test=test, mvar=NA) # If there were multiple columns from predfun, compute the matrix of # results and variances if (ncol(pmm) > 1 && any(estimable)){ pmm <- apply(sims, 2:3, mean) mvar2 <- apply(sims, 2:3, var) # Call the summary function, if present if (is.list(mfun)) result$summary <- sumfun(pmm, mvar2) else { result$pmm <- pmm result$mvar2 <- mvar2 } } @ Build the population data set. If the user provided a data set as the population then the task is fairly straightforward: we manipulate the data set and then call model.frame followed by model.matrix in the usual way. The primary task in that case is to verify that the data has all the needed variables. Otherwise we have to be subtle. \begin{enumerate} \item We have ready access to a model frame, but not to the data. Consider a spline term for instance --- it's not always possible to go backwards and get the data. \item We need to manipulate this model frame, e.g., make everyone treatment=A, then repeat with everyone treatment B. \item We need to do it in a way that makes the frame still look like a correct model frame to R. This requires care. \end{enumerate} For population= factorial we create a population data set that has all the combinations. If there are three adjusters z1, z2 and z3 with 2, 3, and 5 levels, respectively, the new data set will have 30 rows. If the primary model didn't have any z1*z2*z3 terms in it we likely could get by with less, but it's not worth the programming effort to figure that out: predicted values are normally fairly cheap. For population=sas we need a mixture: categoricals are factorial and others are data. Say there were categoricals with 3 and 5 levels, so the factorial data set has 15 obs, while the overall n is 50. We need a data set of 15*50 observations to ensure all combinations of the two categoricals with each continuous line. An issue with data vs model is names. Suppose the original model was \code{lm(y \textasciitilde ns(age,4) + factor(ph.ecog))}. In the data set the variable name is ph.ecog, in the model frame, the xlevels list, and terms structure it is factor(ph.ecog). The data frame has individual columns for the four variables, the model frame is a list with 3 elements, one of which is named ``ns(age, 4)'': notice the extra space before the 4 compared to what was typed. <>= yates_xmat <- function(Terms, Tatt, contr, population, mframe, fit, iscat) { # which variables(s) are in x1 (variables of interest) x1indx <- apply(Tatt$factors[,contr$termname,drop=FALSE] >0, 1, any) x2indx <- !x1indx # adjusters if (inherits(population, "data.frame")) pdata <- population #user data else if (population=="data") pdata <- mframe #easy case else if (population=="factorial") pdata <- yates_factorial_pop(mframe, Terms, x2indx, fit$xlevels) else if (population=="sas") { if (all(iscat[x2indx])) pdata <- yates_factorial_pop(mframe, Terms, x2indx, fit$xlevels) else if (!any(iscat[x2indx])) pdata <- mframe # no categoricals else { # mixed population pdata <- yates_factorial_pop(mframe, Terms, x2indx & iscat, fit$xlevels) n2 <- nrow(pdata) pdata <- pdata[rep(1:nrow(pdata), each=nrow(mframe)), ] row.names(pdata) <- 1:nrow(pdata) # fill in the continuous k <- rep(1:nrow(mframe), n2) for (i in which(x2indx & !iscat)) { j <- names(x1indx)[i] if (is.matrix(mframe[[j]])) pdata[[j]] <- mframe[[j]][k,, drop=FALSE] else pdata[[j]] <- (mframe[[j]])[k] attributes(pdata[[j]]) <- attributes(mframe[[j]]) } } } else stop("unknown population") # this should have been caught earlier # Now create the x1 data set, the unique rows we want to test <> xmatlist } @ Build a factorial data set from a model frame. <>= yates_factorial_pop <- function(mframe, terms, x2indx, xlevels) { x2name <- names(x2indx)[x2indx] dclass <- attr(terms, "dataClasses")[x2name] if (!all(dclass %in% c("character", "factor"))) stop("population=factorial only applies if all the adjusting terms are categorical") nvar <- length(x2name) n2 <- sapply(xlevels[x2name], length) # number of levels for each n <- prod(n2) # total number of rows needed pdata <- mframe[rep(1, n), -1] # toss the response row.names(pdata) <- NULL # throw away funny names n1 <- 1 for (i in 1:nvar) { j <- rep(rep(1:n2[i], each=n1), length=n) xx <- xlevels[[x2name[i]]] if (dclass[i] == "factor") pdata[[x2name[i]]] <- factor(j, 1:n2[i], labels= xx) else pdata[[x2name[i]]] <- xx[j] n1 <- n1 * n2[i] } attr(pdata, "terms") <- terms pdata } @ The next section builds a set of X matrices, one for each level of the x1 combination. The following was learned by reading the source code for model.matrix: \begin{itemize} \item If pdata has no terms attribute then model.matrix will call model.frame first, otherwise not. The xlev argument is passed forward to model.frame but is otherwise unused. \item If necessary, it will reorder the columns of pdata to match the terms, though I try to avoid that. \item Toss out the response variable, if present. \item Any character variables are turned into factors. The dataClass attribute of the terms object is not consulted. \item For each column that is a factor \begin{itemize} \item if it alreay has a contrasts attribute, it is left alone. \item otherwise a contrasts attribute is added using a matching element from contrasts.arg, if present, otherwise the global default \item contrasts.arg must be a list, but it does not have to contain all factors \end{itemize} \item Then call the internal C code \end{itemize} If pdata already is a model frame we want to leave it as one, so as to avoid recreating the raw data. If x1data comes from the user though, so we need to do that portion of model.frame processing ourselves, in order to get it into the right form. Always turn characters into factors, since individual elements of \code{xmatlist} will have only a subset of the x1 variables. One nuisance is name matching. Say the model had \code{factor(ph.ecog)} as a term; then \code{fit\$xlevels} will have `factor(ph.ecog)' as a name but the user will likely have created a data set using `ph.ecog' as the name. <>= if (is.null(contr$levels)) stop("levels are missing for this contrast") x1data <- as.data.frame(contr$levels) # in case it is a list x1name <- names(x1indx)[x1indx] for (i in 1:ncol(x1data)) { if (is.character(x1data[[i]])) { if (is.null(fit$xlevels[[x1name[i]]])) x1data[[i]] <- factor(x1data[[i]]) else x1data[[i]] <- factor(x1data[[i]], fit$xlevels[[x1name[i]]]) } } xmatlist <- vector("list", nrow(x1data)) if (is.null(attr(pdata, "terms"))) { np <- nrow(pdata) k <- match(x1name, names(pdata), nomatch=0) if (any(k>0)) pdata <- pdata[, -k, drop=FALSE] # toss out yates var for (i in 1:nrow(x1data)) { j <- rep(i, np) tdata <- cbind(pdata, x1data[j,,drop=FALSE]) # new data set xmatlist[[i]] <- model.matrix(Terms, tdata, xlev=fit$xlevels, contrast.arg= fit$contrasts) } } else { # pdata is a model frame, convert x1data # if the name and the class agree we go forward simply index <- match(names(x1data), names(pdata), nomatch=0) if (all(index >0) && identical(lapply(x1data, class), lapply(pdata, class)[index]) & identical(sapply(x1data, ncol) , sapply(pdata, ncol)[index])) { # everything agrees for (i in 1:nrow(x1data)) { j <- rep(i, nrow(pdata)) tdata <- pdata tdata[,names(x1data)] <- x1data[j,] xmatlist[[i]] <- model.matrix(Terms, tdata, contrasts.arg= fit$contrasts) } } else { # create a subset of the terms structure, for x1 only # for instance the user had age=c(75, 75, 85) and the term was ns(age) # then call model.frame to fix it up x1term <- Terms[which(x1indx)] x1name <- names(x1indx)[x1indx] attr(x1term, "dataClasses") <- Tatt$dataClasses[x1name] # R bug x1frame <- model.frame(x1term, x1data, xlev=fit$xlevels[x1name]) for (i in 1:nrow(x1data)) { j <- rep(i, nrow(pdata)) tdata <- pdata tdata[,names(x1frame)] <- x1frame[j,] xmatlist[[i]] <- model.matrix(Terms, tdata, xlev=fit$xlevels, contrast.arg= fit$contrasts) } } } @ The decompostion based algorithm for SAS type 3 tests. Ignore the set of contrasts cmat since the algorithm can only do a global test. We mostly mimic the SAS GLM algorithm. For the generalized Cholesky decomposition $LDL' = X'X$, where $L$ is lower triangular with $L_{ii}=1$ and $D$ is diagonal, the set of contrasts $L'\beta$ gives the type I sequential sums of squares, partitioning the rows of $L$ into those for term 1, term 2, etc. If $X$ is the design matrix for a balanced factorial design then it is also true that $L_{ij}=0$ unless term $j$ includes term $i$, e.g., x1:x2 includes x1. These blocks of zeros mean that changing the order of the terms in the model simply rearranges $L$, and individual tests are unchanged. This is precisely the definition of a type III contrast in SAS. With a bit of reading between the lines the ``four types of estimable functions'' document suggests the following algorithm: \begin{enumerate} \item Start with an $X$ matrix in standard order of intercept, main effects, first order interactions, etc. Code any categorical variable with $k$ levels as $k$ 0/1 columns. An interaction of two categoricals with $k$ and $l$ levels will have $kl$ columns, etc. \item Create the dependency matrix $D = (X'X)^-(X'X)$. If column $i$ of $X$ can be written as a linear combination of prior columns, then column $i$ of $D$ contains that combination. Other columns of $D$ match the identity matrix. \item Intitialize $L = D$. \item For any row $i$ and $j$ such that $i$ is contained in $j$, make $L_i$ orthagonal to $L_j$. \end{enumerate} The algorithm appears to work in almost all cases, an exception is when the type 3 test has fewer degrees of freedom that we would expect. Continuous variables are not orthagonalized in the SAS type III approach, nor any interaction that contains a continuous variable as one of its parts. To find the nested terms first note which rows of \code{factors} refer to categorical variables (the \code{iscat} variable); columns of \code{factors} that are non-zero only in categorical rows are the ``categorical'' columns. A term represented by one column in \code{factors} ``contains'' the term represented in some other column iff it's non-zero elements are a superset. We have to build a new X matrix that is the expanded SAS coding, and are only able to do that for models that have an intercept, and use contr.treatement or contr.SAS coding. <>= # It would be simplest to have the contrasts.arg to be a list of function names. # However, model.matrix plays games with the calling sequence, and any function # defined at this level will not be seen. Instead create a list of contrast # matrices. temp <- sapply(fit$contrasts, function(x) (is.character(x) && x %in% c("contr.SAS", "contr.treatment"))) if (!all(temp)) stop("yates sgtt method can only handle contr.SAS or contr.treatment") temp <- vector("list", length(fit$xlevels)) names(temp) <- names(fit$xlevels) for (i in 1:length(fit$xlevels)) { cmat <- diag(length(fit$xlevels[[i]])) dimnames(cmat) <- list(fit$xlevels[[i]], fit$xlevels[[i]]) if (i>1 || Tatt$intercept==1) { if (fit$contrasts[[i]] == "contr.treatment") cmat <- cmat[, c(2:ncol(cmat), 1)] } temp[[i]] <- cmat } sasX <- model.matrix(formula(fit), data=mframe, xlev=fit$xlevels, contrasts.arg=temp) sas.assign <- attr(sasX, "assign") # create the dependency matrix D. The lm routine is unhappy if it thinks # the right hand and left hand sides are the same, fool it with I(). # We do this using the entire X matrix even though only categoricals will # eventually be used; if a continuous variable made it NA we need to know. D <- coef(lm(sasX ~ I(sasX) -1)) dimnames(D)[[1]] <- dimnames(D)[[2]] #get rid if the I() names zero <- is.na(D[,1]) # zero rows, we'll get rid of these later D <- ifelse(is.na(D), 0, D) # make each row orthagonal to rows for other terms that contain it # Containing blocks, if any, will always be below # this is easiest to do with the transposed matrix # Only do this if both row i and j are for a categorical variable if (!all(iscat)) { # iscat marks variables in the model frame as categorical # tcat marks terms as categorical. For x1 + x2 + x1:x2 iscat has # 2 entries and tcat has 3. tcat <- (colSums(Tatt$factors[!iscat,,drop=FALSE]) == 0) } else tcat <- rep(TRUE, max(sas.assign)) # all vars are categorical B <- t(D) dimnames(B)[[2]] <- paste0("L", 1:ncol(B)) # for the user if (ncol(Tatt$factors) > 1) { share <- t(Tatt$factors) %*% Tatt$factors nc <- ncol(share) for (i in which(tcat[-nc])) { j <- which(share[i,] > 0 & tcat) k <- j[j>i] # terms that I need to regress out if (length(k)) { indx1 <- which(sas.assign ==i) indx2 <- which(sas.assign %in% k) B[,indx1] <- resid(lm(B[,indx1] ~ B[,indx2])) } } } # Cut B back down to the non-missing coefs of the original fit Smat <- t(B)[!zero, !zero] Sassign <- xassign[!nabeta] @ Although the SGTT does test for all terms, we only want to print out the ones that were asked for. <>= keep <- match(contr$termname, colnames(Tatt$factors)) if (length(keep) > 1) { # more than 1 term in the model test <- t(sapply(keep, function(i) testfun(Smat[Sassign==i,,drop=FALSE], beta, vmat, sigma^2))) rownames(test) <- contr$termname } else { test <- testfun(Smat[Sassign==keep,, drop=FALSE], beta, vmat, sigma^2) test <- matrix(test, nrow=1, dimnames=list(contr$termname, names(test))) } @ The print routine places the population predicted values (PPV) alongside the tests on those values. Defaults are copied from printCoefmat. <>= print.yates <- function(x, digits = max(3, getOption("digits") -2), dig.tst = max(1, min(5, digits-1)), eps=1e-8, ...) { temp1 <- x$estimate temp1$pmm <- format(temp1$pmm, digits=digits) temp1$std <- format(temp1$std, digits=digits) # the spaces help separate the two parts of the printout temp2 <- cbind(test= paste(" ", rownames(x$test)), data.frame(x$test), stringsAsFactors=FALSE) row.names(temp2) <- NULL temp2$Pr <- format.pval(pchisq(temp2$chisq, temp2$df, lower.tail=FALSE), eps=eps, digits=dig.tst) temp2$chisq <- format(temp2$chisq, digits= dig.tst) temp2$df <- format(temp2$df) if (!is.null(temp2$ss)) temp2$ss <- format(temp2$ss, digits=digits) if (nrow(temp1) > nrow(temp2)) { dummy <- temp2[1,] dummy[1,] <- "" temp2 <- rbind(temp2, dummy[rep(1, nrow(temp1)-nrow(temp2)),]) } if (nrow(temp2) > nrow(temp1)) { # get rid of any factors before padding for (i in which(sapply(temp1, is.factor))) temp1[[i]] <- as.character(temp1[[i]]) dummy <- temp1[1,] dummy[1,] <- "" temp1 <- rbind(temp1, dummy[rep(1, nrow(temp2)- nrow(temp1)),]) } print(cbind(temp1, temp2), row.names=FALSE) invisible(x) } @ Routines to allow yates to interact with other models. Each is called with the fitted model and the type of prediction. It should return NULL when the type is a linear predictor, since the parent routine has a very efficient approach in that case. Otherwise it returns a function that will be applied to each value $\eta$, from each row of a prediction matrix. <>= yates_setup <- function(fit, ...) UseMethod("yates_setup", fit) yates_setup.default <- function(fit, type, ...) { if (!missing(type) && !(type %in% c("linear", "link"))) warning("no yates_setup method exists for a model of class ", class(fit)[1], " and estimate type ", type, ", linear predictor estimate used by default") NULL } yates_setup.glm <- function(fit, predict = c("link", "response", "terms", "linear"), ...) { type <- match.arg(predict) if (type == "link" || type== "linear") NULL # same as linear else if (type == "response") { finv <- family(fit)$linkinv function(eta, X) finv(eta) } else if (type == "terms") stop("type terms not yet supported") } @ For the coxph routine, we are making use of the R environment by first defining the baseline hazard and then defining the predict and summary functions. This means that those functions have access to the baseline. <>= yates_setup.coxph <- function(fit, predict = c("lp", "risk", "expected", "terms", "survival", "linear"), options, ...) { type <- match.arg(predict) if (type=="lp" || type == "linear") NULL else if (type=="risk") function(eta, X) exp(eta) else if (type == "survival") { # If there are strata we need to do extra work # if there is an interaction we want to suppress a spurious warning suppressWarnings(baseline <- survfit(fit, censor=FALSE)) if (missing(options) || is.null(options$rmean)) rmean <- max(baseline$time) # max death time else rmean <- options$rmean if (!is.null(baseline$strata)) stop("stratified models not yet supported") cumhaz <- c(0, baseline$cumhaz) tt <- c(diff(c(0, pmin(rmean, baseline$time))), 0) predict <- function(eta, ...) { c2 <- outer(exp(drop(eta)), cumhaz) # matrix of values surv <- exp(-c2) meansurv <- apply(rep(tt, each=nrow(c2)) * surv, 1, sum) cbind(meansurv, surv) } summary <- function(surv, var) { bsurv <- t(surv[,-1]) std <- t(sqrt(var[,-1])) chaz <- -log(bsurv) zstat <- -qnorm((1-baseline$conf.int)/2) baseline$lower <- exp(-(chaz + zstat*std)) baseline$upper <- exp(-(chaz - zstat*std)) baseline$surv <- bsurv baseline$std.err <- std/bsurv baselinecumhaz <- chaz baseline } list(predict=predict, summary=summary) } else stop("type expected is not supported") } @ \section{The cox.zph function} The simplest test of proportional hazards is to use a time dependent coefficient $\beta(t) = a + bt$. Then $\beta(t) x = ax + b*(tx)$, and the extended coefficients $a$ and $b$ can be obtained from a Cox model with an extra 'fake' covariate $tx$. More generally, replace $t$ with some function $g(t)$, which gives rise to an entire family of tests. An efficient assessment of this extended model can be done using a score test. \begin{itemize} \item Augment the original variables $x_1, \ldots x_k$ with $k$ new ones $g(t)x_1, \ldots, g(t)x_k$ \item Compute the first and second derivatives $U$ and $H$ of the Cox model at the starting estimate of $(\hat\beta, 0)$; prior covariates at their prior values, and the new covariates at 0. No iteration is done. This can be done efficiently with a modified version of the primary C routines for coxph. \item By design, the first $k$ elements of $U$ will be zero. Thus the first iteration of the new coefficients, and the score tests for them, are particularly easy. \end{itemize} The information or Hessian matrix for a Cox model is $$ \sum_{j \in deaths} V(t_j) = \sum_jV_j$$ where $V_j$ is the variance matrix of the weighted covariate values, over all subjects at risk at time $t_j$. Then the expanded information matrix for the score test is \begin{align*} H &= \left(\begin{array}{cc} H_1 & H_2 \\ H_2' & H_3 \end{array} \right) \\ H_1 &= \sum V(t_j) \\ H_2 &= \sum V(t_j) g(t_j) \\ H_3 &= \sum V(t_j) g^2(t_j) \end{align*} The inverse of the matrix will be more numerically stable if $g(t)$ is centered at zero, and this does not change the test statistic. In the usual case $V(t)$ is close to constant in time --- the variance of $X$ does not change rapidly --- and then $H_2$ is approximately zero. The original cox.zph used an approximation, which is to assume that $V(t)$ is exactly constant. In that case $H_2=0$ and $H_3= \sum V(t_j) \sum g^2(t_j)$ and the test is particularly easy to compute. This assumption of identical components can fail badly for models with a covariate by strata interaction, and for some models with covariate dependent censoring. Multi-state models finally forced a change. The newer version of the routine has two separate tracks: for the formal test and another for the residuals. <>= cox.zph <- function(fit, transform='km', terms=TRUE, singledf =FALSE, global=TRUE) { Call <- match.call() if (!inherits(fit, "coxph") && !inherits(fit, "coxme")) stop ("argument must be the result of Cox model fit") if (inherits(fit, "coxph.null")) stop("there are no score residuals for a Null model") if (!is.null(attr(terms(fit), "specials")[["tt"]])) stop("function not defined for models with tt() terms") cget <- coxph.getdata(fit, y=TRUE, x=TRUE, stratax=TRUE, weights=TRUE) y <- cget$y ny <- ncol(y) event <- (y[,ny] ==1) if (length(cget$strata)) istrat <- as.integer(cget$strata) - 1L # number from 0 for C else istrat <- rep(0L, nrow(y)) varnames <- names(fit$coefficients) nvar <- length(varnames) # if terms==FALSE the singledf argument is moot, but FALSE leads to a # simpler path through the code if (!terms) singledf <- FALSE <> <> <> <> rval$transform <- tname rval$call <- Call class(rval) <- "cox.zph" return(rval) } print.cox.zph <- function(x, digits = max(options()$digits - 4, 3), signif.stars=FALSE, ...) { invisible(printCoefmat(x$table, digits=digits, signif.stars=signif.stars, P.values=TRUE, has.Pvalue=TRUE, ...)) } @ The user can use $t$ or $g(t)$ as the multiplier of the covariates. The default is to use the KM, only because that seems to be best at avoiding edge cases. <>= times <- y[,ny-1] if (is.character(transform)) { tname <- transform ttimes <- switch(transform, 'identity'= times, 'rank' = rank(times), 'log' = log(times), 'km' = { temp <- survfitKM(factor(rep(1L, nrow(y))), y, se.fit=FALSE) # A nuisance to do left cont KM indx <- findInterval(times, temp$time, left.open=TRUE) 1.0 - c(1, temp$surv)[indx+1] }, stop("Unrecognized transform")) } else { tname <- deparse(substitute(transform)) if (length(tname) >1) tname <- 'user' ttimes <- transform(times) } gtime <- ttimes - mean(ttimes[event]) # Now get the U, information, and residuals if (ny==2) { ord <- order(istrat, y[,1]) -1L resid <- .Call(Czph1, gtime, y, cget$x, eta, cget$weights, istrat, fit$method=="efron", ord) } else { ord1 <- order(-istrat, -y[,1]) -1L # reverse time for zph2 ord <- order(-istrat, -y[,2]) -1L resid <- .Call(Czph2, gtime, y, cget$x, eta, cget$weights, istrat, fit$method=="efron", ord1, ord) } @ The result has a score vector of length $2p$ where $p$ is the number of variables and an information matrix that is $2p$ by $2p$. This is done with C code that is a simple variation on iteration 1 for a coxph model. If \code{singledf} is TRUE then treat each term as a single degree of freedom test, otherwise as a multi-degree of freedom. If terms=FALSE test each covariate individually. If all the variables are univariate this is a moot point. The survival routines return Splus style assign components, that is a list with one element per term, each element an integer vector of coefficient indices. The asgn vector is our main workhorse: loop over asgn to process term by term. \begin{itemize} \item if term=FALSE, set make a new asgn with one coef per term \item if a coefficient is NA, remove it from the relevant asgn vector \item frailties and penalized coxme coefficients are ignored: remove their element from the asgn list \end{itemize} For random effects models, including both frailty and coxme results, the random effect is included in the linear.predictors component of the fit. This allows us to do score tests for the other terms while effectively holding the random effect fixed. <>= eta <- fit$linear.predictors if (!terms) { # create a fake asgn that has one value per coefficient asgn <- as.list(1:nvar) names(asgn) <- names(fit$coefficients) } else if (inherits(fit, "coxme")) { asgn <- attrassign(cget$x, terms(fit)) # allow for a spelling inconsistency in coxme, later fixed if (is.null(fit$linear.predictors)) eta <- fit$linear.predictor } else asgn <- fit$assign if (!is.list(asgn)) stop ("unexpected assign component") frail <- grepl("frailty(", names(asgn), fixed=TRUE) if (any(frail)) { dcol <- unlist(asgn[frail]) # remove these columns from X cget$x <- cget$x[, -dcol, drop=FALSE] asgn <- asgn[!frail] } nterm <- length(asgn) termname <- names(asgn) if (any(is.na(fit$coefficients))) { # fix up assign so as to ignore missing coefs, this should be rare mcoef <- which(is.na(fit$coefficients)) asgn <- lapply(asgn, function(i) i[!(i %in% mcoef)]) asgn <- asgn[sapply(asgn, length)>0] # drop any that were lost termname <- names(asgn) nterm <- length(asgn) # asgn will be 1, 2,2,2, 3, etc } @ The zph1 and zph2 functions do not consider penalties, so we need to add those back in after the call. Nothing needs to be done wrt the first derivative: we already ignore the first ncoef elements of the returned first derivative (u) vector, which would have had a penalty. The second portion of u is for beta=0, and all of the penalties that currently are implemented have first derivative 0 at 0. For the second derivative, the current penalties (frailty, rigde, pspline) have a second derivative penalty that is independent of beta-hat. The coxph result contains the numeric value of the penalty at the solution, and we use a score test that would penalize the new time*pspline() term in the same way as the pspline term was penalized. <>= test <- double(nterm+1) df <- rep(1L, nterm+1) u0 <- rep(0, nvar) if (!is.null(fit$coxlist2)) { # there are penalized terms pmat <- matrix(0., 2*nvar, 2*nvar) # second derivative penalty pmat[1:nvar, 1:nvar] <- fit$coxlist2$second pmat[1:nvar + nvar, 1:nvar + nvar] <- fit$coxlist2$second imatr <- resid$imat + pmat } else imatr <- resid$imat for (ii in 1:nterm) { jj <- asgn[[ii]] kk <- c(1:nvar, jj+nvar) imat <- imatr[kk, kk] u <- c(u0, resid$u[jj+nvar]) if (singledf && length(jj) >1) { vv <- solve(imat)[-(1:nvar), -(1:nvar)] t1 <- sum(fit$coef[jj] * resid$u[jj+nvar]) test[ii] <- t1^2 * (fit$coef[jj] %*% vv %*% fit$coef[jj]) df[ii] <- 1 } else { test[ii] <- drop(solve(imat,u) %*% u) if (is.null(fit$df)) df[ii] <- length(jj) else df[ii] <- fit$df[ii] } } #Global test if (global) { u <- c(u0, resid$u[-(1:nvar)]) test[nterm+1] <- solve(imatr, u) %*% u if (is.null(fit$df)) df[nterm+1] <- nvar else df[nterm+1] <- sum(fit$df) tbl <- cbind(test, df, pchisq(test, df, lower.tail=FALSE)) dimnames(tbl) <- list(c(termname, "GLOBAL"), c("chisq", "df", "p")) } else { tbl <- cbind(test, df, pchisq(test, df, lower.tail=FALSE))[1:nterm,, drop=FALSE] dimnames(tbl) <- list(termname, c("chisq", "df", "p")) } # The x, y, residuals part is sorted by time within strata; this is # what the C routine zph1 and zph2 return indx <- if (ny==2) ord +1 else rev(ord) +1 # return to 1 based subscripts indx <- indx[event[indx]] # only keep the death times rval <- list(table=tbl, x=unname(ttimes[indx]), time=unname(y[indx, ny-1])) if (length(cget$strata)) rval$strata <- cget$strata[indx] @ The matrix of scaled Schoenfeld residuals is created one stratum at a time. The ideal for the residual $r(t_i)$, contributed by an event for subject $i$ at time $t_i$ is to use $r_iV^{-1}(t_i)$, the inverse of the variance matrix of $X$ at that time and for the relevant stratum. What is returned as \code{resid\$imat} is $\sum_i V(t_i)$. One option would have been to return all the individual $\hat V_i$ matrices, but that falls over when the number at risk is too small and it cannot be inverted. Option 2 would be to use a per stratum averge of the $V_i$, but that falls flat for models with a large number of strata, a nested case-control model for instance. We take a different average that may not be the best, but seems to be good enough and doesn't seem to fail. \begin{enumerate} \item The \code{resid\$used} matrix contains the number of deaths for each strata (row) that contributed to the sum for each variable (column). The value is either 0 or the number of events in the stratum, zero for those variables that are constant within the stratum. From this we can get the number of events that contributed to each element of the \code{imat} total. Dividing by this gives a per-element average \code{vmean}. \item For a given stratum, some of the covariates may have been unused. For any of those set the scaled Schoenfeld residual to NA, and use the other rows/columns of the \code{vmean} matrix to scale the rest. \end{enumerate} Now if some variable $x_1$ has a large variance at some time points and a small variance at others, or a large variance in one stratum and a small variance in another, the above smoothing won't catch that subtlety. However we expect such an issue to be rare. The common problem of strata*covariate interactions is the target of the above manipulations. <>= # Watch out for a particular edge case: there is a factor, and one of the # strata happens to not use one of its levels. The element of resid$used will # be zero, but it really should not. used <-resid$used for (i in asgn) { if (length(i) > 1 && any(used[,i] ==0)) used[,i] <- apply(used[,i,drop=FALSE], 1, max) } # Make the weight matrix wtmat <- matrix(0, nvar, nvar) for (i in 1:nrow(used)) wtmat <- wtmat + outer(used[i,], used[i,], pmin) # with strata*covariate interactions (multi-state models for instance) the # imatr matrix will be block diagonal. Don't divide these off diagonal zeros # by a wtmat value of zero. vmean <- imatr[1:nvar, 1:nvar, drop=FALSE]/ifelse(wtmat==0, 1, wtmat) sresid <- resid$schoen if (terms && any(sapply(asgn, length) > 1)) { # collase multi-column terms temp <- matrix(0, ncol(sresid), nterm) for (i in 1:nterm) { j <- asgn[[i]] if (length(j) ==1) temp[j, i] <- 1 else temp[j, i] <- fit$coefficients[j] } sresid <- sresid %*% temp vmean <- t(temp) %*% vmean %*% temp used <- used[, sapply(asgn, function(x) x[1]), drop=FALSE] } dimnames(sresid) <- list(signif(rval$time, 4), termname) # for each stratum, rescale the Schoenfeld residuals in that stratum sgrp <- rep(1:nrow(used), apply(used, 1, max)) for (i in 1:nrow(used)) { k <- which(used[i,] > 0) if (length(k) >0) { # there might be no deaths in the stratum j <- which(sgrp==i) if (length(k) ==1) sresid[j,k] <- sresid[j,k]/vmean[k,k] else sresid[j, k] <- t(solve(vmean[k, k], t(sresid[j, k, drop=FALSE]))) sresid[j, -k] <- NA } } # Add in beta-hat. For a term with multiple columns we are testing zph for # the linear predictor X\beta, which always has a coefficient of 1 for (i in 1:nterm) { j <- asgn[[i]] if (length(j) ==1) sresid[,i] <- sresid[,i] + fit$coefficients[j] else sresid[,i] <- sresid[,i] +1 } rval$y <- sresid rval$var <- solve(vmean) @ <>= "[.cox.zph" <- function(x, ..., drop=FALSE) { i <- ..1 if (!is.null(x$strata)) { y2 <- x$y[,i,drop=FALSE] ymiss <- apply(is.na(y2), 1, all) if (any(ymiss)) { # some deaths played no role in these coefficients # due to a strata * covariate interaction, drop unneeded rows z<- list(table=x$table[i,,drop=FALSE], x=x$x[!ymiss], time= x$time[!ymiss], strata = x$strata[!ymiss], y = y2[!ymiss,,drop=FALSE], var=x$var[i,i, drop=FALSE], transform=x$transform, call=x$call) } else z<- list(table=x$table[i,,drop=FALSE], x=x$x, time= x$time, strata = x$strata, y = y2, var=x$var[i,i, drop=FALSE], transform=x$transform, call=x$call) } else z<- list(table=x$table[i,,drop=FALSE], x=x$x, time= x$time, y = x$y[,i,drop=FALSE], var=x$var[i,i, drop=FALSE], transform=x$transform, call=x$call) class(z) <- class(x) z } @ \bibliographystyle{plain} \bibliography{refer} \end{document} survival/noweb/tail0000644000176200001440000000007613537676563014143 0ustar liggesusers\bibliographystyle{plain} \bibliography{refer} \end{document} survival/noweb/survfitKM.Rnw0000644000176200001440000011534213570767322015703 0ustar liggesusers\subsection{Kaplan-Meier} This routine has been rewritten more times than any other in the package, as we trade off simplicty of the code with execution speed. This version does all of the oranizational work in S and calls a C routine for each separate curve. The first code did everything in C but was too hard to maintain and the most recent function did nearly everything in S. Introduction of robust variance prompted a movement of more of the code into C since that calculation is computationally intensive. <>= survfitKM <- function(x, y, weights=rep(1.0,length(x)), stype=1, ctype=1, se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none', 'logit', "arcsin"), conf.lower=c('usual', 'peto', 'modified'), start.time, id, cluster, influence=FALSE, type) { if (!missing(type)) { if (!is.character(type)) stop("type argument must be character") # older style argument is allowed temp <- charmatch(type, c("kaplan-meier", "fleming-harrington", "fh2")) if (is.na(temp)) stop("invalid value for 'type'") type <- c(1,3,4)[temp] } else { if (!(ctype %in% 1:2)) stop("ctype must be 1 or 2") if (!(stype %in% 1:2)) stop("stype must be 1 or 2") type <- as.integer(2*stype + ctype -2) } conf.type <- match.arg(conf.type) conf.lower<- match.arg(conf.lower) if (is.logical(conf.int)) { # A common error is for users to use "conf.int = FALSE" # it's not correct, but allow it if (!conf.int) conf.type <- "none" conf.int <- .95 } # The user can call with cluster, id, both, or neither # If only id, treat it as the cluster too # If influence is requested, this implies clustering has.cluster <- !(missing(cluster) || length(cluster)==0) has.id <- !(missing(id) || length(id)==0) if (has.id) id <- as.factor(id) if (influence && !(has.cluster || has.id)) { cluster <- seq(along=x) has.cluster <- TRUE } if (has.cluster) { if (is.factor(cluster)) { clname <- levels(cluster) cluster <- as.integer(cluster) } else { clname <- sort(unique(cluster)) cluster <- match(cluster, clname) } ncluster <- length(clname) } else { if (has.id) { # treat the id as both identifier and clustering clname <- levels(id) cluster <- as.integer(id) ncluster <- length(clname) } else { ncluster <- 0 # has neither clname <- NULL } } if (is.logical(influence)) { # TRUE/FALSE is treated as all or nothing if (!influence) influence <- 0L else influence <- 3L } else if (!is.numeric(influence)) stop("influence argument must be numeric or logical") if (!(influence %in% 0:3)) stop("influence argument must be 0, 1, 2, or 3") else influence <- as.integer(influence) if (!se.fit) { # if the user asked for no standard error, skip any robust computation ncluster <- 0L influence <- 0L } if (!is.Surv(y)) stop("y must be a Surv object") if (attr(y, 'type') != 'right' && attr(y, 'type') != 'counting') stop("Can only handle right censored or counting data") ny <- ncol(y) # Will be 2 for right censored, 3 for counting # The calling routine has used 'strata' on x, so it is a factor with # no unused levels. But just in case a user called this... if (!is.factor(x)) stop("x must be a factor") xlev <- levels(x) # Will supply names for the curves x <- as.integer(x) # keep the integer index if (missing(start.time)) time0 <- min(0, y[,ny-1]) else time0 <- start.time <> <> } @ At each event time we have \begin{itemize} \item n(t) = number at risk = sum of weigths for those at risk \item d(t) = number of events = sum of weights for the deaths \item e(t) = unweighted number of events \end{itemize} From this we can calculate the Kapan-Meier and Nelson-Aalen estimates. The Fleming-Harrington estimate is the analog of the Efron approximation in a Cox model. When there are no case weights the FH idea is quite simple. Assume that the real data is not tied, but we saw a coarsened version. If we see 3 events out of 10 subjects at risk the NA increment is 3/10 but the FH is 1/10 + 1/9 + 1/8, it is what we would have seen with the uncoarsened data. If there are case weights we give each of the 3 terms a 1/3 chance of being the first, second, or third event \begin{align*} KM(t) &= KM(t-) (1- d(t)/n(t) \\ NA(t) &= NA(t-) + d(t)/n(t) \\ FH(t) &= FH(t-) + \sum_{i=1}^{3} \frac{(d(t)/3}{n(t)- d(t)(i-1)/3} \end{align*} When one of these 3 subjects has an event but continues, which can happen with start/stop data, then this gets trickier: the second $d$ in the last equation above should include only the other 2. The idea is that each of those will certainly be present for the first event, has 2/3 chance of being present for the second, and 1/3 for the third. If we think of the size of the denominator as a random variable $Z$, an exact solution would use $E(1/Z)$, the FH uses $1/E(Z)$ and the NA uses $1/\max(Z)$ as the denominator for each of the 3 deaths. One problem with survival is near ties in Y: table, unique, ==, etc. can do different things in this case. Luckily, the parent survfit routine has dealt with that by using the \code{aeqSurv} function. The underlying C code allows the sort1/sort2 vectors to be a different length than y, weights, and cluster. When there is only one curve we use that to our advantage to avoid creating a new copy of the last 3, passing in the original data. When there are multiple curves I had an internal debate about efficiency. Is is better to make a subset of y for each curve = more memory, or keep the original y and address a different subset in each C call = worse memory cache performance? I don't know the answer. In either case the cluster vector needs to be re-done for each group. Say that curve 1 uses subjects 1-10 and curve 2 uses 11-n: we don't want the first curve to compute or keep the zero influence values for all the subjects who are not in it. Especially when returning the influence matrix, which can get too large for memory. If ny==3 and has.id is true, then do some extra setup work, which is to create a position vector of 1=first obs for the subject, 2 = last, 3=both, 0= other, for each set of back to back times. This is used to prevent counting a subject with data of (0,10], (10,15] in both the censored at 10 and entered at 10 totals. We assume the data has been vetted to prevent overlapping intervals, so that it suffices to sort by ending time. If a subject has holes in their timeline they will have more than one first and last indicator. <>= if (ny==3 & has.id) position <- survflag(y, id) else position <- integer(0) if (length(xlev) ==1) {# only one group if (ny==2) { sort1 <- NULL sort2 <- order(y[,1]) } else { sort2 <- order(y[,2]) sort1 <- order(y[,1]) } toss <- (y[sort2, ny-1] < time0) if (any(toss)) { # Some obs were removed by the start.time argument sort2 <- sort2[!toss] if (ny ==3) { index <- match(which(toss), sort1) sort1 <- sort1[-index] } } n.used <- length(sort2) if (ncluster > 0) cfit <- .Call(Csurvfitkm, y, weights, sort1-1L, sort2-1L, type, cluster-1L, ncluster, position, influence) else cfit <- .Call(Csurvfitkm, y, weights, sort1-1L, sort2-1L, type, 0L, 0L, position, influence) } else { # multiple groups ngroup <- length(xlev) cfit <- vector("list", ngroup) n.used <- integer(ngroup) if (influence) clusterid <- cfit # empty list of group id values for (i in 1:ngroup) { keep <- which(x==i & y[,ny-1] >= time0) if (length(keep) ==0) next; # rare case where all are < start.time ytemp <- y[keep,] n.used[i] <- nrow(ytemp) if (ny==2) { sort1 <- NULL sort2 <- order(ytemp[,1]) } else { sort2 <- order(ytemp[,2]) sort1 <- order(ytemp[,1]) } # Cluster is a nuisance: every curve might have a different set # We need to relabel them from 1 to "number of unique clusters in this # curve for the C routine if (ncluster > 0) { c2 <- cluster[keep] c.unique <- sort(unique(c2)) nc <- length(c.unique) c2 <- match(c2, c.unique) # renumber them if (influence >0) { clusterid[[i]] <-c.unique } } if (ncluster > 0) cfit[[i]] <- .Call(Csurvfitkm, ytemp, weights[keep], sort1 -1L, sort2 -1L, type, c2 -1L, length(c.unique), position, influence) else cfit[[i]] <- .Call(Csurvfitkm, ytemp, weights[keep], sort1 -1L, sort2 -1L, type, 0L, 0L, position, influence) } } @ <>= # create the survfit object if (length(n.used) == 1) { rval <- list(n= length(x), time= cfit$time, n.risk = cfit$n[,4], n.event= cfit$n[,5], n.censor=cfit$n[,6], surv = cfit$estimate[,1], std.err = cfit$std[,1], cumhaz = cfit$estimate[,2], std.chaz = cfit$std[,2]) } else { strata <- sapply(cfit, function(x) nrow(x$n)) names(strata) <- xlev # we need to collapse the curves rval <- list(n= as.vector(table(x)), time = unlist(lapply(cfit, function(x) x$time)), n.risk= unlist(lapply(cfit, function(x) x$n[,4])), n.event= unlist(lapply(cfit, function(x) x$n[,5])), n.censor=unlist(lapply(cfit, function(x) x$n[,6])), surv = unlist(lapply(cfit, function(x) x$estimate[,1])), std.err =unlist(lapply(cfit, function(x) x$std[,1])), cumhaz =unlist(lapply(cfit, function(x) x$estimate[,2])), std.chaz=unlist(lapply(cfit, function(x) x$std[,2])), strata=strata) if (ny==3) rval$n.enter <- unlist(lapply(cfit, function(x) x$n[,8])) } if (ny ==3) { rval$n.enter <- cfit$n[,8] rval$type <- "counting" } else rval$type <- "right" if (se.fit) { rval$logse = (ncluster==0 || (type==2 || type==4)) # se(log S) or se(S) rval$conf.int = conf.int rval$conf.type= conf.type if (conf.lower != "usual") rval$conf.lower = conf.lower if (conf.lower == "modified") { nstrat = length(n.used) events <- rval$n.event >0 if (nstrat ==1) events[1] <- TRUE else events[1 + cumsum(c(0, rval$strata[-nstrat]))] <- TRUE zz <- 1:length(events) n.lag <- rep(rval$n.risk[events], diff(c(zz[events], 1+max(zz)))) # # n.lag = the # at risk the last time there was an event (or # the first time of a strata) # } std.low <- switch(conf.lower, 'usual' = rval$std.err, 'peto' = sqrt((1-rval$surv)/ rval$n.risk), 'modified' = rval$std.err * sqrt(n.lag/rval$n.risk)) if (conf.type != "none") { ci <- survfit_confint(rval$surv, rval$std.err, logse=rval$logse, conf.type, conf.int, std.low) rval <- c(rval, list(lower=ci$lower, upper=ci$upper)) } } else { # for consistency don't return the se if std.err=FALSE rval$std.err <- NULL rval$std.chaz <- NULL } # Add the influence, if requested by the user # remember, if type= 3 or 4, the survival influence has to be constructed. if (influence > 0) { if (type==1 | type==2) { if (influence==1 || influence ==3) { if (length(xlev)==1) { rval$influence.surv <- cfit$influence1 row.names(rval$influence.surv) <- clname } else { temp <- vector("list", ngroup) for (i in 1:ngroup) { temp[[i]] <- cfit[[i]]$influence1 row.names(temp[[i]]) <- clname[clusterid[[i]]] } rval$influence.surv <- temp } } if (influence==2 || influence==3) { if (length(xlev)==1) { rval$influence.chaz <- cfit$influence2 row.names(rval$influence.chaz) <- clname } else { temp <- vector("list", ngroup) for (i in 1:ngroup) { temp[[i]] <- cfit[[i]]$influence2 row.names(temp[[i]]) <- clname[clusterid[[i]]] } rval$influence.chaz <- temp } } } else { # everything is derived from the influence of the cumulative hazard if (length(xlev) ==1) { temp <- cfit$influence2 row.names(temp) <- clname } else { temp <- vector("list", ngroup) for (i in 1:ngroup) { temp[[i]] <- cfit[[i]]$influence2 row.names(temp[[i]]) <- clname[clusterid[[i]]] } } if (influence==2 || influence ==3) rval$influence.chaz <- temp if (influence==1 || influence==3) { # if an obs moves the cumulative hazard up, then it moves S down if (length(xlev) ==1) rval$influence.surv <- -temp * rep(rval$surv, each=nrow(temp)) else { for (i in 1:ngroup) temp[[i]] <- -temp[[i]] * rep(cfit[[i]]$estimate[,1], each=nrow(temp[[i]])) rval$influence.surv <- temp } } } } if (!missing(start.time)) rval$start.time <- start.time rval @ Now for the real work using C routines. My standard for a variable named ``zed'' is to use zed2 for the S object and zed for the data part of the object; the latter is what the C code works with. <>= #include #include "survS.h" #include "survproto.h" SEXP survfitkm(SEXP y2, SEXP weight2, SEXP sort12, SEXP sort22, SEXP type2, SEXP id2, SEXP nid2, SEXP position2, SEXP influence2) { int i, i1, i2, j, k, person1, person2; int nused, nid, type, influence; int ny, ntime; double *tstart=0, *stime, *status, *wt; double v1, v2, dtemp, haz; double temp, dtemp2, dtemp3, frac, btemp; int *sort1=0, *sort2, *id=0; static const char *outnames[]={"time", "n", "estimate", "std.err", "influence1", "influence2", ""}; SEXP rlist; double *gwt=0, *inf1=0, *inf2=0; /* =0 to silence -Wall */ int *gcount=0; int n1, n2, n3, n4; int *position=0, hasid; double wt1, wt2, wt3, wt4; /* output variables */ double *n[10], *dtime, *kvec, *nvec, *std[2], *imat1=0, *imat2=0; /* =0 to silence -Wall*/ double km, nelson; /* current estimates */ /* map the input data */ ny = ncols(y2); /* 2= ordinary survival 3= start,stop data */ nused = nrows(y2); if (ny==3) { tstart = REAL(y2); stime = tstart + nused; sort1 = INTEGER(sort12); } else stime = REAL(y2); status= stime +nused; wt = REAL(weight2); sort2 = INTEGER(sort22); nused = LENGTH(sort22); type = asInteger(type2); nid = asInteger(nid2); if (LENGTH(position2) > 0) { hasid =1; position = INTEGER(position2); } else hasid=0; influence = asInteger(influence2); /* nused was used for two things just above. The first was the length of the input data y, only needed for a moment to set up tstart, stime, and status. The second is the number of these observations we will actually use, which is the length of sort2. This routine can be called multiple times with sort1/sort2 pointing to different subsets of the data while y, wt, id and position can remain unchanged */ if (length(id2)==0) nid =0; /* no robust variance */ else id = INTEGER(id2); /* pass 1, get the number of unique times, needed for memory allocation Number of xval groups (unique id values) has been supplied Data is sorted by time */ ntime =1; temp = stime[sort2[0]]; for (i=1; i>= /* Allocate memory for the output n has 6 columns for number at risk, events, censor, then the 3 weighted versions of the same, then optionally two more for number added to the risk set (when ny=3) */ PROTECT(rlist = mkNamed(VECSXP, outnames)); dtime = REAL(SET_VECTOR_ELT(rlist, 0, allocVector(REALSXP, ntime))); if (ny==2) j=7; else j=9; n[0] = REAL(SET_VECTOR_ELT(rlist, 1, allocMatrix(REALSXP, ntime, j))); for (i=1; i0 ) { /* robust variance */ gcount = (int *) R_alloc(nid, sizeof(int)); if (type <3) { /* working vectors for the influence */ gwt = (double *) R_alloc(3*nid, sizeof(double)); inf1 = gwt + nid; inf2 = inf1 + nid; for (i=0; i< nid; i++) { gwt[i] =0.0; gcount[i] = 0; inf1[i] =0; inf2[i] =0; } } else { gwt = (double *) R_alloc(2*nid, sizeof(double)); inf2 = gwt + nid; for (i=0; i< nid; i++) { gwt[i] =0.0; gcount[i] = 0; inf2[i] =0; } } /* these are not accumulated, so do not need to be zeroed */ if (type <3) { if (influence==1 || influence ==3) imat1 = REAL(SET_VECTOR_ELT(rlist, 4, allocMatrix(REALSXP, nid, ntime))); if (influence==2 || influence==3) imat2 = REAL(SET_VECTOR_ELT(rlist, 5, allocMatrix(REALSXP, nid, ntime))); } else if (influence !=0) imat2 = REAL(SET_VECTOR_ELT(rlist, 5, allocMatrix(REALSXP, nid, ntime))); } <> <> UNPROTECT(1); return(rlist); } @ Pass 2 goes from the last time to the first and fills in the \code{n} matrix. <>= R_CheckUserInterrupt(); /*check for control-C */ /* ** person1, person2 track through sort1 and sort2, respectively ** likewise with i1 and i2 */ person1 = nused-1; person2 = nused-1; n1=0; wt1=0; for (k=ntime-1; k>=0; k--) { dtime[k] = stime[sort2[person2]]; /* current time point */ n2=0; n3=0; wt2=0; wt3=0; for (; person2 >=0; person2--) { i2= sort2[person2]; if (stime[i2] != dtime[k]) break; n1++; /* number at risk */ wt1 += wt[i2]; /* weighted number at risk */ if (status[i2] ==1) { n2++; /* events */ wt2 += wt[i2]; } else if (hasid==0 || (position[i2]& 2)) { /* if there are no repeated obs for a subject (hasid=0) ** or this is the last of a string (a,b](b,c](c,d].. for ** a subject (position[i2]=2 or 3), then it is a 'real' censor */ n3++; wt3 += wt[i2]; } } if (ny==3) { /* remove any with start time >=dtime*/ n4 =0; wt4 =0; for (; person1 >=0; person1--) { i1 = sort1[person1]; if (tstart[i1] < dtime[k]) break; n1--; wt1 -= wt[i1]; if (hasid==0 || (position[i1] & 1)) { /* if there are no repeated id (hasid=0) or this is the ** first of a string of (a,b](b,c](c,d] for a subject, then ** this is a 'real' entry */ n4++; wt4 += wt[i1]; } } if (n4>0) { n[6][k+1] = n4; n[7][k+1] = wt4; } } n[0][k] = n1; n[1][k]=n2; n[2][k]=n3; n[3][k] = wt1; n[4][k]=wt2; n[5][k]=wt3; } if (ny ==3) { /* fill in number entered for the initial interval */ n4=0; wt4=0; for (; person1>=0; person1--) { i1 = sort1[person1]; if (hasid==0 || (position[i1] & 1)) { n4++; wt4 += wt[i1]; } } n[6][0] = n4; n[7][0] = wt4; } @ The rest of the code is identical for simple survival or start-stop data. The cumulative hazard estimates are the Nelson-Aalen-Breslow (same estimate, three different papers) or the Fleming-Harrington. \begin{align*} \Lambda_A(t) &\ \sum{u_j \le t} d_j/r_j \\ \Lambda_{FH}(t) &= \sum{u_j \le t} \frac{d_j} {f_j \sum_{k=0}^{f_j-1} (r_j - kd_j/f_j)} \end{align*} To understand the Fleming-Harrington estimate, suppose that at some time point we had three deaths out of 10 at risk. The Aalen estimate gives a hazard estimate of 3/10. The FH estimate assumes that the deaths didn't actually all happen at once, even though rounding in the data collection process makes it appear that way, so the better estimate is 1/10 + 1/9 + 1/8. The third person to die, whoever that was, would have had only 8 at risk when their event happened. The estimate of survival is either the Kaplan-Meier or the exponential of the hazard. \begin{equation*} KM(t) = \prod_{u_j \le t} \frac{r_j - d_j}{r_j} \end{equation*} The third pass goes from smallest time to largest. 99 times out of 100 the user will choose type=1, so we try to avoid testing those expression n times. <>= R_CheckUserInterrupt(); /*check for control-C */ nelson =0.0; km=1.0; v1=0; v2=0; if (nid==0) { /* simple variance */ if (type==1 || type==3) { /* Nelson-Aalen hazard */ for (i=0; i0 && n[4][i]>0) { /* at least one event with wt>0*/ nelson += n[4][i]/n[3][i]; v2 += n[4][i]/(n[3][i]*n[3][i]); } nvec[i] = nelson; std[0][i] = sqrt(v2); std[1][i] = sqrt(v2); } } else { /* Fleming hazard */ for (i=0; i0 && n[4][i]>0) { /* at least one event */ km *= (n[3][i]-n[4][i])/n[3][i]; v1 += n[4][i]/(n[3][i] * (n[3][i] - n[4][i])); /* Greenwood */ } kvec[i] = km; std[0][i] = sqrt(v1); } } else { /* exp survival */ for (i=0; i< ntime; i++) { kvec[i] = exp(-nvec[i]); std[0][i] = std[1][i]; } } } else { /* infinitesimal jackknife variance */ <> } @ The robust variance is based on an infinitesimal jackknife (IJ). Let $S_{-i}(t)$ be the survival curve without subject $i$ and $J_i(t) = S_i(t) - S_{-i}(t)$ be the change in the survival curve from adding subject $i$ back in. Then the jackknife estimate of variance is $$ \sigma^2_J(t) = \sum \left( J_i(t) - \overline J(t) \right)^2 $$ The IJ estimate instead uses the linear approximation to the jackknife, since it is normally less work to compute the derivative than a whole new estimate. Notice that if all the weights were doubled the expression below will stay the same since the derivative will drop by 1/2. \begin{align*} \sigma^2_{IJ}(t_k) & = \sum_i U_{ik}^2 \\ U_{ik} & = \frac{\partial S(t_k)}{\partial w_i} \end{align*} The big problem with the IJ estimate is that a first derivative matrix $U$ will have one row per subject and one column per event time. Since the number of unique event times tends to grow with $n$, this matrix very rapidly becomes too large to manage. Instead use a grouped jackknife with $g$ groups, $g$ will often be on the order of 20--50. The 0/1 design matrix $B$ has $n$ rows and $g$ columns, one column per group, marking which subject is in each group. The grouped jackknife can be written as \begin{align*} U'WBB'W U &= V'V \end{align*} Our goal is to accumulate and use $V$ instead of $U$. The working vectors \code{inf1} and \code{inf2} contain the current estimate for the survival S and cumulative hazard H, at a given time. They are saved into the \code{imat} array for users, if desired. First work this out for the cumulative hazard, which is simpler, and a single subject $k$. \begin{align} H(t) &= \sum_{s\le t} \frac{\sum w_i dN_i(s)}{\sum w_i Y_i(s)} \nonumber\\ &= \sum _{s\le t} h(s) \nonumber \\ U_k(t) &= U_k(t-) + \frac{\partial h(t)}{\partial w_k} \nonumber \\ &= U_k(t-) + \frac{1}{\sum w_i Y_i(t)} \left(dN_k(t) - Y_k(t)h(t) \right) \label{Una} \\ \sum_k w_k U_k(t) &= 0 \nonumber \end{align} using the counting process notation of $N(t)$ for events and $Y(t)$ for at risk. The weighted sum of the first derivatives is zero, so we don't need a mean when computing the variance estimate. (This is true for all IJ estimators.) $V$ involves the weighted sum of this over groups, for the increment to each row of $V$ the rightmost term of \eqref{Una} is replaced by the weighted sum over each group. Since $h$ is the same for every subject at risk, we only need accumulate the sum of subjects in and sum of events in each group. The first can be kept as a running sum with $O(n)$ effort. When using the FH2 estimate tied deaths are different. Say that subject $i$ dies at some time $t$ where there are 2 other tied deaths. Let $w_i$ for $i=1,2,3$ be the weight of those who die and $s$ the sum of weights for all the others. The contribution to the cumulative hazard and derivative at this time point is \begin{align*} h &= \frac{w_1+w_2+w_3}{3} \frac{1}{s+w_1+w_2+w_3} + \frac{w_1+w_2+w_3}{3} \frac{1}{s+ 2(w_1+w_2+w_3)/3} + \frac{w_1+w_2+w_3}{3} \frac{1}{s+ (w_1 + w_2 + w_3)/3} \\ &\equiv a(b_1 + b_2 + b_3) \frac{\partial h}{\partial w_i} &= &= \left\{ \begin{array}{cl} \frac{b_1 + b_2 + b_3}{3} - a b_1^2 - (2/3)a b_2^2 - (1/3)a b_3^2 & i\le 3 \\ -a(b_1^2 + b_2^2 + b_3^2) & i> 3 \end{array} \right . \end{align*} The idea is that if the data had been gathered with more precision, then there would not be ties. The first death has 1/3 chance of being subject 1,2, or 3 and all are in the denominator. The second also has 1/3 chance of being 1--3, and each of these has 2/3 chance of still being in the denominator, etc. The standard variance will be $ab_1^2 + ab_2^2 + ab_3^2$. For the Kaplan-Meier we have \begin{align} KM(t) &= KM(t-) [1 - h(t)] \nonumber\\ U_k(t) &= \frac{\partial KM(t)}{\partial w_k} \nonumber\\ &= U_k(t-) [1- h(t)] - KM(t-)\frac{\partial h(t)}{\partial w_k} \label{Ukm} \end{align} The $V$ matrix is again a weighted sum. The first term of \eqref{Ukm} does not change, it multiplies the current value times $1-h$. The second term involves the same summation as the cumulative hazard. When using $\exp(-H)$ as the survival estimate then \begin{align*} \frac{partial S(t)}{\partial w_k} &= \frac{\partial e^{-H(t)}}{\partial w_k}\\ &= e^{-H(t)} \partial{H(t)}{\partial w_k} \end{align*} so in this case only the robust variance for the cumulative hazard $H$ is needed, and the parent R routine can fill in the rest. The variance for a given survival time is $\sum V^2$, which is always returned. The code keeps the current $V$ vector for the hazard $H$ in \code{inf2}, and if necessary that for the KM in \code{inf1}. A last step is to add up the squares of all of these, so the algorithm is $O(gp)$ where $p$ is the number of unique event times and $g$ is the number of groups. The sum of weights for each group is kept in a vector \code{gwt}, which is updated as subjects enter and leave. Say that a study had n= 10 million subjects in g=100 groups with d = 1 million deaths. At each death we update the 'hazard' part of the influence for all 100 groups, which is O(gd). The deaths at that time point have a second increment, to whichever group each is in, but since time is sorted that adds O(n) for indexing and O(d) for the work. The most important thing is to avoid doing anything that would be O(ng) or O(nd). For method=3 the hazard part of the increment is also different for a death, the solution is to do an ordinary increment for everyone in the O(gd) step, then correct it when doing the O(d) update. <>= v1=0; v2 =0; km=1; nelson =0; person2=0; if (ny==3) { person1 =0; } else { /* at the start, everyone is at risk */ for (i=0; i< nused; i++) { i2 = id[i]; gcount[i2]++; gwt[i2] += wt[i]; } } if (type==1) { for (i=0; i< ntime; i++) { if (ny==3) { /* add in new subjects */ for (; person1 < nused; person1++) { /* add in those whose start time is < dtime */ i1 = sort1[person1]; if (tstart[i1] >= dtime[i]) break; gcount[id[i1]]++; gwt[id[i1]] += wt[i1]; } } if (n[1][i] > 0 && n[4][i]>0) { /* need to update the sums */ haz = n[4][i]/n[3][i]; for (k=0; k< nid; k++) { inf1[k] = inf1[k] *(1.0 -haz) + gwt[k]*km*haz/n[3][i]; inf2[k] -= gwt[k] * haz/n[3][i]; } for (; person2 dtime[i]) break; /* those at this time */ if (status[i2]==1) { inf1[id[i2]] -= km* wt[i2]/n[3][i]; inf2[id[i2]] += wt[i2]/n[3][i]; } gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } km *= (1-haz); nelson += haz; v1=0; v2=0; for (k=0; k dtime[i]) break; gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } } kvec[i] = km; nvec[i] = nelson; std[0][i] = sqrt(v1); std[1][i] = sqrt(v2); if (influence==1 || influence ==3) for (k=0; k= dtime[i]) break; gcount[id[i1]]++; gwt[id[i1]] += wt[i1]; } } if (n[1][i] > 0 && n[4][i] >0) { /* need to update the sums */ dtemp =0; /* the working denominator */ dtemp2=0; /* sum of squares */ dtemp3=0; temp = n[3][i] - n[4][i]; /* sum of weights for the non-deaths */ for (k=n[1][i]; k>0; k--) { frac = k/n[1][i]; btemp = 1/(temp + frac*n[4][i]); /* "b" in the math */ dtemp += btemp; dtemp2 += btemp*btemp*frac; dtemp3 += btemp*btemp; /* non-death deriv */ } dtemp /= n[1][i]; /* average denominator */ if (n[4][i] != n[1][i]) { /* case weights */ dtemp2 *= n[4][i]/ n[1][i]; dtemp3 *= n[4][i]/ n[1][i]; } nelson += n[4][i]*dtemp; haz = n[4][i]/n[3][i]; for (k=0; k< nid; k++) { inf1[k] = inf1[k] *(1.0 -haz) + gwt[k]*km*haz/n[3][i]; if (gcount[k]>0) inf2[k] -= gwt[k] * dtemp3; } for (; person2 dtime[i]) break; if (status[i2]==1) { inf1[id[i2]] -= km* wt[i2]/n[3][i]; inf2[id[i2]] += wt[i2] *(dtemp + dtemp3 - dtemp2); } gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } km *= (1-haz); v1=0; v2=0; for (k=0; k dtime[i]) break; gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } } kvec[i] = km; nvec[i] = nelson; std[0][i] = sqrt(v1); std[1][i] = sqrt(v2); if (influence==1 || influence ==3) for (k=0; k= dtime[i]) break; gcount[id[i1]]++; gwt[id[i1]] += wt[i1]; } } if (n[1][i] > 0 && n[4][i]>0) { /* need to update the sums */ haz = n[4][i]/n[3][i]; for (k=0; k< nid; k++) { inf2[k] -= gwt[k] * haz/n[3][i]; } for (; person2 dtime[i]) break; if (status[i2]==1) { inf2[id[i2]] += wt[i2]/n[3][i]; } gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } nelson += haz; v2=0; for (k=0; k dtime[i]) break; gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } } kvec[i] = exp(-nelson); nvec[i] = nelson; std[1][i] = sqrt(v2); std[0][i] = sqrt(v2); if (influence>0) for (k=0; k= dtime[i]) break; gcount[id[i1]]++; gwt[id[i1]] += wt[i1]; } } if (n[1][i] > 0 && n[4][i] >0) { /* need to update the sums */ dtemp =0; /* the working denominator */ dtemp2=0; /* sum of squares */ dtemp3=0; temp = n[3][i] - n[4][i]; /* sum of weights for the non-deaths */ for (k=n[1][i]; k>0; k--) { frac = k/n[1][i]; btemp = 1/(temp + frac*n[4][i]); /* "b" in the math */ dtemp += btemp; dtemp2 += btemp*btemp*frac; dtemp3 += btemp*btemp; /* non-death deriv */ } dtemp /= n[1][i]; /* average denominator */ if (n[4][i] != n[1][i]) { /* case weights */ dtemp2 *= n[4][i]/ n[1][i]; dtemp3 *= n[4][i]/ n[1][i]; } nelson += n[4][i]*dtemp; for (k=0; k< nid; k++) { if (gcount[k]>0) inf2[k] -= gwt[k] * dtemp3; } for (; person2 dtime[i]) break; if (status[i2]==1) { inf2[id[i2]] += wt[i2] *(dtemp + dtemp3 - dtemp2); } gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } v2=0; for (k=0; k dtime[i]) break; gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } } kvec[i] = exp(-nelson); nvec[i] = nelson; std[1][i] = sqrt(v2); std[0][i] = sqrt(v2); if (influence>0) for (k=0; k>= #tt <- function(x) x coxph <- function(formula, data, weights, subset, na.action, init, control, ties= c("efron", "breslow", "exact"), singular.ok =TRUE, robust, model=FALSE, x=FALSE, y=TRUE, tt, method=ties, id, cluster, istate, statedata,...) { ties <- match.arg(ties) Call <- match.call() ## We want to pass any ... args to coxph.control, but not pass things ## like "dats=mydata" where someone just made a typo. The use of ... ## is simply to allow things like "eps=1e6" with easier typing extraArgs <- list(...) if (length(extraArgs)) { controlargs <- names(formals(coxph.control)) #legal arg names indx <- pmatch(names(extraArgs), controlargs, nomatch=0L) if (any(indx==0L)) stop(gettextf("Argument %s not matched", names(extraArgs)[indx==0L]), domain = NA) } if (missing(control)) control <- coxph.control(...) # Move any cluster() term out of the formula, and make it an argument # instead. This makes everything easier. But, I can only do that with # a local copy, doing otherwise messes up future use of update() on # the model object for a user stuck in "+ cluster()" mode. if (missing(formula)) stop("a formula argument is required") ss <- c("cluster", "offset") if (is.list(formula)) Terms <- if (missing(data)) terms(formula[[1]], specials=ss) else terms(formula[[1]], specials=ss, data=data) else Terms <- if (missing(data)) terms(formula, specials=ss) else terms(formula, specials=ss, data=data) tcl <- attr(Terms, 'specials')$cluster if (length(tcl) > 1) stop("a formula cannot have multiple cluster terms") mycall <- Call if (length(tcl) > 0) { # there is one if (!is.null(Call$cluster)) stop("cannot have both cluster() in the formula and the cluster option") # subscripting of formulas is broken at least through R 3.5, if the # formula contains an offset. Adding offset to the "specials" above # is just a sneaky way to find out if one is present, then call # reformulate ourselves. tt is a correct index into the row labels # of the factors attribute, tt+1 to the variables attribute (which is # a list, so you have to skip the "list" call). The term.labels attr # contains neither the response nor the offset, but does contain the # interactions, which we need. factors <- attr(Terms, 'factors') if (any(factors[tcl,] >1)) stop("cluster() cannot be in an interaction") if (attr(Terms, "response") ==0) stop("formula must have a Surv response") # reformulate with the response option puts ` ` around Surv, which messes # up evaluation, hence the fancy dance to replace a piece rather # than recreate temp <- attr(Terms, "term.labels") oo <- attr(Terms, 'specials')$offset if (!is.null(oo)) { # add the offset to the set of labels ooterm <- rownames(factors)[oo] if (oo < tcl) temp <- c(ooterm, temp) else temp <- c(temp, ooterm) } mycall$cluster <- attr(Terms, "variables")[[1+tcl]][[2]] if (is.list(formula)) formula[[1]][[3]] <- reformulate(temp[1-tcl])[[2]] else formula[[3]] <- reformulate(temp[1-tcl])[[2]] mycall$formula <- formula } # create a call to model.frame() that contains the formula (required) # and any other of the relevant optional arguments # but don't evaluate it just yet indx <- match(c("formula", "data", "weights", "subset", "na.action", "cluster", "id", "istate"), names(mycall), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") tform <- mycall[c(1,indx)] # only keep the arguments we wanted tform[[1L]] <- quote(stats::model.frame) # change the function called # if the formula is a list, do the first level of processing on it. if (is.list(formula)) { <> } else { multiform <- FALSE # formula is not a list of expressions covlist <- NULL dformula <- formula } # add specials to the formula special <- c("strata", "tt") tform$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) # Make "tt" visible for coxph formulas, without making it visible elsewhere if (!is.null(attr(tform$formula, "specials")$tt)) { coxenv <- new.env(parent= environment(formula)) assign("tt", function(x) x, envir=coxenv) environment(tform$formula) <- coxenv } # okay, now evaluate the formula mf <- eval(tform, parent.frame()) if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) # Grab the response and id variables Y <- model.extract(mf, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") type <- attr(Y, "type") multi <- FALSE if (type=="mright" || type == "mcounting") multi <- TRUE else if (type!='right' && type!='counting') stop(paste("Cox model doesn't support \"", type, "\" survival data", sep='')) data.n <- nrow(Y) #remember this before any time transforms if (!multi && multiform) stop("formula is a list but the response is not multi-state") # Grab the id variable to check out multi-state data id <- model.extract(mf, "id") if (multi) { <> } if (control$timefix) Y <- aeqSurv(Y) <> # The time transform will expand the data frame mf. To do this # it needs Y and the strata. Everything else (cluster, offset, weights) # should be extracted after the transform # strats <- attr(Terms, "specials")$strata if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.integer(strata.keep) } else istrat <- NULL timetrans <- attr(Terms, "specials")$tt if (missing(tt)) tt <- NULL if (length(timetrans)) { if (multi) stop("the tt() transform is not implemented for multi-state models") <> } xlevels <- .getXlevels(Terms, mf) # grab the cluster, if present. Using cluster() in a formula is no # longer encouraged cluster <- model.extract(mf, "cluster") id <- model.extract(mf, "id") if (!is.null(id) && is.null(cluster) && (missing(robust) || robust)) cluster <- id if (missing(robust)) robust <- !is.null(cluster) else if (robust && is.null(cluster)) { if (ncol(Y) ==2) cluster <- seq.int(1, nrow(mf)) else stop("one of cluster or id is needed") } contrast.arg <- NULL #due to shared code with model.matrix.coxph <> <> if (multi) { <> } # infinite covariates are not screened out by the na.omit routines # But this needs to be done after the multi-X part if (!all(is.finite(X))) stop("data contains an infinite predictor") # init is checked after the final X matrix has been made if (missing(init)) init <- NULL else { if (length(init) != ncol(X)) stop("wrong length for init argument") temp <- X %*% init - sum(colMeans(X) * init) + offset # it's okay to have a few underflows, but if all of them are too # small we get all zeros if (any(exp(temp) > .Machine$double.xmax) || all(exp(temp)==0)) stop("initial values lead to overflow or underflow of the exp function") } <> <> <> } @ Multi-state models have a multi-state response, optionally they have a formula that is a list. If the formula is a list then the first element is the default formula with a survival response and covariates on the right. Further elements are of the form from/to ~ covariates / options and specify other covariates for all from:to transitions. Steps in processing such a formula are \begin{enumerate} \item Gather all the variables that appear on a right-hand side, and create a master formula y ~ all of them. This is use to create the model.frame. We also need to defer missing value processing, since some covariates might appear for only some transitions. \item Get the data. The response, id, and statedata variables can now be checked for consistency with the formulas. \item After X has been formed, expand it. \end{enumerate} Here is code for the first step. <>= multiform <- TRUE dformula <- formula[[1]] # the default formula for transitions if (missing(statedata)) covlist <- parsecovar1(formula[-1]) else { if (!inherits(statedata, "data.frame")) stop("statedata must be a data frame") if (is.null(statedata$state)) stop("statedata data frame must contain a 'state' variable") covlist <- parsecovar1(formula[-1], names(statedata)) } # the term.labels + reformulate + environment trio is used in [.terms; # if it's good enough for base R it's good enough for me tlab <- unlist(lapply(covlist$rhs, function(x) attr(terms.formula(x$formula), "term.labels"))) tlab <- c(attr(terms.formula(dformula), "term.labels"), tlab) newform <- reformulate(tlab, dformula[[2]]) environment(newform) <- environment(dformula) formula <- newform tform$na.action <- na.pass # defer any missing value work to later @ <>= # check for consistency of the states, and create a transition # matrix if (length(id)==0) stop("an id statement is required for multi-state models") istate <- model.extract(mf, "istate") mcheck <- survcheck2(Y, id, istate) # error messages here if (mcheck$flag["overlap"] > 0) stop("data set has overlapping intervals for one or more subjects") transitions <- mcheck$transitions istate <- mcheck$istate states <- mcheck$states # build tmap, which has one row per term, one column per transition if (missing(statedata)) covlist2 <- parsecovar2(covlist, NULL, dformula= dformula, Terms, transitions, states) else covlist2 <- parsecovar2(covlist, statedata, dformula= dformula, Terms, transitions, states) tmap <- covlist2$tmap if (!is.null(covlist)) { <> } @ For multi-state models we can't tell what observations should be removed until any extra formulas have been processed. There may still be rows that are missing \emph{some} of the covariates but are okay for \emph{some} transitions. Others could be useless. Those rows can be removed from the model frame before creating the X matrix. Also identify partially used rows, ones where the necessary covariates are present for some of the possible transitions but not all. Those obs are dealt with later by the stackup function. <>= # first vector will be true if there is at least 1 transition for which all # covariates are present, second if there is at least 1 for which some are not good.tran <- bad.tran <- rep(FALSE, nrow(Y)) # We don't need to check interaction terms termname <- rownames(attr(Terms, 'factors')) trow <- (!is.na(match(rownames(tmap), termname))) # create a missing indicator for each term termiss <- matrix(0L, nrow(mf), ncol(mf)) for (i in 1:ncol(mf)) { xx <- is.na(mf[[i]]) if (is.matrix(xx)) termiss[,i] <- apply(xx, 1, any) else termiss[,i] <- xx } for (i in levels(istate)) { rindex <- which(istate ==i) j <- which(covlist2$mapid[,1] == match(i, states)) #possible transitions for (jcol in j) { k <- which(trow & tmap[,jcol] > 0) # the terms involved in that bad.tran[rindex] <- (bad.tran[rindex] | apply(termiss[rindex, k, drop=FALSE], 1, any)) good.tran[rindex] <- (good.tran[rindex] | apply(!termiss[rindex, k, drop=FALSE], 1, all)) } } n.partially.used <- sum(good.tran & bad.tran & !is.na(Y)) omit <- (!good.tran & bad.tran) | is.na(Y) if (all(omit)) stop("all observations deleted due to missing values") temp <- setNames(seq(omit)[omit], attr(mf, "row.names")[omit]) attr(temp, "class") <- "omit" mf <- mf[!omit,, drop=FALSE] attr(mf, "na.action") <- temp Y <- Y[!omit] id <- id[!omit] if (length(istate)) istate <- istate[!omit] # istate can be NULL @ For a multi-state model, create the expanded X matrix. Sometimes it is much expanded. The first step is to create the cmap matrix from tmap by expanding terms; factors turn into multiple columns for instance. Also create the initial values vector. The stacker function will create a separate block of observations for every unique value in \code{cmat[1,]}. Now say that two transitions A:B and A:C share the same baseline hazard. Then either a B or a C outcome will be an ``event'' in that stratum; they would only be distinguished by perhaps having different covariates. <>= cmap <- parsecovar3(tmap, colnames(X), attr(X, "assign")) xstack <- stacker(cmap, as.integer(istate), X, Y, strata=istrat, states=states) X <- xstack$X Y <- xstack$Y istrat <- xstack$strata if (length(offset)) offset <- offset[xstack$rindex] if (length(weights)) weights <- weights[xstack$rindex] if (length(cluster)) cluster <- cluster[xstack$rindex] @ The next step for multi X is to remake the assign attribute. It is a list with one element per term, and needs to be expanded in the same way as \code{tmap}, which has one row per term (+ an intercept row). For \code{predict, type='terms'} to work, no label can be repeated in the final assign object. If a variable `fred' were common across all the states we would want to use that as the label, but if it appears twice, as separate terms for two different transitions, then we label it as fred\_x:y where x:y is the transition. <>= t2 <- tmap[-1,,drop=FALSE] # remove the intercept row r2 <- row(t2)[!duplicated(as.vector(t2))] c2 <- col(t2)[!duplicated(as.vector(t2))] a2 <- lapply(seq(along=r2), function(i) {cmap[1+assign[[r2[i]]], c2[i]]}) # which elements are unique? tab <- table(r2) count <- tab[r2] names(a2) <- ifelse(count==1, row.names(t2)[r2], paste(row.names(t2)[r2], colnames(cmap)[c2], sep="_")) assign <- a2 @ An increasingly common error is for users to put the time variable on both sides of the formula, in the mistaken idea that this will deal with a failure of proportional hazards. Add a test for such models, but don't bail out. There will be cases where someone has the the stop variable in an expression on the right hand side, to create current age say. The \code{variables} attribute of the Terms object is the expression form of a list that contains the response variable followed by the predictors. Subscripting this, element 1 is the call to ``list'' itself so we always retain it. My \code{terms.inner} function works only with formula objects. <>= if (length(attr(Terms, 'variables')) > 2) { # a ~1 formula has length 2 ytemp <- terms.inner(formula[1:2]) xtemp <- terms.inner(formula[-2]) if (any(!is.na(match(xtemp, ytemp)))) warning("a variable appears on both the left and right sides of the formula") } @ At this point we deal with any time transforms. The model frame is expanded to a ``fake'' data set that has a separate stratum for each unique event-time/strata combination, and any tt() terms in the formula are processed. The first step is to create the index vector [[tindex]] and new strata [[.strata.]]. This last is included in a model.frame call (for others to use), internally the code simply replaces the \code{istrat} variable. A (modestly) fast C-routine first counts up and indexes the observations. We start out with error checks; since the computation can be slow we want to complain early. <>= timetrans <- untangle.specials(Terms, 'tt') ntrans <- length(timetrans$terms) if (is.null(tt)) { tt <- function(x, time, riskset, weights){ #default to O'Brien's logit rank obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } } if (is.function(tt)) tt <- list(tt) #single function becomes a list if (is.list(tt)) { if (any(!sapply(tt, is.function))) stop("The tt argument must contain function or list of functions") if (length(tt) != ntrans) { if (length(tt) ==1) { temp <- vector("list", ntrans) for (i in 1:ntrans) temp[[i]] <- tt[[1]] tt <- temp } else stop("Wrong length for tt argument") } } else stop("The tt argument must contain a function or list of functions") if (ncol(Y)==2) { if (length(strats)==0) { sorted <- order(-Y[,1], Y[,2]) newstrat <- rep.int(0L, nrow(Y)) newstrat[1] <- 1L } else { sorted <- order(istrat, -Y[,1], Y[,2]) #newstrat marks the first obs of each strata newstrat <- as.integer(c(1, 1*(diff(istrat[sorted])!=0))) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount1, Y[sorted,], as.integer(newstrat)) tindex <- sorted[counts$index] } else { if (length(strats)==0) { sort.end <- order(-Y[,2], Y[,3]) sort.start<- order(-Y[,1]) newstrat <- c(1L, rep(0, nrow(Y) -1)) } else { sort.end <- order(istrat, -Y[,2], Y[,3]) sort.start<- order(istrat, -Y[,1]) newstrat <- c(1L, as.integer(diff(istrat[sort.end])!=0)) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount2, Y, as.integer(sort.start -1L), as.integer(sort.end -1L), as.integer(newstrat)) tindex <- counts$index } @ The C routine has returned a list with 4 elements \begin{description} \item[nrisk] a vector containing the number at risk at each event time \item[time] the vector of event times \item[status] a vector of status values \item[index] a vector containing the set of subjects at risk for event time 1, followed by those at risk at event time 2, those at risk at event time 3, etc. \end{description} The new data frame is then a simple creation. The subtle part below is a desire to retain transformation information so that a downstream call to \code{termplot} will work. The tt function supplied by the user often finishes with a call to \code{pspline} or \code{ns}. If the returned value of the \code{tt} call has a class for which a \code{makepredictcall} method exists then we need to do 2 things: \begin{enumerate} \item Construct a fake call, e.g., ``pspline(age)'', then feed it and the result of tt as arguments to \code{makepredictcall} \item Replace that componenent in the predvars attribute of the terms. \end{enumerate} The \code{timetrans\$terms} value is a count of the right hand side of the formula. Some objects in the terms structure are unevaluated calls that include y, this adds 2 to the count (the call to ``list'' and the response). <>= Y <- Surv(rep(counts$time, counts$nrisk), counts$status) type <- 'right' # new Y is right censored, even if the old was (start, stop] mf <- mf[tindex,] istrat <- rep(1:length(counts$nrisk), counts$nrisk) weights <- model.weights(mf) if (!is.null(weights) && any(!is.finite(weights))) stop("weights must be finite") tcall <- attr(Terms, 'variables')[timetrans$terms+2] pvars <- attr(Terms, 'predvars') pmethod <- sub("makepredictcall.", "", as.vector(methods("makepredictcall"))) for (i in 1:ntrans) { newtt <- (tt[[i]])(mf[[timetrans$var[i]]], Y[,1], istrat, weights) mf[[timetrans$var[i]]] <- newtt nclass <- class(newtt) if (any(nclass %in% pmethod)) { # It has a makepredictcall method dummy <- as.call(list(as.name(class(newtt)[1]), tcall[[i]][[2]])) ptemp <- makepredictcall(newtt, dummy) pvars[[timetrans$terms[i]+2]] <- ptemp } } attr(Terms, "predvars") <- pvars @ This is the C code for time-transformation. For the first case it expects y to contain time and status sorted from longest time to shortest, and strata=1 for the first observation of each strata. <>= #include "survS.h" /* ** Count up risk sets and identify who is in each */ SEXP coxcount1(SEXP y2, SEXP strat2) { int ntime, nrow; int i, j, n; int stratastart=0; /* start row for this strata */ int nrisk=0; /* number at risk (=0 to stop -Wall complaint)*/ double *time, *status; int *strata; double dtime; SEXP rlist, rlistnames, rtime, rn, rindex, rstatus; int *rrindex, *rrstatus; n = nrows(y2); time = REAL(y2); status = time +n; strata = INTEGER(strat2); /* ** First pass: count the total number of death times (risk sets) ** and the total number of rows in the new data set. */ ntime=0; nrow=0; for (i=0; i> /* ** Pass 2, fill them in */ ntime=0; for (i=0; i> } @ The start-stop case is a bit more work. The set of subjects still at risk is an arbitrary set so we have to keep an index vector [[atrisk]]. At each new death time we write out the set of those at risk, with the deaths last. I toyed with the idea of a binary tree then realized it was not useful: at each death we need to list out all the subjects at risk into the index vector which is an $O(n)$ process, tree or not. <>= #include "survS.h" /* count up risk sets and identify who is in each, (start,stop] version */ SEXP coxcount2(SEXP y2, SEXP isort1, SEXP isort2, SEXP strat2) { int ntime, nrow; int i, j, istart, n; int nrisk=0, *atrisk; double *time1, *time2, *status; int *strata; double dtime; int iptr, jptr; SEXP rlist, rlistnames, rtime, rn, rindex, rstatus; int *rrindex, *rrstatus; int *sort1, *sort2; n = nrows(y2); time1 = REAL(y2); time2 = time1+n; status = time2 +n; strata = INTEGER(strat2); sort1 = INTEGER(isort1); sort2 = INTEGER(isort2); /* ** First pass: count the total number of death times (risk sets) ** and the total number of rows in the new data set */ ntime=0; nrow=0; istart =0; /* walks along the sort1 vector (start times) */ for (i=0; i= dtime; istart++) nrisk--; for(j= i+1; j> atrisk = (int *)R_alloc(n, sizeof(int)); /* marks who is at risk */ /* ** Pass 2, fill them in */ ntime=0; nrisk=0; j=0; /* pointer to time1 */; istart=0; for (i=0; i=dtime; istart++) { atrisk[sort1[istart]]=0; nrisk--; } for (j=1; j> } @ <>= /* ** Allocate memory */ PROTECT(rtime = allocVector(REALSXP, ntime)); PROTECT(rn = allocVector(INTSXP, ntime)); PROTECT(rindex=allocVector(INTSXP, nrow)); PROTECT(rstatus=allocVector(INTSXP,nrow)); rrindex = INTEGER(rindex); rrstatus= INTEGER(rstatus); @ <>= /* return the list */ PROTECT(rlist = allocVector(VECSXP, 4)); SET_VECTOR_ELT(rlist, 0, rn); SET_VECTOR_ELT(rlist, 1, rtime); SET_VECTOR_ELT(rlist, 2, rindex); SET_VECTOR_ELT(rlist, 3, rstatus); PROTECT(rlistnames = allocVector(STRSXP, 4)); SET_STRING_ELT(rlistnames, 0, mkChar("nrisk")); SET_STRING_ELT(rlistnames, 1, mkChar("time")); SET_STRING_ELT(rlistnames, 2, mkChar("index")); SET_STRING_ELT(rlistnames, 3, mkChar("status")); setAttrib(rlist, R_NamesSymbol, rlistnames); unprotect(6); return(rlist); @ We now return to the original thread of the program, though perhaps with new data, and build the $X$ matrix. Creation of the $X$ matrix for a Cox model requires just a bit of trickery. The baseline hazard for a Cox model plays the role of an intercept, but does not appear in the $X$ matrix. However, to create the columns of $X$ for factor variables correctly, we need to call the model.matrix routine in such a way that it \emph{thinks} there is an intercept, and so we set the intercept attribute to 1 in the terms object before calling model.matrix, ignoring any -1 term the user may have added. One simple way to handle all this is to call model.matrix on the original formula and then remove the terms we don't need. However, \begin{enumerate} \item The cluster() term, if any, could lead to thousands of extraneous ``intercept'' columns which are never needed. \item Likewise, nested case-control models can have thousands of strata, again leading many intercepts we never need. They never have strata by covariate interactions, however. \item If there are strata by covariate interactions in the model, the dummy intercepts-per-strata columns are necessary information for the model.matrix routine to correctly compute other columns of $X$. \end{enumerate} On later reflection \code{cluster} should never have been in the model statement in the first place, something that became painfully apparent with addition of multi-state models. In the future we will discourage it. For reason 2 above the usual plan is to also remove strata terms from the ``Terms'' object \emph{before} calling model.matrix, unless there are strata by covariate interactions in which case we remove them after. If anything is pre-dropped, for documentation purposes we want the returned assign attribute to match the Terms structure that we will hand back. (Do we ever use it?) In particular, the numbers therein correspond to the column names in \code{attr(Terms, 'factors')} The requires a shift. The cluster and strata terms are seen as main effects, so appear early in that list. We have found a case where terms get relabeled: <>= t1 <- terms( (x1 + x2):x3 + strata(x4)) t2 <- t1[-1] colnames(attr(t1, "factors")) colnames(attr(t2, "factors")) @ In t1 the strata term appears first, as it is the only thing that looks like a main effect, and the column labels are strata(x4), x1:x3, x2:x3. In t2 the column labels are x1:x3 and x3:x2 --- note left-right swap of the second. This means that using match() on the labels is not a reliable approach. We instead assume that nothing is reordered and do a shift. <>= attr(Terms, "intercept") <- 1 stemp <- untangle.specials(Terms, 'strata', 1) hasinteractions <- FALSE dropterms <- NULL if (length(stemp$vars) > 0) { #if there is a strata statement for (i in stemp$vars) { #multiple strata terms are allowed # The factors attr has one row for each variable in the frame, one # col for each term in the model. Pick rows for each strata # var, and find if it participates in any interactions. if (any(attr(Terms, 'order')[attr(Terms, "factors")[i,] >0] >1)) hasinteractions <- TRUE } if (!hasinteractions) dropterms <- stemp$terms } if (length(dropterms)) { Terms2 <- Terms[ -dropterms] X <- model.matrix(Terms2, mf, constrasts=contrast.arg) # we want to number the terms wrt the original model matrix temp <- attr(X, "assign") shift <- sort(dropterms) temp <- temp + 1*(shift[1] <= temp) if (length(shift)==2) temp + 1*(shift[2] <= temp) attr(X, "assign") <- temp } else X <- model.matrix(Terms, mf, contrasts=contrast.arg) # drop the intercept after the fact, and also drop strata if necessary Xatt <- attributes(X) if (hasinteractions) adrop <- c(0, untangle.specials(Terms, "strata")$terms) else adrop <- 0 xdrop <- Xatt$assign %in% adrop #columns to drop (always the intercept) X <- X[, !xdrop, drop=FALSE] attr(X, "assign") <- Xatt$assign[!xdrop] attr(X, "contrasts") <- Xatt$contrasts @ Finish the setup. If someone includes an init statement or offset, make sure that it does not lead to instant code failure due to overflow/underflow. <>= offset <- model.offset(mf) if (is.null(offset) | all(offset==0)) offset <- rep(0., nrow(mf)) else if (any(!is.finite(offset) | !is.finite(exp(offset)))) stop("offsets must lead to a finite risk score") weights <- model.weights(mf) if (!is.null(weights) && any(!is.finite(weights))) stop("weights must be finite") assign <- attrassign(X, Terms) contr.save <- attr(X, "contrasts") <> @ Check for a rare edge case: a data set with no events. In this case the return structure is simple. The coefficients will all be NA, since they can't be estimated. The variance matrix is all zeros, in line with the usual rule to zero out any row and col corresponding to an NA coef. The loglik is the sum of zero terms, which we set to zero like the usual R result for sum(numeric(0)). An overall idea is to return something that won't blow up later code. <>= if (sum(Y[, ncol(Y)]) == 0) { # No events in the data! ncoef < ctemp <- rep (NA, ncoef) names(ctemp) <- colnames(X) concordance= c(concordant=0, discordant=0, tied.x=0, tied.y=0, tied.xy=0, concordance=NA, std=NA, timefix=FALSE) rval <- list(coefficients= ctemp, var = matrix(0.0, ncoef, ncoef), loglik=c(0,0), score =0, iter =0, linear.predictors = offset, residuals = rep(0.0, data.n), means = colMeans(X), method=method, n = data.n, nevent=0, terms=Terms, assign=assign, concordance=concordance, y = Y, call=Call) class(rval) <- "coxph" return(rval) } @ Check for penalized terms in the model, and set up infrastructure for the fitting routines to deal with them. <>= pterms <- sapply(mf, inherits, 'coxph.penalty') if (any(pterms)) { pattr <- lapply(mf[pterms], attributes) pname <- names(pterms)[pterms] # # Check the order of any penalty terms ord <- attr(Terms, "order")[match(pname, attr(Terms, 'term.labels'))] if (any(ord>1)) stop ('Penalty terms cannot be in an interaction') pcols <- assign[match(pname, names(assign))] fit <- coxpenal.fit(X, Y, istrat, offset, init=init, control, weights=weights, method=method, row.names(mf), pcols, pattr, assign) } @ <>= else { if( method=="breslow" || method =="efron") { if (grepl('right', type)) fitter <- get("coxph.fit") else fitter <- get("agreg.fit") } else if (method=='exact') { if (type== "right") fitter <- get("coxexact.fit") else fitter <- get("agexact.fit") } else stop(paste ("Unknown method", method)) fit <- fitter(X, Y, istrat, offset, init, control, weights=weights, method=method, row.names(mf)) } @ <>= if (is.character(fit)) { fit <- list(fail=fit) class(fit) <- 'coxph' } else { if (!is.null(fit$coefficients) && any(is.na(fit$coefficients))) { vars <- (1:length(fit$coefficients))[is.na(fit$coefficients)] msg <-paste("X matrix deemed to be singular; variable", paste(vars, collapse=" ")) if (!singular.ok) stop(msg) # else warning(msg) # stop being chatty } fit$n <- data.n fit$nevent <- sum(Y[,ncol(Y)]) fit$terms <- Terms fit$assign <- assign class(fit) <- fit$class fit$class <- NULL # don't compute a robust variance if there are no coefficients if (robust && !is.null(fit$coefficients) && !all(is.na(fit$coefficients))) { fit$naive.var <- fit$var # a little sneaky here: by calling resid before adding the # na.action method, I avoid having missings re-inserted # I also make sure that it doesn't have to reconstruct X and Y fit2 <- c(fit, list(x=X, y=Y, weights=weights)) if (length(istrat)) fit2$strata <- istrat if (length(cluster)) { temp <- residuals.coxph(fit2, type='dfbeta', collapse=cluster, weighted=TRUE) # get score for null model if (is.null(init)) fit2$linear.predictors <- 0*fit$linear.predictors else fit2$linear.predictors <- c(X %*% init) temp0 <- residuals.coxph(fit2, type='score', collapse=cluster, weighted=TRUE) } else { temp <- residuals.coxph(fit2, type='dfbeta', weighted=TRUE) fit2$linear.predictors <- 0*fit$linear.predictors temp0 <- residuals.coxph(fit2, type='score', weighted=TRUE) } fit$var <- t(temp) %*% temp u <- apply(as.matrix(temp0), 2, sum) fit$rscore <- coxph.wtest(t(temp0)%*%temp0, u, control$toler.chol)$test } #Wald test if (length(fit$coefficients) && is.null(fit$wald.test)) { #not for intercept only models, or if test is already done nabeta <- !is.na(fit$coefficients) # The init vector might be longer than the betas, for a sparse term if (is.null(init)) temp <- fit$coefficients[nabeta] else temp <- (fit$coefficients - init[1:length(fit$coefficients)])[nabeta] fit$wald.test <- coxph.wtest(fit$var[nabeta,nabeta], temp, control$toler.chol)$test } # Concordance. Done here so that we can use cluster if it is present # The returned value is a subset of the full result, partly because it # is all we need, but more for backward compatability with survConcordance.fit if (length(cluster)) temp <- concordancefit(Y, fit$linear.predictors, istrat, weights, cluster=cluster, reverse=TRUE, timefix= FALSE) else temp <- concordancefit(Y, fit$linear.predictors, istrat, weights, reverse=TRUE, timefix= FALSE) if (is.matrix(temp$count)) fit$concordance <- c(colSums(temp$count), concordance=temp$concordance, std=sqrt(temp$var)) else fit$concordance <- c(temp$count, concordance=temp$concordance, std=sqrt(temp$var)) na.action <- attr(mf, "na.action") if (length(na.action)) fit$na.action <- na.action if (model) { if (length(timetrans)) { stop("'model=TRUE' not supported for models with tt terms") } fit$model <- mf } if (x) { fit$x <- X if (length(timetrans)) fit$strata <- istrat else if (length(strats)) fit$strata <- strata.keep } if (y) fit$y <- Y } @ If any of the weights were not 1, save the results. Add names to the means component, which are occassionally useful to survfit.coxph. Other objects below are used when we need to recreate a model frame. <>= if (!is.null(weights) && any(weights!=1)) fit$weights <- weights names(fit$means) <- names(fit$coefficients) if (multi) { fit$transitions <- transitions fit$states <- states fit$cmap <- cmap fit$resid <- rowsum(fit$resid, xstack$rindex) if (x) fit$strata <- istrat # save the expanded strata class(fit) <- c("coxphms", class(fit)) } fit$formula <- formula(Terms) if (length(xlevels) >0) fit$xlevels <- xlevels fit$contrasts <- contr.save if (any(offset !=0)) fit$offset <- offset fit$call <- Call fit @ The model.matrix and model.frame routines are called after a Cox model to reconstruct those portions. Much of their code is shared with the coxph routine. <>= # In internal use "data" will often be an already derived model frame. # We detect this via it having a terms attribute. model.matrix.coxph <- function(object, data=NULL, contrast.arg=object$contrasts, ...) { # # If the object has an "x" component, return it, unless a new # data set is given if (is.null(data) && !is.null(object[['x']])) return(object[['x']]) #don't match "xlevels" Terms <- delete.response(object$terms) if (is.null(data)) mf <- stats::model.frame(object) else { if (is.null(attr(data, "terms"))) mf <- stats::model.frame(Terms, data, xlev=object$xlevels) else mf <- data #assume "data" is already a model frame } cluster <- attr(Terms, "specials")$cluster if (length(cluster)) { temp <- untangle.specials(Terms, "cluster") dropterms <- temp$terms } else dropterms <- NULL <> X } @ In parallel is the model.frame routine, which reconstructs the model frame. This routine currently doesn't do all that we want. To wit, the following code fails: \begin{verbatim} > tfun <- function(formula, ndata) { fit <- coxph(formula, data=ndata) model.frame(fit) } > tfun(Surv(time, status) ~ age, lung) Error: ndata not found \end{verbatim} The genesis of this problem is hard to unearth, but has to do with non standard evaluation rules used by model.frame.default. In essence it pays attention to the environment of the formula, but the enclos argument of eval appears to be ignored. I've not yet found a solution. <>= model.frame.coxph <- function(formula, ...) { dots <- list(...) nargs <- dots[match(c("data", "na.action", "subset", "weights", "id", "cluster", "istate"), names(dots), 0)] # If nothing has changed and the coxph object had a model component, # simply return it. if (length(nargs) ==0 && !is.null(formula$model)) return(formula$model) else { # Rebuild the original call to model.frame Terms <- terms(formula) fcall <- formula$call indx <- match(c("formula", "data", "weights", "subset", "na.action", "cluster", "id", "istate"), names(fcall), nomatch=0) if (indx[1] ==0) stop("The coxph call is missing a formula!") temp <- fcall[c(1,indx)] # only keep the arguments we wanted temp[[1]] <- quote(stats::model.frame) # change the function called temp$xlev <- formula$xlevels # this will turn strings to factors temp$formula <- Terms #keep the predvars attribute # Now, any arguments that were on this call overtake the ones that # were in the original call. if (length(nargs) >0) temp[names(nargs)] <- nargs # Make "tt" visible for coxph formulas, if (!is.null(attr(temp$formula, "specials")$tt)) { coxenv <- new.env(parent= environment(temp$formula)) assign("tt", function(x) x, envir=coxenv) environment(temp$formula) <- coxenv } # The documentation for model.frame implies that the environment arg # to eval will be ignored, but if we omit it there is a problem. if (is.null(environment(formula$terms))) mf <- eval(temp, parent.frame()) else mf <- eval(temp, environment(formula$terms), parent.frame()) if (!is.null(attr(formula$terms, "dataClasses"))) .checkMFClasses(attr(formula$terms, "dataClasses"), mf) if (is.null(attr(Terms, "specials")$tt)) return(mf) else { # Do time transform tt <- eval(formula$call$tt) Y <- aeqSurv(model.response(mf)) strats <- attr(Terms, "specials")$strata if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.numeric(strata.keep) } <> mf[[".strata."]] <- istrat return(mf) } } } @ survival/noweb/Readme0000644000176200001440000000270013537676563014403 0ustar liggesusers Some portions of the survival package have been written using the literate programming paradym. These are contained here, and have a .Rnw suffix. Long term, the plan is to have all of the code source here to maximize the documentation, and through it the reliability of the package. These files are processed using the noweb package, NOT by Sweave or knitr. The purpose of the latter two is to create reports that interweave text and exectuted results. The noweb package documents and writes out source code for functions. Use "make fun" to create the objects in ../R. (If you don't, changes here will have no effect on the final pacakge.) The file code.pdf is documentation for understanding the code, not how to use the survival functions for data analysis. For those who maintain the code it will be a big help, for everyone else I'd expect it to be boring. To create code.pdf type "make doc". Any .Rnw files that are not yet included in the Makefile are works in progress. A note on style: I prefer to use smaller "chunks" of code in my editor, and so this is broken up into a lot of pieces. That is neither right nor wrong, just my preference. Similarly, the Makefile creates many different .R files in the ../R directory. We could have a much simpler Makefile that created a single large "code.R" file, but I tend to add cat() and browser() calls to the .R when debugging, rather than the .Rnw, so I like smaller files there too. Terry Therneau survival/noweb/rates/0000755000176200001440000000000013537676563014402 5ustar liggesuserssurvival/noweb/rates/usdecennial.dat0000644000176200001440000043311613537676563017376 0ustar liggesusersyear age sex race q 1940 0-1d m total 0.01571 1940 1-7d m total 0.01117 1940 7-28d m total 0.00631 1940 0 m total 0.05238 1940 1 m total 0.00553 1940 2 m total 0.00289 1940 3 m total 0.00201 1940 4 m total 0.00162 1940 5 m total 0.00145 1940 6 m total 0.0013 1940 7 m total 0.00119 1940 8 m total 0.00111 1940 9 m total 0.00106 1940 10 m total 0.00105 1940 11 m total 0.00107 1940 12 m total 0.00113 1940 13 m total 0.00124 1940 14 m total 0.00139 1940 15 m total 0.00157 1940 16 m total 0.00176 1940 17 m total 0.00194 1940 18 m total 0.00211 1940 19 m total 0.00228 1940 20 m total 0.00246 1940 21 m total 0.00261 1940 22 m total 0.00274 1940 23 m total 0.00283 1940 24 m total 0.00288 1940 25 m total 0.00292 1940 26 m total 0.00297 1940 27 m total 0.00304 1940 28 m total 0.00314 1940 29 m total 0.00325 1940 30 m total 0.00338 1940 31 m total 0.00352 1940 32 m total 0.00369 1940 33 m total 0.00388 1940 34 m total 0.00409 1940 35 m total 0.00433 1940 36 m total 0.00459 1940 37 m total 0.00488 1940 38 m total 0.0052 1940 39 m total 0.00556 1940 40 m total 0.00595 1940 41 m total 0.00639 1940 42 m total 0.00687 1940 43 m total 0.0074 1940 44 m total 0.00799 1940 45 m total 0.00863 1940 46 m total 0.00932 1940 47 m total 0.01006 1940 48 m total 0.01086 1940 49 m total 0.01172 1940 50 m total 0.01264 1940 51 m total 0.01364 1940 52 m total 0.01472 1940 53 m total 0.0159 1940 54 m total 0.01716 1940 55 m total 0.0185 1940 56 m total 0.01993 1940 57 m total 0.02144 1940 58 m total 0.02302 1940 59 m total 0.02469 1940 60 m total 0.02647 1940 61 m total 0.02837 1940 62 m total 0.03041 1940 63 m total 0.0326 1940 64 m total 0.03497 1940 65 m total 0.03755 1940 66 m total 0.04037 1940 67 m total 0.04347 1940 68 m total 0.04687 1940 69 m total 0.05062 1940 70 m total 0.05477 1940 71 m total 0.05936 1940 72 m total 0.06444 1940 73 m total 0.07005 1940 74 m total 0.07618 1940 75 m total 0.08284 1940 76 m total 0.09002 1940 77 m total 0.0977 1940 78 m total 0.1059 1940 79 m total 0.11461 1940 80 m total 0.12386 1940 81 m total 0.13367 1940 82 m total 0.14404 1940 83 m total 0.15498 1940 84 m total 0.16643 1940 85 m total 0.17831 1940 86 m total 0.19055 1940 87 m total 0.20308 1940 88 m total 0.21582 1940 89 m total 0.22871 1940 90 m total 0.24168 1940 91 m total 0.25468 1940 92 m total 0.26763 1940 93 m total 0.28066 1940 94 m total 0.29362 1940 95 m total 0.30649 1940 96 m total 0.31929 1940 97 m total 0.33209 1940 98 m total 0.34497 1940 99 m total 0.35806 1940 100 m total 0.37153 1940 101 m total 0.38557 1940 102 m total 0.40033 1940 103 m total 0.41594 1940 104 m total 0.43243 1940 105 m total 0.44965 1940 106 m total 0.46723 1940 107 m total 0.48446 1940 108 m total 0.50029 1940 109 m total 0.51612 1940 0-1d f total 0.01214 1940 1-7d f total 0.00813 1940 7-28d f total 0.00514 1940 0 f total 0.04152 1940 1 f total 0.00489 1940 2 f total 0.00244 1940 3 f total 0.00174 1940 4 f total 0.0014 1940 5 f total 0.0012 1940 6 f total 0.00103 1940 7 f total 9e-04 1940 8 f total 0.00082 1940 9 f total 0.00076 1940 10 f total 0.00075 1940 11 f total 0.00076 1940 12 f total 0.00081 1940 13 f total 9e-04 1940 14 f total 0.00104 1940 15 f total 0.00121 1940 16 f total 0.00138 1940 17 f total 0.00153 1940 18 f total 0.00165 1940 19 f total 0.00178 1940 20 f total 0.0019 1940 21 f total 0.00201 1940 22 f total 0.00211 1940 23 f total 0.00219 1940 24 f total 0.00226 1940 25 f total 0.00232 1940 26 f total 0.00239 1940 27 f total 0.00247 1940 28 f total 0.00257 1940 29 f total 0.00266 1940 30 f total 0.00277 1940 31 f total 0.00289 1940 32 f total 0.00301 1940 33 f total 0.00315 1940 34 f total 0.00331 1940 35 f total 0.00347 1940 36 f total 0.00365 1940 37 f total 0.00384 1940 38 f total 0.00405 1940 39 f total 0.00427 1940 40 f total 0.00452 1940 41 f total 0.00479 1940 42 f total 0.0051 1940 43 f total 0.00533 1940 44 f total 0.0058 1940 45 f total 0.00621 1940 46 f total 0.00665 1940 47 f total 0.00712 1940 48 f total 0.00763 1940 49 f total 0.00817 1940 50 f total 0.00876 1940 51 f total 0.0094 1940 52 f total 0.01009 1940 53 f total 0.01085 1940 54 f total 0.01167 1940 55 f total 0.01257 1940 56 f total 0.01354 1940 57 f total 0.0146 1940 58 f total 0.01575 1940 59 f total 0.017 1940 60 f total 0.01837 1940 61 f total 0.01985 1940 62 f total 0.02147 1940 63 f total 0.02324 1940 64 f total 0.02519 1940 65 f total 0.02736 1940 66 f total 0.02978 1940 67 f total 0.0325 1940 68 f total 0.03554 1940 69 f total 0.03895 1940 70 f total 0.04274 1940 71 f total 0.04696 1940 72 f total 0.05163 1940 73 f total 0.05679 1940 74 f total 0.06243 1940 75 f total 0.06856 1940 76 f total 0.07519 1940 77 f total 0.08233 1940 78 f total 0.08997 1940 79 f total 0.09814 1940 80 f total 0.10687 1940 81 f total 0.11618 1940 82 f total 0.12609 1940 83 f total 0.13662 1940 84 f total 0.14772 1940 85 f total 0.15932 1940 86 f total 0.17138 1940 87 f total 0.18383 1940 88 f total 0.19661 1940 89 f total 0.20967 1940 90 f total 0.22296 1940 91 f total 0.23644 1940 92 f total 0.25005 1940 93 f total 0.26353 1940 94 f total 0.27692 1940 95 f total 0.29019 1940 96 f total 0.30327 1940 97 f total 0.31613 1940 98 f total 0.32879 1940 99 f total 0.34127 1940 100 f total 0.35368 1940 101 f total 0.36619 1940 102 f total 0.37903 1940 103 f total 0.39249 1940 104 f total 0.40691 1940 105 f total 0.42258 1940 106 f total 0.43978 1940 107 f total 0.45869 1940 108 f total 0.47941 1940 109 f total 0.50193 1940 0-1d m white 0.01538 1940 1-7d m white 0.0104 1940 7-28d m white 0.00556 1940 0 m white 0.04812 1940 1 m white 0.00487 1940 2 m white 0.00265 1940 3 m white 0.0019 1940 4 m white 0.00153 1940 5 m white 0.00138 1940 6 m white 0.00124 1940 7 m white 0.00114 1940 8 m white 0.00106 1940 9 m white 0.00102 1940 10 m white 0.001 1940 11 m white 0.00101 1940 12 m white 0.00103 1940 13 m white 0.00114 1940 14 m white 0.00127 1940 15 m white 0.00143 1940 16 m white 0.00158 1940 17 m white 0.00172 1940 18 m white 0.00186 1940 19 m white 0.00199 1940 20 m white 0.00212 1940 21 m white 0.00223 1940 22 m white 0.00232 1940 23 m white 0.00238 1940 24 m white 0.00241 1940 25 m white 0.00243 1940 26 m white 0.00245 1940 27 m white 0.00251 1940 28 m white 0.00259 1940 29 m white 0.00268 1940 30 m white 0.00279 1940 31 m white 0.00291 1940 32 m white 0.00306 1940 33 m white 0.00323 1940 34 m white 0.00342 1940 35 m white 0.00363 1940 36 m white 0.00387 1940 37 m white 0.00414 1940 38 m white 0.00443 1940 39 m white 0.00476 1940 40 m white 0.00513 1940 41 m white 0.00554 1940 42 m white 0.006 1940 43 m white 0.0065 1940 44 m white 0.00706 1940 45 m white 0.00766 1940 46 m white 0.00833 1940 47 m white 0.00904 1940 48 m white 0.00981 1940 49 m white 0.01064 1940 50 m white 0.01155 1940 51 m white 0.01253 1940 52 m white 0.0136 1940 53 m white 0.01476 1940 54 m white 0.01602 1940 55 m white 0.01737 1940 56 m white 0.01881 1940 57 m white 0.02034 1940 58 m white 0.02195 1940 59 m white 0.02366 1940 60 m white 0.02548 1940 61 m white 0.02743 1940 62 m white 0.02952 1940 63 m white 0.03177 1940 64 m white 0.0342 1940 65 m white 0.03685 1940 66 m white 0.03975 1940 67 m white 0.04293 1940 68 m white 0.04643 1940 69 m white 0.05028 1940 70 m white 0.05454 1940 71 m white 0.05924 1940 72 m white 0.06443 1940 73 m white 0.07014 1940 74 m white 0.07637 1940 75 m white 0.08313 1940 76 m white 0.0904 1940 77 m white 0.09818 1940 78 m white 0.10647 1940 79 m white 0.1153 1940 80 m white 0.12471 1940 81 m white 0.13472 1940 82 m white 0.14537 1940 83 m white 0.15668 1940 84 m white 0.16859 1940 85 m white 0.18104 1940 86 m white 0.19395 1940 87 m white 0.20727 1940 88 m white 0.22091 1940 89 m white 0.23482 1940 90 m white 0.24894 1940 91 m white 0.26322 1940 92 m white 0.2776 1940 93 m white 0.29202 1940 94 m white 0.30642 1940 95 m white 0.32076 1940 96 m white 0.33496 1940 97 m white 0.34898 1940 98 m white 0.36275 1940 99 m white 0.37623 1940 100 m white 0.38935 1940 101 m white 0.40205 1940 102 m white 0.41429 1940 103 m white 0.42599 1940 104 m white 0.43712 1940 105 m white 0.4476 1940 106 m white 0.45738 1940 107 m white 0.4664 1940 108 m white 0.47462 1940 109 m white 0.48476 1940 0-1d f white 0.01187 1940 1-7d f white 0.00757 1940 7-28d f white 0.00447 1940 0 f white 0.03789 1940 1 f white 0.00432 1940 2 f white 0.0022 1940 3 f white 0.00161 1940 4 f white 0.00128 1940 5 f white 0.0011 1940 6 f white 0.00096 1940 7 f white 0.00085 1940 8 f white 0.00077 1940 9 f white 0.00072 1940 10 f white 7e-04 1940 11 f white 7e-04 1940 12 f white 0.00072 1940 13 f white 0.00077 1940 14 f white 0.00086 1940 15 f white 0.00096 1940 16 f white 0.00107 1940 17 f white 0.00117 1940 18 f white 0.00126 1940 19 f white 0.00136 1940 20 f white 0.00145 1940 21 f white 0.00154 1940 22 f white 0.00162 1940 23 f white 0.0017 1940 24 f white 0.00176 1940 25 f white 0.00182 1940 26 f white 0.00188 1940 27 f white 0.00195 1940 28 f white 0.00203 1940 29 f white 0.00211 1940 30 f white 0.0022 1940 31 f white 0.0023 1940 32 f white 0.0024 1940 33 f white 0.00252 1940 34 f white 0.00264 1940 35 f white 0.00278 1940 36 f white 0.00292 1940 37 f white 0.00309 1940 38 f white 0.00326 1940 39 f white 0.00346 1940 40 f white 0.00368 1940 41 f white 0.00393 1940 42 f white 0.0042 1940 43 f white 0.00451 1940 44 f white 0.00485 1940 45 f white 0.00523 1940 46 f white 0.00564 1940 47 f white 0.00608 1940 48 f white 0.00655 1940 49 f white 0.00706 1940 50 f white 0.00762 1940 51 f white 0.00822 1940 52 f white 0.00888 1940 53 f white 0.00961 1940 54 f white 0.0104 1940 55 f white 0.01128 1940 56 f white 0.01224 1940 57 f white 0.0133 1940 58 f white 0.01446 1940 59 f white 0.01574 1940 60 f white 0.01714 1940 61 f white 0.01867 1940 62 f white 0.02035 1940 63 f white 0.02217 1940 64 f white 0.02419 1940 65 f white 0.02643 1940 66 f white 0.02893 1940 67 f white 0.03174 1940 68 f white 0.03489 1940 69 f white 0.03841 1940 70 f white 0.04233 1940 71 f white 0.04669 1940 72 f white 0.0515 1940 73 f white 0.0568 1940 74 f white 0.06259 1940 75 f white 0.06889 1940 76 f white 0.07569 1940 77 f white 0.083 1940 78 f white 0.09083 1940 79 f white 0.09921 1940 80 f white 0.10819 1940 81 f white 0.1178 1940 82 f white 0.12809 1940 83 f white 0.13906 1940 84 f white 0.1507 1940 85 f white 0.16294 1940 86 f white 0.17573 1940 87 f white 0.18902 1940 88 f white 0.20276 1940 89 f white 0.2169 1940 90 f white 0.23141 1940 91 f white 0.24624 1940 92 f white 0.26136 1940 93 f white 0.27671 1940 94 f white 0.29226 1940 95 f white 0.30796 1940 96 f white 0.32379 1940 97 f white 0.33968 1940 98 f white 0.35561 1940 99 f white 0.37152 1940 100 f white 0.38739 1940 101 f white 0.40316 1940 102 f white 0.4188 1940 103 f white 0.43427 1940 104 f white 0.44951 1940 105 f white 0.4645 1940 106 f white 0.47919 1940 107 f white 0.49353 1940 108 f white 0.5075 1940 109 f white 0.52104 1940 0-1d m nonwhite 0.01541 1940 1-7d m nonwhite 0.01479 1940 7-28d m nonwhite 0.01365 1940 0 m nonwhite 0.09863 1940 1 m nonwhite 0.02036 1940 2 m nonwhite 0.00959 1940 3 m nonwhite 0.00516 1940 4 m nonwhite 0.00389 1940 5 m nonwhite 0.0033 1940 6 m nonwhite 0.00284 1940 7 m nonwhite 0.00249 1940 8 m nonwhite 0.00225 1940 9 m nonwhite 0.00212 1940 10 m nonwhite 0.00207 1940 11 m nonwhite 0.00212 1940 12 m nonwhite 0.00224 1940 13 m nonwhite 0.00248 1940 14 m nonwhite 0.00285 1940 15 m nonwhite 0.00329 1940 16 m nonwhite 0.00372 1940 17 m nonwhite 0.00411 1940 18 m nonwhite 0.00445 1940 19 m nonwhite 0.00479 1940 20 m nonwhite 0.00511 1940 21 m nonwhite 0.00537 1940 22 m nonwhite 0.00555 1940 23 m nonwhite 0.0056 1940 24 m nonwhite 0.00554 1940 25 m nonwhite 0.00543 1940 26 m nonwhite 0.00535 1940 27 m nonwhite 0.00537 1940 28 m nonwhite 0.00548 1940 29 m nonwhite 0.00566 1940 30 m nonwhite 0.00588 1940 31 m nonwhite 0.00613 1940 32 m nonwhite 0.00637 1940 33 m nonwhite 0.0066 1940 34 m nonwhite 0.00683 1940 35 m nonwhite 0.00708 1940 36 m nonwhite 0.00734 1940 37 m nonwhite 0.00763 1940 38 m nonwhite 0.00796 1940 39 m nonwhite 0.00832 1940 40 m nonwhite 0.00872 1940 41 m nonwhite 0.00916 1940 42 m nonwhite 0.00963 1940 43 m nonwhite 0.01015 1940 44 m nonwhite 0.01072 1940 45 m nonwhite 0.01135 1940 46 m nonwhite 0.01203 1940 47 m nonwhite 0.01278 1940 48 m nonwhite 0.01361 1940 49 m nonwhite 0.0145 1940 50 m nonwhite 0.01544 1940 51 m nonwhite 0.01643 1940 52 m nonwhite 0.01745 1940 53 m nonwhite 0.01849 1940 54 m nonwhite 0.0196 1940 55 m nonwhite 0.02079 1940 56 m nonwhite 0.02212 1940 57 m nonwhite 0.02361 1940 58 m nonwhite 0.02529 1940 59 m nonwhite 0.02715 1940 60 m nonwhite 0.02914 1940 61 m nonwhite 0.03123 1940 62 m nonwhite 0.0334 1940 63 m nonwhite 0.03562 1940 64 m nonwhite 0.03794 1940 65 m nonwhite 0.04043 1940 66 m nonwhite 0.04314 1940 67 m nonwhite 0.04614 1940 68 m nonwhite 0.04949 1940 69 m nonwhite 0.05322 1940 70 m nonwhite 0.05736 1940 71 m nonwhite 0.06196 1940 72 m nonwhite 0.06704 1940 73 m nonwhite 0.0726 1940 74 m nonwhite 0.07854 1940 75 m nonwhite 0.0847 1940 76 m nonwhite 0.09093 1940 77 m nonwhite 0.09709 1940 78 m nonwhite 0.10309 1940 79 m nonwhite 0.10904 1940 80 m nonwhite 0.11511 1940 81 m nonwhite 0.12147 1940 82 m nonwhite 0.12828 1940 83 m nonwhite 0.13572 1940 84 m nonwhite 0.14392 1940 85 m nonwhite 0.15301 1940 86 m nonwhite 0.16312 1940 87 m nonwhite 0.17438 1940 88 m nonwhite 0.18694 1940 89 m nonwhite 0.20091 1940 90 m nonwhite 0.21643 1940 91 m nonwhite 0.23363 1940 92 m nonwhite 0.25264 1940 93 m nonwhite 0.2736 1940 94 m nonwhite 0.29664 1940 95 m nonwhite 0.32189 1940 96 m nonwhite 0.34948 1940 97 m nonwhite 0.37954 1940 98 m nonwhite 0.41221 1940 99 m nonwhite 0.44761 1940 100 m nonwhite 0.48588 1940 101 m nonwhite 0.52715 1940 102 m nonwhite 0.57155 1940 103 m nonwhite 0.61921 1940 104 m nonwhite 0.67028 1940 105 m nonwhite 0.72486 1940 106 m nonwhite 0.72486 1940 107 m nonwhite 0.72486 1940 108 m nonwhite 0.72486 1940 109 m nonwhite 0.72486 1940 0-1d f nonwhite 0.0127 1940 1-7d f nonwhite 0.01148 1940 7-28d f nonwhite 0.01016 1940 0 f nonwhite 0.08717 1940 1 f nonwhite 0.02038 1940 2 f nonwhite 0.00986 1940 3 f nonwhite 0.00546 1940 4 f nonwhite 0.00393 1940 5 f nonwhite 0.0031 1940 6 f nonwhite 0.00251 1940 7 f nonwhite 0.00212 1940 8 f nonwhite 0.0019 1940 9 f nonwhite 0.00183 1940 10 f nonwhite 0.00189 1940 11 f nonwhite 0.00203 1940 12 f nonwhite 0.00225 1940 13 f nonwhite 0.00256 1940 14 f nonwhite 0.00299 1940 15 f nonwhite 0.00349 1940 16 f nonwhite 0.004 1940 17 f nonwhite 0.00448 1940 18 f nonwhite 0.00495 1940 19 f nonwhite 0.00545 1940 20 f nonwhite 0.00593 1940 21 f nonwhite 0.00636 1940 22 f nonwhite 0.0067 1940 23 f nonwhite 0.00693 1940 24 f nonwhite 0.00709 1940 25 f nonwhite 0.0072 1940 26 f nonwhite 0.00726 1940 27 f nonwhite 0.00731 1940 28 f nonwhite 0.00733 1940 29 f nonwhite 0.0073 1940 30 f nonwhite 0.00725 1940 31 f nonwhite 0.00719 1940 32 f nonwhite 0.00712 1940 33 f nonwhite 0.00706 1940 34 f nonwhite 0.00701 1940 35 f nonwhite 0.00697 1940 36 f nonwhite 0.00696 1940 37 f nonwhite 0.00699 1940 38 f nonwhite 0.00706 1940 39 f nonwhite 0.00717 1940 40 f nonwhite 0.00732 1940 41 f nonwhite 0.00751 1940 42 f nonwhite 0.00773 1940 43 f nonwhite 0.00799 1940 44 f nonwhite 0.00828 1940 45 f nonwhite 0.00864 1940 46 f nonwhite 0.00907 1940 47 f nonwhite 0.00959 1940 48 f nonwhite 0.0102 1940 49 f nonwhite 0.01091 1940 50 f nonwhite 0.01171 1940 51 f nonwhite 0.0126 1940 52 f nonwhite 0.01358 1940 53 f nonwhite 0.01464 1940 54 f nonwhite 0.01577 1940 55 f nonwhite 0.01696 1940 56 f nonwhite 0.01819 1940 57 f nonwhite 0.01947 1940 58 f nonwhite 0.02078 1940 59 f nonwhite 0.02213 1940 60 f nonwhite 0.02353 1940 61 f nonwhite 0.02499 1940 62 f nonwhite 0.02652 1940 63 f nonwhite 0.02814 1940 64 f nonwhite 0.02987 1940 65 f nonwhite 0.03171 1940 66 f nonwhite 0.0337 1940 67 f nonwhite 0.03585 1940 68 f nonwhite 0.0382 1940 69 f nonwhite 0.0408 1940 70 f nonwhite 0.04373 1940 71 f nonwhite 0.04708 1940 72 f nonwhite 0.05092 1940 73 f nonwhite 0.05527 1940 74 f nonwhite 0.05998 1940 75 f nonwhite 0.06485 1940 76 f nonwhite 0.06966 1940 77 f nonwhite 0.07421 1940 78 f nonwhite 0.07837 1940 79 f nonwhite 0.08232 1940 80 f nonwhite 0.08633 1940 81 f nonwhite 0.09066 1940 82 f nonwhite 0.09556 1940 83 f nonwhite 0.10131 1940 84 f nonwhite 0.1081 1940 85 f nonwhite 0.11615 1940 86 f nonwhite 0.12567 1940 87 f nonwhite 0.13686 1940 88 f nonwhite 0.14993 1940 89 f nonwhite 0.16508 1940 90 f nonwhite 0.18253 1940 91 f nonwhite 0.20249 1940 92 f nonwhite 0.22515 1940 93 f nonwhite 0.25073 1940 94 f nonwhite 0.27943 1940 95 f nonwhite 0.31146 1940 96 f nonwhite 0.34703 1940 97 f nonwhite 0.38635 1940 98 f nonwhite 0.42962 1940 99 f nonwhite 0.47705 1940 100 f nonwhite 0.52884 1940 101 f nonwhite 0.58521 1940 102 f nonwhite 0.64637 1940 103 f nonwhite 0.71251 1940 104 f nonwhite 0.78385 1940 105 f nonwhite 0.86059 1940 106 f nonwhite 0.86059 1940 107 f nonwhite 0.86059 1940 108 f nonwhite 0.86059 1940 109 f nonwhite 0.86059 1940 0-1d m black 0.01921 1940 1-7d m black 0.01688 1940 7-28d m black 0.0115 1940 0 m black 0.08228 1940 1 m black 0.00937 1940 2 m black 0.00432 1940 3 m black 0.00269 1940 4 m black 0.00216 1940 5 m black 0.00186 1940 6 m black 0.00163 1940 7 m black 0.00147 1940 8 m black 0.00137 1940 9 m black 0.00134 1940 10 m black 0.00138 1940 11 m black 0.00149 1940 12 m black 0.00167 1940 13 m black 0.00194 1940 14 m black 0.00231 1940 15 m black 0.00274 1940 16 m black 0.0032 1940 17 m black 0.00369 1940 18 m black 0.00422 1940 19 m black 0.00483 1940 20 m black 0.00544 1940 21 m black 0.00602 1940 22 m black 0.0065 1940 23 m black 0.00685 1940 24 m black 0.00711 1940 25 m black 0.00733 1940 26 m black 0.00754 1940 27 m black 0.0078 1940 28 m black 0.0081 1940 29 m black 0.0084 1940 30 m black 0.00872 1940 31 m black 0.00906 1940 32 m black 0.00943 1940 33 m black 0.00983 1940 34 m black 0.01025 1940 35 m black 0.01071 1940 36 m black 0.01121 1940 37 m black 0.01174 1940 38 m black 0.0123 1940 39 m black 0.01293 1940 40 m black 0.01362 1940 41 m black 0.0144 1940 42 m black 0.01528 1940 43 m black 0.01629 1940 44 m black 0.0174 1940 45 m black 0.01859 1940 46 m black 0.01986 1940 47 m black 0.02118 1940 48 m black 0.02255 1940 49 m black 0.02394 1940 50 m black 0.02536 1940 51 m black 0.02679 1940 52 m black 0.02823 1940 53 m black 0.02966 1940 54 m black 0.03108 1940 55 m black 0.03248 1940 56 m black 0.03386 1940 57 m black 0.0352 1940 58 m black 0.0365 1940 59 m black 0.03779 1940 60 m black 0.0391 1940 61 m black 0.04045 1940 62 m black 0.04189 1940 63 m black 0.04343 1940 64 m black 0.04508 1940 65 m black 0.04685 1940 66 m black 0.04875 1940 67 m black 0.05077 1940 68 m black 0.05294 1940 69 m black 0.05532 1940 70 m black 0.05799 1940 71 m black 0.06104 1940 72 m black 0.06455 1940 73 m black 0.06857 1940 74 m black 0.07309 1940 75 m black 0.07803 1940 76 m black 0.08336 1940 77 m black 0.08902 1940 78 m black 0.09495 1940 79 m black 0.10107 1940 80 m black 0.1073 1940 81 m black 0.11353 1940 82 m black 0.11969 1940 83 m black 0.12573 1940 84 m black 0.13173 1940 85 m black 0.13783 1940 86 m black 0.14415 1940 87 m black 0.15083 1940 88 m black 0.15799 1940 89 m black 0.16574 1940 90 m black 0.17417 1940 91 m black 0.1834 1940 92 m black 0.19352 1940 93 m black 0.20463 1940 94 m black 0.21685 1940 95 m black 0.23027 1940 96 m black 0.245 1940 97 m black 0.26113 1940 98 m black 0.27877 1940 99 m black 0.29802 1940 100 m black 0.319 1940 101 m black 0.34178 1940 102 m black 0.36649 1940 103 m black 0.39322 1940 104 m black 0.42208 1940 105 m black 0.45317 1940 106 m black 0.48658 1940 107 m black 0.52244 1940 108 m black 0.56082 1940 109 m black 0.60185 1940 0-1d f black 0.01486 1940 1-7d f black 0.0123 1940 7-28d f black 0.00974 1940 0 f black 0.06584 1940 1 f black 0.00796 1940 2 f black 0.00372 1940 3 f black 0.00248 1940 4 f black 0.00209 1940 5 f black 0.00175 1940 6 f black 0.00146 1940 7 f black 0.00123 1940 8 f black 0.00108 1940 9 f black 0.00101 1940 10 f black 0.00104 1940 11 f black 0.00116 1940 12 f black 0.0014 1940 13 f black 0.00182 1940 14 f black 0.00241 1940 15 f black 0.00307 1940 16 f black 0.00371 1940 17 f black 0.00424 1940 18 f black 0.00465 1940 19 f black 0.00501 1940 20 f black 0.00532 1940 21 f black 0.00559 1940 22 f black 0.00583 1940 23 f black 0.00603 1940 24 f black 0.00616 1940 25 f black 0.00627 1940 26 f black 0.0064 1940 27 f black 0.00657 1940 28 f black 0.0068 1940 29 f black 0.00705 1940 30 f black 0.00733 1940 31 f black 0.00764 1940 32 f black 0.00799 1940 33 f black 0.00837 1940 34 f black 0.0088 1940 35 f black 0.00924 1940 36 f black 0.00971 1940 37 f black 0.0102 1940 38 f black 0.0107 1940 39 f black 0.01123 1940 40 f black 0.01181 1940 41 f black 0.01246 1940 42 f black 0.0132 1940 43 f black 0.01405 1940 44 f black 0.01499 1940 45 f black 0.01602 1940 46 f black 0.01711 1940 47 f black 0.01824 1940 48 f black 0.01942 1940 49 f black 0.02062 1940 50 f black 0.02187 1940 51 f black 0.02315 1940 52 f black 0.02447 1940 53 f black 0.02583 1940 54 f black 0.02721 1940 55 f black 0.02858 1940 56 f black 0.02992 1940 57 f black 0.03121 1940 58 f black 0.03242 1940 59 f black 0.03358 1940 60 f black 0.03472 1940 61 f black 0.03586 1940 62 f black 0.03703 1940 63 f black 0.03825 1940 64 f black 0.03954 1940 65 f black 0.0409 1940 66 f black 0.04233 1940 67 f black 0.04384 1940 68 f black 0.04544 1940 69 f black 0.04718 1940 70 f black 0.04912 1940 71 f black 0.05129 1940 72 f black 0.05376 1940 73 f black 0.05655 1940 74 f black 0.05963 1940 75 f black 0.06294 1940 76 f black 0.06641 1940 77 f black 0.06998 1940 78 f black 0.07362 1940 79 f black 0.07737 1940 80 f black 0.08127 1940 81 f black 0.0854 1940 82 f black 0.08981 1940 83 f black 0.09457 1940 84 f black 0.09971 1940 85 f black 0.10529 1940 86 f black 0.11135 1940 87 f black 0.11793 1940 88 f black 0.12509 1940 89 f black 0.13287 1940 90 f black 0.14132 1940 91 f black 0.15048 1940 92 f black 0.1604 1940 93 f black 0.17112 1940 94 f black 0.1827 1940 95 f black 0.19517 1940 96 f black 0.20858 1940 97 f black 0.22299 1940 98 f black 0.23843 1940 99 f black 0.25496 1940 100 f black 0.27261 1940 101 f black 0.29143 1940 102 f black 0.31148 1940 103 f black 0.3328 1940 104 f black 0.35543 1940 105 f black 0.37941 1940 106 f black 0.40481 1940 107 f black 0.43165 1940 108 f black 0.46 1940 109 f black 0.48988 1950 0-1d m total 0.01148 1950 1-7d m total 0.00912 1950 7-28d m total 0.00315 1950 0 m total 0.03339 1950 1 m total 0.00244 1950 2 m total 0.00152 1950 3 m total 0.00114 1950 4 m total 0.00096 1950 5 m total 0.00087 1950 6 m total 0.00078 1950 7 m total 0.00071 1950 8 m total 0.00066 1950 9 m total 0.00063 1950 10 m total 0.00063 1950 11 m total 0.00066 1950 12 m total 0.00071 1950 13 m total 0.00081 1950 14 m total 0.00095 1950 15 m total 0.00112 1950 16 m total 0.00129 1950 17 m total 0.00143 1950 18 m total 0.00155 1950 19 m total 0.00168 1950 20 m total 0.00179 1950 21 m total 0.00188 1950 22 m total 0.00195 1950 23 m total 0.00198 1950 24 m total 0.00198 1950 25 m total 0.00196 1950 26 m total 0.00195 1950 27 m total 0.00197 1950 28 m total 0.00201 1950 29 m total 0.00207 1950 30 m total 0.00214 1950 31 m total 0.00224 1950 32 m total 0.00236 1950 33 m total 0.00251 1950 34 m total 0.00267 1950 35 m total 0.00287 1950 36 m total 0.0031 1950 37 m total 0.00337 1950 38 m total 0.00368 1950 39 m total 0.00402 1950 40 m total 0.0044 1950 41 m total 0.00482 1950 42 m total 0.0053 1950 43 m total 0.00583 1950 44 m total 0.0064 1950 45 m total 0.00702 1950 46 m total 0.00769 1950 47 m total 0.00843 1950 48 m total 0.00922 1950 49 m total 0.01005 1950 50 m total 0.01095 1950 51 m total 0.01193 1950 52 m total 0.01301 1950 53 m total 0.0142 1950 54 m total 0.01549 1950 55 m total 0.01686 1950 56 m total 0.01831 1950 57 m total 0.01984 1950 58 m total 0.02143 1950 59 m total 0.02308 1950 60 m total 0.02482 1950 61 m total 0.02668 1950 62 m total 0.02868 1950 63 m total 0.03078 1950 64 m total 0.03295 1950 65 m total 0.03528 1950 66 m total 0.03784 1950 67 m total 0.0407 1950 68 m total 0.0433 1950 69 m total 0.04711 1950 70 m total 0.05069 1950 71 m total 0.05464 1950 72 m total 0.05905 1950 73 m total 0.06389 1950 74 m total 0.0691 1950 75 m total 0.07472 1950 76 m total 0.08077 1950 77 m total 0.08726 1950 78 m total 0.09406 1950 79 m total 0.10113 1950 80 m total 0.10872 1950 81 m total 0.11704 1950 82 m total 0.12632 1950 83 m total 0.13672 1950 84 m total 0.14809 1950 85 m total 0.16018 1950 86 m total 0.17277 1950 87 m total 0.18562 1950 88 m total 0.19867 1950 89 m total 0.21209 1950 90 m total 0.22595 1950 91 m total 0.24032 1950 92 m total 0.25525 1950 93 m total 0.27089 1950 94 m total 0.28718 1950 95 m total 0.30394 1950 96 m total 0.32097 1950 97 m total 0.33807 1950 98 m total 0.35537 1950 99 m total 0.37301 1950 100 m total 0.39079 1950 101 m total 0.40852 1950 102 m total 0.426 1950 103 m total 0.44319 1950 104 m total 0.46021 1950 105 m total 0.47714 1950 106 m total 0.49405 1950 107 m total 0.511 1950 108 m total 0.5281 1950 109 m total 0.5452 1950 0-1d f total 0.00873 1950 1-7d f total 0.00647 1950 7-28d f total 0.00253 1950 0 f total 0.02594 1950 1 f total 0.00215 1950 2 f total 0.00125 1950 3 f total 0.00096 1950 4 f total 0.00076 1950 5 f total 0.00066 1950 6 f total 0.00058 1950 7 f total 0.00051 1950 8 f total 0.00046 1950 9 f total 0.00043 1950 10 f total 0.00042 1950 11 f total 0.00042 1950 12 f total 0.00044 1950 13 f total 0.00048 1950 14 f total 0.00054 1950 15 f total 0.00062 1950 16 f total 7e-04 1950 17 f total 0.00077 1950 18 f total 0.00082 1950 19 f total 0.00087 1950 20 f total 0.00092 1950 21 f total 0.00097 1950 22 f total 0.00101 1950 23 f total 0.00105 1950 24 f total 0.00109 1950 25 f total 0.00113 1950 26 f total 0.00117 1950 27 f total 0.00123 1950 28 f total 0.0013 1950 29 f total 0.00137 1950 30 f total 0.00145 1950 31 f total 0.00155 1950 32 f total 0.00165 1950 33 f total 0.00177 1950 34 f total 0.00188 1950 35 f total 0.00202 1950 36 f total 0.00216 1950 37 f total 0.00234 1950 38 f total 0.00253 1950 39 f total 0.00274 1950 40 f total 0.00297 1950 41 f total 0.00323 1950 42 f total 0.00351 1950 43 f total 0.00381 1950 44 f total 0.00414 1950 45 f total 0.00449 1950 46 f total 0.00487 1950 47 f total 0.00527 1950 48 f total 0.00569 1950 49 f total 0.00612 1950 50 f total 0.00658 1950 51 f total 0.00708 1950 52 f total 0.00766 1950 53 f total 0.00828 1950 54 f total 0.00895 1950 55 f total 0.00967 1950 56 f total 0.01048 1950 57 f total 0.01138 1950 58 f total 0.01238 1950 59 f total 0.01345 1950 60 f total 0.01462 1950 61 f total 0.01589 1950 62 f total 0.01728 1950 63 f total 0.01871 1950 64 f total 0.02016 1950 65 f total 0.02176 1950 66 f total 0.02364 1950 67 f total 0.02592 1950 68 f total 0.02858 1950 69 f total 0.03155 1950 70 f total 0.03484 1950 71 f total 0.03848 1950 72 f total 0.04251 1950 73 f total 0.04687 1950 74 f total 0.05153 1950 75 f total 0.05659 1950 76 f total 0.06213 1950 77 f total 0.06824 1950 78 f total 0.07488 1950 79 f total 0.082 1950 80 f total 0.08964 1950 81 f total 0.09788 1950 82 f total 0.10678 1950 83 f total 0.11624 1950 84 f total 0.12621 1950 85 f total 0.13685 1950 86 f total 0.1483 1950 87 f total 0.16069 1950 88 f total 0.17409 1950 89 f total 0.18839 1950 90 f total 0.20352 1950 91 f total 0.2194 1950 92 f total 0.23595 1950 93 f total 0.25342 1950 94 f total 0.27185 1950 95 f total 0.29089 1950 96 f total 0.31017 1950 97 f total 0.32935 1950 98 f total 0.34866 1950 99 f total 0.36834 1950 100 f total 0.38802 1950 101 f total 0.40736 1950 102 f total 0.426 1950 103 f total 0.44375 1950 104 f total 0.46084 1950 105 f total 0.47756 1950 106 f total 0.49419 1950 107 f total 0.511 1950 108 f total 0.5281 1950 109 f total 0.54529 1950 0-1d m white 0.01101 1950 1-7d m white 0.00875 1950 7-28d m white 0.00274 1950 0 m white 0.03069 1950 1 m white 0.00211 1950 2 m white 0.00139 1950 3 m white 0.00106 1950 4 m white 9e-04 1950 5 m white 0.00081 1950 6 m white 0.00075 1950 7 m white 0.00068 1950 8 m white 0.00063 1950 9 m white 6e-04 1950 10 m white 6e-04 1950 11 m white 0.00062 1950 12 m white 0.00067 1950 13 m white 0.00076 1950 14 m white 9e-04 1950 15 m white 0.00104 1950 16 m white 0.0012 1950 17 m white 0.00132 1950 18 m white 0.00144 1950 19 m white 0.00153 1950 20 m white 0.00162 1950 21 m white 0.0017 1950 22 m white 0.00174 1950 23 m white 0.00175 1950 24 m white 0.00174 1950 25 m white 0.00171 1950 26 m white 0.00168 1950 27 m white 0.00169 1950 28 m white 0.00173 1950 29 m white 0.00176 1950 30 m white 0.00182 1950 31 m white 0.0019 1950 32 m white 0.00201 1950 33 m white 0.00215 1950 34 m white 0.00229 1950 35 m white 0.00249 1950 36 m white 0.00269 1950 37 m white 0.00294 1950 38 m white 0.00322 1950 39 m white 0.00355 1950 40 m white 0.00392 1950 41 m white 0.00432 1950 42 m white 0.00477 1950 43 m white 0.00526 1950 44 m white 0.00579 1950 45 m white 0.00638 1950 46 m white 0.007 1950 47 m white 0.00771 1950 48 m white 0.00847 1950 49 m white 0.00925 1950 50 m white 0.01012 1950 51 m white 0.01107 1950 52 m white 0.01211 1950 53 m white 0.01328 1950 54 m white 0.01453 1950 55 m white 0.01588 1950 56 m white 0.01731 1950 57 m white 0.01882 1950 58 m white 0.02041 1950 59 m white 0.02207 1950 60 m white 0.02381 1950 61 m white 0.02569 1950 62 m white 0.02772 1950 63 m white 0.02985 1950 64 m white 0.03207 1950 65 m white 0.03445 1950 66 m white 0.03706 1950 67 m white 0.04 1950 68 m white 0.0432 1950 69 m white 0.04662 1950 70 m white 0.05028 1950 71 m white 0.05434 1950 72 m white 0.05886 1950 73 m white 0.06385 1950 74 m white 0.0692 1950 75 m white 0.07501 1950 76 m white 0.0812 1950 77 m white 0.08788 1950 78 m white 0.09489 1950 79 m white 0.10211 1950 80 m white 0.10994 1950 81 m white 0.11851 1950 82 m white 0.12801 1950 83 m white 0.13877 1950 84 m white 0.15052 1950 85 m white 0.16305 1950 86 m white 0.17591 1950 87 m white 0.18897 1950 88 m white 0.20205 1950 89 m white 0.21518 1950 90 m white 0.22903 1950 91 m white 0.24284 1950 92 m white 0.25763 1950 93 m white 0.27303 1950 94 m white 0.28959 1950 95 m white 0.30553 1950 96 m white 0.32227 1950 97 m white 0.33911 1950 98 m white 0.35617 1950 99 m white 0.37357 1950 100 m white 0.39112 1950 101 m white 0.40866 1950 102 m white 0.426 1950 103 m white 0.44312 1950 104 m white 0.46014 1950 105 m white 0.47709 1950 106 m white 0.49403 1950 107 m white 0.511 1950 108 m white 0.5281 1950 109 m white 0.5452 1950 0-1d f white 0.00832 1950 1-7d f white 0.00613 1950 7-28d f white 0.00219 1950 0 f white 0.02355 1950 1 f white 0.00189 1950 2 f white 0.00112 1950 3 f white 0.00087 1950 4 f white 0.00069 1950 5 f white 0.00061 1950 6 f white 0.00054 1950 7 f white 0.00047 1950 8 f white 0.00044 1950 9 f white 4e-04 1950 10 f white 4e-04 1950 11 f white 0.00039 1950 12 f white 4e-04 1950 13 f white 0.00043 1950 14 f white 0.00048 1950 15 f white 0.00054 1950 16 f white 0.00059 1950 17 f white 0.00063 1950 18 f white 0.00067 1950 19 f white 0.00069 1950 20 f white 0.00074 1950 21 f white 0.00076 1950 22 f white 8e-04 1950 23 f white 0.00082 1950 24 f white 0.00085 1950 25 f white 0.00088 1950 26 f white 0.00092 1950 27 f white 0.00097 1950 28 f white 0.00101 1950 29 f white 0.00109 1950 30 f white 0.00114 1950 31 f white 0.00123 1950 32 f white 0.00131 1950 33 f white 0.00141 1950 34 f white 0.0015 1950 35 f white 0.00161 1950 36 f white 0.00173 1950 37 f white 0.00188 1950 38 f white 0.00204 1950 39 f white 0.00222 1950 40 f white 0.00241 1950 41 f white 0.00264 1950 42 f white 0.00287 1950 43 f white 0.00313 1950 44 f white 0.00343 1950 45 f white 0.00372 1950 46 f white 0.00407 1950 47 f white 0.00441 1950 48 f white 0.0048 1950 49 f white 0.00519 1950 50 f white 0.00561 1950 51 f white 0.00608 1950 52 f white 0.00663 1950 53 f white 0.00721 1950 54 f white 0.00784 1950 55 f white 0.00854 1950 56 f white 0.0093 1950 57 f white 0.01019 1950 58 f white 0.01117 1950 59 f white 0.01224 1950 60 f white 0.0134 1950 61 f white 0.01468 1950 62 f white 0.01608 1950 63 f white 0.01751 1950 64 f white 0.019 1950 65 f white 0.02063 1950 66 f white 0.02254 1950 67 f white 0.0249 1950 68 f white 0.02764 1950 69 f white 0.03068 1950 70 f white 0.0341 1950 71 f white 0.03786 1950 72 f white 0.04203 1950 73 f white 0.0465 1950 74 f white 0.05129 1950 75 f white 0.05651 1950 76 f white 0.06221 1950 77 f white 0.0685 1950 78 f white 0.07537 1950 79 f white 0.08269 1950 80 f white 0.09062 1950 81 f white 0.0991 1950 82 f white 0.1083 1950 83 f white 0.11815 1950 84 f white 0.12855 1950 85 f white 0.13969 1950 86 f white 0.15142 1950 87 f white 0.16407 1950 88 f white 0.17746 1950 89 f white 0.19168 1950 90 f white 0.20653 1950 91 f white 0.22232 1950 92 f white 0.23835 1950 93 f white 0.25571 1950 94 f white 0.27393 1950 95 f white 0.29261 1950 96 f white 0.31159 1950 97 f white 0.3305 1950 98 f white 0.34954 1950 99 f white 0.36895 1950 100 f white 0.38839 1950 101 f white 0.40752 1950 102 f white 0.426 1950 103 f white 0.44367 1950 104 f white 0.46076 1950 105 f white 0.4775 1950 106 f white 0.49417 1950 107 f white 0.511 1950 108 f white 0.5281 1950 109 f white 0.54529 1950 0-1d m nonwhite 0.01449 1950 1-7d m nonwhite 0.01154 1950 7-28d m nonwhite 0.0057 1950 0 m nonwhite 0.05089 1950 1 m nonwhite 0.00466 1950 2 m nonwhite 0.0026 1950 3 m nonwhite 0.00176 1950 4 m nonwhite 0.00144 1950 5 m nonwhite 0.00124 1950 6 m nonwhite 0.00106 1950 7 m nonwhite 0.00096 1950 8 m nonwhite 0.00087 1950 9 m nonwhite 0.00083 1950 10 m nonwhite 0.00084 1950 11 m nonwhite 0.00089 1950 12 m nonwhite 0.00099 1950 13 m nonwhite 0.00115 1950 14 m nonwhite 0.00137 1950 15 m nonwhite 0.00164 1950 16 m nonwhite 0.00192 1950 17 m nonwhite 0.0022 1950 18 m nonwhite 0.00249 1950 19 m nonwhite 0.00282 1950 20 m nonwhite 0.00314 1950 21 m nonwhite 0.00344 1950 22 m nonwhite 0.00369 1950 23 m nonwhite 0.00387 1950 24 m nonwhite 0.00399 1950 25 m nonwhite 0.00409 1950 26 m nonwhite 0.0042 1950 27 m nonwhite 0.00435 1950 28 m nonwhite 0.00452 1950 29 m nonwhite 0.00471 1950 30 m nonwhite 0.00492 1950 31 m nonwhite 0.00515 1950 32 m nonwhite 0.00543 1950 33 m nonwhite 0.00574 1950 34 m nonwhite 0.00608 1950 35 m nonwhite 0.00646 1950 36 m nonwhite 0.00687 1950 37 m nonwhite 0.00732 1950 38 m nonwhite 0.00778 1950 39 m nonwhite 0.00826 1950 40 m nonwhite 0.00879 1950 41 m nonwhite 0.0094 1950 42 m nonwhite 0.01011 1950 43 m nonwhite 0.01093 1950 44 m nonwhite 0.01185 1950 45 m nonwhite 0.01285 1950 46 m nonwhite 0.01394 1950 47 m nonwhite 0.0151 1950 48 m nonwhite 0.01635 1950 49 m nonwhite 0.01768 1950 50 m nonwhite 0.01909 1950 51 m nonwhite 0.02058 1950 52 m nonwhite 0.02217 1950 53 m nonwhite 0.02388 1950 54 m nonwhite 0.02571 1950 55 m nonwhite 0.02762 1950 56 m nonwhite 0.02953 1950 57 m nonwhite 0.03139 1950 58 m nonwhite 0.0332 1950 59 m nonwhite 0.03498 1950 60 m nonwhite 0.03676 1950 61 m nonwhite 0.03855 1950 62 m nonwhite 0.04036 1950 63 m nonwhite 0.04216 1950 64 m nonwhite 0.04394 1950 65 m nonwhite 0.04576 1950 66 m nonwhite 0.04765 1950 67 m nonwhite 0.04967 1950 68 m nonwhite 0.05178 1950 69 m nonwhite 0.05393 1950 70 m nonwhite 0.0562 1950 71 m nonwhite 0.05867 1950 72 m nonwhite 0.0614 1950 73 m nonwhite 0.06441 1950 74 m nonwhite 0.06764 1950 75 m nonwhite 0.07108 1950 76 m nonwhite 0.07474 1950 77 m nonwhite 0.07862 1950 78 m nonwhite 0.08256 1950 79 m nonwhite 0.08657 1950 80 m nonwhite 0.09086 1950 81 m nonwhite 0.09566 1950 82 m nonwhite 0.10117 1950 83 m nonwhite 0.10692 1950 84 m nonwhite 0.11278 1950 85 m nonwhite 0.11944 1950 86 m nonwhite 0.12761 1950 87 m nonwhite 0.138 1950 88 m nonwhite 0.15093 1950 89 m nonwhite 0.16595 1950 90 m nonwhite 0.18255 1950 91 m nonwhite 0.20022 1950 92 m nonwhite 0.21845 1950 93 m nonwhite 0.23758 1950 94 m nonwhite 0.25796 1950 95 m nonwhite 0.27907 1950 96 m nonwhite 0.3004 1950 97 m nonwhite 0.32147 1950 98 m nonwhite 0.34259 1950 99 m nonwhite 0.36411 1950 100 m nonwhite 0.38552 1950 101 m nonwhite 0.40632 1950 102 m nonwhite 0.426 1950 103 m nonwhite 0.44425 1950 104 m nonwhite 0.46141 1950 105 m nonwhite 0.47794 1950 106 m nonwhite 0.49431 1950 107 m nonwhite 0.511 1950 108 m nonwhite 0.5281 1950 109 m nonwhite 0.54529 1950 0-1d f nonwhite 0.01123 1950 1-7d f nonwhite 0.00863 1950 7-28d f nonwhite 0.00465 1950 0 f nonwhite 0.04087 1950 1 f nonwhite 0.00388 1950 2 f nonwhite 0.00215 1950 3 f nonwhite 0.00166 1950 4 f nonwhite 0.00127 1950 5 f nonwhite 0.00107 1950 6 f nonwhite 9e-04 1950 7 f nonwhite 0.00076 1950 8 f nonwhite 0.00065 1950 9 f nonwhite 0.00058 1950 10 f nonwhite 0.00055 1950 11 f nonwhite 0.00057 1950 12 f nonwhite 0.00064 1950 13 f nonwhite 0.00079 1950 14 f nonwhite 0.001 1950 15 f nonwhite 0.00125 1950 16 f nonwhite 0.0015 1950 17 f nonwhite 0.00173 1950 18 f nonwhite 0.00192 1950 19 f nonwhite 0.0021 1950 20 f nonwhite 0.00227 1950 21 f nonwhite 0.00244 1950 22 f nonwhite 0.00261 1950 23 f nonwhite 0.00276 1950 24 f nonwhite 0.0029 1950 25 f nonwhite 0.00303 1950 26 f nonwhite 0.00318 1950 27 f nonwhite 0.00334 1950 28 f nonwhite 0.00352 1950 29 f nonwhite 0.0037 1950 30 f nonwhite 0.0039 1950 31 f nonwhite 0.00413 1950 32 f nonwhite 0.00439 1950 33 f nonwhite 0.0047 1950 34 f nonwhite 0.00504 1950 35 f nonwhite 0.00542 1950 36 f nonwhite 0.00582 1950 37 f nonwhite 0.00626 1950 38 f nonwhite 0.00671 1950 39 f nonwhite 0.00719 1950 40 f nonwhite 0.0077 1950 41 f nonwhite 0.00826 1950 42 f nonwhite 0.0089 1950 43 f nonwhite 0.00962 1950 44 f nonwhite 0.01042 1950 45 f nonwhite 0.01127 1950 46 f nonwhite 0.01216 1950 47 f nonwhite 0.01308 1950 48 f nonwhite 0.01402 1950 49 f nonwhite 0.01498 1950 50 f nonwhite 0.01599 1950 51 f nonwhite 0.01707 1950 52 f nonwhite 0.01824 1950 53 f nonwhite 0.01953 1950 54 f nonwhite 0.02093 1950 55 f nonwhite 0.02239 1950 56 f nonwhite 0.02387 1950 57 f nonwhite 0.02532 1950 58 f nonwhite 0.02673 1950 59 f nonwhite 0.02813 1950 60 f nonwhite 0.02954 1950 61 f nonwhite 0.03098 1950 62 f nonwhite 0.03245 1950 63 f nonwhite 0.03396 1950 64 f nonwhite 0.03548 1950 65 f nonwhite 0.03704 1950 66 f nonwhite 0.03865 1950 67 f nonwhite 0.04033 1950 68 f nonwhite 0.04203 1950 69 f nonwhite 0.04373 1950 70 f nonwhite 0.04553 1950 71 f nonwhite 0.04748 1950 72 f nonwhite 0.04969 1950 73 f nonwhite 0.05216 1950 74 f nonwhite 0.05486 1950 75 f nonwhite 0.05773 1950 76 f nonwhite 0.06074 1950 77 f nonwhite 0.06385 1950 78 f nonwhite 0.06692 1950 79 f nonwhite 0.07001 1950 80 f nonwhite 0.07327 1950 81 f nonwhite 0.07689 1950 82 f nonwhite 0.08102 1950 83 f nonwhite 0.0849 1950 84 f nonwhite 0.0884 1950 85 f nonwhite 0.0927 1950 86 f nonwhite 0.09898 1950 87 f nonwhite 0.1084 1950 88 f nonwhite 0.12145 1950 89 f nonwhite 0.13734 1950 90 f nonwhite 0.15535 1950 91 f nonwhite 0.17477 1950 92 f nonwhite 0.19489 1950 93 f nonwhite 0.21619 1950 94 f nonwhite 0.23913 1950 95 f nonwhite 0.263 1950 96 f nonwhite 0.2871 1950 97 f nonwhite 0.3107 1950 98 f nonwhite 0.33427 1950 99 f nonwhite 0.35831 1950 100 f nonwhite 0.38208 1950 101 f nonwhite 0.40489 1950 102 f nonwhite 0.426 1950 103 f nonwhite 0.44494 1950 104 f nonwhite 0.46218 1950 105 f nonwhite 0.47845 1950 106 f nonwhite 0.49448 1950 107 f nonwhite 0.511 1950 108 f nonwhite 0.5281 1950 109 f nonwhite 0.54529 1960 0-1d m total 0.01157 1960 1-7d m total 0.00752 1960 7-28d m total 0.00229 1960 0 m total 0.02913 1960 1 m total 0.00181 1960 2 m total 0.00115 1960 3 m total 0.00088 1960 4 m total 0.00074 1960 5 m total 0.00066 1960 6 m total 6e-04 1960 7 m total 0.00055 1960 8 m total 0.00051 1960 9 m total 0.00047 1960 10 m total 0.00044 1960 11 m total 0.00044 1960 12 m total 5e-04 1960 13 m total 0.00062 1960 14 m total 0.00078 1960 15 m total 0.00097 1960 16 m total 0.00114 1960 17 m total 0.00131 1960 18 m total 0.00145 1960 19 m total 0.00156 1960 20 m total 0.00169 1960 21 m total 0.0018 1960 22 m total 0.00187 1960 23 m total 0.00187 1960 24 m total 0.00181 1960 25 m total 0.00175 1960 26 m total 0.00169 1960 27 m total 0.00167 1960 28 m total 0.00169 1960 29 m total 0.00174 1960 30 m total 0.00181 1960 31 m total 0.00189 1960 32 m total 0.00199 1960 33 m total 0.0021 1960 34 m total 0.00224 1960 35 m total 0.0024 1960 36 m total 0.00259 1960 37 m total 0.00281 1960 38 m total 0.00308 1960 39 m total 0.00338 1960 40 m total 0.00373 1960 41 m total 0.00412 1960 42 m total 0.00455 1960 43 m total 0.00501 1960 44 m total 0.00551 1960 45 m total 0.00605 1960 46 m total 0.00665 1960 47 m total 0.00735 1960 48 m total 0.00818 1960 49 m total 0.00911 1960 50 m total 0.01014 1960 51 m total 0.0112 1960 52 m total 0.01228 1960 53 m total 0.01333 1960 54 m total 0.0144 1960 55 m total 0.01549 1960 56 m total 0.0167 1960 57 m total 0.01809 1960 58 m total 0.01971 1960 59 m total 0.02154 1960 60 m total 0.0235 1960 61 m total 0.02554 1960 62 m total 0.02769 1960 63 m total 0.02992 1960 64 m total 0.03226 1960 65 m total 0.03474 1960 66 m total 0.03739 1960 67 m total 0.04017 1960 68 m total 0.04307 1960 69 m total 0.04612 1960 70 m total 0.04936 1960 71 m total 0.05285 1960 72 m total 0.05665 1960 73 m total 0.06083 1960 74 m total 0.06541 1960 75 m total 0.07035 1960 76 m total 0.07571 1960 77 m total 0.08176 1960 78 m total 0.0887 1960 79 m total 0.09661 1960 80 m total 0.10598 1960 81 m total 0.11654 1960 82 m total 0.12732 1960 83 m total 0.13728 1960 84 m total 0.14623 1960 85 m total 0.15768 1960 86 m total 0.17002 1960 87 m total 0.18343 1960 88 m total 0.19868 1960 89 m total 0.21564 1960 90 m total 0.2332 1960 91 m total 0.25056 1960 92 m total 0.26792 1960 93 m total 0.28481 1960 94 m total 0.3005 1960 95 m total 0.31416 1960 96 m total 0.32915 1960 97 m total 0.3445 1960 98 m total 0.36018 1960 99 m total 0.37616 1960 100 m total 0.39242 1960 101 m total 0.40891 1960 102 m total 0.42562 1960 103 m total 0.4425 1960 104 m total 0.45951 1960 105 m total 0.47662 1960 106 m total 0.49378 1960 107 m total 0.51095 1960 108 m total 0.5281 1960 109 m total 0.54519 1960 0-1d f total 0.00898 1960 1-7d f total 0.00538 1960 7-28d f total 0.00183 1960 0 f total 0.02256 1960 1 f total 0.00158 1960 2 f total 0.00093 1960 3 f total 0.00071 1960 4 f total 6e-04 1960 5 f total 0.00052 1960 6 f total 0.00045 1960 7 f total 0.00039 1960 8 f total 0.00035 1960 9 f total 0.00032 1960 10 f total 3e-04 1960 11 f total 0.00029 1960 12 f total 3e-04 1960 13 f total 0.00034 1960 14 f total 0.00038 1960 15 f total 0.00044 1960 16 f total 5e-04 1960 17 f total 0.00055 1960 18 f total 0.00059 1960 19 f total 0.00061 1960 20 f total 0.00064 1960 21 f total 0.00067 1960 22 f total 7e-04 1960 23 f total 0.00073 1960 24 f total 0.00076 1960 25 f total 0.00079 1960 26 f total 0.00082 1960 27 f total 0.00087 1960 28 f total 0.00092 1960 29 f total 0.00098 1960 30 f total 0.00106 1960 31 f total 0.00114 1960 32 f total 0.00122 1960 33 f total 0.00131 1960 34 f total 0.0014 1960 35 f total 0.00151 1960 36 f total 0.00163 1960 37 f total 0.00177 1960 38 f total 0.00192 1960 39 f total 0.0021 1960 40 f total 0.0023 1960 41 f total 0.00251 1960 42 f total 0.00274 1960 43 f total 0.00298 1960 44 f total 0.00324 1960 45 f total 0.00351 1960 46 f total 0.00381 1960 47 f total 0.00415 1960 48 f total 0.00453 1960 49 f total 0.00495 1960 50 f total 0.00541 1960 51 f total 0.0059 1960 52 f total 0.00639 1960 53 f total 0.00686 1960 54 f total 0.00733 1960 55 f total 0.00783 1960 56 f total 0.00841 1960 57 f total 0.00911 1960 58 f total 0.00997 1960 59 f total 0.01097 1960 60 f total 0.01209 1960 61 f total 0.01327 1960 62 f total 0.01451 1960 63 f total 0.01578 1960 64 f total 0.01711 1960 65 f total 0.01854 1960 66 f total 0.02014 1960 67 f total 0.02199 1960 68 f total 0.02415 1960 69 f total 0.02661 1960 70 f total 0.02929 1960 71 f total 0.03219 1960 72 f total 0.03546 1960 73 f total 0.03914 1960 74 f total 0.04327 1960 75 f total 0.04767 1960 76 f total 0.05246 1960 77 f total 0.05804 1960 78 f total 0.06469 1960 79 f total 0.0724 1960 80 f total 0.08144 1960 81 f total 0.09143 1960 82 f total 0.10154 1960 83 f total 0.11096 1960 84 f total 0.11975 1960 85 f total 0.13423 1960 86 f total 0.15009 1960 87 f total 0.16689 1960 88 f total 0.18478 1960 89 f total 0.20364 1960 90 f total 0.22329 1960 91 f total 0.24327 1960 92 f total 0.26302 1960 93 f total 0.28181 1960 94 f total 0.29903 1960 95 f total 0.31416 1960 96 f total 0.32915 1960 97 f total 0.3445 1960 98 f total 0.36018 1960 99 f total 0.37616 1960 100 f total 0.39242 1960 101 f total 0.40891 1960 102 f total 0.42562 1960 103 f total 0.4425 1960 104 f total 0.45951 1960 105 f total 0.47662 1960 106 f total 0.49378 1960 107 f total 0.51095 1960 108 f total 0.5281 1960 109 f total 0.54519 1960 0-1d m white 0.01079 1960 1-7d m white 0.00709 1960 7-28d m white 0.00191 1960 0 m white 0.02592 1960 1 m white 0.00153 1960 2 m white 0.00101 1960 3 m white 0.00081 1960 4 m white 0.00069 1960 5 m white 0.00062 1960 6 m white 0.00057 1960 7 m white 0.00053 1960 8 m white 0.00049 1960 9 m white 0.00045 1960 10 m white 0.00042 1960 11 m white 0.00042 1960 12 m white 0.00047 1960 13 m white 0.00059 1960 14 m white 0.00075 1960 15 m white 0.00093 1960 16 m white 0.00111 1960 17 m white 0.00126 1960 18 m white 0.00139 1960 19 m white 0.00149 1960 20 m white 0.00159 1960 21 m white 0.00169 1960 22 m white 0.00174 1960 23 m white 0.00172 1960 24 m white 0.00165 1960 25 m white 0.00156 1960 26 m white 0.00149 1960 27 m white 0.00145 1960 28 m white 0.00145 1960 29 m white 0.00149 1960 30 m white 0.00156 1960 31 m white 0.00163 1960 32 m white 0.00171 1960 33 m white 0.00181 1960 34 m white 0.00193 1960 35 m white 0.00207 1960 36 m white 0.00225 1960 37 m white 0.00246 1960 38 m white 0.0027 1960 39 m white 0.00299 1960 40 m white 0.00332 1960 41 m white 0.00368 1960 42 m white 0.00409 1960 43 m white 0.00454 1960 44 m white 0.00504 1960 45 m white 0.00558 1960 46 m white 0.00617 1960 47 m white 0.00686 1960 48 m white 0.00766 1960 49 m white 0.00856 1960 50 m white 0.00955 1960 51 m white 0.01058 1960 52 m white 0.01162 1960 53 m white 0.01264 1960 54 m white 0.01368 1960 55 m white 0.01475 1960 56 m white 0.01593 1960 57 m white 0.0173 1960 58 m white 0.01891 1960 59 m white 0.02074 1960 60 m white 0.02271 1960 61 m white 0.02476 1960 62 m white 0.0269 1960 63 m white 0.02912 1960 64 m white 0.03143 1960 65 m white 0.03389 1960 66 m white 0.03652 1960 67 m white 0.0393 1960 68 m white 0.04225 1960 69 m white 0.04538 1960 70 m white 0.04871 1960 71 m white 0.0523 1960 72 m white 0.05623 1960 73 m white 0.0606 1960 74 m white 0.06542 1960 75 m white 0.07066 1960 76 m white 0.07636 1960 77 m white 0.08271 1960 78 m white 0.08986 1960 79 m white 0.09788 1960 80 m white 0.10732 1960 81 m white 0.11799 1960 82 m white 0.12895 1960 83 m white 0.1392 1960 84 m white 0.14861 1960 85 m white 0.16039 1960 86 m white 0.17303 1960 87 m white 0.18665 1960 88 m white 0.20194 1960 89 m white 0.21877 1960 90 m white 0.23601 1960 91 m white 0.25289 1960 92 m white 0.26973 1960 93 m white 0.28612 1960 94 m white 0.30128 1960 95 m white 0.31416 1960 96 m white 0.32915 1960 97 m white 0.3445 1960 98 m white 0.36018 1960 99 m white 0.37616 1960 100 m white 0.39242 1960 101 m white 0.40891 1960 102 m white 0.42562 1960 103 m white 0.4425 1960 104 m white 0.45951 1960 105 m white 0.47662 1960 106 m white 0.49378 1960 107 m white 0.51095 1960 108 m white 0.5281 1960 109 m white 0.54519 1960 0-1d f white 0.00828 1960 1-7d f white 0.00499 1960 7-28d f white 0.00146 1960 0 f white 0.01964 1960 1 f white 0.00135 1960 2 f white 0.00081 1960 3 f white 0.00063 1960 4 f white 0.00055 1960 5 f white 0.00047 1960 6 f white 0.00041 1960 7 f white 0.00037 1960 8 f white 0.00033 1960 9 f white 3e-04 1960 10 f white 0.00028 1960 11 f white 0.00028 1960 12 f white 0.00029 1960 13 f white 0.00032 1960 14 f white 0.00036 1960 15 f white 0.00041 1960 16 f white 0.00047 1960 17 f white 0.00051 1960 18 f white 0.00054 1960 19 f white 0.00055 1960 20 f white 0.00056 1960 21 f white 0.00058 1960 22 f white 6e-04 1960 23 f white 0.00062 1960 24 f white 0.00063 1960 25 f white 0.00065 1960 26 f white 0.00068 1960 27 f white 0.00071 1960 28 f white 0.00074 1960 29 f white 0.00079 1960 30 f white 0.00085 1960 31 f white 0.00091 1960 32 f white 0.00097 1960 33 f white 0.00105 1960 34 f white 0.00113 1960 35 f white 0.00122 1960 36 f white 0.00133 1960 37 f white 0.00145 1960 38 f white 0.00158 1960 39 f white 0.00174 1960 40 f white 0.0019 1960 41 f white 0.00209 1960 42 f white 0.00229 1960 43 f white 0.00252 1960 44 f white 0.00276 1960 45 f white 0.00303 1960 46 f white 0.00331 1960 47 f white 0.00362 1960 48 f white 0.00396 1960 49 f white 0.00432 1960 50 f white 0.00473 1960 51 f white 0.00517 1960 52 f white 0.0056 1960 53 f white 0.00601 1960 54 f white 0.00642 1960 55 f white 0.00687 1960 56 f white 0.0074 1960 57 f white 0.00805 1960 58 f white 0.00886 1960 59 f white 0.00981 1960 60 f white 0.01088 1960 61 f white 0.01203 1960 62 f white 0.01325 1960 63 f white 0.01454 1960 64 f white 0.01592 1960 65 f white 0.01742 1960 66 f white 0.01909 1960 67 f white 0.021 1960 68 f white 0.02319 1960 69 f white 0.02567 1960 70 f white 0.02836 1960 71 f white 0.03129 1960 72 f white 0.03462 1960 73 f white 0.03845 1960 74 f white 0.04278 1960 75 f white 0.04742 1960 76 f white 0.05245 1960 77 f white 0.05827 1960 78 f white 0.06509 1960 79 f white 0.07294 1960 80 f white 0.08213 1960 81 f white 0.09231 1960 82 f white 0.10264 1960 83 f white 0.11235 1960 84 f white 0.12151 1960 85 f white 0.13625 1960 86 f white 0.15237 1960 87 f white 0.16936 1960 88 f white 0.18731 1960 89 f white 0.20611 1960 90 f white 0.2256 1960 91 f white 0.24536 1960 92 f white 0.26481 1960 93 f white 0.28322 1960 94 f white 0.29988 1960 95 f white 0.31416 1960 96 f white 0.32915 1960 97 f white 0.3445 1960 98 f white 0.36018 1960 99 f white 0.37616 1960 100 f white 0.39242 1960 101 f white 0.40891 1960 102 f white 0.42562 1960 103 f white 0.4425 1960 104 f white 0.45951 1960 105 f white 0.47662 1960 106 f white 0.49378 1960 107 f white 0.51095 1960 108 f white 0.5281 1960 109 f white 0.54519 1960 0-1d m nonwhite 0.01594 1960 1-7d m nonwhite 0.00988 1960 7-28d m nonwhite 0.00443 1960 0 m nonwhite 0.04699 1960 1 m nonwhite 0.00337 1960 2 m nonwhite 0.00197 1960 3 m nonwhite 0.00134 1960 4 m nonwhite 0.00102 1960 5 m nonwhite 0.00087 1960 6 m nonwhite 0.00076 1960 7 m nonwhite 0.00068 1960 8 m nonwhite 0.00063 1960 9 m nonwhite 6e-04 1960 10 m nonwhite 6e-04 1960 11 m nonwhite 0.00064 1960 12 m nonwhite 0.00072 1960 13 m nonwhite 0.00085 1960 14 m nonwhite 0.00102 1960 15 m nonwhite 0.0012 1960 16 m nonwhite 0.0014 1960 17 m nonwhite 0.00162 1960 18 m nonwhite 0.00186 1960 19 m nonwhite 0.0021 1960 20 m nonwhite 0.00236 1960 21 m nonwhite 0.00262 1960 22 m nonwhite 0.00283 1960 23 m nonwhite 0.00298 1960 24 m nonwhite 0.00307 1960 25 m nonwhite 0.00316 1960 26 m nonwhite 0.00327 1960 27 m nonwhite 0.00339 1960 28 m nonwhite 0.00353 1960 29 m nonwhite 0.0037 1960 30 m nonwhite 0.00389 1960 31 m nonwhite 0.00409 1960 32 m nonwhite 0.00431 1960 33 m nonwhite 0.00455 1960 34 m nonwhite 0.00483 1960 35 m nonwhite 0.00513 1960 36 m nonwhite 0.00546 1960 37 m nonwhite 0.00585 1960 38 m nonwhite 0.00633 1960 39 m nonwhite 0.00688 1960 40 m nonwhite 0.00749 1960 41 m nonwhite 0.00814 1960 42 m nonwhite 0.00875 1960 43 m nonwhite 0.00931 1960 44 m nonwhite 0.00984 1960 45 m nonwhite 0.01038 1960 46 m nonwhite 0.01101 1960 47 m nonwhite 0.01183 1960 48 m nonwhite 0.01292 1960 49 m nonwhite 0.01422 1960 50 m nonwhite 0.01565 1960 51 m nonwhite 0.0171 1960 52 m nonwhite 0.01854 1960 53 m nonwhite 0.01994 1960 54 m nonwhite 0.02131 1960 55 m nonwhite 0.02273 1960 56 m nonwhite 0.02427 1960 57 m nonwhite 0.02589 1960 58 m nonwhite 0.02762 1960 59 m nonwhite 0.02947 1960 60 m nonwhite 0.03137 1960 61 m nonwhite 0.03335 1960 62 m nonwhite 0.03554 1960 63 m nonwhite 0.03801 1960 64 m nonwhite 0.04072 1960 65 m nonwhite 0.04365 1960 66 m nonwhite 0.04665 1960 67 m nonwhite 0.04953 1960 68 m nonwhite 0.05213 1960 69 m nonwhite 0.05448 1960 70 m nonwhite 0.0569 1960 71 m nonwhite 0.05944 1960 72 m nonwhite 0.06177 1960 73 m nonwhite 0.06375 1960 74 m nonwhite 0.06548 1960 75 m nonwhite 0.06673 1960 76 m nonwhite 0.06803 1960 77 m nonwhite 0.07037 1960 78 m nonwhite 0.0746 1960 79 m nonwhite 0.08065 1960 80 m nonwhite 0.08836 1960 81 m nonwhite 0.09668 1960 82 m nonwhite 0.10452 1960 83 m nonwhite 0.11038 1960 84 m nonwhite 0.1141 1960 85 m nonwhite 0.1228 1960 86 m nonwhite 0.13313 1960 87 m nonwhite 0.14588 1960 88 m nonwhite 0.16219 1960 89 m nonwhite 0.18166 1960 90 m nonwhite 0.20304 1960 91 m nonwhite 0.22519 1960 92 m nonwhite 0.24791 1960 93 m nonwhite 0.2705 1960 94 m nonwhite 0.2927 1960 95 m nonwhite 0.31416 1960 96 m nonwhite 0.32915 1960 97 m nonwhite 0.3445 1960 98 m nonwhite 0.36018 1960 99 m nonwhite 0.37616 1960 100 m nonwhite 0.39242 1960 101 m nonwhite 0.40891 1960 102 m nonwhite 0.42562 1960 103 m nonwhite 0.4425 1960 104 m nonwhite 0.45951 1960 105 m nonwhite 0.47662 1960 106 m nonwhite 0.49378 1960 107 m nonwhite 0.51095 1960 108 m nonwhite 0.5281 1960 109 m nonwhite 0.54519 1960 0-1d f nonwhite 0.01272 1960 1-7d f nonwhite 0.00742 1960 7-28d f nonwhite 0.00385 1960 0 f nonwhite 0.03828 1960 1 f nonwhite 0.00289 1960 2 f nonwhite 0.0016 1960 3 f nonwhite 0.00115 1960 4 f nonwhite 0.00092 1960 5 f nonwhite 0.00077 1960 6 f nonwhite 0.00066 1960 7 f nonwhite 0.00056 1960 8 f nonwhite 0.00049 1960 9 f nonwhite 0.00043 1960 10 f nonwhite 4e-04 1960 11 f nonwhite 0.00039 1960 12 f nonwhite 0.00041 1960 13 f nonwhite 0.00046 1960 14 f nonwhite 0.00053 1960 15 f nonwhite 0.00063 1960 16 f nonwhite 0.00073 1960 17 f nonwhite 0.00084 1960 18 f nonwhite 0.00094 1960 19 f nonwhite 0.00104 1960 20 f nonwhite 0.00116 1960 21 f nonwhite 0.00128 1960 22 f nonwhite 0.0014 1960 23 f nonwhite 0.0015 1960 24 f nonwhite 0.0016 1960 25 f nonwhite 0.00171 1960 26 f nonwhite 0.00182 1960 27 f nonwhite 0.00197 1960 28 f nonwhite 0.00214 1960 29 f nonwhite 0.00234 1960 30 f nonwhite 0.00256 1960 31 f nonwhite 0.00279 1960 32 f nonwhite 0.00303 1960 33 f nonwhite 0.00326 1960 34 f nonwhite 0.0035 1960 35 f nonwhite 0.00374 1960 36 f nonwhite 0.00402 1960 37 f nonwhite 0.00434 1960 38 f nonwhite 0.00471 1960 39 f nonwhite 0.00514 1960 40 f nonwhite 0.00561 1960 41 f nonwhite 0.00611 1960 42 f nonwhite 0.00656 1960 43 f nonwhite 0.00696 1960 44 f nonwhite 0.00733 1960 45 f nonwhite 0.00769 1960 46 f nonwhite 0.00814 1960 47 f nonwhite 0.00875 1960 48 f nonwhite 0.00957 1960 49 f nonwhite 0.01058 1960 50 f nonwhite 0.01167 1960 51 f nonwhite 0.01279 1960 52 f nonwhite 0.01392 1960 53 f nonwhite 0.01504 1960 54 f nonwhite 0.01617 1960 55 f nonwhite 0.01731 1960 56 f nonwhite 0.01852 1960 57 f nonwhite 0.01983 1960 58 f nonwhite 0.0213 1960 59 f nonwhite 0.02287 1960 60 f nonwhite 0.02459 1960 61 f nonwhite 0.02632 1960 62 f nonwhite 0.02784 1960 63 f nonwhite 0.02901 1960 64 f nonwhite 0.02995 1960 65 f nonwhite 0.03072 1960 66 f nonwhite 0.03162 1960 67 f nonwhite 0.03296 1960 68 f nonwhite 0.035 1960 69 f nonwhite 0.03762 1960 70 f nonwhite 0.04066 1960 71 f nonwhite 0.04372 1960 72 f nonwhite 0.04646 1960 73 f nonwhite 0.04853 1960 74 f nonwhite 0.05007 1960 75 f nonwhite 0.05127 1960 76 f nonwhite 0.05274 1960 77 f nonwhite 0.0551 1960 78 f nonwhite 0.05897 1960 79 f nonwhite 0.0642 1960 80 f nonwhite 0.0706 1960 81 f nonwhite 0.07731 1960 82 f nonwhite 0.08349 1960 83 f nonwhite 0.08813 1960 84 f nonwhite 0.09127 1960 85 f nonwhite 0.10205 1960 86 f nonwhite 0.11467 1960 87 f nonwhite 0.12972 1960 88 f nonwhite 0.1479 1960 89 f nonwhite 0.16879 1960 90 f nonwhite 0.19137 1960 91 f nonwhite 0.21496 1960 92 f nonwhite 0.23959 1960 93 f nonwhite 0.26478 1960 94 f nonwhite 0.28995 1960 95 f nonwhite 0.31416 1960 96 f nonwhite 0.32915 1960 97 f nonwhite 0.3445 1960 98 f nonwhite 0.36018 1960 99 f nonwhite 0.37616 1960 100 f nonwhite 0.39242 1960 101 f nonwhite 0.40891 1960 102 f nonwhite 0.42562 1960 103 f nonwhite 0.4425 1960 104 f nonwhite 0.45951 1960 105 f nonwhite 0.47662 1960 106 f nonwhite 0.49378 1960 107 f nonwhite 0.51095 1960 108 f nonwhite 0.5281 1960 109 f nonwhite 0.54519 1970 0-1d m total 0.00984 1970 1-7d m total 0.00555 1970 7-28d m total 0.00159 1970 0 m total 0.02245 1970 1 m total 0.00133 1970 2 m total 0.00094 1970 3 m total 0.00078 1970 4 m total 0.00064 1970 5 m total 0.00058 1970 6 m total 0.00054 1970 7 m total 0.00051 1970 8 m total 0.00046 1970 9 m total 0.00041 1970 10 m total 0.00036 1970 11 m total 0.00035 1970 12 m total 0.00042 1970 13 m total 0.00059 1970 14 m total 0.00084 1970 15 m total 0.00114 1970 16 m total 0.00142 1970 17 m total 0.00167 1970 18 m total 0.00185 1970 19 m total 0.00198 1970 20 m total 0.00212 1970 21 m total 0.00226 1970 22 m total 0.00235 1970 23 m total 0.00235 1970 24 m total 0.00228 1970 25 m total 0.00217 1970 26 m total 0.00206 1970 27 m total 0.00199 1970 28 m total 0.00198 1970 29 m total 0.00203 1970 30 m total 0.0021 1970 31 m total 0.00218 1970 32 m total 0.00228 1970 33 m total 0.00239 1970 34 m total 0.00252 1970 35 m total 0.00268 1970 36 m total 0.00288 1970 37 m total 0.00312 1970 38 m total 0.00339 1970 39 m total 0.00369 1970 40 m total 0.00401 1970 41 m total 0.00435 1970 42 m total 0.00473 1970 43 m total 0.00518 1970 44 m total 0.00568 1970 45 m total 0.00623 1970 46 m total 0.00681 1970 47 m total 0.00744 1970 48 m total 0.00812 1970 49 m total 0.00887 1970 50 m total 0.00969 1970 51 m total 0.01059 1970 52 m total 0.01161 1970 53 m total 0.01275 1970 54 m total 0.014 1970 55 m total 0.01534 1970 56 m total 0.01676 1970 57 m total 0.01827 1970 58 m total 0.01987 1970 59 m total 0.02158 1970 60 m total 0.02339 1970 61 m total 0.02532 1970 62 m total 0.02738 1970 63 m total 0.0296 1970 64 m total 0.032 1970 65 m total 0.03463 1970 66 m total 0.03746 1970 67 m total 0.04044 1970 68 m total 0.0435 1970 69 m total 0.04665 1970 70 m total 0.04991 1970 71 m total 0.05344 1970 72 m total 0.0574 1970 73 m total 0.06193 1970 74 m total 0.06703 1970 75 m total 0.07264 1970 76 m total 0.07856 1970 77 m total 0.08462 1970 78 m total 0.0907 1970 79 m total 0.09688 1970 80 m total 0.10367 1970 81 m total 0.11125 1970 82 m total 0.11929 1970 83 m total 0.1277 1970 84 m total 0.13663 1970 85 m total 0.1473 1970 86 m total 0.15979 1970 87 m total 0.17281 1970 88 m total 0.18521 1970 89 m total 0.19681 1970 90 m total 0.20839 1970 91 m total 0.22122 1970 92 m total 0.23512 1970 93 m total 0.25023 1970 94 m total 0.26546 1970 95 m total 0.27962 1970 96 m total 0.2909 1970 97 m total 0.30135 1970 98 m total 0.31111 1970 99 m total 0.32017 1970 100 m total 0.32857 1970 101 m total 0.33633 1970 102 m total 0.34347 1970 103 m total 0.35004 1970 104 m total 0.35606 1970 105 m total 0.36157 1970 106 m total 0.36661 1970 107 m total 0.37121 1970 108 m total 0.3754 1970 109 m total 0.37922 1970 0-1d f total 0.00758 1970 1-7d f total 0.00405 1970 7-28d f total 0.00134 1970 0 f total 0.01746 1970 1 f total 0.00116 1970 2 f total 0.00077 1970 3 f total 6e-04 1970 4 f total 0.00051 1970 5 f total 0.00043 1970 6 f total 0.00038 1970 7 f total 0.00034 1970 8 f total 0.00031 1970 9 f total 0.00028 1970 10 f total 0.00026 1970 11 f total 0.00025 1970 12 f total 0.00027 1970 13 f total 0.00033 1970 14 f total 4e-04 1970 15 f total 0.00049 1970 16 f total 0.00058 1970 17 f total 0.00066 1970 18 f total 0.00069 1970 19 f total 0.00071 1970 20 f total 0.00072 1970 21 f total 0.00073 1970 22 f total 0.00075 1970 23 f total 0.00077 1970 24 f total 0.00079 1970 25 f total 0.00081 1970 26 f total 0.00083 1970 27 f total 0.00086 1970 28 f total 9e-04 1970 29 f total 0.00096 1970 30 f total 0.00102 1970 31 f total 0.0011 1970 32 f total 0.00119 1970 33 f total 0.00129 1970 34 f total 0.0014 1970 35 f total 0.00152 1970 36 f total 0.00165 1970 37 f total 0.0018 1970 38 f total 0.00197 1970 39 f total 0.00215 1970 40 f total 0.00233 1970 41 f total 0.00251 1970 42 f total 0.00273 1970 43 f total 0.00297 1970 44 f total 0.00325 1970 45 f total 0.00354 1970 46 f total 0.00384 1970 47 f total 0.00416 1970 48 f total 0.00449 1970 49 f total 0.00484 1970 50 f total 0.00523 1970 51 f total 0.00565 1970 52 f total 0.00611 1970 53 f total 0.0066 1970 54 f total 0.00712 1970 55 f total 0.00768 1970 56 f total 0.00829 1970 57 f total 0.00894 1970 58 f total 0.00962 1970 59 f total 0.01035 1970 60 f total 0.01113 1970 61 f total 0.012 1970 62 f total 0.01298 1970 63 f total 0.01411 1970 64 f total 0.01538 1970 65 f total 0.01678 1970 66 f total 0.01832 1970 67 f total 0.02004 1970 68 f total 0.02195 1970 69 f total 0.02407 1970 70 f total 0.02632 1970 71 f total 0.02879 1970 72 f total 0.03165 1970 73 f total 0.03503 1970 74 f total 0.03893 1970 75 f total 0.04325 1970 76 f total 0.0479 1970 77 f total 0.05295 1970 78 f total 0.0584 1970 79 f total 0.06432 1970 80 f total 0.07097 1970 81 f total 0.07834 1970 82 f total 0.08612 1970 83 f total 0.09419 1970 84 f total 0.10275 1970 85 f total 0.11282 1970 86 f total 0.12462 1970 87 f total 0.13685 1970 88 f total 0.14859 1970 89 f total 0.16006 1970 90 f total 0.17264 1970 91 f total 0.18718 1970 92 f total 0.20243 1970 93 f total 0.2175 1970 94 f total 0.23186 1970 95 f total 0.24584 1970 96 f total 0.25854 1970 97 f total 0.2698 1970 98 f total 0.27996 1970 99 f total 0.28949 1970 100 f total 0.29836 1970 101 f total 0.30659 1970 102 f total 0.3142 1970 103 f total 0.32122 1970 104 f total 0.32768 1970 105 f total 0.33361 1970 106 f total 0.33904 1970 107 f total 0.34401 1970 108 f total 0.34855 1970 109 f total 0.35269 1970 0-1d m white 0.00892 1970 1-7d m white 0.00527 1970 7-28d m white 0.00139 1970 0 m white 0.02006 1970 1 m white 0.00116 1970 2 m white 0.00083 1970 3 m white 0.00072 1970 4 m white 0.00059 1970 5 m white 0.00054 1970 6 m white 0.00051 1970 7 m white 0.00048 1970 8 m white 0.00044 1970 9 m white 0.00039 1970 10 m white 0.00034 1970 11 m white 0.00032 1970 12 m white 0.00039 1970 13 m white 0.00055 1970 14 m white 8e-04 1970 15 m white 0.00107 1970 16 m white 0.00134 1970 17 m white 0.00156 1970 18 m white 0.00172 1970 19 m white 0.00181 1970 20 m white 0.0019 1970 21 m white 0.00201 1970 22 m white 0.00205 1970 23 m white 0.00203 1970 24 m white 0.00195 1970 25 m white 0.00184 1970 26 m white 0.00173 1970 27 m white 0.00165 1970 28 m white 0.00162 1970 29 m white 0.00165 1970 30 m white 0.0017 1970 31 m white 0.00176 1970 32 m white 0.00183 1970 33 m white 0.00192 1970 34 m white 0.00203 1970 35 m white 0.00217 1970 36 m white 0.00235 1970 37 m white 0.00256 1970 38 m white 0.00281 1970 39 m white 0.0031 1970 40 m white 0.0034 1970 41 m white 0.00372 1970 42 m white 0.00409 1970 43 m white 0.00452 1970 44 m white 0.00501 1970 45 m white 0.00555 1970 46 m white 0.00612 1970 47 m white 0.00673 1970 48 m white 0.00739 1970 49 m white 0.00812 1970 50 m white 0.00892 1970 51 m white 0.0098 1970 52 m white 0.01081 1970 53 m white 0.01194 1970 54 m white 0.01318 1970 55 m white 0.01452 1970 56 m white 0.01594 1970 57 m white 0.01745 1970 58 m white 0.01906 1970 59 m white 0.02077 1970 60 m white 0.02258 1970 61 m white 0.02451 1970 62 m white 0.02657 1970 63 m white 0.02879 1970 64 m white 0.0312 1970 65 m white 0.03386 1970 66 m white 0.03674 1970 67 m white 0.03977 1970 68 m white 0.04284 1970 69 m white 0.04597 1970 70 m white 0.04916 1970 71 m white 0.05262 1970 72 m white 0.05655 1970 73 m white 0.06118 1970 74 m white 0.06647 1970 75 m white 0.07231 1970 76 m white 0.07843 1970 77 m white 0.08472 1970 78 m white 0.09103 1970 79 m white 0.09749 1970 80 m white 0.10466 1970 81 m white 0.11273 1970 82 m white 0.12127 1970 83 m white 0.13012 1970 84 m white 0.13942 1970 85 m white 0.15033 1970 86 m white 0.16321 1970 87 m white 0.17666 1970 88 m white 0.18947 1970 89 m white 0.20145 1970 90 m white 0.21344 1970 91 m white 0.22684 1970 92 m white 0.24152 1970 93 m white 0.25767 1970 94 m white 0.27426 1970 95 m white 0.29014 1970 96 m white 0.30431 1970 97 m white 0.31784 1970 98 m white 0.33085 1970 99 m white 0.34324 1970 100 m white 0.35479 1970 101 m white 0.36553 1970 102 m white 0.3755 1970 103 m white 0.38471 1970 104 m white 0.3932 1970 105 m white 0.40101 1970 106 m white 0.40818 1970 107 m white 0.41475 1970 108 m white 0.42075 1970 109 m white 0.42624 1970 0-1d f white 0.00686 1970 1-7d f white 0.00373 1970 7-28d f white 0.00115 1970 0 f white 0.01532 1970 1 f white 0.00101 1970 2 f white 0.00067 1970 3 f white 0.00054 1970 4 f white 0.00047 1970 5 f white 4e-04 1970 6 f white 0.00036 1970 7 f white 0.00032 1970 8 f white 0.00029 1970 9 f white 0.00027 1970 10 f white 0.00025 1970 11 f white 0.00024 1970 12 f white 0.00026 1970 13 f white 0.00031 1970 14 f white 0.00038 1970 15 f white 0.00046 1970 16 f white 0.00055 1970 17 f white 0.00061 1970 18 f white 0.00064 1970 19 f white 0.00064 1970 20 f white 0.00064 1970 21 f white 0.00065 1970 22 f white 0.00065 1970 23 f white 0.00066 1970 24 f white 0.00067 1970 25 f white 0.00068 1970 26 f white 7e-04 1970 27 f white 0.00072 1970 28 f white 0.00075 1970 29 f white 0.00079 1970 30 f white 0.00084 1970 31 f white 9e-04 1970 32 f white 0.00097 1970 33 f white 0.00104 1970 34 f white 0.00113 1970 35 f white 0.00122 1970 36 f white 0.00133 1970 37 f white 0.00146 1970 38 f white 0.00161 1970 39 f white 0.00177 1970 40 f white 0.00193 1970 41 f white 0.00211 1970 42 f white 0.0023 1970 43 f white 0.00254 1970 44 f white 0.0028 1970 45 f white 0.00308 1970 46 f white 0.00336 1970 47 f white 0.00366 1970 48 f white 0.00397 1970 49 f white 0.0043 1970 50 f white 0.00466 1970 51 f white 0.00507 1970 52 f white 0.0055 1970 53 f white 0.00596 1970 54 f white 0.00646 1970 55 f white 0.00699 1970 56 f white 0.00758 1970 57 f white 0.00819 1970 58 f white 0.00884 1970 59 f white 0.00953 1970 60 f white 0.01027 1970 61 f white 0.0111 1970 62 f white 0.01203 1970 63 f white 0.01309 1970 64 f white 0.01429 1970 65 f white 0.01563 1970 66 f white 0.01713 1970 67 f white 0.01883 1970 68 f white 0.02075 1970 69 f white 0.02288 1970 70 f white 0.02513 1970 71 f white 0.02759 1970 72 f white 0.03048 1970 73 f white 0.03396 1970 74 f white 0.03803 1970 75 f white 0.04255 1970 76 f white 0.0474 1970 77 f white 0.05264 1970 78 f white 0.05829 1970 79 f white 0.0644 1970 80 f white 0.07128 1970 81 f white 0.07893 1970 82 f white 0.08702 1970 83 f white 0.09539 1970 84 f white 0.10427 1970 85 f white 0.11465 1970 86 f white 0.12685 1970 87 f white 0.13944 1970 88 f white 0.15144 1970 89 f white 0.16303 1970 90 f white 0.1757 1970 91 f white 0.19046 1970 92 f white 0.20617 1970 93 f white 0.22206 1970 94 f white 0.23758 1970 95 f white 0.25298 1970 96 f white 0.26762 1970 97 f white 0.28133 1970 98 f white 0.29413 1970 99 f white 0.30615 1970 100 f white 0.31742 1970 101 f white 0.32794 1970 102 f white 0.33772 1970 103 f white 0.34679 1970 104 f white 0.35517 1970 105 f white 0.36289 1970 106 f white 0.36999 1970 107 f white 0.37651 1970 108 f white 0.38248 1970 109 f white 0.38793 1970 0-1d m nonwhite 0.01522 1970 1-7d m nonwhite 0.00742 1970 7-28d m nonwhite 0.00272 1970 0 m nonwhite 0.03408 1970 1 m nonwhite 0.00217 1970 2 m nonwhite 0.00155 1970 3 m nonwhite 0.00109 1970 4 m nonwhite 0.00094 1970 5 m nonwhite 0.00082 1970 6 m nonwhite 0.00074 1970 7 m nonwhite 0.00067 1970 8 m nonwhite 6e-04 1970 9 m nonwhite 0.00053 1970 10 m nonwhite 0.00048 1970 11 m nonwhite 0.00048 1970 12 m nonwhite 0.00058 1970 13 m nonwhite 8e-04 1970 14 m nonwhite 0.00113 1970 15 m nonwhite 0.00151 1970 16 m nonwhite 0.0019 1970 17 m nonwhite 0.0023 1970 18 m nonwhite 0.0027 1970 19 m nonwhite 0.00309 1970 20 m nonwhite 0.00357 1970 21 m nonwhite 0.0041 1970 22 m nonwhite 0.00452 1970 23 m nonwhite 0.00473 1970 24 m nonwhite 0.00475 1970 25 m nonwhite 0.00468 1970 26 m nonwhite 0.00464 1970 27 m nonwhite 0.00464 1970 28 m nonwhite 0.00474 1970 29 m nonwhite 0.00494 1970 30 m nonwhite 0.00515 1970 31 m nonwhite 0.00535 1970 32 m nonwhite 0.00558 1970 33 m nonwhite 0.00587 1970 34 m nonwhite 0.00621 1970 35 m nonwhite 0.00657 1970 36 m nonwhite 0.00697 1970 37 m nonwhite 0.00742 1970 38 m nonwhite 0.00791 1970 39 m nonwhite 0.00843 1970 40 m nonwhite 0.00898 1970 41 m nonwhite 0.00955 1970 42 m nonwhite 0.01016 1970 43 m nonwhite 0.0108 1970 44 m nonwhite 0.01149 1970 45 m nonwhite 0.01222 1970 46 m nonwhite 0.01298 1970 47 m nonwhite 0.01381 1970 48 m nonwhite 0.01472 1970 49 m nonwhite 0.01573 1970 50 m nonwhite 0.01683 1970 51 m nonwhite 0.01802 1970 52 m nonwhite 0.01927 1970 53 m nonwhite 0.02054 1970 54 m nonwhite 0.02182 1970 55 m nonwhite 0.02314 1970 56 m nonwhite 0.02453 1970 57 m nonwhite 0.02602 1970 58 m nonwhite 0.02763 1970 59 m nonwhite 0.02939 1970 60 m nonwhite 0.03127 1970 61 m nonwhite 0.03324 1970 62 m nonwhite 0.03532 1970 63 m nonwhite 0.03744 1970 64 m nonwhite 0.03959 1970 65 m nonwhite 0.04171 1970 66 m nonwhite 0.04389 1970 67 m nonwhite 0.04636 1970 68 m nonwhite 0.04935 1970 69 m nonwhite 0.05292 1970 70 m nonwhite 0.05714 1970 71 m nonwhite 0.06169 1970 72 m nonwhite 0.06617 1970 73 m nonwhite 0.07001 1970 74 m nonwhite 0.07318 1970 75 m nonwhite 0.07636 1970 76 m nonwhite 0.08001 1970 77 m nonwhite 0.0835 1970 78 m nonwhite 0.08666 1970 79 m nonwhite 0.08942 1970 80 m nonwhite 0.0916 1970 81 m nonwhite 0.09353 1970 82 m nonwhite 0.09587 1970 83 m nonwhite 0.09937 1970 84 m nonwhite 0.10418 1970 85 m nonwhite 0.11257 1970 86 m nonwhite 0.12156 1970 87 m nonwhite 0.13089 1970 88 m nonwhite 0.1398 1970 89 m nonwhite 0.14832 1970 90 m nonwhite 0.15687 1970 91 m nonwhite 0.1662 1970 92 m nonwhite 0.17656 1970 93 m nonwhite 0.18827 1970 94 m nonwhite 0.20064 1970 95 m nonwhite 0.2127 1970 96 m nonwhite 0.21795 1970 97 m nonwhite 0.22278 1970 98 m nonwhite 0.22723 1970 99 m nonwhite 0.23132 1970 100 m nonwhite 0.23506 1970 101 m nonwhite 0.23848 1970 102 m nonwhite 0.2416 1970 103 m nonwhite 0.24445 1970 104 m nonwhite 0.24705 1970 105 m nonwhite 0.24941 1970 106 m nonwhite 0.25155 1970 107 m nonwhite 0.2535 1970 108 m nonwhite 0.25526 1970 109 m nonwhite 0.25686 1970 0-1d f nonwhite 0.0117 1970 1-7d f nonwhite 0.00592 1970 7-28d f nonwhite 0.00236 1970 0 f nonwhite 0.02765 1970 1 f nonwhite 0.00189 1970 2 f nonwhite 0.0013 1970 3 f nonwhite 9e-04 1970 4 f nonwhite 0.00068 1970 5 f nonwhite 0.00062 1970 6 f nonwhite 0.00052 1970 7 f nonwhite 0.00045 1970 8 f nonwhite 0.00039 1970 9 f nonwhite 0.00035 1970 10 f nonwhite 0.00033 1970 11 f nonwhite 0.00033 1970 12 f nonwhite 0.00036 1970 13 f nonwhite 0.00044 1970 14 f nonwhite 0.00054 1970 15 f nonwhite 0.00067 1970 16 f nonwhite 8e-04 1970 17 f nonwhite 0.00093 1970 18 f nonwhite 0.00103 1970 19 f nonwhite 0.00111 1970 20 f nonwhite 0.00121 1970 21 f nonwhite 0.00132 1970 22 f nonwhite 0.00141 1970 23 f nonwhite 0.0015 1970 24 f nonwhite 0.00157 1970 25 f nonwhite 0.00164 1970 26 f nonwhite 0.00173 1970 27 f nonwhite 0.00183 1970 28 f nonwhite 0.00195 1970 29 f nonwhite 0.0021 1970 30 f nonwhite 0.00225 1970 31 f nonwhite 0.00242 1970 32 f nonwhite 0.00262 1970 33 f nonwhite 0.00286 1970 34 f nonwhite 0.00313 1970 35 f nonwhite 0.00343 1970 36 f nonwhite 0.00373 1970 37 f nonwhite 0.00405 1970 38 f nonwhite 0.00438 1970 39 f nonwhite 0.00472 1970 40 f nonwhite 0.00507 1970 41 f nonwhite 0.00542 1970 42 f nonwhite 0.00581 1970 43 f nonwhite 0.00624 1970 44 f nonwhite 0.00672 1970 45 f nonwhite 0.00725 1970 46 f nonwhite 0.00779 1970 47 f nonwhite 0.00836 1970 48 f nonwhite 0.00892 1970 49 f nonwhite 0.0095 1970 50 f nonwhite 0.01013 1970 51 f nonwhite 0.01081 1970 52 f nonwhite 0.01153 1970 53 f nonwhite 0.01229 1970 54 f nonwhite 0.01308 1970 55 f nonwhite 0.01392 1970 56 f nonwhite 0.01483 1970 57 f nonwhite 0.01581 1970 58 f nonwhite 0.01689 1970 59 f nonwhite 0.01809 1970 60 f nonwhite 0.01937 1970 61 f nonwhite 0.02073 1970 62 f nonwhite 0.02226 1970 63 f nonwhite 0.02392 1970 64 f nonwhite 0.02566 1970 65 f nonwhite 0.02738 1970 66 f nonwhite 0.02909 1970 67 f nonwhite 0.03093 1970 68 f nonwhite 0.03308 1970 69 f nonwhite 0.03561 1970 70 f nonwhite 0.03863 1970 71 f nonwhite 0.04194 1970 72 f nonwhite 0.04519 1970 73 f nonwhite 0.0479 1970 74 f nonwhite 0.05004 1970 75 f nonwhite 0.05208 1970 76 f nonwhite 0.05446 1970 77 f nonwhite 0.05704 1970 78 f nonwhite 0.05997 1970 79 f nonwhite 0.06321 1970 80 f nonwhite 0.06656 1970 81 f nonwhite 0.06991 1970 82 f nonwhite 0.07342 1970 83 f nonwhite 0.07716 1970 84 f nonwhite 0.08122 1970 85 f nonwhite 0.08747 1970 86 f nonwhite 0.09465 1970 87 f nonwhite 0.10282 1970 88 f nonwhite 0.11201 1970 89 f nonwhite 0.12222 1970 90 f nonwhite 0.13355 1970 91 f nonwhite 0.14548 1970 92 f nonwhite 0.15672 1970 93 f nonwhite 0.16605 1970 94 f nonwhite 0.17401 1970 95 f nonwhite 0.1822 1970 96 f nonwhite 0.18719 1970 97 f nonwhite 0.1918 1970 98 f nonwhite 0.19605 1970 99 f nonwhite 0.19996 1970 100 f nonwhite 0.20355 1970 101 f nonwhite 0.20684 1970 102 f nonwhite 0.20985 1970 103 f nonwhite 0.21259 1970 104 f nonwhite 0.2151 1970 105 f nonwhite 0.21738 1970 106 f nonwhite 0.21945 1970 107 f nonwhite 0.22134 1970 108 f nonwhite 0.22305 1970 109 f nonwhite 0.2246 1970 0-1d m black 0.01522 1970 1-7d m black 0.00742 1970 7-28d m black 0.00272 1970 0 m black 0.03606 1970 1 m black 0.00224 1970 2 m black 0.00159 1970 3 m black 0.00111 1970 4 m black 0.00097 1970 5 m black 0.00084 1970 6 m black 0.00076 1970 7 m black 0.00068 1970 8 m black 0.00061 1970 9 m black 0.00054 1970 10 m black 0.00049 1970 11 m black 0.00049 1970 12 m black 0.00059 1970 13 m black 0.00081 1970 14 m black 0.00114 1970 15 m black 0.00152 1970 16 m black 0.00192 1970 17 m black 0.00233 1970 18 m black 0.00275 1970 19 m black 0.00319 1970 20 m black 0.00372 1970 21 m black 0.00433 1970 22 m black 0.00482 1970 23 m black 0.00508 1970 24 m black 0.00511 1970 25 m black 0.00503 1970 26 m black 0.00500 1970 27 m black 0.00500 1970 28 m black 0.00512 1970 29 m black 0.00534 1970 30 m black 0.00558 1970 31 m black 0.00579 1970 32 m black 0.00605 1970 33 m black 0.00636 1970 34 m black 0.00672 1970 35 m black 0.00712 1970 36 m black 0.00754 1970 37 m black 0.00801 1970 38 m black 0.00853 1970 39 m black 0.00908 1970 40 m black 0.00966 1970 41 m black 0.01025 1970 42 m black 0.01089 1970 43 m black 0.01157 1970 44 m black 0.01231 1970 45 m black 0.01309 1970 46 m black 0.01391 1970 47 m black 0.01478 1970 48 m black 0.01573 1970 49 m black 0.01676 1970 50 m black 0.01788 1970 51 m black 0.01909 1970 52 m black 0.02037 1970 53 m black 0.02169 1970 54 m black 0.02305 1970 55 m black 0.02445 1970 56 m black 0.02593 1970 57 m black 0.02751 1970 58 m black 0.02922 1970 59 m black 0.03108 1970 60 m black 0.03308 1970 61 m black 0.03520 1970 62 m black 0.03739 1970 63 m black 0.03858 1970 64 m black 0.04175 1970 65 m black 0.04386 1970 66 m black 0.04603 1970 67 m black 0.04852 1970 68 m black 0.05108 1970 69 m black 0.05528 1970 70 m black 0.05965 1970 71 m black 0.06434 1970 72 m black 0.06892 1970 73 m black 0.07276 1970 74 m black 0.07585 1970 75 m black 0.07887 1970 76 m black 0.08233 1970 77 m black 0.08575 1970 78 m black 0.08513 1970 79 m black 0.09244 1970 80 m black 0.09554 1970 81 m black 0.09852 1970 82 m black 0.10180 1970 83 m black 0.10573 1970 84 m black 0.11035 1970 85 m black 0.11744 1970 86 m black 0.12512 1970 87 m black 0.13349 1970 88 m black 0.14237 1970 89 m black 0.15170 1970 90 m black 0.16139 1970 91 m black 0.17144 1970 92 m black 0.18173 1970 93 m black 0.19211 1970 94 m black 0.20240 1970 95 m black 0.21270 1970 96 m black 0.21795 1970 97 m black 0.22278 1970 98 m black 0.22723 1970 99 m black 0.23132 1970 100 m black 0.23506 1970 101 m black 0.23848 1970 102 m black 0.24160 1970 103 m black 0.24445 1970 104 m black 0.24705 1970 105 m black 0.24941 1970 106 m black 0.25155 1970 107 m black 0.25350 1970 108 m black 0.25526 1970 109 m black 0.25686 1970 0-1d f black 0.01097 1970 1-7d f black 0.00555 1970 7-28d f black 0.00223 1970 0 f black 0.02765 1970 1 f black 0.00189 1970 2 f black 0.0013 1970 3 f black 9e-04 1970 4 f black 0.00068 1970 5 f black 0.00062 1970 6 f black 0.00052 1970 7 f black 0.00045 1970 8 f black 0.00039 1970 9 f black 0.00035 1970 10 f black 0.00033 1970 11 f black 0.00033 1970 12 f black 0.00036 1970 13 f black 0.00044 1970 14 f black 0.00054 1970 15 f black 0.00067 1970 16 f black 8e-04 1970 17 f black 0.00093 1970 18 f black 0.00103 1970 19 f black 0.00111 1970 20 f black 0.00121 1970 21 f black 0.00132 1970 22 f black 0.00141 1970 23 f black 0.0015 1970 24 f black 0.00157 1970 25 f black 0.00164 1970 26 f black 0.00173 1970 27 f black 0.00183 1970 28 f black 0.00195 1970 29 f black 0.0021 1970 30 f black 0.00225 1970 31 f black 0.00242 1970 32 f black 0.00262 1970 33 f black 0.00286 1970 34 f black 0.00313 1970 35 f black 0.00343 1970 36 f black 0.00373 1970 37 f black 0.00405 1970 38 f black 0.00438 1970 39 f black 0.00472 1970 40 f black 0.00507 1970 41 f black 0.00542 1970 42 f black 0.00581 1970 43 f black 0.00624 1970 44 f black 0.00672 1970 45 f black 0.00725 1970 46 f black 0.00779 1970 47 f black 0.00836 1970 48 f black 0.00892 1970 49 f black 0.0095 1970 50 f black 0.01013 1970 51 f black 0.01081 1970 52 f black 0.01153 1970 53 f black 0.01229 1970 54 f black 0.01308 1970 55 f black 0.01392 1970 56 f black 0.01483 1970 57 f black 0.01581 1970 58 f black 0.01689 1970 59 f black 0.01809 1970 60 f black 0.01937 1970 61 f black 0.02073 1970 62 f black 0.02226 1970 63 f black 0.02392 1970 64 f black 0.02566 1970 65 f black 0.02738 1970 66 f black 0.02909 1970 67 f black 0.03093 1970 68 f black 0.03308 1970 69 f black 0.03561 1970 70 f black 0.03863 1970 71 f black 0.04194 1970 72 f black 0.04519 1970 73 f black 0.0479 1970 74 f black 0.05004 1970 75 f black 0.05208 1970 76 f black 0.05446 1970 77 f black 0.05704 1970 78 f black 0.05997 1970 79 f black 0.06321 1970 80 f black 0.06656 1970 81 f black 0.06991 1970 82 f black 0.07342 1970 83 f black 0.07716 1970 84 f black 0.08122 1970 85 f black 0.08747 1970 86 f black 0.09465 1970 87 f black 0.10282 1970 88 f black 0.11201 1970 89 f black 0.12222 1970 90 f black 0.13355 1970 91 f black 0.14548 1970 92 f black 0.15672 1970 93 f black 0.16605 1970 94 f black 0.17401 1970 95 f black 0.1822 1970 96 f black 0.18719 1970 97 f black 0.1918 1970 98 f black 0.19605 1970 99 f black 0.19996 1970 100 f black 0.20355 1970 101 f black 0.20684 1970 102 f black 0.20985 1970 103 f black 0.21259 1970 104 f black 0.2151 1970 105 f black 0.21738 1970 106 f black 0.21945 1970 107 f black 0.22134 1970 108 f black 0.22305 1970 109 f black 0.2246 1980 0-1d m total 0.00503 1980 1-7d m total 0.00278 1980 7-28d m total 0.00152 1980 0 m total 0.01393 1980 1 m total 0.00101 1980 2 m total 0.00073 1980 3 m total 0.00058 1980 4 m total 0.00047 1980 5 m total 0.00042 1980 6 m total 0.00039 1980 7 m total 0.00036 1980 8 m total 0.00032 1980 9 m total 0.00026 1980 10 m total 0.00021 1980 11 m total 0.00021 1980 12 m total 3e-04 1980 13 m total 0.00048 1980 14 m total 0.00072 1980 15 m total 0.00096 1980 16 m total 0.00118 1980 17 m total 0.00137 1980 18 m total 0.00153 1980 19 m total 0.00167 1980 20 m total 0.00181 1980 21 m total 0.00194 1980 22 m total 0.00203 1980 23 m total 0.00205 1980 24 m total 0.00203 1980 25 m total 0.00199 1980 26 m total 0.00196 1980 27 m total 0.00193 1980 28 m total 0.00191 1980 29 m total 0.00191 1980 30 m total 0.00191 1980 31 m total 0.00191 1980 32 m total 0.00193 1980 33 m total 0.00198 1980 34 m total 0.00205 1980 35 m total 0.00216 1980 36 m total 0.00229 1980 37 m total 0.00244 1980 38 m total 0.00261 1980 39 m total 0.0028 1980 40 m total 0.00303 1980 41 m total 0.00332 1980 42 m total 0.00363 1980 43 m total 0.00398 1980 44 m total 0.00435 1980 45 m total 0.00476 1980 46 m total 0.00522 1980 47 m total 0.00576 1980 48 m total 0.00638 1980 49 m total 0.00705 1980 50 m total 0.00775 1980 51 m total 0.00846 1980 52 m total 0.00924 1980 53 m total 0.0101 1980 54 m total 0.01105 1980 55 m total 0.01206 1980 56 m total 0.0131 1980 57 m total 0.01423 1980 58 m total 0.01549 1980 59 m total 0.0169 1980 60 m total 0.01846 1980 61 m total 0.02016 1980 62 m total 0.02201 1980 63 m total 0.02398 1980 64 m total 0.02604 1980 65 m total 0.02817 1980 66 m total 0.03044 1980 67 m total 0.03289 1980 68 m total 0.03563 1980 69 m total 0.03868 1980 70 m total 0.04207 1980 71 m total 0.04571 1980 72 m total 0.04951 1980 73 m total 0.05338 1980 74 m total 0.05736 1980 75 m total 0.06167 1980 76 m total 0.06647 1980 77 m total 0.0717 1980 78 m total 0.0774 1980 79 m total 0.08365 1980 80 m total 0.09069 1980 81 m total 0.09859 1980 82 m total 0.10708 1980 83 m total 0.11579 1980 84 m total 0.12463 1980 85 m total 0.13419 1980 86 m total 0.14479 1980 87 m total 0.15554 1980 88 m total 0.16618 1980 89 m total 0.177 1980 90 m total 0.18848 1980 91 m total 0.20125 1980 92 m total 0.21542 1980 93 m total 0.2308 1980 94 m total 0.24641 1980 95 m total 0.26149 1980 96 m total 0.27438 1980 97 m total 0.28654 1980 98 m total 0.29797 1980 99 m total 0.30867 1980 100 m total 0.31865 1980 101 m total 0.32792 1980 102 m total 0.3365 1980 103 m total 0.34443 1980 104 m total 0.35174 1980 105 m total 0.35845 1980 106 m total 0.36461 1980 107 m total 0.37024 1980 108 m total 0.37539 1980 109 m total 0.38009 1980 0-1d f total 0.00421 1980 1-7d f total 0.00212 1980 7-28d f total 0.00126 1980 0 f total 0.0112 1980 1 f total 0.00086 1980 2 f total 0.00056 1980 3 f total 0.00042 1980 4 f total 0.00033 1980 5 f total 0.00031 1980 6 f total 0.00027 1980 7 f total 0.00024 1980 8 f total 0.00022 1980 9 f total 0.00019 1980 10 f total 0.00018 1980 11 f total 0.00018 1980 12 f total 2e-04 1980 13 f total 0.00026 1980 14 f total 0.00033 1980 15 f total 4e-04 1980 16 f total 0.00047 1980 17 f total 0.00052 1980 18 f total 0.00055 1980 19 f total 0.00057 1980 20 f total 0.00058 1980 21 f total 6e-04 1980 22 f total 0.00062 1980 23 f total 0.00063 1980 24 f total 0.00064 1980 25 f total 0.00065 1980 26 f total 0.00066 1980 27 f total 0.00067 1980 28 f total 7e-04 1980 29 f total 0.00072 1980 30 f total 0.00075 1980 31 f total 0.00079 1980 32 f total 0.00083 1980 33 f total 0.00089 1980 34 f total 0.00096 1980 35 f total 0.00104 1980 36 f total 0.00114 1980 37 f total 0.00125 1980 38 f total 0.00137 1980 39 f total 0.00149 1980 40 f total 0.00163 1980 41 f total 0.0018 1980 42 f total 0.00199 1980 43 f total 0.00218 1980 44 f total 0.00239 1980 45 f total 0.00262 1980 46 f total 0.00286 1980 47 f total 0.00315 1980 48 f total 0.00347 1980 49 f total 0.00381 1980 50 f total 0.00416 1980 51 f total 0.00452 1980 52 f total 0.0049 1980 53 f total 0.00532 1980 54 f total 0.00578 1980 55 f total 0.00627 1980 56 f total 0.00678 1980 57 f total 0.00733 1980 58 f total 0.00796 1980 59 f total 0.00867 1980 60 f total 0.00947 1980 61 f total 0.01035 1980 62 f total 0.01129 1980 63 f total 0.01226 1980 64 f total 0.01325 1980 65 f total 0.01427 1980 66 f total 0.01538 1980 67 f total 0.01664 1980 68 f total 0.01811 1980 69 f total 0.0198 1980 70 f total 0.02169 1980 71 f total 0.02375 1980 72 f total 0.026 1980 73 f total 0.02842 1980 74 f total 0.03106 1980 75 f total 0.03388 1980 76 f total 0.03704 1980 77 f total 0.04073 1980 78 f total 0.04515 1980 79 f total 0.05033 1980 80 f total 0.05622 1980 81 f total 0.06269 1980 82 f total 0.06973 1980 83 f total 0.07722 1980 84 f total 0.08519 1980 85 f total 0.09409 1980 86 f total 0.10405 1980 87 f total 0.1142 1980 88 f total 0.12427 1980 89 f total 0.13471 1980 90 f total 0.14661 1980 91 f total 0.16024 1980 92 f total 0.1746 1980 93 f total 0.18904 1980 94 f total 0.20348 1980 95 f total 0.21823 1980 96 f total 0.23221 1980 97 f total 0.2456 1980 98 f total 0.25834 1980 99 f total 0.2704 1980 100 f total 0.28176 1980 101 f total 0.29242 1980 102 f total 0.30237 1980 103 f total 0.31163 1980 104 f total 0.32023 1980 105 f total 0.32817 1980 106 f total 0.3355 1980 107 f total 0.34224 1980 108 f total 0.34843 1980 109 f total 0.35411 1980 0-1d m white 0.00438 1980 1-7d m white 0.00256 1980 7-28d m white 0.00139 1980 0 m white 0.01231 1980 1 m white 0.00092 1980 2 m white 0.00066 1980 3 m white 0.00053 1980 4 m white 0.00043 1980 5 m white 0.00039 1980 6 m white 0.00037 1980 7 m white 0.00034 1980 8 m white 3e-04 1980 9 m white 0.00024 1980 10 m white 0.00019 1980 11 m white 0.00019 1980 12 m white 0.00028 1980 13 m white 0.00046 1980 14 m white 0.00071 1980 15 m white 0.00096 1980 16 m white 0.00118 1980 17 m white 0.00137 1980 18 m white 0.00151 1980 19 m white 0.00163 1980 20 m white 0.00175 1980 21 m white 0.00186 1980 22 m white 0.00193 1980 23 m white 0.00193 1980 24 m white 0.00189 1980 25 m white 0.00183 1980 26 m white 0.00177 1980 27 m white 0.00172 1980 28 m white 0.00168 1980 29 m white 0.00167 1980 30 m white 0.00166 1980 31 m white 0.00165 1980 32 m white 0.00166 1980 33 m white 0.00169 1980 34 m white 0.00175 1980 35 m white 0.00184 1980 36 m white 0.00196 1980 37 m white 0.00209 1980 38 m white 0.00224 1980 39 m white 0.0024 1980 40 m white 0.00261 1980 41 m white 0.00287 1980 42 m white 0.00316 1980 43 m white 0.00348 1980 44 m white 0.00382 1980 45 m white 0.0042 1980 46 m white 0.00463 1980 47 m white 0.00514 1980 48 m white 0.00573 1980 49 m white 0.00639 1980 50 m white 0.00706 1980 51 m white 0.00775 1980 52 m white 0.0085 1980 53 m white 0.00934 1980 54 m white 0.01027 1980 55 m white 0.01125 1980 56 m white 0.01227 1980 57 m white 0.01338 1980 58 m white 0.01464 1980 59 m white 0.01605 1980 60 m white 0.01762 1980 61 m white 0.01933 1980 62 m white 0.02119 1980 63 m white 0.02316 1980 64 m white 0.02523 1980 65 m white 0.02738 1980 66 m white 0.02968 1980 67 m white 0.03218 1980 68 m white 0.03495 1980 69 m white 0.03805 1980 70 m white 0.04148 1980 71 m white 0.04516 1980 72 m white 0.04901 1980 73 m white 0.05295 1980 74 m white 0.05703 1980 75 m white 0.06146 1980 76 m white 0.06642 1980 77 m white 0.0718 1980 78 m white 0.07762 1980 79 m white 0.08394 1980 80 m white 0.09099 1980 81 m white 0.09886 1980 82 m white 0.10733 1980 83 m white 0.11613 1980 84 m white 0.12523 1980 85 m white 0.13507 1980 86 m white 0.14592 1980 87 m white 0.15691 1980 88 m white 0.16774 1980 89 m white 0.17875 1980 90 m white 0.19058 1980 91 m white 0.20389 1980 92 m white 0.21864 1980 93 m white 0.23453 1980 94 m white 0.25061 1980 95 m white 0.26617 1980 96 m white 0.28001 1980 97 m white 0.29311 1980 98 m white 0.30545 1980 99 m white 0.31703 1980 100 m white 0.32784 1980 101 m white 0.33791 1980 102 m white 0.34724 1980 103 m white 0.35588 1980 104 m white 0.36384 1980 105 m white 0.37117 1980 106 m white 0.3779 1980 107 m white 0.38407 1980 108 m white 0.38971 1980 109 m white 0.39486 1980 0-1d f white 0.00361 1980 1-7d f white 0.0019 1980 7-28d f white 0.00111 1980 0 f white 0.00965 1980 1 f white 0.00077 1980 2 f white 0.00051 1980 3 f white 0.00037 1980 4 f white 3e-04 1980 5 f white 0.00028 1980 6 f white 0.00026 1980 7 f white 0.00023 1980 8 f white 0.00021 1980 9 f white 0.00018 1980 10 f white 0.00017 1980 11 f white 0.00016 1980 12 f white 0.00019 1980 13 f white 0.00025 1980 14 f white 0.00032 1980 15 f white 4e-04 1980 16 f white 0.00047 1980 17 f white 0.00052 1980 18 f white 0.00054 1980 19 f white 0.00055 1980 20 f white 0.00056 1980 21 f white 0.00057 1980 22 f white 0.00057 1980 23 f white 0.00058 1980 24 f white 0.00058 1980 25 f white 0.00058 1980 26 f white 0.00058 1980 27 f white 0.00059 1980 28 f white 6e-04 1980 29 f white 0.00063 1980 30 f white 0.00065 1980 31 f white 0.00068 1980 32 f white 0.00072 1980 33 f white 0.00077 1980 34 f white 0.00083 1980 35 f white 9e-04 1980 36 f white 0.00099 1980 37 f white 0.00109 1980 38 f white 0.00119 1980 39 f white 0.0013 1980 40 f white 0.00143 1980 41 f white 0.00158 1980 42 f white 0.00174 1980 43 f white 0.00192 1980 44 f white 0.00211 1980 45 f white 0.00231 1980 46 f white 0.00254 1980 47 f white 0.0028 1980 48 f white 0.0031 1980 49 f white 0.00343 1980 50 f white 0.00376 1980 51 f white 0.0041 1980 52 f white 0.00447 1980 53 f white 0.00488 1980 54 f white 0.00532 1980 55 f white 0.00579 1980 56 f white 0.00628 1980 57 f white 0.00681 1980 58 f white 0.00742 1980 59 f white 0.00811 1980 60 f white 0.00889 1980 61 f white 0.00975 1980 62 f white 0.01067 1980 63 f white 0.01162 1980 64 f white 0.01259 1980 65 f white 0.01359 1980 66 f white 0.0147 1980 67 f white 0.01595 1980 68 f white 0.0174 1980 69 f white 0.01907 1980 70 f white 0.02092 1980 71 f white 0.02294 1980 72 f white 0.02517 1980 73 f white 0.0276 1980 74 f white 0.03027 1980 75 f white 0.03315 1980 76 f white 0.03637 1980 77 f white 0.04015 1980 78 f white 0.04467 1980 79 f white 0.04995 1980 80 f white 0.05589 1980 81 f white 0.06239 1980 82 f white 0.06949 1980 83 f white 0.07713 1980 84 f white 0.08539 1980 85 f white 0.09463 1980 86 f white 0.10491 1980 87 f white 0.11534 1980 88 f white 0.12559 1980 89 f white 0.13617 1980 90 f white 0.14831 1980 91 f white 0.16231 1980 92 f white 0.17709 1980 93 f white 0.19198 1980 94 f white 0.2069 1980 95 f white 0.22228 1980 96 f white 0.23729 1980 97 f white 0.25173 1980 98 f white 0.26551 1980 99 f white 0.27859 1980 100 f white 0.29094 1980 101 f white 0.30255 1980 102 f white 0.31342 1980 103 f white 0.32355 1980 104 f white 0.33297 1980 105 f white 0.34168 1980 106 f white 0.34973 1980 107 f white 0.35715 1980 108 f white 0.36397 1980 109 f white 0.37022 1980 0-1d m nonwhite 0.00869 1980 1-7d m nonwhite 0.00421 1980 7-28d m nonwhite 0.0023 1980 0 m nonwhite 0.02061 1980 1 m nonwhite 0.00139 1980 2 m nonwhite 0.00101 1980 3 m nonwhite 0.00082 1980 4 m nonwhite 0.00066 1980 5 m nonwhite 0.00058 1980 6 m nonwhite 0.00051 1980 7 m nonwhite 0.00045 1980 8 m nonwhite 0.00039 1980 9 m nonwhite 0.00034 1980 10 m nonwhite 3e-04 1980 11 m nonwhite 0.00031 1980 12 m nonwhite 0.00039 1980 13 m nonwhite 0.00055 1980 14 m nonwhite 0.00076 1980 15 m nonwhite 0.00098 1980 16 m nonwhite 0.00119 1980 17 m nonwhite 0.0014 1980 18 m nonwhite 0.00162 1980 19 m nonwhite 0.00186 1980 20 m nonwhite 0.00212 1980 21 m nonwhite 0.00239 1980 22 m nonwhite 0.00262 1980 23 m nonwhite 0.00279 1980 24 m nonwhite 0.00291 1980 25 m nonwhite 0.00302 1980 26 m nonwhite 0.00314 1980 27 m nonwhite 0.00325 1980 28 m nonwhite 0.00335 1980 29 m nonwhite 0.00346 1980 30 m nonwhite 0.00356 1980 31 m nonwhite 0.00367 1980 32 m nonwhite 0.00379 1980 33 m nonwhite 0.00395 1980 34 m nonwhite 0.00413 1980 35 m nonwhite 0.00436 1980 36 m nonwhite 0.00461 1980 37 m nonwhite 0.00491 1980 38 m nonwhite 0.00523 1980 39 m nonwhite 0.00557 1980 40 m nonwhite 0.00595 1980 41 m nonwhite 0.00638 1980 42 m nonwhite 0.00687 1980 43 m nonwhite 0.00743 1980 44 m nonwhite 0.00807 1980 45 m nonwhite 0.00877 1980 46 m nonwhite 0.00952 1980 47 m nonwhite 0.01036 1980 48 m nonwhite 0.01128 1980 49 m nonwhite 0.01225 1980 50 m nonwhite 0.01323 1980 51 m nonwhite 0.01424 1980 52 m nonwhite 0.01531 1980 53 m nonwhite 0.01648 1980 54 m nonwhite 0.01774 1980 55 m nonwhite 0.01905 1980 56 m nonwhite 0.02039 1980 57 m nonwhite 0.02174 1980 58 m nonwhite 0.02312 1980 59 m nonwhite 0.02459 1980 60 m nonwhite 0.02619 1980 61 m nonwhite 0.02794 1980 62 m nonwhite 0.02981 1980 63 m nonwhite 0.03172 1980 64 m nonwhite 0.03361 1980 65 m nonwhite 0.03545 1980 66 m nonwhite 0.03733 1980 67 m nonwhite 0.03936 1980 68 m nonwhite 0.04171 1980 69 m nonwhite 0.04445 1980 70 m nonwhite 0.04754 1980 71 m nonwhite 0.05084 1980 72 m nonwhite 0.05421 1980 73 m nonwhite 0.05742 1980 74 m nonwhite 0.06046 1980 75 m nonwhite 0.06356 1980 76 m nonwhite 0.06699 1980 77 m nonwhite 0.07083 1980 78 m nonwhite 0.07538 1980 79 m nonwhite 0.08088 1980 80 m nonwhite 0.08772 1980 81 m nonwhite 0.09578 1980 82 m nonwhite 0.10433 1980 83 m nonwhite 0.1119 1980 84 m nonwhite 0.11781 1980 85 m nonwhite 0.12406 1980 86 m nonwhite 0.13154 1980 87 m nonwhite 0.13945 1980 88 m nonwhite 0.14805 1980 89 m nonwhite 0.15729 1980 90 m nonwhite 0.16621 1980 91 m nonwhite 0.17527 1980 92 m nonwhite 0.18599 1980 93 m nonwhite 0.19866 1980 94 m nonwhite 0.21229 1980 95 m nonwhite 0.22554 1980 96 m nonwhite 0.23274 1980 97 m nonwhite 0.23944 1980 98 m nonwhite 0.24563 1980 99 m nonwhite 0.25135 1980 100 m nonwhite 0.25662 1980 101 m nonwhite 0.26146 1980 102 m nonwhite 0.2659 1980 103 m nonwhite 0.26996 1980 104 m nonwhite 0.27367 1980 105 m nonwhite 0.27706 1980 106 m nonwhite 0.28014 1980 107 m nonwhite 0.28295 1980 108 m nonwhite 0.2855 1980 109 m nonwhite 0.28782 1980 0-1d f nonwhite 0.00741 1980 1-7d f nonwhite 0.00331 1980 7-28d f nonwhite 0.00207 1980 0 f nonwhite 0.01739 1980 1 f nonwhite 0.0012 1980 2 f nonwhite 8e-04 1980 3 f nonwhite 0.00063 1980 4 f nonwhite 0.00046 1980 5 f nonwhite 0.00041 1980 6 f nonwhite 0.00034 1980 7 f nonwhite 0.00029 1980 8 f nonwhite 0.00026 1980 9 f nonwhite 0.00024 1980 10 f nonwhite 0.00023 1980 11 f nonwhite 0.00024 1980 12 f nonwhite 0.00026 1980 13 f nonwhite 0.00031 1980 14 f nonwhite 0.00036 1980 15 f nonwhite 0.00043 1980 16 f nonwhite 0.00049 1980 17 f nonwhite 0.00055 1980 18 f nonwhite 6e-04 1980 19 f nonwhite 0.00066 1980 20 f nonwhite 0.00072 1980 21 f nonwhite 0.00078 1980 22 f nonwhite 0.00084 1980 23 f nonwhite 9e-04 1980 24 f nonwhite 0.00096 1980 25 f nonwhite 0.00102 1980 26 f nonwhite 0.00109 1980 27 f nonwhite 0.00115 1980 28 f nonwhite 0.00121 1980 29 f nonwhite 0.00127 1980 30 f nonwhite 0.00133 1980 31 f nonwhite 0.0014 1980 32 f nonwhite 0.00148 1980 33 f nonwhite 0.00159 1980 34 f nonwhite 0.00172 1980 35 f nonwhite 0.00187 1980 36 f nonwhite 0.00205 1980 37 f nonwhite 0.00224 1980 38 f nonwhite 0.00245 1980 39 f nonwhite 0.00266 1980 40 f nonwhite 0.0029 1980 41 f nonwhite 0.00316 1980 42 f nonwhite 0.00345 1980 43 f nonwhite 0.00378 1980 44 f nonwhite 0.00413 1980 45 f nonwhite 0.00451 1980 46 f nonwhite 0.00492 1980 47 f nonwhite 0.00537 1980 48 f nonwhite 0.00585 1980 49 f nonwhite 0.00636 1980 50 f nonwhite 0.00688 1980 51 f nonwhite 0.0074 1980 52 f nonwhite 0.00796 1980 53 f nonwhite 0.00858 1980 54 f nonwhite 0.00927 1980 55 f nonwhite 0.01001 1980 56 f nonwhite 0.01079 1980 57 f nonwhite 0.01161 1980 58 f nonwhite 0.01247 1980 59 f nonwhite 0.0134 1980 60 f nonwhite 0.01441 1980 61 f nonwhite 0.01552 1980 62 f nonwhite 0.01668 1980 63 f nonwhite 0.01785 1980 64 f nonwhite 0.01898 1980 65 f nonwhite 0.02007 1980 66 f nonwhite 0.0212 1980 67 f nonwhite 0.02253 1980 68 f nonwhite 0.02422 1980 69 f nonwhite 0.02631 1980 70 f nonwhite 0.02875 1980 71 f nonwhite 0.03138 1980 72 f nonwhite 0.03408 1980 73 f nonwhite 0.03659 1980 74 f nonwhite 0.03888 1980 75 f nonwhite 0.04114 1980 76 f nonwhite 0.04363 1980 77 f nonwhite 0.04648 1980 78 f nonwhite 0.05001 1980 79 f nonwhite 0.05442 1980 80 f nonwhite 0.05992 1980 81 f nonwhite 0.06626 1980 82 f nonwhite 0.07279 1980 83 f nonwhite 0.07834 1980 84 f nonwhite 0.08251 1980 85 f nonwhite 0.08685 1980 86 f nonwhite 0.09238 1980 87 f nonwhite 0.09881 1980 88 f nonwhite 0.10652 1980 89 f nonwhite 0.11547 1980 90 f nonwhite 0.12514 1980 91 f nonwhite 0.13529 1980 92 f nonwhite 0.14624 1980 93 f nonwhite 0.15791 1980 94 f nonwhite 0.17016 1980 95 f nonwhite 0.18279 1980 96 f nonwhite 0.1917 1980 97 f nonwhite 0.20022 1980 98 f nonwhite 0.20825 1980 99 f nonwhite 0.21577 1980 100 f nonwhite 0.22279 1980 101 f nonwhite 0.2293 1980 102 f nonwhite 0.23534 1980 103 f nonwhite 0.24091 1980 104 f nonwhite 0.24605 1980 105 f nonwhite 0.25077 1980 106 f nonwhite 0.2551 1980 107 f nonwhite 0.25907 1980 108 f nonwhite 0.26269 1980 109 f nonwhite 0.266 1980 0-1d m black 0.00768 1980 1-7d m black 0.00372 1980 7-28d m black 0.00206 1980 0 m black 0.02297 1980 1 m black 0.00148 1980 2 m black 0.0011 1980 3 m black 0.00086 1980 4 m black 7e-04 1980 5 m black 0.00063 1980 6 m black 0.00055 1980 7 m black 0.00049 1980 8 m black 0.00043 1980 9 m black 0.00037 1980 10 m black 0.00033 1980 11 m black 0.00034 1980 12 m black 0.00041 1980 13 m black 0.00057 1980 14 m black 0.00078 1980 15 m black 0.00099 1980 16 m black 0.0012 1980 17 m black 0.00142 1980 18 m black 0.00165 1980 19 m black 0.00191 1980 20 m black 0.00221 1980 21 m black 0.00251 1980 22 m black 0.00279 1980 23 m black 0.003 1980 24 m black 0.00315 1980 25 m black 0.0033 1980 26 m black 0.00346 1980 27 m black 0.00362 1980 28 m black 0.00377 1980 29 m black 0.00392 1980 30 m black 0.00408 1980 31 m black 0.00424 1980 32 m black 0.00441 1980 33 m black 0.0046 1980 34 m black 0.00483 1980 35 m black 0.00509 1980 36 m black 0.00539 1980 37 m black 0.00572 1980 38 m black 0.00609 1980 39 m black 0.00648 1980 40 m black 0.00691 1980 41 m black 0.00739 1980 42 m black 0.00794 1980 43 m black 0.00857 1980 44 m black 0.00929 1980 45 m black 0.01007 1980 46 m black 0.0109 1980 47 m black 0.01181 1980 48 m black 0.0128 1980 49 m black 0.01384 1980 50 m black 0.01488 1980 51 m black 0.01594 1980 52 m black 0.01709 1980 53 m black 0.01835 1980 54 m black 0.01972 1980 55 m black 0.02116 1980 56 m black 0.02262 1980 57 m black 0.02408 1980 58 m black 0.02556 1980 59 m black 0.02711 1980 60 m black 0.02877 1980 61 m black 0.03058 1980 62 m black 0.03252 1980 63 m black 0.03452 1980 64 m black 0.03651 1980 65 m black 0.03846 1980 66 m black 0.04044 1980 67 m black 0.0426 1980 68 m black 0.04511 1980 69 m black 0.04804 1980 70 m black 0.05141 1980 71 m black 0.05501 1980 72 m black 0.05866 1980 73 m black 0.06202 1980 74 m black 0.06508 1980 75 m black 0.06814 1980 76 m black 0.07154 1980 77 m black 0.07537 1980 78 m black 0.07999 1980 79 m black 0.08566 1980 80 m black 0.09268 1980 81 m black 0.10087 1980 82 m black 0.10953 1980 83 m black 0.11714 1980 84 m black 0.12302 1980 85 m black 0.12872 1980 86 m black 0.13559 1980 87 m black 0.14282 1980 88 m black 0.15071 1980 89 m black 0.15928 1980 90 m black 0.16761 1980 91 m black 0.17617 1980 92 m black 0.18648 1980 93 m black 0.19888 1980 94 m black 0.21236 1980 95 m black 0.22554 1980 96 m black 0.23274 1980 97 m black 0.23944 1980 98 m black 0.24563 1980 99 m black 0.25135 1980 100 m black 0.25662 1980 101 m black 0.26146 1980 102 m black 0.2659 1980 103 m black 0.26996 1980 104 m black 0.27367 1980 105 m black 0.27706 1980 106 m black 0.28014 1980 107 m black 0.28295 1980 108 m black 0.2855 1980 109 m black 0.28782 1980 0-1d f black 0.0066 1980 1-7d f black 0.00298 1980 7-28d f black 0.00186 1980 0 f black 0.01927 1980 1 f black 0.00127 1980 2 f black 0.00087 1980 3 f black 0.00066 1980 4 f black 0.00048 1980 5 f black 0.00044 1980 6 f black 0.00037 1980 7 f black 0.00031 1980 8 f black 0.00027 1980 9 f black 0.00025 1980 10 f black 0.00024 1980 11 f black 0.00024 1980 12 f black 0.00027 1980 13 f black 0.00031 1980 14 f black 0.00037 1980 15 f black 0.00043 1980 16 f black 0.00049 1980 17 f black 0.00056 1980 18 f black 0.00062 1980 19 f black 0.00068 1980 20 f black 0.00074 1980 21 f black 0.00081 1980 22 f black 0.00088 1980 23 f black 0.00095 1980 24 f black 0.00102 1980 25 f black 0.00109 1980 26 f black 0.00118 1980 27 f black 0.00126 1980 28 f black 0.00133 1980 29 f black 0.0014 1980 30 f black 0.00148 1980 31 f black 0.00157 1980 32 f black 0.00168 1980 33 f black 0.0018 1980 34 f black 0.00194 1980 35 f black 0.00211 1980 36 f black 0.00231 1980 37 f black 0.00252 1980 38 f black 0.00275 1980 39 f black 0.00298 1980 40 f black 0.00324 1980 41 f black 0.00352 1980 42 f black 0.00385 1980 43 f black 0.00421 1980 44 f black 0.00462 1980 45 f black 0.00505 1980 46 f black 0.00552 1980 47 f black 0.00602 1980 48 f black 0.00655 1980 49 f black 0.0071 1980 50 f black 0.00765 1980 51 f black 0.00821 1980 52 f black 0.00882 1980 53 f black 0.0095 1980 54 f black 0.01026 1980 55 f black 0.01107 1980 56 f black 0.01192 1980 57 f black 0.0128 1980 58 f black 0.01372 1980 59 f black 0.0147 1980 60 f black 0.01577 1980 61 f black 0.01695 1980 62 f black 0.01817 1980 63 f black 0.01936 1980 64 f black 0.0205 1980 65 f black 0.02158 1980 66 f black 0.02272 1980 67 f black 0.02408 1980 68 f black 0.02587 1980 69 f black 0.0281 1980 70 f black 0.03072 1980 71 f black 0.03354 1980 72 f black 0.03639 1980 73 f black 0.03899 1980 74 f black 0.04132 1980 75 f black 0.0436 1980 76 f black 0.04615 1980 77 f black 0.04909 1980 78 f black 0.05282 1980 79 f black 0.05754 1980 80 f black 0.0635 1980 81 f black 0.07041 1980 82 f black 0.07751 1980 83 f black 0.08335 1980 84 f black 0.08744 1980 85 f black 0.09106 1980 86 f black 0.09591 1980 87 f black 0.10168 1980 88 f black 0.10886 1980 89 f black 0.11738 1980 90 f black 0.12656 1980 91 f black 0.13619 1980 92 f black 0.14672 1980 93 f black 0.15816 1980 94 f black 0.17027 1980 95 f black 0.18279 1980 96 f black 0.1917 1980 97 f black 0.20022 1980 98 f black 0.20825 1980 99 f black 0.21577 1980 100 f black 0.22279 1980 101 f black 0.2293 1980 102 f black 0.23534 1980 103 f black 0.24091 1980 104 f black 0.24605 1980 105 f black 0.25077 1980 106 f black 0.2551 1980 107 f black 0.25907 1980 108 f black 0.26269 1980 109 f black 0.266 1990 0-1d m total 0.00381 1990 1-7d m total 0.00153 1990 7-28d m total 0.00116 1990 0 m total 0.01039 1990 1 m total 0.00078 1990 2 m total 0.00054 1990 3 m total 0.00042 1990 4 m total 0.00035 1990 5 m total 0.00031 1990 6 m total 0.00028 1990 7 m total 0.00026 1990 8 m total 0.00023 1990 9 m total 2e-04 1990 10 m total 0.00017 1990 11 m total 0.00017 1990 12 m total 0.00025 1990 13 m total 0.00042 1990 14 m total 0.00064 1990 15 m total 0.00089 1990 16 m total 0.00112 1990 17 m total 0.0013 1990 18 m total 0.00142 1990 19 m total 0.00148 1990 20 m total 0.00155 1990 21 m total 0.00161 1990 22 m total 0.00167 1990 23 m total 0.0017 1990 24 m total 0.00173 1990 25 m total 0.00174 1990 26 m total 0.00176 1990 27 m total 0.0018 1990 28 m total 0.00187 1990 29 m total 0.00196 1990 30 m total 0.00205 1990 31 m total 0.00215 1990 32 m total 0.00224 1990 33 m total 0.00234 1990 34 m total 0.00245 1990 35 m total 0.00257 1990 36 m total 0.0027 1990 37 m total 0.00282 1990 38 m total 0.00293 1990 39 m total 0.00304 1990 40 m total 0.00315 1990 41 m total 0.00328 1990 42 m total 0.00344 1990 43 m total 0.00365 1990 44 m total 0.0039 1990 45 m total 0.00421 1990 46 m total 0.00457 1990 47 m total 0.00496 1990 48 m total 0.00537 1990 49 m total 0.0058 1990 50 m total 0.0063 1990 51 m total 0.00689 1990 52 m total 0.00755 1990 53 m total 0.00828 1990 54 m total 0.00909 1990 55 m total 0.00995 1990 56 m total 0.01089 1990 57 m total 0.01197 1990 58 m total 0.0132 1990 59 m total 0.01455 1990 60 m total 0.01591 1990 61 m total 0.0173 1990 62 m total 0.01877 1990 63 m total 0.02039 1990 64 m total 0.02214 1990 65 m total 0.02397 1990 66 m total 0.02586 1990 67 m total 0.02793 1990 68 m total 0.0303 1990 69 m total 0.03301 1990 70 m total 0.03607 1990 71 m total 0.03945 1990 72 m total 0.0431 1990 73 m total 0.0469 1990 74 m total 0.05079 1990 75 m total 0.05492 1990 76 m total 0.05943 1990 77 m total 0.0643 1990 78 m total 0.06969 1990 79 m total 0.07576 1990 80 m total 0.08283 1990 81 m total 0.09078 1990 82 m total 0.09911 1990 83 m total 0.10718 1990 84 m total 0.11497 1990 85 m total 0.12378 1990 86 m total 0.13424 1990 87 m total 0.1456 1990 88 m total 0.1577 1990 89 m total 0.17058 1990 90 m total 0.1846 1990 91 m total 0.19998 1990 92 m total 0.21596 1990 93 m total 0.23158 1990 94 m total 0.24618 1990 95 m total 0.26004 1990 96 m total 0.27536 1990 97 m total 0.28943 1990 98 m total 0.3039 1990 99 m total 0.3191 1990 100 m total 0.33505 1990 101 m total 0.35181 1990 102 m total 0.3694 1990 103 m total 0.38787 1990 104 m total 0.40726 1990 105 m total 0.42762 1990 106 m total 0.449 1990 107 m total 0.47145 1990 108 m total 0.49503 1990 109 m total 0.51978 1990 0-1d f total 0.00318 1990 1-7d f total 0.00116 1990 7-28d f total 0.00092 1990 0 f total 0.00828 1990 1 f total 0.00068 1990 2 f total 0.00042 1990 3 f total 0.00032 1990 4 f total 0.00025 1990 5 f total 0.00024 1990 6 f total 0.00021 1990 7 f total 0.00019 1990 8 f total 0.00017 1990 9 f total 0.00016 1990 10 f total 0.00015 1990 11 f total 0.00015 1990 12 f total 0.00018 1990 13 f total 0.00022 1990 14 f total 0.00028 1990 15 f total 0.00035 1990 16 f total 0.00041 1990 17 f total 0.00046 1990 18 f total 0.00049 1990 19 f total 5e-04 1990 20 f total 0.00052 1990 21 f total 0.00054 1990 22 f total 0.00056 1990 23 f total 0.00057 1990 24 f total 0.00058 1990 25 f total 0.00059 1990 26 f total 6e-04 1990 27 f total 0.00062 1990 28 f total 0.00066 1990 29 f total 7e-04 1990 30 f total 0.00075 1990 31 f total 8e-04 1990 32 f total 0.00085 1990 33 f total 9e-04 1990 34 f total 0.00095 1990 35 f total 0.00101 1990 36 f total 0.00107 1990 37 f total 0.00115 1990 38 f total 0.00123 1990 39 f total 0.00132 1990 40 f total 0.00142 1990 41 f total 0.00153 1990 42 f total 0.00166 1990 43 f total 0.0018 1990 44 f total 0.00198 1990 45 f total 0.00218 1990 46 f total 0.00242 1990 47 f total 0.00268 1990 48 f total 0.00295 1990 49 f total 0.00324 1990 50 f total 0.00356 1990 51 f total 0.00394 1990 52 f total 0.00434 1990 53 f total 0.00476 1990 54 f total 0.0052 1990 55 f total 0.00566 1990 56 f total 0.00618 1990 57 f total 0.00677 1990 58 f total 0.00745 1990 59 f total 0.00819 1990 60 f total 0.00895 1990 61 f total 0.00972 1990 62 f total 0.01055 1990 63 f total 0.01146 1990 64 f total 0.01244 1990 65 f total 0.01348 1990 66 f total 0.01456 1990 67 f total 0.01574 1990 68 f total 0.01709 1990 69 f total 0.01865 1990 70 f total 0.02042 1990 71 f total 0.02239 1990 72 f total 0.02457 1990 73 f total 0.02688 1990 74 f total 0.0293 1990 75 f total 0.03181 1990 76 f total 0.03456 1990 77 f total 0.03772 1990 78 f total 0.04151 1990 79 f total 0.04599 1990 80 f total 0.05106 1990 81 f total 0.05659 1990 82 f total 0.06265 1990 83 f total 0.06919 1990 84 f total 0.07631 1990 85 f total 0.08446 1990 86 f total 0.09376 1990 87 f total 0.10379 1990 88 f total 0.11442 1990 89 f total 0.1259 1990 90 f total 0.13918 1990 91 f total 0.15417 1990 92 f total 0.16951 1990 93 f total 0.1844 1990 94 f total 0.19922 1990 95 f total 0.21475 1990 96 f total 0.23143 1990 97 f total 0.24775 1990 98 f total 0.26375 1990 99 f total 0.27957 1990 100 f total 0.29635 1990 101 f total 0.31413 1990 102 f total 0.33298 1990 103 f total 0.35296 1990 104 f total 0.37413 1990 105 f total 0.39658 1990 106 f total 0.42038 1990 107 f total 0.4456 1990 108 f total 0.47233 1990 109 f total 0.50068 1990 0-1d m white 0.00302 1990 1-7d m white 0.00134 1990 7-28d m white 0.001 1990 0 m white 0.00862 1990 1 m white 0.00066 1990 2 m white 0.00049 1990 3 m white 0.00037 1990 4 m white 0.00032 1990 5 m white 0.00028 1990 6 m white 0.00026 1990 7 m white 0.00024 1990 8 m white 0.00022 1990 9 m white 0.00019 1990 10 m white 0.00016 1990 11 m white 0.00017 1990 12 m white 0.00024 1990 13 m white 0.00039 1990 14 m white 0.00059 1990 15 m white 0.00081 1990 16 m white 0.00102 1990 17 m white 0.00118 1990 18 m white 0.00127 1990 19 m white 0.00132 1990 20 m white 0.00136 1990 21 m white 0.00141 1990 22 m white 0.00145 1990 23 m white 0.00148 1990 24 m white 0.0015 1990 25 m white 0.00151 1990 26 m white 0.00153 1990 27 m white 0.00156 1990 28 m white 0.00162 1990 29 m white 0.00169 1990 30 m white 0.00177 1990 31 m white 0.00185 1990 32 m white 0.00193 1990 33 m white 0.00201 1990 34 m white 0.0021 1990 35 m white 0.00219 1990 36 m white 0.0023 1990 37 m white 0.0024 1990 38 m white 0.0025 1990 39 m white 0.0026 1990 40 m white 0.00271 1990 41 m white 0.00283 1990 42 m white 0.00298 1990 43 m white 0.00317 1990 44 m white 0.00341 1990 45 m white 0.0037 1990 46 m white 0.00404 1990 47 m white 0.00441 1990 48 m white 0.00479 1990 49 m white 0.00518 1990 50 m white 0.00564 1990 51 m white 0.0062 1990 52 m white 0.00683 1990 53 m white 0.00753 1990 54 m white 0.00831 1990 55 m white 0.00913 1990 56 m white 0.01004 1990 57 m white 0.01109 1990 58 m white 0.01231 1990 59 m white 0.01366 1990 60 m white 0.01503 1990 61 m white 0.01641 1990 62 m white 0.01788 1990 63 m white 0.01947 1990 64 m white 0.02118 1990 65 m white 0.02297 1990 66 m white 0.02483 1990 67 m white 0.02689 1990 68 m white 0.02926 1990 69 m white 0.032 1990 70 m white 0.03509 1990 71 m white 0.03848 1990 72 m white 0.04215 1990 73 m white 0.04598 1990 74 m white 0.04993 1990 75 m white 0.05414 1990 76 m white 0.05875 1990 77 m white 0.06372 1990 78 m white 0.0692 1990 79 m white 0.07533 1990 80 m white 0.08246 1990 81 m white 0.09049 1990 82 m white 0.09891 1990 83 m white 0.10715 1990 84 m white 0.11519 1990 85 m white 0.12436 1990 86 m white 0.13522 1990 87 m white 0.14695 1990 88 m white 0.15927 1990 89 m white 0.17219 1990 90 m white 0.18617 1990 91 m white 0.20159 1990 92 m white 0.21773 1990 93 m white 0.23376 1990 94 m white 0.24893 1990 95 m white 0.26329 1990 96 m white 0.27914 1990 97 m white 0.29399 1990 98 m white 0.30869 1990 99 m white 0.32413 1990 100 m white 0.34033 1990 101 m white 0.35735 1990 102 m white 0.37522 1990 103 m white 0.39398 1990 104 m white 0.41368 1990 105 m white 0.43436 1990 106 m white 0.45608 1990 107 m white 0.47888 1990 108 m white 0.50282 1990 109 m white 0.52797 1990 0-1d f white 0.00249 1990 1-7d f white 0.00101 1990 7-28d f white 0.00077 1990 0 f white 0.00667 1990 1 f white 0.00059 1990 2 f white 0.00037 1990 3 f white 0.00029 1990 4 f white 0.00023 1990 5 f white 0.00021 1990 6 f white 0.00019 1990 7 f white 0.00017 1990 8 f white 0.00016 1990 9 f white 0.00015 1990 10 f white 0.00014 1990 11 f white 0.00014 1990 12 f white 0.00017 1990 13 f white 0.00021 1990 14 f white 0.00027 1990 15 f white 0.00034 1990 16 f white 4e-04 1990 17 f white 0.00045 1990 18 f white 0.00047 1990 19 f white 0.00048 1990 20 f white 0.00049 1990 21 f white 5e-04 1990 22 f white 0.00051 1990 23 f white 0.00051 1990 24 f white 0.00051 1990 25 f white 0.00051 1990 26 f white 0.00051 1990 27 f white 0.00053 1990 28 f white 0.00055 1990 29 f white 0.00058 1990 30 f white 0.00062 1990 31 f white 0.00066 1990 32 f white 7e-04 1990 33 f white 0.00074 1990 34 f white 0.00078 1990 35 f white 0.00082 1990 36 f white 0.00088 1990 37 f white 0.00094 1990 38 f white 0.00102 1990 39 f white 0.00111 1990 40 f white 0.00121 1990 41 f white 0.00131 1990 42 f white 0.00143 1990 43 f white 0.00157 1990 44 f white 0.00173 1990 45 f white 0.00193 1990 46 f white 0.00215 1990 47 f white 0.0024 1990 48 f white 0.00265 1990 49 f white 0.00291 1990 50 f white 0.00321 1990 51 f white 0.00356 1990 52 f white 0.00394 1990 53 f white 0.00434 1990 54 f white 0.00476 1990 55 f white 0.00521 1990 56 f white 0.00571 1990 57 f white 0.00628 1990 58 f white 0.00693 1990 59 f white 0.00764 1990 60 f white 0.00837 1990 61 f white 0.00912 1990 62 f white 0.00993 1990 63 f white 0.01081 1990 64 f white 0.01177 1990 65 f white 0.01278 1990 66 f white 0.01383 1990 67 f white 0.015 1990 68 f white 0.01634 1990 69 f white 0.01791 1990 70 f white 0.01969 1990 71 f white 0.02168 1990 72 f white 0.02386 1990 73 f white 0.02618 1990 74 f white 0.0286 1990 75 f white 0.03111 1990 76 f white 0.03387 1990 77 f white 0.03707 1990 78 f white 0.0409 1990 79 f white 0.04542 1990 80 f white 0.05053 1990 81 f white 0.05606 1990 82 f white 0.06215 1990 83 f white 0.06878 1990 84 f white 0.07607 1990 85 f white 0.08445 1990 86 f white 0.09402 1990 87 f white 0.10431 1990 88 f white 0.11512 1990 89 f white 0.12673 1990 90 f white 0.14015 1990 91 f white 0.15536 1990 92 f white 0.17101 1990 93 f white 0.18626 1990 94 f white 0.20148 1990 95 f white 0.21737 1990 96 f white 0.23434 1990 97 f white 0.25091 1990 98 f white 0.26715 1990 99 f white 0.28318 1990 100 f white 0.30017 1990 101 f white 0.31818 1990 102 f white 0.33727 1990 103 f white 0.3575 1990 104 f white 0.37895 1990 105 f white 0.40169 1990 106 f white 0.42579 1990 107 f white 0.45134 1990 108 f white 0.47842 1990 109 f white 0.50712 1990 0-1d m nonwhite 0.00681 1990 1-7d m nonwhite 0.00227 1990 7-28d m nonwhite 0.00176 1990 0 m nonwhite 0.01712 1990 1 m nonwhite 0.00121 1990 2 m nonwhite 0.00077 1990 3 m nonwhite 0.00063 1990 4 m nonwhite 0.00048 1990 5 m nonwhite 0.00042 1990 6 m nonwhite 0.00038 1990 7 m nonwhite 0.00034 1990 8 m nonwhite 3e-04 1990 9 m nonwhite 0.00024 1990 10 m nonwhite 2e-04 1990 11 m nonwhite 2e-04 1990 12 m nonwhite 0.00031 1990 13 m nonwhite 0.00055 1990 14 m nonwhite 0.00087 1990 15 m nonwhite 0.00121 1990 16 m nonwhite 0.00153 1990 17 m nonwhite 0.0018 1990 18 m nonwhite 0.00201 1990 19 m nonwhite 0.00217 1990 20 m nonwhite 0.00234 1990 21 m nonwhite 0.00252 1990 22 m nonwhite 0.00267 1990 23 m nonwhite 0.00276 1990 24 m nonwhite 0.00283 1990 25 m nonwhite 0.00287 1990 26 m nonwhite 0.00292 1990 27 m nonwhite 0.00301 1990 28 m nonwhite 0.00315 1990 29 m nonwhite 0.00333 1990 30 m nonwhite 0.00351 1990 31 m nonwhite 0.00369 1990 32 m nonwhite 0.00389 1990 33 m nonwhite 0.00411 1990 34 m nonwhite 0.00435 1990 35 m nonwhite 0.00462 1990 36 m nonwhite 0.00489 1990 37 m nonwhite 0.00516 1990 38 m nonwhite 0.00538 1990 39 m nonwhite 0.00558 1990 40 m nonwhite 0.00579 1990 41 m nonwhite 0.00603 1990 42 m nonwhite 0.00631 1990 43 m nonwhite 0.00665 1990 44 m nonwhite 0.00705 1990 45 m nonwhite 0.00752 1990 46 m nonwhite 0.00805 1990 47 m nonwhite 0.00864 1990 48 m nonwhite 0.00926 1990 49 m nonwhite 0.00991 1990 50 m nonwhite 0.01061 1990 51 m nonwhite 0.01138 1990 52 m nonwhite 0.01225 1990 53 m nonwhite 0.01326 1990 54 m nonwhite 0.01441 1990 55 m nonwhite 0.01566 1990 56 m nonwhite 0.01698 1990 57 m nonwhite 0.01838 1990 58 m nonwhite 0.01984 1990 59 m nonwhite 0.02134 1990 60 m nonwhite 0.02284 1990 61 m nonwhite 0.0244 1990 62 m nonwhite 0.02613 1990 63 m nonwhite 0.02809 1990 64 m nonwhite 0.03025 1990 65 m nonwhite 0.0325 1990 66 m nonwhite 0.03475 1990 67 m nonwhite 0.03706 1990 68 m nonwhite 0.0395 1990 69 m nonwhite 0.04218 1990 70 m nonwhite 0.04524 1990 71 m nonwhite 0.04867 1990 72 m nonwhite 0.0523 1990 73 m nonwhite 0.05586 1990 74 m nonwhite 0.05921 1990 75 m nonwhite 0.06251 1990 76 m nonwhite 0.06603 1990 77 m nonwhite 0.06988 1990 78 m nonwhite 0.07444 1990 79 m nonwhite 0.07989 1990 80 m nonwhite 0.08644 1990 81 m nonwhite 0.0937 1990 82 m nonwhite 0.10106 1990 83 m nonwhite 0.10749 1990 84 m nonwhite 0.11273 1990 85 m nonwhite 0.11827 1990 86 m nonwhite 0.12507 1990 87 m nonwhite 0.13318 1990 88 m nonwhite 0.14333 1990 89 m nonwhite 0.1556 1990 90 m nonwhite 0.16977 1990 91 m nonwhite 0.18502 1990 92 m nonwhite 0.19999 1990 93 m nonwhite 0.21198 1990 94 m nonwhite 0.22061 1990 95 m nonwhite 0.22903 1990 96 m nonwhite 0.24048 1990 97 m nonwhite 0.2525 1990 98 m nonwhite 0.26513 1990 99 m nonwhite 0.27838 1990 100 m nonwhite 0.2923 1990 101 m nonwhite 0.30692 1990 102 m nonwhite 0.32226 1990 103 m nonwhite 0.33837 1990 104 m nonwhite 0.35529 1990 105 m nonwhite 0.37306 1990 106 m nonwhite 0.39171 1990 107 m nonwhite 0.4113 1990 108 m nonwhite 0.43186 1990 109 m nonwhite 0.45345 1990 0-1d f nonwhite 0.00575 1990 1-7d f nonwhite 0.00174 1990 7-28d f nonwhite 0.00148 1990 0 f nonwhite 0.01428 1990 1 f nonwhite 0.00103 1990 2 f nonwhite 0.00062 1990 3 f nonwhite 0.00047 1990 4 f nonwhite 0.00035 1990 5 f nonwhite 0.00034 1990 6 f nonwhite 0.00029 1990 7 f nonwhite 0.00025 1990 8 f nonwhite 0.00022 1990 9 f nonwhite 2e-04 1990 10 f nonwhite 0.00019 1990 11 f nonwhite 2e-04 1990 12 f nonwhite 0.00022 1990 13 f nonwhite 0.00026 1990 14 f nonwhite 0.00031 1990 15 f nonwhite 0.00037 1990 16 f nonwhite 0.00043 1990 17 f nonwhite 0.00049 1990 18 f nonwhite 0.00055 1990 19 f nonwhite 0.00059 1990 20 f nonwhite 0.00065 1990 21 f nonwhite 7e-04 1990 22 f nonwhite 0.00076 1990 23 f nonwhite 0.00082 1990 24 f nonwhite 0.00088 1990 25 f nonwhite 0.00094 1990 26 f nonwhite 0.001 1990 27 f nonwhite 0.00107 1990 28 f nonwhite 0.00116 1990 29 f nonwhite 0.00126 1990 30 f nonwhite 0.00137 1990 31 f nonwhite 0.00147 1990 32 f nonwhite 0.00157 1990 33 f nonwhite 0.00167 1990 34 f nonwhite 0.00178 1990 35 f nonwhite 0.00189 1990 36 f nonwhite 0.002 1990 37 f nonwhite 0.00213 1990 38 f nonwhite 0.00226 1990 39 f nonwhite 0.00239 1990 40 f nonwhite 0.00254 1990 41 f nonwhite 0.00271 1990 42 f nonwhite 0.00289 1990 43 f nonwhite 0.0031 1990 44 f nonwhite 0.00335 1990 45 f nonwhite 0.00363 1990 46 f nonwhite 0.00396 1990 47 f nonwhite 0.00433 1990 48 f nonwhite 0.00473 1990 49 f nonwhite 0.00515 1990 50 f nonwhite 0.00561 1990 51 f nonwhite 0.00612 1990 52 f nonwhite 0.00665 1990 53 f nonwhite 0.00721 1990 54 f nonwhite 0.00781 1990 55 f nonwhite 0.00843 1990 56 f nonwhite 0.0091 1990 57 f nonwhite 0.00987 1990 58 f nonwhite 0.01077 1990 59 f nonwhite 0.01176 1990 60 f nonwhite 0.01278 1990 61 f nonwhite 0.01381 1990 62 f nonwhite 0.01491 1990 63 f nonwhite 0.0161 1990 64 f nonwhite 0.0174 1990 65 f nonwhite 0.01877 1990 66 f nonwhite 0.02018 1990 67 f nonwhite 0.02162 1990 68 f nonwhite 0.02312 1990 69 f nonwhite 0.02473 1990 70 f nonwhite 0.0265 1990 71 f nonwhite 0.02851 1990 72 f nonwhite 0.03075 1990 73 f nonwhite 0.03315 1990 74 f nonwhite 0.03564 1990 75 f nonwhite 0.03817 1990 76 f nonwhite 0.04082 1990 77 f nonwhite 0.04377 1990 78 f nonwhite 0.04726 1990 79 f nonwhite 0.05146 1990 80 f nonwhite 0.05647 1990 81 f nonwhite 0.06209 1990 82 f nonwhite 0.06803 1990 83 f nonwhite 0.0737 1990 84 f nonwhite 0.07896 1990 85 f nonwhite 0.08452 1990 86 f nonwhite 0.09105 1990 87 f nonwhite 0.09831 1990 88 f nonwhite 0.10667 1990 89 f nonwhite 0.11633 1990 90 f nonwhite 0.12752 1990 91 f nonwhite 0.13979 1990 92 f nonwhite 0.15196 1990 93 f nonwhite 0.16268 1990 94 f nonwhite 0.17245 1990 95 f nonwhite 0.18338 1990 96 f nonwhite 0.19682 1990 97 f nonwhite 0.21089 1990 98 f nonwhite 0.22557 1990 99 f nonwhite 0.23911 1990 100 f nonwhite 0.25346 1990 101 f nonwhite 0.26866 1990 102 f nonwhite 0.28478 1990 103 f nonwhite 0.30187 1990 104 f nonwhite 0.31998 1990 105 f nonwhite 0.33918 1990 106 f nonwhite 0.35953 1990 107 f nonwhite 0.3811 1990 108 f nonwhite 0.40397 1990 109 f nonwhite 0.42821 1990 0-1d m black 0.00811 1990 1-7d m black 0.00263 1990 7-28d m black 0.00201 1990 0 m black 0.01977 1990 1 m black 0.00134 1990 2 m black 0.00085 1990 3 m black 0.00069 1990 4 m black 0.00054 1990 5 m black 0.00048 1990 6 m black 0.00043 1990 7 m black 0.00039 1990 8 m black 0.00034 1990 9 m black 0.00027 1990 10 m black 0.00022 1990 11 m black 0.00023 1990 12 m black 0.00035 1990 13 m black 0.00062 1990 14 m black 0.00097 1990 15 m black 0.00137 1990 16 m black 0.00173 1990 17 m black 0.00205 1990 18 m black 0.00231 1990 19 m black 0.00252 1990 20 m black 0.00274 1990 21 m black 0.00298 1990 22 m black 0.00317 1990 23 m black 0.0033 1990 24 m black 0.00338 1990 25 m black 0.00344 1990 26 m black 0.00351 1990 27 m black 0.00363 1990 28 m black 0.00382 1990 29 m black 0.00407 1990 30 m black 0.00433 1990 31 m black 0.00458 1990 32 m black 0.00485 1990 33 m black 0.00513 1990 34 m black 0.00544 1990 35 m black 0.00577 1990 36 m black 0.00612 1990 37 m black 0.00645 1990 38 m black 0.00675 1990 39 m black 0.00702 1990 40 m black 0.0073 1990 41 m black 0.00762 1990 42 m black 0.00799 1990 43 m black 0.00841 1990 44 m black 0.0089 1990 45 m black 0.00946 1990 46 m black 0.0101 1990 47 m black 0.01081 1990 48 m black 0.01155 1990 49 m black 0.01232 1990 50 m black 0.01314 1990 51 m black 0.01404 1990 52 m black 0.01504 1990 53 m black 0.01619 1990 54 m black 0.01748 1990 55 m black 0.01885 1990 56 m black 0.02029 1990 57 m black 0.02181 1990 58 m black 0.0234 1990 59 m black 0.02506 1990 60 m black 0.02672 1990 61 m black 0.02842 1990 62 m black 0.03033 1990 63 m black 0.0325 1990 64 m black 0.03489 1990 65 m black 0.03739 1990 66 m black 0.03989 1990 67 m black 0.04244 1990 68 m black 0.04511 1990 69 m black 0.04801 1990 70 m black 0.05131 1990 71 m black 0.055 1990 72 m black 0.05885 1990 73 m black 0.06255 1990 74 m black 0.06599 1990 75 m black 0.06931 1990 76 m black 0.07285 1990 77 m black 0.07675 1990 78 m black 0.08145 1990 79 m black 0.08713 1990 80 m black 0.09403 1990 81 m black 0.10169 1990 82 m black 0.10937 1990 83 m black 0.11578 1990 84 m black 0.12062 1990 85 m black 0.12515 1990 86 m black 0.13086 1990 87 m black 0.13796 1990 88 m black 0.14736 1990 89 m black 0.15912 1990 90 m black 0.17285 1990 91 m black 0.18751 1990 92 m black 0.20162 1990 93 m black 0.21224 1990 94 m black 0.21915 1990 95 m black 0.22659 1990 96 m black 0.23792 1990 97 m black 0.24982 1990 98 m black 0.26231 1990 99 m black 0.27542 1990 100 m black 0.2892 1990 101 m black 0.30365 1990 102 m black 0.31884 1990 103 m black 0.33478 1990 104 m black 0.35152 1990 105 m black 0.36909 1990 106 m black 0.38755 1990 107 m black 0.40693 1990 108 m black 0.42727 1990 109 m black 0.44864 1990 0-1d f black 0.00675 1990 1-7d f black 0.002 1990 7-28d f black 0.00169 1990 0 f black 0.01644 1990 1 f black 0.00113 1990 2 f black 0.00069 1990 3 f black 0.00051 1990 4 f black 4e-04 1990 5 f black 0.00037 1990 6 f black 0.00032 1990 7 f black 0.00027 1990 8 f black 0.00024 1990 9 f black 0.00023 1990 10 f black 0.00022 1990 11 f black 0.00023 1990 12 f black 0.00025 1990 13 f black 0.00028 1990 14 f black 0.00033 1990 15 f black 0.00039 1990 16 f black 0.00045 1990 17 f black 0.00051 1990 18 f black 0.00058 1990 19 f black 0.00064 1990 20 f black 0.00072 1990 21 f black 8e-04 1990 22 f black 0.00088 1990 23 f black 0.00096 1990 24 f black 0.00103 1990 25 f black 0.0011 1990 26 f black 0.00118 1990 27 f black 0.00127 1990 28 f black 0.00138 1990 29 f black 0.00151 1990 30 f black 0.00165 1990 31 f black 0.00178 1990 32 f black 0.00191 1990 33 f black 0.00203 1990 34 f black 0.00216 1990 35 f black 0.00229 1990 36 f black 0.00243 1990 37 f black 0.00259 1990 38 f black 0.00275 1990 39 f black 0.00293 1990 40 f black 0.00313 1990 41 f black 0.00335 1990 42 f black 0.00359 1990 43 f black 0.00384 1990 44 f black 0.00411 1990 45 f black 0.00442 1990 46 f black 0.00478 1990 47 f black 0.00519 1990 48 f black 0.00564 1990 49 f black 0.00612 1990 50 f black 0.00664 1990 51 f black 0.00721 1990 52 f black 0.00781 1990 53 f black 0.00843 1990 54 f black 0.0091 1990 55 f black 0.00979 1990 56 f black 0.01054 1990 57 f black 0.01142 1990 58 f black 0.01247 1990 59 f black 0.01363 1990 60 f black 0.01482 1990 61 f black 0.01602 1990 62 f black 0.01727 1990 63 f black 0.01859 1990 64 f black 0.01997 1990 65 f black 0.02142 1990 66 f black 0.02291 1990 67 f black 0.02442 1990 68 f black 0.02601 1990 69 f black 0.02774 1990 70 f black 0.02965 1990 71 f black 0.03177 1990 72 f black 0.03411 1990 73 f black 0.03656 1990 74 f black 0.03904 1990 75 f black 0.04152 1990 76 f black 0.04412 1990 77 f black 0.04705 1990 78 f black 0.05061 1990 79 f black 0.05492 1990 80 f black 0.06008 1990 81 f black 0.06581 1990 82 f black 0.07179 1990 83 f black 0.07744 1990 84 f black 0.08264 1990 85 f black 0.08797 1990 86 f black 0.09428 1990 87 f black 0.10129 1990 88 f black 0.10933 1990 89 f black 0.1186 1990 90 f black 0.12942 1990 91 f black 0.14138 1990 92 f black 0.15318 1990 93 f black 0.16333 1990 94 f black 0.17232 1990 95 f black 0.18244 1990 96 f black 0.19556 1990 97 f black 0.20946 1990 98 f black 0.22414 1990 99 f black 0.23758 1990 100 f black 0.25184 1990 101 f black 0.26695 1990 102 f black 0.28297 1990 103 f black 0.29994 1990 104 f black 0.31794 1990 105 f black 0.33702 1990 106 f black 0.35724 1990 107 f black 0.37867 1990 108 f black 0.40139 1990 109 f black 0.42548 2000 0-1d m total 0.00298 2000 1-7d m total 0.00106 2000 7-28d m total 0.00102 2000 0 m total 0.00763 2000 1 m total 0.00055 2000 2 m total 0.00038 2000 3 m total 0.00029 2000 4 m total 0.00023 2000 5 m total 0.00021 2000 6 m total 0.00019 2000 7 m total 0.00018 2000 8 m total 0.00016 2000 9 m total 0.00014 2000 10 m total 0.00012 2000 11 m total 0.00012 2000 12 m total 0.00018 2000 13 m total 3e-04 2000 14 m total 0.00047 2000 15 m total 0.00065 2000 16 m total 0.00082 2000 17 m total 0.00097 2000 18 m total 0.00109 2000 19 m total 0.00118 2000 20 m total 0.00128 2000 21 m total 0.00138 2000 22 m total 0.00143 2000 23 m total 0.00143 2000 24 m total 0.00139 2000 25 m total 0.00133 2000 26 m total 0.00129 2000 27 m total 0.00127 2000 28 m total 0.00128 2000 29 m total 0.00132 2000 30 m total 0.00136 2000 31 m total 0.00142 2000 32 m total 0.00149 2000 33 m total 0.00158 2000 34 m total 0.00168 2000 35 m total 0.0018 2000 36 m total 0.00192 2000 37 m total 0.00206 2000 38 m total 0.00222 2000 39 m total 0.0024 2000 40 m total 0.00259 2000 41 m total 0.0028 2000 42 m total 0.00303 2000 43 m total 0.00329 2000 44 m total 0.00357 2000 45 m total 0.00388 2000 46 m total 0.00422 2000 47 m total 0.00457 2000 48 m total 0.0049 2000 49 m total 0.00522 2000 50 m total 0.00556 2000 51 m total 0.00593 2000 52 m total 0.00636 2000 53 m total 0.00688 2000 54 m total 0.00749 2000 55 m total 0.00823 2000 56 m total 0.00905 2000 57 m total 0.00994 2000 58 m total 0.01086 2000 59 m total 0.01179 2000 60 m total 0.01282 2000 61 m total 0.014 2000 62 m total 0.01529 2000 63 m total 0.01667 2000 64 m total 0.01816 2000 65 m total 0.01971 2000 66 m total 0.0213 2000 67 m total 0.02316 2000 68 m total 0.02531 2000 69 m total 0.02771 2000 70 m total 0.03026 2000 71 m total 0.03302 2000 72 m total 0.03613 2000 73 m total 0.03966 2000 74 m total 0.04359 2000 75 m total 0.04792 2000 76 m total 0.05255 2000 77 m total 0.05761 2000 78 m total 0.06312 2000 79 m total 0.06912 2000 80 m total 0.07564 2000 81 m total 0.08272 2000 82 m total 0.0904 2000 83 m total 0.09872 2000 84 m total 0.10771 2000 85 m total 0.11742 2000 86 m total 0.12787 2000 87 m total 0.13911 2000 88 m total 0.15117 2000 89 m total 0.16407 2000 90 m total 0.17784 2000 91 m total 0.1925 2000 92 m total 0.20806 2000 93 m total 0.22454 2000 94 m total 0.24191 2000 95 m total 0.26019 2000 96 m total 0.27933 2000 97 m total 0.29931 2000 98 m total 0.32009 2000 99 m total 0.3416 2000 100 m total 0.36379 2000 101 m total 0.38657 2000 102 m total 0.40986 2000 103 m total 0.43356 2000 104 m total 0.45757 2000 105 m total 0.48178 2000 106 m total 0.50607 2000 107 m total 0.53034 2000 108 m total 0.55446 2000 109 m total 0.57833 2000 0-1d f total 0.00252 2000 1-7d f total 0.00081 2000 7-28d f total 0.00088 2000 0 f total 0.00626 2000 1 f total 0.00046 2000 2 f total 0.00028 2000 3 f total 0.00023 2000 4 f total 0.00019 2000 5 f total 0.00017 2000 6 f total 0.00015 2000 7 f total 0.00014 2000 8 f total 0.00013 2000 9 f total 0.00012 2000 10 f total 0.00011 2000 11 f total 0.00012 2000 12 f total 0.00014 2000 13 f total 0.00018 2000 14 f total 0.00024 2000 15 f total 0.00031 2000 16 f total 0.00037 2000 17 f total 0.00042 2000 18 f total 0.00044 2000 19 f total 0.00045 2000 20 f total 0.00045 2000 21 f total 0.00046 2000 22 f total 0.00047 2000 23 f total 0.00048 2000 24 f total 0.00049 2000 25 f total 5e-04 2000 26 f total 0.00051 2000 27 f total 0.00053 2000 28 f total 0.00056 2000 29 f total 0.00059 2000 30 f total 0.00063 2000 31 f total 0.00068 2000 32 f total 0.00073 2000 33 f total 8e-04 2000 34 f total 0.00088 2000 35 f total 0.00096 2000 36 f total 0.00104 2000 37 f total 0.00113 2000 38 f total 0.00124 2000 39 f total 0.00135 2000 40 f total 0.00147 2000 41 f total 0.0016 2000 42 f total 0.00174 2000 43 f total 0.00187 2000 44 f total 0.00201 2000 45 f total 0.00216 2000 46 f total 0.00233 2000 47 f total 0.00252 2000 48 f total 0.00273 2000 49 f total 0.00297 2000 50 f total 0.00322 2000 51 f total 0.00349 2000 52 f total 0.00379 2000 53 f total 0.00414 2000 54 f total 0.00454 2000 55 f total 0.00501 2000 56 f total 0.00554 2000 57 f total 0.00612 2000 58 f total 0.00672 2000 59 f total 0.00734 2000 60 f total 0.00804 2000 61 f total 0.00883 2000 62 f total 0.00969 2000 63 f total 0.01059 2000 64 f total 0.01154 2000 65 f total 0.01256 2000 66 f total 0.01353 2000 67 f total 0.01464 2000 68 f total 0.01593 2000 69 f total 0.01739 2000 70 f total 0.01898 2000 71 f total 0.02079 2000 72 f total 0.02292 2000 73 f total 0.0254 2000 74 f total 0.02822 2000 75 f total 0.03137 2000 76 f total 0.03479 2000 77 f total 0.03857 2000 78 f total 0.04274 2000 79 f total 0.04733 2000 80 f total 0.0524 2000 81 f total 0.05797 2000 82 f total 0.06409 2000 83 f total 0.07082 2000 84 f total 0.07819 2000 85 f total 0.08625 2000 86 f total 0.09507 2000 87 f total 0.10468 2000 88 f total 0.11513 2000 89 f total 0.12649 2000 90 f total 0.13878 2000 91 f total 0.15207 2000 92 f total 0.16638 2000 93 f total 0.18175 2000 94 f total 0.19821 2000 95 f total 0.21575 2000 96 f total 0.2344 2000 97 f total 0.25414 2000 98 f total 0.27494 2000 99 f total 0.29677 2000 100 f total 0.31957 2000 101 f total 0.34326 2000 102 f total 0.36777 2000 103 f total 0.39297 2000 104 f total 0.41876 2000 105 f total 0.445 2000 106 f total 0.47154 2000 107 f total 0.49826 2000 108 f total 0.52498 2000 109 f total 0.55156 2000 0-1d m white 0.00236 2000 1-7d m white 0.00094 2000 7-28d m white 0.00087 2000 0 m white 0.00628 2000 1 m white 0.00048 2000 2 m white 0.00035 2000 3 m white 0.00026 2000 4 m white 0.00021 2000 5 m white 0.00019 2000 6 m white 0.00018 2000 7 m white 0.00017 2000 8 m white 0.00015 2000 9 m white 0.00013 2000 10 m white 0.00011 2000 11 m white 0.00011 2000 12 m white 0.00017 2000 13 m white 0.00028 2000 14 m white 0.00044 2000 15 m white 0.00062 2000 16 m white 0.00078 2000 17 m white 0.00091 2000 18 m white 0.00102 2000 19 m white 0.00109 2000 20 m white 0.00117 2000 21 m white 0.00125 2000 22 m white 0.00129 2000 23 m white 0.00128 2000 24 m white 0.00124 2000 25 m white 0.00119 2000 26 m white 0.00115 2000 27 m white 0.00113 2000 28 m white 0.00114 2000 29 m white 0.00118 2000 30 m white 0.00123 2000 31 m white 0.00128 2000 32 m white 0.00134 2000 33 m white 0.00143 2000 34 m white 0.00153 2000 35 m white 0.00164 2000 36 m white 0.00175 2000 37 m white 0.00188 2000 38 m white 0.00203 2000 39 m white 0.00219 2000 40 m white 0.00237 2000 41 m white 0.00256 2000 42 m white 0.00277 2000 43 m white 0.003 2000 44 m white 0.00325 2000 45 m white 0.00353 2000 46 m white 0.00383 2000 47 m white 0.00414 2000 48 m white 0.00445 2000 49 m white 0.00475 2000 50 m white 0.00507 2000 51 m white 0.00542 2000 52 m white 0.00583 2000 53 m white 0.00632 2000 54 m white 0.00692 2000 55 m white 0.00762 2000 56 m white 0.00842 2000 57 m white 0.00928 2000 58 m white 0.01017 2000 59 m white 0.01109 2000 60 m white 0.01212 2000 61 m white 0.01331 2000 62 m white 0.0146 2000 63 m white 0.01597 2000 64 m white 0.01743 2000 65 m white 0.01894 2000 66 m white 0.02051 2000 67 m white 0.02235 2000 68 m white 0.02449 2000 69 m white 0.02689 2000 70 m white 0.02941 2000 71 m white 0.03215 2000 72 m white 0.03525 2000 73 m white 0.03876 2000 74 m white 0.04267 2000 75 m white 0.047 2000 76 m white 0.05165 2000 77 m white 0.05674 2000 78 m white 0.0623 2000 79 m white 0.06837 2000 80 m white 0.07498 2000 81 m white 0.08217 2000 82 m white 0.08998 2000 83 m white 0.09846 2000 84 m white 0.10764 2000 85 m white 0.11756 2000 86 m white 0.12827 2000 87 m white 0.1398 2000 88 m white 0.15218 2000 89 m white 0.16545 2000 90 m white 0.17963 2000 91 m white 0.19475 2000 92 m white 0.21081 2000 93 m white 0.22782 2000 94 m white 0.24577 2000 95 m white 0.26465 2000 96 m white 0.28444 2000 97 m white 0.30509 2000 98 m white 0.32656 2000 99 m white 0.34878 2000 100 m white 0.37168 2000 101 m white 0.39517 2000 102 m white 0.41915 2000 103 m white 0.44352 2000 104 m white 0.46817 2000 105 m white 0.49297 2000 106 m white 0.51781 2000 107 m white 0.54256 2000 108 m white 0.5671 2000 109 m white 0.59132 2000 0-1d f white 0.00202 2000 1-7d f white 0.00071 2000 7-28d f white 0.00074 2000 0 f white 0.00513 2000 1 f white 0.00041 2000 2 f white 0.00025 2000 3 f white 2e-04 2000 4 f white 0.00017 2000 5 f white 0.00015 2000 6 f white 0.00014 2000 7 f white 0.00013 2000 8 f white 0.00012 2000 9 f white 0.00011 2000 10 f white 0.00011 2000 11 f white 0.00011 2000 12 f white 0.00013 2000 13 f white 0.00017 2000 14 f white 0.00024 2000 15 f white 0.00031 2000 16 f white 0.00037 2000 17 f white 0.00042 2000 18 f white 0.00044 2000 19 f white 0.00044 2000 20 f white 0.00043 2000 21 f white 0.00043 2000 22 f white 0.00043 2000 23 f white 0.00043 2000 24 f white 0.00044 2000 25 f white 0.00044 2000 26 f white 0.00045 2000 27 f white 0.00047 2000 28 f white 0.00049 2000 29 f white 0.00052 2000 30 f white 0.00055 2000 31 f white 0.00059 2000 32 f white 0.00064 2000 33 f white 7e-04 2000 34 f white 0.00077 2000 35 f white 0.00084 2000 36 f white 0.00091 2000 37 f white 0.00099 2000 38 f white 0.00108 2000 39 f white 0.00118 2000 40 f white 0.00129 2000 41 f white 0.0014 2000 42 f white 0.00152 2000 43 f white 0.00164 2000 44 f white 0.00176 2000 45 f white 0.00189 2000 46 f white 0.00205 2000 47 f white 0.00222 2000 48 f white 0.00243 2000 49 f white 0.00265 2000 50 f white 0.0029 2000 51 f white 0.00317 2000 52 f white 0.00346 2000 53 f white 0.0038 2000 54 f white 0.00418 2000 55 f white 0.00464 2000 56 f white 0.00516 2000 57 f white 0.00572 2000 58 f white 0.0063 2000 59 f white 0.00691 2000 60 f white 0.00759 2000 61 f white 0.00838 2000 62 f white 0.00922 2000 63 f white 0.0101 2000 64 f white 0.01102 2000 65 f white 0.012 2000 66 f white 0.01295 2000 67 f white 0.01406 2000 68 f white 0.01535 2000 69 f white 0.0168 2000 70 f white 0.01838 2000 71 f white 0.02018 2000 72 f white 0.0223 2000 73 f white 0.02475 2000 74 f white 0.02754 2000 75 f white 0.03068 2000 76 f white 0.03409 2000 77 f white 0.03787 2000 78 f white 0.04205 2000 79 f white 0.04667 2000 80 f white 0.05177 2000 81 f white 0.05739 2000 82 f white 0.06358 2000 83 f white 0.07039 2000 84 f white 0.07787 2000 85 f white 0.08607 2000 86 f white 0.09504 2000 87 f white 0.10484 2000 88 f white 0.11552 2000 89 f white 0.12714 2000 90 f white 0.13974 2000 91 f white 0.15336 2000 92 f white 0.16806 2000 93 f white 0.18386 2000 94 f white 0.20079 2000 95 f white 0.21886 2000 96 f white 0.23807 2000 97 f white 0.25841 2000 98 f white 0.27985 2000 99 f white 0.30234 2000 100 f white 0.32582 2000 101 f white 0.35021 2000 102 f white 0.37541 2000 103 f white 0.4013 2000 104 f white 0.42775 2000 105 f white 0.45463 2000 106 f white 0.48177 2000 107 f white 0.50902 2000 108 f white 0.53621 2000 109 f white 0.5632 2000 0-1d m black 0.00668 2000 1-7d m black 0.00186 2000 7-28d m black 0.00191 2000 0 m black 0.01571 2000 1 m black 0.00095 2000 2 m black 0.00052 2000 3 m black 0.00041 2000 4 m black 0.00034 2000 5 m black 3e-04 2000 6 m black 0.00028 2000 7 m black 0.00026 2000 8 m black 0.00024 2000 9 m black 2e-04 2000 10 m black 0.00018 2000 11 m black 0.00019 2000 12 m black 0.00026 2000 13 m black 0.00041 2000 14 m black 0.00063 2000 15 m black 0.00087 2000 16 m black 0.0011 2000 17 m black 0.00134 2000 18 m black 0.00158 2000 19 m black 0.00182 2000 20 m black 0.00208 2000 21 m black 0.00235 2000 22 m black 0.00253 2000 23 m black 0.00259 2000 24 m black 0.00255 2000 25 m black 0.00247 2000 26 m black 0.00242 2000 27 m black 0.00239 2000 28 m black 0.00241 2000 29 m black 0.00247 2000 30 m black 0.00255 2000 31 m black 0.00262 2000 32 m black 0.00273 2000 33 m black 0.00286 2000 34 m black 0.00301 2000 35 m black 0.00317 2000 36 m black 0.00336 2000 37 m black 0.00359 2000 38 m black 0.00388 2000 39 m black 0.00423 2000 40 m black 0.0046 2000 41 m black 0.00499 2000 42 m black 0.00544 2000 43 m black 0.00596 2000 44 m black 0.00655 2000 45 m black 0.00722 2000 46 m black 0.00793 2000 47 m black 0.00864 2000 48 m black 0.00931 2000 49 m black 0.00995 2000 50 m black 0.01062 2000 51 m black 0.01137 2000 52 m black 0.01217 2000 53 m black 0.01307 2000 54 m black 0.01408 2000 55 m black 0.01525 2000 56 m black 0.01656 2000 57 m black 0.01791 2000 58 m black 0.0192 2000 59 m black 0.02039 2000 60 m black 0.02156 2000 61 m black 0.02283 2000 62 m black 0.02429 2000 63 m black 0.02606 2000 64 m black 0.02812 2000 65 m black 0.03032 2000 66 m black 0.03267 2000 67 m black 0.03522 2000 68 m black 0.03799 2000 69 m black 0.04096 2000 70 m black 0.04409 2000 71 m black 0.04742 2000 72 m black 0.05101 2000 73 m black 0.05489 2000 74 m black 0.05903 2000 75 m black 0.06341 2000 76 m black 0.06801 2000 77 m black 0.07293 2000 78 m black 0.07816 2000 79 m black 0.08374 2000 80 m black 0.08968 2000 81 m black 0.096 2000 82 m black 0.10271 2000 83 m black 0.10984 2000 84 m black 0.11739 2000 85 m black 0.12539 2000 86 m black 0.13385 2000 87 m black 0.14279 2000 88 m black 0.15223 2000 89 m black 0.16216 2000 90 m black 0.17262 2000 91 m black 0.1836 2000 92 m black 0.19511 2000 93 m black 0.20717 2000 94 m black 0.21976 2000 95 m black 0.2329 2000 96 m black 0.24657 2000 97 m black 0.26077 2000 98 m black 0.27549 2000 99 m black 0.29072 2000 100 m black 0.30643 2000 101 m black 0.3226 2000 102 m black 0.33921 2000 103 m black 0.35623 2000 104 m black 0.37361 2000 105 m black 0.39133 2000 106 m black 0.40934 2000 107 m black 0.4276 2000 108 m black 0.44605 2000 109 m black 0.46466 2000 0-1d f black 0.00543 2000 1-7d f black 0.00138 2000 7-28d f black 0.00167 2000 0 f black 0.01282 2000 1 f black 0.00074 2000 2 f black 0.00041 2000 3 f black 0.00034 2000 4 f black 0.00028 2000 5 f black 0.00023 2000 6 f black 2e-04 2000 7 f black 0.00018 2000 8 f black 0.00017 2000 9 f black 0.00016 2000 10 f black 0.00016 2000 11 f black 0.00017 2000 12 f black 0.00019 2000 13 f black 0.00023 2000 14 f black 0.00027 2000 15 f black 0.00032 2000 16 f black 0.00038 2000 17 f black 0.00043 2000 18 f black 0.00049 2000 19 f black 0.00055 2000 20 f black 0.00061 2000 21 f black 0.00068 2000 22 f black 0.00074 2000 23 f black 0.00078 2000 24 f black 0.00082 2000 25 f black 0.00085 2000 26 f black 9e-04 2000 27 f black 0.00095 2000 28 f black 0.00102 2000 29 f black 0.0011 2000 30 f black 0.00118 2000 31 f black 0.00128 2000 32 f black 0.00139 2000 33 f black 0.00152 2000 34 f black 0.00167 2000 35 f black 0.00181 2000 36 f black 0.00196 2000 37 f black 0.00214 2000 38 f black 0.00235 2000 39 f black 0.00259 2000 40 f black 0.00285 2000 41 f black 0.00312 2000 42 f black 0.00339 2000 43 f black 0.00366 2000 44 f black 0.00394 2000 45 f black 0.00425 2000 46 f black 0.00458 2000 47 f black 0.00493 2000 48 f black 0.00528 2000 49 f black 0.00565 2000 50 f black 0.00605 2000 51 f black 0.00648 2000 52 f black 0.00695 2000 53 f black 0.00747 2000 54 f black 0.00805 2000 55 f black 0.00871 2000 56 f black 0.00948 2000 57 f black 0.0103 2000 58 f black 0.01113 2000 59 f black 0.01197 2000 60 f black 0.01282 2000 61 f black 0.01376 2000 62 f black 0.01481 2000 63 f black 0.01602 2000 64 f black 0.01739 2000 65 f black 0.01885 2000 66 f black 0.02026 2000 67 f black 0.02177 2000 68 f black 0.02339 2000 69 f black 0.02515 2000 70 f black 0.02703 2000 71 f black 0.02912 2000 72 f black 0.03151 2000 73 f black 0.03422 2000 74 f black 0.03719 2000 75 f black 0.04038 2000 76 f black 0.04382 2000 77 f black 0.04754 2000 78 f black 0.05156 2000 79 f black 0.0559 2000 80 f black 0.06059 2000 81 f black 0.06564 2000 82 f black 0.07108 2000 83 f black 0.07693 2000 84 f black 0.08322 2000 85 f black 0.08997 2000 86 f black 0.09721 2000 87 f black 0.10497 2000 88 f black 0.11328 2000 89 f black 0.12215 2000 90 f black 0.13161 2000 91 f black 0.14168 2000 92 f black 0.15239 2000 93 f black 0.16376 2000 94 f black 0.17579 2000 95 f black 0.18852 2000 96 f black 0.20194 2000 97 f black 0.21605 2000 98 f black 0.23087 2000 99 f black 0.24639 2000 100 f black 0.2626 2000 101 f black 0.27947 2000 102 f black 0.29699 2000 103 f black 0.31514 2000 104 f black 0.33386 2000 105 f black 0.35312 2000 106 f black 0.37287 2000 107 f black 0.39305 2000 108 f black 0.41361 2000 109 f black 0.43447 survival/noweb/rates/us2001.dat0000644000176200001440000000652213537676563016033 0ustar liggesusers"age" "tm" "wm" "bm" "tf" "wf" "bf" "0-1" 751 614 621 506 1543 1247 "1-2" 56 47 50 42 88 72 "2-3" 38 30 36 28 52 38 "3-4" 29 22 27 20 40 33 "4-5" 24 18 23 17 33 24 "5-6" 19 15 17 15 29 18 "6-7" 17 15 16 14 24 18 "7-8" 15 14 14 14 16 17 "8-9" 16 12 15 12 24 15 "9-10" 16 14 14 12 27 21 "10-11" 18 12 16 11 29 15 "11-12" 19 13 16 12 30 17 "12-13" 20 15 19 14 29 19 "13-14" 26 16 24 16 35 18 "14-15" 32 21 32 20 36 30 "15-16" 46 25 43 25 64 27 "16-17" 69 38 66 39 89 30 "17-18" 93 44 89 44 125 43 "18-19" 122 42 113 41 178 50 "19-20" 138 44 130 43 198 55 "20-21" 136 44 125 42 210 60 "21-22" 150 48 139 45 234 68 "22-23" 143 44 130 40 241 69 "23-24" 138 49 124 43 242 81 "24-25" 139 49 123 46 260 71 "25-26" 131 51 118 47 237 83 "26-27" 138 51 124 46 252 81 "27-28" 133 55 120 50 246 97 "28-29" 140 59 128 52 248 106 "29-30" 136 62 122 53 250 118 "30-31" 142 66 128 60 267 108 "31-32" 140 64 127 57 243 113 "32-33" 146 76 132 68 268 138 "33-34" 160 82 146 72 286 159 "34-35" 169 89 156 77 292 171 "35-36" 186 96 170 83 323 186 "36-37" 190 106 176 93 315 197 "37-38" 214 115 196 104 374 200 "38-39" 232 131 215 115 385 242 "39-40" 242 141 222 127 422 257 "40-41" 262 153 245 135 430 294 "41-42" 276 158 253 139 479 297 "42-43" 298 174 275 152 524 340 "43-44" 331 193 304 169 578 376 "44-45" 358 209 330 185 633 399 "45-46" 387 224 352 199 701 417 "46-47" 413 237 377 210 760 448 "47-48" 460 256 423 232 833 462 "48-49" 496 269 456 240 894 513 "49-50" 527 303 483 269 981 585 "50-51" 567 320 520 286 1060 616 "51-52" 592 337 542 305 1096 614 "52-53" 639 383 581 348 1216 693 "53-54" 666 414 615 379 1242 751 "54-55" 769 467 716 432 1416 829 "55-56" 764 465 709 430 1405 815 "56-57" 884 546 828 508 1536 946 "57-58" 961 602 894 563 1743 1014 "58-59" 1089 678 1024 639 1936 1108 "59-60" 1106 703 1033 659 1982 1178 "60-61" 1266 785 1206 748 2055 1199 "61-62" 1345 851 1268 807 2279 1344 "62-63" 1489 950 1420 904 2423 1494 "63-64" 1614 1045 1550 999 2534 1570 "64-65" 1768 1133 1696 1076 2768 1753 "65-66" 1934 1227 1855 1176 2997 1798 "66-67" 2075 1344 1995 1285 3186 2004 "67-68" 2288 1478 2218 1425 3375 2109 "68-69" 2492 1603 2408 1533 3726 2372 "69-70" 2721 1748 2645 1684 4052 2560 "70-71" 2935 1896 2873 1849 4164 2615 "71-72" 3202 2076 3118 2024 4694 2880 "72-73" 3529 2268 3449 2216 4985 3048 "73-74" 3876 2505 3803 2454 5358 3378 "74-75" 4180 2722 4117 2668 5623 3593 "75-76" 4595 2992 4526 2929 6100 3989 "76-77" 4996 3312 4936 3259 6511 4250 "77-78" 5434 3610 5375 3563 7017 4551 "78-79" 5978 4029 5927 3984 7557 5106 "79-80" 6559 4438 6506 4401 8294 5338 "80-81" 6994 4871 6953 4843 8585 5679 "81-82" 8047 5541 8042 5521 9442 6328 "82-83" 8282 5836 8250 5841 9691 6429 "83-84" 9477 6755 9481 6744 10700 7505 "84-85" 10312 7540 10339 7563 11388 7996 "85-86" 11280 8360 11328 8394 12165 8684 "86-87" 12305 9242 12382 9294 12975 9418 "87-88" 13388 10185 13502 10265 13817 10198 "88-89" 14526 11191 14687 11311 14690 11026 "89-90" 15718 12260 15939 12432 15594 11903 "90-91" 16962 13389 17257 13632 16527 12830 "91-92" 18256 14578 18638 14912 17488 13809 "92-93" 19594 15825 20082 16271 18475 14841 "93-94" 20974 17127 21587 17712 19487 15925 "94-95" 22390 18480 23149 19234 20522 17062 "95-96" 23837 19879 24764 20835 21577 18254 "96-97" 25309 21319 26429 22515 22650 19499 "97-98" 26799 22794 28139 24272 23740 20797 "98-99" 28300 24298 29888 26102 24842 22149 "99-100" 29804 25823 31669 28002 25954 23552 survival/noweb/rates/minn2000.dat0000644000176200001440000000314113537676563016336 0ustar liggesusers"age" "tm" "tf" "0-1" 690 527 "1-2" 48 19 "2-3" 22 23 "3-4" 24 21 "4-5" 10 12 "5-6" 31 6 "6-7" 19 10 "7-8" 15 21 "8-9" 25 17 "9-10" 12 17 "10-11" 15 9 "11-12" 16 11 "12-13" 26 13 "13-14" 21 11 "14-15" 27 13 "15-16" 48 22 "16-17" 56 52 "17-18" 68 38 "18-19" 96 38 "19-20" 104 37 "20-21" 94 49 "21-22" 112 52 "22-23" 121 43 "23-24" 129 44 "24-25" 85 38 "25-26" 86 31 "26-27" 92 41 "27-28" 90 38 "28-29" 107 60 "29-30" 95 47 "30-31" 76 24 "31-32" 102 47 "32-33" 114 73 "33-34" 120 52 "34-35" 120 51 "35-36" 114 78 "36-37" 138 55 "37-38" 167 73 "38-39" 146 113 "39-40" 146 95 "40-41" 172 109 "41-42" 184 94 "42-43" 210 85 "43-44" 217 136 "44-45" 196 158 "45-46" 242 156 "46-47" 222 179 "47-48" 313 185 "48-49" 344 202 "49-50" 422 196 "50-51" 340 164 "51-52" 419 237 "52-53" 473 278 "53-54" 483 346 "54-55" 496 410 "55-56" 600 398 "56-57" 675 390 "57-58" 753 519 "58-59" 844 547 "59-60" 936 639 "60-61" 893 652 "61-62" 1000 720 "62-63" 1178 791 "63-64" 1417 813 "64-65" 1471 922 "65-66" 1662 1018 "66-67" 1715 1157 "67-68" 2011 1247 "68-69" 2134 1287 "69-70" 2464 1501 "70-71" 2381 1612 "71-72" 2887 1757 "72-73" 3289 2021 "73-74" 3426 2092 "74-75" 3877 2345 "75-76" 4052 2688 "76-77" 4909 2986 "77-78" 4932 3120 "78-79" 5622 3188 "79-80" 5976 3962 "80-81" 6904 4011 "81-82" 7746 4747 "82-83" 8306 5726 "83-84" 8708 5953 "84-85" 10239 6401 "85-86" 11700 7760 "86-87" 13367 8453 "87-88" 13765 9334 "88-89" 14163 10811 "89-90" 16641 11691 "90-91" 16276 13313 "91-92" 19386 15347 "92-93" 20879 16963 "93-94" 22306 19140 "94-95" 26532 19216 "95-96" 26930 22643 "96-97" 30038 21151 "97-98" 38402 25261 "98-99" 30986 27854 "99-100" 30367 25704 survival/noweb/rates/usinfant.dat0000644000176200001440000000331013537676563016720 0ustar liggesusersyear,period,total.m, total.f, white.m, white.f, black.m, black.f 1999,0-24 hrs,6116 ,5045 ,3820 ,3158 ,2100 ,1691 1999,1-6 d,2140 ,1588 ,1507 ,1116 ,574 ,411 1999,7-27 d,2099 ,1740 ,1407 ,1156 ,623 ,521 1999,28-365 d,5291 ,3918 ,3463 ,2440 ,1600 ,1302 2000,0-24 hrs,6118 ,4985 ,3811 ,3147 ,2076 ,1655 2000,1-6 d,2243 ,1567 ,1549 ,1100 ,589 ,410 2000,7-27 d,2150 ,1713 ,1453 ,1141 ,620 ,493 2000,28-365 d,5207 ,4052 ,3364 ,2579 ,1616 ,1312 2001,0-24 hrs,6122 ,4776 ,3859 ,3052 ,2047 ,1559 2001,1-6 d,2139 ,1574 ,1513 ,1092 ,558 ,420 2001,7-27 d,1976 ,1678 ,1378 ,1119 ,520 ,481 2001,28-365 d,5240 ,4063 ,3349 ,2593 ,1639 ,1274 2002,0-24 hrs,6303 ,5063 ,4008 ,3198 ,2042 ,1661 2002,1-6 d,2050 ,1588 ,1497 ,1092 ,476 ,433 2002,7-27 d,2055 ,1688 ,1436 ,1123 ,536 ,498 2002,28-365 d,5309 ,3978 ,3492 ,2523 ,1598 ,1280 2003,0-24 hrs,6387 ,5082 ,4110 ,3295 ,2034 ,1581 2003,1-6 d,2123 ,1541 ,1503 ,1101 ,533 ,372 2003,7-27 d,2126 ,1634 ,1432 ,1054 ,607 ,513 2003,28-365 d,5266 ,3866 ,3455 ,2490 ,1566 ,1196 2004,0-24 hrs,6472 ,4974 ,4054 ,3169 ,2003 ,1575 2004,1-6 d,1826 ,1582 ,1421 ,1087 ,488 ,432 2004,7-27 d,2092 ,1647 ,1365 ,1102 ,633 ,491 2004,28-365 d,5328 ,4015 ,3425 ,2608 ,1645 ,1227 2005,"0-24 hrs",6212,5145,3884,3283,2059,1669 2005,"1-6 d",2129,1526,1497,1074,540,381 2005,"7-28 d",2103,1655,1415,1086,602,489 2005,"28-365 d",5574,4096,3675,2600,1666,1289 2006,"0-24 hrs",6331,5063,3996,3170,2061,1685 2006,"1-6 d",2041,1668,1440,1148,504,448 2006,"7-28 d",2192,1694,1427,1121,659,519 2006,"28-365 d",5416,4122,3482,2619,1662,1320 2007,"0-24 hrs",6346,5124,3971,3232,2089,1654 2007,"1-6 d",2061,1562,1423,1096,530,390 2007,"7-28 d",2180,1785,1451,1160,637,542 2007,"28-365 d",5706,4374,3695,2779,1719,1383 survival/noweb/rates/us1997.dat0000644000176200001440000000653613537676563016067 0ustar liggesusers"age" "tm" "wm" "bm" "tf" "wf" "bf" "0-1" 795 617 667 536 1549 1283 "1-2" 60 50 53 45 105 80 "2-3" 41 32 36 27 69 55 "3-4" 33 25 29 23 58 39 "4-5" 26 20 23 17 39 32 "5-6" 23 19 20 16 38 33 "6-7" 22 18 19 15 35 31 "7-8" 21 17 19 14 32 29 "8-9" 19 15 17 13 28 26 "9-10" 16 14 15 12 23 24 "10-11" 14 14 13 12 18 23 "11-12" 15 14 14 12 18 22 "12-13" 21 16 20 15 28 23 "13-14" 35 21 33 20 49 27 "14-15" 54 27 50 26 79 32 "15-16" 74 34 68 34 111 38 "16-17" 93 41 85 41 140 44 "17-18" 109 46 99 46 167 50 "18-19" 120 48 107 47 192 54 "19-20" 127 48 113 46 215 59 "20-21" 135 48 118 45 241 64 "21-22" 144 48 124 45 268 70 "22-23" 149 49 128 44 287 76 "23-24" 150 50 128 45 294 83 "24-25" 148 52 126 46 292 89 "25-26" 145 54 124 47 285 96 "26-27" 142 55 122 48 281 104 "27-28" 142 58 122 50 281 111 "28-29" 146 61 126 52 285 118 "29-30" 151 65 132 56 294 126 "30-31" 158 69 139 59 304 133 "31-32" 165 74 146 63 314 141 "32-33" 173 79 153 68 327 153 "33-34" 181 85 160 73 343 168 "34-35" 189 92 168 78 362 185 "35-36" 198 99 175 84 383 204 "36-37" 208 107 183 90 406 222 "37-38" 220 115 194 97 431 240 "38-39" 234 123 206 104 460 257 "39-40" 250 133 221 113 494 275 "40-41" 269 144 238 123 529 293 "41-42" 289 156 256 134 568 314 "42-43" 310 168 276 145 615 337 "43-44" 335 182 297 157 672 364 "44-45" 361 196 319 169 738 394 "45-46" 391 212 344 183 815 429 "46-47" 424 230 372 200 897 465 "47-48" 458 250 402 219 974 502 "48-49" 492 273 435 241 1040 537 "49-50" 528 298 471 267 1098 573 "50-51" 567 327 512 296 1161 613 "51-52" 612 359 557 327 1238 661 "52-53" 662 393 605 361 1325 715 "53-54" 719 431 659 396 1422 773 "54-55" 784 472 719 436 1526 834 "55-56" 860 520 790 482 1630 896 "56-57" 947 576 874 536 1740 963 "57-58" 1045 637 968 595 1872 1042 "58-59" 1150 701 1068 656 2034 1136 "59-60" 1262 769 1176 720 2225 1246 "60-61" 1383 844 1291 791 2443 1371 "61-62" 1517 928 1420 871 2664 1500 "62-63" 1663 1015 1565 956 2853 1618 "63-64" 1817 1103 1724 1045 2981 1710 "64-65" 1979 1193 1894 1137 3063 1785 "65-66" 2137 1280 2063 1229 3109 1842 "66-67" 2301 1375 2235 1327 3176 1915 "67-68" 2490 1490 2430 1443 3318 2041 "68-69" 2718 1634 2659 1584 3587 2251 "69-70" 2985 1806 2920 1748 3978 2538 "70-71" 3275 1993 3200 1924 4461 2883 "71-72" 3573 2187 3489 2108 4963 3236 "72-73" 3882 2391 3792 2307 5439 3553 "73-74" 4200 2607 4110 2526 5802 3782 "74-75" 4527 2838 4445 2765 6056 3938 "75-76" 4869 3083 4796 3021 6278 4068 "76-77" 5238 3353 5174 3301 6548 4236 "77-78" 5656 3666 5601 3623 6866 4470 "78-79" 6149 4041 6103 4002 7293 4821 "79-80" 6734 4483 6699 4445 7854 5292 "80-81" 7432 4978 7408 4939 8545 5843 "81-82" 8227 5526 8216 5485 9327 6434 "82-83" 9093 6152 9094 6114 10191 7088 "83-84" 9981 6872 9993 6841 11035 7786 "84-85" 10893 7692 10919 7675 11807 8527 "85-86" 11874 8526 11925 8519 12545 9233 "86-87" 12892 9454 12973 9458 13309 10001 "87-88" 13988 10466 14100 10486 14110 10828 "88-89" 15177 11573 15323 11617 14950 11714 "89-90" 16461 12789 16647 12858 15825 12658 "90-91" 17823 14105 18057 14204 16727 13657 "91-92" 19237 15496 19528 15629 17647 14704 "92-93" 20676 16946 21039 17118 18577 15795 "93-94" 22133 18463 22584 18680 19507 16927 "94-95" 23603 20067 24161 20327 20432 18094 "95-96" 25091 21749 25765 22053 21351 19295 "96-97" 26594 23482 27384 23833 22268 20526 "97-98" 28103 25230 29004 25630 23184 21787 "98-99" 29615 26968 30617 27425 24099 23075 "99-100" 31127 28688 32222 29213 25013 24387 survival/noweb/rates/us1996.dat0000644000176200001440000000654413537676563016065 0ustar liggesusers"age" "tm" "wm" "bm" "tf" "wf" "bf" "0-1" 802 659 666 544 1602 1325 "1-2" 60 54 52 43 110 108 "2-3" 45 33 40 28 73 63 "3-4" 36 28 32 24 59 47 "4-5" 28 23 25 19 49 41 "5-6" 26 20 23 17 42 33 "6-7" 24 18 22 16 39 28 "7-8" 23 16 20 15 36 24 "8-9" 20 15 19 14 31 22 "9-10" 17 14 16 13 25 21 "10-11" 15 14 14 13 19 21 "11-12" 15 14 14 13 19 22 "12-13" 22 17 20 16 29 24 "13-14" 36 22 33 20 54 29 "14-15" 56 28 51 27 89 35 "15-16" 79 35 70 34 126 41 "16-17" 99 42 89 41 161 48 "17-18" 116 47 103 46 191 54 "18-19" 128 48 113 47 215 59 "19-20" 135 48 118 45 235 64 "20-21" 142 47 124 43 257 68 "21-22" 150 47 130 42 280 74 "22-23" 155 47 133 41 298 81 "23-24" 156 49 134 42 304 88 "24-25" 154 52 132 45 304 96 "25-26" 151 55 130 48 300 103 "26-27" 149 58 128 50 298 112 "27-28" 151 62 130 53 304 121 "28-29" 158 66 136 56 318 132 "29-30" 168 70 145 59 340 143 "30-31" 178 74 154 62 363 155 "31-32" 189 79 164 66 384 166 "32-33" 199 85 173 70 406 180 "33-34" 209 91 182 75 427 195 "34-35" 219 98 191 81 449 212 "35-36" 230 105 201 86 471 230 "36-37" 241 113 211 93 494 248 "37-38" 254 121 222 99 523 266 "38-39" 268 129 234 106 558 285 "39-40" 285 138 248 114 600 305 "40-41" 303 147 263 123 645 326 "41-42" 322 158 280 132 694 349 "42-43" 343 171 298 144 744 373 "43-44" 366 184 318 157 796 397 "44-45" 390 200 340 171 850 423 "45-46" 415 216 363 186 910 451 "46-47" 443 234 388 203 974 481 "47-48" 473 254 416 222 1038 514 "48-49" 507 277 449 245 1100 549 "49-50" 546 305 487 272 1163 588 "50-51" 593 338 534 304 1236 636 "51-52" 649 376 589 342 1321 691 "52-53" 709 416 647 380 1415 749 "53-54" 769 454 705 417 1512 805 "54-55" 831 491 764 452 1609 857 "55-56" 898 530 827 490 1703 908 "56-57" 976 577 902 536 1806 967 "57-58" 1067 631 990 589 1932 1038 "58-59" 1175 696 1094 651 2094 1129 "59-60" 1299 769 1214 722 2287 1239 "60-61" 1436 852 1345 802 2508 1361 "61-62" 1581 940 1486 888 2728 1487 "62-63" 1733 1032 1636 978 2917 1608 "63-64" 1886 1123 1793 1069 3048 1715 "64-65" 2038 1213 1953 1160 3136 1812 "65-66" 2185 1301 2109 1248 3190 1898 "66-67" 2338 1395 2270 1344 3265 1994 "67-68" 2521 1510 2458 1458 3417 2132 "68-69" 2749 1655 2685 1600 3697 2336 "69-70" 3021 1827 2950 1767 4102 2602 "70-71" 3319 2017 3237 1949 4606 2919 "71-72" 3624 2213 3531 2137 5136 3247 "72-73" 3940 2418 3839 2338 5637 3549 "73-74" 4259 2632 4159 2553 6014 3782 "74-75" 4589 2860 4496 2788 6268 3956 "75-76" 4940 3105 4856 3042 6482 4109 "76-77" 5327 3380 5253 3325 6749 4298 "77-78" 5767 3703 5703 3655 7076 4554 "78-79" 6283 4089 6228 4045 7535 4926 "79-80" 6884 4539 6837 4493 8146 5416 "80-81" 7590 5037 7552 4986 8902 5991 "81-82" 8388 5580 8360 5525 9744 6603 "82-83" 9243 6195 9225 6141 10633 7247 "83-84" 10113 6902 10109 6859 11440 7884 "84-85" 11011 7714 11027 7693 12117 8518 "85-86" 12003 8550 12042 8539 12874 9224 "86-87" 13032 9480 13100 9481 13659 9990 "87-88" 14140 10495 14238 10511 14480 10817 "88-89" 15341 11605 15473 11644 15342 11701 "89-90" 16640 12825 16810 12889 16240 12645 "90-91" 18017 14145 18234 14238 17165 13643 "91-92" 19445 15539 19720 15666 18110 14689 "92-93" 20900 16993 21245 17159 19065 15779 "93-94" 22373 18515 22806 18724 20019 16908 "94-95" 23859 20123 24398 20375 20968 18075 "95-96" 25363 21810 26018 22106 21911 19274 "96-97" 26882 23548 27653 23890 22852 20505 "97-98" 28408 25300 29288 25691 23792 21764 "98-99" 29936 27043 30918 27491 24731 23050 "99-100" 31465 28768 32538 29282 25670 24361 survival/noweb/rates/us2003.dat0000644000176200001440000000651113537676563016033 0ustar liggesusers"age" "tm" "wm" "bm" "tf" "wf" "bf" "0-1" 761 608 637 505 1556 1245 "1-2" 52 41 46 37 86 61 "2-3" 37 30 33 27 54 46 "3-4" 29 22 26 20 44 32 "4-5" 22 17 20 17 29 18 "5-6" 20 16 18 15 28 22 "6-7" 18 14 17 13 24 19 "7-8" 16 13 16 12 21 17 "8-9" 15 12 14 11 19 16 "9-10" 13 11 12 10 17 16 "10-11" 11 10 10 9 17 16 "11-12" 12 11 11 10 19 18 "12-13" 18 13 16 12 26 19 "13-14" 29 17 27 16 39 22 "14-15" 44 23 42 23 56 24 "15-16" 62 29 60 30 76 28 "16-17" 79 36 76 37 98 32 "17-18" 95 41 91 42 121 37 "18-19" 108 44 103 44 145 43 "19-20" 119 46 112 45 168 51 "20-21" 129 47 121 46 192 58 "21-22" 139 49 129 46 215 66 "22-23" 145 50 133 47 232 72 "23-24" 146 51 133 47 241 77 "24-25" 142 52 130 47 245 80 "25-26" 138 52 124 48 246 83 "26-27" 133 53 120 48 249 88 "27-28" 131 55 117 49 250 93 "28-29" 131 57 118 51 251 99 "29-30" 134 60 121 54 251 105 "30-31" 138 63 125 56 251 112 "31-32" 142 67 130 60 253 120 "32-33" 147 72 136 64 258 130 "33-34" 154 78 142 69 268 142 "34-35" 163 85 150 76 282 158 "35-36" 173 94 159 83 299 174 "36-37" 185 103 170 91 318 192 "37-38" 199 114 184 100 341 211 "38-39" 217 126 201 111 367 232 "39-40" 236 138 220 123 396 253 "40-41" 257 151 240 135 426 275 "41-42" 278 164 260 147 459 297 "42-43" 301 178 281 160 499 322 "43-44" 327 193 305 173 546 350 "44-45" 357 208 332 187 603 381 "45-46" 389 226 361 202 663 415 "46-47" 422 244 392 218 726 450 "47-48" 458 263 423 236 796 486 "48-49" 493 282 455 253 872 524 "49-50" 530 303 488 272 955 564 "50-51" 571 325 523 292 1048 608 "51-52" 615 350 562 314 1146 654 "52-53" 661 379 605 341 1239 700 "53-54" 707 410 650 373 1320 745 "54-55" 756 446 699 409 1396 790 "55-56" 808 485 752 449 1474 839 "56-57" 866 528 810 493 1565 897 "57-58" 933 576 876 541 1672 965 "58-59" 1013 631 953 594 1800 1044 "59-60" 1106 694 1043 655 1945 1134 "60-61" 1216 767 1149 726 2107 1234 "61-62" 1338 849 1269 807 2280 1342 "62-63" 1466 934 1394 890 2452 1451 "63-64" 1592 1016 1519 970 2614 1557 "64-65" 1719 1097 1645 1050 2766 1661 "65-66" 1854 1186 1781 1138 2912 1767 "66-67" 2009 1290 1938 1242 3070 1883 "67-68" 2185 1409 2116 1362 3258 2015 "68-69" 2384 1543 2317 1496 3493 2171 "69-70" 2605 1692 2538 1645 3776 2350 "70-71" 2832 1847 2762 1800 4085 2541 "71-72" 3069 2014 2998 1968 4405 2741 "72-73" 3344 2207 3272 2161 4750 2966 "73-74" 3669 2432 3600 2387 5117 3220 "74-75" 4040 2684 3976 2642 5504 3496 "75-76" 4429 2945 4370 2904 5911 3788 "76-77" 4827 3216 4771 3175 6337 4090 "77-78" 5260 3526 5208 3488 6786 4407 "78-79" 5745 3895 5700 3864 7262 4747 "79-80" 6291 4325 6256 4305 7772 5119 "80-81" 6907 4795 6883 4785 8336 5523 "81-82" 7576 5297 7565 5296 8936 5963 "82-83" 8284 5863 8290 5871 9530 6460 "83-84" 9022 6515 9049 6535 10090 7035 "84-85" 9814 7271 9866 7305 10635 7704 "85-86" 10699 8014 10781 8070 11362 8315 "86-87" 11654 8826 11768 8908 12131 8969 "87-88" 12680 9711 12832 9823 12945 9669 "88-89" 13782 10674 13975 10820 13803 10417 "89-90" 14961 11719 15201 11904 14708 11216 "90-91" 16220 12851 16511 13080 15660 12066 "91-92" 17561 14074 17908 14351 16661 12972 "92-93" 18986 15392 19394 15723 17712 13935 "93-94" 20495 16807 20968 17198 18812 14956 "94-95" 22087 18322 22630 18778 19963 16037 "95-96" 23763 19939 24380 20466 21164 17180 "96-97" 25520 21658 26214 22261 22415 18386 "97-98" 27355 23479 28128 24162 23715 19655 "98-99" 29265 25400 30120 26168 25064 20988 "99-100" 31244 27418 32182 28273 26461 22386 survival/noweb/rates/us2002.dat0000644000176200001440000000651613537676563016037 0ustar liggesusers"age" "tm" "wm" "bm" "tf" "wf" "bf" "0-1" 764 627 642 512 1540 1322 "1-2" 52 42 47 38 82 61 "2-3" 37 28 33 26 54 41 "3-4" 28 20 25 18 43 27 "4-5" 23 17 21 15 37 27 "5-6" 19 16 17 15 26 21 "6-7" 16 13 16 12 20 18 "7-8" 16 12 15 11 19 18 "8-9" 17 13 15 13 27 17 "9-10" 16 13 14 12 28 19 "10-11" 18 13 16 11 25 20 "11-12" 18 13 16 12 27 19 "12-13" 22 14 20 13 35 22 "13-14" 26 19 24 18 35 21 "14-15" 32 21 30 20 46 25 "15-16" 44 25 43 25 52 28 "16-17" 75 39 73 40 91 33 "17-18" 91 44 88 45 113 42 "18-19" 121 47 115 46 165 51 "19-20" 140 46 132 46 191 51 "20-21" 139 45 129 44 206 60 "21-22" 144 50 134 49 226 66 "22-23" 139 47 125 42 231 71 "23-24" 142 45 130 42 234 72 "24-25" 139 49 126 46 244 70 "25-26" 134 50 120 46 248 81 "26-27" 138 51 123 46 258 89 "27-28" 130 51 114 44 259 93 "28-29" 130 56 117 53 244 92 "29-30" 138 60 123 52 267 123 "30-31" 141 63 129 56 256 115 "31-32" 145 67 132 59 272 120 "32-33" 139 72 125 63 255 137 "33-34" 158 79 146 70 270 149 "34-35" 164 85 148 76 312 158 "35-36" 178 96 158 86 346 175 "36-37" 187 103 168 93 352 185 "37-38" 201 112 187 100 336 199 "38-39" 222 122 202 108 393 228 "39-40" 240 143 223 129 402 262 "40-41" 266 149 251 136 425 262 "41-42" 283 165 265 147 468 313 "42-43" 297 175 277 157 492 311 "43-44" 328 199 307 177 541 382 "44-45" 358 209 335 185 587 403 "45-46" 384 230 356 207 664 425 "46-47" 425 238 396 213 721 440 "47-48" 446 258 414 231 774 478 "48-49" 495 286 453 254 907 542 "49-50" 528 303 487 272 961 569 "50-51" 570 319 523 284 1043 619 "51-52" 618 352 566 318 1147 663 "52-53" 643 363 591 329 1174 659 "53-54" 702 414 647 383 1288 714 "54-55" 732 443 676 408 1382 791 "55-56" 842 510 787 474 1555 902 "56-57" 832 501 777 465 1506 861 "57-58" 947 589 887 554 1668 968 "58-59" 1038 644 972 604 1848 1077 "59-60" 1176 727 1112 686 2025 1183 "60-61" 1210 758 1138 722 2116 1182 "61-62" 1351 848 1284 802 2242 1352 "62-63" 1488 920 1414 879 2484 1402 "63-64" 1611 1010 1541 967 2603 1543 "64-65" 1738 1115 1662 1071 2817 1637 "65-66" 1891 1211 1818 1165 2934 1778 "66-67" 2037 1306 1967 1254 3078 1945 "67-68" 2241 1457 2178 1411 3244 2055 "68-69" 2434 1559 2364 1510 3528 2185 "69-70" 2674 1740 2605 1685 3824 2444 "70-71" 2922 1899 2863 1856 4082 2578 "71-72" 3197 2045 3127 1988 4555 2877 "72-73" 3406 2252 3334 2202 4843 3044 "73-74" 3802 2463 3741 2416 5207 3252 "74-75" 4121 2714 4066 2664 5507 3540 "75-76" 4519 3010 4465 2954 5916 3944 "76-77" 4957 3263 4895 3209 6471 4236 "77-78" 5357 3609 5304 3561 6779 4626 "78-79" 5842 3947 5806 3918 7300 4793 "79-80" 6498 4411 6446 4381 8182 5400 "80-81" 7028 4930 6981 4914 8734 5693 "81-82" 7636 5330 7634 5329 8850 6028 "82-83" 8673 6218 8698 6206 9949 7102 "83-84" 8848 6455 8892 6453 9466 7125 "84-85" 10216 7506 10247 7530 11265 8036 "85-86" 11175 8322 11228 8358 12035 8728 "86-87" 12191 9200 12272 9254 12836 9465 "87-88" 13263 10139 13382 10221 13669 10249 "88-89" 14391 11140 14558 11262 14533 11081 "89-90" 15572 12204 15798 12379 15426 11962 "90-91" 16805 13328 17104 13574 16349 12894 "91-92" 18086 14512 18474 14848 17300 13878 "92-93" 19412 15753 19905 16202 18276 14915 "93-94" 20779 17049 21396 17636 19277 16004 "94-95" 22182 18395 22944 19151 20301 17147 "95-96" 23615 19788 24546 20746 21345 18345 "96-97" 25074 21222 26196 22418 22407 19596 "97-98" 26550 22690 27890 24167 23484 20901 "98-99" 28037 24188 29624 25990 24574 22259 "99-100" 29527 25705 31389 27881 25674 23670 survival/noweb/rates/us2005.dat0000644000176200001440000000650613537676563016041 0ustar liggesusers"age" "tm" "wm" "bm" "tf" "wf" "bf" "0-1" 757 616 633 511 1520 1232 "1-2" 52 41 48 37 72 60 "2-3" 36 26 34 24 45 32 "3-4" 26 18 22 17 44 26 "4-5" 21 16 20 14 25 30 "5-6" 19 15 17 14 27 23 "6-7" 18 14 16 13 25 21 "7-8" 16 14 15 12 23 19 "8-9" 14 12 13 12 20 18 "9-10" 11 11 10 10 17 17 "10-11" 10 10 8 9 15 16 "11-12" 10 11 9 9 16 17 "12-13" 16 12 14 11 24 18 "13-14" 28 16 26 16 39 21 "14-15" 44 22 41 21 60 25 "15-16" 61 28 58 28 83 29 "16-17" 78 34 73 34 106 34 "17-18" 93 39 88 39 129 39 "18-19" 107 42 101 42 150 44 "19-20" 119 44 112 43 170 49 "20-21" 131 45 122 44 192 54 "21-22" 142 47 133 45 212 60 "22-23" 149 49 138 46 228 65 "23-24" 150 50 139 47 235 70 "24-25" 147 50 136 47 237 74 "25-26" 143 51 131 47 236 78 "26-27" 139 52 127 47 235 82 "27-28" 137 54 124 48 236 88 "28-29" 136 56 124 51 241 95 "29-30" 138 60 125 54 248 103 "30-31" 141 64 128 57 256 112 "31-32" 144 68 131 62 264 122 "32-33" 148 74 135 67 277 132 "33-34" 152 78 139 71 278 140 "34-35" 157 84 144 76 284 150 "35-36" 164 90 150 82 292 160 "36-37" 172 98 159 88 303 172 "37-38" 185 107 171 97 319 187 "38-39" 202 118 188 107 339 207 "39-40" 222 132 209 119 363 229 "40-41" 244 145 230 131 388 252 "41-42" 266 158 252 144 416 276 "42-43" 290 173 274 157 452 301 "43-44" 316 189 298 171 500 330 "44-45" 344 206 324 187 557 362 "45-46" 374 225 350 204 619 396 "46-47" 405 245 379 222 683 430 "47-48" 440 264 410 240 751 467 "48-49" 479 284 445 258 826 507 "49-50" 522 305 484 276 907 549 "50-51" 569 328 527 296 997 596 "51-52" 619 353 573 319 1094 646 "52-53" 669 381 618 345 1191 693 "53-54" 716 409 662 374 1283 734 "54-55" 760 440 705 405 1369 771 "55-56" 806 472 748 439 1458 808 "56-57" 856 507 796 475 1554 851 "57-58" 914 548 852 516 1657 903 "58-59" 987 598 923 566 1771 970 "59-60" 1075 658 1010 624 1900 1054 "60-61" 1181 730 1116 694 2050 1154 "61-62" 1298 812 1232 773 2218 1264 "62-63" 1420 895 1352 854 2390 1379 "63-64" 1534 975 1464 932 2544 1486 "64-65" 1642 1052 1572 1009 2679 1583 "65-66" 1757 1137 1687 1094 2804 1682 "66-67" 1883 1224 1813 1182 2941 1782 "67-68" 2036 1327 1967 1287 3117 1900 "68-69" 2220 1447 2152 1407 3344 2043 "69-70" 2434 1586 2364 1546 3613 2211 "70-71" 2672 1743 2597 1702 3905 2397 "71-72" 2935 1922 2856 1881 4215 2605 "72-73" 3229 2131 3150 2088 4556 2844 "73-74" 3560 2370 3482 2326 4929 3114 "74-75" 3931 2643 3854 2597 5332 3412 "75-76" 4345 2953 4268 2906 5765 3738 "76-77" 4791 3290 4718 3244 6204 4079 "77-78" 5281 3663 5212 3618 6674 4450 "78-79" 5817 4076 5756 4034 7177 4853 "79-80" 6405 4534 6351 4496 7714 5290 "80-81" 7047 5041 7004 5008 8289 5764 "81-82" 7749 5601 7719 5575 8902 6279 "82-83" 8514 6219 8500 6202 9556 6835 "83-84" 9346 6901 9352 6894 10252 7437 "84-85" 10251 7651 10280 7656 10993 8088 "85-86" 11233 8475 11288 8496 11780 8790 "86-87" 12296 9379 12381 9419 12616 9546 "87-88" 13445 10369 13564 10430 13502 10360 "88-89" 14682 11449 14842 11536 14440 11235 "89-90" 16013 12627 16216 12742 15431 12174 "90-91" 17440 13906 17692 14055 16478 13180 "91-92" 18964 15293 19271 15478 17580 14255 "92-93" 20589 16790 20955 17018 18740 15403 "93-94" 22315 18403 22745 18676 19958 16625 "94-95" 24142 20133 24640 20457 21235 17923 "95-96" 26068 21982 26639 22361 22570 19299 "96-97" 28090 23950 28738 24387 23963 20755 "97-98" 30206 26035 30932 26534 25414 22289 "98-99" 32409 28234 33216 28799 26922 23903 "99-100" 34693 30542 35582 31174 28485 25596 survival/noweb/rates/us1998.dat0000644000176200001440000000653513537676563016067 0ustar liggesusers"age" "tm" "wm" "bm" "tf" "wf" "bf" "0-1" 785 655 648 542 1579 1285 "1-2" 58 51 49 44 116 90 "2-3" 40 32 36 28 67 52 "3-4" 29 24 25 21 52 44 "4-5" 24 19 21 17 42 29 "5-6" 22 18 20 15 39 31 "6-7" 22 16 19 14 37 27 "7-8" 21 15 18 13 34 24 "8-9" 19 14 17 13 30 22 "9-10" 16 13 15 12 25 20 "10-11" 14 13 13 11 21 19 "11-12" 15 13 13 12 20 18 "12-13" 21 15 19 14 29 19 "13-14" 34 20 31 19 48 23 "14-15" 51 26 47 26 74 27 "15-16" 70 32 65 33 102 32 "16-17" 87 39 81 40 128 38 "17-18" 102 43 94 44 152 43 "18-19" 113 45 104 45 174 49 "19-20" 122 45 111 44 193 54 "20-21" 131 45 118 42 216 61 "21-22" 141 45 126 41 240 69 "22-23" 147 46 130 40 257 76 "23-24" 148 47 130 41 265 82 "24-25" 145 49 127 42 265 86 "25-26" 141 51 123 44 262 91 "26-27" 138 53 120 46 261 97 "27-28" 136 56 119 48 261 104 "28-29" 139 59 121 51 264 111 "29-30" 143 63 125 54 271 120 "30-31" 149 67 131 57 278 130 "31-32" 155 72 137 61 286 140 "32-33" 162 78 144 66 296 151 "33-34" 170 85 152 72 310 165 "34-35" 179 92 160 79 326 180 "35-36" 188 99 169 86 343 196 "36-37" 199 107 179 93 362 212 "37-38" 211 115 190 100 385 229 "38-39" 225 124 203 107 415 248 "39-40" 243 134 219 115 450 270 "40-41" 262 144 236 124 488 293 "41-42" 282 155 254 134 529 316 "42-43" 304 167 273 144 576 342 "43-44" 328 180 294 155 632 369 "44-45" 354 193 317 167 696 397 "45-46" 385 209 342 180 771 430 "46-47" 418 226 371 195 852 465 "47-48" 452 245 401 213 931 499 "48-49" 486 267 433 235 1001 532 "49-50" 521 292 466 260 1065 565 "50-51" 559 320 503 288 1134 601 "51-52" 601 350 544 319 1216 643 "52-53" 650 383 590 351 1306 693 "53-54" 705 420 643 385 1402 751 "54-55" 769 459 704 423 1504 815 "55-56" 843 506 776 466 1608 884 "56-57" 927 558 858 516 1719 959 "57-58" 1019 615 947 571 1849 1039 "58-59" 1119 676 1042 630 2006 1126 "59-60" 1226 742 1144 693 2185 1220 "60-61" 1344 816 1256 765 2387 1324 "61-62" 1477 900 1384 848 2592 1435 "62-63" 1621 989 1526 936 2772 1544 "63-64" 1773 1081 1682 1028 2904 1645 "64-65" 1932 1175 1848 1123 2998 1741 "65-66" 2091 1269 2016 1219 3064 1828 "66-67" 2258 1371 2193 1324 3146 1925 "67-68" 2452 1495 2394 1448 3291 2065 "68-69" 2683 1645 2627 1596 3540 2271 "69-70" 2946 1819 2887 1764 3890 2536 "70-71" 3225 2005 3160 1941 4307 2847 "71-72" 3506 2195 3435 2123 4738 3166 "72-73" 3801 2394 3724 2317 5165 3467 "73-74" 4108 2605 4031 2528 5533 3716 "74-75" 4434 2832 4360 2761 5843 3919 "75-76" 4774 3071 4705 3007 6144 4110 "76-77" 5138 3332 5072 3275 6483 4332 "77-78" 5551 3642 5493 3591 6861 4607 "78-79" 6045 4022 5996 3976 7324 4979 "79-80" 6635 4478 6597 4433 7904 5455 "80-81" 7348 4996 7321 4950 8629 6015 "81-82" 8163 5570 8147 5523 9477 6629 "82-83" 9038 6220 9031 6174 10399 7306 "83-84" 9903 6949 9905 6908 11248 8012 "84-85" 10752 7759 10768 7731 11945 8737 "85-86" 11761 8603 11798 8581 12760 9489 "86-87" 12831 9510 12896 9501 13610 10290 "87-88" 13959 10481 14062 10494 14493 11142 "88-89" 15146 11516 15297 11563 15409 12047 "89-90" 16389 12615 16601 12710 16357 13005 "90-91" 17687 13777 17973 13937 17335 14019 "91-92" 19035 15001 19412 15245 18343 15089 "92-93" 20431 16284 20916 16635 19378 16215 "93-94" 21869 17624 22483 18108 20440 17400 "94-95" 23346 19015 24109 19663 21525 18643 "95-96" 24855 20455 25792 21300 22632 19944 "96-97" 26390 21937 27526 23018 23758 21305 "97-98" 27943 23455 29307 24814 24901 22724 "98-99" 29508 25003 31128 26685 26057 24200 "99-100" 31077 26572 32983 28627 27223 25734 survival/noweb/rates/us2000.dat0000644000176200001440000000653013537676563016031 0ustar liggesusers"age" "tm" "wm" "bm" "tf" "wf" "bf" "0-1" 759 624 624 513 1556 1267 "1-2" 57 46 50 41 101 79 "2-3" 38 31 34 27 64 54 "3-4" 28 20 26 18 43 33 "4-5" 22 19 20 15 34 35 "5-6" 21 17 19 15 33 27 "6-7" 20 15 18 14 30 23 "7-8" 19 14 18 13 28 20 "8-9" 17 14 16 13 25 19 "9-10" 15 13 14 12 21 18 "10-11" 13 12 12 11 19 18 "11-12" 14 12 13 11 19 19 "12-13" 19 15 18 13 26 21 "13-14" 31 19 30 18 42 24 "14-15" 48 25 46 24 63 28 "15-16" 66 31 63 31 86 34 "16-17" 83 37 79 38 109 39 "17-18" 98 42 92 42 132 45 "18-19" 110 44 103 44 156 51 "19-20" 119 45 110 44 178 57 "20-21" 130 46 118 43 204 63 "21-22" 140 47 126 43 229 70 "22-23" 146 48 131 43 247 77 "23-24" 148 49 132 44 256 82 "24-25" 147 50 130 45 256 85 "25-26" 144 52 128 46 254 89 "26-27" 142 54 125 48 253 94 "27-28" 140 56 124 49 253 101 "28-29" 141 59 125 51 256 109 "29-30" 143 62 127 53 262 118 "30-31" 146 65 130 56 269 128 "31-32" 149 69 134 59 276 138 "32-33" 155 74 140 63 285 149 "33-34" 162 81 147 69 296 161 "34-35" 172 89 157 76 310 173 "35-36" 183 97 167 84 324 185 "36-37" 194 105 177 91 340 198 "37-38" 207 114 189 100 361 214 "38-39" 222 124 203 108 389 233 "39-40" 240 135 219 118 423 256 "40-41" 258 147 235 128 459 279 "41-42" 278 159 253 139 497 304 "42-43" 300 172 273 150 541 331 "43-44" 326 185 296 161 594 361 "44-45" 356 199 323 173 655 395 "45-46" 390 215 354 186 726 433 "46-47" 427 233 388 201 803 473 "47-48" 464 253 421 219 882 513 "48-49" 500 275 453 241 960 549 "49-50" 533 299 484 265 1036 583 "50-51" 569 325 515 292 1118 619 "51-52" 608 354 551 320 1209 660 "52-53" 653 385 592 351 1303 703 "53-54" 705 419 642 385 1397 747 "54-55" 767 458 702 423 1495 794 "55-56" 839 503 772 468 1602 846 "56-57" 920 555 851 519 1720 905 "57-58" 1008 612 937 575 1848 977 "58-59" 1100 672 1026 633 1981 1062 "59-60" 1196 736 1120 695 2118 1157 "60-61" 1303 809 1224 765 2261 1260 "61-62" 1425 891 1344 845 2410 1370 "62-63" 1556 979 1475 932 2557 1482 "63-64" 1695 1070 1615 1021 2696 1594 "64-65" 1842 1166 1764 1115 2832 1708 "65-66" 1994 1267 1918 1216 2957 1823 "66-67" 2159 1378 2087 1327 3089 1948 "67-68" 2350 1503 2281 1452 3263 2096 "68-69" 2574 1645 2507 1592 3506 2279 "69-70" 2825 1800 2758 1746 3813 2496 "70-71" 3083 1960 3014 1903 4156 2733 "71-72" 3344 2130 3272 2069 4506 2981 "72-73" 3626 2326 3552 2263 4875 3247 "73-74" 3939 2557 3864 2495 5250 3529 "74-75" 4284 2821 4210 2760 5634 3825 "75-76" 4647 3102 4572 3042 6050 4144 "76-77" 5024 3395 4949 3334 6501 4485 "77-78" 5440 3721 5367 3661 6964 4846 "78-79" 5917 4100 5852 4043 7440 5234 "79-80" 6477 4543 6425 4491 7946 5665 "80-81" 7143 5047 7108 5000 8525 6142 "81-82" 7907 5613 7891 5571 9195 6682 "82-83" 8746 6270 8749 6232 9928 7319 "83-84" 9614 7021 9634 6990 10678 8068 "84-85" 10504 7862 10541 7841 11422 8919 "85-86" 11490 8718 11550 8703 12202 9687 "86-87" 12535 9637 12624 9636 13014 10505 "87-88" 13637 10621 13766 10643 13858 11375 "88-89" 14797 11670 14975 11727 14734 12298 "89-90" 16011 12784 16252 12890 15640 13277 "90-91" 17279 13962 17595 14134 16576 14312 "91-92" 18596 15202 19004 15460 17540 15404 "92-93" 19960 16502 20476 16870 18530 16554 "93-94" 21365 17860 22010 18364 19545 17763 "94-95" 22808 19270 23602 19942 20582 19032 "95-96" 24282 20729 25250 21602 21641 20361 "96-97" 25781 22231 26947 23344 22718 21749 "97-98" 27299 23770 28690 25165 23810 23198 "98-99" 28828 25338 30473 27062 24915 24705 "99-100" 30360 26928 32290 29032 26031 26271 survival/noweb/rates/us1999.dat0000644000176200001440000000653213537676563016065 0ustar liggesusers"age" "tm" "wm" "bm" "tf" "wf" "bf" "0-1" 772 636 635 516 1592 1316 "1-2" 58 49 49 44 111 83 "2-3" 41 31 37 28 65 53 "3-4" 31 24 29 22 42 38 "4-5" 24 19 20 17 44 31 "5-6" 22 18 20 16 38 29 "6-7" 21 17 19 15 36 25 "7-8" 20 16 18 14 34 23 "8-9" 18 14 16 13 30 21 "9-10" 15 13 14 12 26 19 "10-11" 13 12 12 11 22 18 "11-12" 13 12 12 11 21 18 "12-13" 19 15 18 14 28 20 "13-14" 32 19 30 19 45 24 "14-15" 49 26 46 25 68 29 "15-16" 68 33 64 33 94 35 "16-17" 85 39 80 40 118 41 "17-18" 100 44 93 44 141 47 "18-19" 111 46 102 46 163 52 "19-20" 119 47 108 45 184 58 "20-21" 127 46 114 44 208 64 "21-22" 136 47 120 43 233 70 "22-23" 141 48 125 42 250 76 "23-24" 143 49 126 43 256 81 "24-25" 141 50 125 44 253 85 "25-26" 139 52 123 45 246 90 "26-27" 137 54 122 47 242 95 "27-28" 136 56 122 49 241 100 "28-29" 138 59 124 51 245 106 "29-30" 142 62 127 54 255 112 "30-31" 147 65 132 57 266 119 "31-32" 153 69 136 60 277 127 "32-33" 159 75 143 65 289 139 "33-34" 167 82 150 71 302 154 "34-35" 176 90 159 78 316 171 "35-36" 186 98 168 85 331 189 "36-37" 196 106 178 92 348 206 "37-38" 208 115 189 100 371 225 "38-39" 223 124 202 107 401 246 "39-40" 240 134 217 116 438 268 "40-41" 259 145 233 125 478 292 "41-42" 278 156 250 135 519 316 "42-43" 300 169 270 145 567 341 "43-44" 326 182 292 157 624 366 "44-45" 354 196 317 170 689 393 "45-46" 387 213 345 185 765 422 "46-47" 422 231 376 202 847 454 "47-48" 458 251 409 221 927 488 "48-49" 493 273 440 242 998 523 "49-50" 526 296 472 265 1063 560 "50-51" 561 322 506 290 1131 602 "51-52" 601 351 545 318 1211 649 "52-53" 648 382 589 348 1300 702 "53-54" 704 418 643 382 1401 760 "54-55" 771 460 706 421 1512 823 "55-56" 849 508 780 467 1633 894 "56-57" 936 562 864 519 1762 971 "57-58" 1028 620 953 575 1898 1050 "58-59" 1122 680 1043 634 2039 1130 "59-60" 1219 744 1137 695 2183 1210 "60-61" 1325 814 1241 765 2336 1296 "61-62" 1446 895 1360 845 2496 1389 "62-63" 1580 982 1494 932 2653 1490 "63-64" 1728 1076 1643 1025 2798 1599 "64-65" 1888 1175 1806 1124 2933 1716 "65-66" 2053 1280 1977 1230 3054 1833 "66-67" 2230 1395 2159 1345 3183 1959 "67-68" 2431 1524 2364 1473 3355 2115 "68-69" 2662 1669 2598 1616 3600 2314 "69-70" 2918 1829 2852 1771 3916 2555 "70-71" 3182 1994 3112 1930 4274 2825 "71-72" 3449 2167 3376 2096 4644 3105 "72-73" 3737 2362 3660 2287 5034 3394 "73-74" 4052 2588 3973 2512 5423 3679 "74-75" 4397 2845 4319 2771 5809 3960 "75-76" 4761 3119 4682 3047 6224 4253 "76-77" 5142 3409 5062 3339 6672 4568 "77-78" 5562 3735 5486 3669 7119 4903 "78-79" 6047 4116 5982 4054 7565 5271 "79-80" 6616 4560 6568 4504 8038 5691 "80-81" 7296 5063 7270 5012 8572 6159 "81-82" 8079 5628 8075 5583 9206 6691 "82-83" 8940 6285 8953 6244 9958 7324 "83-84" 9827 7041 9850 7008 10809 8069 "84-85" 10734 7896 10763 7872 11713 8906 "85-86" 11742 8755 11793 8738 12513 9673 "86-87" 12810 9679 12890 9674 13346 10490 "87-88" 13936 10667 14056 10686 14212 11359 "88-89" 15121 11720 15290 11774 15110 12281 "89-90" 16362 12839 16594 12942 16040 13258 "90-91" 17658 14022 17965 14191 16999 14291 "91-92" 19004 15267 19403 15522 17987 15382 "92-93" 20397 16573 20907 16938 19003 16530 "93-94" 21833 17936 22473 18438 20044 17738 "94-95" 23308 19353 24099 20021 21108 19005 "95-96" 24814 20818 25781 21688 22194 20332 "96-97" 26346 22326 27514 23437 23298 21719 "97-98" 27897 23872 29294 25266 24418 23165 "98-99" 29460 25447 31114 27171 25552 24670 "99-100" 31026 27043 32969 29148 26695 26234 survival/noweb/rates/minndecennial.dat0000644000176200001440000016134013537676563017705 0ustar liggesusers1950 0 m white 0.02712 1950 1 m white 0.00177 1950 2 m white 0.00141 1950 3 m white 0.00096 1950 4 m white 0.00078 1950 5 m white 0.00076 1950 6 m white 0.00072 1950 7 m white 0.00069 1950 8 m white 0.00066 1950 9 m white 0.00065 1950 10 m white 0.00065 1950 11 m white 0.00067 1950 12 m white 0.00073 1950 13 m white 0.00084 1950 14 m white 0.00099 1950 15 m white 0.00116 1950 16 m white 0.00132 1950 17 m white 0.00143 1950 18 m white 0.00150 1950 19 m white 0.00154 1950 20 m white 0.00156 1950 21 m white 0.00157 1950 22 m white 0.00157 1950 23 m white 0.00155 1950 24 m white 0.00152 1950 25 m white 0.00148 1950 26 m white 0.00144 1950 27 m white 0.00143 1950 28 m white 0.00143 1950 29 m white 0.00145 1950 30 m white 0.00147 1950 31 m white 0.00152 1950 32 m white 0.00161 1950 33 m white 0.00173 1950 34 m white 0.00188 1950 35 m white 0.00206 1950 36 m white 0.00226 1950 37 m white 0.00249 1950 38 m white 0.00273 1950 39 m white 0.00300 1950 40 m white 0.00329 1950 41 m white 0.00361 1950 42 m white 0.00397 1950 43 m white 0.00436 1950 44 m white 0.00478 1950 45 m white 0.00523 1950 46 m white 0.00572 1950 47 m white 0.00625 1950 48 m white 0.00681 1950 49 m white 0.00738 1950 50 m white 0.00801 1950 51 m white 0.00871 1950 52 m white 0.00952 1950 53 m white 0.01043 1950 54 m white 0.01142 1950 55 m white 0.01250 1950 56 m white 0.01368 1950 57 m white 0.01496 1950 58 m white 0.01631 1950 59 m white 0.01773 1950 60 m white 0.01926 1950 61 m white 0.02095 1950 62 m white 0.02285 1950 63 m white 0.02493 1950 64 m white 0.02716 1950 65 m white 0.02957 1950 66 m white 0.03220 1950 67 m white 0.03509 1950 68 m white 0.03811 1950 69 m white 0.04125 1950 70 m white 0.04468 1950 71 m white 0.04857 1950 72 m white 0.05309 1950 73 m white 0.05832 1950 74 m white 0.06413 1950 75 m white 0.07042 1950 76 m white 0.07712 1950 77 m white 0.08410 1950 78 m white 0.09116 1950 79 m white 0.09835 1950 80 m white 0.10601 1950 81 m white 0.11448 1950 82 m white 0.12409 1950 83 m white 0.13494 1950 84 m white 0.14680 1950 85 m white 0.15953 1950 86 m white 0.17299 1950 87 m white 0.18704 1950 88 m white 0.20198 1950 89 m white 0.21789 1950 90 m white 0.23434 1950 91 m white 0.25088 1950 92 m white 0.26707 1950 93 m white 0.28286 1950 94 m white 0.29854 1950 95 m white 0.31419 1950 96 m white 0.32989 1950 97 m white 0.34570 1950 98 m white 0.36158 1950 99 m white 0.37747 1950 100 m white 0.39346 1950 101 m white 0.40961 1950 102 m white 0.42600 1950 103 m white 0.44270 1950 104 m white 0.45966 1950 105 m white 0.47677 1950 106 m white 0.49392 1950 107 m white 0.51100 1950 108 m white 0.52810 1950 109 m white 0.54529 1950 0 f white 0.02165 1950 1 f white 0.00140 1950 2 f white 0.00109 1950 3 f white 0.00072 1950 4 f white 0.00062 1950 5 f white 0.00057 1950 6 f white 0.00052 1950 7 f white 0.00048 1950 8 f white 0.00045 1950 9 f white 0.00042 1950 10 f white 0.00040 1950 11 f white 0.00039 1950 12 f white 0.00039 1950 13 f white 0.00040 1950 14 f white 0.00043 1950 15 f white 0.00046 1950 16 f white 0.00049 1950 17 f white 0.00052 1950 18 f white 0.00055 1950 19 f white 0.00058 1950 20 f white 0.00060 1950 21 f white 0.00063 1950 22 f white 0.00065 1950 23 f white 0.00066 1950 24 f white 0.00067 1950 25 f white 0.00068 1950 26 f white 0.00069 1950 27 f white 0.00071 1950 28 f white 0.00074 1950 29 f white 0.00077 1950 30 f white 0.00081 1950 31 f white 0.00086 1950 32 f white 0.00093 1950 33 f white 0.00102 1950 34 f white 0.00113 1950 35 f white 0.00126 1950 36 f white 0.00139 1950 37 f white 0.00153 1950 38 f white 0.00167 1950 39 f white 0.00180 1950 40 f white 0.00195 1950 41 f white 0.00213 1950 42 f white 0.00234 1950 43 f white 0.00260 1950 44 f white 0.00290 1950 45 f white 0.00322 1950 46 f white 0.00355 1950 47 f white 0.00388 1950 48 f white 0.00418 1950 49 f white 0.00447 1950 50 f white 0.00477 1950 51 f white 0.00512 1950 52 f white 0.00556 1950 53 f white 0.00608 1950 54 f white 0.00666 1950 55 f white 0.00730 1950 56 f white 0.00802 1950 57 f white 0.00882 1950 58 f white 0.00967 1950 59 f white 0.01057 1950 60 f white 0.01157 1950 61 f white 0.01271 1950 62 f white 0.01405 1950 63 f white 0.01555 1950 64 f white 0.01718 1950 65 f white 0.01899 1950 66 f white 0.02103 1950 67 f white 0.02336 1950 68 f white 0.02591 1950 69 f white 0.02864 1950 70 f white 0.03165 1950 71 f white 0.03503 1950 72 f white 0.03889 1950 73 f white 0.04315 1950 74 f white 0.04775 1950 75 f white 0.05279 1950 76 f white 0.05837 1950 77 f white 0.06458 1950 78 f white 0.07138 1950 79 f white 0.07871 1950 80 f white 0.08663 1950 81 f white 0.09521 1950 82 f white 0.10453 1950 83 f white 0.11450 1950 84 f white 0.12509 1950 85 f white 0.13641 1950 86 f white 0.14855 1950 87 f white 0.16165 1950 88 f white 0.17584 1950 89 f white 0.19105 1950 90 f white 0.20705 1950 91 f white 0.22365 1950 92 f white 0.24060 1950 93 f white 0.25809 1950 94 f white 0.27626 1950 95 f white 0.29486 1950 96 f white 0.31362 1950 97 f white 0.33229 1950 98 f white 0.35104 1950 99 f white 0.37005 1950 100 f white 0.38905 1950 101 f white 0.40778 1950 102 f white 0.42600 1950 103 f white 0.44356 1950 104 f white 0.46063 1950 105 f white 0.47742 1950 106 f white 0.49414 1950 107 f white 0.51100 1950 108 f white 0.52810 1950 109 f white 0.54529 1960 0 m white 0.02470 1960 1 m white 0.00147 1960 2 m white 0.00097 1960 3 m white 0.00078 1960 4 m white 0.00066 1960 5 m white 0.00063 1960 6 m white 0.00060 1960 7 m white 0.00058 1960 8 m white 0.00054 1960 9 m white 0.00049 1960 10 m white 0.00045 1960 11 m white 0.00044 1960 12 m white 0.00049 1960 13 m white 0.00060 1960 14 m white 0.00078 1960 15 m white 0.00096 1960 16 m white 0.00114 1960 17 m white 0.00131 1960 18 m white 0.00146 1960 19 m white 0.00160 1960 20 m white 0.00175 1960 21 m white 0.00188 1960 22 m white 0.00193 1960 23 m white 0.00186 1960 24 m white 0.00172 1960 25 m white 0.00154 1960 26 m white 0.00138 1960 27 m white 0.00129 1960 28 m white 0.00128 1960 29 m white 0.00135 1960 30 m white 0.00144 1960 31 m white 0.00154 1960 32 m white 0.00161 1960 33 m white 0.00167 1960 34 m white 0.00171 1960 35 m white 0.00177 1960 36 m white 0.00186 1960 37 m white 0.00202 1960 38 m white 0.00226 1960 39 m white 0.00257 1960 40 m white 0.00293 1960 41 m white 0.00330 1960 42 m white 0.00369 1960 43 m white 0.00407 1960 44 m white 0.00447 1960 45 m white 0.00489 1960 46 m white 0.00536 1960 47 m white 0.00593 1960 48 m white 0.00662 1960 49 m white 0.00742 1960 50 m white 0.00830 1960 51 m white 0.00920 1960 52 m white 0.01008 1960 53 m white 0.01088 1960 54 m white 0.01165 1960 55 m white 0.01244 1960 56 m white 0.01334 1960 57 m white 0.01441 1960 58 m white 0.01572 1960 59 m white 0.01723 1960 60 m white 0.01888 1960 61 m white 0.02061 1960 62 m white 0.02245 1960 63 m white 0.02439 1960 64 m white 0.02644 1960 65 m white 0.02861 1960 66 m white 0.03098 1960 67 m white 0.03363 1960 68 m white 0.03667 1960 69 m white 0.04007 1960 70 m white 0.04379 1960 71 m white 0.04777 1960 72 m white 0.05199 1960 73 m white 0.05644 1960 74 m white 0.06117 1960 75 m white 0.06619 1960 76 m white 0.07170 1960 77 m white 0.07798 1960 78 m white 0.08530 1960 79 m white 0.09373 1960 80 m white 0.10380 1960 81 m white 0.11515 1960 82 m white 0.12660 1960 83 m white 0.13690 1960 84 m white 0.14584 1960 85 m white 0.15696 1960 86 m white 0.16895 1960 87 m white 0.18228 1960 88 m white 0.19809 1960 89 m white 0.21622 1960 90 m white 0.23552 1960 91 m white 0.25471 1960 92 m white 0.27336 1960 93 m white 0.29018 1960 94 m white 0.30408 1960 95 m white 0.31416 1960 96 m white 0.32915 1960 97 m white 0.34450 1960 98 m white 0.36018 1960 99 m white 0.37616 1960 100 m white 0.39242 1960 101 m white 0.40891 1960 102 m white 0.42562 1960 103 m white 0.44250 1960 104 m white 0.45951 1960 105 m white 0.47662 1960 106 m white 0.49378 1960 107 m white 0.51095 1960 108 m white 0.52810 1960 109 m white 0.54519 1960 0 f white 0.01808 1960 1 f white 0.00133 1960 2 f white 0.00086 1960 3 f white 0.00066 1960 4 f white 0.00058 1960 5 f white 0.00047 1960 6 f white 0.00039 1960 7 f white 0.00033 1960 8 f white 0.00030 1960 9 f white 0.00028 1960 10 f white 0.00027 1960 11 f white 0.00028 1960 12 f white 0.00030 1960 13 f white 0.00033 1960 14 f white 0.00036 1960 15 f white 0.00041 1960 16 f white 0.00045 1960 17 f white 0.00049 1960 18 f white 0.00051 1960 19 f white 0.00052 1960 20 f white 0.00052 1960 21 f white 0.00053 1960 22 f white 0.00054 1960 23 f white 0.00055 1960 24 f white 0.00057 1960 25 f white 0.00058 1960 26 f white 0.00060 1960 27 f white 0.00062 1960 28 f white 0.00064 1960 29 f white 0.00066 1960 30 f white 0.00069 1960 31 f white 0.00073 1960 32 f white 0.00078 1960 33 f white 0.00084 1960 34 f white 0.00090 1960 35 f white 0.00098 1960 36 f white 0.00107 1960 37 f white 0.00117 1960 38 f white 0.00127 1960 39 f white 0.00137 1960 40 f white 0.00148 1960 41 f white 0.00162 1960 42 f white 0.00180 1960 43 f white 0.00204 1960 44 f white 0.00232 1960 45 f white 0.00264 1960 46 f white 0.00296 1960 47 f white 0.00327 1960 48 f white 0.00357 1960 49 f white 0.00386 1960 50 f white 0.00419 1960 51 f white 0.00454 1960 52 f white 0.00491 1960 53 f white 0.00527 1960 54 f white 0.00566 1960 55 f white 0.00607 1960 56 f white 0.00654 1960 57 f white 0.00715 1960 58 f white 0.00792 1960 59 f white 0.00884 1960 60 f white 0.00989 1960 61 f white 0.01100 1960 62 f white 0.01210 1960 63 f white 0.01313 1960 64 f white 0.01417 1960 65 f white 0.01526 1960 66 f white 0.01654 1960 67 f white 0.01822 1960 68 f white 0.02041 1960 69 f white 0.02306 1960 70 f white 0.02602 1960 71 f white 0.02916 1960 72 f white 0.03250 1960 73 f white 0.03600 1960 74 f white 0.03974 1960 75 f white 0.04364 1960 76 f white 0.04796 1960 77 f white 0.05315 1960 78 f white 0.05956 1960 79 f white 0.06715 1960 80 f white 0.07600 1960 81 f white 0.08569 1960 82 f white 0.09565 1960 83 f white 0.10526 1960 84 f white 0.11466 1960 85 f white 0.13063 1960 86 f white 0.14807 1960 87 f white 0.16620 1960 88 f white 0.18485 1960 89 f white 0.20398 1960 90 f white 0.22376 1960 91 f white 0.24393 1960 92 f white 0.26376 1960 93 f white 0.28252 1960 94 f white 0.29952 1960 95 f white 0.31416 1960 96 f white 0.32915 1960 97 f white 0.34450 1960 98 f white 0.36018 1960 99 f white 0.37616 1960 100 f white 0.39242 1960 101 f white 0.40891 1960 102 f white 0.42562 1960 103 f white 0.44250 1960 104 f white 0.45951 1960 105 f white 0.47662 1960 106 f white 0.49378 1960 107 f white 0.51095 1960 108 f white 0.52810 1960 109 f white 0.54519 1970 0 m total 0.01975 1970 1 m total 0.00123 1970 2 m total 0.00085 1970 3 m total 0.00073 1970 4 m total 0.00058 1970 5 m total 0.00053 1970 6 m total 0.00050 1970 7 m total 0.00048 1970 8 m total 0.00044 1970 9 m total 0.00038 1970 10 m total 0.00033 1970 11 m total 0.00032 1970 12 m total 0.00038 1970 13 m total 0.00055 1970 14 m total 0.00079 1970 15 m total 0.00107 1970 16 m total 0.00134 1970 17 m total 0.00158 1970 18 m total 0.00176 1970 19 m total 0.00189 1970 20 m total 0.00203 1970 21 m total 0.00220 1970 22 m total 0.00226 1970 23 m total 0.00217 1970 24 m total 0.00195 1970 25 m total 0.00168 1970 26 m total 0.00144 1970 27 m total 0.00127 1970 28 m total 0.00123 1970 29 m total 0.00127 1970 30 m total 0.00135 1970 31 m total 0.00143 1970 32 m total 0.00150 1970 33 m total 0.00155 1970 34 m total 0.00159 1970 35 m total 0.00165 1970 36 m total 0.00176 1970 37 m total 0.00192 1970 38 m total 0.00214 1970 39 m total 0.00240 1970 40 m total 0.00269 1970 41 m total 0.00300 1970 42 m total 0.00335 1970 43 m total 0.00375 1970 44 m total 0.00421 1970 45 m total 0.00471 1970 46 m total 0.00525 1970 47 m total 0.00581 1970 48 m total 0.00638 1970 49 m total 0.00699 1970 50 m total 0.00761 1970 51 m total 0.00833 1970 52 m total 0.00920 1970 53 m total 0.01028 1970 54 m total 0.01152 1970 55 m total 0.01289 1970 56 m total 0.01430 1970 57 m total 0.01566 1970 58 m total 0.01693 1970 59 m total 0.01817 1970 60 m total 0.01943 1970 61 m total 0.02085 1970 62 m total 0.02252 1970 63 m total 0.02454 1970 64 m total 0.02691 1970 65 m total 0.02960 1970 66 m total 0.03248 1970 67 m total 0.03538 1970 68 m total 0.03812 1970 69 m total 0.04073 1970 70 m total 0.04324 1970 71 m total 0.04602 1970 72 m total 0.04950 1970 73 m total 0.05407 1970 74 m total 0.05960 1970 75 m total 0.06574 1970 76 m total 0.07196 1970 77 m total 0.07822 1970 78 m total 0.08439 1970 79 m total 0.09068 1970 80 m total 0.09785 1970 81 m total 0.10609 1970 82 m total 0.11476 1970 83 m total 0.12340 1970 84 m total 0.13203 1970 85 m total 0.14266 1970 86 m total 0.15539 1970 87 m total 0.16875 1970 88 m total 0.18181 1970 89 m total 0.19442 1970 90 m total 0.20736 1970 91 m total 0.22169 1970 92 m total 0.23684 1970 93 m total 0.25237 1970 94 m total 0.26697 1970 95 m total 0.27962 1970 96 m total 0.29090 1970 97 m total 0.30135 1970 98 m total 0.31111 1970 99 m total 0.32017 1970 100 m total 0.32857 1970 101 m total 0.33633 1970 102 m total 0.34347 1970 103 m total 0.35004 1970 104 m total 0.35606 1970 105 m total 0.36157 1970 106 m total 0.36661 1970 107 m total 0.37121 1970 108 m total 0.37540 1970 109 m total 0.37922 1970 0 f total 0.01436 1970 1 f total 0.00084 1970 2 f total 0.00071 1970 3 f total 0.00052 1970 4 f total 0.00039 1970 5 f total 0.00038 1970 6 f total 0.00034 1970 7 f total 0.00031 1970 8 f total 0.00028 1970 9 f total 0.00026 1970 10 f total 0.00023 1970 11 f total 0.00022 1970 12 f total 0.00024 1970 13 f total 0.00030 1970 14 f total 0.00038 1970 15 f total 0.00048 1970 16 f total 0.00058 1970 17 f total 0.00064 1970 18 f total 0.00066 1970 19 f total 0.00065 1970 20 f total 0.00062 1970 21 f total 0.00061 1970 22 f total 0.00059 1970 23 f total 0.00059 1970 24 f total 0.00060 1970 25 f total 0.00062 1970 26 f total 0.00062 1970 27 f total 0.00064 1970 28 f total 0.00067 1970 29 f total 0.00072 1970 30 f total 0.00077 1970 31 f total 0.00084 1970 32 f total 0.00090 1970 33 f total 0.00094 1970 34 f total 0.00099 1970 35 f total 0.00103 1970 36 f total 0.00110 1970 37 f total 0.00118 1970 38 f total 0.00130 1970 39 f total 0.00143 1970 40 f total 0.00157 1970 41 f total 0.00172 1970 42 f total 0.00189 1970 43 f total 0.00208 1970 44 f total 0.00229 1970 45 f total 0.00252 1970 46 f total 0.00277 1970 47 f total 0.00303 1970 48 f total 0.00329 1970 49 f total 0.00357 1970 50 f total 0.00386 1970 51 f total 0.00419 1970 52 f total 0.00454 1970 53 f total 0.00494 1970 54 f total 0.00539 1970 55 f total 0.00588 1970 56 f total 0.00642 1970 57 f total 0.00699 1970 58 f total 0.00758 1970 59 f total 0.00821 1970 60 f total 0.00892 1970 61 f total 0.00972 1970 62 f total 0.01058 1970 63 f total 0.01148 1970 64 f total 0.01248 1970 65 f total 0.01356 1970 66 f total 0.01481 1970 67 f total 0.01636 1970 68 f total 0.01825 1970 69 f total 0.02043 1970 70 f total 0.02276 1970 71 f total 0.02522 1970 72 f total 0.02797 1970 73 f total 0.03111 1970 74 f total 0.03467 1970 75 f total 0.03855 1970 76 f total 0.04271 1970 77 f total 0.04734 1970 78 f total 0.05253 1970 79 f total 0.05832 1970 80 f total 0.06486 1970 81 f total 0.07206 1970 82 f total 0.07972 1970 83 f total 0.08773 1970 84 f total 0.09633 1970 85 f total 0.10722 1970 86 f total 0.11992 1970 87 f total 0.13284 1970 88 f total 0.14490 1970 89 f total 0.15639 1970 90 f total 0.16899 1970 91 f total 0.18378 1970 92 f total 0.19958 1970 93 f total 0.21560 1970 94 f total 0.23109 1970 95 f total 0.24584 1970 96 f total 0.25854 1970 97 f total 0.26980 1970 98 f total 0.27996 1970 99 f total 0.28949 1970 100 f total 0.29836 1970 101 f total 0.30659 1970 102 f total 0.31420 1970 103 f total 0.32122 1970 104 f total 0.32768 1970 105 f total 0.33361 1970 106 f total 0.33904 1970 107 f total 0.34401 1970 108 f total 0.34855 1970 109 f total 0.35269 1970 0 m white 0.01963 1970 1 m white 0.00123 1970 2 m white 0.00084 1970 3 m white 0.00071 1970 4 m white 0.00056 1970 5 m white 0.00053 1970 6 m white 0.00051 1970 7 m white 0.00048 1970 8 m white 0.00044 1970 9 m white 0.00039 1970 10 m white 0.00033 1970 11 m white 0.00032 1970 12 m white 0.00038 1970 13 m white 0.00054 1970 14 m white 0.00078 1970 15 m white 0.00106 1970 16 m white 0.00132 1970 17 m white 0.00155 1970 18 m white 0.00172 1970 19 m white 0.00185 1970 20 m white 0.00199 1970 21 m white 0.00215 1970 22 m white 0.00221 1970 23 m white 0.00211 1970 24 m white 0.00190 1970 25 m white 0.00163 1970 26 m white 0.00139 1970 27 m white 0.00123 1970 28 m white 0.00119 1970 29 m white 0.00123 1970 30 m white 0.00132 1970 31 m white 0.00139 1970 32 m white 0.00147 1970 33 m white 0.00151 1970 34 m white 0.00155 1970 35 m white 0.00161 1970 36 m white 0.00171 1970 37 m white 0.00187 1970 38 m white 0.00207 1970 39 m white 0.00232 1970 40 m white 0.00260 1970 41 m white 0.00290 1970 42 m white 0.00324 1970 43 m white 0.00364 1970 44 m white 0.00411 1970 45 m white 0.00462 1970 46 m white 0.00517 1970 47 m white 0.00573 1970 48 m white 0.00631 1970 49 m white 0.00692 1970 50 m white 0.00755 1970 51 m white 0.00827 1970 52 m white 0.00914 1970 53 m white 0.01022 1970 54 m white 0.01146 1970 55 m white 0.01283 1970 56 m white 0.01423 1970 57 m white 0.01560 1970 58 m white 0.01688 1970 59 m white 0.01813 1970 60 m white 0.01941 1970 61 m white 0.02085 1970 62 m white 0.02253 1970 63 m white 0.02456 1970 64 m white 0.02693 1970 65 m white 0.02961 1970 66 m white 0.03248 1970 67 m white 0.03539 1970 68 m white 0.03814 1970 69 m white 0.04078 1970 70 m white 0.04332 1970 71 m white 0.04612 1970 72 m white 0.04962 1970 73 m white 0.05419 1970 74 m white 0.05971 1970 75 m white 0.06581 1970 76 m white 0.07201 1970 77 m white 0.07826 1970 78 m white 0.08445 1970 79 m white 0.09082 1970 80 m white 0.09811 1970 81 m white 0.10650 1970 82 m white 0.11531 1970 83 m white 0.12404 1970 84 m white 0.13271 1970 85 m white 0.14340 1970 86 m white 0.15624 1970 87 m white 0.16981 1970 88 m white 0.18320 1970 89 m white 0.19632 1970 90 m white 0.20995 1970 91 m white 0.22519 1970 92 m white 0.24150 1970 93 m white 0.25847 1970 94 m white 0.27493 1970 95 m white 0.29014 1970 96 m white 0.30431 1970 97 m white 0.31784 1970 98 m white 0.33085 1970 99 m white 0.34324 1970 100 m white 0.35479 1970 101 m white 0.36553 1970 102 m white 0.37550 1970 103 m white 0.38471 1970 104 m white 0.39320 1970 105 m white 0.40101 1970 106 m white 0.40818 1970 107 m white 0.41475 1970 108 m white 0.42075 1970 109 m white 0.42624 1970 0 f white 0.01403 1970 1 f white 0.00085 1970 2 f white 0.00069 1970 3 f white 0.00052 1970 4 f white 0.00040 1970 5 f white 0.00039 1970 6 f white 0.00035 1970 7 f white 0.00032 1970 8 f white 0.00029 1970 9 f white 0.00026 1970 10 f white 0.00023 1970 11 f white 0.00022 1970 12 f white 0.00024 1970 13 f white 0.00029 1970 14 f white 0.00037 1970 15 f white 0.00047 1970 16 f white 0.00056 1970 17 f white 0.00062 1970 18 f white 0.00064 1970 19 f white 0.00062 1970 20 f white 0.00060 1970 21 f white 0.00058 1970 22 f white 0.00057 1970 23 f white 0.00057 1970 24 f white 0.00058 1970 25 f white 0.00059 1970 26 f white 0.00060 1970 27 f white 0.00062 1970 28 f white 0.00065 1970 29 f white 0.00070 1970 30 f white 0.00075 1970 31 f white 0.00082 1970 32 f white 0.00087 1970 33 f white 0.00092 1970 34 f white 0.00095 1970 35 f white 0.00099 1970 36 f white 0.00105 1970 37 f white 0.00113 1970 38 f white 0.00124 1970 39 f white 0.00137 1970 40 f white 0.00151 1970 41 f white 0.00166 1970 42 f white 0.00183 1970 43 f white 0.00202 1970 44 f white 0.00224 1970 45 f white 0.00248 1970 46 f white 0.00273 1970 47 f white 0.00299 1970 48 f white 0.00326 1970 49 f white 0.00353 1970 50 f white 0.00383 1970 51 f white 0.00415 1970 52 f white 0.00450 1970 53 f white 0.00490 1970 54 f white 0.00534 1970 55 f white 0.00584 1970 56 f white 0.00637 1970 57 f white 0.00694 1970 58 f white 0.00754 1970 59 f white 0.00818 1970 60 f white 0.00889 1970 61 f white 0.00969 1970 62 f white 0.01055 1970 63 f white 0.01146 1970 64 f white 0.01247 1970 65 f white 0.01356 1970 66 f white 0.01481 1970 67 f white 0.01636 1970 68 f white 0.01826 1970 69 f white 0.02044 1970 70 f white 0.02276 1970 71 f white 0.02522 1970 72 f white 0.02796 1970 73 f white 0.03110 1970 74 f white 0.03466 1970 75 f white 0.03853 1970 76 f white 0.04269 1970 77 f white 0.04732 1970 78 f white 0.05252 1970 79 f white 0.05834 1970 80 f white 0.06491 1970 81 f white 0.07214 1970 82 f white 0.07983 1970 83 f white 0.08787 1970 84 f white 0.09649 1970 85 f white 0.10744 1970 86 f white 0.12025 1970 87 f white 0.13332 1970 88 f white 0.14556 1970 89 f white 0.15727 1970 90 f white 0.17016 1970 91 f white 0.18539 1970 92 f white 0.20189 1970 93 f white 0.21905 1970 94 f white 0.23615 1970 95 f white 0.25298 1970 96 f white 0.26762 1970 97 f white 0.28133 1970 98 f white 0.29413 1970 99 f white 0.30615 1970 100 f white 0.31742 1970 101 f white 0.32794 1970 102 f white 0.33772 1970 103 f white 0.34679 1970 104 f white 0.35517 1970 105 f white 0.36289 1970 106 f white 0.36999 1970 107 f white 0.37651 1970 108 f white 0.38248 1970 109 f white 0.38793 1980 0 m total 0.01171 1980 1 m total 0.00082 1980 2 m total 0.00066 1980 3 m total 0.00057 1980 4 m total 0.00045 1980 5 m total 0.00038 1980 6 m total 0.00035 1980 7 m total 0.00032 1980 8 m total 0.00028 1980 9 m total 0.00023 1980 10 m total 0.00019 1980 11 m total 0.00019 1980 12 m total 0.00028 1980 13 m total 0.00044 1980 14 m total 0.00066 1980 15 m total 0.00088 1980 16 m total 0.00106 1980 17 m total 0.00122 1980 18 m total 0.00135 1980 19 m total 0.00146 1980 20 m total 0.00158 1980 21 m total 0.00169 1980 22 m total 0.00174 1980 23 m total 0.00172 1980 24 m total 0.00164 1980 25 m total 0.00153 1980 26 m total 0.00144 1980 27 m total 0.00136 1980 28 m total 0.00131 1980 29 m total 0.00128 1980 30 m total 0.00126 1980 31 m total 0.00124 1980 32 m total 0.00123 1980 33 m total 0.00126 1980 34 m total 0.00131 1980 35 m total 0.00139 1980 36 m total 0.00148 1980 37 m total 0.00158 1980 38 m total 0.00169 1980 39 m total 0.00180 1980 40 m total 0.00194 1980 41 m total 0.00213 1980 42 m total 0.00234 1980 43 m total 0.00259 1980 44 m total 0.00287 1980 45 m total 0.00317 1980 46 m total 0.00353 1980 47 m total 0.00400 1980 48 m total 0.00457 1980 49 m total 0.00523 1980 50 m total 0.00593 1980 51 m total 0.00663 1980 52 m total 0.00733 1980 53 m total 0.00801 1980 54 m total 0.00870 1980 55 m total 0.00943 1980 56 m total 0.01023 1980 57 m total 0.01116 1980 58 m total 0.01228 1980 59 m total 0.01358 1980 60 m total 0.01500 1980 61 m total 0.01653 1980 62 m total 0.01828 1980 63 m total 0.02025 1980 64 m total 0.02240 1980 65 m total 0.02473 1980 66 m total 0.02716 1980 67 m total 0.02962 1980 68 m total 0.03204 1980 69 m total 0.03450 1980 70 m total 0.03711 1980 71 m total 0.03997 1980 72 m total 0.04316 1980 73 m total 0.04674 1980 74 m total 0.05074 1980 75 m total 0.05510 1980 76 m total 0.05982 1980 77 m total 0.06503 1980 78 m total 0.07075 1980 79 m total 0.07696 1980 80 m total 0.08374 1980 81 m total 0.09104 1980 82 m total 0.09872 1980 83 m total 0.10673 1980 84 m total 0.11521 1980 85 m total 0.12563 1980 86 m total 0.13713 1980 87 m total 0.14881 1980 88 m total 0.16025 1980 89 m total 0.17187 1980 90 m total 0.18480 1980 91 m total 0.19966 1980 92 m total 0.21563 1980 93 m total 0.23177 1980 94 m total 0.24710 1980 95 m total 0.26149 1980 96 m total 0.27438 1980 97 m total 0.28654 1980 98 m total 0.29797 1980 99 m total 0.30867 1980 100 m total 0.31865 1980 101 m total 0.32792 1980 102 m total 0.33650 1980 103 m total 0.34443 1980 104 m total 0.35174 1980 105 m total 0.35845 1980 106 m total 0.36461 1980 107 m total 0.37024 1980 108 m total 0.37539 1980 109 m total 0.38009 1980 0 f total 0.00903 1980 1 f total 0.00056 1980 2 f total 0.00045 1980 3 f total 0.00036 1980 4 f total 0.00031 1980 5 f total 0.00030 1980 6 f total 0.00028 1980 7 f total 0.00025 1980 8 f total 0.00023 1980 9 f total 0.00020 1980 10 f total 0.00017 1980 11 f total 0.00016 1980 12 f total 0.00018 1980 13 f total 0.00022 1980 14 f total 0.00028 1980 15 f total 0.00035 1980 16 f total 0.00040 1980 17 f total 0.00044 1980 18 f total 0.00047 1980 19 f total 0.00049 1980 20 f total 0.00051 1980 21 f total 0.00053 1980 22 f total 0.00053 1980 23 f total 0.00053 1980 24 f total 0.00050 1980 25 f total 0.00048 1980 26 f total 0.00046 1980 27 f total 0.00045 1980 28 f total 0.00045 1980 29 f total 0.00047 1980 30 f total 0.00049 1980 31 f total 0.00052 1980 32 f total 0.00055 1980 33 f total 0.00060 1980 34 f total 0.00065 1980 35 f total 0.00072 1980 36 f total 0.00080 1980 37 f total 0.00089 1980 38 f total 0.00099 1980 39 f total 0.00110 1980 40 f total 0.00122 1980 41 f total 0.00135 1980 42 f total 0.00150 1980 43 f total 0.00165 1980 44 f total 0.00181 1980 45 f total 0.00198 1980 46 f total 0.00217 1980 47 f total 0.00238 1980 48 f total 0.00260 1980 49 f total 0.00282 1980 50 f total 0.00305 1980 51 f total 0.00330 1980 52 f total 0.00359 1980 53 f total 0.00395 1980 54 f total 0.00436 1980 55 f total 0.00482 1980 56 f total 0.00529 1980 57 f total 0.00578 1980 58 f total 0.00627 1980 59 f total 0.00678 1980 60 f total 0.00733 1980 61 f total 0.00795 1980 62 f total 0.00868 1980 63 f total 0.00954 1980 64 f total 0.01051 1980 65 f total 0.01159 1980 66 f total 0.01274 1980 67 f total 0.01393 1980 68 f total 0.01514 1980 69 f total 0.01643 1980 70 f total 0.01783 1980 71 f total 0.01942 1980 72 f total 0.02129 1980 73 f total 0.02351 1980 74 f total 0.02604 1980 75 f total 0.02874 1980 76 f total 0.03167 1980 77 f total 0.03508 1980 78 f total 0.03914 1980 79 f total 0.04384 1980 80 f total 0.04903 1980 81 f total 0.05459 1980 82 f total 0.06067 1980 83 f total 0.06733 1980 84 f total 0.07467 1980 85 f total 0.08396 1980 86 f total 0.09429 1980 87 f total 0.10503 1980 88 f total 0.11595 1980 89 f total 0.12752 1980 90 f total 0.14085 1980 91 f total 0.15604 1980 92 f total 0.17184 1980 93 f total 0.18743 1980 94 f total 0.20278 1980 95 f total 0.21823 1980 96 f total 0.23221 1980 97 f total 0.24560 1980 98 f total 0.25834 1980 99 f total 0.27040 1980 100 f total 0.28176 1980 101 f total 0.29242 1980 102 f total 0.30237 1980 103 f total 0.31163 1980 104 f total 0.32023 1980 105 f total 0.32817 1980 106 f total 0.33550 1980 107 f total 0.34224 1980 108 f total 0.34843 1980 109 f total 0.35411 1980 0 m white 0.01125 1980 1 m white 0.00078 1980 2 m white 0.00063 1980 3 m white 0.00051 1980 4 m white 0.00044 1980 5 m white 0.00038 1980 6 m white 0.00035 1980 7 m white 0.00032 1980 8 m white 0.00028 1980 9 m white 0.00023 1980 10 m white 0.00018 1980 11 m white 0.00018 1980 12 m white 0.00026 1980 13 m white 0.00044 1980 14 m white 0.00066 1980 15 m white 0.00088 1980 16 m white 0.00107 1980 17 m white 0.00123 1980 18 m white 0.00135 1980 19 m white 0.00146 1980 20 m white 0.00157 1980 21 m white 0.00168 1980 22 m white 0.00173 1980 23 m white 0.00170 1980 24 m white 0.00162 1980 25 m white 0.00151 1980 26 m white 0.00141 1980 27 m white 0.00133 1980 28 m white 0.00127 1980 29 m white 0.00125 1980 30 m white 0.00122 1980 31 m white 0.00119 1980 32 m white 0.00118 1980 33 m white 0.00120 1980 34 m white 0.00125 1980 35 m white 0.00132 1980 36 m white 0.00141 1980 37 m white 0.00151 1980 38 m white 0.00161 1980 39 m white 0.00172 1980 40 m white 0.00186 1980 41 m white 0.00205 1980 42 m white 0.00227 1980 43 m white 0.00251 1980 44 m white 0.00279 1980 45 m white 0.00309 1980 46 m white 0.00345 1980 47 m white 0.00391 1980 48 m white 0.00449 1980 49 m white 0.00516 1980 50 m white 0.00587 1980 51 m white 0.00658 1980 52 m white 0.00728 1980 53 m white 0.00796 1980 54 m white 0.00865 1980 55 m white 0.00938 1980 56 m white 0.01018 1980 57 m white 0.01110 1980 58 m white 0.01221 1980 59 m white 0.01349 1980 60 m white 0.01490 1980 61 m white 0.01642 1980 62 m white 0.01816 1980 63 m white 0.02013 1980 64 m white 0.02229 1980 65 m white 0.02464 1980 66 m white 0.02710 1980 67 m white 0.02958 1980 68 m white 0.03203 1980 69 m white 0.03451 1980 70 m white 0.03715 1980 71 m white 0.04006 1980 72 m white 0.04326 1980 73 m white 0.04683 1980 74 m white 0.05080 1980 75 m white 0.05510 1980 76 m white 0.05978 1980 77 m white 0.06497 1980 78 m white 0.07072 1980 79 m white 0.07702 1980 80 m white 0.08392 1980 81 m white 0.09135 1980 82 m white 0.09913 1980 83 m white 0.10718 1980 84 m white 0.11563 1980 85 m white 0.12594 1980 86 m white 0.13737 1980 87 m white 0.14904 1980 88 m white 0.16056 1980 89 m white 0.17238 1980 90 m white 0.18563 1980 91 m white 0.20094 1980 92 m white 0.21748 1980 93 m white 0.23433 1980 94 m white 0.25058 1980 95 m white 0.26617 1980 96 m white 0.28001 1980 97 m white 0.29311 1980 98 m white 0.30545 1980 99 m white 0.31703 1980 100 m white 0.32784 1980 101 m white 0.33791 1980 102 m white 0.34724 1980 103 m white 0.35588 1980 104 m white 0.36384 1980 105 m white 0.37117 1980 106 m white 0.37790 1980 107 m white 0.38407 1980 108 m white 0.38971 1980 109 m white 0.39486 1980 0 f white 0.00874 1980 1 f white 0.00050 1980 2 f white 0.00041 1980 3 f white 0.00035 1980 4 f white 0.00031 1980 5 f white 0.00029 1980 6 f white 0.00027 1980 7 f white 0.00025 1980 8 f white 0.00023 1980 9 f white 0.00019 1980 10 f white 0.00016 1980 11 f white 0.00015 1980 12 f white 0.00017 1980 13 f white 0.00021 1980 14 f white 0.00028 1980 15 f white 0.00035 1980 16 f white 0.00041 1980 17 f white 0.00045 1980 18 f white 0.00048 1980 19 f white 0.00049 1980 20 f white 0.00050 1980 21 f white 0.00052 1980 22 f white 0.00052 1980 23 f white 0.00051 1980 24 f white 0.00049 1980 25 f white 0.00047 1980 26 f white 0.00045 1980 27 f white 0.00043 1980 28 f white 0.00044 1980 29 f white 0.00045 1980 30 f white 0.00048 1980 31 f white 0.00050 1980 32 f white 0.00054 1980 33 f white 0.00058 1980 34 f white 0.00063 1980 35 f white 0.00070 1980 36 f white 0.00078 1980 37 f white 0.00087 1980 38 f white 0.00096 1980 39 f white 0.00105 1980 40 f white 0.00116 1980 41 f white 0.00129 1980 42 f white 0.00143 1980 43 f white 0.00158 1980 44 f white 0.00174 1980 45 f white 0.00192 1980 46 f white 0.00211 1980 47 f white 0.00233 1980 48 f white 0.00255 1980 49 f white 0.00278 1980 50 f white 0.00301 1980 51 f white 0.00326 1980 52 f white 0.00355 1980 53 f white 0.00390 1980 54 f white 0.00430 1980 55 f white 0.00475 1980 56 f white 0.00521 1980 57 f white 0.00569 1980 58 f white 0.00618 1980 59 f white 0.00671 1980 60 f white 0.00728 1980 61 f white 0.00792 1980 62 f white 0.00866 1980 63 f white 0.00951 1980 64 f white 0.01048 1980 65 f white 0.01155 1980 66 f white 0.01269 1980 67 f white 0.01388 1980 68 f white 0.01510 1980 69 f white 0.01640 1980 70 f white 0.01781 1980 71 f white 0.01942 1980 72 f white 0.02130 1980 73 f white 0.02351 1980 74 f white 0.02603 1980 75 f white 0.02872 1980 76 f white 0.03164 1980 77 f white 0.03504 1980 78 f white 0.03911 1980 79 f white 0.04382 1980 80 f white 0.04903 1980 81 f white 0.05460 1980 82 f white 0.06069 1980 83 f white 0.06736 1980 84 f white 0.07471 1980 85 f white 0.08399 1980 86 f white 0.09432 1980 87 f white 0.10511 1980 88 f white 0.11613 1980 89 f white 0.12785 1980 90 f white 0.14143 1980 91 f white 0.15697 1980 92 f white 0.17324 1980 93 f white 0.18947 1980 94 f white 0.20568 1980 95 f white 0.22228 1980 96 f white 0.23729 1980 97 f white 0.25173 1980 98 f white 0.26551 1980 99 f white 0.27859 1980 100 f white 0.29094 1980 101 f white 0.30255 1980 102 f white 0.31342 1980 103 f white 0.32355 1980 104 f white 0.33297 1980 105 f white 0.34168 1980 106 f white 0.34973 1980 107 f white 0.35715 1980 108 f white 0.36397 1980 109 f white 0.37022 1990 0 m total 0.00823 1990 1 m total 0.00056 1990 2 m total 0.00038 1990 3 m total 0.00031 1990 4 m total 0.00026 1990 5 m total 0.00023 1990 6 m total 0.00022 1990 7 m total 0.00021 1990 8 m total 0.00019 1990 9 m total 0.00016 1990 10 m total 0.00013 1990 11 m total 0.00013 1990 12 m total 0.00018 1990 13 m total 0.00030 1990 14 m total 0.00046 1990 15 m total 0.00065 1990 16 m total 0.00083 1990 17 m total 0.00098 1990 18 m total 0.00108 1990 19 m total 0.00115 1990 20 m total 0.00121 1990 21 m total 0.00127 1990 22 m total 0.00129 1990 23 m total 0.00128 1990 24 m total 0.00123 1990 25 m total 0.00119 1990 26 m total 0.00115 1990 27 m total 0.00113 1990 28 m total 0.00113 1990 29 m total 0.00115 1990 30 m total 0.00118 1990 31 m total 0.00120 1990 32 m total 0.00124 1990 33 m total 0.00130 1990 34 m total 0.00137 1990 35 m total 0.00146 1990 36 m total 0.00155 1990 37 m total 0.00164 1990 38 m total 0.00173 1990 39 m total 0.00181 1990 40 m total 0.00190 1990 41 m total 0.00201 1990 42 m total 0.00214 1990 43 m total 0.00230 1990 44 m total 0.00250 1990 45 m total 0.00274 1990 46 m total 0.00302 1990 47 m total 0.00332 1990 48 m total 0.00363 1990 49 m total 0.00396 1990 50 m total 0.00433 1990 51 m total 0.00478 1990 52 m total 0.00530 1990 53 m total 0.00591 1990 54 m total 0.00660 1990 55 m total 0.00736 1990 56 m total 0.00820 1990 57 m total 0.00913 1990 58 m total 0.01016 1990 59 m total 0.01127 1990 60 m total 0.01241 1990 61 m total 0.01361 1990 62 m total 0.01493 1990 63 m total 0.01645 1990 64 m total 0.01817 1990 65 m total 0.01999 1990 66 m total 0.02191 1990 67 m total 0.02404 1990 68 m total 0.02645 1990 69 m total 0.02916 1990 70 m total 0.03220 1990 71 m total 0.03551 1990 72 m total 0.03904 1990 73 m total 0.04269 1990 74 m total 0.04645 1990 75 m total 0.05037 1990 76 m total 0.05463 1990 77 m total 0.05940 1990 78 m total 0.06497 1990 79 m total 0.07142 1990 80 m total 0.07890 1990 81 m total 0.08715 1990 82 m total 0.09575 1990 83 m total 0.10415 1990 84 m total 0.11240 1990 85 m total 0.12196 1990 86 m total 0.13298 1990 87 m total 0.14466 1990 88 m total 0.15686 1990 89 m total 0.16970 1990 90 m total 0.18384 1990 91 m total 0.19931 1990 92 m total 0.21509 1990 93 m total 0.23043 1990 94 m total 0.24525 1990 95 m total 0.26004 1990 96 m total 0.27536 1990 97 m total 0.28943 1990 98 m total 0.30390 1990 99 m total 0.31910 1990 100 m total 0.33505 1990 101 m total 0.35181 1990 102 m total 0.36940 1990 103 m total 0.38787 1990 104 m total 0.40726 1990 105 m total 0.42762 1990 106 m total 0.44900 1990 107 m total 0.47145 1990 108 m total 0.49503 1990 109 m total 0.51978 1990 0 f total 0.00631 1990 1 f total 0.00052 1990 2 f total 0.00033 1990 3 f total 0.00025 1990 4 f total 0.00020 1990 5 f total 0.00018 1990 6 f total 0.00016 1990 7 f total 0.00015 1990 8 f total 0.00013 1990 9 f total 0.00012 1990 10 f total 0.00011 1990 11 f total 0.00011 1990 12 f total 0.00013 1990 13 f total 0.00017 1990 14 f total 0.00022 1990 15 f total 0.00028 1990 16 f total 0.00034 1990 17 f total 0.00039 1990 18 f total 0.00042 1990 19 f total 0.00043 1990 20 f total 0.00044 1990 21 f total 0.00045 1990 22 f total 0.00045 1990 23 f total 0.00044 1990 24 f total 0.00043 1990 25 f total 0.00042 1990 26 f total 0.00041 1990 27 f total 0.00040 1990 28 f total 0.00040 1990 29 f total 0.00040 1990 30 f total 0.00041 1990 31 f total 0.00042 1990 32 f total 0.00044 1990 33 f total 0.00049 1990 34 f total 0.00056 1990 35 f total 0.00064 1990 36 f total 0.00072 1990 37 f total 0.00081 1990 38 f total 0.00090 1990 39 f total 0.00098 1990 40 f total 0.00108 1990 41 f total 0.00119 1990 42 f total 0.00130 1990 43 f total 0.00141 1990 44 f total 0.00153 1990 45 f total 0.00167 1990 46 f total 0.00183 1990 47 f total 0.00201 1990 48 f total 0.00220 1990 49 f total 0.00242 1990 50 f total 0.00267 1990 51 f total 0.00295 1990 52 f total 0.00327 1990 53 f total 0.00360 1990 54 f total 0.00396 1990 55 f total 0.00434 1990 56 f total 0.00477 1990 57 f total 0.00530 1990 58 f total 0.00592 1990 59 f total 0.00662 1990 60 f total 0.00736 1990 61 f total 0.00810 1990 62 f total 0.00881 1990 63 f total 0.00950 1990 64 f total 0.01019 1990 65 f total 0.01091 1990 66 f total 0.01173 1990 67 f total 0.01275 1990 68 f total 0.01404 1990 69 f total 0.01557 1990 70 f total 0.01730 1990 71 f total 0.01914 1990 72 f total 0.02105 1990 73 f total 0.02298 1990 74 f total 0.02498 1990 75 f total 0.02706 1990 76 f total 0.02941 1990 77 f total 0.03227 1990 78 f total 0.03586 1990 79 f total 0.04016 1990 80 f total 0.04492 1990 81 f total 0.05004 1990 82 f total 0.05573 1990 83 f total 0.06205 1990 84 f total 0.06904 1990 85 f total 0.07761 1990 86 f total 0.08705 1990 87 f total 0.09716 1990 88 f total 0.10797 1990 89 f total 0.11983 1990 90 f total 0.13353 1990 91 f total 0.14890 1990 92 f total 0.16491 1990 93 f total 0.18102 1990 94 f total 0.19753 1990 95 f total 0.21475 1990 96 f total 0.23143 1990 97 f total 0.24775 1990 98 f total 0.26375 1990 99 f total 0.27957 1990 100 f total 0.29635 1990 101 f total 0.31413 1990 102 f total 0.33298 1990 103 f total 0.35296 1990 104 f total 0.37413 1990 105 f total 0.39658 1990 106 f total 0.42038 1990 107 f total 0.44560 1990 108 f total 0.47233 1990 109 f total 0.50068 1990 0 m white 0.00749 1990 1 m white 0.00049 1990 2 m white 0.00034 1990 3 m white 0.00028 1990 4 m white 0.00024 1990 5 m white 0.00022 1990 6 m white 0.00021 1990 7 m white 0.00020 1990 8 m white 0.00018 1990 9 m white 0.00015 1990 10 m white 0.00013 1990 11 m white 0.00013 1990 12 m white 0.00017 1990 13 m white 0.00029 1990 14 m white 0.00045 1990 15 m white 0.00064 1990 16 m white 0.00081 1990 17 m white 0.00095 1990 18 m white 0.00104 1990 19 m white 0.00109 1990 20 m white 0.00114 1990 21 m white 0.00118 1990 22 m white 0.00120 1990 23 m white 0.00118 1990 24 m white 0.00115 1990 25 m white 0.00111 1990 26 m white 0.00108 1990 27 m white 0.00106 1990 28 m white 0.00107 1990 29 m white 0.00109 1990 30 m white 0.00112 1990 31 m white 0.00114 1990 32 m white 0.00118 1990 33 m white 0.00123 1990 34 m white 0.00130 1990 35 m white 0.00138 1990 36 m white 0.00147 1990 37 m white 0.00155 1990 38 m white 0.00163 1990 39 m white 0.00171 1990 40 m white 0.00180 1990 41 m white 0.00191 1990 42 m white 0.00203 1990 43 m white 0.00219 1990 44 m white 0.00237 1990 45 m white 0.00260 1990 46 m white 0.00287 1990 47 m white 0.00317 1990 48 m white 0.00347 1990 49 m white 0.00379 1990 50 m white 0.00415 1990 51 m white 0.00460 1990 52 m white 0.00512 1990 53 m white 0.00573 1990 54 m white 0.00643 1990 55 m white 0.00719 1990 56 m white 0.00804 1990 57 m white 0.00897 1990 58 m white 0.01000 1990 59 m white 0.01110 1990 60 m white 0.01223 1990 61 m white 0.01341 1990 62 m white 0.01474 1990 63 m white 0.01626 1990 64 m white 0.01799 1990 65 m white 0.01982 1990 66 m white 0.02175 1990 67 m white 0.02389 1990 68 m white 0.02631 1990 69 m white 0.02905 1990 70 m white 0.03210 1990 71 m white 0.03542 1990 72 m white 0.03897 1990 73 m white 0.04263 1990 74 m white 0.04640 1990 75 m white 0.05033 1990 76 m white 0.05460 1990 77 m white 0.05939 1990 78 m white 0.06496 1990 79 m white 0.07143 1990 80 m white 0.07893 1990 81 m white 0.08719 1990 82 m white 0.09579 1990 83 m white 0.10417 1990 84 m white 0.11238 1990 85 m white 0.12192 1990 86 m white 0.13295 1990 87 m white 0.14471 1990 88 m white 0.15706 1990 89 m white 0.17012 1990 90 m white 0.18458 1990 91 m white 0.20048 1990 92 m white 0.21675 1990 93 m white 0.23260 1990 94 m white 0.24792 1990 95 m white 0.26329 1990 96 m white 0.27914 1990 97 m white 0.29399 1990 98 m white 0.30869 1990 99 m white 0.32413 1990 100 m white 0.34033 1990 101 m white 0.35735 1990 102 m white 0.37522 1990 103 m white 0.39398 1990 104 m white 0.41368 1990 105 m white 0.43436 1990 106 m white 0.45608 1990 107 m white 0.47888 1990 108 m white 0.50282 1990 109 m white 0.52797 1990 0 f white 0.00545 1990 1 f white 0.00046 1990 2 f white 0.00030 1990 3 f white 0.00023 1990 4 f white 0.00018 1990 5 f white 0.00017 1990 6 f white 0.00015 1990 7 f white 0.00014 1990 8 f white 0.00013 1990 9 f white 0.00012 1990 10 f white 0.00011 1990 11 f white 0.00011 1990 12 f white 0.00013 1990 13 f white 0.00016 1990 14 f white 0.00022 1990 15 f white 0.00028 1990 16 f white 0.00034 1990 17 f white 0.00039 1990 18 f white 0.00041 1990 19 f white 0.00042 1990 20 f white 0.00043 1990 21 f white 0.00044 1990 22 f white 0.00044 1990 23 f white 0.00042 1990 24 f white 0.00041 1990 25 f white 0.00039 1990 26 f white 0.00038 1990 27 f white 0.00037 1990 28 f white 0.00037 1990 29 f white 0.00037 1990 30 f white 0.00038 1990 31 f white 0.00039 1990 32 f white 0.00041 1990 33 f white 0.00046 1990 34 f white 0.00052 1990 35 f white 0.00060 1990 36 f white 0.00067 1990 37 f white 0.00076 1990 38 f white 0.00085 1990 39 f white 0.00094 1990 40 f white 0.00104 1990 41 f white 0.00115 1990 42 f white 0.00126 1990 43 f white 0.00138 1990 44 f white 0.00149 1990 45 f white 0.00163 1990 46 f white 0.00179 1990 47 f white 0.00197 1990 48 f white 0.00216 1990 49 f white 0.00238 1990 50 f white 0.00262 1990 51 f white 0.00290 1990 52 f white 0.00321 1990 53 f white 0.00354 1990 54 f white 0.00390 1990 55 f white 0.00428 1990 56 f white 0.00472 1990 57 f white 0.00524 1990 58 f white 0.00585 1990 59 f white 0.00652 1990 60 f white 0.00724 1990 61 f white 0.00797 1990 62 f white 0.00867 1990 63 f white 0.00935 1990 64 f white 0.01005 1990 65 f white 0.01077 1990 66 f white 0.01160 1990 67 f white 0.01262 1990 68 f white 0.01391 1990 69 f white 0.01545 1990 70 f white 0.01718 1990 71 f white 0.01902 1990 72 f white 0.02093 1990 73 f white 0.02286 1990 74 f white 0.02486 1990 75 f white 0.02694 1990 76 f white 0.02929 1990 77 f white 0.03216 1990 78 f white 0.03575 1990 79 f white 0.04004 1990 80 f white 0.04479 1990 81 f white 0.04989 1990 82 f white 0.05558 1990 83 f white 0.06191 1990 84 f white 0.06895 1990 85 f white 0.07754 1990 86 f white 0.08705 1990 87 f white 0.09725 1990 88 f white 0.10818 1990 89 f white 0.12018 1990 90 f white 0.13408 1990 91 f white 0.14976 1990 92 f white 0.16617 1990 93 f white 0.18271 1990 94 f white 0.19967 1990 95 f white 0.21737 1990 96 f white 0.23434 1990 97 f white 0.25091 1990 98 f white 0.26715 1990 99 f white 0.28318 1990 100 f white 0.30017 1990 101 f white 0.31818 1990 102 f white 0.33727 1990 103 f white 0.35750 1990 104 f white 0.37895 1990 105 f white 0.40169 1990 106 f white 0.42579 1990 107 f white 0.45134 1990 108 f white 0.47842 1990 109 f white 0.50712 survival/noweb/rates/minn2004.dat0000644000176200001440000000313213537676563016342 0ustar liggesusers"age" "tm" "tf" "0-1" 546 437 "1-2" 42 26 "2-3" 23 17 "3-4" 19 15 "4-5" 19 12 "5-6" 17 15 "6-7" 11 13 "7-8" 11 14 "8-9" 11 7 "9-10" 8 10 "10-11" 12 13 "11-12" 19 7 "12-13" 21 12 "13-14" 21 19 "14-15" 37 18 "15-16" 47 30 "16-17" 46 36 "17-18" 69 35 "18-19" 96 30 "19-20" 99 34 "20-21" 98 27 "21-22" 127 26 "22-23" 97 30 "23-24" 103 32 "24-25" 102 25 "25-26" 88 33 "26-27" 89 45 "27-28" 104 36 "28-29" 98 46 "29-30" 73 34 "30-31" 98 46 "31-32" 99 56 "32-33" 105 43 "33-34" 101 50 "34-35" 100 49 "35-36" 126 60 "36-37" 121 67 "37-38" 136 79 "38-39" 132 88 "39-40" 138 93 "40-41" 172 94 "41-42" 195 117 "42-43" 183 118 "43-44" 208 135 "44-45" 188 130 "45-46" 253 140 "46-47" 275 171 "47-48" 307 186 "48-49" 366 209 "49-50" 343 189 "50-51" 394 246 "51-52" 410 227 "52-53" 439 273 "53-54" 470 293 "54-55" 546 320 "55-56" 586 410 "56-57" 610 373 "57-58" 626 367 "58-59" 851 520 "59-60" 833 540 "60-61" 940 615 "61-62" 901 587 "62-63" 1110 748 "63-64" 1189 796 "64-65" 1295 855 "65-66" 1435 912 "66-67" 1508 1017 "67-68" 1708 1090 "68-69" 1997 1306 "69-70" 1946 1187 "70-71" 2226 1577 "71-72" 2393 1779 "72-73" 2836 1965 "73-74" 3169 1982 "74-75" 3327 2273 "75-76" 3844 2401 "76-77" 4155 2497 "77-78" 4721 2877 "78-79" 5001 3178 "79-80" 5780 3734 "80-81" 6211 4082 "81-82" 7445 4989 "82-83" 7704 5471 "83-84" 9480 5894 "84-85" 9460 6776 "85-86" 9942 6639 "86-87" 11693 7916 "87-88" 12960 8911 "88-89" 14720 10343 "89-90" 15762 11477 "90-91" 17490 12966 "91-92" 18946 14849 "92-93" 21889 16948 "93-94" 23140 19640 "94-95" 24436 18973 "95-96" 26418 23152 "96-97" 32863 22606 "97-98" 33507 27263 "98-99" 30091 31076 "99-100" 29382 33769 survival/noweb/rates/us2006.dat0000644000176200001440000000647213537676563016044 0ustar liggesusers"age" "tm" "wm" "bm" "tf" "wf" "bf" "0-1" 734 605 612 501 1448 1223 "1-2" 46 43 40 39 77 61 "2-3" 32 28 30 23 46 48 "3-4" 24 18 23 17 37 24 "4-5" 20 16 18 15 27 25 "5-6" 19 15 17 13 28 22 "6-7" 18 13 16 12 26 18 "7-8" 16 12 15 12 25 16 "8-9" 14 11 13 10 21 14 "9-10" 11 10 10 9 15 14 "10-11" 8 9 8 8 11 14 "11-12" 8 9 8 8 10 15 "12-13" 14 11 13 10 17 17 "13-14" 25 16 24 15 35 20 "14-15" 42 21 39 21 59 24 "15-16" 59 28 55 28 86 28 "16-17" 76 33 70 34 111 32 "17-18" 92 38 85 39 134 37 "18-19" 106 41 99 42 154 42 "19-20" 119 43 112 43 171 48 "20-21" 133 45 125 44 188 55 "21-22" 146 48 137 46 207 62 "22-23" 154 49 145 47 221 68 "23-24" 155 51 146 48 230 73 "24-25" 153 52 143 49 234 76 "25-26" 148 53 138 50 236 80 "26-27" 144 55 134 51 239 85 "27-28" 142 56 130 52 241 90 "28-29" 141 58 129 53 245 94 "29-30" 142 60 130 55 249 100 "30-31" 144 63 132 58 255 107 "31-32" 146 67 134 61 260 115 "32-33" 150 72 138 65 272 125 "33-34" 154 77 142 70 274 134 "34-35" 159 83 147 75 283 145 "35-36" 165 89 153 81 292 156 "36-37" 174 97 161 88 305 169 "37-38" 185 106 172 96 320 184 "38-39" 200 117 187 106 339 203 "39-40" 218 129 205 117 362 225 "40-41" 238 142 224 129 388 247 "41-42" 259 156 244 142 416 270 "42-43" 283 171 267 156 449 296 "43-44" 309 188 292 171 490 324 "44-45" 337 205 318 187 538 354 "45-46" 366 224 345 204 588 387 "46-47" 397 242 374 221 641 420 "47-48" 431 262 404 239 704 454 "48-49" 469 281 439 257 780 489 "49-50" 512 302 478 276 870 527 "50-51" 560 325 521 297 972 568 "51-52" 611 350 567 320 1079 612 "52-53" 662 377 614 347 1183 658 "53-54" 710 407 659 375 1275 704 "54-55" 757 438 704 406 1355 750 "55-56" 804 471 749 439 1435 799 "56-57" 855 506 797 473 1523 850 "57-58" 911 546 852 512 1614 905 "58-59" 978 593 918 560 1716 967 "59-60" 1058 649 997 616 1835 1038 "60-61" 1154 718 1093 685 1977 1122 "61-62" 1263 797 1201 764 2138 1220 "62-63" 1380 878 1316 844 2311 1326 "63-64" 1495 955 1429 919 2473 1430 "64-65" 1607 1028 1540 990 2618 1529 "65-66" 1727 1107 1660 1068 2754 1628 "66-67" 1852 1188 1785 1149 2903 1725 "67-68" 1997 1286 1929 1247 3082 1837 "68-69" 2163 1401 2095 1363 3302 1970 "69-70" 2356 1536 2287 1499 3556 2125 "70-71" 2574 1690 2500 1653 3831 2298 "71-72" 2822 1865 2746 1830 4123 2493 "72-73" 3110 2068 3032 2032 4448 2718 "73-74" 3437 2300 3360 2263 4807 2974 "74-75" 3800 2564 3725 2526 5200 3262 "75-76" 4202 2864 4129 2825 5622 3581 "76-77" 4634 3189 4564 3151 6043 3907 "77-78" 5107 3550 5042 3514 6494 4262 "78-79" 5626 3950 5567 3917 6975 4647 "79-80" 6194 4393 6144 4364 7489 5065 "80-81" 6816 4883 6776 4859 8038 5519 "81-82" 7495 5425 7468 5408 8624 6011 "82-83" 8235 6023 8224 6014 9248 6544 "83-84" 9042 6682 9049 6684 9912 7120 "84-85" 9919 7408 9948 7422 10618 7743 "85-86" 10870 8206 10926 8235 11368 8415 "86-87" 11902 9081 11987 9128 12164 9140 "87-88" 13016 10039 13136 10108 13008 9921 "88-89" 14218 11086 14377 11179 13901 10760 "89-90" 15512 12228 15714 12348 14844 11662 "90-91" 16900 13469 17150 13621 15840 12628 "91-92" 18384 14815 18689 15003 16890 13661 "92-93" 19969 16270 20332 16498 17994 14766 "93-94" 21653 17838 22080 18110 19153 15943 "94-95" 23438 19522 23933 19842 20369 17194 "95-96" 25322 21323 25890 21696 21641 18523 "96-97" 27304 23243 27949 23673 22970 19929 "97-98" 29380 25280 30104 25770 24355 21414 "98-99" 31546 27432 32352 27984 25796 22978 "99-100" 33794 29694 34683 30312 27291 24620 survival/noweb/rates/us2004.dat0000644000176200001440000000650613537676563016040 0ustar liggesusers"age" "tm" "wm" "bm" "tf" "wf" "bf" "0-1" 748 609 622 507 1525 1237 "1-2" 51 46 46 42 76 66 "2-3" 33 27 30 23 47 41 "3-4" 25 20 22 18 40 30 "4-5" 21 17 20 15 31 25 "5-6" 19 15 17 13 28 24 "6-7" 18 14 17 12 26 21 "7-8" 17 13 16 12 24 19 "8-9" 15 12 14 11 21 18 "9-10" 12 11 12 10 17 18 "10-11" 10 11 10 9 15 18 "11-12" 11 11 10 10 16 19 "12-13" 16 14 15 12 22 21 "13-14" 27 18 26 17 35 24 "14-15" 43 24 41 23 55 27 "15-16" 61 31 58 31 77 31 "16-17" 78 37 75 38 100 36 "17-18" 94 42 90 43 123 41 "18-19" 106 45 102 45 144 46 "19-20" 117 45 111 45 163 51 "20-21" 127 46 120 44 182 56 "21-22" 136 46 128 44 200 62 "22-23" 142 47 133 44 215 68 "23-24" 144 48 134 44 225 72 "24-25" 142 49 131 45 231 77 "25-26" 139 51 128 46 236 83 "26-27" 136 52 124 47 242 89 "27-28" 134 54 122 48 246 95 "28-29" 134 56 121 50 249 101 "29-30" 134 59 121 53 250 107 "30-31" 135 63 122 56 251 113 "31-32" 137 67 125 59 253 121 "32-33" 141 71 128 64 257 129 "33-34" 147 76 135 68 264 137 "34-35" 155 82 143 74 274 147 "35-36" 165 89 153 81 286 158 "36-37" 177 97 164 88 301 170 "37-38" 191 107 178 97 320 187 "38-39" 208 119 194 108 341 210 "39-40" 225 132 212 119 366 235 "40-41" 244 145 230 130 391 262 "41-42" 263 159 249 142 419 288 "42-43" 285 173 269 155 456 314 "43-44" 311 188 293 169 504 342 "44-45" 341 206 320 185 563 371 "45-46" 374 224 348 203 627 402 "46-47" 407 244 378 221 693 434 "47-48" 443 263 411 239 764 469 "48-49" 481 282 445 256 839 506 "49-50" 521 300 481 272 919 545 "50-51" 565 320 522 289 1006 587 "51-52" 612 343 566 309 1100 633 "52-53" 659 370 609 334 1193 678 "53-54" 704 400 652 364 1281 724 "54-55" 749 435 694 399 1365 770 "55-56" 795 472 737 437 1454 820 "56-57" 846 514 786 479 1553 877 "57-58" 906 559 844 524 1661 940 "58-59" 981 611 917 576 1778 1011 "59-60" 1071 670 1006 634 1907 1089 "60-61" 1176 739 1111 703 2050 1176 "61-62" 1293 817 1228 780 2206 1274 "62-63" 1416 898 1350 860 2368 1376 "63-64" 1536 978 1469 939 2528 1479 "64-65" 1656 1058 1586 1017 2684 1583 "65-66" 1785 1147 1714 1104 2838 1691 "66-67" 1933 1250 1863 1206 3002 1809 "67-68" 2099 1366 2031 1323 3183 1940 "68-69" 2286 1497 2219 1454 3396 2089 "69-70" 2492 1641 2427 1599 3641 2258 "70-71" 2706 1794 2643 1753 3900 2437 "71-72" 2936 1962 2874 1922 4170 2627 "72-73" 3203 2150 3143 2112 4479 2845 "73-74" 3518 2364 3460 2326 4838 3096 "74-75" 3873 2599 3817 2562 5243 3376 "75-76" 4241 2836 4184 2798 5686 3669 "76-77" 4617 3085 4558 3046 6146 3972 "77-78" 5032 3382 4976 3345 6608 4298 "78-79" 5508 3748 5462 3716 7052 4655 "79-80" 6050 4179 6020 4156 7485 5047 "80-81" 6656 4646 6648 4630 7937 5476 "81-82" 7299 5131 7313 5119 8419 5934 "82-83" 7968 5661 8005 5656 8913 6420 "83-84" 8659 6261 8716 6267 9433 6941 "84-85" 9401 6953 9477 6975 10002 7517 "85-86" 10250 7665 10355 7706 10686 8113 "86-87" 11164 8441 11304 8506 11409 8752 "87-88" 12147 9288 12325 9380 12174 9435 "88-89" 13202 10208 13424 10332 12982 10164 "89-90" 14332 11208 14601 11367 13832 10944 "90-91" 15538 12291 15859 12489 14728 11774 "91-92" 16823 13460 17202 13704 15670 12658 "92-93" 18188 14720 18628 15014 16658 13597 "93-94" 19633 16073 20140 16422 17692 14594 "94-95" 21159 17522 21737 17931 18775 15649 "95-96" 22764 19069 23417 19543 19904 16764 "96-97" 24448 20713 25179 21257 21081 17940 "97-98" 26206 22455 27018 23072 22304 19179 "98-99" 28035 24292 28931 24987 23573 20480 "99-100" 29931 26222 30911 26997 24887 21843 survival/noweb/survexp.Rnw0000644000176200001440000004137613537676563015503 0ustar liggesusers\section{Expected Survival} The expected survival routine creates the overall survival curve for a \emph{group} of people. It is possible to take the set of expected survival curves for each individual and average them, which is the \texttt{Ederer} method below, but this is not always the wisest choice: the Hakulinen and conditional methods average in anothers ways, both of which are more sophisticated ways to deal with censoring. The individual curves are dervived either from population rate tables such as the US annual life tables from the National Center for Health Statistics or the larger multi-national collection at mortality.org, or by using a previously fitted Cox model as the table. The arguments for [[survexp]] are \begin{description} \item[formula] The model formula. The right hand side consists of grouping variables, identically to [[survfit]] and an optional [[ratetable]] directive. The ``response'' varies by method: \begin{itemize} \item for the Hakulinen method it is a vector of censoring times. This is the actual censoring time for censored subjecs, and is what the censoring time `would have been' for each subject who died. %'` \item for the conditional method it is the usual Surv(time, status) code \item for the Ederer method no response is needed \end{itemize} \item[data, weights, subset, na.action] as usual \item[rmap] an optional mapping for rate table variables, see more below. \item[times] An optional vector of time points at which to compute the response. For the Hakulinen and conditional methods the program uses the vector of unique y values if this is missing. For the Ederer the component is not optional. \item[method] The method used for the calculation. Choices are individual survival, or the Ederer, Hakulinen, or conditional methods for cohort survival. \item[cohort, conditional] Older arguments that were used to select the method. \item[ratetable] the population rate table to use as a reference. This can either be a ratetable object or a previously fitted Cox model \item[scale] Scale the resulting output times, e.g., 365.25 to turn days into years. \item[se.fit] This has been deprecated. \item[model, x, y] usual \end{description} The output of survexp contains a subset of the elements in a [[survfit]] object, so many of the survfit methods can be applied. The result has a class of [[c('survexp', 'survfit')]]. <>= survexp <- function(formula, data, weights, subset, na.action, rmap, times, method=c("ederer", "hakulinen", "conditional", "individual.h", "individual.s"), cohort=TRUE, conditional=FALSE, ratetable=survival::survexp.us, scale=1, se.fit, model=FALSE, x=FALSE, y=FALSE) { <> <> <> <> } @ The first few lines are standard. Keep a copy of the call, then manufacture a call to [[model.frame]] that contains only the arguments relevant to that function. <>= Call <- match.call() # keep the first element (the call), and the following selected arguments indx <- match(c('formula', 'data', 'weights', 'subset', 'na.action'), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") tform <- Call[c(1,indx)] # only keep the arguments we wanted tform[[1L]] <- quote(stats::model.frame) # change the function called Terms <- if(missing(data)) terms(formula, 'ratetable') else terms(formula, 'ratetable',data=data) @ The function works with two data sets, the user's data on an actual set of %' subjects and the reference ratetable. This leads to a particular nuisance, that the variable names in the data set may not match those in the ratetable. For instance the United States overall death rate table [[survexp.us]] expects 3 variables, as shown by [[summary(survexp.us)]] \begin{itemize} \item age = age in days for each subject at the start of follow-up \item sex = sex of the subject, ``male'' or ``female'' (the routine accepts any unique abbreviation and is case insensitive) \item year = date of the start of follow-up \end{itemize} Up until the most recent revision, the formula contained any necessary mapping between the variables in the data set and the ratetable. For instance \begin{verbatim} survexp( ~ sex + ratetable(age=age*365.25, sex=sex, year=entry.dt), data=mydata, ratetable=survexp.us) \end{verbatim} In this case the user's data set has a variable `age' containing age in years, along with sex and an entry date. This had to be changed for two reasons. The primary one is that the data in a [[ratetable]] call had to be converted into a matrix in order to ``pass through'' the model.frame logic. With the recent updates to coxph so that it remembers factor codings correctly in new data sets, it is advantageous to keep factors as factors. The second is that a coxph model with a large number of covariates induces a very long ratetable clause; at about 40 variable it caused one of the R internal routines to fail due to a long expression. A third reason, perhaps the most pressing in reality, is that I've always %' felt that the prior code was confusing since it used the same term 'ratetable' for two different tasks. The new process adds the [[rmap]] argument, an example would be [[rmap=list(age =age*365.25, year=entry.dt)]]. Any variables in the ratetable that are not found in [[rmap]] are assumed to not need a mapping, this would be [[sex]] in the above example. For backwards compatability we allow the old style argument, converting it into the new style. The [[rmap]] argument needs to be examined without evaluating it; we then add the appropriate extra variables into a temporary formula so that the model frame has all that is required. The ratetable variables then can be retrieved from the model frame. The [[pyears]] routine uses the same rmap argument; this segment of the code is given its own name so that it can be included there as well. <>= rate <- attr(Terms, "specials")$ratetable if(length(rate) > 1) stop("Can have only 1 ratetable() call in a formula") <> mf <- eval(tform, parent.frame()) @ <>= if(length(rate) == 1) { if (!missing(rmap)) stop("The ratetable() call in a formula is depreciated") stemp <- untangle.specials(Terms, 'ratetable') rcall <- as.call(parse(text=stemp$var)[[1]]) # as a call object rcall[[1]] <- as.name('list') # make it a call to list(.. Terms <- Terms[-stemp$terms] # remove from the formula } else if (!missing(rmap)) { rcall <- substitute(rmap) if (!is.call(rcall) || rcall[[1]] != as.name('list')) stop ("Invalid rcall argument") } else rcall <- NULL # A ratetable, but no rcall argument # Check that there are no illegal names in rcall, then expand it # to include all the names in the ratetable if (is.ratetable(ratetable)) { varlist <- names(dimnames(ratetable)) if (is.null(varlist)) varlist <- attr(ratetable, "dimid") # older style } else if(inherits(ratetable, "coxph") && !inherits(ratetable, "coxphms")) { ## Remove "log" and such things, to get just the list of # variable names varlist <- all.vars(delete.response(ratetable$terms)) } else stop("Invalid rate table") temp <- match(names(rcall)[-1], varlist) # 2,3,... are the argument names if (any(is.na(temp))) stop("Variable not found in the ratetable:", (names(rcall))[is.na(temp)]) if (any(!(varlist %in% names(rcall)))) { to.add <- varlist[!(varlist %in% names(rcall))] temp1 <- paste(text=paste(to.add, to.add, sep='='), collapse=',') if (is.null(rcall)) rcall <- parse(text=paste("list(", temp1, ")"))[[1]] else { temp2 <- deparse(rcall) rcall <- parse(text=paste("c(", temp2, ",list(", temp1, "))"))[[1]] } } @ The formula below is used only in the call to [[model.frame]] to ensure that the frame has both the formula and the ratetable variables. We don't want to modify the original formula, since we use it to create the $X$ matrix and the response variable. The non-obvious bit of code is the addition of an environment to the formula. The [[model.matrix]] routine has a non-standard evaluation - it uses the frame of the formula, rather than the parent.frame() argument below, along with the [[data]] to look up variables. If a formula is long enough deparse() will give two lines, hence the extra paste call to re-collapse it into one. <>= # Create a temporary formula, used only in the call to model.frame newvar <- all.vars(rcall) if (length(newvar) > 0) { temp <- paste(paste(deparse(Terms), collapse=""), paste(newvar, collapse='+'), sep='+') tform$formula <- as.formula(temp, environment(Terms)) } @ If the user data has 0 rows, e.g. from a mistaken [[subset]] statement that eliminated all subjects, we need to stop early. Otherwise the .C code fails in a nasty way. <>= n <- nrow(mf) if (n==0) stop("Data set has 0 rows") if (!missing(se.fit) && se.fit) warning("se.fit value ignored") weights <- model.extract(mf, 'weights') if (length(weights) ==0) weights <- rep(1.0, n) if (class(ratetable)=='ratetable' && any(weights !=1)) warning("weights ignored") if (any(attr(Terms, 'order') >1)) stop("Survexp cannot have interaction terms") if (!missing(times)) { if (any(times<0)) stop("Invalid time point requested") if (length(times) >1 ) if (any(diff(times)<0)) stop("Times must be in increasing order") } @ If a response variable was given, we only need the times and not the status. To be correct, computations need to be done for each of the times given in the [[times]] argument as well as for each of the unique y values. This ends up as the vector [[newtime]]. If a [[times]] argument was given we will subset down to only those values at the end. For a population rate table and the Ederer method the times argument is required. <>= Y <- model.extract(mf, 'response') no.Y <- is.null(Y) if (no.Y) { if (missing(times)) { if (is.ratetable(ratetable)) stop("either a times argument or a response is needed") } else newtime <- times } else { if (is.matrix(Y)) { if (is.Surv(Y) && attr(Y, 'type')=='right') Y <- Y[,1] else stop("Illegal response value") } if (any(Y<0)) stop ("Negative follow up time") # if (missing(npoints)) temp <- unique(Y) # else temp <- seq(min(Y), max(Y), length=npoints) temp <- unique(Y) if (missing(times)) newtime <- sort(temp) else newtime <- sort(unique(c(times, temp[temp>= ovars <- attr(Terms, 'term.labels') # rdata contains the variables matching the ratetable rdata <- data.frame(eval(rcall, mf), stringsAsFactors=TRUE) if (is.ratetable(ratetable)) { israte <- TRUE if (no.Y) { Y <- rep(max(times), n) } rtemp <- match.ratetable(rdata, ratetable) R <- rtemp$R } else if (inherits(ratetable, 'coxph')) { israte <- FALSE Terms <- ratetable$terms # if (!is.null(attr(Terms, 'offset'))) # stop("Cannot deal with models that contain an offset") # strats <- attr(Terms, "specials")$strata # if (length(strats)) # stop("survexp cannot handle stratified Cox models") # if (any(names(mf[,rate]) != attr(ratetable$terms, 'term.labels'))) stop("Unable to match new data to old formula") } else stop("Invalid ratetable") @ Now for some calculation. If cohort is false, then any covariates on the right hand side (other than the rate table) are irrelevant, the function returns a vector of expected values rather than survival curves. <>= if (substring(method, 1, 10) == "individual") { #individual survival if (no.Y) stop("for individual survival an observation time must be given") if (israte) temp <- survexp.fit (1:n, R, Y, max(Y), TRUE, ratetable) else { rmatch <- match(names(data), names(rdata)) if (any(is.na(rmatch))) rdata <- cbind(rdata, data[,is.na(rmatch)]) temp <- survexp.cfit(1:n, rdata, Y, 'individual', ratetable) } if (method == "individual.s") xx <- temp$surv else xx <- -log(temp$surv) names(xx) <- row.names(mf) na.action <- attr(mf, "na.action") if (length(na.action)) return(naresid(na.action, xx)) else return(xx) } @ Now for the more commonly used case: returning a survival curve. First see if there are any grouping variables. The results of the [[tcut]] function are often used in person-years analysis, which is somewhat related to expected survival. However tcut results aren't relevant here and we put in a check for the %' confused user. The strata command creates a single factor incorporating all the variables. <>= if (length(ovars)==0) X <- rep(1,n) #no categories else { odim <- length(ovars) for (i in 1:odim) { temp <- mf[[ovars[i]]] ctemp <- class(temp) if (!is.null(ctemp) && ctemp=='tcut') stop("Can't use tcut variables in expected survival") } X <- strata(mf[ovars]) } #do the work if (israte) temp <- survexp.fit(as.numeric(X), R, Y, newtime, method=="conditional", ratetable) else { temp <- survexp.cfit(as.numeric(X), rdata, Y, method, ratetable, weights) newtime <- temp$time } @ Now we need to package up the curves properly All the results can be returned as a single matrix of survivals with a common vector of times. If there was a times argument we need to subset to selected rows of the computation. <>= if (missing(times)) { n.risk <- temp$n surv <- temp$surv } else { if (israte) keep <- match(times, newtime) else { # The result is from a Cox model, and it's list of # times won't match the list requested in the user's call # Interpolate the step function, giving survival of 1 # for requested points that precede the Cox fit's # first downward step. The code is like summary.survfit. n <- length(temp$time) keep <- approx(temp$time, 1:n, xout=times, yleft=0, method='constant', f=0, rule=2)$y } if (is.matrix(temp$surv)) { surv <- (rbind(1,temp$surv))[keep+1,,drop=FALSE] n.risk <- temp$n[pmax(1,keep),,drop=FALSE] } else { surv <- (c(1,temp$surv))[keep+1] n.risk <- temp$n[pmax(1,keep)] } newtime <- times } newtime <- newtime/scale if (is.matrix(surv)) { dimnames(surv) <- list(NULL, levels(X)) out <- list(call=Call, surv= drop(surv), n.risk=drop(n.risk), time=newtime) } else { out <- list(call=Call, surv=c(surv), n.risk=c(n.risk), time=newtime) } @ Last do the standard things: add the model, x, or y components to the output if the user asked for them. (For this particular routine I can't think of %' a reason they every would.) Copy across summary information from the rate table computation if present, and add the method and class to the output. <>= if (model) out$model <- mf else { if (x) out$x <- X if (y) out$y <- Y } if (israte && !is.null(rtemp$summ)) out$summ <- rtemp$summ if (no.Y) out$method <- 'Ederer' else if (conditional) out$method <- 'conditional' else out$method <- 'cohort' class(out) <- c('survexp', 'survfit') out @ survival/noweb/coxsurv3.Rnw0000644000176200001440000002762113570772712015546 0ustar liggesusers\subsubsection{Multi-state models} Survival curves after a multi-state Cox model are more challenging, particularly the variance. <>= survfit.coxphms <- function(formula, newdata, se.fit=TRUE, conf.int=.95, individual=FALSE, stype=2, ctype, conf.type=c("log", "log-log", "plain", "none", "logit", "arcsin"), censor=TRUE, start.time, id, influence=FALSE, na.action=na.pass, type, ...) { Call <- match.call() Call[[1]] <- as.name("survfit") #nicer output for the user object <- formula #'formula' because it has to match survfit se.fit <- FALSE #still to do <> <> <> <> <> <> <> cifit$call <- Call class(cifit) <- c("survfitms", "survfit") cifit } @ The third line \code{as.name('survfit')} causes the printout to say `survfit' instead of `survfit.coxph'. %' Notice that setup is almost completely shared with survival for single state models. The major change is that we use survfitCI (non-Cox) to do all the legwork wrt the tabulation values (number at risk, etc.), while for the computation proper it is easier to make use of the same expanded data set that coxph used for a multi-state fit. <>= # Rebuild istate using the mcheck routine istate <- model.extract(mf, "istate") mcheck <- survcheck2(Y, oldid, istate) transitions <- mcheck$transitions istate <- mcheck$istate if (!identical(object$states, mcheck$states)) stop("failed to rebuild the data set") # Let the survfitCI routine do the work of creating the # overall counts (n.risk, etc). The rest of this code then # replaces the surv and hazard components. if (missing(start.time)) start.time <- min(Y[,2], 0) # If the data has absorbing states (ones with no transitions out), then # remove those rows first since they won't be in the final output. t2 <- transitions[, is.na(match(colnames(transitions), "(censored)")), drop=FALSE] absorb <- row.names(t2)[rowSums(t2)==0] if (length(absorb)) droprow <- istate %in% absorb else droprow <- FALSE if (any(droprow)) { j <- which(!droprow) cifit <- survfitCI(as.factor(strata[j]), Y[j,], weights[j], oldid[j], istate[j], stype=stype, ctype=ctype, se.fit=FALSE, start.time=start.time) } else cifit <- survfitCI(as.factor(strata), Y, weights, oldid, istate, stype=stype, ctype=ctype, se.fit=FALSE, start.time=start.time) # For computing the actual estimates it is easier to work with an # expanded data set. # Replicate actions found in the coxph-multi-X chunk, cluster <- model.extract(mf, "cluster") xstack <- stacker(object$cmap, as.integer(istate), X, Y, as.integer(strata), states= object$states) if (length(position) >0) position <- position[xstack$rindex] # id was required by coxph X <- xstack$X Y <- xstack$Y strata <- strata[xstack$rindex] transition <- xstack$transition if (length(offset)) offset <- offset[xstack$rindex] if (length(weights)) weights <- weights[xstack$rindex] if (length(cluster)) cluster <- cluster[xstack$rindex] oldid <- oldid[xstack$rindex] if (robust & length(cluster)==0) cluster <- oldid @ The survfit.coxph-setup3 chunk, shared with single state Cox models, has created an mf3 model frame and an x2 matrix. Create a matrix of risk scores, number of subjects by number of transitions. The reason is that different transitions often have different coefficients. <>= risk2 <- exp(x2 %*% coef(object, type="matrix") - xcenter) @ The first step in the computation is to compute the hazard functions for each of the transtions. Each of these hazards a completely independent computation: nothing is shared. A subject sitting in some state A, at risk for transition to B and C, might have different covariates and/or coefficients, and thus different risk scores for the two transitions. Because of this, there is no difference, for the first part of the code, between computing single endpoint or multiple endpoint curves, their variance, or their influence functions. The second step of creating p(state) curves uses all of the state1:state2 hazard functions at once, however. For this reason we use a particular hazard routine, which returns those hazard functions at a common set of time points. <>= if (individual) { stop("time dependent survival curves not yet supported for multistate") result <- coxsurv.fit2(ctype, stype, se.fit, varmat, cluster, start.time, object$cmap, object$transitions, object$states, Y, X, weights, risk, position, strata, oldid, transition, y2, x2, risk2, strata2, id2) } else { if (is.null(cifit$strata)) p0 <- cifit$pstate[1,, drop=FALSE] else { last <- cumsum(cifit$strata) # last obs of each strata first<- 1 + c(0, last[-length(last)]) p0 <- cifit$pstate[first,, drop=FALSE] } cifit <- coxsurv.fit2(ctype, stype, se.fit, varmat, cluster, start.time, object$cmap, object$transitions, object$states, Y, X, weights, risk, position, strata, oldid, transition, y2, x2, risk2, cifit=cifit) cifit$newdata <- mf2 } <>= coxsurv.fit2 <- function (ctype, stype, se.fit, varmat, cluster, start.time, cmap, tmat, states, y, x, weights, risk, position, strata, id, transition, y2, x2, risk2, strata2, id2, cifit) { # args are the options (ctype, stype, se.fit), args info from the prior fit # (varmat, ..., tmat), original data (Y, ..., transition), and data for the # new subjects if (length(strata)==0) strata <- rep(0L, nrow(y)) if (is.factor(strata)) ustrata <- levels(strata) else ustrata <- sort(unique(strata)) nstrata <- length(ustrata) # make the expansion map. # cmap[1,] will contain integers 1, 2,... which match the values in # the transtion vector, which in turn is the set of hazard functions that # come back from the .Call # The H matrices we will need are nstate by nstate, at each time, with # elements that are non-zero only for observed transtions. Some elements # may be the same: cmat[1,] can have repeats. nstate <- length(states) tmat <- tmat[,is.na(match(colnames(tmat), "(censored)")), drop=FALSE] from <- row(tmat)[tmat>0] # tmat contains fit$transitions matrix from <- match(rownames(tmat), states)[from] # actual row of H to <- col(tmat)[tmat>0] to <- match(colnames(tmat), states)[to] # actual col of H hfill <- cbind(from, to) if (nstrata==1) { temp <- multihaz(y, x, position, weights, risk, transition, ctype, stype, hfill, cmap[1,], x2, risk2, varmat, nstate, se.fit, cifit$pstate[1,], cifit$time) cifit$pstate <- temp$pstate cifit$cumhaz <- temp$cumhaz } else { itemp <- rep(1:nstrata, cifit$strata) timelist <- split(cifit$time, itemp) firstrow <- match(1:nstrata, itemp) ustrata <- names(cifit$strata) survlist <- vector("list", nstrata) for (i in 1:nstrata) { indx <- which(strata== ustrata[i]) # divides the data survlist[[i]] <- multihaz(y[indx,,drop=F], x[indx,,drop=F], position[indx], weights[indx], risk[indx], transition[indx], ctype, stype, hfill, cmap[1,], x2, risk2, varmat, nstate, se.fit, cifit$pstate[firstrow[i],], timelist[[i]]) } cifit$pstate <- do.call(rbind, lapply(survlist, function(x) x$pstate)) cifit$cumhaz <- do.call(rbind, lapply(survlist, function(x) x$cumhaz)) } cifit } @ This is the final target. Variables are \begin{itemize} \item y survival time for each observaion \item x covariates for each observatio \item position: a flag for each obs. Is it the first of a connected string such as (10, 12) (12,19) (19,21), the last of such a string, both, or neither. 1*first + 2* last \item weight case weight \item risk score \item transtion: which stratum each observation belongs to. At this point that is a unique baseline hazard in the state space. \item ctype, stype = type of hazard and survival \item hfill: the starting and ending states for each transition, on row per observed transtion type \item cmap: a vector giving the stratum number for each transtion. \item x2, risk2 = covariates and risk scores for the predicted values \item vmat = variance matrix of the coxph model \item se.fit: do or do not compute standard errors \item p0 = starting values for the states \item utime = the set of time points at which to give the results \end{itemize} <>= # Compute the hazard and survival functions multihaz <- function(y, x, position, weight, risk, transition, ctype, stype, hfill, cmap, x2, risk2, vmat, nstate, se.fit, p0, utime) { if (ncol(y) ==2) { sort1 <- seq.int(0, nrow(y)-1L) # sort order for a constant y <- cbind(-1.0, y) # add a start.time column, -1 in case # there is an event at time 0 } else sort1 <- order(transition, y[,1]) -1L sort2 <- order(transition, y[,2]) -1L ntime <- length(utime) # this returns all of the counts we might desire. storage.mode(weight) <- "double" #failsafe # for Surv(time, status) data position is 2 (last) for all obs if (length(position)==0) position <- rep(2L, nrow(y)) fit <- .Call(Ccoxsurv2, utime, y, weight, sort1, sort2, position, transition, x, risk) cn <- fit$count # 1-3 = at risk, 4-6 = events, 7-8 = censored events # 9-10 = censored, 11-12 = Efron, 13-15 = entry if (ctype ==1) { denom1 <- ifelse(cn[,4]==0, 1, cn[,3]) denom2 <- ifelse(cn[,4]==0, 1, cn[,3]^2) } else { denom1 <- ifelse(cn[,4]==0, 1, cn[,11]) denom2 <- ifelse(cn[,4]==0, 1, cn[,12]) } hazard <- matrix(cn[,5] / denom1, ncol = fit$ntrans) varhaz <- matrix(cn[,5] / denom2, ncol = fit$ntrans) if (any(cmap != seq(along=cmap))) { hazard <- hazard[, cmap] varhaz <- varhaz[, cmap] } # Expand the result, one "hazard set" for each row of x2 nx2 <- nrow(x2) h2 <- array(0, dim=c(nrow(hazard), nx2, ncol(hazard))) if (se.fit) v2 <- h2 S <- matrix(0, nrow(hazard), nstate) S2 <- array(0, dim=c(nrow(hazard), nx2, nstate)) H <- matrix(0, nstate, nstate) for (i in 1:nx2) { h2[,i,] <- apply(hazard %*% diag(risk2[i,]), 2, cumsum) if (se.fit) { d1 <- fit$xbar - rep(x[i,], each=nrow(fit$xbar)) d2 <- apply(d1*hazard, 2, cumsum) d3 <- rowSums((d2%*% vmat) * d2) # v2[jj,] <- (apply(varhaz[jj,],2, cumsum) + d3) * (risk2[i])^2 } S[1,] <- p0 for (j in 2:ntime) { H[,] <- 0.0 H[hfill] <- hazard[j,] *risk2[i,] if (stype==1) { diag(H) <- pmin(0, 1 + diag(H)- rowSums(H)) S[j,] <- drop(S[j-1,] %*% H) } else { diag(H) <- diag(H) - rowSums(H) S[j,] <- as.vector(S[j-1,] %*% expm(H)) # dgeMatrix issue } } S2[,i,] <- S } rval <- list(time=utime, xgrp=rep(1:nx2, each=nrow(hazard)), pstate=S2, cumhaz=h2) if (se.fit) rval$varhaz <- v2 rval } @ survival/noweb/statefig.Rnw0000644000176200001440000003112313570767322015551 0ustar liggesusers\section{State space figures} The statefig function was written to do ``good enough'' state space figures quickly and easily. There are certainly figures it can't draw and many figures that can be drawn better, but it accomplishes its purpose. The key argument \code{layout}, the first, is a vector of numbers. The value (1,3,4,2) for instance has a single state, then a column with 3 states, then a column with 4, then a column with 2. If \code{layout} is instead a 1 column matrix then do the same from top down. If it is a 2 column matrix then they provided their own spacing. <>= statefig <- function(layout, connect, margin=.03, box=TRUE, cex=1, col=1, lwd=1, lty=1, bcol= col, acol=col, alwd = lwd, alty= lty, offset=0) { # set up an empty canvas frame(); # new environment par(usr=c(0,1,0,1)) if (!is.numeric(layout)) stop("layout must be a numeric vector or matrix") if (!is.matrix(connect) || nrow(connect) != ncol(connect)) stop("connect must be a square matrix") nstate <- nrow(connect) dd <- dimnames(connect) if (!is.null(dd[[1]])) statenames <- dd[[1]] else if (is.null(dd[[2]])) stop("connect must have the state names as dimnames") else statenames <- dd[[2]] # expand out all of the graphical parameters. This lets users # use a vector of colors, line types, etc narrow <- sum(connect!=0) acol <- rep(acol, length=narrow) alwd <- rep(alwd, length=narrow) alty <- rep(alty, length=narrow) bcol <- rep(bcol, length=nstate) lty <- rep(lty, length=nstate) lwd <- rep(lwd, length=nstate) col <- rep(col, length=nstate) # text colors <> <> <> dimnames(cbox) <- list(statenames, c("x", "y")) invisible(cbox) } <> @ The drawing region is always (0,1) by (0,1). A user can enter their own matrix of coordinates. Otherwise the free space is divided with one portion on each end and 2 portions between boxes. If there were 3 columns for instance they will have x coordinates of 1/6, 1/6 + 1/3, 1/6 + 2/3. Ditto for dividing up the y coordinate. The primary nuisance is that we want to count down from the top instead of up from the bottom. A 1 by 1 matrix is treated as a column matrix. <>= if (is.matrix(layout) && ncol(layout)==2 && nrow(layout) > 1) { # the user provided their own if (any(layout <0) || any(layout >1)) stop("layout coordinates must be between 0 and 1") if (nrow(layout) != nstate) stop("layout matrix should have one row per state") cbox <- layout } else { if (any(layout <=0 | layout != floor(layout))) stop("non-integer number of states in layout argument") space <- function(n) (1:n -.5)/n # centers of the boxes if (sum(layout) != nstate) stop("number of boxes != number of states") cbox <- matrix(0, ncol=2, nrow=nstate) #coordinates will be here n <- length(layout) ix <- rep(seq(along=layout), layout) if (is.vector(layout) || ncol(layout)> 1) { #left to right cbox[,1] <- space(n)[ix] for (i in 1:n) cbox[ix==i,2] <- 1 -space(layout[i]) } else { # top to bottom cbox[,2] <- 1- space(n)[ix] for (i in 1:n) cbox[ix==i,1] <- space(layout[i]) } } @ Write the text out. Compute the width and height of each box. Then compute the margin. The only tricky thing here is that we want the area around the text to \emph{look} the same left-right and up-down, which depends on the geometry of the plotting region. <>= text(cbox[,1], cbox[,2], statenames, cex=cex, col=col) # write the labels textwd <- strwidth(statenames, cex=cex) textht <- strheight(statenames, cex=cex) temp <- par("pin") #plot region in inches dx <- margin * temp[2]/mean(temp) # extra to add in the x dimension dy <- margin * temp[1]/mean(temp) # extra to add in y if (box) { drawbox <- function(x, y, dx, dy, lwd, lty, col) { lines(x+ c(-dx, dx, dx, -dx, -dx), y+ c(-dy, -dy, dy, dy, -dy), lwd=lwd, lty=lty, col=col) } for (i in 1:nstate) drawbox(cbox[i,1], cbox[i,2], textwd[i]/2 + dx, textht[i]/2 + dy, col=bcol[i], lwd=lwd[i], lty=lty[i]) dx <- 2*dx; dy <- 2*dy # move arrows out from the box } @ Now for the hard part, which is drawing the arrows. The entries in the connection matrix are 0= no connection or $1+d$ for $-1 < d < 1$. The connection is an arc that passes from the center of box 1 to the center of box 2, and through a point that is $dz$ units above the midpoint of the line from box 1 to box 2, where $2z$ is the length of that line. For $d=1$ we get a half circle to the right (with respect to traversing the line from A to B) and for $d= -1$ we get a half circle to the left. If $d=0$ it is a straight line. If A and B are the starting and ending points then AB is the chord of a circle. Draw radii from the center to A, B, and through the midpoint $c$ of AB. This last has length $dz$ above the chord and $r- dz$ below where $r$ is the radius. Then we have \begin{align*} r^2 & = z^2 + (r-dz)^2 \\ 2rdz &= z^2 + (dz)^2 \\ r &= \left[z (1+ d^2) \right ]/ 2d \end{align*} Be careful with negative $d$, which is used to denote left-hand arcs. The angle $\theta$ from A to B is the arctan of $B-A$, and the center of the circle is at $C = (A+B)/2 + (r - dz)(\sin \theta, -\cos \theta)$. We then need to draw the arc $C + r(\cos \phi, \sin \phi)$ for some range of angles $\phi$. The angles to the centers of the boxes are $\arctan(A-C)$ and $\arctan(B-C)$, but we want to start and end outside the box. It turned out that this is more subtle than I thought. The solution below uses two helper functions \code{statefigx} and \code{statefigy}. The first accepts $C$, $r$, the range of $\phi$ values, and a target $y$ value. It returns the angles, within the range, such that the endpoint of the arc has horizontal coordinate $x$, or an empty vector if none such exists. For an arc there are sometimes two solutions. First calculate the angles for which the arc will strike the horizontal line. If the arc is too short to reach the line then there is no intersection. The return legal angles. <>= statefigx <- function(x, C, r, a1, a2) { temp <-(x - C[1])/r if (abs(temp) >1) return(NULL) # no intersection of the arc and x phi <- acos(temp) # this will be from 0 to pi pi <- 3.1415926545898 # in case someone has a variable "pi" if (x > C[1]) phi <- c(phi, pi - phi) else phi <- -c(phi, pi - phi) # Add reflection about the X axis, in both forms phi <- c(phi, -phi, 2*pi - phi) amax <- max(a1, a2) amin <- min(a1, a2) phi[phi amin] } statefigy <- function(y, C, r, a1, a2) { pi <- 3.1415926545898 # in case someone has a variable named "pi" amax <- max(a1, a2) amin <- min(a1, a2) temp <-(y - C[2])/r if (abs(temp) >1) return(NULL) # no intersection of the arc and y phi <- asin(temp) # will be from -pi/2 to pi/2 phi <- c(phi, sign(phi)*pi -phi) # reflect about the vertical phi <- c(phi, phi + 2*pi) phi[phi amin] } @ <>= phi <- function(x1, y1, x2, y2, d, delta1, delta2) { # d = height above the line theta <- atan2(y2-y1, x2-x1) # angle from center to center if (abs(d) < .001) d=.001 # a really small arc looks like a line z <- sqrt((x2-x1)^2 + (y2 - y1)^2) /2 # half length of chord ab <- c((x1 + x2)/2, (y1 + y2)/2) # center of chord r <- abs(z*(1 + d^2)/ (2*d)) if (d >0) C <- ab + (r - d*z)* c(-sin(theta), cos(theta)) # center of arc else C <- ab + (r + d*z)* c( sin(theta), -cos(theta)) a1 <- atan2(y1-C[2], x1-C[1]) # starting angle a2 <- atan2(y2-C[2], x2-C[1]) # ending angle if (abs(a2-a1) > pi) { # a1= 3 and a2=-3, we don't want to include 0 # nor for a1=-3 and a2=3 if (a1>0) a2 <- a2 + 2 *pi else a1 <- a1 + 2*pi } if (d > 0) { #counterclockwise phi1 <- min(statefigx(x1 + delta1[1], C, r, a1, a2), statefigx(x1 - delta1[1], C, r, a1, a2), statefigy(y1 + delta1[2], C, r, a1, a2), statefigy(y1 - delta1[2], C, r, a1, a2), na.rm=TRUE) phi2 <- max(statefigx(x2 + delta2[1], C, r, a1, a2), statefigx(x2 - delta2[1], C, r, a1, a2), statefigy(y2 + delta2[2], C, r, a1, a2), statefigy(y2 - delta2[2], C, r, a1, a2), na.rm=TRUE) } else { # clockwise phi1 <- max(statefigx(x1 + delta1[1], C, r, a1, a2), statefigx(x1 - delta1[1], C, r, a1, a2), statefigy(y1 + delta1[2], C, r, a1, a2), statefigy(y1 - delta1[2], C, r, a1, a2), na.rm=TRUE) phi2 <- min(statefigx(x2 + delta2[1], C, r, a1, a2), statefigx(x2 - delta2[1], C, r, a1, a2), statefigy(y2 + delta2[2], C, r, a1, a2), statefigy(y2 - delta2[2], C, r, a1, a2), na.rm=TRUE) } list(center=C, angle=c(phi1, phi2), r=r) } @ Now draw the arrows, one at a time. I arbitrarily declare that 20 segments is enough for a smooth curve. <>= arrow2 <- function(...) arrows(..., angle=20, length=.1) doline <- function(x1, x2, d, delta1, delta2, lwd, lty, col) { if (d==0 && x1[1] ==x2[1]) { # vertical line if (x1[2] > x2[2]) # downhill arrow2(x1[1], x1[2]- delta1[2], x2[1], x2[2] + delta2[2], lwd=lwd, lty=lty, col=col) else arrow2(x1[1], x1[2]+ delta1[2], x2[1], x2[2] - delta2[2], lwd=lwd, lty=lty, col=col) } else if (d==0 && x1[2] == x2[2]) { # horizontal line if (x1[1] > x2[1]) # right to left arrow2(x1[1]-delta1[1], x1[2], x2[1] + delta2[1], x2[2], lwd=lwd, lty=lty, col=col) else arrow2(x1[1]+delta1[1], x1[2], x2[1] - delta2[1], x2[2], lwd=lwd, lty=lty, col=col) } else { temp <- phi(x1[1], x1[2], x2[1], x2[2], d, delta1, delta2) if (d==0) { arrow2(temp$center[1] + temp$r*cos(temp$angle[1]), temp$center[2] + temp$r*sin(temp$angle[1]), temp$center[1] + temp$r*cos(temp$angle[2]), temp$center[2] + temp$r*sin(temp$angle[2]), lwd=lwd, lty=lty, col=col) } else { # approx the curve with 21 segments # arrowhead on the last one phi <- seq(temp$angle[1], temp$angle[2], length=21) lines(temp$center[1] + temp$r*cos(phi), temp$center[2] + temp$r*sin(phi), lwd=lwd, lty=lty, col=col) arrow2(temp$center[1] + temp$r*cos(phi[20]), temp$center[2] + temp$r*sin(phi[20]), temp$center[1] + temp$r*cos(phi[21]), temp$center[2] + temp$r*sin(phi[21]), lwd=lwd, lty=lty, col=col) } } } @ The last arrow bit is the offset. If offset $\ne 0$ and there is a bidirectional arrow between two boxes, and the arc for both of them is identical, then move each arrow just a bit, orthagonal to a segment connecting the middle of the two boxes. If the line goes from (x1, y1) to (x2, y2), then the normal to the line at (x1, x2) is (y2-y1, x1-x2), normalized to length 1. The -1 below (\code{-offset}) makes the shift obey a left-hand rule: looking down a line segement towards the arrow head, we shift to the left. This makes two horizontal arrows stack in the normal typographical order for chemical reactions, the right facing one above the left facing. A user can use a negative value for offset to reverse this if they wish. <>= k <- 1 for (j in 1:nstate) { for (i in 1:nstate) { if (i != j && connect[i,j] !=0) { if (connect[i,j] == 2-connect[j,i] && offset!=0) { #add an offset toff <- c(cbox[j,2] - cbox[i,2], cbox[i,1] - cbox[j,1]) toff <- -offset *toff/sqrt(sum(toff^2)) doline(cbox[i,]+toff, cbox[j,]+toff, connect[i,j]-1, delta1 = c(textwd[i]/2 + dx, textht[i]/2 + dy), delta2 = c(textwd[j]/2 + dx, textht[j]/2 + dy), lty=alty[k], lwd=alwd[k], col=acol[k]) } else doline(cbox[i,], cbox[j,], connect[i,j]-1, delta1 = c(textwd[i]/2 + dx, textht[i]/2 + dy), delta2 = c(textwd[j]/2 + dx, textht[j]/2 + dy), lty=alty[k], lwd=alwd[k], col=acol[k]) k <- k +1 } } } @ survival/noweb/main.Rnw0000644000176200001440000000543713537676563014711 0ustar liggesusers\documentclass{article} \usepackage{noweb} \usepackage{amsmath} \usepackage{fancyvrb} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \newcommand{\myfig}[1]{\resizebox{\textwidth}{!} {\includegraphics{figures/#1.pdf}}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\xbar}{\overline{x}} \newcommand{\sign}{{\rm sign}} \noweboptions{breakcode} \title{Survival Package Functions} \author{Terry Therneau} \begin{document} \maketitle \tableofcontents \section{Introduction} \begin{quotation} Let us change or traditional attitude to the construction of programs. Instead of imagining that our main task is to instruct a \emph{computer} what to do, let us concentrate rather on explaining to \emph{humans} what we want the computer to do. (Donald E. Knuth, 1984). \end{quotation} This is the definition of a coding style called \emph{literate programming}. I first made use of it in the \emph{coxme} library and have become a full convert. For the survival library only selected objects are documented in this way; as I make updates and changes I am slowly converting the source code. The first motivation for this is to make the code easier for me, both to create and to maintain. As to maintinance, I have found that whenver I need to update code I spend a lot of time in the ``what was I doing in these x lines?'' stage. The code never has enough documentation, even for the author. (The survival library is already better than the majority of packages in R, whose comment level is abysmal. In the pre-noweb source code about 1 line in 6 has a comment, for the noweb document the documentation/code ratio is 2:1.) I also find it helps in creating new code to have the real documentation of intent --- formulas with integrals and such --- closely integrated. The second motivation is to leave code that is well enough explained that someone else can take it over. The source code is structured using \emph{noweb}, one of the simpler literate programming environments. The source code files look remakably like Sweave, and the .Rnw mode of emacs works perfectly for them. This is not too surprising since Sweave was also based on noweb. Sweave is not sufficient to process the files, however, since it has a different intention: it is designed to \emph{execute} the code and make the results into a report, while noweb is designed to \emph{explain} the code. We do this using the \code{noweb} library in R, which contains the \code{noweave} and \code{notangle} functions. (It would in theory be fairly simple to extend \code{knitr} to do this task, which is a topic for further exploration one day. A downside to noweb is that like Sweave it depends on latex, which has an admittedly steep learning curve, and markdown is thus attractive.) survival/noweb/Makefile0000644000176200001440000000423213570775575014725 0ustar liggesusersPARTS = main.Rnw \ coxph.Rnw \ exact.nw \ agreg.Rnw \ coxsurv.Rnw \ coxsurv2.Rnw \ coxsurv3.Rnw \ finegray.Rnw \ predict.coxph.Rnw \ concordance.Rnw \ survexp.Rnw \ parse.Rnw \ pyears.Rnw pyears2.Rnw \ residuals.survreg.Rnw \ survfit.Rnw \ survfitKM.Rnw \ survfitCI.Rnw \ msurv.nw \ survfitms.Rnw \ plot.Rnw \ statefig.Rnw\ tmerge.Rnw\ yates.Rnw yates2.Rnw\ zph.Rnw \ tail # coxdetail.nw SFUN = agreg.fit.R \ agsurv.R \ concordance.R \ coxph.R \ coxsurvfit.R \ finegray.R \ model.matrix.coxph.R \ parsecovar.R \ plot.survfit.R \ predict.coxph.R \ pyears.R \ print.pyears.R \ residuals.survreg.R\ statefig.R \ survexp.R \ survfit.R \ survfitCI.R \ survfitKM.R \ survfit.coxph.R \ survfit.coxphms.R \ survfitms.R\ tmerge.R \ yates.R \ cox.zph.R CFUN = agfit4.c \ agsurv4.c agsurv5.c \ concordance3.c coxcount1.c \ coxexact.c \ survfitci.c \ survfitkm.c \ # coxdetail2.c RDIR = ../R RFUN = $(SFUN:%=$(RDIR)/%) CFUN2= $(CFUN:%=../src/%) DOCDIR= ../inst/doc all: noweb.sty doc fun doc: code.pdf code.pdf: code.tex noweb.sty pdflatex code.tex pdflatex code.tex code.nw: $(PARTS) cat $(PARTS) > code.nw code.tex: code.nw echo "library(noweb); noweave('code.nw')" | R --slave $(SFUN): code.nw $(CFUN): code.nw $(CFUN2): code.nw $(RFUN): code.nw .PHONY: fun clean doc all fun: $(RFUN) $(CFUN2) noweb.sty test: $(RFUN) echo $(RFUN) %.R: echo "# Automatically generated from the noweb directory" > $@ echo "require(noweb); notangle('code.nw', target='$(*F)', out='z$(@F)')" | R --slave cat z$(@F) >> $@ rm z$(@F) %.S: echo "# Automatically generated from the noweb directory" > $@ echo "require(noweb); notangle('code.nw', target='$(*F)', out='z$(@F)')" | R --slave cat z$(@F) >> $@ rm z$(@F) %.c: echo "/* Automatically generated from the noweb directory */" > $@ echo "require(noweb); notangle('code.nw', target='$(*F)', out='z$(@F)')" | R --slave cat z$(@F) >> $@ rm z$(@F) clean: -rm -f code.nw code.log code.aux code.toc code.tex code.bbl code.blg code.out -rm -f noweb.sty noweb.sty: echo 'library(noweb); data(noweb); cat(noweb.sty, sep="\n", file="noweb.sty")' | R --slave survival/noweb/refer.bib0000644000176200001440000016526513537676563015064 0ustar liggesusers@string{annals= {Annals of Stat.}} @string{applstat= {Applied Stat.}} @string{bioj = {Biometrical J.}} @string{biok = {Biometrika}} @string{commstata = {Comm. Stat. Theory Methods}} @string{biom = {Biometrics}} @string{jap = {J. Applied Probability}} @string{jasa = {J. Amer. Stat. Assoc.}} @string{jrssa= {J. Royal Stat. Soc. A}} @string{jrssb= {J. Royal Stat. Soc. B}} @string{jrssc= {J. Royal Stat. Soc. C}} @string{jscs = {J Stat. Comput. Simul.}} @string{lifetime = {Lifetime Data Analysis}} @string{NEJM = {New England J. Medicine}} @string{scand = {Scandinavian J. Stat.}} @string{statmed= {Stat. in Medicine}} @string{statsci = {Stat. Science}} @book{Andersen93, author={Andersen, P. K. and Borgan, {\O}. and Gill, R. D. and Keiding, N.}, title= {Statistical Models Based on Counting Processes}, publisher={Springer-Verlag}, address={New York}, year= {1993} } @article{Andersen00, author= {Andersen, P. K. and Esbjerg, S. and S{\o}rensen, T.I.A.} , title= {Multi-state models for bleeding episodes and morality in lever cirrhosis}, year= {2000}, journal=statmed, volume={19}, pages={587--599} } @article{Anderson82, author= {J. R. Anderson and L. Bernstein and M. C. Pike}, year= {1982}, title= {Approximate confidence intervals for probabilities of survival and quantiles in life-table analysis}, journal=biom}, volume={38}, pages= {407--416}, } @book{Anderson58, author= {V. E Anderson and H. O. Goodman and S. Reed}, title= {Variables Related to Human Breast Cancer}, year = 1958, publisher={University of Minnesota Press}, address={Minneapolis} } @article{Barlow88, author= { Barlow, W. E. and Prentice, R. L.}, year = {1988}, title= {Residuals for relative risk regression}, journal= {Biometrika}, volume={75}, pages={65--74} } @article{Barlow94, author= {Barlow, W. E.}, year ={1994}, title= {Robust variance estimation for the case-cohort design}, journal= {Biometrics}, volume={50}, pages= {1064--1072} } @article{Bartolucci77, author = {Bartolucci, A. A. and Fraser, M. D.}, year = 1977, title = {Comparative step-up and composite tests for selecting prognostic indicators associated with survival}, journal = {Biometrical J.}, volume = 19, pages = {437-448} } @book{Becker84, author={Becker, R. A. and Chambers, J. M.}, title= {S: {A}n Interactive Environment for Data Analysis and Graphics}, publisher={Wadsworth}, address={Belmont, CA}, year= {1984} } @techreport{Bergstralh88, author= {Bergstralh, E. J. and Offord, K. P.}, year = {1988}, title = {Conditional probabilities used in calculating cohort expected survival}, number = {37}, institution= {Department of Health Sciences Research, Mayo Clinic} } @article{Berry83, author= {Berry, G.}, year = {1983}, title= {The analysis of mortality by the subject years method}, journal= biok, volume={39}, pages={173--184} } @book{Bickel77, author={Bickel, P. J. and Doksum,K. J. }, title= { Mathematical Statistics: Basic Ideas and Selected Topics}, publisher={Holden-Day}, address={San Francisco}, year= {1977} } @article{Binder92, author= {Binder, D. A.}, year= {1992}, title= {Fitting {C}ox's proportional hazards models from survey data}, journal={Biometrika}, volume={79}, pages={139--147} } @ARTICLE{Blackstone86, author = {Blackstone, E. H. and Naftel, D. C. and Turner, M. E.}, year = 1986, title = {The decomposition of time-varying hazard into phases, each incorporating a separate stream of concomitant information}, journal = JASA, volume = 81, pages = {615-624}, annote = {parametric survival models; non PH} } @article{Bonsel90, author= {Bonsel, G. J. and Klompmaker, I. J. and {van't Veer}, F. and Habbema, J. D. F. and Slooff, M. J. H.}, year= {1990}, title= {Use of prognostic models for assessment of value of liver transplantation in primary biliary cirrhosis}, journal={Lancet}, volume={335}, pages={493--497} } @article{Borgan95, author= {Borgan, \O. and Goldstein, L. and Langholz, B.}, year= {1995}, title= {Methods for the analysis of sampled cohort data in the {C}ox proportional hazards model}, journal=annals, volume={23}, pages={1749--1778} } @article{Breslow93, author= {Breslow, N. E. and Clayton, D. G.}, year= {1993}, title= {Approximate inference in generalized linear mixed models}, journal=jasa, volume={88}, pages={9--25} } @article{Cai95, author= {Cai, J. and Prentice, R. G.}, year= {1995}, title= {Estimating equations for hazard ratio parameters based on correlated failure time data}, journal={Biometrika}, volume={82}, pages={151--164} } @article{Cain84, author={Cain, K. C. and Lange, N. T.}, year= {1984}, title= {Approximate case influence for the proportional hazards regression model with censored data}, journal={Biometrics}, volume={40}, pages={493--499} } @book{Chambers83, author= {Chambers, J. M. and Cleveland, W. S. and Kleiner, B. and Tukey, P. A.}, year= {1983}, title={Graphical Methods for Data Analysis}, publisher ={Wasdworth}, address ={Belmont, CA} } @book{Chambers91, author= {Chambers, J. M. and Hastie, T. J.}, year= {1993}, title={Statistical Models in {S}}, publisher ={Chapman and Hall}, address ={New York} } @article{Chappell92, author= {Chappell, R.}, year= {1992}, title= {A note on linear rank tests and {G}ill and {S}chumacher's tests of proportionality}, journal={Biometrika}, volume={79}, pages= {199--201} } @article{Chen91, author= {Chen, C. H. and Wang, P. C.}, year= {1991}, title= {Diagnostic plots in {C}ox's regression model}, journal={Biometrics}, volume={47}, pages= {841--850} } @article{Clegg99, author= {Clegg, L. X. and Cai, J. and Sen, P. K.}, year= {1999}, title= {A marginal mixed baseline hazards model for multivariate failure time data}, journal=jasa, volume={55}, pages= {805--812} } @book{Cook82, author= {Cook, R. D. and Weisberg, S.}, year= {1982}, title= {Residuals and Influence in Regression}, publisher={Chapman and Hall}, address= {London} } @article{Cox72, author= {Cox, D. R.}, year= {1972}, title= {Regression models and life-tables (with discussion)}, journal=jrssb, volume={34}, pages= {187--220} } @book{Cox84, author= {Cox, D. R. and Oakes, D. O.}, year= {1984}, title= {Analysis of Survival Data}, publisher= {Chapman and Hall}, address= {London} } @book{Cochran76, author= {Cochran, W.G.}, year= {1976}, title={Sampling Techniques, third edition}, publisher ={Wiley}, address ={New York} } @article{Crowley77, author= {Crowley, J. and Hu, M.}, year= {1977}, title= {Covariance analysis of heart transplant survival data}, journal=jasa, volume={72}, pages= {27--36} } @article{Dempster77, author= {Dempster, A. P. and Laird, N. M. and Rubin, D. B.}, year= {1977}, title= {Maximum likelihood from incomplete data via the {EM} algorithm (with discussion)}, journal=jrssb, volume={39}, pages= {1--38} } @techreport{Deng95, author= {Deng, Y. and Quigley, J.M. and Van Order, R.}, year= {1995}, title= {Mortgage Terminations}, institution={Institute of Business and Economic Research, University of California at Berkeley}, type= {Working Paper}, number={95-230}, } @article{Dickson89, author= {Dickson, E. R. and Grambsch, P. M. and Fleming, T. R and Fisher, L. D. and Langworthy, A.}, year= {1989}, title= {Prognosis in primary biliary cirrhosis: Model for decision making}, journal ={Hepatology}, volume={10}, pages ={1--7} } @article{Ederer61, author= {Ederer, F. and Axtell, L. M. and Cutler, S. J.}, year= {1961}, title= {The relative survival rate: A statistical methodology}, journal ={National Cancer Inst. Monographs}, volume={6}, pages ={101--121} } @techreport{Ederer77, author= {Ederer, F. and Heise, H.}, year= {1977}, title= {Instructions to {IBM} 650 programmers in processing survival computations}, institution={End Results Evaluation Section, National Cancer Institute}, type={Methodological Note}, number={No. 10}, pages ={101--121} } @article{Edmonson79, author= {Edmonson, J. H. and Fleming, T. R. and Decker, D. G. and Malkasian, G. D. and Jorgensen, E. O. and Jefferies, J. A. and Webb, M. J. and Kvols, L. K.}, year= {1979}, title= {Different chemotherapeutic sensitivities and host factors affecting prognosis in advanced ovarian carcinoma versus minimal residual disease }, journal ={Cancer Treatment Reports}, volume={63}, pages ={241--247} } @article{Efron77, author= {Efron, B.}, year= {1977}, title ={The efficiency of {C}ox's likelihood function for censored data}, journal=jasa, volume={72}, pages= {557--565} } @book{Efron82, author= {Efron, B.}, year= {1982}, title ={The Jackknife, the Bootstrap and Other Resampling Plans}, publisher={SIAM}, address ={Philadelphia} } @article{Ezekiel24, author= {Ezekiel, M.}, year= {1924}, title ={A method for handling curvilinear correlation for any number of variables}, journal=jasa, volume={19}, pages= {431--453} } @article{Fleming81, author= {Fleming, T. R. and Harrington, D. P.}, year= {1981}, title ={A class of hypothesis tests for one and two sample censored survival data}, journal=commstata, volume={10}, pages= {763--794} } @article{Fleming84, author= {Fleming, T. R. and Harrington, D. P.}, year= {1984}, title ={Nonparametric estimation of the survival distribution in censored data}, journal=commstata, volume={13}, pages= {2469--2486} } @book{Fleming91, author= {Fleming, T. R. and Harrington, D. P.}, year= {1991}, title= {Counting Processes and Survival Analysis}, publisher= {Wiley}, address= {New York} } @article{Eilers96, author= {Eilers, P. H. C. and Marx, B. D.}, year= {1996}, title ={Flexible smoothing with {B}-splines and penalties}, journal={Stat. Science}, volume={11}, pages= {89--121} } @article{Gail81, author= {Gail, M. H. and Lubin, J. H. and Rubinstein, L. V.}, year = {1981}, title = {Likelihood Calculations for Matched Case-Control Studies and Survival Studies with Tied Death Times}, journal=biok, volume=68, pages={703--707} } @article{Gail86, author= {Gail, M. H. and Byar, D. P.}, year= {1986}, title= {Variance calculations for direct adjusted survival curves, with applications to testing for no treatment effect}, journal=bioj, volume={28}, pages= {587--599} } @article{Gill87, author= {Gill, R. and Schumacher, M.}, year= {1987}, title= {A simple test of the proportional hazards assumption}, journal={Biometrika}, volume={74}, pages= {289--300} } @article{Grambsch94, author= {Grambsch, P. M. and Therneau, T. M.}, year= {1994}, title ={Proportional hazards tests and diagnostics based on weighted residuals}, journal={Biometrika}, volume={81}, pages= {515--526} } @article{Grambsch95, author= {Grambsch, P. M. and Therneau, T. M. and Fleming, T. R.}, year= {1995}, title= {Diagnostic plots to reveal functional form for covariates in multiplicative intensity models}, journal={Biometrics}, volume={51}, pages= {1469-1482} } @article{Gray92, author= {Gray, R. J.}, year = {1992}, title= {Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis}, journal=jasa, volume={87}, pages = {942--951} } @article{Gray94, author= {Gray, R. J.}, year = {1994}, title= {Spline-based tests in survival analysis}, journal=biom, volume={50}, pages = {640--652} } @article{Green84, author={Green, P.J.}, year = {1984}, title = {Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives (with discussion).}, journal=jrssb, volume=46, pages={149--192} } @techreport{Hall95, author= {Hall, C. B. and Zeger, S. L. and Bandeen-Roche, K. J.}, year= {1995}, title= {Adjusted variable plots for {C}ox's proportional hazards regression model}, institution={The John's Hopkins University, School of Hygiene and Public Health, Department of Biostatistics} } @incollection{Harrell86, author= {Harrell, F.}, year= {1986}, title= {The PHGLM procedure}, booktitle= {SAS Supplemental Library User's Guide, Version 5}, address= {Cary, NC}, publisher= {SAS Institute Inc} } @article{Hakama77, author= {Hakama, M. and Hakulinen, T.}, year= {1977}, title= {Estimating the expectation of life in cancer survival studies with incomplete follow-up information}, journal={J Chronic Diseases}, volume={30}, pages= {585--597} } @article{Hakulinen82, author= {Hakulinen, T.}, year= {1982}, title= {Cancer survival corrected for heterogeneity in patient withdrawal}, journal=biom, volume={38}, pages= {933--942} } @article{Hakulinen85, author= {Hakulinen, T. and Abeywickrama, K. H.}, year= {1985}, title= {A computer program package for relative survival analysis}, journal={Computer Programs in Biomedicine}, volume={19}, pages= {197--207} } @article{Hakulinen77, author= {Hakulinen, T.}, year= {1977}, title= {On long term relative survival rates}, journal={J Chronic Diseases}, volume={30}, pages= {431--443} } @article{Harrington82, author= {Harrington, D. P. and Fleming, T. R.}, year= {1982}, title= {A class of rank test procedures for censored survival data}, journal=biok, volume={69}, pages= {553-566} } @book{Hastie90, author= {Hastie, T. J. and Tibshirani, R. J.}, year= {1990}, title ={Generalized Additive Models}, publisher ={Chapman and Hall}, address= {London} } @article{Hastie96, author= {Hastie, T. J.}, year= {1996}, title= {Pseudosplines}, journal=jrssb, volume={58}, pages= {379--396} } @article{Heit99, author= {Heit, J. A. and M. D. Siverstein and D. N. Mohr and T. M. Petterson and W. M. O'Fallon and L. J. Melton III}, year= {1999}, title= {Predictors of survival after deep vein thrombosis and pulmonary embolism}, journal={Arch Internal Med}, volume={159}, pages= {445--453} } @techreport{Hodges99, author= {J. S. Hodges and D. J. Sargent}, year= {1998}, title= {Counting degrees of freedom in hierarchical and other richly-parameterized models}, institution={University of Minnesota, Division of Biostatistics}, type={Research Report}, number={98-004} } @book{Hougaard00, author={Hougaard, P.}, title= {Analysis of Multivariate Survival Data}, publisher={Springer-Verlag}, address={New York}, year= {2000} } @inproceedings{Huber67, author= {Huber, P. J.}, year= {1967}, title= {The behavior of maximum likelihood estimates under non-standard conditions}, booktitle= {Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability}, volume={1}, pages= {221--233} } @article{Huffer91, author= {Huffer, F.W. and McKeague, I.W}, title= {Weigthed least squares estimation for {A}alen's additive risk model}, year= {1991}, journal=jasa, volume={86}, pages={114--129} } @article{Hurvich98, author= {Hurvich, C. M. and Simonoff, J. S. and Tsai, C.-L.}, year= {1998}, title= {Smoothing parameter selection in nonparametric regression using an improved {A}kaike information criterion}, journal=jrssb, volume={60}, pages= {271--293} } @article{Islam94, author= {Islam, M. A.}, year= {1994}, title= {Multistate survival models for transitions and reverse transitions: an application to contraceptive use data}, journal=jrssa, volume={157}, pages= {441--455} } @article{Jones90, author={Jones, M. P. and Crowley, J.}, title={Asymptotic proporties of a general class of nonparametric tests for survival analysis}, year={1990}, journal=annals, volume={18},pages={1203--1220} } @book{Kalbfleisch80, author= {Kalbfleisch, J. D. and Prentice, R. L.}, year= {1980}, title= {The Statistical Analysis of Failure Time Data}, publisher= {Wiley}, address ={New York} } @article{Klein91, author= {Kay, R.}, year= {1983}, title ={The analysis of transition times in a multistate stochastic process using proportional hazard regression models}, journal=commstata, volume={11}, pages= {1743--1756} } @article{Kay83, author= {Korn, Edward L. and Graubard, Barry I. and Midthune, Douglas}, year= {1997}, title ={Time-to-event analysis if longitudinal follow-up of a survey: Choice of the time scale}, journal={Am J of Epidemiology}, volume={145}, pages= {72--80} } @article{Korn97, author= {Klein, J. P.}, year= {1991}, title ={Small sample moments of some estimators of the variance of the {K}aplan--{Meier} and {N}elson--{A}alen estimators}, journal=scand, volume={18}, pages= {333--340} } @article{Lagakos84, author={Lagakos, S. W. and Schoenfeld, D. A.}, title={Properties of proportional-hazards score tests under misspecified regression models}, year={1984}, journal=biom, volume={40}, pages={1037--1048} } @article{Laird81, author= {Laird, N. and Olivier, D.}, year= {1981}, title= {Covariance analysis of censored survival data using log-linear analysis techniques}, journal=jasa, volume={76}, pages= {231--240} } @article{Langholz91, author= {Langholz, B. and Thomas, D.C.}, year= {1991}, title= {Efficiency of cohort sampling designs: some surprising resluts}, journal={Biometrics}, volume={47}, pages= {1563--1572} } @article{Langholz96, author= {Langholz, B. and Goldstein, L.}, year= {1996}, title= {Risk set sampling in epidemiologic cohort studies}, journal={Statistical Science}, volume={11}, pages= {35--53} } @article{Laurie89, author ={Laurie, J. A. and Moertel, C. G. and Fleming, T. R. and Wieand, H. S. and Leigh, J. E. and Rubin, J. and McCormack, G. W. and Gerstner, J. B. and Krook, J. E. and Malliard, J.}, year= {1989}, title= {Surgical adjuvant therapy of large-bowel carcinoma: {A}n evaluation of levamisole and the combination of levamisole and fluorouracil: The {N}orth {C}entral {C}ancer {T}reatment {G}roup and the {M}ayo {C}linic}, journal={J. Clinical Oncology}, volume={7}, pages= {1447--1456} } @incollection{Lee92, author= {Lee, E. W. and Wei, L. J. and Amato, D.}, year= {1992}, title= {{C}ox-type regression analysis for large number of small groups of correlated failure time observations}, editor= {Klein, J. P. and Goel, P. K.}, booktitle= {Survival Analysis, State of the Art}, pages= {237--247}, publisher= {Kluwer}, address= {Netherlands} } @article{Lindor94, author= {Lindor, K. D. and Dickson, E. R. and Baldus, W. P. and Jorgensen, R. A. and Ludwig, J. and Murtaugh, P. A. and Harrison, J. M. and Wiesner, R. H. and Anderson, M. L. and Lange, S. M. and LeSage, G. and Rossi, S. S. and Hofman, A. F.}, year= {1994}, title= {Ursodeoxycholic acid in the treatment of primary biliary cirrhosis}, journal={Gastroenterology}, volume={106}, pages= {1284--1290} } @article{Liang86, author= {Zeger, S. L. and Liang, K. Y.}, year= {1986}, title= {Longitudinal data analysis for discrete and continuous outcomes}, journal={Biometrics}, volume={42}, pages= {121--130} } @article{Liang86b, author= {Liang, K. Y. and Zeger, S. L.}, year= {1986}, title= {Longitudinal data analysis using generalized linear models}, journal=biok, volume={73}, pages= {13--22} } @article{Liang88, author= {Zeger, S. L. and Liang, K. Y. and Albert, P. S.}, year= {1988}, title= {Models for longitudinal data: A generalized estimating equation approach}, journal=biom, volume={44}, pages= {1049--1060} } @article{Lin91, author= {Lin, D. Y.}, year= {1991}, title= {Goodness-of-fit analysis for the {C}ox regression model based on a class of parameter estimators}, journal=jasa, volume={86}, pages= {725--728} } @article{Lin89, author= {Lin, D. Y. and Wei, L. J.}, year= {1989}, title= {The robust inference for the {C}ox proportional hazards model}, journal=jasa, volume={84}, pages= {1074--1078} } @article{Lin91b, author= {Lin, D. Y. and Wei, L. J.}, year= {1991}, title= {Goodness-of-fit tests for the general {C}ox regression model}, journal= {Statistica Sinica}, volume={1}, pages= {1--17} } @article{Lin93, author= {Lin, D. Y. and Wei, L. J. and Ying, Z.}, year= {1993}, title= {Checking the {C}ox model with cumulative sums of martingale-based residuals}, journal={Biometrika}, volume={80}, pages= {557--572} } @article{Lin93b, author= {Lin, D. Y. and Ying, Z.}, year= {1993}, title= {Cox regression with incomplete covariate measurements}, journal= jasa, volume={88}, pages= {1341--1349} } @article{Lin94, author= {Lin, D. Y.}, year= {1994}, title= {Cox regression analysis of multivariate failure time data: the marginal approach}, journal= statmed, volume={13}, pages= {2233--2247} } @article{Link84, author= {C. L. Link}, year= {1984}, title= {Confidence intervals for the survival function using {C}ox's proportional-hazard model with covariates}, journal=biom, volume={40}, pages= {601--610} } @article{Link86, author= {C. L. Link}, year= {1986}, title= {Response to {J}. {O'Quigley}, correspondence section}, journal=biom, volume={42}, pages= {219--220} } @article{Lipsitz90, author= {Lipsitz, S. R. and Laird, N. M. and Harrington, D. P.}, year= {1990}, title= {Using the jackknife to estimate the variance of regression estimators from repeated measures studies}, journal=commstata, volume={19}, pages= {821--845} } @article{Lipsitz94, author= {Lipsitz, S. R. and Dear, K. B .G. and Zhao, L.}, year= {1994}, title= {Jackknife estimators of variance for parameter estimates from estimating equations with applications to clustered survival data}, journal= biom, volume={50}, pages= {842--846} } @article{Lunn95, author= {Lunn, M. and McNeil, D.}, year= {1995}, title= {Applying {C}ox regression to competing risks}, journal={Biometrics}, volume={51}, pages= {524--532} } @article{Mallows86, author= {Mallows, C. L.}, year= {1986}, title= {Augmented partial residuals}, journal={Technometrics}, volume={28}, pages= {313--319} } @article{Mantel66, author= {Mantel, N.}, year= {1966}, title= {Evaluation of survival data and two new rank order statistics arising in its consideration}, journal={Cancer Chemotherapy Reports}, volume={50}, pages= {163--166} } @article{Mantel77, author= {Mantel, N. and Bohidar, N. R. and Ciminera, J. L.}, year= {1977}, title= {Mantel--{H}aenszel analyses of litter-matched time-to-response data with modifications for recovery of interlitter information}, journal={Cancer Research}, volume={37}, pages= {3863--3868} } @book{glim, author= {McCullagh, P. and Nelder, J.A.}, year= {1983}, title= {Generalized Linear Models}, publisher= {Chapman and Hall} } @article{McGilchrist91, author= {McGilchrist, C. A. and Aisbett, C. W.}, year= {1991}, title= {Regression with frailty in survival analysis}, journal={Biometrics}, volume={47}, pages= {461--466} } @article{McGilchrist93, author= {McGilchrist, C. A.}, year= {1993}, title= {{REML} estimation for survival models with frailty}, journal={Biometrics}, volume={49}, pages= {221--225} } @article{McGilchrist95, author= {McGilchrist, C. A. and Yau, K. K. W.}, year= {1995}, title= {The derivation of {BLUP}, {ML} and {REML} estimation methods for generalised linear mixed models}, journal= commstata, volume={24}, pages= {2963--2980} } @book{Miller81, author= {Miller, Jr., R. G.}, year= {1981}, title ={Survival Analysis}, publisher= {Wiley}, address= {New York} } @article{Moertel90, author= {Moertel, C.G. and Fleming, T.R. and McDonald, J.S. and Haller, D.G. and Laurie, J.A. and Goodman, P.J. and Ungerleider, J.S. and Emerson, W.A. and Tormey, D.C. and Glick, J.H. and Veeder, M.H. and Mailliard, J.A.}, year= {1990}, title= {Levamisole and fluorouracil for adjucant therapy of resected colon carcinoma.}, journal= NEJM, volume={332}, pages= {352--358} } @article{Moreau85, author= {Moreau, T. and O'Quigley, J. and Mesbah, M.}, year= {1985}, title= { A global goodness-of-fit statistic for the proportional hazards model}, journal= {Applied Stat.}, volume={34}, pages= {212--218} } @article{Moss83, author= {Moss, A. J. and {the Multicenter Postinfarction Research Group}}, year= {1983}, title= {Risk stratification and survival after myocardial infarction}, journal= {New England J. Medicine}, volume={309}, pages= {331--336} } @article{Moss88, author= {Moss, A. J. and {the Multicenter Diltiazem Postinfarction Trial Research Group}}, year= {1988}, title= {The effect of diltiazem on mortality and reinfarction after myocardial infarction}, journal= {New England J. Medicine}, volume={319}, pages= {385--392} } @book{Mosteller77, author= {Mosteller, F. and Tukey, J. W.}, year= {1977}, title= {Data Analysis and Regression}, publisher= {Addison-Wesley}, address={Reading, MA} } @article{Nagelkerke84, author= {Nagelkerke, N. J. D. and Oosting, J. and Hart, A. A. M.}, year= {1984}, title ={A simple test for goodness of fit of {C}ox's proportional hazards model}, journal={Biometrics}, volume={40}, pages= {483--486} } @article{Neuberger86, author= {Neuberger, J. and Altman, D. G. and Christensen, E. and Tygstrup, N. and Williams, R.}, year= {1986}, title ={Use of a prognostic index in evaluation of liver transplantation for primary biliary cirrhosis}, journal={Transplantation}, volume={41}, pages= {713--716} } @article{Nielsen92, author= {Nielsen, G. G. and Gill, R. D. and Andersen, P. K. and S{\o}rensen, T. I.}, year= {1992}, title ={A counting process approach to maximum likelihood estimation of frailty models}, journal=scand, volume={19}, pages= {25--43} } article{Oakes93, author={Oakes, D. and A.J. Moss and J.T. Fleiss and J.T. Bigger, Jr. and T.M. Therneau and S.W. Eberly and M.P. McDermott and A. Manatunga and E. Carleen and J. Benhorin, and {the Multicenter Diltiazem Post-Infarction Research Group}}, year = {1993}, title = {Use of compliance measures in and analysis of the effect of {D}iltiazem on mortality and reinfarction after myocardial infarction}, journal=jasa, volume={88}, pages = {44-49} } @incollection{Oakes92, author= {Oakes, D.}, year= {1992}, title ={Frailty models for multiple event times}, editor= {Klein, J. P. and Goel, P. K.}, booktitle= {Survival Analysis, State of the Art}, publisher= {Kluwer}, address= {Netherlands} } @article{Omori93, author={Omori,Y. and Johnson,R. A.}, title={The influence of random effects on the unconditional hazard rate and survival functions}, year={1993}, journal=biok,volume={80}, pages={910--914} } @phdthesis{Parner96, author={Parner, E.}, title={Inference in semiparametric frailty models}, year ={1997}, school={University of Aarhus, Denmark} } @article{Pettitt90, author={Pettitt, A. N. and Bin Daud, I.}, title={Investigating time dependence in {C}ox's proportional hazards model}, year= {1990}, journal=applstat, volume={39},pages={313--329} } @article{Prentice86, author= {Prentice, R. L.}, year= {1986}, title ={A case-cohort design for epidemilogic cohort studies and disease prevention trials}, journal={Biometrika}, volume={73}, pages ={1--11} } @article{Prentice92, author= {Prentice, R. L. and Cai, J.}, year= {1992}, title ={Covariance and survivor function estimation using censored multivariate failure time data}, journal={Biometrika}, volume={79}, pages ={495--512} } @incollection{Prentice91, author= {Prentice, R. L. and Cai, J.}, year= {1991}, title ={Marginal and conditional models for the analysis of multivariate failure time data}, pages ={393--406}, editor= {Klein, J. P and Goel, P. K.}, booktitle= {Survival Analysis, State of the Art}, publisher= {Kluwer Academic Publishers}, address= {Netherlands} } @article{Prentice81, author= {Prentice, R. L. and Williams, B. J. and Peterson, A. V.}, year= {1981}, title= {On the regression analysis of multivariate failure time data}, journal={Biometrika}, volume={68}, pages= {373--379} } @book{Press88, author= {Press, W.H. and Teukolsky, S.A. and Vetterling, W.T. and Flannery, B.P.}, year= {1988}, title= {Numerical Recipes in {C}}, publisher= {Cambridge University Press}, address ={Cambridge} } @article{Quantin96, author= {Quantin, C. and Moreau, T. and Asselaiin B. and Maccario, J. and Lelloucj, J. } , title= {A regression survival model for testing the proportional hazards hypothesis }, year= {1996}, journal=biom, volume={52}, pages={874--885} } @article{Quigley89, author= {O'Quigley, J. and Pessione, F.}, year= {1989}, title= {Score tests for homogeneity of regression effect in the proportional hazards model}, journal={Biometrics}, volume={45}, pages ={135--144} } @article{Reid85, author= {Reid, N. and Cr{\'{e}}peau, H.}, year= {1985}, title= {Influence functions for proportional hazards regression}, journal={Biometrika}, volume={72}, pages= {1--9} } @article{Ricci97, author= {Ricci, P. and Therneau, T. M. and Malinchoc, M. and Benson, J. T. and Petz, J. L. and Klintmalm, G. B. and Crippin, J. S. and Wiesner, R. H. and Steers, J. L. and Rakela, J. and Starzl, T. E. and Dickson, E. R.}, year= {1997}, title= {A prognostic model for the outcome of liver transplantation in patients with cholestatic liver disease}, journal={Hepatology}, volume={25}, pages= {672--677} } @manual{SAS96, author={{SAS Institute Inc.}}, year={1996}, title={{SAS/STAT} Software: Changes and Enhancements through Release 6.11}, organization={{SAS} Institute, Inc.}, address={Cary, N.C.}, note={Chapter 8: The PHREG procedure} } @article{Sastry97, author= {Sastry, N.}, title={A nested frailty model for survival data, with an application to the study of child survival in northesat Brazil}, year={1997}, journal=jasa, volume={92}, pages = {426--435} } @article{Schoenfeld80, author= {Schoenfeld, D.}, year= {1980}, title= {Chi-squared goodness-of-fit tests for the proportional hazards regression model}, journal={Biometrika}, volume={67}, pages= {145--153} } @article{Schoenfeld81, author={Schoenfeld, D.}, title={The asymptotic properties of nonparametric tests for comparing survival distributions}, year={1981}, journal=biok, volume={68}, pages={316--319} } @article{Schoenfeld83, author={Schoenfeld, D. A.}, title={Sample-size formula for the proportional-hazards regression model}, year={1983}, journal=biom, volume={39}, pages={499--503} } @article{Schum87, author={Schumacher, M. and Olschewski, M. and Schmoor,C.}, title={The impact of heterogeneity on the comparison of survival times}, year={1987}, journal=statmed, volume={6},pages={773-784} } @article{Segal93, author= {Segal, M.R. and Neuhaus, J. M.}, year= {1993}, title= {Robust inference for multivariate survival data}, journal=statmed, volume={12}, pages= {1019--1031} } @article{Segal94, author= {Segal, M.R. and Baccheti, P. and Jewell, N. P.}, year= {1994}, title= {Variances for maximum penalized likelihood estimates obtained via the {EM} algorithm }, journal=jrssb, volume={56}, pages= {345--352} } @article{Simon11, title= {Regularization Paths for {C}ox’s Proportional Hazards Model via Coordinate Descent}, author= {Noah Simon and Jerome Friedman and Trevor Hastie Rob Tibshirani}, journal={J Statistical Software}, volume=39, pages={1--123} } @article{Smith96, author= {Smith, P.J. and Hietjan, D.F.}, year= {1996}, title= {Testing and adjusting for overdispersion in generalized linear models}, journal=jrssc, volume={?} } @article{Solomon84, author= {Solomon, P. J. } , title= {Effect of misspecification of regression models in the analysis of survival data}, year= {1984}, journal=biok, volume={71}, pages={291--298} } @article{Solomon86, author= {Solomon, P. J. } , title= {Amendments and corrections}, year= {1986}, journal=biok, volume={73}, pages={245--245} } @book{Spector94, author={Spector, P.}, title= {An Introduction to {S} and {S-Plus}}, publisher={Wadsworth}, address={Pacific Grove, CA}, year= {1994} } @article{Stablein81, author= {Stablein, D. M. and Carter, Jr., W. H. and Novak, J. W.}, title= {Analysis of survival data with nonproportional hazard functions}, year= {1981}, journal={Controlled Clinical Trials}, volume={2}, pages={149--159} } @inproceedings{Stone85, author= {Stone, C. J. and Koo, C. Y.} , title= { Additive splines in statistics}, year= {1985}, booktitle={Computational Statistics Section}, organization={American Statistical Association}, address={Alexandria, Virginia}, pages={646--651} } @article{Stone86, author= {Stone, C. J.} , title= {Comment to paper by {H}astie and {T}ibshirani}, year= {1986}, journal=statsci, volume={1}, pages={312--314} } @article{Storer85, author= {Storer, B. E. and Crowley, J.}, year= {1985}, title ={A diagnostic for {C}ox regression and general conditional likelihoods}, journal =jasa, volume={80}, pages= {139-147} } @article{Struthers86, author= {Struthers, C. A. and Kalbfleisch, J. D. } , title= {Misspecified proportional hazard models}, year= {1986}, journal=biok, volume={73}, pages={363--369} } @article{Therneau90, author= {Therneau, T. M. and Grambsch, P. M. and Fleming, T. R.}, year= {1990}, title= {Martingale based residuals for survival models}, journal={Biometrika}, volume={77}, pages= {147--160} } @article{Therneau97, author= {Therneau, T. M. and Hamilton, S. A.}, year= {1997}, title= {{rhDNase} as an example of recurrent event analysis}, journal=statmed, volume={16}, pages= {2029--2047} } @article{Therneau99, author= {Therneau, T. M. and Li, H.}, year= {1999}, title= {Computing the {C}ox model for case-cohort designs}, journal=lifetime, volume={5}, pages= {99--112} } @book{Therneau00, author={Therneau, T. M. and Grambsch, P. M.}, title= {Modeling Survival Data: Extending the {C}ox Model}, publisher={Springer-Verlag}, address={New York}, year= {2000} } @article{Therneau03, author= {Therneau, T. M. and Grambsch, P. M. and Pankratz, V. S.}, year= {2003}, title= {Penalized survival models and frailty}, journal={J Computational Graphical Statistics}, volume={12}, pages= {156--175} } @article{Thomsen91, author= {Thomsen, B. L. and Keiding, N. and Altman, D. G.}, year= {1991}, title= {A note on the calculation of expected survival, illustrated by the survival of liver transplant patients}, journal=statmed, volume={10}, pages= {733--738} } @article{Thomsen92, author= {Thomsen, B. L. and Keiding, N. and Altman, D. G.}, year= {1992}, title= {Reply to a letter to the editor}, journal=statmed, volume={11}, pages= {1528--1530} } @article{Uitti93, author= {Uitti, R.J. and Ahlskog, J.E. and Maraganore, D.M. and Muenter, M.D. and Atkinson, E.J. and Cha, R.H. and O'Brien, P.C.}, year= {1993}, title= {Levodopa therapy and survival in idiopathic Parkinson's disease: Olmsted County Project}, journal ={Neurology}, volume={43}, pages= {1918--1926} } @book{Venables97, author= {Venables, W. N. and Ripley, B. D.}, year= {1997}, title= {Modern Applied Statistics with {S-PLUS}, second edition}, publisher= {Springer-Verlag}, address ={New York} } @article{Verhuel93, author= {Verheul, H. A. and Dekker, E. and Bossuyt, P. and Moulijn, A. C. and Dunning, A. J.}, year= {1993}, title= {Background mortality in clinical survival studies}, journal ={Lancet}, volume={341}, pages= {872--875} } @article{Wahba83, author= {Wahba, G.}, year= {1983}, title= {Bayesian ''confidence intervals'' for the cross-validated smoothing spline}, journal =JRSSB, volume={45}, pages= {133--150} } @article{Wei89, author= {Wei, L. J. and Lin, D. Y. and Weissfeld, L.}, year= {1989}, title= {Regression analysis of multivariate incomplete failure time data by modeling marginal distributions}, journal=jasa, volume={84}, pages= {1065--1073} } @article{Wei93, author= {Lin, D. Y. and Wei, L. J. and Ying, Z.}, year= {1993}, title= {Checking the {C}ox model with cumulative sums of martingale-based residuals}, journal=biok, volume={80}, pages= {557--572} } @article{White80, author= {White, H.}, year= {1980}, title ={A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity}, journal= {Econometrica}, volume={48}, pages= {817--838} } @article{White82, author= {White, H.}, year= {1982}, title= {Maximum likelihood estimation of misspecified models}, journal= {Econometrica}, volume={50}, pages= {1--26} } @article{Whitehead80, author= {Whitehead, J.}, year= {1980}, title= {Fitting {C}ox's regression model to survival data using {GLIM}}, journal= applstat, volume={29}, pages= {268--275} } @unpublished{Winemiller98, author= {Winemiller, M.H. and Stolp-Smith, K.A, and Silverstein, M.D. and Therneau, T.M.}, year= {1998}, title= {Sequential pneumatic compression or heparin is effective in preventing venous thromboembolism in spinal cord injury patients}, note={Submitted} } @article{Winkler88, author= {Winkler, H. Z. and Rainwater, L. M. and Myers, R. P. and Farrow, G. M. and Therneau, T. M. and Zincke, H. and Lieber, M. M.}, year= {1988}, title= {Stage {D}1 Prostatic Adenocarcinoma: {S}ignificance of nuclear {DNA} ploidy patterns studied by flow cytometry}, journal= {Mayo Clinic Proceedings}, volume={63}, pages= {103--112} } @article{Yau97, author= {Yau, K. K .W. and McGilchrist, C. A.}, year= {1997}, title= {Use of generalised linear mixed models for the analysis of clustered survival data}, journal= {Biometrical Journal}, volume={39}, pages= {3--11} } @article{Zhen94, author= {Zhen, B. and Murphy, J.R.}, year= {1994}, title= {Sample size determination for an exponential survival model with an unrestricted covariate}, journal=statmed, volume={13}, pages= {391--397} } @article{Aitkin80, author= {Aitkin,M. and Clayton, D.} , title= {The fitting of exponential, Weibull and extreme value distributions to complex censored survival data using GLIM}, year= {1980}, journal=applstat, volume={29}, pages={156--163} } @article{Bernstein78, author= {Berstein,D. and Lagakos, S. W.} , title= {Sample size and power determination for stratified clinical trials}, year= {1978}, journal=jscs, volume={8}, pages={65--73} } @article{Bie87, author= {Bie, O. and Borgan, O. and Liestoel, K.}, year = {1987}, title= {Confidence intervals and confidence bands for the cumulative hazard rate function and their small sample properties}, journal= scand, volume={14}, pages={221--233} } @book{Billingsley68, author={Billingsley, P.}, title= {Convergence of Probability Measures}, publisher={Wiley}, address={New York}, year= {1968} } @article{Block85, author= {Block, H. W. and Borges, W. S. and Savits, T. H.}, year= {1985}, title= {Age-dependent minimal repair}, journal=jap, volume={22}, pages={370--385} } @article{Breslow72, author= {Breslow, N. E.}, year= {1972}, title= {Discussion of {P}rofessor {C}ox's paper}, journal=jrssb, volume={34}, pages={216--217} } @book{Breslow80, author={Breslow, N. E. and Day, N. E.}, title= {The Analysis of Case-Control Studies}, volume={1}, series = {Statistical Methods in Cancer Research}, publisher={IARC}, address={Lyon}, year= {1980} } @book{glim2, author= {McCullagh, P. and Nelder, J.A.}, year= {1989}, title= {Generalized Linear Models, 2nd ed.}, publisher= {Chapman and Hall} } @incollection{Hettmansperger98, author= {Hettmansperger, T.}, year= {1998}, title= {Median}, editor={Armitage, P. and Colton, T.}, booktitle={Encyclopedia of Biostatics}, volume={4}, publisher= {Wiley}, address={New York}, pages={2525--2526} } @book{Huber81, author={Huber, P. J.}, title= {Robust Statistics}, publisher={Wiley}, address={New York}, year= {1981} } @article{Johansen83, author= {Johansen, S.}, year= {1983}, title= {An extension of {C}ox's regression model}, journal={Int. Stat. Review}, volume={51}, pages={165--174} } @book{Little87, author={Little, R.J.A. and Rubin, D.B.}, title= {Statistical Analysis with Missing Data}, publisher={John Wiley \& Sons}, address={New York}, year= {1987} } @incollection{Little98, author= {Little, R. J.}, year= {1998}, title= {Missing Data}, editor={Armitage, P. and Colton, T.}, booktitle={Encyclopedia of Biostatics}, volume={4}, publisher= {Wiley}, pages={2622--2635} } @article{Nelson69, author= {Nelson, W.}, year= {1969}, title= {Hazard plotting for incomplete failure data}, journal= {J. Quality Technology}, volume={1}, pages= {27--52} } @article{Peto72, author= {Peto, R.}, year= {1972}, title= {Discussion of {P}rofessor {C}ox's paper}, journal=jrssb, volume={34}, pages={205--207} } @article{Prentice78, author= {Prentice, R. L. and Gloeckler, L. A. } , title= {Regression analysis of grouped survival data with application to breast cancer data}, year= {1978}, journal=biom, volume={34}, pages={57--67} } @article{Self88, author= {Self, S. G. and Prentice, R. L.}, year= {1988}, title= {Asymptotic distribution theory and efficiency results for case-cohort studies}, journal=annals, volume={16}, pages= {64--81} } @techreport{Therneau94, author= {Therneau, T. M. and Sicks, J. and Bergstralh, E. and Offord, J.}, year = {1994}, title = {Expected survival based on hazard rates}, number = {52}, institution= {Department of Health Sciences Research, Mayo Clinic} } @article{Turnbull76, author= {Turnbull, B.W.}, year= {1976}, title= {The empirical distribution function with arbitrarily grouped, censored and truncated data}, journal={jrssb}, volume={38}, pages= {290--295} } @book{Breiman84, author= {Breiman, L. and Friedman, J. H. and Olshen, R. A. and Stone, C. J.}, title= {Classification and Regression Trees}, year = 1984, publisher={Wadsworth}, address={Belmont, CA} } @article{Breslow84, author= {Breslow, N. E. and L. Edler and J. Berger}, year= {1984}, title= {A two-sample censored-data rank test for acceleration}, journal=biom, volume={40}, pages= {1049--1062} } @book{Broca66, author= {Broca, P. P.}, title= {Traites de Tumerus, volumes 1 and 2}, year = 1866, publisher={Asselin}, address={Paris} } @article{Breslow74, author= {Breslow, N. E.}, year= {1974}, title= {Covariance analysis of censored survival data}, journal=biom, volume={30}, pages= {89--99} } @article{Bryson81, author= {Bryson, M. C. and Johnson, M. E}, year= {1981}, title= {The incidence of monotone likelihood in the {C}ox model}, journal={Technometrics}, volume={23}, pages= {381--383} } @article{Chang82, author= {Chang, I. M. and Gelman, R. and Pagano, M.}, year= {1982}, title= {Corrected group prognostic curves and summary statistics}, journal={J. Chronic Diseases}, volume={35}, pages= {669--674} } @inproceedings{Clarkson89, author= {Clarkson, D. B.}, year= {1989}, title= {Computing extended maximum likelihood estimates in monotone likelihood {C}ox proportional-hazards models}, booktitle={Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface}, publisher={American Statistical Association}, address={Alexandria, Virginia}, pages={464--469} } @article{DeLong94, author= {D. M. DeLong and G. H. Guirguis and Y. C. So}, year= {1994}, title= {Efficient computation of subset selection probabilities with application to {C}ox regression}, journal=biok, volume={81}, pages= {607--611} } @book{Delwiche98, author={Delwiche, L. D. and S. J. Slaughter}, title= {The Little {SAS} Book}, publisher={SAS Institute}, address={Cary, NC}, year= {1998} } @article{Ducrocq96, author={V. Ducrocq and G. Casella}, title= {A {B}ayesian analysis of mixed survival models}, year= {1996}, journal={Genet. Sel. Evol.}, volume={28}, pages= {505--529} } @article{Guo92, author= {G. Guo and G. Rodr\'{\i}guez}, year= {1992}, title= {Estimating a multivariate proportional hazards model for clustered data using the {EM} algorithm, with an application to child survival in {G}uatemala}, journal=jasa, volume={87}, pages= {969--976} } @article{Henderson99, author= {R. Henderson and P. Oman}, year= {1999}, title= {Effect of frailty on marginal regression estimates in survival analysis}, journal=jrssb, volume={61}, pages= {367--379} } @article{Hougaard86, author= {Hougaard, P.}, year= {1986}, title= {Survival models for heterogeneous populations derived from stable distributions}, journal=biok, volume={73}, pages= {387--396} } @article{Huster89, author= {W. J. Huster and R. Brookmeyer and S. G. Self}, year= {1989}, title= {Modelling paired survival data with covariates}, journal=biom, volume={45}, pages= {145--156} } @techreport{Jaeckel72, author= {Jaeckel, L.}, year= {1972}, title= {The infinitesimal jackknife}, institution={Bell Laboratories}, type={Memorandum}, number={MM 72-1215-11} } @article{Kavanagh94, author= {Kavanagh, B. F. and Wallrichs, S. and Dewitz, M. and Berry, D. and Currier, B. and Ilstrup, D. and Coventry, M. B.}, year= {1994}, title ={Charnley low-friction arthroplasty of the hip. {T}wenty-year results with cement}, journal={J. Arthroplasty}, volume={9}, pages= {229--234} } @article{Klein92, author= {Klein, J. P.}, year= {1992}, title ={Semiparametric estimation of random effects using the {C}ox model based on the {EM} algorithm}, journal=biom, volume={48}, pages= {795--806} } @article{Kyle93, author= {R. A. Kyle}, year= {1993}, title= {``{B}enign'' monoclonal gammopathy --- after 20 to 35 years of follow-up}, journal={Mayo Clinic Proceedings}, volume={68}, pages= {26--36} } @article{Kyle97, author= {R. A. Kyle}, year= {1997}, title= {Moncolonal gammopathy of undetermined significance and solitary plasmacytoma. {I}mplications for progression to overt multiple myeloma}, journal={Hematology/Oncology Clinics N. Amer.}, volume={11}, pages= {71--87} } @article{Leblanc92, author = {LeBlanc, M. and Crowley, J.}, title = {Relative risk trees for censored survival data}, journal = {Biometrics}, year = {1992}, volume={48}, pages = {411-425} } @article{Lee83, author= {K. L. Lee and Harrell, Jr., F. E. and H. D. Tolley and R. A. Rosati}, year= {1983}, title= {A comparison of test statistics for assessing the effects of concomitant variables in survival analysis}, journal=biom, volume={39}, pages= {341--350} } @article{Loprinzi94, author= {Loprinzi, C. L. and Laurie, J. A. and Wieand, H. S. and Krook, J. E. and Novotny, P. J. and Kugler, J. W. and Bartel, J. and Law, M. and Bateman, M. and Klatt, N. E. and Dose, A. M. and Etzell, P. S. and Nelimark, R. A. and Mailliard, J. A. and Moertel, C. G.}, year= {1994}, title= {Prospective evaluation of prognostic variables from patient-completed questionnaires}, journal={J. Clinical Oncol.}, volume={12}, pages= {601--607} } @article{Mahe99, author= {C{\'{e}}dric Mah{\'{e}} and Sylvie Chevret}, year= {1999}, title= {Estimating regression parameters and degree of dependence for multivariate failure time data}, journal=biom, volume={55}, pages= {1078--1084} } @article{Makuch82, author= {Makuch, R. W.}, year= {1982}, title= {Adjusted survival curve estimation using covariates}, journal={J. Chronic Disease}, volume={35}, pages= {437--443} } @article{Markus89, author= {Markus, B. H. and Dickson, E. R. and Grambsch, P. M. and Fleming, T. R. and Mazzaferro, V. and Klintmalm, G. B .G. and Wiesner, R. H. and VanThiel, D. H. and Starzl, T. E.}, year= {1989}, title= {Efficiency of liver transplantation in patients with primary biliary cirrhosis}, journal=NEJM, volume={320}, pages= {1709--1713} } @article{Miller83, author= {Miller, Jr., R.G.}, year= {1983}, title= {What price {Kaplan--Meier}?}, journal=biom, volume={39}, pages= {1077--1081} } @article{Murphy81, author= {Murphy, V. K. and Haywood, L. J.}, year= {1981}, title= {Survival analysis by sex, age group and hemotype in sickle cell disease}, journal={J. Chronic Diseases}, volume={34}, pages= {313--319} } @techreport{Pugh92, author= {M. Pugh and J. Robbins and S. Lipsitz and D. Harrington}, year= {1992}, title= {Inference in the {C}ox proportional hazards model with missing covariates}, institution={Department of Biostatistics, Harvard School of Public Health}, address={Boston}, number={758Z} } @article{Ripatti00, author= {Ripatti, S. and Palmgren, J.}, year= {2000}, title= {Estimation of multivariate frailty models using penalized partial likelihood}, journal=biom, volume={56}, pages={1016--1022} } @book{Searle71, author = {Searle, S.R.}, year= {1971}, title = {Linear Models}, publisher={Wiley}, address={New York}} @booklet{Seer81, key = {Surveillance}, title= {Surveillance, Epidemiology, and End Results: Incidence and Mortality Data, 1973--77}, year = {1981}, howpublished= {National Cancer Institute Monograph 57, U.S. Department of Health and Human Services, Public Health Service}, address= {National Cancer Institute, Bethesda, MD}, note = {NIH Publication No. 81-2330}, } @article{Sellers95, author= {T. A Sellers and V. E. Anderson and J. D. Potter and S. A. Bartow and P. L. Chen and L. Everson and R. A. King and C. C. Kuni and L. H. Kushi and P. G. McGovern and S. S. Rich and J. F. Whitbeck and G. L. Wiesner}, year= {1995}, title= {Epidemiologic and genetic follow-up study of 544 Minnesota breast cancer families: {D}esign and methods}, journal={Genetic Epidemiology}, volume={12}, pages= {417--429} } @article{Silverstein99, author= {M. D. Silverstein and Loftus, Jr., E. V. and W. J. Sandborn and W. J. Tremaine and B. G. Feagan and P. J. Nietert and W. S. Harmsen and A. R. Zinsmeister}, year= {1999}, title= {Clinical course and costs of care for {C}rohn's disease: {M}arkov model analysis of a population-based cohort}, journal={Gastroenterology}, volume={117}, pages= {49--57} } @article{Tsiatis81, author= {A. A. Tsiatis}, year= {1981}, title= {A large sample study of {C}ox's regression model}, journal= annals, volume={9}, pages= {93--108} } @article{Verweij94, author= {P. J .M. Verweij and Van Houwlingen, H. C.}, year= {1994}, title= {Penalized likelihood in {C}ox regression}, journal= statmed, volume={13}, pages= {2427--2436} } @ARTICLE{Volinsky98bayesianinformation, author = {Chris Volinsky and Adrian E. Raftery}, title = {Bayesian Information Criterion for Censored Survival Models}, journal = {Biometrics}, year = {1998}, volume = {56}, pages = {256--262} } @article{Wei90, author= {L. J. Wei and Z. Ying and D. Y. Lin}, year= {1990}, title= {Linear regression analysis of censored survival data based on rank tests}, journal= biok, volume={77}, pages= {845--851} } @article{Yau97, author= {Yau, K. K .W. and McGilchrist, C. A.}, year= {1997}, title= {Use of generalised linear mixed models for the analysis of clustered survival data}, journal= {Biometrical Journal}, volume={39}, pages= {3--11} } @article{Yau98, author= {Yau, K. K .W. and McGilchrist, C. A.}, year= {1998}, title= {{ML} and {REML} estimation in survival analysis with time dependent correlated frailty}, journal= statmed, volume={17}, pages= {1201--1213} } @article{Zahl96, author= {Zahl, Per-Henrik}, title= {A linear non-parametric model for the excess intensity}, year= {1996}, journal=scand, volume={23}, pages={353--364} } @booklet{smoke90, key={Department of Health}, title={The Health Benefits of Smoking Cessation}, year={1990}, howpublished ={Department of Health and Human Services. Public Health Service, Centers for Disease Control, Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health}, note={DHHS Publication No (CDC)90-8416} } @booklet{lifeus40, title={United States Life Tables and Actuarial Tables, 1939--41}, author={Thomas N. E. Greville}, howpublished={Federal Security Agency, United States Public Health Service, National Office of Vital Statistics}, note={U.S. Government Printing Office, 1947} } @booklet{lifeus50, key={United States Lifetables 1950}, title={United States Life Tables for 1949--51}, howpublished={U.S. Department of Health, Education and Welfare, Public Health Service, National Office of Vital Statistics} } @booklet{lifeus60, key={United States Lifetables 1960}, title ={United States Lifetables 1959--61}, year = {1964}, howpublished= {Public Health Service Publication No. 1252}, note={Volume 1, Number 1} } @booklet{lifeus60b, key={Vital Statistics}, title ={Vital Statistics of the United States, 1960}, year = {1963}, howpublished= {U.S. Department of Health, Education, and Welfare, Public Health Service, National Center for Vital Statistics}, note={Volume 2A, Tabl3 3B} } @booklet{lifeus70, key={United States Lifetables 1970}, title ={U.S. Decennial Lifetables 1969--71}, year = {1975}, howpublished= {DHEW Publication No. HRA 75-115}, note={Volume 1, Number 1} } @booklet{lifeus80, key={United States Lifetables 1990}, title ={U.S. Decennial Lifetables 1979--81}, year = {1985}, howpublished= {DHEW Publication No. PHS 85-1150-1}, note={Volume 1, Number 1} } @booklet{lifest60, key = {United States Lifetables 1959--61}, title = {Life tables for the geographic divisions of the {U}nited {S}tates: 1959--61}, note = {Vol. 1, number 3}, howpublished={National Center for Health Statistics, Public Health Service, Washington, U.S. Government Printing Office}, month=May, year={1965} } @booklet{lifemn60, title ={Minnesota State Lifetables 1959--61}, year = {1965}, howpublished= {Public Health Service Publication No. 1252}, note={Volume 2, Number 24} } @booklet{lifemn70, title ={U.S. Decennial Lifetables 1969--71}, year = {1975}, howpublished= {DHEW Publication No. HRA 75-1151}, note={Volume 2, Number 24} } @booklet{lifefl70, title ={U.S. Decennial Lifetables 1969--71}, year = {1975}, howpublished= {DHEW Publication No. HRA 75-1151}, note={Volume 2, Number 10} } @booklet{lifeaz70, title ={U.S. Decennial Lifetables 1969--71}, year = {1975}, howpublished= {DHEW Publication No. HRA 75-1151}, note={Volume 2, Number 3} } @booklet{lifemn80, title ={U.S. Decennial Lifetables 1979--81}, year = {1985}, howpublished= {DHEW Publication No. PHS 86-1151-2451}, note={Volume 2, Number 24} } @book{Lifetable, author={National {C}enter for {H}ealth {S}tatistics}, year={1965}, title={Life tables for the geographic divisions of the {U}nited {S}tates: 1959-1961}, volume={1}, number={3}, publisher={US Government Printing Office, Washington} } survival/noweb/residuals.survreg.Rnw0000644000176200001440000003562413537676563017455 0ustar liggesusers\section{Accelerated Failure Time models} The [[surveg]] function fits parametric failure time models. This includes accerated failure time models, the Weibull, log-normal, and log-logistic models. It also fits as well as censored linear regression; with left censoring this is referred to in economics \emph{Tobit} regression. \subsection{Residuals} The residuals for a [[survreg]] model are one of several types \begin{description} \item[response] residual [[y]] value on the scale of the original data \item[deviance] an approximate deviance residual. A very bad idea statistically, retained for the sake of backwards compatability. \item[dfbeta] a matrix with one row per observation and one column per parameter showing the approximate influence of each observation on the final parameter value \item[dfbetas] the dfbeta residuals scaled by the standard error of each coefficient \item[working] residuals on the scale of the linear predictor \item[ldcase] likelihood displacement wrt case weights \item[ldresp] likelihood displacement wrt response changes \item[ldshape] likelihood displacement wrt changes in shape \item[matrix] matrix of derivatives of the log-likelihood wrt paramters \end{description} The other parameters are \begin{description} \item[rsigma] whether the scale parameters should be included in the result for dfbeta results. I can think of no reason why one would not want them --- unless of course the scale was fixed by the user, in which case there is no parameter. \item[collapse] optional vector of subject identifiers. This is for the case where a subject has multiple observations in a data set, and one wants to have residuals per subject rather than residuals per observation. \item[weighted] whether the residuals should be multiplied by the case weights. The sum of weighted residuals will be zero. \end{description} The routine starts with standard stuff, checking arguments for validity and etc. The two cases of response or working residuals require a lot less computation. and are the most common calls, so they are taken care of first. <>= # # Residuals for survreg objects residuals.survreg <- function(object, type=c('response', 'deviance', 'dfbeta', 'dfbetas', 'working', 'ldcase', 'ldresp', 'ldshape', 'matrix'), rsigma =TRUE, collapse=FALSE, weighted=FALSE, ...) { type <-match.arg(type) n <- length(object$linear.predictors) Terms <- object$terms if(!inherits(Terms, "terms")) stop("invalid terms component of object") # If the variance wasn't estimated then it has no error if (nrow(object$var) == length(object$coefficients)) rsigma <- FALSE # If there was a cluster directive in the model statment then remove # it. It does not correspond to a coefficient, and would just confuse # things later in the code. cluster <- untangle.specials(Terms,"cluster")$terms if (length(cluster) >0 ) Terms <- Terms[-cluster] strata <- attr(Terms, 'specials')$strata intercept <- attr(Terms, "intercept") response <- attr(Terms, "response") weights <- object$weights if (is.null(weights)) weighted <- FALSE <> <> <> <> } @ First retrieve the distribution, which is used multiple times. The common case is a character string pointing to some element of [[survreg.distributions]], but the other is a user supplied list of the form contained there. Some distributions are defined as the transform of another in which case we need to set [[itrans]] and [[dtrans]] and follow the link, otherwise the transformation and its inverse are the identity. <>= if (is.character(object$dist)) dd <- survreg.distributions[[object$dist]] else dd <- object$dist ytype <- attr(y, "type") if (is.null(dd$itrans)) { itrans <- dtrans <-function(x)x # reprise the work done in survreg to create a transformed y if (ytype=='left') y[,2] <- 2- y[,2] else if (type=='interval' && all(y[,3]<3)) y <- y[,c(1,3)] } else { itrans <- dd$itrans dtrans <- dd$dtrans # reprise the work done in survreg to create a transformed y tranfun <- dd$trans exactsurv <- y[,ncol(y)] ==1 if (any(exactsurv)) logcorrect <-sum(log(dd$dtrans(y[exactsurv,1]))) if (ytype=='interval') { if (any(y[,3]==3)) y <- cbind(tranfun(y[,1:2]), y[,3]) else y <- cbind(tranfun(y[,1]), y[,3]) } else if (ytype=='left') y <- cbind(tranfun(y[,1]), 2-y[,2]) else y <- cbind(tranfun(y[,1]), y[,2]) } if (!is.null(dd$dist)) dd <- survreg.distributions[[dd$dist]] deviance <- dd$deviance dens <- dd$density @ The next task is to decide what data we need. The response is always needed, but is normally saved as a part of the model. If it is a transformed distribution such as the Weibull (a transform of the extreme value) the saved object [[y]] is the transformed data, so we need to replicate that part of the survreg() code. (Why did I even allow for y=F in survreg? Because I was mimicing the lm function --- oh the long, long consequences of a design decision.) The covariate matrix [[x]] will be needed for all but response, deviance, and working residuals. If the model included a strata() term then there will be multiple scales, and the strata variable needs to be recovered. The variable [[sigma]] is set to a scalar if there are no strata, but otherwise to a vector with [[n]] elements containing the appropriate scale for each subject. The leverage type residuals all need the second derivative matrix. If there was a [[cluster]] statement in the model this will be found in [[naive.var]], otherwise in the [[var]] component. <>= if (is.null(object$naive.var)) vv <- object$var else vv <- object$naive.var need.x <- is.na(match(type, c('response', 'deviance', 'working'))) if (is.null(object$y) || !is.null(strata) || (need.x & is.null(object[['x']]))) mf <- stats::model.frame(object) if (is.null(object$y)) y <- model.response(mf) else y <- object$y if (!is.null(strata)) { temp <- untangle.specials(Terms, 'strata', 1) Terms2 <- Terms[-temp$terms] if (length(temp$vars)==1) strata.keep <- mf[[temp$vars]] else strata.keep <- strata(mf[,temp$vars], shortlabel=TRUE) strata <- as.numeric(strata.keep) nstrata <- max(strata) sigma <- object$scale[strata] } else { Terms2 <- Terms nstrata <- 1 sigma <- object$scale } if (need.x) { x <- object[['x']] #don't grab xlevels component if (is.null(x)) x <- model.matrix(Terms2, mf, contrasts.arg=object$contrasts) } @ The most common residual is type response, which requires almost no more work, for the others we need to create the matrix of derivatives before proceeding. We use the [[center]] component from the deviance function for the distribution, which returns the data point [[y]] itself for an exact, left, or right censored observation, and an appropriate midpoint for interval censored ones. <>= if (type=='response') { yhat0 <- deviance(y, sigma, object$parms) rr <- itrans(yhat0$center) - itrans(object$linear.predictor) } else { <> <> } @ The matrix of derviatives is used in all of the other cases. The starting point is the [[density]] function of the distribtion which return a matrix with columns of $F(x)$, $1-F(x)$, $f(x)$, $f'(x)/f(x)$ and $f''(x)/f(x)$. %' The matrix type residual contains columns for each of $$ L_i \quad \frac{\partial L_i}{\partial \eta_i} \quad \frac{\partial^2 L_i}{\partial \eta_i^2} \quad \frac{\partial L_i}{\partial \log(\sigma)} \quad \frac{\partial L_i}{\partial \log(\sigma)^2} \quad \frac{\partial^2 L_i}{\partial \eta \partial\log(\sigma)} $$ where $L_i$ is the contribution to the log-likelihood from each individual. Note that if there are multiple scales, i.e. a strata() term in the model, then terms 3--6 are the derivatives for that subject with respect to their \emph{particular} scale factor; derivatives with respect to all the other scales are zero for that subject. The log-likelihood can be written as \begin{align*} L &= \sum_{exact}\left[ \log(f(z_i)) -\log(\sigma_i) \right] + \sum_{censored} \log \left( \int_{z_i^l}^{z_i^u} f(u)du \right) \\ &\equiv \sum_{exact}\left[g_1(z_i) -\log(\sigma_i) \right] + \sum_{censored} \log(g_2(z_i^l, z_i^u)) \\ z_i &= (y_i - \eta_i)/ \sigma_i \end{align*} For the interval censored observations we have a $z$ defined at both the lower and upper endpoints. The linear predictor is $\eta = X\beta$. The derivatives are shown below. Note that $f(-\infty) = f(\infty) = F(-\infty)=0$, $F(\infty)=1$, $z^u = \infty$ for a right censored observation and $z^l = -\infty$ for a left censored one. \begin{align*} \frac{\partial g_1}{\partial \eta} &= - \frac{1}{\sigma} \left[\frac{f'(z)}{f(z)} \right] \\ %' \frac{\partial g_2}{\partial \eta} &= - \frac{1}{\sigma} \left[ \frac{f(z^u) - f(z^l)}{F(z^u) - F(z^l)} \right] \\ \frac{\partial^2 g_1}{\partial \eta^2} &= \frac{1}{\sigma^2} \left[ \frac{f''(z)}{f(z)} \right] - (\partial g_1 / \partial \eta)^2 \\ \frac{\partial^2 g_2}{\partial \eta^2} &= \frac{1}{\sigma^2} \left[ \frac{f'(z^u) - f'(z^l)}{F(z^u) - F(z^l)} \right] - (\partial g_2 / \partial \eta)^2 \\ \frac{\partial g_1}{\partial \log\sigma} && - \left[ \frac{zf'(z)}{f(z)} \right] \\ \frac{\partial g_2}{\partial \log\sigma} &= - \left[ \frac{z^uf(z^u) - z^lf(z^l)}{F(z^u) - F(z^l)} \right] \\ \frac{\partial^2 g_1}{\partial (\log\sigma)^2} &=& \left[ \frac{z^2 f''(z) + zf'(z)}{f(z)} \right] - (\partial g_1 / \partial \log\sigma)^2 \\ \frac{\partial^2 g_2}{\partial (\log\sigma)^2} &= \left[ \frac{(z^u)^2 f'(z^u) - (z^l)^2f'(z_l) } {F(z^u) - F(z^l)} \right] - \partial g_1 /\partial \log\sigma(1+\partial g_1 / \partial \log\sigma) \\ \frac{\partial^2 g_1}{\partial \eta \partial \log\sigma} &= \frac{zf''(z)}{\sigma f(z)} -\partial g_1/\partial \eta (1 + \partial g_1/\partial \log\sigma) \\ \frac{\partial^2 g_2}{\partial \eta \partial \log\sigma} &= \frac{z^uf'(z^u) - z^lf'(z^l)}{\sigma [F(z^u) - F(z^l)]} -\partial g_2/\partial \eta (1 + \partial g_2/\partial \log\sigma) \\ \end{align*} In the code [[z]] is the relevant point for exact, left, or right censored data, and [[z2]] the upper endpoint for an interval censored one. The variable [[tdenom]] contains the denominator for each subject (which is the same for all derivatives for that subject). For an interval censored observation we try to avoid numeric cancellation by using the appropriate tail of the distribution. For instance with $(z^l, z^u) = (12,15)$ the value of $F(x)$ will be very near 1 and it is better to subtract two upper tail values $(1-F)$ than two lower tail ones $F$. <>= status <- y[,ncol(y)] eta <- object$linear.predictors z <- (y[,1] - eta)/sigma dmat <- dens(z, object$parms) dtemp<- dmat[,3] * dmat[,4] #f' if (any(status==3)) { z2 <- (y[,2] - eta)/sigma dmat2 <- dens(z2, object$parms) } else { dmat2 <- dmat #dummy values z2 <- 0 } tdenom <- ((status==0) * dmat[,2]) + #right censored ((status==1) * 1 ) + #exact ((status==2) * dmat[,1]) + #left ((status==3) * ifelse(z>0, dmat[,2]-dmat2[,2], dmat2[,1] - dmat[,1])) #interval g <- log(ifelse(status==1, dmat[,3]/sigma, tdenom)) #loglik tdenom <- 1/tdenom dg <- -(tdenom/sigma) *(((status==0) * (0-dmat[,3])) + #dg/ eta ((status==1) * dmat[,4]) + ((status==2) * dmat[,3]) + ((status==3) * (dmat2[,3]- dmat[,3]))) ddg <- (tdenom/sigma^2) *(((status==0) * (0- dtemp)) + #ddg/eta^2 ((status==1) * dmat[,5]) + ((status==2) * dtemp) + ((status==3) * (dmat2[,3]*dmat2[,4] - dtemp))) ds <- ifelse(status<3, dg * sigma * z, tdenom*(z2*dmat2[,3] - z*dmat[,3])) dds <- ifelse(status<3, ddg* (sigma*z)^2, tdenom*(z2*z2*dmat2[,3]*dmat2[,4] - z * z*dmat[,3] * dmat[,4])) dsg <- ifelse(status<3, ddg* sigma*z, tdenom *(z2*dmat2[,3]*dmat2[,4] - z*dtemp)) deriv <- cbind(g, dg, ddg=ddg- dg^2, ds = ifelse(status==1, ds-1, ds), dds=dds - ds*(1+ds), dsg=dsg - dg*(1+ds)) @ Now, we can calcultate the actual residuals case by case. For the dfbetas there will be one column per coefficient, so if there are strata column 4 of the deriv matrix needs to be \emph{un}collapsed into a matrix with nstrata columns. The same manipulation is needed for the ld residuals. <>= if (type=='deviance') { yhat0 <- deviance(y, sigma, object$parms) rr <- (-1)*deriv[,2]/deriv[,3] #working residuals rr <- sign(rr)* sqrt(2*(yhat0$loglik - deriv[,1])) } else if (type=='working') rr <- (-1)*deriv[,2]/deriv[,3] else if (type=='dfbeta' || type== 'dfbetas' || type=='ldcase') { score <- deriv[,2] * x # score residuals if (rsigma) { if (nstrata > 1) { d4 <- matrix(0., nrow=n, ncol=nstrata) d4[cbind(1:n, strata)] <- deriv[,4] score <- cbind(score, d4) } else score <- cbind(score, deriv[,4]) } rr <- score %*% vv if (type=='dfbetas') rr <- rr %*% diag(1/sqrt(diag(vv))) if (type=='ldcase') rr<- rowSums(rr*score) } else if (type=='ldresp') { rscore <- deriv[,3] * (x * sigma) if (rsigma) { if (nstrata >1) { d6 <- matrix(0., nrow=n, ncol=nstrata) d6[cbind(1:n, strata)] <- deriv[,6]*sigma rscore <- cbind(rscore, d6) } else rscore <- cbind(rscore, deriv[,6] * sigma) } temp <- rscore %*% vv rr <- rowSums(rscore * temp) } else if (type=='ldshape') { sscore <- deriv[,6] *x if (rsigma) { if (nstrata >1) { d5 <- matrix(0., nrow=n, ncol=nstrata) d5[cbind(1:n, strata)] <- deriv[,5] sscore <- cbind(sscore, d5) } else sscore <- cbind(sscore, deriv[,5]) } temp <- sscore %*% vv rr <- rowSums(sscore * temp) } else { #type = matrix rr <- deriv } @ Finally the two optional steps of adding case weights and collapsing over subject id. <>= #case weights if (weighted) rr <- rr * weights #Expand out the missing values in the result if (!is.null(object$na.action)) { rr <- naresid(object$na.action, rr) if (is.matrix(rr)) n <- nrow(rr) else n <- length(rr) } # Collapse if desired if (!missing(collapse)) { if (length(collapse) !=n) stop("Wrong length for 'collapse'") rr <- drop(rowsum(rr, collapse)) } rr @ survival/noweb/yates.Rnw0000644000176200001440000003263513537676563015112 0ustar liggesusers\section{Linear models and contrasts} The primary contrast function is \code{yates}. This function does both simple and population contrasts; the name is a nod to the ``Yates weighted means'' method, the first population contrast that I know of. A second reason for the name is that the word ``contrast'' is already overused in the S/R lexicon. Both \code{yates} and \code{cmatrix} can be used with any model that returns the necessary portions, e.g., lm, coxph, or glm. They were written because I became embroiled in the ``type III'' controversy, and made it a goal to figure out what exactly it is that SAS does. If I had known that that quest would take multiple years would perhaps have never started. Population contrasts can result in some head scratching. It is easy to create the predicted value for any hypothethical subject from a model. A population prediction holds some data values constant and lets the others range over a population, giving a mean predicted value or population average. Population predictions for two treatments are the familiar g-estimates of causal models. We can take sums or differences of these predictions as well, e.g. to ask if they are significantly different. What can't be done is to work backwards from one of these contrasts to the populations, at least for continuous variables. If someone asks for an x contrast of 15-5 is this a sum of two population estimates at 15 and -5, or a difference? It's always hard to guess the mind of a user. Therefore what is needed is a fitted model, the term (covariate) of interest, levels of that covariate, a desired comparison, and a population. First is cmatrix routine. This is called by users to create a contrast matrix for a model, users can also construct their own contrast matrices. The result has two parts: the definition of a set of predicted values and a set of contrasts between those values. The routine requires a fit and a term; the default test will be for the entire term. The result will be a matrix or list that has a label attribute containing the name of the term; this is used in printouts in the obvious way. Suppose that our model was \code{coxph(Surv(time, status) ~ age*sex + ph.ecog)}. Someone might want the matrix for the age, sex, age*sex (2 df), age:sex or ph.ecog term. The first task is to parse the user's formula and match it to the terms structure found in the data: we should be a proper subset of it. <>= cmatrix <- function(fit, term, test =c("global", "trend", "pairwise"), levels, assign) { # Make sure that "fit" is present and isn't missing any parts. if (missing(fit)) stop("a fit argument is required") Terms <- try(terms(fit), silent=TRUE) if (inherits(Terms, "try-error")) stop("the fit does not have a terms structure") else Terms <- delete.response(Terms) # y is not needed Tatt <- attributes(Terms) # a flaw in delete.response: it doesn't subset dataClasses Tatt$dataClasses <- Tatt$dataClasses[row.names(Tatt$factors)] test <- match.arg(test) if (missing(term)) stop("a term argument is required") if (is.character(term)) term <- formula(paste("~", term)) else if (is.numeric(term)) { if (all(term == floor(term) & term >0 & term < length(Tatt$term.labels))) term <- formula(paste("~", paste(Tatt$term.labels[term], collapse='+'))) else stop("a numeric term must be an integer between 1 and max terms in the fit") } else if (!inherits(term, "formula")) stop("the term must be a formula, character string, or integer") fterm <- delete.response(terms(term)) fatt <- attributes(fterm) user.name <- fatt$term.labels # what the user called it indx <- match(fatt$term.labels, Tatt$term.labels) if (any(is.na(indx))) { # allow partial matching. If the fit had factor(x) but user said "x", # pretend they said "factor(x)". Fail for ns(x) + log(x) though. # but match the first for factor(x) + factor(x):z temp <- fatt$term.labels temp2 <- Tatt$term.labels temp2[grepl(":", temp2)] <- "" for (i in 1:length(temp)) { j <- grep(temp[i], Tatt$term.labels) k <- grep(temp[i], temp2) if (length(j)==1) temp[i] <- Tatt$term.labels[j] else if (length(k)==1) temp[i] <- Tatt$term.labels[k] else stop("term '", temp[i], "' not found in the fit") } fterm <- terms(formula( paste("~", paste(temp, collapse="+")))) fatt <- attributes(fterm) indx <- match(fatt$term.labels, Tatt$term.labels) } # match these up with the columns via the assign attribute if (missing(assign)) assign <- fit$assign if (missing(assign)) stop("the fit is missing an assign component") if (is.list(assign)) { # old style assign as used in Splus, and still used in coxph assign <- rep(1:length(assign), sapply(assign, length)) } ncoef <- length(assign) whichcol <- which(assign %in% indx & !is.na(coef(fit))) ntest <- length(whichcol) if (ntest ==0) stop("no non-missing coefficients in the estimate") termname <- Tatt$term.labels[indx] # to label the output # What kind of term is being tested. It can be categorical, continuous, # an interaction of only categorical terms, interaction of only continuous # terms, or a mixed interaction. parts <- row.names(Tatt$factors)[Tatt$factors[,indx] !=0] types <- Tatt$dataClasses[parts] iscat <- as.integer(types=="factor" | types=="character") if (length(parts)==1) termtype <-iscat else termtype <- 2 + any(iscat) + all(iscat) # Were levels specified? If so we either simply accept them (continuous), # or double check them (categorical) if (missing(levels)) { temp <- fit$xlevels[match(parts, names(fit$xlevels), nomatch=0)] if (length(temp) ==0) stop("continuous variables require the levels argument") levels <- do.call(expand.grid, c(temp, stringsAsFactors=FALSE)) } else { #user supplied if (is.data.frame(levels)) { temp <- match(names(levels), parts) if (any(is.na(temp))) stop("not found in levels data frame:", parts) else levels <- levels[temp] # reorder it if (any(duplicated(levels))) stop("levels data frame has duplicates") } else if (is.list(levels)) { if (length(levels) != length(parts)) stop("levels list should have", length(parts), "components") if (!is.null(names(levels))) { temp <- match(names(levels), parts) if (any(is.null(temp))) stop("names of levels does not match the terms") else levels <- levels[temp] #reorder them } if (any(sapply(levels, function(x) any(duplicated(x))))) stop("one or more elements of the levels list has duplicates") levels <- do.call("expand.grid", levels) } else if (is.matrix(levels)) { if (ncol(levels) != length(parts)) stop("levels matrix has the wrong number of columns") if (!is.null(dimnames(levels)[[2]])) { temp <- match(dimnames(levels)[[2]], parts) if (any(is.na(temp))) stop("matrix column names do no match the terms") } else dimnames(levels)[[2]] <- parts if (any(duplicated(levels))) stop("levels matrix has duplicated rows") levels <- data.frame(levels, stringsAsFactors=FALSE) } else if (length(parts) > 1) stop("levels should be a data frame or matrix") else levels <- data.frame(x=unique(levels), stringsAsFactors=FALSE) names(levels) <- user.name } # check that any categorical levels are legal for (i in which(iscat==1)) { xlev <- fit$xlevels[[parts[i]]] if (is.null(xlev)) stop("xlevels attribute not found for", parts[i]) temp <- match(levels[[parts[i]]], xlev) if (any(is.na(temp))) stop("invalid level for term", parts[i]) } rval <- list(levels=levels, termname=termname) # Now add the contrast matrix between the levels, if needed if (test=="global") { <> } else if (test=="pairwise") { <> } else { <> } rval <- list(levels=levels, termname=termname, cmat=cmat, iscat=iscat) class(rval) <- "cmatrix" rval } @ The default contrast matrix is a simple test of equality it there is only one term. If the term is the interaction of multiple categorical variables then we do an anova type decomposition. In other cases we currently fail. <>= if (TRUE) { #if (length(parts) ==1) { cmat <- diag(nrow(levels)) cmat[, nrow(cmat)] <- -1 # all equal to the last cmat <- cmat[-nrow(cmat),, drop=FALSE] } else if (termtype== 4) { # anova type stop("not yet done 1") } else stop("not yet done 2") @ The \code{pairwise} option creates a set of contrast matrices for all pairs of a factor. <>= if (length(parts) > 1) stop("pairwise tests must be for a single term") tindex <- match(levels[[1]], levels[[1]]) #convert to integer nlev <- length(tindex) # this is the number of groups being compared if (nlev < 2) stop("pairwise tests need at least 2 levels") npair <- nlev*(nlev-1)/2 if (npair==1) cmat <- matrix(c(1, -1), nrow=1) else { cmat <- vector("list", npair +1) k <- 1 cname <- rep("", npair) for (i in 1:(nlev-1)) { temp <- double(nlev) temp[tindex[i]] <- 1 for (j in (i+1):nlev) { temp[tindex[j]] <- -1 cmat[[k]] <- matrix(temp, nrow=1) temp[tindex[j]] <- 0 cname[k] <- paste(i, "vs", j) k <- k+1 } } # global test temp <- diag(nlev) temp[,nlev] <- -1 cmat[[k]] <- temp[-nlev,] names(cmat) <- c(cname, termname) } @ The \code{linear} option is of interest for terms that have more than one column; the two most common cases are a factor variable or a spline. It forms a pair of tests, one for the linear and one for the nonlinear part. For non-linear functions such as splines we need some notion of the range of the data, since we want to be linear over the entire range. <>= cmat <- vector("list", 2) cmat[[1]] <- matrix(1:ntest, 1, ntest) cmat[[2]] <- diag(ntest) attr(cmat, "nested") <- TRUE if (is.null(levels[[1]])) { # a continuous variable, and the user didn't give levels for the test # look up the call and use the knots tcall <- Tatt$predvars[[indx + 1]] # skip the 'call' if (tcall[[1]] == as.name("pspline")) { bb <- tcall[["Boundary.knots"]] levels[[1]] <- seq(bb[1], bb[2], length=ntest) } else if (tcall[[1]] %in% c("ns", "bs")) { bb <- c(tcall[["Boundary.knots"]], tcall[["knots"]]) levels[[1]] <- sort(bb) } else stop("don't know how to do a linear contrast for this term") } @ Here are some helper routines. Formulas are from chapter 5 of Searle. The sums of squares only makes sense within a linear model. <>= gsolve <- function(mat, y, eps=sqrt(.Machine$double.eps)) { # solve using a generalized inverse # this is very similar to the ginv function of MASS temp <- svd(mat, nv=0) dpos <- (temp$d > max(temp$d[1]*eps, 0)) dd <- ifelse(dpos, 1/temp$d, 0) # all the parentheses save a tiny bit of time if y is a vector if (all(dpos)) x <- drop(temp$u %*% (dd*(t(temp$u) %*% y))) else if (!any(dpos)) x <- drop(temp$y %*% (0*y)) # extremely rare else x <-drop(temp$u[,dpos] %*%(dd[dpos] * (t(temp$u[,dpos, drop=FALSE]) %*% y))) attr(x, "df") <- sum(dpos) x } qform <- function(var, beta) { # quadratic form b' (V-inverse) b temp <- gsolve(var, beta) list(test= sum(beta * temp), df=attr(temp, "df")) } @ The next functions do the work. Some bookkeeping is needed for a missing value in beta: we leave that coefficient out of the linear predictor. If there are missing coefs then the variance matrix will not have those columns in any case. The nafun function asks if a linear combination is NA. It treats 0*NA as 0. <>= estfun <- function(cmat, beta, varmat) { nabeta <- is.na(beta) if (any(nabeta)) { k <- which(!nabeta) #columns to keep estimate <- drop(cmat[,k] %*% beta[k]) # vector of predictions evar <- cmat[,k] %*% varmat %*% t(cmat[,k, drop=FALSE]) list(estimate = estimate, var=evar) } else { list(estimate = drop(cmat %*% beta), var = cmat %*% varmat %*% t(cmat)) } } testfun <- function(cmat, beta, varmat, sigma2) { nabeta <- is.na(beta) if (any(nabeta)) { k <- which(!nabeta) #columns to keep estimate <- drop(cmat[,k] %*% beta[k]) # vector of predictions temp <- qform(cmat[,k] %*% varmat %*% t(cmat[,k,drop=FALSE]), estimate) rval <- c(chisq=temp$test, df=temp$df) } else { estimate <- drop(cmat %*% beta) temp <- qform(cmat %*% varmat %*% t(cmat), estimate) rval <- c(chisq=temp$test, df=temp$df) } if (!is.null(sigma2)) rval <- c(rval, ss= unname(rval[1]) * sigma2) rval } nafun <- function(cmat, est) { used <- apply(cmat, 2, function(x) any(x != 0)) any(used & is.na(est)) } @ survival/noweb/coxph.Rnw0000644000176200001440000012721513570775356015102 0ustar liggesusers\section{Cox Models} \subsection{Coxph} The [[coxph]] routine is the underlying basis for all the models. The source was converted to noweb when adding time-transform terms. The call starts out with the basic building of a model frame and proceeds from there. The aeqSurv function is used to adjucate near ties in the time variable, numerical precision issues that occur when users base caculations on days/365.25 instead of days. A cluster term in the model is an exception. The variable mentioned is never part of the formal model, and so it is not kept as part of the saved terms structure. The analysis for multi-state data is a bit more complex. \begin{itemize} \item If the formula statement is a list, we preprocess this to find out any potential extra variables, and create a new global formula which will be used to create the data frame. \item In the above case missing value processing needs to be deferred, since some covariates may apply only to select transitions. \item After the data frame is constructed, the transitions matrix can be used to check that all the state names actually exist, construct the cmap matrix, and do missing value removal. \end{itemize} <>= #tt <- function(x) x coxph <- function(formula, data, weights, subset, na.action, init, control, ties= c("efron", "breslow", "exact"), singular.ok =TRUE, robust, model=FALSE, x=FALSE, y=TRUE, tt, method=ties, id, cluster, istate, statedata,...) { ties <- match.arg(ties) Call <- match.call() ## We want to pass any ... args to coxph.control, but not pass things ## like "dats=mydata" where someone just made a typo. The use of ... ## is simply to allow things like "eps=1e6" with easier typing extraArgs <- list(...) if (length(extraArgs)) { controlargs <- names(formals(coxph.control)) #legal arg names indx <- pmatch(names(extraArgs), controlargs, nomatch=0L) if (any(indx==0L)) stop(gettextf("Argument %s not matched", names(extraArgs)[indx==0L]), domain = NA) } if (missing(control)) control <- coxph.control(...) # Move any cluster() term out of the formula, and make it an argument # instead. This makes everything easier. But, I can only do that with # a local copy, doing otherwise messes up future use of update() on # the model object for a user stuck in "+ cluster()" mode. if (missing(formula)) stop("a formula argument is required") ss <- c("cluster", "offset") if (is.list(formula)) Terms <- if (missing(data)) terms(formula[[1]], specials=ss) else terms(formula[[1]], specials=ss, data=data) else Terms <- if (missing(data)) terms(formula, specials=ss) else terms(formula, specials=ss, data=data) tcl <- attr(Terms, 'specials')$cluster if (length(tcl) > 1) stop("a formula cannot have multiple cluster terms") if (length(tcl) > 0) { # there is one # subscripting of formulas is broken at least through R 3.5, if the # formula contains an offset. Adding offset to the "specials" above # is just a sneaky way to find out if one is present, then call # reformulate ourselves. tt is a correct index into the row labels # of the factors attribute, tt+1 to the variables attribute (which is # a list, so you have to skip the "list" call). The term.labels attr # contains neither the response nor the offset, but does contain the # interactions, which we need. factors <- attr(Terms, 'factors') if (any(factors[tcl,] >1)) stop("cluster() cannot be in an interaction") if (attr(Terms, "response") ==0) stop("formula must have a Surv response") # reformulate with the response option puts ` ` around Surv, which messes # up evaluation, hence the fancy dance to replace a piece rather # than recreate temp <- attr(Terms, "term.labels") oo <- attr(Terms, 'specials')$offset if (!is.null(oo)) { # add the offset to the set of labels ooterm <- rownames(factors)[oo] if (oo < tcl) temp <- c(ooterm, temp) else temp <- c(temp, ooterm) } if (is.null(Call$cluster)) Call$cluster <- attr(Terms, "variables")[[1+tcl]][[2]] else warning("cluster appears both in a formula and as an argument, formula term ignored") if (is.list(formula)) formula[[1]][[3]] <- reformulate(temp[1-tcl])[[2]] else formula[[3]] <- reformulate(temp[1-tcl])[[2]] Call$formula <- formula } # create a call to model.frame() that contains the formula (required) # and any other of the relevant optional arguments # but don't evaluate it just yet indx <- match(c("formula", "data", "weights", "subset", "na.action", "cluster", "id", "istate"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") tform <- Call[c(1,indx)] # only keep the arguments we wanted tform[[1L]] <- quote(stats::model.frame) # change the function called # if the formula is a list, do the first level of processing on it. if (is.list(formula)) { <> } else { multiform <- FALSE # formula is not a list of expressions covlist <- NULL dformula <- formula } # add specials to the formula special <- c("strata", "tt") tform$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) # Make "tt" visible for coxph formulas, without making it visible elsewhere if (!is.null(attr(tform$formula, "specials")$tt)) { coxenv <- new.env(parent= environment(formula)) assign("tt", function(x) x, envir=coxenv) environment(tform$formula) <- coxenv } # okay, now evaluate the formula mf <- eval(tform, parent.frame()) if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) # Grab the response and id variables Y <- model.extract(mf, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") type <- attr(Y, "type") multi <- FALSE if (type=="mright" || type == "mcounting") multi <- TRUE else if (type!='right' && type!='counting') stop(paste("Cox model doesn't support \"", type, "\" survival data", sep='')) data.n <- nrow(Y) #remember this before any time transforms if (!multi && multiform) stop("formula is a list but the response is not multi-state") if (control$timefix) Y <- aeqSurv(Y) <> # The time transform will expand the data frame mf. To do this # it needs Y and the strata. Everything else (cluster, offset, weights) # should be extracted after the transform # strats <- attr(Terms, "specials")$strata hasinteractions <- FALSE dropterms <- NULL if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.integer(strata.keep) for (i in stemp$vars) { #multiple strata terms are allowed # The factors attr has one row for each variable in the frame, one # col for each term in the model. Pick rows for each strata # var, and find if it participates in any interactions. if (any(attr(Terms, 'order')[attr(Terms, "factors")[i,] >0] >1)) hasinteractions <- TRUE } if (!hasinteractions) dropterms <- stemp$terms } else istrat <- NULL if (hasinteractions && multi) stop("multi-state coxph does not support strata*covariate interactions") timetrans <- attr(Terms, "specials")$tt if (missing(tt)) tt <- NULL if (length(timetrans)) { if (multi) stop("the tt() transform is not implemented for multi-state models") <> } xlevels <- .getXlevels(Terms, mf) # grab the cluster, if present. Using cluster() in a formula is no # longer encouraged cluster <- model.extract(mf, "cluster") id <- model.extract(mf, "id") if (!is.null(id) && is.null(cluster) && (missing(robust) || robust)) cluster <- id if (missing(robust)) robust <- !is.null(cluster) else if (robust && is.null(cluster)) { if (ncol(Y) ==2) cluster <- seq.int(1, nrow(mf)) else stop("one of cluster or id is needed") } contrast.arg <- NULL #due to shared code with model.matrix.coxph attr(Terms, "intercept") <- 1 # always have a baseline hazard # Grab the id variable to check out multi-state data id <- model.extract(mf, "id") if (multi) { <> } <> <> if (multi) { <> } # infinite covariates are not screened out by the na.omit routines # But this needs to be done after the multi-X part if (!all(is.finite(X))) stop("data contains an infinite predictor") # init is checked after the final X matrix has been made if (missing(init)) init <- NULL else { if (length(init) != ncol(X)) stop("wrong length for init argument") temp <- X %*% init - sum(colMeans(X) * init) + offset # it's okay to have a few underflows, but if all of them are too # small we get all zeros if (any(exp(temp) > .Machine$double.xmax) || all(exp(temp)==0)) stop("initial values lead to overflow or underflow of the exp function") } <> <> <> } @ Multi-state models have a multi-state response, optionally they have a formula that is a list. If the formula is a list then the first element is the default formula with a survival response and covariates on the right. Further elements are of the form from/to ~ covariates / options and specify other covariates for all from:to transitions. Steps in processing such a formula are \begin{enumerate} \item Gather all the variables that appear on a right-hand side, and create a master formula y ~ all of them. This is use to create the model.frame. We also need to defer missing value processing, since some covariates might appear for only some transitions. \item Get the data. The response, id, and statedata variables can now be checked for consistency with the formulas. \item After X has been formed, expand it. \end{enumerate} Here is code for the first step. <>= multiform <- TRUE dformula <- formula[[1]] # the default formula for transitions if (missing(statedata)) covlist <- parsecovar1(formula[-1]) else { if (!inherits(statedata, "data.frame")) stop("statedata must be a data frame") if (is.null(statedata$state)) stop("statedata data frame must contain a 'state' variable") covlist <- parsecovar1(formula[-1], names(statedata)) } # the term.labels + reformulate + environment trio is used in [.terms; # if it's good enough for base R it's good enough for me tlab <- unlist(lapply(covlist$rhs, function(x) attr(terms.formula(x$formula), "term.labels"))) tlab <- c(attr(terms.formula(dformula), "term.labels"), tlab) newform <- reformulate(tlab, dformula[[2]]) environment(newform) <- environment(dformula) formula <- newform tform$na.action <- na.pass # defer any missing value work to later @ <>= # remove strata from dformula, before any further processing if (length(dropterms)){ Terms2 <- Terms[-dropterms] dformula <- formula(Terms2) } else Terms2 <- Terms # check for consistency of the states, and create a transition # matrix if (length(id)==0) stop("an id statement is required for multi-state models") istate <- model.extract(mf, "istate") mcheck <- survcheck2(Y, id, istate) # error messages here if (mcheck$flag["overlap"] > 0) stop("data set has overlapping intervals for one or more subjects") transitions <- mcheck$transitions istate <- mcheck$istate states <- mcheck$states # build tmap, which has one row per term, one column per transition if (missing(statedata)) covlist2 <- parsecovar2(covlist, NULL, dformula= dformula, Terms2, transitions, states) else covlist2 <- parsecovar2(covlist, statedata, dformula= dformula, Terms2, transitions, states) tmap <- covlist2$tmap if (!is.null(covlist)) { <> } @ For multi-state models we can't tell what observations should be removed until any extra formulas have been processed. There may still be rows that are missing \emph{some} of the covariates but are okay for \emph{some} transitions. Others could be useless. Those rows can be removed from the model frame before creating the X matrix. Also identify partially used rows, ones where the necessary covariates are present for some of the possible transitions but not all. Those obs are dealt with later by the stackup function. <>= # first vector will be true if there is at least 1 transition for which all # covariates are present, second if there is at least 1 for which some are not good.tran <- bad.tran <- rep(FALSE, nrow(Y)) # We don't need to check interaction terms termname <- rownames(attr(Terms, 'factors')) trow <- (!is.na(match(rownames(tmap), termname))) # create a missing indicator for each term termiss <- matrix(0L, nrow(mf), ncol(mf)) for (i in 1:ncol(mf)) { xx <- is.na(mf[[i]]) if (is.matrix(xx)) termiss[,i] <- apply(xx, 1, any) else termiss[,i] <- xx } for (i in levels(istate)) { rindex <- which(istate ==i) j <- which(covlist2$mapid[,1] == match(i, states)) #possible transitions for (jcol in j) { k <- which(trow & tmap[,jcol] > 0) # the terms involved in that bad.tran[rindex] <- (bad.tran[rindex] | apply(termiss[rindex, k, drop=FALSE], 1, any)) good.tran[rindex] <- (good.tran[rindex] | apply(!termiss[rindex, k, drop=FALSE], 1, all)) } } n.partially.used <- sum(good.tran & bad.tran & !is.na(Y)) omit <- (!good.tran & bad.tran) | is.na(Y) if (all(omit)) stop("all observations deleted due to missing values") temp <- setNames(seq(omit)[omit], attr(mf, "row.names")[omit]) attr(temp, "class") <- "omit" mf <- mf[!omit,, drop=FALSE] attr(mf, "na.action") <- temp Y <- Y[!omit] id <- id[!omit] if (length(istate)) istate <- istate[!omit] # istate can be NULL @ For a multi-state model, create the expanded X matrix. Sometimes it is much expanded. The first step is to create the cmap matrix from tmap by expanding terms; factors turn into multiple columns for instance. Also create the initial values vector. The stacker function will create a separate block of observations for every unique value in \code{cmat[1,]}. Now say that two transitions A:B and A:C share the same baseline hazard. Then either a B or a C outcome will be an ``event'' in that stratum; they would only be distinguished by perhaps having different covariates. <>= cmap <- parsecovar3(tmap, colnames(X), attr(X, "assign")) xstack <- stacker(cmap, as.integer(istate), X, Y, strata=istrat, states=states) X <- xstack$X Y <- xstack$Y istrat <- xstack$strata if (length(offset)) offset <- offset[xstack$rindex] if (length(weights)) weights <- weights[xstack$rindex] if (length(cluster)) cluster <- cluster[xstack$rindex] @ The next step for multi X is to remake the assign attribute. It is a list with one element per term, and needs to be expanded in the same way as \code{tmap}, which has one row per term (+ an intercept row). For \code{predict, type='terms'} to work, no label can be repeated in the final assign object. If a variable `fred' were common across all the states we would want to use that as the label, but if it appears twice, as separate terms for two different transitions, then we label it as fred\_x:y where x:y is the transition. <>= t2 <- tmap[-1,,drop=FALSE] # remove the intercept row r2 <- row(t2)[!duplicated(as.vector(t2))] c2 <- col(t2)[!duplicated(as.vector(t2))] a2 <- lapply(seq(along=r2), function(i) {cmap[1+assign[[r2[i]]], c2[i]]}) # which elements are unique? tab <- table(r2) count <- tab[r2] names(a2) <- ifelse(count==1, row.names(t2)[r2], paste(row.names(t2)[r2], colnames(cmap)[c2], sep="_")) assign <- a2 @ An increasingly common error is for users to put the time variable on both sides of the formula, in the mistaken idea that this will deal with a failure of proportional hazards. Add a test for such models, but don't bail out. There will be cases where someone has the the stop variable in an expression on the right hand side, to create current age say. The \code{variables} attribute of the Terms object is the expression form of a list that contains the response variable followed by the predictors. Subscripting this, element 1 is the call to ``list'' itself so we always retain it. My \code{terms.inner} function works only with formula objects. <>= if (length(attr(Terms, 'variables')) > 2) { # a ~1 formula has length 2 ytemp <- terms.inner(formula[1:2]) xtemp <- terms.inner(formula[-2]) if (any(!is.na(match(xtemp, ytemp)))) warning("a variable appears on both the left and right sides of the formula") } @ At this point we deal with any time transforms. The model frame is expanded to a ``fake'' data set that has a separate stratum for each unique event-time/strata combination, and any tt() terms in the formula are processed. The first step is to create the index vector [[tindex]] and new strata [[.strata.]]. This last is included in a model.frame call (for others to use), internally the code simply replaces the \code{istrat} variable. A (modestly) fast C-routine first counts up and indexes the observations. We start out with error checks; since the computation can be slow we want to complain early. <>= timetrans <- untangle.specials(Terms, 'tt') ntrans <- length(timetrans$terms) if (is.null(tt)) { tt <- function(x, time, riskset, weights){ #default to O'Brien's logit rank obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } } if (is.function(tt)) tt <- list(tt) #single function becomes a list if (is.list(tt)) { if (any(!sapply(tt, is.function))) stop("The tt argument must contain function or list of functions") if (length(tt) != ntrans) { if (length(tt) ==1) { temp <- vector("list", ntrans) for (i in 1:ntrans) temp[[i]] <- tt[[1]] tt <- temp } else stop("Wrong length for tt argument") } } else stop("The tt argument must contain a function or list of functions") if (ncol(Y)==2) { if (length(strats)==0) { sorted <- order(-Y[,1], Y[,2]) newstrat <- rep.int(0L, nrow(Y)) newstrat[1] <- 1L } else { sorted <- order(istrat, -Y[,1], Y[,2]) #newstrat marks the first obs of each strata newstrat <- as.integer(c(1, 1*(diff(istrat[sorted])!=0))) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount1, Y[sorted,], as.integer(newstrat)) tindex <- sorted[counts$index] } else { if (length(strats)==0) { sort.end <- order(-Y[,2], Y[,3]) sort.start<- order(-Y[,1]) newstrat <- c(1L, rep(0, nrow(Y) -1)) } else { sort.end <- order(istrat, -Y[,2], Y[,3]) sort.start<- order(istrat, -Y[,1]) newstrat <- c(1L, as.integer(diff(istrat[sort.end])!=0)) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount2, Y, as.integer(sort.start -1L), as.integer(sort.end -1L), as.integer(newstrat)) tindex <- counts$index } @ The C routine has returned a list with 4 elements \begin{description} \item[nrisk] a vector containing the number at risk at each event time \item[time] the vector of event times \item[status] a vector of status values \item[index] a vector containing the set of subjects at risk for event time 1, followed by those at risk at event time 2, those at risk at event time 3, etc. \end{description} The new data frame is then a simple creation. The subtle part below is a desire to retain transformation information so that a downstream call to \code{termplot} will work. The tt function supplied by the user often finishes with a call to \code{pspline} or \code{ns}. If the returned value of the \code{tt} call has a class for which a \code{makepredictcall} method exists then we need to do 2 things: \begin{enumerate} \item Construct a fake call, e.g., ``pspline(age)'', then feed it and the result of tt as arguments to \code{makepredictcall} \item Replace that componenent in the predvars attribute of the terms. \end{enumerate} The \code{timetrans\$terms} value is a count of the right hand side of the formula. Some objects in the terms structure are unevaluated calls that include y, this adds 2 to the count (the call to ``list'' and the response). <>= Y <- Surv(rep(counts$time, counts$nrisk), counts$status) type <- 'right' # new Y is right censored, even if the old was (start, stop] mf <- mf[tindex,] istrat <- rep(1:length(counts$nrisk), counts$nrisk) weights <- model.weights(mf) if (!is.null(weights) && any(!is.finite(weights))) stop("weights must be finite") tcall <- attr(Terms, 'variables')[timetrans$terms+2] pvars <- attr(Terms, 'predvars') pmethod <- sub("makepredictcall.", "", as.vector(methods("makepredictcall"))) for (i in 1:ntrans) { newtt <- (tt[[i]])(mf[[timetrans$var[i]]], Y[,1], istrat, weights) mf[[timetrans$var[i]]] <- newtt nclass <- class(newtt) if (any(nclass %in% pmethod)) { # It has a makepredictcall method dummy <- as.call(list(as.name(class(newtt)[1]), tcall[[i]][[2]])) ptemp <- makepredictcall(newtt, dummy) pvars[[timetrans$terms[i]+2]] <- ptemp } } attr(Terms, "predvars") <- pvars @ This is the C code for time-transformation. For the first case it expects y to contain time and status sorted from longest time to shortest, and strata=1 for the first observation of each strata. <>= #include "survS.h" /* ** Count up risk sets and identify who is in each */ SEXP coxcount1(SEXP y2, SEXP strat2) { int ntime, nrow; int i, j, n; int stratastart=0; /* start row for this strata */ int nrisk=0; /* number at risk (=0 to stop -Wall complaint)*/ double *time, *status; int *strata; double dtime; SEXP rlist, rlistnames, rtime, rn, rindex, rstatus; int *rrindex, *rrstatus; n = nrows(y2); time = REAL(y2); status = time +n; strata = INTEGER(strat2); /* ** First pass: count the total number of death times (risk sets) ** and the total number of rows in the new data set. */ ntime=0; nrow=0; for (i=0; i> /* ** Pass 2, fill them in */ ntime=0; for (i=0; i> } @ The start-stop case is a bit more work. The set of subjects still at risk is an arbitrary set so we have to keep an index vector [[atrisk]]. At each new death time we write out the set of those at risk, with the deaths last. I toyed with the idea of a binary tree then realized it was not useful: at each death we need to list out all the subjects at risk into the index vector which is an $O(n)$ process, tree or not. <>= #include "survS.h" /* count up risk sets and identify who is in each, (start,stop] version */ SEXP coxcount2(SEXP y2, SEXP isort1, SEXP isort2, SEXP strat2) { int ntime, nrow; int i, j, istart, n; int nrisk=0, *atrisk; double *time1, *time2, *status; int *strata; double dtime; int iptr, jptr; SEXP rlist, rlistnames, rtime, rn, rindex, rstatus; int *rrindex, *rrstatus; int *sort1, *sort2; n = nrows(y2); time1 = REAL(y2); time2 = time1+n; status = time2 +n; strata = INTEGER(strat2); sort1 = INTEGER(isort1); sort2 = INTEGER(isort2); /* ** First pass: count the total number of death times (risk sets) ** and the total number of rows in the new data set */ ntime=0; nrow=0; istart =0; /* walks along the sort1 vector (start times) */ for (i=0; i= dtime; istart++) nrisk--; for(j= i+1; j> atrisk = (int *)R_alloc(n, sizeof(int)); /* marks who is at risk */ /* ** Pass 2, fill them in */ ntime=0; nrisk=0; j=0; /* pointer to time1 */; istart=0; for (i=0; i=dtime; istart++) { atrisk[sort1[istart]]=0; nrisk--; } for (j=1; j> } @ <>= /* ** Allocate memory */ PROTECT(rtime = allocVector(REALSXP, ntime)); PROTECT(rn = allocVector(INTSXP, ntime)); PROTECT(rindex=allocVector(INTSXP, nrow)); PROTECT(rstatus=allocVector(INTSXP,nrow)); rrindex = INTEGER(rindex); rrstatus= INTEGER(rstatus); @ <>= /* return the list */ PROTECT(rlist = allocVector(VECSXP, 4)); SET_VECTOR_ELT(rlist, 0, rn); SET_VECTOR_ELT(rlist, 1, rtime); SET_VECTOR_ELT(rlist, 2, rindex); SET_VECTOR_ELT(rlist, 3, rstatus); PROTECT(rlistnames = allocVector(STRSXP, 4)); SET_STRING_ELT(rlistnames, 0, mkChar("nrisk")); SET_STRING_ELT(rlistnames, 1, mkChar("time")); SET_STRING_ELT(rlistnames, 2, mkChar("index")); SET_STRING_ELT(rlistnames, 3, mkChar("status")); setAttrib(rlist, R_NamesSymbol, rlistnames); unprotect(6); return(rlist); @ We now return to the original thread of the program, though perhaps with new data, and build the $X$ matrix. Creation of the $X$ matrix for a Cox model requires just a bit of trickery. The baseline hazard for a Cox model plays the role of an intercept, but does not appear in the $X$ matrix. However, to create the columns of $X$ for factor variables correctly, we need to call the model.matrix routine in such a way that it \emph{thinks} there is an intercept, and so we set the intercept attribute to 1 in the terms object before calling model.matrix, ignoring any -1 term the user may have added. One simple way to handle all this is to call model.matrix on the original formula and then remove the terms we don't need. However, \begin{enumerate} \item The cluster() term, if any, could lead to thousands of extraneous ``intercept'' columns which are never needed. \item Likewise, nested case-control models can have thousands of strata, again leading many intercepts we never need. They never have strata by covariate interactions, however. \item If there are strata by covariate interactions in the model, the dummy intercepts-per-strata columns are necessary information for the model.matrix routine to correctly compute other columns of $X$. \end{enumerate} On later reflection \code{cluster} should never have been in the model statement in the first place, something that became painfully apparent with addition of multi-state models. In the future we will discourage it. For reason 2 above the usual plan is to also remove strata terms from the ``Terms'' object \emph{before} calling model.matrix, unless there are strata by covariate interactions in which case we remove them after. If anything is pre-dropped, for documentation purposes we want the returned assign attribute to match the Terms structure that we will hand back. (Do we ever use it?) In particular, the numbers therein correspond to the column names in \code{attr(Terms, 'factors')} The requires a shift. The cluster and strata terms are seen as main effects, so appear early in that list. We have found a case where terms get relabeled: <>= t1 <- terms( (x1 + x2):x3 + strata(x4)) t2 <- t1[-1] colnames(attr(t1, "factors")) colnames(attr(t2, "factors")) @ In t1 the strata term appears first, as it is the only thing that looks like a main effect, and the column labels are strata(x4), x1:x3, x2:x3. In t2 the column labels are x1:x3 and x3:x2 --- note left-right swap of the second. This means that using match() on the labels is not a reliable approach. We instead assume that nothing is reordered and do a shift. <>= if (length(dropterms)) { Terms2 <- Terms[ -dropterms] X <- model.matrix(Terms2, mf, constrasts=contrast.arg) # we want to number the terms wrt the original model matrix temp <- attr(X, "assign") shift <- sort(dropterms) temp <- temp + 1*(shift[1] <= temp) if (length(shift)==2) temp + 1*(shift[2] <= temp) attr(X, "assign") <- temp } else X <- model.matrix(Terms, mf, contrasts=contrast.arg) # drop the intercept after the fact, and also drop strata if necessary Xatt <- attributes(X) if (hasinteractions) adrop <- c(0, untangle.specials(Terms, "strata")$terms) else adrop <- 0 xdrop <- Xatt$assign %in% adrop #columns to drop (always the intercept) X <- X[, !xdrop, drop=FALSE] attr(X, "assign") <- Xatt$assign[!xdrop] attr(X, "contrasts") <- Xatt$contrasts @ Finish the setup. If someone includes an init statement or offset, make sure that it does not lead to instant code failure due to overflow/underflow. <>= offset <- model.offset(mf) if (is.null(offset) | all(offset==0)) offset <- rep(0., nrow(mf)) else if (any(!is.finite(offset) | !is.finite(exp(offset)))) stop("offsets must lead to a finite risk score") weights <- model.weights(mf) if (!is.null(weights) && any(!is.finite(weights))) stop("weights must be finite") assign <- attrassign(X, Terms) contr.save <- attr(X, "contrasts") <> @ Check for a rare edge case: a data set with no events. In this case the return structure is simple. The coefficients will all be NA, since they can't be estimated. The variance matrix is all zeros, in line with the usual rule to zero out any row and col corresponding to an NA coef. The loglik is the sum of zero terms, which we set to zero like the usual R result for sum(numeric(0)). An overall idea is to return something that won't blow up later code. <>= if (sum(Y[, ncol(Y)]) == 0) { # No events in the data! ncoef <- ncol(X) ctemp <- rep(NA, ncoef) names(ctemp) <- colnames(X) concordance= c(concordant=0, discordant=0, tied.x=0, tied.y=0, tied.xy=0, concordance=NA, std=NA, timefix=FALSE) rval <- list(coefficients= ctemp, var = matrix(0.0, ncoef, ncoef), loglik=c(0,0), score =0, iter =0, linear.predictors = offset, residuals = rep(0.0, data.n), means = colMeans(X), method=method, n = data.n, nevent=0, terms=Terms, assign=assign, concordance=concordance, wald.test=0.0, y = Y, call=Call) class(rval) <- "coxph" return(rval) } @ Check for penalized terms in the model, and set up infrastructure for the fitting routines to deal with them. <>= pterms <- sapply(mf, inherits, 'coxph.penalty') if (any(pterms)) { pattr <- lapply(mf[pterms], attributes) pname <- names(pterms)[pterms] # # Check the order of any penalty terms ord <- attr(Terms, "order")[match(pname, attr(Terms, 'term.labels'))] if (any(ord>1)) stop ('Penalty terms cannot be in an interaction') pcols <- assign[match(pname, names(assign))] fit <- coxpenal.fit(X, Y, istrat, offset, init=init, control, weights=weights, method=method, row.names(mf), pcols, pattr, assign) } @ <>= else { if( method=="breslow" || method =="efron") { if (grepl('right', type)) fitter <- get("coxph.fit") else fitter <- get("agreg.fit") } else if (method=='exact') { if (type== "right") fitter <- get("coxexact.fit") else fitter <- get("agexact.fit") } else stop(paste ("Unknown method", method)) fit <- fitter(X, Y, istrat, offset, init, control, weights=weights, method=method, row.names(mf)) } @ <>= if (is.character(fit)) { fit <- list(fail=fit) class(fit) <- 'coxph' } else { if (!is.null(fit$coefficients) && any(is.na(fit$coefficients))) { vars <- (1:length(fit$coefficients))[is.na(fit$coefficients)] msg <-paste("X matrix deemed to be singular; variable", paste(vars, collapse=" ")) if (!singular.ok) stop(msg) # else warning(msg) # stop being chatty } fit$n <- data.n fit$nevent <- sum(Y[,ncol(Y)]) fit$terms <- Terms fit$assign <- assign class(fit) <- fit$class fit$class <- NULL # don't compute a robust variance if there are no coefficients if (robust && !is.null(fit$coefficients) && !all(is.na(fit$coefficients))) { fit$naive.var <- fit$var # a little sneaky here: by calling resid before adding the # na.action method, I avoid having missings re-inserted # I also make sure that it doesn't have to reconstruct X and Y fit2 <- c(fit, list(x=X, y=Y, weights=weights)) if (length(istrat)) fit2$strata <- istrat if (length(cluster)) { temp <- residuals.coxph(fit2, type='dfbeta', collapse=cluster, weighted=TRUE) # get score for null model if (is.null(init)) fit2$linear.predictors <- 0*fit$linear.predictors else fit2$linear.predictors <- c(X %*% init) temp0 <- residuals.coxph(fit2, type='score', collapse=cluster, weighted=TRUE) } else { temp <- residuals.coxph(fit2, type='dfbeta', weighted=TRUE) fit2$linear.predictors <- 0*fit$linear.predictors temp0 <- residuals.coxph(fit2, type='score', weighted=TRUE) } fit$var <- t(temp) %*% temp u <- apply(as.matrix(temp0), 2, sum) fit$rscore <- coxph.wtest(t(temp0)%*%temp0, u, control$toler.chol)$test } #Wald test if (length(fit$coefficients) && is.null(fit$wald.test)) { #not for intercept only models, or if test is already done nabeta <- !is.na(fit$coefficients) # The init vector might be longer than the betas, for a sparse term if (is.null(init)) temp <- fit$coefficients[nabeta] else temp <- (fit$coefficients - init[1:length(fit$coefficients)])[nabeta] fit$wald.test <- coxph.wtest(fit$var[nabeta,nabeta], temp, control$toler.chol)$test } # Concordance. Done here so that we can use cluster if it is present # The returned value is a subset of the full result, partly because it # is all we need, but more for backward compatability with survConcordance.fit if (length(cluster)) temp <- concordancefit(Y, fit$linear.predictors, istrat, weights, cluster=cluster, reverse=TRUE, timefix= FALSE) else temp <- concordancefit(Y, fit$linear.predictors, istrat, weights, reverse=TRUE, timefix= FALSE) if (is.matrix(temp$count)) fit$concordance <- c(colSums(temp$count), concordance=temp$concordance, std=sqrt(temp$var)) else fit$concordance <- c(temp$count, concordance=temp$concordance, std=sqrt(temp$var)) na.action <- attr(mf, "na.action") if (length(na.action)) fit$na.action <- na.action if (model) { if (length(timetrans)) { stop("'model=TRUE' not supported for models with tt terms") } fit$model <- mf } if (x) { fit$x <- X if (length(timetrans)) fit$strata <- istrat else if (length(strats)) fit$strata <- strata.keep } if (y) fit$y <- Y fit$timefix <- control$timefix # remember this option } @ If any of the weights were not 1, save the results. Add names to the means component, which are occassionally useful to survfit.coxph. Other objects below are used when we need to recreate a model frame. <>= if (!is.null(weights) && any(weights!=1)) fit$weights <- weights names(fit$means) <- names(fit$coefficients) if (multi) { fit$transitions <- transitions fit$states <- states fit$cmap <- cmap fit$resid <- rowsum(fit$resid, xstack$rindex) names(fit$coefficients) <- seq(along=fit$coefficients) if (x) fit$strata <- istrat # save the expanded strata class(fit) <- c("coxphms", class(fit)) } fit$formula <- formula(Terms) if (length(xlevels) >0) fit$xlevels <- xlevels fit$contrasts <- contr.save if (any(offset !=0)) fit$offset <- offset fit$call <- Call fit @ The model.matrix and model.frame routines are called after a Cox model to reconstruct those portions. Much of their code is shared with the coxph routine. <>= # In internal use "data" will often be an already derived model frame. # We detect this via it having a terms attribute. model.matrix.coxph <- function(object, data=NULL, contrast.arg=object$contrasts, ...) { # # If the object has an "x" component, return it, unless a new # data set is given if (is.null(data) && !is.null(object[['x']])) return(object[['x']]) #don't match "xlevels" Terms <- delete.response(object$terms) if (is.null(data)) mf <- stats::model.frame(object) else { if (is.null(attr(data, "terms"))) mf <- stats::model.frame(Terms, data, xlev=object$xlevels) else mf <- data #assume "data" is already a model frame } cluster <- attr(Terms, "specials")$cluster if (length(cluster)) { temp <- untangle.specials(Terms, "cluster") dropterms <- temp$terms } else dropterms <- NULL strats <- attr(Terms, "specials")$strata hasinteractions <- FALSE if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.integer(strata.keep) for (i in stemp$vars) { #multiple strata terms are allowed # The factors attr has one row for each variable in the frame, one # col for each term in the model. Pick rows for each strata # var, and find if it participates in any interactions. if (any(attr(Terms, 'order')[attr(Terms, "factors")[i,] >0] >1)) hasinteractions <- TRUE } if (!hasinteractions) dropterms <- c(dropterms, stemp$terms) } else istrat <- NULL <> X } @ In parallel is the model.frame routine, which reconstructs the model frame. This routine currently doesn't do all that we want. To wit, the following code fails: \begin{verbatim} > tfun <- function(formula, ndata) { fit <- coxph(formula, data=ndata) model.frame(fit) } > tfun(Surv(time, status) ~ age, lung) Error: ndata not found \end{verbatim} The genesis of this problem is hard to unearth, but has to do with non standard evaluation rules used by model.frame.default. In essence it pays attention to the environment of the formula, but the enclos argument of eval appears to be ignored. I've not yet found a solution. <>= model.frame.coxph <- function(formula, ...) { dots <- list(...) nargs <- dots[match(c("data", "na.action", "subset", "weights", "id", "cluster", "istate"), names(dots), 0)] # If nothing has changed and the coxph object had a model component, # simply return it. if (length(nargs) ==0 && !is.null(formula$model)) return(formula$model) else { # Rebuild the original call to model.frame Terms <- terms(formula) fcall <- formula$call indx <- match(c("formula", "data", "weights", "subset", "na.action", "cluster", "id", "istate"), names(fcall), nomatch=0) if (indx[1] ==0) stop("The coxph call is missing a formula!") temp <- fcall[c(1,indx)] # only keep the arguments we wanted temp[[1]] <- quote(stats::model.frame) # change the function called temp$xlev <- formula$xlevels # this will turn strings to factors temp$formula <- Terms #keep the predvars attribute # Now, any arguments that were on this call overtake the ones that # were in the original call. if (length(nargs) >0) temp[names(nargs)] <- nargs # Make "tt" visible for coxph formulas, if (!is.null(attr(temp$formula, "specials")$tt)) { coxenv <- new.env(parent= environment(temp$formula)) assign("tt", function(x) x, envir=coxenv) environment(temp$formula) <- coxenv } # The documentation for model.frame implies that the environment arg # to eval will be ignored, but if we omit it there is a problem. if (is.null(environment(formula$terms))) mf <- eval(temp, parent.frame()) else mf <- eval(temp, environment(formula$terms), parent.frame()) if (!is.null(attr(formula$terms, "dataClasses"))) .checkMFClasses(attr(formula$terms, "dataClasses"), mf) if (is.null(attr(Terms, "specials")$tt)) return(mf) else { # Do time transform tt <- eval(formula$call$tt) Y <- aeqSurv(model.response(mf)) strats <- attr(Terms, "specials")$strata if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.numeric(strata.keep) } <> mf[[".strata."]] <- istrat return(mf) } } } @ survival/noweb/casecohort.Rnw0000644000176200001440000004313213537676563016111 0ustar liggesusers\section{Case-cohort models} Prentice proposed a case-cohort design for large survey studies such as the Women's Health Study, where the population size makes it infeasable to collect data on all of the cases. In this case we might collect data on a random subcohort $SC$ of the full cohort of subjects $C$ along with information on all subjects $E$ who experience an event. Let $n$ be the size of the full cohort, $m$ the size of the subcohort $SC$ and $d$ be the number of events. Let $x$ be the covariate vector. The kernel of the Cox model's score equation has a term for each event $i$ of $x_i(t_i) - \bar{x}(t_i)$ where $\bar{x}$ is the mean of all subjects at risk at that time. In a case-cohort data set the naive estimate of $\bar{x}$ based on the available data will not be correct since the data set is enriched for deaths. The methods below all use a Cox model as the base, but ``fix up'' the result to correct for this bias. <>= cch <- function(formula, data, weights, subset, na.action, subcoh, id, stratum, cohort.size, method=c("Prentice", "SelfPrentice", "LinYing","I.Borgan","II.Borgan"), robust=FALSE){ Call <- match.call() method <- match.arg(method) <> <> <> <> } @ The call processing is a little unusual due to backwards compatability with an older version of the program which used separate model statements for each of the [[subcoh]], [[id]], and [[stratum]] arguments. This was a bad design because it does not properly handle missing values. The obvious way to check this is [[is.formula(subcoh)]] but that would start by retrieving the subcoh argument, which will fail if the variable is part of the data frame. Instead we have to parse the call itself and look for a tilde. If there is one, then we add this to the current formula minus the tilde, otherwise add the argument as is. <>= addterm <- function(oldform, new) { j <- length(oldform) oldform[[j]] <- call("+", oldform[[j]], new[[2]]) } newterm <- list() if (missing(subcoh)) stop ("the subcoh argument is required") else { if (is.call(Call$subcoh) && Call$subcoh[[1]] == as.name("~")) newterm$subcoh <- Call$subcoh[[2]] else newterm$subcoh <- Call$subcoh } if (!missing(id)){ if (is.call(Call$id) && Call$id[[1]] == as.name("~")) newterm$id <- Call$id[[2]] else newterm$id <- Call$id } if (!missing(stratum)) { if (is.call(Call$stratum) && call$stratum[[i]] == as.name("~")) newterm$stratum <- Call$stratum[[2]] else newterm$stratum <- Call$stratum } newform <- formula for (i in newterm) newform <- addterm(newform, newterm) # Formulas can also have cluster and strata terms in them # The next few lines are standard and almost identical to coxph indx <- match(c("formula", "data", "weights", "subset", "na.action"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") temp <- Call[c(1,indx)] # only keep the arguments we wanted temp[[1]] <- quote(stats::model.frame) # change the function called special <- c("strata", "cluster") temp$formula <- if(missing(data)) terms(newform, special) else terms(newform, special, data=data) mf <- eval(temp, parent.frame()) Terms <- terms(mf) @ Now do a sanity check: squawk if they had both an id argument and a cluster term, or both a stratum argument and a strata term. <>= extras <- seq(length=length(newterm), to=length(mf)) names(extras) <- names(newterm) tdrop <- extras if (!is.null(attr(Terms, "specials")$id)) { if (!is.null(newterm$id)) stop("cannot have both an id argument and a cluster term in the formula") temp <- untangle.specials(Terms, "cluster") id <- m[[temp$vars]] tdrop <- c(tdrop, temp$terms) #to be dropped later } else id <- mf[[extras["id"]]] #will usually be NULL if (!is.null(attr(Terms, "specials")$strata)) { if (!is.null(newterms$stratum)) stop("cannot have both a stratum argument and a strata term in the formula") temp <- untangle.specials(Terms, "strata") if (length(temp$vars)==1) strata <- m[[stemp$vars]] else strata <- strata(m[, temp$vars], shortlabel=TRUE) tdrop <- c(tdrop, temp$terms) } else strata <- mf[[extras["stratum"]]] subcoh <- mf[[extras["subcoh"]]] Terms <- Terms[-tdrop] @ Now do a few checks on the retrieved variables <>= n <- nrow(mf) #number of observations if (is.logical(subcoh)) subcoh <- as.numeric(subcoh) if (!all(subcoh %in% 0:1)) stop("subcoh values must be 0/1 or FALSE/TRUE") if (n > sum(cohort.size)) stop("number of records is greater than the cohort size") if (!is.null(strata)) { if (method == "Prentice") method <- "I.Borgan" if (method == "Self-Prentice") method <- "II.Borgan" if (!(method %in% c("I.Borgan", "II.Borgan"))) stop("invalid method for stratified data") strata <- as.factor(strata) if (length(cohort.size)!=length(levels(strata))) stop("cohort.size and stratum do not match") subcohort.sizes <- table(strata) } else { if (length(cohort.size)!=1) stop("cohort size must be a scalar for unstratified analysis") subcohort.sizes <- n } if (robust && method != "LinYing") warning ("robust option ignored for this method") if (!is.null(id) && any(duplicated(id))) stop ("multiple records per id not allowed") @ Now create the data set that will be used for the calls to the underlying coxph code. It will be a (start, stop] data set, even if the input data is not. <>= Y <- model.extract(m, "response") if(!inherits(Y, "Surv")) stop("Response must be a survival object") ytype <- attr(Y, "type") if (!ytype %in% c("right", "counting")) stop("Cox model doesn't support \"", type, "\" survival data") if (ytype == "right") cdata <- data.frame(tstart= rep(0., n), tstop = Y[,1], cens = Y[,2], X = model.matrix(Terms, mf)[, -1, drop=FALSE) else cdata <- data.frame(tstart= Y[,1], tstop = Y[,2], cens = Y[,3], X = model.matrix(Terms, mf[, -1, drop=FALSE))) if (any (!subcoh & cens==0)) stop ("every observation should either be in the subcohort or be an event") @ Y[,3]) if (any(!subcoh & !cens)) stop(sum(!subcoh & !cens),"censored observations not in subcohort") cc<-cens+1-subcoh texit<-switch(itype+1, stop(), Y[,1], Y[,2]) tenter<-switch(itype+1, stop(), rep(0,length(texit)), Y[,1]) X <- model.matrix(Terms, m) X <- X[,2:ncol(X)] fitter <- get(method) if (stratified) out<-fitter(tenter=tenter, texit=texit, cc=cc, id=id, X=X, stratum=as.numeric(stratum), stratum.sizes=cohort.size) else out<-fitter(tenter=tenter, texit=texit, cc=cc, id=id, X=X, ntot=nn, robust=robust) out$method <- method names(out$coefficients) <- dimnames(X)[[2]] if(!is.null(out$var)) dimnames(out$var) <- list(dimnames(X)[[2]], dimnames(X)[[2]]) if(!is.null(out$naive.var)) dimnames(out$naive.var) <- list(dimnames(X)[[2]], dimnames(X)[[2]]) out$call <- call out$cohort.size <- cohort.size out$stratified<-stratified if (stratified){ out$stratum<-stratum out$subcohort.size <-subcohort.sizes } else { out$subcohort.size <- tt[2] } class(out) <- "cch" out } ### Subprograms Prentice <- function(tenter, texit, cc, id, X, ntot,robust){ eps <- 0.00000001 cens <- as.numeric(cc>0) # Censorship indicators subcoh <- as.numeric(cc<2) # Subcohort indicators ## Calculate Prentice estimate ent2 <- tenter ent2[cc==2] <- texit[cc==2]-eps fit1 <- coxph(Surv(ent2,texit,cens)~X,eps=eps,x=TRUE) ## Calculate Prentice estimate and variance nd <- sum(cens) # Number of failures nc <- sum(subcoh) # Number in subcohort ncd <- sum(cc==1) #Number of failures in subcohort X <- as.matrix(X) aent <- c(tenter[cc>0],tenter[cc<2]) aexit <- c(texit[cc>0],texit[cc<2]) aX <- rbind(as.matrix(X[cc>0,]),as.matrix(X[cc<2,])) aid <- c(id[cc>0],id[cc<2]) dum <- rep(-100,nd) dum <- c(dum,rep(0,nc)) gp <- rep(1,nd) gp <- c(gp,rep(0,nc)) fit <- coxph(Surv(aent,aexit,gp)~aX+offset(dum)+cluster(aid),eps=eps,x=TRUE, iter.max=35,init=fit1$coefficients) db <- resid(fit,type="dfbeta") db <- as.matrix(db) db <- db[gp==0,] fit$phase2var<-(1-(nc/ntot))*t(db)%*%(db) fit$naive.var <- fit$naive.var+fit$phase2var fit$var<-fit$naive.var fit$coefficients <- fit$coef <- fit1$coefficients fit } SelfPrentice <- function(tenter, texit, cc, id, X, ntot,robust){ eps <- 0.00000001 cens <- as.numeric(cc>0) # Censorship indicators subcoh <- as.numeric(cc<2) # Subcohort indicators ## Calculate Self-Prentice estimate and variance nd <- sum(cens) # Number of failures nc <- sum(subcoh) # Number in subcohort ncd <- sum(cc==1) #Number of failures in subcohort X <- as.matrix(X) aent <- c(tenter[cc>0],tenter[cc<2]) aexit <- c(texit[cc>0],texit[cc<2]) aX <- rbind(as.matrix(X[cc>0,]),as.matrix(X[cc<2,])) aid <- c(id[cc>0],id[cc<2]) dum <- rep(-100,nd) dum <- c(dum,rep(0,nc)) gp <- rep(1,nd) gp <- c(gp,rep(0,nc)) fit <- coxph(Surv(aent,aexit,gp)~aX+offset(dum)+cluster(aid),eps=eps,x=TRUE) db <- resid(fit,type="dfbeta") db <- as.matrix(db) db <- db[gp==0,,drop=FALSE] fit$phase2var<-(1-(nc/ntot))*t(db)%*%(db) fit$naive.var <- fit$naive.var+fit$phase2var fit$var<-fit$naive.var fit } LinYing <- function(tenter, texit, cc, id, X, ntot,robust){ eps <- 0.000000001 cens <- as.numeric(cc>0) # Censorship indicators subcoh <- as.numeric(cc<2) # Subcohort indicators nd <- sum(cens) # Number of failures nc <- sum(subcoh) # Number in subcohort ncd <- sum(cc==1) #Number of failures in subcohort ## Calculate Lin-Ying estimate and variance offs <- rep((ntot-nd)/(nc-ncd),length(texit)) offs[cc>0] <- 1 loffs <- log(offs) fit <- coxph(Surv(tenter, texit, cens)~X+offset(loffs)+cluster(id), eps=eps,x=TRUE) db <- resid(fit,type="dfbeta") db <- as.matrix(db) db0 <- db[cens==0,,drop=FALSE] dbm <- apply(db0,2,mean) db0 <- sweep(db0,2,dbm) fit$phase2var<-(1-(nc-ncd)/(ntot-nd))*crossprod(db0) fit$naive.var <- fit$naive.var+fit$phase2var if (robust) fit$var<- crossprod(db,db/offs)+fit$phase2var else fit$var<-fit$naive.var fit } I.Borgan <- function(tenter, texit, cc, id, X, stratum, stratum.sizes){ eps <- 0.00000001 nobs <- length(texit) idx <- 1:length(nobs) jj <- max(stratum) nn <- stratum.sizes ## Cohort stratum sizes n <- table(stratum) ## Sample stratum sizes d <- table(stratum[cc>0]) ## Failures in each stratum tt <- table(cc,stratum) cens <- as.numeric(cc>0) ## Failure indicators subcoh <- as.numeric(cc<2) ## Subcohort indicators nd <- sum(cens) ## Number of failures nc <- sum(subcoh) ## Number in subcohort ncd <- sum(as.numeric(cc==1)) #Number of failures in subcohort m0 <- tt[1,] ## Subcohort stratum sizes (noncases only) if (ncd>0) m <- m0+tt[2,] else m <- m0 #Subcohort stratum sizes X <- as.matrix(X) kk <- ncol(X) ## Number of variables wt <- as.vector(nn/m) ## Weights for Estimator I stratum <- c(stratum[cc>0],stratum[cc<2]) w <- wt[stratum] ent <- c(tenter[cc > 0], tenter[cc < 2]) exit <- c(texit[cc > 0], texit[cc < 2]) X <- rbind(as.matrix(X[cc > 0, ]), as.matrix(X[cc < 2, ])) id <- c(id[cc > 0], id[cc < 2]) dum <- rep(-100, nd) dum <- c(dum, rep(0, nc)) gp <- rep(1, nd) gp <- c(gp, rep(0, nc)) w[gp==1] <- 1 fit <- coxph(Surv(ent,exit,gp)~X+offset(dum)+cluster(id), weights=w, eps=eps,x=T, iter.max=25) score <- resid(fit, type = "score", weighted=F) sc <- resid(fit, type="score", collapse=id, weighted=T) score <- as.matrix(score) score <- score[gp == 0,,drop=F] st <- stratum[gp==0] sto <- st %o% rep(1,kk) Index <- col(score) tscore <- tapply(score,list(sto,Index),mean) pscore <- tapply(score,list(sto,Index)) score <- score-tscore[pscore] delta <- matrix(0,kk,kk) opt <- NULL for (j in 1:jj) { temp <- t(score[st==j,])%*%score[st==j,]/(m[j]-1) delta <- matrix(delta+(wt[j]-1)*nn[j]*temp,kk,kk) if(is.null(opt)) opt <- nn[j]*sqrt(diag(fit$naive.var %*% temp %*% fit$naive.var)) else opt <- rbind(opt,nn[j]*sqrt(diag(fit$naive.var %*% temp %*% fit$naive.var))) } z <- apply(opt,2,sum) fit$opt <- sweep(opt,2,z,FUN="/") fit$phase2var<-fit$naive.var%*%delta%*%fit$naive.var fit$naive.var <- fit$naive.var+fit$phase2var fit$var<-fit$naive.var fit$delta <- delta fit$sc <- sc fit } II.Borgan <- function(tenter, texit, cc, id, X, stratum, stratum.sizes){ eps <- 0.00000001 jj <- max(stratum) nn <- stratum.sizes ## Cohort stratum sizes n <- table(stratum) ## Sample stratum sizes d <- table(stratum[cc>0]) ## Failures in each stratum tt <- table(cc,stratum) cens <- as.numeric(cc>0) ## Failure indicators subcoh <- as.numeric(cc<2) ## Subcohort indicators nd <- sum(cens) ## Number of failures nc <- sum(subcoh) ## Number in subcohort ncd <- sum(as.numeric(cc==1)) #Number of failures in subcohort m0 <- tt[1,] ## Subcohort stratum sizes (controls only) if (ncd>0) m <- m0+tt[2,] else m <- m0 #Subcohort stratum sizes X <- as.matrix(X) kk <- ncol(X) ## Number of variables nn0 <- nn-as.vector(d) #Noncases in cohort wt <- as.vector(nn0/m0) w <- wt[stratum] w[cens==1] <- 1 fit <- coxph(Surv(tenter,texit,cens)~X+cluster(id), weights=w,eps=eps,x=T, iter.max=25) ## Borgan Estimate II score <- resid(fit, type = "score", weighted=F) sc <- resid(fit,type="score", collapse=id, weighted=T) score <- as.matrix(score) score <- score[cens == 0,,drop=F] ## Scores for controls st <- stratum[cens==0] ## Stratum indicators for controls sto <- st %o% rep(1,kk) Index <- col(score) tscore <- tapply(score,list(sto,Index),mean) ## Within stratum control score means pscore <- tapply(score,list(sto,Index)) score <- score-tscore[pscore] ## Subtract off within stratum score means delta <- matrix(0,kk,kk) opt <- NULL for (j in 1:jj) { temp <- t(score[st==j,])%*%score[st==j,]/(m0[j]-1) ## Borgan equation (19) delta <- delta+(wt[j]-1)*nn0[j]*temp ## Borgan equation (17) if(is.null(opt)) opt <- nn0[j]*sqrt(diag(fit$naive.var %*% temp %*% fit$naive.var)) else opt <- rbind(opt,nn0[j]*sqrt(diag(fit$naive.var %*% temp %*% fit$naive.var))) } z <- apply(opt,2,sum) fit$opt <- sweep(opt,2,z,FUN="/") fit$phase2var<-fit$naive.var %*% delta %*% fit$naive.var fit$naive.var <- fit$naive.var+fit$phase2var fit$var<-fit$naive.var fit$delta <- delta fit$sc <- sc fit } ## Methods vcov.cch<-function(object,...) object$var "print.cch"<- function(x,...) { ## produces summary from an x of the class "cch" call<-x$call coef <- coef(x) method <- x$method se <- sqrt(diag(vcov(x))) Z<- abs(coef/se) p<- pnorm(Z) cohort.size<-x$cohort.size subcohort.size<-x$subcohort.size coefficients <- matrix(0, nrow = length(coef), ncol = 4) dimnames(coefficients) <- list(names(coef), c("Value", "SE", "Z", "p")) coefficients[, 1] <- coef coefficients[, 2] <- se coefficients[, 3] <- Z coefficients[, 4] <- 2*(1-p) if (x$stratified){ cat("Exposure-stratified case-cohort analysis,", x$method, "method.\n") m<-rbind(subcohort=x$subcohort.size, cohort=x$cohort.size) prmatrix(m,quote=FALSE) } else{ cat("Case-cohort analysis,") cat("x$method,", x$method,"\n with subcohort of", x$subcohort.size,"from cohort of", x$cohort.size,"\n\n") } cat("Call: "); print(x$call) cat("\nCoefficients:\n") print(coefficients) invisible(x) } "summary.cch"<-function(object,...) { ## produces summary from an object of the class "cch" call<-object$call coef <- coef(object) method <- object$method se <- sqrt(diag(vcov(object))) Z<- abs(coef/se) p<- pnorm(Z) cohort.size<-object$cohort.size subcohort.size<-object$subcohort.size coefficients <- matrix(0, nrow = length(coef), ncol = 4) dimnames(coefficients) <- list(names(coef), c("Value", "SE", "Z", "p")) coefficients[, 1] <- coef coefficients[, 2] <- se coefficients[, 3] <- Z coefficients[, 4] <- 2*(1-p) structure(list(call=call, method=method, cohort.size=cohort.size, subcohort.size=subcohort.size, coefficients = coefficients, stratified=object$stratified), class = "summary.cch") } print.summary.cch <- function(x,digits=3,...){ if (x$stratified){ cat("Exposure-stratified case-cohort analysis,", x$method, "method.\n") m<-rbind(subcohort=x$subcohort.size, cohort=x$cohort.size) prmatrix(m,quote=FALSE) } else{ cat("Case-cohort analysis,") cat("x$method,", x$method,"\n with subcohort of", x$subcohort.size,"from cohort of", x$cohort.size,"\n\n") } cat("Call: "); print(x$call) cat("\nCoefficients:\n") output<-cbind(Coef=x$coefficients[,1],HR=exp(x$coefficients[,1]), "(95%"=exp(x$coefficients[,1]-1.96*x$coefficients[,2]), "CI)"=exp(x$coefficients[,1]+1.96*x$coefficients[,2]), "p"=x$coefficients[,4] ) print(round(output,3)) invisible(x) } survival/noweb/parse.Rnw0000644000176200001440000003575213547106114015057 0ustar liggesusers\subsection{Parsing the covariates list} For a multi-state Cox model we allow a list of formulas to take the place of the \code{formula} argument. The first element of the list is the default formula, later elements are of the form \code{transitions ~ formula/options}, where the left hand side denotes one or more transitions, and the right hand side is used to augment the basic formula wrt those transitions. Step 1 is to accumulate all the terms that appear on the right hand side(s) into a single ``pseudo formula'' that is used to drive the model.frame process. After the model frame is constructed we have the necessary data to check that state names given in the formulas actually exist in the data and that initial value strings are the right length. We can then construct the \code{cmap} matrix. After this first step the left hand side ends up as a complicated structure: \begin{itemize} \item a list with one element per formula in the covariates list \item each element is a list, with one element per term: multiple a:b terms are allowed separated by + signs on the left hand side of the ~ \item each of these level 3 elements is a list with two elements ``left'' and ``right'', for the two sides of the : operator \item left and right will be one or two element lists containing the stateid and/or the values. Any word that doesn't match one of the column names of statedata ends up as a set of values. \end{itemize} <>= parsecovar1 <- function(flist, statedata) { if (any(sapply(flist, function(x) !inherits(x, "formula")))) stop("an element of the formula list is not a formula") if (any(sapply(flist, length) != 3)) stop("all formulas must have a left and right side") # split the formulas into a right hand and left hand side lhs <- lapply(flist, function(x) x[-3]) rhs <- lapply(flist, function(x) x[-2]) <> <> list(rhs = rh2, lhs= lterm) } @ First look at the right hand side of each formula. There are 4 possble options of common, fixed, clear, and init. The first 3 appear just as words, the last should have a set of values attached which become the \code{ival} vector. The end result is a list for each formula containing the actual right hand side formula along with the options. <>= # take apart the right hand side of each formula # the function below is applied to each formula in turn. rh2 <- lapply(rhs, function(form) { parts <- strsplit(deparse(form, width.cutoff=300, control=NULL), '/', fixed=TRUE)[[1]] if (length(parts) ==1) { # nothing after a / ival <- NULL; common <- FALSE; fixed <- FALSE; clear <- FALSE; } else{ # treat the right hand side as though it were a formula optterms <- terms(formula(paste("~", parts[2]))) ff <- rownames(attr(optterms, "factors")) index <- match(ff, c("common", "fixed", "init", "clear")) if (any(is.na(index))) stop("option not recognized in a covariates formula: ", paste(ff[is.na(index)], collapse=", ")) common <- any(index==1) fixed <- any(index==2) clear <- any(index==3) if (any(index==3)) { optatt <- attributes(optterms) j <- optatt$variables[1 + which(index==3)] j[[1]] <- as.name("list") ival <- unlist(eval(j, parent.frame())) } else ival <- NULL } # and now the terms before the slash, which is the actual formula # a formula of -1 +1 is recorded as intercept=TRUE, pasting a -1 on # allows us to tell if a 1 was included. (But don't add a second ~). form <- formula(paste("~ -1 +", substring(parts[1], 2, nchar(parts[1])))) list(common=common, fixed=fixed, clear=clear, ival=ival, formula = form) }) @ The left hand side of each formula specifies the set of transitions to which the covariates apply, and is more complex. Say instance that we had 7 states and the following statedata data set. \begin{center} \begin{tabular}{cccc} state & A& N& death \\ \hline A-N- & 0& 0 & 0\\ A+N- & 1& 0 & 0\\ A-N1 & 0& 1 & 0\\ A+N1 & 1& 1 & 0\\ A-N2 & 0& 2 & 0\\ A+N2 & 1& 2 & 0\\ Death& NA & NA& 1 \end{tabular} \end{center} Here are some valid transitions \begin{enumerate} \item 0:state('A+N+'), any transition to the A+N+ state \item state('A-N-'):death(0), a transition from A-N-, but not to death \item A(0):A(1), any of the 4 changes that start with A=0 and end with A=1 \item N(0):N(1,2) + N(1):N(2), an upward change of N \item 'A-N-':c('A-N+','A+N-'); if there is no variable then the overall state is assumed \item 1:3 + 2:3; we can refer to states by number, and we can have multiples \end{enumerate} <>= # deal with the left hand side of the formula # the next routine cuts at '+' signs pcut <- function(form) { if (length(form)==3) { if (form[[1]] == '+') c(pcut(form[[2]]), pcut(form[[3]])) else if (form[[1]] == '~') pcut(form[[2]]) else list(form) } else list(form) } lcut <- lapply(lhs, function(x) pcut(x[[2]])) @ We now have one list per formula, each list is either a single term or a list of terms (case 4 above). To make evaluation easier, create functions that append their name to a list of values. I have not yet found a way to do this without eval(parse()), which always seems clumsy. A use for the labels without an argument will arise later, hence the double environments. Repeating the list above, this is what we want to end with \begin{itemize} \item a list with one element per formula in the covariates list \item each element is a list, with one element per term: multiple a:b terms are allowed separated by + signs \item each of these level 3 elements is a list with two elements ``left'' and ``right'', for the two sides of the : operator \item left and right will be one of 3 forms: a simple vector, a one element list containing the stateid, or a two element list containing the stateid and the values. Any word that doesn't match one of the column names of statedata ends up as a vector. \end{itemize} <>= env1 <- new.env(parent= parent.frame(2)) env2 <- new.env(parent= env1) if (missing(statedata)) { assign("state", function(...) list(stateid= "state", values=c(...)), env1) assign("state", list(stateid="state")) } else { for (i in statedata) { assign(i, eval(list(stateid=i)), env2) tfun <- eval(parse(text=paste0("function(...) list(stateid='" , i, "', values=c(...))"))) assign(i, tfun, env1) } } lterm <- lapply(lcut, function(x) { lapply(x, function(z) { if (length(z)==1) { temp <- eval(z, envir= env2) if (is.list(temp) && names(temp)[[1]] =="stateid") temp else temp } else if (length(z) ==3 && z[[1]]==':') list(left=eval(z[[2]], envir=env2), right=eval(z[[3]], envir=env2)) else stop("invalid term: ", deparse(z)) }) }) @ The second call, which builds tmap, the terms map. Arguments are the results from the first pass, the statedata data frame, the default formula, the terms structure from the full formula, and the transitions count. <>= parsecovar2 <- function(covar1, statedata, dformula, Terms, transitions,states) { if (is.null(statedata)) statedata <- data.frame(state = states, stringsAsFactors=FALSE) else { if (is.null(statedata$state)) stop("the statedata data set must contain a variable 'state'") indx1 <- match(states, statedata$state, nomatch=0) if (any(indx1==0)) stop("statedata does not contain all the possible states: ", states[indx1==0]) statedata <- statedata[indx1,] # put it in order } # Statedata might have rows for states that are not in the data set, # for instance if the coxph call had used a subset argument. Any of # those were eliminated above. # Likewise, the formula list might have rules for transitions that are # not present. Don't worry about it at this stage. allterm <- attr(Terms, 'term.labels') nterm <- length(allterm) <> # if there is no formula extension, the middle part of the work is skipped if (!is.null(covar1)) { <> } <> } @ Create a map for every transition, even the ones that are not used; this simply makes the indexing easier. At the end we will dispose of unneeded ones. The very first term is the intercept or strata. <>= # create the map and fill it in with the default formula nstate <- length(states) tmap <- array(0L, dim=c(nterm+1, nstate, nstate)) dterms <- match(attr(terms.formula(dformula), "term.labels"), allterm) dterms <- c(1L, 1L + dterms) # add the intercept k <- seq(along=dterms) for (i in 1:nstate) { for (j in 1:nstate) { tmap[dterms,j,i] <- k # fill in in column major order k <- k + length(k) } } ncoef <- max(tmap) # number of coefs used so far inits <- NULL @ Now go through the formulas one by one. The left hand side tells us which state:state transitions to fill in, the right hand side tells the variables. The code block below goes through lhs element(s) for a single formula. That element is itself a list which has an entry for each term, and that entry can have left and right portions. <>= state1 <- state2 <- NULL for (x in lhs) { # x is one term if (is.null(x$left)) stop("term found without a :", x) # left of the colon if (!is.list(x$left) && length(x$left) ==1 && x$left==0) temp1 <- 1:nrow(statedata) else if (is.numeric(x$left)) { temp1 <- as.integer(x$left) if (any(temp1 != x$left)) stop("non-integer state number") if (any(temp1 <1 | temp1> nstate)) stop("numeric state is out of range") } else if (is.list(x$left) && names(x$left)[1] == "stateid"){ if (is.null(x$left$value)) stop("state variable with no list of values: ",x$left$stateid) else { if (any(k= is.na(match(x$left$stateid, names(statedata))))) stop(x$left$stateid[k], ": state variable not found") zz <- statedata[[x$left$stateid]] if (any(k= is.na(match(x$left$value, zz)))) stop(x$left$value[k], ": state value not found") temp1 <- which(zz %in% x$left$value) } } else { k <- match(x$left, statedata$state) if (any(is.na(k))) stop(x$left[k], ": state not found") temp1 <- which(statedata$state %in% x$left) } # right of colon if (!is.list(x$right) && length(x$right) ==1 && x$right ==0) temp2 <- 1:nrow(statedata) else if (is.numeric(x$right)) { temp2 <- as.integer(x$right) if (any(temp2 != x$right)) stop("non-integer state number") if (any(temp2 <1 | temp2> nstate)) stop("numeric state is out of range") } else if (is.list(x$right) && names(x$right)[1] == "stateid") { if (is.null(x$right$value)) stop("state variable with no list of values: ",x$right$stateid) else { if (any(k= is.na(match(x$right$stateid, names(statedata))))) stop(x$right$stateid[k], ": state variable not found") zz <- statedata[[x$right$stateid]] if (any(k= is.na(match(x$right$value, zz)))) stop(x$right$value[k], ": state value not found") temp2 <- which(zz %in% x$right$value) } } else { k <- match(x$right, statedata$state) if (any(is.na(k))) stop(x$right[k], ": state not found") temp2 <- which(statedata$state %in% x$right) } state1 <- c(state1, rep(temp1, length(temp2))) state2 <- c(state2, rep(temp2, each=length(temp1))) } @ The inits need to wait a little longer, until the X matrix is in hand. <>= for (i in 1:length(covar1$rhs)) { rhs <- covar1$rhs[[i]] lhs <- covar1$lhs[[i]] # the two are the same length rterm <- terms.formula(rhs$formula) rindex <- 1L + match(attr(rterm, "term.labels"), allterm, nomatch=0) if (any(rindex== 1L)) stop("dterm mismatch bug 2") if (attr(rterm, "intercept")==1) rindex <- c(1L, rindex) <> npair <- length(state1) if (rhs$clear) { for(k in 1:npair) tmap[-1, state1[k], state2[k]] <- 0 } if (length(rhs$ival)) inits <- c(inits, list(term=rindex, state1=state1, state2= state2, init= rhs$ival)) j <- ncoef + seq_len(length(rindex)) if (rhs$common) { for(k in 1:npair) tmap[rindex, state1[k], state2[k]] <-j } else { for(k in 1:npair){ tmap[rindex, state1[k], state2[k]] <-j j <- j + length(rindex) } } ncoef <- max(j) } @ Fold the 3-dimensional tmap into a matrix with terms as rows and one column for each transition that actually occured. <>= i <- match("(censored)", colnames(transitions), nomatch=0) if (i==0) t2 <- transitions else t2 <- transitions[,-i, drop=FALSE] # transitions to 'censor' don't count indx1 <- match(rownames(t2), states) indx2 <- match(colnames(t2), states) tmap2 <- matrix(0L, nrow= 1+nterm, ncol= sum(t2>0)) trow <- row(t2)[t2>0] tcol <- col(t2)[t2>0] for (i in 1:nrow(tmap2)) { for (j in 1:ncol(tmap2)) tmap2[i,j] <- tmap[i, indx1[trow[j]], indx2[tcol[j]]] } # relabel as 1-k tmap2[1,] <- match(tmap2[1,], unique(c(0L, tmap2[1,]))) -1L if (nrow(tmap2) > 1) tmap2[-1,] <- match(tmap2[-1,], unique(c(0L, tmap2[-1,]))) -1L dimnames(tmap2) <- list(c("(Baseline)", allterm), paste(indx1[trow], indx2[tcol], sep=':')) list(tmap = tmap2, inits=inits, mapid= cbind(indx1[trow], indx2[tcol])) @ Last is a helper routine that converts tmap, which has one row per term, into cmap, which has one row per coefficient. Both have one column per transition. It uses the assign attribute of the X matrix along with the column names. Be careful to make 0 stay as a 0. <>= parsecovar3 <- function(tmap, Xcol, Xassign) { # sometime X will have an intercept, sometimes not, tmap and cmap # always do hasintercept <- (Xassign[1] ==0) cmap <- matrix(0L, length(Xcol) + !hasintercept, ncol(tmap)) cmap[1,] <- tmap[1,] xcount <- table(factor(Xassign, levels=1:max(Xassign))) mult <- 1+ max(xcount) #used to keep the coefs in the same oder ii <- 1 for (i in 2:nrow(tmap)) { k <- seq_len(xcount[i-1]) for (j in 1:ncol(tmap)) cmap[ii+k, j] <- if(tmap[i,j]==0) 0 else tmap[i,j]*mult +k ii <- ii + max(k) } # renumber coefs as 1, 2, 3, ... cmap[-1,] <- match(cmap[-1,], sort(unique(c(0L, cmap[-1,])))) -1L colnames(cmap) <- colnames(tmap) if (hasintercept) rownames(cmap) <- Xcol else rownames(cmap) <- c("(Baseline)", Xcol) cmap } @ survival/noweb/predict.coxph.Rnw0000644000176200001440000005515013537676603016527 0ustar liggesusers\subsection{The predict method} The [[predict.coxph]] function produces various types of predicted values from a Cox model. The arguments are \begin{description} \item [obejct] The result of a call to [[coxph]]. \item [newdata] Optionally, a new data set for which prediction is desired. If this is absent predictions are for the observations used fit the model. \item[type] The type of prediction \begin{itemize} \item lp = the linear predictor for each observation \item risk = the risk score $exp(lp)$ for each observation \item expected = the expected number of events \item survival = predicted survival = exp(-expected) \item terms = a matrix with one row per subject and one column for each term in the model. \end{itemize} \item[se.fit] Whether or not to return standard errors of the predictions. \item[na.action] What to do with missing values \emph{if} there is new data. \item[terms] The terms that are desired. This option is almost never used, so rarely in fact that it's hard to justify keeping it. \item[collapse] An optional vector of subject identifiers, over which to sum or `collapse' the results \item[reference] the reference context for centering the results \item[\ldots] All predict methods need to have a \ldots argument; we make no use of it however. \end{description} %\subsection{Setup} The first task of the routine is to reconsruct necessary data elements that were not saved as a part of the [[coxph]] fit. We will need the following components: \begin{itemize} \item for type=`expected' residuals we need the orignal survival y. This %'` is saved in coxph objects by default so will only need to be fetched in the highly unusual case that a user specfied [[y=FALSE]] in the orignal call. \item for any call with either newdata, standard errors, or type='terms' the original $X$ matrix, weights, strata, and offset. When checking for the existence of a saved $X$ matrix we can't %' use [[object$x]] since that will also match the [[xlevels]] component. \item the new data matrix, if any \end{itemize} <>= predict.coxph <- function(object, newdata, type=c("lp", "risk", "expected", "terms", "survival"), se.fit=FALSE, na.action=na.pass, terms=names(object$assign), collapse, reference=c("strata", "sample"), ...) { <> <> if (type=="expected") { <> } else { <> <> } <> } @ We start of course with basic argument checking. Then retrieve the model parameters: does it have a strata statement, offset, etc. The [[Terms2]] object is a model statement without the strata or cluster terms, appropriate for recreating the matrix of covariates $X$. For type=expected the response variable needs to be kept, if not we remove it as well since the user's newdata might not contain one. %' The type= survival is treated the same as type expected. <>= if (!inherits(object, 'coxph')) stop("Primary argument much be a coxph object") Call <- match.call() type <-match.arg(type) if (type=="survival") { survival <- TRUE type <- "expected" #this is to stop lots of "or" statements } else survival <- FALSE n <- object$n Terms <- object$terms if (!missing(terms)) { if (is.numeric(terms)) { if (any(terms != floor(terms) | terms > length(object$assign) | terms <1)) stop("Invalid terms argument") } else if (any(is.na(match(terms, names(object$assign))))) stop("a name given in the terms argument not found in the model") } # I will never need the cluster argument, if present delete it. # Terms2 are terms I need for the newdata (if present), y is only # needed there if type == 'expected' if (length(attr(Terms, 'specials')$cluster)) { temp <- untangle.specials(Terms, 'cluster', 1) Terms <- object$terms[-temp$terms] } else Terms <- object$terms if (type != 'expected') Terms2 <- delete.response(Terms) else Terms2 <- Terms has.strata <- !is.null(attr(Terms, 'specials')$strata) has.offset <- !is.null(attr(Terms, 'offset')) has.weights <- any(names(object$call) == 'weights') na.action.used <- object$na.action n <- length(object$residuals) if (missing(reference) && type=="terms") reference <- "sample" else reference <- match.arg(reference) @ The next task of the routine is to reconsruct necessary data elements that were not saved as a part of the [[coxph]] fit. We will need the following components: \begin{itemize} \item for type=`expected' residuals we need the orignal survival y. This %'` is saved in coxph objects by default so will only need to be fetched in the highly unusual case that a user specfied [[y=FALSE]] in the orignal call. We also need the strata in this case. Grabbing it is the same amount of work as grabbing X, so gets lumped with that case in the code. \item for any call with either standard errors, reference strata, or type=`terms' the original $X$ matrix, weights, strata, and offset. When checking for the existence of a saved $X$ matrix we can't %' use [[object$x]] since that will also match the [[xlevels]] component. \item the new data matrix, if present, along with offset and strata. \end{itemize} For the case that none of the above are needed, we can use the [[linear.predictors]] component of the fit. The variable [[use.x]] signals this case, which takes up almost none of the code but is common in usage. The check below that nrow(mf)==n is to avoid data sets that change under our feet. A fit was based on data set ``x'', and when we reconstruct the data frame it is a different size! This means someone changed the data between the model fit and the extraction of residuals. One other non-obvious case is that coxph treats the model [[age:strata(grp)]] as though it were [[age:strata(grp) + strata(grp)]]. The untangle.specials function will return [[vars= strata(grp), terms=integer(0)]]; the first shows a strata to extract and the second that there is nothing to remove from the terms structure. <>= have.mf <- FALSE if (type == "expected") { y <- object[['y']] if (is.null(y)) { # very rare case mf <- stats::model.frame(object) y <- model.extract(mf, 'response') have.mf <- TRUE #for the logic a few lines below, avoid double work } } # This will be needed if there are strata, and is cheap to compute strat.term <- untangle.specials(Terms, "strata") if (se.fit || type=='terms' || (!missing(newdata) && type=="expected") || (has.strata && (reference=="strata") || type=="expected")) { use.x <- TRUE if (is.null(object[['x']]) || has.weights || has.offset || (has.strata && is.null(object$strata))) { # I need the original model frame if (!have.mf) mf <- stats::model.frame(object) if (nrow(mf) != n) stop("Data is not the same size as it was in the original fit") x <- model.matrix(object, data=mf) if (has.strata) { if (!is.null(object$strata)) oldstrat <- object$strata else { if (length(strat.term$vars)==1) oldstrat <- mf[[strat.term$vars]] else oldstrat <- strata(mf[,strat.term$vars], shortlabel=TRUE) } } else oldstrat <- rep(0L, n) weights <- model.weights(mf) if (is.null(weights)) weights <- rep(1.0, n) offset <- model.offset(mf) if (is.null(offset)) offset <- 0 } else { x <- object[['x']] if (has.strata) oldstrat <- object$strata else oldstrat <- rep(0L, n) weights <- rep(1.,n) offset <- 0 } } else { # I won't need strata in this case either if (has.strata) { stemp <- untangle.specials(Terms, 'strata', 1) Terms2 <- Terms2[-stemp$terms] has.strata <- FALSE #remaining routine never needs to look } oldstrat <- rep(0L, n) offset <- 0 use.x <- FALSE } @ Now grab data from the new data set. We want to use model.frame processing, in order to correctly expand factors and such. We don't need weights, however, and don't want to make the user include them in their new dataset. Thus we build the call up the way it is done in coxph itself, but only keeping the newdata argument. Note that terms2 may have fewer variables than the original model: no cluster and if type!= expected no response. If the original model had a strata, but newdata does not, we need to remove the strata from xlev to stop a spurious warning message. <>= if (!missing(newdata)) { use.x <- TRUE #we do use an X matrix later tcall <- Call[c(1, match(c("newdata", "collapse"), names(Call), nomatch=0))] names(tcall)[2] <- 'data' #rename newdata to data tcall$formula <- Terms2 #version with no response tcall$na.action <- na.action #always present, since there is a default tcall[[1L]] <- quote(stats::model.frame) # change the function called if (!is.null(attr(Terms, "specials")$strata) && !has.strata) { temp.lev <- object$xlevels temp.lev[[strat.term$vars]] <- NULL tcall$xlev <- temp.lev } else tcall$xlev <- object$xlevels mf2 <- eval(tcall, parent.frame()) collapse <- model.extract(mf2, "collapse") n2 <- nrow(mf2) if (has.strata) { if (length(strat.term$vars)==1) newstrat <- mf2[[strat.term$vars]] else newstrat <- strata(mf2[,strat.term$vars], shortlabel=TRUE) if (any(is.na(match(newstrat, oldstrat)))) stop("New data has a strata not found in the original model") else newstrat <- factor(newstrat, levels=levels(oldstrat)) #give it all if (length(strat.term$terms)) newx <- model.matrix(Terms2[-strat.term$terms], mf2, contr=object$contrasts)[,-1,drop=FALSE] else newx <- model.matrix(Terms2, mf2, contr=object$contrasts)[,-1,drop=FALSE] } else { newx <- model.matrix(Terms2, mf2, contr=object$contrasts)[,-1,drop=FALSE] newstrat <- rep(0L, nrow(mf2)) } newoffset <- model.offset(mf2) if (is.null(newoffset)) newoffset <- 0 if (type== 'expected') { newy <- model.response(mf2) if (attr(newy, 'type') != attr(y, 'type')) stop("New data has a different survival type than the model") } na.action.used <- attr(mf2, 'na.action') } else n2 <- n @ %\subsection{Expected hazard} When we do not need standard errors the computation of expected hazard is very simple since the martingale residual is defined as status - expected. The 0/1 status is saved as the last column of $y$. <>= if (missing(newdata)) pred <- y[,ncol(y)] - object$residuals if (!missing(newdata) || se.fit) { <> } if (survival) { #it actually was type= survival, do one more step if (se.fit) se <- se * exp(-pred) pred <- exp(-pred) # probablility of being in state 0 } @ The more general case makes use of the [agsurv] routine to calculate a survival curve for each strata. The routine is defined in the section on individual Cox survival curves. The code here closely matches that. The routine only returns values at the death times, so we need approx to get a complete index. One non-obvious, but careful choice is to use the residuals for the predicted value instead of the compuation below, whenever operating on the original data set. This is a consequence of the Efron approx. When someone in a new data set has exactly the same time as one of the death times in the original data set, the code below implicitly makes them the ``last'' death in the set of tied times. The Efron approx puts a tie somewhere in the middle of the pack. This is way too hard to work out in the code below, but thankfully the original Cox model already did it. However, it does mean that a different answer will arise if you set newdata = the original coxph data set. Standard errors have the same issue, but 1. they are hardly used and 2. the original coxph doesn't do that calculation. So we do what's easiest. <>= ustrata <- unique(oldstrat) risk <- exp(object$linear.predictors) x <- x - rep(object$means, each=nrow(x)) #subtract from each column if (missing(newdata)) #se.fit must be true se <- double(n) else { pred <- se <- double(nrow(mf2)) newx <- newx - rep(object$means, each=nrow(newx)) newrisk <- c(exp(newx %*% object$coef) + newoffset) } survtype<- ifelse(object$method=='efron', 3,2) for (i in ustrata) { indx <- which(oldstrat == i) afit <- agsurv(y[indx,,drop=F], x[indx,,drop=F], weights[indx], risk[indx], survtype, survtype) afit.n <- length(afit$time) if (missing(newdata)) { # In this case we need se.fit, nothing else j1 <- approx(afit$time, 1:afit.n, y[indx,1], method='constant', f=0, yleft=0, yright=afit.n)$y chaz <- c(0, afit$cumhaz)[j1 +1] varh <- c(0, cumsum(afit$varhaz))[j1 +1] xbar <- rbind(0, afit$xbar)[j1+1,,drop=F] if (ncol(y)==2) { dt <- (chaz * x[indx,]) - xbar se[indx] <- sqrt(varh + rowSums((dt %*% object$var) *dt)) * risk[indx] } else { j2 <- approx(afit$time, 1:afit.n, y[indx,2], method='constant', f=0, yleft=0, yright=afit.n)$y chaz2 <- c(0, afit$cumhaz)[j2 +1] varh2 <- c(0, cumsum(afit$varhaz))[j2 +1] xbar2 <- rbind(0, afit$xbar)[j2+1,,drop=F] dt <- (chaz * x[indx,]) - xbar v1 <- varh + rowSums((dt %*% object$var) *dt) dt2 <- (chaz2 * x[indx,]) - xbar2 v2 <- varh2 + rowSums((dt2 %*% object$var) *dt2) se[indx] <- sqrt(v2-v1)* risk[indx] } } else { #there is new data use.x <- TRUE indx2 <- which(newstrat == i) j1 <- approx(afit$time, 1:afit.n, newy[indx2,1], method='constant', f=0, yleft=0, yright=afit.n)$y chaz <-c(0, afit$cumhaz)[j1+1] pred[indx2] <- chaz * newrisk[indx2] if (se.fit) { varh <- c(0, cumsum(afit$varhaz))[j1+1] xbar <- rbind(0, afit$xbar)[j1+1,,drop=F] } if (ncol(y)==2) { if (se.fit) { dt <- (chaz * newx[indx2,]) - xbar se[indx2] <- sqrt(varh + rowSums((dt %*% object$var) *dt)) * newrisk[indx2] } } else { j2 <- approx(afit$time, 1:afit.n, newy[indx2,2], method='constant', f=0, yleft=0, yright=afit.n)$y chaz2 <- approx(-afit$time, afit$cumhaz, -newy[indx2,2], method="constant", rule=2, f=0)$y chaz2 <-c(0, afit$cumhaz)[j2+1] pred[indx2] <- (chaz2 - chaz) * newrisk[indx2] if (se.fit) { varh2 <- c(0, cumsum(afit$varhaz))[j1+1] xbar2 <- rbind(0, afit$xbar)[j1+1,,drop=F] dt <- (chaz * newx[indx2,]) - xbar dt2 <- (chaz2 * newx[indx2,]) - xbar2 v2 <- varh2 + rowSums((dt2 %*% object$var) *dt2) v1 <- varh + rowSums((dt %*% object$var) *dt) se[indx2] <- sqrt(v2-v1)* risk[indx2] } } } } @ %\subsection{Linear predictor, risk, and terms} For these three options what is returned is a \emph{relative} prediction which compares each observation to the average for the data set. Partly this is practical. Say for instance that a treatment covariate was coded as 0=control and 1=treatment. If the model were refit using a new coding of 3=control 4=treatment, the results of the Cox model would be exactly the same with respect to coefficients, variance, tests, etc. The raw linear predictor $X\beta$ however would change, increasing by a value of $3\beta$. The relative predictor \begin{equation} \eta_i = X_i\beta - (1/n)\sum_j X_j\beta \label{eq:eta} \end{equation} will stay the same. The second reason for doing this is that the Cox model is a relative risks model rather than an absolute risks model, and thus relative predictions are almost certainly what the user was thinking of. When the fit was for a stratified Cox model more care is needed. For instance assume that we had a fit that was stratified by sex with covaritate $x$, and a second data set were created where for the females $x$ is replaced by $x+3$. The Cox model results will be unchanged for the two models, but the `normalized' linear predictors $(x - \overline x)'\beta$ %` will not be the same. This reflects a more fundamental issue that the for a stratified Cox model relative risks are well defined only \emph{within} a stratum, i.e. for subject pairs that share a common baseline hazard. The example above is artificial, but the problem arises naturally whenever the model includes a strata by covariate interaction. So for a stratified Cox model the predictions should be forced to sum to zero within each stratum, or equivalently be made relative to the weighted mean of the stratum. Unfortunately, this important issue was not realized until late in 2009 when a puzzling query was sent to the author involving the results from such an interaction. Note that this issue did not arise with type='expected', which has a natural scaling. An offset variable, if specified, is treated like any other covariate with respect to centering. The logic for this choice is not as compelling, but it seemed the best that I could do. Note that offsets play no role whatever in predicted terms, only in the lp and risk. Start with the simple ones <>= if (is.null(object$coefficients)) coef<-numeric(0) else { # Replace any NA coefs with 0, to stop NA in the linear predictor coef <- ifelse(is.na(object$coefficients), 0, object$coefficients) } if (missing(newdata)) { offset <- offset - mean(offset) if (has.strata && reference=="strata") { # We can't use as.integer(oldstrat) as an index, if oldstrat is # a factor variable with unrepresented levels as.integer could # give 1,2,5 for instance. xmeans <- rowsum(x*weights, oldstrat)/c(rowsum(weights, oldstrat)) newx <- x - xmeans[match(oldstrat,row.names(xmeans)),] } else if (use.x) newx <- x - rep(object$means, each=nrow(x)) } else { offset <- newoffset - mean(offset) if (has.strata && reference=="strata") { xmeans <- rowsum(x*weights, oldstrat)/c(rowsum(weights, oldstrat)) newx <- newx - xmeans[match(newstrat, row.names(xmeans)),] } else newx <- newx - rep(object$means, each=nrow(newx)) } if (type=='lp' || type=='risk') { if (use.x) pred <- drop(newx %*% coef) + offset else pred <- object$linear.predictors if (se.fit) se <- sqrt(rowSums((newx %*% object$var) *newx)) if (type=='risk') { pred <- exp(pred) if (se.fit) se <- se * sqrt(pred) # standard Taylor series approx } } @ The type=terms residuals are a bit more work. In Splus this code used the Build.terms function, which was essentially the code from predict.lm extracted out as a separate function. As of March 2010 (today) a check of the Splus function and the R code for predict.lm revealed no important differences. A lot of the bookkeeping in both is to work around any possible NA coefficients resulting from a singularity. The basic formula is to \begin{enumerate} \item If the model has an intercept, then sweep the column means out of the X matrix. We've already done this. \item For each term separately, get the list of coefficients that belong to that term; call this list [[tt]]. \item Restrict $X$, $\beta$ and $V$ (the variance matrix) to that subset, then the linear predictor is $X\beta$ with variance matrix $X V X'$. The standard errors are the square root of the diagonal of this latter matrix. This can be computed, as colSums((X %*% V) * X)). \end{enumerate} Note that the [[assign]] component of a coxph object is the same as that found in Splus models (a list), most R models retain a numeric vector which contains the same information but it is not as easily used. The first first part of predict.lm in R rebuilds the list form as its [[asgn]] variable. I can skip this part since it is already done. <>= else if (type=='terms') { asgn <- object$assign nterms<-length(asgn) pred<-matrix(ncol=nterms,nrow=NROW(newx)) dimnames(pred) <- list(rownames(newx), names(asgn)) if (se.fit) se <- pred for (i in 1:nterms) { tt <- asgn[[i]] tt <- tt[!is.na(object$coefficients[tt])] xtt <- newx[,tt, drop=F] pred[,i] <- xtt %*% object$coefficient[tt] if (se.fit) se[,i] <- sqrt(rowSums((xtt %*% object$var[tt,tt]) *xtt)) } pred <- pred[,terms, drop=F] if (se.fit) se <- se[,terms, drop=F] attr(pred, 'constant') <- sum(object$coefficients*object$means, na.rm=T) } @ To finish up we need to first expand out any missings in the result based on the na.action, and optionally collapse the results within a subject. What should we do about the standard errors when collapse is specified? We assume that the individual pieces are independent and thus var(sum) = sum(variances). The statistical justification of this is quite solid for the linear predictor, risk and terms type of prediction due to independent increments in a martingale. For expecteds the individual terms are positively correlated so the se will be too small. One solution would be to refuse to return an se in this case, but the the bias should usually be small, and besides it would be unkind to the user. Prediction of type='terms' is expected to always return a matrix, or the R termplot() function gets unhappy. <>= if (type != 'terms') { pred <- drop(pred) if (se.fit) se <- drop(se) } if (!is.null(na.action.used)) { pred <- napredict(na.action.used, pred) if (is.matrix(pred)) n <- nrow(pred) else n <- length(pred) if(se.fit) se <- napredict(na.action.used, se) } if (!missing(collapse) && !is.null(collapse)) { if (length(collapse) != n2) stop("Collapse vector is the wrong length") pred <- rowsum(pred, collapse) # in R, rowsum is a matrix, always if (se.fit) se <- sqrt(rowsum(se^2, collapse)) if (type != 'terms') { pred <- drop(pred) if (se.fit) se <- drop(se) } } if (se.fit) list(fit=pred, se.fit=se) else pred @ survival/noweb/tmerge.Rnw0000644000176200001440000006163313565311650015230 0ustar liggesusers\section{tmerge} The tmerge function was designed around a set of specific problems. The idea is to build up a time dependent data set one endpoint at at time. The primary arguments are \begin{itemize} \item data1: the base data set that will be added onto \item data2: the source for new information \item id: the subject identifier in the new data \item \ldots: additional arguments that add variables to the data set \item tstart, tstop: used to set the time range for each subject \item options \end{itemize} The created data set has three new variables (at least), which are \code{id}, \code{tstart} and \code{tstop}. The key part of the call are the ``\ldots'' arguments which each can be one of four types: tdc() and cumtdc() add a time dependent variable, event() and cumevent() add a new endpoint. In the survival routines time intervals are open on the left and closed on the right, i.e., (tstart, tstop]. Time dependent covariates apply from the start of an interval and events occur at the end of an interval. If a data set already had intervals of (0,10] and (10, 14] a new time dependent covariate or event at time 8 would lead to three intervals of (0,8], (8,10], and (10,14]; the new time-dependent covariate value would be added to the second interval, a new event would be added to the first one. A typical call would be <>= newdata <- tmerge(newdata, old, id=clinic, diabetes=tdc(diab.time)) @ which would add a new time dependent covariate \code{diabetes} to the data set. <>= tmerge <- function(data1, data2, id, ..., tstart, tstop, options) { Call <- match.call() # The function wants to recognize special keywords in the # arguments, so define a set of functions which will be used to # mark objects new <- new.env(parent=parent.frame()) assign("tdc", function(time, value=NULL) { x <- list(time=time, value=value); class(x) <- "tdc"; x}, envir=new) assign("cumtdc", function(time, value=NULL) { x <- list(time=time, value=value); class(x) <-"cumtdc"; x}, envir=new) assign("event", function(time, value=NULL, censor=NULL) { x <- list(time=time, value=value, censor=censor); class(x) <-"event"; x}, envir=new) assign("cumevent", function(time, value=NULL, censor=NULL) { x <- list(time=time, value=value, censor=censor); class(x) <-"cumevent"; x}, envir=new) if (missing(data1) || missing(data2) || missing(id)) stop("the data1, data2, and id arguments are required") if (!inherits(data1, "data.frame")) stop("data1 must be a data frame") <> <> <> } @ The program can't use formulas because the \ldots arguments need to be named. This results in a bit of evaluation magic to correctly assess arguments. The routine below could have been set out as a separate top-level routine, the argument is where we want to document it: within the tmerge page or not. I decided on the former. <>= tmerge.control <- function(idname="id", tstartname="tstart", tstopname="tstop", delay =0, na.rm=TRUE, tdcstart=NA, ...) { extras <- list(...) if (length(extras) > 0) stop("unrecognized option(s):", paste(names(extras), collapse=', ')) if (length(idname) != 1 || make.names(idname) != idname) stop("idname option must be a valid variable name") if (!is.null(tstartname) && (length(tstartname) !=1 || make.names(tstartname) != tstartname)) stop("tstart option must be NULL or a valid variable name") if (length(tstopname) != 1 || make.names(tstopname) != tstopname) stop("tstop option must be a valid variable name") if (length(delay) !=1 || !is.numeric(delay) || delay < 0) stop("delay option must be a number >= 0") if (length(na.rm) !=1 || ! is.logical(na.rm)) stop("na.rm option must be TRUE or FALSE") if (length(tdcstart) !=1) stop("tdcstart must be a single value") list(idname=idname, tstartname=tstartname, tstopname=tstopname, delay=delay, na.rm=na.rm, tdcstart=tdcstart) } tname <- attr(data1, "tname") firstcall <- is.null(tname) #first call to the function if (!firstcall && any(is.null(match(unlist(tname), names(data1))))) stop("data1 does not match its own tname attribute") if (!missing(options)) { if (!is.list(options)) stop("options must be a list") if (!is.null(tname)) { # If an option name matches one already in tname, don't confuse # the tmerge.control routine with duplicate arguments temp <- match(names(options), names(tname), nomatch=0) topt <- do.call(tmerge.control, c(options, tname[temp==0])) if (any(temp >0)) { # A variable name is changing midstream, update the # variable names in data1 varname <- tname[c("idname", "tstartname", "tstopname")] temp2 <- match(varname, names(data1)) names(data1)[temp2] <- varname } } else topt <- do.call(tmerge.control, options) } else if (length(tname)) topt <- do.call(tmerge.control, tname) else topt <- tmerge.control() # id, tstart, tstop are found in data2 if (missing(id)) stop("the id argument is required") if (missing(data1) || missing(data2)) stop("two data sets are required") id <- eval(Call[["id"]], data2, enclos=emptyenv()) #don't find it elsewhere if (is.null(id)) stop("id variable not found in data2") if (any(is.na(id))) stop("id variable cannot have missing values") if (firstcall) { if (!missing(tstop)) { tstop <- eval(Call[["tstop"]], data2) if (length(tstop) != length(id)) stop("tstop and id must be the same length") # The neardate routine will check for legal tstop data type } if (!missing(tstart)) { tstart <- eval(Call[["tstart"]], data2) if (length(tstart)==1) tstart <- rep(tstart, length(id)) if (length(tstart) != length(id)) stop("tstart and id must be the same length") if (any(tstart >= tstop)) stop("tstart must be < tstop") } } else { if (!missing(tstart) || !missing(tstop)) stop("tstart and tstop arguments only apply to the first call") } @ Get the \ldots arguments. They are evaluated in a special frame, set up earlier, so that the definitions of the functions tdc, cumtdc, event, and cumevent are local to tmerge. Check that they are all legal: each argument is named, and is one of the four allowed types. <>= # grab the... arguments notdot <- c("data1", "data2", "id", "tstart", "tstop", "options") dotarg <- Call[is.na(match(names(Call), notdot))] dotarg[[1]] <- as.name("list") # The as-yet dotarg arguments if (missing(data2)) args <- eval(dotarg, envir=new) else args <- eval(dotarg, data2, enclos=new) argclass <- sapply(args, function(x) (class(x))[1]) argname <- names(args) if (any(argname== "")) stop("all additional argments must have a name") check <- match(argclass, c("tdc", "cumtdc", "event", "cumevent")) if (any(is.na(check))) stop(paste("argument(s)", argname[is.na(check)], "not a recognized type")) @ The tcount matrix keeps track of what we have done, and is added to the final object at the end. This is useful to the user for debugging what may have gone right or wrong in their usage. <>= # The tcount matrix is useful for debugging tcount <- matrix(0L, length(argname), 8) dimnames(tcount) <- list(argname, c("early","late", "gap", "within", "boundary", "leading", "trailing", "tied")) tevent <- attr(data1, "tevent") # event type variables tcens <- attr(data1, "tcensor")# censor code for variables if (is.null(tcens)) tcens <- vector('list', 0) @ The very first call to the routine is special, since this is when the range of legal times is set. We also apply an initial sort to the data if necessary so that times are in order. There are 2 cases: \begin{enumerate} \item Adding a time range: tstop comes from data2, optional tstart, and the id can be simply matched, by which we mean no duplicates in data1. \item The more common case: there is no tstop, one observation per subject, and the first optional argument is an event or cumevent. We then use its time as the range. \end{enumerate} One thing we could add, but didn't, was to warn if any of the three new variables will stomp on ones already in data1. <>= newdata <- data1 #make a copy if (firstcall) { # We don't look for topt$id. What if the user had id=clinic, but their # starting data set also had a variable named "id". We want clinic for # this first call. idname <- Call[["id"]] if (!is.name(idname)) stop("on the first call 'id' must be a single variable name") # The line below finds tstop and tstart variables in data1 indx <- match(c(topt$idname, topt$tstartname, topt$tstopname), names(data1), nomatch=0) if (any(indx[1:2]>0) && FALSE) { # warning currently turned off. Be chatty? overwrite <- c(topt$tstartname, topt$tstopname)[indx[2:3]] warning("overwriting data1 variables", paste(overwrite, collapse=' ')) } temp <- as.character(idname) if (!is.na(match(temp, names(data1)))) { data1[[topt$idname]] <- data1[[temp]] baseid <- data1[[temp]] } else stop("id variable not found in data1") if (any(duplicated(baseid))) stop("for the first call (that establishes the time range) data1 must have no duplicate identifiers") if (length(baseid)== length(id) && all(baseid == id)) newdata <- data1 else { # Note: 'id' is the idlist for data 2 indx2 <- match(id, baseid) if (any(is.na(indx2))) stop("'id' has values not in data1") newdata <- data1[indx2,] } if (missing(tstop)) { # case 2 if (length(argclass)==0 || argclass[1] != "event") stop("neither a tstop argument nor an initial event argument was found") tstop <- args[[1]][[1]] } # at this point newdata and data2 are in the same order, same # rows if (any(is.na(tstop))) stop("missing time value, when that variable defines the span") if (missing(tstart)) { indx <- which(tstop <=0) if (length(indx) >0) stop("found an ending time of ", tstop[indx[1]], ", the default starting time of 0 is invalid") tstart <- rep(0, length(tstop)) } if (any(tstart >= tstop)) stop("tstart must be < tstop") newdata[[topt$tstartname]] <- tstart newdata[[topt$tstopname]] <- tstop n <- nrow(newdata) if (any(duplicated(id))) { # sort by time within id indx1 <- match(id, unique(id)) newdata <- newdata[order(indx1, tstop),] } temp <- newdata[[topt$idname]] if (any(tstart >= tstop)) stop("tstart must be < tstop") if (any(newdata$tstart[-n] > newdata$tstop[-1] & temp[-n] == temp[-1])) stop("first call has created overlapping or duplicated time intervals") } else { #not a first call if (any(is.na(match(id, data1[[topt$idname]])))) stop("id values were found in data2 which are not in data1") } @ Now for the real work. For each additional argument we first match the id/time pairs of the new data to the current data set, and categorize each into a type. If the time value in data2 is NA, then that addition is skipped. Ditto if the value is NA and options narm=TRUE. This is a convenience for the user, who will often be merging in a variable like ``day of first diabetes diagnosis'' which is missing for those who never had that outcome occur. <>= saveid <- id for (ii in seq(along.with=args)) { argi <- args[[ii]] baseid <- newdata[[topt$idname]] dstart <- newdata[[topt$tstartname]] dstop <- newdata[[topt$tstopname]] argcen <- argi$censor # if an event time is missing then skip that obs etime <- argi$time if (length(etime) != length(saveid)) stop("argument ", argname[ii], " is not the same length as id") if (!is.null(argi$value)) { if (length(argi$value) != length(saveid)) stop("argument ", argname[ii], " is not the same length as id") if (topt$na.rm) keep <- !(is.na(etime) | is.na(argi$value)) else keep <- !is.na(etime) if (!all(keep)) { etime <- etime[keep] argi$value <- argi$value[keep] } } else { keep <- !is.na(etime) etime <- etime[keep] } id <- saveid[keep] # Later steps become easier if we sort the new data by id and time # The match() is critical when baseid is not in sorted order. The # etime part of the sort will change from one ii value to the next. indx <- order(match(id, baseid), etime) id <- id[indx] etime <- etime[indx] if (!is.null(argi$value)) yinc <- argi$value[indx] else yinc <- NULL # indx1 points to the closest start time in the baseline data (data1) # that is <= etime. indx2 to the closest end time that is >=etime. # If etime falls into a (tstart, tstop) interval, indx1 and indx2 # will match # If the "delay" argument is set and this event is of type tdc, then # move any etime that is after the entry time for a subject. if (topt$delay >0 && argclass[ii] %in% c("tdc", "cumtdc")) { mintime <- tapply(dstart, baseid, min) index <- match(id, names(mintime)) etime <- ifelse(etime <= mintime[index], etime, etime+ topt$delay) } indx1 <- neardate(id, baseid, etime, dstart, best="prior") indx2 <- neardate(id, baseid, etime, dstop, best="after") # The event times fall into one of 5 categories # 1. Before the first interval # 2. After the last interval # 3. Outside any interval but with time span, i.e, it falls into # a gap in follow-up # 4. Strictly inside an interval (does't touch either end) # 5. Inside an interval, but touching. itype <- ifelse(is.na(indx1), 1, ifelse(is.na(indx2), 2, ifelse(indx2 > indx1, 3, ifelse(etime== dstart[indx1] | etime== dstop[indx2], 5, 4)))) # Subdivide the events that touch on a boundary # 1: intervals of (a,b] (b,d], new count at b "tied edge" # 2: intervals of (a,b] (c,d] with c>b, new count at c, "front edge" # 3: intervals of (a,b] (c,d] with c>b, new count at b, "back edge" # subtype <- ifelse(itype!=5, 0, ifelse(indx1 == indx2+1, 1, ifelse(etime==dstart[indx1], 2, 3))) tcount[ii,1:7] <- table(factor(itype+subtype, levels=c(1:4, 6:8))) # count ties. id and etime are not necessarily sorted tcount[ii,8] <- sum(tapply(etime, id, function(x) sum(duplicated(x)))) <> } @ A \code{tdc} or \code{cumtdc} operator defines a new time-dependent variable which applies to all future times. Say that we had the following scenario for one subject \begin{center} \begin{tabular}{rr|rr} \multicolumn{2}{c}{current} & \multicolumn{2}{c}{addition} \\ tstart & tstop & time & x \\ 2 & 5 & 1 & 20.2 \\ 6 & 7 & 7 & 11 \\ 7 & 15 & 8 & 17.3 \\ 15 & 30 \\ \end{tabular} \end{center} The resulting data set will have intervals of (2,5), (6,7), (7,8) and (8,15) with covariate values of 20.2, 20.2, 11, and 17.3. Only a covariate change that occurs within an interval causes a new data row. Covariate changes that happen after the last interval are ignored, i.e. at change at time $\ge 30$ in the above example. If instead this had been events at times 1, 7, and 8, the first event would be ignored since it happens outside of any interval, so would an event at exactly time 2. The event at time 7 would be recorded in the (6,7) interval and the one at time 8 in the (7,8) interval: events happen at the ends of intervals. In both cases new rows are only generated for new time values that fall strictly within one of the old intervals. When a subject has two increments on the same day the later one wins. This is correct behavior for cumtdc, a bit odd for cumevent, and the user's problem for tdc and event. We report back the number of ties so that the user can deal with it. Where are we now with the variables? \begin{center} \begin{tabular}{cccc} itype& class & indx1 & indx2 \\ \hline 1 & before & NA & next interval \\ 2 & after & prior interval & NA \\ 3 & in a gap & prior interval & next interval \\ 4 & within interval & containing interval & containing interval \\ 5-1 & on a join & next interval & prior interval \\ 5-2 & front edge & containing & containing \\ 5-3 & back edge & containing & containing \\ \end{tabular} \end{center} If there are any itype 4, start by expanding the data set to add new cut points, which will turn all the 4's into 5-1 types. When expanding, all the event type variables turn into ``censor'' at the newly added times and other variables stay the same. A subject could have more than one new cutpoint added within an interval so we have to count each. In newdata all the rows for a given subject are contiguous and in time order, though the data set may not be in subject order. <>= indx4 <- which(itype==4) n4 <- length(indx4) if (n4 > 0) { # we need to eliminate duplicate times within the same id, but # do so without changing the class of etime: it might # be a Date, an integer, a double, ... # Using unique on a data.frame does the trick icount <- data.frame(irow= indx1[indx4], etime=etime[indx4]) icount <- unique(icount) # the icount data frame will be sorted by second column within first # so rle is faster than table n.add <- rle(icount$irow)$length # number of rows to add for each id # expand the data irep <- rep.int(1L, nrow(newdata)) erow <- unique(indx1[indx4]) # which rows in newdata to be expanded irep[erow] <- 1+ n.add # number of rows in new data jrep <- rep(1:nrow(newdata), irep) #stutter the duplicated rows newdata <- newdata[jrep,] #expand it out dstart <- dstart[jrep] dstop <- dstop[jrep] #fix up times nfix <- length(erow) temp <- vector("list", nfix) iend <- (cumsum(irep))[irep >1] #end row of each duplication set for (j in 1:nfix) temp[[j]] <- -(seq(n.add[j] -1, 0)) + iend[j] newrows <- unlist(temp) dstart[newrows] <- dstop[newrows-1] <- icount$etime newdata[[topt$tstartname]] <- dstart newdata[[topt$tstopname]] <- dstop for (ename in tevent) newdata[newrows-1, ename] <- tcens[[ename]] # refresh indices baseid <- newdata[[topt$idname]] indx1 <- neardate(id, baseid, etime, dstart, best="prior") indx2 <- neardate(id, baseid, etime, dstop, best="after") subtype[itype==4] <- 1 #all the "insides" are now on a tied edge itype[itype==4] <- 5 } @ Now we can add the new variable. The most common is a tdc, so start with it. The C routine returns a set of indices: 0,1,1,2,3,0,4,... would mean that row 1 of the new data happens before the tdc variable, 2 and 3 take values from the first element of yinc, etc. By returning and index, the yinc variable can be of any data type. Using is.na() on the left side below causes the \emph{right} kind of NA to be inserted (this trick was stolen from the merge routine). <>= # add a tdc variable newvar <- newdata[[argname[ii]]] # prior value (for sequential tmerge calls) if (argclass[ii] == "tdc") { if (argname[[ii]] %in% tevent) stop("attempt to turn event variable", argname[[ii]], "into a tdc") #if (!is.null(newvar)) #warning(paste0("replacement of variable '", argname[ii], "'")) # id can be any data type; feed integers to the C routine storage.mode(dstop) <- storage.mode(etime) <- "double" #if time is integer uid <- unique(baseid) index <- .Call(Ctmerge2, match(baseid, uid), dstop, match(id, uid), etime) if (is.null(yinc)) newvar <- ifelse(index==0, 0L, 1L) # add a 0/1 variable else { newvar <- yinc[pmax(1L, index)] if (any(index==0)) { if (is.na(topt$tdcstart)) is.na(newvar) <- (index==0L) else { if (is.numeric(newvar)) newvar[index=0L] <- as.numeric(topt$tdcstart) else { if (is.factor(newvar)) { # special case: if tdcstart isn't in the set of levels, # add it to the levels if (is.na(match(topt$tdcstart, levels(newvar)))) levels(newvar) <- c(levels(newvar), topt$tdcstart) } newvar[index== 0L] <- topt$tdcstart } } } } } @ Events and cumevents are easy because each affects only one interval. <>= # add events if (argclass[ii] %in% c("cumtdc", "cumevent")) { if (is.null(yinc)) yinc <- rep(1L, length(id)) else if (is.logical(yinc)) yinc <- as.numeric(yinc) # allow cumulative T/F if (!is.numeric(yinc)) stop("invalid increment for cumtdc or cumevent") ykeep <- (yinc !=0) # ignore the addition of a censoring event yinc <- unlist(tapply(yinc, match(id, baseid), cumsum)) } if (argclass[ii] %in% c("event", "cumevent")) { if (!is.null(newvar)) { if (!argname[ii] %in% tevent) { #warning(paste0("non-event variable '", argname[ii], "' replaced by an event variable")) newvar <- NULL } else if (!is.null(yinc)) { if (class(newvar) != class(yinc)) stop("attempt to update an event variable with a different type") if (is.factor(newvar) && !all(levels(yinc) %in% levels(newvar))) stop("attemp to update an event variable and levels do not match") } } if (is.null(yinc)) yinc <- rep(1L, length(id)) if (is.null(newvar)) { if (is.numeric(yinc)) newvar <- rep(0L, nrow(newdata)) else if (is.factor(yinc)) newvar <- factor(rep(levels(yinc)[1], nrow(newdata)), levels(yinc)) else if (is.character(yinc)) newvar <- rep('', nrow(newdata)) else if (is.logical(yinc)) newvar <- rep(FALSE, nrow(newdata)) else stop("invalid value for a status variable") } keep <- (subtype==1 | subtype==3) # all other events are thrown away if (argclass[ii] == "cumevent") keep <- (keep & ykeep) newvar[indx2[keep]] <- yinc[keep] # add this into our list of 'this is an event type variable' if (!(argname[ii] %in% tevent)) { tevent <- c(tevent, argname[[ii]]) if (is.factor(yinc)) tcens <- c(tcens, list(levels(yinc)[1])) else if (is.logical(yinc)) tcens <- c(tcens, list(FALSE)) else if (is.character(yinc)) tcens <- c(tcens, list("")) else tcens <- c(tcens, list(0)) names(tcens) <- tevent } } else if (argclass[ii] == "cumtdc") { # process a cumtdc variable # I don't have a good way to catch the reverse of this user error if (argname[[ii]] %in% tevent) stop("attempt to turn event variable", argname[[ii]], "into a cumtdc") keep <- itype != 2 # changes after the last interval are ignored indx <- ifelse(subtype==1, indx1, ifelse(subtype==3, indx2+1L, indx2)) # we want to pass the right kind of NA to the C code if (is.na(topt$tdcstart)) topt$tdcstart <- as.numeric(topt$tdcstart) if (is.null(newvar)) { # not overwriting a prior value if (is.null(argi$value)) newvar <- rep(0.0, nrow(newdata)) else newvar <- rep(topt$tdcstart, nrow(newdata)) } # the increment must be numeric if (!is.numeric(newvar)) stop("data and options$tdcstart do not agree on data type") # id can be any data type; feed integers to the C routine storage.mode(yinc) <- storage.mode(dstop) <- "double" storage.mode(newvar) <- storage.mode(etime) <- "double" newvar <- .Call(Ctmerge, match(baseid, baseid), dstop, newvar, match(id, baseid)[keep], etime[keep], yinc[keep], indx[keep]) } newdata[[argname[ii]]] <- newvar @ Finish up by adding the attributes and the class <>= attr(newdata, "tname") <- topt[c("idname", "tstartname", "tstopname")] attr(newdata, "tcount") <- rbind(attr(data1, "tcount"), tcount) if (length(tevent)) { attr(newdata, "tevent") <- tevent attr(newdata, "tcensor" ) <- tcens } row.names(newdata) <- NULL #These are a mess; kill them off. # Not that it works: R just assigns new row names. class(newdata) <- c("data.frame") newdata @ The print routine is for checking: it simply prints out the attributes. <>= print.tmerge <- function(x, ...) { print(attr(x, "tcount")) } "[.tmerge" <- function(x, ..., drop=TRUE){ class(x) <- "data.frame" NextMethod(,x) } @ survival/noweb/pyears.Rnw0000644000176200001440000003474713543467374015271 0ustar liggesusers\section{Person years} The person years routine and the expected survival code are the two parts of the survival package that make use of external rate tables, of which the United States mortality tables \code{survexp.us} and \code{survexp.usr} are examples contained in the package. The arguments for pyears are \begin{description} \item[formula] The model formula. The right hand side consists of grouping variables and is essentially identical to [[survfit]], the result of the model will be a table of results with dimensions determined from the right hand variables. The formula can include an optional [[ratetable]] directive; but this style has been superseded by the [[rmap]] argument. \item [data, weights, subset, na.action] as usual \item[rmap] an optional mapping for rate table variables, see more below. \item[ratetable] the population rate table to use as a reference. This can either be a ratetable object or a previously fitted Cox model \item[scale] Scale the resulting output times, e.g., 365.25 to turn days into years. \item[expect] Should the output table include the expected number of events, or the expected number of person-years of observation? \item[model, x, y] as usual \item[data.frame] if true the result is returned as a data frame, if false as a set of tables. \end{description} <>= pyears <- function(formula, data, weights, subset, na.action, rmap, ratetable, scale=365.25, expect=c('event', 'pyears'), model=FALSE, x=FALSE, y=FALSE, data.frame=FALSE) { <> <> <> } @ Start out with the standard model processing, which involves making a copy of the input call, but keeping only the arguments we want. We then process the special argument [[rmap]]. This is discussed in the section on the [[survexp]] function so we need not repeat the explantation here. <>= expect <- match.arg(expect) Call <- match.call() # create a call to model.frame() that contains the formula (required) # and any other of the relevant optional arguments # then evaluate it in the proper frame indx <- match(c("formula", "data", "weights", "subset", "na.action"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") tform <- Call[c(1,indx)] # only keep the arguments we wanted tform[[1L]] <- quote(stats::model.frame) # change the function called Terms <- if(missing(data)) terms(formula, 'ratetable') else terms(formula, 'ratetable',data=data) if (any(attr(Terms, 'order') >1)) stop("Pyears cannot have interaction terms") rate <- attr(Terms, "specials")$ratetable if (length(rate) >0 || !missing(rmap) || !missing(ratetable)) { has.ratetable <- TRUE if(length(rate) > 1) stop("Can have only 1 ratetable() call in a formula") if (missing(ratetable)) stop("No rate table specified") <> } else has.ratetable <- FALSE mf <- eval(tform, parent.frame()) Y <- model.extract(mf, 'response') if (is.null(Y)) stop ("Follow-up time must appear in the formula") if (!is.Surv(Y)){ if (any(Y <0)) stop ("Negative follow up time") Y <- as.matrix(Y) if (ncol(Y) >2) stop("Y has too many columns") } else { stype <- attr(Y, 'type') if (stype == 'right') { if (any(Y[,1] <0)) stop("Negative survival time") nzero <- sum(Y[,1]==0 & Y[,2] ==1) if (nzero >0) warning(paste(nzero, "observations with an event and 0 follow-up time,", "any rate calculations are statistically questionable")) } else if (stype != 'counting') stop("Only right-censored and counting process survival types are supported") } n <- nrow(Y) if (is.null(n) || n==0) stop("Data set has 0 observations") weights <- model.extract(mf, 'weights') if (is.null(weights)) weights <- rep(1.0, n) @ The next step is to check out the ratetable. For a population rate table a set of consistency checks is done by the [[match.ratetable]] function, giving a set of sanitized indices [[R]]. This function wants characters turned to factors. For a Cox model [[R]] will be a model matix whose covariates are coded in exactly the same way that variables were coded in the original Cox model. We call the model.matrix.coxph function so as not to have to repeat the steps found there (remove cluster statements, etc). <>= # rdata contains the variables matching the ratetable if (has.ratetable) { rdata <- data.frame(eval(rcall, mf), stringsAsFactors=TRUE) if (is.ratetable(ratetable)) { israte <- TRUE rtemp <- match.ratetable(rdata, ratetable) R <- rtemp$R } else if (inherits(ratetable, 'coxph') && !inherits(ratetable, "coxphms")) { israte <- FALSE Terms <- ratetable$terms if (!is.null(attr(Terms, 'offset'))) stop("Cannot deal with models that contain an offset") strats <- attr(Terms, "specials")$strata if (length(strats)) stop("pyears cannot handle stratified Cox models") if (any(names(mf[,rate]) != attr(ratetable$terms, 'term.labels'))) stop("Unable to match new data to old formula") R <- model.matrix.coxph(ratetable, data=rdata) } else stop("Invalid ratetable") } @ Now we process the non-ratetable variables. Those of class [[tcut]] set up time-dependent classes. For these the cutpoints attribute sets the intervals, if there were 4 cutpoints of 1, 5,6, and 10 the 3 intervals will be 1-5, 5-6 and 6-10, and odims will be 3. All other variables are treated as factors. <>= ovars <- attr(Terms, 'term.labels') if (length(ovars)==0) { # no categories! X <- rep(1,n) ofac <- odim <- odims <- ocut <- 1 } else { odim <- length(ovars) ocut <- NULL odims <- ofac <- double(odim) X <- matrix(0, n, odim) outdname <- vector("list", odim) names(outdname) <- attr(Terms, 'term.labels') for (i in 1:odim) { temp <- mf[[ovars[i]]] if (inherits(temp, 'tcut')) { X[,i] <- temp temp2 <- attr(temp, 'cutpoints') odims[i] <- length(temp2) -1 ocut <- c(ocut, temp2) ofac[i] <- 0 outdname[[i]] <- attr(temp, 'labels') } else { temp2 <- as.factor(temp) X[,i] <- temp2 temp3 <- levels(temp2) odims[i] <- length(temp3) ofac[i] <- 1 outdname[[i]] <- temp3 } } } @ Now do the computations. The code above has separated out the variables into 3 groups: \begin{itemize} \item The variables in the rate table. These determine where we \emph{start} in the rate table with respect to retrieving the relevant death rates. For the US table [[survexp.us]] this will be the date of study entry, age (in days) at study entry, and sex of each subject. \item The variables on the right hand side of the model. These are interpreted almost identically to a call to [[table]], with special treatment for those of class \emph{tcut}. \item The response variable, which tells the number of days of follow-up and optionally the status at the end of follow-up. \end{itemize} Start with the rate table variables. There is an oddity about US rate tables: the entry for age (year=1970, age=55) contains the daily rate for anyone who turns 55 in that year, from their birthday forward for 365 days. So if your birthday is on Oct 2, the 1970 table applies from 2Oct 1970 to 1Oct 1971. The underlying C code wants to make the 1970 rate table apply from 1Jan 1970 to 31Dec 1970. The easiest way to finess this is to fudge everyone's enter-the-study date. If you were born in March but entered in April, make it look like you entered in Febuary; that way you get the first 11 months at the entry year's rates, etc. The birth date is entry date - age in days (based on 1/1/1970). The other aspect of the rate tables is that ``older style'' tables, those that have the factor attribute, contained only decennial data which the C code would interpolate on the fly. The value of [[atts$factor]] was 10 indicating that there are 10 years in the interpolation interval. The newer tables do not do this and the C code is passed a 0/1 for continuous (age and year) versus discrete (sex, race). <>= ocut <-c(ocut,0) #just in case it were of length 0 osize <- prod(odims) if (has.ratetable) { #include expected atts <- attributes(ratetable) datecheck <- function(x) inherits(x, c("Date", "POSIXt", "date", "chron")) cuts <- lapply(attr(ratetable, "cutpoints"), function(x) if (!is.null(x) & datecheck(x)) ratetableDate(x) else x) if (is.null(atts$type)) { #old stlye table rfac <- atts$factor us.special <- (rfac >1) } else { rfac <- 1*(atts$type ==1) us.special <- (atts$type==4) } if (any(us.special)) { #special handling for US pop tables if (sum(us.special) > 1) stop("more than one type=4 in a rate table") # Someone born in June of 1945, say, gets the 1945 US rate until their # next birthday. But the underlying logic of the code would change # them to the 1946 rate on 1/1/1946, which is the cutpoint in the # rate table. We fudge by faking their enrollment date back to their # birth date. # # The cutpoint for year has been converted to days since 1/1/1970 by # the ratetableDate function. (Date objects in R didn't exist when # rate tables were conceived.) if (is.null(atts$dimid)) dimid <- names(atts$dimnames) else dimid <- atts$dimid cols <- match(c("age", "year"), dimid) if (any(is.na(cols))) stop("ratetable does not have expected shape") # The format command works for Dates, use it to get an offset bdate <- as.Date("1970-01-01") + (R[,cols[2]] - R[,cols[1]]) byear <- format(bdate, "%Y") offset <- as.numeric(bdate - as.Date(paste0(byear, "-01-01"))) R[,cols[2]] <- R[,cols[2]] - offset # Doctor up "cutpoints" - only needed for (very) old style rate tables # for which the C code does interpolation on the fly if (any(rfac >1)) { temp <- which(us.special) nyear <- length(cuts[[temp]]) nint <- rfac[temp] #intervals to interpolate over cuts[[temp]] <- round(approx(nint*(1:nyear), cuts[[temp]], nint:(nint*nyear))$y - .0001) } } docount <- is.Surv(Y) temp <- .C(Cpyears1, as.integer(n), as.integer(ncol(Y)), as.integer(is.Surv(Y)), as.double(Y), as.double(weights), as.integer(length(atts$dim)), as.integer(rfac), as.integer(atts$dim), as.double(unlist(cuts)), as.double(ratetable), as.double(R), as.integer(odim), as.integer(ofac), as.integer(odims), as.double(ocut), as.integer(expect=='event'), as.double(X), pyears=double(osize), pn =double(osize), pcount=double(if(docount) osize else 1), pexpect=double(osize), offtable=double(1))[18:22] } else { #no expected docount <- as.integer(ncol(Y) >1) temp <- .C(Cpyears2, as.integer(n), as.integer(ncol(Y)), as.integer(docount), as.double(Y), as.double(weights), as.integer(odim), as.integer(ofac), as.integer(odims), as.double(ocut), as.double(X), pyears=double(osize), pn =double(osize), pcount=double(if (docount) osize else 1), offtable=double(1)) [11:14] } @ Create the output object. <>= has.tcut <- any(sapply(mf, function(x) inherits(x, 'tcut'))) if (data.frame) { # Create a data frame as the output, rather than a set of # rate tables if (length(ovars) ==0) { # no variables on the right hand side keep <- TRUE df <- data.frame(pyears= temp$pyears/scale, n = temp$n) } else { keep <- (temp$pyears >0) # what rows to keep in the output # grap prototype rows from the model frame, this preserves class # (unless it is a tcut variable, then we know what to do) tdata <- lapply(1:length(ovars), function(i) { temp <- mf[[ovars[i]]] if (inherits(temp, "tcut")) factor(outdname[[i]]) else temp[match(outdname[[i]], temp)] }) tdata$stringsAsFactors <- FALSE # argument for expand.grid df <- do.call("expand.grid", tdata)[keep,,drop=FALSE] names(df) <- ovars df$pyears <- temp$pyears[keep]/scale df$n <- temp$pn[keep] } row.names(df) <- NULL # toss useless 'creation history' if (has.ratetable) df$expected <- temp$pexpect[keep] if (expect=='pyears') df$expected <- df$expected/scale if (docount) df$event <- temp$pcount[keep] # if any of the predictors were factors, make them factors in the output for (i in 1:length(ovars)){ if (is.factor( mf[[ovars[i]]])) df[[ovars[i]]] <- factor(df[[ovars[i]]], levels( mf[[ovars[i]]])) } out <- list(call=Call, data= df, offtable=temp$offtable/scale, tcut=has.tcut) if (has.ratetable && !is.null(rtemp$summ)) out$summary <- rtemp$summ } else if (prod(odims) ==1) { #don't make it an array out <- list(call=Call, pyears=temp$pyears/scale, n=temp$pn, offtable=temp$offtable/scale, tcut = has.tcut) if (has.ratetable) { out$expected <- temp$pexpect if (expect=='pyears') out$expected <- out$expected/scale if (!is.null(rtemp$summ)) out$summary <- rtemp$summ } if (docount) out$event <- temp$pcount } else { out <- list(call = Call, pyears= array(temp$pyears/scale, dim=odims, dimnames=outdname), n = array(temp$pn, dim=odims, dimnames=outdname), offtable = temp$offtable/scale, tcut=has.tcut) if (has.ratetable) { out$expected <- array(temp$pexpect, dim=odims, dimnames=outdname) if (expect=='pyears') out$expected <- out$expected/scale if (!is.null(rtemp$summ)) out$summary <- rtemp$summ } if (docount) out$event <- array(temp$pcount, dim=odims, dimnames=outdname) } out$observations <- nrow(mf) out$terms <- Terms na.action <- attr(mf, "na.action") if (length(na.action)) out$na.action <- na.action if (model) out$model <- mf else { if (x) out$x <- X if (y) out$y <- Y } class(out) <- 'pyears' out @ survival/noweb/survConcordance.Rnw0000644000176200001440000006603213537676563017121 0ustar liggesusers\subsection{Concordance} This is the code for the deprecated function survConcordance. It will be removed in due course. The concordance statistic is gaining popularity as a measure of goodness-of-fit in survival models. Consider all pairs of subjects with $(r_i, r_j)$ as the two risk scores for each pair and $(s_i, s_j)$ the corresponding survival times. The c-statistic is defined by dividing these sets into four groups. \begin{itemize} \item Concordant pairs: for a Cox model this will be pairs where a shorter survival is paired with a larger risk score, e.g. $r_i>r_j$ and $s_i < s_j$ \item Discordant pairs: the lower risk score has a shorter survival \item Tied pairs: there are three common choices \begin{itemize} \item Kendall's tau: any pair where $r_i=r_j$ or $s_i = s_j$ is considered tied. \item AUC: pairs with $r_i=r_j$ are tied; those with $s_i=s_j$ are considered incomparable. This is the definition of the AUC in logisitic regression, and has become the most common choice for Cox models as well. \item Somer's D: All ties are treated as incomparable. \end{itemize} \item Incomparable pairs: For survival this always includes pairs where the survival times cannot be ranked with certainty. For instance $s_i$ is censored at time 10 and $s_j$ is an event (or censor) at time 20. Subject $i$ may or may not survive longer than subject $j$. Note that if $s_i$ is censored at time 10 and $s_j$ is an event at time 10 then $s_i > s_j$. Add onto this those ties that are treated as incomparable.\\ Observations that are in different strata are also incomparable, since the Cox model only compares within strata. \end{itemize} Then the concordance statistic is defined as $(C + T/2)/(C + D + T)$. The denominator is the number of comparable pairs. The program creates 4 variables, which are the number of concordant pairs, discordant, tied on time, and tied on $x$ but not on time. The default concordance is based on the AUC definition, but all 4 values are reported back so that a user can recreate the others if desired. The primary compuational questions is how to do this efficiently, i.e., better that the naive $O(n^2)$ algorithm that loops across all $n(n-1)/2$ possible pairs. There are two key ideas. \begin{enumerate} \item Rearrange the counting so that we do it by death times. For each death we count the number of other subjects in the risk set whose score is higher, lower, or tied and add it into the totals. This also neatly solves the question of time-dependent covariates. \item To count the number higher and lower we need to rank the subjects in the risk set by their scores $r_i$. This can be done in $O(\log n)$ time if the data is kept in a binary tree. \end{enumerate} \begin{figure} \myfig{balance} \caption{A balanced tree of 13 nodes.} \label{treefig} \end{figure} Figure \ref{treefig} shows a balanced binary tree containing 13 risk scores. For each node the left child and all its descendants have a smaller value than the parent, the right child and all its descendents have a larger value. Each node in figure \ref{treefig} is also annotated with the total weight of observations in that node and the weight for all its children (not shown on graph). Assume that the tree shown represents all of the subjects still alive at the time a particular subject ``Smith'' expires, and that Smith has the risk score 2.1. The concordant pairs are all of those with a risk score greater than 2.1, which can be found by traversing the tree from the top down, adding the (parent - child) value each time we branch left (5-3 at the 2.6 node), with a last addition of the right hand child when we find the node with Smith's value (1). %' There are 3 concordant and 12-3=9 discordant pairs. This takes a little less than $\log_2(n)$ steps on average, as compared to an average of $n/2$ for the naive method. The difference can matter when $n$ is large since this traversal must be done for each event. (In the code below we start at Smith's node and walk up.) %' The classic way to store trees is as a linked list. There are several algorithms for adding and subtracting nodes from a tree while maintaining the balance (red-black trees, AA trees, etc) but we take a different approach. Since we need to deal with case weights in the model and we know all the risk score at the outset, the full set of risk scores is organised into a tree at the beginning and node counts are changed to zero as observations are removed. If we index the nodes of the tree as 1 for the top, 2--3 for the next horizontal row, 4--7 for the next, \ldots then the parent-child traversal becomes particularly easy. The parent of node $i$ is $i/2$ (integer arithmetic) and the children of node $i$ are $2i$ and $2i +1$. In C code the indices start at 0 and the children are $2i+1$ and $2i+2$ and the parent is $(i-1)/2$. The following bit of code returns the indices of a sorted list when placed into such a tree. The basic idea is that the rows of the tree start at indices 1, 2, 4, \ldots. For the above tree, the last row will contains the 1st, 3rd, \ldots, 11th smallest ranks. The next row above contains every other value of the ranks \emph{not yet assigned}, and etc to the top of the tree. There is some care to make sure the result is an integer. <>= btree <- function(n) { ranks <- rep(0L, n) #will be overwritten yet.to.do <- 1:n depth <- floor(logb(n,2)) start <- as.integer(2^depth) lastrow.length <- 1+n-start indx <- seq(1L, by=2L, length= lastrow.length) ranks[yet.to.do[indx]] <- start + 0:(length(indx)-1L) yet.to.do <- yet.to.do[-indx] while (start >1) { start <- as.integer(start/2) indx <- seq(1L, by=2L, length=start) ranks[yet.to.do[indx]] <- start + 0:(start-1L) yet.to.do <- yet.to.do[-indx] } ranks } @ Referring again to figure \ref{treefig}, [[btree(13)]] yields the vector [[8 4 9 2 10 5 11 1 12 6 13 3 7]] meaning that the smallest element will be in position 8 of the tree, the next smallest in position 4, etc. Here is a shorter recursive version. It knows the form of trees with 1, 2, or 3 nodes; and builds the others from them. The maximum depth of recursion is $\log_2(n) -1$. It is more clever but a bit slower. (Not that it matters as both take less than 5 seconds for a million elements.) <>= btree <- function(n) { tfun <- function(n, id, power) { if (n==1) id else if (n==2) c(2L *id, id) else if (n==3) c(2L*id, id, 2L*id +1L) else { nleft <- if (n== power*2) power else min(power-1, n-power/2) c(tfun(nleft, 2L *id, power/2), id, tfun(n-(nleft+1), 2L*id +1L, power/2)) } } tfun(n, 1L, 2^(floor(logb(n-1,2)))) } @ A second question is how to compute the variance of the result. The insight used here is to consider a Cox model with time dependent covariates, where the covariate $x$ at each death time has been transformed into ${\rm rank}(x)$. One can show that the Cox score statistic contribution of $r_i - \overline{r}$ at each death time is equal to $(C-D)/2$ where $C$ and $D$ are the number of concordant and discordant pairs comparing that death to all those at risk, and using the Breslow approximation for ties. The contribution to the variance of the score statistic is $V(t) =\sum (r_i - \overline{r})^2 /n$, the $r_i$ being the ranks at that time point and $n$ the number at risk. How can we update this sum using an update formula? First remember the identity \begin{equation*} \sum w_i(x_i - \overline{x})^2 = \sum w_i(x_i-c)^2 - \sum w_i(c - \overline{x})^2 \end{equation*} true for any set of values $x$ and centering constant $c$. For weighted data define the rank of an observation with risk score $r_k$ as \begin{equation*} {\rm rank} = \sum_{r_ik} w_i(r_i - \mu_n)^2 - \sum_{i>k} w_i(r_i - \mu_g)^2 &= (\sum_{i>k} w_i) [(\mu_u -\mu_n)^2 - ((\mu_u-w_k) - \mu_g)^2] \nonumber \\ &= (\sum_{i>k} w_i) (\mu_n + z - 2\mu_u)(\mu_n -z) \label{upper1} \\ &= (\sum_{i>k} w_i) (\mu_n+z - 2\mu_u) (-w_k/2) \label{upper}\\ z&\equiv \mu_g+ w_k \nonumber \end{align} For items of tied rank, their rank increases by the same amount as the overall mean, and so their contribution to the total SS is unchanged. The final part of the update step is to add in the SS contributed by the new observation. An observation is removed from the tree whenver the current time becomes less than the (start, stop] interval of the datum. The ranks for observations of lower risk are unchanged by the removal so equation \eqref{lower1} applies just as before, but with the new mean smaller than the old so the last term in equation \eqref{lower} changes sign. For the observations of higher risk both the mean and the ranks change by $w_k$ and equation \eqref{upper1} holds but with $z=\mu_0- w_k$. We can now define the C-routine that does the bulk of the work. First we give the outline shell of the code and then discuss the parts one by one. This routine is for ordinary survival data, and will be called once per stratum. Input variables are \begin{description} \item[n] the number of observations \item[y] matrix containing the time and status, data is sorted by ascending time, with deaths preceding censorings. \item[indx] the tree node at which this observation's risk score resides %' \item[wt] case weight for the observation \item[sum] scratch space, weights for each node of the tree: 3 values are for the node, all left children, and all right children \item[count] the returned counts of concordant, discordant, tied on x, tied on time, and the variance \end{description} <>= #include "survS.h" SEXP concordance1(SEXP y, SEXP wt2, SEXP indx2, SEXP ntree2) { int i, j, k, index; int child, parent; int n, ntree; double *time, *status; double *twt, *nwt, *count; double vss, myrank, wsum1, wsum2, wsum3; /*sum of wts below, tied, above*/ double lmean, umean, oldmean, newmean; double ndeath; /* weighted number of deaths at this point */ SEXP count2; double *wt; int *indx; n = nrows(y); ntree = asInteger(ntree2); wt = REAL(wt2); indx = INTEGER(indx2); time = REAL(y); status = time + n; PROTECT(count2 = allocVector(REALSXP, 5)); count = REAL(count2); /* count5 contains the information matrix */ twt = (double *) R_alloc(2*ntree, sizeof(double)); nwt = twt + ntree; for (i=0; i< 2*ntree; i++) twt[i] =0.0; for (i=0; i<5; i++) count[i]=0.0; vss=0; <> UNPROTECT(1); return(count2); } @ The key part of our computation is to update the vectors of weights. We don't actually pass the risk score values $r$ into the routine, %' it is enough for each observation to point to the appropriate tree node. The tree contains the for everyone whose survival is larger than the time currently under review, so starts with all weights equal to zero. For any pair of observations $i,j$ we need to add [[wt[i]*wt[j]]] to the appropriate count. Starting at the largest time (which is sorted last), walk through the tree. \begin{itemize} \item If it is a death time, we need to process all the deaths tied at this time. \begin{enumerate} \item Add [[wt[i] * wt[j]]] to the tied-on-time total, for all pairs $i,j$ of tied times. \item The addition to tied-on-r will be the weight of this observation times the sum of weights for all others with the same risk score and a a greater time, i.e., the weight found at [[indx[i]]] in the tree. \item Similarly for those with smaller or larger risk scores. First add in the children of this node. The left child will be smaller risk scores (and longer times) adding to the concordant pairs, the right child discordant. Then walk up the tree to the root. At each step up we add in data for the 'not me' branch. If we were the right branch (even number node) of a parent then when moving up we add in the left branch counts, and vice-versa. \end{enumerate} \item Now add this set of subject weights into the tree. The weight for a node is [[nwt]] and for the node and all its children is [[twt]]. \end{itemize} <>= for (i=n-1; i>=0; ) { ndeath =0; if (status[i]==1) { /* process all tied deaths at this point */ for (j=i; j>=0 && status[j]==1 && time[j]==time[i]; j--) { ndeath += wt[j]; index = indx[j]; for (k=i; k>j; k--) count[3] += wt[j]*wt[k]; /* tied on time */ count[2] += wt[j] * nwt[index]; /* tied on x */ child = (2*index) +1; /* left child */ if (child < ntree) count[0] += wt[j] * twt[child]; /*left children */ child++; if (child < ntree) count[1] += wt[j] * twt[child]; /*right children */ while (index >0) { /* walk up the tree */ parent = (index-1)/2; if (index & 1) /* I am the left child */ count[1] += wt[j] * (twt[parent] - twt[index]); else count[0] += wt[j] * (twt[parent] - twt[index]); index = parent; } } } else j = i-1; /* Add the weights for these obs into the tree and update variance*/ for (; i>j; i--) { wsum1=0; oldmean = twt[0]/2; index = indx[i]; nwt[index] += wt[i]; twt[index] += wt[i]; wsum2 = nwt[index]; child = 2*index +1; /* left child */ if (child < ntree) wsum1 += twt[child]; while (index >0) { parent = (index-1)/2; twt[parent] += wt[i]; if (!(index&1)) /* I am a right child */ wsum1 += (twt[parent] - twt[index]); index=parent; } wsum3 = twt[0] - (wsum1 + wsum2); /* sum of weights above */ lmean = wsum1/2; umean = wsum1 + wsum2 + wsum3/2; /* new upper mean */ newmean = twt[0]/2; myrank = wsum1 + wsum2/2; vss += wsum1*(newmean+ oldmean - 2*lmean) * (newmean - oldmean); vss += wsum3*(newmean+ oldmean+ wt[i]- 2*umean) *(oldmean-newmean); vss += wt[i]* (myrank -newmean)*(myrank -newmean); } count[4] += ndeath * vss/twt[0]; } @ The code for [start, stop) data is quite similar. As in the agreg routines there are two sort indices, the first indexes the data by stop time, longest to earliest, and the second by start time. The [[y]] variable now has three columns. <>= SEXP concordance2(SEXP y, SEXP wt2, SEXP indx2, SEXP ntree2, SEXP sortstop, SEXP sortstart) { int i, j, k, index; int child, parent; int n, ntree; int istart, iptr, jptr; double *time1, *time2, *status, dtime; double *twt, *nwt, *count; int *sort1, *sort2; double vss, myrank; double wsum1, wsum2, wsum3; /*sum of wts below, tied, above*/ double lmean, umean, oldmean, newmean; double ndeath; SEXP count2; double *wt; int *indx; n = nrows(y); ntree = asInteger(ntree2); wt = REAL(wt2); indx = INTEGER(indx2); sort2 = INTEGER(sortstop); sort1 = INTEGER(sortstart); time1 = REAL(y); time2 = time1 + n; status= time2 + n; PROTECT(count2 = allocVector(REALSXP, 5)); count = REAL(count2); twt = (double *) R_alloc(2*ntree, sizeof(double)); nwt = twt + ntree; for (i=0; i< 2*ntree; i++) twt[i] =0.0; for (i=0; i<5; i++) count[i]=0.0; vss =0; <> UNPROTECT(1); return(count2); } @ The processing changes in 2 ways \begin{itemize} \item The loops go from $0$ to $n-1$ instead of $n-1$ to 0. We need to use [[sort1[i]]] instead of [[i]] as the subscript for the time2 and wt vectors. (The sort vectors go backwards in time.) This happens enough that we use a temporary variables [[iptr]] and [[jptr]] to avoid the double subscript. \item As we move from the longest time to the shortest observations are added into the tree of weights whenever we encounter their stop time. This is just as before. Weights now also need to be removed from the tree whenever we encounter an observation's start time. %' It is convenient ``catch up'' on this second task whenever we encounter a death. \end{itemize} <>= istart = 0; /* where we are with start times */ for (i=0; i= dtime; istart++) { wsum1 =0; oldmean = twt[0]/2; jptr = sort1[istart]; index = indx[jptr]; nwt[index] -= wt[jptr]; twt[index] -= wt[jptr]; wsum2 = nwt[index]; child = 2*index +1; /* left child */ if (child < ntree) wsum1 += twt[child]; while (index >0) { parent = (index-1)/2; twt[parent] -= wt[jptr]; if (!(index&1)) /* I am a right child */ wsum1 += (twt[parent] - twt[index]); index=parent; } wsum3 = twt[0] - (wsum1 + wsum2); lmean = wsum1/2; umean = wsum1 + wsum2 + wsum3/2; /* new upper mean */ newmean = twt[0]/2; myrank = wsum1 + wsum2/2; vss += wsum1*(newmean+ oldmean - 2*lmean) * (newmean-oldmean); oldmean -= wt[jptr]; /* the z in equations above */ vss += wsum3*(newmean+ oldmean -2*umean) * (newmean-oldmean); vss -= wt[jptr]* (myrank -newmean)*(myrank -newmean); } /* Process deaths */ for (j=i; j 0) { /* walk up the tree */ parent = (index-1)/2; if (index &1) /* I am the left child */ count[1] += wt[jptr] * (twt[parent] - twt[index]); else count[0] += wt[jptr] * (twt[parent] - twt[index]); index = parent; } } } else j = i+1; /* Add the weights for these obs into the tree and compute variance */ for (; i0) { parent = (index-1)/2; twt[parent] += wt[iptr]; if (!(index&1)) /* I am a right child */ wsum1 += (twt[parent] - twt[index]); index=parent; } wsum3 = twt[0] - (wsum1 + wsum2); lmean = wsum1/2; umean = wsum1 + wsum2 + wsum3/2; /* new upper mean */ newmean = twt[0]/2; myrank = wsum1 + wsum2/2; vss += wsum1*(newmean+ oldmean - 2*lmean) * (newmean-oldmean); vss += wsum3*(newmean+ oldmean +wt[iptr] - 2*umean) * (oldmean-newmean); vss += wt[iptr]* (myrank -newmean)*(myrank -newmean); } count[4] += ndeath * vss/twt[0]; } @ One last wrinkle is tied risk scores: they are all set to point to the same node of the tree. Here is the main routine. <>= survConcordance <- function(formula, data, weights, subset, na.action) { Call <- match.call() # save a copy of of the call, as documentation .Deprecated("concordance") m <- match.call(expand.dots=FALSE) m[[1L]] <- quote(stats::model.frame) m$formula <- if(missing(data)) terms(formula, "strata") else terms(formula, "strata", data=data) m <- eval(m, sys.parent()) Terms <- attr(m, 'terms') Y <- model.extract(m, "response") if (!inherits(Y, "Surv")) { if (is.numeric(Y) && is.vector(Y)) Y <- Surv(Y) else stop("left hand side of the formula must be a numeric vector or a surival") } n <- nrow(Y) wt <- model.extract(m, 'weights') offset<- attr(Terms, "offset") if (length(offset)>0) stop("Offset terms not allowed") stemp <- untangle.specials(Terms, 'strata') if (length(stemp$vars)) { if (length(stemp$vars)==1) strat <- m[[stemp$vars]] else strat <- strata(m[,stemp$vars], shortlabel=TRUE) Terms <- Terms[-stemp$terms] } else strat <- NULL x <- model.matrix(Terms, m)[,-1, drop=FALSE] #remove the intercept if (ncol(x) > 1) stop("Only one predictor variable allowed") count <- survConcordance.fit(Y, x, strat, wt) if (is.null(strat)) { concordance <- (count[1] + count[3]/2)/sum(count[1:3]) std.err <- count[5]/(2* sum(count[1:3])) } else { temp <- colSums(count) concordance <- (temp[1] + temp[3]/2)/ sum(temp[1:3]) std.err <- temp[5]/(2*sum(temp[1:3])) } fit <- list(concordance= concordance, stats=count, n=n, std.err=std.err, call=Call) na.action <- attr(m, "na.action") if (length(na.action)) fit$na.action <- na.action oldClass(fit) <- 'survConcordance' fit } print.survConcordance <- function(x, ...) { if(!is.null(cl <- x$call)) { cat("Call:\n") dput(cl) cat("\n") } omit <- x$na.action if(length(omit)) cat(" n=", x$n, " (", naprint(omit), ")\n", sep = "") else cat(" n=", x$n, "\n") cat("Concordance= ", format(x$concordance), " se= ", format(x$std.err), '\n', sep='') print(x$stats) invisible(x) } @ This part of the compuation is a separate function, since it is also called by the coxph routines. Although we are very careful to create integers and/or doubles for the arguments to .Call I still wrap them in the appropriate as.xxx construction: ``belt and suspenders''. Also, referring to the the mathematics many paragraphs ago, the C routine returns the variance of $(C-D)/2$ and we return the standard deviation of $(C-D)$. If this routine is called with all the x values identical, then $C$ and $D$ will both be zero, but the calculated variance of $C-D$ can be a nonzero tiny number due to round off error. Since this can cause a warning message from the sqrt function we check and correct this. <>= survConcordance.fit <- function(y, x, strata, weight) { # .Deprecated("concordancefit") # The coxph program may occassionally fail, and this will kill the C # routine below if (any(is.na(x)) || any(is.na(y))) return(NULL) <> docount <- function(stime, risk, wts) { if (attr(stime, 'type') == 'right') { ord <- order(stime[,1], -stime[,2]) ux <- sort(unique(risk)) n2 <- length(ux) index <- btree(n2)[match(risk[ord], ux)] - 1L .Call(Cconcordance1, stime[ord,], as.double(wts[ord]), as.integer(index), as.integer(length(ux))) } else if (attr(stime, 'type') == "counting") { sort.stop <- order(-stime[,2], stime[,3]) sort.start <- order(-stime[,1]) ux <- sort(unique(risk)) n2 <- length(ux) index <- btree(n2)[match(risk, ux)] - 1L .Call(Cconcordance2, stime, as.double(wts), as.integer(index), as.integer(length(ux)), as.integer(sort.stop-1L), as.integer(sort.start-1L)) } else stop("Invalid survival type for concordance") } if (missing(weight) || length(weight)==0) weight <- rep(1.0, length(x)) storage.mode(y) <- "double" if (missing(strata) || length(strata)==0) { count <- docount(y, x, weight) if (count[1]==0 && count[2]==0) count[5]<-0 else count[5] <- 2*sqrt(count[5]) names(count) <- c("concordant", "discordant", "tied.risk", "tied.time", "std(c-d)") } else { strata <- as.factor(strata) ustrat <- levels(strata)[table(strata) >0] #some strata may have 0 obs count <- matrix(0., nrow=length(ustrat), ncol=5) for (i in 1:length(ustrat)) { keep <- which(strata == ustrat[i]) count[i,] <- docount(y[keep,,drop=F], x[keep], weight[keep]) } count[,5] <- 2*sqrt(ifelse(count[,1]+count[,2]==0, 0, count[,5])) dimnames(count) <- list(ustrat, c("concordant", "discordant", "tied.risk", "tied.time", "std(c-d)")) } count } @ survival/noweb/coxsurv2.Rnw0000644000176200001440000005550013537676563015554 0ustar liggesusers% % Second part of coxsurv.Rnw, broken in two to make it easier for me % to work with emacs. Now, we're ready to do the main compuation. %' The code has gone through multiple iteration as options and complexity increased. Computations are separate for each strata, and each strata will have a different number of time points in the result. Thus we can't preallocate a matrix. Instead we generate an empty list, %' one per strata, and then populate it with the survival curves. At the end we unlist the individual components one by one. This is memory efficient, the number of curves is usually small enough that the "for" loop is no great cost, and it's easier to see what's going on than C code. The computational exception is a model with thousands of strata, e.g., a matched logistic, but in that case survival curves are useless. (That won't stop some users from trying it though.) First, compute the baseline survival curves for each strata. If the strata was a factor produce output curves in that order, otherwise in sorted order. This fitting routine was set out as a separate function for the sake of the rms package. They want to utilize the computation, but have a diffferent process to create the x and y data. <>= coxsurv.fit <- function(ctype, stype, se.fit, varmat, cluster, y, x, wt, risk, position, strata, oldid, y2, x2, risk2, strata2, id2, unlist=TRUE) { if (missing(strata) || length(strata)==0) strata <- rep(0L, nrow(y)) if (is.factor(strata)) ustrata <- levels(strata) else ustrata <- sort(unique(strata)) nstrata <- length(ustrata) survlist <- vector('list', nstrata) names(survlist) <- ustrata survtype <- if (stype==1) 1 else ctype+1 vartype <- survtype for (i in 1:nstrata) { indx <- which(strata== ustrata[i]) survlist[[i]] <- agsurv(y[indx,,drop=F], x[indx,,drop=F], wt[indx], risk[indx], survtype, vartype) } <> if (unlist) { if (length(result)==1) { # the no strata case if (se.fit) result[[1]][c("n", "time", "n.risk", "n.event", "n.censor", "surv", "cumhaz", "std.err")] else result[[1]][c("n", "time", "n.risk", "n.event", "n.censor", "surv", "cumhaz")] } else { <> } } else { names(result) <- ustrata result } } @ In an ordinary survival curve object with multiple strata, as produced by \code{survfitKM}, the time, survival and etc components are each a single vector that contains the results for strata 1, followed by strata 2, \ldots. The strata compontent is a vector of integers, one per strata, that gives the number of elements belonging to each stratum. The reason is that each strata will have a different number of observations, so that a matrix form was not viable, and the underlying C routines were not capable of handling lists (the code predates the .Call function by a decade). The underlying computation of \code{survfitcoxph.fit} naturally creates the list form, we unlist it to \code{survfit} form as our last action unless the caller requests otherwise. <>= temp <-list(n = unlist(lapply(result, function(x) x$n), use.names=FALSE), time= unlist(lapply(result, function(x) x$time), use.names=FALSE), n.risk= unlist(lapply(result, function(x) x$n.risk), use.names=FALSE), n.event= unlist(lapply(result, function(x) x$n.event), use.names=FALSE), n.censor=unlist(lapply(result, function(x) x$n.censor), use.names=FALSE), strata = sapply(result, function(x) length(x$time))) names(temp$strata) <- names(result) if ((missing(id2) || is.null(id2)) && nrow(x2)>1) { temp$surv <- t(matrix(unlist(lapply(result, function(x) t(x$surv)), use.names=FALSE), nrow= nrow(x2))) dimnames(temp$surv) <- list(NULL, row.names(x2)) temp$cumhaz <- t(matrix(unlist(lapply(result, function(x) t(x$cumhaz)), use.names=FALSE), nrow= nrow(x2))) if (se.fit) temp$std.err <- t(matrix(unlist(lapply(result, function(x) t(x$std.err)), use.names=FALSE), nrow= nrow(x2))) } else { temp$surv <- unlist(lapply(result, function(x) x$surv), use.names=FALSE) temp$cumhaz <- unlist(lapply(result, function(x) x$cumhaz), use.names=FALSE) if (se.fit) temp$std.err <- unlist(lapply(result, function(x) x$std.err), use.names=FALSE) } temp @ For \code{individual=FALSE} we have a second dimension, namely each of the target covariate sets (if there are multiples). Each of these generates a unique set of survival and variance(survival) values, but all of the same size since each uses all the strata. The final output structure in this case has single vectors for the time, number of events, number censored, and number at risk values since they are common to all the curves, and a marix of survival and variance estimates, one column for each of the distinct target values. If $\Lambda_0$ is the baseline cumulative hazard from the above calculation, then $r_i \Lambda_0$ is the cumulative hazard for the $i$th new risk score $r_i$. The variance has two parts, the first of which is $r_i^2 H_1$ where $H_1$ is returned from the \code{agsurv} routine, and the second is \begin{align*} H_2(t) =& d'(t) V d(t) \\ %' d(t) = \int_0^t [z- \overline x(s)] d\Lambda(s) \end{align*} $V$ is the variance matrix for $\beta$ from the fitted Cox model, and $d(t)$ is the distance between the target covariate $z$ and the mean of the original data, summed up over the interval from 0 to $t$. Essentially the variance in $\hat \beta$ has a larger influence when prediction is far from the mean. The function below takes the basic curve from the list and multiplies it out to matrix form. <>= expand <- function(fit, x2, varmat, se.fit) { if (survtype==1) surv <- cumprod(fit$surv) else surv <- exp(-fit$cumhaz) if (is.matrix(x2) && nrow(x2) >1) { #more than 1 row in newdata fit$surv <- outer(surv, risk2, '^') dimnames(fit$surv) <- list(NULL, row.names(x2)) if (se.fit) { varh <- matrix(0., nrow=length(fit$varhaz), ncol=nrow(x2)) for (i in 1:nrow(x2)) { dt <- outer(fit$cumhaz, x2[i,], '*') - fit$xbar varh[,i] <- (cumsum(fit$varhaz) + rowSums((dt %*% varmat)* dt))* risk2[i]^2 } fit$std.err <- sqrt(varh) } fit$cumhaz <- outer(fit$cumhaz, risk2, '*') } else { fit$surv <- surv^risk2 if (se.fit) { dt <- outer(fit$cumhaz, c(x2)) - fit$xbar varh <- (cumsum(fit$varhaz) + rowSums((dt %*% varmat)* dt)) * risk2^2 fit$std.err <- sqrt(varh) } fit$cumhaz <- fit$cumhaz * risk2 } fit } @ In the lines just above: I have a matrix \code{dt} with one row per death time and one column per variable. For each row $d_i$ separately we want the quadratic form $d_i V d_i'$. The first matrix product can %' be done for all rows at once: found in the inner parenthesis. Ordinary (not matrix) multiplication followed by rowsums does the rest in one fell swoop. Now, if \code{id2} is missing we can simply apply the \code{expand} function to each strata. For the case with \code{id2} not missing, we create a single survival curve for each unique id (subject). A subject will spend blocks of time with different covariate sets, sometimes even jumping between strata. Retrieve each one and save it into a list, and then sew them together end to end. The \code{n} component is the number of observations in the strata --- but this subject might visit several. We report the first one they were in for printout. The \code{time} component will be cumulative on this subject's scale. %' Counting this is a bit trickier than I first thought. Say that the subject's first interval goes from 1 to 10, with observed time points in that interval at 2, 5, and 7, and a second interval from 12 to 20 with observed time points in the data of 15 and 18. On the subject's time scale things happen at days 1, 4, 6, 12 and 15. The deltas saved below are 2-1, 5-2, 7-5, 3+ 14-12, 17-14. Note the 3+ part, kept in the \code{timeforward} variable. Why all this ``adding up'' nuisance? If the subject spent time in two strata, the second one might be on an internal time scale of `time since entering the strata'. The two intervals in newdata could be 0--10 followed by 0--20. Time for the subject can't go backwards though: the change %` between internal/external time scales is a bit like following someone who was stepping back and forth over the international date line. In the code the \code{indx} variable points to the set of times that the subject was present, for this row of the new data. Note the $>$ on one end and $\le$ on the other. If someone's interval 1 was 0--10 and interval 2 was 10--20, and there happened to be a jump in the baseline survival curve at exactly time 10 (someone else died), that jump is counted only in the first interval. <>= if (missing(id2) || is.null(id2)) result <- lapply(survlist, expand, x2, varmat, se.fit) else { onecurve <- function(slist, x2, y2, strata2, risk2, se.fit) { ntarget <- nrow(x2) #number of different time intervals surv <- vector('list', ntarget) n.event <- n.risk <- n.censor <- varh1 <- varh2 <- time <- surv hazard <- vector('list', ntarget) stemp <- as.integer(strata2) timeforward <- 0 for (i in 1:ntarget) { slist <- survlist[[stemp[i]]] indx <- which(slist$time > y2[i,1] & slist$time <= y2[i,2]) if (length(indx)==0) { timeforward <- timeforward + y2[i,2] - y2[i,1] # No deaths or censors in user interval. Possible # user error, but not uncommon at the tail of the curve. } else { time[[i]] <- diff(c(y2[i,1], slist$time[indx])) #time increments time[[i]][1] <- time[[i]][1] + timeforward timeforward <- y2[i,2] - max(slist$time[indx]) hazard[[i]] <- slist$hazard[indx]*risk2[i] if (survtype==1) surv[[i]] <- slist$surv[indx]^risk2[i] n.event[[i]] <- slist$n.event[indx] n.risk[[i]] <- slist$n.risk[indx] n.censor[[i]]<- slist$n.censor[indx] dt <- outer(slist$cumhaz[indx], x2[i,]) - slist$xbar[indx,,drop=F] varh1[[i]] <- slist$varhaz[indx] *risk2[i]^2 varh2[[i]] <- rowSums((dt %*% varmat)* dt) * risk2[i]^2 } } cumhaz <- cumsum(unlist(hazard)) if (survtype==1) surv <- cumprod(unlist(surv)) #increments (K-M) else surv <- exp(-cumhaz) if (se.fit) list(n=as.vector(table(strata)[stemp[1]]), time=cumsum(unlist(time)), n.risk = unlist(n.risk), n.event= unlist(n.event), n.censor= unlist(n.censor), surv = surv, cumhaz= cumhaz, std.err = sqrt(cumsum(unlist(varh1)) + unlist(varh2))) else list(n=as.vector(table(strata)[stemp[1]]), time=cumsum(unlist(time)), n.risk = unlist(n.risk), n.event= unlist(n.event), n.censor= unlist(n.censor), surv = surv, cumhaz= cumhaz) } if (all(id2 ==id2[1])) { result <- list(onecurve(survlist, x2, y2, strata2, risk2, se.fit)) } else { uid <- unique(id2) result <- vector('list', length=length(uid)) for (i in 1:length(uid)) { indx <- which(id2==uid[i]) result[[i]] <- onecurve(survlist, x2[indx,,drop=FALSE], y2[indx,,drop=FALSE], strata2[indx], risk2[indx], se.fit) } names(result) <- uid } } @ Next is the code for the \code{agsurv} function, which actually does the work. The estimates of survival are the Kalbfleisch-Prentice (KP), Breslow, and Efron. Each has an increment at each unique death time. First a bit of notation: $Y_i(t)$ is 1 if bservation $i$ is ``at risk'' at time $t$ and 0 otherwise. For a simple surivival (\code{ncol(y)==2}) a subject is at risk until the time of censoring or death (first column of \code{y}). For (start, stop] data (\code{ncol(y)==3}) a subject becomes a part of the risk set at start+0 and stays through stop. $dN_i(t)$ will be 1 if subject $i$ had an event at time $t$. The risk score for each subject is $r_i = \exp(X_i \beta)$. The Breslow increment at time $t$ is $\sum w_i dN_i(t) / \sum w_i r_i Y_i(t)$, the number of events at time $t$ over the number at risk at time $t$. The final survival is \code{exp(-cumsum(increment))}. The Kalbfleish-Prentice increment is a multiplicative term $z$ which is the solution to the equation $$ \sum w_i r_i Y_i(t) = \sum dN_i(t) w_i \frac{r_i}{1- z(t)^{r_i}} $$ The left hand side is the weighted number at risk at time $t$, the right hand side is a sum over the tied events at that time. If there is only one event the equation has a closed form solution. If not, and knowing the solution must lie between 0 and 1, we do 35 steps of bisection to get a solution within 1e-8. An alternative is to use the -log of the Breslow estimate as a starting estimate, which is faster but requires a more sophisticated iteration logic. The final curve is $\prod_t z(t)^{r_c}$ where $r_c$ is the risk score for the target subject. The Efron estimate can be viewed as a modified Breslow estimate under the assumption that tied deaths are not really tied -- we just don't know the %' order. So if there are 3 subjects who die at some time $t$ we will have three psuedo-terms for $t$, $t+\epsilon$, and $t+ 2\epsilon$. All 3 subjects are present for the denominator of the first term, 2/3 of each for the second, and 1/3 for the third terms denominator. All contribute 1/3 of the weight to each numerator (1/3 chance they were the one to die there). The formulas will require $\sum w_i dN_i(t)$, $\sum w_ir_i dN_i(t)$, and $\sum w_i X_i dN_i(t)$, i.e., the sums only over the deaths. For simple survival data the risk sum $\sum w_i r_i Y_i(t)$ for all the unique death times $t$ is fast to compute as a cumulative sum, starting at the longest followup time and summing towards the shortest. There are two algorithms for (start, stop] data. \begin{itemize} \item Do a separate sum at each death time. The problem is for very large data sets. For each death time the selection \code{(start=t)} is $O(n)$ and can take more time then all the remaining calculations together. \item Use the difference of two cumulative sums, one ordered by start time and one ordered by stop time. This is $O(2n)$ for the intial sums. The problem here is potential round off error if the sums get large. This issue is mostly precluded by subtracting means first, and avoiding intervals that don't overlap an event time. \end{itemize} We compute the extended number still at risk --- all whose stop time is $\ge$ each unique death time --- in the vector \code{xin}. From this we have to subtract all those who haven't actually entered yet %' found in \code{xout}. Remember that (3,20] enters at time 3+. The total at risk at any time is the difference between them. Output is only for the stop times; a call to approx is used to reconcile the two time sets. The \code{irisk} vector is for the printout, it is a sum of weighted counts rather than weighted risk scores. <>= agsurv <- function(y, x, wt, risk, survtype, vartype) { nvar <- ncol(as.matrix(x)) status <- y[,ncol(y)] dtime <- y[,ncol(y) -1] death <- (status==1) time <- sort(unique(dtime)) nevent <- as.vector(rowsum(wt*death, dtime)) ncens <- as.vector(rowsum(wt*(!death), dtime)) wrisk <- wt*risk rcumsum <- function(x) rev(cumsum(rev(x))) # sum from last to first nrisk <- rcumsum(rowsum(wrisk, dtime)) irisk <- rcumsum(rowsum(wt, dtime)) if (ncol(y) ==2) { temp2 <- rowsum(wrisk*x, dtime) xsum <- apply(temp2, 2, rcumsum) } else { delta <- min(diff(time))/2 etime <- c(sort(unique(y[,1])), max(y[,1])+delta) #unique entry times indx <- approx(etime, 1:length(etime), time, method='constant', rule=2, f=1)$y esum <- rcumsum(rowsum(wrisk, y[,1])) #not yet entered nrisk <- nrisk - c(esum,0)[indx] irisk <- irisk - c(rcumsum(rowsum(wt, y[,1])),0)[indx] xout <- apply(rowsum(wrisk*x, y[,1]), 2, rcumsum) #not yet entered xin <- apply(rowsum(wrisk*x, dtime), 2, rcumsum) # dtime or alive xsum <- xin - (rbind(xout,0))[indx,,drop=F] } ndeath <- rowsum(status, dtime) #unweighted death count @ The KP estimate requires a short C routine to do the iteration efficiently, and the Efron estimate needs a second C routine to efficiently compute the partial sums. <>= ntime <- length(time) if (survtype ==1) { #Kalbfleisch-Prentice indx <- (which(status==1))[order(dtime[status==1])] #deaths km <- .C(Cagsurv4, as.integer(ndeath), as.double(risk[indx]), as.double(wt[indx]), as.integer(ntime), as.double(nrisk), inc = double(ntime)) } if (survtype==3 || vartype==3) { # Efron approx xsum2 <- rowsum((wrisk*death) *x, dtime) erisk <- rowsum(wrisk*death, dtime) #risk score sums at each death tsum <- .C(Cagsurv5, as.integer(length(nevent)), as.integer(nvar), as.integer(ndeath), as.double(nrisk), as.double(erisk), as.double(xsum), as.double(xsum2), sum1 = double(length(nevent)), sum2 = double(length(nevent)), xbar = matrix(0., length(nevent), nvar)) } haz <- switch(survtype, nevent/nrisk, nevent/nrisk, nevent* tsum$sum1) varhaz <- switch(vartype, nevent/(nrisk * ifelse(nevent>=nrisk, nrisk, nrisk-nevent)), nevent/nrisk^2, nevent* tsum$sum2) xbar <- switch(vartype, (xsum/nrisk)*haz, (xsum/nrisk)*haz, nevent * tsum$xbar) result <- list(n= nrow(y), time=time, n.event=nevent, n.risk=irisk, n.censor=ncens, hazard=haz, cumhaz=cumsum(haz), varhaz=varhaz, ndeath=ndeath, xbar=apply(matrix(xbar, ncol=nvar),2, cumsum)) if (survtype==1) result$surv <- km$inc result } @ The arguments to this function are the number of unique times n, which is the length of the vectors ndeath (number at each time), denom, and the returned vector km. The risk and wt vectors contain individual values for the subjects with an event. Their length will be equal to sum(ndeath). <>= #include "survS.h" #include "survproto.h" void agsurv4(Sint *ndeath, double *risk, double *wt, Sint *sn, double *denom, double *km) { int i,j,k, l; int n; /* number of unique death times */ double sumt, guess, inc; n = *sn; j =0; for (i=0; i>= #include "survS.h" void agsurv5(Sint *n2, Sint *nvar2, Sint *dd, double *x1, double *x2, double *xsum, double *xsum2, double *sum1, double *sum2, double *xbar) { double temp; int i,j, k, kk; double d; int n, nvar; n = n2[0]; nvar = nvar2[0]; for (i=0; i< n; i++) { d = dd[i]; if (d==1){ temp = 1/x1[i]; sum1[i] = temp; sum2[i] = temp*temp; for (k=0; k< nvar; k++) xbar[i+ n*k] = xsum[i + n*k] * temp*temp; } else { temp = 1/x1[i]; for (j=0; j>= plot.survfit<- function(x, conf.int, mark.time=FALSE, pch=3, col=1,lty=1, lwd=1, cex=1, log=FALSE, xscale=1, yscale=1, xlim, ylim, xmax, fun, xlab="", ylab="", xaxs='r', conf.times, conf.cap=.005, conf.offset=.012, conf.type=c('log', 'log-log', 'plain', 'logit', "arcsin"), mark, noplot="(s0)", cumhaz=FALSE, firstx, ymin, ...) { dotnames <- names(list(...)) if (any(dotnames =='type')) stop("The graphical argument 'type' is not allowed") x <- survfit0(x, x$start.time) # align data at 0 for plotting <> <> <> <> <> <> <> type <- 's' <> if (resetclip) { xx <- par("usr") clip(xx[1], xx[2], xx[3], xx[4]) # undo the clipping } invisible(lastx) } lines.survfit <- function(x, type='s', pch=3, col=1, lty=1, lwd=1, cex=1, mark.time=FALSE, fun, conf.int=FALSE, conf.times, conf.cap=.005, conf.offset=.012, conf.type=c('log', 'log-log', 'plain', 'logit', "arcsin"), mark, noplot="(s0)", cumhaz=FALSE, ...) { x <- survfit0(x, x$start.time) xlog <- par("xlog") <> <> <> <> do.clip <- options("plot.survfit") if (!is.null(xx <- do.clip$plotclip)) clip(xx[1], xx[2], xx[3], xx[4]) <> <> if (!is.null(xx <- do.clip$plotreset)) clip(xx[1], xx[2], xx[3], xx[4]) invisible(lastx) } points.survfit <- function(x, fun, censor=FALSE, col=1, pch, noplot="(s0)", cumhaz=FALSE, ...) { conf.int <- FALSE # never draw these with 'points' x <- survfit0(x, x$start.time) <> <> do.clip <- options("plot.survfit") if (!is.null(xx <- do.clip$plotclip)) clip(xx[1], xx[2], xx[3], xx[4]) if (ncurve==1 || (length(col)==1 && missing(pch))) { if (censor) points(stime, ssurv, ...) else points(stime[x$n.event>0], ssurv[x$n.event>0], ...) } else { c2 <- 1 #cycles through the colors and characters col <- rep(col, length=ncurve) if (!missing(pch)) { if (length(pch)==1) pch2 <- rep(strsplit(pch, '')[[1]], length=ncurve) else pch2 <- rep(pch, length=ncurve) } for (j in 1:ncol(ssurv)) { for (i in unique(stemp)) { if (censor) who <- which(stemp==i) else who <- which(stemp==i & x$n.event >0) if (missing(pch)) points(stime[who], ssurv[who,j], col=col[c2], ...) else points(stime[who], ssurv[who,j], col=col[c2], pch=pch2[c2], ...) c2 <- c2+1 } } } if (!is.null(xx <- do.clip$plotreset)) clip(xx[1], xx[2], xx[3], xx[4]) } @ <>= # decide on logarithmic axes, yes or no if (is.logical(log)) { ylog <- log xlog <- FALSE if (ylog) logax <- 'y' else logax <- "" } else { ylog <- (log=='y' || log=='xy') xlog <- (log=='x' || log=='xy') logax <- log } if (!missing(fun)) { if (is.character(fun)) { if (fun=='log'|| fun=='logpct') ylog <- TRUE if (fun=='cloglog') { xlog <- TRUE if (ylog) logax <- 'xy' else logax <- 'x' } } } @ <>= # The default for plot and lines is to add confidence limits # if there is only one curve if (missing(conf.int) && missing(conf.times)) conf.int <- (!is.null(x$std.err) && prod(dim(x) ==1)) if (missing(conf.times)) conf.times <- NULL else { if (!is.numeric(conf.times)) stop('conf.times must be numeric') if (missing(conf.int)) conf.int <- TRUE } if (!missing(conf.int)) { if (is.numeric(conf.int)) { conf.level <- conf.int if (conf.level<0 || conf.level > 1) stop("invalid value for conf.int") if (conf.level ==0) conf.int <- FALSE else if (conf.level != x$conf.int) { x$upper <- x$lower <- NULL # force recomputation } conf.int <- TRUE } else conf.level = 0.95 } # Organize data into stime, ssurv, supper, slower stime <- x$time std <- NULL yzero <- FALSE # a marker that we have an "ordinary survival curve" with min 0 smat <- function(x) { # the rest of the routine is simpler if everything is a matrix dd <- dim(x) if (is.null(dd)) as.matrix(x) else if (length(dd) ==2) x else matrix(x, nrow=dd[1]) } if (cumhaz) { # plot the cumulative hazard instead if (is.null(x$cumhaz)) stop("survfit object does not contain a cumulative hazard") if (is.numeric(cumhaz)) { dd <- dim(x$cumhaz) if (is.null(dd)) nhazard <- 1 else nhazard <- prod(dd[-1]) if (cumhaz != floor(cumhaz)) stop("cumhaz argument is not integer") if (any(cumhaz < 1 | cumhaz > nhazard)) stop("subscript out of range") ssurv <- smat(x$cumhaz)[,cumhaz, drop=FALSE] if (!is.null(x$std.chaz)) std <- smat(x$std.chaz)[,cumhaz, drop=FALSE] } else if (is.logical(cumhaz)) { ssurv <- smat(x$cumhaz) if (!is.null(x$std.chaz)) std <- smat(x$std.chaz) } else stop("invalid cumhaz argument") } else if (inherits(x, "survfitms")) { i <- (x$states != noplot) if (all(i) || !any(i)) { # the !any is a failsafe, in case none are kept then ignore noplot ssurv <- smat(x$pstate) if (!is.null(x$std.err)) std <- smat(x$std.err) } else { i <- which(i) # the states to keep # we have to be careful about subscripting if (length(dim(x$pstate)) ==3) { ssurv <- smat(x$pstate[,,i, drop=FALSE]) if (!is.null(x$std.err)) std <- smat(x$std.err[,,i, drop=FALSE]) } else { ssurv <- x$pstate[,i, drop=FALSE] if (!is.null(x$std.err)) std <- x$std.err[,i, drop=FALSE] } } } else { yzero <- TRUE ssurv <- as.matrix(x$surv) # x$surv will have one column if (!is.null(x$std.err)) std <- as.matrix(x$std.err) # The fun argument only applies to single state survfit objects # First deal with the special case of fun='cumhaz', which is here for # backwards compatability; people should use the cumhaz argument if (!missing(fun) && is.character(fun) && fun=="cumhaz") { cumhaz <- TRUE if (!is.null(x$cumhaz)) { ssurv <- as.matrix(x$cumhaz) if (!is.null(x$std.chaz)) std <- as.matrix(x$std.chaz) } else { ssurv <- as.matrix(-log(x$surv)) if (!is.null(x$std.err)) { if (x$logse) std <- as.matrix(x$std.err) else std <- as.matrix(x$std.err/x$surv) } } } } # set up strata if (is.null(x$strata)) { nstrat <- 1 stemp <- rep(1, length(x$time)) # same length as stime } else { nstrat <- length(x$strata) stemp <- rep(1:nstrat, x$strata) # same length as stime } ncurve <- nstrat * ncol(ssurv) @ If confidence limits are to be plotted, and they were not part of the data that is passed in, create them. Confidence limits for the cumulative hazard must always be created, and they don't use transforms. <>= conf.type <- match.arg(conf.type) if (conf.type=="none") conf.int <- FALSE if (conf.int== "none") conf.int <- FALSE if (conf.int=="only") { plot.surv <- FALSE conf.int <- TRUE } else plot.surv <- TRUE if (conf.int) { if (is.null(std)) stop("object does not have standard errors, CI not possible") if (cumhaz) { if (missing(conf.type)) conf.type="plain" temp <- survfit_confint(ssurv, std, logse=FALSE, conf.type, conf.level, ulimit=FALSE) supper <- as.matrix(temp$upper) slower <- as.matrix(temp$lower) } else if (is.null(x$upper)) { if (missing(conf.type) && !is.null(x$conf.type)) conf.type <- x$conf.type temp <- survfit_confint(ssurv, x$std.err, logse= x$logse, conf.type, conf.level, ulimit=FALSE) supper <- as.matrix(temp$upper) slower <- as.matrix(temp$lower) } else { supper <- as.matrix(x$upper) slower <- as.matrix(x$lower) } } else supper <- slower <- NULL @ <>= if (!inherits(x, "survfitms") && !cumhaz & !missing(fun)) { yzero <- FALSE if (is.character(fun)) { tfun <- switch(tolower(fun), 'log' = function(x) x, 'event'=function(x) 1-x, 'cumhaz'=function(x) -log(x), 'cloglog'=function(x) log(-log(x)), 'pct' = function(x) x*100, 'logpct'= function(x) 100*x, #special case further below 'identity'= function(x) x, 'f' = function(x) 1-x, 's' = function(x) x, 'surv' = function(x) x, stop("Unrecognized function argument") ) if (tolower(fun) %in% c("identity", "s") && !inherits(x, "survfitms") && !cumhaz) yzero <- TRUE } else if (is.function(fun)) tfun <- fun else stop("Invalid 'fun' argument") ssurv <- tfun(ssurv ) if (!is.null(supper)) { supper <- tfun(supper) slower <- tfun(slower) } } @ The \code{mark} argument is a holdover from S, when pch could not have numeric values; mark has since disappeared from the manual page for \code{par}. We honor it for backwards compatability. To be consistent with matplot and others, we allow pch to be a character string or a vector of characters. <>= if (missing(mark.time) & !missing(mark)) mark.time <- TRUE if (missing(pch) && !missing(mark)) pch <- mark if (length(pch)==1 && is.character(pch)) pch <- strsplit(pch, "")[[1]] # Marks are not placed on confidence bands pch <- rep(pch, length.out=ncurve) mcol <- rep(col, length.out=ncurve) if (is.numeric(mark.time)) mark.time <- sort(mark.time) # The actual number of curves is ncurve*3 if there are confidence bands, # unless conf.times has been given. Colors and line types in the latter # match the curves # If the number of line types is 1 and lty is an integer, then use lty # for the curve and lty+1 for the CI # If the length(lty) <= length(ncurve), use the same color for curve and CI # otherwise assume the user knows what they are about and has given a full # vector of line types. # Colors and line widths work like line types, excluding the +1 rule. if (conf.int & is.null(conf.times)) { if (length(lty)==1 && is.numeric(lty)) lty <- rep(c(lty, lty+1, lty+1), ncurve) else if (length(lty) <= ncurve) lty <- rep(rep(lty, each=3), length.out=(ncurve*3)) else lty <- rep(lty, length.out= ncurve*3) if (length(col) <= ncurve) col <- rep(rep(col, each=3), length.out=3*ncurve) else col <- rep(col, length.out=3*ncurve) if (length(lwd) <= ncurve) lwd <- rep(rep(lwd, each=3), length.out=3*ncurve) else lwd <- rep(lwd, length.out=3*ncurve) } else { col <- rep(col, length.out=ncurve) lty <- rep(lty, length.out=ncurve) lwd <- rep(lwd, length.out=ncurve) } @ Create the frame for the plot. We draw an empty figure, letting R figure out the limits. <>= # check consistency if (!missing(xlim)) { if (!missing(xmax)) warning("cannot have both xlim and xmax arguments, xmax ignored") if (!missing(firstx)) stop("cannot have both xlim and firstx arguments") } if (!missing(ylim)) { if (!missing(ymin)) stop("cannot have both ylim and ymin arguments") } # Do axis range computations if (!missing(xlim) && !is.null(xlim)) { tempx <- xlim if (xaxs == 'S') tempx[2] <- tempx[2] + diff(tempx)*1.04 } else { temp <- stime[is.finite(stime)] if (!missing(xmax) && missing(xlim)) temp <- temp[temp <= xmax] if (xaxs=='S') { #special x- axis style for survival curves if (xlog) tempx <- c(min(temp[temp>0]), max(temp)+ diff(temp)*1.04) else tempx <- c(min(temp), max(temp)) * 1.04 } else if (xlog) tempx <- range(temp[temp > 0]) else tempx <- range(temp) } if (!missing(ylim) && !is.null(ylim)) tempy <- ylim else { skeep <- is.finite(stime) & stime >= tempx[1] & stime <= tempx[2] if (ylog) { if (!is.null(supper)) tempy <- range(c(slower[is.finite(slower) & slower>0 & skeep], supper[is.finite(supper) & skeep])) else tempy <- range(ssurv[is.finite(ssurv)& ssurv>0 & skeep]) if (tempy[2]==1) tempy[2] <- .99 # makes for a prettier axis if (any(c(ssurv, slower)[skeep] ==0)) { tempy[1] <- tempy[1]*.8 ssurv[ssurv==0] <- tempy[1] if (!is.null(slower)) slower[slower==0] <- tempy[1] } } else { if (!is.null(supper)) tempy <- range(c(supper[skeep], slower[skeep]), finite=TRUE, na.rm=TRUE) else tempy <- range(ssurv[skeep], finite=TRUE, na.rm= TRUE) if (yzero) tempy <- range(c(0, tempy)) } } if (!missing(ymin)) tempy[1] <- ymin # # Draw the basic box # temp <- if (xaxs=='S') 'i' else xaxs plot(range(tempx, finite=TRUE, na.rm=TRUE)/xscale, range(tempy, finite=TRUE, na.rm=TRUE)*yscale, type='n', log=logax, xlab=xlab, ylab=ylab, xaxs=temp,...) if(yscale != 1) { if (ylog) par(usr =par("usr") -c(0, 0, log10(yscale), log10(yscale))) else par(usr =par("usr")/c(1, 1, yscale, yscale)) } if (xscale !=1) { if (xlog) par(usr =par("usr") -c(log10(xscale), log10(xscale), 0,0)) else par(usr =par("usr")*c(xscale, xscale, 1, 1)) } @ The use of [[par(usr)]] just above is a bit sneaky. I want the lines and points routines to be able to add to the plot, \emph{without} passing them a global parameter that determines the y-scale or forcing the user to repeat it. Use clipping to get a nice limit to the plot, without having any of the lines touch the edge. <>= if (xaxs=='i') resetclip <- FALSE else resetclip <- !(missing(xlim) & missing(ylim) & missing(xmax) & missing(firstx)& missing(ymin)) if (resetclip) { # yes, do it if (xaxs=='S') tempx <- c(tempx[1], temp[1]) clip(tempx[1], tempx[2], tempy[1], tempy[2]) options(plot.survfit = list(plotclip=c(tempx, tempy), plotreset=par('usr'))) } else options(plot.survfit = NULL) #remove any notes from a prior plot @ The next functions do the actual drawing. <>= # Create a step function, removing redundancies that sometimes occur in # curves with lots of censoring. dostep <- function(x,y) { keep <- is.finite(x) & is.finite(y) if (!any(keep)) return() #all points were infinite or NA if (!all(keep)) { # these won't plot anyway, so simplify (CI values are often NA) x <- x[keep] y <- y[keep] } n <- length(x) if (n==1) list(x=x, y=y) else if (n==2) list(x=x[c(1,2,2)], y=y[c(1,1,2)]) else { # replace verbose horizonal sequences like # (1, .2), (1.4, .2), (1.8, .2), (2.3, .2), (2.9, .2), (3, .1) # with (1, .2), (.3, .2),(3, .1). # They are slow, and can smear the looks of the line type. temp <- rle(y)$lengths drops <- 1 + cumsum(temp[-length(temp)]) # points where the curve drops #create a step function if (n %in% drops) { #the last point is a drop xrep <- c(x[1], rep(x[drops], each=2)) yrep <- rep(y[c(1,drops)], c(rep(2, length(drops)), 1)) } else { xrep <- c(x[1], rep(x[drops], each=2), x[n]) yrep <- c(rep(y[c(1,drops)], each=2)) } list(x=xrep, y=yrep) } } drawmark <- function(x, y, mark.time, censor, cex, ...) { if (!is.numeric(mark.time)) { xx <- x[censor>0] yy <- y[censor>0] if (any(censor >1)) { # tied death and censor, put it on the midpoint j <- pmax(1, which(censor>1) -1) i <- censor[censor>0] yy[i>1] <- (yy[i>1] + y[j])/2 } } else { #interpolate xx <- mark.time yy <- approx(x, y, xx, method="constant", f=0)$y } points(xx, yy, cex=cex, ...) } @ The code to actually draw curves for the plot. The code to draw the lines and confidence bands. <>= c1 <- 1 # keeps track of the curve number c2 <- 1 # keeps track of the lty, col, etc xend <- yend <- double(ncurve) if (length(conf.offset) ==1) temp.offset <- (1:ncurve - (ncurve+1)/2)* conf.offset* diff(par("usr")[1:2]) else temp.offset <- rep(conf.offset, length=ncurve) * diff(par("usr")[1:2]) temp.cap <- conf.cap * diff(par("usr")[1:2]) for (j in 1:ncol(ssurv)) { for (i in unique(stemp)) { #for each strata who <- which(stemp==i) # if n.censor is missing, then assume any line that does not have an # event would not be present but for censoring, so there must have # been censoring then # otherwise categorize is 0= no censor, 1=censor, 2=censor and death if (is.null(x$n.censor)) censor <- ifelse(x$n.event[who]==0, 1, 0) else censor <- ifelse(x$n.censor[who]==0, 0, 1 + (x$n.event[who] > 0)) xx <- stime[who] yy <- ssurv[who,j] if (plot.surv) { if (type=='s') lines(dostep(xx, yy), lty=lty[c2], col=col[c2], lwd=lwd[c2]) else lines(xx, yy, type=type, lty=lty[c2], col=col[c2], lwd=lwd[c2]) if (is.numeric(mark.time) || mark.time) drawmark(xx, yy, mark.time, censor, pch=pch[c1], col=mcol[c1], cex=cex) } xend[c1] <- max(xx) yend[c1] <- yy[length(yy)] if (conf.int && !is.null(conf.times)) { # add vertical bars at the specified times x2 <- conf.times + temp.offset[c1] templow <- approx(xx, slower[who,j], x2, method='constant', f=1)$y temphigh<- approx(xx, supper[who,j], x2, method='constant', f=1)$y segments(x2, templow, x2, temphigh, lty=lty[c2], col=col[c2], lwd=lwd[c2]) if (conf.cap>0) { segments(x2-temp.cap, templow, x2+temp.cap, templow, lty=lty[c2], col=col[c2], lwd=lwd[c2] ) segments(x2-temp.cap, temphigh, x2+temp.cap, temphigh, lty=lty[c2], col=col[c2], lwd=lwd[c2]) } } c1 <- c1 +1 c2 <- c2 +1 if (conf.int && is.null(conf.times)) { if (type == 's') { lines(dostep(xx, slower[who,j]), lty=lty[c2], col=col[c2],lwd=lwd[c2]) c2 <- c2 +1 lines(dostep(xx, supper[who,j]), lty=lty[c2], col=col[c2], lwd= lwd[c2]) c2 <- c2 + 1 } else { lines(xx, slower[who,j], lty=lty[c2], col=col[c2],lwd=lwd[c2], type=type) c2 <- c2 +1 lines(xx, supper[who,j], lty=lty[c2], col=col[c2], lwd= lwd[c2], type= type) c2 <- c2 + 1 } } } } lastx <- list(x=xend, y=yend) @ survival/noweb/msurv.nw0000644000176200001440000003254213570767322015003 0ustar liggesusers\subsubsection{C-code} (This is set up as a separate file in the source code directory since it is easier to make the code stay in C-mode if the file has a .nw extension.) <>= #include "survS.h" #include "survproto.h" #include SEXP survfitci(SEXP ftime2, SEXP sort12, SEXP sort22, SEXP ntime2, SEXP status2, SEXP cstate2, SEXP wt2, SEXP id2, SEXP p2, SEXP i02, SEXP sefit2) { <> <> <> } @ Arguments to the routine are the following. For an R object ``zed'' I use the convention of [[zed2]] to refer to the object and [[zed]] to the contents of the object. \begin{description} \item[ftime] A two column matrix containing the entry and exit times for each subject. \item[sort1] Order vector for the entry times. The first element of sort1 points to the first entry time, etc. \item[sort2] Order vector for the event times. \item[ntime] Number of unique event time values. This fixes the size of the output arrays. \item[status] Status for each observation. 0= censored \item[cstate] The initial state for each subject, which will be updated during computation to always be the current state. \item[wt] Case weight for each observation. \item[id] The subject id for each observation. \item[p] The initial distribution of states. This will be updated during computation to be the current distribution. \item[i0] The initial influence matrix, number of subjects by number of states \item[sefit] If 1 then do the se compuatation, if 2 also return the full influence matrix upon which it is based, if 0 the se is not needed. \end{description} Declare all of the variables. <>= int i, j, k, kk; /* generic loop indices */ int ck, itime, eptr; /*specific indices */ double ctime; /*current time of interest, in the main loop */ int oldstate, newstate; /*when changing state */ double temp, *temp2; /* scratch double, and vector of length nstate */ double *dptr; /* reused in multiple contexts */ double *p; /* current prevalence vector */ double **hmat; /* hazard matrix at this time point */ double **umat=0; /* per subject leverage at this time point */ int *atrisk; /* 1 if the subject is currently at risk */ int *ns; /* number curently in each state */ int *nev; /* number of events at this time, by state */ double *ws; /* weighted count of number state */ double *wtp; /* case weights indexed by subject */ double wevent; /* weighted number of events at current time */ int nstate; /* number of states */ int n, nperson; /*number of obs, subjects*/ double **chaz; /* cumulative hazard matrix */ /* pointers to the R variables */ int *sort1, *sort2; /*sort index for entry time, event time */ double *entry,* etime; /*entry time, event time */ int ntime; /* number of unique event time values */ int *status; /*0=censored, 1,2,... new states */ int *cstate; /* current state for each subject */ int *dstate; /* the next state, =cstate if not an event time */ double *wt; /* weight for each observation */ double *i0; /* initial influence */ int *id; /* for each obs, which subject is it */ int sefit; /* returned objects */ SEXP rlist; /* the returned list and variable names of same */ const char *rnames[]= {"nrisk","nevent","ncensor", "p", "cumhaz", "std", "influence.pstate", ""}; SEXP setemp; double **pmat, **vmat=0, *cumhaz, *usave=0; /* =0 to silence -Wall warning */ int *ncensor, **nrisk, **nevent; @ Now set up pointers for all of the R objects sent to us. The two that will be updated need to be replaced by duplicates. <>= ntime= asInteger(ntime2); nperson = LENGTH(cstate2); /* number of unique subjects */ n = LENGTH(sort12); /* number of observations in the data */ PROTECT(cstate2 = duplicate(cstate2)); cstate = INTEGER(cstate2); entry= REAL(ftime2); etime= entry + n; sort1= INTEGER(sort12); sort2= INTEGER(sort22); status= INTEGER(status2); wt = REAL(wt2); id = INTEGER(id2); PROTECT(p2 = duplicate(p2)); /*copy of initial prevalence */ p = REAL(p2); nstate = LENGTH(p2); /* number of states */ i0 = REAL(i02); sefit = asInteger(sefit2); /* allocate space for the output objects ** Ones that are put into a list do not need to be protected */ PROTECT(rlist=mkNamed(VECSXP, rnames)); setemp = SET_VECTOR_ELT(rlist, 0, allocMatrix(INTSXP, ntime, nstate)); nrisk = imatrix(INTEGER(setemp), ntime, nstate); /* time by state */ setemp = SET_VECTOR_ELT(rlist, 1, allocMatrix(INTSXP, ntime, nstate)); nevent = imatrix(INTEGER(setemp), ntime, nstate); /* time by state */ setemp = SET_VECTOR_ELT(rlist, 2, allocVector(INTSXP, ntime)); ncensor = INTEGER(setemp); /* total at each time */ setemp = SET_VECTOR_ELT(rlist, 3, allocMatrix(REALSXP, ntime, nstate)); pmat = dmatrix(REAL(setemp), ntime, nstate); setemp = SET_VECTOR_ELT(rlist, 4, allocMatrix(REALSXP, nstate*nstate, ntime)); cumhaz = REAL(setemp); if (sefit >0) { setemp = SET_VECTOR_ELT(rlist, 5, allocMatrix(REALSXP, ntime, nstate)); vmat= dmatrix(REAL(setemp), ntime, nstate); } if (sefit >1) { /* the max space is larger for a matrix than a vector ** This is pure sneakiness: if I allocate a vector then n*nstate*(ntime+1) ** may overflow, as it is an integer argument. Using the rows and cols of ** a matrix neither overflows. But once allocated, I can treat setemp ** like a vector since usave is a pointer to double, which is bigger than ** integer and won't overflow. */ setemp = SET_VECTOR_ELT(rlist, 6, allocMatrix(REALSXP, n*nstate, ntime+1)); usave = REAL(setemp); } /* allocate space for scratch vectors */ ws = (double *) R_alloc(2*nstate, sizeof(double)); /*weighted number in state */ temp2 = ws + nstate; ns = (int *) R_alloc(2*nstate, sizeof(int)); nev = ns + nstate; atrisk = (int *) R_alloc(2*nperson, sizeof(int)); dstate = atrisk + nperson; wtp = (double *) R_alloc(nperson, sizeof(double)); hmat = (double**) dmatrix((double *)R_alloc(nstate*nstate, sizeof(double)), nstate, nstate); chaz = (double**) dmatrix((double *)R_alloc(nstate*nstate, sizeof(double)), nstate, nstate); if (sefit >0) umat = (double**) dmatrix((double *)R_alloc(nperson*nstate, sizeof(double)), nstate, nperson); /* R_alloc does not zero allocated memory */ for (i=0; i>= if (sefit ==1) { dptr = i0; for (j=0; j1) { /* copy influence, and save it */ dptr = i0; for (j=0; j>= itime =0; /*current time index, for output arrays */ eptr = 0; /*index to sort1, the entry times */ for (i=0; i> <> /* Take the current events and censors out of the risk set */ for (; i0) cstate[id[j]] = status[j]-1; /*new state */ atrisk[id[j]] =0; } else break; } itime++; } @ The key variables for the computation are the matrix $H$ and the current prevalence vector $P$. $H$ is created anew at each unique time point. Row $j$ of $H$ concerns everyone in state $j$ just before the time point, and contains the transitions at that time point. So the $jk$ element is the (weighted) fraction who change from state $j$ to state $k$, and the $jj$ element the fraction who stay put. Each row of $H$ by definition sums to 1. If no one is in the state then the $jj$ element is set to 1. A second version which we call H2 has 1 subtracted from each diagonal giving row sums are 0, we go back and forth depending on which is needed at the moment. If there are no events at this time point $P$ and $U$ do not update. <>= for (j=0; j0) { newstate = status[k] -1; /* 0 based subscripts */ oldstate = cstate[id[k]]; if (oldstate != newstate) { /* A "move" to the same state does not count */ dstate[id[k]] = newstate; nev[newstate]++; wevent += wt[k]; hmat[oldstate][newstate] += wt[k]; } } else ncensor[itime]++; } else break; } if (wevent > 0) { /* there was at least one move with weight > 0 */ /* finish computing H */ for (j=0; j0) { temp =0; for (k=0; k0) { <> } <> } @ The most complicated part of the code is the update of the per subject influence matrix $U$. The influence for a subject is the derivative of the current estimates wrt the case weight of that subject. Since $p$ is a vector the influence $U$ is easily represented as a matrix with one row per subject and one column per state. Refer to equation \eqref{ci} for the derivation. Let $m$ and $n$ be the old and new states for subject $i$, and $n_m$ the sum of weights for all subjects at risk in state $m$. Then \begin{equation*} U_{ij}(t) = \sum_k \left[ U_{ik}(t-)H_{kj}\right] + p_m(t-)(I_{n=j} - H_{mj})/ n_m \end{equation*} \begin{enumerate} \item The first term above is simple matrix multiplication. \item The second adds a vector with mean zero. \end{enumerate} If standard errors are not needed we can skip this calculation. <>= if (sefit >0) { /* Update U, part 1 U = U %*% H -- matrix multiplication */ for (j=0; j>= /* Finally, update chaz and p. */ for (j=0; j>= /* store into the matrices that will be passed back */ for (j=0; j0) { temp =0; for (k=0; k 1) for (k=0; k>= /* return a list */ UNPROTECT(3); return(rlist); @ survival/noweb/ratetable.Rnw0000644000176200001440000004320213537676563015720 0ustar liggesusers\documentclass{article} \usepackage{noweb} \usepackage[pdftex]{graphicx} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \newcommand{\myfig}[1]{\resizebox{\textwidth}{!} {\includegraphics{#1.pdf}}} \SweaveOpts{keep.source=TRUE} \title{Rate tables in the Survival Package} \author{Terry Therneau and Megan O'Byrne} \begin{document} \maketitle <>= options(width=60, continue=" ") makefig <- function(file, top=1, right=1, left=4) { pdf(file, width=9.5, height=7, pointsize=18) par(mar=c(4, left, top, right) +.1) } @ \section{Introduction} This is a short introduction to how the United States rate tables found in the \emph{survival} package are generated. Data for new calendar years is regularly added; this is stored in the data directory and processed by a function there into the current rate table. Much more detail on how the rate tables are used can be found in a series of technical reports from the Department of Health Science Research, Mayo Clinic. \section{Data} The US death rates for 1940 to 2000 are based on the US Decennial Rate tables, published by the National Center for Health Statistics, within the Centers for Disease Control. The detailed address of the web pages changes, at the time of typing this \texttt{www.cdc.gov/nchs} will reach the top level, from which the documents can be found by using \emph{rate tables} in the search box. The structure of the tables has changed slightly over the years $$ \begin{tabular}{c|l|l} Year & Age & Race \\ \hline 1940 & 0--110 & total, white, black, other \\ 1950--1960 & 0--109 + first year & total, white, non-white \\ 1970--1990 & 0-1d, 1-7d, 7-28d, 28-365d, 1-109 & total, white, nowhite, black \\ 2000 & 0-1d, 1-7d, 7-28d, 28-365d, 1-109 & total, white, black \\ \end{tabular} $$ The first year data for 1950-1960 is a separate table, with much more detail than the other years. Publication dates of the decennial tables has lagged, however, with the 2000 table not appearing until late in 2008. The 2000 decennial data for individual states has not yet appeared as of this writing (Feb 2011). Data for 2001 and forward is taken from the annual life tables, which appear more promptly. The annual tables contain total, white, and black, do not break up the first year of life, and extend only to age 99. First year of life data for the later years is obtained from Report GMWK264A: Deaths under 1 Year, by Month, Age, Race, and Sex: United States, 1999-2007, which can be found in the National Vital Statistics System (within NCHS). The log(hazard) for the later ages is extrapolated from ages 70-99 using a smoothing spline. The source code for the \emph{survival} package contains a \texttt{noweb} directory with the code for this report, amongst other things, and a sub-directory \texttt{noweb/rates} containing the raw data for the rate tables. The decennial files have been subset and normalized into a common form, and found as \texttt{usdecennial.dat} and \texttt{minndecennial.dat}. The US data contains the $q$ values for all combinations of age (0-1 day, 2-7 d, 7-28 d, 28-365 d), sex (male, female) and race (total, white, black). The Minnesota table does not subdivide the first year of life, and contains data only for total and white. For individual years the \texttt{noweb/rates} directory contains individual files for each year. As new rate tables are published a new file is added with the following procedure. \begin{enumerate} \item The NCHS source is a pdf file, with tables for each combinations of race and sex. These will be saved as individual files with names like \texttt{us2006tf.csv}, \texttt{us2006wf.csv}, etc for the total female and white female tables, respectively. \item The code below, with names modified appropriately for the particular year, is used to create a single file containing the $q$ values for each age. \end{enumerate} <>= basename <- "us2006" suffix <- c("tm", "tf", "wm", "wf", "bm", "bf") #total male, ..., black female newdata <- list(age=paste(0:99, 1:100, sep='-')) for (i in 1:6) { tdata <- read.csv(paste(basename, suffix[j], '.csv', sep=''), col.names=c('age', 'q', 'n', 'deaths', 'L', "n.older", "expect", 'dummy'), sep=',', header=FALSE) newdata[[suffix[j]]] <- 10000* tdata$q } write.table(newdata, file=paste(basename, "dat", sep='.')) @ The infant mortality data is also updated as new information becomes available, usually by hand editing new lines into the file. Updates of the life tables and the infant mortality tables on the NCHS site are not coordinated. \section{Rate tables} A rate table is an array containing daily hazard rates $\lambda$. The US tables contain annual death rates $q = 1 - exp(\lambda* 365.25)$. (Technically one could keep track of leap year, using either 365 or 366 as appropriate for each calendar year. We do not.) They can be cross-classified in any way that is desired, various attributes of the table describe this cross classification. The attributes are \begin{description} \item[dim] The dimensions of the array \item[dimnames] The labels for each dimension. These two attributes act identically to those for a normal array. \item[dimid] A name for each dimension. For the survexp.us table these are ``age'', ``sex'', and ``year''. For survexp.usr they are ``age'', ``sex'', ``race'', and ``year''. \item[type] A vector giving the type of each dimension. One of \begin{itemize} \item 1: a categorical trait such as sex, race, smoking status, etc. As a particular subject is followed forward in time, this trait does not change. \item 2: a continuous trait that changes over time such as age. As a subject is followed forward, different rows of the ratetable apply when calculating the expected hazard. If I start at age 2 with 5 years of follow-up, the rates for ages 2--6 will be used. \item 3: a continuous trait, as in 2, but represented as a date. This allows the routine to be more intelligent in handling the multiple date formats available. \item 4: the calendar year dimension of a US rate table. \end{itemize} \item[cutpoints] A list with one element for each dimension \begin{itemize} \item If \texttt{type==1} the element should be NULL \item Otherwise it contains the vector of starting points for each row of the dimension, e.g., for the age dimension this defines the age range over which each row of the table applies. Because we only define the start of each row, the last row of the table implicitly extends to infinity. \end{itemize} \item[summary] a function to summarize data. \end{description} \section{Creating the US table} \subsection{Data} First read in the US Decennial data for 1940 to 2000, and fill the $q$ values into a temporary array. The first 3 ages are the q's for days 0-1, 1-7, and 7-28, the fourth is the q for the entire first year. Change the array to one of daily hazard rates. For the 4th row, make it so the sum of the first year's hazard is correct, i.e., 1*row1 + 6*row2 + 21*row3 + 337.25* row4 = -log(1-q) <>= decdata <- read.table('rates/usdecennial.dat', header=TRUE) temp <- array(decdata$q[decdata$race=='total'], dim=c(113,2,7)) usd <- -log(1- temp) usd[4,,] <- usd[4,,] - (usd[1,,] + usd[2,,] + usd[3,,]) usd[2,,] <- usd[2,,] /6 #days 1-7 usd[3,,] <- usd[3,,] /21 #days 7-28 usd[4,,] <- usd[4,,] /337.25 usd[5:113,,] <- usd[5:113,,]/365.25 @ Note a change from some earlier releases of the code. There are 36524 days per century, so I used 365.24. However the year 2000 is the exception to the exception: ``Every 4 years is a leap year, unless divisible by 100; unless divisible by 1000". So over the lifetime that these tables will be used 365.25 is the right number. (If they are still in use in the year 2100, some one else will be maintaining the code.) Plus, using .24 confused everyone. Now pull in the single year tables. The \texttt{temp3} array is made full size, even though the single year data is missing the subdivision of year 1 of life, and the older ages of 100-109. Thus the 4:103 subscript below. We keep the data for all races in \texttt{usy} but kept only the total column for \texttt{usd}, the reason why will appear when creating the table by race. <>= i <- 2004 while(file.exists(paste('rates/us', i, '.dat', sep=''))) i <- i+1 singleyear <- 1996:(i-1) #the data we have nsingle <- length(singleyear) temp <- array(0, dim=c(113, 2, 3, nsingle)) #age, sex, race, year for (i in 1:nsingle) { tdata <- read.table(paste("rates/us", singleyear[i], ".dat", sep=''), header=TRUE) temp[4:103,,,i] <- -log(1- c(as.matrix(tdata[,-1]))/100000) } @ Pull in the first year of life breakdown. We use that to compute the proportion of the first year hazard that falls into each interval. Then rescale to daily hazards. <>= infant <- read.csv('rates/usinfant.dat') iyears <- unique(infant$year) # extract the deaths for total (all races) # then scale each year/sex group out as proportions deaths <- array(as.matrix(infant[,3:8]), dim=c(4, length(iyears), 2,3), dimnames=list(c('0', '1-6','7-27', '28-365'), iyears, c("Male", "Female"), c("total", "white", "black"))) for (i in 1:length(iyears)) { for (j in 1:2) { for (k in 1:3) { deaths[,i,j,k] <- deaths[,i,j,k]/sum(deaths[,i,j,k]) } } } # Partition out the total 1 year hazard, and then rescale to daily hazards usy <- array(0., dim=c(113, 2,3, nsingle)) indx <- match(singleyear, iyears) indx[singleyear < min(iyears)] <- 1 for (i in 1:nsingle) { for (j in 1:2) { for (k in 1:3) { usy[1:4,j,k,i] <- temp[4,j,k,i] * deaths[,indx[i],j,k]/c(1,6,21, 337.25) } } } usy[5:113,,,] <- temp[5:113,,,] /365.25 @ \begin{figure} \myfig{extrapolate} \caption{Plot of selected decennial and annual year data, along with a spline fit from ages 70--99 and the extrapolation of that fit to age 109.} \label{fig:extrapolate} \end{figure} Now we want to extend the yearly data to ages 100--109. There are two reasons for this, the simple is so that we can match the decennial data. The more compelling one is to note how the expected survival routines make use of the rate tables: namely that for any continuous variable the largest dimension of the rate table is used for values exceeding the dimension. If a rate table extends to the year 2007, then for follow-up in 2008 and later the 2007 data is used; if age extends to 99 then the age 99 values are used for all earlier ages. Thus it is not a question of \emph{whether} we will extrapolate for age but \emph{how} we do so, with a constant hazard after age 99 or one with a more rational basis. We have noticed that the log(hazard) is remarkably linear after age 95, and so do the extrapolation on that scale. Figure \ref{fig:extrapolate} shows the results for the last 4 decennial years, along with 2006. % Because I like to manage my own plots as floating figures, I need to % use plot=F. Otherwise Sweave tries to do it. % <>= for (i in 1:2) { for (j in 1:3) { for (k in 1:nsingle) { loghaz <- log(usy[4+ 80:99, i, j, k]) tfit <- smooth.spline(80:99, loghaz, df=8) usy[4+ 100:109, i, j, k] <- exp(predict(tfit, 100:109)$y) } } } makefig("extrapolate.pdf") matplot(80:109, 100000* usd[4+ 80:109, 2, 4:7], log='y', xlab="Age", ylab="Daily hazard * 100,000", pch='7890') for (i in 4:7) { loghaz <- log(usd[4+ 80:99,2, i] * 100000) tfit <- smooth.spline(80:99, loghaz, df=8) lines(80:109, exp(predict(tfit, 80:109)$y), col=i-3) } temp <- usd[4+99,2,6]*100000 segments(99, temp, 109, temp, col=3, lty=2) ty <- match(2006, singleyear) points(80:99, 100000*usy[4+80:99,2,1,ty], col=1, pch=2) lines(80:109, 100000*usy[4+80:109,2,1,ty]) dev.off() @ \subsection{US total table} The US total table will have an entry for each single calendar year, and dimensions of age, sex, and year. The data for 1940 to 2000 is based on decennial values, interpolated across years, and for 2001 and onward on single year data. <>= years <- seq(1940, max(singleyear)) survexp.us <- array(0., dim=c(113, 2, length(years))) single2 <- singleyear[singleyear > 2000] xtemp <- c(1940, 1950, 1960, 1970, 1980, 1990, 2000, single2) for (i in 1:nrow(usd)) { for (j in 1:2) { #so what if loops are slow, we only do this once ytemp <- c(usd[i,j,], usy[i,j,1, match(single2, singleyear)]) survexp.us[i,j,] <- approx(xtemp, ytemp, xout=years)$y } } @ Rate tables store dates as the number of days since Jan 1 1960. This is historical and not every going to change. Users should make use of the \texttt{ratetableDate} function. I can't use it here, unfortunately, because this code is run in the process of making the survival library, so I cannot count on the function's existence. <>= if (exists('as.Date')) { # R datecut <- as.Date(paste(years, '/01/01', sep=''))- as.Date('1960/01/01') datecut <- as.integer(datecut) }else if (exists('month.day.year')) { #Splus datecut <- julian(1,1, years, origin=c(1,1,1960)) }else stop("Cannot find appropriate routine for dates") @ Adding the attributes is the fussy part, since these are what define a rate table. Users making their own table ``mytable''should always follow the exercise with \texttt{is.ratetable(mytable)}, but again I cannot count on the function being present. The summary function is called with a data frame containing values for each of the dimensions, and prints a message giving the observed range of each. Its primary function is provide a warning to users to invalid input; the most common is when someone uses age in years instead of in days and all the subjects are treated as being 1-100 days old. <>= attributes(survexp.us) <- list( dim= c(113,2, length(years)), dimnames = list(c('0-1d','1-7d', '7-28d', '28-365d', as.character(1:109)), c("male", "female"), years), dimid =c("age", "sex", "year"), type = c(2,1,4), cutpoints= list(c(0,1,7,28,1:109 * 365.25), NULL, datecut), summary = function(R) { x <- c(format(round(min(R[,1]) /365.25, 1)), format(round(max(R[,1]) /365.25, 1)), sum(R[,2]==1), sum(R[,2]==2)) x2<- as.Date(c(min(R[,3]), max(R[,3])), origin='1960/01/01') paste(" age ranges from", x[1], "to", x[2], "years\n", " male:", x[3], " female:", x[4], "\n", " date of entry from", x2[1], "to", x2[2], "\n") }) class(survexp.us) <- 'ratetable' @ \subsection{US race table} The US tables have not been consistent in their race breakdown. \begin{itemize} \item Decennial tables \begin{itemize} \item 1940: total, white, nonwhite, black \item 1950--60: total, white, nonwhite, \item 1970--90: total, white, nonwhite, black \item 2000: total, white, black \end{itemize} \item 1997--2006 Annual tables: total, white, black \end{itemize} We will create a table for white/black only, and use the nonwhite data for 1950 and 1960. Then create our usd array as was done for the total rates. <>= temp <-array(0., dim=c(113,2,2,7)) #age, sex, race, year temp[,,1,] <- decdata$q[decdata$race=='white'] temp[,,2,c(1,4,5,6,7)] <- decdata$q[decdata$race=='black'] temp[,,2, 2:3] <- decdata$q[decdata$race=='nonwhite' & (decdata$year==1950 |decdata$year==1970)] usd <- -log(1- temp) usd[4,,,] <- usd[4,,,] - (usd[1,,,] + usd[2,,,] + usd[3,,,]) usd[2,,,] <- usd[2,,,]/6 #days 2-7 usd[3,,,] <- usd[3,,,]/21 #days 8-28 usd[4,,,] <- usd[4,,,]/337.25 #days 29-365.25 usd[5:113,,,] <- usd[5:113,,,] / 365.25 @ Building the remainder of the table is almost identical to the prior code. <>= survexp.usr <- array(0., dim=c(113, 2, 2, length(years))) for (i in 1:113) { for (j in 1:2) { #so what if loops are slow, we only do this once for (k in 1:2) { #race ytemp <- c(usd[i,j,k,], usy[i,j,k+1, match(single2, singleyear)]) survexp.usr[i,j,k,] <- approx(xtemp, ytemp, xout=years)$y } } } attributes(survexp.usr) <- list( dim= c(113,2,2, length(years)), dimnames = list(c('0-1d','1-7d', '7-28d', '28-365d', as.character(1:109)), c("male", "female"), c("white", "black"), years), dimid =c("age", "sex", "race", "year"), type = c(2,1,1,4), cutpoints= list(c(0,1,7,28,1:109 * 365.25), NULL, NULL, datecut), summary = function(R) { x <- c(format(round(min(R[,1]) /365.25, 1)), format(round(max(R[,1]) /365.25, 1)), sum(R[,2]==1), sum(R[,2]==2), sum(R[,3]==1), sum(R[,3]==2)) if (is.R()) x2<- as.Date(c(min(R[,4]), max(R[,4])), origin='1960/01/01') else x2 <- timeDate(julian=c(min(R[,4]), max(R[,4]))) paste(" age ranges from", x[1], "to", x[2], "years\n", " male:", x[3], " female:", x[4], "\n", " date of entry from", x2[1], "to", x2[2], "\n", " white:",x[7], " black:", x[8], "\n") }) oldClass(survexp.usr) <- "ratetable" @ And finally, save the tables away for use in the survival package. <>= save(survexp.us, survexp.usr, file="survexp.rda") @ \end{document} survival/noweb/concordance.Rnw0000644000176200001440000016312613537676563016243 0ustar liggesusers\section{Concordance} \subsection{Main routine} The concordance statistic is the most used measure of goodness-of-fit in survival models. In general let $y_i$ and $x_i$ be observed and predicted data values. A pair of obervations $i$, $j$ is considered condordant if either $y_i > y_j, x_i > x_j$ or $y_i < y_j, x_i < x_j$. The concordance is the fraction of concordant pairs. For a Cox model remember that the predicted survival $\hat y$ is longer if the risk score $X\beta$ is lower, so we have to flip the definition and count ``discordant'' pairs, this is done at the end of the routine. One wrinkle is what to do with ties in either $y$ or $x$. Such pairs can be ignored in the count (treated as incomparable), treated as discordant, or given a score of 1/2. \begin{itemize} \item Kendall's $\tau$-a scores ties as 0. \item Kendall's $\tau$-b and the Goodman-Kruskal $\gamma$ ignore ties in either $y$ or $x$. \item Somers' $d$ treats ties in $y$ as incomparable, pairs that are tied in $x$ (but not $y$) score as 1/2. The AUC from logistic regression is equal to Somers' $d$. \end{itemize} All three of the above range from -1 to 1, the concordance is $(d +1)/2$. For survival data any pairs which cannot be ranked with certainty are considered incomparable. For instance $y_i$ is censored at time 10 and $y_j$ is an event (or censor) at time 20. Subject $i$ may or may not survive longer than subject $j$. Note that if $y_i$ is censored at time 10 and $y_j$ is an event at time 10 then $y_i > y_j$. Observations that are in different strata are also incomparable, since the Cox model only compares within strata. The program creates 4 variables, which are the number of concordant pairs, discordant, tied on time, and tied on $x$ but not on time. The default concordance is based on the Somers'/AUC definition, but all 4 values are reported back so that a user can recreate Kendall's or Goodmans values if desired. Here is the main routine. <>= concordance <- function(object, ...) UseMethod("concordance") concordance.formula <- function(object, data, weights, subset, na.action, cluster, ymin, ymax, timewt=c("n", "S", "S/G", "n/G", "n/G2", "I"), influence=0, ranks=FALSE, reverse=FALSE, timefix=TRUE, keepstrata=10, ...) { Call <- match.call() # save a copy of of the call, as documentation timewt <- match.arg(timewt) if (missing(ymin)) ymin <- NULL if (missing(ymax)) ymax <- NULL index <- match(c("data", "weights", "subset", "na.action", "cluster"), names(Call), nomatch=0) temp <- Call[c(1, index)] temp[[1L]] <- quote(stats::model.frame) special <- c("strata", "cluster") temp$formula <- if(missing(data)) terms(object, special) else terms(object, special, data=data) mf <- eval(temp, parent.frame()) # model frame if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) Y <- model.response(mf) if (inherits(Y, "Surv")) { if (timefix) Y <- aeqSurv(Y) } else { if (is.factor(Y) && (is.ordered(Y) || length(levels(Y))==2)) Y <- Surv(as.numeric(Y)) else if (is.numeric(Y) && is.vector(Y)) Y <- Surv(Y) else stop("left hand side of the formula must be a numeric vector, survival object, or an orderable factor") if (timefix) Y <- aeqSurv(Y) } n <- nrow(Y) wt <- model.weights(mf) offset<- attr(Terms, "offset") if (length(offset)>0) stop("Offset terms not allowed") stemp <- untangle.specials(Terms, "strata") if (length(stemp$vars)) { if (length(stemp$vars)==1) strat <- mf[[stemp$vars]] else strat <- strata(mf[,stemp$vars], shortlabel=TRUE) Terms <- Terms[-stemp$terms] } else strat <- NULL # if "cluster" was an argument, use it, otherwise grab it from the model group <- model.extract(mf, "cluster") cluster<- attr(Terms, "specials")$cluster if (length(cluster)) { tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] if (any(ord>1)) stop ("Cluster can not be used in an interaction") cluster <- strata(mf[,tempc$vars], shortlabel=TRUE) #allow multiples Terms <- Terms[-tempc$terms] # toss it away } if (length(group)) cluster <- group x <- model.matrix(Terms, mf)[,-1, drop=FALSE] #remove the intercept if (ncol(x) > 1) stop("Only one predictor variable allowed") if (!is.null(ymin) & (length(ymin)> 1 || !is.numeric(ymin))) stop("ymin must be a single number") if (!is.null(ymax) & (length(ymax)> 1 || !is.numeric(ymax))) stop("ymax must be a single number") if (!is.logical(reverse)) stop ("the reverse argument must be TRUE/FALSE") fit <- concordancefit(Y, x, strat, wt, ymin, ymax, timewt, cluster, influence, ranks, reverse, keepstrata=keepstrata) na.action <- attr(mf, "na.action") if (length(na.action)) fit$na.action <- na.action fit$call <- Call class(fit) <- 'concordance' fit } print.concordance <- function(x, digits= max(1L, getOption("digits") - 3L), ...) { if(!is.null(cl <- x$call)) { cat("Call:\n") dput(cl) cat("\n") } omit <- x$na.action if(length(omit)) cat("n=", x$n, " (", naprint(omit), ")\n", sep = "") else cat("n=", x$n, "\n") if (length(x$concordance) > 1) { # result of a call with multiple fits tmat <- cbind(concordance= x$concordance, se=sqrt(diag(x$var))) print(round(tmat, digits=digits), ...) cat("\n") } else cat("Concordance= ", format(x$concordance, digits=digits), " se= ", format(sqrt(x$var), digits=digits), '\n', sep='') if (!is.matrix(x$count) || nrow(x$count < 11)) print(round(x$count,2)) invisible(x) } <> <> @ The concordancefit function is broken out separately, since it is called by all of the methods. It is also called directly by the the \code{coxph} routine. If $y$ is not a survival quantity, then all of the options for the \code{timewt} parameter lead to the same result. <>= concordancefit <- function(y, x, strata, weights, ymin=NULL, ymax=NULL, timewt=c("n", "S", "S/G", "n/G", "n/G2", "I"), cluster, influence=0, ranks=FALSE, reverse=FALSE, timefix=TRUE, keepstrata=10) { # The coxph program may occassionally fail, and this will kill the C # routine further below. So check for it. if (any(is.na(x)) || any(is.na(y))) return(NULL) timewt <- match.arg(timewt) # these should only occur if something other package calls this routine if (!is.Surv(y)) { if (is.factor(y) && (is.ordered(y) || length(levels(y))==2)) y <- Surv(as.numeric(y)) else if (is.numeric(y) && is.vector(y)) y <- Surv(y) else stop("left hand side of the formula must be a numeric vector, survival object, or an orderable factor") if (timefix) y <- aeqSurv(y) } n <- length(y) if (length(x) != n) stop("x and y are not the same length") if (missing(strata) || length(strata)==0) strata <- rep(1L, n) if (length(strata) != n) stop("y and strata are not the same length") if (missing(weights) || length(weights)==0) weights <- rep(1.0, n) else if (length(weights) != n) stop("y and weights are not the same length") type <- attr(y, "type") if (type %in% c("left", "interval")) stop("left or interval censored data is not supported") if (type %in% c("mright", "mcounting")) stop("multiple state survival is not supported") nstrat <- length(unique(strata)) if (!is.logical(keepstrata)) { if (!is.numeric(keepstrata)) stop("keepstrat argument must be logical or numeric") else keepstrata <- (nstrat <= keepstrata) } if (timewt %in% c("n", "I") && nstrat > 10 && !keepstrata) { # Special trickery for matched case-control data, where the # number of strata is huge, n per strata is small, and compute # time becomes excessive. Make the data all one strata, but over # disjoint time intervals stemp <- as.numeric(as.factor(strata)) -1 if (ncol(y) ==3) { delta <- 2+ max(y[,2]) - min(y[,1]) y[,1] <- y[,1] + stemp*delta y[,2] <- y[,2] + stemp*delta } else { delta <- max(y[,1]) +2 m1 <- rep(-1L, nrow(y)) y <- Surv(m1 + stemp*delta, y[,1] + stemp*delta, y[,2]) } strata <- rep(1L, n) nstrat <- 1 } # This routine is called once per stratum docount <- function(y, risk, wts, timeopt= 'n', timefix) { n <- length(risk) # this next line is mostly invoked in stratified logistic, where # only 1 event per stratum occurs. All time weightings are the same # don't waste time even if the user asked for something different if (sum(y[,ncol(y)]) <2) timeopt <- 'n' sfit <- survfit(y~1, weights=wts, se.fit=FALSE, timefix=timefix) etime <- sfit$time[sfit$n.event > 0] esurv <- sfit$surv[sfit$n.event > 0] if (length(etime)==0) { # the special case of a stratum with no events (it happens) # No need to do any more work return(list(count= rep(0.0, 6), influence=matrix(0.0, n, 5), resid=NULL)) } if (timeopt %in% c("S/G", "n/G", "n/G2")) { temp <- y temp[,ncol(temp)] <- 1- temp[,ncol(temp)] # switch event/censor gfit <- survfit(temp~1, weights=wts, se.fit=FALSE, timefix=timefix) # G has the exact same time values as S gsurv <- c(1, gfit$surv) # We want G(t-) gsurv <- gsurv[which(sfit$n.event > 0)] } npair <- (sfit$n.risk- sfit$n.event)[sfit$n.event>0] temp <- ifelse(esurv==0, 0, esurv/npair) # avoid 0/0 timewt <- switch(timeopt, "S" = sum(wts)*temp, "S/G" = sum(wts)* temp/ gsurv, "n" = rep(1.0, length(npair)), "n/G" = 1/gsurv, "n/G2"= 1/gsurv^2, "I" = rep(1.0, length(esurv)) ) if (!is.null(ymin)) timewt[etime < ymin] <- 0 if (!is.null(ymax)) timewt[etime > ymax] <- 0 timewt <- ifelse(is.finite(timewt), timewt, 0) # 0 at risk case # order the data: reverse time, censors before deaths if (ncol(y)==2) { sort.stop <- order(-y[,1], y[,2], risk) -1L } else { sort.stop <- order(-y[,2], y[,3], risk) -1L #order by endpoint sort.start <- order(-y[,1]) -1L } # match each prediction score to the unique set of scores # (to deal with ties) utemp <- match(risk, sort(unique(risk))) bindex <- btree(max(utemp))[utemp] storage.mode(y) <- "double" # just in case y is integer storage.mode(wts) <- "double" if (ncol(y) ==2) fit <- .Call(Cconcordance3, y, bindex, wts, rev(timewt), sort.stop, ranks) else fit <- .Call(Cconcordance4, y, bindex, wts, rev(timewt), sort.start, sort.stop, ranks) # The C routine gives back an influence matrix which has columns for # concordant, discordant, tied on x but not y, tied on y, and tied on # both x and y. dimnames(fit$influence) <- list(NULL, c("concordant", "discordant", "tied.x", "tied.y", "tied.xy")) if (ranks) { if (ncol(y)==2) dtime <- y[y[,2]==1, 1] else dtime <- y[y[,3]==1, 2] temp <- data.frame(time= sort(dtime), fit$resid) names(temp) <- c("time", "rank", "timewt", "casewt", "variance") fit$resid <- temp[temp[,3] > 0,] # don't return zeros } fit } if (nstrat < 2) { fit <- docount(y, x, weights, timewt, timefix=timefix) count2 <- fit$count[1:5] vcox <- fit$count[6] fit$count <- fit$count[1:5] imat <- fit$influence if (ranks) resid <- fit$resid } else { strata <- as.factor(strata) ustrat <- levels(strata)[table(strata) >0] #some strata may have 0 obs tfit <- lapply(ustrat, function(i) { keep <- which(strata== i) docount(y[keep,,drop=F], x[keep], weights[keep], timewt, timefix=timefix) }) temp <- t(sapply(tfit, function(x) x$count)) fit <- list(count = temp[,1:5]) count2 <- colSums(fit$count) if (!keepstrata) fit$count <- count2 vcox <- sum(temp[,6]) imat <- do.call("rbind", lapply(tfit, function(x) x$influence)) # put it back into data order index <- match(1:n, (1:n)[order(strata)]) imat <- imat[index,] if (ranks) { nr <- lapply(tfit, function(x) nrow(x$resid)) resid <- do.call("rbind", lapply(tfit, function(x) x$resid)) resid$strata <- rep(ustrat, nr) } } npair <- sum(count2[1:3]) somer <- (count2[1] - count2[2])/npair dfbeta <- weights*((imat[,1]- imat[,2])/npair - (somer/npair)* rowSums(imat[,1:3])) if (!missing(cluster) && length(cluster)>0) { dfbeta <- tapply(dfbeta, cluster, sum) dfbeta <- ifelse(is.na(dfbeta),0, dfbeta) # if cluster is a factor } var.somer <- sum(dfbeta^2) if (!keepstrata && is.matrix(fit$count)) fit$count <- colSums(fit$count) rval <- list(concordance = (somer+1)/2, count=fit$count, n=n, var = var.somer/4, cvar=vcox/(4*npair^2)) if (is.matrix(rval$count)) colnames(rval$count) <- c("concordant", "discordant", "tied.x", "tied.y", "tied.xy") else names(rval$count) <- c("concordant", "discordant", "tied.x", "tied.y", "tied.xy") if (influence == 1 || influence==3) rval$dfbeta <- dfbeta/2 if (influence >=2) rval$influence <- imat if (ranks) rval$ranks <- resid if (reverse) { # flip concordant/discordant values but not the labels rval$concordance <- 1- rval$concordance if (!is.null(rval$dfbeta)) rval$dfbeta <- -rval$dfbeta if (!is.null(rval$influence)) { rval$influence <- rval$influence[,c(2,1,3,4,5)] colnames(rval$influence) <- colnames(rval$influence)[c(2,1,3,4,5)] } if (is.matrix(rval$count)) { rval$count <- rval$count[, c(2,1,3,4,5)] colnames(rval$count) <- colnames(rval$count)[c(2,1,3,4,5)] } else { rval$count <- rval$count[c(2,1,3,4,5)] names(rval$count) <- names(rval$count)[c(2,1,3,4,5)] } if (ranks) rval$ranks$rank <- -rval$ranks$rank } rval } @ \subsection{Methods} Methods are defined for lm, survfit, and coxph objects. Detection of strata, weights, or clustering is the main nuisance, since those are not passed back as part of coxph or survreg objects. Glm and lm objects have the model frame by default, but that can be turned off by a user. This routine gets the X, Y, and other portions from the result of a particular fit object. <>= cord.getdata <- function(object, newdata=NULL, cluster=NULL, need.wt, timefix=TRUE) { # For coxph object, don't reconstruct the model frame unless we must. # This will occur if weights, strata, or cluster are needed, or if # there is a newdata argument. Of course, if the model frame is # already present, then use it! Terms <- terms(object) specials <- attr(Terms, "specials") if (!is.null(specials$tt)) stop("cannot yet handle models with tt terms") if (!is.null(newdata)) { mf <- model.frame(object, data=newdata) y <- model.response(mf) if (!is.Surv(y)) { if (is.numeric(y) && is.vector(y)) y <- Surv(y) else stop("left hand side of the formula must be a numeric vector or a survival object") } if (timefix) y <- aeqSurv(y) rval <- list(y= y, x= predict(object)) # the type of prediction does not matter, as long as it is a # monotone transform of the linear predictor } else { mf <- object$model y <- object$y if (is.null(y)) { if (is.null(mf)) mf <- model.frame(object) y <- model.response(mf) } if (!is.Surv(y)) { y <- Surv(y) if (timefix) y <- aeqSurv(y) } # survival models will have already called timefix x <- object$linear.predictors # used by most if (is.null(x)) x <- object$fitted.values # used by lm if (is.null(x)) {object$na.action <- NULL; x <- predict(object)} rval <- list(y = y, x= x) } if (need.wt) { if (is.null(mf)) mf <- model.frame(object) rval$weights <- model.weights(mf) } if (!is.null(specials$strata)) { if (is.null(mf)) mf <- model.frame(object) stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) rval$strata <- mf[[stemp$vars]] else rval$strata <- strata(mf[,stemp$vars], shortlabel=TRUE) } if (is.null(cluster)) { if (!is.null(specials$cluster)) { if (is.null(mf)) mf <- model.frame(object) tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] rval$cluster <- strata(mf[,tempc$vars], shortlabel=TRUE) } else if (!is.null(object$call$cluster)) { if (is.null(mf)) mf <- model.frame(object) rval$cluster <- model.extract(mf, "cluster") } } else rval$cluster <- cluster rval } @ The methods themselves, which are near clones of each other. There is one portion of these that is not very clear. I use the trick from nearly all calls to model.frame to deal with arguments that might be there or might not, such as newdata. Construct a call by hand by first subsetting this call as Call[...], then replace the first element with the name of what I really want to call -- quote(cord.work) --, add any other args I want, and finally execute it with eval(). The problem is that this doesn't work; the routine can't find cord.work since it is not an exported function. A simple call to cord.work is okay, since function calls inherit from the survival namespace, but cfun isn't a function call, it is an expression. There are 3 possible solutions \begin{itemize} \item bad: change eval(cfun, parent.frame()) to eval(cfun, evironment(coxph)), or any other function from the survival library which has namespace::survival as its environment. If the user calls concordance with ymax=zed, say, we might not be able to find 'zed'. Especially if they had called concordance from within a function. We need the call chain. \item okay: use cfun[[1]] <- cord.work, which makes a copy of the entire cord.work function and stuffs it in. The function isn't too long, so this is okay. If cord.work fails, the label on its error message won't be as nice since it won't have ``cord.work'' in it. \item speculative: make a function and invoke it. This creates a new function in the survival namespace, but evaluates it in the current context. Using parent.frame() is important so that I don't accidentally pick up 'nfit' say, if the user had used a variable of that name as one of their arguments. \\ temp <- function(){} \\ body(temp, environment(coxph)) <- cfun\\ rval <- eval(temp(), parent.frame()) \end{itemize} <>= concordance.lm <- function(object, ..., newdata, cluster, ymin, ymax, influence=0, ranks=FALSE, timefix=TRUE, keepstrata=10) { Call <- match.call() fits <- list(object, ...) nfit <- length(fits) fname <- as.character(Call) # like deparse(substitute()) but works for ... fname <- fname[1 + 1:nfit] notok <- sapply(fits, function(x) !inherits(x, "lm")) if (any(notok)) { # a common error is to mistype an arg, "ramk=TRUE" for instance, # and it ends up in the ... list # try for a nice message in this case: the name of the arg if it # has one other than "object", fname otherwise indx <- which(notok) id2 <- names(Call)[indx+1] temp <- ifelse(id2 %in% c("","object"), fname, id2) stop(temp, " argument is not an appropriate fit object") } cargs <- c("ymin", "ymax","influence", "ranks", "keepstrata") cfun <- Call[c(1, match(cargs, names(Call), nomatch=0))] cfun[[1]] <- cord.work # or quote(survival:::cord.work) cfun$fname <- fname if (missing(newdata)) newdata <- NULL if (missing(cluster)) cluster <- NULL need.wt <- any(sapply(fits, function(x) !is.null(x$call$weights))) cfun$data <- lapply(fits, cord.getdata, newdata=newdata, cluster=cluster, need.wt=need.wt, timefix=timefix) rval <- eval(cfun, parent.frame()) rval$call <- Call rval } concordance.survreg <- function(object, ..., newdata, cluster, ymin, ymax, timewt=c("n", "S", "S/G", "n/G", "n/G2", "I"), influence=0, ranks=FALSE, timefix=FALSE, keepstrata=10) { Call <- match.call() fits <- list(object, ...) nfit <- length(fits) fname <- as.character(Call) # like deparse(substitute()) but works for ... fname <- fname[1 + 1:nfit] notok <- sapply(fits, function(x) !inherits(x, "survreg")) if (any(notok)) { # a common error is to mistype an arg, "ramk=TRUE" for instance, # and it ends up in the ... list # try for a nice message in this case: the name of the arg if it # has one other than "object", fname otherwise indx <- which(notok) id2 <- names(Call)[indx+1] temp <- ifelse(id2 %in% c("","object"), fname, id2) stop(temp, " argument is not an appropriate fit object") } cargs <- c("ymin", "ymax","influence", "ranks", "timewt", "keepstrata") cfun <- Call[c(1, match(cargs, names(Call), nomatch=0))] cfun[[1]] <- cord.work cfun$fname <- fname if (missing(newdata)) newdata <- NULL if (missing(cluster)) cluster <- NULL need.wt <- any(sapply(fits, function(x) !is.null(x$call$weights))) cfun$data <- lapply(fits, cord.getdata, newdata=newdata, cluster=cluster, need.wt=need.wt, timefix=timefix) rval <- eval(cfun, parent.frame()) rval$call <- Call rval } concordance.coxph <- function(object, ..., newdata, cluster, ymin, ymax, timewt=c("n", "S", "S/G", "n/G", "n/G2", "I"), influence=0, ranks=FALSE, timefix=FALSE, keepstrata=10) { Call <- match.call() fits <- list(object, ...) nfit <- length(fits) fname <- as.character(Call) # like deparse(substitute()) but works for ... fname <- fname[1 + 1:nfit] notok <- sapply(fits, function(x) !inherits(x, "coxph")) if (any(notok)) { # a common error is to mistype an arg, "ramk=TRUE" for instance, # and it ends up in the ... list # try for a nice message in this case: the name of the arg if it # has one other than "object", fname otherwise indx <- which(notok) id2 <- names(Call)[indx+1] temp <- ifelse(id2 %in% c("","object"), fname, id2) stop(temp, " argument is not an appropriate fit object") } # the cargs trick is a nice one, but it only copies over arguments that # are present. If 'ranks' was not specified, the default of FALSE is # not set. We keep it in the arg list only to match the documentation. cargs <- c("ymin", "ymax","influence", "ranks", "timewt", "keepstrata") cfun <- Call[c(1, match(cargs, names(Call), nomatch=0))] cfun[[1]] <- cord.work # a copy of the function cfun$fname <- fname cfun$reverse <- TRUE if (missing(newdata)) newdata <- NULL if (missing(cluster)) cluster <- NULL need.wt <- any(sapply(fits, function(x) !is.null(x$call$weights))) cfun$data <- lapply(fits, cord.getdata, newdata=newdata, cluster=cluster, need.wt=need.wt, timefix=timefix) rval <- eval(cfun, parent.frame()) rval$call <- Call rval } @ The next routine does all of the actual work for a set of models. Note that because of the call-through trick (fargs) exactly and only those arguments that are passed in are passed through to concordancefit. Default argument values for that function are found there. The default value for inflence found below is used in this routine, so it is important that they match. <>= cord.work <- function(data, timewt, ymin, ymax, influence=0, ranks=FALSE, reverse, fname, keepstrata) { Call <- match.call() fargs <- c("timewt", "ymin", "ymax", "influence", "ranks", "reverse", "keepstrata") fcall <- Call[c(1, match(fargs, names(Call), nomatch=0))] fcall[[1L]] <- concordancefit nfit <- length(data) if (nfit==1) { dd <- data[[1]] fcall$y <- dd$y fcall$x <- dd$x fcall$strata <- dd$strata fcall$weights <- dd$weights fcall$cluster <- dd$cluster rval <- eval(fcall, parent.frame()) } else { # Check that all of the models have the identical Y and weights n <- length(data[[1]]$x) for (i in 2:nfit) { if (length(data[[i]]$x) != n) stop("all models must have the same sample size") if (!identical(data[[1]]$y, data[[i]]$y)) stop("all models must have the exact same response vector") if (!identical(data[[1]]$weights, data[[i]]$weights)) stop("all models must have the same weight vector") } if (influence==2) fcall$influence <-3 else fcall$influence <- 1 flist <- lapply(data, function(d) { temp <- fcall temp$y <- d$y temp$x <- d$x temp$strata <- d$strata temp$weights <- d$weights temp$cluster <- d$cluster eval(temp, parent.frame()) }) for (i in 2:nfit) { if (length(flist[[1]]$dfbeta) != length(flist[[i]]$dfbeta)) stop("models must have identical clustering") } count = do.call(rbind, lapply(flist, function(x) { if (is.matrix(x$count)) colSums(x$count) else x$count})) concordance <- sapply(flist, function(x) x$concordance) dfbeta <- sapply(flist, function(x) x$dfbeta) names(concordance) <- fname rownames(count) <- fname wt <- data[[1]]$weights if (is.null(wt)) vmat <- crossprod(dfbeta) else vmat <- t(wt * dfbeta) %*% dfbeta rval <- list(concordance=concordance, count=count, n=length(flist[[1]]$x), var=vmat, cvar= sapply(flist, function(x) x$cvar)) if (influence==1) rval$dfbeta <- dfbeta else if (influence ==2) { temp <- unlist(lapply(flist, function(x) x$influence)) rval$influence <- array(temp, dim=c(dim(flist[[1]]$influence), nfit)) } if (ranks) { temp <- lapply(flist, function(x) x$ranks) rdat <- data.frame(fit= rep(fname, sapply(temp, nrow)), do.call(rbind, temp)) row.names(rdat) <- NULL rval$ranks <- rdat } } class(rval) <- "concordance" rval } @ Last, a few miscellaneous methods <>= coef.concordance <- function(object, ...) object$concordance vcov.concordance <- function(object, ...) object$var @ The C routine returns an influence matrix with one row per subject $i$, and columns giving the partial with respect to $w_i$ for the number of concordant, discordant, tied on $x$ and ties on $y$ pairs. Somers' $d$ is $(C-D)/m$ where $m= C + D + T$ is the total number of %' comparable pairs, which does not count the tied-on-y column. For any given subject or cluster $k$ (for grouped jackknife) the IJ estimate of the variance is \begin{align*} V &\ \sum_k \left(\frac{\partial d}{\partial w_k}\right)^2 \\ \frac{\partial d}{\partial w_k} &= \frac{1}{m} \left[\frac{\partial{C-D}}{\partial w_k} - d \frac{\partial C+D+T}{\partial w_k} \right] \\ \end{align*} The C code looks a lot like a Cox model: walk forward through time, keep track of the risk sets, and add something to the totals at each death. What needs to be summed is the rank of the event subject's $x$ value, as compared to the value for all others at risk at this time point. For notational simplicity let $Y_j(t_i)$ be an indicator that subject $j$ is at risk at event time $t_i$, and $Y^*_j(t_i)$ the more restrictive one that subject $j$ is both at risk and not a tied event time. The values we want at time $t_i$ are \begin{align} C_i &= v_i \delta_i w_i \sum_j w_j Y^*_j(t_i) \left[I(x_i < x_j) \right] \label{C} \\ D_i &= v_i \delta_i w_i \sum_j w_j Y^*_j(t_i) \left[I(x_i > x_j)\right] \label{D} \\ T_i &= v_i \delta_i w_i \sum_j w_j Y^*_j(t_i) \left[I(x_i = x_j) \right] \label{T} \\ \end{align} In the above $v$ is an optional time weight, which we will discuss later. The normal concordance definition has $v=1$. $C$, $D$, and $T$ are the number of concordant, discordant, and tied pairs, respectively, and $m= C+D+T$ will be the total number of concordant pairs. Somers' $d$ is $(C-D)/m$ and the concordance is $(d+1)/2 = (C + T/2)/m$. The primary compuational question is how to do this efficiently, i.e., better than a naive algorithm that loops across all $n(n-1)/2$ possible pairs. There are two key ideas. \begin{enumerate} \item Rearrange the counting so that we do it by death times. For each death we count the number of other subjects in the risk set whose score is higher, lower, or tied and add it into the totals. This neatly solves the question of time-dependent covariates. \item Counting the number with higher, lower, and tied $x$ can be done in $O(\log_2 n)$ time if the $x$ data is kept in a binary tree. \end{enumerate} \begin{figure} \myfig{balance} \caption{A balanced tree of 13 nodes.} \label{treefig} \end{figure} Figure \ref{treefig} shows a balanced binary tree containing 13 risk scores. For each node the left child and all its descendants have a smaller value than the parent, the right child and all its descendents have a larger value. Each node in figure \ref{treefig} is also annotated with the total weight of observations in that node and the weight for itself plus all its children (not shown on graph). Assume that the tree shown represents all of the subjects still alive at the time a particular subject ``Smith'' expires, and that Smith has the risk score of 19 in the tree. The concordant pairs are those with a risk score $>19$, i.e., both $\hat y=x$ and $y$ are larger, discordant are $<19$, and we have no ties. The totals can be found by \begin{enumerate} \item Initialize the counts for discordant, concordant and tied to the values from the left children, right children, and ties at this node, respectively, which will be $(C,D,T) = (1,1,0)$. \item Walk up the tree, and at each step add the (parent + left child) or (parent + right child) to either D or C, depending on what part of the tree has not yet been totaled. At the next node (8) $D= D+4$, and at the top node $C=C + 6$. \end{enumerate} There are 5 concordant and 7 discordant pairs. This takes a little less than $\log_2(n)$ steps on average, as compared to an average of $n/2$ for the naive method. The difference can matter when $n$ is large since this traversal must be done for each event. The classic way to store trees is as a linked list. There are several algorithms for adding and subtracting nodes from a tree while maintaining the balance (red-black trees, AA trees, etc) but we take a different approach. Since we need to deal with case weights in the model and we know all the risk score at the outset, the full set of risk scores is organised into a tree at the beginning, updating the sums of weights at each node as observations are added or removed from the risk set. If we internally index the nodes of the tree as 1 for the top, 2--3 for the next horizontal row, 4--7 for the next, \ldots then the parent-child traversal becomes particularly easy. The parent of node $i$ is $i/2$ (integer arithmetic) and the children of node $i$ are $2i$ and $2i +1$. In C code the indices start at 0 of course. The following bit of code arranges data into such a tree. <>= btree <- function(n) { tfun <- function(n, id, power) { if (n==1L) id else if (n==2L) c(2L *id + 1L, id) else if (n==3L) c(2L*id + 1L, id, 2L*id +2L) else { nleft <- if (n== power*2L) power else min(power-1L, n-power%/%2L) c(tfun(nleft, 2L *id + 1L, power%/%2), id, tfun(n-(nleft+1L), 2L*id +2L, power%/%2)) } } tfun(as.integer(n), 0L, as.integer(2^(floor(logb(n-1,2))))) } @ Referring again to figure \ref{treefig}, \code{btree(13)} yields the vector \code{7 3 8 1 9 4 10 0 11 5 12 2 6} meaning that the smallest element will be in position 8 of the tree, the next smallest in position 2, etc, and using indexing that starts at 0 since the results will be passed to a C routine. The code just above takes care to do all arithmetic as integer. This actually made almost no difference in the compute time, but it was an interesting exercise to find that out. The next question is how to compute a variance for the result. One approach is to compute an infinitesimal jackknife (IJ) estimate, for which we need derivatives with respect to the weights. Looking back at equation \eqref{C} we have \begin{align} C &= \sum_i w_i \delta_i \sum_j Y^*_j(t_i) w_j I(x_i < x_j) \nonumber\\ % \frac{\partial C}{\partial w_k} &= % (v_k/m_k)\delta_k \sum_j Y^*_{j}(t_k) I(x_k < x_j) + % \sum_i (v_i/m_i) w_i Y^*_k(t_i) I(x_i < x_k) \label{partialC} \end{align} A given subject's weight appears multiple times, once when they are an event ($w_i \delta_i)$, and then as part of the risk set for other's events. I avoided this for some time because it looked like an $O(nd)$ process to separately update each subject's influence for each risk set they inhabit, but David Watson pointed out a path forward. The solution is to keep two trees. Tree 1 contains all of the subjects at risk. We traverse it when each subject is added in, updating the tree, and traverse it again at each death, pulling off values to update our sums. The second tree holds only the deaths and is updated at each death; it is read out twice per subject, once just after they enter the risk set and once when they leave. The basic algorithm is to move through an outer and inner loop. The outer loop moves across unique times, the inner for all obs that share a death time. We progress from largest to smallest time. Dealing with tied deaths is a bit subtle. \begin{itemize} \item All of the tied deaths need to be added to the event tree before subtracting the tree values from the ``initial'' influence matrix, since none of the tied subjects are in the comparison set for each other. \item Changes to the overall concordance/discordance counts need to be done for all the ties before adding them into the main tree, for the same reason. \item The Cox model variance just below has to be added up sequentially, one terms after each addition to the main tree. \end{itemize} Thus the inner loop must be repeated at least twice. A second variance computation treats the data as a Cox model. Create zero-centered scores for all subjects in the risk set: \begin{align} z_i(t) &= \sum_{j \in R(t)} w_j \sign(x_i - x_j) \nonumber D-C = \sum_i \delta_i z_i(t_i) \label{zcord} \end{align} At any event time $\sum w_i z_i =0$. Equation \eqref{zcord} is the score equation for a Cox model with time-dependent covariate $z$. When two subjects have an event at the same time, this formulation treats each of them as being in the other's risk set whereas the concordance treats them as incomparable --- how can they be the same? The trick is that $D-C$ does not change: the tied pairs add equally to $D$ and $C$. Under the null hypothesis that the risk score is not related to outcome, each term in \eqref{zcord} is a random selection from the $z$ scores in the risk set, and the variance of the addition is the variance of $z$, the sum of these over deaths is the Cox model information matrix, which is also the variance of the score statistic. The mean of $z$ is always zero, so we need to keep track of $\sum w_i z^2$. How can we do this efficiently? First note that $z_i$ can be written as sum(weights for smaller x) - sum(weights for larger x), and in fact the weighted mean for any slice of $x$, $a < x < b$, is exactly the same: mean = sum(weights for x values below the range) - sum(weights above the range). The second trick is to use an ANOVA decomposition of the variance of $z$ into within-slice and between-slice sums of squares, where the 3 slices are the $z$ scores at a given $x$ value (node of the tree), weights for score below that cutpoint, and above. Assume that a new observation $k$ has just been added to the tree. This will add $w_k$ to all the $z$ values above, and to the weighted mean of all those above, $-w_k$ to the values and means below, and 0 to the values and means of any tied observations. Thus none of the current `within' SS change. Let $s_a$, $s_b$ and $s_0$ be the current sum of weights above, below, and at the node of the tree. The mean for the above group was $(s_b + s_0)$ with between SS contribution of $s_a (s_b + s_0)^2$. The below mean was $-(s_a + s_0)$ with between SS contribution of $s_b(s_a + s_0)^2$. The change to the between SS from adding the new subject is $$ s_a\left( (s_b+s_0 + w_k)^2 - (s_b + s_0)^2 \right) = s_a (2w_k (s_b + s_0) + w_k^2) $$ while the change in between SS for the below group is $s_b(2w_k(s_a + s_0) + w_k^2)$, and there is no change for the prior observations in the middle group. Last we add $w_kz_k^2 = w_k(s_b- s_a)^2$ to the sum for the new observation. Putting all this together the change is $$ w_k \left(s_a (w_k + (s_b + s_c)) + s_b(w_k + (s_a + s_c)) + (s_a-s_b)^2 \right) $$ We can now define the C-routine that does the bulk of the work. First we give the outline shell of the code and then discuss the parts one by one. This routine is for ordinary survival data, and will be called once per stratum. Input variables are \begin{description} \item[n] the number of observations \item[y] matrix containing the time and status, data is sorted by descending time, with censorings precedint deaths. \item[x] the tree node at which this observation's risk score resides %' \item[wt] case weight for the observation \end{description} The routine will return list with three components: \begin{itemize} \item count, a vector containing the weighted number of concordant, discordant, tied on $x$ but not $y$, and tied on y pairs. The weight for a pair is $w_iw_j$. \item resid, a three column matrix with one row per event, containing the score residual at that event, its variance, and the sum of weights. The score residual is a rescaled $z_i$ so as to lie between 0 and 1: $(1+ z/\sum(w))/2$. The concordance is then a weighted sum of the residuals. \item influence, a matrix with one row per observation and 4 columns, giving that observation's first derivative with respect to the count vector. \end{itemize} <>= #include "survS.h" <> SEXP concordance3(SEXP y, SEXP x2, SEXP wt2, SEXP timewt2, SEXP sortstop, SEXP doresid2) { int i, j, k, ii, jj, kk, j2; int n, ntree, nevent; double *time, *status; int xsave; /* sum of weights for a node (nwt), sum of weights for the node and ** all of its children (twt), then the same again for the subset of ** deaths */ double *nwt, *twt, *dnwt, *dtwt; double z2; /* sum of z^2 values */ int ndeath; /* total number of deaths at this point */ int utime; /* number of unique event times seen so far */ double dwt, dwt2; /* sum of weights for deaths and deaths tied on x */ double wsum[3]; /* the sum of weights that are > current, <, or equal */ double temp, adjtimewt; /* the second accounts for npair and timewt*/ SEXP rlist, count2, imat2, resid2; double *count, *imat[5], *resid[4]; double *wt, *timewt; int *x, *sort2; int doresid; static const char *outnames1[]={"count", "influence", "resid", ""}, *outnames2[]={"count", "influence", ""}; n = nrows(y); doresid = asLogical(doresid2); x = INTEGER(x2); wt = REAL(wt2); timewt = REAL(timewt2); sort2 = INTEGER(sortstop); time = REAL(y); status = time + n; /* if there are tied predictors, the total size of the tree will be < n */ ntree =0; nevent =0; for (i=0; i= ntree) ntree = x[i] +1; nevent += status[i]; } nwt = (double *) R_alloc(4*ntree, sizeof(double)); twt = nwt + ntree; dnwt = twt + ntree; dtwt = dnwt + ntree; for (i=0; i< 4*ntree; i++) nwt[i] =0.0; if (doresid) PROTECT(rlist = mkNamed(VECSXP, outnames1)); else PROTECT(rlist = mkNamed(VECSXP, outnames2)); count2 = SET_VECTOR_ELT(rlist, 0, allocVector(REALSXP, 6)); count = REAL(count2); for (i=0; i<6; i++) count[i]=0.0; imat2 = SET_VECTOR_ELT(rlist, 1, allocMatrix(REALSXP, n, 5)); for (i=0; i<5; i++) { imat[i] = REAL(imat2) + i*n; for (j=0; j> UNPROTECT(1); return(rlist); } @ The key part of our computation is to update the vectors of weights. We don't actually pass the risk score values $r$ into the routine, %' it is enough for each observation to point to the appropriate tree node. The tree contains the weights for everyone whose survival is larger than the time currently under review, so starts with all weights equal to zero. For any pair of observations $i,j$ we need to add [[wt[i]*wt[j]]] to the appropriate count, $w_j$ to subject $i$'s row of the leverage matrix and $w_i$ to subject $j$'s row. We use two trees to do this efficiently, one with all the observations to date, one with the events to date. Starting at the largest time (which is sorted last), walk through the tree. \begin{itemize} \item If the current observation is a censoring time, in order: \begin{itemize} \item Subtract event tree information from the influence matrix \item Update the Cox variance \item Add them into the main tree \end{itemize} \item If the current observation is a death, care for all deaths tied at this time point. Each pass covers all the deaths. \begin{itemize} \item Pass 1: In any order \begin{itemize} \item Add up the total number of deaths \item Update the tied.y count and tied.xy count \\ tied.xy subtotals reset each time x changes \item Count concordant, discordant, tied.x counts, both total and for the observation's influence \item Add the subject to the event tree \item Compute the first 3 columns of the residuals. \end{itemize} \item Finish up the tied.xy influence, for the last unique x in this set. \item Pass 2: \begin{itemize} \item Subtract the event tree information from the influence matrix \item Add the tied.y part of the influence for each obs \item Increment the Cox variance \item Add the subject into the main tree \end{itemize} \end{itemize} \item When all the subjects have been added to the tree, then add the final death tree's data for to the influence matrix. \end{itemize} For concordant, discordant, and tied.x there are three readouts: the total tree before any additions, the death tree after the addition of the tied events, and the death tree at the very end. Increments to the Cox variance occur just before each addition to the total tree, and are saved out after each batch of events. The above discussion counts up all pairs that are not tied on the response $y$. Though not used in the concordance the routine counts up tied.y pairs as well, with a separate count for those that are tied on both $x$ and $y$. The algorithm for this part is simpler since the data is sorted by $y$. Say that there were 5 obs tied at some time point with weights of $w_1$ to $w_5$. The total count for ties involves all 5-choose-2 pairs and can be written as $$ w_1 w_2 + (w_1 + w_2)w_3 + (w_1 + w_2 + w_3)w_4 + (w_1 + w_2 + w_3 + w_4)w_5 $$ which immediately suggests a simple summation algorithm as we go through the loop. In the below \code{dwt} contains the running sum 0, $w_1$, $w_1 + w_2$, etc and we add \code{w[i]*dwt} to the total just before incrementing the sum. The influence for observation 1 is $w_2 + w_3 + w_4 + w_5$, which can be done at the end as \code{dwt - wt[i]}. The temporary accumulator \code{dwt} is reset to 0 with each new $y$ value. To compute ties on both $x$ and $y$ the data set is sorted by $x$ within $y$, and we use the same algorithm, but reset \code{dwt2} to zero whenever either $x$ or $y$ changes. <>= z2 =0; utime=0; for (i=0; i>= void walkup(double *nwt, double* twt, int index, double sums[3], int ntree) { int i, j, parent; for (i=0; i<3; i++) sums[i] = 0.0; sums[2] = nwt[index]; /* tied on x */ j = 2*index +2; /* right child */ if (j < ntree) sums[0] += twt[j]; if (j <=ntree) sums[1]+= twt[j-1]; /*left child */ while(index > 0) { /* for as long as I have a parent... */ parent = (index-1)/2; if (index%2 == 1) sums[0] += twt[parent] - twt[index]; /* left child */ else sums[1] += twt[parent] - twt[index]; /* I am a right child */ index = parent; } } void addin(double *nwt, double *twt, int index, double wt) { nwt[index] += wt; while (index >0) { twt[index] += wt; index = (index-1)/2; } twt[0] += wt; } @ The code for [start, stop) data is almost identical, the primary call simply has one more index As in the agreg routines there are two sort indices, the first indexes the data by stop time, longest to earliest, and the second by start time. The [[y]] variable now has three columns. <>= SEXP concordance4(SEXP y, SEXP x2, SEXP wt2, SEXP timewt2, SEXP sortstart, SEXP sortstop, SEXP doresid2) { int i, j, k, ii, jj, kk, i2, j2; int n, ntree, nevent; double *time1, *time2, *status; int xsave; /* sum of weights for a node (nwt), sum of weights for the node and ** all of its children (twt), then the same again for the subset of ** deaths */ double *nwt, *twt, *dnwt, *dtwt; double z2; /* sum of z^2 values */ int ndeath; /* total number of deaths at this point */ int utime; /* number of unique event times seen so far */ double dwt; /* weighted number of deaths at this point */ double dwt2; /* tied on both x and y */ double wsum[3]; /* the sum of weights that are > current, <, or equal */ double temp, adjtimewt; /* the second accounts for npair and timewt*/ SEXP rlist, count2, imat2, resid2; double *count, *imat[5], *resid[4]; double *wt, *timewt; int *x, *sort2, *sort1; int doresid; static const char *outnames1[]={"count", "influence", "resid", ""}, *outnames2[]={"count", "influence", ""}; n = nrows(y); doresid = asLogical(doresid2); x = INTEGER(x2); wt = REAL(wt2); timewt = REAL(timewt2); sort2 = INTEGER(sortstop); sort1 = INTEGER(sortstart); time1 = REAL(y); time2 = time1 + n; status = time2 + n; /* if there are tied predictors, the total size of the tree will be < n */ ntree =0; nevent =0; for (i=0; i= ntree) ntree = x[i] +1; nevent += status[i]; } /* ** nwt and twt are the node weight and total =node + all children for the ** tree holding all subjects. dnwt and dtwt are the same for the tree ** holding all the events */ nwt = (double *) R_alloc(4*ntree, sizeof(double)); twt = nwt + ntree; dnwt = twt + ntree; dtwt = dnwt + ntree; for (i=0; i< 4*ntree; i++) nwt[i] =0.0; if (doresid) PROTECT(rlist = mkNamed(VECSXP, outnames1)); else PROTECT(rlist = mkNamed(VECSXP, outnames2)); count2 = SET_VECTOR_ELT(rlist, 0, allocVector(REALSXP, 6)); count = REAL(count2); for (i=0; i<6; i++) count[i]=0.0; imat2 = SET_VECTOR_ELT(rlist, 1, allocMatrix(REALSXP, n, 5)); for (i=0; i<5; i++) { imat[i] = REAL(imat2) + i*n; for (j=0; j> UNPROTECT(1); return(rlist); } @ As we move from the longest time to the shortest observations are added into the tree of weights whenever we encounter their stop time. This is just as before. Weights now also need to be removed from the tree whenever we encounter an observation's start time. %' It is convenient ``catch up'' on this second task whenever we encounter a death. <>= z2 =0; utime=0; i2 =0; /* i2 tracks the start times */ for (i=0; i= time2[ii]); i2++) { jj = sort1[i2]; /* influence */ walkup(dnwt, dtwt, x[jj], wsum, ntree); imat[0][jj] += wsum[1]; imat[1][jj] += wsum[0]; imat[2][jj] += wsum[2]; addin(nwt, twt, x[jj], -wt[jj]); /*remove from main tree */ /* Cox variance */ walkup(nwt, twt, x[jj], wsum, ntree); z2 -= wt[jj]*(wsum[0]*(wt[jj] + 2*(wsum[1] + wsum[2])) + wsum[1]*(wt[jj] + 2*(wsum[0] + wsum[2])) + (wsum[0]-wsum[1])*(wsum[0]-wsum[1])); } ndeath=0; dwt=0; dwt2 =0; xsave=x[ii]; j2= i; adjtimewt = timewt[utime++]; /* pass 1 */ for (j=i; j>= tfun <- function(start, gap) { as.numeric(start)/365.25 - as.numeric(start + gap)/365.25 } test <- logical(200) for (i in 1:200) { test[i] <- tfun(as.Date("2010/01/01"), 29) == tfun(as.Date("2010/01/01") + i, 29) } table(test) @ The number of FALSE entries in the table depends on machine, compiler, and a host of other issues. There is discussion of this general issue in the R FAQ: ``why doesn't R think these numbers are equal''. The Kaplan-Meier and Cox model both pay careful attention to ties, and so both now use the \code{aeqSurv} routine to first preprocess the time data. It uses the same rules as \code{all.equal} to adjudicate ties and near ties. <>= survfit <- function(formula, ...) { UseMethod("survfit") } <> <> <> @ The result of a survival curve will have a \code{surv} or \code{pstate} component that is a vector or a matrix, and an optional strata component. From a user's point of view this is an object with [strata, newdata, state] as dimensions, where only 1, 2 or all three of these may appear. The first is always present, and is essentially the number of distinct curves created by the right-hand side of the equation (or by the strata in a coxph model). The newdata portion appears for survival curves from a Cox model, when curves for multiple covariate patterns were requested; the state portion only from a multi-state model; or both for a multi-state Cox model. The \code{surv} component contains the time points for the first stratum, the second, third, etc stacked one above the other. As with R matrices, if only 1 subscript is given for an array or matrix of curves, we treat the collection of curves as a vector of curves. We need to make sure that the new object has the same order of elements as the old -- users count on this. <>= dim.survfit <- function(x) { d1name <- "strata" d2name <- "data" d3name <- "states" if (is.null(x$strata)) d1 <- 1 else d1 <- length(x$strata) if (is.null(x$newdata)) {d2 <- d2name <- NULL} else d2 <- nrow(x$newdata) if (is.null(x$states)) {d3 <- d3name <- NULL} else d3 <- length(x$states) if (inherits(x, "survfitcox") && is.null(d2) && is.null(d3) && is.matrix(x$surv)) { # older style survfit.coxph object, before I added newdata to the output d2name <- "data" d2 <- ncol(x$surv) } dd <- c(d1, d2, d3) names(dd) <- c(d1name, d2name, d3name) if (is.null(dd)) 1 else dd } # there is a separate function for survfitms objects "[.survfit" <- function(x, ... , drop=TRUE) { nmatch <- function(indx, target) { # This function lets R worry about character, negative, or # logical subscripts. # It always returns a set of positive integer indices temp <- 1:length(target) names(temp) <- target temp[indx] } if (!inherits(x, "survfit")) stop("[.survfit called on non-survfit object") # ndots <- ...length() # the simplest, but not avail in R 3.4 # ndots <- length(list(...))# fails if any are missing, e.g. fit[,2] ndots <- if (missing(drop)) nargs()-1 else nargs()-2 # a workaround dd <- dim(x) dtype <- match(names(dd), c("strata", "data", "states")) if (ndots >0 && !missing(..1)) i <- ..1 else i <- NULL if (ndots> 1 && !missing(..2)) j <- ..2 else j <- NULL if (ndots > length(dd)) stop("incorrect number of dimensions") if (length(dtype) > 2) stop("invalid survfit object") # should never happen if (is.null(i) && is.null(j)) { # called with no subscripts given -- return x untouched return(x) } # Code below is easier if "i" is always the strata if (dtype[1] !=1) { dtype <- c(1, dtype) j <- i; i <- NULL dd <- c(1, dd) ndots <- ndots +1 } # We need to make a new one newx <- vector("list", length(x)) names(newx) <- names(x) for (k in c("logse", "version", "conf.int", "conf.type", "type", "call")) if (!is.null(x[[k]])) newx[[k]] <- x[[k]] class(newx) <- class(x) if (ndots== 1 && length(dd)==2) { # one subscript given for a two dimensional object # If one of the dimensions is 1, it is easier for me to fill in i and j if (dd[1]==1) {j <- i; i<- 1} else if (dd[2]==1) j <- 1 else { # the user has a mix of rows/cols index <- 1:prod(dd) itemp <- matrix(index, nrow=dd[1]) keep <- itemp[i] # illegal subscripts will generate an error if (length(keep) == length(index) && all(keep==index)) return(x) ii <- row(itemp)[keep] jj <- col(itemp)[keep] # at this point we have a matrix subscript of (ii, jj) # expand into a long pair of rows and cols temp <- split(seq(along=x$time), rep(1:length(x$strata), x$strata)) indx1 <- unlist(temp[ii]) # rows of the surv object indx2 <- rep(jj, x$strata[ii]) # return with each curve as a separate strata newx$n <- x$n[ii] for (k in c("time", "n.risk", "n.event", "n.censor", "n.enter")) if (!is.null(x[[k]])) newx[[k]] <- (x[[k]])[indx1] k <- cbind(indx1, indx2) for (j in c("surv", "std.err", "upper", "lower", "cumhaz", "std.chaz", "influence.surv", "influence.chaz")) if (!is.null(x[[j]])) newx[[j]] <- (x[[j]])[k] temp <- x$strata[ii] names(temp) <- 1:length(ii) newx$strata <- temp return(newx) } } # irow will be the rows that need to be taken # j the columns (of present) if (is.null(x$strata)) { if (is.null(i) || all(i==1)) irow <- seq(along=x$time) else stop("subscript out of bounds") newx$n <- x$n } else { if (is.null(i)) indx <- seq(along= x$strata) else indx <- nmatch(i, names(x$strata)) #strata to keep if (any(is.na(indx))) stop(paste("strata", paste(i[is.na(indx)], collapse=' '), 'not matched')) # Now, indx may not be in order: some can use curve[3:2] to reorder # The list/unlist construct will reorder the data temp <- split(seq(along=x$time), rep(1:length(x$strata), x$strata)) irow <- unlist(temp[indx]) if (length(indx) <=1 && drop) newx$strata <- NULL else newx$strata <- x$strata[i] newx$n <- x$n[indx] if (length(indx) ==1 & drop) x$strata <- NULL else newx$strata <- x$strata[indx] } if (length(dd)==1) { # no j dimension for (k in c("time", "n.risk", "n.event", "n.censor", "n.enter", "surv", "std.err", "cumhaz", "std.chaz", "upper", "lower", "influence.surv", "influence.chaz")) if (!is.null(x[[k]])) newx[[k]] <- (x[[k]])[irow] } else { # 2 dimensional object if (is.null(j)) j <- seq.int(ncol(x$surv)) # If the curve has been selected by strata and keep has only # one row, we don't want to lose the second subscript too if (length(irow)==1) drop <- FALSE for (k in c("time", "n.risk", "n.event", "n.censor", "n.enter")) if (!is.null(x[[k]])) newx[[k]] <- (x[[k]])[irow] for (k in c("surv", "std.err", "cumhaz", "std.chaz", "upper", "lower", "influence.surv", "influence.chaz")) if (!is.null(x[[k]])) newx[[k]] <- (x[[k]])[irow, j, drop=drop] } newx } @ \subsection{Kaplan-Meier} The most common use of the survfit function is with a formula as the first argument, and the most common outcome of such a call is a Kaplan-Meier curve. The id argument is from an older version of the competing risks code; most people will use [[cluster(id)]] in the formula instead. The istate argument only applies to competing risks, but don't print an error message if it is accidentally there. <>= survfit.formula <- function(formula, data, weights, subset, na.action, stype=1, ctype=1, id, cluster, istate, timefix=TRUE, etype, error, ...) { Call <- match.call() Call[[1]] <- as.name('survfit') #make nicer printout for the user # create a copy of the call that has only the arguments we want, # and use it to call model.frame() indx <- match(c('formula', 'data', 'weights', 'subset','na.action', 'istate', 'id', 'cluster', "etype"), names(Call), nomatch=0) #It's very hard to get the next error message other than malice # eg survfit(wt=Surv(time, status) ~1) if (indx[1]==0) stop("a formula argument is required") temp <- Call[c(1, indx)] temp[[1L]] <- quote(stats::model.frame) mf <- eval.parent(temp) Terms <- terms(formula, c("strata", "cluster")) ord <- attr(Terms, 'order') if (length(ord) & any(ord !=1)) stop("Interaction terms are not valid for this function") n <- nrow(mf) Y <- model.extract(mf, 'response') if (!is.Surv(Y)) stop("Response must be a survival object") casewt <- model.extract(mf, "weights") if (is.null(casewt)) casewt <- rep(1.0, n) else { if (!is.numeric(casewt)) stop("weights must be numeric") if (any(!is.finite(casewt))) stop("weights must be finite") if (any(casewt <0)) stop("weights must be non-negative") casewt <- as.numeric(casewt) # transform integer to numeric } if (!is.null(attr(Terms, 'offset'))) warning("Offset term ignored") id <- model.extract(mf, 'id') istate <- model.extract(mf,"istate") cluster <- model.extract(mf, "cluster") temp <- untangle.specials(Terms, "cluster") if (length(temp$vars)>0) { if (length(cluster) >0) stop("cluster appears as both an argument and a model term") if (length(temp$vars) > 1) stop("can not have two cluster terms") cluster <- mf[[temp$vars]] Terms <- Terms[-temp$terms] } ll <- attr(Terms, 'term.labels') if (length(ll) == 0) X <- factor(rep(1,n)) # ~1 on the right else X <- strata(mf[ll]) if (!is.Surv(Y)) stop("y must be a Surv object") # Backwards support for the now-depreciated etype argument etype <- model.extract(mf, "etype") if (!is.null(etype)) { if (attr(Y, "type") == "mcounting" || attr(Y, "type") == "mright") stop("cannot use both the etype argument and mstate survival type") if (length(istate)) stop("cannot use both the etype and istate arguments") status <- Y[,ncol(Y)] etype <- as.factor(etype) temp <- table(etype, status==0) if (all(rowSums(temp==0) ==1)) { # The user had a unique level of etype for the censors newlev <- levels(etype)[order(-temp[,2])] #censors first } else newlev <- c(" ", levels(etype)[temp[,1] >0]) status <- factor(ifelse(status==0,0, as.numeric(etype)), labels=newlev) if (attr(Y, 'type') == "right") Y <- Surv(Y[,1], status, type="mstate") else if (attr(Y, "type") == "counting") Y <- Surv(Y[,1], Y[,2], status, type="mstate") else stop("etype argument incompatable with survival type") } # Deal with the near-ties problem if (!is.logical(timefix) || length(timefix) > 1) stop("invalid value for timefix option") if (timefix) newY <- aeqSurv(Y) else newY <- Y # Call the appropriate helper function if (attr(Y, 'type') == 'left' || attr(Y, 'type') == 'interval') temp <- survfitTurnbull(X, newY, casewt, ...) else if (attr(Y, 'type') == "right" || attr(Y, 'type')== "counting") temp <- survfitKM(X, newY, casewt, stype=stype, ctype=ctype, id=id, cluster=cluster, ...) else if (attr(Y, 'type') == "mright" || attr(Y, "type")== "mcounting") temp <- survfitCI(X, newY, weights=casewt, stype=stype, ctype=ctype, id=id, cluster=cluster, istate=istate, ...) else { # This should never happen stop("unrecognized survival type") } if (is.null(temp$states)) class(temp) <- 'survfit' else class(temp) <- c("survfitms", "survfit") if (!is.null(attr(mf, 'na.action'))) temp$na.action <- attr(mf, 'na.action') temp$call <- Call temp } @ Once upon a time I allowed survfit to be called without the `\textasciitilde 1' portion of the formula. This was a mistake for multiple reasons, but the biggest problem is timing. If the subject has a data statement but the first argument is not a formula, R needs to evaluate Surv(t,s) to know that it is a survival object, but it also needs to know that this is a survival object before evaluation in order to dispatch the correct method. The method below helps give a useful error message in some cases. <>= survfit.Surv <- function(formula, ...) stop("the survfit function requires a formula as its first argument") @ The last peice in this file is the function to create confidence intervals. It is called from multiple different places so it is well to have one copy. If $p$ is the survival probability and $s(p)$ its standard error, we can do confidence intervals on the simple scale of $ p \pm 1.96 s(p)$, but that does not have very good properties. Instead use a transformation $y = f(p)$ for which the standard error is $s(p) f'(p)$, leading to the confidence interval \begin{equation*} f^{-1}\left(f(p) +- 1.96 s(p)f'(p) \right) \end{equation*} Here are the supported transformations. \begin{center} \begin{tabular}{rccc} &$f$& $f'$ & $f^{-1}$ \\ \hline log & $\log(p)$ & $1/p$ & $ \exp(y)$ \\ log-log & $\log(-\log(p))$ & $1/\left[ p \log(p) \right]$ & $\exp(-\exp(y)) $ \\ logit & $\log(p/1-p)$ & $1/[p (1-p)]$ & $1- 1/\left[1+ \exp(y)\right]$ \\ arcsin & $\arcsin(\sqrt{p})$ & $1/(2 \sqrt{p(1-p)})$ &$\sin^2(y)$ \\ \end{tabular} \end{center} Plain intervals can give limits outside of (0,1), we truncate them when this happens. The log intervals can give an upper limit greater than 1, but the lower limit is always valid, and the log-log and logit. The arcsin require truncation in the middle of the formula. In all cases we return NA as the CI for survival=0: it makes the graphs look better. Some of the underlying routines compute the standard error of $p$ and some the standard error of $\log(p)$. The \code{selow} argument is used for the modified lower limits of Dory and Korn. When this is used for cumulative hazards the ulimit arg will be FALSE: no upper limit of 1. <>= survfit_confint <- function(p, se, logse=TRUE, conf.type, conf.int, selow, ulimit=TRUE) { zval <- qnorm(1- (1-conf.int)/2, 0,1) if (missing(selow)) scale <- 1.0 else scale <- ifelse(selow==0, 1.0, selow/se) # avoid 0/0 at the origin if (!logse) se <- ifelse(se==0, 0, se/p) # se of log(survival) = log(p) if (conf.type=='plain') { se2 <- se* p * zval # matches equation 4.3.1 in Klein & Moeschberger if (ulimit) list(lower= pmax(p -se2*scale, 0), upper = pmin(p + se2, 1)) else list(lower= pmax(p -se2*scale, 0), upper = p + se2) } else if (conf.type=='log') { #avoid some "log(0)" messages xx <- ifelse(p==0, NA, p) se2 <- zval* se temp1 <- exp(log(xx) - se2*scale) temp2 <- exp(log(xx) + se2) if (ulimit) list(lower= temp1, upper= pmin(temp2, 1)) else list(lower= temp1, upper= temp2) } else if (conf.type=='log-log') { xx <- ifelse(p==0 | p==1, NA, p) se2 <- zval * se/log(xx) temp1 <- exp(-exp(log(-log(xx)) - se2*scale)) temp2 <- exp(-exp(log(-log(xx)) + se2)) list(lower = temp1 , upper = temp2) } else if (conf.type=='logit') { xx <- ifelse(p==0, NA, p) # avoid log(0) messages se2 <- zval * se *(1 + xx/(1-xx)) temp1 <- 1- 1/(1+exp(log(p/(1-p)) - se2*scale)) temp2 <- 1- 1/(1+exp(log(p/(1-p)) + se2)) list(lower = temp1, upper=temp2) } else if (conf.type=="arcsin") { xx <- ifelse(p==0, NA, p) se2 <- .5 *zval*se * sqrt(xx/(1-xx)) list(lower= (sin(pmax(0, asin(sqrt(xx)) - se2*scale)))^2, upper= (sin(pmin(pi/2, asin(sqrt(xx)) + se2)))^2) } else stop("invalid conf.int type") } @ survival/noweb/zph.Rnw0000644000176200001440000003547013561302541014541 0ustar liggesusers\section{The cox.zph function} The simplest test of proportional hazards is to use a time dependent coefficient $\beta(t) = a + bt$. Then $\beta(t) x = ax + b*(tx)$, and the extended coefficients $a$ and $b$ can be obtained from a Cox model with an extra 'fake' covariate $tx$. More generally, replace $t$ with some function $g(t)$, which gives rise to an entire family of tests. An efficient assessment of this extended model can be done using a score test. \begin{itemize} \item Augment the original variables $x_1, \ldots x_k$ with $k$ new ones $g(t)x_1, \ldots, g(t)x_k$ \item Compute the first and second derivatives $U$ and $H$ of the Cox model at the starting estimate of $(\hat\beta, 0)$; prior covariates at their prior values, and the new covariates at 0. No iteration is done. This can be done efficiently with a modified version of the primary C routines for coxph. \item By design, the first $k$ elements of $U$ will be zero. Thus the first iteration of the new coefficients, and the score tests for them, are particularly easy. \end{itemize} The information or Hessian matrix for a Cox model is $$ \sum_{j \in deaths} V(t_j) = \sum_jV_j$$ where $V_j$ is the variance matrix of the weighted covariate values, over all subjects at risk at time $t_j$. Then the expanded information matrix for the score test is \begin{align*} H &= \left(\begin{array}{cc} H_1 & H_2 \\ H_2' & H_3 \end{array} \right) \\ H_1 &= \sum V(t_j) \\ H_2 &= \sum V(t_j) g(t_j) \\ H_3 &= \sum V(t_j) g^2(t_j) \end{align*} The inverse of the matrix will be more numerically stable if $g(t)$ is centered at zero, and this does not change the test statistic. In the usual case $V(t)$ is close to constant in time --- the variance of $X$ does not change rapidly --- and then $H_2$ is approximately zero. The original cox.zph used an approximation, which is to assume that $V(t)$ is exactly constant. In that case $H_2=0$ and $H_3= \sum V(t_j) \sum g^2(t_j)$ and the test is particularly easy to compute. This assumption of identical components can fail badly for models with a covariate by strata interaction, and for some models with covariate dependent censoring. Multi-state models finally forced a change. The newer version of the routine has two separate tracks: for the formal test and another for the residuals. <>= cox.zph <- function(fit, transform='km', terms=TRUE, singledf =FALSE, global=TRUE) { Call <- match.call() if (!inherits(fit, "coxph") && !inherits(fit, "coxme")) stop ("argument must be the result of Cox model fit") if (inherits(fit, "coxph.null")) stop("there are no score residuals for a Null model") if (!is.null(attr(terms(fit), "specials")[["tt"]])) stop("function not defined for models with tt() terms") cget <- coxph.getdata(fit, y=TRUE, x=TRUE, stratax=TRUE, weights=TRUE) y <- cget$y ny <- ncol(y) event <- (y[,ny] ==1) if (length(cget$strata)) istrat <- as.integer(cget$strata) - 1L # number from 0 for C else istrat <- rep(0L, nrow(y)) varnames <- names(fit$coefficients) nvar <- length(varnames) # if terms==FALSE the singledf argument is moot, but FALSE leads to a # simpler path through the code if (!terms) singledf <- FALSE <> <> <> <> rval$transform <- tname rval$call <- Call class(rval) <- "cox.zph" return(rval) } print.cox.zph <- function(x, digits = max(options()$digits - 4, 3), signif.stars=FALSE, ...) { invisible(printCoefmat(x$table, digits=digits, signif.stars=signif.stars, P.values=TRUE, has.Pvalue=TRUE, ...)) } @ The user can use $t$ or $g(t)$ as the multiplier of the covariates. The default is to use the KM, only because that seems to be best at avoiding edge cases. <>= times <- y[,ny-1] if (is.character(transform)) { tname <- transform ttimes <- switch(transform, 'identity'= times, 'rank' = rank(times), 'log' = log(times), 'km' = { temp <- survfitKM(factor(rep(1L, nrow(y))), y, se.fit=FALSE) # A nuisance to do left cont KM indx <- findInterval(times, temp$time, left.open=TRUE) 1.0 - c(1, temp$surv)[indx+1] }, stop("Unrecognized transform")) } else { tname <- deparse(substitute(transform)) if (length(tname) >1) tname <- 'user' ttimes <- transform(times) } gtime <- ttimes - mean(ttimes[event]) # Now get the U, information, and residuals if (ny==2) { ord <- order(istrat, y[,1]) -1L resid <- .Call(Czph1, gtime, y, cget$x, eta, cget$weights, istrat, fit$method=="efron", ord) } else { ord1 <- order(-istrat, -y[,1]) -1L # reverse time for zph2 ord <- order(-istrat, -y[,2]) -1L resid <- .Call(Czph2, gtime, y, cget$x, eta, cget$weights, istrat, fit$method=="efron", ord1, ord) } @ The result has a score vector of length $2p$ where $p$ is the number of variables and an information matrix that is $2p$ by $2p$. This is done with C code that is a simple variation on iteration 1 for a coxph model. If \code{singledf} is TRUE then treat each term as a single degree of freedom test, otherwise as a multi-degree of freedom. If terms=FALSE test each covariate individually. If all the variables are univariate this is a moot point. The survival routines return Splus style assign components, that is a list with one element per term, each element an integer vector of coefficient indices. The asgn vector is our main workhorse: loop over asgn to process term by term. \begin{itemize} \item if term=FALSE, set make a new asgn with one coef per term \item if a coefficient is NA, remove it from the relevant asgn vector \item frailties and penalized coxme coefficients are ignored: remove their element from the asgn list \end{itemize} For random effects models, including both frailty and coxme results, the random effect is included in the linear.predictors component of the fit. This allows us to do score tests for the other terms while effectively holding the random effect fixed. <>= eta <- fit$linear.predictors if (!terms) { # create a fake asgn that has one value per coefficient asgn <- as.list(1:nvar) names(asgn) <- names(fit$coefficients) } else if (inherits(fit, "coxme")) { asgn <- attrassign(cget$x, terms(fit)) # allow for a spelling inconsistency in coxme, later fixed if (is.null(fit$linear.predictors)) eta <- fit$linear.predictor } else asgn <- fit$assign if (!is.list(asgn)) stop ("unexpected assign component") frail <- grepl("frailty(", names(asgn), fixed=TRUE) if (any(frail)) { dcol <- unlist(asgn[frail]) # remove these columns from X cget$x <- cget$x[, -dcol, drop=FALSE] asgn <- asgn[!frail] } nterm <- length(asgn) termname <- names(asgn) if (any(is.na(fit$coefficients))) { # fix up assign so as to ignore missing coefs, this should be rare mcoef <- which(is.na(fit$coefficients)) asgn <- lapply(asgn, function(i) i[!(i %in% mcoef)]) asgn <- asgn[sapply(asgn, length)>0] # drop any that were lost termname <- names(asgn) nterm <- length(asgn) # asgn will be 1, 2,2,2, 3, etc } @ The zph1 and zph2 functions do not consider penalties, so we need to add those back in after the call. Nothing needs to be done wrt the first derivative: we already ignore the first ncoef elements of the returned first derivative (u) vector, which would have had a penalty. The second portion of u is for beta=0, and all of the penalties that currently are implemented have first derivative 0 at 0. For the second derivative, the current penalties (frailty, rigde, pspline) have a second derivative penalty that is independent of beta-hat. The coxph result contains the numeric value of the penalty at the solution, and we use a score test that would penalize the new time*pspline() term in the same way as the pspline term was penalized. <>= test <- double(nterm+1) df <- rep(1L, nterm+1) u0 <- rep(0, nvar) if (!is.null(fit$coxlist2)) { # there are penalized terms pmat <- matrix(0., 2*nvar, 2*nvar) # second derivative penalty pmat[1:nvar, 1:nvar] <- fit$coxlist2$second pmat[1:nvar + nvar, 1:nvar + nvar] <- fit$coxlist2$second imatr <- resid$imat + pmat } else imatr <- resid$imat for (ii in 1:nterm) { jj <- asgn[[ii]] kk <- c(1:nvar, jj+nvar) imat <- imatr[kk, kk] u <- c(u0, resid$u[jj+nvar]) if (singledf && length(jj) >1) { vv <- solve(imat)[-(1:nvar), -(1:nvar)] t1 <- sum(fit$coef[jj] * resid$u[jj+nvar]) test[ii] <- t1^2 * (fit$coef[jj] %*% vv %*% fit$coef[jj]) df[ii] <- 1 } else { test[ii] <- drop(solve(imat,u) %*% u) if (is.null(fit$df)) df[ii] <- length(jj) else df[ii] <- fit$df[ii] } } #Global test if (global) { u <- c(u0, resid$u[-(1:nvar)]) test[nterm+1] <- solve(imatr, u) %*% u if (is.null(fit$df)) df[nterm+1] <- nvar else df[nterm+1] <- sum(fit$df) tbl <- cbind(test, df, pchisq(test, df, lower.tail=FALSE)) dimnames(tbl) <- list(c(termname, "GLOBAL"), c("chisq", "df", "p")) } else { tbl <- cbind(test, df, pchisq(test, df, lower.tail=FALSE))[1:nterm,, drop=FALSE] dimnames(tbl) <- list(termname, c("chisq", "df", "p")) } # The x, y, residuals part is sorted by time within strata; this is # what the C routine zph1 and zph2 return indx <- if (ny==2) ord +1 else rev(ord) +1 # return to 1 based subscripts indx <- indx[event[indx]] # only keep the death times rval <- list(table=tbl, x=unname(ttimes[indx]), time=unname(y[indx, ny-1])) if (length(cget$strata)) rval$strata <- cget$strata[indx] @ The matrix of scaled Schoenfeld residuals is created one stratum at a time. The ideal for the residual $r(t_i)$, contributed by an event for subject $i$ at time $t_i$ is to use $r_iV^{-1}(t_i)$, the inverse of the variance matrix of $X$ at that time and for the relevant stratum. What is returned as \code{resid\$imat} is $\sum_i V(t_i)$. One option would have been to return all the individual $\hat V_i$ matrices, but that falls over when the number at risk is too small and it cannot be inverted. Option 2 would be to use a per stratum averge of the $V_i$, but that falls flat for models with a large number of strata, a nested case-control model for instance. We take a different average that may not be the best, but seems to be good enough and doesn't seem to fail. \begin{enumerate} \item The \code{resid\$used} matrix contains the number of deaths for each strata (row) that contributed to the sum for each variable (column). The value is either 0 or the number of events in the stratum, zero for those variables that are constant within the stratum. From this we can get the number of events that contributed to each element of the \code{imat} total. Dividing by this gives a per-element average \code{vmean}. \item For a given stratum, some of the covariates may have been unused. For any of those set the scaled Schoenfeld residual to NA, and use the other rows/columns of the \code{vmean} matrix to scale the rest. \end{enumerate} Now if some variable $x_1$ has a large variance at some time points and a small variance at others, or a large variance in one stratum and a small variance in another, the above smoothing won't catch that subtlety. However we expect such an issue to be rare. The common problem of strata*covariate interactions is the target of the above manipulations. <>= # Watch out for a particular edge case: there is a factor, and one of the # strata happens to not use one of its levels. The element of resid$used will # be zero, but it really should not. used <-resid$used for (i in asgn) { if (length(i) > 1 && any(used[,i] ==0)) used[,i] <- apply(used[,i,drop=FALSE], 1, max) } # Make the weight matrix wtmat <- matrix(0, nvar, nvar) for (i in 1:nrow(used)) wtmat <- wtmat + outer(used[i,], used[i,], pmin) # with strata*covariate interactions (multi-state models for instance) the # imatr matrix will be block diagonal. Don't divide these off diagonal zeros # by a wtmat value of zero. vmean <- imatr[1:nvar, 1:nvar, drop=FALSE]/ifelse(wtmat==0, 1, wtmat) sresid <- resid$schoen if (terms && any(sapply(asgn, length) > 1)) { # collase multi-column terms temp <- matrix(0, ncol(sresid), nterm) for (i in 1:nterm) { j <- asgn[[i]] if (length(j) ==1) temp[j, i] <- 1 else temp[j, i] <- fit$coefficients[j] } sresid <- sresid %*% temp vmean <- t(temp) %*% vmean %*% temp used <- used[, sapply(asgn, function(x) x[1]), drop=FALSE] } dimnames(sresid) <- list(signif(rval$time, 4), termname) # for each stratum, rescale the Schoenfeld residuals in that stratum sgrp <- rep(1:nrow(used), apply(used, 1, max)) for (i in 1:nrow(used)) { k <- which(used[i,] > 0) if (length(k) >0) { # there might be no deaths in the stratum j <- which(sgrp==i) if (length(k) ==1) sresid[j,k] <- sresid[j,k]/vmean[k,k] else sresid[j, k] <- t(solve(vmean[k, k], t(sresid[j, k, drop=FALSE]))) sresid[j, -k] <- NA } } # Add in beta-hat. For a term with multiple columns we are testing zph for # the linear predictor X\beta, which always has a coefficient of 1 for (i in 1:nterm) { j <- asgn[[i]] if (length(j) ==1) sresid[,i] <- sresid[,i] + fit$coefficients[j] else sresid[,i] <- sresid[,i] +1 } rval$y <- sresid rval$var <- solve(vmean) @ <>= "[.cox.zph" <- function(x, ..., drop=FALSE) { i <- ..1 if (!is.null(x$strata)) { y2 <- x$y[,i,drop=FALSE] ymiss <- apply(is.na(y2), 1, all) if (any(ymiss)) { # some deaths played no role in these coefficients # due to a strata * covariate interaction, drop unneeded rows z<- list(table=x$table[i,,drop=FALSE], x=x$x[!ymiss], time= x$time[!ymiss], strata = x$strata[!ymiss], y = y2[!ymiss,,drop=FALSE], var=x$var[i,i, drop=FALSE], transform=x$transform, call=x$call) } else z<- list(table=x$table[i,,drop=FALSE], x=x$x, time= x$time, strata = x$strata, y = y2, var=x$var[i,i, drop=FALSE], transform=x$transform, call=x$call) } else z<- list(table=x$table[i,,drop=FALSE], x=x$x, time= x$time, y = x$y[,i,drop=FALSE], var=x$var[i,i, drop=FALSE], transform=x$transform, call=x$call) class(z) <- class(x) z } @ survival/noweb/survfitCI.Rnw0000644000176200001440000005311113570772034015656 0ustar liggesusers\subsection{Competing risks} \newcommand{\Twid}{\mbox{\(\tt\sim\)}} The competing risks routine is very general, allowing subjects to enter or exit states multiple times. Early on I used the label \emph{current prevalence} estimate, since it estimates what fraction of the subjects are in any given state across time. However the word ``prevalence'' is likely to generate confusion whenever death is one of the states, due to its historic use as the fraction of living subjects who have a particular condition. We will use the phrase \emph{probability in state} or simply $P$ from this point forward. The easiest way to understand the estimate is to consider first the case of no censoring. In that setting the estimate of $F_k(t) = 1-S_k(t)$ for all states is obtained from a simple table of the current state at time $t$ of the subjects, divided by $n$, the original sample size. When there is censoring the conceptually simple way to extend this is via the redistribute-to-the-right algorithm, which allocates the case weight for a censored subject evenly to all the others in the same state at the time of censoring. The literature refers to these as ``cumulative incidence'' curves, which is confusing since P(state) is not the integral of incidence, but the routine name survfitCI endures. The cannonical call is one of \begin{verbatim} fit <- survfit(Surv(time, status) ~ sex, data=mine) fit <- survfit(Surv(time1, time2, status) ~ sex, data=mine) \end{verbatim} where \code{status} is a factor variable. Optionally, there can be an id statement or cluster term to indicate a data set with multiple transitions per subject. For multi-state survival the status variable has multiple levels, the first of which by default is censoring, and others indicating the type of transition that occured. The result will be a matrix of survival curves, one for each event type. If no initial state is specified then subjects are assumed to start in a "null" state, which gets listed last and by default will not be printed or plotted. (But it is present, with a name of `'); The first part of the code is standard, parsing out options and checking the data. <>= <> survfitCI <- function(X, Y, weights, id, istate, cluster, stype=1, ctype=1, se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none', 'logit', "arcsin"), conf.lower=c('usual', 'peto', 'modified'), influence = FALSE, start.time, p0, type){ if (!missing(type)) { if (!missing(ctype) || !missing(stype)) stop("cannot have both an old-style 'type' argument and the stype/ctype arguments that replaced it") if (!is.character(type)) stop("type argument must be character") # older style argument is allowed temp <- charmatch(type, c("kaplan-meier", "fleming-harrington", "fh2")) if (is.na(temp)) stop("invalid value for 'type'") type <- c(1,3,4)[temp] } else { if (!(ctype %in% 1:2)) stop("ctype must be 1 or 2") if (!(stype %in% 1:2)) stop("stype must be 1 or 2") type <- as.integer(2*stype + ctype -2) } conf.type <- match.arg(conf.type) conf.lower<- match.arg(conf.lower) if (conf.lower != "usual") warning("conf.lower is ignored for multi-state data") if (is.logical(conf.int)) { # A common error is for users to use "conf.int = FALSE" # it's illegal per documentation, but be kind if (!conf.int) conf.type <- "none" conf.int <- .95 } if (is.logical(influence)) { # TRUE/FALSE is treated as all or nothing if (!influence) influence <- 0L else influence <- 3L } else if (!is.numeric(influence)) stop("influence argument must be numeric or logical") if (!(influence %in% 0:3)) stop("influence argument must be 0, 1, 2, or 3") else influence <- as.integer(influence) if (!se.fit) { # if the user asked for no standard error, skip any robust computation ncluster <- 0L influence <- 0L } type <- attr(Y, "type") # This line should be unreachable, unless they call "surfitCI" directly if (type !='mright' && type!='mcounting') stop(paste("multi-state computation doesn't support \"", type, "\" survival data", sep='')) # If there is a start.time directive, start by removing any prior events if (!missing(start.time)) { if (!is.numeric(start.time) || length(start.time) !=1 || !is.finite(start.time)) stop("start.time must be a single numeric value") toss <- which(Y[,ncol(Y)-1] <= start.time) if (length(toss)) { n <- nrow(Y) if (length(toss)==n) stop("start.time has removed all observations") Y <- Y[-toss,,drop=FALSE] X <- X[-toss] weights <- weights[-toss] if (length(id) ==n) id <- id[-toss] if (!missing(istate) && length(istate)==n) istate <- istate[-toss] } } n <- nrow(Y) status <- Y[,ncol(Y)] ncurve <- length(levels(X)) # The user can call with cluster, id, both, or neither # If only id, treat it as the cluster too # If influence is requested, this implies clustering has.cluster <- !(missing(cluster) || length(cluster)==0) has.id <- !(missing(id) || length(id)==0) if (has.id) id <- as.factor(id) else { if (ncol(Y) ==3) stop("an id statement is required for start,stop data") id <- 1:n } if (influence && !(has.cluster || has.id)) { cluster <- seq(along=X) has.cluster <- TRUE } if (has.cluster) { if (is.factor(cluster)) { clname <- levels(cluster) cluster <- as.integer(cluster) } else { clname <- sort(unique(cluster)) cluster <- match(cluster, clname) } ncluster <- length(clname) } else { if (has.id) { # treat the id as both identifier and clustering clname <- levels(id) cluster <- as.integer(id) ncluster <- length(clname) } else { ncluster <- 0 # has neither clname <- NULL } } if (missing(istate) || is.null(istate)) mcheck <- survcheck2(Y, id) else mcheck <- survcheck2(Y, id, istate) if (any(mcheck$flag > 0)) stop("one or more flags are >0 in survcheck") states <- mcheck$states istate <- mcheck$istate nstate <- length(states) smap <- c(0, match(attr(Y, "states"), states)) Y[,ncol(Y)] <- smap[Y[,ncol(Y)] +1] # new states may be a superset status <- Y[,ncol(Y)] if (mcheck$flag["overlap"] > 0) stop("a subject has overlapping time intervals") # if (mcheck$flag["gap"] > 0 || mcheck$flag["jump"] > 0) # warning("subject(s) with time gaps, results may be questionable") # The states of the status variable are the first columns in the output # any extra initial states are later in the list. # Now that we know the names, verify that p0 is correct (if present) if (!missing(p0)) { if (length(p0) != nstate) stop("wrong length for p0") if (!is.numeric(p0) || abs(1-sum(p0)) > sqrt(.Machine$double.eps)) stop("p0 must be a numeric vector that adds to 1") } else p0 <- NULL @ The status vector will have values of 0 for censored. <>= curves <- vector("list", ncurve) names(curves) <- levels(X) if (ncol(Y)==2) { # 1 transition per subject # dummy entry time that is < any event time t0 <- min(0, Y[,1]) entry <- rep(t0-1, nrow(Y)) for (i in levels(X)) { indx <- which(X==i) curves[[i]] <- docurve2(entry[indx], Y[indx,1], status[indx], istate[indx], weights[indx], states, id[indx], se.fit, influence, p0) } } else { <> <> } <> } @ In the multi-state case we can calculate the current P(state) vector $p(t)$ using the product-limit form \begin{align*} p(t) &= p(0)\prod_{s<=t} [I + dA(s)] \\ &= p(0) \prod_{s<=t} H(s) \end{align*} Where $p$ is a row vector and $H$ is the multi-state hazard matrix. $H(t)$ is a simple transition matrix. Row $j$ of $H$ describes the outcome of everyone who was in state $j$ at time $t-0$; and is the fraction of them who are in states $1, 2, \ldots$ at time $t+0$. Let $Y_{ij}(t)$ be the indicator function which is 1 if subject $i$ is in state $j$ at time $t-0$, then \begin{equation} H_{jk}(t) = \frac{\sum_i w_i Y_{ij}(t) Y_{ik}(t+)} {\sum_i w_i Y_{ij}(t)} \label{H} \end{equation} Each row of $H$ sums to 1: everyone has to go somewhere. This formula collapses to the Kaplan-Meier in the simple case where $p(t)$ is a vector of length 2 with state 1 = alive and state 2 = dead. The variance is based on per-subject influence. Since $p(t)$ is a vector the influence can be written as a matrix with one row per subject and one column per state. $$ U_{ij}(t) \equiv \frac{\partial p_j(t)}{\partial w_i}. $$ This can be calculate using a recursive formula. First, the derivative of a matrix product $AB$ is $d(A)B + Ad(B)$ where $d(A)$ is the elementwise derivative of $A$ and similarly for $B$. (Write out each element of the matrix product.) Since $p(t) = p(t-)H(t)$, the $i$th row of U satisfies \begin{align} U_i(t) &= \frac{\partial p(t)}{\partial w_i} \nonumber \\ &= \frac{\partial p(t-)}{\partial w_i} H(t) + p(t-) \frac{\partial H(t)}{\partial w_i} \nonumber \\ &= U_i(t-) H(t) + p(t-) \frac{\partial H(t)}{\partial w_i} \label{ci} \end{align} The first term of \ref{ci} collapses to ordinary matrix multiplication. The second term does not: each at risk subject has a unique matrix derivative $\partial H$; $n$ vectors of length $p$ can be arranged into a matrix, making the code simple, but $n$ $p$ by $p$ matrices are not so neat. However, note that \begin{enumerate} \item $\partial H$ is zero for anyone not in the risk set, since their weight does not appear in $H$. \item Each subject who is at risk will be in one (and only one) of the states at the event time, their weight only appears in that row of $H$. Thus for each at risk subject $\partial H$ has only one non-zero row. \end{enumerate} Say that the subject enters the given event time in state $j$ and ends it in state $k$. (For most subjects at most time poinnts $k=j$: if there are 100 at risk at time $t$ and 1 changes state, the other 99 stay put.) Let $n_j(t)= \sum_i Y_{ij}(t)w_i$ be the weighted number of subjects in state $j$, these are the contributers to row $j$ of $H$. Using equation \ref{H}, the derivative of row $j$ with respect to the subject is $(1_k - H_j)/n_j$ where $1_k$ is a vector with 1 in position $k$. The product of $p(t)$ with this matrix is the vector $p_j(t)(1_k - H_j)/n_j$. The second term thus turns out to be fairly simple to compute, but I have not seen a way to write it in a compact matrix form The weighted sum of each column of $U$ will be zero (if computed correctly) and the weighted sum of squares for each column will be the infinitesimal jackknife estimate of variance for the elements of $p$. The entire variance-covariance matrix for the states is $U'W^2U$ where $W$ is a diagonal matrix of weights, but we currently don't report that back. Note that this is for sampling weights. If one has real case weights, where an integer weight of 2 means 2 observations that were collapsed in to one row of data to save space, then the variance is $U'WU$. Case weights were somewhat common in my youth due to small computer memory, but I haven't seen such data in 20 years. Below is the function for a single curve. For the status variable a value if 0 is ``no event''. One nuisance in the function is that we need to ensure the tapply command gives totals for all states, not just the ones present in the data --- a call using the \code{subset} argument might not have all the states --- which leads to using factor commands. Another more confusing one is for multiple rows per subject data, where the cstate and U objects have only one row per subject; any given subject is only in one state at a time. This leads to indices of [[atrisk]] for the set of rows in the risk set but [[aindx]] for the subjects in the risk set, [[death]] for the rows that have an event this time and [[dindx]] for the corresponding subjects. The setup for (start, stop] data is a bit more work. We want to ensure that a given subject remains in the same group and that they have a continuous period of observation. If the input data was the result of a tmerge call, say, it might have a lot of extra 'censored' rows. For instance a subject whose state pattern is (0, 5, 1), (5,10, 2), i.e., a transition to state 1 at day 5 and state 2 on day 10 might input as (0,2,0), (2,5,1), (5,6,0), (6,8,0), (8,10,2) instead. These extra censors cause an unnecessary row of output on days 2, 6, and 8. Remove these before going further. <>= # extra censors indx <- order(id, Y[,2]) # in stop order extra <- (survflag(Y[indx,], id[indx]) ==0 & (Y[indx,3] ==0)) # If a subject had obs of (a, b)(b,c)(c,d), and c was a censoring # time, that is an "extra" censoring/entry at c that we don't want # to count. Deal with it by changing that subject # to (a,b)(b,d). Won't change S(t), only the n.censored/n.enter count. if (any(extra)) { e2 <- indx[extra] Y <- cbind(Y[-(1+e2),1], Y[-e2,-1]) status <- status[-e2] X <- X[-e2] id <- id[-e2] istate <- istate[-e2] weights <- weights[-e2] indx <- order(id, Y[,2]) } @ <>= # Now to work for (i in levels(X)) { indx <- which(X==i) # temp <- docurve1(Y[indx,1], Y[indx,2], status[indx], # istate[indx], weights[indx], states, id[indx]) curves[[i]] <- docurve2(Y[indx,1], Y[indx,2], status[indx], istate[indx], weights[indx], states, id[indx], se.fit, influence, p0) } @ <>= # Turn the result into a survfit type object grabit <- function(clist, element) { temp <-(clist[[1]][[element]]) if (is.matrix(temp)) { do.call("rbind", lapply(clist, function(x) x[[element]])) } else { xx <- as.vector(unlist(lapply(clist, function(x) x[element]))) if (inherits(temp, "table")) matrix(xx, byrow=T, ncol=length(temp)) else xx } } # we want to rearrange the cumulative hazard to be in time order # with one column for each observed transtion. nstate <- length(states) temp <- matrix(0, nstate, nstate) indx1 <- match(rownames(mcheck$transitions), states) indx2 <- match(colnames(mcheck$transitions), states, nomatch=0) #ignore censor temp[indx1, indx2[indx2>0]] <- mcheck$transitions[,indx2>0] ckeep <- which(temp>0) names(ckeep) <- outer(1:nstate, 1:nstate, paste, sep='.')[ckeep] #browser() if (length(curves) ==1) { keep <- c("n", "time", "n.risk", "n.event", "n.censor", "pstate", "p0", "cumhaz", "influence.pstate") if (se.fit) keep <- c(keep, "std.err", "sp0") kfit <- (curves[[1]])[match(keep, names(curves[[1]]), nomatch=0)] names(kfit$p0) <- states if (se.fit) kfit$logse <- FALSE kfit$cumhaz <- t(kfit$cumhaz[ckeep,,drop=FALSE]) colnames(kfit$cumhaz) <- names(ckeep) } else { kfit <- list(n = as.vector(table(X)), #give it labels time = grabit(curves, "time"), n.risk= grabit(curves, "n.risk"), n.event= grabit(curves, "n.event"), n.censor=grabit(curves, "n.censor"), pstate = grabit(curves, "pstate"), p0 = grabit(curves, "p0"), strata= unlist(lapply(curves, function(x) length(x$time)))) kfit$p0 <- matrix(kfit$p0, ncol=nstate, byrow=TRUE, dimnames=list(names(curves), states)) if (se.fit) { kfit$std.err <- grabit(curves, "std.err") kfit$sp0<- matrix(grabit(curves, "sp0"), ncol=nstate, byrow=TRUE) kfit$logse <- FALSE } # rearrange the cumulative hazard to be in time order, with columns # for each transition kfit$cumhaz <- do.call(rbind, lapply(curves, function(x) t(x$cumhaz[ckeep,,drop=FALSE]))) colnames(kfit$cumhaz) <- names(ckeep) if (influence) kfit$influence.pstate <- lapply(curves, function(x) x$influence.pstate) } if (!missing(start.time)) kfit$start.time <- start.time kfit$transitions <- mcheck$transitions @ <>= # # Last bit: add in the confidence bands: # if (se.fit) { kfit$conf.int <- conf.int kfit$conf.type <- conf.type if (conf.type != "none") { ci <- survfit_confint(kfit$pstate, kfit$std.err, logse=FALSE, conf.type, conf.int) kfit <- c(kfit, ci, conf.type=conf.type, conf.int=conf.int) } } kfit$states <- states kfit$type <- attr(Y, "type") kfit @ The updated docurve function is here. One issue that was not recognized originally is delayed entry. If most of the subjects start at time 0, say, but one of them starts at day 100 then that last subject is not a part of $p_0$. We will define $p_0$ as the distribution of states just before the first event. The code above has already ensured that each subject has a unique value for istate, so we don't have to search for the right one. The initial vector and leverage are \begin{align*} p_0 &= (\sum I{s_i=1}w_i, \sum I{s_i=2}w_i, \ldots)/ \sum w_i \\ \frac{\partial p_0}{\partial w_k} &= [(I{s_k=1}, I{s_k=2}, ...)- p_0]/\sum w_i \end{align*} The input data set is not necessarily sorted by time or subject. The data has been checked so that subjects don't have gaps, however. The cstate variable for each subject contains their first istate value. Only those intervals that overlap the first event time contribute to $p_0$. Now: what to report as the ``time'' for the initial row. The values for it come from (first event time -0), i.e. all who are at risk at the smallest \code{etime} with status $>0$. But for normal plotting the smallest start time seems to be a good default. In the usual (start, stop] data a large chunk of the subjects have a common start time. However, if the first event doesn't happen for a while and subjects are dribbling in, then the best point to start a plot is open to debate. Que sera sera. <>= docurve2 <- function(entry, etime, status, istate, wt, states, id, se.fit, influence=FALSE, p0) { timeset <- sort(unique(etime)) nstate <- length(states) uid <- sort(unique(id)) index <- match(id, uid) # Either/both of id and cstate might be factors. Data may not be in # order. Get the initial state for each subject temp1 <- order(id, entry) temp2 <- match(uid, id[temp1]) cstate <- (as.numeric(istate)[temp1])[temp2] # initial state for each # The influence matrix can be huge, make sure we have enough memory if (influence) { needed <- max(nstate * length(uid), 1 + length(timeset)) if (needed > .Machine$integer.max) stop("number of rows for the influence matrix is > the maximum integer") } storage.mode(wt) <- "double" # just in case someone had integer weights # Compute p0 (unless given by the user) if (is.null(p0)) { if (all(status==0)) t0 <- max(etime) #failsafe else t0 <- min(etime[status!=0]) # first transition event at.zero <- (entry < t0 & etime >= t0) wtsum <- sum(wt[at.zero]) # weights for a subject may change p0 <- tapply(wt[at.zero], istate[at.zero], sum) / wtsum p0 <- ifelse(is.na(p0), 0, p0) #for a state not in at.zero, tapply =NA } # initial leverage matrix nid <- length(uid) i0 <- matrix(0., nid, nstate) if (all(p0 <1)) { #actually have to compute it who <- index[at.zero] # this will have no duplicates for (j in 1:nstate) i0[who,j] <- (ifelse(istate[at.zero]==states[j], 1, 0) - p0[j])/wtsum } storage.mode(cstate) <- "integer" storage.mode(status) <- "integer" # C code has 0 based subscripts if (influence) se.fit <- TRUE # se.fit is free in this case fit <- .Call(Csurvfitci, c(entry, etime), order(entry) - 1L, order(etime) - 1L, length(timeset), status, as.integer(cstate) - 1L, wt, index -1L, p0, i0, as.integer(se.fit) + 2L*as.integer(influence)) if (se.fit) out <- list(n=length(etime), time= timeset, p0 = p0, sp0= sqrt(colSums(i0^2)), pstate = fit$p, std.err=fit$std, n.risk = fit$nrisk, n.event= fit$nevent, n.censor=fit$ncensor, cumhaz = fit$cumhaz) else out <- list(n=length(etime), time= timeset, p0=p0, pstate = fit$p, n.risk = fit$nrisk, n.event = fit$nevent, n.censor= fit$ncensor, cumhaz= fit$cumhaz) if (influence) { temp <- array(fit$influence, dim=c(length(uid), nstate, 1+ length(timeset)), dimnames=list(uid, NULL, NULL)) out$influence.pstate <- aperm(temp, c(1,3,2)) } out } @ survival/.Rinstignore0000644000176200001440000000002613537676562014453 0ustar liggesusersinst/doc/validate.tex survival/data/0000755000176200001440000000000013570767322013052 5ustar liggesuserssurvival/data/flchain.rda0000644000176200001440000024231313537676563015164 0ustar liggesusers‹ìý ÜeÙyÖ‡žšçªS_µF ù³,ËÛ±àÚC`Æ’°dy fpÀטɀ!`Šár™.—„ažÍu¸ !\B ÅØØÈ¶ZÝ-uK-©»kž{î.u©;ëÔyþï÷ÛÏþ­ýµdK-Ÿóû}µkï½öZïz×;<ï»Ö^û›ßöÿéáï8<›ÍvÏöìjÿîiÿÝ»»ý³k¶wv¨|×÷ü¦ßú¿í{g³=§Úé‘öw|6{ã{ß±˜-‹oŸéxÆÎuÿÛÎl¬ûgWÇï˜m_ŽvÒóß~ÖÚt|»=ÿmVþ¿ðvÎÚóg·¿îtsNûUþì°Ü·ÛsÎ/ïψÔ›Ú£_NßY£ÓÛ³ëNŸ÷¯øïí/¶ï×h|C{>Þÿ$g©_=9‡õ³ê¥½]£q>;<ÿ¿•ó3vó³Ûßÿ–ÅðH=ßjçõÜÙá}®›W»‹íßæí@Ÿ÷g1,çÏW{öœ÷›ç‹Nï7å½èòc¨ß¯;}Õo£¿Æ£ÓÞ·z9¯Çéá¾÷ÛËqÊ'9¨q˜mîGçg;½ázÕÏõ3Û÷c$ÖîhܹêOíøx _#ypú(?³ò‹íï'ýýV¿¾Øþú¨Ÿ¡‰Oi\)_zåôBOz~6,G;#=YlÿÜÈqýÌðþH¿ö|ºN=¡ßÉþº}r}sûèök¤×^Óåý˜ éÉc8z?¾ÕŽI¯zrZãët.ìyoÿ¬•§=ê9;¼>¢ßŸwº½~ßú‘ìúÈNøõT¿Óïý³ë.?#»¸>—p€ËQôc¡?“Û;kÏ[ÿFòÛ¹?ªÏúUvøŒ]7ú#nðöfÃçGúzfûò#yá¸>ùúëvrtŸú9z»g†Ï¹žŒäò¬µ»^w?îú™pQÒ7· NÂ3UÞΓýõ~ž_ ïG¹±r $¿8ò×g‡÷G|;3¼žpÛ¨½E(ÆîÛó£~Z“}Hå£Þx¿tt¹‹¸,Йüê·ù}¯ßé?kôÙs#þqîôROê×Âè;3,ïõŒôd6O<¦ñ­vfvßûçí{}”óþ,†Ïõä¡+ß”KçÞ¾÷Óë?cåV>ÕkÇÈßÅö÷]_ÓõØÏÔîÂŽVnD¿÷óÌð|$gìhíŒê ôöìl|îL(ç×½^§{fG§waG¿Îs©^.Ñ{&”KôY;]»¶°rëѳ°ãÙa½QþÎ:¹ïôxùpžø0¢ƒréyëgÒË©vh²_8;ñþÂŽg:×íís¯=ïßÔú­?‘_Þ™ö¼÷ÓŸK×vtz݉_QŽÏ|jz#¬ŸÑÿz½©?gì¾÷ó̧>Oþ¸‡“ßëâŸ3áþÂîûu¯ÿÌöôG¿áõº»ú³–ëâ”Dï;žc?¼tßûãýMíYÿÞc×{õDÏù;:}©>§ÃÚïÚS+×ã]ú¼_éykô<弞p¿‹#½>§3•sú§ž;]V×NœÙþØ•G££ç7ºvvÊÑÞÐnº? ×{ýñú½ÔO£ÛëéÑÝmïl¨Çé?cG¯ßé›…rÞŸ3¡ïŸ]Oò<êG:ZùÑ8…~tý½÷3õ»ÓΧ÷B?»ã•è[X=g†Ç.^LýìÑ?žwí~j7Õ¿^vØËϬœ?çtA¿Žï¦½™áüLxÎÎß}vx¬öÎZù3vÿ̰ܻ½œÝôÙóNÇèèÑå圮@glßÛ³úGãäý™ ]þͶ¿ŸÚ÷~ê÷~y{ÞÏ@_âk¢¯G—Ëej'Ž£÷kÎízߣ眮Ô_£g4¾Î(ÿÖ~¢#é}W¯ŽÑuoßè­öR½NçÌž_„c~¯?ôÃËÇqHõØs£çý¹Nùø| ·W¿ó-Ù¹dŸ#]©=¯ÏËú»öÕé±r±}£·çO¢? Ïè²ö»öÙêïúÝN½#yöö¼_N¯»xºB»‰¾‘Üûu;Žú—è°òÑŸùóvLö¿'©ŸÑO†óˆƒB½£zœ®N===v’çÛ_ŸìïÏ Ëuõ±Ó^O΢~x½SûÃõ]i\¢\½E·; ÇÅöç½ñLòÏ­EŸ÷ÓûátõÊ/¶?8Ëë·ëÉž$þD?åôœ^ïúY?ζ?újíwû;³ò^OèOŸhߨ?]·û]î÷üzìåfv\„ë=ÕOoߟ³çGÏ>ý†—wzzôÙyÏŒp›ß_ Ë%?1Ò®û¹—7:GýïÐûcå»þðL¸ï×Cÿz~«‡Gºþ3ô;ÒµCz¿9”]·cÄ+Þ¿³Ãç’\'›ü^”§D—ÕíÒlxŒãêMôŒÆÙ¯Ÿ>ŸøÜó ]ü`ýŒ~1,×Ã/}Ñ^ûõŰ|’nÿ½_~ßêíùýPÏž}zíí§zvôzR?­Þžõì]¿hߌÞ8®þœ]ïù½._œ~ïgª×ééÐÛÅ+~±ýõ‘Άå{þ|²~y?¼\¢×èŠü å«ÞÐ~×Îy?>§ßúÑ•'§Çéõò½~¦vÏ Ë'}ÉÓÂŽ3+îúè‹þÑêrÚëÙ·.?­ÞoNå®ÎýèÏÏ~êç"ßSûcϯ&ûÏÏØÑÚázÔw§6,çåÓøNµk=ûÓåÕ“ìÔ»ÂñÝ”ÓóïR;ïZØñ¬•ãxfx>ªo1<ÏŸ±ûºGíÍB=F÷¨}îÏìºÓqvûöŽQùpÿÝv}Ä·N?Òø8ñy/gíÚ9³³ò£~„~ÖѯÏ:õy¿fÃû>±¾Þ}/®§qïµ7ê—÷cñ©¯Êy}©Ÿgí˜è·ó‘¾9^ŸÓoíBŸGvÃÛµöâø;}gB;³áõºïýñ~%:­þÑø†ç{v´gFõ…ò=~$º{rí µSíGrâõp\ ˧ú¢Ûõ¢Ëë³ë={ùaíôÎGG¯ßûáçgÂýÙÄsúwvû~uÇÇû3³c¨o4þÞÞÛ=³}ùxê‰t.ìèí{=‹OÝßä¯Rý£úÝ‘_ÖN]·û^>ÉI7ÙÑÛ‹ãsÖÊuè­Þ„»Fts<ûòÚíÙ«È£³ËoÇÏîWç~õ›ú¼];ïá³h×¼¼Ów6~¿Ÿè°þEz¼ŽóÙðzª·k÷¬Üh<­ÉÎE½ðúŒÎ~Œô‡~ìxœ ?•³û]9å"ß¼žPߨž³Û×ÛõW^Ÿ·Û«÷l(Çy¢ßÊS.â"?ús¡ºÚ‹øýl¸ß¡«§o©¿;õ[I/Gý²v£ßñ~žÝþèåcÿR¿ü9£3êƒ_õWyïç,” ýêâºð|¼?³û©³öü™ð¼ß·ö½ T9?·çFt/¶?:©Sýsò‹Ñ/y?ý~ê§ÓŸúaÏyùd{v­›7 Ï%¿2ꇗ÷úgÃó¤·=7¢ÓÚ‹öËë;»ýõ.ÞðþzÓxtõÖêëᣑ=5º»åφòg¶?ïᣈC8÷v:דþ¾;gë³ó*ïtŸ{õ;==;îç]{îýðþùñÌðõ!•súB»Õ_»_×Ó}ï·µ×åƒ{öi²ßïörú". ôwËy;Þô|Ä+Öï_ן[}Õ§W÷¿‰ë:þj»Îù¯öráøMö¼«>ú;±^/ïç©þH7t†òß”î{¹N»Õ»î÷ßeåÒÑûˇzߪÞ«'ÝOí¥vb¿R»VÎË'9c ×å~Ô+×çT>¶Ê9Fôxûö\Ò#Þé‰vÀéíô»×N¯|âë»ìzì‡?oÇQ=ÖN’Ÿ¨wDO #ÙQï׈ÎN¦ò7ÚS¯/• ôôô3ñ»kÿS¿zýðv¬½®µóÔN´Ÿ^‡þ(©¯ÏèKtú¸z»#ú;÷9O~'ÙÞŸrúFÏÙýžŸŒöשÞžÝô[{=ÜÓÃWSùÙÓ·ä'ÉO%Üð®p½gO»öÊÎßeå&ûY(ïÇÐ~âCÂÉo$»×«7ʱÓêöñÌö×Gö¤sLå«}£g¤Þ¯3Û?—â('ö{ñL²»=¹Mz>—uqX¯¯/”ïÉQÄFwÏMÅ3éyÊ÷ìC—nê]OåÞå×Þè·Ï|êó.}¡_Såç]vì>èHõôô¹‡X½Sí¦Óï'zÎ Ë'~Ú·ç¢_·r#zìù·y;¡ÝžüWûN‡ÑÙ“ß_y?Ãýd8çØ³Ÿ ÷vãÀtžè¦¾ÙöÇn|ž÷~öäÔËG<ú•èçùÄ·wÙ±‡[b}vñ„•óö{ñÀÔñOüëÙí(zªÔ»ïåΤwÝÑáõ‡ç¦ú›®½Ø¿˜×°ö§æ³&ã¨ÐŸ®|[}±¿NŸ×cô¼\½éâΞïæC?“žõðÕ»¬|â[Ïôâºâ¢„_¼ß=ÿ2Õν˟³ú{¸4»×Ûó^_´‡¡ùÑÚíÅË1^µòÉN¦x©Çòüˆ./ïíú£¾Úýdg?ïå7»v3Ôýz g²ýí×}o'=ߣ3õ»×ßÉ?÷亇ëzj?”‹þ¸C×ó./èŒü Ïê õLƯ^~âõèçì¹wùýPÞËÅx8ôcj¹nœú‘ìß»fÛ—KÏèÔùÛÏl|GçüzþÜŸ U.”û™íË¿#”¯úý¾]w:ª};¦~%ºÞé玢7Ôëõx}Þ~õËÛëÐ9âCx®Ë«ÿV.ÉI¤#´ãç½£×ïô$yòkýMãå°CçˆÏVÒ›‘\zR}IÒ¸úó#ú;í%9Hrôn¤×Þ~hw$W~ßúŸäp$~Ýûãô†çFö¢COï^ý‘_ޤŸ#9ðúÂs©~çOêgo#]ÖŽ×ïívå/´›ü]Ò£c?ÃýžMöÙÇg$ωî=³í¯÷äpª}Ñmå{r˜Æ½ç¿"ŸfÛ—Kv)ÉM´ûv?kÏžÇzBù¨©ÞÐßä/ãøÎ>õõägRSûé~ovýl8O|Ù»P®×N´·V®ç^Kx¯‡ÿ“]K÷§âìžœwåçÌöçSõ¡g_ãø:ÖnÒ¯Øîl{ú»twú™ìRÏ®$?Òóǽ~÷ìV’û®ü9Ý¡Ý.néô¿‡/R¼Õ‹Ã¢Ý´ç{rùš®{ÿíØÃ“íI¸ßggÛ?Ÿä¢'gŸÙ¾|/ß15Οjç{zŸä²Ÿõôð]‡TOÏ®î4èù¯ÉöÚÚ鯝¡=¿—pzÔ÷pžâ—Wz¿¼>/èŠy«wÇù­Ðÿžÿï[/ï“ꙚÇéâÐPoïzН¦âê©~³çO»øÀë±ö&ó7­ýú‘$—Sý^Ï=ûÝ‹÷z~²‹ÏlOo7OdõNõ·=»ó á¼g'£¼zûÞŸý¡¾.îÆù¡üd\ß©§gíTŸ{þ£›ÏIåfÃëÉN¦8ajœÞÍ/9=¡½É¸-ÐÆ'Ú]{¾×¯Éú°S:ìù8ÞïÐn´+é9+ŸðäNóIïz×{òس_ÝÙi¼•ô¤›? õôòSýÎNãÊ©qrÒ£^~`j¼Ú‹'zv0ÆcÞ^¸Þ³#Sãï.¿í¼ç¯ºq¡Ñ95¯ãüN}ɯ$û25NKø3òÙêëáñT_ÂIž’œôâ‚©qÖd?I=3+ï×í~×Ï„ã;NG g§òÔõ'Ö^]úÕß®}óëÞŸ@ŒO¼þ™]?³ýõ©ü‰åR}vÞ‹û§>×££'̆çSㄈÏì¼ç7“ý×$¿;5ä§g§¢ζ?Ƽ…õcj<íB§_IO#.ýêå5¦Æ‹—¥~'º¼ÿv½›' ýš/tûáýµû=>¥qîù¥ž_îÅy]?êéæï]=ÿ³Ó<ÆÛuüÆ3vÔõ_5³ó3ã—çœzßnÏ£]¯ú¼‰Ï½ÝÊ{»½v¼_#zí¹_Êû}¯ÇùœèKíûs£qýLô|cz~¶ýy¯ßÞþèyëG:&¹JtŒÆÓžKןF×]=:¼Þ¤?IœI"ß]IFòÕ¹ù{æS_OvaÔÏTOx.ò¹ó|”ãÔ?{.õ#é½×H?Ï|jºFõvÚIö0ÖgôE½ ÷Gããý°çzúõ,µÛ£Ï¯‡z“½›*Ÿ£ú=£þZûÑ>x¿½ÉoôüJ´»©Þ@gÏ$>Åv¡4NÉÎöìZêWÒ¯‘Ûó=ûžvx¶ýóÑN¤ûÖn²©|ä—_õôÆ1éM|ÎÛw:Ý#ù²ò½öãøÚõ.î´v"¿¼~£'êQ¯_¡Ý¾éùév®‡G"Î ô&;•üNl/ôgÔÎÄv“>';3â›×oç·X?z¸¹çïzø²gg¦ÊkijáùTO׿žÞïêkègÏ~'»˜ä,Ê¿·fûç£ýòòFw¯|OŽ’üöî÷übÄñNo(—ðÇhÜÎl½ÿ‡~Lõiœ“Õïý°ûцc´Ï¡Ý^¹©|éé;:}á~òÓ“ý Ýþ¡ÓÏnÿÂõ$WÉî'ùë=—øÐËÿ%¼ÝÃ]àåÂy¤{¶ýyO¾{ù»¤‡=ÔÃ}=ÜÜ•{nj¹è§C{=þôðD’Ó^œ²Ó¸º×íTîb~Äé ýœê‡R==ü›òœ)I¸'ÊE ·ïŽüièçd½ô¦qŠ8"Õcç=ýNí'ûq–µÛÍßý½|DÇ&ýëáþhw½½ÐŸ^^"ùÓ.NòûvŒv.ÐÙ³/^.Êw #ò?Ô—èžÊŸnb¶ýs=ý¥×ÚKz”øÑk?â²D_ 'ùƒ(çSï‡ö"?3¶gýJrŸú=Â7ö£^ùsvŒzÔ¡'ÙóÞyâ{²SÝqògõ$ÿýR§_]»žÝ7zºãwfûç{v/ùˆ—þ©8a*z¸2ÚëT ¯Kןè Ï¥zzþ§÷|Œƒ8†þNŽCŒÎ©¸?Ù‘n^!Õkôwí¨õ/ê…’OõK=»›ìÆä¸ÙÊ%¼Ç3ôÇù‘ìsj¯g7§âˆh·íùžœuý¤•ïáÉ©þk¤·©~ï‡'º{õõðKO÷ìmWOB}1ï”î;Ýþ.ŽJý²vzz’è|¹úÕÃ+Sõ¿çç§ö·'_£ñ´z£ å£ýKíX}‰O —øõdo»q¦§ñ‹ñuh¿Ëo?µ“úÓ»žÊ͆ýLþ»‡ßºøÊêIãÕ̓Øõã';ïÅÉ“ý„÷Ãé÷úŒÞ©|ìÙï$§_³Ùžc³ÙßÛþ³ký÷iÿí^ÿ­ÿ֟տ϶ Xÿ­ÿÖë¿õßúïsýï³í«×ë¿õß+ëï³m³Öë¿õßúoý·þ[ÿ­ÿÖë¿õßúoý·þ{¹Ÿí˜zý·þ[ÿ­ÿÖë¿õßúoý·þ[ÿ­ÿÖ?{þ>Û1ðúoý·þ[ÿ­ÿÖë¿õß+áï³ÙÖë¿õßúoý·þ[ÿ­ÿ^IŸmì¶þ[ÿ­ÿÖë¿õßúoý·þ[ÿ­ÿÖë¿õßúoý·þ[ÿ­ÿÖë¿ñßg;w¼þ[ÿ­ÿÖë¿õßúoý·þ[ÿ­ÿÖë¿õßúoý·þ[ÿ­ÿÖë¿õßϦ¿Ïö¼Àúoý·þ[ÿ­ÿÖë¿õßúoý·þ[ÿ­ÿ&ÿí]Åq{g‡Úqÿ÷ü–ß÷[¾ç÷´ÿÍgËouuׯà?ï´òû~Ó÷|çï¡xUò]ßù›¾ïwüîö¿Ûßñåç¶óÌ–¿Åß\èÈù[íè׿.”›züá8µ|¢ëÓ¥çk;íùýTÏË=÷#í}](ÿç^.zô¤sžwº¾Âî{½‹=i|¼}¯çÓ•žÜOí÷?[_.ÉgO/¿ÖŽ=ýKtöƳ÷œ{õzÿßêIú¹ÓöÒ±Çÿ^?“=éµ;õè|ðë~þuvôú’¼¦þ{ûŒ“×O¹E¨?“þ¥q ý$={žŽ;¥;GO¼|žd/½<÷wêÇ“¥rŽ/zr˜øáýpº¿ÖÊ;=î?{üLõM•¿©íøñåâ¯^{=ûèýx[¨g§8mª^õpCj?ÉûT9zŸãT9Jý†¾ÅÄr½~÷è*‡®‡©žþtñ²ãÝd¦ÊçT{²SyIí½Ü£“ã´—kw?]úÝ~§r=~N=:¾K¸7Ù³Ït<”êqz’êáþ¤GIo~ù}ÇÉÞŸ©×§Æ/ÞþNå±GW*7Õßôô(ÅÙ~|ÇÄò>ž½x¾wìÉqŽ…û±ÇŸÞ¸$ùMö<ÑýrqDʸœx\ÐÃÁSã¶ÅD>}º¸»w=Ýïéc²·Séä˜pNÊ;LÍkí4ŽNöó3å<ŽÝi¿všoÛ©?ðë;SvŠóz87ÙéøÄÛëá‘_½ÜNõÆñizn§~€úñ?½¼Fz>•›jßýþü"´çö¡×_?Ÿz½W_¯)ÎHÏ%<¸S½ŸÚ^ª§ù¼^½/·|Oozþij^ƒóE§Ý„C}^_î©ñf/_éý^„ò=º¦æÅzõ¦ãT|çô÷òS妧ŸÞ?§£wìá´ž=õãNãn§~"µ›ìT/ÖÃ5½¸8éC:NKüúÔ|S/_05nï¿¡óüT»<ç&zw*¯^_ϾM•Ó©zУïåÚ¯©öØïï4®sû˜â«©~®§·½þOÍÏ:¾Lô$>ôä ‡—{ó¸^®wÞÃgŸn<èú½S=š‡Iþ®÷üNíÕ;ÂsSñqϾõðÍÔyY×·žþ¼\=rúœþ—ë·§Æ—©~}jÞ,Ù^Üšü¢ógêñåÚaoo§ùª„O==;4õüåæý^.nLå¦Î/&üæqJj'é{¢gj?R;;½ï妶7µß\ïõ¯—íù“Þú/ϹëûT~&þ¤x{j=SóBé85Ÿ5u=ÎNûŸüîÂÎÓuÎëßi<”ŽNÇÛ¬ž—kGý8Uî?Sý›ÊÇös§ýžêwS¼½S=˜ï%»<Õþ{ž'•OñîT{ìÏõúéÏyü²ÓõSùæv;ÙÓd×{y³tt}Mt&>M•ÿ©|Kø¾×¿©qµ{88ÝOþhÑáÇTýHø¹·žgjÓýæ»àCZ>O•«Ô÷S×ë÷"Ô3•¿)ÎMÇ©y•ÄÚ³T¯ç“vêǦʡû£Ý)ŽÞi¹¾òë½öz×Ï©¼·?µŸSõgªþùu×+÷ËN_òÛi]ægj…ÓÙëç¢s?Å÷SÇ£§'ÿÖ‰×{qqû:;r½—ŸŸŠ#zø'ÓÔù¾â ïwâSÏN.&>Ïõæ={åR^¥çO“u>öì¶·;UNz×{ò=•¾^Äù’êéÕŸèKþàÓ¥{ª|L=&ùÛi~,Å1.'nÏ8_tÚí{óN)¿–ÊûõÅËOµ#NOo«7>)ÎëÑëýÜ©ŸYXù^¼˜pnòSõ!ù³Ex>i×ñM:¦|E¯ÿNwª·'O;µWSùÑ“ƒ4ÔÃ~þƒ•›š¿Ix ÉÇ"”Kþ°×ÿ4?÷_=z{ñß7X¹ÒqjÞ>áúTÇ©ù›Þ±Ç·nÚiþ Ù¡©ò·Óvwº¸÷\/ŽHyˆ$÷SõÂéKv¿×ßžL×§Æ é˜èšŠ?vª— gôäm§¸rÑi'É{ª¿§/ì<Ùõ®—Ÿj§ú·ôüNù›Æ)å5ÿzò<ÕîìÔ¾N]?ÛÃMSqš_w;áø!Ñå~5µï~?Ñ•ôa*=Î^ÿ§Æ‰©—û¾ÃTü;µ¿=\çõ/ìþÔ¸,Õÿ»Ný ·:SÛóv¼;ÕÇwX=SŸó|@ºïýÞ©öä*ùïžôÖ¿'ºz¸'áNïO§®›CÎÞfÏ¥ú’¿Or3u¼_w¹êåGRÿ||SÞ»›ôfª›Ê÷GO=NŸÛéû;ƒý¹t>µþ俦Æ'>¾>žçz}~œZ.Ñ™ä-áØ”t=[tø’èêÅ…SñêNÇÛùØó”_XùwØõÔ¾Ï>MõSõùåÆ)/ÜÃí©^?öèIöȯ÷ò¤®Ç=¾Ó¸±WÎŽ£üùd÷§®ËñþúÑçE¦ÒÍqaÇ®›ìù™ÄŸÞq*^IvÎëIö6áµ~ôrSí^ÏÎ%=ŸšÿKíú1ÍŸ/:Ï9{x³GoNç‡Ó׳céèí.ÂõÔŸ„'¦æ_“ßt?”ìG©/÷˜èîù=ן©v.ų~\tÚß鼬??Õ¾øñåæz×§ž'yô¸§_'ýHýööRù>p½êåéÓ¹Ûý¾I¸¡‡k^™çûxìÿ¦uuSçE>]ÜÓëçâeÖãã05þíÕÓëß"”ëÉcoYÂþ<çSó½qN|Kþgj<°S9Iôz}‰Þ—kwÓñväzŠ{õMÅ Sí½÷7á®TOî„/wj‡ÒÑùºÓø$µß³Û^óm§yèž_íÑ5/B»)þKt&ûäõ;=Sǧǿ©ò—ⱞ_JÏõèéÅmSíùNýÐÔ8ÚëÛi^Ûù¾èÐÑÃÉÞ|¦òB©ÿnÒs~½/ì4˜êÿ¦¾Ÿ’èèÙ³©8?_n>¶ï¼Ü¼Ž×¿°ó$ïo›XÎÛIþÌåej½=|éíÿô~ËÔûýžü'»ìyïô|:N³?Së‡Óx.:ÏïŸû1Å ×ôpoÂ…^ïNóVSõÛå.µÓ“é~1ÑÑó—^®ççzzЋ»vMíoçDï¢ÓÏ—›ŸŠë{|vÚ«w®ïÔo¾Üë½xh§í÷pRÒßÞz’þÜÔ|@²ÿ=û2Õo»?q»‘žK÷“\M§‰Ý?LÅ} ;&|Üë_OOvžä4Õ›®¿ÃŽ©¿‰=»ŸúíxÞåt§ö7§âƒ4^=¹ïù÷}é˜ì@¯Ÿé¹Þy²ƒ oöpÚÔñqú§ÎÛøõE(·ÓxÎéñúzôyýNWš÷ðöÒý^Þ1ÙïÄ—TÎÛqüëõôÖw¤ö¼]Ç™)/ðV;¦xj§úïåR;SŸÛ)^Lz—ì{òŸ)nýtç•“ü${ýró·Sã>——·†ëÎ'§ojþÆëï­œÚß©8hª>§ò=:üzz~j^ë3¿÷ÚIrêMòéãŽ\¿ÍÎ{r“ú¹°óŽçÂŽôÛí³×—âú¿V>•ócâ‹Ûµä÷zõì4O”蟊ó9N]ÇØãkÿîÏÒ}Η%<ºÓø±×nÂë)ÎÊŸ^¹Ow÷ìÅÔ<àT<·S=ïÑÑãK—Ok¦Æ³éù^½é~òï‹N»Sýq¯ïoÏN¥yš^ëõ$}âˆýIô}ºv'ÉmÂÿÉŸ&|°°rÞ~ÂA‰¾©÷§Ú—·4®iœzüñrð£—÷÷zÞfÏMÍÿ§~öü`²ß½¸Æûáõz»©|‡úõE§?©ž^?]’ïá{ç{âÿÂÊs=áŸd·©'ùe×Û©¸Èé™*‡©¾ž|N§DçÔq›ê'½¤ïiýBª§×¯tt;Ý›ÏHå½¼aÏ/õžŸŠçÓñmö|‡½Üõ¶SñùTz’ÿLí¦ë;Í·õìJO©žž_ôz{rŸßaçNG/.ô|eî®êážœøx%ýLã¹SûÐ׉îÞ:™^»©þ~uÿõ鯱½v¼|Â# G/ìúÔøÁùÂy iþ,õÛåÝýêËõ;.GI®ß^á~Òäo{zât¥~stþ'¿˜ða:&=Oí%{–òQ~þ6;¦ò~}ª¾8îèÙÍ^¾¬7ŽŸ.Þä¡ý©óÁnß“ŸKþ 7&¾öú½S{™ìTo=Joœ“]K¸Âíˆ÷cjž ßÂÎS=ÉO%ú¿Ý.$;’ì÷¿Áž£É>x?¡ûáù^|’âÃv>öä2ÅÙ^Î'î4nšz=ñ¥w=ñÕùçòåýòç{83½^\ì|M~ËŸëʼnÞ^üÜóÛþ\êo¦r½c@—LJ=úvºÎÍå!éÏ/ìzÂý©Ÿ½¸1Ñ“êõëé¾ã/çsz®‡‡ÿÝ>-&ö?ÙÏ…•_Ø‘rÉ%\ÈóINz¸ª]I8µ'×;Õ«©xßÛá|aõ¤v’¿NýHçÉ~/¬œãø^¿üzŠG½ý^97Ç SóRÞŽ÷¯×¯tÜiüÞ³Oéèã•âN/÷6;Oz0/õø45>XØs;õ‹~½§×Þ^¯þd¯SüŸÖ³¤þz;=œ3µßiS<œøîô:)NMë{vÕqßNõ£'ßSñH²G½<ÑN×!¤qHõ¸Ÿïña*q»±˜ØNòÓSý¢·ãÇt?µÛó¿é˜ä%ÙÝä—¦Æói<¾ÎŽ=º9B‡£ßŸªg½ûN_Ï.%ÜÔÃo å“:þ)/´°çzxïVÎéÜ)^LÇ^Ü’ðOÂ=}NíOõWSóc©ý$_=\߻ދwi÷B¹^œéýNø=Ùõ4NɾLß“?ï•›zžìŽóÇûåú³°s¯ç­VÎË÷Ú›=דƒ…]÷qKýèñ3á÷‹^óq*îñ~õìíTýMvßéõø+å1zzÒ[ŸôÖù“ø˜ô¯çïœ>¿ÎqÚórŽgzrít¹_íåG“œ%û÷rí³ë‹Ë{ÏϤvzrßó7nG_I¯“¼¿Õî'º’H8)Ù›©ýM÷“^%ÿÒ‹¼ßè¥×׳cÎg/¿è”ëÉ}âOòïþüTyïáZïG¢+•›Š¦êËÔ¸¾‡WRý¼g·vjÞþv=ʼn©ÿ=º{zšêw9íçÔxÍíêNóK £/µ×«Ïér=LõOÅÛÉO8Îx›Ý^_©y?öÚëÙñ$_.ÏSåÖûÓÃUÞ¾ãý¤;åK¯ÿ~L~0Ù=ÇÿÞ©~±GÿÔ¸kê8¤öz|èá´…Ýwº¦ÊyÒç„+=nìùÿä·Üî¹Iö8]§çKÂ^.õ›ë½y¶©ãîãœô1á˜d/RÔ‹3{qÌNíR²oÉþy==â>Ç ÞŸ^?¡ž?íá€^<›Æ9Ñ =<Ô³û”ƒo©ŸnGRèýz‡“Þ&üÙç^\±°ë‰Ïo³óÔÇY=¾öôÞùº°ó„{zvÙÛù»ïòþÖP~aÏy?’òxÑéOüt:zúããÖÃþ|j×éõrN—ëMÒ‹äÏ“ßJõ»?N8;ᾤo=>N—xÿ|œS;Éra×9Oþ-ñi*îíõsj=ÉΧéÉ“—OñÑÂî{ûÜïÅ‘‰Ž©øŸvzøÝëïé]zÞíÇÔ<×NqX²ë 7LÍ›$¶SýZ„v¦Úm×úÝõë?xÜçíôì{OÏ“üsþuç½ÿ½üÀNq¾?—ÚßéÑû;µ?=%›äµ'É^§çÝ_'ùéñ-é‘ëçÔùïžýKãìõ¾ÍÊ':{|]XùÞº©ëCR;NßNó| ‡»>§qq>õò)©ŸÎ—w§#Ùyçg‡¤xÆëOvÔíPÏÏôì¯_ïñkê1ÙãDýZtøã÷{öd§ñÉNã­tÎ1Å1=9ñç]¾¼Þ„ë\ßÜ®zù¤=ýNv²Ç·©ö²‡wÒx{èõ¦cÏ/¤|•Ûõ^üçãÙÃC)>[X9·c©œ÷üŒëWÂwI¾zqvÏIϧÊaÏŸxÿ§âÞtLýééÑbb>šj§Ú¯ä?¦Î£ï4îïá9¯ßϽÝD÷âe¶Ó»Ÿø•üǯ³cjoj|Þó7i~¾ÇÞë÷~÷Æs*nJí'{àÏOÅÅ©½^¼Ì1áÎß®§r‰=»èô$œšìËcÏ/÷òÛî½\ò‡Þžëo*×Ã==;Ü“¿žøâÏ%9ìáèNráüv¿¶÷{tº¼öpú[íùÄÇô\ª·§½x!Ù£Þxûü ?—ìzoöô0=7Õn%9j.š:ï›ìÑÂêOxÖëqºR~¼7íãñ6»ŸèéÑÙ³Ÿiü]{í;ßë »Îq§qÞTÿëv,ñ¥'ÿÞ_ïG¢wa×{yÇ‘=ýœz}j½=>ð|/ÎKò³°çS»‰þÆ]þ|ªê:×Ódÿ{t÷æã’½IþÓ‰ÿŽG’¿Mõ¤vÒói\{þ;µçõ¹½t}w>§ø,ÙÑ…]ß)½©×#/ï~¼—Oðqðþ:žèÉŸ{þØéä<Ù·©þÔå½'ŸŽ¿½Þ>JõºÝL8£7N^>áø ‹™Î_P?z÷Æbîï½{Ví,f«öû¹.~žZµ·8¡öàÃAñeß²õw_?ýŒø¾ku¾¸gŗŬÚ=ýÉÕs§ŸVÿž}ÏÞ%ï—œ~|ÅÏÅ.õïyÑsHçWÿä—ï>ú«þõbŸÆíiññ øöœÊ=%ºgwÙòͧ?):v«ÿů¹Ú;¨#ýÚи~Rý‡Dÿ•Wý‹½ªw¿ê}­î¿fu^ãù Ý?¢zž[ÑyúŽê9ºâÃbcU>žþ„øÌ8ÏÉrß©gÏÏ¿û[ÐõýŒÿŠŒ_ññ€ê{NÇ—ÄÇÈ÷wÝý¾³R¾Ó/ª™®k|áGéÝ®§¯ë9Æç¨ø:SûoÖ9òyHüyAGñqqJý=Èó¢ãÉã|Tzó,üP?>¡ó½+z'$OÒ›Ó—$G·¤7Œï^ÉÓ³êï¥ÕýÓÄOúyQô!7$3ñEÏ/vk²{‹ÝªGvîôñí*ö\+¾=a~97= ò/Èž=§qÆþß½Ð_UnqDýc<ÀQȵŽèø?>¿õ×ÿùWÿ¶½Õ?ìãUéÙ†Ÿ®ßø ¿õwÿÓ/*\Q|—<ì½Â-‹×‰>ü©pïé{¿ÿþO>õ/Eñ¿¾Fã =7e·žU¹§ðŸâô+N(ÜŽ(<‰¿?ÁØIÙ‰Ó7u¼¬qD?Ð áupYÑ-{Sþ¹ã¹#²²SÄ!…ë/áƒÂÂÛÄ3ÈíŽÐó“‹}²›5>7Ä'ä¿öŽåÕoÅ5>×V‚RvèˆäK~h‹?ò3ÅOèû$õ˾ïÓ¸àV{ø-ô:ÀM—Õ¿þõ¿ðô®¸F~ùô“Ô Žï˜?Ç¿*)½*þ+ÿ‹BŸOˆ¯OwˆŽ'ÄçO"Çð]ô_ÿÿþ¹÷<÷Så-öaW5ÞÏ?€?$/ðãÙa»‹™äŽçoÈîÎE?váüÛøÞÿáϾ«èÁî”ßP¿…ÛG8t;£ókô>ËïŽn,\€Ý?®ñ#y`if6ÿ}µ/{Sxÿ¨è)¿*>cèvãæÙ»/<ˆ¾bÿ+^E¯¤'Š?K¿h‡¸ ;„þÌE×ãàTpµÚ™k¼S¯êþ–¡ßÃüHšϒ§À_á'tœ‚žƒ7ˆ·OüÖ}êï㪼¤ø¶p8ü¥_´ïvõ˜Æ{b|ªx–¸¼®¸wqrˆ³Ê®î"^"@^ÁÔ/þß'œ>G>Šø ù×óø¯Ç Oü“\/Nª?Ø ü2ùœWK/Àר“gìÐ øüŒžßøCÕäø~ÆGü8H\C¼A>ºÑp6y ìíãbäo+0þDÞ$—ÇE'x y»ºLÃýÍ[úËxÿ¡%àý埰÷ž? .Ô¸/6À‡ä;ÄoprÿÆ/(/Pù9úœÜºô=úëÿû?ZrEü Ý-~‰èGþÁ»çÉ[—ŠŸD·ìUÕ3S±GØ‹sò³Èíã²ûw4¯’üœ#ÿ!:/ÿÆw~à‰¼SyXâ)òOø]â4ìïqìûÐ.–þ[ì–¿ÚM=êçÇwµ³{‡”~aßÈkÝ&¯Až…ü‹ä¿FþVyÂÅQñüx\þx1çyÑé'zõŸüòÝ¥¿øügå“É_è:xæú o,ŽË>—îÀò:bÀǧÄÏã’Oü¾â°ÓçådwÉ¿È[0þ¯ÑuäœñþLúL¾”< úârwí=Ï-9T~=ÜÓ.zTù´/%¾RÿY\QùIp¸Š|ìRáÑsci-~ß•^ÞÐ<ÁQów•w&¿(zna/,¿Ê¸"ð[ñz_ñɦO“ØÑÊï ¯ø#ò¡Ä…²S/’G>·¥]âð0ò.}Ùn½ÈË3æ÷®“ß%¨öÈ÷ƒg°·GtýÃØ}òÌ*‡Ã`÷Á¯3p)öMüø"ì£ä¨òä7$'àŒËÄaªg¿Æ{Büü(x¼8ˆ<ñ(~E|/\#~¿ˆß×9vsÿ0ÏXyròV%ŸðWý,\@>.A܆>‡!n’<]ØSòä/*ŸÿªÞ ð¿\ÕñÕ_Zøˆ8ÿNpa¹¼ãëÿRåíð+•A‡þ¾pöm“wüþŠxþQzÉwà׉SÁ!äñ°ÿÄÄÐ ®Py;ú¿øO7¸¹´ÊÃÞÊ=yEüaá?ò¸Ì·íÚ믧ñ…ü‘Í x‰üã!»ŠüÐþùU¼ZvyÀÞÝø£Ë<_@¼Yóªòµ†ù^äïâj>m±ùGüñ—ê?#3Ζg…ÿèëùÖÈÛäU¾ìüòwk^~9ÝñËÿNùͪ—Ó~÷¿¸5L|Bþ¾2îùHïÇî12Ä)[q·Æ¸¼…ýdðŸ•/”ÿ:¦sü™üôé[ô[ô¡oÅæAÀ»øCò¥k²_Èómâ³OÄ¥ðãqˆê¹ >×|—úÏ|~>Òoä¿ô–<ñúNž‡8Wí^_gÑ{Eõ*.­üÆuøcúÎýñÔé[¿»°íô5˵åò“Û9}Y|$_Š^2OG¾þ㪇ñ,>H>èòžÁŽb?°ÇÈ“÷ýèyôê%óO —¿dž ?PxÐür„Üs^òeò_ùipÐp´ðß#Œ7ñqŸúünåmÀªýfþ üÏ: ê©õ6:g½ó)É0ÿJþ ¹ùëáé?tã/TüYã/»‚?…?è)öúÁYÌw㟰·àMòjØ ì?|Å~3îÈ+xç¦â3è`~?Jž½¸L\ŒœZþLù£ŠË¯ï Çg‹?äDv{BžùªuŽ'Åoo_ß!Ø}äñ¾<“øúÅÌ €'…ÿ_E^ph+¿ Ÿ‰C˜—"C¾:Ègúú4ôÿŽé!rpK|Þ§öÁàDì=þÜ~a}ó¼ð“öXÇC|…>`+N½×ï†e¿ºü9~» ]5äQÕö›ñ_#ßð}­uà?éÃEärߔݡ¯øßZ‡|ÿ î–]º|×¼ñéëÊë¯1~ÌË“' ¾b¼áç×çË ÿñéGwâ0øÃ|Ñ0®.¿=Á?€çËž2ßFÞü%x ûcódõ|é›ââ×Xž!/¾Ào“ÇÐ8{^ê†ââsòêàsüÿå»ÓV¿Ëߘÿyù MÞKr‰^£ÿøpžøsEëaÐCðylÆ}¬qaœÈç2ŸH¼x–yùs®€~×±T^yŽ'MNÉ'°n üÇèN)}ÁÎc¿_møçë’ðv¥ÖE qËÖºSɃðX]Çn0ßC<†=¸õ‡î©ÂO/Ÿn-³Ioþèé-®½µ ûÿú?¯üõ_øÈ›Z„òËN_XÍsÔºsð+ãM?Jþ{ËÛÕ¼¼Æ‰õ†5Îè¡pEÙG_ßú˜Î±ßµ¾Av™ø:À¥µn»&9¿E†v~q¹Ç¿ ç¿Jï+ïHžGýcÝéaÑI>B¾U×+žîc¾¿„þç ´>£§µnx8ÏVrþ¥]p†÷?ôÑsˉ·×Ô8£Œ[ùOñûQÉÉcÈ…ú‰¼Qï•UÜ\v¸øûª÷;j|‰ÿ±ÇøðÛõ¥Y{ç}#¿‚^÷bÞþúj~¿èc^¾æÓ…f’³šOGΘwÂJ ?ŽÜz^ˆ¸ÿ >Á^íÅNj>}øIÖE¨~æÙ+Ñ9yWÆ=eü‰—7_'ýW?ˆÈ‹Õ<ˆä¥æÛ,ÎÞO^^ò~ÄßcÇ.󾵎Œüù äø<‚¼_Ò{TÈváÕ ŽANY·Š>Ý\­û¨ø²æ#ÁÃà"éµÞ›©¸|ˆ£ÁÿûÈ磟’#ø,»]ëʼnG¡“þ?jü~ÆÆ¹ÇaonÚ:ðÞå»ðÃåÏoèyáfôú[òØQâ ³;'`·<ߪv±cÈû'‡~¥Þ{ÒøÏ¼é.âDÑA>~¿ù«…ƒà÷ùžª÷Vsò ÅÑI>uħÈG ç;¶äWô#÷ußA‡úÏ®+ý¤ý=ÃùÂZ¿U×^Ÿa?ÈSÛ¸@78 »Ê8ÒOÅ1•'aþOó…s…WkÝ+ù.ì8ùlä {qó+ï&àË_•¾ëùZ§ñ½øï.P¿ÏH\„=ÃH¾?¬<5ë*îQ½Ì£¢G—•çÇ/ÞwwyÊ—W\"ÆüGõ¼VëHVëGë=2ò|µ^V¸Ü¿Ž&/…^©^ü x‚q¬<²ô‚|*ó¡¬/À. ï5£ñ¾®3ó8ÈÏ%åseÏK^ÀC…/T?~Šùôàªî³>|VëÈ««?äcnçIΫ]=Gœð¤ù)W|¨|MÙCæåÈ7í'Ã7å?ð¸ýÙnÜ‹\ó“5.ä‹ê½AäVãÀûÍä}àvî¼ä»E¿É·C §¨äh·òÂÂ+MNkAòIþ±òn:¿%ûWñÚaG½Ëú&ì¯üôqäQô“Ï=&úÐç»Öåè7–\bï?ÖºìÏ÷ÔúBѾ’×ÔyÙ3Ö3@ççª!ÿ<Ïx€k÷Å?òÄÄñ´˜Ïاóó«ùâß­¸ž<¼ž2Îø/pv¤ÞÕóÄ!à8ô }®yCµ[yWò.øfñzôù^ð¶ê%_†_|Àçc4.׆ý,ÿÃsØwâoÆ•~"/¬7Â^Ø{“Èõâ ð‰øVv}CvãˆÇUÄÿÈ ùJâGµwqõ¾H½ÿ*{\ó†ð;H>è…a}‹CàDæ÷ýƒ­õ*æ‰>~Sÿ.½þ®ƒ©õøéÚßAÏÁü-qvƒø€u Š‹*&ÞÀž~|§v˜O`= óœøypéA•»ô/ùßþñ³¬øžeÿ è†5¿Dþn(Ç¿2ŸÄ<¨½wZ¸ ¿s‚<8™|8¤ö‡—þ߯öuJÈÕƒ=×sû,Tñ1vÀâö3!ßÄ8’‡'‰}©¸]ãYq“îc¯™#¯ùù4ÙaÞ3¬ùp‰ÚG®ô½ò àbâ5òmè1x•|;xx¸ž£æ­‡« ì5×9ZoÎÃ^U¼­ê;…?`þw˜Ol½÷μ³úQùñ÷Û‘+úý¯ý Æ·¼O{e¹Lë“Oo½oK^<ŽðëÜ‘ó¼áî[½¯ ?à7óXäÈ£]Ó~è ãÇ|]½¿O>^tâßÐWÏÿ€§‰ãàÏqÙ%ì3ò~VòD=Ä›àmìåýµ¯î“d y%·õ^'¸Ñâ[ôøaÍ‚ˆÏÀ—VóúÅ¿Š¯ÀäYî.Ëû­5®_ ¼<ö{rÔø$~„oϘ]Ak½±øŸ‚îûñƒÇšOÇÏ’·3ûêóàÈïǑϧT¾Vò¤<,ë¸k=Êò ä½Ì1~µ¯‹äýÕz~æÌo~ÒìvƒõÜ·÷µ«õ>›ô|[÷Ÿˆƒ‡Š‹t2…%?O?+/¬óZ/ öÁS¼/K9ì òÆ8ÔºKõù¾Ú÷ˆ¸nˆ·ü®áá'\ž™Ï"þ°üþ ¼I^›søA°—×yž8z‰§‰÷,nÕ{b%O5?l^zKþoÔ{£CZø¯Ö¥›Õ~5ä¥5¯x»ÞWŠnp óÓZG\ùyìôÖxëù«Cy-}¨õN«xîôáÙÚ‡‚yò#j‡ç+?#¾}ˆüƒpq ë[n-áý7}|qXú®yÍÒÛ;f¿Î¡Ä36_‹]*»€ÿ!?,z‹Ä«’“Êû*]‰nŸ?d¼Áø‡G˜' /à÷ A¯­Çßšç“ü#Ä¡Ÿ0ù®sÄãÚ ì¸Îó”è_å%÷×Vãvúšîß´8zžWyâ^æ…ÙÿŒüóö ›çe\éôñÞÇ>ñCû Uþ¼Úý”—üœ×>|Ð ÞcýóÜ´K¿Ð#òˆ¼Ÿ_ûGÊmÅïìW†ý'nÇ®]?ÐKò"Ø ø‰Ç¯|@û R/v¿ Þ&yTúDœÈú™Ú¯FúX8UåkŸ+ñu>¬S¹=Ô‹z¯†}w‰W‰—5UëàðØâq=‡ß«qAn‰¿ôÜ5åÑKžEßµ»Ë¾ºìxÿÁ<á³ê7ö‡øy*ygžüžáB(÷>âåõxÏÜ\ù›/Fo/`ï5~%?²çsâ6µWûhˆ~öÂ!O“'ÇNbT_íó NÑõkÂÕWõ¾õ~³Ç†w3µ[û"?«‰ÌÑû Èþšx òoØM›¯ªù_½¯Èº{ík4Þç\|þßdÏj¿.~´äUrüÏÈ “'˜½#ÍûÔä—ÀýøÃ+Ë4κYvù¼Öo–^«>øRïÓ‘gZ­SÞZ×C<Ê<^°SµóCàMõ_ü ã„Â×Ì—2N†õÕ{ÕŒ;å°ƒç„çj_>ð*ùo­[Áòü Óì ÷+ÿ@^OúŽª¼»Ú¥?–çqý(¹«÷…‰ˆKÀ)äcˆ·l\®©ßìóIý¬oe¾È8P/øì¨Êã_ÀÝØ Þów׺'›ÿ€ŒtÓÿŸÒºSìë^Oü,¹ÁŸ`¿ñÓŒËýz¦ì»ÞŸüÉÇÃä±Ïè©Í×pyº¬y\ô?Åx^_¾ø·ÿcÙsô¹öy/˜|QŽ<ãDܾ¤KÂ[Øè$ÿôaòX¢{YëÛEÏý+zk_-Æ‹vj}¯è¨üåó0¼mûén½§!;RöY×ác­Ï$_iy;øE>=­úÈáGõ<ñŸáÊÒ« Z†F/ê}âò±àò{4Ÿ‚?Çßh<Àᢪç^ò€«ïUTÿï˜\VüªúÊßWáÇÕ.yzò›äÀÔ{KxÿQÑñÀR ~üß¾²uó£õyµ?ªžç¾ò_5/Ux ÿgù”‡É_é}è„.ìu­#ÿjŸKõÿ„<]Xº½;¸Çìë«7ùÍÓ?¬vXï޳vj_–ÚïVçÈ?ôÀ×òï6ÏzcÕÏÓ·–oG4×_yŽ¡-=ÄÎûþ"éý¸‰Îë¦7µ/3ñ–ùiò4·ÌUü) >e½t|!zwê«u¾6OXûŠK_M^Ÿ|òF~ ?‚½Òõ‹Ú¯RóÖ£ý‡‘÷ûÑ á¬êŸôý¹¢ùµg‡z°Ø«ñtûIó’¼WßkÝùuò²ä7UîºÙIí_Xq óå7ïº_\öñ­×¯}m¬ü ù2ò1Œ÷h=‰å¡}ž¯ì"íIîÙ;Qï‰OeÇ‘+ó1ÓKâUæáWáá æÕ*ÏÂ< ~ŠvÈŸ3o ~Á—‡È÷¢'Ê+‘ÇÝ\ÍÛÔ¼õAò‰ÒcíO]òGN|À~žSžLû'ÿ¯,W]müŽÓ÷YÞ ûYß=P¿°³•ï%Ÿ£vÁŵþB|b]v­¾WÀ|ygñ‰yðZ!:>N\§zÀ;Œ7ûüqΑ•OÓ>q;übZâfìEíŸdùìãùCö½ªùdü„ø$\¶8)>‚ûÐ/ì¸òpóè«èû(yò\àkñó~â9ö ÿ‡àù›ÄÅ*=EÿȻǸr˜çã{[xWýe]v »}Uù'òL—´Î|[vÜ ù]·×èxý´ï@láoê}ÁÚ/IõR8‰~N!>Tÿ‰W˜ç{3ýdÞ Üiò!|U~Èå¦ð™òfìcYû¿’/±8êQüˆäôcß¾›–ù’’³óœƒKɈ®GÉ çN_W½ÔWóöºÎ<\í-~Àß÷iÝ~ˆõ!¾_vüÆzzâYê%߀ÿ¬ý°ß¬{E/•G^Ð'ä±¾S¡ûµ_ø“¸FyÀŸ#:jßBæwô\­WZí+XßE#Ê>,¬—‘'/¿iùaðqh­7¡Ÿòwð½ò 6{Aû€Ô>”àõ£ò´ê?ïOƒc¯Ýmæ++oÁ¼:û.àç˜ÏÄn}ˆyAÝ?ÏøëºÞ+[Ücó9Œ z\ù Ùƒún"qšêgÝ­¯/ºeò‹~=‹þ©~ÞÃ< n¯«Šg-Ž@ßYÇÉ~ÇäGÀqØûDoÍÞ5›_UëðGä+±çø³zO]r}¿ÕûÁ•ÇÚõš·$Î<Íá!Nª}1*¾c?X§Džÿ:ô[ë]äç7<¯þÀ’"že[ãø q ôê¸Í{ÑÏÝŒŸèøØµþ¿òª¿ÞÇ£?*ÎCNk¿Æ[÷k_É=xûRq¡Ž'(ž«}yTyƒŽÉÓX>ñêÝ0ü7×<À~@Ø¡ò?*O~šï%C÷yÙÕZ¯€ý4ûŒ\ù>Æ7Vã¶ø9'ìÁ5ò_Äi:²/Œ¯+a=ï—ð~3Ï_ÎGÓþæ>ůŒû¶ì'b°[æsˆóòô³ì(yÙOòÄ䉰/ï×ø0„¾çü;TàNÆÿPó#àÝÿ)Õ{c¹Lå‡ÿZù­Â¢;Âz„ÂáàâAå­ÁiÏ¡Oà •ÇÕ>R¦‡ÄǵŸ+vP÷kßê…¯ð_ãöåêzø’Éò î¯^×<í׺ Ëc?ÈWÞ}!Þ€>⃊×uŽÿÏ_’\ÖwÝ ¯=¦¡ò7\_=·µþWôÜÒüwíÁ<’ö9.=¥á:“­}åtÄÿ”Ý“‚Ëm?¬ZÿTø–qÖ¸½_û«ò]®z/Žù=}#ïôØ;ïô5žä¡ñ‡{ O· Ø“Z·"~g±{÷¯ ýJʼnŒß“ÎG‹¯£ÃîÁ×'°{–©ïqP½ÌŸÕz/á.âòµ§èD/Ÿ0{‚½gÀíÌ× ßO›ÝÃÞÝú‡Š«„_ —Îçœ~Tq|áÈ8°î—÷¨jŸ ôVõ#/…ëD/vÎ×½ßÐþôÈÃ?S¿±cµ€ô¿Áø:î$nÂϱ¯=ö¨ä„¼¹ánøŒÿgü_0{ îFÞÑß%lxrÄþÝÇkòÇØWÿ]½O¢zÈC+nÚ›Œ«è!Ït»€è(ùª8?ɯã‡évìóGj‡õ(…ûÔN­wêËÖ~5–¯ª¼ðÏ9á™À?숞Ü0}¨ui¢Kï§—~Õzfp«úWßù^åõk=~åEe/+нDnjŸDâê!ÞÊÛ¢oäÁ7Äw¯Àô\çïëÜÔ~9Îoªæ ÕïÚçKåÁ}Œ3ó¦Ï3/#¹ò¸©Þ6¾·³î•ù껬8ù­yJÓ®ÃÏËÈ ûÛ«<ö½~fh§ˆ?ê{‹øSè‚k.ó•|?mK?‰×åÿÊŸ¨¿…ïÄßÚÿYëDð+Ø?Öy_Ô¼ òrAóåÇÄp¸„ñ-y#E|k8Ü×ëÔ|3ùæ!m>¸äDóú>oðÂ0ï]táßÐkòwè_ù5ðçæË®*.îØúžÊ?¢<.ü©÷]ÁõÚW†ý½÷ûÄ'Ö\×:vü0õ÷]½ /¿»Æ¼ü…/ÈïO³¿MÙOå]ùß1ì”áâô‘|&8Œï±^âºp'z]ëÂîn'²Qýf?çŠl~}){ žÔ>ØÄ—5¿\øOrSïÝ©¿Äî§ù®3öynâ 䋼tÅyàGò­Ÿ‹fgˆ°·ø{­(ý'Π\}·EíàO. å·â ð&ë™á_ÅÒÇÒókw§~}ÙiôžýÁsØÛZ· Æ£§zß|Kž½àºÎù~$ø€ýÅ%.¥}üí*þ*=$NÞgþî>ã#ë<ðsìk€ŸÀ~ñ€¯3øy-éó}õ});ïSÔ>ÒÌûH~‘/¾‹NTë±çÌ[þý¸„\#W¢y©v¤—Ðó®Ùÿ …ðs•Ãn±žEz„`¯‹_jÿ²ÖÏb‰ÿñ·4„žëû·õÞóû—ÚóŸØÚÇLý({€ŸÕó¬'¯ïk½ß+¹%ûèøE|Ǽöé•\ð}âÿ{WqU剛ȟn–|ÂwøZû°®ÖuÔ~¤7´Ž¶öÓýØ/pó…ÿ°wäA”_ñç™O ¾¼®ñ®ïÞ©¬Ï¬ïæǨùÁ7‹ŸØaöãdß¶zÏù!´yèŸÔuµGÞšõäÁßgó›õžë†ôž›í[qòÃ*w¿ðÁ5}_Íß'†^Þc'ÏD~8º™Ç"ß_Ù¯ù¿µÊ—=Âp2t`ü»Hø!Æ<н¹¢õä{oiÿ±š'!ï§öÎËo_}âîÆÇWCž—ùžÕ¾p[ë14>Zç\ï' Ïà/âûÞæÖ¼„ú‰ß«ø[õ°îæ#WŒ#ý0o†žâç/®>41š+\Jü…½¡Ÿâùª½óÊÏ¢?Ê#Öþ’ØÝ²¿æÑkÆ9"ôí|s•~(ÿ&ûTßÍ$þeÿsâ¾CZñyYòÄ“âï)ÏD\Å}ðãêß«¤~äL8·öú¤ÙAÖw0/@\ŒPx™ñƯ\Ô>:Œ÷ æÛ”?`>”ù7µSv­Ö±ª?¬»`”<3x\…}®ý 4ßļ z¯÷··¾§jö¯ö·—^}@vþœülí?&ûô¯ÉëÚ¼ÕýànìˆèÅ/`—‰_×ëäÁ%äyÀAõ]uõ«Þôüp½ qÆž_±øìaåùÎËßs˜wb\Êÿã´nÄ¿w}©ïyþô5½/®#ÈwïÁŸÌÔº}ü ú vž‡oØcä¬òâËuòÁÌ—ÈÞV/9@^nÊþ\^š7Ý[ü¢^ߟµæ¡ÁIâíÕú:â¦Õþä5þç×]3þ‚ŸÂ§gÚC?+/)zÀÿ¾þƒ¸†üí“¢z±÷ôSû”WÜŸ­ý:m½Á%éûI±ºûKö‡*;¥~¢”'^¤è•üaÍ;o=&þ~PåÀ»©=ô ú‰·kÿN‹ïùGó :²ßg}׎¸IyNåíj=+ãŽý†?µÿ¾Žà úA{~§òD·ïbŸøî,ùÚCNÙÇþŠì4~ yôùŠš÷÷èˆÝä;"̃£÷ÈeíëB^tGÈÃ}Hv¢ÖQ3Ϥú®ËnÑîMáŸzIt£Oø¾[Â|¸“<=òž‘Wû¨Ùmä“÷›jLôü¾R=ðý‚¾g½ª|‘äóãä ”'Ežë=oìŽäáÙ¡ÿÛÚ7ŒyË"÷÷Ùüýû¾SÂ8U^RíÞÔz–Úÿ»¶ò#µn¬Ö!šÄîß2ù§0…ýù òŸÄqÚoð~å½ë=tåUj^uoª‡þVHÏ}Dùy¯§öcAÎ-ÿRßWà|ÿïÝ2^çåçÙ¿™÷Kê;ÊârÌû)ð™õQõZü°è½¾z¿¯î3¼o®Ð÷¾¶òž¬ÏÿÐ+ùóʻ݅žû´OóÒàâ¶Cœ]ï£Ò?ìü¬üŸž«ý'™w!Ÿ¯yP®×þpj÷ƒŠkŸyåOdj]_­“/²nCv|(y¤Ç$geOÁÙòƒà]ú^EÁWì'Ï÷ùˆ?*o§qB_À“È øýAò.«ï®–cOÿ½é)|&OÀ÷=àý½)<Ï<ÕÙ#ü剻ôÓ²ÏØ]ä­äAx®öåâyp¹Åñ¼ïD¿”'¯ý.Ó< ¸¨¾·)>‚‹ Ÿk®ð}ñóQ½7ë뢡8è¦Öu‡­ýUˆ÷ ?’Ÿ»¬q¯}¿VýXœÂÏ7lž´¾Ç£ù]ðñj­'d^–yÓ;äÈ{NèÇzÏ_ß‘ºWý.\ªöyϘ|%ùXò Ø=Ö«°¾œ÷~Î?Ë;Ôº_×fë®°ß>O…}d<‘ûòº^ûqaµ¯ öÏÞÚÚÃò¤ì3cœê=•c½)ë&÷k|4üZý“üa_ê}lì™øñàï§/h‹yìÀ9ñ•ù4ö¹ù ù³úþ¥ê'­ùÑ.OàW|ŸòB¶ßßÖ¾ ¢ \ƒ_ñü=ü»¡ýJë=PÆÙÖcÕw8u$Ÿðaå¿Á×ì»B<ú%Ø äLíã_®óÞ€ú½5K&>ÔþäMô]‡=Ì“ oÚoŠy äûUëéÕÍwWþ€ëøkè¯}˜Å_òwµ…åð.úÇ<rH~¯æGÚ{h[ø†| Žð»ßÃUþKrPû’(ßPóð>ŸB>^ãt¼or ø¯zNzsAãQv^ü(Õß‹Šÿ®2>gÉŽð>íá«ßÂñøÝšoZN§ýÃÇӺѲƒÈ3~çý»ˆë‡ñTí›\ysÝÿ°âúú.…åÅ+Ÿ¨ù_ÀwÈé/ãQëžð:¿bòÄ|q ñ‡ä°æ¡ð3>ÿWûÁˆŽÃî‡É+ÏÆ8±ŸƒïÏxÎè¬÷µ´ù»Õþƒšo¬ï:¨öÑï’Ï©÷ɃiÞŽýY¯ãûª£Ÿ5Ïza8Î5¬ŸðýÑjþ ½ÐuúuEò‡¿yÌø]ß±Ôyí¿I¼#zè'8†÷ê;ÄC}^=¬©õHâÇùÅÊ+“ÿ°ï¾<¬yúI¾ƒq¾¨ùƒûõ~4x’x‡ùfü-~˜ýäàw­ãQ½•/§? _ªv.k~òœò£ä[$Çõþû/áoÉÏÔºk˃b瑯«ò—à>ŽÈãÂú[¾S´Çì8þÑòÆ…¯lÝz/÷Âýý_Úcž;θ¥øþÖúù¡~Õ|æEÛ‡¯Ö©Ýû˜¿gŸ,ÖOh__'ZzB¾vµaúǸÕ~G´/:yOºÞ£%^6?Uïó’תþÚwñöxŠü0y ò®6>µŸœøVy`±3à©zo‚8Uv‚uu¼Áúýš¯&Þ•z«øƒ¿Á¾×÷塟÷êÜoK¯Õ¿úî#ññúÂüqƒèÇb·|ÿfôŠy<Þkw}oãïÑ?ì]}/Oñ?þØ×¡€ßÑ·Êsª_´Ë<ßé½!ûˆ~s¿öuÕx?oô“?cÝr­g²ùÍïÕzô Ž¿}TãVû¤1¿Ç¼ù6æ“Dr^òŠ¿â÷Z—vMúü„éyí»îN%.¸Îü€òn¼—Ëú%ÖÖ<„æÀàüáÄWääšÆ~×:Pò™²{ìóQû1ˆ~ü*zÈ|#û6bw±{5O º®Ê¿Õþ¢º.y(ûòáUÞª¾kWß'ï§qF?ÐÃzÎæÛþwå‹X?À~oÌÇ×øb/‘wüo퇨úø.óžåß,Róš¿@oÉs“×'¦÷ý«^òPÄgõ-=I~¨¾£&|Êw_Ö—€{ÈÕþ€ÃyÖÊó×{—Vºˆ»ê» Ìó)Lþ³ô›ü‚Æ ;ÿ€ø‰þQþƒZ_ ŽÃî(žªþ==¬ÇJ¯á3yTð3òG| ~dÿôä!•WÆ~]Ò{&Ä[Ø×ÚïSô0ŸO¡ü†ÚÅa—Ñ›'¬>OC¹+ûZó5ÿ€ŸÃÞcG°»–!ßvCó øô|z ù®ÅIâ%ÉÖ{׆OàøÅþŒeßÉc(Þ§_ ¿]‡~ñƒxñió+¾¾ƒõúØÉZ—!ú>°¾‹·õ}b³3ìÿE>?‰Ÿ¡~­Xœ1oFÞNë%™w=Ç>[â7þ¾ÞkÊKÉ“ÏsÕü•æ3êû¤ò÷ð‡q²yÛ-Ü«çj?p­¨ïô¨~òyÄ»µï¸Ÿü”úCž„ïù¯}½Vî“~²N™¼xžuµåoÕü6rGûŒg­'×9뎈'˾’_ZùõŠÉ—×z+µÿöñÛ|ÎÄûÌÛ¨<ë`°7<ÿ¢áÞ{º—ù›7¨ï^3~̇¨<òÍzÛ}jçºÞA^°+—[¾¶ò`äà«pþO w0G¹Vœ¼=jóêø/ì6r|CûÛÚ÷^ª\}GAí—‡Ô¾óÄ]† ·kœ°çØ â-_ßÁ|1ßç¨ï0o¢òèßû¤wà.æ_¡úýûÞàUââ/òoWµ. 9÷Ôºùñú^x›u¦'ðéŠáæë8b÷èï»b÷\µ~wëû˜Ã¸§öïÂ~×~9Ä·Ìëä» ´ƒ},~’åy/ñ¨æy Ö¾hÄËâ'ùÞÚ߃üŸêá9åÊðž$õKïù¾Ná­úÞœâFÊû~Úà*ßÇJïýnÀ~W?…7}£Cy(ûF^ªèQ}äÇ?ìD}' ¹~&ŸÁ¼ùRæIo›}Áþ"ì7gAt’gy€qBŸE§G¹ì®ìãêóÔ˼ôÕ>pæ§5[ïýÐ?ŸÓwd¶ö=çRvŠüäÿÿ}žú®«žëÃ}\j@Æ¥ö9Oš/»£zëý#Ñ}¿½w¬¨õä3,ß…Àžw3†ŸÒzóZƾ4–W¬÷zñ¢Ë¾g]úN¡{ÁOª@üÿŒé)yßÇœ~>¨ü`­ûÞá{>µÏúFÍ|¢Æ‹õ[G=¨ñ­}2†ùØò?ÄÍœÂì ý¯õZŠÇŸ3»]qW7‰_Ì÷Öþ¬[“ýÆâ—áû‰‡Õ¿ÚOþà×`ÇÄÚÍâ«z¿–<0q‰èÁ¾oßéýÉšçE?YwÇú æí‘wŽä_˜*»ÞÃÎÁ¯!øÉ‹šG¨üŒÕƒ=ÄþâÉ×ÒóàGüI­ËœÎ5Ž5¯lù¨gÍ€sàß5Åy¼ï>«}eð×6?F¾Bq|í¿ Nô|.õ0oʾWÄÏ_èOí Ëú¿Â=ØoÉòÍ8]4ÿðˆúG½¶yÍ3ÔzLÝ¿¥þÇû>íÄ5µßr¯ùZ¿ò=ÚŠ~3.OšÜÕ¾¼w§vì½úþÜs®zϦp6ñØ›¿ï=î©w–ýÆ?»|×~«¢¿‚Ü]a]„îóëØÈçh>rq„x‡<y7ËGÔúòXо×{µ:q–Ù}_çÃ9yóÚ‡ÿ„¾‰Ž‡”·}KÉ#_V<Œ_Â>ŸWÂúVòEµ¿-øÇì6ñSí·!ÜŠÞ•G.Á•ºŽ]e~¢øÉsĉÌߨ?ð…}àßY"ß/øpUò†~’§©ýÀqà ñ·öƒÕ‘ý8Kpî~Æ•<ÐJjÿ‚Ú‡Ûð‡üK}çžÓN­[Õ~«ŒÓcZ_Áø+¯±xƒÚÁî‚á/þÜI>ä!éís¥yÌúžÎ7[ÜÀûÀØòßÈïeí‡þÖ÷°âyüy4ä¤âm•Ï×üŒÎYçZïí¨ÿèO}ï }%þ#^!¡q)~Jî—ƒS%õ=L?Šž’WV½þìëÐÃZgfø »O}ÿgì:~µ¾ÇJYùÜ‹zÏúj?Q•c?ÆÑwmñWÌ w*‡=æ;?ð¡ì¾øL^ŸzX¿É÷l°“Ä£åDó°ø×ÒOæ_5ÿ€ÿzÔü x›÷§Ü^_0}$¯"~×>`àÚkÄ_ÄS¼ÏhycìcÅÇØIµÃ:M}/}±_÷y÷œò¨?Œþ¨äãj]‹Ö÷Õ÷t¤Wí{àBÖ€³.ÛwJëû˜Ø5p‡â´ÊªõT~QבÛzøÔòÕØß‹6Ž>ÿK½ä j?Kµ_ß5~ã7vò‚Þs¯÷=TžüÆeóËÈqÉÇ´Ž\èßaÔ¾:£ý¦j¿>õ»òšØs=_ëqÈóáÄwò?䟰WµÏ%y[—=Ø#Ç¥µoŒüþ^ò›øp®ô±p¿Í7º½ƒ®z?Gôáñ Í^Û>ú£}¨ïU¼¸±âS½o’/G~~BzzEúRëMLN4޵¥äš|°è­ï ƒ·Ínb×+¿€ÿb> ¾å{džßë;%6?‰¼‚Cñä‰Oj_vôLïGC_í Ž_•¿ ŸÌïùúþš÷/C9®õ¤ê=Åš_µù´Â˲wø·ÂÏÈ ~UüÄΣOå' ×±oŠëßA'Ž)ùb^Ëpy}çNïÙ½Šùì€Î‘[ÖµT“Ú¿Ÿü“ð¨¾ãUù*ø\ûzcÅÇ‹ÊG#¿”óýSj¯Ù!ö!_F^¿ÖGhjß}åÓØOû|O‚ušõÝ?ÉÇ>âW•;¯ùÊÿÀû5ä'¥àÆyf^‡ü>ëìÐì)yŽZ/©ëõ½Aøb8 ¹ª|ðqW½Gnx zk$ÖéX¾‘rkÝ5óÉ·¦÷Äñà(ìùþÊçO(o˺´ÊGHN°Ïµÿ žÇÿ“¿CŸÀMå×u¬ýÿÌnx¼Yq½Îµ¿Îâ-z?ˆCn*/­ûØäûÀüýóuàçß׺É-ó¡ØÃjß8òäîÉ[—\`§DtW™<¢Í7Cï]aÏÀ[õ~¥Íc2ÿu^ó‰È•åŸOßüÊ»t¥ï¼×ŸÐ{c•—Ô¸0ŽŒùÛz_ÓæY‡…ª<¡ð‰ïÏ¿Séï÷"gÈq?ú~\*y¢䙼68™ùËÒÛY¯¾ª?µþUõ–ŸÕ}ðÓapymõ¯öcDÈß/ªÈ3ö××ßûz(òçG±+â[íK¬òøUæ> 8qd˜'9&~ºŸbýÆKf?(üð¢Ù“Z7dñrù=‹;öqy{¤ç˜7s?*ÿ¤óúÎ…ðTå°O6Ï_8‚¼9y/Ê_ÐoµIy‚+äM-žñx£ú#zô>kÙ…Ê›éùúî+ý?"Oj¯¾®öÈ÷”>H?iŸþáß°÷èxê‚òŠôÿ–í=Øëú>.ñŠø\~\ë*\ó[øÝGVy¥Zç_yæ D?ö´ü$yÉÏ%í³ÝzÚã ›ç‚oˆ~Æ«ö[f^Vr~Íä=f~=þyOäû!Ž€¯Â]ø™‹ú~öý2é?ññE½WN> ~ÿ¸®co˜/!7²^šy¯Š˜ŸS¾Ï÷[?‘o ®ÿ`×À/›Ýaœ|ä‡þx¾Öàñ#â'òˆ|~@þzxÎñqY}·Vû’±^ªð…ö9„NòEø—›¶.ùÒ¾€•Ÿ`ž…#¸ùd^ìŠÖÛñ])Ö¿bïx/÷&ßÈï‘'¨<vÞâØZ¿£u\zß½ìçýZÇÅzNìqìÕ^ªx°æÄ'ö±Ôº·úp}/—|£Êß«z¾w‡Ÿ«}mEßc_ì~‰|þ‹ýìÂUÉ õóPíC N'èœü ïÅÕwhTïOò½&ÕƒŸ!_øAéyÙ} ùô÷1ùïû™_‹Ì;³n¾áwê;z¾¾k'=‡'þd@t=€ÝÅ¿³þÍìAùw•«}%„Óà£è_¼–ü´ŽÏØZσ¿0\>@î±ïàßæùÞëkð³Ø‰ùPrvAó+õþ4ëÿ°{–G¹nþ ûŽªï;ÙürÍÙßÂaGü½|Žõ^,þýF^©|þÃè•Îÿ™èdtásì‡ÙyÖíÖ¾‰ê7ßÿ¨ï†¨Kš#ŽºOôÜ0Q¸N|xØæyˆëÀ½ø§[¼Ç7|/¤ÞûF>ÊCÙòïØ/Ö/³œ[ã¦v‰/Ȳ^ÄçïgÞg¯<œÊùºjâAä ¿‹\sÎ>^äjÿRè•ò%ùmêAžê½bòCø-ù?ÖÓñr}·Bó´Ì^ÿg_Òþ+Tö”üô®Žõ=5æ_¯Êß©Ýsª÷!â;]ß"wµ¯¼Æ¿ZûÆaW$g/Iîð/È#ñ)íùzNä‹y1òQÄÍ×…«*>1z˜ÇbÜà7qþ÷ÑÀ5ØåuËÿ`Ÿ>`öªÞ;Òuäá­çd=ëA³ÏZÏ7Z§Èú‘½Ì7»ðçš?þsz ‹ý€{ñwŒS­cœ°¾¼?ß_Ç>Â?øó¤õ·p¤Ö7ŸQüPû5YÜ_xŽu Œ_íßL¼¥ý+°¬{`?ÚÃj·Öƒ(Ÿ÷Iü/qˆÊi¿’Ñw=àùì)ãÝ"ŽcßGÁ¾Õ¾˜àäU=E~< ù¾Å1âQÖ‹‘WÃÎG$ΊÎGìûl…ÓÁ«¢“ï_'ŽÓóŒýÅn×DîhŸõ$<Aï#”?'Þ?ðØ ð8z´NÆòµÿ»òÚØúK¾<‡\UÿÉcJ>J~5þìã|Cò Þ±ï1þ•¼§ïÛVúaóvÈã“ü_í·nv~`Ï©‡ï?Ö÷E8÷šâYúWûü‹Å9‹CWê—°%ûþ“/Ã_£¯È“ö©ýñðo¼OÆ{º|w ûóÆ‹yPË “'Ä"÷ÌOûºöó²óØ9¾'UØ÷Tô’×e¿?âÀÚ/ &>âØ×œHÞ{JýúÞWåJÏÔßûÃ|ÀÃòà-Æûìï/w=¤ùFÆ ?SôÖþ¨¶^\pMûH]"ÿ(y‡ïìW€]¨u‹’WðÄ'†öºòá¬ÿÁ.ð~Í×ÙCúAþò^åßÈó€™ßfý󜇉cħGµ>²ä4¿Zy/p±è¬¸SþÊ¿Cξ¼÷¿@X¯ vÏ)È:ïëzžëäÓ³Z׊\j]|.{ÉóÊë_έüŒêe_!Þƒb_rptÍca·oü…â¿z¯‰rÄ“*=!^¹¬O|†õ|·âyÕŸ¾ëQßC±ï†Õþ âkÅ×Ìë@‡ç5Žõ½òÊ¢\…Ÿ­u.øiµ[ó“’çÊKS¿êÅ‚Ãë{Ú6¯ÈýšÏ^ÀOöÏgৈ¯'ìü±>EåXŸVëØl|ž2:7ûË÷ljßVÕ‹=å9Ö½ƒ'ß/½»¬8÷„'¿ Wb‰›±'¼÷Uï§I.ˆ{Ý~×{X¢—ï×÷j4þÈE}ÿ¼Ž|Éÿ?4õžÌpß(Äîâ¯àW­ëP°[È'ù}pöîCš?^Æ_þÃO×û˜z¾¾÷kx’u¹øWðî*r¼ö«%N½Oøˆ¸ä)³3¾ÿz½÷¨¸â€õ«ÖIhÜ.)¾¯}Æ…;À5ï²z¾‘x|6{ã{§˜¿]íKʾ[û“«=òàÒòñ|7…òä)'†ó¶‹¹ú½5?¾Ø£z^¯öÙxòò„äÕlÞ€¸­Þã`žVÏi\ê{¥Ò‡ÅIîKžj¿µ/ܳ8´znqþ¨ëˆÛwÉÎ(Þ[¼NëKà×(¿«xxqäWæ3É-îYµ¿øBÙ¡ÃÔO^}Eoíó8|ÚÏÅœ|¼Ö5±ÿ’ä¢Þ70ܺØG¾šüü¿¾@üc÷â”øA\¼ÿWÿô]ÌÅõ[ùÀÅ\íÜ£zˆ›éïÉ x”ëÇ%¯Q}G%gÐPå^KžD÷™ÇW¾eqB|Q~‘¸Ÿ}”ùíâ¸äKë)kÊ^©Ãè‹Ù­')¾ê½»j—üvÜB½ÇÕ­c^¼E|Ò:ƒÅ!Ñnd¿Ë“Ü×8jÛÅ«Uß1õüJœD=¥ªïU¶?B|.~Ôwú°¿ÌSÖwŒå7Xª÷=oú½~Õûêû‘Ó‡}ØM£òaÕ_íÉ>-ÈgáêÚQúÎþÙì'¿¾ íÀÖ÷´À ȑƕ÷ú˜ÿyµú¡u*‹#ØÑÁ<ß#¹GvàåuT>±Ö÷ág…¿Ç¥µo”êå=zž§]ìÐ=²÷Øiì©ðÌâˆô;ùÌÐÔ÷%‡õ^úQß·}{†y©Å»}%o¨~/ ?šßZ}AŸçŒ»Æ‰üœðÜâ”ÐþPA?kÞNyµ-?!ºÈ³‚ /êõñ½®}ÌkНûuýõÌGÿÐ.|VûºÎÔ|Bù;øpT÷ï`—tÜ…=}:¥çðwÈ|Dï÷`7¥Gìw‹þ“w.}QûWé'íh¼x¿‹÷ÌïQûà‰cØOâÑq~[ú÷Iòhô_zÊw$ëç‡ò^ã²»¬û…ŸÔ¾ö¿­ý¿ý=pyWË‹ÃÌÿJ¾‘Ù×ÅeçÈ—Ô¾âÛìŠÚϧ†ózŒ_½W¸[|Aþð‹àš#ä¿5¯Ng_cí¿WûŽ2Ð .½=”ë­yôBãû:p†ÚyÁÆ›}Þ_´z°Wôç¤ô–ý`ȳø:xòS|_‚õ{5ŸÁ8‘ïR}sô}&î¼—}ß"7Ä¡5®öŸÄ›]þ 'Ô÷‘wô‰ö±×à¾Êcã?Ôÿú>»ÅÝ|—¡ô¾I.‰°Oo”d^ùÿ˜öK ^üy­‡·u à€Ê?€ët^û`Šî òàVÉIᕇÿµß®è©ü#ù&=Wïq“ÖóõGú£~ãωw¾Ü*>°þù©õx¢¹Ä“_€Oµ_q½ä¢ü¡ž¯ï Â/õÜÜgøäú¯%%ÿðƒý2¯ÃÄ]ðü¢q¨ïOZþ’ø±üý0^:}Ÿ¾+Êþ_Äoà/öýœÓžúQNæ?ÿêõc·l¼˜O@îßzOArûú©ûµ‰èTÞ•}Ý>ní+$»@\Vóvâ3þØÚY=ਛðx‡x„ù@ñ¹Þ?w#â vÁþäåoÅGÖY“—ƒè…Öñ/o|¿·öiǪÞc¬×€Ïø+ñ…|/rü,yÖZ×ÎøŠžƒâùâ)òEØ/Úe6x}+ÿÆ8/iœÈû8e\>Êú~ü­Ž{†t×¼ vºjß ä»ù'†ë°ƒÃN âó𵿱Öç°Ï!x¾k]óâ¸ü¬â”­ïãïÔïO ý v¥ö“µïSUÞ¥ö'džßð4ø×¿·Ç÷@Áí¶?Jí‹Îü88?O¢¾¯Š¿NÈÿcw;âæÍ•*¿È~(Äà òÌ¢õ= =O>‰ø”qÅO2¿E¼\ñ„è|ih§KÁïä•‘ä:Ž‹>Ö#€üòòÄS¢gNT/þmûÇV¾ñyìùË7×~ ¢/ü´øjÕ»x\BühòB¼4ÇjÉ“’­ù*ݯ÷—©_×k?$ò–Ò;pqy‘ŠÛÉ‘¿Ò_ñ£ö¡[­SÀ®Ž!ž`¿·=Øaò´ÈxEòµËìâ)‹ Ù/¿¤ñ]üâm=G¼F>R|\¼ZåùÞD͉‡†¸ië»+è¥ÚGïxϺðƒGtý”ÊÕúfü‹äæyð¯ésíg½šG©u¼†ð«‹×«]ä‡rð™÷È Ýøäü„žâÁ{àž¯<•î™ä’ï W?‘ïA‰ïà+r z±;µîÁð,ñ qR­Îã=ˆšÿæÝFë‹yŽ|@íkñþåÆöԃߴ±ø¢ÌÓVþ…ïÂcÏ|ßÌ›øoò~Äqä³$؃²÷Ìß0¾"Jž|?Œ*>Ü˼¸YõÔ¸Ô>RäCÀ³²àâ?ðëlèo{$'›èòŒÝcü° ªŸ8ªü9ñ“îûwÎȳ²?'ûw‘÷?’ÿ'oòñ¡ìqèÞýѺÉZ—‹~ƒwêû·à&æu~D|:¥~½dö¹æ­4þàôŠSDöûŠ|!/ø1ô—ü9x œPûîçÕ·ìºúÃw]jkâ$âa³×ø ×ïOšß9¥ç7ðkà¹!î¨x9Å#¯äÅÞ‚}±|â ¦çØÇô~0öùyqø†y$ðyuµƒœ£OÄ…¤oCSy$Æx†üú©ø£Öƒÿ\Ë'V9â<õï¸Gõ‘/Ãþ×>)Ò·ÃÈãp~¾æI™×¨ïÔ—$I¾{ þ’‘à~}GÜE^rˆw g͉§âuµÿjÉEí»¢vÑcä§ö»V?xૉÛ%ßÄKÈ¡}‡›}Å¥µO|d¾†¸Ií€w)Wv=’\I˜‡,9`¾c?ó2–OƒN} òÌø9ìlù#éËQì»Ê3O.DNv‘Wa>A|>&1ú±Ñ÷!iõœä+ö‚ß¡w˜ðïÕüßG8ŽÕx\OIþ7˜]Ä œ#‡µ[|å;)ä óˆå/ȳ°þ•üq$yñzYõŸ$¨çj}#r¡sì3ytÚ#¯Pûï’¿¢¿øQôZö<÷„ÆuŽ ï^¤]ß^ôStc·ñ/|ßîÚê=¶š?™K¿jÿ’÷óÛ¬wÆïΈÏÁyä1$?Ï çÄÏ¢×ó¸øõ³Îá øÜFPû’“ày{ÿ²æ‹Á··´¿C½_Ìü#ø9îe= ïdó[û½ ñ×Öû+Øp6óxØú‹Ýfž {,9/|ƒ^’€Ÿâ78®òäʼnðª;\xZë>iãSóÄq<&yyøƒ}«÷¹±/âöË× ðÿÙ!.,Ü.!¯Äú/ò'O íRõÿ¯uï•'¿Iþ>Y>‡uyØoÆ£¾£¤#zE~˜xp˜÷.  ODÿ}Ý0öîq‰ìÞ=’/ò¸ø!p$yþšo3ûVyHñOó‰µNõæÌ3܃ÝfÞ }•®qWû¯W¿n óÅGüû¿cj?Gä[õ¼„nµ[ûà5®ØÛÚ·ŠyAp”úɺâ«Â Ãñ,yõ}jÐ{Ö+m7ª]¾{½¾?yeüg}ÿWíVÞ܉>‰ʃÖ<ó¾¡}®õî—ø{$µÏÖÿY>–8äß™±¼pí¯…þÚ9öûTñÍ=Ã<¾}çfkžJãE}”¯}ð4[ÞcƒsòúàDñ;Rr¡òØ?ìâ‹Ãq®8ëi³ãð©ÞÇ1½Ænë}­}èt‚߆þr1GÔÞâ+›7¿£ŒS}_š|“Æ™üëŸÇ°‹zý=&¾=!~øwžSý•O&N„ÿä³Ô~­_U=¼WÏþÂð]íÕ>%ºÏ¼ vÔ÷!ü~Gõ¼–rzþAéņä=GÏ^eù€g†t•¨õÆÂ#µŸ2ñ’á ð?óžÌSÖ>5Ÿ{°›6$VyÃ-µ­ìÉ~Ù=ô“ùBÖo G¬W+;byRü rÏ9ïÙ°.ƒùóš7²¼ôÕzx=w€ùdüºÆ™ù$®cŸ÷sÌÓ©ô¡ö+´¼'yXÞ;W—Ôwx5®¶ÏjÅû”»3´[óa¢¸ù¨Z× ýÀß¾¶ã­á|¶¿/YñÝÓf/kÞ~ƒ«$_àƒ™äãM_»ª}FŽñØÇÛC;2ŠçmÿÖ­8ºð—а¼3rÇú“ú>ƒ®“Wa^¢ò‹ºŽ^0ÎÐW|!ÎÄŸk—ÚÇÐò…ÌÇî¥zžü,öºø„½WyÖâ+¯AžFãëq'ö“üö>ðÞÑ£foj5éýð:ÖûŠàæû-Ïwe8TtW~]í05?Ä_‹ÃÄYÃ|ÀhßVÿ"ïO}Ô⢊¯¡ÿ,¿JüÊ<óÊç3߯vÉg‚'ÀïäÉãó¾ x«¾ Bžx€õÄ b0OYq|íÛ-ù@ߨ©ò£ÄýÄ!Èr®U¿ÁãÈ/ñÕ'‡ã_ø¹¨õ–_@¾êýFì ø…¼¸øËwTçÚϼ˜úcµ>£âÿîB­kÒOõ磒›šw‡²oÈï Áwægø¾vñM|g?2üà£CÿUö³âä\‰ý–Þ¿€7jÞNvœO¾š}f‘;ð.yðõnò<²CsoÏòj\çÀgè¨|ÃpÝÂÖþFÌ'¨ý£ÄaøEñó?ð>v‘¸œ£zGìzDüD|…ß*=c¾Lö–uäYÙ§ƒ8’<ö›zyƒ<ï›’ÿd>|Î{%3Óä©ð²ÍËÔ÷ðð‡øu觉/ íUÍ{ƒ/È+o¿µ >œWÞún†ç͇þ£ü ú|ÿjæÚËö¯<0|¨u§j¿òÃ:'T¾RõTJ~„üy\òðä[É H>‘sâß§„þûû¡w\$|—ë&ñù p,ø<íé¹ÚwCý©yDéùò²/µXô‚°ȃ޻ÚÊGÂ?ü|×sâãâ°úÍøR~Ðö½(Ãüë•oÚ«ïžàGÕ^Í»šü?i~=$oÃ>Ø­ãÛzÿ‹øTí`÷Á9ìRþXv³æ;8JŸñì÷€_E.jŸ›?(¹”ü£+N´¼_½×¬qÓºÞ›*ùG¾*ß­çˆð£¯Æ!5ZySñá? Ïâï1œÛüÀÖ¾”΃#^$¯8Ä¿5ÿ®šŸe˜uèqí/`ùdâpã>ÁïÜâûB'ô¹eœ˜/fb}Vú_ûêzíŽ0ûRû@˜¾×ºXÕÃ>BÄ;àúSø@õßæûpØëÛC»qúxßú¼ÖþÅCÿWv™ø‚xмëóJ.ñ#Øqìó)z¾p)vxÚèB®ÈÏNÃЮüšò*•ï××wq´O8iƒù8òÄ•è·ÉE½.ùä½ò7´¿3/,}ò÷Uð7ð£ü ù4â6ÆIòN^p•÷ÝÉç‘Ï Ï©v.3Ï!¹-ü¢öXGIýèö´òéÄoÄ3†ÀW¬ÓÅð\å ÉóhœßZç¤ñ¹¶Ú?`qH¼§vZ¾çöÐîm釯³æ/m^yðø–}ÓÉÓ_îÛÚ§;@\­úˆ§Ñ[ú ÞdžØ×UTžFv©âRÑϾXŽßN(/‚?Û¼¸¢Kóȵ¾„¸–8óžíóÌ[xBòOž’xþ”ú_ßïRùýF7ö÷þy~ŸÑQï¿Jn´¾¤æSÁš+»‹½¬õä‰g5Þà2ìùkÞ ­~ØóÐA9ì—Ç9Ì×ðþè³Cý)ýÀ3¿@ž›yèúN8ZqóâàJüSí]Uý5#ù`}PÍwhÜŽÊÿ½IõÖ÷§5^o‘œƒêûÎâ;x«òƆÃÑoòZøaò‹è³ï¿W¬çÅß³Ot‡(;¯þ\²|ä-íÛó¸á}ôŒ¼ úXëj°£äÁÏøÉÕIÉ+qvU8´p:ñv<@ü{ëþÞñ$ï+‘‚õþ+¸x@ü!?Hñàvô9g ó)/2O ÿ_ì0y ô]þð$x“<øBÏñ>YåqÔ.å°—•oñ¼×Omn使ßÈóÒÿzû@~ÀòkøÃZ·K<$½#ÿ¢o_õç„ú…ÜÏ<ó?â‡ö (y-?Å8’%ßÊO±Ä=øu ˆŽÄzþ0~EGÆó顾Ö8½ \‡ƒË›ï!O%ûpNçìï@K•ê-ë+OTïÇ‚ñ[ÂÐ³î»Æ{µ_¶ÚÃ^³_qDÅßà7‹wê½üùéè/<òÄа¾o´/ ö幡8ýñ.*½);¿Á©à@ÉÛn£³ü¬ú]ûXˆ¯Ìðž.8v*þ‘|Ô÷ðw¢›q×û[ùõ{ó…±ÛØYüñ ûeð ߇#¿A\À<;óêØÅ]¢ïÃrþÝ(pîÈŸû¾á5îâ›ÏӢ׌|¯ïÒÑü†è"N©u7â/ù§Š7À¿àVòrÖ_Öoø÷+>$NU;Åíõ¦ò䥡þÔ~ðèÆƒË[Þ²òíàä‘#/©ñ"ONðù0èÏÄ ØŸÍ_&ýbý8—ü-ñó¢¢»ÖOh\žÊiÙ©Zï¬úˆ'lž¾öÿšaO˜ò¼“žWU>_×±ß'‰ßUŽç+ÿ.º ÿ’äG‰‹ÁËõÞ#q5þWtn—~à×ðW6_rq”x—uØyí×Ï󵿾úSû— ‡è™ä¡¾Æ|y ä|©ÅSàïz/ƒy =Þž .=ÄKàWuŽ©ïÉN!¿øÚWXãYßEGŸè=Ÿ'‡v»ðqe}\õò¾ôNÚóò£à-â½6¯ ^ ö\}zï`^rôpü?ÇÂAÌÀGòsæÁ}¬?!ßž•#ÎÈíÙ¸½7h—8 ¼§òèóg•×8°O)~\pM~’yÞ|=v{È×Ú§Üþ¬ý°›à(ã ûÿêû£àõû¦ègžÜTû)ãÇDÏ-íCþ½cü­÷ÀËä'%Gè}­ŸèÈwý“Çͯà/Ë>ª·ûðþ×þÄEØ/ð±úsSß-&NCÎÉ#á¿ê=ð3zgñ{í»BJ|`À>Qù^âcòCëßeæ=Í-܆>á÷,ùFð×õx©ýʊ϶n»ô‚|=퀧˜÷¿¹ú®7û¹Ôú}üç íK\ßÃažWòŒ]/`Ïj^ ¿¨ññü2v²ð‰ø®f߯ñ-?£z¡¯ö-¾¼Š|®Æ‡<ïy°xœ~à‰G.ÜM¯}cùpráep ã­ñ<@ ÞÜW`_ÑŸÚßVvô¤úI~?Wß«}<Ïûmà]Æ|¾Ä.Ø÷´\Ÿ*ßðÔÐUúÞõïô]7û=«õBâ;ö¶ìrm~‰ïGpŽýÐø•œ0NøûÞAÿôÜâ>â5‹ã¸Î>¼¬¿ó÷è° ÷^þ¥¿ì×ÜüMÕopU}wÛp…¯ë€/èu­g—þ²Î‰ý KŸÖÿÎ/m½oiù#Ö"/Ä=…#%7È+yãÚ7UõÚw2k-ùpÒÙMðçÕ?ñ·ÞkŸÉ“T¼2Œ“Ê?²Oñ'ß[|Æì%rVï'26Ì#nå÷‰kà§øÃwìá v =¨õÄ¢üXqówÌjÜÎÅÇòª§ö×Ðuí+_yèò[†3±à^ôû–Þã@^êý<ô‚¸^íÖw Xý‘ÝÆ®‚KÙ×Xó[ûøýÎâü*þùòy–‡ þöxæ©á8ð^@ÅMÏ ýû;”?¯uÞj¯ôÄüR­ÿbþÂòwŒ'ø¾³¾¾=¼úÄÖ| ñŠÊ_¯ÑƼ®ìÉ#–ߨ÷}³a|š|G}çÎâŠ=ê8¬Öe¨‹«ï¡ì‡Æ³öw²u8‡mžˆýÔðû¼×@¼öaÅô‡÷NbÕ¿Í.Á‡ú^8rн\Å_§/3žzþQpšåûž5û@œ=¯ï·‹6?=š)?~!çä3Í_V¼dyòqäS}=¸¿¯QûÆ!_ê÷»é’ßQþÆÞ3)ÿI¼ß}¿ËóÄCô¼%ú Så[±S¥G'ðÖ fwðßÔ‹±8cq’ü’êî>¸D{ïy¾ìå'Ìnð/ÿ^=òVóžOÀ“ïÑuÖ/2/èߟ"_Äü&ò^ú(ú/“_–Õ~™ð‹8¿Â<´èÆnÓÏš§Æ>‹Þ›è¹ùoêÁ¿=5Ôï­ü(ôÓì¼ú޾ÞV=Øð;ë¥Ø§–8žxüæó6…ëÔ¿ÚGüó\Ø=_ù¸¡üm}Çò7õ½(üx•yô_ý!?ŒÞã·àG­Ò9úD¿Ëkÿ@ä ú¥þ“Ï­}åõü¯ý›t^ñí1ÎðƒñW™Ÿä~­7 ïoñ"ù¿šgÓ}ò¼ØaìWå#™$¿‰óÒ‹7Oß[}Ïr ç‘ aŠ=Üš¿”|×>F*‡Ô<Ì0ϼµ“z˜"jóaØ=æ]ë½;Ö£ˆÏ™ý­õÝV8æIÉÕUÆ <ªqººÊßÖ¹WLý»Ê<1ë,ÎC~ˆ?ý;¯ä«k_RóSª¯ÞÏñï­ùøãG7†ó[û£íLÅ‹¬ãc~ÁåüÏúÓz/V×±‹ç,ORûá°¼Ûyü«ò<¼_n¸xqÔìºï_ƒ_¹ºz¿¹ÖÓûº Þ³‘½¬uDµ^ÏaÿË?0¾àRkíG+yÃo¾D>@ý¶ïålå‰-~|ñ óàdõ9§^Âî“§f¾½Syöû"Ÿƒý½©}çÁÿð{ɼßgUÜWùÍ£C¼[úN:)ýfýþÔÞ§ØÒòE6U/óI–‡f=°çó‹.Ë£³. ½©÷°ØKéñ9pÍ0®©8 ùG^w›ž×ze=^ù@žCO?ؼٖ«èíÕ>ìàqÃù¾¯IùEÃçõÝù'ðV퇩8æ-ð ܆öùp¸Ôü ücßA¾sB> y`¾­ì8 œ^R¿Ñ÷é÷?ZN<ñ·üò$¼Å<ñ*yìqíkÉx‘—}Œkå#e÷‰âªzï@þMö¸ÞS`½lí`¸”¼0üb}.8¼Vï=ãÿÔÎQ˳|àwõ^~í‹€Ü íQ­g`ü‘ËšoÎ+½Q¿îÓ¾gŸ0»ýäwxŒü‚½^ö¾ä ?:Œ÷+.Á>Tž=&®²ü¸ÚדU~|]*Dÿ·Â9â?ïÍUžUþ :ê{Ó’ÓÑ~<俈ÕòîúŽÞÖºKâlÕëï?`/ßú/VÇSäÉË0>Œ÷p}DùµZL~Åò·…óðÿä•t$ÎçýÆ ¾Ö{ÿŸÞX}—±ô«òªo†¾ íOɯ¾/±õÞ¦øÅ~dõ] É]á2ì±úŸæ»åôï9“[òšäÅ+¯£r•÷µ±ž¯ý’…³_M¾¼FþKü¸6|Ÿ¾öKoÃâAöG§}üãYïKj|à£ãÆQ>|Ž¿’}}?yËÏ1¾ÌcW@\­þᯀ»4Þ§äÏN‰në(_ö‹¼8¸Zö‚ýy^0{Ÿ±÷´Ë:7òŸÈïG4þž?vcÅ=â¯åŸø~ãV”ü ùJp´ãõ‡ïÒ™>~«øs˜Ÿå¸Nž ¿Á÷šjžMtñýÛúîïpÞ ôýcv ñZ­ÿÕ>³5/PëdÀÌ‹ò<ø_ñÇQµOÜvEypì®ø½˜cw‡õÔûMÌ@Ï-ÙqæK¾#æ½™'®bß\{¥ö=çûu7—èüµ±æ«0ŸÎ%~„nâ(Éöùðýf,7Ê÷b¿Ñkìþ»böië=ò#–7ÿ„å+¤#v÷&þBôïzïÃò¾/´Ö¯2Ÿ‡~“÷İnKå°ûô÷AæÿE'ü«ïžn%_VxCý`ÿ öñgüðû؃[_~wB´ìFí÷˸‚ß5n•§׉.Ö]<9ô÷[ß5Ãî‹NÆñ"ö†¼ö½GÞÔOå5+¿[ûÞ ÿè7þ‡ü‰Å+ç±³ÄÑ–¯y µ‹”}ÔõkÃ<Æâò2ªçºöE)Ü< û»õž²ä9zôîôÛï©ñð|^­ŸP?>ª÷¡ ãÏÉn'~¬õž:^f‚öȉ¯èQ}ßÇâfÖa\Ç_‚‡–Û½þomùøK¼€Ü ׿l­£æõNÿëUÕ_p3ùÊ'Ý^bŸÀ7¢\yfñ :˜ß&®|Öä¹¾ ßÍ~=7ä×VüÆuòØ7ù‡·0~äß /2.äsë=@úž€_°Óèq¦Ú½‡B¼IÿïÌso­³8éä¤ÏìWˆùèJ®·¾Û¨z9úû™µŸœøn¸÷û— ö+ ¢‡Užç%Ÿ ž%‡ºŽ¬ù7âÙÕú¥ì&úA8¯Ösƒ-Ï_û’·PyúYëåÉc§D7ûOm0?Á|Ó*__yP}÷oëûÒÌ軣5oýƾ‰¾ú®öS~n7zoyoŽøyÞ›`ÿØò×j‡}(j‚p$ëe‰ãjßpÑ?jŸOøLüF>\߆ñrÙ?ò0Ìÿ]{ûÝE¶ÖY>yµú9¸ºÈûоûôý·š—#ŽQûà2ô܇ݬïGâ_„k¥Êã×ë})Ë¿”ÿ$®$b}q6ö}ªÚ'ßíÁpþ¦î_á:qœìû×0~•‡ä(œµûnØóU[ûIŠÿ|ç 9!?þ¨uߺÏû…e?éÏPN}?ÿ­uá–7®øÍò|•¯TyÆ“~2MœÊ÷a+O¥#ã >Äÿ¬Š¿c+…Ò8ÕþèØqòýjÿ†ê­õÄðA÷ÏÑé!ûõá_ÁÛØ pÌ­Õw JŸ¼¥OÌ¿‚G±»7Vß ÝZw&ºw“'FNÈ;b˜'$Ϫx=¯8Bã^ë#,nzÚìZ½*¹cÜõü_å¨û²|*öÛóÊO¹ßÓ>çŠÏ¬G®ùò–äå¸/º®ƒGÕ.vï ôü ÅãõóCž_¨q±¸¸Mû•?ìcôZÃ=·dç‹?:â§À‹×4¿öñ3è)ü¾ñ5K€ü7j?ÞÃ/‚«È#'Gƒk+þS?Ék”ß&>@ŸÔÎ1›7o×ûðQúǺxpPáä ¿*zêû+Ãv·ì²øO¼^ëÀÀ9*_q q¡ÊÝXf-¾÷/Ÿ>oùâ^ÛwÌóe·ÇZ_§þ!ϵ®w(gµn‚¼ûù¾ycâQËKÏ ßµ®\t²?GÍï3_‰ÿP¹ú>+ñùgµwÿÁ¯~Ë•ï`´~ûÆZOe¸ÖÖŸöa&ßË÷3Ø_à8þJžnX¼÷Sèî/e·j~8ùô Ü¥ö¯ß ¿ÿéëKsú·ÿãb<‚|‰ïñä‹E'|¨¼œíRójø©òߨïÚïÛò>Ð~1žûÈo1/B|.:,Þ„!®úÅ­}fàóU”8é²é1òQñó ûL/ ·áFüê1ò€6½h¿ÀG䱇ØÇÒ­ã©õ7âcÕG~[þ÷Âö]/š¿>"{G|ø”óUüd]ñ"|ª8CtÖþŸ¡g•¯K>ÜœIÓÐÂSÄÍØ÷–áéÛtë½zòÏêÿy3ÏÉþ+ìÃ~Ióœ5o†VÑó–ÏEO°{—lLí› îCîÑ‹¡ýÚZ:œ÷ªy<Å‘WU\"¹fXìÊWïÕlå“5.¼Š¿©÷5ɇ0/#>#§ìËÂ÷7~ñÜõ»¯‰¼kq’¸RrùðÝèáWþ¸Úóý¨Éçû÷ß¿Œf~à[ë£ÈcõkkŸñ—rõ–ôàUè1þMãWyrònä±Ð³WøézŸKý>$:ë=xòýf·™?ß×>£ÌWˆ^ð;ö«òØ3ñ©ö!'¿GÜ(:? <`áDò¶Ô˸ˆ·”W|PëÔêý!ÉÑ«}´·öK$IœIœˆ^Yƒ½×U\OÞˆñÄŸÚ| ¸”ø{ö¤v²æaÈSkTÓ¿­ý<‰{”wªy‹Ój¿Qå£jŸ<Ùôàcø=É—ïÓEÜ}r¨q}HõÂOüç3ä)iÜ­þÕ>Æâö_kÿ]Ëo?²Ú¯”wDNj_ò„Ä?ºîqÜu³e-O†]ö÷ýjž‰<œÖUÕ¾øÒ›ú.“é ¸ <€Ý‚_µŸxÒqŸÚ½&ë}ÙëSøãažmkùÑ]ëºÅ¯Âð;Žü1߃_Òõ®¾7\|"OòaÆYt2Ï ž°ïÆß¿š¯Q}—ì{u7WþºüñVå›ßÖ¾¢äiÀyâÇ…ÕümÍ[ž=´üÅ}ºþ¬ùcì üª÷žo“ójh>¾õ=â)ñ«¾Àøê¼Þ›¥}äYöœïÕwXͯbë{§ÈóœÄ×äoEv±òÃ|ÎéVùÌѾ,È‹üÙxŸ$ò€àðþÕòz”/ùa>Vö=¯<öpäôMá“úNì>~{åï'c'ëûyÈ•pîAòàKä€ü~AòÀ~,Ä?µßã…Ü#G–÷«õ3à ÑÃ÷^õåÿò“ï®À/^"Of~›ñ®÷é ‡á÷á/y!ß'­Æ‘¼&~d8O°%äÀ'f¸½·ïlÕù#+\XÏÕ:Ëw•¿j¬Ù üü3C»½•wÅÞ ¯°þîüj€²Œg}W?§zÍßV>¼Ö/j¯ß}å[È‹Tœ‹—3/„¿¦_‡©¾GÀ§àcË“¡7ð ‰<‚‹ÞnÜ}‘lk}$óÄ¡Œyp¡øB¾zàóÙþÞeíC*¼Çì&ñï=i¥ÑzðšWS}õÝ*ÕG^´ò¯ºÏ{å|oí†éï±ùPpÍ%ñ‘|úÞQ/öâºäácÚïËpÁhÝr޽­|ŠÚGá÷ÃØ#?¶Z_Qß­xÁøËøTüjñBù1ðrôÆáú–üË»‰»Ó×´Îã“f˾Z<Œ}¬x†¼íêú…å´Á×ÿ¥Ò»ŸÒ¾Á'°§‡é}ž»®x’õoȽïC|;ž¹fGìüy‰y!3õ oõ}.ü#y"ÆÝæ%*ÿ(?E¾¸öÕT¹ŸT?]ßK>¤àˆZ_¢þÛ{Ô[ßãÆoIÏ‘£û4¾µ?™¾wsín:ÿ«·Þ"n'n#_#9¨|6ó*f'™W,œ-¾“—f_LÖcÌÉ‚#‡òZù§ÂêßEôJrþE^Õ>dµ£Ïu‹ÿ´ŸÌÖ~Èø'嵨/Æöç,½FÞk‡øÃ~änþú»€¨Þ§?ôÛóQœûwȉçöã_È÷Z?o›~”|ƒÚýðê»Uå?¿Tòˆžùw¶ë}bÏg“_Çj<Ñ÷úž¹žÃoÕ<…ùð‹¿ÇÅ{ÜWÿäÝ‹£ä™—ðuÄõøEp€ÅµþUôbß|} ã̾äY±õ^óGØaòIj§ò¬Ä¥â{½W_Éw^çÕû£àaèGkÿ,p–øÏxÖw…ˆ›¨Çò‡…3Áiʃž·ü× }ÏÓ¿OŒœ’?ÁÞÿOßö=Oá}eÙÛÊ ó&[ï›Jߨvï_jÕ›îÝšŸ4ÿøŒG}/ÜF¾¼¬ô‡ü}ÿ¶æ·«’G¾§]ërEÿ‡YÏ]R;àVìì¹ÕüÃîß7MþüûèµNý–â1öeà}À'‡z¼µ^R×kÿNð¤ž#޽aÜÊN‹¾GŒ?¾v³ä;H\L¾Oσÿj½8Èìù¡úŽ®è®y4å…niŸOû.Wõ¿Öý‘O’=ÆøZœ„¿å}[ö½Å‚°Ce/ɾï!åè'|g~@û=—?'ŸSß÷4>î5?æñ!òÌ:ÝYÅA…?‘ònÌßÒÏÊ›Àü+ùVæ°äËÁ‰’ËʧŠö ©÷PTþ#Ê/<¼Üæï¹Ÿ*=Ãîn$þÖ_ï±ïû5úûö7­õ¦pãÎ>óµ¨ÙŸWªïî·ô0þøAŽä]}ŸâCâäZWbã\þ :Õ~½G)}ÅÏØ>#[ß9EO<ß¾ª¾'Éã’çÓø‘¿¨ýT¿ö_®÷ø®Hõ_r]óèä TO­û`<Ì~^µï/vÓòJ7/Ñ: ò·èÁµ•Ê~­âíg@¼hr.? حµè5ñê³ïlÖ:ÞŸaþ•/÷ý_±¯7´Ïq¶¯K®ùò äÕ”Kó6äOÉãÖw,ðk*O¼UëâT_}§Gú~©÷lÞ{H?jÿ ÑSë&®ãç}Ýp­[6|{Qëœ}]«}‡f ÏÙúüL½—`qÐG•7«÷~‡ùò_؇ç‡ò[ù]윯‹¨| 8€ùü›#óð©ÞÓ%Ÿby\ä»Ú“Ü\Ä™~ó}+æñÅ/ÑϾ]åçÁ{à;âð­å›^"V/«|íëny‚Zoļ q–áL_¯Xëù‰+dˆ7ë½:ì#öœ@hù‡¢zÉC g¾ÑÆÓüáÀ­ù éö}ÇÿXvq\õ]Zù¥ò/µ^œ|¢ø}Ÿüï!ÏL>j?}Å |—–qyqˆ‡ê½@ìè­áïUøj8Ÿ¸eo gVý¶yŽsZ×ôœŸïìï{Ö>­ºO#ù]ßOþÿÍâ_}—”|&qã%þ:BŸ’yåÚczÈs— ×Œ'þz˜×«ü¬­c¬xæEùmü.ߣ*Eœ¢<¨}{ë=k“;â]ô¢¾GF׿;ž2»G}•G“¼Õþ/ÌããWÄÿ‡ùêÚñ–ÙKpÚóð>œÇÞúø[v>ŒÞË'¯e¸†8’ýzjŸî¡_¯ü›ÿ7<_úÎ{Ñûl·ÖEÈ>…üNõ÷À17ÕôÿÕÏk+¹­¼/ùð$þ°æ‡ñƒÂáûɳÈ/dÞÁòXÈ òqCï·\]Å=5®é;µÎùQ=àÛúnrcß›"¾©û†Kéï#Q?ñ"ûwßÚÕ­õ ²ß¬{d<êûwo¡GäK™>ú‹­ï>Z}Üg¼k=ñŽÆ ÿÉøÕþÂäm·¡_«u³Ø¡ðåß}éïú©ú^E­ƒ5|‰Ý¬õjà.õ¼Çzvp‡ömíS«¸më»ijÇÖ l}¯Òâ4Ö-|œ¼ªÅõýPåakŸÖ‘ àäZòXyÝGOÉk>¤ï"—¢Ÿ<…ü4v¢äSÏc‡àyèZ_§qüÀ*º•oÇï0ÏŠ¿Q;žŸþ˜öQ¨<y^ò¿Ø3ìòn¸«Þo%jù–Z¿‡\N"߀Ÿ£öèã:"÷ð‡þ²Ä“Ø%úkô—ÝP~‹ï³Þ¶q¿’G©}&4ïaï!Vü¸Wüyj¨5ÏÁ¾—•§@ÿXç£÷תðë\ÈWQ?vü#ZW…}ø¨ðïW_Ôü,ÏCÀµäoëá<­/ÿÇ<Žöwz~0?¢úίÖ/ÖþJeçÈϨ½úî(ùbÆYüÆ.ÖzuæÝ‰Û‡x}ôÝ<èAÿjžF=–÷}ÖôáŽñÇ¿ü!ö»Rýõ>œ—OzžyUûµ_…ê)œE~ ¿‚^Yþ~ÐOϧúú@Ÿw«ü=ùlì=y/ðy2æÉë[Š÷*߆|‹>äàù!Ö'ˆnæë{ «ï+,ˆ.æ§Ïk¾>Öþ4‡÷i~’ù¢š%®‡?Þ¸¬ýíÁo…ÛÑ_]'®-û©~|Tý¨uêàòäÝÀźþ qÚ*·8$ùÖûï§oj]6z»_~¤æ#È_k&õ×÷ÓmžºÖh\ßð_¯¿Ä|àp]IásìüÃÇ/Ƚ/³•÷1<®õ}®hºÀÝø'ô¹ö‡^®÷±‡Èó쪇|²}7{ôýèâ{ŸÌ ú~Däïë}µcûíÔ÷]k)‹—ð§5Š >Ång¶q*?¬xs?v¿©v<¯ Ä-µ.¾©žZOoö¡p>öÈâ$òP¬W®|5vüK…üùË_`qŽä¦æ¥+¿bóAÌ¿±ïóo¶Îa´.yÁ¯à/ž79©÷ÝÔ¯GÙ÷ž8AzÉü#|½¦õ0µO¼ú¯¸nk]q?öPþá ~¿%zïUþ ÖÍnŸg¯øîë§ÏŸ£/Ð ßÁïµ.Sv 9yÎÆã–Îo ÷BWáõ ½-~`g¡Ûâô®ü±Îé×#úî*ë[ÉWð|ÅóÌ÷©âàW›xžxC×ýûC¶.§Öá×¾×ÒƒçLß¿šgÁÞހϵ_ ýQùúNë4ÀZ—Vë®™$®!ï ÷eÁ|_“¼ïÃþÖzKÕž?dq=ö¢ö§A¯E'ó*‡È3ã7ˆOä—ù.xí)¾>´Úw+hó¾nßæ)O?F¼¤ñgœ+?ƒÿ'?¿Õ_æù©Ïסß¿ªÞÚÿ—¼¸?†ŸÅ~YÜöˆáK_»Åû&•GßÙ|ö ñùþúþ6㌾ŠNÛwyk}4xLå¡ëC²ƒµ^OöùœQ^UöÃ÷ÙD?û÷–ê»jÊoóÝAübíŒ=&Á|v…¸Žù<ì°é±ï/GûÍè£åÕ¾È)¸ùÇm çmÙ§äOr½õ>ð"yÓgŒ?ô³ÖÉ`o-Á÷õj|ò„Ãy’wìñõ»Û¡üêê'yžò»†'Yo\y>ÃÕn' 77&ž¢âC}oƒ8Bü`ŸgìôóÖ/ÿÎví ýÌ0j—~‘ϲu˵>ÝöÝZ.þ]ÓõKà'õ××5Öþ_àõ“ø¶¾'®°î|M¾N÷‰±]Í#ÔþAÚW®æï°ìëYï-ï€ÇÉû‚³´ý©¼ ö»ˆ½]W™Gb¾\øšý|?þò†â/öçÑ·,'Hžåû/ô–ïÆúwhX7Wyop¦ž¯u”àѾÖ÷ûʧ?kr¨uÌ5O‡}¦bóüÈ1vñœ•óùÄúNò ¾òäù!ÍÿT^ŠøVçÔ:„úÞÕûøÐ¾nÅf?ðÏŒ#û„ÖûÖàjò‡Ø+ž³¼yæÇx?½AÎ*Ï,ºß·z/³æïÈó×wÄÕïàó„äGUÿû—Óû÷¿Xû˜×þ?zþÞÕzÐZ÷Sóø!Õ˺Vüë±yù’ñ»ög¼É#`Ç$|/’xõäÐo,mgx¿¤¾¯î|"ßÅ:hÉuŃ|7êžaÜ·õ=ÉÉ.ògêWÍ¢—àNáâíòÛÌ‹À¡¯}X·WùCüv–¸¹!Ÿˆ|Iþ|¾ßýq}oZã€~^â÷-/Wùâ ÓãʇËoÛ¸»Œë5[ïÇZ>ç²êe_ü9ëÍØ¹®ï$k:êá;Èþþ3y®z@íSí<®´µ~÷®oW[œß߀]¥>=Wû0~¢ï¦Þ'ªýÅ,ßN>ù³|ãÖ¾O+y¬}a˜ÿ¨õþ¢ÿ «ïP3odó£>Ï‹?àûuì§Yß‘ÿ˜Wçý¶Z—ߘ' /L¾Z~?eû½mùEæñ‘_ä”<5øŠöEŸâìZŒœv&äEk½äp¾¨ìL½ïO~†<yiò^C|¶ߪò¯¬w$_[qŽúÇ›üù)å5ê}oÖ’çÝ0yÀU>Uø ºÈïû{ÃôÿAíçG^ì¢üÂ!òUàòs¢“xŸýÁ{è8ù„ÚÏDÏ€¼¼ÆõE&×5iïCm}§‘ylÝøîò§/ÞŠóÕÞ9òÔ’£zŸÇð&ùäíƒæÇÀgþ¾ÿ£äÈiÁ¢Ÿ}tGù$øLÜ/» ޠߨQä¼öõÀO©•ï&¿­þ2ܯ÷ɉóÉ·‘_Ýô÷Y³èøõƒÚ{÷àÖüà­uløaË‹Öü€ž»©ù;ß/ÿQß)“¢×Œó7EOí „Ü›}Ã1?É< |ªýÑì'ù?Ñq]ëÒ®iÕC䉠WçȃïKçûÂÕwœÅwð(óí俎`?<¾½ä©ŸÏAÏuNüôÔ°þ­< öIôÕ¾WâC½W&ºkÿdô¿%~’ß"î‚?Ú—qq\K<$>Ô:Mp$tÃ?õ¿äû ~W7꯷ǹ—Õ3ù¸®ï”/›vì]÷c¢ßù´Sº}\’¼¤£÷ëŒË=V®Ç_׋öÏù“ê3;:=*Wòèå\þ’ÝH|*‡vÙ—¤Þî¦Ýg|æ®TOÒïY‡þ4ÞÎÇM+ŸèpùrùIô&=HãñZ;&ºœo›vœÛy¯”Ozä~>öêOþÀ¯§vçáúÌî;Ò¸'½x¹v®çÿ\ˆ~wªMöÌínÏ;>˜Û}ÞÛ{“=çüçºÓ“úåí#'ÎÇ$×IïœÎž½äèãèôyûÉîmÚ±çg’þ'½òþ:‰®‡³Ð¾×gýɳ÷ƒsç·ß³'I¾Ý.Ó¹gVþ»îýöv6í¾•ùsʧþÏÃ}×#ßžèéå,”ó~:½›V.ù·¹SOz>Ñ{“~R¯ž¯qØÜ¾|Ýw½ðz®©xËý§ëÁ|x½Ê¹]÷vôqØ´ç½Ó£îs¹s>»ÿíø»‘½±ñW² ÏÅç9wy›ÛÑëç¹™=—ôp"ž³ëcÏ~:ý<—ú—ü$Çä§“šÛýM»ïúžä,ésòx¹ƒvôö~u¿îöhÓÊ%;·iÇÎM8Áùšâ ç®ÿM~:Å?I®¡+åG6‡×GvÅûëô»~9ÿ’_p»’ìsê×,´ãýv9äzÊ rníÚs‘>—“„¼>ÞŸëå½½îHqßÌŽÉŸØ8Œôv§í'{âø0àΘg…^ׯ^ܾSÑ‹Ýn§ú^¶çb<ê~~b^b„ƒ“]òþmÚÑå7ÅÁί¹]Oñ#å’q¾§xÛÛwùNç^OG/"žñ¼›û§„¿œŽ¹§øËã&¯/éaʯ§ø/ém²ó#|èå硽ž?„#6C¹ào·Ö lOÄà —zûs;ïÙ›¹]ïáß$‰®d§’Þ¥ñçùÙÄr.ÏN_šG›˜Ƀ㿞ÆefåMNGòÝóCÞïä_{ãM{ó@'ÇägÒøöìXòA¯¢M~¡ç÷ÜN¸ÝNõLÅ-3“_â¾÷ÃLJr´ïþ4Å%®=H¹©ø¦—Ÿ÷¼€ËÁ¦Ó<ÓÇ1Ùƒ4>÷=Sý¦áîø|ÀáG>­›vžæ1“Ú´z“|ùuÇ.Ç)¿æåçV~nG/¿>³ëÉÏôp÷Ìν¿^¿÷#Ù ïW²oÔç|Oø/ó¦•ç|nÇÍá±ÆŸû´Ÿp—_÷øsnõºsþ$\¹i×~Û´ûs»?³ëÉ/¸ÿNúçí¥<çÉÏnZ½É®ÒÞÌν?{ûþ<çÁ^8]#ëüóú99Žv'á–„S2ÅsÉN9ÝÜw{eãÛµãs;wþ:~r9OñB¿zù¹»œú8½Nx æ¿ÓÑé£]÷§3+çö'ÙÉ„?6íºË£ËÛÌîûx9ÿ©fG·+s;¦|V¯óp?àj§wDO/_&»Gùä—œnÿTÿ¦]÷zRÞ,á씇 zó vóâ®o›áÜùïú—èOú1³ëiÅãÖà¢ÿr¹Krer4z>Ù·9zø5áš„ogv?é[ŸÍì|Ó®ë|„ǼžÊGŠ»h?Å1 ×ÎìÜéæ¾çÌŽs+çô»½˜Ùý^þÒŸw;Ÿæ‹7­׋dǽ]ï—ë§×ãö)Ù¥^^ŒònG]î¼}Ï7RΟŸÙõd×ÝO-ŸòË)/–ð@’«ŸÓß™Õïý˜Ùóη„ÇÝÞù}—Íás1~õçæÖŽÕ?Âñ>½|TÈOtqM'¯íüñßäuDÿf8÷繞ò‰ÏÎ'ŽÞï„Û\½]ç·ã§ßíõÜî;ª×åÏå=ÙMÚ™ Ëqîríîlxñ€•É‘!îµÃs›ö<ç½ñäèøƒ£/å½þdÿ>r¾Žôâµá¾Û}÷CÐ5³ëãîüågvÝíwOoœO®ÿ^?å\޹žèNþ)ÅeŽBÞ8åb¾‰þ¸Ü»¼z; 7z9¯ÏåÙýÖÜ®»\yÿœOF×ȯ»ÝãèùD—Êìãó®©}¿Ÿð_©ɯάž”wMñ­?çzEý¢{ò:'“‹nÞÍÆ!Îg$>¹ü»}KrBù”rþÏ>·oì«Ës/¯âtöæÍ'õð@Нgv=Å#).K~rfÏ¥|ûÜŽI\îçv=ù9§?µ?³çzyq§Ûå/àÝèŸÎt>ø¸8]´ïô%:f¡=·Æ÷Rþz\Þ6í<åŸ]}r{àýr9à9çkŠgÃrÝ÷ üy—ßD·ÓE»)>4ºêܯ{?Ü®ùuèt;Iûn§½]—ó„o8:=>.ï´Ãós+ßË¿%{œèJø¯ãïâ|²×ŸèOùÇô|*§û1þIy5ÇŽ©?é™Ûáà/»óâ½¼ë¦]^B<ØÍg¤ü™·—òNnR|çøÄûçöiÓΓÝIòÔ‰ÿFvÞqB'íæ»þõ3Ù§Ía¹4ÿçex>å|ü¬½n^6ÍǤ~'<àí÷ÚMñzòOóa¹8‘òy”›Ùý^|·iÇ4?“ü¼Ë÷NÔ—üròVOÌ%=tûáö4ÉÝÌê ã×G&<åò–p~Ê+nÚõd¨/ù—“0nïRŸ÷×Ûs|áG/¿¿i÷ýÜí[òw)®Ý´rΗŸ” øÝÇy„§R|‘ìw˜?ŠóÇ)NLòßË+¸èåÝ7ûu§?ÅÁ ?&¹r?ëãæãe|S²+ANã¼åfá˜ìmòw wÏíÜý.÷C|ÜÍw$ü}!IqÕ¨þÔ{.âÈM»ïúåã¿iÇ©ñD/oÆ'á·s)ïðÆÌÎߥüôÌ®{?œÎ„Ÿ\Ϩ×ù1·c²S3+çòœüc½NŸÛŽúœÇ¥)ÎHý¦Þd¯Üôp§®G=´8¬Wn4~)o’üCÊ'¼âô÷ⱔ߸§s?á‹Dï<ÔÓ“s—4®IŽ]¯’þ¦qsþ͆LjGÝþpìÍC¹¤½ÞKñ•ËSÂQ={äô§xÇíåf(—≹ÑòA£þÍŒn/ïòµiÇ?¤ü<õ¤øœó„}<¼_)Žâ<á:׋dOÓ8©øž…ÓétmZ9o7Õ×›×÷~¸œ&¾:]nSüé|šÙs3+×ÃO ?lÚyòÞŽ[Òëž?ôþvò¨1?ærðpw‰]y_o7=—ìS²WnGÝÏέÜfx.å“}çèvÕÏÎw{ºi÷½Üwþ%êôYù‘½žÙõM;Où+Ž®G ?§|Æ,”ãº/×}|¨7ä GýIóÔNŸëeÊ nZù„ƒ\ŽCÜÛ[§qgGŒÆwf÷9Oñœ·Ñ1¢;écò×®<×›ošY¹„G“¾{;s{Îñ[²›É~¹<¹žÐÞÌŽ.?Η?÷_n‚<ŒèHù£/®KIþ:ᨹ•§”ã¾ó‡ëîŸçvžôsÓîS¾7O±iå9O87ù™'?çÇN~b$ïßÇõ)>÷þøøÎì˜ì¥?ŸòTs;¦z’~¹ýä>ô9?“ßuys}qþº}èäé#nyßæVåfvÝqŠóon×½èN¸?ñ3á¸M»îõ‡øzäw¬ý˜g¡½„c“½Ú´û)Mþr6,ŸðTÄ-iœ¨×ê‹óvî/ævœÙó~ŸcŠ {ùŒ„¨7­óØ ýJzíöžúCÜó_Ô—ìM/ß›ü®Ï¥ñq;âå­Þ¢ÛùéürúüyÇÝs£;ÈoÌKz}i~Ðõ£Ûƒ™{?æv}Ö¹îõõâèM+—î;ßÍ_ÄyhïWºîx`Óêu;ØóÛÞ×[ʹw½éÐ7jßñÖ<”ç˜ôÅä#åͺùs—³4ì²ëÛ÷W:?Sœ=i>Ûéóö6íhò:âŸ×ŸðËA¢ÛåtÓê ùÀ]¡½¸ŽzfGç“_ïÙgÊ›¿ŒzoÏE\òçö¼÷cêü‰Ë™ëE²;ô'Å;Võ8^K¸(ÅÍ!oó`Ðéy¤÷¯ŽúC½®ß~nçƒýõ;{½I6ÃÑõ“£ãð¹=—ì™Ë×Ôu ž§U{îï¢ú¸ÎíÜâjÇé†Î¹=7·£—÷~ø1Ù}çOš—sÿòcE—×ïúãvn"®ìâ×s—'/ïr—èwùÙ´ëœû¸»ÿây×+oÇõúgV~nç)ï“æE>Iã–ò/nSþ¢‡6C½)ïàúâr< ד¿Hø6Õëõ¤¼£ÉóHŽgžM;w=NóUœ;ý®gÉ¥|þÌʧ¼æ›­¼Óáx7Å73;ãó ÎGŽa<ãüjÀ»£ò!ŸçRÞ<ø³hÿÜ^$~rî~*åIæV.Íg¥üÚÌèI~žrNŸ_çœç¼=®'ÿ“ò:¸¾x}>žnoS|ÕËï&>†y©´N*>7 t8}Éî{ü²ʧüËÌŽÎçdO¼þä7{y?÷w®Çiþ¸·.Ëû“ülšGîå57·ooòûÁîGÿ—p¤ÃÜÊ|˜ìþÈNl†#÷{q™ÛÛÙö÷ãúo7Å#œÏìèúÄu÷Ûn¯{8–v½¾„+Üÿ¸±çcÜãt&ÜÜËÌþç$¼ÍÑøçòçQ/S_—ôÃõÁùÆ-®ßðs×——§Þø¹Ùñ¹=çöÎýÏoÚõ€ã⺨7‰ñiâKªúS|:ôy»³aùˆK{yÎnOãê~cÓÎ]>Â:”‘þQô¿ŸKíΆ÷GrìÏd{å|Hy§$/ÉŸ¥8gÞy>Ñp÷³7ÄxÆý•ãØ„ÓŽõzÓºëϨþ¾éæ‡ÜîÓžó9áµ€Ÿ»ùãþôñp{¼i硽8þn?ÿ7‡÷#=^¿ËeäÏõp õmZù0¿×Õ%9ðó4®~îö%Å?^¿Ë•Óçv{Ž)Oãt¥üHŠ×{y /—âÄ Ï#ûœò®‡³ÐõÏípæH>ÜÿÌí9¿Ÿp@¢#·Û‡ž˜…z\ß9&»`|ñžû¥Ùð¹˜ow{òÊ=¼pÙ¨Þ™•OòïþÊõÍø×Îíz’§+Ùa¯f÷S^=É«÷Çï»ÞÏÂýÙðØõ7.·s;qXÄk´?·û=ktŒüš×ŸðÓ¦•›Ùý·Eÿãõ9ýÉÞÌí¼?ÏÃ}÷'.ÿ!žñÏõ7ù9ãs\OêþÕíà›‡åâ:o?åÁ.qû3Õ^̬\Â_›á¾Óëráã–øêç ïÐn²×Þ¾×ëãåþ:Ðç’]M~-ñÇ屇?“üz}^ÎõÌË»ž¸;=ŽgR¾*áG÷#Ý^¸ð8€çzv…ãæî‘üܾ\äcÊÓ;<®œ…£óeÓŽIîSºìÉ·Å)ÏÓ•ç£Ëµó#ǦÝîÌÂ1èͨ¾°'οx;‰_›vîz`8aÄçPÿˆŽž½Lùµ„7ø8:?z~$á§¹•›‡ë.ú’ôÓÇwÓêq>ù±“ÏÕÓ[5·ò!^M~s$ßiýVŠsÝ.ûÑév$ÆI¼òˆþ$Ïi~†væv}êIvÉû3דýJy¯™•›…ë^¯Óéý x1âhè óQo“?¤œÒƒ¤o©ÞTʇ¸e„ë]6í¹´kÓÎ=ÎóûN¿ÓCùä·Î”ä¸iåçÃû£ënϹžü€Ëмþ®í­sv}fç=âˆ:çò<];ëô'ùpû–ú›ÊÝ3,íí¦ùˆÍáyŠ[º~™c/Ïïõqîí…¼X’¯8.ޝÍoD¼5Û¾½Q;þ\Âg›Fד_tú<^·ñ•Ÿ[;óa9×Ë8_ðb×/wâ”'Iøµ‹‹“üøóÉõò.óíéêÒ×ǽ|ýÜÊmÚ9÷Óúä^\Àqn÷Cþ²—߉|Hv*å 8nZy®SoˆCc~ÍéòöS>:R¾~6¼Ÿðl• zõÄÛu<4·ëÁ®Ä¸Ôó‡É_rLùR§/áôÞ<çÜŽ&ÿqþ&áUçgÊ{uì]/ñÒÜ®O­×3;OóU3;&ÎùNÇ»ÇÅø€výy·=}qýs=ž…ò=9ãèñ}ò³iÝŽãÝ€ãFõÌÃuo'Åͽ8ÃñXšïí­sñ8?øƒ‘ÞÍC9Ž);^OqÒ(÷úSœ½i÷>LöÅñÙ¦ÏíÜéJþÆýù¦“_˜Ûy×›Ÿ¥8*á™Ùö÷Gí§¼Cê—]µëòÒ›Iòâ:§ƒ~ø¸'üòñ=¯¿—ïâºë%å oj¾'åÛÒüµÑ3ªÓÎSÜŸôó´Î!ÅË®‡ÞžÓO{i=d°si¾9áòîúĹ]Où<Ús¾™}ëæÁ¦Ž‡Û»4?çz‘ôÑå½g§¡#å’Ý óÙUßÜ®»|ð\ÂI›Ö¯”‡ðçR~ÆévyLq¿›ë…ë3õÍì9ÇAÜŸÛÑŸ÷ñàú›í8³£ó•zÍ^Ç8)­×wÜãã¹iõ¸}q>y½IÏ­½ˆëæv>³zi·çÿܸÞÐŽ×ëãíú3·ö:ë·b\C¹dg¼ý”ï‡îY8έœãUoÏÉÿ»\oËÇü]’ßÎ|IÏ.øêø…ëI.­_ѯ¤ø8øÕè÷“½uyìõÇ颞N¼ó©]·”Ky—[êKz›Ö‰:Ÿçöýó~øxôæù<^J¸~ÓŽÞ7ŸëÎlZyï‡ËgÈwFyíÍC8nq¾%ÿ?³v½IœÏ)¿‘ìѦÍž9ßbÞsn÷S<ê|›‡ú<^pÿC9ÏM+—øcõöâ•( ¯ÏíØËWÌí¾ËíÍìH=.o!’üešŠx¬gS|“úåÏ'¼ô!Ê·ÖGÆùÎ{ë86‡å¢žzRíúÙ[Ÿâå¼·<7·ëIoܾͬ\ÊQÎíâ¦]÷çRþÈígÊ%;?³ûÐáxùÍvîvËå¡—p:’?7þG Ý®G½|…ÙÙî¼s’»M»ìpÔ«W¸ÝO¸ØõÊõrÓ®'Üä|æ¾Ó›ÆŸò ÿoZ¹Ùðzôi«£oÑO¥çƒ¿r~Dûêt:^óãÜÊ'{âç¿Ûç¿É}¬ÏõzzïÎÂužOãÇýOIyé4Û]W“æfvŸs—CÚ7=ór´»iÏ»½Oñr¢ÇèíÎÇ»ºNùçëÔuCIÞh?Ùu÷wɸ~%ûä}4î^_Ÿ…ûi|æ¡=®o†~mZ¹Gy{^.ä¯b>˜co'\ô×ííPoðÃ1¾žÙu?ëÑ#~šÙu÷s.½ú]ïÒÑí,×§æË7C»^ŸëíÌÊ÷ÖÑ9êÅ#nߢ¾õì|Šz¸ »œËÅü«÷Ãëq}á¹™]w>m†z{ù‹$?o¶ò\w}´¼yÊcÅ|•ËEÊß9^ Ýu^nŽÞo®Óõ;]‡ŽqDÒó¹{ñiÂÃ)çç~¤ÞÄÏTOÂ)ÞÙžðPZ¯itFœ`z㤴®‡rÞ/—}Þ_ÇI”KyÛ„«Sþz­_Cžg¤=\•â——´NfÞi?ÉMŠ}&ÎÇEü“üÙ,´ãrB{!ß6—w‡uúq=¤ó+å/Sœò¯#¼éþßÇ£W§¸jn÷S~ÅéqyMv:éû׃v>·ò³P.å¼_Ž?’ž[ùnžÎéLír}ÓŽi>¶§ïs+Ÿòìé˜ø’ÖQ{¿gF_Ç¿ÇyŸM;Oq“ã Ïo¦|UÊçÎí~ªÏèëM½]ÚÛ´ëÁŽNž?Hñí$ýÔ1æ¿þðcÈïGœòеiåŽHóÉ.†u:1~OüÞ´c/ÿœâ®Ÿ'œôÙí‚ÓpnœGwÿåò”ìÓ;³rï8)™Yù¹•w¼@y—çٰ܈¯ Çøx¥uq!Ï7âßÜêóAÐ;çx?S¾2ÅK<øñaÂiΟÇÇ|Jj7ÙažKò˜æœï^ŸÛCÏ_:ÿ6í˜ð-íøsç$¹äù¿ð¼ãÀdŸÒûÊÐ5·ó4?3³sGî'üëö*àÓ˜ÿ±r×¹>Ííºõ'Ú‹ÔþÌΓ½ò£óÓí õnÚ1ѹi×yÞûíô'¾„yטðö¡7Ùm§#µãüt¾ýѦõ=Éž9ŽHãâõ”¬rÉÿ$ÿÞ÷J묈7’~¦õâ´“òñn÷7ízò¯)}´“pŠŸ~íÅa)Ïõ Ä}qÅæö×]Žãó´ã|œÙÑÆ9Ù‰¨¿óíË'ÿÕ¥Ûó+!nÉËåÜÊYý#{ì[o=Ã(‘ðt¸\öøò§1ŸÞÃ?Ng'/ßOñøËÆ}Ä—Ç{ýNwÏ®q¤Þ4žA_Óz˜ïóvÝ]9÷úR<äôܗλvÃíCŠÇæÃû)žŽùï^ÜD;÷Æz8&ýMù]÷Ka~¡Ê÷æ5’^lZyèu;’pç<—æïzö|sXntîíx?Â8Gy÷ú©×ýDÊ+¤þ¸ v!ê]ÊC[}1ßëòµií E»ëÏ›‰y¬T¯·ë¯Ç›v?Í;¤ñ›…vfÛßù±`Gýö8×qÀ¦{½Ð›æ/Ün„|^äÓÌÊsN»žóò.nÒü”ó1Å÷s;Oþ/½/ÉÏoÚuúæ—Gt$¿pėwâŽ#½ |ˆqk/‘ò÷®WÔ›p»ë_ß´£ã2®§õ,)þÙý™•ãèãbó,ɧ¸·‡»“}ñú¢|¹=ÙܾÑ|‘ÇÕ›¡?ÜOëó̾ô!É]›„'F×/ 7Ï?õõçtãÉ Ýx8å ƒ¿‰xˆ£ã¶Ôÿ'ˆqeÀg1oìÝHçv½÷Ÿ÷Ãä&æS~Æõzg¡¾tôz6­]§ÇëOñY//À1ùË„KÌ.ŽÆ{6<á+·Ï^Ï{âñ»÷Ãë¡~ïõOÔ—h—.èp=Jó5.WN¯ãîú»y©¹ÝOþ:Ù5êq:¼þ\g{û!o9êÇfxÎî§øÔ¾µ7¢wfå7ízZï5³ú¸ŸpÏ%ÿÜ›÷ï囿¡\êŠ?¬#?”pcÂÇaØÈîÏìzX×ó$.ópœÙ1Ùi‹OÚïølöÆ÷ž~áçßý¾þ¾åï'N?û]w%Oü•åï¯Öù?¥ç8rýiÕÃsª·ø¡ëäùåÙ¿Sí¾¨vïèœöt•Âè°òuýù!ÝE‡Õ³ØÓéÇSÆ'çåis¿îtz}jg±w8®§oÛ8p|Úž·qs¾OX?é÷Eëå8ª¿‹Ù^Æ­ÚƒŽÛöü;§œè¢ßUïm“äÃés9a\8Þ6~¾nG·í9Wkwd÷¨~¤qpy÷úC{#»çö?ô:WïÑyÿâ·ËŸO*ox"ú—§Ç‡í•\ª=ʛ޺_éõÑo——ÇëC¾×ùCA®}Ü9×s>n#º\~®=Ð<9Ÿ9‡¿­ÿWŒ.—ç«·›ôïb‡.Ú½b|£^®{Îßd?¼?ÔëöÁí²Ë1÷½ß.o´KùD‡áܮܸ}syõþݱþ¹=s>ûxxûm|h—ëÏÚx§z¼ý¤7Ôãô¹½á:t$¾ù8¹\ú}§ÏùçýóúœÎÔï¯Ëo¸ßµ·®gfßGýp{‘äøœÑçãäGʹ~ä'Ñé|q~&~øóÉÿ›\D{œäÁûåvÀõ%õ;õÏŸsúh;|ÑÚ£ßnÏy>ùžßô~ôä Ñý¸ÑçÏ»wüDé˹@Gâ»û§$‡~=ù—Þ8[ùŠÛ½ŸI8—<ìOâ_ÂwÎÏ$ç)ÿðˆî»q¹ ä2õÏéôz;z5ŠK7ú¼½¤Ÿ´wgu=Úy¯oj;.—œ»¿õþsîty=Æ÷_\ïM®Fù4—o§ÿ¶µŸì†·k~}ñz{^ãoùÅ~k—qêÙÏC{ý9÷?ÉŽ:{Üúçãâòfõêéµïòmò±8Ò±3g§|øèºëgÈ›Ôú Êy^ËùïǤnß’]MqOȯƼšûUoÇës¹c¼\è¿×ïùD—›åoêº?çüs|nímå­ÑçQRœžúííûø{?¼o'Í·¤qÖøfr4ÊwaŸÈ³Ò~Ê×rîýÖxŸµó$ŸNWÂw·ƒœÜ1þ`ÿ^4ú<ßÛËOûuèóçßøOø™p`Ê“:xN×Gv Ñ™äËÇÑùFÿ\¼}ÊÁg×#{œ¯.Þ`·¯[=&_£ù®¯ù§zÝ.¸_IùÞ|œ·kö²ò©©]øçý@¿ÐäÉûev¤æ{]ŽÒ¸Ü¶zþq»VóI<ÏÑýÅ󯝩ò¬r5Oåv%á?§çºÑïôž.ßSç¸ß/ùçÝθ^y{\w}p9¤¼ã»Ÿ§87õ3ä!³a?FvÇäz$'InÎÏ£¤yZ—ÛÄÿ^Þ8Ô;Ê[%âòçãèúìˆû—KoÏù™î§ñ‡Î$ǽñòs§½>«§g×»ù–”‡u9 v4Îû¹ßñþùŽv‚rè[П=V>Ž‹÷ÇíËÇ_O¾ôôÇå{•âÎ$¯n?:åz~`—Pß#ýrÚÕ'/yð~9Ž÷z“Òžû¹DŸËÛ×Ô¾«óÙãé0n‹™ñ;ýy¨ßN¯?ϱ“ŽþÚùëöÚåË툷§ûž?Jþ¨ø—äŽö WŒâÿäï©ÿ‰w‚܇ùâïhß}<\Ž]~ÒüËí`7žïÌÏÇø¸˜¿‰ö7É¥ßwùé»÷»ÇW—s·/ÎwçGOoÒæ¹„zãæãíõûxX|å&ô3ÆÎO—ŽlÏ®HãéüNë/NÔoï¿çͽ^oâ£û«;ÛëCŒ{Œî®¿Jv6ùyo']Oü£Ü9ÓçÔ¯¤~¾S½pºmœ¢p>Ò®ó/Ù ÷wÆŸn~ÝÛKG쟷çtÚy”«À§ˆ3ÎÙów¬þžÝt}t¾z<æö+Í@O/¯ÉsÏZûÆ·‘ü¹^8ÿSÞ¡ÇÿçC;Þ®Hõ$;›ôÂô7®ÃH|y*ÄKSéHýOãçòdüJñF7oä8ÈøÓµG~Üi?“O|Hãéç6®#»áó–=939Ž8(•Ký戧õF6¿^óÙ»lü{vÄñ¯Ë{÷d§{óñÞ^jÇímâ‡óÁë÷ùfï_Ê›õæ¯ÂýÅ,ð§Ç_ÿ0³v¹þ%Æ—°Îcyÿœ§7Ånç¹N^Ùô,Æ9SåÀ׉Ý6ú\Ó:ªŽýr{q…ëg°g#;{{È—Å)]Oë5±z’ü˜}w}ˆ8îJàŸÛ#‹g'·¯Å ããtÛÚ±ñ(9OùÏ$oN7çW†tð’›ÉAÄI½÷%¨×ìTwþù /Ïé‰ë=>þþ~f²Ûª¿Æåy;vìV/¾NýŒršÚuý¶~Åúzë_“¿uùëÙu·S¾nz%¯‹/Z×¾Œz²×è òå|ÙëÖÿ„LO'çãŽÅ«¯>.¿6~ wDyJã}ÝøÅøÀÛÃç«ÜÝ÷uˆǸ\]4þ¹=ìñÙûÓ“ã¤Ïœ;~J8Áí?Ï»ü»ßIô†uÀ£çzôØsºþC÷£ÏéHër)oòí/ëØµ^v13þ%{ïvƒ~›Ÿˆ~ÏÎkþ2å Œî—pLvÚåú]^Ò:-ÆåŽÕðàH>:ö>â:—óäo¬)Îëå‰j<:ëìêý,“»ÄÇØn²×éèrè|è¼gí»âS—^œáåýýÖ©£7··¿ÔßñcInºrçôß¶þM·˜·éÅ©ÉN~"§1?rÑÆÿúÿ ߯ø(ñ9ù9·ã´ã|îcÒ§ßq›á½8n.ÿ½¸ÌÇÙâ‰ä/Rû)*áxçKò#W>µ}Œzm~¶‹'xÎëç~x¿jT¯ã’©ö3Õgô-fßNwàÄ®>nÄ ngÒþOÉ^9]îÿ;ø}ToÂáFGן$¼ûBè§ãðïPOƒ¨7®Ÿ)®šÊç'GìG’Ÿ ];ò¸Õãô»ß ëÚc¿ŒÏ›F} œê_ÌtnñóÈ_¸Ü¹¼›¿Ùñ^ÞÕÇ;Øÿ¨wÖ¯‘ß÷¸§—oòqöøÆõËýö•ŽÝHrëãWãüˆCòN·?çòêãg{¹ŒzLÿ;ùå„Wãú ×ÓÛå#ð9âA×]¯} ƒ½íâ‹+Æ“×Ïsôñr9 òÖÕ;ç«ãï;ÃûUA’¿Hy¬Ô¯4^¾¤Û¥À‡Ñ8Ü^Oó\5ÞIÎ’ž%ú¡Ëùèà:|væ|¼bräõÙyôŒç9Óƒú{ÚsýâèòqÅè4}ÉËÏœÑÓχ¦öNêáþÅíÇßùžðAW^:qMl'ÙW—?ïo/oäø»c?bÜøåÕèNzå6ñ©ÃOûºë;¬\Wî\BÿF|P{•âz'?Ͻi\L¯ãº¡oFûv$:l³íÇuTñk4.½õ´Þ~°w1ÎKtyÙE£4^Ðåí¦#õ§ömœ.‹úâõ¥ñJy"çgh¯ëÿì¹È·4Éþ¥ü‰ë··cüKýÉ«Ÿ»ö~¤þ¤q»²=ÿGv;é¥ÓgíFûíýðz½=×»D—_7yïò­—'ñqöx"á§'à‰:¿9z¼A½I¾“øuêÄøïvÌûëõ¸öäÔŽ±žþLýMrâõ‡çj=Sâo§¾(‡=½ù§žÝÉ•—wyOt$}åâ™ÉvÏüWêgÂùÑ¥|²ñ+â ”ÏHy×dGŒÉÅ~$ÿ’Æ»'w®o”{6ø}o¿ã#.py°qŒ|2ú»øÃå7É‹óÁùÚMüù‰Äw§/k8vãÎ;ÄñêɉÓÛÃ÷”s¹¡=ÏO¸Ü%½p¹qûyÛÆÓùâG—›ž%>û1áBêñxB÷³@çf'Gó¶>Îü}OÏŽŠùz»>7§ßå9ù¹4ß4u½ªç±½Ÿ)ŸìÏ¥|½/^ô+åÓC=½yýÑú'žcˆË“Óãü'. íO§ôñɇ×ÎSþh²]àèýêcÊw›ýK|O|Y|ñžß9¦ùß×ÛxÆxññP¿ÓŸÆÑ¯»<ýŽãéãÂ9|v»Û{ïãŠñ#Ø?’ü1nÇÂx‡y¤Q=½éÊqXwó¥=}KóT=z(wNõÞüîèWÒó.ÿ~Kô;Ÿ¼>èöù)ŸW·uY]\:q¾¥kÇ\Ï{úåôš=ˆô%yt½žZ_²;Fߨ³·£qëù›Þü@§È¿$/.çi®àèãéãnv¨÷^ÙT¹|Ùö>èkÔ¿`_Fö0ùÝÄ“øn~ݶv¯Ø¹W’§Gç‹™®;]!0Z7ÚË‹†òÌŸDÜä|õúzz11^ˆóéÉÞS¿ûÿž§~Ž·­=ýNùû ‡)ßäø%öïúöü‡K¢«³Þ9Æqÿ“ìqÇ$>;Žõ~&;éúó¼=ç~â¶Gª·#ŸÉ>ÇñŸ×%½ò˜üq\ѳ£‰îdgœOŒGÂgI_}=Oâ¿]=Ÿô+ÅIÞΣ+Ô7ŠÃܯ'¾=¢ò.‡É]Ýü"ånûçͯoßnÌs$¾ù1ù±¦z^Î/JN¿(ïãi×c¾Þùî8Àéó£çÙ(Ñìd°û‘½x&Œg—oþ|·('>>ÎGïOâ«õ'¶ãã`ã5ÒçSx.æÍ/noÏzñt”K··Œ‹÷ÏÏ^NýüñßÇÿ¡?¼?rqüzô‡ñéÖæ¹ãxQ¿éGÌg„q™<ïâíLäcšŠü4ùõ—ûçtt:è×9Ó#¿N{ÉF=òv“}´þtq¿óÙùé~Úåá©íù“Úïʧ_w:½ç†ôõìa*7ÂK<ïqƒËU§¾þ#އóÇì^×Î÷ê t&¿šÊÅñLt¥üèEã«óÍèÕïø“òÞÎD{åÍëKדŸòò©þT>s’3ίs“ë>˜Hïd<èæ˜â¸O…~ô,èCŒûyÎñy’Ç‘=üšäéJ¨'é•ó?ñ'ÍG¸œ8_ÎYÿý¾ûëž|&¾„zâxYûU.ùƒ‰ó‘îž¾8¿½†âw%|œyîYãÓâµxpDòQS½†‹ºqyo|‡~Z¼~{½œªwSå"Ž·Ç-®Ï½ò&ÏÝ8$ÏùÑér½ïÅÎ7—ÿT>Ñ‘ô‡qíùÓ Ÿ=9ßOñúzþÆíU²£FW‚Þ¸‰|s:ݯ9ÿ\O¼|Ѓô€Qý·uß¿‹œäÂñ¢•ñƒûoõäžë‰.¯Çõ-Õß‘Ãn¼ãýöçB\âánüèrü[Çuã —“$ÿaÊh|²qðñ˜ÏMzõ¥çÿ;y»8/–øÑ“çÔŸ€ÃGöÍåÍëKó4ö\7®÷qéø—®Š~Ûçm’¥ñë©ô÷ùíǫ矻v#ÈSô»NW¯Ä·DçDùèæ£Œ¿ÝçÜïN”£n¿oÎëåM?{ö»7þQžýá˜â¥^åÞÛw~¥ñIú‘ø‘Ö—:>qº’¾8]”{v{9ñ-­»öü€C’ë¤?ίԟ·{¹N¿¢œ¦ùIÇ©‰ïNßD}IóvÝ8)ɳëO¯]“·®óúI’·ø·›oLt&½Kõ¸\%ùLãÁ±‡c?N̯uó‰¿=ý´ñv·'Ÿ.'½ùÒ+Ûó=Úÿ`÷zt×õ;¿½ñMÇž¼'¿ïò—ø×‘“Éñí$ŸäÎèLõöâŒ^¼×Í¥%áÊ{ž³§7‰¾+ÛÓõÒûíò¬ö_4ôó]{₞ütíjOŸ òßÓ‡P>Êu¢Ë¯;ÿ½Ý4?Ƨg7ºôÙ¸ÆýRzýw¹ úص—i=í&¿øÙ³›¦W#º~Mzéýñ|d¢³Óß^¼×•N¼?ºžì’÷·'¾žÔû•êM|rzlœ¦âÄɸ”þM;z¶S}‰ö(­ûôvŸ ãîýp9÷þ=oôûyÒƒ$)_–pDâ³×ëõ¤q»ÚññãØ}¿âÙíùÙµë÷±âóž¸Îœç|ÞÃëóz]¯Ò¾ÞI>Ã{^1®vÜÔãG»ý½÷o­ž‘=ëíÛëÇ´þ>ñ-ô{Ô¿gM¾CfD§ÉÙâµ&)¯1U¾œŽ´î1ñ-½ÞÛµûü_ÑÏ:=ÏÛýëÃñžúÞ䈞Ý·ƒIzâþ3õÓèŽòÊ9ò”ð=çõE9á¹Cýö<ûÍŽèíõú{ãÜÃ#ÔããðLʆõ3©ÿ]:m¼G|6¹¯s;õ×õÏîGyèí àúÞ“§ Q¿ŸÁõâ‘îøuä¯kR}Éî¸áW·b<ä|6ùLqwÄ7©þÔÿ`g’ž÷èéâ†tî|ð~ítœ½\àK´ó‰¯É>¤v{øÃñK£H§óÓéLúšöIzîí¤¸(OàW×ÿõìX§þî~þáÞ>)ßòC)ι­r) ñNä—ÓÁùu—ÀÇ$ç)ÞKzã,³«½xlÄ¿ '·{óOöôhä¯|\¹%ÈwÇÎFú=¿Ô4^nW’s}09‰~!øÅˆÓ{òâôÒÎóvLqMª}M~Æùc×'ûm«7Æ].WGûýä(;ŒgÏ®'?ìú“äÁé´|d̯¿ÔÓ—¨ï}ÑFô%»žúŸòK==ƒ>çS’cž÷öýùÄ÷”géé§ë›×ä;Å—1Î÷ñp¼Þ±kÑO]±ç’¼zérß³ß!_—üT/ï§ñs4nN/Ç€[zþ9æUo}÷¹'ï)Ñá«·¿ØcÏy|™p¬ó#´Ûãgôƒ»þÎñQÊ#õèMyŸ„'¼Þ©ö!É‘÷³÷<çŽ;Ò¸st=µv£ÝMüÐõÅ,ô;‡ÉE·ß!?ÒÍ£ôèHòàõŸ3þ_ õ¹¹mõ÷øÞÁ1ž˜ˆûºþ¡·ž'ŧ8m$GÔ{=Ðä}4Þ>nW&Ú•ž¡~ŸGëWFó®—‰o.¯6Ž‹{_Â8OË{qv¯üh<}÷ì\/Ž´ül/>èâL·Ã®O wûñJh¯ƒ·£=I÷{q‚Û3ӳ´®ÁåÅä;­/Šùé$§»’ò#©þ^#Ú7│ÿiÜ_z8»Ÿ»ü…sÇEñ»yÜç:çè7×ý~ÀÓ‘Ïçl\¼ÿNG²«^ÎÛ±qì^‡ž;ÖO®'þÚõî¸ymN~Lqg’+75ÙÓþ­ë/l¯ïÉžvã—W“óQy•k'Çg³7¾w¶þ­ëßú·þ­ëßú·þ­ëßú·þ­??âÕõoýû|þ­å|ý[ÿÖ¿õoýû™ü­ýÎú·þ­ëßú·þ½r~k¿½þ­ëßú÷Óó[Ûן™ßšÏëß+ñ·–Ûõï3ñ[ËÑú·þ­ëßú·þýÌÿ^)þ÷•Bççûïse>Wèø\ù­ù±þ­ëßú·þ­ëßú÷Ùù­qØú·þ­ëßú·þ­Ÿk¿5>YÿÖ¿õoý[ÿÖ¿õoýûìüÖ8lý[ÿÖ¿õï•ñ[Ûëõï§ã·–«i¿5Ÿ>»¿ÿw:>ëñüìþÖü_ÿÖ¿Ÿ}¿µÞ¯?¿Wª\½Ré^ÿÖ¿õïóÿ÷éÚ§µ}[ÿ~6þÖrÿ¹õ{¥ŽÇ+•îõoûßz›¿µü­ëßú·þýôüÖöõ•õ[×ú÷Jþ­å÷3û{¥óósþÏ5zÖ¿õoý[ÿÖ¿õoý[ÿÖ¿WæïsW~®Ðñ¹ú[ógg¿5¿~fŸëëÍ~¦åÁÛ[Ëãú·Ýo-ëßN~kyùüø­Çñ•õ{¹ãµçÏÏß+}\_éô¯¯ìßZþ^¿4Nëñûéù}¾ñõó­?Ÿë¿5¿×¿Ÿ‰ßçz¾÷gºõoý[ÿÖ¿Ÿ®ß+ÅÞ®ÃßšïŸÛ¿ÏÕñù\¥kýûüþ½Òåî•NÿÔßÏ–~~¦ë¸óg×o=¯ìßgzÿðŸ©ßç*]ëßú·þ­ëßÏÎßÚ/­ëßø÷JÑ‹W Ÿ­üYóig¿5¿Ö¿Ïæï³-Ÿíö׿õo»ßg[.?ßÞË]ÿÖ¿WÂï•ö]ÌÏvûëßú÷Jø­õägço=îŸÙßšŸëßú7þ­õâ•õ[×gö·æç+ã÷ù²ó3]ÿZ~׿õïÓÿ­÷kZÿ¶û­Çwý[ÿÖ¿WÊo½žiýûT¿Ÿ-rñ³¥Ÿ/÷·æÏççïóu\?_ûµþíì·–ƒõïåü^rsl6{ã{Ûñ[g³}»Úñ—·¿ß3›í=ÑÎß>›ùâÙl×÷ÍfGo´óÿd6;ü`»÷êÙl÷ÿØÊýüvmÿl¶ÿ×Ìfþàl¶ç»Ûµÿ{ûÿïhïoÏ}m;ÿ•­ŽŸÓž{}ûÿkÛßÞöÿ¿±jïÐ{W$ù/ZÙÖæì5­¾'ZÝÿ¢ÕùÖví Úÿuûû·íÞ¹ö×ÊüÇ­ íÚÏme>Ü®=ÚÊý²v~¶]ÿ]íï¶ó§Wí,»}þQ»þƒíÒ×´ ­Þ}íøÎvý¥vÿGÛ³íúîÿ_ûû}íüµãÿÐî½®=Óþ´ÑºûÛÚõÃíø·ÛsíÙƒËêÿ×ví·¿oj'ßÓþþAûû?ÚßZ¹×îWûÿ¯j}må6šö~åêÞì{Û߆֞ýŸÛÿÿ³ö÷¦ÆƒÆ§Ý7Ûÿ7[»KÿëvÿHãÑ¿j翽 SkôXŸ£‡»ÛsGöÌf§~s£ó›[ç{þJ+ÿ'Û½F﮿·âùñû¹ÿy»Öú~¸å®ÿg»ö­Î/k×ÿ|këJ{î§Z[ml÷´ög¨]ÿPû{v~O+ÿ-íÙŸlm´úw5y8°˜ÍNþóVî¿iÏœ]×Þ?Ýè8ÓúóŸ¶zßÑ®ýîV¦ß®?׎ÿ{£ã]íÿ·ÕÓdáäÿ£ÑñÛ3ϵ¿÷4¾|¤•¿Ôúôõ­î6¶Ç Zß5ìjòr Ñ{ìb£ç“íÙ6nûÛ˜kegíÚñvmÖÆädãݾ_ÔʶþíÿSí¹ÚŽ¿}U×îËí¯ñ~+à©Vþß·¶¾±=»¯ÑÕÊìmÏîý›­Ì_m¿Ç›œíû’öÿ¿Õhh}<õg[¹;í™&GÛxìYòà·Íf'¾aŃÙw¶ëׇ¿°µûbã]koߣ+ÙÛׯþx“cÇ6:«ó‹Zÿe;~áŠ_G?Úê?ÞÚiûÿ—vï¿jþ¥Vϫڱ=3kr|àÿlåÞ×Î_O4Z6z}{ûkúr°×¾FÓѦwûšìÏþe;¶>|Ÿô¢ÉÓÆ·¶Û8íj2~à74zšLïk22ÿòöÿ_׎MO´:v·1?ÑÆz׿i϶vö-í@ãÉ‘vÿT“Û=»¿¥µõk[Ûmìÿ·í™ÿºõ­ÉÜÁ_ѱ·õ÷@Ó‡C¿Ýkrqâ´g ÇoµºZŸv5Þžj¶awÓ…=ËñøËíø¥­Ì/mÏ7y>Ñäôàßim¶¶vµ¿}ÿn%K¾jü7½9ØÆf÷ò^“ëC½]kmÎ~r¥kûߨŽßÑêi2°1oe~l%ƒ{þL+ÛžÛõk4þå¿þ¼vü½ízÓÃ#·‡_öþ­¿¤7Ù?úÀJg–r¾§Ñ·Ñž=Öhµ¶O4Û·»õiß#­ÎÿØÚhòt¬ÉòÉ6¦§Z[ÚXΗ¶ð¬lÙñ&g‡Ÿf­Ž}§ZýMžN¶1:Õøômí~ãõ‘¦;Ç›Ìir¶ï7µöž[ÙœãÿŸV¦éĬÙÂý­¾ÆóM‡4Ù9Üx~â+ºvÝßþßú»¿Éä‰fö·±Þ߯rßÒf5¾lÿ?òÚóMµvNþÎÖ~»wê«ÛõÛízÓ¡]Í^oúµ¯ÙË}KXv·µ1kcz¢é¡6>G›LìnÏÏ¿ªÕÑìå‰6F‡š~íj¼Üÿ]+Y?Öø{ü|»Ö|Çþ6®»ÿ»ÖN“¯£¿µÕÕú>oý=µäÍ—¬ìÍ®¥?ùª•Ži6ïÀ½í¯éç‰F×üdãÿÒ®4Ûw°t¢Ùì#­oûš½;²´?KûÞx´÷߬äu)“ÇþZ{®õcOãǾÿfe/O´±ÙÛê?Ü|Õ‘fŽ´qÞ÷ß·gŽ5u¼•Ûßdæx³ã»[ÿ÷6zf?¾j÷ð’ŸÍïìjcµ·ù‹o\ÉÞ®f]«£ùǃ­ÝýKÙo<Ù߯êP³ ûßÒxÔúº{)›ÍGÍ–6»ÉÙñFב_Ñžo¶ï`³‰'šNjöñp³¯ûÿpãIÓ¹“MG6š,ìotkò¼ÉÚüÝí¹æƒwÿ…VÕO´óVÿ¡ÿ­õãO´ºMÇš?Òx¼«ùˆcÖ]Kûu½Õóº•]Úº£_¶’Ý]wV²:o6~ïRÚñp«c£ñöT“¯Ãÿïv½ÙÛÃËóæÿN6Þœ¼³Ò¡C®ãm\fM†Ž¶ºN4v¼Ù´½mŒ7®µú› ;Üììî‡ÛñwÈGýH+×ìÓ¬×Fã÷Ѧ³foOýñv©ÑªÉü®Vçñ&+{›Ýßê8Òèžµ¶v7Ÿyà Wü;ÒÆõøÒÿ=¾ÒõC¦½Ç[Ÿ÷6º÷ýÅöìÚ_“Õ‡ÚsM/6ÿ4ùÝÕú~¨Ù²ƒ/4Z~×J÷·¶Ž´qÜÛž;Ðxyò;4öM¯w7œq¤•9Öê›·gf­ÌÁ›òm w/Ë49>ÚÆc£Éûžfc÷4{rø­žVÿ±fëw·v7Z½í|£ÙÏ#O6—47º.1U³wû_Ž·vw5Ÿxêt+÷ñÖÞŸ¿ Íf{–~ÿ6Úšß=Ôø±÷]+lv¢µqè7.ÁS+Óx¾ÑäíDÃc{›.môû#­¾f£4Üt¨Ù²£K™\â¬ÒhjüÞ¿ôEí|Öè;ù¯VüX↣ÿS{¦éÙÑfÃ6–ú¼´µí™ƒMŽ´¾ík´ú+\2k~sWÃ{O6,¶§ñè`³Ó§~ÍʦYâ¼Vö`ãÓ¡&‡ûNØýýí¯={ô‹VØjWóë{šœîjøñಭÖöÁ7¯pÉüÿÕΛnìmÏ[b£výäW´zš9ذÁÆó­Þg[;Íçíiôm>í@³…Ç?wµ1ÜÓ0æîöw`©GK|Òäs÷¯_éç±XÙ¸“Mæw7?ÙtïTó§‡ý'›=™7hºv¬Ñ½¯ÙÚCM†ö4y=4_ñpöÝ+ÚŽ7}ÛóÍ+±üÃÊÿh8qWó'M\=³çûV6Ok_ÓÝ#MÇO¶1?ÐìÛþ¥|ÿã•ìXúïæ{7½:Òìùž&÷ûš¬Ì¸•o|Ýßx´»ù†ͧnvðп[áÚ­î“M®ö¼u%«Gš iºshIKãù¾f·5|½¿Ù—½­®mLN~reûv¿´jg£ß¡†ß6Zù]K™o×=ÖÊ5[yôKW¶êhÃ:'›Ηt7hc³ÑÆïØÇZù¥î5›rb‰ËÆ?Öìü‰&;§~›ô¿ùì%vû…í~+s Ùª=—óæŸæÍFm4»¼g©ÍÇo|Õª½=Í'iòp°éÛ¾&s§O5Û³Ñ|óɦ3'~ÝJw–v|£éÁ|‰ïš=>ØÆàP;h~ÿDó£§–xûç­pÏ®ÖçýMæ÷4ö.ñY“­ãK»·”ÿ¦k›]˜µkM.Nþ+?¼¿Å#§–¨Õq¤áÍYóŸ_±ÂÏ{}'¾q…­N¶1;ÖdêÐò~Ã#m\fK{Úì×ÁgÚý%¦j ~x‰Ç›<i|;Üpĉ¥¶ºw7[¸û‘¶œ5]ßÕÆjÞž9°´Ílr{äÝ+=9ù{V>ùà2¶hvô@ÃÏóf뎶:ÿ–•_<ÚüÒF»°Ùƒc˱i>ò`ëÓFÏ}w‡ÚØîmvdÞú|°õ†N-mDóS-¾ÙûÆ•ß<õ5+Ÿx¼ùÁý·WqÈ‘%Þù¡öÌ2†Ú¿Â'Ï7ZÿN4¾nú{ä;V˜ûèþUœpli³š\îm~g_³mû~h…;ö7Ÿlíï_ú‡ÆÓS§VöðÔ÷®b™Z=‡V±Í¬ùó½Ë2MÞw-1âIÅmx…[5›r Ñ{處_ÛÓ0ñÉfN5[w ùï“¿h…‰Žÿ›•?YÆ«‡›oÙÕäèd³ýû®ÜÝxxâ{W<›/u¹Ý;Òút¢Ù†e,wªÙ½M¶÷þØ ƒÌÛq£Éü°Š'–¼9ÒÚ?¾”ýf#N5™·¾]âÅvýH£{ö_®bݶvš-<Ôúv²áºùŸ]Ñ9o¾åÄR=q¯â©/]ù ¥¿=ܰמ¯XÕ±·ù¼6&mü÷¶ñ=ÐìÃñ&ç§+|»·éÖ®÷¯ø:oü8Òüù®v<þgV¾òpkëÈXáÄ¥­ZúÊ=Íœjc¶÷j{æ™U¿6Ú˜n÷6Úlò¾¿ñg£ÃÉe\ÑÊœh¼ß×h=õúÕ8ì{z5Þ{š¾m,mÁR&›]8Úì߉†6–ºÓ°Ô‘e Ó|ùÆ ´¸sc9ÖK|ttÅ¿CYaß#Ífk㼄!K~ìÿ‰•Ìš:ñkVöå`Óµ#ÍíYúÀf5zN¾j%K'þúJö¿´¢åDÓ™£Ínüƒ•½Üó·VvâÄXùÀÆ›}ze÷6ÛóªU?–öédÃ6§¾sË[>׎G/Çâø kžhz¼ÑtnÖîlrvbÙ%öi6zÞÊn|<Ñ|åÉfÛ6š_Ühº½ñçV¾pãµ+¬r¨Û‰öÿCmìNµñ>²”Ó¦?û¿~…ÙN6~îir¹çwjüZ\³ûC² ß²âõÉXÆc-¾8¹Ôí†öߊ†e ¹Ñ|ÒÁ&~ãÊÆÞÅó-~Ùý¿®ìà‘f—O¶q:Ñê;ù£«6–qýž[Æ_ÍÌ—Øo±Êl´19ÑìÁÁßµŠ54]æ^~Þ*–^ÊØÉÆ“cK›ð7VvvÙÖ¡FçÁûîn~rþÐJþ.ùÝlõþGV~øä×JΛϘ7y8Õäåä»’íCÿq…Í—AÌÁ¦ƒ'Ÿ[å)–>æÀó«8ri7ö~b%ÓGZ5þìnã²±››+,xâ¿[ᣣÖM¿O4û¸Ñäïø§ý»•\.cä»ö aŒýÿv%óK½>Þh9Ùh:ò+Ì{¼éϱ¦ã{šlnmíi²zàç¯âêo[ñîDóÏ_³Â³Æ×}MÞÅJ§wµñš5:ÞÚ;ÔdwO“Çc_•_ŽÛ‘åÿÿÅ*çrê÷¯b¼†£O>¼²Û˱ÚXÆ ?¾*¿Ñ|݉fsOüÐÊö,sR‡›}8ÒìÄ‘fƒ4~_Æ-KÜÑ|Ξ¥L5ý>Õúu¤÷Ɇ­Nµ~žl8ñTÓËüV‹|Ç*²ÑÚ=¶ôM÷O5p´ÙîY³WG–z×ìÇ©ÖÇÃ7V÷÷7<·¯a×ù³«øp£ùµY³É'[}'›ÞÎV˜7^mñÓ©f6}'šÜø!ñ·Ñzìw®ìÁÓîYÆÅß½Òƒÿeeö4½ÞÝÆãx‹IŽ6{q´éÚ¼a½ý;\æ™þà*>;ÖÆüP«sO«s“ñyóù‡—yŠe,óKVxäxÓ÷ã m4l}àw¯lÁÒžh<™5|sò¥U<±Äþ‡ÚXüç+L¹ÿÇVqß©FëÁ&“ÿÿ­½eâ—®äsÙ·ƒßÐΛ¿:Üdn¾´EÍ6hÿßÛ°þþ†ë·þiváhãÁ¡æ§-ñsãÍ|)Ë­OG[\¼§ñþ`“™yÓ³C_¿ÂF'›¼œlò´¿õ¡¥>¿e•{˜7L±-cf ÷¼ÕÇ#ÍÆío2y¸Õ±ÿõ«z7þØ*þZæjö6Lrhi[¹_¿ò‡K<~ê¯üü©ß·Â¿GšÎjº¼ÑðÂñ3«xmw›ƒ¿wEßRV-ûמ;µe7–þoi‹7Ú¸œjã¿q}eK–~ýdÃûûŽ®pÉR¿–±×6ž'¯îùOVãr¸á‚·¯0Ï¡ÆÏGWùÒ“­¾“ß®8|¶ÊñÝÕ•¦‡›,œZÆw«nüW+]>³Ñ|ÝÉ_·ŠÁ5\°ñÅÿW{çf[UÞý5gÎÌémε+A%F˜lA£b,õ Dà^¼4±!ŠÁ‚±`A£’Øc%Q¬ˆF,hbì¢1Šј/|ïïý¯=wŸ=§—™3x÷óœgföÙ{­w­õ–ÿ[ÖûÛ|‚¶ÅtÏÊ[¥‹ÀLü"óøØÐŽÍ¯Kö|U6>h˜ÝXùAŒß/ùZÞSñ¦ö %kà9â,-³åù×Ê/Ãn»5ºó?V\wùÞ#v z+?6-K¸ceOÍey½©µ÷Í1|×Ú)û½‚Í·ý‹t¾ÿÊÕ’ó²ÙÁöGþ—>%¹wx?ùŽmÃTEîÛ:­˜ÝhØø–®–¬7m®Úç*¾Ò>\8·f¾síҙıšï àúe›§Ã_-ð™éÌ•w s¯\.­a¶¢ñ ÍX“¸"qíš=WÝÇlòºb2V2Ú« »`‡š&—E“ƒ–­gûoëY¾P¶¼a²Qµ6›ç¨d»úÅW°³uÃm£¯az¡™O¬ÜÝÆÉÏ)–Æ\4ÛÓz–Ö”ø}Þø öÅZª¶ÞoŠî|ù%ù ­÷Ë?Zx½|•ö QwÍ-ÖþZ§¶Ù¼1Yé$éiø¹`m7J’ë¦ñJóíj ÑÄ¿1?­h<Ã'¹¥lNÃ|ã¦é²%r‡‰ÿá×ek+oý7ìÞÊOe›Ä2MÆÚ6—áÃZk°nÛtRî;¢káÕ²÷îã¡Óž+^\4»[ÝK¸±eº¾`£mº§|¦ð¿—^±õm›­Ý _¿i:§ió_'¦ÌÛ<-÷°±7‰»˜OÕ6þ+½+×E<ññu0{ÓÂß°ui/ì7š[¯“+ÜVþ0þ&cX:E+\£˜nÃôKýÅòÕª—FÙfŽÏŽël<Þ´ù^@/Ú{uÖótáuæ¨e:må ÒïM{¯jú{1Ýž;H4#?m£³½Ex‚u#w²bø¤i˜§ò#é2rÙ”}_>M|³dr]-)V†oÞ2½Œ¯”¿tcñ(Ñ®ÄO©bk>­˜(:¤i¾PëHa.ð¾lËìY㣒…¼ÙÁšÍMë"{Öæ®¶$¿xŰlÕÖµy Å›è…[k~ÛfÿV¾(^†o‰ï2fx`ùuZðSóÅPÊÏÓ®¼ÊÚo©zAz½v¦° ¹C‹á׎X¹ b?Öœ|Ü~Â|àú%bÆ—K§5Lw¬˜î¯ü±òV¤ýÈáà¿v¹0Yÿ¡ü× þ‹é‡–ÍmólÍ%ü„ýj]#~ÂÍÿ[ľωºÖÚ'—Ð8Z¼ËºŒw[Äx.Xy†h©›<â› cÌk }më·hkÒzæ]–Eök¦‹*— /‚‰Ú6•Ë­’KýÙ­Ö+sª“ÁÖÞ[ô7£ÿ^k˦àGÔðU§5]ù¸æžØ v›ù$žæ|jýWŒ¶N…_‹&0xÉèl™.]Þ_±¡°>rd8·½ñUÅîÈG¹þz°ôPƒX5yœ+¤³ñÂ’bÈðÇÊÃ$‡àYôëÒÙ’_rõ÷(¶µB¬è}Ò»Ä É©`É—7ìÙü/”ó­ì®öøÉpùZ+|üèªÉYËÖ¼ýÉv=~­" {híáq°%þ6 H\©fëVy™|™@|üza¦öÒæ¤nØ´þ6éÓŠñlÉÖºúMñûŽŠ+‘ÏCßàC/^!ƒœ˜ì>ªõ(b×>«Ü»ç#/R|³môMïT>)üV?3ÆólŽ›¯¿!7¥;iŽ ‰IÃôÄJE|„î^¾Hrà¸ÈÚlÞ([vÛßÀË5»/‹²lsW7Ú›T0ÙmýŽì)ï!e³Û¥«”@îß©\KÕÖ£~7åõjè°ƒ)ÿ­øµq¨ü°Æ_(.Ƹ øÀfC–̦å~çÑäŒW2ÛÐB‡!=ÝÄ×2j狟Û_–­Â¿¬àW4ýT4½d8¦ô@á|GÇ:†ÍË&Û Ãµõ»+OUú¹ìºëÓñ%³Så ”çw;ø0aô@Ì|ÍkÎ> ×Zxë¢Îüoå_Zo‹>­Cãå÷‰×-Ý ^ï/b·%,Eœ¢iv`ioÅmÚE|ù ¨wî#¹‡6ޏë8ÍKÝd´þkñÞ’‰¼Šc;üÝWé¡_sgi+öwõá òî­Ÿ+®V5¹ÆG!o³pzä%›«Ò[´N+P»5p±ù™9â6¬‡£m<Õ³ÿFz¥ô.Å\[f—á#[Û:ù-{¦`|PÏËVbËËÄà±÷÷ŽÆß©Øœ­¯7Εüb3é9(`“Lîšð5úа^þ&Ê .–ûœò®•#D_ ?fú£òrñÖ²ÑÐ$Þn:¸nïåÀ£Fûa}¶É·}•×X›GE»dö¬uóH·aJâ4ÄÎëE;ø»òù«f+F{õ7¢­òű­Å×Jw/á{ý{Ä4§(V Î`fÊøÉ7“ž#¿á®ÇQ’™<§!µÈòÊAQ'44Ç-ìƒÉj=æ–ˆ—X{KPl·q[a[0ñ⽤o‰?Ó^ÝänÁæfÊV­5¹nǃðÈ_Êž![Øã•‚æ¸t¾ü‡œ­Iøº°_¸­ê„À´5kgÑø6_иŠmÙoäÅuåƒ%wîÞ'Æ»ó²‡èæ>À9’Gž¯¢wï&^Æ¿uY:Xxl¿AÌ€œõM³UÅmŠ…/?Yµ(í«4g>ŸÔù¼^¹i|ªÒ£…µ 9&7€<6NRžºñWââ«„ ÛfŸ©9€ÏÀÃíÛ‰·+¿¿G úµöBÙnbeK·À×%§Fì­õ)Ù×Å·ªÝÊ%²ÇžK!6È;¦—ŠºÂæì˜;IëU}JÔeε!¯]7£6¢…î g´6yeQø‚D_Îät…˜Øç„1ÃÙÊ¥¸f§ñoÂ%ÌKÓÚmÞS:ÛuŠÍGójaÌ‚ÑÙBGÖ]4?ºhú¹iºgÁôS¸»äµ¸OÄÄ¿î*Y€¯‘pÄÂAŠ#ümäûC=I“8=µmåÍð_É©@7:ýVù¶t^õ1ZcrqÎsõ =Y˜„òŠé±ÊTÅÚ“Ÿ¬{©æ±m6øµ×˜ —¯¼À§mãµ"¹îÿ'lW´vVhãiò)±ßŽÙð៬|¹Ç;¾+žmÙ—¯U ±bµ Çwc<äÇ<ïvô µ;`Š…G«í6>–­_í ’±–ùâFÊ?¥¾X5¸;omU?/[Ü‘ÿ$¶Ò6¾¯î),ÚzƒÑWrÅäÌ]´ö©GsürGáÛ僅ß‹þgEzÛ}ÓÉ+‘­^£š¥âõŠ-B3º•øpî©ZÇþ`…²x)ÀLJËÏ?æX¯ÿŽshv~Ñt×›ýgxv‹Öªfc-~F¹…&|dz£uçhÿñ¥áe|:pá‹ÿwœoz1¼1x ÕùroÉx’7 †ÅÇÊ:}5£‹ø{ãùâ9ükðu;Ä;™CÆ»ôµh÷¾¨xJñ¥²cµj«is[½‹ü¨¶a»¢ù åÃ4'Mò]Dýh6Ï1´ÑT7LXºCÔ9F+1íò¯…ÜÿþY´ÉÖx“t}Ã|Œv´ùà%l_Ëæ¸zé r9ðrÓd{¾3:K?‘d-òø…§+®Cómš—JGà¯/ MþÈ[Ôñ]?®÷Às• µŽ•O¨V¬Hm8 ü1åð©=¶cü_x«l9ëÒú^ç«e«òoV$&ÒB÷ؼ ç—o1–ÍmÕži½Yyƒ¢asj––_&]Ú2lH>©n|W<]˜ÐóP׫ž¥JáaÆ%r™ÇC´À›W-QóVÂðýöÅd¼Ñ‚Éñ‚ùRùç+>íqJ›óšñDÛìò‚éÖò;• ÀV×m^ŠÆ[­Fû¿§ò‘ø6í8ôú¢ø}ëÓæ§hk³ïP“ƒ¸DsE^ NÞñ¢—õ'·†?LÝLËpXÓôÒãáúa‘wÍ?#c_ ïÒlj—Ê®4¾&™ÂgkØ8‹U |U§~†8ôícmØüPH-ñär™ËïJ/½O1„%|¸‹å#,^!½¶`ÔkÍ®W>¯ùt™~—t6|AŒßÚ×¶ÿ2Ù=púòKµNÈlÁè*~[X†œ¥Ë¼Í‹ûFÄÝ.rlkT0þ¦Ð팹fkðkñ ¿SBܺòØ7ZçilÔG¨ x£èeØÖìý¿”Ží­wÛçÂÝ…‹¶áCZôJÑž§¾?²JLÇd¡iëÜø/É*¹Í÷°¨«ñÛï¥vJÆs•¤÷Kð¤µá8ü@ýÜò8É9;|.b\­_¯">Œ×–¯F-\ñPMz¸ekZÿ¨ô˜¬I¾ï|ÙUâÌkƒù7»·ðYÙâzä`Ïep»É|õK’æGëíK×8ËØ0ŠñWù«¢8Lã,á%d‹cŒ‰Í3þ«“¿ú‰td;Ê=x“˜ßâJ—ŸöçÉ)}Ýþ´Ö¤òû’æOÍ„ÇP‰¡añó÷—Π†²üVщo‡^­šéybò½·ÑúRÿ Vj>M9FžWGžy´ÖÎùÜž]²õic›ïóÎäóȧÚ;%ìÈJ´»û)¾B| nº©e²Ñ„¯–½¡µö©ØçTOÌ|ð\1Ö¾`ÀYÄ4Á‚-tþ&yB³Å­–j/–Ÿ*¾ Ý4? tÿÈc¶6Mûž\cóOdÇšÈ~ùѲƒž¯¿ŸìsU5=ÛúcÙSâj-󟪼ƒ.;Pº–ñmYT¿Š¾&FøSÅ—VN“ÿ„üz<•<ÅUÂ"Ô·¡'#öþPËCç(ž"û‹^÷<Èý%ïžs³y(êfa5ŸÙ4:jFOó~—.?ÈË»ûÀgj¾-úÏØfô0xÚìyo}¨I†gñÏ©±ûÖ°—¦×ÊÖ1BhGJ_Š1ƒ¿¯ðŸ¤ˆõ#¡Öt‘Øã6éHrH`æŠñDõ„ó›Uì¦fóÔ &q¾ô*¼]´yôŒÙøÂe/ËÆ{Ä„ð¥‹ÿ+=Șñ=ÁNðJã'â7| dÑãžä)*š3lkÏ}Ö›Kþ’˜üZ¢¦ª&ûçú1¯µfoM£©Oxê_ÑG&£|7|*ü`û=ÿDí‹´ž#ÿ¡n:=O­…µ½ð]ñZñ¼hë‘}ÆŸ$àÅ;Ë~ƒ#VªÒ¯äêÀV`;üù†=[=Oz]R"wûû h¶¾ø$Õ†â3bêßUL€ýˆðlýëÂâø%Ô¥W­=°PËüoö«±ƒükÚŽ>cÍtGÅü[|ôšÙ‡¥WjîÐÔ´ £ñƒGÞW|ã5ˆÆ[y›ËšáÕæíÄ3^‡q½ø“ñ6¿¦½?è$bW¾Ïæ.Úÿ#NM|Lçùïr¬Q2¢q™|Qø–±VmLy£¡ùƨ+>¨z9dÀët®T­RÃ|àrp®tö~ òðaéô˜‘œ!òÀÞô<†_P»Dëìñ„;+wŠîõÚ”ÏÈ>?n¼Dãa-?Á1øâ/R°õgòáàѪéžÅŸéžûV7W¼ è13ã©ÜK¢ ´~–ÁÚø× Ã£[ÁÄÛ<þNÌÈä ü܈qC0.uØEô‚Étñ–²¥¼t²AüÓÇfs¿ß_¼L|Äs/èG|¥gk>Ý'{ÆÜƒ×ŠÆ¯ˆfð0ü_EîΗ\‘ó†ˆÇ3çð¿Ëñíc ÿQqM­ïÒƒÔ7~sK nãfÒ‘eÆdcá Ù“¦­yÕ|êÒ¢ì)¶©bú¡Œž.ûÖºi´Æµß‘.—°ŸÔq„­Oé ñjý—ŠcC{Ö<Ÿõ­ÇÂ/µGÂãsÌý[•k©UÞ$ÝÉX<æm~£ûÿªºöâ¥1ÞöÉ$ùEƬa«‰½R—[y«òu؉šÉ¹çlˆñϺ^ëÕx‡ô§×k©}&Ä2ŸÇT¾ã$ÆoÍ}%ãØþÂTßN<ÔõÓßKß³'8¼$âß ›C‘ù·–ÁEw6|%òªÙ“ÂÝ„¡È͸±U¾—cÛ??nßþFmzírþtÙn|¡Æw$Ô7ÌNÖ¾l¿“¯¾DÍ•†x𼿛A5Wȶºo@^Ä֬Ʒ~ªo×ØÐ«Õ_JÖˆ–Ì®UÿNïú¾!“¥*1ä£Ôn,b럃‡±•ÄÏ.•þ'&7ÿÀë@Rü?#ÜG¹¡Ò÷ÅeÃ䵛ǽlÄ1ÎЧñVÙ!Þ]4<œ3þa¿køká™Å›«Þ˜õ^|¦rÚ`qöÊ“hÚœ/“WøI”1ð™Ù\jïÙïç1 b1—k ÏÕZO]ü¨õ]xä÷B\Sësùåyûh\Ãæ! oLnÀü^Ï´§ñ ð@éYä<à‹ZElÓKÄ ¹‹¥KÁœÄµ™-^ù±ì û°»Ð¼h2W³ûßèV²+ f‹+`IxÚtuKÄ=ùº˜ßÀç=A¼XûŽÖ]Ä~Ú•s¢_w•ü÷yÉUoÕÞi0ÝNlÂçñQòЕü?U¶¾¯¿Rx ©l¨ïðÐa²9ÔH±¦øEÕyñ‘Q¶Ë²áŽc¾)߈0ö¯ö:Äk£ß í·Sܶ@Nweœ[˶ֈáM9båÄ^,<€ý!Vξ×Éà;_&z8› ùa¥=Cü„|•áÚÊ-eûš‹šgtº¨ývÉ üRÀw=I±Eöé ³ë_’­ðz4ì²éAÏE›¬ÇéòO=òÏÂŽËì½â?EÿœØó4ï@Mü·»O– 0Ÿà|ÿŠ=Sú‘j ¨ð:’?‰ºßx­|¤lˆãô÷ÊÆøþ,³ÇÅF¹{›ô¥ÇÅ+Ý Ïóþâ~º·øyÙ¯#=3Útxlÿñ¹hì4ºì‚_BìÌé~¼{¤p_Û|ÊÂM#O'9Ã+ž@^¾£]ê:À¨ bÛØ°Ãec<–´3®EYsÕº“ìJãeñÞ ÅÿäÛ&_ìqðxã¿P¶Å^_oï!ZsÇ毵•ßÌå—F=ar—³÷ƛԖbÜþác?[ëV*a› '×ÐUWÇù1›à5Œèè‹å繯ð‚X·zºêc9/Sã‡O¶hsQ¶±7lÌ쨙]ò<ü'4wìáÅ‘ñ|«ñSåXéš%dõSñ2í}a>‘;×ù&ÛìgïžÛÙã´7„¡ÜÛåãº\©µX ¾/>Xc¥Žšø y?ö:Q]ÿ°hi|D5~M£ìY´ï8wÂ÷C쯚ã b&Oµmz ó„ù*ãï.ÆœÙNõîF/á â¿!§õÏk?eÕÖ¯dï6Ÿ!ûäãÝ¡1PY8TõmÎ'$ÛÌþê}ÙŸK| :¹[°6½~z?/—P 螪‘& F¦NŽ5¾&ú„9¦ž‚wÉR—Eì¬t¨tn5按ÛÕ£/í¹…ß(vÔzG”0æUq O’M]"nc:’ýÑèRrJ^Ó½&¯BˆØ;zàÊ· ;šø1¯Ö¾{×7ß•<£3±Ä=ÃÂlµ+¤¯›’l°Îó5GˆÇÁ“ÍÓDWîµá5c6nö?°Ö³tLÓì:ç'ÁgØòÔCyÜì}‘N— w¿Ûìê¢Ù Å¯Iø~x¿&]Ìš±Ÿªö–hwL€=B{>± øã쥫›\/’Äó¾¿ëÜ(7ôKlÙôôÒI7iØ·ïØO® ,m~99ðAÕðÑÒ¿H·¯‚É]¿Õä3±¯Éã㯕/K~ÊãE๛j¾ÜξEú€ø?ñ€e¾{³æ»ö^ùîÄüy§rø¥¯Ëßs—ìƒÁ›ÆÓÄM‹î'ÿØÏ¢°5i}.ò1ø¬&>ðü ñF›§ÖçÕ&5b~FΡÒ1>·Wþ‹³\ˆuTéçF¾˜Í/±XÏ©¡~Ñ{ø å/KŸS+ɾ”ús"¯ÝO¶ÌcÈøWfo©5¯›ÎZØ¡¾=O6?]úÝ^™l濬ŸØxbIMrý;4·ÅŸ©-p õ$žc8@|Úx‚äÑsíO“^*T2ï¸í™â¿&rówq/ñ=´¿ƒ$ñ{ô}ÑhkÁÏÆã-ržg;ƒ™©_a/¸˜üØÝñ‹éú1Ê’l·ûÝä? Ч¹þ6ìNL±’³!?ë˜åtùjàkλñý¥wÑq^ž¿û¤r²eÓ Ë/_, Ÿ ?g}Q÷ÛjH¯¹¿Þ”œ;æzœæœüOÕ…¯|*¸o¿R95 åUGÃa!SÄûœ½.E¿ž«8›Ç>‡ O“nqgXhÁxmåí}bR{ÄXÞ¹Z'?ƒÌPQ|°r/a-jã q…òe§À¥ÏHçSÏÿT·K¨‰jÙz•WжîµÃdó¼¶ê;Q—ßJ±÷«î}õ#¤o’º<Ήßû¾»H^¡Ë±Ú“õ¬c’tjí—Ѷƒ—%Gƒ¹Zó†íà\ ßÀ>[/EùÄ Úxð£ñqƒøØñTûC tÕx­ýý¾è÷Xœ­öMíµ@¿_jîÔ8ÙÓXy¯l‡ÇˆY›Ì“C6‰áPãíÏÿÍ.ëµ€fûwï:¯ž&¹Á_©]븾Vk*¨qp{×Flš¬>yãÎÚ‡>¥´ŽÝg/D;‡Ž{†dÐ÷¯› P?Ⱦ]¯õú°dÒsØ¿Ÿƒ5©5hß_ö“ñ×÷‘¼ƒï‰UÞ¥vÙÏëøÓìRóÊ'5ß ù¡Ýã@·V®ƒÓY[üXl‡ïùB_ÝUkâ8ðŒhÿÿO{üÈŸ0×ø¾sïàgHÃ<®hþuÔ÷B‡ó2iüŠÿƒL’SA?–_.¿šý4µç«>¡`¼QÛOú£„þš÷éÆÒu>HÝx¹°,ÛÓþžæÆ÷,Ù\×lÞÊÄ ÀG·‰u!õc„ïÿ]:cÑè¦N ½=àEðJýñ Åñ=¦eï/ñºÉyí©ÊxíF[z±H¼•8Îã"ãäÝ=¤ƒ8k¯qgÕÚ’Û¯š-Y¼.î»À熿_±ØM$g‹¯ÕÞáæ™²Ãðbíåûpû‡Š§]oš¼UM·¶Þ¤õi|Rr€Î/™Ý ¶¥D\è'ÂGž~ø“œUŽú‹XÚÞ›×#y•tÃ"1°ˆñD €M¿FyEΖk ÃÍ·lý¥Ëeã*È~9ês„#Ꟍøá­]¸J²ä6`¿Øÿ1²y 0ã^ê¿ö\}ß,KÆÀW^_qÔ&;ËÄÅÈ|Okëµô¿/]ìõ¿ï“½‚‰­4Þ ~!^³`x¨‰}l»Ÿáð(ÕzÑ×]’“mÉ&Ð5n‡m^È×;6¼Qǃã S/]"9a\g»ºEÜ‹oz‚}åu{ó|“aÛÆbf§¼~Û½ÆDfýú1™—”Ò6Mç.0Ÿ?Rÿ^ÿbc\4#¦L=›ããe| lÞ§…GJf{—Ê.’û!7èg\)û¿Ã9ž³¸A6²lr]0Ý]c}ÛäûÇË&QÇB‚c×_JŸ²ç«¼U}WÁÊÆ×åJÖÓÿmÅ7âÿ'̃­iÕ¥k_m¾7õÈxÕuŠÅvö2ÔÞmðQÒEĺÑkOx›jW<®orUûX´)öŒ×Ý›~¬¢Ã‰Å=Ou—Ä£9¿Ãëgo«X±t2óUý#É–ûÀ‡ ›Õ^';áõ{[4ÿ rß÷”½ôý,oVM;ãÅ÷©0wÿç-èŒ'öè•ÍÖmœ?ú¨øÙ÷HÞSºŸxgá¤Ø“[Ü;Æ]?£¸šÇŠáÿ#ÄÇ‹_~Ãï)}[:Ìká¯ò†/Æ#•+…m¨—E9·§þ ÙÎ~ùÕã\‰8žœë™ øìG»\}/%Îþb÷;Àèô—Êv»Mþx:ß&üióYiKßQŸçûÈŽ‰ºëSÊ?/Ôµï°tžæ9¨)áýÚ»œ)CŽ ½^Cç-ÌErL®‹Ï–ù/ùçHïc¨ôz6ü{¯}þðÅ÷ž"¶C-> Ûä_Ľjö~ÙæeᙺVpÞ6œÜ<\þ"‹úóæQQ‡U¼B¼b©.û¿ÀŽÜ\º„s‰±^.~p;†îo?F¹ÿB®²tõ:Äæ5÷‡â}ô|Ñ>[ ï éDp ×1šÅžNl"8þ$n‹Íõ½üö¾ôòuZ'pùþ¦ÙöFUö—sT=žqŽð¹GÏÛý™j£È¡Á5ä4mJ?“~÷‚YÙ;‰^'VÊþH|DßKüsͽ纟íÀ±’7Λ#­î×l§d«f˜ŽXˆÇŒ>"AŸqög· ?Áƒè›Ö¥Š À~œ½¾HžèÞÁ÷&yÍÍ=#ŸÜC÷9¹ú÷ÒØXæ?i¿AñYÎ'Á÷ Îòº6Ã+^¯júºI,9ưmè*jÒ9¯ˆ³½á!ßû÷~Éã5)ÏQãìû^ÁÍUáIß“õõÍ´¢µÏyR^³w‰ô?z›ó‘9O£®6,âçAü§lçŸ9¦ú©t@¸Zë”'7òw’]ÆNluy3Wÿoéa³§‹¯ðŸJðµñ~Ó|Εô}Ðiö¡j|W&v€ïù„3μîõ«Â[ÄÒàã…ý4>â•è#ÇŒËÂ@îcŸ?CúÃ÷fÕ¥°Óì«Î®­ÞåüOjè°ž{y¸ìrìç~á§‚ LW”L?Öð‡‰uØ|· —ÇùL.‰Ï.à7—nË~¡X‹ÚH×;'´`Ÿ’é£%dÆú®ðìÑ0ÝÁžæÀñèíe/¼¾ùqZs?3ò{²óydÿƒÒKð{}ˆÝà—»ßþÜàû•9/y«¿[<=Ôˆºî¼iÔA¯T Ôc™{Êöµ ÛéöØú¬þ»æ™ýœä\ßï%[@&¶Ú÷%ÞÈN¶…<‚çº)Ùk0Äë*}þ•Úgd3ý¬>æèyÒõØ¿Äw Vªns vFÇ¿#¼‰¬‘_#g“ƒ¦uÄ·aý[Ø£?WÞÃÏÓü@ÌbG¼Á0ÕÂá#ú»ˆŸQ8Lô‰á_ë©%bg&Ç ‡('š»Ðž7¹ Ø1Ã[ä´Ø3ËYøáÔãV÷Ñ\»ÀáºjhX/þ?ñÎ'ç $þ—…Ç‹ /ÕðEÔÚ{Žßä3nÑ7Ô7xþýâaöñWðAmœX?TsÕ¼N|FmŒ×¡>R¶‰X<û®ýŒô›ÍE¸wÔ¡¦_8?‚º b á©‘o^¥<6=Ø:ô.qIp6g,ûÞ&ð€é¿*q÷ï ?øÚcÃoz»øua/éò/¾wÈìc“<Ä×4wC;(ÎïŸFܶ$ýïu>GÊî7È= œL½–ŸÍx Ùê£L„CŽ˜³ñg5³¦Õ—©îÚý9›çªñŠ×"ÿ±lgÍÚ¤6×÷+|Q²à8à=‘ÿêÖu§;½H¾g©9v19ö½&& œÙZ_Ž6åÄh 3R÷àqmÓO—oI ‹©åB>±Ïž·ÿx„ç¸ß| |†qO³a~ühXÍsY/–›j>S>ik?µ‡ÞE_q6rþÕ¸ ôZïOhüMãSê²9„ºbx|9 þg aŽk²`KÎâwlClÇæ§ö¨ˆÃ&|Åùçž8Sõ ¾¯ôª(w†±¼.×ôõ½ÔTà‘¯ˆ?Àøz¾¿Ãæ§p¾ô'úß÷T™®hâ×0¿*;ïyÛk]ñ±|ö«eóK•°z&ŠŸ©WSL§Q®ôú.£³z7Éçü{­ûuªëôø¦é°âÍ¥Ÿ} Î?[6ÞÃOÀNÕÁÄ×êÿRO%Ïâ{°°Õ¦o¯îrØ[V5:¨…Ìÿmð8k-æq½æü«Qæ*ÛFL ¹£Æ“ø*y1p­Çˆàç…¸&†{VŒ—«×E>¡Î`»x}Ä©OP]YÓøzé_xÈa²œ½=ª™žð³o‘â×Jî='güþD±ö¯Ó÷x0ï›)Ûx˯¯´¾¥g‘ûÞ ³Éu[§æ’eƒ£¯/V-8øÁ÷­˜M¨™Í,~"b=üâØWIÿaïªKGÁÇá7’o?ïWâ ?Kü!²ùœ}ãgÜØø8›š\çò€éáUô2:ƒ˜ÿ'‚ù¯›n-1Ÿ[d‡=U’.åÿKà ‘ÏÇ7m˜>#OÊûèNç/ø…Üøƒ"Æ2ÈÞ\ö¥»O¶¯Ú¢^˜ Jí¾QO0v³%œÍXü¡x®nc«üJX˜ó¿8 Þ&U™>[S›¾\6œ&%n@lËkˆ/_­øµÇ(YEG€¯ˆ ?$?¤BŽâLéV÷I +,c[ÁGÏ_å¯U¾¸¼tvŸ½,俼^Åübê5ë`už1¬I.|Éô~sýÍò±øß!œ5Òˆzÿ‰zgüIþG{n–î-þCÏñ¿.^)<΂¿ñ_ñ ]ÿή›ßT5¯˜žð3î$ºð8#ž9òZ$ÃûmÆo>×4<[˜†ØõìWf^ø-ØtΠô8ûyaõì¿…OÊ6òçg¿s”¬->*þÃ;T7E¬’ÚMrÿî ì+\Ýð¸ú~j#oôU³é¥[åJG8_Ý^ºÎÏö»úÁ>û^Ú˜S“Ö°ŸWEù6ÛXÛ[v×sYO¬ÿ^ŒC³ÖqŒ^w¡|Ï/>]2æq’–~A‡úþ‚S”‡Y°vüœÞªmõ|ùÃd£9ëÖsN¿/S3„œ{;fï+ØëkñöЧ9n>d&gaQ×I¼¬‡œ¸0¾æKóÿšr¶æä®°¹.¯çéüg¯•Ï ïb“ˆ{R#í ¶ãq™òŽ––xí³6Ÿßóì?’¾£?þ·Cý é“Ê ®BB“¸€é/òó~öYòI©•ós«®scpì¥DÞ™kþ+qûß‘szÝä#~ÙWù×ÙæãQ»Î>PâøúÄŠ<vް°cù(ßNŽÅ÷½W6‹}½íè_ßÕÿUý>;¶¡f¸@µdî“Û@‹6¿Å·Ø\_òïûÊ* †^#íç°V—ß‹IÌÁeÚè$ŽHüÛýIè[š^©?R>„Ó^„Füƒk´~–ƒÍ99AâjäøÜ§3Û’WŽŸñ{»h§n.yF'ƒ!±S–ô71cΛ£þ'XŽüò—ãܾQµ^>ï†E¿åñ¬Øf%b xôaŠç;¯/È.6lýÜšûÙ}Zµ­¾Oë¾Z ÿ¿Æ[£zS}Žô4zÂë‹°Û‡Ëñ½ élÏ5C<ä5×Öˆ[¹}x^Ô7û˶lA׿$'ÇÿrŸû_UûžËù¾ô ù0â Ô.R„®öº‘Óô¥à!jJ¨-£Æ‚3Óµ3¾çÊÖ®ôç²™ÄjϾPø‰úw?KæTÙJì¬ï™Ú!Dô7.ˆ¹ä£_(^ ™%ßà9¹{jî°©ð.ñ/2þ?:g½î5–ßÒzRkˆ=[97ê´É÷,¾^ö¯y¥|—&y,òW ÿ`S°3Žg ³¸O÷û¾'uK”Éý5gð>ÿ‹½·ø‘ì=*FŸÑ÷¿Iy;ÎéuŸÝtí–œì%ÿ‹…ÿ=ÂÿˆÄ·e¿gý’ß®øÿˆø¾lBýõë(uùœOéµøùæ¿ð¿/ü¬[›%â ·Ó£ë°õÔÜ0Ó™]®™Ìóÿ/‰RÓígÃi’³âü&tL õÅ0ˆóÓù0Wüˆx™yfÏqÏý^Œu}B|@œ‰3Þø{ä|ý»€ûøù~õU»™|^?cŒø#kÏÈU^ú’üœ¯©ñÇÿ¿íõ Ň~Ö™É4µpij—(>¦¦¿rn|Ö06g û^[üvóÕ—‰õí+=ì5Z9ű¼®ü»1–²‡øÝèûb±9ØäÇ(.Åù¶ìݧÎÑóT×Gü^:[ø< ÿÃÆé0Þ`o²Ç8?ïý$ÚsrQÄ<ÿ(ÚP0Ë}Ëôó¯ÖÁÞ£+ØÓ„½ÖÜt{ñâ¸âÇQÖÌ4Ž Ê…Ù÷ë“ÿ¹™ûÉ4ñÇ™7•ïUFO?]øŠ:¯<[¸½‚ºî«.vÄ<¸®|SìÓÆÃ™]¾gÚt4þ¬×ù¾YöÒë]î!šù_ì-X¹T5] “«¢½¿Œ/þcù_üßalû9Êk¼¬Ýò%šß§},¯‹ÀŽC:7®õGEqz0WÜ~˜p’ŸñÍ¿×îbŒwüÜtÛG„A¼¶ž8Ê­u–£ãœ ¤Ñ÷ļöÄÚ÷ºá#¥»©›÷ºŽ3"¾<_öÔÏ@3Ù&–ç¶ù®²ÍÎûkmSýÒgÔ퓳\±þêÿ*=\3šŠï ~¾º=Ãÿ=õ3vª‰ÿëÂÙ0~q »Ç™Ž?#z®ðç)4m Ø{N|ËÿÇñxÅq$1½=4Ç †û /«¾;gnú9ög±žÌmsÆóê¶þáâoS:ßøåÑṳ̈Ϫ^Þ÷‘Ù}þG³×¾FþñBêOË·.›¾ç(û¾ÚÃØ—½Ök&}Ò~³ý÷¢gö3k~™ÖüϺßõoöš”žiÑ7ëv³×´ùbÔv³ÏzØï'mgTz{õ;èûi÷?k~œ}0¯ze³ÏK¯kÜq ûü çÆ¥cÔvg}?{M{¼Í—ƒèîÕÿ¬éš”îiÏë¨ÏÛÞ ~†}oZôf¯yÿ¨tÛïFñõ¬é›u»½ÚŸU¿£¶Ÿ}.{Í+ŸLª/Æ•§AßßXæaÜyÊ^½î÷znZó<¨ÿiËñ°íºÆåËæ×ì5mþ–ïf5ã¾7mú§=Žng\>éõܤïOªïz]óÆ_ÓêoRý0,½žÔÞ¸ýÛ߸óÛ‹®iÉÇ´ûWþ†¥gÚó<è~¯vz½7­ùŸöø§¥¯³× ý¶^zsPÓ²Ùûã^£êaßW~'m§×sþ7êüN[ÎGå—aû•ŸÇÕCƒÚu<Ó–ëQû—¯FmwRyéu+oÓâ¿aŸ¶½qõæ¨ÏMëùY¯ó¸zpP{Ãö×ë½iËï¨ü9ê{Óâïqçg\»4.?;ãÎ{¯ï‡¥7ûܸïÍš¦Å'³jgÐ5m=>è½qߟôš7ºÇÕÛ£ò˰ß÷jÖýõz~Ö|2ªöý^Ï «×†íoÐ5).µýõÆ/ë-?ÓêgÒvgý~¶iÉÿ¸ò6n¿£ê»aÛÔß´×oÒyYo¹ìõܨãU_K÷¨ãš¶ý×¾ Ûî ~Æå§õþ{Ð5¬>™tž§e/¦Õo¯ï§=¿Ã^%¯£^³žŸYñÉ´®qíâ´ìJ¯¿ÇmwÔk\û³Þr3ì÷ö?n{“êŸaéšö5é|jG&Å‹“~?¬Œ«ÏÆíwÖt ûÜ´ú¶ýIŸÔï°íNzM:Ï“®Ã¤r:©½š”F]çqå~P{ã^“â‚Iñİó>®^Ÿ–þDרË7£~?èš–^Ÿ¶~WßM Lº®Ãö3ìû“òG¯ç']·a¯qõÇ ö¦Í_³¢kÜçõ3èïIõö¤r8èþ¤z~Üuöš–ž–½ÔÞ¨ãt==7+ýÑëûigÐ{ÓÆ#Óâ×Iõâ¨×´ù{Øþ†íZúpØûö3-ùèÕþ¤×¤8jÐó£®Ë¬ìÒ¸Ï ûü¤ü5-=3®ÕúÛï¬íø°ôŒÚϤöxT~•™•^'öz~Ü~¦mǽfe&mwØkX>œ•¾÷šnž•ÞÔþ¤8oØþ¦mo†½FÕë5¾AýNzMJw¯ç{µ?m¾oM«ŸIûŸ6þ¶ÿQŸ›6ßeÛUûÃö;m{8és³Â£³Â‡£ö3è½qåo£äd½øcØkX}3j;½¾Ÿ5ßLodÿžö¼ŒúÜ ÷&å·Iíò°ÏÍŠ×Û.{«ççmã^ÓÖÇÓngVíõj\½2).÷¹qÛtœ£¾7é󳯳½î¯·þœôš7¹›5¿LÚÞ¼Û«IñÜfããqýyÓ»“úsój‡‡íoÖþù¨×FÍC¯û³²¿³ò'æÍ®dÛ™6¿mT`Ü~6‹þÞ,ý΋œMjÇ'õï&µcã^ÓÖŸÓº&¿Yã•͆F]ÏiñÕ¼èË¾Ö NïMû½QõæoÿL[>‡ÏI×y½økVøc½pß¼ùÇë§¶ÝY=?îµYôЬpñ°Ï{ ЧÝX¯Í‚‹6Jgƒ}?-~œ´ýõÆëã¶;k»8m>œ·ùÜhz6ªŸA×zÇ­GígÖôíÆAëÓÿ¬íÀîk¼«—2oúrØk½åy^Ç¿ÑùƒÆµëÝþ´®y¡sÞý§õÒS³Š'¯ÞŸö5i<+Ûδžôެ㳳¾æÍï\¯<ËF_ë=ïë=oë-ó†÷7ºÿi_ó>žy§o½¯y?lt¿óÊ'‡Û¨k£×Övx³¬Ãz_íï»>ÓòK6úš÷¼Ê´¯ÍBg¯k³ÙƒõŠwnöu½±]óÎW³¾ÆÅÙë'š÷ytõš·Í2®YÇ3׫õêVu6Ãö»Ñó5èšÕ|ΪÿÍvÍ{ÞpÞâö³¾6 o6~c»&•ŸiåQ× ¯MKO›§Ü}vš7}²QþÈ´®ÆÕórm´:«ç7 'mTž|Ü÷çÍo™W|;­kÞò«³²ïó¾Óº6KüyÞêw½7ìóů½ž7ÖkÞæu³ø?óJW¯k½çuÞñÜFõ7lÿó‚ËzñÍFÏÛ ë· WÍÊ¿Ø,ãtÍîžvžl³á©Yé·y‰ _6_>/u;ób—v_»¯Ó5®ÜÍ+Žßè~¦Ùh¿tRœqc©˜ÖµYÖoV×n;¾>×fÃå½®ö—6ªÝy»ÖlV»±Ñï¯w»›õÚ=Ï{mV|¿ûÚ˜k½äu½õ÷¼òçFÓ5/ñ…aqϼÄç­ÿa¯ÍBgöÚèøÌ¸×¼é©QåiTùö½Šûüf᯺6:îxc¿æe^ç5>°›ÿv_³¼¦evóç|]Ó®w›Wý¸Ù¯Í¶7ÖëÆÎß›_~[qÏo«¿vc×¼gÞèõº±Ëżãìy¯›˜×~oì×oû¼þ¶÷Õÿšwþ˜wúv_óqíæ“Ù\ó;¯‹µö¸Ì~ÉÙ§&ŸJüÔíÓHÝoôx>}/Ÿ<÷,u”Ü/'ÏÆûÙï—3í&4dûÉö—~®ûO~O?ßHýìÖn1þ¬gÚL~–# Ý•.cÈwi—{¥ø|#>Û­ÿZêûôý…T| ñï|¤5=oy¾Kæ7Þ¯§~vОî/Þï¶ÖÙÏêýÔ;ÞGBgfNŠaí8k™¿ ©ñ'÷÷RcM¯yÒGºýnsºÔ¥¯¥d®’yÉЛŒ«ž¥+C ý-¤î'Ï5RtûÏ­õÔÏ¥L¿8–욤y:y?—ù;ÍS«ý'í§ûIý^IÑÜO䦜C2_é9OúJd%½¦åÐÉké~“gÓ뜕ùä^>Ò’ô[)’j+Ñ7µÔ˜Ót!.ñ»d\ÙvÒ'<±úNü®ÖÎÿê\gÚíŸÔ\Ô2Ϧçd•¶Ô|•Sw¬Eê™åÍ]ç4=žÔ»ÕÌßµÔûéµHÞÏ¥ž-fÞ©­E"i™Id1_9ôÖí•Øsèð,ÏtÓG«s›ù®Òå÷ô÷ÒÝå°KoæSt-w¡7mÃ*¡ OÄŸi]í6&™Ë°Kþ+™g‹™6:Æžº—n/«ÇVõQê™´ÎNë‹Õõ‹w´:çsuü©ö“ç’¹ÈÎWºí|üÙ¡[’{a—§uݪLñTBo53îôø“µÍÚïJØ¥?Òò“¬ÿrèÔ¹ù }ùÔ;Ë©q¬‘™°Vç%»žã™ø\7“È}Z¦Ê©þš=ÆžØÖ¬rŸš‡¬îMÛÉ4ÍÉœ­ÊRjüK©ß×ðyj¼Œ';×É÷Yûæó“š›|¦Ï,?V3}¥ù©C/&cOµÝa·ã¥é馯ʩyJ¾_JÍmb3²z)é•ÿ3÷³ý•2÷™JÖ7W³üœÌG‚WuMªïEÚŒ'?WíNBSò{ê^Z²ó“Å…i“ö+ViM·“î7=]hÈ%ãH'i7ù$ß1o ¦K?çz6tòHšÞ´ÞHÞMë¼ÄWJ¯sšžJæ^z~VõeêùBè´}ÌóRÈÈMº¯ØV½Ëý,¿KËjú“¶ÑévÛ”}>Û—ÿš—,ßg±O‡ÍÎŽ-ûIµ“Öƒi¼‘|VõU꽄ߓ9LžcmR§e,Ñkx2þLË\G»™çÒ¼”µ§sÔ¥´g}Ò¶"ë3¦ŸÍú«z7Eû>Óvvm’ùMÆOõYL=—¶‹iž-¦ÛOýžè·„/¼•´—ð÷ªMJµ™¶ÇÉýJºÍÐ);cJžO~O·vÉdòn=ý^öºØîÔwYŒÑAOŸ6Ós–Ä’q¦ù*ëuÄRýfe0»îég;0e7zS÷û²:y<­×V1A¦ô3‰<åÒÏÄï;æ?dpvvL]h]åÝtßY:»´YH3’wÒ|ØMþÓ4§õz·1&Ø©:å™÷±5svñôšñfþNèÉÎãRª´_´†GC†ŸÒ4d¾Kó~2ÞU™ú.±[ÕôóégºÝ òÞHÝ[Î<׌ãË¥žI|¹þOýÝÁ«]h^m+uoŸ¤–S?WûIõ—æ§Ü€O gca«¶/ÝVš¶Ì½ä½4ZƒSCX£W³¸>ë/fq^ktÓ½iÌÒ¡ÃÒŸù#û}¯ç“ïB1ì'¤x¸GÛ¹^ßgžM¯ñR¯v†[è\—¬6ˆîT?Ånß÷¡•¾ÁëéþBç8K©÷VcƒÆ—½ßk,}è+eÛ kñ[WyÎþžz ßöGÒggûòc¶­Ï$ò×GÉŽ!ì²É1Âä^7zB ‡eî¯bº>4 ”‰Ð…×Ã.;ZJÝëˆcgúè°-}úèЗÉÏYÏÐigÓú+ûw5óݰk•å^¼‘Ð•Ž©­ÁÌ]~62?“q­‰ï÷è·”´RyªÌ3ÙµHÛšA6«/:ôrü;­/’quðõ€>Òñ›UŸ é?dtJv<=ÚÌÒÓuÝRϧó¹aiïÓ^W:CÊo²¸§ƒöôýai ]tfBS¶Ýíx<1COB§¬®y.¬õcVã©]žÉþ‡><—ô‘Ð:ç§§ÍÍ<—¥}5–Ÿ7—ú{9õN3¬é7¤ò‚IŸ]ž©¦ÚèéGeî­æÚBFežK¯_òürXëç­~º¼›K=ÛOû}ºÐœŽ³ÕR?W}ŽY^meèÊö“´›]·nò—yr¯CwÄO7½Ù….2:×£—/“K=“½×¡‡B—õÊ´¹šNßËÐ’í#»KãÈÕ¸Rò|裇Cw^Ncå¤\ØÅÙXõ*m!å·eÚLâƒz(óLbûšÐÐ [Cèä…~˜$¡µ#nߪŸ›í§Kº©Ûs!#Oñ~šÖ$gW }tošÎ.íwÕÁ]úkd~\aW—ú}5†Ð­½Ð9GÞnü{5_Ûƒæ\æï5¾AècèÑV:ç—Гõw:úës/½f}õJ–¶ÐÃþ÷CŠÞZö^>Ùiö¢)Òî±Ý°V¿ Š _²4†µ6¼CÂZ>ì©#R÷~JrÎ}±o!ö:ç¹—ï‘KÑŸŒe9¤ä"¤jj†¡§Ùû]þÎb»\¯ïºýÞ…öJ¯çR÷³:6ñ;òH=ÞíÕf®ßwé~»Ð¿&ž–þ. ‰âÏAÏåzüÞ!S©ûùÐç0œ ®‰1d¾_¹÷è'›ËÒØ¡»´ŸØŸtÌ¡y&ÛÿP:#ôŽË¥é_c¯²ý„N¾-¤Û ýãYùÉÊPÇÜ 1ž5:;ÄúÉ.ãJêM»êùô3ƒúϦýƽÆÏ úw±GŸizÒ5Ýü§\ü™Ö éø}š¦nºp v ¸¬+VÈöŸ¹×AK¿÷³m…!çº×»Ù÷C}<àžç {oP»a8ÒﻎšÔÔýÄîÒGÝødœ‡.±õ©³DèŸÉeß ©øÝ ¶3ý$6®[î&—j¿-ktlè“[Hµ¹Úvê»51ÝÐE¿dÇÐíý~Ÿ°6Þ0ÔÚ Ón—{®g²´ÎâvÍÙ0ù’¡bb£ÒzøYI[¡;6îë—eî¯ÁÄ!e‡F¤§W¼®>è™ïeñã<:l[úé«§Ò4 ø¾×ø‡µË}ãÊa‚¼k·÷C§-å÷Õš«QiÐoÖ7ïÀ\Yšº¼ß+ÐK×­±sÃŒcܱÅ}GöO§LC6ö™ëÕ~Z;òFé{YzÂ2׫ÿ.´tÅ$Ù6²ÏÅ{Cç²zµÓ­ÝIۜŻ¡ÿšeëð²2œ­ëå÷Ń¡‡:Ì82ïNd¿Coû“K~†ùûn4wûnØ>¼³ºa-ÙïÃ6i–Ÿ°–Öĺ¼“Îç÷U÷ù®cÏeº­ÐÅ?XÏOè^DZ†–ÝCÙªëêñýP¾KŸ÷×`º~ôô{¦-kìHjlý|ž56©ß8zÜÏ óþ¤ï ÑfÖìåsç2÷ÕÅ ôÕgñ }ðþmöâƒ:/(6´­ÉþzÔÍõ¢/tY¯Ð».b”RÖ> #‹¹n¿÷z¦W»a„õ }jꇡ¹Ë;}cÈC¶Ñ3:äûY,5’†Ð#Ð22ýÃÐÒå¹5þѰïÎÛ'ìÊÕtÕÓWè-c}×yŠýÌYö¢5ô°3£ÐF”³0z]ØH:¯WÃÐ6M¹nt…L«aÖé÷÷„´'¹~¸»gn¥Çó5Ê¡“'Fö¿ûô“÷ÙÐYÏ›ýnæ±âQÚl1m¡ûZäÆyoœO˜2ìÓÏT×mÚíM›Ž0Ù¾š±ÞíE˘måfIë,ÆvÙÉ¡ã-aòO£Ža„çsÙ¿»ÜcŒ«{׃în}Í¢ÿYŽ)¶ß+LBGŒ…ºÖ5Ír¬ëõ #úaú¶#׋®Ð'÷4N›S¤Ù}¤Qé¥ýq¾å™qÞ=b¯a8ŒÔ3÷=ƒjÒúÖKL›ž!èÕ7;ÿ&ˆ…{ËúÑ7,ÍaJ5Óþ„ëúÄÜÃ.¾Ì¥îåº=ÛçÝ~>h.óìÜ`©>4'¾u®Ûx‡xP}b¶¾s( 1ýýtu®×wS¦¡+ÆkÇÞ•ž^cèv¿×³ƒúôݸï±ë¾§1ú´aâ{–ö÷GK!þ6@¯vÏ0´ŽÚæïôÛÇÖ/‡:°¯Ð»FmÃë †ý„X_<…v¦^KfdËÆ¥µßóãÒ&Œû†Î:Aûÿ{ÒŸG˜r. Ýö¤ÏŒÑo. ØÓŸzvæ>~Èœ{1àÙ~X#}fAÏõ }°Â„ã„ :Η›´ßì{!bȰkOÍP8ô©1ê÷Ì(ßïþ¬ß'ôßK•Ë>? ­qrHÃú-khéw/Œ‰=»µ™þ®ß÷C´=ÍǸz`lúGéšcÖ§MÓ¤5Œp¦Ù$4Ïò:uÀºÄ‘½†ˆ[Œ3¾üŒHóÔj6‚þÔ;¹¦{ÖŸ0†Ì z'ôƧnSÆ}¿Û˜Ò÷BLÚíõãzµ™m;̰F¼Ëý‘úêFcHåü²Ï†îgŽU_Øë~˜³|sƒÏô˜§O˜O‡Éð@·=¢sa·7Ã' !añ〱®êŸÐ‡Gª_»3S¿³6…LBç8ïNÒ߀vûþoˆY~²cšÕ{ô½.cžÖ˜¦ÕNŸösÙ_¼7SÖ­Ïi¶?/Ÿ¦u£ûŸ·O¸‘ÖØÏÓ'l¢9™&­¦2s¦Ön:›·ò^+»tÿwì8&þQyÀñ;>íÄ­§îØyf¼U~ÀŽíÇmÛ~ü©[OŒwJܶSN=þômɃ¶³ãèÇoOn4zÊ©ÛvnßzâžØzÚ)ÛN‰·k¤§Ù“[WÛ¯râ‰{¸íX{;¡¢|Èöc·}êñ;NKÞÜrÈö'¶óÌ=·n?fÏCwÊŽíÇo?.~·ümÛw×xÈi§Øvœr¶·¥h~è¶'Ÿ¸õ”“’ ݶóô]Tþ|Û)'¿3=ðü#N8~»&m1™´…¤Ïc·mÚoÿ§'V¿YÚ¾õ$°¯Ä›‹[K¦fñ”mOIh:eëI'Ÿ¸í®gîLÞ=aëÉ'oMº8qëIO8&ù«pì‰Gßõ¸''3tôÎm[O=~û®)ÏŸtÜê`–=íÔãOJ¾Y:Æ}bÒÎÑOÜz²­M†êÒÎgÜ5¡|5 |à ß; Ç”ÙzêÖ»»Ó^Ñ$„ÿûÿÛý½ñá$ survival/data/heart.rda0000644000176200001440000001751213537676563014664 0ustar liggesusers‹í] |MÇþ¿öXJµK•Mî’Eq‰D, ÕŠRrûIW"±“XÓV+ÕÖ£ÕÒÖû?ºpªª¨%Š®)¥¶é³ýŸ9óûÍ8sïqož÷žóùL¾gÖïoæÌœsî™ïLz„ŘËÅ”3™LÅMÅË3/¡ž–,®þ)f2ù–¥žáŽD‡ÉT¢ªz^QEÕ™†(_¥›è¡´(ªêÔpïŸ,\11ÿ¡2Ìÿͻ̟ó>Ã=Xøþh†^%¬¼1Pîy–îàfð¿Íâ¿©ÄpË~è–îððW€r±ðý2ÿáª`Ç&fïΧXüŽ,ü+À3Ò5e˜Ó„¥?¸‘¥ÿ®Ø?‰Ù±çK·ð@_~ø ý½ ýqæ?ð8Øw”…ïš ùÐ~›!¼:´×u–/g´G³gWo(çØ™öL|/@¾Th·F,|wÃ=­ _*Ã=ï +ÿ_–o7´ï—g þ]¨G´SK¿ ®Ó¾5®ÃoÊ€&ÿ¹…áÁ,ß¶cÐn« Ü,†_÷rúÏcPßò~Ã/ÒYºç±P¯âÀÛƒá¾ÀžÖ¾<ã?Çüû_cùöB=öχòVA»ù1Tžcែ=Ÿ¿ |}î¨v·`¼»öA¹œ¬tc«ÔÀ‘ŽÄDõÄ—š´æHŠSñ6l³`¤çBçŸáÏ0e'Ãé›:!3€á´\@Ù¢L‰„ò§†/AþÉÌde䟔ÍpbÃq¾ “ >üñ?&Ê ùGÏpƒt±PN,øûCºv`¯•¥'ˆ½X<éËâIw°üdøG²z“QàO€ø$VO2Á“!|"¤Ÿ˜­ÇÉNœ^C)‘ S¡ÜT(7u «'I‹„rÒ!:»nd&»®dÖ÷ gC¹³¡¼Ù>—µ7™|óýgÔ»I‘…рɀ³fX¡ž¬?‘Ì. gœÿK€K¡^‹*ö„òe®„rA½—Ôa¸ì^J¡}–]ËæBþåong˜å§¡2‡µlÅÿ2y_Ó´f)³ ‘¯T ]â§:݇Oƒþý‚‡¿ã ÆŸ-ùãõþ$–^I‚q:6–a<øãX{)#õåòü¢/¯ŸÄßÚ¹% '&}<ü$Ö éàþ±úúÊ(Æ\ÏI¾zžÉ0Þ¦* §äêãSb$?ô÷4}ø è×é0NÒœní"3ÁîY0¾fèË™ëáÐßçÂ8›ãrŽ3O`ÏÂúr2ôד,†ñ¹ú}f¬>]&”»¨±>|{)!‹¡~|ü@»-•øq\,ñ½´9``6Ãe3féû;É qÛ~ˆÞŽ/%žOékY¹JÊE@Âp:´‹ÃÄü0Žøsç%xžÇxÀd¸îó`Üâó ŸÉž é'ÀxLŒeùÒÀ¾Q¹Ì?xˆÚ¥5C¼¿ÁóGqøë¤³ò”!>RÊhgñd(à`°#üCrÝçÅêC`MÿD?Ký.ñ/ÝvBNA»ñ9ýkFS}¾Y`ׂX}øLèWiÐ_g…H|o.Ø30xç^Ô§ŸwÍ}½3 óçUŒï§÷/ªã¾äÅçÏ2ÿ™Š>Ý_©ؾN/é¾üåð\ú’ûxžÎç®ñÊf§çñeÒÆ—5£é?åã~å/,¯\NQåóT^~ùäôò‘ß|Få¶¼ü^Oü^Äkãçî©‹þðdßÊQÐþìm9Ee§ô÷ê(l?ýwóy‘^?¤í÷¡ýšÌ'Î^bIë¤s“R—E¼5k݈Öĺëñéç~ »„|¹zÕeÒiLX³Úô$×mÿÃ6¶‰Xòż†?EÂI·igE“ˆ[óLšA¢²¾n_©òG¤s§•²Â6ÎÅÿßÐjeHÔé˜gNm™Dn°z|Í¥ÄÚsßæ7×.#ßì¦Iº.üiþçáA¤ó›‡ÛþúÖqþî/ïDÿq†„Ræx†éÚ⓵»;H§SÃzb7!+V×p°;i;»tƒÛöѤÁ¢gæ?òÊ[üF¦j*énï ™øöÒœ Ù$¬ãnëÙ=Ïp­ø$r|bçcO’nJù µ‰Hا}gLø‘tj?tgRï$²Í{o·®yt\½?çù3Hû~nÖ‚„hI½Y’„GÕ›RûŸíHûê“mz.…DvkbÎIÝN"æmô¿T»éRrAÄw½Hûg?ý7Òt¼”tléø$òÅs=~~¾, [¹w¶ùVõ8ùâ– ÎxÕªùôw×$ú?ÖcæÊöƯ>Û^•D¯9gÇF¶áúŒ¨Û;H¤zÑ“?&Q‘•.ý™@:¼×9-¦QyBzŽ«ÿ].‰:ú³åÁóH'Zý•ûHÔ«öv}ÞzŠXÔÖûðÔ%ÒñueÐo¯”"·_n|-ç‰rvèT9æ[±±ëž—*n"­ÔÖ¼þAÒå‰!Ž—»"mhï ÞL¢ª7¨{e¶Ê[îHƒ ïu!aZ5Hä ¾Éó— 'Q¿4Úr ØL"BòRJüø#‰Jhûñ®éSHˆ=kÎÖ$QKmó£ó5ÞçÖÉŒ åý)rÜÖ£}&ô$þÃé•&[Ž©Þõz/Ò)½|Æ‚?ÃITIkfµùCIÄž†½®” §ìï´}Ç $"·NÙ: דðs벪šKÂטyíÖfÒŠö¾ºHðk4Aiý†uP«æêuR;¥×£¤ÝL­ ¹í±iM-H˜¹î£äpÒaÍÀô-·«òñƒ¿Øk¬ø=Þ0Iƒ÷Óï9ïþà¯ØpéÝà%‰ð{¾¯‘poø4`¼Owz.ÃÌ"²¿ß@x|,Ãî ”ùædéë÷,`¼‡gÁ÷&ù£Ç£°>7.ï@P/¼oñöé~ø}Îíò‡ðÌC €}c!¾7ð‰Õ•OºÎg?àÈàéæA9ÑŠÞžîØðû=~/= <ø»ù!?ÿîÖâSá÷O ð<ù¤úOÄï¥Nè7½ Ü©àŸ þIðûåYðã÷Ql÷dÇïFø]g„ñ‡vÐc¼“á @¼þüw/”×G²û[ÀÆ€0NL0~\¿K@:è×.ß »„c¿ ÕÇc»â¸àáOK~‹äÇq‹ãËGûzB{„ØÓ]o?¶›‹]8.ƒ¤øŽP¾âá:òþØÅ};ÉíÉóY%¼`}ìR|˜äoåDKõÃëŽãÁdÐ.­ $Àvåñ]Lºüœû1ö'ÀVúx¹ý¸¸¿Înì'Øy:ÇrÁ~ÐÕ©·¿³ÌÕ§Odß©ø}ìåס) ŸQôùÛëíws]Ýþþñöw˜·ù ú»²¨¾ä·ü¢â/,·v{[Naí)ì÷†{õ=¤¨ëad¿›Ãíó‡@$ŽW—x_ƒp‰—‡û„›Ü§“ý²=.(•cX¾|Äû©A9F¼.ù øùýÎt÷r<µ¯‹]r> 7à1º.õ6h_Ãö7º¾Þ^O£ë"‡{È/óylwOv´Ÿüü1zßÀÃ(ÞÛ|žÂüùýžâÉNOvÅñåóÔ.žì’û¡·ílÔ^FãÙ“=}ÕÃ=«ë¸3²ËÛçiA¯¯QþüŽû¥m û6½ü…ý…m ]â/×ÛÔý\Z}—ðiZ„ý»rmâßü®¿­yÛØÏ±ÁsŽf8/ƒûKûMú9â}?{àÀß)K½Möë,¿ýâejð{޲ôÜ]õLú9’ûOAy¿±úؿ׊í!ì°ÛÅþÓÐî´fêëñ÷ϰ÷Šd×å—éñŠh½.õº¦Ñ5“yí· ;Y=ì' ®ÓíŸ5û¨Ÿtì!ÿ H÷‡E;¸ÿ»¾ö«ŒŸcöâõçåüÉòq?Öêg¿Âú—ý/}!>¬ØOHù¯²t¤8´çIè§—¡¼³¬ŸñôÛµfžl? íò‡TÞ-ùXûMHwšzãßâñ'Y|Q?ŒîžîCr>Oã=¿ï«žž?FüFõõÄc”ÏpüxyŸóôüñÔÎ2Ÿ§ëkd·¿<µ§r=¥Ë¯]ù­§';Œ¯«^Ì:Ú1*Ŭt`Ñ@ŸÃ’†¶”þ²Žãâ“D@™¤ä–ƒ˜ Aów§·ôàq‰IŽ$`(“8.aH\ÂDð–p ¹#]Ò°Qè+;Á1,©% ÐR–KJpŒNŒé´>£†%Žr$ Š éhé0£oTâÀ1 ¼ð„¸áq“¤ê–M3¡åUÉ‹â WÌ‚'V<±áIžãIž„ÂIñÀ~ÈÏÌüÌÂϬüÌÆÏ‚øY0? ágœÃÌ9ÌœÃÌ9ÌœÃÌ9ÌœÃÌ9ÌœÃÌ9ÌœÃÂ9,œÃÂ9,œÃÂ9,œÃÂ9,œÃÂ9,œÃÊ9¬œÃÊ9¬œÃÊ9¬œÃÊ9¬œÃÊ9¬œÃÆ9lœÃÆ9lœÃÆ9lœÃÆ9lœÃÆ9lœ#ˆsqŽ ÎÄ9‚8GçâAœ#ˆsqŽ`ÎÌ9‚9G0çæÁœ#˜ssŽ`ÎÌ9B8Gçá!œ#„s„pŽÎÂ9B8Gç塜#”s„rŽPÎÊ9B9G(çå¡ÈQ"0 @œŠS³8µ¸ ¶ØÝG½¡9ZNpŒÙ–þ¶I××Âú‹™Þ:ß1úí-ÿ¶çs†5ëHèˆßÀKØDBü¦ü„„Í%Ä9œ qÎÃ,!ÌðoÕˆ6 ƒ$ –0DÂP ñ[>~3o-!Ρµ•¿ÙzĹLŽŽs¦zĹ,ŽN=â\ G§qn6ü8§‰s<& zI<ŸkFĹ#ŽN=â\k”S!¼³S8÷»š$têçT9Bø3àÆ©Çh“„DBL§èç`9 *zìa’Hè”òá\7GHÿ¬SBE8wÏ‘Hùz*zDMGHÿœSBEÏ›$$:%„|½L *zŒ1IH$tJùz›$„ô½!]o–Î÷U“‡dza|'ù›HþPƒt’¿½Aº§ Â-á’¿ŽûäüП¸?Ä=ïîtÞÒ ½\o©=ñ¾ï’¯£d—YН ÷Ë¿‰ð¾Êý]ôåy:\ʳºO'÷—ö´ä 3o(ù£îÓIöàý…ûÝ/â[I~)ƒÜoxxÉ/ÇËöûJþ¶’ßǃ]R~.õsöÜ/µŸ<>ïЖèÃ¥ëf8^åñÖUâ“ë sÿÜ—rA ÀýÒ}An7—þÚTòËýîÃ.¼ðþr—C»¯jØðýÈHˆïFš6|/Å÷|Ï“5nøþ‰ÏI|Í›=üø^(kßðýTÖÀJù5qhÖë…9|>`1ü½ÕP3éeí¶§¬¡Ãzã{Úš:|–µuøÞˆÏQ|OÇ÷'¸Ÿºh†ð}ßSQƒ‡×ÇK-GMþµyx}P£‡í‰Z=Y3‡Ï´OÖîáï |ÏÄ÷DYˇö ¦ß×PÛ‡åiüðwjý ×üáuµøÞŒõ‘x¸ý¨ ÄßòïÔâïFÔ ¢]ø>‡ù¡ñz`ÿ5„¨B-!¶¾ÇáøDm!Þd!Ößsq¼ÉšCo¨=Äß ¨AÄú¢µT¨I„û©‹6µUèÇñZEl·AÌÏÛÇþNF #¶O,ðc{ÈšFù÷àݵïÈßÌ‹JÃ$Ç¥/hºÂ–[P¿|µ}ùå)¨ßOQ]W£ò=åËo{ôºÝ+»ók‡·G~Û½¨ù jGAíñ¶\oËÉïQ€ñéö;@Q÷‹¢… ¿ß÷Ù¢¶¯ ùîÕóÃSþ¢Êw¿x ›ÿ^_—{Ý~÷z¼Þ/þûÝ®wÚ}U Ô–z&’Šë­í°?›Ô xjí£ÿ"J½¼Ÿ>^±ÚŸãÓtE¤ß㤖cG [õ5¤ô¿Ú/}ó0ATJikùü·žÝ_çL\Qªikøœˆ[¯¼1hq® ‘øí ‹³H­Î1/m{ÌɱF…×>"kB8Vo¿mZPãö«Íé¢ÑlDåéw[ïíC|8¿ÕGU÷plb\Êï{R·ÞÚ«m÷ETªdÿø^rì&Ž~ÿüJ97MA$ÿï÷¿5›YƒcÅÁï?¹¯u6¢ÒbþI~Ê1püõ£Å”EJ‡WGÖùtNUR£ú¡¹“Dr,‘üñ˜ÝŸ8Ÿ‡ú½®Ä"’ÚsþXØÔŸX‹ h?¯¶Zó¦&D¥î®÷cÖ¾6‹c•†¬»´/ËþÛŠo®~±™ ’'MÍŠ=ù ¢RK[‚€HJ6™73<ƒ£ýè·ß¼^áªQ)µ˜.š%¯M&÷é¢T=0wÜÖ\¥Úú ÕÔ½¦<¾Êï½zk¯ÙO̦‹YMˆ[ÏS3l "ñ¯ZÿÅAŠÒD[“º“£éô‡¥×dÄ"ÚeKd•ÚÚZaŸ­'KñE)…ãîUífMË0‘Ê=ÒÝ'¢Ò0uøßNù…c­‹Ÿ'T>6ÔžñMØó¶l¢R+ÙrdMÙDûÅ#“[Ž©NIµø…?e( ¢œ]™xHi©]n'¢ý¬¶dØ„HÊõ~±|Ù›¹ý~¸QîHƒd¥uB^Ó®5+q,MWÊö߀¸5}Ô†„¼"ñÓÖîn@Üzüü¼Ü›=LˆŠ-üÌùÒÝ~D$þk_K‹ˆFTÌ´yvF ßÍ>6vÍ!¾ÏŸ)ÿÙðXD¥6]Y=Õi?5£^£¸Z‰¶dwsâÖk?¯ß:ã-‘Tͼüm—ò§3]"[íWR­uÍß•<¨Tó÷U[:Ç·ý·1W—9ÌqëŸyï{Z!ˆ¤f" ›8úÄÒ DsôÕ֢ĭ?¨l¿ÞVÇS£ò?z%qëþWNÄw7!*¾«è¢æ5ë©l!UB8ÚzÏ>5üøgCÔ§99Zú}ýê—§"Úoié¥YîþñÙDûµ°õçcKe+õ´%ÉñJºÄ¼ÌF¼¯Ú·Î!Ôr{Ngmq¸=ç¯úÿ¨2Ç~L[ÞêËñDbýïÝþÃ~Šö‹¦]í§¯ÕU[ì(dz›Ö‡ä¥”´ŸÓn3íç²hÄrZ{†pü]×ÃíÔRó~úD [û.Z3ò–ý’ÿvûW¿}%08ðb«cì—è0ÛN8æi÷ŸeöËl»@­ûMåx•­ÙçxmìÜ®jæx½â\ºš[ ö¼é °û¡À/úO³_×úÅ'öÚ¸ÆñæÂ÷?ŒíßÃ~[íÅã7Ho[QÉöÛ‹µ")k÷9.ÓÇâã÷W ¤¤o=µå˜vôï-«9~vñ÷® _r,U¥B‡›Sÿ)°eµØy-r,ã«]xZs—">šÐ]HYVORŽ^ŽãgI¹àM)/f®È®»À]Ó§Dþc){*ârÏ/ìy“c…~lrª-©XLÉÜyãœ+²þ±Ò@ú 9%ðÕ*q7¶t&•6^©vÿ¢›Dœç蛾Hí!y?•º<³=ñÕnË+ˆï®Ÿ¬åRGp¬ómò¯› ÜÔtõþœ^ }Uíâ¤2Ýê Êo«°ë*§}ðÃ^ߟ?µ|K=ŽUCì~ÎNžõØ5· ÜíSiİgªO‰ý·ÌÕ‹;ºÜį}Ф „~â×OÛ4Aà;Ñœ>z\à'(3Çj Îê±q2GvŸîKª…¥úª·Ïi‡À¡—ŸÙ|&”T[ÿnIÇHêïі/ks|”n•vD`Å~áeßl(î \Š<Ú©­5¸ßŽÕ¡¿r¤Í~¾ÀÓO&©Cƒc ÚZò.~êpÞsMæ°.Ç tS‰J„nÈPÇvMà»ì©æ‰×š¿Ÿ–¶uíÓƒ§GêeòRðï> ú]äááþÈï÷ÓÂ~GËïwÌÂEÍ{¿ì.ª£°ß#”z>hõð¾\*n-X¹6安IŽô—LLqããF'¹ìß!ög¹&Æ9\–PÞ’”÷»¯Óý©Ðv0Ímbú|ºqc)Õ•Vð-ÃlÔ¼Ã(¯êè®Ôt—q:>Ê£;ìÒçE%Õ‚ºUVÝhÕUQÕîÒ]®éìZ!S5ÕUÝ}^5ÕT]utì¦Kjª®–êj«nœêè,g]ÕÑMë©®¾ê&¨Î_uɪk :º5ým¤ºIª£3†tGaº9Ýp’Î(ÓQéóSUGg(§©®™ê¨Š÷IÕ9UG¼tV·…êRTGg4ŸRÝ >@ut3Xªz ;¼SUUFÐÝþé &UéÒÝs©ª€nþIU¹tB{¶êèÌïÕÑfº«=Q¥ª[:3MÅt¦“îªNg~˜ØÔ6U7,TýÍPÍT½_¤:ªÆX¬:ª ›MSu+ÝU”Nª/SU;PEÂrÕQE*=§ÝTeú²êè,ÿ+ª£*RºS{´êè =݈š*8é®ïT9AU#¯«ŽªNVªŽª³UGßÞPL§ëa¨ÊðÕ½©::³KÅt³ë·UGw}]­:ºËòßTGw#§â“XÕ­UÝÕv€‰õMª^¡›µÆL2>4NC:Éø:“Á!Y#éé¯a¼,%jeN–"H‰Pšín$±“¥þ’_¶O–”D–û $š<¾»â><À ½\o©=QÊî’/BòKOREòËùÃ$ž®îyäÃ¥ÈåÚÜç“û‘K»Êax˜Ó}xcÉ­¸O'ÙƒÒiî—®·K~Y:G¤üRÿáá’dÔ¥_ÉöKRB ¡¯»Œ¤ˆáÉÞ/µŸ‹”²†A9Dò[ÉßMòËõuÄêýƒ ø¥tÒýÁ¥ÝäüOH~¹¿Äðvp~Ç¡Ýg¹ÄÚǼM—¼¡´%E¸´" ¤o(UC‰>J‹p©J¶ú3ô?Jq)J‹–®ÓÛ…K_1øQ’„KJ0¿Yʇ|þzû°X¯t¤á„± Q¶ò/ý…!ü—¥(ùÃöœ“­÷c½Q:‡vdíaˆK…²2ôöâÒ\*€’O”°Áý•KÖL€¸ä% p„ãõYÛÖËÛ«Àuå×%u¿ÐŸ!.}Âú£Ä¯Sæ÷ ±]d3„‚ÈØ¨—dç§Þ.”˜áÒ”·ë0 [oÏ8Ç¥)ó²õå¡ÔëƒKhPJ7'ì„ü)×ËÅz „ë#ó ý3Xƒòë$/áJe÷ ’’­· —®`~Y’Œýd:lÓŽí÷Wâ„q‹í‡KVpœNõgˆKòðß[LRôõåRe°þ·Ëÿ JVû8õõ|p%฿’!`÷8@¸¿r?Žsø·=¼Ýe34Ç.  v`ûÀ¿íáíMŒ——¾¡ý(…Ï#í>›_ —·Ÿlò[^AÓ¶Ü‚ú壨íË/OAýžx Ûžÿ®v+èõ»Wvç×oü¶{QóÔŽ‚ÚSØOvÞòz[Žé´û,Hv’@²³%;’t§>G÷Òvˆ÷Iºó"HwzHw¾- t§&G&ÙY‰’92éN&HwªHw¦yîÌE,¤t碗ÒiˆÒ(#éN%<_qdÒþˆ÷V³ò/ÄJx¦!æSÂãËÑ­„ç©ÛˆE$áéˆ(Ixˆ á™æ¥„çsD Ïi O(¢ O[D OwŽù“ðCôR³…#“îŒáȤ;ÓA³Í@³Ò@³$<ë]$ ÏŽz)O3:)O"HxJ ,R)ÏOÝJyòjÍ]ÚXÊsWIO)E"é9ïŠZ¿Áѽ¤'ªˆ$=#9­¤gŸ@MÊSŸcÁ$=:IOŠÀ|Iz¦s|°%=_s|0$=3@Òcò0ö ŠÔà¿å(¬´ÇÛøüòõñPâ£Ç{ï^Z=¼/·•ÄÐûl±;\q å𻥻[˜§´ž° å†« åæ§]<Õ³(ê“_ûò{m ’¿ ¶“D4¥GƉ›·ÒmÓÕ< 4æ”ì˜4†Šºððò™ b”ÿÁƒ¯„7mÔãÿꦈ7o”Ó)z|¸y£„Šÿk7ot+*öNJìQ8l 8Ö$Ë\TLyé>nðýpƒï‡|Ó³ÿ­ ¾ñÔ*Nmâ4Hœ‹Óq*Ø[ ` l‚-P° ¶@Á(Ø[ `3 6³`3 6³`3 6³`3 6³`3 6³`³6‹`³6‹`³6‹`³6‹`³6‹`³ 6«`³ 6«`³ 6«`³ 6«`³ 6«`³ 6›`³ 6›`³ 6›`³ 6›`³ 6›` lA‚-H° ¶ Á$Ø‚[` lA‚-X° 6zÃðn‘‚éöÿÙ¸O’survival/data/transplant.rda0000644000176200001440000001145013537676563015742 0ustar liggesusers‹í=Œ]ÇuÇï~H±ØX )T°xˆ@åYa&fìÇIÑüw©/Z¢¤}\.¹üÞ/’K!ßrEɛТt†‰T)\¨p‘"‹)™.E –.Uº¬ìfþ¿Ñ?ïÜ{ß®5!ðxÞÌœïs朙KݧûO¾ôÜÉ犢-ÆFFŠÑ±¯ã£ãÅ·7às+Ký+Ë —úWVŠbì7fžÝø|wãûŸõ^›zGîœÖü”à~Ãÿ‘ð^Õø˜_ÖxÒøD:Á}‚/£Ç ×úq“Ôø,ÒñQÁ©^Êû{Àø1Fì:¨yü6ev ý¢Ý½T?èðr©\ü€?ÝÖ„^¦O´ÿQjÇ!è‹Ô^ìC¿#àÝ/7ÿþƒê>ð˜½{Ñkò?þ9ft®|'±w®ÿ}=^u;Ð+]|Ž=}'%ÿ“·Ð3O¼ðÿqÃ;jz‘à‘·ÑŽAŠÏúÑt=Æ™¼=fóĽÈKæ>za'þ;Q¤xÔ ô ?ÿéGÒÏôÄïø-B“ãûŸùï›^q¸]‚ä yåùrØç[¤v7úc†‡¾qß þ@óø ?có?ÆUãz=õœ}Žÿ¡ÇNü€=QAª·ç›÷ß—Àã¡ó8cç$ò‹Î÷1óSȤú£o„šï Rw±ÇëóØÿWÇýc|àK¼©ßÈý=5&>Øûø‚ß7|ßçàÿ¹ÙÅ:úbÛGü¦M.xØGÞüà~›'È«x^@n€_÷ôyû»ÖÙÏèåõÚ÷cìsE*ÿ¢/rðôÇLOê_Ïæáƒ€øgº ýÐë"cüpÀø“Ï~îp:âßWÌîÃé|ow‘È‹ônú£‡Ç~œ;¦4Öù!ú›>sØè~`ø^Àó~ ž÷Qêv¡—Ÿñúaqózûü ]'ÿ^±yê?û¹lŒø'žÿ¤·Õ/ìtøTüðS<çõükìAï"µ?w®'b_@ÿŒ]Èî¥ô¾Ñ°uøx<ü<ÿÙÏ^·Ø×øerâž>Hñàÿ€1ï±Û ÷Yò’:ý&ÏÁ$¯Øø>äç,vÇ{ˆôö:I½§¿ì‘êáç öƒßW^*ÒuâHÞïññó¼ï{ïw ‚ççHüãûpÊäQoöqñü&Nèõ—Æ;ãýÑôðzäúKï§Îû^÷=®½"]'¿ü<žÞ7â=Tcò–<´>õõóAê©çù0­1ñ4yä%þ"Ÿ±ÛŸO 7û;ÉkòùØãýÿÆzü(Õ‹üÀ.×Ûë¶ß7ÈèüŒ~ñþÙ^aÐô…ç}èÝž#¶ï›ð±ùøüAcÏüÿ^1:ž≽SFï÷V·'>w(R¾ÄÛïì7ì真{õR{€Ño‹õOð{Œ±ÓÖ©QÃy'xÔ ÛÏ¥‚ø~âu}<_ðú 'úøù,ê‚ô!ò†xÂç€Í#:ö‰ß·ã}zâ‘WØïñõózàOß¿~¾ôó©Ó÷Šjyø—>=çHüçñ Ïæîû¹>ˆüøÜq‘êíùóÛðžò» ŸÃŽ^®~O™mÝïq1Ø£ùÆ÷Ôs[ðÕú5øªÑS‡<¿‘Ëý&ÞŒ¿ôàoúx]Äê~ˆ~¤ô ¢OÌGãïÏoüü÷·æÉž‹Ç{À ]w¿2zþó7þÂÏ~oÌõóx®…ŸÖ‰ ||¿øý>Þ÷ÛºË{ª›ü£6&¾öü«(ƾ³ùï/Åæ¿Ò|ý-ÁQ[«Â1|ÿ8M~}ŽW•uüëäÖù Çyäì¨ÃÙª¾mõjãë&?6Ź.æMqÌÉjãÛº¼­ÃÍùºÎæ&»êüÔÆÎ6ùU7×”Ãø¯MmxÔÕŒa>MtÃòmÊ6ùÓ$»í>mãŸ\.ÕÙW·ï«r¥MžÔéß6?êò´ìaâ™›«“Ý´êlÙ®^uyWç«:›êèÛî§œ¬:ûÛø:÷aýÞħMÕíÙœ}M9^Ç«MÞ4Ù2LÞÔÙÑ$·Mn·É¶1hãûaø·ÙŸm}ДwÃè0Ll‡‘·Õ|Ýê¾iŸ\ÌšüV“Éeö쥹ës—–7¾Mü/V˜¹Ì—³†ÿÌì¥þ2è‘ÉÙþìÊÕ¥o¿+]‘ÊªŽ—>#%Xþ°>Z¢Ùœ³õqÃ-óÍ…Ðé\fyìò]×±’œñŒ~#F[žsë|Qåt/AçQæ=®·Ë©š­ q[ëâ[¥[ÙèÕ¤6Uð(ãøœëé8m|>^A3L ÉÉ©ÊÏúœV~,ϱ¦Ü,ãø^¨+É9}ÆL^UN•ó¸J¯²¹=“Qåw·5—kUû`¬‚>Ç?ç—*[su#·ººS—7×¹n¯äò¼Í¾Íñ¨«±9y^+Ëu}´‚çˆáWÅÖkH.7šô«ŠIUÞŒUÈ©‹—ëRþ^×+ªèêâQÞ³MqlóÝùÕíi÷Ÿ×\ ʱôš4^!?§çhñ´í^£<žUüŸëßåy×ÁsÕå9^UmÉåEU.är»jär¬J×*|¯Ž•d—uÈíõ¶µ«ÎÞ»ÚÒVù¨J·¦zRž£ÿæz×€œ.e¼r,Úœ¹|?ÕíýœÏs=³,3+÷…× ·µ¢/n^yF¿*Â-g¼Ð]h_&õetßFŽ¢1ˆ*¯Fz{ç—/›z¿Ü!ØÜecàƒÏ=㽂ðßmtðëØ:ø»2p‡áwly×y/ØúnÃÛexðw{wÙ<ô; o§áåìe~‡Íï4ü½†×1èzº{m>g§ûÉóÁãý¼ñÙkyoNï~@~Sží0Ï'¿Ç×ý²Óð<Ÿ:†·#ƒß1èùÛµqtý]·ßó×ãìtžŸããúî´ùœ\Þû>vý»†çþð|íÛÌí‡ÝFŸÛϹ8¸Ü®Ñï6zæ½Î@çõÛõô¼p>îç î1ú\Ýw;nÇÆ^Oº†—ƒ®/óŸ¦: ûÝëÄnƒ{lìzw3øž/Þܞ׎ïë¾<º6ïùâyëùçr¼^8ÿÜ>÷ýëóÞGsùåñöõ¶Ðë—¯{ž¹šú™¯{~5íÇó¸x}ós£ëÝ1¼ÜºÛíÐýït¹óäï æê¡ëçu>g§Û›‹»¯{=î2<‡^ǼäèÜÞ¾×™Üz·%~6éÛwÛØõñuïûÞGsö»ßròsuÐû¼ók‚]ƒnǰ0§‡÷™t<Ï?÷oî¼âø9»ru*Gç}%G—;ï5£s°ÛÏó­#˜»?äò;ç‡9;æÎ^®O®u nÕÞÜŸwüœÝ9Ø6Žmíðó‚ãµµ¿ ßínŠGξžããô¹8åæ› ó÷óvNÿ]î~™‹Ï°v´Õ'—Ÿ®—ãçìnçøËØõ¶Ðãš‹sÓ½ªiþ›‚Ûµ¯ n×?måü¾¡ïËa׿)}‡Õû›¶c»òÝîÿ‡eXðï/ÿë0¯éÞ½/= ð³ÿ ·€VòÖô ‚ý™ÿXãÛÝgÄgy*ÀÁ£y›éEÁ“½¢ü§·8•êqQpBë¼½ÅÛUW¥÷uñŸéHÞj€sÁk›À>ÙsFð´ô<¤õÝ‚;ç¤×ÛÇ_7`]ðœ ñÇO¼…¼,ø¾äžß7‰+ößÓ¹üyä \xœêûºèy õ¦ì9)9·Äwi!Ào ¯#ÈÛ”×µ¾(ù·øSÉ;/>GE÷ÁÊÉé†ñmË·ÅwEüøµ¢s3éø¼ôï ÿ„æ‰ß«šŸ—Þ~_‘¾!¼74ÏÛ“«Ò{Ez—Ü÷„ÿŽäÎ QãûZçíÈ+‚äMÿI€û…G¾Ì?LõxÙÖÁçíÅ{!€Ñÿ³šŸDžô9-¾'‘£ù+‚Óšg?, .?ðšÖyû›ý‚ŸÞ”]äãYÆR}ÉcƧ„Ï[•wOkþÀ?îGêÚÅŽøkL~û[ùKâC½Xè¥òÑÿ¶ôä-MöÁ[šÿ± uøœÆÔÉ™™ó¾©yöÏÂCñý”ôx_cö#ú¼+H]üDõpªHõYšHç©+ÔCöÇb'@ú uè¤ðx[õ”øö¥yûÖ •ó:°ßú¢Ã?òoŒÛË»+ùäãu­³ÉWúà¤ægE·þÏò¶?ýï‚Æç¦zçD_õðéË[Áä}z9(Þ»Ó >H½œ=ý‹¾÷=ãƒÿ~7@úó%—:Ê9á-Aò ö;ñSŠ~}M°^Ћ?ñ|±Ô ¼x]ú_y’ÊS¼{½$ŸúE¾ÐwÔ7{w{)Ýëðy”ŽÉ³á³Ð ~œG:Eªÿa€k«éú„ q™“ÝôÙµ©©³Zç\…ArN²¯ Aúò¤Öéwž÷ätï âÇO%Wç´¸þTxÔSöùD_ÁÞ{è#(qsùF]š×<õŸþp?ÆsÄŸhž~D„?qbß’?ðÃßüÚÂ5ÉÿůR9ô1ü¶4•Îsn˜Ö:ûã‚øá7ú}< Æ>%¸òe€³âGßY\ò~~Æôïˆ?8?Q'á§þíëkŒÿÉwü;÷$•K_¤/Ÿ=}cQôç´Nÿâ9«õ ß‘]Ô1ú!çê4õ’¼cžó,ç¨OUOé+×ÄWxŸ=Nõ»Ù ¸/äùûÚ µ—söŒÖ9]—=ä5ö®Jï×nMý™óu•¾LÝYí¦úÜ’‹ÏÓÇs~'@ê8¿îð®ôˆ¿¦'ùË’?/:òn鉸ˆŽóõja!@êF¬‚ Òÿ ÑQ_ÉOö çˆ÷5ÿÑj*—{Èì“ÔNîœ×é·èAŸr?ûPzJÞºì½+>§%—¾²öE€×9ÏM©žgÅ:N>â‡Uѳßx”Úů ]ê!ûò”æÏ‰?ý{A|–%‡¾½ ùôûxoVþqîX×ù}V|è?äó‹Áî¯ï±EʇúÆ=›_çã|@<èƒÔ?üÌy™ºÅ~âžIßÐ<ûäšðÉßiáß$.ìò÷ŠÖ?ùm€7‚añÜÉyæ5áq®» ˆŸ8ú¯‰±ÎiL[ÿ—©×œSØ—ð£nߨ»û?÷íó¢ã~öâʽtW‘êùÁƒO‹žýâó üû|\t¢çu_z²_¹/Q§xîÖúï?(ŸéÃáç#7öïD€øéï&R=‰/uácéAÿ#oØ×ŸŠ纫Ò3>ï>÷Qì¢.ÝÒ:ûùg$ý± yt®| ù5ÙÉs,úÿõÇþL|~~(åã ñ—\ö+ÏCcy ù…?’½<7¹!þôGü½ ù·\ÿŸë¹ØUg„O}9£yê!ý›suægÊ{Î=Ô?ž¯ ‚Ëž{]“žüD烟 Eò¦e×'¢£ÿ|¬çô¿uÍ/JÎ%é½à]­ßÒ:ý}íKáiÌ9ú®äѧٟœOîhýCɹ£ùË‚<7øPÏ&5æ^ðÑO¼§ü¹¯~Å=aq&ÕgY|ïI÷µ~ìßìOêýMᯇ}ìz÷º¿5Õò™óúšê+~;/ÈóÒÁãÙ—75æÙðõÊÌ÷#v¹¯/ëÔ§ý ™^”{}iãèãÝì“ß°¿.û; ¯Ý†Ï._ŠóLž¹Y§}fìøÆ¾¿ñ'|í¹7~™ÿ½FŸz‰ñoó8èÛÉú€ñkë…|hŸ›}{¾{Œùí6żͷÉKÿ½9í3väiÎ[öw›}{¾–G’õÏ83~ìý¤ë‘|f>`ÖMœÁº²ûÌ»ßæg¿.¸–—¹Ï}çKý²’ïݽ÷çC_‹_Æeëúr¶ßØþ`ë“z–gbdÃàÚ|Ùù®À:y·íÄc¾m4Œ õ;ú#ŽíC\·þ¹nλ,»•äy1O™¿ßwßèO@Z?\O /slÞ…·é3 Ÿ“óCÕú¥ÙJ~¶RÉÓ•aùñ±^9.çUò<ôÎ@ïD¯’ã˜_¿«X…\þk%ߟËB¯"XêVòUìÏݪäø½Œý J.ݨdûËàù&ô–À—çþ.xóüº©äàwv¿¼Ž8>Ï×€sõ•¼»ãC•¼8€ø0¿€ôæÀ¯‹õ+ˆûÃïà÷n%'oø|f`ÿÁµJŽ€ëîô>Xªä"â¼»3·+9yv'ŽùþNcý:òòì§ ?‚Þ<âd] ûï€ÿÕê”çoúú×PÌÏIø9ž×•<‡ý+ð÷x8äÇqñOÞu4>ïCoy`κ~÷üoþ.ç<ÖY/X?ÞÝk~œïÀßâJòÞO€Ï¹›•<?]ðàý=Ýõ×ç°Î|^„Ÿ“ˆw¹QɃÐ[ž…쿆užÿ2ê°‹º›~ œJ¾þ³7ý¹ÜCÈK+ˆwÀëmø;Ó«äËÀ¿þç ÏóIè-b ú¬ëyð™Àœç°<¯9ðãy_€ÞüÏR8c˜¿} ûÀ=‰ýØÉ9Býjö'±á6öï@r~Ù7fé~Xÿ‹ðs.ñù.P|ï¯àÿìf!ÙO«ä”Áå|ûçf!i?¯÷%àÌ€ëgöo`>…}ÞÏ镇< ?g0ŸÖ-ïëè$æðwxìsÌÿ)¬¿ ýIàLÞöùÃ/îuÂç$&”òœ­¹þC‘?´ø¿¯:°þcxëåóÿ¦ÿ}˾ï׽м.ÎFñ7j·^Üм.¿ºxuyÇxÖc½¼Cþ·Šw]œºñ¯—w]¼„ÏÉÃÝÊ~~^¤Ä:¿wZ=þ|ÈŸwøsà‹V/ñýpö£˜¿Lû€Þ󘿀ý—È‹8†/çä'üKÌ!Ÿ7ü¿ïŽ@oÄø18ôÇïUÂòò5ñrθ÷iÏxéßòc¾¨G~‡{~œäI»QJÚõL|f¼Äæû1g¾Y/`Îså÷X›¯ƒÏ@ïY#éqóœ¸ß—7Hž›ÔeéësNÿ7ô_2zŒƒ8äOþÇ|1.žý÷‘Äß§=ë…u/çÐ]ÛNêÍÆgø±Îç+Ðçy2žãsŒ‹~€wsæ‡y9hæÃu©³Ò×a<÷9HÖ!ãáÜæå'㑼™ýÃïiâ<Þ¯gi—øøäÀ쀴õÀüÛ¾]òçäAý•o*ùñÑJò=î/•¾ý'ßùvÔcÜôÃ8È<Ä¿¯/~éç2Þ¸äç©üýþ5ãë³'Þ—UþÊ«xocqÈÇ#?ò¹xÌ·“ü@~þe%™?ž«è=QÉßv}Ô³ç"çðK^|Ÿf¼â]ViIÊ?Ìúùàû³y×çA½O`oë‚çv®ë¯ãýо|Ã̯6ÖŒ³ÏŽ8¬Ö“/þ+ƒkóàû úyä{T‹7|žÔc˜WæÏÖ÷g¨ëM¼Ð³õ$óù•Ê?ñËxyžùt×ã-üXC¾½¼Å|v’5?r>䟌^éûgÞûÎÇþ;\4q/5’ùb™ûI¿üÈù7{ol}0úäÉß»ßò©®ç‡ñöÌyö˜? 9dðWb$Ïéq_¿Çý]Æù3¿©¯G?bϼ ܧ̜ü™O¾/?¬ù;òx úÌÛ£¾>ùH½ØóA>™Wê±Î­žÄ=äãÙ{Ð÷¼@\äC¾â Yó#ñíô×íßÿ îeß=aߢ߶Áá{´Ì+ú]sž3ÏÉü{}¼¡'õºsmÞæßêùÑÌØôøüê` ¹÷õàð953¿Àñ©éqŒ<¿0¶°8Ù¶±Inl›_Âð¡Ù“ÃãÇÏNbºcuzflnæ,æÏŽ-x ;¦ÇǦ†MÑþÂÂðÔÙùyÃóá¹³†ÿ“ë·Øx Éã ÅAÊAÆAÎA›ƒ‚ƒ62jÊÈɨ%£TF™ŒrµeTÈH0œ`8Áp‚áà † 'N0œ`8Áh FK0Z‚ÑŒ–`´£%-Áh FK0RÁH#ŒT0RÁH#ŒT0RÁH#ŒL02ÁÈ#ŒL02ÁÈ#ŒL0rÁÈ#Œ\0rÁÈ#Œ\0rÁÈ£-mÁh F[0Ú‚ÑŒ¶`´£-mÁ(£ŒB0 Á(£ŒB0 Á(£ŒŽ`t£#ÁèFG0:‚ÑŒŽ`tˆ±­Ùhè°©C§Ã–Sf:ÌuØÖa¡CEk*ZSÑšŠÖT´¦¢5­©hMEk*ZSÑœ¢9EsŠæÍ)šS4§hNÑœ¢9Ek)ZKÑZŠÖR´–¢µ­¥h-Ek)ZKÑREK-U´TÑREK-U´TÑREK-S´LÑ2EË-S´LÑ2EË-S´LÑrEË-W´\ÑrEË-W´\ÑrEË­­hmEk+Z[ÑÚŠÖV´¶¢µ­­hmE+­P´BÑ E+­P´BÑ E+­P´Ž¢u­£hEë(ZGÑ:ŠÖQ´Ž¢i/qÚKœö§½Äi/qÚKœö§½Äi/qÚKœö§½Äi/qÚKœö§½Äi/qÚKœö§½Äi/qÚKœö§½Äi/qÚKœö§½Äi/q«½Ä|Q<>56Ï/_\|äÄØÂØðÄÜê÷²ÕÙ¿îý÷oûÁ¼ÞRsurvival/data/nwtco.rda0000644000176200001440000004356413537676563014721 0ustar liggesusersý7zXZi"Þ6!ÏXÌâðTG7])TW"änRÊŸãXVŽHÆqÅjnçj-&écØëÄtÀŸ¦j§×jG9®Ñ 1®[°È)ã… Í|l Š:T¼– <JKè›U2˦À[:ê‚ÏÝq› гç‹à@%oEØ/HÝ2òᨀ˸Žþ™.ài˜pë 4/f×]¢ƒÙp¹[¥;ã#šÑ Ñv/WæÖΔø9°+ L߆g™å»_Řü_ =¢,m!›ŠújÕüDàÛÏÕjFcfâúžöGLú6GHe®åû昻ï$åAoÈâ‚2Á%Þ«,ÜŽár/]¨¦ÝöŸ¬Í±sᛥ…BÆ£v%¿ãɃ±Ô!Ó > 4¢ÂÏ .qù`¾zõå®°`Ìćòb5zAA¼ Q n|‡&¥lhpï–?ð®QUÍ¡L¶Ç FòK>W ›ƒF‹ÅÉýO0RKâpý˜ƒ}ý$ïš)T4üä¼S•®È¡ëÅM3oŒÿ ¾ž^ø=‹ö³Ì¯—º4㤼3/ókWœ0OŠÓ›{ÑÎL¶¸–Ý@8•#,£ºXÂVŒú½bÄRYöUƒ{]«þ•o~š:7z¢=\ÚVUÍàçÑŠóø„UÓ%ÊúF_»âe8êƒùoh«Ó¤ßç#P3³kÁ’®ÿ4/J¤ü¬ïÃ0þ¹˜ÈØI³Ûþ5Êgñ”ÿ L ´Ó*jxÕNg•qDƒí2ψR;¹M×£}à,ñ~ǹŠçš‰VGÜ ¼:ýC#Àº¬EÃÛ£¥žRíï@ãª/Ðí»MÏ Ÿ½ë±ÔiÔTÐWå ØêŠ‹Ë~ÏK.'‰H‚ð=“øU[¡#GÈoYtU^òKk× Þ—Öi"L½iÚDš²I‘(”ÿYPŠqÓ&^s_“å¶I\#!>¡Ñµ#Xû##Í(âH5T’«("ñ®ÝnCƒÀs_P"Oö«%œ¯ÐU r0CŽg¾9WŸ_§U4n¿þ~툾ØWaE¤Ïcóÿ¨V†ö§‰,„ß ü¦¬(dÓ‚n×ëP«„.‚af&±ìÁì (+ÐpŸI‹š²ñŠE›Z&ér¨1nq¡Œ¶yÉ€¢óDâ·ß=ÇÚá²Õ}±ADêàI"(’Bëh+e¢´­] w‘­é¿våä‹^ ePf¤¤oeP# jWèœåuL¸c%êQíx`ÝdHÏ‘þãÁîDj.*–†tûYb6òu……>À^GôoÂ!éRIÿÈ z4Œƒs=µÄžŒ¿°Ú‡‘™t…D^Á!äbVý“iÓ—(sœ"jlç~#è`ûn«{89£øYC¥¯˜OñÒù[Ó$€K¿ÀXvI¦:Ô@ôÒ®d%3“ó§&¬«*1Ìz‡:ÖÊžk}ÿ5d,·qÎ"s‰†žóÜа ô:e¾Ù)ˆµðeÃh û *&ØÕ&îäµn|;GmŸŸWy»™µMÝ7¦aï=w¬E×)òP­l>’TD G£‚Š'ÎÀã~· Cˆé·ÝÆH¯ª±"òàè‰úûŽMÏ誾#åjm¾C0èæ¯Ù]0¬jÈ™S.ÂüòSftº¥‡YýŠÈÕí(O¡äh„(Dkí9!QÀ@•ä›’šZãWô#(Ì(ï-‰_ÖÚùÙSv˜AJßܸ[tú*u~¯ UÕ·ÏuQøcXœç—<„hÿX#)’(í­å”ù8¡íFâƒm(¾/.%Ó?”œ s4°€ü­õŸófo {— 'Bƒ©Pš:·Ž‰F¯k!DÄíT°OÞRˆÐÃt6¤}LÒt_ìý@ê70Of—/4$þ‡õÃþd{›³L­ÿm±EC«~ú½A|Oþ¶­â§b}ø]ηvI.rœIGâ²}-®œ!ßXØl¹nÐH-ùÔùê=kKLä‡ÿNc·Ëª¼XÍ+ðj(#½^´:èÒãs’ø§7¨&<ã+óWdÖ]ðò÷ÐJºñ…wûò&„°‘¶¥ù\c@=:“ƒAªÌ_à¶Å&¦T˜c*Ý—i—d §ZŽø+ŽhdÓfÒŒ‹¦tc®!s=`ÐüŽ}*€?ÕÐÀöˆþ( ®Érúô\}ýSw£ô)†Qpà!Æ1p"@Íìr3ÕÉÌϸwöGOv »*Ô?Nq•,eeKèö”þeÊXÓ;•êêm ?8I™ßf¾D‡šyÃilôn3E[@éF€çWW%ëÂA[ÓŒv++¥—499Óg@p=6'ŠàaÄðj@Šq–*Oc~ïŸTÉ¥€ÒªÏùÙÊ©ýU± „N~¾Iã0™îÖ‘Ûo˜×éËÛ¨§æÚæRbh?ëL«a¡X—`xMä«B*濳`Qƒ´x^>'é_0¤N¾lc:T¡¬ò*œ']Žêžï«•Äá.ƒ[Ôl¿;‚¾w´µ6§hòÙþ—åJV H±q'‚KÒC·Yñ¬ÌŽ>« ¥,àMø{ÍäÒ€\Hak¢F—3M¾š7Çý×Ĉøãjî›ôâ÷@yC*Â.SäÖ“ÇÆÀU‚‡Ï9Tߢ²è0¹ø ^#n1òlMáÂxK»€wÍJ'š7ÛÓ hÐ/_on8$³)kø>5°"He>lE€0Ca÷aG*½úýh”ú~.ó0CmÁVD98´Š/Yp¾4­ØCöêñ怬…g³{?«=•q²k;‘ñ {@A¤xÄ×[ÈHÁž/ìßy#ÖkØSg¯ïÖÒ=ëyÅPø•´[öº#'=ø•}Å¢tÝ.FB¸.ZÌœ{ù³›n˜«Øâ{RêJ<¸B¤àînZL¡îE I×y;*5îª#;Ï0Àë‡úG¸,øýbã ¹¿»¡'¸²K@û‡®£‡6ð]n[/Y†6ˆždC(èüHG¥©˜ÂeZúºõÐËê@òרõm"ê Við ÛæPR?×;µ$äóþ€³Zö‚I,e‰Q¯ýyaîܨ,.¹~F¡Ç`– ‚ ¼õc†ðH YÇ#]²ß*¦‹‡“éé\\ãûh2¿5–aƱ¥Ñ$Ž> Yis_ž–Â|‹7ƒùpÇŠÐjóÌϤMÛæ3À"]ÝS„½¤Ê(ÇÝ·/´möÿ›Þ[O`¢%=!`ð•R=üm%1YS€¤wÖ±ûÏØËx°Ã&˜ T¥å×*ÕGAÚe+ÙÚ> ’¹7>a"²^è2ýb†µÖ­¯gß‹¥Ê9’<‡÷†!A6skƒË.¬ñE^‰¹ÿ¢V¨èo°iaÅØ•ZÇ Ù(yÞFᇞbSˆÍ»-“¨5Àâ1ð¡'Oªïu³‹Ç¿š1Ç(Ã;^PitQ®Z¡»BlÚ²¹4¡u Tœ¼×K‰È1 6áµP„®#©l1§ ÅÿDÇõõ\PÞ{¹i¤—àdc±E J’‘TŸV¶¾ñGá/Õm>ÏQÇ6TVäÖHSzŸ‚èó6anl¸µ±€ºçGC±pòA}‡›½Ÿ¡þ)œ¶.£’XÓeçØi"ßÛëB³‰jsq]µó:e+IYïì¿C–¤&#Ñ5>%QÑøÿ¼aDh=ü€3uûÛ•Nl_fÊwƒ³jÅÊœ¬ÚøGÿ@ÑuÆcW~P,4ƒnmÓÀŒ% ¾²’OÜB{RYÒpµÆ¼`ïAç÷!9 ó4de5‘ß¾ úcýRÅýr»dweµƒÌˆ±æ@=ÃIMZ×0ëŠ0 û­êÍt÷¹‡ekÈÝèÉèé}Fƒtô8š´è£Kê锫FémÞ­y ÿiàZš¸¯†hÛ ýðØv1¹Hu§t+ #úÜ™º×°J¢êÞ‘y9Û}ƈz3@h¿“¢çÍù„0yó äÙˆ›^?JõÅ õ5 ® ³¾Ê:•g7®ñl8çܱxýbÜ.ßëd¡'eôÛÞ²óOúù%FþeRÁ„«x°®—L@Œ’(ˆì?à–UÈ~ø7˜0ZÇL®”ÃûÙÖâ÷šW¨É™ÍN:¦pÕ8‘×GgËôòø¡S.ËLØ8bÓÉUìiùXñýç,dPËï$?í”äÈå`?QÜŸë6 <=ä±,¼|¬Ôƒ€®èK íÒÃGí—µ4Ëë÷ëÅËœÌû»ã{_¤oœg‘MfðØýeyŸ_AÚbta£R×+ªf€[‘=ÈJeÿ8жë5Åá HdÙØDgçCàYƒá:¬¥š&èøöñ”Æ>õÆ™6 iJ ñÐï‡e/UX.Pëzb°&óŰgž•~ÄD},LvÔš~¤ÞC?;¢„;” bŽße³O Ì.¼?Tþsõhî×ûd¸B’¹`,kÑó«R;e6«÷Óç¶)UÑKD>½¡í îa"W É`“›|@Þ®…Íß_N×BÄÚÇ©RØ0Y8„Òè*cv·&ì®þ(%•Ž÷Ë,1Ú¡üPÐ]„0ÿŠÀ¿]>`ö"”4!¹Ê•ÄÌ/gE#‡Øþ§¼Ë¨bà/S“D¾åŠ©v":I4„~Mn¸àðß&§Ây£¸E ©Ú£Æ] à;;n‹°×Òwwí:P.7Ÿ dŽ¢'¸ÇR Ñ€ ‚M“ îìðꥸü“S@‘´rõ ÔÑ ج×çK£¾SÂWsëæ¼¬”.>^¤Œdš[7šm,‹ ŒeöùlqŠ[FÓ’¾†Ió'<° f?ò=ÙM‹¬)ÍQ¹³¾xÝ¢Ñ-¥s®ï^ü¬k7éî.nê¸'&b5²€õ_CñÜj0Ÿ˜-vZá²AnŸT^)–Að%#î¤k¶b*nè² 8öóAZ-vÒ“ÇéŸF Âçq|d^¦“`B¯”2ÞâÉ/ wÄf4îÓÑG²Ma ‹@ÿnâž#»Rˆ`V0Î3íL7–ÐoW'òÝIùÀfó €sRP¿VÏDZNòªq$s}â´¬èn< k¸Ý `Íb¼,ð¿N†÷&¡¾ìÜŽ–S ºUDžNÑXh‹´ÆS®_ÉlÙ*TýÆåãñÂÚöøeåOP†œôÊÉx¯ÆvÀò±™|x¿Õü 6Í»¬´Ô–aM^0“ÂcþSÉÉøB•ZÂhQM)³b0Æ“#êñó ³»î[šš¹céËxF‰î¦]T—af’¯xqÓo+sAW¦sè9⦴_ŒÅ¸»R)AAéh`¹œË„ó'·9r[WÄD åÆLÏaÄS]˹¶ÿfïRu6G‘I€7 éøESŽ&.þ­*EwZHpÅGz$é]4Œ(ïÎ27Ê ׆ JöÑ—~; Y@ Ó˜&{=$xaöÚ[=zù,Yºó´p6|ñQ…áHËþjëô0ðʤKÑc½óñbžíô›ÈeØÂ˜.Ô?¯+½P¾¿*Íô¤w›;V êpÊë¯˪ö”ýзŸÉˆ¸þ=1u{]M)ÈÙZÌøïl (•—,a•Ò7Ë µ0Gù^CG‹xÌSÈ7D•MÕMÓ©Šè€%òåu4vä^ðm!DpWÏÆmWv†T=C*Eû—•}´»Î£_…›ðºç€# ¬s(£æ¡ËŽÌéÜåœL¤%â&×½tßnqmh(«S½(‘Ép¼mjËjNØO¯·öPú÷ zi…=H¹÷ï!¦ŒIέ’ÅÆ’wœ#ëøsÓK ì§Ô ¿®ÀÜT#ÂPox>@Í»ÞÌ®)ŒDäú ÜÊêL€?êó%X•å)³ˆ?xöXù_16ë«ß"6ˆÌ£š$›uk0†ÎRÂ*kNÍ<½Ihô»ó`_šÍ>´cöÄ1Ú¤Ô{óá&P¬µ)Û á/œo0?@¢:Õ;óÓj´—娟D[ŽªÙ4VWl¹á”#óVòƒƒ2ðN‰h} Þå~U•íµŒÞÏÙšÉ5 [ÑÍ!&<Iú+ߦ·å²ÇçІ[µŸÐX"_ºÔ'5’xÑã•a1—Lâ«é¹n yÈn"Z,Š5ôøÌ†*1mcNl´þ‡&X®¢£.ý7$‡Q?ÊNò>Ž¢áó¥Ýƒ°äÄÑ}â¢xjyñúà_òP #î!Ût‹%65€$nµbŒÙ ƒÉ%©‰ÃÔÈh®åŽœ—Æz¢Á׋¹–+ÀwêóÐTK*-9P\ð}¦aMeÍ^ëf#¦1ÑËðÉ|•œ$Q>â]ûÝ Bl‡µ¶SûIç`.„éä½kV{$ cRB¥Äqƒ(Àå>Q,ÎÊu¢Ú—H[Æåù•­Zˆ˜e$oz€ÊrænãÇ~ÕˆžX|c×,Ãz™¡FÎ(+Y1?³êèÐ2bæ£h‘*'Öк­¨ï;”Ù?Xá|%Ü™5}„× pãš숒ÍHu-ÃY‘PŸ s޵K1ÿ‹€6ªq!M‚˜ß*ÉtÍf®wäï©¥wLl߯׶õXÓÿƒa*S™—îE²Í¼ÿ‡Ã¯eAÌt:…ûnl…­Oš¯ÉÁüü)%°š+:eö£‡êgbÈ-ù(c–à:5á"gæ8žœ%ëÀ>Âa¡*æSr)ž[mƒ_ÛnvÊå½ Ã¬ Æ‹¿èC5 «÷Ûmtæ©Òºáv¬3šñoïê(µëAÐ+4èÜÄݽG~šïCÜšCÝ1´Œ–!{í¸Rä‰Á·'µ'Y¾û·a­ .ˆ)B(~¹1à’ž˜M±@‰oýÄ™¹ÙÝl!øAÚÜ++ê9ã-Ô`±èhVïf‡ðgÜÉÂÒÈßV¡5t¢-má Oº‘ØJõÿëÿžÃVUH:fm…|À/ê;;ÆÃz$KžKoO?ƒ}ï)ºùé«ÉÂÙ…“—ï@Ê’²«ÜÏ™Z¥#‰ó>UÄ1™œ õ¥Ý]€HjŒjõABÕõ1B°XõPV %‘0áqBˆÎ6‘DZ&·á¦Î„`;€(áÇ´ øç¬Ö1Ÿ½ÊË© Oø2ÆÂƒÄEJ _¦`àñxQõZítÃÓŒ¯´©ï `„˜ð«ÐÀÅ*³¯eCwÔ'gó–ë¹ÁsWê¬8 n4êáPiKù.µIBëù6‹)&NóÀŽ{ÿwrúZ˨˜MÊŸ°è{ŸåŸÑ¦õ(izNq¬÷,Ü1ÅÈUãÑ&ûl!G 3smÍ—àSò¼¶!fÀ[CCgëR¾Ža@M¸y§À龞yr.W¢º Þ½ÄÇAUO¶áž%&ä!ä|¤üu-×CþÆ…ð5YšÂï0wÖèŽò³)¹õûð»¯YÝ(à» ñs¸í¾öYŸÀçýXf<,Eã×Úk¸™Pþ `‚/ƒ`èæu'Kö¡9l\ˆ`Àuùÿ"æ°"/„xO _w.PДìŽ4šC²Ç‰aÖÆäm…¹IÖ+ýa(䨩+ké€!ÕhOø,¿v±Ök200Òb•?Äq|–s=E1ªuç‘üëãh’®j;ŒÊIâhÅ^9)ÕÅ ŒÉ?±Q]‹æòŽ…›A\y7¶ÌzÚ§‡Ë«¬Ò>ÌÕØ.³Â°Šä¥³88µOtË7?Š®¹£Œò¿+ %'ÜÉ8 ®A4u-DûëÛ¸y»P¬|£aç›iw3ùãl1×4ÿ螣Hi¹š??cI»²w#…]ßž—ŸÕV¼º¸x/5T(©]Ï”vS ³’gÿ'‡©!¾k?bx_äÌÁcúK9Íïâõ\É`twi„³A‘‚¢øµÀF¶Ž"ưC¢x9oÓaÁõ'ûÄsgíïú <;žÁZÕ¦Êëˇgq;ÌoäÄTõ?®Ï(¢g3ã#¦ÓUv7ÎŒpwj/•Z›Œ©©wî…ú( lÌé;ÛÏv ¾=*êÖEúŽF÷–[Áþ¨"Ñ%–M*ñH `|ÚRëã£)5º, ËŠy¤q1£kÖ`ßžTÿAÝ2²Ñ†¶=¹u¯ÿÒÁ›œ$‡[.šËt«“C’<ÃqÆ$E—×’ÚM¨|Ñ<)ÜɳõF³Ç]suL|~’ºñc°ãÓ!hp]˴ЬrÿCÿ’™1Ÿ´oeÏÐØ N¼HÃ"ïZs‡y,ª¤Â¶4 ÜfÿoЬžn˜Ô.1ìq–P¶ &¤E†òJ*÷9ÍYöÞ½íµ¸59L”k6‹‘NÒg»ªYî/›NãrÚ8s Weéwè@æ3+—˺ÓÀêYݬuýµ<]oïÖ¤"'²¦¤|=φkdˈXäÃó9ºÅµåv½…™äüû~­®¥19¦A¸Ò:*Æ¡Ý\ú‹ä¢fòuã[O Cÿ#ëFí}Š²ÌŒìãP±>ŒûhSŽ|ºBë¼ÿ ‹Ì y‡ì‘ªmì©H«“?I5…ø¤$´ÐK`û‹œÞlgåZe¦=ÖÀŽù½*¿²=f¹‹ÞH€ÝžÓµÈéy÷¯›<pµm!:?®_ïmµÎn¸`}}ÄBE·˜ZÉ6c Îibû¤o©š¦7rN?tÚ «®k7®ºY¶s³ãbdù½E¹€Ÿ.á“ì§ÛÓÁðÒâÄ4#¿rü‰òÙ_=È/ ÿj×->Æ—N:3ðåŸtXÑc¦Û‡ŠŽ:…-åŠÇiHÞŸæDßÁC>sÿ²1ŸÐ*Já}¼ßè&²6ªX3PFëWW•Æ !ÜÉ«QKú®2[^Á$^J@B—š"_rnÚs'Ê·=žH•‡)¤÷äA&ù^+1Š`׿6þ’é Æòý÷Ha³iãÝY«ìݪ‚ötõ‡½\r‚|U^IL{ð/Š¥N{É!er@¶i5ÆúºP Lsþ*cßAqéÉWnâÊîjÎÙÖ˜–ýŒþâ†z\\a´èG)Ñ[‹j}ò‚OúKâ†âs>r–Rw‡°rcÜòãMÎ;­9Xä{1[[Cî«­\€ó›Z(váEž\a’ém¿l8Cå¾»aPýÓ…F'‡GªpµªÝì–ÕÁ/?´ßØÛ;N%wð&¢ 4#ø/]\þøáhÏ™‹°W°EÌ7ÀG’<³<9e¶Ù"Çð™ÿ27 «‡¸®÷þV¼¡›èI16âxˆæ#†‡î–Œ%Áó¼¸-Ù•S´®] Mši8ó¥UÜP­6·]»iùâ#ö¸Ó+L÷oäý _½‰ñ²Ïºìžfà8ãÑÃ¥´R§6̽ŒaÔ&[ klDšfïpѵùyÍÑ+QúÛnó®'^€%©›õyÅ>eÃ^¤®{mþì0Z¢E¿TTð˜¤5>þ™)`—îÕö¾ «ÇÅKKf‰hóèÔâ$\¹;P„÷õv›{µÎmWÇv#&à)sèØîDT¥q‰ l,ôQd9ö×í†Ä cßþÇá ,É‘­4„kο(ð@oõu0ÂÝ,/±RæˆF ÿ÷¹÷ÍuèëG–ÝÌtÉ%ÈZ9¨\*›Vœ§þ>ÉmàyT>ètº÷ôh"íØßwgó•"ôV7òt^­}),@sŸ¦î×]ßÈãÐQv¿}7Ž®E€1išùæs›JÖv •CZÐu°uÃ,û-Ñœƒ¡›%ßóéÄ©so:šJÒÔÍ&³`ÿÒͦøtHqõ{îš«º/g dôG/‚ùßc ›xÝÈo "ÏÃwÀ⸗xLèÄå©!¤gEÌM. ^h. ðs‚Ï\®B·¿|ûå{)#rŠ¥—/€Ë±èt–£WkR.ÑW~(xd@­¿{˜L£< ^€,Í"éDêÈb·pþÍ (e;¹qtI\êRÈÎ[(­Åù?¹uŸ)ÌÉ]s¨ôæ8è«Y3‚$ VXõ×µÆù øu¶Ù¬K0Q õÚ¡î(ˆJW×yzôu¬z©¼ZS`o3=|åÏ|~Ö6+/ nh{O4Ôˆì¬h‘óžÔV±`ùj}Ë[c&³Wœ]ž°B³'[EðU.ˆSQÝ€ qÿJgIÓ¤´2ÔÎÐÐõãÐ €³öY/i¢SzBB>u„xÞªÂå³&…σŸ£Jå,%$ÃýBäzç|ðWŠ˜‘‚«ÈAj¹í(EâÚ«½ D’+™œÑêÕz´=Ø!¿žc–µŽ ý#LË2èähJÁá+ïpQïhÂñúCax/‰þE³•ȉôy<²èèã‘j‘¯ôÅíRsãçËÈêÖ5ôµTó·›“Õ/Œ-e»T/¡FK¾sîALô}œÁ|}|ö\5_΀Ÿ˜à ‘}¹£á7ô!÷aVÌFuÍÏ™Œ”Ù3gJ·^É;Z9;q¶ÆŸ|â‘ÑÜZ¿©Ø¥æhÉV·¶`Ñ#âgÉ5#\‘ÏŸ[vÈÕë Üt”ÇŽÇi§Ÿ`dͳû¤|\?]Aµ«>È·º’Í>ãGŠƒÒ—•7ÃYÌæásýÇ ˜²OÓ.µo'Ÿíëš¾è½W«NãtÛ^],÷ª" ÁùXàêÇÍc™0£º¨³KrO#¯–žiINiT- ”[9ºJžXV·’CÃ…Û¾N¦"—ÁΊJçèR«b§ãöj$Ñ£Üõ†ñ¹™LÑ`@,Ý|ÎeΫí7ê“йëð¡#»­3õúo™))c•ÿ2ˆúÂùzi®±C þ|è ´ÖKv}’…Ò4¶"VýíÒXªæK|XKRc/9©CÒT»-6Ïöæ`wcvã–+C 8,{uyÇω薲Ü鿬#g6¬Œ ±¬ÇìáHº^ "¥“ÙfãHðqå!î*)›VBBU«*hEt³®¤n;c ĉڲ¿®°ÍV•z‹±ësê ^omÜÓÍHðþhWžÁl£-ZzˆàÜ®i›•æx{ ɆÅDªÇÜÛ0~¼k¹s•Ã\š]Ê#ž…Ÿ«BJ¬9€ä\U›à^Lcë—žÌð ¸ÓYíÜ91{%ìR<„×!»Ë5%\¹‡"EH7¬b¥~Nª¢—ÊÊAƒä¶D¡­¥“xxâp©&Ü™ÿPlk* 4ó½í¤#Å/ŠÔ€çîÁŒ,ém­'§&ŒÆlíÖ¼ÍùyÒÓЗ%×e«}¼žÏ¼¶«´¦aç:±IÂݪšÂàa.ë?6tò¯=÷0ŸÞîôX"†Gul(3¤@‘¤à½t=`,1+!ŒvÕrÅs„ÃÔÕÝUÜs®  ¸T°Mï®`ž„¾æÀýÀMRF–­…þÞ)©õ] ´)¢Á1#FÔyépŠz+â ðâìnQ/Ç:w½‰ Ä>ÝRß‚º9ÙT„ùÝaE¢Çl®kýïU„MbÑ(@)Ôa¹èœÐC›Fš^‚cžq®%OÜœ\dÑ‘(»%æ ðfØÉðÈæ=ÇÔxCÂènKGû¬(}â-î ší®å{l\FobDFI^ÌÊŠ‰ãzÅø2ѽ¼¹Ã”a¥mÈoFêV‹Ç+§~_—=°í±n ü0|d`Ý·WˆWdoÎ}à D𖜠÷QçBí÷Sƽì>MeHyÁd‰pÞ5UqèÈ<è„©¨Åc±ùŒvðÔaÎA5{K4˜³›Ì©>$ÐØ?¯U ¬(—ˆK \´œ7˜–ñ÷á^-9B28qXp¨¢ºCèÑý=Μùùýs.0¦1ýUüÇSçÖãWB5 U‘ 0ð»­¥noT8a—˜ßÙ‘¨g´šSàVãÁxŒfîfµ;Hªÿ]2 ¤Ê’¿ÿI²Ù¯U¢\…ù“´.Ðéø] âie·/àÎHÙ©Vvw8Ë¥yÝñ@<f–}0Ùmhy—Ñ2bë’Ÿ,‹r¸Àï¶ú‡€;Ðgíóm3òwÊ=`np¥#NBå-UŸªbå “ ˺Ð#º3p¸ u%ב´0¶§í‡cnÓâÿŠÔÇ1U!b–»(Xe2£Î„Ò‘Ô&u­Ø‰ñÄ!Ú÷ãÁR´òˆÏÝûTÝé~p_ð²=0è€ -¨| §Ó ŽÀéÃië |ð¶½›×»NÛ?ÆAï!eC‹y­v3O/®fN"³þÊ 'WL5#èÙüÂ,-’<šµz¡æÒ}°ôO¤–Ô—YH•¤JЬ™Æðx;‘~ÄýÕÆ,Ã=°s€H5TNGÎn`5Ö‰¯¢‡¬±+üÇ{ƒ:4¦ íØézY­êË@«å_UëÀÚá>|IÎæ·{Gæ ^”H¥ƒ{ÚNdTìÂ\¨†”X<è]³Ü°}á‡çìÐ^¨aš ?†úU(e©”m©^$fZv¡ï8òî‰êGÓ:†aU‚Þóã»Ýlã9pS„yŸ½c… V l„"n"û¼¿±*n¬;碞˜h†Þ˜j¦ {†–v…iÒ3´ÛÞïJ‹,„=…t(›ï:4-› Bcz;`$° ëŒÔ¾1†¿eí,ÿh…9èZJ÷±Î%"í/A› NjlëšãÕ‡;ïìM8Ü€_‚ÅM’8«§Ö{eºÎ8ÔZ¦â a;vij­7dìv Û‘´s1«IÃfa'ã2ªýÀÚ‚-ö{£"êÕø+ñª“\—ZõâÈFf]° *¦ø_œFÞ2¡/ä7 ±§ø .©Óån›ÅA+ŸÝH‡+sn;Ç8î‘~_»ì’.¾GÄæüyÛ†Û{×l=v̈úö°Ž.Ü,ÖUD‰Ì:º˜ªÉ#Ï2yLµ2–Äáìöd÷:œâÛÑRäu›¢Ä9ûjØJÔo—œH€)Ħ ·Ã"þ±~å3•šœšøþOSÞ˜œÈ(l¬C1ɇŠ;~óÆ ÍiPM Z“SAä™~?®tkkzæ‹ãŒæPØ›/bÀžêäBOŒËÃì‹VÌIaùOÎ6äß14[ •ïIÿ4GCÞ{ CÀÚ™/K‡R j4éE¸¦2áíë‚ 9ÈSg|a܂РtÑ,{¥…V&‰‘sôm ÖT¢1êø” “°Ìý#t¾·úEVÞ³ìÊæz¿ ‹Âþ°®Mô"õ‘–¯ZÞ:é#ëAÃÙœS9ß¹W¤I$g å-[ÿ[4dôøÝÀ´“j¸ßµà3ÏÏšŠäC%ï^òõQcæO‰(ƒI³Žúê®—Þœ¾lcÒçûÆ‘ìÀ³Õ^·ˆVøRÕ†ÏéÚ~0ý4à´™9ÎëKÕh‚kH²hŠiO„ŒöªûÖHuº`¬‘WØ[”¾$<ûxSf¹ý¤ZTUrcÏ·|Nê-ÇÈÜVá‹’t¡¦³¼ÄÕO$ë”HÜÇUýb’ü’˽1'€+S¡o—S6±ìa† ÃÖQ$“ñFþ>L'޽plàîl–9™¹»€8ì·¥ †@x—>½ÝoÅ܇>Ñm÷®×âòˆý ïŠþ8‹>à­à»#r§TéèÚÐl ½åÕ7†ÿ¥¹²8Ì$Þ)щáCÄ$û…di‘ø1Jøl¨§¼·ˆ÷¬vùàú T¶O PqÅõÚÜ“\sª³^VÆ$Þ¶@ëª[³DQÂVèz³¯„²p+„ 'Z L~ÚâÔ£Žáø®t7áF’ªÛc5ŠÒPçôËc–øXwY5‡S鲫ŸÄbïcp #OèËHšÚ¬Ó½9ŒoùåŠAÝ3c~ŸÃ&+rËàúŒ÷oü™›œj™ÒfÍ” V›â¹‰¼ÄÂSË›l+ò¢: ¤››FÇ4O EÛj„ GÜ#:¬¯J ÖÌû‘óBU­†hÜÆÖ|4Ä´(ê""ÍŸsÒ{btdê ˜Ï?Ž_,±àˆ–l&¦Vg«Fn#ãìˆps¶àWóT–ÏoŸðÛzô6±I‰&kð½Ú9ÅIë·‰-Îi]EüE1ÚÀåDÛð*Xûé<,IíCÆÄÃHô´´Yð>µíÈ’÷Ɔ½™´¶ÞƒŽÚ)I²eÊØ¸Å«Rƒ;øK¹l|»ðÃÿØ%Üð•™ZèQ`ÈÆ`9cn6õq&…ƒ™±L¶â ZÍù?3G…£ O»Œks"ßåµ–aÚó7D~3…t*oQ KC‡÷R•HKÃ{Vísâ?‹È"'u…-ùä£:æ”1¦.žó¨'ÝúÌ0¹˜ÊC…‹êó®¦é0}*!w÷=Ë”üÙW„¶Í=Âië±F’nÍIyɲiŽùp¸YŒ;㘢M[:±öÕ[ÜHý™²ˆó•ùYÎzíu±Â× E‡‘XœØ‹ÿ*Mq´”)ÅéÏtâá“ W°äao+ÔѹO1|·ë¸Î›ä‰@-|[ìÊ÷rÐǹ×<Фt2ùHät¶P6ÑÉ{È€G¹HøÙ×]ЭPDÌÉÐÂOÀVÃßm£®áVe›n²uvlaÏê ‚77- ÄRûŒ¦l$É걤wwÄ— tM]å6ðóûuÖOʼnXá¡nÇ5y<2°$–¹µ–U݉T–|x2OŽi-„è»DQÞ@Šƒà´0âG«—ÃÞ[¡áF|•!ÇaŸ×ÿ¿…3í¾oÛ†Eÿ•ÖD=hÕÀ­cçˆhÍO…§{¡OÖþ4@˜ù(=GrÈäq[&Ê}Èš%NÅn±L–í镦á¾  RfáÄs‰q©Ê4§–…Óh,¾ã§Zãe÷°ºùXÏÊùÓ Ø®‘ýÜ7n:ëI+JCa1­„i÷Õ‚ÂÝ×ùéd‚;såó•=kv»1xQž£¼¨ðQú‚KAùµ$Þ"Óvý‘ÔŸ\*›ÊW®»*h‹xê2Ê™WÒl" 座 "ò¤®îÆq1e¥Aq)?B¯±ˆmR¸Qnó:~4"ß”BCޏ§'ÀÇ[‚[¢,1 è™¿Íªê‹Î^’±6“ð›ë}>E÷¬Ú_\:W¤Yúççh;®;Æsx½£Ãó ëóÝʇøg“6±ÔfÛ+Ú4bý®³Zýû7%m’év¼µ±mVæû»É0ƒv ÿ°k’&ÿ‘4¯tKÑ%ñ= ¤†ºËnô’#sJ ƒÁ§ö¡Ô5œ`ÌÙÜ/*k÷^ y[Í.”žò>ý²ùÌJȺï=<ž÷rÛeŽå%«áŽáïƒJíYëlPȦqoŸN‹ÿF}‡î~‚á4kÈ)Áµ×áîwîmÿ ®_zqÿ‘äd°l3ÏäMÕÏDÎ3ã©'¦Uä´šr äù‹üY’uÈŒõqf}ª'ÏYtr&|G µ>œÜ²Üd/6vJ!õx‚—}¬ê‡×7Å瓸’¥zœÎþIÂúÑñÚ]AgTÿà+þ˜z’»µRBî„‚hèÚ½°S(ÿT7£œº‘,<¨Ý„½>ˆkÑ• liÙ;÷Ÿ^Ño<üÛ.Ò.N`Õ1±FÎÍkq1õ©u‚öYÛrŒl{‰·‚‚ÂWS‚[‡ÇyþÚõ³ñ2lk-Ü ÿ@Néìd}Ÿ=.÷Á©!‡­ayÆùý.3S1Ðíƒ:Ò“õôß×í¬{ã=û[ëqΈTÏ>ïG­Ýîá“uø§üBÂYvZ‘qÏÅ7m aÊ ›>¸Lôgƒ¶f¬ï¯§å³Ó9TóÍÔ7…øoµñ¼9‚V¾[çJ0޲t¼~Ô‚uTº@9G…Í#‰¡6ÓrÄk„}Úâ Xy¬²Û°ô×—V|®ån¯.{ ”þõ ³ÂnCaB¥!•ºáE/©S /8ŽˆÚ!([~> =Κ>èaE¬! xÔ@„Ÿ·|¤(—\€YÁ[ÖxNoƒŒü—Fã0ùRë»ó³4·kÅeñkBÉ¡S¨y ¶Å AßR¾±+Eàœä#KÕ­JvvË-‡ö {7É‚õœ9åƒÈt†RûjÁû‘Oci¸;¬„ÄĽ:ÀÍ bSTu¾%¼Ýƒ,ÔÝyú¸²Z~E€Né\‰)qà¹j¾Ú÷FÓßÈ“¿³;t ‰tuL²‰8 !c2x&HÖörÙƒÖ²‰íd ærøêAKø‚2ö®„ú\¥FìðDì×PCðü`Y_×ò*Ž¡ïÆ^é¹d-ð–ÝKä»BÙ‡Ëô¿PX Nõ¯þFŒ^w¡¢oæ©hUÊíù§köåãfÒŸ…@ÂÈtœGî'Ô4äsö^‚Ä#$«Îˆ˜Ý ½us9S’»l|[‚\cÄ•ÔûSµ‹|ðzÝ€®˜5_ä*©ú¬V*Û¹=#Œ¸Ú Ï‹›\¹%ûœÒ%•Ýö¯Ÿ¾h~:>c–•¡Oƒ5):BÖË“ªóÁÿDï¬ /š#8ä,\c¸æ˜_š]÷ÆžY®I.|*è%Ñ/Ò‡oÜ”])Ó¿Û†QHÒ(uyæʵ >pæËVò˜ÒËf‰ãÇf=íóŒ£Ý¿Ž4Ví¯\}÷¾aÚ”¨©Ö„ÄÒ®{7™œ8‘kÊ?Fh¨f­Æ–% çÆ~Y1Ó9½8ƒTUˆ§®ÿÆá#ÇL½à›570.×W±qR) ûˆšÌ{‰èúowïÀ ’¶?ãÿ­7eå´û9¶ðJˆÛÙÄ%Çí„ìþ$ÖgÒ™ÀÍ#‘`õ÷D(ªÛyÍH…;3W­Q tû8À˃Slek ë}¸‡f¢6tèa.C–€ÄLºPò =¨¾Ù»€Ç¿ºÖš£ Þö)óÍq ¦êʾ™¯žµ§!‹à‰d¹õÙïB-ô«ÞÙ#,JøCæÞüˆ±#ÿæÀ#ä̓k)Ii:…ä¸Mb®FÜ´mzÏ^öM´ ×eý¥\TPvwP ¾³ñù´oâ¼ã±$©ã‚‹rSö&Œ4'Ž ÔZ¡\ÞOiHõ4Î]dœwŒp-¹¶L»R©®Ùá[ôP*”§ˆ Þ„ÂlqÙærŸZNeç}3@š”¡ð35âbƒý¡ž#íãÑËÃÇ5Uhý=î‘ <Ø&Þî±õa„秱ͺï‹„c„Û h\ -óýL~.ÁœÅÀ3®8- ü`Œƒ8X9í/¥™Â»R--àr@3æË*K=ë0ý”¤!’Ý*”$ZéŠü¿Ðάô K”öO]AL.‰QW2Gˬº^%•¹d2°°Xeý§Ò¯’ŒK´¥A +ê®Å–竽ˡ6ÃÛ@NžqU÷[:îcGHz=T>¿cÏ/‡ë˜ô† ¼«Aj[·³“j õ~Gà.¨ºVKj»î`ÛÊåFro8J5þ±Ã¦ï#ëé9-äÑtà°êâMôRž™&æXGÇ Ñ×››³ñ¢)6gLÏT' S«ŒrWðâ9û2Æa—bãÛÝY¹#r$Ä&ê¾@¿jæÿôƒ oàqP' 1§ÚâÕÓàþ–¨†DÖ|튮Ô.{&mme Ž]ÕLy­šýÛàgþ.†ß±äו㾠%øßþcq”½@ªAÑërßtEê´+çRù.¾‹áh+ôTVç&±Ã!µä*•eNìîÀÊÌĺwbêñé#¶,[@ ‹yMCÔ#;v±ÌHþò+]¶>ìD7yNÉ¢=£÷›!D# nc‘¶»vñú¯ç\m ÓÆÛlŸäš¬?Ø ßX“¾ñÉ·~p‹Z¸ SwÓ¥k?ž¯…C%Ü&ÿŸ7< ¼%Z>ßñ¥®|íi“rqˆ¨Lá|¡ÒKäž÷½Å#œ¢ò׸zfPb‘j¶“¶êÏeÓƒ|“v:w±T:îµå{’:ⲡS—V†a¬X!y." Þ»p´{ÇwÆü[z>©þ̹öÒ5wŸ{³S¶M×.7%62ñù “ØÑâJ-g&‡×  ?EoFª(9é'±!-ýZ#¹§¢“=´õF~ïà„rØ–›Þ<÷Ft üûr «÷‰Çð§yÏÜ5áz ³ÓÜ‘•ÝhöJõQÌî®+-Ó%œ©_<rA=Ieù½£‘~gcãXEGJyëN–<üxIã_[ sp–Ò\»–Z…öÉLV¾ÃŒ.@LÚÜIvB§®WŠ`)*3~»ÈÃú)HõÙ .Uª^ÙÞà ÿ£(;ukˆ@üK­fˆ8ÉÂÄÔa»¤¸ù(íU¤¸·œxq¦L[wÑ6á`XµØuÏŽÕà •Ìo×>0 ‹YZsurvival/data/tobin.rda0000644000176200001440000000047213537676563014671 0ustar liggesusers‹ r‰0âŠàb```b`f’Ì@& `d`aàÒ¬%ùI™y ÌÂ@H–ˆE ÀþY0 xg‚À,8ŸJ«œ³¸ôÙÿÀa”–ÀpØ>7Áö9xƒ€ƒ‡D½ TÜJûB<âথ{Àîqð„é‡Úã±ÇÁÊ÷…šëå;ò@ô9†ˆ;l†Ú w÷Ð^=0ÿòBÃó 0Ì¥ôy ¾Äï€øPLHßÒÀðgä…Êÿâo@¾(~Ä·øŠÈk@ü=ósS‹ P$BÙSJ‹“rR¡\æÄt“µ°41¯ÝŒäœÄb˜0A®”Ä’D½´" ñhÊ9‹òËõ`Ö‚ÜÍÔ$þÿÿô'Ã?g8´Ä|survival/data/retinopathy.rda0000644000176200001440000000540213537676563016122 0ustar liggesusers‹í›{lS×Ç'Á [x? 4B! Pá‘B}©c’„8L«˜Z*…’ðhš¤IxuHk;E«P;†&*:©Ò6&ÑuZ74¡ÑMt­¦j£ÚDÛUÝ:ºuÒ`/‰QèÊ`vÎçë]®ñ#fa铟ï=çüÎïuν¶o6Ôo¬ñoôû|¾\_^näo^äm~ä/Ç—ï‘ÅýƒÛ{zû:·íõùòÆGNEO‰ôØ‘ð)(…©0ÂbX«¡¶@ì/À<Gáûð ¼ ¿€ßÀ{p®rŠÀÓá.¨†…pÔC#´Áý° :¡ž„gà<Gà»p NÂÏámø|à²!š×aü0 Êa.TÂX +`8‚‡`3l…лa Á³ð†ïÀ÷à$œ‚7á œ…?Áßà\k†¼È?”ÀT(ƒ9P ‹Àû`-|6Ãnø|à p^„cpNÀ)x~ gà]8 çácC~øa ŒƒPë`=l„Mн°öÁø:…ãpNÃûð| 90 Æ@)Ì€2¨€ùP Ah‡ûaì„§`ÂQ8'á ø¼gá}ø ü þc(ÌRÓ`,€Å° ÂgàØÛàx ž‚§á«p¾ Çá'pÞ1äéz‘k‘öq¢óöøDúRíŸLOºz“õKuü­öÛîŸjÜÓõ/™Þdó4¾ÉæI×ßLûg«.²•§tã›éùL×Û­ŠC¦u8R½#­çLõe»~Gê_ŠyŽûRØÝ¹«³{Àg>Yär¶`OgOo:ú·FâÇ<ÜÝ1 a1e]ööGÞ]ó¸,ešŽl-Ë‘†=ÓeŸéò¼Uþ¦:_¦Ë3S?Óµ+Õù2Í[ªË/Û~ŒTO¦vg«¶ë&ÕøŒt߸UzÒµ?[õ’ÌTóí:O0ôò’ýʨt¸—™þí[· rßÝÙ5h:æ©£ç¥'ö Út(Ñc@íE ãR˜“¡ÁÝ0 ü þú&OßÔéXó/€bPX¤GöÌZP»¾´¿)œ :¯þcA~È¿ñ »æâ%?+a ,é•… ½òCþÞUj/ƒ<²ïÓ ¿4Ÿì¨€q qÒc×…â/}òCóŒ•ò$P?Ù/¿ì<Ùõ¦øÉ^Õ_è¼ú+ϲGy›ª7»®dŸôÏùs¨~k`6È~Õƒôk¼â¦óЧæµ×ƒâ'¿¤Gã5¿ü’¿²» d·â®:±ëAãgŽUÿwƒôh*Þ%Š“üÖºT»ì—~Å]u§zÔ7õŠ—ìRÜìmRãW‚ôÊ/Ù­8”ƒ÷% ul×êZþ«ŽÔo>h]+nŠƒú©¾µkÞR åKãtl·Ûû£Ö‡êG¿ˆØñ“?Š“âSfHúQ%[—ÒLo±FzË“-½™Þʤy+ñ­ÉHó—­ü§«?UûÓÍ[º·dÙÎëÿ+YºMÛï‘®‹lå?Û~¤šçtI–·tóu«ê+I|}}-&ƒ›‡ÏÞZ2ürÂëO´_ºÓi¦ÛO¾ ú/¯šy¢ý¯’ËQqaHÒi-ºtêÀƒóªlXî_±Ìi F¬ëû–³–yîÔüo˜~’÷¾ýø¹†—'8ÁFs>9züœS͸¥Ìã[Ñ_ÿÓÞ:•óÈ–šö˜Ì3vH†Ï]ˆ(Ü“ëžÀ™oÎþè0àߌ]ágL\%'½<Üó·uÇpgõ•ö¨Bg=q¬{ÈÄu²Ñ¸4ìV£3?Ö¼fìYù ãoퟻ¢/ǹhìX`ú>a¾)§Íü ¦}™¼Ï2ã%ï]ßÞþŠ™Or%zªNšú™tÁÄ·q®™qC®u™óMø_~:^®!î’ ›ŒÞ‚H"rj~uÿó±x9äa,ñmßmâR…¾0yÉ…&ŽÈÀ'Æ¿˜¼Únòú¢Ñ»z”Ñ'ÙB]I–ÉÚƒf|M‰s€ã˜$?’ÁL~%k°sÚLcg y”l!~ËêLšñ³šü„&FÌš÷QLVÐ"~…±Îз®ÒÔÛdÚ[—C¼«ñ«‘u²’õ%¹{%TWÈJòTN…JØWÁËF¯dµY/ÎLì^c⸪|R¯cÑWJ¿yÈõ»Éì— ²¿ÌßiülÆÉÖoš<Ìf>åSõi÷oZeâ$Ù@üb’u d}K®eŸ• =m쓬#ÏõÔy=vÔPòGRû¯ätö‰ð1SoUÄW²ü>㯤}=Xû»a¸B}9¿Ž>“õø)Ùö’Ñ{âmâÛÿš_0z%י뇳ÿ[7Ö¹ÙW´>–‹ñRûŸ¤35^Î1õ8`¸ )\gš¨£Ð;f¾•7ë5¨¤ñÍZı)lì*C²‘ëÌ4öÅâ"YÉë_rüÓ}1vJj¿ÜðªÉãúóÆoÍæ|zkÏ|\gð#ü:÷ÈêA²ë¸¤Ã8É6â%Y‰_Í䣌ó’Mì!î ¯šºŸµfß |Äz¯'žHßÿ¾‡r¿r|Þ¯DŸM¼úåXÇ^m9Ç©¼ìq^zí~ɸ™^ºlßìóv›—LäÓÍÚ½ÆßÌn/Sù̙Ȏ›ÍcMU_&ó'{%ª?¯9o×TëÀÖ™hÞdºo¦Ïë}ºë)Ó§»NÍŸH·—.¯öd¶¹“­‹DúÓÍk²<'Ò“ì|*º­TÆ'›ÓË.]/ôøBôƒèãÅÑ6¿G¿"×9w»ûqœ¤åð[}õx”{œt{´•øâ«²û»¤»O±ïFý.Š|7Úî¶ßnwÛîwé(±Îû}ñ$éØK=ê"ÿŠ<æó[çŠ\ó[º‹¬1v¼½|(vÍoû¢1nÝsØmîDzäêÊŽ—­§ÄÕÇw»;7vmŒöçÖoçÍ-m»½Ö…;…®6÷±]Ÿ^ú½ê>QmyÕ¯;Ï%¾øz­Ãb—.¿‡>÷<%möúí1§Æ*^ulç˽¿xÕ¦»¦Ýí…sû-=…>ïýÌ^¯‰ö;µ»m*rõ±ã]â»1®î˜%j÷Zçî:ñŠ[§ÛO¯òÚ«å‡;O^ùpÍÿ$=vêHFs2wû5ww tös×¹W¿ªçulÕÛüÁ½}±Óƒýƒ±ŸÖwnT …ƒƒ;4¤ûÀ#–!£û{w/”1чsŸˆü¹~ýÚ®¿Ýû·t v,ìê ñ™ßï¯ýƒÝ´ðë?survival/data/nafld.rda0000644000176200001440001167524513554317462014651 0ustar liggesusers‹,ýc”lMð[ÞiÛ¶mg~Ý}Ú¶mÛ¶mÛ¶mÛ¶m¾=O?ý㪽+k!bŒš#ª*3×ú+üyµcò¯–üã?‚„¢?‚!ÿ }üþ#áßèßæ¯ÿ7ù[ýü*ùìÏ$óÇÞ?úÿ·ÅŸ¿—/üù»(òço­˜âÿÿmÿü#§”þÓ~d•S^õç·¬Šªª©®†šj©­Žºê©¯†i¬‰¦ši®…–Zi­¶Úi/sú㨓κ誛îzè©—Þú諟þœþú ê/¤?OaýEôÕ_Lqý%ô—Ô_Jiýeô—Õ_NyýôWÔ_IeýUôWÕ_Muý5ô×Ô_Kmýuô×Õ_O}ý ô7ÔßHcýMô7ÕßLsý-ô·ÔßJkýmô·ÕßN{ýôwÔßIgý]ôwÕßMwý=ô÷ÔßKoý}ô÷ÕßOýôÔ?Hÿ`ýCôÕ?Lÿpý#ôÔ?Jþ÷Ì?FÿXýãô×?AÿDý“ôOÖ?EÿTýÓôO×?CÿLý³ôÏÖ?Gÿ\ýóôÏ׿@ÿBý‹ô/Ö¿DÿRýËô/׿BÿJý«ô¯Ö¿FÿZýëô¯×¿AÿFý›ôoÖ¿EÿVýÛôo׿CÿNý»ôïÖ¿Gÿ^ýûôï×@ÿAý‡ôÖDÿQýÇô×BÿIý§ôŸÖFÿYýçôŸ×AÿEý—ô_ÖEÿUý×ô_×CÿMý·ôßÖGÿ]ý÷ôß×ÿ@ÿCýô?ÖÿDÿSýÏô?×ÿBÿKý¯ô¿ÖÿFÿ[ýïô¿×ÿAÿGýŸôÖÿEÿWýßô×ÿCÿOý¿ôÿÖÿGö'úüøðà?À€ÿÿþüøðà?À€ÿ@^üøðà?À€ÿÿþüøðà?À€ÿÿ¾øðà?À€ÿÿþüøðà?À€ÿÿþ{ñà?À€ÿÿþüøðà?À€ÿÿþüþœøðà?À€ÿÿþüøðà?À€ÿÿþ9ñà?À€ÿÿþüøðà?À€ÿÿþüþzâ?À€ÿÿþüøðà?À€ÿÿþüøüíÄ€ÿÿþüøðà?À€ÿÿþüøðøû‰ÿÿþüøðà?À€ÿÿþüøðà?ðÿþüøðà?À€ÿÿþüøðà?À€ÿÿþüøðà?À€ÿÿþüøðà?À€ÿÿþüøðà?À€ÿÿþüøðà?À€ÿÿþüøðà?À€ÿÿþüøðà?À€ÿÿþüøðà?À€ÿÿþüøðà?À€ÿÿþüøðà?À€ÿÿþüøðà?À€ÿÿþüøðà?À€ÿÿþüøðà?Àý ûþ AöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙ²d?È~ý ûAöƒìÙþÙŸ~Üñâ?ä“ÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?TüÓï!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?ôçÿ>Èÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿÿ!þCü‡øñâ?Ĉÿû!öCì‡Ø±b?Ä~ˆýû!öCì‡Ø±b?Ä~ˆýû!öCì‡Ø±b?Ä~ˆýû!öCì‡Ø±b?Ä~ˆýû!öCì‡Ø±b?Ä~ˆýû!öCì‡Ø±b?Ä~ˆýû!öCì‡Ø±b?Ä~ˆýû!öCì‡Ø±b?Ä~ˆýû!öCì‡Ø±b?Ä~ˆýû!öCì‡Ø±b?Ä~ˆýû!öCö§_óÃ?ý… Ì~ØaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý0ûaöÃì‡Ù³f?Ì~˜ý°µ?̘ÿ0ÿaþÃü‡ùóæ?̘ÿ0ÿaþÃü‡ùóæ?̘ÿ0ÿaþÃü‡ùóæ?̘ÿ0ÿaþÃü‡ùóæ?̘ÿ0ÿaþÃü‡ùóæ?̘ÿ0ÿaþÃü‡ùóæ?̘ÿ0ÿaþÃü‡ùóæ?̘ÿ0ÿaþÃü‡ùóæ?̘ÿ0ÿaþÃü‡ùóæ?̘ÿ0ÿaþÃü‡ùóæ?̘ÿðŸýéO|þ#üGøðñ`„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÿþ#üGøðá?„ÿÈŸýéÏûQþ£üGùòå?ê Qþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Êôoýç?‰#þ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿQþ£üGùòå?Ê”ÿ(ÿÑ?ûÓS{1þcüÇøñã?ÆÌcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇøñã?ÆŒÿÿ1þcüÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~Œýû1öcìÇØ±c?Æ~ŒýØŸýé)ý8ûqöãìÇÙ³g?Î~ÜqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqöãìÇÙ³g?Î~œý8ûqkœÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùóç?Μÿ8ÿqþãüÇùÿÙŸ^Γà?Á‚ÿÿ þü'øOðŸ°Q‚ÿÿ þü'øOðŸà?Á‚ÿÿ þü'øOðŸà?Á‚ÿÿ þü'øOðŸà?Á‚ÿÿ þü'øOðŸà?Á‚ÿÿ þü'øOðŸà?Á‚ÿÿ þü'øOðŸà?Á‚ÿÿ þü'øOðŸà?Á‚ÿÿ þü'øOðŸà?Á‚ÿÿ þü'øOðŸà?Á‚ÿÿ þü'øOðŸà?Á‚ÿÿ öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'ØO°Ÿ`?Á~‚ýû öì'þìO/ãK²Ÿd?É~’ý$ûIö“ì'ÙO²Ÿ´a’ý$ûIö“ì'ÙO²Ÿd?É~’ý$ûIö“ì'ÙO²Ÿd?É~’ý$ûIö“ì'ÙO²Ÿd?É~’ý$ûIö“ì'ÙO²Ÿd?É~’ý$ûIö“ì'ÙO²Ÿd?É~’ý$ûIö“ì'ÙO²Ÿd?É~’ý$ûIö“ì'ÙO²Ÿd?É~’ý$ûIö“ì'ÙO²Ÿd?É~’ý$ûIö“ì'ÙO²Ÿd?É~’ý$ûIö“ì'ÙO²Ÿd?É~’ý¤µ?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿ$ÿIþ“ü'ùOòŸä?É’ÿäŸýé%¼)þSü§øOñŸâ?ÅŠÿÿ)þSü§lœâ?ÅŠÿÿ)þSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~Šýû)öSì§ØO±Ÿb?Å~êÏþôÒý4ûiöÓì§ÙO³Ÿf?Í~šý4ûiöÓì§íf?Í~šý4ûikšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOóŸæ?Íšÿ4ÿiþÓü§ùOÿÙŸÞ¶“á?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿ;eøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏðŸá?Æÿ ÿþ3ügøÏüÙŸÞ²—å?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³vÌòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏòŸå?Ë–ÿ,ÿYþ³ügùÏþÙŸÞ®›ã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçìœã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏñŸã?ÇŽÿÿ9þsüçøÏýÙŸÞªŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏ;@žÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸç?Ïžÿ<ÿyþóüçùÏóŸÿ³?]¦£Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿à þ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿Àÿÿþ üø/ð_à¿ðgºDO‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ¢ù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿È‘ÿ"ÿEþ‹üù/ò_ä¿ÈñÏþty®ÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKVâ¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÿ%þKü—ø/ñ_â¿Ä‰ÿÒŸýéÒ|eþËü—ù/ó_æ¿Ì™ÿ2ÿeþËü—ù/ó_æ¿Ì™ÿ2ÿeþËü—ù/;`™ÿ2ÿeþËü—ù/ó_æ¿Ì™ÿ2ÿeþËü—ù/ó_æ¿Ì™ÿ2ÿeþËü—ù/ó_æ¿Ì™ÿ2ÿeþËü—ù/ó_æ¿Ì™ÿ2ÿeþËü—ù/ó_æ¿Ì™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ý2ûeöËì—Ù/³_f¿Ì~™ýòŸýé’œö+ìWد°_a¿Â~…ý ûö+ìWد°_a¿Â~…ý ûö+ìWد°_qÐ ûö+ìWد°_a¿Â~…ý ûö+ìWد°_a¿Â~…ý ûö+ìWد°_a¿Â~…ý ûö+ìWد°_a¿Â~…ý ûö+ìWد°_a¿Â~ÅÚ_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿Â…ÿ ÿþ+üWø¯ð_á¿ògºo•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯:p•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿Ê•ÿ*ÿUþ«üWù¯ò_å¿ÊõÏþt)îÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿æà5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿Æÿÿ5þkü×ø¯ñ_ã¿ÆÿÚŸýé2üuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿ÎÿºÔù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿuþëü×ù¯ó_ç¿Îÿ:ÿõ?ûÓ-8ü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þNÒà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þü7øoðßà¿Áƒÿÿ þì7Øo°ß`¿Á~ƒýû öì7Øo°ß`¿Á~ƒýû öì7Øo°ß`¿Á~ƒýû öì7Øo°ß`¿Á~ƒýû öì7Øo°ß`¿Á~ƒýû öì7Øo°ß`¿Á~ƒýû öì7Øo°ß`¿Á~ƒýû öì7Øo°ß`¿Á~ƒýû öì7Øo°ß`¿Á~ƒýû?ûÓ­wšì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7¨É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›ì7Ùo²ßd¿É~“ý&ûMö›Öþ&ÿMþ›ü7ùoòßä¿É“ÿ&ÿMþ›ü7ùoòßä¿É“ÿ&ÿMþ›ü7ùoòßä¿É“ÿ&ÿMþ›ü7ùoòßä¿É“ÿ&ÿMþ›ü7ùoòßä¿É“ÿ&ÿMþ›ü7ùoòßä¿É“ÿ&ÿMþ›ü7ùoòßä¿É“ÿ&ÿMþ›ü7ùoòßä¿É“ÿ&ÿMþ›ü7ùoòßä¿ÉóÏþtÛ­ÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[NÖâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÿ-þ[ü·øoñßâ¿Å‹ÿÖŸýé–{mþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùo;a›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿmþÛü·ùoóßæ¿Í›ÿ6ÿí?ûÓí6;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿ã¤þ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;üwøïðßá¿Ã‡ÿÿþ;ö§[ívùïòßå¿Ë—ÿ.ÿ]þ»üwùïòßå¿Ë—ÿ.ÿ]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~×I»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—ý.û]ö»ìwÙï²ße¿Ë~—û.÷]î»Üw¹ïrßå¾Ë}—û.÷]î»Üw¹ïrßå¾Ë}—û.÷]î»Üw¹ïrßå¾Ë}—û.÷]î»Üw¹ïrßå¾Ë}—û.÷]î»Üw¹ïrßå¾Ë}—û.÷]î»Üw¹ïrßå¾Ë}—û.÷]î»Üw¹ïrßå¾Ë}—û.÷]î»Üw¹ïrßå¾Ë}—û.÷]î»Üw¹ïrßå¾Ë}—û.÷]î»Üw¹ïrßå¾Ë}—û.÷]î»Üw¹ïrßå¾Ë}—û.÷]î»Üw¹ïrßå¾Ë}—û.÷]î»Üw¹ïrßå¾Ë}—û.÷Ý?ûÓíµ{Ü÷¸ïqßã¾Ç}û÷=î{Ü÷¸ïqßã¾Ç}ûžu¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßsòû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷Øï±ßc¿Ç~ýû=ö{ì÷ØïY÷{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñßã¿Çÿÿ=þ{ü÷øïñß}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ¾ôùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þûü÷ùïóßç¿ÏŸÿ>ÿ}þÑûcÀÿ€ÿÿþüøð?àÀÿ€ÿÿþüøð?àÀÿ€ÿÿþüøð?àÀÿ€ÿÿþüøð?à`þüøð?àÀÿ€ÿÿþüøð?àÀÿ€ÿÿþüøð?àÀÿ€ÿÿþüøð?àÀÿ€ÿÿþüøð?àÀÿ€ÿÿþüøð?àÀÿ€ÿÿþüøð?àÀÿ€ÿÿþüøð?àÀÿ€ÿÿþüøð?àÀÿ€ÿÿþüøð?àÀþ€ýûöìØ°?`Àþ€ýûöìØ°?`Àþ€ýûöìØ°?`Àþ€ýûöìØ°?`Àþ€ýûöìØ°?`Àþ€ýûöìØ°?`Àþ€ýûöìØ°?`Àþ€ýûöìØ°?`Àþ€û÷îܸp?à~Àý€û÷îܸp?à~Àý€û÷îܸp?à~Àý€û÷îܸp?à~Àý€û÷îܸp?à~Àý€û÷îܸp?à~Àý€û÷îܸp?à~Àý€û÷îܸp?à~Àý€û÷îܸp?à~Àý€û÷îܸpÛCî‡Ü¹r?ä~Èýû!÷Cî‡Ü¹r?ä~Èýû!÷Cî‡Ü¹r?ä~Èýû!÷Cî‡Ü¹r?ä~Èýû!÷Cî‡2ä~Èýû!÷Cî‡Ü¹r?ä~Èýû!÷Cî‡Ü¹r?ä~Èýû!÷Cî‡Ü¹r?ä~Èýû!÷Cî‡Ü¹r?ä~Èýû!÷Cî‡Ü¹r?ä~Èýû!÷Cî‡Ü¹r?ä~Èýû!÷Cî‡Ü¹r?ä~Èýû!÷Cî‡Ü¹r?ä~Èýû!÷Cî‡Ü¹r?ä~Èýû!÷Cëþý!ûCö‡ìÙ²?dÈþý!ûCö‡ìÙ²?dÈþý!ûCö‡ìÙ²?dÈþý!ûCö‡ìÙ²?dÈþý!ûCö‡ìÙ²?dÈþý!ûCö‡ìÙ²?dÈþý!ûCö‡ìÙ²?dÈþý!ûCö‡ìÙ²?dÈþý¡uÈÿÿ!ÿCþ‡üùò?äÈÿÿ!ÿCþ‡üùò?äÈÿÿ!ÿCþ‡üùò?äÈÿÿ!ÿCþ‡üùò?äÈÿÿ!ÿCþ‡üùò?äÈÿÿ!ÿCþ‡üùò?äÈÿÿ!ÿCþ‡üùò?äÈÿÿ!ÿCþ‡üùò?äÈÿÿ!ÿCþ‡üùò?äÈÿÿ!ÿCþ‡üùGîÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þG3âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ#þGüøñ?âÄÿˆÿÿ¸ý1æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ±ùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æÌÿ˜ÿ1ÿcþÇüùó?æµ?&üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?ábPþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'üOøŸð?áÂÿ„ÿ ÿþ'ücöÇ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸØ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”ÿ)ÿSþ§üOùŸò?åÊÿ”Äþ˜ñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þg7ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ?ãÆÿŒÿÿ3þgüÏøŸñ×sþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ¹ÎùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþçüÏùŸó?çÎÿœÿ9ÿsþÑúcÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àa þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁÿ‚ÿÿ þü/ø_ð¿àÁ?V,ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_è’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ù_ò¿äÉÿ’ÿ%ÿKþ—ü/ùGêÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þW»âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ+þWü¯ø_ñ¿âÅÿŠÿÿ8ý±æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿµ¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æÍÿšÿ5ÿkþ×ü¯ù_ó¿æ¥?6üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿ácÐþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7üoøßð¿áÃÿ†ÿ ÿþ7ücôÇ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßø–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·üoùßò¿åËÿ–ÿ-ÿ[þ·ìoÙß²¿eËþ–ý-û[ö·ìoÙß²¿eËþ–ý-û[ö·ìoÙß²¿eËþ–ý-û[ö·ìoÙß²¿eËþ–ý-û[ö·ìoÙß²¿eËþ–ý-û[ö·ìoÙß²¿eËþ–ý-û[ö·ìoÙß²¿eËþ–ý-û[ö·ìoÙß²¿eËþ–ý-û[ö·ìoÙß²¿eË>>ìØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;ƒß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽý÷;îwÜï¸ßq¿³îïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽýû;öwìïØß±¿cÇþŽ}tþس¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïM`Ïþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ö÷ìïÙß³¿gÏþžý=û{ëþžÿ=ÿ{þ÷üïùßó¿çÏÿžÿ=ÿ{þ÷üïùßó¿çÏÿžÿ=ÿ{þ÷üïùßó¿çÏÿžÿ=ÿ{þ÷üïùßó¿çÏÿžÿ=ÿ{þ÷üïùßó¿çÏÿžÿ=ÿ{þ÷üïùßó¿çÏÿžÿ=ÿ{þ÷üïùßó¿çÏÿžÿ=ÿ{þ÷üïùßó¿çÏÿžÿ=ÿ{þ÷üïùßó¿çÏÿžÿ=ÿ{þÑùãÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿ`þüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀÿÿÿþüø?ðàÿÀ?6ù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?šÈ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüù?òäÿÈÿ‘ÿ#ÿGþüùGæÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þO&sâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ'þOüŸø?ñâÿÄÿ‰ÿÿ¸üqæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ³ ù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæÿÌÿ™ÿ3ÿgþÏüŸù?óæ•?.ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿbRþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ü_ø¿ðáÿÂÿ…ÿ ÿþ/ücòÇ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿šØ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•ÿ+ÿWþ¯ü_ù¿òåÿÊÿ•Dþ¸ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þo&wãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿ñãÿÆÿÿÿ7þoüßø¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨ¿±cÿÆþýû7öoìߨGã;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþÝïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý;ûwöïìßÙ¿³gÿÎþý»µÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óçÿÎÿÿ;ÿwþïüßù¿óç?ü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþ&ùàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿàÿÁÿƒÿÿþü?øðÿ`ÿÁþƒýûöì?ذÿ`ÿÁþƒýûöì?ذÿ`ÿÁþƒýûöì?ذÿ`ÿÁþƒýûöì?ذÿ`ÿÁþƒýûöì?ذÿ`ÿÁþƒýûöì?ذÿ`ÿÁþƒýûöì?ذÿ`ÿÁþƒýûöì?ذÿ`ÿÁþƒýûöì?ذÿ`ÿÁþƒýûöì?ذÿ`ÿÁþƒýûöì?ذÿ`ÿÁþƒýûöì?ذÿ`ÿÁþƒýûö‘øãÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþÓDŸì?Ù²ÿäþÉý“û'÷OîŸÜ?¹rÿäþÉý“û'÷OîŸÜ?¹rÿäþÉý“û'÷OîŸÜ?¹rÿäþÉý“û'÷OîŸÜ?¹rÿäþÉý“û'÷OîŸÜ?¹rÿäþÉý“û'÷OîŸÜ?¹rÿäþÉý“û'÷OîŸÜ?¹rÿäþÉý“û'÷OîŸÜ?¹rÿäþÉý“û'÷OîŸÜ?¹rÿäþÉý“û'÷OîŸÜ?¹rÿäþÉý“û'÷OîŸÜ?¹rÿäþÉý“û§uÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸì?Ù²ÿdÿÉþ“ý'ûOöŸìãðÇ‹ýû/ö_ì¿Ø±ÿbÿÅþ‹ýû/ö_ì¿Ø±ÿbÿÅþ‹ýû/ö_ì¿Ø±ÿbÿÅþ‹ýû/ö_ì¿Ø±ÿbÿÅþ‹ýû/ö_ì¿Ø±ÿbÿÅþ‹ýû/ö_ì¿Ø±ÿbÿÅþ‹ýû/ö_ì¿Ø±ÿbÿÅþ‹ýû/“}±ÿbÿeÝñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÿâÿÅÿ‹ÿÿ/þ_ü¿øñÃoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ù›ð›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþßü¿ùóÿæÿÍÿ›ÿ7ÿoþQøãÃÿ‡ÿÿþ?üøÿðÿáÿÃÿ‡ÿÿþ?üøÿðÿáÿÃÿ‡ÿÿþ?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûþ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaÿÃþ‡ýûö?ìØÿ°ÿaƒ?¾ìÙÿ²ÿeÿËþ—ý/û_ö¿ìÙÿ²ÿeÿËþ—ý/û_ö¿ìÙÿ²ÿeÿkíÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿšø—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—ÿ/ÿ_þ¿üùÿòÿåÿËÿ—þøñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þ&ÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñÿãÿÇÿÿÿ?þüÿøÿñïÛÿ?ÇÿŸãÿÏñÿçøÿsüÿ9þÿÿŽÿ?ÇÿŸãÿÏñÿçøÿsüÿ9þÿÿŽÿ?÷ÿeîß"®éÒŠ"I“ôÁËGRäA“4Åw°F÷üÿþ±Æ?fäœ3"î·Vœ 1bŒkŒqíÆµQè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦L@Sè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ¦ÐSè¿)ôßúo ý7…þ›BÿM¡ÿ‚ú‹e¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe™„e¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿe¡ÿ‚ö‹¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[&¢-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿm¡ÿ¶Ð[è¿-ôßúo ý·…þÛBÿå«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«2«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«Bÿ«BÿÝëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿë2!ëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿëBÿ‹ÿ‰Cÿ¡¹[@øŸV¨Ín_ÞÖýÝž¼P¹ÒóOTþ‰ž¬û«]}OåÕ[ëþ–ÊËf_¶z¥r©÷¸¨û»¯ûFå‡Û®;*Äw÷tÿ`[÷÷Q¼¿å¶ãXª¼¿­ÛiTþk½ý~¢û•Ê‹]Ý>ïo_Ôãþ‘ê3›}¹Öû¥’ù§d\|÷/ég[Ï=õ6zÞnkø7ºÿX÷Ì7ãe¾X—F÷àã¡]ðaßý±îY﫾ÓsæuÜ45<à5ß?Öû‹m]2^Úc>\Ôï¡ æúy¤~ÀGÆËúÒOâ óÄúƒ7ÿFe®ð=¤]õ ݰÞ}Ç|7óÃý7h?úƒþ èõ¡}ÖéBí^êþÃø¼aXWànU^F}úIzxÌû]]ßüDð0ÏÌï#=‡N˜àŸ¡súÓð¨dÞ>Žï®võ8›xüà‰ñQG¿ÿ"ÆMæã*á—Ðãeôw¹­¿kù>¾£øsâ+ëÁ=ã€ÀË•ÌÏGñý³~ðaóÇh<‚n˜úç=ãÀ <ÿ#}w;¾§Ý””àÛÇ÷ÀoúT }þI¼ÏùlhG÷Ìã¥Jæ¥ï߃ïôËúBÿæ§Ûº>r|N¯Ô~›ý/êçðwÚc(iŸù£è ~2?Ì3íÂ7áÇÌÿ·õ¸þT÷ÌÏ¥žCoÌò–ö)Á[ê]ÄwŒ~ ßgýŒ÷*Oº‡^i‡÷ПélQ?§ðõ…¯€¿­Jè>ÆzŸù»Jæ—qÁO¨—ãnøi®?ëœ)7àÓŒ:d]™Ö ¼.ÆI?¬?ý0/Ì7øœ¬óÉxR¿M½y³¨û§}æ :ÉþS®[¯ŠúÐ…ñA%ú óCÿôÇ:2~æx¡SÞ§|L><¬tfþõs~Y¿äà£åSôŸüˆþÁ3æ1õ3žÓr¼Mý(ñ:é%ù)ó”z<ë„þA{¦w=g¾Z•à3p3nÚc>é½4ù-üÒòC÷Ð ð?ÜÕßÑ>=ßPêý…JÆŸüyKü.¾{eê-Ì_Òøß`}™wô„ä_©_Oêð¾»ÚÕã¢>p2~è„ñ Ï_¬ôȸžÓ¯î¡/ï¿~ø<㵫÷O·õ8ø~kýI÷¬ü%Û‡.ÀwÖ3íè•ôûM½¿¤ŸEýžù ?Û³T&ž õu»¬‹åƒ¾/RO;|#÷•¹…ï¦Ý€qÚ®ý‚Сå*ý«]Û¡â9홯é9ëk¼iêvá“ÌŸ×MÏ­Çêžù³½ ¸võ{Û ¢}JèyCÞ2¿ ÚéÀ;ë×*™ì<‰WÀ½·ñ8Æy'ê{Ÿ¦’õ¤Ý´ØÎȸU2ÀÉúQ2^àÂîɼ%_I»G»­áë9M ô›ó˜z-Ï«ŸÜ¿§}|f¹¸Úzžt ^{\º÷¼ÌrŠ}rÅv’E=NÞ[¯Ðsëwzžûfë=¼no£ûM|ÇsÛ¥U²—ÛºÖ3÷gi4½ªLyi=G%óˆ|´;ÚÉ~s¿`¸UâÈý˽¸¿%Ï™gðƒuO;'õÒßà~ŽÔKàÛ)wYÇ”KiG¹Ò=ræN–ô§{æõDþ¢'C?¶«0Ž7ãCN‚à£{Û×õ=ó”ö>Æûº!¿MÊÇÔGhçR÷Ìýxxµ«¿‡^6ôǸ·5\~¾¨¿g?`{ºÊÔ+ÒND´~AGöê>ù¤÷EúÝÕãa}¬—è¹×C%|q˜ŽÕúãeý¡¿ôsx}ÒOú—˜§”[ðsì^¿mýx͸ÁûIUÚîÏSîØÔ¨=•i¿M>rµÓ÷z¿6s*Ó”všô丹Èó䃴Ã8™ßÇúúôþ Êô+€›¨^‚?Cû9î-_ô<ý”Ê'xɺ£ï§5÷}ÀÉý•¦#•¬x|ØoÀ'äŸýî»z¦3•È-ë%1nÛ™io[ßÓãÞ¨¼Ð÷Ì÷ÇQí‹ö è¹í¼×sø’íBѾýNקּŸ?ôÄ:§?/õOë×*[úQ ¿1ßÖ¸˜·ÄÏô»Sò¹b{$íëùfïõüBゞÒB»ŸÄ{óM=‡oÁðk4º7ݨLÿ*ðz®Òq*½Ÿ 8yŸ~*à¹%øžvíœä〿3nÛ.æí’z*-çèOeÒí¦¾–vhæ{”í¸Ûzœù>ゆüƒÀé}û¶†»ÇÏõ}«ç¬íeÜüœñ8^@%ãç=tÉü"§Óî™zWÚ½wúǾÒþÆ}…Þ¾üöþGõ oÇÝ5õ=ý&œ¬7ëÇxÁçÜ—Ùﳨ¿Ÿ’?x¿¨ç9È#ÇÅD;©‡¤úƒo2>üziï™JøEêð+à¤?ôŽÍ¢î¼Kù”vXàµ/ÚËq{?¯’u®o¼¿hjøì?ÑóäS©Ç8nfQßç~èjW·ëqäø€G÷Þ÷êûŒ/ÊøÍ´7ÛÎθv5\i/I»Súùr_N=äs»­ï“Ò¾åœÊ‹¦~ϺÓ^Ú£Oݧ¾Í|Ø/µ;Ü>pbGH~éýŸÚO:K=$í£ô œé‡I?3÷àmÆ©d¼ýÒ>|¼My¿6èžuµŸR%ôÅ8Ò¿›öxûéc<ŽWkj¸6*Á‹Ä¿´/Ã_Óœÿ&꥟¤Õ½÷_ñ]Ú¥2fßg|7x—ñÌÆÇz½TfKÏ/ý#—oÜë=r¦ÑsðÙrL÷^Ÿ]}Ÿø“ü“ùK;5ø#þ0Þ'ß͸Æå8$•öGlëþm×Uiý`[—y²«áp¼V–MÝ>ðd¼+üƒ~3nšq{¬Ëvû] ðç¾ ½ÓqŒ ø›º_Ëï€×x´­¿[Æ=p§¾À<³N´gþ«z7ߺT=Ó©ž§Ÿ;LJ¿“ú´çñÒþ®~î8 =‡ÿÃWÁKÇÛê}Ú+í¯Õ½íéú}šJûÕõx€Ãù3ô§{ÛÛôÜ|D÷¹ßI}<ãò3N<®Ì£éù}UÅã0ïâûôËÚ>§ò¢©Ûã>í ÀçõQÙê9|8í?ij¸í·R 2ø(íÚÎðdÜRú—áïÍ¢nŸõoXÚ±zQ÷c}2ž;ÏoQ_·=L÷Ö÷·u»iÏM~n~»­Ç—þø¶÷zž|up¼K”éçážúé‡ß¦Özðk\ÏÍ:3ŸÐ±ù[£ú»ºýô§ÆïQoQÃÏüÝzŽ#kêþ™Wú7_Ôûœ?Æ—û‡ÌN~šòú"~ô£üÓqº»ºæ)íÔiɼðÕñ»ú;Æ—vqðÿ_úws=OºK×ý¸g=çÐÔãk·5|¶¨¼P}ÛkT?ãŒé—ù·×}æe»—zîüZ¾_ÔÏÁ§ÌJ{zÚ}/â¹óÍ¢=æåj·/3N7ýWÆ•ɯ)=î]ݾý&Ûzœi×gǨûÌ£½Pi;vÁÓŒ×Íø¿§j¯ÝÖ%õØ¿§÷R¥é‚ñèþ^|Çøù>ãÔ±;¸?•™·ìøh=gÝÁGÖ=õâ!¾‚¡½VïÒ­ñj?P˽ô;f~¾ýœ´¿Û—™7LÜë˜öúBŒ“ïá;à³ã‚¶õx2/Ÿy2_ ø­oD½ô[8~OÏáSì¡ÿFÏ3<ó—¼?Žò_Ä÷OH?ÞÇ61NÞ—¾OwÆ+e|Ší1º·™ï·u½ñó—únÆX> Þ´×õìõzÞ‹WzŒ+÷ÓæQ/é©Q™ö¦»Q/÷M¹ŸÌ¼%ÆÇz8.JïÁ?ô+æ‡ùLû[–‰ÿ´ãx]=î´óyß©ò©êAŸMÝ|2ã¸lç¡úï#é¼¥ý+µç8 ¾×sÖ3ýŽæ3*ÓÏ|?êg¼.pñþB÷ð9ë“*áŒëRÏwê§â¼Ò¸§¾í Ûz¼Ì·í•ÑOÆmç>?ãýÐ×2?ÈöL½GïÍssÒÞ›ùWqïøúq&É|’Ô7/šú{ÖÅö+êë=r:ýÊ™‡l?uÀ·YÔõi/ýíOI»ïaû ïõ{ë£1Ç·Ro[·Ã÷èW»} ØÏð'_s—îÁoÚݨÌ8´oÑ|öRÏ“ŸΓ‰ñ°nßâxrê«DcÖgUf\rúCs^$žÃ'D}Ÿ_D*3?ñÌöå€9m¿W”¶[é»K•ðFï±ã@×¶ãDý܇æüä>úË}LâQÆEåþ›õw×¢î½&ãˆs?è}ˆÊô§0>Û9(·5\)ÇÌ×¾K}úðcøêÐ~:ã˜âBÓn‚~j»]Ô»ÒûËm]f=à²>µ¨ïá÷^Æ×h¼ª—yß©ÿ1ßðÌ_I¹€\†¯¤ÿµÑ=ó–ùú'Çzöòªwõ¸óËxÚmÔÓ½ã#t_ÌýFÒðf\ý‚G™å~t~`ûBÔ»hêþr_ú‡QoÆ!Pÿãžöi7×3ýL¹¯H;t”xi¼ÑûŒSAÎmâ½í·*Û(y>”çwÏ}®D´cýo[+ãÚÀ;Û37ëv¥û´Gd`ãÌs’¯P8rýóWk?]ôÃø3ŸÿO¢lõ~õgÆÕÒýæ~+ã:ò®Œcàù>Ÿö½ŒË±‘võ>õ#ïO·u=ë}»ú}æ¥8/B%ë^8¯7ǧv3¿ßûh•™ßœ|ø™Gæ…v™·ô'dûÐaúјÛu¿‰ñ‚Ï™‡nÿ£¾Ïü’Üçg¼hê»y¾Ež–~õ»ñÝÐyN–GÑnêÃŒ¼C/c=™O¯sSÓú|îo3N“uKÿhÆ['¿§?ËC}—ñœÞwÑ϶./šºÝ<‡ ãl7Uiº.µ×³Û5u{÷þ8ÖçŽ ø'í©¦œ¿Ù?ãÈ}<ò%ã/À›†~šº´OØ.Èxv5|ì,oõ½ý¡zŸþnÇïÄ8ÒßÂþèN¼g^“Nh?ýµ Ú1ìÿQ=ÇK龉ñ°¬_Æoóztþ¨Jð€vÒoóÏU~+¾CJ»ŠéC÷¶£Eûo ^Ø?õàö{«\ÅûŒŸ2ÿ ý÷&ÞoôúA/M¿vÆñ]æ9¦Ýòã}ÎSâSÚÇÌÿ£¿ÌßËxïGõó´‡4<§Ÿ¦î‡ùN ||¶¼¢½]Ýnâ߃‡©'åw¹¿õ¾Yý0ߊçæËÑoÚµ,Ÿwu½ô‡¤ß6ãDWL1.Û¯ÔO/ï6àË8^ø¢ãO÷u~Mê«d~áö'mëç—*ïÅû<Ï1ã2lÇZÔpg~;Ï}ÞÞ_Åw™÷èøSÚU™v¸Ôs×õüÝ~<•©ÿñ¼YÔí°¯nêùü •ÈOŸÏð¡—õœñÃß¼O_Ôõ{yÌú>õ¾Œ¿ËýqÆ{Ú÷—1>úò׃—ŒÇç7ªÌý¬ãa—êåþ…çɼ_W}äëšö‹ŒY ÷oŒzc|™/ÂóŒƒ_Òžõ%ÆãOúeÞóüàú(¾c^†ò9œw¦÷Ž›þÀgËÚ[ÔãËý-÷Þ'D{·â{ø:ë`ÿ:íè>í»™Wq•ösêù†qœ©_Ðôg¹²¨ßÓÎÐy—áuP™ü2Ï¥ý<¯Ëû¡ñÚð²þ ^¡ÿ¥=ŽyÚ|À›yî—ôð³OßÄsŸÓµ¨áó~[e«2é"ãSî˜ÿÅ8Òn ýÐóaý?Þg¼9댞Ÿr2í)¹ôyBºÏù»Ôó&à¢eÜ÷âŒõ8áÛ™7—yðÀm¿µîÓ“ù/È·Œ“Iºq^w¶%ü>›y”iÏs<íF™ñˆéf½3?&ó²¹÷>/úM¹¾ïÆsË%àP™ùâéÌ<Øv[Ÿù7´ŸñåOn~ òBpZ,êû^¼ Jæ+ý—´»«á†ní§q1žôÃ0Þ”—é·Î¸WÛovõsøIž«‘ùHW»ºŸ¤KKÏ7*›€‡¼¦Ä·Ô3~/÷Çàý^ì;êÅÃ8t[÷“~š<çyƒœxļ1NúM¹Ö;¯f[Ãm9í%þû\Áiù {çK-êöiöYôwäižÃâóàb<¹on/šÞÌç¤ý´ 8ž[ðxõS¯býYŸ‡ñ]æfœƒýO*±¥žŒ½!ãO2¾)åhžcÇz ÉUôï<&ãÿr¿˜ùeéï`|Ž—§^ÚeÜ´·­áàyž‹C;é·f§˜çm€»©á:ï'Ï5[G}ÖÇv4•™?æx‘€Çz讆ÛpªDnÕÏøÛU/ýÖÖ?uŸv˜!{Kê]Ž+_Ôíd|Cú¿oÅsÇ+ÒŽîmŸÒý¥Jæ#ÏSã¹å`ÀCýô?÷ò°4ÎŒcuü`ÜgóÜ2¿6ñ1ýÝÎ{§ÔûÜ7fü…Ï·Œ~ÿü»z¼ó’ûÇ?è}Æ _3®Ïþ„E ÚÓ2ÎÉyÙ¿Ê´óWÆç´Ûº]ǹS?¾ç=ýÞ‹ú¬pdܯùPôožgœ¦õ¶èßyJÛº¿ÌGȼÉËWúÍ“.€¼OÿnÚÕÓïùNÏÓŸ–ñè”üÞò]÷©e|€ãdè_e£2ÏA`üäm]4u¿_—ò¾ø¸©ÛIø˜§Ì@Ï`Ÿ•qÓ™‡n;Т†3ãƒéŸýý]j/ñ$í-ÎÏ£ÝßU2Éϡǫlõ>ó¦2þz£{öÝG•|'ãßr?’yÌGße¼ÿßÞûû}Þþá@=ÇGè>ã[r¿”ç¡\ê>÷Ûô縦è?÷õéßÉüûÕšºæ7ó52Ÿ§Q™vNà¦Ó-ãÜÖí;®n·/Ó?Ìv­nëç7žúç%ß©?ûÕôúL=×ú‡àMºÊü{ã!ïußËŸÜ~Ï<;¾Iïs~š({ç_©ô¹E¼W >{Ÿý;ÏxuéýfÀ·‰qò>Ïq²LÏm¿Ô}Æëñ>ã·rÿÊ~!óƒYWôžl7å0ôqßÃ÷2ž“þRŽx¿¶«ÇO;ê‡ùaýzúðD»À•vúÃ/5tnÅ•M–Ûz´Ë|f¾÷µzŸù¨Ž/ˆ~lÏØÖp"׿Ùq!Œ;¾÷þ%¾Oýô2à‚d~‘ó¿h?ÆÁ÷^Çhý,í$iŸ¹hjxYwÖ­ÝÖ÷Ì“í&§×IíÀÏX·´#¦}'å@îé'ý[Žk ¿¾×ýFß;ÎEÏ‘£ŒÿjWÛz`æU'Œ—þœçð¦¿Ðü=Æs!xß2<ÿÓ¿Ÿ2¾ªÝÜñœú؉/xîx~ÕÏøð”û—1ÎŒ;cžÁ×!µãý/ãŠv¨oÿƒàH;uÚß/šº}ûÃUåKd¼LÏ­ß\”©ç¥¾è¸Ë¦oÚKš¨Ÿù¼W»ú=t™zàEsx|é7ÿ¥ÿ¸wÜÒ¶n×þAÊ]=^Ö)ýsé×ÎøúK=Ïø¤ÌÃ5¾4õó<Äq*‹®Œ3JFÆåù¹©×%¿OyÎ~8RK:vüD´Ûœð?Æ Ý¥_ºO>–ôn¾ \§÷SÑ~Æ¥Ù¿­¿K>e¾½«Çã<)½Oþy‚À‘çex2)ãûác)†ò²è/÷Û|Ÿc^ÿ¥{æ'ó3RïK:38ó|ïsõ<í™ç:´?§}äƒ÷¹Ûzœ•é·pœ JÇlë2ãmW¸Û—™'Áý*JóõE=®‹ý@zvnjLJß{ߢï6QfþŸí‘ºÏ¯X—?Œç›€Ãyìj/õbäx«2ãV€'íEÉ'·¥2Ïc°Ü]Ôõ˜ÆÉϼŸÛÖãÊcJ½†÷ö lëç/™û¾Ëm}µ«Û³\a\ºw<‘žƒ‡èç¹?°?~W¿¿hêz´Ç8Ы.âžq0ÿégH½œïÛGÆãOú÷á럗ti»¢Þ§ß?÷WÌWæ×§÷‡ñ>å¡éNïYàÎx)ôƒäg–_À¯<Î|iÚ…8~¸võ}êçmÜÛŸ¯öŒwºß¼ÊÌ{Êü^ÇëîêvR@¾°.èyžDʾO=.ócÓîD{­ž÷â[T2ÞÇ좾¾·=„~õ<ñöR%þ>Ç›êüÉ8€Œ×¶]GÏáo™?åyWi½Iõ›É'ÒN=¤Ü£x½‰ú¹¿²[šŸnë2í<?í«Ì}9|$áJ=ÕùQºÿÒïžûúwüË®î?ý¡ôŸó—~Íô«d\ åœÊ´ƒn¢>ófýTý[Nmëñ6QÏø»‹þ€[÷öÃëý:õÔ´ðžõbÈ—´£^4‚O÷è+™ßǺ&]0¾´»ÂÁSÚ͸«Ä7ðœù„~áË9¿ñœ~Ћ˜—´ï2¯Ovu?É÷2^?ý¤)¿,?b\Ïñ8ž[×÷æÓ´£2óÏ©—y–™Ïñç”ûÅÞùÑnÊ ÚÅ?ɸR/Î8œÌË0^Å{äÙ2Þ§Þ¼‰þìwd|»ºäÆ'Q/ãZ/š}és T:/|[×wÜ¿Jðšõ1.êçéŸÍ|7çç ŒgÏi—ý)tܨ>ôá¸YàÔsÖ•ý¿ýB|¼vÊÔÛY—Víe^‡í§oÚÒŽC{yî…ã¡T:Sý1¯Ð•÷ƒª—ñ¹/±=@ßÛÿÊ8€w[×ç=óÿJÿŽó‚T2ßöWQ_íÙŽ \*3Ï%íßù}ò%Û“T¦ß?ã•íÚÕãɼ³ŒÓó¼oëzéHûŸ÷™»úyúùÀ«ôÛ®<1žÔK¯D{M=Ž<¯•ùÎý¶ãÐu~ZÎíêñÙî ÷WQfnžsÆüe¼,ø”ûÉôãð}Æ…¥>Åó\ð<õWï U"ïÒ>šñ•i/J»ã­â{ûõ<÷GàWƃ¥_.ýngÂ|džü&ýeMô›y{ŽÛ®Fðêžy½ÚÕðÀ×À/øºùÞ{ý£Ÿœ§ŒçM¿Kú‘Óÿâõ£?Ý£'2¯À—ûeæþ5t¾DÆŸäþ#í6io¼TÙ;¿xuŸx’ç'¥'óÔø>×%÷¯¶;ÄwÉçßߥ>tßõòÚºt»êgí1zžù›éL¾•vdÛÏÔúm×UÉúà—L%x“þÅ ß/êöm_ˆö¿Ì÷‚Ïù™*3·yýfܧ¾þÒ´+ Ùo™7ø‹íJ‹ú9õX·oEý´¤ÜuüsS›xÄŒ‹Ï8Iæ=ÂþôEÝÿF¥ó"wú³ÒC™çåôÎÐóŒ›Xæóm=Ž´Ï8.D÷ð‡<5÷YÖÏÎ+3õÌÜGç>¸?ã±^ÖìË˨ï}\´Ç|AiïO;“÷#znù°«Çr#Ï'¹hêñæþ³ÝÖße\ºã€nÊŒ#Èy»õY¿î/ußD;¶·h¼¶«ñ]Œ×ö]ÝÏOÓO<¹¿Ïüð!¿ãºÚÕã€ß¤œô¾WeO?ÝÕð3ž´c·ªŸúã¶uÿ¹ÿÊx=Ö ù’ú[î§ìŸŽï«ï½ßæ¹àsœýéyÒiîëÁ»|ŸrÈ뻫Ÿƒç½sb\¬+ðd|wî_SN~b¿sôësŽ¢ÿŒ›ÏüpÖ¹ÑsðÕö^•é÷ËøÜGQ¯Wã3Ý«/>ŒïÁ×Ü7gCæµf^†ãðô<ó¥Úm]¦7íI¶ƒ4uÿÀžaý•vT"§ÙoÙîªñ‚géOÏ|€ŒËJ|mu;Ÿ“vVë¡ñë»Þ¦n/óømÏØÖý¤”vr?îuV™~…ô9>cW·Ÿò×çïñ½Ê´·9_Geæç ¯Y©ßJ_bQ¿Ïý¡é«üÀ»¨ë¥ý3ãW/U¦]Ìúì¶®ŸûÑ<Ÿ!ýéàxÜd<܃?©×eÞðd¾H桤ÿŠç©§Àºg<ùE÷N÷Ì;zRãîÅÏëÞúðNðè>í^¬øêx.•y.HòÍVÏ­÷ïêïÍ×¶õwyžIžGãxŒ‡ýI|·¨áÊýPú_í׋zÌKÆÅýO§÷*3® ¹çí¤?Íòa[ÕzØí(ÁÇŒ¯cÝÒNc¿õT¦Þûú€ç¢©áL>Ï8ˆ£}¾Ë<ûkb\·Ù‹cVé8-•i×·]\õ3Þ*ãºs}rŸ˜çJØ©2íg©×wÏŸªòBý¥}Ñx»hQׇ¾‘“öKìêñ`ÿ/2/’ýýðºoUÞïr?yÏ¿ä¸ØhÏqúñ<ó§x^“v9Æ›ö‹¤·MŒ#é$íP¿l³î™7蹈¼^Ö3ùNÚ-÷ã9ëäüˆó Ÿ`~2ÿÑþ*½Ïü'Ÿw¡2ý¦—m=.ô†”K'?wœGÀGÿÀe;³JëKÛø˜éKð˜¾nÚÃŽ0¤g_4j'àÞô›e\5ý¦>ã&Ðk€Ãñ°M Wîs˜Ï×®î7ýÞÐwÆ/wæ|eúa2><ýõ´],÷ÓܳoÎxBöiþ.ønÚzþõ]=^ÇA,êzö[5uýÔïRolâ=øÛó×mëúŽå=ýÑî¢n×ûM•ÏÇzåz3¿é7Iû~â´×¥!ñžþÓîï}‘ž_4õ8ÓÏÁ_ðÜz§î[½¿T ]WÔƒo:~‚÷º‡®šŸÊÌog>3NóQÔ‡?™¯ªLùÓÛ_2ž]=®\ëG‚'íÐ탨þ¥?Àö•àE£÷à]΋ñWeÚ9RÿÈýqƧf^áe|ç¸!•Ì[Ú{-uÏ:düídœ:ý"×oê?™OùˆŽ# øÓ®“qbÌpdœvú§Ùwç>,ó¾ÏÇ©òBð;~¢©ûã>ó‹SÿH>aûÁ®†Ç|hQo;±ÊŒ?ëÅ[lk¸‘#yr)÷Îw.ÆËøÔ|-õÑôógÜ=p"73ÿ{/ãlb\ðð >öñÄ ÇMªLûdúœN{ºouŸ|‚zéÇç=ô–öjïw¶õ8˜'ôÖŒOب„>rã¾lGRi?/ýè¹õÿxÞ‹³¦Ý;¾­©áN;ŒãÏcÜIŸigJû©ãw5¼é¾hê~†öŸüÀsEj/ãšS¢½”wÎ?gM]Ÿ÷>'$¾G/>øío³¨á¾ŒãH>–þCÇF?y~#ø•ù¬#øvïYôÚaýþ4ÊÌ'̸KÛAõx€7ór­_ߢn×ñªñ}î÷ó?Æ>jù©÷Ì;ãÍ8\¯Ã¶n—õ÷yznÿ/Ïã½ýgú:¥=äíF%yÏ—úÞñsñ}òû”£M¼7¾©Ìó%À÷<·2ãŽs>½ÿÜ =Ï}ÈESÇqdÛz\ðsóµ›ñO©¿güÒ†÷º·]f[÷o»ŠÊÌßÏý°í ºw¾ õ‡qÜÉ3./ùdú¥Ò¯2'ÛÄ{ï#+ê¥>–çYXÞDýô÷¥Ÿž~±‹d øŸúEúmR‰Ü»hêq¤ÝôR¥ùœê#sÁ³¤ÇgÒnS—<Ï|¾Ï<ÀÔï3þ6íiOo¼Œ~3Ÿ—õ¢ô·eR÷—º·Ý_Ï3n8ë¥|Í8EóU}ýÓOB÷¬{Òý¿*§ý߉ú¹¯]Å÷Þ'Óß¶þÞçŒèyê·À²NàEê#ioJ»rž À~À~¥gÆŸmÇ¢îoïsžŸÒ¨}w¥þÓÝf¼ ëi»ŸîÁ'Ûg¶uÿ÷`ÿ ê1¿Î'ÐûŒK³?Œ{}oû 㤿m ú…r¿šùNŒ9ŸyØŽkhj¸ oÖÍù€Ûê3ŸÍ¢†7ù+íâuƹX®k|¹ßâyÚMÓžg9ðdÞqÖƒ>/u]ñÃwÆS2/Лíó1¾ì'õ€ÄGÖ›uÍýgÆ[°¶Kýªô>[í§^žñÛö7éyÚòü¤Œ6?Õ½Ï#¢ý¨Ÿû«6ž3Ìkž¯q~àiÚ3ýý¶®—vCäHæAYïßÖï“Ð^ÚùÒΜþ¸´;¥_$×=ýI_ð×ÌGy÷‰9îÌc±=a·/m?Ò{ðú¢<ŒOÏ¡¯«¾Ï¼äÜ÷Û~§÷ÉWÒoÈ{Û#õûô믗ñPéH¨íÖMÝ_î2<ƒÞ¬7ê9ëÇúÚÿpØÎ«÷–ËѯýSë‘þ!ð†v2_¸R®ç9W©ÿ¥_ÃúcS~“viÇϨLœãùôœùÈó)2Î-ùZ«ïñ7æ>Àûß(ÏGQ?ãV¼Ÿ¥¾î½ 8øÎöÊE]?ýqiÌøâŒµÿSõ7ñÝ­xμ;ßaQ?3®Ïy»MÝoæïdDÆ9Ø^ãp>ílëþW±Û—=¾¬vÌTøÁŒƒÍs 2~%é6Ï92 T}ôú±?C%ë ÝBÇæ'—ãäôÞûjõ‹dþÉ}ŒÓvY•Ž»çý¢þø™ìy¬;zÔES· ÿHûc®—íÌ»z\¶;ª]äýš*Á£Ì31^5uÿé—`|éwgÞè/ùKÆS0NÛwu?Æ“]]?óÍò<‘Ëh¾Ôê>÷ÉèU™w’þP¾OyÇsèžvRßø8ÊŒ·îí4î¤cÆÍ8áO¬+ü"ã„ÉcH¿õ2ÞCOÌk浡ÿdœãuÞhŒ+é#÷Sw~1¯´“vŒ<¯<6ñÞ7ºw~˜ž·*sÿŸ~YÇùêþj'xvõ÷¬WîŸ2ß:ãQ‡äý0¯Ìô–v¨Œ‹ÍsS~±ÿÏý]Ú¡½¿iöeÆ gÞIÏŸ¥ò©Jð,íÍ)7GIÿü½?÷Mé¯~û›šº¿Ü¿z¿ª²Õsççè9óʺ_nëñ]íêç–;*ÁOèÒûMÆ©2ýJ/ÈøÍ¯5>øEÚáÓïåüÝ3¯Jè|ÏûÌŸµ¾¯’y/gÜZòùô·¤zh— û¤[Ö9ãœ3¿xH޲¯jõ8?Š2åzòé´G¤_Ÿþžì;2>¤"÷¡È§ÌkJ¾ä8 •)ïmÇiêz—*½ï[Ô÷¶/©LyïçjÇ󬲉ï“ŤœIAÆ©ÁŸó ¨¯ÒûÒxžö óG½g3Ÿ3ù ãdØ£݃ßÉÓÞÉó”Ó‡™ù>¶—ª„O¦þ¼‰v2N1÷Å|¿Î<ñÔ›hßv‰h§‰ÒñÉw®íÇ*™GWß5zÎ|QŸù0è-é§bÞ3¡U=ð”þ˜§ÜwÒ.ô‘ûô@èŸþáOÆ ªÞg\õáCi‡p¼¥JÛónÇO/¿÷>f§²©û±^ý¦žžò0ãSíWŒv¼Šqäy@ðÍ{QZŽp¿«ÇéüsÕó>"àOýëNܧ^’ö!ìs7›t~ä¾!óN9›q[“þ\æ‹xÇŒÏͼÖzH¾”þÔ<¯!ýy®JÒÏFÏÓŸùËðù´ç¥|ËøŠÔÓÚh‡ú¹/:x2Ÿ)óéX§Þ9d‹ú>ý—Ã< ‡%ÝÙo¢{숎ó xi¿g_ÙÖãI¾L|ße^.x€~šz&ë˜ü¤Q™þ|Ç÷Ó¯Þ§Ÿ‰q^ê>ÏgËø+ûÿÕN/NjQ?>ûG£]û-.Ý£_ÀçÍ7Tæü?ë~&}ç> ºMû@/œv€[Ãm{ê¢î}!ýgk;õNílë{çãmë÷ðûŒ'ÊøÍô_ù…E //PýÛžß%ÿÍ|"úI=úLûš×QïÓïìý¢ê9žtWÃã~v5<—_/ÏKeÒx/¾OØ?Yýªïø¥m¼g¼ÀGÿzŸqŽGÐwéÇÊýXêéò5õ˜Ü×gœwê%†GðÙ®¿¨ÛËx;û‘ô¾Ó³+ó½JäuƉ¥?}£ï¯OÆGõâdÔnæ %_pÜK¼‡>3þãèŸöð#ã"S%¬?xï|ïxo?ᶆç2û]Ôß94àB_´ü‰~Ûmý2¿,÷Æ ÕwþêÛ¾p8î9êÓûÎQJ¿IÆù§Ûq‡Ñ¾åNŒ¼Až´ñ]Æ)ã OúyÁ“ô2¾”3>÷M¥ãÐõÞq³ñ>÷õéŸÎx‘ôCd¼“÷‰´§ûÌ °¿M÷­î3Ëò½©ïmÒ÷èåŽGRÙ³·7õxr\CyÊi'f’y)Éò\ªŒŸ¦ïS÷—ÑoæÝ'}:/j[×ó>RÏÓÎdû4ßëý“m WÚŸXÏŒoL{:ó>¤w£{æ9¼£~úòü“!{÷ì;œO£2íŸMÝ.x–|™q™oDýÜ/@ÿéolôÜöPî©Ï¸U²^ËxìË«2ã8¼ÿlêv œ‹ú;ðÙùD‹ºþPÜKîs(‰±½S%óǸz|pW×þúÔ÷lÇçÆ•Ö«T>ˆçÀ‡ç¼æ€ÛqMÝ?x–v–Ô?R/M{5óžþZÇ1 ŽŒSL¿^ÆGfœ~Æd| tèøoÁëx:Ʊ­áL=¡‰öÒ>èø•Ћóµ£^Æ{åþ±‰zz¡öÑ·Ò>‘vÊÌ_Ê<†î3΃ïÐW3oxÒž‘ö]àÅ®ÑãÛÛøNÏ™GàMþœx<©'™ßGûð¹Ì‹Ê¸søëäx{•Øírßžz­÷ÃŒo·/¿ï{y"*sŸs¹­Ç™ü!ã©á Éhøáà9þfè‹ùÈøÀ;ñ½åà¢~Ïü:NŸþ€+Æ•þKÛ·õwÉG>‰çwã{Jðÿý°ŒÏøãʸÞç9—À«ö/¹~¯ñ©Ì×Õ®_îós_A®;ñÞr^í;¿ƒñéýŸÆwi¯N~œ¶éþ¢©áâ¼ëù×õ½óé¶õû´-ãùU´—qÊ|g}Zeæ§_úÙô›yü|§çð§<õIylx³Ëñdª\ÌÏÓž•ëâüT•©§§=heʯGÆSç¾0åeÚÓ71.Ÿ+ {ÛƒôüjWßg\Ï#Ð=ôœûýÞù1Žä?¹ß.ÒÏì<Ú§ÿgÆëg~ãlãyƦ¿c0¶©áI;JÚýë}ÙtBÿÛú;Ûauûàmúu_Æ­d\—álêv2ïÒqhMý]æ»ó>í(é§ð¹!ºg?ƺ¥+õæŒ;N¿fÊõôŸí\Q|L?AîÓ/s÷àoÚìßR»Æ¡2ýŒçjWÕþYè"Ï H{ªí<ÀG?*/õÜqÇ‹ºžóIu½ô¿²^i×MûYžËvæÁúzÜ3ßWñ>ϧȸû_eÊAöKΗQyõ}þ‹ỄÎýiúï¿¡÷釶þã°QeÆS+JÛÏÆ“öÀÌ+Ê}TÆýôì‹zžùéd~ÓNåýéNß«þ:êÙîÂ{à ¸ ß ÝgÜ•ékQÃÉü³Ïqþ±ÊQ/åµí*mg¥ÜÖϽOoêq§7õ‘Œ÷È<³ô4*3oÒ~$•¹Ë¸ñŒ£·Ÿ|W÷“ù)Çl/ØÖã}ÎɶnŸzŽÛÚÖíeÜwÊÇ/êñöìšQ/ãž‘—ŽÛÖõl׋û´“ðúuÆæ:µ*Ó¯‘ò ãåò»;ñ>÷½›Eý]oÿ¬~y€Ž'RÉ:fÜYæ%Ñ~ž ˜þ¦´3Ù_¢ÒöÍݾÌxÜ´S°Žàyž·–|Ýú²Úo¢½äç¼OÿHúé'ãæ½ÏSé<©Få®_ê¿Þÿ4u»¹µ¸¨Ÿ§¾Ú‹·ŒñX/ÙÖõMçQ/ù„ýÑoúŸ¬×ë>󯬷íêïzñ´ÛÔßõÎkP™ñoΫ‰zyÎFÚ2®wÈo–ûçôG0îKÕCد{ì’ÞÜ™Ÿ•vžô¶ÛºóšzdîsR®;®QeƇfhÒGÊIð(õ‹ÜG¥=6ó‡O;ºÏ8ŠU<§ýÌÇ3ÝÇsʤó´»û\ƒhÇô£{øyæ›øü(Ý3ÀŸö¾!9’ð¦ßŠöÑoÒÞ~¬^îÃÑßÀ³žW™þvçy.jø†+óóÐ_ž§|ú2ÊÜ?mŸ;²­áH}ÈþÙxžòÜöˆ¸7<º‡nÒ¿ ÿð9mÛú{ïŸUfüAî¯rÿ™q³Ë¨~@™y|<7œ*•Èå¤ÛÌ×Oû”ãÑèGíØß³ÞÆOÚÓ{äN»­á³]*ž;.q[Ã3”ŸÞ—ñÅÞWïj¸é'ùbú‡’.™è1ãyožëDžƒßàíê1nð-óCLç1ÚƒïY¯nêö€?ýqæzÏ<öìuúŽyʸ0ÛÙ·5œŒ³wî$õUfÞœó&wjO÷ÖT2þÌ›J?~ÊOÆ›ölÇOÅøàƒ|Ÿû¶«] þ¾ôû÷ôb½O¿*óG»ð]üÜiOKx“?´´«¾ƒ¾ÐÄwÎÓ×½ýÔÛzœ™ÿßÎô9þKe柦½ÚçݼÝgÜbÆã:îHí:ŽC%ô…}(ã´Ó?“qª?fûÔöðûŒÉ}AÚõ­/¨düÈàÏ¡7Ëaêé>ùõÒŸ•qU-ðªL{Wúk=O»þ«]ý÷Ž÷ÒwÌ×wQÓz"ëæ}³JâÉ2^Í~#Æ¥{ð!õ®ô#:þt[ß§ÜÏóM2îÕçf=}¾^í4ÝÛ>¯’8‘¤ûì'õ"ç¿.êöÓNèq.êï3 8À+Ÿÿ¦2ãr¼¶#nëñe^YÆ·ÙΨ²YÔõàG-ãPi»o|oÿiŒ¸X/ð3õï<¨·ßÓ=øÁ:§ß<§¤Oä>ãÉsAšh§gÇûFíF=ô¿×wéׄÁÿÀ+Ö›ï½nz¾‰vROŠÃ4ŸŒïÒ.žy%Þ45ÞG©XÜÖ%íZŸ~Ù·¥žë8Cà`|*¡¯Œ§dß’þÍä'ÐaÆ©øœ =oU²~i—Oûû1ûè—ï·õûŒ£ßŒ7¡è=áF¯jTåCZîëÞö]«‡zžþÞg^uÚiد؟©û‹¦~ßê}úy3î!ãÒnŸvò«Ý¾´ÝfWÃ_Çþ h7KïËÕŽó+wŒ/ý=Ïå8ö€;åjîß3o;÷Ó™Ƹ3î,ãw˜'ûU2?)—z|B%xãý]”yNø >A9ÿiºÏ/šÇé,j¸3Ÿ‹q å møž~vz®{Ö1ýÿ· ß’Ó‹Þ€¾ÅwÀí]4uÿésÞÀ›v êýq”Œ¼®ÌO<´^À8¶u}àf]ìWÓ¸ Kâ'hÿ¢ÌøôÔ—àKÞÜ)'°wð>ýj®OÿM}ŸñÈ»ÔK2 º¥Ÿ´{ §Á;çíÅ8Òÿ\¶«ê=úí˜_é}ž3“ù?FyÑÔý径ñe~bæ«­â=í³ß˸ÛßužÁ'ßãË}iõ'|}Ë~¤¦†'í~ÎwªŸçO¦ý¾ §ßÕ|5Úw<Ü®.á›W».ÎÍžŒóo!7r_—qÓé7µß Úµ]-Úm·õw¹ÈxðÒþµ¦î?íBÜçùY™ïšq<%ÝYoÒ{ã«JðÂöZ=g½3|aœG^'íR?ãV¬ïÅýFߥÞì8¥m Wîs Wð‡ùe¿Ä¸lQý+ÁéüPÕ·½O%x“öàž]A÷™g”ñ,ϺÂWÚß|Ûú{ðÀú®‡ç8U2Ï/ãÓsälú9zñŸQ/ùMÚ[ÒîÑÆ{ø[Æ·e¼ô—ù㙿dø5üÖ[T¦œfÁoàLþá<]•ïšù$éLý¹Ÿü¢Qɾ%ÏËÈs‹’O±ž¹ÿíé M ·÷óÑ~Ú±Zn ´›þ!ÆÏ¸Óß™û¯´_§eˆŸ¥=xÒÇ÷ÈWèu·='à³¾G}}ïyR™ùHŽëÖýF%|} |!é˜q¤‘çé÷ÏzmÀmÿ í·ÊÌÿI?]ú¬ßü¹ÿÞ”Ó–»*¡wŸçýx¶­Ç›üý_Ç÷ÿâxJ•Ÿ•z›÷»Ûz\‰w¬#ëþ0ûy(oú«mÝþÎq”Ñ~/_eÆ5~eÚ…ìg Þ¶~ŸçpWÀ_J¾™qö¹ÎàQæ[ÞF½VÏÓÎ>¤}Â붨ë¥ÉõqÞESç~ôþ›ñ½ãc\؉zrm[?O{Búõ½zÎ:æø2¸à§Jô.Ï ðEÿŽ£VÉøS¯Lûdò]ø)ô“~»Äë´?düxÚùÐíßÖý9AÏ?Š{úAŽGéïc¾ÿyôŸþÊŒ·»Ð}ÊŸ´§Á‡Y¯^œ3÷j7ó|œ?õ7*ÁæÓù¨;ÕÛÕíR?é§Õwwã~È—ãMy|#õ8ú·_+úO»óåxì€<É8ÄÌWwü‹îÓÎç|£wêóI‡Ô?™ÿÌ{Éø–ô¯™oê>ý²—Ûäx–öüz™×]{_©2óL|¾™Jøû¸´Ë;_-îsìøÑ¦†·ÝÖðæyAÞWë9xF|…õ?µ ~±ƒ>G¿™?”v®Ìëà=r!ý¸ÞÓŸàbÝsߘzŸõÏE 'x>å¼Oæ{‘‡˜vèÜç¤ð|ß®†›ñd­íH»ú}ž;˜úmÚuMï‹ú{Ö…ùÍ8®Œ{Ký{õWÚÓ.—ùÂ-õõ=ôm?uÀ›ñ¡Î7.ÝÛ^¯çÎ ×x7Œ—úª—ë•þƒó齟f1.ëQþÑ—‘KæO*Á֑÷½8/•¬ýgܤí zžû‹<ǃv°WGÆ©ÀçÓ®œvGø’ý4Œ_ïÓÿ ¤¿À~iêÑ®îÓ.^¥ýÂyŽ‚ÓvY•·r;žC×Î?W ~Áí/Q?¬xžv{ä0ü{(ÎujTÞ‹2ãOòœÇ…·Þ;~MÏÓn¹‰zæK*3n&ã3¿%í²Ù_æu\W£÷ª‡^îýp,ê~óœæÿ_D}Æ>¥ÿ'ãÜ]O%ø”ñ—à5ã¶ÿA÷¹_G? =úÁ“¡ó·R®:$Æ•ãäû ”{èýÐ t \yN‡Ÿ«Ìýzæ)›¯7õû Ý'=µÛÃ÷¹Ï`>2þ&íié×1~Ó”vEÇoëþž¨D/„O›o7õ{ð>1o>eþ–ýmºg}S?L~öaÔKyiû‹Jð~€>¼¯g=a§vu™ç-¦ÝÂçÄ{àb=œÃ¸€KeÆÇfÊ&àÉüŸ'ñ¼gðoâ«å¡Ê&úÍxªÜf¾WúàW™ïs+ž§Ÿ=ãy3€þ­çP_ežC1dW´¾*¸Òévâ9óšûbÛ3Ôžýš»ºþèŸyýÉÿœo¡2ãy,·U2™¿à<[•™_:Ÿ‘öòž;¿†ç*/·uûh{6ã仦†ù³½«ïsÿ“þ?ÚIëî¸Á¨]f~íGzÎ>Þñ*í¯Ó=óØêyú½§ã̸¼´Ÿgþ]ÏÞ¬÷W“|8÷WÉ2þ™ñ:n#ÆþÜßé…Œ×z+ßÅx€‹’þè'óÅmGŒr(>ß~¦]ýý‡ýJÆy:îƒþU¦Ü§ÝOâyú§ÒOL´×Ò/íéžýñÿ|B.ÚÞ¶vvuýŒO¾P?)¿R^±ôÏ>|÷¸ø^%|!ãaÒ¾Èø3/ ó².â¹ãFç=~æ)ã0ÒÏo½o[ßÓoÚûéÇy;*ÍUf\…íòÛzÜÐeÆU§ž›|¤‰~Òžþ范O¼Ì8û–{úS™~»´[¿¡ým}ï¼IÝÛï«zÉïi?ãȨ́¶õxr>ò•ä?™`¿’Ê”oy.JòWë%‹º´ß†vwõ÷W»ú9x ¾awâ}úI“‚_È‘ŒC¤û4Ÿ§pg|^æoÙŸ¥{ǵëÞx¥ñ\Æw韊GÎó2Ìq ºO¹ì¸F=o®Ü×Z¿ÎzºO»ê•ú¯bÏx¾k5|?šò(ãÇ)'³¨ëÁÓ¯—~…Ôï™ö¿‰¿ÌGâ)z‘õémݾ㯣ÝÌ/yïứ·f>¿íó*ÁOüöôãu‹{ïU¦}rÈOyGîíïи™àbþ3’ç™Ïžp¦=þÁ<¢šn¢}Æ{¹­ëežDÆÓgu£2ýigH=¹™ñMý<íCûÇG3¾O¶Ç¸™÷Ô‹SËø çi1¾EÝ^ÆA$qÜÄ¢.Óî„Ý~3nû¢©ÛËs£À¿È¸¿´e^xm;u´“ñMÎ{£ÿݾÄÿv~P´Ï¸lÏ.•ð´“ÓöKëÇ*Sñ¾Mýµª>˜ï.êþ¡gè1ãÁ#Æ›qÕÀ|¾Ti=MðØÎ úé‡Éý,ãËýãÊ8%ûï·õwììWÓó!yk;„ž_4õ8'‘ö<øvÆ}¡oüËxŸùŠÉ3~;å5tk¼Tý”3i?ε9<û“õºM;ûÛ­U:ž‰’ïuo?;ãÕ}ú-3_#ýéOâ;Ûûuïx Ý'}%=Ò߃¨—ûdð¼¥Ô{ør˜y¶}RÏsÿ•qPIWÔÏùc],¿€SeƇ8?Tïo¬÷ÈËŒ×N|EßI>ã<&½OTâYÆyç>!ýy®€ùˆÊ”³OœqúàUê­i÷4ý6õøœO¹­á ç]3Þm=®ôÿçPÏùYÔð°Þ¹/±%ÚK}ë*ê¥_ùæø%ž7uÿÐÍŸÄ÷ŽëRÙè}Æeþ=ã„ÏÚï¡’ùÈømËÃE ï3€þOž¿äøémý=rÕ|G%ó̼2î¡ý.ø|"ëƒ'ðuómÁÇú_é>ãUXWï·õóŒó£=ûho[<Þ¨Ì}‹ý¼ÑOÊ%ïÿ›º¿õã8Y=Gn¦¿)íyþIæaf¾šý»Ûzœ›€‹ñ\ÅóܧQ/ív—´¯Ò|`[Óç_è¹÷a*‡âœ2Ï0é0ãÓŽhû¾ÊÄæ=õBǹDÉú¶ªÇzæ>1íó–wŒ[õ¾Ïá[ÀÁúÚ•óü ÜOd£û†ú1^æ•ñ9ÏT¥í*'¨Òûež¯JèúNÔO»vúõ3ž~’v1ÇÇ7õ÷¬«ó_õ=í§%ó'‡ìn¬þ‹´{¤ÿ"ã‘3OÊó¯½-ý_¶Céžõ"nÂö…ݾLÿ4ÏYÏôû¶Ûº¿ŒKL½"óm7T=ð3ýÛŸÄwðÇä£iwJ½Ïñœ´'x“¿ÛNI}=GŸ¶}C÷é—c½À£Œ‡Ëü»Œ;jâ{ø<üã_E½ŒëºhêöÒf>¯÷àQæ1džì&Úk£Ý¤Oú±_pQ·—|0ó2,ç1ó2^+órÿšynoñTM}oþ¤zàx ý8ß5Úϼ¥^œ³Jæ÷Ÿ/j¸2þÑq#ÑnúùíŠñ¥^È~ŽùNûrî3ò<†´ÇøœÁ ½å8àßioµ¼Q{™7‘çÐ^æQ°.QǓr&íÝiÍý{ædÜ·ýº‡/;Þ#úwÞÚ³½Yå¾~,Ï“ïnç{µ“~bàrþ²žcWÉx²´{^4õûܧçy´o?¦Jð9óÁ“>’O'>·”zμõô½è?í&ŽYÔïÇûPàÖ=øžg~<üÊ~<Æ¡{ðæv”·h¾p|+êóÞv•¶óÅø˜÷ôïeÜBÆó2ŽïÓï ¾Ó^ÆIäþÐz–ž³>à-íeOúË>F{yž‚ýy‹º]ó¡]]Ÿqöò*U/Ï‘I½Øû~žÓïiw[·—ù&™þ–ܧå>Ñ竨D®0¿i?J~‘þí†r[ºÊ<°ŒÓ7þë¹ãStŸñŽÓÙÖð;îŸñèýP÷Û´Oi×fÞl¯øá#¬¾ô<ãUz~ E —ýPŒC¥ùð‡JäÏ?Rÿ^g•à“ýÒzžûƒŒÛÌõÉüÛ-ÕŽÏCh¢½Oû­ó!b¼¾×{æÑô¼ºßОîí_ÜÕíd~ô’~6Æcíè}îû¬÷é=v(úÏüÔÌ;ÉsKòüÇkQê½ñoW—ö~ûGoæÏfžr¿g§€Ëzí¨}æ;ãÀ WðäJý¥?ÇzÄ¢î»Iú‰Ì7ôžùd~¿ ç©ç'ŸÎ¸‰uÔO½ûr[·ïx)=ÏüÊÔ·3.7ã¶xÏx|nå¶¾OxÍ/›úyú¹òÜ« Õ‡Úm 7ßÃ7“ÿæyf·Ïxm¯v?©ûŒ£ð>–rQÃܶRÒÊô‹onÊôß3¿¬7ø–ù0éIû¬ó¥b<ÌWæ• W3î<ñ(íeÌcúÙ˜OðÀq\Qò}Ú÷Yç¸^ê›>‡ÛGÉ}NÆ?Z¯ˆþzy »}iþ´¨ï¡÷ô³²~Œï[ñþBp¤}9í©—2îËmý}ƧüM<4?ÕøÀ3ðÑù„ºO<ðÛpBéÏÈ}OÚ/mQéý ãŒv-ÿôÞ~Ýg\ ý§]*óÌéÇþÒEÝ~æç>6õ¸¼‡nh7óÝX7ö݉ÔûWñ=ü£öÓÊ8r?“t—þ¯ô?¦>‘yH©OÀÁ‡Ë¸·8}·¨ûÍýwæ'´—ö”Ô“ÀoÖ)×ýÆqCô§ÒyPº7?ÚÕýçwàxz,ÿÑöu•™Ðóëè»Ô‡-ÿg¼Ï}²åÕ®î½Õv ê©}è§•¶ãé}«ïÁ;Úµ?<ÆM{—“çŽ=QûÖwh_ãÈ}Dâgú_š¨ÿI{dæãdjžKÒ‹óS9”l~ÝÔßÓ|ºL|¹¥õÅ€ßñ‘´¿­á˸ÛÔ›xž|=ã¼-'T¦Âþ&=ÏýÐ&Þ§_Î~œm}b—H?Yú‘6¯óuÉ<ƒ¿ø…|΄JðÜqòº‡>Û§í³‹ú¹ó#õwŽ7å;îUføóÇQßöŽmýœ}÷'ÛŽÔ‡ìûÖoÔÎ>˜ç#/ãc¾3<.ûÅ¢ß̃·Þ@ý€7ãøyžû‚ž½¹©Ÿ›¾TÚ.¡÷i'ó¾J%x˜q€Þ«Ìø©\‡ä·ynÑ%ß«ÌøáÜ¿e>BÆC@wô›ñ-™g™þû ã½÷½´»­ÇÉsð"ãYÿŒùÓ¨—ñRÈ„3ñ<õ"éÒrTïÛèxÒ™ñ°>ÏbQ×O=Ôvb}—yëy>ŒóW£Œ_ÈøŽÜÏ™¯íêïGê;WªgýP%tr!øßÇx·õ¸rüiÊüÛ´O亦ŸÁö_êë¾¥þ¢î—öR~Øï­{Ö•ö™ŸGñ<÷;™Õ󃫴_2áÖýfQ7ó?zç ¨^꣹ßàžq7‹ºûË¢?Ö¼ç»ôoƿҞóìhGϱc#oפçÇ”qÌìSzq}*3_1ñ+íÕ™/äs¢>ã¯%=Wúa±c\4u{Þï¨üÓ¨—çg˜Î·u?ðÌ›Ëó2Ï2õpè¸3?€ñ7*3þ?UÆ9lW÷ÜŽC]Ôßåþ>ùzÆ¥Ðã¶õ}Æe§žtêýKÀ‹¼Ì|éôOÓ_êÏØSñ÷]¨æ³—¿¡ü„~Ù÷ÎG~•È…ŒÉ}±ýš*3ïÿâ{ë-‚yd9\*½Ÿñ@™‡^“ûÛác¼Î› ø€ç_E=öÍ©Ÿ2žÌ?I9šö¿ô£e|ôP>楞ƒWŒŸõδËåù$ö¿Å¸Sž¤Ý!ãšÓ¯êý‡î{v@•§˜þ²ôûZïT™ù¶ûÑ¿ê¥Üƒ>r_}¥úàí&„>gæ»&_bÞwé×Ì<êã?NºJÿ:ôÐ,j¸l7Ö}æÇÑã„Þ7­ú¹ÊóŒ¬/Ó®Jï×ô>ó«m·Q™~ÇE‰_1ñ°Õ½ãõxÓ.Þöü´Ï½ê;o+Þç~›õÊï€7ãý˜ïŒ«Îxá´÷R/ýy®Múûl¯ã;úÑófQ÷Ÿû‰Ì{¼«Û¡Ìý*ò>ý y¾ôgJÇ}ìjx71ž<¿!ý5ô›qhyÞAðÚŽÏwº¿ÚÕp¦¼L{qò'ÇAÆxÒ~_ê±Ïf{ßG=èÞøÒÔíÒoúÓy9ð½õ¯mô£çðñ<¯$ã›õÊ<øiâIž“‘ñζk«tž«Jðl÷wâ>÷ ¯ÏxÓO`ÿÌ¢†¼à;Æ=9ÎLÏ¡«O¢¾å¸îÑÇY'ûÁ¢ÌøøôC\Æ82#ýð|ï<ÞG;Йé\Ïá?ÌüÁù.Àð 7ƒwØÃwA»‹ž¤ßô¿8ÿuQ×§ò©2>0×#ãhÀ§MÔïÙ½c¼ØƒsÔêžu‡/ZïÞÕõ¿÷ŸÀÉx£^®·ñsQõŽú‡ ~—õÚÛÖßý›xŸñˆ§m¿¥Æ‹~@»iGÎøõÌ«NpÆåÁOó‰ÃzsÔc^óœÃã&sž|ÎHÀ‘xæxu½¿Ðý¥Þ;î#ÛÓóŒƒþFÜg¼ãÏøïÓTB—ð‰V%ó›û•ô#¥_!ãÛœ/ßÛNL1û¯·5àIêŸÉW“?õü'»ú»¤7꣯ä~üg˜ÇŸª¼R?éf½’./·uýÄ·<×*ýŽì|ˆf_‚ß©_4uýÜ·¥ŸÁ~ÂEý]ʭܯ8r[ßçþ)ãnÒï6Ý«4žÑ¯ÊÜgç:_¨}ÇQ,êïS¾ÑúLîϼS»™GÜÌoæÚŽB½h7ãá)s–ñ¹©'9^Lp:~¢©ÛÍýOÆÝdÜsÚ_Á;æ+÷ë™ÏI¿Ž<ÿšö‘<ªU™r7Çë|éE]f^‡õ?=O» ýf>’ûWi> x2ÿÂòo[·Cÿ¿í}¬žgüdòËM”àYÚ-é·÷Ž«Ó=úo«û܇¦ßìN|—~ûâ9økþ­çÌgÆ}9N[eî 8ò¬«èç^Ô/.©ð{=Uoð%N;4íõö Ûº^òÏVeòŒ?Iûë‹£¿”S pªd]h/ã…œß ÑïÕ®~ŸvŽÜ/fœ«÷ëÛÃß9îˆvÔ_žå¼=·©©Û¥>óig¦ßŒ‡Ì8÷´÷:Þ›÷*-Wúß3ÿ<5¢T½V%ëE?ÈÙÌ[e<ÿ*êÃG3O(÷iögé>ùx’~à„nr_˜~çÔéÏzÏ·õ}æ+ä:äz0®ÌoLÿCÒUžËå|.Ýgœi/H%ë %þYOŠqeÜeƇ˜îšú=øÁ¸é}8í`ŒÓç¾4õxÒÁüÐnÆ äùŠí¶†/ãÉ SÖÏt¸­ÛEΤ>Í{Æ‘ûÊMÔËý‹åõ¶†?ñó"êe>7üØqI‹ú=ë’y*é§Iº’—Éo3ߎu„Ž€/óÐ.âyƃg|í‹zœéG¶ß[÷¬/㳟€ïô|÷”9?Õ³þýd\¿íÛº´Þ¢ñ¥=Õyõ‹zïÿÔÏF÷Igæk´§÷¬Cî«ÒþîxÝÛα°w˜õÊm=NÇ¿©ô~§©ûqþNÜgøE~í§„þíG¢Ÿ]=àŠo°)àL»iú¿s_üôGžíg1ó d¿”û$ž£ßag5ÿÙÕí2îÜ¿¿Þ//êö¨ç|üm|§{èôR÷w¢„ÿgÞ ý¤þ’ñܽ¸©m=.ðÃv)•CùÃà[ú÷3.Ìq*“ïôì8*mGØÕý¡÷gzÆ+¹=gÝl¿£ÜÖðdürójWžäü§Ÿ£¯§]Ýyr*¡ËU¼÷¼ÐNÀ™þ­´'ñþh?AÀ™qNi×½ÐóŒ´ÿkQ·ÛªÌŒzé´|ÚÖpå¾0ý8ŽÏÚÆxõÜq½*3¿Úxº­ïs?z§í“ñüøÀŸôG{ßÁ8÷¶†7ýUÀé8NƵ¨ÛKPúCÒ.”ôä|=úÕó^~ˆÊ<'ã3¯’ù¼Ø`þï<ÝgÞOÆoçúŸå ÚG>85Ç¡çèÖSvuý„'óXoøDîï3ß?ó±ÓöI|Ÿû¥´¦Ýßñ¸Ûî<7;íú¼eþ2^,õù<÷¤ÍqG;ißf\)÷3N2ý)ÀöÌŒïLºÎ¸ª«¨o<ØwÜ黺Ïs-˜¯ŒËI;7ð:¯ ÚM~“þË”?ÔÏ8)ôÌ N?@Ƈ0ÞôÃñÜ¥ž·*ÿí§üÊø?Þƒw´—ö½Œ—¯¼¿Ò=øšçÝdœ(vDÆÿõ>£©¿ÏxžÜGd>åÛ¢¯÷q»úû”ëi׺ÚE¿Ûº]Ûy›^ÇWªÌ}¦ýu1žÔ[S.Ð>|{aî¯çñ<óÄÁOˇtE?Œÿ›ñõë&ÚeÜÑ¿ñOõÓ¾•ç"0–ë*ÁÃÜÿ²ÞŒg£ç¯iûÏ¢~žö§ŒI?ˆ÷Ûúž~_ªç‰o/ žf¾,ÏÓÎÜœi'ÉsÚrÿ€ÜN=:ñ ½"÷¯©G¥=9“öÞ”S§‘ùßà[ÆrŸñéÀϽí;zn}>àµxá_ì£îD=ÚO9š~®ŒCfd}VeúÀäæ…àÉ8ðK݃§™oK{Î?Q ݧ_5ã'6*ÙGÐ_ú#ÒŸœ‰Ï´ës!Toè|™<£Õ}êMôŸñ@ÞŸé>ÏÑÉüöÌGe¾2>Òñ*“OzÝé_åøwüzôÏüežˆí·»º¿Ô_Òî–þç¡|ýÔëÒ¿•tL™yÈË Æß=ÑûÜï¦_ÙþÞñ'þ²_O9å| µçøß™ïè¹ã8to¾Êw*ᣗºO¿KÆ1/éçH;ú#¡OäèES·›q©¶Eÿi§N;FÚ¹¡[ËáEý}Ê©K•öÏ,ê2å}Úcù~C¿‹ú>ó,TfœIæ×Sžïöe/ÎpQׇîÓç|o•ðùÔóÀÓô1ðÄqÖ*ÓŸi»¿žgiÆ30?^÷Oâ{»­áJ¹“çã¤?!íx¹ëé]ª} é͹£Ì8™Ôïœ7J©ï’/8®Op5‹ºžéaW÷ƒ>‘ñhÇ—úoîÇr?}!8rߘò,ù>qZèy´Ëó^œñ®†›qÓOÆ 2þ´°žÉ×m¯SýÄ{ÆÉ¼g¼tú!hŸvè8w´­áK?bæ›™¯êýå¶'%|<ãÓN긃€û"ë©ô~§©ûO»H/þøéo[Ãi;•ÚÍónG™|¼È|kàÌø œß´ß‚¹_¡Ý´Ï¤Þ“y”¹HUÚY¬Ç/¢?Ý'ßMÿxúƒ•éŸhnÇƽý!ú=8× zN;^ÆÛgÜ=ðƒ§–ÛM]Ïþ=‡Ž2ú>Ÿ`à½í<*ÁïŒwIùû…̽ÚíKä®ãütŸyKi¿H¿_žcÒŽ'ZÔpÁ·ÿ$Jz\i7éùO€[Ïí>•ðIèÎrIÏí7 8R/È}MÚ_ìÏ_ÔãÍýeîÓÏtÙ¼À‘q]æãQ¦ž ¼¹AÞ².ôŸö¶fQŸyœÀ Üä_yíØï«2ÏñÈñdü]ÚÏÀ“+Ý_nëúà1ôœãdžÒ¯f> <Ñn/^G%ë’r ãTÝC7IçÈ'âͯ°­áϸº<_¥úÞoë>ãEí¯Vi{ã‰çŽÿÔóÚÍüð8ó~™Ö•ùAïBŸ¾P=Ö‹õ„¾2Ïì2úKºÏsnà¯^$Þ 7Ò^–ñ¬§õÄh'ãÜzñeÀ½«¿gþ2_¢ç÷ÙÖý¥½?ý¥ÌCÆ+g¼š÷*Ò¿ÏûV%x½€yÌ<5ð8éÉy ¤ûôûÛ~*Óßy39Ïö§Æ}ÚÕl·Õûô§šïÁ;æ‡ï¿ïsßå<ÇE=îž}Aß Ñó‘ô~Æä?–q¹ïL¹NÿßüŒ3¿ÏøQî™§´CY_ÔíÂ?Ó¿äùÄ ßx<*3¯#ó•R®C¦'êïöeúïÐ÷i‡ñfœ¨ý¶1^Ç•©Ï3)óRnÓýö‹ºtµÞg^p3?À—ñ ùóã|Á•ô—z…÷SªŸù/Œ#ó×[ݧ=í[Î+ÛÖðZ_Si»ýÀøR/0> îô› ÙKhç±à½Ð÷ðÝ´¿fí`º7ž©Ì|ð‚u²§ýÍþºmÝ^Úõ3¯•þ2ÆyÜ*Óîí<‰]Ý÷joÈï–ç×°>Œ;óv3?6ýnà÷¬;þüôÃdüZæù¦Ý×q zÎzÂoWK»œqƒWwdúÞÖí·Ñ>ûóO¢~ÆÕ€GWñÞûtÝ;nb'x¶uûi§Î¸'Ûm[¥÷ÛÜ7ê7àóº¿Ê^¼â¢þ>ýN'^Ú¯ üŒ‡öù.àDïƒ^’®<.Ý#ož6uÇïxݳ~†;ŸqÙ|ÀvO•ÈãÌþÌv\mÀ}ÑÔpdž_êMôgûï®n7í`ôÏ>)ýxÿº‰ziÿI:e}íŠ{ä\ÆÉ[ÝÖí¦ž 3ßÿ ácÏn_Z¾F»=»¤ê;_!Þ/ç¥}>ùVÊeð=ùoæ¥_Åw™oãIû¡ý3ºÏýAæØŽJ»º‡¤\Éý“ãhõ½ã™›…®ÿm±Xÿ‡E\úß—ÇêûüX?ÇúÏz§^§ŽojûcŸŸ;ßcû=Öþ¹ótêu.¾ ÝŸZoê:Ÿ;ç~?µ7výÆâÛ18ŽÝå7Çà:—/ko¨ýcÏÏÇ\ë6–®ÏýîËš‡›¢çSñg*þN]ï¹ñç¦øûÐû›Â¿Sá8·¿cíOÅ·±øt.\sÍû©ë2^Ž•7çÎïÜüg,ÿ>žSÛ;·ß¹Ç1V>Œ¥¯©íÕÆ^_]ÌÕîMÉÓ¡ïOmï\x޵wSzÒ¹øv.:•®ÆÊÙcíæûcߟÛÏ©ÏÇö;•ÞoJ^NÿX¼ºÆŽs.¼™Š§7%¦Ê±ø7òþ¦ðøX?ÇêëïTx暯¡ö=ÛïÔþçæ§^sçXý¹ðq.¼œ*¯‡ú?õþØ5–ÎŽµwîû¹øßÐû¹×mîq ]ÿØë=VNŸZÿX½›ÿX¾1¶ÿ¡ï¦Âq¬Ÿ¹äé±vçjïØ5w½cßÍ5¾©p ½Ÿ›¥±x1Ç\ïoJ.ªGMÅ‹›ÖÏn Ž©úÕØužÚþ?Öó|?—üœ*o¦Žo*Ü^L•oçöwì»SßOÅŸ¹õ›SåÏTúœ‹Ÿ]Sùù¹ðÌÍç¦Ó¹çóÜþµ7•~ç’sñ¥©åØ~§Ö?öý±ç§öûeñ™¡zÇ®©tsSðœz¬Þ\xy.ÞÞ4ßz>Ì­L…k.>:¼§^çÂ3·œ>õýX¾5ÔîÔöÆâË1øŽµsnÿcÇu*\Séç¦à8÷»cõÆ~êwcùÞ\üü¦øÈ¹ýŒå‡§^cùó©íÌ%߆êŸz—¡çSåÄMÑËMÏÏX98·Þ2uüSùÂ\t9•O«wîû¹ô†¹èc¨ß¹¿û|®~Ï}?•?ž*Gµ;UN]75ŽSû¹)¾tSøzSã>—ÞÆÊûsëÍŧÇê?Så÷±çsõ3výN½¿é禮ŸïÇÒóMÑù©ýÌ%æÆ³¡~Žõ?vœCýLÅ›©|àÔzcç{.¼<ÖîÜýžÚîØöçšç±ë0ô~*¿>·Ÿ¹ÆSðŸK?C÷§Â1öù\üoîvÇö{îwsñçSû=µÞ¹ü~jýs¯¹çeê8ÆÂsÓzÒ©ýO­?VNß©zɹôwSò~®vç¢Ã±tqêûc×—%W¦êƒy®|*—§ê#Sõš±ra.ü«ßL¥Û±õnšîN…c¨¿sá¸)|8õýÐ5÷<ÏÅGOýîÔkìüM¥¯±ã=®±ë2Wý|>žcíŽ÷cíŸÚß¹õŽõs.|CýŸúýXzš Ž±tvì:—Úþ\ò},>µŸ¡~}?ôÝ\zÁT<[˜J/s¯_¾Ëïçúî\§^çÎÿ¹ó3ôÝX¼œ*Wæ–SéðÜþ†êÏ…_§Ö;uÜy•#cñj®ù‚gèùÔqŒ½nš¿N¥“s¯±x=ôýÐû±p õ3_‡Ú=ÏØñÞ”\ù²ùÞ±ö¦ÒÙTþ0ô~ª¹)>ü…Sá™Jsñ/ûy¾¿©u>u~N­.þÏ-çæ‚ëØ5•o õn¿sÉé|vª<ŸÊ/§Ê‘såù±k®y8Öþ\ëv*êu*^…gªÜ<Ž›âçSïçâ+C÷§ö?t‹7S×ïÔþÇò»©rêËÆ»›æëCõ‡¾?öüTxÎmç¦äç©ß»¦âõT<û~.~’ÏO}?U®kw.>sjǾúþÜþN½Î•C§~wj?cçõÜû›Â—±zÀMÁuÓòþÔúSõ–cíœKÏs÷Ô÷sÓé©ß•{cç÷\üª7•NÎ}.ÿºæêî禮3ôýX~8–Œ¥Ï/‹ïNmÿ¦èì¦øéÔù;ö|.º+'Ž]çÂ7v¾Žµ;ôýT|8®±trî5‡êŸÚÞ©pœ{…óX;c×ml?cùÝ©õÆÎÏ\ròÜk*|7%?Žõ{¬ýcõçæûçÂ1ÔþXýáØû©úÆT¹4·þqê5U^œË¦Ê½s¯±rd¬œªncùçMÉ‹SÛ+wÏígìwç®ÛX½ä<ç®×T¾;ÿoZnÜÿ=·ÿ©ó5v]Çâ×Ôù›Êæ¢÷©õ¦Žÿ¦çu®yŸJgç¶?7žÌu?¶ýs×ç¦åëMÉ—sû?ö|.zÛÞXº?ß©ïO­?•?ëg*ÿ9vÓßÝŸ+oÇöwì»sá˜*?Çö;W{Çú™J§s=?ÖßMÑÙX<9÷ùÔñž ÿXy9ß§®×±~榿sén*>ÍÅׇ¾Ÿ:Séj*žÍ DZçÇ®±ã9žsåîX<=—~OmÿØõeËés¿;ÇØu?VïÔ÷cñäÔkny3®±t:µ©rñÔöÆÊ¹ðýØ5—Ü?öÝØñœÛïXü[ÿ˜[>ƒk,CõN½æÆïSÛ;?S×óT¸ÎmïÔvÆÒé¹ýÞ;vÝ4¼së cû ß±kêzëw,½Õ¿i¼º?·Ÿ©rú¦øãÜxsìýÔq=;¿Sñw,> }SræX½©xsn;Çà:·Þ\t}Ó|y,žœÚÏ\øxê5u¾æâ«SùØÜt}î5•ΧÎçP½sû9ÖN¾º¿©k*¾ Õ?ÖÏ—%×]Sù÷ØuŸª»¦ò©rïT8æ’‹çÎóT½â\y1ß+N}Sülè»›’sã×M¯cû=·Ý¹ÚŸk¼cëZ,¿;·ß©ó2V9÷ùMó“cýÞ4ýOýþ˦Ësá™*·¦âç¹ÏÇŽ{l½Sßg½¹ôŒ©íÏ­Zµ{î:OíçÜûSû™[ÞŸûÝ©íÚÿ¹ã>—Îæï¹ô<¶þ\ëyî5–Ïmo,¿Zon>9•.Ï÷±pŒ¥³¹ùÐM­ßXºšJ7C×Ty;w»céû\ú9ÖïØõª—ÏÏíwŽ›®7W?Sñ~.=`lý±ë{¬½©rä¦øÂ¹p Õ›«ß©ï篹éô¦ñt®zçâÿX8§~?¶¿±ÏÇÂ1=Õo޽ŸŠ§Ö+ÿ±ùϹrû¦Æ;žSïÏ…gl?cùÊ\úÄÔuºjçÜv§¶?¶Þ±ë¦æï¦äÿ¹ß»æÆ‹±r÷Ôë˜:W?+§æ®?¶ÞMÏë©ß[o,ß»éù¹)þ}jýsÛʯÇÒéTüÛþMñ«cχޟ‹·sãûÐ÷C×¹pkglÿcßÕ?_†Þ]¯¡v‡îµ3OÆÒÉX|ÎëÜv‡¾?µýcרþÎ]‡c펥›¡vçª?Ÿµ3ÔïÔïošo ÝOmèûS¯¹×i®ï†àº¦Îû¹ß{ÛîTù~*Çú›k]Á3UÏÅo¿l>;U®žú|êzÍõüX½©ë4–®nŠÎ‡žŸK'ÇúK/CíÍý|.¹9UŽ…kl{CõŽ}?TïÜy8®/‹ƒïÔûcõæÏÔk,¿‹ïÇÚ9Vÿ<Çú=žSÛ?ž±t‘ߟÚïÔþ†Ú ®cïç¦×Sá›Úþ\ó4ô|ì¼L¥ƒcð»æ×\üåÔk.þ=—<ß±ë¦ùÐP½¹èÿ\: ×ÐwsÓÛPûSùÒ\|ÿÔçCï¿,9>·\9—ŸÌÅŸO]·©xq¬sëÍÅ·]cçé¦ðùØõeñócýÚÎT<ŸŠïÇêû~¨þ¹ßÏÍÏçæ?Çà9Öþ©õÏÏP{ç^s·?޼Ÿ›‡îÕ?Öÿÿ¿É§©|`*L•‹§^Sùå¹pÜ”|z>—|ÍçSùå¹÷7¥L•OÇêåÇS¯¹äÒP½¹äàX¼Ÿk=Î…ë¦äÆ©ó9·ü8õš:ïçÂqî|œÚßTþ3—;õš[žëgìý¹Ï§âÅX}d¬ÜÊ÷c¯¹æq,þMÕcN¥‡¹ðcn¼=µ¿sñk蚊_sóÁ¹äÂT¼=öüÜïÏmo¨ýcÏÇ®ûØvÇÒÕÜô3•_NåCÏ¿,ù7Tnzš[¿ù²à8ÖÎØzcéø¦ùóT¹úeÑÙ¹ëwî÷çÒÕ±~N½?v»þsËãcpã©x?÷zëoèû¹á:w¾¦ÎóTü8VÿÔ~Ný~¨½¹èi,¹i90¦Â1ß8ÇÜx.C×X¼˜ŠsÓûØyšÊïµ3ÿ:ßÐwcÛŸ¾±üêÜvçÆƒ›–ëS¿Ë'ÆÂsìš*Oçæß7=?çò§cßýn*ÿ>·ßc×X¹sj½©rïX½¹Öÿ¦ùÈMÑϱþO­êû¹ð|, µw*ëû~,ÿ9÷ù\üõ¦æq.¹<Ωp]ŸSï]s}?—<:×Mñ“±|ïÔöÆŽgèûcÏÏíwª~p¬¿Sá;÷ý¹õNýnj{Sùɱ÷c×ïÔöν¦ò|>•^ÇÎñk¬<û|*Çà:—Žçâ[cëÏ…§¶wSòbª¼öÝXz;÷šŠÿÇÞOåósËÁ©ò~n~4—|š Ï©ïÏåëcùÍÜxtn»Çêk*?=ÖÿÜòxèþØó¡k,žLÅŸ¹øýT¸Žµwìù©ß{ê|…7¯±ôx žsåÅÜô5ô|*|Çêmgªü½)~vêwCõŽ}?v¼§ÞŸûÝ\rïXÿsÃ5TÿT8†®¹øÔ©Ïõ.cÛ?Vï¦øÁ±þç¢÷©|ì5×úL¿cýLå37×±çCíÎÍ—Ž]SÛ‹ŸcéùX»§^sãűïç’Ãç¶wny¬ßSÛŸzM¥‹cíŒå¯ÇÞOÕGÆâÁÔõ˜k^ÎÅ—s¿ ÇTü;®¹êŸúýX8†ú;žc÷sÏß±k,¿8÷û/‹¦¶{n;ÇžÏ-O†ú›*§§òá¹ô„±×T=äÔvæžÇ¹¾ËÇŽ]7…_c¿Ÿ›¯œúݱv¾,<ºi9zê÷SûÚÎX:º)y5Toê¼»?u~ç’7cÛ?÷ûsá‹ç§SáÛþ\|l¨½s×íØû›Ònz>ç–;ÇîÇ–CíœÚ_^SçáÔvÆÊÉsé}.¾.¾Î%ÿN½?µÿcõ¦Ž÷ÔzSùçTy0—Üz>u^çžÏ¡ú7ŧ§âï±zSçu*_=ÖþÐý©õ§âñ\üêXýS¿?æ‚cîvæâÛsË…©ô;•œûÝØk,ž Á1–ko¨ßSá;µý©ë:ÞsÛ›Š¯SéëTxnZ¾ŸÚϱçsñÛ|>UîOÅÛ¡zcåõX¼;þcÏÇò¡¹ùïMó•±ôuìš:ÇÚû~èþXýSÛ›‹ÿzM¥³±ø;?æ’?ç~wìšKß~Ùë4Tï\:œJ·Çà9µÞXxæ–7s}?×ósûŸZ.|:ÖßX>0ôýMÉséÿÔ~ϽæïÔïÇê cçñÔz7õüÜy:WϘ»ß¡úçös욺žcÇ1VÞŽå³sË›¡ï暇SëÕO¦~?tMåoçÎË18Îmgnùxê÷§~w¬Þ±çSéë¦ñk,?<DZkj?s¿ª7–ßÏ%'¦Ê»SŸŸûýT91•ïžÚΩ×Xþrî5•/µ3–Ïko¨Þ¹pÌ%Æò¡©x3¾k÷X½±tw.=Ÿ ÇÜër ®±ðžÚþ¹íÍ ßX>7Ž©rêËng,}žÚï©õÆÒõX¹>7½ýcÑû±ú§¶7–>ÆêÇà,ŸKCïoŠoë.¾u¬Ý¹äĹ߅ïTúšŠ'Cí»¿i::Öß©ïǶ??÷ºi½a,~ÌM§§ö;ToîyÏïÇêSççÜö‡êMm.y{*\çÂ1tÝ”qnûsñùcõæ’7Ç®±ë2–¿Žç¹í ÕŸ*Ǧ~w žcíO•k§Â1ßnj^¦òç©ühl;Cרõ=Ï\pMå›cùü©×Xx޵wÓxv.<§ösê÷cëÏEOSùÆ\|þÔïÇÒóÔk,?W® =Ë·OýþÜqœËÿÎío®zsãÙÜ|÷Ü¹äÕT>0•>ÆâíMÉɱô9V9ž±|ñXÿs{.x§âÕ¹×X|?·ÿ¹ùÚ\úÉX~1–¿ƒçØwcÇ=•OëèþØ÷c¯©ó<7Sñá\ùtSòlìwsËÑc×Üt5ôÝ—Å·NíªÜ›*§ÇÂ{SúÊØk.xçÒGnš>¦Ê±Sû™ú|.ù}¬ÞT96®SñíT¸Á1tn½Sû›*æÖo†®¹øËXúËwÎ¥«¡zsáÿX|ÊǧÒýMÑáT¹t*<ÇêŸÛn¾úîØý\pç\ý }7U/˜zj_Ö:ŸzÍ5?ÇžOmgnù2—p ¾cïç’óùýX¾:ÔÞ±þŽ=ŸÊç‡ÚŸKîkw.º:·½sézìzÏï[ÿ¦øÍMéç¶sê57˜ûý©xt.^ÍͧçÖÆŽgìüœÛΧ¶3TÿX;ç~w¬Þ©ýœÚߨõ:µ½¹á+oÎíïX½|Óë5ôþËÖ?æ’ÇêJÇsÁ?ß§ö;uõs¬±ãË7§Êñ›’£CõŽ]SåÏÐû©üeª=®sõ„¹žÕÎmïX½¡öŽÝÅ—›Z§›’OSçó\x¦®Ë©í»¦Ê³cï§ò¯›’ÿ§^7ÅgNmÿXý©ÏÇòãS¯¹ùʱvOýþX½¹øýÔzC×\ëýeµw®®©úÊØë¦éë¦ô”SßÅÿ±|{®vOm/ëkwìwCï=Ÿ*¿O½¦òÁcp{~ìšJ§§¶?—þóeÉ…S¯séj,_ê÷ØýÜ|ç¦èö\øÆ~îwÇ®±tzSø1U¿™:Ç®±x;ÔÎ\úÆØk,ß¾)¹xnCýžûݱöæ’Ǿ›«ÿS¯±x8•ŸÚÿMonþ7ôý\ül¬ü;VoŽcpžÚÿMñ»sçuèþÔvç^ÿ¹äö¹íN•—sÁ5VŸ˜º>§Âs*ÇÚ=õºiù{Sý޽æâ“CíëïÔ~¿¬ï¦âßÜòt.|š*/†Ú¹©çsÓÏÔqM±üjª|=N½ŸúÝÐu®\ŸKÞÎ_§Âsj»§ÞŸ[ïØ57ÝO•Çcùå¹Ï§ê3çÂ5TïØw7%æÂ—©ßÏÇcùø©í½?V*rì+WÆ®×±vÆÎ×¹íLmo.~q.‰þñTxr!¼„ß=ÿúáùºªÇÙ<Ð<=ùퟯëï›Gª÷Hã|¡~Dß^¬çWZ·kÑÿ]ÖIã½=ïåQóBxô±èåZëõ4æë¹æñAÐéGÂ×ǯ‡ZßûÁÑWï}­/|à‰¾vó&8?¾<üñáù½Þ£ï=yû0ùšðåÁa¾ÝÍ¿æƒñIŸ÷û·©vÔÿ­Ý¾ÞcÍë÷Róñ³ >ï^ÖòÇúå|Lí¡¿ÿµÞ·5/„· _o«ø>ûó ~ _¼ú¼Æ×çß%ãPÀÿ1íþn=ÏE?ÏõÝcÁ‡¾ýTøŸ„..´ŽW⛵þo÷tÔ<»z|O„›ª÷½ýàñèúað¿Ë¿­ø ãí·§ïzùFó{µ‡£¹¯zjüN¸úúJðqèáI Oó(øzÊý Wô´;Z¯ZÇwš—ZÆÿð«‡ázµŸó?ö/Ìòà±ð÷¹Ê§Á錄4¯µnOTï9 ž©¼­q½ÚÕã¿‚×xÛá¯Ú{?Ôøï ŸžH.>]ü¾“ Aÿè ¯šƒðôäéC“ýøŽþð"è'ô›æ…ðJv‹æê—‡ñéaOÍ3áå3Ñ9ráýŸíÛ»#ú¹Òú=}ðþ|ò ¸žwÿLx¡{ëW±î—ðÇ9õØ¿QýKñ1ìWÂ××_;<Ï„÷ëyïÖ¥žïNoùõXp|ö’Â'ôë—ûõïÍû¥àcÝè‘ðîŽæù¹øÌU-:úþQÌ‹ÚýHý¾¹Ö¼k^îíªõ2=ßÒú¿ü•Ö[ã‚Ùh|7Â'Ñeÿ¾¿/ùÓ­ÇŸÛî‡ìáx ©å½õ §u»½ýÝÓ/4/ÂóWš¯‡Ì ôðCñáëãùߕžÜ¼ø\pj=ŸÆw²Ó ò‘ë¿?<¶ïŸ±ëå|hÛkçnÀü~ÿ7Á_Ôîæç!?ÞþWá¯æïŽøüýa Gs/äé­ ög?®×i£ux!<} ßþÞÞntÏzÁ÷lÕÎõ¾|)<\ìc¬ß¼Öû×ÕøùDð=­å^óHíöìËÏj¼}òWõwèÙO4þ÷ûuo6‹}ý»èsÁ÷!/5î{‚£q>Öó'A_O5?Ò»u–ÜxzúÀã×ÃÀã'õ:vø$yù(ävôËMÌcì뚇Á× З.ê÷=8îhþïþâ0`¯—ÞÕ|ú¿À÷MÌÿÓXGöI¯…·OÄ?ª|ªu³Ü¼=¿”ü~X_º¥÷á+Âìjð«õO~3?..võºËNÕ<Ü·y-¼{°¨ë½ž^£ ÈEä<ûAÙs»õÓ¸.…¿è«ßþá¹Ö½OøÕ\I^<׺?ûeÝîe#¸5¯Ò‹š_i׿þká£øýsÍöö»ì']¿¢‹G_ÜŸïï/5¯ÚŸtzñ/Å—¶Õüv|µ^Çn©ñ$gŸ…žþ¾Å:¦Û7à©ê?}=‚×´ÿTøøøWÁç¾Ø¿®uÀŽp)|zôƒãaÌÏûX/ö‡O?¯ññ*ê]¨Ÿ§Œ§~ß­ÿ¯k:“½yÓŸ'ñ«Ç‚9ù(ä‚è´ƒG|àõ®†ûðäžÚ³ÿäzÿRôqOø‡ÿ…}ùÇë)»Gó"ðó®ÚÁot[ýCW„| Þ¯b<ÈñÓO4ì[ ÏOÿó¾žö×Í]è=æüÂîýçRøûò+ZÁ©}d_½_‡æ%ô&z¹§u~%zŽý¹÷¡——ØÉ®ƒO°úd@ްÿÄþì‰ød×êäó.ù[þü·¼Öøñ#~û/‚¾wNøúö ík›·_ìKüÀZßçÇä üxµ~µ>èi­'~ð‹ïž .äŸô¯æ…ðé±Ú½x~'æóq½NžÆ#{HsûnýÝõ_îûCºªßŽÿQà ~ñ7û?.…â“ÿÐü_B—_9\ïzWÝwúHðÑgß©ÇÝÿ7*_Šþ_ÔëÛÜ_zóƒ»?ÀÏ®yjÞþžÆ!ü¹Ç¼kŸé;ü"øM ö÷èÿ£š±|lk|oYóÍû-q?ÒüÓz>öä9þSð[þ¶ž}ðå÷k|@Ï|.zeþ™Ùù‘Çݸ4/ßÖ¸>Ö|…~Ök»¯ëÙÁ¡q<øj…ßö3‹ŽÐ»‘ßÝú=àÓ8ˆÏ¸ |}úz·ê?kôèBv×{£uÁ?…œR}>T˃NŽ×ív|z˜/âFî}cgz¬uÅÞô<ä üœ}ÔëO°Ûc§úð»5=Ýû,øŠžãGI½ ~©ø‚þ¼‹ï]¨|¦q<½àÿ‡O±Nò¿6oy¿Çïæî} ¼Óz¾AÎüø4þùù õÞˆï O±—KíæCóþúDþ«þ]É“ð«wú¬Jì[OÕ/~ü»²—wô-úG?´½XtsõµzÝ^ÒÞ¢†?ýéOb=ÅG‡è‰x9ß;Nâóêy7__h}®…õúà'ëøÉ´ÞâO4¿©Ï½P¿Øý>•\yô›×ßñ)胬zà[µ÷ø«õ¸§ìïÇíx>ä¯ì>¿×:½T÷µîÈ+û½4OàAøç;ümöõ6èSÂKéÍðŠ¥}á¥úŸi‰¾ÖrêÔ’ýC‡Gš_ñÇîùNýŠÎˆ|ë‹>€~Ç~è*ð;²ì…Ž7¹Ö:`EžkÊ~ÊzÚ£Ïè…Š+èð3ùòáõéÖ)à•½kOã¿'¼ïÅjïÿ‡Æ)¾ó~)¼—_ÍqJË—NŽ~±ï½(äUs þ+|} ¾}ÿ \ëæCôsYïÿ‚½õÉûöˆ_@NÜÞ`oM¿Õ§ßEðÇç¡ãWÄNšû™çš×çw²÷uó_÷Ó}ü–}êKï©èéíÿ±ïç“oTò­¯G}®õ~,ÿ‡å³ôËŽ}ƒíw쿞 ßÃŽÑíg4ßÐ~®Ç‡ùã^"Î1í¹Üø¬ž/ì]Øû/5oÄÏa»þïó¥ñaÇÈ8_Åy55þ§1?Z?ïç“_ßJxµ~Ú'uø"¾»Ñú?¤žà¿¬/öì/¿Ø—øïgþÓŸñÛ}ܨ¾æ »<úö9ïÿu¯u=¦Ÿvý5õ|\<ĽþöPø‰]”xóôç —°;]ý:Ž]óö$Þ³¯W=ûØeè1Š¿i®?¨Çi;¥ð ÿ<þjì<øKŸ×üÐþ‘§j}æŽæ+õ˜ËïÆ¼ˆÎ±?Ò|^ªßÇÁwÞJ.¼ý{á»æ+íÆOáÙcÍî·2ŽÃöWÁþ”Ž‚¾ˆc<Òçni>^Ôr´Ó“„׿?x©ùU<‡ßc/s<ú}"8k½ˆW ¾FžA·¯I~¢y NExÑ×wŸÞÿ¾ô ûå·òßn¾c}ñ_ÿ~Ðüò—¢ŸÿK|CxŠù–Æ‹~‰} þ§â/¦k='Ïâ…æûÝ£ZŽXŸ½¯yð7³½çß%;ûÑæRóGœæ3­ûHöëaWÇÞ¼ýßõ¾îÿ”ã¼åÇ'§Ï?:Œ·É_Ž'š쫎O =Æqà‚{£’ý:qŠk³ÿÄþ¹/êñ=<&~ 9D<úA¬ñâ]{àQÈâŸÐåÿ:ˆ÷ÎË€OܾrÑìß?ß¹¯ûO?¨ÇÉ>?oîc‰ÿÝÔÏù°õ®æpý·5ý;¾úÍnß}ñ[èx.ìE¯Ë_Óóe¬Û½ 7í{zß#·.Ï·ë½¼Q¯¹Ò÷Ø%^±~Á—ð¿ÿ þᇗ¾`=þYà9vCüØsné{ö1ðmôœ‡¬ï×…oõ’}8|oˆ„½ÌÏ?ùQÍ_Ù‡¾Ö8#«ÃãÔôóJðeryɸ‡ž†ŸHtÞÇô áûf?oöë"/ÞÔë×ѽÖgx¤ñwû±ÏößÑ9ø(þ›v]ö¹¯„W²ƒvë ï?ýƒý{ây®®ö›q“Ý|i>‰Ïc~‰ÏFÏBO¼ü’ø‹Ô>Ñ„Ý?Õ‡¢/â\ñ7¤}„<†'šô ­xl¼·ýZýâ¯!ÿŽ{Æ…]Wñ6þ?ö‹]=?Ø•ñÃ`oõÉý€ù ú¼âl¬gȯBEÎoæ-uúúW~K7oâokþßÜý®èOã%•xôÌGV¾qó¦æ#Í==Ï8Aì èAÍ áóf€ÎS>^hÁçu{ðâHo ¿°×*ùѧCÍßõÿ±o‡u¹Œñ¦?þgŸÿ{ë+µŸtFüÖ·èIä-:¯í7ËÙþ¸´žÈŸÔÏ!>Ã<¼ ùI\´ý˜Â—ð?:>UúQÇ„èSO„çäu:NUóze'ŸÀÛ]=™¨üÒî^óg½µæÇ=»1ùdÈCâ8È뻎úŠWµ]^öíŽ>…'è1Ðã†ß8¯ èÿÁ}å–ä(~¥´—Ø.¸‰ƒ» þ€þŸqŒWÉ>ïµæ‘qjÜ“«É‡°[½ý·uý·ÿ®®§ü nÜèÙ^ŽWxCþ7z©ìçi/8™~ˆwŒü”nTbÃoˆ> 8²¾½Tóžö•‡5Þôà!?öê°>çzk­?ûËàÿÈcüQøqž‹o]A’WÐ?ñšÈ3ç›iÝ¥ttA{1~èø²¦gë ¶£ëý-õWýßýìðx°²?ß~¾g¿À~—øžÌOE¾ßC³ôÛ3o; qØè+™Ÿy_ãS>jçŸ[Ôp'ø øxžñ9·Åœïï?ƒ¿Öqy’ï™÷ÞÛ×·ÿúžæý™æ“¼ðÏq˜Â—ëÿ[üTô™úô¥x‚ô9Ï–¼NçMý èLóŠ}÷iàç“ý#ã]°[ÖýtóóÛ5gÿe}ô+¿™nñ⟾ƒþ~\ÃñÆüØs‡|5óâðëg|?vÄ˨^Á><OwÐñùÿ¶þ\ry‡]œ8Ùå{ç†`‡åüò>¬çÄÛßü•xçÁt΂ãy±—A?)ȳ|!x{v¯OﵞÌyIÏÿ!ô'ÁOÜ,väûìóØ÷žü°î9ôœq±;'L»ì#-·´N²3ZレúGïEþ³ÏÑ>¯çÏÄmaÿ'~’øyÅI÷Úy*~åxlÕÏxXÎß þ‘sF"ß««¿ïÏ~VâWŸÔãéò@þ¡ª×kïõ‚n_€_ÓºÞ¿à8!ÑñÖ®ëñ¾ýéáy'Î9ö8ù¥Ö­çÐüÉï×ñÍù3o‚Þ”‡ÝñmÕOýòQð'ÖËy•)gôž~p¾ž$©¿< ¹Ž¾€=9‰½jÃzi=ßhœ’›Ýü@¿*mWÞó›æåš•äŸãç¿Èù?÷øÓÙï>  gü‰èÄu(>³¹Ò½õµŸ¦ßç/ë•çÅqŽ“ãÅÕÆwâWÉ|Xò—8g{vœ·Öç{7ùØÑgž¦'ûµÀûë?Ðú|÷ðøÁOçÿà`»]û¢wÙu:<¼Ìö;öƒØñؼÒ|€7½}2òz'Í£Ðçä…e|9yå÷GÆM@¿äE¾ç+òýt.~‘Þ|ÜùEÅo{qÀLj]‡óbˆ'½¯y ŸùBòô…JôMâ5‰ÿÁqr+ÏÛ¹ ú%ÎPç'o8¿æiÍÇ;z~UotÌ÷Ìñ¿òóuð%?­ç×z°ã+júM}³y¨y@o|øùZxÎþ€xé´K¿/þëöÙ Ÿ¿zÆk=7øöböãìS9Gê¥äGÆ¿[n Ð-û@è ôän¯êyÛ _Åø~#|p|‡è<ìræ·)_|NšÞÃO^ˆ¯;®[tïuP¡ÿ9Ž)óÆ3®‹øÖgAÿè…/4Nó!Í7y¢øw^i}È{b<:ÿ±ççfÿ“ç7‘~Ún]?¨ÚÖƒ§äG‡OçO×Ìù=ÿÑ;·ï%r^õ_‹ï`GÎ<ô€8ϵƒGüÃç[ ¯‰‡ ¾Ù\ÿ–ðç+‡Ûƒ.ä¿mÞnµ¾âOΫҺƒ¿ÎËÓý·õç" íO'¿<[/ÅgÓ.sõýÃíÝUÿ/ ³#òû(~<òw}>+ó«õÎs“>Özaÿºþæþ{öÏøõ±g³—?ÂúÒÛÿ³n×çë»;1_éüHãg\χ—_h¯T¼ûYŇº| áìoýöB>¯‹~šùn/~,ùü›ù—œïäÚOÀ¯_ªþËàGèÙo´Ž›èGqa~5{x›óC¬ÃWÕ¯Ïßp¼^ÝÛûûÒ7žæSȳ‡1nùçˆÏìàO;}ر{ûpô®ÌÃR\*q„]|·æñjß/>ÿ*qü·eæAù7*Æ­<.Ÿù½ðËq{zŽ½îæ…ó¢îiÇë‡w¿ZÏödø?yÙèýØíàãì³°Þz%Þ3ñGç¯öâx?_°]VýCÇÎwÑ<|úÆÐ¹`Äñ<à7‘Oè¼ZŸ[¬’8—g_«øo¯=àFn’Œ>€UyIÝ9¦Z/ü|œOøNó?@og¿A^5qÐĵݑ|­ùbòÜ0Ó㯄oê?ý8Cö.þ;p­qqÞ&ùuäS ÿ÷Î7»|è°Üèê«wê7ü‹=}8ÏÄÿ¼’·¾ Þ¾žÆy‡)—zýB'ïDØËí'~@ŸÄuð¿òi^!¿Tâw‘ßÉü¿úZó’ûJè…}ñêõíCznGG?:ÖzG^AÆÕ G9_‰ó«ˆ#H;¸Ï!ÝaG$¿ßç(èžý;çxç¹ZqN]êÿ]¿šwü6èèE©g¿”}§ÏÙ”Ü ¯ <|ÿÂÓ_á{øÃ­ï¿^¡wßÕ|GEœqay>qÚáÁÎÁCN˾’ô”ôÛÜÒ÷ìk‰ËÀo\âåxÊ/¯§í{!ç°ß:nìêOÏYï87«×þëÐ7Ègá|Sü1œ„ýŽû;à‹ðŠsG‰ûrœørZqžj^8=ÏE¯«’óáXâïâ¼`냃ŽÙws~~/âLúÿóxÒ^/Ç•|¥¦ÿðÃtû cøˆÿÅöWø@àç“<¯ÇÕñ©Ïµ.‹Ãð:ŽFëø<Ö=»–ô/WŸG~·çcñ öYðyì×/ãçо¿¹¯ùEïå¼+âü–ëÃã}ë0Ã~–ø\òr>Ýìûy÷wõ:è\ã-qé·Ú‡½Ÿ#áYÀçUP¯Ã럞?Îý²ÿG|æRp¡ß‘_]¥Ë‹ßÖ|$|мÛN…|ûz œ³g{åÓ¨§s(Ñ×|Ž çcÁîÎ9Ýñ_듽¸rãú÷ô½ä q)W»º>y?䞢¼:<ß›¯Å8U¼ýÂçØáŸó›rß¾¶P=õ'{µÏKÀÈ> }žõ¶¿XíÀ§É³÷ÿ<¾¨àèðQxöº~ïÿK¡×—¦øÇ¿^>ѺÛ>¥u/2O.ÏáÄ~B^3ç5)N³ã+ÛÃã >‘8"äöøw!|ÿGnðŸìYèœçù𺆹O;Ø÷GàùÇø3¸!âØ|¿æ~¹¶Ç£_Ôü|ðœ0ð¸+ŸÏ}k>2ßMy=|^ݧmÿÀ»ÐÑw±£>ùâ`;ç–Ž÷oÓéó…ÿßÖz׆>€áøÞOómÎÁÀ~ù,øøKé+ú?Y7ÿ‚ó™äùÍÐ1qíü,ÿÅy}ooi]¯{ï?‚ŸϩùyûçûçþošJúÇN…~ÞEü z vÜWªOq”àxå¼nÉ8·×ç;Î_pÁ‡øežÇèsJÔ?ç!ó?¿8¯ÚëÎÿÓ°;ÊÞÑåïÞ;6ðšý>ùFøùÐwÂÿh¾wÿ0ßéñôæ_îkÜÉïâ|ê4ÿü·†ÿ.ágJ»òú“˜ÇôÿbÏHyìs®öðø<ÙËzûVþ?é¸^µGžQÊGìÀÏ~šü¥ÛÏóEŸ -¼{{t$zýöõ.ÉSö+¯4ìƒäï§žÎ>8KÎ`¿þ2à%ñ1Øcó/öa¯ïâÏçãÅÊ~”óLýÿ"ñ5â âÜšÞ¼\¯ÖøßíoZãûCâ8×%ÏëÇÎÂ9Ïk¾7ÏñÖøÓŒ_åUôG1ó-üH;X×Og™_s²\cݳ>â¿øç‰¼ ~Ä~)Îsêé­ØS°/Jnšîžo+¸»s™¿¨ŸÃ,ogõùLx™ç‚“(ûNóTóÚûOÉ»7ò3ã[^Š?°¿ã|[â$|¹Ö‡8ž!~Erï¡äöYò—‰—´}Wõ°boõ&Å¿Þÿîzx‰/ó0?¯ñ‰xÒü¯IÚ‰»†?]¿<8Þ>ž©ßŒÛ‰¼¶îù¯Ó‘üc|Z‡<™óÍЃþà?Ç¿ywŽ¡øyâd꯷æóÈ7ùPëÀy£™çȹ >wê0¿7ž¼Þ¯cwÆ5ëø)øviô_ä zù¥ô‹þPã‡Þ‘è#èyŽ.ûÁoÇsìùyžÝ&ùüúƒ}ò{tï(ü"Ï„ý¿ózŸ¾\Wíøù»z];<ŠõÆ®€¿˜ýÝà×gèküÿÇã øØgËÑéšoâø_.y½GÎ[í+ü!>/æ–èÜÿ'~AœqÆÕ‘Wòþkëwô§q¼’c¡—aïb?œö*ìÔЕϳøNÝŽÿ¿)¼@À^ÕûïÀãñöŸ·£{ç…ýê0‰s8{ïã|¾Þ{ǃ?ú_ôµôöØ­ó?pùþû„¾öú»‡× » ö‚<@ç"tã×z€7÷ù^p¾@~hœoÿFpÔò¢y»ÙýˆsYå°¿Š<²w ýOrÉÿßü¼†ÏçJÏøP|ðõµð'àà?/ñŸ¢A½›¸–øß`ïÜ Û‹5Ρ¸?ÿ¯]|ÿ¥ìCÝÿo5ŸC~ÁŒCuâ¶~þaSß¿þyŒ#Þ;Îïë5ݼ„~ÄWw²ÕÁ~!ý0wY÷:ÏüìÑ®ôÉa> õb?÷ñÏ*¼ÖW%eGã|¦ÞÿÛžk~?ݾ})>&¹ Ÿ¤=èÿôµøÿ ¸Wã»ýQè!øSOÂ>={ y“Cÿ=Ê8ò{?øÍüÌù]?üâèÉøýç.øÉçó¼ˆßð_Lâ|«ê¿ |Ésˆ™×Oÿ¾Æ‹ð7tt¥úy.䞟æú³ƒøÔ;‡‚s$ÈÛáœû´‹¼Î{­7ñuŽ#Ñúq޶ð¾ûo²æñ“À?ðÿ§¿¬õŠ^=à~£uôyÊøñJðb×Ìý§øµÏƒ”>Ö??Iýä¹vaWÏséútüè^êqïøì䯵~àórò\7ü=É7þWþ_:îGórý^ü¹ºØ¿ð'­ü2ÇApn 燇Sü\ÿ5u~¢óà„GØé´õ9–igäqù?áµ¼pü;q‚A§]þpnç½R;Ä’÷J|Gœƒâv8¿+óN$_::þíúý·Ïùä ’¿d;å?ÔxF\4öã¡ÿ?½ø>A':—´›/̓ü…Í3ø¦æéZ󂆸æ\Gì·Ä_Ú/<ÄFœÒðEëéóÁ;½ç¿Ëü_‹sn ŽÈïæáGÁ„WÄ;ÇÿÜzç ;ZüœÿÔäÿ}mŸúÛz<–¿È£¤ûX_ôlŸ ²‡¯¹Ö|±_ñ¹>wıï¿/ãiß/øºñ2ÿß?ŒW/j¾×áOà—ÿg.yáóØUæ9”Äi3‰WØ[ìïüU%Ç:=Cðçy•èøo×ú«ƒò»—ð ½2ýÇy7ÿGEŸ'~ØñÑj¾}ú;âÇÖo„?Î×ú㯿ëJ\ûFʼnwúÛ×êuB¢$žù2Ç ßŸ×_›{O®Xgñ)ìBOAnnèý$ü)WÒûޏ>þ{A>ÚÇÂ{ôBþÇ6ä!®Çç±ÕøÖÕƒ¿iý.æ%ãÖ±«ß×"úŠõÁÿsq<†óÄçœW¤yúŸë—ñæ£ô«qXOEÞоæ?ÏÇsÜìBðü$ø¸øç ænt@oŸÆz!¯îh]Ù·]7ûÒvæàkù¿1ô¤Ëxnû¨ð¾c½Ö‹ók‰›&žøm¬·ãU~·žoô0þO¾ ¾r;è–ó7ÉCT~Ê žfÞ/çd‘¿Èy³™—óúH»y. ûþ;uó‰|û;‡åþtæ ü'ÿRqñÝ8júÄÞ×ѯ¾Þh]ü_Ü ÎXøëÏÿÄñW¼Ñü³ ~¦}vGçZW쮜¿Ëø`ôäO…ÏŠ ñ~Ôv$=çüªˆëå<þïÁ~Aya>Ç*ãÝ|~Jðãçâ_è³¶Ë–{½óÇlçža7ÃþŽ_žsêÃÎl}”¼ä”øÙÓièåúßÖëìÿªòcàÙ?&þÕá«æ+ÎMïÆýy yfïó ί跣yÂ?™|¼äô_‘ŸÍÿÉ3ž€<ôí´ãÛ/%úÅîu‘üú³ƒãÏ}n‡Ç¿®¿gÿ€5éœóýÈwàÿ>^pò1âá|.ËwcÝBŽ?†n¾¡vƒ¿ß4px‡‡ZÿO!æ ½{ûk⪱;Sø»©áíæEï_¿ñgcÇ`ÿ ]g~ˆâô|îBÂûFí=‹çü7=ãWÑc‰W#ˆs|^å÷÷íò_ûüöïOõ]úÑ+™Çkõó$äxüÏ¢ÃK›}-þÆÇ¹+Í£þCÙÏ»­ñ4õÖ9‘ÿñŸîðGëD^ÑõÙ—ŽO”\Îóü2OTû`Û×ïF}þ7»Ö5ßi|ÿOïðãú7¿·ß¤¦¿Ž?ò¿„{§¯ ѡϳ”\Bîÿ…ÜC^²‰¸ôÌéÃÖóàxBô ìbßþYÈ%áù»ÿ!y+zcßÀ9^Ä)úüæEÝßg&þ¨q£7£OÀ/ا¼ƒ^D½ó$P÷‡}¿v1Ù§»ùqœ—èçúC²ßá|»7÷½÷QõÝëŸ àó/¸¼¿¯uÿ¼^GŸS˜ç$¦žGÞçNÿÌy*ŠÏ±Ÿ=#þ+ÔíÃO|.)ôVó¡Î¾üYð×õØÇ(~ÖûÈ{9Áç…tÿ}}ð?pÇ'~pk~‰#`Œ|º¥ù"Þ‚üªG‚ ;ý£½ÿ2®ý|ZÎÂïÑÛžÖ—zóïøÏ=ý8>îa=O¼ý°x!:d?Î>(õ‡gÌ›¾»Œõz*|aß“ñü÷+éKyÎîWñ]¿šÖñJøIõÐÿ;±ßóŸ`øâ.»}Í7êqrî+ÿÛQ¼jÇ¿¸?ÎÅ!ûrê§è7ĉ‡?°¿ÞÕxJ¾FÆ¢Wdܪò:­÷ÜNúÑz¢_fÞ×sÍÇ­„Cóú‚õþà0œø“Ñ[Ð7È䜂ˆïhÞè9úûLøûOåôå˜úÇn‚_L祓58ïyÖÞhÜ™çäùÝ–Ë+ÉeçÁoà»â+y^﫟¾j^ì÷…Õ|§ƒ'Ö‘8ÕÔƒe‡±Ý>òºÿžˆ®ó¿9ØQ”oÔáóB߉ð+âÏóã莵þ¯á_‚ãnàïãÏ~ã:¯¿è9ý5è!è?Ä;‹ÙÞB¾öªG'¶ÏjÝÐûÉûXãyßüžèX|cà|Ùn}öúqó–ùýÅA|'O¹ÃOñ/Ç#‰oä¹[>߸ž_ûÙ÷aÇFî‡ý§Ã Í祿ä;ÍŸÎ{/y¯ä_4ûïÈáübâr8çëÝßWãíµëÿ[ˆ^h}ÞþÇ þNeÿ~³¨ÇçNvûÔ}=ŸWj¹,}E|¯¿¾âøáÓ>=2÷Aø¹ˆKùøîáöÓÞ=·ò2ð™@ã'¿€8Ó´(ޏ¹þoZ§/öý W¦<ÿÏ‡æ•øΧE²[äy4ä“eþŋϮs¯=äÜSäÔ_×óªÿ [aOOýêNð âèrž±§ýŽy@^Ún¯u#þ€{ý¿Ïþâ_±o¼Ò÷‘ë8]å£9ó ¯YñWü'' ¿||ìZëßãúï$¯DïÊ_êæWxžv꿽c¿ÁîüIÀCøESµstý3Ÿ‡ñ^ y×= ?ɇ¹—íi^Øà§·ý_|=}™s€ùOŽÏ…þpŽÎÁòùiπߜŒÞÝñþa¼ÞÄËÞ|°î¶Û /}.Ñ7jxÓ?„ŸýtîŸâSLìDZ×"t^ªí.ø¯{ç΂·¿:ÜOœCF<]¯ÞÃà“øß8÷Íþ7ÍÛ…æ‡sÈ/„··´îCçxl„gø õ÷ÞÿoòüÁKñ?ä~üfþ_øü™ÏÎyÃèµäÉg¾LÆÛù??®ù/~ôÈçïþÿxx>ºuÝ<©¿ïÖCó–þí±¾Ž—f½$¿Ñ_‰±?sþ8v ü1øý¿Ôü"þã^Ðiü÷¬¹’<@þÇ9)==<"Å+ôë žÅ|wÊ9XCçmÇÿãüüø”Ö;¿ÿ_ þþ ~Ž\t|oà/zõ‹/jüÒú5ÏÁ¿ Ã{Ár¼œ[æÿ¡}°‡xNÖÑÿÍ|Â.—z4ç9ù|Ná5þ:ì ×ÿQó¯þ7’wÈ'çm ÿÙ×hÒÑ—à~3À'‰ÈÿAø\võs/Ú%þþqþù2Ýøk>ÔíËbÞ_2/â7²7wõCfœ¼ãÅ·°?áGÀÿæoÃI|ù`Ä+/çwþ‚zž{ÿêÅYý¼âK–7äÝ<><=x‘_¬ÃZ|ÔÿÖ<ÿ™ÿ~ ~§)ºßñkÿ‰Ü$~ ÿöE³¯ƒ<ì¨Ð7çÿ>…i½ˆãd_~}«†Syù=ºúöïH.iœè÷k>èù`ÿÌYó\†·‚óíÿØ¿'¯ÿío ¾]]»ù0È×í_ç¥æƒÿŠrî©ó‘B.úÿ„’ÇÄQ¼üâÜ:â˜ñ÷’?EÿÈÓg!OáCœ?£|†>}ˆÏá—$ž2å¹ìƒ|æøGÆ ¡‘ÁFÄÇ÷Ê~Õÿ[Týo×|¦÷?SŸK-|]Îÿ™DÒütÿb‚qî‡íW7yŒøœ*úÁ®æsÙ¡ãù‰¾hûòk¹˜ç]ÿßZÁÇ~0Ïë'ÞŸ8þg ±qÞLÚ'tþa§?h}žÖúø¤~d/èžå ¼èà¾Vqnýýoÿ®~îüÂà~3¼>—¿+íû|€ï×óôOœ4çFâïÏüοŽÿø\„[‡å‚ãƒ^@ŸÛº]äÃû¿T=ø¾ðŽ8â9ûÉO΋Ïÿq¼€ðçúõ¼"§}¾¿èÿó-á%ò½™ø üw‰ßä €?Cçä ?êœZïKˆóa]9¿Šÿ`o¼C?1ŸÄÅ|"þ7°/ÆÒùÁÏEðÅÙ~I\ù’λÑóÄwâÄÙ/b?‘ÛƒëžÖ3þó<·–óðÓÇŽ<Ñ|.ÔK­_þg.þsà|ËãxOâ•×ÖÉ'Õû0è*⃻þı—¦žÇ®4tN7ë5ñéVëûÁ¾ü¨ÆS×kk~Óñ‰úÏ¡cÍÓÓÀ?Ö…x þ7¢so:¾%ºä|aâEìWûbOô‰_y‰Þ”ÿEò†´~yn zyŠ‘‡ÕÕ|ùÕÃëþEþûšþ.çaÅsü¢à~™Œû@ßÈø3ù#óÞùÜÄDz_Èõbß„Ý;v.þ[ó4ä’ÏÏŽçq®^G’ß–#ê'þCÑ~ðƹ==Þ—±Îè…Š§éöA’[ؽ2NÀç” Î]`Ÿ‘ùYØ'ˆ"ÿÿ­ê[n¨vRâ•Ã^Üñ—õ²ŸBóIüâG×»øþ£}}ò:ôSôìnžëös÷}Áñû¢Ç÷þnøþñ¡8iôå«=ܽ<±GÁGâÿÏ}9 œ1ÎSˆqsÎ)tpÚþvUç|Ìü|^¿ïýã‹ýøÞi~àÓ’SÄOøœá+y²øç8W‚øFöÃ:/Êta»„ä ò˜¸Ý<}MvëîÀ¯â™§Ù;Wð‹#ë¤ñ“¯Àþý9þ¹»¹>Ââ·^.ê~ßÿy}Ÿqvüo=ó<5?|×{8>‡] Ï›‹}'ëzgˆ_­çA¢÷Áñ×ÜNù~~oÿ]Úð:¿ü3µ'þö(é$è ¿ÝkÍÃá±ýï‚=þmÐñý„7à‹ÿ½wø­õÈsöÎ…éï—æ|èÇÿÍÒ<ê¿ò¦WÖÿô ür×ÿ^ô£yÈsyðƒÒñ|ðòõØïàŸæÜòRÈ/CnèüF·Ä{„Þÿ—ó9k¶ÏiÜÄëÐoè»Ý÷šÇWô#¸õŸŠnüõ÷¶‡à§@¯È'éñÓø,ç¢tëý³Šï8Þ}+ñ>·NÿÇExp¹­ç‹ï"eÞ‡ÿppÞz|Kÿ%ò9è/اÀËÈSéùøî­æ‰ó*>ž`ÏH»‚ÎQéÅù?YšOîÉkMùË8àß>=àò:ó¼ún?+ù ]pÞsÊYâ ùÿq¥œÃãÿ%èýcÍ ç×ð_ôý°Ÿõà2žü÷}ûØ×Øœ'>ø?âYt^,ÿãêÕËs»ù/çµåy_ÄŸsKø…}9äh_ߟ㼋Œß¨]ιf^Ùgqþ~VÎÍÎ<âIôÿ‰N¿Rûgîs êùèÞÌŸõjÁËÿšØh¿ÐÑ—àÇoŒÞB<5ûïøÏP—,ü »]óVã}óÉ:"ÇñÃ=üå¾Ä}±!¿ù+ÍwòEòâWØõ«ïÉëg_~óçð7ïþoá»ð—óy8×íÝGu}Ÿ›&¹Á¾ƒÿ^wMà}©þì»Þr~ï?œsŸ|Þ¡à'QqŠÝ¾Cx…_ }|¯ò¿ ìïˆÿ!/™}lÈo÷éÕý³/Wfwî ÖC~ƒóQɇgÝ"/¿Ûˆß< þ˾×yýà¡è/Î_ëà‘/Æ>¾„ÞÿÅvYáûãÃø7ˆ'äÅñøozžC×½G®>Ñ<2߯Ÿïþìðx‡Î͸þËÿ–#°Ã÷¨Ï|!׉ϧ¼ãüUð!ój¯E×ì3Rž+nÓñó§ðàwk¼xü…8òNÉ %Nch¼Ä±aÇäÿ^œO“翨éÙú"ôù°æÇü?Ì~„ô¿±_$N:Ï3N?~úÇÎ|#G—÷ƒŸæÑq)>÷@ð_üä0¿ÚÄzÀÏùO2ÿý@ú_©ÏÓœ÷%×|Ý~¿yÌwŠCi®ÿlϾ8#ìôÄo¼ú|©÷ÒÓ:||oÿàÒúdüzÆ[†Þnüâ—¡óË3ÿ}ø—⫽ýûÝ_°ÇÊÿÝ?ãíÀ?ü6‡^r·†¯[—_E{’KìÛ^iÜÑ/ø*}²÷ŸùÛø;q ØyùŸy}È»çߪÛõQoÕÏ9GZç~û¼MÅùõà“ßÌ÷œŒ=»ý!×üŸÍñ~×~(â>Á_Óyð‘ë¿—ÜýQGè×äƒïN|ùUMïÎ7b¿F |Ýç iùÿzÌ&Ö™yx-¼H¾Ž¾G< þ}Ÿó«þ‘ËyMÏO }&þ"x¯j9ÚÕÿ¾ðêÇZ'­ƒâ:85ÿüùZóç8&=ÿlSã…äf_Õ¸±ÏáŒó ;üà§Ä—³ß~XÓcÇ_„GøYó?œ7B|$ò›ýɾøÿÙÿˆáïz§ùàRìIÞ©$®¿æ£à{¯‚Ï?yÀ.šç‘ƹνñs~ñyÐSÚ¯l¿?ŒxÛÿùuØå_éäeØñš·šgá!þÌ{rPöÂÞsŸ»«vw*:~+ù_ÄÇøØ¦^æüQáÇSµ÷*äósýû¢7仯7x®›àð¹ê±®Ðgü‡°Ã—àq'²—Ùÿ§ç·ÑzŠ/÷çWøùjƒø¶—ÏßñÏß’´<Üàaüï­ÏÇÄG^ÁWø€â:ú yñ´–+Ýú ¿__Äþø ðòy¤õC/Ä>ÿ­êðøƒ/ø?%wü¿µû^ëHžÎ­Ãüœý¯÷•¯b|ø'ˆ_Á¨ÿ1ø\«yáÿFçy+ø]ßj}8ÿas¸½!;G¯?òøŸ€ãÈïÖëê¼nÁŸüü#øÏkþ÷t±/ßKäúˆ#áü¨ø?Nwþ}Ð3ö©Þÿ#¤Ÿ¼ý~ÝöÏÞÿSÕ~Ø©»yS{Ø{>Q¿¡oðSóJ¼ÿu=´¹xLÜøH\úíóoÆÇ×A÷ŸÀŸR®ª}öåüß;4qHÈyø´þ‡5tƒÛ;ÀÓ¿,{ãx8O%Ϲ$>‹ó)€“üŽ¡ø;â¼žŽƒÕú‘Ÿ»ˆþ®ô\q;¶ÿ]ÿ×ý{òÈ“õž'úzøë»ÿs%~ïÔŽæÃû ÍòŸ¸vüýäeäŒåf|Ú³€“yy^¯_G/?ù?>Ç-ä̱8cìEÊWqþøKð⻿ïÙÁžïêñ<8ž.ä¯ÿsªzØ[‘»’ö–WÝÿ®êzä‰m´~œ§Áÿq8Ç g·S{ëZå¹2Ž_r<Æçõ<Àó r߆SçÙÆy2¹Ÿ}©ön_#.›ø âz9¯ÀzÔ?æìƒ,_Å—tþ·ùâ›àßüg ;)ùêØ¯6õxýÝ›šNòÿƒr€õËÿ^? º±ã0?Øy°£>õ`?Ã0{ÿ_G_a¾™Wá¯âÆzúÒýZŽø“w‚þ±Ã`^Æ8óüKþÓû6ðøÖ€žÿ¿â½ó#r¿h~©q wp^ ç!·{ôq}/”oÖcQßólågÙ?æsê$?s?£óa‡Ày¦þÏS¬ƒýòjø5ìR>‡ |\èçÈ'Î%ŽKçR7¯Ôoæñ oûë¶ÝŸËùÂïäËyîáÛà«iGp>ä yiÄWBGŸÐµÇ8ÿ©ø€èOç½ÚÿÃù7þßwîÕp9Î@ëû/ùͺïU= ÏY!Îû0ñŠè÷!w»ÿ*ª|ÿ^xôA|=ç€\h¾8Ãÿý9¬ôö#yÞÈÛ¯uÖ¸Ø7f=ìNœ¿çtôý»µ\"®úõy=’'··Õ¼¸Î;I¿\Æuãë¾{Ÿºÿþï°·s.þ•—AßCç²eü{ÄE4wžÕë˜|ZûÏ—ÿ+§q£çpžä;áû)ÎÏÚßC¾Zœ?:(O#882ÏÑÏÿ¸²¾aèÚÝs.ÀÓ¬ÇøÅï±cÙNý¡¬ñÏœßȾ~@Þ¼ÿg»Û×—½ÞóŽF ì)=9Ÿ?9ñ<ÄËñÿÓŒÈ}ÿƒÊ[Onç¹ñÿ—þú ?tþMמæ>©ÿŸzBÞÊ'ÂKð5ò|ºy½?zvxž^Õßuÿ Ñ|ñ_\âð+Ä9-Ž/ºJ~'øäbßß½ŸâœþcŒ?ý~yè»UþGò•äþúç5>wt¯qIO\'ìbð;è û°õ¡˜üï½ý³‹ýxä”ÿ›|Gõ.Á»à/ökоô—ŽN>ß¿·þ‰~"ùùƒüïÐöÿFý‹/¥ŸžsáµÏ1ß_®´n·uo³Æ•y‰7ü‹óm{çœ|!øT2¯”×µžhÿ.ç9s{ïÜM‹ó°g`¿ÃÄ8ó÷Ÿ ðAp/œÿoMÿûùˆŸðû»šGòQÐ7oøSñdÜEœ£âçäí±oHûÕÕw÷¡ð‘|@ä…킃ý.ü»/ñ¸qþ­õ©»A‡WšGøÈõïž'Ç] ŸDÍËoÕíåyÛÄ¥ O:þóˆÝ/ãˆØŸßŠçØ"ž½wÚ‹ã{©W ï;¥?ùÿkAgä•9_XtŠßýLþüÜõä~aâŸ|ކ֑øÒ?^Šo°ÿ»­uFO½óBÞ þ:Î5å[yN\Ú½Gîîêõz» ½AøÄ~½>éËçœk~ïÐþG×éñÈYñ;ôJüeħÒ/öEÎÃx¢u‹|ö^¿Ïõ8ù?‚ìFœÏk»:öä~-øqžpOõm¾¬ÿöνÒÿWø¯ž÷³È“{õø::?Á/ñtöåËã9½ùῨÈë8ÙúuæÇ‹ ý£Ç~½šOß ÏµÞÉ—Ÿy^ þ·Žý+ùhÇ7b>øßvæsD¾½Ï¼œSª8òN>i=#“ø£—Z_â“á²³õæIçÙ%¿‰ã¯Ø?‘ßÇyãïôÜçéA7›<ÿ~H¼KÚÕÕøÞƒ“|ô˜÷’sòãv|^øN\ zqÃ=µÆù2øÍ ÿþ‡âçë…ß —Ï¡u#îáSÁóFßsÞÆ“Ÿ‹©þÛo _küïÙÏÈúè'‡×û’ÿÿxË9+>@õ‘cøE‰ÂÍþž¸aÆéÿLÜĵåy^Ø)tÎ?ùSy>ıÒy·ôÃ~˜|kâ㱇݂ŸÆº§=?7ÿ‰Ð>ª×Ä¿vë#:'þ˜}/ö â9ˆñ<ƒÿ㯇9ÿ_ó=8/è ù?cÎ%Â_÷ù£y!Î?fÄ™ÙïøY¬sÆ»*Ÿª¹þkµt…¼Ãÿ†?ÿ ;¯Móóº~ÌüjŸýçý=çÛè\GŸ/K¼ú›]µŽŽ÷!_ ûjæS±Á.ý<øy°á3ñÍäWÉ«¢«´+ÓqûCùÈœ«AÜÿg'î”ÿ³]Æ—îܵ¯Äú}ã9™ÿABOô9Ü[Á³ŸïþÿÛµŽü_zÄoG…õçœTöGð×ÖEÿCîù3'þ)ä1çûǹýuR¿1þg‰ŽsóˆþÃù–ÄycwÐùÉö[à€_`gÀnþ0ô¤8Å~'ô<øß÷΋Þ¼jÑç#_žÿxäþÊçRÝÓ<ï8‡MóÓçßÈÍ#ß‘¯s ‰Ø’ÇN¼²øL7.Ñ=ò ý›|]yG\ƒÿKªñ<Ñ{Ÿw[ó¿®_#Î/°žÿîwÄo´þþüXë¡|¡ü™/÷xîü ìÄaø|ºæcÿͯôÝ×ó'øü\ñ.ýý¦ð>ó8çÿ{á<è·‚=–øwâ#)}Î/üMð`/»ÜÖóý¢¦“î¹ø!|ÿ“B.²oü°Æ›®˜Ïü_…ýÈ;]Ù1»}ƒúõÿ¡Ó+÷¯¿Ï ! ºx!|Öw½ón×Öí#ø^øðXóŒ;Ø“_Öãy£uˆø‡sKË[òfáÿÈ}ìÂÈ þO¼ÊÏ}¡ÏÑûHë‰]3ã(¯‘ à©Ö=þb‹ó*ˆÛ|£yÐùc]}wè<„W¢/ôücÄEú<àzžzyÞœKl†Ú!¯‹xÍ—!¿r>sü‘OìxìŸýµÚWü×;õþ‘qœ×L^ÛCèGãq^™¾—3ùÿ³„œÈs4È{Òù7Ý<p^ÃUÌ ú·þ›áóYðkÿ–qú?s/.{ ~ · y.üÂÞò¡[oñ3â!8ç{í¢âƒè¿œ'Hþò=âD»~D·Î®ëùü~ì:²cÞ>ó/¸Ñ;°ˆOôø&z,~òLõŸÆüwþ#ûNïÚîÛ»úGØ‹›»1ì+د¡Ï+¾¯Ç߉?%ž€sÿ†ò»¢§|ï0Üì;Á_ät%9c8íãúöÛß§ž‡>Ï>2ÏAŠ/ÁåÜ%øû,ôUü„ò£wôw­vÄ”ßg}{çI·º÷ÿà4/ä§=ÖçÉiž8'¸8WÆÿ«R=æv¢Ç¬gð—àK}üS¿Îë@ίà‡o‡'ã·ì§ ü _œ|‡\Oòý‡þsŒ½;9çKÐ>ü=ÿzÚñ?Ÿ;¯ye8¿ýKùÀçƒÞn¼Ÿïß;îL߇@ÜÆké ØÍÐÛ±«DzLüçØûcââòÜïE7™?H3çtHèÏ¿æ =9H¾óãÀÅÙY.ä8|~¡à}¥ùB}úçáèàÑ<“?«x€n<’WÄ£á?{¨u'n¿þ½šŸ;ˆ}vÚ‘®„ÏØùOåõ_Æ|\ü'ÿ:rNvž—*Ñ›9Ç‹ÿ´q®ÈåuÝ.q·j½Ïömü ÎG€ ÿ®ñ ¯£b€ÏóŸ¼ë_èÅøÝº<.Í[Æ<øÝº_üÈyâG.‚¿‘'6ÇØ­Ã«õí¿žø\Oá¡íwZÓ§êAçÖÏ4àö4â™°Ûyÿ¿Õøžk¼þ/¯øó]ûœÛ ÇÝ©]ìBù_=òV=nèUøÎÿ³¯ÿÏz}±{“o“爅½ÖûÖç‚uüé7æεqÞkà‹ÿ÷,|F^¿ÿO׿ƒ_ýò¿aè†øþ'ôî·„÷‹züÏ4oØ9?þ¬†ßçRÕÏ»yœèO¢‡nþ´Þìót¾UóÙíKò˜Ÿ®ùüY=/ñß ïk°S½ˆy$.5ó>‘Kü7 ¹ ÿ'®;*yÜä_°?BÎe|ôC>+øÈù¡þ?žú/9Üyšâ71ügò­æ?ŒÏßÚVëÑç ¢{ôæj'òºõÕüàC¾a·å?ëךwÛ{5®Œï$‹¸\é³ß€[tÓãƒÙ÷c§ x*ò•/ôlö¡ö§C§ZWÎQ}xøû.}Ÿÿ ãÿ4´—ÿ‹?%W:¾xÆ>™ó@oŒ‡}1vøù÷-rù‹j»~Å¿SÂ>ŠüÄ¿Š^‰]ý&Ö7ãÏœ·ëKžÌã¿YuÁ/¤ü¬®}á+þÖ§7þUÖ}âÝó_¿ˆ_íøºÆy¯ÆWŸ/À9’ÐsÆ•ù\4Áòý÷ëÀÎaÿ}’‡Ä¾És`zý?4.úU9äOsiºùÜãKžÛЯ¾_«¾æ»6çÐ@·Êãïê}^µŸv?ç?3q>¡ýTäW>þh`‡þu;äZï|'}ÿ±Ö“<˜ÌëóÿÁ…gØggؼû·’«1>/r¿þýó¸ï«În}D_½ÿw Î[?88¿–—o4OŸˆ.ösä1txò†ø w›ºžó…¿#º”>€d§úgÂ>ÿñ4ÒÏ»ö¯µ.Àÿ“<‹ö‡ä ç^°¯fS²_Xóˆ?rê]q>LêGñ{ösò3øê§p¿¶ÇD¯ÿÙ~|ð»E?üï;çªc÷þô·öÏ÷ÈÁ‡<âÿqß®ñÊvÙKÍç9þJóÉÿžÂNÚ­kà½æ¿ÃKµû~@PKó±ú{ü‹ƒóh˜WÉÝî^𑧦ÿ6wx,c¿ÜÖýåÿ«2ÏNñ–{Ip>ào×ý£Ï±/"ùaðãëàÿàeœÓÇCÁóä§ü_ylCøFÞÏuÒübÍó oøÓ†|ÊüšÜï*® ãï¡è¹>~Qó£Ç5]vxë}¼û÷â3Á7‘÷¯T}=ç“å¹áì¯ð?D~®óp|~ƒèaè<ì¹:?=¸ƒ¯Æ‹æ¹Ö{°ÎÍó¹mð»üÂ…Æu;ù—úerý_DÿÐþ§§Á¯œß">u·^ç®æç‹ƒëîzŠ#±?ë=\¶S¾ØÕpæ´Þ©xO¼ q1àvžˆƒó¾'õbÿ/^ß“oé8q½Ïu =-õgÛqïÆ›®áòÿñ?¹O!¿ážæŸù”_ówºöÁKÕÿDó…;tÚOükÍ›å¸ä“ÿ þïäúi½½ò_2üqȧÌKz¡zþïÚOjø°W^ÿ“¹­þ¯Øç?ÐúWûZýá_sž¹àã<4òäùï‘÷ïÛ}ýçzÄ·%÷òœ뻬SàÙ“Xç=ªÿëßÒzJn¡‘§›ç ‡c¿áÜjòúãÿE½½{/zûHëžçr½Ñ:²Ï!úÊÿ:ÏrW÷Gíðßçøï_GךümìËÂï̯{þ•è€}ä»'¾ùú^æQ§†PÿßîðF|‡¸ö}þïzòPãÐùàÞßÄóât ]ç¹/·ÂõG¼‰þck?7y#ØEÙ7Ý­ñ¢Ûˆî¿<ù_FÛýC.äù2ï„/¿úçÁz;vûxþ\pâ—ç?4䃥>éÿ¥ ôì`Oêqöç)Ö#ý’ÐµÏ ù^WÞßkí'®ô½þ[ؼ\qNAóößÖó̹‘×Þ—ó_¯äuï}®¿íyÁ/÷ü×þEÐÏÇÂ_ÎååŽÄakÝ:=½¾!ùÝ=Ïq…!°“g8”/= b߇~ña7aÿŹcjýî¨ç‡ñ¥7_ì›å·êãµúK»Î•îè¿©ßcoyQË{ÿ}—ÿËñ?GôCÁIü‹ã™†öEoEøÈâümí·¢ø[ë1œ/ÿ;íøÀ¯¯›ãÑÔÎû"ù¡ûׂÛç¨~ú‰»Ëóoìw >—úr9àó€¾^×{©yöyèªg;H=¿Àßãœ3èóD%—}.·Æ ¹õëƒëÖŸçèþÿ*áÞ"ßõŸNø—ð'ÏeŸ¤¸ÙœëÉ9*äSöÎEü«úÓsÍó³Ð/_ß=ŒGŸˆŽñG>ßÖóþ¯ÿ‹F?!ÿÄç×kžø¿lž×èÿ ^ÔüÉ~€Ás|À­?üòSñIò]Òïâ‰GMøó¿xâ¤ý_˾Š~çžø?ìì°¿ë»ÌÛ`ŸJû|çùq^é9þìþŸè¢Æ3Ñw§7³î¿ô÷’Ë=Ǿ¡ù|Ÿ!o:ã;ˆS‡Îð Ç͘H~ûàw%gÔŽó­…WŒyŒ!ÿÉüb÷ç<è1Îgëæ_íÁ¤?öõ¹ïÿùÖaþI¾&ñ­Ø‘8AxÕ­‹øQÿû~ÍoøÏ$ÿK»«’ÿ ߯ùÓ ½|$|•¨Óµ^ÿšçêºE#þüáý+ýû(âN2þý7qù÷?¾zpž»÷1Ÿä‹·øBã2ÿœùÃäWOžì×û§ÿÖÙŸŸ8ªëg¡ù×üàoà?œ­‹ó~|p|ݼÇ8ÁWôMÎ{À_îÿLÿ0ÖOëžV¾`Æ3õç[õˆãÒ~ßy*œc‚_ÿ2ûòî9Íù‚ƒ¼KŸ—ôƒÃëžô€Ÿ¾ƒÿ;ó=Ÿlž>cŸô ዚ§§¿ˆy±_á\.ö]ù_…gr‚ýÆõßÕíïÔ~æÑ“‡ý"íçömëù!Žÿ(Å9õGù:çú|/ÔŽÖ›|’óûãÿà7ã™ó¸Åg¼‘äÜųù܆;Á×°Kó?Oòðã ÆYþ¨nÇÿ—ÝÊÚéu‚ùô‰àËsÿÑ7Ÿi\ÎK‰uÆÎwOøH|ü ?;ñÊü/ÆÿcÐwy^?ÿ êõÐÒÿ…¿<ó‹á¯ï7×½´Ã'øüa?Oè‘Ý|éùëx¿Óyˆä›6ïÿûþ9ðø¼Õùñêz_Ÿs`2¾3ÿó…}›óãÒŽñ±øÿ â¿–™O?€ý ò€øß»ÂgçÉ >ó3½'O ×>€|!~0íŠÄß ÿ<ßü§~Êÿâ–>]‹Ÿ£¼ßðy}ŸüÞçÑ¿ì¾ü:ä˜ÆÇ¹Î‰¿Ì×ãÏûðªôâò‘W/uo ·Ügú¼ÄW­sê­ïÿzßß§ÿ{ ?ç9‡E~5ñ7/«y¥uËÿq:ž¾Ñx5o¯4ßù1é¿÷¾ºBnÇL:<ü Wø)¬¿ä¹}w„—Ðç"¿ÒŸžçYÂOЧ3Ϙ¸â‰ñ3Ǿ.Ï©²}0í%œk|Gtý&æüdô&ÆOgSëžö?Îoòù™È-ða_ßvLü=øýñbÿ¢_ö1i—%ý[õ:ºÞíŸ[¬ñ·[/áKèY½³NZ?ô•÷‚Oò¹£õK¼ùëð/òáŸýfüìã«úãœ>Î+ø—Ï“fŸÍ9ùß(âÙOøíf+|ÚÄüâo½‡þ&üâ?Xñ¿Ç; ÇG> qº‚ÎÑðO ?±ó7ªÿtíÖruð\ ¾‡Îø6çÑú?Âë…—ø§°÷ñ&ì>¹ªvòœŹôàÊyϼPôoøþYÛCà/‚oó‡¼Lÿ·XøÃx‡òý>ÿ žvS£§ÿ¿Tûà%ów)þq…<ùÛÃýq^‹ã¯ƒþðGF¯ßsù¯ÄO`/€Oú¼QäÚOê~Л°çÆy>Ýúhþ¿ýŸ¿'sÞž×ûyì­7|ä^Ðq™Ì#v=ôóÿöö?:ÂÏßý™ðVóN>ôü,ô†WšGÎñ{#:Á~…ßùD¼ öjìÀè7Ïì{È)Ùcûë<€?àŸãçÇAgù_ìGΧùÑyVÏGï¿ÏðAáaþŸ‡ó>ý?hÍŸãTÁ_ô@à£wÃÿîã~øÿç¹HnuüZx„_—öð«£×ÃW8ü_ð†}Zþ„uF!Âç è½Ï‡Ñ8±C¼ý;=¿5nüG·cø¿mÚ)óÿžØƒ8¯4Ïy|û{šßëz¾|~ô!=†8yèüºž‡o4þüÇõ‰ÜüÕë|½÷+ºá¿5:Õþ®ˆO‚Nzpr.ÞãÏD¿5ø| ö/úOLs­ùyZ·k»„üyÝ:€—±>Ä›¾Ô8^Æ{ÿŸRp'ïÿhÞœÿøùáqrÎ+ͯí!À7âe9×"ü²Ö îîöíWƒ¾ŒÝ¾bŒ;Jæ¿çþÂ'¢Wÿ·%ð¤÷Ÿ¤Ç:ò¿ewã<²®ÿàsìS}Ë×Ë?ðÈÿký¿õ»/¯Sæ•ø”ßßøÁáþC®wr&çió«uü¾Ì8µ~œ‹ç¬8¾CçkÙo÷Nø<ð›^‰Ï§Ÿ„ÿ<‹ùà\â›âÜ[ÛGóÜãˆêøB|¯ÿ$Ù½¤åâ0ßë¯Çï\§>Þ¨ß<§Œó93ù&çœOw}k7ç 8¾ïîa|A±½Cë}có›Ç‰|ïøÌõ|’C¼ ë—y‚סþcÝàoßÖ÷—ÆþŸ|yÎ8çÀþ¡÷ÄkûÜMÁù%ùÿžNŽ…Ü!Öÿ3>!W_}-ø}ÍWlOxŸ¾üZíFžÅ¹¥õXÎk³_ù¡7áç&Œ8Ñ¡ÿþ`×¾þï罃ãzßnÚ‡ÿ%þÊyL'îs 8ñí«ß¿úíá{º'îÁ磈¿å9À‡üYùf½q)þ°£ÕG^àä¿Øóœ(8Ñ‹9ßúMŒ_çƒyÿE|+ù5™÷ÊþøNŸռ8oO÷ÞϨ]â°»\ — ÷ž/èÿãj<Ø-†æ¹\Œ8-ŸçŽçuÍ÷š—‡ù`Ÿo‹c'“ݼ٣§÷ã>çÃöȽü%¢ë—uÑz¿ýÏ5ŸûÉayÑʼnÃ?Þ;_Æy?‚—|»«¨—çÈÎÓÍ÷ÏÓ3ñÊŒû9|ò{!¿¶ZwÕ{òÂñÄš_ãÚÁ'|+8‰›&ÿœó—s_êó2¾%ºÒ:]hœOCa¿rô^ã¸^Ö=è½7ó.¯YÁM;rùËÿêøŸr~çó¿{x=³Ä#_Öõzù¿ŠÛ÷½ÿ8 'Ð?z q]oÿKà“ÖEû?ÿýz]ùû—âÄésŽ#ö|ÎÍø•Œcz[«ƒKô—yœÄ¿~N|ÿO©ua‡ÝöI­5ÏÅ/øž¸þ Å98øOù-ü\ç¹4o?«àéè¹,y›ÿGfêóÜ~y°NßAþìç­ËûœÄÙ[€Œc»ÿŽ}"ö Î?æ\jâH8—™s19ï€<. ;üìÇ5Þ²J?q|ð3Π䜓Ôû‰k">4üË]=ÖYíH~x]3î÷®Æ§ÿ&rn`‡o1âiÈOˆsæ|>˳à‹ì¯‰Ÿò.5žÇÿpx<çfõée_¯y÷—‡ñ|½õþ×FœÑí_ À!ú¿Ô¸3ïŸx6⎠'þ—’ù¬Ä§ûüŒêy½«ùz üÀ_¿+¾¿AoaÿÁ¾ å û݇‡é¬yý·‡ŸãÇðþHð‡únÏW»üLá¡ù‹æ/ýó>¿EãG>³ÌÿÕâK» tM»ós‚ß9ª¦ÿ×!âzv¤æ;Î}íèþ>ß°gŠ¿Y®çFÜGî#6Áˆƒêí«µÞGþÏܵ«þ™ðÌç|Õývü|[¯_þ?›ïΟìåÉ|öŸêu|¥uÀïÃþAçuçç¡{Í_Ú“/¡çÅïJ|4þCïÛêqw|Cxýf?®ž¿0ÏO‰[‹sR|5öaâ|““¿§}þ þ|ë=þ5ìûòë8~æÖ>cŸÈu‹óÙ8Ÿ¡Óû´NìCÞþ½ä´ú{¯uæç­_ÏÿL< ¹õº·¿Zìáx|=Gÿ«ô1øO‰ÿS#þ€]a(oÎÿñм÷¦ó]½? Žž8=âjÙ—#ï9Ïæ¥øuòâçrƒå^¬/ú|/ÞŽù><½þ°7dËõïh=?ªÛ0°.üï5ÎQoÞþy=Îoÿª~¼æÜìEÄÇ ÷‘'çÅo}ˆÖø+ôBÏ—èè–Ú%~ôEð½ôÿ‘?ƒ}Ÿ¸`ð€ýç%~¦½œx.LJˆ_óÿxÛ=Ei7ðùšŸƒ[ÓÙàúÓþ@òb€¿Üày²ê?þK×Oó£shúüXëÌž~ï7ã+ÿ !þ}Ôçž©$N 2q+Î×¼¢oæߨ¯È®Þé%‚ÓÿÇïƒßwè\)Άc‡$>å“ÅáïÄ?ºyÿŠÖ[ó¡s&<.Ù3:>ô"<éøÅµæOãàyÍþyü—¦/µÄ¿³A‹sHš'×5|Ä`g‚/ó¿'ä ñb¬'çâÆ›½Dßzïáëì/YOôˆÜ?…œ?ûþ´ë¾]¡¾_¾[¯|,ÎMìðçn=Ž¿RûÈÙ—õúöÚyøDþØû¿8L§ì÷}þºÖ {ÉÛojb]9Ï1ÎáèÅä~/ý»ÄÁ¥?–8ŸWÁóÿ¶ü¯9m¿µèPøÞí7øö°øµó߉Ž}îžæ•suÀûóGœóÕë7ø~7oZâuü?!áý-­[ÏÏþ£ƒýÙN÷½æ×Áwö|ÜqÇØý¯ß§ ÁÃ>–}|;ý\±Ï³þÊÿo±s£'¿½ä9iœ›ÊþÊû¶ÔzûíW_?<¿ì6µü2½§ù”~>;8¯½vmW(μÓ ·ïHOÄ÷ùoö <È.î+è}Ÿ|HþÃã¼”ýºø\2ì®ä×_ÿÞÁõÖ37y Ø…íÇÖsþ¿ÉùHÀ‡§·½·Ë9và¿â†;úE®]×óáó¡BNpNñ/wÔ¾÷5ŸhîF&_ãù¾ü±øûCì4~-à¼:Ï¡;@ã~«vüßWÑ örâÄȯA/I9ŠÝãµÖïV óxÏ·Oz‹õŸ|÷ûZWÉ»8§ßøås+Õÿ«–=¸wsï8¿ÏvHö{/öß;Ï”ÿØ3.ÿ/P÷Ú5×üDãËÿýûÏõx¿Ùá•æ}ÿ ÎóQЉw}-z#žÜû³¿ªùÏ‘WÞÿ«^îË3þÿùÐC9Ïý¹àÌóDðÿÓ㱯?Ôº_ë»÷¿#¾^Óm_îæ³>¿¾ýâÕëç0øÜÓž?AóŽ=ŽüÑæáS=ÿ$øþeö?ä›ÅyêÖzçÁï¿¿ÿþýßIŽ O>–|À¿E<)rŽxòœ7$þò€ówžÞ;n:ðùh¾up½­Oç‘—o¾¨Úë§y¾h÷¶ø_žË‹Ÿøèƒ8:ü\>ÿ[óöð0¾ÙŸ‡]ùHÞͳZîúÜò°ãœÿ.[øÃ~Røèø2ìGÿÜá¹úAà{ô#â8r¿þ"ø-û6çqjþØ?+ŽÐí^k>à·þßç5ž0>_Pt@¼ÿÏ€¼«ù[‡ê—¸œËœçH|J/®Ex¬ó²zí7÷¦~o;Hœ{3ÄgûûÉeù;þðýob?žÏ{ÿoóù‡±žÌçÐù×øëÀâ©ø¯$öëÞ¹$¿88o9ýç¢Sâç®?ˆuq>,ç«^ ̇ò¯:üªåŒñÐÿwØ×÷9„×£75]5ïníŸcoã\oâèÉÛ&ÛÿýÐû¡ÿ»]ÿS­“àй ÜÿaÈ ­[äwõ¡·]5Io©_ ®›ó_Õïýš_tr@óú:øÉõßÔ÷b}°ß$_xû_÷ÏɧÎóùˆ“Kº²<Ö:ç÷ö¯E§à½ð }…}ø á{ÚÝ™×Ä{øÿÛÊsÊðËùhñKì€:´gἦ¡óÕˆÿÆïóG\ž/Aþsæ›±_Ä?Âÿ¯‘kì¿(‰'~PÓ¡ÏŸ¤½w^÷ϾîV½ñ¿DÞ›þ3ÖùW$ÿ†ü}ØðÃ*ΠƒCã@¯5úãEŸûðJq~ úÔJã}õƒÃô¼G_#Î%ϧä¼KòyáÇØ!ß‚Ûçp.ü~¹OfÞ|‡5þtë Ÿ~ËÎË9¾ök{ÿ¡u9öÃ7¢ï÷¿òOó+½µƒGãF)j ºGoõ¾^ëDä§ñÏ:<ב8¹ÔÞcð,ø*ùZØ'è>ù<ês¾ ~âÈòœôCô,â(Ð;}Þq-š÷’_¬£ógUÞŸÝ\Î{dþÄwÞþ…æ[ãS¾p‡ï¬ƒæÕçøjÝdßí#ö¢ÆóÙo›wè õzt|Oý幇þÿt¬ùæ\ÎWê‡ø—¡øìNô(z}r˜¾:üÞ³fŸ@<)ü—ýþ€°×7wk¾1Ø_Øcºy>¬ø=ç<¼ŠuÅbø¿UË_â”®µ^ر‰[!N¸xüJÄÁ]¿_Ö¼lû÷ÎüÎÁqÛž¾Öz 7DÞÿe^Ÿ_Ö|SòË~bå-w|SóÝ»§õÉ—_¿øâ+Cúuïµäw5æ#!À/åQÚžˆõ~Ð%ó+yoþÿ¿s¼–ÎSâ<¹n?:ˆwÞïúœMµãsÁ4_Ò­ÏU=î˘oð»ñ,œM¾°Ï%Òóˆ;ìôŠ]=^ÖŸ¼àëú;û>†oÁÅ·±þš·ß×ü>‘玽{*y”ÚOtð<ð¯ü_*ùx>Pë ósºuÝÆ ;ùÿýÕa:Í<òóm/‡Ÿ‚·*ýÕ€ûîÏ÷ãîˉ_ÿæ÷>g\ëšöþ ļÝyº¿¸UËý>]Q‡„sA2þ ;8z$ëž?ûñÁ~:=Pí;NXóþ°žæ±ÚÃþÈ~är4ðêBøK¼ yhØØ?F\No¾ÞÔü¹³W]ïKì-ÈEì¨é9çŽÈ¯’ü®Û_J~£7±ÏÅ®˜qfóÊy þ?î«ýz²Ž=}–xFæ×ç üWÄùÐCþÇòµæyE|zþ§Mþªný^ö?ä—ä>}9Ï1'N…¸w쎵>œŸb¿7òâY=ßÄy‘‹¿‡ø#öä5o=ô_Kì‚Äû!ïþäð<¿ ¹Å9©Od¼üx ßÜööíäY‚·™—¡ÿ¿uëÿËÃôóòJó¡u‰ý—íTäÆùúÝ ŽÌëÖÿdlÒ¹^ô>âêø¿ ~È7Ôí½><ŽNÎjÝÞþ³ê»ÿ„ä!™Ÿý(Ö㫇×|âÔ×ðãb÷ö„§Ä+ø\Hõû4æûú/ŇDŠ'êÁ‘çõ°Nœ×˜çYõì<’ð-âì× ^Ê¡;ÂïÀú_þÃÒ“K!w¯ D ÿgÖþµÃ¯”GšÏ<§‡¸Xü“/bý^P÷çsÏ¿8¸~ü·Íëç|£}}ç3f<¼Ï›à‡Š+K¹@œi·Nz>àgOüíâO\ñ¯NÏÓxr¿}bÀîsÄ߆ñ~¦ùòÿª¿ñ»pûBÅ õõi­q”/Õщô2ŸO!¸°“³„OZÚ¯“í;¯ ? þ9F¾â+õC~áýàçÈÿFü–¼pâH°ga—|¡~6ɯÔÎ[­ÿUà=ç4},xó\ÑÔkžÂ®á8§Ï~Þ÷콆=¬½¦½_{\øû")Þ§ôàùÓ¯È7Ý·Õç'ßÃmÏCΫçïÛóØñ~̚ȧ¼/Šî•¦<&ú~¶¼gTÞ·.ÏÇá9}Þ÷Iï¤óè~¯¦b|øüòÝÂÞOùœéâ{±ê~~òÊï%Èï½SþÝçOrÃé;ÕMå8á:lKýNú…½.¸¾ô3Ð>Iùž4ûwú=ÅSãüCyÇz*ùȾâï½c¿Q¼CĹ¥¾dÎ5}š.ÿF~ݨ?Õë¡I{=:åAQ W×cSgÊûßÇåïnbÞì_híåyúŽ/­+òãI>÷ÒGñIŒ»ó¾.î3tœ@¹GyO|îÆ#è&¹xù`¬OöÍŠ›H¹Hó—üKmPn˸ Wû+íZúó‚ôÆöØo¤?·³ç‘úŽ5Í?yŽ»Núó@ïo(ð¾Mòït/ÇqÌGJ_ÿàè|,íKMíöÊÏLßµj,Æ™ìo²û)ŸJÞŸNö ŸrA¯#ÿÓz´Ÿ6Äq¥{[é<>ͧïžò÷óhÿñ ß‚^y?‰¸_…ïoeŸ9Çr“úóG^GûA }:é>ÒSø»ƒØo”Ÿ ìgÎ;Zd¯§ŽÅõóÎGœxÛMtï‡8Ÿ¥ä·¢ûDH/¤óÉxî\Ùi4ž2ïTÜSÊñ[Ößpü<<-)^$÷_òGÖÆ~—÷ŒÒy?ô3yJòáÖôI¹C~Jâǃóï_Eú)^JùÆê;»n›~òÇP¼—îGÁ{8Ÿ9îô½ö–òœîi ÝN÷ÖÝDq™[Sö ­S1d‘ü©/ä ­sÒ3já¼A}ˆç!Þ¿Çë Ïe°ý-ï¡ïe“œï€ë“¾ß%üº&n†íð^3‡lù‘ºñb?r+Ò‹ý¡×yúûûÑd^ˆÓ~Ày’8Nt>^ž#ÿ‡øîçí¿dg«{ì<ò÷ð÷—E?Êï:S^/ë¡ó÷CëyŒý-íŸ8h¾Š8Œó¾‚ãXÇa¿l ø%½‰îç û“h=Ó÷%êxŸþÎß+ÅyÆ÷îbÿÊ<[G²{)ߌ¾óNy˜òÜ4­ú¾Ý;Gyž¯E8ô=XÊk‡ë¢ Îþ.ÉeÄKþ$Êo¤}PÒ#îŸSño²ÏH®Ñ= tž¿ õ&¬Gqº/¿ êc©÷tDÞ›Gñ4Ê«fÿ®˜Ç|N ûO}_“öQܯI^“Óžö#ßãÕɦ£*íÓ`Ïsy5ÅGI§ó—t_å?ã¼ ï ð½IóŸ¿#t£?T÷3£˜7tž‘¾#ÆçFˆnì'ÒÛȦùK뉾#AùF-p>‹ïDj»æÎwò{ÓùE’G´Îøû”ö>Éß=¡=‰ü…Mp=7Äõ,î}€¦4ßpÞÈ{„Èö.Ý»Ìþ¨Íöz¢sÃä7h›¾üa?)ÝKçRùNìoñ}3®$¥œD¼”'.ï ÷àz'?}KœN÷Èð÷Ž¥ÜÅñ¥uÀ߃ÙcÏ_ÊË&;•ÖÅUHï¡|p:^Gô¿§þÓvùiêžhЧÐw7(žJû¼´‡(o†ÎMÓ}j2ïŽò(_Gê—ôyúîߟ„|“Ù3Öjgö‹”§¿Óù.Òƒ«Sÿá¸6Äñ“ß—à{i…~P_èx^Ëq?¤ïªË{_I¡ï–Qþ7åÃ’Ñ ÷-:B÷xðwm©ŸÜØç%ÅÉŸŽ÷Dq<“òdi]“~š: ×#Î7Œëqþz}1NäWOKÃz´Q¿‹õŠ÷½;ÊGú^3}7ÖÅ×åºà8â#;Q~OGú©?(?–ü&d§R^BmÉ/Ê!Ú/U<ÿKÁ/Ž#é¿”Ð×ÅË)_ ý–®sþ#Í|¯øEú[#”ÏCñfé?çïÿá¸Ës™|nLð×÷únû±‘ß¶œ—8®Rï¡<ú^å÷Êï9‘|#¿=és©¤÷à¼sú>.#ýÎû¶¡yMëŸSqœè;€ò>7>w‹ãH~òšXŠïQ>°ðœ™'¸®Éÿ)¿3Cz×ñÓú'~èOá4󄯉ÎócœŒïÐÔîç¦býR¼\êÑ ¾'×7Ý#+òc9ŽJ÷øñ½Û¸I¿Åï_óý_òüÙòûŠt_;ÉiúÞß§l£éïk8„¾Eò•òÔ(žA÷²ÜÅzuä}/‰ô‹&bÿ•ñZü}GäýÚ.âoEóç­ÜÏä½0ä¿öàúé„ý߆æ5ö_M\©õq~á³\__uÊ+—ó×­Ñ»¨IÎ>'ÎG­k÷áã鼄ԧóZãú¦ïLѽRo%½[Žw}‡}_æ‹:Ü·æ()î׈Ö+ÒEû1}—Šî­¦÷mqý‘B~§üdÕQ>“ž¾/ì eÿÉûIž”ÿ‹y ftè'vÖ×P>PòÕS³Úã‘ú•X'Ø/œÿ‰ãˆ÷Ž©ï^S~Bu{]òyk”;f^ÔN_ŽË{_[ŠùLö—ƒÿ[ê•to'ï{”WOþ0òwŠû1•|çûV]ÿ7Þê‡lzùÞ”[t0íl¼F~çÅùô ½Wâc;Ï1ðïd‡Èûâèûèìï@¹)¾Ez™Ùgýÿôýk~NãÇß½AùGò‡âßò|ß'Œr’ÎóнA­±ÿHŸßëPú0ÙIí·â>%èå{ …œ$;MôÑ9ôcšù‚ãæéj·§üwÊŸÁý×ôoŽtÇYñ'¿kOú1¡|Q§{žÈî'?Ïï!¶þIçù¤ü"ù$ïù£{Rh?a?Âçï¥!½äy` ¯ö#}÷¯¹˜/q^‘}D~kÊãçó2ðô=}ÏŽì ò/ѸÒ}–G¦sß?6y ØŸuÒ_§\Ÿò)^Oñ!Ìûe_M”»d÷“ÿüä'£ûAèžk²óHS\RåO!\úÞ Û¡ïÏS\”üéd7·Ãñ£~ùºfž‹ùâ‘ë‹ä’˜?$Ÿ9û—ôo΋Øïñ»½ÿÏú~ÏÍЕ×î'º‡ïâï®ã}³RÎëu†óãi¬/ñ¹ŸÇп‹û? >œxÞYÝK÷§ÊsMò;Cä÷âsºˆWÞWFq~Ò—H?Àï]iùÔÃ×v$pÜäý4 „\ñeÈó2íp~’=)ý$wÈþH}:~|ßåç‘_™ìÕÚB>×·çÝǨè¤~•÷°’|¢{P’q ºïTêtŸåß’ÝGû›<§žFòé—ßÙâ{fh¿ÀõépþËìk8¯èûRÂNrœŸ$ïäýæø]vÕ¾¹àŸü]B~³½Iq?Ú› 9)õVòï4ó¯%É#û½Ñ°]m×Sþ)_‚î™qÒ›ø»¤ÞtùåúèŸÖrDŒå òy4ÄßPðCóLù¡Åø´€ó ðÞÇ`üc¸®(NJë‚üD¤¯Ð}é"©çÎ;º¿˜ò†k‘{ÚOôžÿô½YÒOž¥Ç7¡ýÇ•¿7$ö²oˆÚ¿)o±–Ø÷Hñ÷kQζãOß‘þ¶öð´éÇ ó 2ŽÂßãëd¿Wq8ÔƒíX¤WäSèyˆýLߣa=ônúpIÞÉû^Ríg3ÿh=ˆùÊ÷=‘>ù”NÖe> åQð÷º©Ýv=º×Už—oãCñ wÏó8ï&¥O?ùåZ༥¼oòÛÓ½jm˧ߞîµEûÛä "ý$×i~µÄuBç›è^&ú~ßwBpOŒÝ¿2¯”â=×ö¼9W…t4r”ÎOÑwƒˆ²É>ße;Îû4²åû%ùþu!¿(ßÏ¡­ûÙ¡ÿÉ/IöŸ¼g¿c§Î'Ð}Lr=?MQ^=À÷à|–ýGr´¦Ðè{Óò;Ê)âYÜÍq"ÒóIo¥ûhéž-’ëÏ8—j¾»ˆãÏöö;ÝJ÷p‹x¤:¿_ú]ÈÓ:‡Ò'ÚoITs!~ä£6Í#ä;uÿÓ÷”G"Ç•Î#P‹Ã99ã7ÃuJ÷¼qþ'ÎkŠÿ‘¼$zé¾[ºo‚Æ™âÛt¯º'Mè™t>Ý×Etѽw2ߊì(’£”gAñeòCñ=·`Ï'Ê §|\ÒÇI/H‘ôÒø`=²É§s8”wÞ §¼dñݾOÆÉ¥{¿)ï›ü¹ÓŸÇ<_i~Ò<¦¼úîé$?©¼_¸¦Ü‘òOñy|Ï÷Sºm8œÇô]„†DÒ'íŒó¾Iù~âÛÏtNXÞŸÛ¢Š=~t®Ÿü™t¿%ÙgÒ®i„ýÔ×Ù™¬ÛãÀqd§óèt®â߃1ãþ™#ôÖ:fÿ`uìÊÓaýû¿—¥âJ´.©ÿäwÿhäïC 9&ϧ ÈŒÿÒ@yÑ”JzDÖçù}Šk§àú–÷dÑy :ï!õL:†ùóìo¤ï7µ>ýñÅï£~½OÛ“¿šÎ›P~GKQŸò$ø¾{”cÍ…ÞKydgÊ|uÌßQú2ûãP.Q>ùMé;»tžGÞËÍߣF>è{[”·ÎßçÁyÇ÷Øúž¾§yÏùP¸/Ó½±õq<èü°¼o‚ï+œdÍ[3&Ù룙ØéÞdºç›ü¦ôžïËÁß)”ïDùÆ~¤“¿Oˆ|‘ÿ«½ß¦Ÿ¿#.÷=|OûOæû q\ȯØéâ}kFúó‘ä²ÓwH¯¦q$yNúÝ'ß>Súë‘ôx”C†º§ätsêO\í„<z¯é7œ'2oŸôÖÃÅxS¾8}oó5 nküõÂv8žô]:²ÿZ;ìÛ¤Ð|iCû/Îsò'Ò<'ûŠüÖ´~åwgež¤Ã÷Jd<]Ï »ÎÇq¢ïxxÊ>}Æï¼Q¾³¶?°_hm#è¥ï€É{ÅkœJw~zSžâ•÷PKÞOKù%ü}c¤›îãäsa8/ñ=yOœÉãrèg>žbóƒþRCÍ¿!éòi¾ïˆr¹Î¹¿Ò÷Ûð”^Ïb”gHù­(^ƒþuÖßñ\¡YW4N›èÂù˜Zû寷•¿šÎ³rÞ±”¿ØÏt¿#ÝÏq5Ô³Ø?€ýFßùþs£Gà8vÄq¦{˜HN’¿¼Í¤ôÛ·»k÷ ÅÅÈ΢|—v8ßXoöà8$=¥¯•ëäæïE8àG}Òñ™òèü8ù 8?ïŒ=t?ÝC÷RнëœÇó‚¾/üÆ ¯*¶—y=uE¿‘_ŠâM”wF~[ÂsíNë^Ê#óŒôÓyúN$ù¥H¯Ä{™>‹ü’ß[ÞgDz× Ç¹©ƒ¼£ób|Nç í;dO;Ùkü½%ŸÝ/t.·}Ó§¥Ìgàs»¸N(_]Ú?ò;ô]/éße¿‰ò—5õå÷™(ÎÙ~—M'ùç ùLq¤êÈ?÷£à“õ¬¿ìñ÷>ó¹‡1üáün*ú‡òäýt>©ÁÓ÷ê>û´_m:[c=韠{)ø¾hœ”'¿CçG¯üÎ%õ‡ÌW£øéótþˆÎµË{'ÙïŒr­-®OÌ»çó_¬§à¼¡óëüjœ7µZØãK÷cJ{’쌺„<0ßõõ‰z´?¶°åŒÜwežŠ°óÔ<‘y”LvåéQÞ/åS^ù‡(o‹òS⸠^¢õ„Cçéž’S„ò¤q?QpÈ>sÐÿØ_ßçåGK;”î=£ûóÉXOÌWö‡a¿Ð:£ïÝ6O_nšýÃA.ÒùŠ8œcg=ì=y_<é|ŽÙa”ßZûYä•y‹õå}QíÄü¢8ÅÈjmŸc§ïÏó9œ7äÿä{Fq}“߉òA› ü¼îQNÔ }û‘¿#Brç߿Ȓ£¬/SŸÖ=ר‡èo÷‚¶< ¿Nœ¿äßnóÎÑÑyTš§|¾Ú†gæ;ö“üÎ }ƒÇ_ü^û•ü@ôÝBšÏ´I¿ |$ò“¥õ][^Ðwfi_!½òciÿ•ß'"ù@ü¾FûJÛ=H'Ê:¯DßÙæ{FŽá¼“û†áÐ<ÆõLþï¶8¯ä¹‘š^„ü¢ÞkÖéØÿ}>¼èrU °Ÿ:"¼ÎHG°×MÖë€ôwB<±Äß¹~'¤¿C@¼G8Õ#ü„§3âéLx%=ÔŽðP‰õÓX"}‰n‚Oï}6\Á·yïø~ÂüÓw³©¿ÐðÛüø—òà;,z‰NÙNµg¼D¯ÀÓAÐMýBãÛÉîÆŸŠ¿s¿#|?Ïv=9~†°Ûwr#·E©O¿cý4¢¬gC7Ñçt`{šoÄÑOý@ø¨_;zh<?áëâ¶ênÇ¿c}šO„ûßs¿x­÷z¾‚‡á{l|ˆO›.5ÞL¶£þa¾©Ò%æÍÿßÒ¬¯ÍŽ#t"¼HWg¤‹ÖõÉ5zæþÄþ uÈó_´§yHpyý º¸D{1NܯèofyHãƒt©õÌãN|~‹pIþñxÄ—M¿âƒú…ëûÒ¯¯ä“ ŸçØï‰n‡pä:áõé³ù`9ãpö3õ7уòUóOõˆ/‡zrI9Eã¦ö;„Ïóù õ”†õÔü">éÒ¯ä,ï^ ®ùéàñÃzjŸ@>x%¸nÁ?þ®æ;á!þ½v?PÉúÂïò”èì³éóAîÓ ?•øA¼ÔßÌÂMÃßY`Iã"ÇÇËcÓ©ôŸUÏÐIø”[r¾«ù(à¨ßy¿÷Ûô‘\`½ŠúÁ‹õéÇgš_¢ß^š×<Ï/Ï{¯àÛ†ï¤/™~ 8.éEŒéeù)ê³üöÙïi¿Hó§Ë§Ò/©ëq—àx,8fÿõ®×†Ïó’èñÚíXŽ`)çõ Ïü=ÍeóÅx=6<ÆC%Âëv}Ö×Ýö³”OÔ/<½‚n°Ký[ëY¯‹à‹èf=Í#~'~‰^*‘OZi~»]ªÏ¢Ïðá|xÄ{‰Ç-ž©¼6>–×ø»Ø§¡sÀnOò˜è"zyßFºx^~°ß³~€%¯g,iž±\vYí•&½‹éõÒ'ì7eoÜT ‡~Dz‹Ïæ×¥×‚/ç‡ÒϤ]ÆýFðޔײ?¸¾OÐí±Þ›ñ»d=Ä›>½Ò¾äq'>‘nÖsÝö3ñKëÆµ3>Ó|Nõyþø_ø»²·/ƒ”?b}9Ûé–ïiþÓºû³ÒÛ©px_%¾]v;ÞGßr>P?Óüg{ùO#x»dýÛ9ùW¸_©Ñ‹x¤]/àÈqÔvÂOEøE‰ü)¿÷·ý»Ô'õæKö\*¢>Ñí·ëSÿtAø¼ü€=6¼.”ÿCÐÁz •`Ó!÷W5¾nëweß«}žø¦ßÝNþ#šçÒn‘z;ÒåÔ/¬w"<^ÿ‚ÙrßSz#Âg}ŠÚËzö³’¼nüé?K»Š×ñíM·¾‘¿Dâël×Sú´Üß”‰íY'ø~«4ú Ò'üªÿˆ>)?xŸÂzB¿2~Ž€øžñw’k¬§‰öÒÏÃö ýNx\Ö{íÿ°KíOÂRÙÛ~‹µŸ)ý Ÿ…_Eéi¤—óú÷Šö>›–n .ù õþõ¥ýÆó Û³~èµë³ýˆØ^îó¯`úÑNá?åå‚£_Bù#\‚î€ýLýÆz‹à“õEzF|¬g<°~wÒµüD|Ìñí±K?®Ô«$ÿ¦?‰>ŽÒë¤?’ã9TÏkãgÿÁµù7v?ÂçùKp±ô[²þIxéדrÇðѳ_ðá| jߣ÷‚oÖ£ÝØïÉ/ÁãìBx~ žÂÇö¹W”Á¯ÏâGÉs‚ç¶Û+ÿÕýÀþâùèâµëI=P­;®Ö#^ö?ë½g,¹¿©DxÒ%刌{H?•Ú¯$_é±Nq-^göïf}¸D¿Ën¿hç¥àõOA—ÜO¤=HýÊv± ‡õ1lÏ~lä#q gûìúìÇsÛtȸrGQ_ð­öy'°OCúi^ñz#ø.¤ÇeÁ—ãëd‡:ö›Ð/´_ßs¿øÓ‡ëd¯òü•ðv}–§ˆWú‰e|Lú«Ø¿#èå8Øí„CÙ3¤' ?ŠÖs$_ôL|à3Ê/^_ÔŽýôX_ê£R“þh©³^'Ûáïì?Aþè{;Ê®Æz¸ÿ(9Ф×ÑOäõÜv)üPæñÄ’å«€Çz!>K?¯“]/åò3#>!yå8Øtð:tÊø5ËI·  §þõ`{a©}Kì;j~+;á¦J:=‚l/í?ÓzáE¸ÜO>,©?R.+?—ÏÆÏ~gÁŸäƒõÔ@ºõU¿ ñ9Õ“>Ý?ëM‚–—È—ˆÛÈõ¤ìRùžå-–r|żuô/*»áI½'Ki©8€G¼Çg¿ñP·•ü*ý Ÿä¸8ªíp ÇÉî”úKÒ§æÑE¿;Ô“þf©—«xÖ—ù3´ˆ!'Õ¼ãu'è‘vª²[âÙð¿” ìG >Ü¢Ñé±è•ñT½Ï€¨/àò{ìžoˆ‡ûé”z½o°é¤õ%ó3¤þÆþRjï¶Wz´Ï~æñôb}¯Àƒ%û#±>í"?BÉ )g(~Â~i]rüÜn§ä;ÏgÄŸæü?A—øí â#€pÝv;ö"^¶}V{G?¦ÊØÏ¬GùE=Õ^ÅAEélQ;¯€ï·ûCζ3±½Œ/¨ýá°^@x ¾—û;Ç5ñ½Ôƒ„ߟó!•ž€¿§¾€ÅŸÚ?å|Qq\»Ò÷¤}'Ç•ßûì÷¬¿âï"IëKˆG®3™'"ó#X¾Ò§ïYù´þÑ>Uã¬ü`óåGf}éyŠÊÞPrÌe·“ùRNùYÒ¿,õ~–§ô;òCý›Š¥’wÔØŽæ!çµP)øâq¡vÔėߪ¯ü‡*ïÓcÓ«ü±ô;âsˆ£J¿ãzWy¿Ô>›éRú´Ûþ]Ä?œüF>P;— ßs?c;ö/S;¯]ÊýVŨ>Öc/Ø¿+­Ï¦Wä/i{Òæ_Ûi~›n¶Ÿ‰/¤›ã’D¿Û†CzÉ_%ŽÜEüY¯Ÿ Ûq>­ÃïÜßDÂsŒÑ³ÏnÇþ_ŸÍŸƒß@Ñ/Ë4ÿÿÍ—Ìß“ýè˜'Bp±t@:¨Äú2ß…çÖcñH¾Ðõ¸"<Ÿf;ÓnGúœ’[2—ã}.›/¶3àp\˜ê¹Ó­ç|¦úô»_à÷ØüÈü•W¿ûl:8êí]âñ8ØûÊÎ'¿ÛOÔlzˆå'!zxÀj§ô™_ÇýAíl¸JŸ ºe>¨cÞÒ+ó„Õº¦z›.¯äüN “êQéµçùKôIú‘>–ƒôL¥ 7 ñ–žYŽ 8bÝýãd;ŽèEúyýzì÷ÒÏNô°ž°éâñÁú2Î*ã¿Êž!~¼¢¾]ÏÑæq"þ•ŠÏª_]6<™O©ä•ߦSåRé·ÛKý—ã­ˆí0›o§ü·gÇ=6=¬O ökûÓçý@.AÁóÚ| ¯™ßD7âãüz/øUr”J¢Ï-ê_Ä/ÑôÐüv”§'`óÇq*¤ŸÏ'ø-~M;¤SøÇ¤Þ¬í"ÄÃãXú} ðºÄïXª~òXíµ~@¿#®|¶|q#]Ø^é}~›O¶3ݽ*•æ‰ÔKX¾»àGæÅ z‘Ó|×ë’~à3ÒÇóÒo/ò;>y“ãf]ùð=Øx™.— _æÏÿL¯_Ðö³øÝ¬{›u>PæQ }_ûg\OðÓŸYoq ~E)ì˜gò!噃_XéÃÊïè±é@|ŽþK^w^›¶c>çP;¤Oæ±H½žð°Ü!zN9^2Ž'í™ç*÷?Îs ÷6|í‡ ~ë«D¯Ï¦ýOT ~yBú8nAt{¿²½üÝeá1þ+ä“óXløìïqÒ38.æ·Þ;ÍGµŸ;æi!}RãõIô#ÝÒ?È~G|V~"°øQû<ù_dÑ)ÿ8Ú{E‰õ9¿‘è¢ún›O¶%}. Ÿ¶s°Ñ!ãÒߥüV›ßTñÌñ4¿x&¸6}†úÝc?óü£ßéëÉ8³ÏÆÃyXÔÞkÿ®ö}7¡’àºl<ÒÿÂ~}‰/`•j]ˆ|45nò<ŠÜ?x_ô¨¸<Ñç¶Û‹<1­‡y_nA§ÇƯò¡|6^¹ï³¼Øpy~<›>wxdÞ¦œßiv=GýPØ1ZÿöØpå¾*Ú9ú;•]Kð\X">u~Ák·cûÞc÷Ï[üá#<öSºìß•°ÛI÷¯_àÁßåþÅú¯Ïz¯Æ_å9Ég¿x&zÚg9? éãyçqà3`Ñ­íw‚O|xíRÅÿÝB>Hù£å„l/è#ùÃû!ñí¶ëñ9-zö;ô¶Sù–WôÃ3âÃzþc{%÷|>Ò'òÿ ^Ñ^Úw|^”àxlxâÞ+½úíö2¾'õJÞlj]²†¥Øïœño,…ÒàCúD¾­ÎK ˆv è±Û¹æNŸ'ÿªô›K}çÇ¢_ùD¼Sû#>Ïê‚‹t+ÿÑïÇ÷Ø>ÍoÓ!÷:w!ìG9%éäu‹tJûJÄõ¼t |H¿ÐƒŒ—ñ©Ë|Ö³‰_ÒOð oÀ.¥ãü Á¯ÊÇB¼œŠø”\§÷Œ«ªû´è–xðwΧ·éVrRÞ³ ò¶œÆÏÈ#¯Ý^®•÷çô"<5/°ûM°>¯ûÙQŸJsàCê[wp‚K|Øôj?ŽlâÙ+ð¸Óÿå$–r*¿ÂãñôØxX~<ä_íÛ~/Ÿà“åÖc9Oø\á/Ôò9 à^ñ^®Gî'ŸMóõØÏŽtË<=¹Éû—¸¾ËâSêõ*Žü‚iXЏÔç!á· GäšýlñLø~ªÀ+óºd|Kæ=‰ü§| µÿvõØtK¬Ô#e>š´ïØ¿EõéwA/ËÁË5·à—ø’í}âÙ+JA'ù-œüNl¹l~„<2ëÍeÓ)ãÜÊ>ô ûËÑ_×ÙÆoò¢Àj¯òZäý‡ò¾wçâqäxÛþ]ÜW­â§¼®ü¢½ß¢_ÚRï5ëáÊý€äïçXOîŸÒÎóOà‘r˜û“ÚÓ{ÄËú ¾G}ÄIî™ùÀvTºìgy?¨“ü縰Ǧƒè¤~#~»‚ GŃ ÁqÙüò¹â›èwc}|Ïq:Ň’¿ª‰¯€ý»Ìÿa¹î²ùãñqÛðØžA¸¬Çb)ü$ÊÎú £¼p´[N_~Im_ÿûw!7Í~Aõ]6ß¼oߢžÌ£z³Þ?©>Ñ)èöïØŽõs€Hÿ=ǧ°”ñ{e"Nò†õ¿M’¿„ë+ýñ°žŒtÈïð~hó¥ö å±ù0ó[ÂGü2Ï\žWfûùe½‚ðP?,<æ~ŸÀëÀÛ±D7áC8<ýé·—ü‰z<îtNš÷5äƒó·\v;¾Æ‹õ±°Ó•ÂëËeÓ/ü³ÚÿD¿c?°î±Ûs|ì÷È·‘“H‡Ôã¥Ý,ãß¼Ò³_Ð볟e¼]žŸ•ú‹Ê+öÛõì:…—÷sÍ?ï¿nA·Û‚¯ö‡|3¯ˆ~âð!‡û*óV8Û«ü*^–D¿€£ü âYÎwÞ¯©¾àŸ÷]âÛû´äïà³´ Ò¨>ñG¿CºðU¿P{©7vu¥G­ÏÔëI=áë Kù¢ßÝvéw‘ë™åуï9N@õv=ÞÏý¾à—÷C°á;œó5ýŽøxÞ€ Gæ7ˆ¾',~$ãoÀ’ój$`ãyÝjœÉ^àõà·ëɸÉAÚÿiýpœ^àg=ù—qVޝŸO®{ž?Ço×g=Ámñ«ø–v½´9_ÊcÓ!õ©ÏHùÊûŒÏƯÖØ¿§a;¹Þ™^ñ^ú…?V¯ï€õ¬ý>]l»ì÷"Ž`ä° KØ{r;êܯ²áƒÀKôÓï’^¢Óî©w?–€/ìvíGøT^õƒ7]¾ýVÇá»@¼:§_Oû?°ž”S¼~v=ï~vÙïz_Gþ…Ÿ^ûïËõÁöŽÏ~/õTA§ÌWrŠ9Ê5¤ÇÑ.Bür?áûØøžè§ú^¤Û+êÙtðﬧ=ȰU¥ùm¼2ÿEæ£H¹Ív –bÜ•~Iø„X÷›ËÆÃûªàŸõ›¥'˼&á“x÷ ¶Ó‰oò%èâqôðºó=-YŸ&ø’ü]ù¼=Nû›¤ÇÑ^WùÝ`ñ¥â—ò|‹S^7Ë3—E¯òC|gûøó;”„D‰tò8 zx¿ÅòYqÖÇŸœ"~­ôb¹ÿ9Í/5oÁjoä0>«<`|f=í)ßò{€’>5N¼o~‚O%¾g¹ŒðY>¸ìvÊ‹õ¿º?}6}*/Àgñ©Ö̯“ó]îOÒ’ßµTú8ÒÉzœWÐGõˆ_· WúI¤¼uÊ ÷½;ÊW–SD7¶—vIš|ØõÙ_‰%ï3`ÕWz³Œ'Iý”ã¶^Á§ßÓï.ßgóÇz'•.›nÖ;®Û‚£Ç“ð?ÔÎ~ÖrÚoÓ§ä/¶wŠƒÈ|Ï“û…¤[Ñ“&èqø¾¶Ò³e^Û·‚@þ„é$y\Ø?(~Wy~º‘>é—’qj®çµø4rŸù¾ewú¿³kó'õ¥gí×Îû8áÃ’õa|b©ò´è½Ï¢Ãäm\zïJŸŸ4?þŽ%ëÛ' ð`=% ¶o/ÞKy(ý2Àþ/ÂçÏ`ÕWó™õ¤ƒÎ‡(ÿâe¹ä±ê9Ú¡Ò/®îõ$¾¯¼œKü]~÷›Ç“ð}^ \ßj}‰iüÄȧ´»˜.¬Çþ2ÂOõ ž×Æ/íAEŸxfÿÇ.¥?Qù-¼6ìÀ÷‡ zŽÛ.¹>Âáó8ùl|²?™ÑNåo =¼n<ö{¡?:ËÁ¿Óy)'ûSú3âÊ^’ëQè#Z> \¶¼6Ý"^¦ì_Öß±äóîû½¼ßKÅÃE?(y*Ú³]äv¨'øú‰Ö#ˆ—Ý^®/§ï¿¨}œøôXõ´à²Û±¾åM—OÇóx2ÀÉïÁrÒ~='¿&¯Sõ»‰zÅï„/àˆï·:û!oõ=6@>C¼Âäiºö³’·*ÿ×+à x¬×ûm¾Eü_ù{eœŒûÛËï§ó<ô¤K>á²áò:Æ÷âû^Fa)ç·º–è¦öH·Êóv[켧 /XxU¾·Ðû”Ý!ýWʯNün›n^_¢ž°›µþý âÒ„×oã‘v³Œ ðúE>XÂRžûß÷UçÜè=ñGøÁ®Çò›êcÉë ùÕÊîÄzæ=¶“ú…Ô×9ß2`¿wŒ[ ú‰n’ *.…üËñOt"?”ÿÄùc ¿”ÚÿEôPIô ~¾¯Ã%è@|,ÿ±½²³°=ËÁ§zvÙõ¥?û×k·“quÞÿ9oI/R~—ý^ØÚE¾Ó ‹ý›ôá¨ûs܈_ðÃ~V,Õ}+~û½ü>Ÿ<—Àú_àôH?1û¯ˆ_zOõ@´G|"ÏÓÈa|–yb¼þ±=ë•H7Ë+¯à?`?³ÿÒ'èrÙt)?„Ïæ‹ë|·à‹ø$¼X/ ŸeÞç-ýOÚ=ÊKtQ;…O›”—Jß$>ÉyžJæ)ÊyÂóÃg¿—þW)Ÿ…žêdOkûéáó1.›nynDÊ)^ç Þ{ë±Üo¿g½ß†£ögiÇp? :Dþ–‰¿ùíö¼^ˆOŸýLy¸ÿ¨}MåÅa)ó~T\ÔkÑ£ä Ë],U~¯Í·Ò'©?Y/¥é“ú\*Ò#åççÑ3ÂwŠ·Êý‡Ï#Ð{I¯ÛzÖp\6|ßñáÇÒc—NßC–qé÷åõä¶á±ÅRÜç¥â”2ŸˆÇ…øpÛ¿;Èaµ_2Ý`·çþE¸ÒÏ$ó4˜nÁŸÊëD|ì%<‡å¤']ºöE­—û­~ÐþVÏÿݾ=õÒ#ý"Î$õ+M/“v1çU!åWÁú¬o_|xZ¦J>‰~¢ë±¾†¿ ÿé,Ó¨=áõ úlz þ€€O| þ8—>G¿˜Ðw•þÌë™ø|óú§Rð%ý7®6çz.áq§Ë§Òyýÿ¿“}$⫎v Ô¿(,×½ô:Åo¥ˆ÷o›g?fÀnÇ~Wúø¥ í@–Ó^‡2}zŒ\³×ßsÆ’ýÒ7 ñŠýUÏÂC¥GÐïµê©~–ù^Ê¿.àÉïK…<ŸÅùø,í9«8»×Æ/ã 4îìÇ÷ñ7%_åýt K'¿ û9‰/lÏû‹øÝ)®ÎzMÀ~/õ9Žij^È<`Þ‡ ^À¦Oæ²ýEx Ÿ¨/ý"ŸLû—¨½Ç¦CøCç»Ì‘y$¿ ü*ÏKé§æü6„+üëÒÞTó\É=Ä+óÆd~œW¬`=Ž/l>¤^Év*Øð:‹öÀgŽ_Sé±ùpò/ó:&¾/Õ8~›~޳ ¾d¾Sœ^ùWl|j>ˆï¨ý•ç#ÁÃg|q¿Ý~ûw™Ìú†?]>M?¤Ïÿ3å»ôKðzñÛðü…Òn”rýnËE—Í¿ðÏi}ÁoÓÉz"ÂWù0X_Ê}–wTè%üÈ7çÕyìRÚ1¬Oã{¹NX"úv{åçtÛí¥>ÃqC,Å9xçý»‘ÿÄ/òÏ~¤WåýUOçµØtèuï±ñ±]ŽtÈñf¹Š¥ƒÞæ¨o¨{}ˆ_¿M·Êëq[õtÿá{Žo#|ynˆÖ=é,ß6~Ç|@·åž Cäy«ï¿Êüb¾OÃ/è º =Ý^|Oô Në8͆oø#¸®tûAæ5J½UÕg}ž‘OÎ#Æg¥'â{‘.×êq®ÈŒ— Oä%){Y~oWÄóÔü~ÓßOàg~ñwéW”ý%ã²ÊoH¿Óû€…Wåyâ>!剩ç| úy½lzx_#úÁ¦GæõˆýW¯3Ÿ(‘Oö'yl>¥^ÇóÌ#è"¼`×ç8–2¾ÅúÒ/ïVq&„ÏöÁuYõœüwz}ˆOúd„ljJ·MËCâKö?›/Cñ…íÔþ!ð1ü€xo÷‡£ÿBå ¸lzYo•ðˆoú¿3]ùvúΩ<ÀzŒß#*ˆ%÷ÁÁvRîȸ¾ä[äS}Z¡g‚ƒ|°ß' øôÛôJ}J;ý°ñH;¿=ò#ç­Œs’¾(ãÁ¼Îˆ¯ Ÿí5·ÍŸˆ÷˜}‚ð{D;¢á9äûJ?‹ã|åüôR=M‡Ê'#~§ük¦ß%øÃgÎô0<°ù“û¹Üg$|ÞG6|i·q|žàùíöNq]å¿&ú¿*îLp°”ñnÞ7ŽŠ'}Dá Ø|‰x’Š+víx¢÷^‹nåwaýñˆy¥õo„+ò÷›?­ï¸ÒÅÇó< Kužñ«ûïéã‘þ]éo¡¼*Â'çø.¯’oþ{³î©D8œwôP=°à˜~Az¤RéÍ6=*“ý£„çõ°Þ+ýŽæÔÿÄ=<Ê%í ™Ëyh.»>ˤWøs•»¾ÔïüI´¾8¿•ð½X*}Æ-ð ~¥ÍvœÏ‚ã(¹>ñ)ø“zµÄÏù±ô{Àú]ûÛˆ^GîKŒËK?ÚO°¾ÊNtxBo1q&*Ý6}¼OÝô;Á÷ÚíÙA¿{þ€ _ù–Nã.ü}òœŽÖ{è ßeÞ!ç=X×<Ä·ß®/ä—ÖŸlú̸ 8Ò“yļ_l<ê\ò'Ö‡²KY>a;'¹Ïyun—ø·×ûžM‡>÷é¶øÒëšøÆvœjÓ-õK£GÙ|9î±Ûq×-Úãs{¯]OÎCÇVvÒéèÇDþ9'àóüqÛðäþä`—«óFJï#¾\öïì/ÃvÒß üÇÕ+ðRû€C;_úô§!Êž%¾ðwé–óDžv¾‘³Ä7ÒEë„ýû>Qz-úå½­Nr‰ßwõÚÏ2ÿø—òVøÅô¸_.›>'ú9>…pYÎ ¼¬·z­öj¾Ê|5•¯Gx}Ò•rñÿÄâUþ/°Û³ÜuxÏöÒ¥âÄÄá§z`Ó£Ö‡KéWóáðwÞ¾Óýö2O˜×!–rI›X2¤ü ‡ø÷¤_OæýI}Qù7$¢‹Úã3ë¹ø^úå9•·á±ÛS“Ýè”ÆãìM´7Ó°¾´Sdü†ã±Ø^®u_œÏâ[Úz~zhÞÉs­*~‚¿³Ü¥ú ¿‘Ïsä‡ó'¼éã‘ñmÞ¿ø’qL>à¶Ú+}KÚ;Ü?øü³þHôR‰íYyìv*žF|ºìöìw÷Ù¥ì/©Ïˆx†Ó|0þpÂë|ºl>d\Šæo*–¬·Ýް' ]‚é7'|߇×þ$‡õöIew*’K¤GÆ/ýnë½ÉòŠg—ý,¾£¢õg¯UšýÛ±ç·ë?£¿äzòÍôÂSù¨„LJ¥à‹ýUTé“ñ{e/>»=ëHëTK™ÍþR· ƒàâï¼ÿ ¼"/ÅðEüc;öK»?„×gãcùá¶ëËñàê¹°¾'}õ;í×òZõåüSú•Z_ExìÏB~Úý>‹~Ù^û-©>â—úœü¾…ÊÓÂ߉_Zß,·ˆnŸçþNóÊ)®#ó3» þ¤_…ýI>ñð:@>xßñÛü)û‹øöá{HŸ^^_XòýAÔŽàzÒoÏû¹Û¦Ÿ÷IÁëI^‹mýôL|#]l¼€õ^Ùo$ßÓž¸gTûǰžô·ðºôØô©|ü]í“‹oÇs)Šï€ ŸÇÝk×WvÁ!zˆ7ÖÃßSE;™ï+ã*ò{š„×ISû*ÖñcÇJtà{•OG|„GòXå5yE=ðˆ¿M7Û›‚¿T¯]ùðÚí¤}%ãÓBæþ$:(OEúåú‘q3áoú¥'¬'ãD*.âµà™õç±Ûñ: XíÔ~+Ï/ˆ}Y­K§|oq¾DË9ü× às ÝvFïG¾ä9å§ÆzÒ¯&òmŸ)¥}/õ<^G>„ôÃ)? Ög}ÊoÕÓù5/X¥“^'ç‡ìgµïÈøû¿]6òžz^H/ûlú´^€õ9¾BüJ:|¢Ç~æuKí<\…¿ûæ±ÛÑüy:n@tŸD§M—^ǧõxž<¢Ã-ð¹m|©Tá¿›œ_Îþoñ;÷?âS~5¿Õ:ÿ ß§Ùô¨¼}yïžÊs#~±dyKßeµÓþK,å<—qiò¦_:Œ³ò‹²]C||¢Ëk¿gû `Ó%ì ­§û-º”|z–ÿŠå¥M—ôci½ùäxâûŽ^‡DÑOtR?øì÷ì§Ã÷ê<ÂãxÁõZð”¿HÚµ*Þæ±ùSû£Ë~–ñ/¦×ï‰.„+ünj §¶~‘!ýJÿ‘q¶³Ý6½JO ÷„_”*^Fpû ½]Jo"{ü™v’Kà—¥ü݇ðÜ6<_â¿ÓwaXÎUϬc¯²?Ø‚û½’GÒ¿&ò”•-ç-û ÜrŸqÖ¯ .ñOü|ßYÀ—òÅ)OƒüxiˆOæqÊülÎâ÷¢>ßûBt¹mødïò8"~»]ÚY¼.п¢åÁ%8§%ÆG´=„ô²&ú<>ÒÏãã³ù ûGÄ9]Uvq€+óûä÷ÆÓ¨ž×n/òbõ y.A®#ÇpÛÏ÷ú ö‹ÒçO擈ñÖó’Úù°tÛíÙ_ãøß2†õL¢Òf8X:Å¡…ÿMÆ'µÿSÐËz°Ç~/Ͻó>íÁéuʧ`;ŽJ¬Ÿæ@ŸŒo¨ýO<‹zê%e7a}‘w¨å¶v™–ÏX:ùcåý[R±¿èxxxì÷Ô^äI=BŽ»’S<_ö«ã{¾7ÛK}UêAü)¢ ìßÙ!:¨ž_Ô#=ȯü®‘ŒËªñÃv*¾â·žõxùìöJïr‰ßÝiv;éoVþGýÕmóOñS‘ª÷gAÄKzëD‡÷ié4Ï9.í³áÉyÍþâá1¿žÔïe|Zú]Yó :þÎyÀ~ëYÉcQòÕo½W~)Ùßì—ó 8ĶãýŒà,¾õFé ö|o¶ÝÞìg›~aO?Kn9îkL?¸‚–3`ÓAýÎçóèw¯õ»²Ç¤|Ry”XÊ{;…>­ó~ŽNv=GýWåÊúÒÏêàÇÓzáÇgáwRyt¼~^·>ò-ó$•ÝJõm:ž‹pT¾xá¬ö&îHô€Kta=Or:oÂòKw“ùˆR¥">Öÿ=‚N¯×)ïŠýy.Çk?Ë|1UÏæ_ÛÕØžã‚Žãøløìÿs[ð•üt©¸/ØÏ¼~©½¤Û+ê»=~ûwy>UÊ–“‡ûéf=TˆŸç…ÝNþ3G}í-,Õyªçx\é×—ùѼ_ |?%µpYïFzdÞÜ3ý]ø;ûÓ]v)ò>Ô~Árù`?»ß¦KÊ5Î?®Ìæõãt<ÄËñ/Ý^ÙaDâgy@p:O$à:e¾½/ÑOx]<^`ÁÕùTýŸú™å¯ÛÆ#ýK¿%ºò¡õ ÂøXÞ€ Gä8ö#Ù$øž¢KÐ/ãv,¨Âi%Ëuâ˦Gí£J$¾\éÓíà‘ù}JàuéGº°”çXÙhÃWýÁv=Á!º?ô»¼ŸDÎÉßC¿³ý6ÝJ¾áïêþ:zOtÒ{Äã¿Ró Ÿùþø€Ý^Ý¿#èc0•›>wû‡–ûØ> éQy:ø^æsIÿ±Ì–~u–ó^èuÙõ¥?Ã!?Eáçù%ÚT2½HünëM€ðˆ/âÃ-ðû¬÷ÊŸ#ý¤ôØí¤>ÈòÎ'èC>ØáµøSrBÈA½‘/ÞW‰®¶ Øü ¥_ʸ¯SüNê·œõØ¿DíE)ãjÒO,ðk9gÓ-ç‘ã~®îDºe¼Yå!ýžý·^žð)<ëZÛë‚n§<,éwc¹‚t‹¸¹\?j>²¾â±ê™8¼KЇxyÝP=›^Š›)¹ÊüÚti?Š_”ˆ_ù¿Ó~Äý,øc?‘OÐø¿ßK?ïû»¾Êƒ$|×cá3ö*áCø,÷±Ty\D‡×~¯âP’.H÷™ãžÔt/ŒÈ+p<¯øÂöÒïÌr:`?;×s#¢Ë/èðZí•SÄÃÕ|‘þ2γ—x\éâw´3…ßJ×ó }Ò#|Êþ`½ñòºöÛpXÿ >ßD7ç`{Žÿ!¬}û™ó'è½K”»äõî·ëq>Ñá|ŸU_íã¼¾_Ò~cùX"\^—.¾Ò‡6\æþ|`ù.Á#º<6Ý,ÿñYÆ×¤^¯òý¢D8Ò.c:Ü6}48?—ðl<Ø^í<Ï=âw„#óžåw—ù¦RîìW%¾ìzÚ>rýß¿³}ˆðR‘u™×¦GøE´œÆß9ž‚ϼÎôO°žˆ¿Kÿ1Ë* ?ñá³á©ü½€ O7ÃßÓü¢žÏ.ùþ°ësþy@ÐO¿`ÓÉþjï¶ë³üsÛí8Ï–Ú#¾.„ÏoóÇù½dž/òR¤ÿGíï2/MèÅú>Z„/ã±ì/E8Ü/`—<¾TºýT¬÷ZïqYý õu·]å"½'>‰¢ùyojŸ`øGÚêÞ`®óú'þ ®Û¦“õRüýYø»Œo¨|1¬Çq/oºôûS´Wö–ì×õØôpùø^ì7ZÞIü6Ê_-æ­‰¿H¯ŠÛÇ!¾nâH?¯WâÓgÿž&߃M§´S(ÏGê±r_g;,üzùlú”âAú¨üJ{ÇÝm=;›Êvò3°<²³¨/ý"žä8•ßÙ-ø·é×ûXxŒþ„¿Kù#â”J±?˜à"}J®ƒÝ^äY9Ú«,¯ˆ~›_'}B¿G¸lgùìRæ·0ßûYú³„,í©7h{™ø"¸«¶éw·UOÙ1¤§ÉýÇáq^–Ònf9#ñ!<\–Ÿ^ñLõð™í z/è‘q'îWÄÏò'`ó/ìIg±Ëæ—ç3ÂK#~¿ËþóÉlë½Z_Rï`>"ž«ä¦ðŸ:òËöJÀj§ý†~÷)ßúž%âùTyµØžý¦Xò¾âíÖ犯;D{·õ^ú‘Œü":l~^íµëËüj–7D¶KÃgž'nÁ?щðþ_ó⮼¿œý^.›>5ïèÙc·sðCós{äSêõTOÅs ?ÁÇú,‡¶«ð=Ç1°¾ÜßUþ—Û~–ó…÷Y¯Í'ù=Øß"èá}Ç#øÂz<_‘?êÒW•¿ë ûLùäüq\£Gøíziô»KðI|ùl|’>éo‘ûˆ´ã¤ÝÀ÷¥`Éñ¬OóœÖ+ïƒ.A— _úï”=Žå³ô]–«^¸D—ßæ—扜ßlGaÉóÇcÕ7~ªç±øsÖ˨=–rŸ–v´Ò“‘·1û8Õ'<ô»¨OõÚѳè‡4¿ý,ÛÓ}®jœÝXø@º¸ÿ\ê_Ê‹“óQæq¼„øÃö,¿À¦WêÓ,‡ð½²Ýöï2oTžïyE*¯éa»ÏÆ«â4"ÉÑÉñzªOô„~'þRÈ|¶§<6–^û=¯;‚‹ü˼7ö£`{5oý*ßJâËoµ3ãéµë+‘Û~q¥oJû˜ûÛmãa>±=Ç»‰Ï¾'cIóKž3ùZ?Ñ…|ðþƒðœâ!Ê>F8äKCxÒ_Ët#j}\¿ÕÊ~qžgÇoì÷òû鞤éñ3™—Nó–òq˜O|/õA^·6>ÓOÔŽJA'ïo7`ÓÍû”Ç~ÏòèíhüT¼ñˆ|£y,|ÒnÖóÇëÀ·;}~ä¾)óà¤þÀzÑôÑ{ªéâ“þ4-]éÒ«×ß®Ïþ+‚ïC87 Ú¹Å3þÎ~!¯ÕÞÙKx‰o„#õlÙ?i6ÏG9Ïx|°”y¢Ò©â‚>«Tö¹œ"ßÒä-¹ìúÏȳÐv+–r¿’ú§Ð×åyñëÄ_À†Çvƒ¬ç²Ÿ9σè¿S¿ð÷ª©?\áWôK5ÛKû=û<é×gz¼]r<”ý­âý§¥Ô'Õ¾‡í)[|'@áQñÊ€…ÏQ~ ¿·²?…]¢ôZ§xN*Á÷ˆvHï7ö³†._út(=Šà"ýÂ_"ínc¯aIú–ÛÊŸ+äŸ^§ô» OÆíÈ&ýL*_ñ²œôÙ|¨ü¿UOŽƒ^ïö{—q2‰ïY%Ës¢_úÃyŸ±ù7~/Ä+â%FnbIëó4¥Ðø©$|ç Á÷Švø,üáŒ'•~÷Xïõ¾‹íYOØp„_Êqœˆ~ù=ïP~äõ‚ã³éRú¶“ñQi‡§J>‰¿€GôxÄ{j°øPz2å1_"ÏÓÈy—õ^ÛQôžèF¸ò»lÿT_ÀczðwîoI—xf¾§<Ö'‰nÀÒeÃãù…ô8¬[õÎóq[ý`èv[ð”œa9Œð¾“ªê§ùíÒQ¿¶ùQû˜ÔcY/vÛïÕý0—õ°èÐr׋õ‰?ª‡¥È×t´ÙŸ ð¦„Ïr*`—|Î~û½Œ¯HûMÙ·6ÝŽû0­?^7¢>ïƒô»Ç¢Céz¯ÖE?ȼuìµ^dÞYYú,¾ÿBÐËþÁ/Ÿ_÷ þ<6ÝNy]RΩ¸…Ç¢×ÉŸ â#ŽqVžúNŸ¼CÆŸÎëK=GžWPql¯_éÉ^ ¾Y7`·ç´ßÂeáUöšÒ³±¾“_‚óô6Ò?.ýR>²}"ß#~¹^xö xn¯\¿2þ/ã¯*ßs~‹ÏnÏqbGÈKC·xf½—àøÓo§Î·xl/îyÑûщÏNù¤DÇq¾ŒOò¸J>l:ô=iTŸø à{zÆß¥ýÌrÝeÓçïi9íϼ€àǃíÁ%|`ãUû–ÒÏ(í|Š3Èï`J½NÊ{§<–û™óÿ¶“ë/Í/øóÚt:ÆË|â9 ð`)íO™‡.óœXÓ{l/ÆM® 5ÿ¤ü“z©ôWÑ|$¿‡Èû–ú»ò_ð<ô¤O§Ê“ÁgáTûš8oì¸ÿ9ĉÇ‹óg]ȯ[ô>³¿éq(ö¯´ç”þøå½Ô¬ï\›>%>½Oymþä:Åþ×þ êäSäï:©>Õ ØõÖñÓ¿ÄŸMêŽ#T"^Î/ úHåí§zÓåCío2Þ/û‰õwâÓ†§ä,Û•—û“èDåWöYí´>áøË1|–ù@Rÿæü¤“䡈{8ù×TÞ‰ˆ¯é¼|Wºü*ù*ò€´¾*øg=Ákñ«ì#'ÿ ÛÑîgÐE|z-|Êþ3ßmøf¾8Ð#â4Ž~2™çšæÇñzˆÀ~ º$ý`דv¦Cþ†¶3°=ûÅ _À¢OÉu‡<óùSëŒø%|øÌ~°ß‹üum_Øžç9–çQx~ðwfˆ>íñ÷4Éá Øíe¾‰ÊK¥vˆ_îSÒž’úçGºì÷2?Až¿R~:¿M—l/å&Ï‚Cüù6?Ú@|{Déµê+;@ÆA¥½.ÏGÈü:™ÿÄvñïÙßôò¸âï¼`—RÿçuˆÏ,©===D÷ÓRûÖ“zãü¨<ÄKë“õYWægÊø ÓAõ6¿R•÷ÑH¿¦üîŒì™ÏÀv,áÃ÷Žù,ˆWêMRŠyîlÇDÑï²ás?ß6}š?¬ç‡¯×–"ßTÛcÄ?> ½‰õ@Žwã3÷Ög¹Iø±Äy µï±ýöï"RéKÊÞ&ºðwiïŸjÞ ºx¿ð„ŸVË%—¨ïK·ž/ÄÃq *%ßXÏ!~ªíW·¨OýðE¼ö™t²þŠí¤__žGVú¯ß»ŸA7Ò'å6Ë ¬Çþ/üû߆oüFØžõæ€ _Ø…Ú°é~{¹Ês|¬ç`•JPýÏ>®Ò¿‰.Âã·èÓú7ñIðý6r]K;šác}µoªïµà;îóNû$ÑËãAÏØŽík°Ké7!8ÒÁãêKŸ>YŸõB|Oë‹Ç“ð"]â¼¾ö‡Q{¢Ÿ÷«€M·ÌŸ{VüŠüò܉<—!ó,i^°ü"z±äý9ê<°àß)ï( á²™àà³Ì7Uú4ØõùÜñMtû¿.»d8‹N§ù¡üUì/Dú„ßÄèaô;Ñéï=‚~‚ï³~¦\OC~Uy¾ßTùÇýñtE¸2€â´ éVòHÐÍö˜Ën'ã¼±äsŽÞôá }ÙÑ¿'Ï©ª¼!]ßAÞH¹£íB¿ÝRÿ%>¤c¨×îW°áËýOê¿RÏæýÌkãåyB¿ûìߥÜJ¥gÑŽç1ÑM|€M¿’³D¿Ûn§üèˆ÷Ä+ãRïåqñØïÕ}D<ä[æ!‰8—£^Çãí¶ê+¿ËÂ'ø"ºòÕ¼uŠ»wñY¿k?’À+×!ÏO„ÃrÅî5ÏØþ§ÒmµÓq|›NŸBp¯Sq0°ñIúYßõÙ¥Ã9 G9Ã÷áÝDgÀæ; û±´S\žßnAá#þ°¾ZïÄ'þît¿Ü'”\Àv2ˆñâ³Ì·ù–2ÿ8Í/è %65.✠Ñgˆ¾¤£‹Ç¡ò-ó;ø½Ç¦›øä}—ëLÈ)?õbö_~‹n£‡‚M WÃu :±=­?¬§åòÇùmGêÙ¬':СÎå %þß2…ãÇD¯Ëæý•~ ¾Üÿ^Êûa¿‚ÀËë‡ðz-z•þÍýî·Û³|%~=,ìzJùÆøä¹¥Ç#|ïò[õÍ:%¼ØŽåo@<„×c·#<Šo¿ý»¢—ø¡Òoý®àˆsZf= ¼¬]ȇòã{‡ø¿¶›‰| ]Ò®f:]v}Êÿê,Û¹,øÆq§_²_EÐÃþ+ŸÅ·ó¾-èKÃ÷Ò߯û5ÒÅóéö±î?âWàSö+âåu†pU~,ýŽÏ"ŸÙØ%„×o·§~ôØðýšRÏWù•€pV?(»V陸ž¿3F¿ûlþX^Q}¯]¿ÃHôxìg–c~‹.³ÿØt™ù@x©âáýìú|ïƒß~¯üsNô ºx<íz†nlÇòlø"ähçQ¿ówñYŽ£:/@%áE|Ê?@ï Ž×ú]ÑAßòJ÷§hÿÿjŸŠ}[ßGK|{í~ëØÌw·õ¬ýÜ~Qž ?áqÙ|óºÁ÷"ÿAå²Þ éÒáèïåuæ±ß+¨_´C|ÒîWã%è‘û˜´Sy¾!]ò{ÒNëFÚ"®nâ TÏ~–þ-E=Å/âe{…èÀ’ç• [ù{=V=ÓK‡¼.e‡³þç·ñ±ÜëK?ešßæ‡ã(>|ö«½„Ï#ø¶Û)>ØHŸO•~$ègyNïñ™í „Ã÷ƒQ?Øpµß‘ê!=¬ÿ]Ør}‰øöã{ö¯ |œÿ€ðå+9ð¤Ü¡qæï±ù|ä×)?Óὓ߇ñ±}Iï±HîËû9OÞ#è'º}6ßJ?Ã÷ìoE:ä¹ZWlǽ^é¡ñæuï³áR{¹Ñ{OqA½?Ø|9úY9^MxèÙmã“çHeüCé…n›–“ØN¯Ý^Ë¥á!^¿^ûwö› "©û‡ø%þé×c; ù—ò‡ùÅRœK”y Îëùþnïôñª|+¤7ÍoÓÍóÊmÑíhÏ ˆÒå:~|'GôâïJï"¾|ö{gâs[È—ºÊkÁWñ2'ýZæ‹°]$èäñF|¬Ð{¤‡ûOöƒÛ£ô×sÊÛTýï²é¡þâ}é‘~0埰ÛkªàWÑçEøX:ØñrÜ¥_LëiÄŸ(%|eÏù¬z* ϯ —£^+îéÑöñOp~îo¯ý^æŸÊ8ºÊ¡zû½ô/ržÕ#üTÏcãWñy›_i?«¸¸ÌfùŒÏ¬o þØ¿K|ùì÷2~«ô—ýì§fÆ?`µSòHå…Ó³¤×uÍcáÑþ9·MÏW¯MñÇñ0·ý»´G9é•~'GúEYÏ'>!}~$»Ûø§,÷±žÌ§b»ùRþó€ý»ðÇ+ÿ#û±¨$<.ׇ¿c;¾G ûCÍOŸU*¹æ”ÿ¦ö ¢Ÿè¿‹óŠ^Þ·ˆN|Ïþ`Ä/âºj9í+"?HÏWª‡íiÿa¹ˆÏÒ!óÏ•å±~—ö öÇÜ€àù•z?ËâËc×wÐïtþ£Í^/Ä?á÷¤_ûë¥aÉ~9‡vrµŠ¯P{|æy†õùþ€€ Cöñåsà‹àz±>Ññ”^'í·ðšüs]/øÀzRïV稈^âËkÑ¥ö¶?ˆzÏ#àù¬úŽq!?µA:å8˸Ï{*©>ÒÁóÛIù)óÒU@À†Çól8©? Þ#\ùj©7 ýÜì‹^û™õ ¬ï`Çñz&ºXo§g°éḞ߮ïä!¾Ú#_<=_Úχxeþ8Ë¢ÛmÃSzâe;ß?ËÎóŠè Xôªü9Î"/@¯¬Ïãb××qVjç·ñð>H|ûìgµŸÓï^›.™GÃú’àÇAÐòáP¾2¯ ¢ŸàSý€ý;Óá±à+9Ïë•øB|2ßý.n›>©ŸËxªÌ/ásØ èE|©¢ž°ã´_†êû­zÊîáõï³ëÝ/E:Ä8)?¯gâ“ð,8ʯ óµXNѳGÔÃgÀßÙN 8ôì¶ùù£צ“ä§Ê‡Ë—Õ^ù7¸Éößг͇ò3)ùaÓíèW“ùlÿ ‘§¢ý„×áw1ŽøÉÍûhÀæ“õ»̼ôÛ%ËsüûÑkÿÎýŒp¥šýd„Ÿ9ï‘ðyìúNy­²_¥ÿWø”‡ÛѸòwÒ®ˆ¯)?½Ü_„§Æ™û K^ÿø,÷%ÞGéw¬/ôIÝoØžïcÄ’ÆŸäñÁúñ…õd<õ—ý^Ù5>›µ/]‡åŽ ‹ýYøžÇÕmÓÇíÒ%烰+Ô¾$íYÎ/ ö¾ôÈ8)ê…zÿpÛïIÞ;åËȸ×£~ð[¥ñ×ÿ~»¾Š"ßb×óŠà¸ýn;§|nÓß¾§¥Ì‡t¢SæÉÈ8“ÌçuŒ— ¿¼Ü6i÷²ŸZðí@ŸÚOT\ñp\Ç…Ïž´ß¥~.÷u‹g—ÝNèU*¾Æy½XÒ>—Fôþ…}¬Æ[~¯Eî§Nú™ÌwVû@Àª¯ü*ñ±íôâïJ": ¿KÔs Cú}ù{»6z^ûìv2n%óˆØOcÓ#ó½´>Œ¿K{‚÷=xôó¾éµK™¯Ât`{:Oì$¿¥¿QÆEyþPé¶ÞëùàpNö#^';„÷ƒ€Å§žÏ>û=ëö{%ß%Ÿ^ÇøeÜÊI¿rʇùJ¿æø$áñXï庌g1}nÏ3õQ_Ê™·å`êy ø•ùÔ*ßù‘ñ—t þ°žÌוðŸÕŸ‡ôÇ×ëÖƒðýˆ?}øŽçʜ։ðwª|lßXï•ü&ú¨Tv(ÖwŠ£;úüV;)ïõ¾Kõèù—ß hpѡדëã³C_ò§ø’çEØKüÑ{IGÀ¦ƒõM¬Ïë~G~ÕùWoúôr¼,`ÕWz…Ècq¶Ël<ê;§¼ÿ\zï¿SiãÓ÷ù!|Þ7¼Øîôé”~^é7qÇu$ùä}2`ó«ò!}}zÿÀßùž.›_Gù/¿ít¿ëeH§Üw;Ég¬'õ5~øE<¾Õóà"^•ŸG| ~¥^Áv)>Sÿ²žOð‰.ŸU_­WÎ×p§ÛŽû6ûs6>©7°¿0`Ñ£åy Ý÷jQ~ Ÿ(‰oÁ/çx°=ÂA}Yû%¼XKŸ$zd}ä“ã†nÑNÐ%ôRóžð|‰_<Ë‹_%¿Äwe× Ñá·ê«ý™÷e¢Ïõ´”z˜²§°>ïO.A'ÁÁö2o”õc—Õ^ç9]T"?¼D}ÖˆoÄ'ç§ŠS;|–ú®”b\õ8z°ê+;šå·Ï.Ù~#ü.Ë]ÉÁG¸2îÁãà²ée¹@ïÿ2ÏDÄK ½Tìú¼ïøTÒ¹'?§žå? ÿƒƒ¿MÅs¨_åyv™wE|±ŸŸ…mèpÛ|?+ŠÇ‹èt°ÊeÑåd¿±d\XêÍâ~]Å¿òë¦GÏ Ä#æ©ÚÿDœJícrŸa½À/è"þˆl/ã0Êüѳ ‡ý6»žÈgÓóÅcãUq;¿]ržØøXØxäüa=ññüöÚøÕ÷Rˆ/·ÝÞÉß«ââWæM©ûòÜ‚~â×—>i~‹u/%ýîð½3/Ò'å¼’÷ª8è-zÞ{­úÚ_êün¬ôËx Ðk¤OçӀŗ9·-ÞËóˆ*õj™ŸÂrŸYŽDâaÿ=–,OlxJÑú“ß‘ùÖ´>Åý¯jÿfÿÁÃö¬ÏzmúYî^âÓ-øÀv¼°žÌ£§vìÿ!xø,óxýnÁâe¹-èL#>_ÂËëVä7ë|PäÇ)ÞIßàut¨¼ežÖ öïjÿB>xœ=¾g½øpèü„ô;¨óÊȇˆ[ÿ$уðR±¾óÊ_Áú¨ù€ôëËû.¤ªÎbÉz·àGæyÊxCgûwG»RÚÉ2¯‡ã+TÏoáq¶Ã6½Ô¯ò>D©O°ÿƒøö‹z^,éYâ¡v6ßÐᨼ2°øÑù—ô»Û†ÇzØt ½J¯lÇúásÙ¥Z/>èC8i~«½™§ø^Ň‘¹îÕ9N|VyuÔžê ¼*>tˆï;;Ú1Ô?|ÞÕcµ3rᲜrÙ¿ó8âïL‡ËâÇYïC:XŸ¤gÀöXÊý‰û'`óÍç¬}Ö{ÓO¾téQùy<þn, ߯/ÏÈù­ôtAën›?5?‰ä‹ÏûízDÏ#zûY~§Û!®¢íXü]ÎGÞoˆ—UêuEô $ê)HÀ†ÇãLx®ô#ñ¾pèáóøâ{Îo ú^›_¦“ø>½öïyþÊÆzµäÛ/àýØNÜoä8¯•^ï·ŸE¾‘Òsؾ–x¼“ñSnï¶ñËx­´ßYŽa}æC´cý”àž€Må­±_Ÿž%ôžø g·ÝŽôþè@>T>1Ñ6|‡¸‚ñ—×mó'íjÎ?%¼žü~ë76ÝRÏ0þjçµùd½ÏÆ«ýËÄ¿Oé«êûH·8g¤âR^°þ#ê;øWÔ¾ï/“þD¶«‰Aë¹D?òÃóë˼%çˆn¢‹ð½ˆ_úi¥½§òu}6^y¯‰ð{ª|x§qWß?":±äxªÇ~OtHyÏçÜ¢]@à•ülø,=6_„—õ1M§ÜÙ°àè}ÚmÑmè¤÷_Å®êW‡%Û+n›ågµùÐv µÃ÷¤ÇKûAús¥^Hü8?”þ ÞwÜ6=*NpI?’v˜ãzô ?’“_Zû1Ï·Ý^ž“”ß…ãý[Ð#úÇøYžÒgô(‚ït,~ä÷fuž“~5{Jíl \Ö¯ü6\–nÓë²èÖãæµùö Ìßáýù“ñ)ÖC¨õƒßzvôGÉx®”»|O7þ®âŸ>ûw¾Á-ê‹g¶/üö3ë½ñÞmñaìx_úü±>xZv±ëiÿÖSù/D7ò%õZ•-ðÐ{¶; Âqí$~‘>þþ*ÒÅý,éÄzœ—é±ñ³_•øô‘¾)ó؈påy;þéQq¯ý»ˆ«*{[úo”=å¶á³¾#èñ'ìpð½Ì¯÷Ž(=LÚ}*ïÔg·KCº¨Tq âŸðKxÁ§ÇæSÙýn»ËŸ]*ý,8ªŸdÿ9Ý%üþÆŸN|D§[´óÚxØÎô[üê8+¤ßŽý…Äãõ\ö³Ì#a µGúå}þ¼Îð=ëmTW~8Aϳü>êYÒ¿ózFü¼o½>‹~µ.•ŸÛ®'÷}½{Ò¯¯üiHôH½™óÒ?ÒÛXîùm¸¬zì’ú~—óõQ·(6}ÒÄrÃeÃç0œö'=Z–f^øìgïüª¼[¤WŽ_Ö—ãï÷ÓãéI¿žC¼JÛ'—øF:Õ9|ö¦Ó:–ýÆãLç{Ôyv¬§äÝrÜä:PrT~QŹlz¤\0û¶WòCôƒ:gåÏKi÷«|q,ÙŽ ˆvøÌóù–~9oäºIõ¦Ï?P÷ øm:åüã!ã'ì÷Øï•½éµwÚ7ÇéJC|2êùÃÆï†ý üЄáK?›Ã÷ß 0í·¥~ðÛí¥ÿ‘ו7}~”?Žø vÄ7ñãJŸ>™%õ™ÿ¡î?Äz"n¥àSIóEÅña=•?îÂz>ÖãuHÏDáñXÏÏÔy~R‰tÈ<%WÝ‚njôÈû/8ŽÏ<ïÝ6\ÿQrÕ)^ÀyŸ¾ôé”yw*ÿD;:XÞb;ùý\äÏÐõUÍgÓ­à >ä<’òKéëq‘צGÄ”]#ãbNö¦<§#ì[©?)çgù-~œö[£S{¢ß«õ‰ô±ßìv¬Oaéô½‡ü3ÿ –œ—IïE{¾GËcÓÇþa¢—JŸ]?Íoãa¿Õ÷¦Ë‡òGÈ87ÏW|–ñKåMê_)gé™÷{Á/Ëø?þ®ô¢€EŒ¯k¹Bð .X¥ö ‚]r~ñç³ùSy„ÔÎ'Þ‹zœ)èPû¥ÍŸ¶;ž4ñžõBÄÃý‹üÈ|zRö¡Ìë–qzÄÏ놿'ëµè3vÑt#>9ÒoÉþ…OÉsÊwãõ€%ÛK>Q‚íÙN#þéÙ~^.»=ÑOúÌV~2¬/òëL¼Ûq¾¾ç{Ð~š„ëøñ™å–2ÿ\é¡6\å’ù,"ïÊô/Ñ‹Ïr<ä÷ª¤¼d¿àSÆe8þFôaIû¹ÊsÃú²¿yþy­v*ÿIž/÷g²>)ó.Xo'¸Ä·€Çë™øòÚõE>€ÚŸÙ®%z±ï èwÛüq\ÉmÃ~03/è=Öç¸6µÇßEÞ©¢[Æ3åy—Tª¥’×ô;ÒÁúÑçµßóüE<2"óiTœ `өΧ€]_ùañ™õ*ŸÅ—ŒÓj½†Ú{­ROñƒxY#|–7„׿WÅùT\…~G8Ny*oñÈ<å'õ‰zD—/}¾9/ŸðQOæ*ýÜ/è÷Ú|‹8²²”þê±ég=’ð<p~òŸ®²ËØŽ›`ÿA@ðEíˆN¬z°šÿBNh4Ö“ûkš_Àó‰g·è¤ƒä ÛåH§CüHù”¾#è¢ù–Šð¤œfý‘~÷ÙÏR¯‘òÍÉ^’÷¤1|Ÿõ¬ÇãéÁùg½Ü'Ú{ízìôØí­b)íOŽ }OùUŸìo#ºÜ6¢—å,ÁC|ÒoÆò›èÀßy_ðYï•?ã®ØŽÏ<*Ý6|ñ=PunWê*/g€Ç¦ãy~A7Ög{'`?Ëû=9ñ ¹¥ä£“¿NÊ}iŸJ½žûë‹{#Ìúsàƒ÷¹€x†té4ýOý`ócÆá¨ïèQ{›NÃ7Ñá·áË8ùXoõÚõ¥þËûœ¤—ç´ˆ~>wŒtáwÚå¾(å·Þg½ލÇòÏeÓË÷u¾Øô‰ñwœo<¾~Á?áÅ~û©£ÿ„éý!ä²ö+ºm¾œâÕ"Χã%Þôùe½“àã3Û.»t‚£¾;H%ÁÅg²“ø{’^ûwå_óØô¨<l׎èõÛ¿s^‹K„ûŒsqÆþûwé¯S~VŸÕÎÈ%âÏcÕÓþMlÏyWßmÓ%óÈxýã3­sþ~¼×n'ãÐbßVãªò/\‚~·hH÷wy>]ßÿFõ¨ü?¶—ù‹d}Ÿ Û)}UÐÍãDpˆß;¬K§u¯Ç—è&x„GÐÁrÝ#ÞŸ.~£ßŸõìä§Vß¹g¹Nü§Ï§”JÏe»ÇŸ>iXÇ=`×~Z5¿U¼ÃÆ'ýíR.ªýDÎk¢OÅqÁÆÃyX^Á'ÒÃù[Hü’Зµ½p¤~)ò”ŸŠés ~?‚½ÏbÉë ŸeÞ¯įòüéóÉòÔcãc=Ü®¯ýHûŸ‰Ž€ÝB¯sô“;Ú/ÕkÁwò_=Á—~?Hÿ”ÔÙ?„Ï4ĽЦŽï¸ÑCðžô³±ÃkãuÊú‰sÝnž“ÖWù>.ûù¯ŒÉýA7—y¼Ïz,~U¾û÷ýXŠße¼BúÍÇ#è|J?š²}öïl‡z‘~ øEºx¾øÓ‡Çv³ß.•Þc}™§#Ï¡©|sÂçµéa¿¸Oð°ñ“ÿXêã ÏþûO~LîK2ÿIæi¨8 ÒMö”ô{q<™J¤GùK ýN%Ò¡ì¿ å‡ßæ“ä¬Ì'ã}‡Úûl¾ežû¡½‚ŸMÛ#¾ô'*ýÞƒõ^ê{Á¿]®ª“!lÍù.·Sÿˆ õïœâú~îÅ5«!ñ:lxxñã`»çþ·]ÔüÙÕ-œ‘£ïöìXå[~ߣOÞÿmáït^ñ¿ý°B¾Ý™ ù… 7>Å-Oª˜§ D÷ZýêÉo!î³·zDv=Ÿµù¦Éš×!nøÉ:–V5x_˜÷ÜîG/AìÈú[ú§ñûˆ1>û"ÿ¾•1çÛ7{þœ°ÏAÜ›aK"ü+!aõÏk†¯­ °»þíúË!rpÍS“®x îÀ¬#§ä‡°b§Ô>Q›*üѱÿ9†[eÿoþƾ²ôü¬¢ZtêZùnDöýºP‡ ÿÑÕÏÞØù0T-ž74úÀ;Ó~¯›Ðƒ‡Û¿îÉ6|DU+uÉ Õ6M}ðUÊ1þ½Ú€YïÆÕ+)?·ÚøN+„Œÿ­R‘°¦ü{bXÇý¸>…¨öËó×Þ³\Ñ•pxÌO_îû]zëô ~Wá`ËrßL1ãWæ¹úy_ΨÚÇæÙ’˜÷Î1ˆ¬Û¾Õ‡õ:òû°³/¼pê…»›²¾ç «fAXñ³_wÊqÂR{¶ù=_sHžw¶uØ¥+‘Pà·¨ãÁþßzºû¶ñG!6m_•Wf7tÔ:—iÀÄvü2"zaDåǦ_÷}Ô;¡é?×pâ›CxHJ­.×Vt†©óÊÜú¹ t_Ïú5F@HÙ¦ÍNÞ~Un¼öû–2™Ì|ühÓ¡íß­ƒÄo>»Ø¨SVÓ‡rn-ÓZž´*õ ˆû1âµÜw+ÇÈžÍ_„èˆ_§ÿö\L(·OdÉ{0cM¨üY³äò—£ ½ –¼›t¸8Ä}Ùºëðw~2ýUàçj " ©AžWî§Ž„ð¬ïyõ93N9ý;_ð7ˆ ýJÎy="F Ùzïsˆy÷uÏä°ŸV<©ß?bOõÿsvëß ¶Ó§¿f¼3â;nn¸æ},²ÿïyæ<ýå®’ŸÝ‚Ä}ý»Ïx# ’æÜ(¶ôäPsåÙs¯ÈóÁõ˜ïry¨¥ÚÁž‘>»Ó¢6Ïú¸ßLHœýoüM…„rGv¸ÕàüÌŸ/ ZŒoÓ9D_S«ÙÇ?CôÀ /õ*ñáÿë:z6ýŸ”ÙÔêÂof¶z¥¶çïÛü\õÑ™Z¡…ö›õ7uÈõ%«Cò‰½zd›1%v|·©ÕZ9Pâ•ð~= Æ{tQÒ efÖ6]²;ºÄu/3qâ½× Æ­z#V|bûEd+²ë&$õrMúbë6ˆkúkí]¦Bҟޯ׫$UعôØÕQF.}YëVßV‡˜è_…gYÑ¿®ü>ºô2¨þ w§I™Ö™~þ8Ë;F@Øé_²}¿{á`¿>Ž˜žµëK Oèô:— ~Ž?.ß'fD¹RáÂ$4mûá­BCœåáÍ–cæ •´ÚøÃpó>é»oÓ w^Õ/p°TÜæ¬–¥yÏ-£ŠAäÝ5ë9 ±½so-ãˆ'þÏó÷êGµè®C£ªí ñ޾òn½Cf]÷>•øí £T»HWȲ]ŸžƒˆÅ߯™ýjľ°¦Uð_Õ )òñ wDPîFômsæn}ˆèSðNŽ{•5ý‹Êj:§¥ýÍ—¿6r^ÝçÔ€7+m¸¹s D÷‰}±âøàzËPäLæ6·!éÐ'N.CXÝY_W|ã=3¿ÜW½êÍëõ7Ìrö?r¬ÂŠZ>œgÇË<_q\pŸmñù¸?šy<¨æž/%šu“³Ùþl ŠCÒ/o†—Ï<bš<^Y½à6Sÿë1•¿¯-DGv*>,7T›Õohþ=Pý¥£W“×Ï0ô¤e\70ó)€Y£ †ö ΧzoO_õbGˆü-äp¦ú ¿¹¶M¨Òè#½~ë-8ïs/D_×þÝ[!¼]û GúΆ¤j“—ÿÛÙáëß=3±[„OºöÇ×@\ÖȈÔñgZ6z£É =!äñÕßÖÉ‘¯ ›XcÓÇ󯡼±G მçmÜÉx*OÞw÷I÷£—z´@…}G!ä½UÿLíÒB,?Ùµ9$ ¹ù÷g¥ BtæÞ3æ.* 13¿?™}ã+fþÞj™çxöTˆ}ܳçÅR bÄÖ‡ë ‰s¦ ÏSÖôGçÛ/–<•“‡]I}«ÀŠÖ}öé ѯ|ðdbÂ9HyrÔúùy ªXÄ%y ¤JΞ›öš™7)©/çù¾ $ zg}¥•»¨ôíØŒ ų7;šÿ3Ÿ£V?Ü5<b—¼S/¾Ñwz¿ïÓ{]ZHˆú¦öÍ´±­ ¡Ð¾Ã'›×o¯O6ìœ0BK\+þç#ˆ=¼xâ-Ofˆ_Û*á°×!*Ó—ÏŸÜÉMºnx®[„¶Íw>ø¯àÇ *V§á$­'D½½¯éϾõ]ùÝý/·[Q©¹ûf,?&¸~m{ùòHˆKËÜ`^³ÕfÝŽûºÜKÍ‚ýS¶eË“%Íû­þ}Rÿ:Ôm^ºu?ëiyÔ9ûoÒfC•%COéÙâ÷ÜÏ^|’þ8jùôŠ2WcÛt+ ‘kô ,øj$6r]ºÝBw-Ÿ}"<¨gg˜ž½Ö-=to`ûVy!v¼=õí¬Põ»â©ßœÙ •/~XóÆ¥%Rõ¯ÏoI…“ŽMùâ³ÎìɸàÇO!²â‹“‹°\‚–eËô™XŠô˜àQ»öÞztî÷ä$¬¹_vtR-?ÿxéõùE:CÒ[ß_˜%¨wÿ0`~ËU' ý _¨aÆãõ'ž­+~°R)?É–ÙQîÇ~]ªeÎ+ !óŸùúìz¢ÎßÙ[¤Ï^þ=¥åÒÈl˶Aäü>ß¼vôg¨2"Ïž­±; žO«½´âÀJHÌÜ:õ쑆½·ð–û·‚rí­ç3O¿Ý¢:ÿteZõ(Hùì«J×’ß1ûú€¦·VÄÔ‚ˆ¡¡ìõ2?úF†ß_‚˜Œå~ÿÓ3’ó>®:ùÄœ/vaiÖùºÎûAñ}· Ùû?ûñ¨¼ì§. y[CHMڷ؉EV†\r Þ¯{, ñ7¾&ÆÌÇ6yW¶ûa2Dwªµ>þçÚ5îL· ûë›~úÛWˆüåäÁ­ñ ¶uÓþ{÷þ °{äØSë×ChÇè<û6ô‡è^nøfõ? ÿÃ>$"¸.,\\ìÛ0HÈÕ¯gÛˆ=æÎª´í!nlÅÈ5•Â!úqÝÐ"íOAȉ¡/‡TøbþY¹æð?!úŸ&9? ñBÄÝ<¿$LO…¤¿þ(ß³Ûà >óÁôAŸ1zyRóO2î+£t­{i(„¿ÖkÀ÷“¯«ñŒîõÕõÃM>…¤ß'¼¯nDûh꟟ˆ,³ªßÇ?~×ÄÎ>æHèR»âµQ¯Aܪ,#ò 1ùQ9p3þ ˆz»¥M¯ æIbØ™×ZAôòQ‘•ç/ƒÈÓÓ’Ûåz÷¼C»vÎ áû^Ê>úÒS!v}‰ˆÓÙbµþpi[t¡þ ý‡ûz/ˆT¬p¨+f¿+Wpù¹®æ¹Û7Ïe~k „z°éñå€Ñ[ktµ=^BÚ>ÚÔ»|oH¸ßãßw‘GÂÏeȉ?æ\_¦oˆºÖ7¾èÙTˆ.WåléÜ¡ZOß^aÄ ñÑ]¤Î yŸî ÚÕ¼š žß_iQÎß!±NýûÿöûâJä<¶o Ä¿,û†ÙOk˜ð÷½!~EDïœUrCØù9û:Ü”#Í?‚,Eƒöà®Q™׈}…üÖb>ßÔnu·.>á“ýªç…„¶WŸ?Ô»/j^7ìu3ÏJ¥­pט|&ùHñIÍ0÷.DMõGeÏX9ßéТí'!jnÇ yW-7ô%y®ïÒ8­gï™tzýó'M?Nü3:vÁ;PµiÇj}¯ì˜[êá/îâ]¿KZ‰šƒ *W–׺õÙÄZ?,{T(ÖS¢Þl°ùõ„ Îç ){Pý×ú¤ëÍØÓºÝ%Â>‰4Ï›Sj-XðÔý¹ÿ¾¬îlûóíR%ÿÊ °#äJŸ{BÕ¤ŸêŸ¾T’'‡-*·ÏÌeú7<½¢ïwèúO© •!¢þ¬ßÇBX¾ß¿jž}uPÞ…åÙ\3ç̃{»ý}!â‰+p½P@¯·÷eóMúÜô_wóÕ³–Cåim"k [)ÕsÌ/W¨D¬÷¾yô“3Ù3÷ô{å²@ÄΟ¾‹,þÍÿØÓ#ß{*ù¯nyqáIHصmñÂ_ã .¤ë»{³üpmü'ïÿÔC¦¶yo˜™Ç¡mþ\¸ )ˆló}ÙÆöøü™ ›CÒÌáùËWŒÒóoeË­W4 î¯w{Ô¼ö®éÇÀÑN·ëåÓvÍ´áÞé9"=¿¥…í˜1ÿ´Ž ˲vøë]9vÓÈÉ=õ[íÜÔçòçýﻣõx>õó@̃Y›¿¼´~_ýàATu¨>èÅâ/˜”ç­öwÍñ5„·šþÃÏGúCÂÎ7‹¿4b.-ßû›Ï ®ô‚—Ëf}"Û—ùâûžf@Z«l?­¿ ‰quÚ½X«:$¶½xùöÖ'seëh ã׋Üþê»#Þu”#ÉE®Œý£ÇJm·loŸgô¾aõoÓÅ ‡:’®ýPjSÄ—}’Ûçjú¹ãÅŠ³…)8¡ãßQ²ûvÓoÓÏ]q4Ôþ<ÛÊä‚9ÍzÛôäÕŸ—þ±ã¼3û’Ñÿ£Ë$=^ÖÀŒ[ò¤|Û>h‘u?nV B>}òõËae zÜ€uŽ,†ˆÍ+æn^1ÏÐu6WÕ%ƒÍz›Q+ÐyóOX²ÌÎÏxX±å´ä.tôróæ;p\“7:CB饟Œ.ÔßÖ'ºwçå¶#§*¼=ÂZU||gñˆðáÙˆå{®†ÿ@Í ¬vèè;÷Ü9ãÅóë§ö‚ð·=7k8Tßõò¹ 1ÏCÂOCÏ7©Ñ#Bgåš=bömÌQ¡ÎpHÚ¿£À£«# !«{þÑ>ÝÍü,¿}È·-³yrìýJÆ?‡ª·ìÑ=Témлäêw;9¥`£±•wÑø×{-€¸sx†Œ3ýÛfRö ̓zÑûž‰X µÆy?øxgˆ²aà¾Ý³ƒûp¹]¥Wþ á ¿¤66þæ¨wç®·r@† ¹ïvë ¡¹?jÿf„ÏöýµñÊ$ˆ¾ùÇ™K¾€¸çsG¶žQÌ´ë4¡~¦“ ü¼ˆ ]ÚMÈ;'h·­Ï™åÄ~_³öëYs– Ä^®d*¶bŠnZæêgæqXÞsžXª×Ù•U·4» íŽÞ;ÑÊàßÙèɶ«‰éîß:û±É~öÇÛ—Ú57óøcck¥60ý3¤îí·Îô5pÇÜ{åH»D¿’wçÌz ¼Êõ—ú(ûÌÌó=/\*þÑy«š­Ä¸½ëµ^õ]ᙓkAø¸G•šM{êöžUgŒoÄžùõ›!C‡˜ùùÜî;Ï/`èl:¯OøƒìfþÑ-¬wyHIôDÍ›ó$ˆü}ÒoS!nä¼MUt…„‚ WVMuAÕ-5_>òÏw¶ô£¬ý—}Õû?XwâX7€ëËßzíCˆoÕÝSbDçÿ}Âñð«Ò?gÆ/µ‡¨…ï¤vü)T]0üº|{“ G _w'µê°¡3„—ÿølÿÇ ¡ß/ðqÏÚ¥öÜ¢K‹BJ—™ñÇŸ4„Ø ï«{*D8Pñ³W‰úªõÝŒ÷gíÙj[ÎîqEr¹¢zíôÞÇ# jÝÞzcÎO4úõ'ž‘w*6èݲàÉ7Kªþƒ|ú\ÅûDLûuå_Õþê‰ï¦þý=ÄF .X}Í¿ÿ™\‘‡2]„¸Ks½Z=¸_{ïì…ƒäñåç}” É‘™j¼RZÓãi_Ô¨³â^:xóó•3 ®Æ™Q­Š‡ÄÔ£ÿìÜÂvŒ>uû($|yjAܿ㠥þÂÀ•]§ ὜5ž|Z¢ŽÝÓñ?zYÛ*öÞp âO„LžÒ lüÍ6Õo4…°§]©5wĬ¸¼Ðlc$¿}iáÄo:Aܬ7³MËdú'¹Ã‹õ¾­ð»ø©ÿ8rShÝ~G’Íx×+S·Ö¼Z¦Ÿ>¿Õ'òî6Hؽ<äø;Y!ná­ _W|WÔji‘½õ˜¦E &O€¨©=óŒ>üÀ·W3/üSûƒ#¿ørb«›ÃšgÏ\.ÇJ€J«”Èù„ÛtÆØÙÆOQeBR­~Ýcè¸îö—Bž#+®^ûÊÈÓ2ï É0(;„ÚŸcôoc ~]ŽN; „¸Gµ.\N U—¥mziü(ˆxñ@þÆ-Ç@Dâ€÷Þž¶  þ¨7Ý•k?zoRvEgÜÖÙ—V4kI/Ì+|¼™‘[Õ–nþcxŽU~´âì;×Î@ÌœÞê—š‰ëϯ½àÄLéV,ÛkÝ ¥éÔ1»Bµì#jÍ^õ?rêÕ,}.u‚„½kö›ÝB_ë‘R©Ý«ÿyîûw“öCäÖefmK…š÷²¼½bó!ˆèòǰ1æBø£Ü[_ˆË1×/·7t oXâáç‚öT“e7'Ô„ØâÞC¢Â!â·,™~º¾ª.Z^½UŸ¡jÉeMvvÊÔW¯Þ¯‹Ñƒ*¿´9gÓ$¶þ⯗šõ½^Ë^^ü:DÝÉ÷åÕÜÝ!ºÁ® }—½‰;Ü«Š?¬ QC2ýÝcA)3¯Š½Û|Ô»A¹?µØ‹Çïm5ûàä]²~×jµ¬üwÈ^ãÇ «Wn¡«ÉDùüq¦gªþOL¨}îꪇÙ£Uއ«CØ•JS/|q?¼ò8¹ÅˆèSáÓ™cÂ!þ×Ûs 0~ïÄ»±§àÑH¼½ªà´ró!ò¯’××a‘é¿ÙÜâJ5õÖó+þ³ß¼ôâ›U«BÜú7îJxjz3Þ™÷§Ë¬ïƸÿ˜ÖXÏçs‹Ý‡V| oý‘—Wçª{"q‹·ui³a5ÔŒlÿèRþ¨ ý»zE™§!¶×›î*9ƒréôäϣƒðÌ|>(,ízŽ }rûrµÉ ,÷ÜæC36xéî²aå‚ýzbÕžÓîç âõ¹#îT¡U;UûúpPïêPöû·s?`Tøgï¤Î/ ±?|ž<"n9TëíѹS>H:ýèÞ“ŒC zò¹7f¾áùîì|cåU³þ–Yüà›3f~\ž{tÏë» ßu*,ÛýÒ/5¹_þšÏBì¾17Dž€Ê?ŒÎÔ«‰—%—¿óö/ã¾øŸøÜ‡¸ lÊ{Y[LïîÄ·‘ÛÙÏNøö/óœ%×%ˆï1…òV(ÿG!ˆíú´ë¼Ï ²÷öIï ¬ q“Nµ:<›ý”rÒów«ñ þ··müæˆÎYë΂…ó‚öc¶Õå6™üƒšÏU™øÝv=®±ÿ6ý5sq¯‡ðÑk÷tÞmúçÛoÛÇ–õAô‹=«ú¢~¸ðEå¨×áÃkÊž Úw9¶­ëiæ{ȧCnÿq"?Èzï³OŒ¿.æTIóBÈÔ…ÓŸ{w„Ï~sÍ’Ï!²Ò÷‡' €jó¿ØràÔuˆ*òÊÊá_Í îÇÝ~™öFKˆxgúY©×!1ã©Ræ]…ÊÍw:üÚëAûíH)ïcZötõ&›!¼åÝ[ŽßƒÐ:¥š]-Ü?ÎÍ…õ´knkY7#$–.¸#ókQäj½sícÌzžšmQ•©Ó ¹}ƒ^½ûnp?Þ\«Â½Ü[½ç´&T% z;á¯"ï›ýä·)=~._bÞúå÷„…Ay¸;ºxê÷9!´ÊñæO7…ÈÛýW•®_¶~ýåŒ3~ˆè–zlNÕnÁ}鹯}Ubºž(Wª“ÙŸr•þæÂ4ö7@ô¿“ Õ‰Wß+þí¶FõÆÒ+”ƒˆŸØ_{$ÅüY¦Ø™$?“õÇOþ㇆ð5½\jÏ]Z K«»óÆúWê ? c£§ÞìXGÏéËgDüèÈ“ûçÍÝFj=°ùésŸaCžœ?ó±C7û¶à õʪ%‡+®ØZûözáDì2jfËÿä×Ô?v'Ågü0:zјøæ¿ó—\É+’!ªáÜÁ…›N5õçæðþŠŽÈ퓳L]7 â~¬÷qËI÷ |n¡ß¿ð3Dµ|£ue¿‘c0Ø5n÷²ùVcçèQ÷xŸ‚㙽aoé8Jt¿×?Ê ÿõäÙ}Yª™y{pÊš”+nU?¦uµ†YîBRû í«2WýV¨}ùWÓn@ج´.¯Üÿßih¦ ÿNû bfvl¼cü2ˆÚž!K·çÍž\¸¦‘'I±C—Œù’’ ·êy¾"Ä÷š—aäá¢FÞ]oæË“ݱö~UäÁD¨8±ûó5×ÝÁÖïvŒ®¡=}µñÉS‰9P·ûåÍ!öçâ½?i">iÑ%¢š‘#‰+ÏOù+{mˆÊøE|XÉÅZï{{f›ïsŽ„˜][oæ:IÝ xö6ý`ݺ?>»|*·¸rø•³‚ógqåìG[ó¾œòÒÌíC×CµWF~<÷s]’”iüµV>öàŠÖÕïC\¡ög¸ ‰®Cç_ºôªV,¶¥dóíýƒW.TþGEWÕGþéVÎìoáïW9ùÛÛ— ¢wrÓÆåHï¹}ãϪùæîiüÂ?Fîe¾0÷òô¡=«wéPÉøaÂg,/8gwñà>¼¶D…V!ªéúïüÇ_’¼£Sêîó ¡Mþß¾Ûâî™9¤Üës²cþY;÷œzaË•*û(? "VÔKÞšßıálò;Ç2´…Èñ}z:¯ä’-2WÚ‘¯–ùÿÌwË˼ëoS?C‘™wKO†È5ï—h›a¸yß&å‰5vdT›?ûoô1ü=(–üêÏ—Mý5#ÿü­Ð cÏtMLx©¤Û¨öÂP#ß“_–Þ´Ve±ÀÙÏq¼íèR«B:…­øf9Cç·;&Vsï*¼/-b­cÊe3öwØg1«ë뱕Kn*_àU³>®x¾ykÿCˆ^îXÑj .¼Ægó›}a ]½ùט¼”°G':–:Õßšµdýó‡!fÍ—ŽìzB?ïZs|?ò6{ããØþR÷=î¡Ç!öhò?£_/QK‡4;˜:Oñ·7Ký½¿5êÛãNüðÍ2ˆû°Ó€Ý¯¼ ¡;³Õ9Pìw»“ã£Aß÷€ø%OÚó=€9gfv˜jâg‰/äjÿÎù!dÖ‰›=Ší牣§·ÿD„=ÕbÒ„g­ݯëºtó<Éaäíן ß; ¢{UŸ^ú°‘ç¡G_ytðT¹^ûÑ´u_Ç7çÞßGž„Ðð1}vd6ôUÉüm\Õúq^à«Jc.ØŽïw/ý ¢"C/¼ùywãLÓ£!üÄëÞ™³@D™áÅ÷LÍ) }:­ÚQ‹FÜ}ü€ÊáMFgØU+<™±x~Ð+ÿàL“н!¦ó¹^» ±Ïù§ždè¼51yùÒ °òÔ¶ÌþEN?‰_bâùO’NµïŸ"Ÿ,ÝùƒÉkˆž”#|囿šy¼Þ¾ðÅòþ×ö­ßüÐ$¸¾ó>ÿm‹¦k¾sæà•âРãÛUúµ™‘µ ô,;ÿH¹p#Ïòv£!üÕU¶Ì:á¡{Oó Äu¸µ¬\ßÒ·6Ãî¼™š9Òsþ¹Ñg+EB•‡ÝÞ‰hÿ%ýýÒÀÖ¹MÿÏZµ2kû5P#îà¤uú“ã­Ÿ:܇°MWvu8ÞÓn´ïØó5¦y "Ë•,».>£Jæ~gÖâ¯!:ôÒ„€àûÆy—^¯ ¡Ï×èsj׋ùYÃgGì†2#Kìjö-Tý«ýþ¾[@|›ë§.0~ȺÜeZ•ø"nµ®þÊyÓÏFÇÜ5úxò–7ò͵¦l]ÖH)ˆ¼ñEÖ[E^›Èý\–\¯@BÊþ¼c›yy´Õ€ŠµŒ>òqÊó3žÑãúÊãso¿NäüûÝþ^Þà¯ä)«ƒ˜*÷‡ ÜYªÖ:Ué׸Ãú]†±CF‡È’7¿:÷ãU/Þö“ÒÁýwíçËá}㇂·ã£‡ÿ¾.m L ê«kïÞ0ÿÊ[6ýþr!ûÊý*ªhî†×6߀ˆºg·ü¶¸Dv¼uH©ß!j×_¿l¨ã9aÇ'Öœ‡È £»-®“ a«·î^šQj¿¿¨æÍÿÝnYÞ ¿±¼Ùóì0r.~Ë9O³w[ªú! MÉÑÿñÇÿ»âv—G•¾Zö}ôò?!f¤§É½Aƒ!rÌGÏõï´G—$^[®4$÷¿öÒÊŽ ^ìÕ·ëþz"¨G¬Š»fsˆ -ýW·RÆþ ïÑûߌ(϶o.ûz-üî5öBJó,ÇÎÞþâß+º¤À[c ì£AÉ:]àß+½ñëŽîuо¦Tü£Òá‹Û~×ÚW[>N,¿÷þå,A»e\ëø~¿@Ì;i©­·d„èæ­v|¼eÄ?ñÔüÏGW=Çú\{ó[wm4D\ ô=úyMH|ÿã|3âj@ôŠÙ{ËN) ñ“n¯¬´Â7½XkY®¶f|&~è~©¦ *\‘gs›?>¶¹ Äñ²[zþlæÁ†,“Þ:‘^è–á£ê±lKÈÊ·Þ*g¶‡¯-TĬÿþs™Ž©8£Á·mõB`ò"d®? ³ñ“'^«wdA‰APuÐö¿J|`òy£Ž½¶³uù }Öò¥{o¬Ú¥µ6e¨ßÂS’“taý0¨ÿê8}yítrò¥¶Ö5ûÛO­J[{ V Û°ÓýÄnˆÚóþ‰ÿä!5Üý¤Õ‚y²fö¬“z¾UKì•tÖÀ [›'¾yocÅ×¹kIÑòpöAž·³›ñŒ¿–¥y½_߀ÈúÍZ®þþGHjÚùûËJARž=î}탈+Lïó|>ˆÉ´*1$|+Àþ¾»>2ó$¡ÓÕo/» I O]<_}<ÄõëÙnkŽœ‘ÜwÇ‹AÜÖ…W/mú«oñ‰)u¿:ztd›<ó_¸ÿ`|Ýü×Z"~¯xªß[Ù ææ¬ï©bÎ%T[•ye®û;¡zøŠE=Ü…Ø‹ž^OÞ/ ¾Y© 9M\%zÏîäª-SÚ¿]¡oîÌöñ‹âo@ |òw£6•L½]þb~óåÆiEÏFÃvF©õí.>\—%W(¶ "´N}~j#f&¼ŸÝØíák&§ôlÑb^íº¤à‰[ÚåÁίf°nù¶¾³Ø U«/Ýÿv¤¶'#êÍÍß±Äf¨<ù¡/ÇÖf>\=qñý‚ŸCЧhÙw@Ì'y*¶Éeò-Bc³Åv}¾DUúfíà¾økÏKµÊކ˜i•V¾‘±ÛJ ©Ó BÿÉåû'K}H¨xê«‹k2ª<áüª ýœ9ô·½½ƒût¿°Ýâ³A•‚Ï´zÒ˜õËèÖã{”ÌÜ÷?¯^¬Ñ›³Có?ÛâmQiÚ  êÍÒõG~2RnvÏ:ûË’A»/¦ÈÕÒ ¡ê–bÞZô„Þ7lLrP_¸´"ï²ÛÿÑKç+SyÏy¨rù¯çû |bÚ/ª³5ቖÛ[úr”ÎümÎüi&þS%ÿ"ï+ûºBè7¿Ü˜Å ñùÖn4å$]ÈÙ°B…Ø·èÊ‚….B\­³]æßzÂëæyõhË:”Hn8ÙØIá&=UÏݽT¯úEˆ¯ÿñ§V¤¼CîSðkHi’ëñÜØòPµÙÉ\- ÓbÊÖ*©ãM‘3Þ\7åžÎ?øêöoW#o`÷ð:‰Œ^C.n™âŽÜ¨Röû‘wqÈ€Œ…ZÜx;eA #—#n>œ÷$ä]ˆy¸àÑÍ[í!¬ð…¬ó;t‡˜ßRá>Dÿ³iÜjoPþÛò–wÂzH,Õ»V¶Rw!üùQ§~ êùOF½µ±‚ñó¾ƒYŠõcý”âC3oFr¾Ä4ˆÚ½dÖÙáP5jÞ¾ C”§g¯‡9ÿsŽ aάçg™qIH+–øÆ²ˆø¶üåûWÍú„¼†åûHë5!C®Ü{2hWöü¾Â¥ïç}ì†CÞ[7Âz-øûÌâðÿ¼?rô½ãA»,ªäÝfn„°ó¶4\xjt‰Z›½ùü]o[rþùʯíÚ¦UBL[OZÍ–ƒ U~¸7¬/Dn]÷]¹ :éëÝ~­»·÷{«¨L«GBÄ •ºlͤó‚êþ[9Wéߌ«¿lœ«x=H¼71¢Ù“6vww nBH»¿—´¿\wïl7ú•+•÷çž•šOø{*¥5)¢àBÓ‚›µ™Ñ%þ¶k¥±›B:<È^³úzÓ/Mþ7N¥÷퟊·Y)¸?ÏY´É±êŽýR¾Ñ¯%„.,P{Ëè2fÿ«Û¢Ååì9!¾×¶a íñ²ƒÏMÊQ3¯_6Ãìß±!o6NhûD7²áÀããÑdœ¼ï6„¤Mæn­âƒ˜±…öuÔ¯þ½àÏT9ÄÕžúÒ€þ㌜[òä«ri#!*ëÆËÉ%{AôÈOoý!WJW]_ô<ÄÅÞ‰[¿´gp½^*q+v ÀŒ¿B«ÎÎ1åçäùj~ó,ý¹GŸPˆýmИRcU¾,@ u‡?2|E/Îøþ×K |g\'f| ±¿Vÿêþ±©ýÊ ;‡Íyá?ûêÝOkQõ\Ï_¬œ"&fùiò!±—'¡Ç²1’ï›·ªKC×û >ÈÔà£=/™ù¹Ó½¢Ç®7!ìôÉ›ÝÆ¿Ôqê°÷ úÏä“ó7&˜~¸.´³+n³w#­'%íÔòÖ û!¢ââ¥ÿ"ºåþhù{» öJ‘ª-w˜÷^[÷罘ñXÞK¨ö1†Îz愼³vÑUÍù“Ê©ñk‹œæ¼R¨vâɆ—^u¶ÃòŸ¶p Dz>Yë@äÆŠÃþŒ˜`úeÍÇ¿_ÐâçN|îáâþð{Õ‡•3š8nhÎf³¿kô<Ôèߢñ¨-ó!.%ûúa5b!ºXÃ/§¼’ä„WÓ±&ìë“Û½ž­GÛ{^€áÕ^ m7ª,úlëÈùË æô~ /ˆ,1ãj§Å ìø‡*Ÿ5y‘Gh–±Ä$‡Lø÷6ø)ö ˆØSáâ´×ß2òôº§ÊÈ¡Y‚ûûeöimÆ÷·ë_~Àì÷UóöŠo×ëw¿5%ç´Q_@òûõvü4ò>ÔÌVñÚò/ñÝÊ5Ëaò¿âòæÛ—eì[5ÅËËg ªùîo¾ó„–¨t4ôTp?zԾȄª;¡b£³—†4‚*÷sÏ®ý}Wˆ¨1gS«ë æí'«ÍxbèÞZáîÅ}ŸáúÖ~á‹ ´ø½6çßÌar þ÷­r÷§ïÕrå.íÖÊoý6ˆ?G¹¹C?øÍuòzÓ±C»»§æ« [Vt^º LP^õ«?{òëܲÓ5åƒúJµl÷½ ç¯oL,Ób*Ô:ðÝó>¿7á~íÙ‡!!çÎ…“Ü&ŸÆÑêëÃk!²W–°cË“z„o™7b;Ddhr;PQç÷EŸš7ìT½’ÝNwñ^ÐèåWlq…‹VzéA*$·¹ÔãÞ°à~½èáP(°’¶ç9õÙ63áÉÒˆ5‚˜®9¾º¿«‚:¾|±…ëü|fÈÍ#&®}zTùÌÑí ¡ñýÆyk¿l„«ß{¯ÕÞ ¡UWÍü ÓrH¬>ïkìdˆoå]Wd1Àž’ ÷·3yÓ!“³ÖüîjÍwÏoÚÒÀ»š%æbå!{àòõ#¿4¾SÑy=Ǿ´—®S-pbŽÔ¼8:·Ñã'Ö8wzíOR;&zÇF¯5áJÌÃ…&¯ â“o6.È— ¢6Õø´ß¤‡“!ç+3?˜oäB¾¶ËV•¯´ó‡,2r/„|Yq挆õ!úÅ/ÏvªDÖi20ÿ2«ñ‹íÎëøbRé¥IÓg= ~wízTþ ÂcUèRËœ§Ž50fß ÿä?™»åÆk·!rÚò‚u–ž…ȱßÌ;;$4ØŸõÏýòó¯Ú¢ÿ“­Ùš@òŠŸ¦eÏ1â×nnwä¶±_Cçys`–£²lí—‹¿Íeøü?C ¾d¶ð?ÖæØwâK÷-šâfNyý×Ð$ýŽò%¢Ëň¬̆¤þ·]oäO…صg|Evs>;ÄžÏ=©T}ÜòaãWþá<óÄ͇ë7xn–éß"Fïª QÅ;Wú}D‰™ñ÷Œ'³èàýÜyŒ¿1®ÂŽ@Þûô^ùùŽPc×Á¿<žwv>„ Ír*nÄ-pWë½%ÄïJ)ÿÍã!¡×„ՕΕ‡Äµù^~9WpÿªQx§ÎgK®ÿG–VYÏAøkñ-ÆöM3ó|`Ü´êû,á£ø¸™ÌüH(5ð­À­š¿äöµi¹2CÜ…Ï'­ÌÌó«6¬Âò “VÜ,ýí A=þrî W}‰§ÿþpðêºP/:åÌKÙ¿‡jÍÖ žYÔœƒ‰ú»wÓf§—@BÞ%^ü +DÍÖfá“§‘õ£À¦Ý' 6õç¢5òv‡°e)žŽYâ!ñéAˆú¤Øü°£K ¥c…úo± GcÚu7q±Ðù­.EU®‘ ßÿôÈkP!¼î[SFùZ7>¤K™EÁy^:éP©f\ïž®]dQ-€ØÂ_¥þb"¾\8²G(D<ýGÌ^#ÂR¶}^÷%ˆ¸Uîë-sÍûÄÑŸ,øµ‰»D|ã™uG_H\ý`î«u´¹0zæ™Ï!¹^£\¯}mü‚1G¿j÷ëñ\uWwÎVÍè ßnÕ}TK¨QrÆÆçRÌü¯:ÿý7½G›ýìø&©!ÓÍú˜õç°Óê@Ķ؟?Þù¼ï¼“ÊŒ7ûCXQz„U†¤æcÚf¿9ükzÖ¯ÔÚñW†Nx4Rå ?sýTËôÝïe—ý‰ÛŠt}+Îøsæ}´½Æô/SêÝ«MûNæ#­nA\öKò¯jI¯<œß÷ç‘I{޶OL‚èç{ÿ<)«9UmƒgHócýI͇­6øL?Ïj•m@ ǼGˆlvôbçЗ rv³Õ˪—p¬W©wtÊò& úüº:Çg톨Þoü=v¾‰×E®ßz5eÁóW³ë©?ë¿•û\þvœÿ2$”ð§Mˆ„BU†7üŸùÙöåá¹=QwýúÊ?FAȶZ?þ÷Dæ]úíÃÝ 1fm×ì+BB“uß{/Äþ6s…©ÿYW÷gÉü\ Ä)W¾ø1“¯‘øÑÉL°nDÌûsjDàþ1¢JíO ú`ÍÞÂö[Éw»ý»Â7'ìmÝ(„üšcCÎ÷ªAh©ª¯m.WBN.>xä¡ÑÇ"óþ^ÐÛ«<„ÕŒÚ~æ›5fÁwµ¾œ1ó÷¼{ðÇç åµÞ4B/ô¯Ÿå¯!bÒƒÁÓï,ƒÐæÃ\ñíŽYgߨ7ÇøãÃf·Ý’è=gÎÛ®\àãΔPºy³»×1˹ëe eý£õï¯4þ\(5qÕ3)Ïm¸?§N+ÖW’sÔ_tä}³†‡¶ªÙåèHj¸â^–53¡J•2%zßÙ1¹ŠÄשdäÄÏi¼åf)yeNËMÕÍ<Ê3uã´¡µtÔ圙—šuS¿êõd€ð<¯ŽÎüà!DüÙêÄÛ›L\>þ“î››\½!ó7«~ù.$µ¹¶|ÅèBè üx¥G!yoô¥6›h}uŒ§û̵«!âGfËáï—LUé4„Wèq«àºø·ÿ›?ÖÐãOÏáETš3må¤EÙé*LñoÐnˆu·«Óª·®ÝkǯBÕJ½–¿ù (Çnäxñ–ñ‡%O^rµ[ï¼ÁùðëØO²¹!òÄøi7ûÍúkºîa«ËU!¶çßþÄgêØjʺƒÁñ;ñþ¸Eÿ¹$mÙ‡oÜž ±ßÊ{yú]ˆ^?zÅ•LñF^óH~ÿŠâ3®{ÒâKMÜ5áµ)w»½Ëû`äˆÓ 5]U»èƒ5z渷&¨w·;þÞýcýa%Ø—Q9Jv>×z-ÄW‡m»¦¬u\·1©çÄEöÊó²ÑžŠ» ú´Ù:×…¸™6üÔÃì7q“·[Üê?ã‚ò.æÃ:Í®ÿ›wgþ4®ã}ˆýé»’Wãdì‘­}½ØÿÌ»ÿß™çsƒNÿþíUHöÁÁþ{ 7`jMĺ›½ñý¿á\þh–ÏS†@ÕÂÅ÷i QWÞ¹~« ¶ïú̯.} 11·Þ™·„6»iÉ”æzD´Ø¹è!ß/‘õî§LOzÑyþ'7Â]e®~°ë€ý£ËlÒbýïw^ÑNŸóI<Õ¨ðݱµbÂ臱‡!öÜ¿Û*Í ±7VÍ¿‘ÓÈãÄ;Ÿº/½“ªýc}÷5!ñZ÷¢BïCÔŒƒ)7¢µŸ!ñÅÿM(†„_Çù›–û¢ƒ¶ä¨¥ïü—kTà?yÂn}öC°~|®$ïžÑo¦V¾x|¾æ÷Ç[-Þ_–ðü­…kÏšó" “#gl{Àuî›9mrCôð¨Þ-þ5vfd®¨W_œ| "ó4رmFVˆ<6e\æü~Ž»ýO ¨´ cÕ„Wg@äùû¯õ¿bâÖÉòuœ½YÇ]#ç†çiߦ6Ä}·ªÂ¤Á}ìֹ̚¿jTJ£ˆMm!¡b­µML~YØ’ŸÿÜqÄ6h•iÐL“ŸÛ× þeHìüðÈþµ£ qþ¬q»Ýçß+ÿÒùzLÆÿì;åûO[[EŸ§Ô³øeƒ/éåŠCâïCôU‡ó»‡BµÅGonYBÿLèþb¦•>q©­àú<µÔç 1‰GË¥ýÑ „EÎéÜ¿šü²y-@߉¿=Λ"O ¸¿ýZêì™Ö¯Íý—aGÊêx±bp½zjß !yz¥×^L©+é4ý”zùô;Óö«÷¡«_ˆ\öD>pû>»ó&$Nlüy•â¿›vý³Ò9÷:ˆz¹üŒ¹Ÿæx¹ï+/4ª^ÍU¯(DÝîUjÉ›·Ü7ggЍÛbÎΙ{ªsGˆ¿ß,ò^~ãjÞù¬ "c_:öÒRsŸBl•f/T8 Ñöª5(Ä•ÜðÕÝO\JØÑmÙŸžSøª>רí—LÞKJ¢çFå¼^Û6³ï’¤ßô¼šµòØ”?Þ…‚ ÂSö î—.¼:¹9D=Èÿv£ˆw¾‘7ü5¿ÐÕÝ=§>ç{`äèÂw6Cü—'üÕü[ˆmÒiÎȯ2¼Z»XóÁ)ÙèaÕÃóATøùnw> ó­tfR]ˆ·w¾ƒÓ?ƒ„wn>œv;8ŸK¶¿5üe€ù»¯<t¢¾}˜cwŸˆš¹0ôêõw‚úßì·{4ÚÃòÎ)“cT;ñYÃð¾ºçùùþ°?M¿Æ—úùÜ ±Ž÷ñåBlß®7ª|-زÉ;’ =S>ãˆè»`ÖòªÇ ¾š^Ù"¸_öÙ;ýgsÿH\´o÷‰-…Î 1v–ãüŠ_s}ÿµ±·!bÁâzuã7AÂ=wõŠu”Ýñe]›~®ôÄ}°æÖiú¾®¨ö©•£· …ø­w³ÄýþT91ûÙŸ¿JØü ã®oúϹ»§ç°þ#ö.ünÑ-óû#ßÑ CÌ>“ðÆÕ:c®Bô«ó»õžòÄ=ÌØåê…· >¿¯ÏÚãß@È…ÃCwçi‘‹—ÝØ¸Ç«üMâæü 1Åïå2yy1‰UáìS!aЋ7Î\Ú£øHœZãçòï©sx¦&ùn½ÕМۋ¨Wï¥7ÿ®Qûku™ÝØØáñEN}Y ŠBÌɈϻ=× ’†Ì„6ö@âäì%å 1³ÿØÜ¸Ï»ñOèí9_]„?Zz‹L- É&ßþkFOÏ3~ÿ ¦Ú|åùæjP~Ú{´ÖªDˆS væ<ÞqåÎ\7¿ƒ¸6Œmÿefˆ8‘vlIîÕAýj亿Ž…ÄÏ«dßwó Dn}”ƈ9†¾Ôû×.þa]_ßÚ»þˆŸ_¸Û˜*å Êæ½úDŸh°¬­ùA=zùï®#ÏCx¿ÞžVO‚û{çœÓš”;ÂyQ#—þë">[wòn®Q³¶M×ÞrCÄÃÛ7e¾¦û÷µUÃ>¡Ù|«j=ˆ+2upþIÆŸÛgÿóaI5!¼hB«=¯|1}?ž¹|/H\¿·p»ÞFïˆîŸÖïT«(ˆzû£Æ¾ƒ&ÎúðûÇ•^ÿ™ï5 ŸöÕ\Oµ‘Þ¼…{ë´`ÿÌÈS*9{tüǧ›ÿ)¯lxõß*Aù‘gEåÖ=~Ø‘“nΞ” â÷YpZÛ€˜Å“:Ý=Ëó¾ÚÀ۷ﯴ[â–ü´_çEŽt÷jº¶fÐ}8üüžÜ™{zÊÌÐFŽóò]ÂOý°ß0Óƒ~X÷ÜØûúÙÀYµÿÞð­ëIÛõ!á3WâéÉ% ìðŸ‰G€èÖ?ß=°§$]û{ëíoÞ†°c•>¹X¶30ûxL¾”"ͯAì‚•»³®ß”£>˜3Èä †Íú%{ù~A½£DØîïËõƒðN¥ vùÊÜ—ž!ªsÑUK!tÆà7çØÑc»uþè›Ff¼,ú)ä„ÛÞ\íëÚ ¯çÍŸë;ˆOþáÜà¥# ö•Mm|GæAòÚ/nôÈÝ"{¾2á&”Qý2{WŽMÙ*A|ÑÐ|ëOƒ¨ÙŽúÑä3$,^ø÷FÃùuÞÚ±¨A£K=ŠÖÙyõr.ÿ2yÍø£ÁyòËòWÇç¬áµ~i]dÓ-ˆëÙyÞÈCA}pU΃‰ÆŒª?ðvþ×&BDÛ,3gwú88¾_w¯hbúgßò¹¿ô[kø=vúÓÿ¹×g_õ•5Ά”ºoìl·yÄ}™iÔ¸„Xäsçvþ ±«æ~Q`æÅ/䟹â× ë!¬ÄÒ[ßïœQóÞ½ããoŒ}}è—kg%ALhËQ3®ðâ_Ê4± D&ýx£¼±ë#r½˜9°R­G³nz lÿûÑï‚ûî¢Åù?Ý¢éØ9$­ÌDã·†7Û_zõjD690¤g±ØÔ5?Ϥÿä×DýùΣ`?Æ¿°eÁÛË>†¨nùj~1#hǬžñNÎ[†þ×Gž›üS;€ã¿]\ºÔœû«=sGøÐA}õÆk¹Ç$é|…°þûμŸâÖŸñÅ|cìËè/äÙ5iľ·!Çg;н×wЭo!éÔð1‡ë,èsëÒ‚Ôÿø§¯¾eg©~rtŽ/¶çUø"^¿:mn™DW‰¿ìO1öDĹÅ]øLB´²oi`æcÄäͽnAüƒcáÙó‡*ËÍ›6²DvyEÍ•y ¾^KïáN}!zp³QÉ ¦rîªyC¯~Ê}©ß *ßòÇ–4xövõ?ò#$¼>`a¿C!rúÈ^¹=c!îÜþW÷mˆ²UÏO­ WcÖß±¯úèÁeˆíüÖé<Å~€ðà diòÄÃl·÷Þ)׺ï a9Íyüˆ<÷‹e¿lîQƒ…k†ˆ‚¸+#ÖÕÁì'‘³ò4ùMpûŽúqþ1͝ùæ´Eƒ ̳hò¶m ñí[´Bw”¬~ülî¶S®g~®DO«º.#Ýë•KýtïÀâyA;ìËÓ_2y^UkÕ^þnÙ÷ qQþ#L\2ì÷üo”ív¯|¦Rô8=o£«ì{¦î ÔûÒ°~?_ŠÎ[§%ú«ñ÷Å|>ðöÔŠù!!É_õ÷ÆÁ}zãýá/–; Ÿ¢Ožþq‰} aî÷]¦ç) áñåÆŒ|ìrÄžóËrQß| Ñóº…Í8â^[ý½»Üeˆ3¦Eô¿Ù *K‰'ÿÔ> ‘›ïœßÚ bþȾ*Ó¡•f|½•2çŽÑC*O¹¿¼pÔ}ˆ(œmKâ»3 ¹Àì¸GÞ„0ß ;æ/ÈIçRzTp磼͠\^VfûKË¡VŽ }ÎíÁØ·|Ϲފ‚ä3V=µÚìQÇçdZ3åD]ÿ,tÀ‡K!l|ךqUŒ=}©^›òõÍ}”¡gÞØ`%D¾´øâ¦„à¼Ø?qp֚ʯjæû¾ÞEv{ ™¦F§|<"wéùv–2žÚeHÈß-þçüýûw†È¨rs7™ÔïCZ¯­Ý"2¼1Öÿe7mÇÕz·Ù¹‚Ÿš~ªMÖë ‘ú~µ0±‹.?põ3~Á¤¿Jþ»¡ÃÅ <¸Vôó-o¾›4ÍXïßß!äÞ•Ïn0vt´;þpå—ß(ÿúðŽ쀨Ü/ß™s¹$…Ø]éíW!!ë'Ç÷ùÏ}™#Zþú‹ëü€­ê5¿¸BæÍQ|ŠÉëŒü¶ë™îFŽÇTïÜ»R‰…|@„YáŠú(ïÂÞqÇfÿö-+>kÁÕ¿›BèÅŸo™ØÎ ƒœvBL ß“W·…ȉG“?MÒýS£ÖÝ"ŸÝÞQE#ßMžÞCýöC£-2Ctä[ V6ñÐè¤]“2‡Ÿ„Ìû÷•Ù`òû’¦¼²rïGÞ÷ëjÝOšû£ã[Lû®MÁî=nì´Ë‚v|µÃµß½mîH,åúsÕ}/l¥™yÛ 8íƒø7ᔟ³ADÓó+{×90xJ…‰ÿl…È¿T;|4h_d9SqKŽŒ¦ßÊdKÈœágˆ*?ãõÒI·!ä• yæ Úckúþ“yú{qºÔk7všywÖ="Û’öxczxÐŽÉü¢çÍcï@ü>ïñŽ×j@L“ÖŸ¨8â&zåK™dð4»5ªà¹»•éÓN¯Ì ê¹ÓeÎÓ|‘Öã[ÜÌðz!s¿L[×ýR ž•+G•[еۼ çÌùØYÆNi’"]_Ýéý’^¬³£s³×!¦á Cy?2v^ÒØ3Õ{nþÏy™ü»Z·0÷FÌÏpñ›¾ þ¥ü¸ÝâÏŽùªïÿ¹OlÊú«­hõÅ–½)U &mS³&‹Bä“JÅŠÌ0|F] t,¹Ëø—cF_Ž_öÁ 9ž£|x¥!~É©¢[3å‡Ä®/É=`Äþ»znßxs¿ ¤.¼Þ©v}Õ/mVm6é2„5ˆùª¦{!„‡$D}ø~wˆè÷IÊÛ·6ù8¤ùú¯N\èõý‰=T€¸×«¯ü×y¨RyI“ÓÃöCøo™0ù±Ñ]§nþỉÏÌëÕ³{…1ñÞ˜šc«¾]o ÄŽ¹ÃÉ·Ìþ{o^ûU-@­ž3.8 a¶5*ßëG¨Y©Õ¸íÕb ¡sù¿ç- Ú³Ww¯Ò­„A©Ò7öÈÑ[w~nD52#븚Úç½ûŸlý6÷åß«|6å…¦ë&Aµ”L#+ž»0ܽlRÂH€n±ó²- [ºõ¶m¦™ßsŒ~st¢ùi[Cs[Øã©ë¾½±¾¾sª†‰ ÕÉ\mâg£6CJHñ°Z)A;dÆëyËÝÌ‘¯¶=X9Ð"¡NL_|P>”þõÝÌ¥!äüðÃ6™óñ#^ØZ©]Õï Màßí߆BB‰‰«;Qç¸ j@ïâ3k›ûã«Þ]üèŸÒ3žË¾ôö›_CüŒmÿ–Øñ.Ä™Zâ½s~HL™ýAß6# ¡åŽ& «è}8&zúî´^ÁýáÆˆÄÉG«@\†]ƒªx~‚د>uÔº „e¿KçJw‚ë¯ÿòã>2t¼ßqΞï" äãËÅ@ìïW6ÕN®Ûöw¿¯!âµo—ìp’ßž3árÑ\[{ļjsÎBüÏâÿþ%¸M-¼â›¨ zåP±S‹Aå·2ZøyПða£è÷ÆÄ~r0%ïÓg`™r×̹ãª}g7x!6 ªþRr‘¿A\‡_Ôß²¢>>Ó;"Üè—P󋺷ŽÔý÷OÁ¬Ý›ÿIg]¡_VùÊÞ™Ò´Þ0oùÙÝÛ­§CØÃøÆ-‡¥@è²r/Ý})¨'ž]Ö~nŸÿäý}—ûÔù:ß›uôš{Ý»ÿr\GQEêµéT$¤üïÚôg–yZPPßÛ}®S¯ó¯j=8拞Sþj¥{>îݺ „dÍ÷x{qHj’qܤáó ËÚ’Í Ar¶gv¦t‡È5¯f½óšÉÓ‹®T`sýXçx"ù·“®mŒÚ± ¢:Þ[Ý©SPoÿamÜû™ ¼ÈÙ;[N„HÌû¤s¥‘ÿ|õjÞÞã ®þ¨| ÓÖ@bÞ¾-N–ùš?üªRÌÒaÈÀuÙ ræú‹Ó‡¼IcZŠÿ¾"D®ývÂŽ,G¡Rƺ¯ø¾ñÊ–ùµ‰oA•ïç9‘ P/Ó¦¥ƒüµ«÷a‡aM‚òktù¢%œý{0läÑãÌú‚}7R 57ßIˆöIÕU™{CXÆïìöŽ×í39]âÒ ˆý©ÉÑ›LžLBŽÆc‘!ú¯r×Ôþ>¿ÿOù†CØžQE·ÿ=¨7Nr¯è×ÐÀ¹7}§·æ‡»Êüûj—•ûedý™3êBôìO{å˜Þ.hw†fm¶» D¯¸­Mñ¿!ó¾`ØÒÓK®„˜˜ø¼mÖwÄÞ™'s'ÜÒóâéýÊï2ÏýíÁý7á¥\‰?îØÑe<üзbrO©ÒyrH8Ñçë&ÌyتƒNÇ­ß]B¾Ê•篚1Ñâæèaïý ðů᳞{§»Sàë¿ Ú Ù“·Äþ:y_Å’‡ )úöÝE…Ô9MßâŠÆíÞÑÅÊ_z}f"„×î6¬FÛ ñûôÜï«!¡ËØ·òŸÿÿQößñXÿoÿ8NV*3* Qvdœ{ç°3*eTV* ²’ˆ…D ¢DH ++"«´­ˆTTÊê÷|}®÷«‡Ûu^}¯ë×?ÝpžÏñÇã~?Æý¦ŠìLý Àß·»û³N ØO øU¯<bâ=«-:†O}³ÛýWìÛã]t­ë(çH¿&ð¦ZÙÉ p÷¯÷Ñ•uœý{~ PDÊk. þTÊ#S?â41Í^`@VÖ¸° x"®=Ûº؇t}•п2Íøœ ¤"…’á°uhš&ÞÙ¿Ê\í9ž@Z]*ûÎèR™ðA- ~?ÅpóFxOSËéfQà+䌵±sûR[S‹ oý&)î-ñ—ô›°”äŸ"%WL¾xh:ÆÕY–åÀ ‡¯ôA`_k}¤¶2Õ7Ž~ŒÊ®åuÉûÿ:&¿6|õÏúãÜþÌl0k }SÍÆ à“1Ý Æ¾ÔFi¯ZäÉ¢a‘iਵlY’¿ˆûCÅ;Oÿã_Õ~Âøüp{fâߤƒÅ²mƒV‡0þĶ=\ ¤ }¯¼6büÒ/üã-Ã?q_ÖÆýfKfÙQë̽›‡7ÑöÑD¯¯@:äY¾CùcH·mÒJý“Àhç“+‘;ó±ýñNØ)×ÈCµ"Ý@Ôî‘qÄž§“uø{õ,ÿò­'æ{ô‹²¤>zá=bÀ‹”­ÞÓ ì–æ¶Ö7jÖÛ¿D‡F{þ+…¸Ñ÷àéÃ^ÀÒÂ-ßHÎXLܾ7Ý=“>¬yÆ“²Rt£YP00NøoOBü…{«²Iþé4ÎôÀÔmu Æœÿ:z-Í÷Y=;ôØÀLõagv2<}/§^ŠÝº€Ö^عSÝ”…® ¿éãIAÀ¸«¶ïËR}žçMßo{ÕY^÷Âåý[y㺜<ÜIk€öFçövÍv`ÆO&Æ£¼Læ§´™ÂO€BÙ¹÷ñeCàò_ôT)ÚÔ0ü.ùö  = <_ì·XaÑáI‘À:n"Á8†ú#P–;†ê=É~öº( 8 Ò·K•kÊÆîgTXìQ¯€™Q^œyf"©ä{ Ïï ²cÏþp|}—ò«UÀdë}X!y ¸UÖó7,º Äú꺲[s€B¾¹³ó'ðŽÇ×ã/ψ#}úIA×òŸ™<Ÿ£+è³ üàû×­Î@h¡“®.“›Û7l!郱!ksÑa„é/LLŽ`ve·ÿåàï×à¥=ËÃ×K„]Êxë_`Çå/g|Áx_ßÉ•…À®¸rw}[ °*¤gž£úcö\ꉮÈK?mºÖéP$³6P*x®ÏÕxq½Í+è„w®J@Û˜½?½Ûw$ÁÌWg>]ܾMJø36Ç>N=ézê“f]#sþYº­´ˆ'"ç6ÈO^·Š taÖû ê  L/ëß3(÷W¾Ä}r§ž¬’æ0Àº2 wy”¯‡ÑÛzTCë³£—Ýê¤}¼n.ŠCbO[gl³ðÛuîhá9 Þ}@"K)^2§ùÈ«|æ¼xÚŒñ´d!“‹G¡jä |NHÞÞqP½Yµ×/«Öãa‘{KJgå­W .?Å/Ü%›+š¯sa~²®A>Ð/ìlÖzõ¨9S d‘údÆë ̉Ëeçû*ß•/­`¾Úãݦzžñ&Ùl;§wå?±ÎNiÝõ=jž—Vß(›øJŒFgÕŸ—%µìŸø®àÇ£C¾<×£íÖéU{þ?Ä˧?Їì!-¹åyöœ£ÌrKš°£¼ýS'NiKþÞǤ·-<À±ˆï ¿ih²ô³>‹¯ý@dü|ùêÈm•­¢yÞ€œ÷Œ­Ûj¤ˆÃ—mœ¬ÁТ¨=~K$ЈV<Çã‘‹›F6ðòJÖÆíR`´¬¦àÃfÿåHi‡PÆÏeëµËO¾ÁpbväÂQ€¥Wd§ÂlØ®ìÈ78 ì¤ÊõM¹[€A-<üZ³?ª“×,âý¤»ÕiSøJÀÝÔ¿ÞìÊ‚•~Ñ©¨¯áñ<¯*ò[0ö·â/ľγê˜óü€ÿ]4=Ï;wv4”ÖD£ºšsîÖ‰<ïA]·‰â»â0ó)yç*w‘Î×wâÀøäø+{ÅO0=$397è>ÆÛæE7w.ŠvWéÁ*à5J¾$MÖ]F>]k öú¶ýãÀõªà£¹è Cž±­+g_ÑÍ‹:œ&W‰ø/ÚÕiñSô@zÿë÷¥ O®oTŠêõØ÷œË iSªm^Õ9 Ü/IÎhP†¢‚ÿ!¯ç@¢îHÛÔ±¯tžöqZTo‘> KŽ‘ÿ¨¢¯%„š€Ò³~óõ`²‡W ¸=çu‹kø^w ämœwÃû»Ì™¸s€ÅÅ«-ù„²è©° y{œðÎàÍ¿a~s¨>úEý+‚sL´ÂŠæWpʜҪ+ø€¶ÈÐã(ÉÈ™.G_<J‰”ÿ»µ³ô BZ(›·ó\—%°[I"é}Rïܘ#Žü*øæöâ[³ì$Q®tü?¾½6·ã ÏõØíF_¿Ýx œš _’yt ‘}=;µH¡¤8A7ÍÈ Qüȃi?…øâ¿4«0„Ä£ùyº*¶>ž,sFýÑàÄ‚€¼Ù™#Ž­gܧ)Áwoÿ\±DX$Œ,+ùøE$¿.l³ÚÿhŸŠûV]®ãÔƒïQ$ˆ¼9¹…÷9÷íÀNâ`j¤wŽ×Cã×FÞþùû>¬x „M.¹÷ß{¢}׺õ«%ª7$ˆ(O¾tÛÊs}I1Te@ˆZÑ]òûÀÌ%ñåâbÄ›(+¶ïhßãôµ=ÔýÇapq7rî߯õÿú?0 cëî¼Ü l§‘\»Ê¯À–Žì¾k†ðu‹¤U‘÷0,dväµ™€KdF è+Çnå–cçÅÁF©Ä‹-ÀžSn¯§û N,<Äù”kŸÉ <÷£{νJSµºüÉv`¸Œºž›Ìfù¢“˜]úGû%©/ä®!?Pl[ô¦NC‘bê_gý_8–!}_–pÆŒ‚²Oo)ø,õ-NȳÎ;ñšî¬:ìÿëÏ¥^ ~æäs·Î¼ý£CÌæO)¼ËwÈôêPÕ5u@o=Öyûš;À›…b‘7¯Ù?:³é–ÃËåGö²¹ÀXSšqD¤hN'æD’ý€€/p©aû‘³{ëÖü¥`lYµàs,Š“ü[ïAZ©7t¼â vÙ™u3±u±ÔÕäòg *ð)…å¡<ê÷«äÓ=À8-‚Û.¬ùû~«œÍ‚±¹—§o¬Ô9tÚZ ýöò4¿ƒòÛȉ’ç¢1{@~"‘ë*ÖßÑ䤹1ØzÉ»½]òù UxëÙ DÇnŸØL`p…=’š‘.®òÅÓ/vgÿÑ­`§pÿº®Yåªù´§ØóÕ-bˆ~Guë”Oàà\…ò•ñ“ËÓó¬jh÷óÑT§O®jXp9w¿(]ÒÒà˜ƒAùØð«½@$Ûæ<±ø4aï­¡QG€op”Ü€ö-cÑöû÷„°}±gE~tÞ,‘]w$’ ÐÏó-/ŸRòÀDO•ü Ÿ^Ú26äÆóZaç‰ïÂíË<Žu`pmÏåÓÀ9TæˆpYIdîÙZ û†p“€žŸqêÓ=z ^j ¥AXõ´O{ ÏùH1v¢ÚüÄì¬ïv™ÌO¨nÇð¥jÂŽ‘ ù»ÿÜ¹Ø Vÿê(ÓhÚÏ3´Hɇü/l½šËÖ¾Å`奚ßß0¾[ýôFô€LÇy|ˆ_P>¦½¦‹WÑS·;–r Œ *»~ÿ«.ºßÄè|ÙÌ7w¤}õk€íã¦Ð«Œôi`é¼ÒÑ2_`1wZ†"ý-CFܰ³‡E²õGºnƒ‰sU¿CÔ`žÌû¹þâÏ}X9¿:ñ£¼š¿ú…ÓeÿÛóñò¿ÞuœÉyÀäë®ÎŠÚ ±ÝñÖSÀ¥^\øôGÓ5÷Ðó-@uÙúA;ùù˜ÝÆÃKááqS§§(Ê UŠ0üú…@P[ ì‡Ú´î|(vø% ¨ò¯î°ÂD^˜ù |LZωãþy·€8Ò{"â ´ÊzmæÄàŠ*®H[术ù¦5ju@ñ½1r–'þôÇwövénæù=P7:i ¦‚ªDÇyþÎöï.«UWÊæÆÃÎÔj o÷ýM Dñ9|ýþ­sJ”$P~4¬XrÛ¿Ç™€QÏ6þ©Õ6­Ø"|%eý¸ ÌýÅ鯀³5±ù^ ,âS©ûÅo Âûöe"}xztU™Ù /lÿÍ»ã³÷OŸ0ÒRÜd· ã¹éÉi…ƒ@;¼NtÔ`Ä®[ÚúåÇ1„¿wš-éæy/Óë6’C7aû/SÒ“ Ìï Ïx«¢úRðÐ7½Úô-™:@+»ûq©q•»>Ty¡º!"#µÜqvïy875o9°” u§.ðÜ–Æ|°rÊ O§Þ…JwþôIb:'Yx‡C+OßœÎíÎÍ.×0Þ©zÞ{$È;ªµ„"u°qh½·ÉV8-‹k*0>¨tvõþK»fÜ}îå܃`}(¥ó¦óU  ¥g„oç¹?A^(;ó§ŽŽåÖ$"ü§¿ PÛ¯¶xúˆÖ„Ó×#þ‹WÉkØæôƒGºd÷ # ëP¦äèûdbu 'ñ×F<ßãŽg柞kò¯ÞÅŸ¾áìoÑ·¾aûÿ,÷×dÎ] XÿŽ›÷k>PÞ¾™¸»:º_¼ÂÐ~¦oß¿cî\ŒÏ.tKžÙ"°»óìOóÿÁr¡ºF+1èª_9¡¢ƒ@ ¹±êú »¿¼öƒ×Žs=Ût^²P¾#iºÉszt-&c<" ‘ž$NùÅ­òrŒ÷ üäÝùç:ø£6/ëÝÍ€Ô›Ÿ9üN+t}Ê2°ýáúh·º>°föø¹ž@ù‹°-à|¯î ¡pÉ/Ey€‹ò&6žHG‘:ýEÏ9ë%àÖmTMºÇó=ꆉ«.(®„j¿–Ø têXc³tàÜSËOñq1»ðÒ³èPVob¾x¡qká³÷hý´µxzh︊»v$¨üÿû|#3´?Ú ó·?((JåûÐ2w—å­¿”ö¦/éQŸfÅÂ'5‚`xƒßŽ¿[Ÿ!á§çÝÅÃt¿p¨ °ûdŠº¿$-·3Ý×ËtûæÆ/¨.™ØyêéŽ5pÕ^É\°0Î]Ée}Qš@[šRhðc#Þr7Ú=z ôûSßJX€Ñ]ƒàQC `䌇ï’ÄøÂñƒ^éÀú-;ÍÇð÷õO’†ßn+,ác̬,/}ñ À™‰Ì¸ìŽòû¸s²âç_2Çê„ÈÈa ù^‘Yú×q¢Úq½[Ž$ ¥E®\ „:º ™HÿÄH?£»{å1`f— •—šºDq¡õg{ÛŽY(¿žð5jû¾fÞ¼|î®ÇûW¢ñoO_ZTݸŠ`«mÓ€êé»èSààv4uÅ¢¾eÜeMÇͪ€¾—zBG`Vþï]Õâ0sk0,Þ˜1´¬ãU3ÞúÈÞ¸¿4#½ R–²^º‘Ð/íƒkÀÖ+\]™] …576«mê“o²ß­þÉ#M\÷¦h†B¿Ô¢j€>ñ(ka4ì”è1´…U?_Clê2`¬¾óì°/°3·}I•9„Ñ9¯çx¡zhhÚ*"îÊ;z:3ñ½¼ºŒò†U„‹(ï…žšÞ`'ˆáÏnÚ¯¯P^a7+ú´¯N¨±aý× ”÷ô‚®#ëyõ?I›ní«Øf¤·v;OòÆŽÊe¦Á€ŽŸg¹Õ‹36(öx>ç­›4H ZÔshþØ =óù3ÒI¡:õ<ß›„ƒ+©DJƒ‰Þ|Ùqv5†g¼µenæ‹G©·R@˳^{ýoœŠñƒP¹9˜ÛݾÃýìùì½yNVG^U>Pee/ÊnmvÂ…ËW¾ÖnÇ]ÊZó áwÂ_wg÷Ýš« žÀvl)G8Ž2¿â‘se;Pž§_6%Oa8Wr=Etvþ‘júœ€R(,öþÆ÷•Ú G±?k=ÎoðFyȸ ×»çRTÀšªtqóV”? ²Sv45ÕUxbñm¤sLHÜ=³ñÚ4N—uË_ºÅóâž8 äÄíMÇmfñµGGK£VÞÿ!F÷ЂÛ8ÁÆ@”\V¶¾£h¢77ÿÔJOO#Ý(¸1¬S+"Á3næ5¬¼q+JËöïYuôD™:=©|IlÝìœ+0Ü™çÇ€[äq¨ËÕy’£ºÞ\Ù…®3þâ„ë  ô¥z¼L= L/¿ê#õ$ ¬xùõ5¦ˆæ­z'L£§ðTOs{±';m>0×[+„·a­¯þù˜ý3?ÿ}x?Ð\ÂL3xôñþŽ¿ä¥D”¦£ŸCÿËß„Séa ù…íÝÉCÔ{WOß%¢x,ƒ”}µ·(²·ª#QÞm]‡äþ `"¢9øI õ}&m¼xó´*Šësdg"×´ï#æÌ†°E‹xÇ{ZUetòqÖ.ð[rH]—uèq{;ï¬qGúe$üƒŠbŠ0ž¥¯t< ­Yýê@‘¬UÍBù´# ™qçu“D¶n÷+ *¹þFl,–¤¬Âpp©7«¯Õý»æ#b¼ûE9 æ…6@òÜ®¬û§Î†•¼óüŽJŒ·FsúŒÙÙ<•ªít w4OËsš‹ˆÿ;ž~½ÿçùÃítU öÏŠÛ¸ýÊߦ¥¶¦øð|ÞlZ6Ý3 ˆZ6HHZcìÇ~ •R ¯i™‹òãˆQ ÑÓ™Wá8\¡¿Ò‘ÌŒ°†¯`òdídíFmžë/??}Bó3'#b0»nõpé2äcM&Ë®p™Õ/vÉŽ[ÞJÍüDƒÅw-ì?µ“ºp'÷df€‘̉¾²q09¿«\.è­wf÷™MqÔèÆh}±ö†Î ŠW£Æâ ä‚¶|œNpêk±WÛDwÝ{z\Hç<æ €)ß¼ª³ÃE?qÐy×Ôüô1µû“Àø(e¹×w–N¦é%vâŒç.\½ûÙsÐo( ¸ÂÌMQÚÄÇc¯­wÎÒ?»Üæ¨z ˆkis—£>nä~ñdoßNbPçšóUWžAÑ—óGº”ª‡ïÃë‘.#Yte¹‹Œ'p¯Z´Aí<]iòÞªz<×ÃÛö­I\žÄ½„µ§Iؾ¸,nu ÛO~s-ëÿôE7y.»ø›§3PzAY›—ßP?÷eu}:†~ÎsÉ=srþ©*ï‘ßQ_˜ß[b¼ÍÃ×ݾñÏgẕéÛTŸ"ÞÈÊ?øÉ§èYGòjÜSär¹¾öæ"0‘.û 7Žñ…ÞÏ“•âƒÀmpÚ+½Û7y…/Œ^p–KžN …ƒ[=ì5«¯jÿ¼Ã—òc·ÂaçäÊ@¨ÚS[Ç;΃ß7ï% ŠžjäÚ^¼ÁúeåsTé]0Æ-ô—,C:¯äbÑ>½íÿž/hÜ<ºÌw ãÁÝþõ—7óæ27ko¹2+.AæÛ²Öt–?Ç«g¥Uõ‰ÿþ=ô¼,’ Ó ðʃŠÄŸS`HX+Ó굨wYs)Æ*ÿžðžÏL0¼ê]Æx¬[œgIEjSÀi5›®¥KLûtít7=ô{: žîó–ÉB/)€¬7æ¯8÷A\¡ì ]´íÌ+vëÜíõ[OB·ž÷ûûõÈ©}>î@ªê°J®Àö…’_¬5ò›¿}<§³ê1°ƒ_µ/TÉ*± ñXj40œBi»‘® ~|ÛºÕ«o+]±é\„À×)·Ÿl+ nˆûx±·Ÿz•Žð¼§Q›ÖE+[ä'&¥·{>Gñ ò5›WÎJ³òs6H7õMƒ¢¹ Ã]·VLó‰.öYn®Uò. ¾_°ï\8þOÿ'RÉXà²dä' Uj~˹þ[GQ;žÜvቷ#»1~dµEäÃ…_@ZîÔ9`T§féû`ç7á+‘ŸŽìgâVV†ü,ä’ûÃÀª#t¸Ù5ÚJë…çzšyÞ—œÐÇrj\ø’ffZÒ9!|³Zuj ¸¥N‚A¼qAÒ}'þD„ñüK>nùÕøÂ·²kÓÂâ7¿§ÖŸâÂjýüw³öÏ×íÅYôþ\·õÔå«ï‚áK»×…-úLÒ%/‰¨ï  ÑXù̵P þ39âÀ´ŽPNü¶bÐ?鑗ªim8¨ TöÛþ{€UròðÊ!^ÿ>)Ö_|íaì¹Ï°rÓMÏëuöâ¡Ç6ž#Ø©ëöüê–š<;¡ýÀ`Ì\ˆZ}¹;¿ä '$¦1^"æù…|@}hÊ-ÕÈx¢žS0=§RV¾ÜÏiÆD •=^ÈY¥ $þm[Þþæ”IõÓFÃÅöZHÇÆ%"ó ½éºÐ^˜lÕ“útŠó^»Àðßv*®Ûœ÷:ÑÝ*ÏQòÎÀØ£]¶@îÊ^þ¬Úغ–~ä¹]âºGÈV.Æ£HÚW_éÅg± X:óäjH¼:[x£gß߈}ùù®d¤“@ˆ´\26ŠâŽÿ­Þ=GŵM뜀3ý5=J?@±;ÜÝw PJÜî$¦}ªðûé©@O¼K8‘¾8>¢7ø³©hµÜ>˜ŠñûÑoëê"¤€Ýêš%aÃ;Ž´æµ=_¾b¼j¡¦œÚýõ¤ÑºêÔ¹<€êX˜i ‚/'€Ú×½çç‘“ÀÚºJ‰³… ÔV U‡ k`m¶ô×®@ì¾-×ìMbëÓ¤Ò1M 4ÏTðýDxŒ’!‘Åß;øGïŸ÷hcx¿=õ](Жº®¼ìR øþß}„10¢¬î/_ˆ­wK¡OBk|qirç²O@¼­7È–Ö®›UCmæÀݸÛÿéߺ \l•ëØ t|›Žëu ¦tÞO\f B眖¨IÞu8¥[vñZ#•a¥žƒ`¾¾Ør—¡'0ô J+v"ÿ É^Øõô\¤ Ce}¾QÚPþåɳ•–@Ôoq|ïaÿ—I³ú¼-h¸~0à"P޶]XºkàZøôÊaç"[¬Õýt˜¾ÑzýN  ü+·=x…ê]™†* †âºÌ+«wÆnózû‘<H ›89ëÙj˾ðÜ×q {Ž–Jë­N®·¹:¦ nísQ^Ç)Z=Éò¥[í:GŒ€sí–ûâÑdà¤lÛsv?ªÇ"&ÈDµ¯xáê¢@.Òý&[©ï*Y7d•O‡ýäõ«2'|ël]âù=kžËa?_!oû®ž»ºÃu÷îÒÎõÔ‰»*§€4=\ßux#°$¿r˜ç^qîÓƒ§€¢,¿Þnr%P¶òmvJBñNø' ñV0uÇdV©rØò3i–¢K&隨ï,×leß>²jü)jhÞ)L;BiöÀg=ül0dXbúúä7ì\”,iëõßßÙÛŸN9aY©?¸à¬´÷=°—ËþÞ"†òÇàˆ¸MQ9ʳä:¿ 5Z̹Ïi½®`<8}ÎkË ï TÛ,=Ÿƒª(PgÚaçb U-_þâw7¥ïÊ®ëÌþä51ÓÏ0>¿aõƒiÀ¶EؼxŸÉ^¡”áO¿ï_0Uâ«Ö0ŒúÃæAœ4Ð2zûÁä-'àP9âøÐÞ‰ _Ùh>ßÌjaë†[öunáÍ3¢WÔFKÃE`íC=”N=âMLnÁøDˆDÔ-§ÌöøãÀþQI˜S(Ì圼·–@y$<¥wåýLFüñçbZ³øô¿y³Í—;w¶„ûÀšMO]Æfíg›ß«ˆ¥•Ì®KͰ÷3½.nŠÎ#nlÉâ³%¨¯'.€Ü›Ë(W§[× ?a}Þ²MQozx_ðK² ˜¹]x {ÈlQîê­Ã@´3r ÒCù渠¥ ‹PßMβúR?<pùÌ…NšH§˜|BÌÁCDàtͱƒ@vøùÁè[ÐMÆr¬Ÿ£¶­ÇsÙ`˜Ü;öxù…?uY\Á’6Êý­`ªórAC#ò+ÓÝÊ_Iì>¤%”n 2bÆ÷­JúÀ|ú4ÝÔt9Pêwf†íEõ`„­Ä[ŽÍê#Zµv`‹É/`\©ÇïØ®Ì­ÇšF{þÞ‡“r~µrÿ¬¾£Wb­:P ƒNv&׬i¢¡¸ùŸz„ðöz¤+ÎJѵOêËùëuYö„Ö…¢è\äjǦ—8H³~­¾z¨Îù‡ß6"ÿC`—[µr0>]´È”u ?ÓT$´xwZï) çvÏV¤ZÏÑ4௿Ògôé¨Wr»Ö ¢:A’ƒóÇ ßÐ{ûÅî_²”;ÿl:ñ}@ݪÿÆ¥v°CÛŽÜ^ŒåIuz£y@tÀ™½òFñY“á÷ã˜x ŒhmŒzdsm_o÷_@ñÖïãî ìOt/2P›‡}[øùæ‰}fü£,¥úUÆå³êui«½ÚîŒeÑ~[´ÀèsØý= ÿäR.S僀*#*õ¸ Ãé}-š·Ì{£-%Д¿Šç¾8ýèš_ïcãÇ1Zè?gÒôEQ_/¸·òÌöGyÀü´Mòbý20œ^¹©È"`}ϼ̾5h]¶µ2VÄyùk‹Þ€Éí–sô,g¤œ¬IØ4׳›‹¯/ðy¡R¦ìËžhÚOçÜþøGÒþõU9PP`ý9 WžÈ×/Bþ4Z‰jÐ%­>´ÞÎ9n:$zÓÖ„O†ÜÇâí€òý‹g§:?0½¦»31ülæ„ÝR€ãÛˆôn¤+O[eóÁ´8( ï„IM@ÚTÉÚ†üLZ\?ÎJXÂ_”]7AëÃFnE;.^_~Xy.±5“gÑu]ZšwÆ×iBn·(îÐížîq5ÞûjŸ³Îê}eî«ßå<í›RýŒì ûaÙ§¬„í@ùOŒÏÛ-]¯Ý\²yûZxíìý8 Äß§„MéŒ~qÃÞÿÌî“ýŽ€—äüˆ‘Gú` íOW£„€Ñ P/²ÙËJJlp€YõÏ¿jà&¼õdD ¾ÜÄÍnËvß3òñÜÁÕ?ÒpW|dÒW`ñP°Áp…TsòD&¯ðíÚ0'èû§&i¡³ôXÎq/öLÿ÷çFósý‡Æ†ŒY:)!r3ÊÈŸFü•øöpüM®eóù# ´{q×óòâ]ñIÂ`ð­¸#!ŸÔ£O?/ò¡å›Ê½€úbPô+a9Ðh.GM®bv(Μ³tÚ—Ä}‹³#*ð€Ó~ï°ä=P¿Ì_‚økཹØõ'@Ï)ކTÇBx¹Ú},P·L\a;# þ½ñ±±ðp 7ôЂ\²þé¿.Ù¯†ñø£Os~HYV`Xaø¨ü"´aüÎg„#"÷8çwy—¸¢:FoŽÊÀ?õCãv7ö­O¶‘QÎXh@Ÿ:¿Jú,ýî—û3ð#Û9JÐ`>Æ«êÖþ´>óp»Õ¨ž‚½9¤Åž—ÿв˜ï¬¸`î¿Î¶­«< ïʹ9+•ÿŠÙm •æ,èŠݾ‹£ïüîGÂY0/æ4šJb–Ô2€P¤3@rA¸…a·JÉu #äÎÑ0MNíˆ<û~†º5»ázNÏÖ¤mN¨?0Óì•ÁÏ“N¹{«{msU²DÚ¾_bþ=-þúmYu,ì;Ù)ƒS®¿òfùM÷¤ïdÏÒ-©mÿv ¨&îÙF‰”_B/÷}’òˆº…¡»so [ï8]õ߲ب¨¸VÊl5ÙØ²ãò]=úB­<}èÐxœy5Á¥nÁø7s]±¯.Yq…˜j)ÊcUlŽî-”‚……ôk½Y:Ï¿¬ï²^<îêo6Ðð‰Kp­5ÀlÓ‹|o` ¤t¾å ´;^rZ•Î/þw9qp/UP匀!ûm“$ÓG g4~G`öáòøùGÃÿä9k´lâÉ7DöýDBºˆYP|Ë\Ûˆð­-kºiù`\kÝËîhòûà ß)çÀÌPªôÔu„g·®µUÌÍ3»[é»K€ý¸ˆøù0V?qÔ*Ø@ÿîsÜH3Jæ–yYÀæ~N’þAC¤Çez=q¤õ@sïÇÝÆD`º~#žk#u§×ƒ+‹qÀüb¦qé¥->Ç.OÕŒ½/­?óHha|4Šˆ ЯoLþ¬‚ø5‘\éÜëÛ „‹z6¯'±ñ´èÞ<0ÀìuZrHÏwŒ{“´¥:> Õr#Cø*Ú~ñ;Ç倜üõ£âªì\üd8mIQt´ðu"“Œ÷’–Kë /÷ªŒn­=³÷!0¾\¸uÖHHE¿Ë„>ªaX·øfÍàÜz°<ô:.âÁ-«·Ü ‹r’£e€žùOÃI} < ¼ŸöÏ]bCa®×¦­G:ʸ’ ºì„u@ÝR5«ß½w^¢­:wh݆iC»¥Àð[¨òb—t X6W'¦æ]Eí}ÑðìÕ¡>­O¾w\<òVñmêLíz ©él[Åó¼F¢67J ¾½Äg·¸§LnÝŒÌî?ðA}®r”¬¢°«˜óÌjª‘] ÍürÛóå±ü|4U’¾îÝ"‚úoÀ›×‘«JÍ3EÍõê«Ç8¬}ÕÓx>ބե÷Q¼|:áGº–Ří¥EÌìhÅo O½/«¾jÆ_i‘ƒ.î1¬ÒVºÎc¯Ä—ÏåÍ»'%‹‹¤€öTY‚›_ÖÁ§ã N[€9X–K›Fýºé¡"úêƒÀˆnÑ}þwòÞ Æê¿ö-Ú¸\w‰Ò냺tƒý@ú°ßO³Õg™ ‘Œ{/\2/GÅë8ÿé—H!sß°û$¤Uº|}‡ö ûÔ ÷üÜ{À¥×Ùj¶8R‘‹×¬@z®Ì,ù-zÄl½÷QCî=#nѽÔ_€fOïÍg™@Õ `ÝòNèu$÷¾ÚX`ö](œŽ8¸¨x½öOŠ€;³Œ¡z€ ø›ãâû€josÍåö. Å®_,Ñc‰Þç [êéÏÀrw_3¿ˆ¶´/:‹åd¯ï–Ã5@.ÓŸv ¬ý£šyû]Z…·qÖ·{wcï«©omÛ¦ àòž¹)¾= c?tþ?ô¡&¿¼}øÿ£M}¥Åï + FÆÿFú}ÄvfýJÁ¢¿~®åx†›µ pÖß+LMæKaMp²£/Ö¬M{÷.áòé?Ïĺ{—Ù¨‘%tå¹é÷‹}Íð\—Õ’qûáÊ Þ¿Å·f$0=Üzó|ŽZ¼ÿ÷Q´nÈý3ï‚–±/c†ü F›žÈù œÝ¦çË–B¾.ÚF¨µÍ²×¯ç00%f»ïª‚ø˜Êr@ù$Ì:ûóœ_³lq‹R5ÒKÑ58b÷ `2ÏŽÐÛg€tMsÑIöG€;µؾ@¹»?,Vc–Nèõ äG¿àGw,T¾MIõi.R>Ë ?ƒBÖ~G9¤ʾxLIzœÇÿ¿ÚU<ûùÊ4ÉL ì3˜c>ŠükŒ°‚Çí|€Ûê¼âBìElßÿ’XzBŒ23%üê^¾$ܧÝú Ò^3Y7€¹F8èÊ)`IrÄOZ }|B°Vœ ¬ÉoJ<#=L\îUkÎ÷ÄËçW÷Nmç¼£ŸRUÙʚ߸È™ñ‚î@ˆÖìÖØâÌŠµ Möðä·!{DJ µ«_ ÜÝ"g÷¥`vÞøZš·.Ïç¸Á.‚Q6R»íÐ:w ¤œ7È­‘ò³×ýZž|ä›A}´ÿÅ_ÆQ«+¸­¨Ïþ©¥µ¢s>bûrg£v¾@ô¡žÏ6íÀ"Œ~N a]ñ{Su¢Ð2#|ur?ež^Ü¿‰T†QÖ9»oew.DXž”¨îëïJ/ÍÿCT·ï}_fjÉAѧÀNH;ñªêÖ2/Ä«wº"^{~}.mŸ ˜à_E+×Tð;¨€Éûú—žƒ®ÿömãÅó’–?ZDæñµå q]aÜqk%¿Hw ÜÇ›wO2œóAôÍÀÍì–zwÕcSN4Xç¡: Ò3 Ìxø²ÿÔ‹+ØùxVñý‘Q€µ¹ Ÿü†…:ú—u¥~ª•Oß; w*[~¾¨¥?NÞ6²ÉꘊcRLËM€°Åí±œ â·¸‡evvŒ ¿ÍXÞpívœÔöð® ÚTioßBÔÏ“H¿ºk°é#pÊç}Ú]l­ä~É}h_€â ¾ÝäH`Í Ÿ‘ZÒ½­_Ûÿ­‡*}GQÊ®`vzõ_-sEãÐHUû¨ 8þšB„(¿ï\v£»ÅƒM÷¶}ÿ„4¥Øãg¯ò¯ÇxÃÍìßj￾ê§v70âw‹n²YÔêsc¢Qé@µ°èt>Ä[—Im~ñTíêûkpÍ7¼æN Æ×CF½WºðÎççýž«þ‡`ɹ|ùÓ¯€çømny­ïKó9#¥™ã©óSkeÓSåµã­¯ã&Þ9ÖScmµáë‡ÿ$¸!‘Ê3Od‡¤6ƒh„ÏHÃã)¿q!ÀœºÛ4ù Źsë;O§ü¯ëÞècû¹j?ÐÛ<å¯'G¨-Ìá=ò«‘'Eäº8À6îÛP9¢´Óä‰ZCÀ•^sí_…KÐÌDv•ue•ç_Ê|ºlàâñ°nUìžw€Ü'"n)ž‰ÖßôÖœ¦¶;®O §u³za24K ñ° °=z^ø?[ ä4‰’Ÿ8~àr¹*ÇØÖò@¨'bOi´ìšë†JÉÈ5`¼c2;gÕB ÊÒÿ˜:ïÞœŸÀÌíW¸Ìg¬Ã*ülÚ~ •ÙÎÙØsp‰ªçæs/á÷tM—ŸÑzÕJÍùZ÷o?²7o+VïæNÖðˆÅo0Ñ‘=YfK¶Í÷ªk,GºÖ¿AùR”cbçhþ@Ëù¾°lV?ÍÝ?zå¢9ë]$Àt±ÿ>y Dh5ʸò)º©áG–Ã])‡ Ø9´Œ¼ëq Oï¿Î¿aÿŠÖp¤?„kYZ+)\FO2Ç%œÆüüÀk^UÇôøÍLÁòÞ¿z(áW ‚çøc|WWâk+Î|g²ú—Ã{œ^32¢œµ}ËçÍÊ+Þšt‚c †£ÅMV§€&y;µ¸ìPôË‹“‘^=óíãþ«ß¡{CAm/PO|˜Äxİ¢¸Øÿó{2Ê»ŽkzñÜàóÌ^- m8ËD:—´ä"r\màùKuyq==¡Zqüˆ°ç¨š“[š¢§t®ûO¼Ž°*lýB…ç@mTxþ¤û"†7߉.¡„ñ—Ê¢du;릻Ýþ\£{¢ªìÖ`Þ¹¸ f–Þªc´q Ÿˆ‘6,z4g"}é8ʧä$jí¼¦ªìW¶r˯b¸‚á¯iÞa°–›/ª1<ë°&€×?Dh{²èŽmR$„¥z>R»RœÂ ùèÇ¿”8¸K+ö’wÜÚÓtÙðCÜT•Ï@‰`˜.·«ºRXŽBüTaÖbR=à³/HÎï^ôÛËísú‡þù=ØV §ß%ܕּuÌL ;{Õ}Z07÷ô£XZkl~Ô—_Ý=}–繎}¬É>ò*fLO† ðôƒãùñÚÅ0/ÇÿþwG²üÈ … ç-ÞØøø•òjÚ"gŒk1ž•îÞ÷õúy÷>jüŠ»ÁÒÅC(/€üPo!‰ „ñoÄŠg@ÙkÜ«7é·SÓ£-Þüàí Ió³Y*_w‰} ”ô@}èx¶,³[ôµ]™ûsí‰Òý£ ÀÙf±úè- õz¹œâOQ=!…f´^JýÃBŒÚ€øU¸1íÑžû°rÈvßAyz$½oãž<Ÿ£ú¦ÿÚ1«þyÿï–ɲc@,Øv'®;÷<Œ !Ào6Š5M‚S‘ÏA7c0ƒm©>i _Ûq%M±Ïë åENͪŠâ­û1 ŒZ¬4}z#=¸»ªÖžþµX®[ƒ-‘ÿ’ö¤Nn-m)ú¹ÿ ´b§À£^–ã>ЊÁnùƒßÀzRæ¸M ¨J›ïÑÅÎ1ÇC7b:ŸKŒÍ ¦Ùò¤õÙ9`w¿8YÑŒt5Âüû‡²Ék6%„·(bë·Sñè¦xÀ/J¸ZŽò¥I—7:ø/£ºg¼›LÊâ¡Èóoö’ª·ÜÅéŽÉ´‚ü5@1é8i1ô×õˆá¢9Öh ŒÙ+Æ£ñ®çP…G˜•sŒ³³úho=7ÅAç.Ãe÷Wñ¾MØy£H¸²hŸ¹^)·F©$W$NL5 ?[-Össþ]ƒ²@¹`ÏJ%ýÓßàV©ÿ79`½ô8Xii ô-±G]£7>N³'Tµû¯Ïýo_TÂ:ùK¯›féßè6}ŸË‹ãé— ËÅsg0^s6@‘Ê«A=á]TX ”Ͷ6ÁaÀÙbžŠç7 ¦n뙿£ÝQK? õþ,Ìwí}6ÀXP¹Â¾@Q“7;ÅË?(Ö?Þ;|’w}¾éOjˆœúõ%ü2w££¿\ÿî{ 3™ À~"töí¬¸ÓõÍVZ­ IçF:ÁvÕ½úV”ƒk=³ºfêGeÇ ×#|R,«‡Z¾ÌèÒs€”º.xÅõë@RQª!ãÉUe-?VÜ´Cb¦7Ú€,1wäÞ¼i`džzN{[„ïN?Ü_#}C㔫­OdIàÕœûOF§kÕºÖßHîaGï6¡:ˆñØ™­!ÍÀµ}Zþ¢ ˆyŒ ÷NŽK=^™ß ”¥w#5†Ó¾Ÿ²*î> €[÷ôˆÂ:`ÞZ$wÅõ¿ Úä”§ëOÛ…ÎTþÌ›¯I¡ÈtüÞãÄOÛú¢õ†κUæà>ˆŸÿìZœÄ‰ :8 ¤«ÂNÉ‹'ø ]Z]BT[ÏËË׿Ãé3Â+ÿºž9)Í ÿt#p2HGQ½-;MQùvx8àðªÒÏR}¢´á›ž†&š§sÉÙ"vßý=òR?ã‡ç^lû€x%hs›öu˜ºóìAì\”û<ót^oûß——ïröaœhQœÉ°åÕ‹gáä{ãÎÉ)ó½5¹«¾fñúÞë€À!%P›€ð5²ü„R;ú|ñ˜Ž^µ4PXok›¥s-½·òíóYu6{.©Eõ^F‡ûÓR:MÑ×€þYÔûÖ¼f ïÌ÷Œ²–Ôú‡AOdß„nµ&Fø¹d²ùåä1²;wËi©8ÐìŒ-—êlÊÕÌWw-vÈïÖ£Ø!ÿnøÔã‘Ã@ó|³<»æ]„½’€(Û¸ÿD^0·]ðÙôÒXŸ†§ ^äöؽþ|èæMÍK±æí)Åeؾ Y·(¡®çÊN!LIí½Œ(P¯§UŸsò¦Á„ÝÒoÝÚ/µ¢Éhâ¥+U~-a´ö{ü žŸo+!Ð $#…D0’çH·ïN@ëdq±íº§B×ÜW°ÓÐzYS«—z†íà\øBQ»ëOß{âÄ£r|Ö<]Ü‘–r¬Ø {KíË×böÀO=¶ØE‡© ã¨.Ó4o­å—#˜í‹y» ŸÛœÍMsMß@zœSšˆâs4f ö2ïK@gè”ý’¢Ý¾¹®YŽ€ÛÔ)¡}¸­ëD©V|LPC_ýZgpÌîo5<ØöX s^ÔäÏžW„ÌXi&®ÙŒð<ÛpNKÊ/ W+ÜË%ðaãv[õ“h0̘ô¹ÏÊ38+øpäÊ €Ëm»fKuz/>En Ɔ·©Š Gm{ǪgJÉʯ$N“³¢· u@XÁ} W\c£Ö²­Cß®rt¯sæYoŒ”Ó¾¨éŽgŠúÛÀ¾ìrFk;oý0-­¢-&ª(W„{B²o‰˜šAJGù]æ›|Ö»ÏOüíõB"-èÜÝqzñÅCÀvußx¨o 8û¾Ý :u ØNþOC2€¹Ù,Ksƒ7POìISæ±aªOÉP:Ÿ™]ü´L³T—;‘Ý¥mN}õfã¬>,‘m…x /ko("¿c~éI7஋·KÙä4«|øÇÇ€cÄMoOzÄÀ“ZTvSjuu·çÀ|Ï˨~õÒ³è¥ç] G^þá 3°EqG„øô]³(^P¨hÒ¹½vQývÕžà›ÀUîNó5l"Ú<œaÐæ ücVèg|Fõ³c_IíH°øå:ûÇuïÖÈ^ÈÃ4ûð&:^̇¯EÎ}âÑïjˆ«yŸ#´I/å>Dë²}wj6fÇØåÜ9¾=sµO×ÄÙƒ›ïõÄ@´¾í£Â¥ß½<‰úg²qF ™§¼»÷…³ð _=ö¼€÷Âíó¹N³ê>kß$ä‚Qåæ°-Š7â‰eòŠî"x¥êåã}þ Wz¿Üÿ€í“#a2WZn»Ý…‰tH(ž¿£¦`rU剚Î`:×-‰cýñ¯2ú”ži7ƒ¹)“±Ìp(aF/–cQ‚DeoÝ Ñâ…Æü± Ç][:ç˜" ï^{ITNõ±ß‰N(ÞÌZárá–n°¢§¿¼Y* $‘s­vbëî¥Äޝq¿ÞNÃBjpKÿÖ«€Úda<ž;¸¼ï«ïE›açW1‰#ÌÝþ_ N!{Å:-}èêÍF &UL;8욥EH¯N?i·Ù â ÆoNI]õ Áø÷3Íl‘ÔÌè{Ï<Ó€´RMòA^&è{9;˾] £âëožJ‡æ`š‘# ø&ýÁú˜@¯ÎÍlèBûF¹ÐÑoYà*¾l/3¯úï}9î#L•TÚ½JZÞ†-™@›hNYdÞ4[Bø4ª ´ ˜~ä”cëÊw¾ ÃOosŽÀæ¥÷úòáJ VmÊ>œä½6ëm¦•±÷¨ýŒž‡ypâ‰y;P-I‹-®…Ýý¥Á±_l}u´œ¼ÛÅ;.¥’ñ‘ÉúÈr¾RŸaxb·Duò§PºÜÎŽ¯\ðe$!ãl>W„…ÄÖ'ùÍIÊVwÁ(4ò¦O—?0»n»=ï¶u’a\°†»«ßCñ4p¸—ܼ çDS)mÑ“T ¾+n:wÁ¨„ýžJý&@îà o⯖¹Ry Õ¿5D \ƒ¢A/ùëãî«H÷˜U´<9“Á[/Ű"m»‚ñ¯‡•÷y|˜¶x–õ$s¿P POUí™ßœœÛ޵w}y¯s]÷×в" Ÿ¨Qd2xã´¦áº=u0þ^#ŠK»¾kc7ÞçÑa­7_ÛÝDxùîƒÐ†Z2¯.(ëËþ¬¨20^Y½*¾§ ´àcßkP¿ Ö׃÷úuE`1,ž N#HÕ;”)†}.bök0\&-tô¦0P,rÉQ"Ûu½êAÜ4°ŽðaǽêıÏ5¤A`›²Þ]xRÌgÑÛ0Üè2Óu¦ðpJŸ¾>ZâDï7ö/bì7õÛë:pQ@Á~%ÒÅà6O<ŠìÀ§òÁsq÷€séá_8p›ç}¹¿‡ ^}ã[Ø\ÿå5"Ïß ™…²£7ѹÎY¾i‹ ÐØ—„å#?g&y|Õ!{ h•¾«HEºK\ÑŽ÷Æ´­b%AˆòÆ8zI@Xsàå½Yú¡&”ÂÝ‹öb㸠AäܬüºùáSþŸþègíZó<ß¼@Ð_)nluh2¢É¥©@y¨§êꨬé›Jß]@ë?zÛ£Kò[1üT<È3p—†æj{±µíXhÆSnt>¢W'Ì‘½#v){x怮ïš÷ލëôgí1³êJ×E/®›ÿ÷¼Šwõ Kç> ØäDñ)Ycü@ah…Á œ<©’¿ú¯n=àíý¶¼BãÕÛ {”=$e´*w9ÐnuÝ3›ª—Õz@^züÜ‚„_éAö!Ãn€IH¥ÇÅÆ©dâšá ýN5Ì C~YÚ‚{í[°õ²_¶=ÈH‡“ÇÎÊkî6v‘l†ÕÊ);{/-ÒÑ»uöü_>‘z:Åðº?¥¯ôºÓuü¸‡21—÷„ËYîÛ¿è}׿|FyŒªmrÞ·Aë—žÏSÝ­`˜¸Jæ¦Ë~  Ç~Œ"κJy{ ‹¯vVNÞ 4ûÛª=5’Øú¢69´É2ùl×ÂB _°É‘Þþ˜UEŸv·# ¤ëJàC°Úé¼JT ãû‚w¿Lnã åB[2€z×Äð Ý`YÙ[Ý`™-7½¼D ð.ÏWDÎÂÿŽ??¿Ê®çLîzŸS`*Øþá3Gðå#)þæ_€ú6xMœÒÛ¥ÄTf—…é|þ¢¶û8H]3—ÿ¿òHÜžÏ ªø"à•­pä­ï3eî}îq° ¨Í‚ ƒ½ØþߤªºèD²÷ÃîOÀ.œcipÅÍçöãÖ·jXÀ<ó1”0Šñ‹iÿã_7ÿz”ÖooŒ–½tëؿŧb/ ¾àœ›ï«ºè°]¼†+°íü탪Va¸@f_qˆP‰Í#Æwøs!{ÛUñ`©KÊÔ•Þnc|_mj6Î7u¦ß“uÅ_@ü>˜H—3XkfÅûŽÕáîœ$ÿu©Ó}·Öû´8OX},jF޹Èïßx\U’Í.Ï‹'°q]pª+lV¿Ä¯Òžj·'þCݧ&ÿG‡z¢Èòt$'_cß2ÖÔ©DÎØ ·>îg°°—¿ZL‰Íã"¾öyûÑ7Ø~ˆ±ˆ­j¨!CÈfï9T³Òu©ÐIIÙU‡«€~ê•ù;e@7Øñ”ü¤Ä.ÏQ@Üôû‰d¤ °ÊC' ¯,)O«¿ äk*ß7ÈbçóäïWÿÄKœXœnÍœ(‘Ä.à…»_KqL5;%q;°\ݗߘ÷ Hù=Â~ú@ºt'0Œ'?˜oL^]$múÏzæŠ@ö/.GúWÿîÆ#MZƒR3Ð*jB;zòƒ§H¿<¶­»¯Ýsºçåz»!@¾ûEfÿ.ìzÚ:­Å‘ÿ’zdGáü…mê/ ù©¨Ë÷<ÏC…²Ò{1üø½‡¸ë \$µ¾8 ŒºµûT´Í»~þí´4 HÔ¥¶¢¼ ²÷Tñ9ÈOšzVÀäf‰Š“ê8ðñÁK3=›€sæüz:SpeûZoZ[~ΰèÈnžç!à/.ûʇ"gõÞõÅÖÅ>§>}éàÈûU—´€aŸ9µ«ŽW/’|,Ñœ_4p m»R{Î_÷Í×ArîµxÐ;>2g‰D1Ûíïiì.B†é…®Â<`5ßTñ™–Ï>}9°ýKÚæÙ a«k”jû| %¯¿‡;>…b[_ž¼†}é‘4Ä#ãÏ E?ÔZžI¨¶5ÊÂÏ9is`eÏó°ìùã‘ýÇݨQkôöª;À"„%%<ú‹É¥ ¤/@Ó{!õâè`þ|íò&ç˜ëÖzøù­úÔ„’}óp+8÷㪪À¨B#wñs[ q™÷$f`çtÑÛê$0Ì5=½ì&@²F¿Æ3]Öo­™Æ[Õ‰Òö]2Z†ñ»¢S±'(˜=ÿ¸¬l#UˆkÖnb×çw¿CžP¯.;S›Ô8?GØêÒ6ÈbçµÉiÎú;`š2¯ãl1P…/–©‰!ÜKW;~Ei3àž2Ùý]7ÛШRµ×\ØKÄ9ÑKfü·äv*²ö3r°}Ìïó ùÏØ»ž½XI’âIó»¾›[€Ú{µë³ÃV`-)ú® zÈN •Æ<ƒ?s-jWO+P½·~fø+)dYíú…Àº¤Y›ÓY ´%£—~!¿ Yjý—ËJ`-ä»ëâ‚æ…e˜×t0Õ‡’´ß ¦¹µ=‰Ü€ò»‰áןY-@y ä¤î]sΙýæ·¡G—óðúºzWc gK[¼v¶{ì;ùÅ€»)µIuÁcŒwwÏ?{QðÒZLí3{€Ô¦”õPé%3Þ./ñýì“lÑ®cô|Òk«ûcÀHú¿ôyÉÉM–Ìâ½I£,ùxõ^ ,\½P:0—jR¨®Òc1ÊÛ‡_%ghHBþÚÏ„$Ú²‡ïO†~ÆÎ2š³…ØyÝÞ)Ú’þoŸY4^/¨÷îß3ÿ'¯¾ñä0†USkP³ãüV#§ EìkÁô †àwÍZç€ÊH?PŸ»ðݬBõ”ÎSrŸ ú/|ÀÝŠ®ŒãÀ’É?¢'rŒÞjÄ›ý€¼mCÈÅ·o›=ÏtI4°ö~2ö0Ó'¦Ä½)(ï‹èç°c«#Êÿ§^|ùºÑÕ0pã7ôboÁe›JÕØ,^ë}â®@É ëÎs2»…â´ç}¦âr<ñožq¥g‡ùwi£øm´üÞí k€¶ñ}ÿטýÏé|ptâmÚN 1åúm} †¤ÇîwNÅUírøu DÅ´–Ü7n~[ýÊQ€÷Ý‚ÒV÷Í­£M¿êÑ8-C|úìSýg“& ¼ ±à[bö¿®;R\ë¡ê+ý;ùýý²#¯£¢Ùo)œÚ dÆeáû®ð­1÷3JÎàõmzGª"¾º´á9¶õ—vgõß·ltÛ<«O9AêüŠå`BJZå»?Øó¬y¿ýÑŸüÃgnµ©TáóËr`¼”ÐRFþÖI›ø/ÏæCmé?:Wb‚ûµ–2€N73ŠýàÌ…KtH¿‚€ò¼)û Ó7 ¾3GÝéàÐçnå´hçôƳVÆïÀØ_^¹ LýÒ•9“î<ïÏ$ý—9¥õ×ñ1ŽÐiËjü§i¯ß+Àè\¾å´ô=`“½J”†Pž)d¿Ó¡Ä®|oÞXí¦H`íØ›¦/™ìºD)b:†W…¯)¹t(FI3ÁÚØûÄ×40Óýï_|ëS¿.òÀ€eúƸ»¥=^/Ž3q}.Êâøvp^l>öûuÀÀ¼ýÆÝ9Ó@V¿Lª«k‹ïâ4^½XÖ¢#¬4Þ:‹ÿôÙöfïk]_yÆéÏçŒì6ð!Ý ²yªGu¬°ãLXî@2PSž=zVÄ•¾ X]ƒó.jaäέø×µCÏ Â/~.wÊí¯÷£yäfvb÷añ?Ìÿ Wû;\g$­·]ôµ´ Hkt„,;?´ÌŒ›ÔWqî†_±©éõ"a`?+ 8±Ìæ4{B’šÕÚ£F+Q\î½ù˜H+fi¯sênS w¬&Úž©¶F{œÇ«" [ðOÛ1~fÎw¬[÷]Œ_x¼#-âÕy¦¾8üÔa€‡¯bó :¤œ$ u¯ßö}Äãi#f&æ@]¬NQ=Êl1…´zä?¤ÚW(Ü8¹ȹõZîdA \kËm±`€Q»AËšßé@î9Ýy÷ÆÏªT~¨D <ð¬¹:NÚdõO_Ê/~Äx)n¹Êãâ*#ÝøñèûשׁDz]Ü&çÏ3ÆvSÿ ”ʹܳޫ€æZÍ~,&k÷P ‚Ç€!®kr&ã Pê X^?7´¬kJ¹,K`;øÕå¥/²×N™“êÈßÇV&^H¾ÞÌš~¾ò_°tZø´ …@Йºñò8¦Ž˜$²€¤Ó—7Žú‘°.ÞŸ¾±gôÏϦ®öÍ©ŽÎ0Þä²gÿ“Ž_êe­)³Œ„•Ψâ¹ùþÓmÀyü@]>é'~M×Ä*¬®íÒZ»eGTdQÄ¿ì °š.Êzr@J76…º‹gŠËv’( `ln½Î¸Íð\õèÜ$`ÞÎѸ TÿŒs3‰ßеHÊbF•ɾ ðOdIöð®ó›×Ãá3 €ZÑ,[‡[í»z7kŸ§uïfärQ&c²S2õî¿ñfÀ¹Jµ R¬ÄÌ÷, ­¶wç}¾ðxýz-WT5|Ì¿šö(Àe}(˜;lA1%KI`èŽeù³0°eñÍÍT€­½ïæ"?«Çt÷Óoâ@òè%‰Æ#ƒë»Uoo?3FÿÓ;ã ÀM¹§œëÁ{nk»v›¨x{j*¹Z·3÷Œ\·¼(¤˜MvË2Ã*%¥‘ö²XuQ´°ÑYëý¼À-%†‡Þ®lº_á &5Ëc³Ž!œAàøn~üª¸J v¿ÍBy;xzw{ü. th^ëŠÄðÉÓ¤7‡ÖøcÒO-õyï¾NËÌ'ÏçoZ+•€7*5+õÒŽß¹:´Ø(Ã2^¡)HŸŽ.Ùvn³oü¿þä‡E7õ‡P]6wAL»]5 (¾[ƒÎ.äí#“ZZÓVóX?>1^Â2 Ï?o¾*£”çs ’Z?n´Xûø„ +iÿLls6ŸÒËc?.n™~NÏéYu^qwµÌΫìšõS›< Ûé´F^³Ö× G–]±œ“b Áé1°7ÜújíŸñÈñ ¬¢)‘¢¸C€—Wx®f@ÖÛËRýŸƒÁÊD둼¯aú˜ÂƵ@:.zÅmŽ%ЕŽ~Öú˽qÁÞ¼ý¯ñI'ù+bû©2Tú2Òù'©îÝ”Ö~8ÁÛÊçHÄÌßñ¡f0D/Sö~ß °>MñÜokÞñÍ<üN‘Uñ³¨ç0ünÌÇþÆS;‚¦Þ&½Âöé¼puã`šê_ï“b×âõ+jå™|VT`°ô·ŒT63ÿÏëÄÄüÕ&s£g@¿|³ =ù]ñƒŸb­.a| ¸9¤ˆ7/‚üé^IJÄ=@]1Úfé†ßΆÍ8bö<:kƒð—`ÿ Úî)z‡YÂRtžëó³½hðæ£p·ç}õAú\6Û^•‹ÙéÖº•éŽ<ýN€¾B¬xi6ª[#>ürQj2Ð}Ž=ýò¨Âšë6 nÆKܯ³ú‰èÓ¯˜¼Óeˆ/¢ cv›xöñâÀb fði¦$-βwîŠÇpµ¦S^wyœ,–A@û”±ûåïáÛá@<ü;2ã¶ÿ‰;&¿®BøO+ÿòveæ_ÇŸ<ñdK¿Ô5 ëɆQ¼öózAsëë@éªu?枊᫚†¥4ï:1P)¿9OLGrj{ŽéòÊY÷€òL¢ZÍhgcV¼×û“Wœói†9nHo˜µàÂÛ äG$I:Ü’ˆGúHÜ;d.sZ1üÛº›Æ“Ì ëÌ ÄSˆ~©ò%k1.¢ÚY³·×=» >dÃB³×H—‰®gE¹y Õ'2n·}ýi´£¹Ré ªÀ\º}½SêN Ø?4?6ŒœÄXÆ9@ïݽ%g`7ǽ¶6lW°Õ8'p zœîžd }ÿÞÏ’jJzöêÚZµÿa|ŒFsœÐ{ZÏ% z/ü‘ÄjÉS €»³õ“õ} þ8ÿìÑ5q€ïLÃ:?ÎúËv›šS±¢ûxvðJ „܉Í{ÙïÌ]C'æ›ruõžï±Wí¿n¨‰ð ~kùeÏy` ¹1ÿÑÁtàDô™¾­äEž/qî^µûwÛb Ý?ö×vè±¢.J`¼úk•L7êÇÆ9xA¸]ù9PW§Þ?Žâ´>Îñý2`æv YR,¨G¥ðënb¸(?Ü;ÄÇöük…Y<äHšÎa[Ôß‚êrò‹Í  ¨¿<5&Y´9?æ¹{lây¿ÿä£ñ‘Ý’™~ØŠv\ ¯€×o²m465ùÁàün¤ÓkpbÓ½¯H†Lt½ ºËðžanaïóÀÐVi1ßË@Qt¾R«ôFÉï-‘¾2yIéÝé¯CØùðIV`e1MåžJÇ¡:@êåÖâí@r©Þ³Ïüï¼\QWËDu”RÛ‡1¬¹`Æ÷ãø¾½B@^üÿe1~ðØx³#Ò;¥‰òÔYØ™®:Ò…Ѻë&P¾#)f:±é qqµÅÍS ¼ ä& ìȇoÍœ¶ØÔ‡¬vvV»ÛrmƒR0Ý-*|ý÷O þ~gëÿ˜ëÞTÏGqÚë¸GÞ/É¥ðÖG0õpŸÊ'Êú’_NêR1àBŸÌ05°sGæü3=¤/Dºèseté¬ã(Þ+ïÃÂ…M6^S˜¼’¼ê·òÏ#¦ÔõY÷‘ª~Ô?Ï`370» Såš œª~·Y}`l­?iþŒígè?§l€Q5 8à¡tûðå ö@½‘6qó6 XJWß ça;™þ¸÷'pø—¶MÆÑxçÉ;j%%ì9°|ÄjæÇ«yߘ×)#l=²¿7¡|ø"R¶zO7Ї nS5€B¦©ÒtRüHܸy90Öw ìwQÜfÁЄ XŒ_¤ ¯[Åù]ÿãw>@^o‘ï÷­j™P\çù÷À.q «ë¢öéùçDP=&9¨^;±^HuîEÈÀ)XÓjt »fÇǬõѪ‹½ïÆ5¨7mX_]WvëOü ˆþ¥;Í"]{ºôÂàçNû€TÐ1½Úu߯¢)üÁÿê7óžwÃÓç=%Üåê+ÒÑ °ë¥ÇÈ4°8 /3‘â†P7ä&o¿ pŸÃÅD_çi¹Š¥÷S øï$¶Ø÷q*ý— !¬ü¼›<#P½:'jøÜ³Sé†r² ;øi$þŽÚï“ FŒ¹›wðØ|‹öc¨ È:Ë8_ùö#¡0Ò­I8'·åuéíûÆÄËó0þ©ôiOì`<Ú"®4+Ÿl¾Æòî›È¾Rv½s²Bú…¤Ší'ÔUóмBÒE¥ç½ýªÅ£ëŠìë²ã=bÑE@#í3“Û,4–÷¡ œÓ%‹Bz2´”ây´Ô/@/^wü÷äF §\í9˜Ô#º{Ÿ+[Öÿìô×+@iÝ.wUæ"p‚&_®¡¹w ‹Q^Ÿî¯´'Óc.è=pGßLÞ×Dv›,ìÙb´S [»—ÝÆxÚçÎ’wß®{œxËsƒ´Þä}”có¼#pÛ#ÿvÞú]B‡Ê±Ö¨& ½^@Sª[øÚGw„Œ"XqíÝ‚V0ë=niŠñÚj¡†—ÔKd÷õ`x^¾õ›–öVÐÒÕ-µ´ÑÇt”ßH=ýSl]ò ¾}|ë00ïoÞ=ŽñKIF³p³Mö|Œj×úukÿJý¯v+k ö˜lX`í Äl¿äŸZ‰<Ïm¶ë‘ÃÃ7C@7(Ò¼h½ Ÿ]è\ü Ôò J 7"Æã4&^Ë-àù>ûn÷Mo#ïݼýR' ès¼Unžv6ûæ'ÃÓ`mîqë×êÖ-K³í“¡@ö‹»ñ#Míï2Êö8 ?®²—ÌszÆÅ7í¶€»ß‡Áã?àÝ—=±BÓ¼uM´a#Ÿ<”ïBZãæ›ûMô]KºÊ®²…üTÕáA Ä9´=˰KˆSÀöí¢öí%&å½õmÕíÁ`=æö]_,ŒÃÍ‹üvóÚ eçÞÇ—gé|™×'œBºšÓ%+ò|™éñÂxþ-0ˆð¨Dy…´Cµuù%7€Xuhƒä$è7ô ­-oóÆ kî•;¤ööl‡¼Ï¡Jz#xÒÈ»47Ø•ú¯žZÏe鋲ŠröL³¶O< ]ç‹ôM‘Çûü¨EgߺýÀð¯r«fƒY•1­ºȧ¬‹5®I ˜Ô'Aß^ DëeUAÑhÐÊżº!îÿ¡Pyõ¦0îáä¤lk#>µ92 èù ãÒï7'‘–Õx„0ti#—¥‹ ½lë€3wΧ‚ý$ LO®ˆ7ƒN±Âó›¬!ƒêÏuY ÜkÍÁ¿öÔ>}ºã§³Àe5ôos"íÓùêG秪ûÄa]_PüZÇN«¤¼òœ"ÒÅdþTéúN‹’9߀Ã\¶,é©“™ÔÛšÌ`›íþ4÷O¿MÂ3Ý'WwgÍRâÚI ÌÕHÙl„“?Ô<—cÏ¡pÓvÂúzŵY¼ëšœ¸ ¿¸ê6®ÞÝr2­K«Äؼ ‡Ó{Ì|ªZóZ™{§y¾Ï¨Ó86ˆÙ§a¥°áÆS€¹/‘¸‡ïîxâÖD Ý»òzÚoÁx•AýØZîö?öãbóžDÙó ¸1m~ΟՀ}jAB*Æï¶¼ÿ¦ÿ ¾àÁÄ>ž¾"À)ÚØsÍËàÇêÝíÈßGXwÜû³3˜~Ók³ÀÎíÚAtY Xͱ>o9è}WîÆãP?F–ekޏþü¿­Û?Ÿ3\TµðÐ6 TìÒW»ÞE‰EHW™j”ÁõzÔÉ—ß½‡J¢¯}þx¨Øæ.T\#RÌ•nÒöryó*Xï E¯|yÄðo·œî½Éj®Ç Š—¦w~˜–ó#yÂØ®ÿÞ7=÷ëxÓØÎD`õ½84<ÉÃçè± Âg5[ð×ÞYýãù&›ùÔ·Uv#tê×E•Y·VÉ„ 4Íë ¿xû`“7ø¦Ôº¢ñá ye0×#fÂ?jƒá–é;+^}1ÂÿëûVô'/Ž.ؤ±ñŸ>’;µO_`ýõùÙ÷äL ¦:€ì³4'Ü8èǾ2^:m8U”m-Žâ$”œ]+µ£¯pçmå!G =ê¼ä`T†®sN²¯¤ L‘ì¸GûYñHÜWà.Y—ê9p ݶé\EvŠý¨W{SÊC¡9Žž’ÐÊæïÖôÎïû€¦>yÀ¦õ¯þ9`±ZdÅÝãù=Iß°ÿ,ƒ×gèvæå×@ïª\ÿ(=hû[¹RBÝÀú6áWõ,rSïO´IN1/9&Õ3Cl®-:`´ÃëD×I}ÒÊǹÆ(ø_ý{v‡»âÅ,}Îe÷k®V| ôÍWbÖ¹3WøûêX0a½È1¥‹þ~âæn`¬6­ t.F×o³%™Àœ²~wøÌÞ÷ÕZ/÷Ý䣖ÚêŸ|€ÇÅ•sDZs/(ßÎXÈTˆÑV@ /?úv-@öÏ4Ç`6=¼®¼¾ÔFi£ø >³|»Ûõ<÷á»éùaFèU{¿h¼\ÇÀUÕu€Ûc‹­ÜÎó®«Ÿy¾¬‡7/ðQ0Ü–J=­Z ´æO#S"(ß„ñô¼g_YP> (r€¾ÝçÁg¾gSBë‹„nQàŒŒßÑ€rKÊ+¡?:ÜOkG6à€Úzîâ©û<Ïûçúb‡º¿<áí{müÕª¼ùÊ3ä †=·ÐÑ¿3\™ ¸=Ó­¤°çsº1_fV}tpƳ„ÁÀd:PCPüŸyyÿKlê…í/7óâÅ™ wn>0=Ÿe]<Üô+ÎôPñ”Si¤J5@¤krí. ¹7K“¬˜@â#¯ÿãYjz ªj\éh¶ÿµ9P7†‹IPø€m°j`ž!°÷YwÕ e™å‘²Ûî Ðs¯9cc숳vMõ€sU.ïúÔ~ ¬àwžò*†ÕèòTw„wH]k†äyt—€¸æò†gK€k b=ï±>;ïg u€,xØùªH0_ÕÄ´VüÒùOö®ö¹¼¹"Øõ¿ \¿_N/ÂÃ4§”¢N-/FËíó/ÂQ½5Ëv£kä*„ã)oÿ oÏø fÉ\äWýŽÎå†ý@?¡‡óúþGÇNXþfŸêK¸VÐ7÷·ê_ŸƒÃŽ ë+ÄxÿSòk©»@¶²Üd±HŒØáõ¹.-ïiÒrÎ;žïQóÂϔ͠: ®Ï¢fû[(Œ¬¸awþùÛ€·ˆ”{'¤»ýꩨ~øë“Éz Kÿ:@1[ÄšÁCM!¶À¨q\–¶(P'û}ò ‘Ÿmú¸:ù@ЪíN/Ê·d²O»ÿ,ÅQNÚùG3âÓ¬Ò|1bšØù,}X…8 ÆñW@Æ»y(Çíêœc y+–£*BÖeVÿoºÒãx¥øÐç/<ërá!ŠÚgõLlþŽ]mjîrÄdfì `ÉN7+/0VÐÑÞ¢ü ZFƒÓ-(sM@rÍ `ž5gl –ò¥ýο*•¼ÚËöݸÝ]ëvEßò™Cñ·×Ut(ÈCJÃ=Ú1aÝÈÀ"1žK±u®ÞÞÓ³úŸ¸º3ùqÐVçÒ¶F>nN;èŽÝ`ô¸7þL8â 3ÔÓŸgMõv䩇ò€å³=7Kö Å¿~ –4¬£c¬ûÅÓÑ£À¼í]¸½ÃSOŽè.Q˜Å·Ôä|jÃöÃÙ¬ õ® €£ÚGå\à»À£ž€o¼àJ½Ã‹ÓL=`ú¢|¶ÿÄ‘þº^‰šŸôôw%i ¦±¼8¤ÀìA3t>³b¹#=fØqһDZ èü¤‚ƒÛÏcñëÁH ±Ë° ôÍ}§¼o\X¿¶iý>´n€ª4hUôLn¥åÎøbã’þ+bV}@õDÅk 2n==Ë0ÆDžÚ# Vˆi,9µ³k­•9º@ø"vçS>ÒÕÇ·ßÚÓ0Kò”e‡( ã>WÉ,E¿'(ñ'Äž•ØÕ±¬rAhÉT,¦ÞžU¯5ráfSª/cD> K¿ FÍÅO.­D:wúùÌ K%xu$ÙÚÄïÉݼ¿_¹R›½eìE±Qß,½ ƒ–¢O_ }ù?<M4ÞŸìJ-ÙB$b)P;–Ž›Æ9|]½É²2 øù½6~~X×Þ©\Žôo v¿ÁB“ç9˜Ì‚é´|¤§N€›–‹Ï#ræR Õü«NÀÎ+4ø0Üô[YXÈ@ŽâWñ)›Æxå¾ïåƒn@»ÓSMú…ò8&-g<×kÉœ$9¹!ÐcGÇí¾W L둎³—²Ã¯Pu(Åmi3ŽûðcçÝÞyøõßæ²®çuÑq «m~¶ßpË\Ú–^ðZO•».{0ì[ÄÌ"åXñ`ªh]ö?•Ž>b=õØùRA`ùõôž ã­Ñ]ãž‹€ÝßÙHV*üº¤Ôi(^A°7ÃQ€g\hõ‹^Q!`×3ˆ¼°^³ ù¿Æ(â@ÿ´ÿ¨ê1 ¹8ó=Dö‡©}ɯ:á[îøâ…l¤_Aúìè|åó0O‹oHh¾ “äŽæ? †mÚ¶Es5¦ iõ™)@¯}Õçè• Äûæ\}Ü ÄT…dã«ê`‘ e÷ù!žtCð0(C8±4ó~0yÑ¡ÄÜNœÝ»rl¿Ÿ])4ߘ/½'o­CïßKKR¼~ í·Qí¼Pe`µ®7™¸¨õUgåm¯¶_|z#êwG]”Y¿ŸÃÂn/Ãj®ùÄ™:Á´FÄ÷8qÍÓÝWU¤÷xÑÒS@íÙx%Ø·W¶ÝM¨Áxjý×n³tYƒŸÊÚÏ¿P'ëU1˜áië?³øŸ³üHA{:7f>ì{ „oÖÍF°–ÛHJ$k&l‰Œzw-+ðâ­ÿ&6l±}t{ šN‰Þ¤Cer<þ¥ëGW ¦¿;x¡ùŸ~C¡Þ¼òŽ%ÇV8 ~¤:ɨ-nòÅy‰Ibã[“¸:+“GÿȾ•™zäêÛƒ¼¿!Ë_}£§PDæ~IØMöôËÆ¶ÍÀÚ÷›Ð,ÝãÝK¾ÎÚ%4½ê4 (ƒÝ¶uÎÆÑq¥§ZHÏ”sV~á~{`$Æ©÷à…€xöÕõÕoùøÉA=Ðö*ø&±Ž£÷­䟦é‘ܶ•ñÖ»p·‰­Ù®6 ?±£Ç'ÿè/bïåß8ßù_ÈAeyFˆŸ…ñ…Wî*V €lyô‹!íOÙ\y²:êOÝ:×Ú8ÌÇFñ^ëeê±ýß•>O× àà µäP1`ôØ'(ïÀ;ïr'{=UÇìå«3@±d}ÏÏ¿æm¢÷›?µne80z&4RÄ0"W”Å92(¾jìó#h_Óª»ÅNË¢xéÌRÿé0ÞõÀLwÖÆpµùÕÞ£›èÀ Jqüy®ãŠÏåÃP_0öWþã}3%ؾ°iﳘ… ­ ïI~Ú Ô¸Í»õÞñûÙf~¬?ÏØCp ¿ÁCæmW`Ü5¸>)x€r$Fƒü H»¿ƒ´Á=`oý$.(‰êÉHΟuìfç¼q…b¿B¶å eÂÆÑ¬ºlvÃc‡ÅÎã P_Ör½Yªï€"cWW;Šð¨±£ÉéÊÂÌÎå@õˆÜqÍ™‘ð†ýnÌŽªq¶y0Ð}¯(¥Ìâ¯/k•·4ÊeÙ‘;5 ³p—K¤©,û1¦îœ)!ˆÎϳ‚ëNóƒiÔ`îÔÇÃð9f’ö üVþæ›ó¾•SâèLð“I ã.Ú¤/ŠCJBïµmÀ"ˆÖM<ú¬SK˜ŸNôóÌuià W ê›L[9RAý øm{ñ›¤&^ñyEÎp]íšmúÀÐõ¥¨¯·¢: jUêÇ`}ô^Œ6G§g;°}zjþÝ«‹yó@úNâ:ä×båå;®3(S¶jýÄj`fG'ßPAç oÃû$ÏNÈ]Fš÷ Ö§€8¶³·«óßõxÿÞ‚±À5u²øR¾˜ £Õ?¯Ò¢¤zóI X»HìÛáͲî¢]w™@TO°7D} ˆÙƒ!a÷‘ß…ØMõwìvrýÇç‹ÖåòQm‚@íRí[ê‚MtSçB?ÐèÃ6Gç75MfÈuXæ5~;š÷_ú|èýÿSGeôt©éó›~oPò@Å,–§Ï='ÈØ˜ê$ãb‚ļ£@–ÍTÉnþú²¤Ofe.ŠÂÄ…HŒGH%^™Ù\¸Wóò‚K?‚±•{ÖcM _t¦¿~»[ØÂÓŒ}ž©€?5‚[2ÙÎs=‚d0÷ÙúJtÿ‰g`Ÿ¿+l<¥ƒÍ¿·ò‹³ì÷¯f“°Zž¾rèùÞ$dÿ:© ôëq¶>È/H*©ŸÞ” Ñ»b¤—Pÿ ¿DéŽH/º¹ä÷RÐñÎ+äÑ Æ;Gçª_°Áö¿’6^’‡7Ãzoü¸ý2`Lkû¸GáÏ£õ– ç±Oh ”Úvi7¡€p`¦”º©©_SÉ¢29Oàä¸=ù¸ ãc-¯_NL¢s“ËbŒ6•âÀïŸ‹æ ¾ÊèØa枣Œ;y&Öä ÿò~t·Úà¼rÀt’èûH9Ôw—¯N©a|ºë–IÊ> ÆNñwˆïêöNÑJ&ä3Z‹>%›5G;SFèC=Šky;…ÈÛ3&ÍoÌƋÇv}Yù›wü3¸3oMöëpf€éïùöô¹-šz¾’@éNî?”êñ5þeHµØ¤¡ÌÀãú÷®ÏVÛÅá¡ýdûKá+EˆÿBha35-ºêÅÏ«çË𘺉/zé‰p> î1[ö:Øu£B6Q=$÷Gÿz«À=êï¢íL›{€p)ÐÈ©î½5à?¸¾X8F?:‰s~5íÈ!cnÐ,ú²Ré¸âºI33Àœcykü ÈOâ.{Š~¬Ó²%@ŽN© Cç¼Qç£ö>' ©V8“¬¥ò§BùïTتCfµÀÊFðO\XôƒóïúzÉxíðs@x;_¹y–NGjÄuÕYýÝe¹^é¬ì¾>ë\v€±ÄŽââOùhœø©2]²{0~zcÈçã ^ {ùöö  Gv¤Œï9\ßo¤3þh<ù[öTdNÖ½ý€©>Pt$v87syôð(InÙY¥ܱÛzÇ"­Í43ŽÏ¢µž% äXõàÆ#Ñ÷Áð–Û>Q*6{vò›g}çoÜùYúUÚIË6.ÆðBKùœaä—!‚óE¹ ”·kb³€#qåà½ßOêg‹‡Ê„ÒM¢»ŸÛÑê‰ÏóŸF”Vþ·êñ±ù°ú¡b²À ÐSUBÔôÜ]±Ìs¨ª*'“{´¾ÐË:­˜Êß]%´Áä4ùóÍg@¸ÅRW6Æèû‹Kç.š]„†«Š“†Â6ÔØ]n›Á4æÀMêÍFºÆÔ+ø¡'fÕÙâŠø[æu­ãÏf\°è?ßÉ&Ïê?u­ºÐá#B¢ÀÄU!”¯ú=%t½Úi¨žùÍÐOM÷,Ý«ìäº&«÷廥`أ迯hág [â xríÉÔ. +­¼Q‰ü²ô¤ñXéF ëM•wv¡:0Jc6~Êï0^û]Ø¡û•gŸ’רM<°]œØØ`çS;Á𼡭ù-`|¤U«¿àb8Í껉¼Ï÷(ö\NÔšœNû¤ P`Ý\Ûâ5ØþÌÂm®ø‰ýuG*5ŒÎf/KHÖBï|™e4g¥¾øù&”Í:× ¶G¢ Ø‚™_¯¯Ö¢àxÁG@_°OÎñü]lþFÂåÞŽíå±IbRÀ8>šyy)pãÏ™0[«±óOÿÙÒd +'ßòܤKÊíö:h“|ëM S‘&Ïû~äàÕ0ðq!D_Š°Í©’“s¯~tWTV0Ûì֮͛ªwûŽÆËªŠª„ŠE‰Ñü¹HB[W©$ÞÁÑ KÕ£à(²Ú/ Ád¸îq0”Dj&ßVðŽ÷ðš&ÅW0ú!¦µ›ŽñXÅ;¥ ]Ä&ð¦ZÙ å¥ÒR÷2ž¾ÄðcÅòîiÄCMVœ{Þ¸@ØFmçpÃ¥@ ø–?4ý/_j†ÅP…2âÅä®ÊÇP¾Sð]©Ø‘@ o5* á©ç¼–wõÇšs÷Î&8m|ËX¯×I0R¬»zz Hiÿn‚uøAÊÛ6 ÉHùÙŽê¡)_ßlÞÛÀs]ÃÏ«í¶Sp¢äÂH ]-úÐ9 gPžXkŠóÖÅãb¯¼¾wH¸³7æ fHà߽ۛÞÿþƒèã@Þ+Äe¹fÅÁµÅ§Ÿ~&pù¶ ›é?‡´ž¥sög£<ê@áÎ_Åž`¸)µé ʧÂÐ9RÚÖÕ@|²v²v£6˜Ì•HI±üt©§.…¶Ø^ß–ï±@Û³'’Ëú ì˜küÓ„'ð_ ®Cùå”ߌ 1=§Áè­k¥ù©GóÇÎÛ£<=æü× ¬âAöŒê‹³ôˆ³Â5½Ô§ùC/r}~—̉]ä¹ï]F¶ÿ÷çE¸”ÌÝti9Ò &Ûpú4þy “å©_/ðÔu#{ætòüNÌŽŽ-fùü®2ACz×ÓA].À‘Äú…NT j:Œdž¸Ì­ZîY$?€¶y:n—Ë€ôõùбè?}%˜&¹A.â3eêô¤ògÕW/9¬œL`ÆÖ÷Öì/†íæÄ} úûl°{Ô™˜¦ÛoœQ=ô|’÷y•ŸÓ“ÅwzÁ×"À=Š0îÕÑÅpÉÁìêço“øõ„?ž÷Àó¨/Ð~dìxöÃ'ÛrmLtÿ¶Žh.-Œ­»ÆçTT·Kæ®{ïò_1L÷ØW§íx»ö™°c>à{ ˜{Q})WÇ nÍ}¤×'{o»ëå“ùµÒÇ€¶b­m·@Õ¦%!(küV/òø|7 _z=n– 亗ûseKxÞ—›8lþ¢Õq~|{ ñèg KIŒTŸÉöºs¦—¬¼€e/ü¾ùõ[`Êħä§|ÿ7¯p÷ÜÖ~܆%-z2€ÖõâLTÜ1`Ä x»”Lýu]pŠEÇQß c©ÞZÛyÀߊì`%g‰¿…V7¦¶Þ®’rÀX­qÂçŠ=9–æQæiºÿçÍ@Èû&m©úˆj6âÅI³ÎÕ9œ¥¥Ž¶ÀÚîdð¨fŸ«LA0Ib˜>• ³».µá¨® Ÿ¹~¹Pq6+"ÆòØ@Õ}A¥ˆvëÐÙêã_ áo”üÌØT—í‹qCó`ÈЬÒ´Kë†ú×€‹|qCgVŸƒŸ¿M¾8Db<Žûp~*òS“"ûr=©<}Œ‘=»öpõŠÝsºíþ §i80¥`…ê¡™|ZòÄѾ9¿.|•—à_ÿní{ûâüÐ]@²[£ó+(ã¤Û W¿£FÖŠ}Ýô ¢ïÂn£ø>ñ¸¨›ÒÈM0SŠˆú¸½(CN.¨Dã40ÑS%üL ÛÚ¼™T7`*ûÖW~~ÐÙ¿Kq¨þ‡Ìb.Nj£¢‘’/ç°ó NÁ ¼¹€/q‘ÜzŒ?­XÐ7ÆM®RŽ‹úªC1üj 1Ÿä ›ç^5"¨ŽïÊ´NáP€”²áÀµùñÝͼ €Q7Ù?uXÛAÍm@Á•I7?àͧáØN{iíºýs¼¤?à…E-ó8,R—zg ŸówZ±·¹6Ýv”‚ñŸ^Y®öÚ3`4¤[õøÄ[l¿Ž½äyèc·w>,ì<ËÚÏO´ê¿ï›7ƒ›×¤çöÚÖç1{VbØ·ÅÇ©jùQþ‹ÿu)‹U¹s•Ù@*(ÿì3¸lšÂDÝ*㌢¼\ÒØ´Uñ|0nûRÄrŦ}~AÁ@;ÙXÆuÉb÷&ûùH7 äìÕÖ–²xcÔ÷žÕü?*œ ,Ç´³"'úz»ËîF[à8Î}s¦ÔHº¯É‰…ßüÓtúv&ÕwÇ:X©&$¢.«×‘! Sj—qâ°¤œîŠJê¼–å~®›À¨®,.Iq7àg$“cP&MET¼cVÚ›š™ê«óAßD9l… o}n$ìü´„Ðy~¼¹…gÝrôÏß2½%,[úݽÌ! 5{è…ÖíÆÚkyÌ% @òc^9ÖíŽñžgÙ´{@¡¤jCœ>Ð2œû§B€6o9{±5PÄ÷¤âø2êdî¶»@ýóþè[W&)u8èÇ€'p·på˜Ce͵ ß/>ŒR[Õr\™<“ÕçÅlãáý]$Å„bÉ»£€ÿr):PÙ(ù1tM'3`ßp_Òx„™öFò팟Ø<ªC 3I(êfhÕÙ†¹ˆÿ±Š¤4Ë=fåOÏùê¶ÚX.î Š %@®£óû2o}õÈñCZ]¼uOäUÇê²²é@®²Ž;~Ø ˜Eb9åÞæ|>™" ¤u¤žâÛ[” %QØof®nÒù ÔÚe>µ³ê󘦖÷ñÝâÛƒ[2e€Íjü6§ãïŸFu¥Ìžþ­•MYZh=3N—_ÕÑ““Ä{V#ZtàîÑÜ‘=Žñ™eáüZ7.Ýê!|ˆ—iKŒfMèÄxøæY:}Ê©&bÀ< Âèµ!ÊÇ…ÖßgϸG÷Io\ý±'¸¸¥!KæœÒhмäÇ™Œ4¬‹)ýÓ/š“¢ÎXMöãí{÷76O^¯ó™i`Ð’ù(¡zóD®·Þ´ÂÞ?1F¢Ñ ˆQ?J½}»€’±¤ô-ÌÙ¿{ܸ8Ü‘P³ó)À4ÿZ¢,0 Ä2Rl $˜ö»ÛÃxó¼xAåE±³YG‚Ïü©ã&}K}ÒȬÜœª‚\EÄ+ˆ§/‡ÅšìНj÷ÀðR_ååYyM«Ö¼ÔÞ‘úŸÎÏÂjÃ¥¿Ë"É6«èdNEß?|mpÏ<q¤/¤=PÀðúCuÉl´¿)N¹ëÛ<†ff÷áŒôc`l®Zr³s.Ï÷Y_Tc¸ÈÝ{½‹žàŸþìð«ûý³b6®wm®ßW 'ŽÅ¤læ]§‘íÛ–tL©?ñäƒt”7Ä-•-ŠÔEù£„N]17g§U-_þâ7Â=xíO[µ|¶€ ®ÒòàLv·\µ° Ýxc¦r¨¥z¥— Ðù 6a”Wõ€÷¡m~_ ¸æ÷ºÆ(À P6¨Ð€µss»H" èNˆ\vÉü¸1ïÕ@°-Ÿ84u(jµóŶïZ÷†§¾¹#@ü=ÚÚÔX¤¼ Ï—š©ÀnÔ[¨it|ÈøM?·dI6­Ù ”×Ë‚÷W8L µîbÍÙ£á(÷×ýddbsð•÷ÿ?wáGÎ;ŵ@UY›wJi=˜‰/8’üØû»›ÎÑ-çù £€¥¦'dnž¶ö¥íÞÝ€??*Î*ýg'½@üvò÷ÏSؾhà_ðÀH8ΗŠ/\kÚ*ýõÉ€sPz<¢„ÇíC{Òfé?P޶]Xº åaQ%ì«¿Û¼'b·1œará¨îÍV p×Òãë·î­Fyé±máù«.þ¶Îçí«câ£óõŠa<0[îmóöm 5WûçŸúà, ìYåö±éã°¢ñÿc_NU÷ö-J¡A’&©HeH¦3O¿sŽyLBƒ&)i ’2DQ))MRJ“H!4R Ò€R ŠP‰oÿ¿÷yZ¾÷¼]ïçz®«ë9gŸ½×^ë^ëþÝÓïŽ;*¬úúÏvÐ4åõ~§ÆÐ!~ÖYˆ.¾ù¡`Cá­ñª‰ùc¶·J›ùÛ-LõÆ[æÉ?úÔøü<‡YOîÂ"Bu£ÍÉ _ÊžÉCÁqãœ, ã±6¥EVIàçþX%ÿ擳^p!ùd¬³ÎÜ¡`6Üœ}XÐúv‹/%brÞ‡Ûô­OüÞS ¿“K)ùi¸h{lÙ%p;¾+ZfmLj“ÛÁŽ3¼6µù-…³N†ºÝµ‚Q\î}þðî¢Öæ"ñ> —)Úݯ;Áû°(oÛ.rÞ±üzò/‚yÌżuÀu¥…ÇM;€_¢çŽ3ÿÃ'„!þ:‹[£À÷žï£6GlZíÉüã•KáÛ ¦›Cðxü•½uÃa°ó¬ßÛÖÉà_ •=ºx6¿~”o >ƒü‰}d˜g–¶úº „šw}wÇé¸6oÌÃcÒ÷·IÊòFœáåIÎÏ9`»^©{á¶Äu4ñMË`ÁÐLWûØq`òùÚ9—1ÓÁ>E«8¤º"_w¾Ž: ã“ÇÓ¶œ Os­>øPø–ýªóüX@úáFïÕŽVo‹Z=IÂ¼Ž oÁ3]ôznG¿zïžÉZ‚Ò%çK51µaì ˜¨ÝcÌQߎáƒÍ•ã)óa¡FøùËòÌE¥:ÇïOõ…ÁÒŽ–ˆ I?Xi¢ÌÉ’¿bx+çö’yýúgp–n2®Jx–žGǦà/‰]2ø÷k"÷—O±5‚À^óýZßÛ7ÔúäŽÕ«:CáèˆQŒæ[o²Ï'·kq²Ê³ž6iªnà·,šŸÞ6âf³3=Êž:KËT£pŽÜëá­µ„§ Ã?!v ÝfRÃã£`·œº¦¿~%·¡´Æz[ûJ®Ê+ÿÇìU2‹ÀÛo˜Ç~e~åºßï/„¹ºKâœïÀë¸7Ewþñš$Níi¾Ÿ1¾Øpª3`cìÞ!æÛW'½À[8è]ÎÊ.‰¾«Ìo û‡ûZõ-΀¹MR´ø?Yûº¿4{ÉESׄp0”ÊKO¿Ûýf™åÅ3a»­É¾BÝVP4|E÷Ÿëͨ‡¨Š‘Ô4™ÚZïV"q¬MôXìÖÚ E³¨=’x4d×Ö<)àWaEì™0˜Ç®²}p¿‡åß8IÆÃ½oçýá:áe6é ¬4'³î˾ÁYw8õIóqO0û\ëç÷n®<3³,…ØßœØæg ~ˆeîí¥½°`xé¯ßÜ/oPµátRã0kξlíæµÅ§/n³ýƒ§¸o]~©8¼½éoâÒª§nÙ÷Çþ‡oúIIúnYˆy£yüÿßëLûî.߯¼yX„wV,…ƒcg5×Iö‡ÄãbæÈÀt—?%_ï Öh½w夿¤¨ô±jü"×F? ‡œ+\Zºèò:bgò 3—o ð·hõu-ðj欽»È&‹Ôï›<†ñèr§ÑnÄŸ%(~þMö®+ÄŸ½¦ÝvçIŒO”"•«ÞV ~÷šÈ OC4jeiö±!àÞ>+;ï•Ø|÷–=êó£ŽûŒ}H?F¾wû oâß¼SwVx 4í}ëV~캶g^¯“·xíþÿàr…—¾û8Cpž®½‚äyÒw…Êp'y–t-7ãŒ"GBEÁ…WÄÿËÞK¹Þ6ÈQ\Ö[‹Ù‚l…Ë)”ýþ£húû{&Åè½~• –k®æ|ù~~=ëSrM[O€ÖáhÕ=Ÿ¬ÏG9ï%ßa쟩ýn'£ç*å‚k¨–fh. ìgËålžaÃß”|- ‚cìwq—I~ ßYo¶³Ì' Hqm¿VöåãÒü°øŸ×\ œÈoœ»eÐ +ˆTž<-Ÿ^IôMÊ#[åˆÄ{hZ½² ô)¬ WµHŸ^¡éL©c¥À?ùrrÄÙ}öð»¦iE„Eèˆ?ýé#í fôË™ì û¦µ“­uÿðaÃpŸ”í¦8ñ埤f̃åöi/¶…Ë€{…7«ëÎ{pÖÜÝ»ˆ#a-'7R²Ÿð>Cîüj6øAMGÖWÕå”;"aî0°ó¯ùesvPówÁý0ãQÒË2ü¶Å¸¶äˆ' Ù55XÏ; zä™Ûu}ÄßNgþÚüV²?¡ç.UöM‚¸YÉÃOÀK«›ÿrñŸsô÷žÞ;‚´° ÎNøÅ½õýWøßNDµ~!<ô4‡E•F pß³wn}Câø¯üv#rnX ‹oŽ®€–æõˆ™³{ûåm/_¨dÞ`ß§±º²`xCËÓ£ì½ý𵯮†àãÝ_Ú%ôè!»7+>#|)<…‘}²_ÁÚ)=cL»$þ ‡™ŽÊœ“F·EöQ?²O7¦~íd“8'#{ËÈ$—²£ªÚ¥ò/€þôlÎzÃP˜ºTÏá†AŸìzý)©µ’ú¿ÞŒ*Žó[ Î!]Qô¾¬ß³8Þíð- ÌùæÃ–Z°öëÜŸt|¬Þ~’KüBÏ—n8«÷ãÇ~c›D?§ÁM-¯oŠ*0²‰yÅí 'ã[¾Og[‘d óÓ—ÙeC`Ð*5&y„â‡ÇöRûüAïp_y7ðÆ<™Ü‘œŸ^Êã2ðëdž^€x¤N0»‹ø£ñ1Gmø…dpf¼q}à~ºõÙ5—nBx¼øÝµò±0]}¡üò“ ÉÌ*ó¼£³U:ô;Àðº>§+ ¢ëN‚%‡–Sçëœö€G0\ t$û‘_Õ4åÍq;˜•]~£ájVL˜ Ê`÷>“ù¬×1¾æFàݰλ9{XÿÔ³Oê:imv£Îhn­MÞ¾|rôùŒiýøIÉKÔC“sÁ?š®©0›Òç™4'¥\ˆ¦LÙÌØºæ¥ïÇÆA0èÔ;ù§]àvv¾î-™GægǩȖ_b7ç>ÞÇ$x‚¾»Ý¼u ¬Gá¿LU_‹é;ü"XÎ7_Nèì¾G ÔùÑbõ½üÙoF—â–sŸ®ÊýgÌÿ!oè¨ô,iÊþÝ13?­Œ9ã¾òu(|À½»Ñ|õ†Ii[ P²ßºa•Øx9) ì=“WÞ*K ùÂm§3¸ŽË—/î˜nÔ_¹b>Ê¿±ç=DžfÖT~ÚwjG.ycÎiزHN‚§¬Ÿƒ·ì§ü§ Í#PnÃíàiX ¹¼¢§GÌ è@Q™ãʪ&°zw‰êíóÝ$Ì+æßö/~ ¶T¼ðÍKÊÞ©ÖîU ô]myŽ­=s¼™_ÖÒ!ñ³“¬Àšîµ~îå*ðr뿃Iô7yï”{·F/=½øýK˜ýœ•^t˜äñóÖîùΗ|o?:tèƒ3ò:×ïº$ÿ!ò&[üf€çt´(Êï*øÒêÙ™Á}²f~­u:xuë–/°'¼ÕÆ¢Lz9ø.m¡»X1:Tû‘¾!ÆÓ?¹¦4¾I¬’Û Q»‚ùZ%JÿÅ_ê/ÃÖáÂ….廕[®Ÿ3 ÕŒ²¯dUŸïhá“…:É÷chÃ'CTËž;¡=b‡HÛÔÒ¹à_úx?Ñ/Âäêü¯™OÀ}‘“—¿ô´16nƒIþ6ÓéEd‡ ˆuõJã…‚®ì®DúÔðõ2šaïAk_ÓµÆÌsÕs&R¸«‚Vðt>áÿÁµêR ߈è[˨íÅKÁM7dID[õÞþà ¦£øÖ»ù¤®„û&îMÌ©‰…¿ùL~3èmº\"z`ì·4490LëÅÅsÃI †Ç.ÒFÝõ%¯ûÅc³F'®R«öÞÞ:Û?ñB‘ÀS¨R~•ª=Ÿ6LpÊ—âÈeÔyÈ™ç{‹>þl-ôwDß ƒŸV`6œŸ:Ùð?ç<¦jÄTï›S7ÑóVR_Íï˜Saö…àe¾xÐ*úîZÐ ìGÎæK#7åQçðë`õ´èyÒH#í¦yà É`© \lp ‚-Ù- X¸W/x„z}M™fùøcAïI=¬PßTÉqí[ mî•a7\Áq{!¨'Y—Ê0—/kö÷z%,X,ø:[‚WSf­ßÙQ`H±´ ‚’Ý/³eªÀ>’³rd÷6¦_RwôçsÜ&_#0»}Ž8Å܆ЦûÊžÉ`åÉÜûüI¦7­nŒÙ¡Ú×\ÙYóÀ¸êò¤©üíÓ“Ÿ9_÷îÕ¡³lC%KV-t "=ÎÜíY©[*¼b! NY/³¬{'x݇ö,[w¢1·|§'Y€'«°e¼A ŒÕEâwŽBÔã±Ïù É«ûןÇ^i:V*n„>Á ÆAs!2ÞöI+•àjö‰Ëž»æFµàúpWM>zd_ç¿ù-”ªæ{fµ&Î.%—²Œ_nŸ¼f$àw}øÉ¼g O¼%0ŒÄ½YÛ èß-ˆŸš'®\]<~X<ÙŽúÊ20ƒº Õ<‚iÏw<éØ úF]ŸÂR³Ï_Ð6½F§Â,Qrî ÐÕL+6, Î‰ÄW ”‘ç\<4¶÷ü-ð*Vi®=Báa…+²îÂ,;xn㔿Ÿëœf÷µKÁ¨"H†·7‚¦!óìß逖bázÐ+Æ9MËËN…8àÐjèŠÀ,‹¶`8áÙÛ˧(ì¥ìñƒ/>?¦cѱ»_?ƒ6ߊßn7ØñÑ£'¶›uþ¡ìWàÙLéZr®°~4ÐÙæ‹À õ83kÌÈög¹·2a´ÂbѪ4˜mØ{gsì Åí0é£öå]ôž#q@£ ³×äûù·¢÷–YˆÑŒŸ #);êFä„$?Ïë–lík{æÃÏþÛºÈ{ž\Ýi+¤ƒþΈM“¡ì¼ǃLëIÂUÍSã Èu:ÆÚׇFe»©ƒyTÉÅú4…ƒ~¨ï_EÉ¿ÉìE«tý@»ý½#{zL– 6ˆ;Cê~^ ûz•:w¯çœ_eã{~­¸#ÀK¬{Û•” ¡Éõùô&ʾøvéépðÌ0KÞ“z6v€ðÀpÞ.ðçÈêr”-}óÁ¼®9`Çk´Ž$þžQJÞŸ[`öiÏÏm|O_?ÖøkÎýc7SïuÐê'çr-SdùKòòv)Þ-S¡ëÎyÕÕ ÓŽ·9¡®ù#›àÖ’òešœp“™ Öò6S£gÀ{»ØgÏØû`E6yi¶íè ¯µ?Ïwž°8Æ4(˜œ{êœÇªm°dÞ6tx%ý¹ŸÉJ•-Z1çÿÍïcÕŽ_"bï±j¯~©Ý(Ù‡™b®­BxÙõ‡}Iò‰¸œï=—~…ÐÞ¬e•mf¨ì’:qÖ3ÂOÁ‹|þɪ…øøµÂ)ò…g…×tŒMulåKò³R>)v Š€Ùøñëf4û¾ñ¹}1Uàî616ºúzÞ6vÄëÀ¾ºfuÀiIžAÍ\—úw pÒÙ]éËH?ENVÙ&¯ e:—),{ô'³I²^]²{×D]˜\¿$ïp¸S…§Œßƒ>;lÐ-Rÿf•6ðÔϼóÏ8dLë×g#\œ’q< <½cGæo ñj^ÀúéË»Iý/ó`½â9iˆ¶ïLh^Ù"»‚äE &XÑ?Þ¢ð«hª,¶.˜ÕñÔßQÐo—U´Î‰¡ä{î}e­6ð¶Åº¯†±â¹_yÖ# è’Õ¹Õ| ¢rK2ÎùIî£ÚOoÓgq@ûeq|úoY%Ó¢ ЇÀ·|5b‰ÉTðKJ«–ˆæƒÕð`¶Ìº~ñÛxóí Z l½¸t³‘k:¾pšªåÔ·üQó,ˆ†i>lKüÄhþðä®ÞhpÕ_<[ù ì^ùQcnÂÄ}õÜ9Åß`ü¾âq]Ûðd6 Úyaü¿u_{~Z˜óðLIÙoª>BÔ‡«öÒ`zÄgQ%ñ~FG§9HGI|ÎùT&S½=X)U“ì'ÑO‰Œóžaö.£mgÆ7!°2a}#ŒÔ1í˜f;5ì‡_;6·lN O>z½i—ƒ@­÷û¹¦ àý–™[ü®_¿‘¹ùç›C$û½ˆ+­ãKKÂÀ©’²ô•'<ÓllíV癃žšª2íM<„©;[~+JôI€àõ²Ài] ÐÏß[bð\ùX«…êûÁ­-,5¼yŒš'!ß»Í!¼8á~Oš-#Ÿê/€0IË.¿çèÁw ‹ó3!š³×h}´9õ;ûWÓê׃¥³¾5pÆnpFíòµIO»™=5ÔþVÚ碖û‡÷"§“ëÎÙ!û`Ƙ‚Ï‘0* ÓYÊÚAéÕQnu[:ÁZV]×ô]É;Àk¸®ÿwÒ—•[LcÙÎ΂ÐwÝ;Ão¤ŽŒîíJWë“èöµ1CŽºïƒ¯.Œç•Ž•Àúø-WÇ3&ò#Àr‡¾®£üýîk&Qxb²gÏçcàj¸Ov°+Mž¡ZôÇnàùúÛqZ†íÔ`i’WÉJ®lËk[Áû—ŒÑ+Xø»·ícÿ3øÐÅËSˆ]Á”áø¨©ï†ÐߥjÙuo3zf˜îÑë©.’ä¤;—ÂM:Ì’®¦í v€¨ê¦ŒŸÂVJþoD¬\¾Æš³v.|ù×¾6 Ç<r¯=ׇ=t\„‹È{woæ‰ûgA{U¶çIXí‡u^ûÇ8EæË“ÔV0¼÷•¹GüdÜo‘ñK Žd»Egµ ˆ]kÊ÷ÝyäA1éó^ ø“·úå žRöã ù·ÑD2,;iGx-yËBX;VŸB3b¬?7åTœ|™dD<ãQª&Ésøëû³`Ëu:)€°î‰g«ýh0n׸ÜÏŸ¡ê‰2SIÞ8+6®ò¢T=—¬.ýfÎþGæ°â‚õ+ !¦tÊ÷aŽÔ>ª0tu#õ8 éZ«_ÝÃ@Û+Ûž;ÁØ7³uò9'Ðz¯9/ê·wWM›.áçþùC~±4Ø›m­œß‰`àÉ)(›ñ #þEz,&®˜ÿ&^’ÇO8ØþNà8#Ä-–<«‚¨ F~¤:á5 }š;äUL>Yõ‘.%ñ{QÊ;KÃlð.é†#uƬÜSüÃñ9§l…äz0²Ö‡Î´O‚Yä§Ÿ„lé?â¥7<ïãÓæ ’õ¹"ÛᇤI½ãGa~AÑ“´jÆŒ!Æ¥0{m:­ö‘ þdå(µDgðjñw›½£aá a¼ÊÈÙ–™zbÛ¬=Õãf>‡É.õY»JËÀ9š?ÓùíN`O哽 íuu«˜‘ŠL/ƒÄMù© ùœiDæÛ/šAËÔ™µs>KêÉ}*®7Ò… &1¾á¯r&rÞ­$ÈgtAº¢ïRÐz2ÏaÞ³ù©x¡§!ÁIÙ©¢eŠÖ`®¹¹wð( åù«°'§þÄ‘ñ`ì—ª.’*¼4ƒQR 7æœxk8]¢·¤~ˆ0¨YË ü»û ŒO‚·ºÍ{…û~ g¹:}n¬•ïoŸ]#Ñ?å¯÷ãë ]F„èfì¤Ðös^n±F=;挨óæ) Öú>ÅÅJÛînèž¼ÅÖôe°Ð¨T̸i {s÷ŠÛ“˜`)ºS}ÞýíÛ-Û(û&ÓfúŠ*07­éKlŽ¿²06ÿà%˜Iïùºæ2©O¥éÄûŠ<ƒSòâ‹Ék9 ÏWŒ ƒ8ïæ5£càü¢N髯²!Ôy#.Z<¨Sâ=üæ†S‰O˜Ý¡°ƒøéyô!Ã[i0ÿøRWWFYâ÷F+­kçî΄?ÿÊâ=›Á˯ž¯e/ÑwÆwurn&€·lDŽÒHÂ/$ÖV³úbÕ¯¿ƒ±×‹3Á’›‘Å…ñýCânŒ_óu­Þ™Ÿà¾.ë 3Œ‚±S.\¹a¥máU€Ö÷í)ûìëO‡ô ]à~yØ£; VÑwugƒžûîÇ~Ê~øoøœŠ} Áü 0ç§ošÚÇôî]}óòïþöН#ü¢À­ÑUzSX{zïåýÑ×q«˜)«ôãM–[›s€ÎΜ5ïîS8{ZqG>Á‘¶Ɍ/Ò½0e·Ín¿E‡ >Úuf]ù~ÀûÇ;v’|ñÎYºïÀܱæC}É0•N÷+!xš3êøŒ‡É¼ò†¤Ÿ²¿CÎyÁµY®< zÞƒêùf10ŠUPf4¬©‡FîôCý•ÞˆÛýúmO:-³°ÕI¡ô+ðü/pœW6‚5áòÞ?âþo}›ÀWV¸äns<í}ž´:£¿Î+w¦ßAg}à~ø]]8,ܧE¦;€UbvKZž/q=S5úfE×cðwž ˆRÈøžÔ¡ë£ ; èƳÙÅ«mv{¿õÐîoÉ™!“5…È!«9Ü0xæqðÕΨ¹PM½_씽í„êŸ~Óä=ûl §»ßTS½Ñ÷=ñw0Bä?n uñÂ5š)…‡ŸKŒS,œÕô#’¬Z‹åNšþÁCë1õoQëi‹…׋¦,{r„Äk˜†—fnºÕÛ!U/:ù_Áºvtûw¢gøžQs÷ûAd²èDñ‘É`]kyÔåH­sïŠøŸ1`§Wª»ÿ ¤Z„‘úÀ «ãÍAxŒ2cÓ’ûÍ([¿ìu4„C†&]2ŽÅî¯Á`ÓS£ÛVÿýü?ÙÿÊÞ±{xù›ÌÆ^îž@'¼U£M>äúTáØKÙ‹Ò*À9Tai–}üP»£i;¥`nkàaP¾SÀjkˆ×®Ù—6ˆÔC²]޾]:Ɖv#ß>ºo\âîà|„]È0[0ËTZ^#uFœG¼‚KÙ—ñ½¦ Iî…±å“Þ=M=4Í«ÿñ@`†©á®`>R¹i%ußÜÄÈ›%ñÞæ/eO×YP¸„=Ó¹3jê_åÞÊÚ×mŒK<ŒœöäzsÓyü‘/”²ljÞ!ÕÓÀ°«·-®ß´"úõ9õZV&¨$ýLä4·L§§»BënbWöñUî-»!:9±²öò;˜¢ogÅd‰zѵàá=ˆ‹|Xx“°ð»$_—í§úÊKVƒíê¹Ò° “Š'^CåCÀ\;oάnwpªölP ÞÊy§>œñÞªë¼O¦Xù{]΋Á0úr¢oI­¢‰—JþááŸÓçÉø“Ÿ. Y}¥æ¢0¸®+§GòìiæÛÌùö›0ã}¿!Šø3ûè;`|¹|Xc2X=*ÙÞ®ëªi"©WgmürýÌ>ÌÞUz'mùÊåÛ7<œ A çq]{âÏb®—OO'õ¼aëL„ÄÿÍ׫OèL*í„vÅ Ÿ¿ó³eœᥠ“‘i|ËÓY½ŽQû¤BóÐIpDî^«zÃÓ é…àðN]دn´ºäxVìÑÎÚSèWtü~W+5Øy·‰>yîZã'ZÑoÁò’Ò?bø~(kç½S%âîpìb$ù!Æqü{ÓÈú Vé„O; £bº]µêDpž̶K#óbj×R1u‰¸šacÒ!rœŸYœ OgHçJ’¯Æù’’Ûð¢ï,½µç'9­güø³ÌäF)]­»£U~òC |éså¥ÏU‰ñ23Óײïž«æ\½_e,xw?V[0´qÂö5WR@¿½¤ŽõÑ<×Ç.Q¤>Ÿ»ø†ÙáY¤ÎŒ%›4ø¹%¯Ã¬ ÞºÀÄé§|ï`-JìÝ¿§_ÎÛíjiDoþÛÏÂû~CφGÂ,$ë½R/©gÆØçWM†hN–¨&ù8³çÖ—ÔPûj๚àßÒp5(ìVûhíéªÔy–4zñì:ˆÕ*hƒ\)û=—“c8ª¼³ßldHìÿÊÇwcSFC&Lª… SW/ìgñ_öã!¬<_ np œ¶¡«U¯…@áx×ùü·”~hº–JÙñ¦Ím½¯e`æ7tWvx9¥cw8õ¿7•í(º¬6£¬VQâ¹¢.GÊŃÀ4^OÓ;@ìVQP”S«Ó\ðKµ»·Ì&u%Ìi…ƒ…—€ ªÃëº9ó®C‘ûžp˜-ñ8õme,æj<ù#ñ¯ïÍ;Ü£21¿˜ºhÛÒ<Jï´ 4¸&ŠÏ®ÖN?3Éß±þ,F|4YñÜ´åg: (9 0‹±gëÎëÚOñ.ÎÙa7îLÌ1ÎkHÔ_‚©Ö"8hû˜Œ{"è§èÑãÊ-ND0”äWô:6wꯟ£>GA4hðÀ…›Á Þ|yù+¢Ïac•ÎKÛΠÄ×þ7ÿ§•AüíX /™ÜèÎÈ¢ìäãsW®„ùã¿ O7ÿ§«TÅO’?!7±Q'y±ì‰²›–$ƒ{jËü4™E—¯ï7¬¨9L¡o®“äI¦ï\iÅ7"ñ^¾Z¹þ• c0wå?ô«×àèïÊ·k{Á‘¿Ö¸ApöNÒ«û¤ÖxÚøýl0uF³?¿‡xƒ¥Ë샶ÆçU5ê†Éêy'x’:aÆÑ¬É¡eà7}nm:c ‘éb­ßÁÕ½÷óUçtÝé'…†:%ûêå>z°‹ÊO?3œsºl§ÍùàÅèI×]—Èóãcù×­œý0}{릾§ü+ÕÕ0lÿ¼\sØ -.½þÖGÖ{ÞËë»zÑòõ!\heÏ>óF'6]Ó£À¼ÏíTyì@áÆ™©…¼û0R)7«$¼t&o—ÇÞ_ôÂÆv×û’}ð–#ù?S¿ÀŒÑ‘›Lp³ùkO‘¯‰{YNÌñ:ÇÓ"óöaï©“¦AèöÐ!÷‰S‹ÌüåÄ#žÁøÔ‹¦ ž”]¯uÏm@ u~]óž2å'á٠ɯŸærc2(ôꤟ ¶È‹;+¶ ôžË’Š”§éÜãF6rÔ>¨›BÓ‡áÆW¿æ·Åƒ¶ÙÄÏØd„ËÌôû¬Cô.Úíp~0 565Î×cálõS?ÀèPâÍ—3ö‚ vêJÉx«É:¿ÀSs–J|Î*/Ó6TXFådÿ™Z°º¨¥¢ø¬lßøO{µ`âïÆ® Âè¾êg7?}à½TS˜HUûž¸@ò«E‰vzÊò¿À¾¼¨8×c‘s˃©”=øÌŽs–Ô‰ó 'Mv$yÐŒÑ?\K¥êÀí6Ük“ ˜_hlÙ-`ä í¸¾¯_ííêy‰{¦‚üeè6×C0NRçâóüã¡ûFv«ü?!ûùCwÃôß$žYz¬!kß/ÐS†®ðW¦B¹á}êœ_ŸÚqó'¸[Ø#ƒe»Á?·~¯§¶½”Ì{C9ÐFÌ?¼a^ÜŸ?ÉóV墒ÂËDβ.¥n‰H€Ù›1c|IžˆØ+sîÔ ß´^¡{T—Â]ÝÝoß“8 ç7šßÞ¸ÉÐë[g©A`hßÚ,Mô(·æÑøtOs^Ez æHæË‹Ô៯€spOýøŸàlU”:r¥W~d¼'~8L5Oç?#ñþᜄL«b ­8¹ee·œ–š2‹ô—'¤Æ…_‘¬[42™s¥m ~‹íôúA]QWÏ‘%õ0lõ§ZK I>:ë˜ÆÏ÷?ÌÁ·PÍÐX— vèÉùvÎÛø²­¸Ö †³2¼›ÁÎ;°ŸÎ1-tä¯CÉ×!(dN[6æ3YÏoûgØëgNµÕãÖ}†ø*˜ úÕa¼V*4³»Oéßñ&s2$ë¸Ccßß<üìÞ}i–¶wÝñsòJçÀnÌú 'TÀ{6Ñg|ÚQÐsÚoóêgçóNwªï€0Ý`ËØŠ `Çþò*]’ÀÏ4;á£ø§Úç«_#ñ@ý‘˜í›Š 0¶¨IM¡ð¬MóÅü؈6Ý*­&zÉH:w ïÁ0ž¿ã ßÎy‡ø³öó VHèY;{‘“ƒê!ùâŸ@À׊Ƙ`pvæ-^´¦‚èæƒI ­àjµ—ÛÔ§`ùr½©ñÿö‘˜þû8ß"åà¶2×N!|ßt»rNg¥RÖw^Ôæ±³ûz‹÷@8ÃLÅëò4 Ì“úqxŽJYþ>`å[„ZÚƒ•þaé‰.JÑÙ'¶ FyÅÚjįÆXç¡ÿl’øiéßr˜6ÀLÙÊ‹êå ïIUšXá ŽVÛù×ÇBÀ}?k¾ªq6˜Ê³véùS‘Cá™)Z‹|ºAhº"øá&GþÃóÊuÞ½íÑ}ð&º„ÍdSzÁáÝSÆ©BÍ Y 7ôÜEÛbfA¸C\a=¶`/Êž:ðæ0^œÉË_8¦²ßÞµ´—˜§øÕÁû‘Ãü©Áþ:…åúOÀ1,QþÖHüPÌÏ‹ä7A¼¦EutÙ‚Ûs+ƒ_¢~¿ã‡=áYf->”ôIôƒ%òP®.Zý¢Ýyƒ8§À¿×Ûá W¬ …€ºï›¦H<Êr7{$»{ 8eRæNûã(ù,)ÒÎ¥pêágw‹`×*fNOésß—ËW¿ëÈèJÛwËÀ›·ðɺè@˜œÎ] ¨–F¸C^«¸;º’¯{¾‚ £ïÕ”ý$ÑØ}ÓmÓ)»=OËv/›ÑA³‰ëc Òß>f™ÙPŽí¾ý¾’ð£±2sûvëÁÔé{ò"ý”=“[á|ƒÑaàºúCìrú¥¢Ï¶+æÖ>ᢷ Z‘W ^` D?|sÙÛŠÜ÷Qòüw#ûÕŸGϘàKÖU0Ýí舮rˆ§ 3b8ºƒÁϨ: ‘aÃ, »£à~vo/¾ ì¼=õÚ R ëƒÞPó}olÆv‡Åම»hÌRóÊKù•[Ö@Ù]JÙ]9Jû÷'ö{µé†ñ›0"Ë.Ì·øÑ€ÛÁºÛÀ,Ì:´rÜFÀ]Õ+V_´é7÷ÂÓ!`ló¯ AÈÌzšªÃù—§ÌCIÔscþeÐGÑCï\„é…'û6šÊ/­Òóz[6ØeKÜ$ã…øÕ5hÉpOx˜ÈŸ*ÿ­tËTH\Çt\Õþà…§oÛo1šrŒÎK¡G–JöÉ6™§®(×4¢)n×®PöpÁ.C`èM‰¾œ# ×3¹Î•ø_ìoˆ‡úªéóEe&àwó ßP,q_Aîýï?ŒK`˜_ôëÊÛo]óÿè ZµÓ•”E7ÿ¶OÈ~û°ž ú¶£å–tâ'‡‘˜“¥–ÙïÃÓ–Ç}dþ‰^óbimƒN­#0K%á|;µïv¦ðŸÝgáUJÿ œâN:ƒu‰þÆïÓsˆí[Ž+17»qA 5Ÿ¯~/ˆä«B´vÇæ4­\eäb]çVVð‡jÂ{ËXíS8l^ ˜ÙÊ_Î%µƒn-眗Lô/s€Û“þú^œÉÎëÆt“>yÂÒ÷õþ ¦¹FÏ-N‚pàÃ÷_d΂]1Ìrû­¾ý¤5:‡ô%|°Ìˆê§íçHœŸ»8ÿ%¿@"~Žm”ü£—Ó(9˜4éÈnÉzw,ÑŒÝþ üºF½ž˜<0ûÄÕî;Óþ×õ¡ý篂çÜkà €¶ª%˜®|ü]ƒÇ}H&qV»{¤µ/øÓ×DDiƒ^l¾w$o8Wø¤ôÐüEàìýè3øÃxðØ;z¿^©óñvÖ‘tÜý?{HCx½O ¥CgãCÌ%x¼%Ïû·Qº¯Ÿ†hYÈÚ­=°Þw–ñ{VPr›XÓß½]‰ó…¬§Ýb÷ƒöËÁÖm|ÍÀìú=´ËúLÎçÿÊž ±qüœ‰/ÀlrÉê‘WÂÄkÉ)û’o Ñþ_^FŽª/…7ôÆ ²•]!î¿å²ôùºÏ‚=çƒkÃÙ)Ú(iße¸“Lòʸî³ÚŒƒ(©ÀbTÐ}íÁ\‰FX_8»‘² ܲà(Œjoœ\¬ :g“AóâÇDÝÑ_Ú å×<­›Ár[Wùk;Ø¿‚nn’!uc8mÓVV0ŒÑ_oë\lüWC0$hëW;°OÍ»º|³9„z•«ª·Ã(äla^ÕuàcfæÀ­Ò`.ލùnù vý§ÎQ$_Æyí+>Jáe«êèRÇßœ!V"Cæ­Ñ65Joºÿù‹äEw½Õ,•ZšôÝÇ…Ú×É(žß3§Œ‹C%yb™¾ ^µÿ±×ÀóÛ{{ÅòVˆ¼óç+ü3ïšy»ò p¯JYõœð ²â ¶î9Cí먪Î~õ<œSÃRíÀ™ä6XVS찦Ї*aó¨Ê"ŒÎ˜Î“Í …8ý–|àl?à×厮ƒ÷ÿå…øsÝJÇ%Íþ «§Y¨^ü§ßûHAFm`hÞw÷­hÖŽÙU#§ƒE{1¼£ØHœmѳq4„—T¯Å¾¸óÀÂì¨hÐÔKMœëúés‹UâªÁßòkÚMÓ§nŸ}}Wâ,0¢{ìUI“©ì²S%EG—Ž}Î#ÛÀ‘ßxOi[èkÒŸ(P8EZÈÄÆÛ0>tåºî‰é ¯ø½cq´D^‘Û¦×?Ï*Õƒuÿ裖Átûµ³o=4`z?ŒÒ‚X½}œgeØ·Ä3^„IÜO4Ö¼Àè©—ÂiÚ“‡‹(û¡1ã©A%¸+ÖL9–eáªVµÄïY*‹¯·/'u&¹Ž7o‘q ÚÊ7sŸ†î±×¦~ ƒg³Ô‡{{†°¸2Zô]®¾‡iÎñϯŸýŒÒMSì"É9!ºþò¸K2ññ¶dXW'm°«²ÃûNزq•¥æ$?‹Ç™ž¶Lp ÂÅC7Îv¶‡°Õ}õ‡ŠàVÞ¼oExyŸRïWÇãù=/‚aÔÆxÅýÆÍª¹¼[6ô3³ÊŸ­ªƒXúžt Ÿœû&çn.ÿƳ­fUJðYEj}òŒ¤&RxDfÀ#“¯ pßh·Nú1¬¥¯“ KÉ{±7{Uõeõó«¦0Æu¬‡Ñ4ã;»ÎfSzÇ`NÜÎÁd¾´öÐËa’Ï0pí8Ñœ-®E`^]ÿvÓ’‰ oìkHÙJê£EѼp£YàŒ«ÿlo_/±~BE»{åNð5ì4h‚éú&¦ÒwsÊ^4²ÖèWßòO¾9÷åÁÖ{™¥µ_¹g(4Ûò¦gÿý9äy£®ötÛæ·ÍcZV` Yuàî É~tB——kVù<”:g¶]«>7 Ðàw-ð%PÚ]êÐI=GåS‡Co=׳¤l†*‚1PtÌš×Á,óƒ‡åzÀv¨L½»´K-«Ò§96%<>YÎ<žC‡7½Ê{@ì!ƒ’3î!?!ÐYÓ31D"·÷ûÜÁµû}| ¬c³_ðrGE“ⓃJÀ£;fÈ¿{|‡Â—ÂÝž-½u{a²mÔËIMö`-q1«ï͉öÐ (¼Îû¸¶á²Ï\²î!qí/aÜuæÒþ!æÙ̹6a:‰?6ß®FÙM _ž övæ%ÃqeëÇýꃕãS5WUÎØIÖQ›%FLtí ~ÔOéw7€mVÞ"›iÍ»-!ˆ\ÅMÖ#õk¢FÇKZÒçÀÛÚ¶eÒàÛ ¯z4y‹ œV©“?\‡©uIN±ñ4`Š{lÐtݿɧ¤N-±Þóõ D1½ÎróÃÁÙ¶£F^ÏeŠkøÚõ~­%ñ8VÜ™ ÏVÔBóëUêHG0™'^ó½³À]¨“ú–äÍp{šï…åï+ÑgØ$ñGj> ý¡6â?¸[s&eg ü”VÁ L°5îÓûåo›Í*œñÑtW»sO]cÀû2ºõ™ÏLˆ§WåæÌãÂ8üÀ7Wˆ|°Y‚?0?†z.ÙŸ—f>³@¦¼ÄG›òÃð¡Å%›É$Þa4þæM—ã kóÖtþ©kcO|S ~ï…ñbwˆ¢v7‹Û ¿/[Árž†©Ÿ¢»Êïe—äá8KÅ LÉCÕ¾o:|ˆ¶iœ˜å÷ÌFvIö£Fð.P“Ž%ñ-÷§”ý¹2à¤PBÙ¡ç¾rË3xÚÎ(©Û"¸¡k¿;˜£cÍ>zÛƒ³”)÷Bg'xÇ9½ãöµ5ËÏß&õ?Bó2ÂFÐÀñ›~d0~P=`ÊéÁì|ã~ÆËâÇ:ï~ø¶ _¯SëÐàü¦Œð]1å¾ì¼ýÖ¥ŸG²Ž€öi|êØHÉùáë6Ú8þú›={®M.øž©Ùó…FÙ‰¼ÅZNƒ Á\9·Y!ÿÄÛ>(mÓ‚qön–¾1á§dß·²c-ýšûýSûÇ\%Ïéˆ×8<-œ+¯ÛÁ}yUü9pv„¤ïrø|4úÅä¿?Ÿè±ÙÆ )^Àc7'’}þ›Ã]{½ ¬’_{¶èÀtÍÌa».«Ç†Öy—R8Á1åq(‰ æÎÙ>1‹Né™,7ï%WÝ:»ãUh¡ î÷vB0Õ!äBõ`ˆ'9>ÿæ–¯g&…5€ç1kî¦C,˜† î´ëãÇö^õ¢C€|t¬S éŸEgØ:‡~ÿåãh`ü$±ùÝÿ!oêw¨é‹›’¼.fÑC5W¬ôë§©é·ó Åḁ́дòû`’_Ãm\ô@i'Ñ'ÜMÿ×Þ;îêë´GÁ‰†­>‹H_ îOŸkù Ï^<²/þ˜Kµ·¬Û îÎo ×’¸¸aeEóµ“`"Ò°QZê6û”h‰ârðÇÖËÕ¬¢ìîEŽ Ói>`myyðÙÛ¹0ŽºäÁÉög=gøÆ{# Œ¸9:¯G[ù,Ún‚Iþ/•¿ÖñQç»;g‚ëß±~övÂÏ_¢øÌÊøO>:Wóg_Š¥ pn‚•W}X/ºûæQçߊ,5ç‘àÉÖü"G½Oh¦øYÀx˜uÆÌU9;ƒZ異å¿`þ(ià R'"º¶h¿òµk€7ãÚA‡ zuu³Ì˜s`7åOX;è1<&Ä‹·›Yo€'9¥tù.°‹É­2„ÕñóåföÃ@ß«¨~ñéšç¬×ŒÓW½΃áE þÇ äÜV˜[ «¡ô“Î9ºS7ñ }jÏ“÷f?vK웫¦W&ó“Œ)˜‰Mmû‰!Š˜ùxE¶3ØifÓûå·¦ï2¸4 ÃFj”¾P¼T¿dâ˜./Æ ž5tØ›§»¥©ý”9oòqÉüP¾áýy}×€g?•)÷¬_<1éŒ_ûÉsà‡™èd)K®¯ŒÑYÕFéyÍË¢æ`áxr¡/ÒSÛ1ó‰þdœ’ùõrø¥Å,3›Ù ãc/×çü'KüùTÞ,ÿÛéQ¤•hY¶¾Üq}‰qò†^ìùq'Â¥;>èð‚yø¢k¨é+)̬nÒ{·Ú_’½½ £Æ™Ÿú®ø/·î«ÆÍ|’_D«®,N¼© qåÙ¬¶C$ÏFàŸ2ƒËÚþp÷æe2Ï&‰O»÷Àd¼QaÂÝ JïÜ–Ïê×ŵڗQý¬±y>r£Áš4ÿq^úCÊNº¼ã[ÆJ°=jÕ]!œdÓz‘ÒWÇ_êgFKô3…pعCYÃm ÖÞïtæ™3hã,ò³6ß—™0ÇvÉ£¢—.×]®ø£T•cRëìa—°O,—¥•Uô~}áÏ\ðI—=0…Ùña¨Aàž¯¢ º`T÷eîV¸Ûø™ÒCk•O¾Ûóúÿp_W‰6$}5YOUó\IeæD7Ýá¡áD^>,œôDç1DO?•}ß@Î#î庎ljÝÍÖi¸qKHêöÀ:´’}/‚>Ù½¿ŽÀrû£ÍIÊ}”¾º²øâ-’WÁi:ôëú/b—ñ;gt/T pÚ–¨JþE`Ç÷‰o—”'‡W\Îé@8¹xįü7`—or÷´Z úÚ}«kÓ¾³fÒû‹ƒ LR{xd›©Äïÿ©Ó#ãýÇÎaþ,»õF÷£‹ÌT»!1anL‡Äï™…ª/¯¯aJ|ÎâŸJ½/"þáÞtåM[IÞ/ëÃÍìúS˜£Šñ#E“À¿üüüÖ @æ[Ó€À-”Ï›¿Pž<€Ä9¿Ûô{ Ú°Ú/ï'…C|8aŽwæ]Øîô^Ò\[ ¦ÛðW+$y׸W_)½Í=)ñù?|²àNf䄎 ‘Ýyîm_b ío8óçC°øËVŸc÷À:pKîx<±§ƒC‡¹/ëõìŒÀ$þÀ»Ò7]ay˜ZBÇŒiÄ?fRwÁ´béOÌ­rJ5Š_Îågå†ô!žÈž¨0ù ØLÎ×|ñû2?Ú>2ÿk}/¹î óÖÓÒöÿõ:ál5y[¦4˜;¤&·•’ý(x˜þuéÎ÷0vÛ¾ÿ˜j˜ÏÊH½ðô¬È¸ 2Ž**«Ât°û„A]`n)íËÍ»>ÝSz(„Nc+æKÔ=€n4q4ÓP8ñHûÈ¥­ÀÒýÅw)¼¼õ—ÙÇñcÀù¾þIPíßÇm(åñ17Œœ—¦VsF8“>µÆ<‘HöBè6¢à û÷ <š¨*%ë¶÷èåMýâIâûoBG-÷ØcÕ—d= §é0 ` ¬ '|çôÚ@¨"4z¬×w×!SöŸ-ø€ÕÏçr€’÷$pKCTŽ|é’œç1î2o(|X¡êÌ“´ŸqwØGO¥0Mš(¥qšfÞEç$Ê~¯¹|›ÞDô&>¥ÇÜ$?!:™8§F™Ä±Ø#{µ±6ƒw 3~™|¹ó^-Léa—wª{Û^ÃtÛåyv%KÈ}ûl4–ð XaVlÍNðß}ú&· ,È%~&ÄŸû¯!ØëÏEÇ8Íøßäìï8o¤Ê1ÿVWðŽg®Ú{rŒ¬øÀµì°úìm²,ˆ'·§ì ŸwÉ ƒg€1WáÛ½ÇÏÁHyà\˜Ií×5kfœ´ƒÑ1íé;‰û³68Ø?iU€ÙsÞ­Œ|‰<2§N^é:¾Üï‡Å½'}þ­Sb=pŒkÛ¶tªÕloKœ*sd$yœ87‡*å:ÓGF2ïo“>ÂËÏÛSó»Á<ÐapI*ÜjË<ÞË@úHlõeß»>tÓzs0[N>ä"xec÷Ú7 "—¹ó¥>‘}ÇKú5ÓOŸè;•úK£ðäíÏÃÿ‡xöu—j¿1ýê8åÖ]š¸­µéco÷iĉ0êjà[^U®M‘^èûZt¼¦pÚ¸ ³×þÀªîðUÂZ¦¥˜I«ü†™É¥i³'ÚûäžÚ·à…äPìèã‚4ÿ–ce7|‹ìÓ[¼¤Ë3Àþ-õùÑ]É~ ˆ;0ÔAÆBý;²£‹3!šò"§¸ò†äu²-§÷Úƒ³@Ç$Pô ¥5n3H]…@|Ó"X%·ŒØ¶!&Yl‘Fç!òûGç».]ò¿îÖ/­Û©s‚}dí¯²ìÉ0ò~¶ÞÃZ¢ >ÉN]ñÓ×tš§ƒ±éûŠÖS·Á¸cçÚS ðº~()ÈÀP·}À­‚gLö½šÑøÜlóÉQ†ÁÊ_6èÅÒ~}LêR<¯L]B—u~RçÕ%åY£mè…í¾`;4LmaeA|éÇÏ-DþøŸ ó“ƒÈúý\`V¥7l‹»¯ï~lÏ\{WÝK]pW lÌ™Bø«Y¶Þæ>§’!¨¨ŠS^¿¬­?»"y$Ä óôGí V7oõBÅ CxO}Yôƒì±ü‰£cWÛ€¾tÃÁIågÊ¥Þò#u–ÜÅmïÀª{ìÏYá¶¹pÕÒT ì{׎ûk“|¿òÉ|Ño]tÛHÙóJÖN#¦4S8Úî(Ÿ{lYÞ­Sš¯ Ö»Ç \DêÃ:ŠZ *ÁÝ5å÷÷‡ɲÛ}Zc`=˜SÙ r/¹à0³klR¸¸ûÒ…‘;H‡°ko¡»̈G÷ª^ÐÝU¹¿~§ä·ft÷ØVЊŸ]ŸÞžy?íÄû,þ§E”váCÒ]ÙL‰õ ëëNeBÈ …±ÛUÀñ~ªYá¶ÿÏ÷Œ³»&V"8Øtánñ”9Äï&¶Ž;[ÿE¢.¼ßÄë Œúáo¹]—6µ~†åÐ܇Þ$˜µ<¾ä´½ÚÖå$_ÉjÏv_1Ñ[Ü»¹g˜Á3ÿäm‹ËÎÇlŸÎ„IÌûc¯CÛÀyã;)6ú#˜Õ=)SNñû.l§-WÖáž yïã…L×~}aDçß6í]óDbüx¶ì[ndd“úLø‡m8P±6CV[pþ‘oµ6¼né…ˆ/—ÜÉ-gñþu¹ ({vøµwÃ<&€SËÈ1áSv©Ê¥€ý$ïZ|nÏï7n—Á‰U\Ӿˌԓ›Íï”@T9îD"m ÌZ’W¹TyQö¦åØÇ/ÖB”èÿÞÛ« ¢ÎܾE # 3ÂiŸÉ˜ Õ?F¯ÄÍœ ;Ń?‚ß›º6Ãk8“´Ë–8eœð-<ýI*D!¢î£-­¾ÃšœóÓÿº®¢Ÿ¶Ù ]`ë ŒêôgÑeûÖÌ‘ãfÌ÷K×Böªº&YåŸ:äFPv¦f‚òÈFf­0 1Ù~ bÊä÷sÀÜrÑà¼Â@Лòw~ÖÁªúÂóåþãB'jü…;çövƒñŽŸó©—¡¹¯Zš£Dჺ‹z(»²öíè…#ˆ~殩-:ôQâzn{ì><Á™Œ™i`%D¼‰ØFôçóË-KÓ~êicZ?kŸÌïVápðç§©ö›þ Ú†ªo ý õê­dð¤2^…>“ìWÊ?þâìèõ“rÿ¤Á—ïß\S¹|ŸA\_Éû3ü¶™? Ö2‹wGügʦ,~É×vw¬Z8«´jô†Oúx9×¼qŸ4YŸ ÓùaëA¤iÛBxTxv¦{—ÀäÉ•M?n†ÜúÞ-@ªÊ¯.ü¢Ëªo•É9ÀpÞ¶+ªÞ‚M3ä6OÜzV𥠌P°/˜ñþ^*h÷ªÖ×°/&èu SQýÚE~Ò Ð¼\ä|ˆ]ÇØ:ïëÂ÷sÁÜÿR÷pñ-p㾕~u‚)߬q÷ЇàÏ*sÓ. ü<¥<Ѩ¯•ÿæHÊŽÛ¯á‹$>gòCSý–>¢æ§M»ôå60L2^è¥ðèd…D¯í0y6îú„È×` {sØ#f(„‡¼Z¯4/·é¨òxð< e·¶?ýõÜ»éÄ?kÜó‚ñù. Œœ/æMl§ §b~lx[ßÝk ºK'×âýêš4v £ì2Þ¦9›B.o$ãöUÏ.Ø¡´EÐR¯`øèÕïagëMÚàýú³]ðU÷7eWJé]엇ᚓàšs œ…ÏM{ Hÿ'¾ìÛOjˆ:iØôžV_™*Ù7Ý0¯Æ¨;ãx󆾟WŽ]•ÖþŸKÀVÞ™=†e ~Ä›^­{£[pñpc¿<º·º "÷=ó7p$ãO̱+GzÝ'zŒ“_Rrö~X?Ô§åœôc²ÕSüM%Æ%q#ù|è÷«aœäŸ¥ä –Â]ÎLà~hú&…\°&¬³ê4@âw§ÄÓû=/ñJæ°„'Å™–u<ìú—pU ~`€Æ‡I]·µKðÓh+â÷7Yëý#mîk°ûÞù7éµÛ>|ÔŽ5 Á. \“¥ ¾åñ¬7£ ®<ا¥ ãÜIrN>àïu¶“"ùNœÁèïß‘|IAÝ=Ö®7gÀò1Mq]b\Ü¡ÙÑËÎRxsWþ¿?p⛎:þW5°ý`ݹFb°1ý×€’w!ˆOš w‚Úû{Ù_üÁõ»GûÞé ¦Š<}bý=˜jµu •Òÿ‘K¶$x,‚­pãaÓ/ñT[•{|ú†Ã+/ý <“Û¿<¢F¥‡êÁ>»ÍnE ˜É–wv)@¬½oÒ¾¡É”^¿óôN‰.hþ©ù'¥C¸.oúþ‰{Á·b± oˆEÅ—ñÓ¢ÀU}ÍûV]šJKÂWÆ(Тnxî”±Úõã².jîœdÿ¤ FÅqН§ÝgÚ‰œJàùû ÌÍàÓª¯9¼ÜA¡QV€yñ´ïPRŸÎœ~}ážÒ÷›Ë@Xž´9¸u̽߿“8kÞãÃtH¾÷çã«r°èÁ“Ç®¾fVÄ;†¦ÕÆCÕ¦&‚>üKá£%}0S½n5Öá…/Ç”'·,ôºg*Ñù Á•Wà ÚL3e/É #œ:ié£eàûìêâ,Ýîgú´S’yÿ¦ƒc{‡‡vÛ>NâS}n²^æmÇ:îßä˨wÆp¢÷¸kóVºùL/ù´—ö£g`¦³t¼)½gþáqÁÄpò¢uŒea|"F0þPõ¾~ûEk`é,õñ… ñ— 2|w_#~(qbÙ,[Åð‚fן:Axš…]¡™u§sÀ½©§â`Û ÞøÇ¢ÃÞyŸ­³IÖüØk/HÙùu‚Þ¨Yð-”àxLZ9K_›Ô³®gÖÍÝDáò²²Èh°¶Å¾ æa¥¹ÇtD`Ý-81tÂo˜8„¦ú¼ãW cÕÔ™:w/}²¢‡%ùëÞ5Á4É@ýªN&Œ[K<ørÆ›r—_=!7£>Îê$¬–Óm³qš¼Ø'¼µ.>wI>—qá­‡9¥•`•=”øÉ̃}ΥϣI^?ºEÑî^3±å·¬’ç¬aYÁÔðǾào´i<ÐHäTô)eÆuÎÇ}]~B ºuqãž>&„º>šÕ•šF9´…9`ZÕ¹çw÷iÒ%µhο?9R~oz¶ ¼Z¶ýb½µ Ÿdë¯ ÖYµÉCéƒS¤ÅÙ<7¬Sî}w™d_὇²[=Í­m+ Ëê”.{ ΗEÏ+‹©ñX+½Ö§ðƒ³akç-Gˆ¥ÍÔ[‡ÿ=—sMÏàg(xs&šNòÞYy!Ëôm©óbÐÌoæ$ŽÆÔÏ÷ñH“ì'ÄZ¹ïFtk!¸£›JœZ$òŽˆ\ÈN`=6ýÃ·È þÄPä’óÚÔÑõ™/kÙä¹[¶/‘ÿ±h·WÚ­4Л…†œiD®Í—*Ye’ZÃ9; ÂZåÚGVÀÕŸ—¯9BÚ6yáÛu`~¼ørTø»u}4Bl` Õp©Jò'ôŸs™Èã(ÏUY„Ÿ„«ýaÙYõÞmØè¥q¯—&»€ú½¾ÉÎu+VƒS‘£+¿ÃgOf!¬bÕö˜¯»ü÷ùÏöVtñ€°¹|jõa„¢…¹žIñWÜÖoý·Æwææ« Uhžú]“ ú¯×žNúĿƺݻô½ü°>áÕYÍ›`Ü/¾{#K,ûëJR‹þÊOžŸ´.ær\¸ò»ïm0¦Öÿøxdz)~à&8¯œ¸ƒz~¦ý½UÔùvTE)õ¦d‹êßÕ¬ò¢|¿|Ç+,‰ï…=ÿ•×À•×ĵHú-úŸ×I¿ ¨½S‘oÞî§ÈÏjG$úP‘s$÷úËáuKa< þMÕCÀì^ûÀñª#¸5Í[Ô;†ƒ5S:•uæ<8Ìà={ׂ·s ÏÆ7À^ÑôR¥z=xºcõ ì£ÂÑ­}O¶‚ѕו°½ìc;6ùf´h5 Q…ðDÑîÒM¤ß‹ž¡­ïÀ7ÀdVNÑËÖT0´ë¥êaCÙÙçÊ«Y—!:¬X¿ÄS’לÞõŸéè…Ù”Sá‡Õ(œg»T{|wØÓüg,®ƒñêü®‰Æ·$çÙsOÁ¢iDÞ9;+â¶ : Z_ÅळY?îpín‹ß³¤å[WÄoXÌŽ~u&®6é»Þ)¶3£8ç©`oÌ-6ùþͼ’Vu0ªulÝfÞDÙ .&°0ú}ûd²®$ãÛ9(ÿœ—4ŒËd3{âæ‚{HGÃáíðg}¸,Å ¾ß,Zø˜ô3 KW}t•ÄÕþ­¯eŒ?¶øHj …eÏ•ˆTÀ¯¹=¬&|#x‹5î\ô®QNT§ýûeßOn78‹~¯^;œõÑr≟”•sÄ€¥XAáFnŽbƒ-á¸.“œ›¬üË´ëÕ¥E+“ç·Axsí­=A…`dU´ ×µ¬»Rm 2øq©[6”°GȺFÞ“.½‚PyÎyön-°Z:Žm%<)æÛÌM' ·Bx±îdÅž™0/RÞïT¦CÉá¨`Ïb Dªœ½ò ¢Ô¯çBž½”|ŽÐ!¶6a¨¹É0éнæ°0–\Þñ|I7;üØê–y`¼jå2¹ ŒúTOk²›ËK`Zº¡0Ñ›²o0j¹IøY÷S.¯è¢ìãW]þÁÒä=2˶Å5}ÀS¨nrð&<°x¦Ï`‘WÆÀ1‡]Üî»?ÒÐð>ƒ°æÈwÇr O{—½–ÜŸ÷\×:Oï¿Ïâ¹]ƒ©}ëŸàxŽÑ³tÆD“G_ýðеí)¸zœϣI½ ãí‘YE}’#oÞðÉÐ>U¥-ظ‚éMs²À®é˜ç°åÑßå+Éþä¯Ñ’¸—<дìèBF<ÊœêXΡ•^§O¤GË­È\<ƽåòßhóÀ½øèàd1ñKšŒ´)ÃF²~ÅtzËÅòå®ÕÖ¬Y¥áÙßv¯ûå­©Ðå­ãñÃßEå­`im­ Ž3¨®””›dåä­‰`’xÁþläð“Ó Ú?õ:Æzv•ˆ=ÉYzy¥àቨȼ?)4ƒ0GgoáÒ£{&‘Ò‡=´+ !¾h=öýyp“ÂK¦+÷§W®^ô©& XhXl°Â[ó?·,…@MÎ勦4 åCúJ¨sœçÿtewu¾žøžã(1~s·ºÜuM{ÿíËNÆõ5•u2¹tfôª‘·vBïÙ5àÿ‡Õ»xÝßÖ‘àT-©ëf?ŒÀHºØtÅLæ»ê?òý÷`7‡ÿôWõÛÑÒßô9¿· P`RãuDzêy0_y%¶ž]¡âœ›*SÁ¡üõQ‰çð¶u‰ü׳jAXäm‚«Åç·qƒäÁ«L>"Ÿí ¶…ó˜cïtÿÔU¿WÉ.Ø öCuâÇPø¦Ð¶ûÜð×iÝ|k^äºÿ{O2Žç¢ Э©wúžé— P>V«œˆ¹gE³9•'þ­7Cj¨å΢“0~zNÖ·­âè<é”Ã`p× Êú¢ÚºC5ç’H¼Œûñ¶ùù‚8p6iO=õ| ±·¶IÝ ¢yR™‘Ë!Ú?‘»%‘à9öŒù¯{‹)½¡¨í6Dî&ÓÏ´¿žÆ¶%“úd–ÉU÷Å‘i`O–ÉØV÷t渌ï«)¼3+úW>7œ¿ÞOæÕxï4v¨[?9¼©¯-Œ½û§ÎŠ¿$“e¯*ÁWöçz£Ùw¦yfº‚íþüÊjãb0ëÎü¾ò£†»d&û—g¶£nÖö àh–µ6½¸ úDÇ+·-›ÿô!0Iê\:xÊ$ˆwm½÷úèI{n<_³ _ÖTú‚9ü²—|ûbˆ–dnýzʽÄ2ÍÅàýøy÷9á!e¸÷ݺ“9A›”ÇÀèl|ÒRÉoä¼vxù8æ1 ¯¾úx)¥ÿúŒÛ NÂg¿#ë>ÁTwø“qœe`¬¿>Vm„Éi—rדüpŽÙç¯G柜1;5éüÝŠÉgÀhÿì¹D¾èÝŽO À”Ù˜µåÒ`0ƒ|öôiÀLjˆÚúµö]_ÆÎß'>é#/ü~ÝžP‰ï’•¼Œ„¦0j9”«6‚àXA÷¾W«êNBpp鉓g¦€íoþAC‚ËYö¾Ñ`Ï«Z·´~&˜šX¼ØŽÚº ãß”þ™/Ñ_Ùóc¯ä€9eØ‘¢\ðâµ³îÍ4†`cýì×¹ñ:üjTí#v‚±Î•%{»õ!² päi"ýŠÄ#HìîÁßÕ>5ƒë)pÖX‘ã‡2UUÎüáŸfî?.¤]îÓçRGIÊ9ŸfÐsïD«¼louRó4^»ôÝS ÌÒÍž5»÷”ÚDЇ›ïam } £<Ö'’<ÆÖ¹—jo†Ñ~³c~…4€;fÅ‘õƒÁÝæÎŸW“ÄäLNõûÑÉÁxw¯€cïz±Bí.?é!î`ž1{j¶ö5X»Ã²xV+À/S)òšÃ“˜?á—K4^l^N/;6`8Ö):6“–{âÃéy ÃÁ›dÈåIiƒ]Éo}xI()nKÙI¿3}âžÃ1t0´®Ä'i¾~öâÏ ê­=µq_ìm–jÔ!û‡½¸©Ûx†<ÄÝíÑë.Hð½ƒþ­z¶ØM ¦L› ù’×ÏúXÿöeõoÛ–ö-ýAÈóc¬Ç§Ì&ç ÝseÏÊ1À{ÇuæÐÆ›N·¸Jìö’Ç&W‘É®y®lNþ¢G''•€¥reëá‹ÄÍJžÕ­í O%ësáTÐ`i‰ó4©úâs;¼ÁþöÑJ¸ªVÚ5ÊÏ‚‰¿“Ù˜ïªæ|èíÓyGÌOÃÚî[ü§ÎÊ.â¢$¯«qðža©Ò$.Êm7÷áÅ'äyÎϧ3’!ÐJ˲ÈñLé¯ö¬]0z-JÙ›ö¢Q‹ÓËn‚yÖ§ŸÚd_˜VMwW˜—ãWúwgûcÏYºWÓк…‡m›ºÈwˆßÇpÚÒÖά ÞÕazœà„†T>ßIÝwHíkÇ1ã59’"ùó0ˆvÇ% ¶<ÚWsFId¿üiÅ«O·}êÇgW>üY÷ãé`V~ÛS}B²“ø‰+cs(蜋k´¾IžW{’î>}IüîÜ—;Ò×eWüuÝLË6ë~œ« ¾Qò{çשuüKJ³òKXQæÓ‡k¿^3 «/Ê£½û=Üü\b¿ ß}5ïîÿ§ìé˜:§:¼o;´ïÞ- Ú0) ;î½”Ä9„#~ 'ù­ðÿÈôzÊQçnœ/wÞ ¯¦ðÞ…kÀÜ„µN§Á¬’ÌÃ烙ƒV±fîz “–ÎÁC?~£ä~wŠ×ØÓ¨žN’W\a ÕæCóÈ> ¹r9ã­-ØÛnìbð§ Ü‘j9O×õ«_˜9ÑýƒÁZ0F¬Nª„ðÇýcñ¬Rð#¸ÆÇ1PgÂç«àÇ} œ¹‚ÄiÌkäGø¾œþ¯ßKǬsˆ­LJûÍ¢Øü¢É{ûÅÙ¾ïbï×’†0®zÙF;’‡"zæqoçñ Ц\Þ5w ññn-Ì>µó5„ãUóç°À˜ñ|'ÿË&вý2¶åé‚9yð}Ðî‚vÝúRÈâ#à»þj—eWx}0aT’|arJ'XFºw³ÌvÃlPÚÐÚ`Ò_†ÿ9ÔâtiÂïSYë%òJÉú¯]uþü—xð—mžÖf2fSÔß_˜¤úÑ fià„y.—ÑCÁÝóßÔ÷JƳÝʯn ÞK7Ë¥BìÆ4Iøx‰Wù‹x ¥Ï“W;â½Ô±ÂÉg¢Á¿¦_7·I Âu¥Ö£èFà[­<›{ܬ³)%"J –µuô•A›)¼Û0Eÿ*Œ/Lødqä ÄxÇúªIŒ [“^œo‚g²îÃݯàç54å.[ öׯJt‰½ 6®ç©£®E‡¾]• ¶ìû½Z5å`úf]k)ZAȤ)s6…Pôþ@eè\°½Ã:³u®€÷Ð$©Á!\éëûmJ‚㻾i,É‹4=¶Ý ôÁA°[×'Ì]m 1>~‰g΄5ygຸ ‰,£ÎÍÒ—iôy…™|€ùcÅ>…ÙþÜU‹KÁ)cµ½Û»^]â1ìMå/oü=ÍÔÉß·g^/èç=t¥À^¨t±{É‹á™Úú¯9@˜8Î}~±g8g– êóÙ<žñ4= f úï nB$ûÎå®ÁfÀ®z¹©‹3Ä?Ôç,{Aß]Þï¬"pÅþÒ“«Á¾?f:ï„!å-·ž°¤Ý.6[t鉉ƒaqiÔ–A2ï!~|ÁtÅU‚·Y¯ ˦‘:0~×µM¾çR!¨ŸzjЇ >zâÁeð*ècŸ{l_Õ þ«×Sª²@oðâ;|3ƒxæÅ;þéDöM®fl@O˜)1Ûy¿7ÁÊ}ëÁà%Ú`…Ï]¬üĘj*žNƒ¬(\7ø×¸j-ˆëip¹ zšÉPó[ajuçõñ—¾0}öÿÚ3–ˉýÁœ½üˆþ–ñඤÈû¾ ÷K\7Gqhâ¢üQ!FÎ0ivà}ÃëMêÊàÈ{)Ž éo¢»Ìë¶6˜6ÈîPWŽg²à‘¡²ÄÖEÏž %ñ:á©ÿüÁ>¾Ë€¶s'V€ÕÚ¸H­Ò;µ±{×>7yãá5lâ'å1·l_;Pƒì›ˆUåvw˜¹îqâ÷¸ÁvHöÔ”ÅK©÷6æäJÖ×rék6í¿3ÅL«ƒ~uû¿Ù¼ö2è5/ÇŸª?pø]˜i† ’½X áôU£{i)}2¸çý)kð.æùĤJð#Àh²SG¤ñÒÏ+ ­Hý™ÈìIJ6­n |L¯{#í¯r/¨´žo"\ †ó•¾]ö¯Àfh>ˆ¸$^[oå¬Å÷ òÔÓ–Õ¢póŰÈ÷ ( —;õüLR "œGûо9åêùÕúÿÿ÷_ÀqªÒÅø×ý^Üê~@¶fÿÕ߆Èß–ïŒ%z-ภn®mëémëg'’ù?1Q÷ôÚ+Ÿ pUþð\%/Ñã=ï¸ãxìwx®A® `«+Ï P¦ƒ=#2åâêv°|?°ú…*„e›f{üvmL\æxÏ`ýü´aŒÁ ÷6iÔ¿–õøž¢­’<(\ã) kIž&ýŸsöñô›ä~|÷FÐ4ÖÝùë{s_oÎr{KæÙÊÒù¤ v:ðeh^|g(DgÞ|’Öãkè‘iáE`eýß8¬ä8Eßv †žŒ]µöj`šØýѱ3Ømfýø±ØômûŸû#ý)cv‚[~Êd¹ë°Î²Üÿ:˜ûÄ’ýb_½ˆ´Í‰àr†-½À¯ƒ…T‡œGÝhp/Ϭ MúLðZF¿²u ž—ú­=Ù,O_ç3Uñ$ðè¶ß¦]‡az:gcúI¢GEÓ¢Iü„fVÐ{(4 âU_ï­¸MâFïZ£Ç\.þn+/w€Â¥C§¤7ô›ßsºÂ'ÒS!>ñcÝé*Éúl„ß¹_qs8[OZßˆì‘øþŸúcòœ§{?)­„¸qnì›Í/@k nð½wüËÒü_¤‚ßš¤«=s¸%9kCéj0sºYJ÷%þsVÂøIcÖIæó×ÉE¿û-ÁÏGÖѾ}WØ6‰z`òýáË…EGÁZ³7òÉ ý`%ºí›ÞMêqM^¹dp\†ÁÑ/6k†Kž#ŒÚßî0Z¿ïzĸ}àmI; KŽ“ ´r ñ÷±Ïß¼ÊŸë æÏY…VtW çìŠ c+þç¬#ã»Ûmí ?Jÿ·% ŠY?ŒŸ£iÚWÞBtú×°Åïþõ½Dî®8ñN²»nþÓ1Œ’ŽÅ—?G‚u§wåÒ߆78µüÑ©ßàÜ *}¾¦¢ŒðáO5@»v皆Z/MC÷Õ„¾tnˆÚ€I^'À©´FwÂß#Î:Ÿ±æÕôC¿­!8óæõÎõ,pLšoì˜ùPr½¤ïÇYÐó¤’L'’ÿÅKº¤f¿ï:¸Án{"ÚíÀ‘É[|9`5DùoÃuZ’À‰V::%ÅFgù'–ÿ¢ìSÕM§\{`Êð”Šm#þ–Ö×–o±Ä`Q³ûøÖ¯Q EæO­_ü¢²çNÞ¹NÔøç¶õÚÞ†P¯YÎ8{üßæñÏ}ÌÊu#UORûJ|A|lÖ0ϸÇ}Mát—²cÙŸH_fÈ’ÊöÝ0J-_7Š–Eé :mÜ«Ç`͸×f¶CÒ¿Nk«=øLÒ~ç%Ìûì±ëØŸüR”~û´"„ÔÁ˜Ý8ºa¯Jr´ÛcÁ(0—¶a»„7³#ŽÈÓŠ>ö«+{«¶mR/©ß4Ÿa–ýp’,ŒxqÛÞDQûÚ¼J³œlÝ gòè`ù”Ò{ûñÆÊ½ŸëðˆR]_ªJî·Ûúß+&yjõ‹¢ëÇÁH^dVãfUÒ}ñ¤µ”ÍÔ˜¨KÖ]ð¡>†åšõ‘µopë¢å‡•vßàml‘~üжÉ/€üݬ\µWà¼íy*°6ëé »ÄÎãˆ~…Þ4ëé–{k@[ɳ;e)×þgªÙ‘Ñ ;ù*–èß ÓÙ•…©q–d=æMË?:¤œ”Ï'Ü vÿàoFt9ì×hÕƒ–sSú[’×ÁÄ'xÜÅÔ©`}»¹tí¤»àÝÌzÙ5ò+ò+›~¬ø×_@öÕ\­µñ‡ŽÇ¼Köæ·'KÜOÈýN³X±Ï´³§Á\Q^pg'éɸab}x¾X~1é‰3Áî®ÒX“+)_×¼•gçÿ[†“ìÑKú ™ýüvã`ß FÌ ¾ÊK#,xÏýƒà.²Ù²YLû§ñÛ•€—öõšbUÊ¿ùï`=(óÞò3¦›Í£hýâã7£¹ù^ñ#²_þ«ÿLTn)Ý|'ñ=kâÅÙµ––”ü«rÚ[OVì•ƪ…Ìö[Ä_fxÎIyóönÉû·-|³aÊVüÓ–|þcéÓ› uÛ–›ã Žiå›%îæàF~+ø45ŒpqÅÊá,?¶Þý¥#èó_&w‰F@ñ8y7ñCYàéûo¿ô`ñæí÷-OÇP¸™ÿpüV ^y )<¿çÉÓç¼ ùùp²3Lª_™æw‚5'êÜã~þ4^½’LmJ¿ü­Ÿd¥—‚i>¢ÔÒù2x×}b”É“Ÿ­»Ô ö>ý uÁ„•my)Çwn9hJÚC«!Vžw{¬ÖZÐÕãjÞ9`lÙ UXÉïø­¿ú 5s]êßý•ÇÌ›§”áˆ×‘`MºÿYí˜ví‚}Ä.0Ö=UwP­ &ö´ñ笉\Ù½ü¯|7Úää±N4uˆŽhwVþ;ïªp+ý ½¦_þ²ÙíW§5ý¨yÐÐø–NêsÙ›UÊæ‘U=y—CxxäÑA.£@ïU=•µãïyZ\÷Ãj¦y€wÔÓ·}í°Ÿ†îº»ŸðñrdЭÁ¹´ÕqÚ~üîXRµp¤,˜Z#†-0––”W·±["Ÿÿ½OœÐ&t»{,„/—1&š‘:aÁ®¤O2à˾hÛò>ƾ‰ãª¿cvA"+†ôm ±9÷&/¿‡ìÚrÂï;¤›A7µ\ô¨•Ä‘MÓ÷Ú±éDž’¦œ¾u7œž·S·Ÿ%úÒ¤Æ"½>z3xŒì„k¨ý0ëÞ®ÃÄ/ÍÖì[üÌ4Ð÷ Z_¢GäwGU`¢©/59ÿ½pT½?‡*…G¾:&“úÓ_¿èqôæÎ²k6á¶œÌõO"¸•ïà·C¹û,8RaWëÕ$x< VSßtj2éÄÞµ2Ùζ p²²åOsË9ß|„_ ØüΪ‘ô*ZnDÔO§Æ½x©R¢D/°Ïžùq¨Šô‹A`ß Îº  %íï>ïBäPä4°Æj3ÜPÇ›&‡ÿ}u2Ÿô0¹à,¥m«IÌ€˜VU75ë-°x‘ú¨ZÂoHïé™hº¬[œnÉçå«'ŽÕÙ¼Â_óf3žýuùû,mgø+€¯±ðmiÛß÷«]ñè¹RJ,{¬Ä´EŸb–ÏùÞðŸ«õ$pªä{D}Û)D‹zv¿¸,¹>ŒY3ß½ñ ÑÎ3‹îÕu€µóòñr{És™¾àm~ö[Ê3æ$œÒ ¶‹ÌÄ//Àý‡OÛ_?QŸfC¸ËʯãÁçû+XæÍŽ/-§uC˜7ǬôŸYž^$/„™¦Ý÷­r2 3Lm³EïÄŸÆOšGí㇉S;¥`&Ë(ý½ª¬ñ‡oÙ¨úƒM«÷/$qcãfïqQ—`Fý §é¦à>Œ?ŸÕänÂ`•·-\0â¦Òþ¬ñP[ߥç r»…ÎKT`´|GíZâOãÔÅmé3 Ëû§ÃfÅ­ÛfÌm·ÉÄ?À^?4m {;ô?°&¿ú­ÑØq=ýêDŒêùkyæÓvyö€5íCÐA:ÁãP;zíKÀu0N°¤ƒv½‡qÜíÍßÇ@`Ñð(é°=虎9ïØK“É2-³( }¯§œ»¿}l„à ‡>ZþŸ> ª½ï.¿g_Cy¥|„xTûy‚d<˜½~«òç\pΫÇ3BLÁ ¶y‰‰ÑKûƒ›ª~ƒï¢(¿dÀ[û\|º‘Ø=<Ûéa'¾¾;”'X.ù\ñÍ ÅÊÏ#Á¡Ó‚‡ŸcCŒ¼þ¨Áà~™cR)¡IîáR%@zÔ@õq¤ÿkÁ‚ÆS°H0±t?˜}w–¥^y£ã¹v¡”}æÒ1®–ô…çù1åU‹>ÿÛO¢1œbëÙ'>RÛÛÒÏ/Î9|¿sî JNâ.—[°aþbz¹…ªŸµ_ž~žnÙ ³ë˜Yšhò’“Ñ.0ÑšaXRgBÖc¤Yçz3R—'¼{Ržù[°jVNÙUNâšÆÏS4ãþï"ÏYqö{],؅űµ³H|Ïj¯ÝóbØ®ÞÆVþ}Ç×ÔÈ”YKçÖ5JöÛ˜x¶ÚJ楋ïì˜Ѵ‹:w“žNÛ‘»j‚u;L 2ÆLÞãÎØc)•n™`»(Y¿ø·ÿÙ—DÞcW¸kÖƒßÓzŠàJšCŽ¢J£=[yiÚ‹À 꺕¶Ÿ]òt’·È²ì‰‹¢àÿ…B˜°Êg¦Œ°¿Éû,ΰhÒ3ÙÖÀý´oÕàI»¨¯ ºßµ”/SaÔ3*ävk8@ç9¼ð›Ü”O¥-÷a²^+뛽¤ì«ãaçÃÀ²%³çOÞ+«cŠöªãu`¼ùû©ª!‘§Yö•wЉßOüº÷á£ô-ïxš7´_ß´\¯°¹†àLUÝe£³ŠÒƒgW8ö &QŸåD¨%ïŸ}ôË¥%ÿö•‘<¯>¹hËÚQçZ†–ôöß ßuæ õÍOáîôéÔ9®©^Ôîž Á„ÉšÒ}~ÿ›¼‘ûf)Î5˜yì3ÙæUÁô×l_Ú‡hˆ7„¾ø­à –pEIAw D+UZÇ̸ ¾Rvà÷Q`Ä2'û*@8=}ʩ⶞ü¸Å‡ðG3‡LüýñÍmðš[d­“¥äW3?¡´·e©çvÕƒqŠé'¸>üß¾ d}]ykÃMW¹æ 63‡èMK}Ó=…®¤¾—µõ¿ìD!çЙό°ìl-|n³“o¯\ýðŒ}Û&¯H˜MÙ¿ƒÆ&É‘º&Æœ_;ì»ù¯ŸÌÙÛõ³™ƒOúyP÷KN3B콜7äÜ`|kÎþô‘R`°î[E‚fäxí^ù:°¬š•½¯ÂhåR×÷ 2Íïúø‹BÂ'ȱ¤‡®=öЩ~;;_(íºsÁ i0kêºor`|Êã­Íœ~üOþWÞ« þü*©™¼—0ú=!(t€èN“ã‘ò‡Ftîâìü óÁ»û.Ò÷²2„FŽ5? € O›®M ZîÅ^îâÇ6ü³ÕÃÍæK?þàÌ‘†•Îçy¶åÛ`üC³å}DøëæËLHx_«N—=È|Ç„ïkòazÆ-òáOÁ ú±Êþ¾£¨Mÿì k«H‹ûÇ€eœ¶8*Œ¶ RÇ{®讑!mÊeO¿ûûIÚiì ±aŸ¯äùÎTJ/V-¯§èžÓ@‰ïYV³æ}U\Bäó‹Zuš– ði´¶öãMÔyÚ³Ùg/; ^ÅmíFªOÔðr§–¸˜n¿¢s–ÖœˆòN¥Æã2èz!ûËø€Övþ´Y…ø œìu2ŸÌWg:F}ÉÞM*cœ >¼dÍU½ñ0VÝ0{¾â^pL0è>Î÷ÉòÇ–¦—ˆ¼jû=S “¸uq[JåÁúång8,õ™—/CQü.‹ñà:ÁcÜþËék‡Iî“ö%)Ëé`æmI!ß Çð…Λ){ç­LÙ®x2~ËÀìîñËÀÎß~t´¢7¸«å_68y€‘—1èÁR°í¤íãm¥AÁ÷|¹ïGÀ0§‡ÜQ|–žæLîÆ×°¨i[èý^ ¸7ºeÿûC`É6J¯;ü×þ{à•Æ9ž0‚Q',~fô/_L‡¼W+uš v×«îÁÄ5#úQ§>[â§P¸utÚå’?ÌÛmjõR­¬jÇ«¿B©ýQêrÑU…ðqZ–jµOù@âAôÊÒåõRÅÑ:°vðGwý“'ÂÈT¹öPf…K¯ 9AäÏônÏ·DsÐw2Tï=•x·«¿SÓv€ù5/ÙH¦ýz¹¹¶’òMÓ9Ì–í:¡aiFphئ£§tM–†Ð~ïÙ¡K);>iÜ‚®6 }bÉ— ˆì|ÒÝMüÁþ::«QÑ[â~Üåç×MlèPæžAÒ0‚÷ÄO¬ê—‘}åëÒ›³vJÀ>MÒ¿ÊlXX½¿ão6ÜDîÇž¶±HsÌ[vñŽJö½à¹OMxû¢æcBÎ^®Ÿ ÞЧ…_<ÁÕ‘ OLÜõW¹án8©ÍŸ« ¦ÆÂˆu?Vƒ¿’#«$qßw–ç*oU˜(Ôg~–žºwú»|b¯Ó~~S>\Í5îWúùÿx‡*Ü^qõ€Üâ¤.Jøy™÷&Ep+VïÿÓWš¾CYKš9Ü€TW›ÿô!µ¬?è“d}›hûCû»…0¦g>ý™B_>Í,p^I]¿Ä©êbJoXûö‘+¥¯vh­hýƒOeVÔ…lÝz¢‚eÙ+–KÔ‡’ñë–ör <,Böþíµ7G€wzõ‹TÅ5PseEn‚hÒ"±4¥&±µ`ôFÂD#Ÿåöª¥D¤ÊÁ„nÓµâO[\R®@Ì2qÀ1ôyÞ‡\ö-u­…ŸH?#Ëá#oÈÕ¾\Z ÿ§PmRÊp{b§±ï]<Œ²«Œü ŒÙþ÷M{H½?·øX]ì*êüèœw[ñX‚ÞÔæ‹‰œ Y˜T8[ÝËQ­i@Ã(ëæ»|×KŸý%õË•Ú#.ã7‚¡1ðçÅæ)àìýÁïXˆ½¯UY5²Êû¶95®·!¦”d· Ädû©Þ,“-«¯¼_È?³ìJ&¼ÜáÆ#«vR¸}a•΅”žZà%µ«šøÓE瘧Ï&|§Ì¡tmΑÛ¸ Êz››vKýˆ²*Ê>õ ø¼ ð2DéÊKÁ¸ÿ‰Z› „ ÛÂ>Å2)=~–wÄ=ÅZŸ¸Sxª´ªà®n$LôœUƒÖ^ô®/0@‘² 2ª ËîíO¿t=“¬ÿ7ýOu¤¬„q™ •L‚w„7Þÿj¹¦ŽãF?¿1œ‹‘,õHܬ¢8oÃ0Î{fE-‚pȈ¾Vía¨òW…Ï‘ÔÉÝg‚§¼ºú{ÉÛ*Œ˜c¥D3OÉrDB„^7>LT…`ž{è¯jbr_hÞ¢ÎÓ¦§¢Ú–ŽM‚9SšÁ^~ö´¿„·ºÖNï¹{Ûùµ¾à.(¢y\Æñ“Zjr‰<4ÈøÐ»ò¿çå‘ñÜ\!sšð®ðõÌžÄ:_¤ðý>…>užÆvnž6óëŸ>‘ÜYåÓŠg¼Í]SÍ\*Á®¤y+P8'íã³]jÝywüäaYCïlçãbfçdP¸úüãÅÄ^¥>õî)ÑW9ljí©`i‹Ä»VKKâ0ÐÀ 3£Ã¸ZwÁäe’Áüó’|ä&[ègUîót¶½~¨ÓT#nm¶tÙ”yoÀÎ Ü:Eìm›åVŽGÕãI–'±7ñ£Ëó#Àž2m‚û1âçfIOsp/™O³!;JÂéû$žÿ‘—ZÀcÍ©ëÝ ¦â†‰zE$¾LKR}@í>ãVN}þ3âõ³Š?åœëÖÜ‚™Y}¹pJú“:Dz\³à Hÿnîՙ݆‚¡ªu$àÜ:ЂÍ&ʹ‚~ï r˜[Ð,=ô}Â8ÊÞ˜]ˆ½8õÒ4^*„?ìÖo׫„‘àÒŽÚ¨cà,®ëiûÜjW?pôC‡m1…é¶ÅÙŠþ%àtÑÞž1û ¾øÊ–wÙÆ¾vÛ"Îs¶Â«ÀíDo°c–‰*dÁêß<ò‡—|›Rûu„Yýô@1ÄR‡7#|{`niñ÷¼a-+®Åâ4¸‘¯æ?vÁ®®o§[!º›çÝå ÑÈíoX ¿ qxh]£ÃP'[7ßM½ÑziñCÓw0ýꪞü•ð†£;r}.©g4yáÞ¶>Ó‚™¯¤ç¬±‹áuñÄa `;y·Ž™NÙ%.*½ê6 Ìœ2Ëð®°ŸÔ >øŒš¯‹7(n§ìÓKÚ·Æ©ûŒ¶ÏýÎx?_ò\Vu»ÙnÆþÙþÔúµ×׫ü±ÿ  K˜œ6Û±h×÷ãw³“º$Ã8.5ÚúÓ]Js~¯~h¨ 6ž_aÒ Ö®7Ðd (;z¾œ®û²¿Ò´ÜÀ±Ôyñx†ñÓ½w<­ášFÍ<ëæÃ*`ÛF«úN&ñüNj?¦¼Ü9jE)Æê`unû¼ôt¿¼º{iûOÑëÁù´ÌG]@ê²…ô–WŠ!hw<9´ ' ~€î¨{í~e1LâEÛF¿ Þ1ûxï©”¼¤x !~{Fîê#G•†þé×ÀK~nÌÏ< æë‚µ)$KKï¬Ï£Z·Áv-…'²õ½Ÿš^iô³ÖœkMàÞ¬ÿ\³jØq‚í/%ýÚtZŠOÆGŒ~.®¼n}9µv¥/ÆüL~Ÿ8 ´¥­¡Ï7ÆÁÓŸO¯„ù‡z©¢ùà„VÒæó+)\ÈïÛÅúìO±£öœJóÚÖoõ«(yY´IZn ØCc¶ÿÂÞÞæ²{ã>ó´÷̉ËZ7GÍ2¶þ{[3÷97¯Èºªu¦qžù^øþÓ%Ë]²ÐÛ¨¯Ú®¼,âÆQù¿O¯~÷–±çaØ''—½ÐÙÛ#ºàž3âÞ=õ¥Àz·¯\Q0ðÜÿé§\ñÔì;mÈãOs ЇÏtÁ½´ö3¶gVýøù‘IÆuæìé·yž6žWߨ\²2ÀÏpé7âÅ‹Îì#çN›|ò×÷wÏ…5+Ý£ã}ûÀw»®1öiÛ/¹èšdï½±±ý³Îëxï­ßí}oY§Ÿ»¦g;dïÿä+üï}aWY¿äQû¦;wÝýžFcžÍËÜ^~«ñtkr ;ù’iz1ûDÇß4Ž‚íq'FŸ4•».½5?°õ2·râXWçÏ~oÈÏôwNüvé”SLËÃ÷Ä×nm4ÖmÝîtüÕ¼k[°iS«ñ&ÚSsç­èô9ާ׺±Hâ´KÞ{Å]`œ“{œŸ]ö™éØœ0"î‹Mrnßp¸ê‚:ã¸v³ù.¾O/<ÖýÙœÃÅÆ}ÛÓþòæWvÔ„ÓìðÓ²óä¬cÏ7¦wS»}£|ï ¬[7T\b\Ïɨ¹öQÓtÁS×M°-ÿ·Oû¦×º¼³ÞÞ¶sIÝÐŽlþ|ô‚Ù\%yÀ‘¬©Þ#÷8{Z¿nÕ|e¯§Üs¦±-Ø|eò/SuP{ij±2nÓÅ¥{ÜØ†·ºµ§q÷{Ýý½­ü쇮žþ»1{?9wÝ—ÿ›·ÚÐúè¼õCfvž?_¿pM‡å"ÉïÌ»zK ìè÷Ȫ#*%Ï¿¨$,gƒií¦>essŒÉTq,Hâ‡SÖÎq Ž1öÙ_Þ_eÚJ×NXüÁaÓRwAÊÔh9 ®û>û‚+åH¯¶ü{®0–‹žªºl–±<~ñ+õKÞ}Ö¦ ‰ûGÖöþi=ÜëÆqEò½çMøé´S1§n6ãìÎû†ý…–®g=Ú¹.ÖöKÁãϽp‡ñ–ŸñÈ¢®¯oЋSíÏü®û–X ÔËZÞKÎè¹ô ãØ<óÐã÷—šîï|=nái_WÕòá­Ÿ0ÞÙk¯ž³Ì¸ßÎÌ« àv¶oìøä–ÏÌéÛ¢ÇoÊ»°ó|ºxì6ËM¦{÷W¹¬ÏïÆù¡·ßœþ0¦x\uñå ;oÈÁ?¿ûŸõ'Ó|ážë=qŸ÷£ö§÷ýyÔ4|ûÙŸžoZ×í¹)ïÙ3Œ«àѪŸ[ꌷrªDâßǪuùß½5㟼#ð\ûž½øåœÉ¦ÇÂÆQsuè¶».È=yôJãêðnß:'8ÍŸ?ì ðÜ ûŸ_=jбÝùæÔÇV›î5_ͽqn™ñV­˜:4£ÔxÆ?|Ñ3¼`\݃Ïz÷ñÓ¸ãÇùw½¶ÈØÇO‹ûêÓÓ6¼æ’¤@½c×Áªç÷üëßcí·vë™7TvºÏ·ö™¿½z—iÛ¹¹[ƽ“MûÙ×Ló¾fZ3ž¼âÏAyÆvaSÈ~K¢iÚt~ü}ºï:¹9ÀO¶·Œ;â™þ~ó·÷þä»#µ’—Ý÷ìåç%™¶¶ŒsëκȘ¿ÝôíΆÀ¸Mè³,¿4ÍXžxwm¨íAc½ý™% ¡ÿþ¾]ž=þ×¾y5äúŸ èÛ/ydð‚åÆúÎíÅ?ð·'z3c¿þO·í“£¬~Æxb‹Üg,¹Å˜Ú>OˆxÊœoùu}| ~i)ùè‰_†ì6ÞÛß_Üû­s}Uïe?ñ¦±ÛîïjÛa¬eë/ÿ©ù5ÓyÝY#_5žî#òw}d5ÎÂ?·nÜÐ!úqfÓÖ{iÿ×3:{ðÍç¶íœkZ/ÝüRE—FÓý‡×~|e毦ejÑÆõ OoÚE«òtÞ7z”øsÖóŸoÑ—Üðëi=ó–Oo/Ç´ÙS”¦|mlcV‡ŒØè1­§¾÷"ó‡q¤]þÔ«2ݺgÝ­'fËþ£#s–vî¯fÛQ[{æ–BÓº#þ¤Yþ‰±œÛýЗKõjËÝËzÞýŸ8jÌÏõ·¼uÌt$q}³q=>áûó^zÀ¸sƼV95ZÏ<¶lðcòŸ¼ý›oýO>Ó×x#ô™@=Ú¼ðË gþà—;ÎÝÔáª4½¾+lîeN]j;wî@»ñìØ\uåõÆróŸýtþbÓjË©ÛsW˜äéϽúΔõÆå^öûáè“Æûë _µíú¾pÚóÒŸ³×µOÌø»s={éÏ×^9?Ðg¦åî¼ï&4ø5m#ŠÖí8gºìÚ'î›oì¹ëK"ÝcZ?;eó9Æv}À‹ïü¹Qox/×ô8ðбó.¹Â˜¯ÖNþäÚ鯳õÓ~Ç·ËxÅ~TûËÅÆzäC§Üàã»ÿvÚ‘On6Ž'Û÷õ¥üÉߨÓ÷´}±:äÜòÀûΛ]:êåÿY뼟*<õÊXãh<óv·÷.c yéÞ»úyŒëª¿Æýü½ìƒ'[ê_lœïŒëùÑãXž{,ë—Œ§hÑè —ëw§Íz>6ÇØïïýâ9#Lë >ËêÄŸÌ«ÚYW [±[n‹9šþ¸1óG^p[újÏÉûœ¶Â8ÆÏÌëZ5䆬í»ðõãÜvCBíìÉÆýxù]”ÞaÌÒ=—O|¡»i>ÿ·qñ‹,ÿúb{·dÏ/¹\òÝwd/ûÊX?J>pmcãš{õÎ-—n4î-–a'/ ¬[Ëëo}—·p·ñìðú[ %çÍ=ÿœe<ßeÜnÍ4íÐ\d˜§ÒíÙVcœ}ÇW=›ë6=ºžØòñ‰û¦ÛøüKaÆd¤ÙÕ/³Ó}º·muîw<½#~ÿE u Ö¢ä³¢ÇTãšt÷þˆ3çEB³ã÷ÔcÆvpë䢉³Œý³®ú.)ÒØ–ßÚþ—Çfì­w¾þ×øÉÆvõè¥7þ¸FöÕ±½ÝGƒe^)™=æsÓzO—·«z^ñÿ·~ûã[×ü>ò€¦õî‡ùê”@Ö3.ohðã/ÏUÞ?ÎXÓnžóʦ‘¦uÖ”¥Ûg|ÑÚJfxm£ó:=<ç²Ã}&ëÑ7 'ŽÍ5Þ׿ïûËÉtc»­ï¹q/û›§F<=¢³ï][ÑÄú_h¬ÞËN/\¸Ú´9öu|ût@¿Ýve㇇=nº/;½û¶5óMÓá>aG ø±¹—¿p“gðÙÆL[ðÖõYêÄypíE˽çÝoLRC톂Æ5àê™Ñ‡Œu²§ðÃ/Þ6=‡œòËÚ×çÞ%i¯v;ËØ÷mYšv­i±¸êš»òåó‡/8»oç¾Ë¦å«ó‡¥øÆ½ÖžR2a^¶±>Û«ç±—™Ž§rçþ½lB`Ý>yÙêïç¾å™ÿoŸ{—‹WܺYò×}¿¼mïÀÕ<ϾðüÝ¿klמ¿íhþcIÎsZýgºè”Ø»Î3§F…õ¸§öNÓãÍ×öwûó9ãYR5cÓ¤«ë¹{›.øhqXfXp¦ó,c]Tti— LÛ¥oߨuá@ãýâü·R#|ŒîîÞ®8¸Î˜K®ëQ°)ÂØ¾ø.wZ¯@]ÇÖrýG¯]a¼ß}Ðÿ‡'›Lû¼Ÿ]šÙd÷EQàó|Æõ~ß•û÷†m7%ÖÁWI×.9§ÌX®|øªœ-çÖÞÅ8’˜uÃ’ ë}÷ã_:ýÁ¸ž²"lq€×m7¹K¼©?ÉÞÉO :=´qütï¶Ÿl1ÞÁÝ90gž±½vé©îÛ‹Mû—½_JÏüÀ´ßœ6b{F o„-jò‰þ-4žß¼_¿¸ï\ã¹æÕ»®|ÉØÆŸzûOïýÏûôløÓ5ZâÕ›ûæº×YSj_<Ú×4'dï›:ïc)Ú>uᑟÌiûN+þxÜh÷‘i_þ}³i|·ù¾¤ßn6-7_ôè¼ß±.xbOîmÿó{Ü{÷Ͻ59ÁX¾»1³­¢—±yG—\ž8ßxÓ+÷n ÔWO Äžó-yð¡·ŒË]räØÏ¯ýÖ3/rü«Û±Ú“õàOÙ÷L¿)ï?`¬ÁÏöOý)àSeïÞþÂøò`ÙoÖØÞð1βíæ?ýßÅÇÕ_{©±ÞûÛÅÕk:‡ý¹ßcFm»Îx®¾uýõŸþßñäkIÏm~è5ãYãžõ{E€`[ßíåW:ýžñþzþö=S®‘<ìËk®J à-§žºóÃ_‹t~¿ò[Œ«¡öù½§t3füÄòçsÏ7îÓ—Ëðk÷{? Þú“±Æ|ñûŒÆzÇáÖïÿ×gÛ8O¬4YFÀÛÓŽ¤“¸âúá]?=Å8O«+í;0Øž®}|ض_Lë/QQÅôž+‡ï ­3ÍýGpt;nÚ{e¯{ÝpsªßWΘîfã˜Îýnõ®÷OŒœmÜ»;¼‰×4®ÏST%ókTù;=¾ÞclƒYþð7÷ýo8ýxçþjžJ3â…©QÆyúÁquó~2­_Æn;9ë'cÿã×Í»æËÌ«ƒZÞÙf¬w^}èÆiSç­÷fäßo< ö¶£I¦õ±9Cž2žÜóóÞüÔØ/ÝĽÆsÙ»÷?"ùÔ¸‡;N}É´Ÿ:þ«…¿üÇï«[AÛÌ‹ü°öuÑoLëSa,ûl}ªYk<ý<ó=vóY)›OO4žÛ[C_íú‰qŽòQ÷kýÚæ+:í³#¦mØø½çµÞ#qÄòþ'gç9¿Œýaî÷ÆñY·ß?2Õ¸_Ö±&Ÿ9ž¿üËOŽ$ëckr6}»Þ¸ë>¿ô•°ÏãZ2óù’'lÆ•²¿lò/wJ>¾zÊѽó ãæ³~Ëœ³ÓxvûåÆkŸ3î§N]ññ±_;³ë¡ý_~|gþzÓé~±yI±¿õÎwôºÖx>Z41ôùÀ¾m÷F?ùEîƒÆ÷}èiÿñÛÿ§?—ßo#0Nå,ùæð·Æ¼ùjúŠq7ëg¿}ôLöqã8^xÊ+ÖÉkîiZí”ù±ÚQ<Ó˜¦ã÷Þ|0p®xì£{ÝñðÎëø›¸d“q&l9åÇžó¨mæe›úîôý–ïÖßú؈Æ1{ò“Ïô=Û4]>lþõwÅG;ÜϽaZvuÍüÍ|¨o|Õœ3»$˜öe'Vì¨_bì;Âß½  ^Üöù)“n›½Ò¸7Ü–»â¥Æ{ÃC½.*èì»Ó¼úÛ¦‹f}mì3.='w÷ÃÆ1o䜄üó96è­§â^û×—ÖÕ¿hÛ=þ&ÎïFÿ鮯¹þªÖÏ/0¶[[¶Œòç—ï¶?öëyÆSô§±ïWsv·~¿Ç?n¼«+ö&åô!Î]}núà çûË¬Ž›Îê0ž÷NìtM–|òô»¯ÿõ\cj~í¿á†#ú³ùù›|NË«“-î'ûÓ«ä ÷¨-òþñ_Ÿº+Ö´~xûŽ %ÿ~kßÃ~N3­kÒâH6Þ ÎøáôïÏýÉÜ÷>NøÐxß½î÷_¾6§dÙwoxú:ã]º²~{e«iÈ9ãpŸä@}Â:£¨÷å‡>7Î.ƒ¯Ö÷%ãöÜ÷Ó¬Kçûmwƒ±5<ô§û匙èºé¥s÷À3+ŽyGâ óÚ_ËïìO“Vî>s£±Lùýª³:ç C.¼c|¯ Í©G-M÷˜îþ>PÖž[RWnù²óüYÜþ«õÞ¯¥ñäšyÃcùÉ/5åGh—kþH8SâÞÝ+~ùtÉÏ~ê=ç"Ó²òpÅï/´Ë²á ‡¾±ÚxÍêÔ Ÿê=MÇø£ÇÌÿøoýT4÷›·‹ŒczsÜžËL{MÚ•KßyȸÿQ½þýõÆ:ϱõ©3S­æ“…Õ¯»ûî„ç>ÿqé,Ó¾mÀ]g=±Ï8D¿øcZ_^»/õâ c¿jä¡°ýވ鱪ÿs%;$ɾ&Ö]`LÕáÄI?Î6öOØ<%àãìª{pÍ‘'*=mŒùëª{mÏÂãé©~öÞ+ŽD_ø«iÞ–·ôޤ,ãývݶ¬€nÝáªw<ºÂxî»øò×W4íñƒ?Ž|!À?´÷.?tüô÷+aåsÆÉ¹ûò'»R6ÿhœ¿uþ·Ýbz^qC·ïvö i›²ýÌ—õÁæÅ;¿üncocmý¾ã’¼L3däÉ MÝûÙß»= µ¯h þæ‡<ãyéÓˆ[¼Ù8¶¿ôÄ–[î“u9îŽÜÁ¶ìŽ'c_b¬;^YqÖÄÃÆv 沯ö)óÂåÃ{?g¼-Qw^öl .ë½æýI‘9eÆ9éó”˃6×óUç;{.4ëÏýMέ攚ˆó›fKz¯¸ [“9ýŒs^û-°?[ëê*\[7î–«·ž¶àEãXýÞ¡Û ÷Ï£_œûÖòKŒ3uLÒèr‹qÔ.|ù†s¢ËûÅ DÛQcqKþ€¬ñÆŒùdÎÉù-¦ùû·†Ç™LGßíÕi7Ít¤ þ~â%¼Åyé%¶ _fl[¯¹|åž“ÿ✮µë7õod\c~ûó–¤ Mû#Îï_~!àKdŸéí÷EïNz•û!µ…m›v¹-€_šsJ.ë¹0Mò‹Ø+Æ^µÃ¸º?pÇ‚È×ÿ“_íŒ>k_éqÁù;‡ÜnZz<—Tx®,{Ïñ$Ï*9ºfÝ–ÿ]oð”õ Yá¾Ü´ŒÜÜ;ÿ×W3/ó©7žþٜҒQxôŠÎ<\KÇàÄ–øOŒ5þ…¬ŸJþÌ=†ü¾beuªqÌmßqý°µÆñBÜÈÂn_Êû·3)¡Ø¸V»×¬5ÃŒm_·n‹4æí0»óÜ@ Ë›ÿ>ãúÿà-3Þ™8?€îëà'ïuäwÒi>罫¿ò¡NŸkv}5høç^ƒÿº4ý¨ñL¹ó³ì±ÿá_†•8>þð,ãŠl:ñí{çØ|ú’âúø˜ÿ™Ç=ÏîûY”q÷ørï…ÿò‰Lë€G—Ö—M1ŽÖûÇ­/øí»{=V»ó c²–üìÝϸFí‰ßw¦qYϺåª;0®ñ½øì4c1³ÏÈØlÜ{®X:p‘ì7/^öÄiÇ>ùþ¾ÝÆúeì¨)—uîOìø3ü£½ÛûÇ™¯,m® Ì㶈‚“¶%º“ëîÕ‰]^1öñŸÝ™seg>¸Y·aÇsç³ö•gšÖw3-GÎøòªyCLóú[f¤ú/õO¯º!Èi¼3ÏyéV÷ZÓqݾž:ÍxÎ:;ô‰n¦û®î±ï—;LÓáÉ-ÏÜdšÇ\6¯aËÙ¦åçËûÕÕm2m'ï=þ‘‘WŽžýˆ9+ýÙ´£‡;û2´Ýöøòªži¦Ïç–×v׺åÜèýFhÍxÏ^2pWèÛ¦ußþuý¯œ_Îþõ{ù qÿ¾´_͉ã¦ûOÙ÷ÇêºîU3÷}yªœ­¯ŒÛ–oì>?5úpˆi»åé#˦ÛÛߎžR²XâŽø‡/({Ç8ì9ëù%7§gVÔ¿3&ý…C^éì—ì¹rãÎÑ?d™^÷õž8Ú×x–ì{¶{ÓHã¾l↿·ì2ÞG²ã5÷3Þ÷Ú'lüºsÞÕÞëŽ/Ÿ øÎ·ý:ïë5ûfÇc?<Ò÷•oMóÏŸí©{Ït|°w]¹ä#Í)¿_}ÛMå¦Íš´â·–±¦cè×!ç<{¿ñÜÿñدgð#ïì±c¾¹÷°±ixtú8c»9%­ïÿ‡_mÓ"ëÅgïäû­åmkÛß›˜uïÕÜà2Ö_¯>¯Ûómýðûî<&y’™{[ýy攣½.ʹÈýŸu±®¹Ëc3M‡câù/¼µÁ´|1¸×ß¿Ý`{5 û`ÿÆúûœËnŽ4®ÌÑó¯yÖœ’:s÷â½Æ6qÛ°nwtîSß0z¬ãLg¢1Ï]ºeÅ{þXMÏœ|³÷üÕyáâ!ÕŸü&ñÈê³ë/ÿÁØSÎÞ6&¿Õt_V}gÈ+rë7\÷Q¯.h‹zmæ÷óíÿ÷û:¯³†Í#«®ý7ž6ö±ï«qÌ4­:½-ÿ¬Óëÿè+Í’ÊßKÞ™dZ~}îЈÿÔÅ~ËϽðE‰;Î;ðwá’Ó2àä¬+cÏÝn¯¬=cyƒñ*zÀv©q?°spiÙbã¹Ø²gÿ%ùEŽu__ÿÅyyæ”îÙ ®Ýò”i›ÜzÞ;&Jü•viÇ…·ç„–g¿äcÚ¯i~¬óùù¯ÿqFÛˆ[wü§ÿòG³o>þù ÓSë)¦µrŽëµ>‰ó‰Zs_÷Xc/™Òû×cõÇ…[å\:¼èÈÌï~¦ö#É!Ñ'ùLã”צw_yÄ´Ý÷mäC}Åqì‘ukn`ìß.:óÚ’Àï{’˜þqÿ7{ÈÙïßöŸ>²¾ï½¶$€ËX~½zÝÏenÓãdÁ†”%üºÇ´+{¹š^5öà´Ïo» 0o¼ýÏ®_¶ú=Óð뀘ñ;n7ö¿ºeþ˜oœQ½¿ÿyÿiûpSÖk#ÆQS?ÿÕ»¿4Ž={«Ü¿-4æþwM¾3ÐwÑ»aZüY9’ÇŸûî}_§¾ÛiœmÏþ÷Üè]Æ”'-Šþi`«HÉv¯1&eÑê³í×®{qæøªácµ!dÁì·7-¡ç½<¯Gô—ô:;¿u,mýø¢âBc~^²pk r–ÿÖy¯iOßñ×_žf^õXØü}Ʋöù ‚º?czí~}z×’ÆÀ9ñ韶ýAÛõQËM·5†W¿_?Ošð÷ÿwÿ {Ú2ø´³ûÆ¿3~_[%ûÂ7¼zÏ!ã-xÍâñ’‡^mõTü`1Î_¬[OVvîÃÔÞ?ó´Š>Ï›ŽŠYë¹×˜©ýv^^r‡iûswAsf”äaw}–=ú#9ß®X÷ýow›öÏ.Íß8üOÓüHÏÓvæpæ+¿Ëiàà_NdÒLû §¿%4{ýó¯yê;Í{çíÜxÝ5ÿá Úü¤áÚ€žÑütùÑ‹ºë‹–Áo|¡lSW¼ý@õ!ÓtÅå÷u[ÜØvlµÉ~‡iý%©×ˆè@þÚrUxÕ+ñ¿w§—ÝÿÔÿ‡ÀzYÕ”ðì¶@e/}ìŽÑ]&Ë>ðÙ¼¦aO™ÖyOŸ3öÙã¸uòu±#ž0Þžã#º[¾1öSÆD×l1ÖW+ÎÙ=­—é˜rÏç±ß-7ÖÏ3££î\i, émÞÖrc:çÔÉߦvú^׆g¦Í¼Ü4o>^ßÐÍÏ_¹/ýÁ¸6Ür÷sÆÖôÒ\Çãy3Ò}sËÃóRÐ5}þÉÏÌ‘]nêì_ÑféyäÏ>KMÏS3zcó«ÆÕðŠ£ß/Æ“>ìS»|'Ú'8³'KLûÓoŸ8¼ß&ûtáß¿÷~Ç´&¾ùÈçÿñ7~kÌäšó]ÆR:vëÓZ{æÁUýBÛdŸÝñMnŠq_ysüy—ýÏñn:ñÖÕc:ñøIì»uàÈÆ[a†uÛ_j<«2ß:£agçç5°û¡!3RŒ÷’»þ:;Ãe쟜qAõ|“͹‡’zÝTeìAîƒK‡õ0î³~ûæÛ„ks_›Qcz¬q_yàÛxc ù$iËÏÿ[Ga²2?ýbÞ cs¾wnܸã4ò–M7m àm‡¶ŽºxX‹iëºç͸î×[Ó¾Ù‡RN7ÝK7M9qz@ïéè=æÂ—þö÷on,ù¼švùcrGµ}7õ'cìO¿–þbŽ1û=½qf¦±{ºêÃM¦¹gÙ›—Œ{Þ8ߊ>ãö%Jx.+w|¹ìÛö³&×Ù•Sžéa7­‘Å5‰³¾7Ö=×öú<érÓ¾lõÑ òFûÇ<ߦ2Öm×t?øZcɬ½0®Ô˜×žµ$[gÚ¾è¿8cÞaã²¼îLo~Ï8.‹ºô·=Æõäë÷î¿ÁØj¦>óW”i_ÚóäÞø@ß<‡óæ½íŽÆ=v•µ± àÐ:¿û¸ñî-¦ýöÙûïé2ÇÚãN¾m¼I­¯_\b:–‡þòäçoç3ûGœ,ÇØþŒËútX”qZ;n‰ZŸeZ®~qΰÞçÏóQkc†4–é­ƒ?.þn×3äÔQ…Æþøª±ÙÛÛMkܳ#Îü6Àgh;róY©cŸ6®É=j–¯j‘}óÉ1=,WKÅÉÏšÒ'H^\tÛÞòóLÓ´ïŸö\öà¿> Õ‡ÂWO?jÜ×V|pYþã™~åéÿŸ»{]åe»fg÷ûÈìoºço^°þõS£ÏçÌøh´ivæ;†LùÉ´ä/øHz`½YŸÞÖþã»ÆRØï‹OÇ™æß=2äÓÛÇ|]š3ÇœR?cÒÍ=F{õñ—²Æ÷˜UåëtãÚ^o?áý۸Ɔ÷“nìÏšGo;±É8ú]8óü_¾ÄÖïïs}<½Át<~þ5îèÆz× ÝÝß´‡Í Þ½ë¹ý«Í#Ço}mÀß²yR{Ü£÷šSVÿõíª›¾é4þÎæK¿¯M® Š ê˜Tq[Põù{hPPÖÇòž3‚‚r> Ê;+(¨ùJùy´¼¾T"ÿó`PPAFPPýòóDù“”9+(¨ñ&ùïÔ  ªAA¹Ÿ™1òþ¸  †Çƒ‚Z?‘Ë–ÏØ ¯¹AAn¼ž&ïy1(¨:M>æ ù{QPPÛùý·‚‚ê:‚‚ÒŸ ê:E>~œü[³ü© JØÕ/(¨]>£âë  Òßåçõò§!((îeùú×ô½±r½A­AAÅ#åÕ"—ßU^Õ,“·†•É¿§® JþS®ýù¹ü~×ñònyŸ|wø7AA.—ô‡ƒ‚RÙå»#§ë5·Éï–ô–kY#¯rïéçÊïË{Ze<òe¬Rÿ–÷õ—ÏN jÙ+ÿ-Ÿï+Ÿ]%c,×T÷¼çvçGåßkäÞÉ{.ÑïmºO^/“Ïž,¯Œ/ãqqP#\Æü]¹GùÝ2ù¼ø1ú;mCýcs­ü·<;Çò]£åºä³Ëäzkäú2dÜ£eÜâŸ{,‘ñ{ZÞ?1((¢GP'Sî­E>W¾·ôFùù-2¶òl=òýQQòw¹Î²WåO™ü·|^°<£ú/‚‚B†É{乕>ÔånC™+Mr-Áòì£÷È}õ•±,¿3_®«›Ü¯|wÐý2§ åßGÉ%/’ûºC¾[Æ.hqPPšŒe©Œqéùœ{åZŸ/—?+äÏÊI¾.|¹ûäÿä¾r¼ò}\Ïcò*Ÿ´^®éTy•yÖð‹ÜÿR‡Rù#ÏÙ¹JÆ\®)h›\Ç.¹&æNüÛ‡ò3ù{áyfòœC^¿Ëu=#ÏMæ|X£\sT~nï©s,ù|yÆê3MŸÉzHÚ$¯2çjdÞ¤l•ÿ–yì‘ùj‘y“!sTæiõ6Ët™¡òì‚ä9º¿×ïI“ï,—ûl—qíâëÈ’5'Ï ®@þ»TçlŒmóOºöjNÓ•Ï-—5!÷rž¼ç[c¹—ªÕ2¿Êß”ç.ß%÷à¾@>O>?[Æ4XÖh«ü{¬¬« ¿d|î‘ß;,ã&Ÿ× ×,s(J~V3JׯoÎÎkÿ((¨[˜®‰|ƒÚSù²ŸdÝ,cÕ&c&sÔ%ŸÕ$ë#8]~šü‘=%]ÖX©ü·M¾2_æ_ðCòýòÌZäO°¬Ë.óäwéÜ –¹'ó¤Tî;BÆ*Y®Ó*ó¼BÆ9XæG£ìKÁ²o˺é"Ï5Xî¿C®¡J¾·Ë™òLî9xþ=Qöú„·åzäú:®Õy#×hí.ÿ½D®EæsÁåòß²vêåœh•½,_öø6yv¹¯`™ÛÁ²þÓOÊwFÊüVÖ˜¼'x½Þ[¬ìi™oy²vÊe®Øä>RåYË}$ÊŠ$ßñ¹¼Gæ‹EælÃ4=§l×ÈxË{rä~‚eýçÈüí*÷+×Ü#Ï9VÞ'÷ì•çQ%÷Òå)=Cå9:ä:‚eý?¯ËçËõ´ËÜÌ‘k ~SÏÄZy –û>¢çK°¬Ë`y†ÁGåÏ1ýܹÿrYGroÁò÷Vù·ø—düd>˵gÈ3tʳÉüN÷­ £`›x™·¡²ßËú·Èµ%Éz •u,ë¿Q®©r¸¬A9»É½åÈ~˜$k-ø¹Ù£¢ä—Éç—ÈZqÿ&c/ß!×ë’ŸWÉ<}€½W®Kî5}¡¼Ê8”¸t]ë"çK¹\sƒÌ×|¹ç<9_³ä9Zd^µÉ³,?O÷´9ƒÂå¼M‘õ’'g©œ‹Ýd_,—µRü¡Æv9—BŠudï³|¨cR!êe¿É‘õf“y"ã[#{|WyÎɲŸ—È¿%O•ðõ!ã™)ã.k6­Bîñy¿ÌýX¹w—|wš|fq‡¾¿vŒîc-ke¿™­ë“s:Dæc´œ5nÙòäy†ÈÙR.kÀ)çzˆœûuìOûe¯‘± ‘µßº]>SÖN…œ“!r?Í2'Êd}˼ʳ-Dæ]¶ì_±Ì79Ó d]„Èr‘ü»<ËÙß"åü “y*ÏÊÈ{Òäwlòœl²/‡ÈÚ‘õWy¶ž»!òL[îÖg“)s/DÖR ã"Ï-DæBÝ“ò:V×OöWòGÆÞÛ[÷Ãp‰%Šä~<²VJ$vË“5RÚ ço™Œ†ÌŸ ‡Ôò²Ÿ¥É#ë4DÖ·M¾·RæVû(ýNþ=T®5d޼_ÖQ›¬©By5²¾Bä o”5"q_¬ÁDb™Oaòù!Äò ºÈ¿§ö’딹&Ÿ%Ÿíùc=KÏýùS(ϾP®%]â‘b¹þº5–0²ïe˳áá{dÿËØ"e‹Ü“Ä5µ2ïše¦Òý#_î=QÎQwŠîUu2]oï–¹Ÿ.÷â‘= TÖ{ÈskTË<.‘ïsÉ󪔽#8Xÿ›±jŒÔ³Óö±ÎƒÙód,ËšuÞÈ5%É:L%¶–ùf“³)_î=L>¯‚ó]æj¾¼§Cö„˜_t3:fÄÖ­2ǺȽÔû÷ªš.ò39'C䙿~§Ï2DÖ^„ìÁ!ò÷®7†È"ßÙ°Qž¹œå6Y'Õ=ôü •ÏsËÜEÖBˆŒuº¬‹v9óòûÈ{dïj‘ù%c*çxšÄàNÙ+’eìªåÙÕʵÚ%f«È×½žøÇ.ï•u-{H…ÄùS!ûsìIUr>„ÊõFȳLaýÖx›¸¥ø2‘x~¡2¡òÜråÜ¡{}¢ìU¡¥Ÿ&>/û¶¬ûBùîvöW¹öPYÿµò]-2¿‹$î%ö—kÈ—y”)gz¸<ŸPYÿEòüj孲ν×è<` eK êÒs2ÔÈïJüåþÅ¿Þ%¦Ès9”1“uPÒSÏ'§¬Jyn;åç§ËÜ’uÑ(×*Ï=]âÀÐ~zX$® •ó¾‹\cè@ÝËBe-wÈ<Ê”1O–gâ•ý4FâÉtùYŽ|v<{–¬ÉxÙW2ä¹9èºÊ–¹™ ßë”ë•õ*ó?©Iö¹þš‰:wØ/Be-ÆÈ½uôÔ³ Tî×½Gã²h‰/ºÔkå,Ï«û*c*ÿžÄuÊÚ ¢×U ãfÕù'Ï(Tö½0yÖrí­2O’%N©“¹è’y’] gd¨ÌÛºa:ŸºÉ>”$çœì7]Ósƒ¸7£LcøB9'šåúBå¾,²¾½ò<²äzB—êy–/q_“ì ¥²nƒdžÇËç…J _(çgœÌ«¬él™v¹ž™™ìá2ŸBeÜBeý¢Yb€.rŽÇKLc»LsÃPÙ£Ûeo(•ui•kM•ql•Ïi“õXÍ8ÉufÉgeÊx9› 䬋æYÊ/gu¼<ãÒ]CYŸ¹¿|ÙƒÌÍI‹å™ÅËï& Ó<•8‹1 —½8SÎ…py¹2?ò,"§hN!{nÖOå똔Ë<ïÊ~\×=Jçd³Ì¥˜AºžÈ_ò䙇ÊÚOß”s4Ÿk“µßEÆ¡CβB™Ÿ±qš#Yd=æKì÷™ž-Äã5/&ææ~ëäúkÓ>Lò–¯hy6µ2†¹‡5žÊ”¼#-DŸI˜œaI WÈÕý©qC‹Ì‰”þšGUÉsÌ‘}$Œó‡óMÖ~ºÜkX¾žaòÞJù®LùÎXyÆa²Ã$ÆéÊ.{p¢Ä·¹K8/Ò8ˆkrÈ<ΕñvÉÞ—Æï4h®Æk»|g˜ÄÐn™W¶ëuæÌÔkN—=¶\Æ Ì©9a”ÄJéroaÝÊålJ“5ÖUö”ªc·†Éz*"Q®;ì4ë£wh^Ÿ#×o“ÿΑ¹'ÏÎ)ÿ^"çw˜|g‰¬‰J™¯ù²¯y%¿Ž—Ÿ%ÊX‡IþØMÆ¿BÆ,ì"}uÉó ¬qp7™¿¶ˆE‰%Såûã/YûÙr}Ñ2G[äû»ý¡ù ØL‘|~˜Œ}˜¬ýVYGÉßk\ÌÞ&ϹHbËÚìAyN2œŸj”(qXºì™s9²·5É™V•¢çsØíš·´É¹è’½ª›|F˜|f¡Œ˜<“b·0™ga²ökå¾kä¹EÈzì*×fÿZqŸ0c\_Œ|N“Üo•<ÓdÙOšd.9%î —µÐ>_ÏEr³F™#õ²¾Ë.çSŠìcɲFÂe¿sÉ:J“5.g^꺎yá·(†å”=È>Osûü34†I“ño—ç˜&1}¸Ì™®{„ߥ¸)sÔ"s¨RÎ6—U÷Ô®²–ÂeÞXåû[e¨–/}Uç^‰|~z…ž_ÍàRÌkžç2Í#í2N/FÈXUÉþ¾Js›p‰+ݲ/„¯Uœ€\2KöI‹äåá+öj_<¢XX¸œ!…]5ä ß®±T79C‹dŽÄÉ}gÈ8&É3-’ó!\Ös¤Ì­v¹wS¢9 q¦EÆ®]æ~Á¥ŠÇºåž R‡g#ÏÏ+y¯û[ÝÏÀùÂå;Ûe¿n“ùÐ(ó"W¾/\ö’pYÿá2§ìrß¹2vÕòìŠ$ÆJû@1¾pyÆI`ªò96yæQçêüe.†¡ØI¸ÄD]F+>ñ—~WÑ,ÍQ¸wò¸Hù½L‰G#ä¬óÈø…ËŽ“ç]§ûd¾ì/ù·)V/ñ¶¬µˆPÝcYÙ×ëúuÈW~¥ñfªÄ/3—ÌÕ™÷Y[ô{*dŽʸ¶ÊØ×ÉXd§û|„Äþr^––+–&ë>ÌR®%^ž}‘¬ÅV‰ƒ²ä¹$_¨92çX21WÓËuŒTü°HΠY×G4>ÓlŸÛdoŽó¿›SŸøu¼ü®UÆ6RžKŒÌÓ9w2³›tLÀse¯ˆ½®ô~Íé"ÀoÑ9KÞ'ÏÖÞU×¾]ž{²äM‰ä²þ²x¿¬B³Yÿ9}4.Ç)‘ëË•ý2BÖM1ç­dJlæî­g$çHÔÕº?FÊwÚiì!ë?Bö‹\K91‹Ìï.ò¬ Âû"¯ y\ãè¶<½ß®çEÊy!ûMâ÷“Ù'ë5¸äwšÞÓ¸L®Š<ò/ÍI8;#ä£"&댸EÏ£9ÃòžzÙç#d>dÊç'Ê=Ep.Éó+%Ï—˜"OöOgØÍÓ#îÖs’µ”)ï‹õÁX‚ʳˆx@sš\óÔŸåwO(F±DÏÎ29K"ä\Š–ßM’ùœ,ï-—Ï/‘Ø4µXs6âe»ìi2N§h¾Ú,߯±§[Îl«ì32‡#d~Vý.c&ùJ„¬ÿfǪ«‰uhÍ…šó¶Væx„¬ÿJ¹–x™³+åï2_ºÊù”,±u„\C©\o¥¬™(™ƒðàSµF“yHç‹+\÷΀‰Óe E¼¥ûs6AæK‡ì+VæÎQůXÇNy6Y2Æ5²¦âîÖxÂ!×!ç~¨Ö¿’e½ä,ÑËœìö·æñÙëyVR¦ë'_®±Pî?&Ikq²?5ÈœI–5™¬÷Z ÿ–•¥1F·gG®‘¹d_¢X qS©Ä í‡_ ·Ž,Ð9Ýívošå\ˆ,Ñ} ìÎV®¸nÛù9׫{49&ù±-Xc²[×3õ˜H‰Ÿ#åùäݨ5kÚ!{R¦œÙqëôYGÊù)gI¤ÌÅ‚ æú¼r=©r­¤ªÌQÎŒ¼½»×eu×ùÙG룉jìM|&ë?RæNkoÇ“¾Ñš(µBöIbX#{˜‘õØÞ'ñ¨ãs¹g ¯¼×\«9P‰<7G‘Æ‹‘C5Ç)ŒÕõÆžjzè9œ'çTö"Ã"¯“¹%ïm—Ÿ×½&÷¼Rs9‹ÄÂ}åßo?26Y‡ñr^DJ¼ç”¸6žkž¬ù(ûP¤¬ÿ»>{_ü¼Hkž‘²öÖø2Šq“9‘¸Rñ½by_‡Ì“*âÚ1Šy¦ÿ¥ùx±ÄEµò,³eOˆ”8¨e¡b¼‘‹;Žeìw)~Ÿ-Ï Rö€fÎ/YÓaWj¬T {PÌ6ÅG‰iÁŽ‹îÑx|=YÆÉ"ñ†UþDnV%’<ß©y1˜ˆ‘µíÓ”ïuÈ<Ž—9›Ï5ɵÔÊø§þ®gÏ4WÆ£@ÖgœÜsÞ÷ŠS3WJdm{'éÞùªâÝä3Ëd fJÌcy[s\pH™ãFö•È·õ,*ÉÒëÏgþÊgGÓ<7RÖk›Ì]›<³"9›"%7‰”ý5VÎÑÈÏtLØ£‰óØã ä>RþÒ=:ï}ù]£*Ùs$¶¨”ç“%s×ÈgeȾŸ*s+Užy¤ÌƒB‰ß²eíEÊyY,{J%µ)9ÏšROK•g%Ï0÷„Ã=¡qL´|FÆT­SP'*“ø¥@Ö_¡œ§NYí2÷›%'Œ“ؤHöë®ëõ>KŽê5s.DÉøµÊ3qËu…ɸDåë¾HlU¨µ¥(YûQ²Ç§ÊýG•ʾÿ£ÖÁÖOjľ[#ŸU+êõOîvÅJ‹åùTÈ÷»Æë”/çAÝ«Z·'Þª¸Rñ °â\¹ï(·îeÔF£$þ)¾^qæxÙïce¯¨¹ñ¦Öç,cµÆÀÚË”û̓ߩøXñûâÍŠRsoúH>«¿Ö ò8ßåþLƒ^{“|^l¶ÖšåÌÏ”¹Ô$ë6A~§Bž]›ÄPñr/²”ÉwFIìŸ&ó/êJÍêjësçj­žë#®k•õuÖq¢ä,‰‘{-Ø!ÏEæO´êÊÔNåž\=×ìòŠÎ—˜xÍÍcõìì"ñGõã`ç)o+>ÒX£11*5ç1]¥ß)Æ!k'Eö¨YûI•šC6¬Ó|Á"ãY.÷Ü(k¥\Æ¡CÞçûK’´ªŸr\gjí¬]®9VÖw]Œæ9^™%r>$HÞÃÏåeŸ§u1âöê¿uoHy#s²ºPs1ø@M²Þ»Êßczè>Ó$×j•ý3/GyK%2bNWŽŒ|˺Ê'Çœ¥g 7ñœ¼/æ­ÕdÈ8TJ,3^còT™-r/Åßk\3Xëû1²nJeÞgqCtÿ£6fsµâ·Äà1×(/¬‹9dªñ¾œK¹2ÿJÕ<H :Föˆ—Ö$™ÃNyOŒ<óY#ñòÖ9º¯u¶²·•3  zšî®XåMP·âß-ròòÆi#ñe°â-©i:—Ú匴ÊÞQÈ|’uá’çí½GóÎx.ðlÕš3æÈ³ë6Yç˜MþäH¼‘/kÚZ¥\"Ʋ­—Æ#-iËQ·ª<¬uïâ£û4Žêö‰æþ%ç(~Î9\.s3µ§?ï•ßqöÒzeŒœ½òÝŽ56ë*ã/sÓ3Ð%ϯXæLlŠ|¾¬ÕXjtòAòœòe|ÒdŽf~ªñnæ`Íë½rÖÅ9oO‘ë°LÓ îA¹<çØg´¾l“ÏŒk“¹^-ûüÖØ6åû:þTn!ñsZZÊ“±-›òÞÊ ÝÀÉ“Ö(ÖS*k±^¾+o¹Ö3+‡4Kƽ=wšbèä¦ð˜8TÜ“z¸A¬<‡¼coQ‹,sëœ F%×&÷ Ž×Uò¨XùÌÔ'5¦‡\ù¥â#Ô $&•û²ÊïÇR›©µÀX¹ïXYûÅ7)Þm#“5–3Z¹ Ô6d¼½ò\ÊdœrdŒ•³?FærÍJwˆ?bÇé¼£>Q/çMÛùÊ‹cžÅÞ¬®üLå´ÈõÔÊ8Ä.ôßëCšÇ´É»D9r/™²7Ⱥ)’1IºNyà ­Ÿ)öî=¤¼¦DY±ë”7Z?@ù3pVÉQ‹åÏ—ïh–g+ñOz®òêàVÊÚˆ•˜Ò"1uùhå…ÃëÍÝ­˜cîÍ­]ÁZÿ'þõÊ×ð–®Q°“Ús”T|¹ÖK‹”·N,O]Ü»à€>##ãÑlÓü3]â²zù{¬¬ýjÙ3b嚌ü[ºÌý9“KŸÕ:u­æ2/Ûvh¾ wºÂ¡û8{±-{}¬ìW±ßjžJ EÒV§ñv®Ü¦Ì¹ ™Ã-2F±r¦Çþ¡9I’ìG¹%ºþÜòL[ä»Zj•{Q9NñXø­F®Çý”~^¼ìÉéku-dÈxÇÉÙ—¤X<¾L¹Î¹Þ 8Ywn‰ëä<“ü Qöœæ™ZƒËÓvîe:—É÷à#Sû©—gå’k“øÌšæç[É:Í~]9=9rïŽbåRÅÕéÜ(\ù+™[q2G+$&òÞ¬˜p¸Ìõ ‰iZä¿‹Ë4ŽcïI”ç[œ¥±§mWO÷P¿Bcª8WÛÅŠ×Q‹†W],{AÜiÊcáL‡™ýœòÃ8ká"ÂÁ¡VÀ^Ë8Q !g‡‹'ñGW‰kËåÞ‚Ë5'ƒw‰bìpêÙOØ÷ e®¿¤uޏ«ôü--P ¢¼Bù/9yZl9—z«æÖ §«~£ê åì_oÃóãì‡/E ˆ=®Oñ“Š‘Ãã€×Ë9—_¬¹Q–Œ¹u¸b`póiÎÙeÖöód¿îV¢xuœ½ÙÅÉÙ±)ZrS¸ÇpÜZ䌯Xq¡¼KtMV×)?¯j­Öóá`ÅqöFD)>tK©ž%eÇu†Âø#±§Á»…#FÞnœ s«EžKÊëš[7Șv•kO«TvÜn­ ´ß¢ù ˜rM­ÖKæÊï±7Ë|I*Ѽ¦æ"=‡s¿Ò½‘Ú,ùp‹ìƒ©UŠ…ÇÉU*gMýukÀ+“³¹i‡î9qï)/2Iž]¾Ìû|y¦I2?Üòš,ñµ³Vë{ÔÜáèÄ}®g'¸ZAœÖòàB€Ûzê´Ö‹¤Iær¢Œ½çå¶‚WÄqÆÊ3(”5Ñ*Ï3Sö±ê›”OëýV¹ÕéÁZ¯`Î×QcøC±o΄9ó³ä^º=¦õSj'õÛµNç’1ŠORü4FÆ žü7R×Tæ4}ž¥ò3›ìI)Z·)ûS¹¤hKêÏÐÚ]i…b©2W»Xƒ€§JŽÅœŒ¯Ðû%î Þo“uUnž Ühj|Õ2²nÔX¸évÍÿˆÏY7]¨Úg/•9ß*ûdûtÍò®ÐýÜ Ü.’µXë“-Cde+ Û©qR‹ü½ëFåðåÉ|Œ—=®åMƒÁÏ©Ágg«|¼øAz&’[¥ß£9Q]ªžsàåÄ+ä§ðÅ:æ+ÿ<šü,~¨òWÐÀѦ6?\ëòÅÛõ\¦~šjѼ–Ú$Z xºñ²ŽM…r>¢/#>Ò¼Ûý£bďĿ``l`äÝàñò}Érÿ©ò ìr¶±¿Ë¥«Zê.ñw)ï’3—.ù]ü<ùY;é2žÉ_kÞ —±\æ¥Mæªm™¼ÿ\åYpæÅSg[*cÍÙz—ÖœÀ¾ázF+91Dceê^äxí×j^¿^ùg¹‹õy€oÂ?@Û”v¬X¦CžIä_ñ;;pkmƒ½¯^ž¿³UsùÄ=Š=æJÌd‘±´ïQÞ}£ì­FÖ@ü>=áÞÄË^XµL¹eä²~Úóô¾¨«pßðïȿ۾Ò{hr)u Ï3lƒæßäñi~H̼Vãoê{ŽžÊñ²ÊÜ,•ù”ÝSc²Ì‘ª¿’½7þ{ÕIP/–çÙ&k¤Õ¢¼°®²7Ö>©ÜÊð¦VýÎRY/™2~èÒ[ôÝäÙ·ž¦¸.Ø(Bölê²TÈþì÷äËœìú‘rSÀ‚ªhZ£@kT'Ï&_ö¶fYßjå”y•P¨8g±gB‰â3ín­Ÿ“Ã'È3ôÊguÓ8ºUbÿ:™ )Fùë®ÙªtLRÍ XYz¸òYë[•3Ä¿%H å ×Üþy¬"™¯•2_Ë"4O¥f™ÐCïl)A>?CžUízÅ}¼·IZÃMè«û|S7­5&œ­º ö>j›Ä2©röxå,´Kž” ñwšC—˳Hçp‰rc[å}æ ûࣴmRŒ„u”-?K’³½ã&å¡·ÌSÎ$uŒ4åL”ÿ¥ó)kæÔDÆ)ÇŒì$õbÕ{ÅUºŸ¶pšÖY—3•{`“¹œæVŒ ¨R®­Iž[ºœE=»„ßÕ‘¡¼Í²‡U·„ ü¦ú<Å’ˆY*·*‡°n£æiÓ•¿C®^ø€êpÒŸÑØZ½[ÖKžäOÉi-³ mœán÷j~g¼ \ö­¦½ª¯ƒ  -<70ûæÊËû ÖÉ^­±A·y:~èÆÀÔÒeŸwȽ$ÊzrLÔºë¶ðTÍÓö)ï žj¯¼?{¥â`‡¬G8~/ëõW9•§/—úQ·Ó“¨–ëO8¦qŠ]Pÿ)jѽŠ9™ÎåV½µÍ4yO†<·„¯”ŠF-á¤îÍèyÐï¥ÉÜs ×{KøY9DUÊùå<%Ž{tȺtvÓ3‘X˜{„Cw›5Hü‘qRy¨5›õìÍpjÎW ã™(ûJŽŒWËpýýšåÊÓ¯DSANI¢ÄÙ^ÙcŠnÑñ‡gŠ>Á*ûGbrûàHuÎEŠ}¡aam”Ý¥u!ê|qïjmÆ1Ec¸,ùü´šG¢µ´|®|º.›Ϥ6R~—r{ ãô™Â7@ãоVÏ6ðv9‡gè3å¼­yš*×R}–ÖÉs¸ÎÄ{;è"ûGÝ]K¾q¾_9OðÆàIp\?µØ.ƒ‡ÊµUŒQpJâcu*¯ LƯžñ{Tù}UÅÊ9µ~®ÜOøÆ¥Ó•#G~ÑÜW1CÇCŠ“’W¡ÿ¢îŒ>²æ„juåÕ&{RâÓzî[eî¤OTÎ,9Dâ ªQDCìGÚ4O1?ø-ëôzôrœ?Ôàg¸•çž(ûBÝfåL}ð¼Y§è+äùØšôYS·),мm \.4*苃uŸ‚Ûœ(±|ëz­TÄj^W$÷ßpŽò½Z"4ïd v¹WóÙÄ_•Ï‘)óÏôÕ½ n@¥ü{éÓªóM Õº{R¸Æœù9©.Î%ïm¸]1RêmpJ›®WÝLR²bèôá+–Q¿Ÿªš8g™6ÅláVÂñ!ïIÊWmbª¬•$YÛFâDϪ÷#ׂ£O¼ªèu­ ´Uh 3=&µ:0'xÔ]ÐÂPw#î…EM‡ø+]®/ɦõVbetÙŒ98Ø8û!\#êÓi-Ê¥ Ÿ‚d³ä,I½ÓMê­ùS¡œ»µÓµ>E¦:aâòô ÊóæLóÄýÃUª»–qh*S~IWhÌœö¼î·ðLÓŽ¨ž>u†\_¡Ìµ¤‘»•Á‚ßVR k<ë4õJ þWµSu8p8 B´fÛ®µ^Î OŠòfOh}£”œ¸DkIÓ´æ'.I®5i¦rò’îRž ÜKŠjY9ÃÑ”¦|¡-ôÛÅ*­y{± :4°î.²ÏåË9_üªòùÑÐtmP<=i¥r²3/Ög† ÿ?…¤uŠå¶~­ùsÒFÕßwc>È}´Å+ž—^u‹œýù.­¯P›l–sµUÖ^7YÛx+À;Æ¢¤^qTÎ øjÔ¡ d|½Ô¾TL¬IÆÇ%k«QöâŠh­¥“k€%æ‡+VO¬-s’jˆQàK—ÍS~ ü 8ï]‹µÆW }·rkÑòeÉ{RhNYÿ‚^'97>¸ ¥²fÉg8äœKí­õÎŒ}Í÷ZA·ëÒ½ª`æZè58+À.[Æé¹WP®¼xhªáÔ×wÑñm»Z9AèDY#pŠà&¢áó‰ûÜÏè<,üC±MrHü&¼ò9 Êa¥f·CƒÌ™öågçèßsîÒzWÕ§ºÇØåÙ%—+G9Yþ½ô&åŠTüà×"×x^LîRõŸpÈ9ÕZë߯en4NÑ:úy´‹É‰ªoKvéÚ«”ó¯ZÞ›Ö¨œ¿ìJ ×.­¹fNT¨ûŃbÀÛeHî£q×J ÜĿîueöÊ6™¿æAåEúü)nQÏ8 Äë>¤Ì½â9š{®uζ5>&×!®jú^ù¹hñ/I®û~Ó/+ÃÅk]æO~ÿ¹†¶qŠu'ךx²¬¯ÌEÇ9GÂsÌÓy†¯g:høh9½t}áýÂw€ñQ‡É˜©'è׸j»pEñ7H+Q= ˜!¸ç]»Q¾7$ÉÜ÷BéÀ)Ém’+oŒMùýճǃN]çå®5ÜÔ±ª#÷ñÔ~S,ÜÚÜJ<²Ão‚ go•¢+•ãÂÞÍyÉ+ºv4vx䜥9˜H²ìU•_ës(9¨ÚyÖX± 8û(¸:|ã¼ßU³BîYs\¹x­ ‡ãDM;u¾ÆèHÐÍ M'A/Ð>@c9ê‘hðÙ¿‹åv™­ñFò ­‰øx3W·æÙ¢!¢6R%ß›%ë#ù'¿ÄåÓ‚ØÿÙ?ÿÔxì„Ýk¦ÜOЬë>ÍËÁëТÀC²Ý®žäHÞV]÷à†h)ˆ+âhŸünM¨êËdï­”1,[§ZxIx¹âuol«U> ÷ ^¿_‚&«êÑxÁ7÷*ljü"çtåà¤Hn“þ‹úu0'R.Ñy—mù ñšÓš3µ~/‘ 8®Ù¬g9ñ3±ü7°x=èÁà…‚S¶ÌU2Z‰”ÏăÍ8Z…,ù½nÇ´„¦|œŽ]Ê ?ßó:ÍE»Rg—µT)s·­MyàŸjLVoÕóý€‰Ó˜Ø7×þ¶…×bôAp¤áj¶½«8vi°r5ñLh¸F¹~à5EÓ4N‘5œ"ó·PžOÊc[Âu¥>Š¿ ü[´…èíàÜë5õцy˜Ø[9ˆÔ¬à”§ìÖZ3< êù Z‡ ®xü28õ`ò|.µ 8‡ðªÁ~{°ê ø+5Gúë Þ!~/†·•›Š^)²þ3* l ÞÜ`¸ÑÌ]êÃx°¿ÃÃsåYS±ÿ€‡wQSÆÆ.s€úR«CóÇSº ‡w¯WPЬg´jPÑ¢ƒÉ ‰ï"ûOjˆr©;Á†WÀZᬅ Œ­Wjœò„=]ÔW =Iy,è$á{磷@KŒžŒ}mËõŠuqÞS»"÷’iŸZ \I8à+MF9=hÇÑg>§šWÖ?õ¸pñÂA—‡×L®œE-k”[’:Rõþhó?U\<Õªq‘±oøTy“ø x_R nCC_呃Þ©:]ê1ÄüxáKU¯ë 9±ØgšOjëÐéÓÀ3+E±þ˜®àtÍ5Ð1¢Ãg΂ÇYK•Û)U>;ß«¸u–¬ÝÔ¡ZßO½J¹ÔûJe|¢´ŽÂý²ï¦^§çg“Ô1zF‚sâû‚ÖÁzXŸkª¬ÿTj¢ƒ×JžÑe‘j¶à†S8Gj <ÉÐf™¡žÊ¼‡ƒDm½|²j ᦦÎQ.±7±tªÌA×ߺ·»‚Éye]¥> šCêñx|€ß{ŠuÝ7óëQÖ)&›º\ñ8Êè%óÀ(ÕúpeµjYñ€ÇÊüãÀ#Д£©Æn>y¢ýo]+èðÉ@¯—®s±u„r‹À%¨A:ŸP­"ü‰V¹ÞTÙç;äóÛeÝ;¨ÏÎçQ]Ó`‹`¼è'ù´Ê©oªH–Œkv¢ß‹«Pù]K•/K­<bå^½ðî"/#DLJö™ó®ÞEðIˆ3ÑàTŸ­5òz×vÅ©ÿ°‡¡YÁϤBÎñìÍ›3Õž¯õ8Èð\Ò‚Uß*÷רEq|¸±.j ²¿xRïŽÐ<åLÁ¹`/@å{V½´ÞÂ8Àq÷yätÕ<#-ËŸ“Êxf¼¯¼WpÊÊJűÈêeí¹e~·i™.gW–œ[é>M½–ºpóEŠ5’O¯Ò¸ß*âws\kóäð%w+6@lKÍ*˜lÝ层kÃO"oNÿS¹p*ªd­6É5×ÉûZw(žŽÿU}˜jà"ãWCî?±JF‘êŸäû2e¼m27ÒÎQß´nä'iç«—zۥʇæ»3Ù?BUÇ–v¹ê Ò†h ¯ù^ëmª]Â,ûUÅSˆðHëV¯çÏ”³cÚ_:ÿà-Rû/“÷¥‡ªG5³*yÖåòlÓem¦Gëül˜®þ4éñЉ¸ã”“¶VrƒægÔbÀ­ÐÅ“ƒÂ'ÇŒõ™ý«îûx†eÉœKïª5!ôxUr­ðêúÁ¿NTééª '·$§cÿÆ¿<ûàëÕß¾œc|X/`½x7P[$Ž`¿À×"d›Öwª7¨ÿGºÄq2žŽùŠcW­šVðnêtÔ#ÑPãѹCÏ~jiìÌy<Ž8?༠_;æü‚»I½\̬®'ëº'¸ ^g–ÅCÒ+€õ…÷5>ô,mOë3Äo'§‡ò³R/N—ïÍè®8õ!|­à RÏÃ_ &X@á(=Có{«Ÿk¤F‚'8>ZèâÐÃ3újUßh}.Hú4eã—é½UÈ‘>K5&h'ȳXãø-Âmh{Y}ШûŸ¡1ƒß‡/+Þ?`bÔ‹ñAÜ~@ýàãá­ÊŠ¿)ÞJð)Ùãá¿ÃÍ¢îÿ µjR`ªà øpWÁ÷Gß„§)>¨ÄCér6¢oÇÀ8žPaˆòG¨¿Sw„ë‹Çl—ï´^š"qUÍ%ZWÁKŠ<ƒ¸'øˆÔeáÐàK„WZ ÊkuL¹/¼H© â™›.×Ú.ë£í¨rÿÐ(5ËX±}Âe'†ã<Â/ˆ˜Ž½Ã#s¿RæA5¸ÖEZËâ,C÷W™ÜX·ª·H—x¯p½ú^’câ__“zûù%zL¾·ø}?àõÑC«ö^>Tøü·+‚ëã±^kF¢b<Ó¯U3CÕ*ó&©L¹¹äÉÌQÎw<šªb•/A]‚!mœørþÁ¹!V›¦Iö„Œ ­ Á)àLª™¦|ÆöwÔ³†zwÛê)ˆÜ 0þ¬ÁŠÍà‡vÜåAå¶RìºNë3F1n¸™?ª×[÷‹rñ¾ÂìŽý6£·òçà|–ÉÚÏëÊXÜž¦Àš =¨o9Ò”ÓB¾”³\ýpÀ¨©áÂÞ&Ÿq‰ú¿PßÍ>_ãê꥟)ŽY²A½6}5pyF•ki%_êýàÇ7×ú z3—|uaê]‹Ç¢Möã Ù×òeŸ)gÜ´\ój²pÀ“ZF+wº“-^=ÀÁ„ᜄªÎî±TÑݲdœÒ¾Ôú ܉Œ#šŸã¿ëjSì•óXÍhÖzÍ÷²w•=ª{*ºL›ì#ÍT¯ƒ^ÓðþKèøQŸÏøV=ÐŽ1ǺÉw5[•ÃB¼ ø~Ô·àüƒwÀ&†A¿‰ÿ{5rh¼²ÐFËcÇë…y„ß gq1yqur-ø9¬M|¨ÿ¢3n•s¨K–Þ7¸lY’ÿF<¢ÞBpˆºjM ½L–\—<äyåþ£Ë,”ùd“küÇßì!<;Ñø¡ñ(øSý0»4«ÖžuHÎï |Bj}]ìê§LÌÙÅ¥ü&p!«Ìáx9{Àæí’ß4MQEžYV¼êÊÐŽàË ˜º%96œsû&õ¦.Á 6‡/ø!^O…Ê‘å솄ÆîçœJròÜ¢eZ/¥fîÃêå~ìzíõÝ´g½Oõ…ªuÉk’{o²¨739;þä‡xG—G(g lj@8ÿñ=€s¿?ojYøGÃC·ÂÇŽÜo£Š£~íÚPÕÿÀMÁ_¿;âé.(6 §¢þÕ‚5¿ üö÷Êh l*÷ý !öaüLÀÈOÑøt‘}Ò±\ÇN9x:>%xdr&ÂW"fÄO¸Rm;z¯Ð¸Ý u^0h<Ž©•Q²Ñ9 Ç“ÜO‚¬åÊÕų·‹¬ÿ/o§ÖY‰;‰Wð.yEy©ègÁ¬ÁèÙ³Ü+¯<—ZScžâ[xˆTkÝ9÷e]ѸÀ5Ç 'š °8Ÿ–'^ÏD8uxµ‘à†‡`¹¿…†þ5Úó¹·¶çuŸÅî)جcšÖùÙÛ9o|Zs¹vó‘zPpæÂAÏûTkªÔñÃç\%Ö3„N.¹þ;vÙÓêŸR½œ~xäðb/Wþ=~ª`eÎ;ÏPÿEx­äNðŒ©I_àw`îƒ:ïàP°oq_Ô¬|úè¾:¿àc³gò,3ûk¾3Gý°Èðbi©\N86ìqµk\‚G*Ünp„Ú.šÏ ›k= zGp/ô°ø×‘G§ÁÑh—ï¶F+fÅþ…ÿ¥súâQ>0s|)8»ˆ'ÐyQ“.¸Q¹bx9‚}–Êç6diüľ›³U´§pPÑEà©Q²EÏkôè¨k =ƧÁû^¥1<ñù`ÞøÌ¸{)& oŸ…LùN»UÏ6¸ãøÀó‚ûIœÊõÃ$Ÿ‚sIž‘'ûhÃ'ª5Ë ¾Ëu·+Χ9s›ú+ ƒivjž6°òÿÅ)9—Á À›‰kK?Õ|Z7~(Ä›èÐgS+ÃïeÖÜErj€Ô¦¨‹áFü’ý¢jÁð¢?¼:t2|õXümˆ7ˆ§ðdÄx¸Vx˜áÀ^„.mxy>Èù¬Õï´Þ¿Š8–¼\üÚåÊÀÏ®æwåÎáû _ ï*êšàNøsã~Ä1Ôàká—‚é%hí£ëRÕÚ’“f¥j\GÌž_£½)À8Ù³àГϲ§Q kY©œsøqx”à]MœÏ}à{ĸ¢Ýó#NÅ/=«Jq <ìªÕ$7‚ÏOü„öœ=«8^ñgïê eSMöõ›¢.€/<Þ2àáðTÉà¡ vìÐøß;¼£'éfõÖsŽú×7ŒKÎâj“Õ#“=5k òvÈßÑ7û²>áÎd]¨ ¯çÇ%ºÖZ*¢Pæhþ`åÀ‰DÇA]Œ?w4º5þúqç õ_w—jÖjeì<ÓÕŸ†œ mž_ÌO< ñÆó±}‚bÔàµ)Ê›Á—nµ;â¾ê]ªEÄó$k¦z,Po&ôÈ~êªz.ö-´9ð&ÉSÀ‡ÁÂ|5ë´îO]ƒù—'õ~J¼ˆÐ\²'³ð=h×à’ÁoežÂCG· Ï×!﫟¥±E‘?É’ñÈ’¹Út™Î14møù‚¯âéBì‹Oõ44UìMèíðЃgןOÛw𤿀WH>“õ•ß>VñtÖ%ñ<5\jþhp𕦾Š÷4z#rÓdž»WÎúK÷5<ÈàÑÃ?Â;¾ÞCŒ3{*ØI·Û”Ƴ§mªû%¹0ÜZ¸©h½ñÓ'·BKÇ üÎ ž8Ùþ:4ޞܟ/^=¡>ô¡×Ï îyÇ Å´ñdï$î)™ 5öìjí ~݉õ]徃ÇÂ)‡£Gïæ<¡œä^Vy«†}¶[~ÞÔSþ[æEõ‚c¾6_¯9BÕVÕXÐÛ?[¼æ¬eª†+‡Fž!ñžåìÉÖ‡´.-1”»L½ ˆgÀcá¬Ûƒ¥â¥GŸjÆÄÍø³PÿÂOÁ1Ýïe¯Ú†H£g(ÚjœàÜpàá"—­ÐþnøüæmÒø ¿Æ2¹¾ìñên•3¦ùQðéÄG #~hìð¹¯%ê£ßü"ކE]? <Ψg³r~eÏV®üv¸øt‚UÁƒûÇ'žVįµ+TcÇø°wk¢#`?†×R=J5?m+µç¼p³ìUÊÓ'ÞÄËÜß*°2ê0xV¢MG«E?j\Ôbèëƒjö6í#C-.&\= ÐbÁ1ƒs@ «âVíÛÂ^–“\oÎmêðFx¦yr_ŬÃúLé“`MÖ˜O5_Ý*_}"jG¨–‹º1&:g|¶ð+ÁS‘Zšm«îað`²?RÝjÃͪë€çÏ­%kì _n4qøÂPß'«; þšpîàw±NÑ,¢sÏë®ÞèÔàéà]‹½ ,› E6í?‚®1=§È­ÁIÁ„ˆUÑ©w;C}N˜óÄ´ès˜ÏxSw½Z}>ácºÓÔ‹ª®D{$°ÿÖÎÕÚ5ZsbS¸³ô~òÕ0õm¢Ÿ1}rÊÕÏ‘>Ô-À²À·áApv¢wÛ¦ç |1шÖË|ȱ(o¬Nâ¶ŠùÚM71ž¦™‡Å{U÷O~â¸J1Orux‰øŽÁ·‚—sšbƒðwðöÄÃL_úŽÁƒ/FþN8hàpðñœb¿§^LmÿJ4phÅ:$· Sý8Ø<¿''˜;ù:ž@ÔÑš5Ô¹–sò¶Ñà½ooa|ÀG‰ëìrÎåŒÓSÒRŸ—;GWYc…äÐûÕK¿{üªèq-Ï($]y`mÌýœiŠñ•PóƒsGœÃ¾PÑEÏp`üçðf¢fIÿô7ø@ ©ýÑ?¯ÊT_À³£¯Z>rt)øW—€•rVæ¬T-2|fðJûϪIDS^Ú¨±Bο÷äÍõÐËá[ξŽ¼Jê>ÄÔÄ—ÄÊøáE_rmü”à¨RïÆ+‰û…뉷'X ½ r^ֿ«ux8ú`^ðà5£À÷¼ ´œÃª‹•ú‘Ïïmõ¹ƒf¹Që ÄøßÐsùÃg€»ÇS—Å»¸Šgß­q›êÔÈ©‹7ª7!=0àêƒgâe‚§.cƒÿ(ç^mè|ÐêÀçG÷ÊY.CáRõzG{D¯²$_à»4lÓ<޽²x¢Öxs“Ô7£Vžy¼Œ™Gæ-ÿxb¡àlǬ¨·æPijäèÈЮٖ+¦L½í~ÄŠÁr¾å–k\VÞ ÞI`ÁÇô<K§¦ŽŽîâ.4Ìò ô">/»z7¢}MÞE€v-88­m”æ0xÛÃm§æ©Õ=›z.²ñªßÇËùJŸ¡\ùî®2åçªÿ3µÏ¼)ÊH“ñ®»CÏ"8h$á¶×µÁµOP“'v¦çý€ÀC¨ïÕVªg>Ú´ uƒ”›^F½‡º(ýþ<¯)§oŸ’XÕïÛªT—×"ù.|?üð´„Ï ^8ó¿ 0b8ñh®¨Ûâ?„v‡¼œ‘^xyPÛƒ ^ÀÜÆcB_-o‰â –Qêá wœƒ½'úl°”ZþmºbæÇõ¢»‚?® Ïmc0Tb~æ-~QMr&—¢Ü[ââÂç” ?‡>à%ð@àùQ ¡÷ÿ+<ˆ«Èarwûqs‰wè9‡Cù8å(Q#Á¾ ù1;êðð\·ù1™ªwÅ,ËxÓÁ¡ðé%¨ŽØ§U:]±0[|lȧ >U¯%4ÐhQ‰§è?†6 n.8#|{üiá’±RŸD;á‘ë©>¡|&tôäBÄ ÅrŸy`²—*n…Ogæ­á ÿ»wsÓ¼|:ê, øÜ5êÛ‰g¥m•ÖûÐ+ûzÆѺÞðÅ=tÄSMœ*ÎÂ(93 {(6ִ›\{ÑV=ó[*Tc Ï,³`—rñ W~‹Ä[àãèhÐ[†(æƒÐç­µM{p®Ó—&úo¼?|<¹V‡|Z«†UÊ9¦—šñ£FÿFÏuÞêg•O^;R}á†ã›¯ŒµŒ÷1Úä<Ù»=ïúù†+u­°WÑ?ÒU¤1-½gèÿ€ß={)ÜNúž17º]¢{?~pá>ÂG`oÀƒ¸"M±5°ôÈxÕ£î8S¹µô‡EÕí ÕQCÐ#Žïâ^ɱšw¨.®š5Qk\xTr¦á…æ’Z û=Xð "÷I¬¹}8Ëñ3¢"þ=xaÂ/'†¤¯!q=>šœ}hÑÚc&ïy­€÷â“' | ü…àÕáû w>à6ð!Ñ0£ Á‡‡9I]¡kˆæìÔèw€ÿgÞQõâƒQãAψÚSÕK¼›³^>GôúAwæ¿pxœ`ø|À“álc_l”qm»V×mǪoÂï\²|¯b æJÕAÓ³}4>øŠSÿC³DŒ„_û^ûÌcôu*7›gˆ¿yÛ ªÛC§Lï?¼jÀÐ…ª‡AKO,üÜÐðpmèâ “Õï„1X;^"œìMÌgj)ùÏ)ç \I>Lï<ò«bTsÛíuÓðøÐ‘á-‡hú}Â¥¥Ÿ¼ft½œq<+bbj3ðl9‹ØûѶ¢©ôÅ`Z©öŸ\ŠXœü(ü<§ñ@ÀëÔ"Ï }±zÚ‚•G ¿›1„WâòÎÓØ‡>©ÔðÓ®ùYq>´àôž½ÚŸ_zA€—w]¨tæ}uñ`îS§Â{Ÿ”ÂIG;d~æ_¯ž Ôfèsb=©þ­Ôÿ© °_ágn Îõ_:ÇÙȧj÷ø‘à•VNÁYG­—˜ü '½ÿÐmàŸAþO®†Ö—ÞZô›¥÷НÇÝfÝ¿ÑH2wX›øÐ?…uÏK«œE2þ5QʽáÈa‹ÞÔºçõzà³Dß.tëÔ¨/¡$O&Feóš¿C=dátÁ™-¼Oëvù[•_?ù†ÿØžœ¾zV¡Ö‡ù91$œ@xßö2埻‡¨kœ>uø,àµA/ ôpž-Ê-Á‹Ëù¾úRÿAâ=Sëø[‚ w„¿BNwÏDô\àopÑ´Ð÷”8Ÿ#Îüï”ãެÉÓžPxÿÃÃg^mR =| pÐÐ5Ê“$Žçºñt¤^ì«Þ¡x3Ï_*ø èÑ˃£;#ÖEgŸ“X˜^4h‚jä><ãuâÏå«û Õ~xê᱃¯4ØÞš_©|Ô¬s¼uy>ð ñÝ$ïÀÃ~Ú;Î t%ô”¢þ¶O-½ÇàÜÀµ£öv‘ûÓ%Ç…g~À¿ãE€'û~¶ô˜DóÉL/ptþxƒá ÁC3>Ä:j\¡žäOøï4\¢µSô1púà“w=W¯¡ílÕ®ÃÂ#)¼h×ÙÊ G£O'¬{q5>ˆÄ«`*àÄ"pÀ`ˆMàûáËFîÅ^<†"ú04b2j¸L]7©žl/08rh$áT‚Ñ_M(ügúw°ïÑ OW|2áâ)†ž?78 hŒÐ\¢;!ŸG¹C}“gŠŽ¯¯ó{zïÄÁ1×ëYWð¶rLÀNð5 OYêIœóô¥Oƒ ž&þúŒ#y } ð$$V5_h¾ÎTÐWóRâ8º]¿Ó^qð^‰­©ÇâÈù¯ü›õƒ—±9ø2¸,?N‡vþRÝ\ÅÍà,‚åû¸6S4F$‡Ã§ÏYú““_á[ žfìcÌ£ªTy°j´‹ôf@¿ÄyF_B4øìãUOßr_ÿ‚¾:‰? ªø1~¥ðBàÿ¢O Ç€ëq¹jŸñ ç@Û}ÖÄÑðÑ\ ‹¡öžƒóL.2½9ƒ©uàÁFßæ*|t±ôûE»/½-~“\ºÖËü£\sƒœM¡«U{ ï¡ë2íÝË= #ªë¦Zt|·à´Ðÿ—¸}͵ïj¯öª WGÜnåa“ w< X,1q~ÔJð5@‡.‡Î}Dð9ié§ó­g&µ}< ÿáÌ5Ôü’Þè¥éîZª=—áê;‘w‘³ÂÉ×'ÖáLbO@›Þ](ë©ì›iê NÉ\+¸O÷IôxAPû$·d¾µÊ\¦ÿwÍ2­ûvÛ­:1¸Ôuéw„n–ÏFÏ'yöyú©À%Ãÿ,Ÿü¾Àt d 4<®µ<ú½úž×Õçc¢G‡ãNÝ ~£¯Æ ÿ™G—êÁá©Q»%^÷Õq÷k?ÉøuÒo m¸Õßê¸áCJ¿0¸–Ä1pVÑ×Ác£Î€ü8t¤xPS£V÷¾LkÍcèY‡®”ºž…Ô÷ÐáÂWaàãϯyöäúÅêw? 1'\êçöJÕÖЋ êñh)ñ À?ø·Ô;¨»£ÝGg ç–\Ö×ßY®¿°R¹øh´áÌâù„Ïžêà"`ÉhRèÕŠG˜%ûµû4Õg©Qk¬¾F5˜ôüÂÛŸs¸0Ôjñ˜‚¯Ês¯ÀÛŸ\¼ž¨Âã£gë\ܰ°¯r˜ð ¡ï#ü'UãÊ¢44>`|9ž ô—Zõ)z“ÃëÀã›8ˆ>¡ì¥…ï©×}1àzŽjOOj=¬1|°ˆƒnW-Dy7Ø›8Ãàbíë¨ôó?à`ÂGS§‡Þƒh‹ð·¢¶ƒ>ÿEü7è§Pø—âRì9ÔÀáøÃI£Æ„Ï>xìMàIø7âOTµ@Ÿ?^ÎìxfâG‚Æü\'bø=äø=ÒŸ„žlp-èçBÍ Ý'?£Ÿ+}Æð$Ãׂ:õzío„F±äSÕx1oùº~øÆääè¾àro1§+j´^A\Ut©jÖÉÏ©e¡c†–„þ;u#ÕCоàvY¯AIšKP‹D㌆‚þ¯øÂ'!þ£nGQíÍ€÷»¿roáâ•…kLO+|0¸.|š9'รg¥W.}ÂÈ™ðEƒ£A#®·I⥢˕;B?zAãOO?7Î:â;ž+ñÚg|‰;ð‚gHßJ°azàùzö]£µJòP¼Áb‰Kà ‚ŸK›ÜÝ1Ü=°o¼)‹îP=Ø=Xû*½dÑ r¯ÔEmòÜÊR/m_Ï­yÊ‹Â+ -g<[à}ävðȽ›ßV1ú·È>2@½éñdGŸרTÖ¤c„úÐOžûÅ‹~LÙÓšoƒ6nÐ\<M ^ëøÞ€-ÓÇ€çÈRr\9»A{´×3¸ ~«øÃáq‚V|ƒ>ì5Ö-Šå°Öл õAûˆ^‘¼€X /*4sðTÁ³ˆ³àƒ±‚ Ák†¯ ¿Z<`ðÜo>SuÇðBÑD¡]Hñ×ÁFðNû@gfÁy‹ÿ?¾öxR{'æG÷¨¹^ûé1×Èшu™çpYJ½Úȳ ??ô`^ø¾Ð›l¿[˜jOÐÐs˜^æà'`qø'¡æ ¦¿:ã®i{Jñ?¼ñ£MP¿.¸þÔˆÁ’Ðÿãý gL=1{"~åôkBw'm¹žËp”¨Â-Å?ÎÓ[{pá7JM®1{^Ä>ĺݚ5‡$ޤ¦Pÿ€jsX¯Ô嚌îOðR»¹ýž)Z¬>Eu,hZÈ)àê FÈÞ…†Ÿ,°jVŒ=Ür|6¨_Ó7‡Ø_?êîx®ÑK µDüí ^Uœ’z±(Ø9±±»Ïãø#ÕªÓ?Þ¨ÌG<árÃuÅ;Ž3„Z^þpÉáèÁËÄ?\ f›ŸÃ(ëÅòºÆøëâW€Obú²pæà¹¶E-É×;ñ6Å_ªþTŒ›¾åøs/Ä&ðþà•ãuâãÚy5>åYà5'ºJ®‰õí«ȸ֖éžÞÄšEcBO|è)‚NÜ?+¸=äƒp%ðôÄÓoPÎQ|§Á¿è™CJϧº'5€×‚w4¹+Ýä’Ä6ä…`‚Ôr©ßà“L¼Œ¿%ç õ8zs€ñ‚ÃGáüBsHo,b÷Kê„^œçÀ¾Pý”bÎp{8káºRKÅ …:)~èoÐ%Úe/)–9bé¥ñ u¦n(g Î þ'Ô¢XÓøi°·âyF®Û¼SsFxtpLكщÂõÿgßÄß’ú=¤Éÿ}^ã¿*6ÃÜÇ£v^š·èYé«ܬu |ù©i£x!ñ?xY¬QïÙªé"Ÿ ùHø;Äs>Œ¿M=Pࡃ…áIèóÔ¦õT¸‰ø³Q  nON…~¨t¿Æ·<'ø~ä•à`ðáÊÊÔ§˜>Øð9ðÌ„÷TÌŸ³´6Ç>IßQ4ñx-Ó·ÿ\Î8pküñrFO@Þ^fÏEÏ•~Ngå¹g e‚Å™öAµªµ€¹Š·À­¢–†W3šW¸¹ì•œ¯ôÒ†§P;Ikàßôa?¡þ?ƒ¾/ì%xéÐ ^„p~˜+Ô ºj\Ru“ò4àú±ÎáÓ€ÁU¥+¬xžbh{ÑBÃ㥶C¿fô8äb1FufÔ¯ðÆOƒï‡ï/£nÅóÁÀéÛAÙø¹á oÏXðòÒõ¢†GLŽI¿iôvÍ Ê3‡ƒ[µ[µk¾¾k4†§=šú€â¿Bú–“ ¢Ÿ+MRÝ| zzÐÓÉæT­¸süœú4¹½iðŒbEŽº´P¹®ø½ O!Öâ™Ðÿ<?1|@©ÅCÐ_Íýñ]çÞð%aNâ j¨ʘ”¶iN ÿÿÖ\:<áàÒ‹ïü\Èê¹TÚ]5_pDñ`cŸ¤Ú÷ O¼$Bíš{ã»E.IïD¸0pw飀®’¸î3}Tðrm¸B½é¥n™¢úEb_übàx´Q~"ýÔèÁHÜšØßj°)¼Âyx›¯ïà հâŠ?|>ƒþ÷èƒáƒÓ[¯|ù¨}€ßàÑ ¾žc™êYÐ÷âKÿ‡øo´·!s¼t†òxæà¢ÔŽÉÏñ«†£ŠºœÅÚoü¦tßëÿ~åM±Gp–ÑŒ8Kü¤+å\h½Pûo€Ó2§ð0¡>>žôÏAËI\IÌÃYŠg†sžêlÈMêeÏ —Ü_ÎtRÄlx˜S—pŸ¯Ü ¼^ñ¹Æ¯Œ}Ýǹ»Rµæð^Ð\à­I‹3‡¾ìćèàî /= ó$Bæ}éA7ÀTðl½_Ïë­çà;.Ÿ_×Rå, SˆŸ¤ñ ¾øxDâã€ßõ$´}p´ðYòaœÖÁˆKe®»å¼,•1/ýA9àáôuÃ' õâ18ôƒû$þöù§?èóŠ3x8^ ôFb]ùö˜qÚÏ5ü;|zÀ×ÑâE‡–Œk#×§Ú°ÁߟPžX¸â˜`¦à$ðô¸&tÜð®ÙϨ µÿ¥;ëžX¿<à™â “ñ'VÄ·ÎçwªZ5x<ðñá»»Å+>~|åЮâ!…?g:9˜#¸¹ø= 9CÀ|½’½z¶€çG¼­ZÞv‰%šoPEjFô]òék®POªxjSÂC˜ÞHx3ÀÛ VÅ›ßrâJ|?-²Î*ä êSOçh£Ü3òSð9rª²=ÊÏ!ÄÓ?ú–ƒê‹‡<ýôÈQÁLÐèÀ§g.â)…¦¡ú r©Õ²âwÊùRù¸ö!³HM´ì]嘂¥ƒ c ‡äY‚ÛÀ§fF¾„÷/=¶ñ¤wø!ãD­³Œ†ÞÂð.ñËñõ³;_ý°à&[?Ð: ºaÎwøœ™ô-¢>C_+ø!p×|½†ßVŸïRõ±Dßo¹Y±E°gx»ø ”'ª¯Þið9kð©æÓûÏjÞø{â?N<÷í¾àð]àu¢µ±Òý ož€å–)g‘ºey¥ò4Ñ Y/Q”R§òÐP é«y8ý¸ÑNà£BÍ ú=Pc±·«§,šsâBž½ŽðÀN'Ü Î88%à‰hi".P]:}{¨ ƒ'£Sæl¡—%½]‰AÐFÊ v+Ÿ™:/¦=Wu2< ü䩯០w˜Ü‚xÞ$=”É3[ïUî.¾ôA©þBû<Ð Ü5a0f4yí—ªG }äð2‡O„Fî:ù zv¡ ƒ{5rTâÎ6¸4ôµ ÿ~Žèæá;ùàMÇMÜAz‚-ÄÆéz‚ÛåQß,êâC5g³¿­ß ‡N µòx2økãÃG F=ÖÕEõ¨>ÝÄrõ!©Ü¥{ ëOð<¼iÑ‚€#R³Æw?êuìÀ5á1;Ñ/…{»¦ß#œ4Îüš<-Éðý¡&K_Oð ¼z9§Úœª†Þø³b"œ«Ô8 »úëÄèpè½±@û¬›[µGü¬¦jÍyí_(îKŽŽ¯fbúÞã7g×ç *×þ¸ÎUx|èDá硃€ÓŠö‹~„pÀRÁåÀ&ËÔzLí噣ýB…÷Í‘¿ý|رÊE·‚ß¿“œ ƒý ŒŒžSÜ[ÅÍúßÔÝdùjH¾^‡+µ1)Ä4h‹ÁýZËõßÐÛ³ŽÁWªnT_E•Î]r.´®øü‚9À' Ú¦=Xé] À99øã‚°wy^×:;,0rø¬_¯6öôÙo6×)ß?x ¾>¡7«Ïñ ܰKôôôÃ;® ç c2GkÊpíÈ邾ÒLS=ýã˜ßpÆ©K²W³öɇÙç_û5[µþ„ýká…Ñ#…<§âQÕNÁC{àÅ3+õê—äËͲ/U»õÞñ­¡>òèƒÜ÷ª?Üêàp¾ð †g6´ìí/¿³ú4Åð¸©;O½‚ˆçé[Kßut5>ŽÆº~ˆÇÀ·Ñ"óŠç|8å\µ74æhÐóQK&gb^û°€_Õ/Žð@ð­b-Ð3‚õÃ3Âω³°âkÕ´4ɾհH}¦*¾W!8–ô¶f£ïE{Œ\ˆú£Ú3ˆÜ :9b=p(0ú:ÀI­{H5dèax¥Q§ÜQ4pÑ­Ñó-%ÞÞhªáCàgD_;z…2FxãKBÝn%ù,õ4뫺ßFwÕù)aêø³àÃIü × "Ï O5êQÔñ?ׂÏVÓE1DøDxŠàyÏÜuɳ㜔ü­|%úÒàcˆ?6õ+âutà–Ä’ðà) u"ƒ? ׄ¹ ¿ýEûÕðä~¨¾jàzôT@£ˆŽlÌãÊK¢u&°Mü1ð¾'¢v›¢gµ‰ ê¡¾ƒþ‰}\®r‘î ðˆÑ™á-Iþìëº^ux£À¡Ç ü2Îۆɺ¯á©àëK!×€ï¼ñàþRÛFç ç|T¸¿hòá­PÿÀ÷ ŽghåÕŸ6g*ÆÅ¼¦¦ƒ‡L“Ì3W‡bFÔ›ðžDKǹ½?°&ù7Î2øCä Ô„Á“ÐÓÓ¿x°IKœö'CO ¶…n?â ãÀKèsÙž k›ž ä¨xXÂÝK&„#lŽó>þAð—©Ýàq A  nê ìøq¡%FIn‚GšÏgå í[M_x;Ìe°:xhþÐåÙ[´W<z¦¡ NÂÏ ÿz0Wò øðxAó€[ÑD´fÔ6|: oµÿûý)è‚'45tôbàä%Œ5Ö ðMê2àQ\'=n¨¡ äìÀ{‰½ÿ8´5øt’ÃÀë#ƒs€¾h=áû2NÔè/VmÔ/ÿ¾ªZ€ÂŽ zz²7ÐS½þµu|Žð¥ÿ'¾ñô²åú{DËŸªZíÑBͪªAÏôô'!wCÇÏÞ´ðÅÉAñð„³78?=Áúè±H?94œ“ø!Ñs‰ªžZo¬ê¥Ú øIhÁÛšåúk*Eæ¯`0|z4û|d½à«K,¯Æ×sëÕq³_±â9g‡õÐÜS9›èeÈ}?Òþeð3ª$Vˆ\¨ýØÁúªFø×Ç×Ê´†©Vl+bŽj®‰7ñE@ƒK…+º8jxœïððV÷¤§6fÔ•È7ÀÓéÕŠÎ…:=>Kàpeñ4"€—‚IËŠOË¥ùú( ÄËÚǪþoà)h«È™À÷ÀQ¨óá/ŒXz«ñ»äU_«Oº{<³áìûtÅkÛÀÛˆBýƒ¾Kà¼xP£S›an¢«c|áAÀGÁ_Þ3`Þð´¨OПš)ïØcÊׂS_WzýÐ×mJÈhõ—"wðí#o(w=¡ëa­“¢£pË}6LÒ3‰})\æýƒˆcà6ÁQÿ }9ùcìÙx^ YDÆ\å|£g<°¸uËâÉM̈Ç=6áSÁ³²µ¨¾Ÿ0üŠáûz®¶¨—4ó N%5ÌØãÊ»nžé÷boP¯&z‚’ /²OÓ;ý?º)¼P¨çøæ„ìã5üq+~J0o4MèÅÁòÀSñ€—Œ® ŸŸ'®¬µù®š>ª›±¬ðçÔ_+'î12|Nb|²2'©ï%ýìðvGËgŸø>x>0?8O‰³rwëyI~MO?<ðñte?†»„W ±‹÷cå #Å÷_ΠǔsDÝ1xˆö’co“¢g;}®ðŽ+“C‹=¾3ç9åR×i¬Q­ þÍujMŸqôïÔ-ÑE²×À–)çãÜáçEﲪß$8ýïÈUñ˜ôiÆ¿ÖsÿN<9Cj–*gÜŽ ÚJp:zm’WÀ¤W+<;öxÔ~ðªB¯Jìˆïñ >ˆð0ÈQÑ©§¨šJ¸è/Ðæ‚³ã} NŸu~t5ôÄK¬ßÍš½šßÑ£ïÍæZ÷£_üÝä+”ó׎0>´Ôîr¬šË’'Ày¥Þ5I{òâ/ÎN_ðD|1ˆíÀ2©½úú•P/)¼ñð­û]󯻿ÅàÑ8sîøzz®S¬‘˜-9q<¾Nèùp:j¸Ì™8ÿyJ´0ÿw°®ñ~CV©Ü*Ù⃼[g!.&N&ÿ .nöªŸ›¹_{ÖmÒš:n|kÁdéeFA4qo?–ý#6M1êoÔº¬2Ví[gǃ·š7öyÇ~MëÅÑÃ÷…·×ÑEµµô\£W¾µ“TÃŒ—%u´KŒ5ó‰õ@î‚ßñ {§e¬r€ÐnÖÞ¥g|fbXøxÕk£wDKEÏ>úÏÑ8j”æÁ¾þV§*‡4A‹S‹¾@kýôÎÅÇ <z®ø¸œëÞ'DícšÛQ{$6¥ÎËþa´·8ýùškï*øÞp„ÚnVŽõt>è=à´ rÉyò†ö€¿è¸Sµ h‰Ñ83¥Úƒƒü—³‘¼rzI1£{ajßÒ?p{à÷Ñ‹“õåÓ°Ó3MdtBÔ£ÑáÀŸ@¯B©y bÀälæ åýY)_“¾Xx·û8zòl¨ówê¤ðÍ}½îQ-+úeRÃd]£5¦ÖN=Dzº0^Ô"àçCSCÄgìÖ»Fuíhøà¦q†¸fúû\ü¥xøÆ Ê;ƒ/ÞdÔ?R¾,ÛRÍ3ñ†NÜo@òX8Þô;W1@bö<ÀȵwöqúÄq¿Ä€Ô´ÁÙà(¢ËÁû=G³G±húày‹ž Þ¼\jøÀÀ7ÆßœÕqD½¯X·h‰àXRok¢Ö‡· ÜWj}àyøá± ÿ_=ò0öjKœñàÇôp£.˜X(ÞPh1ÁðéKDïx<ìདྷ'á=ƒOçÜB⸖*ÕR¯¢ë`Ïàœjþ@sj®\Í«àýð3ü½ÈëɉéÛÅ÷£WÂk•^éäpGåý ê _2|îèÓ¿‚Ú1Xó¯É¥õ}ð)Îú’â%—5*´Ñä)`‹`Bx'ú8iiü N‡ï¹ q+Ükü®X{à¶2õQFB->&1/úxÆ>â,íUB|Q·Y}ìÉ¿ÐüàS&À\¡¾Tpõñq¢‡¼8Zðøñ²G‡—#=£à°'Ó÷º4z<šÁ:Ða×½ª5¼Ê‚çjFbTúâÈÞÍ>CÌׯIj½phÙÏÁì˜'¨W¹$Q Ô7ÀѬõ%8ŸÔÐÉÙçûûÔ¼«×üŒæ–>~ßê¯á£žÒ­‡T7‹>,l–Æ à0Äpp™ð€bœðXÂç?8ò)4=ÔˆÈ}×q±zÀSƒ{¨è—ñD²ž§c‘Ÿ)_ þgXš9<™à×ÑŸ TôÀ焚 5z$€Ý2>訨_áFŸ¼“èõÎyG,M¿6|à>€©ðà‰äihÂÐá/¯ï8¼ÿð£FÇs–Ö°9ã©? :0¼2ðÑZ¥z(ôÞ#Ê![AÇ™U¯¹0ü*î¯|¼"7kŒÊYWß_ßC >oüœ¾ í»õ¹{ùxš2võ+W™º žJxRó¤‡õz´ø<ƒûq ð«©µs¾ÁýBŠ¿=úÎið ú áýëóÔ’+ý¶ðÊ@+Žf¦þfíoâè¯>p`òì¯øFÁ‰Å#Ÿë÷üª8ËÔäà?À=rÏѳ?÷+íå — , }=7èãNÆÁ^†‹^è¸Y»`µ>îÊåãÑM—KÖ„ý˜ÖÄЯÁÿÃç…¤Ïj­âÏõëÔ›¾(½VÑ<¢Á„[…? ¾Õx\ÀóÅs/9Tl‹úüÃeÆO‘s•=]{?ô:‡Hß½Gsôêpaðㆧ†N‚³Æ+Ü>Y½a©)€À ÿ~è1ÀÁ¸ñh·"O!çK¦=èýFü”è%?’s¯3rƒz9ûé—‘š?œ=¼`ÐfWÁ!¡Œ7>õ(rÁzù.‡ÜGš\GÈ%~ïè;´-œtjJÄ‹ô7Än'~ìÿ‘Fý7éBÏ0(ðepÖ2¾ÜôýÅwšûnHUÿ"ôñ>¯¨3ÔËÞ-}~Ð^à‘OÚ#ž”p¤ð<…Çä«ü¨>¥x࣓#ÀK ¼48áFyÍøÓ&¿è÷“X­¼!ø†Ä‰p-èCEŸ¸î!ªþmxâÇ7Wê:‡¤ž„g7ÞvNy. =´ŽB®ˆÞ—<  ¹'9<•ñÏ ¾õy:}¯>í]*&@/ ´ô‘§A,ާ þpàHøjÒ3®œÏ¨]=tÁ¢Ñ§À&΄#EnQŽ5Mro<6XϾsÊ¥ëÍ׃ôJýƒ¿*¨ 2î±Ùº?ӻȹX=ñÐ@†¿§\A8&x°Á+ÊX¬ÿ¶ý/Sg!ÃS>×ô¥ðõu}Uq 8“ÔgƒZgüMÈ+âS•ONMnãÞÉYNî —…>õýU—‡•8 Î=ø8 ~%ÔñäF§ÍÞ@_nözMã­FÏhz<ù¼ŽG«žÚ4ç^ÐćœoèB8Ñ£à‹ÛìçRž©œ7´`U'Õ;ë<Ÿ8Îa|öñ£#foÜ©cËNÞBÞ3XktÌ?_O—ç·ÄÏ©ñ˜ökF÷Á>ïž¶Wö‘X™ÿÔóoãA­ÐÓ Žú^z<£§vÀyÇþw„Ï¥fv¥zSãEã†/µ5üCdÜSÇ)Ó×·)O¯=%T÷tú™€í⡎þƒ^0ôj„¯Äý£“àüÆ·¬Ç)Ÿõ·î¥¬YòY®‹Øº0¹¾Ííoª¯}`›d_hŠÑž ô¤"AãâJR Eó+šs S†÷‘²[kÖVå@±NSF¨,½…ÑQã÷zµÆÞh—Ñ¡²GuÙ­{3>Txø fÞÓë…^Û`šÔ4èÕ ÷ƒ82zÀ›û§&‰Þê†ði©=Rûç‘·Ro— K1굄#Þ}ô7@MMžý«©—êœá’ãå‡n“~ïÔªÙ;鉇¿_ó"Å.ˆ_Ñû4òÁ¨×:ó âø¦‹”ãKÏxÝÑ;4O!泚†h|bT]½ä២}¥Fw Üvt!øë¡ÝÃË '~ûøVà'†Ž 6D9ð‰¹Nô&äþhÐKñûøTÀU¦† ½xåÌÄ­5q+ü°ð3øeðŒà 4Ý«õzðp|¯àƒ ½'¦¾„æÌ¬‰3Ÿ3•>t>/ÿk•‹I ¨i¥òõñ~ñõY©}²©Óâ±A?b7Ö˜õ°z»Ðÿ†ž3¾ZÙyšÁý¡G¾opïÒäómíêãOƒºÞ·h]9—©}F/PNFâ ´œxÁWk0£Â©¢¦G‡:"q9<5t¡àÀ®7T7J]§œ/¦DqÖ\{zŸ¢?ÂÿÓÇ»X¨ýIÈq[-Ê›¢·¾zì9Ô]©K£Ï¡ï—]žm†Q¿Bê¿Î‘C“c⋌ǼN´w`Fxà•ŽnÎWcž«žà,x(Ð/‡Þ Ô†ñ ¿'D› DWøbå à­ÿ¾0Ú5z^ÒKOøÔlèL }šð0úàÂÿ¢ÆËù†ÿ6>/ækå³ÀKAOÜ\®uJð Ö?^Rè\ñá㼯!ÇwîÒýîF¹ó!ïªy,œüûCK´w|pu|F8—áð“¯Âµ¦§:~.èòááÀïÆ·÷Ù×ÂòUŒ'•¯çû™Ê}ƒoÇ<§n‚NÌ–žDx;¡}ߥ&E|ˆgþåøÐÑ{‡š:\ûizϜᜭ> CæeÁõB“æºC¹Ôà§Áñ‹G¯ezd4Qý)~¬hkéG@=9úŲïЄ¾çxµ€Ð' u|¸Jì·Äuô1—Km˜Zõê­hrÀ¾à ‹Â9¥w[°¬Óæy굎®ü‚¸^ Úy}Ã|¸F¨ò@¬™Šqs&ƒû4 ŠÏÀ9Åãù)Í·ÈAlÚ[_?—¿v¾3ÄAŒ5[´`œy1F}‰›Ã•{ÄϨS‡l~S¹øíàodÉT }Àì¨%XNÑþZ-ò½>#Z畞ºì•Ìwòa|¶ˆÀiÀœ‰cÙƒÁªðïkNªxvü!ñÅ ?)Ø ^„쯾šåŸê¡'¤õVÌyºæñÄ3`À`°ð®éeÆGnïlVßê„ô&i“g›*9lK²êÞ¨ÇÓOoçÔ9šû¢ý¯„g¾p¾Þbõ¾ßR UôòÁk`zšà¹J=¢Øù2/Ù¿’/TýõQêCx¼Ÿ¢õ·"¯dÍ1§­¯)–ƒoy5 |©µÀÇå3|ýée?£¯¥'Tc{ü™[hDà¬âö·Šú/ü´XxõÐ{œ³M=ÈÐkÁ» ·xÔ¹šïÄ%é:p;”GŽÈ\:mî‰Ü™/ôn¨{ÍŸ‹^£ýlᘃ¡ƒ²/Óï=¸”d»zýÀó"Gƒ7®y9ó ïú%SÇ.Þ^¬Sâ>x²_Ñ· ŽkNËtí×"ë6u–z¹àgêóé(S ýñXChËá€ÔÎS?@bö0tWxoâë<à$ÒÞ;p/˜Ëô ‚ç'w·ú絬Qïa|ÐŒà?Až—¾ÛnõbßHp¨þþ:¼H¼qÑUÓó¿´Oð;¨W ¤g&ùªà pÞˆE}?“瞘ªØ{ =à‹q.Ó“ ßV0W°ôÔÜB^P¯[|݈'Ñú°«sTŸ nA=–ºœ ïíÊ=§W-œø¾pAY›à¦ðñnÇž‡`†h¡M°ÖŸáÇ‘«¯c Ö@ý?/æxÌaõßG›LQË÷Êá¡Ïµ#_¯Ü×TçE€ ZW°PrG¼¼Á…ðßðÅrk=•œN*5_÷´4Þ¡à"Qoé÷õÆv©'}ÊàÞ3¾è¿¨¶+~w<8TÛÕÝà]Â5âyÀ¾ƒ7ëɇ#oé× W˜nÄP`5ì}p‘©A»+•ûGX >%Úxíè¾áÒq¦ã)ÿÏ:‰ä2x7¶NQ¿|M8ZoS¾'\5_ŽçQþ1çväwÂñ`Ž´Ê­ZÀX#WÕÞÁ/¥î~‡^†ºšÎtŸÿG­s$mÔ<‡úBøÂ¡%ƒëIßbž'8kÌoZc¢ï"½ÀÊð*G‹ëãÄ–imí\|²â¡h‘Ð RËÃS”aô[à«Ôð?§o6ýá*âÁ…Üú«¡Aõ^¦¾}ÄMp…ÈàTÃC'‹þÎg8u7tyðÏjîɾ¾|©w?ù3Þ¨äøxGÐ'ÞÇѱÚO‰þô…hýL×OxšâÝèÉà ³§Áaâ¼ò͵êsHìE~Æ>ƒ7ƒgœö«È(Pl—XOÚ—Ú,ü òËÑï¥<¦ú:üCÑb€ÕÂeÄ#¤-Fy7ä`xÿúzÈž”|–úDàçŸqT=;ðd{÷å÷kÍ&Ψъ§â»É3Û£2~Ñ` ä*)Aêë€k¬Þ„à,ÌM0HüúÈÕÑéáÊÙW‹:‡Ïwâ,ýèGOJâazÊÁCËI]l³Æò©ò¬ÓžVn"uò´¸»u¾q–—£+Å;Ž>Ëð#уÁ…'æ†[…w }™ÁÞÑkÂÅÅÓ¼†XÆÇ»Ø Þø¶â1Ô6^k×ø•㣅ö€º.ñ~Zì­äõpUñ?¢Ç.g^/p>}<öÀ¯’¾x—¢ÙF7ÂßÓ†hS¢ù;ù <(ï'[sB<{ðX  ¾9>þÂ;z®ƒâ/âëÇ÷œúÙ27áPÐóOVæ!>ép£àq¢{æû‰“У⭄¿xu_fÕ)¦ÝæçyïR>_Û=Ã9©Àßt‡(Ï‘¼ÿïà1Š Ñ—‹Ø€gC.÷Ÿ®à¹Pk4äúàhñç{©99£õG-~Åp¨|8ÊõÌD«^eß¡±ZÄ3Êó¦w;^uìmô¦‡7rL{ £Ñ§Ï<¾$èÀÉÃÐY3ãÃ÷Zz€%3ßWþ#|^Ë7º&#&ù}™¿W(uú½Á «Â¯‚ž*Ô*ñ ¥fVfù[µ`]pDéïßÝ ÞRI5Ê3§VŒg$½ð¥Æ‚.ŽÚ3~=ô8Æÿ]ü ´¤p8ÙÀ`R²T‹ÇŸj›øø¢‹ ~Wy>äÇèMÁ!Ð%Ð[Ä×O»\5µô¡±Véœ@_GlÆï-rs¸ôÁàìBÛOÝ!CÖ„g•ò¨¯à·â‹œê‚·)õbthàd©².ÏS¯j¸`Ä\xêáÝE=ƒóÏ_¼ÎÐþ$¿¡±7cèûnù™õl³ÄÉÖÚCŸ)8Îp¤èSL Í,(ÔÏñKÁË~y+5?8%Äx¸Qã!~ÂÔ:\÷vxaà]hܨ¡R×§Ÿ•Þ§œ±xÅÂ{@߃æ¯zxÿpóè‹ ¿¸Ý:E{ÒàůµK?,zŸ¥dáïs>S5ølŠ,Ñú\±‰ƒ’~ÔسuöÊðåÛUgÆy‹}ÂdÕK£- ÞŽNŸï!NÂKOOtÀa{´žCo'ëc:¿ÉOàAà_È¿ÜoZü¬ÐÆÇsnÂ×ÈxSµ¸Ü+ü6öž ¸HðVíùMN9Xk`xsÁqߤ~¯¾(ë ­:Ø þ‹Ö×UÍÙ ~Œ' u|{*µüzòk~Žïç[è9êC-Ïßä¯5¦À—‹>OœYÔix¶xÅ ÿd_AŸ…eð£Ê£#ÿFGLB¿Uúø¼)$–whúƒrµm¯ùkќת‡0ü`Îgz‚gJΚt“zMÃk„›ëã,WN$þp¼¼oë¤×8陇ô,‚#ƒ~]/ñ½•ðzÅ_gbö&z á±<–ú#g"úôüpKm2Ÿ£doO;Gktè—‰Yàû¼ÃÔÛž«¤Õ>ŒuÙ‰¯¿]Ö>~wÔçÈ5ðêó»?üùé¯ ^)ÞFðð¡€óošµc滛Ä,ìqð\Ð5ÑWM{}E©øülÖý_cúUà Ž~„üƒ³‰µ@Ï_¼ÕÑWÒëG< À’ˆƒé¿[êÇ JÍs©‡;Á!Þ Œqi={OõBÁs…zù|#jNô¹$·„§‹æ~#œvú[»¯Á¿ÿ°o0OúÒ™þyô¤"‡c?sÂׯ‹¬Móšz¦Ê|·Õþ¡òw41ðå¼—h¯hÖ^*ÔÈS?÷ßÛ÷~¦Ùz~ƒûÁ¿‰¨Ö~x‹À]¢Ÿ?ƒ#MÞv…=^žSêÅaÀeb'j> ß„}/‡E÷uz5p®Ã¥áì }Ø(íB~¶…Æ‚z1>„ô¾†³FßD_Ì|¯úèÙŸPÿƒÄ\Õøá_#è å$Âc—¤– ÆEN †¦—"125gÎx>ý9þÀÄÁäLYÛ5.ÛŠ—Ø9³ŸzÙŸÖ¾PxÉá銈š^UpÍÀû©ÁÐãü‚ó1m·z ¾¾3 Šác“ýªz˜2GÀ9ÿáâŸDlE]ç ñ,Z:¼D#îV?€äAª-Äk] ^äès8;AêŠ'``øs±ßà¯ÉÁ‡.ti®ëx^k˜ÄôÔæà#€]s.s~ã™GÿS8L¬cÎGT,¬‡½¾&½!8û’,S›¢(=æà•±Þ|ž¨ë3ŽîzýN4ëàÖÄ_hÑñ'Å»º(úCÿ2WñÐ÷õãûª·£Ü/ôZhp9_8wñŸ‚Ó€¯u |~˜ô‹š¤x8VŽ>Ê¿ƒs’ø†Ö™Ñ=À¡g­ÁàyºI½Ðè¡O„owšî­è)¨õз’ÜŒ5ƒ¶ŽžáÓ¿Ôç¥8ZÏct¦ø+¢UF‹ˆ–‹~øfùjãÕÇÏ1Iû€+à“D y _ˆõC¿Vú ‘gáoŠþ Ozxä²ôƒoÁŸŸ*4Ãø;ãeƒÏ¼(┎=ï©äÍVü ½<ñ¶‚?‚F(T~î¥u$°H|-ÍH˘[ôð"o‚OH†f^48 q3¾¯äÑành³È«ð…#oÀ“Ž= <1<é£ Wí1y/Zcæ9\y¸›ø2áçC¼‹N¾8škê¦xújµXõ6zbQ—`í»ÂiEæxOûÂáL- >-:0}j¥ôPÂwÞôtCCˆo c ¦ ¿zºkø>hüß+Þ…ç~Nx#û‡wÕÜ ½3ñ,¼mÇ_~_¥TÍcè߯šwðtøp”ð¯DSŽ&'¡Bë‹x𦿢óÍ!ü´õ`ÓÄöxzãáâ¼I9ûè©!;óT‡…iš¼?õˆrñÝT×âó:ÈÐ箿Tð%0rê0ÎZõÔ…šåÏðúdO¥¶M\Ok»ñaZd­Qþh\oÝCÐ Ö<¬ºü+è¡o =|?ø·ÜÞbè‘Àà“Â!¥ÇcC?>êˆ`p!2gb¯Ñ8€sþ=ù8}³|Ññ”"¾b_Dãž VD]“³’ÞÛäñh¶x/^Èð4ðï$F€KFÝŸv¸óäBÔÁûÐêÂíÆÇÌ‹ùMÏyj`pÛy&è}½.Ñ~šhúKà“L‹º&±?¾iÔ»9»ð#¥‡*Üò´†œµìáhÑÙ³ØÐµ¢##ÆC‹ÞÎ…š£Ó¾×ÿ Z[0“x‡pÙwÜ/jOôÕÔÐÞd]SÄ$ððiƒKF”õ唽'áy•ëIX£ÔKÀ¦¨S£ý‡Sæ{³rdáÏQó[‚wuˆ¬õŠ…ãU 831±ú§èz¦Â™ÄLˆ~íìeäêø ’—DËY˜]«9!Σª+Aoï)ð÷(\ªu øø8SÛgo¢W8s¯L¸dpð„'‚ 5P¸àäôpFñ6Agž>&kž‘YGÔÛ/n·Æ®Ô&©£0/ˆÇ9›èy†ˆNLž>®àIôÍ ¦†ó‹n==!¹o4Êè4ˆ{|ýS^Öúý‰‰{¨QFNÖºõ||…|{jµjf87Âäú²·jß4_h ð*¥/$zuxùÌuxó™Ï©ˆxm 8Öœ<à¸P§oÚ@æ2=•èט;FýÌáÙfÍW~ë ŒÊuŠbPôo G"¾O`kx÷27м²ßRw`~€g£yÅÎ>Éø½ã™ç ]2½Tð¹óãDè¯È9Ñ ±§FÉ9ž†æ¾øê!Ý«]Wk~ÉO¯60{rÓ Ç•ì¥qÜkòøàûÔ‹¾Ô.é¯OoŸ?s£ò&ÑâM×qæ„h#ˆíñ„ÿ€»ÿ1ީߪ¾;‰=ºY9åxÀÁƒ‡“ùªö~Âg ½!g*±>ž1¿(ÿl"¡¯Ö;YÇœa¾xo±ÎÎx¶x× ÑÀܵZû'àABv ¯„^•`òøßàA>Œ5äÏ!ÈçÑcÒ –Þfpcbu Ó×’üHz>ü¯ðP` Á!l˜¤=và@ÃóÄË~KÊ_êÛß ýÖ3üPj{¾t°j£‰õÁ°á3»NêœÂ3 6zL¢Wk†c ¦/Ž~»©óU÷ŒÊ7OþVÍ&µ(êœÿpʨu¡ç @oN§Œ|Xó¾zreŒÖ3ˆ>TÄ£èNðfÀW>}­ê‘Ð÷â—AM î$5?47x8¥ ;@¯nÔ×çAòº¬õûàùâGÇÙÊ~—W£¼2â ßï×+÷ ï øÙÔàñ¦¯ sÂ}…ò¶8¯ñï3¥}Î}þc2önú¢oP×öyÆtÑýŠžÛðÎèÊúq÷ÖZ?Ü4¸ohYR_W$}àcÓ×Ý&x^^žahCñVƒàãœipsàýÂ!„+ ¯„œžëÆG Oø:Ñߨo6c@ÏKr¼?ð1À«ž½ÅWWhVždÐqÕ™Rƒaþsæ“óáu@ßs¸…ľôtbÍæj¬ƒ_8œú¼ÂÄÛ~<=6©‘àùo÷oŠ‘1‡ð>Ã6õ,ø"q÷«v—þhí9zÖ™Â?:£Hs[üU©¡’„¢‚—…—eÔ~űÁ\S‚Ôk­³ðកç±öणã‡{j­Ñžèñ™`ï!çÂÓüüÛÀsñØÂß/m•Æfð¿RÍ µÛÚýxðKÚ÷‘}7?G1!p¸gè…ᕲ?áuD x^Ú¡5WD£' @ÎHô¼ømRÃsž@ß tz`ž]ÏÖÚ}[¬þZB†Ì· éª§ÀÎÇe‰WÏ{¸äŒ!뇼Ì€gEïR4zÔ!𻄠W¾ 1}RoÍ‘ðµ‡3\Ú®½Ž9_ñ?â¬BãÏ> Ÿ¼Öç»q¾ßÃá<åHƒõRk$vAËGwúr.ÁƒFßN/#j;Ô•ÐÆÂÛaßBÁyb,Š5Ò¯ßd4ÿäšô§W ~RàÏô­a¦_§^‰h~=ohþÁg /A늿[Eb°¬ü³ñÊCëL-N/9ž¦‡ÖRð-0ÇuŽ€G¡=ƒÛÈ:Áw>}Ùˆ¿Ù»ˆàsf°§ Ûƃ‹¾­`xÐRÁà†ôWÎû[ùÒðRˆ¹|~Îjüt¨_ÁUE7Úe“zª‘›kõÜA?‡ÞžŒŒ?}Ú‰QéÁ…—œdê?èã»NQÞ†ô;ä|ÓÖ¨þôøpS/$7à ܜ~ïpQ¨ÇÂi{ÀïØ‡íËsIÜ«Ü'â4ÜÔJ£Z§„«D^ÿ± <™ŽÁÊ{ÄSÛ{æ°x´Â_¢öÿÛÞKqüzñ~CM?s4²ä)ƒ•牗(±9¹?×s™bôÔö¨ƒà¯‚¶?¸\u1àãpjà»ÐƒËWËxF¿›(|:|íÍ‹º?âgE.@­‚½¿¸à´pìÀré¯?¹Týu¨Í¢q‹a±-Ó¾µF}ì9GÑdáé‡&ú|ØÐ@âƒKŸú4qßÇy4‡ñù)W)O­-ñ#z øl¹êH½ ½9fÌózŽÂã€ÎŸ‚Z3ñG¾ìÃáç*ŽõÀz§ÇýÁMÀsКҿ™~ØÔäÿé«6áISÝ8ù;>ÆðZè«CLJM_âqj2-Óue=ÁÇGKäñãùĘpëÉáuPo…Ïþ ®8øý:Ø?ÐgKL1JϘœ'”O€¿#üb Î^r´¨ô£§ýØà»¢7LJ}k°0b%¸®`yðšáàeÿšñÆ _ È[´¾æ–M_H|bðÈÁk‚õ†Oqö#ðtz¬ãG ¾ m!×*fœhTÿFGDVÏ>õŸ¤Ç ±Ü*4Žp¹ñ@óFßzŽá‡Kdøžô §o]4´ô=ÆËm&q½g²æ7puÀº©Ñ“S[÷Ü¡½©ÑæÝªõ2bcæ^ÔôUIŽTm#}`|ž´'5Ç„ËOÿØŒ¿•O/÷˜pD±PüVñV€&…. 8Xv“r’ᢢ…„·>•¸…y^.ú-9"y Ü-4Å|6œwÏÊ %ö€'MßOjŽÄŠpꨥàûŠn¡ðÍsЋàUOÌF$y›öA$OÏù[q žkV–ePèvõ¿'%OäÌIKqê5 …Äg¬”œÊ?žÛÄbxSc£?µ?¼ƒSÎ68‚èÇ8cðs¢þŸxÂ3ƒ#ˆŸÏG­·r€ÑÌâåêí®sÞÇ­¢¸¾>`óôF—D+¼µàdã3× ¯4Ô[áï¡;@Ç(s¬ ·êém‚÷üzòÀ/D÷‚G}¥¸^xEø[QËF?Kíƒù/,;§Qy5hòƒ¨1Hæ,Ýo83ð,Ç»/Q¸ðô\$_†;®|Ybdò1zS£b½á‰ ÿ܉œ€X&1:cêdE=T›Ä{éU‡/ ã‡ç:"pCï©Z3¦7/¾9èØ‹é¥Õn´Ï.u)<Ágˆ›ðªÀsí ~æpÌé—H¯kúS0oàîãÉ@-}œµŽÎžÞ™ôD¤Çº:p!Æ–3Kè=/ÁyáÛÓïNº¯¬ÿ4WïXí/êóiÙ¡µaz`ÃÃïˆ^x§x'iÌιMor¶ö"íWLMý>uhðk€IM |>å­Ñ'|¥˜y©¯_Wõ”È•çù–zûáóHn•ß_}_ñ—ƒÓÿM&>:ÔíðïDÃAo;ÆÂ§^©þ(™»ÕoßzáŸâ]¯~’x7‚=áï˜ú ¼5ê ìaÔÈáóÓ/ƒ:<Ü>xðÑY°wSËa¾Ñ· ]µ:jµhÿðc‰òcewi/ààt]ßðá"å÷Qí ¾RÑþ8L2|úFùžÏ»ªÙæwÐs¢YÊ$î‘Xž x·¶Üíï¹µLÏ2â]¼Bá$À©Å‡œöP⸺ԞÁ“CÕ;›|œ<Âç[=Aëèüâ-ZOÅ9ôœ`Qõ[ Ÿã{àhæÊ³ ž ñ$=‡¨³€C ï@_EŒ®†½î/5êö åÒ§Š®àeä€Ôö©¯¼«>8ÔwÐ$3çÐÕã„Ïr—>ãñ‡7=Iá]“—áŸ/E{zùgÑß~¿àå`¿‰ºvñƒÂÿ;ûíç…V_,¸,ín]¿äšø&‘ŸÁ¹Oªû1|mÎá¼EÊKäüb?F‹„_ ¸pä´œ§ÁÁŠa££_`߇÷ ,m ÚEz>à ¡g2>K§ê5Â9Ä ?úàá… ¾‹ß"þùø5ƒ‘·ƒåâ•ÎÙ‡‡u°Lözùji¤Ñx Ígûúðé¹àó±óh_E´cø Ó{>GæNP³b+äšøHRG_ÇÏ¿#xºôI š¦>jøm5Ãß>_{øÛN“Ø'ó¨ÖàsÞá½GÿjúÃqQë¡_#ý2v«7%ýÙƒà51_ÚתÏ#Ï•þ_xbPC'¯Í5ZCfÿ&ï'æ#§Fƒ¾ ÿ~´´àÏÔ¨ÛwûëC•·Ê^±ýyÕ àGÝ–5F”¹Ç÷Ó·?[0úZá1ƒ^,¯Aûqà—Ñ.¹zœÌõàcúÙ×}½¬Š57F¿B?*¸èírÞÆŸTÍ <>Îú¸€¡Ó³)þ6íwìwè!Œ× þ«ð.}=yd='ÿ¤SÌ=sð¤KÙªþcø²_ÂÑÁs½‹¯ÿ¡ÌÛ²hÕŽâ­@ïcb/´x$S‡¦vË3£ÿ"ža2–ôÆS >0q¸Aׇ5—E»…–±ì^­-ÃÂG“ÝO¹ ôhƒ'…¯kN½æ¨œ 2öeš+ÆSÏoœ® êÉhÖ釋_;˜dÊÊmDæˆÆ(Iö„ìUSN,rf_}°ò‰©ÑŸãìÉ—s WžcGOíkAüB½‰Ú.|ŒÜ_Õï$pnbß$Ù£ásÁ‰ŠªV?¥°ñÊû¡9ýêÁmd¸|ýÐð0@ûJÞE. ‡ ¾RæpõJ%wÆ· ­4Úüð~¦.„Žƒ³n5ò*xÈp—ñ¼£?ý¸~0 ¼ž³†ª=|ûŽ›”+‰ÏœMÎF8¯èN9g9c©Ù¦Ÿ£>žô¦¦~éxAùrÄ4íÑ ‡Xí,z|ðËGcG¯ô]hþ¨á€‘°ÉØ1ÓlãËÍ-š šÞÕו³ôuáz}]°Éÿó^úzÏ—úz®¾.¹I_ošíÿI}}¸^_§õÿ¾W_?¬¯MAú:{·ÿ÷¦êë2ÿç/õ¿Û9þï9ßÿïû¯ã5}¶U_7Ñ×Å÷ú?7L_×,Õ×ÉF_ׯðßßÿ߇ø?÷q}ïÿÜG–ëëjÿu®Èöß÷Ãúº¡Ù/êëÅ“ôu‚ÿ~6¶ëëÍþëꫯ[ß××MèëQþë=鿞‰þï?W_gøßç8ÿçø¿oåcúúÐÇúz[’ÿs7èë?Ïu¥ÿ~Öùïç6ÿÏWùÇ÷vÿïm¡¯7ú¯cëvÿý~æ¿ÿ·ôuJ¹ÿïùúºäN}}ôyÿõúß·Ü¢¯ îÑ×»ýÏãž…ú:ÏÿïK>Õ×5þç;£^_çúŸûmþ×ÙŽÿ÷xÍñÏ«üÏq©K_ùŸ‹N'ŸžþïóÿÞø¯ß=K2ôu™þ<±ßÿýÏêëä÷õõ‘ëüãôüüÏg¾ÿ9>\©¯ëOèëfÿ<[þ›ÿ÷ýÏi¢ñ_g_}òš¾®½Âôõ^ÿ}oðî-þëò_Ïüúºò~ÿÏ'ùï÷ÿßýãð¨=/öÞ\ÿøßã.”ú¯ßÿ÷i³ýïÿE_ïó?—Móôu†ÿ¹m,Ò×Çüß³4ÉÿÃý÷êÿ\ÿûîóÿ8ÿûù¯wÖH}¤¯³Gë낃þë;[_o1úºª‡ÿúý×µñÿøtõ_·üWûÇ}uoÿÏSôuŠ-íçõÏ¿Ûýß¿ú¤¾>¹Òÿïþë~ØÝküûÀœÿýû×Õ£sõuíú:ïŸÏkô_Ÿÿ9.ö¿ï~ÿ¼ÝÒáÿü'õu¹ÿû‡øÇçaÿ÷Oõ¯»[üã5Ï?ïÖoÑ×[ýûÂ}þ}ôŸýdþßãχûú¿ßÿyWøïㆾÏÿ¼Æøïw¾çß—ÿY¿›ùß¿ÃÿêŸ/kŠý÷Õ ¯„èë"ÿu¯ö÷â£þÏõï:ÿ9²â2}½Ë×}]õ¡¾ŽØí¿Oÿ÷¬òïÛ üï[ínËýŸ¿Þÿï÷û×ûFÿ>¡Û¬¬—}úúø¯úz§ÿó×éÆo¦fêëƒþû›í_'OøÇšÿ¾Ö£¯3ýßp©ÿsýóñŸ}k©>ÌñŸ·«¦ëëÝþÏ}Ôÿ=›vúßïŸoëýóû‘}ïßw7ö¿ß?¿ï÷¯—3'éë’=úº5Y_'ÿŸý|Õ+þñóïÿzYí߯¶Ýåÿwÿþ»Þ?ŽøçÉbÿ¼Zæß¿öÿFÿxÌóߣþ}sZ_ÿõûçåCþïÓcKÖg’¾>àÿœõïèë:ÿ>¶Î?n üûÄ]ïëëæ“þëX¬¯+ýûÝÚÝúºÈ¿o-ò¯“{ðÏëú:ÃÅþë¸Ï]óýã0Á] ýŸÿϾyûkúºÊÿûkýûïš8}]῎ûüóeƒž/ñÿüŸsq‰¾mñÿû\ÿzÛæßÇ‹ýÏa­ÑׇüŸs¿>Ìú'>Ø¥¯3ýï»{¶ÿº‡éëÔ‘þñøg}ûÇc‹ÿ}›ÏÒ×Éþýò&ÿç,õ¯—{üÏoV_ÿßýŸ»Ê?>Óüó}›ÿz7ûωM5úº~о.ðÛÃ_ëkkÿ÷üÏ}•¾O+ðÿžÿü¾Õÿ=÷ùïã~ÿ>ôÏ>8¯Þ½þy½ìÿaï?Àì¾²?¬˜3YÌlÆbÎd1g²Ö«ÕŽ´˜ÙÝÙ™ÙÝôÌôÌtO°™Ù$»AÄÊ…J¨÷*¼W¯âK•€±·¤µ²mAV²l­Y–%Y–Y^I¶,ɧöþ~ ~Ûjõ ÄÿûÈ‹zïýo8÷œsÏ=‘~÷´¦Vù¢›~=çrìû0û8Î{À·›uVKíKmºšAN^b~âqúî/ -©íâý_lLmF~ ^â÷%Ö1 ‡¶óÞ~ð{ ¹`œó¦ò›©`¸Â÷ÀiäG©-Âgá mô[dÞfžèg–þ‚=ÀmßñԎŸ÷6¥¶xIí$ø¦ÜÙ¾ô"ÿ¼ÛÈz9o¦ ÓAæõn Ÿ#fà£âc‘ñù¾|ÝÌû[ÚR»›õõŸYäZå¹}Σ™qØŸ2òCû1Ÿ(Â/93œó[ØŸê¿Ã¸ |aj[3©mƒËœƒÌéÚÔ*ä8×ö³_5ügÿ3¼7^gÙ_åÍí­©-$‚k…x΃o­ÀI9#ÏøÒ‹|üéozí.ÆëežÒOŽùŠ»¡Ÿ*|¾ÜÇï¡Ã6ð¢¼v3îxWþkŒï}x¿Ïü·fR{°1µÃÌãæÔ.þß±nñùæ?Æ=!Ý+çå€ßÏ6Òÿ ýƒ·xþ±øy¯žƒ–/K­xZVþäüá\á¢\ÿ1ã-s>ÿÇÔ*§ç7¥¶úêbüIèpOCj•sfšRÛ þ´y¿¿«ÿRj+Ðýæ;ýT®§_æUùORÛÉ<<÷°ß³ø á»8w²àÇìQúaåýìWùy„õIàVýçR»ð©-Oíçdo&µ}ÇR»|­tಓñäW“Œëýt„û@Žûù û´ÌþvªOÙ˜ZåùIÖ3ȾL´±ÎßNmºê–®ÁÃÀñø2,@=ŒSá|]`ݹCÀiCj½×²Žý+¬9gðÙ ?‚¿ 8)ÇL\™Ú)äÑÞ–ÔNC£À¥úß2o¾Ÿ¯öµ¦ö§Œ?Å|Ç‘›û¹/IŸ?ãýüæ¾zß©2¿.ÎKï=½àÑó*þyjwlâoÖWþø¾>_«<—Ú ôÖË<3Àaß±Ô ›øW–yv@o=EæÏü¦¡§)î;ûØß΃,ûQå~±Œü¾~–ÿõÔ.ü©m?šÚÍ©/FÑ_Ôøø“¡ÿ·2ç=•÷߯]ü<µooäsålèyŸ'ñ(ä™}©ýxSj;Wñ?Kí8ë*Á?fÐÏt6²~_ý÷€‹ú¼ÿñXï4ãnfœQèñ#æ= >{/™UŸäøÜG9qÜIÏSøÀ×Á>Ì<'8gú‡ó}üýˆyâ>£Þl:WN)?œÚ%øëÈû©ÝO¿ÛÀá_FþÈ9üb|¯dŸFÙß úÓ$þü#ï±ÔæšÚý °Þ,ô˜oMm?|{öãÔ–è ëùþ±ÔN­0>óÏrìàó!ðñoðwxeáÝŒÿ§|¿›ßïF^˜ð<„οƼ˜‡ô§~v øOz?†Oü˜ï È…Û˜ï÷µvèv3x0\6@òçYøa'óÛÕ˜ZõR“àÛÒ¿\€ã zÈðéçþ«œ³¯˜ZõÙ£è‡àãS¿ŸZå„Nøa•õ{Ïi~èÃ{ø'Çy}”g^NÀ¡v†Ÿ, × ·¥¶¶CGêß&à/ì«çÌ<ðö~XEŸØ ÞÑæ9ÇZY_ÁÏ™ßçñî–Ô~}å8Ç{Ù· ðžgÝÎã)õ?ÐÇðcßòÌk ¹wssj;Gÿïœ8¿#àAø\À{åaõm]àý(t_E2Ë|Âï–™Ú¿ÒÚ ý-±_½ÇR[aý=Ày‚uô^—Ú)øÌóðœã<\æ<òÞÛà zªyàŸáóøm;ãNq.àÛü®œI­úŒ¬zNð±¹S}`V»ÖñԖЃkߨ\:xOùè1à3ŽÜ®|\弚`îQ3ÈÉûù¼ôóžý@'ŹÔönÿpbÚ¡çÑã,ý3ÌûŠúø‘&úž}Èý?ÜÈüØ÷vö¡vïõï ÷‡Œötðy†}è‚O³ÿƒÐÕòQ¯çám©r¿à“ŸsLwùò ëù¬È|é7¼'؇1úŸDžl;šZÏ™,t›_L Ôž„~p~¼«‰y¯¤¶ñ'¸·¨O­pßé>Á³Eðo/tr˜{¡xWŽð¯AæU‚Þ–Ñ[©‡oENh§¿ýÇR;º€Ó ôWN­©§ß9î±Ú À“t|á¤ÇÎ ©ýˆ¶™UNççû"çý$ô4|Ç‘›÷²þ­mô¿Âz–sº~¿™y̱¯=ÐÝoðûÍУúÆVö{Žï³È‰9ï±Ðáó[@S¯â|õ3aû˜§÷úYäÏ[ýŸæÑCç˜÷!ö¡·H¿ðà ø^‚¯yOøM潈¿ÌúöIð]ÿ>ý<þ&¿×p Ã8œ×êg7µ¦¶|*_“ð•ó„nv6¥¶Â¹®?v¹O¦¶ÌøãÐ_?û1ܵ—3¯ið¸ üÏÀ‡><μ÷ûY_þ1ÊýV¹»z™‚O{ožæû.èJ»Õü­‚]züïàžƒ8gGÑ‹U±Clã÷}Ðý¸v5Ö5 Ýä¹·kÇÊò{åLõöYøå÷WxŸ}É ÇŽñ;õÕ5;8ó;Ü›Úøê¾oe¼Ãoóù¦ÔîlMí`Sjû™¿÷æÆñ¾¨½ûG¬£š¯ZÚÀƒ%ôÖ#ðƒÁæÉü’š9¾ç<˜†þFñ“X@^V®Ø©wÒþöð™AþR4¦=”÷gÀ¿.Î%õEîéËðß t~»Æ4úÒmàe'ãŽpS=ÓÌúáwo—øÎ$ûöqkjsðí<Õ“þà·yÖU€Ÿ•82ÀW»ä0üF½J/x¨¾e?ø¿“õ.rèw1·)µO½T7ø¾|ÙÝæ‹ŒÃþü¢-µ³ÐvIïÉO¸ñû óWßâ}¾8ÆÎ6Ï~瑟*ÇR;‚3ŸÏöÁß;[€ÃßK­~tú™}H?¥wRûNcjûy/]Ïâ=à3ÆøÞCËÿ€÷Á“ ¿Ÿåþà½iyu~; Ü:‘«ÁO'šR›ƒïéW°øïv1¿Yð`z™C>٠ܥëüõG­ŒÃ:Žà¿­¾wן^?òaγž£Ìùj\9m%µƺõG™`=Úcõ—ÝÍï…w'ø«>NûïÁ&¾‡?õ>râßú'éR³û"ÏìR.–ßý}æ~oežcìË@Kj§Ù¯>E¯’¿1Þ8x£þ´xêÏ×=·#ä—v°"ó˜„6sžØÈ:Á‘bjgYWëQúG®ßÞÈüÁÛ½èç?=±¿>øñıÔ.Ñ~?ßÄúYG¾×EÿÆ1èÇýóæÐ]=äÒVæË>¤°£à Àá=Æ?þ~À:;ø½qUê¯F™ßAèmûß0ür½§öKýv@§ÓÐúÂNÖ×^M²OãøŸ ©ÏoMmÿtå9åY÷<èiIí^àßɺzÀÃõ¬øÙ ÀŸØÿdR[‚î½ße9—«Èiê%FéœyŽ*?6/àñÛ~¯c#ëfíô3Â=ÕóÖû‹þáÞÊ!×x_^DÞ˜„þ³Ü3ŠôWá<ûôS…ϰßõ£÷IâZð?ÖûãtÁ§v²ýÅ'Ùï>Ö¡>KyA;†z‘!úÓÎ[Õ^F\Zç†Ô3ï¡£©Õ_Ä{‹û?ËAöW?VãÚ™ôÖé>´²æá=/óÛ ŸžiKmz˜zXÏ>à¨]9ƒ<ß èbþ3Ü_rØ™Úßûãú‡6æSü¯hÇrÇ|RýÌ,vCãùæ‘û>dÜÍM©íhd>Òëc'™—ñòÓ?a]Ìw¹{‚ß©?ma>ìG}|‰ñg±ÿm£Ÿúïeß&ÀÃêý'þ® þ¢|™ç×þ\†/wðã©]d½­ÌÇ{èÀE¿ Ûöý¥ÕŸOÒo'û >Y{IÍ‹{|S?aøÖñ üÜFò— à(¾N¡?šdÞcºšR«ý@=[ þžçÜž‚oèw¤žÄ¸© ~&3ð õœôTUðdžu鑽ôÄyëg¼ ÿ›…ÞÓÐuë/£WšƒN²œsËìÿ!ðaÏqæùxjk÷^ÖQâ¤Þnüë†>‡àK­R«HMN„îÆÙãϦY¯÷Ç9õ®À£L¼“~%mô_E.lG¾Ê_ãÿæà»êiÆZi9'òŒï=fŠûsøöÂÿ´SkÇÿ9ýÏã×^;×Xß|i’ýÐϪúÖÑG?êåßoJížFÖë}|cj½ÇŒ@m¼_‚å9rÆß ðký rN×ø ÷¾ Þ›`Ý;áSÒó pXD¯× =mVöo¤v8‰ÿÅäÈÐR`þ%äGåäßä÷­üŽõO³úyÁôëo§Ø÷ÃÐÝ$pØþëï6Ë>d6¥vk3ðB |°íXj•?ô¿þ³¦ÔîÛ|Ž2èÒøžö§ yYÿiã ô‹lƒþŒóÙCÿÛ˜ïæã¬~ÖÃy6^õ±þ%îmâõgôã}¸ 퉇_;.à»ñfÓœ#úuWKéÖcüãN/ý:º“· 'è½’ æ-Yý*yÿ]æ{PüF¾šîú¥Ã¯½dá·Æ¹îfœsÊ=êI•ãÚÁë6à®ÿúù!æküÓÚ2û9#_®Ôû¨gœd_ ÿQNüe1µúMi/0î~ ‘~9W.Ÿg½£ÀCŽ7ZùxƒÆ·yØÊ:+ØwПvå6ðòý©7ZÂämÖQBþö>콦˜)Z¶ðþŽ ü>”Ðô }ðø—ñÔøôŸ·¤¶ƒy-¥½g>>®çÌø9­Ðÿfà›Á?Húþúï`¼ø;¬w—xÉ=l¯÷úõÞ2À|óÈ+}ìÿ4pÐ?$·Â<W{e<Ö€ïõcÞJÿú-LÉÏ ×!à—åÜÙ¾‰õÊoè_¹»ý–X—vÕ)ô&údåkü~ú¾žGÊÏEüáÔ{¿>žÚÖ¡\_aý‡Zh‹©Õ_²ÏÙ̸ðsómd}O}ëÔ?F}Ë;þN|€oÏ“OaD½=ï›OÂ<%#àé_0Î8òö¡ ©­Åµè' ¾uqôÁ2™Ô!^j@½ v“%ï=ÜkõÇJÇCÀŸýžasðYýwÊä‘0aŽó§‚|\D¾ßךÚ~ÎåMå{åãåÕoÌÂ?oƒðuýØß9ʸ¬Ç<yàW‹KÏÇ8‡µsMï%ࣿ¾üo xõy1µµxsäã¾òì³~Åú³ÌržÇ;]ç7Ðp7Þ¢H~ãFèçGÌ[ç.æ³øïlI­zÁaæ9ªÿ5üZ;¡rã°rÏñÔV‘ÇóÚuÔ°/Ü›æßÐïvýí!Æÿx#pâÞê9PT~`¾Køã.¡çò~¯?Ÿþ²öc 9@¿~ã>G¹—,ç=÷È8£øíŒqÞµ±UÎé zxõE5ÿ¦ï¥V9Dú,£—oçü;r”õ‘·§ŠÀ8†Ïá¹Õø;ó(âO:žIí6ú«ÙþûÔÎAæOѾû¹çß±Ôê§ofÚËÄÛ1ðS»ã^èbéo§V|™ç|ÓOL¿Iîw‹ÿyj'àð‘¿Ëz·ÁŸ†x‰sc|Ò¿m~»ýXj7óû¡¦ÔÎa/i+2/àò{­©ý1¿×î?¦ 8ÏãO2Ͼy—á/ú=W8‚\<Èç]ÈËSÐotI­çîž ©5îr;Y…ùl=žÚ^è{’}QO­ž¦Â:+ÌgŒñ•SXÏ8?•»;¦Vý¢ú¡ Γø„òú0ã¿ï¼ wåwùîç—y¾ô׬ٛàsÚ•ÅãÓ:™¯ñ%3Ì»…~ËèoòØqº´4¥vwkj÷Ÿ>ðÖ8m×/¾ÁÌ번Ÿr§y5ô›É²/;à#È{æ ÚÊ8æGЮYþ~j+Èá9Ö™ã|Òßsžó¯õï³þ®¼Ï¼·mà}à齺xpßѾU‚µÇÍs¾“#{ÍoWœqø‰ù0ƹŒ1OãéèÏß_P>ÒŸV;Ú‡›R›^ÿ⾩ý®À96†|·¥9µûX~±‡´óy¸-ÿ»'ö›¿?ÛÀ<øý.åðÓ|Æ ê7…f™õêwdþŽÏYgp~W€óÐnhœ•ðó~fþ¿.èð­©av>œ[cà¯÷Þæi¼—zÙ1îùæ-ûœum>ÊߌßÝÂ<ù~9«_,ƒGãà¹zÏÝ~ÆC¯º„ÿèq<* ?Õ¬}ÐüŒœ·5=ø¦Ôzú˜yç8Ÿpî&ôù@ÂqBýt*Ä Ž«§c?—ÛþÔÿÔ¾mÞ6÷·Œ|¯þÓûŠö¯½ÅÔngÿåÿðÑûjžshp…÷áÏÒá2yóôSâ{ãâŠøÓ{>ëe>¼ù»yz2î8ùbüÆ<üvF!øOWsj›É!H³Úm€×çy?ûY>`}ÓÌï óeÜ äàßcýõú‘+Ô§m‡O¨ðüå~£<0Ä|:àÓYôÊEó0åMímCÿÖ—æ\*>ö72n‘y1ÎvÕ©£©5ŸWå¶ç•߯’‡ßg#ßÎ'#Àsý] »x;|!¯~“¶¤<`œôZŽûšY~UøOåôgb\ù­zÝ ø]ï ¿ç^•ǰˆ¼’ã½Rrð®Ý#ôÃÉpOèàïð\=çVèÑüe‹À¥ ¾è5ǼŒ3*"·µ³æµ0OÚ p1Ï”ó7ÎX¾ß†œ´•y÷¢gÒŸ~’óß8*Ç1¾tœ8ã=ôë›?æáÓÜûóìk–uɹDO7Ü”Ú÷š àå^)¾š@{¬vý:rØyŒ›5ߊñG…M©ý°¸1nb/_Ø»õãm¾†ùçqï†Ôîf¼-¼?¥\‚|齫|qýëŒkþYÖ¡=O¿XýòÂWÔ«MÑŸv|ãôßÏ>tâüÔÓdÐóþ!ð(qo5Þo ¸›'ïsè2>?´›”Ÿ8ÏqäÏ~ð®¾gž°ü; ßÐî}<2?À~æ­_‹yyÆ‘ÇÀ³2þ—íü=¹\ô߇ÍÛ”ÿgÁiøè ç‡þmâ§ñt#Àk;¾y,ÞÂ÷ò÷ŒrzAï3æ3ó(ô\FþË¢oÐoÃušÏE¿ëò€þæÆ+O|YÞU¿­ÞG}¨qgúSy¿.2ÎpX„n‹œk½œÏêwô{ªþÃÔîb¼îwúW¡#ϓ𡽌Ÿ_I­~åæµ1>æ§Ì§këƒnz8GÍ“ÜI?~oÞCó', ?òþ¥>ó]~7Ì|¼§ŒÁÍ3Ûܵoé'éþtWó­µ#WÂÏ'Àózëç“ç3ŽW¾ºe#¿c|åÛÍÈQÓm©­€gæß ÜÇ8aý ð‰ë6œy—دväÜAð`¹9µ9à”CnÑŸ±¼80Ï÷åÐ ð|ã±Ôfèw+ô×Å|«ì¯ù<:›h9Úy_9J;Ð|E½i†{â4çëmo+ð€Í·5 e_ÍŸ;Áº‡àƒÚA{ §Ï‘÷ö^n\´òð;€ò”þ¶úéXŽÁ¸´¤ö—©Õxü(óàü0Ï.Ö¿ƒ}áoý5ºà/¼ç99¾.G©Ì{Æ7~wýÏôÃ3Ÿç,ýAΛ„ÞóÐuÚ†'¡—1Îå!óÀë'Ú½¤|›NÚG Gõ»·ÒÿØñÔN€7»7¦V»ÃþÆÔfÙ¿!æó,ïëß+)¥—ùþAkj«è¿Šè[ÔãMC÷êö·Eò¨TÁÏÛ‚vèÙû°zÞ)þcžÆùlâ{í#YηqÖ1|Jä­í. Èõæå÷¾’;.ôÅž¯Æ¡˜§0ÇøúÅìf½æ×ϯ"ñ=ËÜwôg9~ýëù1­ñç[Ç8Ýqôæè3Ü¿õc΃Ÿê= àý(øÓÑ”Úíøž{ùüGû±ß›ÇÌü®Yöm„{Šù|ôçôüÈ(¿üåÔVÉkb>ê!,£ò^¯ŸTZnàüe‘ýmKíGÇR«ß¬ùD‹ÜoºÙóí—¤ç¹$ÿ6oŽqáÞ6³>ä3ã¾¶°® íkÌÏ<Æ‹|ÒÄ|¹—Ð+oÞÖ øšyÜ{ÀCõõÚÙ·qd¹¯ùÝàQúÇ>?œôïð×ÿؼÄÒÃððþµŒ¼Ržé9fÞ4ã°¼—÷À ôÇý æWÿS®,zÃ~5É:ËÔïÐï-¼Í»,¼ŒC4§~?YøœþÕÞßõc^`\ý+ŠòÏM©íleþðù´qÃú™šÏ¼Ïó^}:ßWÔë¹ >ëg¸­1µ9ñŽuªïR_©iŸú*ા{—ú,öeð8ãï^ðC½Îë5^¼ª0÷¥YúÙÆy¶ÄøÞGÌS;Ü·€Sà‰ùÝ«¬¿ãhjçÙómÉJúsðù/xoxe[S;ɽÞ:#úñÈÿÍ/³)C¿èÙ+Ä?|ÈïËàiMÿ\´#O¢§í¡?ùö_í$æË(·²ë˜/Òyþ²-µÊócÜçö³Þ}üμŸ5§Ö¼-ÐYŸë§3žõNœ8oåiãΙOxf¾ÑéFæÅy¸ÌøÓà›vqý&ôŸ1ØôØJÿàç¹v¨zâxïS«½ÌqÌÇd<ƒçÛNèCý«ùóÇø¼x€?h?üÖ1>{?ëAWŸ‡Ü¦þY<íz;gžõ÷€ +µeÎsó„íbëøtðþ;¬»B9õ¸úýÏãO*¿’ï¨g2¯µqãôgœ¤~˜Uøç÷÷a>ŸâÞ\"^×8@ïwƧÿ¢¸pnÕê Á/ÌhœYÿÓ9è­¸-ü€yÿÎÇòë©Õ?Zþ4À|:ÕÇ“¯mF;:ë8 ŸßÃûCÇR;F[„ÿXרóÖºdÆŸ˜·^û’ö óf„N{€›yñ'ø¼tï#ï"We·ægÀ9«œn^3ó„›GÚüUeåEößzoEàa¾$õæ¯Ñÿ´uY?hvß÷ÆÑ›)oÕâíÇÍ×öþÆÔîXaè«æÿµÔÎ ÏkÎÀŸõOR¾ÿñ1ÞÃïw~m~¥YúQe>JÏãÌç°™ùõÂWôƒPÿiü©ñ®yø‘ñ'Öá΋Äwþ1ó†?(FÎ+c‡Òß³¹É¸²æÓ ¾N*Gybõ¯SЕy­îëÆó¨¯7a•¼oS[P~hMí4çAçE-Ÿ.üÀ< ú·¨‡×/Z?rëo‡ÖÑœZóÊLѯù=Þ.‰¾È·¤RÄ||ý„ùëo±‡s«uSj³Æ{±ŸyíÆÜ3¬c¨CÞ{)ë²¾ßòœùzçñ¿:]¿Í<—‰gÉ1N†¶ÚH¿ì¯õœúh÷7¥V9½Ÿ²è¹àEðÚ|¿ÜZë”)Zä ø0Åþî…nŠœC›3Ì›õneÞÞïÍÇb]ó 廬>Œ 3OÜ>Ö× <·qý“–Ôæ´ À—&õo€¾¬ë÷ó"ã"3õ“mꙟùõO­ünjåGÛágú7hÏ3?¸~oî£÷+óêdµ‚Ïæu²B…û³þû“Àc¹åóظ1µêgÕ[æ8o~x,µýœKÖͬ৮\nóÉÁ–ѧœImA¹¢ÈxàÑó]NÐéçð£iè;˸ÊÁÖ«C¿Q‚NÕëªÇ³>~gú¡wðû,÷ÿ*ø-þªOU/:ÄylÞãõKóÞjܼyq>Ú”Ú2úgýE³¼oüôøßpoŒ‹ÍOí§›RÛÃþk[ógz7¿ö$|iP>¤zëµ/cO×¾=źÆÿ9§–‰³Þ͸ʧÆw/‚Wú}K­zļrÝÖ ýY?Ýx„qÖmÜ»u Õç™×<Пû p²ÀîVàv<µ?É0ýÈg¼¯̼²Ü{’Xò…üª_–ú©6äýòÞcæ½2Þåû“ã÷æ{šGc^¦Yà7^¾Ï¸|¿„~§]~Dª]ÇOœ¿qç#àµy¢¶BOú]Ìsÿ².™zBã½>ç½EäCõ Æi샮Ì#`ü¾yÓ¼oŽa/(a'ñž^¤—öAýx¦éoSj[ÙWó7ȯ†ø½ú ãzõ,¡´~ýçÞ·3©ÝÞÄß¾½º?ÝÌÓ|‹Û[™<Ùž£Ö^æ|ç>2³õà7`\Â,ôi}Â%ê¼i75îcO[j½?w2oã9¥'ï“‹àñÕÖÔ. 'i?Ò¿R?åHïAÊiÆyZ'Z.ãWôw¿†¹_Õßó`™?vyé·÷>ëj¾òï»êUFÐMp~hG²Þsrã)oiž·¾/ï+‡9Šä»ÖNl¼ô4ú¸Šr!ó´þùÌC¬ÿ»ùއ˜§ú?ëòÕ¾gþÖŸ?ÀúËðáÍÇR«½Ttë»ZÏ£Ÿ}²îò!úí‚~jz+äó²Æï;Øoó¿.ñ{õ;æ0Nº¹õø¦Ýrž¼¦Æ ¨OVžN­G0m<ëZ$Ï£yLõ{ñž0È|úÁÿ,zHë³VÀCã —¡‹Êú¿#¶B_Þ³¶®Ð¿vüüÌÓdœ‚y>J'®«ØBô¯žrý.co쇧<À:÷ñ¾þ]ËúíOmí8ëLèôÙ¡¬ŸBeî9EüdŒŸUÿwþÓÕÆúÅWæá=Þ:iEÖk}‡¿Æøæ§oJ­z$ëæØ¯1ÎmõÞCÍSXÆžQ„/{žÎ#W§Æ?kóÞ¤?÷Á ©5o¡qmcà£ñ-³œ§ú~Âû‹äu‚~̃Ն^B¿·rP»Øp².ËâŸò9t5œÌïiý…*þâÏóÏ€Wž/ÖgÓ?uŠqöãÀGÛÌ3 ¾¨Gø˜¶„ýT?Lá”ãÜ÷>ôë‚îõwü)¿Ïƒçõ1+©ýŒ÷õÛ^$õ2rSùº‡svŒùÿþ‡M©ÕOc–8Uíê;Ù‡õ¹Ð­úóøFyc„uAòqõkÖód|óÐoJ­÷„ èÍx|ë›>Gÿæž/õ·žÎýÜ£õ«ÝÌ:þx©Ç(BÏú'§©?˜y—Û¿FYÏG´ú£¨W4>S;o‰û´ù¾KØ;r¬×:‚ÚG½ï¢ýÙüÖå0¯þ‚Ò¿vã6ÔËœ"|Ì×;¹Ptÿ¹Ž¯r®uˊ褓ó˜á¾qˆ÷ÔKN¶¥¶“s$ǹ9<Õÿz?±ÚòZãîokMírƒçä,ç‡|ݼ²[y/×Äï ;óMÕâNØwó²Î3_ãôûÒ®¥ÞyÎû<ï×Ü._êiÌÃ#ßµžCÇõu7ð÷,ò§þÄ£ŒS€ÏM{N*çMí$|w¸Xg¤D«œÓÆ~ZO~–{˜zˆàÏÎÉ Îïu5yþg½aãÙŒÍwóxOÿMë;LmJí"öäm©­r¿±>z“Ãìÿ ¿‡ÞwÒþjÞ“ À3ƒ“øüW[SÛ >èo0Á~æ¹t«‡Á/ü.‹àYçÞõQ½'Z¯ÈûAõf9G63óÆë¯\Uþ¡éc}¸ùŽòàÓüf ;Rü(£^ 9ûó)°ßÆïZïÒ:ÆÒÏòÿĺÍã§ÃóûÆ<ãÎÀÿ­£j^qýQGÿ1àøæCôü„³yžJè Œû5ŽÌ¼ãà_½£zlï½KœWÖ)«E.ú”~KÔgÖÿǸjïOÚÓ;óïæËõÇUžÛɺõã<žT 3ý¼ßÉW2ü¾L~ ÷ùþ½•ÔŠ'Ö§2Ϧõzýýá,ô£Eûr[3ë„/ÎØ?ßg9O²ôÛÇþš‡sžýÒŽ1Ëù°„ü™Žòë YÇv\}òí"qySàMÍ’û¿ú)ã“ûÙ¯ð´Þ¥ugäæI¬ gWØ?3O¿~UúIè/k<ñ Úý¬ ;€g]Æš_rkjÝwóÏŒòùø¿|â:&¡{ý>>žZéA½]ñXjõ­ðžöú#Ø9ºá‡×xÝ%Γ,ñŽ#Œ3J¿úÝ©'˲֥ÊÇäæõE—±FÖ¼cžFå¾QÆà¼1¯Ttc½ ã€g•k™Ÿú`ýRÌ#\ów„ï«w6¼~Yæ=7?Þ&Þ7þPÿ‹Iöß:QÖ54oKóîÆ;˜¯Ö¸ƒGSû9xd¼›þyø‡ü¥–ײ˜ZïSÖk²îÄ2ù!µ+u³îC¬×¸JëÚißîÊÐrO˜V¹1µý„8/­û•çÈr˜×yÁûxeþßeý¡/ýË+ÈÅÚo…Ÿu^Ík1Žw ÿÂT–-úGϤ~ÔûðÒN¥ü’ÿäÄV»‡yÜþŒutð÷A~WÓÛ‚¯£è!ÌoÝýjŒ;ñ¾Ñ ˜A_hDã^ÇðkÙͼçÒŸÎz4cà‡þQÊ)EèÑ8.öÝs|;´þàŸ2/ãµß=–ZåÁZ~Xø{qcjGŸ¥Ðλ!µÆéêPâþj}Ä ÷ÿ*ç˜ö‘ðì[è—yOw éßÄ﹇*¿èwo‹ŸÓÏaî;ÆÙ$tˆþZS«_¤~RæiƒŽÁ·!úŸÎ¤6× œX—úÇúÝÍþÍþw'Î3þ(w/öa[jÍ£U†ÏŒ!_uò;ãû€ï!ö[Ü"ë\B/¥¿ó8û¿£˜Zëçi¿ZbßÄ{ó«˜gÖ<æùµn¬õW'9?Œ0/k ¹jëhI­þ•᳿dý¥Íd}có|™×¡æ/<ô7ÿêó5žzÜýìÇüÀ¼”‡‘[&C}É'¬Cÿ |Èü‹øWŸkŸçïŠûž{_ÛÉ<ä‹%äë:™ç§¬¾ 9¼ÿ³¥z ó Skñ]|nÞ2ådõ=øA¾™q¹ŸfŽò9ûcýŸ2žù àå$p?ÌþØ·YÎñ=}«wQŽÞÄxúlí^Sà£òy–óμО£Èsú±-’ï_~b|_=Â|Oý„q±Ú«Ì‡j½<ó¨_0Œßïe½Oùø8ç±uÉjr#òÓ4ø©_š~¹®ë3àc~'뫘¿¥-“Zý›¬o]&`Q9 ý¶ñ Uòõ뇀|ež5óÓw¨~ yÉ#z˜ú{í—}ÔÚ8éiîÓÞ{g‘³û 7Ï/åvãÀfXg-¯ë™Ìd>õseñü\b¿•ï•<ÏÍËkëI̲®øÄBžù ¯ëg¹§¸ñww[jͳüGæ´jÌKR»ÿ¦û1^ÛxõtíÐåçƒç½ù4vŠ_¬çƒ Ì øXG6Ͼ§kC¬ ýL†ó-‡¼kžÑÆžƒÐƒvbùŒôº‡ñô»Ð>S`~3ȷ棙Ó.ãÿà}WýÛaðë¿Ó?V?—£ô¯‰z¨Ê“úÓUáw;Á÷ŒüuYoT¿ ù¯~SÖ‹œ‚oÿ¢ xÀŸ¬ƒî9¯¿u3JÜO ÌGûHüŸÏ«ì‡ú-ëN·‚/ê[½g€£ùÏÍc^0ã¦ô‹ÞSä{õw¼_`]æ?þ[­©5~ÚúÒrY;¿ï•C´ßŠ'3àñûù×xÿZR[$ÏŽþáíÐeVÿàâ¹5½kWXb?­¹@†q®ð“ܱԪ'P­?œqYÆ?™§FÜið½yÃx­eâªÊÀ_{ûH[j­_­Ž÷ª9öa8Î0ãõj~2ü®ëxjͦ~Ô:ïãðý¢þæœ eîOž·Ú ­s< >ržWk=óî˜GÚû–õÍ­k­íCú7ßç¦Ô¶¯*qÓÀY;ú]åÑ ä0ë†h÷4ž·¾h܈þ%ÖmÖ" üÿdcj71Ÿåàbý–%ô‡ÖÉ- oï½¼§)µÃÜçïyÖoÝ’Þ£¬‡ûÁŸ²ý`­·[…?Xßt»r:|w>¢þ Šÿ‚÷uãÉòÈeú¿Óܪ­9ͺ{úm SïMÒ‹yŠÀIûå§+¬“¶JÜ’ùsä‹ãàG½¢õ×<7Œ¿Õ/¡ÐÂzáwÊÛ%ò¬äXï"q6œ£Ö£2NJ>TÆ®¯_ô>öM?¸Ý°NèÜ:eü`:Á—„Žñ½þœ×3_²“i×ÔîQbŸkçã.¢×pŸÌUy…~Àÿö¥€<³º…ßš_` ú™kLíﶤ¶ƒþËðýªJÄqx_T_úasjͯÞO«½o3ß«ïRo,õ—ÂùÇ­À ¾ ¿~ì`äçvøÑ{ÇSkü¼zýCŒ1ï®r½õDgÀ‹=Ì_½ˆrþ2rÅ2p²~»ñ=EâoJäµQî2?žù ªÄ+†þŒ¿Ú^M!é¯ZFY$ž{z7P¾d&íKêwÕ[eàS›YOúÈsŸ´ÎŸñÆE&vûÍ~éè½Å<[Ö±úø˜oA}ZI{‚ë†oä‘¿3Í©]&#Ó˜Zë"[½—ñõã6. ßÑN ¿Ã4Ÿ›×°‹{‡öº™¯õ›Õα®nè¡Þ¹½ÀõýÖÔ&®j‘y~¶’Zãpöªï`|ï#µºèo•Û‡s°žéÖÑM?ú]˜‡t‚õ{ŸÉ±õ'ü=rèIJÄ©þæ©ýòÓ6ÖiŒ+ÿÔμžÆìÞZý¨kuà×ÃÞGГ™ïÈ{›ù´JèG#·îA?x”AUÁK?tí…âÉGS+¿X >ºqŠSà—çÄ,tgqí‘úGŸÔqŒù0¯Nè{ðÒ>["fžýÌp¾ë¿ù)¿ÏÒß4û<ÕBÿœŸCÇéý2?r9D9ÏúaóðÅŽ4¡t_>hMíÆ5®D}Žt }éßnîÏy¯ü5NÚ8&íByü""·˜Ï¾–Ç:°~šþcúeÍï æ7þF»íçæ pî–þÞS¯ˆ|m÷t÷nKjͯÜMköà5žY·*£]œ{‡õ2ÿˆßÉg8Ì:·2Ž~YŸMíøžvMå¬vTî« /¥Öü2Þë­#­¼©’xWf?õ.QçÊzWŸgð•íì³õ+ à½þãà™qÕü.‰“_ðkóV “à—yˆ­_ÙÍým}§ù®­Ëb̓¬wë ëç<·žgß1懟†õè?ßÚNðp#óAo¬^éûôkÞ>á?<}p#ý §à7íÀ-žé?®a–{—yS+äWÐ_Z¿õx¬¿Ä=¨W¾Éç5¿#ö· í¿_oeÈÆm”áƒì85;¿×&õ²>å*ýާù½ñmòƒš¿ë²nÁ8ýNñ{ó²©ß(ëÈ*·7 oBÿX~NÖO°¾N;÷Ö,üB}j7ýZïA9 ¸t¡‡4|üï/Í×;Ë9Z„Ìò»<ø0‰žD9׸0í€ê1MmLí>Ö•ƒYï|~¨¾ë~Ÿ‡õqÞXa½è}Ôëôç†/š·q>b^ÂÃĵšÇoà8pNcèÌG×¥¾†{´õ¤ô7ÞØøÆ2u]Œ×žÆ/a¸lþƒ rI2Ga×4Îqz×?TÊá Ì“ù|ÒšÚ"ëÑߪ¾¨ÒÎ0Ÿ™gÿÌ'¶õx_5>C<õ<ÚAÌw3 >äéwýú4x_‹Ãažµz&¬¯À½D=Vržþx¬«Ø–Zý¾z¼"ŒòûŸo:qü²÷Eõ´ÜS—Ñcš×F½‘~¥Ú“äó꣬óñvó‚¯VÉ{ÔA?Æ ïdžyèXÿ ïÃÞgõ÷©€½Àuûi.úÔˇõoâ=ã7•_Ñß_^!/G‘ß™oÓ:u‹À×úœsà‘q÷?Ya>¬Û{d ÿ4ív9øË´ñÔàý{À͸që÷9_ýVÕ¯YOS{²þYÙM©oæ÷ØÝ´3šÏ̺sð ãCËàëσyÈô+›³ýƒàÖS÷ü -eRÛ ßªÅ߉|[Ò~Ë9©¿»v•qð1Çy’AŸ(žì‡.«Ô‰™cý‡Žð£„Ÿµø‚r´yÍ×qºlãü˜NÞÓõ“/¢O2/ï8ü¹ùY×F|.ëç½§iž˜4L¼½Žó{àa2ã7ÚY‡ñ’UòÙÿ®V¾Goa<·ûj¾vãõv3¾ñmÖ•ž`ÝÖ)ê'ma}Ê[eìcý+Ìü/ƒú Tñãúsæo^ã<ÅíæÁ7Ïr°õÑw!Y·ùºŸœË;à¯úCÌ”§ô³RN©’'ÇüóGŒoeßÔ¿ç‘òœS€‡õÛrÐí¨pßÜ6²ä4õŒÆîbžÆ¸'ìæó^úË€‡EâvÌ‹ežý­*ÄiUñ7Y@ïÖÅ|& SãØÍ+г’Ú÷ø»óý±o3ìƒ÷rýD>ངž±NÖ'ÿ1¿Š÷ åáCÐ~#ú¡M‚ú·îu±öóy¹ù ó<‚¼s(“Zë/ËÇŒ[ÔÞ:€\­¼¨ÞÚüöðÑQä°öEZëôZѼ‡Ö;}U‰÷Ü»‘ù6¦¶„ýÓz½Ÿ±®IþÖßÀ¼ Óðeã“÷1î ã¸ÿeôÇ£œ ÊO£ÜÛÛ9È=`Š{ý@sjÝå3õ/æç².ió4þÝøjë~XºHþ€"ò–ùŽ­÷c|œñæ=Þ¼²ðƒAíØ×§è§VW·5µÚçõ«ØÃþpÿÙÛ”Zõ¦æåµÌ÷¸ ö¹ŠD­.Y*|Ü2Š|¯^y >ó'+©ÕPþn¾ë÷Ls/ؘI­yz”ûÙ'ãr§ù; |µƒy¾¤5Ë2ðÈr.Œ!g‚÷³ÎßßÑ¿q?ÜÈ{Ø”¯{ù~™õö°ïæSµž³~臠/ó¡ê0´~=79Ç&áwæ-Ìñžvãò¹úþà?¾[}‰ùÝfàûÝÌçÝ£©Õ.n¾ã,³øÉüé pâÞ`ýêYΛøÛr`ÿ±ÔZ·Ñ<¬Æ9/óaN"ÿ|ÙoH? õÚif€Ë‚÷KÎ/ó¯-¿™gý?g]´æÏ,B÷ÖÏNUÆÓŸÚúÓæ/–¿›GløÈ2úã)îýÞÿ¸Þì£ùᔇ‹ÔŸÈ3?õ<%àcýÂÃØ5µN£ðÄx¨ƒÜû;öž²¥•ß#ïxžj§õþ`þ+õ'9λ=ü].2¾x¤?·ùl ê‹›|:·îèrC¾)µ[“qfúÑd¡oïé£Ài8‰»šOç¡«²v æ9Åøì£yÜÛ™Oxf™¿to¾PùŽùÚ™—þâæeÖo3 Ÿ^ ~ÚúPês¬C:Í93\hÜA{õPrœ+êSFàgŸ¿%îuêa9GáKæ=3?@:étýÐÓçý`+ãç=äÿIîá{“qQÞ«ÒÎbÞÎà; ~Ï£ÏÖN4ˆü¼yw?ãZObþàýÀ¼ÄS¬×¼YòYíûú(ç›_ì ò~úÃ/b77ÎÙ<â]ì¿zŸ!ð´‡uµÿšÏH}“qNÝÀ©È÷Æ)ô1¾y”ªðÛ©"ëú×8Ž@÷ÖÃÜÞÆ<½o€¿YîOêá¬/b¼z‘û¦ràtƒÏsêÏVNl—nLí<ç˜u¨cŸ²Î‚u k~äÔ¿oë´¦x³ó(páÜ)±åRóŽN³ì¡â¯ù€»áûú)yOêÎ%ð#Ý̳þ·¿Âz¼×Ÿ¯?£yެ§dþ˜ç¤~= ä×׿ßzvƹí…Ϫ1Ÿëó1ŽõÈÂ:¼ç[çÕz–æ7°®©þ|oüºy>” œ»{ü›q mŒ×Úv¡yüeõ³/š¯ˆsÀxWýoú‹Ìƒ~·0¾þëÆŸ™ŸU{þ%ÊIÀUÿ¼í-©­6ŸØ÷¦çÇÁMÌ8[/Þ:rú8¾y<‡µó—¸‡èUÄÏ|”æ‘ä÷å ¼‡Þϸö,ûñϲ~ó°f ã²ðùå,üĸ4ë@æÿ„þÒv~QW}úåü™á\šcßµó ‡èo«ßbõ_çoäé"qèyæU€/miJíaìÇû™™{I;Y/ó6ޱ ~'_(KíÒ ©Uo¨~Ó{IÕ8¸?O­þ ÀWÿý#‹ÜÕoËç‹ðCý½Í/>ÀyeåPã×µ¿öÃŒ7_´~8Eàa=½qÖ›Ðì 9~Š{ˆù)ºà—æk±žz“ùÛz:EôVärëaüŒqŒw°^§þóµú9àß$ó7ß‚yKœ£SàUyrL¿=ô‚æ¹´Ÿqãàßúàšx˜wÕzöÆ“¨ÇÔκßœf‡62>þèÖÁÐÏ]=ùœÍoÝG?Eò,T ýò†ØwóV± !wY$ïרü‰ù|ÜŠ—¸.õ˜Ú‡áûÓßlSj‡ÙÇŠùИWl{kjo•_›×ôû¥<"¿*1OõaúaÿúËCÊ=Þõ×”OŽpž•{§Ñƒ{þÌ|ÌŸYQÿ ž˜_klCjw±?êýÕÃè7¾¨=g#ëE>Ð/Ô{¦~ˆyød‰qµïš÷˺Ë3ê5‘ãÿvKj­Ÿ­i‘<¼ãÐñçÊOÞØófŒÈ·Ù7ó„Nñ¾~-æµ2Ï‹õô—«2ý䫯 ö‚¯ä@í YøÕ‡Rëþ*ÏXl zèáïÿ¬¤vLàwxY?2{<µè¿‹yæ¡ãY¾ßÏþzŸSŸïþO0^>o=¢yì]eöÛº Ê¹]ÊA̧soD;àî}×sG?´yêPLC÷Ægßgpõý9ôÌå4ðP3 ¿cÿÅ÷u^4éšýü>ýËWÇ«ƒßî>Êë£Ðûfæ¡þ’y”ïLm‘}™ƒNÍ×n&ó­É÷­K“ØÁq]ú³meËØ‘Ì36ĺ'áÏeìèeîÍÞ×?oeýÈeúÅŒc'ûù1æ êÞÀï›Xó2Ž~£ù\{úÏnða|À{‚yºÈ£Ý].p.˜D»½y×ûѰÌ~Lp_ÙòߨOç¦þVsÈ‹à›ùI›3_B–Ï3ðí6ÖѾ(ŸN"¿åÅ{ïaЗùL;è¿pŒ~à÷]À¯ÞÔòñ0Ͼ·>oüó÷VR;>™Ÿ_~»‹ï²n‰ñr5=6øcÝ¥<üF?ŠúèÖ<¶ú‡(Wê§™a~<¥Ÿ‹v{ã¿ô1Î$x;É8#ÈñýðñEúe¿­G·“õ.6òëÐNc¾gí¥Ö%6oU†ÏØïN× ¾ “|L?kõæ}¬[¾hœÊò†~Ãæ Èsn¾ÏzÌGh}ýÊæÁ[á:Ãýþ™Qoé¹€\9@?mœËÖ³]¾÷~p`^…–ÔzÏUÒ©|¿Èxðuï‡æ)aþÚ{£¯ÍaWÑÞ ÿ£þo³œ—Ös1U¹¼úÝ œÌ+d܈yf†X‡ñ9‡ØGëèïz¸löœ„¨ÿ>´‰~ø]†{©uí­sg¼µ÷cãà¬Wc¼”ú&åTýoÌSnü®~GÖ³>ùû” »¡WóoWVbŸFÁGãrͪݨ}ÐÏ­‚>nøéW¬œl^â-àá!Î!óún_I­õcKœ?æ+1…òHþ4Æù£?f†sr¸Í!oŒ ÷2ïd¾©?ß»ÇS›Ä–˜ðXdœÝMŒÏþXgK?’y_;°uÑÊÈ×ú›wAWÆÕò«ÑÊ÷µCêwÐÇ<ÌÛ?‰\©Ý¶È9¨^z ¾6ÜüÆÙ¯Z½Oði–}W/»À}Éø¢z©ùM©`}Æá©¯]¤^ˆu&ô·ÐOÇxd×»øŸ¥Ö|úI”‰o¨ o!.ay½V§~¢ß˜vzíø£êG¸÷ë7Õ†¼mœŒqÉúafÀÿCê«…?zzëäêo3̹ÙÇþê?âyiÝXíšúÇÿÑFÆGÐOmÈû ÷aã S¹ë†–·7°~ü™­C5ÙÂzÁÓÝž“¼g õ È“Þï†ØGã|­Ç6Ϻô¿¬`ïå§\º‰um]I­÷ÿ"vë%ð¬?×Êü3ìßoJí"þÈæõ;ÆúàcÜ·sœãú·lÞtâzÛjM­ç|!Ç>šÓ|ïÖûœå~¥¾£–¿¿–Ño›g|:4ØÆŸ‡^¼?¾Íú ÀÛüUãNÑ7L/ÊëÓŒk^ƒàMy%wŽ/ê¶é·y=wøé/gÞZë¸ïo.àÕ2ûož;ýŧorÐÉO›è‡ýÓ·z‡?[7ÙßË|g9w—±è73œ¨¿ñûbEõ±›ÙÿnøH'úévà"¾zþh_3ni/x^Ë££|Äy>¾yµ?âQ¶µÖi¼ÿ<û¥½x€y÷7¥vG†õãoðÑsìŸOs¿WoüðʰoÊÛÒyæÛás?gõN™ã¬:d=Þëz…tf> ýÍÌ9u8z°¾Ì2ç~-Ïóç½yγ"ûa=Mí°Ö'Ȱoæñù pS³?4.Ü<–æ;3NdëÓ~Æ=Îûá$üF¾mú|͸GõŠ=Ç€pž?J¬K²"÷Hóötð¾çA ›ýâ>.½Õä;îIÞfÐÕü;7¦6K<÷põ‡æÛ6ž°H=ó^¨ÇËr/°ŽíphL­õéŒg×éã¦ÔZ×Þ<Ÿæ-jk9Æù/!Wj¶¾ù©sÐÉë«ééà+ú-ˆÿæG°®ôôS4Îú³NîVöaÄüÊÁì¿ñssàkx0Kÿ?g>•MÀ ¹oŒõL æÍÀ:¦µ#§˜Ï£Ì¾¾O¿“œC=ð!í†ú…ŸAøeŽû‘qºæ‹_b~æ+©âGdã¦àWeãS™—y\ŒS‚N{yßú¿íâ+y3/S®7®z ~¬ÿÖ¬ýƒçêÁÍ—gžó©¿3O‡ñ{êô;œB.Wf¾ó:šßBàËœö¼ÿ’ñY猟iH­ùpkuL؇6å…bjG•á‹ê+µ3Î0å”Iõ ÍÌ9иž üm3ó™G¯vHy_~Á:ªò5ìµ|èÍ#eý!ï±Ö ¶~Ó"rä4|½«‰ßCƒß2žy¡AßèÄûÕ›¬k†õgWRÛͺÍë=Nk>þnøl•÷­?cjóÉU7¤¶UúW~ÁßÛ:k3EZà¯ßÆú7ïê"~ãæ!—®¬ÇÜ ^›?Õ8,ó9)·ôkTŸÂ÷úîÝ”ZùŤp‡ÎÌ{5 ¿RýËfÆgó²ìk¢_ðdähjÍ·`>ã7ôg³®ßAðxNÿàcô»B?ÀÁ8YëDÖò©À¯Í+$˜—Ðü#óàáüb;©ö:óGµç“økëbþkó«W5o±ù…¬³s8n§_õÃ_ö+7¯¯y“¶²níXÆ_Íxžš¤ß#—öÀÿ:´ãÀ'Ùÿ)ú©`WþêWôƒÕN1¿Ïç!ý¨‡Ó_EùmÏz—©+3½ªwñÜú ô¸Ê_Uô+ø³ñ?Ö¨ÅçBçê!õ“ÌÀ'Ùÿaög˜}ÕŸ¸Žqo±Žzº¿ç}[?¥í}Ìw ë5ž"\u—IÎkãôõ¿¶.[•},dŸÃÔù²®Ñ÷ÇðÛxÕ)îóyÖ7‰鹤‚y#¬¥]Yÿbí©‹èñ»ËÍKé~Þ̼ÿ0ôk÷AøŽ~Òávøâ.àe|©ymÓÑÎP„Ïj/>lžê"ü„ñ‰/E¾íhNÆ*ç`5/ºu5>hd<ðX¿ÜC_ºW™Y¿è#ÄÓqžN²ïÆÅ©çhå>÷.ðPoþBãS½ON#uÀ×ÉŸf]+õ êÓË[DþÎÂÇ'´÷‚êËçÉ£¡ÿÝ/X¿ûk;õHmÈÅÖ[‘cÞª%ä¾ÏX·þøû¸Gª²nÍ$r@–ñ¼Oª§ëaœ ë1ÿˆ|Þ¼pS¬kñûô‹¼]€ßŒA_ó5µ‡è ¾6¶‘qÀŸ¼zoèÛ<.æ°Î¶ùú­ß6œòÅÔß\“WÀ7ó#Á/M=k•:§ŸË·ÛX¯xÇßæÏów‘ßïcœ"ñRòÏè{¼7?©~§æ-Üvñ‰ë0/Šu *wñuˆß—ß>Ѓòúú×OdWSjÇø¾–ϹK}áæ³{%µ}¾g>Þÿju™Ÿõo>‡îõû¶¾°ù´ÊŒo}ƒÝÂ<}oý²óçÁ7í{Ú/7ßÁ¢õ[Ô˱Ö/kc\ëEš÷³W½üȸQíßSà§u°ÿ„uX·Uù ~õ!oüˆñôÓÌ'íÅcè·´Ëõ!pß(€;ާV:Ô?Ö|×óœwÖÙ.B—ï¯È³Ã¼?½hëÔî®þÞºX‡Ù7í îïøß_±~´ñ3Æ%7­Î(ú4ó9éÇQ³cqÿ4~H>nüÁãN@gÖ{µNƒ~#‡¡óêŒsŽ_˜¥ß??Æxø5nW¿”³Í[7ξŒWý·ÿ¼5µæK[B¯o>šò‚õÔgŽ#GZ÷e™u-b_4Ž÷¿g>‡Àÿmà Fù‹þõà3¦óC¿ýL§šR«?­u"é78͹«_ðaî­‡‘Œ£7NN?ævíiìs±‘ïž8.æg=)븛WZ?PëBšçÇ<žïK­õ3¼?TÁ¿m¬Ó<ò½Z¾RâÌÍïªÜ[B?¡^X}¢qëòÇ%ì*µ<1S;ÏyÓϺÚ7z¯YÿôXƿټÓÄÙ,ÐyÌ{YŸq$苼O[Ã:êzÕW63oòŨ/œRÏÄþ”áæ-3¾ÒzÙãœ×ÞgŒ«eÿµ³lb^›3©=B~“Q潕ߛWM?;ñF½äÖí=^?oý¨Ìÿ¥|$¿0ωù¸ô÷V*´ô)ÕbjõCÐn ǵó^ú,BoyÆßÌoo~ý3”/ÃÐoaxÕêßpÿ².Z ÿGã(KøíKàKø‘G¾SÏ< >Ž¿?¥ã­'uøß>êUø~<š Ÿ9æ_¿P¹:勸† ÷‹Eì_à‘týÑ ð€þ¬¹Ì}i¾®ŽrÜtµÌ}®–GŠÏçá[æ9±î‹ö§QèÏ|/Æ—ªï>懭ÐZw¶ÈïÔ÷˜ÇX½Ð|E=è!ðþãÖÔϾõ÷.óÕoj3ï›ïEÿNëzYz¾V€.Ô¯ˆÊÉÆ!–ÈçaÞ>àS¤®ådß»Çeîõ˜_ø.Ô/Ã8.ý‚rÜ#Ìã¬þ^»ü4rž~uÖ!·žPí%θƒ÷ú§Ì|ËÊû™Ôš/~9´L^"ëæ}ÊïAú©wU.™âœ·¾›~yô »[S+ÿ©Åí/æµXϹ/[ÈüÆ|´¤vˆß«ÇE>Öž­žË8æ Öo>·ø]y¯¨5îÙøCõNýÌÃxã öϼnꇴs.Ç¿Í{Eè–}ò¾–G9¢|›Ií rþb¿E?“Ìo¾#ÞyžëÇ;‰=¸ҿqëyöÁürãΓóSz1~ÉzP•f>.#œ'Eúÿ ø˜§¥Uø°>ÏgëÔò¿uâ:Õé/ê:óœ«Ú#þ ¿×ŸO»xé=w9A;­u#·3Á/ÝÌ[êýc+ë2Ϲù~¬S­|,~õµð9óîà÷ÖWÈ1ï³öW=šZã¹ö72ð½D>&í,Cê]‘CÕšw¢uã‰ãYË<–9øK¿³¾íò9à-?[ /¦qÈÊ¥Ó›R«]Ë<Þ ì'~oÝSãC»Ù·,ýw£?éåwmœÓæ»3q |iƒß_]`ÚÛ Ò•ö ~—…OXÇÜzáæ}ßýÉ߇Áwýk|s@{å€òªç rLûÔ<û7Ã~˜ÓóN}rŽ{éñ…û›õ—87´ÇõÀ2ð‡ªþ‡ÐÉ€r-üFùѺœÚŸÔßä‘È÷ŸndÞœçsÀí@†þG½S/xýQ ëC>?p<µ‹ÈuÀI¾á=[É1ôⳬ_¾8ä9Ǻǻ~Fê™ç¹‰Ç6¦v„ufYÏvÖ)?*‡n^Ý^ægÝŠ>o†óDþiÞ9ñð/S̳ÓÎ~ "oŒ€ÆÓé¿m[íæò¿íÆOj¯îŸ¯5ƒ~ÕyèCûª~^68ÿŸñ¾uˆòžþµè×øAëÛç{Œ'ÖïåðeÖkõ¾æùe}qëÆÂw&ÄSì‹ÞµkS¾õçù,\GVR[æ}ób©Ï4Bë’ßG; wѯ~‰9äýð?ã÷ÔßYÇ«¯È:¨‡a½»aðo >b\Žy3Ì×¥ý`+çE{#íñÔÑϾ= |>bü þhò7ë•k·:|f•—±K˜WÏø†˜Ïv5óÖè7`~?ï«Û˜§ù·ô£ò^hž=ãúÕK÷?ý#Í¿ÕÁþÁë«Y§A;ŽqtÖÇÖî>޼1å}ü©’×Z½t;ãOsîêwqþbþ™qðÔº¸Öe2þo>Y¢>‡yi­ƒ‘C®óþæ½ìý•Ôj÷0JýœÍÓì½×ü¿côgÞÛ øù!ãþ¬%µÞ¬‡qÈ{p7.Ýû‚y£Œ7ßÝçÐç(ó5þU¿Cåzíü¾¿õþÑ =·gR+Ÿ0¯yÿ8åÁÛí©ç\Óžhý…±/ݳ­£iÞbçiÀ)ö¯z,pšƒž62~‘uy.AòYëèìg\ëv”ÑwljNí0ô1Jÿ%üxÕç‹÷Æï‹Ïêmjq³œÛÊ5Úo½Ç¿0~gšyÿþæ÷ú•è–y_h¼ÃO¤v <7~A?‡­-©5nîçXðð1y–sÑø•iîSæ÷LàˆñÁëNú·Î¬ò£ö‡vÖÑ~k—eëÀ !×zŸ­€ú7` ô÷æãí‚_˜g¯‡sO½[•{’þýÖñ³ŽÊùü¬D|ñ0üÈ|îYú·.Án~Ÿg½ÖY.ÊæøI&µî¯å£©µžn•ý«B÷ÆÃ';|ô·*"G«7ʇ#Ä+/’×Cÿ× çº~Sóì—u«Œ¶yL'Y¿~êG­'a\ñ<ú¿¢GÔ?Òº{£ÀßüOãÊ;úÁׯÏÖ«ÿ^ãX—Ó8óåó2ð†ï¿Wä÷ì§yÒµ×-c3ÞÆûÐAð #Ãz¼há|ëjIm'üpþb~ýçÍ{dœ¤÷/ý³JüÞøå#ó¼TÀSí¦î!‡Àó- 9o~o6ãÀô°¾Ð³nóœMÏ>‚÷³èQ¹—–¨;c^ óí<À:³È?eäë (Ç #7¨ÇíØ˜Zý4Ìß6ç½&š}œ£?±ñ ú "Gu‚·ê‡¬ƒí=Ä:ØûéwºÒf†~ÕkU½ /Òhܪup½—^D/pðÑÈ{æãìa~ûé>v˜¿÷²¿ÆËšW{ó üÞúâÆ‡ síOìǸZíUœóƒŒïýÕ¸Ì÷wxwBûX‡y§Ì“0ʺ*äcÞÒšZýƵwÿ¼9µбúíÇú›ÔÎ+æ? ¿3_á$÷ùiZåºCÌs˜}7ÎÇ|¼ìs‰ü Ê»æOtü Þ3Žuýà(ò®÷YïcØù´kªoµþ²u:{À/óWÀ[õSœ{ÖåOö°nõãê‹ø^»ù$~‡ýÚ§ÚXצÔSÆ?Ìûîá{S«¿ÇçЕr¯ñ™Ö³mgàú¥%ó)¬Ð㎰^ñØxgçg?žÃÛø^ýG™û`…sÁ¸ý¤«ÄX‡»ÛûëQެ6ž8_õKîŸú*÷ÓÖ;Êùb|cëZDžá<7^¦*<Á«Nädý;&Ð[s¾×£Ýpyjo&µ›™W—|ŒsT»F7𘮅«uï~Â÷UâŸ÷‚‡ùdG1µÆ}š?Ó:Õ]¬£H¾#ó˜˜b¸ùŒ~ªEö¿»%µÚ±Ç8—Ìëiüéaü!€‡YÞó>õƒÖÔš—<»õÒÏ Oñ»qøD¸,á·eÀ"ñ߯iê?åybÞó½èÇÖÝ”ZíYÆ‘Ì~ê÷&á›%ìÚæ·ý#Ⴜ¥¾DùŠykw0Žg/óò>ÕÍ8ڡƼOòžô; 2‘ñØþnû¦ÿ³ç°ö®‚~ÎÇSkýZ>Qî/ÚF6'óRÿæýðÝ À}CóÒ/[>h]Á"òÿnà1ÛšÚCÍŒ«=•uß`|·~ùsÚßÑ{.!vIú{w…uIàƒþüæ¥7NÅús‹øIýó'ÎCýºv™èÍüwæ½^ÆUýœ|t„ïKœïœ֜ߘڶ&æ ý„Ï8ß*ð•ö£´à…~ÔÊCµº–Ðýtm^¨ëÓßÎ8Ù!àf~+ý\º‘“ÍÏh½ë!š¯¾`¿ðÿýðõ é8üâÜmLmÍîb¼%ú×>ú•_ÿY+ðaüCÈYó2.z{óÐ{~™·d:µÎõÂÏXç±Ôþˆù•o3ïMw˜zCà{¹{ yñ¹vˆ þâUà2úYŸz@óšÿÐz?Ù&ÞgǘŸr‡ü§ûå0r’~Ã=טçäqà=Z×¼bƒ›X?ñ?æaôþhüö~ézÌê÷Æç»˜gµ%µŸ7¦Ö¸£ îMÖ}ŸqõËb?åý9è}ºèä\,ã¿džBý(­k1Éü>b>SŒSÁÞ;Äß’a^ð¡ ð2ï‰þ©]Àc{¾ûå½U{[?û\³°Nó‘T€ïÍÉçà÷»Áß*rlxh¼Žþ÷›XWÍ„{Æ8òNxê×cܳvVãú*¬_ó‰N 4NNý®ùïç¸OeÐÛäýýŒÓZ÷ÙüâÚ5]ÿY‡u纹§š?ÐxÏ+ëRš÷MÿàßVÖÓ æá®x›?Ç<ÿæ÷õ×îh½륎ÝuâûÚ£=蠟*Os¯*j¤ÿZ>îM©}¯%µŸóù x—ß oã*«ð#õäEÏwèË:æùË1OëvY/÷í¯úÙ•ÿíçi~<ã9 ÿ©B/æõ²®´ú]ãØ«ä“(qïÒŸ5Ïù¨¿Ýdkjµ“ ‡ƒ¬Ký„qe¬§ü²^þ‹æùy¿_‹È·‹ÈáÆaZ·%W=ñý"÷ëM1Þ(ïË?ôCÓ?ÊüLú›§×üÆeÙëÅOrîZ'{;_Aÿ~ø_ëZà¥>ÃüPæ-ÉA?Ư¿5µæ°ÞÊö㩯͓'^k×5OñÔ ïsN,@—Æ'l¾5ó~J?9øõåÕ;–ÑÇ••Ÿ #Ïë ÏÖ¦ÞÃõ*iŸjb½ü~¹¹àþ4¦¶“õ,3ï9îO…£Ì‡ø~ë-—1øm…û‘çç~ÏÃŒkþFóŸk_Ò.ØœŠà“ò`½Ÿrð ôÌ<õ£4åë­2Ïû¯̼´3ð­1ðmšñÔ3 Ç”ñK×?Fû«qFú%sžš÷ϼ:Ûé×8^ëNñ÷ö»Ì¸ÆUš‡ßå9·>a¾3ÀK¿òqðWýF»­ô¥}Lý–ñÆ=xïpÚOÕWÔêJÂ_̳=§ŸûÑÚœZõmeâÿ •ñ™Ï2òÅïSàñ ôRA¿#¾)oŽ Ï]õ‰Ò¿ýhg~{Sj¥7ëkÌ¢w1Ÿ”u„òÊáÈ­ãÌ÷VæÁ¹.žeÍd)ë‚ôs~t€g‹Ðg™ïû˜ÇŸ÷@/íàw½žúò~¬§$¾ 'øÓo1_ëë×Ò.¿¾`]¼QèO¿½Z}?Î{åè-ŒßƺÌwÑÅ9¤ß»ùÊòÀñmúÓOé`1µæéüÅ1Þ‡ÿÀ;ëó(¯‚ŸeäÁÏZR«]Çz:#üï/c—DÞ5ïoó_F¨Žvë¥L~Iï4†ÿÇ—ëôiŸ,²ŽŸ7¦V?ZïO‡ÙÏaä܃+©]²®:|y¼; ?.Ïý™¯nãŽÑ¿þcÆë²žIøÝøå|Åz“ØË2ðWóÞv4ó½ýáw½®ùö¬{®}V?Eý%¬ïhˆ è@¹[¹rŒqû×îú‡M©­Å³M­õfô?Ð/µH}ÔiðiJ!àW…þ“ßj»±ûjÞ㥲ð#õæÖeÔ­ýQƽðEíóê›Õ{PüÀ­1µ;yoŽ}›‚/'dþ2Ï ïÑÊÁ+ñ¹¸G4^ý1§ëùyò´ß[wx‰{—yûÕÛ¿i¾íH3È5âu} ÀÛû³uP~Ñ–ZíÝÊéC¼? ~îæ½~äŸ6øñóò^õ®ýs¾-°Ýì»ðV/¼ §oþ ðp†þkõŠèOyͼs‡¦Öú‡ÖùöÞɹ`ÝWýÿÌÇ4íçÜö¼š_Ìc1>n¾§Ì9Ô¼ÖÝÜüAÚY¼¯VÉûbÝ‹ížKàù(óšá«€òΩO1ž¨ƒÏWŽ3oW§òá ¿Û”Zýûé„ogf}åÁIþ>Bþ+ù@Mÿ ž•à'æù˜÷Ô_YOȸhã®GÑcéWe\Þ´r"rñ8úÉ>ðÈúÓÜˬŸ¼øS;Ëüõ;íþ“ðó+ÕêqLÓÏ,øm^ÍvøT =ý8÷2ý¦ôƒWŸ¤ÿy¯ïÑîhŽò%î%ðÞ|®æq0ViCjÕ7Y7o¿ç9rVó7ßD¶5µêѦ™¿òB úRšã¡x- ûí9ciýT¶p®NqÑï}:“Zå•qæckýºKà½y Ô§[/Ô{“v¾"ú÷€ÏçÎ"øXF~9Ä9"?°–þNýô_ŽîÏ,ó—Ž?a>îOæCñ~½£ 8i¢n˜ö õÞÖI7>mº5/‘~·ú_Îý`w,8®òˆõçjþÖð{ý„•‹;Ùz<µü½^Ïp^Öä¹ ©µ.´y+­ÛÝíù ^í÷<@ެ@¿½àï­õ'=§õË€ÏX§Õxkã±&YoùÀA:ŸOº¹1µcÚ½X×ôu„y.r®˜×ÆüiÓð‹<çÔr¾v¶2öö,ø4 ß0^l:ø#Ö—Èí‹<¹êyÇ8Ì‹øé±ÔÊ÷ÞiIm?xmÕÎ㩵þ†õƤKÎ[ã@õïæ÷æ!2À„~HÐ¥q°Öã¹õÄuüvkjKØ9Í'UÂôC~W&.ÐW2Ý ó¾þµýÌ¿¾¶ø‹˜‡rüÆ<÷9ìUü«?—>½o3?ýŽGño÷Þ­úúOí¼úa«ÇµŽ™|Æûšq Ö¶n`¿Ý‡Z=¢M©-Áôƒ™ÏÛ¯ùÉÿ¹·'q¹Xýšñ%ýì·qØþ=ÄzÌOñn#óÚÀßGS{¸ïl¢ðÊzIžGòqý9‹Äq˜Gؼ?9äõš?Šv_àh<Ð2óMbÔùäGðk«r¿1ßžöfó}ëwQÁoż%%òäS¡Ù–9â4sÌǼí-üúÛÆºfØ x¢~\;ƒ÷ã)ä—~7À:ŒwSŸhÝZÏ÷aÎéi}×ö£|~,µ“àÿ"vëeo¬=õÏ6¦vãíÜÀí:ð7ãÌ'3Oþ”|ÙüíôÍÖ=Ôogè(óXa~Œc½çQ“ß‘#´çO"ßç®ß¸ñ Ú‘ÌdÚ‰¬ò·ßxÞùëS›Cþ9ŒŸ±uc 诬Ûeþ6Î×¾bþ·]Í©µ.`ÍOÐxHÇg¿<å?Еñ æ7ý”õÔêCðy?­"ûm~ZýË†à æƒÍBGúÑåWRk|rÓyü>ô燩Ç5/ÿ~`æÞÆú?ȧc©µn€õÒõSùiKjµÏ™o'žÛ὎þ•×Í37ýISj=—ä÷ào¯Eà­Ÿ—yhs¬Ó|#­©5Oçోßk7SN5/z‘æ­¾ÒøÔ,üýÏW˜ú%óѨ'ÓÊüÑŸƒ¯æ3Ôy>/ÝäC ýžñ%}Í©5¾MÃIõ£à»vý"ô‡6ÞF8eÑÓ3Ü'­/¬ßˆú;õEsŒ¯ØúŽÊ™Æc´C/ÓÐÿür~Ìã,íòsZóÇŒeR+¾{ßR¿W&ôm©íå=óa×ì"S›gÿçZS» >4œ2ÝÖêðÒï{+¬¼nGÞ6?˸ñ*ħ©_Ÿ‚oí.³àúçyäeëÙíS^@¾œd_Ôkìc_Í[c óãÔâ?¼@_­¬×ü »¼_°>óÁÌqžLñ·ù˜ôûš…o*WÿáFþæ|±Žq‚Þôã_ÆžÕ{,µð»)èÛÚoôóÔ³iV^0>¤Ê÷¿Ì¤Vûq¹´D\që1în‰üuÚµ ØsÌ_lŸñÆ_+wXÁ8‹à0¢?©z8Ο të}RÿwõgSÀÓx ýžªä+ÒÏgpÕO  ¼ô?ƒþ8WÌÿŒ^ãûÀ!^Œ@·ò5õþGÐÃ(Gßm}ë}è'S^I­õo¨“\º-µæÑ+qžup>k'šÚZëoëߨ”õ³Îýf1èÚ8ªäFøE~:ë–˜ÏZ{—ò´þæGWÏ8ÿ?¥Öº ûùÝ4óŸ¬aÞé±/Åÿ‚÷Ís?Ìz6ó½÷ÒväóÓ&NGÿ'óBzÏÚÆ|Jø X×ɸ€EÎýnà)ŸšàþbÞó£˜Îxn믙WÚ{ÒaÎçä“öý,æÀÛ¬§ù@:É"ÿ›Wµ•ý±¾ê<ú1óƒë7²…sç |ÀüèÊ׿cQþKÀ§cï7æ9 ?+r?3¿œ~ÖéV_žÇΰD=)íîÛEòØ[Ùúsú›{¯Ï2ÿèhÎóŽqµÛOÁ™·v&íDú²¿[[Rk><ýp?dÜ%èn ó^tÿá½ì“ñꇹoXµŸ¨°Ÿ2ßð~i…õOÚ̯ßÎùú ýÏnþ"ãäŒYB?¥_ø<ô°h~ÖÕÏ:¤ç<üÚó6‹üf=2ýƒªø[{Ï4Í8íÖWÞæ'ɵ¤Ö/ë¶ü”uN0/ã´ôç³.vë°>Q;ë­"¿ßaÜÔxb],ã­e¼Ô0ëÛ@›ŸªïVnç\÷þý}à`\a\륪€ÎÚøùÜõKg~ú[Núïס½Ï8æßýy™·Ø¼OúCTÁkëÑwšaÕÌbšaÕŸ*¯x?ážhÄÎOÏë8š×Óú¿úc¾ÄçÆU,c—Ð~ßÜ*|/Ý—[«C·!µæ™‚î”oJÈMêßËŒk¾ž*ç‡ù¶\õxËðÅàå½»VÇz^b_¡ÿeø¾yKG¸—àWUƱ®ù(rQÍ|ÕžlžAóÜeá‹ÖY©?Ä8(ó,íaµû<òù~Ží|ßÅ|ö6³.æU%¾ë0û¢>׺/Ö“.‚× œOöS?6ë´Áß¶1¿>÷œ2ÿÀ4ëÖNc~Mý Ì×° ^σ—Æ Î@§%òD—ã½~€ß™×Tý®ù°´Ëòžy©Ì«©^Íú¾òyõûòŸdÐ;ë¨?Êd&µYå îëÖóžäï ýýñF朵«š·l„~‡ÕÇ"ÿÎqÞÍïr`%µú{”¸ï¶Á总÷fó׎Áç³-©}§‰õ’¿s{Yô ÜºH^¼"~…æ*hÇkà=æcAã•fàSóÜ·¶™7z-ýóÔïc~úÇòv†Ï—ù´×è×üï›OdüXjÕ?š·,Ãü´¯iÇÓ_.˼ö1óLM5¦¶‚¿E'xl\…y±¦Ø¿â~&Á·2óÕ/#‘K|®Ÿ*òú0üj yJÿ‹YýýõSÜÈü˜G-_;rù6:X‡~,äó˜wQý—ysàåaÆ)r>Wà{î‡÷è ð“?›Û¸6õ!+¬¸w2OÏuõ3æcÖ8ßVq~=ÜŒç*£?ÛA?ú™–°›šÿð#Öe>óü+Çéïþ¡ïSOÞ¼š­©Ý_É÷€Ü¤}V»X'rù0ô£>Ýú6›•Kð[Qï¢ÿä§-ÀÃø<ð<…w}áǬßúûÕOñsÖg;ëö¼åwƃåáÓ[à rüì†Ôz?_<šÚÃ)aiͯÐz`æËëÒÎ×ﲃ}5n¥õ8ýlLí0¿ÿˆþ”“jõ˜ ‹YøkßëïoÞðÍðcÏÙø¦y"¤3óqWÕ3ÓO‰:&EÖm½ÁCœOæÃQ~ïɤvžû²ö¯9Öµ“ïsøKÌ›9Î<"Æëªo-‡]|o=Þ ç§õ¶­+iÞÕ2q=ÇyuY¿w=²ù¿ú™ï`cj­ƒ9^º“óÏ|;Ú rì§þöúÿ=^L­ùtöï¡ à™~Eô(Æõäôc瀟ü÷3æmþ_ó×ÎÀßÔm>Ú©õ*“X?óMO1¿çó>ö½¼„žÍ—d¼~žóp.“ÚŠôž¶ÁÌûÂ:Ë9µìYIÝó€ŸW9/Ì3¦Üüƪ—GO2ƒ¬~Ї¼·5¦v’óW?ñ³‡~–8畟ÍKd^=ãô&ø½÷PùƒùÍÓ4* ¿Jÿæ¹Ìð=ý˜wG¿tílÊ‹eüõ­£¢¿{+ûÓÛ’ZýʆÀ‹îíæ…W\"žØº¥ Ô›SŸ:Ã9üÎÑÔÀCãx¬G¿ŸBwˆó¬•Ïõ œ'Oé/Ž/Zë'˜çźÅÞW¬ëå½vzÝ},µ[y¯¾X@yúÑ®×Ç~HÏÆ¿N¬?Öm~0ëY·Ì¼ Ö·þÔx#ýÀǽ¿šç×8…"÷¾)¾ï¯3ð{ýw ÀM?CóÓ{¯Cn˜‚>&ØEîÖGÆ‹w¤ÿ–çzoýˆæ3ó^?x­?Dt¡Ü©ýÀüæM2?Ùþ Køõ¶Km¾‰Ö¸ á„Üåý} üý´¼‹3Б~íևЎ·Lžã‰x_§N§òZacjõ÷]f½y謧…õ®¤Výõ¯>l£?æÑ ÜgOûXgt­þt‘ûi™zÃÚ'˜‡ù±ôÇQßUàž¤Ÿì(~±Ú!ÍS¥?ð–ÖÔj¯3_ØÜ&æÅ|—ð¡=rx¬}3ÿÖ¯Óz®à­üÛ¸{ïÝÚ‰­œØÐv åõ€âÿýÍ@ÇæYBïÿyë~øG¶qž-èÇZ>èÛfX‡÷oëqZç`|.r¯3ÿ¯ùåWä”ÃGRÛO?Öëõ~=Í~gŒ7åþi^õ,û%záf^ÁçÍ”à7ÖcÈ=yâ|”ÿ ÀEÿAý¸¼T•Ï2ðÖÂ{™ú1Ïíˆê{w‚ßÖ1,yï°žtÖ]»?êúÚ>¡?z7|Ë<æWž+@·æk×é=£È~ÕòB{>Ãgô£ž×øVÂïÖ¼ c~´Þ ÇS«þLj•·´m~HëqdáÿÝЛ~›ú7Õ­ü|§àêô?}·…y±?µ8îAYæýñÆÔWç½g+péD.ÔÃúÊEîIú¥™?Ôü¥ÖUú¬÷Ð㨿³Žãnåø¿qb¾W˧ ¾(Ÿéïk¾”%Σü_¥[ã¯6².ý çy_ùWÿÙòWìbÖ½1¾KIõ2ú{™WC=•ö“ÝìÓ§­ŒÃ>X«‚Þ¤LÞ,ïásì“~e9ú7ßè¤÷&æ;þ(‚ÇêôÓ7ŽúhëSŽñ·u|­'WùO˜÷iëç§’‡O¯Ô þ[ÿeûCðÝZL­ñ¤5½‚x™a>Ðs…8Ë ñ'Eî=Úér˜p5ovb_Øi­c/þü‚÷~Ô”Zód8ﵟÔòksOb_3Ÿç‚ù†:7²~Îç)èÑx!ãPç8g­ï¤\:ξ*{ïÝ|ñ‰ë6á”÷@æ›ÏŽ@·ÆIOïnÖ¹‡÷õÿ7_—þæ×´nE•z£À×|<ÃЇv„ r|•uëçܧ¾ŠófRû:rجú ð6M;ÆC~Z‚ïLðþî©5ŽËúÁ#àß=¼¯_ÞçÀs<£ý‹¦9­ºî#Û[RëýQÿiå÷ÛR;…=ÐzIê_'´.‰ö@Ïëi)·îãoób›¾È<´¯š÷v†sq”q&w­“¾…ý9x4µÖYÀÞRAÎØ ¾›·{&µèg9Äx¡Çù~ªŸã8x¥¾ÜºUžÏúsÏÉo9ÇzšX/ûm>1ë—ñë6d¹§Ýü”ñ:yÏøgó#i+Yð^ü0~Àºe?å½ èI¿ù`‘{Zþ`½Ëö–y?^æ+Ë3óøê•Ðó‹û׈vSô»5=¶øÌ~Xoæ—¬Ïz—î{x;¿°NÞgÇSÛ>nc>æ§3n`+ãUçölJ­yrôþùàÅzôŸ3ïŽþÊúªÇOŒk-#çÁ—˰®©µþ‚ñDÊ¿ð}í”3+À‡¿õ?©’ÙјÚ!è@=Ð8û¹…yŒa·9µòÕ1ô^)-ð?¶~ΧŸ4ñ7ò‰~ùêçõ÷Q~΀—‰þ¬£f¼ˆ~gÆO[wTºÓÞ:¾˜h¿ÛIú7þN¿û7¯±z<ý0{‘ûô¿Ð.c^á¿sâzúéýò2ršú¤>èJ¿÷1ìL…cÀ y© þ¡¾:×^Û˹0^‘—:™·þÔÆãMò¹ò‹ùõ—Ñιõ—w ¾£½+{”~5xx 7™'Pÿî*xh¾õ¨æ5U€üÞ>*‡Ã>~eõ1Ìc½Ñ"þßú¹äõnZRk}Ïá ãROõsö–?Æxì·ö$íæ{€g;ýÇ1 )qoZÔF¼h“<ö¬IZãRÌ£i˜þÜÆí`þæ;+ÃվǼKÜwx¿¨ÏÜ~z4µæU«_¼·‰u#?ß\?Ø”Zõ‡ô“ ó’Íc?A_XQ?Ĺ L¿ÉvøkÕ{|Çüæî;YŸñêÖ5ã0ç•~ 9ðÅ<Æ9Î}ëã˜çvÆ{ ë³]ø•Cžž‡/gô#Ý5Ÿ q¬SÈ£úyg¹vÀȮ­¡úXã¿ÌkÛGký‘Sºö~¿¸ŒÂO¼ª×Øä:‘›´³-ÒŸûS&Þÿsé‡ýÑ&‡}ݼÀÆ·›/2‡\l¾ã^ôc;ÀùZËgüØ_—nû ÿ2ö õË ü_Ä_c\×ôd>‘~ðB?§=m¼‡A;«ñØÖÿ3_Ü<ñ[濳~†q æÁ•e §t¸(ÜX¿þsÆ)Z§¶ ^øöRë Y—gúŸâënGà;µüuГqpò‹½¬Ó<»Æ/Ó¯qAÊCSìG}uô—.à—¤?Ÿy„gic^ð[ëç p¯®Õ³_æ‰oÌ z÷,ãY×Ã:îÞ/ôw×=ŸTÖüîõïúùQæ­ý€øjóËÿÌ“§¿äó+ƒæqøüxj—á+9Îkõ]ïgRk\¢y8­s©¾|þŒscÆo[J?èàÙÆïå§êï–­›§ß÷™,¿ÓŽ®¿¨÷bíY»Zé|XäÞk×¶£Ì þ£ÞJ?uýk'Ô^à}âﮤ6ÜÌw—c¼¬ßÓOÆø ðÍüXýÈÞ³ô›4nU{ãˆÌ¹™ù«/4oMòc;ð‘_gù{‚ùþhcj瑇Jœ³Ö¡öœÕuü4OE yQ½ùƒrСù/vð{ë—¨þÚ¼ˆãÌ» >%vóç^¬_i›zgæëylÊQèIyZÿó[sî˜ï´„¿h9r»¢y Àóǃú§|Èïf½Ï³õo³Àeùbùæ篾éoПqòú•égh×öC{À°÷:àUäÞt>ªý®°‰ùs ßZ>à&¾éŸØ œú&NG¿øÝê)8ïzVRk]6ó­Æï¼AòùYú1>Ñxõæús˜b7Ÿë§¡ÿñnày>kÜÙ<û¯”÷½)Λîs»Xw…Ïå#lLíþBƒô›á,dèº]&tù(ý)wg½ÀIýQ;z•¶ùl7¿ocü‰VúaŸ¬;ªŸ„u»µ«O¯^æggóu7ж¥V?fëÿl\™qsꓼ¯Ì4òýXwE¿µâ ¬û³Oz…NŠè¡çñÓï¡8ÿ³ÌS?õì›Áû<ðܸ’Zõ’â§ùMÕGšyºÓ/4Ë9݃üd½¯Î ©õµz´Œzª"ë‚^È;d}"pPŸ Ÿ_­^óѧ¾Ø¼Úêåkõ ;årùƒùøŒSÐN/ýOå½Â8ëÖç}¨Œ=§L?õÑÚuÝÇÁ£©µžG÷JjÊúöó»òœõ3­{¬^¤ hïm¥_óèèDz‰ùYÇÑzŒúgße¾ð·Þ…y™—Á³Bcjóàö0ý%Í+p9{;ã†oŒÇnÆ1ÿÏ4|hº+ãÿ<­V{ú˜úŸOÇñ¿ÈÓZ?²S½ºvú7ß»u†ÊÈ…êôËã}óºwdR«¾Û:{hÍ?Q‹?á<°¾È¿Ó?ß<Ç8±ó°è?jÞôç®yý«ødß'Œ]Ií÷éϸívÖãò/´“Í2ãyôçÍí±ê¥»ÙG㺬ªýã ë(€—ý’‹ö¿ðdþ’¶#~Ÿ…þ­Ë¬Ÿ›õ×õWe¿­Ça}rù’ù/ÍkÖÍùª_•~ÌÖ—Sß5ËüÌ/SÓÃ)×Á¯Œ;6ÿ¿r†v¾Eì7æ#.¨×瞺·ŽøÇ´cè[ö2ãajqÇé|Òn­~T?eóéϤ_‚þ£ýœÿ›ø[¿´}_Ô 7ï…ñ—ÝàÇöíjEðÔ:Uâßk÷ ð-×–Z餖>d|›ùeÍ77Á8âµç›p*£mM­yR­_QA/}P}5þú ߘåûQþ>ÈzÍ—ÞÎxóø­F/«=AüÒO@¿ßèsþSV?„\<­½˜úQülJày”{´ZØ8xïgòý͇RFÏ8"¿æ|cúß”° éç¶ï3àYå(pcý%êW.ñžþ]óÜß[ÆÞßÊüÌËm=kóÒ›?ª ôw±ŽníÏ–Y׿åû¬_|žàÜ>ÿSϸ«-µÞ?'¸g-3ïûÖ‡ïyny>î‚¿*š º±~zIëjŠ_Ú3æ©“V‚÷Âo¼Gs~™³ä½;“ÚÝMŒË¼”?ÕÛL>âïjy 9¯»åg¸Ž"ûi½TãÞ´c,p¯ýÖÔ.qÏŸÇoV=‰ðÊl`ä€ ~ß|À/óàœäcyÆ7_¡÷ýYGàŸãØh+àƒv:ïkÖÇS¯ø)ó;‚ª–ŒsE?µCêäû¼·ƒuleëYZ/·‚=s ¹+Cÿ‡±·„¨'Ê"ßlcÜ*üÓüà¯ßü¤Æw%uJ|Þ˜Zï_#ð‘Y¾ŸiKíç‡÷mý³Í{0†€|ÈúËSò1ðe‚¿ËÔãô^©Ó"pjm¥_ä½=ìÓ Î =ĤþcèiFÔ·óŽ©wØÀ¼9»¿õwÓÈøº |EýTýC?úk‡£ýr†û‚y&;ZRÛ^ñÜP®aýæC¬Ååb+¨çVߦåwSœsÓðõ>æK4Ð$r–ñWS¬ËzçÆŸ€ƒñm´#Èeúuª8\ô÷V~ÌB“øÃ_¶ˆ=J½Þ(xlÝÞ-ÀÅsS~¥ü®^h’ûÃ7¥ÖúÇgÊÇSk}ä9ÏIø†ùö²ßÚû;ØGóNuøÐÝÊ÷È…ÆwÖônÈÓx¯|§¶K‰ßéÏY&ŽÄ8ýõÄsýõ?a^#À­Ç L"¯k‡ÐΧþÃúÐ9dzÀÉüÖ¯ÔS6Î>3µ1µoò½q üÀ—¨;®| ÿ‡~ýÖ§3¯Q—ðfÿ­o¦¿ˆzõúÆ›!?okœ¦y K4žÙ|íËØ¡Ì'¦©Ç±>µñÔú©é§iܪö†_ò;ãRõÃ\IítcjÕWÇ¡ž¾?ÂüðÞ òö]óÅ; ¿êϤVy«ÿXj«è“¬û6‹}®@?øˆ~æ}ËÂ?&ô—A>œ/_PŽÞÏø]¬Ëú¾æ2’ù³v¶¤öàó'®_¿ íÂÞ+Ç‘c;€Ã/y_½Æ$ïW‰ûŸƒ~7ƒ?úqqþw²ïÖÉ;_ßüÚ•·x/Ç}ĺÖ{ÞÏ|>ZI­ñwâ—ùö‚_‡Àký¸gà Ãô“gÿû˜‡~W Óø{™üƒÞg;•“›~¯ú šA¿?ý;óÀûÐ1Ö×–ÚnàjùüŽfþöžÎ{ú—ký›·ð;ëz×2y'­ëÚʺÍ_ìý¸ Lò¹q“sпzAã:;ø\zõ<±þþAúÍõq>ôÃ7&yßsä`Kjg¸·7âýÓ¸…Cð¥iødýzŽ‘ÇÛ诖O>5м2_AÚÃúÆéß¼eòõeæ­Þ¼|1O¡y+ô‡˜‚$tÿÂOA»õ4ð)ro-ß1Î~ä¡›vïYÚ=9W¬ñýÿÝVÞ‡ÏXië1ú‡~ŠÀáˆ~ìèÃÌ7kœ\ôÑÎþÿeÆ)’gxü×Ï$Ã{û6²^øcÍO‹ý“oôC^EêxO/Ã/fÙ‡üÌ3V„̳Þ¿Ìû8ÎûÞ7úùôSÂ߯ü}Ö ÍÃÏ~˜ažìëì9ö­Ÿyt2žúÉðÍøíeæ1Õÿd þ7¿šBOfý§ü”›¬_lüØÈ—èS?eý¼öB÷{Á— 𳞕þ25?8Ïç&úçþa¼®y¨Í/—oäýÖÔªå^®Ýxb| õE·3?óÒN0Ï­Ê-ô·›ßiµÞÀx¤ÞN=÷öC½¦yy·ÉÙãßµ³è'S@ï=K¿øZýèŸjü¢q²æ+ÎBǵ|ÜÅÔja}æÕ2¯Ð\3Ÿs> ÑÏ2xæýCû£÷Cë#¦éž°þ ãþq†þާV?iýܼÇé7h>Ø>ïûÐÏë5O‰qgÞ¯*Ì7 ~˜GÕ|Aï°^ód†/ út°¾#À½³)µÌ߸ú)ô »ÓÂ[rÚSŽ~w¸ läwÌS½‚uà ó0×bÜú(÷ŃÌ_{ãéïgü®q7òkã÷õ2O°~ïæüóT_j~|ãô­×b=ùWYŸõG»Ø_ý\·dR["ŸÈAà4ÿ3ïç}/ô1^˜?eósÿ‹M©µ[•û_÷ñÔ?`^)õæÕ-ƒWcÊc¬{ŒsV;€uFà+#Ìç³ÆÔjß›eU>ï¦õ™ÚoÍ¿¨ß¼úãtÕÃワi~û"y{KÚ'áÛ‹ô7¦‹ñ P?©ßàç|‘¼ “àÃ<üßü·êu­Û։ܿ½DÿëÒç´‡«„®õ÷5Ï‘úcÏMíƒSà/óùŒÏ­£¨¿í0ŸË‡ë÷žc| õ ßæw;Áý(­gYaݵ8b襂¿Qú íúàC:1ÞÇ|Âúþ€ùÖüCަ6A}~}I‘:¬×|RÆÉ)±¯ê'ÌŸb=oë‘×êI³Îæe\A†v’u©ÇB‡i?g=æûMágöµ” QÕò9Ï6èÛx£Þæ=å“>øð‡ô{@þˆƒuÓ¬›û ïÍ¢?-¡·3”y²þÑ•ÔJê•;Xw }Šþ2ËØ àï±þ)Îß%ôÌsœ7Ê3ƒÌSý§öý‹Âõ/ý 80¿ðóàWŸR?3ùÅ~ÌíÐQ7ëÞD¿øSë0Ÿ3NÐ<Æê_гY¦ÊýÔ|GUÇå\QnMlý ýƒ÷¿<|L?ë)X‡xóqàßn.}È×Þ{Ô§[7Zû¸uçõ+µ>b‘ý0¿½~Gú£ ð‡"yˆŒcµîãçʉÀ·~-µ.ü^ø¥öAëÏÌ1?óšçR?ï‰=œïsÈsóàûß^Ií²zQúæwEÎ]íúw”¸ß©oÍc×Íi:–Ú~Þ7Ÿ®yê€×ûÜJ?ÚcÆïÓ~Áæï¾Ú#>~£îü´ƒñÌ3*ÝjåÜiÛD¿ÈËÚy´·gù½÷¤yö[îŸ<¯ÿ„ß[‡Ôx1ïÖ¹Zà½ôküY‰{¥yb¬Û`Þ›~ÚÆ—[§pˆþŒc4/ýáæÃï‘‹Ìk«½~z×AyÜ<£æe1?TñµÔö¨O¡ërÑï›/M½µù æÀÿNð};X¾—oæ½bjÕ›Z?Ùü Eæ«Òûêþçg†sA}®ùªl`ÞÇY·z€ÉÇuæ¯R.5~iü›€Ïé¼È=qB=?ë.³_[áëEð¶Ä¸ÖkzŸõvB‡Ytj}ö>úçœv?rümœ°r÷vƒ)ôÃꉔÊœ—Sð¥åç‡yäÕs g2^{€V¹¾¤õä1ÖÍ<öa࡟¥vBã½2ÌÃü7Æ5›§ºD×!Ö3‰dß_IíûiþØïó¹÷Zã×*èÌÓù§¬Ëzæ{5öüK?©¢z5Þ?À{ÊemàyÄ ï¡3èú”/ˆ»ÑÏO;¦qµ<ìôï½O?èðOû©þ[yðÍ:þ=Êyk=CõžæƒdŸÌ“Qæ÷9øÙ6à¥\l^Xï1ê7gÕwjÿ¡5϶q¼Eú7>U~¥ßYžùéç`áb<ÖòøvÆB1µÓœ×UðÜ7§v?ùCŽïþýᡨÃûë ëÆ.ÝÎßµú.êó¹O-b/µ.¼þÑóø¡þã˜çP½€~1ðRÿ1ó š§®–ß=Ž÷{åë<㛳V‡Šñ­§l~:í}£ÜCô3Ža„ó.‰q_腴ÙOÛ|D3ü®Ìüf8¿Œ³ÞðísÞSo¶Œ=¢D^gí¹%ΫYýQ‘Ÿ>u\äˆÌ_{»ñšyÎù_{i~Ö ~ns_À£ ä å„*òë0r’úÐã¿ï ø¿ˆ\0 w±NëUš‡Âü%#ÐÃú0륵ezªBãüþóùë-©-Ï|ô#1þ&\m`ëm*ÇXf–þ¬ ×ùeù‹|7æAÝÞÜ ‹~èwxNsNj¯ZDϾ@¾ë*9žò¨~ÚUâ‡ÇÀëèú'ú}éoýsóê§hž«Š|¾ÐÎþ‹Gÿ4ýUÙ‡O˜·÷’.ÎÿíœKÖm缜åwøþìcÈÒ©ñÙæGa|ã´‡ »>×^Ð~4µµ<Åàóöþf¾£EÖ_“Ï™gq ? ýE¦WR«]Lý[-Ÿ4óÙÍüÍ·¤¿ÁöÍ<­Ê_ÚyÌ3iõs#ðKýDƱ—˜¥ŸsÚ8Û)èsY;t¡]Tÿ<øh{ïßÚÛ­¯4²)µï³åÌ#ÈÅSà‰uŬƒ]Â?Â;óñΤV½Óx¥]Ü:?úÙÍ0¯/ç)ù!pX$¿õ¤qeð ýR÷ò;ó¿[o þÄ|÷ëO²ÿúÓtAçú±ši8½Ç8ЫyiÌo²ødO»ù\ûo ýܤ÷ÎCë+(?×îãЕú_ãºàæ‰ÌsÞé°p<µæÙP¿¡¿qŸ—¹¯¼ú9p,µÞo¶1/ëñZ\}\;ëÜÆï‹Ì§VG>£ž±þéïí½¨òRÛ ¾Éï<‚x[kj“qÞ-²æ­¾Mû²yÿ Êaè'¬ë®Þ̼ɳà¯t\¿Õçï.ús–á=à`<ùÉÔÇü󵞇ñ¶Óœæóž>]tÀïv)·ðý²þq´ƒÜÓÍo?Â9o¾÷ ÷sãX­Kæ:´‹ÎÂ7ËÐ[óV'°¾Ð0ç—õmŒ'3/ý(ï-·¤6‰g±ž©ÕzŒ¶À|FÐL#Gš÷óçünx sWà/ýÞã9oÇ6ñ>|ÖóßzlýÈm‡“Ã{Ëò€y­Í‹6…ü4È:ÌÛTͤÖz9ÖíVÏh||‘üÅ è…~ªÐŸùß?Æ{Àa™óÔÝlãû1æ×ÆçÖáÓÏMþ£½Ðº/SôûûôkýÄ}Àa€ß™gOÿÇ>Ö]«†\? ÿ¤¸ÀŸ¼,Q/ù/Rë–üÈü¦Ö—×>gþçZ~îY;SÛɼÛßúSoó{óu0oý¬<&8'åòÛeèW}¡þþíÍ©ç^R¤D~ûœqÍm½yÎgã]å»3ÐÃ"ð5/´û$ÓØ{N>ß%ŸðÜÊSì¿ùÎ!§¹_ú#˜Çqº.À§“97æ ]æÔ³OÆãvÂgW9¤À<Íçû>ë®Ùa8wÌk2ŠþS°ú· uéŒ7-§1æ§~Ã|ÆŸ6Æ›:\8WͲ“÷¥Ûvùºõéjuc™w{y ¬×¨\=Ã}ÜzÄæRž¯ÕùæwÆÂ­Sø»+©ƒÞf9£×¯dºèhMí"~æÛXŸq 9¾Wîü™ë?–Zó"yþi×dÿ´»Z£/ø¼¯Ýß: æ|ðÓêa_3žæu[°¾z…YÖw„ÏÇÓÇàÏæšbÖ§ÿÃ8/õ ÚËP^D^Z¦õ6â›ù ô‡ë†ï™×¿ïß:q¾5ÿTå?ôjêßÍ[@>°~ozÔh 8ÎrN¿·)µúÿdxÁ¿ä'ÓÜKXoùI:1oðò³ç­qÐcœçê›õ«0£çÆ8rœuI­»4Ƹoò~…÷ôË\Æo¼ŒþÏsD;ïVúéÏü1ý,x¾¹¿àµô׫^üYo63n'ZS»—÷ŒÏÕÏÐx‹QäŠOŽ3öm¦…u·ƒŒ³@¾± ÷î"qÙúãY?R¹~™sÊøá,û©¿×ëöÃ<Û¡ß2÷ZñY¹D}è~>/þ„õ°_æ}…^ôŸÓ¿¾æ§~ˆ§àM:Ö£_òåÀõèÞßF6Ђg“{Oü¼8›X=y ÜyìE‹œƒyó_À—ªœ¯}ÈÆëôpšgr¼Tž)£ÇꇾŒôœç\ÕŸÐ<䟧Æ/ÐNrŸµN•þožÿýæ‡yãFÙó¥¨oÉãWi>ÇZ|÷$óL|Ô’ÚŒz òᘷd~0èt†ýÌào"~N£§Ò¡¦·[™/ôoÞ}ó¹l^lë³å˜ŸzCí<Æ]h°~L'x¼ˆ rŒö·Z}tô6CÇR+¿ÕŸÅ|¦ÆµíÏÍ{iÝÑ#äq©BÑqý—Ù÷Z]Zø°õ‡ß.Æ£w³NíÖQœß¼·ñØ'ë‘Y?w’ûWù–ç1éyÜ¡^^=„vqý õƒÈÑŸy‹g ‹1ähëv¶¤¶V÷½Ñî£|Ï~µ§_ð;‹|Ufÿ¬ßa^?ã#Úà“à…õª–W½Ç!øªu­ëmþhí#ú'ª·Ð;€Ü¢_]<±n«òù¬óÐ_„÷̃>É=Û¸À<ôÓ¹’Úªò çå¸ñ‹àóò»òk–Ö8þ#ø¿ëï5 |v‚WæS0.£ |ö^§žQîöÁztƒÀÉøhëCª_5èëü^ûBýtÂ×–€Ã¼vêmá~gþuý=~Ñ”Ú]ôoÞñEúk‡ÿšßvÔ|;|n}Ië“ç°Ÿj×êfÿÌßàûooLm†sö ðTŸ7*?Cnómô?Õ¯O?hôÃÐw™ÏµcX×N~¢½J¿;ã­c]M‚ÏÆ·w¤ÙŸfRk÷Sûw-|CjµSL1ŽþÁÒþ[9ø“özëhZùð|¯‰~޳.èÂ{tûÏØ±ÔН{ù~8ñËFà²)µí¬;Ãù=žÎ@Oeî æ*@?G¼Ïý¹—9/ÄëeòOOó¡é§¦Ôù˜oÞºH‡¡{ãì¬Óqü›Äîg½jëS˜§b”ó½S¾Ëïç ›?bþækQ?¿8™·Ö:æê*ÌCþ¯’~æ­1ÁÇÅÔŽ±ŽÃœ#ìÿë4?rº¿jyþô‡Ö¾½«§ÒÏs¢Ä~d€»ñ€ŸlL­z£‚y?À[ëÕ›/ÆzÕðÅ^Æ5é_%æ?¼ôoÜÍ{òYÏ¥îFþ†+žcÜï+Upè(-p.^•Zã’ÜgõWÚ;‘³ç©Ë&ýþ¬%µêmµCë¿Ö{<µ‹EúnõÇ´>{RO~—:à½Dùþk<ìúÃIƛ澯=g™8äzZY/û¤Ü§_ÙÆ©µnœyä¬K¨ü£=ßz%äOýìKìk¼µ®õ¾”ÍïÑÇ:+Œ¯ÝY½Ò2þÍæ±[úûÀ |˜fßóì_?ôuºUÜÉû¿lf~¼W‹óÀÅxÑM™Ô¦cë‹|Mօϰ>ïaúëZ¯lœß™O¿Â¾'kþýZ>tà´< \˜wˉp±Î°qT9ä룺/ì_ùÎ|yžòcã3ä¿ÛÁý\”¿63^–ï=?<ÁÃqðr€ùŒsÿ1œy‹Œ¯ôži= ùÒüïÒ²ÿú¹Yu’õüuæa}ƒAæ»ôoð7üèçÇRÛ‹¼iÝMý;à«ê¥ª-©5_ˆçËü[—ØÏã˜OÒü†Æ7Éç´/C'Kú @ÿUèuIû5p1¿¥uõ¬ë>§ þ¸…ùþ!ð0>A?˜ v—÷˜×²z Ö¥~ÛºvSøÛ朚C>o仿·7†ßS;†ÝÙ|ËÅ/µÖc*`GQ]d½Ö›RŽµÎ›ñsàÝü»BŠ*úýÆÁ»Ú¸êb~í\ÆÝx/2Ý»ÇR; ~1´‰¿[S»÷hjõ#< >¿i]˜ð€ÿÍ"ß™×C½ uëÔK©—UȤV?NóÜLò½çßüR½ßvø•þqSÞ'™Ï(|*‘eÐQsjÍw³¯%µ]ô·…õë/ÐÃ|ŒßŸ@îÓžry²H½«rÌ û4A³È'ÖOô¼]¦>‡u«*¬Ç:ÂÛ˜ßßXaýÈ×Å,ëï{à·ÊsÖŸsܧÕgå8oñ¼›ŸÍ/°„ |Ð?d¯u=Ì[¼½-µ[i÷ó¹qkÖÁ3_Ø4÷»\‘y¯ǡ£·7Ñ/¿Ù˜Zó+˜ßÑx›9~7Ï~ma[[SÛÅï¬'T¿`žzwÓì—u¾§°ÿšT»Îž ôÿ1/™ùÈ„_Ey:ÖI¹I;úΕÔZ¿×ú{Ò½x4?ù Öcý0÷uŒ~Ìwe¾’AÖmë°h?^„NÈ70‡üPÖîÚœZó™¼MÿæÐ¯„Ý^û¬u¢:xßøŽ*û¸@¼KõbÒƒ~åy¸·Yä†1ùp&µ­ð ãK¤‹ÉM©Íÿvcãð½›×-Ç{9ïÔá‚oxÏ:Ì<¯fÌ3¹w|‘ÿúMü Þ GýQµÌ~ÍÒNpΚïÛ:3ÌG{üãVæ¯ýÔ¸dóØê/£ÞêÇXzë° OïUêÇŒs3_£[_JûöAðÊúOeîW»ù^¿ëõ¨?Ó>o¾®%øÄ$ò‰qý½à›ç•ù²ÜKÌl\ä®VúC_öñ¦Ôê¯â}â t0‹üh^ýœ­dþõKI=ÿE]Àà—g\ýߤ»9èÄx+ãQ3àÕú9ë )ÿNWí ÖO4®. ß+r/4Þj}å2ù»Ú‘S&¡'õnæ›Wo·¥1µÓðÕ~Öe=‘qõxð•1øÎà)ßè†_LÂÿ´mõ~ˆ?á{ôk] õ'£®<7¾ÔúícÌÓ8Gëi©ÏTþ.cWš‚OhÇ-7§v›|ß™—È|¹Ú]FÀ«,Ÿk÷6_Ö´ü øè/×ÿ¬>‘Ú~àdœG¾^ཚÞ׸$ÎãDÔ§}Ì<ÔMñýôY&¿þBÆsÊJÀ¿‡ïÍG©¿„yã=ϳÈ[ýE¸7ýˆuZ/o¦™yA?ätÏ¿š¼ ü¬Çf}ã×Í·j\‚vfó4ü͆Ôê×ÝÃú&¡Só“Mr/3?ç xØŽi^Šýàe'ó3žÍ|½èÉ:CÖÍîÏç8?̓`><ó³ê÷UV^ÄnõSæ­Þt`§ø›qÆgl¾éÄùè¦\»øNjÍï6ÞgÁ7ë:—¹¿jÇ3OµqcžƒµºÐü½Œ½tŒùfáSæu.‚¿æßÒ¯Iý¯þÚ »»¬·^º-µæŸã¼ÒûÑJj«%µ³¬_½¶qþðõÚôW/äýFÿ&ýöÕwö@_à«xk½>×W‹[Ýàëæ±™‡.’z닺ÆêC M©µþÉ6øJŽù˜Í{‹y©ŒSû+ô«¥yÔ?)wíÎú?ÊÏö5§ö“ÆÔÿ¤?„ö÷,újë?heèMô7±þ¬~?Õç0Žö5í‚ú›ge\»`&µæ!5ÞÓ< mþÝÂxÀ{†óÙú3­¼ß\­¯Væ~,ý«5ï»õ8§v/cþÓÀG9]½ÙçVy<Êïy_ûZú4^k8Î}ÞgàÓúÅçáO›Ûx=ÆäõºeÚ}Ì{‚ù™Gg ¤~úɱoúÙè7—mMíaòÅå6¦6ߟcÿôƒÍBÊ)æû˜ÇÏf¹cüû„ñ‹Ô ™Ï­S<¿´Ÿ|/Ã<¬S­Æü`îë2ç¯u$æá݃'Âg/ó´>ã'¬»¸éÿõ{|>Æüzá_ôÎõÇÆ$÷/àå=p˜slžsÄzÇʡ泯‚Wú…©G1ŸA‘ø•w§¤\À<Ì3<ˆ1Æþym£ÿëQ/d^í:µúÈú‡—g}ä.äß)öÛ:Á‡€£qm»8Ïú¡ÛöÎ<ýšÌsÇzûÁcådó‘WÁ+ãÌkU¥ŽšyJF‘k¬ƒPA.ª²¯æÏSî^ÄÿËûÙ0p4ßP–}¯Å÷€7ꆠ÷ÞVà³¼Þd>¿AÿÀ©ï«Úq›S;É÷Ú9Ç벜'Uü‡K}´ŒkýÎÑ£©5Ïp‰ù‰OÝ™Ôj/)ál~ë¹,ܘÚ%à Ó:B•†Ôj/ÍjÏkWSÚÃú2ÐA®‰yG£Ìëà†ÔZ7²~ªwÛ¼1µÖïÙC?›yoýšnæwÙáºÈ ©?¾ueŒo2?mÞøcðPùɸ.õ–‹ðí;£úç¡?2žeŠñwCÿû™¿þõÖ 1ϾyúÁçŒv)äFÏ©äpó`•<_Wèú°Ž£~dú)èwRdÐK˜oë6ÿpNýhódÝ;À· öÓ:³ÀUûŒ~j=ÇR«}Á<Æñ)7©ÿÑÀú/æcÖ©„}Q»¤yOk­Õ×nÿf+ðhKíqàãÌküYº7µ8?FàêEF2©- ÷zŸ6¶ùÙÔãÑ¿uÅJà¡ùJºÙλ*znéͺÐ9îÞc¬›¬¾Ëz;ÖóžFïó#ÞŸOº?†™—vü*ð4Ÿý¬KýN†˜ovÛ‰óÊq>™¿` %µú{û¾y ;ßlMm¿zú?¬óS&ßÖöIÏ¿œçë7f­>ó3žcü¯Œ*#׎Jÿ ©á|óž¿•~;ß4÷›wX×ìñÔÎs.´“ÏËð[õq{h‹ÈKú{Š7æeÖÒ|I%ðÆüö;<'‘?Çáಇõà3ã¼WAÎZ„xÿ7/äü|8¸ƒúx¿¢¿ |µÌyï}mù´—ñ'‘{~Á8{™_‘¼Q½à‘rýü2ýƒÚQËÈ#¿šG ~T„ÿ·ÒîʤVCómÊŸÕƒj°î„vTõú1Ρ'8Œ¿¸ùÔ×è··ÜjõbÀÇý›R«_§ùöÊøß·7ýYo³–?œó¨_Ï oK/‘OÍoXËó Þ™§sP9Œõ«ÏU>UŸ=Çïôs¯ùOÓ¯ùŸ­«Ñ^t¼ðžÔþ|šI­õÏÍmܘöóŸçx¯“ýÔ_y;pîø—OìG9×|§úeŠßú[¯¦Ì#2ÿÐ÷[Sk=ë/Ï¢½Xÿ-ó7–‰Ãô~¦~SûÓç—ùñ•+ÕÓõ±ïÖ_)ag•O›ÈüjæÿOÝ<˜ßø¾Œ}^;Up›@î𾯞^ý—þüÚ1„çGÇYð2o›õT¾Ï¸CðYíÓ¼7 ¼Ì{>ä=ý«|myX¿ª"öãSöo ?à¼I­uó¬;3O³zÜ·¦v/ó‘Þ­ k]±=ünzšæÿ6p2ïôŸ°ÞÏø½rÂAÏŸ†Ôê/§\çZ ý©~¥Ûù}Qøó6Gc~<õ=µ¸)Ïiü–ÌKhܸuýÜ7ýĬ£Ùß°>¢q}yðgŸK­zƒ2ë­åM§?ãPÍsbÞÐô`Ÿó;óÍ9ßÕîl|µv óÑ‹¨O2Ínæ÷A¿g½Û2©ý1í"qžcà™v)õÚCô·û°‰y1žzsï7ž3Ÿ3¿® Œüb~gý(Œó‘¯ Â_³æ+ð>º)µÀOþ²ß¶Ž–yÜ7ï?ñ‰~Œ»š'áKÊáÖÍ[ä\þëꓯ¢§Ÿ‰|Y»¯qÚ¹Þç=óÿ,²?ŸsžìbÞ‡FácêY—|¹Ö¼ÑƒÌCyY»ë(ýy¿Fù\}ó2/÷¶Qìò Æ1?­~ eø‚~å]¬£_4ÝVè÷(ó¦-pËßgW}Az0Žv’ñkyLà¯Ö§kg Пú˜>ðóí~à’CNïå¼,‘_*˹ï½Åü0Yø–úýzýšÔ7dsMß<´Sgžè gÐ;Tô÷åžbÝ6ãÿvÒßðFúƒþ¬‡w_™õ[õ»Õ.ª¾t ¾íýƸçtílhyq¬'£ß±ç¨u³çñŸ2nV¿¯Ý­©5>j8”Yg~n~ó­Rk íÃmüc½3ð•ü`z0ïHñÌëÙ@>+q.læwµzô|nܰyÒ»¿=M¤VOl~l¾íÔú X'u¹´BÜÌ4zÊñM '{Þ'«¿µ†§ã¹ýªï}ÝqNÕïO×S¯óúò³^æùUŸ3m=ß•çì¾}µçÛÂéL‘o¾íó«ä¾µ^Ç©’?Öz]>_Wnøu¿?YrH½Àçt?'ûþY/ÏzÅûz{Ö뼿ü|Ó{ÅZ­½ÃýTé¿Öz_êí9Sàp¦¬ãW='KÏxªåÃ3}N׳Öp\ëñ¿îóméc½­w½<õ×z™Ç—Ÿzµœê§^æyªÎÑzדÕ[?gŸµ}N—žììS_ÏzÙ¯S=Ïõ‡¯ûÔÝ~W埳óýfÏ·½Ïj}ÉZùg.½K½àO½ÍçT=gªß_½è/¿êxgõ›_ïYopZ+þYïôvªú©×~× _ú¶ÏéÂǵ>¿N·žîì9QÏéÆãzÕ#Ÿìþ¿nõÂ×Ovg}¯µ|ò«Æ[ë{íz·óœ¬g­ñàt?k=þ™ò¬5Ÿþ¦ïŸ,ÿþµšïÉžG½=õ~o®7x¯õ9z²ú;Yô´Þàñ]{ÖÊÞóMÇ[oýŸéO½À¯^æQ/O½Àc­ä¹¯ûœn¾¶VO½ÚÙÕ¸gê>üªçL»‡œ)rýé~~ß\k¾xöùŸNÖ9÷ëö½^õÿë…Þ×Ë<Ï>é9]vÁ3õ¾Y¯ò÷ÉÖÛ~ÛûF½ðÑÓõœ*9ã«ÒëZáY½ÒÃÙçþ9ÕöózÙçz×Ëžêg½œ?õ6N½ŽöùvÏÙûÊÚ>gáøO~êýÜ=]~!§«Ÿõ2î¯{êu^_õ©w;ÊéÿË÷¹µ^÷Z?ë?¾î³Þùá©~Ö˺N•Ùé²_ž=OÿÉO½Ìo­çqªô!ëMoyºŸz‘·ëåYoë9ÕúÕ¯;þzƒß¯zÖ®õúœ=Ç×çs~_ï©7;C½ÜOOµœ¿Öp?YŸ¯Õs¦ØêÍäd?ßTn:U~õz?]ÏZ¯¯^ü[Ö>õ2zyÖû¶O½¯s­å¬SÝß·Å·µÆ×zÇŸ“ý|Uyâ«îË™ ¿õF·§ºßo:N½àG½Ì£Þžz·û®·~¿î³Öç÷zNµ]áTÛO×S/t´Öòį’kN×yv¦Ð癲Ž/?ëu]ëMŸ{ºõ˜õ"¯®÷þO׳Vø\/úÕ“õÔ‹ßůÓ'Ô;¿êSïþhk…gÊþž®g½ïK½œ·k=Þé÷L£¯3m=gÊs¦ÈGõv_ª7¾T/ûV/óøòS/rõZ?_÷œ_ïrÍézÖûüOÖsgŸµxÎâÝ©}ÎÚQ¾Ùs²ígõǵöó9]~l§Ú޼Öp<û|µg­ô_õvÿ]«q¾îó]W½®ûë>§ZîXkýЙ²O_÷©W?ºõ²ëežßö©wûì©zêÕÎvªùZ½éÕëíYk?›µ>/OõS/óø¦O½ò“Ýï™"_Õ«ômŸz™Ç©~ÎÔuž.yé›ÒñzÕ›®õs¦ÀáL[ÇY?èŸz ø¶Ï©¶ÔËúOÕzêe}§û©ùþ»¾¯g®Õs¦Ø§Nõ=¸^é¤^åŽzO½<¿¾ëð:Õð¨—s»^žµâõ¢¯ÿ“mO:Ëêë9S÷ãdÑË™î7ómŸz÷Ï[«ýýªãÔ+ܾü¬—yž¬g½û3®•œ÷ëøÁ™‚Gõª?ÿ¶Ïz™çÉ~ÖË~ÖëþÔë¼|ê}~gŸ³ÏÿÜSoúÙï=nø¯5|ëMOxºïi§ZÏZ¯ûþuŸõ6ßSõ|oêÕ>wö9ûœŒ§Þì)ßUúXk=ÏzyÖJέW8Õ‹^üë>ßTn¬×õ|ÕçdÉË'Ûe½Ãõt?õv¯ª÷绯oK÷§›¾×›¼pªäØz]ïÙçë=g÷±¾žõvœµžšçLY_½û{|Wñw­Ç¯×çtù+Wáºõªg:œëÝm½êá¾üœj¼­·8ªSõœ,|8Ýrr½Ì«^Æÿ®ûÕ¬÷u¬õüëõ¼úºÏz›ï7}ÎÊcßì©·óîTËcõ¢_ZïþŒkM'õJïßÖÞ}ªöo½ém¿îxkgÚs¦ømœª§^àr¦è/N×Sï÷Ïõò¬µŸÃzy¾*ý¦zÒzƒÛz™g½>keG\ïçH½ê[OÕøß¶Ÿ“müUýÖ ÞÔ‹}¾^àqªŸz[çÙsé»õ¬W9ÿtñ©õ.gž}ÖçSïtùmå—z‘3ê­ÿoúÔ›ž­í=gÇ9û|•çì9~öù.Öú©7¼XoûµÞæëSïó>‹gßìY¯vz±Sž®g½Ïÿt=ßô>uV.øzÏYx|½§^ñïì>~7žÓírV¯uzŸï\׿êM¾ÖòõéçtïûZÁáTÙÓê]o³ÖûX¯x¿Þƫק^àpªí§ê' ÖúýSýÔ»¼pªžÓí_s¦?§ÛÏj­÷ë,þü“ŸÓÅ/×¼¿)¾¬÷u®u?k=þZ¯ãt=k½Î3õžùëžz;‡¾î|Ö‹f½øÑ~ÓçL]×ÙçäÿzyÖúºÖúÀz‘¿¾«ýþºþ¿î¾ž*ùc½ë¡Ö ¿\k½ãÉzÖÚìTÍãT?§›)þMëí9UxüM÷³^ôt¿nþëE^©>µÖþIgùÈ7{êÕNvö99ÏZû^ùÍÉzN·¶^ÖíSoóùªÏÉ–CÎêãÏ̧ÞïÉëÅÿát=ë}]ë}þgŸôœnºü®øSœ¬g½Ë]gŸ3ûYkýÚ©ê¯ÞŸ3õ¾úMùݩƷõ¢g=UO½Î£Þõõ·“õü*z;UþKgüÖûs²èïdÛGêž¾Þžõz.~Õ§Þç÷«žS…õz›Ï©zÖ?9YçôÉâ/ë ~¿î9SÖQ¯ÏZÛCêí¾x¦ã[½ßO÷øk=Ïoú¬×yŸ}Nî³Þñ`½Ïÿ×=õvo\ozÁ“5N½àY½É;ß•g½­ÿLÁ“3eßvüµžÏ·}N–ýúLÁ¯¯ú¬õ¹÷U¿?Óž¯‹wë>gŸ9Óž3e¾«ç¸ÏéòŸùuýü:|ú¦ï¬§Þû­w¿ÚµZç™z>®ÕSoðª·ùø|[?©_ÕßWýþLµoýªçL·‹üª§Þô°ëåY/ëþ¦rÑwå©·õ×Û|NÖSïö‡Sõ|WÏ•/?k¥ï;+¿Ÿœg­áT/úâoûûoûÞé~ê%Þb½Àk½?ßU8¯µí»vßþªÏz™÷·å“k§ê©—ùÔË<¾ê³ÞæûMŸ3Íïa­Ç_ïÏ™¿3}}¿î9«YßÏz½ßŧ³Ï?é9ëðÍžSe7ü®Ào½õÊ÷ë>ßö9SÖqªžo{ï:SìKõr_ú¦ýœ©zŸ³zŸzãïgª> ^å’µ†Ë×}ê…¯®µ¿ÎZªß?Ýýž©ÏÉæËgá¿6ÏÉ¢ÇïŠÞìtñϵòŸ«z¬·s³ÞÇÿòS/óYkyãìsâs²øõ©öoûºãŸiã¬§ÞæýmïÕõ²žS­XëuÖË=p½Â¯^ŸõÊ7O·ìYüùjÏzƒS½íû¯’ÇÖ \×Û=­^Ÿz…K½êkOÕS/ó­—yÔûSopú®Ø'êEOøUŸz•C×Ûsªîåõîû]ß÷3íY/ûYo|ödë¿íS/pù®<ßöžZ¯þJ§»Ÿ¯:ÎzÕ |Õg­ô»õÇ“Åç×»ß⩦ӵ^÷×}êe¾ß–Ïÿºý8{.¬ÍS¯ó®×y}Ýçtóãõ·“wþŸnüó.‰ö‚Ÿ~ÿ'?x'þÑÿ]‡çþðù×yßÿÓðÏóòýûï ?øÁÿôÏÞõ¯?ûÇÿ:ïòCþyÑ}ÿxÌ9]ÑÐðÖ¾††+oh¸óÒ††›ú^¾¯¡á©ÿmCÃó«¡áÞÇâï îúEL¹¿ÝÞÐÐü_Å÷¯64<¾¿¡áÆ/úý­††×Ÿjhh:Ÿeã½å††Gþ÷±Ü'®Ÿihx:}ãjh¸öý††kzZâó þ¸¡áê‘øüÆc[Lðц†G[c9#úþ½††KÛ¢¯¿ÔÐðì¿ßM74ÜÑÕÐðæk OüI´ñþÕK1õøìêËn›þ¢ß+2 —ßsú/žÛãü/£ŸWâÝz æóÛ Oþw•ƒ±¦èç‘øìþŸ64¼°µ¡á¾Æ6þ•˜KŒÿÆ÷ný_Åû1÷ÿOÀeWCÃeñïv64\õ—~ñÙÿ×X[¬ñëv1æs54ÜóydOCÃÅÿaôï¼0¼+¾üÝÐpÃõ—?w>khxøî˜ï#ñùU1§ñ€ßDZÿl¬ÿù††ëb-·Ç÷/>sÿ£øw¬ãáöøû“˜Ó?Œ>âó«/‹þÿ‹˜[ìÏ91Ï»ÿA¬éÿûòOÅïŽßÆ¿:pû4ævGŒukÀàÿïýYÀ&ú¾6à{eìÇ ‹ñ›xç¢C±¶ø}l{ÃÍ? øq|Þ0ú¯ãïØ›kc¼»./ýçñÛ\ü6ú|tGŒÿˆßÄ>½ùË3ðàš©˜càË5?8ìù Úø¼!àvSÀï–ÿoàHÀäöÿgÌ?>¾?úý^üþ¡¿sùW«ŸŽ=ük“.öá¹ømàÛíÑ>8wãÏⳋb¼ÿ4æävÁ 1Nàê•3 s1ÏXËõ'úù«1·À³«bÏ{+>½º:`wYÀê©?þ×b¯ëboøÝØ·x÷öÿ¬¡á±Àï7c?¯Š9_ûqsàÒ÷ÆX±¦—bŸž‰¹?s¿#ú»âïüˆùž·1ÖvMàCÀ­9Þ»0`}ûµ1æ¿ëyÜõØ\ó¸=ý?ë»)pàº9Æê ü‰yÝ€¿9æuÙßõ^=ð t]¼ûJÌý©Ø»óþoÅï‹5?ódìÇ@Ì'àñÖ]Ñwàí‹ÿvü÷RÐKÐÅ=o|b­×Æþ_Ø8xGÀù…ÀËGc.ÏÌ.ý]xùFìÕÿ·À³+Þ Zo |{n2Þ‰¾_¸2Öpj ¼y6æóò|Ì3¾»"ú¹íïļßÈý_» ³½AGñþkAOO|ïþK1‡ÿ6æØãþûçØ“sb¾÷¬Òy¬÷ØË§ƒ_ܸ~wü;æøRÐä±ÖW>Œµî¼ñý ¹ …+®÷¬44¼´uÃoĘÑçåÇwÇ~\<ì‰ÀÉ[w}_ë¿)ÖtàÖÓç ~ß{÷tðæàUçü͘Ë?{þÿ øÜkþ¿Ä÷Á¯º:Æøb?î—~¾Q œ š¾'æútÀü¼Øë;cŒ'ƒ6î ~wm¬ý{±–ÆÀÇóƒvo޹<´|WàŃE_÷<¸yíÿ/ÖtÝ?sÿßžýñNÀêXëëC»Ø×Ço>bÝ/þñnÌíùÿ$~S޵}<þFìA|vçïÄØ'·ÇúŸ ^üÚîØ»Àÿ†Û6ÏÄÁXžð¿|Kô¿}­¾ëy2ðï’À·—ƒ®n Þÿtðî[gßZÅËØÃÛâï–ÀƒGâß··^|ãŠÀŸËƒÿ<ó¯F±¶_>7xpkŽù4E_Oü$æÍy¿ß,[n޹Þ¼øsO¬ùÆUx/núÃØß?ˆùn øÇ»Wo¸4öæâƒn‚w=wN¬1æðêâ¿¿øÅ9pwìcÐÓKÑÏý›{o¸8ú8ŸÅ~?±Ê7Wé+`ùZÌïÜXÏ3ãU¦vc¬áæÀ÷'ƒ/}oõ<Ú|!x˃Ñß}ñݳAÛ7N<±zDÇç/ÝßçÄ›çÞ4Ƽ®ýÛ±§Án šº+øÅ+_wžÜÒp ü¹|,`<àò{¢3°!Ö}[ŒyoÀáŽ8oYÝÃÿ¢Xï÷cbšbŒÆ ±k. |¾bu¬xç†ÀÁÇW® <º.øðM±ççþýàoA-±‡·Çž?ãÝ4xGàá‹ÁKnŽ3ìÆXocÐß=«ûë¼&ðà¡€ßó±×—Ï+öìÑwcü 1¿àå¯|)ðãîçÂ8[¯>n¿0»8xÈ­±žWcÅ\ïŠóù­øýMÁg®‰w¯ŠuÝÿ]¸uEÈ-Ñ÷3qVó9/ÖwÁ?s ¸ß=µŠ‹A‹×Žß4zqìëAïEŸW®ßgÐÁ[oi‰Ï/šƒ‡?|ññ ½§‚þ¯ úº:èï¶jÌ/øYKð½'âŒhÜ{.p镸üÎØ·WnˆñB¦xñ?œ ˜øöâƒÑOàä A§¯ÄÙqWœ=ÁÓ_ ^úpðƒûçÆÚ^h‰ý¹*ðí¾€õsqn?óÿŽ÷v÷¯~þ |]¥™ÿ1pé_¿ã¼*pîÙ8㮺y5>;w•_?{ôtÐúeñï×Byâß>¶ç^_4ÿfÌ÷úèç Ñs‚W>8üHð©Ç~ ÷Æà»M!/>¼ûñ8k^ úx(Ö×üùŽX÷¥Ñÿ«{×,~úl¬éù€å¹ÁÓÎ >û`Àï‚€é3q&]tvCìÓU!ß]ß¿üâÂYÎ XÞ´pMÐÎCç c?î ~~mìÙ[1Ÿ'ãûgŸo3å¼Xã¹Á*ÿâ!o={u]ðãËb_o ÙæxïªÀõ;b­7.Þ¼ÿá÷ÆÀûëƒ&/Ü»$ÚæÎ>n Ü>èâÒØ³¾ÿzàï«|:ÎÆ†Øó×â³â¼<7Έ§Vágϳ±—/ï{2øÑÕÁ;^Z¸)hæ…Ø‹—_üZå…ñß›±¯ÏÆ;÷Ä™õhÀø¦ —/¯ rgÌñ8k\»7èãkÁ?Ï X<¸õXðÝ[‚Ö yë‘Xß ÁÃ_^=ç=ß}ß¶*ã…üùfŒÿtÀï¦8Û 8<÷ßÄß1—·¢Ï«c¿ï ^ë~%dæK‚îúFÃ7ýGÁb¼Ëã½ç—. 9ì‘€óK1ç[£ŸÇF×ß{:ÎŽ{ƒ?={ù|ðªbm¯Å÷w.^xúzÈGoÄgÌo \»=xÈ%±——ÆçWo¸,èò–˜KKàâƒñ»‡ï¯ Z8'Ö{G|ÿbÈׯY~c¬íüà¿×ľ^´øxŒ×{saÈ ÏÅÙ÷|ÈJ/¿7î /m¾<ñö€÷Kwý÷ÑoÐÙÕ±¶×â¿[oYå£qn\ççSwï¿õ½Ø“Ø×óâïsƒ·½¼ô‰8O¯Üp¼4pùê Í B®=/xùs!ç^°¼7Îþ'£Ÿ;‚^®[=Ÿâ\½4Ψ§âþpuÈG¯\¸*cß½4pæÚ^ ÞöDàüEAó¯º%Ö~YSìcÀú–èóŽÀïÇC>?/þ{)øÀ±G—Åo^ Ú|#öþ¼ ý 8¿_ýÜxß÷†'cÌ«÷¯Šù¼ûziœ‘oŒï‰µŸ°z*xéE1ŸW£ÏÛb?ŸŒwï ™¢%î!4\¸{{ìÑkÁkž ||8hãÀ…{âœnpEðÙWƒW>|ø’àCÇúŸ 9葘çM±/×}ÞtrCÐý7Oÿ¾,ÖzoàäÕñÞ¹ÑçÑ^|âÎØ‹† ³×‚¿½òÁ]CçÎ?°½3xå­±o—ÅYzMÀåÚàƒ…,óìêù}¿gÞcÁC¯ ^ö|ðÔæÀ·7âÜziU[¥ÝÎ ˜~/ί‹Böy:à~~ŒsqÐÕ-!›¸t{Ðô9±Î»_ œ¹4à{w𲠃Ξš|,ðêÞà‰W.<øvQìÕý!3>8úà*ݾ>ð1Λ‹c?¾s¼8Æ~9øã½ÁcÎ ~x[ÌÿÜ€ÝÕ‹W®îsŒquÈH®âUÀòê ŸÛ/n ؽxþ@¬ûª Ë'b~çïy%~ó@ìÍÁão‹ý½yuN¯¯GŸW¿º1öî•ࣄÌs{Ðð «k÷Ÿ]½KÄùsMÜQ¿8yWœ—/4î=gÓí«´øu×꙼õÆèÿÜçÎÀ󃞊{MKÀûÁ ‹×‚ç_¿,øöåSþ?b>±®ƒ&Þ xߟ5Äù^Àñá{ný97xã-Ñ>0¿=pðš€é³1^CÀéáÀ‰g‚Îî Ø¿°½,޻⦘OœË·Þ0¸=d ócm¯Åšî‹{ÁCq†Ü¸Ês㌿-äùóŸˆ=¹}•ƹôD|ÿ`ŒõjÀèòøîž ‘ã\{6æxnðÄWãÜy1øÅí!Ç>rÍ! =0y&öñ{g¹%øþ-!#\çóÕÁ³îwn ÞtÈl/ÝŸçÈEqŽÜûxIðÖcî‰1Ÿˆ}¾%äšËb®Ç>ÜxqUœu7…|qUÐÌuñÎãÁŸ^‰÷ïŽ;Í]ÿ7_nØ>çòãq¦Ü¸ú|ð¤¦àÛoÅYz^Ðó3ÁϯÙúú€ÍíA·Æ^^´öð*.†lrNŒ÷HàÒ•'÷zuU– x¼4ötÐÞñ//Þ¼÷åÀÍ;‚v®Œ5ßï>ó} Îù7ƒfn žzYàÕ%›Oï»7~ótœGoMžûuîêý2öéœÀ¹‡vn\¸rÃêyçÏ}¥€áêýsU.‹ý0èëÆ ;C>i uWÀõ’UÚŽ³î©èÿª8#›æ×ÄÞ\ï/à{qð­KVýÝ»zÆÇ^_ûðZàÌ‹!7¾ý?ãÜ<ø¼àY¯¬âtŒñfðŠk†7Æž7.¿<åºU98Îå'ƒ6þôbð¯×ƒŽÞZ~>Ö~kìõUѶœ3ø¹aÏ \»8öè¢à}ÇÞ½ð|%xÀÃ1ÎÕ±?ÆœžŽý¾%ú¸=θ§cϯ üx3`ñZȲç†öhœ‡ƹø\œ_ß‹w¹Ÿý¿<ô–à/wF{iÈî/¾-pã’˜ÿ¹±Çϯz4èÿ®U^ÿûÁÃ✼8Ƹ#péåÀë×^/}½ôòtÐÈ«qF¿k{ èð±® |¼)ÎËë‚4„¼qo¬ç Ï7×_ :x8ærNìËýAûÏíÜkº7æÕ¸Ê·cOn ™ã’‡bžÁGžŽq^ yMàõÿ‹7xçƒqŸ8}}œa7†¬uO[/Ä:/Œóùþ ·gâÌx%ö÷¼xïÊÀ¥û£=?öèÖÀ›Gc~/¬žŠ¹\8ÿ\ôqCð—+‚¿=<çÕ kâ®óܪÎ#èááXßÁSZ‚G=räÓ1¯»Wå§Õ{gàÕËq»"ðôÜÀÑçƒ_ó½!d¡‡£¿Û‚Oœp{ ÖóhÌïÕ³~U/¸pYàÐóÁÏ.¼nˆqo¾î¸ž3x0¹7îãOƾÝs¿,ÖÐxðÂê½ d¦ç{±wçÆž½ø{MÈz÷ÆÞ¼´ü|Àþñ8ëoyòñ§þ‘éêU½EŒ{cðÆøî²àŸ·Æþ?¼Jï±þ_ž á…UÝL𨠯¿/¼»+æv^|ö|œm÷‡¼öLð™+‚†_ üzdõxí‹!çŸxqUÀù‚kbÌÀ¥k‚&‹1ž <9/Ψ[C¾¾ `òfð’ÇWùhÀåÞÀ…Gƒ×]ã_p{!xï±oÏ®êÐb/Þ ~$Î’'cͱ'÷>'æñZðóÆØ“»VuC1îÍqÆßø|ð˜7ƒ·Üp½8xÅëA×wþ½´z þôpü}eœ —?½8pì¢ÀËËãó âNCü¾9øþÓ«:½ ­¦èãŽÕ»uÈU¿x!xÀSïKã·çþÞôõhœ]WÄßWD—ÅØ·Ÿ{*xö#±–gWï«:ÚÀÑ‹þfüç̃q—i \{"yìѹÛïâœ|5ðêÞÕþOî÷îº9?øÍ‹±ŸOL ~p}ðèÆ ­c?_ ¾øhðª;C&x5àÿjÀô­À“[Vï—Á£Þ ü{&öïüÀ 3Æ y鵨ÿûþ•د€ñsÁçï¹æÉØÇƒÞ_ŠûRs¼wyàõ}Ánº¼(d–+b_Îçò ¡×ãü¾1Æ}3àynàÈÁ^øßçÆeóGb/ |»4èóò€Ï-ÁŸ›‚./ Ü~>pòâ€Ï9qÞ5Ý{øõðª7Þy,há–è÷þ¸wÜcÝxøbÐôe!£\{Òxs^Àñå ß[‚&^Ž>ŸZåMAo„\óbôýzð‚gný¹%ÖùFÀá¥8#XÕ·­ê~ãŽr{ðÎ{ãLº<`xNÌíÑà%/Æo® ØÜðh¦Ïwï¿fõgÙ !Ç?ð{5öåÖ¸oÞ¸UìÃ+«w” ‹æ³®X•±GŸ }+þýpôßøýbìáU±‡MÁÿœ{=Þ¿)øÙ}qæ5_y5pâ¹xÿ¹€ííA_=4M=sx"pü¡€ãKA?-oí?sx5î¯\ø~ÿªLtý@¬÷õgZ•ëcß ^Þ²ªã º¸!öôÎ8£.Œq.ýº0ΨûVײø•1·gâ|¿!öüÍÀóÇ£¿¦¸¿<k¾;ð÷õÀ•[cíž>üý¼˜Ë#1§Ç/¾¿¿¿+xþ=oÆÜcß/™¿)x`Kìç­qv^2qCÈmÇ»¯žÝ{ñJàÓs1çc/î‰=¸#øÜ“±ç¯ÇÝ´ñüªÝ$Þ¹+Ά«žW¯ž-ñYSüöâ ‡b_/ zk 9øòUžü÷µUy7úx,ÖûfÀþ± ™Æ^\ð¾8ä” —_ý½-héõØ·kbßãÖÐïÝtýàêÝ"hù¹À£Gã·×ý¿k½$h÷Íà9-qÞ½°ªËˆ3û²U~¼çÕ8Ó¯X¾0¸%öº9Öò\Àîºà±„{}àð]qÖ>òæÕÏÄ™tïêžÆX×ĹôZœ×—ƹ~CÀæ‰ÀŸçc.oÄ}ñü·î }%øô‹!£ÜøGÜ1žsð¢¸c>p½!xÀë!ǵ_¸ê¹ø/øêyÓËn/¿:'Þ¹>èã•UU_Èg-A§1§—G.Šù=rÃSAWÅÜŸ‹Ïn™þá¸ßë¸/¾¿0öÿàW­ê¢¿®‹9¾g̽A³÷Å9ýrðÑk‚oÝ´z]È2Çù|NœOÅ×üþ–|À1pôÁØóóVí1G·ŸqUï}5ÆZ Ø>¼àÑh/ ü:ξ«®yêò8?^ŠóÿÝ/ |¿6øØý¿çWu¶Ñß³Á»/;Ø%qv¾´vcàöÅqÞ¼²:vÐòƒ«ú±èó‰ ±«‚?ëº:p쪀ï%«úyîXÕ£-¿2àë׃n ¼ >»(ÖqAð¨WbN„<÷rÐÀ}AG-Ág¯ ülˆ½¿6øÇ㫺ÓàE¯‡ltoì×Õ±O¯Åoï ùÕÕ»g ÙãAWÝ>tþJœñ-1ÆÕÑžx{]ðÿ—¿&îõ·»1d’+æÅoX•÷ߌÏz-dâgVu›q–\¼ª÷|¾'ꑃoнy4d–WVm[ÿ–€õyq–µO»,ðã \{ñLüÝt~Ý*ß d¹7Îîâ·ÅúŒ9]k¿#ð¿1΋÷nvuÀòù€ãmAGOÄß—®Ú¤bnw† ô|Ààñ§¯ ½<`ÿúª#κ+ßx3æòzðˆ'b]—ǹq^àæs1ƽAOçþ¶.¼4uEð¯cn—Æon[ÕŸŽ9½´zÏ Ú~0xá½qþÝ4{SÀö™€Ñ³ñûGãì~5øÑsÑÞxs_|ßt{EìÛ#!W<wçæ€å¹ñ›ËC®~%ÖuYàÏ=±þ›ã¼¼8ðéœç¦UY1xáeÁ‡ß <¼+æóJÀéþ8?n vyìó›qNÜtxQ¬ýáàŸÏ-\¼éüU(øÈ…qÎ?gëË1‡gbM·ÄÚoŽ3÷ò¸=0»0Öþø*]Ægw¯j \¿/x÷±7M±ÿþ]üî‰XçËëKbž—¾?ðóÙŠÏn3ÿ騧 ‚ßÞôödŒý½à#WÅgç~>¼öÕxç‚ «Wß :¹$àñHàÜk1ǦÀ‰K¢¯ëƒ=ø—ÿ‘ٻᦀñ AãÅüo޽¼1èéÜ87ž š~<Îî üzhUïãžxzeœÉ/Œïº¹=ö¹iõÎôòzÜ9Ï ÙëÖÕ»B|÷@|~MÀèÖà57ÇÚnÙàÆø÷Ý1æM±¾§W]\¾*KÅÝò®À‹gÖÆ¸/Äz Üy4øï+«úã8n^µS_8vI¼soðÁ§ƒ®¹î­Ø«Gƒž¸öVܽˆóüÕUÝsÀæÁ Ïg£¿k‚ŽšbÏ^¸ðZð©7&—Ÿí#AkoĶÄw¯„LózÀèÒÀ•»ƒ×4Äž_òÈ»'bŽ^xuGìÛÝA+^^¼îòï{ñÛ7â\3öèî á÷Y•çcÿ/ >zsü÷JðŸc ÷Ĺðä]«®AÿÁWß |{,~ÿ|œmÍç'ÿóëúèçþÀ•çBþ»)ÖõJðígbŽwœ´ÿDàñÿð‰ ·¼n>÷bðè‹â{ç. ú¿.pü–8/. ü>?ÎÊëcÍ÷\k|aU÷»ªöÊlàkœã®Ÿï|/`Þø~ÐËãÑï ASÏÆ¾?}?¼*‡…lqnÜsßXg¬íÊŸ ^÷ZÀèõ£1¯/ òXÜ® \º3ðòñßxÅY}íª­6äÂÆÀÓËGŸ ¼º7ÎúÇbî/-]}Ý<õÎøûåÀ¥+ãÌ}>hçÊ ïVï²Á{®Z]Cìÿ}!§\çÎeW÷¿l‰5Þ|öê¸_<û‘8Ï/‰Ï^‹3÷•XË‹q¶Äün Ø=t÷̪ÍfUÎŒ¾‹¾®Y½=8ÚtuO¼ûRŒ}màðc±Þkƒ€ ún‰sã¡ØÛk6.¼4pý꙳ªçŽûãíA×Ç8Mq¾_w §¦ßb×­Ê A{—Æz/ˆ½|)ÖðPÀùÆÀÓó¯nŒ}½/èõ™À«§ˆy]}¾2Ë£!c6_Yµ±Äþ~/ðçÁ oоß\•Ù¦Ïÿö?2Á5\¸ô½àÉÇ~½{údàØ](·¯Ú ã x$èãŽØÏ—¯Ï;í­Áû.‰3ùù Ñ‡ŸßŒõ^2äEÁ›bì×㬻 öæö8ˆý».pøÆ Ý«VõQA×Åoîˆ}h ™ñŘï£!÷<k|$Ζ§âœ¸4èâ¶8³_ˆq_5]° çUÛxœ•çÆ>5EßÍÿ›Wõ‘q¸4ΰGWyYðÑk&·ÅxaÌýá{.^ð@àñ³Ñ×Á/Ù¿qÕNüç‰Ø‹Çc®ÏÅþßòÍ%±ßO¯¿.èý¾çú Ó§¢¯‹O­žA7—Ÿ¸0`øLœ9÷…ŒwIœGŒ¯¹:þØÜ{toÈyÏÄX·DwÍÞ<óÙèç•àÇ÷=^p+Æ}dÕnëº'îø÷Æ~ßðiX=[We¢è란ùÅÁ¯^X• ƒ‡½wà;WíëÁW®X_râ5Ÿ WmÂA£÷¬Âs>qy,xÒUÁ«ü|&Î¥«bï^ ¸-䎇b/ƒ·½ü÷µ «cíoŸ×ï¸>Îûûâ¼|4î7í>pk8wÕK*ú‰þßÙëΠ××bŒó£ßóƒî.ˆ÷Þü¾/öáú¸c¼÷ô7‚¾Ÿ |2øú“±7¯Ê“ÁW<¿?hüüàm¯DŸ¯êšWù@ÐÁ-ÁGîŠ>Ÿ‹¿_‰ó·!þ~4pó¥XóÅëÇVaý<çð½«v„Õ;zœ9Ϭž·Ñß3±o¯|Ÿ÷ߌ½º2öéÕ€Ó³qx8øGKôs~ðök‚\4ðHàÁ¹Ášã<º8hµ)ΕÇžçζa4Ž<0º2hïêà#‡lû`ìÙcÁ?Þ zy!öøª Ñçâlz-èñÖÀÙëƒ6ǹðXÈ…O®]pl \|!p÷­À£çï¯|¸!ðþÅ8ó]•=‚ß \}=èåØ÷ÆàMoÄ^ÝçIê¾4påºèÿ©U½áª®)xÑcAÓ<[b-—Åï›boîˆþ¯ Yýòó†U¹ ä­¦xçîàgÏ„\ÿÊê=:hçÍõ z¹3xøÃñýËÁמ yñÊÀÅgŸŸ pôýR¬ãÍ8kn=¸-æyQÀ¦9æsyì_g ÏÆž ð\Èjw<[âL}&h)†n¸3æòP¼wuÈ¿—Æ>=8ÚüϼƗ®êWi/àú@ü÷FàÿK«:éèÿâ˜óÃ1ö¥A/—Åš ^ywÀô‘ £·b^-1ð­1ÀµÁëoŒu?kz5άko_ùß0|%èïÁ µ»cßÏ þp˪ÜüùŠXç5ók‚¦® ˜¼±ª‹ ݸÒ2áó±Ÿ×„LøFÀóêøíEqW~9îê7¬Ú€ƒžîÞpÛª~ó–øýÿŸ½»om»®.Ù–e&Y²$Ë(£Ìl™©Ü¾2cÒ4¥”™Û´)CÊ̘2§ÌÌÌø^™™áýæ­¿~·îõ5ã9þc|¶¥½×^kÎ1Æœkí“óèU3ËæX2ŸimäMµt\}_1áåMô]cÍíö{=B>Íòùmýó²ýÀ¬9m«ÛÓjW¼õÒAÅ<ÔéQZMÄ;“8—³F1ËÑGR\¸•·N:oçéýêgÞm‰Å¼9äâ<È<&ðqLÍ2î¡7o«z³\¯àÔZÔÏ_“þ­©—µáüâ0Î,q}ØXuòRïºDÔo¾XÆ•>³FK)ëXæ-MqÌ'º×|wÈþ6ųVñpÜ÷¹ø÷&ÆJ©QY÷'Ä!cÞCæw$¯kácâ4é¾>±;(y6oï6‡]æµ9þßÎkq±(&Eóm•ËýsGœÁàÎ<^tòï9¹­UÆõ–S¸W¯·Ï«3‡â–âoi5¯VÎZð¼Ä_jp»$ÿ£<·•&Çè¾w*æÔl{<®b¬nŸÕòÆŠ}MÞ¯"^#®ïU“zijO·éÙ3êNgô¿©—‚ØW;ñNþwŒß*ú‹šêÿP9V»êÄqéŸ=C\wÂà q`^Ý×§åyÇã|Ïç­¸²É¿æõGY5ç0zè¸Ç3Zôëöµ)½k=®ô‹ÿ¡ZÚ(>yiáuêpCì}yÂ"¾u›GAÎʸßàï)q6ïMÞÔlé8ó£çVû‰Ú(ÓÖ&_oä]ò3Bÿ%>¹ªoì§ÝNsØ2¿^þ“Wo{ñhÒ<&p¢`ï6‹§Íêå˜\ŽÐUOèž®s4µj­‹Ö·#–Y:í•·}º«•‹F^×oÏÔ‰o‹ž?χ†yð”õµ‹ÿ˜\®šË:­•ùB/Þ7·G ¸p´m­zû&y›Õ« Ès NÌ©IMQ¿ôÀÍú%õ§Þß#æµÃ§»pl#אַo¨GU~7gÌ ÜèïùÞïs«ðÆ¥8´öú×õ_Ñ+5ðòIû–eñvÍà‡+q®&êl"Î¥i®]N’·ùÒ §å8)Æ342D§³®¯÷œ¡x×®ª7çu~8o~=t³æ¹]øT¯/j´¯®åi9yYÄËükÆ•q<^ñœ&ñœ—Ë!÷´ð± yß‘“:Ÿç5õ±æ•ûr6ÊC»Ä¡`nóîÛ°ž}óèˆ÷â}ô†¾S‹r›UF覉ßî‹wCÌ›¿é#'­ ç ÖS£jás#¸²ÿ6ÁœKü~Uüç¢7 ßS+rúÍ‚øæÕ¤Fµ¢nfôX t8.OKêæ¼º±`nsÖ6g–ä ;ÖÚM µžÓˆ‡µÑùÙgø’ ½é8—Š÷(b_ÒÛ´¨×Cz÷JìUh+e¬fSçû8Ä›=9ï%"w¸Yà+©‚ŸtY¤‰F5³Öu]‘WkkÄ¿%ÏXå›Ó8°†ûIœ]õ¬:s)ã˰ڲÏÃü,Æ;ó.XwçÜÓ©¶·é#6ü>}§õ׈çþ×áÀš:¾ë¾}:œ“ç?[ôæÕ¨NÉÙ>'ëÞnueÝÏ”ÞwÿvëÇpµO¼ÌÛh}Òßóú¡^úIáZô0•“ËZŒXמ-às }MËQ³z–¤ß-õ°ïέ))ô]¥§‚µ.¹·Y~‡ùX»{¶â¾Aï1Á’| Cw}´5+IÄ8µ«CN—Õõ-©‹½//û»Í bŒ9ëIªãë8•ÓGl«Mãæ<­ŸÑ—,ÒÛ¶9ˆó½OŸy¬Òä²,ÈqQ>7ø~;[óZé‰÷XâÓâº^|i¡Ýu0³}¶†qÒg]KbÐCs‡¼bTîð¼…væy÷¶k:äåHŒ»ð`ãí}f­ýz¦#9ê”›rô§êú®$é¼ý‰uTôó¸²âžik˜’¿FùÊëÇøF‡{Â/ðoB#òUÀ›yÏ=àñö";îo£Á ¬©›ã8;/]o.¦æÞg<{Ï3øsH'}¼·&ÞSà@7Žì+ŠáÃò_Âï]|lµÖœž`Ó|kÝW‹ƘPGaݸ#bÑÇ#ôMS±ÿýp×ë3ÚyCV íòsC¼ó\˜‹sÅx¯ªWZâçiúŽ÷—zËÏ,[ת9ìáTVýš“ëUÏÅÆÏý¯ÿ1ë¾OˆÏ˜ñ'hpÏìè? æ‘÷Kb°é¹;Q pgfføÂ$® ‡×ÓZÕü;åçO/ò¡ ßòU¢ËïcöÐ3zÑ]k.ŠÍºšÕ!¶+8T¶ö%>Ò'v=ž5FŸS<½3Þ¿—NÚh§(ïòÐiÜ!ÞT«F/à|κÆôMm¼¸K.ÔŠ±ªSSÒÑwXÿ2ÍÈu;}íéù»ý,„gˆ÷ œàËê@•~†£¿ä›_‡“Àš­·Ç\¶xU_šQßkè£Y\ób™ÇTœÿãì ¿ØÃ…nn‘»U1,›gZ¿1§~MèÒæW´§Ú§9ñ^6×*þ5ÒÜhô¾ÖYÀÁæèô( ô>çÝâ·ˆ£e>Ù˜Ûæ;Š7›¼·^_7.öÞ?…[+úø:±Ÿáe5ÑÛ¨Ak8zèº5q6ö»ôÖÄÛgõÕ5öN¼~ɯÂsk=ADEßÕó™úÙ¦ÛNùUw—Åc˺ºh½¤¯¬¥ånþ²'žërÖÁ[&¢?§û^ûæ¯Èÿ$NàO¯œVpkF> §²±Öèh#ÎÓ§~nÑÓ Ï«Æû5~WÖï–¬qÓžy%ö²b;*VY1ZÆ…ZØŒ:âûóÈ«ËMüo–ï¯ãù”ÚRäëƒzxWÊwŠêêšù­ª•IÒUsë×~Âu=´XnÐs ªàõ>—Õ°Aõy[.òæ=j½Ö»&†«±‹w†jám šëªÜLÐí¡¹Ïâm§Ú´‡ûkñ.#4m ö×Ë´“ÃýÖØ3áê.~øY«?_t]5ö;±÷¢• ëɆ¨­žÛŽÃiœÅá59Þáé-¸Ó£§¯Ó·ôñˆ5ºÛ½¥<¯ÓÇX¼£°ÆÏØãô5h‘0¿Áð$qm¶Þ¥Ð³|äy̶ïZ­cD^¦xì$^¬yp§ßøcöóêã4îàaŽw5ª×õò\°Ú·Ö1kê—§uól§ñ]sê”ï!}ÛŽšÚ‹Ç‹qîÌZåhšnåbŽ÷,óÄ%u¿^ 47kN‹x³Á;Gùļñh(…çÃ|rÃú²æÞÎ+çð¨ÂÓŽÔãI=CŽ÷å~GÖ¢÷3ï|mÀû’ñ+æÝ/— ôÒk®;¼|!ö¤¯ÿáóçãkŽwóúÕ:ó”Ç‚Ú1fËö3ò”6΢x´ãå°gM«/#úÈzþ°#.ü¡Í¼æ×LGkœöŒÎØóëÞ¨â6c¿–ñŒF5wØõ3ôŸrý2¯?Â&sÐW•ä=ùËmÚÍŠášP'yR“GÕ×ý؛㎺^Ë_fì‘2êpVmÍÒ]VOP©š(òþQ ¿áÉÃ|¡+Þ;ÓõM5zfÅÚ[é®^çÛøT Õ]þ¶&£8¶ƒksÁ£!˜Ǥ\4†·Y×€ž­O¼·ôUæÙÏŸVijrÖPC; ´³Àg–Är2ößø´ªÖõ¹nÖz÷ü\å>¶%ÖÝê_»xUmËòŸcM¹§Íz÷ùF»¹ZSÇÊ8Ðmo2%>x3Åï·ô»ôÒ/uj׎כG¿9ïèµg屑fš¢tï¨>°Wfé_h1o/R£ïÌÐc­}J)ÞùÚC-Éi’Ö¶quÀóûõ/«±O§­U{“Ž8VÆùíŽï¼¥{}7Ê'R☉³fî ÝèíkÄu˜?´è5ÚéèÈusÁE½à„}ô½gkì³é«V®'q§W<&ø}/ïmÅýÏÊò¹ s]—ú›±îZûÊ)¼\Õ‹ÍèãÄ<«¯mó¼kl‹}üꯊ¸¸nüq¾Þd¿+.{bÞGsËjß–~¡dì O.gVœí?ÖIJE^føuìÄ8Gy.ø½Jk3âQ2ïCcåùF‚fÔ€Muò@¯Üc¾}¸ugþ~.Ó̈{<?æÚÄsšÄfB\'íóVxX“¼$ãlE¬*¸R­s_ÐCM¸g7ôÁ-|sTÜwioï/õó´‘4—´.™sÑ:–é{ÍÛË8[tÝ´º×Ë_RôÓkìnÏ̪‰ÓñŽ^ýÝŽ³~zïå£êÏ¡ÞiN<'1f_Ò†«ÿiLµ}Lm_¤Ÿ=üªÞÏüÖ¬sTýo¦áMÏkßyã­ZßmîØ ª-ò¾.žËôÛM'›žÝk®=æSÁ­aÚèr}A/ÔÄ;Fžï~Zè—NsÍÑ@_¼CxuëÇã<̨‰U¹X×shôs]<ÕÈM¹¨“›‚çÔ™k:ÞyŠåž¤øÄ¤5NóŠŠûÓêN·û6ixÝzêùöxÊp|FÎ[¢ÿÒdh®JKýøÒ©þ¤Ä¡¨Ç_ÁÓ <_5vÞ8ûâÛëg·ýY?g­³Æ7ènœçO‡ÿÉç˜6¨[]âµd~G¸°{Qsõ¯öjÃ4ÖÊ_:Ôǵ½ÖµY÷ÌðÓõ¹$•àSœª£´¶À;«4ÖaŒEk(gŠ–[<¿•_ìzưý|Y½Øç£-úñ¾”Šs(÷eè¹—øwVÞ×hµƒç4âÁÏÈO)Þ‰qNO2ãó>{…]z_æ}›êu?® Èw›láç¶9Nèåh~9ú1û¿Aó]â/%ÚÙÂ×Ýx¦¼&pl”fź]MM¹Z=K«Å+¸°%g»tÖ`®b°D7C®ßæ#|tÉ:Äaã¯äY¬+®[Q3'õæã_ýÔþ"Qc¼.šàEãׄ?ÊeŸïÂù=n Ôº¸¢¾/Å»sãuYç.4û,­Ÿ:àÿSÖ½#Vê͆5§í¥{¢nâyGœ«E»øQï:ùOÒÚþ‰“^uñ¥òq¦Ó-Ï[¢Ç}ýbV6bMÚ=âÃq¬—œVJx¸+…¨ø±"þ~Þ©†mê-Òæ¼wu¼¢#ÞËX—ûë=3ÇïWŒÓÃSñN¯Òæ¶gœƒo2žx”Ì?)¾-x”Pÿ–¡?Õ™¯êã½EñÀÿª8ïÑèºÚ\Û<¤õyÜà™£r¹+Ë4˜âß#jâ Øú¹a#úÅ~qmÿÍè¥C/¸ÙŒ»ëÆ?’ËŠy—è2©¦Í‰kWôQ´^Ô»tÅÙ!_œ7þZôOb¦·Nk£ÑFŸŠû¸¹7¾Žê!kh(¯?žå3<´ÏsâPàóSæS×V9Øâ]îËF‡£-z­™ØGëé²øQV£öã½UÔv¼˜£«y>¿Åõ´õ5zÞ°œ¯ÓÌDÔu5ªA·/¯­ü¬Œ¿U|k’‹y蓃Š9-óü&Þ8çý¼*Ëöù;t7Ë£³jÙfìµý¾{óØk襊r“¶Úóì¤>LkžÝ¤ŽµÑù,_í§©d¼ÓÓÓõšS ß·¶ãôÐt´§îÇ:ž1m]ýq†‚Oyó\ÆÓ”ýôfü» ½@ßÏñÙµ8§Âã ã\ÅzbÛb¯™R+ªr2½>ú}]ýܤݵ©ÊÍ'o µž×†KI×nÊÁZœŠK9úVZš4—½è;øáH¼Ç#¼žÀÍ‘èyÅ­VŽšék›ÞKü¹"OcjG«5ÔwÂ^xÆõëæœàq ¡_|]¿fù\·¸5îвùÕ«Íñ®B]祃z‡„ŠsÅ£ç |yÌ8 Ö0¢·©ñý,_˜ÔÇ”¬»ŽÎÆyäO͘ˮäð}Iÿ3dÌf±-{vg­uCl›Å¯‘¦óö÷“æZË‹b}Qü›\­ZÛ„çÍãg[¼[òÌn9hnÊi=µñ·„ýÔ®\ÍòŽlìQð0kì%½|¯ç×è÷ãÜ“·'ÕŠšè¡ÍyPM¨Ç‡U~Õïžø{õ§=C7­¿–/µªË)œ˜Æ‘öxc]‹ò»‚߉‹Ok‘ã5ó>ÄÙzs[·|+«õYõrF¿{DãƒzÝq|œ0¯:k[‹s!ûԜښ¦µ‚ºœ‹s`ëŒsx9™ôüš¨ ñ,üʈÍ8^ÔÈg=/7NœYÅCsÜÅñzZßrß\ô5ò×=šŸõ<°? žÙƒ‹m?+ñoG<ó@Œºñ±S ö£>ñ¿¼ûwþõ‰ÿbœ›Ç‚˜ÎÅ»¥8ïÇÝ”x©+i?ú©Iû–IûâCÕÆ[ëÜ£UOŒÐ×¢¿ûinP¯9àóŒ^+½.ló½h ýÚ³Mð²eq«ðÛ”Ò we}{§ØõãÙž}ܺ=MƒgõxÖaì©ÄaMžçÄbŸ·Võy>æ%uÆžTÛ£Ö«ÕsöOÓüeÄï5©JsX3öRœyyf—úҩϪû=5eN-OàÙžú•Ç…‚šYÓq1MÄÙ../âÁ¨5öáAÎt¹¾Ï˜]¼sÏZ¦yØDèŠ×/ÉצuÎÑÉtÔÎx·¨ÇIXC‡÷̧SíˆóŒ8Ô®ÐèÏûð¦WFô½»ú¦}aEÝ?ÂéA½B•t„OÄþIŒÚBŸö±Hêojùh7­®©Û}ò°óy4çòԞ˛Öi­'é¿É÷SòqÀƒºÚ¬SíTG·ÔÉ‚ù&ùÖ,­¹¦Æ¸]bv@›ýÖ8D[Ö°JÓ{Ö“¡›Cüšý–¿k£Öó¢ ¼o§‰5ÛÄÙd¼ÃQ»ûõªõöF‡ø¸M'E9ÜóìzÞº«®uŠù&~Öòã²úÝë»NuvRN—ã¬Ëób¾è¹´[ÿ†€>¶åv–g/êµ&Ì·Q¾²ü¡‘ÿ·Æ{\,Ñì/_ljš8C½OXoI ÒÖ¿DO5°gÖñºIîì?"6ü¾(æm¾+·LcÑðÎ-y‹rTÞkí)–cÝjDI¿°a­»æ0ªçœÁûÏë÷}?ZKôê_f¬cOLæx}¿^vPܦðyX?4ûó<£‹N›åo“Ï­ã@§uíÄ™Þ6ˆí˜µwº¿^kyQJSTÚõ§‡t·h¾Y=Ùjüû–xå³´ÔD]äÃÃÖÕeþS<±ߺõÇI½P;ïž×Ë Düxz#o×s4‹QA\—ôÛÃqncÃq.I³z„-ip}¿˜/àÌŽ íëÑúùP- uó­qœ,˜ÃÎÈw´ë››äzI-ÙRg†å¾„÷9Ï™¢Í™èÍ­•W4xî6=-ÒÑ= ˜{½~nÀóŹB; æàÃKô;)¶I|›¦óE¾ÐÌ³ÚøÏ˜Ú°Ègºì‘6xÂ@ÄÞ»é¾ÕýÛb[4Ö¢ø®ßùÀ„uD¯->-êrB*ÐÔ¤øÌÈIÎ÷³â8f¼¶8sŒsk­˜ã(Ïš‹óœ7“kõ¿„c æ–³ÏÚáƒêä†95Ä;zž7«†MË{Æçys¿zÑG)sYò]³8è§„<‘¦ã%õ¦›a÷èËÊ4—å­=êLVO–Ñ+”ä#inƒzõ91…W«±§ÂïZk™¶®Y1~+ž,ãARL§pd?Þÿ{ÈšJž]ñÐÍ6óËVù[µ¶ñ/±MÈýAœËÆù½õîó¼&ŸÏòˆóš ãmµ5C1kËQ<µöõc_ž¦q}E/ààŽþeUO²%.sò–‹wÜx¾¤¾uÄsyß’^vÈûõb»tZ´öuœX|só3ö:¾W=æo-iâ@ß±Æ+ý1ºQÛ‹ú¿9÷ß¡i|œÆ½,ߘ3ç%Ïœ÷Ù¯9ðs@“ò¾Í×xàT¼ã¡eÞ2b íÆX°öu|Ç÷êÄ€çN‰Ã./ñÏþ3„s9žz(VüfP ŸãI­ o³––8 Wrž×©ž&åj;öåôSë%11Ï’ºH£ú²^ž9}=/ÚàÃ=tØi/³j½uþ΋[%Þ÷©Ûò?Éß‹¡á8W7Çf¿·©' Þ=mN)9ÙÀµaŸÕáÁ{÷ôýò2ˆÓ«<¿ÑüëøD»¸¶Ñl)x¨j‹úBßyñ\•û™8—Å—ý8/ä%«Ö0Œ£æµbí5ö!Í4>¨FlY>öQz‚^}õº¼6Šý×êÃ6èuRo3 g¬0q„ç›<»“îGyUëÞÆü£g2¯z/ãÜ8vú®•-‰ëVôn¸¹-¶%\™Ã¹á8Æ”ýпið€^ý÷´¹®éCvèk3zïë>1mý³ú˜æØÉñzœ'„FpcNNÒ4¿5Á¼7Å-¯vMÇY›¾zÅ|úÕÞ - èU|Ö­MªgeóXÓcĹ4NuĹ-¿-¼†…»gŒf›ÕãÍÆÿúo¤'=£7úâ]Ã뇺İÆó¶Ì!-}8Öi¿T¡Ç^ýVšÔÄ;ÏœðüfºíáÛ{Æ8Œw•48ü!Æyyãó›¾ÕªÃ):h•ç:q^¥‡/RÕüZ\©ÃÉ=ñmâ›ò2ùžmœ¦ðFÜœòÜNõ(£¿hÖc¯‰ñ¼ñôû€šªÇÑ:}ΰ5ö_èiN/2.WµñŽ‚íñÉ!û¦„œÝ7‡Gâµ§†5Æy1jÍaÈu½îψçXìhpTÞb‹6fÏv ¶ úäaZ_ˆ³¶x¤èÄáþ¿N×{|+ïÂô¦34=ûfñl‘³»Ç{é¥M¬xÐn¼½ö¤\ÔãA­z;=£ú·jo°"‡ÆïÀï2mð¾ur;ú.±(Òø*Ÿ™â½øZñûÜÏßs«z‚&<Ÿÿ2Ÿ«‹êÊ&OËÚ'†ñóË&Ü­ç‘IsŽ÷Yú¬:6¡Ïœ§‰Þ¾,öÍt[–›†®ÄSÿ1–LœI‹y»¹ôê§jÌgAŒç×­þîEïïþ"ï<}”Kæ‘4Ï)>8`Íi5l÷:ñ£ï£4ÿóX‹±Øwã@+}Îz.Ù'Æ£ÐUF]Þ±–e™Â&ºÛÚ—£ôÛF‹CQÇõ_sæUqÿ¶ï¶ã\Ÿhl ÆÅt_2b²$Þc®¯Õ¿ïXSŽÊE³ÏëÍkÑ^sœ/-ùl(ÞMÅžÚ±I+eVÒ?ÎòúFšŒ}Y„ ÇêùÁ‚üô¯Óq,ÿ­âµ..MjÀ"]ÏÄkô¯47ÿ7n´ž=½÷¢ýDïOÿ×ÿíÂ0NMãOÝùàZ¸‰û}êÖ®U订F ãRÏk5^™w.›Ó„5ïÕˆ¹žÄá×mòðö8wÃçm½û*k5Ç9º§ÍyNÐiBÍè×ÓÌÉý$ïßó¬1Ú¥Ó½a?Œ‘“çu5lÅœûâÌŒ§¶èSp¬›VÚÌ3#O­úÜÙxWï!õuÛt¶=™µé?ƒGûzñr¼Ãà“b1Âç·ôÜ£êʬ±q£ÞøYû”\î“×I±Ió¾&u`*6Û¼nƒöxËˆÜæí£ûpm'r<½ŽæÇ£f›ë›÷UµbW,æñ¬¶ù殸¨}qÖA YÞZæ½£<|–ùÔ°Z°«×éä +r]¯&Vé`Bžúâ¨þw·Gº¤)B«‘¦L<õ?¼¨áý#ž?M_}âÒïpf‹ÏŒàï˜ùnÒcBÿ0„_c|qOMjPÿ2ÆèÕGôê™ÛñsBÞÍe_^*±³ü£?Þ?ÒÖŽV̱1e.jvÕÚ›qd6öšÖÛ$óæÙB½¼½d~íLbŸùZ“º=‹ë=bzðÊOýÏlûîÇ‹MuªjÕ©v,¨ß¹îÁÙ<ÙÔ-ê#z¢'Õ«NÑÕaœ‡ð‘Š{ñ?¡g苾€uÉû8_/ðyõn3ôçCêѸœ›ÇahØg3þnÕ%ôˆ“á~ŸÏùjÄåœ9n«Me¼¯è+òòšÒ7dùížµ—ñ>aÞãb·„_›jtOìùã œôª5ò8Æ»zÝ3õœŸ¯ÊQ{ø£ñ’bÐ}ªØ$éê(Þ[©C…¯55GŸs8>+þ+Ö4¯‡à_ ~±ïUÔ ~µo‰ÇîÆ;D56+ÿ#r;ZÅ™-ºYôY3mv¨i~;‰+ 8Ûé»slý"±ñ³Æ5ÞÑISt°ï¹¼˜×rx°ümÒÊ¡u¬X9Î$i4©é1¯zµºŒIùš3‡é8W6v»îXWƒœmÒŦ:Ð*osÆîŒ³aõ3ã™ÍúËa¹_烇ò™•Ãa:]§‹:µa¾1)ËÑÓÈO£˜­éSª~6wM½Æ× ^œÃÅ1󜕛‰èiwVþZÔÝ=yëã{Ë|fžŸLËáú <#úeú¨Ã‡²ylñÒz\Þ”Óµy…ÍiOÍžtÿTœaÑbBæ<.ö¬æºgž±Œ?MÖ²"®UÏMñïYõ¯Ÿuáݰoáp‡gôÇû&ċöÐN‹q“øº£^Nñ¢”>7-Îûz£z^²EÇz£6ùlã9ûÌîõ´[¯gµGŸ_=æ q&è­gvitΚ÷Å|E·bO3¨V¶óŠ1ýÅ&?ŸÁÑèAÄl·=£S,«êLŽ¿,ªòµdÃbV¯÷˜âcò²‡cÝôßíº}ÞW‹Ã]zâlœ™GŸ`͵ìwÞÖ"¯›úó Ï©Sg‹êc.ö4rS§fz)©÷5ê×’k:p?+¯ûqî½g¼÷Œ³럓ÿíláèØ·¿[¢ëÁ˜—Þ,¥ß »\œÒÿDœ×ˆã¡Fÿ8¤wjQvãÌ]îÖ]¿¦ç-›_ÙçÕê-ÏŸâMKêߤëvôkáý¼qLkq½$3¸Q5&z`¾5ÁËfÝ7ªŽ$ŒCz‰„^%oã¼y G|?NW-ÁK:ª1ö ¿ÁÍa±šQÓô‰91ãÛ{úœ$ÎîÊUž6vä:ƒûk´=.g%ÏiÖÛ×óòfyÈêíVøT»¼—ÅtM]™Ã±ÃèãhªÍ}½æÛë™ûúÐ\8Äã.ÞÕfÞkþNñ”¹ŸŠ34Õ‚Oi9h¶†z«Ç¹|¼ÏŸ†èExSYZŒß,ÿmø¶ï%ðª–Î:ä¦Þ3ñvSñ®WO½¤?iÕ3´Ë‹ýʾz»íû&ù™Rïçô»qN¤¤xÝ’µnâÙè{¦±v¬¡‡o%Œ±«®õ¸¦¢ÇÜÒc¬¹g‰ÍZkŸ©ÁÉzùï¶·šøZóöû˜{§ñq Ow£ÞàU…§¯ÐaZ^ ò1¤¾dôGêÊ/«êk6Ô°M±ëÕówò»²õ—xskœÏ‹ÿ-oˆ÷>ßÌÐÿœš1@oÖT§賌"9!æSâ³jß“åQûö‡E¤ÉóÚ9u<çúQŸõðüª:²Äªïm®tÚJ£x¸g'|xŒN–‘³ üh¦fq,ñˆE÷§&ÎqvJL:øH9<Özfh¨/Îü\åï;¸Öêù]Ö_ÖW®Ç^Ø7ijjœ&ÜÇÅ<+Ðá¾õ †¿ãÇPøaœ%ŠY…w ª GøÜI×ûr4ª> ßô]üvÎ=;¼¬]¼Å3-–£úÆž·a?W'Öež; =úƒ]ùå-£Ÿãî‰wBž1{X\íUCëôaƒÑoÓCŠžZqmF jùj¯9LˆUÑuêÌDœÁ[{#ÖÇ»1ÚÜòì]ýCžÖÆ™3ŸÛ‰3 ØÇÙdôT)ȨåÖš’ã=ê­ijÕßcôУ‡˜¦ë¢¾§ÝºæÍ§ï2Ä¢Mü¦ ;Þ ñ¦*®/Æ“½g¾y½V —Œ»‡ß‹Ö<«ÿ=2·=¾±ÓZLÉcI-‹}ƒ¸ò÷’qyö üŽáP«z”2Þ¡XwÓÇ2nÕ¢”Üí¨YUu°•·wÊo­üÖŠCN wÝ·Šk5¸6„õæ['Ýbº£Ÿ©ð‡CZëV­m×.³^l²rRÖÌ=¯¯Xöù oi‹žÇø ö\eóí°Æ|ÜÎxÞ/ÛáeÓ®]¶¶“±¾nš\¨esœ¢õV”V#ê<§_ìGqpOûíªQ‡å7ïEqcŸ§åðiƒ¾ÚðuE ?“)usÑØ-¼¤Å~¤—çý¾!ÏSju-Ðj·z—ô¬”lñ I1(<΀å$O›ü«›æÖxI+o^¶î¤ø¶Ù¬Š÷pôFrÖhœQ½QQ-¨Ðo?oIª×I±¨ª‹yc/©ãÏi¹Òä0¿jUÏ–Ä/©fÏúÙ€—ÆèÃÃIsï1~¿üdùÏŽx¶ˆe?éâ?Ãñ¾[Ü‹r5@Ó%ë+ÅY*ÿ^¥ãõˆ¿v–>jôÃ{<¹O˰éºQãwó¿ Mì©}›r<¦¿©µOëën{™=µ¦ߊŽÐÄ>×ø}ʼ†ä¶QMßÔ{Êuª_NÍeX,æ‚—ñÎP­šÓ;dÌuKMî“Û.ºiŠ~7úB¼ gÝá›ÖÓÏ«öi´?òÆØÔk6ñ±¹™æM‹â—4¯¼úݦ©•óJ\ïb­á€§­àÛœþj"ÎâùD“9§é4=¨ßÄd'Ζõ9XÕwwâõ$Íìò°6}DÊܬ±K¾÷=«Óšòq~§ƒø4©îí''çø³Êï㽞| |ÀSÿiøÄ¾¼­ãSçâÓ+¸·j1Ùæ™ÃqþçYÆS/¦ìaËô? þݼ¶Õš xØ¡ã]z ­ãí2Ý&Å/a~êe½9-ã[fh#- ´UïžA}רïÚL¬ÃØ-֟ʼn.·Ï7ãE§Ünmý‘g¿çøz}¼³uMƒX×Ó|Õu)µnDݘã§]4TÀÛ%ùÜ¥…e9kòŒ¬{çôJ‹jóÂó|5Œ—YÏM·Ysg¼ŸŽž1ü@¬òÆn²Æ„ž`F½^7θµñbÅý…ø÷r5ͧs|s[ìgÝÛª66û{Yÿ[¢óCõ¬è÷ =ÍΧŵëâÜQMÙáËÃÆœÄÉ¢x÷ÓM æã Fí+™ß2ÍLšã˜=Uw¼rí¨ùŽÄ;,±˜×«fégI­j¤Ç&ñïåçjAŸØÍã~£çwÁüLÒU­§øw_¦ðl'šÌ¥V?7oÝYsoÑÓÖësË47…¿½¼uQ7B;}Ö±îúšx)͸S«a·N»YyÇÁ2¯ÂÕõxçÆÚ]׌/Æm¤¿1¼MÄ™£¿—cŸõÎâû8¾0Ž7ãb¹èSb×¥'j2×-¬âOVžZ£¯³Ÿ9ˆ}¢øxr›ùÖŠ_-Ž·‹ÍŠz°£¿Ê›W /²_(àÇ”¾gÓuûöh;ÖP1ÇQü(Óôµè1Šþ®Q/»Õ¤nÚIÓí~³††·èrS§­oDüv¬½(¯‹ü¯ßu Ü­ÒàíŒáÁþtŒ×ß¾¯7÷ž—÷–âUáÓzÎÜ\„‚>yVÎyà,ïo‰Û{k{yš´HáÒ¦ï·ô±ø²e>kÖRKCÖ»†c­æ™ç ›qÎ♳|l §·ð¸(–k8SŠwÍøß«žÌàE+ŒÚÛt~;Ä{*ubR¯Õ'¾e9Zà“›4˜ónæiŸ²æÞ´øp¼_Ý¥ƒ\ÍÓÌ!¥ìAb¿e¿Þ¥ž×„ÏÈÁ”¼dõÝc¾›·¶úÜöy)zFšY÷sP3ò:…«]~_ƒš8ψs7½u^>æimœ†ôû)ã,Éëö+«88-;òÓ#ûâ5Ú–ç¾vÈ×r¼ÓåyC<¡•G7™Ë2¿«ZwޝW=«¢§,ð¢~^|äÚ–˜;­v»~†¬¨+t™Pã›ät×+ž;N7â”7—ù8Ÿõwj¢ÞÆ{aù)âÁˆµ7ñôn5s ß·ä°V,ð±G ·yB•?Ìâé²~£¿ªò>Á‹GñsT½¯w´r7j/ÞîïyÞ6€+ƒ4œá#iÏHý¡ÜŠá„Ÿîm¥Áù¨/ñoÄ<Ã;zñ1ç8â>§þ÷ó…:Ï[°îvãl›ßfð/gõ1æ¿Jw9.è×õ3Ý<¿ßZ»Ýwh_8fü~u»™¶b/.Æãq†©×œÁûýxomÑârµoZ{ÆúÄkÛXíñŽ7ü–×xN¯œÌÌŠŸ8vãD¯º³GgýöPøDëi}Ä’{¦­s ïëÌ¡CÏ»ˆ«}ú¤.u(É[šqr··x̾<­XcŠOîÄ;]Ï·Æ¢ùÎz^Ežäv…ÖÇ­­‰÷t«aÙ8wñœ÷oàE_¼sáiy>´'wâ’ÄÁe~>­jè’µL™ÇN¼ß•“¾šÁ¦¨•â¾#.E0jm}±÷‡5î ©~2ªæâêßìµ/¨VÉs·øgƒ½n‡ßk=sSßYü8󤑼õîáʘçNÊ}žcØçãxtdÌÞ<ï}ã|Ž'¤hzȳÇèqYŸ±LôÜL{íjx§çö˜gÞ\ºâܼè¬J‡õ?`|1ÚÏZËë·*®mŠ÷{ÆÚ $ýµ™ëš¾ëÀ:gqéH.|¿dqà÷I½Þ–¾}›×¤ô{¸‘Ö?­¨- â è´ÿž§•\ðÌzyäpœ7EÍ£‹Ü«[wôc<½SÔnݪö/Xß<}Ž›cGÄÁX{QKÔÅN½êŠ5Õé­&âßcü™¸ÒÈNfhk@¯Ñ%¾mq¦Ž³<¤ ž¥i«HG]®é4Αk²r‘ÃÍ*ψ¾ÇuYµt>ΈqÎç%ž¼Ì§‹Æmâ¹=¾?ˆw/æv¤ö×ë ²êØ:]¸®M,ènÇöé³–¯TÕ³Q|-È÷°%åsÖrq6*– ñ2zI¹hз4ÉÕ¢ž¯€g9±ß¬3.´ª cY?ésWœ+âUóĨñÎGsâµ5 úyl»ùìãÖ¤õר1C8¿¥/Û4Þ.íXKsœíñ€FyR¿Êò²*®½îÝ‘‹±Èéß êÌ6ïê‹}·<åäw&øÃ\ì⢕WîyF¿ëð#ç*qöïÁä!}¨9¶©køªÜ$–ùð°5-ÐÒ„`›™kí.Òú¶±{Ô„.º\µÖ{æ¹èuä©AL²°¢o©ç™GxTÔ'Ä{Ø¢ùÈe1ÎÍùo™wÈišÆZqkËüxó`ò©ÿ©^"+æ5x·«žQ繃rÛŒ¼¬Ûó·ô“Gæß$gµ®Û–‡Ùçš+-Mò¼¤ñ¢5"'ãæVVß:̧H«C»t–¶æIšh£ c-ÐaQÜWÅ{Ù8•ðbñY⯣z¸$äýÜã; ¿oˆÍyõÐg{ÄBœ;p*m}õ»b¾ÛÆHèY6i®Ìã&°[-âG»âÝ‚K£ò8¢VÔ™W‡Þy_gð¸Ùx´Ý!#ø•òìu\Û£9Oªw)ñ˜Œó¶Ø{âG£ÜtyÖ¶±*´8+8]^]Ü–Å£…7ÔZ_·à¸¦AN¦ñ¨–~ƒwSî·ž }O­æÌ1¼síŒõ.Ú³ô‹ÉŠ~eNm¨òœ~úëF¾ÏU½F/¾ òË6\YÁãUÕÅ}\Ñ£•äuɼGõ ›®ë£¿v>Yëš¹Ø7ÒJ’G ˆÍ2?Í›WÞ«¶奬o®š×p¼_›=Vo׬wN¿³"®kÁWýDBLÆøO?GÔú]yXx9š‹ÞV/.ÅèsÄ}4Þëêëùâž:s`}í‘küÉ™wU øi-þÖèjÕ´v½ÍVœiÉÁ¶8¤#êï˜ç¥ìñ´A®:qkŸ¦³¼rÄRjÜ>~ècjä8ïxð¶Ó>$cÍCz²)^Q°?žÔW·ó®îðþ•t¯{;ð ×5óú±n_¢ë1)éÑÖia'Þ½Š]9´€?KühÏšRú•EµaFÛWŒ©¶´Úï[_=Þ´Ðá¶¹á[Jöè{Gîj}¿b¯2NC9ë_㟠qNÎÿÖÕú¤yÔk\fÍw§wü=,ß3ö û‹1¯àHçµ ÜºXeìKrêj1–pmêÔ Eµ 'ÞûàF+_ÞôÌq¼+òÖ"ŸvM³ôȽëøÐáùikÛÿn?ù\õw˜KR=¨Æ»C9ß‹¿ñšŽÓÖ1E½r²ãYK|·Ÿöõ?­Á 5kž-»F˜Sâ5Â[‹ü£_®æä³I-ªWëFiwÒ¾­†æû­gŠVŠæ7jKq¶ûqš¢ÓzܨSË—üÞ'6k±·«¹ß0þ°w铺ļ]_tÍHÌçÚxͲ~z…_ïØ{ ê‰3|pVn·ÔÒ!{ß*^ìGįªïärÖº×íÿ×ÔäþÔ‰×]Á9>¾f¾3Ö2ƒ¯ÝÖ?fMx7I‡[üxÛ¾­—¬º?)G£úßugIOÕɧõ¬úíÞ8«ôwÿ¶Ôˆ:œ››:~V—†ð€àà„ß­5ëó ±_ÄÑM÷UåhPL&â]/*ð¦n|ÈóÔipdŒkª·žê¯»/r%=q."¾=L¯Z½àÚV¾žÇ±×~êè&ÑLc;ü1ŦøÄ¨q{ðb—ö·Œß®ÿØ»eýÞjœ×ŠmôSñîׇÍiNÍÏZØ1ö¢¾¢!öB¼xMÙ£õr¼ûÿ–8ËðY_œ5Ïáøwžµ&®_0ßyó^æK›ú‘ùàmœñâLôÙ¬Þ·öcÍC.×ðk‘†ìqùT‰¯¯ãçŽ8.ÆÞ×õ35ôÛÆ úñn_fxÍ(ŸßÖ»”ée šå¶ç=|m†ŠæÝ ®5aCvqnG«¸QQ#·íæôsæ1-vힽˇ7õ‚õòWÏÃÖÙ£GœQ—Gyx1xóœýäˆ}i#YÐ÷Íó§Iy(Ók‡\,6?Þ¹ÒCv¨=ƒòØ볟Xˆóܨ1v}ôk>Ïð³fqÑ×è{Õó!ó9ˆsè“ìmFù†œÖËå8} ª7»q†HÌ øº'yëß{EkÒói`2øÏWÔ#¨ÒÙvÔyϋӮØnð†IžÑöþOýÏÑíö]»èÞ±aìm>QÛœ:ØÃ¯’jÝmª±ýþN{^ƒüìÇ>_åyü=¥<·nyÎ<îø|•×õñýIkëÄ•ÜÉÒÏôW{®½Ñ¼ú9ŽKúžz¹h“«ãÑNšf§Äú@ ²ÑèMfÔâu±×˜rÞ«É.‹ë/œ»ekÀ¹½N™Ö‹KÁÚ{|·…g«tÒŠó=üiÙZ;é½™Ÿ'xÖ4‘MòÌT¼[”ƒ ZÝåù½ò»Ç¿ûp®Ù<&Åçg¦Ü“Žw´<¾EŸPû4u"Í;ôУò:bœuki×÷ŽúnëôOMqneÌ51l ¿R³ÇÅeV¯Õô鯯óúnÄŸQë2ÖŠß x¼‚wƒ¡Iþ\Õkµù~U.Kñ¾®²q®çÖâÒ¤¾-ë9»øwÒsǬw$ôi­íîKù,·Íñ.ˆ~“øR#×eüªÆþ“æå0ÇC–õýZ¬•ËæÐ7-O†F\Sg21ç8_ðû .eãœÝ¼'qv—Ï®wâ,•áI ­Ì#aíפø]»ëkùò!/˜‰šl?\ƒc…x' ?=ˆÞXÚÑ/ÍãRLêæxõíú|ÏÕÎU{ûIñ_¡¹SàÛµ¼³V\ùí¾¡Û:'å~AÎ=·Ï<Ûq"aÍËø½Æ'‡=³‹¬ÉÛVÔHcmÐìßšÏi>:û5ëëàñi×uàH™칯%Î7øÄLœAòˆ¼ËÇ™1ŸœÀÑYÏ[ű!ž••ï|éÇñÃè{yÁ‚ïšã¼—ÖñÅ-ÏÚSo:ͱ † ËÁ°ØMÈù>mnÊCŽ×uÙ¯–ãßø}“¾×¬»$wYsX3—9œÅáYº^äqÃz—¬k*¼®ž¯oêY úæ´ç'ÞDÎq­À[’tÙ¬Æôè%&å§Êƒ{âý©^é§[͵ïa䥕ÿtÈw'{y¤¶Ð½Óg%Ú\›=>6Ã7æÔŒ)ã·Ç;à8‡Æ£1ñÞ5×Lz^«•Šwsò3Ç‹ûõ"y=ÔïèºÅ/õZ¾õ:Y~ÓJ/ízžvsÍáZƒ~pQMé¥$ohð³çÅôbîz´ÏŽ¢ßŒ}(Î,òÍŽxŸB÷5ÆëÇ• ¼ê•ßNs¨“ƒ=5¦)öGökü­?[ä`ƒf[幃ÎZ¢orݼþ³GøÅ&/¨1§a9¯òýy7ÿ]ºj‘Ï:Ï—“&ë›»}êãÃY¹éÅ£iÏ™x‘yÚ«¬ù®S]jË ¾¶âg»{Úôpíú³&Ï_¤§^½W ‡õÐ% .«Y¯ÕD_-ÖÙb3â´*Nýáµòß(_ýø³+–;ÖžñÙ–uôó™¤5–ãƒx•h` 4/G©xW%&=´1Ê3¦øÃ”XlÅžTŽVåìðß=ר‡ûâ(v«ž7é³=ã£æ+Kb¾„'óêõžú_£FUq}—Ì£ æp£j¿>¬–L†_‰}¯P#*ê]’·NðˆQÞÒ§.h¿VÏÒç®ÝÁmz=Äw_'Rö¨U^¼.uúŒõMãEÅØ]t¸mݯ͓ïxë<¿hvÝ‚—â<Šu‹e£z<¥ï¬µ–A{Éú‘÷Iûð”~µIí·ñ™–Ã~Ÿ1Ÿ.=@‡šÏ@äß\ëäyO­IÈM2Îöô)õæ3§}º,ñ‰"/Zà}C8TŠwìjD…äè¤'Æè°KïYÆ»=ûýyõ¡È¯âì¦ßçÆn§»¾Ð{ŸÓtê/Zå¬>8 ½æ[£Ÿ9 Ù¼¼6èq¶Ô‚ŽèxM­^¥]ÿÚç‹´4ÆK–õÕ¹Ýäƒ zêÜ; ¹~3Cï»ÖPŽwv´>c4¥V5óà}ënâ÷ r<)†ýæÜ®î•¬£Ï£ÏZ«ü§Ýšñ8¥FÔ–±èeÔÙ£Øó©G›?óÔÿ%z"/OM8¹eܤµå+Ëväf[äm×jå5%×½8–6æŽz_ÔÿlÑ] •̽(·=ji§ù­š_“Z›ð}QÈð‰AÏÞöœ6ñlçƒÛ4¶&Æó44-'ÏŸò¼iy\±oëÂïZq¨1ßEýpþΫk)ñ*ãÜtœ%Éa7/é÷Vó®ÊCOí–ÇNu©hkü½Õ|ÛxËvœŸé §å±‡kÕÇ5¹^УfÌ·Y\†øÍµËE¿u—ùø>?Ú‰úCSIufÚž`׸«üäÀüö¬wŠ'lËm|5«-eqzèsoA?6&è¥ðì8§tOñ죕!µ§›†q¿ŸFvy`ûÛh #Öû®Û·¿©ŠkBM¬¨ýóï´Î!5aSLòÓoœ„ýͰ^oC\ᓽâtœÏyÞœµl„^ô«esHo_4ùlwð¾E¬Fô$ Qqh×ähÚ^-‰[ób´Êëc_…WÙèsãÌ.zqIÙ£ŒëÇwÌa§ûÕËzþÐÏççùÙÿsP¹OãÌÕÄ;¥x×aÜ:œkŽÚÆÛ×â¹Æ}‹Øë1Ûä¿Qœãì*Îâ=ÿ+Îë𲕭Òk½coŠž¿+Î}ên7íîÄ»=XRŸŠ®Kº§€› úoãÙÜÞ ÏÁåæ%s°ÄG âÙຽZ³šR'Æy9OÁ†º>&¶É¯tmx˜¹´©Ýi}OßšçñÑû‡›hlÒóæ;$ž½xÓ¯&ŽèÅšù]­çoê[zâßÏЭ˜uòߤžrN ÞâA zé}qNEå°#ÎäÌw˜—îYÇ,ÞWÍmS¬jí‰yS½}S§gLâÚ(­–i/Á÷3ò³ïàÄkÙ½%ûŠU±âÝiýzí Ñl^.†ôMýÖZ°ÍÉÛ¼¾jކ†q³…¿×Ç9€yôûnTÁës#פÅ"Wëæ´ï˜hc ²jðmÒyuäÄå·7ÄzS­š§ 5Èk³~th¨Íú²jé‘uÉÍ$MíØïÆ;!}ðŒyOÊ} g¶­uÁ|ì5fp·ÕgI1hˆý¬ñjí—ñøÐ\ûôÌu|¿ÈG¶èoJÿt$NýêQ­Þ¹SÖ9B§Ãž?¢ï¨ÅÓ6^²€‹iýDZÎzh´Ž&ò|zN_².žÍÖ5ïÎ8æ“£ÆÏ¹›Ž3:sí6ÿ ©?ú£‚Úˆ+-xœÅ£}F'Žm¹wL”Ôo.ýš1=wØüæíåûätÙw)œÉ¾³1ã^ÜÛPoçxé^Ö¨¯ 9Æ­–8ósEœ(ñ—yµh®ÛÄ{D/¶&®æÔ*Ƭsm«5ÎÈI ¾VÕø^¼¤Ÿöx‡æ¾*­í†_ÒØ*Þ­‹g‡:s(¹à½½~½>|/ì»>£ß;²æC:)ÑÕ ÿìÕÏ'ƒÇêÕ]ïª | _[yÉŽšÔMÇ+ò4/çÃjÀ®X—hsÝœš¬±÷Vâ\E®{¬kQ¬§ô+´¼ˆ?r·M{ÝÆMð°71nœˆW/{øÅ<5Ç;E~ÔÿvñÛýð@s]«qû…uÏNYwž5Ø›ö«­¼­FšâLB¼Ûôïe½ÄŽú±.W 4¼èK´[Õç¶áê‚>`ZÅ·køz³y­ëéjh§j>KÑÿŠm}ŒËK§Zxöjìõá›öµø¿-¦ ¸?K¿bµìÚNUé`PM(áûØ7xôËϘï*¸Ôʇ‡~È5ò¿m¯¼¥hT«ñîÀµ[±n9¬ŠAƺGí Òÿ*Wî˨#5¡ ç’êï†Ëß$ßj£‹1Ü’¯CuaNMΙ稹õZß´Õ[Ãbœ1Ë÷˜¼¤ñyÈs["&ú–$XÔdõ¯›ýãˆkzñmÆð=ãšëÈYÏHœXc+ nñŽ%ÊùYð¼1±­ã„6šO®ôò®‚}êŠáD‡kÇi¬6ÎFéwÝwMô2kœöØ·ðà ÏêÁÏ}¾µB_ecLñµ^ù]×?Žø}Z,ÑdÞÞbžzñaSÌwÄ´_ìZè¨äy;öƒx}„ç ñmê«[Â÷ô-úÄ%¾Ùcïz oûÆl‹¼xngÜßïGå¶UÐÂw'èoOL*8‘‰|à@%Ψ̳ÈGÒ¸‘Öó6ÊÝï۰άjJ­ë-zm²¶=ÜOãv£ïò¸·$OÃæ¼$†]Ƙàe¾UP—ÓŽ—Ó4[£Ïi¢½]ó[Œ> §F­¿] ×£W‘ß]ë¯3Ö–Xôâf#-loçp®1z2±˜5~§µ×Ð`7®4ÇsÕɵzƒ¯&婇WNŠCQý ~ÅžÆïü¬?6ˆkÌx»æÔÉ_2¼ @9±l—÷ú/Òú$?Iáêdô/jáoÏ«1 þ¶åû#÷eÄlOÿ´ÃS[yê ïYâi ÖÔïq|×äQ&Íu“¶zÍoAÓˆ{›ôŸÄ¿mc×z^GœéF?ûŸÆ6§ñ‰zf½jNzt¤çhÒcŒú{ŒçµÄ™ƒ=Q•þ§øjdĶ(7#z­ ÞΘόgqæ×F³ýø½.ë¸V'‡Ãêt1;ä,Í?Äí·êi¢>Þ™Cg êS=>æq³kŒ™ÁÝ”çLÅyšÜnDmÕÏl˜O™¿Oè{øÐíph ÍwâÝjߟäe‡r1-ÛzÆzµ"/obïðŒ}}Ëœ{ªr3bN|¾ÁzÛäg>Ψqx º¢–Èåªxï©?ÝjEŸÜ÷Å;?1«z~¾6Iß»b;h »üuŒ¾Ë<¿†¿áõ$ ïÊÃPp Ïb_èû&:8¢ÃÿË®>õOöíô0¿õ«ÕËð¦!ã¸fʽi~3¬Ï˜ã/ô<½2—Ô¸-}ÏŒk{xh«ß{ÔŠŒüµ‰CQï”ä òW¢¥61Úâ%cÖ° WõøÞ†GqΈgcoï^ú©†—âgÎ} q6m}#ü6‡×ýêëŒ9áCÑÞcK¾:pºŽÇ´Çž…÷ÔĹÍ6™Ë8=s֛ž†Žq9¯Î¬ânÞu»4¸‹+K<'I <#k.=æ± /YÃ/Ü—¿ž¶g ®Y nŠûŒ<6ªÉ÷ MqÙµö>Ý..³ò^ÖïÌ›W-,ˆý†~vk\Ó\Çûiëïµ7«ÈÓ ÿ˜P[ 滌Ëjd›{–q°•×µª½µ5‰³ÛÆ\´÷XÐ/Šñ>ÕÊc½ºµ{7\Oñ³u{’ûjq¦ÃÚÊø±/¾ë*¨me¾2ãû^XÄã!sX³zk÷ýF3Ÿo óÖYßÛ¡87‘Ë)ki±—êÕ+ÖÒ~ ?â¹J'¯àûx_&ßÙu?¡.j†¹Ž¸¿†ë¬k@ýIñŸ=6ê7×ñk1þýýÕú<ïèd#Þ÷âDgœy«{ëœå 5ügÜ|»Â×h$í¹y¼ÌÑPÉžmÚý­|²%Ϋ՚2î é6õä¸YgUþ\RïÛâý¯g®ãG¼œª˜{ÂÞ¿™^šøçßßä±5<½Sž‡xYŽoð•ã áD^ÍÛóÚéÿ6^еž9±éÖï¶ú®[÷h¬/»=§OFyîfœ‰˜Û‚8Ì™Ë íÄ„x3ÿÔ+°D†Î“æ›|‰ùãã|œµé¯“84O?“û}½L†·šó4þ¨U9sOêö⼇ ¸Ëó ´=¬Æ5{ÆþÛïŒÀ¶<­àD£<Õñ¯iÏZÕC´FMåùMx4Š øUg=U¾»`¬$ïšs}J=?›ø\달³V:yÞ&]µ™o† ¼èP|fp:ïpZ¬åqÖ{ŬɜzÔŒQÚ˜ÀÏöà–ŒðÍ„¼eh¨¬ÇlÀÑ_î»%½F=œÃiþ1j/žðÜ ×U;¨Vtâd“kÂórY¡á/˜Àß:yì‘÷.9j¢³zýJ‡¼ ü¿§þ¯ñ~_Ž=‹{Ç£žÉk}Éß:mÍÄ{)®/ò”19ž}CùŽ}Ž^i§×øá¼ø®èáâ?ÕćçÕÒ6½P›ýHF\:þÅXÆí¡Å¹8ãÅá.5»FÝÈ/ºŒÑZ–/{à ¯áËkzáE}Ü$ŸÑTb_mM;ê|“ZÃϺÚײuÕ™{Ƶ­±WçEcxVß©‡Iz^¿Âý]õlÏÄ®“y^ÏÏÈY¼›u_%ö¼æÑ}¼9µð»Þ6+×%ÜßçY:Zu݆ú6,Ûúˆ6}Ò¢œñ•)þ—7þ8Ïh2¯-ñjQcÆÔ‚VóŸÇVzËÈמš6ÊÇüÞbüUžÐ®Wê–ûU|iå9“|!ïPùö¢g6Ç;r1›Ç£|iájÿº\&än§ÛÝ߀«5´ÔïBølŠ÷ìè{WÕõ%¼nQ7Ô¶mñè÷ŒªŸ%&¶EKÓz€=Ÿ Å;¼© ÄÑuj·¿J‰Õ‚ž¸YÏ2ÿÖB-®£Õ9¹«ú;¥ï»ÇzpjCžÚÕ›ZªâqïkåÅöÙž9èÞ)ëKãÂnv‹WÜí‹m¯^k‹òq¶ÄK»ô›ž½ˆ#b8f­i{áZüÛâg‡¼·Ií*«Sóöl í•ó]ü—¯ Nòžœ,óÓN|i£é¡¨¿ü}(zî83uϾµì¸nÖÜ’r±I?‹ü¦‘¦õj‰ðÃ8wPKie’ï5ZCíl‰Ñ¶uÎè:Ì{Ùç[üqÙú7ñ?­§(ñÍN>ÑôRÏäkmqnÏÇÆô„Ë47«UåÌý›êꤹeùê-ËǶ¼ïÉåœNñ–}Zä Óbµïigš3æÛ¥^/é!Ä£jN5´PÂùîØˆÍ´zÚiÞ#úé .íÊiŸg/‰ë®ï–|¶çvbØ!®U5l$øÛ$¯¡£-œìŸ²ÜîÑÃŽz–Ä£xw§¯è—Ÿ–¨?jà<®¬˜[Y>Öi¾™‡¬ÓÜ ›£§ºxÿŽëU5®ìžQ뜠ÅFºØ‹w±±¢µ]ëHâ@£ü,Éy{¼¿pߺùö™wÎgyþ¹ûêØ«èùÄn_wB[ÖÛ¥—-ÈÏ4M¤yõŠœè˺ðxÊœ{é(ç÷±xçbkòt`­i=¡¸Oëúå¢A«Ø´©{kòP Ýè›úÄh·\³Ê;Úä1©ÔËK³×Äg$Þ ŠGÂØ#æÕñoÆÅ‹]½R-ŸMãê$Žñß}zÙÑק‹ÕʃØKËÓ˜þèŸ{ıs›Nu*ã÷õ~‰žæè-)ö%{…Ï_rý¸ŸËž¹ >oç9¸¿çPü«ÇØ}æ—çe|îm}W!z÷8ËF=hÕ˜õøÕ„§ju/öÇNî™o¯8OãDZ•¯vq«áxžQëäx?èÝâì'âÿ °øÜ§þ瑉}{œfãlñâ^þ9¦ž5Yÿ–ùΧ“¶Žô¯Cz¬ÿÓ%è|Ù=ƒÖß#vÞ²âš-Z§™q5dɼqzgø@¿¼•ô 9­á­ÍQ£ä0«eâ¬OjøÂ¸Þ¤•¯Õò¹a-éý·p«VžGÅcPí/gq=C‹óⱊ[µ®Ý± ¼9u™OÙ\÷ùùˆ:°ûiüèQg á_Ö˜×Ë¥âüŒçm‹Õ‚{:ľÙ:“ñ.äós´8®Ë›s _ߦßZkj±¦‚½Î¶þ´/ê›=`R¼Ô¿yœªÁŸvcÌëq¾Gôb›ñî@ÌjÔÀ¢9×àÂ_ó¯Õ¿LàM·ºÕ)†î]¥Û1vÐX[z«ƒ8ó‡.cdÅ6mßÓ®NÎàf>Þ{n#±åL4ñþž2m½ã<¡_æÕý‚õÍË]¯½â..͈Ө¹”ìQ3ô¹éæ•èWHâmAŸ7hîý|`§êÄ¿–/.Òâ2ßo¤·:¯ê 34ÙDkëË/ÅC 8WöŒIßYûš±êôs[jð„¾5+gügÐïó~/ŠuŽ>&âÝ÷«?5jkÉZÇ|^äŸmrP4·~upQLñm8Îý廯ïr1§/é±'¢Ÿ¿IsïÀ¯zqœó05w§Kòß…§;öšS41è÷uxÖžkÞµÞ5“t=Øåo½@†?ÈMU|ÆÍiðùÖg¬ Þ2(­ÑÐØ!LÊQ‰4g•Öäa@ßUR7Êüq€OÓõœº¼‰¯ ñþÂ<æéqŠ®WôoôUv»Ï3¼%cò¡&ëêR#zÌ­ÊÇÇâ~t˜c¯kÛåe‚—õºfÕZÚ­ÛýYaým~6ˆß&ÞÍè£I-1¤n%Í¥·Û|»*^ik]ä‰]xY‰÷OÖТGÛ6·"ëÀû&þ·¯æÌóä²øMðºNù\´Î¤1#ž3"‡Ër8ïÍY:·ÖþñæU¾ßjßZ‘ïì7ËúQtïÁ÷X—üªƒ#´¿}°ïkÕäqqhÐC<»É^8'žÛqÆuŠ/˜o·çUñq@§<„‡”¬e™‡ê †¢¯¤¥ÎxÏõõ~×égÍqVÒOžß¡Ûöœf÷å=ÇÃG­·™†›ôzE¼¯¡¯¥8g¯ ÍTÔ¾A{ê&þÓ­æmË]wyzÅFqoMíÎá5Å9GEÜpq˜—Ž›c³z¶"÷•¨·4\À>þÑ@çãô^Û îLéî?Ÿ¢9¤ùÑç6šÃªX&xä^¼«ã7c8ÚA—ýx:C‡E¼Nëù³zÈ=lÞ|jƒ—ž1aãü·Û¸K4ÕM§½öõÆL‹ÏŽøwÄ»ÜÞï~kŸT'7p¤ªNåÄó0üÏúè à»>7ç&¼ÔËò Eým“ñ7ÕÜŠ˜Ž‰g–ÛôY«æ²#O5jÓ<½MškJ?×ÉoöÝ7ƒûâÚeœœÔˬ#O7Ãr?Â#åp+ÎýÞÌ×–h  ×T‡Gxo¯ÖŒ9ë¾y|.è¿öøâ¨µôhá[88ƒ+ µù@mÉèåóö—)¾?ªWßÃݶ¸ŸÛìÉ÷ùA½1;Ôõm›Ï"®ìè)çùû¡\ìYײ¹¤xMÞssÑïòœq\Ž;À£Òô×i•8C—²q·õ’¾«åÏE+ˆËÞ¡6ΠՈ½à/mU:õ=ž±-‹¡'ÜÛÃá’½Ívœëún…þ‡¬cO®Ú£×¢µVÏìR/—iºª/7Ç-~6MC5úÎ~¹Ü÷·´²+¾=Á9z©‹w¯8»ƒ88ˆOmbµ}îôâU›~¢‚[#æÚdÎø¹JS«¼#£/í ãu÷Šc¯•õ*«æ¼¤ÎuoX¯Ð¡ÿT?rx°gÑâ·&÷|®ù&÷ÒN/Í,ðÆoYçãötó¼¢Îþ»JÏKêÌ´X­èÔÓQ}ã>Ý5ºgÅú­}-Έèt ×–i|P0ªŸšõÙÿêT:C·¡ñq˜ÅëÙè•ñÅgMO=ËÍö©8ºjîýêá¤Ü›÷ Þ”Ôź³ÎV=Zš'ð`Týê¥ÿM~›Ð‹,ÊÛlêsèqÏuxYÆ©á8O×ZêõÌQ\¢Ãfó-‰Û~ìgÕˆnýD¯ülXß"OI¨o)¹)Éÿ†8Íê׎|_ÑŸí˜Û ›Ç ß§¿ä?{¶:3=¬ü¬m†Fs“ú°´tÙãlát«8éñÖhmU¿¸Ã«êÄiC Ïó¾­eõ&ÚÆ­^פô9ÖRÀCúÐël™Ãˆgâ`Zo5)ñ]èGNðlS>6xàÝ%¬iŽæºä¦_~WÍ}2ÞÆù=ZwKÄÊ\â<\,ñcÞzÒÖ²ãïu>Ô}ÝŒ‰c=ަåeD¼ÛÕ•ö8§³ûèm1ØÓ]ù]7ß9sJ‹é*>·{fSœ#ÒÒnnÈ_'-Œê-ëÄeAŒ—øÓ¯]Äç}VAs1 ‡â° ÎïZϼ{›¬1¯fæé´‡:<¿AÍÝÁÝ=ºÉˆMUmh£—mÚî3è©âµ÷}ú²¥ŸÊQŸþ¹]MoÂϾ>qæ-‰èqo^¿Üäù{bŸ5nÎøË€z1*k86ïœÄtGgyQ Ú»´Ñx†q1ޫǘ›3/qŸ×¼yµú;cC4°«Nmó u÷mÐÞ,.MZ[¯uÎÇ{w^Qÿ¾EÏ•Uó'ùè6Tõ-uüªbc½f*Χ¬½™ÞÖä6«f§Í·-Î@xýœ¸Žàx§µ'­·CÞÒ8’ű¤´ñ—nÏK{ö”üíZï‚ZÛc?W—rìYã}0¾4ÐÅ(ŽÖºoÉž»Dâ»Gõ~îàÉ’õ•Å¢ÓºŠ¼÷wkùцûǬ{^,æÌmNÿÔÇgøX_÷ż‡¶ñïa1]—ÇFõqC<ûõOuñ¾LЩíQûëð»Žæ‡è"ÅæøÒ¬{šè3á™EµªSÿ6§n·ë»Æävß×é´!¼L]›Š39Ü4ïœÍñ…#=ÉÎNE]ûn9JáIJ}Ã0-Ìâñ>žð¯Ycmƈxåè¬dŽjyÐ4q oÊy«ºÑ¯iÅ~þ´gºžÕŒŸSêÇ!Õ:‡h¼M}nã4ïj–ŸæÿðÏæ #zŸ.u¤Ã¼kp|¿®™{Z½X–ÿ¤Ïwìa’®‰óyZÚã=|V«[ŒÑïƒä¡äú:±œ‹úéY»úýÙx÷BßKêý¸|,gPÏ9cþ#¾_çéIºì}¥¸ìÉGU>çãßz˜ë®{ÿÉœÕö}ã÷Å÷üdO²K?{å•7ô\Ï\4Ö¡zµK?‹<¸hŽ;z€".÷«ïË¡!1*ÒðOÝWÇòïâ>Ú˜0F+ÿ¨ìqäÃsö`ë8_”“ú’“´YÞ‘vwq²‡§ùPR­ŸV+2zÃa>_5Έ½é\œ§‰Gź‹x݈w+îëYµ~W¯Vó^u§U]šöyRí)Ñð0½ÌóŽ)÷,©]ãxXŠ=¿èäÅ7“x?ûüž·iÞ¹Î+GÍ­ÚâÝ‘Ÿ=¼p>ö¸6·Éè[é>þc£óÖ¿¢O®Ãñ½Oìô ­js-ŽâH-Þ­«i òÙÏO²8½`¬Iû·^zÜq3ÏÓ_Ö˜SÖ| g=Šyé‘&ñ§^|óæ:ŠCcÑâA;¨ò†‰Øgó]ùí‰÷c®_¦‰f~tÈ«å'þÂùÍ$¯ßU†=cÓçÍâÐb}Uœ¬ê‡ûÕ†žT+'›úêeÜ(Ê{*Þ¹©OU9\²†þ¸ª/£ƒìˆ¸ÐZVìâL…7Vã!Î]é}Ì>·‘ž»Åªòã>k¿M󬵯V=w§Ú³à³:¯ÊcƒxTùh{ÔUœ­âX™ÇOâLÖ:§\»a/3(ÇÃñ~Fûõ")Ÿmðœ!œé£©}q3N­ß»xÈ®µ4Óâ¡=LlëÄpÛzäuÜ5Û~në—f¬Q^3´ÒÍÓâŸClüœyšÛŒ¾aO­¨Å§¼¿W£þXsCÔE¾¶o»Í[úqn7ÎPèe4ê¹ù©ýCr3¨¾M·×–ø\·Ø$Õ‡9i6vÂï®­ù2ùà÷[|­fçyxüGR·ùËšy¤ô‹uqÎ߯Á›][ÂÉ1¾2—Þèùøš5m® Q£ôX;r¾iÏÓŠór0Šc)ÚO‹A#=ŒÇû*ùtýîö[Ï<í×ëwJÆkÄ…ZZk‰wöêǨ:8c=æ7ÁsÕ¶±ïS'ìIÖé§ LëŸÓáùt8L»}æÙA_{²ZýÖF¼ö¬kk’ÓójÃBœ—ˆÓ>ý¯ý¾gà\ï¯ÁÛe¼o£Ç¶8û°–^Ú§—1ê3ö ¿^¡­tÔn¹MóØ.œIŠéNtàüŒÜ$ùI+ÿlÀ‡>¿÷ZϨøÒP—Ímçê<Ñš×ý]õ_fã,™.¦Äm[>ÆìEþ®Ãßq{žzh«\)Ú{íÆy<KóåN5zÇ\·ðtwºÄ»[.êys³¾aŸ+r±%~+ò˜‰ùYÿ\ðP­œUóÔó-5¡jœ1ßV±ê²Ö߯é‘W\ÓÉòÖ½%Y×û»ïë­Aœ‡p½ÃµG¼y™.6ı[½;‹²øuàÉ*¨ð añî—~ýGN¥=gDí(ꦭ¿ Ö:­ÔûÙ£ôð«m¿Ï©5Åð.¹Ïó²<–õíÆ˜§ÝFõ?[ë|bPÌÖb?¦Ž®è¦ñfËþ퀟NDŸì»,jÆu~2§>¥cÏ*mú¥)km¶®=õ§Gß½¤Ž Ðs¯“Ÿ²yNêõöË|7!—›jOE=m–ƒ½ÏŽ\µàÙ†|äíç³êÞdœ‡àÃ2íMønÖÏÔ‹­OLëxÄ®þ-¥©Õ»µê úý=g¾‹bÛÀãÖh$çþœm¶Öð 9­ÿ%>¹ï¾è©ÿŒ//âuÁ<º­oÀß±×öÌ.ZoÛº¬ƒ6ñ«[^7ãX¿2Ê£»aH,ú>Kîés‡'n˜÷tœŸ{~U·Ì3¦ù䈜,áÙ0Ï™ã{ú—…8ƒ•›„8˜C³ù/ó™k¬¸v †Œ9#O ±ßljµ2©NæõP ¼Lú|Wï:ŒË½¼k*Þ‰Äû5ónçëâÝè³<™0^ôáêñ”‚Qƒ%1˜ˆ÷Ïb¾mìöx7k­ƒ¼§VŸXË:>Ä3Ì­Õs&ô5¸×Ìgqi„ÿ5[GoÔ2\-ÉW»5õÈÍ„Z´Šç<ÿè°êÁ­u—µ¨k¹iÁ5¿W|ÞhŽ r2®ÇÊZCJïÒ&«¼¬Wî7ĹOŸÐ{9ýÒ¶\j)Û<«,¾}|kÑü«æÙªF´ÒÞ¼x¯ñýª~¤Ã³¦Õ·©¨£rÒ{ ¹n’Ãz¾ÝH[Kò0®ÎUŒ·®ž÷ª×L© Y5 Å¾fI »p£ï|õekòYCŸ3¼4Í3 bßo­=Á|èÖÛ'ävÞ:òò¶Í' G¾0‹óesîPß7í?Rz‡”^ ;rï;ãÝŸõ¬¨ ½~¯Ø?ìÑö4N¶{Féÿ@î“jd6ÎÑô°E¹÷y—”Ô²œ\tFÒ“ìévãüMÏX6Þ£°æz9NŠw¸Å3gÅeÍ8®Ë›Ï¡Ïq§Ì7êqrÓ>Ëœ:ðwI¯2ì»0.1Éñ‚qyió¬ K‹e!ê0N¶ÓR“5”xx¡¯ñæ"möˆï âw=¾GŽìf=«[>v¶ÅؘI¿×ãHއ´Ç;GŸÍ¿¬yàᄞ­Èû‡Ô˶˜KÉtÎ8K¡MëËÉË$®U|ߥöe»c-ñ¾Ãß#Ñó›G6}VQÇ«îß5ö”ÅeTm>´Æey]SÓ&ý\Ò[ É_Þœ*ë飑iupKotàÞ:ZÜçq£zêmqIêFñr\lGÌ9χW}×cüEyÛ §>üXÃ$žµÐð¼˜î©MEzk§šo¦áu×õª1õÖ›‹óëx×B7Óz¨eþ0ioÔnŽãÖ•²–>ýTÒl[½IÐÝOXëæÔ¢u=^‰Ökè°"f³4¿Œ/½ü6©n–Ŧ1ÞCسnñÏJÔbzÛ‹Þ0¼ÏÚÍ.çÍ=#¯ût¶ìY»±×Œ=º}ߨZ4@¯czØÝØû¹¦[ šõù¡5äã]=?=ôw—šÞ®¦tLy.έy~QÝ]Pšðr&ÞGXWŽG$Ôër¼÷áÍMž9BC|e?4ûî87÷Ì%Zœ7ß^ñß4ç2nvÓà¬ØNÓýŽûÄo.&<{VÍß“¤üŠgŠÆºíA>£ñYþw >‰8ƒÔûõþ³8ÐÝ’½OZnóêÃ*îì«1Kjh=Žöð¤^PoŒVZ\÷.yÞیص©±ÍÆè·Önyßå«+jt9έiNm™³Lkžÿ°Þ4/[Ýø=ïVÍ÷o:ãÝ’¾®&j«Z³«ïãÏ¢õ—ô¥žUŽw~qß>¤¯mã/XÏ@œIð•¬x ‹ñ0ÍÄ1gìy¼•ÇeÏØÃ•IÏÈØ{¥åjŸûôÎ+ü»]N¶âßè#ƌѮnª‡ƒbÓ¡ÿÝùå§þsˆ‰VZè1·DìÉ­¡Y²êÕ²9 ÓÃZ¼Äéõ¥'zkÏ>0Ï”çÔˆé²µ×ølT¿Û¤f¯‹U^½§¿$ 7š{·þhA,Szæ^5«>Î.ymué©ÿ[¨ÄN×y^Úç{8™ ÃÝž•ùšÏ¤Þ£I?2¤žwëý¢þÉ%<ˆ·äqtœ¦öxcŽ—mX{Q¼ÚÅS¼çé¿'õµK<­ž)ÖãQ5jŸq†â\IÌsñŽQ?ÑK»]ÖXŒw!¡+¼=Yïˆ=n;o+èeÆñ§‘þûñøH­kÑ‹oXîñyÛ¾0Å/ÊšézŠž*z‹éxÏ…k3æVÁãŽðW1«/YÁÑœ8‰ùçm©I ü¥Wß4¦&ŽÊM%êkìYâß…¦å°ûK9Ú¦…t¼73ϼ™§™^ëš+»6öNzÁ÷ôÑË„ûú¬?¡‡YÐkê“zìE&ã½ >vó¶4ÎõXÛ]éâ\‘¾û4m»Æ+ÓÛVœ}âgÞdUœÕ Y_Á¸5æÕ€ÆL—誆Íó—Mœ™§i^Zo­q˜“¶§œ•¯}ZžÁ³¥x¡/íÁñ)¹KnÓ|eVã=+ŽYûÿnãšm“»Y53/7å/sz” OeólQg—ÕÊi9hzµÄSÿqq2ës>7(¶»þÎàß.èõ}ù.…·?kÌ 1ZñÜõ¡Y¿˜Œ}˜ZX'ÏÖ3¡îuÆ^›Ç•=gCÍZÆ¿\œ]àMÏfè,Oï3ütUNÚÕêu°N¦p6cŽ |o’û²xÖÒü„ñëq¸IO·Ç{K0ÅoÇÅlœŽVÅegÒq oþn§Éž³a}%½Ñ‚üõ}-ÍãbÊ3§øF·8ä>Eìä´¿ÖÅiT–Á™Mõ£I_U«OiÓ;Ԉ͸ëÓ<´›o D‰÷ñbÓͳ z¤fµdܸµ Á€ýÇ~Uı[ÙfM5úÅÕ?+koˆss1+ñó#µèÀóõ­Ãz«dœMóÂau¾ZxGŠ&q¢“·¯ÄY¾ž¡U¼zÄkW fŒÛˆ‹ãô²Ã£¶ì•*rÓˆ#kò˜Ã‡^üËE¿J¯köë´;L-æ¾Mï-Áë7WýÁRìKÄiB¿ÒÆkZÌuNï>¢ÔÊe½¹v†Fõß;üÏ/â‹_ɼ6ñyLŒ†=ó@5¥§Ø–Ë&ýX‡5oª×ݱ·ò}†Æ÷ñnAìÚxó†xEг¹ßÛ clØWdð¥ªö7Äùï‹Ñ–{vi:-×;±gÇŸ„1ZÍ«(‡9¼¨Åí!ÛGÏ êå8oÚ¿q}A/ÞÉ'xó¢\-©eõ| –WÍZߤßĩަwÄ-Íëšyq'LD¯k~«´˜Ç.©+ò^‹ja³g–Œ¿…/eŸàûpä@oXg#t¶ŽG]ñ. ·ÚÕȵiÝçü7ÿ†ÂœÊúë>~Ð'§KrÒªæñÏ:þ²„t<ËWÆÅµ^︮¶ÐàÜÏãb˜ÎÆ™‚95Êç”ÏæÛû“þ6ÇUœÍèaVùT —vñ¦ªç^æÑ=b‘ ÃnfÔ˂ڳ©ö•hz×Úwx¶õNºnÖëãì JñŽV¾†Ä¼™_Nú}9΀<Õœ×=£KÛE3rÑŠ¿%k«ÆYªug\ÓÅ[w­i)bý–XååýIjÕu5¥ÎºÌcN|Ö­s]œ§_Å<øÕ˜‘˜è]šíI2ò<¡Æ.©I³¼¨Éµ‹r·iÞÓücN½èU— ±wðÙ<ÖÄ»!nÊc!Þ+'‡Ó­|£Åï{Ö¿Ä‹÷âœPïXäùxŸŽ—澄ÃI1ˆ½¶žnMzÔÊy{œ:ZÛÄóbœeÇY˜ù×zþ„:º+&Ó8±&ŽI\ð÷Fôô»Î/Jq)V;ò¶-o)ÉM…^Fhã€k­mÙßKq®®·?ëYÏlϽNnoé=úðaÏêé¨J×;jÛ!+Èç*¯ÜŠ3|O[KÁyú¡¸ÔEÏü¥æÇc笷¢†Ï‹Ç¶Z:hžõjÙ$îf_ÌÜ“á+ò7éYb´aíëÖÛÊ«qÄf,f;ꣵ4Ø»¶‹ý}­ñÁ¬šVRsÖõ> ¸3Ïc[õ ¹8Û×¶ðy9+Zï,¿+òáZkÎÅÙ®~>µf—‡tgšnÚ­aÚ<çù_OœOÊAƽc~oôsÑuKQ÷ÝS‘§=y\×£•ðm G:âý”¸4ÈâkúÅbÇ<»<§vvyèŸümE ßgÄ|j˜ŸMãà¶úPç9êç,çñwÁÚ¦Ôá6žÖMïÕOzêB “ZÁ·ñxoâÞyߦ‰qýb# xæÞgå­IŽæùFUìGhö@îgÕ¥ÉxWçú쯘ž$k‹zÏ”ç´ñÎ*Ýî‰mÕÜõ„YÏèàw‹ÑWÀ²º^Òç¤ùÏŒõlÓñ ØîÆy»gãl º­§ÿ®ÿ´«ßu<ªF?5)Vž7* 8Ñfì%ÏÞÃËœn>°I#58t¨þ4Xó þ~ƒ§'å~ÂÒ¸{„;Y=Íâçx ¦ôeG<³È3GèkÓüòrÚ,Ÿ)¹«Á‘$ß³yÞ2(¾#¼}?fýLê{Vð £—KËëd¼¯ó=ñ9÷‰Y‡z{š£:\1Ö´ÏgõH½:TOFxz7n¯ªyYþÐD¯íÖšöœu{ëI÷ïòÞž;ÂÚñ¯·ëìY*b¼­G\õÌ-~°-®ÆÃÇ=ô«Çcr<&·ë8² jvRo8ë¥éíОê9ö£Fãf…'íàã$x\bÒ<ÆõÈ9u®Õkô&kêDE_¾"?yk¨ã“¼¿Ñ³‡hý‡õuSø4.o½ÖÚëó-gã}UxßZæ·5rÕ'¶Cb™óÜ:ùž¡£~ÏÚãG»ú§ãTp7iŒ~ÞŸÃnÌ·ÞÜèt(jú’•Ó’8vñ¿kkŠýŠ}R“<Œ‡.\3‰C­ú®žx‡å÷<íÁá ºoß±[²žÞ{ïGâßaèφõd«Ñ÷ˆáŽ^²„‡Sb< OÚÅ·}Řý妸öâû8=ú™pM mOñèýop >¤ô Ñ7[Kž>äiL?¢†µê xu m”i»ùÝÄ…îjõ°ò±ïpÍ¡ I}LG¼g£ÿ¤1çñ¸UR¢ý{•¢gïÒí ›¡«Fž´/‹¼¨N(è}7òž¯îò±Q5}’ÏÒuxlñ­ÏäÝ+ôY‡7Ór?‡›ãjX£œMyþ°1¦ô +ñÞÆ§yñ ª#CÖØ‡ÿUs)óžz=UGpR²ÎÖ;â÷:ßO˜×>Ï”ÿ¤x¯ðÑ oiƒqëé–×¢œvZO/ ,óÝ9ýÛ~ø“çµò„nºÂ“!ÜËÒúºvÑt•ÇäÄ%Í*>߈sã6Û­á}|ÖâÑŠ¼UÌ3¡>.è²â•á3ݯ$&±7Ãïu÷OãïQœOáîŽæÍOx%9n»z×Wq8ïäi5ÞË}=NZë*¯Šã6/I¨÷{¼§S<{JžúÕ´65x-Þ„o™_—¹Ìé³zŠFñ/Ò^ø”<£“Šý–=òŠ|SÞGä¡ ^Ûê÷ˆ~¬›FçÌ+çg­|Õ¸fRîêÝ·çr?J+µño.ÔNùéS+‡âÌ·†ÜÓ„›sjt;ï¢.9¥›RÔJטS;½¤øÄfìÕ‚!ûÉ>¿÷Zójì“ùuÖ:ŠrÕ£Ÿ¯òŸZ1Íð¿¢xT‚çÖÑGËGjÊÀ‹ÄBLFÅ`TX·Y¼ê§·ŽØ›òÉ.ßµ¨))ú9‚Ú¨UbÓŽ¯ñŽL¼êøÍ€ù¤ieɘ]òžâu;8´‹[Íž¿«iQ»Ì1Á_wÄ¥NÕ¤ŽåÝ—ç¿Eq5Ï]¿xV§£æIË4Õûrh¬Š8ÈÍžÚr„Sú µh Çì†xçåjo‹æ0fÜAìæAër¾,møÛÁ«Úcoí9yã¥ø}™¶úÜÛo=Çœuu™g äÌuQoÜ‹_Í0„³¾6^èúœÚ>¯Æfp±;ü“¦FŒ·çæPçÚa>Sàë yêãыָéÚ.^;kœ)õ.C§y¾œÇVޕﵫwÆy|§&äx¿;âü/ú.Ï]óFó›S'Ö?Ó#xÕ¾ÏêÑäfˇ=cZ ÉÂßóò²@uÑ×òŽnù®òÛ1I«ÿûx¾+F{Ö{dOÞ¦Ïh§Í&ãW»‚Ÿ t×hž[8²=¼±ÝÓ%Ö‘K=°§ÚÁx‘>¢ÞõëY¶Õ¦v\Jò¾Õxoï£ï7V…—q,©åâ|Þ¼ZäuÚ^{MÿÓ &·«9›jæ!ÍäŒ?#vûbuï0yd§|-D?#ïSQ§¬§÷Òø”¦á ^<­‡(‹QføÈ>îç!Mâ‡n9Zý>.Ôÿ…ت£ûúfœæ­CÖÔO—}ñ¾—…Öyú\ÔQµ¬Å:Z"¯jIÂe×é®Ûu“t8kîó8Öÿ&@2ª×îT¦å#e-½â7€[ô05†—¬#ë3ò¼Í+ î1ßdh…7¶ûnYê×Ït†ïñÈ–8¯å+¼wÈÜ÷å¬Ïž9Éó›åaºå¶öÛãl /ÓêþŒ0,ï ø5mÜtœ5[J…V7õ˜Óúœ%¼L™Ó–îðé²¾bZlGÅxÏ37åbÈ\Œ9ÍCöi±^5ˆŸMG¿'öhs®Í›WÙü[peEŒSöõÛüoŠ—ôG WKzñ¤œ/èq’|¦ªÃËÜÞW“qFF'cñ¾>ö†4YOó³ö4#ê~Ú³²â³€Cá¼®"~íjfÉç;âÕ§FŠU”ËR¬¯ÖãlAÿW寽ñ.Î=õzë}1H¼éÄ«Z—Ó'.«¥8oiß×G/D#;æÃ£ ¾Û,?stÔ­'ܳÎIÚëçÏéèA]?¤·ð¼zñ›Ò'Õ«sâ7î³Fü›Ä¥=|ÉËãŸÝ7^Açõ5ü­vÇ3=Äš¬iÅ:鱑?ôÆ^BŒVÄx–óz•¤g̚ϸ|4ðîEÁ\ÒÇ ZÇ¢œð™CÀ±!×ò•†È¿ýpž¿oD ¥¥Eý̸}kN>fõ•3bÙƒw«öþmöŸ£®[ýrãàÛßßP³Ò¸žà3ÍÑ—áZɳjñç@\†ÌñPì'Äv3zeqŸŽ½½Î©¿«òÙ„ï“þn§#Ÿõ«ñ99iµž¬=U—ù4Ú“®òØ4Ýä»x´.—»®Ï„&탆ՖA÷nÊÉŠxnxÖ’u®§‹¯ ÿ©gÇÞ"΂ø{*Þ9©ÙÍr3(ÎMÆ>¢‹#k©1×œš¾‚ íb\²–þ5ïápv:Þ-Z[2þ킹Ô|±yÈÍ‚ú8î™5b;/6±ÚÄ×Q^ϛʸ:ÏcZ}×"¦¹oÔcµ«‘]úç}ÁRìÿâ|ÔûöGãzŠIc,àqîô˜Û8õx7g}µñÞÕž¡Ä3·¡K3:B§u¹;öQë ß9Âõ~kÛ“ßÃøúŸ#×úáÚ8Ÿå™rÖb¼>~P0ï‰8WÇýAž0åº9Z¢íZÏöY“yMèúÕ”|¬‹gõˆS½úÛ…×SâßïÍp² —W]_×Ï›–³I¼ÛÔN˜K†—¬ZÃŽ àV}œÁ«yzâq~Ý'×i5t‘žÚùM—8­Æ{Qc%p¡ ß‹|°‰†qqCßÖÃs{¬«„ÿû4Ö¢>¨Q]b×ïY Ö¿ŠKݼµ.Þß‹ÏO™çMI×–Õµº®òºVœéŽwãjè‘>lížúÏK&ÒÑËÝŸê¿U?³â݆ã-Ñ{XsU/1Œ 4ØÌgîo1îºXUìqwyR·9vÒKŠ'×è êã ”öˆÓ„µ4áNÞï\™×ãtZ[½uˆÿ¿ÊÓÑ¡ÕñÆŸ/Yoޝ.ãè*¾t[߸úµkímêp·ëºÕ‡.cÍÊw Ìò¯•×”gËÉY£½à¦{#ß¿gbÜå¾*.wò‡ ü]ƒ”ܯÄ{\[Ö›Èј˜Mëßkqh˸µúö\XŽ÷Æi§ÇYkš·öZ}é¡ÞuXÞV>MN}¶ËCÇÌ¡V/²mn)ýVܬƹ..ñ»´œ Øç$ð`MÌ»ô–ecwòåq¼ØåmmøÔÈû7õ‡æ9(NË<¡Ë5S¸—õì>ž<.þéxç©î´ò³1¾“à«k¼}TÞr|oOljùò0¾Îè% ¼fgŸK?Ô2á§±–į¬ÝŠ÷b]‹WSá‡ê@O(Šé ~ÍEO¡à§yQ™gŒ¨•s›¡£>¹¯èÍ&ðlJLÅ»×fâ}§>w…všå½ˆïi<Ýÿ>Úĉ4ïêòì,Ýô¨IÜâOô<¬7+è™Ý»ƒ9÷¬ËYVýK«'Æ©ÇÙ OÛ2ö&Jþµßq¹Ë>6{wÜ« ~ÔM— ž_2ç5ÚÄím¢˜§ñ¢œlé±òÆï½TŒK§+jÌ_ïã3s°k­%½|ùv¸¯¿ÆirçÇ¢¿ãëj_WšÌ³ß÷øp³þeL^†ik]Ž»xEY”‡!µ¢ÿ³jÈ:N,ÓY›u÷Ø¿ìú~ ÞgGm.Å­6¹Èãì ýuàúÜ.À–ÚQÓúÍÉÝ>`‚wäårÔ\K8½‚«ûb¿‡çSüfGß׈+]Æš oĽc5¸fP‰ÃÿþxGÊOûùò*~nè] jÓ_(É÷*e}ÖW2&®sg:>Œ3Íðy>^Ï-½a;NóÛ´z‘ÓÿNÆÞÇžd™&öðl–f¦ép8Þ‰™KEü·Ôô’g§År åtù…òdN ¸½n¹x_%o ¸·dͳb~½t¬ƒïì«WKÖ¹Æ×õu‹êZsh“&wõr bѪÏÂã=ãLé©ÁgU¼Ÿ—ƒ6¹éÂ麗â“=Ù¾ôÅY¹úHŸ;b¿Óï £Vãu·ë†øsî_<‡×¬àh ïÉñ¤¼š±"·ú€qqiÐ+.Zë.ÖÑh^­í㉠áÖ²¨·9âéÓ²äù­ò4hìè'¢Ï㔾2Gëb1ƒÃÖqˆ'|³×œZÕõ2=fŒ¿(&ƒž×cÑ%£bÕ$ƒr¼çzšqyïà ¿ïê-èdïçø[Gì¿åîÏ5ë%çbïà÷„¸öàϯËÒô,-¶ãXÎnÆZõSmÖÒćÅjŽç­¨KóÖÓE¯]òÙFûö Y>·Á³ó44a.uèPœ×b!^%^_gì}ù)àØ¨÷Gí—ãM}áo\À»y>R;5îŸÃók>ˆ÷9GÖ%6«<¦–/×Ç;Eëè1Ÿõ'M—#Ñ Û/o©ÅE{¿±èw¢W¯QšÝµ¾~u¬–?·ñõ ñŸ’ã:œJ™[Î܋ƭƒD2Q÷Ô?L½ù žó.ÿô¿?lzÞsÞõ9³Ïçç¼IÅÿ]ñÿ¸¥þíŸóüê1ÆG_>ö>þ|ÂÓð‰gà“¯ŸòˆøÔk§Ý|ú=ÀgÜ2>ó |Ö#â³/ˆÏ¹f|î%ðy'ðù'ð7„/àL|Ýc‚¯?'¾áŠñW„o:ß|OñRø–kÆ·^1¾ý Àw\ßùˆø®\ß}Ïð=wß{Kø¾kÂ÷ß3üÀàï~èžá‡ï9~ä üè)ø±sàÇÏÀOã§.‰Ÿ>?ó˜àgñs§àçï8~áŒ_ºbüò9ñ+'ð«§àמüú üÆ á7Ÿ¿uÃøíSð;gàwo¿þà ñG÷|ñ§w~NüÅ ã¯ðŒø›3ð·×„¿»"üý=Á?žÀ?Ýþù1Á¿œÀ¿Þþíüû%ð—ÀÞ_$“÷ 5—Dí £î†º$êïÒ7Œ†'¸4šžÍ'Ðòˆh{ Ñ~Ãè<]g sº¯ Ù{‚Ü)èyÀnù+Bá¥{†¾ ¢ÿ \#1t;A”Ÿ†‘;‚Ñ;„±30§`ò’¨<à)LÀôÆÌîfϹ;ŠùKbᆰx –o+WŒÕ{޵GÄÆ=ÂæÃÖ`ûψÂî ì=öqð˜âð‚8º$^æ1ÀË>axùKâ3¼âÓðJw¯| x•Sðªxìðj·„׸gxÍÆk㵯sN¼î-áõ®¯Íxƒ à oot xãx“GÀ›Þ1¼Ùá9§à¹¸wxó;Œ·¸"<ÿñ–WŒ·zD¼õnos Þö†ñ‚ÇowMxû'ïpA¼ã1Þé¼ó®ïòà]oïöˆx÷{Š÷xBðžˆ÷º#xï â}Î÷½f¼ß#âýOÁ^!>èñÂÇü€ÿƇ\^tA|è-àÃŽñá8qÍøÈ3ðÑÇø˜'{Åø¸3ðâkÄÇß>á |â)ø$øä+§œŸzEø´ÇŸ~ƒøÌ+ÆgÝ|öñ9ςϽGø¼c|þ_pð…)¾èø’kÆ—ž‚/»!¼ä†ñå¸|ÅН<_uËøê3ð5·€¯}ÀµàëŽñõ7Œo8Æ7ž‚oº£øækÀ·<áø¶gÀwÜs|ç-ã».‰ï>'¾ç1Á÷žï;ï ñçÄ^?ô€ÿÆßaüÈ üè áÇî~âœøÉ;‚ŸzDüô-àgî8~ö¸ ~îžàçOÁ/Ü2~éŠð˸~åã×n¿~~ãð›O~ëñÛO ~ç üî’¿÷ˆøýøÃkÂÝCüñ.?¹büé1þìÉ?¿"üÅ9ñ—÷ }Åø›cüíãïîþþšñW„¼eüÓ)ø—ø× àß#üû5à?nÿy6j’Ǩ¹G¨=u¸¤nõׄôBÃ%ÐxÏÑtGÑ| ZOAÛ¡ãœè<'ºNAºï²OrxVˆÞ§¡tÍè»%ô_ÄàcèÂðþågÁÈ ŒÞÆ®W€ÉcT®SW„éÂÌ a¿,œ‚¥ bù7Ž•gÀê3`í1Àú)¨ž‚S°uؾ v3ìžÀÞ±Í8xž‚#x™ àeŸ¼¼ü%ñ Ï‚W¼f¼Ò ã•ÏW9'þÏ ¼êxµgÁ«?^ãšðšOÃkÝC¼Î9ñºW„×»%¼þ%ñÏ‚7¼¼Ñ-ãÏÀ›<"ÞôwovA<çðÜÀ›_3žwMx‹<+žÇñVwo}ÞæŠð¶Wˆ\owÅxû'ïðˆxÇ+Â;ÝÞù ¼Ë)x×{Œw»Gx÷Çïy Þë’xŸ{†÷}‚ð~—Äû_1>àžâ/^^t >ô|Øáß|ÄøÈ{€zLðÑÄÇ\>ö ÁÇÝ2^|ññwŸðà“®Ÿü€šO9'>õŽáÓ®Ÿ~I|Æ=Åg>Fø¬<…Ͼ"|Î3àsï0>ÿ¾àšð…Ä__rEøÒœŠ—<àÜøò â+ÎÀW^¾êðÕ÷_sËøÚÔ|Ý9ñõW€o8Æ7^¾éŽã›o/='¾õÿ ßvA|ûøŽSð—ÀwŸï9'¾÷šð}—À÷ŸÀ<à‘ðƒÄ?|‹ø‘[Æ>"~ìñã7ˆŸ¸!üäñS7ŒŸ~ð³'ðsWŒŸ¿büÂ1~ñ’ø¥SðËÇø•cüê=į= ¿qEøÍ;Šßºbüö1~çñ»çÄÿ}Àð€<à1Çÿ{Lñ{'ðû1þðñGˆ?~üÉ#âOðØâÏ®~Ëø‹Kâ/¯ uüõ%ñ7çÄß^3þîàïo ÿpKø§+¿^þížâߟÿqüçÝGmâ DÍ ÁÃjëîR—Dý‘¾ŽÑô€§Ð|-çDëÑvKèxÀGçG×=@æž¡ûŽ"{¹è¹#(Ü3ïzo¥ ¢ï’迸$s ]Ãøo”/ˆ‘+Äèc†±{†ñ{„ ˜|T® 3O8fOÁü1n ‹g`é°|VNÁêе3°~ÕS°qŒÍ' [—ÀöÃÎ b÷ ÀÞ=Çþ5âàYpxÍx™{ˆ—=—»f¼Â)xÅÂ+=Axå;‚W¹¼ên ¯vGðê7ˆ×8¯yOðZw¯ý˜àuNàu¯ ¯w¼þ â noxÍx£c¼ñ1ÞäÞôgâÍŽñœxî%ñ¼sâ-.‰çßA¼å)x«kÂ[_osÍxÛ{ŠœïpA¼ã®ïô€+û\ïzI¼Û[¼û-â=nïù„à½îÞû·‚÷¹$Þ÷ÞïŽâý¯ pA|àcŽº ^xOñÁÏ€¹cxÑ-àC¯vMøðÆG\yOñQׄ½$>î/¾£øø[Â'>ø¤øäœ‰O9Ÿzø´KâÓï>ãgâ3ï>ë Çgãsî(>÷1Ãç]>ÿñøo|á9ñE'ðÅ7„/9/=_v^rN|ùá+NÁWÝ1|õãkî9¾öøº;€¯¿¾áwßø€Çß|Exéñ­—Ä·]1¾ý7‚ïx|çỞ†ï¹ ¾÷Šð}ׄï?Æœ‚¼büÐ üð‚¹%üè%ñcW€Àc…Ÿ8~òŠðSÄOŸŸ9'~öðsÇøùÜ8~áàOÁ/‚_~üê9ñkxÀ-à×ï ~ãñ[OÃoß2~çðoÿï’ø½cüþ®pøâ.‰?¾ø“;‚?=?;'þòüÕjÿú·‚¿¹‡øÛ{Š¿»'øû;ޏgø§øçcüË9ñ¯gàßNà߯ ÿqøÏûºÄ‘|Àÿ@Í Ô^ꮩÇõ÷é+FÃ9ÑxÏÑtšÏ@Ë=AÛ%Ñ~‡Ðñ€ÇçDæiè¾bdŸ†Ü1òÇ(<á(Þ0z¯¥'}øoôÃÀ=Äà5cè’¾F”ω‘'£w cÇ¿%Lž@åŠ1uÇ1}NÌÀÜÀü)X¸b,ÞS,= Ë·ˆ•KbõiX»$ÖŸ To÷ ›W€­S°} vÏÀÞ)Ø¿\!OÁÑ=ÁËÜ0^ö†ðr÷/Ãx…Â+^^é1À+_¯ò„áÕn¯q…xÍSðZxlðÚ§àuî ^÷^ïàõOà NÁ> Þè1Æ? orExÓ{„7{D<ç†ðÜ3ðæOžwoqËxþcŽ·¼$ÞêÞú¼ ¼íÁ ž`¼Ã ¼ã9ñÎw ïò4¼ë-ãÝnï~Þãžâ=¯ïõ˜à½OÁû\3Þï ÄûŸpMøÀsàƒ.ˆž>9/:zÅø°{ˆ?qÍøÈkÂGã£oó4|ì-ããNÁÇ?>áñI׌O>'>åŠñ©Çø´sâÓOà3ŸŸu |ö#âsNÁç^ŸwŒ/8Æž‚/z|ññ¥×Œ/{Àµâ%§àË/‰¯¸$¾òžâ«î8¾ú |Í%ñµWˆ¯{Àµãëωo¸|ã |Ó-ᛯ/}Àp'ñ-À·Þ#|Û=À·_1¾ãŠñg໎ñÝWŒï¹b|ï%ñ}w?p?xMøácüÈ1~ô’ø±sâÇŸ†Ÿ¸ ~ò1ÄOÝüÌŠŸ½£ø…Sð‹w¿tËøåÀ¯Ü~õ üÚ#â׿qüÖ#â·ÏÀï\~÷ Äï="~ÿ1ÇãSüÑ#âŸrGð§gàÏpëøó[À_^uøëÇsƒøÛÂßãï¯ ÿpøGø§{йaüë9ðoxFüûÅ< ÿù¿‘Jž@Í)¨…ºK"uIÔ?àBH£á‚h|LÑtͧ åh}À•¡íŠÐ~:ŽÑùˆèº%dŽÑý€œÙs"wôœ‚üþ ç@ñ ôÞC”®}ˆþS0ð€scð`ø’(ß"Fp¥;ñcL<à‘P)˜¾aÌ<à1û€ÃÜcŽ…3°x‡°tKX¾b¬^Ö®ë'P½lž[·€íÇ;w»—ÄÞÂþ%qpqxÃ8:ÆËœ‚—½B¼Ü ¼üx…ǯxI¼ÒÅ+ãU/ˆW¿F¼Æ³à5OÁkÝs¼ö àuŽñºgàõ¯ÍxƒÇoxN¼Ñ-áï9ÞäãMω7»ƒxÎ <÷’xóc<ï ¼ÅÓðüSð–W€·ºxë âmžoû„àçÀÛÝ2ÞþŠñÏ‚wzÀÿÀ;ß1¼Ë3à]ð¬x·c¼ûcŒ÷8ïyŒ÷º¼÷ã}ï Þïiø€Ä^^xOñÁ7„y@êE—À‡^>ìŠðáðÀGÞ>ú |̆=ÆÇÝS¼ø>þñ WŒO<Æ'ÝS|òǧ>à¿ñi§àÓÏÀgœ‚Ï:φÏyñ¹×ŒÏ»f|þ á o_tŒ/>'¾ôŽâ%÷_~ÃøŠÇ_uÅøêc|Í-ák/¯;'¾þ➆o¼#ø¦c|ó1^ú€ ã[ñm9¾ý‚øŽ3ðˆï¾¾çŠñ}¸¾ÿ1Ãã¯?r~ôgâÇî(~ü üÄÂO> õS7„Ÿ¾§ø™{†Ÿ='~îœøù{Ž_xüÒ%ðË7€_yÀ¥ñ«÷¿vAüúã7ž†ß¼&üÖ üöñ;ׄß=ÿ÷†ð{w¿ÿ4üÁÁÞAüÑ)ø“ âOo ~ þâœøËÜKüÕ9ð×—ÄßÜ3üí)ø»+Æß?þáÿÿxAüÓ³àŸï(þåø×kÀ¿Ý2þãr¨OïrGð®Çx·x÷SðW„÷|Bñ^Ä{?à‘ð>!Þ÷ïwN¼ÿ³àî!>ð–ðAxF¼ð|ð®rGñ¢ âC/‰;~EøˆkÆGÂG=àÚðÑ—ÄÇÜ2>ö‚xñ-áãŸ`|ÂnŸø€ÿOz>ùžáSŸúˆø´;ŽO¿øŒÄgÞq|Ö5೯ŸsŒÏ½$>ÿiøÂc|ÑÃßA|É)øÒ{Š—\_~EøÊkÄW?"¾æ‚øÚ àëßßxÇðMÇøæÇ/½$¾åñ­Çø¶[·ÃwÜQ|çßuÅøžkÆ÷^¾ÿ–ð'ðC÷ ?|‹ø‘sâGÏÀÝ!üÄñ“'ðSçÄOŸŸ9?{GðsW„Ÿ¿Cø…Kâω_:¿üˆø•¯Þ3üÚ9ð›çÄoÝ~û¿sÇñ»'ðüÞ5à÷ïþà†ñ‡§àÎÀãOú€kÅŸãÏïþâ Ç_žÀ_]}Mø›{Ž¿=wAüý9ñxlñ׌º!üó ã_Ή½üû1þãn#¸$¯5W„Ú¨» Rg þWŠô 4\MDó=BËŠÖh;í'Ðqׄ®3¹ ²g ç ä/‰âè½ JOCß#¢ÿO(ï0†oåkÆÈ `ôc÷ãg`â“'PyLݦω™À옻%ÌŸ‹§`é1Äò)X¹ÃX}¬= ëwÕ[ÂÆÃæ³`ëlŸÝsbï'pxð2'𲈗¼Â)xÅ{ŽW:'^ùšð*¸vüŸÄ«Þ¼Ú1^ý1Çkœ×<Æk=àBxíSð: ^÷¯I¼ÁÎÄÞ0Þø‚x“k›ãÍNÁsà¹gàÍÏÀó3¼Å„·¼'x«GÄ[ŸosÃxÛÇ/x¼ÝxûkÀ;\Þñ¼Ó-ãs¼Ë ã]Ÿ0¼Û#âÝc¼Çc€÷¼$Þëžã½¯ïsÞ÷’x¿gÁû?">àŽâƒpa¼ðâƒs|È3àEׄ=ƇÝ|ø)øÈ{ŠzÀ•㣯 sEøØ§áã®/>'>þñ wŸx…ø¤3ðÉ'ð)OçÞq|Ú®ŸþˆøÌGÀg=à\øløœsàsï(>ÿžá Ή/|À•⋞†/¾cø’KàKŸ|Ù1^rÇðåw_ù˜á«Nà«o_sÏðµÄ×Àןßp ¾¾éñÒKà[nßúàÛ.‰ïxŒðçÀw=aøî â{Ήï='¾ïœøþ{‚xÀ•ãŸpüÐ%ñÃÇøÑ<àׂ»%üø#â'î1~êšðÓÀÏŸ¿"ü áÏÀ/Ý~ùžâW.‰_½Füüúà7.ß<Æo=øíkÀï< ~÷ Çÿ}ü¿GÄïÝ0~ÿŽáž@üá=Ã]þøœøÓcüÙ-áÏ/€¿|ÀSø«+Æ_? {wøûkÄ?œÀ?^ÿtNüó-â_nÿzEø·ø÷Æœ‚ÿü/4$$¯5¸jo u7ˆÔ ¤O áŸ 4ß´Áø sâ…·„>¹ ^tÅøÐć=">üœøÈ{Šº|ôøØ[ÀÇ=^|Oññ—Ä'œ‚O¼|Ò |òãSž†O½§ø´;ŽO¿b|æ9ðY7ŒÏ~ÀÿÀçãs¯Ÿ÷ˆøüKâ ð¾ð1Ç‚/¾¾äšñ¥w_vGð’KâËOÁWÝq|õñ57Œ¯½|ý |Ã-à¯ßt¾^zŒo9Æ·žßvGðíW€ï¸%|ç5á{p«øÞÄ÷=à\øþsâž?ø,ø‘{†}@ÃãÇo?qNüä5á§ðDágžüì5áçžpüüÇ/Ü~ñiøåkįãWï~í‚øõ;‚ß8¿ù4üÖ)øíkÄï<øÝSð/€ÿw¿wMøýœ‰?xÀ³âOàp*þøšð§x ~Ïñ÷ yñW'ð×§àon{wøû[Æ?\ÿxÅø§+Æ?_3þåð¯—Ä¿="þý‚ø[Æ^7ˆä)¨½Ô]R87êéc4Üpa4ß#´\3Zï8ÚîÚ/€Ž ¢óÑuMÈœÝDö1Gî1AþŽ¡pIωÞBé¡ï1Cÿ%0ð€;ƒÁs`è`ø‚9Æè%1vAŒŸ‰K`ò Q¹g˜º§˜¹%ÌÞsÌÝsÌßq,<"OÁÒc€å\Vî0Vok§`ý TŸ@l<"6±uÍØ¹#Ø='öž0Þ3¼Ì1^öŽâåNÁËß3¼ÂxÅ â•ÎÀ+ãUp*þÏ áU/W;Æ«? ^óx­;‚×>¯sA¼îÆëÀëŸopN¼ñþoú„áÍ®ÏyLðÜxóSð¼;Ž·¸$žÿà-ñVˆ·¹¼í1^pMx»c¼ý#âÎw<ïtI¼Ëc„w½£x·3ðîWŒ÷xÌðžçÄ{ïýã}ÎÀûÞ#¼ÿðA§à…ø_øà[À‹ž0|è |Ø)øðSð·„¼Ãø¨kÂGß">æàcñqgàÅWˆ¿&|Â=Ã'žŸt>ùŠð)ÇøÔ{ŒO»$>ýŸqMø¬+ÂgŸÏ9ŸŸ¾àð…W€/º|ñø’gÀ—^¾ìâ%ׄ/?'¾âçÆWÞc|Õþ?{wEÒ0`8¸»»»»ÃâîîÁ‚;wwÜ‚;,Îáîîv¸ë¿ÿÑäK7;;Ý3Ý3Ý3}UO½uW\…ÈÎδE"´VÒl¡‰‰õ6±Áæ6ÚÈf‹Ùâ²ÕÛl—°ì´]6°Øc½1gûÜØÏÀà M’°5Ù?˜Žì8c',à$¦ÓsFRtVÅ9JÎà‚\.è2¦+”\5Ù5ÄM·TÜv㎂»”Ü#tßd4z<ÄSž»ñ‚3ÿ*xE赂·Uï$·Þ,ä#Ÿtú, ã ¡¯}³ˆï&ûa°Ÿ„~±ÞKÁT7@ÊB(”ÄИ Â4ˆh°Hˆ( ¢JºDc,º…Ä@ÄÄKElâ(ˆ ÄCÄ·‘‚KˆHÄXbJ’.™`’+Ha€”*RQ”Z£4ˆ´—Î0e”L“‰PfÉ­,‚ÊÊX6†²s$%9¹TäFäAä5A> È/°@AÖ &‡ µ™b*Š[H ”ÄT QÚÆÊp¬¬…”3Py*0VÑ&*©¨l²*ˆª‚«¦Su †5UÔÒ©¶ ÕÁTWÂROPõ9ÑÀ@ ujd’Ƽ4QДÍ4—tk¡¢¥­LÔZEFÚªhG¨½Š6ÓÑN6á#…ﬢ«Šî‚è! žÒK ß[FI·¾„h  _l%CM6 11Òeb´Š1ˆ±À87ÆK¦™ ¨‰ &“Lñ`*0Í`Ó1ƒ±™‚˜åÁl“Ì1É\7æ10_"¶À ? -ÐbƒùS²„²¥ZÆØr“¬àÈJ—U”¬Öpn­Ë:L–õlÀ°Ød’Í*¶[± ±S;,f§{·±ÏæöSp€ÐAFitÑ Ž â›8N˜ì¤NQt8ƒ8k!ç(9é‚‚‹\Ât™Ð®"® 꺊„nêt‹#·9rǦîzpÏFîsâ¡`YÄcž(xJÉsνÀôR¯ôš¢7òÖ¢Þ¹|”}Òà3'¾0ö•S߀ïõø‰'‚Á .ÙZDH„¶˜0n„ "ÇŠÀ‰ˆ6ɦ¢èU£èˆ!˜˜@,B±5Šc’¸&‰§ >e %R‘˜¡$œHÊH2É‚Ji3©T¤æLZ›I§ ½É2(C™Ë¢ ›A²+Èärq.7Çòè”W§|”å·¸‚*ÈBVQDÎUP SIJQPƃrA”ç\**¨ÄHeFª(¨ª¢ºEÔPPS£Z”Ôf¨'êRRÏfê+h  !Ј’Æ”xÛHA5ÅÔLƒæ´`¨¥ µ²Ö´QÐÑŽ’ö:`êèF'›ð:]8ÑU¢¢›FÝMÒÓ^Ô[ƒ>@_ý8Ñ1Ó@L¾˜ƒ%¦†¨Ši˜Á†k41ũтg²ñ™@h¢M&»1Å©„¦!¦S2Cƒ™À,‹š­`cs)›ÌçÔ~œX¨Á"ÊcZ¢ÓRË€å ¬Ðh¥Ë*‰šµ˜dƒlBlæÀÛ,f»`v˜l§Š]ÀnÙk§Mì“$Ä~€ƒ2ØaBGG9ñ☂ã Ôè”98ãrVÅ9Äy .º¬âŠNW)»†é†7%b·(º-Qq‡²»‚¹GÁ}L= ⑊ǔ<µ°ç¼Ðè_‹xéÆ+^›äż•lácïû€á#ðY£/’„á›à¾èâ'⹈^ <ˆŒ…¤,´„á@X„Ç‘‘Ù`Q,,ª`¢q*:†*bš,–Áb+ˆƒˆ« žÄµ. $âLbLI8•Ô‚’ &¹àRØHJ7R!R›$ Ci1¥C¤g$ƒ‰2š$‹Íe5IvNå0@N r¹äÁ”—²|ÉÏ™T¢B*ìRD¢(gŠq¦¸%*åR–‘ò©À‰Š:U2YªQP]§©i!µTÛ‚ê¸QC=É4õ)i4äL#†›ÌÛ$M(hŠ©™‚æ‚j¡QK‹j%I.­mm%"í)ë`4ê¬Q Ð]ƒœê¥CoÁõ@?‰[ýU àÄ@F|mnôŸÁ˜†¸1Ôdà 2\£*F£¡dœdˆñ640IúÏ” ¦˜ÆØtÍ0ÁLÆf¹1›s1ÌS0߀Ÿ R²Èd‹uð7ÑLK%I£eXn+$ÛXÅÐj`AÖj´`€ ˆÛd3›- ¶JX¶qb»ŠÙIÁ.`7e{í¥Àiqû PpÈå0†#ˆ£˜þaìcÇ);Aà$E§0ÁpÖ"Ϋ¸ ‹‚¹$1uÙåŠW1]#t]§¸©âGn{pÇå®Iî÷5z ™î!g1=aä)¡g žkô‚’/¯0½Þ(x˱w*Þëôø(ýç“>sìcß ôñS@¿Ü‹äEI0BÁu áRE(› íA†Â gá݈  ¢ŠH"Q)ˆÆHtL1$ÓÄTKAlBq$¡Å\<ÎÄ\ IȱDA$f$‰I$³‘”ˆÔn¤A¤åX:“¤çH2š,“Kf ‹ e#”Ý:ä´°\˜rs.DU^ÎäCä—˜+ )*¨ 0¢ˆ‹ƒ‘¢)&€â””PP’‘Ò˜Ê ÊRRQžC€ŠU2Ye ŠÀª ªšªkTƒ‘š’ªZ3µm¤ŽŠº&ªGI}JhÔs9àMIMMÒLò¨9†Œ´TÑŠPkBm ÔÑž3t²›êÌ‘..]èæFw‹èaS=1õ’tëÙ~”õW1€±óµ™AœLÙ †ÃÝŒ¤lb´`Æ"Æ)Ï¡ ˜ˆi¦Éˆ)ÀT ¦I†™na3ܘ‰i¦ÙŒÍÅ4²ùŒ-<ò“$É ¥@‹µ“¿¤ÉÄR‹X†i¹Š•’G«8¶Ú"Ö0°VÁ:ۀ؈a“Ílö` §¶ÛµØa „v1°[{0ì5˜Ó$ûld¿…àÌAJÙÄa‘t;Šéƒ â¸INpê$pЧ5:+ˆs:ïrS9tÉ¢.W(¹ªâ†ëœ¹ÜÄtK£Û*îè®ÄÌ=ƒÜwy`39õx¢à)ðLÅs^ñRúË+A½– ïLò^ŠôÁ O6ó™±/ˆo}·€’[?)ûE.r0Î7YhLaÜk°p‹DäL$Q ˆD7Y ÅbˆM ®Šx‰oÄIÂHR †äIÁHJA¤TjI—4„Ò"Ò1–^€Œ6• ‘Y£,Ad²™,»Eä ”SÒ,E¹䵑| ò¨€NVQ˜3I³¢*ŠÅ%€’:”Ò©´NeT”õ ¡ò© QEL•LV™±*„ªºQÍ ÕPƒS5 Õ2HmDLu1ÕC4` !F&i¬ƒ7%Mlª)¡fˆæ*Zj©S+FZkÔFúK[NµãT{DNt”LÑIrˇ²Î te¤›‚înôàPoú úºôCôG  ´_Ä  ¦`ˆŠ¡˜†®ÑNdd”‚1˜Æ bœA&h0‘Ð$¦P0Ó4Ʀ[Ô f˜e#³5˜£`.0O0ó9¶ÀÅÐBB‹\Sæ¯Ó–ªX&ˆå Vpb¥‚U˜VkX«`ŠY¯ÓF›L°ÙF¶pl«FÛ,l‡F;%È.ìFìÀ^À©Ó>ûu:Ä! ‡r„3G%CücQÇ,â¸àN0p’À)NœæÜFÎ:GÉy—‹]2ØeW¤@WU\“ˆ\§è¡›œºEÑmƒÝQp×Âîit_bↇ˜sä cOMòŒ#Ï1¼ ô/E/5xÅÈkàFow*ÞSò’6õI ôøn°˜~¿ÈEñP0‚K’ B$¦Ð@DX„Ó(<'"(¢ÍD’ ‘uˆb’¨‚Ц ºK B1-,– bëˆg‚ø„"¡€Q’˜@Rƒ%’›$%"•„-54Œ¥X:¥çXLdTfBYUdÓ);"‡ rR’ËÂòh”‘OPù()¨Q!Ö¨ˆ GE+æRœP ”Ô¨” J ¢ ¦²œ*G¨¼€*XTEL•TT\Jª ¢¦ê:ÕЩ&gj©¨­¢®NõÔ7X 9ÕÈ Þ@SLÍ(in#-T´Ô¨¢µŠ6 µ¥¨½É:PÒS'ø0ÐY]tUÐMEw=ÑKÒ¥7¦¾*úq¬?0¯@¹ áÄP !©Ñ(ÊFK’‚163VÅ8›o1ÑB&!¦XÐTLS1˜a°™ˆY.³-fŽŠ¹ŒÌãÄ| 0ùaZˆX¬Âß`Kln©É–©XîÁJL«4Z+a `d½N)Ù¤b3b b«Û(ÚΙ*v2²KÅn ËA8}œÚ¯â€ËA‡Ü8l°# åÈ1‹9n°;©Á)NKTœ‘t;«àœ œ·¨ Œ]äÀeW8sÕåš$¸á–…ݦäâ.çîqä¾Éì!#ÝxbCOg:=Ü /¯0½6Èowyáƒè#§>YÔgƒ}±¨¯}CüDüÒ&ªÁ8a˜B ´Å„1H8 BIAdAEAD "šÁ¢»Ä0@LÎÅ&G²”¸&‹/I@ABƒ$Ò(±M$‘tIª ‡’cHHII*IHÃHZ¥SÞæ2ªÈ$Q—Sd•ÜÊd§$‡ô—œ‚Ée’Ü&Ë£"¯‰ò!ò ¢¢‚Â*Š‹(Š(¦SqÆJØL)¥2œ*«¢œFåPAr«¢‚J©¬  PU£jAÔˆÕD-«m²:„ê2RO§ún4@4\£  À›PšbjÆ™æn´ ÔÒFZ)h­Q j§Q{Ê:PÒQ0(ðQÑ™]]UtãTw=è©S/‰+½ôåP?ƒõ¨ð¥d 30„ÀP`¡á.#87’±Q&Mh¬DÝ8Bã MÈD“LØdLSL2•±i1ƒ#3YæØÔ\Jæ `>e 8âÇ™…*‹)ñ×`©M,S±\§ZÄ*«Z ¬#`AëƒØ ÃFl’,o3%[$Cm•m#°Ýfvd'¡]춘=‚Úk§Š}ìPvÐ!L‡9qT£;†8Ž8k‚s„Î+¸@à"¦KˆË]¡ìšÅ\÷à†N7)¹EÑm‹º#)º§Ó}=°±‡„©xŒá‰‚g*žczøW£—œz¥âµ@Þ ÞRö΂ÞSöA§œûDÉg_$æ¾bú¦ÑwÄ~ºü‚Eó2YL!%êBëF@a-,á ‘’ÈŒE1IT“E£$:¡Љ)¡Ø”ÅÑ(®Ä3IƪH$vI¢ ©FÉ€˜R)HÍHÒr"eédHF‹Ê¤"³Ee²êMpÙä ”3ˆÜåòaȯ E…¤ÿf¤ˆA&*¦Qq” Tб2‚* ”³¨òT@TÒ©2%UT\5†ªsª&#µ V[§:ŒÕ5A=ÎÕWÑÀF ¦c9å© %M)k¦Qs-(ki3­×ZEÊÚr¢О@†:(ð1Xg‹êBYWD7u§¤‡=5êe²Þ˜ú¦¯¤K?Jú36@Á@F|ÝÄÈ`› µ¨a*†›l0Ò £c6Ö゘ `¢“LFL!4•sÓ3ƒ˜eÙˆ9˜k²yÌçÌ„GÙÈbþˆ%7–l…AVªXmk(YD¦õ6°Á$Øl‚-°UÅ6F¶›d‡;mbW»uÚ£`¯…9-`Ÿ‚ýw8ȩÕˆücAÇ(98Iè” N#ÎH’gMr^Òå‚Á.".QvYÁU×màâ¦F·(»MÙŠî è#÷{¨Ó#Î=–þóDÁSBÏtz®àe/mìⵂ7œxËØ;Á¼ÇôA£Œ}RðY§/˜¾º|çÀIÑO<ѽt ¦"8gBX@H eÐFEXƒ…£,†ˆ"QSQ9CEL±$ˉ)"®Nñ$CÄ"ç(‘‚Ĉ¤$“¨K.˜”„RJƒHËH:Ž¥§$c%ÓdR‘Y§, ²"²$;"‡F9uÈÅ@nòØX^äÔ_§@AIò ŠÂ(B‰ƒ±¢ˆbˆâ&(¡¤¤ª4#e8WV§r”§¬¡Jœ©ÌHʪ¬š¨:e5\jjTKNmÁÕ1H]Lõ,¤¾N 05äLcʼi¢SS‰Í5§ ¦–ˆVÓZAÚ2ÐŽŽ : Ƈ@g‰š. ºr¤#=(ëéF/Fú®/'ú¹ÑŸ9åk‚A KĆ(ÊÈ0`8b'F f 'Æy01AÒm¢@&©˜ŒiŠÁ¦R4M£œ›‰i–‚Ù1ÇsM0ó]òS±XLh‰d¸¥‚Y&qa¹¤ÙJA¬²™Õ¬ÐZLë,$XOÁÆ6bÚDÙf‰¹-&Ø*)Ú&˜íŒípc§v f/ENBû·ß`9ÈÈ!‡Mr”ÿPp qÜN N§Tœâ â,pŽSç)»\¤à’ý²É®ºf²ëAÜ ä¦EÜbà¶‚;À]÷¹o3y¤à1â‰d¨§˜žIØž#^`zɱW˜ÞHº¼Õá½Ï¶/}%ôMÖwNýâ'c¿þ'†¡`ˆà&¡QHÎ…B„ö ŒŠ° …c,¼ÅD0PDD$ ‹l’(œ‹jÑ$UÑ-$ÓBbQ[£8W£x@|†˜,¡FI(I*€d&KŽH!¸”$•ARk†PZé¤ÿ¤çL“e$”I‡Ì*²˜,+¦lå°€œ‘ CnLy(Ë«S>D~D  ¢DUaE æÐ¨(cÅw)!¨’J3VÆÊr¢œAÊ»T°‘Š”TBTHU‰™jˆê*jª©Q-Dm7ê êZD=NÔg¬‡Jq 1†& š"šajn‚– µ"ÔÚ¥mitp£#ЉÆ:{Ð…3ÝÝÖÃ$=½ôÆÔG}ëçFI—_`ƒ5b‚¡„†YÀpÉp#$.Fk4Æ$c 0Óx 2ÑeE“96…S%EÓ‚˜Ži†‰f"f™h¶Š9:ÍÅ0O0ó -ðÀÓB‹,6ˆ¿Ë“-ŰLp˲Â&Vi´X¬e`#Œ­ÌF6ZÔ&J6»±Å[1m¶«Øa‚:í´Çd{ 9Uì“tÙ/9 ÙÂAä0%G€£ûGÂv qœ‘ˆ“8­ÑÎjtN£óvQ§K]&tÅ¢®Jn]Sp]Á AÜdè–N·Ü¡äžàîz`QGˆÇ„ž(xjsÏtz.â§þµ©WzÍÀÄ[—w„Þäg>*øäÆgÄß4øÎ‘.?Uüú[L/ ‚iœs!„b,¬A™(<ˆˆÄPd¢ØH4ÑMÃbºKEl ޤ(®…ÄÓ)¾AÚPb’(Hʱä:¥R2’ŠS©•–Sé –^b"ƒ‚Œe2Qf ‹A²"²k“’\Ë­S [^ òQ–_§ 6Iƒ9LV(æAq JJRŒ•&P†e¥¿”3YƒT4P%Æ*s¦*%ÕTÔp£¦jIºÕê žŠú*(jlošp¦©FÍÒ\Ò¬…ôŸ–n´ÂÔÚƒ6µåX;Žu°‘Ž6ÕI… u¥¤›Šî”õ`¤§zq®·Áú¢/¦~ `l¦Áb’¡60\§ FJF!FslŒŠ±À8Äx`0‘“› LÑi*%Ó(˜N`† fR2‹²ÙÀ†æ11_£ñ3ÁB7ëäO` °Ô@+L¶ÒâVé°Z§5[+Q³NÁzLÛ¨b“A6k´E‡­À6Ävv`Úi3»ll·Š=œs±±Ÿ¡&9¨â‡Mv„cGÿÇ,æ8c'Tœdä§NK¦:c1g œWq‚‹»dq— rÓU×8s]Å 7-æ%·ÜåÐ=ÝWñÓCƒg¨ðS±(ˆÅ˜ü5Zb3K,#´Ü +$IÅJƒ¬R°Úƒ5ˆµA¬£(€3ëml°Ñ†6©ØBÉV“lÇ´CP;-h·‰öP²WŠåÄ´Ð~à#‡;ÌØ ŽÇ8s\§“;%1uÓœu9g¢óŒ\.»\¡ä*¡k ®º!ˆ›.·$Èm¸£â.C÷ p_Pƒx¤â±Š'’ðžbzFÁsà…ŠU¼rãµ Þ2ôNÁ›ú¨ÃgB_(ù* o6õƒ‚ŸöKYl¯ ‚Q‚s!M £ ,¦p‚ /A"0 Ùƒ( ¢r,šEEGݘŒÅR›±8ŒÄg,Ir †$ %µ€d*’s&…IRš,•ÁR‘ÆDi-&'Ò &ƒuÊäAfNdñ ›É.˜œËEYnÁ䱡|ËO¨PЦ I)ìFÀÁ‘¢Œ“¨)n%t*iQ¥l ´IÊš¬œE”ÇT#UTÂT™SUR•‘ê*j¸ÔjµRÇ¥.¦z@FRÒHEcMÕÌfšKTµPÐÒƒV”µæT—¶&kD{ƒu:RÒÉd>‚êL +¢›D]wz¨èéA/Do êᾈ~:õÇ4hq¾I†¢b¨„mEÃmb„Š‘-ýeŒ`Æqb< ŒM¤l¦Éœ›LÕhºÅÍ h&%³0ÍÐÊærbb>à§ÁBB‹([Ì€?¦%„–JY&I6°ÜƒÀJ VIÿY­Ñ ÛZëT ÖÚ(°MˆÍ&Û¡­nlCl×i†”í¢d7çöP°W…Ófö!¨8h°C&:LÙŽêô@Žqè8c'w8œ‘Ü:ks Ϋ¸`°‹À%IÕÄUàš ®«¸AÑM· v[ t‡‘»ÝîKy€xHè‘`O(xªÓ3L/lè_à×A¼±¸·¼Sð‘ÐgʾñURôM£ï‚û¡à'§~IVÇ LAp„`$”IBëÆ%,Â)/¨‹hA‘0EVÅ@Q EPtbp*¦F±±1ÅÑ).%ñ‘@²„„˜H¢Q2LÉ Hi!©4Jm’4@z2Hª2Z\&2S’Å¢²JTdÃ]ANÎäâ@ny€¼ˆ|œÉO¨€…$TˆC…+‚ÁE#TœP J¥4*m°2S–±r ÊëTA£ŠRœJ&«b3U«FAuDMµ¤@µ Ôê ¤¾Á¼k¢ )¡fˆæ.--k%¸Ömtj‹h'„:r¨“ Át6Iº©è®¢C=-¢— õ6AÁõõ ý T1ˆ‘Áˆ!ˆ¡*†!†sb$QŒŒ¦`ŒEŒÈ8 ã-`0QR5˜jcÓ)™ÄL ËlNÌáÄ\Fæ™d¾IèäÄBÆ™`± ü,±±¥[¦`…+[¥Ñj¬A¬•L±Ž’ë%6d£l²°-”mµˆmœØŽØÁ©*v¹±Ã^N9}˜ö à'b:ÄØaGUüãÁ1Äq—ÀINqàŒE5Éy\°™‹”]r¹Lè g® 蚊ë ÝÐè&c·t¸m°;”Ý•TÝG<`ì¡E<²ˆÇ*žxðÔæž©x®Ñ¿*^êôÊ^3öFÁ[é?ïû`1-â“_8õÍdßuú¡ÃOF~á‰ë¥S0 8#!€BéSX )"¢F‘E&ˆª %Ñ%ËŠÁ™˜KElÉPq‚ˆ« gâ+HÀ©„U‰T$–úB૊on|GüPñ“²_žÅó’⓸œPN…Ršca$]Âr,Eá)‹D´H’[‘ˆŠ)":†‚‰iQ±Å&G@q¥ÿÄÓ(¾ –S‰ILYIÉl$9E)ÜH©Qj Jc’´”¤c,½dˆŒ@&Îdf,‹Y¥@ÙLC£\”äHƒäµ©|œË¯¢¢‰ «(b"%E)*fÅU”´‘RŒ•Ö¨Œ¯,gÊ!ÊkT•¨¢SU ©FIuŠjXHM «Dm ¨ãA]êiTS hèF#Fëà­S“4%Ð̃æka²V˜Z»´1I[ÆÚq¤½€:0ÒÉd>茩 %] t'Ôƒ@OÎôÒ 7%}8ÑW2U?õW1À¢*ð5È`‰ÈLC5®ÁÉ4# V1†¡±ˆq˜ÆÛÌJ&ºL²¨É›"a™*Q7MÅt fpf¦‚Y„fsÍ%4OÁ|Î-àˆŸ bZĹŠü ,qYŠX¦b9b…d¨•­2Èj†Öh´X§QgÖ#6d“A6 l›o;b¦*vaÚm‚=:íEìçÔ b:$ˆÃœ:*¨4:¦à'ƒ8œ¶‘3ÀY7ÎitžÐ\È%.SrÅ× p‚.7¹¥Ñîit_P$·*x¤ÃcBO8ö”ÏðBÅ¿{É™Wˆ×ˆ7x'ˆ÷Œ}PðQƒO:|æÌƒ|Àw~ì§äÑ/÷â{)†)8GB(ÉÐ ƒ),¡p:…"p*"SÎDå@4—è”Ä` ¦bYTlNÄ‘$Æâ!â &š c‰9•Äb’"’é”\A N¤d,"µNi•V"’‘ž#,"£…e’tˌȂ)CEN—\ä6HÉ­¼”åCp£ ¡B”&TDâŠb*ΩŒ”äT)¥ V†CeW^AAU¢¤rU,ª*'ªIÿ©®S  &%µ<¨«¢žê ¤r®¢±Á¼15šjF¨¹ÉZ Zš¨5ÐÑVA;í)逩£ŠN*| ÐE£®&ëFYw›ëÁ™ž’f½Tôf ÅôãLÎ P1Ð"|U Òh°E Ñi(¡aˆá0ÐHÎŒR1ÚdctÄ8Bã M``¢$™d’Á¦`šJÙ4ÓM6ƒc3³TÌ6ÉÄ\Ä©ø,)úÂØWLß(ûŽø)ˆ_ÿ“ÀKƒ` PB .e¡=‹)œETDˆ¤"²A¢¸D% CtFbp*&Gb©ˆcaq Å“þ_ €„Q’‘„PRD2’s"¥©tJmi¤e(½‚ ŒdT%ˆ¬’ídc,»D]Îä4Y® rcÊD^Îä@~,® ‡ ™ P(F¨„F%U”2Hi“•ÅTŽ‚ò”U\ET"P™’*ŒUu©fSÕ¥ÿÔPPK§Ú ÕAÔEÔ3H ¡E4²‰Æ‚òF4!ÐLpÍjE¨5%m$ÝÚRÒÎâÚ#:0ÔQ@øÑSºRÔÍbºkÐC@=MÐ SoŠúp¦¯IúYLF(HÈ1H§Á” †bæ2œ3#L6R2Õ( ÛhQ1Ã8Œ— ,j¢“(›ìÁ†¦Jÿ™Nhçf f–AfÛÀ\óXÀˆŸÀJÔ, b1&Ê–(XªÁ2ÄrÄ ¬4É*¬fh­ë.ëM°¢:mâÈfIH[Øf°íÙ!¨]nìV±‡‘½6æDìCì'tÀå RqX§#‚;Šø‡’cÀq'u8åÁiI’$‰{g:k’s‚9o‚‹œ»\f芮 îš ®º¡à¦ÍÜ â6¡;¹ëÁ=Ä}Î<`ì!â‘‚Çx¢ÃSÄ3<Ô ‰È¿Œ¼TñÊdo8ð–¡w:½G|Ð裂Oœù¢à+¦o„¾sâ‡A~rî{ ½t ¦QB¡$jBKÔ„QV£p& O(‚Šˆ&ˆD ²ÄLDT¢ŠNAlÁÄâKÌ$à\BY\bN$E$×(¥IR µ`ÒHËH:‹IOIƒdäL&DfLYeå\67²KrZD.Fr[@ ÊËH>ƒåÇTÀ`Wˆc…%ÍŠr0T”‚⌔ÀPRp¥ V(DYåPž± œ¨Tr£²U<¨jÕ0Ujª¦µLRÇDuUÔÃTß&˜¤¡ŠF ¼Õ”3Í*úÚH?Êúsb€Éªðõ`#ƒ93„ÀPÃ$b#81R¢j0Z`c4KhœFã905š„i2¦pbª@¦ql:3Ì´¹Yœ˜MÉœ æR2O§ùˆŒùi´ÐD‹ ´Ø K-Å´Œ‘唬0ÀJŠVi´Z£5ÀZÄ:ÁP²^§ mÌ&6cÚl£l;¦ vJ¦Ø¥b7%{<Ø«À)y´Opû9pÀ`mà0p$ˆ£Ò_ŽQvœ¢‚;‰8¥à´ËY8' ó&º`S)ºdQ—)¸j!×LvÝnPrS·m膻ŒÝãÜ)y¤ÓcFž2òÌd/4øW`/uzEÁkÄ޽åÔ;޼Ôà£A>™ä³Å}±¯œùFÉw‰¹ütùE&‘%Á€àˆ„¤ ”ŠÐŒ…!g’ðˆ "bŠÌ¨ ¢y=ˆˆ˜ˆX6ÛdqL’ø’@‡„Jd’Ę’`JŠ)™ôŸäœH¡"¥äV*©1¥a$­é¤g,“A2#²¨ÈjÙ¤DÙËA '#¹äFäa$¯EäÓ)?¦‚ŒRP˜PÊ’ª¢6RL’0G” ¬¤ ”2YiN•QQÖ@åå«€©¢T²€*:U#T’˜jkTǺ˜ê©¨ÏX 5jÄ@ã ¼15‘¸×Ñ̆Z-MÖŠ²Öœhcam-®í5èÀ‘ŽÐI>&ëìFWD7BÝ=‚èII/“õÖ©¯Äµ~éo¢„RâË™A fcC¥DÃ(Nh„ÉF¹Œ&0ƂƇaØÀGŸ8óY£o&ûNè‡A~RöËœêL  ¡®@7ÝôÀÔSúO/L½ ÔÇD}ôs£?c4( _ƒ &0D£¡ †IÿnÀH £0ŒÌLcã(ϱ 62QÒd2%S(™j‚i ÌàÈLé/³80Çdsšaçº,²ˆÅ*ü,¡d)b™E¬ h%§V« ¶Ö%ÀfÖS²±Œmò`3¡-:m%´M£í6°CúÏNÎì¢h·Míad¯œ*ö1´_£CÀaGt8 üCè˜ÉN NêtŠÐiÎg1œ#tÞ ÷.".™ärW,ì*g®)¸.Qwƒ··%Uw9sßMöˆ±'*žbz¦à¹¼ ä_/=x¥Ñko0½•½syø`²&ùD賊¯À7Ž|·‰ÀOÊ~ý–Ô  \E‰HHFBI „¡$¬Ná ¯ ‚¤*¢NQ Õ¢¢)ˆ.¨˜bbˆĦ,ŽàâºÄó ¾ 0%’¸X‚$Q”¢d*’ *¦”¥R‘Ú¢ÒJkaéHoStÊh L6–Yƒ,’ä’ ÈÈ©"—…åFäáT^ ¦üS€‘‚.…u(âR (Ž(¡Q)•ö  P–P9N•—<ª ˆŠ¨Œ¡ ¡ª ªq®º@j¨¨‰©–ÍÕæ@]  !¢‘‚Æâ­QSš!š»´°¡–’aZs¨­AÚ¹´×©¢£D]'ÀGÂÖÙ ](ëj²nAt7IõÄÐË¥7§ú(èËH?ý97€±&ñe`ŠÁˆ!ÀPŽ 7ÈFF f´…AŒu'¸ñ› `¢&16™SLu™f’霙aC3u˜%y4Û`s$Û™ËyŒÌ×igü-Ì"`±¤ÈÓF–"–¹,§h…+M¶Jrk Ekmb (Y/¨ &Ùˆi“[\¶2°Í$Û1íÄNL»(Ù­b…íE8ìCìpî ¦Ã&;b’£9f€ãŒœ4;i3§);+°sœÇpÁ -ì’‚ËŒ\ ⪅\cä:§n0tS·ÝöàŽË]î#xDÁc žPöLâÞs½ ä_/-æ¦×Àƒ½µˆw½çÔ|ÄôIÁgN|QðÓ7Bßøa ŸÀ/s%óâT0ÎT…B»FAXLá0…HADd$’‚È„¢"ª‚h]@1‰)˜ØÄ!WE<ÅW@ƒ„I„Hl’$‘”’d6—ÜD)8—Rr+•‚Ô6–FAZBé$Hzd´¨LŒdö ¡¬„²¹‘ݦrÊi‚\@nå¡(/"Çò € ¢F…9RDCúKQ‰Šb*D ÊJRRÊ$¥m¦Le R.ˆòª ˆŠ6R‰²ÊUªQ]@5(©i°Zª-ªcauƒ¨G¨M4Ô¨¦ÆhbSMk¦SsN´Z­8КmtjË‘vµ×©ƒ ù`ê¬C «Kw KNõ$Ô›>‚é‹©¿‚˜Z”¯… ’,m0aÀp›!ýg$0Š‘Ñ Æf¬ÁÆqne $i”X§¤‚H¦SrÎ¥˜Ké’ŠC©MFÒ%½à2&“”<³YTd5Q6Ên²’[9uÊEIy å—ˆt£Ka„à EŠKªJPVÒR6Q†3e9VŽSåR‘‘J¶Ê&ª¢ *¡j6P]p50ÕTP ¨ÍXªëF=DÎ4´‘F4¼ 5ÁÔS3A´LK´RÐÚ6´UÑŽsí8ÑÑ tðLgºHTtSÑÝ"z=%*z!zK¦èƒ©¯Aú!úcÈ_ƒÌÀ uÆÈpÎP0Ò‚F©Ch¬ãln<t˜ˆ˜d°É.Stš*I:Lc`:¦ˆ™R Y˜fk4ÇsyŒÌ—ú,ýå‹Ä­¯*¾K~ZÄ/±¤ð¢,¸€Bê Sh› K(œ‚I§ÈD1ATD4ÑÄ0HL‰­"ŽNq9OA|A%$”‘ÄÂ’ ,™)T¤4H*JR3’Ö@éK)ƒŠŒˆL„2›,+CÙe§$99”Kò(7%yy”OJ‘_1PaD‰{EUCש%R‚(m‚2:•5Y9ÊKÔUP%‹«Ì¹êÔ ¬¦µ«#®®ŠúŒ4 ÔP`€Æðf¬ cM9Ñ Ss h©S+B­ µÚbjÇX{LƒèDÀÇκ`êj!Ý,®;C=8×S½,¬· ú`êÇ™þA ÐÈW§AŒ Æ4„ÐPÎ Ã4\‡&Ih”N£mhŒŠ±'aϹ L”°M&S4EÁTÁLÀtÁÍÐh&†Ù60Ç橘O`F 9±ˆÅœò—4Y¢b)cËT,×he+UYX¬%´NÁzƒlÐh£Á6 f³Ë“l3Èvv`Ø)˜]íæÌ^N88sPƒC Ž(8ÊÈ? Žqì¸ÁNPrqÆdg ãÔyB]ÂtÓW)¹\Çt¸©Ñ-nÛÌw-êžIhôP2Ä# òØÂžä©$„gó\Á þÀK^1òšÐÄ[¼ãÜ{>`úhsŸ(ûl/”|åÐ7¾úa€Ÿ*~‘KéåA0ÁU„Ð)$#¡€Ð ƒ« Þ"(ˆH(’Á"s" %Qm*š¢$†Éb±Sü ˜(¡‰$[I,K‘¤‚H†!9"'R,•ŠÔ”¤‘ •–¢tœJo¢ ȈȬSYƒÈ†ÈŽÈÁX.¹9—Ç y9•‚ü)€(¨ Í6H˜ŠjT (Ž©„N¥¤@¥RÆ e”Ê+¨€©’ŠÊ:UATå@5ƒU— 58TÓ`µLP›²:ª' ¥¾F ÜhDYc¼14e¬™Áš3ÒÑÒ@­ ÖÚ mj« §ÚkÐStâc]tꊩ;zPÖKƒÞ6Ö‡3}ý-d€ Tàë2˜À“ %4œ±*Fšd%c$ÈXÉã(¯Ã›˜h‚I63˜b°©’ªišÌÈ,f f0W£y*æKš-ü«ø¢â+cßLôÝ$?ü´ˆ_Ú¤òÒ(˜Šà”„0A(¡VPáá%HIBD$‰±È@F¢ˆ†):çb$&¦X@lq(Š«CŸ8òÙd_4øªà›Á¾K–÷ƒ’Ÿý’¬*µ%Á( ŽAQH“„ÆÆaSxND Ñ`‘ Ù`Q’è*b(¦„-–ô—Ø.qŵxAÄg,ÁbJDbI4JJA2ƒ$çHJJR,µ¥PZÆÒ ,=ç2p(£ŠL*2#²˜(«Ù8“] ”CENÆr!r«Èc²¼&ÊçA~ŽPPPP…(+ìR„‡Š¢œ(f â*!1SÒ¥4*MIYÆÊ)(TÀTQ •(«¬ Š‚ªT·¹”Õ¢ ¶EÕ!T×bê1RŸ²˜hÄ@c¼Mƒh¦ 9ÐÑ’­,¤µ‰Ú(h‹hgí ÒSG E>w:]1u“<êôPÑ›3}têkýô÷`‡Ú€¯ƒ81ØDC$ÈPI·a Ä$4Šc£95†ÐXN³€ &J–1‰’ÉLÑiªFÓ›.°”ÌDÌÈlæJÿ™Ï?Ž-´±E-VàoK$ X*¨eZ.YÖ V2´ X-™nFk%˜`=ç65ÚDÉf)õ“le`¦íØa v©Øc°½*œí3Ø~à€‚ƒAÖépT‚üƒéeÇ r8i²S„Nsä ÇκqŽóÀ]Ôà’ôŸËœ¹b²k*®ÛÈ ›¸)ýå–Àîì®Éî)¸/z à¡Í=bè±”ú‰äÖSÎ=³˜çÀ à_x¼Ôo ðޱ÷„>PòÉ@Ÿ9õÅF¾)øN臊Ÿˆ_|HãÅHpB($e¡¡a„E„3Xx—ˆˆ ÙQ Õ¢$:Cr+¦dK±€8OPñ—@` 9HƒÄ÷’0’ÔdÉ, ¹)(JɹT ¤v# Òj”NEzAeÐ(#ç2‘™’,„²R’M§ìÉaC9¹$Så&”‘×|:åWQ@EAÂT„†¢+FYqJhP’¥\ʬ¬…”ÃT^‡ U¤¬g* ªŠd˜ª˜ªIÿ©nS5 T“Sµ8Q[‚Ô ¢®Šz”ÕG40XC‹j¤ 1à© ¡¦hÆæ6Ô’¡V„Zm0´¥¤½A:¨è¨Q' óa¬³KB]éF¨»z(èi°^œè£¢/Çú!úøÚÌ `0#CC¥4Àá:P1ÒBFQ2Z‚Œ¡h¬ŠqÆ#&P01‰’É:MQ01MÁtÎÌ`h–ŠÙˆ¹ˆyUó uZŒð§h©à–qd¹M¬À°R£UÀjƒ­Q°Öƒul`=°Ñ›€Í„¶(تÓ6LÛ;<Ø)ýg—ŠÝŒìÑh¯ œ’!öh¿8rP‡C˜+8¢ÁQÇGœ@œ”léâ´”æ ⬠ÎIªÎ»q35º„¸¬Ó®ræp¢ÝäÐ-·-êŽwݸÄ}Š0öÓcBO8ñ4ˆgœz¼0ÐKà5eoLöÓ; ÞSòA§O |Vð…¯6óÝ ?$CýDüâCÚ`×)„Š‚ e²Ð ÃPXN„ãTx7"ˆ(˜HE¶˜(‰jsÑtˆÎ@ L1  ˆ Ä‘¸ˆ$p#!çS–DúOR ’!’J!ˆ”˜R© FEZé0¤·‰L*2ÛHVD6ÎeGä@äÒ)·Áòh”WA>Lù%K)HQ! °Ä\LDQ ˜Å1•@”Ô©¦ÒA”a ¬ÉÊa¨T ¢c•¨*©ªf²ê&©a5MR Q[§:@]D=«O¨!#5œ·MLÖTE3L-0µ¤¬¡Ö Ú"Ú ½FtêȉN‚ò‘$I’l¥³AºØTW‹èÆ™z¬¢7§ú(è«S?ý P0P¯É™l°Á† n¸AF`IÉ(`´ÍŒÆJܧÓx &d¢Á&S4E£© M#0˜¡ÓLÌÒi6¦9ˆ¹.ó¤@ó)Y`2?Î-¤`‘  K,µ€œYIh•ͬÀFÖbZ'˜`½L²‘3›l¶Új€mÀv;,b§»TìF쑈íÕh¿ŠŒÄtH`‡u:‚á(¡t:¦Ñq›:œ$tJÁig\ÎJšœ£ä<¡ vÑ&.«¸¢ÓUŽ]“T]7Ñ ÄMAܲ¹Û î2tO£û* jôHÅBOòŒsÏû×&^ZÄkÞz«Ã{—n|TñI‚|¡ì«d)ß8ö3? öK<é‚q.8§BPR£Ðœ ù°”…LxNE ,"¦HŒE&EA4DtƒÄ $¦N±€ØÄÑ ."†ø‚I SBN%R˜²$%•tK¦"9¦@JRi”ZAÒ¹¤7X-"“d9™1d²"²9-,—…åFä¡ ¯ÉÇH~ 0TPâV¡ «(b1E%bÅ()¡SII’˜+ÅHiƒ•QPV£rÊs¦PÑ&*YPe‹¨JI5)Puj j¨6gê0VW§zꛤN j„©±¤›7cM4¥¬™Šæˆ&i‰¡e­)kCI[JÚÑè ý§£t"䃩³Š.éêF7ŽuçPOƒõÒ¨7ÐGÒ¬¯ý4` ŒùleƒU A edg†K–7Òe”£1ŒU0ŽÀxLð`¢Á&!&lФÉT¦!¦+˜a³,n¶‚94WÁ<š¯Ó“ùh!b‘N‹þ˜–pn)§–!–›l…E­´U²š¡µ*Ö©0ÉzF6pn#Ç6aÚLh †mˆí˜v`§F» ¶Ó^É0NÄ>7ö»q€s‡0ÔBGuúÇbŽÇ1œlï$¦S”¦äLgMvNÁy ÛÆ.bºäÁeLW]5Ù5A\·›”ÜRp[ÂvqWÁ=ÎÜG<þòÐ#‹zŒé %O<ãÌs7þµ±W ^o ðñ޲÷}@|TñYÁA}¾ëôC0? öK é½( f’à BPÒd¡0…f(¬AÂq"¢KCÜhÌoé?Ml¢©M4£ ¹ÁZ0ÒR£V˜ZmT´P; K{:ØDG‹ë„ð‘l£3'ºèÔU0Ýuè¡AO zq¦·}ôÓ`&_Lƒƒ Á4TÃlh¸‰F(Œ6ÙXã3žÐ›™ˆ˜d1“4…±© MãÈt387Óe0[£9ˆ¹*æóÝX ñ3ÀB`1%þÒ_–šd™ôŸåˆÀJFV)XÍ©5ˆµ*Ö)ÌzƒmÀ°‘‚M‚Û" ­.Ûmgl‡Avj´ Ãn Ù#é²×æœì3È 9ˆé¦#’ᎠæÇw8é$e§gs8¯ÑºÈØ%.›èŠÉ®ÙÐu7¸‰ép¸ãrq38÷’G”Söøªâ~rè×o‚Q\§n„–,# ¡p ÂKÄ"p""‘U£h:E—¸C"Ó`±×%žIº$¢,1¦$œKjSÉ4JN ¥‚T“ZA¤D: ½2˜$£™tÊ,*‹D$«Ù,"»r¨ÈÉ¡\Ëm!y]ò!òs¢€E¢¬°KFŒUQL£â&*aq%ƒ(ea¥U”1X9åUTШ"¢ç*UUÕ¨EÕ5ªéRËDµ]êèTQO2\}Á4Ш¡T4Fx¤ çšbj&˜æ.-T´¤ gZcjc’¶&i'ö*:˜¬£F â£QNtºSÐè)¨^@oúPÖWE?I·þÀÀ@‰Ø Ë`J†XÌP “¨Ži„Ådd”Š1”È8ÄxÊ&(˜HhÉÀ¦26MÓṴ™™ ÍÂ4[Å—y™OÙ†ZÈ"Kü=X‚i)g–›l…d˜•’[«%a­QÀ¹õÛ€i#¡Íˆ-ÀVmÓa»„mœÙ¥b·„mb/ÇœísÙ/©:ÀÀ!SrD££ó%Ç;NÙ‰ Nè”…–lçŒ Îàœ@.bº$q벊+:\ÕàšF7LrSÁ- ¸­Ów{¹¯ÑZÄ#Ê+x¢â)%Ï€ç÷‚±%*^RöŠ’×”½µ¹w&ø|>YÜg†¾0öÕ@ß8ó‘ùIè—6½8Œ‘à:„Ä Úƒ0œ«"¡ðœ‰  ¢d˜H&‹¬Q *¡hœ‰ÄÐ!¦‚X‚ˆC(®ñ€ø J(y”ˆ¡ÄœH$e$CɃH!¨”¤"”FAZƒ¥SA¢.£$,“ŠÌœÈbAY1e£,»Ä­AäÔ(¦Ü˜ò¨ÈkCùËo3 VÐD…T¶ˆ"‚s˜¨(PL£â˜J˜¬$e¥Tš’2œ*+©*/1Qs¥ÿT2HÎT•2V3XuJj2TKRUÛâêPVWA=õh` %E¤ŒUxcj¢¢©K3 Í¥@-kÉH+ÊZ»ÑFE[ i§¢½:p¦£…t2¦Î t1IWAuSÑ]EO7z!z ¬Š~‚êïÁ )òåÈ Lƒ †j0Ì#€‘-11FÅ8ã91A£‰œ˜$ É:MáÜTÄ4Ó-n§fR6ËD³6GÁ\ÄuVЕ¡n„º«èÁ‰žêÅXoDÉ6ú"ú™¤¿N0 4‰¯‚Aˆ! õ`cÃ5Á‰‘FaMÙ“ŒÌ8Š&HÄ&ª˜DÉdÄÄT™FÙtÎÌ0ÐLÉ£Ù›c‚¹0O£ùn,Pá§b¡Ë"Äbü -Q°T§e˜–+ ¬Ö`е:­P€E¬·˜ „6j´ ±™‘-œÙŠØ¦`;¡ˆÝ:í1Á^NJöÙÔ~ÄLuHƒÃAŽRôEÇ0WqRÁ)B§MtFÁY‹:ÇÐyA\àÐEIh—LvÙB®äš ®cº!˜[*n#îhpOòè¾…ÆòSV€¢‚„ E(s¸µ˜b” TÊD¥ƒ(CIYIU9åW‘#•UTÑ©ªô—j TWPCRUÓZ„jKØêuMV_` ÑP£F*Ä›@Jš*hf‚挴ԩ¦6 ÚjÐÑ^âJAtTÑ ðQÑÑÅ]n6×]@=)ê…©/ÐO£þ`¢‚ò b„m° À0LÃ51J²¬Ñœ#Q5–²qœOÉÎLØ$&sbJÓܘn3³€Ùˆ9›Ë©ù‚[ Â±E SâXbKM²Ìd˃X¥`5¡5‚Y«Ã:‹ Ða=#(Û¨`¦Í6·E£­ˆm&Ù.QµÃ;5ÚEÙ öÀ©bŸNû):€8h‚C*Žà(Cÿ˜èâ¸'8wRbâ¡Ó„Î2rÁ`—4ºLÑÎ\£à:c7€›:ݲۘî0r×`÷(¹ÚÌ' ùŒø"¯}“¨ùÄÉP?)ùE&»¦`& Ž!„N!%b¡$"¡m(Œ„µ p’[á Á$ˆìAÆ¢JnEc$:#10ÅÄËBbcŠc‚¸Äâ3’SB‰8˜Pƒ$3HrN¤à\J HE(5SZÒ+È  £N™tÊLYVʲ1’Ýå4H.åf$"¿ ((2IaEçШ(ÅT'TBEI ¥Ü(m€2@YLåÜ(T ¤¢F•,®²„¥ŠŠjV]£„jaª¨+¹U¨OYI %b8Ö˜oN5‘ˆ4UÐLAsÊZ`ji VœjMI ­D¤%í]: :JšuâŠ.6ÖÕ&º›¤‡z*è¥S›è˱~ôçÄL ù*Ä™Á")*YÂ0Ã#©b´FcŒÕi\ãM6Á‰&)˜Ì©)MåÔ4F¦˜!›©b¶ÅÍ!4Wó[ Ið*XDh± A-Á´TÅ2 Zn°&Y©Ó*Vk°F£µ*Öq"@ƒõ lBlV°…s[)Úæ²Ý$;;ìrÙM`¡½'eû‚Øéçšä°‰Ž0tTƒŽ#NPv’Ð) Ûi—3 ÎZÜ9Lçuº qã¢Dì’‚«»¦àºÉn(¸Iè–‚Û’.w8sq‘û <àÐC“=ØcžPòñÌf^ÿJÿyiA¯0¼–ty#a{KÙ;ཊ }4È'Š>›à‹A¾êôMƒïÀ—_drx©F ¤N¡4 Í©0’­„¥(œ Â+ˆÀHDL‘,(2¡¨˜¢q"ºÅ´ Ø‰Ã‰¸@<ÅW‘SB ‘ÉS–DERI—d:$Ç‚#©¤‘þ’Vpé8‘Þf2p £D$™%ͲØ\V ÙM–ƒ’œ6 È ä!”×fòQ’Ÿ˜ QR(‡AŠzPLEqÆJ%%"¥T”VQFÊQV§r&¨`°J:UVP…P5ª ¦†F5-¦–Fµu¨D}¸4Tш±ÆoLM$"M¥ÿ4Hs´þÓRA+É£Öµ‘$I²€¶iG =Б±N€ÐèÊX7L=½ Òèƒè«Q?“õ×i%)lCC0 U0ÌÃ6RÁ(“Œ&4Æe¬ŠqW0A£‰ &)˜l’)61•Ð4ʦ3TÌ$4 ˜Í™9*æR6OÁ|HŠü4XHÉ"{à/€¥&Y¦b9+4ZɹU°ZÁk) P±Þ¦6f£É¶ºl3ØvìÌNƒíâÐnŽì¡l¯ 9-bb¿Šƒ8$ˆÃåÌ?9æÆq'' œÆtƳˆs”—¨¸ å¸(™îÇ.K9®èt•3×0]7É à¦‚[˜n›àŽw Ý3Ù}ØÐ#*øÄÈg¾˜ä«Fß(ùn‚ú‰é—g9½€`@p!€ˆP*Ba$&ÂQ^p,*¢‘‘)ˆÂ©¨&‰D7Q br&e±uŠ£S\Šâ™$¾Š&I¨A"Î$¦,™‚䔥`$%"•‚Ô&IƒHkcé8“žP ÊèF& 3¦,6–•3Ù4ÊNIårs$yäL~Î`¤' ¬ˆEb˜Šs „‚’•æTÊÊJ•'TÁ¥"PI’(¨B¨ªÍTó :¡šW Q[‚Ô‘$uõÔ· *š¬ÐX²$ošp )¦fŒ4WÑ‚’– Z1Öš#mT´e¤cTt”rú謢‹F]5ê¦QwôDOÉ0½Ó[EõUÑOA (h0_Á bdb(%Ã83\§œéÁ(—Ñ !0V`ã€ñˆ ŒMÔ$Ê&ë4ÓÔ ¦Q0]£ˆ™ˆY”ÌFÌQ0W2Ì|ƒ,àœçR´(ˆÅ6²$ˆ¥˜–é´Ó IÑ*L«ƒXƒi-bÀ,`=G6¨ØÈÈ&Äf†¶šl¦íR œÛ‰i†Ý ì b¯NNÄ>`¿F;VpĦŽøÇ`Ç0×áe'-â”$¼Ó*ÎØÐYLç;\ ì"¦KÀeŽ]áÐUL×T\npê¦Ä[ î0pW§{:Ü'ôÓCà¡Ç˜ž ž2òLPϼàÔ¿”½D¼Âðš²7„Þ îE½çÈÄG>aúŒé ð•Ðw“ýÐá§~Ñ‘ËË@ÁT§ ¡ˆP*BkÆdaU„#žP1E2IdLQhˆè b0SA, 68&ŠkxœŠ¯C“$¢(1#Iä*R"R(µNi –V£t’)Ò»dP‘‘¡L”YADVL9Tä’å6X^I—|.$j ëTD‡ ŠÅ)(¡QI¥8US ¬‰Ê™¤<%ܨäFeª¨ªFÕ,¤º¤ª¦š«e€Úˆ:ˆº&«§S}p¨#o š(hJI3 kΙ6ÒRAkmµ“tktàDGAtÒÉSg]ÒÕdÝ$·ºê¡SOzY@oFúhÔWƒ~”ô—¸3@Å@NøƒtŒŠ¦b8'FØÜHJFcCÙX7Ø™,qiŠ€¦"¦YØtL3Ìdh–IædžNó9³€#~Yˆa¦Å‚ðG,Ña)eË,·€ˆ•Œ¬2ØjÖ¸±Ž”­çÜ5ؤb3#[$,[ m¶cÚAÙNí"°[@{(ÚksNöaÚ/™âpP¢æÅ6ØG)ø‡c9®àD'§LrÓÎrâ¡ó‚¹€¸Hè’ ]Ö᪂k˜nPr¸…¸­àewMr_ÁΨø¨Ó'Ÿ1}ÁôUÅ7ß öC¢â§Eý‚åf!Á1…PÅ‘ÐÃXX § ¼$¬ˆˆERYA ª‚è bp&&çbaŠ ÄL\p,¡‚D˜S–D‡¤„’ *9"…ÁRš •ŠÔÒ(HËt¥Gd`(#É%³eÑ(kÙUä4Inyy1åãT~L PˆPaÁÑÉa²¢˜Š¤¡’œ*”–Ü*£QYΕÃPÞ ܨˆ©’Á*+¨bUUTs£º¤I 5-¨–µmª®Àê¬>¡’. 9ÑH2DcyM(hJI3DsƒµàXKZjÍ™¶*Úq¢=¡u4H'>œël.tµˆnAt·°&é)˜^@o €úJ¹û™`€‚€¯E "4ØÆ†˜`(0L§áAÉHIBŒ2ÙhcTŒedœ,h¢„e’ŠÉ.S84UÁ4 ÓušÁÈ,̦h.có€ù”-pYh²E&Ylþ-!°Ô Ë˳±JâÖj`еÖi i²^‡ œÙèÆ& 6k´…Û8¶]£’.;M²Ëƒ=˜öbÚ¯à€N5:DÙ“5Ø1ÆŽsæ„$„“‚8EÙiÎä¬DìœFç%Í.0pQ£K6v™±+®*¸na7$jnºÅÈmLw(»kq÷ܸïÁºñÓc)÷Oä#â³ ¾Pö•‚o|Gü´¡_låõò ˜d˜à B BRÊ%´„%ŒE…Åoc0ED$"cŠ‚ˆ*‹Î¹ bªˆ…)6çâp,®KÖ×$ý(ëOh€ARäˉA5X@C)Žá21ŠÀhÆI¦¯b¡‰‚š¤b bª‰¦ÙÐ ƒÌT0Ë ³-f#s97O0ó%ÍüZhq‹þ’$I’$ÙÒZfqË[Ahc«ÝXcqkë8À™õ‚ÚÀ±:m°Y²Œ-ˆ­Ûl7ÀvºìAìeĉi?¦ Ätˆ‡9q„3GùGÁ1ÄqÉ­ÀIŠNIyO#Î`:ëÆ9ÎK¦¸@è2¦+ ®J\¸&ytÝ¢n7=¸ÜfìNw1ÜóàËCÄ#“=Vñ„O%,Ïlê¹É^ ^"^I^Kn½QðN§÷ˆ”|´ O >+ø"aû†ø.A~?ûe ù‚™(¸! ’3¡…æDJ .¼I"PÑÈÅ%ª E3ItbPSE, ±‰ËX<Æâ[LL $¢,±dII°@`~‚XdC‹ àXB`© ,S±\P+€•´ ±Ú`k¬åÄ:ÆÖsf°‘›$·6[Ä[ÛfqÛ°ØÉ‰]&Øm‚½ÙGÑ~Žpã¦ìˆŠ£ù‡#Çlâ„ N"NitqqqN§ów±K.—9vÅâ®bº®Ó ÜÄtKP·)»£à®@îILÜ7ØL÷x¬â‰O öÌdϼ°˜Mö’¡Wñš#ooï4zÏÀG>©øl3_4ú |cì»A~Pð“‘_ÿ“ßK‡`·€Œ…¤$”ŠÐ6Æ%¬NážCDÄÉ‘¨„¢q"ºAb¨ˆ­QqxÄÇ”À%¡`ÙHbI€ä R"•Kj "­‚t:¥wÉ ¸ŒÉÄ™Ì ²$+cÙ0d\Nå´™\’›‘<‘WE> ?¦AÄTH‚ñÀ!®(b&+N ¤‰J¥9TQ^E U2PeÁUQPU0Õ,¤¢¢6¦ºnÔ'ÔÐ&1ÒXo“5šrªgZp¬¥i…hh£S[ cíÔ@G: ÎÇ¥3¦.ˆ®ëfÝMÖƒPOƒôz3ÒG£¾:õ02ák°A ±‘¡˜†IÔŒàÜH£Œ6ÙÆÆR2Nbj<ç&pf"I MÖi b*¡i˜ÌP1ÓÂf l¶ÍÁ4—Ð<ÍÈ~ˆ…‚Xds‹1ùë´„±¥*– n¡•*VX ¬Q±–²u*ë-`#'6h« ¶!¶+Øa3;ì2ÐnL{(Ù«‘ÓeŸäÑ~Îp9(1qqX§#8JèŽSpœÐ NJùO©8m‚3’meèp^ÅL5ºDÉeBW\Up qÝ7)»ÜÈ7îJ’$I–vÓ}›z à!ðH O òTÁ3=çÈ LÿRöRÅ+Äk“¼A¼¥ì=0}âÌg›ú"aûÊ™ï ~þVÀK@Á IY(¡MF0am <Á@)‰Ä¹ÈŒDáLT›ˆF(ºN1܈)I&‹-€¸œ‰‡ˆOIB ‘À3–„’¤ ’«HÁHJJRaJm4—Öƒt:¤WAAFB™ Y0YYM@vår,—N¹Uä‘°äÕ)ŸÁò»QÀ† RVÈ¢ «(‚(*™¢Pœ±.% •’„Q:ˆ2”••T•³¸ò˜*XDE*ªlAU€ª”U£¬ºj5MRG£ºœ¨Ç±úk€hH¨§«ð¢‰$©hj!Í¡ŒùaZHÙ"Äb‰9IÕ– `™Šå„Vp`¥…­âÄj‹X£b-Eë,j=%€µIÅfÄNmÅ´±íŒívR²‹²Ý”í¡`/%NBû4Ú¯ÑI—ƒ:ÒépG(; ü£à¸N'rÒ@§9éŒç0·  ”]4Ø%—)»\Up’뜺Aàf·ÜÌ“ÝÀ=—û*ä!tz̹§:=7Ø ÿZÐK¯y-yƒx‹é÷‚ø qí#â“À>ÛÔ— ¾êôÍ&¾+øéÁ/öŠx©æAp“…âHhÂ0ÖÂQÞ`ˆdS‘)Š‚!ªD,ºIb1uˆ…ˆ ÄQ—²ø”$PPƒD[HDR$#”C ƒ¥4YH‡HO(ƒŠŒe²`ÊjÙ ‘˜rÊÍH7òYD~ J 1V˜²"„.E%ªŠ¤e%U”âDie€²ˆr&*/iRAò¨¢• PY0U€ª@5ʪSRSò¨EµuªãA]Lõ(«¯QÈ[Eš*h® …D¬%V’fmmujçÒžPL9ÖI£Î˜º]-¬;¡êôVÐÇd}뇩¿Á˜d #¾$¨Á*†HÿÊa†sdb¤ŠQˆÑ”Œ¡l,bgÆK¦›HÉ$“¥¿LáÀT‹›®`¦fi0Ûe'æ"æQ¶À ?†2²ˆ€?¦¥Œ-sc9¦œZ¬± µ­“ŠØÀzAlÀ´Ø„i3%[\¶*Øl—¸³ØÉÀ.L»µÓ^é/Ní£`?e,â ‚CˆÃqD§£’¥ücÇ;Ž8¡à¤F§8sš‘3˜Îb:Gè<'.ì"â’ \¦äŠ‚«»¡ÓMÄ-Lw tW§{îÛÔóxBè©<3Ù Fþ%ôR¯(zMɃ¼5È;Þ«ø`Àg‹ù*€ïõC0?Ýø¥Ã C0 8"„Š„B „¡ ,¦pœ o\"r&’ "s. Q E³¨è’D(†Abr*†ØnÄCÄW€s )K¤"1TA2’cJ¡AJD*7RcH+¨tJ¯ ƒ‚Œe’eÖ( ¡¬”erPÓ ¹(ËȃÈË‘|*òs¦€Š‚6VQØ"Š(p`*fÅ)(()˜R6TS”ã\yU`¤¢ *™¤²U©J¨ºàj`ªi!µ\êQ×BêiTÑ€@C häÒ˜±&*šbjN¨¥$­LÒFPmU´ã@{:êD™‚ÎéÂXW è¦SwèáÒ襠7gú(è+)êGÙ@B¾&Ä©Áw†06ÔÆ†y0Ah$0Š±Ñ„Æ Æ"Æ1^Òm‚ &qd²S™ŠišFÓ›a€™ˆÙ’d²9’áæ bžó)ñôÓ"ÄbBþˆ% –šd…Å­T°JÁj Öh-#ë0pb½A6R²‰S› ²ÓVƒlcd»í`l§Áv™h·{(ÛËÐ>Ä~Ä b8ÄØŽÿèŽc:œN«8Cè,pq^0€‹À%à²M\QqUÁ5\—¸pC2ÍM »…¸¸c€»ÝCÜ÷à ñÈ&»ñÔå¦ç6óBÁ¿˜^2òÊ^zãÆ[ƒ½c䦄>1ðÙ"¾hðUr뛾#~HØ~jôËË«¨#ÁT„ $¤¤(”ŠÐ’°Â` K(¡ðDÄIâNdIUQ E3Yt1€˜Äb,Ž âJºÄW‘P‡D˜›$ #Im$e)8‘’P*L©U¤¡$-¦tIOQ2bÊd°Ìˆ,e²s(§ rÊ-1•‘—±|$?e RHƒÂ’[E‡NE5*7@ Ž”$TZ@eT”µr.åU´±JnT6QªŠ¨n²˜jjP SIU=ÉPõ-¦¢¡ŠFŒ4Và-¸&jŠhÎH Z­LКSmLÖÑž’˜:êDÈÇÂ:3Ö…S]ÖMúOwƒõ0PO ½½9ÑG§¾õ³¨þs-Æ1ˆ#ƒ3„‘¡†©áÁHF!F f b,¡ñ63ÁF&šh¡É¦¨˜ªÑtÄ B393ËâfÛÈÍåÌ| óS±P‹1ùKn-¥l¹¤j…VXe!«¥@k(Yk°u  d½ 6 62°‰S[4ÚJ`g¶k´CÁ.»1í!´×œíÓ`?¡˜rââ0%G0E â¸ÁNèp’’S N#Î`:«àœËyà‚Tô"c—0]Vp…‚«n\Sp]Á L7 ÝRq›w,è® îaºéЇ”=2ÀcÎ<•˜zfÏ5za²—½Òè5gÞšì¦÷|Ð裊OˆÏ:}qã+ç¾ÙÜw›ø!Qõñë·b^@0é?ÁMB ! +¨pœÏX%KˆDæDT¢3ƒ±˜Åb(¶âè—sñuH¨"‘Kb%åL2Î$g$¡””¤b$5¡4 Òê”NAzeÀ”ÈDIfÁd1X6J²kÃ@¹€Ü”åÁ”×BòYT~XAÎPa à ¤(%ÅTש„F%-ª” JQFAY )ÇHyÁUàPE7*™ ²‚*ˆªœª¦S jbªe: ê2VORÕ€s %fq¤1Ǽ¥ÿ41HSLÍLМ‘ŒµÔ©%­׆muj§ =Ç:˜¤£‚Nñ±¨ÎéBYW7º!º=éII/Áõ6Q úÚP?ú#|)$¹5XrkˆC5FÙpNŒð`¤F£0V1FPc95NÅx4š¤`²$œ)S96’éR ˆ™š%Ù64G0s™§Á|N, ÀXh‹8µX0þZb¥Œ,3ÈrB+€U¶ÚâÖl-'Ö1@Ɇ 6 fb3¡-l%°Í"¶#v`Ú©Ó.‹Û-˜=‚ÙëâÄ´OPû1´¨CtØFŽ˜ä¨ŠwÌ"ŽSt‚±“ Nä´Ng\Κìp‘KˆË:]Qp•×lì:#7,Û*î`º ÜãÔ}Ä=´˜GyŒé ♊ç&{¡Ñ¿ˆ—ˆW{£Ã[LïLôñAU|RñÙ¾ú*qï› ¾«øé'#¿Ü+î%¸`@pD΄ÂK(œ‚ð”E Q`‘‚ˆl’(Õ‚¢ŠA(¦ Ä "¶Š8œ‹ ħ,Í%ä\"IQbJ’ ’j” Sr R)uJÅHj ¦´Ò_Ò)HïAL%·2IÅ3#²H†ÊÊX6ÎdGäP‘ ‘Sy O‡ü&+h€B:Ö©ˆ ‡“þR\0%8TRE) ,†ò6WŠ&©$IS™‘*‚©Š¨ÆPu j0V“’ZÕ6AõLV_£ˆ†h4¼)i¢¢)%Í$jš+hDK´VÑŽ±ö:t0@GÊ:YÐÙFº ºRÖcÝ¥¿ô ¬'c½8×Û>õÓ¡?b€Šæ«Ñ` !0TÅ0Ɔ`„`F™d41ŒÓh¼Dd‚Љ±IM¶™)M¦é4]`335KÅlÄæ*˜gaó%ÍHšùqf¡‹$I’$î,æœK$ËYŠXÆØrB+-bC«1­áÀZFÖYH€MlÀ°Q0›tÚ¬`‹lØvŽìÀ´Ó.ƒìæØ^Î8%ËÚ§Ñ~8 qã ¦C.‡5:‚8ªÃ?uÌ"Ž',ä¤ÉNqè4¡3ÎRpÓyà'.K+’e]åÌ5®«¸¸©à6¦»AÜcäMHÀuîäpÇ÷‚;®5Ò*HÁ÷y\Z¸£gÂíëÕÑÆ î¬pgyÁ]Ð îÂŽH} :zÁÝÐîúpp’À]îÚ.p—Þ€»Ø ×o9Ü9cáÎlwzF¸ß#Ÿ×°´p»úÂíâ ·£ª|_;y(ÜiO :ýõ îô p§®†;qÜ1YáŽð;ô3ܸm’Âýýå ¬£¨/ÜZN¸-‘úD…;èÜ‘eàŽÍ wò ¸Ó[Ãõ‹ Õ¹~Üé«áŽîÕ>ÏÀsÂÜîÌœ¿;{\¿ÂDu®(wæk¸“²Â9îð+p yAu rÀ² îØ+p'Ÿ€;=&Ü™3áÎë¾~éá..wùA¸« Â]nÀ;¨Î¡Ûà.› ½.ýé²·pG9áúÞÛ=*\ô}¶¹nu¸ŽþwàŽŒ w¼ãw'mƒ;íÏýÎP¨Î¥!áú€»83ÜOàN‰ wŒ.rs6½õ¯ûòÁH§\€;}.ܹÞp‡êœîDo¸Ã>Ãmï ÕÑ2)ÜVHûÀ’îÔ HïÀi¸~eà.N wùK¸«nÁ]›îz/¸6ÂÝ”îæùPÑëºc\猬P“›Ã]øªs¬TǸ£àësªs{!¸ÛfÀݲî¦Òp7Ć»¾;ÒpzÀ]“îªðp—%…»ôÒÃp—ì€ëÿiL¸~m‘††;o"ܹ¸Ó¾Ã?ŸñnÏ3H¿ÛÂû¿:þÚ(h{'…;Ê.ú<:$î¨+p'%…êœî¤æpÿºÿ­wxT¸CœHà@ÚÊîïËéÿZ®£µÜž¾pûL„;$,Üá½àNzw ÒÙ^pý2Bu.‹ wÉP¸þ¡áά·—Üü^Pƒ&Bu®÷° i¸k}ᮜŽt0ÜOà.«wif¸þ›à..ׯ\0®Ø9QáN wÌr¸ý}àÖö‚êðqÂât&ÜÉaáú7úÝo¡þuè\ªcPV¨Î>p{½†ê˜îlo¸óªÀ]’îÒ¡p—ûÀ]뀰ì÷Çïè Õ1w5Ü¡gàÎ×oÜÅqá.©wåu®=weZ¸ó®ÀðîX'Ü>gàþþ± ¬£†/Ü6H»Àõõ;t$ÜHÁó}`'†… ®«Vîœ]p€êœn§çvw@uL¼wN/¸~óá.¾Õ9Ûªc¸_üóßÀ×ÍÀNò†ÛË ªcœîì3p¶†»$/Tg?TGO/¨Î©OàŽO w°7ÜÅà.Œ ½˜žîÜaU<}¿ìê×')ÜNwà¶FZÕª£¶Ós½ýà6õ…ÛÜ·ƒÜßÃAÿëŸûÙ?íîà¨p‡þ¾Î;À¼E`Ñûû9 ‘:áÎÛ×oÜ…ÞH¿Ã]tîâ¡pý“Ã]²î²àp—‡»â#ÜU=ாwÝJ¸ëK!wc!¨Îå1áN wÄr¸è|ÔŸçêÜ^pÃÂut €Û}"\pŸXß'p‡Ü;Ôîð°pÇV;ñ\ô9wšîô:HWÑî¬ HïÀ}îÜ^HàÎs }€ôÜ àú5‡»05ÜEQ‘Þ€»øÜ%^Hp‘ù6ÇŠ¥pW^ƒ»uƒÇ:—Ć;«Üa^p{ÝêðN ·Rß3pçöƒëî¢3pÁ}l`—ކ»b?ÜÕ­ánØÕ¹(&Ü|^pg ] }]¢íx©/Ü^p›ß[ݪã÷4ÚÿŠÎö €Û7*\ßÖpÑy ´#Ÿxîø™p'^€;9îÔœp§ …;#"ÜY/à‚ûÎÀúÕñÜ…‘áúç…»ô Ü•uனչ¡,Ü5éá®,ƒ´ܹS‘vƒ;'&Ü© à¢óXÃë@uxûþ.zŸ;­T§ß-¸ó“Âë wvÒ~pÑñ÷p§½€;åÜ1wàöpÂã¦M ×QÝ}]ôF:´ TçšüpW~EêwÅ.¸ËrÃ]<îÂöîë÷iT¸s Âã¥1.ºedV¸}ªÀmá ÕQÍ ÷Ï}»Æ:$… ®óí€;ý Ü©)áN wl\¸#g¶ ®oT¸MœP¿‡QÿWt>nиƒ'·îÔæH}~w:¸ÿ˜á€‹Ž“Ïõ‚ê\pçÍËÀèwÈQ¸è׬/ ,XXt>§n_¤¨Žò^p[8=·W¸\ÇÄ”H Âüéw¸^‡àßÿטpGFZi¸C’" wPT¸è8Z¿×pûøÂíyn¸]üà¶¹ÕQÚnSo¸=}àþîø_GøÁ_î¤ pgEDzîÜåp”€»$&\0÷¿†FZ îòÃpW¶EÚîªÈpºÀ]_é-¸›r@u® ÌßvÉ~¸sp'½€ æûÛÛîïÿÿu}¸‹ÔîðåPmœp‡yÃõ»Õ¹ 5Üf¨k êwÊA¸3ÀEÇåÖ¥‡ê\y42\¿p§n‚ëûnÿ¤p›úAutqÀ¯ïÀN €;k(\¿rpý«Á]‘ª<ý©c8xŸ[¸nKo¨ŽÅ³á.Ýwc'¨­klšÔ}ë8¡:~Úÿk]Ü?óÍÚõ5Ü>pó2šî”*p'ùÁãEÇ«ÇÀëb;ð5Ü®I¡:ÚúÂyît?¸‹¼á.wù%¸«À¸ÁÚnpוBún@!¤õà®O´&Tçà¼p׆ëón‡;Pm½áÚÕ¹.%ÜUóá‚Ï?°þ}àúúÂís.z¿1  TçæEpýªÁõ­§t. wör¸3nÀÖ î_¸#¶Áão}ßoâÕñç>öOÑõcÖ7þ)²~×Ö¿vr ¸ÓÏÀîÜpž€»øÜ¥ká./Œô Ü•¾PçÀ]y®ÿ¸£Î@uü^Xç¢÷p€ÿo˜\0_ù§Ž1Uà‚õ†ÿåP~sáN*Õ1ðÜA`œ¼?ý©sÓd¸šÁ Ø‹t\0ØÅ§à.øwÒX¸ƒ>Cuü¾Œö¯ç…í¡:¦/'ªsÓR¸`P`g¥…;3.˜¿ ìàåpÛ; :ºe…;ò T§XO½\¢‚Ïßáû»5A»úýþsûÀ]¾ÿKêÁõû ßt<‚»lÜ…¾pVꘜªsÃ+¸á®^ wÅ ¸K‡Ã]|®ß ¸³›ÃÚ îø2pÑ笚¨Ž?÷ŠÎwò† îûþÔÐîâ‘pçL…;¢µÇ:þ¬ïúÓ)GáÎ}Õ¹²)ÜéN¸SvÁà wÐL¨Ž˜^p[: :—¦†‹<§:Æg…êÜ îÆ-p7„„»¾ ÜÀŸ×òpWe„»â™ç./wY#¤ à. ×?!ÜÅ{à.Z„´9Ü?ïÝwÆk¸Ó·Áýýãó¿M wpZ¸ƒÊÀè ·¥Ü~p xAutrÀEçGxøªsCU¸ë£Áë;½Üi^p§”;).\tÿܨ‘pÑ÷—^Iá¢ëÿ¼¿ÿ©O¨Ž\^p9à¹w˜î„åp§%„ ~;ç\?_¸þ‰¡:×䆻ôÜi¾pG"íÿnç¤p“zAýký¯ïD¸ƒÃÂ’îXo¤WàN-ׯTç°‘H£Â튮7ëõçïWåw'ÿ?pþîâknëœî*pûýþóí’Âî{Ç·Fzîdo¸S"Âê„‹®[id¸è<ñòÈpWdž»>Ü ànjwó¨Î*¿ÿžNÿÁpÑù…>¸è8eç¬p›yíïWFÖ?8Ú;ávó‚Ûó5ÜIáZÕ¹.8Üéáú½„‹>çMh ¼~ÛÞê_ã CŽòƒ;Ñó?ý®_v¸‹ûÀõŸ wI¨Îv¨ÿŒp‡g…»¼¿®Ï wåï7.§ÿA¸“ü‘…;"îp'\t¾§»\0ó§Ž?×ÿ?ªsmt¨ŽAPcŸ@u »w~¸`¼5°ËÏÁ ØÕéÿîâ‚p6‡ëWiL¸ ÒÂEç›gõƒ;£Üisá¢óÓ“·Áôé6¸òÂ×ÓÀŽtÂQîЙp{ûÀ¯óÀ¶sÂó­å Õñ{Xö­‹´îŸ}Š^Àu.°ýp' Eç³Àów`Ñ÷ðœØéwà‚u—i ¸‹#Â]r îò¦pWT»2;ÒÏp×>‚»î5Ü€^p7ä»)3ÜÍÓ :7$…»ö0Ü•Ïà. |žõ_ ]ºè%ÜùÞpÁüV`çÔ€;Û.Ø/ØqáN €;%,ÜI­áNŒ w\T¸èë Ýï ö«¶ŸÜn¯á¶»·®/TG¤M¢ã—Cp‘ó`<õ¯Ž_wâ ¸èþÍi9áÎ~wQ%¸þc¡:7¤€»öÜUá.ßwIt¸ópg>;ù=Üáq¡þµ ]6x$Ü¡áŽ@ æWû{{Úÿ:÷Ü…õ<·¿TtcæT÷—îüPk“Â]X îÜ pÁ¹'Ïsâ·ƒ7T‡·nou.™ wѸ ÊÀîÔ^pÇ„;èµç6O ÕÑâ\0¾Ø®YárÂýó<ô§ÂtîTÜÙ!ÝwÁ&¸‹öÃ]².²¾ÛЮÿ¸È}Ç_çš,Ÿwñ¸à|•ÀN= w|^¨ãÊž{0o(Ü5¡:§øÁè€Û/+TØ—Ø13áþµ.{(\tßÝÜ]pçùÂï×/5\Ü€¤p7—Fºª³Ë¨Ó2¾Ü žÃÁײTçü+p'Í… Þ';Än*p}PÞïþt ÜÑ­á‚çÇ?uD€»öÜ5•à® ·K\d¼ÐQ n?¤àœªÀ¢ã…3ÚÃçCµÎò¿?®sq%Ïõk w^Z¸sê ãÉ3¾#}wzÜi›¦„;6ªçŽz wHT¼¢û‹:9á6†ë÷e°Î,°#>ÃEÇçÆeEZî”Ïp§þþº9¦—€ Öÿv–?Ü9áÎ w¾.²¯Þ±ÄîòJpWÅ…ê\_îÚHHóÂ]sîÊ{p—„»42\ô>Ü·}?Ÿ2î$¸èz•á#áúzÁí]'ÑÌ ŒvzJ¸sý¡:*Â]4îÔåPýÎÀUÙŸéÜœî†ÆpW€»âÜ¥'àúLJ»Ðw¶\d¼ÁÑ× w”.º~bjH¸ÓúÁîünp† Ö—ÿ©su1¸Ë;Â]’îâp&…» ÜyáΞ wÚD¸SRÂ0.z^º¦‰TÇŸ}ÃÚ¥ \t=ö¤~pÑsyæU€»p0\_¨ÎÕQwK¸›¬ƒ»v<ÜÕñ==oÅR¤©á‚ñ—À.M wÉ6¸þYá.®wÑL¸ kÀEÖw:&g„;+,Ü áúùÁý3>‹ž‹ÙÕ÷÷—#°ŽHÇ'…;u$Ü9!á‚u…çŒü¯+á.ìœù¿nƒ‹ž§¸$'\pžR`ÁºŠÀ®œ w7Ü€èHÁ]wC$¸ó ­Õ¹®Üջ஺´ \t}ÃÒKp—T;;)Üñaá‚ó ûû²ò¿}@=pÑyÚѾP‹âÃ2iL¸`þ.°£ÃÂëL; nÏ*p+úBu€}‡E÷Ÿôð…;d"ÜQeàŽó…‹ž—5½=ÜÙ«áέw~ ¸½^ÂE߯ùÃõÏ wYT¸èøòò[pWÄDÚ éL¤èë+3ÒrHwÀ]Õé=¸«gÂý3oô§ëÚÃç;þ¯ûánŒ¡«Î€xpÑçÄUS‘…»ò-ÒµpWL‡‹®Û]~ éZ¸K6À]ø®ßj¸ócÂýë¹m*\p—b'F„ ž;¦µûþYü§ö¢û|}Ž?ÏÛ:è Ü¡~Hïüî¨:pÇ;ã Üy#á. wÉK¸«P[ÊÀÝTî† pׯƒ»f8ÒøpWyÁ]y î²pÁº†À¢×m0¿Ø™¾p§]€;y&ÜQGá>÷Ïxퟂý íüûã8ªxÁíãwdRÏEÏëœá„;ïÜEÁ¡þu.98'1°}œP`\!°öÿ)ºÞ`AT¸~¸«3Bu‚sÇÿÔÖ=ÿ©ì³üÓ¿Î/1.ºo Ô9o5Ü1^p›úBu4óƒê\¿îš'p—§‡» ÜG£óé3ç" wêX¸¾ÞPCãÂØªsC"¸È9¦ŽÎ¯áþµÎ/)ÜÉ›àÎ wIB¨ÎÍ×áþÙoõ§KÆÃ]”®_/¸³ ÂóGr.ºÏrhV¸5½àþõ{|áúoCêwAA¸è÷sf?¤½àNË‹4!Ò¸pÑõ.ö5ûÎDê ÌãÖçTG_]u®Ow]S¸+ ÂE¿ÎK¼á¢ç¸ƒómûç\Ó?[î4¸èïg˜œîŸ×ÏŸ¢ó``ŸÒŸ:š#EÏ-ù3þó§c—»ïÔ„PóRÂî°¼H³Âý}XG/¤ÃÂÂ.ú÷›ØîÌ pçyÃõŸwùJ¸kÊÁ]ß*úû³Ú{îê÷PÿWA»z"Ô¿Ök¢çÅMÌ wŽÇ:×§„»Öîâœp}ü þu~Ú’MPK^Ãçavr¸µPÿ:¿ œ[X°Î#°`e`gÇ„ Îéìâ„pÛëûƒÿW?¨ŽÊ¾¿[_¥èycH+âÂû‚ÿÔæ]»¨T禎p—‡‹ÎÏ ¬§ ì̘pÁyçµn¨p¯Öáã ]O öÿ©¬çü_3Ãíà€êð¯wDZ¸àó,ºŽq¾?\0¾ÿWWû ëI× †êÜðîúÑpbÁ]›pÑóZ–¾F:î’™pÁ9r]¼îÂRpýÀE÷‹Ì=÷ÏïùSôœýéYáN*÷AçÁzÄ?ýë\—ßÓ%ÿkß3pÑûÄI¡:7¯†‹îÃÜàwí¸«¢z.úúC»(»B³ÂE8W6°£âÂE÷ׂugú×¾Äu‰á.ZŠÔia¸ Ÿ ¬ÒðpÑßã®ÿ]©Üù)á‚õZÿkD¸sÒ"M wbH¸à\ìÀ"çUýu®Is¤•á:~ßÿ¯‡"ˆô(Ü) áNõ…‹Î[Ì wÎg¸óÓÂõ{ üÞ«À. wER¸è¹#«ÀõvÕ%¤/ :×;Å ìo,:ÝõÎïþ{ÿ÷yÞwިʪ¬FE\FaFATVaVEVETV¹ã0 ¬02,Ó2¬02,Ó4LÓ2DADQÔIÉÁypž €Áyp ÉŒzWËUø¸ŒѲZVe<^Öe¼¬ƒ¨ŒÊ¨¬ºûÚ¹ïù|"Ô¼v÷ùkýÏûe[q˜ùÍ}¸®ïu*FõϸŸO³3GGv@{¢œÖ¹÷Ýžœ˜¤ÏRÓRN5'ÎÍ‹Zò"q}Òã¢>·UWÿtëÄà©…¼Z‡þ|Fî%»¨}ý¯Ó³ÿN̉ÕÎutöuñzæY:cŽâçèôŸˆ÷Ò©oÑICsÿny'¶ÓñTïE“{hûfq%Ml º?oª¡§’Ëërìƒ>ß»Ó@í°nNKPóéSQ½SµT­ÊQ7¯1X£ÚGªç×®Þ-+ Z¯íæ‚5ïô¯ªæž(¥£iš»D'×Ó©!:=BÏ|Ú3†Îœ¡“et\¾A7ÒÌÛÔßÓ]âNñaQÖK©ÏÐdí¾Au}Й¡‘œH±m޶n¥-54Þ%n¥51*ûM›_ÖÍÎ"êúƒ:wÈÕw'¨öýêú¢Õý¹Ä6Ú³ ÚéÿEü-:5 ¦ÅB:VMGcb)™£ÃÅtà*͇›¶ÓôJêú­¼Ösüw›é¢É7DC5Ÿ®§†v—S#ظ™ê<Äã…ôÈ}¹˜–@ãê´ƒšÓîÖÑÁã ôä5Ÿ£-id.l†ö£¿gò_oîm:vŠFæñÔÐÌ´o†FòbÄK]ŸIPûut~ƒÎ}Ó~׿8=£úó}ãÞ Ð<_Fã7iSFÎU¦×Ñ©¯ÐɯŠ_‰êï/÷wèD=·Ô÷£xåüÝСŠhvÜB5'3ó)êïÁÕ®uâZÚPB5Oî+šJKÝ>:x¨Fæ·ÞCã5Ðäc–|4FµÏxgFÎeÚ´å*m*¤Ç×@ãîÉ‚G ©äÆÙ3ï.ïÌ›tz½ø÷EyÝOÿ¬x7:A'nÐÑŸˆ?¤®ÞrÉ—WŸª«ÿ¼­}×Å÷Ä b†¦¢:Ë=×—¬¡í‹âuªuV-çé‰yz°œÆ²t_Œºù5^óÝ­Ž¼²~·g~N}žŽ½I‡·Ó¡q:ðžø(Í<.>BÝÜ ÎÇ–\<Û¹jÝ’ÖÏ×ߤšë­º9l^S£1K›ª Í}êüºþ˜øÍÌÒ¾›4ýcšÚM“·ÄJÚmiû%Éå,¢' ©?¯ôY¨Î{Ê S·~ ¦«¨äÿÙî m[O5¿v%•þ{ódŒêü']GFúUªiÇzù\i,¦õF\O5@ú™"õuÿµ¹ âýâZ:§ã×ÄÇ騣tôaq¹!^þÏQ}þ¤ïýxS{E÷õµ,ŠÛ©æ¬U—AóÂ"´.=¨¹pz¾ãÖÅ^óJœž®¡¡~í•yÛvèI:øY:Ð%úœÄ5´ßýÜûï¡©#4YA{m^ýÜmYO›*ÅíTó1êæ&zMU´sŸ¢>ï9¸™Ž­¥Ùû¨››±¿¸‘fVÒΫ´e+Õ¹·á9áž>Ÿû%Cµßñ…ŠüÏ#ßî²ä7-õ¹»Þú$mÎP¬çpÃù¿ÏÕŠÛEy}=(®£Ù:øŒ(¯o7÷.8ðíO:]¾AÿT祧ÏÑÄUq”î)¢ÕóôY #9ñdz¢ûç×B;°v^ƒæØmÞEÝçz0õ.íß m×­e5î\Úø9 î¾Ð¤óë1ÓçúBvÇÄ8íNОÔç¦=¶Í·-Õ{?¿ÍëæGuŽ_ç(´GVB³göº}¤Ï1éÿ1ÕÜâ®›´ÓPÍÉmØ@Ý9dPsÀÜ•ן ë'6ÎÓ5ôC›ÏCóÂuëàÄnhçNÑ©Çéà›´eÕò6]£.§9(¿¯ æ”Ÿ¸)®§Ç éÑ=¼†\¼9Zcidd|y¿£_3Të<Üœ·àö$ýfuõ2Áý–ºù¢æà5ªsSü>Ù××v\¦kèÑkô¹úÕ4®ï{IYw5_¦:§/}uyÜÁÏPÿ\ ¾E³ Ñõå»|ŸàÈûtâu:5Ogï.k$ϸ/G“+hO1Õ÷×Ñ,usÇ‚_ˆAãêhƒ‘ºïÍ41O;ã4ÙCÝùBp¨”ŽMÁHwÛy™c‘¹ƒæþ+´ƒÃt ‡+£:ãË1úE MþxÉqÚ¸‚†sgæÇtp=•R3ù_ =s£бx˜ºÏé`߇4]Mµ_&¹ŠöÄi÷ZÚ™£m¨æ>6‰Z¤smVÓx9=¾H]>c0–¤îs4øE M~™´¤ÞŸï+ îs'(sÏÌ©8m¾A]½@Ðí ƒ©'adîò«1h:Ü>Ö猥óçÏ&ãε‡·ÑÁMT×?}OP—?tûƒ ËÊïÓ¼TAý×핺Sëóˆƒ1z²Œjÿ€æxʼs2)ZêÎG½‘õyƒ¡/XúÜ<õ} ¾i«¡ß°ôÛ1ú¬¡¾ÞÕÉóÛJ[ i÷VûZ†Î ÑÙwè™Gèô»Ë;y‹æ~žŽ.Ðá¼"¾K3UÔ;¨ž£´%hdŽÍÍoŸ‚‘9Ê‘ú_÷¿ß.G¨¹ê¹ªq÷Ñ^Û}™jާž‹}ÝÐ/Sób’j¾ðiC[¯Pw>ÌÖ‹§èÔÔuZdNOôOÓÔ8íº@»è±º/Iý¼¹ñ}TëÇšbôp)õý» é–­ËѽÅÐTç¨æŽµ\§­—ib«èÏ¥oÒN÷çSÚ·šfG©ëÛ7ãïÑÉŸÏR7ocÉÿ@§Y\ 3Ótö^1FÏþ é§j.££ô”çh}1=±’ÖÌ‹šü1ø’znx4Iõ9¿D¯Q=gL”Ðî TÎMú-š™ß…6{C,¦™÷i²ºÜ´ æMé=òä«Tçߦ+io3uyøÁ#E4r~3Ÿÿ~Ÿ´twŒºçAPrÂL“»§×9”òû±¯ýK:ó×éx†Fî#¶Q?×Öëêe‚.—Ìk^ÎÑý…Tû¬N‰ñRh6S™§¹ïÓõcWM^¢™uÐ6î¢~.¢ÓTǨöº9uÁ¦´u휡]«iÒRÝÏ ‹oÐÁóÔ­—‚£+èø"Í]¡S¿Fg¶Ð3oѳ¿íY+6Ó™D§ji®…Ž¿MGî§Ùh_š6YZ£šïò#ƒÍ‹ÐNì¡‘yÛç©Ö7õý˜¦6Ñä:ªõÄ]õ´c†¶Þ¢Íå4¾H”Ò—cTÏ+ªŠ É¿–ô¹šÞÚBêæ`ßÞEêÖ³AÍ;võEA—§t÷´Á¡:ržN¬‡væñWéôÓtjQL‰÷ÓÉAñ)šû3ñ7¨æÔ»sŸ¿æ±tøº*¤ÙkTçØ§ý¥4“£}—Ä{hz?Mæhï:Úy޶ÓæuTÏñ´¿jš¯úJŽÖ^£GWÒãe´7K“oAëæLÝÎðùÖULû†‘×ϰ¥©ÇiW’JßqûÉ`û5šÙ íÌWéä÷h®Sü4ø‘ø}qœÏÒ!Q󬳅Ts‹3»Ä2q%M=H“ÏÒŽ8u놠ö‰}¼nUðkÐøu©÷„Ø`œn],ëDS“ô™õý*Þ—-=^D[Ë–·m+í*§ÝWhþñú—†ö‹ùÿÝþ5-eâ6÷u¬†v²“ʽZ$Ç·§Ú–MмZEõ^jô>h“;ÅBÚ[F{êh§ØVDTQ÷{ jņ¾Rm÷jêæÎ-™¡®N%¨õ¥Åb!m‹ÓøuZ»Hõž^êX"õÙÚ‡÷Ï ¨Öc»yÆÁ£k¨Î;Õyòíõ0Ò)šþh[¯R׌Ÿ£'ÊhmÕ9/×P·? >[AežÍÇU-ùY©÷~až¾’¤n^{ÐýÞƒî7x¼Šž°TûITyºpyãÛiÃ*ªûJ78غ‘ê¼Ûî›Ë«9ðÉhêêê‚}wÒŒ{gnÐþO‰ï‰WéÀqAü¡x•º~™%k¨ûœ¿½ç©›ßÙCG÷ŠïÓüñö_ò3â½âfñ)q§8 ¾!¾Mu¾Éø=â&ñ³Ÿà±Fìsâ÷éÄ*±H|@,K¡8#çt:WQú“"9P7hºŒ¬£W í‡žù üñ_ÐÜótünšý û±­´O}œ&/Šîþ_ïÛ5OÿTÕþëW+è+Eô‰4ùíç’:8±žº~¥Ð·4z…úyßÞÔиœ½ Ö7õn„¶é:us˜½æÀeÍ«uÿœö9¸>» ûçƒ/ÍS©3(¤:Gª³’öl¡r¯oçÓ‰,+¦:·0y™ö.ÒžíLŠÍTsWAóBŒäSkÿÔàš‰‹n¥yïš·§¹Ñ åTóˆtŽúÊêr‚©· }¹H,Ìû½ÏÓ3G–wzœNþ4Íý"y‚FúgŸ¢ƒŸ¦Úwîæ» ¨æ>éügw?”|WûÚߤ!ŸÕyæ¦ÓŸ£“¯Ñ\¡¸’jžÍÄ;TóÐ#ÞI‡Ë–7s‹jÞLûèsü­ë3 º¹^óë1êêž¼vÔ=O®‡‘õyµÓkhö}:XASSÔÍA®&Q í™­tfŒNžÿ>¸NÝú,8’¥Ãótè~êËV‰wÒH^ËšyK¼“öÝGÓ»iêmq^Ú+jýTú)Úçë hxœfC[e¨«ÓU#Ïä#ÐN=G'‹h.'þØ@Gï Ÿ¢™OÓtŒö\¡¾þÅÛ(jÿ–®£;F_Úxž&âÐwQ©œ÷¶×RÓ4ØCGoB;ÙMî¤íWÅ}ÔÕûyÍÁzX¬_I}}’×å;«iòGËjGÞ£©=Ô߃z]]ª×TQÉ53¨ËCXòAñ4}ú¾bUî;ÍÐãtö¯C;|„žJк$=XGó“K~Á@óÅÕÜÏåæ]ymÛ(Õ\ðÃvY#Ïu3ßVFÝœ› ›{P¼AÇß§–æþ©øèd%Z!~‘Nˆ/‰ÿ‘Îþ5ñ ôµÓ0’?7$ºÏ Î·¬+ƒÆåm“{©«cöÚ‘ŒØ(n¦C+¨Þ§k^BêœXC{»¨®ßÚ稟oåÕ~Ü‹òîZ€‘×éÞ=TD ©ÞÇDæC;°“öÏÒLŒöݤ‘uñ´kÕσ†yêꇃ/•Aãë ¼š«r¬’66Ó&±}+´ã?¡£?¦#¯Ó¡•TçZ¸y˜Á—M^÷ôšÚJhÇŸ¥#Sâ~H|FöùÑÁ*:°‚†œ7ï&šª¤É»idâeÚ^B[ Õs•†9ªó•êçhÝz ˆºœ¯ùŠ¥{é¡Jz"K›ÎÓö*Ú¹•ö®¤.ÿ1˜JÐÌ ´e4sN¼›j?c:F}Î71CãU´¾Žê½|þZ)hÜý{°6õý¡ÿ±'×ÐÚü¾Ô´¯‚‘œÝé:5*~ŠæVÓÑ­bÉògÄuTû†ÖÓ´€fVS_oܤnžÇí•÷_{mÜJŠiÜP—³”9ÓÆíç—¬¢õîïÕ\ÌÁ Ð « jŽåëÇékSâAq »›ÎþSzæ/ătæq:ýèøtø}ÚŸ£:º·„vÍ‹+i~™²dsmº{š´ÖPs¯óHgѱyš§š_Òv“6ݢNJé^ #ùfníµgߤ#…4m¡É -ù\}1FýÜ9oc ´ƒbßuõÅÁŽ$mk¦z_ÔXAãeô¡5eTö½Zßa¿`Å4ùí’ŸÏlêªè±5ôd1==Gµ\~ަū·6S­ï¾HSŸ¢éZñí+kÅEêæv.yN¼NÞ¥ƒOŠåTw‹?¦Ã×èØ÷iîI:ù´­£Ôå(–Òá[TÏ“Z÷‰†6­£º8XÍ+–Æ.Ó“khS uëŠ`÷Jêêø¼6õ=å÷ß–ÖÅi¬T4ô91¿m^ò;‹h¤/u½¨ù(OÄè>Qó´Óã¢ÎEpù¬AîÃÒ´o#h¥Ã…tÔRéë6é[´ï}:ðuy÷Kž/Ó‘š+£Ó‡Î%¡=»ŽjîÀÌÒéèä¹åÕ<ï‰Årq%+7Óì€xP,ï¦}»©æÂ¦zh{Õuʼnus½‚z®ò•4ÏSÍãöÆVÒC z„ÚÙŸ¡¹Ÿ£ZÝpš M5Cû":y€&2М¨„öõmtîOéÙËâ÷ÅAñezfžºœè%ky§»ÄoŠ¿*>´¼“Dsû©û|¼­£êžÁáÇèP3õçûÁÏÐÌ{b!Mo¡©ý´{;•<_›˜£n.P°1K5?ÛÍ“º{÷ Þ;~7IUQwëÖ¥>E'ÿBü6ͽ+ÖSíû×:÷ìU:ð( ó¾}>Bœö‰úK&içyÚº‚¶ì¢‘úÓ}ôôz¬ŽJÞnäÒ}þ{#y¾!X%º??aéhÍ\§š/Ѻ‰Öçè±*³TŸ‹¾îÉi|߬÷ÉÝ.~3ÿï1ûÜ÷q7ôá|šººÙ ¾ŽzÏAãrƒ]ÚÉ¿FsgÅ€Ž<)®¤C§è€{¿û|;­¿N~@;/ÐŽEÚ\Juß[£þ<Ùû-CóǤKsø^]¤õ¨æ=ºû¡ ›×ævººâ`¤/}6_¤ú¾Ô}ÀóEÔ¿{Íî2*÷;fß<}5NO[Ú|vl¦õ´7AS+¨Ìƒ5ý»©Ë™ f‹ÄêóÞ†Ótl/¦kÅKysÿFÎs¿^MU’êœ%—û‰~N¹Ü‰`÷u*óÌíaCÌÑXÕü ÿùçÝcaèÓO»ç¨[Ç/о{éð ´©u´§šv»¿¿)Ig¨¾b‹ÔÕ“·Yhò1 A{æïÐÜå[EÞ£šèrɃeË{¨šÞÛ<·“n˜t¯Pê^³Ñ©vš{‡Ž¿EuÞûà§hfŽú{îô›âM}HÝ|º`¯¡Ý]Ôåðe_lËéÉ}už–@ãò‚²^Óh‹©ÎÃuýóAW|¡Š–Å`ä~õp9mÛÖÒ®ËОù‡tôAÚÿÕu@ç.hŽÓÚrz¬”jN³¼ÏLúqšyšöWŠ×èàVêr`ƒCwR· ŽS·®0¹¿#sÓ^;Eg>K§ÿ”N^™æ‰ŧD·¾™¸‡ºâàèÛâñŽåÕ󶑃th7ÍÆè`%íÿH¼@3oˆSâ0MÑäFªŸKZ¯Ø±jŽ|Cuó!ƒù_W0²^tçßÁã7aäü«ûºx•6ŒRçåçÞ{Ÿ‰šó¹§¹Eå^(ò¹u8McÑ²ÚÆy:ù‡tàMq%íÿ¡X%PÍár}>ÁÞK´£†FòínR—Ô9 ®/*¨ŸÏ/ÂÈyà— è7-­6Tëü¬¡ÇÖÓ†K´©0¯›#ts)‚Ú7åóÞœ6÷¾xZü{´{‘j¦Îw¯çà‹FòùÕA;·›žù5ªsÀjbЦޤí]ËÛ\Cc•Ь- 9ÚužöÎÐþzšÝM}>‹ËÅŽn¦Cû©ä©˜oÑCÔÕuþŒë7 &оQ:x„_…:¿Qs"ç–SÍûˆ|ýªÏ™}Î|æºéÐ8Õ¼íƒÖ~Ùã…ÐT‹ë h­xº‚¶4ÓN­ë£ êùìú¢¥ùqXASQAݤéèp ŒÜŸûÏ#o¶V,¦]âc´o˜¦nˆ×ÅÔí÷ƒ.o'èç$y%ŸÚº¹8ÁH?Ê5é_\Ic´B̘o-Ð7éÉrÚ²’v\€vv5ü Ú&n¡Ù q=|„ê¼²ôGTæØÄjÚ¸†Æèç™_ š£ï÷¬¥ÉÚ¸š_C_6иyA™¯c§þŒêœÅ‰5tø ÌÒL)MUÓî ÔͧFúTæ¨æ™ɉòzÖz¸—h¾í8h|ý°÷;–¾RFeî´›¢ºžÑ×efm[E]îhpô!ªù Zgê={=§Ó?Átªå¿Ó&šû!xC|Ž>µ¼ÃÏÒ¡ÕÔí÷ƒ™ÍoKL,¢~Ý.u¹6û#zî}mV|’Îý‘ø,ÝAÏŒ‰ß‰ÎÜÏÐé;éÔQ:YOs»ÅÏÑ C#çŸë¨Ö³ž¢š«9ÿÌÑìMñ:Í,ˆR×£çý.‡*¹ç¸FÛhÛUÑ}Þ¹zé ËË ÆnR­“ÐüXÚ×/Ó9Wxö:{9F§?E'³4çú+#s=J阯˨¦î:èæµ5çOïÚn‰e´ùÍ¿Œ—:\E‡öR{ÓW.®¤Éûid~d)­]C_¶«ùæ´=k©æ$’´µž6*s'"¹{+hþ¯ š1úÝúBÕù=µ¥´.F%DçšSEÔËW-oË%êö¿K.R#ì>/—¼NÝúqÉK´7F“µ4ý€xƒºóá`ÿ»Tû…Ý9Cpäa*sàŒëó æþ5ú»tú«Ð¶Æèì3tª—æ*Ä-4ò9:Cõü2õ$õõDÞ6Kfa¤à„¥MÛa$O浿Auô=Y—›ìºFê©ÞËïNBóEK¿SA]ÿNð`ŒÖ­¤M]ËÛ±•&wÑÌF:ø:ôc:öÀ²Ú™\Ks :ú):r.¦C£Ôϸ—.¡Ï/P—ïÌn ƒ7>Áf±„\k–·ÿCšQoˆû©ö«é¹JªD|`y#sËÕ7ÄfÚ]JÛvQÍI­7ôx’(¤;,Õ{™oWЃåЦ÷S7ÇÄúÎ Ñï=J_û#:÷M:{œÎLˆ¿K§ÿ\,§S4÷"»ê<ãÁ#b-ͼ»¼:§¶»–¶ÅiC =Z@¿ƒæå$´íWhb6ÄèÑEúRý–¥¿QÍ 9ªyZ7ëúÔƒñ‹´u†v-Òžæeµ#—iÏ9ªëZÑ‹ÓD1M•C;tަߡ²n6 ´©FæLL~HsGD?t7ØIÇt¸UŒ‰OÒì(Õü·ñ!šy–†\­×øíZG]yÐåékÅW“t{4ÏUÐjgÖÑ©7h¸Ÿq*„æôJ:ô´£oÑÁŸ,ïÀëâ]Töí6}Ž&h¡‹´}#ÕFͳÑú‰ø&z¢Šjÿæ{»¼*¯Éÿ±%_pºÿ`SmKP—LÒÔ>hSÛ©Ë ~×BóTŒ³ÐN…ž¼Lc9úuÍ® *çÙöÜ+ô{ÿMLÒ×ߢ¯Ó³$ÞOg+èÌŸQ½çŒäˆ[©æ£½ý ¾)–ÓÙåíß@uýèæ³“hïEêêCƒÕÔõ#OÞ¤~æõýX[-4_pú9¬2gËöÖQׇÔ{š&±qŽ6䍿2œ¬¤µ—©Ö+~ÕBs¸Œ6ˆíÕ´#K“—¨›£qôN:~º>Ð`æMhD“ïRí§­-¢>ïØû¼¥åFêL®§ZØ(¶ÔS·ÏðÚ3Str'ø M—P÷¨ó–´ž?²n]K[s´e3mX î/X7O÷ÒïhŽÆ¡ÝI{GéËМ¸I]]¤×&[io†v•ÑŽmß@#¹rëi¼ˆ«¡¾þÞ«ó2ÏBó]C­§G.P—Ãt}&^›»NÇVSŸàÕÁHuÃ*Újéà›ÐN~DÇÏSwLQ­Kj=Gã–/¥ZGásª÷Uå­ŽCó›1êò ‚-nÿärƒ½‘\¦Á7Ä:Ú÷0í­¥ú}û9Þx9=YBu^•ÖU毧‚ækEô¥bªýÈÇ.ÐSu´1G›ç–Õ6ÐW-•~—È=a•¥~Þ“¯ûö®Ý?”¾s*G›‹©Ö‡·Uˆ9êꇃ:Ÿ6¹ö­ÿýýý¿I›^M›¯S­WpõyÁâôYC+,Í?Þƒæ †n_ /樫K ºœ¼à©RÚ¼@Ý<`Ûyêò-‚éRÚÿ)š] mnŒ&_§.—/Ø÷.Õ¼Û½ñåÍÿo«9|yyÌѸؾ™º9±Á‘¨ë;æ.,«=› “4÷§â/S­ÿÒ¼!µ~%4.÷Ïk¿÷Y:÷zö©öýM𠎈têYñ.ùyüG±Sü5:~…Žn§Z;ô0Õ¼™Ú÷Ìþ,í.¡å´ýmIŠõâJÚ\Dã¥ôT–ž¨ ‡ÅÝ…0òüŠ­§õYÉ §Ck©ö1j>¾ÖÝ÷UˆwÑôÄ.ñšÜJÝyGÐß'xO$¨œ/úüÊà>Cµ~íÄÜÇÛ²v®YÞžEšŒÑÔ)ªóÙ3Ñ·iö©‡é˜«[¿“º÷ipòtúçèÌ?£g~mÓúJ š†}´}´½×ió>ªó24gþàhÍÑS¨¯Gj^M[ ©Ë×5®Ÿ2Ø÷8ŒÓ!#ºˆ™túótê:ÙOséÄ<ßK‡¯Ó¡ š}Œº|Ž`ÿ ÚWI57±êþÙÍm 6¬¡Ç«hÝzà}¥Šî5T÷ß:&ÿøäþÚbŒœOÊëÉN|ŸÎÑÌ#4¹(þ„6o Wi¼„ž¶Ô×aÞNwžÔüçÝ×uæ_‰?E§?§éÔ¿§“Ï‹Ÿ¦‘~ÀZ:öýÉÇ;ò‘ø¾XM³tðNÚÿ,íû1M^¡óTχ›g¨Ö‘i~䱕4ßf»¤Îï®\€æ+–îÍA;õ[Ts ÜüM¯I¬„vúߊƒtê‹4_Þñ‹b%ÙC‡¶ŠivÕy‚™÷iú®åuõ ÁîyÚ6³¼ Õbõ÷ž^·oZ²œ£®~%è]#çsZ?år„¢ó}sОù:ñª÷÷©½´ó Õ{—ÿt÷WAw?î5­%0ò:y–¼A“ïÐÎ,ÕükÍm:qXÍÉ:Ú·Úá÷èP1üö½MSß§Ýu4±†j]ümò"ý8š·x´Ž6n¢‘ÜîK4Q@»-MÝ#^¤™«TÏSú¯@›»‹Ž~D3?ÝϳÏÒô,Mݤ=µb¥¸‘êüäŽë4Q½¼m†¶ÞÅÚ˜ë©æÆéœX½?×üwwÔþWg¬½F®¡úzÍ_oßO{]EÐÝg5WªkíYC]B°¯ŠÊëÒYÚ÷–ø:M¿+ÊçRo5M\‹ikš¶.™ùÚ_ˆítî-¢3ÕTëj¦*èä;4÷éØy:\K‡®ˆV|”SÞÿ ͼCûÞ ©ÇhW5í(¤:W³¾†ÆÄo&¡y¶Btÿ»Ë 6_ýx[.SŸ“З ­khsŽž\„&‡°äAKOæ¨ë‹ vƒ6¿ìYRó­s“´o?}±‚æþˆj½Têª÷j<¹¼Rg±*ÍWc4VD–PwÎÌ_—/Ù>Jõ9æòÙ‚ý©ËÑ ý€ê9ÕÑõùï§{m½B·P}þ¿\Fu¢9Ñ/PWlºF]Ž’×¶_§m—é Åиý\0•¦n¿¼DGVÑñjš» í™ÿJg>O§^Ÿ¢Ã=Ë›Þ-n§íIÚVK›VPW÷Ô9½&Ío‰¿'V/ÐÆÍÐvm¥¯,R½÷z±šCYªuinîNpüi:q¯øÍ5R÷¹çµ©{©¬ÍóIº·˜¾º@ëiÓ ÕzÄÞbhgûèTFü6Õœð‘wèàA:°ƒj.Hû6±œ6/Ò#uôP šªyÚ´šº~!¯M®¡RÿiZ*¡Íÿ±%]þŠ}¡"ïîhÜyN°«–ޏóçÉñŸC›º›ºº¶à+…Tçu?—£Û 4åâðŠ¡µuTûŒãר~~µm§Ý«hju9Á¾:ÐCÝüË «7‹z™Žšû hû/ÒȽYŽv]¢'Å2›£.¿YçÕšÝ9zìÔyršßa6Q·? ¶dh{í¸H»ºhj7íûí¿Dï…ÖÍ ®/€‘üŸïäæÖO×@;dh²Žö$¨ÛGµ®¸]lÝN5Ä«}C:/°ª šIúJÕ|¡ÆmÔ/»“4õcêò>ƒƒ÷Óá Оm§}?  —éïï¦çŽÑï}оÞ(ÞE_ûâ>q“ø·èÜ$=û¶¸Kü9:;AÏl¢3ÿ«øèô+tê/è䟋³âÃ4wS|œNl¦ãOÒ‘«txÍÎÓ"Ú7Íoa˜3òÝš|Eç,êçGWÞBÝsÁkëè¾2º%Mmœ6TÑæuûÓ`b‘vTÒÎK´»œ&W‹ïP™ÿ©ÿtÏ­%Ótpuç™A×/œ¨§®®/8õu:Ýíà zrŽê¹¾Ûo¿ hEL,€Æí×nëÑ2Ú¸&*Å9:ôYêò…ƒ‘ú¨çÄ‹Pç)ÚE0Ò·1pŸ¸Nd Mî¦ »èICëèî Z£¿RÍákô„…vzŽNŸº adþNs uóuƒ_tß×ä^:±ê¼ˆá»éàeÚ¿ž¦Ÿ^Þ@›ê©æ4êsq·è꤂Z·í^OÁ|¹ï’ÉJš*óë=“~ Ú±u´·†v.¯~~ù:¯ÎÔs Æ+ÔÍ“« ûç鳖泂‘\§W ECRíóŠï¢ W¨Ë‘ ê~Z燦§h9ÍÞI‡Þ§£Åtl-´çºé÷MÐ3Ä—éÌ&ñoÐéïS=‡œüWâ?ÿÍõÓ‰#t|}Tt÷¥#n½9²…ºs¤ ŸË,¥î÷웥éu4¹ >I{›iWm­¡ñz¤ˆêÞýÔzÍžÓ{Û¹·5IŸ+¦•EôK–æAóeKŸ) îßÔÜ•EÍu‹åÿ"s°jä¡­]I”кËôøzh§^¦Ã7ißFš\GOߤRwé«ru¶Áæi,Iõ^Zû¬Ü?×¾žv^ Ý9h_o§;‹òvÕÓc%Ð.×Óε˫uGÃwˆF\¤#:¾FöÍC©Î)ôyæ^­×9]E5§ÃçyŸ+¢nŽ×øõ£×ÕO%hâíIBÍ…3ßÑë©û|¶¬¢3ÐN¬ #—hóEªó¯båÐ4ï‚‘sšÝ‹0ro’Û#΋ï‰ÿú9ñ*ICÛVGOÌS­ÏúfÅòþv šüËvÉç«huuçWÁãe¢¥§çikÕuR{…ØE]¾z°³H,¡®®2Ø»žº{Â%‹i¤v€Ô‰óÔåQ³ëÄqêú@‚#щ8Ím‡èÔ:û´®dɪ}gh¦™ö=Cu~XgL,§z.xºtyë =`ÅõT÷•;èW Œô™.¢ñK´¡˜º\é`÷jq#M=+ž§}îßÛ÷ ø}šIÒ4ÎÑÜ¿£ƒ©Þg»ü@3ý?ÂH½ÏIjs¿BµïCõy²Þ¦KôDRŒÓ£•TsK÷ÓmFÖ•/Æ¡IÒÉ'èК=Hu¾Y*CÝs0èr¹½Æyíä3TûÒǶёµTsi%oÄ|ÕÒü—õ¬ãÐŽÖÒÜ9:ñ:TIÓ?¡½qš¨ -W¨ÎïÖœ¿†Ë0R7uÂÒ˜¡r>Ùoø:ɶüsÌ$6S=¿îÝíÜéÔ/,ïänñ9q;ÍMÓñ8ÕÈž2hÜœ Ë Æ©=>G_.¦~Þ¦÷w  ©kæéaQÏkÜï1ÏÐÖí24µŠV-PÍj.£©‡hf–o‡ÖÍߨ¤.WÌl¯ >¯Ê{r=íœæ^£S_¥3÷ÒÙŸ¢gŸÿÚÔ=ƒ‘¾·‘$•zxëç_y÷TQ©ËÕÿØ©ï‹OÓÉ??Os#âcTû«ÆÓtìA:2+>J‡Þ Ùa:øŽø xØFû·ÓL½¸I¼ŸöYq7M‰Iw?«}O­[Īù†ñmTsþU÷ÜV‰®ßkžŽÑØ<Õû—x5uù•A·? ¶\¥.§3˜ü Í4ÒÁ5tè#úbÝ»ø±ÚX šWËhÊæÿÿétÒå¯ë¹­Î þ´4s…jÿLêíÙNµÞÛÏç s:oRÍE¨/£GKéyš…Fê(ks4^CÝ}~ÐÝŸ“W©ËÅóFrPܼ-¯öeØ©EúR4/@;´‹/†¦þ´³¿F'ÿ‚Ž]_§>—Ú¯³†vÓ–}T÷}šcÿ j§¾LÇNÑLÕ¾º=‹Ð´Ÿ‡vô’8E‡/ÒÁ.Úwž(¦îÜ:¸-F¿h¡©)^^7î¶Ö}‚'K©ÞS6tÑæjÚVHݼØ`w†ê ¾j:¸‹J]°°´z‘vdèR*õ¦cíN½Jõó"û4¹ŸŽî¥c1:~ÍýœØC'ï SÑ3¿Hg¡=œ¤{rôÛ&oÿ)šy𠨬ûãy{oŠ‹Tú&MËVštß§›ï赯ÿ&>Cs5âOÓ‰géx–Ží§zÏ8\H³÷ÑÁ»hßM?"®¡©]Ts„]ý}PçØ¶ÕPÍ™Õ>Âæµ´ižž¨¡1Kµøk ÔÝWåüÙ¾ìþüëiÿc´¯•¦Ýú6åö×Éêêì"ýLuîýïûD¼îÒköúÿÊiãFÚ²vÕѾÝtèûtì³tb;ÜB§^§3÷Ó³ÿ ÚÙŸ¡Ó?\ÞÜ4’˳ŠFæÂ¦iúÕ~Å®-ÔÓŸ¶Ëë÷§Ü:Ê÷ç>»×Ÿ¹ÜËP/v:æt뢗¡y¾˜NÐ|,Ü’îýôyðaXE^Ÿ7û9êæ‰yÍóqÚpÚÆBú‚Éÿÿú¹ž®…ÖÍð†ùÇÝTßr޹‡Ô\“'ĸøýÿ[µ“ÐøÜ½Þ)n¤ƒŸ¦™¨ÛµŽ¢º˜Ê}žÉ\/ùåõëSï‘8=mi[ ô<@3Ÿ¦UïP}R€ÖÍ“\²Ÿq!¯_÷û}@ÓEZWA_,£F~®¾ÿÔ›¶´ÿQšv´Š^¡½U´©Žº> à£1hšÊ©ËÁ ¶,R?ŸÊÛ^B;j©›k̬¥ýwÂHîEëZêÎIƒnž¤×ä¿ì%µo¼¡ZŸGï ó  ©ŽÁÈ| ¯ëÏ îž§~½ë­LR7+èr‚÷ü_ÒTh§þ˜ænP×çl,£ñ=UBkËè9ê>ç¼f»¥TŸK:§¶m í)¦©yhÝz&¨9@Ú—\¤/Åé·’ô‹Fò`]n_ðèMÚ°ºç’×6zzj>w}1=– º_; êçN~º¤ëƒòšRñ†ú¹YÞ—h,A].vðH=ž£î~7xZtó ƒ7h‹¥‰yêêÏ‚ÒgoR…âëÔåR3OÑþ t`'uyŸÁìZ:´™ßIGj©Ô›±Y:QDsÛèd¡øú%ñ Ó‹éLƒ8m¦‹jýìÎhvÇézŠÚ³_¡Ã+hw–jƒ«k žŠåÕú§†Jh]~Z°kmu禮ž$¨yÕ:ïIïW%7Ö@S j.×ÑrÚT#ùíãótt-;Oû ®-Øzÿ{öºó…`sÕ\h7—ÞkÝçH°¥”j‘Î?ðçÊÁ"¨u‘ºµÔ:øuó½½öì#âýôLšÎFãë¨ëóóÚÑSbÍÄhß.êçL»ûõ%WГE4&毕‚¦L<²@ÖÀHÎFÏ5úR­*¦.ØkvoE=éþy­‡žXE3¯S3›ª‹Ä»¨ösõ¬£Í·h½¡‡+—W÷k ¨¬óŒ[o/Òã%ÔÍó vl¦aŽùvÚ—„vì]êê‚iQï¥}_yëzªsgë+éñEº«hYÍsIzèuõEÁ®fš*Ýó¨ï8žwðq1ÿyo†W‹®nd´Ú±7©Þ÷G\E]Na°%FãTûŒ¥ÌÖŠ‘9ÓEtG Frë¿héÖýŠøL’º\æ`«;ÿê¼Eݾ-èê)‚™Çéà}ÔÍ s„2{ ñû~o¢ Ú™&:1@5·"½‚º{`ƒ…æˆöÕ"ºw~Á~¬z?bü½°7^&ÖІ«´im[E5'Ò›?Ƹ½™š}“º:¼àÄ~:ù]qœNÿ6}­Úïåèë[èÜezæ¡3_¥ÓGDÉ‹›þE:uJü'tò‡t"±¼£i:ô.¸Bû®ÑÞ9Ú¹iyëhsœžÌ~¼n}ð•ù¼ßªøx¿–7Üãæ§–oü´¯ÿ š;#JŽþÈ:àö{-ç¡Î5·Ù‹´u}¤Á¾4ù&uó7‚í©{ `¤ß"5ílü‹ÐtŽB{¦jß§œ¯X—3Ük©¯ðŸ‹EÔ=‚nþGÐÕ}G6ˆW¡¼ô v‰O‰ÿL|˜æ~_|B,¦§èø8«×ÐK‡ï§Ùótðnq5íßGý>Ä›¾ƒöVÐöJÚVO[ë¨;w ¬‚¦°€J=€í©€¦6FG³4÷uh§Ÿæ¾MG߯Б§éðeñYª9ð™9ªób»VSÏ[_H_´4ÿ²‹h¾eé‘$ÕÉäÔÍ'öÚ™:ñ‹tú}:±WÜIÇ/ˆÛÅb:Ö(® #4û¶x?ÜOÓsTÏ3z³´½Š¶®¦M»¨Öwëþ/ÿø šoZz0Gý\;oÃm,¢‰OQ×éµ¹­âÏÓ±):ÜA³wÐ̪çªÇWÒ²h~]|ÆÀȾ`ÊÒÉ2:q‰Ž} ÞIõut#uùíK>+šÙ!®§}µ4Ý(·Òä½b!í­¤:_ÄÛ~U4ÔÕý\Y¯äÙºrúí$ôç’¶ÿuùÌÁ®9º/Fkªès…Tîí—  ©.¢¯Æ¨«ß ª¡Ç.SÍßoÞF[nB;÷9:Û+öЙ>:YM'ܾ"[D#yÎi÷Ú±ay›n§œG¬È{ÀÐçË É¿½–Ô\‘Ù_§g> 3ÿM”|yÍWÌ R]¿M”Ðq÷zû ýÕþõáU4»ƒÌR?¿1¥=u4±‘6VR}ÿeÞ¥]+ÅÔåp5×µµY4´å†XMO'híÍ·ó,ér%‚–>£š—ñ[â“1ºSÜe¨Î¹©±´®˜+¥ýOÑá{¨ëÿ1¹ÔíG¼öwcÐøù¸^=¿y.N÷ÍÓ£Åô„['ºuèmm¬v¨ƒêë­¯‚vߤ‘>õ•Ôåá5W¸ñÕzm͉;RCÏÑÚRºßÒ½I*Ï3»»xy¿V@ƒšÇDÞÿõº§ˆž¸,^ûx[GÅš¬¿·–Õö?HÓŸ¡õI郖¾ Û–¡ 7i]–¸I?ƒÆÍ º{Ä`üm½N;“4ùš]ýfpà:´Ž&éÄq:ù m;Gýó)¿¬»½.W$èæ“™ä(M»×Qßç)gþ}jFÜyŽôgÛ‰Vš¢½IÚ¼/¤¾¯ÕiŽÆ ?Ǻï3øÙ4[ ÕœqWy¨’º¹*AŸ?æm»Iµo¬·ÊyžÉÔÒþRêòß‚:ÿ+ûŒ(÷?Z/¯}³ÃOS—ïµ}õ´­˜ºÏÅ ËÏ ºó ¯ñ};Þªu9Áç©›ô¹S§ÊiãZêÖ+Áö‹´ãí²´g õÞršZG3»Ägiö8ÕßÓÄ´g×ÑÙ!ñç陟¢‘z±#>H§²¢æ°Éþ$÷ïÅ_¥‘|¨ä”?@]ŽqP×!‘96—hoŽö\WÒÄ&Ú¸jßÑ 9*óD#÷û‡Eãúù‚Ý— uó‘‚ÒaN,ÐæJš¼N5—_ê\L¿˜½íÔ¿¤.G6²Ôþ‡T#ÕóÓ–TÏå\Þ[ðÐ5êúÙ½¦¢‚úó¹— é*z²†¶ÓŽ´³Œ&H]Tpð®‡6n©«ç jžœ›ƒtÏ©`w uó‚š7ÕoÛK ÚƒbL|–ê}¦Wçj¸œ»à·‹ ùz’ºœ²àkTúLSŒÌ—}W”{‘3&¶Ðéß¡SÐÉÿæî¦£:|•í¦ÙF:XNӋ✸†ºs‚`Ë5Ú”¡Ç+éË Ðä›A›,¥úû÷]C«ç©ë7ðšß5¿ì9K}îˆ×ÕYêç\{uþÎi÷ïÑÏ×L´ã7Ä::VHû+©ÛŸ}ß´7¹Ÿö®¡Ý›ig3í(¦¾NÚÛº6m¦ºu9Á#—éÁEº¯ºsëæ¥¿µ@#¯sðj½ŠÔÝEî[5?öd=•¤ÚWÛ²‹ºz;¯ù:ö íª¦ÿ´š=eÐNýÍ}–ŽwÐÌ6ª9ÿéz †õìQC¿Z#箞ÄÙïªþ|ÂûÜ"­¶TóÍüç±×Ý O¯„vf‘j}—«7æþ‹øèÄ:ò>ÚC5¼¯‹&ÅÎÔåJO”R_÷æÍÿ5ÁÈÏ·¶ŠÆ·ÐÖ*9Ʀ¾ˆºÜ¬ ë' ¶¯¦]kh÷:Ú“ÿ\4½»¨« ¦jhf3u÷àA—ÿjÛ,Õ9UGnRé“3þ¾Ôߟ–h*¨ö=¹{Ä Îs먠Î{Óï;ÕA]}ö’›ÄËTn𝿿Øß§ÙE:¼–ŽdéØâEêæf'*>ÞÜzqŸ£“cÔõ)§ÿ”ž ³Môìjñ Í=IS‹ôP94/æ¨Ö%âÐæ~™f>¢:Æåj_?L§ÖÓÔ=tútûªÆü÷o]ß’Ýai>μÀ>"úýí}Ôî/†¦­šjþÂÀ“Ðï¡MÕМ.¤-›¨«·óÚéi:„vbŠŽ–l§n^f°gžÆ  ©ª ‰+ÐNýø4XEµÏOûd^œy*FÛf Mî¤]UÔ÷é|ÚæBÚ¸‹ž6ô`–ºEË êy}ò>:ø ´³túèD1í;Nkç¡ÎiŠôYõõˆ­b9uyËKPwï±d’¾’ƒ‘ûy¿Îñj.tòÍ^†Ö­/ƒ:oüt%Õùlµqº» Fëõ Õù䯊nCðD–6o¥îs,Ø•¡2ßÚ$ߣ©M§©Î}ZOG›©î'W‰?%ºçÐ䬸ûâ[02?PÖIÖåðy#uÖ¯šXE{.ÑTšºy ÁHÝÌyÚɯÓlí_ =å´!KÖÀÈëNó›Ü~¹¡È}ßåÐî0tª†>EÓÏR?‡$˜·ÓæE|½¶wžîŽAã¿Oÿ}çQ‚fj ´³¿Eg~H§Ÿ¡‘<Ð;iî_Ññ$¦Ù­4SI“´sAÜ$–PWŸÔ¹Òîó2èæ_µÿ{³èr3#6ÔCûj.ÿßý¹?Ç;·ƒÎí¦Ó tòkTóuÝœè`Ëš?†XòK&ÿõøù¯ý1>EsY±ŒNÜG#}‰ :rž»~ÛÁuó®ƒéM^£~]Ög%Tsî]ýó’î÷/ý:ú|´¹vªs–­¡u1êr–ƒ.÷Ó­ÎÑŽktà<‡öt­ˆAs*AûVP÷¾ ŽåëLÎÕÑL¹çåt§èÎ{dþ§ñyÞ½ÅTçm¤ÏÃH}‹› Ô¼[éG7î\ÝÍŠ9ñ‚xY\¯Ñü2é/Y(®‹ÄQÖCueb¹X%ÆÄ:1.fÅ9ÑŠÄqQ¼I]ÝÈ’kÄõb±X"–‰b¥X%ÖQ׿±ä±X4b©X&VŠ5bL¬“bNœ­xY¼&.Š7©Ï¿ ‰ëÅb±T,+ÄJ1&ÆÅ„˜çÄ â¼xY\¤ùeÀ_²P\/–ˆF,+Ä*±FŒ‰ 1+æÄ9q^\¯‰7éÉ•â±H\/±ì,+ıNŒ‹ 1'Zñ‚8/^oÒS+Å"±X4b¹X)V‰5b\L~‚Y1'^/‹ â5ê룂…â±H,KÅ2±\¬cb³âœhŠ₸(Þ¤ù¿ö/¹J\-®׊ëÅbq£X"n¥$’?¹U¬+Å]b•¸O¬ëÄz1!&ÅŒ˜gÄs¢Ï‹óâeñЏ ^oˆ7Å[´aå'X(®׈ëÄ b±¸Q4b©¸E,·‰ÛÅJq—X#ÆÄZ±Nl»Ä¤˜sâœxN´âEñ’xY¼"^ÅâMhϽM_ÿs:WCÏÞIgçè™Ç©öNí “‹Ž_¤#oÑlœö¿IÓo‹iòÚ³Šê\ ½Õ\ÕÖrÚ|ú¹T^WÏî5ÏZúB}•ÚC+F'7ÑÜÏÐÔÔå7/y]¼@;¶P9gˆÔ™ŸkâbŒî^ ß´Tç<êýÖc±å-+ •1æ;«¨ü>"ÏŸäÚž§Ãù÷yôÞëþåmì¢.Ÿ%(ó"4ÏÀì¿,ö&h2Nµ?,u‹jŸ¯›7|Úv÷ySS±¬‘œ¦‰{è8¥}ש˭ñšæfšÞíä :¶šjÞ›æ ú>[oö LˆÅâ]4_°dæês½é®Oð”¸MÜBS­â^šüˆö–Ñήåõõ·uÕçeÓUêÖ±KP·®¿m‹÷XŽÖ^ è+Åb!Ý—ü‹èÞBêžWA9_·Ïåèw‹¨Ëó>NM>naI#ð´¡.§(øí êçÀ{µþ_ŽÖ®¤Çéé$´C·¨Î%I^ zÿçêÖƒ­ÅÔµÿí; Ð|½‚Æ–×Îü2¿FnÑþ×igü,¤n?tçqÁ—©¾>_¬€ÆÏö&ªi_–”AëæÞ]ŸB°¹‹ËÒW Õ|·Îjhûghæ~Úw7M¦i×9êæ&¨ÌÖÿ˜}UôàehÇJé›ÿÿ£C.?nÈçòüZ7ß#xYÓî¾ÿäTó°fþ®xšžyZ|‡În¥gÿhÇöÑÑtd+~¶vÑkhmÕü›C–º9A·Ÿ Jyd²ž µ]‡ÖåGž¡š#íæ Þ„‘{Ûø5êžÁþýÐöfhOíJPͽuçcÁô¦šß‰-«úsñ7èÄ :Ú!–СR:PB3ÛiGMTÐÈ<€­´éc°}%m*¢î¾{Éêê=–”õˆŸ+çu9(·Uë厺ϕ©§èäƒTsÉǶP?Ç›}ºþà`ßMvÐÞZÚ)¶ŒÒæóôôeªûêšêÎq½æ›E4’§õeTëKŸŒAÓ³K좃Ítô'tb;ú_¡=ó:󮣓ÅTçw–ÒÑsTsý,æÝ›Ë[P°¬fŸûçý¼X¯Î)Ko£©ÄSTså’+¨ë7X²€j^ÇeQî9\Ÿ~°5K›7S71¨ë;WÔ}Ýþuó8½æÀš·å*m[çtçòùÇÄ_Òí?…â mOÐŽ2Ú =ûÄ´m+¡Þ›Ø×þœŽÝO5×KçÆµ¯¥#{h×MÔQ=jÝ@ adÎJG 4î\,x°’jŸÙ'©¹ûµÔ}>s¿#¥“ÿ–N—Ó3+¡.¡ƒ»hÿ4ócÚ÷>Õ{ƒä^ª9¢–vÜsÎ2ÚÒL›VÑÆ«buuAŸérpƒ®N8¨÷‡*èþBº7Ný=˜×Õ§«,u¹YAßßâûr\CÐÝ-ïÑRzìÕúVwžtó;‚­Õ´kžvß îyL§éÕË›™¡ýµÔÝÃ]žLpè~›ŽßC'ÿ ´¯ÿí¦ÓÐÈœ™:::K‹©Ë]\ò8í¿H5·¨o—¸“j®QÇ uuÁÚrªëÚ"Ö®v*j'? £td3GißUªywÉG©|žÙ–Eêê«‚GJÄ"z(F÷‰_10ÒO¨u°m¥ÔÍmôÚá›´/A[¯QÍË÷¤N½sõßÁ#1Zké«Uôù$ŒÔu¼”¤~΃·.GuîÖ C›ši÷-êò{‚ý:ð¹—ï[M{KiÏMÚ^KõÞ»õ mZ¤®¾=«¢îÒk¾½@k˨ÖÁ¶n§]iª€º÷UpÀB›z—vÏãák4çž#gÎÒ‰›tàí¿Ÿ¦ë¨þ~|n…÷М(çËèw ýÆŒä`j?šöý46ÓÄjh_{‹N÷ÑÉÏЉ:6C³R]ïõí¥éYª9åÚ—$N]žc0VFµþÁå°Ÿ2Ð|7FŸ[ Ú·t|žÆK¡š¥Ù'i&'f–7)ê9[ûœ§®Þ5ß#óR^,¦Ú·¡uê-ÛiçFh'Ÿ§™}b M5Ó¶Z— GÖ‹Eôå84¾nÅ{¬H,§9šš‡¶£™¶]¢®?.øRŽ>TŸ_às™¾–„Æç¡z÷,ÒÌ-êÖoÁÁGéÐ5h§ÿ3JQ½/ŠÜÉ}cÿirœ¯Ò¶8mžWÒuô¥š?®_òë1ºÕBãæ…ómÇKvŸݹÃôW¨ÏŸô¼MûD¿ZUu~=S@57`¬YŒQý½ ·Ò¡7Å9¹G*¡ýb)Í´Ò¾÷hêñ}QÏßï¥ZG¤¹meÔõ•&èsÅ0’¿r º¹Å^;±šŽï¥cPíÕ:†c+¡­¤š[;ï¡n~Cppus§‚É©Þ÷t&h»¡­5âJÚR³¼š¯º¾ª ë³ ºùÁêbhòm KjýþË1êêã‚Ú_×XM›ë©ÖÉõl¤©iæm:ðÁÇ»‰æ~Šv®§‡¡i(‡vòQ:ñ6Õõµ7qƒ6m¢®/:˜¬#¿é÷³Ýh×"uç§ÁÄUêê‚îuðWÕC§¿íÌ:ñ‘ø:þm«éÈÔå#iÿfÚ÷)šÚ/>Mõ<¬u Õº¤CeÔÕG{Í+–6]¤®O)è>÷¼¶ïQq£XHµ¾¿ó’XH[«¨öC5.ˆî}x œ¾T£}祢{ŸkÝa¤?VŒôû‰- :är݆ê Ýs_4]YêÞ6»ŸJ~’quÂA·N^ò:íÝL]h°oíÿ€†9¬ÎÜZhÏl¦3«éôyq#Õ:™ÜÿñŸÒ±Ítô}:ÒC‡+éP+ÍÞCýç¢7RçðhÅjªçº_ÔÃÓ–5Ôõ«O×Ð£ë©æ¾hèS1és;œ„vúÇt¬‹/¦© Úïm£³oSÍ}ž ý³Tçrê:±±”¾@}ݼ×ÕË¿ƒæ;Ôíヒ»c»«©Ö9ùù!~žÈ1íèÍÒt+ yÃù¯Ïö¸×™»ô›|'ÿ}šg‹òú¹ž™‡¡©(¢>Ý+y.öÌhæªsÌÏþ˜žùÇtæmñoÓH}Þ#tb—¸ƒFö·çè@•XFõ\3»hòiQÎEzGiwm[#Pí ==¿¼±•÷qsê‚zN¦yK.§4ØyÚRý~]NŽ×ìª í»–Õî«€‘ÏûäëÐvÕR™;¹wps‹‚.Ÿ:òÈ E#ŽÒä=45Kû>M×ÒüËí/ù†¸H‡¶Ðá;èȳŸàM:VMs¿(æ/pÍäÓ©•âf:ÝOgþ:ýzö&{ ÚÜušqû†¤{w;;WÒšBrνÉJh©öÝkÞuo9Õú´ÄFÚ:J[ÖÓ¦+ÔåWuŸ‘ÿcÁHäékÔÍ‹ v¯úx]î}ÐïósnŸæW¿RFÝœä Ë-Êœ³ËPÍ=ßWFk ©æ¥´‰·¨;§ðÚ³÷ÐÙtê÷éäVš{‘êçרèÈgEC‡G©Û¿³eË;˜¥ýéåM]¦®0Ø–ûx›·ÐFKµ*ržRA—ÒxíÚµ¬vxJL‹÷Ðl+x”ºœæ`ê)š\ß Z·æòÚ‚:'ûD=¸@ck¨Î§ÝEÍïÚå­-¥hËê΂®.Ðk³Q½?tÏ—àþúJŒ¾L›GôyôÞÓ9÷õhfÚö¢¼~’ÏÑÒsc©‹³g>GsõbÕs-Ÿ#âM¬ úy1IC³£‚¦Þ„öµtl‘ŽŽ¼#ïRÍÇÞG³Uï`M_¡]Þ]´c;m«¤-שΗˆ_¥õÅÔÍ? jÞ[×z›“”|ªÈy¸Îÿ‘û »'Mþ˜uÉ—«–WóU5ï3ùcÚ/o¥2?Ǹ\(¯ýÞš{š¯[h]ýrÐå÷/PÍrý¾Vû½ÏUÑÃë©; 6TÑ–9Ú¹º>?¯=óÇt¦^ÜL§Óâ¯Ð©Zê꿃«èøƒthFòjî¥ý9q˜FöË34y•öl§•âÆ·}m]K›öQ—ßÔzE×_܃fwuuŒ^ûZ%m g~žÎ)ýÚ»ž6f©Ë] ÊÜ!{lŽ~; £y_Ô6ÕCãú¡‚§Ö/¯ÎíÓ<ÁæQÚž¤ÉÍ43LG陋>“Î+^ÿ£øgâûâoˆ.~ þgñ¦øâ‡tòñSâ*Qç¾Ü%þmñ§ÅO‹«ÅŸïA,Q¼Wü{â:ñï‹÷‰ë¡ßBG6ÑÁ§©?' ç%P­«é.§ñfªÏWß7è­.£ºßÛ,>§µ†® Z¿¹»ˆº¹ÉA÷÷„ù.R¯gƩ˧ ž(£šëÛ\A[ÜþÂÍ v,Ò¤¥©jhÝ>%xªF~ný÷B;t¦oPwØÝE;wѶ-TsGT—“¬]OŸ›« ñõ“ÞšEº¿‚¶Ý [i×5šú>í_KvÁÈ~¦½†¶]¦Z×ßXC].±ý|4îü?ر‰v/ÐÞjê~ŸÁÔš9ÿ«öµ{éôŸÐ©WÄDÉe˜ú2ÕzäÜ—èÄ q?[·¼#Ñì0(¦.Ç(Ø1G[7Ñ“sTs·tß÷4Û+è Të)zÏQ«šÿFžw. Ñ–ÍTûEº ir–ê<ôþmâ uó‚.ç'xt‘I@¿>³S³Të[SëhïVÎ!œÍ¨~.FöóÅù¯Çåý_2Tîï#¹úM…ÐNÿ<Õ¹³ãs4s™&’t¯¡ùo/hÖŠß)¢/Ĩæ®7ÒÔc4ý.´ÃïÑôS´aý]#ùPÚÇêÖ5Á†}´5I]spà'4·“¦ÎÑÆ-ÐN>Lã+éXŽŽ¾IGÎÑáwéÐ6:¸‡ö/ÒLMõÐäÛâÝ´k޶_§­·ÄU´¥€6Ò†yêæ¥,™£'êh]Õþ“ÃqZƒÆN?}ŸËÿ{ŒË_ '©Îcpß_ÐåÛ7Óôuêr]¼vð"í/¡™÷é@+Õ×êêî¼f{m¿B‡ÖA;vj½ï±ŒôѸ<3o¤__úpÍø&1AsߣS‹tzÚ×vÐÙŸ¥“BGû¾ýtÀý=©.ѦvSWìºI;Ýùšöy7ˆú~9:Ÿ÷Åý¶‘{v§uõÁÃ…PçvØ¥b±X@#÷IIº'.–Ñ  ùz’ê½´ËuóÚ±éPÕûB¹¯±ÛìÇ«õÊÉÏP÷¾ ºû¼`µ¡UEô»ÔŸ·=YýLíªû–ÁÐö?LSî0y‘¶¯£ZѲN\K›/ÐH]U\ŒQí·Ö~ÅX }1IåþUëlÅ4EôÙŠ¼5e´µNÌÿüLWŒ¦ÞÉÿû-m2îçÐL¥Ÿ92·¢o}.#s®†VÒéß¡gN@;ÜA‡zhû õ¹VÞX–Jÿ¥-,€‘º´ØeZ['æèé Úº‘&Üï%± ^¥‹´{Ÿ˜¿0.kÉó4µV|XLˆùŸ³I¯§¾¾<³U¼N5/að8®w;sy]÷’n0ú4»JÝþ%8á¾ß ·Ž˜p_îžÛèÎosEÎRÑÕ5éúzt-íÛ±¼éÇir5Õ{1×÷Ôü+­/w¹ËKVR7ÿﶺœý`¬ry÷,Ð'bô1gþǸ¤Ì·‰Ì….+ þyr;_,¢µÅTç¥ê<Í“•´m5Mtѱ3GÝœ¡`ï>šzœfŠ©ËXòu9¡^{æ"Zõ þ-:ù¿ÑUôDŽŽ•Sw>|qŸoçÕ\ —Ÿ̾ m¶šÆéÀTëèÓ1™#_H“1qÕüË®zÚQ-V‰å´½™¶¬¤þœª¹ˆ6ÖR—ƒ‚Xe¨«[[r‘ºu°¶ˆêêú¯ƒÉQê>g‚®¯&èæýüïÈÛtl':$Þ‚vø}ªõÓ™ÕÔÏðºs“à­³€QóµÝi¨ÎûÒùÓ—h³¡n^Ì’—¡M¬¥mÍ´ùªû>÷ц«ÔÍ— ž¶Ôωðþf š_w?2KÝü°às…yŸ_¤/æÿ^ó²ûïëhÜ­;ãîWö'iÃZæ¬'iöa:ZD'Ü:oêŸÁHþÿÀVÚWI5ŸDû·“Ts°óc –Ô~Ê– Ú” ñQzz ­»Iõù"s¬M~lÛ’~Þ²·¶†ºú¸ ë« ¶o¥.ŸÁk‡_§CŸ¡:7ºåõ¹„^}=ë¹P]ŒOR—c”{\»7é¾ÞûhoŒvo¥]멞G´Z¨çï69CÏþ6¦gæÄŸ¢3¿Iݾ3¨9tä#:´Š¬£}Ðd9í¸@›oQ­ß>p~ËÀHôÔ³t²…æ.‰o‹÷P]Ÿ=_@¿f¡ñu°Þ¯‹ZÏ”¯XÒÏYõž®¢á|Øí‡ÒkiÏ5Ú]O5g¶ã m/¡M»è±2êæ$Ÿ·ôËšß‹Ñïz ’º@ë/Óx m\»¼îó2bË ê÷ãÁu´³œê/™Wm’ÐÌZh}¬Ï‡=2mn?«K©Î9ÍŠý•âvšŠÑÞêsÓ¼ÝW?Áó´«Ž¶¯¦‰ªÛ¸š¶^Ï‹çhK½XG57@çWº~õ Ö·é\«ã‹ôð}5IóÇFAó|=ZB/ÒÄ9ÚÛmßzººšîKк¾ÔàÈ£Tç–º<  ë£j=©ö+Ö.PnW_AÝûP÷9- ´Ï­OÆ?ú+i>M]½V°{>o‡[µ¸÷oSmpëÃãë©ÎéÐú^÷ûʽmä«uÕz7Ãîæ§ƒ®^l¨ÚéÇhî_ÓÑ:òus߃}kiú”øM]¡Éâ]´gíºN;E·~ ¶Ý¤®4ØRJu¯?óžˆÓ:Qû!ôÜÀõc¿Q#}ún^^ð¨ÿü¬£ÍIêîkƒí7i²‘öuÐÌèÀg¡þcšû-:£c7éH9^Guás‡¼éŸˆwÓöbêæ„ã»è!K«rÔÕIxM¾rÉ}–6ÎP7OÕ¸¹Ê^;»›ÎìWüi:}R¼›NÑÉkâ}4·Oü=:qA,¢ã;éèðÇ;"f/ˆîþKû­úî¤ÉÇi×*ÚqQ¬¤Í‹â%êš'èÖ½ÞÈy׫¢ä Ù¥4’óúš»¶¼£7¨»g º~§%kÅ{¨Öõ¹¾é%7ÒnQöËVQwoé5îž=ذÚéÿ@5o%÷#ñ4›Ž]7‹Q·¨ê|¬OQ—K¾äyñÚçÖ7]WiëVÚ’¡zÞtrêœÆo[º½èÿÔøso¢–ºý„×Nýíß@»¶Ð–ËTŸÓ.Ÿ×ûk‹0Ì 8rÚÑ$ÍÿX–ì» MI}ÉУsô”ØpÚÔAÚni¢˜jĉEz¨’Æ ­¢ÆïG¼./0èÖ'Áã7?ÞSeTó=vѦuÏÙ%oÐÖ Ú¶‚vdhr7uï›àÀv:ô ø.Õ¼ßÑïÓ±J:>O'öQwÏœ¹íÙ)šÛKûèÁhN¯¤îÞ8˜¾ #y ­é)÷uÅJÅ’÷ÕE*9¶ÆŸçcÔõaÛVÑž:Úç~ïƒùõq¹9Á3¡æF^]+¨{.ûz–7÷E:W#s¬k ¨ö¼\F“ë¡Íý z€f?ÏQ×P#ýå¢ùx+D]/¼š£nbÐÍß Êsªj>NÛ`Ë(Ì—+£ñjª÷¾®.$èΗƒùò‚%ÝçSPó«©ËO>iéæhî¿"î.¤Ïªs½^ŒÓHÑѽŽ^£îç<½ž6Ähãgò«–ºó’àóUôÙhÜܧàÞq~y÷WÑ© µÞ2äV& ©æ”½XEÓÇéÌñ]hÇ/Ó‘BÚsVÒSYêîYƒUîëßD#õgraËiæMÝK»‹©ž'¹üû`Ý5ê~A×ê5-©æ!¯‚¶ÿêÖO^ãú½65%®§/P=ïÕüòçâÐTÓC¥ô´Ø\ mß04îžÌdݺz¨žLѾwiòªç…]å´½–jN·«K jÞHüu9ÁA¯ár_ƒº/þz4ÿ¼€~ÛÒšê~ÁºRª¹š 7¨ÎgïØG]ŽiÐÕcû/Ñì´SwÒÔ ÚSF5o¿c%m_¤-×hs3ÕþÉåŒÜÃ=ƒ‘<üÎùeµ§.Óã9z´’ºÜ¯þÇ”Çè«Ú/@½2ýçÄ Ë{æôl>ÇÂÌý3úÚ7¡yR|œ_×,ïP•øÔ“ŒŠ;èàµOð]ñˆX#î«ÅgÅâ±BÜ&ÊçØàJ:`?ÁÝ4?†tɾ5Ÿà]4]->K“w.¯¯Ë ®^^ÍWVP]OœªXÞú$ÕÏIÕõµÿS4OXúò<=VJõÜ0±‰v_§©÷hæ¨süìQ÷}­K¡iÞ í™—èÌß Ù tðnÚ›¥Ò_o]=]ðx9ŒÜ—¤’´¡Œº<¯9PE3Ñ™— Mݤ:ÄÍ Êüx;þ&Õ¹P:?3^µï˦ž Eîû14[íä:ÞAG>·ÑáB:ð#q\¦ýkhßšn¦Éã´kí8GµØŸ›ªòFêß“ôø=¼’º}FðÕ2úb!ýfÕ~=u÷#A· jýÀ¡8=ZD‹nnD0rnp6»÷[G1í좮~;˜ª é#´ïÑíóû]ÏÀ½4û¬è^‡SutüÛDGî¢ú¼ê»Hõuš®¢=ó´9»¼š_öbþÏ™´Ql‰/«Í_ç›ÛÌ@Ûµ™6]‚æh´Ã÷.ïà ÚŸ ©a*¹×¦ºúúÝ×Ó³ÿˆÎþ‰ø–¸NýOâ/ÒÜ»¢Ôoeß¡Òô‚xÕzÛžÕ´«™v®_ÞÄMÚVOu>nC1­_ ZïàîS‚z~ sJ÷úJÕò¾œ£šG¯ºùKÒ1úE³¼ŸÑü5DÐ<£»’Ôç¨xõu\]EÝ\™ » ºÏ•%«h,A•‹ôd!=Uº¼§/Óøz±B\¤ ëE#VˆûÄf1'ΈÄyñ*m,ÿeÞt•º>‚ ÎÇIl÷‰·h× í)¥éFš9N5oðhÏükñE:ó;têòpƒ’{Éëª+§ñ´ƒ¥â#ÔÝ·µºe+ÔsZ[ùñºýpp1}1'VѤ¡’§é›òýÞÊm¾H“{¡uýVÁÔ5Úyž†{'gƒ]ÞøzÚÐc+—·nA¼ ®§rîbócà—tõjÁ=9º;&Vѧ 4ŨæÆ,=qay]]i0n©{ž›ÖP­¹¤Ý7iÏ.ªs?2?Bû¯Pó<ùÅz:õ9ñ_Ò™jhÛK¡qy,^Ûx‹êëCûŒ÷ú¬…f›¨u‘/z œ™£+iâÕœöÞÍ4ùM?Iû*¨æÀºs¥ ;'¿IǶÓñEšû»¢ËýÌ=K'_‡vìaÚa¨ä;›ïªùÕ:ïQæËØï}†¾vÎÎÓ3{EYßÙB§ÿJP?gÛ;±“ŽŽRW”]Ì›YGÓWi÷5ÚVGõs××!ߦÙ|­ÚÌ*z*IÏBó;1êû#ƒîŸóy]^駈äÇ»~Ì`s=u9TA_ÜWB]þÅ’ùuµú4?µOĸ:Nod¾s÷.Ú¸—u[¿•¤Ù§è™?†vºj_îè;â=t¤Z”ûI—½ä§¨Þ7­¥Ù‹b\ÜNuÞäàt ŠºûÚ%WÐÌÃTû#s™+¨ËóFrN½¹ÿ¿jÇ ¹—êïiðNš14õ‘XN{F©« j’æþËR}.É-j®xM!usí¼væa:±gyGéÈgéÐèàƒ4󬸑Fæ}¥i·»woÛD[cTßß/ªççe1hž/©ÞŸ®¤îõïòÉ#sÐdÞ²uó‚ÃÇiÛez¤Š>ƒ¦³ÚÙ¿NϤéÌŸˆEtªO¼Nþ}š›WщY±‹jßÊØ:z‹Ž\¥Ã‹â#tÈP_'Ï'·Ñ‰ýÔ­Kl²„vURŸgæóÍ^S7_×kÏôÓ韆N%iîœX&®¥éè4= ÖÐTŽê`Íouûîàé›4VAÝÜÜà ‹´j~ÓÒ_)€æù=œ¥zÖp‹&Jh×-h3Ÿ¢)1™›Åí­§=ki×Ú¹¶_¥ZŸÝš7QÍ!¬/¢.;x A]=|Ð}ݹEð7bÐ|mV稫{÷Zw~Ô>‡Ô‡4¹‰¶%h]šõÔÕÉãU´Ú–MÐ$iª‹¦Ÿ¡¹|.¬™tsŸF®ÐÔ4ù,ý¤}í©«¡•Iꜿ±@µN툡uôô5Ú²–ºùA—ïì[qsÔåH³¯Óá•âÛt¤ÚÉ ŽS—#æ5{éÁ"1Nçè±hG iúiš¼N{ëh·¥]󴵈ºÜŒ%+è‘Jæ©å5Oz Fë ¨Þ;¹>Á`ïz*ùlf`ÍСóTë›×ÒÖÔÕñÞÖ+âuh§¾L'šæVÒ‰±ˆŽ×Šett#^E3n=–:E]À’5Tžkö`‚~ÝBãçpy%ß42ÏNßgI:¾’Žm£nžhpè#š-_ÞÁ)ñi:pCœSgÖ¿›fêÅÕ´ïM—ÐÔQú’t?¡s–z.‹IªóE:hdîóÚ¼‰6l£õ‹ôèzzÀÐ=U´ZÌ·µÍñë ´:N}ާןƒz¥^ѧ'n~¼õ%4~‹ê¾«%AÝÒ`[¡x™¶WÐäÚWDûB]¬×æ¤ÙG¨Ë+ñšã4svžsZhÓ—Äb™#QK[GiS†º|ƒàñ ô[ ÔÓý}§¯ ©uÿûè#Ð4•BûúJ:w7=³Î´Óé?¯‰éÔA:Y´¼¹&1.þãå›Äâýt ŒfŽÐTMn Ú¿¥s”Zkéé"êsÿ½µ1ú­"úT š£5´yÚ‘$j¤Z÷šX¤ Tûwª‹a¤Nôùz°‚MR­wjÝF¥¿Áºœù`£¥ûŠ`t~ÀEÚVLu?žˆÓî êꃃ—¨›àµgþ þžøñn:µæÇ^/9þ(Í^¢éu´u3=£Ç*h­¥/-ïó–êso›¡_±Ðì.£zÞuØR7§*¨õmqÚ£:΃Ó¡þ):ÙGõeô#ñ'b¹¸•ŽtÑátp·øi:PKû«i¤NLLþˆvtÑæ•Ë[_%VÒ=†º> ËáöšbÑåËuîXs™XN;ÖÒÔ*š)§n]rçï®n:’ û§áPí›Ñ}Sª–v©ÕâZÚ‘å÷×6/Ê=vKm¾N›æh£{]ž¶ôð"4ÏÏÓÚEªs%º/C;¸•ö¯¤í ÔãßV—z;#}œ.¯)è~þÁ‘Õtê#hGÞ¤š›ØT²¼’7b|¿WÎl‹¡us´&GóÍÒüù'bTóW]ÞU0õ(Î-Ð×^óúTëz¯‘9É:¯wê?Ñ\-ßDuŽøðÔ×%/ ³…¦¶ÓÈÜM÷¹íúEƒ-+¨Î¹Ô¼LÉß5U1z0KÔQÍŸÑz6w¾t}QÁÆ­ÔÝß»æh÷ MÎR—3ïµ._î¶ÆÊhMœº<5o$oÑõ§u‘HR=_î)¤½ê>Oƒ®¾ Øw/í¯ ƒ£4›„‘ºæ©Ctâ¦ø8Ÿ¢%Ô×õx[×RÍ«–¼ióê=TBÝz3xb%mÞE]†WëfÍÎ hÏ<)n¡¹Ç¨ÎOuˆõ´÷:=‡Æí÷‚ k ÚAG*iæGbÕ:w½'tû™ æšjŽQ}9ÕzÅ_уÅÔí'‚ Û©äBFïI¯R7&˜ÎB›o »½ñ:*ùçšËokÝsEçÑÄç©îç.€Æ÷q{ÅéÉ›´±™&¶S}ΤæiÆ=?3©Ë¹3Ù˜èï§²t”Úž 0²~ë{ ÚYÚÿ0í³´Ñ½vZú’¡þóÝÍA ê\b7ß7˜¦vòŸÓáw©ËOjþž®ã#ùx;hªYÜO“?×ÐnCµ§}†&ºÄµ´e3mª¤§ Õ9¸‡æ¨äe빑z?çntªcâq;Í>M“Š 4q…j.¹œ‡…s1Û´…vß qhÝy…׸uyÐ=wƒmÛ¨{uNžCû^§éhê2uyëA­Ûs}¥Á¦u4¾šž,¢Ç¨Ë• º9<ÑŸóûb­¸‡ê9ˆænäǹ#uÈÇéé8m©§©tð ´ã‹%th”¶Òþ$Í_½¦¢€\ §j¨ËÅʽ…qçO^›¬Ÿ7ÒÆdÞcFú«*èþ2z¼ÚÌ=4¾ºóŽà‹Åt{ŒÜkΉËÝÊ>.²¯yšîX€¦i´.7*èæªª¨¾ßåèwc0Òÿ‰}rîûÔÏ·ŽuTç¦h?Œ×÷{_µTò^#u÷îüÎk¾–¤:ÏûÄêúŠƒã7éÙÏC;ùÔõ×*iŸ˜Ü¶¼Z_¿LOUÑÉå­.‚¦¬@4ôåbz¢ˆFrŒ7Ðî[4õCê>7½öX%u9^^ól×ÒÂåú!®¥î^:8ÞLgž§g®Ð³OÒ¹ÿÚWó?7íÛ6ýn<¥ƒutÈÒá½t$q{Ü÷µ™Ž»ýã¸[ßå~ºú*3ùšèò4ÇÞ§Ã34R×´W|†jŽGúªõõ:¿¾gAÜ,–P—wôëgïébzp¸’î© »‹hU!4/WÐÃbÓeÚk¡C]}]0YíÈ÷i¤žø*íIPíÓÔ~íCssö‚Mõ4¾†JŸg¤GÎ5my šoº;N}nÉÞ*gŒ¾lóºÃà¡5´®†æË>—Œ‹­e02Ç{gí(¡ZÇ>ùëtê{ÐN׊?O§þD|Uü4¬ ¹§èØ»Ô××xÏÑjq ÍÜAûîï¤é÷Äã4õ.ÕúÕ¦mØL•Ó½q±˜~Õ@óKu¦ýóeb´n~dÐå¯SÏR}_·VRßçm¬¡ …ôt=^JwÆ`$¿îÔ5Ú´Ú©çéäšrç~Ð4OOÔ@s(KÝœAÓSD]åí´1I¿%º¼Á%WÑOªGÞHµžhà êæŒûêÄ#âcâ§izF¼‡öd?ÁzqŸ¸…v—ÑŽ9Ú¾ryµ/Vë_šb4¾™j½ËÝjݺΛ8\@]ãí4ùØæ%¿)~·‚ê\AŸçuçýKf©Î{;£ñ]´á2mÜDÝó2˜XEÛ·S970½ij€fªè`äæ¼I‡Ó«mKÒÝÐtÕA{.%î ¯MRkpæ?Ñ™tÊÒÉ tb€j>ÎP3Ìá»H“âZÚYLÝçm¬¢ù—Ñ’ÕÔ4ÔC;óe:ýŸÅÄ_ “JÇG©æ o‹ÅuTç„éy¿Öõ¬ÿxu„¿gûF­*£ZgÑt6/¸¿ÿaêîñƒšOXWëðFæ&¬¤§Ý×Óœ€‘ù<º>wóÁ½‘ó¨]–º¹‹Á—è+¢ž÷.¤>ïÒÛRK%ŸÝt¬§ÝETë„Bžš3ûÐòuQ—ßÌýœXC§Ëèì?¢¯ÿ¦èžûß[MS®ßÕ­¼6ùír¯ç¦ÚO°†¾?Íïo=GýÜ·.5w¿“qýƒ?¢™ÓtMUQÍAuó‚õ–¾’£{œ…TϾ»@¿£Ú÷ž¹-Ya¨?ÏõúóoÓ-êæõܶ³Úd•¸žö^¥twš¯êò‚黡ímþki{9=–‹ ñ󙼯Xz¸„jžH²Bl¦~þ•Óv—ÒÎ,uçÛ^͹´g™ž©£3÷Ò©gèä*É™Ï;4@u>¥Ë9\r uuLÁ¾S4µ†ês'¹švdhC9uóo‚ÚßwÜÒ£ Ôõ¯¿ƒ‘s·æØÇj{+¡Ö‡Ù‘ƒtàíåí.×ЮsTs¸ã×ű–º9Ñ·Ó<_D[Ki{=íÞ íÙr:µžŽ=@‡~,VQ?'Çër[ƒý‰ní׳^íGhOPí'¹ßó¾yêê‚_ŒÁÈÜ Í‹È/[—<°’ês«n uuÁS1/¢:ç¡¥œv®€Ö­C‚/%¡©-§ºþê‰Q76Øo¡M¾Oemº²tà2us½6Q‘·?M[o-oKŒº9‹ÁÆ,Õ¹¦2§-Ò®}ã-[hÇM>E5CëÏ?A›ûÿ_·ˆŸÿ.ØDµ¯CóÆÊćèð%ª¯›N÷~m›sâ:ÚrŽºœ ÞW¸>7oä|gG’~«"¯¾z5çYëeý|Ý0g·‚¶o¦ùÏAãr¦¼öp4½‹Ð¦f©›KÔû—ïHבzï}ìÍÿ± Þß™´Û—|D}þJv§Ó½?üsîµõtfŸø‹tú4w–Ž¡ÙFÚÿ&mßHu^mË(­¶ôÙ"© Ö~’êEúò=PBýþß«ù;î^'Ø4C[²4QCÝ~Àk'Þ¢¾O©s‰lîoÓäyú% #y„û’4¶HõüøHŒ3Ôõƒõ¹ÜyÚ³ÿ‰Î¦èô¡SÿN~_|†æþñ§éøtx7Í>L3ç¨är[W·ÔÜ,—;ì¸*æ¨î#åËÛÜLµÆ[_LýÜLo¬Šê}Ö,Õ¹ô®¾Ìk§î¡ýïÑŽÍÔ¿/b+a$.³ ÖÒäg©æÉ6o£MÕËú/  Ù£GWB;}†¥Ew~åêÝ‚®?08Y%–щ7iäuû(Õ9B³· ÙŸü+iëb1•þuãún§uŸ«^SWGå Ò/4G_ˆCóíú’¥z®Ñ²™º<Ý «NÞ í¤¡c«hz uçÁÄ Õóc—éK†FæzѪ8Ýa¡þÇøþ¯ï öê=š{ÿ—i»/Kšf~@õ¼axœj>ÕÑE:˜†6µ“v]¡zîr´˜¾h¡ñ¹ÑÞcëi˜ºIÓ‹4ó}:HíkOˆ?Ggÿ5º—f¯Šiÿ;Ô͵ ¶]¡®Íkš©­»I'ÿ›ø_hîk4YK;EÍ»qý˜ÁC¨Ë- ¾jiM±û~Š ùF Ú©¿øx÷ÒL1M–S½«6Ðüž¥>Í«ýåMÍ´=I»ÖÑÞíÔõ§ûË©û| Í@­ï2®®>˜ÌÂ¥ûQK+’tæï‹rŸ5ñC:öcñ2õùºÁ‹oÐŽBúÍü×™sé×K~ýäæ]ŽfPó»·P=_l¸@ZºKÔy~OŠÏ%©ä¢X—ïlÞHë³ô×  ù<µ¯ýÿèè%ª÷ïMqz"I÷Å ù 1¶@ý¾Ê+ùÍ‘þí¯:œ¤51ºÓý½²Ô÷uû¾k¯Û7{mnÕsj.ßHõ>ûyKõ¼ÍÕ'Ýss|Ú3…Të©Ô‰st¤Šv*ý5ÆÝ·zíÄ0•ù•¦é ´¹ct8FVQ_OàM¹ÿ¡M—ÑUtö0ÿ>­/£é·©;·³‡×CK@›» 6R—{lØÍ7‹hzFòS»‹igM,Pwé5&–÷††{Æ›ô„{¿¸º `ë šÈ¿¾LÇjhgħèôûâˆ_WЩñY:ùïÅ;hî%ñèDÕ9E£WÅñ:²‘j=¸:ô„øišÝH3 Ú— ©æ¢hŽxd^Aµ~ôT–Ö—Rw¯Ô¹]»bÐøs3ïw Õ{‰S¨ö¿vŽRÉ¥1}îœÌ׫¼#9JýwA;ù¯hß#Ts«­„&VL;.Ò®zhÇj¨Ïkóöl…fe}1F;JiïJh{¯ÐÎMÔÓ¶"êú$ƒ TsõêWÒc5ôPœÆrtOuuAwk‹i$Qö‘<1=Ç®ÏÒÓU¢û÷Èç¥æMEî…FÅ2ªïÿT+ÕyFZØµŠ¶Ò¦ôØJšÿÇ‚æeñXŒ6^¡‰9ÚSMÝùLÐÕ]?š×Žž§:E^&û ´sk©ËÕ &ë©ö¯¸ ¯quÕA½pyŽÁÃ¥ÔåGÚ§ 4>Â+÷‹¦k#MÕÐÌÀ²Úñ4’Ï÷XN#9PRÏ‘¼F#÷‘bç•åõóÙ¼.:Ø–¥~®o°ˆÖz¨ˆFÎ÷ŠÅ"ZVÍ 9º×ÐXÕ:± Ú´J¬ÔÍY0mnÛ¾v-Ò·L–ÐL)íÏߣiþ–XÈ›uçŒY÷¿¹ïwÈÝ—º¹¢fÈ}þßá,ÝçÛèçè¸ûú? ™÷þûì«§éÕ´ÉÒ¸¡®ß!¨óO‰5š'Dí“©™§‘9 ]41Jµ#}ö÷ÐašµÐÎåèd½øY¿DŸŠÑü-¹ÿðõUG.@ëë¶¼M[©Þ³²tG4« ¨»_>WA_,£nÎã’•b\LŠ ´v=ÕóÓ1Ú°Hݾã¶êù«æØ¶\¤®ž4èæ/¹R\%VÓŽ"êæŒ»7О*ñíÝ%ÎÑäb‘ø€hÄÏŠ[Ä'E©[MV‹qqT|K¼(¾CSw‰‰ûÄ.ñuñ¼øCñCêæzÜÞõâCb¥¸O”ý¨žÿëý”Îê['> nËÄmâNqŸxD¼,¾+^,¾Oݽג«ÅMbøíÿŒ¸A|HÜ$>+îO‰o‹?¦Ÿ׉%â#âãâ³b–Þ#n7Ѭ:G].¬~@ü1¹‡N”Òܧŋtêh¿ž„æw }f!oÓ6ÑR×àµÙ·Åï‹o‰çiºž†s§ÎiLl£ÚçÞ²†ú>ÞÐÏ»…JާöÙÙ:÷uTǨ«sõšßŽQÍѦx)Õ{éÔ´g†¾T#ýÌÞS¹åusÂ‚É MJü 훡ý÷Ó::¸…=C‡¯ÒÑGéÄC%íÜWèì,ú[TëïÜž`ò>Ú~CÜDµ¯ÆÕ O/ÀH“Ë j?÷`#ßIÝÜ’%ï§ÓCôL1´îs2˜NÐCµ_*†6÷tèÚzžú¹)>g]s†žOR­•ûBãæ“÷B;þ.íû@ÜIõ¼Pëƒuž¸¿uš*¨ÎÝl.¶ñ"­»#}׉tðNq+†ZÇf¶ÅèKb|usÚƒé­T×'“tê½wúfÞ™_»é™­töÿ#Z:÷+â%hÛÏÓWâÔ'õœÍ’ôÔååuuÞAíó•|ÙÈý†Î#ú‚¡šëÑ£Z·{´šC1êæÝ]ÿQ°«êëÙ-€¦å*u÷¼Áä=0|~«¹í´­šJ‚ùZXD]Îš×¦Þ£Ý Ts›Žg©Ï]õ>U;G êsðù}q>ï‘=^%.Rgçææ-iÅyñ=§®Ÿ=Øpƒ6n§îçìNRW¯ty{A7·Ëkg[è™Õtê:ù³4÷x˜Žn¦Ù‹´ÿ}q+íÛDµÏ­}m,§šO½ÛBóÕó§†â¿’ÖÍO[òëtî=ûÆòÎV.ï™?£3o/ïôNêçáyu~ƒ:±wyGï\Þ¡Ë;pÇò¦7ÑTŒvg©ÎSt}™A77X5ÍóUôè´éhŒ$Ê=ÙÀ[Ôå˜S•´ýº¸Šj>Dó zbžÆæ¨Û¯µ¿KêÐMaÕúÅæ›ÐΠ·`¤Ÿ*¾šoTäu}‚ÁÈœõ›Tçµ´Ú±…º>Ç`rík¤Ù5â{t(C‡Ÿ¡cOÒHN”s²QÌÏõ6Ó›`$/ÌÍy æLKn¦‘û™Š"ªõ‰*hm%ÕþW/ªçÌ}³tàiš}‡Ž>#ý¥GŠè¡2Z£þç°kVP_×êu} ÁD)uy¦Aß'úEB›XIÛb3})GŸˆ‰†º9^ó@ý|Œ¾TA›ã´u+u}¤Áž4ý$´~ŸçÕ¯OÏoÜ:ÁYŸŸX ûÊè.ÍÁ±Šž\OSÔºûÇ`kŒþ65)±?A‡V‰×éˆ[¿Ë\ãÖùÁÆuÔÝšŽkÐNý¯t2Ksîç:ö MÇ©ÌI6ùëðÛësõ<ÄÍÕ ¾Zõ±šç+òÿ½ÿuš®¡Gã42¿´€j½Ø× ŒäýÔTÑ5ôè5hÇ讀ß>´ŸfGéà0Ô{‰Éu´³š6‹z|$FÝ=uPç½<£î9XµHó±¡Aó5KC®»³ý¢xƒvÎЮ*šzŒº> %ðñèî‹‚bÃ5ªï›ƒqú|4ù/;hÏþ ýˆNí¥“ghîMñ_RO<ÞA‡ß¡C­tðYqø¡8JÓçDÉ3é)¥mÔå~,¹’ÆÖÓßÑÇ?ÞpˆjŸ«ëãöÚþ,•\³»Šj_·æ™ÄËhóJ*õzv|ËïCìbê+iË-Út‘º9SAßîÍÿÏÁÈ:EÎûMÏvÚ{‰ºùÁÌZÚ¿>N5?|ü'ÐÎü#šrß·»5_±45íôÿH‡nŠïÐl—¸ŸjîÕÀ‡â̽¼ƒö=JS?¢Ýµo×Êåm/7SŸsämY'®¡¡ßdm˜¡‘¾»b*yhö@Žºóã%«¨æ‚ýVýZ­.¤þóÛ«yjçè‘ìm¼@ÝçJÐõc[.ÑÄ.Ú±’ºùÁ®Ë´w”¦¯P©s‰ä7é=Î9Ð}×QCu.R¤ô ô9ï«7i_5í_ {¡ß¢š»Þ{žºÏÃàÔ :½ÚÜût(ÿ³Ò¾÷hê3´·vî£Úç¡óæ]HPïí.A;þLÒÔèòFú6Ѷs´y‘ê\FcY›¥‡ }®ˆækKþ*5_‰Ñç©æ<ÏÑ“Y™çVD{.Rw>tußÁÁ8µÐŽÜM‡£ýqšþºû¨`K ýæ4•yµ¨¡ˆºõ]°·˜Êœm­ç´¹ÿH3»©ö϶ÏÑ6±u­/¤¾/Øû”…æ…2z¤œÊ<Ó±Fî/Æß£Ã×iv/M¿KÝs)Ø‘¤Í×éñ *õÆÍ] 6_¶£Šê¿ïH5Ð4_¢©͸:Å1Wï8VåÜM}?öëõtî:û>9D§N^¢¹*:úÕóžÈœ—½4’gvºùÁÖô”¥úÜ‹] OÅ`tÞ‰¨õnŽ±×¶ÖŠÛéaC÷VˆETç K¾F$ÿâK†6] šwÞµ‹êóÇåå{mãêó Ü„æå"¹WÎÑ©8nO‰«–whÍ~ .Š?ˆwÑÝâV±„ö͉Ã4ýí] :¯¾±D\/®¥§+i}œ.¢zîYUE¿S›+ŒÒÚ5´ÁЦ´u†uap-ÕùŒ:oá›1êò¬ƒÛ-Í™Aóí}±‚¾RHuý£óë[fhÛ*õGÆÍ£ º<±`ú>úJ¹ŸCú:\ê/¬‡¶ÿ=tÊzÈ }–žý:õ}Z™ùå­¦æÅ8uë‚`ê"õs¬‘þzw®±d F~n:W1ól†öl+=óKt¦\\A§›Å•tjZûŘøOÄ_¡“Cb Í]5O¤‹ºùÞÁ±Å›ââ»t¤žŸ£C–깷΋L>H;,M¬£ ÍôH Õ>i­/Ù£ûª¨Ÿÿém,„‘þùL+ÕõoòqÚVN›g¨ž¿VHç~,~žžÑÙשæåÏü+q§¸šNýD¬+èä<Íý=:bhv;xR|˜ö‰š+îêúƒîE+èñ5Tß÷þ\$Q–ÿïsŸ¥¹ß§#Età=Ú½Q, iãâòž,§õstOFöÓŸ¤ïûò}`gÿ)ùó¼Ó?›Nþ€æ¦¨æ¶Mç-}õ+óéN¥œ qêsv⣒/é­Y¤¯BãÎÓ;Ol ë MPõùaËßãÎ5È}€WÏ}¸yo˜VÖ(oÐÀ9tñô,m^C»WÓø:>íäªåÑô¯ÐÀçZXYAÇæ”“Ê/Ó‘”2F‡µj®IÏÇèù‹¾”wÑdˆ&¥ñr+¦z¾¦­ÊÜ“·n†êž©ÀüFŠª\‡À9Ðg q=N=÷§óÉëj¨;gælYGõ}nÛÚ½–ê|¾Öe'­ C;2C‡èàe:PGû-Mn¥½%4–K;RTÎ-y[fh¤Š_M« ©Ê·á9*çÒ¼î¹Ôù©ÉW~ÃPÙÿ÷î ÓýKT戼’Ëà­IÑZC¥GÀ[¿™êãæm´užê¹çÎbªç{bû¨ÌÓzŸÓd>•sÆõw ÌÓØçTçX·ÌQÉo¶u±ÌŸ{¤†êë\ýÚPL%—ß+÷}ÞDM†iên8OظŠÖ_¤' hõ=rƒÊ¹JïÁÕó`ÒìÍ<öfÕçV>«¬(¦ržÈ«çßôy}ýnXGuŽAÛVêzúœ±íÊ2*çW¼z.¸ošJïˆw¸ŸŽUÓô›tâ9:yXù1 ôbönQÞGãK´»‚f.YÛ·ÝZÉSòêž“úµ42£,¤2¿ìÕ½To„é«1ÈWîȦPùˆRr ¼ß6T¯·>›O_ Ñ—ÓÊêî³ýý¶¡'ÂÔ=‡;ëË”åÊ‹´!D›‹©î‘^ï¬Q*ó,Y¯ÓØ<Õ9¿}•ÐN=©T½\“7•¤ü˜¥éëÊ;éøt4D‡*iÿÛ´ïM^¤‰BÚSLõsaW'®¢º—£a#=QDË oíWÃÐ÷Údnﳞœ§rí=•£Ì¥]—hÿ>h%/:«ÜOöÐneGÆhóe.¬¢ueÔí;ˆæûV¹@Ks–wgˆê¼µúÌ}Œi’ß[|žFoІyz¬”V•PGøMe…2óÏYgò¶í¢‰«t¼I)ëOÐI íù=túO•CÊV:ñ{¦iÂОih¾a¡¾N¢´k¥¸‚J¾„¨äïyw…¡i[EÕº±‰'ißÐŽl¢Òâí{š&vÓè"Uç•M…Rç 7\ƒÁùˆ4§çom[H¹ƒÊùo߇´?¬\¤cÐÿ˜ö®£ú\¬Ú_1#жî Í[éÑy*=NS¯l¾H{¤c›•i:¾“¦Ÿ¢“ÿ…N-eœÎW¾íDT¹ŽæÑ!¹^Åw-¯ÎvêógmÊ­´U)ç½òzóÊýWÖ<ª{K†¨šßµÏ†¨Ü_:Í>å‘ZSFÛrh¬ˆº¾öÁ'iŸ2±†vݤÍM´¡–ž*£ÇŠ©Î_;TFåóÄ«ï[vªr»ŒÛ·pÊûÊ{¼˜Êœ†·ù •~c§u}ÑÎŽ9ÚRKõóQõ *û*Î?^ÊöìÝTç†V(WÒw”jÝ.yˆÊó²·c-ÕßÏ©ÕôX>4ÏÄèö|úÆÕ}]ò÷x%ïÂ6Qɉö6¬„ÆÍÏ8+”zŸ£û* ÌÙM&èø'tl+}‚Ž Ñá$º¢¼ƒV*ó©>Ï:°OyQÝïÞ.¯ÿÌõz$Ó[UDu¯_Ë%šØ íäYšþEª?¿º·ÐÖ$ÕŸãÕa*}âN³ÕÒ×ÂTç=Jï÷x m(„Vú‰¼úœÂh Õ=l{ÂÐMÑš<Ú9CãòœÑÄû4yXIeÝië+ î‡²±!ªï«d}ÅidÝÒiÿè}zþ=—¢g“Ë;ýŸèÔAå/ÒÉŸ£é1:þ)Û³¼#÷ÑáBšÚDûöÐx7 |ާhû4¦©Þoqó|ÎpÕ9‹¯”A[9Kwå@#y\Þ©¥ÌMrû=ãL´r=ñJ.§wO•çroHù‡9Ð<ªtó‹Î„è^KåÜÄm}#Må~éÿ)m÷FÚû=½´¼á2hÜ|™³. íÄZªçÐG¢TŸƒé¼J]þʦ0-³ô`>=ž¢j¾ÁÍÉúyÙŽtÆÌ)Û×!9ÑÞ“¥ÐNÿòò¶Fhß»ŸêÜ9ì­ Ñçr y9L]ÿ¤Sï_WÑ“yT¯3ë~‘î%*=1Þ¾2*çç½ÃKtdŒŽýˆÊü²WçCO~—NýhÏuЩo+KèÄuåMÿ‰( éœ7pý¨:G >K÷Îe¾~=3ó1´Ó_¥}ó´6 Mý,´-¥zÞiØMfY!«Îç:1G¯£4´én:jhÿ}Ê»hß!ªsa{g•÷ÓÄOhgšª\*çœöìŸÒ©¯*KùKtò=å^:±¦[ià\t!¾‡ò*æhòÇT߇tî +hÛ4m.¤ºG]rš½õ¥´®„NQõ9h¿Jëô2‡ç´é7¨ÚÏ1Ûr¨î[IŒAÛ»•6„id‘VÚe5{ó©ž3y=‡6­Wn¥rnÈ+¿g¯šc7ÃËj§ï£“¿@û4y™&ª¨ä]zu¯ƒ>·IR½nw4D‡é!åÕ÷•z^s¿òõ çÒÆV[ª{z×ÒèehßÑç ‘óžÞ#ʺª÷ƒzRTÖ³òüE`½^Î zG¾¤ÜCÇ~BÇ7Š4ý·”/Ó‰½tòåå(zŒžù9hãW©ì‡zo€Fηy.@{fšêÜè±>O¥‡ÔÛM¼§\MõùÀö«Tò÷¼Íy´6MõùèÌLÖWåßûŽ…fOˆÍVú´º‡%¿Ô¾™žZ¤e†ªõh³#D_1Ðv®Q^¢Gf``ýlè*y$¦¿Ú©•TõØ›†EhŠhŸ¼z£·6‘—±&ª”×GYšªy²@EBÖ¿¤?Ù+X^É1õª^B{*D_ŒÁ@_›ž7—ùuo¤by›VS•Khb9Ê&𨢔y²ÀóÑY:|/´=7è>͓ʃsT÷É7V@½¯i^•ïGÞ§NÛ2Bës©Ê5hM„ê|«ö5ÊÚ±ZYªŒÑÎ!?ÉyeLY®, :?ýSŽÆèȇ4õ(í˧É-T¯ËÊ>¶W÷µn¦ÍWhÓÚ ¯[9_å=¥Çæéá2ªó^0Ë›ùDzªõÊ@ï¯~]Ë<‹÷•Ú]L¥Ð[/ßgýYAO-(çäç¡U3t·¥ßΡò|âu=¨;bË[·De^Í+ëÍ^}ŽAæw½Ý—iàœÃ“´÷mÚ7 õyÃ@‰ëuu6NÓÖË´3B»®Ðø í­¦r®(«Zçx˜JOwd'Uç¥Mº…Nï¹ÿ’¾º¥¶;Ju/‡~ÎŒÌÑS³Tò¥o§Ï¯Ùe©œ·óJ^·{•œn¯ä”9­ÜW9¬3y%Ö±´~ •óÞÖE*û8Þ¡ =÷—ôl‚žùiªçf&ey'>¡é tì< ÌÉŒÐÔÚ¿‚êyîžEÚ¾’ÊùlïICõy5YGrš— Í\®³Ê>˜Óžù!œ¡ºwtâ˜ò9š. CR9Ïh“ë”n¿3D«#ô•4 äCL,oºTù„ò×éøy:vYùUê|˜‘‡èp jQªŸßànššQ® …4ÐS¥œ…5Tú8½½{hb; ôžÆ¨ÌeÚú<ªÏGî{fé÷,üóŒ:_nø"Õ9‚Òû5šïçC[9G¥ŸÚiöSÙ×óúÑÕu¶+I¹´¯æº¶Q‡x*JuýÓah¾i©äðy_¦6!ϪÇdÞ®Yå¹É{ºˆÊ}zVùsõ¾Ãä¿¡2ãMÿ:tˆÊº¦7ö •ž5oÇJÚTCå~ÐV꾪rñ5{K­äx›k©ô±˜ß”?Gå8Ø¡~*ýÕYï§©O•{¨>—6p?íÿœÊ:²7VKå<‰·u„êÜA+¨÷_tщúz}ÕÒÔl_ Ò—ìÕsl51z"ó9oN*7Pý~hLQ9ÏØOØ3íô(íWîRî\ÞÁ­4yÊ}žW÷¹øœ #®Õýsm•>;{´‚.¥ábúZšJO¬·8 ÍK ´"M3/YO,A+ùNVú`í×äŸs½ÑÃ[h|+ÕùÕ†ÊÜŸ¿ûZ˜¶Z»Ú‰oÓÑ0¢}›¨Û‡uJn¢7ZA7Ó@mˆFšhK9Õs¨M•Ó´¶‚êûˆCÅT½^L‰¡:WD¯?k%Æ+û9ÞØ#Êvÿ”&¥TçÜôË9K™¯ 8¶ú¬§Þ¡“'•÷ÒôŸ/ïØÂòÊÜwà!Èá1T÷=蜮£J•l~/L÷Òš|ZÚ™]ôÜ_)sé™bêηzšNÜ·¼ãÏÓ‘&:É8pPéÖÕ“´ïå]´÷se;M¬£ñûhO9m«¥-©ž;oØJu^w`}R¬.¤¯*3¼×ì ÑÀúÙ*ûGNŸ[ ;‡ïÎ嫞gsÄÒÚ´~ÚÈhÒ‰0 <ǹuzѸóUº7è@4G#ôTÕó Ý+• 4¶AùM”ÓÞ ´ï1¥ìõÅhÿv:x/õ}c¢ÌÍ{ÇÚ©ä(f•ÿ=ý»â&QæÒ¯(»éäO‰¿C§~Nù)–×çôEzö}3IÝùf§ëYwÆï¦Éõ´ïcªÏï ½GG'iúéÄ(ú=:}z’¨¼~¼­³TŸ{̼ü²ê>é½K4l©ÎMŠÖR•ÿi«,Õ_ÏÆhöSÙöž.¦µ´÷ Õs²ƒS¹õޝ S Ð&7Óè=PÍ÷Œ2L¥÷Ç[Y@Ĩ|Î{Õ祉î mnþe UùÞ&qžêõ˜¾'èôÛth7ÕóªçØH_’Ó&VRéCõæ%#tO•Ü0¯êŸ4™ËvVÉIóJî‚·~‰6¬ QC]®œÿðŽßC%ç#ë›_ ¬o·¦©Î“ÐÏ'•)ª×oôúηVy ö%Ku|¾x¿§ÔùúüOÍ•s ÞöbÚy‘Æž§‰§©ôf½DSýÐNý<ü>ŒÑÔ;tà=Ú?Oûƨî?ï,_Þ†*9wÞŠ<¨ÏçÛ¡$\¤©ËÔÍÓ;u¯tŸ¥:·¸#Ÿ6^¦’›æUsþ~;ýü+çT½:1ókËšOÍ«†+¡õ‹´çÕÑø]4µŽ¬¦ãå4ý×·Ô~DûOP¹z»6ÒÆE*=2öëah$ËÛp“ºM6Ð!™ÏÄí4ûÊ–·&LW(Õ:Bc„JÏ»Wú¦nïÅå•v‡©:·h›"ô°¡ÛcÔõ‰<–ïã²r7xRù :>BÇæ©Î]lPæPÝ?­ç3{§©Þ?Õë›ÚfC›¢4ÐãšO¥ßÆ«çÕ:~À=9TÍWÙß C³7¾^Hk‹iD>_ËiÛÚuÊ<Ÿ7y–Ü£œ‡öD)ÕýOÿ Y_ðê\Ò¶uTæm¼½WhÿJå©¢é<:ùM:õÏè™_£gûéÌߤoÎÒþkh»·R}¾îø"Ô×é@ž_ßUùú¶CÞß2'åÔór¦j‰JoŒ÷tm¸zk[ª¨>ç¯_±Óøç´·œö—*åóðÍBzöïÑé#têÒI9=ñŸèè;4õ<íÛ®ÜL{?¡‰!O-oì}ÚY£Tû^®çÓÈs?H£ë•ëhËzÚtS¦§oP[­ûâT/¦Ý½@3—G¯yZÙd ¨§#IßB;/ÓVCe}Ñ«¯ *¿Ô¸Þ:§šo1•izª‚ö®vf‚žû=zf–N“ê<ı1:ZL‡géàÈ3š¥z½ þí\G[¶PÝÛàÖ]œáô»aÈ)ÒóBmsËj§vÑë4ñ6Õë Ñ­´õ:Õû'1ª>ÿíÑ´2L_ ÁÀ>ê£aº?Muþí)¥Ì%{/ÐæÍTõ ›ÄAhß|ŒNükÚ·FnÐp)™¦z¾¯¥‰îɃÆíï»ýþôièɾ‡ŽÑ¡eЦ*–7³ •µk–ê<éÖbêòCoçñ\Z9OeŽÇèaÓVS9Oä·Ð¾õt¤Ús—èT-—Jn’·bf×rLX©ÖìÌ{tr=M¤©ÎE>&ë4jи~×7Ó‘êüá®BÚ8KOZ5K”ÐbÐ œ¿µCÏ+¯Sy9m÷få**ç¶¼³´£Š¶-*/Ó–•}oý%ªóJ"—©Ë™;¡QzwW£eùTç§«\Iûd˜fÆ-½æ¥ëSrÊó©WÏýúE—¨üœ¼ aÚ¨Ô½SíaÚYíôÐÉšþ-:ºvy‡¶-orí¾H»Ê¨þ\h¯¥-…Tr¼§jh†¬Ç¢Ê\ª?ªVÓÊ(4.Ç6´6Dû"tàšZ¤™±Õ¬Ò—õÏ xœŽFiçÓžÍTò¼— 9¶HO-ÑþŸ@+ù¾Vúv½gߤé¿G‡×PÙWõêÐØª{·tOÄ¡4 Ì‘ªóxvü1¨ïí…£ô̯Óé>:ømžƒæÙ´£ùTÿ5¥TŸ;TÍábíòÆ6QÉåðJß¹·%L›«hãm¸@uîTMšúù, yœ¯-Q9'ãm˜]ÞÖ¢å•\/m`]äTÕù·/„©¬8Í&eI˜êu“——è«–ê׫î8e”%Êm°Tîgë<ó{tj#ü3¥Î7ÙKÓ÷QéeôŽ\¡:AÞ7Þ/ÑDí>HÝœºÓí»ˆù·/²j.óïë¹.×é”ùS¯êíôöIo½·u=í.¥‰‡ =¹H¤iE„êùI}ñ7r¨~Ý–Zªs‚^\ ºßQ÷ˆI?™·±ˆ¶…¡mî¤.'É©Ö+íàhóeh^ ÑÛÍ%Š6¢-khÓ:*óiÞú TçôË|¥Wú½Ç ©þ}îQ™ÿónÎFæf½ªÏ*Ð'ç¼ÕsT~Ëç«W潺w¹©–êùdÙïöÊóª×[ô^ ±ÕË+çC½‰uÊÇiïJe”&ó”óTõÄ›þe ÜEGîUê¼’%*¹—Þñ 4¦Ûèd®ò*j¢g~†žû™]V›ù1fm*X^}ŽÂådžš§Gæh5O‡©Î»—WoãVh§—èäÊŸ¦MÇî§Ã{¨ä¥g)Kiü=»I{ Õç¡›ò¨þyJ“Wç—<«”s"ÞHš6n¡ªÃNþFèÎ0­-¡r_å•ózY£ô%ªž¬œtšºÕ´e3m_mï*ªò|MUmJÑÖ&Ú½ëÖ&Úa _|èÇtðÕ}ª½54^KežÚ+çx½º7¼~=•ùQ¯ÎeÓç†* áï,å@#×E¯Ïó%/Å{¤ŒêÞÓÓ¥´~~y%OÀÛ£]Êøc4±‹&Q^§Óñ~š~›N¼m,I%çÉûûahªóißÓtâסm­¢Å6óÿË9ÐÛi'þ}˜ÎY=F{TçÃuPÝ£^›GuþÏ·Ã0ð<ñZ1ս̺o£eí\Ic«h߃ÐJºWò$œFro¼]K4ñ “¼‚©ç ·ÓŽrªó†õþW¸„êÜÉ ¥œëòfWƒçÔÕú”o§'g¨ôv;ù¬¯çÑšYÚwkçhÓUÚ^Nc(MFýûè{›¦RÊ+Цÿˆ¦Qé­òêþ1ÙÏvšÅTåqØ‘ 4ù%*÷Ï^™ õvlVÚr“Ö¥º®èóLzÎá¨Qn€&s[’õ@>•üt¯ÊÃ3'¨ëow¶FiWM&è@˜UP™¿ñŽ‚¹=×–˜§=WiÓÕyÜG稬Ëz¿a ‘¹zï±RÚ°žºùs775ÓGÏ\SÞO§Ó©?PþŒÒ‰ š~Šêyå‘úŒäÒdõsÒb×:ª÷+ZKió%å,äÐcizxJî W_×yu`wÉç„Qɳö¶ÔÂ@žcY-¤¹œgbTŸÇÜ>¯Îë çC;Q¦Ì¡é :¶‹êüC½5¸‰\¡É0í}˜Êý¦wæÇtr í‹Â@ïy[•üvom4e…´2Fõ¹+É5õv\¥Ò¯á•}o|Õ×ÏÄç4ùÕç3¥·Ó+9Ç^É1õŽì £ :VCÓ;•?Tþåu*û·ÞÉMtÊÒ3¿EÏÑssôÍ_…6þ.mѶµTç,?‚¦¶”¶”Ðε4¾’ΑDûߢƒïQýœ4QA'Ú†kиù#§¬Ï{ÝsºÎÿé,V–ÑñËОÿe:ñ}š*¦9Ô=8%ï«ϕ¶$i$E%ŸÐ+ù¥Þ59ÐÈúŠÓž}ŸN¢.7Îû•ü¬{¨î>K¥ý÷ÒøÊ•ÔÍÉ8ÛÒ–ÚÔDeÎëï“^MSÙwñ–†¨ä÷8ͽJwÑézGÓ´>Dõ}ksD9K£×¡=VæÑ*CÝ>±äÌßÎÀÏQÏ)W…è1e¤úŒL¢Ú…PçéÛ™ïQ×/è<{žùtúyåïQ÷zpêû3}^p¼ŽÜISÑÌË3kïÝ´£„6—SÛ£××åué4.w^åÞÚ¦EÚ¥§s¡‘ëšWõº˜‘v:&ï»ñ»iú´eyм6ñ匲Þã}%Lw*Ÿ¢FΣÞNÛw@YH{7Òö-´õ r#•þ^oã<­Ê£/ªúáÌvCݹgãjhA#âÞòC`éþbªÏ%ëõü£QZ]ªLSÝ{¨ú‚ÍØ‰e ¬3É9LïÎ|šy;{ÍaZžCõ:²žj´´íÝ 9æ:§PÏê~ó7Šéž%úR•뛿ÎÉ~¢Wò¼‘åUÚZK{¯QÇ¡ÖÍÍÀz:¢Òë—õ#å§4½™N Щ{èô)zfÍܶf=w€Î\£ç¿íÙÿF§vÒáEªs¡$GÍi^Ì¡jÿËNýÇ/ðß*ÿ…òßN‡ —W÷õšåíšWVÑNeæexα±'©ëo‹ÎetÏ®ÜY›ù:LBrž2wÝ^Buïçw”÷ç@ã®kNéwöžŒ@+ï/ï+s·Vò²¼kiC9Õç׫ò©Ë»tJþ„ÓÏý:Ëó¨Î%’|~§}uI¾~±lAY–Qæ@|Ñî|*×C#ûмÉ/ô6B{öm*óùYš¦ÿ•²”Ž@}Ïj½qh>@ûšh¢–ö¬¡m¥Tïûé×E$‡º^ç± ôÐ}Ú@ór1Uûvð>­¢z^Zöù¼cЯ6ÕIuÈáhÇèÉÉö‹´§ˆª9“ÜNûh ¯P÷N>Hû7SÝwÞbi~4íKÐö~L›—7þ½E»ÖÓÎ5TçqIŠWæÐ½'çhi¹öî±ôµ²[{(FõýqS9mÙJ;W+c4öMßÖe©Ì)zußU¤ˆ¾¦Ï.ÐÌeÖkªJ¨œ3vÚÞ;©îóȩ́kiô"mµÊµ´%D›ÖRYßöÊœªWÏÃÊ9ï±ÔòVæÜZ9çëUyý€½òïí6Tç]½ Q}¾é›·ñå9Z^|CÔùk¯›¯ñ–P}®ðDŠÖÍÒÈ‚òê­­ÏQ^§ùÊå¬rIyƒ6­¢.ýv¶ÈûB¿ïtÎþá ÜW/ÑÆ\*û³ÞÎ ´ûíɧ2÷çíýœí¢Ò×ì´ÍK´6Mz BŸµÐ„–W¯˜£Ò¯‘Uþ=Ý·NÃÀyÉÌå×è×8¡ú´³yæ6^ ]+h|‘&eýRçÈ<‰w$FÇkèÄËTú®½rþÁi¥ÈÖÌÓ ùÿÝçƒ^÷«‘ŸÓ‰t柛øe:úÕ9Ê ©[§õûÑöÞ ú>'^I»ç©;¯æ¬¹AuîÖžª×oŠ 4Ï„©¾Þ¯ çP=_%}¨^Éaô¶n¦º:Þ¯ñ í©¥]ù´c=m-§ÒßëuŸ;N}.03ÆèÕ9B>œ@~í´gíj¢mKTŸÏi™¥3T÷rTFÖR—sà육ºÏ/¾–öž§Ò#íMm§C÷ÓÑ;èøçtâ,Ôç ¹Nzߪ*EYªçå"³´eíXM»fhÏVh_-¾µ²Îïü9:t€Æ£4ö!•>Fogš¶Þ¤ºçy_Œ–C“©Ϊó$ÇÊÛÐDåܯ·{•ósÞÄ$Ô9âæ•4}=BåQ—#KÑþUthÔ¹4:ÿÞNý4Õ}W½ôe M…öd }#çÆ›.ÝÚŽRû²rŒê¹¿":ùÐþÝTú±¼ºoFúˆ½Òoî´™/ÓÈ£\Mo¥¡¼ó4õ´g¾O§¦éÈY:Ø~k]ï½³a5=ºHõõåšùtoU9VVz©o«ž/Q=¶öåusêNµ^cd¿È+ÏßÞÊ9züUýíFrT¼§f¨~®=R¦©äYeµ´¾ˆ6/oÇuå Ú}‰ÆïW®S&•ïQÙWʪò‚úªéðÇt¤N9DÇ ”(7Òñ«ôŒ¼¿z§±BÚq¶,Ðæµ´1Eëæie„Êy¯îuÔ=Õ³·¶v=­¬ßAÛ‹hR>G:iâ•>Soóz*=ªÞäC³=DK2VÈÿhŽÊÏÉçýê|ŠÓE´¾fס3×]Ÿ“ûjÞ­•ç±€éw¨äµ9MÃRÆžBùçÖÓØY*¹àN#½`ÎÀyò£³TrǺ_2ðsÞú&ªúÉMæ8vV—wëòoGÊ•¯Û;ô±ò*í,¤úür{’¶­¢­ªs}µizxÕý½OkmÆRCõuT­ÿÚÄuÚOŸY€æp Mn‚6¶¶äÃ@N…ì ÚÑ©ì÷y;§iÓuªï¯®¢:Oµ:JäQ¨ržûÎL Ûm5‡3~QŸŸž›¬ß@[sh÷í+€6¹–ªœ##ûLN›~žeM½M{ÖRýó|>x{ä¹#.y ½²ïªçÐt°ô×ì}[¥r>Á«ÏŸ´ÒÖ«ÊÚ²Š6ì¢Õ5´‹í»ƒVÌÑ—bÐ4oƒöÜûôìA:¢+èèStä†rÊ¥ƒ×¨î?èßNeÝÔ›ù¸ÌÚihsm¼J#azL~^rîÒ+ó#NSbéË…t_„êy¢úBªï7»6(oÒžËj‡è¦0xŸ¦/ÑÔ¤rŒJϳ7z“ªQómCs¨šS´Ã+¨žëˆö=¡|˜JÞXÖ0Õ9q½ÕÊ=ÊT÷$N(w)Un¦ñO•;hlˆöÌÞÚ@ÿ@9 ä(®W®¥úý£s¸/-¯žs¨¯¢u5ôø,=ZFõù¿pŠêœ¬ Yõ:È‹†ŠÐš\*甽õk”eʰrFyê|®Ö5´3J»#4qƒú~ZQrv|‘ê–Ž<åJÚ–¢­[”¨¬ß{¦i¤œ¾¡*_Íd ³~ÛR½žs8EÓ–Nšh¢}54ÕmßZøýKŸÓ>IûOPýü%=ÄÞØ]T÷öÊëÆ«sǤÇÜûFˆ¾¡OXÈßÖ¹tÒÓåU9£¦÷yz"­ä×8Mß'Ð&ߥjnÅœ¬vêßSYõŽ”ÑÞË´c^yšÌå!ë©‚eµÓ²¼rܛڵ¼ýWi_µ²’&ºiüqª¯/KT}ÿ¶íºr×òªüsÝb›fhãe14ómf=\Cå¹À»7LŸÉ‡&sšUÎ {+ÂTån™Êh§þü‡ttퟪùSWíÿ=ÿçÊçèÌUe=wYùÏ”!zæ?+“ÊMtzVùºªÜN'ÿ+øMÿ{åÃtü-*yWYŸ§:—p`ퟣÜ«4¾•öXÚ½Žv\¤-ÊH1Õ=ë‡-Õ9Ò²âÏ•>®”žEoÝ´ç¾BÏþè¦éµtl’[:ð íÛG“i|í‰Q½Õºšž'oPÙ?ðÊ\¿­›Y^•ïb_Ÿ£zž%'r£õ}M]˜6]¶ÁЉvÚ°šc´§”ªh;6«l¢ÉŸ@ãr·ߧ©-4ðû­¢:ßWçH6M/¯î[Õ¹1#ô›ah¶Yª×£«Ò´¾–¶NÓŽ¤R~¿z¿ZÏ%®Q•hG«©ô§{¥ßÅ{:DÎSýzU¹æ±0Õço¤·ÌÛœ¤2§ëu}ðÒl$ØÛû)´ç¾FÏþGåvzæCå:ýå::UJ'O+¿K'Ž*Õº[úeå¯Ññ¨r=»AG;éˆr öÑøyÚ¦®gÞÙ¾FS´ÕP—£êl¾¦¼DûD–¾–†Æûs¾‚|áÌ2M¶§Fú8v¬ß Cít°Œ¦î¦ýÓÞK4q•uB¯î5жÏÑÀï㦲†¶¬¦*oÒF:—÷¨¡úóC+}@Nóû9Ë«{´ÇcÊYªÎÓšÖ•´ýêòJÿ·7þrí½ƒö+åú=(Ï¿²pt•žw§í?«LSéCÌV)WSÇÙ4K=¼I*¿¯Þû†¡åÊWcôP˜VŨë3qž¨öTŠêþßc7¨:ïh¿m` §oªƒܤnÞÄßõLï»Ëjû¯/o_4Ñ]Ðv*Û×ýÏÙ:³¼jÎË wÓ‘‡¡}³Ÿž­ nÞ9õ#åã4ÝC‡—2¦$‡:eiòwÓÖ2Ðå;Ûáª_ÉÏ”›iïW¨Þ_ˆ]£=«i Ÿ{3m¿@Û¶ÒÖEÚRF›óiSTÙ´¼QÚ ÷' }ÍR=wææ/ZªÏ¥ïŒQõû³O„¡y,‡ê}A9ä•⬠ôð =’«œ£UTrk½nÝÈÙº‚våRÉgð&ÏÃÀú\ ¿QýÞ×ІNeþòJŽwxUëÅ6ÑI{Ò¨¥ÒûçÕýB†¡ÉŒÓd ätÌÒh)Õs†‰m´ïN*sü^Õ¿i$Å›ŒP·/á쟆v¦‚Nm ’ ìÕýêc_¢ÃÏÓ%Úw–žÌ§’“ã•}§qóâN•{eZVPY×qÚÉYå—©ô zÓg”[h ×ìyO©sp¯R9ï•^-o¢…Æ?£nÝÙ¢úz]¢­«hsŠêý܈¬È:‘÷ˆòÕý®¥™o×k¾né‹1úJ>­¼AÕy¥@˜;Wêuë®´½L¹‹êçІbÙ \I%ÿË«÷Çk•'BTÎsyõ9Ý{#ýY •9ô€RïÏî-VªzW싆>™sk£s³Nw_åܦe9Tç‘È>÷£,¦’÷çÕ9:ÇRri½ºG[­§›È6e9­_¡ÌUnSòzd§ÞUþ,xSù*MCùe:Þ­,¤zÝdô†²B¹›½§\Ku®bæc+kÿ˜ŠP=×Ú[@ÛiüCå4­’ïó€Í¸ßÐg-4;èË1zdžž^Må\Ÿ·»“ê>NwÎÌÙ ¿‡Þ÷hû5Ú¼’Ê>„÷H }É.¯ôw;y5znGçȹ\¯î;k,¤m+h÷Uª{—unsj%•sQÞÑ÷©Î·~ŠöµÐÄ»´§‰ºç#§{}‰¦}v† y€Nn§éÿHQ›§3´%š×ó¡Ø@ûnÒdµòiåFÚ;§ÜDãÅTÏ«ë|I=ÒZH%ÉÛ´™Ö—ÐjKåü¨Ód>^²îIS•SfÏ·Ñs?Cϼ¡ÜI§ãtêmå¯ÓôŸ(Û•? ã3t`³r_RJnMó*Z¿‘žù&=¶DÝ}î{r}ÎßU–§éÁ9ú†¥•‹Tò ½Whü^e ÚÞ»hsŒ6m¥2÷ï­œ¥áúj>4î>ܹMÈ?-¤:ïödŒF iÛ4m_¤±õ4Ëu 3ºÚÑ‚åM•-o"—ºùÚ“±­Š6Ë¿§çNÍÑÆŽ\Un¥ýµ4³½›5z…êõH YCÃeмJíëK´2Ÿ¾@Íó–RÖo¦’Çäí¨…v_ZŒAsÀ@;1GûFhoHù4íª¥ÑTåÉò]eýл§˜V*ë/Q½N§sckhrš”ÑÔ´#ÐìɧznÁõ+8u_swôÖ&RÉSõö=ESŸÐáûéØ;4ýçtòq:õ)=³—ž{žÎü3h‡:i×u¨ç?앞ý5zæ{ÊoÓ‰»éø“Ê;騻täíå¼JS;éÀ ÚWK—hO'mߦÜJ›ÂTŸë—<¯Ì7yuîºîŒ¬¢ºß§!EÛ×PY§sÚö´ÑÒºBªçíô硞—–ë±·!—6åA;¹…ÜukuߪÎŒ=BÛs©îGÐsQ:¿hÿ=U m|==^;¯í¬)¤'+hý5Ú:B»7@;ý-š|Ö.BSUJ[åë’}M—Ïå„Ì»ŒÑÔÓ4þ4aù¹…¨ÎùÕëœ5%4¶DãÊGéðv:ÖI'©}5óuÙsQ}~yêcšþ+*}„Þþ4¶ƒêsKzÝóØU=@¶*—ʺ±Ó<·@Ýçƒó´¡Í%´«ê¾ÇØÇ«ŽÐ̘XÖÆNÚ”¢ÑU´kí^M“ ´¿”¦òéàN¸çÓôctòoÓ©£ÊKÏü)=û›Ê&zî§éÌ!úææÛø1ýáОý ª¯¯COÒþ´)ŸžZ¤¯,Ðs?¦##Ê$ œKTûþÍ…´©X¹’‘÷ß¡bºÏÒÌ·“µªNZ:ö‰rA¹‹õ+WÒ¾*åST¯OöF”Òø—©>GýÆ­‰P×c¯×ǵãOб0,¦—hÿgÊ'hrÆŸ§khs•ub¯Z7´™/ËköÆèQ¥ì£{£Qh'÷Ò‰ TßßýDY£\ES tà2uóÐξ•%4y™êuÅøÇÊBë¤Ýk¨>¯Û¾Y¹ž¶m¡-åjªûJ"KôÄjªçh]_•Så˜ÌíPV·^ï,WVäѰYÞ£J¹Ïö6*y"ÞÖ­´+–ùúÓ‡¨ÎC\Eõýküú„üQÉ/º­*ßÒN¡©m4Y¦ÜD{·ÓÖkTÎ+{_£¿‘Md‘ê>‰Á x]y€F"TÏTÒ­&ãcah^UX€6¶šî CsÄRÝ“×4OÛÃ4¾Jù°r£ò¬ò2íýÊÜ®7•VZhyTõ¯rÐu—äs{]O®³!‡ê>Öª=\H%?Ý[£{”e†êy½ïæÐ{i`N\÷N–G¨ôÄz«,Õ¹ïÔFn~aª×ŽÔÐ} Ð<˜CuHmŠê<Ù4r=ð¶+ã{hrŽ탶+BOÌÀÀþlëÚ»Ú»¼*WÎt­…6}?¯ cÓÑ]tdNYKSÚ“ö%©^_ÖsXz½Å­«è¼YÝë)¯¯ô“x#[¡=3C'[èè5å­™¡'£´a†ª}${¦“¦r—wà*í»BÕÜŒq߇S÷a7ÊsAc-•ý §þ[tð1: ó }khïG4±‘Æ> Ñyªç§N‡©ÛïvžˆÐñŒ ©Z3O†©Ë7tV/ÀÀõ¿+‡ê¼eݧ|"—V‡•¥Ôͱ;_ÏF΃xëhý:ÚS@‡¶Á@nO]>ÕçX&þ)4¿“CwĨßÕþ¬=ó_©ÎÛ®¡'ÂôhHY@õý½ä›9íÌŸÑsazæs˜ç}•Nüˆ¦ÿ³òktüGt´RYAGžZ^}Žshˆ¦>¤Ÿ+;•ëißg4™T®£z½<þ#û1íÞAe.Ï87VJ£ë©ÎÁ‹Tк\*sÅ^=—ùª²,y(/(÷*_1TÏ¡¨\:Ó¼êùv+½©Þ¡Õt`#í]I}Ò<Õù–ú9ãå2úL š­aªç’\î¸sgŽ2_i”!e˜´ô¸R÷Euì‚vä+tøn:¸ T祶Ðþ•4p>ª…Æ?¢±{¨¾.µo¡ºDŸ7×÷»u9´zŽêçƒ× Ý—CCah2Ça²ê|Y}>0¼šÖæSÙwõ6Ò¶\Ú³Æó©ê©³Í¡î¥1ûŠiüie;uý`Îô*:µæ ¥—ÔiŽ,RÝ-=^}ž­!D¹aµ´û&zÚñ§ép z„VÑÔÚWGÝs¤Sç†÷l¦­ëhýêîGœ•!ªæM­Ü?:óøús^Ï£Êý×õ9#y´yvÌRÉIqÚ†Eêçû3švå@9ÕûaÅ–vÓ~ùºFs•™}|3õ]ȇÁpž²ˆêó[’/ìÕóÉ5†Jž¤÷d®2¬¼Ak-=¥úüE}m˜£®çÛ[F%w'k'uç6½ÅTrü¼][”!+P^§å˜OýŒŽ] é÷èäoÒ©¨ò/ MUÑä¾åÕ9Û:_³¹œêû=¯¼·ê^³Ó´¿ Úþ:ªç)“ïQ*çw¼ñ&Z¹”±¼8cÈŠùÝùù\¶¿¾¥æÙÌÿož Ó@ŽÚø-:¸ƒ¦¤º/1þ•9oËm:HÕ¼C 'NõCæú#µTò3¼z®Mzѽj½ÄL}¾?½?yÌ÷š=Úʯ¤½ëiß:ü´ûËè@ŒöBû.Óäí}ÆoÐXˆv4Ñö+_à%Úºž6/Ò†y¹JOçSÝ#þš…Þ39á´‰0Õ9ŸíòÜz‘Ö߀ó½_”·P¢Òÿáí¾Lã 49BºéÐ&h'ÿD™RÖѱÏhßó´c‰F6C#ó†ÞÊ\hÓR·NéL¬¦ò<ç•ó>ÎÀß§s­F¨ä9í©|ªsïfÆèä¿¢ƒ›iß{´!J/Ñ–<*óINóZ>m¿ í¹”r%=»‘ê<Ý+àîß½?C'ÿwåøÏÊO”êœf çw¨ô¶{97!:t€~ÑœŠî7Ô¿¿¾KTçe$¦‰OhÜ*k•!ª{Ac_¦])ÚÞD›J©ÎyC¯¾~éý‡‹´q3•óª·Óöî¤mM0ÐC¤ó‡õüÚP%–÷ùÄvh_Êæ…}ÑÒý1ú=¶÷úòª>jÛå´\¿U‰•÷½õŸòs®¦±µT÷™ul£?ˆA³#De~›\¢ƒw@›¹ {Í«–V„” T_ßå¼®W_÷NE©{Žw¶^¢Ñå,•sˆÞx?Mì¡rNÙ› Óþ/)?¦ú¹PÎufm¡rŽÖ+çB½ÃíÊ„²ŸŽåyåü²ÚîYÈÇÏW®¡zÝ©a5Õû¡§æ©^—rëtÎ7ÒTï—ïS~×@S¬ts….ïÄ©Ï ×*×§=Mc U÷[&:M;WÓXB9£\ºµ K“ù4uJÐÑ1˜cÐó…•ô`Ý¿DUï’•¾j¯>'û6ÞªY) 2ßï´gᛐ åmÖÃu^h¥•eÊRz0LwXØWÖ÷§ ´Ï+G·Qéañº^zggŒˆP9—á•>0o¦î0ëãah¶(·)÷ÎÑýªz(Í)KghwíÝGûbTz½º§£f‰JàíÔ¯;›x›Vä@s¤ˆÊs¹7)Ÿßr^ÂiÏükªóÙߥ]†êõãèmª¢ ëè±YXßýŽ¥;–×öÓ#TŸ;Ñ÷Ùfôch¥GÇi* m(RÊœ‰Ì_yå܉Wæ¼½9´•sîÞá1:ú4¿ Ö_ÝýËùÒŸëC÷B;ð8íQéðÖ®¦š¼ZV¶¼§K¨Î'–9B¯î•Þ¯ô{ûíT-6´=J•A½­{­Í‰ùeµÕ³t_˜ªëš©Ì£GKèé¥[[?Mõû£¹–ªüÓ^Nã_¡½+‹iò¸HS7éð>:²Ž+Ów*w+_¢“OЩÿ7þ´Us0pž^æè\—=ÿ/é›ßV®¦3kèÙ?¥Óÿ†n£É”Ræ“cÓî]´c޶¤¨¬{ëWSG¶?L÷Fè¦04å4û”ºH“7”ÑîU´AîßÞȇFÎzå\˜Ïõh’ŸëÙ_¡ã•Êtd7‚çÄ6ѾO¿@=ŸQH?¢±Í´5Mõë9’¦§ÊhÕBÆÃsд†2&ž†vò]:4MûißÔs¶×Ò–Ú¼‚Êú†Wr÷¼ºo9óvðæ-Nݠ͹TîK½}ÓËj‡[þ§4­òu>†¦ÎfôûïIhßü:ý•šçcÐѶ•û(?õ¢¡mhU Úø>úF•y1oóE*罺/ò…Õ9äÒ[ämMѶ|ÚµŠÆë¨^oï»H¥GÐ;ÜykÇJ¡îÕ1G+  í1ªï?õù§†&Úµ‘ö]£Òïå ì÷\§2ï4¯åeþ»þÏ\~½Fzévx5Õs\IÚ? |ŽÊçOïšHÑØ$Õ=òZçÒv6­UæÓÚ´*Ÿî–¿gw~Ñó¡·r†Öƨží“ë¶œrš¦r*ûEÞŽ:ƒvä í‹ê} é©ñ¶ZÚ\Lõ}ÚéYúý04e…ôH Úóç•¿Fgþœž»›æVþ)úœN§ÿLyM§•?CÇéØœrý­™¡ú~fà=Ú·™&›h|DYF»ŠiË Ú¸Q¹’6\R®¤ºw8¦º‡MÖC³®¦{ès!*÷•ÎÀzž>—SžG÷§é!eÕ"=‘¢‘-ÐÎÜMϽJÏž “ïÓ‰ÇizÕy­)9/Óÿ Õïg}îXç¼¾@åÜœ·ï#šXC;oRÉÃñêþIÉ'óê^òíw^×Þ@õº«¼Þ¼Ñ9*ëŠ^¹O ˜LC{8D{OP}~UŸk×¹À 5Tú䲿R5?i%?Ñ{LyôƸšÌ8ÔÿMC†iC„Êœ¶W¯Ÿ©>,Ó¡’Ÿå•Þ(ïèótLÖŸÓrŸ˜®Wщ— MÇheM_SþM¥ºÏݨ¼•+wÐTŠ&/(×ÑX·2F×Ñú|êö¹œú§~.Öûî/…©|®z#×ióÚzZé›ðNn¦ºOIΙyeÈ{€úìöhG®+ï§T_ßzk¨ë‹ÓÆæ”hàùníZ ÓT߷ꟓ|ÞxåܳWç0Kκ÷y庘ޛ¯4TßW†#´ÒRÙŸñêü½¿Óx•¶¥iG1ÕyɽÏ+K•cЦž§ó4°y'M>Iåïñê^G}žÇ=7:õ¬º´²ïë4?X j]ÚJ.›Óœ* =)û ¨£C»¡ù§ôìoPݯ8uMÓ‘NÚ_D“ÒØNªòÌ‘´¯*uŸÁ©=>GÝzÚà£ÐT‡i\^ßúSüªü<>§nÌè£ØE§Ÿ§ú|ÓÄSî¢éR:þy’êÜYc0°’ö}…êþÕøVÚQAë/R9çè•ûv¯Ì9;÷w”5¨îÑj­¡]Ó4þ M¾ íÙÿªüå®åÕë´Ý–J”÷¤RÍ![ù\ô~; ͈fê6²ÖÏÓ†+TÏyv‡iâ>:pÚÉïЉŸ¡ã†Žì ù¸-ËÛ×M“7•Rý¼©•Ü{oûÚ8GOÔP5XÇRyýö©04{ ©~þ®7TçYu{€&î òsòÜCSw@+Un¡]sÐT—PéMöÖ.ÐÕthÚô:r–ž§>Pê×ÏnÚ»ƒêç˜æªsøužIæ±;ë¦0u¹xÅ9TŸCݦ¯Z. •ª{QN(ërhÃ5êçaÅö]JKc÷Ã@‰ÎYŽ'iw íÊ¥[h[ˆ¶ÎPÉgó6çцiYGõþ¼Ëwp¾^L¿c`àyÔ)ÿ¼7pm Õyár^Ò«?¯¥Öè+?œG›Ë¨Î­Œí¢ŸÐÑË0pî8u…l§n.ÍÙu“ªçXÛ`•3ôx­.£úܧî_y: ù ås´ÚÒú5´u휧z®Ræ÷½¥th;Ýí¹?¢gÂtú#:5A'¡¹4ýÏ•/Ðþ1Ú{‰+ zΤ%DË 41ªÖmys‰ *çÛ¼£M4ý8¸NÝü°›'VÏ?æ9tLþ^YtÚÆkTæ~]«9_¹v^¥ng¸JþþÏäïýEhO”Ðã)eÉòÖTЪ ôˆUæS—gè|­ªþÇ@®Wæåé5¯ÌÑêZŸ¦M»hg }­¬¯Ü»¤\€sâ²^â}]y(‡†K¨Êæ”ÒÈZßDõ:hk­rVy“FshǼrv®U®WÎЮʵÊmÊ ´{í© ±ÑÞN*y‹^éÏzˆn¤C÷Ñ‘Utìè××$ß×i§©þ½6Ü Ò[›u½ò& <'Çh¬HYBe>ÄÛ×Bû—èÀctð*sÒÞ‰gèT+=sž3tæ´‰|*Ÿ ^ÙWöê< éÉõ–-Qs#9Ñ·Uò¡²¦éáªçþs€ò:hJ)/(/Óæ5´=‡ö^¤}#´ÕùÅ)LG_Þ1ûßµî\…óù9…Ë ØDSí´÷*ç[½*÷ÜNQ}ÎVŸêÞB{«è@> ä=èÞ³È/Õý2wèm2´u‰Êúµ7v•ªç #çL½}ŸÓÁ»éðU:6KÓïÓ‰VèwyÙB#÷ùN;ºƒŽ\¦Ã…tðSåFåW”_¢hß *ïo¢ˆº~g×,í¸Fõóî‘Ðç]t¿˜Ìµz[6ÓŽU´s½ý=º×`S˜JN¶wg˜–§©Îã­. ºTr ¼2ã­ ÓÌû}~†iÓ5Ú’¦Ñ•´m=•|Oog•þp¯Î«ˆUÑø:åš¡½)Ú·Šö·(ß¡+”+éÐ :ÒMÇ?§=têEåŸÐ3¿EÏþ%ù[ÊËjg~“N?C'–hº…Žn C5t A“³´5B3—7¯^×µ3JÏM*]yÕýÓ:W¶:DÕþm`_®í&•ü!;|‰öZeMœ¥íiózzJ~ÞjÔRÖA›~‡ŽÅhÕ½KÇ–¨Þ§h¡mÓTæ¼±\*ó2^•Ïd§~‘N†éÄߥétä1:8FûÒ´÷K4ñ$•uø¬;¨Î“h)Z^÷yê<]Þ×óèž0ÕýäÏ„è>Cu_ÑK*óHÞÓ¹´¡Œ6†i‹²u+æÓöU=Î&qöÖÑä´ÿ:°‡¦vRõüd·Sƒ&÷ƒÞh•ï÷``ýú¤…6ñ!íNÓ¦Yzj‘Ê\—Wõn™Æ-·ÔFfék1šy\Ϻ×Ò²9úü‚2Ÿ>³çxöiÓT÷YR¾£á°2J]®Sç~i)On ú}ÑTCuïUtµò*Õû’?çím§É•ʧiÿ½Ên:°™¦j¨œoóŽ|F»Ýu{žª~Ý7XÏ”çxÝ3Ô¹H[7ЦZV/ÒÌ—ë5ûʨÞïÐ9N­ilMü˜äÒÁE:|ÜK§¦g¾ íÐcT÷«w×Ò¶˜²“º<=¯]Þã3ôõBe>4™/;ku•ß›W>o½]KÊëTß÷Jÿ²79C‡öÑÑ0´ç«èx˜Æ*èyË«Ï)$¶ÓXLÙ@õ}§ž³ŠF¨|îx› ”94R¢\Mu_ýñ2ªû¨\Þüm(ÃÊÕT½ž½Ôß²tWˆ(£oÌQé#ðʾ®7²‚6ï m94p>1Mû¥ƒQ:òcªò ÍØv*ýêÞ‰Ítr‚Nÿ%}ÍÒcò{ŠlSª×Éé­»AÝ}óXLY¨T¯££KTz6½²¿ã4™å˜¬%a¶Tr”¼yTzþ¼*ߨÆ©þ\Ð=påK·öå¨ç¨­ËÑv¶–Ц4mSS£{އ¨ôyWç@óÊ=¢‘*ç¼rÝÎZE[ mßJU¹é™¥‰wir+훡ºxà-šz=IùÿŸÐ±JÈãŸúNþèÀ:Ú¶…ê¹h™côêýÖÌã‘7ðÜòJ˜êõ+ןâÔsý’ß╞foÛ:Úsªû);¸Du^[rˆÎiÄh[m,§'CTNU„ihš=!ªrøLm¬¥-[©Îé©¢ñ0ôçYô¼oßMž¥‰NeÏÒ˜¥‹´Mþ¹@.L-­/¦ú~C÷FZPF”«•y43£Tçp¾ÐLìZÖc)z´”†o@3´Zynó¶^£ÍhäšRÝ¿éó¢'#Tr˜½ß C#½^—Cï”ü¯ÎÁ‘ç:§}óôÜi:=J§î£“ÏщO•š~Kù‹tôQ:´‹&O( hÜR9îm½JeŸÂ.¦; 4;hemZ€ý“W”åeÊ4=[¨ê+±Sûiúza=óŸèôÿNuî¾î¿9fðM¿ í1Y'hÙBu¿Zæã'«¬›{_ güìaîüŸSrF¼ƒ› ­(„fm¼BÛvP™ðöÉõ´ Zéc¬¿´ÌR™Ïñªsº—$г§¯wÒà=Fù÷1Úw? 䓆æÛfyõóª›ÇrJ¿ûmÕ9d-¥´½Šv7-oïÕsšC%t4—NÈ}÷äÓé_ƒöìsÊ_§“¥´÷+T÷ÕésÕß Ós[éÙߤϵ)å]t°“¦2ëO¶ÿmšüT)_ŸÞÏW)+©Ì‹z»Ëhûm¾A;iƒ\ßtÞíábúLŒªŸ«)U-  TrŒëíK7Ó‘GiËMÙHkó2žÿ.=×®ü zö²òWi úktbQù—4]¥ü}:þû í§2t[õsÒ`u碽ë¨Îã•sÞîm[Gu޲¾OÞ_FïÍæðUçî¬ì_xõsÚ041e¿É(ç§LJö3e¿wæ¼ACTÎa:Mä ´“FGhbŽê¼S9×àUç\‚6)ËhdŽN÷СIe'M%éÀ;Tú½±³T·x;:•!Ú¾ \OÛF”iK„ê碪(ݽÍ3ùô•Üu§•sÞÎ\ª×£×¨^×kN*7ÐÆBª÷Áä|ƒ·&BußÅ«†>·Mæc+kÈP·í<8GæÓã´nŽÊ|WÎ)z¥gÆ«çïåüªW÷–ÊŽW÷6Èú‘7ö _¡‰K4™GûöÐþ9:Ð@‡ó•ý¯9"y<©«´÷šxºùdï**÷Þ΋T¿o£!Úª”çïÉ%z¬†¾A_›£2'è݂憪õwóZ>=\AõÜtà|xmZ¢úy¨3B»×ÑØ#Tæ.½}khÿNh'þŠê9{·~¬”ªõOÓQC;¯Ó}ÅÐŽmQ>BG·Ðáûiêcå:ð1í;Du~dïgTÏýéýtÉÉòvÜ 2ï”5DÛ hS­·Ë{rNœ¥ºUßOÈó¢Wç¥H®ýzø¿k2Aÿ7Ë”¥ýèe¡²XY¦Œ)­rÊy§¬…ÊbeXSZz0G™§,T†”1åœr‰¾^&Ê×w(¤œ£oDh8GY ,R†•–ÎUªÏÉÊ\e¾²TY¡Œ)ç•‹ôHŽ2ŸÊyë¬!å=j”¥ÊeT™V.RÿRVF”óÊEåusÙÞÞ…vb€Žž ñMTŸÿt}\®ŸKöO³.Òä'ÐNåÒÉ¿G'þM™ºsáΑmt¸–Ò~eï Ús‰F+hSD¹žž^ j߯„bôH Ì)n¡QyŸv-ÒÞíTz´œVrÙ½òùkå¹×ÊõËûTš=–êýïÈÚšKuî¼¾¼ýס­‹ý/˜ÿg)šÎ t¸’NþhG¶Ð¡O•KTÎy{û4y/m- ®ÏÑ)û…^}^GÎÝVɉñ®Q†©>·¯× žV¾Êø’Rï7;Õým¬‚f`–uÓôŸB;º‚¦Þ§2¿ë•Ü!¯îçx¥˜®Éæ^eÍ,•Þ1¯ž¯–œQoü]hÓ¦l¢Ò™uu½ÇÎŽ+TÎyx[.ÒÆ"ª{Ÿçê´ ôå0ݳDÕs¥©ˆQ‹¬ïê •$¯œ£ôö,B;^A{çiw’F§é‰EeT÷h÷¬¤u‹tê·éàÛÊiå“4%Ï}girÕëŸú¹ÃÝ7ê}u¿gÃ9ÐÔçÒ¶&*ó+Þ±{ •œïðjßBõ÷ÕæÐÀüÚÕ}1•eÊRúr!}ÞBÓ´†¶\¦±{¡•sŒ^•ólž4T÷ŠK΀×틞ÙO§ï¡Ðñ1ååÃtôSåýÊûh ¯ní‡ö.Òø}·¶ÓÝOF”ë¨~]´gÔs;þy+Eõ:ì¾<ú- ÍNCuñê>ìæn¦í%´ËÐøhÇ·Pù{¬ïß¾Lu~»Ì}y;Ó´§–êsûÒkîíƒ6œwk¿Ÿõ\˜6tòïÓÑÏé Ûú2íì¤î|‡Sr ³FiU)•÷«Ó4¯…vjŒ»ü§Ghç­í(¢’aÛWSÖ\JOÎÓp•õï¦04õë¡}sˆ¦‡©^÷UŸÏæå­*ËxBîÃF?SþÎ'¤Š•r®tøNùº^wÒÑvšºNõ¹ÈÄ*{vo¦’í•çoÛ ÚbhS1•þ9ïAœvÚ7Ëè9KÇ[èH>®¡©wibÕû—=«iÂ(÷Iî<›©® :7/¦:ŸÊ}:{ÒèªÏiËßë}< MÝ<´ßÈzNßLªi¿¼¾ò÷Ô¯¤î<ቲŒn®Ví™Rî[Ìž…Œ2ߟym)cU•ÞÛzB~'äÏ?™¹´cU´¯˜JªÓÏ…ó3ÿ{úë´w’Æ¢Ë+¹^ÿùèöݦééù/0D¥ÇË{²”ºÞb§ž/—ç>ïw 4eeË«ç]$ÇÖ«Ïõë¼ùø[´ïç]Ý›­Ï=þÀÀÀ~Ô+ 4lhåjÚì̇væ=÷óôìïЩ•êœÉÔÏÒÉ»èÄÏÒôoб:ÚM‡Ç”wR½Ú'ë°=שžïôÏì u TÏ/ªýC+stÞÝz ö†Å9º‰º¹Þp溸/–¯Ç¸ó§NŸ_Qž±YÖ±tψî j)Ìèç5äŸk•¯×ϧ»ûé Ú‘ í™MTŸ;rýB¾gh†Ê>ˆ·}‘JN™·a•\4¯|8MmÒú´©”úŸÜ—œ”?_?éö04{‹©¬§d-T¾­¼IG¦céT•sÞsSÐæç@j_\€f‡…öh„êÏ¿ÞKÏ5Ñ©:ÙH'ÆiúS:þ.Õ}£#¥t°„öWÓÞOiì²RŸKØ@».Ñ6K]Ÿo“2Ðg‘G)uÌC{3±Û^ój1=bhUŠêvé=rÚôqåÏÒñ|ªï›µ¹·ilvæ-¯ì×x÷‡•9Tï—~+Gih‰RÏ-ׇhãÅ[jÓM‡Z”÷ÐÄ´sšÊ:…·¹\ihÃÕûñr.Ê+}%ÞpŠîŸ£2Gã}–š˜C]þ‡3œCuOâñB*ÏÞ:¹¾J³·±˜¶­ Ý×h"FuÏÐÀ]ÊJhåºâ=l3JÏ”•ý/o¥|?ß¶´,Bõ¹ç£³ôôUë_¨^·íœ£ñ&Ú»™ö‰®†6íÐ't`‘ö®_^Ù_öVRý9P‘ŸùûunLtíÚBuÏÔè[ÐN¼®\MÓ­tü¹ªü€Î+/+#Tæsno!M^¤û‹9åCË«Ï'7…–W÷ÊëÚûZhyÝç“ëÃÓóá\*ùœÞ† 4ÚD9z×iß»·Vîßœvd M^¡åùи¾{—þ÷´÷Ç´eŽÊ<¼W÷o|ÃÒRCݺ“Óís9]ÏÄ‘Bù:oЈ¡zŽ·q†ê}òž(M Ѿ&ªúìä–ÜRãæ*‡éqí hGÓtäS:¼vy{¯}”Qª÷­Ý~‹ÛÑó9Gó2ºùQ÷LÚmah$çÜŸ« »ûáí]GõzrÜÐØ}´m m𦠥Tç7è<«“3ôhˆº9©Û©û×uhY1•EÇkhúïЉ*:ùWÐïÇ9»s•+h[ mºN« -±Ð”)›b´£Ú™ß¡géô?§“}tbÏ£úœxêÕù5}÷ÐÖË´ÑÒ#™¿Ç4Ô@;x–öÞE[k¨Îé8YD_)¤’/â4ÒÓë•\u¯î™•2oKŒÆ>†<7W©sš+èî0ÝDÍ“J—ž£ú9ò”¡ —ikí*¦±B*ûéÞ¾÷¡}šêó' 4•!hÏþ4è£é2¥:§8úžRÍ©Œ— ÷1¥(kJÙù†©šäü^RÎÐçs Ù¦æÜZyý›½1úªüï:Ï@?ßêž·?êÔÏ¿r7Çåï9½šºJùÜÉ*_û5*¹D^™_ËZmü-Ú¡//@“¹­ÉZ¦úüöéb*ùÁ¦c‰J.‰é–¯[žOó>eL”ës\æþz“Ê+ÐNüœ£½34öÚ¼‹ê},ÉÛð¹2ÏíUçRí³!êúZõþîÑ2h¤ÂÛx•ê9Éž´ãëèÈÝTÏ[ôÍÓDÕçKu/Ñ«!š¹­ðšWè‰Õ*Ø/>·ƒNþ5ÕÏÿÒSçí2´cÆèáZ±ë¯å1*ý+ÞE´eZé9ðNü:£ñ§hçuÚÒDe.ÊëŸæ¨ÌQ9÷7nîÜY[Lu_¢œvZémòJß´÷õªòvmf;Ïk¾®ÔyP5 ÐÆäºÚG;›èËh^ŒQ·£ò1ìÐÚ¶~ÇBÿ\\?O»nP¹Ž{“×éÀOèлD'Þ6~ rZt.œÞV¯k#ó‘ÞÄEh¿L;fifœ.kK­/¢zÌÍ8_Že¬È£Çséé4mYA»Kiü}š| ÚÍñ(í»‹Nü1 œ;Ë|ÙYuoF¥¥ÝWh,Mûúé`𦠓+éôwé™Ê qžžýe/=·Î*ÿÝ­}óÄÇ”Kô¼<¿­œËó] ë!z}Cå|Û³‡è™têtâßÒô7èh5*¥©]ÔåŠ;ûvÐÞKQØ¥’â•ó^Ý[“ùø÷¹9íÔ"üYª>'iú‡ÊG¿Àªót´C,ïÀÈ ) ºß2ö#åEÚSB;ô­–Ê\ŸWÿþšg”iÓ¼²Š6Ž|4r™ž¬¡úœäreÑÌ·Uö œÆ³t꼸ãJyžuÚô/Ч´½ˆêsÉzýX®ïÞSs4°Ïd ‘¿7 >^¢Çg©ZO3k¨êû³gKè™*:}: Ì¥“ÿŒNüŸ_àiú«tì}:ò.þ”Ñþ‚[ÛûÄòÆ6Sy¶mWhÓUªû_¤ÕVÎ*ó©î—•çMïá Tç—ȹn§/ÐúBzTþœ£¹T¿^¤ÇÉ+ç¼=34¶H{ߦê\³MÿŸ4‘ZÞánÚSLõ9wÝotäս§ŠhCˆ¶TЮR‡&géH´S?CcóË«¯’[ámU6QuîÓ~?L3¿V¯y.Ÿêõ7™_ñÖn z=©÷:í¿ í´rò^šØA››¨^ï™>H'ãtb§òïP}_Ö?D“›hâ!ªó™%gØÛ£õTò½º¯Sï+V¤a —qû•u[¯Ü/xwÄèéBë§ê÷iGèÄ(´ÉŸÐÞÏ©î•ï¾D;•úÜ”?W$FòiÝŒ2Ñ7sJŽ«÷i û¯:O©r†ž,Ì¨ó•šæhk”vo£É"ªçªú3_¯<@Gj =ÿ7¨>öæ£t¦”ž½IÏü&Õ÷ÿSߢ“ítâºò7éx7¹—¾Oû?¥ºŸOçQè|“®í¼Lݼ¼SÖO¼zŸOí÷›]aê®Ï²Þìm\ íÄ34yÖOSË‘|Wù4•õod+=¡:ß,û•c%GÇ«÷žPzmÒTžƒ¼º/öõ¹Ì—¼okaæÿïOB“¸¼¬¶÷=hª"´c5Õùuƒ34^@_±u?àK–Í¥ò¹á­¿¹¼úÜOÕŒ2”Q÷Éþ²÷CeßÎi¾¦z.l_„Ês’×rêõ¼úÚÔI%‡Íͧ¥Tæ<¼=å4~'M´P݃›lR^¡}ŸÐþ :tž_†¼ÜDíòê~ÑžN*矲–+Ëhtm¹ ,¥MeÊ]´þ=^CåÜ ÓT„©ÎÏÎ,ód}EùÕ½öJ÷cw„a ·CúN½º‡¶~†6Ú± Ú‰Jªç}Si:pö=MÐx5Õë!ú9«å*Õë#ó¡y.FõºFm Õ}3J;PAc¥Tr‘¬<Çe-Ìèòp31D“«hïšxœö”Ò–•T÷Q¯ ¯-Pw=~.L·ÚÌ÷±¯ Ú†N³úKTçäœ* ²ïå­ŠÑÌÇTVéÕð~5ò¨ßˆÑš"ÚG¥oÜ«÷÷QÚWCSéðE:¦é9:ù¥ü¦Žf<†¼%=÷8'YCkKéÁå4;ò•†¾l©ž>QJO—ÑHˆê|£¦”rž¶®£Òsîíª¥úúûœÆ¯Ò䣴ïq*ù¨ÞÏij«r‰¦ïTžWþ5´£CTŸ[XC9v¹TÎYy÷Ó†­_T6Q™sñê9ÖCaªòÙ;|*ó"^éaÍzZéÇöF×Qé{öJ.†Wæœu± ÐŽ~Hun®¾¿ÈÔ©zËtÆ?¦½¹4ùÚ÷r‰4Ñ¡ÝTzL½éa`.Ô­'–z>F§ÿuyZÎæ}9F“ÐüãÚ¸Ú ôMCÏ,ÑéÊ_ S?VŽÐÉ:ö8ÞIö)WR9ÿå•~-§qsON·žèÖõ>³ÎI혧Ñ*êú2]æ73?7óz•Ü2¯ž ;µÖ¯¦)Ú²–v¬öìu:V@[hÇFhž0T÷Ÿ‡öÍR:yЦ…ŽTÒ@鲄êõÆþ-4yˆÆ–”aÚs•v…©îwn¥Íו3ʃÊ<Ú´’6&•»¨Î¦†hßzz2Mm>m§½ÐÁ(ÑÉÓôÌ‹ôÜïЙs0C7˜¢½‡¨žs꘦­«©ôxõzèᲘ~?ë3vê|‘ú­4VG«éÐÃÐNÇèԯЉPÝ“¦M=I»g©Î™ìȧíUT÷^4^P†©:Ÿe$oÓiÿ0š—Ó´­“ö½ ƒç^¤£åË;XFS›hrnyãÓÊÝ_àƒTïovÎÒæ\XÿßJYªæþÍïæÐýÅôØ *ûª^É1öv_¥‰bšüŒ¦BtØÀ@>ZÒÐx)Õ=án½²u#m® ;¨äÙxu¿Yæ14«ô2zõ¼¯¾.<§|ÑÒW—¨<×{+£ôØ=ei}˜ú|5Q÷Ûu­§Ò÷á•}oòG´#¡©h園÷õ4mÊÀ\Í8 Ì£Ž?@OÍ@S-÷ÍãiÚºD¿Îüó.çÐå¶ï¢:'j,Ÿí¤’Ãï ô¥=IûßS~™êûÍÄ»4^G»6ÐÖ]´~„êßW…¥²žî4’#göz¬‚ÖWQ}µ{+MäC;ý{tê'ÊÓtò%šÞ¡üy:üžòi*ý ·uà Ú_BûVÑÞ"e.íYPŽPé¥ô¶]§ÑÚPLO|n¿Ø©{T%WÌidŸÛ{ÜPw_êTûº6>D„¨î§W÷Ëö›΃;uŸô‘0­Ê¡'VÓÈ ÝAÛ/ÑÎ5´;‡ÆvÓÞ»•kiÿÃ4õ)ÙHÇ ©œSðN†èÔ·—Õ¦ó©Þ¿êZ úyV÷õ6¯¤.ŸÏYŸCßHÃÀ>ß#ÊoXZªôy§íùe.=›OÏ\ S_¦£«—whM=E庚5¡¼ƒêç¤vYW•>"oÛ¢²ó ƒÆ[pêu|§äÔ{U‰é-«í¹F»” ¹´"Í3 T÷ˆrc.C;ùóTç@ȦÓH^£·×B+¹RÞø§ÊËÊó´{ m\Kõ¼ï+išY>òšç¨ì—y–Ñ£…ôäjÚ¤MT^oÞÎÚ}™ÆÞ§ñ´ošl¶~ŽFòh]ˆÊyg ×耥2ᬡj]Ѥ¢£Ó±I:™YвҟçUsÁ¶ÝPùy{Ïü%~’Nm£rnÈÛYN%_ÆÛ"ëÍóT¯Wés#Ï.Ð̯ÍÈ7-/£•1hGŸ ý‹TŸû×ÊFz•¬§x;×B›ÜFã…T?ߞΥ¯ºšr¨Þ¿‘¯Ú‡4rÖ{*LõŒÜ7{]Þ€³ë:¢‰Ý´·˜öÝMû¡’såC;ñŸio­Ê¥áÕTÍeèùCãrÚ\n›ž/(ˇ¦¶òÚS¿ÀûiÇuÚšKOSul2·-ÿ×uöÿYmO˜êûìþ"ÕçŸÓwÑq¥Ë%ö¦éÐ h‹´ÖP•‡dc’¨{‹§>¢½ÓXí) •+i—Íí\ÞÈe‘²P¹Š É÷_H¥OÈ+çsMC˜¶å*3®iÓÎ$çÓÞÏhÿÐÑäí.¢miô=¦’CèÝoifùÛk~ã6Y¤:g§þ ÖÒX‚öÖСoíh’¦Ÿ‚¶/L[•sTÎýykòèþ*û ~ßÁõv9#¨ì8måhšçhg äûËþƒ>ÿ¦òplÛ mÉ£*ÂHߣ×Í+9›ÖÒŽ4¯¢zŸ±w%M®§ý нC“ï)Ó4±SùˆòË4n©œ—ÏúÒ*[”ە멞êɧÝsT¯·¶m Ñ›´UÙ ½JO[ªûÓŽ•Q•?­ïWÍ Ê—òie­S6-Ñ®Y[ íà!ÚÛBõ¾‹ëk•Ÿ_‹¥™±p¯Ù›ùßÍáÚVFc_¦I™kLÿG:¾@ŸÓ#TÖMf_˜Ö¤id3´’ÿä•s ÞÄÝ´»‰º^C§¾.ŽB;Z¶¼ÃO)ŸTªù¾áUtðGÊM­ õ÷Tz¯¼®שûCc(¿B{.Ñî 4Ð3vÊ<œWòd¼zžOž»½/—Ñ ý~ r_3ËY«fiSšJΣ7qÚ¡h¿2¾žÊ¹No[ŠF/S½ßt2EenÖ«Ÿ{2/;o`¿¢|ºœJ§ž+Ó³ô”¡‘\Z¿H[j¨ô,y»Ò4¾–&^⺓Ž|F÷æS½¿ój Ú“–)£n^Ò­+¹ùH§äìüñR4ÏdþãòDô¾Y¯ü¹í³´®‚JŸ…WŸŸ“ÜwoéBæïݦ2§[Ýs•îŸéÉ|CvâïÒô|šJþWçI?§W÷DèüÉ…öªßÀóPcš¶•Òžõ4qˆöm¹µò|ï•ë‚3pþå•%h\¥SrB¼ºG®N¹D ©^ç’¼obÕçER«éÐM:2GÇÖÐô~¨ósM½Òõr:GvS½¾:µRY }®«³ù 4Ç  MO)·Ðñ«VæÓÑI:rIù8ºNŸ Ò'ãÕóarNÑëzú|ä×”:'7£GRôÔ´çþ@¹‚N¯ì{%ÂÝ íDÕù¡É0íê¤ 4:G›¯R=/¡r\LE­‰r«‘×Õ‰¥Œn? ê>ÿsDy?ÖËsrËuhz*¨ž[«Z ºßQ}î›ÉíÈ”SÛ¡×MkJèÑyZ•OËÓô»šMaúJ„î7´f5•ýH¯î{éÚH{ š¹œd½ÍÜ‹ÉÜ^eÕs®²^íiYíÄoÐÁGhÿ}Tç[êü–ãETr |ÄN³¼•‹ôØj*¹ ÞÎ*9ø^É£rÚŽ9Ú^@ù´ t—¡¡ªûÿ¾«Ü¢'6ÐÞJhÏô®§‰O•o+“ÊråTÏÇ‹h¬IY¬¼ƒv® í¡åÕû8:÷BßO×w*wQ½?œyìõšuJ×SéÜ[¨ŒÐWr¨î¬ÓJ,ç¼®æ¤QÖÐÚ<ª{7"òGcJ=·¥ç-åùß+½xN#çM¼:G3±Ž¿í›Ag^ ç~™žy]ù túçéÔIå÷èd'Õý°k¾À;iúß)[èxyKyÕý´}ÐäÚû<çÑÎ-TzŽõèé zd–/Ѳ2èóàœG‹ }FõœÑž%šÙ>ÌšGÍw,ÝžO_UêÜw9Gàuû&Ά Tç¼ëþ¢D í34¥þ k¡òºrÖGºk  Åè‹!ªûv”Q5gŽ*k–hƒ¥ÑrÚOÕÜ£‘y=¯þy¹ÐÛ¾ÚÉzš>GÇî£:OZæœæt´ÓÓáótè.:øÑxM•Ñþ•´W¯¥z>S÷#4]¤ —iÝ<}ÉB½ÿd'¾BåÜçm•¹§IÉŸ|›ÖE Ù¿”ñpiæ×÷e™ËtVÉÍóJŽ¢·kë˜R.ÐÄgTŸÛ过ŽÉóÑôUå+tò åtâašþ'Ê t¿o«ô€xË ý5™m߬#Töq¼:ÇõTšžNQuß`ÇbÊG訡õ¡m4µƒöm¢É-41D¥GÌцz|ê|Dݧ*ûZ^¹Ÿpš—ôªˆJ®–·ùƭ혥1j«–WÝŸò‘TÏŒMÿW:2Iî¦ýETúÙ¼É'hï‡T÷‡Ç~B¥WÛ«óŽeÚ¯G—…¡Íüú½¦¹Ú®Z+ž´T÷ŸTÓ…´,BU. }6š¢0=Ú¶•¶^¥M´aU¹¥æµ<ÚR@õsJüQhû‡¨Î“l© µJ´?DOËç{ü!h£:÷÷ÖòBªæîlú]:œOS_¦Én˜ú\jQ¯e¶1½vâ/iú!:XC¥¯Ìiö„im.´}±åí8H_+„¦º†+RÓšzbžºþ §žk‘|o¢Ÿ&£t B‡Þ‡vÈÐäÕóúzXçéésºÇQçL SCMÜ“ºB=azÄÐïçCãæM5óTÏ9Û6R=·S&æ¡•ùx¯^'Þmè¾b*ëS~]cSù÷¼:ŸVçsÌü¹Fæu>P¶¯wr=´Ó¿LåùË«{ëªõÙ®2ªsÒ›r¡^¯³3¿LÏýoÊÿ={H¹G¹“žRWÒé¯ü :õ¯”êüÐäøGTŸÑ‘n:ü°ò!X·º¤œUZeŒêçƒþuÊ{iß e±RÏo­UÞAã ´C>ך©>ª=óÕùqù¼m£í²¦ŸÃ2o³¬•éŒ;¨ìo9mê š¨£ù90ГárÉ?ÑÝ9t¿¥•J5b:is’v”SÉÏóö~ mëfÚ´ž6ì õk鉭ʣýè%š¹]Íæ€7Lõü—¬Çx…èÑ0Õëfµ‹´±”¶l¡¼â啹&¯ž¯K~Y©Îaô(¤ü1MݤCwÓáb:ºIy@™¤c«””ש?ó/ íh¢u¨ËÍv¾žOuÂv ¯›Ãnmæq7kÍm¾LÛ‹iGŒêþ­ø#4ÑMåsÔÛw€öߤ©]T®N;5EÓŸ(WÓñÏèP íý”êžé5ôºç÷\ ûCN-Ðú5ÐN½¶¼MÓuʯѱ‡èðtp; ô̯¥½ïÐØ&Ú–¼µªç;xŸ/×/ݧ+¹Nóºòp Úú4•Ï=ï9úB éòê¾Kw=uF×W¨ÞÇé¢CèÈv:¾D'þˆÊ|š3ð¼”yÙ{ùk'´Mž+’nÿ]æÒ¿ªü›t|žŽ¬ C•t°ˆžÿUúf~€N­¥éߥc5Tß§öÏÑæ­ôÛ&ã·ÂPŸ#±g_¦ºgQß?Jî¾WŸ»i)_Þš Zb  —ÐÆ´ÿ€v^£/Ë?÷û9™/¦ÏÆäû™¦º¥)6n¥‘mÐÔåB;ÑEuNÿÀš¨¤sÀ%´½B¹–6o¦nÙNÑç Ý¢úzýBˆê|¨*Cu~`´Œ¶ß¤7h¬œ&C´oŒì Ò#Âàuê5e¹R]ÇFÖS×ílí¤2¿æm¡åéyzÊГ‹´<Í󖾘O÷RéAõͧÕ¨Ì9x¥W(ëÚr•¶_‡vòçèèJšù±d œã_¡ƒå´¯&Úi­[RÎ*Ëhæ×‘õÈÕ}.û#T÷So Ó‡r ùÇJynñ>•C¿«Ü©ÔçÅuî‚ÎÕs_•Ê£%ÊRzª€F¶*kiK>m½A»ÖR5Ïd÷ÑÞ~hGž€¹݃çæÚ‹ í)£Çæ©>§ó0äõá­¼Aç|#Tç:O—RÉÇôêžžY*y½Þ¾9Ú?F·Òу4ý#:ñ÷ l¡Ý´ç2í¸BË¡É<ŽxswSïѱ/Q½_¤ó"!ªçÇô~ʼnb*}>Y?¢ú|Íp5=ûÇÐö—e”×»WòâœæDaÆÚHFŸ .ûf#cÔÍe:×ÑúÕóÝá:Q@Ç®-ïÈ—©Ì/x›¶*W@st–vWÝR;þ9{—Þ¤z½GÖÁ½›iË *}¥ÞãÓÝ1ØÐslrîÇÛ¡²ïåm]I£[hÛí‰PÝÕ\ íTÜM'~ŠŽ¯¡£wQ}np°Ÿ¦’t`öï¦ÉO•+i¯¡‰ƒ4VGÛ iÓ ZWCE¨;_êüíh^6ôXÚ¡\ªûl“ÐøVÚy…¶æQ½?ªÏÿJO÷©04Òê=ºšJî‰7z‘v×B{.ª Ñ3/ÓéG”¿E§*”{©Ûïóþ‰òN:¾›ÑÔf*ûž^ŸÚ·Î7*»¶ÐÖ*}@ÞªbªÏݼd¡MÿÃ/ð§h`®ÿ>:|™=ISwÑä“Ôå¶;uGì<힥Wi '«Š6G¨Î•®¾AÒ½iú¬…fï­Á@Nž¾_Ò¹émE´q†ž˜ƒ¦¬fÞFYuOçieýEÚºƒê¹¸®<*¹¿^ù>½ít4Le?Ë;ù÷¡M´¼º/µÿí¾J›G¨ü\œú9 [È廒và,}éÖº¼gc Õûˆªßͼ£{ÊhxžžŒÒ– TÿÞÛç©ÌUy;ËhÏ»K¹ŠÊ:§Wòf³>A‡¥é\:yÚsKôLî­TæÓ‰Ë;¥cÓÊ4ÙC‡×P=­ œÏy›æçvÑø¬rÞ ­)ÚxSYKå>Ö¹H/*¨>ß”y[e•}U¯äKzuÛó!h2—鬆¾ž¦G èÑbªŸû%Ø{²ZÉívzõ97òäÏÛ@¥çÚÛ°š¶”,¯ëµñý6T¿Òä:ðMm¥é?¤“PÉ•òž{Ú‘º?š¶bÚµ™JÏ®7Ö­¼@%çÓÛ{–Òáw¨äû{UN¹•óý^ér™‡÷¶ÕÐØ;TÖ}½ý?v JyHyPù€òNÈ^MûÚiòC嬲€ö^QÝÆ2ªs€ã–ÆÐî5´c æQ½¾}ÌRÉðJî‹·ÌÀ@þÒ«KTú3½Õ–»íÔ‡ÔÍééߟ›£pÿÞ+s™?Ç­wºÏŸ£±Œn>ñô U¹ öåBúÃazn^y™N·Óô/S—îìIRݳ«s ¤Éiž Óð,´ã)õõ~‘þ^˜ÊuÆi¶*w„é –î^ ¯„©ë/sÊuÕ+óí^é»öê<¡x„&‡ þTÏéTV@ó[9ô°…væ;ôl =ó·éô}tjŒNÒ‰BuVú »D‡?¥ƒTrî¼±!Ú¾@õºí©ø¼(¤¥†~+ΔXú|>Ý—C§éÑôä<•óšÞh.´îz甹oïÈ:¬ì[MuMû Ú´å6®§êç8±×ÒCi*}yÞúUT?_µÉϧ­“&îù_2pý9÷Ktâ>ª×»Æ*¨^¿NÐÁu´ošÆ÷ÑØm[¢ú¼¡Þ7ˆS}._ÏùI«Óür{Z×ßáú€Ó޽E¥ÁûÜ4»B4œ¦µ5´eÚªhŠÃôÄmŽÒŽTÏ×w_£±©î‰—Üoÿ—•—©ô{užÇÈJ:^CÓ¿N'Btò{tú§”FϼKÏ=Eg>º¥û¯3‡èä½4ýY ±|z´Ö‡{J¡( ±/SÝ)s8^}þÏwÔÏwêÜ¥ÝJÍö0=RA¥¿È«?O-@+9ðÞæUTæ½½óèÞ|*çbœæé0 ÏÐÞÕtôC:±‚ªü>{¸ÞïqùsÊk´wŽöM*åëéßmç4uÏõ­òû•¼X¿\,~Çf”sEVúûœæÙªïçOo€vâ#šþ74±J¿Ôm=YA.ѳÿŠês “Ðô[t4AGrèðÊK4^BcÊŽÚ¶Šê×¹¶ñ¢r„F ¨ô;xO) =£•!zpæ–¤WÇ›øJ柟üÏTæí¼™±¹Û›WªýÑžEÚqMYKuKC)=‘¢ÏçPÉCvžSÏ­M´³ŠÆ¿ó¢’cý?ª]¡ÒGìm‹Ñ¦Õû=o,QésvšßVJ¥·:Úæ&YÍ3!z ­œ£z®M[?OW) hôÒ­u¹:NÉñvOSÉûó&¶Q5aêèÐN:îîãN¢SƒJ?ž÷Ì=Wí›Ghz íÍ£Ý#tS˜v”ÀÀü÷È$M_¥g„öÍ¿¢gÚ•÷Òé‹Êj:õŸ”»hæËÊšî C²•z‡J¹·÷Õsüúç¨ûX:;iÇ%ÚrÊýVõ¾Ó9ù‘›TÏÕêþ½ûDYðnµô¥|z$EåþÓ+½šÞhm»F{+ •\ï‘0=”O+"to1-µ4s[‘Õ­o|Mù¤¡¯ÆèÁ9*½Ð^݇Û>Cu^C¼ŒöÞEU_®é[ ýÐÔeh›VQyŽõJ?€ÓD·QþãshÇÞ£‘•Tç–GgióÜò6^£ [éÉRªÏõ,ƒ&/‡nVê9Á2mŒî]¢zÎ\Îzå<©Wú^½G¢T¯£è9Àê z:L#iã*ŸCY—h[švnP)w)k•IeæsÔt­ƒ¶&M÷…©ô9ÍËÅÊuyRΦºï7‡&·ÒÔZe‘ò=:’G'„öìFzæ[tzƒRåtOö+û”Ò‰•4=¡|œŽ |Ž­§£ÛéÈšª¢}åT¯Ãë\dùüô6¯¤M T÷KÔ'©¾~¾¡ÍƒÆÍ_:ÝÿîTï?[_–ùïÍòz‰¹uy.šú€º§¬ze½ÏûuõëÞž9E'ÿ:x'í;Dµ4ö0u9Άiª÷Ýõû:l``ßát1m®¢ùÐÊ9¬‡¨ÞÙaa ‡¢f–ê éaóÊ|´WŸã×=ÜÝ34~™&j¨œ÷ò¸çÙç8O¥‡Î  ã@›|‹Æ¶*裸Kì­_M«cT¯î Cóõz¤ˆJNWŸ{”¼Û¬†Fs¨Êí3ñ{©>”œ£ý%_àU*çDÍPû1ü:5mâ#*瘲>xk»vQ½ÎÕnhk’ê¹§† ÔƒvF®S½?)9(ÞctŸ…&3Öç œ?IÚƒ&Þ†ú>ÌÆf¨Þß?m•3ôˆ¥O„•îõzˆ;ÕßIãaª{Uº¬RÍçtÕÒŽ0m]Mu.®Üç:äï;uN˜Ù¦•y4óedm*¦hÏJÈ2´7M“íTzX³†¨ÌzNÐT5ü„?MG~BÓïÐÉéôc´uŽJN«7ýw¨ôÆ{Ï<í›ut,L¥ÏÈé{ E;°†J’Ó4]£ñû©Î©O5(?¦ÃïQÙßuÚ©=t ”êüÐøúFxy÷ÂÀ¹=}¿ ÷=Þú*ÚTK%×ÝÛ³Dc šxö¾KûÒ4ÕB‡ÖÐá©äÛ{Ç[nmºÚáÚ¿H[·Ðcš×hÇ6ªæ½½ºSoÐô.å#Túð¼‰4þUë¥öðŒ2 Ís†.Vö½õ†î‹ÑÝšÌJÖ1Z¦‡hm Úô?§Qz¸êïÏîËϸ'}O©ôe9m—|žŒ¿G3oƒ¬2Ÿì4Ñ•P÷¾øü¢–&Ú¢½íT¯¯ù¾qòÏ ¾J‡äëL]¤‰+4–GÛ7ÐÓizÈB½˜w8–Gý¾UU¹#öEC Có=C˨¬Ïzåï÷êyò–Íж,P}Þéû†>¿@›7*7PéGµƒ÷Sé­ö6Òš2hž2´¬˜ê~séñJ¯º7—l Í<¾e}uNYFÕÏ%‡ÐÒÃe´¶˜ê||½Þß8Kõý\SÕýò9àí ÓÞ:°™J~eÀát¢™NvCû]ûù9ÃôH>­« ñB:” £ëhºŠÊ¹fïÔóкsŽîÜ£^—–þx¯þ¹Êç«3p½í¦:ÿ¬7Be.Û˜pÎ)+©Ü÷xukçêÖœr×+çá³î Í[h ·p–JnyÖEeŠÖWкBZ»5åó#kˆVäÑÒ˜˜ÍŽ*瓼rîÀ{L)sâÞ“Z·HeÖi§¾K%¿Ý;1CGߦºWIŸÓOÊï9‘PÓö|ÚVAûXe0pÞø›†J_¸÷`­-¤ºŸ³c%•÷ƒWr2½}ÑT þÜ¢l ?KÇKéØJ:rö ”÷×p„%é`TYGSïÒ~eí«¤ÉUTç§ËçsÖ»igˆJº·å"m¸Nõ:i]”êu°ƒa*¯/ç/å@óŠ¡ný̹?FuOUUšêsªÕEôX¡ržÖÄèñTŸgS½Ïsæµ ôTšÖÍQýü-}ÚYÓ´~‡2¬¼D¶)G¨\¼M#´¹¶.Ò¶YÚQL;•=—hl„ÆwÑÄJå•÷…7¹ƒl€öì$=óûtú_Ò‰;éèO”Mt¤¿OSQÚ¿‘öÝO{·ÑD )åsª;—v®£rŸå­_AuN÷±9z¸‚J_•wWŒ>khfÌÞkv†¨¬SxäК( <—,d”>o¤”ʾWÎIz› h‹¼ï[¯RÙÇÈšY6 ùMÇhò}Ú5MOªÏs½´@Ç cOÓÑ«täÕç臶SÝÓ—ºDõ¾Ë!uƯPÉñF7ÒæKÊYÚ¸’z¶ÌåzeþÏÛSKyº)Úÿ>Õý•Ãѱ¡=ÿMúæT6( éÌ_*ÃôÜ•#túÿ¤éÊíÊÍÊ5t¼R¹‘ŽÍÞÆ»éÈÊ:\N{¢´{5•ùp¯ë%wù¹®·Äk3Ö®¦ú¿Ìw:íd30tä l§ÒâMü˜ê~uÉïõJ¾¦·3Få~ÄÈC»HåþÇ«ŸƒëVÓS5Ê<*}-^5·c-ÑŠ0Ý­”^NßÏ)ÿ»·ÖP×wálßH{:iâ2íS¦f MÐcùTz²n Òo™5_™C¥ÝiVåÐÕÿƒÞ«üÝ0ýjÎò–†èK+r¨ÎÕ•ç&¯îq×÷9ú\rã<=¢,§ñ"šú”Jž¾ÓN£Ê_¥é»i gº›]¢©xW¹“êçg½®Òµ‚¶”Ò¦¨²˜º99çñbªŸ‡«J¨œ_ñ–)õûÚ͸y’È m­¥åòç´¤¨ËÁl(¡ÒÇåÝ¢/)·ä@ãÖ›{òèþ2Z¡2׿•sfÞ–õ´uê¾ÏÀz@ê#he¿Ì+ÏÞ–ËTæ¼®ŸÝ»šž,£úsï°¥j>°_øx˜º¹?çs1úÚ Ghæm‘õÈ,Õ}—Íy_àuå Ú¾F¹vÎ(¯Ó®mTç¬H>|ÖBå>š\¢Òëê}„Žß¤eÐŽÎ(wÐá•4ñÕ÷-=)e’v/PÝW-ó»Þ:KUŸ¬}Cé×á3Î|ËR«¡ÏïÊëÞØŸ ßÚFC›:i{9•õM§þ}:ù¯èÄ?¢ãÓá$•ùoßY𸀯7ÑX-í*¢ê><ð{mË¥­a*ç¼ùTå}ØH=iiÍ"•õS¯î§ ôïÊŸSž¿¼ªÇÆüAÚ—óè@š6Ðý…ôwrn©9O›Œú¹Z÷ÜJŸ·;¦”uËÞnÚ/óN_†öL‚Nÿ:y^ù 4=­Ü­ü%:¦£7”VYMGQ=G2œ¿¼ƒïÑ)óhß=4™GëŸ×”uÊZåcÊÚ½ŠÊ9ÀÛ*ŸWÞúZ—O+ ¨<xå9Â[†æð z¤†JŸ”qçy§¡}1Ùçõº<)é uÉ56îyëÀRÆ×äÏy­8ãëòß_d”ý_–¯+\¬t÷#òïϧ‘­—õÖ¹¿•ëwè)ª÷cýóêmØNûi²œ&æi|UvÒL jÖöµ´µ¶Ü¤º¯©a#­+ 'gé‘<ŽÑ…ôëö•_^¢î\£³ª†žŒÑæ4´gËéô»täå}tàsš|ˆvÚq]y™¶'©ÎÉÖçCuïƒ7Jõ¹P×+t(¬,£2¯è•¼+¯ä²x3Çæ¼Æ„éïåЧ-Õsúœ€ž‹=RZ˜Ã[¢ºO¨M)}j^uþ×$ÖA+=:^ÙÇÌšO¥§Èëò€ eTçêÞïð"Uù¡VæcæY¥œKöv_¤I ­ôßyãOÂÀºoSÁ²ò‡OÍA#yOÞùô@ Qýœ }ïÞžš¼“JO½7õ´2M¯ÂÀ¼þÄoÓá*å:Ô ¼‹®¦ýQ×?ìÔû´‘mTÎ{Ïï§3åôìzfÕŸ·Ó=J¹¯H*7Ðt5Õ?—÷i_u9@Þ\Ú]Duþtmݦ’“ï4ÕéÿŸªÏæNjC´ñ:m‹B{v7 äãÿ Mÿ‘rHùÓtì ÕyÖÚþäø´r •2oâ ¿©¼¨ÜIcŸQg¦?×ß(£Ó0°o ç¼ EÐN•щstl3¢CÓÔ4ù1íÝEußxìi*¹”õù:½ª÷Ýy»JÝk+Ÿë^é/õªósÏ…”†ª–Àïmr³ò…|Z1·¼‡ç• TçÑ]¤ê\¥]R^¤:ŸDú¸¼!ÈÕjš¦±÷hj‰Ž®UÞ ã÷Òôcôµ4•çobM—щ??¤“¿§ìPªsŠS”KtÚÒ³÷A;‘RþMÿ*-WÞE‡äz>ô4íO(óiò)¥Ü¿%n*k¨äödÝJcTï·_¢ºÉ=žúÿ²÷÷ñQŸé}÷=uˆËíp9ªËåª.uU—:ŠC­C|).uÏuˆ£8¬£õ²^Å˲³,kkmÖ+cd,à „BÀèyô<F£çÑ ³dsÆ¥q‰/Å¡[âRGq¨C|Ñ­âR—ºÜî×kŽóœësü@ÎÞ½_÷ýϽÿ¼_^?hÍü~¿ó<ã{z`%•}ï+Ê—"Ð|ÅP×/V½Dõ¼Sgëe*õDN+¹4Þh~ÛfÕùÀÍçiK1mU¶_¦úœ¤§ŠöÙÏqñ'ÒN|JõçJ_7õ÷6~ÚAC»â´Mîëú|µe=–—õè­)‡fG­«‡¶«U¹ƒvVÐX#•ºïþ¡ròºüç>e`Ï´µEtþoÓ¹£Ê/ÐÙßU>¥Ü¨\¯üišù¯Tö‡ìX!íS>~sGê¨Î*¥ÉOhO„JŸ÷`!ݹMQˆn±Y÷DèaCU?™ªç°Kޤ÷ÀuZc©:O4¯z8D›dÑW­¼íÐ6ªÖ÷î9ÉÛZOõ<¬ÎÈ·YíðÓÊÇ”Q7·Ä9ô¡²Ry;Mî¡.ßÎ{'Mä)CtàSå'ŸãÝËÿLù–2¢TûýñÚßJû’Êí*§±øòês„–0ÕùŒ¼Æ¢å=vnyëó—·ö"­)VæÓ]‹ËªûÜ}ï:ßyW†J©Wêͽ:§¾Wž›ôsY'{‡·C;y/•ù]^Ýwzà 4¯†hË<´³ut²”JÞw ™êúˆÝ¥PÏ5·'ŠΫïX^9§Èùï¡<ˆ‡i:J‡nÐä#tp-Õù[’›çUõ\Ôl[NÎèfzd‰Êó´wo†î)¥jaÊ¡»Dû•—¨>‡ÕêùEGŠéëETÏ7–}2§ÏwsFÓ´sí‹ÒxšŽ¬…vdœ¦¯Ó¡ó4¹†êœ"é“ȩαõÜÉ­ðÖQ™wã4/-Òƒ¥Tå[¾©:*¹Þ®íTõIšãqhgëiæUª÷³ú*i熛ëökMçh]šÖ,Ò— ù®¡MQhOý)ûK:[H§?R^¡™·éðNšÚ¥|‘&ߢ2OÈÛ{õæÆ i´‡¬¢•KT÷³í Sù÷¼ÑFhûêiíuªëQU¿‘·4s©¥:Xê̼zîñÁzúr˜ª×ç_çÓªsoä9ÆieÞFΨ²ˆ~ÏP?øí8•sN§ùbˆNÓ¶hOQ]GXÏí¢©½4yƒJ^¬Wça÷ƨì{õœ;çþb*}u^]/wj=1Ig~‡NƒNýˆêyž’—pkk¨ä-ä\Ió+VÐ@Ý@™²ìT®X^ÉÁöö”-o÷m/¢ºŸ5°/»’FwУU´AyÐÐýQúú‚2N³眯äÑçÂtkšçâôÑ=ÿ:äÓºB*çÞè"m¾@[oÐî$•~§m?CçQY¢]1h›.AÝGøÍ}@gjè¤L3¤<¬ü'tòxxyù2Êô¸òA:\ESw.¯>§ ä_éõ«:ÇÿPYO]}Ÿ³³êýèÚ*9ŸÎÀ¼®CeTÎIu^t ?Rie^©×Ý/2Ù{¬”–[h^‹@;{;ÕûÖ3_ ÓÒÌŸ(/ÐIí»Ê ;CGߤÃW©ÌyΙVî UT×+¦GWR_$ù¢ÞpšïºKùyëš%ªsÁŽ”Ðãe4:Ge>žWÏëÜL{ª¡=QAužCæq*ss¾ù9>Jõ¨vy?R>°¼}T×ÅJisœÊ\¯Ìðªù›9®ßÄy0D7(÷dè¡(­—}_—|ƒÆ¶ÐÞÕt`Ž&ÊéЩÌoñŽ<u"ûè šÍ†J¼WÏëÓ9¼*'Ùôʿ׷ŠJ½°WõØÔªç·o ÒáÕçãò¼æ4/Åií9]¸¹RGìíY¤Òä}4µHG~HÇkhæƒvôM^¤½ ´­^YK¥ŽÆ{¨”†-Ôó8ìì¤Çc´¿^™MÛ :’„¶­ é×wÚ—£ÐÄíéƒt>žl¢ºnW×gÿØ9§ß¡™O§n£CoQ/ÔSOe¿ÛëÎOÅè™(ýÁ†å=õWtv­¸’ž/~†Ž¿OG6QÉó÷êLË—7±•Ðx3Õy!Òç=¥5Zf—Õì1ÐNÄèx ½›Žl ÃÓä³tÀÐÞ3´çí\KUn}`î^ô:Õy:¿ìÀ<­*¢*ÏúœåoZµHU(-­_‚6ûãrÖ§ƒÊbzj=ñ$½Dg§:×L¯ïÆóéèN*óL¼‰Òþ-´ó"uý-ÑZªú¹ÍÁ8´ÉRÚ½šê|í Í~-½óì¹Ì@Óz–ÆòiüüÚ‰B:¾™Ž=KGéð.šºD‡’t`‰öÜ z÷ñ+ôh ÕsÔ$GÙ«û²¿kèæ <§êþé—”®î^ër’µKTú9¼jÚHÞ…7~¤6ó+tâ +¥éÛèà{ÊV嚸“öE¨ÎAŽ]¢J™CëÕsè—è¡•Tr¼ÏD qùOΗMVÉAöî‹R•KdšÎÐX”öÊzS÷C¦&éH†ŽF©ÌŸtê~uþ~ù=Kî–®#°'¿GçöÓLMm¦ƒ/*UÜ@ m¤1Ú^@%¿Î¶¶Réß÷êüëšݳH¥Ï»#L¥ÞižŠÐïª÷5ꊩžÿÚ¥; M¥= Tçƒ7ÓèZSOŸˆÀÀ¾œ¯{[•#щõâкÜ—ã¡s]dކw?I7Ò±†››ù:>Og>£s/@;[B§÷Q=§QŸCÖW(Ë•Ù?Ÿ=TLõó¹Ü¼jÿ'à7 4Û ¨ä}zkâ´9Cc=4ÞG‡K¡=9¢T}¶'þ‹ÓÙFgz•Ûèô¯ÒÌW•ÅJ©ºós\E'?Sž£ãtäEªû“ãtða—¾¹ÏÛî*yKÞìñ™kã´½aÚSL»Ýùð"íHR—ÏèÔóƒÂtW-7tKꛞ1TÝWl·{ýë©ÎáÒ9'ßµYŸ-€æ—äç>©tsIFhãBÖö0­…6ÙLuµæÕª×õ‹T_¿ã»èà äØN4Ðñ:z‰êóÌä: ìÝ@uÝ”î#Šn¤²/ìÝGwVP}î§}}‘0´e•õ‡Wå°ê줯Ã+ý‰^5 >¨×¨X„yƇ£T?Ÿé:ˆØyh-Q_,sƼ2·ÃɧzêK†VD )3TïûÍ£Ç/R•³abÚ]DeÞ¬7QGó±Ö+Ë©¬ss^¡Ãס=PLõs‹ÎíìYCûzhÿ&/¥w*ߥ©ëtøIš¾]9OGT^¢³èÇ¡ßgÍ‹†îTêº7ýy|>Æ—Wžû½=†ê¾ Éò¦ŸRF²žÑ]Ê2:RN‡ê©ÌtšçÃt¯¡’ïáç~êý¤ñšÞCcgèáRh¤ÆÉ£ó鱕륷}ÓÞ|šx„Ýmü •~§½,~ø8W{ušh>Ôy¥¦¢€ŽæÁ@=tüÇʫʔ3´}¶^¤Mg•%T_ïëÎÑý1˜sÕd/ß9ë •ù«¦9M‡ï¡coÑÉ÷¡Í¼GG> ÃVyM…éÐ$M^Wn sÝ*êæx×PÉ7ιºz1g÷í(¦’Ïìm-¡MåT×¹~sÒÝ ôùÝDsR³_ûœ¯Å©›{ìlÚBeÅÛvŽv® Ýq*Ï“ÿŸÒfþŽÌÐtš¶_‚~NÞ«–ªë¼Ûù9~Q¼Î¾«ü#:ó_•OÓÉbe¸ú9.ÒãKTÎm¼OG 9fi`ý¹ŽÆ·@›½­æÜŸ¡²æ}ÁÒ/F ù†¡‡®S›Ù2G¥OÞÛsÚá-t¾2Mâ ô³©¹bæµ"ªó²¤ÏÌÛ–†vrí.¤ÑjhÜœ*×/Ù½V¹’¶ÍÓÀœîRZ_BõïWöñ¼/—R™ì ôgÈ~ç-Õó)ãÊyªëb]Q.Q½N>G¯Ü¼*ŸÌ l ƒ«•“thròa¨óͼ¯dèÌÕó{¦¶Ò‰”çéøuå•ÐÀœÝthA£þ3›±öÓÎËTò¼z~qÃEªÏ´ºN^>ïÞÃ…Tæzc›hŸ2‚vlžŽ>AS{h²€>EuŽ»Î; \7êis5u9½Îš º?MuÞó7-4/F¨Î –Ü0¯ê0’ÛèÕÏ-=”Ù×aú–h|=•º}¯ÞÇHßEGd?`ì6:!ù'ïÓéŸSîƒv ŽêœiÉ7òö÷@;˜¤*ßH¯WžSvú{›êœd=‡.]DS):ô4MP}îÕWF%§>g1m®§úœ°¾î+¥®ÂÕGd¿9÷P©ßñúõ™\·ŽËûêêÚ2È»¯ˆ¾n¨®üµ4¯”Òª *Ï?Þ:åáUs§M,FûŠéÀÇ4µ‘Jެwr;Í|“NÿW:û5:·Ï龌ÍT^—7¾–ê\„®¹›Ûº‚Êyñ-Ý¥2gÖ«ÏguŠÛ×rêóÕH!•íÊ£M¥´.JS©×wæ¡–÷¹1N[Za`_'±…¾Rô7:müAªç˜è:Úç”åEšÝ¦ È [¤©ÓÐö^YÞ¶9)¦¯†©äà:ý¹„Sæ*zeWr×½ý†êç¯ÔU:Y íÄ:~=Aû•—hm)4¯‡©Ôû{‡¯ÑìcUN—{èìÚ¤\Tªûoà~›¯\ ƒÛhò,•ër@éïöN»yòDO~aYç¼ÐŽÒÑ÷¡“¾ô¦4Ù·Ûk»”:?IÏëŒAÛºéûp®ëG"ËÛR‘ýçÛ¶+óhë5å’2®TëîÖmI*+¨ž÷Ò¤Œ^½…è±Ú˜OTP='¡¡€Ö•+Ãô`•:ÝœEt_†ê~›— Õ9á/D¨º~r@³¿ÞœrÎçýZ„þfˆ>@ÍÓÊ-†ºú>§®¿­ŒS7?ÂÏ‘X ‡#TæzÕþži¶Trxœöèüò6”P½n|1Í7#ôûŸ£Ìéö2TÏ??šO£¥T¾_9WÐöË4VK%ÇØÛ]E{Æé@ M,oëzå%ªr¤ìÄj:>JÇÒtômª÷ûB—w°†JÝ€·;¬,¤Ù¯wζëôx)=–¦‡©›ÿãLGï§#ë¨Î5Lí¤C 4ÙG¶ÑÞµÔí‹8›.RY¿xu½\6æÝk\•³á m¹Nõ¤; •õ§÷7#ÐTEi]•>y¯>‡÷û.å´¯ˆn¥)£T}VÃ7èh+’úÿt5Õ÷ñ=Ð<_@õùAc”vŸ¥ƒqšZíüé‰ÿ=HgþÍ Ñ‘ëTÏWÔ×õ®µÐ¼´õpÙ¯×ü¦òð•å•sj¯êS öïm¡ú¬WßO{èÐ*šzšŽ&¨Ê¹4RŸí´íh³RÕ¡šg"Ù¿®­€&;1gõu¹ýªïÅÎþÕsU{3JCuÞ¨\ϽJ='µªšˆ¥%Tçkɾ·7þ•ù®Þéfz0L£´} •zXï·âжE©Ü¿½iªÏídžµWòñœ&˜SÏ…•|coS˜J_ˆ·cí.£½—èà*}@ÞÔ½td%»N'šiæºÃP7ÇòHQö}‰£-k©{Ÿå\лÿ"•zïî 4_3ôÕÝÊÚ0OÖ+³¯Ó4÷P™ ÓÐY_ÄWÑä :t/‡¶³`y;6SÉ©öê󤆕ùêÞêe•ºÓœ!úÒÔó͹ÜzNáÁe)Õõ§÷}í½Hרž‹+ó½c[é̯B[‡¦K^‡ërýB'Þ¤s©®ËÌüm:a¨ä({G«¨ûüx×ÒÔV:´‘&¥‰èÀ*¯¤=h{)*kbTåBê¨÷.І2ÚQ}<©O •ó¡œ!ªçÓêsâ¾õ´»T¹’vn *OÛJ½š·¦˜î Ó—CTí›æÌë¹ÂÏ*+#Tæ{õõTò•¼ÒT×wèùo-õ´½’v_¢½[h%J›iªÚÄ“T_7£gèRèGo,¤2×  Êݶé»ißZ*¹T>ŸjRÖËÞÄ.h§3Tê½Rçï=~ŽÊ>®3°ÙZJÛ.Qé7ò,R¹þx;WÒ‘|:º…êç•ÉË4S¨üShðgt¤”F×ÑÍ‘ì¿¯æØ¨<¯ë9@Ó?«¼ƒŽ]¢’¯ž³RYDužuÀJÿv·.¯Î•}To}ͶQ{ÍVå¾%Ú¼HcK4žíézò¿)‰ž˜¦sÎÄèô4ó,Ú¦|†ŽWRÉyòêzût¹²Œݯ̣:ÿg`^™¢]iË9ªû*ë iUœJß“ÓT…i}m®…vì h$‡ÎigÿXù&¿¢<¯LбGhr‘Jî­·oêõ±Î'”s(¯¬÷½ú<+{;ÌéžÜóÐäi˜ûó1ÕshuÎÏàš¥r]öÆ«ho•9Þv¥¬k½ºßBç3ª:V³#ûsÌþ ÚÔC;ªèÀ ¨ûÄMe}Myp‘ÊõßÛ±öo¤S,ïÉì(þƒ´=ŸÆäû¦ç®d~“®W®¢ñ"ÚÕC[WASQ õõÖThÇ®Ðô}4uMy/MZšØ@ò©î×söÉçFÏOéΣ1C;ÖR©óõÊúÓ[eèÎýºRç–?·Hw)£´.õÜq?·Î©×á-ÚÓª?¿îœÍéÎWjÿÐT†¡ý1ª zßh°š&i[!•§©9­ÔåzG+iòc:¨”Ü„œù4¾Æ®Q™ßè­S]W*uÒ^µå÷£Üþ¡Sö[½²žòIC{ò#zâêòÙ™çÄ/Љb:²•^¡]Ú TæUy;VÓèzZw…fËÞ¼FæyûªiânhãuÊ{©~ž×ónº+içUÛNUnf`nHk>m§Ç+hcŒJ±WæyxuŽŠêŸõ÷e§žcªë†eÃÛrês™åíÛH>¥‰½th”Ê\Yo:J%gÈi禕E4{ÙøëõTÚé/Ò©ÍtâE:ü6Õ÷A©GðJÿkÎ3t°Œ&RÊ-T÷½÷ÏQ™Ûâí640y‰J~‡WrAsŽ++©«[’ç*o¤€~ÛÀÀüM­žßªëÖT¾I`þD&D§>TFèø‡ÊE:Z­¼“깪ÉËtðí»H£I*ë(¯ô[ÞJó]Cå}¿¥ê~k^¡E´i޶/¯äz;â´+¦¼J{—7¾B9IžUŽ/oâ¬ò<•:%§ûÇ43OSïÒìXõ[ëæzÕý+0Ÿí<Õ}ênÝá äq—Óæ8mZOõ<îWã0ë§ó‘¾nèÞRÚ lÉ£±FÚoa ×í¥m‰Q]ž¨§RgïMG`àœ5ÞõýÏ&ïXÞllÏÿûª¾æÏõÔ¿¤'þ™Sî ’3èÕù/zžNò-šxŸvm¡2wÛ«Ï#ެ¤õy4¢[¨yQYYJ%Ü+ýFN;÷|‚Ž­¦*?ͼ9Qúünú ò_ÒÀzi«ò:ôÕ¿7‡Ò™Ø¡|^ÜDãqÚ—O{ÏÒ†<úý‚ìûâr_œu¥Ê0U÷'+}9­Òýs%´ëš2ŸJ®uÎ54vA¡-ÕŸc˜êóhÉéöîÉP©ÃræìS6Dikí´´k=´-Kt) Ì7ÌŽ©ÿëßk˜v\ ½gè`MËùþHö¼ÒLÔA;=L3W”ߢS?TÞK'zèøtôªònª×2Λ|‚æw\¥Ï™V­Çcy´]>¯*3su(Jc›©Ìi÷&TÖ9N{ò´r=ñï”?Kg÷ÓéÿIõ\lj¸r#½?¿¼zß«»€¶,Ò#yôpˆÊ\c¯î#Ý¿’¾^Jeþ°w[˜~ËP©OuùïzÓvwÿÿ»4P¿°Ey/ Ô©Õ)ï£zNbF©Î/å¹ÍÛ_|s;«i ï6êësƒ¡Üö(”/o¶\'ç+‹ôûÊï„©®ë_¢ßY¤z_Zÿþõœ»ÖzÚyÚSÿŽžÜF3÷SÉ#ô¶¶Òc ÐÔGåß_E“ó´õÕùú²¯î}ÞÒ_ Aãú©œÛ •çïqK[×(çiGˆÊ9ºWÍ?6]Ðþ FOì¡™·”a:ù)Õßç‘Tæzõ|L]79 {-=³…¾1NOü Þts3’Ï2£²ï¢ëjúh|íUJ~ WÏÅpê\‹´<[‡8%GÔ»_©ëÎf¾L' èèJš>FÏ#OÒ¡:x&6Óx í¾BcåTú ½Í†Σ/Ä©ÞOܦ‘4=R¶¼-Ûi|%M,С.š>GG* •ç\¯Ë÷tyŸz?Ä]ÿœí«©¬cœ9MÚD%í=G»/P»Òr†6–Rýœ‘ßû–þ :±•¦ÖQ©óõÆ,Õç*MʪëÚt~¼>=ñc¥Þ'9C§Ÿ§™tj ìTQƒMSÒÁ]ÊûèÀeå&ªçYÆ÷P7'Ì{UyE9Ný:ܹA¹žv*Õ¹Û åå&Ú¼Ž6Å•…Ê|êòšÒ7›3_™G•U4oW*ùî9‹•+©ì÷{¹¼‹tç}1BŸ- Ùør¯ +¿­¬VFª¨Ôãx¥Ü^¥=et ~ùBú÷57Cgÿ%Í Ó©´²ˆN>Cǧé>:PHû#YuNRW•y·^}­ z^ôëEtwݱMv›%ç¾0=’öHçOÑSÏЯ/ïÜ*:SI§šN=HÇÎ+HG¥:ïH×÷§hòMÜCž zþ¼Þÿ öå”>Á[iG¥¡›;­wµƒ•4¹Š¬§zž°Ìóº} g4DWP_TSF èñBÒ¦Vڮ왣²ò&—¨žß=Ï:ö0´‰ ‘y*ÞºmTJý“7y;´3'h:¡\K‡cÔå¯z¦CoR=×xp;ßGu¿]Ëz,ŸîÓòh*2T®ëNÛ¿žöÅiójº·ˆJ»WæÁx³/ÓkÜù¥³¥#ÍJu¿OçÓ„¡’Ó—³ «Îq /Ò@Že•Ï—·ùm­¥’Ÿà•ë¸ÓŽßAõsÚðÝt(JUߎ|êÜp}'û¿Þ–UTò)¼‡©îÁÐ'#0Ðÿ¤ÏÕuˆ¬¼=4þ1\€VžŸ¼ÓJ¶Ðx#­­‚æxšÆ7Ã@Âáh¾chÓfÚ|†¶¯ õÐNn¤é:ü.*¥}Wio+]¡-ETÏ[üJÖÛ²n÷ŒÑº*Ú´Úø'ÊÚ§g©Î-9”¡¯Xh~9D_[¤õùTŸWõo¢R·âú”ŽÔC;ü ¿I{6R×å|I©ö­ôQ9sõó©ä\{]„s|œÊ:§Mß ]——Wú æx•~r§ýŸtøÚ¦zNïÜéèÇTöÛ½s‡UTöó½Ñh6Fè6e,û:MïuÚ_ mæ×é@-ÏÓî-´­Šê~ ŸË°DåyÈ+u6Î@]õî<*u^¹¯˜Ãr}=l©ë/sêܯ~y]'~_y˜Îþå_R]¯#ç0ÞŽ"=G%·Îûò4Ù—×¶/@óÛ!z¼˜¦ÖBÛSAO\¤³/ÑÌߢzÞž®'—y^ÝÏÕ•+ià|¤^QV+óiCöyZÏk5Bt{Ý­”>›[ê÷meý6xA”þé_¥3géôÿA§öÐñ(uçv^õûλ¹œûÇhòÃ[8G%ÑÛê|ï¶jåv*¹Ø^Õ88˜Oõ¾†<{«£TŸw~ËBãêÆGÊ©ô›8çÕC%´}ÕýT³£tò=:x'ퟧWh³ò@})N7[¨óû6µ…T΃¼:ï\Ϋ¼ºÿ"Ð_Qí™J:ßDOý%=YH窕»èÌ4þ=š±tòCe°t|ÛòŽ]¦£‘å¹syuý¦ËU¿•ƒÅTçvë:µ®9Ú\L_Ê@ó­Eªsº"†Ž$hæ´3ÿ”ŽDQݯ½Oùl„ê<}¿}!Lå:ä–ÑÀ:m‰vghâ^šj€vî—éÌ¿¡™÷”Ò‰Ót­R­ÓwÑäN¿ô9®£=·0FÝùž!yf^×Ÿìæ‘8õó¥ÎS9¢ýEYÝ9ÐÜ ³çna£ò:Ó©TóÏ2?¤Sãtè2Uuˆö@=k¤³ùT×§¶Q=WvQ5/A÷˜RK_ÏPé{vÚÄ‹4ZÍ+¥ÐŽÓÔ]Tçéþ]_¤óˆ.Ò¯¨ÓóÇôÁÈs·Wú`õ9Ç ¡©»Nõs³šûh:"Tê ½ÝIÚ·ƒÆH…07¹N'¨Œ+·Ñ±Iå:ú#e;Y é5tè#šx†Æß¥r?÷ê}-ɇðÊ9³W×Ëüï Õû[.‡É¹³”Fò¨^WZ Ç󠜡.Ÿß©ëe¾zNuî\ —”©îÔ9ê2ßÔ«Î;líe„¾¶ÍoEhuœêsÖ¶J¨sÙEe>›w´Ú{©Þ÷‹.RÕW`²c‘rêyÍu†ê9Q-å´½‚öôÐ^yŸT§³SÙµ‰Jþ­·ï<Ÿ¥éÐuh§ºèÀm´3J¶Wεsž¡‡Ë©žw¿«š=¥tÿ=§¹~+hÛeÚ<@%Å›z–NdhÛUªó>+ •ú=ï¡"º/s…öT-ü„ŽßN‡VÓ·éËš® ´³ÏÑÌ—©Ô3y%Ë»?î[€~n™ÌAñ¬†öÌô¿Hõ¼ñì×ÿ¯?Ç—¨\‡íü ôD?ÝK3?OÇ”oÒÑ=Tçs8Û¨žS"ó¼µ+é~¹¯n AãrxœòÏyÏ¥õTú½êºdSãŸc z”&Î)OS=Y×íC#¹‹N;9Je5̹õÆ6P™ÿìMD”ŸÑ¡÷¨¬ó¼2ÌØ¿“œ§y9Jõuóõ<ªë0-ÑŽM4¹‡êyå#C;:C£­Ð¸|W—÷ªû¥;¡q×?gk ´“}tì-ªçÙ¦'iJ^‡ÔozHõ÷1ð|p…v…©«Ãq¶ªrW¬ä y,Ñ×âTææ9ͯÝÂW3Tçk« ­×iW=Õëm}^zü •þ#g žOÏè‹ÑèFh¤_Ï«×QGÃÐ&öÐcqªòáL8Bëçé‘ëô˜¡jN³™xúë½~žÒ¹äÇ..ïaåCõüWwåtë*§ìozË¡KÐô5:x7Õù¹±Ú¶êœ>Ý'q(ú¹^Nó_]D›ÏÒìv|Îþ 4ZV›¹“Ž_¦2ßÌ;ð m·ô`1•¼'o8DI9ÛEu!š>­ŒS]'Ô§•ÊÍËÛ~žF+•Û•!zVëh²ñ¹^Û´šÆùåm?í‰Hg&iæ•D' •ùrÞ¾K´1Í¡BhgcÊÚ¨|ŒêzX™³î•ù‡~J÷¡Éþ¸ÓÎü6NÒñ«Ê5tlNù8Õs2†Þ§:w)^L%Ò+sæ½r?÷¶6Ò–Ëôh„Fâô•0ýŽ…ýÐç,•\ãrœzTדÄJ©Ô)x¥_Ü›¬¢r®ê´'6ÒÙ·éÌ€òg–Wç¹êy=#1šJ)ÔÕ¯{ÏÓ{hWñòvœ¡:gW?—êï…ôo{%‡ÚÛwÊ|t§½AÓ멞W¬®\„l™DΈøZ݂慭²ô`´å!hjÓ´·ðæJÿ“7¢S²;%ëéÃôƯÑùþ¶P—ßèò]_‹Sú_¼º.Göá½’óçÕs0»Z¡ØFãµ´?F]¿“³k‰Ê9˜·õ*mÞ@õóò«–¾²UæJ{uNÀ7 ¬·¬¤µeôRç§ÄŠn®ô‘z“77½ŠŽ<¢4TîGÞÉÏèôCtæ÷–ÕŽ­¤é3Êítx/M½I‡šiò:¸™&ž¦}µôPœî/£‘zú|œº|·Þ|JéîoΊ%ª÷ýYz¼ˆêE©ôAz‡.ÑYW·l b´&Ÿ>m²&ߤ@S›O£Ê¦J¨ó•Œ›?î®·÷•ý:ïP ž„úÅú*ªú.ÍošmÈÙ¡®nN´£k©îz€&OÓ­!h\Ý»³4D¿¡¯VІÕç -+iç9*yn·Ò*eÛ¹‘žøS:w;M*K©Î¿ÿL¹Žÿë®…s¥Ó;èÜÐÙG”¿Lgzéô=tj/¡éqªë‚‡¢‰ËË,@#¹Ñ^ýœŸžWŽÒ©cË;ø"m¸N_³4uU÷!Sû‰´›¨ê_ä¾Ä×бcÐŽEiê$ºAßü庢óÇú·ÓÞóTçt^£áÚº¤ŒÐ–$m§Ù·#çAKw…©žO­sÆ¿W@u~Z±RÖñ^Y7y]½ž3p=³Ô}¾œzÿç¬#týøÑ e†6·R™ó*í¬¤=;èà»4¹Q™¢Ã,«m¡Ã[©Îõ©¬€óGË­çæ¶Ÿ¥òüàÕù–ÓEt,­<¦|޾¥|ŒŽü­¤ƒ;hÏeÚ­lɇº/Ý&‹¨Ê ÐymÁçÈu¿§ÌïpÚxLÙJ;,Õ}-ÃéÐgtp+Müê>¢® Ú¶‚êúÓ# TÏ«ÒêRª÷'^ ÓPš-†~7BVÁ@½³Ì—Ì©ÎG“?¢ƒ eƒ²–„hüAêòX:Jç°ÊüM¯ËÛtª|'#û:ÞHŒºùºÎÀ|‡Eªû€ú/Ò„¥©Ûa ¾àËšìm?§:äOE/ЦMTr^¼ÃgÍȺ3“Qþ!ž£Ò¿™ó ‹Ñ“ÿÚ™íË«s'9e‚¦.ŽOÒ¡=ʪ›› +Ÿ¦²ÏëM\¡RŸ³v\¡MQº«ô¦šò÷Gî¥Cë¨ê75ß^¤RÏëí‡ÁùNò¾Œ¼EÓ+ißåeå¢2Ÿf—%9õs¤›³åì¼Acã´£Œ¶V+ËiËz™§› 4/-Òý1ªÏ-´ÇÍòêœÆôÓ00—ýT œ§ºûìóغsJK§ÿˆŽ¤éshzªé€œ%åGöƒœ:ßÝtTC;·žêþÀ¹Ë9Tîs¿–ö—ЖÔåöTD¡î—²ÓE‡èš}Ìôš¦4m[¥”õ̳ñì_»sæ3›©»¾:g·*ÿ!\¢cOÒ‘½4½¦j©ž‡žøˆœ¥ñ·©®ëë ÑÎu4–¡zýØz…JµW?G-£:wÏõo8«*è}!¨óŒô/ze.Э ÌŸìÓVKõ<É'ôî Q©OušÚ‹TÞ‡œišŠÐ±+о¾Hw)õ:âÛêΡ4_‹P]g{è"•üG§þïÙî«´ež.¤¯ºËÒ—CÐ|1B¿bh8L÷Dé‹´¡6ž£z>kSmYC;W(¯Ð®3ÐÆ3Ð4¯¢zWªˆ&V>@›ç©ôë{«+è÷ äzF ©®ïkHS=ß»u%m³´g5•õª7Q sdôœÉ3wš=TÖó&ÑE7A;~•ûŒWçÁ*¥{¨9OuÎÈx>X¡ü!´C󴥄êHsFy–ê|—Xˆ&ÆiòÇt(E‡Ÿ‚Ö­Çœ U087"ŸöG©ìCxÕuÍFÃô`Õó%Uý´Ý™¡²Þð–D Ù¹@%÷Ò[ké±íPÆVÑžV:ð,´£·QÉ+qšPèæêï‡V×Í6]…ºDUç­çÅÚ‘>¨Ï­õþ‚y)Du™ôazu޴εìÞ¨ÜL%§Ü+ç|^9'ô¦åó¯rIÌÄ^𙢳i:÷%h£¡éÜ@ÇÞ†öT'{μ T¹|ÍÿA]Ýû­œøˆêœ¡À>û}TçÛ%Ï)GéÀiÚSE»òiûfzì ­_ 5‹Tæ„:ÍwCtœ] íü[ôÔ6zâ ògèÜStæ¯èô×èT;œ§òüéuŸ#çÈuåzšz‘Êuß;¥Ý;hK•u†WÕ§Ö¯Mg¡ýé™]ôô«ôÔÍÐéU43B'>£½ã´çmWF-•õ‚·r šŠ zð´½ëh[œê\ãоCOÎýŽr‹òI:ûStæKtú}å›Ê:šYys'ÎSg6RFõ¾Ýð›ÊUTös¼ú|/^A;KiëÈG¯ Ñ%Z{‘ª>S®|µˆª:/;¹Š¦~D%§ÊÛ±6­¡z}¬÷sûwиr L¥_$çgtè~*ý,^™·è´3ÿO:¾š¦Þ¦2¯9g™òIÚ/ŸÃ¾ë´«äs,¢í·°ž¿H#×é7BôkJ]¿R>¡ºîô™Õ}6úùL¯—d?Ö«ó~eN·´oü+e˜Î7*†žŠÑ“¿BOL)¿DçN+SÊŸ£³o(‰ÎœSþ&þ@ùMšùïÊßSn¦“:qÕ9Iãg”Ê2:öž2£,R®¡£òïN*Ÿ¡úœU÷Œ¸s›U4Ð÷¿¹)Kõ<µ¡40çèÕs!ÝuÃÙ­Ô¹ÜÇu´½˜êþÙ7Ê9O¥ÞÍ[[Oó{ãÊ(­0ô¹8•Ü_¯žwË‘³*Be^µ·ùÔuÞæP˜&Þ£‡²¯Ó—?_öçX©kñª9 FÎé6¥ƒ†&>UÞC¶SÉ=ñö–ÒÎjªr©ý¶ÙËœ×|3B¥>Ô+}ÁNÛ»¹R—i_Bãraœ2Ý«çvL?õ¼N;¢Ã;¨žOßW@{·PÕqÊ|oÓ9m¤ÒÏæÕç¦zΡþ}H?¡÷ÐuÚ±íh-Õu¸™2Ú¶êœ9;šO‡>¡zRDcK´c5ÕõGVÒ}†ª¹¸¦¶Ú—N½E'¢#wP}=ÎwxÍÀ:h%ÏÒiÜó¸Sú@¼±ZeòŒò"í\¢2çÃÛ]¢Ü¢lUž§=”ã´w‡²‘êœëþ&ò”ùÊ{éà}ʵʔò<zKy™J½´7ýMÐñÍTŸãɾ¹ÓÔA+ûÜVòÒ½rvšÞj:š„z_Aï×ÚöK´åUûŒ:ŸB×ÛšoP7§uú¨Ë!t&.Ñþ«0pî_ íìÚ]M]šËGsóݼÄèyz,B,R7÷ÞY³Ì!öº¾Iç¾<ª¯ß·Tæ^yw+÷D¨>WÒçAú>«ÏgFJ MÞ¿¼]QKÒ×+è÷³ï‹•~|§ÙAm*/kçf[Iu¿|ûeÚ£­Û©ë£wÏE"4REå}ÎYA_]¤’GcwWP}®ätsRœª>ÆîŒ(+èöݶH¿¥ü¦¥[”_QÊ| ¯‰P9òê}Ÿ•ÊuÊ_WꜟŠÐÍÕß³WK³JžÁ­êHýóÏÈ'tP>ÿƒëh"NûVКë´ÚˆEô•h¶/B;wÝDgþw:~R9§¼“Ž•ÐÑ0M—ÐÀ9Íšx„ÆK•F¹šö—RyžðJµ‚ò7Ñ£´!ÖZ§<¨Ô×ý=®°ôÙ4’éu9…NɽòFÊh g­œê|u¹¯›¶b“ïC×Ṵ́òuånš.£ºßµsŽê9¤òaýóD„Æ?€öä:»ŽZêúÿ©õt0½¼RGæÕy¡=ÅTž¿½º_§¥6[ª÷eôºH×]Ö)õü“šBº+uî•ÍÆ«çì-¡m›¨®»ÕóGô¼T~U9÷ÒéïÓñ÷éàÓtcˆ&{hü<ÕsBvÒ@wošŽÈyÅô]TÏGè8OûŠèäf¨óxMÇvÚ»ŠªùÓèh U¹LfæÏ¡MÞNu`g1Õyùçº+ÊRÚ¦2ÇÊ+y“ÞãòïÒ#…ÊmˆPý¹­_¤Ü®zºÿ"T(Ë©Þ_ÕÏŸU†îQuîcä9ÕiãsÐ;NÓu‘+¿¡îûàNŠ©ôyã4ùŽB;u—2oy'[ÞñtìE:b”Å4ý‘²’?I]ÿ¯shM$èÀÓTÏ;ïÞDe|ÎËTÏÈ–Iå”~B¯Îa–¼U¯Ô'zÛæh“¥ÑôxÕ¹ûZ9ðÖUPégôê|Í×#ô•(Õy«jŽž}:DuÞÇS†ºû’ó;Z±@e.¼w9=`©ü¹½.ïÃÙ¥G‹htmÚH›×(©[_9uˆÎ7Ó÷ÝC{/ÐþEªsnâoÑzš¨¥òœœóE:´…ª¾}“*Pþˆª¼AG>¦££t¬QÏ:!?oBî—“{iæåïÓéZåÎ*sæ½s_€v¶†N|¨¬ ‰©Îÿvó®t_\CŒJ«é²´¯Œºy§~îi!´ñyÚ¦ºíP1•úg`OžK½’cæm.¥}­T>'ÎA;÷ ¾HŸ³Ð´ž£±³YËÐÎm¦³A%çÁëê‘git=}ÕB“-ç ¾né;ʹ_ù34ÓG§ÎÑɪó õ9÷Ðч©äU{%ÏÚ«ó†û‡g¨îOJ®¡zvð˜KV@åz翨¼›ºùæÎž«Ê<Úµfy;¯ÓX+Õuè­ùTå5ÙæFQW×éÔëÔ£,¢•‹Tí_ÚmД¥¥{èÞ0•õ±÷`­/¢ ôXfhs𶮡m—hlÕý!=×h5 Üg7P[,õbÞÔNšÞLÕ9ëvì:Õy‰5Ê"ª×Mzþ²›·îlßD¥¯Æ«û]Ÿóà’x…êùß]¤:oöÐ9z¸”Jޱ÷x9uù^ζ*ó–½òûxÚôTæóyÊhüÚ£.gÃYSB÷-)³¯/ÐÏ&ÏÑÎ`cˆ<­Ìó>¡}ã´)Ÿ?Fý:]¬,Êþ¼°¡îœÌ)ûÚ¦M¾oºmö-åèÌèt¯òuåvšI(ï§SŸÑÉûÿfêûn _ä:|•£Ér:8JãiÚµ@[Çió&*sG½ª>KÏ7´­sÐDÒÐþ ºsëñ•Z¦zúå}0u¥rþà•sïaKÕ¼w5ÐN§}Ê—-42?Õ+yÔÞcQ*s½­—hûíÉ@{rŸòzb}òoèítúÍü¶ò åß¡õt$Cõ¹\wšÆÎÓ¶´% õ’•3Ne¾£÷X˜º¹µÎ®JhO¤º¿ov-Íü9|‡N,ÒѨžß4¢*/Q—'ì<¸™—íû:ä¼Ò´É_»zSu.mËãTÕµ˜µTæÓz ²&‹•ÐT) ä©~H¥žÖ;^D'w)õ>ġͼMöÇæ¬Z¤2_ÓÛš†vüqMR²w‘fl.?H稜n“œ¡CÅ4u—òc:|–¦K©ÔázÇ*•Ktü,,§3¿íÔC4Ð¶Žæ¦>J»¶P£×¸°¼ú\>RB].Ô¶0•\ §yÑÐÚ•º7o[•ó¯ô%x‡éÈFhçÎý¡Rå¯Ï½¥¬W®£3”ûét…r+i§‰EåûJuî0ý·éÔítò*ׯž»5˜GwѸ¥ýשîÒõGÂ4P¯”¡*?ÈnŽ@óeCŸŠÐÚ uõGNÉ‘ôö¬£ROPÏ;OWÑÑ÷éX+´§¿Aç×лéìo)Kèô¢™ƒtò :VNGŸ éiê4ì¡ýqÚµŠvTQ½Ï³×Põ{7ÏP=¿[>ON{ú7èÉÓtúŸÓÌï(Kéä(¹¡¼¦<«\Iߢñ'©ÎYu9nΖMTׇßBŸ¡ï£GeŸWÕu™pœêó©Ù÷»“î ÑÞ<:±Î<íÉCOLÓÉ:ª×¡‰[YI»VÒæ9*sõ¼2—Ä+ÏAN³5D÷—R©óÉ)ï³ä]:íè;TÎTÿ¿ùR„îÉУK4ÚCeΟ·5¶m¤®_Ñ©ë»wÒ¡¨ê{œsJßš3°_ݬì]¢Ê¡é CÛ¶Yi–·&êý­½t×’r‘J=Ç-}¹€V,R©sòÊs•Wõ¡Ùç UýVöµ¼ÙË÷–¹KîþëÔ}7®îÝ׿/Ð×-Õ¹dz}Øw(¢M«” Tæå\/n rΑ3NÝz±ýíØ¢ÜNceJÙwê\E»WÓÞ«´o•:XïÀ^åM¶‹òçÑ9eé:º­äÉÚ¹yšJS׫υtý¢Î¿­+ zž¤Ì¶¯/PÝß²»”îÌ£²Ÿâ Ðìò5§Î Ö߃2ùÿwQ=çÙå&ºÅX5Õç Ò—ï•~¯šWn3PÝg1rÕÏ{C/Òd)Õ¹#½go®®[j]A¥ž%ç z$NU^¹ýš·ìËñÐfyýýaªó›õ\{É% (ç€^½¾Ùn©ÊQôc|ÏÒýõô`=\D[òh¬vZÚ“¤2Ê¿LÓ@ßëG45GG,Ñ©hÇï£C”yT×ÝËëôê~Ÿž(Õs.%Ò«óyuJÝ"ÝW@_U>¡ÙÇo`žØÑë´m íŒQ]—•yÚ7,ý Íü:±™Ž>H“÷)ï¥]ëhÇ Út]i©î‹ˆV+×(óè‘­Ï_^=ŸøµL[CÊÊMJµ?Ó&umT½f¼ùoæÌåWJýl1=±…žÜ³¬ö@±²èæFÓÐ hå{ìmoUF•†Jý€ÓH½¬÷yK_ÊÐ=†êóGÙ?öªõœ‰£‰ó4y´§:h¦‘NlQÞMU.½y&B%ïÇ›ýuåŒÊsvt•Ò® Ô¹D¯@#y+ÞÄmTr¥œÖÕ=¸:ˆ#Ú“WèÜ/ÐÙo)·Ò©w”§i Ÿó$ßJ7CW_èë ßø=uœÎ}›Ž%èhˆǨ®Ç]£ÇÃT¯/vg²êþÙíq˜©ëÉŽ\vö¯èÌ+4ó}Ús–/¤×©Þ—Ú¢’·éí.¥½×èÀ#Ê åIš¸Úñ·hb5ÕùQ}s´§’vUÑX„vl¡íÕ´¥’6P©cðê¾ñM¾OSŸÐ@ßCßI' ͌ә:[GOüôs¿œñÊíßL{¨þ¾We¨Ê1¯Z—¦r~ž3œµç<´'ß¿¹S%t´˜6A#yƒÞž8´Êä;TÏÏÓõ+SiÚ|Ž*ƒ¦©ˆ¶o€Áº¨§èhNS£®óñzhg„6*9­ÞÑfåtd3MŸVÒ^ùëúDU¯ekbTýLe”ªóKÓvöm¤‰ët°†BG/Ó‰ Í<÷ÈIy‚ÝEÛ*•Û•+©>«¿Ï]®Óh!m_M{ò•Wiü1åûÊhò!hUAS™¡ÒÇè­Ë£‡®Ð#¥ôX†ºu…SÖƒ^É¥òÊoüS*óƒóÀ •+Û•i*ýÖÞÔgtøMHGšéÄNšù%åûtzÚS—èDÉžƒØAY7èþ9Gõ»œ;Ôû"Ñ2hkJéþHÖH•>¯ÞoÖõÅz½ïê×zÿ¸ÑÐãç¨î3×û5]=ÐöÉ÷¢¿•öÊ÷:vƒÊ|9ïЪŸÈ@~‡>_û„Žì¢éǨΣ×sáZ[éACe> 3p®zô •þko,DÕ󘼹ƒRª¿¿©]td´cÍtô‡TçTuвŽÌY¨¼›ÆK¨zþ ä¶}AùÄi‡|>ù¥ò9êWJ_ŸÓÎD©ämzûêonw-RÙ¿÷êy§™ z0FÌÓ§"Ð oò‡Töiv²†ÆOR5÷Ñ|;Le>£WrH¼2ØiæÓ†¶Ðüz„Êu5ð¼Óy‘ÒI¹¿fåÏSM_ŽP™Kïý~˜þZš—ãTå:›Ã…ÐöÏÑÈh¤®ß»w‰ªýmÓR/6*[i§¡}–&hòÍd¿`fú,­/¡‡Ëè‘e„êó+]/©ë'zÊhâ©å¼ƒŽ½KÇÓtb5 ÌÇQ^£S»hFþ»Ó¿ªüu:¢sÿ…žŒÐS×è_€¶k=•ëŒWŸSë¼á­JÉíñ… q×cís†î^ :ŸW¯‡¢ãTîÞ¶u4öª¿=×i¢”~mb#í[My…TÏ‹ÐóŒ]ýŸSÎ}½rNáýºY^=Wå—CtÏ¢r‰¾BuƒËks6çÓöë´¿Lyœ£ƒÈ»“ý·‘Û¨š;8‡‘ó7;œ¤´é ÕûÝ.ÿÞÍ!têzÌãù´±„Ö§©ÎG8p޾f¨ž·Sj¡ù–ò• ­ ÓH) ÜçiC¡rêëþñ•´é2m+¢ÝåT÷=ô¥ýõ4~¿ò*ç¥^™[09G‡vÑÔƒJ•‹5¶…Nl£“stê:ÍLÓé}t¦Bùßèì+tn§ò=ù·é©ß€¶í2 ô±Ö—Ò¦9ªúZM[#íNR]ß2Xm˪÷ \αS/©[öJ^«·±ˆ/¡j•(P^¡ƒÏP5×Ý Ÿ¤#µtìv:¾J™WåwÚÉ·©ëŸsJ~›•Óö2*y:^]w\[NeN¶3°^•M~J%_Æig~žN>µ¼Ù¯WÎáM}H‡ iß5ªëB¢×éÑRªç7éý=ÏMòÅ~KÉwÊY@+ãYC!hÂʾšÑ¡h;WR5oË<¡º^x¨Ú× •<§©^‚6ó<°TÏ-tç*Þ»h`ÿ´‚ö”.¯Ë³¸•­ ÊsTÖ‰·ôÀ"Í~rÊ\Rg`ž¨ä{£Å´©dYó1eámY _·0°ï+ùHÞEhO$èì=túˆòYe>Íüz–N®¦a:º‘ê}¼¡ˆr¯²’ꜢZßF{7ЮZÚQIÕóHàù]Ï+Ö}@:·Ö#9ë#Оš£'[”йw”IåctöåóÊ_¤RW³GYH§GQ>I3ÿ—r¿òS÷œáŸ7vщZ:þ»¡Ü@GkèÈ›Tæ·å|„—ÓÔ •¾ÚœÐä^åvªë”uÌ@„öǨœÛz×ßs´s •>H¯ž¯ ÏS[·P?Ù´‚ºy ÎÃõ´¶€V•RÙ'òªùw6ûköš/FhX¹ÃR™Ï嬤uùTúà¼Ñy*s\¼½k •ü¯î'ïƒzÝj%/ÞÛ³žvm¦¨Îõ ä5FhK)Õç"G©Ì—ó^¢R×ç•}lï+–~/ÍãÊlùzÎW*¨Î»‘>"¯î—ú(¯äõx¥îÍÛ­ì]MûÎÑø :øMSÏÓáMtô~*ý¥ÞñÛéÔ&šù6´¯g¨<{Ÿ¡ÆÍ9vÖ–PùœxÛZ©ÔQz;WÐîqhGÊ8^R–*W>JSQªú(lâ °T×Õèçå®z*ç£ÞŽTÖ‹Þ¶-Töã¼®oâV¾liY„J‡ÓH˜×K¹sª–ëPŸ£ÛÄUÚ_K[+éþ*ªò‡ù¾ƒ¥ÐNÜOS•Ô=G;[®Rw®ìæŠ4fhû5hŸ+€zަh ýyTòô|E³Sùj^ ñwiâ\¥Ì£ÉÇ”j3y‘¦j”ÓáZ:2IǤ7hæ=:½DgFYMçþ=ù´3Ûhæ:q꺫Ô•ù;ÞÎ"Ú,Ÿ¯©=«ÜNG¶*¢Ã ʈr+•ü|¯äÆxckhÇ9åÕû*’GxKùÊWâÊ"º3J³MÞ@§ô±8­ÔxãW¨ÎsïYA_§¯ÊÏß¡»äÿ×ù2~¾­¥ÊèÁªë¢týqÛEÚ³š&ߥéûi ¿ò-:½ò¤nÏ»Juî·ì{uÉKª÷q6*]N™óÅE*ýƒ^=7L«ósöÑš(Õ}× ETú¥¼Ç+ht•r ô\ =´{ äJÄiü!e5•y–9¯ÑD†–SÉðêœû¡9šª¢r=óÊú<çgt$EG[©>g¯§“ÛéTöc2ýÊ“tæût®úóà¿¡¦á´§»è«éÉÿ®ÜDg/Ñ™'©Üo½ƒOQ9wÏY@ã÷ЮµTÏ—×õG®C Óihc–¶¬¢ Uô`\¤Ï-B#ûÈÞm†V†¨>÷iŒÁ@~ö\‰Óé÷”ßV~fféÔtrýy—¦ÏÒÔ¢²žê¾£ÀçÅYF{+Ä*ó²6]¤R'à­W¾²Dõº'ûñh^É£Roám:Oe_ÅÛ+uEƒÙý ;·›fþ‡òS:v•ŽŸ=J½Ï5Jõ¼>]ožêüÝþs´o=•ó$o·ü¾Úo(•V9Gu>`ómÚ¾¼2ÿ §ú< ÑÆ*e!m˜§uQ¥¡•Eô@=•ü)¯ÌEòî‰ÐW3Tç¼í\¢j˜ó$çS^µc²å¿·VçéœoÇéKV¹@«âT×»èÜ.éÛóêz¤–r¥Z7¶,-okH)?§]ž§Ûe}åówÏS=¯§‡˜ý›C²?¯êI}¾ôsx‡¯Ót{VÉôY¼GSWiò6*ýÌ^}þ%9.^=·âX­Y¢;évÍ7- /ÒoE²êýÅÚsôx”¶Å~"íÉÿDgV,ïT†êóÔ€ ttÅòß·¼CÓÁ+Ê©ÎÉmW©>gyV^9×ÎY Í—-}*Bõœ87¯ÛÙâ´Û,}&B;D#ÍŽ0TQW¦Ï·Ž–Ðh†6Åhsí§:Ï,y‰=¡|^W^£ÃyJKÇöÐÉgéÔG4sTùTçNŸ¢³ŸÎ•@Û|…ΦéÀ‹ÐÔ,B;UFõùÝ ¥ù6EÊ{•+h÷ªsŽZÌòê}=ïÃí{9e.aΫTæ/{åSÉåsšì¶oÎoÅ©î+ÔsÒ›iÇ%Ú½ƒö„hïzÚ·‚öo¤+•oSÙ‡ó¦Nþ/i{6S=ïVÕq™¯º·ˆ6Xªsé´2WË;ð„²Œ¦j©ÌGðN½Kgÿ'Ò&¦ÑVh²ËœœsÐÎ>D'·Ð¡ 4–¦ò\ëÕó¹¶/ÂÀ>EÛªûŽ’hêI:ü,´'~‘ެQªº„‘|šº›&]·º_w] ­ZQAõ¾qg’v¤©ÞŽD ™xHù\C§hæÿ„¶«Q¡.·üèRÖCaº/¢¬ 3´-LÄnîá4Xªž?óŸd mݬ,UR—åÝH£sTöS½R·—3Bõ>¸ª_ä”ïŽS½¯ýeͳñå})êëãÁ•ô°¥Gê©Ì¯÷ªþûÀõSÏÇN¾G¥?Ái§¯Ð‰r:Ú.>A†ésòúÕ$ûr)42'Æ{,­Ìɳƒ…4‘O¿j 9¡ýòç‘y½N3Õmæ"MÝE;¢Tå½Wçäêžô:EÕ§™ÝyTæ${; ¨žo!õû^=ÿhøc:ö(•Üoæ hÇÏÑáGh²•vÅèQj\ž7Lk¯(—èñz¦ÏC;¹ŽŽfhú}¥Ú•ÿ®W÷íèz©½´* Íw#ÐÎäÓÉÇiòšXC£g¡qsÉåùÑ{È@ór•y–ÞÞjÚ·áæê9d²oïZ }SºžUå<ú ƒ6ÓK'¡é’ÿŽ›çäLÖC+}ß·´¥þvšì×)ç7•; Ý“GÝs‡óà<Õs $oÛ+PVRÛ©ï Ò‡’ó:¸“J?«WŸÿ¾O'>¡™_§ÓwBch¤É+ó‡½#…0Ð×;~}”¯ RèÕu9ƒOÐ÷¨î‡h+£‡bÔõ9« uûõ/UÐmÈ|_¯žó­óç;ÎR•›c§¡Cù´;DÛcô€YÞjKeeÎ*ç¯^ùþ9Í—•ª_>wª×KíõTÏ™‰R9×ô?FGçèäehãòúû¯+{”1e©r Õû}e˜öÎ+w(·Ó®4V­¬R®¥Ñ«JyÞ?^FuÌ¡‹Ê8Õ9Úµaªë`¤Ñ[sŽê¾ZÝ êçì« Túæ½ÙËsΕº.AÍ—Öu VαsF )5Tç7躙ªº7NåÒûRAöçéýþ‰èè½Tï+ºy¾ÎƒùÐÔÊ÷±y ´ÑµÐÔÓÖz:ñ<Ú y¿ñÛ©Üo½û– éÉÐþ3Ðfþ•ºT¯ÎWʾ^óCõ|!ù¾yï…vtË÷ox/ÕÏùÉ0, úúÕÛJ»¯Q]Ÿ's›¼>„*ú\š•!ªs f¨ëÚ¢/™¬»å¯äºÞ:çYzløAªû t¿ÛZͧ.ßÜ©s ~[Y™GõºÊÙ~†vEiâ#:|Û íÌŸÐä<ýÖböŸ/ ÑQ©ïx¥ššë4¦í Tr}½zn@"Fåóë~’¦#TÍÍ3c²o?qš¡Ó?-NC{úgéÜ*ªóLã4±žÊ¼fïÎ4Í1h›Zic”f¿n·VæAxÕÜŠÀ÷ô·"Ë›Ývι'¾¼–¨®¯>Z¨\¢zŽ£VúB¼Ÿc÷Õ¹c=sT÷¡Ç7þÍ”þÊ[ÛN‡ÎÑô[ÊsÊ•WèØ%*ý¹97ÓÉ{èÔåEªryMæ%er@™ ÓÊ¿„ö“ôt>ÿ2=ùGôÄT¾BçèìV:óšù×t²B)u’ßæMo nƙȃ&ûvþõóžÉúÚ"ÈuWåÙß§“+iß•ùÇNÈõšü˜ês¥‹ÔG8å|ÎivGé¡Bª×…íW©ªk°©hó:*spùbº_MÍi Ì‘p¹™yßtŸÎl M?Ku_|¬‘ê9zÿEæ¿;ílMîZ^}ÎܾEYFk•rþä4uWh¢žüÇÐf_¶×T‡é±BÚ²žŽ\¢£Í4ó0´2ßÞ[“þÉœÝGušëOs¦¶R}Μ(£Gå{£×ËíÚAå>ïÕud훩êoÌ»qó¨Ý|j9·ñþ`œ棔љGèô¿Q¾¤ü)šVþ"•º ï¤rbžŽÜPn¤ÃkèP# äU,ÐvÚ»‰v·*C´c-•ïÎ|Ú¡ú2ç÷#tŸ¡5Ô&ÏÒΫôPš®4uùJÎÔýÐ7(k”/Ò¡vªû´óTêP¼+ikŒ¶\¤Íg”ãôpFYBeNˆ7;~1gä­ÎвtçœÞK£Ê*óSœÜšB75p?VuJ¦£Úå±2hö–.«­Ñ— Ù¢q©ñý ²¿ûtÚ¶ÍË«ó0T_‡‘<ó|AVרÚHu¾ÐÀ6h%_!çUå*çÞ=aº[©çó”Fh¶=ÔköÚPí~Î}L§ÖQ]ÇÔr‰Ö•R•û¨Ÿ©X¢/ÉëܹHõyãástàNåjš¼]y·Ò(7}Ž*û`9ßW~@eßÕ›+Ë•{•QeŸò*ÙCGW+òIe5‹|Ž'éøýJu~3µZ9I3w)+éô'töÊ}b {ƒžøSzrŒžú š=†ÉÙ^V+9*^·oáŒ*§Þ§ÒGâ?K%ÿÞi:¯R5ÏÇžÙ¦ü'ô³Ê/ÓÓç•Ñ7þò§é|›ò5åo)不N|ŽÊŸW†èÉ7•ßTþ=1¥üûWÊ_¤³Qå‹tæ•›éô ªóÀ3ß¡S†N¼OÇ?£z^ÀØÃt4MÓÐáÕóý¤_7çÊåMDè@)í¿L»6*×Q™?ëÕû Gè¡%Z¥üå ÌÑ•¾+§XO‡£4y™ªsV;°–êzξrª×ÇÍUTò2¼uåt_†ê|OmIhYÍ®(=diSœvXÚUI{—è ¥Ãã0ûææI:¬¤ß±´Ì@“¢R¯rKu.ô±8öPéwö¶Ä©ä_{e¾7ž zþèäX'ÄwQ©ô¶XåFª¿/Ù_›7Ðÿ }µ€.R–Q™;ãn§Mhsž²Š¶ÎÓÎëT÷]K~ª7µ‘ŽÓ¹ï@;vF¹™J7•¡C3t0_y7íÛD{¶Ó®-Ê2ÚÒHݺ:Z¢ÜHuëñ|Ú¦²nðºgƒ4ÑG>¡’ÇíuýÙ·Ùç1Ú¡óTêÂs.Q=ç,{Yñ—»åì¸Au¿µ¯;S£txÍÔÒ™I:wByÚ¹×èôG4󔦶/¯û}9“–ê¼ù¾qÚyñžY^[.õa^é{õV,Ò‘vªó›¿a` @ú.¼ƒ«èØhS¥TÏ1Pý)滆îVêçß–ÚSBe>¬WÏ£j§ç×ktt†ŽRõ9µáPVuîeO¶Ð¹¯ü ͬ§“Û¨ëqêüóávš¬¦ƒ3Tï;t_¤mÊÖ%zì •9§ÞÚ"Z§•–º­ô;Í/)¿­Ô×­ª"*çñÞúEªç±7¯¡±óÐNl¥ú÷”x—v–A³#DäÓçMÖƒQªæøö}Ô¼!Û*ßY—çŒA󤼎Hu}!~Þ¼|N“7è@ŒÆK¨îßÕ9´EÊu´cÍòêú€£áå=˜Gõ|Æ ³¼j.ÍŽ»ð细©ÞOyY)û ÞWôA®ÛíIÚ½ŠJN°ÓÎý&íZ¤+ ‘9d^ÙŸsöq§ éøzšþTy\R&•†Æo£z^uW!m- G•G ©>'6Ísa*s­¼’·îm]€v¾‘άSÞ§üGÊ¿£ü):ý_•ÿQyQùŽR×KŸT¦éäÝtbŽŽ_SªúÝÔc4ù|Xy'ML*Çiïf*뢜㴭Šê9‘ÚæÕËÛ¡:_ë;ôWBÐÈþ­·²‚ŒÓ#–F˨žW/ómvÒб;éÈz*çÁÞþ;G›Æ¡qó¨Gµõ´«Z¹Dã«iâ2š¤é.:– º¯%³†îÑÑ+Ê*s×ìHDYDÓ£tøÊ-,¦Cï+¤ÉóT_oõ|Kó2ð•z5ošê}Z]/«s6zª¨;vê9Í×”©œ¿xu~}ëÚ²6Çéñ‹T?gò:Š©Ë±uîV¾dèsÔdãwrnPé·2ûË©äîx£ã´}-´s tö¨òŸÒ™¯Ðé«4ó;J57LÏ;Ÿx“ޝ¤ºßÁ9ZEG¤éGi ^| Õë^©÷¾OÛéÀ4^Oõç;v‘ºº6g[”¶æÑã󴮈Fò¨Ì)ðêú­¯Yh\]³³©ö_zWBóuCŸŒP½Îß»”ý÷×(í/§}[hwí:Gõºªqž§ÒÏâÔs!lò.¿H]¤SrÛ¼úsЬl S™à=0O³Ç)9õ¼™Cï=XíÉ/Pýœ˜ùÚòßPþ˜¶P“Ý£‡Òô@œî[¤Õú½øMýÝ¥ ¬Û^ Q[§ÏÁÕ¼;pö)×Ñ®‹´)BÕþ‹î7 Ì+y9mfÕ9qèÈ»th3íÏо$ äã*³ËV¯©® µ+i<ŸªºBÛ;§Ì(£0pßV õüÓ] íÉùÍüus Ý<êÖ0uõòOE¨;vó.šåùXõÓÙám´õÍü+eŒ¦ï^Þá0Mm£É¨Ì“ñêy‰ñÕs}ÿ¿¬9T”5^ íÉÿAçæèÌÿN]¾¬3¡ê¹3Ð÷:ûí¿Aû*hO=íW³´cmÝH£khM†ª~c"TúF½‡KiÛuh—÷)ûãÿú¾óU:¢4Ê•TÎy½»”„ q9BÎ]ÔõÇ8ë‹i`ýoilœª¾O;òM¯UÞASth-·SW÷ï”üX¯ž›)ë §yÊ(-Õy̯eèþ"ªûlë ©äHx›WÒ¶Õ´s‘öSÙÇrÚØªçÅ7o¦ú9°jšÊ%ºßˆ1z €ÖåÓèÚ|žºy€:¯ÝÝ/{¯Q™·åMÍÐy¿ç֋ߥ'wÐùóÐNtÑÑ$Õ¹:æ…(ZV[Gõ¾Ÿ>_øJšßPªç¶@®mc=•ù:ÞŽ<*÷§MUÒäz:¸ƒJ>‰Wê:½¹ÖKtß}uéæÊù‰÷W#Ð<«|9N÷ÐÚm(¦GÓÔÍ=qêü`=çVí÷›vC³_¯œå´¯š&î¥C†ê¹6Ã:zŸ¤Sù4s/n¡³tn'´ó%4û²rÎü™òMe7¾¡ÔçÚ¿P¾«üÍü®²IyDY®ü§tj”ŽoQ®¡#gèðµåÕÏ5ÔÍ}pv,)ç©›³ël•}ÕæLÖh=§n~‹³1Më,Õu÷UJ§è|9J+Ѝô'ÒöÊç«wœöœWŽÓîÚUN%_Ã+9ãÞve´ˆ,QæÓý%ôõ°²”êûR¶}'çf˜VS¢ SG©­Í§G¢TŸ?Çzho™r˲ÚÁ4•×éÔóLêQhO&èÜ£³ŸÒ™Mtêm:þ MvQ½>îÙ@»ä¹¯µ–êsíýÊhžPJþ¼ÓJþ«Wžß¼­W©Ì籆ªÏ›9~ŽF‹é`v¡cF·JY©¬ Ç©®‹¬¹ôMy;VQÉ tÚÄ(˜§ª¾ésŸdÏÛ“íRôô3tö eþ9:™¡º_.°Ž;C“ÏÐÁ½T÷ÉœoW)•õ¦·ím¾D¥ÆiÜ~¡óYíáªçQ¨ë¦‘\oà:V¨ŒQ=çJÏu‘ùÖÞÖÆVÑÎVšXEõú)y–ºco¥s\âk”«¨äž9óªgh×fš~Ú™ÕTÏßJ?ÍÁbh;iör˜óÕ8ÔyƒæUeóYª¯zþOâGt0LeNˆw¸‹Ž|F'.ÒÌ¿…v~5=yAùËôÄוÓÙ :óËtú‡Ê3TïkÊ\-ïÄÝtü}:¶—ŽZ*yÞ¡e˜JN{Î0ø•:¯ÞíÚ@[nÐú"ª×ùåúëÔ„•ºop_=\E©®£Ž…VæX8ý…gäçg—q!³Wþz_iVW§zHö-vÒæ%e„VU@Ó–¤í%TòL½©f*ùoÞÉQªç+ ýˆfc›½¹ W¡M?I¥ÞÊiäyÝÛ·‘öo§ƒ%ÐŽ§hê=šˆP—‡èTëãæý¹ù™ÿ@ÇQÿ}Sõ™Ãw+WS]œ|Ÿ®¥.‡Æ)û6^YgXw¾åΡ%GçÛÛìÇÑkܾÛ'{ŸŽÞAG¢éiª„ön¤±z*ý¸^—«ëÔׇãòÁ¯/ÑÃÊæõ´};ÕÏ ñ´’7ìÕýB™k´ë:-Ó¹;éì3tæ!:ý(Í„èTÝ©¼—WÐä§´'B›wPÝß«ó^ S=ïE¥Þo8PFQ}þÜ´†¶UÓîzªòžLâvhçþé£Ó‹f:èd­UÖ( ©{u&ßZÞißj‹ÐæôX­?GwUP©›ðùØ«•n®”ó9K”Ó† z\)ûlÞÎU´oM„¨ä{‡o‡vú±åºsy'«¨ž‹Ô±¶dÿ\¶A®‡‡Ê”ÅÊ•´¦žÊï%0—¡º€Ê¼2¯®‹–>ßÏâÖÿÅTÍ;×y¾öõ8ýnêÿù9„ú\ñ˜¡íQ*}ÓNûÆWi¿¡›#Y_+‚æ¥Eº«”ÖD©žÿÒqÆJ©Îmê.¤=–æ§æÑÁ‡¨žß®sˆ+éÈ8}D§’Óî:O3:³…ÎM)߆|݃tnFùŒòçèôåïÑÌ6å½tl=þèæ&v*+èÀ5å‡4¦ý›h÷ZÚVA×ÓÃiÝ=pŽVÄ¡)‹Ð—n®Ûÿñû@‹YÒTç–»||Éeur¼ç •ôd ´mÅTr=¼õ–ªýmûZêo_UP¼H”Ò¦uT×èùƒm«h`ÎÌÚ½ŽÊo˜ÆïTÞ­”ÿn¼R¹@¦‰{¨š+hOS½ï£òhç´#+•éh”Êþ‰wb Íü”òéômÊ¥\€öÔ¦'þ'•ëŸWÏÁ›þ>ÝFuâÐvšxšêùJ=[hgm‰Ð#ÅÔå'; B0ÿUwZ¹o{õ9u]°/W@ó CwæQýü#ý‰9¨úÚéçi¦˜Ž}@ŸÐØ&Ú¾‘¶Ó@_ÍzÚ†æå=h©œ?{'žý‰ Ôù©¾×@žø+KÐüf„ê¾KiK ­¦½g¨äÞyޥɧiJöC†Ÿ éI:z‘Nœ§™‡¨ÔS_W¹•=NõsÂ@+Õç }–Æ6Ó¦$Õu¦G+¨Î#Ðõ—*GÙÖ)õyÌóî.¥;‹¨Î ú²]VS¡{éÁBÚ£…TŸ'Q~JGßú©ƒòêú/†  Çie†î_¢’£æíÐÁ2:”¢²ïèչã÷Q5ŸÕŒ_¢“Q™?è´GJ¨ô!xËB0“îú2œÒ—åmk¤z~GïšeÍåÎGé¶–õ÷¤ÔÙö­¤»²ÿÝ–ëЦ·ÐÄ1Úw™Êüï–47¨Ì)óöÒÄöeõ}"þ¹5m²Šªùéf«¥¯çQ™ámIRé#õv\¦2ÞÛ»Žê?¯äUzõs¥Îï xƒßKÇò©ä]y%?Ë+󨼳Óï,Ò}q8Ïëk…¦µZWïp+å÷ìÓ—*h¶íÆkžQVG©ôíz›¯ÓÎZåï¡Ò×âMåÑ‘uTå.™©R¾¯cåTÏóêYEõ}¶cÕ}Ñz®•äÕy÷TЭhªKiM>­‹P©W÷Jߥ·iU×)Ó¾švÆÅs´÷"´£ÏSÕkvZSEã—¡~™¦ò©~ýµ4 yPçU˜ïªÖÏvp?C;¨êg³J 9§MrŽ<ýŠrÍü•òi¥Ú—šzöæN¦”Oщϔo)wÒñ”{éX’ê<‡‘i`þØzšÚ@‡¢4ùC:¸@=4~ê>°ž •ü_ïÑëôÕý®¥Ù·Ù¨ü¶¥{Bt_•>(ïÑ+T>_^?7UŒÒ®Tú½—è`ºú®–ÞÜŽK´m޶FhËjÚ4G£µôHŒ¾¦/Ðìÿí ¬__4ÔçMU,o¤€êuºë—.oëÚRH›ª¨ÔÿyK¨~ý«hM9•º2o o@Y‚f¥Òå :eéÕçᯖÞ\™êÕs¤öÇiíç¨ÏÇŽ,-¯ÎAh¾F[,•9åÞö0íX¡<s'2wRéOðŽo¥Ãå4õ xˆÊܯ¬¼Ý+h[ mÞN£×hc1Õõ›µ%t¿¡ús(çbNóUKu]çá zlÚžbZQÍØE:ÞJ§z`𺫔ý ¯|Žr^ rn›³BYª\O£KT_'ŽÄa w\«Ï'õÜòqZ¦UJ×ä”þZ¯šçk$Ù{$Ÿ6(3Ê+4Gú³B9O*ÓT¯d¾©éVöÈë•u¯7µJ)û&#R÷59ê}¨_Ⱦ-¹º$׿¥û¸œz^ünå+´^)×og=•œuo÷Ú?ÿ9.P™§îM4(•'iê:²@G+è¸2¢Ó¯B;ZOã7¨ÞWPy¿æp´cÒÁÇè‘zhdŸÏi'¥£ TꂼrNìM\WÞK{-í®¤Ú\HÆè¡r*s¿½•ôû‹Tr½œ&û6å|M©ŸôFÙÏñ67Ò˜¡W¨þ¼êÝ7ÐÄJ:x•õ¶wø2y’Êþ€wü*}ÔÞÌ/C{r?9©,£Ó5TçEê}ÑMŸ£C54ù±2Nß§‰;”!:ÐEãE´¯–¾´yô.ò_§óÒS×éɯҹ}tæ#å?¥Ó[hæ¿)WÐñÕó¢Fê©î7MWž¡zÿ§7N[Ò4Ÿ”Sç©õ‰É¶«çÔytnþ¡›‡xd‘Êy…w˜îº¹æùº;ê¾¢ú( ô_§¡•< §Ù¾H#QhOÿÍ(£Êzz¤œÖg¨>úº¥ÃçiÓ*ªóžãôH•¾v§‰ÎÑö*}~Þø :™ ²îrZÉEó>»HõëWõk~ß¼æ"m¯å}?]OßHÑ“'艻èl5ÍLÑÉgèÄ’²fyG÷БM}L“ÔÕÛ9u‚^‡é9 ± Êm/£-=GTÑšÕù;:¿±¦ŒêÏÖ$´ékÊa`î§xžÒû€ÇèÑrz žF2TÎq¼º^W¯¿õ÷]ÖÝÎÏ­ïx~‘îÉ£z.¸ÞOØJ‡ÏÑÑqh•ÓÆE*ëFoÃ’²œJ~·¦ˆFâ0sÚ´@eïm9Ce¿Õ«óP¥ŸÂ«ûõ{6Òþ|šx‡ªº3Ò@'öÐÌ· •çdïÑbªöì~ùþëºùHý¾&¬¬ SéËñʾ¾·köl¢:'Nõò¹÷_¦í•s¯îï C›ù-:TB“רäßyëJ©Î/s}D/ѯY˜¥òŸíô_Ñ©¨ž×5rîæVS}^×-÷&÷œR@u¿çÑB*û=9 •|ïØ©çóé}°½00—!»,ð9'ôNÝA§ÿ~öŸŸýÕ¹æò\ä}ÙRu}7#ôÕ"z¨žF#4ÐRB{Ót ¦¨=}'OÐSëè‰:óçtº‚êyyttM¼Mu~ªäÐø<×欫 Ò_è´§ŽÒ“?Oç~ΖÑéÿ¤ì¦™t¢Ê>—7Gõü#—s£Ïÿ%ÏÌ&ž¥}UTúX¼ºïOÏ ®MÓ7w[æa¼¢¯UPS'ÏÞæbÚYE{ z’êÜ’ø{´«RY¦, .×ÙP¤,¤µyTÖ)^ÕÏès–œÙ¯Û_¿ŸJ½_ìò»¼qêêœ:ÿæhm54þ0ÜJ‡ÖÐÔÃt´ˆf^„vn £3iæ¿Ð©t¼€J‡WÏ·”?‡7^J».Pé“÷« Ò—ä}>ÍvK_+ ú¼åWCôé ô¯ r®èÕû§=sT×k'J¡í©¦-eT¾ïÞ-òº]޾ûkç¶¥¡!Z§Òî­Ë£‡Ë©<7{›VR]÷Üq…vn }1:PMkéPMÕQ™?äyžªõ˜‘:\ïx äW~ÚÓѓйmJùžÎ|›NÓÑ•ÐáM4õºF“=Töç½ýWilJ~Ž÷¸¡*?PŸ{˜òÕ¹=Í%Ðþàgèé£|JùwémÊ|zòOè‰ïÓÙ*÷*Μ Ó_¡S}Êå=TÖ³Þñ+ éRå]t¸FY@Sr=rs»œÉèÀ]´‰ö®ZÞ®|Ú¾¸¼Í=ôpœê¹;, ÌlT¶/«Í>Þä,¦yù4Aíø:¶Ž¦ÖR=§DÎ鼇ÓTrøœæ›–ºýŠ ¥ô—š‹Trx¼’é´{´òþÌÿÝN3·ÓÑéÈI:ÜLcE´c5Õs®¤îÁ{¨‚êõsö81çž(í°Ð¦î¦’ÿ°FÞŸýiÄP©GñVDè·,- A³¯€6”RÉ÷ÆvÐþb¿ƒ&>¡ºNdd”Ž} û¸ÃoÓÁ:ª÷Û[3TŸ{4Dé+Д„ène¡2Í+?Ç+Ÿ;o|óÍ|ž­‚n>¢Wåu˜ï*ùü9?¡C»¨Ì5wÚP·oê{›Ž¬¥CëiéÌþ:¼f»RÖE^Éïó6WPý¾÷Çib†ªyª&=CÇ–èäÇPç}šÁ‹td{^¹GyÚ¿C3éÐi:ð$Ó=q¨ç§Û݆þ‹ ÔgvG¡,§ñZªç‘÷6RýœÐOõü¼¶MôxÝ[J_.€œÇýóôh”Ê}8`o2IÛèP-Mï¢c­t2 í^Pþ]zz@ù%úÆ?¢óåôÔô俦'ªéÜ W®£3ÿŒêüË©“tòn˜[Ó¬,R®¦£o+ÏÑôz:t‰&'éà#Êõ4ñ8ÿˆö§½›i§¡1ÚRIõuWú¯¼õשÎíÚ½DeßSk¾©t}>Î*jg†©ÌYòJ.š7¹–¶Ÿ£ÑEzp~3D¡ý5=¯Vò¼*Ëï[©zˆ@Ÿ¿Îu¯IS]×,9`^=·Ë[Fä>3p/MJ}zúÇtâQ:•­—6™Bå·ð4þåïR™+–³Vùtöç•uÊì~µ™»‡ž+ß§'Û”ŸÐSÿÚ™54sŠN6ÒñOèX-zKù8MžSÞEe¾™wàiêú•¼E´k%m-¡ó´FùBês»@ÁÌèæ ¡µÐf¨Û¯pê>?Ù7ôfhLž'}Û›iSšFWÒïhzÖR·ÎH•A+y¨Þ0í®VîPn¡ÕTúù¼uKTŸSëÜ1µßh_É£Ï-ÒïZ¢!j´î¼Ã©ûäÜÜw§®ÿ>PA¥ÿ5ç<­«¢Òÿ䕹^=OLrrÓØFÚ#×»þT¯èþÅ@F ¸ž¶z4B_SÊù€Ó”‡éžº¿žJÿ»Wž»½’ßím]IÛóiçQµï˜?’þ€ŽßK3]tf´‡K©Ôåy¥ŽÁiv-ÒÃÅTr®¼­Wh`þB#Ý +•W©ôûxõ~ïÀg4±U¦ò|ëM?MG¶ÒÑ4ÛJÇU~J'KéÔYšù¶òÏèL˜Î¶+ÿŠÎ-ÐSôäVÈ/NQÉ9ôÆŸ¢²/ïÞ ê\-ПT^@[Æ•ÚÚHÏÐ!mtÕóTtîDsÕóÃeýâíjTf¨žÛ8ÐNçiöñâÿæó45N‡kéÈ"•õ£wü6*s¸ržQÊu*S®<¢|›žƒ…Î=HOügzê7èüïÒ7úéé}Ê4 ôéù¢G¨ÌóõVd ž×èKi[M%×Ç+ϹÞÑ©ÎÙ›„6û™sî)åOÓÙ”²\ùO©®§™ù ͼC'ÏÒ‰0˜Žn§ºžjè#š|‘&>¡ 4~Õ}åmaªÏgdë}ÕÒ‹4û˜æ5ß ÓH9•¾3o{œª}r+ÏÞ¶íTׇE+©Ì÷¾‡Æí'8«,=\BU?›é*§ñ´ дÏÑm*ýhÞ¾RšHÑäÝTò$½é´£g©ÎCÓý„ÑuTÍųÏEh¶MÇk¶*û9fG„V.PéßñêýÜcrý‰Ei ®óGTî÷ÞáÇiÚR©òŽfë†ÌX¼‹f6Òé‹Ð¶¯R®¤z\×+kë é¾ Í~´± í¨¢º¾²õ•}w¯žZ[EõœŒìãª×lÐ=E´µæÀ¿Lý¾»£YÕy¬•÷+g%=5IOü½ŸN_Vþ3:õ(Õõb#Ûiú ~ЦÖßÜä4£ýÕT绘¥Rÿ⾃N=HeŽ¡w¨žöm¥º¾ªv šÅÐί£'ëèìÒ™o*¿F§)éÔ6e˜Žö)Ÿ¤Ãï)wÑÁf§±í´iu×aw]Öó:k is=´³1ªëÆ>R¾¨Ü¡|JYJ‡jiòy*u Þ¶júy9û,•|¯‰ÀÀ|:•ïbÖÞÜäÃÊwè«×10pN“ùXEÇ·Ó±O”):Ú³¼#“ÊuT_‡ÒOR™«æMÍÑ¡Gir,¥‰ËÊÛéÀ(¤¬¦º@ÏIé>Oõ<±öõT×1í.¢//B³½€ºPgÍJªæꊎ–P]'Ôsƒ$hrZ9ïòÊzÊi^Qw¡ó@:BÐJn‹W¯S;©žÓ¢ûÏ]¡zAêj½ÏGè¯S³+CŸ£’Oéí> óÓ†Ÿ¤ræÝQF¨º>ýîRšç hUˆÖ¯¤2çÕÛÒCeåí̧rŸöÆ/P™[êM=KÓ©äßJ{pžêë]:ŸßF¹¦ï+cÊtÐД´»–¶Ô++²Êy W×O6TÑú%èó-¤ÕêòE^ΣêûmóBм\J%_ÏÛ¬µT×)vo¤}ëéð ´ÉiÛ<4íK4¾@·Ñä*åZ*÷Iïô†öhAV öŸlc•õ¾Ó´o¦ÊîbªÏ‡uŽüPÙDÇ?£º®~úOèÜzzj+}ãW•/B;¹“&Ëhâ4ÕóÙd¾¯·½žJ=£7º]YFݼç«,Ⱥ7L%Üi*Šèþ¥¬zŽF]šêënG’ê:K]?¡÷)•¢\/åz•Sê”Üumè~šXOÛ®Suž8—ii…¶smŽR9ïqšyÔ­çœQKu­–¶ÏÓÞtà•s ¯œßxÕuȌƕÙçQ3sÇÿßÿj'#T÷±èFÙgô>¦z* …´_¾¿j.‡í5ÐÄéà´“ëéÄe²”Žg¨Ô?{G¡ég•wÓÀ{}ΙQf×ù:_U÷ ÜFeŸÖ«ócyTîŸÞæ=VEݾµó{a8Ü_N¦©ô?z;×@;µ ¼—î\¤R¿pèmªëCbÕ´)DWÒ†=œ¡ÒTò<½ÛCô«hܼk§›îL>KuÝóX†Ž?®|‡Nl¢ª.ÚžØJ3_QÞI§ M?¡|ˆ¦zhb”ŸVennöíõòÃ-R™óäuýu®ß®+¢,¡.Àå /oç*š˜§É©®Ïwóؼ]t¤’ŽoV–Ó©'èô]tæYåŸÑÙKO¦ =}¾ñOèÉ?VQ6,ïÜ7•[éÌå_Щ;éÄÆ[øÕyŒCnÝý|†J®©Wör&”%´¿ˆö†hÏÚ5Oå¾ïm/ ò<P?ÎÍ2TÏ驊Ðï… ù¶¡:¯ê`Õ¹µ2OÒiO^§ÓK´ÿ,]‚æñÔï“‘ù;N›ºö­¡=y´¶î)…œ{WÏÛ_VÛ}êç}=kÚH–ÑHšÄ :ÔmO)m[ ÇKiMœf—;9UO ïÆ­_E›< u<ÉÏèT;´3ôõ¼›j¶† ¸—J¿ ÷•4種#9ÐN{òGÊ>ªsøÓkèÐyšøöÅi×Ú²™6Ä©šƒhÜï˹gZ7wÂYµM6ŽðÖêõ·ËKtî+‚öÄ:|•óï¡Rh~)mrÕýôÍ+i´–Ó—"TÍù2áU9!#‹Trß¼ÏR™_èM¿MÇÖC;9NG‹©®O|Lõ}©-Ÿê÷ã…šý5åúŸ¾¡Í‹TõIÛÌY:’G»/Óöµ´-FÕúÂÏ訧*÷Ⱦñ%zâk4³›Ž&éðóTÎ-¼ñ­TÏ%Óshôþaöexó÷/B{æçéÉš)PÞC§.*Ÿ¥ã7”šZ£¼‡É:ZòQsn É+4¾Gy7í- Ñ3TÏ»/7Ð|‡Úù ôÔÛÊGéì]tæ!*ÏóÞÌ/Щtâ]:zJ©WÏå•üۜЎ T÷QI]®3˜×ËýiëräõEt÷"Í.¯¼|zWïèêð«ôäGʈòQ:7«|‚J¿··¥Šê¹eõa*ó,¼a õÛ‚FêÖ6óuªûsš«¡«5û˨äÞžŸdn–Wr´½£1:~;Õ×Õ¡» }Œ¦éÐT¯ƒ´ ùÔå4ïŒÀÀ|ÕŽM´·Z9ñ¶ÆhôšÌÐÁ;©ì›yå|,ç]´·˜®»Êèzªçê>÷=aªsï‹@³m‘êüV=oêøuhG«¨ä{{ʨª_6ò=ö&©ëspö[h£K´6Jw.Ðl¼FÎÁ9h\Ý¢³ÃÐ;hbަ.Á@n[ì<•9¦Þ¦ÕTïOì‹Ðм–öÔ—”ÿ€ž|SÙCg_ ÓI:µ¨Ì(»èЃÔío9{kiuœê>Y—së”þot#…a°ó:|¦>Tî¢CíÊ:åCtpˆ)«”O*ï§ñ*¡2÷ÖÛÛJ{ ílTÐæ‹Ôí9]î¦S×U½¦ÔußµTêD½jÞ{`ÞÂ1C£—©Ôé{u?l‡¬7Þ8Açþòïѱ”wÓÑ©ù î¡© t0¥ì¢=%´s5ÍþX¯^g›£†FÓОx‡¦V*C4ù x„Æ·ÐØUÚž¤-%Ë{¼6FhÕ-‰@ãúmœ•Ú‚¬‹i´G™ÉþwÿešøFhg‡éÌašù·TÎu½é­ÔÝŸœC;h2NÞ¤±•T÷½+¢õÔí—;%ÆiäþíR;:I‡•É‹Ë;p…6o¤úü?z]yYi•IåF¥z®‹æÓã–\IõÜõš•4RBwªŸ ï Aó[ú5KŸ‰Ð¯[º%D¿S@ËãÔís;›Ê©Î©k9G¥ŸÎÛ¦]IÚ»zyÖ/or;•çïpšŽVÒñë407ã˜×7¾žæ™=OÓ{éð[4ð\³•Ε«¨<ÿz¥¯ß«s:#T_¿õ¼­¦õT_¯ë®S9wðî2T>‡N“%çóaªæ.7çÞY£‡ª¨ìÛx©ô{›Ã´µŠvm ñh%Ê;þî£Ýk©ÎÒ¹-:o·õ,uù¹Î„…öø<},B³?&—?<˜½Ï›¡Ò¬n>ñô/‹Ò'6½á'T~®N]昹ìצæ©êÇÖ9>¦o‰Æï¤¾îXÚCež¦Wúþ¼“'éôC›,þ•ßkÛŠ¨š‡fÙÏc`^Á.ùûÙdzœ¯…é¾²”Ö„©®³¨/¥z?B÷K5/P»×³™ÜI“7èÐVš~œªK;ÙGÝ9›Sò1½ iU­ˆBÓzžv…öµ8-³ÐÝÿìѪçéf‡z_Èž¸Î•ÓÙ ù+å¿ Óו{hæ:¯žCy D«KéK Tæhx¿aéú ô?ëþÊóTåköŽÑxíi¥zN´<zë"T½~[HÍ×”¯.RyÞöF/)iËÚ·@û×ÒOi²‘Ê>’7½ŠŽ(%¿&g-ÿ˜N^¦™7éÌoÒÙ?ʪûÔâIX_ì g}%DwVÐ m˜¾X@u.­äTx=Í ‘ÿ%­Ìi÷¦¨Î/K|J»ÖÒ× èӚʌha Hçäèûì±%h[ÎÓCêôå¼Ê;QI#×iûÚ¹He®bÎË´´sïÓé?§cÏÒ¡8Õû¢Ý« ùv´²¯å­Ï£.w˹ßþ¿Øûûð8¯ë¾÷žªŒŠ¨¬‚:Œ‚*¬‚*¬‚(ŒŠ(´ƒªŒ¼£Ð2ì0LÓ2,Ó2$Q$Ñ4DA$DAÔIÉ0ï3ƒ0x¼„dÆÝuø(¬Â:ˆ«¢ ë¢*«Ã£2 ŽÂÇQYõœë™µ÷ä»nJ®Óëüñ\Çÿ|.Ñ|3÷½ï½×ú-ªÎ)Íã–Ö•ÐÃq*÷eoô2íŒÓø!š¼…ö囹TÍW4ƒi*õ=^ésqÚ“1*óþrÓƒËиû‹ó…E*ûÿÞú|ÚXDå<ÈÛ|ê\|ûB14íÛ¡uy9Îiz Êy•Ïé [h߸HÏ,ÐSÿ’ÎÞM§þRy7Íü…ò×éćttž¦ß ƒUTçà$k¨äb{[‹¨ÞO;Ge}á4•aº«Úñ½Ô=·øç—%Z†¦:NÃôà"•~W¯ôÉz[×SÙçðö\¡ñGiö²—S×ë¶VÑÎK4¾–Ê|G#¹¥N;ÕNõ\,]W™¨¢z}¶?NuŽ»šSgߣ#ÙçÚ@½ÒÄ::(ëçD„êy§òœç•yÞfCun@öeÈy8Cõzf 5nþ»›ËÔ¿HûVSÙïñ™§¯X*õÈÎ@ªäöxu¿wš&>Gû?‚v¨,¡‰Zªó>zæi÷&Ú¦í¨Ô{yÝÜl§{¾uÖ†é7 4òåÕ瓇cTæ«yuߺôuy{¯Ód=M¿O'f¡}”f~“FB7ü>Íó†Ö•ÓãÚÌ­¢é½Ô½Ÿœ]›i§¼¦©ì÷y'#+;öô§¸‰ŽÌÒôö•ÕsEsF“TÏ øÍ>íX :ßA«ëÿë‹©ÎÑRÙ÷>k qûKNÙðêõ×ä5š^C“ÏÑYœÌЃٯǼÉZSíAj¤׫ßÇÝèé:[M§f¤ãTŸû]¤©k++ëyo¢Nù(í-¡±Yeî :.{YÎùujö+¥—a ßÏÕÏ:ãwÓÞõ4v‘Êœ:os5=žG_ZRÎCS·L•(#7¶E®Ã®ï£K^Ÿ®¸(×s™£í•9Û¦/[äsöÛá¬s¿O§o§™GÓçi´™é´ñ»¨ÌÊi•50ÿ7´ÚýeYÿàwéëkèìÃt`Ny+M}@“¥´³æUº~Cט) Ã;hj=MÃÁešùoОŒ¬löm”«ŸéÊP™ëxSõÜ‚“5ô%íô¤–êä‘<ªóÌc‹Ê¨r mP]7Ô$_÷«aªç¦„¡ýuªóå]_½ï³@;7GÏ|•žúßèLˆN_W~–NµÐÌ6åW”FùYe1ÜGÇÒ¡84´ í»@; m]Eu¿WS-=\B÷WQ×w½=æ¼WYª|ÜP—?àò¦Ž&'¨ÌÉÍY«¬ gol,E[3Yõ¼åh˜ÊÏÏ{êa OSÖu^©[ðê~«#sô•ýºÉúÕ04®ÏÍYŸ¦2_ÚÛ²Žv\£z~^:ýûºÎ[ï·o£ú:gd©w•óno“ömNQ]/(s%½’;àíYMã%4‘§ÜIõùÙP…ò<í¦ãw‹÷ˆEJy>ßM3ÏÓ©Jå÷éL´‰ü•íª ÑEª×'âôàÒʺü§Þ“9„75»<Ï©óŠUކwŸ¡Gb4ºaE­Ôµ:˃r¾O¬lêÁµS¿O'®ÑÑ$M÷ÒÁGiÿTïËêyxgWV×w6×ÓÈ5ª×™zn¥Ì™uš'ÃôiKuÜ~y]}ß°3Në¨ÌOövÖÐÞF*¯Ÿ7UmênªëfÛÎÓÕt…æh>8 íéû¨ªóúTǬÜIõ¼·‘:ªó¼+èÀ šº‡&OS}ÿïȧuÎ&)£R‡è­P]Ÿ§êWL6/ç·,­*¤RŸïm,TVÒ“J=W­9M£ÅÔïC‰É2h-=TFÝ:çö ¨›>PIå¼×ÛRN[»ibV©ê¥ú¥þ2•OÓh¦Ú¦%Èg‘ºeoìm] Í[éÉ4=R@TÐWBTÕØß¡¾Ý]a*ó½R—PÍ3Ç©®;隣znâAh#kèð—©›—팭£{ªVÔ<»H%—Ý+Ÿ[§­.†}³Y m¶Ý/çàzh¶[z¨€6ÌS=½yãŠêõ‹ù‚üw³ÜW…èþeº7Ÿêyß¿Dßø"ùešùm:ž¤zÎøÐû4‡s ÕçÚž<Úu‘vn¦±´­šºç„3•‚9K}—¨®“êZKõŸæÕTç|èë¼Ê/´RgêÍþµ^óH˜ºû‹³z‘X¢GCTåEšÖ1ªçJ& ”I:ðMßCG> £ÒñЉŸ@{ê³ÊŸ¡3+Õ¹Ǫ̀ž{7ýÊ;nìÔ+Êo*‹if@<¡ÔÏiªî`¼^YDÇ èðYš¾“êó×yto!4b+jÓ·S=Cõ#Z™gê•õ–÷ÕEZ§OYhž0Ô×Ý‹á*z¸˜6VQ9ÏóºóOglí^ ëÏè@¬§éwèhÞŠúœv/R¹®;Mu„¾ZLuýìá *¹l›òhç´Uòïëy1ɵt`ßßJ;ôíÑø›´s;ÕùÔ‡2TæÓyõýô…*úŒ…Æ?8ëb´éÕï/É{ñößOK m+¥Ñêæp9-Ñý 0Ÿ-¢R¯éí¹@%Ç›9¦|SyNý¢ò"•œÊœO*@gOÑ×ÿ´ã…45M“Ò>KÛ땨ìyݺÎYg¨Ú·2Ù¸z¯M†iK#UuÎfOœJ.³WÝïí„¡‘jz0F¥/ÆižÓª Ý_BC4¡ÍrŸèŽÐg 4Ñ|¿Bû? úÜFÎåöûïÓ¹ÿ@O÷Ñé5t*AÇ·Óô2M=F“Rý\¨—.£Ï[h@›}|ó™»èÝ3OõþL2CÛhŸ¬W¤ÎÀ[¢úü@æ_;u0nÞµ3²YYFe>°7ºL¥Ï%çFªçúµmRF•—h{±²‘vì EÊJeíÊ£’£ëMìRV+OÐeºœ7Ò‘Û uõa®^ìxÅßJ›¹…ŽÍÑá½Tæ™xûãôfç¡Ý4纖F·Ò&wVIOdè‘rªë¹ò¼æ•ú}¯ê{³OÇiöíï5O(]Εsÿ=xžÍîC˜cåTÖñ^É}ñêçy=¯.–¡ò\ííî¦ñsTrÒrfë½ÍÐ]4-׃±Û¡l£TדwDhk>=Ö@ëËéãqZf¡ÙAm]de%ÇÄ|í&6—ÐÄ´±4îúê¬/ ‡çiÓuªÏÚÏSÉ…ôæ1ÇèP5M?¤œ Ãetd3šNœ§“y4ó •õ¹W羪¢­K4ÞHÕÜ<36Mg~ŽžúU¥Ì¡Ÿ[«, §÷щ<:þ‘òªò å •ùPÞTˆÆ?¡Ý%´õ: äg’tLÖCÃQêòmΜ¥S¿K3NÇóèè6:¢ýû”µ4ùMôÒžÚm©>¯ŒuÓ¨Üg¢Tçøé\|=w=/­¯’ê<]=×LæÆ{õ9ŸÞw?Ô@Uÿ„iœ£'ÎÓ–|*ón¼Rnºb4^AcÊík ™÷¨\Gvän:°“öo ½å4–¦-…ôh„Ö.ÞX=o Œš =TBõsaûjå<Õû¾z>ÏÈý4¹…ö¬¥Ý—”«h§¡'J¡©ˆÓìöWN[‹ÓÁ$ \î¢sþ ÊBÚSMõ¼·®íÊÕ´#Jcë©¡ÍÐh¹2_¢-Whó5*u>Þº*èê¼µô€¼ÒàmcmʧõÙïÏH™Ÿƒ#óeœv JyÕÏKáªëˆ^ˆP¡sE³·Õœß±Ð„+iË6Ú^I;åÏÉ~·w´ÉÛ©<çz£ÛnìcšìöKNÉ'vÚçh¢Æb´)LuŽññ*zè<Í. rVCóbœÖA»§‚v/CS¦-QÝH¥¯Ï›¸CƒÖÍñ~@Û×B#ç;Þø´É}ÊÛ¨ÎKg÷BûýçéëèÜ—è™azzŒž:FgÿIЩ ÍüWå1:QLõ>óè[tästø^å-4}™Êœo_5íè¦z}ÑTJõœsý<¯ë¤¯ÏÈÓÜn²>¦:ß­þ •só›]íÀ&ªsE{6ÓvC›¶ÑÃ!h6+kó©äð{†è‘m™£úyi ÚÔsTד֕‰òçú±Rwî´’oìí¸De}à=.×ïÊèSÐl S½=û‡têÿPþ3å}ÊH' —÷Ãø-tì=:ü6í/¡óùÚs‰vÓŽ «W–PÝ÷ytžS½ŽÍ>æìÚH[dÿ)²© wÚe3M]T®£ýiå=4q ìcªçWé3ðvn¢úum=OõsÆ mˆ[R.УyT׃˹ÆM=¤”¹0^ÉMðª:ŽÓ½úr­ Ó=…´Ú¬ì®0}Nù¤¡¥aš}[ÜÔÏ/ÑÀüµoXúhˆ~ÛÒ§ÂT׉ìŠ+3T×½êõÛC_ŽSÿyŠÐW ©®—“õðMÝWH÷ÓúJªûPü:2B–R™ÓåmÚH›ÏQ97ȹJ”Wr%rÆ”WhÇkŒFŠé¥>ÑõC:·ê1C/ Í—BÔÍrîŒgm(V–¬¨½Jõ¼¼xšê¾Ÿ½ó4ûX³M.и¡¹{E´£š¶ÎÑæFªçàI_ªWê¼OT@Sf¨œwyÒ–zÚµžÆ£´¿‚ÝFGöA+s—¼ý)_µ²òùðJÈM•ïÃÛ\K%×BÛWѦbêúBº.Q]ÿç”.ïÚÙíÄ"í¯¡‰O¨››êì]Cåºçm¿Le.¼·©ŠJ½˜WÍ_ ÌÓsW³q}^óø"uý UKÔ÷ëˆRGë=¦”y¤^ýùê›§²¾tÚS[èlˆN·Ñ©¯Ñ‰‡èh–ýBÉ•ô¦~B“…´·Š Sµ~2’[ã=ºL£4qšöß¾¢vj–&Ç”®õNêú>of÷UÚV£,Wn¦­óôÄ=§ú¼i‡¡ÏWÀ@]”žç,}oÞöT×ïJ7ù:¼žŽ•Á@ÞS2LeÕ›9M“Ê£T?gõÒÞ*çú^=ÿC¯CkÃô•|ªsßõs™Û'uêœÓg ©®ß>i¯Î5Œ™&ºiò-:ÐmÏeZw—?íÔõ–Nýsh]~¾³¾r­“' Íü2ZK hÿ'4±Æ;iû"4Û©ï¢ûÓt*ާ£ Êùв”ÿ5+iªœ&£R×ìí¾¢¼¨¬¦Wiû:ÚºL›"´~ž¾fs˜ºu°Ë[k[Cå¹Ù›ý¶½z>©Ù¡'b4¦ýõtp ´§wÑÙ-4SBõüÙñJ:ZA}ï½tà4•¹×9«iò,M|HuŸ˜äz›khÓ*ó|¼Òé=PJU~žuõ³ÎrjvUÐWC´¾ˆJ³Wæù?ßg=‚z΢© Ñ–"Úai¼Zéïvš_§væ;t8Le´'C%gÇÛ²†ê|Á“ËTr2¼z¤j‘ªýQóûJÉWñ~Wy(MuŽtó"Õ9]õ´gßI“mÐ&ß„>E´2OÚ›xŸvm¢m1¥ºNɾWr]½º/LÍɵ³@ãèÉyúZ~ÖZCUž³¯9žý>M³|^§¾®üûÊÛhfBù4MÜBõó` Ï¼êûTû‚ò"ÕÏÃÒ/î­§¦N¾oÉësÙ_òêûÉ¡<*çî^éCñvÀÀ\DÕO`F/¯¨•I+õ»Þ¦‚•TQoz¬€êúC¥tO„>e ‘y9Ãtà=úpö×}_†ÛG­Óú _ ýÍt Ú3)GùËôôi:ûßéÔ_ÑÌ¿¢[èèT?wÍ+ï r}óFÝû"E#ôxšÊüto])ÍnKyMHn€:•HŒê¼Pùy:œ«xeáMž‡öLœžj¦’ké¿H‡ß¤©Ë´O^§¾ZÚ|…ÊÜJ¯ô‰9MµXk©<ÿ{[Ýþlˆæ+u}©®—>U¯œ7z;—©Ìðv×Ry¼Éwé@Mï £[èD¡²œfþ¡òtê y‰Îþ•ϹÓfoO^“¤3wÒÙýôT ´rŽ}3Í‹…4\¤ŒPwžàA‡££•TÕ£Ø^¥êÇ ‡•¥Ð24A9ôWh»¥º¾J¯ãZ¤O÷a»yíúºÚh¨>Wvç[Î#EôÕ2ú-ytßöËJ™çÕuJ2oË´Ígmï¦2ÇÁ›XOS =YL„i}†º¹ØÎÝùP×UÉöÊ|o_?¡L+Lõû¼ÿAå—•ò~×õXœÅYåMÝ¢\'n¢ƒÕ+;´•¦W+ka`^Hs4«¨Ê!Óç6µƒêúãÖ<èËÔõÅÝ«i×íUõSfK˜VVPy÷êydmVÉ¡ö¶ÁÀ>­îOÐû໫¨äm8Í ´>ê9o­qh§Ö¬lbBÙ«¼‹ö¤©~~ï8Gcå´í2ž¥®®Å©ûju³ô»ä,£z?æ%C Có’òh ´§ÃtìÿÍÆQx; h§šN^¢ãïR='¸ÉPÉpwNxíDÕùÅñÓÊ*syœfo˜&î§©ÍÐ S}Ÿ~ÚÐìr×kvªëJ_ S=·Sç ·o¦’‡áÕ}£r.ïí—þ˜¦¯þ­´SÐØ•¼"§Y‚ö`!4_ ÑCTÍG¶¯ZªŸÃ^ÓÀ~r„FBÔå°:ûçU}ø¦ÿ h_ÿ6ÍÒqÙ7tyRïíÕõ¨:§1Û£óTç ¸œ3§ª' ÌE—9MN;UHÓ÷ÓõÔÍtž´t×<4å!z¤‚ʼ;o´Jii,Ÿv\ ]•Tr2¼’'vSÕ\R“š¥CïБf:þ•óQg`Þ†ËuêëÕwÃБõéÉ•¹•ÞNùýºUÏÛ“ó{oú*ý¸ÞÌf*ç©NëöOM[iä, äêÇ£:gUëÎuœz®„ôwx]€êWÌåvçDR_çmÒÅTõA™ß ÑßÕ†©ä{çQýü¨Mœ§êzhú#tà>ååy:dhz­2FGwÓñ­tb;ü²ò2ÍlUºÏ]’NµÒé?†ö»!h¾¨ün}µ¶o¤ý«•%tè-:¼HÇBe=å´Òá4-W¡í£²Ÿé4-;h¢ ÚÁ}´y;õóI/*Õç½iÕóFu]žŸ¦Ï›u”ªï¶±bz0BÃå0Pï–ývÿšZWù·4ûuZù¥®Ú&ž¦Ýó´9L_·|/]Ý™¡ÑásÐJݵÓDòiS•ÜZïø^h'î¤CW”—èà´oQ)û2ݲnv}+Η—V4°î{e‘¿BeŒ·]þžXo¦ýë mm€nÞ•·»‘ö®¥zý‘þ Õó7ÇÏÝØÀõÿ?A;²Duߪês}ÉKðêüÛãz BÕ¾ª•yê^]Ç¡s›ÕÐã‹´u;m_O%§ÚÛ[M×èÐ>š„vö*, Rÿ㻕¶çCSc¡M½ýá‰÷èp7´MWhö˜äs$äï“| òþê‘ó…3Hgÿ’Ný* ÓÑ7•½4!õ±ÍÔíÇ9Ý<;ÉaôêþC©?öþvrbeŽŸ·ÞÒÃ5ôøyªržMó6Ú³Úñ;éÈ#tè#ª¯£o*Ki`¾É’òå9eøSÜJã?QF”ÏÑ®K´#M£ ´e•×Õ Ó# Tê>¼ß ÃÀzK+}XÞFåÉBÚrž¶^¥=U4þMÝM‡ÖQÝw?¾“f~iEíhí ÓîõTçàË| ¯:W4‘YÚ¢í1hOÝBgÿˆÎ¼B§—æÏí¦£*çÃ^ýÐÿCå*õíÞ¸ìËËyžWæ­z¥ŽÂëêeœz.š¤çCØÈ5:ÑMGhï%*s4¼2ïשó·u=zn^`ŽzUóÕ¹:z~µÌeð¶QoØ™¦‰iš¼‡öߥ¬¢ƒ»” tHî¿cïÒÌOQÉ}òÎü'*ó˜lW~Šk©Ì‡wšç©®óéØ@õ9vÿgè`1MËþFZžÜ9ïˆüùQ9ÿ—çÿIùý™¿/JKFÖÑS-00ojbº9ï—éð­4½ŠÞFûKi¼˜ê¹ÔÑFÈï úù¦2 «r†©Û¿wúkÏÑ÷yˆPɉðÊÜï`´¯Ÿ¥sÿ‚ž¹ŸžúS:ógÊ:}€êùo™X ã+Kèè'+;|ú‘²€~ŽÊœï›š¼J¥TçIË\Xog7•¹œ9¨«rÊÜÏœ–ž,§:âÀ‚ÒB³-LÃyôX˜6­£Írÿ›.¢]¨ÎQÐù:'!ZN{+¡=ó,ý<\P>L{Š©Þ‡o»FõõzšÇ ìgrb+é‰2Ú° œWZeŒÖ-ÓpÕ¹5/•Ñæ©äD笠ORé{öV,Ò²Uy?v³²$Í#Êo*õ\…gC´ªŠJn¿÷Å|úRœî Qw.ãÔ¹Ôûæék‹4\œUçW7–RyÿålT^P^¡Íë”õTÞŸÞèj*ýÉ9kiÇVÚR®R®VFh×f*Ï5ÞÞ•þ]oüCå2Mì¦Ò—žs7í¿HStÀ(ß]ÙÁÛa`žìÔ‚RÕGdб·éèGÊ·•ŸYÙ‘Bš~‚^¦ýuTÏEŠßKõ}#ZI%Ú+ç^ݦû¬u¿ Îïù–¥zŽ‘ËGtŸ£²¿êí‰B;óSTåY×ïŒ?¦Œ+/ÑD¡ò#*9ÞÔ»tða:ÔK‡-û˜f6*¯Ñ©G”oÓ鿯¬T^¦3ÅÊ3Ê?§§¶*ûèéû”ßU~@¥oÄûúg”D¿´³ß¢SÿDùåí4ó?èD•}%ïèišúJ}rÎFeÕyÙñ‡”ê\¢{ÕŸ÷Öbåzz¤’ʾ®wŸ¾—šyªæÄÚ×不~žÎüSšÉЉ:š·us‡~BЍÞäbVÒŽ"È _CõÜ7=g7ÿ’óµ zÄÒ“eÐîQÉ­rþþÚ%Z§®¾èfêÜœ@þx”6_ =1C¹Då|Û;ô:ò}Ž?¨”ûÆøcʳtr/Í+?¢S¯ÓŽ+jgÊéôjªó]3]t¢–ê\9—ÿëLËyÆÐ}tð.*ùÆ9óiê!ÚMQ9'öö6P9¯÷Ææhtž6/QÝ[£ß[„æÛ†îÏ_Q;]NÓ·Qéóðö÷ÒÞ+ʳ40ßà:íJ+#ÊjÚ1FÛS´i‰º:;§ô)ùy'[ÃÙÿ¹‹&®RégršÖUо\Aõû=Õ@uþå¡bZ‡&»\Ï)yòÞà ´)CU¦éɧ‰ZšznƒöÌ¿YÙV·Ÿó[têºòYªç:¦? C(õçý9XŸ¤”êýœ¡z8óT@»”­›é‘%š=ÖÊY“OõóÇÆ}€éÛðêû¡~Þ¼|¯Ì»ñJ.KÎ9h”P]_¯ç˜÷­¥ñCT®»Þ÷éЃt¤–ŽÇhæŸÁÀœó€êzÕ¹–ʼ.¯ä­{ÔÐCUÿG æYåã–‡``Îp·¡ò}x« ü2ÕýK'— ‘¼t“þ´½ëiK •¹ãN ÑÎY˜Ë•ÞIÛv(K©î{ÊÞ^rÊûß;°¦îR®¥®¯ºHþ¾3OÓS³tú:¢£GiêA]¦²^ÎÙ@Ã1*u‹Nsð =§'*¡þšr3zAY¥ü,ͼ¯ŒÒÉëTÏe½•ŽÜM?P^Q6R©÷vVÓ–rz¤Œêy•úsè UsaÌÑ9ªŸ3ZÏѶJÛA; •sK¯û;{R+j×ÑÔ.ÚÿšüD™¦‰¨œ;{»hçm»@[k¨Î…vϓ΅ô·CÐÏWmw) Ì œ³ÞysúºýŠü=j¹Íü6MÖQW-š–4•œ_§=rž Ó=šÂU9…Fúxn¦{€Žœ§Ã†¦ë©Ü÷½‰Ó®Y]G¥Ä»Ç*˨>Çªš§º¿òaèîÞoúL!•\fïžyêò&œu!z°ˆ6(e¯7°±™¶X*s—oªzŸÙ‡÷rróéÀ:´HÓq:,÷W}½éMQ}«s÷ô<Ǻ4[-­+§ 4^Dû?íì{tlïuu²©;hG±r=4ûid; ô}?g¡ÉþørÖÇ©<§zõ¾—®sÔ¯O÷´u 0Ч7¸—Îl€6»M”óä…f›väiåVhjäu¨ËÕÏ_çD‹³Æ6ÒÞnhÄaà9¾!B[/SÉsöêóKõï™ÉRšY¤3ýÙ¯g¬xe‡O+g©Þë\G;ÎÒØ%Ú¾–r •kiK7=£’GáUyÉæ«–ªœ,+}N#¹³^]§;²Ú±û©žÓعDõç]Í!3» 髆깚rò7Õº¾g .jÓÊNDèH>JÓÐÁE¥ª×¨£©š,¥z_20Wrž¶ÅiK†FâTr¯¼ç¨ü\rægÕsÝU©CqæÝèúÝ?#ûK^Ýÿ%õfÞží´÷M:XOõ¼]¯Ð¼žî)„>aU×gGÞ¥ ´ë<=V¦,¥nþ¯SæÃx+ãT÷a¸Üç†2Úx…6_¥’CæuïWï˜òxÚéÿ@3ÏÓÉ ø?AÇféè2^¢ƒ'èÀYªs¸ã´¯ˆÊ^oô"Õçúó§û/Q>¹HÕu#POz(DÍÑèuh‡ëéàyªç¸%VS½Ÿ×žGeNŒ÷ÐÕç`¿†æ…%ªë6Ú6ÐԛЎ†éà=Ê»éÀuù\Îþ4)¯cò¢2CãïSÉÍʹ™vE•;¨|¿ÞH=¦’ïç•},§y*ý*¯É´•Q©‹ðÑ‘;èì3Ù¿/ó=\õÚ:¿60ßrí,„vt7ú2•¯×›Ê§ý—”;”k¨ÎH”P=ß8Þ«¬V>Bû”ê}Õ[¯\§Ì§]—©ž—,õØÞ¶å&ÚZMuŸ¯¾ïMÓì/ç¼—šÏ+ÝuÃéòWœzN­Ì%öÊ<oûVÚUN»k¨ê 7ÒíxÚ©_£“ÑÑÊÕt䊲†ºÜïVeÕu‡2¯=çV:xI¹[Y¦, :¦ÿ²rAù¦r/ÍÆfätóN½ò¹Œ_W.*“Tr?¼ík¨Î‰¹²9ËèS‹ÐÈü ¯®”þBïþêú{•ôx!m-§ÍË4þ¹ îã†äÜõ)V…©Þ¿Ù¦2λCù|!Uy¶²n·TíoÛoX*óò¼¿ýÿ°¿AsÀ¿¦_RêóÚ¯)·…èãaúTˆêùgU†îŠÐ—BtO1 äðµôÈ"}µJ¬ ™]t¸ê}ÊäGÊ1šˆR¿ßq‘¶—Ó–Ê•=–VVцJZ[Lu½•ü¼æñBZmé¡9zXÙPAuÿzûÕu•®Î)§©C0gw¢†  …¨®ÇíÝ@eÿÐ;p¦?¤á ªÖGÜu}ýÔó…ŽÄhMš'ãT×'œ¬ ­e4y•çAï`’½AGî¥ÓG¨îóýzúʧé™ íéQzêwéL·òëTŸ·Nï§S/ÓÌWèd%x‹ŽßAG MBSW¨Ì_òê9&j^¼û¹Û‘ÏPÉÙö&‹W¶·‘Æ®)ëWVò,½MË+Û0G÷ªó$]ýóP ´¯¯¡§jéÌüÊfš©ÎïS¹¡Aߤ‰eÚkh,£SÓöeeŠÊ\ƒœr½h\ GK¨žS¡ÔõòÒâ´oü"=ý¯é©L§ÿúu:|®¦ñu4š¡GÏS½ÞsûÎùõÝÅ´>LuݺËsÊ:ÂÛXLs¶S™Wçí:G{‹h²‚ö—QÉ÷ömP~@G®ÑÑ1:¶‘Ž×Ó‰(Ü¢ü„fþ#•ŸÎ?¢òü—³N9Fg~Sù¦R>Gýótlí¾JUŽA`X÷ù¥.RÉCóN¼ m¿YÙxRŸG©Ï‡žÛ³•vŸ§]«•jOÏa–y‚9·+×Ó@?‰ÚÑs¶"åTåuÚúªÏ÷Ÿ«€9æ®.É=¿õž§=ëhìâÊvh,C[¹HŸ2t{!4®nÛÙ´Ú–yúDœ~Õ@óåó–Êý×+×?#ó/½RÏï•>\#çD^©÷ñÎ,¬¨=ÓM{ÊhÛ2h£2Ä+ûWÞþÓÀþÉ4“™Óåè9›*©œ[zuN‡ä¤yw*ó+œzÆ<êrù¤þÌÛ³íx†ŽÑ«76™¤‰•‹Ê;V6pÞpÕó—ûÖÑÀùùjÚ§]kþçÚy–vX˜+¸@›k©>ÿ8”VV(Ë•eÊRe>Õs¡Î^¥oü*=ý;ôT•ù9^ÉKñê~ßÞë´ûÕçn>½›·òZ1Õsé ÓìÍë÷½Ü9Jߎ÷@´SiæGÊtR9¢ã[èØN*ë1ïP„ΗvÒ¾(íÍ£=›•¥Ê46K¥OÖÛnæÊ_¦“½Ê:åcʇnâýtâv:¼‰ö?GuêñúâÒŠš »²Ï,B;ý<•yK9ó©îw‹·ÑvKæÓ#Î^ Ó×,Õswe΄Óά¦ýÑ ÍÁÚ_íìW¨Þgt9/N]ÿ˜{žJ°Wr¹½-ù´iŽ6Z^¦O…a Þ÷ñŠõòü{²ˆ¶åS™ûîíS5¿Å&wѾ|Ú“¡zŽa nv Õsà›ò©ü|½Ù—#§äG{_ŽP=OIú¡œæCuÝÍᆕ•ú~¯Ô¡x{kiònšj¤éR*9ÅÞ©CÐfþ££[¨äxS—V6YNU>ž¯CrÊI¯¬rÎS©ëø†¥_Pî3N+ó´½_¦ý’wÖŸVšLÑøÚ{MYF{.Ó6ÙÔ¹MÅôh\YJ]߬7_‚fW>}±˜¾\F÷S7_ÓY_HcÐvÓ¶(4Rçá´3ÿ«òUeus^½õJ]¯4§\E'¾BGªéÐ-7¶ÿ+´o•y=97(WS]¯ð¬Rþœ®÷ym‰êyªÞдÕЖ%*óímG •¹`Þ#yôµ­U–‡¡© ÑóÔå²9¥_ÝÛ¡‰r:PB‡WCÛ^œU×çÇ¥zNtý<•Ü ¯š£n7È÷'óY½z~ȉr*ý÷Fæz£r44 íÈm´=MÛ¶Q=ß÷pœê}}}¹W¹'NehS•¹wÞ6K»ë©ìŸx÷СUtä>:>OÝ|&ÑÆ+iL®QY×¹so5ÿßk|5œU^?§u9$Î@=Dú&ÍÔ*ÿ¼ƒŽ_§z?+ý¸›ö¨L)¥É9åÊ ÊUTç’&ª•O(·* ïUîVnSªço§Ñ;G{â´ãšr‰Æ”íaeµ²”¶®¥ÍWiÓuå5åYz´R©Ö:7^猘£zî·œ³8ýh/RÙ—ôî[¢º¢e-оÕ4YC‡š¡ýþ—éÜŸÒÓ_£³÷Ñéctì.:¼–¦Þ§ÉµTòM½º©i^¢{Ã0Ðø’…öû…ô~:WOÏÌÒÓ×é©våN:ûktzfþ›òcå(7(ïQþ#ªó7'?Pþ˜Ž¾AGÞ§þÂ{èPF9F¤ü Õýµñ1ª÷›Z¯+ÕþóÉ|ÚhèRú=ÍwiC†ª¹ávì(•9׺K½Þøn•óZ¯žw«ê t.€=3MO?IgÖÐéNªçdÎÓ±:ú(Õ¹ëh.S·¿æÌ.?ÿ¯çe›ýsC)šú€Æ®S½¿Ò²žf¿¼æP´s—虃ôÔ tfŽNÿÍTѱΕ}_ù.MË×ÿi}ƒ)Khÿ!¥ä©È\¬œº}í9Oõü‘Öª×ãn®áá ­[¤ú|O夘ì²1çAù÷†7Òî"ÚµvŽÑ¶óÊ1e²ZYB[—”sôX Õu‡©¾ž|3 Í¿­¬»®8uN׋U´®˜Œ(ãÔ[9Ró‰Ñ&¥Ôcz[ói[1•~#oÿƒt`+¡’èk¦zîÊôß…VæÖ8Mm†ºóƒ&ùùö–R™Sä4ÛÃT×çø:®b*uyÞ¾Y*óšrn¡‰Û•R=‡và::M%—Ò;±—NåQÙsÚØ<4§¯)³÷sæA:÷¿A›š£úœyjM5Ó–Zå6ú´…s$:¸žf߆ÞÀyà`•R]çSÓ4q?Õ¹"=kiW7m*Õs]ËU*û99/(Ï)ÕsœÌ?ñêÜßHZ™Rƨ«Ëv>†æI¥Îo>¶D£ù´kž\£CÓaù÷XhZÏÒª}e‘JŒ·e+Õy¾R·ãí?Oåýã•ýaïðe:^ í¦ü)úúƒt.NÏü±ò^zú«töN:}‚NÒ‰¥;v MWÓ»hßeÚ¹Æ m™¥º¿îµyªö¹<'xå:å=ZLÓÓôÌh§›•_¤Sï*·ÑÌù‘r7Õëù¡8Ü ¼ƒ¦R4¹…ê9ñå:Ú[HÝœNïÚe¨î§‰Ñö1Úº‘¶Dè‰4­›§ÙÇ_oàüVæ3{ž§i8ßÖu¤‘‹ôHÍü±ò[ÊH'WQ½;þ0U¹Þv¸˜¦7ÒÁët ­|€êºF}~˜{±Dõû«oŒöSÝ÷Ñyêç§öÍʵ´5L[.P™ àõûâÑ*9¼Þ¡0þÛJ'ÎÑL9­ä|8Í–ºy€Îç©äôy]³³}M¾OU¨ŠÑÑN:¶@'Âtö]zú+ÐÊü(¯Þ?)N«*è×-4Ÿ Ñ]ÅTææz# ´9D[vPÕÿèS¿M“gé@´}ië"4 íi€vì:´™Æ?¤º~¢wV¹žê¹¥zZ$oeO,*+èñ Uë˜\^N7´Ò§â4/WA›ùU:œOÓ×”o+ãÊfå!êú3U¾„É^FrÖ•ÒcrRóøL“¡ÍçiK‰2M£k”õÊkT×!*­äåxÑéB“wRuä¨é¹—2/Ô›]xÍ“æ >L:i 7=BùUqªû ôþJk„¶\£'#´>†kèÞ *ç*Þµ!h_¤º¯SÎí¼-ÕTæyû"Tr¾¼´¿P¼‡Ždÿ>›z—6ÅéÉb*uŒN#u®Þ¶uTöù½²á´ÑJYMõ¼åúº=ù<ǩΣ”ú=ïàvšž£™«Ð¦WÓÁ­ÔÍát¦¢TÏèKSy.öf?69ÛÊ©›Ãîl*¡Ç‹é‘0=8O÷Ò—©Î%~ˆšÝÊýô`9=RH[J©œ{{cË´§ÊuÛzŽ.СËÐŽ”Ò£åÐÄ×ÒãÚ©:ö&þheõõM_Ï´‡¨Êåµß5иÏÓõS9÷)ÎSéßóêušÌ?ñ깑mÚÔ6z Šî¬€Fú–œVž7¼º?jŒÖÃÀ(Ý¢úô쌡ÓߤS#4°ÿý+tìªçÖèýl©;ð¦24ùík¤aªç¸ëºWs#sk½‡²¯Ï•*·Ø4TÁàûßСە·ÑÁè@’¦¢ý4ñeÚ½v6ÐŽóTõ÷ئò•Xªç×ï1Ð|U©ç ï4Túª½ºžXÏhŽR݇ÐR¯\¦º²§˜&Þ¢…4]EÇ>C'ß‚vü>êr\îÂkah§¾C3?Pª|ÅÌÏÐÉ5TårÛþ^ªç·´—Q=W@æA;ÍS…t¿¥'•wm–u×™?§§þP9¡Tù1ºNsö#åUÞBg¶ÓéoÐÌÿWù?D‡?C‡i*NûŒr#•¼>o÷FÚy‰vì môÄ=àî«KÊ •u„Wúµ&» óµ|z°JYCO–+¨¬‹½¨k£vÖЩÇèÄ:6Bõ\œþEßDuxt=^B÷ÏS5ÐdÇkåÔëñCazô'I¼Iû‹ij‚l¢é;”(ŸPV*ãt8EG’ÊŸÐÑçèØi:¾f>§|oe§·Ð™?¦³×è©{ééf:÷óЕÀ@Ý«ÒNý6ù1Õϩݴÿ’òGTæôä,¥ÒOà­«¤ºÝõy¼´D«âôI“Uêõ½Ô|+L_67Vrݼ­Û©<7zÏÓÑ[•ŸÐ±A:~‰fŽÐéÛèÌé©'é™Bç& ¿Kûæh´ˆ>e¡9P í©|:õ4ͬ£Ã—èàUšØB[»©zß9GtÚSAõ|ï©“4ó'4U§¼ƒæ=HãaªÏëõyô y£)Ú²–J=„·¡Ö/Ñì˜ÑœÏÐÀ}¥aÚþ%Ú]B#eT÷ «ç|û¼¡nëֵϺ3N¿·H¥Ýž¨‚æXqÖŽY:ÔFÇ”³@{êK4}+íŒR}zÂ@Ó’ýéäÌ»>^kqêûtö_Ðé—èÔ/) éÄ5:¼Ê\Gob5ÕsÑtÞÊ¡ye =¡R7ì4ŸU¾VE^¡2Îi§–iæ—¨þþÇtäM/Ó¡Ctðª¾_S…F¶A;ý‹4ÓJõ>¢Î­¿M;ëió" 䆡qï_§î—<®l]Ce¾£·»Ú©¿O'Ú¨î³JtBs †ªõ­=³™ž~Gù+ÔÍëtN7Ò©L'ߤzÎÖø-ttDùiû+hú¬r·rº‡Ê¼moÿÊÅ›xš&dßAçÇëiÏœ2J;–iû%ÚÒ­ŒÒæÕ9~bmaÖìeßkž]¤z~Ø‹*×;o༘ڡk49H;JéñBªç?îOC;SJÇߥCÑö"ªë ôŸS :S®üúӕͤ#§•³Ê0M¿O‡öÝXÿ¼S­”s¡D)•óÒ›»‰Æ ©ô z7@]çm§šê×%½ƒ¦Jiÿ5åGÊ2Úu–º¹ˆÎì1¬×ì Ó†mÎPÉAòvl‡vdŒÑCË´®Šº¾ §¬æ€Už§R¨CÖ9•ÇŠ”ÅÊeDS¦i[ýÿ£Ú×–ž:E§ÿ:t?•:Io¼‘-€&û—Sö%½ÑõÊ«Ÿâ2íLS5§Ö ®¢éÒÑe:9H§‚vhM=H%ÓÛ½LÛ7ЦFz(LußS] uç*îœEç¼î S¢z^a¸€JÿlÀcs4Z@Ûb+Û^KãSÉSòöŸ CsTν¼ã»i&O9@§~J|‚NT¾Kgšè©;©Ë#uÎ=ýG±MôÙ¸2|+”…Tïó<¦»ª¨ZWò\¡.WÀ)õ¦cu_Ñ í©C3ÿNÊçñx æò=²ß§}ã:K¬ìì’ò0yAù=¥ª[˜z\ù{4ÓH'»éXL¥¼þ³ÊAš.¢CÏÑÁ*uÝR±ò>š˜¥Ê¦Õszêô:ûj~®=ÓJõºjtM×Óþ0ÕóP¤ÎÎ[[ M[´‰]´'MUŸ‡­¬ O„¡y¡îZ¤­c´½‘vUÐøib£ÒˆÏQ9_ϹJ]›wð*ï7¯ÌŸðúsDy& ©Ì=ÊÙ¦ü>qc“)ås&9lÞ——h™|߯dµ™;èd5 ôwS=w®ÿ1ªÏ‘;»iÃyZcèº Ì—yÀÞº*9^ÞæÙ«úIíèf*¹âÞØuù4ΓËTò]¼ T×/¾š¡rÿó~5ÍãÊýå´¾˜ªzFÓ9Oõ9kÿ½ÐÆ›©äk:}[zÝãöÝ~¤ž+Ñ»Žªœ”àœOu½hPÝÿ4p'ØI·*9f^çÙqŽºüµÔj:ø´°…~ÿúÆ tnšêýÂÙ¨r#•ùêÞéG”÷ÒÌ_(¯*?P^R.(¿DÇ;éÈQ:„Ìk÷Æ×ßX½¿4pVéö o¡rNá´Sÿžf¬²Aù0uõ¢N‹=þ½…Ž,Ðá(M_RÞI¯Ñ•‡”ë¨Þí_ É·•w(UŸSb=íÛLeÞ¼·§€v¥ig•zH¯ËwÊýÜ«ûB"›éI«ÌP}NÙÏ*ù^¹y_XZÙª2ªò8ì·,4•aeœÊuÊ«û÷š‹¨¾µЮjªû{«hòvåíßFSet ›¦·S¹äŒBÛ»™fÇŸÞÔÀ|š0tP9zÍtCÛ½‰ve÷]­œ¿ÝÔÝʧ* Ù¢OÇo¬›·ç”>s¯›—à|¥‚Ö–ÑýÅ´>D]¡.ÿH„6Æh w¾ž6Òæ•4…©®czo§z&§iâ•y1Þ“iªçúj÷ú²²f‘êzé“5»,,Ò¡Ï@;±›ºüVg¶Í,d^,£Q:¸æ†úPÝܧä1x¥ÿÕÛ/ï#ÉÓ±•Tåüæû8[–V6:FÛÖÓø[0ã¸9L“»hâC*×q§ùž¡ê¾gš/P™wì´=q*s´œ¦~«¤Ç è‰8œ£­å4¾…&~çvCïÐÔ{4¹¨¼“ê}Y}¿ˆ¥”ëiÛ®¢.ßÅïÓçÑWçé¶0ýÝÔ¹R\ŠÊ“†ºù6­;¨?ßãÕ´ÿQšº›ÊóUÏzªë**n¬¾O¨ùÑùZz.âÄEš¹NÿzzÚ™^¦S‹t¸Š¦•‡ho#UsÕt®l`^uZ®³º_`ðå„r§rƒ2öuÓ5!Ú~F×Ñæ*ûæ9 é±e*ýºÞíú½e~÷`Z9§œW.*—©ž£+óÔre™²BY£lPÆ”¥¥‡+éÑ8´SwÓÌ~:y‚ŽuÒá*¢éóÊ::QÒT_£zb÷*Úµ WHuŽz`Ÿ`~E­ä0{åùÄi^Qê¹0ÝèÈCt¼ˆN^‡vºœJŽ¡7ó‹t$JÝóŸ³w íNSc½|c›ÂôpÕ}ÁêyÐT,R½Î>¸D%'ëòˆMW7•z#¯Ìïó¦×Б«Ð>A••TçwÎ)#Túî¼uiÓ— ©ÊÛ¸ÍÐâ4_7ôIåS‹Ôå9¥ÎÛ®PFè~KõœèC‹TçËI‡·ù•u•7‘¢ÉuÊË7Vç§Æ¶++•;¨Þ‡PÚW ©© {ÃTú‡¼î¼Î©ÏÙdýáí°TöCì®2hÏÓá¡m<Mwœ&ŽÒÉ·¡­›ƒæxšvÅ©ä {'>€|Æî*h»6Ñh-=˜O¿f¡yaqeÕü+yt^uÈÿ>¹ ¼B[ ©›³ì ¼/ôo5Õçý«hj ¸C¹@ÑÌ8úy:» m=5®^Üéò€o¢ÍPégÊyÞG hÿYåšü D{vP5oÍÊs½7š¡.Ç©×ArÝôîɇæÉBZ5/¯×"•ý1ïþ+0°.Ë–Q䜺@Çw)«èè}Trs&©«Opê<Ø]èë—\ÿXÿsTúg¼½•T®Û^™ïçU×{ø Ý“&{™Î¹%Lu}` s‘.‹hÓö+s)½zl[-íÞLãïQyñŽÑ‘¯ÜØÑèÄsÐΤ™ŸÐ‘k4]H“;hG-ÕÏ3êyÚȹ¹·­ê>D“]çܵDOѦ(•¹†ÞØ*u³N;ùM-ÐÞjS¶äQ½/¬çÚd—MÞÀ÷û[J7—àfî« º¥¯–&RFi²š½IG~çÕr_óöP×êLÜCóL”Ý Ðl10p^–½\zM¹…vøMšºgeû÷Ñä9e½òVšØA¥¾ÑëòÆn¦žß© ì•(7(‹éÉ8m¨¤.ÏЩsòTÞRàº\k©®Ó–}ioöeÉ^¦2?Ù{¨˜™£:GåÚÉ7ô¶„h¬›ö•ÒøWh"Ÿ¦Þ¡:$ ,êý‹Ì+00'¤óusjœõç¡y5íd˜¦n¡¾†TçÒ·\¦.u¿MÀ™‹TŸ£ï*„þùVê¿­ôû:MçFhÛ¯ÞX=×^õ£wŽù¨¸/LÝ>­ì7ŒÈ¹XS•˜þŸk³ì»4—‰åJÙG¾N%çÆûÒ<4Ç—iÇhg+éÌëÊõtzü&((¿E§þ³²Fùó4óu:YGÇÏQɅϹšêuöð#ÊÏQÉ ÷ÊuÀ;ØIõ¼ ]÷œ\MõÞ¸²‚êýìØ [ZWDuƒÔëzORÝ_ßZI%/Ë+çÞx˜ö+Ÿ¦ºnvô3tì:>F'®ÓÉÓL. 3F¢§þ-=ÝCçî‚Öõ¯;ŸCsÄf„¨>·ü˜Ž½I'çéÔ· }cû9:ûSTÏ‘MO+Ò¡÷h*Bûç¨ôMyužB$Mƒ¥M1h§Ÿ¡©¯Ðä;´k;Õçô»¡© Q]w£ñÛiòúhˆê<¿€çi³¡2çÖ;ö0_¤™Ç©ìÓy§¯ÓÓÐ6_¡:'·¾|Eç2_È«ëku‰ÿ7í¹Hãk•oC+yöÞÆZ§zÿ1[ΘSæmxVÒ#ôøyÚ¢Ôyà=›i ¿w–öo§C÷AÛ}Y™¡n?ÌÙ¼ƒJ}†wO1}© š‡ÃTê3ö̇ÔÕU:SÐYˆQ_»ÚYªÎµ¬äÇzõ¹¶Ô—yÕ|73gîѽ*¹Þæ%»J{gi\îKɇéÀM[:ú9êæÞ‹v ŽÊf§yÍÐþºµoü4ÚCu=¢|¼Ù¯×ÔTAÛ|©3ñʼ+¯Zoû|§Î»•\/ïЇ4ÝHÕ¼i{êçèàèÀÃTæ¨y_‹@óZˆ¶,C;}7|OyQ¦ý+ ¨Î¥W)ÝyØuÚ™GõükýyŸ)UÆhË&m¤½å´ÿ~h;óikæS½o¯rW­Ü7r*×?o8¾`èw+ècšêE*s¨n¦Í<@Gn£ÍTúë¼}•Tçw5¥¨äˆYŸ'VAåuñJ=¦·o´£å´¥ÎAºa ×Ôãí*¦5!z¸Z¹N{å\ÄÛ³ æô% •ë”?„¶;ŸêsÓž‹Q½ßÒPE3hÏU*}ÞÓHuŒÌóF·Q5§8pŽ\k¨ü<æ%CçÓ¦"h%Ÿß«Ö‘æÕ|:!¯Ã©µthÕyoÐÀuYÕ%Ⱥ×Û³ÆÒ´ÍÐÚEªëúäýæ4OÆéK–†çhc!´SÿEùŒÓ±©ž/Ô_¥Ü®¼ƒ&ßTÎÒ‰m´å4ûÃÐÎщÓTÏKJÏ)õóyMýX¹†ÊœÉœc´gõßÌØe1m›¥ ­[RѽeÐdorººwW?q/xD©Îuß~ê’rŒ&Ï~ŠÊ[¨ž#?Gû®ÓÎÍ´é:Õë"íÂTÎí½Ÿ¥¦ªê|Ÿ@ÞÏ*Úz•vÑø" ìéúÎÞ tp-´ßßA__ùY:÷/¨žcuª…ÎÒé1:¥æ€Ê ì¨ç^}?ghßÚ{•ª.½Ÿ¨ÖsÓåÑpŒª94Æ×3‰áJªûÎ%¯Â+¹‚ÞèEheÞ“wvQ¥º~tf^T~“NUÓÌïÒÉ÷•›éÄ^*9cÞ¡šj£‰[©ž3kTVÓöUôp˜¾liU†þzšÝÅÔåJ8Û7ÓÎu´ÿs+›ÚH]^Dä24’îÕçÍÊ‹tø^ån¥ªk¹‹Žm…y\m ´¾ûJÓTÏí»@ãWèðh{ª` Þ>ñ. ÌíÑû°£Giÿ=ÔݧR¯æí]Oe½›3®¬¤:··û’ÒR}^д‰F6Ðú 4»«h×<¿Oû'èÀ&ªëŒÒ÷BÛ‘¦zÞª~NÕyé+¨Ì»´/Ç©>_øº]QS_³¢¶gm©§z>³Þw’¹DÞ§ Ì3Ò9)Íaªsžd}ëí¹F%´¿”V+34½ŽåÓÉÝÐŽœ£C1šº@;WÓæezšìÇ5§ëƒw6ÑÞËt°úxSW”ïP}¤êy„’«ïUçÍöÅ84’oèÕùüMs´+L{ í2´CÈ›,¥:çWïÛ.§z¿MÏï äÆ,ÑH„îÍP]¿ñbÕ},¿¦uz|¶†¡ØKu~žßˆR]—í¾gCuõ¾Î–Tž¯½½!ÿ&–©ôxG"ÐΖљ-tºŸŽ½¡”óHÉCñ=Duþvê-š|ŽêzÂöMJ¹è<™ƒÊ×*²¾PE]þ[ö±0d\ìßù¹*©üœMs¾|ý'¨ÊÛ6'k¨Î·z‹¦vÒþš¼ge;iÜP=7«»’6­SÒ‹´ÑÐ#•T瘣z.Þ^KwÇÅBZehy˜Jݤ3pnYULunK>]¤:W6ÙíéBªë2ߣã?Q–ÑÑëÊ;hz3ü1ØA“aÚwvĨÎÙn\¢û«¨ÞÇ×ù8ûéñUv®‡v¬œÆÒHÁ­« /—ÝX½ŸÿXšG }ÎÒ— •¼r§uùíÎäí4ÞFûÊhö¶œ³µ(£’ïUygf»¥ûK?EKÝ|wg6f,gg˜Æ‹©œƒyeÞ™Wï·+¦eÔåû8§ÿ´-Ê*ù®7WŸ¹B_® ’Ûáôó²Ë‹ÿkݼ¤üöÎSéßöJ_®ÓìSùº¼íQ*çÂÞ®«Ð¾þèÔ¹Ÿö¬¥›B0PÇÙsÕ»S4½ÚŽUõ—Öݯrñê}kyݼúü¸ÚÐ@ß&hG£éûéÐ}&ë9™“ä œoçS](õà^™oàí¯Vž‡ùÄ­ÝTŸ=aobœÖ§ú<ó…|š=®ÎùuÍÓaª×QN]Ѳ‘FÏÑîBÚk uùFÎNK¥¯Å«¯Çzr6~+§Ëk–yòÞ–(nVªsQ=?\æ={“½TrU½éŸP©ïöN®£S?C§Й¿ §(ÏÁÀ¼íÌ¿ zNYzŒÝKõ¾©ÌCö&/P©3ðêúξFªëµ»fiÇUQ=¯\ÏÛh( õÅTõUÛÐT.R—‡ãTsÑŒœÿy%ÊÛ²í™Õtê!åç©þ m ó£UùTÆÍõp6•Q™óî•ú§=QA•Põn³Ç¿Þ¹Dù½û˨žO!}3ÞÎZeJ9OÕuÊHþ’7õ¨2»ìkõÒô:ZBÇ3tê/èìôŠÚ—CTíûêÿæŠDÖSû׺™êû£Ôc{e߯ësP¶@{ê ꦙ<š®§ CÕ9}¡Œê6ЩÿòYš¡“):QHݹ£sh ô§ÖÑÄý´½–fr¾¸Í÷, Ö]¼®\G?¥ÎWÏO ô;×çQ=OKïkésÉ/†¨Î­›§:§àX=YA[ʨÎ)sb¯Ô¡y»·*-í)VÆ©ä×{eÞ®ÓÎ<®üM:ýCªó·&;©ž1ÒM‡×ÒtµR½Ÿ/PÝÿ:Gû§iò1¨ÃZEû.+Khl³²„¶m£:¿>º‘¶\§ú\¸©˜F6Ñ“a*ù!^©£ñÊy²Ó¬UÞ­Ôu`'jhdŽvŽÑØŠÚÙߦ“#tôÕs:c´½’¶¥/V@ÓpÚ™§èD-MDû ©Ë¥už´ÔÕ[8÷TA“m—È©®¯¦¶6Ä¡ûˆºuŸS΃½ñÛ”·Ð¾rªóe¿Ã{´€ªs,³=LF¨Ô£zõ9B¸„~)tc3ÿ€ºynNݧ­Õýò¯åÓƒ†¶U*wP]ªægÛÙÿL§>K35TæØ{Óµtèš8AeN—Wçö–Ñîs´k›ÒÐØ‚²R™O›féñ<Ú£®ÿß©ë´%ÇÝ»7NuýÔwãTú¼ÙÇ#o`¾„Ô›{#ó´¡s~çi`nPˆ6^Q–Ð#…ôp­Ñý ÔÕu;Ÿ S=—Tê¼r.áí*¢Rïç•4ob»òcšLÒþ½TÖ9eÿÚͯ:¯i:(ŸÏÁŸ@+ý¼^õþ0ò<êUs9ìèe¨{Õ¹ÇzŽK[1í¨ Ý³4¢É'h‘r‘.Óá^:¶“N–ÐÌ ?HõùÞ·ÍÍ.C½F꙽R/á•>ï᪬M›iÇEÚWO¥nß;`©Ì/óv_¦²å´ÃÓ4ý1Õç'~ÉAš¨R®¢’Ç”SÝߺ·Q©‡ÍYE;«i{=¢ W¨®‹9˜Gå\ÑiÜuÖùŠr,»@2ã tÊ@+¿îÈо1+»‰ù4ZHõB™‡ì]Ouž›9ZBÛW+ó•kèSò÷¨ù?’ì/€õ²ÔO7ŸÇÍë鮦rÎä4'ÎC½.4“IÈc‘sK§9YFÓoü­´ßÿúúzú8m¥3?¤Óe4³WùËtì~:t™TÐþTú¼z[r0½‘Õôp1UûVfo1•uˆÓ&Ç`à}¦ŸË»d:÷—tú”¿¢¼êý±ÉûèØ:|+¤©;hÅ]¥ÜA[­ò2m[OÛ•±%ÚQ©¼LuÝ[ïve%ÕyÚä½ÊTêC½éü;ºæSÜJ'VÑÌ Êÿ•N[:³[ù.=õ[ôÌçÿVÎÙFª”;©»9SÍ4Ñ@{¶Ó¦%ªŸ÷µõJ5çÖîÏ@sÔÐ@ÞûVªß—]Q˜óúM R•OÈ_¼Dõuw,L'+©ž“v ÊÐö ¬ËY úÜ45Mû¦Éì×È)ˆËý·'C;+h{\¡:7O_Ç›–•KTß×ež¶·f šì5çw,}i‘Ö†¨ž³}¼”J¿˜·í*í’º”î?}CmßVIу¥´ÂÂ@CCŒv.Сٕ WÉ÷[ ç]yÔ=¿9Ÿ±ÐHÿ¸ÓŽMÓáfªû>­`h ¼…„©ÌÉÌù(®¡ú<µY)õãÞl|^ÎJMqˆ>¿HuŽÖ«ÅJù{ôy5ï7ðÜàçʉõTê!¼’ËçƒVîÏÞŽKT÷[ª 5…ô;ò}=©|¶‚º~r§Î‰sf/Û9OXÚz–Æe}—×oèhϼA§•Ã?\Ùô*§÷éÇ´#û}Y©Oö~ÕÀ@ßCg#ÕuÔñ‡hbí¿¦ºo¬Ê¥5Caš¾JGÊéè[t|ƒöäm-£Ç¡y©Z©£÷î¶4‚z£îbÚÓM“·Ñt9û =}¿rÚéOèÀÝ4µêzv«Ùc¨®Ooͧ’·çÕ9„jÿÚì‰ÐƒKT÷ÉÜp§—ýÝCW ‰TA;ó¶òhæ€òN:YDÇèH1Õç§išš§ÉÝ+ßv¿¬4´'œÕ­Ómé!KužHa×Gë¬/ *‡Ö´ŸWʺOÖï9å:#}y&1§”?—ÞF‡å뛼—7Òþh×"=zeeÕþŒ‘þ-§•\ïK™•}ŠÎü¡2¥4tº“N]Vþͼ£ü,Õsš',í?º²ñ|*û49‹”!Ú–¦2SkdÞ«WêQ½2'Ú«ç×ê–—¨Ôy¥/ÔiOÿ=ªûVô¾a¦^¹ŸN¾«|S™R6(Ë”*ïWÞC'ÒŸb-í›ê9õñ½T×/¸ù+΃ihd®‘WöÓM´ÚX-4±:¾ÚÙ÷Vv¦CYO§V™O§ªhÆ*{”a:ù0¿ÊÜ·œwÑ‘ËÊ÷”Q:|Ïʦ/С4œVNÐþuôhÔóAL]šê~…‘JhG×+ï¥COÓÔ‡´{¶_TЦ Tú±½Rßå}yžêyEÕª×?nÞª³õ< ìç¼EAÛ³šzCõÜá“çolkŠv5P—OïìßG¥ßÑrCõs¶Þ¯¬[ Bô`†ºu¢óH9=YBe®}΋Try¼ÑÚÚHÛ–h{í,¤]5´'Dõþq²Ly]ù íŸUÎÓÁ{•q:”RZ:ü!9KGÏÑñ³tr ÍÌЩ4ùc¬wꤩմ3•~'oÇFÚ¾@£Ê–U4Ò@R™àus©œ¯Dhu1Ínû{ó œz¯º¾¦jî‡9T@.Ñ@?új*}HN;õWTßß>¦IK;j©®ëÜe¡yµŒÊ>²ÓÊs·Ó\€6UEûæ¨z® ÌÇj Óá£Ð¶^£:Gû€¡ú ñ[šG”’»ãÕs"­ò<=^D[ÖÑh…²Ú=†ê¾ôáÂ+ûXÞÁ[éÀº•íÐäÊ54þ‰Rõ+uÚuieÛÖÒhÙÊ+½¡æ¡0Í–Gå|!CûÔeÿ¯ÿ¯ÿ£}ãÛtæ!:5@G{éÈèЩžC¨ó¿tÞWÇÚ²†[ ¯ºÅB³+ ­ädÝÔ–1*9^]Ÿ-ë^¯žg|tŽ(UÒÚyúBD†ór]'§ó%ÿÇ«ó eþWÕ‹êNõùz$Fõ~“>¿”|bo`¾ÈuÚ¾Æ.)—©î_ë½N“÷SéöÊüozλ–i&ë0mâ=åéá¥ì ɹ€ÓH?­W?7î´ôÅ›(õxÞæ%ë†VòWœ&±Úþ ÚµJ½fΪûÀ÷*õ9ˆÌõö\ ©-жÍÃ@=ÆÄ00/QÎúýnOÅéÌç•*‹ŽÿŽŽÐy_$ú?GãëißYÚ{…öl¦Ý 4¶Ž¶®¢2ÏÍÛ¡õË´¶‚VW)‹iörä5ÿ\)sd½’«æ•¼fï®yh;Ë¡©C»§ê¼õûCôeK_‹PW_çT9ñ¾í¦ªsD÷§é«úÄ"4ÏÇé"z¢¶hÇvQ]çßGuÎso˜Ê\¯ÔƒäLCóBœªë„¼êygé<ªæKîóòœì4ÙCÐ×âT÷ÓœúCe>¸ƒ¦o¡C›èàNš Óä!ªsÚôÏ¡£˜¶l£‘1ªs€Ž¥olØP•wh²ËÜá*u$Þ“y´» æ÷¯¢õqZuÖk–Ê<or‘ŽäÓñ[©Ì·rÚëTçd$ÖR}~+ù9·ÒCõœ=§ÊÍ-wçÙ²‰œ•08©¢[©ì·zã½Tíoé:2;ñ&_E%‡Ñëö™œéÐ%š¼F9éêþêú.:ôd„º:)§ôy÷*å|Ðû”¡…éçCÐ<†vbš¯¦óT×ÁÅ? } TêÚ¼:ç¿õmÞAO6ÐcsôhZYJ”P·éµTï/†K©ÎY1´²•qúhšl[mκ8=ýº}*-–ê¾xÞM¼&€v` œ%¢Ðö­‡æ@œ±tä”fþ ´™çÅgh¿[ÏÊó~o1uy¹/Åa`ð`1Usøìœ¥£Tç´K®™7Õ@‡¦2ÿ×;žO'?¤S•tú¡³Ÿ§§Æ¡ºNõüÖ}ÊW,õóQÄ­òË~Où0•| ¯Ë;pօ蜣nï ô?©}é³öÊuÝ›HRé×ðLP}n8tšÊ>¾wlÍt+?¼±SÊéô¯Bûr4éÛ ÿ1zŽîɧÉ4Md”wО ´e3UsŒl“¡zN_ç³/CίPó˜¥T÷‘¶çÑγTõÙôz:°ö×R½ÔSJu_¥¼¿½/‡és‹Ðì Q™3í=Ymj•§Ïêê[]½k&Ÿê:ÚD>}1Lõ}'ñ‰ò:=Ö@õ9ñîÝ3OkBT×˹œ·ó<íIS]ï2| œÃ¤Þ‡&²Jˆ·-Deƒ‘ûn@ù\y{vÐþÓÐNÿ%úGÔåœ\‚Æíóº}߉ëT÷ýËÜr¯Îõ”ý%ãêМ ÅT×S¹õ«î_×yOÚ«9OÇ·@+¹Ù^Ù﹩OÂÀœµ¯ÚX¹¢ó¯pˆJ¿lN³²Ï„¨ÞGª¨ ê¼Ë|EùŒ¡ºþAÏ÷ÒógÂóTêZ¼.ï@×­7¤©šãgZÖB=×Ä<§Ï(ËОљ8Íügå¢ò_щ++;ú . é)•;•[èÐJ5_aðåe啪~bà*íî&êç“ešSÙ¿óön¦zß·[Ù¹ƒv¬¥R_馔ªsÜüco…r=¹LOh¨®W’ë¢÷P•~z¯žó®ó{\®ˆóÉBúÌ"Õç:ßó` Õ×u™?ïuësgg„ºý;·Ÿ÷¢…¹ô+¨Þ/9Þ­äÝ{¿¦É‡©Ì-tö…#k©žã }²ÞÌzê#hç~C¹Šž™Rv*«”¿AO/(×ÒSetö?)_Rî¤3_¥ÓÿMùÚ¯|Yù‹4ó :y‰Ž†WÐôÓthZY¥4t0ESO+TªüîþÚ·–Ê\5¯äaäÜ@›©~>Òsï"ô€¥eš—Š©Ì ðºþ"gä Ô£8_š‡f ¢ìU¾OïRÒ¡[•«•Û”4ûòÿ5ŸV&©ôzÇä:6&Ÿó±A:¡S¿J§¿¨¬†ºí¡4}-L÷-BóÕ0ý¶Rõ5šˆœ³µ–R™7á—RÇ5ø´ò<æ çÑgãTΧæDÚé—¨®ëLì ÑÕTŸ‹7åÑ„|Oÿ7åzêe)=AgÎ+WÑé_¢S¿I3¿N'> ãûèØgèÈtø²P™OÓ×”*ï¡Ò'îÕùGzh O¤ö¥¨žs§mÙþ)nPQ•[a_™‡ú燴á¬+¿ihM†î«¢’ãèUçÎ<¨ØFªæjɾ©¯Ré[ð©¤Ç•͵´µv\¡w)?¡r_ö¦×R9gòŽ=MÇ‹h Gy=ý÷ÐÎþ:|U™¢É£4–õ\Û_F“•TÏ©ê½@›¶Óì¶rξsÐ/¶k+Õó+÷Ÿ§º>îå Õó²_FÎoZÚ´JÞ¾W>ÏN›ÙCG¿B‡KiÇzÚRBõóÙqCÅiµò[a¨ûgÏS‘mÝF;/Òø%*ïïàJ÷ëÛ Í(%ÏÑ;òM¼EãOÓh†êz¨ÝUи9unnÝøO”•TçöHn¶W÷Äfië"m S©«òêy›ß¶´y5´gƒ¾ñ=å/Ð×'”Oѹå÷”²ž™û¼ò—陿RN(ÿ=£§†éìGÊߤ3“tzŸò×éT©òaªëR&"tì:\B‡Þ¡ƒ–¦fiò •:q¯®«–¼£œêúÙ¹]ih{Õý+­ÕT×KèóúãWhvyšSêP¼¯ú»aØ’s6§M]¦‰Rz|ŽªçOÛ39Lz?¦½žÊœ(ïP%¿ŸÊ¾‚ÓÊy»·~š¶R¨ç™†*hÇ>¦éiÿ¨>•ù£Þ®Õ40÷OÙ8G_¡û h¶Îk¤ïÔi/„Fê“öôŸÐ©Ÿ¥é(.RÉwšm!ªrÂí÷¿J.R½n—ó(¯äÜ‚FrývêM:v;¹¦Ñ76¹‰vSã~.Φy*ùåÎ@þ]×Fº% Í¡M­£r~à•}4ïdÚÙŸ¥™—”UÊ_Uþ:¹YyëÊN¬£c:º–êú´Á( ý)š,¢}Û¨äÙz»/Ðì¶nN©ßñ¶Dé‰JZ·LwÂÀþ¿Ì)÷›§-hG”ö•QÉãµ#)š:Kãוï)Yßës‹ÝhÛvªï3ár*ýæÞG Ìñ=TFãYå¹Ê«>¦§š&zij޵A{z€N½@ÇÞ ñfhž+„öT ÝG%ð¦ö,ÐÖ9º¿š¦µ4\íL-ÍüüˆŽ§éÈ»Ê:|I¹ |S¢Cç”÷(×ÒÁ}tà#êæ-;ûßS®¥œ”Í4§ªßÐön ]…´3JcU´ý‚2B[Ã4Z©,§’ÿæÕóIšòiä =YI,ÑýÅt¯¥ÏUÐ-†ªý_ý?c”:7OûL¡2Nu}Å® Zc”a*}·9Ë©Ô!{(¥Ë«Ö9]‘³©qe£q›£ºQ™ïåMí‚¶s ô×öîXQ{ê:ÕuT:?^;V½²£×èÈtX9t?Mm¤‰ êö[ºÏ*3Try½2?Ò¨ÐsõœÉl×fòèðt°”öŽJN­·­‘IÓ=š ÐÆÎR½ŽÒõˆç©®O”óSo‡|Þº"´;ûõ™Þ9šÚF´o@{$F\¡òsq©ûqÚÓ;i&¢¬£÷S½2º—&®RÉÇñ>f y|‘îT¾’¹±Gòiûhež„WÕox³Ükö.B{ºšžú ݬü¢ò3t&F§ÿÞÊNý[å«4“V>¬üe>ÜK'¶Q·%ó{¼£ïÐôêælyÓÊ»¨íXC[vÐËÊbeˆ†ç Ù†zþ€UPÉÓõª9ØÖåÆ8%ïÜijæ©äâyuþN\™^„6µ–ê\¤xˆêú¹ÈUz|‰Ê>÷P„Ö•RÕ‡o_\¢Òoã4„éËeôà2m©§zîË•u²WæË;ïë£Ë4û6ðša*õ°Þþ+t¨†N¥ •œoWŒ¶^¥î|©sÅESoåu QÝ7}¼,ûçN,PÉó>‚FÎísÎR©ÏÈyÊRªs2™Wìí¿¤ŒÓä=Êš8M{ôgY¹ê~„–<¹DõQuß3ßµ´»š&¶@;ZOu½eâª×Uº¿¬#¾²QK›ç¨~Þ=º@ÎQ=AÏçëG)u¢Íaù{Š ž—g3ê|çÑš>G‡>G~HSoÒäc4ñÑÞKTòésÖÓ® zx‰ê~¸p>­‰S÷ªë™–is)m•çÞØ*9E^5—ÜNýMVQÙušï†hwP™3à ¶ó*Õu«¯XúUjªÂÐJ~7Û¾•sg}ÚÒíŸb…¡_Ó/„è¯S ©›·×>Ocò»F;òEùùwÖÐ^Kû²ë]+s2¼#ò\®ŸÓ½th–¾©¤º]æzǦ畺ÿF»…¦O+ëè`MÕ)ó©Ëq&¶S}ÞØU@ås•³ž¶•Q=7#£-ió¥º/7G• ´©’F®Ñ“…Tr¥½2ÈÛ ÿîk…´*®47V廸œ—RçPéü='YrlÌ¡ìëÈGkiPÊóL«<×ò8äëèï·sŒ+§Gk¨Î-üJš†+ÐÊþž÷·ÃÐô?Båýì¼[yˆý€¦¥þjì.h§ èÔhúí\¢zžÏS–ƨR>L§Ú”ÏÓÌÇÊ/Ó@`›²ˆŽÝKuõ•yTò²¼©å*š¸•ö,BãöÁœ²¾óº÷»3ÐGT@;×R™Oà•¼~gà9AÏ}–Ï£Wòi¼ƒ§©ìSxÛÇ` G²!Ê<oÓ9h;¶RwŸ>1Ow—AÓ)çj¥;‹QÉYð&®Ñä4u‘VÒÃ¥Êm®’¯§öÌÒ„¥©eš¾ŽDèdÚ¥Ú¿ Ôao¢éGèàu*}ñ^]/“,¥ú¹^Ÿ?Å í« ÑR*sмrîãÝm©ÊÕ0_TÊœ?ïñªúúLxº“”Óä]TúS¼í ´©†Jþ•Wç²êÜ€¥®¾Ü™¼Dû®ÐÎUTòμ‡ Õs¶Â*ç´N#}LNû’…Æõwɼhg Lr×¼1yi)ói›ü»zßFç¤4¥”õÊ T÷¯5ÎÓ†%Z¢Û+ Ù§2oÅû-CuîѾ ÕyûÒw—ó*îPZå5ÚºA¹™¶_¢’æí[Ùþót¨“/ÓÉ´3§éøn*yZÞÔ£´ÿ!ªç‚tf¨Ìð¶^§UÔÏ× ­h°^í´n³«‘¶VÑ×?¦g~¢¬¢§ß¢³ïSÝ7S@§•¿A3a宕»•Ž>JGªnbˆ¿C‡n§ƒ)¯*/+ÓÊ:å—•E4UKe´o+í- Ý´ý•uûMm4T÷Ÿé|±—ã´¡ò!ÂÅÐ4_vrx‡Ž[:z‘&ki¤ò¦ôÜ]Þ·LÝоþ}hšÇhêhßÈ£§ ÞI§þÕ¹¼c›”F¹žŽ,ÑáÍʇiàfí›]ÙØ4‘hOWÐÙÿFgèt ÍLÒ‰7”•t4¹²é…•Õýôƒ·ÐDšúت¨ž t œ>_Í3Tï›ÆŠ ­Ðçâô;†>¦åw¾éüZ(«[¿9«²ßŸÙ•¡uV9O[×Òx!í_ ©­JöWæúÓdÿjD~ÎCWiê4ÏÉ÷%õ 6¹…î‹Ó×k處èìÛŸâ•utú}:õ'4s†Þ¾²zNõÀ¢òe/M]¢þ§˜RÕ“êç9™¯êí«¢½—•VYqc»Ë©¾_¶¥•%TÖÉÞænY¦ú~Z—¦_3м˜O_6T×÷»u(†©Ôý:uÿWÀ@Þv˜>¿Hõ>ÙÎ0ý^uõôνqªó{ëÎÓ!Z_F tߨ¦**¹´N›,¤—èBhJ¡Ý“æxM¾I%ÿÙ+ýÜN;²LuNx×<í,¥í[iTé¦2ïÈ«ûઠaà¹ôù *ù]^ésvÚÁG©ôx6(åº{ FwÓìv±×|^érçõKÐ×P}nÓZ@õ¿_Fž ½2×i߸LužùÌÏ(o£Óוê¾1ý têWèätdM‡é@3uûý7S?/7mVn¤2gÐûBš'-´‡Š¡‰]§ªŸÔL^¥ÓCÛXÍîbêçŒÉú>3O‡ò©Ôó{ãVÙM{6ÒÎmÊ­T¿[×P™³èÕ}'2ô@ZYFõ¼Ég+` /OÏïÔyNG¯ÐÖz*9…ÞDŒA{`‘>‚æÛ†ÊºÙÛ,ç8ÍW©ëó“\YoòªsÛÇ·Ñ™6å›ôÔzFî gþ1´’oîÕuMuE0ëªë3ŽVÑã–JþNÎk´kN¼L{g•sÔ:O}çXghⲌªû^ÙÒ0ý5û"ôµ W(khÇ*¹GÞøYå9šyœÎÈzzò2ÕõýÍ4ñ6Uý\æP ÔõØ:§ËÈûÌç¬tWA›}ŒÊ9¢Ó×:cëhâ‡tôÈ›´tâ:þ -§}”­tà=åEªŸ‡®lüÊõÊ5´7¥Œ)‹”y´§‘fo?Au.½¾ß´¤ióÕý6‘R˜'´HÕ\}®d_ÊÐÇíŠWÿã”\-ï×-}"LŸ¬ Ò/àÝQAuìÞ²ÿ[ÚÁ$x“¦öÒþÛ¨äúyåÈ[ß@uþêÞ ýJúý"§®£ÐÏz­~þ•uŠ·uÕõ}ñ$Õ}'ƒªúíéÝTÏ×ýséJå]ÊÛéÐ5ªëÞ XP)un¥Ò§œó *ý¤9ÕuK×éõFhÏZÚ9G;¶¯¬ää{[/P™ î•þÜœ)z¼œ-£*¿×*¤zÿÆå/9_*¤;•ß A³%L¥_È«sªCto!Ý?G땇côh%•~o´šö^…öÔI:ó:ýÕsõóåèGTÏm ßX7¿]¿÷oèTê…r.*”›i÷uÚÙMu®S[!m-¡:¯¢q‘Êü:ïþ ZSEU}F`RмOTнa*s¼2Ó+ûŸÞ–K´ã<í ÓĴ㇨äªäŒÑX£²ª|ÛZA[ª•Û©ž×Þ¦’_éÍ.×½ÆÍƒrž,¦ò>ðv§ñkTÖ™^9¿óŽ>mÿíTåðÚèYzÔÐ2 MÕuyèN=wñÈ2=¡'Ê”åT¿^'ãTꦽ٘€¿æVÝLÛ®Q™×éíÚLûbTú‹sJ¾SÒý¼Þ¢z¾ó ûõìuÑ m¥²žÈù ¬ûú2Y»åý«ócZ–a µåìí¨¤RíêWíì¯Ð™.:všŽ^¦ú<6£ÉÏÐÈuªs¦Ž¥©ž;'çöÙ0Õy`O,Ò]q*y¾ÞÆÚTNÛÖÓž M|@eî˜Ó¦›éþ"ªæµ¯ßW` ÇûÔëÊoÐÙ1:ó†r5Õýa™K'ÎÑÑÓ‘E:| M¯£ƒ»¨^Ç;iW%íë¼î³<–¡òœâÕùŒá%ªózÜýÁér]¿GL9ý?èÔGTΛ¼úyZåÆzŸ®€Æó8÷/À@Npà¹ânÚÛH[7Ò%T÷ÿžƒçÌ'”úQöœþsï|ÑRU7avGhC´MÝМ\ º¯udƒr—rŒŽ6Ó±<:¾@Ïü;hg÷(ÿ:L3¿rõ¼‹zå:‘VÞMÇßTÖ~Š{éØt´€Ž¬¥úº94¯ÜBu}àÀeånªóóS‡h OÿGJµNK®¥‰u4ÞF{+©ÎÇ×óšd}ä=hè÷ésah^ÈPݯÑtf_ö‘¯'§¬c{7)å~™”ûÀÌ~:ý+tl5MŸ¥zßÕõè¹UͲ?#ûú^·n¸?Í+zdvÚ%ÏÛ’§çlØøVÚ=G»ÊiG%m«¦Ñ´ÙÒ¦õTçÞÊC‡î¦úý2ù´CEÐH?vNY¿OÐÌtb¦/ÐÁG¨î«‡¨ÌÛõêºô²šíqZŸG[äyª¥8ûçP•Ó`%WÉ«ëýFiƒ¥õÅTê^½•aªëo_¨ z^Šìc{[æh¬›ö¬¢ñ´¿šÓáÛéX´ÃKÔå ¨9‰öd˜ÎÐËTç‘Èy”·)BeÞˆÓžy…žú‡tv†N_¡Mº[™ù<¡£‡èÈ:ü1M¿©TçùC·ÒÁí4õ íŒÆ·ÑŽ«4¶†ŒÓï.Â@¨®«;¡ò\—³’Þ¬nó&Z©÷Æ? Ýk¨î ŒÌÑ“çéÁ++ûRxEußKp®ÐZÚ‘}Ô×_«ûs—¬Su•>7S×1Sg”*ó¬¼rÞï퉋òúÍüÜGÇj©îãÑý»Ù/Ëk¢UÿSµ™èà&*ó½#TžO¼.OSç1È~Wæh9ÍÞ|^¦Gdÿ"z•Ê|;¯Ì•öÆkirÕíÿ!÷ÿô÷éÔ£4#õ¥“oP™[ï}›Ž¼C‡Ëhºš”PÉåñêùq±í´¹š\¤/ÌCó¸v:Bu¢ÎûˆÊs¹«uJ¹Ó¼´HDhô"´½Ñ•=uŽN]¤™ß§zžÒøEåv:¦£÷Ñ‘Zªë¥Ò?¡ƒ³4u…ö§©Þçü]ol ìsŒQÉkòî±Ðd—Ç9¥/ÞDj©œ—y»24^BûŸV6CÛ¹šç-´³£4ñ íX Í+†&Ö@»?’UõØ™¿„æ¥bh§¾C‡¥ÉF*y'ÞÞ%Ú³•¶Ÿ£º/ÇÍ9vj úϺ3Lež„7u'’÷[¯²ªLY ët_^Y©ßñ¾Kuž{f´’ïãM¾MõÜ^+¤Ï¿¤?Ø_E“Ë4ý£jg&•aȧ:§ŒÐÌ)e•|zïø¢ò^ȯVõ_©s´MVÒD=Ï)×P™ga»Ë²v–P·?¨s ¢«©~þÑçJzN˜ž§òuMM­+¤G©¬½ƒ)hgÿ#Íü€Žl£‰JêæT8{ÖжbªúÎí‘Rz°’Vh²1Á9_ž§*ßW×SØSN‡RTçšõ®¦*ŸVÏ;Ôõ¦­”öì É½Êí¿¦´›•ÕÊZe·ò š=ÆþkvÒÁ{¨Úç°ÙÇf¯©-Ëþ÷ð£T¯Ãôü?©qêû^™§n½ï”ügïX#´Íç©Þ—W×iû4-çhÛ*å]¡çiâaš|DùÚMÝA6ÒÁ*:ô!.¥£ŸÐɵ4ótêótú:ó³JÎ äûµn§ºÏRr€œ>×òéá:°š¨”ûéHZÙ'wæéʹ½ÓÊuÚ›þ1í¿Ludc ´ÙrÒœR¿êկ˷Âôµ8Õ92ÓÛr…J_¯7ùxÚÙŸ¢™å¯Óñ¯ÐÑKTö뽃w­lÿƒÊ»iòv*sƒr®§ñ´ïím ]«©Î;X Ì£õçéþªæ/˜º%Úbigí:GãÏQ5§Ë 6C{úwéÄ%å}O¹ž&Ó´w-=’ÍKã´³ ^O™Çî4_µÐf~š½ÐΕ*ï¡gÞV&”_¤§ÿTùmå7é©w•tö•íÊ»éÌWþïÊ1å—éôUþÕùæ™O'j騥#[iú:TI÷*·ÒsTr£sÞM“s4a¨žƒÓ=K»ÖÑ@ýA†ž\¦õ•tW Ôsí·4²¶vÓ®mЦÒTú ½Í†©ÈêÖi*×ÂJq@™¿îÍ–[å Ñ@ÞÎï)¿¢ßQJœ÷`šª ‘r*9‡^_ÛvAy…¶/Q¯%ïoo!í QÉÛ÷ª¹ñyÃC{éÈíÊ»èX†Nþ€N}“NŸ£’ê=õsÊZzúßйûéë h“ 4QLgÏ+ëèÌûtê1)¢ÓÑÌ£TúÖ½#›©žë2ôˆÑþhâÇT÷Õ´Yªû0Üy²>¯¬¦¹˜/WPÉïô6ÕR»•¹ƒêy:ÇAÕG™ø—¡}ý:÷ýe:}†N=H3»éä‡JC'>CÇßWÞEÇ”OÐÑ{”ªoräC¥¡é­thQùCeL©ë8'è@=MUÐäQš8Aû®ÓžZÚ½™vYÚ^LÛâ´)L-+ÃÊ•~c§y(L÷ÎC»ÃÐg•V¢Oh2r_žÞOÏ|•ºzªû¢có´y™êõN­Rß—u~PC%ÍçŒ]¦:¯ÐçZÈ9M¦•¼qc»£Tö“½ÕùÐ|ÃRéóê¹7RímNÑX•ú)oê<´³¨®ã>]­ü}“N]¢“¥+;UF”'èp#uùÂÞJ¥êø„¦Êi¥òiªçæèóæÎ‹4º‰ºu³ÓÍ;¯ÓìÇØkjÂTÎ]¼ÑUÐÎý4Íü%ÈP=—kôAš.¡27gmµTr!‚sVÒT×wFÊV¶Mꄲ/cÎpÙÊ6ÍŠW¨¬?½’Ÿäm[GãoÐÁ2:ô0^MGn¡ã·Ò‰::ùc:õ:SDçbÐÎm¦³/*w)ŸRnW(^ù³T÷ÕLRýœ9þÒÐáš~˜¦fi/uýuή³Tïç´´¾†>[óT¾nàº:ûÛtf¾•fZèÄÃtt£RÕu O+cÊ6å^åcʇ”÷(o£é%å‡ÊóJÕ¯"õßÞþ%*õ×ÞÄQêöwmµ4Ò@Õ|Ñ@wáM”ýO¯Ô¹xu}—ôñyå¼ÐÛsÚñw¨œç¼ŸŽ¾EG.)­ò¬rDW>Du©î“ú ¸ƒªy7ÞÞm4ºaeŸ]Ìš½<†lý—KÔüž²º¾¢-†ÖÕß:õÍéÿLuÞAæ¼2Dõ|iÝǤsª‡Þ¢ƒïÓÔ{4p¾­öí\´³½ˆú6Å“¥ôH%=TFõ¾‹Î;’§Ù5Oë•òyvêTs°B)ϲ/ts7Ð&C›K”×``Þ…Ô{“h¬”ʇFúò½ñ]ÐN§•ߥÙËbÎôj£©³´»†v¬§±«ÊsÊ4•¹Ô¶yUyZöå2úû!h*,•ùÞ=qªóðd?ÞÛPB›×ÒŽ Úw™&ß§ére´ÓŸ¥Ã? n~˜³÷4í›èÐ}Êzh_Ì~ßvGöõ²£[é CÆiC9Ý¿HŸ CÓÓ­LQ©ãõö了c\ÎwuçPœêœþ 4¾…öÓÞU´ûm¯¢­óÊ*9•ÞÆeZ_BÃTçÆÙ>“UêݾRFõz¶eMí\Q;ûéÌß¡™j:^Aõ¼G=×N×u·”QÉ«óžz•ÎþWå¸RÕÉOwÒÀ¾õ;tâ-åCtd •º?oê-ªó¾z‹i¬Œ¶\ GK©œ;Øo[h¤nÆ«úl¦™ž;>V.+¬¼Do£»h`Å­4ZJÕy yÄÐ#s´/Mò îï5î¾âî3s‚8m[CO.Ò@Yˆn SYŸ:ÍW•)õùæá4mZGõ¾jÛY¥¥±í,§Ý Tæzù4ušJnŒwd5 <'ö_£‡ÊiÅ"4•ñ¬Ÿ6Ðå,8wZ3O_6ôµbz@Y¿@õ<‰ã¹J›óÅÕ9KÑ ÚºHÛ–iG™(ëâŽ+Ôå:%·Æ+}©ÞäšÓö@ÓRDÕ¼];µžŽÆ•ÅÔ­K¼kh! ôUghO=mMÑ–l¦ÇbT®ÇÞyTÏñÝSL_X¢ß±Ðü~˜ª¾©@ß¡>h^ý)ÆhK#m«¤yTÍÝ2ý_¡étôh_ï S‡èØ2Õy>£wÑôf:´ƒº~;çÀQåÃ4¹žJÞ¾·ë®¥óôÐŽ@³» æÓ4o§aªæîé¹°ü?µ.1¡}¼‚êû¥®‡©_¦2'ÏÛ^ú·Òžþtú ¸m¢Ùca¯9±LuΫäö›¶r*9)^“©óC³uMf(CÇdŸNçw•RÕ_iæèáí)¥’+ïˆS™'ŸsŒí¤#Ðñ»•ÑéKeþ‚wöëôÔŸÐ3{éÜŸA;öM=@ãW yÅÒäehû®@“ýøæ|ÞP½ÿ¯MÜG'·A›9¦|–N4ÒÑÝ4šOõ\pÉÍóÊûÝ«ïSÙ—9çË‹´ÆPݯ¡rôÿLòËá¬z®Åv¥Î3:2O hTÙ·‘Æß‡6¥ƒ%´¨ÜA;—¨Î#>YDÄie! \uî€óè"õ9´blŒê¼¾ä-765M‡>¡#éø—if ú:ókÐÎý€ÎÜEÇn§—¡ÉÆì«—cåìÚHõóÉ”|ÿgþOöþ>>ê;½ï§.qÔ-qÕ-q©C6ªKÕ¡ŽâGu‰ó‰Ã:Š—8Z/ëeÖ;Æk1kËXËxB0ºÝÏŒFÒè~tÈ,q>ÙP—øG¶ŠK}‡ú§úG]Õ%®ê qèö×Ç™ëó™óº¾ §ó8çqþ8ûÏóá]/ÒÌ|?7×õ¾dnÌðYªï-[htž¢&{ œ³²ˆ6„©ÎO\„6ñ1ííRF©›ƒîl’󑆋Êsôh~öëÌ@;ñ4{Ë¡}yšÞ *÷|NÛ8MÿiÈóþ€ÝGki`ŽB=M=LûÖÐħ4^I»/S=/LÏÓù© iªç ÉsÆ[§J¨¼®¼z_§çˆîT¾¡ETͱä#·ÍS™‹çMXš”õ“ä³z%$ç9šÊ§etpM߸¹:·gìSšYM'Ú³ÕT÷Ÿ&ghmÜG3ÿ†¦Šh_Mþ€&ö++h×zÚÖEõ|¶ò}6û‚¶4´“:¼‹ê>îÞ‹TÏwsÜœ ] Ðfþ+ÕûÂÔ~š|”v-Ò¶0uç!Îçh`ßt8LåóÖ;ô#h§?¥£—¨¬on©î»Òû ™×è i½@Úå•õˆwO„î( Ùm­7pÈݘ[ÞæEÚºDõ9vâqšÚLWÑtŒï £34ÓO'Ú©Q:°‰º9zÎÊ…¬ÙmWÏ´‰qÚVC%ÃûJ9U÷fƒRÿž$‡Ñ«ëüÝœ?§ä¶xãÕОۥ, 3 Œ*¿£|ŽNí¥“?EÇRJŸÒа²šrqâ4ù™ò^ªë–õ}©žÇ–ÊÙ˜¦usÐȹ°·*C”A{ú7èT©Råe¦ãŸQ]¢•¹¾ÉmôöÚ½Jþ±7ðs»¡ÜLenÓíWŸ‡-•y4ºÒƒKôu¥Î÷Wóý€z.Ýóaúò´ýr^R¢*?/˜lèsqhž Ñ—´´bî- 2ÿ=g ­)¤y¯•4ðüX¤yN]täÈîGÍôÏ(•§éL¿òè©»©ôwxÏ gŸ„vò+tâ1:RN‡*¨ÎYxOYͱRªû!¶B=WŦ¾D%·ÓÛþ·Ò޵Tú¼Ñ•sk¯®{zÙR™7â4›"T¯ƒ}B›h›¼¾e.œ·»’&:hòM=û‰ÉAy’wÓÑóË+û¤[:ôàò<ö9êú’9僴¯vy 4+¢½ê§ÍË!*s­œv|ŽŽœ¦êy¬ç[©ršCO¦iÇeªææ˜Ô'ÐÕ.ïñ9ªóVš6Q©?òªœk{:F3)Z5õ|#}¦ÿ˜‚vò>åÑÌPªyË™·• œUv*Ë©ôWåÜAÓïÓ¾ëT>7½ñ‹´ã•¹ÞXm]K—h༮œþVšŠ ­-†¶ë:m«RîRѦbz´hyäÓ×Ë©ä$;u¾{ nJú ¼)Úk•—è`ÚÁqÚßH“wÑX„F¯Ðš4Õy·ß ÑýT¯‹tŸb»yå´a=¾Hß(¥O@ó]åçÝg‰Q©7ð6Èú¦am§][hb%•9ÄÞ©š8Èüžr\Y@ÇåóEæVç,TÞ£\CGÒÊ'éðåít(EÓQe>íœêþè@~`í™§íçh[mI]ÇÙ¾þ ¥ÐFäû9*ûçFy¾4Eäûß.ÊßK¿¿Ôý³ym‰\¤GVS}^$ýpÞÎíÝHw*›¡wQ×äì)¤nnú‰y:~'8Ouà¾%˜;÷7Êu}Ï„¨šûi{·Ðå´:Muž¹Þ/µm ƒOÐÌå4•ù’9ÿšNWC;øÕëìã¥Ð“÷qÿušš£]רÎÏ«ž¥¯X*ý^ùù{×Ђæ9å¡-¦-34p¿¥}I:vö ùzZ×ç蔾o_ŠÊ< ¯ÎùÖõ::§Ü©÷ë2Ë»‰îÐg qç/ÚW ­Ë§ÒwäÕÏÿVyn$R†©Ì…óJ΄wòhÓki Ÿ­Œ6ÎÑ#‹ôõRh^0ô`9•y=ÞΪîs¿òéà:…õ’z.ÛEPçý©÷¶ÏS™¿mFRÐÖQµ5' ²ÆÖËŸ'ë¥Y?Ç%ß-)ïÑwèÈ'Tßkº{8gâ3*óܽ3´c^YLÛwѶ ÕùxºŽ^ž÷ÞW¢Ð¸}†S÷E4\¥ÒêÕç|Rwâ´§?¡ºßQꮽÝtï4ß2Tú·½Kk—èñ•¼6¯Ì1uÚ=òçì+¥2oÚiGÏR}¾:üªsÀÒOÒÁ§h+M½«|K¹‡ö-( Ém4ñÿH™Guj`¾^)m_¢rãm©¤z>ôÉÕsß#iªûÎô9Ô+qZ¥ŒÌÒ:C‡©~Ÿèy-2ŸËÛ¢ñ4¡ýOB;>³¼zÎÂÔ¢C+hó-†æk–J~‹÷¸ì›ã´£€J¡7U íÔß§2_ÑÛq•¶^‚&ûöΙ´ÐfjèHÕ¹U}£T^¯^w.slžJ=«W÷y«s€€¿JÍ qº;Ÿêþc™#à•¾.¯¼.¼®>ÛÙ´…¶¦hWš&Ši_Œlƒ6£PéòŽî¤#ãtøºò t(ê|û;©Ì_õJ]°Wç£&RÊ T?Tÿk`.™Ì)õ¶®¡Í¥´±’ê9•Ç,Õó)ôÜÃjK_ÏPýz~!L¿ë4T÷ÊÜ@§‘ú$¯Ì·ðV)«‹©ÌqôÝB£+¨›#ìÔõ:Òçàí¸BeÿâUóí™qzúI:Ó@§óèÔÍ|Kù$x„ŽÝPÎ(ÒÑa:¢ÝH‡¢C»izŠZå]tàÚÿ!M}ö½C“ŸÒø&å½´g‰vo¢ Tæ{Û mYOýs±›«ÎˬäÆ{u¬Ãmy˜Êy¼W÷õëZ=·OÎu¼ßUJ}¡WrŸ¼Ç•²÷Æ*¨zÿر+ôÜýôô#tòktè• oße*ý»Þ3¿KOýkªs¹¥ïÃ+󟽽KÔåö;U¾Œí¬£2ЫûZlV©OÌYžUú¼»-m ’æ•>f¯žs”ý˜õÉ?öê>nÝOŸ£RwîMJ=Z M×ÁÀ¼„hœ¾HMÛ5:T­ìkœFú ¨ÜgzOÎцóT¯“^ Ògçmž£-‹´µ@Y©œ£ªÏ&ãÒ›¢}ùÊ/*#´£òQe£r\ù˜¥ƒtx {„fòéd¶ÞÅLÿ+zê—¨ÌÇ0ÇíÿSÛ}‰žˆÐ½ùt»¥Ù‡7Cª×ùzý[|ÚÑÖå•{8¯äÉ{õ<¥ŽBz¢ŒÊ9«Ó|=BÏц8m2Ôß»í¢./Æ™(§27ØÛ•ú¼î÷nª}­œªû³+L¥Ë[·šÊý™·¥˜ÆVÓŽ‹´3JåÜÔ«çÐÊsÆ›PöURWOí*ö¬rö$=ó_”'éé~åôÔå¯Ñ™$þoŸãå/Ñ©Iåv:y–fþêæºúçèªåýÜþ•´ÿúyý?=ç¨î;”×—·a ÕçE*ÿ%˜'”¡u оZ”Õõ燲ÿ¬sŽF¡9–OõûAï¯F*hz¿²˜º9«{hªGY@%¿Õ«ë$õþ¼aƒ²Êù»WßGgÿo9%ÿØi¿a¡y©ÚÌ'JKGWS÷Üð6S=w­²œ~wšƒhKšvn¤ñšj¤rN땹…^7H×W[¤z‹YhOR®¡§ èL úš>M¶Œì–ZÉüÛj’ß§“²Ï~óçèìeå=tú?*ï§SD'›fÞ£z>ÑÄÃtd€¦‡©ÎUÐu·úü¬}Ž6vѓŴíÙ´ÃÐ}EY÷d²>g³ÿÿCTæÜxG ãùtòx霙Ä>è?÷ú»ÝB;:E‡š—7ý •¯Üy…¡þœ4¯†è~KÛ®Ò˜RõqØŒ|½³¿NO­¡ÓÍtê^:yžŽ^¡C_¢ýP]¤ï[.ÓêºÏRÕdž1ôXÚÑÛH›ÖP™e_ÏÏúŠ|Ÿoþ~’N.ÐÌ+Ê ªç¤ D³§œRÿåÕç‘rᕹÆ9ߢɴwmß@›RÔݯ;õœ}o—Ýžåtó'â´e´¿÷éÙ)zúÂòN?E§º”ªŸ~êÇèä¿£ú>UפWÐþ}41O{RTßÃ6e¨ô-ärË©ÜÏÙìñµ×¤öìa:;¬üôÔy:uü˜êsJ}î/yÊÞþ·hj›ò^˜«¦LÜP®¦ñûhïUeÕ÷cí3Tî%½z®yÔÒÃJɉsšìÇCNWoãT÷§v´gy%ÏÚ+yÊÞ×âÐìTÊëÓ©ë6Mû5˜«c/¦í 4VEÓ@Nm9­Î§nÞ•Sæa9õý^ ^ß5Dè~³¼¯‡©ªû äþIîcÎ÷èÀ;ÐJ¾Wí{lišÇ"4¬t}`Î}ªúÜÍÑ2ªçÒè¹ *‡×|‘êzâþK4µ ¬§}³Ê=Ê ¥QæÑäEe•|Fï¾(•þy§Ù]N_Py{õ9¤^ï%«©Ôí9íd#íŒ@“ýcs>eiÅ=GkC´~‰6¬¦=TåÏÚÉ6ª÷qãÛéÐiåzšzŸ&Þ¦½×¨®í(§±ªê}lk”6ÑQz¬RYB]·S=¬Ôµ;ó%v*eë=P@kWS?¢êµ­äyx3©^Ïê9½e´š§#Tæ&x£7 M¼ MòêMµÓÿCùgÊß§ƒÛi}ŒÊ.Ðí–ªûnSªÜ¡ß±tO„êyb’wæ–C=—Ëî^^³;šUòru½®Ý¢³§é韧ÉRúR˜¶ÕS=§YçvF»”QªçqésM©ÃñŒR}ÿ®u9|·Ð¼šý9é>O{¬œ Óš¥¯CÓ2Ký}âÍÕýd¦4Bû>¤“§¡=¹šêusA×Çã”÷·÷eC_P7÷ËYW ¬¤Râ­OÓ“K´!¦œ£ºArä¼±‹´kí=§\¤üÖT׃H¢7ݨ¼Ae®w8JG®Ñ±õÊkt¢ƒfʨ¼n½Stú×èÌ™¬g¾&n^ÖÀÀ¦µ4ZFW*Ëi¶0ç¡Z¥‘2úF>Ý¥¯”R—ý1åÔ}-yIyôèzÌRýùÝ|¶Ä¨|n{c]Tò¼´ë"•s¯®ŸN\ };iê:0Le=îYKÇž¢ã÷ÐÌûÐNÿò£Ïq^©îá§‘Nýµr£ò_(_VªçEà\ø»Ê>ÇF'Ž*U®§ã·Ñ±Ï”ÑÑÝÊ0™QÞF‡¯)[•Q:TL•ïУÊ*Ú¿NyuyN=ïQßG«¹¦Væ©xÕ>Ûºu ³£Œêy³zŸ™}Ûçl)¤:§Cê˽’ÏàÕõó¥TícL©ò«Jƒ]¢³4™mMUý?&¦#54ÓJåÚ;ý'жªs­ôzQßsT+ŸÓoh²¿öœ/åS™/í=™G›”ò:qÚx+í¸DoÐ#š†Ú¶†&ž¤ƒkèÐ§ÐÆ7Щ0œ¤îsÝ9QIǮґM4}Ì£ºÿ²oMÐćTç°t¯¤zBÃvªûát¿ÊöèÔýº®ÝåêI޼ÓNÓÉ tdÕsÇ$¯ÊÛ?CS—¨®gô?¬¦%´)LužÁ±:ªëÉ÷ÏÑmaȇü®¥ÙÇ[Ί%èc›§µiz´X¹°¼õ´é¢†êÿ˜ç•:Ǽ²@Y¤Œ*ãÊŒÒ*çh›R÷_u¯¡}+©Ê}´•ªŸ7ñQhkÊa`¾ªäß8m|•ò ´õêò6TГèáo~&Nuª>÷TóôLM„êÜÆÀü„Úy‘ʽ™7±&‹hj ~P)¯áìßO÷•Y9÷ôö}JûÈQz Í· •ù)^étÚö|ÚœGëJ¨ëósê9—»¨ë»u>géo… q÷|úsã9åËåôÕ‚å}cŽÖ¬¦R÷êÕóc%7Õ+ëbolvXÚµ™êór³›4ÊÚ·Uù”²R¡z>û@dy‡Þ¢jfƤÒßzK3?F'ß Óß§§ŽÒÓW„vê/éä tbžêu{ú=Ú?L“QÚ}ž6¬SP}Ÿür„.¡Í×iÇ(íZG{â4qí»sßôý£¾k]TVÒ–98ç(¦Ç˨ä x„é^õü燳²”Vº¿œJîŸWr½-qÚYLãeÊTú7¼ú}+óù¼étd œß¦—ÕÎüúyÈGøc:òC¥¡é¨ž Þ¿HûÎÓøUÚ{žvÓÆÕôpÍÆäÔù¯FéIy®éÜ é#òÞ¢Ùc¸)‰Ðï(å¼×‰RÕiŽ\ ÍÍPç^[é—ñºuZS=ºDŸ+€æˆ¡]«éøQhãSJn‰w„ê¼K]×Èï.¤­×éèQšé¢“ÃtúgiÌÞÜöÕÊJÚUª\¼¹ò¼ð&Þ§}wR•lKiú-:ùÊoÑé?¥3(ÿ¯eµÉe#Uó/lÕ{5ãú±_Šdÿ{µ>4É·a /BÖ^é_ñ~ÃÐÓwÐñ)ªç1 Èý‚ä©å|’/¡§ß¡ãwÑ‘ûéPœê|e™óáUó|lSš6n¦µ²ž?PLõþ9»|órÖ•Óè.ÚY±¼î~Zr·¼Õ1h:G©Ê±³c³t·‹èD)u¹ ƒõ´{=Õ÷ÇÒçèÝb鹫4¹‚F/R¹§pú/D Íl cÐaåÐÝtp? ôŸ¿¥ÜO;wQ»¢œ§Ñ«4Ð'£¯Æ¡‘ºxïáBªëbk¡MŒÒš2hdÞ£Ó¶­£º¯²um©§:¿nI™OÕy•)5ô›–ŠÓ¶UÐf6ÓôåCTç KŽ¥W×;5ÖÐC•ô…h,Q]¯Û¾…v—@;}ŒNþ2ÙJu.IßZªçVK½šWçÚMS—‹ Ÿk^yxõ¾-ÞCe~†Wò$œvöUšù Mo ºN]ÎüõòßÏ„éÔ_Љw—wìašê¸¹‰³Tçh¶ÅhË%MQéDz Ê9h²1C9ÝFÉ©vêKã¥YÛå}Ô´¤”¯£óßê2TúԜ܃!e•¾$¯š³c'cTçèú~»ýbêÄG©:ï ä+ö¬¸¹ÝeTß3Ä.Ó¦­´!Mõ¹A]uy€Îª0ÝSNÕþ'W±#B_4ôå(}­€̧‡Ê¨žg¬ó‡,åÑî9*¹ÞÔ9:XI‡¡íÒÎUËëêêêÃôH1=»‘¦ÒTçZÄ hçuÚniëzÚ¸‘Ÿ§Çòhu}ÝP©ÿ°/•Â@ŠË«qù5ã÷Ò±Géð=4=C}GFùXGS? ‰´+Ÿ¶l§2GÜ+¯coy)Í–zÍóªë;ª3ôä<Õ}¶ Ùõ¥i±T÷1w¦iü4ýÜûð‡¡=,ëãò}uÈ=xïh§¾GöS½?è.§éÓtè}š~œêuý@†öŸ¦n(‹iß*÷ÞĽ4þ í©¢«iÌP_ÒRFåùã^£Ç¯+©Üzunß×"´JYwJÝSNy]D‹¨Î›—{6ob M¶Ò¾kTòc¼ý/еÐm¤íõÊJÚ\O.ÑÚú]“ýzîþι-BõܳãeÊrešÊü¶œªûü$ÐÛ§]Û©Ï‹û·ÑôStøS:ö>ßD3ƒ0p^¡Ùc;¯©(¢5z¢ÊïÏÛµíd ͬ£cgéðN:PGûvÓxŠöÚ¡Mš*¥žŸq<­Ì×ó¾l©ìŸzκEÚXBÛÊi×uš¸Dûß½¹ƒ?T~FGBÊÊwèè~åÛtl‹Nœ¦™6eLù.zXÙCgúèé£gzé›ÿ~ï>hÇ í‹R™Óë ¬[,Õ9¼2÷Ýiû~¤¼¡¼J3wÑñi[>mWv)Õz¶um¹Akò©:ß ôêþ^y?z;CTß/'o£}rþÔÿˆXBÓ'¨ë³ù>MäS}î¤sŸ¥.Üër3¶‰:ÿJï×äçåæ1Ùö•ùNórœv^¡}ÛèÀÃt¨€Ž|@ÇߣS_§Ómo9í¹Nõ<%©ôÆvÑÆðòFò©~žeã#r>·@eåüý¥4)Ÿ·Êª÷ׇ·,«y‰N–Ò‰ót|œê¶h¢FYI¥>׫û¸u_[ 6ÓCQú†RÖ Þ—ç Én#rº÷ƒSæ©zõzLï»zæ¡=ótòOh&BÇ^P®¢Ãûè`•s¯Ìg÷Æ ¨Ì¯ršU!ZSúÿUíäeÚÏ*sÙ½íÍ4¶•¶.QO¦û‰už`m%­–sšH Õ÷Ùÿ:çïF Íü#:v'•çƒWïWce´­‹žŒ*Õ:@žw^9õJެ÷p9Õ÷T‡Š¨ê7¶{"Ô͵p–ú]Ku–êG³á04;,UsRÌ-TϽÕý6'Ã4ºIYª¼Lš©®«jZG›3´cvvÑ.C{º¨äe{%Ò¨Ãj„VöóN#õkÞôÕõ¥j„éë¢rOâ~œf~YyÚöË´y •z`§9¤¬›§ÑEÚtƒ6[Ú2JóÉÖÓÄ£Tî+LjÜL‡Ÿ€v{˜žº‹N½G'_¢ۨ주éBšº&Jh×*ç—Þç,4; •œw§Måk!hÇÊiï.ªë{äžÂ«óSê¢Tç¡îÏ@½ÔÓȽ©·w3íÚBݹSêóœ¦ÌRyîyOªßnþdÇ.¿C™í4É¡üqÚ°HuÝ„¾÷Ôë¹7 ­ßBUÎ’ºHûSTç‘Ë~ÐÛ]DÛ.+×P×?ãÔs 3ôä,ÕõWGЍîKq¾±D÷•RUo¬ïs9÷á ä`»ç³s—¡z_ºW)ß§·~޶¬¥ºï@îµ½Éí+¢úóx C9¬|‹~êå»*h¬ˆ¶l€ÆÍ+rŽìPÊù£ÌOóêºÁ}sи<gt­²™v­§q:y»²ê¹ýó·-4O*¥ŸÕ{l5•:@o[ Ú»iÿ“4þ.í¬¤m«éÑYª÷ Ò‡ï}ÙRU·˜+âꛇ./oËzïh¥2×Ò«óÇ…öì7é›ÿƒê¹¡zþÍP•>0o[%nQR¹ñÖ,Ò]qhž5TÖN{ú~:™¦úÞ:õ•¾gog•>Ro´ŠZ¢ú^ûÅ4ržèÕõûõÊö"ß í‘BhÜzì9eâªæÚÙ!:º†¦vS÷Ö9w‘h*ò¡ª “Åtü‹tècš S=¥»FQn¢]óÊbe>•ýcÎæåm›¥­Å´ùm¸@õ纮·~E›¡:,{ý–SæQx%Õiܽ†SçžHÝ©WïËåüÛ›\£|Ú3ãtú?P}Î7´†ê<ÌÄuÓÃÅ´:¾¾MdŽêù|2ß<8¯‡šº-Tϯ–ó8§-\Þ¡Ñ~é«i:GëhƒòHœê<[™—ã}1 y/Ù¬¯ÏÝÜãK´ÙÐŽµÐfªèP¾r¥ò6ߥ,Sî =Û?ǰró縉êB•GKþ–¥¬«äõ啾‹œ†ºú©§öêœàו•4£j?nå÷Ÿ³4ëW²_ßD7Sµþ4òüñªyRÖåw:;"ËÛr•6® ‡ÓôÕrúlWä<¡µeTÖGÞÖÚ•¡=k–Õžû }ó^zúºr+=¥œù:=A§i`~èctâ.:š¢.¿ÈÈ­ˆÓ–]ËÛXª\MÕ¼&{²”ê|ÇãuTž‡vWyŽx£— M}B¥¿Þ›˜¡Ý´­Êp¯ÎÿÖïw=?i[4Ûh¤ÚÓoÒÉ;©þ¼^E‡J¨Î{L×(Ë”*ïSæÑþ)¿Huÿºî›‹ï£-ô»J=Ÿ^êü¼®¯Î©ç½—)Ë3TÏáÓýÿ.O[´gZifœê¾²Ø*h%×Ê6JB\ö›)W§ ÿ{ß"M¤nn×ÚvÊýWι¼á4þu+êyðºïWæXyVÒ&KÕºÌô–ÐäYÚßLÓt¤‚Ží„vì=ªsàt_iÿÛÊÛij=í«R–* iò•~ãœÒ÷§û}‚khÏZ*ýÑÞìc?gkm.¢úó]ßKûûé´²ŒÜBÄéëå´‚þ¼ò}ÍR9óJ¾·å•¾ÂÀÜ(9ßðÆÏSU×؇êûA©§÷JNN@õùb+CМ(¡ò¹êÕõøcS4S¬,WÎÃ@±š¯däõå•þ §}s‰N|H{  >¶{2t`ŠJ¿¾·o š§Ãôå[èæ :ë.P}?«çîM­£‰+4þ$íNÓCÊýqZ®ÜNMöËæ”×]ÎÚ¦ØíÐÔƒy·ÐÄý4¶J}¾ÓH޼·Ö@Ý?f6Gh× *çW·´gŽ&ÖÑÔítð" äÄ<¦|ŸJÞ7s•Ní£ÓŸÐSÛè™h›¶ÀÀ:èD„¶¬§ƒ+¨Ìkð¾¹êÏ©@>°äÁäœU.Òh m\Cõ¹n—RæÈzýUtx–ŽäÓ±wéÄ}tòyêF§ÿ)é¡§WB{jþU:u€fªoî„¥’æ•:ïà>Ú·‚&¤üDù‚r-MlU®¢ñaÚ[O{6ÐöåÚVG[甕ÛicÙòê-VPU¿l…éÞRªêuÍ#ºÕRϽ;Nåùè}m‰F"ÐUÒÁ¨Þ÷už£íiªçû¶¬£ÍÛiC =Qª,¦µZ}ªsèÀzì%CÕy”}ÖÀ@_{Y=°H_§úܶámž§±Ú™O»bTçJmÎ/PÙŸxmóezBž+êžÌ¾uSU•úM¯ê·üž^ÎÀÀ¹ hßì §þ˜£cyTç†H¡Óì70Ð?ÚíÖ÷é‰2zlžŠPWï눷.D¥Ð÷êçÆ‰ иÜKçñ´}ÒÖBÚ°Šê:ñÊ¥›j^\ » ”ò÷Õyr¿í´2oÛÛgiòª×+]Êö*óĽm›h´‹(€zbOí£“ß Ÿ.ï`JÙE“•JyÎEë Ù¡zÞ€ÿÜ‘ço\þ9±V)ç÷åtl®¤ƒORÉ¡ðvS½úzšl[FÎç"t×=XNÌÑ“«ik)•|F¯î˼Ž.B;~?y’¦«i=M¾KeÞ©Wæjz›®+×Ryž{uF¶]ÉkÚWÐîUÐ?Lûäs:±‰JN†WÏO<¼ ÓCyô ¥úœá…0ýŽæË!ºC¹?J«/ÐúyÚ\L[G©Þ_$¢©U0ç~h–ÊÏË«û¾dN‡SÏÃöû°}KÐT–C« Òâmì¢Ñe=aé‘=PB_´00W¼:B]€Vú œ:[É7ð¶ÍÓökÐŽ_¦úùpÈ*goîÞø²¢•aÚ•¹;^™Cå­ CóJUy©Fò½r>é혥ñ=´ï", ~žŠ8¶†fVÀÀçsj\y/Mn¦]qÚ¼@u™z¾[—7àTùóÖ͵Ñç«Uq-¦-«iûZÚ§]—iünšˆÓä½´ïš}yæ¼FGJèøc4Vþ1•s§ýÞŸÒéótâA:¾šÊ½’W燹I]Ê|ªs™õº¢Ç*×ÓîzªûTÛ×Ѷ´2BežŸ7ЯWB£—éá ÕuoÐ05n«³ÚR¹§öF+ióZÚRCÛ—hö±”³³žön¥qùs’ŸA[Í‘h§îPþüLù‡4ó¨PÞKGž¢é|êúöœý?¤]Ú£ºþüi ;UstMõu9.²ÎqÚaªë™÷Eiy•ÏU¯^ç7­€æhÔu0vàGÊ«´m3mU¶\¡Í5Ê-´ñšr^9K¥¯?ç¥z¿FÏÑêˆ2ê¹–63EÓ7hó*Z•¡2Éûì4Ùë霯DhmœÊ|&o`îà%Ú±Ús{¨;wrNNÑþÐú8•~¯šŸa¾n Ý·@õ=Œü½½/[úRó,?G—ÓÑ/ùGßû2þyªsÅÇ?£ýEYãG¡_W»ßãkÚìß߸yȲôê9ÊÏdÿ@ó‚6ûs1¯Ê¿WW íÀ>š( ]¨® –}ÓüvˆÊ\m¯Ô#zõyc¥G¯Ó¦+´}žöfhr–öwÐô,]G'òéäN:õÔ¹ä&VJõ9FûuÿMÔо÷èÀ§tTêfdŽ­mÊУ¥´*Ÿ>fûÌRÉò¶Òöí…öÄ,=ûtæ—èT3]AG¤Îdð)z"J¿i¡y=LuÄ¡-´®Ú”ÜsD·C;ñ8Mì§2Ø;QKõÜŠþÚyƒžÈ‡¾ÏM´}—©Î/ÑyÃÙ«œR·é4_5ôµ"zd5Õ÷ÞM«©¬¼±Ú} Ú³I:û!=e•m4óï•Mtø]:°Q¹AYHÃTçËKž®†z¾yà|OÏ-sû+u_b6SY‡x%¯Ó+çÞć4eéHÚ³4»MËå;œ,ÏÚ$ßÌO4-òÏ2Ù$n@;¶D[«¨î÷>©¬_Me½ä=TJÆhDÞçÙ1%9+-}ÊЯ[ªóz7F í_Eõ\ø–rh¢q*ç5^9Ïñ¶–Sécó¶SÉ/ñJ¨7ÑJS”åtà:´Úé¿G§vÐá/Ñ¡Ó4ÝC“š¸ö4Ó¦˜r%•\!ï‘z8œõ`†V¯^^W_UUNeè}5’5°.ÎÐÍšìã(§ª³ ¼ŽÜüïŽ*9¬ÞÄGY“ò\­tyÝ>Ó™(¤2Ö;ù7tæwèlöû²§Z¨Î‡OåÑÞKTæ9¹äu³4ƒ6¾šªþŠ@N—¬½úBÿ~UÿŽqûC§®Co(¡ú9Ú³Šê¹Ì«¡Þ¡¼N}Uù›4Ó¡Œ)My§Råjf¾¸¼”ÍÊ"¥:?[T¾¥¬T>¦,Q~‰Ž(¿¨ÔëÚ;©ÜxÏ*›•G•ÊÊÛé@)MõÜÂíÊG©äÈ{Û»hs”+£2ÿØ;ø•u†ÓH¸ÓfþFù‡TÎ9&6K{WB›*£‰( Ôƒd¨>¯WyyLî\ésœ¤ŽÄ;º‘ŽýÚè*º¯œJ»7ûØÏ9“ ™_ É**Ÿ7ÞØ:¸ß]MeëusG·Pµ^3«• •Ð&wÒžkTß+6Q]ŸTæ[ê¹$¦¾„ªyºà¸ü>uèÐjc…tj/í/¥z=±3N¿k¨šCg$¿ÓÈ‘_mß ùŒŽD3ýYeî‡wJ¾ÿÌ?¡£;éP½²fyõç¡Îë+Q®¥ñûh×5åzÚQA·Ò†MÔå88u¿ž›¨çf.¢‘úmõˆhbóÔå¨ÄãYåÞØi»BTê6½ÒémÒÖzªs›ê¨¬#½ ]´¦„愨šWPÏ!x>NÕëÍn Ó'"˪ÿcä¿¿¥Ï†èKåÔÕÏ;åç–J¿¹WúC½µ×é‘…åÕ9ïº>£!Ÿêûx÷|t¶œ§sTÏ#J즩»éà=tø!:¢ã{h¦Ú³ûè™ët:£|‰fž¥SÊut¤N¹LÓ—èà#4¥}1šØEåÜÏÛjiK>^¤‡.З-Ýü×#T}~›¦rh3»h¼™6oPÊ~P×·íŠ@Ýçø>Z"tbî›7ÝÜÔÛ4ñ1íɧåt_>45…ÐÊü'o¿úóûDõ:ˆæQƒü»!h"ש›ëãlÝB¥OÒ+9ÔÞä;t šæÓáÛèèãtb3üh§OÐÉsʯѱBêròœC›éàe:pMÞGeî‘·sIy•v\S–ÒÖuTçDWR©òJ«WΜ&»ÝÎY¥’ÓíÕçH±<Ú£L|Be¾¡ÓöGhû&Ú´Hu]Z}”) Uù ö·¨iºDUƒw¢ ëäyh÷„éW 4ÙÇMΚm<íÔQšrõ¹_¤½´®¾fè÷þ=ó=UK§Ÿ z_ß¿S¹…êÏÇØZÚ¸6äQ5GÄVE¨ôë9M6V<§î[¬­£jΔ•¼â[ZWF¨ÊÁ´'ÓÐ+„vòçèØÃ4ýM5Òž:¥ìSô=k÷E*÷*¶i=Õsö—Ó=QúÛÈïzyî_¢êÜÊH>Wϧ’}ˆW÷7´ÏÑÞuTr~½ýÑ‹ÐNŸ£S?Cu¿™Ÿ7]F]n´®·}. Í‹–ÖĩεÐsøú„¶wÝch ß4D¢þZò½};hª€Jwp:AGÓT­ßÌäÏÓ©_£Ógè©/ÓÓsÐNÿ^¢z޵›çàTuFæ‡ßR—ßáfÍ’³©™æÖ[𸔦~H%gЩï'ÌÎ*9ÞÑmП¥Òoâ4[ Õu‡2'Ói3ߢ£Qªó4“]´ã"uu•Î#ÐTDéÑy*u)^ùœõê¾÷þ; ­»N_X€&ºŽJ_œ·³˜Ækiâª|ýìù®£cã4³V…v8IåsÜ;•¢cwSÓ®çdÚiÿ4q–væÑæE¥^ËçÜñ2zL¾¾îQóFœë{e~¸·©”6¯§ºîFæˆzeþ‘wø:Uu.öÌ_ÒÓÿfÜs½JYAUߤ ‡¨{þTÈ?«u“‰ÑÔš-ÿÊ¿AÕÜD=?ÉÄåûÔ¹[í”%Tr;sn¡mW¡é\CeÞ’7SýáºÎºÅÐÀ¼£ÿ7m¤]UÔó;\ :ÏOŸÇêyA•Ô¼\º¼]õTæ¡xGj•²ßÝ¿yJ{óéÁ0Vж<Ú}ŽÆ¦ Ke£Ó6]¦ ¡’\“¡}tTîÎl §[èT\¹ŠºyªÎÌ_Ó‰tô2ÞAÓÑÇhàò=xçÓÀ¹äy*çÍ^ÝGZSšõ•%ú]K9õœ?›Ø¨¼Ÿêï»cžQVÎAsOˆnV³T͹1]´ËÐd+´ÉmÙûÙøí_G'‡¡}óŸÓ3ÿSù=ýYRöÑé:õ:yQY¯|ŒNœ§£ŸÐá/ÒÁ©ÌòÆ/ÑÎëTç•«ý¼=§ºÏÔåF:_›£» u}š®o3»ÌÍéæ:;õ¼ gÃeÚ¶Úƒ•TŸI¿¦Wæ 8M±ò[ʺ9Ú¸‰¶-ÞÜî¸òí)§ñ{¨ä·æü>•œýœ=4UIû/*çhú´ò-:\¤Œ);¨ô{xÇ?V^§™“âJÓ™ŸUþ =V>«|QYKåžÁ{¼”꜉數î/šX¤CwÑö**ç#›/Qy½:MçeÚw;þEh§ŽÑÌ×èømtð ªëêå|ÜÛ=K›-Õub{¨ä,8Í¡|hÐÎEªóbô½Âs–~=MÏ­ÌÜÜá´€ö–ÒC%Ðç©5Ú{Žö¹çÌ#t OùÍÄ餼?dΩӖ‡hÃEª?Oö*ù¤NSªÔs¾\VÙ£mÛiwM,ÐÔ'4};¾FÇÞ§™wèähŸ70ÐÇr|ŽÊ|Boê•׋W¯¦¾¢¬¦3…ÿ[Ú>CÕy€Ymú¥­+iÃ*ù³·ÔÏW+¤ês= º—0ߊЗ-­(…VÖ=ÞÌïщéØg4PÇS@ûï¤É4QG㥴û†ríˆÐ¶"ªçŸ¸Nêêâ["Ðì SéqÚSÍÊ&å¯Ó©©ÌcóŽÈy±®³×ý—:·T÷ׯ¨œ§=«iÇÚ^¶¼Ò/ï•ù 9·R=×ü•r*ë¯îWÞ¥¬«„VæÆyUß–‘\9]WhGߦ#óT÷Cô_Vn ‰ ï¢=1ªëd6Ò“ºw šŠªs0[Ë =óþKªsE2éX9Õs]?¥®¯Ö»ž¦¤‰Gi×üòJÞmΨX£Œ(«”•´õÕ¿Ý®û\¿—h²o«œ{£4r )ó¨ºÔsMì™_ §ž¦SW”¨|VYD'ÿ-•ßœ£t|˜Žšþ"ì :—Dòڽ텴u”6UÐcKôh|yÍÓHˆ>m ùš¥õ‹TÍ•7­]оù+t&NuNÈл´÷*­È@³ÍІ*hßü :û =óSôô_ÒS?M'ÖÓñ kVšåÝLG©ÜózõüØÀëíÕ}lÉ/Pýül[¢ ç¨Ê1³µt‹¥“?I¡qsvÝÜÝšê Õó³?–ÿ‹²ÿÿH†J?˜õ}aUt¸€N‚vh‰ª9–æ;a*¹PÞ¾hg¿LOg”êüñÔÝ»y—>Ç]Jùû Ó¾s;ãûiïíÙJ»¢ôsæÚìò1d~Kéö¡ûBÐf2Êš(¥2×Å;ñ6ØC[o|ŽUÐ|ÕÒèzhßü€žÙ£ü5zº›Îü:.¡{–:ô#:ð±ò´rŠÆÇ©_¿ˆm–¶.P»^·@U¿¬ÎY1RŸé=VíÐUz¢œ¦Šh×:Ú°‹ª9©æ"Útžº¼5g›¡]uTæ.zÕ½E`=Ÿn¤n.‹³§žÆŠ¨Ô»x]Þ¶<ç½ ©ž‡vhŽÖ[*u=·´e;•{[ãïoK¡‘¹0Î@?¥ô½;ÍVåqKe®zÎ]4¹UC›ùm:x?è¢}Ðø>ÚYA,R•7n^‰Ó× è‘(M†ÁybªAÎÙ¼®®ÇÙ[Gc+—WÏSý»æ›šÝ¾yíÙE:;IÏìV®¢3÷+u_üËtê¢R×uLÒ‰:2~sÓ*RP#úyê$£®~Ù©ëÄO–Ñ#ù´2Í7lÖì1IÎ}EYËçs4 ƒso.*wÐdí-¢a“¯Ó´Š²ôi¥êÿ0r¿ï•|QobŠ]£#G•—–wbüE:u’N_§3{è©(=ó”è›ÿ Z©ëöÊç»÷h9U¹wö(•\n¯š‡m]>‹s¯2û×ÊY‘O{ÖR=w¬¾’ê}Œ‰@ãæË;ÕúÓÔÚ´vm¥Iå@•(oæ§¡8Jõ<—WîòË;J mλ¹µ…0ïPghs%ÕõÒ—îM<¥¼ú¿gß½4µqyOæ}ŽF9KuîjCD¹DÛº”)*ç<Þä'Ê%*s«½gÚÌÏÒÑ8 ì×/ïК~’ÜFûÂËTÍO°­K´å²2J}žº³œÖ^ 5QZ=O_*‚æ+ªçgÕåQÉÛóJ¼·sMl¡j^™Í.#sÊç‹30oÃÿë¹zΖþ¹×.R½ÿ–\d¯›?ë¼—šx#M¤hò)¸÷ï C[¡¾×1’/á•\D¯¼~Œä€˜ÎÊMÊ-TÍ…³£_¢#Vù8¥zݯç ôRÉ[Ïy•úO¯ôåz»ÂJù9Êß×+ó sv)Ë©¾?k›£-—”…Ê5TÏ÷lˆ+k”ëé‰åª÷¯õ ôH•œ=ï¡*¹kÞJm†ªû[1G_2Д/Ðê(=tfËórêÏ#=?®)N[ìò¶§•£Ê ´§˜êþ‹ø 4±¨ü!M^¢®.Ë9PAgép+£ãKtâšy#ë¯Gè+s´¥Ž¶)cigšÆÏÓ =ûïé™MÊ¿CgþœN£“iåVåoÒÀ<>yþë|²Qy_¯ é:x‘öŸU¶*ÃÊ{¨Î)Ož ‰êê!ÛjhKÕyN ë¨Êëò}hÎÀz$Nßȧ߶Ð잣¯”f­µÐŽ¿—e§üuy¸Î®|*yLÞFÚߥ|‚ªy„9¹º¿½é"=¦n>’SêAæKõ|ûÀ¼{¥îËÖ7TçD4ÕSÉã˹^¹A)nó&*9[9WQ·qvÝ ½•tð!å(M_¥#õtô3:.u±ã)/(eý4~%k`“=ï7Ò§å.‚vò=:ñ!ÙJ“«©¾w:º@_ CS¡RÇdz·ÐMt÷´Ã34]F]Þµ3þ1•¼§‘üY§í¯Rn }Ód9ÕsS⣴g#Õû²XÕùRM…Tß»œ¬£uå´úUçýö%åNå×lVÕ‡f\ݹs“òÊoZªógu¡Ô¹{u>Îg”º7oc˜¶l¢=»h"ûþ²=7¨ž#òLöÏ×¹m¼†^¢q¹L¹Ï‰)hg&é`M…¨Îc×ù¡QKåž×[U@+Ê©zè}•º‹öÍQ5_ÚÈý“3pި녻-íÚLcëiÃ%eÕõÀu%T¯S¿¢#4ûeCæå"e”ÖäSé³vÚñ·èhˆ•Òþʇir;uó(ñs´Ç½Rôøjzx‘º|so1}#¬,¢Ï‡¡ÎÁ°çþúæÓS?§üI:óܤü{tâ:r…¦#JÙO¤Â´{;mÝE¥ü\N¥>Ç;–¦™/C;±†Ž7ÓÑš¦z^xRÙ;O³Û©œú×%Ú¼š6¬¥õz¬’êuì3!h\_³z ÕslT}Љ×@+ëïm\OëbÐdãôs±ÐN>Du¿\¦„N¼§|˜ŽÇèX˜Ž&éÈ tx-JÓôeåvªç_\¢ýç©®#ê{_yMŽ+ï£þ¨óÊíÝNu~§®7í°´½œê9’è•ýŠWç¥ ÓÃóTÏùÖŸKRçî4ÙegΧ,Ý©Ô9l¯*#uT×ÓÔ.Ц]4pþSNuî¡ä‰yÛ¯ÐÎkÐÎf”Ó3ÿQù*‡”iå/ÑÓeÊç”÷ÑSösüÇÊ;èÌo+ÿ þùÏñïÓ©¿VþWå»Ê?PRîQþ4üTùÊVåóÊõÊ/ÒÌŸ)Õ\ŸLX¢ã=tä­[(û©‘ÛèÐ ÊÛhú]åœXChÿ‡4µ‚&¿Dõ9™žØ}v.P}î¯ç´Ê¾¼©‹F¯Ó£‹Tå5Øý¥TöGÞl;¡×¸:?çöÕsÛ\¤SŸ3E,=|»íìS=4&?¯†4U÷tæX ä-×@;¡ÉïSùüôGhß—h»¥º¿ôÝŸ¡•qhóho ÎqS%4p/²H³?–œõizl5ÕyŒz.ƒÔxw@“½Êéò…ʨ|^©Óôö^¤ñÚ—¢©‡è`´™Fš¾›vÑ®b*ûoëz*¹yÞèfz´„Σ2'Ûidî¦÷¥%º/C%0 ¬³¼:·¦o;•so¥¥]åÐf¡c­TÏP&•µth˜ºý±÷-:ðŽrÕó’•´·†v×SÉõê:ãè9úyç¨Ù—k.·ÜÕå;l¡Ûéñ%*ý¯9×( h_¹²šêœšÉC§Tú‘ïOþuZ¡uÅ´æ:=}†ŽßG›Gé‰-4ûkËYk¨žýZ”ª]S¶@u^úA¥žÃ§žùÒí—``îÁKqh²m”^¿¨,¥=Qem¥MyT?Gö”+óiy4/Ù›{¨ŒFc´³ŽöÌÑø,í+£Ó¡§èp)•õ¬7ûíçl¾H‡÷SÉUðN¼K3etrÚþ£´y%U÷ ¦f–Ž=sùî!ªç˜èyêó¨îoQ9vFν»äëè98ªîÂ>‚æ_)Ÿ_ •Têà½òý{%ß×Û¥”|¯ä®zæèÐy*y5Þ‰str?úïtæi*óosf÷ÛFæåx“ÒþÓtxŠŽ}@'NÿôsBôüD9·öêzÀ}Qº§ ûç†höÇñ¿ö£ÿ˜º¹žú<©¾T‚œá–È èû„Æ+©ž p¢’VÇ Ù[múmßCOnóOçá:êrÝNÈÿ®çÊýš3З™|’vEhG˜¶^¦ú¾JúŒ¼õåôPœª¾s{`JîŽWöŸ^]®ïãÝzÊ)ý^=çÊõÍ8kÊ•qZ¥ò¾ð66Ó–Tåg©·ñ¦w(eŸ4ÔEGòèØ‡tüKÊZšy†J®BÎíä§:ïVê½¼- ÊË´6BŸŽC]‡fG¢©M4ñ8º‡f>¥:i|Õs®F¾OÓ7”êýž®Vª÷áÀíË+ó¢s6R=Ç«ï>š¨¦qC;Fil³rmYM›*iÃU*yJÞ“åË«û^N”ÐêYe­Ó§#ÔÍ q6.Òš*óª½{KéîÕù+›"Tå”êÿ—sè|&Lõ:Èùº¥òóðÖæSÉ#ñFô%¥LÓŽªçýÄ?¥ºµÿûT÷¿ Äéà}4}—²^9 \¢C÷(éð*å8ÙO¥_Ä;¦ý!Sé/ðfÖÓÉí4Ð'?§üszª˜žþSzfŠÎþ}óhG éÀ"í«¥ùHçéñ|h¢õ0p^/ç^—?äòˆ^-€öÍïÐ̽tx;usuu®vÏ5êæ|Ný™RÝëL¾Hu®Óļ²VYHõýJú}eÕ}H}û©¾'–sל´{v–QÝ©çµTÑ&yÞ4TÐÃTÍe7w+õyå¾ZG­[§»u{,ù—BôiCu_võÜòX„æ_ÊŸ;ù¯iªšv_UÑÆªóE©Ì/òêsJý\Só í†4RìÕëkÉu÷Jݤ÷dmŒÓ¶Ú³™&£Túɽƒ¥TåµÛêÕPçís/dŸ™ÌÐþV:´›ú¹â¤ì#§²smÌôO@;~Ž6ÎÑ£eÔçZ‹OF ÙkhK´Ùe¦×dµšmZ½ÝWDÔç¼ •´y m›§=—hü=š¦ýQªæ›ÙžM´u‘67Óƒ%4§ÙrŠœ¿FͶ0Õý 'æhc>´íaªûÜ2¿D'¨œ7ùs§Î оù×têQš^Mêhÿjš,¤‰Ê'¨ž‡Ýµ@åœÛëæÑ8uÎzË,mJц­4z‘œ¥rŸá}ÙÞ\=¿]í·Ì—•»ÂЦë¨Î«×9l-EôÄ"=2Kõs,‚¦.M%?Ç&F©Î•¹¶^ÉÙó¶5Ó–9*ï{oc„ž,‚f«¥‡côx„6\£m—i{)´n΂sðnšZ·¼ñ³´û:ÕùÞí+hÛjÚ\G®Ñ¥´&L«–èwCôÛš—ãôp=šGuÆ1¿öÒ|:xú€ŽvЉ äùeþ MÝCãPŸ¬sXÔ:ÙîY¢27Ý[fé7 4¿Êj”_·´rˆÐ:å±r*yÞÆ54VOÛ¯S™?ïíŠQ™å´}ש<¯½Í4»,Ì©ç +…fw„Æ×B;5G3¿F‡ hÿ§´ï~𬠽Véê$.жzÚº•ê}žúœ6n~Ÿ›ç7ûéÔ^:±Ž?NGŸ C›è@‘ò>å½´o—r 䟮§-ªs)uýÕ¶ ôõOC+sͼ ÔH½…3»'s¾o¥Ÿ;6üíZ¤í« yvÚ†*÷WÞ“1ªçA꺻×,}%D¿§áªûVŸÓ”¯DhU)•\HïCÝœi§Ô yghãÚ”¦Íh‹²m%휧=³4QO“7èÀ§t¨‘Ž>¦Ü)¾OǧҟáÍtÓÉŸQ>L§NÐé¯Á@]¶ÎyÊLoü-Ú¥-£TÎ1¼ª/Ád¯Ûsº\hgs •u•·w•û"§=s7þ;tê3e%KöíŸóYÍëETŸÊçƒÓN¹uícÊGèø•÷Ó±:z‰Ž¼½¼Ã£ÊaªsÑäÞÕëîÓœ24§ê ¸K™Gû?P–+Ÿ ©*s´½º¿?¡ñUTçÒöŒÒÀÜÄíZEõù^lžêó>›Ðœ¡Ê‚æõRªÏßb³Tæ‹{ã¨Ì›÷Ê;TJuÿC¹º?Ãl¼…R¯æ}M©ën¡ºþÔå†;%×ÚÛ^¬4´c‘ví¢Ýó´'ŸÊsÓ›ÌSÞGû6(R¾³¼z.ùç9¸™V×ÁÀy_ÿ~e¾xMýH9¥|Tù í{KÙA“Ÿ*‹©Î–¼joç ÚºŠ6ÔÑã–.§úsUŸ[êû·¯h¾méCU=}`^î+Í–Kå”^Gëåsõ@åÍ,Ò K]Ý”«£rùN÷¹'ýÖ^7O¹>F‹ië%êîÃcÙ-;º…UQý>J>¬|êû=·¦Ç.¯îé^Cå\Ë«ßGz=ßRI›7ÒÆMôD>Õsô=¢Êÿ¶ß‰Ã@’ë{÷ZêÞ/Î× ¨žc"ýIÞÚ •9s^]«ç‘ÊGb#­ Ó—2ËÛ¡R7îÕõÖõaêŸÇòóÐ}÷:ÿôø,ÕïƒÖëTÎÑsF¨ÌöJ¿WÎu4þMþ€¦*¨¬Ë¼éÓt¸PÙJG¶ÐÑ”+?£cÍtüIšYKe¾wªXù—ôÌïÒïv\ž z¾Žžv,C÷Æ©®ÿîp£òÕ*ùVÞÆ"Ú§’Gä 䤳Ï$p¯2|»N\ “¯Ð©E:³ƒÊïÁ®¡ºN*±“v­¡' iM†Ê¼#oU>•zdoeêÜ#S]¤¬¤Roí–Ñæ­´e •üroâ*y9? z¾Žî,¡éÑáûéè *u>ÞÉ?¢S—ÕŽ Ó–bÚdè^峖꺆X>íÜ@%—-˜½•¦÷+×ÓÁJÚw&ïP®¤‰˜ß¸ŠêóWýsñù>†Ê'§yÖÐòRº·œêþ8¹ÏVÆ•3TîÙs^¡-W•7 í½J›•ÙïÓ_„|fw¡Ï‹:*é‘<ªr MC„&Ö(UTªŠž¥#!èÇ;¥}ÿšü&>UQ]Ï+ó‰¼2·Ãûr†îˆ@ó@ˆ>¯”9kÞcsTòʽüê:*ó ½ãkéäƒÐŽM»/)稬ãFê-oi4C[ò©ä—yõç„îïIù{•Et¢œŽí é4uöÎÒ¾}4qÉ~$6C£W©ÌGðºÜ>ç£hv—ÒW ¨ë‡wªó›,¢:WúH8«ÌƒsšÃTúõ½õ†ª¹B¶+ÆÖжQÚZ M|'íÿMk/Á@loUû2óXH¾¿]ÊUTß§i%Ϋû°TýÙe©ž7)óšùê5KYu~J]žr‘fÛñrž\¤-— ÜMõúO΃½ î¼íaš|‚Æ•Ý]43½@e˜·eÕûUa”ÓÊ8}Ö@óK!ºUù¢¡ú}+}ì^Ý×y°Ž‰SÉ5ñ6VÑKÛóhç í9O¥ÞÁ+s×½}ß§2¿Ò;˜¤Ã5TÕÚ‰ïS}o©ï%ãÃTß;µ,P]²ŽS©×ö¾n¨ê;³OXȱ:S¯Êu¾ïÊi§¡º.®¯ŒÊ}­ÓžÛKÏæÓÓÇéô5:uÍÄèXÕëi}¿Õ×L¥Í[WGõ>ëiù/Õ…Ê–*·Óö+tðšÞG‡>¢#›¡=sŒÎ\£>M¹B]_¶3õ>•OÛJ©äÍ{eÎ`NÕwÜWKS·+OÐÁYš¾—Jî†WÏ;’üeo&“Uÿü§CОúK:ó¯éäÐägÊ*Ú»¶®§å tr†Ž§#†ê|ÞÚ=C;WQ]ŸÛDÛVÓæÕõõ¥T×£íŽP}.ú K_\ rÏì=PB«-•{@¯Êã1ÍiÚ^O;Kh×F8§Ò¹/©s4þm¿¨”uflIYLuÞ—¼O½2ŸÏ›mËÎùí4ß²ô@ž²ŽêŸ³žÏÓ¶žJ¾ð-í-¤*2 Ì›÷¦ép„Jª7ó«0ßy”­¤É´mÕómt¤>”ׯW¯÷tícZ]Fõ|"u¾ng6ÐL˜ê¼²Ô´¯’J?¦×í˽5´§ŽººA§«u¶®¦õ!ªï½Ÿ¶TÍõ±oþw:µNþC*yª9¿N'JèøN:6OGÖÐá0j¦ƒ?¤OQ=W\Ïqus‡Òçãí,¤-ôd ôÍ,R510:†yÇ®ßÇÍw–s#Ó—¼¹’Óh\žÞkQx…i¸€ª:&ûpdYÍ× ÝV@Õ¼L³»ˆÖDè‰ T÷¹ê¾Ç¸«kJÒ¾ оj”ùиû'§Üç;íÐ*}’^ÉEðÆ©ª[´§ž¡.÷WßçtÊz©yTÜ¥”sº³Ê2ªç +¥GåßÓ¯gýùý»òóɾ}sÖE©ÎÏu÷s®ŸAÖM¦!ûý›¦­Ê4´™ãtâ~:RKÓ[¨Î‡óóžË4UÞO{‹hgmÐÖYªç$IÝ”WßrÛÅìcÜk* ÕÏC]Ç:ðÚ÷>•¼¯ž“Ð:O}îîºå­½Nõ<]Oæò#;çéî(4­Fi©ä:˜ä[Ð6e×ýƽÎ\OS›h¢Œv¯¥MÍT×7¼b` ŽÊë;.«•ù‡^õõ‚9šîý·Êý»Ó¶]ƒæÙhÏdèéFªϧþ!ÙD§ÿ‡ò å3tê¸òWéäQÖ*U¹ž'˜¢ï(Õ~eü:ZNG*épŠíP>¦¼¦+”jýœ¾›–ÑVªçéºù¾«Tßÿë|e7wÁéÎÕ5EY¥.Ç[n¨Ì]ðó¾m¨îïRÚôT¯oz.ÓÎ0m˜‡Fúb¼©{¡ÙIõÜômÐDæ mÓŠ842/ÖH^•3ðÜ–þ§J)ûèxòoçè‡ÊËt Z¦©fšxê<øÞRÚS@u¿dG)m·Tò¤¼zyLyh ­)¤¯Fèe ÐRûÓ¾êog[J¹J.®W×Iì* Oh²ä|µˆº9ÒÎÆ4UPéãöJކ7_»æ9ÿJˆêþÀùö"uçb΃ETÏ«Ü_JÕ\;õ¯éðUçCæP”v_§MÛ¡ÍtÒ‰8ÕùÔ}ÒäYšPÆw)ó©®Wm«¤rãm^IOl¡îçæ¬Qî¦&[¾’Sòb¼Õ´¦’ê>ÂÆmŠÓÎuôóòú?¢C÷C;$÷6©$M¬¦',Õsaž. §Ž)*«éÌÑé?U¾@§^¡:_ir'Í\§ÅTïgFë”Û”S©ƒ´C»hz˜6Ò[Ís9°N=7·/JUþ—íÙE;¯Ðe{X¹’¶ÕÐÖ:ªï%š‹©ô9{£ç”•ô¸òh˜ê~ßÚúº¡2?,P‡çrÜœo”ÓCe0/óý¼Í´í*´’[˜3DÕ|g+sA½O…è//¯ù­š£ºî¼fnyUŸ™i(Qn§­ç”7¨«ïìÞª¬¤=+”K4þeL9NwÒ¾9:°D‡ŽÒá2e-•¼oïè÷©ÌófþœNÿ¸òQzºÚ6CåÎ[·šê Õõ aªr%L<{Ÿoúóhæ ´³¿BgF”—NýŸÊŸ¥º'³‘-,ïàéÀÚ×J“ïS·Ö±…6]¥—èÉëTæ÷ykóhͪëXåsÊûLší TíóL}ˆ6+e¾©ÓžùˆJ®7•O.Ñô" + éÀÝTÏ kÛB[WPw¯ï¬£5óTٲ»œ_@#}a^Ùyõü¤ÖMJÙOtå+³û)“¸öɹ}ß%hO:ùŸ•o+ëià–=ó+t"*ÿ|*ó¤¼Ç ¡9š­ä”x÷•ßܽÊpüoiÍ.KsJþ§wSšßŒP5¯×6¯¢õ³ôèÝo©Ú˜ïêæ¥9kË©äÆxÕ\=;x޶l…æ™Ú¡©€6fèÉR‰Sã_±D_Cãê3®/׉ÑZeë%åe;G»SÊËT꿼©:ðÕ÷¹£OÑê|h[Ëèˆêº.=O¥z–¦NÓÑ» =ý úÃå•|oæ¿Ñ‰) èøÇt(_¹’¦—hÿYåêòuÝÊ-Ê"Z¥’ ç•ùFÞ—¨ú¼1Ù²šœODèw ÕsÐ¥>ìVêÔQÚ›¹¹=›©îƒ<¹…ÖWÒà T÷ì Ë?g¨þ<…``އ«ûÖêüW«ÚÉ•4q/=æHíÃ@LòÚuN9«¬¡s¼‹´½ˆ¶®¢ú9ß8G£«¨ì ½ú^?û¸þ|uúùTöc^=ohè*}’NŸC.šêê~_NŸ ÏñšvÑŽ4íÛHÓwбÓО™ ÓÿR¹–ê9v#Etx=Õ÷äz?½¦”Ïeé›òÊ\uËn¾¢¯Ehõ<=”OU~„=a¨ä¤:MdÚCÉE üÞ:ë©|Þ{‡w.«ÍÙÊœ,ï‘bZG\ ’ã䕹FNó;!ZUZúŠR¯[÷D¨>Ϫ6ÊrZS¬\¤Çâ´~ŽϧÒÇìý¼Ü$™‘s–¶Ì)Õ=Jkž²D©Ï‹ç”Wiìm_£,PnV–+/ÓÎ9ªÏ­e”s~yu]´ëÓsöÖ+Gi|r3Õ÷|‰å"•¾ëœ´ïe—r–¦V+S´¿@Ù¨ü!hVžVž§ƒ«•khz•òN*ûíœ_¤Ã_RÖ+OБ:e=•}ÊÒlےׄ”z.›Ì—óê¹;rnë´ÉÍ´už¼@6Á@þgûvªrw9€êÜÀÊü(ï㚺YåÞJgî€và*çþÞÄÚ¦­k¨{>8k‹è(}#L÷,Ñíqšgë5›•zÎ˧uêù·0¹IiiêûtàG4]DGò¡mÜÍñë08ÿàtâ êsÒߣ#KâÝtàaêî‹:O£mr-=šOõûúɈÒ@#uÎ@ÎVòN½ñjÚÝL;樞[åú꨼¯rÖA“Ý¾ç¬ Ó†Ë´=M]}³÷•~ï@ê}ºrç›éÀth´ÝeTŸèzRƒ[¢:_]ê¼Í5ÐÊûÈ«î™í¶ Ô׺÷å‘ÚØE%×ÓÛ3KãÒäÃTúP½úiòÐ3¡mYOõ<+Éõô–A#óT½ÇçhËyÚWC3k ÍÜASÃ41C³q<9%¿Þ ÓÆQzdJžˆ÷•%úµ4[•»óiM”F-•Ï3oâ!šÚ@ë¨Ì!uÚTšêúûXFY®”uFl=•¼mï±yhjK¡=VMü‹4}Žoötú·4óKÊûéØz:´›¦7Ð@ÞƒTÎU¼q«Èy´”,¡’Kç4n_áÜ£Ôï/u¿cOeèÔÇÊifÕóÆÆ.ÓÑR:|?ÕsûN(Ý~èvÚ}žº9¾Î£º¿ˆ¾¼D¿‚ú<ÅžûwôÍߣg®Ñ™mt2FÇ7Ðt’&Ò¦Qz4Dß f«6µºþg{uÑÖë´¹‚)¢¯†¨î×»‡sVЍž;%}˜^]ßSÎ)¯RÙO{ûèú˜º|pçȨô7:móíT¶f¨ë?wÖ_§i•¡:ï@ú-¼îuâ^7¡ݨ|ÆÒݺÖdht‘J^sÀøåešx@ÙA¥/+g5í¯¢•J©—ü”m¥ÃoÑÑõtì*}Ø^ÉïôNýþ!´’£åí]MuEû9Ú£Mó4ZAu½¾«Ss>†œÂšöP}&Mç hG¿@Õç™ÏmuêÜÝáÊB:´¤¬QÞO“)契óJÕWéré½wQy½çŒ*Ÿ¢º.æÌWèéf¥º7:õÇÊéÌ÷©¾GšúþçøÍü%¿NGÞ£\beú3ªûé+´ïN*çbÞxRy?m¯¡úyybžªsëæš:+ ¨[—8³ßV@󜥯fhý•ùóÞ– к¾/§Î‰×¹–·GiÇ mºDÆèáëÔ 9]¿ˆóù4O‡iö;碬‡£´ñS¾KÓÓþ87+oáQå½´w3m¿¦,¦ú\ÑÍ…pêœ`ã±Gù¼¡_(CÐ|Y©; }%LõyƑմy3Õuб<Ú±‚ö®¡ñ»¡uóœùªò÷~)õÌæ­“uéÑÕôDm˜£2ÏÔ«úýlt%Õ}˯ùþó¡‘󦜖VeèÁ-´¾êÏÙÚJè'NÕ+khßg4¹My7M¥r>åuõiN©;÷ž\¢‡c´rŽªóûÌ4ÙmMNÝ/ÿ’²2DZ7G›VÑ@=mí¼JÝ\(g²˜ê9Zý_¤uTæy‡¿OÇöÓÌïÐIÉÇJQZ7O«‹¡99GÛËh÷ *¯/§¾öý€FóèÉ:ú\˜î°Ðdßö9_( ‡®S½ßnX£,SîRvÑÆ•Túërî¢z¾ºôiyûê¨Îí: ­ä`{›Â7÷˜¡µ ôõ8•Üg`®|E˜ª9–6¦Ùão`_ªŸC’÷îÕý%ý³têïB›y–އiü1º? u=©»myGDÓ÷ÐÔ#TÎi¼º~E÷ƒv®¤º«ù­Ï£¯ç/¯Î;ýsQóò­°ô9ªsÛk•ú^©m3íŽ)e}ÿ”&×Ñþ•T×i Ga`ž¢Ëûùª¥_7Tú¿½²ÞñZ„öPŒVfÿ=;v‰ì ñ Õù}±|ÚrE¹@õ§úbeˆêû7—çð•¾oì‚2EÛª”ëhku9`Φ*ªó dn»WÏw­ž§ß]€Æ­óœz~¼Ôyå|ÅÛ±–Êù²·oØJ‡> c‹Ð6_õhl ´ÓyTò“{~ï|ªŸ®¿È©Ÿwíq–^¯ÚwíøßR^§2wÕ;£ãiš¹L§öÑSUËjŸ]€æ†î^¢ûãTÎCvb3y‹vÄifM?Dû> ‘Ê›»§€êüÍì_ÇÈ©Ó÷@zòú•~,¯ôãzuÍ¡%ªó".Q™Ÿ˜ó>h§“têmå?¥™CÇ«éHœê¹âý—©®”<£€zܽж/RÇrlêÇæé:ªæ:™ãT×/d—)^;û§tâ*õÃ9ã´aT§n³Ïýš‡¶'Cõüòc•Trż®ÎésÐ%_Ûûtš¥Ô9:MïÃÑ#•4ºDu®wlí¼F'n@û½ tú/èØtt-Õ9ÇŠ ‘{g§ÝFÞN›TÞMSûéáh¤?ÙiO?M§k¨<¼ƒS´ÿNzØÒçÃÐ4A[wêuF¥²" Í‹ ´wM\¦©ót0 íØ—èèÔå•x7)Ct8B‡î¢éfª÷‡sƒóÊ;¨Ì!òê¹›ú‡-ô }%Bõ¼°Ç”ÇK©~ÿé¼ÌøÐ&öAÓ[íPñòl\Þ¾]4þÀòvF–·u×ò6®V®º…ù´až,¤’ßzKÇ•1Z_GëJ©ž§ë9õýôk–êùÁ:÷VÏ5ýršm†~'BÝ|ïusœÙ¶„ÿµ‹P=×{ïÝWDßX ª¾ÇÔ¬¦‡2ôð=:O•*¯Óh„6fhÓªÎL[ˆvlP^¡²Îòö¤a`®ÒH”6Ò£Kôpšþzšô::.ýÙ™:u‰N§¡=XMô*Õu6…4ÞAûöÓAœ?_H³eˆ^s´ê¼Cý~Õsß\ÝþdwŸïŒÒúe©r–ê<Õ¾{¡=¸H§åsyj·ò%:ù×ÊyåšùCåN¥šC4§C3t`Šöß±¼©/R]ÑUEÛoÐÆb*¯Kïk¥T×e ÞÀsZσi\mçfZc © Ó†bªs²ûWÑÁ«ÐfÞ¥ëi¼†v,P½®iXM‡é%ª×•RŸéÕs>›/ÐŽQªë2‡ò íÚDe§·ñ"}-NK"ÐHœ·ªœv6Óỡؾ¼ºÎå;ÊG鈥ƒ+?R®¤ú¾¿k m>GË©ôåÜBÓH>Íþ19‹¨qç]ΗCôÕ8­.¤u ôØ-ÔõQ WhKÐÎs´'NW©ô;zûÏÓáÐN+Õ\y~{õé‘q*9ô9×Ó@Ø6ÚSVÑäÚ¡.—Ã)?w¯®“{*ä5zË"ôùz0LOÒæ2*û oÛ<íÞ@¥ŸØëòoÄÀ6©ûñêüŸçBÐTQo¬r9ïóþ$•òœïSW÷èÔç Çf•ó´é2´Ó–Žö¬¤]ה甕ʵTÖ—ÞŽu´}ÓòÆ•»h[TY¼¼-©ÊǶqå ª÷­jβ•¾b¯îGÞ§ºnFÎ9œvªYy@ù˜ròÇ—wòœò7h比•Ut|-ûDYLGwÒ‘b:TMõyRzܦÌØþZšú”&ÓÊÛh¼žvÒ®8í˜§í«©<¯¼m[i¶­5§Ì³ðêz/—sâú œ›å¿ÿôõ}»K©«#wJþ±ÓÊV§i}{ƒœ»6ºÏåYåeh/Ѱ…æH ´ƒ[•[¨žŒ)«”Ùç‹MX*skl|- äa_¡-ÊTòé¼Mò÷®*…Æå}8_+ 5ò\T}ŒöÌôïcš|—êàĪçÒÈœOoóšϞ󀡺Ú¹# ý 2—Û[¿@U_¯®£ Ü_鼿êÚ¹šc ¤TûÞø{Ê2ÚQH%ÏÕ«ï«ögèë ´"—îÔç†zŽ¢ËEpêüÆi˜Çvúi4òsöžP6ÏÑømЦ2´§ŽÊ¹Ÿ·µ˜¶ÐcKTúÉÖfèÁ9ªómU]u ß_çæ)?oÎ’Ìoò½Nõ9OÝ|•J]Œ·mJ]¨71m¼”ÊÿÏ+Ï ïê4®ÌÙ²Ú³AO‡èÌ3túïÒÉRêæRkÇßVfèØJ©/—z¿œÅ´ÿC*¹—ÞÞy+¥'²?{0ê<ë΃Gò©êïÕ}Õ¿¿‚fòõ =jh×E*Ÿ{&q;MIŽËÕï—óšH1=\B‡Ö(³Ÿ³fæP£v¬ŒJîÓJ}RÎqz°Œ~7}$*ÚNý>•ù0^Ë{4 «ÛvÆë 8Ge¹Óì S¹ïôf9%ßÛ–¦RÏë´’ä ôe|@cÛ©Ìñª: s¨’¦7B+óœ¼ãïR«£sèSSUWj;WÐŽMTï3õ9ÃÉ8uë6·ŽÓ9ªoО]GOÿ"y‹N}™fÚèøv:ü8\«\Cõ~*9J{f–·ÓRÝ÷Ör6^¡Ñ´>¼¼2Ø«sH¤¾Üi*‹hMœžŒBûæ§™qÚU@uÿ¶äxz%§Â«û$÷Þ»; }ë¯)„¡=¦tYíômt|YEû¯ÒÀ:ú,UsÇun¸ØE³×&¹9d,íŠòJçèh%´gòèéß§§•Û”kéÌW–wjay'·+¥×”W•1:VFG@GÎ*7Ñáe™ò TæzeCÎbÚ÷–r'M„•ùT΋½Ñz(N÷”BW—j>¢ýVùM]¤¹\g•ôp¹²HYHe¿à爸}à×LÖoYºm!kvÙü¿öKY#nßýs›Ó¿–&>¤-az¤JßQΰRý}ª‹¨äxwÏQÉCó>·@ŸµTç®I½Ž÷H)=žGÕœsÓ°…6­WV*hsmÙNõ¼Øþ/Б:~N>¢üОþsªÏŸGVP=or`€öK^{>õy(Y;xֺś«çµ®¥íòýè:ö최הFè+qzÐf=C§y­œÊ|¯šKjO½J§¾v Q™O'o§óþkt"EÇ念çéÐUÚ_B“—”²¾H4Ó¸¬Ksˆ´³Ê5Êm»L[›iô¢r3=¹šÖУVYJ”ÓÆFbto)Ô÷¯>¿¾¡„nŽÀÀyQlžÊ\oÕ´o~›žÞBgzèôOÓÉo(ýæêº™1Y_¥×ÒÁ<š|‹öÚ]O;*iì*m›¡ú\1°^—×ÃÁ"º- ÍKQhvÓþôò깉*Ú²vyÖSéç÷¾TMs)íÚL»h|´my´ežêÎè ZµD_)¢ú\ÆÝw9ÎÓ6CuîÌ`Ú3éðÃPŸWÙÉ&š) CÑÖrªçlªþ“ýÕ.ù>úù¾Sç¨î# ÑôNÚ¾DUn•=P ÍN»¼º¾,n¨œ“zÓ³t¤Ú“*çD9ËéÁ*ý7^¥Ö™æ Kun²ëŸrJ½ª·¦„ª>s,C›ëh[ íXE;+hïÚ—GûiºžÊ9Ñ­´É54ñ•yÚ9C´û Õu2ç0§|~è¼ô¦‹´q£rm+ÕsSrásÎQw~â¬-¤2Í[®üºîýê +_4T瑹u´S÷õÖÝÊêr¢äë6]¡­«i[9íÓÎEªÎMOv=iä¾9gvÝid_ïÕóiäœÒ›¾MA;¹ŽÜCu½Aß‚ržÊç–WÏgª]M÷ÄÊ¡G©>'h)¡²_ô6£’kë=> ãÊ2z }s¥îÓ[f qsQô¼Àú8=¡Í+iû…›Û[GÓr¯”>mjŠöÝGU¾¢É.‹r6E•r.ÚâÎ礳?EOÿ<ù˜N?G'ÿŒf~›Ž–ÓÁ%¥ë›¼ª|œJ=¬·ëm[MÝü4ç }ÎB³·ÚW, Ô—)U~.PþÍüP©êÔ’]Ê-Êu77ñ1í-¤«•«hSrr5Ý¿Möו³Z)ý7Þ¶ë´£ŠöGéà­>Š”…ÊÕ4ðÜ\TÎ+ãÊ"z8C#%TÕñšüÝ©<…<*yž:<Ͻ2_ÛLÑTú!´‡+éÞ"höGhßvhcrÓ]ßé¾£@¾B_ÚÙ3ôÌzj‘ΦÓ?K'ߤ™J‡6ÑäSÔýžU}ƒ®G°gòéÌïÐÌ_ÓñbeÙHÓ-oò‡ÊM´7oyuÞwû:Ú¼ê¾:} ýÞaú´{ͦbªÏŸÝý›³g ´ý²/ï+¦‰:Ú{]™¦ç©ÌÈY@åœ*gÕy?-Qêúóõ[h]œÖÆh¤”ª9C¶¼œ† Ìå‹‹Oú’¥R/éÕçÇËiÃF*sè½ú|ºk5íƒvâ6:²•ºþ §~nÆG©®§­+£ÙvÊy9CUžºiXEc…´'Be·?­äy3ÕÊ—éènªóx*¿@k•[”)寧*Õ}å@­ò!åiÿißVåC4¹™êœî–-ÐȽžÓÎü u¯?§«‡’¾{§m;G_/¥Ù/ç ÔS9[•m]´»†Æ—èà}4‚öÔ?¢™Ÿ¤úþ¬ÏÒø‡´+Du¿L‹Už[^]·*93NÓ|‘ÆÂ´ë2•¼\¯î˭ʧ’3èß©dž†é{€ª¼#ó-½£=t|#ÍDéÁJš\„|ýx-MSíh¦Ó§èÑE*9ÓNÛ½‰¶•QÉ5ôJ€Óì¶40§t•¹ÞÎ.šø"í»F7P=Gxô:q–N~•N…vÐP}ï…ûú–­Ôå d¡½ñ¬=—•ó´e%=§¿‚þy_;+ÎÓ@]·ü ´ 5Ô­«Ä Ù¡.¯Áy¬„Ê=»7ÙL‡æ¡}óþ=e œ¥çéèeå:|'ÕÏËþm4õ$GhçÚRIO†¨Ìqó-£ËéETϗܧz®Ÿ›âÔyD­ÚÙ?¦§ éäK4ó¶òU:ñ–rV9®Ü­¼?ëø”r'•¼\ïÈeiÖ¡ªóm{ÖR]‡ÛBë©Ê¥0/›ì?7­¥¿æ[¡¬¯d¨ÊŸµ©fêú+œz޵þþŽÖQy®:sÒ\}—ódíPJ°7¾qy“QÚ·¦6R©¨ò%ÌèítüC:ñÍü*¥ÓHGåç5*çv©(ÕuzÉ·•SJ9Ç×ë7=W ·”ê|½îÕý×1KåÜ/ç5eœ6ÎÐh!=¾Ho¡‘ TÖy9 h8DÕ:Ýš ÜéâÆüY:°öõФR¯ô¼´×‹–ÕÞ¢ŒÒä;Ðö¿GOS}op¨”V/ÑÈ,Ý7G_] ÙíSÎ|¸WhZA;·ÓþM¿mº”î¡ÁJ*ûo¯¥íkh“¥ Û©~?ˆÃ@žÓ¡½3Ð6/Ñh†P×'ãÌ–7{ÍK†V.к"h×A÷}úçšæ©ÎÓÓs9_ Óšb*yT^éïðŽtÐñÓ4ó÷•ƒy{÷Ó¡4ý>ø>íßN;iw”Ë£º¾@¿ï^,È~ÿn?ïÔ¹¦m+é Tîû½z~Lk\9JÓãt(F‡Ò‘f:ZAÇÂ4ÓG'ÿ ÊSþ¤òktú¸òßÓ™Uôôèì«Ðº9ƒÎ—ãÐÈzÏiã7”Ÿ(/ÓNeÇ, ÜC7/¯Î#Ñ÷ÐÍqÚ´Žê>gÝ?R¡¯Pé÷÷J¾†·8Íö0•¹^™âÕy5izt æÓ¸äçÆwP•/bú6ÐT^í¹·é™N:ý‡Tî¼™gèÄ.:²J½¡·ŠêÆ®(mÎÐÀœÖ|ª÷ÍÑRZŸ¡Çbôh>õó@Š©ä09Mv™šSÖ)N/¦íåÐD·@ûJ>4²Ï÷s^N.ц|å5ªû˜ä^ͺ90Î@nÓJªïU›+©ËcqJ¿­ï»­˜£ÕʺyÚXA;Š¡®S ô1º¯ë¬ Óú|šý±äÔë¼™F:¾‹Ê}7ñ•¯ë}!MÕ=ZB?ï¾}êþËy>éûãähj3xŠº:x§äµ8íÌ/ÐÉýJÕç¦ëP'Þ¥cWéètx‰ÝKÓÐÁqå&:°–ö?BS54yZY«¬TîRæÑÄœr˜v¯¦±9e˜¶ÎÓ–]´y Õ}C._©rõ­Ìñòêû~éËð>IÍ‹ªçfUGé¡y*ó+¼Gæ¨ÌÏðª|<Ó^G;ÃTò½}ïCÛ~]YDuNeU;Œ½fo˜F+¨žß™è6UAk.ЗJ¡Ù†¾8écôÊ÷áÕsAô<™=Kô;aªÎñìV͆Õy~eaúÒ}%LkKéáÏñhˆêy•’/žÓÒ†fÚTA›S4£y‚[hŸ¡Rç•:^¯Ì5òŽ¿E3D§6Òé3ôÔÐŽ¬£ÃïÓ¡Ëʵ4]CWÐþ4ž¤)È%­£zN²®Ówûý:—y^Y×x³ÛîœR¯à4¿¢¿k”È™úD™GÓÓ+TÏãë[¤ñ÷igÕù§±sTú0½M›©>§ÒÏõ9`³o7oàÜaw9­- ÑkTò ¼z~EOäæ&/Ó¾Ó4U Õ›ž£ª_ÓÈëÅ;ùmhOO(›žúÇtj³òšù˜N ÓÑÇi`®ÃE:TB÷)_Eu®‰Ô+ze>‘÷€²ÜÐÇ©‘ûï«ô@•\¯äì9íÔ'tðM|@õ}m×[G˨ž‡sD)ùÙ^]Ÿ•]žä|uŽÍ£:Ç©µ†ª¾;Û…FòïvzAy˜Ž®¤zNcW=1·¼Ç¢Ê;,sþ&5ÏZ¡”¹CÞã–67ÓNC»®ÐžRhg§£×¨ÎçÿÅm¨‚&þ˜¸ÚÆ:z²„V…¨{}ÉzÝëî=œãçißFªó4»r •zòÀ¹”öPZ¾ß%ZY üœ¼úý/ùÞVe,DuŸDß%:t”º<6—Ï6ûGt²ß í…ÐìZ€~ø T×iûüº ä‡}F¿DS;iâK´{•{4¯ÎבŸ»W÷åêùΕZÉ[ñê÷UW!M Ó!ÙwK¿U¬ˆê|s#se¼ÏRS¢ú¼@ÏíÒó[ÖP9òÆï‡6óÚµžº¹%¢ž`û‡iûÚTJÕ9³ÍüÕõ rŽâ4uùò¿ÏÑg,tóÉìäšØA›e}Ù0OŸeÿœ­J©'÷Ê| o3´§ŽŽ]¦Ã{h:J£ú<¸1žßÂÕyzÿ¤×_¯”SÙ{çS÷ÜvÏñ7[éì¢òÇé™»èé³tæy:ù'tbÕsÞ†-º¦¼ƒö׋;©ž[“¸ƒêþòXmIQ}¾­ÎqÌoEnîs–êsGÝ''÷Œ^݇2ù=šÙJ'ÖÑÑ.:p‚ö­¤í—hcÕ¹´û Õ}Y//Q½¿Ö碭¡OÒÑÛèÐz:°Huþq|‘v˜åÕ9™mòsi+‚~3ÔZíD¿‡Ž.ï`åòÌÐŽkË[¦úü]ŸSê¾ügCTåÇš_ ÑRKŸQêz‰7–è¡ëô°RÍ¥ô_ÊüOoÇZ¿ƒ&?¥Òçí•shg`”®SÐõooÌÑßµÐÈœ¯äïy£u´õ:•¾Mo\ÖÉýôPšú2ªóÇäœ×;Q ¹°ºžÞõç9õºIçË\ Ód”£TÖ ÞØ M¼G¹3Êþ'è@Þ-l¦Ã:v'´ÓOPÝç7|í[CóÈt®Ò9ªï»æ¨›äð&K•;–·ï^šú@¹@û iå°rž>¥LÑ¡":¬Ý¨,¶wJ»­×žRNþKå/Òþ·iâTò[¼=±Ï1L÷•BSj¨þ|œú¡ò}å„òUe‰òN:ù‘ò”—ŽíQÞA%Ÿ&ç“tä~ªç$ë}•¬½qK[«¨Ì…ôê9¥z=¬ÏEÝ\ ç¾ ´S5ÊL'õ€å ò§èø6:jéÐE¨»ÙEûVÑø~Ú9JÛ´ù2=YJD©Ì_õî[¢úœSŸWè:~U§mjÃÐ&ÎBsâM>±¬v`5mMAãÎϯÚìÿ~æoè̃tòKt|•>oú.èG+WêßsLÙHãÃTò†sFhO1í:§¥ºß¾cŽ~^žC`ÎC•¹ Þ¦ ÕùçRWê­) /åÓ'"иœgµ{ãÐüjˆ>¡¯…¡•:>ïHšê>±®…¬’{îݽÍÓòuäC{à:Uó¥ŒÔM›~ɳX)Ê÷—|Ÿêõlí"}Ö@SWH»òh*ŸNÁ@Ncß9šœ£‰ÍÔÝë8»«hÇmßH›G©îc9ž¡u%TÏqx£€¾¦/G¡Éþzrî/¥2ÅÛxŽºú §ž‹ÿ¡x&–hòªóìû?£éEheî•WÝ£úNwP=ç[r ¼­Úfh¼ž¦>¦zžâ©» þ„ªy¦«Ú³ÿ€ž9LOQn¥3ÿV9£PîP>D§¾J'WÒÌ¢,û¤O”ê^/¹}yÛ-Õõd­×”«hs^PVГ1*õç^™;ì äuï5TíƒmÿEªï´ÉQ=_,±•JÞ•÷šoXúœ¡ú\wønhÏüT¿Æ~HGDGÖÓa¹j¥ƒ=tà(•{œÔ÷™¯¤=e´³™¶n¦- ôD1­^¤/„ yR)¹®Þ#%Tòö¼ÑYªîçŒÔÏ;íLþ{tª…N¾L3ŸÐñ=tøc:x¦ÎÞÜÄyq–Æç©ž?[Au^Mãv­¢’7éÕ9Mº~ZîÇœFÖ‡ÞƒÚp™ªyFö…4—©Ì}ÈùŸ³ÿþð—hï%emžWÆ¡)‹PéëñV(‹è+KôÈz´˜Ê| oc†ÆÊ•ªó=$ÎÛ¿íìOÒÓ?N§ÿŠ=@õçrÕsHúÎS×¢öÑCã¥tpÚÄZe}ÝRÉòfÿ5¯‘ÏS#ù2æ`~Võº±“giæeDù3täíÛBu^—Îqh1´á4’'è ¬ô}­^_è¹×qÚ©:~ºª~ŸÀû\æxÕ× |ýäjª÷M:÷æd4ÙÇÎç-Uûf#u­ÞÎ*sؽj~­¬€¶©ž¦¯Ó~y]ùÜYG4×Ðúëô›&kéÿÍÝ¿GÇ}Þ÷½/ê2ê²¢pk# ·‚¨ŒÊ¸¬‹¨¬‚(¬òDaFaX¦eDfdH¦%˜¢e¢(ˆ‚¨!’ ’ƒûà> ƒûàB Rõ9.£Ãªª‹j³Ú¬Âª¨Ëj1.‚ºŒ¶Ëãž®5Ïó`¿?? jÏ^ë¬}Žÿy-Û‰ËÌožË÷ûù¸®ê9¤Ë j.Ÿ;¿[ñ š©§ó_…ö€…Æå\yíþEh|Ÿ·a6•Sy>Ø©÷éðC´g }fFÖ©šó3xÚ±Ghgš/P×§ty„ÁÑýÐΡSwP#"ù•úü·#×éÑÕyKº®Ñ:0÷9ÜEMêÍl‡vöiîº@Gªir†jÝdîïÒôãÔ}]ÁX4>çÌ;¸ÚüövžRÚÞÍñ%¨ýu¦¾˜æ6Ðé¿Cg¿GÝü¡àë“t>Eßø´ç©öÕÌn¥3×Ä#âߤÓ3âTçåºÄ¿C§NÒÉQ:ññ‚xÇ'XH]?ôŠŸ§šo3:*¦èÈw©>ÿ³_¤ÃÍ4“¢îü4˜^7ÑÁGi*Azh²N”ûœþ8íÙB[oŠ‹ÔíûWl ÍkiCk©Ô]EÖåÉJêòˆ‚>_»/;uŸ?A—Ÿl~Fæ%ߦ âM\/ˆµŸâ6ªsÊÔæhžZ¤ÒŸe^ãÕÔï ¼nÝl¤n>zphÍQ™/m&jéäÍuŠ7¡=ÿ_h®—¾ºMûhç¿,þ }ýߋߦç?÷Òs'éÜèì~:3H§ÿ‰ø 4—¿¾ºS—häsP>÷Æ :v’Žn¢Ù9šY¢¡NЩõÇÉÚ“j.mW=•œ4Û±H[æ¨ö­¹9áA©‡¶1Cå^,Òß´;FÝœß`ý=½¶VS~ãí5Ð?Bóoãÿöúúû´}j†=÷eªùÇ.çò}“f?¿ºCu42/öÒêjý ÎïØW)–S­ÙƒÆçàû\üCg y¥Ú‰:¾…jžæôî qÚœ¥gªékåTë ¾a¡ÉoëW|$F#¹·å´ÑÒxŒúzor ´3ï‰÷Ñé_£¹¿¿MµNlI³£Ÿ¢û~³kéð uëœ`ú²¨õ3ÑÞý´kÕ{×&÷ÜvuñÖÍ!æ?öƒf=µiK¥}qÚs‹j½wc1ÕÍ7ñs(½’Sngþl }·hg=m^¦®N9¸7Í %TæÍÚÜ´(u:&µŽv/ÐÎu´c3}Ù@Í»·Sg 9Ïÿ÷ÉEz$ÿýXŸ7%—‹âµóõôõNñWéù!úó¼¿Kç.‰‰wÑÙoÑéeñs4r¿ù}:¹ƒŽ·R½oŽ|Þë½Ñ¤XEµß#ýuõÖÁõ49Iu?Û³Žúº¡à8ÕzÍß=[L–ènCÛË ‰ß€vl-Ín§ÃÅ4sì¡Ë´³ŒÆ÷Pwn<¶L_ŽÃHÎÜÁ8­Ÿ§ שË ºþª`d>y#¼DÝ\o¯{€fï_Ý̇âUªùúƒWÅmTóð“ïÑÄ5Úr‹êyI])•ú†H½C,K[¨äú˜®ÚsƒöWÒÁzš¹Ÿfw@;öíX€¦·Úá"hÜ\R¯ûHü,}„ê=ÁÐ{4R÷&¹>ϵúz(oOíÚOÝüõ ËSj.Z|=a©öué˜ê%šÍ— ÕœzÉ}‰ô!¸N÷Yhöª‹ùÿ_~ŽæÄš]‚6÷Í}6ëö_CRÍL½E¶ÒSÔÝ_zÍá´K«Û±‰¶m£®®5¨Ÿ‡JèsIêÎ5ƒù¿f%gâ[b¬˜Ê¼:s²„ž. .¯8ØQCûv@›üMÜ -­Ôå.­h¨;·]±ší4¶ê|Žã¥ôT¥XE]?u°û]šl¦ƒ'©ö÷ ß!ºsµÑ¡Î/øíðƒ4µ–v]¢‰%*÷ø‘9S 5´nýª…æÑÕ³µ~[scºjWÕÎþc:ó Íý3ªu¿Ò±ªu%Ù,º‡êÏ[s¯uŽ@{1Õý•Ö+¦’K™#àòŠƒÒ`óËØÝÜÁ Î#Ï\¿@S[©}ËÂÈü›]‹T竾TDcñÕÕÏ•SK««¹ EÔÝ_û6ÓTú<ŒÜÃwì¤.77xh‘>e y±„wë°“qêêǃ}·7™?o1®ÃkcËÐt]¤#ù{“Û.–çÿ=íé]¤;bPëý4GÓ¸ºDsØÒÓe4ܳ»u¥?¯×úÈîFÚ±êýÁéKôX–jdþYÑç.yu>ý©bÚ¼‘ê\ÞÞr:p†º9 +ºŸ‹®u@Ì}='Jh{í¾FÓÕôÜÃÿ¥Î{7þ^Å{°šÖm£GÜÿÞ¼™¶.SÍÿÑœá$´>ŸË{¢œºçf°:NÝs7˜?>_ñ÷©9£¯A;´‘J©vÿüËîçáÏKun[û-êòEƒÇŠèË•t/Ü=£2_&2ŸµõÙmº‘¦¤Ûhr+Õ|ºÎ«ÔÍ6m¡Û¨~N»~± æViþ¾þ|^Z :§êxŒžNÒærª¹0…´M5СóÐŽî¢5´y=m¸DÝ=hð èzj|÷…Rzl#mª§- Úvº|Ÿ ÔFúÑ›ãôD=¸#õûÇJ©î“|²·g|œ¦·Rw.)¡£ :y•æ~í°¡}W¨{^Û×Ó¶jÚjÅzÚGÝ›ÃXQç¼(ê|r™[™WÕQEõÞÙ唵~DÖ!»¦’vÞ¤ÉÒ¼)ïAhÏ•ÐÉR©WÌÐÄzhŽÕüéç=¿ùŸéÏÑ×ÿ£øôüGb­¸›Îý—ÕmXÝ1÷ÇâÿL§®Ð‰F:šý»Ä§Årq£¸†ŽÜ épãꦫèÀêæR­x•v.R?-¸º{Ýà‘øêÎVÑÆ$Í¿ ‚‘>4·¯6Pùܱç~j¾¦æBMî¥#ïÓ¡»ÅõTûBR‰r\¬ § m)X]—Óø‘øc:¼™Ž}N´R÷{]q³º<Ôàh¸—NŽÓ©Ý4w?.¤3/ÑÙ ÜB'J©Ÿ£çJÐô%êòÀƒÚŸÚRF›âÔÍå ¾´D_÷•BópŒÆŠhÝ"mHPwŒo¢òùj»Šhgœ¾R@eî¼í)¦­[W52ßøtÕsN×—tupÁž$íÝFµ.&]J‡ŠDK3ïÓ‘ÏщÍtò#:ýr4OKç«'b´ÔýmÏUú‚ÿº‹iªÚ?­¡oþ}ãˆ÷ÑùRúz»øšø=¿“ž›¥s_£3ÿQ¼gu'žX]íƒÏ·›®8r7Í>Cõs(NÓwÒTŒj¾~_šö®¥‰«TûXZŠiCuŸWÁ‹yŸ²Ðì1t¿Xƒv`4®ŽÓksoS7¯.Xƒ¦­ˆŽîƒvö¿ˆgèô¿¦þÜÙ;ÕJu>³Þ·_¤®^Ëk[7R¤û„Hž¡ÚW¢çÌ’·­÷Aús š6ˆnîbÐÕ³–ö졟¥îõÌX:¾ mMœ~ÉR7¯Îk¾né IúR •\lsØPͽn(¤š?ܱ–ö¤i_’º¹@ÁÌ£tü}:qæþ›‡‘ú —;<£±ëŸà"}¹œæ_ÁHÿ’æþDæ^n§zoÖ³l£rîj†¥£÷Ññ[tr7´ë©æ¿6o‡æPus’Mò´í×?Å êæ&yŸÿxî T÷ÿÓ tÊÒÉ:ÞEÇ.Ó‘Jq'ͬ£Cå4e¨{ý5Óí‚'«©»¿ Ö5P·~óšê$=²êÜxŸ?Ò¶†Ê~ÆfL»bôD…XJTA“oË\ñp1Õº5™cjg¿B]=WP×)éõTëtž˜~?ºŽ8¼#ó=Ü|Ç`¯¥ý…Tç|evB;÷,Õyv™g¨ö£¿¼#u‰/‹¯zô =[AÛzhw%¸ Úó?O§“æþTü&M½Cã5TóÝ¥/ÕCu?=óóÔå³ÏýÚ© z¶šd=´¯ÿ2=ß@Ïýs:7Igþotú_ˆ3bzšNœ¡ãïˆ÷Ó‘qq Õ¼¨Ô¨øõçÒýÛh¢‡Æ·Ð#¥yëJœôp uÏ­à“1hÊ èSâîZ-úý‚7V@Ýœ’ æ7ööÐ=0:—ÜÒ39ѽòß=ZEërt…‘þ¬—hëêÖÇÁÞM.QWÔܨ´»çNç×ÕfèqÏW×hF€¶»šêüTÿsñº9s^ót¥héÑb*õWÆÕŸ7>Ø^OÝü“`* #ç˱hçþ •ûjSZ@Å¡ý>͵щ4Ò×¼¦ß¡?Ç©Ö$冷ÿ.سD»KÅbí(£î'xz‘ž*¥'E·¾\qQ¬¤Z®¿ßÇ,Õü¶WsôÄüíÍ_W¬(ó€"ó&ƒþþ=ºŸHÐþµ´/AµþÂå]®\0^DÏXªçÓÚWÙ`i}•~!ï§ÿ1~îš×Ó»zhr#Ôç¶qýÆÁ¹?‡öõ¿¤s÷ˆk©ÎMˆMb\<+î+ÄHg¦ÅãâËâS⯋¿J§oˆçÅ—ÄÅïÐÜ÷ÅEñ¬øEquuPv2MÇ~ ÖS×±âghö‡tø¢ø–x7ÍìwÐÁÇÄ»hêqš|R4Ôçyõ\¡Ë~ŠIêò¼‚rïa›×ÑøMzfžê9ÛÞ4£µIúªèžÿÁæš([U;ó5:‘¥Ù'h$çò Mehÿ~ªõ®z}¬’¾‡+}ÍK´6G5ÏÎ÷ x5ÏeðY·ë|ÉÜ-ªy¸ß+èøIš-¦C;h*EÒ´7I»ÜçŒË úþt¯ÛO”PןéÔÿ*§‘ÜüRš¸E5^÷ÝÚ_6\íÔ(]¢©*ª}¨.oÐksÿ…jÎpÿÚQN}_²ïSÞaèã–~C|¡ˆLRíÛ?#¶ì¡:Ÿ«sM®vöÝLGÊhäù®–Ót’ºœ™àé,4§Êhþø¿ý¼KÄzÖRÍswy^S•\Ý#YªuñM•´/#óÎ2שÞÿh>àÉŒäû¹9¾ÞÈ\¼¡BªyÙº>îÝJ¥ŸÕøy¢Þ/êÏ3¼~N½·a=QLOæ¨Þôl¢E4}Fò…uÝѶ•ö]£Ýµ´«˜ê~Bï‹â…ÐüFus­¼vz/ÍÝ^üi:y?ä-}†ŽßC5GläNPwîLÏÐÔEY'èÏÛ¿o¼½ïÒŽëÔõ¹5ÎÏýðêù´ŸÏéuóxƒšCª}/úû™¸ Mö<´Ó¿N³ÓôM-RÕTKR?ÏÀ«çŽzoÏÒŽeÚ{“ºuod]-}æÖå y#Ÿ‹.'Õt¸uì «Ësùé+óíÝ=Ê?ŸËýöt•XN%7Ѿº@_)KèW쪚|Ùç'ûBŒºyÎA×çlÝN]NI°óúêúû"o­˜—éÀ~šª¦C[©;‡ Ž\§wQ?³ŽÎþ„žû3hçŽPO5=$þu:¹L'bt|7sû¹‘/Ðtƒèþýt!,¡©÷hòQêî­‚î¹wÀÒªEhž©¤µ1ÚPL›j ?NÏýï4r/s‹f«i²Œž©¢îÞ2¨sõŽ&©¿Ï÷~ÍBóB5=ÚíüQúúfzîÿNçþ«ø{t¶™Îü;š»,ʹÎT‚ŽçèX=@G¡ÙëT炤¿GSuTç„ÔÐÞÚyM\¼½úùÝQ+n -•ôTŒ,…‘|{¿Î÷ëþÄ»âFÚ‘ zÏ•¿–X±eœ6—ÑxŽº¹&A·î ú{v¯Ö§¼²Hk hu5ýF}$#ëõÝâ~1VEݘà©,´ÓïÐÜß ™ýTçh´í¡Íר>'^«„Æ}ßAOu¶Úé4|fî£C?먾Ïúbb%ÕýX×eêçzåâzêÖmÁ¶’Õuç‡+–Ó¦%¯ 'éñ„X!š¼ÇÊÅzd‘ÖÕPÍQwùòÁW }E”{°Èç«æšÉœ ûü¢X"Ðç©{¿¿eÅ$}¶€îŠQYç[ŸCíýMú—¨yÜЧ’¢¥U1ªõí:§»¶€jÝ×*¢Í êò¶‚š¯ìrI‚=¡ýÓ=Tç*ÏüS:uƒNì^ÝÌZš¬¡]¢ÎQï¿B_6ÐtnÝÏuô´3WE¹?›þX<,n§¹:QêÁ5÷aâMªó,Çž7ÓÑ·èÈ!šíèðg©žÏ ¹s´ô‡t°”jSÛ-ªý#G ÝW Í— ÕóàÆRhs]4ÒOSNG>¦™Äõ?ïà[tà'´÷mËÑøVª÷ê2Ÿ ’ã»·”ݼš`ÓNÚ±ön§ÉVh'~L&©Î×ú±Dœjße|3uû– Öå«ùíeÐø<1,—h[%í(½½®¾)É}^€‘{ÅöÚ²DÝ\âàË1¹Gy>FkŠh¼’&iæ-hÓĤø¤xÕ~®eéŸhJPÍ3mÞA]Žä'iÏÿ:Í~LÔâšüí­¢º_jZ+i¼GŒQÍÃÖº9ÍÏÓù؇—©ôCÙ¶ýôD–º\Õà¡%šÿ5Í#âË%«ëÖÅA—Ïl. ÅõÐN_ ¾o9xŒ¦çéà íÌQ+s¼š¾”ƒ‘ý¥›+æÕ|sãêÔ‚šOÑröÐÞuTsôû/Ò.šÚ&þ€ºs½àp%½N'¾O't{s'él+¡ç;¡½pŽž«§z:6I“åT×3‰+´-A]ÎxðLŒj½¯î·žNB“ÿxXÑçx;íÌyñ´xþЉÿX¬ÿÍ]Š?C§ââCt2)ÖŠÅt,IG?¿Ku½7ò„xÍþ@ÜO#õ_‰š¿Ó³ºZ÷’~ŒfW×÷¡{[â´i_¢gÊèi+P¾åuý(AͯKëæé«åTß?®6èêÆƒƒÆÏöî­¦ZR»@êÎåƒ TÎÙŒû¼ºó¤ [?;ߥÝåTçk?ƒ«Fæ|ý†¼Pï¨Ì_1™ÏÁÈóNæÛ˜º=VF®@;öíÜF¥¿ÀôÍÓÁ´SûèÐU*óâ¢sw@{n„Î<,þÍ&iz›øx‚ê\ƒþuô•$4¯Å¨;ºyíÁ®’¼=­TóÉõu44¹‹¶R×?.¤ãÓ×› ¡Zç’šY]írß_°guy ¶kÍÇi­Î?¶Ðú*çÖåB{#u3Ú§àçÎxuîéÏ—Ðý\—¨û¹Íâ}b |O|š¦Ü¿§çÅ:糨€qÿ»ŸÃäm^C[®RïÞÑíh M_¤ÉûV7± n¤š§Þtº:/od^ì´n.Q°í us.‚r_a¾\@ã먯sKÄhW)uëâ´g-Õ9˜‘y}ëÿ‡´¯ÏÑáО2ÚÙC›h[)mvç³nþCðl5}Þæ¿®ß* þ¼åØB^ÿçv¸ç†æQ¾`¡©7«ëòƒ~ÿøIoX݆*zbÛꞬ+©öñ»ùî+¶RW¿t÷yÁîµÔÍÕ jîÿÀ=t¤‚Îmý2r®å꽑œ¶±qh/ˆ­´¥ž®‚¦ÂÒ†¢¼í ´ã]ÚÓí`šºû¥à±}ÙPÍçÍ¿}V¼—š2QŸ?.·!èÎsƒú<Ü_BµOäX•˜¤Mki{’&DÍÏ‹œ¯ˆ.ç&˜îoRW·Ôü½ì:1ù)þº9îÁÑÜêº{¦àø&:Qþ)vÑÉ'¨›Ìý‘ø’ø¾[Ü'^§®î|ÅSÔår­Ø*NѹJ]ÞÛŠiñßç}ýCçÿ„¾ùwE·ñuò3#tô^šù"uõâA70èóÝ}nè³%ô¥jz6A[D÷üLßíè&š¨§²².×1x0–·f)¯ž¸ûvo$/+ÿ×ü¬Ìëóˆ³{Vw`F|’ºýw0R’¥­W>Á-´ÅÒæ=b=k©Ë} )¦ùr÷_0ôþhö–ÓÚjzä:•ýˆ9»H›Zi‹¡ú9×]B6ŠWiú‹â8•Ü(3òc:þ´¹gép MÖÑî­ôpö¶š¦ ÐŽ¼CÝ<ì ö¹µÖÐWÏcNÇiW¾ÞЯ¢µÐž§nýÖÁߨ¤§–iËíŒQ7ï9˜Z¦CãÔÕ5ÇöÓÉ š›‡vèÑÕ|€j.Qj'Ü'ªóâ3âçÅ5ÔçØD< Jµ«wöݤ½·VWîm#s:橾.›×Ò¦MÔ=‚z>ÜPJÝë3èú_ƒú¹àrnƒùãˆÝ|/¯ù’èêÔ‚šc|,&&¨ž÷6/ÓÄÚ=O“Ò÷hª–NÒ¡54³Mì‚öÅrhšÊ¨;o¶×ÐÎ"êÎǂݢž'øs‚‹t´”Nì„væ£CÒÞm¹Lõ~}ß"Õs9Ý—µl¥UTÏISåtp­ø#êê‚=îïtýl ËÐô4@Û[Bµ®Ôç|-¥±4¯ÄVÕvdiÛB^c¶§’~%M~Ù·â“âs•Ts¡ªè^Q÷—:§[ûMcW¨ë£ ºõTðèFêrlV¬¡g·QÍåS›‹Äuó‚­E´­˜¶—ÒŽ4í\O»ö‹IªÏ¥ÔI:ò=:ú#:ž ¹ß3â÷©ÎCšn¡3åâãtöèܗ蹟/Ò×o@Û½‰¶ÑØ<}¥œúzou9ÝU#ó'uŸ·¿€ºsž [÷Ý9vÐÝ7ÛÖÑö%ÚYNûã45IÓ•4s†o¡c÷ÓÉçéô¯Ñ™:÷ÕÿŸÒúº=ïà5ªu,‰yêûß¼ùk’O͋ۨæ?/¡ÚŸ\_Dµ·&F#y¯tGþï5_ýëßÍ­ˆälJ.²iÙA[¯Ò+4÷]ÉÛ»D_´Të òe4+j¿âé%q™6%©ëÇ_qžê9¨æg¸~°`Â=OuÝÖçžóÉmÔÍ! }—f7Ó‘Ôå6]_`pò]ªç„ú¾ž¦’fΗÓ×[èAOn£:gm`‘e¡m¡:÷LƒXÍKq:tÚæÔõ«Äg“ùß킇Ð6­ƒæøÕ×Q¶Œv¹ß·«{ú$í¾4/Æa$êL’«€áyà?³ïÐä!ê§®S}¿·ÎSÉ›1ƒõÔõ ÇF¡ýšø¸øKÔÕGÏ¿Ný<š`=Õù¶Óâ½tbŽŽÑ‘ â.šÝN‡7оŽ.C‡nÒôF1®e+hrÕ|£¾qÚsº{î`û5z6I_Y •†|õWEW‡9?=í^WÍ·h‹{ßw®£>bìq:úM¿-ž·ŠŸ§ƒ;Å"ª}2о ´k=ÕóÍK›k¨Ö[ø¼wïá+ŸbŒ~SÌ¿W|$u¾šy.F÷•‹•Tï;kJi]=^$Ó³EÔõ¢z®Ö 9Ú£]WhO5M>"VÑRêê‹‚™;éø:µíHÛ§®~é'tùsÁô›t¤ÚÔvÚWC›¯Ò“qúJšGcÔÏ[óÖÇh¼„ê>¬ãuyzAí º@³­t¬šNÆhn„Îü´'adòôe:{ÚîkT牷ôÐxuëîà‘júB}´5F»¶ÁH>ÑàšZŸï¦ÉuÏï`÷u眑¹Æí—Äõ´e-uûÀ ëà ºúÕ ›wtÏ ;×ç²Ï²ÙqOˆ•yÏ^¢û’Ð<[I]^o0~…ê<ä¾8´wÓîÚv‰j°Ï©ÏQÝ¿Fö³‹«ërl×5:|?Í,ˆ]´k ÕõéÙªó›cy]ãbXLXêî'‚‡’ôÅ"*ýg6ÿ±ŒÔŸ?(îÛ‹¨Ëûö”Ò¾b:t7þ!k¤·`$·|ôiêÖi+î7‰Ú×¼ž¦ž¡=â··¿ôövϋŠTëÌu®¥ÎAÐ{Mw_tõ^óCµOU×›G¨ö÷¸óàà‰**}²‘9n?Ôº‘ótè^1ÿs2×ò’¥ûŠè7,}8Í7+©æ ¸œŸ`ü"Õúç¾ýt°‘f£:giüQ:ÑH§Þ£.Ÿ?8óu:û9:÷YñËbÚô[t¸Fæ’¶¶Òäèà#ÐvÜ«¯ïür¡À¸çߊKÔßøy×#Yš\¦=%´¥–6Yªsƒ¤®ÜÖ.RwÏüª‘|â}ÕÔÍ%ÆâÔϽõ6VÒxmOÐî[´M~Dë ýÓiúæEúÆ :ÿóôõ§éùHÏR=ý'tæ#:ý_ůÑ\7z“NdèØh¶‘¦nÑþ´kAì¡íTóE4‡òHŒ~' už§=÷¥M×èq ÍE*uFÖÕgÝýIPó–Cãç`z_ŒA;õ0Õù#–j¿›ë‹üdkh{mz—ÆçÄrªyîG i}ü¿Ó ª9ÑnÎAð©JhþQ ó)œ’ëaÏõÐÙoÐéK4WO§>KµoOÍ ÃoÒÌ=tè1šj ©ëk Ꜭ¶ ê÷_^Ÿcëus#‚G¨Þƒ»ÏÉOÒäËœWܽHÝ:'XS@z²€ÆK©Þ÷ÍQÃx&FÝ|'¯‰m¤­Ë´­ŠNÇ蜑>'_§¯sWLÓ5âÚ³A,¦ñkôP Ý^@Fæàh~¹Ëoº~³àäg¡ÝG'«?ÅÝt¼úû6¯ÎKusGƒ®¾"Ø”¥õI*} ‘œÍ?Ú[@_.§Ú·¨}†ÉÇ¡›Îü:ÕGǤë©Ëù º¼Ç`]Ÿç•÷©Íý¸“ŽSêûm½®7èú伯çy‡6®næ˜øc:·ºz¿g:“ÐŽ?NGêhªB\G“]´ÿ"Õ{àÄÚv™ê9áÙ*z²˜Ö—Rw/Ü›¤ù6ºó˜¨yxûbôèçv{ZªsˆOåèéëôl uó‚­4ahw çs©tàí-£Ú?ßtƒêyÝÑeúm³ºë¨??>^@.Së£Ï=¿‘y©ÖÝ{u=f'§cÛéHÕyFCèà÷ÅçAšŠÑµ´¯œjÿœ›×tý+P½Gmª¢:_TÏéëÄÊadžë%ê>ǃ'Ѝö»ºx¯¿@Ï7Ò¹ÏÓÜ.ñïÓ±R:ÜH+ißuªó˜´ÎÊ=_¼æÛ•ôUC%רfëhÊÒδyšÚJªuý5tp+¾#9Õψîs6ä°ЯXZUIu=òÊuùWA÷:öï¡™÷ 9#ÒÜ_ЩV:QE5-s….S]?$Bu=Ñ[@»Ó´suõ A½‡S]ŸCÐÝ—›c´i?Õ}Ûé2zª’ê|b½·©¯¦š“õš¸¿€>—¤šk¦ŸûßY¤{-­IÒºjz:Iㆺ>… Î7N\¤Ý=Tæõš¡ÍÐ) Úéë;èùKâ=÷9ªu“:¯vêIšúö×ÓÈ}~M¬£'—¨îw-BóÇ1ª9išs=|“fhçvª¯ïúbZWAw[éÿÝŸ¤ÃÏÓìNhsOÑÖkôD=\M]Ýr¤Ÿs¥u¡ÖÙävÉÛCõÜ¿gX@»/R×”}•mÛNµžûŒ{¾è&¾OGÜ:!õ$Õúåj»Ï öWQW‡Ìíƒv|¾féSbþñ4{’ôH =“ ­7©{_{­›oÔçÊk¥Ts°Y±ˆÖƨ¾ïÔ'ÜŸãr’¼f×"}9¹ºî|9Øv“ú~зSA{èèv:æ~ß¡ã´ãs4ó쪦.OÁkÏ¿´º³í«;Sÿ)>.þ!þ›4÷»b!Õœå‰/ÒÈùX%Õ¾ ×™½W¼›/‹îžk¨†FÎ ¶ÓäAñ.êó8ƒ[¨Î-;S;o×ócëê#‚þÜÜ;ÖNâñ¾Õí»JÝ=úŠ—iW!mÚNOYª¹{ 4› è·éËԭ­ePóðíK•Tû¦—¡mY„&ƒvøšyŸµÒÔã´·‘ê=øÒuëë æ\6,Q׿lÚEû ¡íC^ÑFêúéV,¦ú|ÕõØ£1h*©æøû¯ä,wn<:OO¹Ÿj¤·h"AÝ<á`ÿ<ÕÜäwéàIêêÙ‚Ùktüa:UC^ðS‹Tçý ÎQÍöç,^—·l©¦š³wTÔ¦®~E÷{ý–Í›ßÍÑKTßG¢ù,úMm¢._È«ù#öÜ›töùiš{ƒN­¥“ûÄ»éøMq3u÷ÁìGb3þMLSûiOQÞî´ù"=^N$`$ÏXû¤/Ó–Í´gÚ¦ÿN,Õ¾ í;{e‘ˆÓs0r.¯ù”­bd>Ô2ŒÌ3qóq‚ÚïêE‚:WAs¢ãîþºç*´¯ÿ§¹wWwò!*ý¶ÖÒüøˆ§–j¿M$g¯Ž,ЮíTë½Z6P­;×z!½¿s¹Á^ó”¡n”ùTÖÍŸ žLRWë䩽âþw>êµu¥Ðôºz¡›tx-´ÉÒÛÛ_M#?ÇÿN›oÒFCrto)Œä.h_Þ™,Õ|–.÷ÏuÇ©ÏáxŒjÎZÖÕwŒ¾ íXFŒÑ¡·éàÝ4?Æ{E—<^Ik,ý¦¸¾FúŒãiÚ^N{ i_uý^»7÷)PÍéÖ¯ßåóÙ oÑ7ߣç¾EçÆÄŸ£Ó3℘N>°ºšÏôr)}!ÍcÚ¹Yšû1MÇ©æi=£•IúP šo–Pßê×ÒŽbÚs Úég©Ÿ3æÍÜKµ¦¿•öåòvÚO±ž¶]£ºNij¤±eñ:4~îƒ÷tmÝC»Ö@;ñ Õ~íÌMš~‚&¯Óþ­4q‰6•P7—1èÖÍ+Æi,KµOWηµo×¼ê~N¯.ÑÆr*û“ÌÐt}’NüFæ‹Å×ÓO;/Õóƒ/Yhv—Ð3´k+]¢’ÓmsƒNÒñÇÄ:¶™fGÅât¸œênwް¢¥½Tç ‰¦¶Ú¹Stæ¡c—èÈÃt0F5¢euý™Á“©[¿u.s¾ qÅ]îŸsóJ‚_Á0wÌ;Z°ªzïm¨ËW ºùºA?ÏÌ«s<ûoP7¿+˜ÙíÙ}­(¯ÔýšW+©Ÿwžy‡N¸×_KöLS}ŸˆåÿœX!mYmc •ÜRÓæÖ¿)÷srùjnn¤9 ºúË?ýô‚¡oþ}㟭îëéÜoÒчéÀuq=ô•ÍSí¯hª§‘z›u÷G^s „ºzå æ§ß£îÜ#xîgéënúÆж´Rý>´£Ê@ãÖŸAw®”}•9"6\‚‘çqÇ~±Z,¤Z¿ª¹'ªÞ'î£æøFÚTM]ÿL°½•ö¬£é;èð::±FêÌFž§Ù÷ÅK⤨çZÅ­4³OÜAÓËâ“4u‰ÔÐþåÛÛW/ÖÐÞ5´»–vn½½íqÚ:G› h|'=³HÝz6ØXFµ󘥚Ûs¸ˆj=ޝcòî´Ðøº,ïþ%êúDƒ.·>xªšºõpPçÜh.¸Ì7Ðôãtø1ÉK®¥ÚÙa©žHºÝ_N%¿'2ÜÕ-}î­·&Gc ôh uçTã[hó"m³ÐNn COÐÄ-h*+¡}óÐé/®îäƒtâªXIÇ®S­?˜Stø XC‡.Ñô稛‡¸â!š|‹j¦îµ.Ûõ7Š’j|?¤×åìOh«©Ë#òWáµû¡in¤­×©Ë; ôÐô$:H3ÑlYKÇöÑÉýÔåºyíù:{F|Züiªs>g~^ükt:#VŠÿ‹XH57!wA¬§S%tòtüÁÕ½Bu~Žª}WÚ÷=TBÓ†º¿'5OÖQ3ÜS)n¤­ ôt‚º9šÁçJèÓy#yvuÅÐ&·QÍãó÷˜ÞÇ--* ç~—j.èh#ÍÜ ®$øZFò3WéÌ¿¡sÏÓóŸwþŒx?}ýh'Ëèp’¹uøàw©Þ¶»õ˜;× j¾žwošöµâzq£X&nwˆ•bµX+6Š 1+ΉÅqQ¼!Þ¢z£çÐÄÍ¢ËÅâ±Fl[Å´˜­ø®xU¼..ÓÄqXB[oQ7Ï=8ú(øuóO‚³?mîè@3uuh^ãæ’yíÄÚXH*¨îC\îxPóþ}ÞõnC¥®ÑŒ¾MÇÒÜzÚêΩuîïËÏ›þ>ºESg¨ôÚºšz”j•Ë_Qêäu>EòmÚ¿D»Ê¨»ïFæ;,Réߋ̱Ôû•ÐWhí•Uër¾W4to9ý­ŒÔûêºöhŒº>•`Gœêqs²Ú÷çLÞOG¯ÒŒ8ô¾XEÓÅtp‘ÌS—Ÿ¾â}´ÿ2íÞI•TûšOÎÓãÛ¨ö5ë}ö7,4ù¡_¨¦š“§ólu?Ý£:gZ´™Eš:F íÛJ­´¹„ž(£ã«»;F äô»B#ç8—©Ëv/Óží¢ûsÝ÷ïµ3ORßO+)¥š £õ_n®zP_r™;¢}²Šä°ž)¢ºjßC]cÐ͹¦ÅÌ&:²Ús@ç>¦³utfNÿ+ñ§hî7éätâyª¹DãIª}z£Å i7Ò좸_|šúsÕ`9Í|,¢C}b3M]¤ý•´³jÙ‰ôå84ùÇñŠ~δ7¶H먫« 6nsVÑ–rÚ¾™öÖÓäÇÐÑC•ô·  ya Ú™­4÷·©Ëï öºóC×@Ó¼Ÿ&6ÒÎ2™?#¹Zæ@ùêÖŠÇ-mº°º®®4˜Ø²º}¥4•^ÝÁg¨›ßÌÜO§‚ÖÕ Ý:×¹O?÷ר¯K›rïŸÉyêúV‚Í­4VMª’ž¼D].P0õø|Zÿ9ç?÷\ŸRPó—Ž_¢­û¡ŠÑÑÏRÍkI}—ö¯£®®=ØUCÛvк8ýjÁªš½†ê:¥©˜&nЩ«s Wѱ7©Ëw÷Úd!},C?›Ó¦Êh¼šºuUðpš{ÜÏAÖoáþ]æ\™Úh%adþcvÕºQ›§¦ï¤ƒŠ)ñI±¦ÞåœRsûúªhï%ÚsjŸt¢šjÝT{m«¦î6Øœ¦M 4§g–©æBë|цbz¬”ÖZ[MkJè‹Iú‚¥î9Ì//ƒæQsg^,¥/‹¯ŠõÛè1ÑõG]þ{Póhãõ´y Õzz™§kÇÜssèqñQšZ¢Z‡Õehs½XL÷-@“IÚÁÏÒ³×i$ïž«W VÅ é¶ÐfKiê=Ú?'¦ioŽv¬¡>_Ý+9žæbÍ=YMu_,}D¦o;M=FÝžàðU:Z í¹¿NuŸÐ§ië»â6Ú\N›Äã¥ÐZ.R©/‰ôû´´¡†¶î¤]V·Çзiä\d]GÇ— ®SÌ~÷ý¹º:êë®RWÌܵª¶»Fö›§ Å1N›Çi[#í( šWÐ{…&·|Šß§%TŸËƒ“tè뢮> 8s=÷ÿ€6ó¡xZŸ§éyñ3TÏõóT•ú|[³›Ã¹b’­¡ñÚ~™ê½žæ$º{îÔçGx%‡Hϳ#}Dg/ÑîmÔÕ“µt MSÛèàÓ4ÝG]NHPžÓ:7ÌŒ¾GÇ7Ò‰èÔ4÷2þÏtöhËéÞ%ª¹¦_¶´©•ºy‡Ÿ¤u?w¯Én¦.‡ßkgÓ‘K4ý<8FµN¦ÅÒ—‹nï.KK  9\­Ï‰ó9M>·ièuóU­Ëo êzYsT´¬¼€ê=ŒŸóêÕy'îû J?¿9"j¾µ«‹6çhk!Õ\àD-ÕyE=YÚw“&ãÔÝG·P÷ó_ñ²ø>Ín¢®_<8õ:tÚç 4=îõ-õjvr õ¯'ÿúÚ£é‰Ú\Oåк>ƒ`k-'a$oHö•fä.z G¥îÔœ-¦- êî ‚i:C‡»èèM:õ1ÍÍÜÞéçÄ4ýÐŽ] Ã†Fê`¿Hýy¡×õ»ã;¨Þ 5l¤‡-•<6óì" ûéJzøÕý։봩L\ -W©Ëó¦ us]l“««pëH{pê½ÉèûÔÕ]ŽsðwbÐì+ õs›¼é­Ôå\{mÏÚT #÷:¯Å¨ëº¾ïˆ­bû2uùÙÁKݼòàÀÐfNÒ»hrI¼‡êú´u=U|{ݹO0’’ƒ‘z Ѧ¿Oݾ:xxFêê—¨æÃ¶ÔÐŒSÎqì>÷s¨§ÝùÏIëú°‚Ú7¢9(òya¿™„‘õ°Î9v9€&Õ·ªö\ ­¥Zï¬ç¬ ÷œ‹ß¢unÿ’¥SótðMÚniëEêö'ÁÃ×iþã8¨çE#ó*E½g;Ö@¯Ð¸Ø½vÌ=ï3ÐdNü¬øêrX>Ñ®ýb5m¹Dãëè©z¤ŠjžÍ§­/¾SI]žVÐåyÝ<ê0—zø Í”ÒH}ñ<õ¹ÎÞÄ6Ú¶º{˜ Ïéóû{w¾|5IÝýM°-IÝ}r0µ¢Ë¿ íH9Í>B3OÒ¡}4½]|„|†úý¶·³FÜOO_¢:_Æåb%—ߺ¾ƒà³Fò{tþLl)o»¡Ý ´²„öÓ‰GinÚÖµÔÍ·þQ4¯Ú¼‰vÖÒ~KSéPÍ~QŒÑ©û©|?fúç¡ýWââçéÌïÑé3bØM³9q’¡É‡h÷»Tó¢uÎÅhöˆG+iû~h§×BS]íÑÐüNAÞüÇâ{¦é`MŽÓîìímMÓØ=”£Ï,ÂHžº¯ïõ/¨ö¡6õÐÈü–EšzZ¼±ºéRrj¼.ï(Ø–¦§Ë©ÎkvõÛA]oº÷oP>"ëÊoª93ùq A³k‘¾TBݼªàñz¶‚êœW×/LB;w'ùÍý¥øY:zù‚XB‡&©æ žMPù|1§çad®—;— ¯÷Ã&o]¥ûº?¢É÷¨ïOðîAS-ºyÁ”{>~;?gøÿÔ{iÖåL´Bëç€y3ÇÄgh¤O©•öÞ©»Ÿ^±6^ Ù§*Å=6OÒDŒJ^§ù€ŽWÐÌ´¿œêëãdu÷FA¹7ÖÜðH{CŒºûÝàpÚ‘8M?DwP]?k?˜ÖÅ6Y1KO$©Ì©2ÅTëøô¼'ä-n¤ÍTó}Ü|¹ Öõ—R÷> ï×Á÷hòí*§m»è™r*óL#uó½E´»‘º\°·Pý½œ\¤¯hJ ¨Þs6,Ò–Jêæ û¯ÒÁ4´çÿ=w†ÎþˆÎìIü9q-þßiËtò­Õ»"J}±«G f¯‹—i&Au>ŠÎ?H}ŸºŸs°ç"íŒÑ–e¿J5^=!V%¡ñç¥^—׬«¡2OÌ´4ÐÎTÖצc‰¦7BÛµL¿„Æçµû\Žù":÷ûTê›}î}ÐÕy{Ã|]on›§ú¹ ç(ö@)­ŽS™ß©ƒøŠ¡Ïëû*¼zž¥9ÚgÜŸ£÷˜Í[iÇzɳ輟î爷×Ð3–ÖUS߇øIº: Î‡Ñ¾^7!辎`ï:´•ŽÜ¤£—hîwèô?Ï;·Ú¡uû!ëó*¼=h×uÚY)n¤‰í4’×¾MÜ@¥ïÓ¶o¡~¾›Wç4_§zç:ŸÂŸÓ{]]nðD‚ê¼’qº«@ŒÑúÚü.í­ÖåZu.OmŒÊ½Ddî€{{­['7MUÁÿ9O‹þ>´=¾¯õDvì34’Ûü1m®¢¡îËkÅ"hü9¡÷x1m§š;Ù½&›©Ö5¦»h¶ŒŽÅéd ÍÝ€¶vÎÿ}ý u÷vÁôûôHÕ¾E×l¶QÍüc¹õs×½‡Êé‘ÕûøÕz—K¸ÕÐlû´ç¥¹ÿHÇoÐÑ8Í,¬nz½xØDõ~§½Šº~ä œ?™ÇcTçQµn íîüÔߟ*…‘ýv|‘vo¦ƒ•4óôóÔÓÙG`ä¾£w í.§þûñž-¥Ïg 4~þ‚W_·®ŽdE÷ýù¡áQš»²bšj?l‹x¸€¾h©œo[S߇zõÜ%Ò°Ž¶Þ ] šÜH]t0ëöÛ‘yÛIhç¾LgÊ©Î_úŽ×Ò1²[Kߢ®?"¨9#wЮ[Ôå5ªe'm®¤‘\à=2¯oðÆôtŽºúÖ öË|Ú¹ªùâz><\)>ISâƒâTû¡¤OÎ&,m¾*^¦§6R—oã5»“ô(µM×Å Ôõ7–èñëôˆ‹è«–º¹ìÁWJè‹ y¿£r^mÿP4Ôä_ž+ê< Ÿá}!N•ÒúKôDÕúhí¯Š¯K©Î}rçhÁHŽl½x‘J>‡i_'–‰1ÚQ+ZñMì«Ä1)¦Åwig«x‰ví/R]tïEK{6ˆ¥b’ön¢šŸÐo¨æœ'Ÿßß¡©Bq£h¨~¶Òô~:T@]}ÇŠÍb+uõ3Á‘­t´ULÀH£Ô©Ù™£SwÐñTó°ÕÔÃTçÁ&?çĵ´»’jö ) »cÐøsE¯›s<º@õýÝ]OÝù׎_¤c7iº–´ÓŽúÛÛ¾“¹ô?¤ùN í½N³çWÕ¾~ƒžû9:;JuÎOn’Nî¦:w*{7Õõ^êsTÏ‘ÛÊèÑ꼒ï} vú/¡I\¡]s´g íQ×'°âu¹nÁ¡óÔÍÝ Žü€Ž= #ïïˆÏÒéMsSTs6G×ÞÞŒ¡®/<˜|vo¡§Kó6Zz$K}^“׋{#÷>wÒ{¶Údšv·Ò¶E_oŠKâz*uóv·øt š]%Të’,Ñ¢îãóÔ­oƒÍk©ž;tm¦ý šÊQ×ÇÔùº‘ydBÛ7GÄéþhŽæh‡{Ÿú¹ÎÁeÚwƒöÓ¤«×K7C›ÝMuµÎYª/¥±+ôFrÇo£.ï>¨ëåD–ö%iê>š>OݹHПõ(WJ§“tv=´¹¿¢c—©Ëƒ}–¦î¢‰Rª9>š&ùe&ÿk\ñàêÚñƒTó%õ~9}‹ö_ -Û¨Ôm›ß* ò<3‰ о±ƒžÿëtv©¤cÇèðã«›¹@Ót CÛÖÐÖ´)AÏf©žƒŸÜFÎÓç“ÐÑ­#ƒ®1غÚ‰ÔíßIG¯ÑôcÔõm¬øÕ\´¾yÚ[Jµî¶sÍímÙJ#u5´ÁR—‹tsƒùãŸ`äPý¶¨÷zZ§.P—#t¯«{hóm§ó´§œêùê@Šºy)ÁÁ:ƒvê#γ}ßÕì_Ò±>ªuc‹4]µbd®ò6*ùÀ¶.Fo¤‡©Þº~­à“1É«nÎÒÞü×a\ޒצëÅ":x¦¾@uþ±Öíèù°›'lÛB5‡TûïN”S7·+XwÆŠèÁrº¿šî-¥ù/;h‰Ñ¯Xú“×Ï…z1N5Wá¥"hsÓÉf:þyš}‹¦Ÿ¥?ÆÍ½ jN¤·õ2m¹)n z®ïêg‚gÄrÉë¶ÔÏðêz×÷{{u?¤9þ/úT­°bŒ>X@ÏßI瞣3? Óßï§¹ÿ*¿*þZ×ÒÉ”¸N¬¡c â:úc±ŒŽœ§ÙŠU4²žz_¬¢š#þ‘˜¤š3ŠÓZÚ_A{7R7‡4ØÚz{›D—·Ì?ö‚ƈ//A›£Éý4ÓC÷[1ÿó0­îÜ_Öqf¨Z—ûLÞEërÔ­W¼¦~#õõƒƒËô%;¿ f®Ñá»[hösкz`¯Iž§é“tôÖêŽÝKÇ[éä&êr‚¹géÌ/Ó¹èŸüOÐNm¢#wPŸSâMP7êÖA—oôyCÞŽTó"y bÕ9Úÿëϯ¼zŸìrKC~éób]’ÓÓK42·å:m-§m—iûv좽û©;§ ¦Ñ‘ §Ss0Ú&úú4¯ôãÙù tîçèø!:RG#óM>¢ý ´s3í¨ gKèÞ$4.G>Øò.íßm×bÞ#…´Îß¹ŸƒË1 ú¾)Ÿ‹õ„3ÿØ šMÎÍνñ¼~>œ{W·o^óë¯3y}b½ûÿzݿܭëŽûÿîþù·q9bæŒûß[Üy]‹«3jñÿ{þ÷dZÝßßêÖcsߤ³WÅt¦–NO‹¿KsÄŸ£S]t2NÇ&éÈ2î¡éüóÓŠQWgt÷—+ºçŠ›OQ^Ÿ7©ÎÕqs ½æ•jÚsúu’ÛÇúçž·³˜FòÞãTçX7ôÐýZ4Ϲ/ÚIý o¢•v•‰[ÅÔ­W,§zN3Ø@3nÝ2ü:æ¾?×ϵbì¢R×oÜ|Z¯Í=N‡Êhú Õ¹®ï?ØXDõü»Ü¬ªñs)½n?lª¡Ú÷>Wœ…´¿•¦ç ÍÞ¤:Ç=õqM4Ò¶ZÚº•j]º›3¬OÐØ%Z³@÷Å©ö'ÿA Ÿ“ï­0ôùêŸÇ^ícÐßß©eêªó4"ù¿sÔå4Ýï!èòl‚™ûÄF*ç%v Œ¶§ió6êú³‚/YhbU´¹”öTÑoÄ }}›ø›4÷¦8#¦éкÕÕú^WGã5gã´É=[®Ó̽нM}5=“¥­Úóß¡3ù‚A;ÖN‡çiÆ}ýƒûi_þõcÝ|àó•ÐøùôÞ1êú±ƒQ·¯ôڹߡ3%tbyuÇî¤.G>8ò¡ø ռ줡=îëp}»A÷{ Ö—P=܃‘œ×%Tç;œ4Tç‹vn€vÈÝË»çF°kžê=Ó z¢J®Ž}u‘毫ƒÆÝã^¡šS¬ó¤¾Óf?¢CïÑO12y3ÕøÄeÚ¶™úýÛ'©ópê+ yÙÒS—¨žï¸}T0“££¨«×òÚ´w™vT­®þx[.PyÞGæQJ}dÞì1C›Ä2:ôYKÇËa$W¢©jŽl~»±b<íÀ:}”ŽŒÒÁyhܺ%x¢‚4ÃH¿®Ÿ“çm±ôL)ÕÜWW¨¢};hïÜêʼ Èœg7w/˜/à j~±‰×ÐŽíl¤Ýe´g™öm£ÉCÔåAÇ`dXßEÚî~N®¾<¨ý²¯%©æW—S×çâ5/z¢˜¶®¡úsr9ÏÁÔMšùÕœž¶mß@õÞŸ‹yóË“ ýJ Fæ éœ.É'6Ms´ÓÒȹø"ºAÇRTž£fê]šûChR0r¿y¬X4Ôåd{íD;í¹N;b0’+ëæbë?AíOôu9óÑó zîßЙ.šû:UJÇŸÈ›-¡é]TçúÖÂÈ× =÷:‘ ã´§‚ž®¦’¿lړжl¤’‹kòÛà_ŽÓÓe4^H{Šhúa:\FݼàÄ8Í5PG7S!~Hg³ÐÎý1¹L§‘N<#î¢ý[ÄÍÔå[6Cs8 íù­tf˜NÕˆèä÷Ä»èÄê烠zήõx#ߥZGªç˜­ó´¥ž6YzvYœ§®+èïq‚óTûþE“/#XQçùê<œ:K‹is#MÄ©äsÚù_j]oîšxYœ¥ÿ0§åb ÿ>,‹hj”êœÍIÕœ††v'Äê?¿½ñMtÿŒôû¨ßŠQ¿~Ðù¿ºNv몠›ã²âuêrN‚—iÿ6š¬§=bMÅÄÑÁgÄ4Mß!²OÏd®‹ÓK'î?¤“Ð)uŽæÖÐé=âûtîsôÜQz~FΕ]¾AðôuhþÈ@{þßйƒtæ#:òy:èêôó%í¾¢ÎïÊ·U®è΃‚m· u¿ß žO4ߤ'‹¨î#ôý¬¹ðR™?äû޽>oÜ[»H_5ÔŸkxO,ÓÓEôìmÚCÝܹ`{)䚊QÝGdÞ¥#'¡ÞE“ÛÄ{iµ&ÿcøo¯Ëõç©Þú"Údhgœú¼†ä:xžêz0Rgú&ØG]=zpæ¡mo¥ÇªÅrzd­‰Q7¯Âk¶Å¨þܤGç+Eæaú¼w¯Î©êNÒ;hº‡fúèh=j§Ó߀6·ƒº:¤`|+Õû-‹ôZ)}©’ºú¯Éÿ˜Vü–¡î÷ôû,oý2=£§«¨æöºúð`¸Ww¶_§šÔ]L]ÞV°'Õ:—³ÔóT—gý xÚÜ¿¢£[é‰yh MÕB“ß6­XUBOgiÓeÚQCå~О»AçNÐÙ;ét+¸F³÷R­»ˆXM3èÐnêæ ®XFÐÔ{âuó W”~î“b¸ºÜ§ˆ½Wib޶Ò“ êê֬˽ jn›Ü/X?Èç—?e©›_Ô9âÚ>ù m2TΓ#ç1/–S7OÔ«sBÌØa$ßõgxMþX`ÅÎRšºLStè$´½iª¹µêéÚ˜¤‡«©«ûõFê Ôšª¹ªn^jPëÝógjØCu^öX~oG?ú©æ‰ ¯¥›7¾‹žr?—£&ï ×|1F]þH°±‚º¼-“¸”·³Úäªuϧ–èÓ1zîkt¶‚N¿A]\p´šf·Ñô:£‘¾Æ4[¹¿^¤ÕÔó¯ˆ_¥î̺óNo¤oçë1êúÝÍË¥4§uÅb%="ºúé`c©XFÝë~ÅšÕÕ¹¤g©æ£6­׊[ÅJªy&­b–¶ï¢Åí,£=Õ´¯ˆº¾‹`²•œ¡Z¿7XC#ç‚×èÐh¦D¬¥ÃwŠïÐl1•þA3ú€˜£cÏ‹KtüG4rùcš[¤ÓÛÅCbù 1+þ:[FÏ}KüSh_žû ù›¿O“ïÒî9Úq…ºœôౕúóEÚÐ@óAûå4ω./`Å%zfÚó_¡3etb-Í.ŠïPg¥ó[c†>[[xíÜ_£É»i«…æpŒÌMh« q÷ù§ë±xZlĵÔõ35GÖÏ¡Œ-CãrQ‚ß±´®Œjýç©2hçoÐs?¤ÓîÞtl'ºL~ žcâÚY@µçp%Õœºu4ô•9µŽ-ž ÍÅTï›Ü:(ØÛHÝœP¯uçÛAgôDŒôñÎÕóÅ~K;Tûc4WMÏÿTÍcÕ¹Ä{bô™hò±W+¶o¦.ß8Øw Ú£ ê_Ÿù·AÐ|=ÿý›=îïõýݾOÍß6äò6º¿§q1oÜ­ÏãîýÕäž›¾î#œ{»{½Ð§Vå¾^wN0yžº¹ëÁ#†ê\%×çlˆÃH¿Ô]Ú±{hö u÷ÁÁ-4U#~êçDdþO«XA›ŠiÃ%ªýý’yN¹œª ä#êsÒ4TP×—l‰ÑÖEêæ {wÑÔ-š®¢Ù`$ߢ«H, ú9§?ϳeÔÍ% ž\¢‡Šèj*9]‘u€Îó~v‘ŒS¿OðÆ·ˆÛiÓ-ªs9[ß¥í ´ç í«¤ÏÓôEêöÜèìïÑÑ.:t§¸Ž¦iSœN@ãû:ÖA;ûË4÷ohvœºs»`ï6ªóõ4µi3u÷/ÞH.{£¡ùÇCкù+^ãêc½öÍéüŸÐׯÒsâߣs›ÎÎR½—ÊŒ‹I:ø.M>Mû×Òî54’Ã=Oõs㛋02_þôF¯‡vð»4ysuËÔÕé%?OûÝ#ë2?‡6²¯YÈëî5MÊß§?þ)æHÆ×uŸ{ˆÎÖRÍu^O[j¡qõj¤þ¶Yô?ï¯h|Ž„Ï•è©¥Ç®@s¼’6ÕÒŽ"*}*‘óèD=Õœ¨ƒ 4²?ÈÑgbô›¢›/ÔþŒï,R¯á=y6e©«' ÒÁEêÖÛA—;â¬ÃsbwÑ䂸í_ÇÅr±ˆ¶í¢š»ëê7VÜO]½\ðå$4sÔõË\¡ghK)M$hßMšü1ì£ÙcÔåÉz­ß§»º¯9²HµáüU:÷ïéÔ#49O¿YBól0’7xÔB;¿ŽžûŸél?̧ùEñstê±pu'@'6Ññ=tl†Ž<@‡?¦Ú/=xhu6S'¢9þZO~6Aë–é·KèÖ¨ùædmÛ ­ï·òþÉ)ªýCs}Šóâï‹¿@gÿ½øtæIñéô~šÛK§ž§ÚŸârxƒ©.štûζKôLœ¾VB¿EÍ— õçï^wïtyû^ëî˃.—=¨¹áÏ&aÈ óú:oMnUmj;m¾BÏVQ}®hßVo‚&éàMš¹íÈ:¤ém4²Þ¬·S?çÔÛ5N;,uçÊÁ¦k4^EOVÒc9êç&x'ÍSùÿ=䗆ܔyzê mk¤íïÒž´³¿E§ÿœŽ}Lµ¯!;J‡H‡i²„ºyÒA_ÞPNëçéÁêÏ=ª’0œÇzõýìúl‚-e´ó&í¯¡Ãk ý ªù‚ ×E¯õ\öüM:ûïÄJ:3H'ÝçpúNªçK­WèéKô”¸ÓBSWíüa:›¢3?Ks§i¶šOÒ^û)–Óžbêæ©uÎâéêòÓƒÏZ©ã—¹–vöêò‚:—q¼”ŽÝOuN£Ëy ê|¥ï¯C«¨«æ·i+9Í/ÄèêîÂ۩Ë{ðÚéuTçÂé\ Íßy¥ˆf¾KýûËÛWBŠA?ÿ&é3uï÷ÎjÚ¸L]\PóÕ^)¥Zw,ý“ö>jÊ-õ}¿^wþü¶¸×ЗJé+åb5}ÕÐXŒêNÿ„žû©üßsþÍ}@[ic•¼ 󤥽k¡í» #9ƒ{-õïcowíÝ@Gï¡…к¼ˆ`r=TM[Úוú¾õà=4÷ŸèÔ“tì½(Ñ‘G©®ç2Ít𲸦&Åêóƒ©æcõì§îùl-¥Í©æ4^§§¨ä(FÖG`$gü ýV’î‹Q—±by^?ÖÛl Í¼OÝü‰ Þ«ºœÇ`!5û+éÑ*úbÉËÔõ±31:|ZwŸ”sv{¨šq²Fêõµ;³•6,PÍ]úª¡EДǨ?ßðîNBÛsš1h]ßbPë©Ô‡bÐì- zo¬y©ò2î\1Ø[HÝ9dн߃™›â2us‚iêêЂ3Gèì¯Ósߥ¯/Á°>tó–ƒzU£šƒégÉÞ^>ç´™Rª9"®Î-x< Mm%=§ZØáÎÛ;wÒþu4[ íÜߊÎñnÎÑ·ÑÑ·èÐÓ´Û½ï]_þеTssš7Rw^ÔÜ—n«ùµz°ÚÙzš+¥ã×éðÃTï?Ü9”×=Xþ)Ñìš§©íï¡Whk1u¹uÁX ­LBóZ5´]›èÎ 9|ÞÖeÚ¶‰¦¿H'êèäe:{’ž 'ÊÿûôŸ_½nßîú.ƒÇ uùÁý ÐìIB;ö.©¦CªùÚoÒ^F]_qPçÒè½ñ‘­+7ÒüËaEí—Õ¹x»iI]Gõ?ÆåFc¥ÔÕ RwžlÜFÏŠ‘:íòÛÛYD¥ß Ü ­«_ôšS‹ÔíÛƒÝK4Ò£é{èpŠº{àÄ:9C§ž¦Ów‹géÌÿ$öѹß¿KÏý[úú—éü»ôÍ×VÕÎÜOõsy¬Žf·ÒáwÅcth=M[]—£ìY¤[ik+mOm£nnCÐå#µOÝ÷ãûþ|Í3Ñu¢{¬XE]^^°õÕûI×ù‰¸Ÿëì¯ÐÜ/‚æñ´™ÏÓ¡Ghz3 ÷ûážžê=Ù‰=SN]p°k3Õ¹äI:Tí Õy#óaó_ýc÷}ûçe÷-êîWìƒ!ïæË6ïKbóÑý=më ¸jÙÈÇâUšÞO].{°6G5g{·¡nÎGp`´ƒËT?gõþõÄ1I¿Y@ÿFúhu?ë÷I^­wmÝI»®Ñ¾õ4YNÝ´àÐgh¶ÊüC;ÿ¡ø}½›žÿÇâ‹k¨æÕÍUÒÈýÿÿJ'jéX1Õ{Üþ›Tï]O'¡Éÿ1+tÿ¿›§lNÐzjö/B;ð4u9'ÁÖ´ù‚8G›ÊéÙ8Õ~·n ºyõÁ¨Ù^@]Nw¤^ð[j’º|ñà)±¥‘vn¢}¨ë; ¦.Ò¡$•sgeÆŸ¡®ž*¨ßßÀ}ÔõG³S÷ Îühg^¤:oUç[Fü Õ\§Ì!:xCÜ@uÞ‹öóêú¦c™j^Eó6êòT‚Z{lA¼Du.ƒæH³îKÌw’Ôçzý>VsÞ\það„xF<[N›©Öó»¼OÒÎ-ÓÉB:r7MÒþJªyî>-èçõzÛ6Ðæí4R×\A_JÒüu|Ðø}µWç?ë=³ë j¿AÏ.:ðyhÏÓ©ËÔ÷Óå×w¶gœúúî}îûñŸÿòyn&é‘%úZ4-;oo—{޹ʕüNgOuýú&Eí©Bh^Z„öüß¡¹¿Oõžnl?mÚ@stè&Ml¢õ×é« 4¿¬ š“IÚº‰&®SWì{ÚÔâ;â1K›«DyŸ¸<0¯ùõjbt_)•ˆË42Ï¢Šž(£ZÇ,ù¡v¢žŽ7Ð!ÿ9r…&ŠòV»ïk‡¥Ý•ÐÎþœv­¥Í—iÓ_¦ú<Ú·D§™Ní§~Þ“wøAš¾AµžÌåû´ûmßNõ>ØýþƒßZ„&ÿò^Ñç{µZó]®Z°ýím ©}TïU‡ß¤£èÄNh]þið•¤Ó@Óhóÿ}¬Lü‚(õ£›èÐêï»´~Çç¤u»ÿ.yÒÆõ Û/ÐîíÐÜÍ3–ºu×_§ROgÜú?ØUBûߥétø~šÝLG?¤—iîç uŸß^¿Ÿ ö\…6ëÎAë²ÐþÉÏÒù½ôüïÓÙr:½NmåÞ}ò q;Õü‡±kb+=IGÞï×Òl­xuçÁ+&ÅM4³Ží旅 â;¢û=¹yÝ+Öˆå4õ:ðޏFòr*Å´÷¢¸‰ú×]°‘vn¤?Å2Ú~U¼(&i[Í¿|VôŸËÞ¦MôTÕõç¾Eêê‚OÐÈyÖ· ­Y¢zos$Kµïîl ´““TsÜ’÷Q·ÿ 6¸Ÿ›®kJéÓIæcî­¤¾þíÁH^ýÐMYšØL]{Ðõi¬¸6÷ˆ54Òo¸Qtïÿø±‘ž­^Ý£‹TçÉ©{huR,…‘:…Èù”øKÝ9׊åôèq‰j=lC=Y-.R×ÿ<[ .R“Ð4GuŸ£õ¸‰M«j__¦çæéÄtüAñ±Žn¤éçéÀÔåª5Ÿ½©€žÊQ=7Ò~ßüÇêŠ5–Æ[¡þ¢øStü.š­ i·/quÉA?gÙõ˻㴣šj^ùÙbZw‰V—CóL’)¤ý» m»ÍñR÷ýÖÑÌš¸Bë«éwb´}4ÛüôÿüXÔ{€Å÷èÈ-ñIªs¶?KSí4ùyêûã¼][ió%êòãƒ51h¾QB/ÀHŸùðêºîéÞH;ªhÛ"mš£g¯S—›tõú+Væ}µ”†}Sæ’—ÛܧñE*ý§fxù´?¤É3Ð$k¡~€jž^ÿ2=]B7Pù\4÷PÍÝx­€úznïñBz¢„žÙH[ÖѶJªý;kÄqÉÙIЮ Ôå\]>UÐ_¥oÄdwÒ‘uâ%hG¨žãè9Vÿuªù›mIz¶‚³ôÕêî!‚:g`—¡_ŠÁH½mm5x‚fܽըÓb.ï¤û>çšéÄš|œví¢‰ôíÕ¾H7¿*øñ)é«Ñ5½_ty8A­Çú¦¡ýePçFæóõÑL!uyÁÑïA{>Ig~fST?w\NðL!4»,ŒäÙË|*SY@Ÿ«„öL m¨¦G7RW_tûD¯ñ94Þ]ôùJªsí%©Ö/¹÷]°1 í¹}âý´'F»–i$Ǹ†j_p|Ntï‹# úš¥þÞãk1ÑýœªÅú=åþ÷øuhçÿ ÍÐÔ6ÚÒÜ:gdäær{Í+9ªû¤VC]jÐÕusótÚ}N÷o¦½54±¶Æ¨›×<•¥G—©œ«Dúd5@{þzî}ñgèÜ/ÒÜA:•ÿùØ‘äêfo‰Óáͬ¡.¿18øšÊÐÏQ?Ë«ù²°ñ$uý§öhuÏo¤ÏÉÍEõÚ‘ Õz‹´ÃÒ39Z[Buÿ¹;F_¨¤/Çh,I,S÷¼ êºNçö¬§nŽWDÉÓ5ƒ“t¨ˆ—Ðöqª¹y©Ç¨ë«6COŠ?€vöqšûüêêœÒL%Õ¾ö¦Ú·“¦~mf’Ñö4uûoä\õDM¬£½—ép1»J]ÞÁ'Úbó_Öÿô^XݦÔÏ ®§‘<çñ’Ø@uÎoþñ½âoS³/Gë-ÕŸs|3mš§Íe´m3uù,Á®JÚSN]ßN0™¥ƒ£täÑÉ›tz˜ÎÝ€vò'tü{tìûtä®Õ¾‡fî\ÝÔÅšÜIû iïuùŸÁÄ.ÚVM[÷Ó&CˆúÂRÍóu}UA—úè6ªóã—is •98¦§ Ú±›tvŒÎ¬¡S]t¼‡Ž~–—Òôt N{®ÝÞöâO°ž‰Ñ“–úy›Þ‡cPëÅM¾<~Åø<Õ>êöJêòc‚ߥšÇ>|ÚìÓ4Ò—:JûoÑ0÷Ç©9I­Kôô2=±HÅè‘"úê•{†H®¦ÏEö^¤'J©>§5çHó»{-Ü$¾M‡î¥#•Tûds?M§VÕºò`“9—^¤û Ý£’Ca*éÓ1ª÷Q¯‰±%z8FO•ÒÄÚ{¦¢CÑá:QL§î¯Ñé¿#uOÅ ý¶ÆÍû jN¨W×r¾É›Öúøqh|þ›÷Û‹ô`)mX¤ú\jZK[öÓÖqš¼‹º>÷àpÍn¢#Wèh’ޝ¥ûhî—ÄgÄB§wÓ™?„öÍÿDg‡éÌ·hî_S×÷û¼›&·Ò®ÑÝ_}ÝÐÆ"hGvÓ¡h˜ó[C¥)ÌOsë/¯ÿtî§©4¿Ü\±±Œºó~­ëû¾ÖµÐ7ÓÁutàšüžøí[¦‰íØH[ iÜÒ³9ªuõîs*èîõƒ:ßEuïï`ÍÂ꺼ÿ Þc¹:o¯©ˆÑü¯uÅoŨ~¼¶D#uðbœºþé`ȳv6ˆnì¼Lu^wo1í¿LÝû'8àî›uŽQ>ÖbÅöyzÜB“?¶Y±¦ˆj©Öq÷¼ íp Í´R­gK¿MFiOšj}dÓ6±”jÁ™*zj£X@ݽBPÏ“4w°6N÷–@óeC_Y 'ËV×í{ƒ.OvÅü9Zèß ºs=—?gïÝù‹ë»ô7gÏkû+h÷ÍÕmÛOe]£¹³‘{Í…øÞíJP—Óìµùmߊî¹Úº•¶ÌSC¬u8/UR7_Ùk¾™¤š¯]]Bó¿¾›E™×n:ÄD5Õ¹9½iª÷ûC†o¥Ù tä´3ÏÑq×÷©§®ÿÜkž[\U¿O6ßNB;ûÞI‡®ÓÔ‡PïQì¹?¢3Çiòcz²”Ö•ÃÈùpóZÚâ~®þ>ÔëꦂýÅÐÎÌÓé4uçÁAÿz?aÅrêæ_AóB’ö@;ó+Tó²roˆ_£“çéXF¼›Žl¥ÙèpÕÜÎÁtà=š, }õ´k=õ}kÞÖÚ£§¯SýýèïCïù_^„ÆÍgºûM¯Mn¦­—iCîö§‡«¡zÚ7£óîÜíõèô¿åu<ýÍ5Ñ¡Çi*I{{hÇeÚ\DuÞÊ©%êöÁà t_%­ŠA_Ÿ|f‘ÖŠ‡+hC ´çÖÐÙ¿Agþ9M×S}?è\ÆîZúió¢OÇé«ÕÐü¾û9èy±ÎiÞu¿aÜý`Ð×¥…ú´3TrœíØiòM±îSŒAS]y{uÞók%´eZ—“<§Ú÷àÖÞhÿ^ÅêöTÓÁEC‡-½A'ï¯Ò\–Î&éÜ¿¥çwB;³–¦ÑdœöÏÓÎ]´Cl½N[¨æQh>¿Þ«ì­†Æåß^¢ñ=Ðf>·RÝïõQ]ë=Dëvª÷kñ ôt=`huŽ~ÉÀHÝÂjz¸˜ú{E¯ž«k?ºæ¹{» î—tÞ·ê¾{hjÿ}ÓZK3 tôHÑÜ—èô ýUÉÏ«†Ö½½ÆŸãz%7ºóëàèCÔçÑ{u?ž?f šãо\Ï5ð9G¶ÁÈù°äâ›ágèØvêê2ƒ¯?!¾íìy:YEÇbÔÍ3 žLÐÚrªõØ.$x´Fê ôýér–‚ùãÄ»5#ýoõ~_ñ¬ø5:Ú@‡[WWëýtÎZ{)m»J]ž@ðT1uýsÁ#ÅTóݽ¼×|»„J߸q9CAS@+iç*ýfðiš¾‹?MG?¢c;éÄ1šk£3…tö:÷Wôü³ôõ =÷éÜ?ëÄ;èìÓ™Ÿ¢¹QæHM&èÄ"=H‡¿G3ât(KÓÒÁ‹ªó6Sˆ¥4iÅvÚŸ¦nÎÍŠYêóP¼‹Tç¿t\¢í×Äm+¡z^Ö’ ‘:†rº»’>ƒæÄWKhcœJ?¸i‹ÑŽë4QA{«hò´o¬¥óß§¯ÿ)=ßAçÜüâ¹{Ä¿Agþ«øE:ý4÷ïÄ_ “ïˆÅtb3»H³7häœßÒÁÝb%u9/ÁÏÒH.n)Õu|{Œjž›W°b9Õz½ÿ:§zn­õ /.Ð#9z¶ †<¯ö´dé‰YZ]@¿A#ë>w¿<£ms´gžêüq—óLŸ¡Cîü5ó þ¢˜¡®>kÅ+t¢†æ~†Îì¥z¾îr?‚.o)èæ€#ó<þ¥øû³¼ó?O{·Ñ¾JqžºРæ'¥+èPœf¾@G?Åótì üžø>usÚƒ¹?£Ó¿K%çÒ¸¹Ÿfî(=¿A‡vì¼XNG¯‹ë¨«£^1K“OP­oèž§–v\£:ÿùt–ººß ›£ts‚‚.jÅJú[1ÙÏ,§¯.Ò¦8u¹"A­×i+ÊÛaòvÒä“â3âÁÿ“ƒ‘yã={¨î7Žm£Ú·£s ŸˆA󜡯æ¨ÎsvõŠÁ³…´'I{Ké@usƒ®žuÅ[4[-.ÒÑwèÄF:™¢îÜ>8ýÓâÃb õ¹9ZÇ&y&vðu}KÑ|n§ë‹ ºÜÖ Ô•Û‚h^©¤~.©·)íÜ“´}'Ô\ Ó’ÿÜôßö_¢š‡é>×¼æɼZ/(÷üÑ9Oå4ÑJû·P©Ã³³†N[éÃú,¬¤cËâ÷èh–Ž\¤~N¼w¸AÜHuîRz\ÜM?‹©Ë[º9UÁ¾M´='®§Ë4VI÷æèSÉO±Fê<]ýKP_‹× íê¡[¨ï/öÊûÑZ¤g–`dÎz¤Ïcõó ¼Gªè7¡ñ¹8ÁjªÏ7W1Ør…ºý}0¹žŽgnïdºëöº¹Á™:÷·¡}ã?ˆ?Gç¿@Ïm§³N§7Ó©íTŸkƒÏSýœÖ9Ë‘¹)IšX¦-E4ÿ¶_ñx uyÁu0ò9~jžJ}‡Í>JS—ir†öŽS—ç¼béꞨ‚&–£®2xÖЦbš]#¹rM×h¼šžvï;½O:QH\§Ú—¤s¦¾S@]×ä-Wô}b^½¿}±€j>Êá=Ú@Oä¨ëÿž] MïÒCežŠqõÀA—+ìÙFû®Ðd#´ã@ó¢¡mZ· ¶_§GË©¬—#9x.¿8èï×½?¦.yE÷sÍ~ÚÞ,íÙB»æi§¡¨ë§ ê¼´§¨ùv=ZDÝsÇkç¶ÒÙ´øùtü t¬ššùˆÓô6ñaQÎÉÓeô“òÎÝ\Ž`b#Õ<ÊøÕy:ÿª¡œj½ÔÓFúsß‹éd†N|_¼,–ÑñctlAÔó‹Ï‰Ÿ¡£Õtä>±”ê¹nö!:|‹ê\ìô ¬¢Z5pU\O“'i9uçcÁÄ5Ú~ƒº²`K)m*£>GÖÛ˜_WÙº•~ã×É^×§¬7ÔÕÑ5³í]h›hܽþÎm¢sÿyug…¦#mr‘ºœµàáô1hž³Ô­Ÿƒ®?%èê&ƒ®î28| Úþ5ô;šáÏ@ûšû>^U èñÛ1hò¹k*adý©÷hºN9PJÿd?ÿ€Îý9Õ{ù\‹§Y·Žvs…‚C»hj=ÕüëŽbª÷*-Ô<-;ÑNÓóbÍ­Ø;O;êi¼‡žX šùåhö'iý%êæA;ÖQ×÷íµƒ÷Ñ䣴ëu¹ A·® º9RA­ù¦¡šû£õz®ÓWASwÑônïðTêš"s¬3? î)¨uh_3Ðø< Õ¯+½­Y*ç‘ûÁóкÜPûëTs5mK4™· =[”7÷í¾D²´®‚êsÄåNxÍñêöQA×÷lÛC{ÊnodNàÍÆ IÐét|'õõüùo{EÍ]J½G»bÔåòxMëhÇkiö 4µLk©» î[€&_î¾â+1h“Iq =½Dý~â™ZY)h^°ôÅ"ê׿^ìæSã ´¥•¶æh‡¥Ýki_9´oþ4}ãñN:?J_†FæN~‘žûñN:÷žØ"þýçâo‹?Mg>;èô‘NþN¼EÇoÒ±wè¨÷БâZšm¥Ãûi¦X”ü¼¡z±’jŽOêxWÜ-R­ÃêOÐî êòŠƒí[hóMz²œêùbÝý¶‘{ú%Ú`hÓÚ¾ Ú¹):lÅ꼃—ooÿªûî°ŒAãçÜyý¾Á+slgØJ;öˆ›¨Ÿïä4ufuÝÜ–àÀz:øc:üuŸ[Á±utbÚñûéHÍÌÐôwé`»§©óâ“4ÙJÝç}°½ˆžY¤¥yó× +JN¯}º7W%èæ°yí›.¾@gþˆN·‹¿%S7¿>8~•jHöÕ¹ƒ©Ïyô&Ÿ¤]—hë"Õ¾c74¨uàn[PçŸä—Y+*¢šçsŸÓ®Ž×kÿ¤„¾¾“¦nQ=m(¦2Ûœ.¥­Õt ‚frÔͱ ŽY:užN…Îü´çž;,þ!O‰¥töЙÕ{òȽù/Ó‰š]¦éÌíÕù‚©4ík Ý%´³ˆ&öÓöFÚÑÌú¤ûs¾$~Å}?O[ª÷É®îÔò);nÐWJ©ß'ʼJóü"}±šº?èú[ƒ®ÞlE9'qsœ‚'*¨Î;rý+A7ß,˜˜£]eÔõ§]}|Pr(Mz?Õ\b—79H'èôQñ zn€¾¾Ú¶•9¿f×"Õ¹­W©;¯N~Žºû ¯=?Cçfét)Í]¥Ãâ!ñi:tQ”õ~âªXE;Zik’6WÓ¦ zp‰þ‘¡NÊ»ßR7 Ø 6SͳìÞmwÌ+ÚLXKæ· Äým1u’Ž<ºªöL 4/,ЙIzþÿíë¿JÏŸ¥³Õt:&Љf:¾@³ïÓá·hzTÌŠŸ¡z®ërƒ©ç©Ö¯h½‘ÖóWZÉ8]NÛnÑÞõ0òyš-¥®¾ èçzI®M>ü –P­gë­§šï©¹ ­is!Õõpãuªùº?‘{ŠÈ>Õÿܽ:ÆÍMûDÛ¶Šåb…X)ʹ¬ËOZ±VlãbBL‹ãâœhÅKâ‚xU¼&Þ—i~÷°P\'®7ˆ¥b™hÄíâq§X%V‹5b½Ø(¶ŠI1+æÄ ¢¬§Ú߯ˆ‹âuñ¦x‹Fæ|‰Åb‰¸IÜ,n·‰åb…¸KÜ#Öˆ1±AŒ‹=bZçE+^/‹WÅëâ’¸LÝýÆŠëÄõâF±T,·ŠÛÅb¥X%V‹µb½Ø(&Ĥ˜eÿ‘¸ ^Ä+â¢xC¼)Þ¢…b‘X,n7‰›E#nËÅâ.qX#ÆÄ±UìÓbNœ­ø®xY”ýUçuqI\¦]kĵb‰¸Q,·ˆ[Åíb…X)V‰ûÅZ±^Œ‹ 1)Ž‹sâñ’¸ ^¯‰7Ä›´»@,‹Äõâ&±L4â6hÓ=4^C5gHçeëy°ÞK?»½zÜPI›–iK´™‹oÓÔÇâ&¹§+¤: Q, }W¡9`©æÀ¿DÝ\± »OôÚÑ:r]ÌQ×g¨‹¨î“^MÂHþ³–V/QwŸZBë¯ÓH߃¡/‰’˯}fŸ¥5ôðÎÓñÚ¼…veiÏ.ªóD\¿bPç‹ ÿ„NÍÓo–@;ÙNSŸ¡¯ѧ“y¿ƒfous¦ƒõTç-iÞH÷vš¬‡vî.:3D§KèT) ƒ9š¼Bµïî¤É{dš§é³IêçTz].…׺ÏÕ Öi»yÑÁ¦Í4ÞHÏPîÎ]ƒ‘zŠÉ»ðùc^íß{ÕÒÈü—yz¬Œž¼N]¿S°i#mÛ@Û/ÑT-Mß íÀ-Z¿LÝ×t÷SážjWŒ~[]¤Šh,K]~mðd =SMun™Ë êùŠîOôs¼¿”ºyqÁ¡M4“¡#_ ãóÐf Õ>ˆ®ëTú²í‰84Ï—@Û1G}þ«Ïƒ=‡Ñ{á:ªýÑÃbzºúßàÀ1qŸ¸G,7‹Å4yKüP|G¼(v‰‡¨«o&,m[K5'¹µGÜ$Ñ–›´y‘žÜF%'Ë|Ç@ÍÕ ºýVÐÝ_1иúÑàáš¿Ž Úé?§Z×v´šê|>©_7/zô:us‚ZÏÝyƒv¯¡É4Õ­Ë…´./2غ‹ž¹D›¯B31 íô6ª¹v#utxŸø(ÍÄŵ45Iµ~Ñ£›.ÓøvªùW»“иà±b§ûïn.XPî+ìÔ Õþïl’ö6R¹Ï5yVI¥ÆøkŸkíû¼|ßWË-ªçcÉtàrïÒsÚãÅT÷퇫¨›ãÜ_BŸKRíÛ(* 5†J?‰©[¦z~wªŒÆß¥M4aD¹·éZ¦½7©ËA ºs­Ûiê ±Š–Pw>ÌÜ->"ž? ‘|ÁF:Ö@'vÓܯÐéfêò;ƒ’_gs¿CÝ|¦`Ÿ¥=EÔ¿Ýéà¾rh~¯€4T>—L_Z71¨yu'Š¡Ùƒvf=Í}Ž'èȽÔÕëuŸÕ»LÝœë`|Ž©¦{K¡y¨€j£žÇ+©ÜûØìeªyþCëië-¹—×¹¥7i÷êr‚ƒ}µt`-Õ~Wï¾âwé°{ß ÇVÕÎ]¢S‡èÈ“Ôçxx3?¢ƒ):p/Õ¾á.“7ÿØùo¿Ïêæõè=µ¹IÝ9_ðTm¸ÍQK;®Ð¡©ËòÚÞ]ôd–¦ã4QNO$éW `$§ {h„‘õ€«o ê:¹ë"ß Qó®ŠèÔ"Íý¾ø¿Òéù¼Èú3»^ŒÓ¹bznœžÿ оù´Ï”@Í'ѺëHîœÛ7{M¾Íž­«jçÒ™¿Ess4õ9ªëgWßœo§çÞ§³ÿ‘N×Ñ©¤ØG]^mpðQª÷‡îþ=èëêC}}#mIÓS•ôÕ8uõµ^s:I¿%­¡Zw×¾DÝ×Ôº ½ï¹Dû{èà]ÔÕg3Ëtä{PçÁ£þsÕ{0I‡úÄóâU:V·ºãïQ—wÌ=&¾C§ÿ1ùζS×ç<7LçÿpU­ËÊ|äȼç,4>Â{°’æ,Q ´»†º|¦`ê~:t´¹¯®®Öh½¼šØ6Ú ñhRËYah­xÚŠKyý ™ãÉsÿ^PçÌ6TѺmÐüZ´ç¿MÏ=H§‰Ÿ¡ãçéØ1!~‘êÜ—ìIq u9 +¾/öQË1hÄiòNÚu‹º:´ Ö—û¹â^­×ûFïá"z šüñÿб+ôXÕü;·n ÆÝ¾ÝõÝçSPë¥znÑþ4éÖ÷î>%8àÖ›aŸžÝùù€[wŸ_ sçį‰¿Jg ÓïÐÜ=tjx“fwÒôIq—¸ñStû‡Á>Åžo]t` M–ѾÍÔ}N»óõ‘üOí“ok¥ÍUÔå]¿mðX‚ÓX!uçSÁ1êr³¼æñ…%ªó OUÐ3%Têíé¨ý“&ÑíÈC4ûC:ð!ÕÜR9ŸŽä.5]öO~žÎÿGúz=?Eç&éÌ÷éÄ÷hº’FîOÑž­´µ•ž(¢/Yhª‹ üÕz wþä5ÝW©æÐmƒ6ý8•Üûì"4qhϽE§¢=«›mãtøš¾LOŠ;ÄÇhÊR×7ôó³óÇjÁgèÕ¹7dzôhÕº4W/fÏ_§ç¾-þ,›Å‡ÅMtöߊš¯ó29/n¦Ó?Esÿžº9'+Þ'~ŽfwÓáçÅm4sÏêú¾s¯Î!OÞMûhOœº:î`çªù6mKTŸ­…Të(èñ%zH|©’ºyˆÁgKn¯›£ì5{Ëé¡$´³ÏQ­_xó—éØIÚs™J?~¤O^÷-g ¡Ý[Cþ–Îcò}·gâTsº6C;ôYšüm½MeA^É»4¯‰MsTûÛzwBûÆ úúïSÝßÌý-:SK§ÿª£ã£bÉÐá{èàÄ MöPWæÎo‚ñôh)•œ?ýO¤.FúñlÓ<ÿz§s¿Hgž¤‘ùs¯Ð©»éäiö'âýtøMQ~é·?Å":¸¦RTs‰“ëhßeq+ín ºßìHR='m*¡ñäê6V‰e´a‘úy³/ZSBÝyˆ×ø\oÓúÿ¯jGï×Òpó¶Ø#ÞG³ã¢{.d’t0M“ûÅ{iÏêêSƒú{ŒÌ—ª¤ÕIúM ŸççUA/ g—¨ëî5´šFêœO—ÑæZh³Û©?ô>CÝüÀ Î½Ð¼Uç³ë>E­¯¤š¬ºÜ¯ÙWD_HÒúœ¸Dã»hKÕû7­‡ˆÌñ»ƒŽ_¢S:ý¹mî7èØiz‘ö͉9Ú±@õœâ;‹0Ò·r¤œ6l¤'JÄEÚRB]ßPPïC’вÐt§¡ú˜ö&é‘h¾¤Äe:ø´ò;tî_R‘½‡ÝOÝ|ηÓÔfªýwZ§ÙYBuþ°Ïûó~squ§î§#»èðEšú¾¸‹¼C{¶Sù|4µÉ¼šŸçrƒnr°cíÿ¥´û }:Mþq¼bUruý烷fêÜÈã…Tß§šo£óètNŽÞƒj@ÿ2u¯‡`ú:0xƽnÎZ§;ÿÚOGcâA:PG“ÒÄšßVÍ— ­«¡ñuÔ/xíÌ—Žì×­nó4; huŒêæWâTûºôóúTŒžÝFãWhëÚ^N;hÏ|þ< ^¥®Þ?˜^K‡ÑÌ÷¡©¥ÚØ|ƒê9jd=hh[ø ÍA;ZFG®‰ŠÍ4képÍœ¤éBšüíºJãõÐ-£’ã`g¿Is¿HÇß§úý¤»ho+•>Ût‘j¿Ïþr±šÆ7Ò¦ª}š³ÔÓCvR7;³mUmw1Œœçé=ÐК{ Úñg¨ëw¦[io4O—Ðd)´~ßê÷±:?îä"=U@[«Ä=Tïu5ß4su÷ñÁ‘êæL­øþ :{Žž«§¯ÿ9Õz·7þ)}3íäê÷µÅÐN>JǯQŸàIÑìGâª}Ú¿2x…j=ËÀ~Úß@ûЍû}»7S—ëÔz“† úrŽ@ó»1ú„x G]½l0y™diúQѽ†>#~—f éÄhîﯪÍP½ÇÉÍŠ[Ä;hd^Û%ñ {ŒŽ|D³õtøAš~‡î¤oЉ›hÿMªýÝ7ÄõuÏÞöËTûdUP×?ç5n.}°ÙP÷9tû¸ {?¯8O]ß@pÂÐÉ·i®Frj%OÆöŠ.×!Ø–¥nî}°å2m¬¡±2*sÇÍ>#VÒ uu¨ÁúmT?ܼ堿Dj®•›§ü M¿I‡Ðáûo«ÝKsµâ6:µD]}xpt?Y¤®rÅÍÌÑ¡ïÓÁ54ù®ø]™+”ÿyFêù'¨«‡ ºŸàË•ôbÐü±˜ß¬xª6í¤’ƒh÷ÐcËÐ쫦g*¨Î ïZ¤½7hêa:ØJ‡+èØ"•¹CÆÍ+ ½I‡Ótüašû¢ø:î¡3¯Ð¹]ÔÍÏž¿›¾ÞOçÿ+´çþ!é§SQ×wâ5©ïñê~úx%uy2ÁÄuÚ— ©ûèÐ]tô uó‹‚¹tú:ûâ>hÏï¢çþ)렳ߠ3ëhî¯Ññv:ú!©¡Ã÷R+0¸•LÒd1uýãA½Ÿ’9vötœ/£®~<èæ xMþe½âá2h‡?¢ý Ô÷iy]^gÐåu?|²ˆê|„rC  ñùyÞC1êòt‚'¯P½ßiÏÿžLÏ:êrP‚éGVÕž{‘ÎÝçéì«â>:ÓL#óÅ.‰/‹‹_¦¹£b%˜sâçé¸ï§Ù,®¥™÷hªˆ&¢}·hwœ¶] ‘ü—9z¶ºó£ ë×°/Xº«’þa šü·¿â†V‰š‹q¼„º÷צž¦.'Íkvƨ澺9ÎÁTÚž%Ú M\¦ínýÑ’ÿ¼±ñżnÞiÐ×;ºs0½1ÿ¨€V•З«¡ùK:u¼—ޏý‘®+«©Î‰Re®‹=WEGýóu'͸ϻ¡“Tët½¥yµÎû™XÞ­îçT ¾`óÖ.Q_8ý>Mï gÜŸ/ùH¦y´ç>GÇ/Б4Í싨ËI úy°ÞdŠº\Þ`ØÿÅic–Éуåô¥uó5‚ùñ‘AóEÚ j®Lâ]Ú›ÿúM_±XOeN·ýwu8ÚG”~žögÅF騠§ÄXŽJ~ˆyª$ï®$]¢ñË0Rÿÿ\ìöNï¥cOÐöZhÚJ =WMg™æî§£ïÐ̽tèišžcb…¸ŽÒÔF:ð4í~—Æ·Rwç5_²Ôç„y]?Ši.¢ÉkÐŽ~6”‰ÅôX õõr^é“·÷ÓH_«ž³øœ*¯æ±»¼_¯¥}¥Ô寝X%–‹¥´=Nµ.ìôFªëè4’[stÆçiÓÕù}è·JèðzšóûêhÇÜó¿·˜¿B]BPÖ5öË1h\=^Pûò_*‡¦Þýs­4sÚ–Eª9mM9§;OŒ·~Š®Î¥á:Õ>cWèÑ*ªçJ£ùã硦ÂÒ?* uë[³Ûý÷ýñ¼/&ójýË 6¯£¡î«:¯ë[0m9ç<´µ±UÌ©j§¹Ÿ‚vK=÷gtæ»4wM”ýÓÔûtò/ £Wiö=:ôM]¡.§9Øy‹¶ÄiS’jN‚æfi­>÷_§gK¨Îÿ‘ùvàªÏ;©·7»-=^N[iÈ]¸ í¹!šßÞ®˜û€N¢WÄéè’xˆªùû½‹4±LÝü¡à¾84±hßø+úú[ôü½â/ÑsÿœÎþ;:ó›Tó³²Ç¨ž/%ÇÅ:Ú]IÛÄà ÐçøDú”'>Kuþ\öMêrž½æ†êzõyñ…hsSt°–öí¤ÚïéæœÝ¡`ÛN¿DµÏðØFZ_HÝ\Åà •´º€>i¡ñŸ3Þ½–Ö,ÒZÑåÂõý7´u™º>Ÿà@usÓƒÃk舡ã`džôÀeñ<ÕyÓÝ ´µauÝs6ø\åêîó×ÁhŸB‡öµøªFæó~ÇB›¨¡uUМÉB›}f hòû´gí´TçŸh G+èáE*ŸGv­ÎÑo&á?^*€æ1CŸ­¤~ê=>O›÷Pyýï¢ÃOBû'côüÔÍ© Žï £?¤C±O±B,¡éD©»ë3TsÝ|œ`þ1ŒìÎ,Ц"hOWÒCù.òºPg~•޾GvÒä2mß.ÚÜ@ë a¤Î»®Ú¶*sïM} Ú™ýtºF|ê\×̇ÔÕ!Qíç:™£znp¸‚¾l?Årº¹€º¹=ÁGÝÏÃõ7¯˜ÿóVæ7åÿySw…Æhó<Õ:ùεTærÙÉ{hÈ7x’•ÑA÷\ï-£®.é¬{ý(_]]TÑËWÕ´^ß]Ýn¿NZ¾­¦³Z—ì[G›oÑãTæÔ˜× è KnPwÎÌ~ íÔ2MÓ?(€á¾ã”ÉëçʽŽus®ƒ q:zL¬§Ã_ =9ªç"®ž6èòƒÛc0’7ãß/Þ†,=• ÍשÎçs¹?^;ñ8ÝM‡ãtàªýÆm Ô}]ÞH^ÙࡈSw‘ß6#}-î÷Þ¾‡JŽŠéÞ@#sX,´ÍïÒ¦rªçîuÔs,ëùœ´ôù•ùö©$uçÒ^“ÿø_Qæ|™½IªõöÇ¨ÖøÜ9oæ1ªùº#sÔÍQ N?Jg¦èìi:÷=÷ Ц?¢²~Ð9ŠöõÕý¿Ö%L_¦“‰Š¥ÔåV#¹]¨›§LNRwoìÚIÛ×ÐÖ´eÍ_»®øj9•ü\ûŒ¥®/ËkÜçdPúÁ#yÕš«åêƒ-7hÛEªs;ë¡JÓD!Õ|!×í5¥ÐæÎÑìÕ:L·¾^±A¬ nîMÐÍ;óš=%t)­«¦g Õ¹^Úß|„ÞI3wѱ{éÄÓк\ûàqK¿L›'êµoÞMç2b¥ø%:=-ÞAs­b3ø1Õ:Ÿ‘2±˜úu7Só)eñ1ªëÂÎqÚr‘êüÈãÉÛ{ØÒg©©µ.\Ï»ü¹‡?Ê¿ž¢9›eTsáºÝ?çóì½²³g*é±2F«€j öÓ´‹mqªs=Ðo>¿_tÿ]çëù†›çºâè`ŒŽUS×·̹º¿œ¿?ƒÖÕc{#ýÖñªóçûbt°™f~@‡'iv?Y¦ãÑÉ :u‰NÇéÌ9êrø¼¶¹•/¥ú9RƒæP)õsåuÎóàAh‡vÐÃ%TÖ“&¿Í[ñÀmÙA}Ýu×zš*vº~óÇýáªÚé_§ú|8FG ™§š»¤õÅ}e4’3WB#÷†›ÄbªsÈ\ݹ7ä“yDÙÏÛŒ¡á^DÖÍ•ôÅ84.&è¾þàh¡XíÌÏÐé)vÒ\V”\–‰ÅO±Žºù Á±z:úÕ|´ìÔÏÇöjßYWšv”ÑÖ+TÏI\?RPç¿zÝ\– ®§««a¤>6¿­]±vžn ÍkÅqêæEÛÄŽ 4±@»¯P×w 9ÎN7Ók‡Þ£ÝµÔ­ãƒMõÔåXZ]#}¤~n¹WûCš/QÉå5}•4ù M­§CÕÔOz#ë;µ³Ulc¢¡‘:¬â:Ú:÷)Öˆ†6—¯nüš˜cTΕ"ºyÏÁÇc0R_®ç—ný¬·ôØ<õyÊ^çvj=]MÏ–ÑæÚ¶ê¼3·Þ öXªýLÉ•¼&3x“J¿~˜ÃóõüŸoýœ¯Î5ðú9’~n×Þ8õó¿¼/ÐãE4^M¥ïϸ¾‡iÏ5:pu¹™+fiº”=Ou½š}šŽo¿O'×A{ØP7ç4èê0¼¦&F5×_sòÚ MŸ§=‹4Ôý9Ï$¡ù’¡®_Ô©ÉÝGï?G“ETέ"÷éç«éð}b©x'ͼOÓ¨æè»9%AÝÖUŠî¼Çí‚/Ä¡ùýuyÄA}^i~¥Ëí öçhÇm[¦­´YԜϗÅòhܹxÐÕ;ýüqoÓÚk©›ÇœŒÓéãк¹^óš¡khçuêòÎW¼F‡–a$/k¼œŽí¢‰"hêâÐXè·bTö¡6Œ4‡r4¶Q¬“TúŒË» fÖ‰Òq×;±‘N­ÿÓö÷ñq–é}÷¯P‡ªÔ% q7*·Kêgë…8Ä¡.9C¼DaVËzY-ëeg½#Œ±…1f,˲lËòèyô|Íh$žG–…×!g¨KêRuëP…¸DÙ:Ôáv¨Êíp»[‡þúêç©~ŽËˆäîë×Þ¯ÐÝlkæºÎó8¾_å»Ð¦·P—GèÔ½°­5Tï¿7цk´>‡Æ¶R}¾S§/ÂP®™ì×xe¿Õ[·…6ŸƒöõWètø.ͼOG/SÙ/÷êüyÝ—Ýw…JŽ7ù>Õïg­û©ÎålÈ£:§ÀÍ3l `(íP=§±³ÐÎ[3CçÑCÊ}QºGtçîœ"óstð.Ú¶…¶ÒxŠêœ§Î/9X¤Ì§*Ÿßž¾Ÿê|œÄGTïUg}nê9áPG!Mm£’'áM|J»©îmÏ¡n/ÕÙX@õ¼¼žÿR¹¡çÓÝ94²C÷Ô;-Ý[@uÏ´üþyTõ˜úíTöžüû{ã•ýjoò.Ú·óƦk íOÓî"Úª5´¹êç2}ßP3KuŽÏ«sô[Ñj\Îó`ŒV\¦Ms´9Eƒùç(ƒFæÑ¼*ç8ÔË-{±Kn¥ã?¡LÒ‰ÔŸŸf`è|éP>­(¤/åÑÇ 4’‹ã­Ý@Šéð:Ê¿’yp§É®,©û×OÎÐøV*ó>ÞÔh¿i¡9h è¢ú¹¡¿êýÏÄ£´©-¢»ç ©®¦u)êz”¡=`¨¾—s=FÎç#Tçeë^’Ãih'ß ý»©ÛgÖvÔP½‡ïzÄœejyu?ŽîÜ^CçlÊÚ"hOåÒñoÓ‘÷•†ê\ód@Ûjhè>v–ÆréI C÷:/,d=RíË…0tÞçrF£åTç¶¶[Ú7Ô?‡öšãåÔÍk©ßïÈ÷aŸTÚÉÛ舅¡çÞï*ïÿÞåTõØ‘›hïMí m«hózÚ0Ojêß¡ú~çX œUÎѦ"*½½KnUÎÓ`#M¾ICyÝЦ×ÑÔ ­‰RµÿžwÉ¥’¯ÿYZÉ‘všŽõ´ï:}Nf m/ º'ë«Qš—“yjoEœê~½Æ•sQ¯ßÿeoÈïu®£Í ÐHN‹7!s_2Ocú.@Ý?gÜü…s°Úwi(ïIÚ[ISÍÊ»¨Þ/ON+wSé÷%´óíØOÛWÐæj[M¯¥êyÂVP«{ÈPµ÷¨ÿ|‡î‹å=Íû˜ò( åè¹Yëzªr9lC%U}¶ÆPýÞ] :w&ûq²äŽ*ïq^—CâTs¡ŸËú-´ñÕû<’kïM죒‡èÕ=hu5´¥H¹…vTÓγ´»L§rÞíMLÐTí¿¦3t°ê>ÅÑûèØœò=:þu:ñÇtj3~„žn¢3-У}Ÿ(?¦®Ú)soÞæ\ª{ºß¶ô4Ô÷&ïõÞDíùí{‹Ê­wlÚé{©…ÆÍ‘8uÏÊu5‡ èÑ9*yîÞ¦€Æ×Q™‹ôv-ÒÄ Mî£:OSž{½úýpè>êÖ{’N—'ï”ür¯>ÏÉÖá,¹×@ãzä]— =ó%:ù¯”/щN:~¡C]ÊRªsÏÐôzÚ¿…öî ÒKííŽÒÎ<*½ØÞ–õTz+¼±uôD•û7ïkJéƒp†zí+ è‰yhgèNùÏm‰Òê8­+§÷ÐÁó+íÄ£tümeÍü!¹ì£:'%”›Рƒ†úk mÚA?'ÐEé¾B*Ÿ›!öS™c÷v¤i%Üÿ·Òfþ º…žUfh²žêÞ¹ñ–Çèw ‘ó9ﶪï½å<Ç«kr—Õ&ZÞ¶=Z¬Ü@«çèsší ôp!=^F%gÎÛ²v¯¡zß>ø”&“´çšš£½óTé5J™ï:@G/ÐñŸ‚¶Å*7P½^3OŸŒRw.%†î#«2TòΜ¡ï©Ì­tl%ºuy¶Òþ;hòTç4ɹ¢·ñœ²˜6Ìги¼Qo­Ê§ªgÍ´”о•W¡útâgéøÇÊ:Zº¼C4=KC}¸›h¨ÏK¥oÌ›\¡,¥½Ut š¯R^§£giæUe”Ndèdú!=õ þ„ªó5#{÷ÞáÕÐNþ2ÕçÊz>Fï?©÷QßÃæ õ»Ú´Úþiâ]zbŽî]„&zÖ.Ò–ë´'í‰\*ï^©Ïc樞ëÚL“[i*Mûg©|/:mO1í\I•:‡«~5ÍÆÃ.©æ)õœy(^ö†½jÞ.ÔÏs¬„êó tw„ªÏu+çäNãrâœ{cô@@RÝ¥?çuy"C{Þ†¶?Nå4ôüVF+ç¡yUþ=ŽæA{ê?+‰ºyKo‘òÇ©Ìs{×Ól-Û’ý†öÝBSÑžì‡ ig m›£®¿ÔÙ4KÎS™»÷ŠÃÐyx<é{”z÷¾yZ™ïôJޏWz¬¼êÞÒ¸ü§ô±ze¯ÌÛ#÷p.ghòAš¥É'ibcÖ®aª¿×u¿©Û¿Ûe³.£²ë„và,í»Ÿê{ðžZÚ]@Û¯Ñø0ÕŸkzOß7«¹“ým_r«¥ÒãuóÆÇÓ4v‘ÖG©›v·C›¼ªŒÒÄU¬¦2—îm¦ ‹Tza¼'èÑ Õó¶/ÏцþvšzX)ý‡Þæ§¡š¢“ÑÌi:z†½MõÜcß#´÷:Mþˆ…TçÐéyžšbZæéúlNV=Op|†ú¥Õy‹•?×NóH”>¯|9 ûËhe5=’OåPÙõ6l Í+•khë Ú~‘vuÐÄJêsZÅžRÚw–4ÓÁ=Pç§ØøzKSÝ#UQNU?q¨×°¢ˆ6ZÚ•K¥Ò;´‚¯§£{ =õëtòIª{0'j—7óhÿÛ´ë,•¹¯þžm0T÷ÿè§G¾¯z*”ê@÷˜&«ib?•o[•}¯þ¾Ö{ ÒËä åÇÈ{ž·~Ú¦íôð"=˜Cõ}B(/TÞÿºåy²;Ÿöï¢2¿-ù<¦~¶Ó ˆöŒRµWº¿~ÚÂðób> ¡*ߨôÏбõÊ{éÄw¨Ìg?§•GõääF:¾óÆfVÓ¡\šž Éhz†V•CË¡’óæÕûÝòi†Þ££»éØ¡Íü%í¥ª7ÅÄ ¡MJSoÑĨÚCí•4”P9/óî34{|à ïåô%j3?Iu‡žÇ•ýT­‘½§•=ZogÕ÷—’Wä 厷lV^ ­y´s5íÞLõ½¡ÎÍKn£½7Ñôj*ó(ÎPž„Ú2îžÃ)9Œ^7ÿæ<І‹´5WÙH;.@;½‹Ný$Tާ•÷Q}Þ“ù%*9¹^ÙôêþáÔ§J½oö>u{ð×h[œV_¦™ªúXÌ3ÐЪ…ìÿ¿¾ÿÐ÷zÿ[zžL}Šª÷¹P®äOzgªèé5tê¿)_¦“? :ç\ç쎔*·Ñá[é`ŠÜJõùƒîÏé[O»hðÚ½Jˆ7¥:§Rò9¼®_Ú©ç'õy…ÎÅ*/¤E¡‘>rï‘RzÂÐúhÇJhÿÚóšŒÓ¦4•{ï¡kTõ…š§¨Î=q½–¾ß2FƒYÚsŒê\$™ós†>'tOký5êΙœbôkš½e4fhC5 ›ÒÖs´+Cåϱ7±@eïÆi§èÔ£tâÐÌÓ£‹Ð¼¥±YZ¿ª½S;ý =õ_èDÍ,бF:TO‹èÀ êò½oÑÔ*šŒÑÄYÚYD[·Ó–K´! Ç3´ÊЃêò)ŸˆÒC9Tî-¼úy -Ú‰Ÿ¢™Ý4±‡Ê=š7*Ÿÿ»ó yÔfÝjè+‹Ùÿ܈~ËÂÐ\²Þ«z©0«äz£yʪúC9 ' hãjem²4>Eu΂Ë#r¦Ê¨Î}’þ8ïÐN:ºŽo…öÔ·©ìY{{o£=;hâ J©ü{yu?™Þ£­¹F_ hökɧå¯ë>éì5GŽ‘ûc§•Üe¯›Ïpóòóèí½BG7@;QJ“›h#5-³TrÌöÔéønš®¥ºQÝ{ÛS·ÐÉ·èD!_PFhf§òשôNzGÑ‘ªûñdïßÛ¿HûVÓÞí4¡º&˜£zOºi­YK–ÑW£ôÔìÊPÙƒóVÍÑš¿LÛÿ´­30”G¯óôjËi½¡¡{ŒTzF¼Û—7QM{>¥}Û”×iÈ££hG?¤:õHéípÚÓ?I§~Où0<³¼—•бaåtô-:\E>V^¢érÚ[OSÓžšLkgè×,ÍË¡=k–·£œêK'¶ÐÉÿ mïý4±švo¢ª¿+4—|¸”Êû‡WçǸs2§ÎMxLùÂ"­Ì¥±HÖº•´YæÎ‚Ú¾ÖÅ”54õí¾F»VÓÖ€†ÎÖS;¡ú|B{å–V—Òº4m¾HÛ+iG ¦hb‹Rþ~‰O¨ì«zS‹tø=:²é3”炱ÑÌÏÒñ忤ÿ:ëä/A;þ›§Ã_ ú~Wz4½²Çâí\K[Êi¨ÙPÉÕñJ¯¥÷X„VRŸ¯Þt_›•¹E¯Üy³q-^ó´r¯¥¯æP×G¨•sÐ%g©þ<=>{c›¯P7O×-Ÿà-Úãö}ói}œ«†¡ž†Ø~*yp^Ý·œXKSiÿv*½ñÞ‘BhãTåҘ݆f¿N—”ÜosýïOœ§ëh×¹å_§-iÚPLK¢pés=º=ãØhOÍPû뀡¹D=/~„vÌP½ïP·ù¼÷ª^“üˆöÎѺ‡Ï@ër œúž¹·&§hëU*9"ÞÆµTÞ ½‡-º? ß3ÐÏK;õ~ï¾å"=˜¦ú¼Sï5,Pyðêù1Éý÷v¯P^‡vìúj!4¿–CõܰۃqJ?”7vžÊ¹…ÓfVÑžg¨Î ˆ_ t¢ŸŽ•R—W”È¥SÔçn ßÉþu³N~=^RF•3ôD´ýÓàGô{QªûjÔ=œ‘~J¯žTù7fb´SH'ŒNœ¥C)šŠÐPV”6”ÓºEªŸÃ‡ò•j¾shÕ9ƒ[©>_øáç8KÓ÷)諒wP×ÃÚsŽ&·P=œÈ¾‡Þ ‚/Ò®‹´ó:m¿DÛVÒø*ÚRCåyÜ«ûwuÿÎß?¥'J©>_?>O«×R·î”ûL§Éþ¶,uÏÅǨôýzË"Tç¯eÏ½á¾Æ ­´ôÈ íÁÎцØßΖu4~…JïxȤ¡º7ºÿÑ›¶tp ݨÜL3‡”¢üYÇ·(ÿ;´É´eÊÞ¿Wç06® ºï¸¾šžX«,ø s©z^·GÓÊ€¹F¥ßÏ«ûë_ŽÒ½ 4ûq¿ä‹stg•ûZ¯Ú÷²åÐBƒóÊÛ¨ä yuï’ËùrISý÷¢UCóMC·Y깉Ðcù´®’Ö¯£ »içVÚWD¥§Ä;x3’ó›a9O¹JÇNÈï×ÔÓTæÌ©½Ù_Ÿ‰oÓ±ÛéÀ4Õçâݹ´µ€Ê¹ô’êù®2F%ۻ͈9иýcçÁZ·‰ûiJÞw¢É·iPFu®Üs4´ùÒMÑæJÚ±†Ûh_Mÿ€TQµl†ÖÑáåÇt$õ\§éš¥ÒCéÎ…6ó=ÚsQYM“µTß;´NѺ ´6ÊùŸ×÷(_+¦jGïOÚ`-Uï vü:MÏÓäÚ¾–6m¥'g©Ü‹8Cýîº'äøm(¢:7¨>FõÞáXÇòNü ´§µÿ€êÜ97¿å뢣S?;p™¦÷S9wöÊü“7¹@‹´ûêmÏÐPNû­]Kuþ“Ü3xŸRfc´¼æ©Õó÷ ­‰ÒØ9Ú¸ž¶¬„ᜟýtü¯hf–Ž>£¼™Ž¼¡¬V:ü¾òÚEuŽPz'•¬%³ľ÷Þ™H)#T÷6J/‡÷eC_ÈÙ¿ú¿©ö íäÍü•Þ(ïð»´«€VBspž ¶*Cçqù¾ˆ_¢]ÙÏ¿Pn^¦Úþû¨zß5‡Ë©þs\·–ºþÍæ ÔõøûªGo¨~Œö ûæ`è\»=€Vz»½î|×)ó¹ÎÐÏq}ty;VA[Söš]S\2ó!ë[^ý9¬>/MÏÝtèËj‡Fiò¢ÒÒïå@³ÃÒç Õç’£¿d &hß>ªæ—C{ºŸ¹)Jä×9ù0 ž¼±u¥ô±(4í©eµSÿ’ßG‡*©ìÑy%Ûûj„ê¾rÝ7«sO%GÐÈüªÓÊ~£ÓTåeÿï™y:õ'tøS*÷^ÞW-+¤2¯±äªûµo§k”¹4}í_G{GiêŠrí)£’ûèÕ{‰57¶»”vFhÛYª÷?ôŸë†2ZwžÆJ¨>×—ü{oe=XJ%Ö»+€ÆÍ3;_°tÿ=¡¡½‹9zÈR9‡õê=ŒØfZ¿†6Òæ³ÊYå*ý~ÞPFžò vÐĨòCh_)€¦:ÚÓé©„òèÔ„²JùótòŸR9/Yòšù#::EGf¨þ—ùoâ-å1äѶÝTÎ6ÎІ*yÞŠ<*ó¾^Éá÷Ê|‚×õKÿF÷ûét9ÌÎ#Ô6VS÷×?ÓµTÏ]ʽ¸÷`9-Ò½Êæ¨î×.¶Ðüfýn”¾V@,ÐÚ9hSW¡iÛHÛóiç ªs2ó´çAšš¢}èàÝÐŽîPª÷µÐûÓ5åEšZ =46¬Tß'côðZz¨„J?Ž·l‘n+€æÁ(}Ú@{úY:ý4=uJÐÉ9ª÷«Æš™ #P=?¡ó~S†êþ‚D¾ò6\¡çhÇJªŸZKhÃ9z|‘J>ã’¹´j}ññ??oÊhÃhû>¢’[ã•ï1¯äy[®ÑúíÊÈòÊ\²Wú½µªïwuÍ3QhV~¯€Ê·÷x1Í~­,©{öZÏÓî Tç†È¾…Wru¼:-}¸ÚÇ, åãîRV´®ˆÖÏP7;òÕyÊuû¡9Pɽ2ýë©Ëµ•ça½çØ?­|”º~ï&ÚûM]WÞKuŽ{b•ó|ïáËTÏUëœX—¯ëtý ÎêrzL>¯¦¿D'×Ó‰6:þ:ö®ø ŸT)ï¤CoÐÁ›ÞLûÎQÝËœº@{ú¨œ+xÛ#Tç'ûþ˜2ªŸÿôüoFéëèÌ*ŸUÞLO?J§ÏÐSA§JéÄ_ÓñWhr†ú¹ÀýT7Øìÿü’wQóÄ})B£J½‡âörÜýçØÝt¸š}@õ¼az‘JÞÅ’·Ó®Ú¹…¶_¦úž©¾Ê½¥×õኡùe5×b¥/Ài\~°Óí¡éœ£ÞU4˜¦]+¨œ/{›J¨Þ[~ÖB[‡æhÚC–º9„Þ;iU.Õyãzn¯{#•Ï ïØÿGtâŸC›º“¶Ѧ=i©äëx_^ j®Ñ|×Ðàí«¥oSÝC8œ¤’wâÿS:õëÐöµQ—ËzTþͧ2Gï4ÕÕ´mÕýÂ’Ïë´g^£¯¯§ÓcʯÒSõtê=å&:ù*øPùo•_¢ãßUÞC3)å“tìÃå}Hy'Õ÷{ÃÍÊ}t(F?QÞCj¨Ëµuö¿Aû.S=¯ s®^½ÿÖ1L[ÖÒæT¾ê¹'‹S¹–ê\o½ÿ¶; ÒŸá}>B³;Kjv,P÷PyêÜ.÷V?í™géÔÍtò?)ÿxZ©Þ¯G+iâ•|Soý&ªÎ—Ìþè²ÚáAêí,S®¾±z.«ïNš¸Lõ{z|3Õ=‡ç¨êk0Oúr†f1½6ª”sr¯Þ“Òùi)¹Öóã}ò¹òýŸ¦3Tn“º~pgbŽêüѧ 4’ûä´)Ú_D{n¢íØMÛÖPÝW|"Ÿ) k©ÌE;Í#†¾T@£…´R+  †¶ÂОâ^sc«¯ÑØYhWRkÖwö|¢|”êó-ï‡Ê÷iÛÔ­ h4‡J?‰÷ ýsÔŽìÁ¼¦”ýoK@e¾ÄÛ­ î§²ì÷„õûB½û÷*κ—†öT/Ðcm¦ñÚ6O»Ê©Ú?4‰)h%WÈ+}Þê\êæ»£ôÙ*?/ÎÐç ôixõ¾æÁkÔõ69–Ré÷ÖÎÓ“¹T÷Ë^–·½üofÇ e™Ò*¯SùóãíŠPéóö&6О›•*o¡§RY íÌïÓé¿¢ú9zäÚ–¦.Q½—¨zMyÙ²Ú™MuŽÒ`’¦ß¡½}´³”N£éŽåíMÒÔ´g;M| ¼‹Ê|°ŸgÕ¹x'ghöõ0œ‡W…晀î+Ëzè2´c·Ê?Ï( ¶ÓÐùÈyÚ,Ÿ _5t¼|yuÃÈÃTöV¼ý¥´÷Õó†!e…r·r£²€&ÏÓݲMY£\G»åï«÷ ºÖÑÎ+Ê)¯¤’?á­Ì§í´~£r²€¾P¼¼òùãíÌ£'Ëé¡EqNþ• ïÀ§Ê·hÃV*s*^Ùƒs†òð»+—ÕJØg:ø!ØFÓÓÊÛiÿF𼢬¦Á­Tïµ®¡Òãæ=YH«é¡U½‚æ‰=2Cõ~Pê úÚÄýTöþ–ÌÉ*ßûÞ—ò y%FõÜ®Vî/½ºO¸)Fu¾këeÚžýý2AMÑäJêæœý—¡}}þs:UH3ÿ‘®¡s4tos/MÌÒî)*=Þ¦z2‡3tG4Û”²/å­-…6ó‹´÷M•Òà1ÚUJõ{Mc9u½ŽÎ½yÐ)oe õFåЦë´-Cå}Ù«ûžÛr©îÐûÏ=U4õíý•{\§­ÊЗbYwEè× ÍŽu{My@ݼœ3ôë\Lå=׫?G*#Ê9êrÀœî{Ê»HeÏ×i§¨þLTÒ®Í4§’Oë­?OuŸY(' ¾’¡j?ØKK{fi_œ4C;ýG´ï"݃Fròv¸”¦ï¢ýÚ¥=g¨ä«z÷,BóbŒ6´×@;ÖLuT_„v-*¯PéQ÷Jš÷¸¥»Š©¼;Û£wêŸgÃÙeµÃwÑÐüÀÕû¯ÉuTr½±k´²šª"hÇÿˆ¾GÍSÝK#ûêÞàMzò}< CÏMå4ûxÊ96•Ùï?#yåÞv“ýÏé}lýü­MÏÑÖµ´:Ÿ†Î+˨Þã‹´<šïо¾…N~BÇQùÏèØeåJ•3¦sûÆÖоiÏû4ù•~2o÷ íÜD;6* is mØLÍPuNÊyß…¡~‹¦íОª¡SŸNôÑÌ/Б]Êmtx”^TÖÐ TÏA†öYÕ¹PêmšÜCCßçQªŸëõþ¿ÎsÐç:Ÿc·R?gž\¤M+©üÜ{ƒaÚÓípÕ¹]±õTå­™¯FéöúŠ¡Üe×ê‘ÌPuÎ`Ÿ·ÙÿÝ£ Ð6çÑ–‹4ZMÓÑž8mÛJ•ÓÒhdoÉ«ž'Mòú”¥×i÷*ªçdÓiï£ý[hoíØDK¨ï«ˆÈ¯›¼¯JÉþÏä˜âhV7gþ5ùë¯f²¾V˜ýïîTþ½LGëiÿNšJÒž\ªç¢´º8¾šªso­üy:ZNuqvǺgÑïõ:£¢„J/–WîA½ºg°q•½Zoû*hÇ>¡‰Ghð)Õseí´m;Õ¹PGÊ yº€ª¦ê}În±ÐĪ•W©äSyÛæhGŒ†ò¤ï¤‰Çhr=Õ¹"ýgèÐ%šýØþß¼‰Žî¤™Õt|’N¶ÓSùtú=½@¿ß mr3Õûó©· /¤™jÚW@{­R冄úƒ 4òçЛøí«‡¶>šêšxZw_জ ½Ðt@%¯Ø;ú$Í´Ðñ{éDAÖÉjhGvP½( ÅT÷éµ^¡º?O{,ÊWæR烈ÇË•j®6¤êåý½ìÍkW0Êb*óÞ†ª{³ƒUTæs½êóÇNõÒÉ}ÔçŒ,.oGõ½×Tç :åœÓ›‡FòS½A”f_–tsõÎhuß_Î1*¹Y^=÷§•{LoÓ9Úv…vSÙWñê¾Ýœ^AâËjg~—&vQ=Ú:£,V)åùTçß¶nP®WÒxD™G]O£S÷Ù7l¢õ Þë2ÕÊXÕ=--; í¸DãÕÐH¾¬7]ªüäÆ> mwŒêsEw>Ñv6_¿ñ¯“ΛÛk©îÏvs.­œÊ|²ÓNücšùˆ¦¢AœÊy÷’Åtwš#ÅTÏqH?´·©ˆ¶_¥Á»Tz½}r^ªz‡íà»´ušºõÐö|º¼Òßäí*Qæ.og Ÿ£Í´é’rxyªo¬žÿÔêþ¸Ã‹ÊËJK+Ë”¨¾¯•ytïÖ( Í7—X*÷kŸ©~.Ü«<²HkäýD÷¼é9h™{0uW©Ê£4òë¾äÚ¸H[WÐ^ù÷ps‡gþÍ Ñë4˜Q>Hõs]óv›£/Ë›ù]š^E{ÞQ–Ó®´3Ÿêó®ÃETæè¼*ÄDås1û1÷¼;SIOí¦ãÿ€>@S³Tò(F挟_¨^^×Ç~¼œÊso¥Ggé •Ÿ§y&Ju¾›~Þ­(£’{æ•ùR¯äIx›g¨ì›y;£4X§TÏ]‰3Ê7i²œöÜ¥¼xcS]´w•9Œ%?¤ýïÑtx€¿IÇvÑñõt" S¿HO]…¶¼Xi²ÿÿj^ÑŽÝG“+h°‰vœ§ú9µQ)½æÞìãŽ×ìU¨ÎÓ«Ï¡’ÏàíºL™쬦:GR愽§¿D§ï¦§þ½rò:õCeÁòNœRNÐñbåOÒÌe‹ò9¥êqË|Yù«J½ðÃϱ‚Ž”R£ÊÕºº¼z/=«§ š~›ö¿£üíýDYNSïÐPÿç­4QOƒ/Ò® ´ýmÝB›WSéËñÖÕКË447[FÎÓç Éþñ[Rö¼ÑRhg§ÓÏЩéä¯+WÒÌ%:ú0š¦:—>õ&MX<¤Ì¡:?_Ï?é­Xå=£îóOÔsúvà¿Lu?ŽûѽêéíÐv­¥µ%ÐT–RuþhvRµ:åø(õû›ä-x«®Ñ#q«¡õqÚvJ®­WrR½=;hzΧ’3ì覧®Ð3%Ëj'“Jû¡²Žÿ[åm4ó»“Ž´Ñ¡5Tç6é\·þÝTç¼%o¢Ò/îm)¢[hõUç²vâwéÐzšzOù ªiûYåZÚº›¶œWn ú¹Uï/TæQéßôJ/“7š¡rÎá}yQ™Gå>Ë«rtí“ô C¿¥Ôó-ßQê¾ßyÔÍñWf=niCm’÷â&ùyk–sÝ×q•&î¥É"ªs2—ÀÐÏÕhTYFG~¤¼¬L)×+×Ðáctè¬ò‹tà}šNÓPžÞ-´»œê¼²&KõÏqÈbzâ=$??/S™+sš_QF¢ôy¥>@§÷Щ”I••4m¨î-×ó$íó4¾HcÃPçp†zódþÇÛXJ³ÇýKªûVÓ´Ÿ6ŸU^£-òž“çËê<èóí’#ãM/@ûªüõ§ hi@õ^²ô×,¹@%¯ÆÊWܤ|X£½[¨ä¢{GiæN:!s°2ßè´îóÊ©zÌi8Ã=1—iS.4î9Gëö]OGé³}a‘º}]ç¡2zt‘ÊŸ—% h[1 VÓþÍTúôBßßU1úâݹõ^Ží®¡­mÜNå¼aÉB*¹¦ÞÃyT÷ð, /—) •=÷ÏôÉ(ý¥h~K‰ÐíÊ}ÎPÝ'ÿÊ}5 ò}ì­s4¹¿7Òs¸¤¥’£àÕç‹my´#C»æhðÃåMlR~H{›iß"MÇ•¸OY¬¬TÊaåEå%*çKÎ(/С­Ê9åèð„ò:¶–f"Ê^*=ÞKþ.•ý¾%·*ÿŠNþ”ò)åï+?¦S/@+ŸŸ^C~¬œÑê4}e‘~% Í Tç~ë}•ºm^ ’ƒë´Ç  éJSÙ“pÚStêy:ù–ò'èÄOÑñKÊ?SÎ*‡”ÕÊŸ¡™1e…òktl‚ŽZ¥œ{Œn¡Ù¡gèñ9Ú¸Jÿ·Cþz×9ššvò/èÄ:þžòï)Œfþƒò¥þù™W®££åË;² ÜD‡×.ïàF:P¡ÜOÓE´wµòVšú"íÙI“Ÿ*WSéôê<¹Ž‹´}Õ磲—àm>Gë#TrŽì±ºw‘î)£ªÏÀÜŸC¿W@Ëç ÙJõ¹û7T¿çêsvyžýLGÎÐÞaÚtš–6¬¢¡=¼{¡¾0ýÓÓòû'ûý^é­ôª.Ó@;ó+tüÿ¡zbø,SÞF¢é*ÚßL{S4YO%ç×ÛyNUî§‹T÷t´Êí4P™]2  ÛiýEË¡ú§ŸU~…Žÿ¥²ƒf~[Y@Ç¥£††òs6лhú&êzÞœ}ç•·Sý|Ö³žÊ¾€7(£2¿ãm_AÛ®ÓÖí´¹Œ6+ ©Îå×=…ÒãU9Üv_1•=ï®ú¬¡ß¤&û:¶¤›;wê~ØÚ|Ú`©žèÎSî¦Aö×ÕÈ9“W>G¼ýç Í”ѱ8 n¢º÷Uò~¦+û¿c&þÚÔ§TÏêÜç2¥ô {¿giq-ŠBó%e¤@¹@eßdIK÷Tîk¼®÷Ñ©{·ô\¯ú¼4»”í¹túïЙ?‚¡sKÝ7X©”9%¯ž£Ú½@uoºô½x›‹iG> æ¡¿Žm¤ÃQ}¯ÑWNu^WÏTŸ·ëçÖ“†–E³ÿ¼ªÏõó´£ç¡©Š~Ž–†öÉâ4^N»©žë{ŒvБh§ÿ”×Ò;¨Ê_ íÎP•ëiVçжþÞ¬¢ÃoÑ!#®£Éý´%"ÿÜò}¢sB÷CsYe>ÖiÜ9;7HÞEUŸ‡=´H£ ùª¥îü×™yÚ©¿¦ã—éðtèêÞ½oÐ\Ú÷ 6Ò†kTýz…æ·¶/@Ý÷bO½­Ì£S»”+éÄSî§ãí4óWÊ;éè{Ê;èÈ>:œG÷ÑÕ4Ôßõ0•<oOŒÊÞ”·û*íÜ@Û6Ò–ý´q+]¹±zAõ€…æð^,¦‡×Âн](?¸6•QÉ“÷꽊ʀú^'q÷¢2>cèQh¾kè¶€VÌÒêZw™ê=:=×ܪT=Y6½žêçùóÐD󨚶§_¥™§éBÌÒÎKTŸÛª9û«ôשy%ês—ÆÚ6íx(£ýPù~õÛnlû årŸ§‡ 4÷æÐè<­^KÕy’þ!m9 ÍñZ'ï³3õôT@3ÿŽ~Dòiÿyåôçnêž½Ò¶aº·,kY¡Xýsþ«†rƒOæÑW-4U‹Yõnz%{œŽ¯V¾M'btêfhO­¢SÓÉ4ø¯ÊµtüQš9§üGtôtäq:ô®2 ú9c`+íÿ¡²RYH%7ÈÛû>M•Ñä¼òVšø”vÒæ›¡Ç•º÷UÝ3™'”Ñ*ùN;SM3’{u\ž³ä½Tç®ØÉ'”?I'î¥zZŸŒ¼£œ¢Ã>ÇGèÐ:ø±r‚º\Ggo„¦:nlÏÕÏé‰\åí´£Q£íûi›Q®£Í•Tú̼ÒWá•þoy”êzÉ—ñÖ­¢òÜä´ÝÚx™ÖZzh-Õy ßQJ¯¦·±’ª÷@ÎäLÞA%Ù;RíäCtâi:¸@un~çyª{Uu_ëkÅм,¯Îù bÐö~Jò½”SçßdhcšÖÎQÝïúlúç­\QÏýª\Wÿ}ûšüç]î³ì›ƒ¹Ê¨¸µB”üèÏVž£eÁ+Ÿþ9°U¾{äþ5õ¤(ÿù>¹_”sVyO3’ƒe†ä¯Ê{O⼯\«\CåyÝëö ±rZ+ß/5ùôˆ2û±æ5ßVêœ5Ç`šS´³Úñ7• Ë›™¥£çè¥éyªï/B÷êþBßwµçQ½WZ=wc_,ƒ¡3™wòÖÍÑ–K´s7íÞH{ }!€&{Œ·¤ÞG“œT¯ë›Ñû¤:ç½óMüˆºŸ—Ï4£T{Ú½Q÷sæ=§|kye>ÎiO­§}yTž³¼j.ÀüZ}2 rè íù]ƒ¡<Œž›i°‚J¿µ·i=£Çòéþ}9‡š( çW[ªz…M|;•ù|op†râuuÇŠå=z™–™ìÿþ󑬪:Ô—Òó M®£ÒæÕs? %4>K»,´c»ip?4ß±´u´ã_ ú9Yçö Ì)ï¦éå´ÿ~Ú·‹ö¼O“;h¢K¹‘ê\¸àñÏP=Wë<#Ùo÷v¬Q(W+WÒl]Î’Í—hÓÕóðºÿRöñ½úû[çϜȧÒ[¹dFYM-R‡­ûwÝçÑgyÀÒòúå( õø=¥/Zz¾£vb”Ž® =›h|Ý] MK>´g¡tâghæI:¥ú9¥ïAªóŠ©êKµ51Z]Fõ{ÕÁRªÞ3¼:÷¼,B¿Ðì?®×HÞ¹·ÌÒsTî³¼ÇãTòä¼’'ï ç.©Ÿ“ãÕ0”sµ3ûïavY*¹¯ÞãÕ{ˆÉÛ”oÒôn*{¬Þ±KУ¡ûœ9åM¾C;¯(/ÐúÕtoŒÊ}‹WrM¼ê~ÎHÞµ÷¥Î­”žÂÐyÖÁÙ=QhÍQéóê|ùÞèh=´-Töÿ½Ò÷ꕞ)oEÕ÷ÔÛ¢Ð<PÉiöÊþ›·!F[ò¨Ü¿.yº¹¸Öahö•A{æ:ü§tð,•¹[¯>?ÒûC:ÏAõ•š´½³´û4µpéÜZL¯¡YÂy=•%ôdšêÞ =ô9Ú™§8u7 å?Ì*Ÿ¡¡ÞǽÊÛiæ_Ñ17O ï[ÞVæÒÁš¾LûD{G©ÞóÖyŽ2wëÕ¹yò¹ïUïßæiåÁ4=ší©ï)¿¡|TY¤¼O¹Nù3Ê<åßQÞDC¹kÿ‘Nþ#:ÒAõž~|34îç@´ÉÍtÇ=ÕNG¢z.Ååì;õ|¶ÞÚ…¦rÚäª{ƒZ‹iÝYe.=ZN\V.Ð*Cuÿyå =˜O]¿›s!}eŽîËPOíî§*oÀ¸>gI”º>!ç¶Z¦Ô÷ { ¨ôy_Í¡¯e¨|O.ié¡e9ÕùçéRªr lo MÒ®|/¥º_®²ŒêŸómJŸ#¡:?òÅí•ù-ïä9zêA:ý´ÝS4»^±d(7@| ‡ê{ÆâZ6GR½o}(C§iýuÏ¥êžÍ´ÍÓöTÝhr7M5Ò¾5Ê7hÿ»TrØLºƒÊ—wpƒ²œ¿ íÌcôô:}3ú-:qNù;Ê<š9­U~@G·Qýü>|™í¡ƒ_¤ºŸ"Ô‹}m+¥­VYIëé± -Ï£ò=êÕÏYc´ÿ´-Cõüé̬2‡žzAùuå/ÐÉÃʯÐÐ^M¿RŸkï§™:¶G¹‰ºRçp3˜§éÚ¿†Êçð’kibƒò^ÚrNy–ÊÜÄ’sTç%ɾ¡÷Y Có( •ï}§m¿Nվޑ9k§‘ÏǪµÐFzÀ@óÔUÿÞÆÕ´u‘&ꡞ1Ï´g?´¯ßK§¿NOýw¥~ß@§>¤“­¬¢ÕÊ'èøUšù¾rZ¹Ž~¬ÔŸ—³tè:¸HÓ) íݧ|œ¦®(‡©Îõï>O%ŸÜÛzê<Ìæ­™§‹¨Î5z±€>½@ór ùвtV´º†r]ûj©ÎËÐ=—®Ãù`šÊÝ9ô%C_[ ‡J”ªÎßÌ.¹HOF”1[¤Ò#¼ä%Ú¼Ÿê÷¿îª{búéà&hÇ×ÒMÒD mSÝ{‘eÉʺ+šCuŸEU m^OåýßiSëhËJhŽÓ¾/@;òEÚ?¿¼z/5ñí,Sn¡9ô¹h²?VKv4ÑG×С ši¦ahäp±üzåF*=Ÿi:Cû‹”Ò¾AÚ;Gu>sò²òš(¢ÁÇÊ<ªŸ‹Í;¨äQySôÄ­(¦2Çã}Ì@ó¼¥K¨Î¯É…v²ˆ†rPä{n¬œê{¹Ç•÷Óô,íßBûbʪó g¨üy÷¶LѺE*¹|Þ׌²î3ô¥€ªþO×ÓîûÚ7*ËcôU£´Ôõá:R™w6'ã´N>çëS´1 Í»©œ›Ö²¬²à픹‹ÎYÚ-߃ yŽÖ¹fÒ×iRÙÜÓ]ÞšÙjû> =Ò®rêÎãм¡MÃTÏ©¨¼ÂPž´ü¾zõy{ïUZ[F+"Tϣɟ#§9£A„&ÖC{¢Œêçʳ¿F¿e³ºû™áFåÃÊ<º#†ž£RÓÐfZhÏ Z] Íeó*h›è«ªçÜŸ²Tç¶Rɇ[2P^¢º÷*µ›¦W+?¥ÐÌïC;þo¨ÎÏÐùÖnŸ\Ÿ§´5ÒìcÞ’Õå´òUùuö·s`h.:¾ ÚÎk´Ç.«9™OëWPý<§srï¡ýÅÊ{h2&RÊ$ 6Sé Ùv^YDõý^h^•û"o]Õ{%/Òì×ú’ë¨þ¡œ°C­,§ú=Hî缺73ø´ÉÚfiUš¾¥;-4î¾Ï©rïMãí\ íDœêÜ€L¾òï+o¡£WéðåV:p€ê竞óÊ ¤•Iªçtî¥ìC-¹•¶\£±"ªÏ1´zßãØe*y1VÞ ½/CãžÏœ’[ãÝ¥zÿ«¥”vî€öw¿KOý\«,Pª\‚É›éPÍç¨ç§º_áD=BC½«Ò¾©Þ7ëɧ:¯HÍ£˜—¨üyóJî‘·{ ê¡ÿs:p™Êœ‰wì&Ú÷#åG41¡Ü§ÜMÛ+é±@¥'`ÉÿA%7fÉ:ý!ù}½Wy…žù¿ í¿Fû,íÝHuÞB×,mÈ£G3ôCˆÂÐ|bs!´g_¦g~NÝ M4Fõ}¿Òžž¡§VÓÉߣÑÌŸÑõ4´ÿ¾‰¶¥3Êzâ4Ùú³%OäQé‘sÚÌ—i9=YH%ŸÁ«óJå{É»«Ê>¼Ó|Céö†zÿEç.£’³à­»í÷7SéïôOÓž'éKeÐ|ÃÐW2Túè¶÷mYM_ŽÒhh¿ýùë:—ÄÙTI;vSÉo݃èÜç#³Ê*óÃ^yï÷î¡ÆÝ8õôË1ZUJc%´yŠïB;p;=¡®«b-}¡†ò‰_+£îüFï+¶­¤þ==C}='g©þþuù›Nýçg×U=±f§rï}µ˜JÓ#¨ÎµÐû>uەôþ2m*¥zž0X ©³t¼Ú3_¡§.щ;iæ%åÓKÿ »¨´täIe.Î(·Ów”mYÓµ´ÏО4xŒê܇ö*ó}^?Ï*6Q½Ÿ¯ósôçÍ«st«&;.³¤>¿>´™£µó´ñ´§þ1í¹H“•´c•o£¥ E4£Çf¨ÎáíW©ùm¥žÑ9'ú¾Aﵜ°TŸ‡H„Wzp¼2æíØB»·S¹×ñö<íÀ Õù^º?X÷®Éþ¾3Ô_Ó°‚J¿‡7x’J¯ˆ·ç!ªúyCçSß§“%tâMe„ºÜkïv:öC:ÚHGʨôÂ{ÎѾ{iÏ}TæÉ½ Kƒw”·Ð®Ú›i¤2áÕy#U…´ÂP=¿›=ÎXÒõ%¸=‡ç³ÿÆ=—:_–¿.s»öÔ›JC§þXù(¼@C=Æ·P×:‡P¹4ÛiKš6Z[DÍÑŠB*¿^Ù7öÞEC}šOª÷øöÒƒJɳö6ƒÖåµ9eÞÎ{8šíÕ÷Wõ»iëyÚ}™JÞª·ïfhªi}L¹‚Ö•S×ïì-¤ê=ÖV•ÁÐ÷wmšêûÅþÛ ¼‰êœ\™Ïöê=l=Gqržê¾½‡¤¿Ï$ÿÏûb†ê=[ßB%Ù›ºKù.´§^§®Æ9¾‹ê<ý›iÿNÚU@;¶Óã†V—P7Çãܳ@e/Á»ÅÐbKåçØ©û9B}=£TË­¾÷ö÷ß/Ghèçs-m®¦ÝsÐN}™ŽÖÐ@æ«Ûåû±y/„Fö©½u–Æ×ÒÄ4í…v2£lT¾F[óhæ]K‡ ¡ýÄJšl¤z^JæElëEz¼”ê^õÜfv´"Mk#´i-•=žÿ¯ÚT”&Þ¥Á Õ¹mÕ4>¬Üý·t#•K¯;sÊù•·¼Œf_£—ÔßÓ{é‰jêæÒí%4QKS%tðah3ûi_1Õ=™è~K_˜ƒfç=PLõÞTâQ*=æN;5B'NÓÌWèèEê·[MuÞqê<ÕùGV9¬,§zNFŸ‡UG•å´|î‰dÕóp2¿íUý·6®”sï±\z¤šº<-ç2ªîm‰…fO†ß@OÄhýÚ˜£ÜJ›cжo§ ë¡ùº…¡ï¹¿ôêï›—i} |J)÷Ø“»•r/7Ù©”ù£IÙ·›Êzê$ù1š·i hå,} }¶³ºˆ6Ÿ§]i*s;ÞÔÕy"íç¨ô×{ÇÛ`èŸ_ÝÇ™¶M££ïÃP·äÐ{ƒ)š8Cû¬ñJÚ2G]Ï‚óeCwRýùêú«\߈ó ü9tç÷ÎI¹·ŸügÿGÚ¶YªçÖ^›£›rh>5ß6T÷TÈ\¦·,Cå×Ë{°àsŒÑC ´2_i©äùxOäÒ“QZ—Gëg©ä÷{U/‚‘Ïioë<í*T.Réñ¦”÷QÝk0ô®VÆèÈÊbe©ò=åE:Z­¬W¾M3+”HÇ÷)DzÊ=‰wò[tê;Ê•œ¯%?‚znÙ\¤Gfè‰bÚ:mæ]:ø•½noïÇTÏésÆêû¹¨Ùf¨¾Õß'r_é=™Kå|ÑÛX íëÿ‚ö®ùóiêœr­ò&Ú3£ÜJ“çhðÃå =?î í–ê|öKë÷Óåôè"=°@¿a¡‘^bïÁkÐ&ß§ú{ÁÝ79eŽÃ«úlLc5•^oÇu*ûDÞÔí´¿†ÌÒÁ :tªç“ùÊ“’ó³ÛB;ý<Õ=0™·”ç”ê mOÕ}-›èÉzxš¯º¯˜¾¥õJ½ÏÓÓGõ=pûmZ³¼ºÿEåµYÉÍòºùˆìÇè’ûæèÑbªs:ܾ¸³cž&J íºLÕý‰‘ùR¯ëãjus°ë¨¼¹œf?î—Gå~ÀÛ[­œ¿}–晅啞b¯ìûxc›iÝgØ›¢éctâ7ahߦ÷,•œ,o×°r£rmŸZÞøuªÿõÜø±jz4JÆ•1½¦\ 2/áP=OfvЙ›©ë½wê\ÁôGÊ[i¿Û縦|’öÈ{ž?ÓûP9Tïóµî§ñ•=c¯Ìkze®Ì±TÎ¥œFæi½%Tò&>K{ê:z†-fMÏeíMÓž€&/Òà=Ú£Ò'åm¾B.ÒºÍS½×tÕ¹ãÙëÆÐ>`¨¯$óKTrS¼Òãçí6”ÓÃk©ÌÕyKø{‹òëöT„6É¿ÏÌoÓéƒôT/ücšY cë¨Þ}W™¢Ãï+ÕžÑðƒTçÙô´gJ©æ•’V9H]¾‚³ý m- Íë”4VCu?Þá€Ê|ƒWòÛœFúμ*ÍN5Ó¡Zšž¦½Ñæ ´©˜ÊóºÓ|ÏÒê ÷ÏÒEôx­¾L_È£º—E¿Wèy½'[G;.P=*ŸƒÞÁF:¼‰ª¼3þWtòŠ÷Ò©Ÿ†¡ç¼©£tl}F¹•Žì¦Ãï)w)·(sèÐ~ånÊ»“êï!=¯•8Kƒs´{VYB» mÒ¶ËÊyÚZJã‹ÊóJõ\wÏ eÊ|Ú¼•†¾ ­PÝÓ ïËÞk©î= =ÇDéáêå•óïk–îË£/Pé#ð>c©œoùÞccîòÖœG©üïxuåsª{»²œ—|ÙR½güJŒî/VÚå=d¨ÌMyõü³ô&.9m_µò,•¾koò.*}^=¿¬÷=vSéÓtÉ©ñêéCY2Måϱw(û=bäsÊ;öFöïûý«tâ)*ùÞÝšÝYÝÏ›ú÷3ÏF¨š±råí¾Jc)-ƒ¡ÉÄh>¢‰bh~=çÆV˯_¢ŠêùŽ¡wèÈ ÍCÛóm(×Bó¥hG>ZÞô%šl¦måT?¯5,(åó[rE½2§æ^¦2?å4-qhS†6F¨ê÷2 mJÑTí½›Êy¦wà1:ü6o‡Vúe½ú}¶2 ¡>¢Bº7>¡¾–'-•ÿž÷H„ÖÅ©œ£xã—ÿ´MSTö¸½¯Æ”îß#€öõÑñïÑACuŸn×zÚX£ÜA¤•ÅTÏmÈ÷šÓ<¥³ÊËTïÁ«œÓ&ßK‰JÚ;EûîþÑþ3tà}:±›NôôBûýŸ£§®Ó‰Ge_Ô«{³ÅÐ=¤Ë'qû]gþ@¹‚N (7+†z|‹–w|–f¾¤ü :¼†ö_¡AŠv¯ º‡3Ô TLeîÒ»·0ûë‰PÝ×~džžÈ@+9*Ns¬˜ê=cÉ]ôfþ!´2·á•½§yÎR¹¿ûLO–ѶTòvôIx'..«mÙ¡”÷›–õÊu´¼šì±ø’•¥4¶J¹žÊy‰7¡­ùÊu´#—ªÜA“XEC}FÒ¾÷è@ í£2_å´µ—éÎ(4.¿ÔY5Ku~<{åÜÚ›Þ@‡o§™ÐfVÓt>m¾Hչ͎5,©û_*¤ªóöõý‹ìëy“;éÀ:å‡PïK™þÍÐÎÑÓÿUYK§Ï*þ‡ò-å­tê=e7üJÕƒ81­\EÇÃË«sŽFbʇèpZOÓ]Ê/Ðþm´ïSeÕýÎÉ)Úm©îOkÜHåýÑ«û7ä¹ÓižŠÒŠ*¹ðÎPßtÌÒÇ ØJÇŒf¾¥ü9êîy´oí¹Ÿ¹´#Mõœ‚žgÓs“'æ©;vV”RÉófÇés¬ì/zÕœx¨×.û¹äÓJ÷þî|-J+/Ó£¥´v-]„vp˜öOÓæ(4G#ÐvÒx#ôyT>GrÚGiÊÒê9hZ²ç6~þ«ÿ´ÃµTÏÿê*ÝÛ_AužQ¬,ë‘k´rŽF--‹BÛqCíÐÚs–Ê|ŸWÏÍgã±–lȧ'‹èÑ€Jþ—wOM¶ŽnÉò*9ô¡ºÐNÞNûshg mXI%_Èi^Y Ò[î•ù o}5Õ9 ºï$x„&Khï3Ô÷ º÷”ƒtä:ü(,¦’sê•UoâA¼­ÜEe^ÇÛ¶êÜe=Gt²˜ÊyïgªzÌw#´²˜.¤U3ôd†6]¢Å4袩´ í¿[ M™¥U…T¾g¼é`hîìô/ÑéÃJuï­ûÒ¦^Sþ2ü+å(HÑñO”ÿJ¹šfæèèèÈyåVªïÕ‡vÒPÿ™6®,¢=o)sir-ÕûJÝh×fÚ‘OÝžšS÷©5–QéSõžX¤Ù©%å9λŽêÜ©g ¨î'ÖsÃÙqÓ%·Eé΀º÷§Þ;=¼@_£ò½êmØJ¥GÛiÇ‚f§c×”yth ¼Ÿö*ï ½hÏ%åš|œ£´kuý/NÝÛ sÎÞ¦zb†±4ZHós`è}¿¦T™¡¡ý”ÕTæy¼z7ùíí ÃÐŽÌÓä*ù±N}OÊ÷=¥'óh ù!É{iJ~?'çiæ/èðTμ冗Ò䚣Xê#pèóQªçu¶Ð|3Juþ‘̵xëöÓ–ršx‡ö~Dß…vrŒÊÞ²·í"ÕùP¢q{4Îh ¿½GS…ЦÖÓÖí44_±Ÿ¶\¡Gó¨›Î>n,¹V9s‰N¡ã=tônÚ—O÷çQ¯'ïm^õþšý«ÿ›r/ë4›hò t0Ží©ß¥ãÛ–wì>:ôœWVÑôÇ´¿KY@%W`É*{;Ÿm5•<#oÛFÚœO×ÓúMTçìWP½·÷\”n¡&ûu¹ä×£TÏÿ¹~ §Î£¨²T憼*߯t\¦‰9ÚSmöñpÉ',Õçí‹ÐÔЮ³Ðfþ]Gƒ9h:‹`è>mú—èÔ¿ Òñc4ótì:²Ž?C‡~ ,UÞú9ÞB ÷ÜØþ4õ0 ®ÐŽ5´­†6o§õ—h,C[º{š¢Tæý½ÓTö±và&Ú÷> ŽÑ¶EÚr‰6­£u×hm>­Þ@¥WÃ[^Le®ßiQî4t·RÞK¼îœÈŸÍÐc­-¡u×iãfÚ”¯¬¤-[©;¯tÊܤ·ý,•þG¯ì÷{?¢É‡•×hbü˜Aù9ø%:>LÇÎÐá¹åê ƒ©ËuòÞI»ç©äïxÝù²³¦êË‚höZúÚ"Õç‹GJ©:o4+hK mÛJ;wÓÄ0MUP}~¤úÎõ}sh߸ÑÐúbêöÍŽQ}. Ÿ7ÞRËépFË•– ¨¾Gªœ§G-­U^¦õ…4žOå<ÒÛ½ž&Ûhï>Úw†öJ}T»VÌÑgs`hYÞ»¼¯4§U†ª^e#¹ËÞ†sTçÆÈÜ¢·#F»×P™_÷êܸÞÇiz#º›Êž¬w`Íç(Ͻ2'åíÝ­\GƒKTŸÇµ\ z^ .—V)Ý9šÜÃ9Ì™;íÔŸÑà•y2¯>·©ßN¥oÔ{ü2Ý›¡zŸ[çT¬ÉúsÕŽ®§½Óä3Tÿ¼|– géQ£,̪çV« —÷ˆ¡º¯HÏûWæPˤÕ÷¹¿¥¿•Íʯ*ï^Ýÿ+ïqÞÎMÝB÷PÉ·ô¦£ã/@»-‡¦å|SŸÃ¤Þ¦Ý›©îÙÔóÈú>h_@Ÿµ0ÔŸù¢¡Ñ4Õ¹z¿´±‘¶¬¢A íyX¹•Ö4™ý\1Ctäþ{YO7üí|ý糿>gZè©B§>RžSN([•_Uþ:UÞA'F•¿JÇ·*¿A3tlžŽ¼E‡/QÙkóöÆ”ê{¤çÊB*ÏÞÎË4¾ƒºy|g,Ÿúü‹rz$/«äpz_]̪î»í·íÿÒD = ¬“çùCóTßé÷;Éã÷V—RÉ÷v¯Vn¥Áhn€fWíïƒvà*=V@÷F—· ÉíñÖÛ¬òþhý¹¯xPÊÑ(£ªçÀ|5‡~/ /ÍQ¹—ñÊœ—W?‡Ë>®·:Cõ}†žgŒ]¡ºÇ@ööÛQ¨÷Àìt”Êþ¨}”vm§ÒÿèÔ÷F6óÓ4ûñ¿dßÚ{ÛíùM~LÏРšêîö•´i mhýzZwV™CO.R}Ž{ø=4£Ì£râÕŸ»‹¡1Qú¸¥z¯ðЭΥ' Õ÷FÒ¯n:‹ahΰßÐŽkT÷rÖ•Róÿ’…¡|åØmÉ£ýA+ÏÞÁjª÷ëRsÔå^8»¢Ë/¤úûH{8—ê蜺C)÷FFòO¼Çås©¡”ÊÞ„·MÎï¤ËÊQÙÐ2TårØïE¨üó;ÍÃÊïYZ–G_ÊÐÐ<ÒeªÏ1ºæ¨ô™x{ߣý[”4]HŸ6TÏ}:õœTûV\€vOÞ²†òÂuþ¿ê±0ÃÅÐ6*¥ïÃÚÏê¿ †z]ä\Åús– ÔŸs¡ŸoéK÷깿¾ ´¯?D'þœfþÚCÓ÷RÝÛš;·ÊFåmËÛk•Òìå’ÒCåÕsO:§ kíœQn¦çhûEÚ²ŸºçgÃ~*½‘Þ£sTr…¼E¡y¡ŒêýÁX)•œ§ž¶Í+è¡BhŽWÓjû¦©î/‹MQ݇¬ó åßË𓸆¡;ìÕó_/D鮕\*§íÛ§,£:CÎá½íó´i­5Jw~VJ_™£ºwù%MQôÿHÛ–†¦¹˜ö<íÎÕ÷ñ›Åá)Ú³J W¾§¼:¿÷ÕÝ¿H³¿-^#ù6^É}óž,§Ògæ´ß/¢“ÓÌÐÑ:²–ºü—'Q½@dhm9mZE›¯Rý=¡s¼z•sTŸãé}øÞw©Îxˆ¿AÇŽÑñ_Pf/(ÌästêktúNzúèëÏÑ3oB;P«¬¦ÉˆrMRé»_rm_ m•TžÓ½‡Ë¡)·4…6¾Š–-Bãrl_±TŸ?ºóBÑv¦”ëi{œº= w¿©÷‰#Qñ,4ÏÐŽahåÞü3m¼ªœ¡ [hÝe*ïS^½G-{¦^}¯ñj!•s$ï· å4¿PL£sTå„é«õJoˆ·1N[b´m •?¯Þ®lW¾O]^Š÷ Ús/•óo¹‰Ž}mâ Õ9Á͆êžtw.é<™¦#Tç0=@Ÿ§ôìÝ¥:Oí¨üùQûöìïб´ë mÈdÿ÷¤Æ«óû> ƒÙï73ôCšyÚª4 åáÈœŽ÷H•ç_ïñÕó3-†ºŒÏRzþ¼ÁƒÊ‡”×ibŠöÜAõÜpºÊœ´wlÿi:ñЬ¥ú9ñ` í/uYzÏ|uÚ©ÿ—ŽËýËè#´¿Šçiû*ªó÷Çè#š—‹¡¾H¥÷Ê;VöѾ76%ßÁ,m½J%wå3=2GõürIšíT¿—¼œCåÁë{Ab´­ Ú³ûè™CgN*¿Mõœç©›éä5¥¾wS} ²[ù2ÿÊ Êu4s]yZ™OÇŒ2ïÆŽî Cï+“t`Íþë.Ÿ§//P¹Gó÷iª‡Ö¶äR}N.yÿÞ]sô‰šïª¿¯tî¡jzô2Õ{7Mçis9•G¯Ë1sJž·c5íNÓ œ&Fi²ˆöDhïÍT÷¶¤éà:ü$™¢£ïб·iæ2X©ü&¼Uy™žzPù ~ŸžÞ mÿ í±4xœ¶£Ò£è­14šC›šãsО*¢cïÑÁšZ¤:ÿKæ-¼9ô»šh1´]•kh[ m=Okf—×ý{;u¯µúy×ߟFú–\E.Qýóš’?Çíëhßy:"¿>2±ä,½Cù!;G3íôô»tæ´ÁJºGÌ£»ŠiA4r_ï=hiÅ<Õ=YGrhµ¡uQ*ùQK^¦y4‘¦©Z:$?ºH÷Äu¬£'ãôX ­È¥Ù5ðÏö9åö¨2ͦ(}±ÊŸ¯îkިܤ¼LÛÚ½&§©|¥ÚßO]£}Û¨ìí.ù¦òŒÒ‘ tLÎ3/Ó‰\:¹—N}Ú³ÍôûÊ×ߦ3ß §ÎÓÉ.:žýç·£SÊÍtpM‘ö­´}7•|Eï9hdÁi§î ã7ÑîrZUFE¨îµyVù­è²é'ð†ú@‹©ôžx·P—(€öÔÓÁ[hÚíÿ ±be}­€JΧWîkœFúë¼îžÊÙqÚ\Ú#sz©n459о |^¹Ý(  Ùœ³¼_Q>¦5Ôå¼:_ÎÐ×ʨîÁŽ)Ú¾ƒêý’žÇhú ú"´=²7Wú\©ï(õ{ˆËgÚ]Fˆ³´¶˜Æªi} í)\ ¡½yÞ—¹y¯äs˜ä´÷<í¿™ÔÓA9çºŸŽ¬¤£¥ÊK4ÐÉ|ú¬¥úœNïߨŸ7+ÏÞ=†FªÏe;6ÓØ~*çßþ/_©ïƒå¹Í[ohgZ¹_[²œN_¢:Ïu|FÙª¼Ÿf(ï¤Ãót( ƒï+ߣ´g-M;ý6œ¥[èø!:šVFèÐ'´o³RÍÑ$‡ióz¨„VSÝ{Í£zßXöM¼zQi«ò©î[ â´ý’r•y>¯Êù·²—áÕçj®:ûc¿¤ìÑy%Ü«ûl’ò¼>p ´Ùר{fš¾~•Ž^^^1ð#¥¡®§Ð›C]¤ï…ÜH{Ëhê íÙE“·ÐÄiWІú•Ò'蕞XoݪÏO_˜£’7ê}2‡–h²k!K>¡”þD—wi§6Ññ2ª{óôçy’¦&h¢‹Æ‡¡qsÁnNxâ!Ú·žöNP=ÿ¦z†ýç¥Sú¼z@Ï5´ã,Ml†Vö§¼Ÿ7þT@_\¤/Ò} ´B‹R½×_¯l†Vò¥¼ÇâÔͽ©¾ ûý9*ç¹Þ¡m´ç6Ú°‘êÏCýyÛ{íÊ¥GÓôå å¬ì‹Ò¶Ð&K©Ê?×{£¡9@ÝCÖ¹ÚÄeåìò¶,R5Çh_¦u› >Mõ¹thïL™Ù¢ÜHÇ®(ûnìètø.e>¸ƒê1=›h¤Á>ÚQ@Û7Sã©sªšæéɵT÷mèûãìñÎ’k¨‰mXV;ñ—Ê”òïÐñÿ¢ü‡4óšò~:v÷¹¨Ì(÷+å÷SÞ ½C[•%4[ÞÔ%eM\¥]eÊM´óÏÐú«Ë+y+Þìãó’»Êè×, ͽÊü¨·‘†rEõþgÿ<íÒäyåJÚ]JufM=²–î_ E90´‡ÍP¹wó6–Óà1Úó>´2_æ})€¡÷9­Þt{UΞõTö¼eÊ콑=û0颧Е*¿¤üUå]Ê/(o¡SוÿU©÷¢ÿXùt²€Nü蓮oRw;ØLCýhª”ê|çŽýT¿ƶÐÃùôÅ—›è”½|§y’ö]¥-)ª{¿¥ÙÇe¯qùâΚèÿ‘và *hs ­_IGi¥|žª} s0Ÿ¶D©|Né-0=Ñ>™÷–¼§Ñašù=LZþ=Ï”ÒSÿŽNm¥#tüa:&Ÿc»©ëÙûlo·üùkÚAU.½ÉÆ^{íîݵÍW¢´î*M¼MSP™·pZ™Óõ¶í¦r¯c£‘¬[sèÄÒ¡;hÿYÚ*ÏÑz>Br~¼r?ë4Ç-´ãuôµbhYê眡í[¨ô…9múmåã´'¥T{)ò½ãM”RÝ/¡÷€Z·P™£ðêÞ†8Õç#ZMËçh4MÓFhgRt8C;"TîÓ½‡ÓTç=]V›ù3Ú¾†fãE¼f«2ØIû  ÞGû‹¨ôR;œoz”ñ ´-Bû?Öõ:;7P—¯^W™õ„üsë÷­Þó81G¿…¦­‘ê{«žg mÊ@“}lXò¸Éþÿë>ý=úó]Fe׫ûLjâôè­ŒPýó!ß{^}ï¾#B‹ÂP^ì¶Z¥z[ö¼:çY{pÊWZZÐc×h¬€Ê{”·1JeÉ+{±Þ®¬£‰jåE*½›Þ¾Õ´¿Œܩ젃stx+ûÍü£“?C§ÖÓSÍJy:5žõôOЙ=ôõ'”²w&{Þ—èÌôôWéôÑSH'ÎÒ± :²‹ÞMeÏß+ó´KÞAuþ«Ü»;Í®­ŒB½Ïéæ]íàjªû™ûvR§”j¦=oÒäuån*=Î^=_Ø5K;˨;ÿtJÿ¢7´—4O®Ñú€žˆ(7К=^F+ ÝSœU>ïþ?;Y­T¹ðcÏÐázå“tè |D[2Tç•JÎ÷øZêòþœUúR Ýê{ˆg,­ vÇ4Ù_†%£óÐ÷|ù¾/K+ò¨ÞOË>…Õ=Ò»î-] *_0”7¨ç˜d/Üûâ=l©¾i\¤ºKç"ë=FÉGò&ï =»iï´ïÚÿMHeÃ;XO‡Q~DGîVÖ*©äbz3?«¼G9EÇs•§éÄÏÑÉû©œW9­ôèz[*im5u}΃%TõHÚ¯F¡y1‡î7´ªˆÖÍÜØö"ªç{û?¦Ã 4ó#˜ý§]ÒtNA;ñ/éø/ÑÐyÿVåct¨’êû½Ô0M^VV+o¥‰ e™r' VÐî•´k+Õ{r^åmL+iÝ%Z]Låσ÷•<ºÏЯ.oèyFÎåBÊy§·9—ƯPý~ÙQ³¬¡÷åÖ•TúÁ>Óà~*¹ÓÞäFåå"MÅèÐ :zŒffèøCt¢Ní¡§·)§¡}ƒ¡½ÓÔešx€êóŠÖ+TçIN¶w_4ëÞšìÇ÷’߳Ўÿ9¼Nõ¶ä·xOÎÑÚÕó_zCzÚ¼‡âôäÚ¼’v¤¨üz.iiï#Ðvo¤ú|Dçkªûû|šìqà’zŽEï1Jϧ7ž¢ò9éí­‡¡{ôƒyTžFrÁ¡9N£\Íþ •÷“ÏãôvšÅk:¡ÍtÓÁ³ŸcŒÊ}7]IûoYÞÔ—·»’v^U^¡:—±uŠ6\¡¯ßÐP/„̳xC÷¯ TÏ©Ë?¿7y´¯ßI§þdy3*/ÓÞüåUyÁ¦,mó%e•9aÓdÿï¾$ÕóȲ¯à4 ™Sì]C“wÒö\Úzêž*c/ù:Þ©»hsŠê¼Ù qÚt-mÝCy2Ÿã[ íøœò:¶ƒL÷Ñþ ÊZªŸÿô¹v})=ºHÝ{®SŸËêÏ¿ƒ¹T~^¼¯)³_sKîÒg-•=ïV ÍS ôKõ¸îovÊž“Wï™èþ9ÉéöJî„·;Eõó–Þ3I'¡í“¿ÏäïÑ韶ÛЃ¥úyzw†JŒÓ|)JŨœ»xO–P9ïòJo¡·}-M]@w(å¼+l”ÊýØZ{¶­Uêóùs4éæNo¦©³Jw›¦ƒÛéÈ&:–¦ãщwèT> åQëþ,Ý3X•MÃÚZL³¯×K&wÒžó´ï=:`¡ù1:]KO}NÉ{¢Þ#ÿ3å‚ò¢2£üŽòÑ̰ròïÒ±KÊ2åN:¥zn~ø ¸®œ ’—èíù„g”ÓÊaª?—´ñ)ª{”« èËstKšWŠ©Ê·í¥ôÈ"U=dæÑ(=tÆWP=2x¼ mp=aéÑRªöŸÌ+1Úx™ê9ô”œß¹çýøm¾¦,¥ÒóêÍŽ•{Íc–VÐÊ}κ¿Œ¾ƒ¡{2ùó¾Sf¨|NzЪ­»HõsCg% õ`£ƒ÷Óá·¡ê¢#÷ÓôNªÏɱTç­-€fKö?š{ê¼D»öCÛ”K%×ßû¢¥’»ï4›£tRŸ[Ë=‰·%N¥‡Ýi§ÿ\¹WyXM3Ít¬’ŽÌQ=/8tŒ¦7‰7SÉ} ݶ/ÒØyZ»@ÍÓÃk©ä x‹s`èùûh­[ ÍÚQDÝç­¾JßOë¯@SÍþßCeT朼êæü š© cƒth³²HY@õÞkúVeí-Wn º74‡(û2gäÕó„Í–Ö­ zn¾¦„VUŽeTr ½*ïÄî50”CT^F¹÷¾ Õ÷Ëò¾üYÚô%*}»NÝiÓoRÝKáúvºßáÅZy™6¯¢ó4Y¨t畇iÿã4¾Ÿ®¦ãGh_-MŽR—;ã”üfghÀåÉ9eîÁ{h-=RBõç€î—Ï~Ý,éú*µÕ}ô²Ÿç•ž$okFy‰›©îOé;Cçæ-9·ôê½´žhû‹©žÿŠ_¤‡7Pé‰sšx„ö?mü4Gæi»²ç>hG×P¹ÿXRŸŸm¡’S½dœ¶VR=¿¤û O–RÉgt†î Ý~±w†ê>=÷v"6E•qÚ^­¯Ô¹?î}ÁY_F³ÿºK6ÇÄ8íX¤Ýçib=í‘{™Ôí44Q®|ƒt,íé—¨ëov›£þ\«š½Ë:Ö{Ô?P¦•÷PÝ£–ù]å¯ÑÑye.®¥²Çê•,oº^¹ŽJ¿É’ûiß,íU®¦¡<Ÿ›hòœr»rM\Rê<€=ÊÛi÷9eŒv¥ç•9´}+o§M—¨Þc©/¢jÁÖm¦'-=§U×heœ¼FuÿÇ+úK¿‘ôŽ{_,£{•rá=”K«7Pý­{uëjhýFå5ª÷×e®Ñ«óƒ· o ‰sÐT•C+=rÞQ¥ô!9Mj3´¯ÿ[:SB§ž:A'?Pþ]šùtì^:úiV>¬,¤ò¼´dµ2Ÿeèà%:ðÉò¦PÙ/ðöåS—SæL>@õ~iÜÒ†FZïþ<¨{ï§ úMÒá 4ý±ò#Ú·’öÐÔC´}mœ¢‡,- ¨ä19C½ [•ßSêžPöÉ( òiw•ûk¯ÚïµEQªç&†ž¡:§Yúܼ*?ÄÊ<ï’9Ë«s>žQêÜ5'¯÷ƒíw£T÷À<]Þ_Êæ9K+âT÷ý4^¢¡9ã\*¹ÞÞ)h§Ót4‡Ž”ÓÁiÿ%Ú[Eu¾§ê! å¯íŸ£ ë ýÍhÖŠBh¶*¿ÿÞý…´âÚßN?ÏËz´ŒJþŽ·3ûþfmöŸ3¸…v¬¡z_èDœê^ëU9T÷IOÐÉ]ttpïuÚs'MF¨ä/xÛæhS]£ú¼Qò2½r/ïÕïÍ2¿â´/h²ÿµ%Éó’:×µ­Q:ø Õç zïVÍÛïPïWÛaÚ=Oe/Ó{|šïæÐ]ªûÇ¢%ôàzKû÷-ohÿæMÚVL[×ÐÆuT÷Q)¢²ë­œ§‡Š©ôšy_) ¡ùÝúäýV4Gé¾ }5FUÎW(W㨡z¿&tÎr–¶”S™oò&öS• jz¯@[¡nnÑ)÷—Þªç%eÍi¾c¨ëStf¹–t9ÂN½O+¥¡ž?KužeïGtàf:œKG¯Ðñ§? íð*Ú»H“´9Bõû~Ó Ú°ŠVÏÒP/j„Ê{tè÷-ûué õ³è}ÕëfNh3I‡ûhe14»£Y÷P;ùš¹BsÊÍT?OÈ~Ž÷» ô@”V_†vâß(ÿµòšùÇttB©îå¾rÉítàíù˜ŸR=Ý4KOÓÊrªsô÷¹žKuûCÎ#3ÐÖïW–ÓÚË´z‘VÍP¬rGmIšbC],ê\º •ý¯ì“{;tˆ]Ÿ¡üçïS•‹nú¾íÌ/Ó‰çhòqªïOhçh¶š}íYRæýœVö:½‰Ú_Þ†…å=b©¼÷¦ê9 t~àúiU¥Tÿ>7tÐøjš¸‡êüÁÞJªûd%·ß›® ªŸÐ ÌÑ¡txŠÊ¼ªw|#èd úIå´]ÕTÏWul¥ •qª¿¯¾Íšýšöš½Êã´.6uÐΕ´{3í)§ƒ·Ò±w •^§©(RªscZ“¦¡¹/¥>Ïn hÇ9Úii×<•¼Ç°g¨žÏÉÔ(¯B;ý-:^KÇî C9T÷ Jo³WÍ9—òVQ7—ß°Ÿ6RÉÃvÚCeÐ4f MçS9_qšºÐ§”I:8«|K)çǃo*(wÐT|y{ŽÑäªóDƒóÊ·”(×RÝÃ!}3^Ùoô6o z^¨f‘ªýY»ÏR9/𺾙ÁbÚfh£<—ê½SýÜ¢ûe\Ž¡Ë5t9‰Î†­ÐÔçÓöÝ´çª÷>ÖÃÐsrÅh#òï7ò~O©÷x.ÒÁO•E´w i÷Úµž¶]£’çè•yDo} =9CT?j+ ¨ÞÇ“žbïóö††Þ“ËÊèKÅTr½²·äÕ½; —h[>´“'éÄŸÒñš‰Ð±€ê=ÓÑUt$©T÷)ßc>šQf”jþQŸ“ ¬¤ýÕ´ï.Ú“O¥OÃÛ–VÆik£rÏÓ–*ç‘ÞÚRz<¢Ì§GbTçØÈŸ;û(Õç=/ôUC£¹ôð •\]om2 zÎ]棽=qh§ºiæWéà1e5h£Ùx¹%Sëhò~*ïyÞ®<Ú™¦M ôµBhÜ{­Sòü¼µh[†Ê÷³×ÝGªý³?Bëó¨~nrïN5—`Òt`«²LYIG?¥ã—ét;´ÙãÏ{jŠ^¦Á»´®šÆöÓÃ…Tò”:—Äö/@`OÿWå‹túO•}ÊGè©&å?¦ãûiænå­tô>:ô#:x 8«ÌSê¼€iêŒìÕxeâ3ý®…vªNü{š©RÞAGçèHŠ_WF•EÊ[éÐ'Ê•y7vðŠ2—ÑþÝ´÷S¥šwLÍÒž{iâ6*¹}^=·Ò¾Ÿ¶n¢Ms´~3ÍÑš|z¥’Cá4ß6PÏ¥ÛúBZ»~ÇÂP~žÎáÑ~+J« m¿Bå{Û›¬¡™~ú÷ÍQ~E©ç=äœ{Éøgx. m9JyoPþýÏQåŒî¢—iß(•Ü?oO•\#oë,m¼Fu¢þ<þª…ÆõÁº~XûðD5}&¡]…4^Fë§hõ5*÷ÉÞòEªæÍLvl}É#³´nm¾H;ÎÒÄVh'þ#j¤ú{º·„ö¬ ú{:±‹¶Q÷UWLkËiMT¡GÒ´r‘ê|ó§hvªÏm]ž¾Óí {³ïm¦© ÚìÇÂ’›iU\™CeŽÅ,Ìzª‘êùÿ¡éÀ Ú·–Ê9·7¸™ê\e÷ïåÔóuE´2Ÿ¾°Cy½z^§fžJ«·)6WBÛ šÇmÖýÙÓ»mí •|ï¡ršZRî™FÎÕ¼®w×)ù^ùóìÕ÷ÒãÔs›¦¬€ê¼ªïÿ5=}HùM:½^YH§FèäoÐñ§•_¢ÃwQy_ôºýsïC´÷ ªÿ<Çg©î=PýÖ¡÷;õ\nûÖÑž-4ØAÛöS—óá”ý-gè~ëÕ€J˜7t}‰¦û í\M¥?ÍÛzA©ž/ãgivÌI7ßîÔçòU ôp†VÌÓm9м¦J“•Ê(u¿¾ÎºYz4N¥WA¿G×ÿáÌÖÔ/™xXYE“×hÏcP÷šò ÓöšÚGû:¸ÝAGo£rnéXA'Ÿ¡§¾íèÇ4ÝH{ï¦É}´ë­ÏP9ðªûOû õj|o†{s”™":¶@¡:MŸãû½Â<*}zK>ªÌ£Á“Tæ}½-XMFé× -ŽB#÷N^ÉCñ¶ßX7/6¡ÃoÐôzÚ?LS?¢=Õ=DÁYÚ§íiÚ¿@u^ÉúUÍ}9ô)K]®’ó•Ú_¦ÒÉ•ÿŒŽ…Ž}DG2tð :ÐGõû[êêòDz?¨û Õù,ºW¸¥ðÆ6^¢ªÇÝK+cÊ T÷ßè\–*÷>]Hõ¾£Ìay·[è{‚^ŠQéçóÖÉ÷¸ÌÁx[J©ž/Ol£’‹á´SO+£“ÿ‰ff•¿OûWRý¾¢÷:.Óx†ÖÏP}žqä4•¹0´·PœMÙ•<=¯>_ªŽS™Sõêû€ºMÊ­—÷J—ïlȧMeœê>šæjêrUíyÊuÊJå¼r‘vD”qååuÚÙ¨¼F»©äA-y–&nWnU^ r¼d©2¦œ£}•4GR–)cth5Ù§¼HGS.бje-Í|Y9O')G”SÊ ÊÿF'7(ëé©_¢Óõtæ~h3?¤=QåjÚ&çòßPýó-¢•3ôHqVýsílɱ¨Þó’sso«²ù:}"‡Ê=Ž÷7r Ù¶@]^€óh m¨¡êûÝHß®·{-í[mpŒ¶¯§mh|‡r m^K¥ÿëûΫr©äîxÕ¼·ùº¥OF©»×w¾˜GÑã×hÃ:¸šŽ<¨üÚé? £wÑ´|Ëó—Wå›—ékeôP>Õ½Ž-e0ÜÕHSoQ}.ß]J;vж‹Tõ·„îë‡éÉ4ÕyôUEô•€î)¤ÅÙô–ú²¥nŸÏy8ŸÖ.Rûм…Jþ¼Wò½’oíí©¤}_„öõŸ¡§¾J'Þ£:XÎ ¼C)åN:x•ü€ö>Hå}Æ›|Êûë’j§m%=VH4tïP—§èTs vèM:xöm¢©bªç®:WQ7ßìl\€&ûúíµã?¢™4½šö¿Iõl¢‚vÚr†zÿ®R½gÿŠ¡nžà3 å@jeÎÀ[¯lš_Þ C{öоÇah¯óÔÿE'þÍü¡2 £÷Ó‘•Tç¯ ½EåçÞÛ¼…êsð}š— è‘Ëж-@}Oid/ß›ù÷t¢…º|Ϩ¶Ú„¼ïô\¦ºg¹,Í ‹YOh¯ÑÆ ÊÚ±žêžšñÓÐŽn£½ûhÓ5ªóÏôó´:·²_ŠBó’2¡UÅ46OõóYóyÚQMS7Sùþõ6TÏ;t_¦Ãû •þo0Eu{ë*óÞ†9åvêrr:gAÝ ÛhÞòÊÞ‡·Tù]ʯ{A©{–b»©¼xÛ¯C{j y„&Kè¡E¨ó®lêªæÍ2ZSJc›hèž*Ee®ÖÛQ­ä½y¿“C7Qãz\ïBÿ¨Þçu}I~¾W¬Ù@÷ÎÑ=9Tz– ¨¦üŽÒåJ;_É¡‡¢4–Kë¶R}/ÑQL»òi÷:*9ÛÞÞÛ”oR•7a“·ÁPžéøNåTú§6{Üâ5}wCÝÓaOÝMõyã RŸÿIo¦W÷Cêùùyñ+ ºïà@1}ÁB““C_ÈÐÊZ¡M›ol\þ<—ÕfÆ©Þ÷o봂 4ûhÓ†º|m§äwzeÿÛÛz™º|8gýZZ=G_(€¡÷Gõ\cjK¨ô{;7ÓD”¦.ÀÐþ±ôïxuŸÄ×,4»èžªça£ùT÷åÊ{·WïÓ6­§‰ûhò<;CsD©€&¶PÉm÷¶(ë.Ðêrhd׫ö4Cê¹ù¾ôößít%¸Žn¥:ÿ*]IåsÔÛ=GemÉ T愦JY×Aå¼Zß—IOœ×s;«£ôp@Ý{€s†ö¸+¨ÜwxÕó­ùŽ)wÒ¡A:8G:húŒò!Ú¿™ö=C{×ÒÔ¼òAÚsI©ò’}T÷QÚºH›Ê©~¯¬ï uç•<·´²Gã=±–º|3}žs´šVÍÑ=4Ù¯%÷.Ò—3Ë[u™Öí§-ëhkŒÊü¡ÓöÚ÷6´“·ÒñA:ö.¹›Jo…7]KeþÔ›ÜA;÷S¯¬sg–R½³; usTú[½Á4µÊû™ÓŽßD[K¨ÞC‰Éçµ›GˆÆ—W¾¿œFòsBï!Õ3ôè5êúïD;þ{4ó :òÕyš¡{ä;i¯¡º·¦»ˆvÅhënÚ¡ºïZŸèV7¯çT}P¦¡€¶7ÒÄŠeµò~èÝ£5Tå¥XÉ­tšs`h^Lú f‡ü÷Ž­…V>?í¡"häyÑÛuöÝL'¾ó9fÏOÍä¯gÿ>SAóuíÌ:ù+tXöXo¢MhŽÌA;öÕýǺ߳«ŒÊÜ¿W?—î±Ù¿ß*û~ÎÐyQï&Ú³†ö©åÞÑH…×÷Pfµéy*s ^Ý{ß¼›ÆRTòR¡ûž–‹4ñ&•þ§}ý¯”½ÊéÌ_+O+(žžnUÞC§‡•_UÞKOý@yºª|KyRy´ÊŸ _£ã¬¼ƒfþLù+¥£åtd¿RþœêùÝ¡5t`?MßMû·Ò¾€¦êihßw îVæRÝSÕRDË•»©~_=QNõ=‹îÝ–Ü!§ùr”º÷hg(ïoÚ3#ôô–·?N{gi²^¹‹¶n¤›è±ª{gô¾[ökôS¾Ÿ¦>¡ºŸ#X ºO£q=Uóëö%jž] ’Ïè´‰Ye•s2ïä4ótä.Ú{†&?R¾£œPƕ۔[”j~Rò§¼¡Ü§ýTçëœ}éoõêyˆC†ªŸ“=žXRŸïÖ­¥ªgÁt¯¤úù|¢öÞBÕs¤9‘G{J©äY9íD+/ ’ÿçM>D¥ÿ×[7LeîÂ{ÌRýÜ»·˜nè7,4ß ¨ê±¯—,ïéãtê˜r·ò)åw”éd”N<¥ü-ªs’u_Ñð%ÚŸOûio-M.,o× mYO¥Ç+¹MNór1U¹¯vêS:ùÍü]ÔRW¨{ï^Í@+½ÞáÍ4}•ê܆žOhh/¦”Ƈ••Tú³½nÿ×)÷FÞŠ2ªsuOÀ¾Zg¨äaz³?öÞP/ù †ê<«H}e‘êý€ØYZ¿ž6–P7‡ãìX¤]S4¹R¹Q)ûòÉÝ´·žÊž·Wr:ÃÊ\õÈh‡n¡)eG†ž˜¦%íøWéÑhN–A{úÑS?N§~‘NÜJ3hÿeÚ»&?¦ú^·a‘ß@÷D¡Î[5ûʨÞ÷]¦Í¥Ðvm¥/dÕû;åŸcØ,oêªó»Ëçè©èx'•~e¯Ì¡9ä®zŠ üWT·½=›hâSztŽ>aéw£Ð¼šCåÒ†<êzœOÎQ铵5±¬Çä×ÏåØï‹dÿû.—þé•=Nsp†º¹ßJy?•òÏ_Y-ÊóÌ[,Gæ‹ÅYkrèÉkT}Û̘rÞDó”¹Tú2½çhGÕçÎ-—éÉ€ŠÓo[úPšÝ…TåûÚ¾J5¤zqmýZWF•Ð]e0”‹ùŒYÞ— ©>Sﯡ¼ú¦BÚÚA»c4y€öÞmÌR}?YK?·ß3J¿¸Ó¸ç§ž¯Ø—C•Óæk4ØIÏÐT.•}yïÈ Í4@ûú—éé7é©9:õ+Ê\:©ÿi:ö¸R˺ó]çÐGT÷ôèþ­Îë´å­ß¿¼º@fS”ê=OÙ_óÖo…v¦‰N_ §âtê&:ÑDÇ™Žm»±ÃÓôí»Êþº·5MãkhÃyå9eŒ–—A#¹ÿ^µ¯ʱwûújžÀžˆÐùÐÔ_…¡÷–æÕôp}a†îÏ&bTçN´UÃPˉ"h3•ªÏ41|cƒ/RéòêÞ5ÿ¡{0k é¡zp‘Êç½W÷"« ûT@7æÀPŽVUÕóiržë•>#g(Ï%½‰ê#õ>l–ÐtŸRß•-RcñUCN^£º@ï»Qùþó6n¥:ç"¥})îu[GužóÞ 4]«©äyeÞÊ›¾—=HG#4sÚ½†–å@#¿ÞÑG•åt¼YùWtb„v´æs|–PÛëòF¼·Ð¥ü¾.ù mÜBOfèÁ<úd†ús^¦µe´1 í«h¢òþå´¿DûòhE@õy¸Î1N”Ð`B™¡ík©îQ“þ¯þümÌ£u›iM5=š¡U34š¦/Ú–95ï‰(ÕýÐí[©ž? åOÜO¾íÐ(í{ƒön ©šx[©¾užt“²®ê¼ÞŠÍ~ xÍo(_Pêó܃97öh!Õ½SÒ7éÕy½ÁÖeµƒÏоªó”õ÷Øöú@4.ÿËYµÆ®Ðä-tèVh%_ß«óð‡WÒÁ'iÿ§´÷.š,§2oéÕù­3Tß;ž(¦ËéSš'z°šÖ´1BÛVPɵ÷Êy¿Wî¡~¥ÁR*û‡NãæÑ’4q†vm§óÔ¯:eÔ›ù€n¥zµ«Ú3ß§¯ÿyˆž¾@'þo:þÛtl–?£Tï_Ã’ãê­VóC7Ó 4Ùcë%õ^ÍóÊ…¬zÎú`@}ϰü}WÓꬺ/¦NþÜ5ʽŒÌÕ;Íqùû5Èý€ô :mm å4Ô͵ÊçIköyÉ´´c5 Íóô A mUÖ+« ¨ÎyÈþ1 iR>Њ ­²´n •ï/oG! Þ¦=Ц/S½'~öqúý@ù+ôõ—èé2zj‘N•Ó‰}€ê|<·§álèÉ<êò‘\^’ʯ³SЉ2:¡ƒû©ôþ}¶ÛhŸUïÒÐùVšêžEÝ—V¥îœÖõä:_É£2YOl z¿qmˆòs<¨ÜNuÆéN§~‡Nü1Õséýªçlô½¼Êµ4ÑbhÇÇhfògéØå :ºžO)ÛèÐ%åÛÔçŠýIêòªœ=µ4ù²”&ÞQî¦Á4m¿JuÎ_óZUFU‰Ý[ý¼ÐF¥ëóÕJ.÷X5ÉçcLîê/C;užNYÍ ªc+¨ÛËvWi¢ Ú¡@yí{¶ÇiS1Us4¶bíòªóÝп¿~®—Ü+¯ûZ¿§Ëü•WΑ½²_â´Á=T÷9HΗ·Õ*Ï*;¨Ê¶õ[Eõy÷C—ÒCå4нQ*çàÞÇ 4ÒçìÕ½/;£ôyK_Z ¯–Ñãs4VHuþXÛ ´¿OÇ_¡?¢ý«hBÙ¾JÏ®×Ïó‰z5”O mÇÚÜHeþÓivE²ÿ÷™J'þ5ÕyV®¯Ö)÷sÞƒóÐ4 Ó ˆö¸½üB:¼‚žZ'~ÚÔÇÐìŠeÝvôIÚ·’ö.ÐÔc4yŒv) •y´9½¼’wá­ßHC}JÙ[ñ꼬ª Õs‹QKw*w,PŸ®ó#åÏ—·¼€VÓš2*n½ºOµ»šJîºÓNÿˆÐ±{©¾o+§º÷^Ÿ'÷¬¡±Õù òëä }Þ…rí"´am^¯¬V^ ’ æÕy‹Ã2¿¯z%ìxM­¢=ghò ´ÍЊ¼ݰ¼ª¿ÁÊP™çò-¦5‹Túç¼òè Ýí¦ÿ?öþ>>î2½ï¾'ÜU7.U¨KT⋨ԥ¾¨Kâ‡8칬Ã*Ä!ZÖËjY/«õz½ZcXa„-Œ0c[¶e[–GÏ£ç™Ñh4z=X¬C·¸ÔáR‰/ê_T¥U‰Kêp©Ô׿î«sœç\Ÿãg‹äÕ¾î¿nþy¿?H£™ßïüçq|ÉeóÆW+穬7½ýÏÒÔG0¬û‡¾¦¬*¢¯DèÑ<ªï—²îòêyGîüêä ì«ýÔÀùp}•ºeot5íXOåúê ÌõãU4±@û6S5?à ÜFÓst°„W+ëèègtìVh[cÙ×÷ý¦´/©¡#?¡²¿ãXEuNÿéÛèLX¹@g¯A;fèè[Ê/(Ý>Q•ù„9ói_ÕûC±R*ï'¯žÿuªŠžˆQÉ[ñÊÜ ¯Ô{_(¢_AóBUóÅíËèôŸ+¯(ÿµò•“Ê:u”Nœ§£!:ò 𦒳”sÕ9ìýŸP=o¨¯€êúÝ硞síä}TçhÏÒê0ýš¦(í·©‘u™Wú»¼­eY£rÎ+óÀrÎÓŽ•}>oìm*ýþÞ!YL~Q|Dyž¾[Y¤”uÇiÉMœyV)û9ÉmÐçÙ8»¶B+×1ïÐZ*ý…ÞþíX¤zåxÕy…5Êð•û«7{ùúÂ"Õëm×?´5 õ?FæJÔÏÓÏ•ÐÝstoˆºyèNUWo¢Í´§Œº|oX”ýÌdö<Ö¤î¡iy?®¥ÃótôÓeµ±]TÏ#ë>¯”ë„äÅå,¥aêêZœÑB*ëooKÕýåyZú5sn¡n^½óÐyzp‘ê}À2´’š-–ª~q#õn^=·DrI½‡—è‘rZ[Lõþ~S3mÝDsgiì6e ¯£‰Tö‰½Éy:p äL§£Ñä[4¾‹ê~¶M´©ˆ-¥n_Ä[HwÌÃ@½HGEöÿWš¬Ï[ª÷õG«hj-×ÐîJh*#Ë«çH?®Wæ9­üܽҟè­Ù@%¿Ô©ëu.}U´ÿ3ªçÔ,)h ¹ì&Ñ@Ž™R}Îme˜þ¨ šŠBªúWsªò´íp%M¾®,¢}—i Çþå*óÔ½ºî·k„¶_¡ºNö3½RŸí=ULuý ¬ó½’KäÍnKår½Ë”®?Íéúlœa¥›cá”s%o“¡uTö9½± mDö¥T^³½…ö•ÐøÚ[JýÛ›id#Õçô»ÂTÍ‹ ÔgïÓWæ` ?Øå.žþ„N7Ñ©ûèÄ_ÐÌ::½¼CÛéÀãT×Ä￱RÇç•ý!§Y¢®ÿgO˜Ö–Ñ–ìùiÛ¹YÃÓÁ»h:Au_kâ í¡í+é+aªæ"æxUÄè¶0ý5’ã=’OuD[>í:GãÓÔh§¿N§ž£“»éÄ)žŽ'èÈ:x+¨£©Gií+¦½içYêòvœºž°e‹Röç©Ô±{]ކSæ%zÕÜlûR†êüŸ­r_RÖf¨Ê±¶ã«èðý´ë"•þ ¯ä—z%Äi^(¡íkiò¾eµ*èËeTú¹½ÙÎoh²å¾9¿_mU>ÍŒQ—§?{€ê}±©Ie‡òëtòåÝ4ó»ttŽ%¨®M\¥±˜ &Y·¬6ñ&uódë }¶ŒþÐÀÀ‚pÕs°õýëX=QLë uuÖÎÖÚµ…Æ$ï%v™&SºsBÚÿ€ò2~ï!9'’s-¾5¼Šê~Žä´o—òN*9jÞx³²œêõ¯ôWxÛ®Q7·ÅÙRI7Ðã ô¨²*£ŒÜPýù¦¥R‡å­½¤œ§‘**ý-ÞhH¥º>3þ•soú:t^ó$µa*Ÿ—›È¥)‚~cètó1 ióí¾ª\¢±=Jù9ÄŽ(Bã­´ïne í¯¦:?0ýÞ®ü˜êóÎq íH5m,¯(ó¨Ì§ñªý3sxªùp~u}ÿ“¹^ÉQóªùæ<‘íóôqKeÝé4O‹zMïëö\ÏÚ[£ŒÑØE*ù†Þש»Þ:eî½7SªüŒNl£“ÿ‰NTþŸtúvå“ÊV*ùÞki{-=ý:3MgK髟Ð×¾íäó45FÕœˆÀ|•óMod¥r •ó1o×?A“¥´ÿN:ð úŽ>I3¿9Ø:(3OÇëoìÈ£Tê9¼‘•¾Eo]2Dk×Ò}%ô7Âô×B00§Q×/¦= ÐNý&ÍÜBGéÐgÊ«4ùÕ¹¾ñåå]Tò;½Ýµ´³˜êýh •sq¯;¯Óõs:_z Š6­§º<{ÙóšÎ4¼íäÏÓ‰„²Xù343¤,SJÏø‚²Ž|¨ü@¼—êü#ýú¤~¢¬¦MrÝ’s4ïK%Ð|×Ò—‹¨›Cé<1O%¿Â+sš½Ý…ÐÆJ¨äy%?È+}”ÞïQ³Ky°–Ê>º30_ªw34ÇeÿaoŒ¾Pͽ!*}ñÞÚrªêÖmÿ;ʰrM~¤ŒÑÁÛiBöIê–W÷O•—AÓ¦ÒÒô}W’¿S{ –Wç§4–Ò@ßs=¥'K©ôýyu]¬ì{«BTçDê¼#¯¬ûª¥~Î{³œ5Ÿ)ïOo$Ce}ämÝEÝü=gt3mßBuݺôyuÿ°Ì©ñ¦wÑáÍ4ó'tâezÚÉMÇ÷Ó‘M]¤}c4±ŽJý”WÏE ôÏž¥-QÚ´’F6P]¯y¸ˆªùÄö¹|š=FõšÊ9hGki[Ñòê¹$ËŸÿ¥pöÏÝ‚vÊÐÌߣ©M´£”ÖÉß{¼0k¸ š²XÖ§-­Z¤’ƒáUëd;ûmzúWèÄ ò”²\y7Í”(Ct4E‡ÆèÀÎåÕõC}—hÏeÚv‘ž*¢òüìUûmæØÚ´†ª¾H}¿°ß—?WÖÓ¹Ú{-­›…¶.M])(‚vf•ÜO¯ÌsðªódÓV íĦ£ï+U߇Ôõzo£zûHn ‰ËÊ;i¬’v^§ÑYÚf©žKÛ¸šJ?“÷èZ¡:Q׃ÿÀÀ@¿ºœÏxõ¾V¤ŽJ­Óf®Rýó¹LûÍòöõ”Ýg—·¾ö¯g–œ{•ºÞQåü^!4{Íò¾R¨,¢²ÌYAu_Gâ5hGg¨Ê‡´éiÿ,uyÞG•÷ÒDšJ>IÎ$]Q~ ÜDõ<¡îKT×óu\§ÍåÊ5ŸãÊåmª¥×iC•üù›{^yNi•ÓÊeZ™¼‰Qeäs¬¥§ h}fyOF¨Îq“:þ ¥TõÅ·_äÔûáeeY_P ) ³6”*Ëiãe*yÝ^[sûÅÒ¤¬—’ÅÐBۯѓ— yÖÐWQsn_ýuz¦‘ê}ëéH§”ÒÉÓʧèÄŸÒÌq:>FÇÎÓÑËt$BuÆàíÒäyªçxéy©±Oioí¨¦MsÊ-4pž\Eõ¢ýaú¼…¹y\kåu(¤ƒò:¥ºhÿ4ÐGYB¥®Ô+õ9¯(å~­çòu® «¨ÞïÔ¹®º¬¥”6/Цjåfªçf5¬¢ºnêÈ%º·Œ>·˜ug•yŽÞìeÃk\^³*œUÏ;‘¯ËÈ<Ø€zÿAò%9e’³áÕõf_·´:B—Ðö*šˆÐþ¨Ì©÷ŽÜíØM§§ éäï+7*ŽNÌÒ± eˆ?@‡’J½¯ÜLµ4nhìÚs‘F×ц<ªó°$WÅiÜûÍY]Få9Ä«û£¦¿J§.(NïK…tOIÖç"T÷_¯Q©«rÚÓÿêyÄ_¦ú~5ü¡rŒ¼¯Ôû_ É•+¨ÌKðº¹ÎÎ ´­„6ÔPé«ô–[häuõª~L;>B÷Óôvš*¦‰Ç—·wm8GU…yÆÒyÔ-´³’ö.P™»îM^¡é;¡íØNußI`ý®Öã5Eð÷CÐ+ƒö¥"ªç¥¥~!qêû²>Ö9o®ßS Ì1~9ŸÊþˆW}MÛJhwÅ ©²ôåBz Jkb´áÕëý–óTæO{e}íí14V@uß»ä“xõ}0óÚVJSk耡òóõ_¤£­TϵÊ<íhMѾÚÙEuÎâo+]^˜Óíg9õþ‰®çiÏ£zÝKÐÙ¹å=³•Î|_¹žþ5e>ž¢SA' ¸EùSTçÍë¼ûÑãŸãj:´@äþ;°iyS²þ×ó›µñ÷”r.«ód.¹W÷+rT·S—“ê]EO•ÒãTŸ×êç±Wéž0 쿘§:?ãdˆÊþ¥Wæ:mÿUå*êæù8wX*¹¥N#¹~^éksÚ±i"fÿ˜œòùó¶ÐÆ%ªó õyÂÞ úýyhdÜ«ò/yÏÑ|*û‹Î@žÏî•u„÷»1h†…¶÷*Õy‡ÓкDûž„ù•jÛÈÜ7¶ÖR¯ÖzÊyˆwè,¿å†Ú‰ÓÄmÔå³í¯ ªþÓvÏÒhm\AÕ¾c ¢õʲÚÎ$Õë7G]´?þúê9:úúòÆF¨ž+*yI7uºEÙHõ\€É¯)E©Ÿ“_U>¥Ôõ\Iåo*‹éx¹ò~:¶ ”?wì:"ûtÃ+ š£zþÌ÷JßJÎ*›£½+hìãw/(K©Ô›æÜNõ•ÎEeríHÒè Ú°´¼Ç#T꯼îóàÌ>^xä‘x%ü¦&¶QÙ÷ñN~ÚôÝ´­‚¶LCãr[\Ž‹žã$¹©^?^?Í¡êêeÞ„‰®¢îýñ|æ¹Hß®Ó6d¨î ú¡f»òá¬?,¤O‡è‘%ÚPEåuõ꼯@þ×N*¹.^©W½©™§èDHù h_ŠÑ'ÃôkšC´º‚†—¨î›8¶H›Jh´Œv'iæ_щÍÊ´‰Ïh4LÏQ•'d"00Ÿöh9•ùsN=ÝÈ>’Wæ¨ÜTU?j¤>1`â:ðÜJ‡Þ #¥tüYšùie„Nl‡~Ž£3õ m[Mëa๠©‚&î‡ú-ׇw¢P,¢ùÙ_?óŽr@Y¥|œžþÛtê*WÐÉA¥î‡ÿwÊ'éðgÊ»èÐãTú»onm?OeΗ÷D-=pžî Óߦy×áó´nŽêy“ß¡îܲïu*÷CÛ°˜µ–šÃY¥^×ëîc’÷éÕ÷q©£uê#ç‘^Wï6±S¹Cùši¦9y3t¬ðs¼Ž^UÎ)UýàÈ’rž¿Kg•hò]ª_÷Ø›´ç휦zž‡6rÖ—Q]w­=¥jb`îsörè5å†>¯Ô×=×—îŒ\¢-´c íΧRoddž{Îë´oš&Ë¡YM‡R4¥‹ÊÛiª„&;¨ž·˧’{áÕýr]Ôõ—;%wÍ[WNOP9Ïõ™£²î=˜¦Us4[fžsç<4¯(uNc]”FÖÑæiªó²¢iû•ÜJoWž²HYC{6ÐØ­Êibí[ý*7PïcÙþ»iüSåC´»‚êú£¶5ÔåÍ:O•QWgaïž|ªê!yCÏÑ}sô`)Õ¹ÙzŽƒì y›×R=O k Ô{S5OÝ$.R=·-½çÆÞO¥ŽÝ+u9gèÈJh]þ›3P_ÐE;çi Ï2C#éÉyêú½œºÎïply÷+·ú­04¿¡üî<Õó»$'Ãë犻BTçœJþŸ·ÊPýÏÐn¬×—Æî¥=…Ê|MS™û’³𝇩š˜/¦çóÏÐ@?Y5•¼pooM\¢ý 4ý)~›Ž¥iÆB›8G[6Ò=hd.UδS?K[ ‘>T§úy:öí§U18ç誂úúb CôyK_œ£‡Šèá•õ”÷¤¡‘Ú:OÓ³4ó. Ñ™;hòvÚ¿ƒÊ]§mŒR™íÕ9ÒÙ2b¯‘ç¯Î¯<¾HO,Ѻyz²„º}U·ÏªsÌt~åóÔœŒA»wžþRšbôÀ"´§{èp)ÕïO}=Š–ÒÆ:z,ŸV‡è㚃ç—ÕÆ®ÒÂÐÈÏÝ´ÎB{zœNÎQ7Ï%Ð]O•ÐÃTæL8Ë»qêüpuNi_ûúªœ×Lÿ> ÌÁþPùët¢SY¯|QYI3gèÈEªó’ú×Ò¾<ª×A*GÕ|; í™ÿ‹ÎüÒòJ~–wt', Ýh[•õ‹WÏ=¦"TÏO©(ÉúÝ0ýª…FÖ…^}Þ$¯ŸÓf—µ9»Ë¨žŸÐÐL¥ŸÄ«òlõ¶U´6ŸÊó»·g´r^ïÝ­t?÷~x*Duÿßbh_^¤ÒÏæuu¶NÙ×ñîVÊ\g`¾ëãÊo~Ž?(¤;-=`è‘ménå¢å=º–Êœa#93N;ùWtè>šl¤ñ1ªóþO”SY¯;ÍË1h§«¨ÎÒ¦_£ý+hrŽö}FãQe­r=íYKu=n ß±„îUV,Òü4®¾Û¹»ˆÖÒÈ•œ1oó*ªžS­¬_½ãÊÑÏ” TÏû:rê~A;“Vês°WèT!Õõ*™/Óáªç¤ïP®RæÑ¾µ4ö•Ü=oß9úJ ­˜ƒÆÍuîWºç#§ôwl‹Òîk4Ñý‚™G–·§™vÕÑöuôøÕó³ËÜO—ÑGÃ0Ðïp´V)ß·ÌOwÚöi*õ NÓ\í`‚ê:Ù7ôêùuÉiâ-OS}î¨WRvœ£zžYËœ26n¥õk©»:º/BŸ¯ ’Ûé; ^ãò7œzÐ=9”Ð#UTÖ±ÞSª×qr]ööl¢‰Ûi•ë‚30Ÿ©ÂB3p†”Uth“²š_§#µtô:>G'~QyN¾mÏÚV œgz*—Õ–Ót1M}BûóiòªÒ*÷)£’ïäýܼ€Zªó-N¤©ìwy]ªh¾mé+ªç\·ÁÀ¹zä*ÕuÈ2Å«çžIÿŸÓ¦?¡mÍTÎÍóETö¥½µ†¶–ЮóTæ€yõ<²×Jèéþ"£ß§™>å×éxŒŽÝIGÏÑ‘×éðctè tðCš®¤wÐÔ9ê^g_+Õ}âz¾£„Êü'ï©Kôp„>SFK,4[•¯”Ñ“ ÐN”Òîªó{²o_¯qûàn_|öËtú_Ò)£ü¢ò~å/Ò‰|:š¦ƒ“´m‰P5Ƹþ=§š?lgk•èô[TïçO|…ŽDéÀšzŠöŸ£ÉƒÔõI8u¾PW)m¾Ne^‰Wõ›ìò.çÞ0•:Iãë&‹¨äªy³ŒW¿ŸŒäËxuN±>‡žø¯Ðþî#t&FsŒ¡#ÓÁë4õM®¡ú¹Vö¼‡Ši{%}.FŸ S©[öÊóŒ÷›Êì=ç†J¾¤3°nüšòG1ú’òØHî¥ÕôpÞßHwÞkÝ>†³q# ìgËó¨×=Ÿ9]?´³:CÕ<ì@½éÀÊõÊ;•²?‘º®œ¡]Õ´=Ie.—Wæ yu½`Išý‹Ëj'§™””÷Ò± 4°ŸXLGºèpJ¹’íRÞO朗´ÿš|–ö )Õ~`öñ!gâªç¥Ä·ÓX5íµ´ým(«iËZÚT¬4´q mˆÐ“Ê2ªç‘. û3Ê2ªòlö?çüN·äü~˜Ê½›êοœî~§óêE驵Tö¼z°jÚ)ÏÙîþ¹]™}ö£âuTÞ—N;ò>M¥é)K…¡yT©ëFޤ©>·;^Eå¼Ë+9Ë9ÃôT„©^w^·‹TÏ7“~|oj+•ë±7ûmæ”9KÞñ#J雼ڮ.Ú¦º®¸)J-Õù1j}l×RS6Ou®™ÔÙy»Ê©ÎQ‰o¥ª®ÖÔÒö|*}¶~‰JÞ±W÷¿¼XDwǨœ?;ógVÓæ|Ú‘¡½*ϳÞþktp# îOj¥~RÏ7I®^Þ¾7–Wêj½ƒõT÷3·/*·Óh9m»¼¼­•Ê ªßÏ»hý,=~žͧÙÇ€œá0Õóo~¦Û¨ùaˆê¾†èFhe€Ó´£RŸå´}·P=¯GrQoê‘ ÔéÇ"Ðv­ :g¹ßP].yÞæRÚ4­¬Vªç¥Æ°2Ÿ6DiÍ —ÓoºE©÷#3L·+õ\-·Ïä-¡ÕETÖSÞæ m-¥QK{j©Ô-z“»hÿ}t\êJ'žƒŸûîŬŸ³_œ›}•ó%ï`%ÕÏßñ/üÍŒI.IÛ=>GUÎùnˆn·0ÐÓ5MUÐìÛט¿4r'=ýï` g¢-MP•nBJ©#ñÖn  W¨ü=Þîfªïó‰»i#Mï§r¾á»Ú‘th5¼…¦K©ÎËÕ¹‹:ïV×Qëó¼ºZ*ëX¯ÞÕuÊ•e4;ž3g5OXºg‘™¥Ç–hÝ%ªê°ùÙr?õªù‚¦MÙYKõz:¥ñǨ¬k¼©'èÀgtè]:\¢ü€J.wì,Í| ÚFY?¤«©ží¢/äßÐÀuÿól•ýIUïbö(¥>×Ûµ‹Æï¦©tð3*ó’½c—èì Ê6h]ý‹«‡Ñó¥¥ck”êï›øÇtúzæ‡ôD´™ëTåÉö­eî›×Ï¥—¼? ó©.Òê|ªç©h÷ÏQ]//s½õ穪㳽ʓE0Cÿ£2z0£\¢5³Ôå²É>“·{%Õ}OÎÔ"õóÙRÊç~ì:±†NÑÓ)hO™NWÒ©_£“?¦<‚‹thˆ´*ÕónÝú”…æahϬ §Ÿ¥Ó?K§ž¥¤¼@%?Ô;t»2ŸÊpoâ1*ýÒ9? ]ÉÏ1Fõœ¬Ž ´ý:m-¦+©Î/<¦'ª¨ôAåÌ¿±röQŠÑie- W|ŽET›ên$ÿÞ{ÜÒÖ ÐN]¥é¨žÿv`š–2ÚW mSšêyßG¡ùª¡ûÃôÐ/£Üñ$ÑAKÓÐþÏhß[4~ö”S]·«÷™[Ò´i-Õù€’+ë=¬ŽøíÔÕ‡ßÔ ´}„êç—†uôT •.zô yunFÛ,´³?GÏü:ó0=¦“¿H'žPåÏÒñít¬–Ž^RPÉË÷×Ñ¡%È=Võ8ý¯)˨˿u&bâÚ[C;·R]W¨ëÈÜ>„S÷}ª¢OB³- íÌÿM'-Í죣·Òáé` x¦Êißc4ÑL»/Ó¶µT×ÍI¶30WK­ÇlW”êú)]·×°…ž +óéñbªŸÛtŽùÑE1Ÿº>ï"­ISÉ΢òéË!*yÅ9-­ÈüõÔëi­š‹f +CTú»œ&»=’ó{óË»3LuÀ ô¥´m•ÔåºüB7O›7S™{oâOPÙ‡õޝ…vdíJ©öš·RwÞâÎ_×RyîòJž7¾ ÎC~Be^„Îß7aù~t_yê ÕùìRoê4r.á}¹òÇëèðÝË«çd§>S¤É|ÚW©T}­ú¼&±™ö–Ñö576ºR™G›VR›¿ßÐïB£­(¢ ¨ìCyëJ¨Ôxußêß7m«hûe*uúÞÞs4ðüaiò!èç±ù¹lïÒ¡R*ù4ÞôÃË;°]y›2Oy+uóKz=âΟnfò3Ú÷©ò]e!M\PÞCã“JYïÄ®+ï§z}ԥ쨣Ñí´m„ÖÇ”µôäyZSJe¨Þ7ÿr©÷ÖÎÑø[Ð6•A“^'n¤îõxí/èx .RÞESïÐþ·©>çN§z΋îËŠÊsRcäÓS™¬’—ì=žGÌÒ=aº‰W7tú~fjèØ*:ÜH¥ŸÛ›z^ÇG©îg‰_¡½U´»ˆê:™†=R@UŽ’•õ÷kaÌŸÉ@;>DçrE4ýXMS먞_›x¶YÚpªÏ©É¾}rÊ_g`½û8Õù¡Ïýà»Êš£)Ke¾·w-íŠÐ†"ª÷5UŽdÀ—­²Œêzîm†f›7OÁéöc´R¯çÕùÁºnJõ™C|SQ5—&°?—ÞBýü½{©œƒxGî £:þÕ9ø“+¡}±ŒêÜzWOåê«j hëfåYÚUIãG¨¬¼ƒC;vmÚëœZ¤™v:úøPYCû irM§Ü£ê9ÆÈPÉíö6ÎÓèíÙLåuóöo†vêªëNÆ aÚYGÛËé¡ZªëÎô|™[ã4-=¡Ôó OÍR}žÝ¶…ö„©žk©s“éÐ,ÛN3ÝÊe¿òUå;tâKÊ-Ê}ÊveZyíÆNþ3:ý‡ôÌÏ*‚VÎC¼É7¨œ·äÔûªûiï5ªë2O”Ð#µ´r‘>WMö¸â–euûªNÉ5õÊûÙÎÏZ§Ô}öÍrýÞ¢5— ¸ŸŽî ’¯æíÉPÉÛðê>t=Gº%L›ÏѦË7¶q;Õ¹:oN×3é¾ÜmóÐ…èÞ9ªë[šª¨®W™ý):uÊ9 W=ÇY7HêìKšgbÔõã:u›^?©\sv\§:w]ÕI{õëüDšMÊíeôXšÖ)%Ç*çeÚ²Šªyœ˜®5´;¶¼±‡i¼‹J–7µ]Y¯Tuaºïo`3ÜG‡Ö*7)¡’ïÍü-:ñ4ü7túaåSôôïÁ@½Z,»lÛ7ЦÕë§—"´RY†úÂU´>ŸÊù˜·£€ž.Ñþ}Ðf¶SUgäüÉi“;h¼ƒêù,2Ûi~'L›Ö@;ó¨òAå¯ÒÓ©|ŒÊ}>çAe…ò 43MÇŸXÞ¡·éàšîPªsöø9e)Õçá­ÓT×¹×ÕyÀ(‹nìË…´4 ÍsóTå}ÛT1•çÝœ1åz*9î9 ©›gíÔyaÏ—Qw¹% ÍÁyz(¤,§5µ´~FVÓÖ‹4º•vn¢’Çìím¡£ç¡=š†æàZÚiéÐA:ý'0ÃQ_BÎRׯíŒï„f›¥ aÚTJ»×QÙ÷ö§Q:xœ]¢Rgï{Ú‰ÿD3?¤zŸpä~ªçç ­£.ÿÔ«®ÓT-í»¨Tû°z!0ßæ^ Q=ç£=MõuHν #T÷Ó꼓7V?¾PHuê©ÚšG£u´²H,SÎÑÄJš™ƒ¶¿†&> ñhìÚ¹Ž¶\ ‘µTçB=ŸÏk:‡¿á•ý#ow5‡¨ôyû.ÑÔkÐNV®¦™û©Î-Ó¼¡|Œ¦êhÿå]´w%•zOoçÚQN[WS½t༲˜ê\?™wéͶÑåTõ"öK!Z@ÏÛ/ƨœ{;ÏÒØEÚ/×e—Ãál.¤-+itž¶Ë¯ëY :wDêì½™ïÒÖ$ Üï#Å´«–ö$©œïx¥?×i»f©ÞP}F}Ñžbhg«èÌËtâÛ´+ Íw ´C­´?Ce´ý⮢ëþ%Ú4GÓÊ5Túp9ÚµE´&îϧ_ C³§‚J=˜Wç HÝ›W­ÏìÀêæ²:÷ÌÓJ¨ÚçµßÑGÂÐìPfcÜrêO½~¸Œ£'Kic!Õó‘$·ÀÛÑE»‹©Ü×¼}¥49mæÏiz=MEiÿT×ut]¤:7D÷%<7G¿‚fG G©ôáxÕ\\#ûSÞ6ùsÕ¼6;PL[/ÒƒÅTò>ךüûÒ"Ôó·mæ,UyD¦:DU=’•¼^o½¡ÇÖÒCsÊÕù¯º¿‚>?§´0pž¥×{ ©ËãsîËЃ%´=Jó$Š•a˜×/ Ské俤£td’wÑ¡:ð:MÎÓø´{=e•zh-•/§i8Kõú!ù¨÷ýÍK–†ç©Ü_¼²¯çm QÕ·ob ´ÿ2M¿A‡>¦#ïÒ±{ •|oû=¢®/:\@ŸÑozwˆæÌÌÓTŠö-ÐØ§´ÓÐhŒê9HõUÔÍ{wþ0 ƒ}Ú–êsÑÖ-Tæyã³Ê7h`®p3•Ï›Wžkœ6ûãÌ™™§ñ=1ç²ÎðJ]­ÓžQ®¤S Ê_Wþ3:ù¦rXùmåm40/â—èø'täCå:¼†Êç+ç4}A©ëX÷ÓÔ6å:šX¤úýßu–v\¦úÜ¡5L›wѦ"Z7KÑW樞×érq]Nnù<Ý›O_ž§ò\ë­ Óce0»-óp¼Í«©œÿ9ëíÝ…Ëû4r.î=PNOæÑÈ*ý­Þ¦|ªóÈÚ6ÐŽY[O¥®Ø+sc½ÒwçÕ}™RŸçn¦™¯PɇÊù,P^‡sq]O«ûÓÃÅTåçæŒ}ÏÂÀó¾Ï©  %Tsù\z{6Òì—ñÿRí‡èý‰þ"ªûå¹&çY¥U~¨¼F%79çv*92ÞáV:²•Ž®P¾IǪi&ªü¯tâ«tòo)ߤS)÷Òé"å 3{¡_¥UtöïÓÓQ:ýeúˆN&•5Ê_UæÓ‰Ít¼ˆŽì¦é÷nb¸Ÿ¦v)WÓþw•÷ÓäV·Ê2åc4vüsÜF{“Ê-´g„v.*ÕϽã¬rÕóKZiK%m ÓSµôX1=b¨<7zŸ-„æ»eôå ªçò¸ù;uÐ΢Së©^?Åî¦:·alIù)ÝMGÖP.2sc;GhËU)¥‡ 4ueT×¥é|œ½´ï!hd qóZ —iÛuÚÿ´g2túßS=·xüÞOÓ5Tçéù®oØ)¹±ÞÃ1¥\÷Çhöc•Sê &û±Ê©Îïô5“ù6(T~íÔ[´ï.*ó¯½n½êÞ'N©«ôF,m¼FuþMËíš}ÛçìÞH¥¾Ú+ï¯Îm×y•:¯äp˜ê:ƒT_/ž20°ÞÏ–Óå|¾Êy¦·ÁP9‡÷¶(õüRéO÷Æ×оOèÀt(BGZéh-´“F_œ£’§ìuõa/XútŒªz ›ýñ{Ms%m—õYgˆºù¬Îx’&÷Q9W»©ÿÚÖ+ôØzæçèt;ÕýŠSÿ”NLÑñjª÷ÕuþCí^A;ÊhëeZVœC;mBÎf.Ó‰?£™::^NeŸÊ;ü¨2[ÏâsU”=ó±ò:óûÊ/ÒÓ»èô}têoÓ‰jåß¡™ÿ}yÇwÒÑV:ò$~€½¯ŒÒt ¨¦©ÝÊ|*ýÉÞd­²šê9ö‰•+¨®¯ŒßCûH•ÊíJµ¯Ô¢Ýs´c‘ê©, ª~ŠÆä¿Ç¶Ðîyåœr+m/ QeËvÚ°HOÅh}˜ê]¯õ²ÒíÏ8¥ï-0ó–þ ŒVÌÑ“µÐž~‚ês¾bªûÔZ7@[{‰>[s÷¤~É«ÏuN^G!´É2šˆP™cïí ßX™ à Ôç® µç©Ô¹9Mv¹”SïÉ9†Ó&*èé#tê÷éä_(o¥é©î›pî“×IúÓ¬ïW“¯ó¹’¬²ïe亞ÛÿËÞgsrš¯Ò– ÚZGõ>a²H¹ö¯¦é{•;èP‘²Vù)uó­œ#ë©äæ|‹Ž§ãoÐÌo(/щ_Tþü¾òßÓéZå„rŽÊ|ïÌÏ*«è™ßPþ:û Êé«?‚œ½l‘ë‹Þ'‹„—·¢"û÷üÐÐa˜*ë+§ÍJ[ ´c=TïW7Wf”aÚPGõ~Hö—y¬÷½§òhd‘6n¥-רì[xõœl]”¨‚vâ¿Hû?RNÒÄë´w#íΧ]iÛÚ²Ž6UІyåe)§§ÒÔõó8æÓ°¥¯”A“Ý>Èù’¥R/æ=TB”Q™7ꕼLoÜò2M_‡¶ÛжZhŽ„hÃ**ù3N;óC:yŒöåSÝ×Ò’O³“œ:?qw4Ïz²œ6DióEÚ+s43ö9þ¾B¿@SÐø"Õ瞺ÞýKw…è:j~[ùd˜>¢ºèЭY«,£’gè•ë½WöU¼ÒÇä=¦”~vÉ[ö&ߤ È}?.÷¥ÑMt¨œ6VÑŒ²ˆV†©šO“Ë¡ ÑRCUŸ–ýº…Fêƒs.B;9FvQ݇}¸X)ï·ÝahäyØ›ýøå|ÚÒÚ *9 ^é‹ð¶—ÒžUTÕ—˜ØG4~öÆö=K ©ô“:íp1=\ ôùx[®ÐÁ =£:OÓV.Ò“5q'´2>g|}UÐŽ¿Mõ\¡EeMo¥º_Xç‘ùûdÕ÷K=ï°Ê.«ž7ïëzŸ"ZíèYÚ¿‚ön íkiãUÚPKW@Ýh Óm…ô{Êú Ôé¨õÚÐ…e ž£\ù7ÐáËÊ$ºŸS}Ž’¸—êúŸŽf­ ÍIeŒ6l õ³ôø¢²ê¾íCÅÔí¿»9ÊÎ=ÊçÂòuUAs ”ºD[jéÀ-ÐŽ~ÊçÀ{fƒòWèéR:õïèÄCJuŽ7´]YBiB¡:'²ç íNÒh˜Ž¿Fûä}—ûa|=²–ºý´RÛxŽF.(ÏÃÀÜéöê¼y=LÍíl¦2¯Ï;XDÇ®CûêÍü{Úwê¹Ë‡J¡Énkyíàyšº®ì ýïÐäTŸ+èóø¶|*ýèޣʽ–®A³·ˆUê\§¶í®¥ñ4MÖÐÐÆß§Ý%ÐȾ·½š¦Æ =óûÊŸ¦ã·-ïུH™¦Í›hm-}õ§éìÏЙ+UNÈÌ}7öôÏ.ïô|Eù¿QW¯â]IÇ^W6Ó¡w•CÊ#Ê{è±"ºÏÐl[×H]÷È"mŸ¥*ÆfþBùO©Îì»›&”±í]O£—•†¶ÔP××áŒ(l áBªæêTužŠì¿9sï’Q*}ÓÞÞ ôTˆêuà ¡9qéÆF7ÑžÐN_¢“ÿ¾@un›žK˜;r&Þ§½]´síÓös´­™6¥’?ë=^@«+hYšp ´}ïЖRªsOEh]=XNUN /á·Ãôé2º'Beî…Wçü/¥§ÎSÙ¿ðêùì<¹ZÚ‘GuŽVb+•úÝœ]´¿‘¦Òtp'‰Ð± œŽÌÑ4¡úý¬sÝ9€³v‰º¹ ¢9h¨Ô#9íè6š,§ºŽBí‡æxè|éCñê\åô*èžÃM¶Í*g¸Œ-¥ukéÉE*uT9Ë–Wç÷éúv©ûÊy‰¶l¡­Vy•Êú1ç:å"m¯¥=Qªò)Œœ×yãi`ý¿“&?¡#÷B;ý/¤ÃÓëJC“·Sù:½ºOE.t=žÔý{³Çå^]˜o:ò,>«|&©žW˜O¾š-áåu9%NÙ?ðÊÜS§=Y@ݼ+§›«(šƒs´~-•¹¦£ ´§D9«ü·tô:ô0Mí¤®ÏÜÙs‘î Ólù’×”†é¥î‡ýuù}ÑÀÜŒótMêRóJ>=¢úó ûŒÞ@?Qøûtæ]èçzMýø€Ž×Óá(M(ë”ëé@„~¾»”î¿*Uÿz`ýý8ÏQ}?Ðyr-IÚ´šÚ@Õ\h»ËBÿ>rººqçKùTç.éë¥î[l2´VîcuQhk—WÏíTuÊFöIœöô:ý¸[ùšùoTçc /ÒÁ 4µžöWÐÀœŽ+Ê{iì å ªï´q–êzÆcaºw‘þ Í3óô°¡‘Ú´ÚáÚåí»•&¶P5—4pÞ|r޶_¥ñ´T÷Ñé9•ºï¹Ì@ýþ6§*` ‡3ðó^Cu³ß?-¢Ï•Q×çÌ>v‡Ì÷Ëè•{K¨®Ó«³42BÛct`„¦ÓTöã½ã#жÕ@sb-m^¤2¯Ô˜CÕQ.osF©Îe›¨>'8º–ˆ,ïÎB¨ÿ1«”_ Ó’ÕŸW=ÇHÏS9RBõÜ2©ô6ƨž›ÞS^¢2×-çYÚ±RYL%gÈÛ}žö¤iBÙw„ÊÜïÀC´mþ&^§í›¡u¹ÑN•a²Ë¯‰Q=·§oúÆöQ•ãl¤^Ùi)uŸÌwškéÁë¡úõM~JÃt|´{BT嵛췕ÓíW:«*èÁ4=¥Òå Ìo«£2Ïi3÷ÑÑy:ÐCS5´;Õ÷Ãî:Z_J.Ñð4OZ*ÏaÞæiª?oJ›¤½%´§T¢•4ZLÝ|Agu„êçžç2иsE§Ê·?þ˜ž¹ƒNüG:¾Ÿí¢º¯Bêå¼é+TÏ+HUÓ¾5´×Ò®ËTöÏœæÑ0´“{©îª¦ñ;hKžr­˜cÐ\¤Z×s3õÏ9{Yõ×èÔ9µuE´ÉÒ–ÍÊZeü×ÐJ_“wâ˧}ß{éЈò ò>š~›,PýÒ+M.Q™×åM\T¤±÷•ªï¯»B¹…vfhûú›¸ŽÊyŸWrß¼GK Ùj©Ì1ñv”ÒÞ*ý¿^=÷=ùMQ¹.x¥Á;|žþmå,yŽúâJékwC;¸@›¯S©ÏôVåCSk¡ª¥™Y:¶ž?KÓOÑä½4¦½‹ÊÜ>oc=¶@õœ ™o›³·?îTç¢>'adIù©r—r:÷9–-ozAyYùM[ÞþªóyTçøêyñ•4vAy'í=§¬¥—•sTç¸wXÚ^²¼Ñˆ²âÆÊs¨·é¢RÞ÷§,­Y ê}h²—§œ®OÚyÌÜØŽuÔ͉ëMÓ¾l£I‡6¶YyíØ¤\K[J¨ÛqÖ,QÕd¤þÄIB;VHGî¡’g•SÕ«¥î_^=g»#BuŒœó{uŽÞÁ0•ùÛNó0Ýoi]•9fNûJ4ÑrªçC¦èÄЙ1h'?¡™_¤ãïÒ±'©Îw|ŸÊ7oê3ªÏóÍJYOÄ'©~ßvYÚy^)×±¶õ´y Õ9ÙMÎcrÿÐûóRâ•sÛ@>Úç—÷ûòë¾e¨Ôe9ÍóETêõ¼ú\¾q‘F/R™¯èí1Ðþn=ûûôÇKôµ“ôÕkÊ'èì§ÊÓʯÐ3ÕÊFgzèé?Sþs:}†N+¿B'SÊ>åS4sšŽü9†èX)m¦®Þfd­ò txˆ½Gõú1U†è@rM}Jûß§º&¹‘êóöD¯£±"å*ÚµH;ÎÑvCO-ÑšÕõ2Û´c‰Ê>»Ó¸ºgb ôÃõÝN»Ëé‘Zz0JÕú×f/ƒ^óâ" +VeÕutÿÿªÝHOo¥S÷ÑÉif?˜ŽTP»5XCÓ1šê¢ºž9¦}–öÎÒ®B˜‹½–êÜ\W×å<¬|Á@ók!úb=ºíÄ4³†Žœ£}šx–Ê|"¯^_dÛCr>WA]ß“s2O¾¯È÷»§„JÞŸ·é:•õ”7VNe_)§;'Ø"J®RÿxB™ ¤°±‡¨žSäêŽ\}ú¶0Ý=GŸ}ŽúÊNÝ\]gk=RHu‘œƒ;Mö±7ç¯(u߆ÎÇÜ£:/ïx„žš§z>³äyeÀÛº‰vn ’å-Ò¾4•þïà{—Ê9]ÎãÊ·éÄFe/Õóצú_ªMdhã:YOwš¿™k¨Ê 1'Ê¡M^¦ºLß§uݪ®¿oª¦ufy_¬ ò¾¿™f»RÏ –I¯Îí¸Fc­´ï8•œdoj;,¡#Òñ§èÄ:ùO Á@¿÷èF*ç^9—÷&’´g==Q@e‚Ó4o€6ó«4ñÎòº:¯#UTêÖ½:/Læ½{»’ÐNß{cÇwÓôc4q ?L;®Ñ—Š¨Ê½±ÙmF¯)/¤z±ÇÐcô@1´Õ9çuÚé?¢ýë©>AoÇí¾BÕ|L;ü1íßOÛWÐh†êûµÎÓÖ׃ªyú\šç••¡¬ÍKTÏɹçä!:œ¡o)-Õ9©'”[¨þ<êóy™käÕÏû9xÛiä=¡RßëÕ9#Ùãs ŽªçÌè<ªmšß Óg-}nŽVgn¬š{ÈaJ\¡©‹tøuh'ÛèØO¨^÷é¼Ìž-´e uõ´®¾¶$ ¹î:èÅÕùá2¯Ì«÷÷WP=ª®žZ\ÞÈYÚtŽö¬¡ò켇N½N§ÿ1´™&š¸J÷úÚfzæªóË'ÿ“ò#å/ÑÀí‡i`õCe‚ö-)óhO˜ú·Ò†³T÷¾¡Û ¡yVy(Måúâ ÔMIÿª÷H1ÔuÖ¦µ†JŸ´7û6Ê)yN;;DÏ%Ê9·Ê 1²þÒçÕöô¼ò+ôKahš®AÛ¢miKˆÊ\wïþ|ªû]¾ƒæÅ|z¼„¶TQÕ/èŸï?mæŸÐÁï ºÞBê½ò\ë4¿ü9&ïƒvìÚg•khlíÜL›•ÒÇéý¶æG1z¨‚º2—K6=BuÞQ&;·Ü¦¢T÷ãuOÓö<ªŸ;×R}]˾¼æn¥~_ÍÀ`NÀ&:ðm¿L%Â+õïÞïº9 ôÉ{Ãa*õ^©ÛtÚÓíË«ó¶$×ÒëÎ-6É×U_u¨ÜO%×ÑiÅTÎ+½ñ-TrÈojMôç"N©ßpÚÉ%šÉ(_ éb+¥ºÏ£«”v\¤Q¥^߬¢j_ÐdÇ4äÔÏ*hc!´Ùÿì ¬¿ª Õ}Îúbȉ/¢m›¨Ì[ñJ}¡7~ ÚWwÑÉv:b”ò~“9 ¶½Š¸DÏþ.=¦Ó¥tây:ºƒÞEûóiÃuh$WÌiOÿgš™¢é»éÀ»ô€…¼ì†5´1’µ9 õþÚ§ÃиyÒÇJ¨îÇ”ù·Þ¶Y•_'÷/owUù"&þ,í뢫hzåM|WÒÑÍÐ&ëi×=i©ä.{רÞ?«4Tçü­Ô­yÕuRï_æ±EæhÃ4mªUN+Õ¾BsÕõÿ2ÓÛ{‰Æ«•×i"ŸöP™'ᕾ ïð9:²ŽUQ•ƒb&2Tö£œ6öUù†¹ÜÖ%Ú¦òõö5S=_½M@=7ÖŒ^„vô1ªï“é<šøˆöÄ”54z•ž(]Þý1e„¾l¨Ôõ:ý¹ÏçÓC1ª¯_’'í•ùsÞÔ[tpže+Íðjh£¨Ì÷ž*¦õåôØœ2ª\Kž§‡•ae±2Ÿºþ>o4Ûcô›UúL½{Ã4p®TH%ÇÈ÷ÿ”&Þ£ªŸÔôW+§©ÎEZó¿T?—¼PùʯúRŒ+¤ W©ä\{»ÖRéóötÑØ‡Tž—½‰jÚ÷Õ×¥ie6-x?Þ%¾G}ŽÜ2÷hŠ¡‘y^Ù‡ð­¢í— >@'§èètð:.)/+-Õs6t‹žKz¤”’?ã4ß S™WïÝŸ¹±aC%ïÊÛ´…6Ÿ§Iš0Ðn¤ß´Tç̸}1ïQåï(ŽNÉù¨œ_äü: œ+è:ó":ñÍü¾²Œêzâ±O”‹ÊGèð6:XEÓ:pŽö—-o üCš˜T>DußYoŒÊœ¯î¿ïº¦<¯ÜE;ê–Wú½z.Gcmˆ(·SÉçóÖ•Óƒ*ûì^©+pš¯…è>K%G«sÃdÞˆ·c#´‡è¶45vYmM)4r>å´™;iºšêùâzN[G5mÛLÃ!hüÚ¬v:Ž>yc*¨Ô»zVГ1Z=G`ÿFšØãÐfÎÒ±}tô5:ÒC‡­òIš¾F¶Ñäû4qí¢]+hK5­_¤nßÕy°ö«NDhk>í^Gã%Ð,ÑøƒôÄ 5ËèICÛ6þÍ”$oìÜÿRmì>*sC¬ž#â¬Òö]4¾‡¦n¡ÒWè´‘ëÊ ÐÔäÑvC¥ÏÇ+óG½Ýa*óJ½±bOÑÄSTò¼ÉfªëßÓ›èðZhã–ÆvÓ¶´¾ žGÏÒÆ4íŽ@›¼JÞ¿·µ„6—SŸ[*ê¼Q•“k_ÌÜDCwÇhö2”SÍ¥°¿LÍ×,ÕsÏõÜÀºyzjŽêó鯕Ê$Õõ z¾uçJÚ½žÆš©~^’95ÞÄ=´o+M6RYŸy%·Ê;°¦¡Ctx'ÛA3!e”Nþ<ª„¶õm(£ºoo·ÍúMõf5†êzùÖ•Túþ¼±ißEšJÒÁj:ò]C¥Ë;q |žNÍÓÓәߥgþ´}_X^ïÑ£ºÿZßÇkÏÓCeÕs.^^¤Ò¿åÍ>6ÜTóKʽŸã‘ m\¡,¥ú¼¢»ŒÆÞ¢É2:ð$|›Ždèx3´ãµt¬\y]¢º¿?}'Mî¡ò}x{3ÊØçXB{.+Ëh÷YÚ¶’ß@uèçù›áÿ¡ž7f\>›ó¸…6yÆï¤±yÚ¹†vÌSYO9¹pz‡Þ‡V}:6þ¥ìoª<9Û,ßOóYÚxê×Y×Ñ1}5‹´1DÕs§‰¥Éó´ÿÍìß7VAG,® ©+4™¦}Òø<í¡=…Ô½þÎèvÚR§¬¡ ›hýyzL>çYrº>VçÁ ݦ/–Psñ´r«Ò„éƒ!úKÔ<¦z¿?Z^7שû[ë-=UJ#1Ú¼‘¶•S©çòv*9&ÞÀz+ŸÊ\doº•=FGï…¶ÅÐH-•}}ïÞyÚ­lª¢Ïh²Û 9_.¡Ç«hÓJªç…$ߥj~¶‘|C§í­¤u i¾@{WÐþ}tlÚ™—”¿LO_RV+×Ðég•·Ó©1åtò:øˆöïZÞø;Tçoul òºå,¥òÜãu󺋲îCó\­C;²¾ISѾ³T¯?tNP‹ò”¥‡ ¨œó:y>Xl.¡«©äÀ{h_ö¾cú3ÐŽ|FSkhw†¶®¢µ ôÅB*uaN“¢û"Tr’¼Çh4Ú©_¤ƒhbŽöÛkiû5¦‡ªhe˜n§îÜÔŸŸ&>‚þ”¡’#ímÝB›G”h]šž(¡5Ôå:·S³·ºy,NwP«l,£j}e»VQÉ•ð>—OŸÓ⬦Ôfÿ]ç)Mþ8£ìVþ3:þ™¡2÷ÄÛ¦¼Ÿêù’Qªúú½GÓTïóëýÕìå4§¼>^WáÔ}µzª½˜v^\Ö@=Oç%*ç*Þžµ4þ6M¾IfèðkÐÎl£“‡fZi¢ž†ó¡9•¶¯€º¹éN9sòô<†Š|hÛhM9•z\g FÏá=­ä4xsA×Rwqx‰ SÕ·ivŠ†ê¾°Ø£ÔíƒK>º‘œ1g`îäh>Mí£Ç‹¡‘} ¯žg¡•:ïPv?Õvn¤Ùí4¯ù¶•¿G)¹Ù^¹^8íÄ*:”‚nn¥ì¢­«ió:ºÕ@Ó2—ý÷é7hê*9”N)§Ñ|h_}’Îþ}:ó =ýwèÔÓ‰ÿ‡fŽÑÑ[éðTžwJŸ”7-Ÿô£t –&/*Õy‡Î_ÓûS®¿-Mu?†ä4y]?¿óT-mݰ¬vâÍT>EG?£C—hòqÈëÚL¥ÎÆÛ~‘êuuóe*s¨¼U%ô…yèwùÎç©îG–¿:–G%‡Ùôñm:4M]®õÙÿJ§wÐÁMßCu ååv¯¥]a*ó…½-JÉ1òžœ§Òÿî•ü0o…¡*Ï50¿G͵cוEtt„_¡CoÒÁ³4ûvÊ©?Ç멞3~"¦ŒR=oÌϋá Trf¼n®³)J» ¨ªµgþ5Ù¥\E§þBVþ]:YC'ŽÓÌÓ±V:r–-ï«§yW™Gî¦ýsÊrªç&ëëÎuÒû‡u1*ׯ®ÏÖýe'ª }õéÌŸ* èô5e)z˜Nþ:¸¬¬Wþc*ùt9JÕï—ù{TçiÊ|4ï@!MÞM»/Q]‡X7Kuª{ÌáÐõõ[ÃмO¥OÑiOÿ4,£÷Ññ»éØf:zœŽl¤C tðªs‹coR½Ÿélê¢ú\é_ßìr:çKó4¹æ†ÚÁiz'Õ÷³—#ÐH°w(FÕù¯Ó¡ MvQ}¾¥êþ¨ÿ’y1N;ù4ÕëÒ¾õTç¢ön Ñ³´m•óïBªŸ·4O%ßÝi'†¦ h÷fªçµéuèú-WêþÕߨw;vªOù]ªûA‡gij•>§,Q=w(û¸ä5R§è_†6]D¤© šÜGûŠiì²2vQ=/§m„êúk™êm¨ ’ãã=¾DG¨äRx÷Z*õxÞÇ- ô5¼”¡ÇªhCím÷T!ÕóTe=ä=6Ou½ÜÑ=¢º~Kïs½¢{3TåÇÚï…©ì÷{7…¡ÉnäÔu•’ä=^¡ S=÷þTmÊ£úó ætÙ–sTêw½«CÐH_¯ÓÖÆ¨î«¬£=:p…¦åú?üUs8ŒäãzÃET燫ÜaÓZíÌ:}•êsá‰=4SKÇï¡#÷ÓÁ'©ÎûNÜJcõ´³€6gè)CUÞ–ù’2»m‘ÓÍ/v Q•Ûk\ÿ½3°ß3MwÐÌWèT¶¡ÒLS™ë´¿ûék«èôÿA'ŸÑ¡**s¦¼¥4™GãÒ® ´S©sˆ hÝ=¦ÏÍÓah”A{z7¿uyǾ@‡?T¾§l¤C›”Tò}½9’oÒþÛ¨®×ëÛEcs´ç íZ©Ì£aÚ²@›óic mXMO­¥uÅTÏW9\B”Òê ÔÉ…è¾0=:GóiÛvÚ½’Æ¿°¬6½‘Ö_‚¦-B%çÔ«÷Au¨¬¼µªÎuŒ<×yåséí½Lc·Ò¤rð:t´S·ÒÁOig 45k¡[¢úýírãœÇh¶Æ˜kÞË/§]T硌=A3‡èäßWþ¢2©\‚öÅÕõ‰åfÚSµ¼ÑÈçXHu¾–Ôé;ûô‰Ûhºƒn1´ºŒ¨‚œzÕß8ÇÍþXrêœÈ±(´ïÐuT÷íºylÎö9e •~¢œ!ªênÌï„iÙ<•ý[ïËóTúö¼‡3´ã*´±GhË•yG^©¯õŠÒŠBZ"ß×QùüŽï§zÎKï*Ú^A›WÐðyªÞ6» ÈYAÍÞ9zbm­¤Ý[iŸ…v Ÿ¶¯¦G ¨ô {un¸®·u¹Îïúýyúœ¡{cT÷-°T®³^é³ñÊ:À+çG^©×ðvE©ä{Ú¦Ùí¡ÿþúÎ+U}¨žWÖ£zž@d–ªù Vò¼½5Qh¾£ºžPç'IŸ€·³šÆj¡ÞH›C´f•Ÿ¿Ód—S9õùhãÚt…v£ñí4]F“tt+´©[_AcAsb‘ÊÜ?NØ%ß_ÿ³Jùÿ©Oåë’õôðzšØNŸ·Êì÷c¿¢#Å4u÷Pýþ‹¬¤ª^É|%L%‡ÂȹŽ7e=ŸKê¼vlÕçÇÕ4±‚Æ7R]/rr-}!BwÈq­š£2—ÇKÓ¾|hÏœ¤n~˜ëuÊœK;ñËJÕçÐê¼êx’ê\æ²å­S×Wæ|%CË ¡ù¦¡î¿;³o÷ÿþ~(£2ŸÏ{&>¥Ò‡ä´ƒ5´¾€ÏPÙ¯òê¼!™ãåÑ–íTç5úÊÞ¥ñ7¨ä{Õ9z`>Yûv*s)¦A‡·Ò"ÚNYEõ\—äë4ñÉçØEc·.o×EÚvA£zδÞW×ýNzžšî{¡»ÃJC+2tgæ¨ÿ¨ŒVÑ—+¨ô›xe“·ùêò¶l¥=ùÊUT÷%kS tì üÚá{éлÊJ:p\¹ö'i²U¹ky=Tï“Ä46M%?ßÛ~êë›ÌŸõ/§ºÎñh =<§Œ.ï¡%å%ª×/”ÐÊ ªú—L¶½?ç‘"Úy–&wÓhO¯¢Ó¡Õ¾…6]¦*×>Ж=Fðêz/¤±Ú9KuŸ>—lYIåüÐ)¤'ò©«{tJÝ–÷É04J9—ñžªRFhó"m¿B;ºhWí.¥²þðöIŸ‘ÔÙä”çÁ#t¤Z—ïîoa 7úX™¥M¡m\ r>î=aim-=TD« ©^·o±Ð<¦•J™ƒPúƒ¼ºúD!•y³Þ¾UJÕoŸŒÐ̾ÚÉ tøNšÜF»+hC =Z çÿ Ôž~ê¹ÁR'äM>H«è±ªæÎÚìÛÇk$wÎÕAæœÏ*y'>÷Dú¯s¾I›·+Ëè-Ô}YöùEhZ7B{æ~:ñ3Ê/ÐÌuåÇt¤€†húšÓÞb*ûü^½ÿÞØEåësÂ¥Ð< _×Ô~šÙ¢Ü@ǯ(Õz¢¿„Êç'g=?B£Qú²¥/ÎSé«vÉÉñªü7s²ˆ6o¡-ë©ì?{{¯A[…Áë”|]Rßíuslœ‘+´õ2ÃÀœ6©—pê¼HÓ0·¬v uyu½i¬„ê:Ý~l–fßn9_\¤²OãÝUF¥.Éi Swîçܦz>½ä/yÝu÷¨ÍZɪÎ!M}˜F2´©’6_¤Ñ4•úIoü)eöûœé¹»ƒ«èÐCÊw¡}~šš•õ·wM”ÓT%}ƒN$éÔ/ÐéNh“•4ÑAãie9½Mu½jW-mŒÐc—¨ìz³oó›j* ¡üY:øxöÝCc›èá*hÜúÊY¡ê:eÕ*ó©îÃþœÜ[™¡rîáUyök–‡©^oè<Å KŸ+¤n}âçÎì¸Þ9OÒø´Rž7‡¢Ð1Ð4ÖQU¯nOÔÒšóT~>Nãê3]½æäQªûbEÊ5TçðèõÊŽ•ùáN{$Mõ>ÉÎ2hNm 2çÔÛ¢]¤Ñ ÍÞ¦rvÐéu0Ó,×iýº,¤’_ãÕu êó¥ÿ ääè9%U‹ô€RæÇye^™W×5è÷¯Ì}vÚø4Ú‰Ah¥¾Ói¾;OåüÅ«çD6Ñèíʧ’7æMÜOûo§²¯è¸L‹éÐ;ttŒŽ‡hæOåõX©Ü¬œ¡“ÛéÔßS¾MOÿIÑÙ; ÜIUž¦éÜíÌ:šÚCû¯Ðø-´ÃPéŸõºüUg›¡­W©Î…Éþ2o`>lÃvÚv‰vÐÞYš¸“öÏS™ á½Êºé¦î Q©÷-¢ÇÓTçäÆJi²™öWÓÑiæ~e;è§2Ð;s?}õ5h'žŽßFÇJhÿ%êÞ—î}Z¦:Æåõ:›  ÚIÖÐä}4¾…ö$iw—2L[’´a+­/¥:W©f–ÈP½Ï¢ûŠË-Õë…ï+õüôº Ú´@;òi¯¥‰©ÌÈy™¦VÒô5*ù'Þ±·iæh3ªçúŒÞMu}c{!m6ÍBÛ·š—o¨=]C'ÐÑOéð*uy9ëhÿÇ4y•ù%9ïPÞ®ü‚rÅò&æ•]Êze­òžå¬|K¹‚ÆF”µÊ=Ÿ£ù?§~¼·|y{,í¾þ9nX^©/ðÊÜɛھ–FË—·å‚òœ2D#]Ê:z¸byu]Gõ"•|Ÿó“½æ|qŽ­  Ó´­˜v¯¦ñRšX íkï+kè«ÝôÌgÊ¿K§þ£ò%å¯+‹èä{tâa:þe%íLi¨Þ¯LžS¾AûWJݰ®ƒï»M™G}Qɳ÷J]Žm’}<=§CæDzD”òþÅP]_þLÝþò^ÉþS[Jgÿ>#¹à¦Á*åº?ôMßN{®ÒöÔÝ·œu…Tç?mAóÃBz°€žœ¥2çË4wÑÎbeÕsÀ?G;t†—¨ÊïÐuaúüǸ¾+§äoyÝþºSò¼ºÞ_硾D]~ž³>J‹h4D;æh÷ÏÓä›t Z9/ñV”eÿÿnKk7PÉ“uÚcT÷µÚ;hÏY*9ÅÞãUË+ug9‹²Ê¹zεTæ&yeN™WÏyÞRõ~ ä&ʯ3ë–Õž>G'Çh¦ŸºùóÎÁiú5:PG;w-¯êk×çL9oºžò„…¶{-4î|Õ)ÏIÞƒ¥0P¬ç)vl¢íšÍ!*u=ÞÚ0mÜD£ÍÐöíPÞBu®C|3íØ®,£-1*9z^=íøyzx–ʹ†7û×xÍãaúdˆîΧ:7`O>}©‚Vg¨zž X[FóŸó–·aƒrNy•êëlÇüçxÊH'òh"ŸÆ_Sº}¥NS]×^—O³/—׸u¦³=µDuýuë%h'KèH=lUÖQ_¬s®ïÓÞ‹T#ëúo»oÉûóê:îW?¡Ó+èä*ÿ`y'~ŠfÖR½¾JÓTãò&J©Ô?x;ši´‹J÷å4_CÛf>uë’¶9*çêÞdš}BÇëhæ´?ž£¯þù:•¢ã÷ÑÀ뮞£ú4^L/Ò#yôÛah$WÕi³Û^#s¢vt†ž4дYhOÿc:e•÷S=|ò7hæ¨îk{ŠŽvP7GÖ9´–êçrmòå›Tê5½ÝvyuyÛ,=VHu`¶]ƨ’¯^'·VÐnCc¯+߃v4L‡Ò45Mûäûrç54"ÖÊ÷ùÌ5¿"þšRÏßusü²O™¸­Ìsðž,¥ªÑìP=׫c%N@;þ] GÎCÓ¡±Ÿ@›ùG4¹†Æ3ô`- Ì’¹T^ɽɹÚô§4öÝWÍá2o…vh–ö¬„Föý­«¨îî*¦=²n•¯ÏÄÎÁÀ¾ßô7éÔŸ+‘N~H'¾­üÕ}v#i*õ£9g”{èÀUÚ¿ŠÎ÷Ñø»¢LÒÞ•´káÆvÌ*WÒ¶ ´i•2êý´JKåúà ô7¯¡U4‚6¦l¿@õù•Î ­[ /Z*ç¾_फ़—R™O_Óš)¥ olk í*Qn¡ñ<Ú÷!ØJ‡/B;›O'Žf¨Î‘NÓÁÛhÿÃ4Q@{Šitm4TöSzŸÝNNÓ¡ ´å:4r.ï Ì l_Ae?ÈÈË•> ¯ÔþuµRwîu); ž+f3¿BGŸ¢ý•Tçrè|µãsдn¦ªîÐÖC#ç©NûƒyØ8RFëóÿfFVÑ–K´#I{GnllŸò:M´Ò¾ Ê(Mm€öµ|zæªòèô/Ð̯Òñ:6­¬¢#×hú í¿“väѦ2^¤§Gèô×éä_*¿E'v)ÿõõÁÎ<ªŸ·Çtä"ÞLçijˆêξ'¨äÍz¥_ΫëÌ;ÎÑ6eóÍnä<¹@ëÖÒƒa*çNÞ*Kuß÷o‡ )1T×kî[¤’_è´¯ž¦§«èdÕyZN¯‘zƒÊ|'oò˧2'É«s…ZÖЦÍTÿtî˜Ê7Òà­¯‚6™¤Ñ5Ð:§¬¦#3Tï» ÐÁmT×%öÓž.Úu–Êܯ~Òu1’e¥Î%pžÚ¢².uÖ2w#g ÚÉšºLõ<·þ#T×Uõ]T>L3Tσꜧ­Tæ:-¢5µTòáœzܰ²®€ê¹|ÙÛþ__eëM²œÜJÓwÓÁ;éP+•>~ïèƒt,J¥>æ¦êõý®}&FeÿÂû|íUJÞ¢7†vânÚZGO¨† ýñítê:´ÆÆ”†ö^Wªsîž+7¶;vÔÐöu´)L%·Ú»ÏPWçëê~_X„vô3:QÞN‡î¡.ïÐy²š†é±ršøí¿ ÚÙ¯Òñ×騴ë<=!Ï„é¦Õy‰}÷ÑØyÚµ™¶”Òú9ê¾§ÌŸ÷ÖfèK÷ÇhuXYB«æé Êç ýð 5e!*û^^½¿$}{^=¯²q#®¤²¯è•œkob%MÞFûÓôvªæ¹Ú‰Í–]æÔy…M†ž(¥G˨\ï¼»#Tòö¼¥šçóéá ´q–êy€=E4q7Õ9¢2÷שûÚt=•yK¹SùÏéé×ét=ú;t¢‰Ô+ÕþÌÀnšú@ù,íÿ&?¦‰÷”1廋êëy[Õë¹£‘«çÖf·•rso_*vêN:ñ÷iæ#:¾K¹“ŽÌ)wÐ!y=ÃÊ2:}_ÚþO•Iš˜¦=›iÇe¥œÛ4¬¡Uaªó‡ý¾}•uŽ÷[a˜GÿBö÷™=!åbÖÃ%TçýJÿ›·a‰6ÕŠÓЗÐäGÐÈÜ1o${ œßí© Ùå†×È÷4MuTæ˜z'CÝfåyÊid޼7\LõùØ¡ó´ÉÒ–"¥¥zŽwßÔõ·9Óa:tŽN| ­Ì‰ôž¼D÷–ÐçbÐ|ËЦBªó;R³t¢ÚÓ=t*C'¢™ÿS£ã_ cS;7ô”r MOÒÔq˜W¬ ̧|W|‡º¹N]åŒn¦®¿¯y–Êù‚Wž¼nŽ—óGóÿCãæÄ;¿mèÎÕù'G”ò¾òÊy¡Wæ˜1¶Ú‰šù¿•û•Ðñ¨~>ܸ¼é:pŽ¦î¢ºÏQ׉ô­V® >äÍ4¢½KTç…u¤•u4ºA¹ž¶”Qwäl¸Lu®àÑBz €Jލ÷»êÌe”WÍ7—©®ÍÆçì,§=†Æ†¨¬Ë½É:*s¥¼é¿‘¶kõòæe§Õº) Í e4¥K M¥Ù×%¬=yžºút§šó­û ‚s|7ÒX‚ʾŸ×åÀ;O,QÕçdkæh`‰YÞW”Ù·SÎï…¡ÙŸ¡z10.Fe>ç=\DG©žr2Me]ïÕy)Rw›ó:VÃÀuôPÝSBåýéUsíu½ý^!4ŠiMÅò6S¿Ot‰ö•Ð{ y‡Ž_Un¢cut8E‡ž ÐøÜ縛ú©n§Ý«hô" ̃+£zÞ»ä'y%ÍûBÝVMU>•RÞE'_ ªÜE3ÿ™Ž\WNÓ¡*šZucUÊu4–¡Ñ³´õ<\\Þú4=iéѪs^t?à‹ÊÚEÚ|ÚÓ‹f¾NÓÓ´ïÛE»gi»R÷;ºûø |N¼{#ôpL™¡R?æm9Ku_§œË{E0ЧÈsý?HûÞ¢‰;hì^Ú¾•ª98õËj*÷{ïós7Ôd½r~ßÒ]ʽ†êœL9ñÊ|)oÃ.ªæmÚäÝT×ÑJþªW壛®Bšx€öß o1MžòAeí,•y€9›ië•sc¯¬njßu*óCrF©žû(ÏÞÁr:úø{tòM:]Jgî gê¡Déðªsa“·ÐÄVzd šg =†ú'ý¹© C#}„N;ÝMuÎÈøˆÒS_T&éè;Ê{¨Ô©ç¼O¹Žº9pÎÁëÊ:šž¥Vù ô³ÕÑþ.šÜª¼J¿7^·¼]•ËÛ¶š6'©«GsªýS»£÷\îüMe©¡²oâUë5#u]Þ¶0Å |›Î¼NvQ•Oâæ ÛŒ¬kôœ‘B:ü.ºJõד¾¨,¤Išš¡z¾·ž‡®ó¤¾Ø˜g0§\­¼“ê|•žË4³_FU}¯m\Aë‹è±9zh‘VWP9wÊ‚fo!•¿ÇÛ¼•v®‡6*?×h-ÝýþÌ“Uê LìMhOŸŽþ„¾Eó6Ðî«7Vçϵ¬£s‘ÔósÜš×Ó¶(íÞL{f¡M?DSÉÛÿ–ò å¶ÏqMÞ¾¼}›”F©®¿‰Yªó>Iõ~EO˜vDhs3­)„æÙ0•œx¯ž?­ûÝ"Êh>´ÿ޾I¥ÿÁÛ¿UY ý9¹h§·ÒLM>Ke~¥ëûòý_ºýPÚøíT÷·ê“Î:ªŸ_[”Óô”¥Ç´¦˜ÊQïÓ†þFšïúrþçXBuÞy¸L¹He±²D9ídù˜övÑÚb˜KÛÚÉ?Sª}—1Q†èPM]T¦©~Ÿº<.glí.£:· ­†ÊþŸWŸ‡î S™ïí]£,¤<óp-Õûõ‘Úºžv.Q©G÷ö Ñ2È“˜0t|#Õ¹_ÃKTωO¥¨®{ë{}y{/ÓžBÚeiçÚniôÜ•|-oc†ž,¡ÇJ©ì7xåüÅ[¡Ü†&{yÌ©¯³2GÂ+}ûÞ# ôXŒêûSS ÕyEzÝѾ…öÆ`àïp>=T@³Çð^#9¡&Õ¬”ºüÁ:¶ŽJ]WÎ{é´Ô¹œÞEÏü¨ïSõwãÇ©^WK}²ÓÄʡѮyZk•aº¿wâ Ó¶-ÊíTr…½Í4½ڙߥ“ÿ”Ž_ ƒ™Ï±™êy/Éhü~“ó½žï]O{*hW˜v,ÑöEÚTDë3ôPUsí6 Íîm-„v±W¯ÿN¥iS†¶_¦½µÐŽ×S½—ؤ|˜Æk¨Ë=Wûòvò tìIÙHëKè‰=VL]¡Sÿr(ô~W]šÊ¼S¯Ê{²£çèÈ,Õs†vÓÁå :¥úõ¾Ml î>ëÔýšíik†êyÎúÜKϳ +÷†¨ª¿²²éÔ¹Næ‡1È5ÐŽï¦#ûé`’¶ÊÏ­å"4Òæ´§OÒÌ^Ú\B¥Ù«Ÿ/‹š¦5tp˜}Þ0#“Êìþ£™üiùºNÑÌ6Ú¦ÏZÚVN¥þØ«sƒäœÂ«û¶—Ѳ0 … ùž¡.Z÷í ÓC—èÑz„~^h. ‹JÙ?Ô9økhä²ò•ùô9Ëé‰eU9¥öhˆYPVЃ—”åôå"ªç^r«2t[Xiè·CôÉåÕÿú uú‹ôp-ÕÏQ2WÍ[SZªçZ¤ +•«iÓYªç‘¬¥­!e”¶­PQÙ§óv¯§=ç¨ÌÝÈ9MeŽkÎMæÓÔÇTúï¼C›¡¯ CÇiº‚ö×Ñî*û¹z¾pà<.»=•ÓÕ‘xç³6m§r?÷vËïßm|+í^Au}vÃ,„èÑbªû׊B00çÏÍ™rž§‘9êæ£8uþ½ô7{ã·(WÐÄNÚwíO+/ÐÔ“JÙg04=CeŸË+ýé9?¤£y4óÓt¢ŠN.RÙ¿÷ÎÈ\¾™8´%ÐT—Ñ–Uòz§R/ê>y¸Òn²c¼vâ~š¸Nußyìm\G]ÿ ó×'ìÔy{™ÃÀy×ÑRèwÔ}±GÊéáåœ2Ê:Ç«rQíþ2ª×ß*ßÝVÆhE˜–\ŸR=¿x_>=XH¥0à©m^E[WP;Þy–J¥7™§ÜGS[¡®RNÇÕí´ÎÑžjhÇo§#GhúMEi¬†vLÓöõTÏ7–|¯Ì=õ24ûqÊõ×~%LõuÜ}œR¯í­ Ñî$훡É0Uç[ù: +¨Ô¹9÷¡yTç¸ë¡³ï1šºB‡o£coÐÌ:exÚ˜¼/ÚÖІMÐ<¦;ctWHi©^o¨9dVr¯Æåº|ÃÓÏЩ%:ù=:q'ÝM‡Þ¤4ii|A)û$=•²?"}¤ÞÖµTæ‰äܲ¼Ò/ï•çV§É>Žÿ¿,ÌúBŒžHÓH!m¯¦±i_>´S§éäÛTú¼E´Ì@S“¡Çè)s”ºVBSSíÄ×èÈ4±™µËj~=DSùÐN줺O2ûöÈ)ûí9K¨Î«t¹þN+¨”¦ÂÐNþ€ºû’³þ<4Rî=¶vF¡/R=—¥mœ…æx}"íÌJ:¡ã“ÊÇèh²RYAu=ÁÐMÜKu_O F¨äK{%Ÿ×+¹­Î@›œÿ8uN¤é:íä¥çhæ»t,FGÓ¡ótàŠò,í_I“Wh_’&n¡>±IÚ›¤2/Á­¡úœ]ç,k«ç>Ç2š½ÞÜ/) fò…ð=’¡º®¯-Ÿv]¦ñm´/Bû¯ÐÁ­Ðî‹QÝù¤æ K]ÿ…S÷™JΛ÷T1mª¦î<¹½ˆêœvmâSÚ‘®¦£†f.ÑɯB¿^p/Qªßj~²­‰QÙïqšöyªêùMì*sqrJŒ¾NEf©Þ·Õû¬jÝoï¡_\¤FÞG^©7ðJ§WõñšÎíÞHc;i|?M6R©+Ïù!MïWþ„BÇjéøTæ'圥“B§7ÒÓÿ Ú¦ëôqû9† ‘õˆW÷gª<ç@ÞŠË…wÆ^£}=4õ¾•J_£wì”Ü ™kêmž¦§*è+EÐ4ÔB+õH^=‡T÷A¼J[­R­ƒ[+•¥ÊÕÊ´%©lVn¤zn’¬¼Òî4/g y”N¿D'æi¦šêþ­þõT÷;éy‡n}\WLu]d8C³íÞÀ¾£>k) ­ÅÊs´m=´›¶È÷ã^ß‹èk_£¯.)…Î^Q¤gfèÌTîPªë}í têO•¢üü·t⯔o*Õóu¦ŽŽÝOG¯R}ýHÑþûhâAåk¤=—–WÏ×j¹@ý9½³–ÎÑÖÓ“*çÀ^/s¯·2DûÒ7ñGetWŒîTJ½¬wMš=…Ë{ Bõ\ïƒazx-•ŸŸ÷¤YÞˆ²í"íYAãóTæÁzŽSÉËòŽ>B3÷@Ý×cäúé´³ŸÒÉM43G‡/Ðä§´ùÜòŽåÑÑûéàg4ö.í•ý"©³R/íÕu×zž±ë u(T®¥:Nç±D³¶®¡ 4v'´2ïÄ»[¾î å¯Ó™Ÿ¦Ó/Ò©•tâ(C4óçÊ)儲õs|‚êûÌØÚ徃ÒÁkÊ<:p í;Gež¦7v‘våÑ–.zÊÒºEªòtlu!}¦ šïR] ýN›ºF›š¡y%Ÿ&Trè½Ðö—ОRèŽ=m8uþ¥9`¨ô':?¯SET× K^ž3;.¿ÏÛbi«Q^¡#4¶…–B;XOÛwѶfÚº@¿‚ù^Û•’sèﯷ4rê¼îKu}£Î‹?9fz}¤æ2˜eôP„ÖÚ¦’SãÕy·±Û¨ªK0ýtà:ºD‡›¡§#ç—WÏ×Ry‹nÿ׎~Hõ~¥›÷ãLn¡ñwh ó’2Ÿö\¤]×iGm›¥Í—iãÕûçÇ-=”Gåy,à“ax~« Óˆ¥2÷ÂHÞ›Wæf8íà*ªs’^44‚戡*ÆLnƒvæM:ž¦ñGé¡ýºæÙyªó/¥_Dçåµçg=VKU°©¡Ãå4ñ&í¨¥ÑRZ§Ts ŒäûxWA;ºžŽ\¡ÃIêsñ7ÐlûÎä»Êí4vUù(mOÒ¦.zÀ(×BS¹H¿jiYŒî7ÐÎvÑÓL§æ¨Ôoçl¢™?VžPþ:¶…Ž>L‡–¨ôŸyûÏÒø=´s„ºçg}9•üd§ùrˆ¾TAõ~UßfûHy7íª¦×h›¥9…ô€¥U…´ëQFhG5Õûþ-!ªóŸ·S™§ãÝ=sQ’û¡£¾ß5õ‰G逼ŸOÿèä7騇tøÒò¦v,oò•ë¸WçPë|ÇúKÊ =YAu~Z wižË£:õ@Œêú ½ßøh—ãè|>L_(Ézp-=9O›ÃT챋ÐNý{šy€ÞCSe4ppM\¤’ëÝCuÝ¥ÎÁk ÓH=Q@k–h™…楜³y#1hœ¤¯ý*}õ }ƒžù"饧ßV~›NŸ¢S­tòk40çìÇÊÕseFî¢ÃJ=GWçˆæ(ßMõsb|'ÑŽ³´¥Šžª¥5tw!4ϪóÚ ÓÚ4•ºroâ3š}söWSÕj†ÒÑ0ÍY@'^ ™B:þ)Õ¹@>‡ŸÐ¾iL)sx½]5´uÕ¹Ô5 0‡uX+×ËäëTÍ¥1²ÏâÕuÏ ‹4ZBÓ ïQªýÕ¦YªçöH£·ZÙ£2ïÊi_û>|‹f ¨Îuɾl9õ~®>GÑ}†£›èˆ¼îñϨ›#îÔý|*ßÁÈóžÓJn³×åîº9;ÙeZȸyŸ’kêï£Ýç¨Þ×Õõ[¥TöK½µóôàÝ]tCÍ‘b]Iã«¡ÚEÇ6Ñá:ÔL7Ñt±Òзir7í{–ÆÐX”ºzCg4JußgsF¹†ê¹¯ú¹@>×9#ô@ }.Yuž¦qu¾Þ0UùéFž_¼­Ó´«ˆÆÎѾ 4õ,´ÉOhDÞß2Éì[Ìz`ƒx‰¶Ô@ûZš¾ÚMÏÜGgòè韣S›éä½4ó,í{—-‚fGìÆA—‡êÕu`‡iC²ëofÇzªó˜“ÓTpÏ‘èðÐÊü_ow1Õ¹rqšä¦eµÓW©ž¿1ù Êÿ꼃‰ßUÖQÉkôŽÕÓ‘:üò:t]ù|byÓUÊèÀ#4u/ÕëjéOñö½Iu4¾Y©ê¢ã+iìaÚ{Žv_Pn¤]1e—²Œv”+‹”«i»¥ºO¤-¢\O[g•eTò“s®¤Í—hS’êÜÝ÷¤ëÄ%¿&g„Jþ¤÷»ó0Pÿø|•çu¯Êq4§ i›R÷g÷n¥‰hÚø´7Cõy¢^ï6RésñêuÓ‘9z œJî™÷å úR 4ÙËDÎÎÓÊ }iž S]7'ï‹›ÚPFå}èm«¢54VLeŽªW÷Ó«:#sk¼ý+ß rn“³B9Bê”]4}r²F9G%?Ñ+ó ½2‡Õ›ùåQ™GåzœêyÜÝ[hošÊuÚÛwœŽNS35^N'¾J'Ï/ïÌ!h»iëYªÏ囹äý8Mx=¨”~}¯œ»y]=‹³³ŒÆši_5Õõ÷ÑÁsОyŽNý :ñËt¤˜ªš@ÎäÉ_B'¢´¿’¶Ó–5Tçr7ÕP=WFöosÖBsÔÒÞ+0°?þuƒ¯÷—©Îëй²éµ4± ÜCõúEß_ôóÞÁ<êr#œåóô;¡¬9“!ú+Ô¼PDuam¡²”ž Ñ–4m¿Fc@ûÚÏÒ̤òËt4J‡®*×Ñ­´J®ƒ·o5_¦±2Ú}…J¿DÀ¶ ´q5 äòÏÑ£Uô¦9!‹T7ÚºA~ß=Ô|ßг¿?Їu²ÚÉ£ìRÞEu¥vàÚÿ •:xo¢kyÝõÁÙQLu]èþ ÝSA³1Ë^ßÿíÔó¹¾ÅTç¹K½«WO™ÄíJÉu²IÝNë —÷±“¦ºhß-4ö•þ}od+=1GU^¾y4LŸ²Yø×u>k ‡vŽ6†”ë©<xu>AW~Öîót`´“Ut¢Hy7]An¥:ïRçYÊõ×[eès…ÐH]÷KOšÛ:KÛ£Tη½É0P·¬ó•³Ç²9;©Ëuuž:Oݼ-çó*s޽„` >㹺§ˆê~èý!*õY^©óÊü?¯Ô•xÛÖÒhí¹@u}]ÿÊ9:ð0|”ÏÒ±.hG:hâ6Ú¹yyõÒy^o˜¦‘.ªs dn¹õsÌÝz¸깩¦µ–ÆÞ†vúoÑ¡9Ï£Çó¡Ù[FUn`Þ@m-Ý7OŸ+£r¿öfË}sfÆéÐA*õÙÞÔ´òYåV¥ÊAL=Lûùï¡ÉRÚ÷ž²†&>U¾GóÞRÞF»¯Óöí4z‘6U-¯;çpÊÜFo}Õ}£:§]ÎoœÆ­ë’sä=YK[+¨\w½z½¯Ÿ“åüË=K;«o¬?gØE{-ÑD­òý¬ÉTrˆ½…t0L‡öPÝß4þí-£¯ŽC›=VÌ)}%N#óZ½­u4¥ú:žü¦J¡í˜£ü‚ tgšÝsTÏÃÖ}²=aš¸LSkéÈ-tü5èßQ}žö›¹î{»ÖÐØfå•þGï`™òM:¼šŽÔÓ‰§ ¤§ò¡i™…¶q+4ÙrÚœ:O@å*ÚW÷Ó™?¤§ÃtúV:yˆf>¥c‹tø,£É÷hì2Qƒœý2s¾"¯Ûבõ›©¡vú_RGùm:ºú<QæÄz“ÍTïtMSYWxõ|ðç2Ðd·W½vú_Q}n˜}V¹.§‡–¨žÿý´¡Ò§î4­54s+´£%´eòÚujªŽ|BÇV@ûã—èðÝth%­-QÊúìåXÖ¥Ð'hú-Úÿš|ˆÆÖÒŽ½N¥¯Â«ç{»>§Û—qæ+õzCæ4ÚÚ%zÈÒp˜î-¢•a*ç†ÞrK³·9¯ùª¡¥aºÝÒ½óÊEúb…2Cešê}R+¦=VDeÞº÷Tž²˜6Q[!¹'Þæ *s%rŽ(/R=oJ÷mÉ<¸œ•F9Oõ|7Ó¥ì,olµ²‚ªù×yAñYå9ªçA÷Ý£ì¡zþP‚¦ÊéÀ]ÊmTêܼƒoÓáµTê½ãëiæ xÒ9ƒjÞ°yaÚÙ@õýûx˜ê¹Wº¡²‚… îã°©‹T^go_-}¦œ¡—iëJÙE*}sNóÒÕ97j®q î«/E'~ ÚL;¬¢ÝKTí‹™“¥TŸ·KN¼ÓÊ-¯ÌOqêë2ÐNý942¯ÂÛ(ÏŸñGDù}c¯Ñ†¡Ü¢|€ŽÔÓ¡y:øŽr•<¡œ…Tç- D•G¨Î1I¾ÿ׳OêÌû ©žß»ƒöÆ”]´ë"Õu63´Uî«ÍרÌ!ö6^QVR=Q×7ì‹ÀÏ«_°S_§“5t¢’ê|瑪ß'érÚ·Ÿ&Þ¡=K´}%mÛB›cÊ2)¢:æÛšl™dNéÇóÊþ˜ñûd#Trs½zS±H¿c©Ê4+õ<ìoú0-+¤ßSî SÝgîæ9k²ŒË(稞k«Ï§u1#´ù m[¢›”•T>ÏÞÄí/U–)? )·*?RÊû(ý²†> ,¦C÷(2¥œT¾NGÎÑÑ:¶FYM3¿ª<íéߥ:'¿ÙP¿y°ˆ¾¤”ùNãæ@yçè¡2z¤$ëÑeL9OkÃôäÕsÁôü@©£òƶS]‡¯ ÉÍÊsTú°¼CEtì6h%OÕi"ÚX¼¼íשô¹z%·ÝÛ÷Uu…þµÁi*¹–N“݆ ¬ÇLK-í:KãQ™ïàø RN~Ú÷\¾‘¾\Ìiö¦ï¢C·ÒÑéÔQhûkiem-æ‡!*ùS^Ýo›¸]©ö‰úÞ¡©ótðÃ;2G%ÇÃiËLöߟ‹@›ùÕýΧ[”*g*]©ÜIõ¼éèehÓö+Ð6†©>Ÿz’òùuÎà©*ÚTJuŽGg)•<3ïÀFš^„ö–¶R}®ü¤¡ÙoÃk\>óÐ"m9O£†ÊœØœW¨š`e_Ù+ùíÞãôˆèæ—;ï AS¡' ©Ìc¿™6ó[txˆ-( èàÊ7húqš’}Íþ#49/ž§‰[Gu®TO’v„©~^–z¯äbyž§û‹¨äOy]ŠÛwqû0û çÑš zxŽªõj ËÍSrêuJuˆêü„Þ•Tr½ã@;û¡²ž¹®,¥§#tºNùéT>Õûš™Ãtü~:£º4õíû„êçÃ쓳cÝ‚FrÔ½ROâÝe©ô=yO-¤½—oâ5å~Žßª|sYmú :°ŠöU=HbŽÆ•hl^¹‘êçv—Ãëì,¢:W¶=CÛòhk>Õ}~ÒWáÕ¹ËG7Ðà TîGÞçcʪs«užÍsÔõÍ9K”º $¼¼nÊKaåbV=OôÀ,•yFÞšRåyz¸Š‰(£´¶Š‹Òº%z²@YDOe”³4R¨\O—¨^75•Ó–sTöïrfhûí”õ[×Z*ûùÞž³4¾žöEiÿ hG÷Ñ‘|*ç»öð<Õ}«zßë` íZA»ëho M‡v:¦üÕõ’CwP}n’ýXçì{€êë“ü\¼-h¤–žŒRÝ^†F>çÞª"z$»Den¦W׫Ë÷á´Õ±e5û-•zXï œ$æ©ÌQõ6o¦úuÒë´gÂT]÷LE•u·WÍ6r^èm/¢i<_)Ï ‰ý´ÿY:°‰&Ê¡ºgy'ÿXy’ŽÑöEåªånZÞÖkÊ]TçëP@Õ¹•ü%:q™fþ“Rí-Бut°ƒ¦ê•_ ý¨ž·Ð÷8ÕóbÓÊ'•«¨ÎÙ‘õ§7ÐOSMu¾·Þ¿Ðó!¶ÐÈz¸€J?JÎ"*uÄ^]‘ý±æü–¥ß6Tç¼6ªû>Z·SÝç: ëªÙne9=ó'ÊŸ§3ÓÓ_¤ú¹Sϙȧ™?S¾¥TëÞá9š¼Nû¢ñí. z¿³ý*mɧ‘‹ôÔ%Z7O]–Sïè}²ýùôiK7‡ Ù¦’'äm(€9yʦ.Ú¾–ªºr“xûEWÓ–ôd=†fköû6φ¨ôÙy“ Tæwy3­ÌÛôý¨ÎXšºó+ç¡ÕsÏd®»×ÍwÞ]BwXÜwÌþ~=¿ÒÔUA›¹@Ç”z~ûH!ÞLu]ÿÀ“´ÿ#*9ÑÞX-•sÒœióÕ9 ÚÚ*ë°œ%ôÀ<­ž£Ò7èÕ}'z®çƒº}§Ëåqº9lÎ*åÁ(•ý¯Ì£òê~C¹yunëzªÏotÞgßUÚ/û‘ié~ÚþfÚw™JŽåMuë\gWöû²²õ¹ób³Çt9[·(×ÐSsôd&«œWz­¥{²¯—}¶š}eTÞwÞºBzòmXAÏ+çiËVÚZEuÿg4v^¥±ŸÐ¾G¨ëO’óDoZÖm/ÎCó ôMü0 MË´òu{¥o×iNÔRy¾÷Ê|73|+YC'þlYíðmtðuÚ÷•ú2oÇ<Õû‡R×àu}lN½ÿ¨“[¢M‹Tr˜¼=çiâaÚ/MçC;£ªû%KTåŒë|š@}ýàM%¨ì;zc¯Ñö<ªæ*šš=ªÔ9³õKTÎM¼C#Оþ€Ž'—wä-eRæÑÔnÚ·‰ê÷ggíS]o/ׯÎ[¬É§‡ é3eÐd¿Œœºž^Ÿ·ÖYå\Ö¦ó´#BcB;>FSÕ4¼@_ŠQµ>0/ÏÓx¹rŒÊþEÎ*û"NÛUHeþ„Ó|ÏP]Ÿs¼ˆV˜S§¨Ìcóî,ƒf[˜)¥ «hs)m¿@ež§·g;í­¤ KûwÒô-tx»ŸJ_¶ÓŽí ’3àÕ÷Ã-´3ÑÌ~ªs» éè .§é¡åM–Ш¥ sTŸo]‚zõÜlž/Rú‚²{–ê|Äž+ÐJݾW¯Cç©ÞŸêl¦ —¨ÔAÜÔÿ/{_õ™ßwþŠK½Ä¥®:%Sê‰êP‡x‰«:Ä¡q®8ÄQÆÑx‡qˆGƒ±-Û #Æ2ÆøBptttt$ÝÝ d†:W]ï„õLÕYêU]êh]Ö¥³¬«º¬K]ên=×ui_ï/ˆÎã÷øí_¿ùçù˜Òù~¯›Ïçý96-Qw/½`–6Tç8ÿ^õsho5Ö?Ÿ¼û²TîMÕRªÏ ]—êùSënÚ¶™vl ©ûÄ/hÏCÔõ #ŸÛå4{™ŽhS_ÒÖ6z*IõþAâôûsÐ[ú²¨ï»š}´~ Mì¦n^FPçcºº´àp!´?8GÏ~‡N¿OÏü=ýoéä÷èø¿ÿw:vŒêœžÑÍtx^¬·Ó¡;éàU:0Mµ2½oq»NÒö¬X./nâhG/Ó†2úz>})M®,}A­Û=OåÑŠ"Z³šj=]d.p>MÝEÝö «+,‡¶sÕý€ëß –ÏÓÜct¡¡<FæƒkNºLÜDõ}ßUN;fhû6ÚRB6ÒñÄ:zà¨uõÁAŸáó0tÝ&çg¦"K}½G¤S;èø½âtìïÐì;b%Ï‹ÓâšùœöÞMÓkhê3ªsU5¯Nß¿u3ÔåÅÝýá‚eôx9Õ¹ð¯çþûä³tt^ÜM×ÐÞ*šôëbw.¡ëP=Ï çºî}ú6ÝçôHAÎ0'9A]ÿ«i®¢Kh²‘ºÏ•×f¯ý÷éŸ¤ãWéð uõ^ãꃼ¶¿—öO%‡32‡¨f õyp^ëÒy•¦~Bûv@;²™¶¬†¦Ñ}~ô|¼m%•\(“»Nˆªu{ûã?šÿS·…ê9««kóÚÓÇèØß£}4²þÍ_Üx4±iÑÞÜæuÐf‹è@‹xíßLý|.o$Gø^êö!ÁÔzé—XE'ḧKé[IúÝhÊfhE¡XEO•ÐK[×Ðv÷|kŸ¥É“Tû!]è-të^7/7˜ü1­»HkÔåóµÿyCõ¾èˆ¥Õ³´n7m[G5Ÿ¦÷3:ð)ÍÂPä4®ÞÏkSÓS1êò’½:Ú6^³9ë/PÏçrÅ‚¯ÆadIlÚñÕtXôûxoªVŒÓ®-4y…vl¡Õ1ztžV^§ÛJ Ùi¨ë³ ʺÜÄwß\©›55qÚVHõ9<}NÜBÏÌŠÑ©.n†žþ:ÜF'èøøËâßV\BÇþBÔ:ð2ñ¯Ó¬¥£çŧĻéð%±âŠ«èÐñ.:0rsû˜G3Õ´oVüíi¡Ú¯º@»6‰OÐäרË%¼÷ZÞ£M3b1u¹A½7?1GÎÓIhJÄýÅôÔfêçåt•Ð3—éÄ_,îXŽÑ¨ÖÉ4¹ÏQÓJªs|"}(+éÉZ½™[AåÞÉ옣« ú=ý4ø7tì§î¾=¨s$Hû“´÷yÚu?ÕÜ—î5G7ÓøÚ¹ÚäyÚ~ºyEÁZÑÍŸ ÆÏ9Ц¹Žý*´?¦gÎÓÓ//®ÞŸ÷di§¡z޼¯˜j?ò#9§š÷}h´]çÅåÔå;fi{)m[FÝ~(¨çô‰å´ižº{“ Þ¯Ëü›{FóqußP·Z\Fý}·Wóuã+ÅeôX–Σ‡®ÐýI±Êý”uëí ËÁõêÌÆÛ¨÷]®:¸/ZJ«¦é‰"z²”ús¨`½xÖ. Ä bBŸÉ›®¤šÇéÖiÁÊyêæÆ{Íýy´\”zÎH?õºûñãôH†Jÿ¹þÇTÍÒ†$uýœ^­ Ð>3;UAûž¼¹Ú'ÿýª9}߈QßëÝ5G]=™×ö¿O»·‰’ëSG/¥šû¢Ê}¼ÙlèÓyôÍ=^J]=a0Ò¯w Úú*zÚåÖ/iןær„‚=´÷í[KÝ=nðä•ÿ¿ÿ?ÔººÂ öƒTXñ:mß íÄ_£#Çhߌ¸–ö”Q— ô}Ç^Ýïi^ȱ8=RDeÞ‚ñÏ7¯{]ŽjÐåÎ[«`ä^~x?Õ{bë"çrÆÕ­z#ýEÃm´ezqÝü‚ » ê¹½Þ£,¢îÞ$¨û¨æMÞM»?€¶µ„ºù ÁÄ5ZWA}þ‚÷h§/Ç`¤ßÉÕC]M°®˜6MBëîÛƒ±ôû†æ~™ yD|!IdiÜҚʹ]Lm§.—=8:KÇ>‡v¤Šn£½{hò^êæÕ¶ÓúIªùénþsð¡þÞ.˜¤¯S7Ï:ø½‚›»ÝÐ\¼kпN]>tPç%§©8ED;-ÕúV7§!(ý©ö»sÐ$ÜÏ­ž%·:ã¹î¥hNÍÓ–ítò¯C;v”6ÒÌ´÷¡Å툉EÔÍç¼¥ú}÷ófu¿XM¥_Îæ–_ ¾½\¼‹N¿Nϼ">@§öÒÓåâVñ ñ~:yNüõÛ¸Lü+tâY:Þ%î§‘ú­‹ÿP”œ©l!¹Dݧà@ÕÜœH½`ŒºÏgÐ=7ƒõïÑ#3ôð4Ýi¡Éý¸.øZ~îÿŸî¥g~‘žþ:ô(ŒÞC~@»+¨»×JÞ|¤Îêä:*sâŒ{>{íØ9š~pq“å4qºzý[š{½/x$_\Jå9ô§óyÐt.¡]Ç uýfÁC¥tgRŒÓí%TÎkì3âçÑ_£fClq}~“×å‚uÞäí˜Iªõ©çÅ‹Ôõ‹»ï¤=;»©ö÷ˆ;ÅB;ñKt´ˆê}ƒöe l£ýÅ4³•ö©khÏ%ɱ—û"]_h]RëFZ?Ku}º§šÜoUçƒÔÒÖÕ0òžŠWPW?Ôþ1ëýÿ¶Z)÷ëZ×힥M®ÞGß-nݺ„¦¢ýKèàA:R!º>Õ챎ýŒøgt¼ŸNü/ôôê£g¾G§ÿšxÚ̇´ï=Ú»Žº9ÊÁŽÂ›ÛVM›ªh<ºýaП/êëß‹AãæË÷–QkÖx•&6Ñæ÷hÛ&ÚÕmç=¶™ŠÓÒ!}$VÒ¶Ú¹‰¦ MßC{Jioî9kF&¡=V@câ[%ô¥9:u„žþš¹L+æiÜÕ¹ºj³¯ÚѯÑȹñ£Ô÷…§vŠî½ãæ;;WÒÈýD1­¢'Ë©›K¦š²$­\AëÓ0²îòûP¯ÎCy+–ûýô¾Óå4“+hW’êœn7ß48r/Í>&¥c+éÄVñüKâ =ý?ŠO‰Y:õw í¸A[6Ò£qêê‚ÏåÑ?202odGŒê¼Ê£ª¯ÓêóÔ­#‚µ…´.Cë·ÓÆs´½H¬¢];7u'í~š¦çiï3âYÚ—»ˆŽÌ¥‰‹îïÏÕg.èö'£g©»0c¿ÿß´õ—¨;/ñš†õ4Qíä?§c¿%~Fî12´“x/mž¾mTÏ¿u]7F3PÝß¹<§ Î‹¬ ™{ho’ö|Aµ_°±€Ö¬‚‘óª–µÔå9]ÎEPûQu.rä|ó«4sø˜ÏÒHs)ŒœcŽüˆ¶ÍQÍûqùÞAw~Lˆù´¶„ž=Kß6tº@üE:õçô´8ù›Të8ݽHpø:õóm®ˆ¹u®uç8 ÞG{Þ¥þ}|˜¦ž¤]›i›Ûkt,K{ž¢©³Tó¤Ž-’Ë—ØGµÎ¬g5ø!ÜLOX:RMÏl†6=BÎAsxÚšZiè2úš¥.LóoMi´gž£Sÿž~N|)þÏâêÏ ¼ÙKGVСŠÛ¸žNÒþ8íù¡xŽv ‰Iªso´/¦q5uùXÁÊÕô•bhžMRŸïÝ9Oc×éáÍ´º„Ö]¢rßÉU™x‚f¶ÑÞzªïïG¶¬¤:ïøäÕ:®=ÉÜŸ_òÄíÙeôÌWéiK'&ÅWsŽŸ†ŽÕÒì¼øûTï%†? èÐR:°šf¶Óžrš*£F, Më©ävÛƒÓôÿ~x¥¾ØvÕSíÛŠgh®üñÖ¾l©?÷vš¯Ç¨Ë ¾š¥©mÔõ…3èà;ÿ]ÚÃhšÜ #õ½ñIhÇþjÿuÿ3´oŸ¸šö£Ýã´ëm¿B[·-nSmHP—·fÚr.ÓéïOÝú¡{@tçzÿŸYIµþ¤/I]¾U°9MWPW¿¬ÉPÍóy~FæhË}˜[B]ý\°k+}ašºÔû„HýéÉ´å¼xön_¢.G6˜ý5çÚEµ‰Ò±N:ú!\!.§ýÓ¾´{RÜK»>×Òä>ÚYE;–Ó¶I1K[câzª}µÚ·É£/§ Yª÷¥:¿3žGOˆúܨLÒCYª÷oˆ»g¨Ÿ7PfÄB1ŸÊ\_û}+º#n‹ÁHßÇâwKèÖ9úýØO¥í8OµŽ×}ÿ‚½ËèØ3tjÚÉŸ¡£Ðe´ÿªø€x?í»“v_?WRwþÔ9Éc´suuòAý5o¢‘çÿZª}9‡ÌâºõNÐ_ƒyÔåêõç/·YPnt.­æ ž¬¢:§Ôå&5²} õç/n.½q¹èÁ¶b:\M§~‹Ægib íXOSPW'ì].¤}â»4ÓB]jp F·ÒÑ¥tìa:þ$8¾¨ÖÍ ºù´^ãs|¼u¥4÷:]0µ‘fK¨›çæµ§£“OÒ‰?ÿ&Œo¢ýŸÒ¾ ´gˆ¦ÏÑä Ú¶š6n ’t[ “GýþË{´„ú~ïɯ¦5sTò6Œ›wì¾mËEªû¶ç ¨Ÿ “.¥Z—­¶g¨ëG êy¾»— Æfi¹¥» ŒÔ±ìuº|ß ë¯ Frn“´µÌéöI÷¹LúsÝ©ï/ïvÿœ›kL? íØG4w­µ Î5N~&~DÛ¯R}ŸµæÓæK´~šÖÎÓ“e7÷`–¾f¨®³tßóB }#Ÿê¾¤º€j~`c mÞN;×Sw®tùáÁžÍ<íøZR@7vÓß×öÜMu¿érÑ‚Zïq0AŸ/‘õäêæ ëÎÑfK;ÏÓÔ'4’«p)§£…4wL¸àwÄÝ1êò’ƒº¾mZMîûÙ2D[¯‹7hû4•9$&y'•y”¦÷}:°Úl¢oÿ}zfˆN=!þ=ý ¸,VÐñ¿å½;þ×Å;éØÿ%~[ÜD³ÿ“x–Ž>Dµ®ÍÍq öWÒ¾iÚ·Òî)šüm_O7Óx‚^Aw—ÐçcPómÌjÏüz–NVR[0vCüw⯈›fŸ¡£ïP×þ±øCqZtë­¡yñ:°WÜ´¸zOšVs‘y’n~bP׉‘u£Ûï¶N/ncÑâÆ×ÓëéRúV1õóм_§ÑúûZUN]}»×m¦ÚOØû8íp?ÿoäÝT“ÞB}®ÇÀ8í¹ƒ¦7ÒîjššÏÓ®§h[m¹L¯‹qêò݃þ^%¸šº÷mPÏÇŽ”ÐÃYºš%´õ2´­«hË9ÚPBO\‡!ÐÍm J>Y$?ïÔ ·Ñº´~%Õ:ðÎyh]^|ÐÍ­ÙL‹ó i.¡®®Ùk»ÞwˆQÍi/—Ò¶ùÛ¸º:è Ï‹.¡.7â–º9J SŸî=£f¡ñ}@©G©æ×ÈÏWd¿§ç–/ƨ›;<~…jîXÍeªs˜Üù]Ðõ7;7ÒÞâC¢ëïÍ]h™þêîí½öTœÆ®@ãêÁƒÚ_Øû:¼Fæß¼§.gÏyO¸\ëàÑZ·„¶”ˆ“4YJõþ.½IÜ-~@wБBêúƒî<ÛkSÕTël;×P÷üFÖ‡Iz"ŸVêêÌ‚®n1øš(÷®6÷e#sÚÞLÒUô`õ÷³^—oŒäú­¤zo¨õq·ÐÖ¹÷u¥.=¨y0’»iG š›0rP|ˆÓ¡‹t0vs3÷R÷ù vgnãªyºOѺ>Í7o¿.–Ó¶UÔÍ™ ÖßXܪbúV!ÝYFµ?MïïvXêžÿÁK7‹¿ƒ‘•²2êòƒZ‡òV¾X@o——|¨úyLÁ+ÔÍ©[°ŠV—Ñø5Z“/Æhífêr:‚i*s*4¿$2·£­Œvl„‘}iú,­™¡GÖQ™»¹o}cžjqO>u?GAŸsê}Ýýï CО-¦š“>²Œ'¨Þ[¸z‰`Ç5¨÷z¶oMVÐv±a5uç¬^ãæEÃzÆ¿d賈۩Εï3´g=MßG»¦©ä¥ú¹¼A_å=¥cÕºÖÆu´Þý{®o=xªŒêúàÈyz #šœ®$’wñBŒº>è~Ÿ`ýRÚœ¥1šj¤™¢ß¿¬¤Ç’b 4G ©Ë— 6_¥ÕÔÕÉ]ߟ×ö¥èî,ýÁ¿¦§ÿ ü•Åø†øóTóÉÇËéØUñUªsÍûÝ=Qÿ4íÙ!ÞK[3TçÆŸXMuJny4åqZU#}­C´:¶¸åfQ#}Ø¢}û¯ÓéFñ^zæÏ¨¯‡ ¾%>H'~O”Ÿƒ±_¦CKhæAÚ³„¦,¾KS49@;Š·í2M”ÓÚ6z,AÆ·ò ÝWH¿›GµŸgg­ˆÑú™EµƒÓ~+ÆÄ5Tû6ÓÑîëâ34µº}RЇ—PŸÛè-¡æ•BZ!ž²ÔÍãõÚhï*êòäƒuóôàùE5yô^ñõBz$KkÖÒÆ´m†ºyÅÁ®—hOŠöm£ÏÐÑ ¢{û¹5½ëiÏAš¶âÝ´û)š¡n¾æ‚k©¯_÷vh¤Þ´ˆ6l¢~]´4^r×ÑØ<4±|1.&¨Öy4Öÿ¿ªm¾NÏÐ׳ôU“3÷Çßw¢n®°I?$î§sÐ6í¦ÚÏpâ ´¯ÎÓïÆècÔ|ËRß÷æÕºן<>G]ž@ÐÍ÷ º|Ý ;'&¿¤î\%˜þ’ön£™ê>ÏÁáéèiöQ1FÇ~@ǯЉO ­1Ts+Ï/nÅÝ_F#}\âÎ<ú¬…&û±`ùÌâî-¡óheâ6fhUBÌУ+hõuêîçnmšÖ®£õ±Åm\*–Ó&C›¯-nK•x‰ê¼*5¹Ÿvm÷‰êîWoí5êö÷·–û3ÓÓB{7Ò¾;hæ%qVüPtO®+¨ó¥G Ù“tìÿ¤¿%vÑÉoÒÓ¥ôÌ.úözöUh‡öÓÁZ:°‚f*hßeÚûcÚý>íLPwîÔ{X7Ï*¨ç¹¸•ÿ5nŸÔs=7ÿ<èϼõåT?7IC5?µç'кŸ§? é6ªõCõè©"z¼˜Vˆîï§\|¥ šoƨäö7·Äk³ÿZŒ‰Ëi¤ÈÒáu4ó>ÕùŒ:ç»ï^Úûðm\M#õß×Å5´{M}*^ߥš÷«¶ÐÖ8mËrÖÏѺIqHLŠÛ¨Îõª9Gã›èáb*y‘œ¼W¨ùCÝç|Áªçîê¾âÅÕŸsUïI/ÓÄEªsŠ]Þw°-Ÿ&?¤îÜ8˜*¥Ý4=Gûž¢k¡mª¦îÞ5¿Hݼˠ›”¾9ãs½}η{oÇÿ9ͺ9¿Ù¿D‡ï ƒ{iw/Õ>ãIhÜ}o°v;m³ÔÏôs$ÏüSñÕ¼»ˆ›éä/Ó‰ÿ"n\Üñ&þ*»_ü;4û»âÏÑÑ!1_\"ÞAG>ÏÑ¡ÇéÀ%ÚÿÕœŠî³ÿ}jžŸKÔz…6n¢ññœX$.£ÕK©»‡½µ›©æ{¬èþ¹ohrËÊËç鉹¿©‡öìR:ñÍî£~^¤7òü˜‡æBh§¾M'ÛéÄI:þ¿Ó±Ä_“bB\'ºçêÈÇâ6:üŒ¸I\I? ×Å-´J<(–‰ÚÇ~í½BÓÓÔñ,íÚ&ÞK]>C°Õ.nãüâê9r]>=µtq5YæðDÖ%®¯;¨õG hÍ&Ú” ‰Ô§µ¬k)´Ã—¨› ts£ƒ=_¡éJªulÕÔÕmë·P?‡ØëêÅ̧nî™7r®¿½€,£•Eô¸¥2ïʸü² ÖvŠm´ûQê>'Á!Z½ÚɃtì?‹¿NGŸ§#»éPŒê|íÞ§i÷C´3I–Óº2Z»Ö\¡šs¯}~Ò×™c»#Iýý7û?C;ýúwt8MûjiOÁâvÍS÷¾ 1ôµh¾7G—S­—?•¤:× ë"´Ã¨»o ög¨æ¹ýG°c;õu–Þ† ·q’Æ/Q­c>‘ nN]Pç$ìš§ešÜÇìÖê< =ï=±”Ö\¥:O´=A]ÎR°gͤèÀÑõÿ ^¢Ù;Õžùg4›¡>·Uó‹ôžQ>RI±v‰›ÅbêsóŸ-‘ÏùÉi*çs‘90Éí¼!ÎÒÄ5ªëéŸ êüQíË“y)‘÷sŽ ö›iΫ–nŒA³ÕÒ²,Ý#¾YBÎÐÃÓÔÍëÆßƒ¶;M®†æ%÷û¸¯ß¸y ^;µ‡Ž½»¸=ó´k MZªù¦“ÿ‚f?¥Y9—®¦‘9t××ÍKVhv•ÑšjÚ”¡Ò·g­ƒ&÷Ç^Ð}A—3íµî}n_-¡}Rר5E5g»i4éu´gíýÚ¡ƒ´fV¼(NÒSê?oûbTïá#9gÎçÔZ’Gµ?¢HÌ]£.r²cÔÏùñž˜§îÜ9X{•ºç±i]GÛ–ˆi{¡X&ÎÓŽmâ Ú¹T4b¹8)ÎÒd!´,Œägt?O³ÿ”Žm„ õ¾N_gíuõjÁÔ$M¬ zéž“^s2Iߣ®Úk'~LÇþ\Ü)þ-ñçèðÓ´í-WR­[Ó¹ÜúþO¬¡nÝåµ]ŸQÝ_½YFõsœ;–XÐÍ£ J®x$ÏåCweŪó¾]_oPûúZŠ©Ì_²É¯yž&6ÑÈœîzZ{‘-¦•Yªë¹þO·óªx…ºsØ`[5mœ¡úó¤ë¿S+è¡bºÃ@³ÍÒÜ·mA9?³.Ò6Äé˜Ó½ü¹âáuÐNÏÒÓqš-££?¡nþ_p ‘fž¦}-´ç šzžvTQwNlª ¹ÇÒ‚n~Rðäuz|­*¡n~@ð ½¹ºî~ÑBóÝ[Mª}øz/ìr>‚î|Òk§Îˆßÿ˜žþ/b‚NvŠ?O'¾CǪÄ ÞG³/ÓÑ:THoÐþMÔç|y{7Óž÷©Ë Fαô9qƒ6_¤Ó´f=UEõ^óÛšòz(C]ßvðø4­IÒ†Ýb9ÕytÍùâ m])^ iêÎ-¬^\Wì¹H{«hfí§._.8r—xŽå‹®N~¼Q¼L'VŠÏÓÉß{Ä?§§ÿ.Z­Ÿ Ü*jnæ4û¡¸ŠŽþH¬¦#ÏÐHNã=t(-.¡ƒÒÌ ÚóÕ÷Gj íXF[×Rcáò+Ìî2úÖ ´uõôÐRú–…fO­œ¡þ\Üëæ"Ki×´û^ñsš~ŸöMÒþ/ uõCAÍáÙWÍS1ªu´GWÓ†Jž†I$ióêÖÁȽx–f;éÄ=] íÛ÷ÑþÕ4QDG¶S]÷´§ îç¤f=—S—C¼à:êr|\Ge~=PHõ<ñº'Nså› êý¶öU¿)^¡z>¦ýt‘y×hçqMˆ×¨{Ž»çhÏFª9Ì2ŸÁ&vÓØ hŽS›{¬.ËP?×ÚÉaS­[\½ŸoØFÝÏë‚רÞD-®›oìû1í/å½Þœ£ƒ#thuuAí¯û×tâi:ù¿Ñ©é™Jñ#úv´£S×?ôyCÞj÷÷rdŽºü› «7ÖZ÷­5§+U íÛ­âstúªøÅÚ¹rquþEd¾Óvªuu×izMœe½P½Ž¾‡ÆÏ·õêœ^­ßÒ|ÂÖÏÒ–¥´ëAÚý%Í<#󵺖Q.z+Ý={ÐÝËݽ~°å*mš¦ZOq$¾V MÕ4­»B[nP—_tõUÁ¾ŸÐ;éÐehݽ`Ðå¬úB’úþ;ß÷RŒ~¿ä§sŸX!™¡ú^Ñ}MêÚŸ¦›éàú1ÙBGï§Ù_§c«Ä'Ä©›×ì¼L%ÿÒNþe:þç4»êœì¡¬èžƒC/ÑÌ´·C¬¥zNÛóÕÅMASÓÎëâ$M\¢µqêê݃¯ÆÅbhrÇ+ ú9å^—ÿlZöÿ•¶.A³Juþ³æ_õ¯ hŸ;_ï+¡Ýnݘ:Iu~hò%ÚYJ;Ò´}mÛD5×]ßK5+hüŠ(û\÷ü îÏBãö£Áš"¹_ßS Mã%h§ÿ?têßÓÑ:8I3Q×ïÔÜýºKô•,4ÏÜÜ#å´v´ý?¡šûU;M5çº2NŸ+f«¡oÍQ?ç×[—¦:¡ç2ŒÔ K.i¤¯ßåFc…ôÈh{> ;çés†êy†þþnOÐõ1›‹i×—ÐŽ®¦­³42Ÿk’6Гsô`ÍÍËsô@œú¿¿£yôÄ *9FaîM˜sM¡©/iW)MSWÇl[KÝ9a°q7uu¡ n ÇÜçéØRhPwOLÝEݼ˜`fÕMµñyê>OÁ7bô5K÷æü~’涇 jbÐg¡qõA^›XMkêi¥¥/ªë÷²$´ãiÓ{Tê+íþBúz>4‡ÐŽ_§Ù'¨Öõ^çij7Õy© çií/¥’ÿlÍÓÜ/»àrjv•Ð#ùÔ=·½¶w„¶×SíG.I¿#ýˆ…¢Ô#šØuz2ŸÊK­û:QFXêãœZ¿¥ïUïƒyÐ<›¤±ÍÔÝÛOZÉKþõó ½õÛÅÍ´f9}uwÎt¹DAÇé7ZO»ißãÔõÑÝÏ›™ø9hÏ¢ƒgiGF¬×Ðö*ªçºZ÷¯ ' i¨ëCóX,§~ßÝiëæt“¨ž³¸yÁÁæRÚGk7Òªy[J}Þ“ÔÝ›_ˣ߿céÖ’Å}VÜ“\ÜCeôðRª}0þýæWQÝ—i„Î_ÎüÚLïmå^¿}7mn£’›`ë×Óšô„¡ZרyAš»S^HݽQÐÕK+WÓã³4>Ik/Ж êú‘‚šsß¿ç§ÒNÎщ4ëÛiößÓáŒX$.§}w‰wÐÞÇhg†VSW/zKõóVné÷Äí1hrÛ÷uN£û\k/C;2+^ =«h×â ÚqjŽwb)m¬¦'K©æåWÍRgëúL¼‘}îŽÝe©ÎÓqÏÍ ®÷]nÐå’›‹Õ>Fû®Ðô9êæKÝý€í\E}’·m7Ml¡:§ì¨¥º,΃‘}ØÓbYŒ¾ièþ|Z9MµÞÆÕ'›–SÉÛÐû{ú¸DÇ iöñÞ›;ô0ÜO“W¨î÷Û’´i)m¸A]}Vðpuù\^ó´ý?¤µe7·8MuîœÀ¸z@Ó”O»¯@ÛzºyçÁHÿí5qÕûí#uó9ƒµ´¦”æþµu®cÕuzX<˜¥û-}­Œê\rÍ7¹ÝÜùg Õû}]G½a©ô™C%Tç+Ë< sÚ2KO­¦îÜ*øJ4îyLl£=ÂHý„®ô<¢Í=×\_FP?ïñØÍÕ¯ßýü{Í×ó¨«KVåS©S2‰•Tûvº.C{úhö Ã%â3âZ:ô¹øÕyš‹­¹è}7nc‰¸EÌ£½Wij9Mº¯í*Õ}{C–֗ГU‹ûLŒIÞTãë‰|}Qö:úÕþëÔEªuï'WSͽùƒ<Ú±”¦Ü½äÛ/Ó©ÿDOÿm:ù(ø5:Ö žKéȇtx/í]j0ù>mÝL5Ÿ^óÍвh¾e¨»ÿðÚñ¿LDzÔ^zÜÏOò"õçÙ^77Ϻ¼[Ëý~_Ÿº~Ÿ¶{>g,ys3Ðö¼GSëèê¿NïkÐä~LtëÇàÑ|z¼ŒÊý ©YB]ýsPóé]ÎJPòMªƒ¦wÒ¾'w ŽI+ÎSÉñ¶#P]¿´æÓܵǂ£ânš™¡=SK·³ Ÿ+çÕy:ÏöèRêú¤‚·ësOÞIs×Î vo¤½»ißNšù‚l¥Ã#4»šŽ%èÄψ¹\C3ùŠøOèÔ]Ð&+h¼FêºêÖÒ¦m0’oYw‘úÜé=1ºËÜ\Ç sS^‰Ñ0!gd]¢ó¿$ŸÕ¼˜ûúLÃ2h'ËÅŸ£ãÿ”f©Ö{EæÈî£ÃWÅutèS:¸Šö}Bµß½~vqOTQ­7ϵ×ü×}Ö4íjvú·éäÐìy:°”f–Ñ®Ú|•Ö—Ñ’$4uë ¨ #›Å ´Îíón¦rΙƒWƒ6=B›Êi¼ŒVäþ}íçzËä¬(ÌYé<âÖ/Ëiæ%ÚghËjêrž,¤:ïng Fò¥[ªhçnšú|qݰ`fuõÁ±/éëŹ¯Os+’Ðö"ÚZEý{ÓërIƒñUTïçw—@“»öYPóëÌO¥Íþ,}„jîqß%šž¢]ïRíŸêØ@݇`s†ÖÍÒÚ|z´œæ®|}^,˹*FÖ ûóèáÍôX‚º`]!mÞM“S7wÔk3ÅÔåy«;ÆWÒî«Ðö¦wÓ®»éùtk†ûoú :äöUzŸ¨Ÿ-šgc´¡šº“Ûÿ×ýð4´½ÏP×ÿ¬o£¹åIÐøùr^ÝŸ»9Á®êÞ›ÁÑ)hÇÿ‰˜GÇ~™Ž® èÐC4• ÚgÕdiÍ2z(¸4連Kh$n†º¼ýàÑ,=1K]?hPûÅÝ9Q°%NÛKir¥ø>íÚ/^¢šcÞýM‹ç©ÞôíÑL5ÜææÓ×bb14®þÎtW@;ñŽê\€ì?¢ƒi‡Ø"nW‰+iÏ9±¦2T몒ǨηÖúÌúkTçßi¾¦›GÔïË«yô•yúGFú2÷äÓƒ†žJPWçLl§í³4yŒ¬3Ò_¡Ú·Û<'®¦‰yñ­ÉÒ“çéñ"ªý²ûŠéîus價Qм\@]@ðÄyZ¿‰6®¥‰´å2m¢—hj+íÙD{?¥™J:ø¾‹ºÜ¯=ûÏéø0Íö‰¿A‡·Óþ‡Ä<Ú·žÖl ©öI.œÝá~]k:º™öÌѶ¥´±D4´>A#¹5eTït¿ëϼþžÖ«uGZÙ4CÛËidý~uuŽ^;¾Küž¸A|@üe:ö ‹;X+.§é š¼,.§ºÿöõb^?GÞ«¹kÇ-ûÍþÕ~çþ'©›cì{_Ü@{ۨΫNÎROçç\{µŸÙí烹ÇÅ‚²^°{æ©>Gï˃‘¹›s´r–žÊ£µïQ×O¿àƒ[ª÷½ý÷Ù÷̧#tì/Ññ7éä =]AÏüeh»;hÊÒ¤¨s [ær까¿ÿòÖ,¥®O,¨}Ïo˜Ü×ù'¢ßx÷ÏÐÃ11Ku¾`½{ŸtÌÑcWèþ‚E5 #S—{dZ—ˆë¨ž/wN‹–&KÄÝb£8"fE=÷ɧéOhÏI±MLÓÞ'ÄM´ÿ*zŽ&éÄÃtê{Ð6µ-nCýF4'çé©BZ³†ê=ÞÃ5[Ú™Ÿsp;´îù쮤.ŸÁɳޝ ]'¡mKЖÔ¿'4¿äþ<¨yM‘¾ñÚjÑ=G*‹è!CßL: `t.ÅUÚxÚñ³4YJë+hÝzZÓFežy͈YZ‘¡•óô˜¡.$ؽÚ Mn¶`ÜÒî}ÐN×ÑÓ›hËuª¹Ü’çÉ_;¹Ú±ÜÉý΋OPÏÝÿ™¸žFö•3âÚ»…öœ¥‘ù=OÐîuó×ÜF;–ÐÆz±ž\G«géCßHÒg 4¹cëßʧՅ0r>íê6ÜNë/ÓEÔ݃xûsu«žÇö]£™‹th/tuÄÝÓä“´µž6Å¡Ù]@Xy¾Už§1KÝsaÁbº;K]NIðbô÷ó ©°Të9'¿F5Ǻq94ûÊ~*mß;TóI’Ó´e†jNd¢6åÑúôd ÕúQŸîóÄ·ÄèË–jNüþ8u94ÁºËÔõ1õ<¦s†úó×Ç”zoÓ˜móh*WˆÔç›÷Ñä9Ú³|q&éàz:~,¦SwÐ3× î¥:W&S@{g¨Ë… Vz¸šÅÔåïþ÷[Nu=–|‚v¯ .ï'èþœ^ÛºEÜL[6ÁÈsKçÙõuÐô4í~„¶ Q·¿ 6m¤qQ?—‡Š¨¯Çóî°0²/Œ•ÒÅÔÕÿ[ÖS7oÃ$‡¨Ë©&VQW7áœ%ÒܶdÁî-02w¦7Ú‘ÚYHýü¯æÞhnMyýžÆ¯ë¼nþCp§¡îž=‹ÓêÕTÏmjK©ËwXp–êóµÅR—'tyXÁ®u4•¢ÝÐô<í-¤îóì7t`~‚Êù€øÕ{Çá/èÀ=´o£ø8í]FS÷ÓöjªëÀ—J i3TúÔ"}籸‘û·4ûéÈ<ºO\%ÞEûëÅZq'íÙKýÜXoçyÚ²|që×Òãå·±”j~§[Ç,hrjŽäÖ™‡•¡‘yX[hçjêæžx­;Ï NÅÅj:ù,¯¤ÝåôTœæþX 9ÅǦ¡­›ƒÆÏ÷¾9G%‡4Úϸ’ŽŒ‹kéð&:´‚dh{~÷|N»¥É2ªyº óTç ¸çö‚ÅÐä# êzúÅ9êóY¼®%X1K5'£6CµŽGæ¢ÛD)­- zå뎹åAм*j~jdA5´Ãо5´w)M-£‘<ÚM´a%=X@cë¨ä¾èŸ×>Dï—ñ¾’/P—¶]§‘:0=?KÓ´ï ªs\‡ Íþ<´£ùt°ƒföÑôe±œ¦>ß¡~áõ9¤>—´,÷uZ7oÔkâm´v–J?¬mLЭsÐÔäÓz÷yÒºÖvmê4cõÐf“v?L“yô°¥y0ôQyý:ÕÍÕ ö~íÁÔ<'{æŸf÷ÒL‚ö\ õÔå°zÍóâóÐ¶Š‘¹}Yhn¦Í42úa:ö»ÐŽýG*ýðÆå{múiª9ïc…öOÒã š=@‡öÐLùâö~"ÞGÝþ"¢Ë£ 6£úþªpû}Í}wù^³kŽú¹w^™_f\ÞrÐëzí™ÿ‹êýýø¯ÐHý£ô'õ¸~U7›|j®Ì—4{J¨›?èµ³´ï,mÉB³h³/æÎØö 4‡â4™†¶çÞÅM=(~…v½D[®‰ó‹Û¼Y, ›DC oã*z2F‹‡ÔÕoßÒ—Kw[Œ>-J“Éý5/øTŒîš¡1zt­¹J›êiâ=Úahjí^Cu®_ÏÓ4óúˆfï c¯@ëî­ƒ.ÿ7Ø•¥GKéžh*—Ò¶}´ëAÚÝB‡/@ëö^Ó¶ÚUÔÕÝåS7_92§bG šÜrzA×oŒÍÑùÐN~L5G,û$=Oµž|(CÞWÓþghæiñ!êÖ¯Áž‹Ts@tÎKÛš8GuŽ™ÖÕTÐ#etW1•>-ãóÍ}Þùé?¥Ù!>F]}Ipd¾›VÑ/h÷VÚålÚDãÓô¨{Ÿš£¡O0÷÷aLžËéë3"uoîë<¾Žº:„ ÿý½®Î*(ëZûfœ¾–¤; èöúíÍ»MiŒ~¿„¾1C§GŠèÑ+ôø qžjýOÃ*÷­Æå!“h÷×hÏ´¯Œö'èà]Pû@Le‚qûâ£I_m÷Yªóœ¥ƺ9Œ^s¸”6YšY­›ÿœü3:öKt0C3qQêÓk¨Ûïõ\Uß®@“{].¨ùöM³4õch“+ i½JSÏÐ}%Ô='ƒ®Î{AwžÜÓHSתýx&y’f_‚vú4=ó =}–N¾O'jèø_б!qÍþ1Fæø¼K{>£é^ªsò:ã´%M›/ÒÆëT×ÅuU´6–Ó=g‚Rçll¦Z_òzŒn¥ÆåÒ˜S3C í¹‹¦vPWwl¼DýÏaU’ºúÜ`Åjª¹è%†î–Q7喺ܯy‡v?N•Cãú}‚]OP7×k_+Ìù½æŸK¾†¾L5×í­hŽ–Q·_ ˆéH}cŽjÿËíÔ~îÌÇÔx#u?î1èsXÞ,ƒv œö}J{¥=EÔÍû Fòy—Rí›n/ -[¨ËÑ º{Š Ûݼâ`]uùéÁê,usÝ‚oÄé÷çhîË^¸ósø¼;-ÍЪÕ÷ «ÿÖÑÈý|œê{ÈŸóz{?„6õ.4» í¾H{>v¢ŠŒÐÎ}´~Žê|‡ƒçéËsДˆoe©ëïÖ¬…vh–öYqŠv¥E9o“}šy+­Ï£÷ƪ¨äà[×ÿÜ£îÞÐk~CôsÛ¼¯›œu1ZŸ¡]{hj§s·øíþ1íûŒ=Iµ!’ÏxˆNtAûö3tº–žù—â«â¯Ó©)ñ;·1N^¢ß§cÿê6þcñšωgÅÄ<:²_ü*Ú ªùìîû|K#÷mb×gâÄÇŨæeµЖrq3m¾L5]û}½·÷­2hžŸ£:çËå÷{#}~Ý#FòÄ^·ôMC+ó©›l¸—&—Q—;åÜÿöÜíØªs¾«ª 9¸Úsƒþà?‰?/‰çÄIz¶•Nÿñ²ø6Õûû©wò?ˆˆuqýú!øšø‡t<~«é؇‹;úÃÅš»»wpVLŠkèÀ5qýâö~‹hæ,í‹ÓžÝâNšj¤Iª}-—Å÷Ä*Ú0'n¿¥âêç™ye©Ü»šïêæ»÷z(I]¿”Wû.MU9´“¿D'þ‰ø"Õ¹'Cï‹ÒŸ˜{ -Ø?#ž§™‹ÏS_äMýv­¥bÛfÚ꾎–ó´n7uýÁŠ8= ¾YL5ß[Ͼ[MîÇçÿ¡¡ÚwxlŽFê;c´s=´½eÔ̓vßAµ¾&¹”ú{doë ±X\"æÑ–’Åuu‹ n¦®o<¨ù—:ïæ¨èöËÁ²9hÜýF°®Œ6Þ€6=KµŸZç67­¤ yTû÷ôçUuõçÁcEÔågz`šjŸlîq}k­£Ò7æ`{O•äÔõh¥ ›i¢ˆ6o Úçâú‚[h×c´'föÒÁ tø Íþ;:ö6ø:™‚‘:¶Ü3hŽ­Èý÷³‡èäÿL'þT|aqÇþŒÓHþrš>FSkiWµXE]žT°*j?Öª<¨ûâÈy·ÎwèwÓÚ¥ôxþâN¦é÷©ž¯ëóQó¥]§±,4•s42o:mÇrªûÚÄrZ£>ŸâV9._ÃkvÍCÛ5D[WÓ¦ZSF\§nÞzPû¤ž"’{¦9öî× ºïkPûòÛ²´«¦ó©æpö_„¶mžÖš›»- ÍïŨö%ºûÎà[I*óMÍ *s¼mfÃâº{yÛPLë7Ò*Kœ§‡s_¸çÌ-;çÏër×½æÍ|h]B°!#9ƒz¯,9¨vìyš^E»wÐŽKÔÍöš£ hfÄ¥´o’¦ÏQ]7è­¯m¯§Í«hS†ÖÖS£ãê–ƒ®Âk¾•GÝù@ðØjêæÎ7ÔL¸÷asœê¼,͉wçìf«XžGë—ÑÖÜúÛt¿$VÓôYêòó|Hü€ºþ•]?ÓÀ{tx'y€Ž1×Wc ó |‡êüéìêr}ƒé<Úº~q›¶Ó“–Vgheþé|ŒÌÁpFê¯{¶Óæ2Zgéñ9Ë£nn€×lOÒƒYêæ¨¥¯4’S¾sq»¯‹Ñd\¬ Íkè©ÕTëÃeŽqd¾ý‹1ªùÈzŸÖ¹ÚìAš¼šxœº:þ`ã:©ó~D|5FÝ|¯àþbêÖ‰AWWö1ÝOˆn=08G;Ή“Ts„T÷| jŸBÝ9Ú~ÚÖݰ¸f“¥>¯ÔÛ§ýwÑñ¡}ÖR™ l¿màBnkŒºùóÁŠ|qM-¡Ý?¤n.ŠW÷í‘yn±ih'Ÿ¤c¿C{ï¢=Å´{„Fîw.RíëÐ} äÈ›×Krÿ½É@ãêãƒn^sðxÕùP§®ÓÚiÑÞÆóâ Õùm.ß0èÎ=‚Ú/¡}Ã-³´õ m_O]Ò‚î9“|œvÝISÏ‹ Ú½ê§Ô=w´žÌå×{íÄ^JuÿÝûuë’`º–º|Ù`s5õõÙ^97¯–PÍI}Lß(¦ZÏé¿™£'§i|­™¡uC´ÁR×_l¾B[—Ó¶Yªõ¨ êr ƒ®owÁÏi÷fªùîù”“IÒetðGthã;“ºóŸàè5šýs:öÔÍ;YÐí³Çß? ÷‰MtòïÓÓI S¯Ð3ÿŠNÿ}»‹žýýÁ,´Uç¡™:m椸’ö­ Z'.¥]ëiÇFÚj©î¯š®ÑÚÕ4ž š_*}±‘9\’caNm†‘zä®/¨æ4ø<ŸïP3DS•tp´©TûHÜùZ°:A/ж6ÚehoÚÑ*š¼Ÿú~Tߟ*uˆöÿ§ø<=;&>NÏüg±_ücш?C§zÅÇééK'?N¼LÇÖÐìq:THziOuóƒ.—(ɘ§šÜ’¤õ“Tó²rÛ¡%ïѸßàk%Tê\LJL¯§D×7ªï¬[ohõut Õúɳ[,4/Ð…TçþÔ¯ Í–¶n¤n¾^0Y#9¨ZŸâ¾/Áš­ºyæÁäÓÔÍ›ººˆ]‰Ì«4Cë¡M§i÷rêæL‡:m=¯Û_H_°ÔåúyÍK1z0C]n^Pö릭˜v=s{ï¹¹ýPW‡åµÍ†Ö%¨›ƒ,‰A“ûc.X$>-ú9×^­ûØ7Oõ\þØ<­ÛD›g©ËU vn§:_»ï:°ÚòÜשxÖB›ý]Ú¢‰-TêþL‰ûõdƒl¥ãOÒácân:4-ÓžŸˆ²ïé~šú:i¯æÚÈ=­. ’Ð|ÃPC£9…ñyÚ¸™º\Œ « ö@;1G³utø~hvÇ©Ë_¾YBÝóßk'þƒx'û\üâÏÑìߢÃåtàÕ~~]'ëùp÷Wi²P\C›³´~ˆžÈÒ†¾œ„æy1– Ç-m,§m3Ô}ÝÁô× m·4·ÝXPó³õ=îóCÖæAóJœjÎËë)§§,Õº6×l›¤._&èêiƒƒ?¤#C4{•Ž‹N|N§þ&´§·Š_¥“éÄŸ‰YñYqšŽ=L#sðJèðKb©¸R\!ÞI‡~B¯ˆˆ_¡—Å¥42§åš®÷Ðî!Úõ1mYBÝó7xd54¾îÓ×Ö¹u蓆jn­žgkn©›ŸL=AÓ_BëïUZ*¨Ü{Ûº‹ôd1uë“cTûñr_Î-5¥%02/öõ¸ûõÜï÷Ú 4§–.ªx”¦/‰Ðî)ªsµÝ9â-Õý*÷föù©—Öº\7_È©?–zHƒÎ5r÷ÉÁL‰¸‘ö5Ò+ÞGÓ›hw M¤]ïÒäÜâj~|[’6í¦ñ¹Å՜Σ†V&DC[ês$¼¯úR’¾`è×ó ùƒýºèîÍ‚ZDzÝÒW³´rZ¼Bzr…X%Æi¥M›iK†&7Óî ´wÍ\§ƒ÷Сrh”AÓÕ mêê΃nn„׸¾jÕŽî¦ýS´ï1Ú³‡¦+iwíŠÓ¶ó´yõsW½Úÿé‰Q7ÿ5èÖùÁW²TæJ™²zªœ6샑s¼¡{éÀ^Úºrqu.T<ŸŠAS·¶UCÛŸ¦:ß&·^°k–¶çSw>Ô¹UµqŸ¡§Š©æ@és,&~/ Mîu±à³sTó‹nWwxH¡4QHkWR— Œô·%éábZQJPí_]¡Ò/grß–¨±ÍôdZ×WÌýø.8všöÞOu¿Ðï§š³ž¼‡ºú·‡Ä6Ú§uIêæ™+ÄÒ$ýV š—E̓©½Lݼm¯}-Mm1ŒÌ9ó}sÞ7óèhüzÈû}Kõ¾Sûà[-í,ƒv|ŠŽ\gèàçâg4™\ÜÆ«ôe#óÜâ¨û¾Ý<ˆ`Ç5hËgèv#ý™>ßЫs!ÌÓÃW íÚ›Ôûþ—h½¥Gæ qÏ Ô1Úæ6ª¹Ç®,îþ$Õû˜ÈýL ŒÜ_ÿIŒn½ºŸ+Ï£¯[[}è¾Îã…b™§n¬ÝBûnnËmìpë[§œ\N5W»ûv^g¨ëïºù> Vо=4ó0í¯ºïQ7ï!èîe<+ÎÓ¡|q€ÿhqGÏRwOµà?¤c$>GÇ÷ÑÓÇÅÿMÛ¾Œî·bÕyU¹ø‚%hÒÜÜÞ,u¹ ^›ýmZ‰îŸƒæÛyôñ»–j_Å yÔ?ÿ½>gÚ»C,+ãtg ì¯ç¨ä8Ÿ—핹(&î~®ë´a)mMP—Ïì(¥kÄMâ61#NÓÈÏC­ø!Õ¹6©³T÷1‘:ðTç öm¢.W-8ü5ñQñI±šŽ=æt}“:ç^ŸëÉ:¼•ºÜ;¯­-¤åqªó&NÑã6g.fÁ}ÅÔå{Í+1ZµÚ¾jÚ;M{ž‚&nÕ&ß¡ºîª¢©)Ú1Gõ>­r34{g¨Î±­(†¶ÿ êÎM½‘uäm´qw/íæ£ãû ©ºBõž©};uývAwßÑõ£Ý9Lpà%:ÜíØtxXC{Êhªšv.§‰!ÚTN—ÑÚ"êçöxA+£šOU[Ak¡us7ƒuqq­¹Lý=ä&íÈuhZr父¯¶ÏQÝç¸Nõ^+·<_ð¥4ÏÐ]IËÐÓ´¾ FòKÚÎÑVC›ÏSÍy¬ZATAS›ûuMç šÜDSEÐŽ] ÙwÄZñ›tdJ\O‡–Q7g"ØA|_tçE:—¬Ï݇ö¬YÜîÝâêçît¹Ï¡Î-Ñ\¢Ä mºJu?X»‚VçÓc¥´ò:uu‚AW ýÂö·ò )Q7)xâ ­ÛG#ó’7-ªj¥­»iËÕ{nÏݰ„º¯3¨Ï›S¥ô¨¥ÚÏT±”æârƒæ­yêúu½¶?M›ÚhÝ ­.¢2o[Ÿ“æp =QD]¾P°y 휤ݳtð$¹HǾíÉ+´"CcótoL,¦rOcwæ”ó$m]]¾×äK nŠÑRCËmNݯœpÏUÍÓy-¨«» úy#Þž:°‰j݋ޟMü6´“;éèz:TB»“¢<;giǪù=µ1š+sYðFæÆ¹Bk÷ÑæëО( ²o¶£;©Öëû¦o;uû¬`ÝÙKß’uõÌÁÎ*êò™‚cE4[&þyžßC‡öÓÁ´¿…ꋞwhwMÕS?¯Ò›¡Û©æè»<ž`¢‚6­¢š÷_N#s„ã4VJüLg®1hJ’Tû;4¡¾€&¦E÷û¸ü˜ Îgô}i^ÍÅÖú¼¦µÐv/¡m…иy kªi­ß‡oälv¿¯?ñ}+›ignýg’¹Ÿ#Ó³ FæP´%èV MÃEÚº–öåÎÕL¿[—n§÷ÑôSbí. zÿ™z_L‰Kië:q%m¹!NÒD–FæQÄ©þ|¹:’àÁ$o¡µË¨ÿþ{“YÚU mæ<õs&ßHBsÌBÛ÷ uy]ÁÎ$ÕyÂu†úùX^¹ÿ±»¨y,F÷Ò£ÓTŸ‰óTò’L÷JÚ÷0´RW7ç䤻ysÁ±¿)ˆÓtâ«tòmh3eTß]iû¹Å=óÏéèíŠfnÐîõ´µŒú¼_ØPþSi{§Ú‡’ª .×;x¢š'cÐ&ߣíç¡æ!Erœu¿˜½—vm¦MUÔݯu_äýžÍ©y‡Kid½¼–6ÑÞùœ™´cûiöë´÷ÚQAå~Ÿ\ù`ËEhÇï¥Ý«©Ë Æ‹©¬#Œª9ˆ§æadnDr?mX½¸õû¨¯ðÖ¬§®î*èr¼fï­š¡uç©›ÔûÖîZÚwvQ­Ë1¸¥z }šúÜ×{Í;©9GãCâ zruÏßà›3ôõ9Z^ÍñiZ_*–S뜼“ºuI°w=íÿÚ±}4{M”üÑY:¸…fî¤ÝwS­Oºþ«¿L«¯ÓÊus݃.0øR uõÝ –PYÚܘĠqç{ NÒºrZ¿ê6RÍOӹŮÞ'Øt…¶—ÐŽ«ÔÍ= ¦®Òî*Ú³Ÿfî¡ý…âƒb™øñSñºxCü’Ü)Þ%æ‹ËÅâ×Ä{ÅûÄ5b¡¸V|X|D|T,7ŠÏˆÛÄRq§¸GÜ'ÆÄ ±JlÛĤ˜‡ÄQëÓ§Ås¢(¾/þHü@¼$~,~"þDœ¯‰×Å/éàRñn1_\.ʹãà×Ä{Å5âCââ7ˆEââ“âSâÓb‰¸M,wˆ;Å=â>1&VˆÇD9o¬b›˜{ÅqR<'¾+JžÂàûâŒxQüHüXüD¼*΋×Ä/Ä/éÐâR1_üªxø5qµ¸F|P|H|X4â±H|B|RÜ,nKÄmâq§X.îcb¥xL<)Ö‹ ±ML‰½¢Ô/º9¯ NŠÓâ;â»âÅ âEñCñ#ñcñŠxUœ?o@{f–fÿ”ê¼ìþ5´ç‡TÏ'ë/к"zr)=XH]¢×|7I]ý¶×º÷ê‚оÅ âíýBÜ ~…ö\¿F]þ^02ÿû!ñšüX¬·ˆ‰wÓÎsTî¹lÝ9q=™¡‘~ÍiêêVÃÜšï'©Î¯¿B»î…6{?¢®¾18´„öæÑTŒv¥iÛÚPOO¬£U´b•ŸwûŒ…æõêæX]®ü‚%9õ|ÚÕ?ܲ>±6KëÏ‹n}ëæN{mOíJÒöÝ42?â:4ÛKhì:­^AµO¼µê¼²Ž|Úyº~þ æî¥¯Ð¾9*ï[ÛâÎÝZVÒ¦Yêò³¼f_<çþÜ×m‡>£ƒwÑH}Ónª?×µ¥Të8Þ´Tï‘rc\ô?¯Þ—Eßâu¹^;X.–R·_ ö>Jõ^.¹‡Öo¢uËhm }~N×<^BsÛÝ+ªh,.SÍkø–¥‰tÀÐá 0r¿]B5ÿÒºýE05K;VÐKO­ƒæpíùlQmö!êîͽfoœ&Ê¡ÿñâŽLÓ¾bÚûÔœ;RJO¬€ÆÍöÚ£ДR©×´nÞF°u’&®P_oê=1Cõ\Úõµ® û,Ý%¾˜„湪Ÿo—“¬[¦¡ÖÉ™ï•Ð&CK©{®õ¹îê:ƒ©whæIqY#>.î3têAzöס=ý>Ív‰ԯ罙9ªù˜nVÐç{%‡<’K¾»ž¦ÚÏ›˜„ö1úöÅéô¿C§>¤§‹èäÏÓ‰CÇûÅmtì÷èhšºó„ ›¿L[ÚUOÛJiýUZ›¦EôûšïæÑCÅ0rܾ†j½Uͪ÷šË[G%—Ĭɣ~á­œ¡5%Ôåùymö¾E5‰ôÍ•>±HþÅÎyhÞ(¡ûç©æ™»çiðp)=V@kÖA{ÂÒ3ëééÄNñwéäïÐñÍ~)NŠåâãÔÕ Ý9bPsTúŽÑžgnn*y wÒ®êúÍ‚í[hÓÐâúü¯ÎÃ8\E_)£¹ÇWÐl_)„¶a}ûgéäfñn:6{ {ÅÝ4ûCq }J̧#ÔÍ}]0ºóâ׋+hf–ö}Du?àög ž—ÑÔe±ƒjþ†æ÷¹>РžèÜÍuM\¦MYÚ¸žºz–`ý9qšj?Šîo\þcðÈìmLŠ…T÷“eTç–û¼z§É½Vôsw½nnlPæˆÙ‰Ÿ§Ã%Tç~¤ç©æ5&ï‚‘¤#K¡=±™VeD÷}йoWÄ9hvÍ@;ù«tb;@‡*hÛUZ£G²ôÀ Ý3#}:W²BÔü¹ÓutüCêÎõƒéÕÔå¥/8IO–Ѓ º=Í‹%tg>ÕyG~.‚×åƒymw‚¶_£‡óéÎé×Ôù’?gÜ9w0ãîA6ÀÈüc7_Åk^MÒSW¨ÎMKNÑÁ0rN›þ*m+¡‰k4~žºœž`e–¾™¤ÒOd6škkˆÌµÃûhn{¸à÷ænî I©÷Õ~ŽîMâ#ÔÍ ÊÜ,SUEµ>³m íþÚñHGΉÏP­óά¡Z·™oóm]Eªè C}ݸW箺ù‚ÁŠë9¿ƒ‘}ɉ mXAÏQßçàí*vø:íOÐÔV[Aõë­«§ýÄyhwÀH>@ÝfÚ¼¦Dý¹’ßÏü®ûz'N‹oÒ±½4»…ŽþPœ¡#•tø]:´‚”ÓþM´¯^, º¾ì>O#ëÅÄRÓÙ1ssuÎ{ãÚ°‘Ö¯£š×Z3M_§.·%(}~öwb0Ò¯*Zw¿àƒÐTS·/Jÿ½i¬¢®7Øž¥©Ç¡u},AÍÕk\AÌSÉ­‹Ü›ì²ô­8­™]\—ÃÌ\¦Z¥õãGéäh]W0ñmLPÝwÔ^£ÚŸíæ¸uƒä—è}²))¡¯ÓXvqõüEsýšß£Whò*9=vò Õç\vYJ]i°Oìþ’º>­Ð7íü=:þ]™Wr*Z—¿ê5‡7ÓîO¨¯¯Ê¾u‰©tŸÿ“î<¬a;´¹2¸ãë©›+|mN,¦šg«s\^¶ô Qs݉`džv)ÕõzÛªõúÒizfiï9êæDì„•ÒÑ'èØUh»/ÑÎë´¹ŠÖYz&S“¥ù´¹œv%hºBtõ }[Åéh/´M+iÍfZ=C5oúõ,}ÍЧ-4ϪçAoƨ›·âµC_P™CiêVÑôNÚÿchûwˆ²oÉ|I{ éÝ´ûº¸‘¦´í=šHÐH~جxº>ÃàùÔíSƒ¯B³3KÏÐÆBÚ¶žº9 ^­O³oo §WÑ¡Úÿ9íu/­× ænÚÁ8=zåææ^¿yö ¡ºÒz ²$Íσæ•yêΧƒþ½æ•ó÷È\äô§tø ´cÏÓÑ=t¸…FöçP—·L]Ÿ¤>¯ÀÛ^L®Óš-tW!4‡×ÑÔר{Î{¾ ƒïÐÊ2¿BÝ<ˆ`ýJ©w«[Bkc´æš¸‘Æ/Ñé·éé‹tüïÒ±IG7SÇÔ3E]njÐçŸx =µFú´÷–åþÿî+têû'4û"=ZN³§©æ‘ N]ŸR°œfæÅu´o'íÝAu]ß%¶o¢uké±$-/ ¹la~ì«%to’.¤G¦éÉ2Z»†&Šh{šv¶A›|’úüß7 m¶N÷^Ë\£GKad_ú=9WyiŽN?!ºó¨3_ˆƒâwįЩ,=ý‘ø tòÛt¢šŽ¡úó=£®Ï,èç“{û§šó‘YA#ýC´w\ìï¥=bMí¥‘{ý+´®„Æ+¨û9ºœQ¯qç¨A=Ÿw}Áš´é:m-‚¶û]Qî•\Rð­|hžŽÑ· ¨Ìƒ´™!é_xŠŽ<mG!­­§{’мU²¸'Š:3«éè1:þ/è™8´ã¿Cså† ¶´ÑC›©Ö§u/£­«E¹7Óùl:÷¾aH\NÝþ.¨sWŽÓ£%Tók}®¶W?nÞNPÎÏõ\(¼o~šß7Äèë3Tç³ȇÑõ¡¼'›*¨Îår9‡ÁØ4• í{‰¬;úfhª š— õ9?]U´vˆXÍÉrÚYD»¿ mÛJÚ£;¨)µŽÜåå›g¨Û÷z­;ÿóš-–ú}¢·õÉsË-Oôs¼¼zß¹‡_EÖÒæ+ÐŽvÐþš¼@[6Òº=¾”º9bAWÏåÕ\U;q˜öSÍÝtŸG¯)¶´û1hÇß§Ä»—fLG_¢~>º×åÅ5ÿ7³’jÞfï1šÞASˆUâ=ÔÍÍYÐý9;êióq-Õó=Ý£ß3Ðä‹ Æ é‰´gÿø3ñ:þââŽø}êuñsñ’øCêÎ ¼‡j}~ÿôœ+Ò?ìÎÝR÷Ó®½´õ*Õ:u©#õ ^™gase ¾6Cõý¸'N]_FPë\]\ðOÌOçéB:úc*õKÖÍ!ž8O%?’;ës|Ž‚Ë= vï¤íIÚ¶NtŸ›Ö Ú|ƒ6Š:ÇÛÍ}–Å ù–øÆ<=Z&&¨ëKº¹OÁöËTsìÒ3ÐNý=}žNVŠkèÄ=t,->FG—Бz:üê뢃EtàiÚ?I3±Åíé¥~þI˜ƒ²¶çÑ–Úd©Ë#¼¥Z7¸¿€º÷fÄßÏ£ëidÞ­ôóн¯Ïçô9 ^Wç<•…¶ÍÐcYË£»XͳIº»Œ\J+×QŸ›áuu‰Á¶|Ú§Ú×<–ë76§‚¶c4ÏYíÇÒõC%Õ:6=—ì¡7¨Ë¹Fι i}Õów¿¬´twŒ~/š?ß²TçåÕÚ¼Ú·Ÿ¦“ýtìCšýÛtt)£Ã•t(C#çôIÚw?ퟠÝg©ÎÁk™¡–êÜ/7Ï(«¢¯úJ õ?·þç8·mYpWLÌR=?tu3A7';(ÏS7I]ž±×º|Ì`CÔ\f[¿A4TÏyêÖS?ÏÈ{väK:ô(M×ÒîBÚÕ&ÞG;®Ð¶8mYE›/‹é#Ë£'æ÷` }Qü¶…‘ûÜ­%Tç«ÕÚqº:@¯{¦cÔÍù IPÍÛº—š #çœî¹¬¹H]}B°: už½=û;tüsšý¿è`#í9H;ÖSŸGàõsIý÷qt4oº¯ïPÚÞFˇæ•<šp÷²>gêÌ¿›jÖäFñ¯Ñ‰'騔Ø.®¤#ûÅ•Të…‡ÖÒþ‡Ew®˜™¤n|°÷)ÚSAÝú$˜* 7ùmž¥My´f õ9•¥Të]~;šÝYZ™Gu^Íñ2hWæAóBŒj½â¡r*}ºo3-KiòÚý(ímÖåÞk§é‰¸X@m¦‘¾÷ªëùHßGÍ-KÜfè†Ø{'í»L3ûh$¿ÿ:ò$Ý">C³ßŸ³âÅ?£cgÅÐñûÅÿ‘N¬E¬¡“Uâuzú¿Ð3oÐé%â¬è~Înt>mjÕA5W:ùíÊÐôOhß»Ð6´ÑÚs4¾ŠjÞë‰RªyS‡ÝŸÛ÷9xu¾•ËÙ÷šLîž× æþý…¹¹u£Éºú»ì«‹jë«©æ0ižØK÷ÍQ_÷ëîI‚šÇ£ó¼Aãçýz‹b´4I_ËÒƒçé‘ß@ë«hË&êÖSÁ®Ú]N{m_zq{¾¤zÜTOŨœÇ™7ãô¨¡îç1xr–6m .ß8ضšv=E{ªhß;Tçk m¤£ãÐ>@]?UÐçtz}_§7ׯŒÜUÐÃ3ôè<=•GÝó!èæõü2¹v?AÓ_¡½k¨»ï º}‰×vß í3T×ï>ŸÊ›XEõ¼µo[OÇ×AÛ¿eqûöÑdœ¶.¥u¡99íémt"MÇþ„fÿ IÒá9:xžº9oÁÞiw–¶­¢×hÍUz¨Šº~v¯Ùjè®z<Ú¾k¢ÞJÝSêQÚ|•&JÅm4¾êœg=/Ó²|ú}Cu~¤[y͈GʨëG v¤©«ïòÚl M?I“W¨æÄ×PÍiÞ=Mèúƒ®ÒkÛ¦Å*ÚôÕýýŸhžÍ£îï=èÖsÁC×ieÕ¿ÿc³ôdœº>õ`ã,m;G»6ÑžbÚ7Ou¾ãð*:zÚ3‡ééZ:y¿“f{©Û'.¸ž¼K3ëiÏ$M]¤Éå´cšº:û`} ÕÜT——â5¹kÒµOfäÚ6O[ iÂÒÆ!êr|‚'f©Ë% jae†v@Û×RÏì}µ š7²Ðö7Òº54¾–;O]zp1Õþ ]ß”ºkžÈÐÃqh3›Å4q‰Ö@SQJS•о >çÌçž½Y#9¢j×8m:Ë Ÿ£5ù‹[·‚6NR7/ Øuí{„½Os×ÇA›ýyÚ£šSísº¼ZWrÜBóT•¹ö‘º˜fCÛ«¨æ$Dæ%VÐáû-êò“‚}Yš,¦:Ÿt¨à¦Ú˜…f·˜|œŽn¥Y÷ëeǨ»‡ðÚ¶+Pëg¬ÏÃöÆ³Ô ˜“WhS ´S¿A'þºó¾àèZ:rž¤_ÜÆi±˜ößKõ9Ûý5ÚuŒvn¡4Ò‡°’꼎ÚbZ³ šê™ßÒ]JÛŠi£o£ç¡ñ÷à^wþçµ½µT×™jWŒ¶&iãZS!–S]ʺÛ䇷VûÊkŠiÓ6Ú¾‚öÜMû>£ xœºz± Ë‡ Žý­ÅÍì¡îùìv¿»gX°\Ü#–Òúrêó­zöPwl¡Úçáû¤½[cД@;Þ#Ò±]â×höëtxœºyç·4sQü1Õ9§=©Ï¨¢É Ú1Ik¨ö“7ÌÑS×·¢„¾‘¤[ 4ÏÄhî_[ÐçÏ{wå‰%Tûé½UóÔåC]}³´ÉRW윧îsp+m|#ŒÌ!j¹J;ó M>Ak—ÃÈŸ§m–vß#ýâé TúümC‚›¡qúJš—ò ‰;èè}7×=WƒšëëúHíØiæaª9[ý/ÑîϨ«jÝR]4£Íç©ë7ðÚms9Ç?¡Ù~‡ê>­oíÓÕ´ÛÒæe´vRÌÒšI¿ Í‘hë–ÒØÕ¹µÿ‘ŽÐì/Ðá³bœ ÑÈûqÕ¹³É•´½Œê¼3#?ÖåOu[…¡{ó©{Nåž*²Öºˆãëh]1uùï^Ûó Õs†x)uuŽÁXŒîÍ£Û èssTÏýŸ5ôeQÏùvŠ:—AϽ®ÿ=xÐýó>?Ü{x5=ZLMÓãWè‰yORWç¤ómLm­ÛNë·ˆ7hÃEª¹«1êîñL¢‚¶$¨Ë9 v–Óäg´«Xü˜v…¦ïwSÉW6½ÜÜÌW¨ËQZðQñ q†TÒár:²N¼A³ŸR7¿"8>A'WC[w‰V®¸¹Ú÷pt)´û’4ý#höÆ MF5÷mü?ѱJš¥#Çèpuý8Á4ó!õs½šœZB5ׯe’6,¥>Ó[;KµPû<•QŸÛêý¶Æ×1{5—ìX!uï]SW°¨vú7é™!nï§§¦Í4û‹4ó¨xçÍíYN}¶WÏê/P7Ÿ!XYNÝs;èr¶ƒÒW¯ùÕö÷c0’ åò$‚Õ›i]u¹ A‡åò¼Ö×£úúT¹÷²Ùfšü m+¢>WÅ»§š—ç¨æÑ« ÷}ÿø³ÔÏyðŽQ½Ñœùá%tðN:PMû®‹ŸÐtVLŠ⣴û~ÚõmSWÿÔ<>û¨÷¡õ“ÔõO5ǹØ@Ís2nFð`9•u¾9±Žê<öB*s?lršæÚt}õAoåÕ<ïRÍ bÇUšz†~J³¿ ­«Zð Úp šÝs´Íß×^™'yжn¡Rßgögé‘ÕôØ|Îã+hM2§«7 +iËÚµڱߤ£géÈýTûÂû׊PÍ£×ÜÍ5ì[F#98çı^\BÓŸP]ghUëZ§uÛiMšÆ/,î©Yqšºû™ËÅ"Z]JÎRã}+KwåS?·ÉЧÔýcC¿#îϧš›§n¾_ÐÝë]¿[0Y+ºÏsª˜vo§=wR¹°ímÔßßÐÞ¥Ôçñ8µÞÚNýotò߯ ªõhÏÐñÿ(ÊÜÇÑõtÄÐásâ&:ô<í_-® ½«©Û?“ÏPÍÝ«ÛF5_öÍ2úÊ 4;’ôÐ:*÷×vð%ÚYû}‚:ç§&F«§i¹¥2ŸÞ~?–ΉIú\uçýÁ-âß˃曆úç€w_ =RJ•ÐÚÝ´~í-œ^ÜÆ«Tûú5çSr=MÇ9ý9׺ŸŠ<ésÓý¶ä ˜æBÚy•¦¯ýTFÖÑ.ß"x´@\'nËŸ˜Ï‹²ßÌ£ü?,׉›Å21.fÄóâêÖó ʺSϧ]ø‚eb•˜­8'^§Õ…b±X*V‰IÑŠ³âuz"_,‹ÄR1&&ÅiqVœ§'óÅÕb±X&&ÄiqFœ§§–Ыű\¬“âŒx…Æ—ˆùb¸F\/‰›Åmân1&ÆÅ6qHœÏ‹ÅËâ<Í•“ÿ?\&®W‹ëÄ â&±D,÷‰ÕbB̈“â{âŒ8'^¯ÑÚ¥â q¸V4b±¸EÜ.–‹UÐfgi$GþÕ¹%ûãÐÄD7¯!èæ?ãÕ´áuy¤^;|'í-¤îsº–S—£|% #÷—Òç`fèËI©Ûñ9k}W¡í/¤éÕ´ëQªõøZo²ŠVLÓeÔõaz#¹³±"ZQN+“TÏùë×Ж9šLÐî“Ðf§ýÇho1í~ˆjζÎ{hÊ_Üšíâ*êÞOÁש[Ïõswp5Ý£.÷!˜—Ík1ªý³š¹‡)§õÛ©ö“6¯§Ëhr©øíú ´oo¤ã“Ž}ŽÞI{>§é ÕÜÌî|Úu•&ߣ.ß(ê2Ú¾ÖÇh|Õû¶ýsô{¢›¿âÌQ-Ë£åI3TßG'ÅšëÐf–ú¾û`±(çÎéU4µœºsÄ`g1M\§ú9rsÕƒ:êvó<µK?w¹eXЬÑ=YzÍ•#ël—Ï”~]Ûw…öLSë^»Ž¾biÉŒÌW|+\G/¥ºnÒ>°ÔÕ¾¯Î8íXEõ\®i^ÌÏÙ¸ÖæÓÜã~AÍU1>ƒÆï¼nýtýD^[»„ºó³gžê|âÔFêrk¼H5¯¨¯”…fÝyt¶ƒŽÍB;\E“9“…´: Mm5uÏ?¯¾‹Ž“}FÝä`îË]0±’jßÊQçKÉsØVçAsÒælØFS—éxnAg×äA³cÚÆ"Z7$q%­Ý 1Ÿj_±»ÏêÜEÍÇÑçƒyÔÕo‡\êœÍž9êòs½63NSõ´+&/Sw¯ÔÉ¿ŒÜõ^¤5¹u‘é»FæŒ}O,¦zï”ÝGG6/îд%Í$ÅûißRÚkhz„v*^ ÕúæÖµ´á=ªó“½¾¯R=t…Ê=N¤Ï.÷í FÎIužM$Al¸NU´s´§éøJÚÿ¼¸êÜÉÔ—´k½X@;çÄ÷hÛ$mÚN]_]ÐÝû]½Sp«ûß7Yúh šg-Ý–¤¹øàõÞCë3ZÞ£ÉO¡ª¦®4è~¯Ù§Ú ý¿9‚¦=M;ŠhWš¦B[?Oß*†æµ|Ú\J5wµjusE‚M—¨æì¥£=ŠŸÒÞå´ï Íœ¥ƒ'©›ÌZ:æ~ß±_£ãÓ‰éé¯Ó©D§…¾Ýí[ùô;y¹ÿÿcÐö>M{Úhó5±ˆÖXúf’¾1C]^Tð[Fêµâ†úúÛà ªûW½`îýeúî£~ŽPîýcgD÷~ò÷WèİèçùÉ\°ìÿ¹¸#ÓÁÕ´ïqÚÕB]ŸoÐåÝ+¯P?î>§ÞÈý‘Ë— V‹r¯n‡ŸÆåDDÔº;­»jºHqÚºž¶-§úœëÊÝÃGö?=ëèÀÇTrùmC=ÕùH:oOsK”C“»®¿¥ö-ñt7ÕùQ““Ž÷‹Å4ûŒø:üÕy’}Ub¥øõû"¯æwµOÓÄv±”ºº¤`})­9/Zç zjuõ¤ÁÊÕtOþÍݧ²³ß+¡ß24÷x wÿ|3vs5?Që†.Ѧ2êî1ƒ®®Çk{ÇéƒyмRFÝ9—Ù:Gݽv°b—ÓúËÔõ_“CÐf??¡‘{—jªy+G iy ·Ž4>×Ó«sÜ܈ ®»¤ŸÄôYéÏÓ>m·~±~¤×­;ƒÍKhÃyªs"Ýý­ž¯‡|0omŽÆ2Ð6géá+T>GÆïǽ2‡Âd>£n~vp(_üŽüfÿ)ûñWÄ@Ý9Qp ˆºùá ÆivÛHÇ¿M'¾O%ÂLþ9´¯'i©…‘¹¹®.ÁkwXhºVC;tíOÑä,չήO0¸ÍRÙ·Eæ‚»ùsAwŽ”Ü@;2E‡vÓþý´w;íþ1M~Nu£ÖGj~gLÜSF%‡Ðì*\ÜÝùÔõ¥;§©ì“lû9Ú¶6ß MIZSD5Rêž"sÕ—KèÎݤ{bt_±˜¤Š©Îw8£Ú'¤}&šÿ[·Š6”ÐæüÅäá•Ò®hjJ¼¶¸®>yÁ|šÞ#^¥=—iïÃâó´ïGT÷ÝÁwhÿñ|RÜ'vСõâgt$!~B³Ó±añŸÑñ6:QBOÿ úºøšØHÏœ67l!_Íís‚Mkii 4î~=Ò÷¥}5Ògɵ“{{ãÖÇ^ëæ‚u޼÷h’¾ƒÆåÎxíhí{ŠvHSsT÷ÛÛiÛŒh©ÎéhXOë.Óê"ªsž|=†[wG/Óö ÐøóïSîëÛDGêéÐ%ñ~yO£ÝÒäfª÷!‰yꞟ·Uæšççrºs­[iÏý=§š“yúŽÅÿeš¢#Utp–öWRÍ·m0Tê³Í7ò }û¢S):9J'þ©x/ßKÇúÄoŠ?G³k©æ‡G\N?St`;uûƒ?ÏÓ¾gÄüÅÕº‘žÇiwš&¦×©ËZpˆ6­£ Óâ6z|V,ó¨ôáØWJ`$G¡6m[•ý¥æÔšÖ4MNÒîÚ»“J. æÄš: íÎ2hž4Tò!#¹‰u´ñ=êêɂڠ¹I‘¥’Å}M”¹xæ÷ó¨ï‹÷>£/ÐC³´ržÖ ѦËÔÛ“ù´ëu÷æ úýˆÞã¸õ]χÔç*d!8èÞ/ÙÅY!~•_¼ÛèPÛmÜ)æS_¿äíOЛćÄe´ç$mž7,n]–?O]ÎB06M¥¿%òóx`Ú¦-ÔåöÝ<(o4 C]SP÷i^·>6o¦íiÒЮ“4µšºõg0}/íyL,[¨›Ì,eßÕ·XEÎÓá{èÄŸJ›ÙN÷Yh¾Im 5ß/¡¹mù‚®"Ø¥­¥âv±ZLˆIÚvº9ŠAW÷Ôù4]–¦÷ÑLžx$é`µx‰çÓ‘6:ZMÝz.8ñ|›º:“àÔiñ?Ó3î|:yŒêyµö»1tg šú4,¯C[_!ƨëÇÖ¶Ñ·¬˜„Æ÷Qzu.s¹¸¯úþ¯ÎmͧnÝì¾—Êý¹Î´e†¾lECs×,AspVœ£îÏ©ó¤,Õúüd’º:¤ ô¿ØÞó´}7ø •ùL¶)Æ—ÓmšíâÁë4™…‘<¹æËО=F'7ÐñVš™¤šsö¤oÿþ9zæßÑþGh&F{ziê]êëÒ¼Z«ç>‘9ótŒî²ÔÏð~3My!ÝohU1´§ãt¬–j]ºË)öHs§]_Pû„´^úd=Q@cçÅ ÕºžòyºÙBóRŒº9¬ÁÚk´n3uùÝ^Û³›j]€«ójÅ© Õ9ê¯åÑ¥Ô¦Ò‡nçiGŒ¦ÎÓž8ÍÔÒÁ¡m»Hë6ˆë©ÎW©ÙH]ÎlP÷¥òè®,ý~R,¡¥Ðø{Eïá"š{=.Ø~‰êú9ùí®¤®0Ø{…ö¥hf Õõ®Þ ßM³¿íøuõ€ÁÑ|:ò øR,¡™ghß§âY±QÌ£¾žÓÛu&S´=K]VP÷y>!6Kß( þÚi^7TÏ#Ž&¨æŸé<¸ö Ú}•zP;ðíÚJ]ê‚iÍ%êrì‚Ggè!Cu®óó4rêtõÁ­%Ðø¹ß^?OÅ«óëOYš˜¡­YšBu^gæ´§;é¤;ÏxŽŽ7Ó±¯Òì#tøC:ðm¹H5ÇÁ×ÕÞÊ–}ârhv%©ÌI±'cмqcÎʸû{º—fëiä|ý¤˜Gû¤}—iÏ8}=F5ÔåÙFæ¹ùÁKEwnrä ´1Zÿž8DÝ>)x I%‡ r^\UN5ßÓÍ!¹•‘>ŒÉOèÄKtì}‡ºÙ`ÿÚs¦NÒÎ2Ú,®su/ÖÕ¯-¸•ºúŸ ›_ì¸@ݺ-Ø|•º9ÐÁÆ2Z¿žºýF0^FuîÜñrzdšê=RîXiAé—´¯ÌÓg,Œôý}'FuNæîêû½1Ñå³Ý9|ðduùRÁÚ ´îm(£MÚQW÷ÔùIîœÓkvB{ú¡ãeâ‹?cëÅ_™¶¯ƒz¯kÇ‘Žý,*£®~3Ø÷9Õ\/ÉÃ3/$©;·÷Ú®Ü9›Ý]˜ûß}ÚdR\A³ÿ†Ž|AuÞövî£úžm[F[ò©æIkŽÞ+¹:…`îÛÔ9Y¶¿Œê{|W1üGâq è¢ã Q¿c4û¹ØEG÷Ðá:4KçiÿWhßKâ}´·ˆj_Q×YÚqƒ6ÎцM´¾„ºy&A=Çx2F]KðÀ´8GuÎUíyÚè~~[hÛ*}Â&uö¼íØsÔ,¸—¶¾Gû¨ëç ¾ÏYæþ»ž÷¾hèkóô@œ)§z~ôZÌM”ûŽŽh'Z¨ßWú¾kÿ÷ú| ÚúYêæo•R™{¯ó\íÀû´¯^ÜD;ê©Ö£T\¡CÑÎ$Õ¼¶–IÚœ õ7¨ähYwžÔ{öÜõKиÜô`Ý>êr<ƒ©'éÀ=â ´£©ö ô'hï4ínï§ÚgÔ°šºy|AW÷të«àö4/‹šâæ¶«æiuœÖÔS—÷Ôz¡Î´IªõR' u÷yÁ}†j½…ÎSxÁP©0¿#ºþ ?_ôΣ’¯oŽªs u.a|%uý¦Á¦ê:_¡;êœT7‡Ûô¶ÑÁtx=#ë(7÷nÁ«4Ò7e`df*C{·Âð~u9A·¶,÷Ï¿ý»ôÌ«tjüU:>DÇþ±øÅŸ§ÙÿDGwÓ¡ t`‹øÚÿŒxÍ\‡hd>L9Õ¹Úé|êê‹‚íóÔÕc›Šhü:õ÷WÞª2êΕ‚Z¯•[î.èß—¢ÉUXÐåÙ#ŸÏ Ô½×¼¶§ˆº:ù ¯ÿqšÖU´o'´=wÓ®2ñk´#F[6ѦÔÍS Ö$é¡rZVÍfC÷PW_¬ž§nŽxPçkþ’Ë‘õZ×çã5GVCÛó¾xžº¹ Áö%´í2mNSí3©* eÔÝCu;f\ð›¢Î{Ñ÷¹ïËòVÞÂcsôÄjªóUk hãRšX"ÎS—7lÙ"^¦m+¨{Žu>uò#š~X|jQ­¿‡ð÷ÉK´{„†{Qÿ)ý¯½þÓíŸÎ~ƒNÿ+:þºøKb>»$þ"_ŠsâNÚÓqå9—®¤Ýóâ§´}-ôVÐãIº¿˜þ‰…ÆÍ]*¤Õ«iýFh3h«{^6ÎäŒ' 9TES?„vh¿ûõ>¡­%9Ýçàÿ5«¡94OÓIhÏtÓ‰?§câq:²–öÍ,n÷Onã£Ô÷gÝÊÎóTÏ·¿+êó1±”¶¯† ?ç¨Ë êýÌ@šö,>E#ýûiïYÚóUÚ=N#÷"rzïÝvž&6R©? êýÄábªçš/ÌÁÈý¶æ)|7îUѺ5´e3MÞA5AïŸ3?†¶i4»æ©›«þ`u)mpÏ­®;ÝŸ£–ö¼ã”÷Ú€Ûw ºz—¯°à<i„z¯l\¢×Ží «hß%Ú5DµÞ­©˜Ê<“Hºšö}’J»y+KŠñ ÍÅ„/˜ºm|µ¸ ÷9 ê~¿ïKš‰ÃðœÉä~."uBEô@§ËéÔ¡§÷ÓÉŸ§ãÿˆŽý‰ø·èèV:TM>¤ýõ´û]šü‘xm«¢›©›ƒ<œ .çÑkŠbÔõqë¶ÀÈspäy:8@µ?ÚÍm ¦ÏÑd휡íïщ‡éè‡âWèp½¸ŒöQý|ký@ÏzÚu?MÞC[–R·Ï ž,—RÍyó¹}Þûi¤?¦î MÄhê#h'Úèè:©S¿L5W«{švå/®þ}5ÏÑ£«¡9tž6ehª FæîÄgéþ$4oÒ£yTÏ O$hmáÍu¹äÁÖ²›™Ãñ8M=C{ö‰R+u¬‘œ‹ì·©æTN< íô:–¦£ˆ‹k©Ëç ºs© Ö½PMÙ<´ƒ;iê.êæ¸OT-®Îí=’¤¹ÇÜ‚Ss¢œºú¸ ö¿»zž æ»ºu¶7R‡çúl¼æh­8O›&i×yšú”ºy[ÁžÔÕ/ÎÒáFh§_YÜ3ëèäo‰—ާc—¦WÐÎ61&æÑŽÝTóÊ¿eè1KOLC]ß™7Jhª—Ž® §ÿ*´§? eâË4¾šÝ–¾U@ýþ%^@k sÖç~ãæÄ—ÿg:/Ré7°É¯ÒÖÕ|Ôº‹4^HO®£Çâ´2FÝ÷Ëkr¯›ŸŠÑJhe1´ãoÒÌÚ{¦ËiÛuZ?COº÷ñqKPÍS÷–%©Ô?Ø­4ò÷¡sÜ+ЍûsxíØß¤Ù•t¸„öÿV/¥•UÐTÏPcáÕœÈìW逡}×Å'¨ë vn nÿŒ•C­ã3‡goªíÓ¶«4~YÌÒçé¡KR=ïT÷Åèë–ºs†à÷,uõ·Tç8{sË‚`¤kO1´4¹…6fhU‚êzã-KÝÜÓ`s’¦/AÛ÷u÷ãÁT¹¸”&/ÐÎY1IÛ¯ÒæyêÞûÁºq¸š‹Q­Ÿy=K¿ƒ‘û¦W é[eôP>­œ¦Õ†ºœ£ÏÓ“óÔÕÁ/S>ב¤Éwh÷{´¯‚Þ mÏ2š( •EÐø¼C¯«ôÚ3ÿ+Õós7·.8ô¹¸ŠöÇÄ—¨ëßv”ÓÄuÚ¸‚Ö•‹†jžÊ‰zt–jýùKÔü‘èžcAÍEÑúpéï´Ùvª9–ÝKhÍe*uxæÛ†JÞŸýÁ?Ó³¿O§ÿ==s=]N'¿BÇ'ÅW¨›Ìþ ññ—Ä_ Ã—¨ÿœxûìâöÑž4=K]>W°ëGTŸ£ZwØtƒ6n§nnU°n#­‰Ó²oÏ+ýaÑ\¤$݃f‡øF>Õû\Í+qýêAíiÉÐdí>m÷1êΗ¼¦*ZŸ[åí^AS´kä6n¦îü+x`Ýo¡Ù_H+’â=ZL«ó©«£ Ö–P·~ 6[Ú5OSOÐôEÚ÷ø€_€voŒú\­G–¾'s #ù.Ÿ:èr‚r>l^ÉR­/Ó9ðnlŸ¥®N)èê9‚ý×ép•¹™Á±*:þ9´ý_£=Û©Î[ï4´e%mÞHë–ÒÚ ªçÄzN¯ëÞ#Ké|*9ÖÖ#xÍΪsÌâ¨Ëk ¶%i×½4½Úæ2zlÅâ\*æQíÏ—ºèpN«9Üÿ°ˆžÈP§_B»¿ é"Úó$í½ƒö5'Óø¹*ÞƒqZQLëŦ ±Šj¾•«s¦ÚhßrÚÿ%XB‡·ÐÑy:qÇMµ‰õи÷§×º>¯©-¦ZÇž¦šW>øch×Óã3Ð[æP:]ŸOÐ÷z]jÐå ]^_0§OÑ‘,o‚vê˜øsôô‹42—gus(ƒÙãtèq:X)JvÿIªuR½U´gíÞ´¸š¯Ýº…ºsº`c Õü[Íí«œ…‘¹¹¢=ý?ЉÕâ_¥ãiö¯P·>öo—Òž´ØHSwRÍóð¾ƒæÅ$Õ÷‰ë'ôÚ±|:úZB}‘·7MÓqêæFLÒŽY1Ÿº¹ÁÖÝTç’h¾YÝ¿A%©Ë£Jn¿ÎM·/ÏAcbôuC[êæPg©Ì;·£Y:ò‘¸Ž·Ò¡÷é`1ퟣ™ŸPÍ#Ö|ýžýÔ½¯ƒšCÙµŠêχæ¡ký•Þ²b–úsã ‘9Ö¾ÿSsÑjgh}uy=^ÛS#}Yqêæ ›®¯ÂHnSçšzŒjs¹YÜÑ‹t8F‡ê©~ÿôžOï×+tï<ÝUÍwçh©¡¯@ëú¼Æç"{›×S7÷6¨ý…®ž;xd3Õ{·oZhv&éá¿H“Ó´«Ú³§éx©øÔõÿ1©+ Ùjé«%´Æ=W'¤zÑYL]n†mØ@Šô­8Ý5G¿ór_çã1*õ¾‘óðû¨Îeïý”¦—P?ßVO-­É£• ™Û­ëð–ÝT÷ýn~B°Ëõ¥¸œ‚ßߥÝï@›¼ƒž(˹3›ûçÜœ`MIîÿ×¾çÌu¹€‘¾PéÓ3 ÚìAQî¡GÊŵth€ÌÒ¾G©Î…ty‡Á®å4YDÛ²´!COŠnžN0·ŒFö?GfhšƒmöäQŸszªÚÄnª÷¬µeâ&1ŸÆVP—|unQMlZ7OÛkʃvü¯ÑÑ/èÈçâþÅ>G‡¶ÓH®–ÔŹù… ÞE3)ªó{kÅ=ânÚ3KÓWh÷—ÔÍZD»Òb>MN‰÷ÒŽR±$g{u9¨Á¦,­¿Dµ¯RûRã+¨ÎÑñ}ÞªëTë-Þ,¤¯Ó]qúL šÜ_Ç‚_Ñ—,õý³ÞùtWYÎÝÅôð<õ¹ÞÞÆm´Fr¬[ =QH_χ‘õve>myºû,¯M¬¥ñ÷hn›±àC¥Þ<—¤Z"ÏS£5hÓ<ŒäyÔ¦¡_OÝ}]PstÝþ=˜}–Nü6´ƒå4SO{bÔå;7Ó–RZ‘n/¡‰eTç ßO3;hÏ=‹›z˜j½gó9±€ÖŨæVê9ÿŽ9úm Í£1Zf©æZÆc´quùÁ¶Í´ë+4UI»?£=ÏÐÞªóEû Í¦£iÚ™]Ü–õôH!Ý]"R×ë5'6Ó– Ô¯»ï¤=3Ðö¯%ÿ¢½„j]ù›qh^. ®3xh3Ôs Íq3.—4è¿ÿqÚ9OS_ƒ¶wmÝ  æ-ùõ¼××3zcUÐl1ôÔRêrè‚zŸY×F›¯ÓänÚ] õÏä~¬Ymã ªyJ:ü÷b0ä"{uÞ`,Fý×åä%-¡®>:Ø”€öô&:ùŸéÄñUñéw,ôçvì-ÚèÖ™‘ó¹Ü߃=XÍǨÎõ}ð:_$¹ ÚÓÓñ»i¶•ú>RïÐñ=ªuÞjÏšÞASOÝÆGh×´£pqÛëiëFªs®4÷9ò~ÜN7Ä$­»ëhÛGÔl§ñõ´ÚR=7ôó¥?ƾš¥>Ðéû~±„–Å¡=óÍþÚ1Ÿ3êM–C;^@Ûô™<º­š’¹›»Môy^ÍÕ9VLkæhb´I·OÖ~}w>uKOÌÓ˜¡%±›[˜Gý9ØÓ¢ž·z+çhÍzZ;C]ÙÈ'tp»¸E4Ts²ú”¬§:±¦ˆj?È>Qóëž›£Æ Éý1tŸ¯àá Õ: Wïl{ví¤éÍОùzúøËt쟊Mâ}4Ò_\NG®Òá;éP1XM{7.núNÚum+¡«¨æx»ú™ æ`ä^à ê¹Ã+ÅÔ'åùcþ F]s°*»¨ö$uó<‚:oøUQû“ôO =z/¦µCÔß»y›+ÕŽ'©Ë»N­¡UEд»÷¨Ô[š†åTòík3b šF÷<ê¹B»óir+m_J[K©Þל*¤‡,-£æóè–Ý;÷ÓYµY,¹©‘ù¬¹eê‚>ÜiË£nnà‚qú†¡º_«œ¡n¾y°v9­»F]õ‚WhCmZN–&wÒ®éÅí¾—¦/Ó¾ÍÔÕÃvPWÌ> Þ cSÔåÞ'×Ò©!:}ÚÎIÚñ³÷÷áq×ù}﯇8‡¨Ä!*q¨BªR—¨Ä%uÉ'¬C´ÄKµ¬—Õ²^v0´^ãFa„˲,˲=ºÝÏŒFÒè~tc[°.ù”8Ôå¸T%.U·.Q©KÕËÑ¡Qˆ»ýõºæýùÌy¾¿¶èžöœëw®ëì?‹ÅØ–43ßÏÍûýzŸ¥ÝËTrè¼­[¨ä­xfid#­K¯¬î×ÓÊÜ#§yÂPW¼¿˜V¥èá ªß?úó²a†6Ũäq{{Â4‘OûŠ©äzS)÷*媩T¹Q™«\Cu½»ž“.¹Gúü:à‹KÔäÀÀ:¼¬Œêþìòúb!­,¦ ©äDzÝ=` ß©šJÝ™·u”¶§•—h÷Ze)í¬¨=U@Ó?IÝùµ®Wê¢.Ê©Ïíô"½ïˆ¿Gu.­Ìñ/¦esô›êY…id†¶äÓÞBªûn£ÒÏç´3÷ÒñZe±2Êü%¯›«éÌkd}€êª[º¨î›I^¥ªÂÔœ§r¯àmØIy,§içešØF§²›Îl…öÅbª×e´ó*M®ƒv°Li”j¿)ýH7TÏYhݸ²-I*÷7TæLxE©š'›5ö©Ñzª×ëROê•ú4o_-½ íég”÷ÒS/Ò™Ïèt=úû4=GÇ{èÈ,M¥>Ç(íÿ‘ò ô“ÍÓø»—ê÷½ôÁe- -«hdQi”«éÉuy+^µ/®›£2ïÚ»·Œî´Ðì6´~¶4ÓÎ+4q´c·®ìè¨Îwpu,®®EçŠw¬…öôÏÒé?¥é<:ñ }O™KGÖÒ¡:ªó-ú? ‰KÊ54&¯[]ïÚS@»vSÝÇ*ók¼‘Yz¢–Ö•ÑC!Ze©®ÕyÜîÞÄYïöoÛhÏNš¸ÚƒË4\D_ÓÌÇVÖ|jvú|}!Ÿ¾¢¬ŽÐº*ß_oÓ*ó;¼Ò·æí*¢±2*sT½É(•º(ïP5½DÇ÷Ñô?§“_UÆèÔ·èô«ÐÏ'õºßNí¥þ{5+}¸™Ž^[ÙÌ6*ëÐÇTæ({ßRVÓeå{ÊûiMîRÐ>K;i|7ÕÒÞÕû‚¶fe5m¥³TÏA’ÏeomL¥ÒGíÕ})//Q}ïåï¿ò©ª¯<÷´zöåhžQWgv£z³ƒ›¨ÌðúÄÏSYx›ik.m+¥²®õêùBºÞ*ö!Õs‡û—©Ì3¼‘vpžöBãŸR™ä4e¹Ê|ªrŒ;gvºyÌ~.sÕù:'iãeêrŠÑQÚ‘GG®B+sˆ¼º¾vêçif’õ•0=ZA%ßÚicQ¥ºÓëX©ÃòJݤ÷@˜–ªï7¾&nW¾¦Ò¯æíî¢úœMòj³æS}~Û_,6ÓAyŸ¦f”²®ÚKÇeý’–çV²ŽÊý´3pÙ¢½»é€ä9 l£“kaàÞ5¶‡6J]Ìçó¾šO3±©^ó\Úï?I_ßM§éð2ÕuÚÉ•s!ûbýº¡õQªÎì=9t2—šo*%§Å«÷mè@Ú¦<­\¤Ó_§3÷)[陟S>õÙÒ7ë4'#[¯Òö•:Wïd ê¹¾Fê½’ƒí´ÓWéðYZ5KÕù²Ù¢î¹ úsGõ=ì~ ç·c@;ùš|“vVBó|.íêü@ÓºÚ ´¥éuÚ‘'¨zÿ˜§bTî½­géá<Ú¸Q™¢Ïç 4°?©§ƒ'”çèp½]Y ÜNÓ?¤S¿H§ÿ3=]F3/Çÿ“ôõýþ:hOm zQú¿›ŽÜEeç ÉbßI{­ríÚBu_zÛºëÛºLOäÑZ«, 9ì–VE©äš{õ|°Ò4ó8ôšRe`^p-•þo×&hÓ}TÎg½®nÖõg¨¼v[)J½¬wG>ý–ü÷nýô¥¨žû{hž)¢ÇRÞï-…ÐŽ¦iÛ"42×ÜiOÿ Õ}¬¡ ÌWÓJŽ‘·¡‚¶Å¨œËzuã‹´–¦ªéÈÃTî¼é6:uúö_˜ƒfò^hGÊé@Šêóý<”º oÃ2•ù*ÞúMôH)}uJ?¥÷+ah¾¨ÜŸ^Y½ÏÓõ-)*¹~Þ¾­ttMêŒ,ÒC«iÅÝ’³²z®Gà|¹šöm¦‡rh /? MæmUߣW–Ѫªçð6­£Í«©ôOx{ª©ž˜X¯,P¾Gû6Òþ[©ì/¼ƒèðÊ{—¦^YJ'ÚÎmTΉ½“gèè:šÊ¥nN¯SÏëÍ£=e´}#uõrN•¦çaYé×ðV,Ñ̵‰×”Gh¸˜6l¡’Çìm>O%ßÙÛsŽªÜ“ì¡ýïÒÁ|*}ÇN;ùÛ4ý§tü"M)wÒø6;OO¦¨ô³ßЗ”¹Tç…ê¾€ò%ú¬¦4L« èáEz$M#¹´½–vfþ¼éÿ¨|€Ní£™Ø°¬:j`½­ÜIÛWц\Z“†FrÛv¨Šê~àfeSf]8?/(Ë”…ôU ÜsyŸSº|~—׿gé©:ýMÒ±j*û2oræúÆ£´»L¹‰¶,ÓÃùô)÷zÕ9ôd-•\§+§™²–¬ºSò½áRúJ!}>Ÿ…a`Žæ‹1*9BÞc)¡º_NúN½]ëiì#ªŸ³rÞᜡz>ž¤éw¨äÚï„éôsTŸo FiböÖCÓ´™ªûÖ@>BC4Ghƒ¬{bn=òÕmßíÄy:øtç[öô'Ê6å7é©råítæ:U­ü:ùwéÄ}t|µÊýtè*Mm¤²>ó&RÞKû†•åT÷'Ä¥]KÔå—9ÒÊzªûöŽœ§‡”ªoAï LÈнaZ¢ÒãmIÓÎZ*s¶/4¿“C]޳¦€êyôíëiÏUËÜŸ›Ä•ÿµÊ|§z—ÆîSÞC»ó¨¼¿½²òVF ùͪægÛXˆF+¨ÎÏ×÷4’Ë—µ–ê†má•uùÚN}Wf¨žÃz|žª~BÓTI›—hë9*õJÞ.ÙWÅc4ï r’ûï ƒ·+/Ð!CGïT¾C%É›¾D§^¢Ó³ÊÿDOý.´]«hËEe=m Ý¿¯ëþ¤oΫ?,QËzØÐãËЦ¿LuNÚˆ¥ÃïÑ0íKP½Ï’ÏŸ¬%Tõ3ÛÎk+«ûµMFY@#Kôdhe§Wö;†f–¥Þ@›Î7ÔõøÚ TÝ[™6Cã—iòm:|æ=6£RÇè´#«©ž×*óJ½ûÊ qõ®7ò™ºGy2M¥.Ü«òÀ÷.R'â4™eÏß§É÷áì¥r¿ä=³—žj¦ÓOщr:>@SkhW2ŸvæÒŽM´u5m¶ô„¡:÷ *FU€)Ÿƒ6U®ÜKOOÓÈUèÿŽo†vjŽê¹H¯Ó7ŽÒÙ_¦§Ç¨ÜGz'? ãûéXLy +o¢©7éÀã´ÿ#šHÓø€r=í.¡³T×6Ï*Ó´zþU:4OeÎGÖ·•·ÒÄh|™êó 7gÜùÚ}ÊÂ@.Òñ0m.‡þünoæ×Ûç 4ÛD7ÇAÖƒ^÷Ü?SB§«èÔOÒôQ:|™êú¢6ùyËü1§‘:̬sôåØÊÊëÂÒöfÚ©ìºD»¯R•§cb š¸E¹6ã`‚¦ònàE:ü:ºŽÝIÓ9tò7éô#ôôFe´Whß%Ú³¤,¦’;àuueNÝÿ¤ëy$gÆéë•9Tßó¶•Ñîm´gM&iê#:œŸqä-:~™¦ÇèäíTêݼnþQe˜Ê|Cï× 4®NÒY¡Õah‡,m_­TçÛz.ŸÎÍtùïÞ%*÷ÞŽ54þ¸D‡¶@Û^A£K´­‹ê¾ófå±\ªÎÑ«ãvº\$oˆ) ºŸ²y Ì-ûq•¾õÿQÍøVzj¿ò陟¿®þ«ÁFÚ¦ÏÈ÷GçýþÏérþÜëyÌR™K–u=øÂÊ&žXÙøªóB²¿óêïææ•m¼HkË”9´zQ¢/—Q¹·ôªþÁz5Oeˆ>cè‹áÏqêù(òs¿¡­ÅÊZªçrEÏ~Ž”sÐN•Љ‡©î›êÿöÕS×êŒ=B»ÊiKDY«Ì£2·Ú«ÏëOÌ+ÓŸãjªsKj+¨äByŸ7TÖ9^É•r·pJN•·rŽÊ|`¯®Ëî¤2¿Ø›¸—öçBÛY@›/PWÇ(šçä먻¾Gåu~,‡Êù—·y7´áyªçb|7DŸÎ¡O-À@ŸOC)•ó oW„Ê=£·oMÓhgÖÒ©7éä³T߯§~Dï¦îÏq&Ju¦ç¥ê{ïÎTú¾½zÞï‘bªër%gÊiÊs©«û;\Ju>ˆî£Uó¤L× íÉW.AÛ¹L[ •y^5¿Ô¼Vri²Ðð24¯*¹£NÛ¸•ÖªÖ÷ÖÕ{8%wÇižS}ÿ¨úŒÌ§ðœ§GK¨Î;nÚ½²rnžu+Õ¹;™XÛ¬=†ön£±ÊOi¼Pù•œõ¬ ÚR–+#4™£\E¶ÓT’­¥#[”ŸÒQ©Û]¤ã 4ýï¨îgšù*=õ²òè™§éûVԞʧ:×r¼‘êù}};©®ËÒýÌz}ªçæÕUP©Ÿ÷fÚ‚²ê{µLìIV7ïËYmiC1mÑKåsÙ+}ßÞøªóÔ?GÛ½D#iª?ß]‚óqC ÓßÎÏ£ré~CåÜÝ+ub^ÉCñJÞŠ·áü \¦Myÿ7»@Þ‡ùÌ™ãB¯qûsgU1=¹ Úô4þ#ª÷{ %Tî½ÒŸí4Ò×á=XDO†iGZ©çs©ÓpêîÆî£É½TçoKƒWß;Uêòñœ; 42'ÇÛXIR—Ö×CÇVC{h‰êû…gCô™ äêyÀª®:8¥‹ÆË©Î‡ë¬§íå4Z@%7ÙÛ|™Ö‡iÍ2Õç‡RЄiãv*õ¸Þ.©ÓS¯/¿Ÿª\2“ºöÿ*mjM P¹¯÷ÆÎ*shÏ .ÒH)}ÙÀÀû_ö^¹ŸtÚ™·húo¬ìÄGTê²¾Cu¿csM®¦}»hÓýŽçhÍ"­W6åC;õ4ýkt,D‡7ÓÁqÚ[DåœÆF ¯¯Î#t/™ã­[PPÝ¿VµL_[¢º¿Dê­¯w Ñ—ÒTr|½:WÿDŒ6¯§m›©ÎcU}¸Fî罉½´ߊÚò|hòs¨ÌvÚôªëŽûhÏ¢Ò*+iÇÚ¸ŽÖ*ó qû‘ï…hfûæ5OXZšO«– •{VïäSÐõ[ÙªóÐÔÏB;óÓtúoR3«çMQÉ÷ê9M‡–©ä±xu?Žî3×9þ™3o`þnU.mÙI;rVÔ7ÓãsÊZe±2JŽcÖ”²L¹I™CW–ÐÃE´j}uŽª9å:WØgò©ÌÅðÖÌRW'íú–Ÿ\ÈüyÏÆè¾|z¢˜FÖÐ1Y?Œ½­¬»¦0‡êù2_5ôÛ–>›O÷æÐ×´)JÕ<;þ»~¬¼•&·R]ªßŸ’Ûîí‰R}^УMÛhä"=nh ·"F_ цFžï^Y/{ÔÒÈ&ÚRLež³7¾”QÍ©4‰aªû “ïR™›õøÚ¡ŒÒÀü’GèØ•ùòÞ yO<íÐ?žýoÐöªóݹ±Sç\ôm ©-жÒ¦zh–ö жœë»/¬\€ùQ©/@{ê^:óWtú¼‡ê熛‡êÔçx=å´#¢¬·Ðö‹Ê.e˜ÊÜ)o[’¶n ú|Pò”³†hã mˆÒH!Õëàº|z¸˜VR}ìöUNW¤æÔØÓëéôߥé¿CǪèðNªç$ ôPSéÖWNÉÁó¶ÑÖ$tÑê4}¾L)_ÿ®0UsPmßC4ñ¯¦±m´;B;.)×ÐÖmŽÑúb¥Ú‡J®Ó´ì¦]ó4yA”u¶î_ìÏWV¯¨•Üa§1aúrˆÖ”ÐÆóÐÚD¿m2ÿ^î=ŒìvâcªÏY£å´4FÕ½¡ù®ÒíwœÕµTç³µ†h ïà=šØJUn£®7·C«¡ G,m¬˜ž8¯,£uçiM•çœ×Ý›fÞ¶7V×5ê<¹çÓTrc¼:§B÷yì+Th›æ©îoÖçÞûÒДêêqœÍ Tr™n¨ÜƒÜØÓ´ï•Üø¬SYoœüˆž> mûӊÚÙ¿FO½K§@'ÖÓX n Ò¯êÔç”v¸š¾T|}ÇçéXÝESÐäÊÕÊUÔõ ÞH}¯Ö[K»Ó´3JUÿhð¾ –6WÓÆbÚp–FÖÓCyô`‰²˜~ÃÐGÃÐHξWß_Õ”Òã 4RDå9õ*m½ œ£zžŸÎwïœUžU^¥];•]407®šêÜ<9ôÆJ•e4~M$iß34y…ÎÑ¡):²Syަè¸<·'BÐ6ÏQ9ßpšÂŒé÷蔬W¦>P~íé[iK)4Ñ+ÐQýÜ=²@u_ª>gÓó,Ýœý\“u°WΜ&óíËú»aZ¤Ô9|ûŠ©žðZˆºç€Súª²FèIKB´±‹¶-Ñ0oò:PG·Ñ¡;©ì¼#Ktt XGÓ•ÊW©Êi53?AO¿í©V:ýt²”Žï¢ÃÑänÚ•VP=Ǭm#•sC¯Üçz‹Ãиu»³*Ÿªº3¿ Ú™_ “ߤc‹tä&šÜIãEÊ•÷ÓÞ‹Ðì̧nžõ÷ÿžz›r¶^§“EÊU4ýÇt"EGߢÃ[èÐÝtð‡tàQÚÿ í[Cci×Vh S™ëÕ¹u?¦6óöðšÇÂÐŽ¯¢ú>¯}”ªscÓ³@û6Ñþ›¡=3GÇ®QÉ¥òFgiå4Më©ÎCŠÝí™:åíôô0R*W~YyÇÊNÍ+ÿ`e'»iú”·ÒÑ™WÞISò¾HYªÏEªhòªïeû¡‰³4>§¬¢Ýk¨Ì}ñ~N¡l¥zä±Ez´€ÙD+s©^è¼ËŠ3~w>ké·•™íŽ×|-LKsè 1*û7ïá‰PÕ˜›<¸ö ÉyåzxœSÊï+}ðÞ@¥»ÛH{vÓ.KumÇ’2JÛ×R]w¨Ïs[7Ñæõ4²@õ&¢®S¯Z ú¼ÊÍïÙ;—ñùªê›­¼~œ&óåeݥܡ †¶UÒže+¤:—|ˆö?N‡öѱYšþ"ü:õeå4î§3¿HOR.Ñ3¿KgÚ™^:}Mù¼HÓ?Kuÿº«¿sê9&‰Ï¨žç,ç¾Yåõݸ“VçRý9èîe^P~; Ís1Z¡'•i]C{•º/rrÚò÷šÙEÓetèš ÓóʤònÚwZyí½Ju>À¡ ¼/#Õ´m-´ÒÇdG“+«ëÜݽ†»çÈ\Cd­^¦’ûꕺ[oç•õ±Wï¯]³ä‹{“7ÑÑ—ûï7æéìIå:zê÷éL)ž§S!šþ@y WŽÒ‘XÆ¡‹JÙïê¼±Àù袲œê9 ºŽSÛ˜KOæÑZef;”kðr1•ybÞ†T÷¯¶^£ú¼OÖ‰Y{¨>¿KÈ9\òíH¹“~HGšéøûtòo+Ÿ§ÓEg¾¥Œ*ûþû¯«þ:ÞLõœ•Áhâ&h•ÐúZªëÆó¨^?|žƒòùªëÚ÷aÚ²…êzÕú|Z¦G–”Ê2ZSLQu/n]ݼs_˜îPé+p÷~t¾£RÏè­I)¨ž{|•}»·³šöÎÒ„¥©4 ÌOÔÑ©zŒg Ü×¾THõ}³îsÑsÍšÜýH’¶UP¹óväÓ®Ý4–Cã4q‰JÎûÿeV+ ´g_ ß?G_?£|˜ÎSY'{OG•­Ê/Ñ™UtêMLÇŸ c?T†iê6Ú÷­§m«¨Ì¯÷Jœ÷»–î^€ýPo1Õy ×WçöÜF'zèäï+Ó©^:ósÐ&«©¾—í-§íW¨ëkqJ½“¯{úV˜¾YÙºÚRD;óhì :°žŽ|mò>Ú±“ž,Ëüú¶0´Sÿ‚ês™·æMtP}>°”ê¹q™k¯þ-ªÿ>“MùsÊ54=©¬Pþu:qŽïTæÒ‘ÔçøÞ¨¼‹õÐÔÊ›©Ì¹ö&÷Ó@nŒÆ¨¼LõQÿÛ¾LÛÖ(shk•<ïÉ9¥ZÏ×+ÓÃs´zA¢U«é+ Tõ)Yé›sš§cT~ïñ h_ÿuzæq:Q>¯ü¦²„Nÿz”N*Õûiì²òCªç‚_ òùžõ!š|‹Æo¦1¥ý96+ëiˆª}•m_¤mó´©™ÖÍÒʪçäçPW«×ÍûcTõ»z#•´a”JŠ7º–J‹·ç,íí¢2ŸÂi§~¦s¨¾z›ºõ°³+I[ÖÓÆ|åZGu?ùθω¸s“­TÞwÞh.uóÖñ»iÿš*vâ~Ú`iyF#y¦Qþ{7·/¹†ÆöÒŽªó+›·Q]ÿ[]DËÂ0ùj1=¶‰ª¹ñÓdæ\Ï ÜEï¤õt²Ú™Ÿ§Ó}têNåÏÓɯ<¥¤éO”ߦã‹tè6Ú~•ž­MѺ(=Q¦hS-m¡ú¼)vöUÐägtp.¡uKÐJ¿‘Óü^m¾F¦èÐY:Zmw=íHÑæí´¡œææÀ@ÎËQm"Lk è÷ Uó'ì—ÃÐ|QY‘¦ò:3m£´¯Ú:Í}9ÐÊ9§Wε:ÚoXúb•\toóf*uÈÞX5í ƒÕÐJ?¾xƒŽ¶Ò¡Z:ÐHu¿³Ìùóê¼]ݲ–-¥®/½ÌÒ§©ÉseÕçÎÚ¸¼Ž§^¥2÷:ë4‘KcËTÝw™[ã ×ÒÚ0M¾íë?RvÒÙŸ¢§?Sn£§>£3{”¿L§ÿ³òU¥š:õ/•ÿDyNþ#åïQ}.”þ›tl†ŽVÐáZ:4LS•t°†ößKû~¤Ì§’{áíZCõûAÏcjXÈèräz~‘E*u ÞïåÓ†ê¼Ù'CT÷‹èz°C–êó™c†žÌ¡‘|hŸV>£%aúu³¢œ='6v¯òqÚ7¼²ÉÇhÿj:»²ƒïÓ¡ûèð‡tâÜF§þ‚Nß ÷Øéf:²•Fçiu šò2úš…¶m™º>m ÏæUy@¦{´›hEqæß¿’›ùç¦5´!Iõ@×›êÜ€Ý!hÂa*ùóÞöÝ´+D¥oЫïÓûë¡úwtòïÓÑO¨îÓÜ—K3­¬yÔ<§t?§ä2©KwZ7ïËÙ)çH2Ÿ=kmYEõJ%Çü†öMÑ@ÝeªçǨ9¼vO š'rè•ù£^Yo{£[©ÎúX;ñMn¢‘KTÝ£š½!Z»Lë"Túz½Ûiì>ªrYìt üŒªùfÆÝo¸ûŽ™}tTžW#ï(÷Q]w–LÓøÃô˜|ŸdîÀ4u)hcyTúвFè‘9ZméË9ô å—ÂиþsgÅÜʾVFk–©ž¯û×en·«œ&ÂTÎ}½Ããtâ=:™ùyúäú,´3_¡ãŸÒ¡]tð šx›ÆŸ¹¾½Õ´6ŸÊ}†}*DõÜ2}ï¯rQmzòvZ†æJÕ¿hÂËЎ…´š–ººüDÚCæ·ÖY:˜¯¬§Ã•t,½¢Vêœ9]GÎÓ†YÚ–{}uŽ¥3¦òzò^ßwÒ3û +¦Ãçèà§4ù Õs/{6S=°i†Ö¯¦ÇRô`ˆ>†¦,—ª 'Ó´s;5R=×ux5•9ÓÞ‰óÐÎü3:}‚)FÖÙNÛ_K;®¬¬ž§}(Jen«Ó|Ytu²N=ׯ)ó×½‡ ­‰Ð£eôDšž,¡ y´ñ,•ódo´–öR¹?õºÏ§Î3L] #çéÄV:9D§ÿñ¥}ý;ôÔz:u˜¦;èø6ªÏåzwS©§³/•ÁÀÕºM+jǯÑÁ:*ó°²Þõœî@øÈ{´ó"}(wÞ¿DŸÐØ#4p¯®ÞO-T×+éü²çóa ¯çÉ|úe]m\¤Ñ$ÕsU\^±sðœ2óó2©Ê÷èð*hG—èȧʫÊ(çéÀ í/¢2·ÕÛqž¶.RÝw$}êY×PÉ—všçÂt¡‘µ´}ZG3Û“–}xúQæMNfÎlêª×{zÞ`$F/Ñ̲%«ë—’¾c¯zêþ©ÀA]ßóBˆº|§ôuzå}ëUõ$Fòǽ‰Çhò^*ç¤^}î1ºNÜL'¿¥ü÷ÐŽœ¦‰‡©>Óý6.·Ã©×˪ÉÊóÏ«ë›õ}„ü¼_§æ»–VæÐªbzVæQ—“”=7*¹Y¹‘Æ×ÑÞ%*ó}²ŽÒŽ^¥Í‹´~ž§ºÞÙõ=?¨”sp¯ÊÝ ö“ÖSS_[AUzÀC)úZ„ê9%¡…ë«Ö‡63è5ÿ@ùh˜ªyð~j=W¼B©çš§z~F}šF¢´y7mMÑh²D9Oå~Ï«óþ»"4~Ÿ²–&Ši_¡r‰&‡iÿ›tàNåû4u™¦£5t¢œ¦”):¹Zù/éÔýÊ.¢2Ã{ªœžþÎþCh#òþÑýãºosW,c‰¥“¯Ót¯¤c?¢ÃÓѾ÷©^ïvÓ–³ôÄ=”OM äŠè¼·Îwê¹IÑÝ´wM”C;ùohM„i×¢r³rUõ•F>Ǽ:o ¡’ÆVѾ‡©Î[N=­œóxõ9ºîçJTQ™í´#·ÒöBh$×ÊßOGn¡éW >KOæCÓ?m|‰vS÷ çˆ:eîŒ÷åB*9™ÎÀ\¥§ÃTê§½UTçº&#Ê+t¤ ru?B{)m˜§n=ñRêyÙ¦Ú‰R:£–öšø@9 ,W†¨Î¡é^¦aÈû=¯L+G•%´1J#ó´~•9a^Ýÿpx™*¦/šë[¢*WÆd/YõÜ̃ ôD)mÌ¡2WÅÛ™Kc•´oȧRÇä´Y/¹¾ §ËGq¶®¥Ý…TåµÚ™oÓÀ½Ó0˜S–ÒÀóá!« ‹4³íÈ*÷·^ésκ@Ã1ªsvæÐ°¡Òà´}yôå\hâhrÚÉ_¢†êý¿Î©ÒyÝ]Ûhû<•z1ïICõiWï˜+¦9‰VY¬Ì¡/æÓ ©šw諹›y_{Õ<«@þŽÎ©ª›S.Ñcaå,•{ïñå,Pýù!ó”³6Ó¦­ÐJ]ª÷ICOÓ©\š®¦cŸ)¯ÐáOèÀ*Ú¿÷ú&ßWn£‰FªçÖö†h×&ÚZDõ<Ý·ª_Çù9´¡LYJõóHåDéÿ^—G,•\0Ûihc5•¹.ÞC³ô`Ý£eKô™42ô†ªþ4#}4Þcyôx.([b´«’v_¥‰Òϱ‚ö}Hû<:´•Ò±;•Ðô3ŸãJ]ß™ÝôÔ»ôÌA:û ІCôUýÞ0­[½²'•‘bÚ`”Û ú‡tèÍŒŸÉÚ¸¤\¤úÞG¿Ï‡–ißNÚ{J¿ˆ·v‘Ê\§yÁR=ߺ9³_s9W¶ÿ1šPÖÔÂÀzTç€'¶Ð™—¡•ùµÞ—ÓTæS8¯HÕó¤t.J{Œê¾©ßð& ý1:x+Us€Íèítìš>D§þºrLùçtúשžÃ}ê8=ýWtö5úúŸ@;}@¹^ù+t°J¹_YA›»¨žë¦r2íØ*šC£•´õmºB‹¨¾•õ¢Wr‰¼¯Í)#ôù%º'L¿f yT)ùJÞÌ—•Uç»Z¢ÕóÊÌר—<o$BŠikš¶ÕÓÎ"Ú£Ôý¤:3YJ#+jOÿMÿ.¦CïÒÁ¨Ô÷y“*鷺Ï=~‘ÆvÑžµ´ã2m³Tò½‡6Ñ—ò©ô!;u»y%Ÿʃ6µ•ì¤ýi*÷ÇÞÞ(•Ÿ»·ëm›¥rßç­ ]_ƒ­÷M韦ÃÏP³Öÿ í‹ÐXÕó$·Â«Ï?3ã²v¬£¹°e´ñ2Õ9¯ÇŠWöUK¿»ñ uÓՅЦòhw)mš£ ç¡©+v$œqøMe1ªPªçëàGJµ¯¨ zuò*Õ÷YñkÊ›hïåÚ¦ÝóÊ|ÚUB]]£³­‹¶^¥ÍÅTæP{å¼Ã[¦îçí|%MwÇèSš¯„é †êû‹Ci*ç!Þ#)*s%¼s»9êú¥-FYDeþ»·ã•9ÙÞž9{‡êsŽÄ»´ï 4ÙE­«tî9¨‘û §íßIã9ôàye}Y~ß­aº;Ÿ¾¸m2I£kè×-½'7?ÊY_BOdÎÉõ]µ–êü—h9í]KcÓÄ#Tçr <¢ )éàMõСb:²ƒŽ^¢cŸÒ‰.*¹qÞ©UtævzªòÅŽ-@spÚ¾»io>uu5:Ï¢£@™G%wÜ«ï ×ÒÀû#Ÿºz,§Ì—ñç@ãr¿¥ùTçbéóȆí´é,m[Måûä½OûRt`+ ôŸÏ£»iw’ƯÒþB:ú1¨6¡þÏbº.óßWf~Û¡g¾Ku>J× =²D«Š¨~}ì C³Eéæ·8ÏÓH˜6ÚR mc=uy .º½,c§z8oÒä­45­{?;§¨Î Ó} zß¶–êÏ Ù¿zõ<É{ó†ó¨žSY¦ß¢æËÊb¥ÌÓðVÎÑWs©äHym¢zÿܼж–Ðh”ê¹ÅÒŸào¥R¿î•}šWòP½C›éèÐÆçi,©,£ºßSæÄy_^ åih^¶Tò?½]× x›ö®†\ö©O•Ãtü‡ÐdŽ›¼¯o‡…¦*ÖæPÝ·Ø¢]ó4¾›JÿšÓ>_FõyGªˆöo ÉG”[i_£òf¿›v–Ó¶ ÔåÍ(k•[¨þüÐõ=ÏÓ¯†¡É|ÙYÝy›SæÖ{Ÿ +-Õs1äç5Lu>Áñhӧ騣t¤€Êý…w ’ö=F;KiÃeZf` oõP!Uùvúªçšë¾Â‰{h`>¶¶’´Òþyå:Ú÷Cå{Ê2šÈ¡±zÚ¦ÍʃŸ£œ»yeþSÖ\úBZ¢{—¨~?H>€W^·Þß Cãæ¿:÷…éá*yàÞH%m¹F;/ÑÞf*y^©¯òö]¥ƒë` n÷%CÕ\k#Ï5¯ô«zöS™÷â¥S?K§{ j£“OÑñ¨¾ÇI6ÓÈ:¨óÖ̱*}`N;y‘º¹V72–¦‡,ÍÏæ[†ê¼}¯Ñ”mß%¥ê[ÑóôóJÎW²ÖÐØyå¬ò&ÚSO»RÔÍs6§”ë¨ËÅsÖ¬¦:w;|žêõty˜ê¹©.Ï©óîôz¥y¶œ§]«©ÎɈÒþ|åEšºÚ™£4%ï =·ùä2ÕyèuÅôP}6×Wî Ó²Ýo3•|ae[e}Þ*û?£¯çuÍÜI§§èä/Óô”o(*+”»hê^*çTY«i`ß°öÓî°2‡¶_¢mçhóEe•~jïÑYÈ “¯Þ×7S™×áA;ý‡tü*þ”ŽS='Îý¾Î–zzÒ*3/[™ g)ê9bvB»D›¶¯ld”>Îüþn?þ¬X³DõsÌŸëçSéG4±h\ê†6ÑŽBÚ²@›VS]?YSMÈÒ' Õù¡Çri}ˆê~g´ÚÉ»iúktômå6Ú»žvŸ§]¥4z™ê¾³†.z$Be޽7Cê5{çèCÃ%T¯kdî´c[éм2EåÞÆvS7ïÁõí˾ÐiŠs¨äÝxçÒÈzåRæ÷k*¢º¿3’CuÓ‰”2ª”ß÷èyújšVF¨ª· Üë¹0‡VÓµ´ùí°´÷"´GbÐ|ÅÐ2ñí»ƒŽî‚vð.™f»¥·Ñ¡©K;ûËôô¯Ñ©?¤Q]>t ØOõzWß»DÏS¡s¾BáëÈÉ×ûÈ íØ"=‘K_[¢/Bž£µyTÏ- ¬[ó¨Üë{“Õ0P?¢çüº¼qgt=•ç•­Ïü}íáÝ[ ]­•ûf§‘ú2ïÁM4±‹&{ Ýkiæ—eÕurî¸Oî“óæ19—=SMO¿«|žZ 3N¿ª|Pù“tòšþ§tüíë;REuîc“¬WKh(}Þ³h{ÎAãò6²?óª<;õÓTÏÕïÛÖMT꿦9Ú3¿EgÖRé'ðNþ:VNS'¨ÎËŒoüóhÛ%Ú´›JŽ·30—¸|ŽÊ¼¯>§êÜýzÙy´ªyp~ßúBúÊ­PÊßÛ»3F%ׯø¼ý¶¡:óµ\zp–*£5…ôh>­OÑÈ*Úp–6R=7¢už¶o ržâí^Eeî³W÷m¸\_gb£ò‡´¯Ž&«h ¸Dß§Cåt¸•Ê\ïèt|¸›¦ÇéäßPJnŽœóy§>¡ÓÁÀÜñ¶"ªrüÍwbÔõ¯;«•.?ÅÙ¢ñQÙþ+:õ ÊãÊ~å¿£3¡}ã›tê?ÐÉ ÔÕ3:{+©>¯ÓîSɃ¦n™&÷(ë©Îן^÷…ÉE.S–*Cô‹90p¿®ûÍõ9õœ2Éêë¥J¨¬‡³}=бÝJ9ߟ¨¥é» í8K§~ŽÊ羉ž,»¾jþ¢‘¹‘^ýy¨ç:Éœ ïì3Оù&®Q>M'ÿ©ò&:ð!•þo²ˆ&:hü +¥=1Ú±“F7жb8gßF† Ù_LkcôX-´³Ñô}ƒêœÂ†«TêK¼Ò§á4W2ŽÔÓ´¼Î§äóøõ‡éd:GõܾCkò iZGû¢©´ÓûèT‡ò§èØ;tô1:üMÝMKéÀüÊöo£É|šh¥zžMÏ%Ú±…êÜ!}®s2ê>£Ú4­Ê¥znræÇ3§ü’Rç”=£ª^×Ôž§y0ÊŽ•:¯Ü[zk¨î¿•¹OÞÎM46Oã;h–:¸á:Rª,£rŽè: íÈ~:üòÕsàô¼¥þÚ·Ÿ&.ÒÞ2Ú²6uÑÆRªî‘íÉ0•ûZg ïôh.=œ‚v ƒöY?KÛÎS™×å4‘+ÔÕE:%gÚ«_g©::|Úîµ´³‚¶PݧîòUOTP56P¢ë¿iaà¼sW>´2Ò{<ñLœžº‰N}…N¥:ÿ­ÿ=šü”öÍ+wÑD=ßBu¾–ÎßÕç‘R*ó”¼2oÉû¸&”Ce>¨Wç(5…i{´ÔÈüEo¯3 m÷E˜7's,M£«÷”õc*?ãP«Rrd†¤>Kê9JÛ?Kck¨ž—¥ï]å|À{(—êùX»èÁ2ªsãšæ©äs{ã«•³ÐJ®ÓÔ¤EyÞ)†v|†Žžþ·PÙï{¥¿ãÆVÑwiò²ò¶•¢\¢n.cÏYå,ÕëóÀzý*m™û›iS„FêéÉbêê)Òçã ä1–Ð×òé«ÅT÷<£_7Ð|1L_,S†©œz#´é<í,¤úÞ¬3M;rit‘êóV©Kñ6-цTúG¼{s•90Pw«- Ñ— •¼ñZ[¬LÓãÑ•m¼Jõ>¨i=m.XÙ¶kT¾ïY¯Òö9*s²†Åˆ²YUv)SÊå9åEåå••çµ7óÇþŸÜ­¬_Ùž-´wžê:m óí{be¥ï?ëz¥ÊƒJî¤ý[”?¢( ¼ósŒQÙ_d}_¹@‡îXÙ‘Vvô:~ž¦•S_¥ÓÿˆžÊ¥§_ƒ¶ÚЪ0=K_-¤S=4£2¿ÉÛ_OeŽ7¾ön¥²?ñ6åуE43þË«ûS|ý”SŸ·ºÜgCˆÊù™Óžþ·ôÔ;Ê]T×gÎü.UÞGÇ#TŸŸ§:èà&ªç %.ÑÞ"Úž¦:WAÏ›Ö÷Þ™ß&ë öúÑÆ•¹FÞöY*ó½Ý×``w0Mw„` žUå¾Xéôê><ÛÚ±›ê¬ƒ«©ôÃxUßž9£=› zœNþå¸ò åÍ4VÖ+ï§–ŽŸVÖ(¢rßõî•Õç Ú¡YåÍTÏ㸇öêê%od÷&ÚºŠ6-ÒF»²º^­*DäнaZ£OYèçå8U]«y1­´´~™6Ê=sãå•>6¯Î5—z oÏN*óϼ±=4ÑLûwÐÔ.êæ8%ÇÉNo¤é?§®ŸÆÙVM¥ßÕëò¸ÏÚÌŸ·QþYÏcUy+f¥r>àí¶Ðž ÓÄZžME­+‚vx#MºšÁ·` >½&ÙÇz›·S+Ý®¬¥Rï•{3oâAåC´ÿašz›ŽÜ©ÿÏ*¯ÒÀ<ÌÊe—òtb/Mÿ¢ò=¨ È|°˜é7é©çéég` Îzü&:øí¿ê9­=34z6•ÑLœ¡×´®¡+S00÷,0—c-uçdÎØiªÏ}Ž)s©Ô…x¿f ùû9ôp­- :¯¾9¬¼H[ ©ÞOƆi¼XùMÜK“S´•¼13PD‡šéèj¥|ý“ߣSihe_åKÒÔ9Ú7Õë‚X Õ÷¡íë¨Î·ŽtA“O™µe3Õù‚#ËÐŽæR—cá½Ê¾ÚÛ÷Uù¿Öß;å¼Í{l‰Jý€7óÛzÍ‹úJ˜ÝDuý‹ë«O¦rþã4®ß©rªíÀ[4q—ò&Ú“§Ì¡:¿¬u–ʺÉ{tžªº&[¥Õ9TŸ·†´ahܼ§Ì[óêóB™»èÕç…G#ôX)Õõæú^¢c´g¾MÓ÷Òá\:ð Ì3þíŽPÝ/×PKë3ß{¤„ê0¿Óç種ÍK{.C9K÷ª¾>Ójhoæ}ib;¨ž+ÿí+WÊzg@Ö2oË ¥épæ`Fäsad'¿FÓåôŒäÃë9˜ûÒT÷áE ­§É]tpjE­Ì{ô&ÎR}/Ñ\ MÃzh§ê•ߦ“ÿœÊó5k-¼L“a¿L»ë©œ×{”ѧ qý,Î#†ês#™ã´ãÛéHíÝNÛ£+ÛXNU>…þóMò^e´gBtúç©®3H?@'n¢Ã÷ÒÁû¨Ì#Í*ë’þ[¨žÜ·Ê|oü§ªß#‹ÚUDvS ¯çuKS9/vÚ™Yšþc:di2Eeýëu}JNÝ¿ ÏEå¼Úi iï"íØ@õ<Çh‘rmÛM9C«éq³²zÛkŸg„HS}òyž.Sî¤3¥,Sþþ üxeÓýÊŸ§1:þM ƒ?T¾¯Vn¤ý÷Ñä[´ï#å‡4þ1ÝGõû³ó•ûToûvÚ:J]ì;½çèñ%*}ßÞC–fÚßn¨yÍBëæy ©›KìÔs ¥ßÚ«ûË éw ý& Ì+ߦ2ç+kšê¾oÙxó Êhó&å,m)¤­Q*ó¼Ý•‹TŸÃI½7¶•Æ+hßmÊ÷耜G nPÊ9›Ê 6²Ï÷Ó‘\e+}“Ê|iïx=MPy®{§~ Ú×_VîTÞAg6ÐéûéTìWÞNÓ¿DG©ä$zu>@W.ÕϵÖuTúã¼µe´"F C#s¯œvà>›R>J{®R3.¹“Þ–*ýzÞ¦Rª÷•'ÏÓceôð&. ª/ÚîÃ@ëÓùTçJÈ|UïáEzÌÒÀüÜzÚli[!Õõ8Ýy4v3裸?ïM>LûÏA;{žÙ¦üI:}œN¼¯àÃùTú‘æhšÖçÑî h[.B»]Y®|ëL™ó“µ–JŒ·ïÖ•MnWª¾Åþ¨>¨§ƒ*+W6õ)º‰oQ–Ð1çv:þ!Mÿ‚òŸÓÉèÔ¿¡²žÏ*s×NßAÏÔÁÀ¼×Êb¨óqLÓ5Ú¼LÛ7Ó¾{i2Jûkij/ºB‡-;KÓ»¡,¦jl¿m Î94‰Zšš¥#Whú‡têŸB;ý úe:|'M|LOªçkÈ}•¼9§ùíZ‘O-¯¨ØFuÛ[©¾÷oÛ@%ÇÚ¹¶²'-Í´Yg=¦úçº?ŸÖçÒÆ ´­ŒÊùWò­¼Ý»•óTêß½ñ\e”&6)#“å´?L—èH!}—Ž=NÇiútê Ê2¥¥Óy00*±D{¯Ñö.Ú´…6l¥µ!úrde¿gés!ú]ÈÏõwÖ¨rž6®¦:×J÷EÊœ(oÏ“&¥2§È›j¦#oSŸ÷ Îl‚¶e=1GçS9wô­¥áyúH4¿«|¡ŒJ_´SÏ1Gòé1mÇVhŽ¥VÔ¾ñ=µH'»èØ:¼›ê¹¶’gj“4n¨|Îxk‹¨®sš|ÞC㲯Ô9½½™ç ítëÅÍôd­Rþ<¹óêzŽª|újŒ¾8G‹ÃÐrù‘NÝW£æiØïÿ}ýŸ(šžÚ¢ÜL§­òoÒ©³Ê×éäãtâ*ó€¼Ã«¨ž§àꄜ}wQÛÚ¹‘¶çÑh1mIÓ&«\s}ë–èÑ *÷Æ^?ypž¾d©>gq9ÀN™·øU{ê‡TŸŸ­[ÙÛ•¹4ù™ò‡Ê Ê)eT™¿²z>¢ì󲮦F¹™¶j ¨î”ó¯®y©XYH%_ÀÈm•:dïqY¯ .'ÒésE+&yLÞ‰":ø&m Ñžj*óí¼2§ÂÈsè©…Vr‚¼ 3T͹5ÝÕÔÍÖs,tNe¬xe«ä}[»²Õ%Êbe¾2O™›QæäfMѪBzpY¹¤\TªÏ›ƒV™VÆ”µÊŠÏ±TY¨Ì¡’›™µLRnRæ@ó•O+w+« m¥­Û¡z‡&ߥÝQªÎÅë}·7F¥ÿÜiÜ:Ö)9Æ^Ë5x ÚþUÿ÷Ý©,¦-Q¨£•ùyÎ@fçª×WS{¡öcæh•ºïT ¬+3å«^ã~Ž§Þ¦ã—h{šŠ%˜6tß·²Ý Tæ…z[-mXKu]ȾBh\~…×Ò½eTÏÖ¹˜²Ÿó6l¡’/ïí, ±ý´¯„úúgQ÷—Ê÷Ù;&¹oªÞß¶¬ƒFò•¼í…TÍß´3Ó©[hú¬ò'èØ:ø8ÎRÝgØGk©Ìó6¿¦/‡ ^Oõü¾ôtüMåèÈ=tx •{欗hüCÚ~•6)¤zÎ÷Kiø~èóÀ£%Ð~ÿ?Ò™¿E§¦SoÐÉgèĺëø>>NSÊÁš|‡Æ‡i,J{¨ô÷{}$•4rY™GÝ÷ÏYµ@_ ÓíÔ¼¡ÇSÐF+W¶ñ¢r.cƒü÷º~NæþÚz#ï˜(ë#—¯Žˆù]~s¦ýü¿›ùïÍ6›ÑÍu}Zþy—|}/•e¬_/ó4L¸Z©¹¡*§ÃÿþÎD´3ß§Syt¼ˆê:?ÉíöÊ|coû5Ú”KÕyyÒR7§¬©‚º*çáYz Fu]Qæeè5ß S}ÏÿJ!=ZJ–©ž³Ù¥:ßwèG00/ý¡òWèøÊ(×+sèÈGtðÚ?N¹´·‹êz˦fÚXD#9´n–˜£ª_#0G1\L»ìŠê9Xóü×ÄúÌÿa:J¡=ógtêèð(ÕçÝrž×¸Ù:íä? º^<5Nç2ö=J{ÏÒö+Tß§4.Ó† TÏu8\Lõç½®w•#ï7- ôóê¹í‡èñEÚ|•ê›Ø&ªï§uäÈhû—©Z‡›²bªæ?Ù©¿ à;èÀnš¯t¾_¤š£9Ж-dþÙå:ÕWкBªûÒÃËTÍÛ0îõç¼óÇTaYÇÙDOäÓ†2*yæÞŽ0m¤}@;ùoi:E¥®-ëV˜75O%7,k”\U–Òþ.Ú·Lu_²ÌöÆî Ï£m4ºŽ¶žW–‰;©¬C²®¡:ß_ß“Y±:M¿³ ´Ð+Ý<ÊCQ*÷ÞF“±i”¶5ÓöR¨}›Æ¡‰{”gé@ MÍÐáÐJýŸWò™½}¥´.ŸJÞ‰7¼õ¹„n¡R¯˜õ~š¸vR™×èì¦zž}¥‡‹è^ëowÊ|4ï±0 ä—Ðø´£³tè#h¤ÎÃ[“ùuFöõÞ¶zÝ,.B;YF'Þ¤cùt8J•¼•hO% œ“©çÕ±9ªç/ËúÕižÊ§ºIrÀ½M«`à­Z†¶»ŒF×Ò¶³T¯'ë UóŒuþ”=\J¥éçíïö…”ùT×¼£uµôXˆ¶.ÐþG騴‡ÓÐ$vC;ýët,Aò¡‰äÀ`}@š Ó=9ÐÈç­® rïì=RHër¨®ç>9O#ÊÆ.ªëý[Ji[-Õõòòyšõ"Þ@G èx M÷R9wËútz€žúzæ<=\HÝsÊY[A%·ÚÛºLÛVÓŽõ43V!krœ¥ãù4§ÜG'ÛéÔ¯*ÿ-ÙNe¾ì´ý3TçÂËëÒ[ž†¦7IcoÒx¡2&Ê:PÏyëK@ûzˆê¾¶™ctúKtRžç#u´c™J>·×ïDYGyër©®«©4ôé04nžÊ ´“³4ýkTúp½£Ò‘ T×í÷7R]W“Ì£}k¨^/Ä"´c-mœ§2ßÝ{ De®º30Gµz5•ý—·%LÛ6R—ÃÙ¹– S¿qÜ@û5­ùÐNOÑôŸR=<ùm)£ú¼#}„$©ì×¼n޼³m=4',´'ÒTçÈœQ§É|ìgÕy«rïì äòåSÉ9öê~BɹuÚ– ôø2Õë§2jvXú²üûþM4ñí-¥ÑK´:ÍäP©ÿóÖl¢êÝ´ä(S´ãíû´rè+˜ü›4ý3ÔåÊy¥ÕQzúM_¤]Qh¾’C»·Â@ÙË +jêb´£šÊþÝ›X¦}Ò¨ëÒ·+›i*LÕ=Ô -‚vz-Õó'®Ðñ.ªöñ6ÑH;–hËÚ´•ž¨¥ºÞ´4šgÂ4²FÙL]?³«ß”ú5§©ŒP•×gO·Ó´¼_Óé˜Ô9 =Fã¨>WlÜFkóés tG>•ogm© 'CôFOý-:ùÕõø™/# o“[©Ì›òºúw?wrzÚ©·”£tòçiÓe*¹gY·RÝ_z¢º¿o­ÒÕ›;_3ô…ú j¾béî0ÕuiÒç­+ 2Òi¥Ÿ×ûå0•ç…Óš§úœ©+LåuïØmêí¿—Jß~ÖÝTÏw×ÏÅö³+ÛzŽ6)_ ­¨qŸ;Î=ÊCJW'┹G^]‡ï :8!}8íõ4CV}>ý{a*ó§¼õÊæ êúœ»ÖÓnù\ÕsÐ¥Á©ëüÍÐvhï¥ò\̦'s¡®±ý†Æ×ÒæÜ#—øysˆôç˜y%—Ö-PÕ·m‡×Ó–%Z-û³ê0Õýú\-smŸUîm>5û˨«×>´šÖÊùŠîg>QL#i*Ÿ§NÛ“¦:ö-ôÈ< çQo°ŽJÓHß¶WêJ¼’ãmÌW®§í[¨ôÁz{G•—•‹Tæf¦€Ú×CSòçès³‘ÝT÷A|Ådl‹P=_OÏË«š£/-Ðå÷•ú<ïNùÿ¿Îü=2×*9ƈò|ò>•³¢Á¾c¥Î~¹îΧ»”ß Ó’èKß©”ùuÞŠB*ý^^7_Ü/¡‰b*ù˜Y?ƒ9êѳTß—œ\¤Ç#Tæhò;u½‰®_@'?¥Ó»èL=õ§0Pç ó¼ò¼vš¦$´ÇK¨ÉúH}Ÿ/yŽÞÖyh_›ž>O§ÿTù\K'”ÃËtè!:0@ûf¨î÷쨥~½eêúb¤ÕŸ¢myTç_j¿a ‘:7§[OGwÑ‘JeMÜAu®¨žç>õÇTŸ¿ê|µ€·S]O¢ç…H>ªI¸ç‘ü¼›.Òš0 äåG/S™ÃãMv(ctòw¡M¯¢ƒy´)Eu}²SýÎR4u%ÐÊzÈ{l5­œ£û ©î3WçŠî¹éŸŸºïùºÏÒƒ!Z›Gõ<”†s´¹æ²ËœïÉ"ªçvI.¢30·éP)m)¢ÑU´ï<|ïC¾H“oR]7ïæ:ëÒTær8M‰2riEm4L¥î*kÁÊÊy˜W÷Y}ÝBó½*ýå^¹ï÷]Më‹h×(}Fûî£:2ù ìç¢1úR„ê|ׇå¬V;OêèÈ*:õ!^„vf™N—]ßÉרÎ?¿‡úŸ¡ƒwÓQÚÿ)uŸÓÎØ­´ÃÒæEª×/ºVòSírT«—a 7ÚÕŸ:ãJ—"s„½MsÊ(mŒQÝ©¦ú­yªëZžÉ‡óW$û ïsJ©k÷îЃʪÔÿœÕ…ôðjZ;KåQu¯iNĨ;Çqç:•…ÐÔ‡6¡ÝµTÏ¥‘ü4¯ÎÖùéG´j5•óo`Ž»¡_ C“y{e-SV†è¡9êæÿ9u]¬_¼ú¾Zç‘·¯§]*s†½±ghòì¢ÃŸR™kçM¤“1:ý[t¦Ú韠-†Ž†iÍjh$ÅÛµ ÚÙ‡ééÿ@O}™ÎT)–Nþ MÿWåãtâV:þ>k^Ù‘ûéðíŒ&khß;´çm/ :‡@Ÿ ɺÇ[n®k`nŸº°é»iâC»¤,¦ºnäð2Õu5ROï­Z¢'¢´yžvÐx•{§yžN¯¢“MTç2Œ=F‡Ÿ¡zn‘›§äLZ*yÞÄ-Ôå:õü—è&ÚX²²'Êèñ®UæÑWŠ©<_æùBz¸D¦4º@{ºh¦Ì,8G9• =–úsyžº<±ƒ%Ôõ­‰öÕ¹ëëî¿^Q9­ËñS9ÇËZ¨Ì_YÙz7 M±²&_,‚Vúé½:¡c†F«©Ôcz[vÓÀê9ÚPA#†ºœd§îû®Ñ#Tå¹r½^QVÓÃôCË–è3!ú¤¡EašÙF{Í3 ôù2êrhœ¯¦iU”.£ºÎöX œ£ •Tr'²ŽRÉ‘Ì:C£Whû2í¬ ºŽ5qBi•Ðd!íï¡2¿Ó;²ŸŽí ¹Ôí/'’öÅhóYªó±ô|ÅúMÐ6ІMÐìŠÑã9´¡„êÜUÉñÊ|¯Ì±ôï¤ß²ŸÈ¡ƒõ4u´ÉOéÖpæß?‚Væ±jMC3´ÃÅÊ”÷СÒÔ‡TÏÉŠÕS©O·Çs©»ÇQÚÁ»hwŒª\8{tê{[9‡ñºûj×÷ª×ß‹Q™çÕ}GŠ©®“iÌQÎÑhšvÓží4q;í«¢ýÐÔ»tä<•çÎô?¢‰û¨Ì“öÆ.ÐÎe*Ÿ_ÞæÕy¹WiC5Õë5™cë­ S}N§ïYµÐdâN²VÌQ©»òY :DòH½K´9BÛ*©žÛ ÚKT÷w•åÓoh¾mékÊcTÝšh mŸ¥R7å•Ü oÿ:>K§þ´géé?¢ÓÿåS]_)¦.oË)Ï gàsA2—×iÓ{éØ-tðcªïÝâãTϱ×9³]´e•<`oUÍl۲깯º"\Ju¿—ž'Ý>Jõ}ºô»zûÆ¡®ÿwõíÙ:÷kTõµ˜ò½íÃtæ¯Óé>š®QVщèØg4з\Lõ¹Hl–vRÉ[ðŸ£ß‰Ñ' •zoãy¨Ï müÕ9+]›hÇÚ”¦Çi])Õy¾Ò¯ì4ßÍ¡:OMúMýjè7̯߭ð¶\†æµ0®væm:|‰&vP=¬5—Ê}†3ðÜ’z)g`êðmth M=¦¼…îRî¤ýÐx©r§òæ•ý@9E;ÖP=ÏZÏq Ì‘ŽPéKñ6¯£êþØ]¦rOá=˜O÷,@“Y^eÕuž:gXï/%¿ØteÖI&¶™Êç‡Ó\£•дӔçÐC›–¨ôkx».R™ãÌæ ßÀW-Õõ·*ûPoC=mÛNû·ÒT Û íô½tb”m¤:ÿ®ÿvªs—â!ÚqŽÊ\&o})•ócï³ahNÚ˜K[Jh´€vÎО­4VKãUTÎq¼Ééà(´§ÿ’ê¹M#oÒã…ôQùúûKh¢€êyµ]ç•3´c;Õç¾Ç ià}†æ%¥ä“{û÷@Û˜¤uyt1ýn šm9ô€ò˜¥ ]´-Ÿv]¡±¿Ÿ&š©žƒ:˜¢C—èè{t|¸¦÷(ÿ’Nþš¤ÓÛéÌ#0ϧÏAö/AÓ±HU>©Ì ÛCTçú»\h§êçÕõ˜Æä|CÕo›$µC§iª‡&o¢½ó4Z»²ªþ,Poü5CGi½20Ÿ®™Æî¡ªž8ЧÙ÷•þ%­§³Ê=:§”_W£rÿí äF(uÅ+–Êç„·y‰ºüfg×õóË~@c;©ÎWîîR®¡×”õTçžEGi[.mÉ£ !Z?Gu~·Ô[{]žŒ³,‡JN™wc4O„©ÌÝñ¾šK«kéÑBªû-å\Í+ý_ÞHîõ•y^}$¹rÞö ÚUK{+i¬•<¢LS™ÿbüý¾ÚIªëÏ3_fÖã› •ç„·¦šØ5:’„¶¢ŒþÝhçÑä½´_)}/Þô=trÚÔíOÓîz¬€ÖÒieŒê~\íîÒP¹wö>¦rnèÍ¥&¤Ôû•släüSÎ˲V*«W6šGåsè†ö¬ZÙX޲’Æ/­l_¥òÕùiýótp•:¹¬3tü2´C´uí§ü¼n¨®ÛÙ£º¾^ÏÃØ½@uŽÔy#´aéÇÒV…¡î»ìW³´nm:O»®Ò^97‰Iÿfbµ²Úñ«Ê%:2O‡•}‹Êhü&Ú-û¥ÎuTæfÒÈ’²Ö„©þ¼zi‰ªÏóJ´#Ó ´ÿWÓŽóÊQÚRLuGãZz²„ê¹0Òí­]¢GRô𕜯®çWï;óì}ÑÒW ©›ã”ù›Y#T×£^ÿÛ‘(•|ú¬†J¾›7²•êõN ï»vf> ŒäÜšøšX‚vú÷”¿J§ÞT~Mù·©Ì£Ïú¨òïÑñ•Wèȵÿ1SoÑÁe¥¥z®A¿UûâíZ¢:_«ã,mϧm›hk%m¾B]nÓõ³ê¹È’#ç}9¦ S]ŸÈΡ*çÊ<¦¡|hã·Ò#1hÜ:Ø­‹c‹Ê¨ô‘:ÍÓ†JîºWîA¶}+4íçèäI•÷ñà}4P'–¢×wòpÆié{¹ ZÉ+ð¦¿GÇn££oÑÌ“59NuÝŒžÖYKõœK™¿ém0´n‘º¹Î× éËe´|ê Ì–õé•sD¯Ë]rêyBGrèÉ|Ú\F;*©Ì¥ðöÕP9O7þ|=DõÜP]—wd‘ºû9§®÷Þ¬tõ¯ÎºÕÊR*}xÞæí´%F£3×7¶ž¦ÎA;\@õùHó*Ú¦õ9ô ¡/ÒÒ0}4y½yäSéƒñª9¦'F%7Ó«óÎ2‡Âi§(óéÔ1å:ùÐôótt )VP7ÇÃûÕ¹!ƒoÑ”oÑþ´ïšòœòMWYB{ÏÑž ʵ´k;íœËØ1KÛd}-ùêÞ–kT߇¸z|g]„Ê!ï˪s 7Pó÷”ß4TÎe- õçé‰<ÚTJ»/О+4þå[ÊÐ:…¶ªš–6×C;“G¥ŸÕ;•O'7)e˜~Kù8AGß§©³T׃%Þ¤½†êþ)=WWæÄx¥/Ýi•A;9ª|Nù›4ðõoWþØAÇ阥£t$¦Ì¥º_cè¢R}>%ë©îgï) Ñ.Ú8JõþXŸË¿¯”¿÷^Ku=ºÔQ{3ÇÙ9z{Óô…9*ùÞWrhß>h‡?£z?•4´WîI¾žCåüÈû¥ðŠšïe˜–E¨{=Ÿ¹…ê9àûèØ::z™=CSK´{Õsޝ¦/e¾~Smä÷ùŒ<ª|˜öm§±q*ýmÞ–Qzr–ª¹˜Þ]™¿§5áÌß7Ê¡Ý×”eÊ­+«sœ¢VY@uÝ¿®ÿ«[¦:_ÿ¥áEúŠ¡’æÕõÈOh\ŽˆSÍu7™—EV=×U߇éùR ›i ¾é äH¨WúrœFrî½jž‚‘ú.oÇ:³´ŽÔ|ŽïÒÁõth‹²ŒÊ¹w$œqôªòym{жE•e¡r Õý ÍiòrQS–Ñú0­( hMˆRVU( Ý— ¹*n®Ã¡Z*s¼*—ÊfÚ˽æ÷•m;i§r¬”žz ÚWË` ß[×ïêó½N|”ŽLѱB:~‚¦ß¡S'¨»;õKtò4Ôõ€ǫ̈ž“Óÿ0ž£ë``.Ed5m²%'Üiû÷Ó®Ë4óefÕõº>LçÒ%géàåëjg_§ÝÛéä·éø&å-´±Œªº7“9vÈ-¦ñyh‡ï§2(ëÍ´ï ÛKõœŒîÝ´³š¶_¡ú¼§ÅÒfCÎR©;õê\H7ãt¯_÷z–¾gïÁ4•Ü.oãFªï: hï ´Ó²oØ@ûÎ*g•­ÊÛh|A¹ŽÆš•ªë‡{çhÏ’r7 üü¯Q}oÜ2O›‹ic%mÈ¥Çòim.Õ}2ÜΡ•Ê"´,MŸ4TçŸt+ÛWÓ–ó´á*l¾þßS×ceÞÎYŸ/Î(çr|v÷:®•çWCR”uœÌÉ0]²/î’çT—ÜvωK{3ß—7gÏü =õ z”N6ROÈ«­Q®¡nN–sd”o¢©|Gy Õó°tNOß&šX ½×hë"mꢑ=n©ž§ìæÅ»ùñ™eGÖoXúê•}¿·ÑBÛ9J#ah*"00·³ÿšü‘rXYBõù¡ÎgìÙFu_½Ôùyæ¨;—sJ=–ÓdÊ‹²Ê}¿WÍÏ6M»¡usb7ÑX •ú§€-Í´q†ê¾$•{k¿†óöÃV?‰ÐcQΧº^ìÉ04»-=¼DÕ5;0EËbÐÈùkÖÑt‘²NV*ç¡=8K”QÙo;uJ’â<mãYªï*¨ÔùÅ2K÷ZR–R¹õê|ôÖ$í(£ºÎ*¦²ÏsÚt7¸‰žØ}¹žýF-=ó®ò8¾‰Èë` M”Qã§ë´ò÷|e)óÏ“ù´-Me^—÷HU}»VöE^•sö‡™?Ök^ŠQy{u}¼ÎýÓy8Ý«¡=u/ž§éLÇËèhzÜKõú,VJ;.Ðs0°þÓs«õý–ΩÐù2Sÿ…N¿DgöÐSÿžùU:{ÚÞó4b©«;÷õççiÕ"ÕýýÚ,ÕŸ7O*¥OÏ+yâÞCyTúJ¼™øo`ÜSJu¾Âkie. Ôë>÷úBzâ<í»DG£ÐNÿ+åèõÜ@Ó7Ó‰aå^åtd N(‹èÀ'ÊE¥®oùXù(ÕûÕÄYå*KÒÞu´{‘v•Q]gpíÑvK£Û>Ç|ÚÖ¬,¡­Ê¥Q®¡-;•[hóeåy¥¾7Û@›–•W?Ç Tç4v)·PÉûðºy]ÎËTßÃU/þxNÆ©žg7ôÌ¥’Kåí.§çhó2Õs”N–­¬Ô7yäÓ§íʆh GíP=aht;í]Mö)ëéð::S­äøx£óÊÝÊ"êî—Ý}sÿ^zú¿AÛ^FU.•úE§Ùn©>?ÔsfÕÜB#9ÏÞîh» ©ª—0Mòº:¥§^§3N§ëèÔ¿TÞIÓ¢|—Ž_¢çÆ:Ú—G1ÿ”Æ>¦RoîÕ9°]ùTr½­!ÚTOõù[Í<•ûP¯ÔÛ:}K¹‘¯Êßoªo_Y3«ó›ÖS}i¦ÕÅ00?íP„vo¡Ò§ìÔsÂÍáì¤m3´k}B¥ÿÛ+}ÓÞ¡:ZOÓ9t²ŒNýt¦Ú©ç©>ï”\ oU„¾VF_ÌFæ~xŸ´Ô[8Õ¹»xÿ€êþš®uT?·¯ÿ…ŒRWå}Õ*‹3ºsëç”òõVåŠùôL&g1p^R¢³ýtú_P©ÿðŽ´RÉßôJîŒ3Ð.÷¦N;ò>í¯§M;ékKÐÔçÐŽr:r+´“_§ã ¥Úÿ AóÝ0=LŸOÓpîÊÖåSY/zu}°®[‹k?ýñL\¦²ßð–Ñá:þ6üú3:óU*ÏYï™b:ûa —sð1:pަºhߪû‰bÑîs´3J;Ò´umʧ‘¼•=œ¦—h Ýf”¾§q÷r΃†º9*¯ÁNý9M=Jõüäp ¦SÝo‹Ñ¶eêêxdΙSçOÚ‰Oh_u}ÎéF:uxœVäÒÁ7¨®cißHõ9¿ÊA1nýà<9O["´s3ŠÒ‘;¨Üï8m¼‡Jþ—7ÿQæ+shWJi”›”yT×ÈçùÝD[SÊÊ\ªëÆäûìÕsZ›ç”940·WÕåR=‡íH!Õý2oÎ[­”÷wÖBz0‡† ¨îg¨È§jÝ8·”:€¬aú|ŒJÝœ÷[–~5‡~ÅBó`˜êuø¾}9‡êœ©£÷º:\¯¥7Ѫb*?ǬiªçÆ©sÙ@NŽÌ-ÊSÎR©·Îš¢:°e™J}¥wàA:8®”ý…®sÚGG¨}-FG‹•÷Ñ‘tèθ–ʯO^V†hßhüQêêõyœä’y¥¯Î÷וXÚ¸L%oË+õûN;ñ1½J%¯×+uwÞ½KÐ4.@ûúmtüQš|‚êºÙsJKu^~¦ŒÂkö+kC´aFË¡=¢®ÏÔ»‰†‹¡Ù¿@U.9²”Qò¼½-›¨ôÃ9mª„ÊûÅ;°¬¼ö‡iòå]T×_'†iü#å#4v€ö”ÐgsèÓšoZêrk3¿<ëK÷Æ :K'—iºeÇvQ]ÏÐСݴÿ3š S]g¸HãWil^Y¥,¡ºÎºg'uy~Þ•ø¬ë©äÅf-¥Ñ Tîc½ú¾D×ÙËsÌ[»‰ê¾É£óJ~wšrò"ôk†ç@ó›Êo™¥¾ßjªë8b…4±]9¥Ì̵Ð}$öô=õS4ý¿Óþ÷©þ\üþ::»žÙKOÿ:=µÎüÈóùy:õ°òf:yM£óÊótü-¥Q®§cwÓÑyåN:RL‡£©0|„ö¿§¼‰&n¥=IÚ~‘Ê|HoÓYÚpÊ\ï‰Bªëªç¨ëçvýÝr^é}q‰J=¦žn‡Tæ gUu~}«iüC{[YJ»VQ_¨çµD×Ò–2ªçJèsÌÆ ÊrÚ°šÊ¼ho¦ý>«î/–}@Ö<ªçÉÔU(ËhmŠêszÉ=÷J†WÕ…ØBTÕÇêåós¨®{y!F+sé¡´r‰Ê¼sïÉM´¡ˆJ½ Wþ·ÎÒèF*ý;ÞŽ•}o÷ÚsŽÊëÚÓÄ2íKÓäEÚ¿@?¡nÎÎÐÇt|Ôõ÷æð&*9Yçi&65kÏ:hò©ÎËëÝÕ±Kˆ7ö­. ‡ ià\¥@™Cõ¾(U–Ñ×ò©>'Ôóó$רÛ'÷‚}Òo+óLR^gÉÜŒƒ]bæóÔ¤ö‹òsHÉ:%õ†èöórn«÷WÎЂhéì´k·uûÒ©?¥zßñ­©¥ºn³0šïZZ¹mO9 ÌQ0ÐÈ\RoTîWâr^ÿ´e´iQyQi¨Ì‰óÊ:Õidž¹·!FwÒØ»TêμïÑ¡·©ÎÍ9£Íòz”:oÛªçÃÄVÑÔ:“‚vâS:°ƒ>—O%Þ«sŠߣz¾hçnÚÒEO¦©^?QÊ÷EçÏW†¨<×½ú±cí”úƒÞ\Úw7´mò}Ðù!étìYO‡¤2ÇÀ›£ò÷ó¶/ÓèfÚ–Cõsáh=¼šº|yçƒah^ Á@nèÀ~ÚWL£a*y>^ÕwØož\M¥®ÑÛv‘ê9Ä27ÝÙH¥>Âéû²\Žæ?ú»ôôKtfN¾LÇwÓáéà»4sj¨ÎwÓ¶ÏS]Ÿy¼˜Ì¥;ÃÐ|ÇBÛƒæä(¦rnä´.wÂ)õÚN“ù¶fÕ}’_àÕs{Sytèn:¹—Ê=¨÷ÔÐf¶aYã) Å{”ù4pΕKõ9VO(c×%Úq¶.\ßæ ´é•9ÞÞ#ËTÝcéÛ7UsÔå¹y­' h4­ì œ&ó²ÍÚ¡ƒ™}¦‘õÚÈ8´c•ôå4ûÒОúߨž[0òM^¢ñۨžNS³ ÚÎ<:ÑHÕœS? mu Ì5ªï۔͋´5FÛòhw.ï£É:x‚—Ó±'¨ÔMg•ŸÿäWèÔU:ýgBôÔ¿¡§ÿ=ó¯¡})—ÖZ£ƒ·ÒdÕ9²R·àm¿DÛ¶Ñã‹ÐdkYw…è¡ Ú¸•&ïB+õ•^}Î¥r<Œ Óý…Tò©Líjz¬˜ê9Ez_ñeU-=¥:‡­mŽJÞ7öíÿùÚéut²Dùe*ﯮ|)Mi>Us¾ì§è™sôÔ'tæþ):¹N\S zþÄðF:¸‰&÷Ò¾ÒħÊ{i|€êÜÂ6Ku>›¼î¼/§©žG¹7íÈ{´ÿ‡Tæz_ ÑêCåÜÄ«û&óA+¡=5LÓ›èÐN*çY×ÓÁgèÀEe>í¿‹ê{òDZ̧ñÇiìQÚ³]¹™ê~‡ö´²™êþ*¹—õ6…iã*é¢ÇÊèá9eˆ†WßÀ*çÞýù´<š1Zª|ÍP9?òFf¨;§p¶TRé'ó¶ï¤²Ïî¼B»r•0pÿêîÁݽx±¥_U–ÇhÃZh]î«S'™LùkÖp„6^¡z=Ô_ íÌ$þ:ÕD'·(•¦Ÿ¡µt´‘ÕS9·º¡ÉÛh|+Õ¹Ô±4í5´çÕ}6­e+[¿D–R57(k­~ÇW¶)B[åýàçD‰½Å4±Ÿê9–KTú*¼coÑÓSôõCÐŽ< ÜL‡Ât°š&4Sªý¬œ¯x¥/Ç»' ýùi|/•/o²Šê¹8etè½Hå¾Û;ùM:õOéôï*»éÌMÊ·é™jú†Ô¤î§™ã¡¬ýÏÐÀór ä[UÓ–môD1=VA]?޳j5ÕÏŸrC¿KMi˜ê:ÐúeªrHMû5ÚQº²±ißM.ÓÁz:\BÇㅬéWèä*çsN›y9yù»ûc´'u}õü¨ÓÐÎü.œPnÿÕ>eò·•·ÐôYåéÄœòv:þ0{“Žþê<óá:4¯|WùM}¢Ü¡\CO+ÓÊÕT熸u€3y í˧ñ÷¨ô/z{¯Ò¶0m­¥roשּї󩬛¼ß˧‡¡)Ï¥êÛ>‚櫆ºsç¡|Z_LOÚ°•6gÎQLË*åªÏ¹º6ÒØã´o¸Ey‚ÝDG¢é5t²–êçÒ©_£§OÒÙŸ¤¯ï¡M— íY :g¢f5•¹!Nãú¼i9ïãOèë_¢gÎÓSÒ™1:ý6úP9§|WÙ§¬U>N'ÿ”NlXÙñÇéØgtt?Õë²þBšKuþŸÎ'-OCóCÕsÀJ¾‡w`=H[ éÁ Ô͹óé“‹Túà¼ú¼"Þ|]íôE:õûTïkO†©®§ªHÓgò¡©CÛ÷í¢Ñ”2¶¤©›èlZGõ¾\æ¨{_ž£%9ôë–nSêuFæú6«Ì­ö^¤:OM÷«4¦iàžë2MÈsm¸Úñ™S¾K‡·ÒÔ<¬¤É{o`¡R÷¿ì¡‰ZªûÛæ•a™ÿ éñR*óœf_þõ=RœQæ ze‹3°o <×ÞP>Jõ~Z÷ñ꯿%EuÚ‰ªóíô}ƒÊï´¿•ÌŸòÖæÑãËôDl¥ºŽ¢%I%'ÙÛYBcïÓ¾šÜFûwÒÔ¥œÏè~íÑZhcËÊ-Ô;u>[ËzªëÓO.ÓýeTÏÑ©Y¦'+ íZMU½·É\_gíÞ¦ŒÐÁ|:¶–N>O§û l¦ÉíN+SÊu´s‘ê|øÆKôhˆªú ›ù±xÍ6ñiåKùTÿêÂTæ‹y/PÉ«÷6•P™7î.ÑÞÍÊ-4ѬŒÒþ‹ÊÐÔ½]yÿ´é§hò}ÚÑLÛfiëfªë9¥~Ö[¢OQób­[ zÛ ­äÃì™QîV®¦2w#k˜vÅhç, ôǤ¨®ÏlJÒÆmÔå ;Òeu4Ié?H.QUlߨ§¯ŸP>H]=Œ÷‹ôô×èÌ2>¬üuúyûìt5X¦cçéè™Qî ©ò ÚßL•4¶D{WÑèyÚ”G9–먞פÏñŽÎÑa*9çÞ-ahžŠÑý†êúõyh#ÅTçÿ>¾¾Ã¹´ÿ ÚYJ_X‚æ…2šyyýÿ¯GlÆ–h‡Ÿ |eùúe¿êÍür¯¯SÑ9’¿’õ,ÖÒŽ 4¾–&å¿K¾I‡6Ààþç-Ú›O{"ôD•{Y{è<Õ÷À ié Ü ËùŒ·¾–v®ƒ:OδçÑ®s´ç˜›^DuÎÞñ\*u›^}+y0NÛÿ8í{_YO{*hëez´˜ŠÑý¹Ôåa|‘š/…©®sߦ*ÃH²·!D[Kiw”ÆÏÑä*s³JþŒÔsxËéÐzªsïdŽÓöSÉËñʹ®7óíȪÏW2×lYU_w0÷aŽ6¬ƒvö*sس¾¯¼“¿ESïR{)ý¹ÞèªçTèÜÆzô<=’GUî™WåÃY©§všï„é˪óúeã´Û =µNí éŸ§£_ CU4f¨Ôa{õ¼Ôæõ´þ< ¼ß:R4¶ Ú™:z€&£Ñuy¢qý0Î#ç¡=ý—túKTßë¹zîÜ‹Åиów~2²H3ÇìY{š©äØz]n©ë×ró„¶+åß7D¡¿“êy9ñ”RgÖ½Š>¿Í^Kõ\ÊÃùT^/NÛT Í31hÏŒ@ã2çÝÌk¤º®©šÊ=—×̓vJŽ¡·ÆÒ}KTç¶êóµÇ¨Ù¦{˨ôÞØ4­(£/*ç¨ÌEôJQÖóTò޼2§Ñ«úxMÇòÊêœfÉ÷ʽkÖwhßE:ð¼Wy?º´²£òçŽ]†¶ã*mÚJ/Ò†yå*¹ÞºÕsÖU?ƒÍÇ{ç&úžLÏãyQ©_'¯¦©ÎóÕùÜGæ©<_½õs´¡‚J}·e‰Êý“·c•ÜloÏÚ[NùPË41Gû†©ô³y ”54u;ÕùÃû•ãtä1:úÛJÇWÓ‰5ÊkÐJα×ç …¨šïb+çè M‰YÙÌ6$«ž{T•¦GÍÊÖÍR5gݸçSæ«y{/ÒDí_¥œ§*S4õ•¾ïxMN~B§…Î ÐSÑÓ•ª^øL ÚèYªïwõ€ÌÛÁkö…¡Ÿã"šÚY*u9NÛÐLÃ)è/iÞLe_‘õChO[:ýŸèdŒNÈúnâ4M®¢ºžÔÍ{- ͺž¥2WÉiåóÛi"«hëZÚ¹Jihü}:þ…¸H§bЦ_§ã·ÑÀœœfe…òÚÿM”Ò®+Tçž4Ó#†º¹!¢qý9ÎJý¼”~no]Uyâ&ÚLež¨·e+Õç ’Câ´ç•[Wöd!­UÖÑÊ2ªëu´.WÅ)ç6ÞïšYžysªšJW¶%JÛ6+ ÝB¥~Ò;XG‡äüîT!>@'ÿ‘r’Ž=¨¼O™GGn_Ùáb:XC“Qe)Õç³}Ÿ(7ÒÄnêî-:]çhGgÅÕÔÍtêE=ßãP. ×RyŸ:Í÷BT~§\GûÞVÞOùlWhK=mºB%÷Ï® ÛÃД)«sèÉÒëÛ¢±m´o3í*¢½Q߯\¢RGì•ü7ïÈ hc{¨žûªï3oO¯©LS}Î&çìY?¡’â ôk_£ƒwP™Ÿ‘UîñF:èøh§WÓÔgT×!w\¦ÒÏæ•>ï¡9ú\ æbK¦ÓN~DÓDÇÞ¥Ÿ£|ÿ¼ÉÊ=TçxGKiëÂÈ|b§í˜¥n=*ç;ÎÀ¼þÛèäB{ò<4.×Ê»LeδWæÍy»êiO•ùjÞ¾[•?XY©»ÈºH‡+hzü:ý<=õ úú2}C¾ÿ™åvÖ©EÚw‚ÆöQ}®¥æféýI`¬sÆõܦ@=Ùí*¦=›ho5RéGô&n£}_Pž¥É*se¼Ò¿õÍë›ê¡C;èp¾ò#ªÖóf´’Ž}z}Ó?E'[¨ôÃzOçÒ3ß¡³ïAÛvžÁÀ¾ÈÍ/p¶vÑ®jš\íàfšÙ.ÞØyTîOü=J}í8OcÅÐö—ÒX”žHÑêyh¤ç†Êœ^¯Ë·uÊù¯Wç/É}”·5LÛi÷•þ\¯:ß²û"ôtòeù¡òY:õCšþ{tb7Oѱ)ªç 'èÐ{TïtŸõà.:¤ýiÚ7«Ôû¥eå>ßMåÜÑ«û¨£¹´u#m\OkÃôH„ê~ÌLü”70Ÿ¤¦äú6¬¡úœ)Fí©@g~ƒN+•N(*ŽNSþM‡ê9È#÷Q©ïðê\¶$Uçëzζ9†öµ Ìûø†¥{ ­ž¥rŽã­Sª\ {úNªó¬§ƒN~@ÓÒ±s4µ}eûòªóQuÿÞñB*óæ½ª~Þ¸z)§ìýMËTr˼‰rhã[¨®›œ~•N­¥z¿•¾…Ž¿CÇ”¼œšú˜Ì+­òMeBY«Ü¥,Vª<œÏ«_î¿¢|‹ö=N(ÕûSÖ‡ÞøgÊ·”3ÊÕóé:×Ò–¥«‹XO弨{ ²²†º˜c›¨>7mOÒänh¥.Ì›ùkg•¾ ¯¾§®ˆ@ó¼Òå>8_*¦º^®¶˜?O,•|os3m¹íp•ÜoÿUå9š(V)7*ó¨ä ÝÐÞª÷ã]T¾N¯ž»ír•zÞ™ô•{¥ÏÖëæ?8/šò9ªæF˜ÓTÖÞŠbeˆJîiÖ­´Tú/¼á=hhU)=”CkÂ%Æ+sn½%ж]¥™k¯éÞMåϳ@.cm_ Í3azD©çgô•Óô]Ð~7´²ß±ôe(F˦¬peuýŠî¯‹Ä¨Ü¿z[w¯l÷Fš*££Ûh™¡± HQÉYwšp´3ÿ•N‡èä§W)ߤñuTêL¼}Óþ(M]£Ã;•ªÎvìå?KÓ7+ÿ ÌËSZ:³ÚqY/6ÍÑcËôUCõ¹mµ¥­iÇe˜Ó‘HѦå%º?´¢9í—©ž·;þ>ú´ £Ð¬Î¡ºÏ:–G“Wé°¥£!:ö6?O'šéä.:ý³tf?=õ'ÐF§ èÀšx‡f–AYu¾³ž?ýüÝn¡y>Lõç¤ôc;m½ü9Çréù\‘ú‰ÀùM³œ£¼´D¥?Æ»# ÷n¾”Ÿ3µ‰Ÿ§‘Ú˜¤ÑM´wŽÊ9¡·ÿ,•y9N{¦‚žz“μ°²§¾J'ÖÒ¡íJÓÈ%¨ë’mæã(k]˜ÐCÅ´*De½ë}ÖÀÀ= ä:xU~N  v‘Ê9ª·oŠÊÜ)¯äý{Gg®ïØnh'Ã4pUB£´§êùÓ+è³ašyÛz¹x'"ÔÍ w4B˜ùl>ýŽ¡Ï—ÑC%4¢”þJo{Îõ•ýªwj”¾ñ›ÐNßJ‡÷ÐÁh–AÛ»ŽJN†·õ UûL#ûK¯š;`û·Ð™oÓÉ40'£ŸN”+ï CtàÊG©ÌÏñê9mKÊ+Ê‹Ê Ú°ž6T÷ûì̧Ï(3ͬõ‹Tæ±y;e]ßt޶4SÉ}Ôûûýúúߢ³¦üƒ•=•Tv*;”õÊ#ʰòyåÓÊÇ”_RÑ©Vvò©•ߺ²²Ïº¡ƒ¯¬î÷ø.í©UVÓŽõ´}mŠÑc)ª×Í¡ðu5®ÿQiGŠiìÕ¹ ™qá^SSü9–ÐÆ T’kííY¢ò÷ò&ºhŸ¥ý÷Ñ4MÝK‡:èÈz:ú(ï¡éߦ“‡N¡3MôÔÑÓÇ”ï@ûR8£Ê-² Фê¯ïЃt4WÙ¡ü€ŽÝE'VÁ@Ž­žk©çVÖž§‡+¨Ü£zUnµÍŒ1ðê¹?ö õ¡R—æÕùÌ2oØ«æ(šAÙ^ £wÑôt2ŸNKÞÕô/Ò™Ÿƒvê'W6]FÇ£©*óë¼ÉGhüåj*õu›côdˆfÊܼæa¥Î™ÅЃZSFëŠiC-mž¡úQú8½=ë”û‚ò3*sM¼}3TN €vx”êûÓä(œ¥ò}ÉšCÕ>Ê>¢O‡¡yrî2+[¥”¾3oãvå2mZK[έlë2í¥éL}ºMî_ÙxÅÊJŸ€WÏ ÒŸw †ÊëÓ{8LZ*yd^•e¿f•ah2?YŸ у‹´>D7S}Î)sn¼%Êz¥¥QÚµö”(ç¨ëŒm ñÐä{ÔŽ‹r/ê´¯Ÿ£³§”e.=Ó¯|žþ å*Ÿ¢§zé̼òïÐé§èÔÇÊß¡“×”ÿN¹ ÜDÓ5ÊgéÄf:üØAû/Ñî ÊuTö]Þ“yÊ\Z¥{ÃÐ|'D¦¨®÷‰Èz½&š£9ÐŽÖÑáVåítèQ:ø>x&êiÌRWoí”>?ï±RΡ¡hd.«÷X˜6¥h×e/„vºDùM'©Ìño£z¾üÀ'ÊóÊe•ò~ÚWBPY?xeýá­/¢:Ÿô놺>(§ÊoµU…ôÀ•ºH¯Î÷óÁ¬ ´4D]n›ó@!ÕurNíÕs5‡¨^w%‹èPÔý†FúRœ¶uvEM¹¥ýsÐö‡hòaÚ»vÏÒ®0m/§9[è±*÷îÞ#–êuŸ~=ìѯæÐû©Ù›¯ цZ¤'KhË%*9›ÞÎBåF¥Zçu^¦]9TÏSëÙ@ãEÊÚ·ë¾Eu.ÓP9ýŒN¾ ó_"sTrÒœ¦ ‡Ê|l¯Ì÷pÚ¦Tæye>´ÓHý¿÷è<ÕŸûkh4Jå<ÌÛ9C{ŠhïšѾ‡irX£¼Myªùzfd˜Žž£“›•CôôוHÏäS¹—öF hû"íÚJ»/ÒøC4q'í¯¤g©¾O–zx¯;§r¾h©šŸ¸ÿßiéW¨Éü5³~Ŭ¬®kÒÏ1¹/ðºõšî[“œ~ï±(=®ÔçGº®´g´§¾O“@©‡v¬™úªj•y4ùM,(ï¦ñûhl;•s[ogmßJ["T÷#éy>ò}õ~^·¬Ï½™oûÿ9—ÒÚEz¼ˆFò`°÷3¥Ê1Òën—­××’Óa¥¾Ùºy|O†2ÿ<´†ö6+×Péô2ÔõY7óÏæ¡pÆæ¹Œí™?×çXÆäó9¾C©êR·¬óoЪeú¼…fŒÊ<3¯ìÿ¼=£4P—]J“Q]ϧó[‡ß¦é{èä¿€6rV§©^ßÎGD•ÿ¸Ç‘ç”Wòi½½¹TÏÏ‘oS1ì¦nþ‘³vž¾2G÷Ru¾˜ÃóR•toË6ÚV ml–ê9_1ÔÍNt@Sz.ž9–O›d=õú_)wÐÙËôôGôÔ¢SŸÐÉZšþ%:ö(ÞE×Ò.šÜ¬¼—ÊûÞÛµž¶n£ªÁºó§ÌGöúü¾HF]çûDÂ3¿Í½,Q7G§f6lþŸTö_Sëék1¨;Õuê}nÉùYxš.ÙßÄ„öô¿¥i«Çuõ¹S½TúǼ’CíMVÓî­´u•ó~§i?mò*çDNßC%÷Â;¸ê­×ÓÑ=tì´­ÕÐC×[}²²ƒëiÿ´ÎИC§Ëh‚ÊÜï©×hZö]£S4ñ¦²•ÆK¨œGÞЗbô{+k$—ÆißøczúV:“¤úœAs›r¡ZGå^Ìi2ÇNYC{úv:s3>GÓëèDˆŽwÑ¡wi$LКHF¿_³ô)#æÓÌÛϯOÝÿÌ‹ªs Ü:õ¨|^§VÑîÕTæóxkcTæ€:}ˆU¹ôÄ,ÕŸWÝÕ4nh2—Jžž6P©û,û hç"=¡r^ã=`©œ{Uÿ¹É<Þ²VæSuNh§ÓØèTˆN^P†h:N'ÞUî£.Õ™JÜÀ‡©¾7–|ɬ«èÀìçZÙþ)?VîT>¼²ÉwV¶o?M\Q>LãóÊ|Ú;¿²ÝÍ4Z¿²’Ÿëm*¢‘rZw^i•ie>•ùY •uå =—CCÔÜ£LÜAûe,õúÎÀy¾Ì ö¶Ä¨äà{Õ}ºþMÿ¿“ʹƒ·£H¹‘ž8O%_ÑÈéVõ vâªû ão*c4¶†ö.*Õz®g •9€Þƒ ÊyZf¡i_G»ÏSÕ`ûk•5Ê/PU'`{Ëhë5Ú£úœ¸>JÝþש×oêóHŸ'š‡ÃT×ëœDÉQòžX¦­¨»qö*hg”©y:ØL“ãTÏUw?7­Ô›{uŽ—ô½;9šÙÎ}¹XYH+bô%Ke]ë•s ¯»½‘º/KÏ«ÞVæRU_f¿géî|ªî™¬Ôe{ŸQ™Cêõç5¢»Gt~ËÒÇ Õë3ý9®ï Š”;V¶V&i"­¼ƒÆÊ»hÏjÚUIÛòiKmÞM%ÙÛp–ž(¥.ßÀ)ù·^½>Ý?GäR]ç}b5mIS™î7SWÏst5mÝLۮюK´»œÆî¢É%å2•|pïÐоþÛT÷ñL=O'ÇéD!•Ü0¯Üçxu=`ìcªçȵFidQyžÖÔÒó¡É¼²J}¨Wö;N;ý/”G•÷Щ£lQþ *ç ^=o6šVÚ¦l)€¦ñ¼RÎ'&‘¦šÊÜï2u…Ê<8ïÀ­T÷%d>†²Êü=o,±²ÝרÎû 䮣Í%ô˜¥~þ³øš¥:'VçżªÔóÂ×ÒH.mY¤mÛhg•ï‹7~í«¦»èP¾…ª>};;FÏ|¬ü=zúÓS×èÌ÷èÔ l “¿AÇ*”tä²2—¦n¥ÉO•ª?·¯–&n¡:£u;=i©ä 9›WèrX“÷Ðx=mŠÐ†Õuo/ÎA“iÈ*uº^9Ê*¯ÏÖª÷CýStàN:xÚ~«L* h¢V¹•ÆÞ ½k©ä3y[6ÐÆ•:<ïñ2ªöç&¤Ô}ŠGè±9ÝJ{橞ç§ë£“·)¡©.:$ûü‘TÏõh6ôè,4’ÿåÕù§ãËÐ>'¿¾Ø†¶s;•þ8ïah/@;²‰4Tå˜LÛ°×îÊü9&ºª¹‡:T½¯yÒBóJ„Æ?¤Éót0mú7hß´÷=˜ ÓðyÈ3i]Q;õ-ªsçÇ?¦Gʨ®O¿;‡ÖçÑø¡­Ì¥z¾›äG8ÍÈtæÏ¡=±‰ŽÞAýœÚ‹ô`> Ìii•ÿ_ö|ÿ¹¡ ËóÚÕ¥ )—VÔÆk¡9nh_”N„öÔ¦S‡hêNÚ+Õs‰tªËCuJ†W×ÝŒoþ7(ï^Ù±„²‡Ž ÓÔå´=Mn¡ºo¢Oê³b¥4ZAu]˜œK8Í«aªŸ/M£´}7´©Ú•ür;í?A}êúù­^ñgh â"íÙI]ý·3zQ9J[˨äwz›.+/ÑÆ(­OÑÃsиyANÝ/¨òˆì™_¡3?K§ÿü)ªó•ÝóÊ™jTV)Kiò­Ï1ªlUªýaâå6w?çËÊyÚÊ(y‰^É=ö¾j¨:ÿ5•e´iíš¶ñŠR½äžÜ+ïCouŒ–G IÝCG.P7ºŸŽ¯WÎÓômж_¥‘2:e¨«Ë¸¡3tð´r-¸…ꜰ¾2*sR¼'Âtö=õ3tæoÑ©@Ó§éxÕ},©*û ow•ùÞ¶"Z¿DçRÉu×_éÔsTÿ¼ Ç` Çqz5Èü¹Fê£L}ú~R§®ŸW÷%F¾Ž€í¥b5´’‡çÕóìõ>[æód-¡õ¹ÔÝ[8Ÿ As06—BûýïÓ3ÿšÎôÑéiz•9"Þ‘ šz“Æêi÷zÚ¶êý®ÔGx_^Ê|}áEÚœO'ÿ¶òy*¯§•9Þ#óʹŒ/Xe,£®;/ SÙWxÓçéäÝкú$g¬’êïcÇÚVKÝœEgCuý×Îï†i©¥r¿ç4™_ÖW-Õý=Ç—iÛVÝI%7ÚÛ]Kc—iß ªs/†n_ÙÑ5tb/•ókïÔ‡tú:óuzêç •¹ N3QF]=§³3ŸöÝ¥ü̬gMJÎ¥¦ÒTæ°xõ½Ÿî_ ÌÅz›vS}..󯼑yª?§ès ÐÈÜïkÊúz<—6YÚ±‰Æ.о7èÀÊÚÞsT^×ÞF¥ôØWÂи碮u¶\ ®è;aÚhhyŒ>½@3×hY‹-½7š§•ÏĨÌ;óF2çröì”éÔ¯ÐÍkÕý‘­ó´a–åC³# mUšÖ¥ŒÒéÉë+aÄ­Ð5SÉéq·îw¶åB]OnêÏS}¨÷.—O×Qû9ÅÐdÈúJæ×ùzŠïÏÓéutò•¹¸²©‡”7Ñþ[V6¾D›eÝvp4Ò·ä o¢Ò_àuïG§Ì}ô&/@;›¤Ó÷Ó©Ê¿F'Kiú t¢É/Ð>¥žã­ë %÷ßÛ>OÛ6QÉ]ñž0´6B÷/Ð̲Àk*‹é«Z§ÔõÒÝÊØ£Tú½}«éà M½MÇféäŸÑé7è̯ÑS¿]­ä+y’ô¨¡º_â›9иþx§îÖýr-s´m •õ«·o•üά+›©Ô!yG.ÑÑV:±DåýåNA+ùäÞ¾<YKu?À –~/D¥/ÛèÇ‘0¯«Swº<§Üz£%´=B;ji<¯b£´ï2\íÙJª÷ßÿëô/Ñ×ëéì_*ÿ­²Iù;ÊÛè™Ï” JU7pæçééNåߤ§.(Î<§üeåítjüoÊU4Ý®ÜDÇ¢ÊV:ú¾²ˆ¿¯\M%—Ä›\T®¥ºFÏ[ä­m¤=W¨ôãz»Š©¼Þ½z¾NkD™Kõ\\Ý·r¼„- 5ùô`Ý_LUŸ‚îk15‹ÐŽþßJÊi¬™vÓö´y‘6äÓÌØŽ¬RÏîÕ÷І¡yaŽê{££y´y'´ét°€Æ·ÒØ9Ú»L%gÝÛiäëÑêÕôPU÷¯¶¼˜>—OÕüG»ÝÐm[ç8ŸT¾VFRýý äUWÓ¶¹Œê~Îôn¤ý{ í¦ª¿N×Ùpšî[PÎA³cºz"çK¹œWÊ¿oŽP9ó¶m€öôƒ4ýMí¤.'Ô™ÜFã{iìfªë¸:c´c5Õë¿–2ªÏWO†éÑ(=´@3÷¬ºàù4­^¦’ïíY 2OÊ«ëÂô/õqÞô›tæ` ÎXçL•ÒñB*9¸^óÔ7@ã÷Ю TŸK´l¼¾rNêus^’Ûå}-BUŸ‡‘ÜÏ[ž}+3¿¿9(ÿÝ1ùõÇgiƒÉüþÓÑÔnªî¯MG.u¹o7ÐF6Ò—s¡‰å+e_[¢zÿvj Ì»•ŽXÙ¡‡ij5 Ô_Diü ÔÍÍsºû^ï{FÒôD=VHTЗrèî0 丼bèksôpUý_>ˆ†ÚTNuÊ;iôí¼H{šiì4MR©Ϻ@“u0y<½²/Ò­ašù6xõrùõKô…e~Æ}9ô@˜VÓÚB*9Þ–õ´£˜vn£=«h|œö?NeÞ„wh•ò‡TÎÜ6ÿ˜µ}mµ4r•ê|øÊè·^sêºæjñH-­‹Òúe© õš:wÑ}¸Õ´ûÝNõ<€ÄyÚ—¢ÒŸë¸I¹L¯Q©_ð¿GGo£’ÏåÈ¥rNšõ#:ù&ª¤ÓC_EÕëÄTÍÑ£K´m-í¹J¥^Ü›˜¡CUTú¼c?€6ý¯•t|#~‡ê¼ÊÀ¼Û.ª×=rOéuû6gÝ,Í´WfýršC´®Ú‰:ºVy¥Ãw*óià~t”ÞB6Óþ•ašüDyVyí+¦‰Uó`lìÚ³žJÞ·sÕ÷·­»©ÎahÙ© Q]ÏߦKuþÙÉÂŒ'DÙ×§éaeU=˜¦2çÃûúUÏÝCEôpl£MQÚnh÷"§É´Sqšþs:vês¿¡t°‘öo£±Ý´ç•ç¾·éÞkIhäC;ý¸LGßóiÆÒ¡R:xÕ×—þgh_—xŒ&¯ÑÞ4íé¢íWhCÜYE—ÑC¥b>ä’ÎÓ ©ìgÙÜ5HиûC³}jo[µû÷#Ÿ;JéÁ‚åÕ\£óÔ÷ØÄ»èÞEªç¹/¹?Ÿ;/\2N¿ié1h¾œó¥2ª=7• ôöÆ~'íX5ÍÜJ‡~L>¡ýÛ–7uMî ‰.ÚÜ,n¦Ú_r,N^Ý?wùÞKV‹åô`R¬£¹µ¬%·g¡ñó×^ÍMÔû‹¦ªåm¾B]nn0•OÓ—èµÓ[hæ1Í‹îõqè:utyeOζ%¨Ë 6_¥ÃçéÐ=4Oý¾·ßÿּЯ‰ß1Ts-^OÒ=sTsݽDpxÚÖ:êÎÿ‚îõ(øZ}$#=K.w:X_D[êh×UÚ£Éaä^YóÇô¼)^#®¥ÇŠé~C_ŽÁpîï=¾íì¯Sw^ô™6m£»âÔõ¡¿d`¤×Õïy}¯£Wó,tŽ«©š¶×P×GLÁÈÜœ¾~»ýgÛVLåu7ôˆyG?·¬¶ùݧzïùR!ÕžÄÎêžw–¼FÓÅb3‡ïö­:s'Í6Ñ÷¨ËñšC—i|%m¨¡ PŸ{ÍàújœJ?n$ÿ¨OL—Ñ¡§h¦˜ŽÜ/þˆŽNÐÉ3tê):óëtv’ž,¥§þ¾µF>g¥ëij5Õ^«}UдÂH¿ÄDÝKÖÑô§Ðì)©Ë+öFæ×57¨ó¢X!®¤Í Tsȹ?·»7 î¹,ÎÑ7‹éî¬XL_JŠyTï}ý½wÿ"mj¦msОø”Î4‰_¦Óÿyyõy'{'»úXïÀ5Úÿ1íÛIuß±k³h¨»? ¶ž¥z¾x¤Žêœ—îË»V¯yÖÒ—EÓqÏ^;ó4{™Ž¿#ž¦™Zêò„ƒ}WiïiÚ±‚ê¼îÉ=m¨ëï6êz‚µ´«Ú¹:t…º{ÏàD’ÿ˜Jo¼Ù-î­¢nŸ)ØT‘³5MÛÎR—ÿlo¦] ´'M{Ýóiò~qÓMœ†‘ö†54ž¦ÇK¨öª¦ãô@†ÖÎѽùÔÝSÝ|ð•2úbý†…‘œ¾Iz(C¶ÑÄ5h“4f©ä³š£1šÜ@ûï§é÷èà“tx {ˆNÞíÈ»Ðì* o.Ѓ«©ë¶‰¾ŸÍÛSE“·Ñþ•Tó¤OR·ïtçÁ±ÿjs/KVg©ï‰òʽ¦ý•£©<êçæ½m—¡Ùn©î4æýOiG£™5tèS:°ž¦{¨ëj~ô±rZWGÝ×?èþ\KZªÏE¢Îý=žG¿êþ¹~Žx>F_ZÌYGÝœwp>­+ G­x–º{‡%»h“{_oÚL]?L°=yc;ÏÒÞ|ñôg˜ûýÚÞrÚ²ƒ6VÓȼ|œî»@eÏØº¼¼àîEúš¥î^Ïkž¯ {K¨Ûïš§.ÿ1¢ÎÇ&?¢W¨ëÓYò]šù„Ž-ÐñghöïÑ©cÔõU˜Ð[±“jnóJª½i'> Ó4û Õ¼ÈÌ´ÿªø ÕXÍmºNë/‹ bœº\•%«©œ™êêúñ‚ë©ôôÚÁ̳­ ‘{Ϊç }#b!ìÖÓ®´s M\¥-hÓ<|ýu×è+ ô¥Õ|,Ýo©.¦±jºï2=X–32OŸO/ÐÈùyŒºïÃ`bíY'º×Ÿ¤{]ïûÕ~*í±qyˆÁÌô µÙ§é@ÇòÆ‹©œ·×Cl±9»ÏAëûñ‚…Ôõùý^¦×½?{MUŒÖÑCôøw÷bbíª¦riÒÛ¨ž Y™Ã~€ŽO@»+ µ?\ûð"{®ýõÐ&o£Ý[é¡bª÷f¯—Ñî8íƒöµ84G©ÞO Ó™Üy;UF'/P¿^ߥCçijtàšî ýߣ©{©»çZÒͽ'©ë™Zr#íÙL»Ü×UÏÙ»6Ðvgk’6Ÿ¥MW–·q=V!z0C?+zø5C5·ÓõÕÝûJÐíÿEžgu¾Ws¾Üç”àÐ^Ñýê\HC Õ>ÝË՞ēÐöÅ©ôÍ›ÆYZYmêÔçh{}_Q0C;ÝÏÛÚ°•ú÷éÄ úJŒ&ÐÞZÚ}•ºþ`k1mÙ,®¡Úƒ¯¤/ßÄ êçÝwŠß.¤¹u‡ Ù[N%wÀ¸yÇ ë- 6m¡îç:˜¼Ús4ûStì)ºÏY÷|1åö§6Ñ™2:{«ó }ûih^[ õ¥´¹ ÚñQ×Ët}ÁoÂÈ}SG9õ÷7¾—C_o¤?02š:íìqÚR½¼îuÞòœ6»‹Nºó£}vY#sºÚ ›‹{^ÒÝ#-¹@Gî¯ÓÑw |”jOdGu=æÁÜÚhÐT/Ð=ÕÔ¿ÿxuNTòìÀÚ·¶¯¢­y´iõùåÞ7-4{/SÙ¯° ±å<ÝW@unÌåb‡|lùû·“›ir‹øÐòÊ|fÄŽ<ª{Ha/ÓY‘¤£ORw”¼³c‘Jn€u9KÒW‹iU†{ï· •~´È¹…þþÜy¡×N½E³?G3ëhzVl¤ý]´­’¶,P?Oào¥.— ‹/¯{î ºså%ó¨ÛÓ ~ÙBóC«ÊèöBúª¡‘ÄBz0F6QÍsm­¥r™3ﬢ®/&¨ùŠ© uçæ^›|†î½@µ·L÷›öRŸ¿ãÕûžôØÿOµÓ›èØa:rì×,vÐw©ËùY2Fu®íP9Ý^MîehÉ7é¡ÄmpŸþ¹¦- íé÷è[¿EOM~†/Qí¹œé¤Ó¿@§þRì§Ù?£“щ4Õç4íq=&Ðáªy ú~­==É»Ä|Ú[D»óhG!m[O,u÷*A=‘9_óMKåžÝ¦“ÐtvÑ¡;éx=´©Gh¢’ŽÅr¹s‰~÷÷¤==âÁ,ýÃ!ª9¬§~‘ž47q =ñçâÛâ7oììùXücñ>:ýU:•ï£Ù*:yø€ú¿§àCt¬˜Žœ¤ÃOСctàû´ÿ)šª7Ó¾wÄi²Œº¼Ç`×&êæ‚-—¨æïÇËéá Tú ÌËÐŽo¤©õTï{åùïŸ,æAS—O]¶7zï!ºù”`S–6Zº¯„î)£±„˜G%'Ôø½Ú ¥º²£‚VÏS=÷=hÅyêæƒ IqVKÝ>Â’ub=u÷ ÁÞsÔås.ùˆxLì .Ÿà³¦ýââ:ñAqƒø°çÄ34ý}ñý;4"žÏŠÄë4s»ø„X.¶Š'ÅŸÐáÓtd‘ŽÞ.6Šç©Û[ZRrËÆÖˆ÷‹Ï‹­tü,,?¤Ù:½’ÎôÒÙw©ËqñÚ1hŽ›œ]Whê´®/0¸»—ïãµÙ^:>»¼£wR×Wô}ß^í¿pç¿Á{hz'íÿ±ø¤øMýˆjϨö®êó«æŸwÕQ÷ºlý¾wð2Õ|YßæuŸ£ƒ{ªhè“qJ®€ý¶(óäö9q«¡ßXmÎߊA“{û_ÒýzÁ]ÅÐŽï¦~/Ü{$ Í¢¼nGò&¥'Ôôe í¯¥½ Ú~Žº÷¿`ëUªûmºúû4Ò÷óJÕ<ÍõçsÞæUÐ&_¤š;›—GõëárÑ‚’Omëhúnh‡s¯s6]‘³/÷+Ù£%Tç>ü>Ž×í“]¿¤9dhk´'ÿ’žØBgóȩ̀Ó?K³C³7 í‰ïÐìïÒI÷úáΡ‚º·<ö=êrR‚©•´.ÆêÄJª¹UIúlŒ®ÎƒÆÍ „ùÅž¿ý­@g†N…fÿÜHÇéè*ªùe#÷ÐÁ;hÇF*óX¦y´£·QíïÖ~q×ïᵩ𬣽›¨Î¡¹ùËàøZ™—¸Ÿº=²%o¡š³уt/Š1±ty5gÑ}®ùLÛwжkâ"mi¦ ë©æðX¤{‹©æ¡m[ OÆ`d¯Ðå!ëó©îaw®…‘ó‚æ,4=s´ÿ2uç¤^›ú”v”RÙÕû";ÓB§vÐì‹’›0ÑJÇ?«Ä :öÕóÛ‘;èð÷©îg XªyµýŇij^ŒÑ¾Úsš¶ÏѶ zì,=ZJœ¥‡WÓÜãÌ’¥Ôí‰? S?G³;èäzšû¶ÿl3»©ë5´ƒ†ºÜ­`ÊŸ¿'i²€¶®¡®w!Øà~îŽUSÍctýñöKS‡©Î.£nO4¸³ŒºŸOÍ;5¿ƒš—É;6O§þ!´=…´ã=}ŽžøKšý[tò>:z7y’vŸ§-Û¨æpjnÐîª{dr>b]\ðP%´Ã?¡ïSׯô½ô^ín¤ êέƒ}[ioÕ}ýöêæÉƒÇ ©Ë Ö®¦±kôõ8ÍÕ@#÷ÿ;b4’k™G¯A{â7i6Ÿv—@ãNüÏÍÈV:ð Mî¦]×hÛ,m] º7¡sìrÿòF¼þH÷«’? ƒ?†Ñ=Þ9êæý¼ÆäA›ÚN{®ÓÄ…`Ç%ª}<òyÚtYÞîU4u'•>@ãöÕ‚™GE½ù€Ž|D'NÓ©[ mƒ¦y íNÓ±‡©î©OtÑ¿íøêçõ_zmú:uç¼ÞÈþvk uý£^{b .¦ÍâsTçÆo£Ã%t(IǨ»¿ &ªi}BŒÓd­(ï;Ú­ïÓ•šªê·¼Ö½Î;.RÍåÕœR—cÔ}Õc¨»÷~ÍB“{ÛølÝùU°ª˜jŽéáz|Ž6ì  Ô3Ý<{0=OvÓÁ«tä"Ÿ§“ÏÑì“tê:}FòÞ~“Ž_¢ý×iWÕ9"÷u³µú’æ«¢öKδÎÒìБ§–wð^êϼ}wÓãg©æöËy‰ù’¥5ÅTó=‚î}½ií8}c“«i F?GÝEõsH¦”ÕS×ûgÓÓþfšú չƎ-4qêû¦ì3[—¿Ô}éq6¿œGõZóXj©ë ­¤:¯žØH;ª©ü=™Áít¨ÚÌêßï}‡ëm°[-­ÈýßÍ›…9÷äA{ògiöשöÁ æÓäÚ]G;¯ˆ+©îõÄKéÁ„XSûé¶ÄhØ5Ôå$zíè§4µ‹&×ÑújhΣÕqh”Q=·vý/Á×,ÕsIÍ/{º·¿ô¯GÞÆyš¨ƒ6‘„.æìÿíjhkãôÄ›tæ¯èøýT{›‡®-ïÀ¼ø0MÕS=ßè^GÝã’ó´å m.§¾çÐûÆBÎ׳´2ÍkY*¹OöÔ=9Ng¯‹ïЙOÄ]âÃtú/Ä[éøñ1:VOGo¥™éÐb‰x¬åõ'uŒöýˆv_£†&Šik9m¸FÄé>›3æþþÞpÿû«NÿàîC‚¾¯ÖõHEæ­Êr¿?“û²-és||®ÏÀFh¾`¨îÅk©æ·†×<±TÜ$–‰›Eùܯ9±®‡tÉJq‡›Å„Ø%fh{ ´'î¥SÍ4{¯øÓtlpyÓ;¨ëõ vìË É}Y‚ö»·P=OŸúõs.Þ±ct´„fVÒ¡54ôn;ûÎSw¾³äfÚUBÛ®ÐÖõT{·"¹AIúóhÓ"ýj4þ¼Ð»%j~ؾ:šLÐþJ:ô>us²Á‰*šµtú>hÛcÐl¦vâêÎ̓î91è>?{#Ï9š_[WH%oÙ´%iïhßúyªy\cgèHõòÇéÐ,MÝC{ʨ~?¶o¥º?£ùErŽm·ÆèЪ=­š¯Ôt&hëuªß×~?Ç«9xš¡s6ÉêïßÃ=|´ý{Åšº(V‰÷Ò¤Ÿ¤ês˼‡ò¨ïÕôêùþw,ý¢ÆíËs/ÏK¾£šë湃ú>Ô3 —>÷ºßߨÇâ%šü@´´£€ºû1¯qó Á½Eô°ûüë?_y÷Q×Gᵩªç){®Qù{0UUô@Ù²Ú©¿Ä_¢Ùqñ‹trñ&®¡£;éH+ÕýêáÛiäóQ…XL7Šr¾•þí¿›Fö{¨Ë¿ ö&ÅÚµ’v\¦‰UTçæu®B÷õ\OØg¯¢.;¨çIzo¨yôºo±ÏPí-÷ÏÿÞ—è7 é3fy¿NÍïåÑ ³¼š—¡º}„ |Έü|û×ï±:ê{ÜšÖPíÉk=MÛ·ÜØÎ,uyáA7_lú>GSut šº|¯6TNôû^Ÿkµ¿¸ñ4õ{.Þ× Õ>±m–>m`¤‡ ó´¤ö²íÏ£¾÷ÞÛ1OÝûlPÏ-]?\pän:±ÚÓ‘if-¼DûߥÉ"*}Ǧ7M¿CÝ=Z°¹Šº¹É`g)Õ=S׃œš†6¾Ÿwãóo\®Uðµbh\Oמh ÃÐÙ?¢3·Ò‰cttŽfÎÓþ"ªŸSº§Žît¿/òZ·§LWQÉï³}OО3ÔÍAuþ¸)Fã×é‘ ºŽjo >wÙ@ã÷'¼‘ÜÎ h“— i( Ý•T{šÒ©{Žº<ÊàøIh§Zé`¸(fÅŒXCõ<äšoS;SN‡,ì¢îç?(½"‘ÜLÍ‹Ô{RͯѾm7‡Ô| Ôs{ÝŸp9çÁ¦3ÔÝ÷‡óÅÓìÐΞ Íb>usÎÁ#…Ô½¿Ýç¡ ôp™MyTçùäÑ£bk%´‰³4¾‰ê~˶Œä_µ¯¤=]t$íÉçéTšfëůŠù7v|ê~˜îö7R7¶äjš|˜ês½ïÕójNö2½ZFÝ=œWsí©WéÉÛéÌWèÄm´ï=RIs?KêýÚW,4î9,X[LÝ=^Ð}ž ¶¸ó¿„…væ÷hú9*9Ѧc´}khïJÚ}‘J³m, ­+§úuÚ£ˆ¿–Íïæþy¤GëÙ$•í»¦ èà6™•}QÛ£~îØ«s2nþ(¸#IŸŒÁH¾¡Ì—›Æ"ê^ƒ=†&׊ÑÔÝt` ŒôÝD>/W‹EÔ߇9MiŒ¹F›’t`+ŒÌ»÷Ú¶’,¤µuTz4¬›_ôš£‹4QAõs©ö³h¯¨ëK ?LGk¡=ù=:;M§èX}[<)®[Þ‘ bZ\O3w-ï¡‘Ïá+¨ï9÷ê¡ä›Ø—Ê ñ}™¾_ð­8)¢#³thu{\Áã–êïÏï'ÖUÓÆÐžüª{•±Wym§¥ñK0’ó¬óÚÉÍÐÖÌCÓ¾mò]êö;ƒû«¨>·¸×!Û~Fîç¥/Ø6Rß­[¤û«¡q½µ^»+Iõ}Ùõ ¿UAŸNR—Ì=,Y@ÍCâ–>[A¿e¨îߺóÑ`M’jδë1(¦‡Š¨¿×ðºÞÀ`Cu{°Á¦jêz&–œ¥-eÔåIõs„öŠ»¹” ÎwÓ¾Oid?óqy®¹L‡…öÄ{âŸ-ïøLÑT—ØA“çi÷JZWD³'èЃиç ÛòÚ‰zšù>õÏÞT#ÕÜŦº£Šj?CîxkÉ}b×,MÞ!º÷Ÿ–•Ë;£™[¨Û[ ÖU@³/Ÿö¯‚¶÷uÏ•þ^6òs®îŽQ·Ÿegêhv–WÓëÔåíSÕâVÚ·™&ËÅ'hç šˆÑC›Ýû½æuÔS}_¨»,Êç3í?~šrKu_нï-£ºž¾‹äAÛ÷ ít?¯²woz¯Pé=°-+ i=KÛÇhÇyêö-ƒn1èîŃ}»éø‡Ôå6'3кް`ÇUêò ‚õsô`’J>XäýX?'UæÑ˜¥‡ÏÒxÕ¾—¶4QE»D½ÿèÿ>´=U´{-4}âs´Mo¢nn48’OÝž×’/ˆ—`ä9±:Í6±ë<Ô¾íHßÝ‘rZ{™¾š¤î|ÔkÜ^ð@ ´Yw™ý˜j^¢Þ—¸þâ%ó¡y.F_È£z¾’z€ö?F‡éð÷èÔ)h³«`ä¿—^C¡=ù:û:ùe:ýžø*zQüš£:O¢9ˆúySç݆²4}ö@SwQwŽL,P7Ô{Jíá=à|½€î¬¢¯Óèó1úu ÍoäQ}=üª¥» ¨æ'ÖUѦhÝsÁ¾yhª,mZAû þÇby”Îþ{zòw`¤g¯+#®§í]4’76O[òic1×S=ßÐsx·ä5þžÏ»§ü†Ú¡zÜЃÄ}nús<ÿþš{yZÊ!VôýÀ®·2XŸÍÙPIåyÅfËèèTïMë3К£næÿ)íØ´8FGóiúÚ÷$Mª¹]W©Ë7 ¶ÒÄJêúa‚Í—Å"ÚTHVQÝ¿Ö)ý~»Y®ž~ÿ¹^4o$çôÙBêsµ¼ÚO~`5Õ~7ÍíiŒÑ¦éݹNýž˜×Í{¯ÓÔûÔõ`o¡™ tl%´-éw+éÛEçΉГíb£øZG'?G'jéø÷éØ{T{¸†ß¡Ò×m‡~ º×™ÁûéÀU™}\¼öÐŽ•Tz3#}ÇÞ¦9*ûÆåLüßÕž~–¾}žÎ–ÓéEñŠx?*7ŠÅ4»Mü»tâš(ß[èø5q+u¹õÁ‘,¾D3‹Ôï{û34yæ–l™§n¯,¸¿î-¥;âÐäg–Ü› z>:úh›WRŸ·åïEun]­)£ªéáØ’U42ߪ¦2ïj2%tT}f›Nýs:óûtö_Ñ“Ûé©^úV7´ W©ô‚EòÔ¿i©{n –ÑHî7c¢¥¯,ÒX–ê}™› êdÛm7´KLî¤}‹45(º9W×stóAÁL-¥«iözê6ñ7 ÝOG[éH=u}%ÁH?„z†öǨ; êùø1K÷•Ñ 4y´©Z7?Œ—@ó´šg|®·Û@;G¦?¡-uT{O=DO|ƒN÷Ñìe:¹‰ŽÝK‡OŠYq%ÍÜJ‡>¦ƒ§ÅèÀ'âÛ´k uù«KŽÑöK´­†¶R÷ºÔ9MׯÔ\A=Ö|QïËý5-ù{Ô|[t=åA—Cl.‘=É¡;è@ŒFæ?¦}Wh÷ušØDcTó×Ü\š×|!Fµbö¯èÌ¿\Þ韡ٿÑÉ®›ø<ûù@Jµ?vðNÚSIùtOŒî´Tç˜r/¯A³S¬¯£îù2(9›¶¿”j>®Û{>ƒÆ}þ ÖWÐãIé'NÒþ«ÐüˆJ¿„ñ÷­þþuìm:º…ŽˆÚ/0|+ͯ¼d©Ïô~ÙB³«ú}[ﱤȟÿH.ˆöƒu–P÷93XSAÝ÷Oð‹yÐì7´½œº<’ Ûà ÑÌ,¹ŸJ/©Î Gò¨õùîe÷ûÖ×Yɱ²sÒSYzâãå)¥º§6™OÇî£þÜÕ;Ô*Þ.ÞFÓ†ö­£]Ts!ââÞ,•óBã{)½5UÔÍ•skÕK6ÕCÍ]²n>=XWJݹ¡×,§mih7Qý9UsoÁÈë©öÎô¬¢}OÑô}tô,ø]„‘ÞíHÿÑ9ÚZFë/Óç-Œì“5_„Ö½ß/Y@û/ˆ·ÑîõTó€j“4ù´Õмhi.Ží°BLŠ ´ªP4b…³â<Õ\íyzɈUb\ÌŠ t{žX(–‰Ub\´âõ¯³Áb±L¬“¢èޱX,cbR´â"ÕþX}Î¥BŒ‰Iq^\¤; D#Vˆ11+΋‹ôÕBшb\ÌŠó´:O,ËÄ*1.fŪ¹z¯Šeb•­¸@uNú˜#=F»ªÄ¤hÅêæ—,ËĘ˜­¸HuXsØÝóã’11)΋‹ôшbLÌŠóâ"Ý](±BŒ‹Yqžº}‚% E#V‰q1+.,o,O,‹Ä±T¬«Ä˜˜3âœ8/.ˆ‹tO¾¸Z,X&VˆÕb˜³¢çÅËâ5º7_,‹E#–‹•bµ“bV<+^/SÝÏÚW ŠzV*–‹UbLŒ‹qN< í‰ÛéôïÐM4ùM\¡ñز7/íµ3_£OÐáiªyà};è«0ô¼µ—åì'kèôçÅCtæ·éìGôÔ%š~Ú“ïRÍ?›¬§Iw/9ü‘9k›° îe¦ß£CšùpyÇvщ»ÄËtêoÓ™ïÒY÷9hö?Bë>GtçÎÁÙµtúˆŸŽÖˆ/Òþ2Úã^ÇuÞ©£Š/¡¾ïÊëç¶êΕ­›×ó†ó]=/Ñ\ÝÛë»ÚÎB÷çOÒì‹•â­tü"«¡£wÑáYq#ÕÜ¡O—WsM\þqÐå¤-¹Šê¼SW¸&Jic=d©;ÿ jޥ̗¬] n^tÉѽ>é<»›« ¦?€v²‘fÎÑ}×Ä84µ1Ú²†vÅnlú}hß¾‹ö_¡3‹NKhvF,¢i:ö}ªŸ3çÅiñ°¸SÜLû'¨ëóXrÛgø ôM\WSßkáÕ焎1Qç#Jik=mÚ*–ÒÆEªs  kéCcj ݾHS–î­¢•дfhîåeɱÃÐNm§Ññëtì}šù@œkÅ¢Ìïvn ­Û`$^ÏÃ:ÝsúÄ÷i$O°‡fš—w°H¼›j¾±šžË–WóAûNÓäã´û Õ~ ׫Ôýû7ªœTû·Ð _¦#ƒtt/Õç-÷õ7#IhÆÄrz|A¼@R×G”½ƒH„ÞÓÉüZ ã{éHÕ<¾]âJêú(–¼‡ºÞŠ%×Ó#†j>©æOøy?ÿ1=M'JhÿyÚ*F^7/ˆ«hC='豪yú‡+éÁZ›…¦ažúù‘?\Mç^\Þ“=ôÄ}4ô˜ÆèÔ§P}Ý|›jKò'´k#m¹Dãuôµ*ç‚O¿)®¥ßýSññ1úö?Ÿÿ}ë˜x;=5->,þ"=ùÇb%=ñÜÄGÅ»èìÿ%Nüùñ»âÃtúº(yCÓ¯ˆwŠ·Ð©ÄÅ.š½&þ2üTüX Ê9úÄIñ)ñ:~^ƒÖï—xSÑ£uôÛ1zb7i ÙÝtÌûÕžƒ½´¯ö&æÓäCÔõÄ.éÞ—k/P.*9»æM mS1uó^o¥ãÕÐNgèÔÃ4û¯éÄ÷èHÜJµÂõȵõX1=£Ûç¡y~Öê>5´g-M¦nÏÛÙ›¨\ÞÁG–w`íÿ!í«¡Ú“áöð‚û—·v5}>¶¬æùBÙ»­£n8ػچ-´¾œÊ9hdNÎ=§›¯P—‡éµ§~ÎüJбfš¾Fõ<ÌõuxÍ—,Õ{íùêZ„6õ0Õœª¦ëT÷ûÓtpMn¤-VÌRí§Ïý6–Ô<7¹d1­¿i—5ÒŸôrœú{=¯ËÓ Ÿ£Í—hÇVšLÓþhÝç>¯ùÝ:øÕ{šé×éì0Ò¯¥½¶û*—w¯¥¯%é,u_‡‹’'æÓHÞ„Û¿ 6l£n>)ødý²¡«ò`¤Ûí—™=…ô+1ú’x¸ˆj¯½›g º~h¯mÙLg/Ñ™'¨ž[µæQ7ç|1 #óâ:Ï«ó’GÎBëþ¹=ù6þm:õ¯iöC:ñc±ƒŽ­ ™ktà,u÷K®¤}.oòGâ½âí´÷m²´a=VJuŸNúÒÍÞyº¿„6ÖÓžB¸”ó¸š2ÔÍ=ŸY€Æï™x÷Yh3õTÏ¿%¯Õ¼‘¤.7#(¯s6~žº^“Ðo’ûmEóÇuŽúH)mWig=ìo¡ƒUtä´ø,§’Çj»«¡ŸµÝ%´³†6§’ãn6ǨîÓÔŠñõ´µÚSÿ=ÙJg¾L§þÕÞº‰|ªŸ«‡‰Ð°÷ÜAÝsUÿ]ÔåGûæh²„ºœ÷`×ZªÏéš§éNÒ†2ª½¡~ßÕ[_H5Gù@%Õž¬]1êöƼæk¢Îÿk~ì±³Ô}^ ¶m¤¾?ÕõŠj¨ÛŸ žøsšý:þ$yxy‡ž é q íKÑžfÚ½…º|û`ó5ªßÒ_d]¦’si]ž`ðBêz¼‘=¼ZCÝRF& é+‚v¬Q¬¤# txÇòf^^ÍÿK?@Sgiße±ön¹±Ý+hg‚¶YÚœ¥ çÄ2q½¸ŠÆ³ôèMÜ£ò}ñ™›˜{ù šßº‰ß^ ¯Å¨¿7ö‹A›ös+îy@û½}^Çákô©Œ<ùŸ ïÞÕTrÁ¬ËÉ]r=þ—⟈?O³ÿ;xˆŽ}rõ^m³¸VÌ£®O~ɧhæ1ª÷âšÏ ?_.-˜ØL[/ÑæÌ9\£ú\«{nòúdÝžcÐíõ¿eéÓ ôK1h ò¨Ë' ú=ÉýYz<ê}Œú;Ôõ}ï½·¦¾’…‘\•C´¾„-£nndÉ9êæý‚ÝYÚ·žê\¹äóØÎÙ›XDÛ7QÍ)ñ{Þ¦µ´±F÷HWÓ–*qmÝzcÝæ’ÑÌV:ÖEÇ ŸP7gœÙHgÿlYm×z´˜~Öœ½÷ñ4¿™Gõ^çQóSäs’öíšî 4õ"h¤úõ~ŒNÄèäÃâ1š½E‘ùÌ[¨Ï£Ö@“}—Ný:}´“­T{þög I­„vê-𮤮ç-ذC¬¢.·Ækrã1Kº9Þ`W=í]CÓ%tèstd;´£wÒ´{Žï/æË±œßpú½¶ªÜŸÃvŸÛ]o€=ùú#šýÛtôÕ¹Þªù¢î­Göâ²J5w:µ—6œ§šKž»6 Fr]\¾`°!AÛÊi÷&ª=“} êæ Mú):´ŽŽ|Úì:^Lõœ¥¶„ºÞ±`¬Ž¾Q #yš§íòM¢Ht¿ÞÔ_Óñt,FvPÝgu¹b^S£o–ÁÈç—/ê5Ç2Ô=‡Ñþ¨$õ½É.ïÊÖhbùTï7ÒçhäüÊ9ù´£Ÿ£‰1:\D‡~L{èÀâ6ñvšº&kŪýp b3mKÐæ4=4Oߌ‰U´z‘ê¼ÄËóbÕ=6×C|>IŸ²Ôïï}>š/ÞLC·ÇèË–. Gã´ÉÐÖ:Ú^L{6Ѿ;©>¯¤zhÿ=4 nup­8K3:ú>u{zÁlŒNýÚ“tü±å»Ä4ÒÓ°‘ö_×ÑÔZš—›ƒºs&¯u¯‡Á¿ßÖE3ctèŠ¸Ž¦çÅwhê7ñìòjîDo’vWQ=¯n_I[Êhs1õ}»ÞãóÔåu5·"ó=Ú³ƒú|ݳ›G]~¥×øç¯¾Þjš›2­¡u÷ì^3}˜ž¸•žo¹{¸ ë‘ ö®¥n?˜¾~CíÌw¨ÞóFú6ÝiêÇâ½Ôõ {M¼ðÿ¯´3—NŠEt*E³¿AÇ[i¤ß²ˆfÞ¡CÒªyЩŸÐ¾í´{+íZEuOWïO]þ}ÐõŠ_A³E”|Ïû¥ó5-³´a=§z¾8AP͡ڿšê|¹æ°k/ò›T?Ÿ9Í7+¨ÿç^ÍCÕ=‡Újº?.&©öy34ž¡«iSŒ¶çÓäÔõáݼRph3‰Ó‰{iöÏéTýâñeµSŸNR}žÉü€êÏ_äçQ}’¦æÅïSÝ“m¿JõýEçܼD0÷ã4î\nÉ9q‘ê^Wë&Ú½žê|ÄÀ–ÿIs¿®ù§‘9ÉyÜMûë–7ržd¨>ÿEö—»¨ÜØ’Ð|ÙRÍ=®Ëæ<\M›ÎÒözÚ›…¶¥^ÜLÝß{ð KÝ~IPûß·çѯÉ«ß_JݽsPsxëhÓzêú³‚ò|jÚ²TŸ:¯ÑîfÚ7KÓ·Ñ¡{ÅR÷Ì]7ü¾MÇóiÛfêαƒ~^Ê«yÆ3ôÐYz4yc]þe0ò÷’¥Íghk1m뢉 í¨ ]çhÏzšÜAûhê}êžWƒéÓtà$üê¡™:¼Y¼HGvÑÈœèãÔžñjñÄ uù»Áìb/ú)qŸÈóL3ý âãâÑ™_Gèì/Šizâïˆ/‹Ñ“¯ÑSyâWÄMçÊÅ?¡oýŽx†¾}Ÿ8 í‰kTû¤Õ©èÄéøF:zõ&ÊsÎhšßC3çÅiª}oÚ[ÛÛEµ¯PóÛZ‹¨Ë ôFö†¶ÇèsâW-Íýµ#ý¤ú9ü…õûl^íѼžš2ª½1Õн êò˜ƒVÿÏ©ûÁ‘{œB1F—‰‹ÔíY›*Ä…œÍî9Ñõbšf÷çi)OÓŽs´;™3졹s|—GhzÝ÷O¯{=Lº÷o—OÕÿ{6§æF§6.«.¤Swˆ2¯6²Šê}Ak =œó¨Û‡ñ× ïµ“?¤cïÒk4ymªƒæ[†jïö€H,¯ÞO´¬£m×iä9îM® ©Ohÿ´ñYêæØ¬ë¥ V$©ì›oÒý•Ts"’îy$õ Œœ3ºý^¯ÙSp¨Ë¹Qw¯tùáÁ¶$u¹Ádu÷GÁô^:tf,OQ— ⵩­âªùþ…TçlÛÄÖfÚ=”€æ …vú Íî â4='® Ònâ´ã´SµÄÎ|‰ŽŸ£™ª¤iòaê{§‚c´ýus Á–ôX5uy4A×+|¾šctÇÝw64SÝ[Šô™‰?¢C;¡ÍÑ•4UB{ª¨ËóZ²žê^Û«–~š× ­[ óTúÅLòAÚ¿ÚÙ:ýû4»H'o¡™½â½t`3M•Óäeq‚v×Ñ®´y3uynAésÐþÛ8ŸGhˆQyß4Ï-@Û7FcÅгÔÍ—]ÏÈ’ í©5ôd =ñ—b-ý/â?ÿ&ùGtú?‹¿A§Êhv¿˜G'P·ÿÙFÛ ¨»Ç Î@óB}y‘º0¯Í\?/Rw_”ç(ó­$u{AׇmS‡ÅRªóAî}5è^÷‚®g/¨û?šÿæÎ«ƒo,P×S|ÉÀÈÞ”öý›§-47vµdû Úy–v_¡ÉfꞃýÒ§hf­¢cç þˆºýc¯©]¼±êèqC“ï,«»¦*¨Û· vÕPÉÏ7nÏ%x°‚º~È û\LÞGû  ÙMGXÞ¡‹âÛ4÷1tÉî4Ml¤š›pÀÒ¡1ÚNÍíðz:”¢ñ9qvyGJèÐÜKÓ´/K“EyîëÞA;Ŷ8äQ7‡¬«£ºO¢=!®5¨óÔz~óŒX£{ ¨ë ºÞ¾`Ë"m/¡=+©Ë± ¦6ÐþcTçvk¡=ñ¿“•ÑÈÞsŒô¢»Ï¿^;|Žº> æû\£‘÷ÇUtàmQ>‡¸>® ži~ÙÖBhü>ªW{·ësŸÃy]k—˜t_w?pêïÒ“¿FgÇéÌ­têišý_–×õÇÒtô=:\Lµ_«ÕœüÞ³´gí\EµÓïïz[*ió:±ˆêëEcF¬§ –W{_ µI±€îZ r®o_,¤ò9Õ>n yÒRíµÌeVÐD!í9G5_Ëåu~jhšºÏcÁáktôè¡ÙÒéçèÌ{ôÄyzêWéœë¿œ€v¤fy‡ÓÈyàtç"ý¦¥SÿN¼Cõ9ªîÝ¿@5oÇÝçx#çþ ]´1#½ÓÿŽºÖÏ4}ž¦Ü9í~KŸ‹AãÏÛýù{j5MºÏºW*93öPFò£]/Xð`ŒêœJòê÷†Ü9ç{ÊÝW-Íét_‡f*÷NæÛ†¶^v¶‚ŽßMµ/µs-mÙJÝ:¹•º×¡ààÅ+´Ï½ï%o¡>ÿÝç {›Ü÷ë^÷÷ý´…&÷¶µ¤ï'>šOÛV/«öžš‰[Äå÷%ìï»_ÿ•˜§š'WWIêhbí£:7íîƒçèÈãÔõŽymºê=|êVª}kÚkYS@w¸¯“Ϋ»?¨=/Í…Ôk{íÄGt¬N|ŠÒÁ“b‚æï–ì»›jOy믥û«–×÷ÚïÈBó{1hG[iS>m>KåÃÈÜTëEÚ÷1õŸƒ†~B³ÿÚÔfêú0‚íë¨ëM·‡çÄÕT÷¿Þ(£»Ü?×<¼' ­±ôÈ"m^MÝÞÞ’Yêzmƒé[èÐj±0gÆWÝíÌ[Ôí)]¾|p輸]|Šf¨æXh.L:Nûç©ìÛÔâzªó(._)ؽ†¶•Ж:ª=§Ú#RŸ¤rÿéy3IuZòôWTÏ=üûCxŸøjŒêýìÎ º'º×ÛàÑ"_GÝëA°õ,u9ÅÁŽyêÎë‚}ï@›éå\ÁŸ—x;ãTòÌÑ9h›š©{® .¥’{bÜ>k°5 íÀ{4ý©»‰›¨~¾ñ¹Ã^ÝïÝU #s‰ß¤öÄtö%:}™f›èd­¸“ê½ÎXÝB‡n§/,@óµÝSAë‹`ä>Ûõ¥·Ê¸çÈà ÿ‘û¼gÆÊrN¸×Ù‰hOüœ§n?(˜ù”j¹ë— jÏÌ~MóVÚáþùîZ§z/§•T{‹rë½K¶_§½–¦.P7t}Á±zšý2zŸÎü.}…žˆC;û4ù):~;qßß}çhëªóA.WÎé•rÏmA}®×^šx mX¤ºÙº’&*Dyýî®MûEêî!ƒýkèÀvÑ[»ó 3xf é°s¢,÷ûÐÝþûh¼’)§Ó·ÓÌ}tàêþ‚z_ëö¤½š¿m³k騭´í m\/Q™{²no1¸3NsAãr1ƒÇò¨Ë½ j>Ûó º9ö ëQ ftô6êòmƒ2/eÙý¾ô9Dßo·äQùŸß»«€ÆÎR×ïlXM›Æh³Ørê½o"Ÿ¶Çi×,í£n&èz!‚é,,vö tª™¦> ñ"*÷œ¦.mö:Ïý>ìÈy:ð0í)¥Ú÷êæ ‚‰ZÚ²@5?Ïí!/Y%–‹¥b õ}ñu:ó¾@§~õ&þïb¡ø7éäÞåh¥cï‰ått‡hÄUtä:ü‰øž¸’f>%'*S&n¼‰ÝÄ<ªùÚCób£ø¸ì+Å{i:%&iÿC4õA]îJðõ*êæC‚îó„×äŽï—Ü[I÷WÓCåôÈœÇP=m½LÛ+iG’v^§]k¨Ï?-ÊüËØƒtä}:\Aï]ÞÈë®Ø»v]¤+¨¾.ë}Ÿêz¬ƒG =RM]N[н_°ôëš— Å8­ž§u´¾ŽêHÃ5š»ÆYÒõ ;7г´«XÜB“Šß£©Çh¿…vê>:ø"ÕÏÏK©æÄêüTu}‰FrX4ש6C»ç©ë º~&¯£Ò{bb h›²Ð¸½Âàðv:ó2´Õtø0ÕûÇŽYšHRɲñjzÈЃ¢îi®Ø¶$=x–¶Q—¯ìÛM2ОúS:ý›4ý}Ú³nYMîe/hûcôP54.ß8ØtŽê¹i‡ØYH{›i*NWSwïÝL'Šhö,þ1Ng¾KOü*´CI1AuRûK©œo™cרöçtS;w+=Õ'þ&u¹øÁÙE±NHµÇlòª?¯#[é`9ô2=EÓŠgÄ"êòù—|˜¦>ëÅê{I¼É'iÏU1Kuo¤kmßA5Tï÷ôûGúl]5Ý7Gݹåg›¡zþêòƒ;â0Ò3ü²¥:O½ŽÖ‰ú9Îïÿy[7Ó¶ ´s+ŒälůÓÚJê?oøœ½ÕTïsãîßkXA_¦c÷CÛ“¡{,4îymÉyhž¡zŸûØ4þyÁëÎkƒÒn²í©.þ<=ù%:û!þ§4ûèÄ{tô#:¼‚ÐÁÂåMÑÞÍ´§‚vÔÑæ‹ôèeª½„[-4ß1Ôç—xÒ–m´³Ú?, §öÒ_¡3W–wúñ·Å‡nâÿJ5GhêYñ—©ÿ>ûLšŽ6е¢œßêç<—ÌÜE[ÞôUñ‡bœöÿ@ÜF]ÿ\°'I;ÖÝX·lé¢~ÎÌ»«º=‚ æQ~«‚–Æ`è³v¹ƒÁ7ò¨Ü{Øì?弄ÑþÛ¨?wòVÄèôz:•¤Ù:ù>¸ŸŽ—Qw®Ì”P×?L¿G]þaÐå#õù=±ƒ6vÑC¥t×"4•1úr=RI5×É墛k©æÇ¾‡‘ý•WËhm‚(¦ñ1hýç#oW mHC_%æôýÞ¶JÚ] #= z­ç' 4?ü'‹îë¡ïϯS×+¾LGß¡'¡¼@%WÏ(€ö­9:ØHÝùPpg’Ö‰Ubì!n§ÉMâC´{í:K#9V[©ÞO»}·`$¯aŒ9+fè¶úœ¡ßp_·ŠÆÁ­bíßJS49H{¨î¹s¤`ý5ª¯Ãeyмné¾ Ú8K{«ÅMÆo¬» öï ™Û Íþïtÿ"õïC^·ÿ<\FåѽIZ³@«“´j>šM¹¡/e©æ÷¿žGë’´ñ ÕÞ˜šy„ºžÚ`¶ŽNýhýy«w*N#ç°stð]:ð=Qï³õùø€x íºóx›˜ÞI®ÐH/Úzh_Z 3%t|§¸ŠêÏ…æ:èyMç6ª?­¥Ôï…‡ýðRêúƒ±r*{ˆ‘½ð­t_’êœî[?EOüc:ûtüª{ƒÚ×)¥ƒïÓÈóí´ÿêîƒ}ßåžÎõº“Óž<ª9æiÚ^L[/Q·—<¤ÊùÍëeTÏó·ˆÛ˨ÎÇùydïÑ u¹±ÁæJÚ¶ ÚÙߢÙ"Ú÷õý_³Ðtoƒvôh,ÂÈ}žë­ ê¾±ænÊPŸ£à},ÍÓâIZ_º¼ —ióÚS í©{èÉÓtö?‰/Ò™^:½Yüyš½,žXL]?`pàSª½m:¿‘.¦ýëißí*¢‰ó´­œæŽ‹–Ôs#—¿dXJã×Ä«¢û:ÇËÄÔ}|¶ôp>=dÄ"1jÇyñ,Ý£®w.¸}‘ê½uëêåÕ~#—OÜ1Oÿ Í— }sÚç¡y9IG?ítú5q=ø˜º|ö ë«vÕ‹ò}¬s€®—,èæC‚ûÎRÙô"ì. ûèQÑå“ÛÎS=Ÿè©¦’§cOì¤Ùÿ“޹?‡¿ŸÓ|¥ÄUªçðOÅh5Ï/PcÔ|ásÔ}þjΆæmiïK×Ú7HûŸ¤ét¤”ºÜÕàäu:5DgÖÑÙ+ôäסM=D;vÐöÚRBÝç­%óh$§»‚þv š=…´±˜&Ÿ£©4íßM]PÐݳëèÌß ³5ôÄç¡õ}fŸ¥Þk.d<M])탶ežî²tä4Έ·PíEÐÁmt`N”s…ȾÏvêÏ÷½©iq3íû‘XL“¨›o ú\@o÷jêæƒíÕ4QD[Ëhs=m¼B[zx‘Ö•P Ö|ê—Ëès–š4Ï$©Ëw VÒ7é~ñÈjêúù‚Í[hWÕ9ä¾[èKî×y9÷ç5î¹Äï+Øì)1÷ç°ƒ—hú‚(÷ò}U4ÙHõœ¶«lYÍ3…ËjgߤSí4û‹tôÁ;ôÕ9Êî3´ñ:Õýúí Ðøá',j®áÑEêòI‚½EtàIhOü[:]OµgpÊ}þu?¿#OѾ4é~ŽÝyV°¢ê=‚uû.A™5Û“Tò^LÿPï±LÛ|îï¿…ºóÆ`ò~1ŸjM{=ÕÆHÏZœ>kéSyT>×[—å5n~(¨{Úƒäîa¼öătú?ˆ[èäÇÔõU.YLÇ׉÷бÔåŠ.y ~‚fZÅcTû†vÓÈëØ®åí¿,~H]ž£u{åÁÎêrñ–Lˆ´}Q좉MËÛz}y[Ænb¥¸E4´yQ<'–Ó¦9q–6œ¡ñ³b\Ü@'häÞ;Ië-Õ¹ÙçÐ\T{ IÝùPsYÜówÐÝuÞI ï{¹:Ë%7ˆoÑ'iö!ñnñçDé7˜¼&®¤áÜzŽê=u²‹º\ê`[™XJµL{¼jD÷ú´?y¿£m+iÃZê>ç_5ÐünŒúýo}†ú¼BoûiÚ[Kz¨¼þ›ÑítbúÚ·÷R=WÝJ#óÐIñ)Qúl§K¨ömLöÐQK3Q9¿²þ¹Èëó}¼=×hûzq5m]K›*ÅÍôPÕû¥— ¨|>ˆ<7HÐØ<ݣߩ€‘sù×è =VD]îK°ÅŸ×ÔÐÎ,Õ¹¦ôÿSZ—?œ}˜ÎüúkQæè³?Dùü0YO'Ί;ÄgÄb1Žï¥cÄ•tôûb)é¡ÃÏP½GÊÒÁ·éÀÇ4’û9ÚQtóÞ}¨¿¿òê܃öǨËè«yÔíxõŒöã–¶ž¡}Ÿ£ý?„‘ûÙw.,çöäÏÑ©ßÿÆßB3–6m ™w©ö/ œ¿‰ïÑþ =RD]~µ×l^£mÄs´ï$´{ ©+§î)ØQE“OÑô4´ÙH×Q׫L¯¡}/ÒÖTŸÃëéžÕÐlS×dãzè>S½¯póÀÁ¶Úq‰¦î¡» í¹#ç2ÿÙ;9J‡ š”¾(Êžwÿ4Ò‡åž÷ÝœZð÷c0²¿.}Æv¢’ŽŽŽì¥:÷Ò2uïͺ>´àîbhö,ÒŽ´3º^ö ÏÇvÚÌs4rOWM¯ÒúJz¸šºœ‹ˆÚkê{/¼ÏPSYH·З³4v¾L-Òæš˜§>/À›ZIÓS×Ç©…Öë³ót´€êÞ}z„6¯§£giÛ 1êy•Ì×h¯µ-5š}󴾌º{²%³´·Úöœ>'ºÉ='è=ü«‹¹ÿ?·Ça¶‰År>]A5Êçñ{c•О¦¯ÐÁÇéÛ¿NOü5ÍþíÛB›¶Ò#ùÐLÒ]ñœ¯æþ½Ìhzí(§ú~¿§Žº×G¯é,ƒvpšê¼Y8¦îõ-(çùÆõëÝ'èÞ‚ëèàfh—RíÃÒÏ_¾×©ÜÒý êz‚­T?O%·Ó¾{hê:¸Kü Žê½xöeêæØƒÓ_ÿ‚Îl¦³Ýкÿnpby‚êçÿ¼áuùÃÁþ4íÛK—©öZjÎX]•xëöWTóíºc‘êþoíjzhžº÷Ó ôêÙ¯Ó™8ËÒ‘i:¼–ö¬¡n?-¨}¢®?&ßAõiou{!6ì‡,ÐãÅÔW;¶Ñ®|ês ?C;Õ@µÿ¬ç Õû MyЬ‚væi:õïiv#¬¢Ú7;’¢CÏÓtÕûÍ®uTçDõ¾ÝõŽ;šeкçÏ ëëýLwæþ»ÆõºÝ=²×>K+bÐø}joäõ÷m¬¦Í—©ö´¹ÏSÉêz9ƒvy35âEêòõ‚î¹/˜½Dgþ”ÎþÚÙÿL§ÆèÄ:ü!í£’é›Ó}×ãô› ô)K¿h¨~¿mµoáyQs÷jòèž¹[ç^ªùŒÝ+iªøJëz}ƒ‰2úf1Ý£rßÉSqÏ1A—ãâäÏzuÎU{>\Þ·×¾â~}¹ïˆìe n§i÷›¤-qªyOu¢æ~î/ {ÎR¹Ç‰|¿,¾di,j/SÃ%Ú,¶%©Ë“ ö®¥}W¨ËG ÜC‡â4ó0Œ|ø¹'?@“—EwÉ+£óâZš8MZ_Bw—Q—CtýiÞðyÐ[¤î¿ëµÝ¥Ð䟗|¹î¯ Ç«hÛª½È~Å«½€ ‰eµ}?¯ÒŽj¹Wõçþµ Ú¼ƒºÏA·ÇtsÌ^ûv'}«Wü%zê5z¢ŸÎ Òé#â?šNÝBuÏcüQ:òˆs#rÏ·Cµtð9:¥éAª=›¹?æ’ÉñEÚ™OÛ«¨Î}«£.W:èç’Ýù› çq1šûã.Ùrjßaä}~WÞKÝžMpjÎm¥o¹ÈáOÅO ~¾°ý»èþ"Z;O÷\ úyáÙüÍÅ<9GxZ|1VÇè¡BªýRš¿§ûm¢öQéýM"A;¯Píwç>Át-Õsê¡ÐÌ9í‰/ÒéC³ÿ•jomgÿºçí«v¦’Nï¥ãI:v‰f²4Ë©ëã ŽÍѾ•ÐäÖT?S{j;:%ÊŸ/»†jnÌè%ªóõîï18ô6ts€khߢ¸™v.Ж34ì£95æ*ú¤¥ùyД‹±Z™6ÎÑæëÔåxíÑyª÷ˆÚ÷¤¯;ß® wçAóB!í8O{WSí×(¡C í?OwÇèËšgD™›²«¡i¿íÜ"ÕyÍ«O?Oun½£Fú¨WPwßmÝÞXpß*}ö¥ªÜŸ#w´.Çk†ß‡vðÚµ‚v®¢MµTî¡mMœ~=Íwòè¡k7Öí1›«hÇšüM]£™ hÍS=¿Ú{¿_íuyÀ^;ÔEû.ÐÖ‹TóeµßÅû†Éý:cTÏ­´WÍí­µ­»Š¦ë©ÛK Ž? ­Ëê¾¥îýú¯~>ØV˜3÷ö±¤¾vÒ´û÷Ò« =ñ÷éLóòNo]^½_›ü€j.Íè5:¸’öwQÍKH%´óœ˜k¨æáÅKÄ5Ë[›¤Û‹aä|Íí{íø Õû½Eš>M“—¨öé¸|¼àá:š«7_ò™ ª÷ÓzíÏ÷\NxÐõ7[ÖPíÉNu@Û—O›kè!C]~¥×¬Ê£å1êþ¼A7Ô{"ûÑùž.šš£/RÝ ÝKõ~MÏùeoSçúÌS1ª¹;^·_ìëvè~Ú0 #ÏeÍIαNw½Ð>ׇÔžhí!×9žmTο¬ËûöšWãô KkÅÃqêú¬ƒ¹ëé%›ÖPwžô=DÞî$M‹‡iÿ3â§tèšYMGbtô:v†N”Òì^ñßÝXwNœÎ§3¿m¶‰Ž_§4Q)®§mqÚ²ƒêë‚æë=Vmœ>[#¹ÂM–vl„¶½ˆ¦«Ä­´ÿyÚwL¬£Í¨ëÿºù³ ÌKØÉ5t|-¾ŸÚq•êÏwËjzÔÒCYª{¡{ofie4ÏÒª<³â|Îú Ú´@;ÖÓÞ+0Ò‡Ûº‘Êû¢Ù[NµgÝõ‚ݹïg:]MgÖ@;ó8íLÓö­½FߌÑÜ/éW²¹X‰%uùàÝåþ½×¡ùõ<Ú0OÛ¯Òž+ÐMÓ–4Ç  »"ê^Y½…fâtèAé!+¦š×ìs­¼ÉÍ´»Œ¶_§‰ 1/gÓFÚPIǨæFîK@ópŒæê€–|vêüøkeôÍ$=t–6®§mg©ëŸöÚ“T÷j§~—NÖR}®ï£Ãß§ƒ5T÷úï¦ÚÓÓ—o¥½+©»? 6n[Þ†5ôX>Õ¿IZiaä\öÑåÝwVPíÝ_I›.A;ÑHÝss0ûu"?O½[¡qóË^›¤ú¹rÿYªÏg;²Ð|ÑÒšÂ{x5•žã>‡[²4q‘ºçï`Ï9çyª½™‘ÞÚR—k»¤¯Ðt†Ü'›if3=F³Оü#ñ-ªsZ“;èÈ,ÚBu®+ù‘x7u½Áö$u=lÁãÕtŸèòȽ‘s•7èÞÕÐ&¶Ð†д$¨; Žl¢3OÒ¹ íìŸÑ™:RB{ hO M,R7ÿluÏ-nN0ØtY\K5GMç¸âg¨ž‡ÔĨ{_ J¿²Ý£rînÜ`dP÷ Ü>Rpï"u¹Áæ­´uŽ&2´3N{æhòVqžöo¡?¡ƒÍОÈ-¤ÛéI±Eü=:õŠŸN¤¨æ/Ò‘ÓÌ“´ÿ ªý`­+i|5=ZLXêö–ƒ¹Ã%kK¡©½@ãU´u=M=A¥™Oèè:¾™NÎR÷<åµ'¯‰ÕôÄU:ûÏÄ~ñ.:ýoéT%\¤ãcâà}O¬ÝsßH–¿'®§ºo®¤};h¯ûçz¾ÞîÎýÚÝ÷Cænª9_.=èÎ=‚Ú7'=Eæµyz¸˜v䬭¢®Ï:˜i¦ÃèÈíâ"µÔÇ/Љótò2ÍîÿŒN­G¨œã›éÒ™£tö1CÝ=ý’;ÄÿJÝÞ¿×~J[cTsb4÷KÏí^ŽQÙg6¿)º¹Ì`•¸³ŠÊý¸Ù[B÷ÏÓÃU4òœ|ýÆ6–Ó¦ó´uŒºç³`çEÚí~=Ý#í¦ËèÐÑý<Ÿø=ñçèì´X.þ}:óÏÅââ¯Ñi+–Ò©?åu7û#ñYQzw'"n †Ž_ãâ}tl MÒ‘kt¸Œf ©öI <@û“Ôå{¬XFÝsWÐÝC[‹hó&Útº>ñ%·Òù´j‘~»êÜH.Þ{ÉÕÔl5Tö#9Ü{ªéþRz¤6m¥-W¨>Ï&WPw㵃)ªŸóº·R·‡|ežºþ” ŸKôþJÎȹ˜žž£®—Ó¸sVï‚v".>GG>¢Éµ42_åž;¶YÚzAts©.ªû¼3›èô[T_šª y©˜î¿@ëÎRçíè:POûÝ9RÊ=W5‰«éáB*ýÅA??îçÉ_´tG•\ûª…æ÷òÄuyøÁ7ç—w_1=Z&VS÷ùgÉÚ]$®£}/oú^ñ>:t;Ù@Ç> “ó4ûu:õ%:]Hg~™ž0ôä4Û íЦåíÿ„¶n£ñ+ô@5Õ¼&ý~{Jtû²Áãhüõ=˜ÁJÚRJ[gi{†ö–Ó¾<ÚÿÕÓ¡4³›Çœ©Û?3c'édŠNA{jHü<:+‰f7Óñ»èh\¼Žl£·ÐÔã4ìŸ:{Ô8m»Dêéñrª=@zîáÎÁƒºñJ•XHwXš‹IYò%Cµ×îÛIêòă.ÔÙÿy#K—ÓÆkTÏãÜý]Ðíÿzíà45Bû.‰ÔÍ%#çª1Ú°šËRÍwÞS*úÊ"4[,õó9Þ]‹twŒêçÀ¦71I› iK’¶n¥®×UÕýOãr½öäzª¹«ÙAû>¤ Eôx =(º^ Ëáòÿõ÷j?¬ë# ʾ¢­/‡Æ?·z–Péá3ÉJ:ÔA‡Ý\‚»_&ÄFÚ±Ž6¯¥/˜j\N°ñßÇcc´ëm*¥ §éþBºgºso¤ÿ¢&KÝܾ׺©à+Ô4ei¤?j1§ûóûÖÐÌÛâ÷éèÉå¿_|€fWŠÿ€N‡6îÎ-wªïÇè[çè\BÜ$®¤§n¡³“túwÄ{èÔO/ïdXMÇ*éðÛtð<í¯¢º/Ó^F[·P÷}·dus9^ó¸¥oªùØšÙV íètàÚY¾¼¯$ibuóÛKž¥îy6x4ÖÖA³«Š2TrIìD>Õ¼‰öfz¬×ÓìSë¡zš#Ú¾;¨›·ñšžBª}gýµ4³‰N¬à¶XNŸ+áÎìô_º?÷fZ[ ÿ¾õ¶/P—›éµo§§Þ¦S%úž¦ñ7ivßMüb¼$þ@Œ‹1QæL&VÓñ :º…fªèÐ,ˆS7Ϭ»Í #=¨îýõ³´'¢3ÏÑ©¿ Ù_£éØûb=•þf›¹•jNŒö|÷»ùûÔy±‚&S´­Šº%çĬØLÝë’gi|¾:OýÏ£×PóÌÕ·ÑäOÄGh·{ÐþN¿íÕûÖ£ùTòIìkÅÐÄb´þmžƒvf”ŽÞEÝ|W0õ!Õ÷ÁäóÔÍ/™kiw9íØJõç§Elì¢ñkôx>Õžû=e´ÊЭÔä>¾,ùÆ<ÕžsÉ•6Íih'WÑÁPw^Ô{à Ôå#÷ˆ»è+e´Ì,oÿZªû}Ûé¶Dû¾OÛ²ÔÝ_ÅrÖRÉ6{Ýyi$ÏtM¾G{·ÑÎYš¨¥­WhKm* z¯?/&sêë÷a÷çqy Áº*ºßý}îs_—˜ûç» è‹†ú\·‡c9?OÍóIº³æ>>,ùú|NÝÇ}Öî|Í傚½Å9ÝïßÔ]p.ÐC‹9Ãë¤ûïéüS›»Çnwç2}…ô¨ûsïI@ãzºƒ +hçUÚãÎQÇß¡ÃYš( +©æ€ê=Ç7b0ÒßæžSóÅ =QM§;èD–ê~¿Ë º}·ààzêöž‚ú¼Ù÷0¼/$éáä5[™Ï=XJÊ`¤¯fh%uyþÁ†rh\P°ï±eµSoSí%i;-vQ׌%¨ÎÝ=k©Ë‡òšž‹´Ïý<ö?mM}Ùýú:™û2#{³O'©æñ»}¡`Ú«÷бÜÏ¹æ€Ø‰wÅf:6H‡wÓÁmâ3´¯’j~y÷ÕåuýK–ц•47¾°ä¡*÷3¶¶šïÒ£ñœ’i:Æ õý{Þ¶«Ð¼œ¤}÷C;öcÚ·‰º¹· {ýöšê,m¸mv„¦ŽQÉë0ñõÐ&§iS­LB³§ˆºýÅ öç%¯P—Såµ± Ô÷¡xµ/ÈåfõóKIŒœ_½™G”B›¾FûvQÍcj[%® ²gù<,¤z¿]UE31:ô=êß÷>ËK7ñ=q¦Ï‰ëirÕ9wíCiKS=ˆ‹ÚCÿb!Í]Ÿ#ýšÛ«¨ÛoF>÷PÿóäuóàÁÞ³0r?ð 5î}>سÚÃótw–~!N½H'LGߥ™T¿ŸÒ­´oíÊÐöªsf-ÕÔç{›ÖQ¯>VMõ¹RçÎt^¡ªºùÁ`Mͽ-.©¹q>Ã{ð­Ëý>#û ñbÚ`hûFÚYB¥×>’Ó5QKS‡i¯¡ÝËëú<ƒ­«¨äF†ÏoÞ½…´:NŸ/¤ß¨ 2¿l¤Æ?ÿzÝ'X]EõçZ{ ÎS׿<”Oë/Ж2ª=Áš»Ðÿ, >/ÇÉOÉÞÄZ_E7Ñvu›£î>.b¿š¥î}#8Ð(þº9ŒàÈ=t¬ìÆN\£¹q®<“͈ï‰WèÔÿ#Ÿ[Õ#†~ÛŠ…Ô½Oy#ýrÙò¹Ý^—«Ü_LõïÝ›è¢IKݾò’—hú]ª=¢™[èèÍöÒ™{¡=ù¹H3§éà:Ú/Mn¤-âÌÏÓé¿I§~›f¿L'.‰;©îŸ &Å ¢œ; ¬¤éω·SÝWŒì/ÞN“cËÛ½šj.U£¡uYº¿Šî¹LõhOÜBgêÄoˆ¿'þotúÏÄŒøšøKt꿉¯Ð슛Nü@\CÇ®ÒÑV:²™f©ž“ön¦>Ÿ?¸@µ]sÁö[ú’Æ÷v{µHŸßÝóPðX)•9 Ó£.G4Ø¿Zì iwn4ó9:y‘Ž]o¥.Ï'˜¹ ÞC‡§ƒåtàœ¨ó¾ŸÒT#í™§mbk–úÞEoãm¸@ë ­+¦û«©»^r޾n©æq~ÙÂÈ~åëe4ÒwGãå´ñ"uûBÁ®+Ôçn{û2Ô«›p¾.{(]×iÇÚRD‹i¤¿gu}²AÍ¡ÖüÓÈÞY’n7ÔÏg?“¤OªÏE î, 1u5Í­3,©s¡š£rpµ˜¤GÄ®|Ú¿‘¦ãtÀí1gÜûeËyª9Í[h|­5Tæ"÷²¯Äh…¦2îÌÒ½qq‘î?KÝ=t0±†öÄh2!¾Oûiÿs¢ÌEˆÃߣšŸ鑸D§\Îgdª•¦G¨æô=C]]°kìÆæÞ¦–l-¦ÍÕ´1N%©~ÞÑ{ÉyÐ|ÁÐ× ©æX7¤©; ºÞ¸`r5•œ"“>K®S÷ùÂk§^§Ùïˆ?G'wÓñ:2M5·$½“öÝI¥Üv]¥ÚßÖ¹‘v\§íYÚV@uÿ³a•¾C›û1 š{ÅûÄo,PwŸ±äÝ+Ö•Ðø6Úršvî ~ÏÞåv˜ä^ñ°øçô~Ÿf¬Ž =;hçy1Ÿº=Õ`Ûªï ×iì­X€æi±á´ûË ©/¥þsœ×õ€¦ý;iº„n¥Ã[èDÍ^¤Óߣ³çé‰Yz²Fö¿ýžµ÷õªj^HR—pç°AÍk?²úÊ¥¾«bêòá½fO´©iÚw&?¡=U´ë"íc©Ëq&iú:§#/R鯰§þ„Nÿ4Íž+©æ+žctäz_4Ôå›FìZKë³0’åu}êAŸcï´³·Óì÷ÅÍË;™¥£·Qkê„FòYž ©îQôÆhWœvv‰ êsº¼‰•ÔõÙªèôs4û1(XÞ‘ïÑÌçnìÀý4u+í)ZÞDùò6\¦n>)xÐ.¯ëmºót¯É=Ž-¹·šJß›qçKA=GíT!Íœ¥_‰A³¿ˆ6uÑžE™i^G–ÓÅ4÷×Ô{›¬§=khç­=p™ú¾øà<}­€n[ _·4÷íŒäÿ‰.‡!¸;F߬¢{ÅkÔåaž¥º‡¦÷LJæé± m¸FÝù7òs;û¡¸‹f'èð5*÷eæ«–º<® ; öo¦!çã6:éΦÓOÒÛ =ñktêm¾ ÍËeP{¡#ýÎÉ:ò#ê÷7&>¦Y—¿¤9âƒuÔçx˧÷Ú–Ðøûs¯»ô¬'ÏAûr4É1ÑÝ»N>AÓÕ´/E»-Õ½ðÆRZWæ,†‘ç4×k¸d!Õž[Ÿ‡ïçû_«€vàôFú ÏÓô{ÐŽ­ -åÔõ¼êyu}W^sl‘j.ÎÈ…åþù_Ä÷é‰/A;õ:ìÞ†>GSÕ´umqßÏG ñçêþœ=9(6Š;iˆåmZEå}˺¹ØàqC] 7Û }en·Ðä^ΗÔ\-³ôËfy÷eé9z¼’jž«ñvVP—ït9*ÞHRöÑ¡ tð6ª¯'z^ÐSG»7Ò6C›g©æ¡4VQ÷~¥ãWéÄhö¿B;0B}¯£÷p šCEԯǟ¤3_‚vô~š¹LÛOÓæm⺷€ÊûD¤§ï–ö=B²Ðî­€&¹Ú·þXÜJçž\ÞHßû³ôÄ q/ͧÙz:úñ¼x†ÏÓ¡Ktð"Õ>öt)u÷ÊK>%®§© 4¹•¶ŸÏŠÍb5mœ¥‘œé2z0Nå\Öæ^Þ‚‘ž»—‹¡ms_·ã9'Êèxš¦6‹·P7÷t½àA7wí5/Å©› ê9òÌ÷èÔçéĆå³T¿ßFNÓáÅË43A‡î¡ŸŠÒt-íß&Qß[¬W‹ù´oŒ& í¼DE´íšxA¬ hkŒêëgóq•½jÛ¸º¹µàñ2zø=”¡š[±Ïˆ%ÔÏ¿n Ù£»+¨ëw º^À`ãZê¾nA÷÷ì{ˆ¦³4s´ÓÛéÔmÔ͵Ço¡£Ò‘ šy=²¼ýsbóòö}B»+hÇFqÝòʾ¸uÏQÁ¦sb5mœ£Ç.Ó# ô@œºþô%WSwN ½OT¾/Íã1ª=…‘þ‰EÚ\Iõ9³{ MÝí[ѹŸ¦'ŸÎöQwŸœ:A5?a¼€æ'—t9\ÁÔ'Tsñ´5éæk:K©ÎóºþØ ž·é×]÷]ºVÒ¶ªó ñ,Õ>Ë7¡ñý0^ÍÅŽÅ MšŠÓ\ Û’MiÚ¸@ÎQ½÷qÏ Á=†º<õ ëG º¯K°mŽº½Ã`$ÇíN:ð1¾‹Žœ…‘{²™Ãtú‹tª’f×Rw.œx‡ŽBÇ.Ó‘9ñ:ü(Íl Ú«ÙëÿÕçñþwÄÍ4UE]Y0y€öXÚµ@[ÏŠÙÏÐ=¯è>‹ëw6®§n¯/˜ûÏ,¹¿€Æ2Tçn+ É½m-YƒÖå[ݣ׸~ñàÑ*êæP‚nnÛkÝþw°§Fîe_JRÍ)p}Áæ íˆÓþ\€vð‡T÷ ÷º_Çõ¬Ó¢ËÉñ}.é[hwšv­£µ´½ž¶]¡:Ÿ×p‰j/‚æÌ~;î­¢ñMÐÎ Óé_½‰ëiv’޾C3RÍÝO¥hò:Õ<Î,uÏAŸïÕ÷èù¯öŠ¸Þ¬ Ë_v”ЮbÚ“€öÄËtü uýoÁî|Ú°#s^wßôŸ/ÜÏ}°a1÷ß“ù½·°©ëbF|„ö=G›³Ôçó{}ϼ×å´wY*ó}öñ[––Å ñóÅÞõ¢ž'kÖÎQ}>ÖÞ@÷¹5Øz†¶Q—ÏL_¥#]âˆsŒŽÞGݾtp/¸ÃPø¢èòoƒGÎRëÔ½Óx‰¸‘º¢Ï´%N;ÊÅfÚ{‘¦Þ¥ïSíií¢n`I÷z­Öåtõ¹jW­‹Ó#e´ñ Õ|þÞEšœ ºÇéE]M‡vÒL1uó5AŸé[¤z¯©F¾®µtò‡4ûÚFg¶‹ïÑÿPÜOO^†Öý:ÁÜ—uÉôí¡ki¢†¶^¥2/ɑЗÒCsô8Ý^LõûñÅhÝyR°ù,Õ«}–¾ƒ¦ÜÒÜ—qÉÃ1ªóMîÞ8q…öÌÒÔfyMG†Êë¿ßD'n¡Ù¯‹D§þy^üShßî¥o=HçÞo¡§ž¥'ûèì¿ÿyS|@¼“NÿŸâÏÐì6êòƒ#³th¦/ÐÔƒ´gj~jS1usËA÷â̽½Q@Rßè•;ð M•QÝ'UÛ‹hÛêú¯‚Úó«¦nþ*øzVLŠ1ª=Y~Ì«Ï_´0’gæŸ+'Fîi›ÖRÍ=zÞBSm¨Î©7­§¾_Ü;äöóÿpýî˜XFßÞLç.ŠÇÅ{è©Ä¿EOþ,¢Û¨Þ÷»çœ`úšú1=^N»K¨žïŒQÍexsÚ©'éÄfÚ5OwT@ãö\‚n/ÆyÞuûu^ÍS´ÓÑî•´a'è+Å02ÏârXƒ®6¸£Œº½‘ îc4Ôжu4’“+ÏÃîu&˜:KÓ÷BûÝ ªß¿'~‹Î$èÔOh¶™j~QÄ.ªóë£ÏÓá‚«s{©÷¨ö÷ÝB»²ôØjºgŽf­¸ŠNLÐÈÜÏv:üCšy†­ ú93}MßOŠOQíðê¼îY´ÎÑHíª÷Uu‹t_%ÝSGcvykæéëy´j‘~Ñ@óB!­« aÏÅŸOYÚ½Ú¹?¤:wpâÿ¢³Ýtæ´»‰ÿhy§ÿº&‹IšýÁM¬¢“·Ó‰z:vQ|O<)vÐÈÏÕõåõ}wÞ¡ûÅ⫹>®WwI÷9.²W¢ûþOÒÞ3âiqìû_«hWí8KÍTû3-Õ{D·ß±d Í›/)y>‘¾eý\«{'nÿ!¨yãM…´ý´»nlä^íÔ~Ú‡æéØŸ¦î9ÒŒ?C' Ó@;]K3ß·R×SÿÙ^ýžq%ÕùÂŽ­´åìò6©gÄõ¹P^×ët¹AîãÕœ²Ü·YÐüŠørœî¨¢¯”QÝ[|­˜jßö1*çU‘íH~óÚ½ŽºÜé`ú}:x«x™fËfÜýNPó7ÛJ =UK§ÿW:uV|Aü:Íþññoѱ[èH‘¸–šùT¬¢C‹4’ÞE5_¾¹„jþþ±ªù1‹¨{Ý ¾Xͳ…ÔÍÝë‹ u{®AÝCw9¬Awÿæ5×—ÕÎý6=ñëtv”Îü½åœÒ‰9qŒêgúûâ´ßˆÑd)íª¢רö2»¼‚à«IhvåA;ýiö7©ß‹õv]¢‰³TçÂ5Zsñüý®¿ï}ÉRßSâWC{z }ëtÎý>O]¿‰Åß¡'íòžx‚ξA]NÈg:]¹¼Sm7ñ0Íþµ¸(v‰Ò#<ù ¸žºýó϶F\-®?'ˆ·‹+ÅÛèø5qQü‘ø±xI\/ŠïÝijb)û@¼@G?Ób‚f*oâ½â]Ôå|¶?冷 8°wyÓubM%¨ö%öÝF{â´+FÛ7‰y´e‘Föh-Ý£{ç y¹0§æºs}¯=XJO~…Nÿ-êæñƒÓ›©¿'óê¾yß4Êè¡$Œô£šïºoÚ‘+ÔïÑz‡> î|,¨slG ­Ÿ+ÄRz$N$èÞ ÝWS—#ê5OĨëÛ ºsé ËÝö^ ý?¦7Ëž¾D§~DG?„‘ûX1Ò³úÊ<}MÓ‘f:õ'tºÚ7æ¡Ùciê‡tà Í}ÜZrbfû¨ë¯ðÚ®m´Ó}ß螡ܛ¿Gâ}ÉPÙ´#†º|)o$ÏôøWÒþGéð{ÐfVÑV÷÷êþÿí¾Rúz!xŸf:hW%usíÁļ§m«iC5=£K¨Ü§Fþ>Þu_ã`–¶”Ю3ÐN¾GµO±Uô9yyм£­eЦ¯PÍq9–G÷ÍSÍÏû†æ±ØÕü”È>ñ hÓ]Tó™&7P÷œôÏÞÄhªcÔõ²#9Œ—ic9m^)VЖ-´­Œv¯§=õ4ù í{€¦rç@&½šæÎgÌpîõÇŒm¤ãëéä™j[WÀèþø|Ǫ~ÍSos/îëíµ®_þ3uýõKVÓžBª½´š¯©ý6‰«´¥Œêþ;‚åý‚ÆÍW÷/R}Œxö”Ò¾Ü瓚»±ƒSÉÙZÚwuŸ5Ûß–Òóhk+èî<ºÝÐÍšoTÐ7rÆò¨»Mˆs´1Ÿ¶¸{x=ÑçT—wl£ís´/K]ßXp°„J'ç©ûù63?OgèÉô­¿Kõû²¡ð3¬¤EÔÍ•›‹i[Œ&Ïоrêæš—¼#ÏåGbÐ|KŸ –v¿_Ÿ×Ò[@Ûg©Þ¿ ¾Ce¿Âl3ÐÎý=UEOÞNûÊhÇfª9 [¨î÷»ç¯ÙWí[¿H§¨ÛoTPÃ:p꼎ædª {WS94ûô€ÉY7Gë34¾’6Äh“ÏÓÖš8G; ,ŸŸ%ŸÚåË.ùš)¡£kèD–NÆiö#:ý9ñ8y„Îþ„žOß0b}³Œº\¥ ö…ú>aïJz蕹ӸJÜAÝçÒ`óEÚºƒº¼â Î9掗ÔyÙ;Šä¨ô­^^—“¶äí_CÓÐtð{tø>:’€6£}=4¹Šv%hsÕç¸úÕô`5ݺ~Ÿà¶ êúº‚Ú‹&ç‹Öõ¬µ_³\Ôû…oZª}sÎRéo2¾?ËÛrš¶m¤.ç"èö‹‚>Ñ›ÜAåuܤ²Ôõ'Óé`‚U9/Ó‘2ªù“c1êæ°‚»éðûÐ6_¢/$¡ù<ú°¨ýë_ŽÑ£¢Ë— êsªû}[i{†öœ¿±©iÿmt¨‚¯£#˪{ßæÉȇ‘žÌäZÚ]IÛ ¨öñ4–Ðøiz$AÝçˆ%³t>4.-XŸO]nc°cu{_ÞÈs[b‡¸¾}žøÛtú:0G,B›‡Ö=ÏŸ£&y ´Ù_£Úë>¹…êsñDÌ—eÄç©ö ì¢ÃïÒÔJª¹¶}ë¨{] êùcÇ%Ú~™¶VÒ¦1º¿šîËнÅ4V@ßÈRݯÓýÆí…´*NŸNÒ_΃‘ç6oï­ŠQ}ž;OÝ~h°q õ½‰Þ6jg‘N?F³'èÄGtt‘f.ÐÁ;©;‡ 6¯¡{ ÜC$¡Ù§ºçãr ‚nß#Øy†&ÏC{¨nyGž¤º­ýV­cË›‹)\ÒÝ?‡œI—ìŽN Qw_îÍ^ÍÒç ©ÞïþnŒ>iènÑåg]>_Ð÷Ñ6ÍçlvÏA.WÅkOý=ñ´ø%:óÙÇø×â91N'¾'ÞAÇ+Åtäª}2’Ïm»VÑN›SsÒéŸÐÑ{éPŠv®¤‰.Ú¸uyÎRíey}‘~1#shû‹¨æ$æÖ —ìÚ#= ë¨æ^éëù+ŸeŒêëзè·*¨î›|>F5Üõwýçõ=Eto9uý7ÁîŸë9¯Ï¯ö6$iÓÕåm«‚öäq:½Ný uŸ3>Ó¾³Ð¸|+¯Y¤cutx3ôÐTÓÔÝ´}%Ô<3“\mKvyOÄÄ]töûâwÅÿU¼…Îüb\”×Ù‡ét»¨ý+èØvñy:ú1ŽÑÁRq#í_I“]´k‘¶Q}Õû̓֜~gÐç®Cù´4Ú·¿Hßú ±œžüGôÄ:kéLJü–x+Õ}«ñûèX†o ™ ªûf}÷ÐäâÝÔç•{»®‰%´³šv\¦m[idNá"Õ¹¶ª**çR&÷¸¸äÎ,u{ÁæÐf_¡.G7˜¡ºÙçž—“#â1±^<@5·®{ íLÒÄm9C›Ë¨»' ºüã ›? î.¦®‡5øõŒÌ±G曋hófª÷‘Ý«¡õyôÞºjZe qs-ÁQ··6õçtòa:¾•ŽÔ‰ò¹{d Nˆ÷ÑÈžýctè¢x˜,ˆ²7ÕÿCª=\Ú/•*¢}­´¹@\IËÄMT{Xô~*~†jnæÞÕžˆg+¨ûüã5ª½Ïn¾'x ŠÆÏÓÖµÔåÄû.Ó´…vúó4›¦ãóTû¥2ëéÐV:pM_§ÚϪy©;ißÉqÊÒÈüw3mÉËÙ$Æk豪œ.Ç x¸Šî_«hdNz5}³Šî+’0’Ÿ·/Ÿº{æà±|Ú|޶RíéHž£ýI:hr¿¿™gèô6:òÖMì2u½÷AÍ›éÏRù\C3mNÒV÷~–¸N{b¢{ëÍ£©äxÚìÇT÷ûÝ>¯ýŠ…š_ÙgÕ¼(Ý«ˆ¯¢—¡Ý)–‰‰ˆ%4r~TA‡3bÍ”}Õ@Ó 6VAû‡oÓï~—¾ýOéÉV:ÛL'ë¨Ûï êûfK FN (¡©Ûh¢Œº¯>WÚ‘yš¹ŸF>ç>Dû_¤z^¨{½Ûhw1œÿësEmYC›’´±˜º{ öƒV/R×ûè5ß2Ô÷z]ap¿¡®—EÍõó³^íC:|™6tQí™nÛDÝël0§:—æÓ/P·_t=;Á¡-4³ŽÜ%Z:ÖE'÷B;y‰ö\ õgék9w.8«è Íã1ú‚¸¯³TsØ\>Pp(íÉoÓ«¨Îµ¹=ÅàÄ“4ÓL‡®ÑÁU4ùÜò¶ÖSÍ1Ëýµõç*ì{[VQÉk² þßsïëãÛèȪϽúÜu Ke^Ýî-¥îüG%/ÅËB›º—žzOü - S÷Ó±kâzš©§ƒÑôÚ£«iózz´FúݼmP?ŸÌn¤Ó?K§þzy'/RÍ9Õ~Í®.hüž¡7VíðƒTçå^* ½…О:NO|BgN÷Ó©¿E'£:Ï4¶ay‡?H‡òÅtðCñ>š^Aûî§+¨æm·åÓ–"ÚØEJhmhî1mÉÕÔl³ôè"õ÷± E´e5muÏÛm+Ä¢ûïú½!÷÷lwÿ÷Îrêò²—Ì=7ÿcR¹¿_ãæ±ƒÅÎÜχ*Ó¢{>v÷qî<ÓŒ¸=A7?`Æowºûãq÷|3áuÿÿÉÿö­•Tû³_ƒN¾H]ozPïÝúÏ~†Å´u£¸ŽjžxËzÚ¼6¹÷“ÜcÑÿÐ/š‹éÎ ªy²ïk¿i¡y9K«‹¡{tyÓS/ë]I;’´=M#½Ûb½¡‡Ëèî,•þ8›{› Fž_KR—óãµ3÷щt¸N¬¢‘ùÐÓÔ÷~{µGQû3õu0’s_*n ‰Ó´­”ºýú`ÓztžºžÙ ö͸û¬`•¥ú|óûâ }£ŒÖUQ·OmºD÷:ÚwÒéÎ)4Ç+õ8í»›&Ýý}ÏJšØF5‡0~…jËã ºù“ ÏW÷ºÜ¾`MÕsrí±êʇöDm¡3ób ú÷4[FÇ‹éØéÈÝ4’;ôc±†¦.ŠPÍ-sù®A—Çt9ÝA'ÑÞ1éI°_΃‘=Õï«yµ·ýQ{›üë»÷ù úÂu{ÓA݃«=KjiãZžWœî¹Îk''Dù™þ¶*¹¸Ö×ýsÚ=¢ô Ú‰b:þ89G‡¦ÅB:pퟠ©µ´ï.ª÷(©¾^7ž£š áÎ¥ƒµutwŒêóƒ{ ê=Õ¦Øò¾(ºóÈàžº·’ÖZz<&ÖQwlª¦‘{¡šXOÝüJ0•»2éGéà6:|}Ú?KgÛÄB:Ý(ê¹ÔñKâjé%¯¤£—©öŠê=ôÐzêrƒ‘y£k4ùÞòº<î`ÛEªy¹u¼ Ù§» ©Î#j?²ÎÙºyÜ ë? vÆhòChÛj©{ß7/&iúvšý/Ðúûá`5Õ½¯}•ô‹š† Ôõš5WÖå…;ÏÑžEêrõƒ©3´ÿêæõƒ™ОøC:úZG»·Ñ–*Ú¼‘6]ó©ìEؾ۩ÞË4VÓÚÒåݾÍW-uyáAÍñѼÿ&#ÖÐܵô’½ 4ù0MÒþñ½åMÇ—×ís‡W‹OÑѳtòäþ7ôähk“ô˜˜«e7/”=ÔH…öŸôo‚öퟡ3]tê}q;Íþü@¼‹NÜI#ó­ç©¾?ŒÓ‘Çiƈ:Ç” šÓ‘ÚJû h{=VJÝ|O0w}¶äÎEúeß·ð¾\Lc z`‘ÖÏC{ê¿Ñé¨Ëµ Žýˆöm…Æïx_µôàeÚ´Fö0ú£É[i÷ êó?›J¡ñŸã½ºGàzx‚½åt`'ŒÌ½w\¥‡hMœ~É@ãî‚C]4ó"•|=3ú8_AÝ=`pê—èt!´é|:ýtêaªsìC†&WÓö2Úv–6tÁè÷½èö*ƒ.G;ذ™êó¶ÌÑ™žµ´¯ž¦k í« º¡ùU7±‚jOYóY1K%—.’Û¯Ÿó¿]í±4‡“9Ýç;ÓèÞ§Üy”I¹ç.͉Idhïu*ÏUvê¿ÓÉV:f©ï¾L‡n£nÎLï½Ý=GÐõ¯TSÙƒŠ˜¼‹žøX£³ÿUÜIg¬XF§ß“N•Ñl‰ø«ÔÝÇT߇G¨¾†\îèÀEñVš>IS[h2F»ÄÍbíj¦z¾ÑRN›®Ðº¤XGc‹ôõìg˜¤Úãã÷ ]®€×<íþùøÛT?ÿêµöÅN.P=vç²^SSíI—ÿ~òè‰Géì¦3÷ÐéIñ÷©ö7eèÄ:¾ƒŽ~$ÞM}N­7SF‡èàu:ð=šz›FÎR´g3í´o½Hg_ SÿT¬£™9šü˜Ö]ƒæ@ Fæ·Òä“´)&º÷ñ¦mÐäþß—ÜSFXz|Fr…·Ð®Zš>MGï„6ýí­§ñY*÷3¦:oyÝ|QÐí‹5ÿ8ÝJ3Y:²‰ŽÝIÝ|×ÎÐ×òèzéÙë£Ú›çö¡‚ÙÏA»ÿ2}vê}•혣.ÊkZ©ä5›¡5tz jofä>Fç«3î릯‡ºªýe‘>³[—7ò|›¤úzä탕ÔÍ}-y–ª¢._4øL4þ~ÑûF!¯£­[i‡>}Ây Ú¡11E5—Ë÷¢zß´0’ÛÛ›†vê_,¯æ8•Ó‘ép>ÕóÉ´¡}%4ò¼u–Fú[ëi{>u½&Ávyu^ñå2šû˜¹tÿ¶3IÝÞG°qžêüž»_Þ íè­ÔíÝÞ†7²Ÿ¨=K=óÔåçx­{ý úÞxÉ2½:t‰¯?¥£B›ï~¿;*`¤òh9Õ¾úWª`ä~ô¨¡M—¡Mºó'ÍåÕ{I?¯ìç—åçÌ6Ÿ¡n^5è΋ˆÏSõ6ÆhjuÏ#Áá­tl / “;èô“ÐξJ§ÏˆãT?_}_|[,¡šç=´S4tp5MWPw^™‡îZw hçU1I‹´µzy]Ï}0~™Ö×QÍõ?ÞÚª¯_®')²æï·½šCúfÝsjïîÑ<ÚtšöÕ@{⯨æè^íÖØ 5&÷¿ŸjËÅ¿OO~_ÔœÔ!q¤S âEñ ñVšÝM'މr~yŸ|LS»¨ÿº{»“bí¼ðŽÑD>m]M›Ó´ñu¹ÐÁã†ú^ï¡Ezp5Õ^Ø]Å0ÒOzÔælÙA;›at®p#u=›ÁÖ•´i#=RGëʨö}inxE4>·Îû‚¸+Ikóh]©¸xc¥mghÇÙåMþ€ö­rS·¿¡CÓáõT÷;ݾNp|–N^¥Ù¯Ñ©fh“§iïä[qmOЖ$mr??Meôx­·T{³b1*Ÿ+mE!Œì¾`é«Iªï“ÔÍ5ãcÐöœ£­Í´ù o G‹©Î™êü®Þ_ÔäÑØµå=0GÝëRн>DÔ|µH?ד´¿’¦wÑ'éÐhÿð):w•žÚ%–‰¿FO^Ÿ ‘|ÂA#9â穞ãMý,uyŽQo£ãÞØ‘çéÐ1šŽ-oò{Ôå>5'3ž¥úú¯ïkVÓ]‹ÐäÖU—|n¾lèžEh“¨ëÕ jGv|T\I'Þ·‹Åtü²øìÝÞ"æÑÁ-tຸšöÏŠSÝßJ.Šr?×UEÛ¯Rïm¹.fECãiÈð–A“;ž[rGœÆJè‘J™]ß+{ÙŠó´Z¬;K_¦þùÜÍ/‡6õ4KÄ*hG6ÐÔ‹´5Mý=­¨S=ŸKU@ëzÙƒ.ÿ$xØŠYz¨˜î´Tz@Í7*èw ©Î!øûïmÈR×Gì¸H“'¡ýîèÉèÔÇtä:ôCšþ€jÞŽÏÕñÎ|ŽÖÒô»Tó_ݼ~ðx’®„æHØíTØDӚʧÇã4VÍëÔõG]¿•×NÒ‰‡éèbÍœ£CÛiÿIq MMУqz¸B,¥‡²¢¼~ÕÑÄ º¿D\M÷.Rw±d‚jW¡áç¹¾¸ÍbôuKÝ=ðØ5hO¾Hgï¡ú}'}¥‘Ï…_´´w Ù ­û|Ôû©£ª}h‘C÷WP™Žô!ç¾½ƒæ K›Æhä98–³û:´ÉtögéÌçéÔ4·t¬†ŽP77zìÆ~Biz#í{_:¯äÒ{õ¹ž3unT¾KG®Ñ1¹?Lž]ÑÀ|^_)m©¥rîé4nžÔÏ•Cÿœ™ÜGË4wŒé5­IhêòM²ßÐižµT÷í6•PÙŸë´“OPu¾£÷Éîÿ’7à4á9ªë1nîÕ9T@G =†FöRz‡ÏQýïÿm,N%GÂiv-ÓæµT×O»+•Ûhï½—ʾõ¼ïÓéítæ÷•ƒôäW }ë-åtn¿òzê?­ìÉ:{ëÊNŸT>A§¦“­4s‰ŽÞJ‡ï¦’ûâM¬¢±j*ycÞ®u4¼Lå\ÑŠP=‘û1敾(¯Þ¯ÖÖmg4T×yf^§§¾Jßú#hgÊiö :²—êýgñÍ´m;uù|Î=!hþ‘2Tíè=´¶·wÚYk©<7;íÉh¶Šo¥±èÑJ¨ûnì¯+õ>%éspšÃF9G‹•a*óy³Ê%ÚWEce4>J›èð:¶fî¥ãçiö~ØËÔ³ÍWCTåØïÀÀ^*çák´©†Ês¡7r•öm¡ý&§ÞÓ[†6}'U{8ŒËíu9¾S¹s";¶—Ê<¹7ÚJÛ6Ðê4½4)×Û®jªòSûç_Á@?ö®b*ù^½ð@•~?¯ÎÉÖ{Â(£ôh#=VJ›ÓT=™–Tïh·´³˜vѾ$íßHc›hª‚fšèä:õk7v:Mg†ž ïkš7”J¨>ë¼@uXìšX¢©K4ÝGG~@3×iv úh¥Ï$hT,¥-•tîÿ¤ÉEª÷ã§GÒt—¥;rÞQªï+GËhû2 îյм^CÃQÚ¹ê>Bµ_ƼQDß,]Y}ß“9,o|~{•Ñ}ÊPNÙ3è•y³¼ò¾™”¯w²šNý}:}Ÿ²‡ÎTÑÙ ôÔÃôô-ÊÓО*£Sÿœfo¥c”êyj¬òs\MG›”TæCó>@ÓÛépu×§~ïÈPcí󬓴q‘ÖEé×Bм\AUŽ·®ƒ¼jUÏÐ9W¦w;UùßÖípöÎÓãÙœî|ßåq8õ^IÙ‡êÕÏ{‰8•=N;¾†¦ŽÒæJªö®ÚSoÐéߦSÏÒìNåßZÙÉ·•géÄVv¼f6¬ì˜¥ék4uMܽ²Ñråf:PB»KWVÏÙHß«·µˆž(¡G.ÓºRèW{9½kiS) |~_²twˆî7Tò¢½ºžtDy¼Šê¾'ÕÏ`d¿—7~&èÐ"Éñšƒ.ÊûCeï“WÎý¼z_wd-í±t ˆÊ|¾‰~FcWirŽÊ¾i§í“ûŸä zußÿÀ*ªûÑZ·Ñ–4•½{^=Ï}°’¾¦_±ÐìŒÒúk´¥Úè{T×e%ßÞ«sꤞèU{âù—„¨>z-LëBʨR¾~™Í[Dó8ê¼6º‘ž¥ëhÿ%Ú[GuÎŒô…yß\¦*—Bïc2nNǩϥcªúOÌЕç#ïä>:õ+ÐŽTÐĪsƺ.S}îßZF]¿‚ó±4¹õÀyÕ¹¡ÙWA›²Trp½]ih'Rt¬“ʱw¨šöFhO íl¤m¥4°å¬2CÏS}^¢÷=D]¾ŸÈ=‘ç}Žf£·S=׬çsû•E4"×M?,}jÞšee ý¼½OÏ-Ñg è?Tn¤¦T9…VúȽ'–é±Ú0Oª¦²Üi^¨¢ûCôÐ"´m´µŠ¶4Òðz|-=RN멾žÉ|¸ßoþU¥Ûk|3__¦oÐÖ꽎­ë¨ì×òö»ºU,¢1eâeŠ&?¢©ÇiúC:RL3…tò tê¯C;û¶òY:§“Yx)¤#)šúÕç'ƒ»hëFªsåõÞBÙ#î=°Hsãê^³ÛÐPm( '²´c‰vÏÓÞ$\OåùÂi_+†fÿ<´ÃtÏ24’{╽jN{¦•ê}ŧ·*¿ª,¤³4{ùÆNÞN'Êéøõϱ‰fæéPˆ\ZÙÜ1jÞž+´«€Ê\š·5DÕ<½}"õy¢©Rýž#}¬Þã5´c5í)£ƒ%4v‘Æ·(ëiâ M½OUî»m›£rîçUûÕÍC!Z½De®Ã{¤Úá©Þ sâ^¯¢s »«é±2ztŽê~`ý<òl1 ìSû]Mçí¯£Ñ½4^FÕû¾Í¾Buš6±šFÏ+ é@#íÙJeÙ›{MðšÇCôàŠڞ ÔS¾ZJUЦËTöf{WQuÎkS{©ìáqšìéT9>Cg:÷Ïë=–Ñ‹´Ù@s0M{i¼’žú7Ôʾ ïÁ9hRUtøqšVŽÞGÇ¢™Ûèø]4ûôÔϯ¨] }YÚ³v¯§R_Ë[A»š¨®cj[æèñrªsú]~ŠSæ of`ÿªÚ+mdÿŽWÎý½®¾é”¾Û¼!ªçðs¥MÊ+t°œª@NWâìçøª¢’ïèMo cûhæv:yŽNe©ôã{gÿ ÚÙÛèt‚Ž/ÑÌUåãÊÛèØMQ½ç`øIšÚ@“ŸÐÄ9å”4ú í[G{—©œËzÃôò`ˆêþ”ÜqP^÷Üìt9¶ÎÃ¥JKu>ÞG®sÐe¥7)õ­Á*åfe!¨¦ýË+Û³º¾;ïjéSÖ}Ž›•…Tr6òV¯l[„¶ÎÓæÅÏ1J_V6Rý(sÅ^=ÿu¤˜6^VZÚ¦õËʰ²¬¥º_iß2U¹Ìy«¨ÎkÝnaà¹[öH{ÕÞ #yaÞ¦Ú¿”6û•|`ofŽŽ¼MSá•M^ ‰'hü>ÍPÕ×j[®R›&ç$ZóíÝWLeϱWçùè~6É×¾©/hÜ\‹s{ˆ¾±@¥iÓ"mž£:ŸIúȽþʬrV9G{7P©ÿzõ>‡è6eãMüDù Õõ¶ô>eˆêçY•;n&ÂÊV:õKtf†žú3h‡ŸPn¦/EWÔ¼¦nþשϑÓ%ÐÎÞC§&éP3Õ}˜Ýg©«ß;uΡäËxõ{¤ÌÙy[.)- ïÄ«æ}Rôî®Ü¥¡2š]¦ÓÓ“ÍО¾N§æèH³²Jy/ÕûjtŽGÿEÚ³¬l§ÝKÐäþ5A÷Q—KÒ\,Ê¿¢"g»É9ÖHõüímö]OÕBÓRA‡¨þ±rIYAS÷ÒÞ+4¦ê=Þ»j Ù¥2îíÚLå|Ù ‰´|–•M´e =$ÿÜkÐ ÕPÕ7m§šN¾GÕÏËÈy›W÷ɨs+õM¯ìMöJ^ÑMí,§’GéÍ]¶ó¶Rý\Y·Lw‡éwŠ¡y.D뫨ì¥÷ž(‚\ÒäzÚ[Fõs´ÎÑ©©€¦2Dß(…ÖíCôV+7ÓÄåvûTy'•þY½×hOšJþ—Wò½ázd-=¢ hm)­®‚&·î0ï×-•ói¯Îa©74\I»kèà%ª÷` ý@™{3© =õÓôä:Ó¬ü):ý Ú¥üiš]¤“?VÖÞÄU4W&É;¾êœâìs4u7í+ n¿ 3~'í8 ÍŽ*ýN;š¤©÷è@íÙH%¯ÒûZ ®¦‘RZ‚¦nê9ŽP”ÊÏ?o»²›Î¤²#ïWé©G”óô-y.«‰~ÿuh¥¯ÏÛ·@CE4Sî5GK MÝI%wÑ{ Ôïe¿¢wxÚ·n¥§>Rî¦'÷Ò©Whà|VýeVQé/ð¦6Ñ¡Ohò< ä_‘ê~:½§«g3íª§ºÕ¢”½Þ¦ *{¾½ T‹Ø¥¯†èöbhdîØëöæ|ÏÒÚ*z ˆ6ÖÒãK4ÜN[ Õó6;¨î߬]¦z¿ƒä38͆î+U.Іòϱ‚ê}x:GZŸWèœÔžr*yzÞ¾ íßDä÷cº ê»ÀŸîŽ¢l¥g•sÔå9û¶RÉÙÎ;GåüÓûlÕ}2Õ–Ö”ÒWäï;ªÔ¹¦± Z¤ésÐN쥉:¯¥±Ï”s4ú±²“Jž²WòއÃTßÞ×4Rý|_Ÿ{N6‡–¡={/}kŸò[ôôs+دño•¿GO~¬ü6í¥3ÿ ¾fBužœä yG2Ôåž:“÷(Khb'ÿPYAc†F?U>Mûå¾&¹LNóLÚl=ØB{7Ѷ%ÚTHŸ*†¦fê\QÙìín‡ö­Ãôô¿T~ž*¦³]tæ!ØzFYG³Ûèän:þžòšé¡£oÓá$MZ¿—v/RÉ{öÊ~o /¶†6•SÝ{¸¾QCÝýÅÝo^[¦’ƒç WÑÎ4R mîñÌkú6SÙ;î´ÙGhæªs “÷S}.zÂBóL1Õ×Ï…´ç,•çK§•ç"¯>/S}à>%9ïóêú”œc®¥¯Xhž^¢Ò§ê=^D#‹t8JÇߦS[éôÏ(? ³Uôä÷•ÿ„Îý1´Sÿ„nPÓŽ4}5Kåù©sËíÌ{4ÛM3ïSC뤃«¨ÎÍ•=`7ÓºyC§žKx9L«¢Tç-èz‘ÎãÐçz2÷åm*£zOFO•º€ÓžZKgï¤Ùåߦ“a:q‘Ž_QÒ± Mï¢Ã)¥º¾ÍÑÄýÊ ÔÍ;;uÿXÓ5zÄ]¯«¨Ë•ûrÀïEÿ‡æ€Rú?¼ÃóTç,fÿw:†6õí½Lå9ÝçV·î R7uÚß Q]¯Õ¿ßm!h$·ÖÈå’üa§Þ«xïÑçqºÕp Úæ09K§N5)›Ž?HuÿÖØ¨r‹rý"y’¦wÐá•÷ÑT-Õ}ò:$ñ¬ò>û˜Fè`íÛE»kiW”ê=×z0¼ƒ«¤‡¢Tνóк"Z¦/†h95¹Ç¶¼U–Ê?ç=XN[#TúN½kaà|Öçz—C¿‡(ºA©r/c’ë‘ø˜&åÿ?¼ŠJŸN^ mâŠòIÚßHe—÷hˆJÞž·>Kß´TÍÃú"*B0Ð?ø(ݵDݾDçárÚRE[Kh×<•ßoT©.Ã¥t, íÔj:þ1÷PÉ3Ë«ë²Û©äv{õÜD[=vY¹Du÷¡rº¿„¾ZLåçâ}º©gy÷‡éñ2*sö^ Õ¤úç_¤©y:z ´ÃòßÑýcoCÛ“FòÌöÕ"*s&^9oršWŠ©ä·xÝü˜ÔÕnî>h§ÖS™÷¦¥©;h¢„Ê~)oKm^¢Ç®QWOs(¤j¶ùíº3K«ik!íº@£4f¡¸ƒöÌRÉ¿óª¾?›k#òºýõ^ýç?¨Ô¹ÑM´·˜Jß7v·2NÃÀûö±=\Bù„T÷·êŸŸÎ§Ó¹—õeTú…½á>*óø^}=ûZ`Ïœ;­ìUö+¤ªoɾ™½±ß]‚f‡¥õs4|‰vöQŸ‡"uÚÁ«TçZè~'yôv]§•Tö›zu>ÉëU´µœæÛ©ôeyGî§z^zb‰f/Òéßöl3}ŠŽS™3Ë[E“wÒ˜¡}•ôf´Ã?¤z_ƒÞK¥Ÿwôüó±9êûùD½§ï0uïΞ]´wJ~•Wúó~BOý2´}´§‰vo¥-èÑ(•üH¯ì7¶r}qš¯º§Ú]¥ôå(}¡šG”ßTʾï^Cõ9²ä{ÝÏßÙºŠFÚiÏ::¦‰C›í¹±²Ù»sY¾4:º²Ýר»Þ´VÒ–$ ×*w)×ÑcËTžû½‹sº|Û×BÔíññ¹Í 9·Ÿêùjõœcž/¦et°"§œs:mïÝ[E_- ;Š©ìsš¶Bª÷î꽟òœãÕy!šû×䕹Oo¼‰ê~ÿ¡Fšš¦#O@Û¿™¶E©îùN4¯FicMQ9Ïô éZhgþÕ¹2‡#t²žêÜâ´|ÞÒr?‹&ig%Õ{ètÞX®ìà Ìç…·CÛ³…¶¯¦²ßкLu­ûï:ŸSêü°Æ2ª÷Úuí¢‡—hc´rÎæ4Š©Ú#mÇKhâ‡4vžF#tpFVSÙÿê•=]^éòê|¹×²4÷kî ìÇÚ]J*¡•s-¯®¿I®­w²ŽŽ¼CS•Ò¡Œò!ªû§“«©äôzcwо³´§†vSÉ ö¶\Wn¢’Oæm(¤K©~ßRçQ&÷±Ì»{‰ê}qNÙ»âíZ ý›¦É£tøhÛwÑÀ}8Lu¿žÞ—àòsœo,Qý}Òù`ߦ¦ÚPÝç¦÷6ÍÑ–ó´ýíÝF]N¯ËíM5Bó庳ŠêŸWê:UyävâõýW•!˜ÇüX¹™v/P7älª¦®æ|¹€ªóÚà\\ˆn¯‚fW”ʹ€÷H”6×Ðp‘ò"mKÓŽÊ¿’º¯Öç8 ÌS7ïwX>ÿ‰;¨ô8MîÇ“·×¬¨-£é(~‘¦®Ðd†æD:©>·^UºûãÃt Kûk¨Î/è Qõ}²ÒWêm) ’éÕ¹‹’ÓáÕסïZhÜþ*§î§ o£-ËTïM ì9h¤CWhºÚøÓÊm´¹ñƺ÷f§Î?wïE^K_¬¢/„ y³ŠêßËö>ªós¢Í4y‘ªçp3VGÝ^4™ õê¼gáÞ÷:§4°§gÚ““f_ c¥4}ïÊêüûø::°šß(€öt =uùLùwéÔ9åÓTrZ¼™éHûºF{iìGÊr +PÞBu®Ð‰Uûm…æ*z|rTô~87GâLí¦‰[i´žö–ÒŽz*õqo½¥:/aO1Õ¹+ÎŽk´÷< äkª÷}•[gã;h÷vêr©{ÛéÑÔ{NìÈTö~x;Â4ð\ž¥O… yRù\”î­¡–hcD™¥’¯é‰(LG•Vù){P¹W9J' ¡MSg¬÷Õè|¾P!}½”ºº¬Óí¹Ï×úœE÷ýëï·ä“zeO· ÑÄMýÚ¦4m QÙÃä4÷ÐÊCK4œ¥m;hçYÚs‘&>ƒ6ù4Õ{óºw)Õïi×*.¯Ô¼ß Ñ\{—׬Wºógǹ••z›Wú¥¼ãÓ©ß„6¼•6×ÒåÐäýÉÛ¡-›iÇFÚ{.QéŸôŽ|9z-ò}ë—:[Fú7s—[¯ ÍÓøs+êëëαi*û®½’ãU{GÌÑ h—•k¨›«p†K¨Î{Ð÷•“ØkâúûÂ7öX#mŸ£¼ž*ý>Fö™áMкþ7 ÷~Å’ÐÊûƒ·¯Žvo€FêÇÞò¹o[äÏ'çOÑ'h\þzü3š’¾…”ô7N½«|„f÷ÒÉ Í”Ó‘RšÚN“¥4úª÷ÒtVÓŽÍ´ù2չ벿Óû„…Æõ!;÷*F •º WÎ5¼5ÅÐä¾Íy]¦G-í.§qùùóšûéH ´g^WÞGßúÛtnŽž~žž¼NuŽA ×àK4û¿—fž££ORŸ®ûÝS?¦9ìGi|žÆv*¡º~Ò×D{‹hçyÚq޶¬£º¿SŸ§JÎ7÷º‘wwöÇÔ.QÉ÷ó¶n†vöTïáÖùõÏhÜó„óµ'ä¿ûh´£Ye+•çð¼ú½ö1å::\¤¼…Êž—¼OÓäU¥ª×ɾB¯ìmË»Kù•½U7÷²ò¬RõµÊù¯W+Ëh`^X;­T¿/Ñyå;JÕ}n_Y=÷=ÐNû®)çiï"Õý…ÚŽ¢• ìiW†”»¨ä {óÊ5ôÄeªŸ—vÑ— ý^ˆÊœWÏ_åŽóêy½÷Eù[Ë4°/wsˆî ߨúRêêN=×>GÛ7(—h·¥ý•Ð&¢.‡Ý)ó5^]Ç<¢2'å´-³4¼¨¬ ./Ωç¢už«¾¯èÏC•ô@Õs|jtàs¨÷±oWê=g_Q¾¨Ô{iuŽ}C1•½ÞpmÛL;æiW9\¡½%´oØû$#ëhKîze¤žê´¡4ýj7—ëÔýjé‰*hOöÒ™?[Ù©? Ù_¥ÃM4YIeFÞj”꽚½54Rÿ9†¨ž¯mßDÛÖ)WÓã…t }=JõõXŸ_}SùRÕï·îzâ~Ïäsã}}fû”jxâ!š\£¼}eeÏOÞyÚ\Auîб*e)=R¤,¤Ÿ÷<¬÷ÍkC‹T_×öTQ½7M—ë¾Eóhˆê|u^eWRÝoßR¬œ§­×©äAy»7A{ö_ÓïSy=õ=¹]ùåfå/ÑÙVvæ_+•g•:w¯^ù’rËçø þgÊ·•û”¿K§®(_W¾¦üšý§Jµ×&{‡²ˆÊžtïĬRÍߌo¢™+ë©Î­‘\è¼ÒÑrŸr5ÙMÓ)?TÆ•”_ Ãå4µL‡ÎSýž—|‚ê\«X%¼Hûô'Iõý­c–¶^¤'èK÷Qý|áÎ'_)…6³šöõО}‚J®“ÓX€½÷C}Tú⼹ͩۻԦû,ÝYJÕý9°wþ9K_¯¡RÇö6(Õó—iMÓ¶sTŸ#uŸ§=rÞär úÖÓÍ4.ù/‰{”(su “|ö@HÉ«ÞÿŒäÿ9m¢†F¯Sÿ¤Ÿg^S¾¥úçõ°Òõ¡;õœÀNCå¿ëÕ{ bÓÔ%šþ´o.щ&:¦ëëè¨6¢¬ éOèð6š\Ku)úRåÅEwR=/7¸H¥ÖÛó9Fæ©î¿ìU Ó–õôè²R®SG²´±‘6d©¼‡zZªòïË:%w ü¼ê¤3J»¯ÓXò#š^ Ù\>¢™ºCYC§—¡}¡šºªëÇ«©ê;¶4ZB;¯SÙãÕ9(’Çám˜£Gh{í\GÇ–¡ín„\¬Ž,MýÚî-´£Ê^Uïák0°)¼ž¶m¥ºvx;´£ÕTö78Í+YhÏÎÒïo£g¶Ð·þ˜ÎÒÙ_¡ò9ôNVåœ09Ó§¨î—T÷)SfëJi ÿ­ˆJž¬wGˆªëˆ-.€æë†>eéCÝ> §ä-z¥oÌ+{ËóÊ×{TþºÛ›tb‘¶´C;|;­ Óg,4À@æh¥CŸRÙ«èÕÏ?zž¬k•¯×»ßB#sÒN;ÛO‡-~D©îÏw¹`Nɱðê¾Úg- äë¹yþqÚ–¾¼Lå9Æ?ÏHÔi³A'@3÷Ñt–ê¾å¡ÜswpNð P–­lÿe¹HåyÉÛ±L[k©Þ_v¸–Ö+__¢®ÏÖ¹ÍBó¢Òõ8å<Á{p‘J½ÖÛVJõÜD×Õ¹£RÏðÀÀùx¿ü<› ‰í¢ñû•@›*¡Éûhüm¨ïÓ6ó ½Mõ|¯Úd_¨‚þµ¡SÐöEVöå,U¿_½ ²oÁ;Ò õ‚F憼{*¨>oo)£ÒÏäUç f`‰¾ßÌÃ0©j:ú ä@&Ëh"J£ÓÊ/ÐÁ+t BÛ­²êsB7¯S7Ðc Êb¨KÔÐÃÙœ{KWV÷!ä~íò~Mùrˆê}Á²§;oˆºœR§œëy×ÒæÚ²ê÷¢öZå<í*¡úܾ¯˜6ÒÄF:ô•œ]ïØ:~'ÍþzÚ™/¯ìøÝt´YY³²Ãë¨ÎŸŒ×ÑØ;T¿&•M´ï\§][hÛezH©?¿_³4w¹È+óiN;ÕFG.(¨îgLÓÞ-´Ë(ËèþÕù:/åµRªßó$ÇΫúhlî󚦪œÑ5P_ŸŒì³ñêùº¦Rh÷hÜÏ©òmún;@Û¡Ù_žSÕ/mü.ª?ÎÎyªÏÁVPyïuÉYòîRÙ³í´™-T÷I$®ÑÚ"*sFÞgBÐÈܯwÿ=¡-‹TïÅìºF£gèh Úé_¡™hz‘Jþ¾7Ù@W©îCÎ)‹é@#í.¢s´¥”¾VÍÞªŸ›Ý\Žs°”&ŽÒÔ“Ê‹tä!hc¥ôÕ04ß°´±†¶*çgÞK“ÏR}_Ë~•΃Vþ»N³sÚá2ªsлû¨ÎÉ•óº›ir̼ržë–C{ê?ГÓ©C³ŸÑñstôÚ»ž¶^¥-5ôx1=\CUÎo`>Qæü½¯–ÒP1•~b¯äë8m6¡ŒÓ±[éÐj:PI%OÔiŽ”RÙ?eü>ªõôù4Òì=TBu=]òѽ:-v‘Žn¢ã›iö—èÔ^:ýe'Í­7Ï;û<=ù hÇ>¦²wÞi$ÎëêD®¾¯rªÍ‘9*yó»åïïi¤²oÓ_«”çßä5*¹›^Ù;ꞇVö?:õ~3üöÿWÚ¡B¥rµßQ9_qözë}#zî¹¥’v…iw!>Bc[”/Ry.Ê»H“wҡǨÌåy‡«hú:òªò¼Íè˜?W—çi5Ïg¶h¯UP'©ë_‡èîz¸ˆvÒîUÊj*ïaÞ™1h»®®¨y½˜¶®§=4±ƒêüû‘«+;¾ƒN.Ñléç8 œ¤S÷(Çèô“ʳtæN:{”žú)zz/´íuÐÈù™Wê&ÞÈÑÁµ4QNSÍtl-xÚD­_ ÕQhÜû3÷x”7þ•>ïð´StâCšx[y?Ý_ Íþ,mËýžØö+´Å*ûh`ΩˆJ¹Wr|½®NðJÕûW"K´m=u×%§|]^w]rש¶Jhg¿ ä;í+ahZsNÓ•«£Úþ*9åÞ­!häœÍ+u¯ë·tv^¤‘ÚŸ„ú½Õ4”@Ûgh—ÑgCTö–y߬¡2Ÿì=¾LÖ¶_§=sTòýœ6}žÊÞ8;WöA“{ýÉ«ïgJÛ_Hõ¹—ÞÃÖUI{ÏÒ¾eËÒé9h§n¥£ïRß'sÖÞ¯ÐSÝÊå¯Ð“g”ÊítöcåO”Ç•¯Ñ™•ú¹sXùÚ©|™N~H3ÍÊb:v^ÙJG¨žkK=F¥Þæõùbô6šû×þ÷Ï_1•Ï—·Uꉇ+¨ô xï-€Ü7u8 íÉ]täÚµš¢zt sä~51@õýRåÔš7¢4RmÝ4’3ã´S”OÓÉÕï-c×ép3MÎSÉûôFs×Ûw‰öVÓîªóHšKéþZúfU9ƒ<·§ÖYêzúùúü3§êK²o=HÇwÓÌGtl—ò9ÈŸº¤”ù¡[hòC*ý'^—_îݪÜLÛg•¬{ÙÖ m^¤zO‰Þ¯v ’>W ÷£ƒÕTòoœ¶±–îX¢noN¥…Fžÿ¼²GÈ{|‰Ê{­·=K{ÎÓèM>NÕœ‚-§ãU4[LO%éÜ h[£Ðünˆê}+סþ¿èP”Æo£ú]ïþ>§þ¿Àž†È*9^U¯¶¹¿Íkzû u}°ÎØÝ4ZIÏRÙ;`BTíI4¯ÚR@õ\g|3uõ0W;CG·ÑÔ&¿Bõû™ì‹ôJëûÃ÷ÏÑ×– y±˜ê=L¯WÐú4=¦ÒÇè´Ù,Íw#{ vâ:Q>I3Y:ö)ÊR©æUõw¬Ï z/ÓÖsTÕô~u;³ŸŽ>KÛÓЄ*h¼êü{“kgÍûtuû’œ¯TнË7ö h§·ÐŒ¼¯È¾;¼L‡Þ§²Ö«sõþ¿& Ÿ÷®uÐŽ¬¥ñÐsÔ}®:×_æk¼úüPöìyG¨>wþŠÆÕªO,0ÏV_BÃiçÚ›¤Ñ·i"ISt¤†Ê¾%ïdUyÁúôߦSš]G'NÑñÏèØctô(M¯¥º/"°çð#šL*£‰§i|NyònåTïmm¤:WJÏñô]§Ý•´+«\GõRù\yeÿmÞ"ªû'^ Ѫ*ú¸ºw‰ò å7CTç ¹ë±óµ*e Õûäô¹œ¾.»=-7Sç£èùms•²–ž¨¦mÅÔ½¯v7Q7/ål»NuþšÛ#.Úïÿ }ëËt®Uùwèéߣ'ÃÊ:ó¿|ŽNÿ,êQ~Qù7iv³òV*}¤yÏщKʳ4PG;§¬¥#rýL]VþX™¡ÉO©®+êýuî½É9ú6þêë…ìOµ~ê´SBÇB:xžvÏQ=,{o}I¡,ÕçÔ2—ãþZéw÷Žüˆ=G]¿£wž6-+ç©>×ÛQE[Úq‘º}ãÑZ:,}óº¯z¬\9sœz/F G¯•ö\§Íòu†jè·BT®÷¾ÏîE¥žë QÛ#yñ^?9PMã%4‘su^#û2¼nŽÀÏ÷×ÂÀ}½mÊÞa¯¾>k¨ì]wÉáðê£iš»-äÕý#½å4¥ñ'•Ä«4Rö)߇¶»Šv%iëÍ=æå•soúÇмdèa»²_1ÐÊ{µ÷»!úu˜Óü¯îói,£-—hû9Ú¹vo¦Òwé•çH¯Ìñz¥Ï3ï%ªÎÿÍÈY*s\N;}Jy’f×(ÿ/S®SÐÌ9:ò)M?©|¦ÖÑäånåF»L£{éà5e£r-¨YÙþÕÊUT×-´j[pÞxëʶ]P.Ððµ•mN+˨Î9²HuýLç™ZV^¦ª©ÎQÞ—¥RWõÖXúmè—˽ÿ÷ç© quç(´c«hr”vGhÛyúf˜~ËBÓ¡­¨ê 2.ŸQòŽöôR]ÇKí…Fúê½z€Î'p¹71П*{y[}~üF•Ï¡·e MÊuföÿ¢ãå4z…¶.ÃÀ¾ ½fo±²”&7ÓÉE:õ´ EÐì*¦¡Rzàm¬ é»hf´ò¾î4 ´s=Õ{q‡×Rwâ”ë«ÓºüçÐã4±ž¶•Óãaª®æ`Õ{WuNAl™Æg¡Íþ2{çsT׃Ñvªž{‚ö)›éÐ>Ç4Q¼²±>:xº½ÚcETŸ꼑×ÂÔ½G©¹  Ss¼ÚÌOh*BçiôÕy–¹µDyu?j{m¬¢zfC ìKj°TêÕÞÎ4í[Cåëð&樿ï. z¾]êëyϯlo™2Mc÷+£™vhŸ2Ð =mfš¦Bûåù¬oíª j.À<_@뫨<çxÃIÙHåóã•Ü7o¬‡Æ íé4Í~Ž=BUî•©®¢*ŸÚžþ1Õ{a&®ÐÀüÈtäŠòYåtøAšüUS×/îûÆ3´ïŠò2Õ¹þaz|ÊýÕ«ß÷ªÏ®Qé‹uÚ™×iö:§™*Ï*×б'èhšê½ R'È{”ÆÚ•hÿu¥zßé¾@ÛKV6ÜH]£*¯Ææbu¼<Ú]ôõeªë0jÏ•ý”JÞ@Þ¿GDzʤrý1 Q}^–(¡2gãí“zy÷m»J›*é‘Zš;÷šß¡ÖõÛ8ë²Tê€ÎÀ~9ÿ¨•û¶7ý1=õËОZE'? :'9\J_*¦'Šf?¦:W 2´²¹wÞ#KtŸ¡jÎÉl·´¾€J×ig‡hævå-T÷Åéë„~>‹m§ÑÑŽ+ÊKôMCUžq`Ÿ´¶µ„ÊžF§íËÐÞ&Ú™¤ázº;›Sö#:ËËpv$¡ú&Mo¢’Ó–w*¡ÉwhbšJµw JûËiä*•}PÞfK›Âôhšªßs+}oÎÀÞÐCôØ"•Aû}COþ¢á$Mþ€ö/ÓÖ2ªçÜçh|êï»~oÒu2Õ7oݾ gµæ{K´!J;ê©<ÿz£Ò?"õ_'‰½¸¢¦s–ŽAÛy…,¦{­²Œn¤Ã¹ë·™¬¥òž·Zé#÷¾l`à\ ßCÇÖÀÀÞuÕ¯l³ë©®7Å÷Bý󲙪÷ê|•mö”R×›‹ÙóÚ3åô­F:WFO:´¤¼ ÜNuß»ä…yûŠho)í)¢þ0¥Ë rÊ|“W_Ït.üשM?J‡¤’íÕû½tŸ½Ú³e¿ßAõž¶ØÇ´¿šZCÝ~ÑfÎÓ¤Ô jŠsîZ¦» •ç%ÓR íè^z,¹½átxÚ©¿ ú=)s7íÚH;7)×Óö¤²B¹šÈ*Ú¿žJYÞhbŸ²ÚÓ%TïW•z÷p) ô55‡ •ù*ïÃ!ªsRÕ¾O{Ú£Ú˜¦_1ÐÔZz,K{®Š×¨Ì5yý\_–êýq.'ÒõõMý<œ¥9OsϯVÐÉ;èc†>¢ÅÐDäëTsHvz–fÿÅMLÓ‰sÊ>ªû³G, Ô£hÏ<Èõ:r¶6Ñòõ?³õù†• é•gvÌP=?&}8^™uÚ™{éP-uû ŽËuEòõœf¿Ü·tÞ‘þsý%µ±sô@ UQ½ß6w[ÍûF˜ÊçÔ[[E_‰RÕGdܼƒs_´aj\þ™óPí6Цž ±[hv?¼N{êVVö#zs¯^Ó·E™{¯6ýÕTç1GïUþ„Ƭ¨}½Šn/†æ× hmˆê\[}Ž}|-•þ §=¹‡Î>JuŸñÈzšº•ê~^™ÛòºçegÃ<­)‚~ú—©ì•ð¶î :p•Fo§>Ë«4užÊœ½ÓÎý=• ''éì? ÓƒÊ_£ÙE'—éÄ^:^BG³ÊN:¢LÓÔ)e–ýˆ&/(«i|YYBuÞš®[õlVn¢Ý—•†F®)U}0bh×ڥ헩Û{ë ×)7ÐæB åÜ›¥Ï-AóÝZ·L÷Wæc{°”>[ ónÎÝéêªm»þRÚæråZzD~ßÜóLôNh ¡ýþ—èØ•÷no§fO ´³«¨Êo0¹8ƒ›j¿?IÏÜKçéég”¿«üzê4=¹ÿs|•Îþså)eŒÎü’òè´UN+û蔫'\¿‰ª¾–=§RÞNÇâTïÏu¹ðΡE¥|2§àÞG{VÓ¶­/¢¹ã"¯‘ü8g Frʼ‡©ÎýŒÔSy.ðê¼ß±³tò^:õ3ʽtæúŠÚÑÍTç1è|h—·â”ý^—wèÌ=ÆçÕçØº?Pï?û^ÕʪëD î çCõ¼Æñ9Ú²LÛÏÒŽ9Úeiîc’·*'¨äxx:d”–¦êépMï #ïÓ±­4³Vy™N”ÒÉëT®Þ©³ÐŽËùU¦Ž]RVÓÑkÊr:rJYFÓg”ê~8DSg”…4yM4Óx”Æ>UªëŒÎa¨£} ´g+Õ}R÷ ä>µn£'©ËCu,§:O]ö€9u8s±w‰6^¦í«¨Ìez»×SÝwªêˆ&¶—ÆWÑÄ=ЦRÊ8m*£¡Eh$Ô{0BS[húÐæþ3yå=Ü;Ф,¥Ç  þ?ãö´;ûäó¬ßƒ÷Òžâ•m;Gõ}WÍ!Ûj¾f¨žó9TïÑBÚzžvWО>Ú»D%Ï+9d^Ó?z?•ù6§}:JÕûž}¥š†2å"•>¼¼ËôX •Ïg^y¿Òy)Q*¹2^SÍKõóOWÚ3PÝ©ó'{èÄ£4Ó@GöÒô³4ÕNu®^4K{ÛiÇ"mRʾXﳚïFéþ*Ú´DÛ7Ñî‹t0íø•y_oË:hÌSyÞvÚ1¹Êóàlz’ºóygJî#ý×”´·–v^_YÉÛðî¿ ËÛr,£úzѼD]Þ¶Ëߎ¾¯|[YH{ÏS›¤÷m}×BS-J£÷È?Õu—ªß´’?î=¶–ª< óÂmŽB;|Æ> m›¨~_Óû_ô{´¾Nu.Ñ£óT÷ Òx†¦ÒÑÛèħкþ羪ò°mm–ª=¦Vö¡y¿AM¥¡º,{A¼ík¨Î‘÷^ n´SïoÖ9Ÿ}¥4vÚìÒ‰u4ÞNe.<ï*óÉÞ—¨ÌG:Û3î|"DÍS=¿] ésJK%o*o»²œºù%=·§ó˜‡?¢2çé4ájhå÷ÀÌs[¢}[éÈ{4sŠNöѩߤÓ]Ðf–i Ou@y÷ÊJšWöG{“=4öCÚ_µ²]oâyÓCfe·†”ô^jvQ½ß©uãÊvÍÒþM¥Ã{¡}ëOh óûtô êê(Ns«½±ýÛhO†ê9ÇÆÕû˜tŽ…{ÿ¨(€fg)­ÏR5ßaÃg©Þï¥æElC =8GçŒ5Túg½ß3ô eQ4*eŽ×«svÐ×¢Tõ‹šC´Aþ½Çè‰yÚRJÛ6ÐŽ:*¹aÞÁ­4¶&?¦j.ÇŒ¦` ¾ ÑÖµtt–o„&ZBÓ»¡þWt¢ˆÆî¡r=pò½#g¡R¾B³ÿYÙ®üE:¦M4°¨€Ž}‘ŽÞES}t¨&ߣz~,º@,Õ{Â{#´e‰©¢ •tÿ5e”>géÓKJKŸ¢æwBÿsºù;§ë¯uçšÎƒ…´ÑPµŸÊÈü°×ïR÷·Ó{ÚïÈד‘ûÎEÑ}‡Š¨ÚG`s¯É^ó{!êú(J©Þw«s/»ëèàz{‚ÆOÑ¡9:‘¤“uPçXù:œºOe}ÙÒ=Uô@#m,¢ú9Q¿GèP·×ÈÙ³D%‡Êm§r~åM½HG¶R]· ô½ mgu9[ÎÜ8L^Õ§o·„ 9\@[êéÐ.ÈO“¹+ïÑ ¨‡ @»·ˆ¾RÍðèøãÐF×ÐÞu´s}£˜ÖÐ_£z®8{èælœzŸø¡bem¨ Ç ¨ìçôÊ>n#ó`ÞöóTöÒ™gòê|ëTîÍHΓÓNÿ7:ÖNGÎ('¨œÇ{u>Qt;Í­…Î+sÞC•Ôåd½²ùiä~pH®W‡,mÉÝßMŸüué·sIª÷agO+kèø%å.er»òiåj:vú®6Ñá}4y]ù‘ò²òQKÒÁv*ïcÞ¾Õ4RNÛWS½?¾~™êsÉAõ~5¿·:‡ÁÍÍ9uý)¼ŠöÎB›Ü¶²±BªóäýÂiZ6C+}„^½ÅåÈ:c?¡j~Ãü~Õ÷Ýç¨>B{7ÒžÚYIÃç¨äv{_Ïæ”½Ï^ÝǦ笔v¸\ù Gèñyz´†ê|™Æª?—¯×ÐËôÅ•çG­ùŠrçÒʺ|gË,•~¯>ç<ç.ÑØNš8CS‹ÐN/ÐÌ%*çYÞä»4þ#:¸HõçgW–¾¦*çËì+…vv+M®¦‰Ï¨Þ¸-ÏízŸíájZ'ÿÿW,4{•.Ó©÷Ы½7¶ï<4ÏG©Ûì”ϱ÷ˆ¥­hô*ûT¼RuÚ†B*ç^•?x_pïEί+ÕžEór”î4´.L÷Q•'n,У†Êy“Wï:n”×h¸†êü´€ ´£ŒvÎÑ®jÉÒÞ‹´ÿHÒÀyöMH¿‰ä æ½´²É;”Kt´BÙ¨Œ+g•ŸPyŸñN4Òì?£S·ÓÙ¿KOýÛGßzšžùÐNí¤m[` ï4ù$´™•êú;ÖIGߥ#«èP ï¦:OAê‚Þîªs€Z hýehê+hø*˜_Qû¤¡‰ûiÏvêú jÏd`ƒzþÔ9œz>Ð&OQ3§Ÿ×t—Ι“ß¼Ëtö[ÐN¦™¥êçÕóÕÚøâÊòjUn‚î——üloçZ.§ª¯Ý¸½ZNo7…6¡>S•ø¼¯¢—iÿ‚r^¹ƒöÔP9¯ö꼂ܯqÞö&Ú¶–ê|µðz¼†êýÊ †¬¦¡0}¹Šª~ì¼\ÍóÅTöŸ{õ~Þã!*¹nÞžUTž#öÌU:sŠŽÜEce´e •s"gà9ãX#Uýæ~•hUçšfâ*üÚ¡vz`‰Ê÷Ù›{Íóšg”ºžÞ~ueãa:v´Óí4û§t²„fZ•[èX—ÑèÚxM)¿'ë  ùž²íâŠÚø')õ?7àl­£Ò”w‘öÒÁ>­¦ñy:Q.ÃÀþ†øмR@[ÎÑñOn¨ùktüÚ9O^¦’?æ•ýÎN³Mù¬Òå›9שÚëcGúh`®ñšúT¦Châ}¦¼‹ÊÏ×+õM¯ìWñvž§†ÊÜŸ·¥LYLOTRÝ7}x-­¯¦û‹èk¥T×ÿž3ô»K0Ðï(ç’Þš}¹‚º|5§ôÁy÷Z_KõœKÛF*ù–yi཭†ö\£ºïXò޽ÑM4Ö@õ¾A½ßnxÊÞo`~¹ ÚÚ(4ß27Vú9½=íT¿¯D¨äxuu¢“&×PÉùòŽÞAÇŸ¤ÙMtê:}‚Îü–òý*=ù”òÏé©£ÐN‡iv–¥©žw¬¦å´¿†öDi¤¶e¨ìIó†çèÑ•ç'ïë¥9¥¿ß«ëJ_37V‡ò?¿a©› =”¥zŸHKíªR^¤²wëïÓñ§¡mYKu®©ô‡:ÍÔAzrÚ‰Çiâ=º'JGOÑÞõ+Ûz‘º§Ì{õõüÙ( ìej©Rn§Qù¼Éï™wê5e=ZMuÞáS†>‚=Êò|âm ÑövÚSNe¥76OÕóšmßE•Іp΃òû¯Ï_ž ѧ–` ž\_NO,ÓÖ­%­ÌQç­^Q³{™ê½ˆ‡•©iªòæíìoЙ túš=FÇ“ÔÍó:SÓd,§Ý•TÍÚ¦búÆÕójò<|3ÍKQº-´}Ô퇫¯¤z~`G14o*…©›Or¶n¦Û©®së¾]ç–:7ö4M>H‡¿H%¯ÁiÇÒ¤ä7 ®¦Ë´ÛЮ´­Ž6E¨äkzCQú  Ù]Eõ¹â±JÚVMõ\|ô(Úíä”Giï}céÆêúF_˜ê\k?—%Fï‚¶6{Âu?Ú`Âí4P@ݾ §žûþòc*{nêÄQš}ÎüMå0ý1=µDOwÓ3L·Z*ó-ÎÀ~»Øƒ´§4牰²”†jé#!¨ßÓì©_¤3OÒñÑϱÖ×P¨÷öꜬEÐF÷Ñ#s´¦Šªó^ëú¥z¿“3º@[‹hx#Õï÷}Ñ¥TÏKÝÅi¾¬tÏ}N½ï"0G²šv¥:l šÆïù+i¥ŸÏidïµósçªbP}>åúßœû*èC!hWJŸ¿·­‘æÖšxm¼”ÆŽÒÕTïUÒï+'j葵Tíµ³šž-TçHÞ¶WöØx‡ï„vv‘ÎÒé;èD2Bu®E{9m±0pž§}A¾îöµÔýœd¯˜3°O×õtQÓÚêöm8unnEÒP=ÿÙÚH#U4¹LU¿jÀ‘Ü?ØW§ûÆtŽî±r*sñ^7'àì©§Qù9HŸœ×Õ—ÆÊ¡+¦#Û©ôÕÜÔžõ´³ŠÊ|ÒMUuTó CõÞ÷}Kô@„J~±×åÜ8#K´§’&î ©¹µýK´µú¥Ò Y¢®¿¶½oeåsêUó3æ@;}'o¤Û¡‘¾Wgàz¯÷Ü|Ç@ÝofBEôpˆÊÞVokÕsÓƒ+j§þÙÊfî]Ù±-TŸ¿ŽÜN‡[éP³òNå-4YOeÿÓM¯¦:¯là"ÕóX‘&Ú¾´²Ò÷ïÕõŽ£e40‡YE_ÎB³ÕPéGôÊ}Ù«ûκڕ—©ÞcÞ¿H£Û¨š»7#ÑÑûèø§tbŸòm:¹Žî©€6+õÀ¾E*9‡Þç—rÿœÛ"çW¦¡4g“üþž¢“Et¬Ž¦GéУ´¯†¶VÑ#´~yNwÚD4RGöê÷~™öêyºîBªÏŸ¤oÌ;ô!ÉÒÌ”:ÍÔ›tæAhÃk”E7vÏ äËï‘Ó¦?¤2Ÿä7Ò¾,íi¤z´ì_Ê[D»®)+”k¨ìÍ[¨\E¥ÔëúœÇ,}³†æ^« Ìe÷:Ús™ª~R»ßB#9vÞíKTrð¼Òdê-uÏÞó´­’FVC{ú›tê_);iö>:™¦™÷èØ¢ò=eŸÒ(¤ú~©÷F§[éðj:”Q> ¼‹&WÑDÕ{¤´ý—iÄ*Ó4П¹šêû£ìqšÜe0¯îã–¾T§Íªïí©äYz„¨ä‘yU¿œiB›~ˆÆo[QÓTJç¡yNùˆR¿o¥S åí4Û¡|ŠN~F'ÎÓ±•wÓѵtd MGéðʽ4UG‡¶) irÕû^â)=Gõóao(§¾/tZÚ!ž¶KTï Ì=çm¬¢òþæ}.D¦FÞ;¼µKTïk\¤ÍË´ÕRÙSäR¹.xcïÐÄÓtø´ƒ;ètˆf¿EÇ?£™[éÈ*sµÞä‚òaªsí¢×h_ÕýçR·ó†3T×cUQ=Ç&{¼{ ì/vç$R/òÊ\·÷uCëŠé†¨YÙC!*{m½>Ûbz±q{sœªOÐto¤±»iºÚ™1:½…NìP>GÇ*©Î™J>§,§²OÎ¥ÌÛ»¬¼¤ÜE{"Ê•>oËj*ó 7Ur"¼¥0ÿ#ç*^ÙÃè•÷y§ÍþÕùz_qÿå&Ú“¥]iÚZLe?ƒWÿ«sÒ@~ÃZÙ í©ß£ÙÛ¨ÛCê”þI§9Z@eÞÀÛ¡ëiêa:AÝþlg{”¶­£:ßîëšU4vŸRþ;s¿Ngþ%Íþ;ªŸÓSWèÐÃ4yT¹™&ji¬˜J½ÇÛXõ9—η6C[©ä@;íÈì 5u†º¹°CrÙGS·Óø>Ú¿–êy¯¦ z š† ÕùG…`à<瀡Ǘ¨žŸèX ózžªj š¾+j¿¿™Î4ÓÌ]´}žÊýÕiž.¦*÷ß&•£´÷"•ºSÞ"ª÷]ÉZ§©S•¯`$ŸÓ«Ïuú›hôC*sëÞá·éèst¼Úé¯Ó‘;©îªŽRë£riìÔ𸔯giì#å&}˜n úyµ[©û‚u.j[-m¹Nû¨Êµ‡é¡ úJšG•²¿Ô{ä2m=õy=Ÿ0~•êópݹMä"Ý ׯ°RæÏ½ú9AŸ¸}Îaªúõìó!ªú9l%Õçcz³î§Ú¦ è‘"z¼„êý|Œí´ãí¼B¥åÕy}›©ì… (ïwÞ˜¡ñ Túu½’×ï=*ׯã¥9OXªó½\^TÇìDÿ‡v¼“F¨ž'Ôý@û–éÖ4o–Ò£%ÐF¯Ó®Zªû®Þ¨¢º¿ôEC¥ÿÙ+uroßh‡W)ç©îûúž¡:'aì ôm ÃÀϵã,Õçê}›è 2póM?L÷+2Lõ¾ É?Ì»Le_³WúÕ½ÒwæÕóÚ¡ÕTöjx3W”C{æWi,º²S_¢:/49MWÑŽ,}½Bi y!D”S™ÛöÊ\¸W_ßd/¹wpÆÏÓ¡:ü:¶Ú©š(…ƽO¸÷‹\»½×4Ë×y"BÃÅ9¥oÔig^¦c÷ÒÁ2Ú¢í먼Ï:M}­†6UE»—©Ûç”}IÞê%h¶[*×½€á%ÚµŠF¥Þ4RL3Õt²Î|$þÇÜŸ+¼ ×Oî¬)½±m;hÏF*{»ò.оå:[«Ü«ÌÐøWvxUùFy¯ÁÀýK©s‰ì«U7Ô´çêßvx •¹R¯äyzÍÓúZúz˜Ö–Rµ‡ÀVËŸWòv6£<@g:”¿I§?P¾¤üÛtª‚f?P*ûéÄ:¶æ.O77U«,¤j?ºMÜGu]"ö®r—²˜öÒŽ4pî¦ ʃQªëy•ʺ%z$K›”­íôÄíÍýwM ä~;Dz´–Êy™WÞC½=çi¯¥ýÊè"M|&/Ñ!«üM]¤éÍt¤‚޾H3Û鸡«èä.:5£jWˆÊù«·¯„úÜ>¦‰Q=82mrmo„¦1L%OÕi§þMOPy~óJŸ®÷p!Õ9 J³+ }ãÒÇã4U–NC;½Ÿê>÷<¥òT}®jêh;¡i©¡CoÓ´ôw»ýkSò9›–s†‘Å•ê¡í•têO”‡¨ªû™£EÐN¿N'LÇ–èp Õ{gR ÊTÞ_½®oÁ)¹ó^©Ox_Â@|¯®Vþ šT~™êýMÙ—”¿AÝuÀû ?K3EÔÕçnæÈZ:|–¦VÑä;Êû©žÛOÜMc£4zI¹‹ö§iï¹J;KhG Õ9cú¼VÏ××@³=DC ô¥¹ÇŒ¼2'áLR}}Ž@Gnƒ6‘¢ñGéàíV¶…hë<•|C¯îû–ë¼÷pÕy«o.ÑïÀÀ^<µ¯×4×ÐvCõýPí55ÝÛhßÛ@…T榽©Ûèðv:ú•ß›¼B;×JO›Î¦ÓÿìsÜH§^¤“ï+¢ótüQ:º‹÷P]gŠKý6fiÿYÚµ@[kéCë×Ò½¥Ðäʆyݯ¥íÛ ýsš}PYLÛ”._Ù9`hÛe*¹_N³¥Z×á<[@gšÎ|‰N÷ÐÀ}?¦¼ýÆNÒqKGЍ¼oä½êüúEº«šÍ!º' íÔEeÍ6Ò‰§iæ>êòµúüøMÅiòYšh¦Ñ(í§Iz"J%Ú+sÉÞYªÏ'Üó³{žÎýäs8Ôü¼‰>)¾§¼Hc—hü4ÕI‡ ½•ê¹›ìýtF~Ïa¿KGÏÓá÷i 8Ii÷UÚ²LÝ^Içñµ´i©¡‡K¨Ûßî¬]¦’GîÍý¸òn ¹ÉQõÖ/ÐkiW íßJ%_ÄëêúÑË)­œczÃuÊut"Jõõ*SEGBÓKÊU45J‡n¥î>ïŒÅi ‡÷Šò¬ÒÐH’êœÊŽTÏ-èÏ©š|?›i Çt™6,P›¦ýý Ì?ULw-ÑÝ¡•Õ{XÔ^} ìS:fhSš6WRÙûáU}F®ç^WwrF–i·QªçÛî•9å¼rŽÖÐX‰2B¥^æMVÒTÚžjªöSÛ®+4\O÷/Aãúªœz/[cˆê<ýsm¥³О¬¥jM ü- m|=mYMëUh“³´ïí*¤Ñ/ÒîÙ•´+ëi{˜ê÷:}¾£ó? ­¨qû²œ‡+©®ÓG.PÙËîMTÒÔ­ÐNÿ9 <ßþ< ì½@cW¨~‰¬§«hë" _¡Ç˨¾ßKß‘÷ÍZUÍK–HS™Ëñ¶g©¾ßËܘWöhåݲ¢öP M—ÑT’&wÑ@¾p m­¤:¯_rÚ½G*èkY*÷§Ÿ7qJ.‚Wå'sË©Þû(û½ÑG©ôMz“4e¨ŸŸ®¢²Ô´Êß§öµÉ÷÷ö”)khôhçþ‚N¿£LS}>àÔs%™Ítä~:ôF/RÉå÷vn¤í›iÓ2Õý–/‡èãÔ|§˜X môAªï¿¢³›ª|¬ÀçO¾Qh³:–¦CïߨØÃ4²ê9ع¯ßÖ,CóòmÛíé?§­tø9êr‰œ:·fW4Gä÷Ò]ߎåþ6‘¤]}´m©szc¥4»Då}í¦ªú†© Q½ÔﯕP/¤Õ9¶’¿æÕyÿëV¶«ˆž¥‰šÞKÝ|s| ü€JÞwöga`þD;û½…jÎÛ¾ª”S§ùJÕ¹¡r*÷OïÑËôD!m]íÔïÒd1Õ(§]å+Û¶yee×{x‰ÖÑÜíÕkv™œj¾#°aì2í® ê÷VŸ ç꩞oÖóOØœRßqÚŽ&hvÐÐZxŽÍ¾±²ÃÑ•MÖÑÄ4Õ9˜ú¾Ô[M;®Ócaúê4»‹¨Î÷ ÉÏñ µñZhº·Ðþb*{H½²/Ú;léèYh_ CÓQmö:zMùc:ï›–î QÝG[ULwF©äSzU.ý~Y #çht=­-¦¿‚zŸ¸ •AóºüsÙVzÝ÷åï¤>Ñ¡î}¨_êÑA;kèÌÑ©Jšé„¦ºxEï«Ï†èKKÔõW:ßC;÷”ÃôôV>@g¢Ó‡èÔ5ååï)ï¦Ù§éxÍLo¤€Qu~aãïQÕÏmêCÐýD©úîu~pü(ÕùnzdÏ6ªÏý;*i[DÎ^EÏ+-•¼%oC }ÒRõ~msqgy§Æõ:·WÑïS·ÁùJ”î)ZQ;~€& hG•ÜY§ÙZ 4T¾/Frö6¥]¨äz ­Ÿ§:ÏY¿'ï) /D©þ9­+€}~ßUÖTP½/}_˜êe]CGžT>DÓ³4õ>•s–¼aª÷LEGiÏ%Ú]E#×”–vE”MT>r¯…yÛ2Tæ0¼rýöî/£²Õiö[hÏ®¢'èLBYL§ÿ%ª£’âº@{Ûi÷uz¢˜JÝÆ+÷C§©°ôÅ%š‹qÈ+÷w§u¹Ω¯TóÆS?MõžµôsÊíT÷Í ×Ñ¡}J£,£=ËTçl·\£ºÏËõ…:×ÒÃJÙËåÕu/÷9s¾±Lk- ôú\½[YHÍ}Êç£t¡‡JéC›Ã´¥’¶¥=å´¿”FW)/ÐØVo 2¿éM?mö1:y•ŽÿX¹•¦/++i¢žv•RÕj¾iéF*ùÓFê5^×ÿõ?©mÉ(Û¡én¢ò>âÕy‹Nùºóž¡ck•ïB­£=k©ÊEÔsò¦±šêócÉyòJ}Ä+û:'Ù´¬‚vê#ªçÉe?¬·ižÊ<Ž7´HsÇyõœïçh:Öý•´¯UÁ`Žñ&ªö8ÉsðÊž oß:¢±}4þ6•ïP–(Ý<ù•—éØš¹F'FiöèΪ÷Â6DhK íh§ò|äÒäí7Vï)­„v6K'öÒøã´+MÍ­7ÐöÔR½Çb9•œ?gà½þТòÕ{"e_[Þ9åE:Ш죃iôe;ï¥évº+DVÒ¦kTö8{:uŽó‘*ªß—õž‰çB0#½ÓR=W{ØR?o&Êsº·§‚F‹¨äÅxãÏQécvÚ™õ4vºç` --€æÕ,´½5´[ÙužÊ9¿÷[†n A#ù»ÎÀ>6¹xÕžŒ¦î¦òíÙDGç©®3B§¾Gg¢ôôÂÀù”Ì%zõþ ÷9:‘¦-ç¡§™54}@Y@/PÝ®Î9ÍÓ†JŽ­×Í­;å}ÀÛ¸De¿’7zŠÆ¶Ñx†Ê^!ïЋTòõ¼Ãס}Õ@ãúÕ+hó•| oo†FÏÓÄ äƒÞK§{©Ì=zO†vö+++{Ÿ½þ|)ý;¡yhOÿÊÊNÿÍ~š¹ƒŽuÒÑÕ}Ìú¼Xç+&ç©Þ“š¨¢’[må~æÕû…ûЍ®ã´œ¥GËé!Cw[*ç/öõýÆö‡rÿû«Úé_¦úç0|ž&\ýº„ÆrsŠþœÎó´cm+¥-I¾®\Cu]ëX1Õ÷ù†(•=D^÷¾?JeîÁ¾YAsëSó–Qóe¥>wÝ[Le¤×åé‹¶w–JÝÀ{l¾‘U†rÖÈŸç‰Õçĵ¹ÎH7¤Ü_B”Ò†*¥<·ëœ…. íÈg4þc:xN©úw›¨ä{#×i×%*}EÞ– 4\I_Óoh¾³DÖІ"*óÞækTçi&.ÓaåÄ%Ú¾CYít”NS}®ž¨ Ñ*Ú»ZYH»Ki‡¡'–©¼çxwUÑŠ¡)Q©#x}j Õïù­›hï5¿B“‘µ§~™Nÿ*ú9åß¡#KtxñsÔ}þë”EÊ/Ðä+ë•54úôÊJlÞ]Ê"Ú»žî7çhs£²”JþWŸ“|'ôOx_PvSßÇwÚ¹uôÔWèì TÞ3nêÄ:4GãÏÑXíÞ~cu¾g£¥¹ò¡×¸¹a7Gœý4q††,•üï÷¿Dßj£s«ééÑSß ³ÿEÙ@g†©Þ8õCåYšýt¢–êsÐt’ÝNc(×ÒAåÀ:ª¯ÃÝõ47ÆšWç]éyð\ù'oý´ÃÊje)4uU4y…¦×Áà|唿C§þ²Q¹Žf¿F'éøyªóF~¤|šŸ¡Ch`‰«§ÑiåZÚ»vUQËÕ\LG©<·z¿f ù^1Ý¢ò>ãÕ{Èt½¬½ÚX-•\¦›[J»Î)åç­÷U\V6Rµ/Òº=BΗ, ä>ì.¦{ÂÐ&Þ¥sÐ042ß㕜A¯ä|y;³4v'@+yŠ;/Sý~"{é½:g,÷Úî5Rô>·Dõ^Ê#Õ+«÷Øé~%]Wk½NÛV+›h_ÚÑ:ò•º·7q‰Jn‘÷yKu½TÞW½®êê¢ÓwЩ?Pv+_Rª½zÙ¯<¤¼NÖÓ KÇ?TÞJ3:–U>IG?U–Ðô5:ü#šzoe‡®*£Tæ½úç«û˜¥ÒÝA*ho äZçtsëzßA[Ý縙¶6Ñå1¹ëzK¨XYDß4´¶†ê¾5Ô”(PnV꺌îújÕ9%ß3´¦˜º|§®ó„.SÝGrØÐ–­TçKGiì.ÿ„&2+è“K–ÐÄzÚµšž(§2¿éÝWCuþHUˆæ¾ ùy¸§Bô%å« ôh–6Y*ÏGN+çÅ^]WÓŽ|LÕþ†Àý86 mZêšÃ;hàº#uêT‰r­²ˆ¶–ÑýËTïË•ÜÆ›i­lî_óßß¿*èé å—è©•¿DO'i ÿðYåÏÒéEå0úMšÝ£ÜI'¨ÌùzõçdÄýü3ÊTæ½Ñz¥¡ú:ÞÐHõÜ÷ð;tè»°²=ÊîUTæ½Å+›[/–Wß?d/¼3p½ÿº¡¯+Kicr-=^LåÜ&¯¥Wi—2R¨,W¶+¯RÉÝñDèà2Õ}ñ::TIÓ«i¦Lù)•"§~N0nþÑy¸šö·CŽæLn¤*?ß¼\ACµÔíqJ΢Wö$ö-÷­¦ý…4ºšê¾,Õ—bFn§c?¡ãò}’:wr‰NɼÌô?…6ûmÚ¦¹Úñe*ûG¬|þœFæ‘Ì1ù÷œ°9Û侯ç8GÞ¡ñe³²‰öm¥½µÐZ€vl€ê<¼ø.ÙN; isÞ7ÏÓÖÍ´ÛÐþ$´Óÿ¦ú”)o¡CóÊMÐän;yÝÏ]扼òœðÿ–v`I)÷®Ez ŒêyÆ­40(çpÞWkè›Ëоfè®hvXÚv…ÊçÈ+9°^ÉÁº©±Ûéðje5•ó ¯Ê©·sTÝ7mîרkdÌûz ì±_¦}}4z”¦‡>ç«ËÐÖR>GÖ®¨ù^ÕïcM´ÍÒ®-´¿–Êž olžŽ+'êhvÚîrÚVO[×Ò£%´&J_,†f]Õ9Ú¼³0m™§*_Ø$ÊijÊÚÔy›JžWêu^¹þzõ^EÉuš¯ª¢²7Ï«ûŽRýùÑï“'*•רÞÐ^C»æhwí-¡ƒ¥4‘¥™K+j‡’4ö$(¤åð/@#×Ï›iûJ¡i\ G‹©ìO7-ò÷·lå¾ÛR•û÷?Nõ^:=O ÑÊÍ+Û‚æ;QÚºD{Ѝª;ê0©é¡ZzêÏéÌ:}–f÷+ÿ.¬¥÷(Kèø):úÕ{LôùU_1íé£ +{"BõüÈÞ*º#ͳUôDÚzù¼»ý€ß‹Ò?øSå›ôlŠ~ÿ¼²ásüuz¦Wù"}ë zú?(7Ò“¿ª”>ÍÙW”¿Ngî£ÓCÊGèÔ×höèÄûÊEå{tšÚª|€&â4V­|–ÊþSïÀ9Ú^K{/S½CrI¼ûk©|½ß,€f“rWqN7g*Ÿ;omÕsàj.Å4ei{)•yo¯¥ÑϨì×ñ¦ŽÒá[”Tï‰QrAeÞÙiv+ÉshC%ÕÏÁ*ïÐt6Á`ÎW ¥º~û”n¦ר¼¿y;wQWgô–ÒƒVYJ÷XhžW¼FO:RyÈÎ]ËTöûx]>Gj Í‹äówªúiÌ@´'ÿw:óšÌR½ÿꙘ—Ó9]þá;¨îó äÌÑú**{¡¼*oÙþoÐ<¢»³4¡2àÕû¡do­7º‰&î‚öŒ¥§ÿ}‰ê=c? ‰š•íÚ|c›kéárÚPMõ¥îŸ}=Ku A#ù^¹î{6B›úŒ&®Q“üÝ%eWGwŽÄ¡ÙB§?Pn¤S?Rþ–rÍ~õÆNÌ+ç¨ä-¡:—GöÀæm # 4}—òN:<@S;鼟êþäÀ9ç*y ykiÇÚvQYLu?‹ž7h¶Töx÷U)‹rJÍ«ÞCíSFù?(0ß4TòâòÊ¿_÷ãË¡wàíßE[—obuÿ=—Ûç~?¯/ÓèGJ9¿ŠËóCü‰›˜£É[¡ÏKtªç#÷I¯»M4ÐðEhd?ªW×ãG?öôÏÓñûh²”JÎØMÕ}¦OèÃLÓ×åßózÅʾ…æé¥œ.S©/{OTCÛ´–ê<ä7‹i®ÝÞkj”m%T哨Îk´ã2Õõ1ùºœÏ«~Ón CÛèX1´ðëtæÏ>ÇCtz€Ž¯¦£Ó4÷z7¶Zy ÕýÞGé¾4î\ȩދlü*-PÉ=ñ¶n£G®Q½/²ÒBó5e]1uç?NÇÞ[FcÒÔ ZVþ xfÞ¥zÎ>¥’ãàÕyrË´ï*m*¤ t¦KYA§ÿ„òÿ˜N,ÑÌ-Tr¼zmr/I¿H4rcûçi_!m-§G"TòN½_µT¿¿ÈÞÕ¼MÊ•›•›”ªÞ(Q®V®¢ñŸ(/+õÜ]Ÿr›ò å#TÿþÆÞUþ@yF¹[¹‹”Ðþ ´·OÙ®¬§¹õÍÕ¹Ýrnä ï G-•9”¼ ôÕbªóUŸ‹BóCußðÎ ªçö-Óƒ‹TÏÏèùa}=k¥Ù¿–Ö[šºíìoÒìÑ´|_¥´³ŽÊ9¼w»…fÿ<´§o§géø4³L‡345@“ÓÁ5TïCV9)¶VùmìpÚä¨Î9j_¤­ªë˜ %ôP!ußG§Ûsé¬5T¿§<‚&·>;ïó–¾¶Lõþ€†%z´”¶P—wؾIRZÚ±H¥¾å•¼~oÏ<í+£ý4¶L£g©ì÷J®ŠWçIŽÐez4B%Èû K'Í·nâ›J™ëò¶ž§)£2_ïXKu.fl™Jþ˜WÞO½éj*¹Þ±¡ ×P›»}xMãe*û}½a*ýs^µ¯ÇÈ8ïDŠÎü ;íЂò<4ß³9ãOÓ¡ÝÐŽ­¡Ðȼ©ÓžŒÓ™!ª÷rWP½wOŸ«Œì¢é‡iò"Õç!ý«hO†v”PÙkám. MÑœjh¨œ~/9buJÙ“ãuó$ζ*å<íÙLå<Ø/…öäïÐÙV:}+:FûÔ·(7)陵40§ž¦Ãít¨•º‚ÆÍi8U¿o G-¾ƒJ]ÍY¦ÏF¡9ni÷íÝA34>KenÖ+ý>Þ±*:¢S?E§töA›{LðšØÓ4s‘Nÿ³¿’<"—é<^ÍÑyÈýŒÐ~©è}„Ý–v¦iG„¶oWJ¹õ•¹a¯þýÕõ/G÷Ú}¢ú÷Ù*¥ì ðöo¡î\Hr®MªT”ëúä#tbͼ§\EG¯ÝDC‡Ã4UC‡êh²™&©ÛáÔ{í¢wRù~ä5JU÷ì­¢]}´ý äøÏ*«©Þ³|¼„^¤²÷À»¯˜êù+©_{õÊw”/TQ—ûê EiÃbäëY ƒT×E;7®lÇv. ²·Ìûf•~SïžRª¯SOYº¾šg”’+àmZ¤m[h÷&ªòÈôÍy‡ï§£[èøéähå|Ãí¡í´öž¥=4POT??—gãl®  aºÿ2}®šª%º{™ªï¿þt" MÍ´³ß¥:Ï`ê÷é耲œŽl¡©/Ò¤Üߣ‹Ê TÞ‡½]E4\Aeé›–¾…ú©®ÊÜ™÷øZ*}pNYK;åyTå9ÚŽõ´mmÑÆ*êê΃µÔý\jßý*5ß0t§Rr>¼ûCTçkUúª+io´=©œÏx_4дZ*ûÀ¼2ÿáyÚpãçXG›+éábz¨Œê:ÿk–¾¨Ìý敟‹W_Ÿw†©î× ôªëwý" o -´µ¶o¤ÝWh_Tié ü¹£÷)å~!×m¯ìK1 erö&Êùn*÷Þm†ûn¨]¡ÑNhBÕTýØé-4{‘NÖÑÀ¡&š~Ÿ¡ÉišXG£³Tú¼}»¨Þ¥ÏÉÚûh`d#•=wÞ¦bªsbœÒé=`©ÌÏxõóÍ+aú¼¥rã4_Sºy§Î?RFsmGy›©ÚËgºwÐÁYÿ˜Á@¾½Îí½ë6|ž(‚ù<¾œvö29@§‘N¼M£P}~9{…ºütgû.*sèÎÀ}Iç>FÂTÞ‹l¶€Êþg¯Þ—ײš#ótèIhãÅÔå`;éþªÜ?¯Ïs}Tö±z» ©Ì™zeÐ뮃Îôtümh'÷ÑL;©£é­4õ Ñäý„Ê9¥×½×º÷Ü–‹Tê‰^_‡ýæ‰û¨ìÝðæ.ÇyeŸ½}³ˆº:q}6÷¿G¿@Û¨Ê+6Ï*”Óè‹Tö<{S­tlÓM¬‚}Æ-NR™ñ¾\ª,¦55JCu¿‰Î}o?G‡¤þ8´Y¾Þ+/)?¤Ã54}žŽÈïAæ2Íþ+:]I¥Ëø~®Ÿ¦Sÿ–fß éi:´H“S=¯*ë•ÏR]o‰l ºßÕN;i{†¶Väl +CÊmJ£\MåÜÔûZ Õ}]eTöÀ;yÓá9Ú™¤CÓ43 ­ÌÑxG¡‰yÚ»Š6ÍÑÜ×ÈAoÑ–5TòO½2ïe·/ÑÂh"!*çx^Ù‹â´³?C§;è蟡ísTå<ö>5.A;þ kU®¦©ÐÀžÛ}Êå=ÊÚWNenØÛ³•Êû°·£Œê=,’WíÕó5û hUšgª¨äµŸß>KËŸKå&ö-£­ih‡×Ó¾Úµž¶•Qýžq`™¾¥*¿ÉüÃZ»D}XËôÄ"Õõ‡ŽF*×o`®ð2^£±Ohò: ô«¼°De¼Óf¿N'6ÓÌDû/Óneg)m©£' =>GuŽä!KÝÞgòC­r‹vÑ7-=”¦ú9mð ¾Mc:¼Hå=Ê;2M3:¾ê1zŽìƒðÊ|÷MUç·æ•*eÚ‰jš~‚êýåíç©zÎ ô«íQÝÿ {î½'Ò´sÔP]íÝHûæh˜J¾Ž7º‹ÆkéÐ.hS»i¬ˆF«©äÀä- }g©Ô½ºKö¤xשΕ>VÖІZªûíM4’ßé•~ZoC•=”ÞÎ Ú»Ê'ï@”Êy·WÞ—¼©,é¤ú÷sò:õ´£›i_ˆêóš,4;Cô`#Õ¹‘‡ix3í¬§ªŸËD—¡,U®¥ŸÐt5Ý‚¦® Ú¶4¡4í¹F‡kéĦj'•cÑÈ.ªëµ иóNçKU´k•~v§zde%çÐi^/¢]óÐNŸ§Sÿ…ö”ÓH•ùHï÷ªè6Cs±£^óå•yCïkUTÏcª¤ÇÖÒã—©äÜx»ÎÓKû#4–¤r.ëÞLÊWï‹Òó5}ÛèØm]õʺpÎÓótæ×èôëÊÛéT¯r=ÍÖ)•NwpsŒÎîíØ@ѽú¹ç«¥´¹òôy¨ô…Xß'R•³¾†vVÝØh†&Fiê9êÎUœÙ¹²SgEyn’œ¤ÆhÎçåϦŠÎý•<ï©.zòçéÌÆ•>§œ£S]ÊNeÕ¹;Ùߦ™O”Wéè]+;ü(M>IuO,¥Ü­|ŽFû”wӾʹkõʶ­£­¨Ô!¯¢‡/+kiý•9(¯ê›6¥Êje­Rþ»^9'tÚÓD§7Ó‰«+›YOõüQê‡t¨Sùšx€Æï£±{h P]ï"Û¨žki«¤R‡öêóU—²;k É­§Í{0Deß©Wçõö\‚vú#šý"¯¢c?¢é*ù—^='Ôr‰¾Q ó§­—iü!š¸Ú‰wèøUš© z.Gúá¼CÐä?Kõu¢·‘úW2´ý,m«¡ºÏ)TL늨Þ3'ýÚÎÀœðË t%­Ñã…Tr ½åTïyïIÒÞë´?¤ÌPÝ¿½Wù?NC¥7ÔTÓֳмRLõž†bÚ|™ª½“fè*{k½c?Q~B3I:ù¬²šN=JOÆèéoB;õo”rþ©ß;{n¡cÏÑAKßÚ@çþTy\¹†žžTþ=5¤|œž¼®|‚æÒ¿@gzéô¥Shö?(õûÁj:Y©ÜJ%wÒ›ÙJ{TÒ‘ëÊYšîQ†éðûÊVªÏõŠä”gh"CãïÒØ{Ê;itXCû×ÒÞ4í)£‘5T?ÈÞo«¡ámôøV®£ÉKTçÅ”KÊsTöxûjhOœ¥úœ>¼¤¬£ÍÑ›XM•P}nåîïÎ7Ãt_”Ö†¨îÛ”ýéÞW²ôå*úœ¡OUA“ûµÎëö9wf©Ûçî|­”ÊžoÃ5Ú¢Ò¯œ7¬\¦­«©Ìg{»ho%íR9oÉûM<¨œ¥Ã?†6s+ <ßÖWÒÖÍ4¡Ûi|´Ã—hr”Æ7ÓX˜Fß§³´{mÛD[ª©Þïæl S9·ðÊܳ7÷ø“Ïûr{¢n_SÏSﯡr?óê¹´ö%ªß#zÎÑ>Cï ×iÔ(¯Q™¯Ë»L‡®C{$L_+¦*OÂö^¢®ÏÕõ½ê¯Wê³ÞÉbšý;О¾LO}JOþ2UΨÜö™Wèt»ò>åÿJu=pê»4ûŽRå/fje'¥º~˜©§ctô6ÛFû®P9_ò† ¨¼{åýÙû´…¹Å†Èÿ_˜CÖ{;œmÛhße|Ÿï[YÉ›qÚ·,=õ4QI%Î+{¼é*:ÜC%'ß›|‘ê½ã±Çè@#Õõ½]ê*ÞoP³/ ­ÛËíŒWѽ†Êu§yTÙRF;£TåÛnw?{˜Æ2ÊGh4M6ѾJÚ3K»•]k©ôuyeÏJÞ-´¥FYL›é±Rº?º²oš•Õϯ,Ó\ûp^?¥ÝTý<Ú— Õ¹iÒwï}½XYCuN·ì#»©‹ic„ªs?Ó’¥Rõv”ÒN¹ëùL}ŽÜ_G"Ê>½My•ê>$9wð&ï§Cï¯lzµòtôi¥<§Ž6+û”ŸÑL³r–Ž'•ïP½ïjÒP¹¯ç•ïOvˆÎ6Г*-´é÷¨|>½¹ËvÞ¯YhäyÍ«s’»ÏÑĚ죩°Rå ßNÓéø}tâYšUN…ê\'™ÛuÚ“ÿ…N®¢ãKtL®·cQåT÷çhÌR×Gí•:Hÿ9eV¹•ö†iO-í–ÿÑ0 Ü÷-Á@Ývä”R×kÒtø‡4µž&¯Òø=4VIu¢Î)èÍPé3Ë»CY@;*h{mZ¢’[æ=\Jë£ô`%UsKvoÝ‚½”®?Ì)}“^ÉMÈ›û>˜¶vÚ¦î¾áìºJ{ u}NR?öêý‡ºn1tÿM¥o¨š§-h$§ÒÝIGŽB;±D‡ãth»òvªë‰²ÇÕ-¤Ýå´£–QÉõ~Où]CŸ®¢•!h^)¢’èm˜£:ÏHŸ{¶ï =[htŽÊ^;oê<´Ñë´»6PyîòJŸ“3ÐDZGùf)=0OÕþãöF8[«hû2íª¦2›wö”Ò¾õt ˆÆ©Î¹z‘¦ß§£u4£”~§ÙL'6ÒÑëÊBªçÞõüiâmeuõGgìÕ÷ ·×ÃÙJÍÛ»šv—Q‹Ó¡l Ñk©ìõ6P—ƒà|c‰Êœ„·ªšßÑ¢ôÀ5Ú` =^FÕ<”©/£Ñ*:õçО|†ÎtÒìót²âsÜBuޏÊû1¯Yh‡–h¢„F÷RÙóëíØLUnž•\û¼!Ø3-ƒ¶¶˜¾P@%§Çû[0ƒã®‹Î!º;Jë*¨ì#óêü-©{OS•ïbÚkhGÔÒ¾e:°@£Û¡=uN4Ðô*ªÏ c;iôaÚ»Žæâ‹òªs¯@>sS-í Q}þ:*çÂcë•‹4“¦Åtê¿­ìì¢ßÿ2´ßOÒÉy:n¨~?®§rîpo–~©š7k þ?iWuy. ËÒx´'¿@gO*ÃÊ šý/4ùí;Ou΄ÎuÒ{žÃÅ´Ú* 4{CÐÎð 0°·'ö6´ ¨ìðû#zÒÐÆ³Ð4S;ótêЃ ¹¿ÿwBнGõyn´JÝÎÛ½¶)õýõuå× 4¹5ÊyuþÒ¡Vº÷-g²’—C;~7Mf©>¯,¢ùƒí¯¤=ae%íÎR}^Ѻê}T;-­©‚üèú*ÚTI[ÃTÎ=½2OìСr*}Þ±&hOýQ¦©Ë«tNßJǤñõTÏw¯£‡Ë¨š›0¡*zpھŕm­£‰£4ÞNuû–ê½¥’ƒìí¸F{ i¬œÊ¹¸7‘+ šä­TçKH=2?ZOGÓtLú±²Ò/••¾UÕeöFiÇVªòW¬;ÇrçZ2oà´™šh¦RÏð¶7Bó|•ü§m‹ÀÀ\‡Þ3.õw§íXG› ©®ëìo¤®ÿÖ¹û&>k¡q×c§û¼ik–o¬~ÎtÏAÎÆyªßd¿¦WöxÛåŸëÚBeŸdÞº+}VÎÀ¹é~¥Ô‹ú>j¾¤¬( O„¨¾ÍÒ¦zbŽv\¢ºŽÜWL£;hìEÿ ô'Q=ŸÈ?KA]×5G«a`QCÕÏá 䆮уÊCËÔõÙ9e¼÷Démm¢hW•ú£·w3ÈPC‹ÒÄ]4ùšª¥ÃSõ>dF— š§c—©ÞCïìl¢m»hx=ÖH¥ÏÇ«óú%«ï_±T÷ë|Þ“‡èìÒ™ŸP½OwzͶ)Ëèä ÌÅ?@GŸ¤#OS·Í9´&â´í¬¤í«i¸„ª}ÕÁóò ì#nÙ ùªÇä¹DÎGuî•Í•a¼¦Dù[ʧ‹©û÷:_^¦êyÎ4–)ké‘e*y97Óži¤3oR½o<ûŸhúv:tMn¡ñ *×oä2Õ9û ´¶¾ßo ÓJ}=>VDÛ¶Òž] ­ßw$>ÉóqÚÙJ:³†Ní¡º? û•H'&èè5å,9@Ó»èðye»r5Mš¼Hcgé@%•ü¯Þ'¨çuTSÿªstÈê\¼W«hC Ÿ¥)©[K×Í´{ÃTæ½’óä•ë‡WÕ1ìVû—20O_]EÕž%Ó²@Ót+ÝMÇ?…vfÍ~‰ê¼Çô;4uMÔQ_6hhd‘vn§—©žü¶…æYen A^'Ò¹Ú䇴·vœýçhë%z¤š7 hS˜vQ¹>›^ùß©rh'vѱG¨®óõ4ÒH”Ö.CSi©ô³{;–¨Ì™:ƒ9òÚ'hße5m=¯”çTÉvêÿ³‡²9ß2tî}åc4yŠê:’Î7Ôv•B#s¿N;ûÿ¡r==Jõ¼oü#ª¿Ÿ-KÊÍJC÷…螢ûŠ¥¹2¡7°§ð`š.¦òÜé Ô³vÐøZh–®¬ôU;9Î'jhrÛÊŽž£ãQ¥|4û{ÊÿJ§ÿ†’ç³zŸO`¿ÞË1ž¢Éb_VvÒöë´­Ž¶®¡úóÖPN÷ÏÓ@ßü}(Í·•árÚ‚üà@Å¿¦S_¥OÒñû•Åtä3ªßÛâ*?gn)öCÚ…êsšÈFÚUCuÿÕ±2ÚXEõþ¢×BTêÞm!š»Œyy`»—éaKÝ<™›/›\V¾M'.S·Ý{'Íl ±‡o¬ÌÍy7‡ ¹¿€îY¢iâ‡âûЦ“t`Õ}0½ÚVJu]í…`àyTò¼±ëtøVš½کߤÙt²Ž?KÝ|¡36O»·Ó–RÚœ¦–2T½çÚQªûjŸWÖ-P£r/î^y[µYhdîÂÛQ íì4»•Nþ„Ž^¦ÃOÒäNÚ–Ê3§i[ Ýah{ÖB½'Ù´§¡uùÇÎcsôÍbúU ÍÎêöŽ:ÕõÖÎ:½ŸN¾KÇ’td‘&®R}Þ˜ÇS“»sÎûdÎÛi;/ÒWÌʆÓкF‡6Ò©stúnhÇ'hB®KQ9¯í‘?W¨‚º>é;÷=íÄ{ôÙPî¯ë¹qÕWf'å9kbr²€Í­¬Î[n+ GË î²ßÿßèÉ!:ÕHǮү†èh•<3oü•=»ÞÈ%ªß³•Sµ/1Ï óygi"L3ÐNÿ:XBùPNÝWð1ÕÏIƒÛ¨ô½ä§˨Αü¯ô{xU_Áçic´§vG•rè\ ÅTךæ©äzwÕ@ãæ†º¨î{¬/Í©÷ËžTï°\gFj©Ü¯¼ãç¨Û­¤}©:¯5ª¨ä¬{Ýž[©›¡ÜçËHWõAÚá3ÊQªçGc£ÊÒ›x²ˆºçï'tp=Õ{z·Òž>ÚµDåÜ"oš¶Ò\|¬7ðüÿêÝ]Ee¯WÏûè|ë®4Õûmõ^ùýò&Be­ÓN-Q½)u…êŸûÀUÚ{‘F®ÑŽ,UûrlcÝ¢¹2o^=_¦ó󎯅n? =5£ü%zò/”ÿTù²òåÏÝØY«<¤¬Pþù·Ê·”•tê¼r'ÍþSåߢ™+Ê5t¬’Ž~HSMt(EI;§¼J»·§˜v] zŠzž±r]÷ês/Ý£óBr;o`¾öå"ªï«{²ôõz D¹Dë#PÏÓ›Ã%4^A³/йÃЦ?¤û‹h] Ì \¤hÿUšøÕÏïé/R·?MïOÍl§#ÊTÕ竱O¨Þ·Ð{Ey‰ê}>®¯ÅÙÒHÃkhÓ"=ZLõ\ÌÁËT>oÞܯ§WÏq›=†î+ º¯RŸ—„7RÝÕš¡]Ûi¤žö/ÓØ4QD“a:´Yy藍÷A;”¤:çûX }#J_Z¢_/ … ‘ù}oRê—ÞP9Õ{’ôÜXÛvÚ[M£ORÙ{å•=¿ÞÔ:|”¦ï¤²Õ;~†N~‘N]¥3·SÙ?á´å4•¢ÑNÚ[ ;ê?×rßÈŽÓ‰m4¢cgiúQ:tF¹[¹&ß§‰'iü´´§ˆJ^œ·}ÕÊž¨¥î½ÎÙ˜¥¡Ëô¹³:÷Hï'íØqc{×Óè&*ßïÐ=TÞg¼cwÂ@>fmú½ãÎîRªîWvæy:uEùMš£ÏѱéèN:ÜDSE49MSÝ'Ú]CÛfé‘,Õya¹Û›7¯¨ó°veéehÏl¦zž°·œê?{)u¹&k™­…öä+T?'®Ó†0Ô{lÔB=/a»‹¨Ës6—Ó£Z¿LõÞÙæ4¹Ç‹¼:ï@×s«—èî"e1Õõ¶iÚ~FVQy¯÷F ‰;W6ù0:O‡§éÝLÇÒ4ó:±L'ï¤RòN¯¥3Gé¬Ô¯%o1ïé©-ÊÿLç~ Úï×ѹíôôz2D§ÏÐìŸP½ßuänªß;âETç"ôdiû9ÚTJCÕô™bú-Cs·—|\u1 e¡XúÅèÒu¤¾Õ4qŠŽœ…zÎÏ쯥‡+iO†Nÿ*´ÓGhö_(×SÉOñŽ”Óá ÊwhªŒ]¡‰b’vWÒC Ôå:Ÿ7TÎûFö4ze¿WÍÍš¶´sÿ„Î&höeå=t|7[GÓJ©ïyãçéà*ïÛ^ß¾‹6]VÊ{©Úÿg\Ä©÷ý)¦­sÐ6I=z{hE­ì­ÔšÒh”Ðî mÝMo1ç®o&!}@“qšÚL£´q-•û ÓH®‘¼Po¤Ú© 4ö8í Q•—dåëÉ»†vTÒtŸæiåËòuH?¦÷õe*}:Þ#î÷¨„vÔP9'òª}o&ZCcM4~•ºùÛótò M÷ÑáÝ4~”òxjé‘9úJ”æâä¼ÆÍ§9]Þªóå%ZWE¥Žém^ 2¯ãm›§=« Ý¿ ,¦ÅPç…X7ïæzX)ÏQ=› ¼‹N4Óô¬2¤¼Ÿ¦’thÕïÛÉõÊbªçºÝs€SçrK}Þ%åU¹c¶ÂÐÜm Ÿ§¥ûÔöXz¨š†©®ÓöUÐèh§Ï*WÓl–ê¹Ü±,Mÿºý©NÉ“ò&î¦òüïÕ}JÛhûŽ®¬Ôß½/UAãžóœß´Tê„Þ#rßs}NýûÙAcŸÑá3ÐŽ5Ò©Iªö1êyp›”ï×ÔÿA'æè¥É­´{™Êù†ÓïÑh^†ç²†Eš>@Ç&¨ôy³wÒé{éÜŸ@›ŽÒØ»t le#khçuªsìž«¢ß ÑÜÇû¿¿/gs*¥ú9ÿÈZÚt†#´µŒê}NyÎööm¥Ñyåo¬Î·I\¢ÒßâÚA‡«”òߣÙG”m¦•ŽÕSU—±ÑäʶW*K` Ÿvï2 œ¯TPÙ_êÕûpe®ØiïÒxœªëT9˜ÚÙNû6S½¿]ö%{%Ãi¿ÿ§ôÌ?§§~f;”¿@SÓäg4~'ÕóZ]Ë9[¯Ðc󴱈†æ¨®ƒ£6vN¢z_Or ßB{.Ó@Þúå• Õ*k¨ÌÇzÇ?£é'”ÓÔGÐtÉu¨û¸mö—©žGë\MëçèþkTÏäâÇóJ^FÞbz ”ê¾]¯&sºÞÞ­¥‰]ÐŽOÓÌ#4º†ê>ÞÐ"Ô9Ïöäãtæ]:ù•=£ÞñNå>å+›™[Ù±¸2JGߦ#—”%4}™ê½†ÃTr¾óž£C(Ëh`/ÛåmTúùœf{”êû~k„öEWÔ\¡»hv„ê¹…Ñõ4µŠ&§‰+ï Q¥ÎǨ[º±znV¿×E©>ù5oïrÎø4Û }ö#«©¾î%ÞSÞ«Ü ¼]YDãO¬lìc:PHÝ{¶S÷E¶ÔRéW¼©Ï/ÑÜc@^—ìòu_T¨Œ(¦G‹¨«:ÃÛiçVª÷÷'it‚Æï¤C54eéÈÍœƒöä(·ÐÙ?S~‡Îœ§Óÿ·2£ü*úY:YF3÷R]oNµÓÄYˆêþ©¾uÊ54w™ýÿØ3\H]Ýy¢L¹–J_Œ÷ ¥úÜw{1•}ÄyçhÛ¥¿”6ÛC3–&o£º|cýÎ4Q×o²ÆËi¯Qn¢:Ç]çJÐÛT¼²:¿Nú=¼ºoDíI²5QúU›ûzs_^Þ] TçÿµVRy>öÊ÷ϧ¾E“wЋÐôTRÝ—’XG·Ð#!z¢€ÊÜnÞjeT¹H[ʕەaÚ.Ïá]ÊÀ~Ý9?K×M£¼LÇ6PéK÷Nl§“ÓTçøLý]OOÝEOÿ}ë!h£­Ð˜£=ଧ›ôèØ2ì„}ð‰M´£IYIU£}µˆ>‚~^u®l“wS“ÓWCÛCôø"=`h]–êù½Oð;UôÍ,=^D;JiÏU­¤ò<æU¹¾væèTH¹fÐÔg4¹–Æ’´ÿ•=ÙÞæËô`î붯-P©+úú¢~Ó{Ëê ©î3Ô ý¦¥®Þëê¿òçòÊœ¥WÏ=éû±Ô_¼*÷Ãt·ÓÞU´ÿ2¼D£Í4¶Vyž¦>¡£ÓÉ[èôŸÒÙKôôßTþ‚(÷—Ó£tîúVêÿU{Z]‰ÈïÌ@›êºÜ!©Õ.ÜèÿÌÑyÚµŽ&éä{Ð-Pù=ðªúŠ­ CSi¨ô!yu^ž·¼º>6ØHãih“o+ï¥2oáÕ×ñÎeª÷f¨¤Í%ôh!=¢’Gì4û×R—‹ãrrNfél„ê}D=…4ÒDéªë½â:gÈf’TïQ9½¦eíÚíé}4{ˆ&ãTŸC-§O† i¾F£»¡=YH³?C'vå¼£Ÿ)wÓ‘Çh*JÊX˜FCT¿/µe©Þo{|‰î¯¡2ÏéÕçñ2·q3¿ïß³4¼öÆÊ^toô ÐÆG©ìy÷Êù’7öíЮƕí,¥:÷µ¥žêÿþž¥¡»£ôÕ,4_ Ñ×ÃTæq¼‘ Ú_Jã•t¨•޾K'¢ÙÿF§[éLîë6³§ =õ›4¡±eªûAnj}ÉÒïD©äye·WÕíÌέ¿F%ç×+{•njW¥2DåúíHÓÁ(mWöÑä::ü6Õ{9Gå~:v¯¦Ù/Ò©•<{ïìzê¡zŽfŠil >D¥ŽàÝD;çr* áZÚ*߯Î5´×Rÿ×圸[îonßó©Ctö:óÍî¦ʱ'i|;=^ ùeªPןŒ;k®º±Ï-­¨•½_Þ¥ÐHÍ;XN÷-л²3ctv-=ùïéé§ü”Î} í÷³ôÌïÑ·þ>›Sþ.=ýånzêèÉ÷”+ÿW:û_•tæÿPþ–ò¯Óé¯Ð©NšýPùÓtRÞ&.) éøtì't´Ž4P·_Ñ™Z«¼ƒ&Ÿ¦º¿^æÅ½±fýíßN»"´³†êóéÆFZ»@õõLÏO4„hxÚ¹¡ÿ9Ççèè)ª÷ËœºW_ç¨ÌÓz£%tà"í½ªœ£íg©ÞÚ\L–ÐúZº³ˆ~ÃBóU¥{¿uª>‰à>gÕ—ÔºHunƒRïKÏ}^óR”¾Y“ó ]Y½·±)M{®ÓÔMK';ï22ã­£wÓìÿJ§å¾>v¦ß£Ý«olkîûc¶†è· 7Ò®$XGGÒÐÊù‚Ó¬ýŸ4LåóçU{éÍÑ(Õç;:—TÛ^A;ëißY SéÏòÆ_¤Éw¨Þ÷¦sœG?¢™,ÿHy…Jn·wº”Τ©ìWóžú/Ðf~HÇZ¡‘ü§Þ3d6‡hC!m©¼±]«olß« ÉÇhzšŽ\£Ò§á)»±2¯ð¤ì3=yÚºåœGŒüïÒªïO¶}ÕùjþÆn¯‚|x5h\ß©³g\ CÅ4½ŠŽ×B}®c/PŸ£/Ÿ'ë¥ëk_. :ÇÔSúœµOVVÏáJ«Ó&~D%ÿÏ«ÿü:FÎM½*7À~¯ š¯VFV+‹©ä›z%·Æ›ó¥–«+Û*Ï-Ñ*Úµ¶Dék†æÖœxMM1•z·±êýP-—iÛ*s¶^Ƀòöm¤ýçé`!UûâMòG00_G¶Q½Ï©«€¶.AóT=VAõÞåÞ—¯Cæg½Ã·ÑÌO ùYê~¿Ã4^BûißÚy‰ÊsFÞ*ªÏ/,PÝŸüb”~w‰V†``OMhž6eiÛõ©¦ÝóTò>½:OGöƒ:íô°ò[t*¡ÜLuÝd²ùÆNÔÒ±54ÓÿM_¥ÃIª÷Ò%wS™ÇôÆ6Òèi힥çhëj*÷ ¯ËiwˆÒ=Д‡h ?"íän¥ê›Îì¥c):Rî¥:×,½S¹VyÇÕýÍC£4±žÆ¡®ÿ¤H\MÛä<@ç=¶ô‰!êò¤÷-‰ ôÅbøÿ°ö÷ñuVùyﯗº‡¨Ô! u©q¨C\¢R‡8Ä%+ÄCâ…ñ qÇx4Œ1Â#Œ1Û¶l˲lo=o=ommI[Ï[6‚qÈ*u©ÏÔ¡ !Ä¥.U©U©KTêPêÒßïõÚk-åsݶɼÎÉ?ïÌ ØzØ{ß÷½Öw]—ùÇy9¿nsêïÉ­_žƒv0M;ߣ.?=è{¼‡E½¿ñëÞ—âTó½ª u¯ç`Ëy9o3Fݹ¯¬¤™FÚ¼š§-u9vÁÎuTö­Lò M­¥½7ÁH^•Ë—ñš§“Ts}¿±·-íØÛtäKêž#‚ÉǨ®wùœðëÙ´ºóàÕîò9h6[h'þ!‰ÓáÏif9¬Êç¶{¥w0r>Í÷‘ë<Ôøt BÜxcûkhºX|€öÏ=˜û8ZÔ­«OÌÒª }ÊBóT!Ý—„ö{èĶœÃÑ¡Ct°TÜL®|…ÝXýüïËP=wÖSc»ÏÓ#®£‘üL§>w¨5úJ–~##½JU%Ô݇z#×WíIjZNãÓôX1=š šëùª¥ºŸîóÊ õûOÞÜöLÐ|MtsRAíÃ=28š #ïŠ7Qw<8pš¦wSw>ùºj_{Ç%ñ=ª¹`×Ó÷7—ÐFw¿P·–>o©Þ;îÊR7çtë—ÁÚ=±ŠÖ¥õó´a©X@ݼz°=-Zêæ¼‚½;©› JΧÍý׋¶œ£õyto–¾ñ Χzÿt¨”¾‡æP‚êüµîèϱõ4R]¿ý‘uŸãƒ»éP–ºóÈÁìŸÓ 7ç2QK§nOÒé—èÉUâ=ÕL_û&ù1Ù?w×5¯)Ì£®‡Ök}ˆÓŒ>mÏiª½TÚ±„6WPwN'x ôÚþF Fææ5g7±Šêºr_.¢c‡ u}ÚA¿^Ðîžû›¦ÅÂëöë‚>7.¸öÆÖUÐx!=§Ç*é!·Î¹oŽêúÄ3¥Tò¿Í£1ªû°þ¹ÎûÊuÏÁš<ªyà %4QMÝ_ÐëúH¼‘óÜîÜp°;A;ªhóiZ·†ʧ¹Ç×E%7Èä¾ÍEõþXz MÝ%h}¿œ×åÐ]~c0’¯‘¡ÏBÍi4µkiÃeÚt‘&hWä€ÇèÀfqÛWø4uýmÁìZ:q»ø‹â3â1:yˆº¼prÿK“´3M]Žl0‘¦MÕÐÄ ©Î¡·ÌÓîFšz ÚäÛâ†Û¾†jžRÝJêò¢½æ—ò¨¿þyKòèVKÖQwN)èúhƒ]sâeÚwÜMÏБ饮¿Lœ§®oÊkîË£ÏÇÄ8Õ烃ÅÔ­gµÏC{È\/XPû:Üz^pèñ>êrG‚Ùoщÿ~m]ž±™úhûR´uþ+ÜLë ©®Céð¾¥ÔçczeNØ–ÅècÔT.Ðýz0Kuÿ ÞRÝ_w}·Áæ9ÚZJÛŠi×:šqx¿øË⯈ÿT4âCâzñ7ÄßK|T,¿!þžøMq³ø¤X*~G|J|ZÜ._+ÅÝâñUqŸx@”çÆÉj±F<&žëÄF±YLˆíb—˜SbZìÅaqTÌŠ“â´øšøºxZ|S´â[â¿ÿ¥ø‰çÄwÄYñOÅ?ÿ\ü@¼ ~(þQrK&ÿoq^üD¼$þ…øßÄÿ.~.^¿ÿ—ø¿éÔß—ˆºo±Tü?ÄB¼M\.Þ.þ´ø÷Ä¿/Šw‰+Å(þœøóâ½b‘xŸø‹â/‰¿,®øëâ×Äß7ŠŠ¿+~]ü†X"~S|BÜ,~Kü¶øq›X&>->#>+>'Vˆ»ÄJñeññUq¿X%ˆGÅcb\¬ÅV±]ì“bJìÄAqD³â”(ûªS¯‰oˆ§Å7Å&þsñ_ˆgÅŠçÄ-þ‰ø§âûâyññ߉ÿ^üâEñcq^ü/âÿBüL¼,~.þ?âÿÿÍÝÖüo—@;ùøcš«ÄÛèøj:6)®¤Ã·ÓA÷ï ,ÜØþ¶9§}žj¿Vr?í8wcÛ7ÓD)=1O«ªéö$ý65¹ËÍ¢z^èÕ8=zžvV@;ùͶбÏéh™§ÃçÅmÔ÷l{ èÀ)ÚަkiÏbÕ¾»K#ýìçé+¥´ÄÒ5yÐ|]|¹˜)¡õ¥´i uý1ÁägÐÎ4S÷yÔõÚž í\O7Ò£ùÐ|ËR7_tûÁÃEÔ÷í…þ=KuÞêÛsÔåhyMæª=ÎÙJ»ÖP=/¯ë‰ß7Ðän—Ý]LÌP—+lœ§îu¸ÚÉG]µ­ŠÑÉ^:Ö(ÞGµçÆõ¹/:IûæÅÇ©;L½K[‹iä}øÕsGKéáóôP9usÜAßkå}uŽêïýÛ1¨ÿg^.¤‡K©ËI &6ÐÔhEÐ 5B;2"® z>B{zvR=Oײ‘ºœÜàÁóô@uçσ÷»ŸÓVÑÍu]N{°©Š6—ÁHnnßYªs³ÍÅ¢|Þ7‰nŸ3Xƒæž¼+y•æ1fi¡®o(èz‚‘~‚U0r¿Q• ÏBãsã½ßMŠ–~/I·çQíqߣåâsùb!Ý£ÏÓ}3Ô«öMÓÑFšý¶8KOþ{*}Úöä_ŠûÄ»é@5íßK›:®c‰¸‰j¡îSêùW—/t?O¯qó‹Áºñ mYJõˆhߨ¦OÒ‘÷hÿqíÛIußQû«FÓTέšÎUÔåpw=4þ:鿤ƒYñ>Úÿ±ø$Õ|a.¨ëÚ=C[/ÑÆµôX!Ý·æ¶)ƒ‘ë´æ¸Ü4ÿj‡÷Òþ·hk­vÎKâò¼kj* ¯íḘ šëúQƒÙß :_¦óß‘óCçšÎ}?¦ÏÐÔ÷}nÉYåžü}T±ûþwhÓT{ˆ\ÿyðÀ}9Ÿ–ÓÇ 4ÿ$º|ê`eœσv¦ŠŽž¢©Í´j—3èµå³¢…Æõ‚{o¡2cŸ¥U«¨ö:êóÜK·Ä¨{^ Ï-¿"jûqW¾³”~7FŸËRí©s9íÁ†"hOï¥3û¨Û NöÑñ.:|нA5Ÿ=ÓFõü¸ËÁ 6e¨;wôù>/ÒÏÉy Å]–¾š¤± Ý^œ£>/Üå › mYKݼ`°=Ÿ&—ÒÞe´?%fsÜEgèØÔý½Ñ>ötâ6q Í~ ¾Gµß±á­¶ô°¡/ÎQ½_*+„¦´”úžïÑ2ª½Ö-«¡ø€º9ô`d½¿˜&æiËq­¸†6wІiZ™O‡o¦¦ËЦYÚVmÿš\ýæÓ®=T{ε/Òõõ>çH‚º<†E³Ð|=Fs‹úsÏÞç’ô•rZ½±Çc´1ºu¥`ËrÚQI#y}kÅGhªœö>Lû£ýTó0‡î¦:·9ö´–þ ŸÎ¢[èØ´ý*­›¦‡¨ö~å^F#ù_ Ý—MMu¯Çàñ$m¯k©ö°'·Óže¢œ‹I=M{ÏR™ã6ý»éà=b-ºL‡ÏÒ‘I:ú4[M³¿ î¡.÷aÑ¿ “­tªí:þzò>úZ7Õþ±“ÿ Úñ»hï*ºoš#b‹6÷¶Ë³Ä É íH1í9C5=¾œêû@ï“^^ ’Ã`Oþ þ®øëâCâ::õ©¸Yü51º9»E5ä¼ø¾ø§â9ñ¨¸C,Kü…;ñŽøŒ¸ŽfÑñ/Å8]%ÞM}ïÅP±ø(|„º|™EwÑt’öœ¥gn¬ÞÔo¥úÜ+÷ÿÑœ¦RÙoÎÝw™K¡m›£n½ÍÉ1Rn¢™w¡M\¤»ãÐø|"o¥®ŸËkG¦©\'.õÏ©CcâØ(ÆÄÍâ#tð2¹¶é³7¶çâuœ¦WolG‡7Ðöq#MÚ°ÖOÓ#¨ËcY´’¶Tû ®¢U¥9,ˆ3t¿¥~½Ï»ÇR]‘^-û‚¡zþ4wì<Ï~Ïýù®oÕkr·¡‹þfžK-¢ÕT÷“š iGæ†Z7÷œ_¡ƒ4ûïÄÅŸ cïˆÅÔåó/º™Ž,ˆmâCÔõE,zuùA·®ìý€¦Úhϧ4’c±@»ª©æúµ%hëVÚ\MÎÐg©®‡o‰ÁÈ>óÁ"ßH]¯×º9õ ;—œ¨ Ù«b£økâr:¶™ŽÌÑáyÚ¿¦»ho)Õs¼Ý1Ú¹„¶[ª¿¿ãâÑYêö§¼‘Ü…o‹~žÊÛ§ºÿÔ´ãŸÓ¶46Ð:÷<žÎBëz߃Óýtð8ÈÐt%Õóˉ+´¦˜æ¶ÝZ#}¸/ˆí%Ðî¶îûMC›ýKês‰_´ôùRh\îŒ ù3³îë-¥ÏåÝØQ÷œªyg™h;Vжš¨¢Më©æLŸ¨¤ºÞ´žî.§îó$¨y_OZêsn¼¯–Ò†¹œîo\ íäÿ ¹ßE{ߣòýšïêrx‚ÇE—Wtë—ößA3WéÈctü~:±‚ê¹Ãé[èÉ—è©#â%:ó;ÐN×Q×ÏŒ¬ ã›¨ÎŸ©ÃOÓÁfq íìÆºœª`ïRšš£ÉJqíœ3´]ͧ®7&ØZHõü¿¾?ªs˜ßIÒ¼na¤_æ·Dí?ßQ*ƨö<¿£ûKè¡êîƒqK›.S¿ØuÃ|à)ÑŽDS¡uýÒ^ãz̃ÉãÐ^¤.Ï=¨óC_ѯn¾mhbë µéÛ ñ½Ï~]íõËtæ[ôd>]Kî¦.O?Ø0#ƨž«úÁÏÑ×ߥ3ÿ=ùŸ¨;Çt¹/Öåӳߣ£ŸÓHÕƒt°‚ö_¡:ÿìò™- n_=èzr‚É{iÛzªŸóÇÊhî±`ÑïYí )£~Ý¢Îÿ§d6ÐátlŒœW{„ö\¥ñ2ªç@vêΫ¿a ñç7¼Û }v޾"Öœ…öh6÷ŸÐCy4^A›WÑöó´§’¦7ÐȼØ::T.ºù÷¡Z:ü ÝDÇfÅwivXÌÒÉ[Ä&ª½ÖÓ÷Г?+ÖÐ×þ ´ñ´˜åõäúX½æ;¥Tω»ùÐ`b¸™¶5Šs´ou=›Æí.z±ÐNäÑ‘Õ9¤—,uçFm8?j©[¿ÒuhÛ¸ŽÖŸ—Ò1zä }ÅR7ïé5~žÄ»gŽVÓãe´¾‚ºÞ/¯Í¼IÓ«hïçbBÔuÝU´«’&:¨¿?ô¬¦qúÜuŸc^s$N+hg>MÝMu¿îÔfêûx¼nß*èÎsñ A²3Etú8A³:²‘Fæitýé~ªçz]ŽkЯ{ÏÑ}çi,Fæš_(¥¯æC;ù7©æódvÑ΄X@õ>²®€Ö\¦Ô@ûúߢ'ÿ.üçtüqêût¼ÃoÒ̽tàÚ†ö}F5W&õ8M~ ʹÙδ}m)£nŸ;x¢„êy0YŸ3OúŠxtZ—3ÌöÒ±‹tð^šºƒ¶Ò£Tîmi!4n>)X³–ÖŸ¡ºnéÕ.‡vÊÍGNî¥ÿˆºÞ€àøF:²ºyé`ïVš‚æ÷ Ô}ã®wÆõ${íÔârQúÚ]Nepò/Åÿ$þñ_‰(žµ§¼™NÌÓŽ"ÚnÅš8Gµ÷âh!­œ¥Ú¥ë£šáž ‚ñ|ñ ´/æåœ~—N>K³DÇÖÒáUtp-í}‚¦NÑžË∘O]ŽHPç-Z/ÓæZq­/¦ÇfÄUôà u=ÜÁߎA³+N]NZðX’Ö•P×›¸h m«¦îúÕí)C§ÿŒjƒëß¶]¥®ÉîóÏ£³N+æÓg Ýáþüßuÿ¼Ë…³_Ëýùæqç7-œ«+€Ö÷–z“s4ÒSwIÌ£ÇËé‹Ih¾m¡í[KÓ÷Ód#Õ¹¿ïuý–Á_΃æ;…Tï/Þ¥ÅTrüŒë‰öÚü9u¹A·.ôç%w•ÃȹÿcåTþ^?Oµ¯³å4•×½éY#ž¡}ÐáÇ í[J“_ˆ÷S×›ìXM›/R×Sy~Ü_F¥GØl)¤Ïg1´ߤC«iwšvÎѶ5Tû¬4ŸÉ­û_40r~Üõ ã[¡Í}Y‹ºžÔ`ꇴ§ˆFî{ß¡ÝeTûíÚ³´m–¶n¢Í³ÔŸ{÷Æ×Ñ–Æ6Ð C·Ä ynŽºçå ÛŸ&6Ñ®s4§½Ôåúxmóeš{#çÐ{ë©ËÅôÚéÛi×&hžÏƒzÎÁ왥2TÏÃ5m¥í†&HÓ7Ñþ7©Ì¯Øé•ÔõxÙÉâ¯Q×·ÌV‹›Ä_¤ã1:ú y˜Çéмø¶8)ÑÁÍ4ó™X-no¥Ò´û¼I?H5/*5-î·ÓöÚVN[iâª8/^—Ñ–RÚÕžôøUêöYƒ‰KTr~MïJñ8MÑþñIêÖ-ƒ¹ÇÅEÇ‹iö‡tò:µOÔ|ûOéÉ›D×Ë}²“žê ¯ý7úz9}ã¿@›øŒö'Ä*q¯¸E|X¼G¼•ê¾Wßûâ{⸛êy ÜãÙ¢“´$Í× Ý£.?3Ø»„öÕBÛŠö~xc»Ï‹ç¨™G7[êrÖ½Æïxweil–HR׈ôQ÷ܬ.¡ K íÓ®Ú’¦îù0x"Cý|”÷…rhJóèÎ9ê瀼¯.P™‡3×ÒcÕ´};íŠÓÞ7¡=5IOÞC§Þ£“?N'>¢®¿,¨=#…4“¤=ç¨Î5EÖ¯‹é±Z]JµGæF®O'¢C§iz–öl¦MåÐ:ù~Šž|¾¶FrÐ3¿ÂÕ7VóWS{©ÏU¸žî¼÷u­YE–ÓʘXNw%ÅBú‚¥s´|>[ú£éÏø^zíÇŠì«ÎÒêbz,Aµ7»õ Mm¥é+tpŒôV¥×Óº%ÐüFÝ"¾œ¥úý÷| mú!ÚzšM†vÎCÝgŒôÜ$VPýû_û{ôä9:V@‡ï¢:'Ú°Šº^•àóqhæÑ£ 0ÒË.óöÉÕsCåùô•"[ õÕ´)Fý>§·ç!šòÏý7Ó¾K4ôóLC{ü,õ?¯æQå¾E_Y€öˆ»^ë¤3ô7ïtßßN›sï\ÎCîþ©f)­u×ù‰Õtl9º‡n ©.ê×}O•ï­Òù|íYwù^ûÚ‰Ýô¤Û×›¾Nýgñ_Š?F'KéDÍþŸo¢cettÕ}Ç¡'èàm4³‘FÎ?Çhúšú’öl¤´}«¸‚ºõ×EÓ´9N.RîÒ[[M÷ÏRß[àç%/Îά¡?E³—èèýtdúB¼ò×ô¼ ®¢™›éÀfÚŸ¦}¨ö¤®Òž6Ú=M;—ÒÄZw…>O+ Í}<Í‹Yª}±5¥´nFþ|½º7š¥â¯‰þzâýŽ¥úù´'K«òéájª×i¿oæu={ÁHîí[4=DŸ¤CïЉ?¢“« M_—ÒÞ6Ú¾™¶e¨>_6­¤þü»·¾ˆê¹€ÚRZ³@ÏѪ,u}$A×|AÔýÆýW¨æhÝ@Êis)uç`‚íåÔ念0SF‡b†ŽTÒìY:¹Tü5Qr™&?¢S¿ íÄߦ#KéàyªóëÉZ*÷ Ö÷yxµWíx5uûCA×|~ŽjðC1ÉÝöó4Þ K_*¤/—ŠåTû)ã#´y3íȣɫ´Çý÷½Yš¾ ~HûÚ`$Ÿ­­–jÞ‰ëU (¢ºÏ,½¶4šgb´ê =¼–j|sí8K{ŽS™£‹|îö¹¯û_§§féÔ š¤Ú'i¦és´µšß³ôåbê~ÞÁº8Œô»5n¢ûsŽÝGM¬ÚÌ2š.§:‡è×c½MUTσM?LS=öbõ÷w9}úýN?°mŽJî’©_ £½„’³âÖѼ‘÷õ1*9¦+ m¢šÎRhÐL_ÿßôµtdÜH3[èÀÚ÷í½—¶eiÃJZ—¥5åôpÍÝ&ͽâ+Úá¨æ’¹ÏÇ`[­™ghÅ4-ïÑžÛ¡=ÕNSñ Úó¤X’SóìÕ®F±’ê¹ýzj^A›NÓ޽и¼“ÜI{öÐÔ~Ú{šöï‚vìI:¼“öí¢©uçXm›iÛJ_Jõõèö›½‘–oåÑŠÅR±Fr»\O°oõëÞöJªëLMg©»¯_ÔͳtUA›-¡ãÐÑ,Õùdw.-Ø?Mu.NûÎz ´ý‚x†¶®§n?%¨}ÓG´æ8XB‡OC»'ŸNí¡V|fÿ1_NG“t¸êz¥_—õö-üˆú}õÚSOeÝ×4@;¸ŸFÖífhïÇT¯ÚOס¨®ËUºÝÂÈyÛÄFhßxŽÞC§î cŸ‹»èÐ'¢[w*o¦}3¢ÎÝÞJSµ´gÕûäÖ­»Dk+é+…Ôå7Yh\nyp_!•y%ûÚ_ˆ¯ÐSWÄfñWèÉ?¦Ó?ï S½â÷èäY:ñ¿ÄïÐl- Ckn¬ÎiGÖYeÎ]û6ÒÛhwî;’o¤óêûª©;'Ü%ºs2á¼Ì>±ª€Ö-ý‘´.G­¥Ùb:ñ]h+‹è‹qZËùMCO”žz›ûñõ¹3’'•ÚHu¿KúÄ#smGÝ}ZK9´éFy^LÓ¦=QDÿq4»c´>I]^k°³èÿ•vºK|ŒNý[qBü :ùßÅL'þ¿‡ŽURÿêuýÁÁt R\Eû‡hßjªë®W+Ø}‰Êy,ÛRBãWè±³´jNxë- ¾˜OÓ¶ÓP÷ñÛ¿÷ÚJK]~yÈ1wûïÁƒ…ÔåÓãismÉÐöñ,MÖÓÞ3´?&vÑÁåt$KÇʼn:õÓtz’žú:³ Úì •ó¸‘—Žjy¾‘>Z;pœú¾ôàý´ËPÍóÔùáÃyTç^š£ºïvx´ÃÔ=Ÿ›ú³?’öä;T×+GVÐ~w_îÎSûòiz9uçÂ]µâRªóš³Ý°•Êùãz£½¶:C“å´m†~ÝBãzë½öµÿIµ?DϽ뾲æ¼56ÒïÆèDŠŽÞLG6ÑÁûè@Šúç¯ßwõê:º®ë…žŸŒ§zŸ£çWWÒºjª9ÿî~.(}‘>¼bT÷ýuÞ¸¹šj?§_Ÿ~¦FÎeO(¹GæëöÚúý‘²$ÕuÕÊRº¯’.¡î~3xâ ÕszµÔ÷–{;¨í34y;ÕuJwßµh­˜¥Ï&©;·ä5¿"ž(¥­{Ä*ª¹Än3˜z„ºžÃë»—ŽÝN³¿C'þ´3çé©/èI+.£ÙÿGü ñ±K\JÇHÇŠéè½t¸àÚöí Ä[hz’¦R´»„¶n¥‰ âZÚôuy+A‹ˆÍQY7Óu£ˆÓ…tb;*£áþË™j¤­qêçÄË‹¨{®óšRKŸ/¦,m‹CÛ=K]otP×Óüõò[1h\¿R°ù,MTB;ò†˜ ƒ«ifxS¬§î\0OSÍâ-´§œúþ%ïi˜§‡‹èóTûÝœqpßRªyÿKiÛ9Ú±‘FòýÇè@Õß±G¡m]Ͷu=’ÁYhO~(®ŽN/ˆ.îWÑÉ´ø·èÄ¿¡Ù~ñç耡ý5´û í¨ š³/¡šå^Aí—ð÷o^YŸ7®Ôk;*iÛªs8Mó´á*­ë6Óåôè<=x–e…еγô>H.C;˜kèÀÆÛ_Nûî—ÓT1uyTÁƒ1*=š¿c'÷ÐȾb!ÕsUå4–¥•¢æjoã¯Åè Iº¯”6æÓÖ ´=F“]´·‚º¾O¯­[I]>Ipêu:£Ù¿Eµ÷zhM×S·Þ³h1u矂~¿^ç[DS¿„v,ÏÐî5Оzâ+üqzòÕó=S&þ|šN<$j.Óÿ?ÅrñÄŸ¢cõâÓtä]ñmñªyCwÓÁZ:°žö—ÒÞiêÖ‹‚†ºó…ÁxœVÓç³Ð<£>—ÂçTèß×z‰6Ÿ§ IZ_@ݾZð€¡~îË«ó¶O—R·®Ü£n;X¤’[a\Þ~01C“•4uí{š”ÒÌÝtd·ØH¥¿Ç]¢ý[¡qýÏA7ÇæµƒCÔ­#5?æh åÑÇbÐ<7KÏSnÉ›ØN»*hÏÐNÿ:ä…Œˆ¿,þXC³¯ˆwÑÑSb :E?£:?4p+ÕsÖzߨrŽjo˜æŒÇЍÛ÷>S Í· Õ|žºZêòƒ«©ÏãqFæ›ô>Súì–$u9Ä¡—Ñ_½n'Xwž¶$iW>í>MÝy³`ÏyÚ·Œf–СÙk;¶f³tr=~Ú™½tôa:ü8z—¦WÒÖU´e-u=xA½¿‰¯ 51z(ŸÆ ÕþwÎ×köˆGb´¾Ú×ÿ=ù3tê6š­¥îówÑ•Ts€¶Óþq;í»™¦?£Éi×YèçÈìÉ:õ]:ÑOÇ¿¤#géàG¢ûÓ|üž[¨Ë) ¶UÓúzpúuT¿ùÂ,´{èÈ6:¸ƒê׫ý] ë¨ö6•Ùœîܹ×ì.¢º¾r¨šɧµó4¾žÖÏÑ–+4YmÃrh\ßc0ýCç9ÑåÎô‰s4sYN³5tÒ½ŸNÞMÇw‰…tdR<.ÖÒ!÷¼àÎ13q±JÜ%n·ŠèÀ<í¿Ÿ6Æ©Ü›í¥´ª’º~˜ {jŸpäó½ó*MÌÒ–å´a=VI+giîö(éï“÷«y%K场‰¥ûæèþ2z ŸV­¢ =äþœCW¨®CµQ½H§ýËèàtt%´¾ßÝû\1•û›—MÕzÈÐx>m¶Ô£ºýšàcîïyÌЦŒ˜»Ž™ô<´ñÓÐüNŒêý˜;ߌôF•RÍÙJç‰KÄÍâ^êæâ®kÖ}“ߤSwÓéÿLgú *§CÕ4éöéü¾™×åQ,š¤ÚCtØÐƒEtÿ**Ïÿ¶ šå¢¾ÏKÌ}a޾4 #÷yîõÜHÍÁóô¨¥úüîó–uN¢Ã^[Í}wçGƒÚ;är ]GÓ·‹êæJ‚ýýtøNñS:º„ŽÝ,Ê\‘›‹N>O§FéÉHO¡3B›ûXX4ý4íŒS×Ôœ·]ytG Fry\nrPs]|_¦·ó2ÕÏÃÔÚwŠæÓáèÈ:þus,Á‰¿„¶÷-hŽXhÇ–ÒÞ[¨ëŸôšïqŽ6Ÿ¦Ëa$‡¤Rt=!Áö´£;hÏ­ÐôÓ‰»E®™é%â«ôd‹ø—ôµß‡Öÿ\¯ëZêònƒ‡æé+´“„¦$F5¿¥f-Qw>#èzŃ—©ôðšô—Ð~=÷uDúƆ>¥Ýi¢jáÞrz_4å¢äVëóFðH!=ž õ+iS5m]CÛò©ÞÿõLÒt Ú©zñ^:ùoÄñ—¨®3ŒWÒ¡‹b¿¸ŒfJhú*uù Á–8m°4Ò{±\J÷ãt(ónæÙBZ£qQ¯'Ýëh_#´¹ocÑ­1hüœ±·÷šî€vâÍþ2¿…Ž$iæí€ö¼ M®æ)hÇ÷Sׇl­¤M…´1Kã›E÷:Òóášçú÷‚ûò©^×7Ç mXËGö®ߣå0r^õH•Þ0»3F¿a ñÏÞm†ê:˜ë¿ FæO D·o–˜£mÅ´ý2Õç‰ä—´g;u9F¦÷2uŸÁþ•4ó¼#½‘ÚÛVUHužçië1æÞ^‹êfÜRwÈk›¶S?ÿèç!eþ¾šžÜF§~œfÿ™ø-ñ¨?·ëZIVÐþMo¤=…´cm.§ñ*ªŸãz>Eï+¿kaäýá}±ÚáF1Nû7S=§ööSͱï‰Síçq9Á†Jêó僾Âóâ,=1#ˆKÅ<ªùšsîÖ#ƒTsôú³b–¾ZD÷ÆéžÕýߊBúL4_užö¹"êömƒG–Ríy©STÎÝÛ×ÿŒžúY:µ]üMªç¨|EPæw¶RݧÓÏÜxÚ¢zë%CÊ£ÙïÐÞê»,ŒÌ“Oÿ-ªs°C;é@3MŸ¦É¨Ï;ö6ÏÝØÆª9ÃÇæhÍYº?Fõþv{ š§J©æ¶ÕÎÑ–Rêú‚ɵ´gí­‡vßZªý®±µT?Ç—AÛ¾‘úsßþ¸æˆ$oÊýïÙ¿GËiúsÚqŽºœ± ®;ûóÜÞW 鳆涧ƒ‘|èÊ9ZGë: n¥¯Ñ%´o¯¸‡öVQ÷yìy„¶Ѻª9?.?øý4[æèó–ʃväaÚX ë?6¡ù0ÍRŸ›|‡Fryî¦-–êëGû(·Ò'bb4›ÄçhU Õuœæ5¢<·ê¾`Ëyªs·zŽÈÝ-*ûïÚ+>ø´éóT{»7ÓÎBZŸOk6@³!(¤%4q‰º¼æ`×ešî¡™OéøqÉSëLÒöU×¶ÕÐæôD%Ý7O]_ˆ×ì\ .O)XwÚñY:ú1íÛúÞJ»“´5#6R÷û êüæÑbz`})KݾAðŸæASl¨ÿ<÷Êó†92GÝu?èη»hïý´•ž%;•‰Nî¥ïÓìï‹?NGóèÈ^ê¿oß[b‚¦> Ýó×Vç7Ü:‡×ì-¦+¡MÝ {ýÝó@PòûlïM´9A/Ñz÷þ¨«¢Õî÷–{¬^´vÖ9—ûç²/б%tøvšYKµŸ­÷šü‚¶,УeÔíxÍ>wﬤ~~ÍÏÅçѽ…4^LÓѾUTû;-¥.?4˜>ms •çåH¾“æ6TPn[N»¦©ÛÏöì‰4u‡XCûʨæòf6‹•tøI:ò»ƒŽÓÉ¿-þ’8A§þ5^JO¾"^¢§þZ—»¸¨œS“u^{ šúyÚµžÌÒ…ÐNÿehs•sh&7¶±è3âáxNŸKåö1‚=µt¸æšÚ©­tâÿ¤™u´ÿ}1F“÷Q×ã<¾”îAóý$Õ9;Í!ðûʯï S—éÄ'ÔõbuýÈåS%ÏÕ|Û}ÝñRº«šCe×4’Ó1õ¦ø†øÓtòñ¯ð'iöصu¾C5·¹ïrû,^ëæ)‚mKéþ˜˜Gýý†ÓM' ýA7}ãwéÌ¿¦~~È{ªžü5:½‘Nei$ý¢¡ÏÓl¯¸†Ž¿IGtøê ™mtà1ê罩å´k=²¾£º®YßÙ@ãçè“Ö}ý)ÚZMnllQwÝ öÐÌ}T{]³ë`ôüØÿ8uý‹ž¡®ç>˜|”v_ š?ÙQJ›ÏѺBzè,}ÞBS£/[Z=Gë/Ðw™°´k%Mß­Ïk n õ3ôP)}aFæJ]e0’C7Oëb´amé ©ë! &—Чiûù¥7оãô¥RZ·‘\…š“h^ý¼ˆ7UBûA;ö u熂šcØ÷˜¸ž¦¾/ÐdŠºsA—Ô¼OÿúpûåAÍúA}ý=ù§T?o;×QÝÒu»êr±„úý!¯žÞ3KwäÑïR™C5>‡ÄÛ¸„v­×Q·¸(ç ÍÀtp´£ó4s3MµQ7¿l˽¯l¢Šjû+å9õü“öÕèüÔ·-=6K»f =ù)¶bø‚¦¢=]T{ž6B³6n¥Úä=ôõ¹ß¸Þo¯í>MÿGÔõ¾ÇÞ Ù/èÔoÑé_ûÆžry ·ÒÁ6Úµ#ó™Z‹»ï³–¶\¤îú¬É§rÉ£ÕûŸŽ­´·Fz±WÒþ›Äwé@ uó‘Aí•t=ÁÑèøišmþ‘´ƒg¨æ(ôíå:Òki*M{JiÇE±6ÏPÍ=tó.‹.¥ÚÿS½”œ£¯.PííÔs5•å7ÖåÍ^ÏHÅ–j‹ž=X@k7ˆÅ9_-§éÝ´¿ƒŽVBï ß³Ð¸žœ Ì'Ûájñ&:TC]ÎÝ¢·ÐÌ)ñQ:ð…x?íŸåy¡/IÓ·ÑÞRšZB“ ª÷KM†;OµGæë†ºyÍE·ßs_¯_Ï*uÿ¼›ÿ°©|Ú²Žî*¦z½oÞNë¯ÐCEÔ­ûyïÿõjŽÐÑ´ƒnÞ1ÓAû†hï íŽÑÎK´½Œú> ¯žiê õk©öÊå^Æ‹ê| æYÿ쬦‘óÅ´}uûfA÷º ön¢}_B[_Ddhè_JµWËï“z,Ðç,õ¯_§ùí¼kû¸¡Úçòt!}^|1÷÷·N¬-ãâYêú=¡ ÔNü^~c5'AM¯×ОÛhd#Ffiü*Õç§—â0’{Ôu‘öm£#wÀÈió%ú›1ú‡‡éɾ;x;m¼J릩îh?XMŒº<â ;_è5¹ñÙEwÃÈóÐS–ê\Èw ÅRútŒÖÓKYÚ»‚FúJ÷Cûú(Õ¹á ·Ž]•ÆÍq{íàüW(Ïþœmð6êöµƒ=³bR,oº±ÉOÅK´«€¶ZçiÚ£ueÔÍ#RíQø ë¾G(ô ÍB;ù,øR\Fõ|zçÚ¾žºõÉ ž›‘>Z“ûוsVÆç®y]¯YP÷ñêG¨ë' vÎR×ûì3ôÛIúŒ¡± ÕÜwŒ/Pí¥ôqTP—?ÌÝÆ,Ú%öÌÓÞÒôÔõ<3+èÐq’×ÓQCÇž¤ãs4ûGtêvêrÚƒ'vÑ×Rtæ ™¥:oæö÷‚]çi}!Õç«ÃåÔ­GxM.vѲÕ¾:·ÏŒ¯¡®'+ؼ¶ºõŒŽ"šüˆºu²E/Q×Û±h5í·tà^±ƒßíÉoRŸ·̧һc_ŒÁÅç¡ó´¦€jZãzÚºÚ×ÿN_¥S÷‹ÿ'«hö‹}tü:²“FÎ]ßEÓŸRwNuÑ%´ÇŠ´#Nkh]/¡µ%ôH9u=SÁâT{4_œƒæ%CÝs®×Æ—Òªµô»FæþÜÏ)8Y í˳ÐԻϛ¡7hûzpÕþˆh]¿|pìª8O5÷ÐÍÁ® ™wéÀ'¢œ“h¼¶ýg¨®K¦§©ÏI îý ÷Ðäfñ ê_¯­ï‰³âVšpï«&÷}5ÎÒãÅôHiN—³ÙŸÚo®­ôÛ™Ü2W˜·2{ó¨ŸSTëüÏcšøò¿–6{ŠŽí¢#âÐÇ´?&î·Ó¾QÎ߸sáõ~=9IÛߣÍ+©ÿ~½U–î-¥š“éŸÿ¼Ï‹îÜÝ¢yt‹‘¹)k:T"ÎÐjõ =²@Ýyø`óšHÐH¾~üÆ&Õ«´ç1êú!‚½ùbŠö7R·î-Öíë«&}'ìÝDÇnƒ6ÓH#ýTe´?Kûî§½wQÝqÏAÍé5ô`œºu† ö[LÒšUôµ/fÿ_izöõÿH'Þ¤º׳šê}Kü Õ<îýî:©9â{ }ynŸƒÆçÉxcbm)uù©Á¦õОú›tøýëx†VSÍmî+¡½IÚóCš¼@»-­KÒøº¯êHl)4.w èz¤‚ÛéÎrÚT mE7¯¸èI:3mâ2uçV‚¾·Ï+÷•6™¦Íëi|%­*£’wg¿_J_KÒìêr}šŽ¾E‡‹hæ Ú÷žøvΆKÔ墫ò¡y¹˜6,@ëö?ƒ©K´gA”×­®¯'WR×[ìX/‰¥´}š¶-£MK©ž¯:P@wÏQ?ßé4.O7è×g½'f©æÛJ¬qó•Áô%yÝïÍBãÎïyíP–f–R=÷©êùütí9'žËhò.ÚyšºþÄëÚ >Oµ·eGŒ¾§u¥T÷ ;òiÏ hÓý4ÙF»²T{5tµñ<=¾–(¥ß7ДR×_ÔùˆØzð =zžÆ+©Û×6¤©;ì8O» iÏ£45FûÎÑÌ[Ôõ\X—_àÕyaûŠø²èr7‚«iušÚ+´ñ ´“oQ·~b\¯™×ºõò`ûhÜï=¨ïqC]‘×f>¤}hw>Õóý®(زŒºþÆEKé1KkJé‘+¥ºï¡–çQwn*(s"‘9üýIª9Ð’‹b×ÒÖ ´{uóÃÁ¾hæ‡4Ò×R íè :r™}Bõy(5D»·Sé³ôíiïĉmš†6÷±ŒôG¦Þ§ƒ›éˆÛ?9ùß©î?ì[ Ëó`¤ïÀõà÷&éÁ ´ºjž@ãm»L»6Ríÿí¿@u¿(sžoƒ‘^ë‰j:p;M½Iuþ§ež+§±$Õ¹o}ŸæâZ‚Æ÷‹zÝ¿<:GëÖPÝGhÞCqÚ^E]Ï7zžVÖù{NÓ䇴©‚º\¤`•¡úóÙV#sÎÚcQ·Žº¾`÷&ªùºþ“¶4³ Úî4­µtŸ»ž¼œ¥’fŸ+¤¹÷bïÍVCË ©äü7—JO>.ÎC›XBu®Kó'\ÏRPzÊÃu´5KVCOÓT%í{”fVÑ¡R—ïéµîú”÷Gd.EÏë9Ê}ÔõØE×± iÓUêú¹‚®W7Ø=M“%4õ6í¿…ÞD‡ß¦c)𥑤IO>LO¹¿÷Ôж¹õÜ¡«Ôåv]ζ×|ÃÐø2ª}دß­Ë š¥z¿¼»ÿ|äÝ–¤/åSŸ_àuyÁºÚ°ºõÐ`‹{nißLÝþn°×ˆóTÎåš‹TæÜlæ}ñ>Ú÷1Õùmí±Õ|–öe´u†&jiÃ{´¶’²¢ûs4/Yïïs/» )µtWòƺùÕ`Ý2êzI‚U´g-M/ƒvøKñs±€ºóvÁÁ÷Å8í7´ï´8">.ÞD»×ÓºÕÔ½O¼æ›–6—BûRáµ­Ìæ|ÞÞX÷ù½h!ÝŸ¡º©sUMhb„vÐÑb:ö!o£®§~Ñg©;±h–ʽmŒÑš"ºouŸ³¡gAÏù=ghUÕó?u4¢“›¡Zø ÏÑDuù AÉ}2GË¡M^¡ñ2Z3C5'襺!M…xp–¶•A;õ :±—j>¹ïSVÓ£¥Ðì.§._ ¨}Qm…TÖÇ¬Û ºõ[¯ñýÁ-/-Õ>ùÊRêö ‚{J©ËÑNÐÆe´}Õ¾¸Þ÷¡Í.¥n&ØŸGûòiO%usI÷Xªçm´ïøh§N^¤¿GÇûéÈ—tè¬XJ×ÐbêΡ{.Ó®í´cŽ&b´iuý\×Õõ{]×#WÄY1Awš‹%šçKÅdNíKðs^]—i.‚v Ÿº^šà±yú½4M›¡ýÁCôÅ:ñïÓ×ÛÅ|:ó[ôµazjA¼•N—ˆ¿G§ž¦‘\­ÏÄ·Å'éįÒq÷¾û’ŽÜû×spÍì¤}—ÅsârÚÛESçir9ì§n¥Ú‹^†îKRÿù£ŸóÏÌÑ]…Ô]/ƒ Å7ÔŽ¤èð.:x™jïVêIÚ3Gµ§qŽjM¬œê¾µ[÷šGsÿ½ùzÝcrVÇisM¸û«„[/êpŸïKhWîë5¾Ÿ,ô••ÒC1h òhMÚ®Ð4Ÿ¡.ÇÈk{> ~ßÑ»o–º9 ¯y2F_(¥šâúŽƒnî<¨}_miš|Ÿ¦ï§¥thÝ µíÚ¶–Fò-=¶Šê}IïÝâi*ùIÆ? æW›vò7hö/èèûtðAšz‚¶ÏÓÃW 11Z™„v濊¿B_;)n£§þRÜFOΉ_£Ó¿C§ŽÒÉ?o¢Òñ'騥#KéðN:t™fúÅÜyG›ŽS÷ú¦–Ñž÷ÅǨï“ñvÑŽ5´mm]K›—цjZ7Bgè¡BêzJƒ:·¼«”–º%F_”û:ý?óý¹kjÝzQPòœì×b0Òÿâ÷Ÿ½ÏÅéÎRº;F]¿XÐý¼‚ÕÕÔ]ïƒM%ԭ绪i÷{4½,¥™ :ø)´“;èà ÍͯÇèsIêæƒþºåuçÞ¼¶ÿ<4Ï&¡}ãn:ùs´½ƒúünŸ°<Æç`$Ç©ù"m:Gå\·þŸyÜÒý«hÓmóûiÚ¹šöl£ré1ÿúÜoâ4-[a¤Ÿwà Úí¹›º¾§`[‚&D׃lÞD+hm!u½‰Áª¤¸ôÆjnQL|vNLÂÈç”Þ—k‰?¿ Ϧ¡ˆº^•`×2šºZŸ³å­5ï;…Ð|ÝÒܲҢ/‰:æPóéÑ"ê>ׂºžªsí-Û©[Ï êç~ûíLS»pùò‹^¤½Oо9¹/»[\F»hÿê¯ð6ªçgzî¤.:ØÞH5ßìHu÷7‘ó%r^]óàì· éïZhro·E}Ÿ÷ù,Ý£.w)xb-mʧ®ÿÑ«y¯‘œœ†iê®Á¡ÐÎ|‹N zº÷<4ÕÚÚíÔûtâ§iönªŸó©zÚ¹–jßx­¨ûÀ` ÉÅú/ªëUÞ—ó¨ö‹jnÕñJªsIMç¡õ炆+¤Õ–æ.s‹>c¡Ù’G·&ilŽêsDm†jÿhë4í.£n.:ØWN3Åtäš'Î_ÛÉOhk’&?¦nÎ3¨óAšû5õ7¨æž¢™h!Mï¡®'þºö4SƒN®¢.×nÑéµ·÷È<­\€æ×ó¨îÛuP;uNþßÔí‡õܳæ1dÎоâ4]/o¦=W©›s vo ©®ê}¢æyë9[Í÷«*¥ûfè–ý65¾GÐëæÈƒÕbÃyš(§KÄ9êÎO{mWÝ»@už9·µhK!´Ùjñ{â×è`†ê:™äÙ™ò|*ó¤ö5ÔÍ%/ª}/ê(=Gûçiï£Tsf[ÖÒšýÅ<ªÏ1zôÅYh¾ƒ‘ý•¦¤èîßš¶RÍ™ñ½$Uçé8ÕýÍYøº…fg>Ý_L]ÏB°g MŠ÷S½ÏNï¥}iÿ ý¹ 4ã¾ÞÌJ:´ÚD’6Ð\Ý|Ð$o¦}§hv%´m+ 9œ¡í³´w´GΊ ѽîg©Îý¹¾+¯æ–Û¶³´ñ=vê9;§½ÞX×klÉÜXÍ~zšøZš|Z÷ß7çA]‡2“ôx)íyÚÉK³¯RGԾƞ%Ô{ ¶o7ÒÈœè:ªç½ÜõhÑÓTsùµ—Êõ\¡šsV¾@sGÿÿëf†ºõ› ?‡ìm¨¥®ÏÎk/PCsë3A“Íúýv)­4ôÕ9êž'‚µ1z¬ˆž(¥-ïÑÌiªs¯ÒÉh{â0²Ž¼mŽÖ­×ÐÆtìêòv‚S?E§¿&>K#9+îû:ù1´§þ…hÅ×èÉMtú:õTÏÃO¬ ãyÔ垇Šè@ŠºüÌ`»¡mÓ´ñ"=f¨ö¢HoQ¤§3–€6ûË´.Mg.SÍ…|¶”Nÿ²x3J‹š+ÝIýyrïHÍ”‹ëÄ•Ôå#ë(E4ù8íZsmÛ—RíÕmÚî,£ÒCdQ]—{ÖÐïĨäîÛâ<ÉáÐ^t7ïÔ¹£ÁI*yyÆ­³xíèÚŸ¤©U4r.ªœêú¥×ŸoðêzÖsùTÏêùÞæh} ´îܛ׸s¦ÁÖ|Ú³ŽŽ—@ër2‚/hÜ~{ðØíXO{7о´ÿ^:P íô}´ïnZ=O¿£¹±Ž ù5Ñ}~ûÜ~ÓØy:zQ¼—ŽG#ë†[h×rÚ’ ú>8(ºžo䜹Ï/ñJ~¿©_E]ÞM0uí“|DÝLÇ»ÄÛèØ=ttyœ¯¢CùT{'·ÐÌ~:ð(í¯¡:—œ¾,–‰E´÷#q;Õ>éÔÚµšºuÅ îÃ×_¤Õ†¾”¥Ú?¡ûišª= u{¨?ÇéÕž#]?ê/ CËa$‡w³¡?x‹žÌ§cî÷<æ®ëƒ)ÑýÜÜ9¶E—S·žc‰Q;ðçÑüçèw’ôùÜ×úãBÿ®ûÏ~áe÷ÏíqÿÙë4±ÜõÓ4¸ÿì÷Aµw7‘{.ÎQ¹ç½Îbѽ§ iöÒô'ÔïÛ—S×sœø;td?í¿‡öUÐÔq 홤ïѶ5TÏÑ4ÎÐú÷¨ëeêùÝG÷ýj¹1ÚEŸÝ9Ï`u)´®× ¸%uÿÝžLÓá[i¯¥Í•Ô­czM]Ú“EtìšÚJ“#×¶ë‚XF]O‹×$7@;ô¸¸I|Œö_¢š;ÞWKÓ÷ÐÞCââ]45Iõõ™üLÜHõ|qç4íHÓ¶íTó,ÜùŠ ¾_]ZP{ ÷Æ©^Gž·ô©ý]#¹nåqZ)ê>\{¼v•N®¢®&¨¯»¾µÔõ ]ßjZs…j¯¸žªË§š ¦9=iÚ›{_™ô‡TóÐGn‡öÔ¯Ó“utú6:õßÄF:ù›âß¡ÿV̈Khöe:þ½‹Í‹ÑÁ÷ÄÛ©®ß ¬£ÚÔ×,ê>úTû ô>¯+F;—‹ù_aí8M[—Q·þ¼è¬(Ï?Í%â&q#mºxõ:{Uœ—І Õœ]Ws¹HÁyô©$uëæÁ‡bÐü“<úè¿+jîÃÖ<úL!uëÁ“t5ô:l€v¢EtçjôÜóèÍÔÓ¾³´gu÷“ÁÖÍTs­Dãúæ½6±™NÓÞuTÏ)Ê>¯=ù4=FÛ+©ä#˜š9É é}‡öÔÓ†‹´ÎR×tyèÁäÃTÏ9ø<—K¹ŸƒÙã<à^®‡)èòúM×9š|ÐéþüÞÏ ¿L;VBS™O#ç ?¦ƒw@;¸ö§h™¥}ŸQùù™¶9h³ÿ÷<çµ=›hÇ2zÀТO]Q0µ‹ö­v?ŸF:|©…vê3ªë:O×»¶>wOÏ_ižq£¥=búržÏýïÖ÷ªx“[E½O>/VÑγ´£‚¶–Òæ¥4Ò·{–j¿ò>K+²0’»´†Ö”QÍýjrÏñz®ÀÍ»6C;ý%ÍݦD=U#>FOþ¥Ø!>E]¿cpê”x'õûÜÞ‰Äçiv‹X*n¤ã):ú…ø)^)ÞI]_0Ò»2"vѾ2q M¿)ÎP×û»èrÚSN“]´»’FžË·ÒæZêÎÓ#¹ •TçvâEâZciu%Ìвôy+&¡y8F%oÔ4çÓö"Ñ­súç¹®¥´{V”뀛ŸZô’x™æ¾ì¿âq©x«x›x»¸B,WŠ÷ˆ÷Š÷‰kÅu¢7‰%¢\w“[Äm¢äû&ËÅ ±RÜ+b\lÛÄ.1%fÄ1+žßßψgÅs⻢äU$?çÄ‹â¼ø©ø™ø¹x•öä‰7‹·ˆ·Š·‰â ±P¼[¼G¼W\#®7ŠÅb‰ø¤¸E”s±=ÛÅr±BÜ-î÷‹Õb­›Å6±K”õ:—›¾èˆ8)žß­xF<+¾#¾+¾/^çÄ‹â'â§âgâñ*Í},ýooo—‹â ñ.ñnñ±H\#®7ŠÅâ&ñ q3Œä»¸9Ìà„¡nŽÕkŽÄ¡=ý"}ãvúz5ùEzêí{ò·ÅŸ¤Ótê|žfߢc]ôº}ŠKéКWS7JMÓîÓ´mÕÜ¿æóÔ³¡ûÎ^[ͺ”ÆÊ ­_F¥OÛ$ƒö[–FÖági$/ñišzO|W¼‰&¤²Ne›/S—wÔœÕýå´r.ç÷J¡Ù!ú9!¯æ¬ëÜù!CëÎA›ºë+,¤Úƒ¨=oÚO]£:Oæö¯ƒ¿Nï+ôî,¢¯æCëú‚‰¥ÐtåC;õ/¨[ÿZô:´™Fæ‰sÏ#¶ï.ê>‡ƒ]kiËZ¿‰Ö-ˆsôð Õ^ÜeaÑSÿ•FòËöÐñ7éØ,üŒÜAûªhz+uù|Á3ÔåI¿S ÍÓ…×V÷94§Éç:íë{éäÒÑutàêz›‚“]´?M{WÑÔvêž·ƒ]«hËUúõ4¹ÛÛEãë¡ö<š Ñë Ê}ˆúsÚ5Ouß<ÛJGߥƒµÔõ„Ý|WP{=#ŸËqÚx‰JÐ\Œt0Ò§®óªºo¶·œ¾j¡m©…¦n)XK‡:Äwèð#t´‘f'éäÏÒ“+ ­ÌƒÆ_ß½{’4&ŒQíŸï´4å^rÿjO?NG7Q·Žìh„fW FæºS]T×ûg©ž‹;VB_ÍÒ uû^íÏ4û³4^B[Šh¤Ogžöï?¿¶î÷þúEñ´ø+ôÔ«b18#>EG èÈC4²¾‰fšiäÜÎNšJÓžû©[ v\¤ÚÇܸ‘6¬¢ñí´&Ku¾@s¦s?¦EŸ‹QíˆäЬ¦.ïßkÿÐÒ™Ÿ¦'Ä´x‚Nß%.§Ss⟉oŠ:9.Êuuò˜ø¨¸Œfÿ˜Ž­û ép>ÍÚWò>(®¢½QæSŸˆî>«gž6¥©æWKo›=¼ŠjNAnybQɳ™e4}'u}fA·ÞìŽÓDm¼@ýzÂõ<\L–Ò2qK솗+ìºB{>¢©7 mŒÓ]š† hg^¦ sÔåw%è2hJ mì ’—oÚ¯PÍ)uÏNjʺyê‘kÛ[JÓR÷>ö¿Kt¨œo¦‘>â÷©ËÑ2!WëP}þÑû‰¾1êò6Ý;Rqî_*æSíɪÊݰÙÜòõ¢_Õ;íò网¾—'tsÁAÝÇë³´ÚÔÔõ;xM;µ3%ôÔ×èôÇtâ?Š¥4û ñ>ÚqéÚj>¬ôžÙmšç,=¶–6n§m› mÊ£'ÎRý¹YKÝ}H0‘¥š3Ú½ñÚ¦Þ¡ý˨æ¦ÜJÇï§ùbnÎ×Lþž³Šº¹áEÝ~õÉ*zÊÐ×*èÌ_@{òm±MÔù“1:ùﯭëS fPÍSéï¥Ã—i¤ìMÚ·‡úÞ!¯Þ»ýä ®Kud©Ë© ¶n¤z®½n=œOݹ¥àïÄ ùÞ•ÏA;PI“ŸÐÒRhâ…´û*Mo¢î~mQw½˜ߥƒoÒ±‡iöÇèäOÜÐHÄKsTσW¥‡ó¨Ë2½nnR¯·Ãn_qÔ]×ÇóîuÔ¸–ÖŸ§qKk }eŽh¶[YÇ›¥m%Ôýœ‚]µ4yœöüö6ÒHŸv…øÕuÑNt‰¿N³?Iu®z(C¶PÍUrûþAÍ»n¡Õùtt/Í]ÎÕuÊdÕçëpŸ_A»´ó*mYFã›éq÷çϽNìQwßu°¾£%FzLw-ÐàÍÓ±›©[Ÿ ÞJû6Q¿ïz=»fi{Õ¹wUòÜ#Ö]¤ñizì =²ŠwÇinÙ麚ÝsôH m;OÓž/ißÍtà2•>m[w™j¯¥öæ¹s•ÁÞÇèÈ!h3ïQÍç'©ælí+£ÏXÙ­^€vàéëz2lvŽNÒ‘‡éд˜¥ƒ÷ÓíÔ÷Á{û®^Çmâãâ♇M‰1ñ.Ú{I,¦©SÔÍÑ,Ú&n¤n®3ØUD;Khä>ímÝNisR\B}ß]p%ÕùöúyêzÊÝ@ÏÒ£–ºóš×Uó,5Iî"ÏÁÒ?¢û¥Æï§y·Rw>5ø¬¨Ïƒ/ä‰åTsRö³_áÕœm5²¾ U ôP¥§‡‹hM>Õõjí)—^cãò ƒm+i¤¡€öÝB3wRwôzÚÞh÷rZ•ÆŠ©Û ê<¹är™YêæC‚¾çÅ[¥ÇT÷)ë—ÒŽU4• }mtô2›ÝúçÄFh³¯Ñá9ª=]ƒ{iÿ;´w3M®¦]å´sm«¤.ß<Ø’¦Ík¨æ¡ú¾¯ëå –höÆ m{7ÿàµn&øü4¹ÃE¿i¨ëõîŠSÝWªÛL[ª`¤_,»„Ž?A‡·Ð¡1™óZIû×ÒÔjªy+Í«¨æ-£{âÐì)¦G2Ôõf]ßU°>FÝÏ5±‚v6RÉ©0É~*óµvòCš½™ê|Nÿ$í-§št`uÏåÞèþcm;CÝ×&ߦ‰8u¹¢AÉG°û Õ<¿-1íÙ¦Öõ>¥ÏØÔVB{¢„úçBÿœøJ!­ª†Öõ…/šGýùFUs©»¿_±Ó?/êÖÓlXW+ú ³9}{ïÚ]L%ÿÐÖÍP·¯tÏ)ÁßΣETû%lfm£OYhvRY÷¶ãki$_;F_17V÷¿eÅ<êòL‚÷çAóˆÓ¶Fh‡wÓÌ.:0FûË©žSOS¯Õ~òž T{–»Ò´=Ay´ÙÐÆrÚ¤î¾(¨}ðß2ôàZêz´‚®7"ذž¶Òî¥4ušö½KÝ<¸×-§îýt¹š&«´Ù_¥÷y¯¹ 釩öŸ4o†ºþeRÐ6Ÿ£uë 9R­»o >ƒ¦k´ÃU´–&ËhÛjúîçã÷¶Xh_ÿ5:¹Sü):ö!Õ9át†&ߢmWiÓ2Z·–J¿áâë9Ÿú9Íà=Ô7 vï¡íëiÝizpAŸ‚n='8|ÙuNÌì´0Ò›Òó(uçcƒÝ ´£Œ6ÕÒã3ôÀ<õûÄz½‘õn›»½šÕâ3¥TÎ¥Úéþo¤Ï{›ûº^{˜ž¼‰N&¨æ=¹}çàðiÑÍådfi_œF΋̊‡èáµTßîyËkrË®Aëï ½“?IDzt8E3•´ÿVqírïïÎ*ªóåMîÏóû*¡ÙËéç‚YZµ Fθ眠ô¸™ÄVªç«{Û¨®ÿg†6;E{k ù§yTÎËÚ׆Nÿk:Ù/î¦oÐìUñ§éxMŠwÑ‘:4)ʹ4Ÿ›êx€FÖßKE]oŸ§šƒØ3Ds—£EÝçu0‘Ëh󪟛z¾¤¦šj_ÒÍN±¢ˆîÝóØ¢ ´ªFúŒÛWÑø{Tïgµ{(IÇ·Šo@Û|š¾dàb>”ó¸¡í—©[o êùî¾ 4s‹x¾—Žo§?C§ž†öµw¡y)NÛÝçbk-m(¥7ÜPóB’ê¾f,Ÿ(§Ç²ÔåŸ;ÖÐä§û½ûóßnÞgÑ~1#‰#☘'Åiñ”8#¾!ÊóRêMÑŠoÑþO¨»?ðÚtí¦z>¤mžº¾Î æ¤ê看4­«i²ÚÉËtb˜êsÞx%Õû±‘û¿Â5tèI:p7Mo§=7ÑÖuûöÁ󴦄ºûŠà.Kuý©RZœMIŒnÏ£‘žÚ,­-¢.gÒkOöщÚ =§SÐìLB;QG³OÑñ[èèZ:ØOµ_5£õ4÷¯-êö…}„¦o§½ýÔå\#}¬ÓîjÚUH;÷ÐŽYqm]C[ʨî#\O·þ”sî‘\*ïÞ$u¹î^ó˜¡>—Ñ+Ý}·öJ»yž`Óêr[ƒnýôºv®¤ný>¨9,n})Ø_FÝ*ÞCûÄ÷D™v9 ÁžeT{j¨Ë©þAŒ>fÅB‡Ÿ¸¶C7ÑÌ#TÏÙ ÜJӨ˗ vn¤úœY7K«—Ò݆æŽÁÍ®,u½èÁxmºJÛÏÒä4íMÒþCÐvÎÓÆ Z™jGí=r…V'é¡BhÜu=èû ¼Ms0’ƒíò,ƒò>Žä®çÆ}%Kõþ¿{M®§.ÊkGÅp¼•ö~B]®m°ižÆWRÝG>VJõ¾l[!4/Óƒqzl´ÃâÔSâVªs£º>åû$®§Ë)ú¹(ï>+æSéQŽäŒí+§¾ïÃÛxÚö ªç+NTRwŽ ø¸¨Ÿ¢½…•бé}qš #ÆÄ9úÒ­JR×{¬)§íy´ÃRÍ•ê:MÇ6@›}—Žo£ƒ1š^EuÝDó‚®mõ äk–Š%TÎK×S<¤.O?Ø–¥C_þHÚ™Ÿ¥§~@§>ÿLÒì]tô~:t3uyÌA=wÚ}…jOG›ÉÙ:#æSÍcŒô ¬¡š±ÿ<4õUÔõïyíÈ.Ú6M«  Ù»@Ý>SPzxìkߢ¯Ó±OèÀ—âçbuû¶Á®JÚ\öÑxŒœ£å ÐX*®»±ŸQ·Ž~}‹Åõ´oV|˜j{ªí+¼öœ¤:÷×5BuÞ¥}†¶^­˜¤-b¼Šž°â Õs>î\YðX’º}Ñ ö¯ÔÐ#†jNˆÎ»º\‹ œÛ±/gÅ|êú‘ƒ‘ýä8u=|^ó\Õû=†IRícjØL›,•ÏwÛ¼pmõœýîØu÷cÁÜÛ#éÖ^ÂïÌQßWí}NÜ“OýœŒ×½ƒõ+Åêrí‚mqÚ^N“»hO?í5âbœöß­ë‡ ÆbÎJºÕýù幯˾þLߨ̪=×î\h°XÔõG¿_‘£ºN7|ʧƒ»©Ë]ô-šzŒj.§æ¼º~¡`W)uÏA7tçÓ‚úÜ÷8ýÕ…<zÕ½úœ'çnLò®jÇψ·ÓÑ©æ+ î§ý¥4µ“v•ЖN¿oii!Œ¬û±¢û{š/ÑÖŠ¯0NÛ‹iÿ}ÔÍëzíþ„Îü&þHü¸‘N ç鸥:G¬û0šÏ}¼Æª¡æðDr…\þ]ÐÍ}Ÿóò ©ÈýἯë)6Ï@;RH[Šiã&êzRƒ‡+é‹–®Îƒ&> íÄ?¥#§©æ§÷¦©fÚ]Jõgä<ürz8#ë€ñ=3O}¤×çËiË&y=d yµˆÖ­§mkhwÚ¾ijíŒÓÆåÔõuÚ=…74’GµŠÚФX*Ó‚<¹Î í¡Ú;¶U\ ‘ù‰ctò øç¢{®žúIñA:½Mœ¢'‹ÄzêgÅ_cÐSŸëëõsÞº+T÷]_ðEÍ¡ÉrëÏ^ãúk¼6]DSK¨¼>MÏ:hý÷íú{âtò ñ¨Î-O¬¤Ùÿ n§ã·Ò1wýmÝÏod„¹û®HÅe±ƒfìu-Øtžºœ½`}!­¡ñ7¶z–ºÜÓàî|ZQH¥¯Ã~_Ì=ÍZñ÷ctW­LR]×rs)ÁCyTóCk è±bßCë2´þlÎÆõÐf¿þþ}:^EÇÞ¤‘þŒãT×k2Ÿ‰Ò›iÚŠÕ´÷]q)íé .Ï1Ø]K;¦iû¼øžx†FÞ'UÔ[ ÖÌQ=Oóª¡zÎZö#×ÓÜ2Í¢~nÍÉu¿B[gé‘Jš®€63F%ÇÅön¹Žÿh¦>ëiÇ Úâç) m¨‚&æîã•A;šO%‡Â¸žàë©ýzÖNþÚͺ9±ÁiñͼM{Šrv]¡ú:Ö\Ý·ÞW]žÓÍÕ†óÿî>'œOXî41êÎå™gœîzmüyÓýâóùtK)ý¦‘žÍu9.6ÓÎõ´{ž¦n¡é~Ú¿•,£™èÈ2::O]Ÿ}P{Ò&ï…º¾ÆàɃ6u3ÕùØ«hÍYªçh\ž„×\å¾§o¯¸“¦—R‹äXVQ7×ìXGuδ©šÆ;¨æ»çìàÁUtŸ¡zõñ˜h ¿?^t!gÃjš»_Ô÷«{»7P͇é{Ò¹]Ü!¼îª2ªë¿—GÝúYÐåm#sYs´yÚ‰.VÐì÷éøÝth —ÓGcôkÔäÑEÔåËÝ~c°AìZM{NÓþGèÐgtëÕ\ŠÃb]m\G‡®ÒÑ'¡8)þÝ#î¦ýÑãsTsYÆwÑ¡ãtðf:ðô†”ÓžÏhWÕëfâ2m¹D].A°aÕ’ÚUô¨x(Iu]z³¹±Ãçè@!Õù¥cK¡ñ½ìÞ½–ºº`êqhëVÒc•´&IêöÅ‚.gÂk¾iie!uùéÁãT?o\l°guy“Á¾Õ´ÿ#:üí¼B³‹N5P¹ž›S;¡Ý¿êÚj_›ÿ î*¥nŽ6X®–Síoqç ¯ëw Ý6G7Æ`tîUMR÷\tëÁW¨?¿èuç§ YQ>Ç—ÄË´»ãÿS­»~c³ÐøÜhŸ#Ý‘„¦B<ƒ‘<¨Ü¸RPóHl²½ô×ÏÞÑ]57@çwT½^ø¯×ý‰[æ¨æj>;¥´j†êýJc>mÞHeÝ7Òªýߺ¿×ºçÆjÏÓjê>·½æ›âá?O›DÍ}M»×ûÀ'ÐöMÓ[öÚìÐÑ‹´n 4/RíóèÎ Å uóãÁÔ<íÝCÓs´/Iu® ?K%× ' >'GòO_É iÕRªs.9xh-ͽ|þŠKiK)õ¹Ô§~¦>¾¶õ{èsÅÐ4\„ö±ûú7èkŸÓS¯Ò“ŸN¾.Ó±Ítä!q)~X\J5/¯³‚¶R=wâú‚‡«©Ì‰7WíäUËy$Ï*µƒf÷ÃH®½ô*Eú+å9Òøs…^¿î÷Ç[G¨öO옣Òo¹Ÿðß§÷EK#ëùåTûØ\ŽqÐõH}½·á,m¾@ç©¿n{»:h¤_Wò†ú hf, n./8|œŽ¼OÇ?§t²Nü„N÷R}­¾þ7¡í¹HÝï1˜»lÍXº5Iýü×Ï/y5ç£Z¬+£®Ÿ;(ç¢smŸÓÞ;ÅyÚ3xœºõãàÈn*ù¼:?lÇ÷Ò.zbuûXÁܲü¢~Ý»¿$çî4îý¬Íæ<Ïéî{‚¹ã\Aûú-têE:¾¦?¢.?ßÉ'ìÜ.–ÓTRLÓ÷ûsëýÁ©,抙ìð~šŠSŸ‹ª¹.ÚüBaÎ-1ªûûÒob|oHî2µ¨ôÚ©í4•Oõ|l])4±Bz´úGÒN¬ cïС:PM“»/l^íoäÁp.Ms|:+i×Eš¬¡=Çiªœ¦ u9AwÞ$8XO‡ Ä-_¡Ûßp÷3‹ÞJGK©¾Ž'~üÆN>M§~Vì§Ó·‹÷ÓSi:³ÚøÕù3í%Pu½{ßZh“»©<·ØCg¡ÉË£¯–ÒÃWèÑ|hO>H5Ÿ`ô,š¡>7¬kuóÖÁ£…ô`ýÁø‚ø4}M<¹Mü?ètÏuü®østâOħ:÷3ÞHGwR½ï®¡n]~Ñ:ø¥XI]ÿBÐåAݼآ·‹Ë©öQ5,×_ÍÒÞ<³¯Ú“ÛÅH§¦#—ÄIÚßOµ¼çñNÚ¾KÐ犠qçøƒšgÝfÿ?Õþ`-}ý:s–žúž¸EÌ£'—Ðéi:Õ,~_, “ƒf7Òñ•tì-:ú˜£M3´ñ2­Ï£ct›æû…TÎ{…s_W¡ö„؉iöçÄŸ £çoì`ÛÍTÐþ´¸–ö½/ê>üÃTûE{êEÉßJ®£ÝIÚ¹ ÑöJêò#‚­ï‰%´ùŠxYœçÄêÎ7,zZLÓÆíb1mHˆËh¡G‹¨äOEú€+ãÔõdyÍïêúÿ‚UEί¦nßÒ4¥íµ4™?¢n¾ÜkO¾A§þ%ÍþÕ|¸Ö 4q•Ö¬úki”ÐDŒvæC[¿šýZåþ½þóÐNüo:¼ŠeiäœcôÇ^—ÒtuûTÁ– TÏÕžXJ,ÀH_†<‡Gò _ŒÓ— uûÝÁø ´.OÕ«söÛ¥tàa*9ÆÏUöž«¨öA·Ñãqzl-4~ÿÂëÎ]Ëhû,M-§½Ò¾ãÔõž ™'é`!j†‘¾øž[¨ïãñ6l¥¹å¤EÝþjPs¹Ëóh±øÛ1é3U·ÆhÅÕ~°˜{,§5óÔõ/§uùbî}e\_ï¢ný·­ŠvnÝsm²œ¾é´t(wÝ7“þó`’ö¤hW>=(JÏ‚y"F5¯Ëå3´ÕPwþ)˜ÝE]žqPr|Mïç´ï.Ú?C3ÓÑ{ =iéôoÑÑhß=´7{m»6ýh¶ïWÓ¦K¢‹iãu×± Ï?ÕÜÁá\N3 ª×£Ô6ÚyŽÖÏÑ¥ÔÍ_,¤ÏÏÒÜòÀ¢%†>ƒ‘ž›Ü2Å¢zŽ×}ž;7@›°TÏYﯤ."(çBËß ™¡ÇŠhÃ:Ú\HgiW†¦ í»›fn§Ã«éØ2h}®÷¹YhÊc´nÕûPé‰ôÆNý2ÜOǯRÍmÎôSki/¡Í[iÃJZm©ï#õ–g¡q}ÁªRh§~ŠNÜI3ùÔíûOѾ’«ë1zÿ”ZF»©æ7'éñJêÎÑ.£þ\°÷“sÏ,Õ|J¯œ+´OÇhîí4~?ñÉ-/¤•åTÏ »óÆÁZCݾy0^Jë˨î/Gú,Jh÷Œ8O{wÓ%Ôõx{íècÐtŸ¥ÉzêŽ^wî/xÌPw]¶/‡6} šzwß”º¦“bêGÓ37ƒgrßôÏÓ‰2šÝFÇctl‡¸–Ž~BGvÒHd‚¦ÄžO¨ëE[´„6eű€Æ×Sɵ·¹_CÐø}F¯œË2mK¨›OôZŸÿªsÁµ¥×öøhOS9gm G‹é‰9ªù²ž`ÜJPþ°Ó½B3+¡þKÙwµtø-1!V‹‰wÓ¡7Äq›xŒÓËâš>Gu]´=+–ÑĪ놆š§ßOB³)FäS×Ç®Fr&³£tø2Õ<®žCÔõs›3´ú Ô¼;õßh¶‘ŽŒQ×l¶´ÉÐHä8dhÿg´·‚&óiçjÚ^EÛ–Q}®;š¥Úcö­4¹1ŸE+cÔÝ¿z#ùn‰sb#Õ9ÒúZzÌ¿/ ©Ë~ÛPímÚ™Ok é±rçu92Á¦*ÚS,öS—³L¯§ÃOÒ‰Rª¹+S{éôRhOÿ=ùGtz ü¯tbÍÞFdzttuó=ÁÌҨž—ë¿HÓ•Ôå°}¡7Ò+¾º¾Ý îéuKim%=”¡îÜ¥×<šGuÎØKjŽO}#MLS7¿”ó¶mžjþbî¸ÐQ?÷µ÷KÝ_Mõüçá2_N›Jiçršúœöî¢ém´ï-:¶…N¬¥Óþ_éÑœ =Gæú>‚ƒ— =õÛTçW¦~‡Nþ©8$‚êyÚì9:–¤>gÕ«yõš?­ùÎíETçö[OÓCåT×[\îƒ7’«ór)Õ狆4Ôs¦&Kâ´kŽê¥Ëƒ fVЩh_»‰ž|Šf‡êýHO-mÝNÝùÁ`í4bÔç¨y¿{Ÿ}®µ÷H/£’#d†¶¥¡¾‹jÏXDÉÊþ$ÿL\F5K{•Æ:Ä'i¤i³¸F¼…f¾£)ªýº}bBŒQÍeLn¥]E´£–¶ghÛjªý»-bsL\M#ó3óâq3ÕÜ~×Û¶èVZ×(VS]wÒ>9½¨ÉÏ©ýúü}hNŒÑki,C÷fé×-ŒäŠUÎÒƒ¥bõÏ{Áz8Kk–Òã%TóI´/£§T”óò=oÓ¾û¡}mDü:üç¢ôžçâÍ~ ¾/þ™8+þ_b¯ϥ÷Ä[h¤§ûñn:<'ÊúØÐû4s—XHû íûŒ¦¯Š â2Ú{AŒÑÔ—ÔçD34i©Î¶×ŠÕb…¸‚6‹a¾È[@ÝsꢆÝ@]®yðë¹ïÃ䯱ý}K_)¥ûò¨ëy[t–6äQ7§l]ŸÓõ´™«tà êò.‚‘ÜÙjÚ3G»´-Ÿ¶¬¦M³´®œêçvU>-/¦esД–ÒW ©ëÝóÚÉO5wHû¢]¾uPöûÍsùÔ{õÚךéÉߥS}â1:ùÇâ×Å|šŸ¥£Ç©Î7FÖ>§n¿ãú.¥šKíÎI.ZDu]¾­ƒêº|K9=VHk7ˆFrÜ_±¹ÿÝåÔyMÃzhŸ)¥ÚŸ óëv¨‚ö¬¥š{¯½‹zý¸‡¶ªó nn6ør}6 #ë¿£Û }FôùÏÇ®­ödï±0r>äÈ=\DuÎzg’nA³ÉкeÔí»³Iêö‰ƒÓP÷ÕíÈ::XF3iß´g#ÍgX4’«k¡9qþÚÖ¯¢mÛiò4í=DÓïÑÌ:2 íLŒžz–žüâ^N§þ‹hÅ»éäÞ¯ð÷i6#P×s¼è~:ö)ÙLünLÜ ÞJ3õ´ÿ6šº_,¤=“´#Ÿ¶ÐƱ”êüðñjêú£ƒ{KiîË FòúuÞ@sSt?¿iÚé}t"I³·Ð‘9:ø!Õ9Éþ%4õ.MVÜØÎbÚ~šjŽ·?ßÜ@õó|·èž{ƒÕóT×û\Žf0³ŒNþo:µ…žì†vjœ+Ä@'ÎÐì[¢<fŸ¤ãëèèt¤˜})^ Ú ß_AûfÄ54ý¥ØOSÑîõ´+I;×б5F›Ý÷éúb‚MTò•mü =Q@.¥ÕâÁBªë0î>>¨ùwߌÑÜcÇb/ä×cÔçús¾λ+F_Y fè¡jzÂP7_ì\A“@Ûr†î.¥™-ÔåÅSsT{¤ÚbTs0/¥z×õ}õÜñSs0’ç§¹§ uë{‹–‰g¡íMÓî3TÎEÖ j*¡Ùjéž,u¹MÁšµTÎý›£%4^Ikiîé¢]óTsJúª¯íðíÔ÷Üy6ÒŒ8|u=×Áì1:ÑB§6Ñé?¡¯­vþ&™‚6w[¸h™¥[D7á5eâ8uŸ;Aíµ«¯¦Mk¨æ;»`j„jþOænh³¯ÒÁšYN¥?Ý|×Pí«h^FÝþ¿×ö?Lk2ô…8Œì_í-¤UYªçV›·Ó¶Ôõ;å¼jô>핞u³?I{×Òþ‡`äó4²ŸA¿ò\[›[ÿ.·PÝwç#ö¼Kun¿s†êœCb%Õs¾Ø[›¤Õ3ô€š¡±<ª9ìÏ'éÎRú-M±¸½Ê¾‰M #ýPÚ“(ÚÁã´ÅÂHobì,­ÛC]u°cN\ cU4îÖn¡º/OÐÔ ºuà×ò`4gm†ú}qoz-u½2ÞHþ…Ëg 6£Uç©;/ï5_·t“ó™dN{{Ñý÷M•ÔåxíÔëtò©;ÑFuî (ëC‘ykqðNš~šöP77lJÐx5ÕyH}½ƒÆÏGyõ}t|Ú¡å´7IS+ió{tO>ÕÏ]G-3ÐTdéÁyª9ýk©æq_†¡_Òëöƒƒþý³ÕÐzK“[¨ë ñÚ“•T÷c'ŽSí·¿íÆöUÝØÔeñ3ñSªóJjã{76?Fö\ïHÄ·;Ý.&ÄçÏÐÉetâ߉»ÅŸ¢Ù7Å2:~‘ŽÍ‹÷ÑÑr:²ŸÍÒó´öÝG}?€·g„v/¡ Ú~‰¶Ж,Õ¡†=4²žOu½ÀåÎ1>Ãû|ù µƒ;è‘júú·é©ß¢'‡Nþkñ :±SÜJ³Ýb§ó—Ä›©Ë Žl§ƒn=Âç„só!¶¯Fú×ëi×Zš(×S+’õcó÷÷ºçêàK¥´, Í®Bº§<ç"§{>öσ‡ã×1÷þ1Grÿ¾8!¿±éÏim>=j qŸ{A7굓}TÎk›ïÏÑ·á×?´/Es”.¥î~Ék^ŒQ·gäÓÖ«T×;ú6ÑL)¼L‡wÐñ8Í®ƒÖå.{Ë ê>`ýi*yÎ6SEÓe´}õ¹å1hü:½÷ »¿h8GÜsDf5{ˆf0ò9¤”澬 y‚n}0¨½ã/–ßX}}ÎÐgÅí¥ô÷,Œ<ß|ßÒÜåoуTæàŒÏS󶭡ɇ¡þtê~š­¥.—:˜¹"§šß–º$®¡=ïPíC×|—D>mºHãK©Ëå ¾RDsÿAŸK|)º¤ëi' ¨?OÑ·Š¦6Оe´uš&Ò4¾•î/¢zζ÷>ªýïc7ÑÁêsF¼ÚGÐWC}_qðšÜI]®[PûUbÐ<[ ­;çôM¨kiw¾¸œ&—ÐT•9{“ÙK‡¢cwÓìa:YB]¾PpzÚäm*£U«¨æª»þÂàá$­Y uœîzèsK½n!èz‘ƒÒgfÒ;é 8|›è~/îýÄêΚp^ðm:t;\B3_Š—Å÷Å2:pH4T{ ÓWhjˆjzËZŸ¤ºŸ³;ŸæŽC¾™WϹ֗ÒÄmOÓîM§}ï@Û9Gë3Tç't.Tz*C¶ßrç•Í¡,=î¾_×ÇLÞB3i:ÖF§ æ?Gz(»–‰+èh3´G-ÕÜ@ÉÛÓÏǰâ´'/Òž÷éÑJhŽ®…Ö=GõÇ ¥Ô݇µw:õí‰Sw¾4¨ë‰uè‰,õ=%Þ}¢œ°þºâÕ¹F÷}cqê¾®`Çršü”öž¥ý]ÔÍ{íÐ*:ðõý‡Þžó´c–¶,¥ñ³ÔõØËKadÞf!Õó‰‹_aœw¼DÏÒ† ÔŸ7ôÜ@õ>_æÑL™¨óbnÿ6X‰º}ø »]´j\×iš|ö®¦é·i_-u÷ïAw.8v†Ž»y¤ñ\ЃÉþg:ùn¨}mX, §¾FO®¦“7щ#âOÓÈzÊ—t°„ö|/Ò¾4 s oÝØÞÇiÏq£x?Õçè®Fê×½¼zþ8QBkfè‘,Õûñ½sÐ|·”>7Go¸¶uë©®7—Ò–ÚVíàçt`ÕçÓ†yh^𽶉eÐöm¥.Ç1èò¢ƒm Úº„¶\¥Í1Ú´”Ö‹ñrš{/z´Œ)¤Ú‹[ULcótOÝ•¤.ï%(ó¤‘ü¢' Õ~i=—½7ŸÖÆhëJšœ¥½+`äùYϾ»¶îç<”OÄ©» 6ž¡-ïѶêú?‚îÜn0ÕLûÖCë{ú¼3¿GO½OOþêïG½}c´÷hruzA;ñ{tüA:rœêyšÌ<훣éGiïjªs€©iqø 혦ÍgiÝ’kërìƒÏ[hÖåÑÒÕmw~.èz"‚õ#´ñ mËÒd u×¥`ÿÔåŽ]¯YÐåûgéÐÝÐöí ÇÎBS^N& uó_^óÂ, û›Ný|ÙR=/ðª¥ÉÛ®©ÜHûú¡qó·A—nOÌЧ,MÝMÝçm[K·%©ïçðº>^o¤·&w¹Z´ÂÒ— uŸÿÁW樻¾ë7ŠÕÔ­g;OSwÎ6˜~ü†Úêêæ™ƒ®%èr¿‚_7ÐÜ›G}Ž W{ö&éþbz0C“A;´“j~wã9¨¹öÔ-tdöí¢®?9øûš#³Ðº~[¯q½p×Sç!4¯Áì+ nÿÝžÏܹo8잃ɫÔå#ûÏÒÁ‡èH)ûÚþFÚûíé ÉË´»v­¤E´=Ÿêxó ÕüûºJê玽îü¼×ä¶ùäà•Ò}–îÏÒCÅb)=¼–V—‰g鑵7öè,u矂'2´{# ëüsâEq^üT¼,~.^¥¹8Ì¿âññVñ6±@\!Šw‹÷ˆ÷Škĵâ:ñ!QÖ+z‹ÅMb‰ø¤¸EÜ&nËÅ q·¸WÜ/V‹µb\lÛÄ.1-fÄqR<%¾!ZñŒ(ë—½ïˆïŠï‹Ä9ñ¢ø‰ø©ø™ø…ø%Mß$Þ,Þ"Þ*. Ģܧïï‹Ä5â¢7ŠÅâ&ñ ñIq‹¸M,·‹åâ.q·¸W<$V‹µb½Ø,¶‰I1-fÄ1qR<%ž­xFü¡øŽø®x^¼ Ή‹—ÄOÅËâUª¹ }7‹·ˆùâr±@¼S¼K¼[\-‰kÄ¿Â‡Ä âF±X|\|B|RÜ*–‰ÛÅâ.q·«Äj1.Ö‹Íb‡˜Óâ8&NŠ3âiÑŠo‹?ßßÏ‹ÄÄÅO |9çh‚—ÿhöJÝûeÑÛ©{Sm´ý=§{~¨¡¹ã7yö[6÷ý|»0ç÷Ÿ}N´Ë‡±Óçéøt¬™ŽÎÒ‘:ô¡¸„>Jûo¦šç”z˜&×ÐÎ3´µŠ&–ÓæmZGëÎPÍ]ÝUDËó`dŸö»1zÕç ½gšéà½0’G<0O““´ËІÕôhu9‰ÞH¯öî"¡Ú7ܾ@S•´7_”u—;霞®¦Sÿ–N6Ò‰U4;NÇ+èÈy:´‰¾Kž¦}ªçRghònÚ¹Žj¾ËeªïÍ¿«OÓcèÑ =’¼¶û²9cåô%K ó y*F]î[PóÇe׎,§®§.˜)¦îù)Øó m¿L›¶ÒcÅTs¾4ϲ¼ˆš:Ø7¸‰#oA;:Cµ¿Ãõý¹ÍêbªóÙ; iw ´é{ésšW‹iëÚM­ÛŸòšú *}¢ödšj_÷Ä/¢#÷Òábªó6ªÎWõtÑD-m¾HÝõ-èö}ƒ;gaä\ù‰Yh›©ætäÞž‹ú~$Éݰ™ ÉÉÙœGŸŽÑò8u9“Ác¥¢û÷š MÏC;õßÅߢڳ5Y'ÊýéÄK4{Zü1:vˆŽ.£ÃoÓ¡»hfŽo¨ö¸¾D¯u÷ך³h\^h°}Ž&ߦé;$íë? 3hdÞì×éôe:ùót<-6‹1q+»•ŽZ±‚-ÜX=Ÿïz¯kÇ%êžoƒ-sTÏÉ«n=(ý|‘sÓ¥Iso£ í)§n=¨sô/,ЙKtÌÐÑ;èHíµª¡™Å2Ú¿šöPÍÝê­¡© 4ÒÇ›¥í›i¢Œêy-wý V—Ð]Yhþ F+Ê©œG°Sótl7u½êA=/ÒÓF»Êheͽ½ýŽ&·œ½è¾yêÖ3ƒÍTó:;“´gM@;ú!MÞNݼœ©+‚¶¹D\B}N¹÷¥Ø­,¤Ïg¡©.¢G D¹NkŸkêóÆ.&Ø~•ºÜ¹`zˆº¹´àؽbŒä¸ís—ñ yÜÐm–ºóŒÁýç¡uù®^›ƒv47Ÿa{’âFª9:>/È[UF÷,Ћ¨Îjþõ£y0’W¡çÏÜz^p ­Z ®9xh)´¯—Š¿Og>û §'ÇÅ1ñçèôÐH^ãÿwщSâÏÒìœø-:žü ×Q³š7ÐÁ/Ä„¸‰Tˆ÷RÍwï× æÍ&¿¤­Yºßí3H¿]$ß¶÷MÚ“Ûß´ÝE9›,Õs{õ34^Lµ/AúoÌóÐ@»WÒ—‹¡É=Î-*ï sÄКêrƒ’ïeºçh²ŸöTÓÈ\ØU:z;´GÜÏ£:&–ÓܲӢQãû¼:çyxÚ£tÿ y­Þ— iõZêÎ)uýÉõ]ßF°kšöTѾuÔõŽåücäüÒCsc]Á°ŸZ{ž6®¦­ó´{š¦,Õý¦Ì::ô$u½ä‹î¤£W~$õºé#Ñ~oÍaoJÒŽ„xú+|v.—Òîí4y§ø$ìÏžxc5¤·H¼_”õèôí¢ÎM=M]|P_™3ÔÍ9,Z,>-ž¾±CkÄËtø ¹O¼JGo“â{t,#‰WDÎï›ñ›Ä;Ä-â^êÖ¥ý®Ø.ö‰N'~Bü;ÎoˆãtògÄâÿ3úÇâ/Šuâ¿£®ÇkÑ$Ä%~BOþ¸øˆ˜¤¯•ˆ_ЙAúƒ m{œVUÓ—“tGŒê9+¿oà­ŒQÉç0UIêr5‚ k©öY´.¥©;Ž4ò¹1D‡o¥SÏÝPër?ƒûŠ éXíkAOýsq=™¢SÄ:¾ ¾÷Ê:aËêÎ%{MÝ´Ó{èd‚Fîç‹ÄÛiÿUªëp’cê.AëÎm\×T#í9NÛVÒæÍm.êrƒzèr¥‚Uyt7 =OÞ}qz´0g­¥ ËÅK´õm¿H».ÓT=ÕsýÛ$#¹áõ+i]•¸”Æ·Ó ÐÔo†vê!:yI\I',Í>HG×Ñ¡ít0Iž¤ýÐÔ´{õMÌÐãù´jŽÆèC‰Aãîïƒ/%©› êüO{!M®¦½·ßPÛ³‚NþÕùÊ!¿Î½Ãý{·ÓF÷:ÚoÄÜu$¬ÛWçÜé~§n¢“·ÐÞ;Īs1¿’G'ÖÒ¬¿+~Ž*ÞIÝzdp´ŒŽ¢Ãt(IOÑH^ÜŒ˜Gu¿9ì;ï¢é÷Åm´wºó„‹N‹TûE’÷Ríwýe‹Úy^\~cÛ.ŠkE¹î$NÓæ«´±€úu{¯öEöÑcTrn¬Ëðš} ÚX.vˆ ´y¹X!ÆÅ¤8GÝÜ[°u5Mn§ƒwБ´î¼¢í>G›6Šèñ+ÔçÆóéá+ô€¥û¨?/à{e5Fzæè+qZ·ŽºyÀëÚ™/n·Ò®Z:òuûëc1šm¤oA;]Cõ<ÄÀãÔõ={;kéx%þê\L$ÇJ®_ÉGiç9Ú2O›×ÓèÑyêΉZº+#}ç‡*iÓrÚó6u½ÌÁÌÐfÿ'uçiƒÝëhl4~ÌûJ1=§u+Ä ´…T{OôóíÅ,mtïÆ¤sF¼J›*hK1m[E]Þü¢µ´û"¦ÅÏhO‰ØF]îÏ¢gho–ê¹Ü¾µâÃbuóe‹NÒ¥4s§Ø%~F#ë{WéÐFñmêz = m»ÎïŸÍù‡;éë·Ð×ÎÐSÅtz”Fz¾N3kèW>GPw>7Øû(Õþ›î¥Tç<´ßÛí»Û†BZ¿‰ÆÏQíõÐ}¯=¢œãˆìçÈ~‹}ãSš ™rÚµþêB4./?x¸ÚÖKÔõÊ˳bœêóÂÔSÍgo\F;Ë©æS»Üò`ÿ»4³‚ºþðàø üþè©ïÃHßññ,4ëóhß<í¿—了¿£êù,=òºþÀ Î*¢Õ†OÒ¦Ô]Ÿ‚Éíyš¦¡.Çk]Ÿqp|'uûÁÔí:Gsã…‹Æ/ÒªRªý†;’0’#«¦ÇÊ M¥olÏ{´{V”ûù®óâjÚy‰¶oº±Íå´¡€Æ©æ5š¡Ï-PíÔ~^íƒ×׳Z§+hÛR±&‹©îû UÁÈu,÷²^´«‚F~ž•´^tëOAÔs9‘sH±+´6COЖå×6½ Z—l8Cœ¥/É—«žÍYïÖßÊ`$—ü°¡®ÐX‚/”ÃHncIŒêýÍ4/RŸG+y}¦n9•ߣi¸HOSíjÝä,¡í§E¿²DtÏqþ¾+éþÞžiï u缂n}Ãk'ÿ&?Mõ¼™Ÿóñjߪî×¹”E+¨ž÷鹇v]g¨›‡ ¶ï¡‰ Uõù(’³ÐðÕœ9¯dŸw^î׿¨®/.¦²?aZ©{¦£½›ißJÚÍôÓá·èXJ”yÃì[tò§èT=ùúÚrh›faè[sóÆç`ÄkéþUМ¨„v³…æùª=ñ=ÐŽÑ>7_ï矼ºŽUU£óÀeОþ :ùèÄ/Ðì±BüÛt|šŽ|.¦Å( =k¨ûyzëA÷Ú×^—ÒSÿUüUq%ÕâH/ñ¿·]ÛÉ*:‘¤Ù¦k;¶™ºõÆàà—´ï |þ•S—Ôy‡žíâTóÙÜ\x°k„º¹ó æ£´åÓÖjª}ì‰9Ú´’*¡;hî׌ôH8“ÐŽî¤îó/˜ÞO{çÅFšúö\Ó4y3uû}Á–e´.FåQ8´–†sÈ–ºóòÁò{$¯ý‰<ªçhú/ÀÈü_ö1:VHG׈KéÈ:œ¢î\@Pû¦}O7q…¶”Ò†s´&F÷Š`¯©Ù1G5‡éø,m*¤íKhr´‰KTó£ÍSY÷Œ¼.µ/i_ŒÎP]—Õy”dn#ø<Œ`ú>:p3ÍTRw~18Ô&žsŸÛ‘sI#Oˆ§éè›tü6ñ¸èæuÇÏÓì«Ô͹.úßèäçtêïˆÿD|ŠNß*v‰WèÉÿ@OuÐ×£3ŸCëz‚…=·Ró»y´rŽ6UÓæ+´UìÈ£]Ë©ëÇ0èç´¯ºýêàð&Z±@]_ZÐ]o‚c¹ f{ä •s§‘Ü ýyʼš}FÔõÜÍyÔjßžî#웣º>R— Û©ëS6‹©{Fú Þ§©+ЦVÓ®,m±´yu}1A·?ä5¹¯EŸÏ§Uké‰9ªçk"s›+©ž#H®§:ïÝ_LåK'èä zFrhÜz\P÷_(¢ú\õ|•ý¦ˆ.g ¨û)šzÈÒ†³´ÑRwn/Ø¥ÉC4eÄ$ÕþFš¹CԹͻĻÅ"ñ~ññAq½¸AÜ(>ö>.>!–Š[Å2q‡¸SÜ%îcb•X#ëÅ„Ø!&EY'Öó²™1qZœO‹o‰o‹?gÅ÷Äóâ‡âGâÇâ%qA¼,~!~Io—ŠËÄ|ñvQα Þ)®W‰«Åûĵâ:шëÅ ¢æ0<&>.nKÅ­âÓâ±B¬÷ˆ1ñX#Å„Ø!¦Ä~qHÌŠÓâŒø¦ø–ø¶xNœß???çÅKâ‚ø¹(ë.ƒ_R×w²èRq™x›x»x‡X(Þ-®ïïï׉F\/>">*>&–ˆ›ÅRq›ø´¸C¬+Å=â~ñX#ÆÅF1!v‰)±_³â´ø†ø¦ø–xV<'Ίï‹ˆŠÅyñ’ø™ø¹øÎ—ˆKEÉÓ¾M¼]\!Š+aØÏèßFÛÐT.Ðø4­Ÿ»± Ëhë*êr”löOsæî­»¯³éÜëϺžÍ ëK2û«éñ"Zoh¤ç|uóëÁä­4u‰ö£™ ®¡cÛÄrªùBÙa:™O§^¥ÓAO•‹ÇÅÓtæçèë]ô·C/¢' }5ŸæÆ·}€ö|N“Ñã Ôí¿5G`w1uûsÞHî¹Î5VS}½¹óWAí£h¸@eÛºëUpêÐÉ8¸…ޝ¥É{¨æªÔÌÑ#ÅÔåíz;Ú‡vfl #ÑÌçâtÀ} £ÿ?öþ>¼î*¿ï½âP•8D¡U9îT¡>‡:…zˆB\²Bâ‡Ñ0¢!fc< Œa„¶0Âl˲,Û²¼õ¼õ¼µ÷–´%mI[¶ãLV&îT%.G%>—ºDgâ•:T‡ºÔ¥>ôœëÚßµvßߟ-šsîëþã¾îüóºf23øAÒþýÖú~?Ýß&ß^½—ÕPHOÐæ(X¢CwB{ægiìík¥Ý–J.·c3m_V–ÑCõÐü¾¡ú|÷`¹2JOƨžn ý«¡•{Mï°;—Î~>ØžíTr÷½uQªÏÝNý5z™êÜÙ±J:RL‡ÖPùœË¹GY²²Tö²½îÏÉÙuIYB;hë"ÔÒº-TÏMgÌäÔ{cχ¨Î³ +•Ò–2*¹$^éƒpçb×Ðì—MÎÊ0݃æë–ª¼kÓ/ßWzÿØíq{·)×Q¹/õ†ç”U´¢—¯îÔyÖ‡”Òoçuy^íå´§˜ö—лiò.šÊ‡vä}:<ªÌ¾YÉ•õJo¡·©€ž,¢ú~Æå/‰ÞN·÷èl(£'æéÉ *Þ–EÚ¶MyvTÓÎM´»žê¼s;ðˆò ¥ÚJ^¦Ã§©äj{Ç×@ûý;èà'Túö¼•4ö>í?KûŠi÷9ÚÔCkŠ``¿Þõ€9%ßÄ©÷;uŽM.PýÜݹšªù:#}Þ£‹´eÚ·¦éÜEz&EO}¨|“êÞ íÌtZ©{ ~…NDéØ»Ê‡¨œ»ä<@åÜ=çÛÊV:t/MÜN%ÇÓ;°@c£Tϵv…©äQy+¨ËSwV,Pégpšì_KN½·ÛR@Û–hg´g¾M3?CcVYõ}µí½N›ëi䕹?ï± z DuÏNU=RHÊiÓYÚÚJÛ7P½ŸÕµ›Jž›Wò˜¼ñv*¹}Aç¨î‰OÕÓ±YšÞE'èä#Tò½ÓŸÒ™_§³¯ÑS'è™éÜ=0''ûÓN=¿ozÎÓDò*MÎÑÁ«tdžêsáÉÍ4ó9¡³¿HOÒŠ<ª÷Ê]ïŒü0r.ãÕïFÉó#ÏõÞø£4ÕJg×)%gxV>G³ñÞÀ~Ñs†¾hi[Šv\¤]ç¨îŠ•(STçMÅ×(å¾CçL Þ¥¬£Ã·S}¿¬ï§ÿ:ó¢ò¯èìÏ(EùGôÔ×”znµ„ž¹Bçþ-´oMRÝs<óÕ9˜ª7ͼZJ›¡ØHÓa:vQ¹š=Bõ>xò1z³ý„¢¼ì¯Kò&þŸjg”™¿¦ríÕ}‡±MÔåt;;Ê©žÃ×}ewçQ}n¥Î!íø»tl•{òœÒÔ­txBy7ÿ˜vn§-;©ëUs+¢o„é+1*ûNó½"Z3OO\£m¨Î§é C+sNÞ®Õ´5£¬§Õ¥TÎלæp•2E›ó•k¨îqÖùZÒ˜SÞßu_Âé9hß^¦§~’ÊÏ/ïÔ§tBž & izžês¶1ùó+¦rßÐ݇ɼV·hoíÎÐŽÚ¢õaêzœœUʇó q¹7Nuî`§S½/4v+•œAïpˆ&¦‰[hO>íî¡a*½;ÞæÝ´©œF꩜ã{O(P=—¾ÓP½×£s«ÞˆÑþ´òMЋ7VÎå¼òëõ6WÐÄheÍßù%>AuÞIßVÚ[Fu_rOJYJ»¯ÐΔrm¿Bõ>µÞÏ’¼U¯ìÿÙ× ­* _7Tï}¨þïÀœµÞïÛ[LÝ=È‘(•ïwo`ÿcöÆêûse ×;Û™sømå.:ÔN“qš˜¦’ëêíZ¾‰ç¨ôÜ{uŸ‡äe>÷Zåó_÷Y˧zSŸ‡ò yD©{Ù[ÒJùû>>¯Ú²©R:ø•ùeoßuª÷™õÏ;Éó†KèË!úûšp!­[OuŸ©Þ[ê-†žÞžµ7Öý=·×ÓÖ%ªû7T¯y5Båçز¢6±–>Í7 u{[‡Šoh YrP¼:oý˜¥G£´~ ­« Õºwó动îóUûF6öu?_œmåTr½ÇÂôªîmöÛÚk\¢óP†ž\ ÒïëíC;÷_•íÊJåôL=ýÇÊg•ëé©(ƒÎžVþéU~Nÿ…òéÔŸ(“ʇh¦‚NP™ãóޝËmq9.2ÿwSÃÅTî¡æd=´“–N\T¾¯Ì§é'èÈnšº‹_V¶*#Êûhò!˜ØF{·P}ѽ†F—¨ÜOzuŽd$IuþhíÕ9Žû©ÎÕ+57ö•}£€F¶Ð@¯Ç:p Í>>åTy´6³DÓ‹4yžÊž¦7¢}ó´·œöTÓ® ä<¤©ÊA²mçiëUå2m:G#Trd½‡éÁ*=ÜÞgB4ûåë5{Šé¾}3LÃ)z°ŠÖXè Qyoñ½Hõü€Þnº@åyÉÛ•†6y–ª9NSoiücÚ°@eþÈi§ÿ+ÚEuÓÈ9šº½C“å(ÕóúçRö›³û<.PóÒOÃéžEº# Í×¾Dù:õ¾¹@³/9%—Ï{"L›ÓTσò²kéÀ}4q+\¤ª'ÃÏeHÏ’Wrn½/š}Üòyñ¶¤ •}owŠJ^»WÍÛZÉð¾¢[ò Ù¢‡Ë©Ì½y;6О%:…\À:ùç¶Ùÿ\…ü:¤·4&ûÞøKTz[¼ ‹ô¨rsö~Ë©ÎéNÒ¡'izͼmº€J~±Wrƽõ¥´v‰ºy€}–ª¾S¾H•ÐÃ1¡¶ ÕsµjnÚçAë~ÿÎÉOéø‡Ê{”wÒô˜—I)Ÿ¢œSw~tMY¦|\YD“=Ê[¨î-t=ŒÞÕ4~‰ìQV@#yÂN›(¢.©{úb´§•ªùóÀsR[u½ Î=ah²1F9_^„ÜäÖ(mºDe~Ó«¿¤OÄ+ç Þ×è«ETŸ?ý¥r®êýªr Õÿg¾ú%þþ—¨ç¢¾kè®Eúr…r™î1ô»²zK«sÏô½žž+Õs¹‘m++ùü9©Î¥Öê‡èNÚY@õ¼Ià»R9K¥×É«ûÈÜžš÷í«¦ýÙû »_ùÈÊô)3ÊO©î¥ ¸‰&nSÞI“(UîRîQPÖ*ë” ÊFe3ܰ²’wíÕ9v/SO1bW6­œ,£:¯Eú½’ë”óç•ÏÓé;”–Îüš¸éK”y¡™?‚vªêí“åT=›§‹èñ<Ú²‰öVRùç8­äÚ{õ=„îÏø®…fWˆÖl¡'RTÏ/´ž§]U4v_¥ÉTò“½#Fy–ÊÜ­Ó¾ýóôt=¾›fºéD M_££Ñá°òA*ýˆÞ¯P}ÏÔÑC[è‰*ªïßT®—-·ôC§§èÔ¯)¤“Ò‰4M×S}Þ0¼†Åé ¡‰w¨ì=äÜLcPÝ£Úºž0ôP•²BYJkÂôà*ï«NãæGœÍ¥Êí4У,¿ŽŽbå*{{NÓZ@û×Ò‰'éä½4óËÊ&:õÛÊQh'ÓÊQåZ:ñ•^М…tpMž¦úýE>ÿ½ú¼½s-•=z¯¼:M¯m^ ‘Ýôø5zlމÐ×bôÕEh$Ì«çXÜž˜Sç¼é~ØÄ6:z7´³¯Ó©­tüM¯UÞIõ9iü!hŒü:û.ÁÀ=Žä0yù4zJµWí£wæl A;ûÓtæO•=JC§ÿR¹†f~UùËtìu½zÞe¹òY:|ZO÷R}n Ï½úc´³–6mUn¡‘KJõ}tòÕù³ZÙ«ôJÿŒ÷Ee( MEUý@ùªøí®…¦å,÷AÛ¶Š~ÇRÕ_胕Ïyo¸€Ö.Òãe´-ŸvÍSÉõÇ ÍÓ[ ù<úÚ"Õ{ÿ²ì•9&¯îÅŽJSTõFÛïÿ5}ûCzj'y_ù»Ê-tú!å/Ñ©}ÊŸ§™(ÿÜ»²Ò×â;GGL%7ͫϹï ñ½T÷ºw•ÓÖ ´!L%ŸÀûhxeõó¦îµÐ}@:?¹e+Ý_M…¥º²á" äqÖÓÁctLÎEƲ—FzxÍx‰RžÓ¤WÒÈù´7³šNK¯²Ë+Ñyg©ê¡2»ü¾®Q7ÿXæžtž¸œ“z»–¨ô:m:¥|’ŽZ:ô€ò.ªç/b5´3F¥çÑÛZB#kh}! |…iEšgéáíˆfÿó’cêºÆ·ÓÖUT÷éï?}ߪÏdÅiöVP#t|Ú†-ô`)ý¶…~ŠÚªû\[7ÒγTç߯OS«?õûJù>œý]8WH~J#ç¨Þ“‘yX§y6Lu/vßUóïö‰Îüotú×èÄ:¾Ž¾{èèž/1ŸÍS9ïôƶÐÞ‹´ãmºJU˜}.ÍkËÐJß½W扼]×èñRz°„ªž#Ïo^=÷tt‰‹dÿû§™Žßº²C ´ï=™GÏÁ@¿Jó9hãåt ¥|‰v¬§mµÔÍ8›–hcŒª_¯­_¤úüFúA½ß Ó¯SZ¤ß³T÷ KÏ€÷ØSÉKñ[†÷ù¾ršé¡eÚ¦2ïêí*¦½–öÕSýç+ûz^Éaô&?¢Ã©ÎÝ­§cåTæ…¼r¿âÌPÝß•ùtºŒÎ|…Î~•žj…vjêÕ9 ‰¨ž3ﯠrßêíX«\Eõ¹‹ëeôýŒÅTßOÔ.PÙópwþèt9\‡©Þë­ Ó%´uÓ•9¯€ý—olü]:˜¤º7Cö@¼:ç}¬‘N–Ò©::ý0´™¡ü=:ÞHG“Tú¼Ãt°‡&§}•4º–¶]¤‘uôD¹2Ÿê>WÉqšß Ó§ •ç@ï±k´¡˜¶®¦]gi¬’&vB[»žJŸ¬÷ÍRh•A›èYÙØW¨Ì}ykÊiU ä†8-Ò#!Ú\íðýtè%eˆÊÏ7}¿*}AÞž íØ¨,¤ÙuÀœ²ä ÌêýSOÚ¥Ùkꜧé[ÿ…6.Q™Çðóv2oSžÒÐŽn :‡!œ¡ûò` ¼î=²@%/8gÎÓž»B‡wÐêØÊö×Òáæ••ÏCïØWèÄVªçNý‹jæh —ÇÒ§”./Ò}n}W©{âÃ[èáb*½£^¹Bu¯Z\ž;_@;ûOéÔw¨¾/’Þ*oüYÛJ;×еyÐì/¦õ)¨ßKíá9hšì¿>ó‡têo)o¡ƒ¿Ä»h»¥:ÄwèÜèôÇT?·êý¼ŽÕçü¯Z8/w9£Îfy¾i“¯+éS÷ö„hìcš8mz‰êÜvýûëºJ³?Nƒ¶­¡î½Îù‚¡ñë´gž¶ï¦‘Uôh•??¯êù´;ó` ÿZï6åÓ¶T÷"v_£=;io’ú¼;1‘¤CUtt Mo€¶eŽºÜïŠOr@s¢”&‹³J~¾W߯œÉsò”õ·œ?{õŒô‚xchO9Õ{!Z7Çîo©_Ok£Tïù~/{Ý»,•sX¯Îe“¹~ov¬ä¿±Ú±{©ä9x¥gÖ+û<^ÙGršx•Ïw§^¢±»iä<Í>{ÍÎÕï-—il ÌC韙ÓtbšŽEhªÊÜ”3pŸ”üÚÄzªöêÌÉ .†vâ ô|‰£èÈ&šÚE‡÷Ò¡;¨ôK{û.S÷ùæ”^,¯ôfyuŸ ó<_èeyŸðö­§®ÅY] ÍžmZ ÑõÔÏ)SCTö±œvúWhfQYC'.Ðô£t,I%OÁ›ºJ‡Î~‰_¡nNÀÏ |¨¼DöÒØ1ÚÛC»cTÏãGÓ40wnhóuª~Ô^T.(ÃJCP'9àÞÊE¥¡yô¥"ª÷XÏ£S2ôeå« t_ÕŸºW¡¶‚ÊÞ»·-JåùÁ+ûNÞþyªs€aeDù9M~FÕù=D'ê¨Þ3—A¯›gp>¿MvmÊkÇï¥é>:–¦£÷Ðá9:´‹Ê9¦7¾DåþßÛßJuηÜ[ç,£ÑKÊÔõzõ¹É*ªïÑôçµä©z¦”*ç9cTž[½oXúú²²€î3TϽZ@uÁ E4S†¨îÍÔùƒ:oÏc8ås"g„êy9ù¹ã=PLæQÙ¯òJ¿‚WöI½:oD÷Eö­¥º9¾š&‹”}Tåd™‘‡©äx'.ÑÌèŸJÉónlõÊî) û—¡y5C÷UÐ7iwMßíÄfª÷4GKèȳ4uª¤ûöR;Gû7ÐÞè½;·Ñ¶õ´ñ"us·NÝ»þº¥Ï(3š—•µ%оÝCOÝBg#tæyxžo¥»èXM•ÓÁûh¼ˆº=z¯ºGйõ})eÕ¹º-Ûé±E¥Íªûe¯Òiv+å>׫òÞí©¿¢ÓE4ó§Êï(¿NÇÞþ›éè»Tö}¼ýQÚÙC[2TÏ“—¯ß‹´ÚRµ'o+LûC´F9÷Ï茥™):q•Ž)c—hoH¹–¶¯§'¢Tæj½úëFÝ¿›ƒš}l÷Úî*ªÎ×Ì‘9ª÷$OÁ›yÚös0pŸ9´ƒŽ´S¹·õŽÿ˜NÝíäÛ4¹›Ê¼¸SçqX™wšú(´§Ké©Ï”@G£:ÇzxMn§®_ÏÙ³•¶o£m+«ó—õ¾˜Þƒ—~Q¯ê¿²‡ó¨š œêç»ûò`à±j‘Ж*sÞ¾³Ðf¦©Î—~›úZ)4’ŸæÔ9=¦'MÓ4xßñ…r+É×q÷uÚuE¹ºœç‘ ªs!ö-Ãàž`usnNàÔÇTry½-1ªç \þ„Ë£x)tc¥Ì+yFN+{²9-}:û¿cCî‘¿wcíÉyhRçét´§ÿ39I§þ3Íœ “ò9a¨ä%yG¾PZ:§’ƒìMl¤ ´í,mµôD4e†²Ð¶ÊóU­ü÷÷Ó±5®ïÝ©rõÝþ Iï%õ,P}_5þ•={ïP Õùö–¡y!LÕy¢ ÓɇèÄ’²ŠŽ_§é+tl]O‡¥²çíßBc=4p¾²žºy#gkmÚ@On¡ÇÂTŸO‡côµ º'L¿khö“ë_ù¶¡1*ŸsÞã!*ySÎÀ½‹î+ø†æ…<ª{¤—8gm?Kõù§6½±º_làQš¸_ù äî¢c÷Ó‰u4ÓH{ý­tö_Ñ3CÐÎ=Ku>áÔ¿V~›¦©œßz›©Îÿ;^Meèÿ•vvˆê¼B—óè}„×Ó¡©~.‘ûƒœjN8þ>•þoä:m4TïQ=†ó#·/ÖìΧޥ-hÓEz´žÖD©þüy1êÞŒã1hå~Â9KÂ4\D÷YZaèÖ04Ùo›@>=9G·æQ}^?:§ìQî #™/ñšz\YJ‡?V–®ìÐÝ+›\ZÙij4^ ¼ÆiwéÊÊþñMmë¡Í×V6²–êž_­ÜCÞTɸ©/g Ù¦z/úè2´CÒäí4¶iEMeQö_Ïüceò'éô}‰uTçzO=J'>¡Ò'–ón:££Ó‘Zšª£Ã]JC‡>Vn¡ƒå¿Ky+XRž§±i*y#^ÙÓõ¶_¡MTzì½/Ç Écæ|ÕÐaªû ÛæhÏ6*=N;õ“t¬€ö^¦‹Êb*}vÞçò )S¾¦í/ ±uÊëTz²¼Ò‹êMЉ÷©äœy§‡Î\¥*×Ûœ¾Nç¶BÛ>KÛ èÉ0Õý=;Â0ð¼ªû3Tÿœ•loâ:0M¥_ÂÛ]MÛ¶S½Ç«Ï¾$çÚ¾²HŸ‰Aóµ0•÷]ï¡bªçêç¨î‡•|D¯þyû!M4S™ë8r ä„èùLÝÃr¤ŒîY€æ¹"Z¦¥´_){î9åsKö¯¼Éì>¾w·©íTæ:Fæšü£Žrš=nÉÙtªy)ÛP@%gÞ[·@åûû+L¿•sÒ™C4=KG£ÊR:ü,\OißUZ·Lk•êÀ´ÌB;wšê¹í9/_£ÝizÂÂÜÒbÖ7‹¡ž#5­ó4¹öø´j¾/0ïwT~îD¡iÞmbˆÆ?§.Ò9r;¼Nã´×ÒˆRåø~êžîØi·¥m1ÚXEÃúL4¯zT9ÐN‡¡m+£¯[º>š'•{‹Vv_)= ”œ4ï¡"eqöŸ¿)šƒÅôDŒ¶(ûæ ÔB³ßB;ÖCuïZÓnªóxdŸØi\¿¡Sò4ŒÏÕØBuïµÌ¿:õ9kàþ;¦í=ÐTåA;ó&þ):õ#åý4}ŽüXù!Z¤‰ëÊ|êîaÒ÷ãíZ Ò‹ëm½LuN‰>×XF%GÊ«?·ô¹M Õó<û"Ðì0ÊE*y"^=V3Gu‘¾,PÉIóöÔSý~’¥CQhSŸPýsVúżj Ы²#Le®Ý+ýÞæyªs¦S!å'tâ:YK§*èô¿ƒºÿZŸ[™=†²ôhéŠÚÌ7èøy:ö©òåW”kéÐ*»…Ê=ºÓ”‡V4ë¦çñ_Éзþ±ø´™9šèRÞM{#Êí´í =¹žRÉóê¹÷ûu¿Ÿ?wcí™Ûéô¿ :o(ymÛ Í¡|hå~Ãiö†h}=n¥}Qh“©ä¸ç<¦¼‹4Ó¾e*9 Þh=í(¦êžÇ6,ÒºyzHy C÷++Jéw‹¨Ê±¶Pó¸¥Ïªó«ô÷Ák 4¬tùòΆz²r!‡ÓTzݼ±bªïw$ÚÛ=OÝ=‹Sú@sZå,ÕýKµùTÏ |×B“ý¶É©ûú$ÿÓÝ@{dN!0¤îÍÝû¹Ûgi—Ï5—ëàæmö-f­‰©¬nXçé¾âÌþ•¿|c‡ß§ÉmÊÇ©œ£ä¬WnT®¦}וëV¶g‰vÑ–²ÿ>BTŸÏh_)†æ5åÑm©‡v¨”êû%Ÿrp‰Æïö̯Щ¯)•¦ÎѤœCH^„·c+4Ùy¯MÏÓÑÏèÀUÚZIuÎÈväo;í[ýôô¤§þùU*ý¤9ÿ.24³Mù÷èd/¦#›éPMì¦ú^Yò¹½rŸåíØB›vÒ}1¨ÿÏìÊþ>y®²ïém¬ m»¡•½ §ÎK´oÿÕùöƒ_¡É§¨ÎÛÖß…Y[äóHÏ!è}…ÁÇit ­¯‚Æíß8%GÑiÏ\£Ó[i îßÐúRªÿWP5‡k¤Ãi®Ó¾˜²žön¤==´Kþw;•Ñbêzóœ:§èXÕ÷ÕEÐd¯1r¾\@÷SÉ{ðê¾?wŽãlYGÛÎÑŽ9Ú¡±4ØBk l ²Ÿî4•aªz‘ìˆäõtÊ} Ë¹”sÖÁìïۦ辰÷¨~~ÖyUmÅ´UÙœ¦‡Rt×"4õËÔånºÎqCG>¢ƒwÒžeÚ¶¶FnlÃuù!N•#m,R}þ Ï]__ ¯†©~ÎÔ=nÎÔéÎûGò¨ÎÙnßJõ}rl/Mn¹,ÝWuúÇôÔÏЙ¿CõsÈÄ&:ò.MÍÒÄu½‘Θ¡6kûuÚz•ê<å†*zxÊ|¤÷•4Ï„¨<Ï8mCŠ.¥¯[êæ`OŠ_Sª}¾@¯Ðוυè‹Ymšê¹ Ùöº÷B§~Ÿrû¦Î=ÔüÉz,–õdm–ÿ\K‘²\ÙJ%wÀÛ³HcÏ~‰êç¹ä³äU~A'iFúã3÷ÀÀçqÏj]¦í…´®žê~ì/7ç×”5…´¶Š6.(/R׫àtçHN=Ÿªò7LâAš:MGbttœf†©<Ï{gÐÙ/`0_m;Õ_ß{–¡ÉÆ>äÔçâzî 'BûSt ’Æ—èàûTž£ojªV9OUž²™¢™·¨ìÁxgž ³?¤§*²^ãèàiWŒÊ¾‡Wõh›šêò©œjÞÌŽÍÓá Tõ ö|uþI{‰r ÍþXÊÙ\Iëiý­)¢oZªsÎd~Ó[¢ò¾ç•{§ï/qz'«hW-í9GeÙ&~H—éð.šš éõÊÍt|ÚÙ34s/=z‘î-¦£i:’¤©/èðyªû¥t`Õ}Ãý»©îÁé¾D£aªóžÜû»³å: <'m¡µJ=ç¼g‘>†fg}!D+Š©îsÔsÿÇÂôd¬V^£’?í•ÜAÓ&Ï×2ÿ:TÏoö¯¡’ÛåUý¥FÞß½‰‡iö—õ[#¦©ä]šÁmT÷'?m¹²”êÏÃ욑ה+õ{­soAÖƒs´1ŸÊüD Ç®g+Ô{xþè–U4:Kc(K•+_¢C):2GgÚ3•tö3šyŸN†èhŠê‚Á5th‰¦6Pù¹ãØ¡¼L§¢*oÕÌ~ž:KÏük¤oýŸôû/Òô=Túm}Ïíà-´³TYH}Ô–¶»ÏÛ|ªïßœœ Ío†©ËpJ®™ÓvÎÓæìߛݦs›éìøK”?£üÛt¦Lù‹túUe z_yJ™¤:÷=“¡º§`b MÅéà»Êi¿Hn£=ë¨Ë9t65ÐÚ9*ïcÞ— ùf˜¾¢î¹JÍ—Ù¦µÐ+ù9+¨îOn­¥Mʺ }U©æRì¶0Ô=X+—é«t1=®l©¦Ñ•sB¯ôOx>£‰Ç¨äyS?¦“ëèÔctzþQö·é 举SgÍ<­/¡M×iÇ<í]¾±ú'~M~L¥Ý;¼@S—éèåuš®Wþ€ŽgÏLFÛ£ì¥?ÿCtæåŸÒÙ_RP~@Oý¦²žNÒ¹»”߇óñ¾jÚyM¹–êóî¦rÚ¡:çôÍÕóûB´<{pß5ôõ2ûÏ5×S9_÷͈‹´£‚êïÿN¥ì}{uϘ?Çx즉÷•ÑÁ‡ijq÷èO(å9BçaLÜN3Åìó±™úsh‡6BóMscwe•ó%Ýó¢ç˜ì[á•ÍÒÉOéè{tè‡Ê¨ž»Ò_ÁfcÈs~= Ÿ/’7{¯ì'{—C›l¤]k©Þo(SæSuÞg$_Çi›•÷Ñ‘576þÕsä=—i÷e>Ô}°~õ¾ØïPóBFæÀ½2çá=ªö72{Ùv‰ÊœWΑœ¼-}ï1ÐJãÕtè*{oNÛ#4$ÿü“Ùm¤_ÆÈ>¢ÖŽ}DWigŒ¶¦i¦‚NÞCg¿J§»”ÿ3¥™t¼‡Ž=DSwRÉ¡òÜJc÷P¹‡ò꽸®RÚÖJk–¨äÃXé# ôo=†f·¡íËÐ_VÞG‡ªiò,Ô}ʦû´SÓÌiòSÚw޶$©äßy§ÿu=ßÞ¨²Bùót4Ÿê~ŸÁ+J5Cg4ó‡tâsš.¢cµtdÏí½B»®RWÚ½…vU+Ë•›htíØIëç•UT΋óþrC÷Q=g&=ÍÞÞ(Uýšvf†Ž%©zŸ2Ò£ìíÊ~NšXH”9ƒÄÚ¡ÒËâ=¶…¾Q|C{iÇæ¡íNÑ–sTç«i«*¨Ê?Ü¿ZDf¨ìÛ{ëʨÎEÐûë©ôïxû6ÓÄ—˜¼›&éÐf*ßWÞôéij4³éÆNý:“¡§¦èél¿9s7´®—O4±ótºø†ÚÞMÐT‡hüQ:õ:´CÇh_!Õy´ºGæ`„êž99Ÿ.£:Ïøp”/  Q*ÏEÞèvÚ[ \CÛij+}2L߈QÝ[,ó:¦÷*¸F“—éP9½FÇhæI:íö<ÇèÌ töh‡ig9tsöè’2C_/†æ[–J€·sÆ? CCÐÎúE:PC/R?'÷×NÍСû¨î“×¹ðóiÏUÚµ†î AóH˜Æ#4y ´Mò ß~žžy“žN+‡žjV~Î~¢¬Tþ<ù.Õ½ÓߢScÊßUþ&ÍüµòïÓÉ:±™Ž¿DeŽÂ;v•ŽÖÑ‘¯Pÿ'ûn9÷ÓÁšÜNeØÛ¦]ÅÊ"ÚœO½á1Z¿@eŸÔû¼¡¥a˜[û­0ÕÏýÕËôh1 äU)¢¯,@#¹‘Þ×*¨îY•<½›ÿxeeŸÌ«smežÅ˜S;D§Îü=u8ëÛÚWbÙ-÷E¦¡Ú!9o•{gÛº•êù¯“šýÇæÔçÀê}"0G¯{uÔó®Ý½H%·Ù+_?îž7wß»Lu^Û‘0Õ=¿2‡áíÞíÌS´w=VDçÓª*÷ÉÞŠ *ý9NóÝ0}³‚Ö†i½²©ŒF{èÀ üˆž\¢ÏÇ 9¦J—{çì]¤ªïÍŽo¤7{þpJ¾™ÓüN˜ÖäC›î¡c§éÈ{tøNÚ]ìEykKiœÊ9‰Ó6¯£zÎ_÷\¸\}§ô.:ýB2oä´³©ô{U •ï§œ*ÏóNãö î÷íTsŠöÌ ú¹cæÇJ•¯?ü•ŸÇ9£Tú`¼’cçm¾B›Â4l¨î¡Ý¦`¡©‰Ò–¶]¦ÝQhÏü$ÍÔБªç%û*iû"mˆÐ7–iö¸ §:'µÒ¿ç4/ÓÚªr”s9bwÚônÙL÷-Ó Í÷BÊ0Y cçW4°‡Ù$ç’z¾dúi:õ'Êß§™ËÊ1¥ê¯™XTÓt#;@GâJµ'?¼Ê¹„7ù#ešJ¯»wà åå‚ršê>qµOj$GÞÛ½ŽÆ/ÁÀó|¢šÊÞƒWçi+…æd1Õ¹)®7Þ©s6z6Ñþ2:‚\ÐÑÍОͧú}oö¡’Såú·4óȧc÷ÑT,¡ñÇ©¾ïYE;ò¨¾×n*¤’Ëæ=ZAu·}6Æå=^÷”êç]ujKó ‘÷%ï yTòò½µKÔ}½9›ÏQ3'÷ÞÞK4¹ŸŽ¬‚v¦†Žg¨ôƒz+‹¡Ù¦}­ÐN–ЮE*ùáÞï„a ÷»††«¨¾_™^C§î¤“£T÷îA·ÓTJ¹Š&–¨Î•ÜEo¿¥rŽííØF”(‹©ô”zõóßËJK îûì3aeÕûÙW9C!*ï…^ݯZ_D›f©~VûJæñ0­ÎÐ#×hÛZÚ±Šºbgo>Õ÷>Ò=tô4ßí™f:=N§þW:þí5TæÛ½ß1ôÔèÌÿI§ï¥“géøuåš¾Lõ9›ÎIéï¡ÑµÊ<ªÏ½[ èá’jN.S•ŸbgZ”Géx™ò ¥zÿy‡}F“…4ñ•|WoÛf*ù±^“×µúü¦›ybÚÙSt|?íÛJË‹èøûTßoô­¡êüÅÈÏ+¯ä{;®ÐhÏ|DOÕ*«èäTîé¼£wÐÔ}4ñíÞM»òé‰yZ–ÿþ&—ç©øœ2FÞQª{+½7®s=›ªh]!Õ{z>O)Í^«ål? íÐtð2(¥¿o Ù£oP}Þvp™ê=ó†‹ôĵ•œ¥©4•÷ïX ¸•fþ NÑÙߣ§> gö)ÿÚ¶Ê•ì¦úë ¡Ù/¯yÉÒêª÷·N,Ѧ(Õû$QªßùÃå4þ.ÕùTúïsx£2MSQ*sÀÞÀß÷Stò4Íü&´3Ñé)e†êžJÙöŽW)rM¦<¯ÜHÇ–•_¡£—•O)o£#Ÿ(—”Ùó&ëΟ½ytè<•¿ßœ”»iâGT¾~r6+·+·Ñ•wQÉOÉYCåKO=KgÑ™8RŽ]¦zÞUæ¼½•ahš/S™#ò&KèäÝôÌϬ¨îi7-¥Ð&wÒc%´.Ÿ>†æ†î S7wèÜ£zn+7¦'¢Túš¼­E´ý2í¾x½Ú5aÚ¹Ú#¥ôõEhª =TFUžeà¹FÿúÔó¼þWtè6Ú£­ù´9L›®P3#sE^Ýÿu¨€îÊ£OÉŸƒÛ?wÖFè‘‹´9F%ßÃÏ_ЦD©þ>sói4ž=gÓy«ç0+½ONór†Ö•Ó¦<Ú—¦‰ ôWIÎ«Ó äÓÄ©œ£9mM9 +w‡aà÷S]LÝkŸÉzêçèÔ/Ó‰÷éÈÚ]M}9´3tú:õwh ñ_R=ÿ8v•|*oª‹ßMeÿ›|‚ê>ëØçÊÕ4Z@›—•”å4RDOÖÓÆ"z<Ö*ó.ÞCV™¡¯·(Ý_Au®šë»|u‘¾¢/Áà\fŒ¾ tùÎCQz2ê\Ž®y«£É‡ }D»•çi«²¥6¯§‘eªï‰O”Ѓéë*=„^Ëþœ¥zŽq·¥î=À©?eï×ÛTO›×(çhK„¶ºçï5t`‘º=|gà<ë=:r}\¹ Ú·†¨ÞŸÏ>FæT÷TæPÕÏG’à´Ó甿¨\G§î¦“Ò±©þù—|‡&vÐØ6Ú¿H».*cTö%½íK´-rcõÏE½.ç^ÉG÷ÖQ9?÷Ê=¼7ûmî5¯®§:_ïè=fh$C›h×eê÷<ÅøGÐ QuÏ¡ß×M\Þ;“’S:º–f‡¹®á­+Vª÷«rÆ_ǃu4R MW!•¯?ï±0 äiëÌškÔõ_;õÞµ›#Ôþ®RrILÛvÚ¾@£ë©þ<’}ÞœïC{z±tz Õ½"™N:QAG¤ƒ1e‰òNš¼Æ÷*Ÿ¤5ªó™Õ=¬‘ù'¯¼ïäÌþºô9O`¿=u‘m£ƒTç ö_ Ñrª{tôþª~?ËÆ"x½2ª÷Æžúm:óu:¢îyÆ‘{²ò}ýFö÷i\þèÄãttÞI=4¦ýçiw=¤¨ÞçÜc i¹@UŽŠ=ÕO@å×i/SÝ?ÙHciÇuhÍ£úœòd˜¶)»ËhìMlƒvŸÍêæþ$¯Ü;rº÷ò›º–¶,QÉ·ñê{'*½ÁÞFKO”ц°Ò(K”ÅÊBzüšò¢r~e%¿9pß°DYLĨäGye.ð¦î Ó—B´ÔÀÀs§ÊS ¸§‚V+Ýü‘ÓõC;%§;çÅ•Õ=ųTõ8Ùô9eXy ìÕ”(×RË•\Cužq|š|¤üPyîCk©ž+Rç.6ÚC; hû*Ú¥òçîÕ=PzÿNòð¼òœë­-§5ë©|Îx³ã^—›êÕ÷?‡•²?ê•}zo‹|]Éç²7”·²òóÔ«s*õ<Ήõ´=Ÿö”B+ýãÞ‘>:´ŠÆÖSýù½N-R=o.=S^•?d$ßÛ{2E[”òþæí²Ôåcöí¤ñǨÌ-xeoÈ;Üíä&h*éÞ U¹Ývª”ê~ ÔÚ|–¾n iÚ­ôx].°SòÅfO†ê{‰Æy*=ÀÞ¶ZÚ^M;VÓh!•|JoO!ÕyG}rÏ!ó7ÓþáOÒﯡsIOÿ5=µÎ|N§Ã4óWÊ=Êèä4?MÓkèh;ž¦‰•÷¯¬ÎÕrûvÎhíØNûôËTÿ\>$/Ùëc¯yeÚïo£§Fét7ºÊþ¹Wr¾½#ótè*sèÞØÊzÚQD›*éC÷UÐüYÝã.sèN=wgSt8©|’ê{O9¯öF/Ðö‹´e™F hí"ÝCMiÕç.çÍ©ï%õ=ÜxåëÎ;p ÚÙßVþ ÈÐÄWh}>}k„f¬çÔóêcוÐÔ“tp?•ùEo]Œ†èsyмb¡=õó43MG>¤C? ƒ×hb ÕóaÑ4m^¢:G\r'½Û,ÑôôDˆJ¿áMu½×®»ÌÐæë´'DGš¡/S=ßñ{a*9SN¹F{¨î¡ŸëÞÌÏÑé¡•D'WSémñ¦7Sé öŽì¥©mTß×UQý~™ø‚ê¼"Ý_Ý_M»/ÒÎs´=D[vS}?¯çê*èÁªî‹9–»b+[•¡5%JCOÄh$BÛBTrϽ±ir‰JƒwtÚ·•£Išš¦º¯ÜïߊýÚr‰êþÇôƒTÿ-̓¦nŽvÓ¾%ÿŒR·çã•{›©”û”—fî£Ññ%:º‡êýv¹·õ~K{›Êy­7²U™Ogï§™w•›èØ“Tç}ê½ìfC÷…éÔUå*:ù˜ cetøTï =A“•wS=¿6°ödh»¡:gM÷±í²Ð„bÔåw8‹i‹Ì§tVÃÀ}›Ê? Üg8]ΦSr½‡Sô¤¡mÛ¨Þ7¾K¹ŽêÓ‘¨rJÏ`Î0=¡²Çæ•=P§z›öÎÓöBÚj©Î£•ž=os1MÖA;öMí§ƒkéÀÛ´gž¶-Sé)sšìÿLNÝ›ò´R÷ûiTÑöíÐJκ÷9jÞ°ÐÎ6)×Ó™N:õ}šù‡Žž£#Å4u‰êçðáj:x MÜFÒ7Vï³ôËçªÎ?n[C›Ë¨Î¡8XOwÆ ÉÆwçl(ÍÚœG£›iì=h%7ÐÛž¦á-tú‡Tïť里Qš¸¤,§®ÇÄ{Žöl…{‡þO÷Ê~™·ur#Õy†Ñí )¯ÓdòNªs+Õ–Î(ç”?V^¥©Ç•!ªó§åýÉ;±S¹ÚFùu½Îêö‡–Ò×BTÝ/Z™7öª9Ì@.¡›7wºçqÑžù)zê8™£ÓÓ4ó¡Rï#ÓÉ(Õ=Üë—èh-y˜_¤CÒäšXGåyÝ«¥½×¨ËWt¶]¢úûZ~Nyu¿Æ¡ út ä•UE ¿ ÍŽEÚuÖ^¤ñ÷©ëƒ–?_§m]¢-¥¡çé ¡¬îÜÔõ}n“ßWö¸"çáEZ'ÿ~Kö¿gÚåçP»¼_µËç{T>‡;åçwgöü×ø9¨u4r•ê<4 *}öNS,¿®aeÚSMtv+]C‡NÓÁ‹4qNYKc—h÷m‹RÝÃyp>o¡‘¿O¯ë¹‰¶%L_5ôù Üת=Qs ‚ÖÖS}Žz¢‚ÊÜ€W÷Õµ_¥Ñ¥ÛSAûè`+j¤Ëiz–N­£Óít®G¹@ß¾Úñ|ªóùc§içÕ½¸úMç&?i¨ôÓ{ÑÎ ´3¿­¼J_´7³–ŽßNSÕ4p߸‘ê=2×GïL즱Úc•giW%•9Uo[+­©Ëhöu&Ï)_+¥¯Ç¨ÞS’})oŸüÜ WPýrÂPÉöJ 7óCêæÞO}Nçþ.´Ñ´)J„V4?£ïitžAÏ:8J‡¦éØ‚ò=:¹‡NAû‡«è™:óï”tz¯RíõzU[éäCt4LSUt8Jï§ñ T÷ùu•+óiǪç~ Có\=˜ZQ¿'âòb¦ëèx)M=D‡6Rç¿C¹šöm¤:w!ºJ^©·¹peê©þ¾( ÃÀ9«Þ—9¬ŒTÓ¦%Úœ¯Ü¬\¤ò÷ì®RÎÓ¾"»…ÆŸ¢ƒ@;ý©ô Ù‰ÛhB¾¾èѪŸç_ZTf6û˜wsõ9èÉBhKh«¼Ww—C;ó.œ é9e9¥£/)KèÈ»Êõ76Ð ª¾¯†‡”õt¨„&/S½Ï80GcQ™ÓövUÓŽÔÝï:uNEÓzÚ¢úž!#»H÷V@“ý¯åÔýqÕ T÷è֕ЦʹevæÓ®Yh“ÒÞ%Ú³›vÏÒ®2ÚQN[ÃÊ *?_¼5 T÷¼>k ©ÈÐÃÊ£eÐöçSý}4ôM\¦.¥c-ÕïIÍ[¡‘^%§¾5±FZ[FåœÞ{"Ÿ–ÒéÿrH¥OÎ+ù˜^éõfKr†,}8 çOªžçìì:“O'ÎÓäû4–ÉZSO«BÐÔ”Ò¶‹7ÔvT@S“Ggÿ ìE5¥iUfÿù:ׯ|#Ö]„Vò€½Ë`à=>rž¶7ˆ‘¬’sng'èÔ?¡é÷©ÞI-+‹©ìyå=Ú;¸‡&c4ñˆS÷÷ïÔ¹}ªsðÚ–hs)=YFÝÞÊÑõôÍ•¹1ïÃa˜ßUß×öÕŒ2Fõ{ÃdÏʦ•:B÷e RÝG£ßúKhËUz0L_ÎËú¢r‡…"*¹\ÞÃe4b¨ÎÛŽm‡vô3Ú¹Ž6F鳋ÐÔ,Ó¡•{om”º½0×_¡æÍÌIùy0¹—ÆÖÑÞµTÎW½ʶkTçg³T÷é=ÉÑðê}%õùlš« ÍÖPç|mšE´n‘öUÑØ£4¾‹¦ÚéÈ­Töí½Ò›œ3N§îüe ø|_í/¥*džò yÞÐ=¡ÿ¿ÿ_4ÐGš­[Ï©çÚ«bÐTFèøƒÊOé쿇ýÑÁe¯¢ê¾ß†óéw-4’¿â ô” ñ$U}:FæÒVzœúžÆHN£·yžv,A›ŽÑT3lPê½–Vª÷2zëiO”ʾ±·#}cåó)çjÚ*ï¹Òímª¥þ“ ºgšoªö‘ä§{[#Tνúï0 íÔ¿Q.дœ£ÉÞ…7°Ÿ¥Îéd¯ÓÛ£ÇËh½ü}ìC³·”ºyBéÕrÚ©BÚ›G;·Ò7cЄ3ôDíZE»+©›vJ…‰eÏuÌ@´­²V‡©þ¾—ù0§íMQï´š¦s´y-VÃÀy‘>¿x‰ª{_-¢'·PÝwVa`à^ìeªz}l—²)ݾ‚ÍTщ2ªÏóROÐá½tè,¼Dåç®Wç`ô.*Õóª¾ÿÒçÿrÿêm5Tîksn§ržå=9Oè‘"ªï¥ŸÓC¥Tò¾œvè }ÎÒohäœØ[YL%Ò›=õÚÉ«4þÕyIú\Ííw:æ¨îI9RFó‚åTŸkî[ ªÇÒn§ÆÍ :÷Ѻ%ªúµì-æ¼D¥ÇÝ+=–^½7Л¡±iü>¥ÌÁ'ÛéàGt¸‚¦>§£èxŒNÞíðth M\¡:÷º»„¶•Rý}˜=ŽÉ©û_Õ{ºù¦ò ípM”Ю‚•­°Ð|Kž§:§£{-•^§m ÑÃ…ÐÈ{­×ç:õ\Iú"}Ñdÿ÷fÊmtæ¿*§•¿C§—”—N}ƒfþN^¢»”ê-§r/îÕûiÒçM¥éÐ{_âå^:ø$•¹m›(¥.—Õ+Ï]±Ú¡ÒÛîíÚHuþyëÕyMÇ‹é›òïï_ /Ë¿¯÷U+Jéë!š}ÌÏyÜÞXÝ Ñ,ߪçÚVfèî"úp×ËâÔy•JÉåñÖ…¨þ>–s6o“¥rç ô>ÏÐcK+{x 4’'åÕó7­åTÞϼjÞ̶­ƒæ• Z¦*ß20ïX¦/Å Ùi©ìYzuž¦Ìixå\ÜÛ±Ê9»7ñ•<_ïè4ý(•90ïT=½…f_ïrÊç›wô!h'–h¼ê÷ù‰·éP=Õ¹ º'ZÍûÚæZªç¯QÝ û)Ý=žï:^E{C4õ ȇ6±^©ö„õsjüv*ý=ÞžÚ¯\E]®»ž'ê(QæÑ¶jåî/1$®¦-[©¾¯n*§ª—Ôßéùqu¾اzµ(«»qê÷ï×*è±*é¡MFYM[êit ÕÏS=òŸë‘97_ÛD q9̇6=¯üŠò:ö‘²Tù˜r³òeéQvÑÀsÉ£´±”Ê×±î5}¥ˆ~ÏÐgéÖ0 ô_|ÝP·ç|ÁRÝ«ær*%Ý[—Q.У)*=p¿Ö‚¬î½MzŸ½½›hl‹ò´Iú;a1Þ[]¤záxÕßWÍë”êý4ð|¡}sÊ嬩ótô1h3–N|FÓEtdÕ{7‰•{èÀnÚ¡Ý[©þûhÛB›+hc!­ÑýaªîÇÍoæQÛüf˜/¡êœÁ¾†æõ¼ÙýœáBªÏ3j—éñ-4ðü¢9áZ*ûÈÞîÍ4VM¦‰TïÙ[Ou¿N@C%oÞÅéH½R¾®ô~¥»_qÆÊ¨~ΕÏ?¯~n9ï‹!*ûVò¢þ»M¦he šK£õ4¹ íìUš¼‹˜¬*×Ï^ ÒGšSž"[¨üœõ¶]¥Ý=ÐΆ”¿@§þ‚&jhü]ª{yu®ÞìéøÛt(Ÿv]R®¢2÷ë4o,PµdG·Ñ@¾àEÚ/ŸëË´.Lk.RÉû ä@sý‰mÊÇiúN:v»ò6:üM^WîV>I‹4nè@”Æ®(Q®¦ý›hßvÚ[M{zhç5èI]Rn£®Ç[N›7PÝwQ‘ʽ£Wï÷È~µ7»~ç5‘í´w}J¶C›”çùþVªs\O’w=Ôïyöt“òyåWé©ÿªœVTþýL©sš~¨¬TÒé?Sn SŸ*›”¿F3û”·ÓÉv:>Ku®þ¾ÖùðC·ÐÀœÒç´e'TÐãóôÍeúJýeèÁ’^2oC=‘Ézr‘¶¯¡÷À@Ï‚ô 8í™Jšy‘¼O{{hÇY*÷Þ—‹¡©‰Ð^ù965E3ÏÓÄy{þÑrÔ÷Ø~>µ·aÚ+hoùŠÚXr¯ò%å½´¿Ê¹³WÿœÖ}ÖzŸKÎKrFhkŒºû-§Î·Ð¹F’oå Ü‹4PÉŸ5íû1vAóê"•\ o—Ræ2½cO@;ñr}£˜ê÷HÉ»tÚ®=ó·èéA:[H§ï¥:W<óçt¢™Ž…éèV:”Q–ÐÁTï“ès†øÈ嬢ýÞ-Ê Ê<*ù¥Þ#azp=us‡zÞ=²ŽJžÓŽHSë¨ëpö¶Â@?åkžstþö¾eZ¡|6L³_ι\Ò‹Ôõ×ê<_é ÷¶ÎSõýi$ßÛ•¡îóÃåUŸº“6m¢’î=õ2¹N%Ô«¿G旅/Qݯӹêުƪç>wú˜ß: ¬ƒ¶kmZ ²Ïê=DÍ3aªó—ÓH=ÕŸsòçä]£‰@Û^J_ Q×{á|ÖRéûòžú‡t"ªl§Ù•œ#Сåv¢ÝTÏ ¾œÆõ;uî«Ú«±’‡ë9GuõàšèQ®¥r_èØHuÏHÏí0ʪ÷ÿÔ{º•{*¯~ßSÙ‹õV(ÊŸß¡E*÷ÅÞ&CÛʨ<7™¾•¾;3(ï÷g>¥³¿D3Ý4q?í‹Ò†0=:OëòéÁª¾_Ì yTžÏ¼ª×*p߯U=|vWXi¨þõäѲðÊJ>„W÷¼QDåÏÉ«s²#hK…²’vZÚ]JûŠéÀ:š\M‡wB;ó[ÚT ëYsyˆg#ôûÊÓQe»rŸòè©÷”[èìŸ)ŸW®¥Óÿ’ž_Cù+4ý#ªû-F.ÓÔ;t¸NYJ}>¶¨÷áÞ¥}%´ç2•œUoÛfªç‚ß,¥_·Ð|o‘ê烱ÏéðC+ÛW@]~…ôRÚKuÞýkÅYý½I4å‹Tö«{i¸HÝbDž·[äýPòçÒgc:—apž{3mïFzlr.díÝMïÑäcÊéà{tø,[EÓw+éxüˆNýåstºúÆÊ¼´÷ÔíÊÿHõž‡îQQó[&ÖE' S; Ý» ë—v}ÓÒ³êÍÖ…{ÍaØ“(¥û#Tî½²'ì=‘í‘rúTÕ¹R›òèwé¾bzp ­»FOX*{W^—Ÿê¬+„vT9²Ÿ£‰$ï¡íë”…´íE—iÇ:ÚSJåyß;±Ú™¯Òé³Ê¿M§Þ “Ótâ=åzªûôÒÍtì¥#4uQ©Î+†_¢C4QAã•t ŽÆRÊÛiŸ¡=­Êu´;£,_Ù®5T÷‡uÒ¶õTrž6WÒ¦Uôø=¢ÍPÝsírøœrÿìÕç>{Œ²˜J~SÎR*¹Ø75;¾œóÌòå?Rþ yž÷Ѿr*½hN½—¤{í=ÝýeTÎÍèTæ`›ç{ŠŽV(·‰«éÈ£4°gZNçhò’r B}ªQ—ÿ¬íQ™õvÎÑŽ T÷e4Ĩî¯+¢:/ðM¥Þü†¦¼ˆ¾ZAå=Ù{t™6ÆhË9ªrþíÔè—8H'wÐñÓt«RýÜOo§cI:2GO¯¬ìÙ8sÎÇäùMæJ½=¡ØNÇŠ©þz¬¢ñ(øT¹™Æ.*£ý³Tú½­Êm4ºš¶VцEzÐP}n)Ï¡Þìc¯×”‡è¡ezd‘+£ªÖ´¯¥Ý—é@ úý:õùdög•ûÓꞯÑ<*ùÁNóò‚r‘êý Ù/3mgi4C»©Þ7NÄéP´²÷äÍl£É÷¨ëÅr6Éïð­Ìƒ¦'{àlÇ•ú¼Àõ;ÕÜ—y¦ˆ~¾zHÙX@eîÆ«z£u¿¨‰ËŸ_|ˆ&ŠirîÆÊ=‹Wöy¼« ‰¶o º/¤jöxt/LW•çW¯Ìey‡…¶¥šÃyTöôl¬”6G©ì#zÒìkzÀÀ~¨îÁi©¦±*š\¢©"hS·QÉÁôƧrï­ Ñg,4ÏÑp˜6оs4¾ Ú¡]´­É—õ¶ÌÓD”9˜Ó×èPíÞF¥¯É~+O~?UО* ã54±Dû©Î‹Õ½Ãúýº%Ÿê|·?åt¹˜ÎJCe¾Â»'œýý½Bmû}¡ö¦žQÉÅrÚô{t잦\›ó4ö#½JÛ/ÑV¥ê³-ÔÍÕ:ë-•=(¯œ?9Ì)z«KióÚ‚öK»–ig5•{{oË"uù;ÎúBª{Á¥gÁi^.RS3¬Õûqº·Dòr^¡í‹T>—½’çèMìR¾M‡ªéX‘RΛÆvÐôçtêç` Ç sŒn£Òwîí*¥ò|à42gè´©¿Äfåv:ü0J+÷(Õ<å ¼&¬üP9KÛ¨{žuÆò©ž›ëÛM{Î+ó©î êÚFóKQYMe.Ó[_N[ª{ˆô÷·:¯ œûÖ¦h$Z郻¹êïyøª?uÏìà4± \Cšiì#ÚwI¹MYJ]θSÞ+¼Ç-­- ‡ê©ëÉp† Ý—¡ºHßw¿¹HU\ ŸÜ™ƒvìÇ49­Ü¯|˜6.Òã ´¾Šî·´(šW =¼D%ÏÅ«çÊt¿ñ@ •½C¯›Óp¯¢#ÑÑ>š¾í©?¢rÿæ}˜F×@ãrù\N_¤Šžþ3:õ!4;‹è뙬õòÜz¬ k³<çÄß¡z®­£€º|6—צŸËäQ9¿ó޼´²//gÿ÷碧þ‚NÞ Ë‰q¹1' hã’²‚žX¤2gåÕ{eõeÊõT?×E”yT÷Ãê|á*{Õ2÷è•sQ¯Þ3•ÞڜۨÞËl¿Hu_lt“²Ryyeå<-ç9*sŒ7÷•ý÷œ1Ú³Eyön¦r>èÕýÆò¾žó˜ò‡t _)s?F¹YYEãš\Kë©ä‹9md™Ž§hìêöV_]V.d•Ï'§ßcn^ ÒûôÿT;5I“ëévC¿Eô*;íéoÒÉg©ô×zÇÎÒÑ•OÑÔ"uçBN·æ¸ö¬¢íõôä5*sl^=x¨˜º<…›¹;M(L]ÿ…óÄz*½[N;§§ÿ-XE7У‹41Kû“4O”O›K¨ËÒ÷LÚ× ¨ÌyuÎPe•yK§9PLk”Ë+«>ŸÇrŽ“ó"=¥º[ÛvvÔҮ˴ÿ¼rÆnUÞI¾BGJèØšÉ£µùÊkTòªrÖRÙÇövªûºc%4ÑJåýÇ;¢éµtâ|fþ=^»±sãÐŽ^¡’Oæ•sp¯þùóh8û¿'ó÷ÞW,•\S¯äŒ8­Ëësv­¦úÞ¸z™frþcjþ‰R¾½oæÑŽ9Øßí¨¦'­2Lªö>{È÷äAóœrO•sX¯|N{ߨ uÅT?¿ëÞÙ“*½m9K•ÛhóªÏÙ[[©Î§’ž3§ú—41Ì9­ìoßÔÌ?S6(ÕþèÄ<Õy>#”O)V®§©O•—•—hÿfªûöšÓTßÃX¦{2и9Eg¥¥îýÓ©Ÿ"E´7IÞ†6ó2Õó‚*¯ÏìT†•GË©:1Í ýþEšyLù“t|ûŒŽvÑ‘w”5tø#e+\G“qåªóÇâ/ÑC]_SÀ»iÏfÚ¢òý|Su?žüüðêïÛ#¥ÊBZ³H÷)uïÀwÂôµ¢ûF„R‘÷°#–Ö—(SÊ •¾³œeÊzå5z,JU†9‘¢zÏUåᚦåf*ó½Þ¨{zVyVy‘& h*ÚÉ4­¢CÐÀ½_Œ&®Rýý ç‹$7ÐÛ­Ô¹>ŸÇ–F ¨šÃ²òsËš£od¨Ì‡{¥‡Á+ûÅNãž/œú}o·¥ûŠèëË´¶P™ýuÙ·6õùÔÍsßLÉËð¶n¦‰ÇéÈ%:9K§LgŸ §îRÎÓ¹»¡­ŠˆÅY}ÎlAÖ‘=4²šƒ‹Ð¾™úþÖÈ\ÅM¬Pî§Ó߃öÌoÓéå;4³…Ž=Dõ÷]ÿ9¥¥ÑÚ|‘6R9×ö¾aéw¨y1Fëê©ÎÕ‹n€<ý¦­ô¸¥:gVõY™ŸónÃÀùYk1•ùyïÀ~hgèÈjÙMÕùž©C;ó»tjÙJã­T玦 4}õÊ ´4½L§vB{úSzê:ûþ§tj?ÍÜKÇ7ÑÑMž¦z?PÎ…½º')Ð'f©êÙ Ìî³Ð¦n§:opžÊ9·W÷»ê|pyîðê{@Ý[ù= ó‹G£´g‰&…6ó44'* .£Sÿ\ÙKÇwÐä.šxlecå´ÿ*í.P®¦r~–3M›[iÓz,BÕª …höq,çÞ˜2“µvžê¹Æ¥>è)¢¾/ML,SéÓrÚ˜ò•RhjÂt`‘&î¡òÜ纟Nœ¦³ÿÚèFhdNΛXmüYÚ¾ž[ z~X÷Kß•÷™ô½÷ÎçBT¿ÏÔ”P7ïíÔy´íW ù€ŽQ=·_¢zÿK湬ŸïŠÑ hSŸ@“¾ íȽ´¿ k‹Íz²˜fK½FîÃÌIù¹öv =ó»tª‹ê^ïÑ;¨ì {õ4¡ý=TÏñÕÖSÕfžŽQ™|^5/SÝ—|¢˜¶Ré½Ï©î{µÐv‡è›Å76û×óÕ}«ž¾Î|F'j©þú¿‹¦б´r œ–ÒT#Vm¦2ìµSÝ+Ø]F¥GË«óãõ\}Ë&*ó•ÞÃôKuHöõÇësb*×ÂÔÍQuagòiª‹ö]¥ß4tò~:v=«'Û¿H_,‚ú¹ßœ(§º×]öf½}³tà!h×S3¡s ^Ž(+ 9˜OwBÛ¿•v­¥וۨä¿xÎQ=¨çœ7Ðì-¦úœ$pî¶…¶ž½‰–vn§Ý)Ú{ö¥iì=𬠩éø::ó:´Ù?~o ?Nß+E¶Ò¦+´£|Aã×hâ©/QÍon¦“·(WÑ™Ÿ o= íÄf:\¸²Ïèž7¼M%´­Æ.Ðd£ò > íÛ›ètZEÓ2Ÿ—”Ïw™s xH~n¥»èÀÍÓž³´­’FÖÐp™²÷uè ÌÛ.Ó×hÿj?F__—hò,<@‡ºèH5Uù/6"ÏòsÃ+ÏÉ^—åÔ{ýÒ³ìý–¥jÞKŸ#ÛìwÎ3Bg邏e y€Æ&h÷ÚYJåüÌ;jéð]´¿˜¶]¡­õ´*Ía¥ô¼zÛ–it-휧=ë©ì'9ƒ¾Ítú=:u0tôs:|™ê9ýŽs´¹ˆÊ~Ž·ÜBó‚¶sqeõ¹˜îËݦÛ,ýZ4r>ï´é9ÚwšXíŠÚ¹Bgfhz›r3•Ÿ'^éMðJœ÷HÕïiúžGúG½ÇJ¨š—·3‡”;éÔ_+ßUþÍa yNyè”@;õWtü:RNÃ4¶êÏ}!ªŸÏ%?Öi²Ç,9e~Ó«çFOl¡M•´cí=Kå\-ç:x§ÒdyÚï_P~‹¾ý#åmô­§èܯÑÓqzênåߢ³óÊŸ¦3Utêwhú ôtÑ„¥*ßvÒh•¾A¯ìóx_QµŸ¯ç1ôsǯ/çÁ@JòMì¤=›¨ž3l_¦'ó¨Î_’ü1§‘~iï±m¾NÛ7ÑέTúмqš¼@‡St´†J’wbˆf*¡ÙOåçIk5ÍM6.-§Ê‡°1åzd‰¾i³ÿ}ÉÇòF¯C}~jÚ/@Û´]¹š#†ªž›ù :2Kû¯Ño‡¡99G‡k¡®¡ÓìõQNɇðþn4ÒCá´ß Ó3·Ò‰>¥üçRu´'L_Y¦Ò£í4.ÏÑ){VN{ÚÒô4±ƒê?×Gé̼DÇ?£úœwìYªÏ}G7Ñá48@%GØ«ó·d>ß+ý^ÕcÈ‘<¼LåçœWò"¼=ÛWÔ¶l ºï]åÅî©^³ô@­WºgDÎeÏÉÛT¤¼J[“´k7í>Oû6ÒØZš¸…ÝJSWèH;[ iš™§Ó_…þœ÷h„ês•¿¡óÓì×ÃÐ<’Ge®Ìûj1=°@k¢TÏ¡Ëù°7’¢Ú{žÆG©äSzSðKsS:¶*‹i¶Ž*çÉõtwˆÞ_ÿ¯ÓCëéqC[¶ÑÎ|Ú»L¥wÉ«ó˜†óèHŒJ¸w²Ky…Ný:´§ÿ=UOÇ•tô#åyœ¦ž¥’ËáÜDut`-í¼Jå¹ÍÛ\LORýž^ƒ&;nž³ºÚé:*9MÞìcaN77êçGÕs—<y÷çQ™÷÷9Å­Ûh_5í—÷”ÞíTÓšïäQ=§]¤±JhßÚAÏü{zú§él ŽÓ©ÿ‰NÖ)w}‰[•k”Üc·²×åMï¢#Ê¡4V®¦ç•óTö½½-aåNz¼Šª9´ÀÜP]9´‰+/)?P6(·ßXÙ‡ÎU6(w)ïWޥ̣óÊJå.{Gù¶²UÙ¬¬SnWޯ̧ýsʘRsé{Ó€hŸUžU&•=ÊÝÊ­ÊÔõD9{•õTz9¼ùºsÊY*s+9WÓè‚ò¬²–vÔ+KiÛ5ªïõ]ž‡wA¹–Êý±Wzž½r_‘³X™GÍ+-Ý£z¿æIå.¥Î»išUÎÑæRh“ÊŽKTö½:{Ÿ¥ÅyиŸwÎ#רœ{y;¢´7L}„(=¾N;Ó¬,¡Ó÷ЩŸ QÝ¢s[‡o¥ƒ·ÐxÕùJúë·­U¡‡£ô• ô"¼¡MúõÞ½Û땜zïàô™<êæÕ|›îç6{ ´ÉVz›(¤}›i÷:Ý© )·RÝË×¶I¹†ž0T÷L|/Í+*ç•^}غLåóÅ«{(ûKh|=:O³q9eÅ8?¡º+»•ó·ÂôaùçT„nležR~ߊh4EùշСy:\DGwÒ‰Çif†N7A;§©³ÐÈ|¥Ó–‡¡Ù[Q+}ŒNóæÕÏcÑ *ó³^yÏðªù¸@»ÜËy;RTŸµn¥’á•Zo`î SéAtšìk`N·Wè|µ”Jî“÷ ¡ªO.xþžO› •y,o×"íÙJû*o¬ô«zãù4¹ƒAÓÐÉõTúsöÑ©ÕÐÎýÜCû¯ÐìÇwÎga`Ëå7º=×3ÿž¾L§S=ï-£kóh¸ê<«§ó¨Þ;Ôóû‡ËhÓ<•Ïoçí½ íá"zê·èÀEêþ{Îh =\@]~«ôÅ:}ÿÄñþú[埣¾ÿìÓ‹Ðüf˜fãcrV-RCt8Dë•Ò3í•*oÛv*}^Þ‘;¡MÍÑøõ/ñå‡4[s›S÷ªtn¢-=tG˜Ný¸›ÞEõœkÏÌ –KÑ–Bêžg±U4þœ¦£_¡éý0°O¨î%ì6“ýÏO~½‘ ´’[æZ¢.ÏÛ™¸Æ+è@ Õç ½«hç%Ú~Žêš­X º¯GßÛ½^AëRTï'þcšùkï¢_Í£îïÉ)÷qÞÁÕ4¾feçÒgi_-íI~‰i×<ÕsUZ¹·÷JŽáM•žK[WF%OÑ«çÖ7æQ÷MCݾ‘SÏO轩š­[¦ U´-I»« ­-‚¦›Ú‰»éh>MíQ–Óä»4±•Æ?¦±KÊÒ/±ö—Òî|Úih4JÛ6Òì5qΚyú´…¹/Ùßòê¼£ö-´'F^‚÷æjK?NüöÔRÿ9"º^£Ýáì?×å´ºÜÖÁ/¨¾ì+£Mç¨ÎÇÖýÍ/Z¹@÷WPý¾z|‘ª¾yÓfhgÃÕ¹Ð=«©>gïßFc×iüM(õçij‚Ž^‡6¶™¶Æ¨ä´ës+ùŽÞoSSjè¥{ïm—û´™M4œ¡™st"FÇ®Óù>vÏ‹þ¹q+Õçr²ïd“•4ñ9Å”+ï£ýKÊMT¿tWÐèfÚ6O¥oÜ{D¹Ï@#Ÿ×N›ù-:¾“ê?·á{iòs:°›êÏí@_ç%ÚÓ@u}ûeå"Õ}õ­›hË,mª ®Ûyp=}¥‚ºý ·/´¿ˆÖ/ÞÄeÚ¼ŽêýåØšè¢Ò{ìyÚ¹wèÔÿAý\èSПëInÓÓW©ù¦ÖÒ—BôhŠ6×Óè*_Gi:(¿ÿá§”»a /ªi7m Ñã×hÍ­ˆA³#´²/‡©ÌAÞTC+?¯½Ñü••½o¬‚&'èp=íé?¡™V:~Aù:¶Hu/Éȃ4UC“˜o™¥:ÇEö¼2_ëTÒºúj zH^)¦‡J¨¼—{åü¦ù<´™¿¢ƒTç,É^“Ó5Ê2š”ðv±‹çÓ‘k4½íÔÚY¬\M£óÊZªó?T¶m/¦-ÚÜ@›–iÝ<Õ=Î7S÷%©ÏÛ@¯Ð7,uùZ—wçïëCô(µÝóTúL¼­è‰zZo¨»tÿ<7ÿéÔsÕ2镾/¯ì·xuÞ¶ô{ûVÑÄ~˜;ÿ )óhßeÚ^D[®Ò†<úF­Z¦/†¨êûä;/¡-Ih3/R}Ž¡çsõ×í®"hdŽÍxþqçcΓiƒ¡ÇCô@éʪóæ€O…¡ùK÷,PÕ×iä¼Ý«s³Û«h÷õ•xJ¢ÉÍÊ-t¸‹ŽR+ïíÞÚ݆\ó£%оýoé[‡èÜjzú«tv‘Îì¦Ó?E3oR½§¯÷‹üžÑ;TöHljïÊ6+#YeÂÛ_K;«¨Êà Ì[¦2¿åÍ^/{}àÒoãí’{Ú'Ý~ÚÓÏÐÙ‡ét­ò:õ]åOÓÌ eˆN>BÇßSÞIu>œûûs]Q®¦ƒÓøF*=y9óiÇ:É£ òŸ«-§{, ì}ŒÀÀœŠëß}¿çh{ŒÆ¤C_¡Õ!ZGm¼ˆª¾Þ@^Q¯¡ÃÑ©?Ïþ÷Ãót§¡¥šì=ç>KßÑêæuôh>=n©ž«ÕêÜ%mW%í­ rþ˜3{Þd?¤Ã¥4õÝK'ž¥™hÓòsüû¿OOÿyNý/4ó  ÓÑf:XIÝ\—SŸ«¨@Óƒ¶y'=\M›²½ÚØg0pލçDšct`+´Ówѱ­tø1:°‡Ê÷·ý:=Û¬|•~JyPùôí­|DùSô­?WV*ï¦sÿL9§¬¢g®(O+÷*WÝØÓå·é©¿TF”÷ÓÙŒò7èÌGÊãJó÷éôœ2¤ü†ò:õ¿*/(¤œ¢™ËÊ“ÊJåW•?GuÅÄÊ t<¦¼›¦GéØ:rž¦®Ó¡ø—XG1—ü˜êœ˜Ø½´s'm;GõýÒ¾ èŸçœG ``ž[~>yÝç©ôîy-PÝ{rbžŒ®¬~Ÿî]G •>ò e4õ´ÒOç­1ô{‹4diöÛ6ç½3Íw u}ñÎaªûlùs´·‡ Ñd® £OÒñûhæ'éô_ÓS}ÐäQׯö ô¹R ϰ·œêþ=Ïÿò4ßµô`­)¤' èÉzªsFåÈ›|‡¦VÓ±‹+;!Ÿ×Óÿê<åøV*½ÞÞÚ ªÎ…ŒôÝx{k¡ÚN—it;m¹Bå¹ÙidÿÃè#ÌþÛ9_« j¯)s´C)ß¿Fz¼¿ßk´EÞ«&ž c_¡:¯vö-:Uî§©µ4™OÛi$Dk-=¸D_´Ðg½ºR悼ÍÛi‹<÷¶•R™çóv¯¥ýë”ò¿Û”u æhR=tðTzí½­—hc9Õsq‡Â´’~.¿QJeÏÌÛ¼šv*{Þd¾Ÿ¦×SÙcpÚéSÊŸ¥:iâ#š¾ïW>¥,Sª =gð帕ƪ©¾•9doô‚ò,íÈ£òõíÕ?W¥‡Ë+ïÞÆ‹ôDmX¯Ì£:7Lï5¹Huÿ~¿“¼¿œòÏÑóÈoÑòEªöyi¡U÷Âf†^¯,VeŠ7Ê0Õ{*&˜´“öÖÓ– =IÍŽ<ªçãô{lûj*÷¿Þ±'éÄ#оõzfD)÷Og~–ž~VYJOýSåôÊÎþÎôÒ©¤ò|[©ÎõÓ_Б.:tŽ&ÖÓ”=Ê-40¯ÝJûwÒîVÑ–mºHëK©žËümßFõþpe$«þ¹èÎ%œc]tôˆÑãåÐ$ªé¡|èÏÖy6Õ1úº¥/-ÒGó`༼2D¥§Þ{¢„Ê\„7µڹߦS[©þÜk)¥:GZXÙëw÷¼áž?Ú×PµÇnß¾LÝÏñ‰ Õ{Zé͹DcaÚ¹@;.*Kiû’ò"m»Dݾ··•ê~¼@n“~/š¥…ÊÚ`éÑõ´n‘Ö¬¬zïÒ½Ùm™÷ôJ¾[Î Us6æhÕù.:ϼ¥•ê¼Ù'÷ªçu“Ü@ÇdqvÍüKå¯Ò±w©Þ¯ÓsTMg©ž?|9ýÇ/(w+÷Ðz›µ1=Äú6r–+¦¾’ýF~îé_÷>¥ÌA{ÛVSÝ*óÅÞxµò=å’RÎúå}1ð~SíÌרÎÔê=«*C÷,Ò ìë\¤’ïîmÙu¿®y¹xe_±ô5jÇêéà´±„ÍÀ@ˆô±y.B{öÇô´¡Óß§™rš¾B‡cÊbªŸ¿Ž”PýüòmM8 í¤ü|‘<÷œ³´3BÅèjžSF¯ÐC“)Ï*¿ ò÷éÔç@¦µÚáVšø!ŸSîT~…4+ë¨Î›í_K¥oÔÛUE; iÛ:ª?Ç›¯Ò¦”²‡F®)¯(ÕÏÙH=YHe/Ú+Ÿ—ÞºpVÝ?ªÍŽ_å¬)¢á‹ô eÕŸû#Tzâ½.ïþ­¡.×Ë¢ÒOíÕŸ;n/úfº¹"oL™¡îüÕ)9éÞº%ª÷N]^wúq±i•û{oë:eŒ¶Ðö0•çÝœK´3M»·RÉYöö­W^¤Òå(¥ñišÈ¹d’›èàèð:²žÊ~£W÷i¤ëèÄ&šùõµ§âtl™ê{sOÕ¹~eåœÖëzÞœ'#TÎy½GcTz³½2?äõ?bÊzÀÒ7iµòõ"e}-Ê÷¥Wöv½úýû%« +óènCw…•!ªóTžˆ}2LC›M±r£òë–º>@o˜ê=ܼ™ê{%É÷¹™ºÆÔÇ”)z´@¹…JW÷ë6-Ðæ9å*óÞ@îÇ*Ø?«¦zNa|šNÜA3ÓÙ®üSQÎ{uîSzY\¢Ý1Útrؿġ4¯¢=az2Då}Ó«¿oô>ËÑRªö óbnOÁí-TGhk†ì‡öû«è©R:‘¤zÎù`ýþÿLwÒÑiôÕï ±øßH;÷÷ iÝ íØ'ôµ 4ß-‚vú÷hæKãC´#íl¥­©ËmvÒCz0EÃ!ºCiÂм¸HUß±yÍКEzr‰ª<;Ó–¦íÊîË4ö#šˆSucã…TîçœFò´œvô.ÚYHõœ|ª¶l¥z[õ”ššk4v@ù9õ½ÓÐÖd?½¢¯D¨ìg{_. ËTçµ>¥,SÞGÍ· uý Î=aªçßúczú+t¢’LcûigÕ=ÒcíUùãæÄD§ž§™èÕsÞ~Þ{5~[™¢‰=4VO%ßÙiäù×. ªGÀÎþ*¾›ÆwSéQôvÓ@½ò䪾¾¹L¿†æÊ×—¡•¹!¯û:rª¯Ÿ@¯èá 4ÙzéœzéMC{6@›ù:^OGKèð.ªÿþuoÖÀyÚsv.Óöí´u‰6†iÍ2Uïmf«Rú-½úy¢¹ö…¡=ÕLu_­þ|Ï)¯þó鬥*7Q¿Gêÿ3ò¹ä•~¯î‰–|M§Mï¥+¨z^7Ò7æM<íô_Љ2¿‡Dh,CeÿË©¥ú>áð"U¹Ü~ž@4’§é=vú¯éh)®¤½Å´c7U÷¹ÁûíÝò7Ò¼Cc×”[©ô\x»–iÇuåUzrª¹ŠàÜļRýýTE螪û¾w„é·- ž{D¨ä{.SÉ¥ò¶®UfNyñön¤ýË0Ð8 ¿îFêÞ뜾è*m,ÊzTþwäÜÄïvòsô CåyÞÊŸ‹Ï•ç>³EüZ8ûïë¿ÇWès–fÇì½æ¹0ÕóvÕ¥´¶Œêù7¿íì*¡ý©äÎ{‡î†¼Ë@?àNªßsS³ôX„¾^JÝŸ³èߨ3ÔÍ15Td•yœÅòç³iEmm¾2/ûÿ×Ïmrä´ÃïÑäM\¡îüÅ©÷Ÿtc×z-§ÒÏäÍþòsŽþgèÐ^ªïûN\¤¯Å 9RLݽLûÚ³Ækéà6h·…W¶­÷sÏýLo¡C YõÏùcë•…ôàÍoxäîyõ×ÇÌš¼›&²÷-y(·oã”\Qï «œ£ åôh ̪sC÷(syõ´c;´Ë©º—0ÏX*÷¢Þº‹ôX,Á@îaòM$©|]z»Ë©~ž‘ûCo«¼gËç£Wç<êsâZC__ _7ÐD6@›ùI:þ0®¥’£êÕ÷l}…4º–Êû÷H†ê~>½GüZéÊêûáù}'´¢và~Új¨êY5rîá•>_§íZCݹ°;'–÷ìœ_¡‰Giæmh3¿M'>¡#Wiòêžsœ{-Ôsqvpê\ïtœŽSŸÓ™©R¾¿²£wÓñ+tò.êæGf~BÙFgÿ=ýWÐμBùXµÊ¢ü)šyJùÊUtò~:QAÇkèè1ªó«†¤‰w•!„J WçwÏQ¹/ôF éqùy]»(¦¨ä-ç Qéƒòʼ¼÷ë4ûø­0}ÚPÙÓ÷î[¤jO×( 3ôè=‘¡M–ÊýXÎ ´½šêù2ÉYööÏÒDÁßH;ÝK§ž¢™?U¾M%/Â;± ¼—Ž?HÓÓ±T÷0Ž|@‡ÏÑ¡”r3ÜN“ŸÑDJy»ùåƒTæa¼±O¨î]‘y@oà~ ˆ¶Ó¦%*_^É-õJ¯¤7ðžë4\%–R½ÿþZ}9÷îÒÇnd×{Œœ£Ã? £Ót,ûdÆCt* íÄfZ»õž¾õ÷é©Ë+;¢S¿LÏ¥çiº™Ê{7ûš˜sd'•Ü oBöeôÏáÄ: Ÿgú~t`õPÝã¥ó%ú,í­¢IÚ¾Šê}Óš hvZ^‚öàEhv†²Ê|…Óf$_[ú$œ¦kMËócæGtê.Èþï¤çèГtp³r“òAšÜIã‹4ö…r#í»N%gÈÛSLõ¹}gÕó#Õù­ÎÏvýmmU´i–6F©ôyn¹±oXªçöw/Òohv)kÖC;ºšº0<}¿:gXÏ ¸y|ç> m÷9ZUÍþbZ{&×*弄I:q™ª<“ù”ÎþÚ¹ëôô-ôT9 ÌcÍѩߦ™?§|Œ÷èÈçÊ­t¸ˆu) 졉MJyî7ÓX„vo§-ç©ÎÅ §¨ä+yU¯Cà9V÷î·k¡ý€J®Œ÷,4ûB´¥š&ÖB¯!ûl75ROUþÉ'åÔûý:/»ÙÒ–‹4Ð#Ô@{ÖÒØ‡tà3:£c—¡¿N%o0gÕ½wúçµ~? ôH-ÃÀ^â‘•ýR§›¦}aº§šƒùt¨ÚÈyšýr÷yÞô¶n¡]kiìȵ׽ƒ‰U´·vTѦ«ôd9Ý,¿þß CÝ?c†?ƒöÔ:õótòqš¾›Êžwpieõ{—Î{Ôêüñþ•í-¡zß¼cžª÷ÏÀ\øãÊW}d#ÑžB*óXN³?Lõ9t4Må½Ã;ü•ûnoú¨÷š‚Ïóít¼îuô{º|^zUÞÙaéÞz¤6)G¯@;SD§Ï* úcåãT÷4gŠ©>÷›ØJu_öاtd >MyÞETïê¹½7Ò—¦]—h§¥Í[h$¦,WÓ“1*}G9×ÓãKTå<Ù#ù´®Œú>¢ý†æ• ØLÕÓþ*èÏE;[§¼“Î|—N¿¥|Sù0zG٥̣ 4}¹›¦Þ¡úžxð3å£4qAYFãÏÒ©¾ï=EûZ¿Äü•í)£]V9§¬¦ú½¦³žFKiÛÚ”\ÙÈZz¼BYLu¿­äýä,¥õeôȲÒ*#Tçñ¹þ©›˜3©« ›hô:•½vÓ£j?ÃÊ9¾WÏ)×G¡9™¢ê(˜Ë­æƒÔ9A 7#ñÑŠÚÊRªó©ä|ËiW¾\Je~ș˷NAÓ±•F/ÒÎó4ö0™…vî·hêÚ\qCÍÁeh“Ò4º~eeÿß+ó Þ–(mÞ@%Ë{|J®–Wzy½úóHç UÓ½¥ôÕe*û„7usúÔ«ÂTæ'¼ú|ädÉÕÏY-WiëYÚµvŸ§ÒטóM|Le×;´†ÊÜ´70q‡ò<•žÞœQå5¥ÌoŽŸ¥“ëéÔ/*ïWþ‰2Û÷kfþCûv%=³‹žZVN*¿Cg_¤:¯E;õÍœQžV¾ ¼›NXªçÜ´£÷ÒT»²‘êç•øÅ/ñ‡tà»ç&ÞFuÏIoŠêç ÙRHõçtU4‡iÍÒŠÚ¡%•!šì¡:×÷Xš‡ÃTrݼ sÐŽî¤ÃqÛ¾²]Ñ•mÛJ›+é CÉçŠÏo+Â74Ð?¥Õ¹,2'é´ÇKþû <¿]¤:?¶!ŸŽî¢ú¾3VK»·Ñ®íÜJõ¾ËåÔ=”ú¹øH”ê?÷šbzp=Õ¹ÇßRfa¼Fö“½û³ÿ9ξßÉÅõÎþ:LG-•¹*ÓWOûåó))ï9s{è©<:û¹…N>JG¬²ž׬¬î™‰­¦ýQªÏÉ"im9Õ_‡ÚW,4Ùñ°œÏ*+é1ªÏÍ'>¤c÷Òd3ø}°²ºZÿù轞Îê•m¿D[/SÃi rÞ›3¢,¥{âbzàK ü½ZZ£*Iç.˜lÜPNÛ.ßçÞÃó4ÒJe_ÊÛ²–Ê=¤7zžÊÏ7oo†ö)ÏÃ@.’ËëvùݪGØFóé1eæéðcÔÍY8;¯Ò†eêr’•æµÒéUç'æ`mÑÑMÐNý…R_ ŒÒK»«imÕ9¯Þì¯Ïî—ÿÿZÎêr+œêÚìQÖ_£Ç#Ð00ðÞ.¹ü^=Oìr:×âpŒJ~‡Wõ3¹oÈ™†6þ¶rÕyS¿›G+ MA}ÜÒ§••‹Tï+êß7JU/³iŠÒæM´¥€Æ¶ÑD‰2ûÁd$·Ñ+{ÆÞñ5tbˆf6)ÿŒN¯¥3cÊ¿Ì:»žú{0Ð÷Õ“¡­)ªæèmíÝ_ Mö%§ÎÉ’~m¯š«´o•R=‡=õ…òïÓ‘'ij#Ì£²gá]¥ú¹Wò?½‘KTõÙWéšÀ©s\ä7yk ©{wvo¢} Tî]½ åÐcôe£,¥{ í\G‡¦¡M鷺ÏWr­ÿV÷~µ% ­ô xOæßPãòΜzŽy¨ŽÎMž£.OÄçŠ\ ›©MUÐd2LãOQÙÓ͹‰ÆvQÝÇÝN%ÇÜ+ïm^µßfÃëiuÕï±:ÿRŸÃ¼b©ÎïÖ='»ÂôYm-˃Fþýœ1ºw‘î+ µÅôHm2´½˜ö^¥Òƒë­*¦‡£Ðž¤™—¨žÃOÍÓ@/™Ø_ ®¦ ETíýšÒéP1=XMöË#çQ¥ä.z[WA+çÞé­tâN:zަÎÓáYšøöZÚ¦MJÝ“·ÏBs8Ú™KÊ_Ê:v'M&©Þûê̇úÑNý-šé¦1åÃ4}ŽŽ-)ï§#è¥É¿…l¥ýe+íЮU´c mͧM1e>Õ½g'¢ô˜¡u[è«4”̓ÊÊÀœ¿¡GËiãÕsü2ÏèUÑ— ½B·ÑŽœ£»ó`à~§¦Šª½>;²JþœWåÜéiôꙫóª~D;t•{`§i¹N{6QÉùôÞ4?j™ÍS9¯ôŽÝJÓçéÄýTÍòåÞÀ«úŒäƒx[¯ÑØšè¢CŸPéUϹHõ~Gj‘ªüG3"óP2Ï쾟ÎÓSEЦúž«¥‚(¥ß CÓvZ™ûòŽÜKOÐØ£´­”êùD[\¿…ê÷†Ê"ú|ˆJ?–Ó|×P•Ãaªhë,•œmo¯|Nɾ¨WîÓ½ñKtðšú Ìéês#5gddÍi‡Þ¦±Úu•ê{öƒ1út4ß ÑŠ<ú²¡:Zμ¯S?Ù%?7º×*«©Ì­yãÐÁ!šzŠŽí¦Ûèd3ÍTÑ韧3o@Û ?¯¢ÐÃÀùÌ^M×,ª¡Ã{éX´òuçmY¦eTÏgÕ­§‡”ª?/ðþ}_ ìI©Ïm#=«Þc!ÚPH›6Ñ–RÚ¾ö&®£Ñ<*ï³^ÉËÈù M¦”ÐÔ¨Q^§“§éÔkÊÐÙh³™^?/ßS m¼By/xŸÆÊhWêÆvTжKTϵ„éÉ*zü"U=næICŸ³TÏë~HPɧñê<ó&K[K¨|îyå9Þ«ï÷dO g\¹Lõ¹©œzå÷Pz«¼©=täC:¶“ŽçQ}®09Oe¿0gŠNí¤Òk–3®üßéÌ·•íÐVe ™ú]hg¦”¯)¿M§—èDÿL¹LG6ÑáóTç¥K.JeÎÆiÖ+_3T÷ëù•ÔCtêRþ%î‚{Ãciu†ê¾F×»érœª/=OÔ¹…ª\Ï@N÷Fhgúi¦„N\¡ãC4½‡êûqïå­täœ2ESÏRïȧÜñ%>Bû.ÑÞ2Ú³U¹šêÜhý÷Ò¾“6/Ó¦uTöx¼úüNç>êû=·ò†¡Ò»å=ih{ÕÏ¥’cç´ÓÛéÔ ÍœR>£|˜N¾K'Ú©ÞËЦcÊb:¶ŽÌ+'èðÐÊ5*«©žCˆÇ”ÍÔå<Ê礷7J£Å´ãšò2•9[oý<­É§¯Xèyu÷êÎêE*9¥ÞZ«\¤Gè±=¹L›×*ÏÓyïÕ=öý Tö†¼ÉK0—ƒ-JŽ˜·-íUv/){hÇ9èÃ;ïÑzzxŽª¹Vݛ˕?ŸPˆVfhm!=a¨Ë©vF×Ñîk4VLãUОÚCgo£™=Jýœ¶Ž~HS÷ÓÁh|?Õó%ºw¯¹‡¯§"Ð<»xcUO“‘sÏ›i.@³·ÚÙO•¯Ðé1:õK4]E‡7PùùåMÓm´û,=QE÷C#}îÞÞ•>eï`9M(ï¤jÎËÎþ!þi»U¹ŠNQõ÷®óÃl™^øÃ[è±ù©¢:4ZíàN*÷mÞºy¥¥Ò“å=x¾)¿¯Šbªî¸^O§~.׺ï§þsh Q½/!ýÞÖÚÞJc2ßu4DuzxžÊÜwG˜f¿}¼æ;–PvÎÒ®4lWŽÒ¡µt2D§~‚ÎÜ ­ì‹9ûU3ïÒ¡whâÚʺœ{ñ–ó``?Hö½Cih'Þ‡û@é3õê¹ûÄvhgŸ¤Ó“tì:u=²®WöÐEz²ÚøêúŠE#ûÀ^Ù§óJ„w4íÌÊß¡:lrHYF]>ØøçÊwèèGtd”¦î£C?¤ƒçh`þl–JÞ‹·u=Õ÷û‘ÕójÖl Ó°¡-ëhgíßLåù›ÜíÔ}4óót²ŠŽÿX9¯¬£#ò<²HSTÏ‹JÏŽ×õ-ʉӎoSn¥éJ:VGGÓtä~:­ôfxYÚ£²/ê´§@gþzQ¹•ßG“µ´užnÏ£¿AM©¡;óè«!.£' ©Üozë2´g™öm¥÷÷—h²’ßMG×Ðô'4SF§žP–Ói™ŽWÒÌÉ~?šÙwè™_‚ý—ìÇAÎîeÚvžF6Q7·öæ2=£¯[e†Êþ¸÷9jÜÜÓÍtýA^KÝýxÍÚ0OO@ÛŸ¢}•´ç*•¼§‘¹oâ~eEíÔÒÀ~KJÙH³ël^#½jÞ¶0´]t¼˜ŽÍÒá[è`=Õ¿ÞžUT÷?¶^¢-rž¢Ÿo—©Îáy/ø”Ž·ÒÑ*šÜªÜBûCTæ ½ûLö÷´˜Fkiü:òj£³oC;5@3·Ó±³t4IG–”ytø‚2Ÿ&ÏÑÀ=y;¨¼Ÿ¿]ù”òS:vuó†NÉ4rnâ´’¿íÕ½–:G£ë,ÕýÎ'-uý8Îp>4O‡¨ËówJn›·e¶•ÐΘs«¥2wìM•B;y7 ä8¦Cûibšú¾mõ}»Lun{˜F¶R}Žq¨‚î Ãÿ‹½¯ãºò;QÄÍñ0ŽâpÅa}4ˆGñ°=ŠÃqÔ£Q;Õnµ›Q³ÝhYí¦Õl7,Ó2-Ó2$Ò$QÒáâK ‚ ’ïAð)š­85Šâp]_ÆÅÍ««qÐnµÃ(Œñ(FQ|of°« ß:8ÀyTíúíªå¾G?ƒçTíÇÚkï½öÚžÉ?rsùØ,RœW÷öÝ@¶¶ ÛÖ#‹òš®F½Ž”÷ælDöÝì? ôÇ¿‹\@î©GÊø9îÈ{×Î}9õ/‘“gO ¬GÆgß|9ñ²àcÈ3o ¾9úäð­Èþqäñ<ÒŒ3!;¦_†4ãVH³_r_=RÞW´-‡ ò |(‡ü‚4ó±€ÞzÁG·{È«€þôÿ‰,<ˆ<3ƒì}y|Ò¬«…l¹‚üBÐ;˜CŠ8úß þ!òÜ·!§Þü±à^ääÿWð¯! / ~Mðȳ·"'BžyUp%rüVäØ.¤Œ¯ºÙ/Ø»yj+²Û¼Ùq@МüWȳŸDÊqäÌ/–àäézäÈ]ÈÁG}÷"ƒ|'»Ûë‘f_8¤¼÷ìó9 7׌ç)×ßLù­7ÁýÑMœwÈÞdŸYç™~)ï•/гPð7‘S7…3‚w#Ç÷-ÎÓãÈÑwçð”àrèÝÅ98…xY”‡KÌ_N\Dv¯XœG{æœGÈV"w¯Fšû­BÎ5ç^pOHÀ­Èƒ×¤ÜÏóžÌ#Ÿ_‰4÷ŠÎÓC¼‚<¼y|#RìÓù…H™÷gx%ràäñqd¯2”yGæ®(É¢ü4Ûò|£‰;è¿Ø<ÿSÍÈI³ÎVx]ðNäøë sô’à.ä°‰ãçóyÁ"O­Gv½†<:ƒl[ƒl™EÊxŸ¹íµEý[RÆy<5 ôÚ ók‘ƒŸB}9þ8Ðÿã#§?ƒ<7+øYäÔÁÏ!'w!Ï\B瑦¿…liAʼ;//LyïüèMÈfùí¿Œ<ß…<ó r¬9jâh†žEöýiü¤2.è±@ï›Ð?³9v/rx#28ðÄ8òØkÈŽMH¹Ïjî! X´eîŸ Ùz²ó²§yB°ï!¤¼pì§H3è÷Ý‚”qFæ~®ðž.sþ&äáW&Î9äØgþ³+ò¾Q1.Ês»s®½Éulò_" ãȉבæ~‡ò<ßðÝ ³ÿ£ÈS Èc[‘G̼ZæiÞÞ‚lªz›<äs¤É›òàZä‘À¢ùžÜÙ–GŠs°ÞƒõÈí›">Ò ôž¸‚íÈ?÷«H_!ã ü¡ëÈž[‘[^О¶ý‹ÈsDÊõqy_ÐÑUHs%ä.)ûApÿlÀ‡óÈÛë€E÷b%‡l®C÷Ì4q‘!Åý´^kRæ‡hË!Û·!e>ˆÎäÑH™ùÄ+‚sþº—߀”û¬SHs/ZÈ‘#ÇžEž~ yf#Ð/|Ù;ÌÙ¾iò¤„4çáBÊóð纣Ɵ”öêðMÈí#@ïÁr/Ò¿ø òÜr¤¼Gî` Ræ«ùZıœ“ëüÇgE÷5ìÎ![Zçþ~êQährx²(ÞcÒœ£ ùÂUäÁÈý3Èí—‘M@/˜W|¢ù|yä"²k-òxÐ7yðBιóiîY˜ç_¼$84ñÿ!s+€ÞžõÀ¢ø˜Ž·W!M<¨éÝç!.Cš|¹ó4ýb ™¿ Ù3ƒìÜŒÜׂܻ)ó¹ÏM'æ)ó'½)Ï‹‡÷o™ýÁ1cïNyîú]u ÓäÍ )óÚ‰þ(ŸÓ7yÕæé#Ï¿€”qk…ßBŽî@öDžjFAš¼!ï÷&þ< ÷Ų{9RĹyùý¶›Þoå§–#GÞAŽåÑ“qr_ò€þnŽrqçEÁŠº~9~Ð?ÿW§·"ò«3@ÏÄ …ÜÙŠ<ì ®GÊ< “7ý> ÷\²ÿ»ÈG€þÔ÷“_DÊx¹_jÖ±CÊ{¯LÞÝ€EñËÎ E¼eQêÁV¤9²óŠà= ³ã%dûEäáÈ'òH1ò¾\<1 ,:vòMä®Rì_ÅÏ…S•æ7r‹sWRÜgåõmFš¸Šæõ§ï@ŽßŒ,¬DN€þ¥"ø€àûßþUäÅ'‘/þ¹à—.#ÏŸý~úÓ‹óÜ+È©_ '_ü+ÈŸ >‚<Û‚œØ%¸bqŽ7!åx<Ú€^ƒú(²ï-dï*¤¹4¤ÌÐs3òØzdçd°ðð:ä ä®Èæ&ä–rn-¤äŸ§)ÎÓú“o Ͼ¶?€<Ó-¸ 9ö:rd 9ØìÛ„ìý>òTòØUdG‡à2¤¼OAÆÕæZν9äö«Hq/¯wìM¤¼·MПúRž?–ù8ç–¯þëûxÈ3ÈoÍÎ1ˆÿúUóïÎmCN½YÈ!å=2ŸÄ@³`²÷ÓHyƱû‘侵Ȗzä6)ód­ªCNþ¾y¿ÝH³o]’{® M~òy®@nñÞgsÈݰ(^ö˜ñ›LüeHyÿÄ3æï7ù@oGò`°¨žºnBîÏ!Ÿ,:?Ö‚Ü6‹”ë¹[‘_òsËb!½ >Òäç )÷ùŽæ}kæ~ªc·ýñdïH“o) ÷{>RÞ³²o)Ïq»ìyyê:RæéûRÞC4ÔƒmFŽXtßEÇZäÞ«@ï™rßJ oâC.äã­@ï™F¤ÌkÛvylnÔ?ÿgÈÂgW‘"ÿ¾oÖ™Ý7œ;hìNH#ãºÎýÐ?8ƒ|ÆG¶®Aî÷‘&dH¹?^;OynBÄ)yAüÒVóÿËü÷v)ÊÅ?ÿAä¹#ÈÂ6Á§‘7#W!û® Í=ª!OÝ· .Cšv4ÏiÁȽ­Èæ`Q“ß+¤8ÏçO|yúMÁ]H‡*9ä îñnò\åÐVÁÇ|H°9Øì{IðA¤É?ÏËÈ£kGzçá†Å¹»)Æ'ïÞÒœ{œ/ hò-„”÷dx èŸý4rtrè>dp_IÀ¥òšû¸æY@Ë!;¶"Û®!¿‰,Êû%¸¯Ù²Vp%rGiÎ'ôæ¦ûó”÷¾|¡Ù:Ž”y[:ê‘æëÆŽ„<õ.Пþ®à~Áÿ 9ù¿!eÞ‹Â?Dž½O°9xU°O0/Ø,¸9Ð%x?2yªÙ}Yp@ðfdÇ5äó‚»V wä‘Û}AáŸn¯CæV"Ÿkôë‘2NñѤ9Ïò)ω­Ë½o­FÊó_’GW åý3[¯ Mð€¾‰[ è™xë€~pŸFÀñ1Á/ÎÓ?G޽"ø2rô–Å9x¯àZä©™Åyt²ó†à›ÈŽåÈöÈÖü¼]ðVäÁF¤\·ëÕþ®«Hq߀·}5Ræ½ïÌ!e¾€Þ=ÈÁ—þäB åy§¶×A¾¡§òH¿ÐûJùh#ÒÜÃò™rçZdѽ77q/g¥_Ùz)ǵ9÷)¤÷9iò,…<2Ž<ºnav]Dšs¶ó¼,ø*²g=òdƒ ÌO û»C{cg¦€þÙäèzÁÏ#‡sÈÁuÈÞ>Áä‰ë‹óXÒܳ²õMÁäÁåÈ`Ðä?9ç&…ô6çßj@Ê<Ï'W Åù ¿¥ XtTÜ-Ïã{Ÿ«CÊõÉÃ=Èöw‘&ÿxå¹ã“=È>Ù_xŸàw‘C‘æÞo¸ 9ò rô¤¸GØ;}yævÁ1Á·€~ÿÀü4òx r[Ãe^Ýß˽àüO@1î{»Ö"M¾ÿmÈ#È£‚Ý·"ûM{í9t/Ðîç (ï½¾ÙÓŠl¿Žl»¹wùäj ·i¹£ yh-²ã"r°9þI䤇œú Ÿÿ$òäòÄÝÈžòx²û:RÚ7sž;ä‘{EñfÈ×ò¼Àî•H™ç©&¤¸Øo* ÅýwÞú2Ø¿ ÷qê5 ƒu›€Ï î˜Eî]‰”óòà&¤¹ï;¤Œ§ikFvÔ æ‘&þ;äQyly|=RÄÑì†ìû,Òä94yYd?÷!Ç7!'nBÎ!Íù¬yþcätòüãÈ ÿ#ÐßqylÙõ®àøâ”û\Áº¸¼ïà™ÕÈÜUäþkH“G%¤™Ï„äÁÒÄá†,Ú÷+‹ürÿ dÿ3̇ehî½ yÊCöý¸"úçW!Ï®FŽ!ó?@Ê{¼%ƒ<É&^$ oò&†üfèýFÒÄ) óìô·!Í9áæ\qÈÃ-Hs¿YÈ-Hù\ò|{PŸßð‘rÝk×jäþä+ÈŽkH“' |6#M>ò}·!~‚þ>мiÎu„üJ=л»ùG9d°o$ó¨¾iîÙ )ïŸØÝŠÌ)ï©y¶½rèAäèÝȉYäÊ:äç=d“ÜV”çz_XŽlõíw#»×!åû÷Ï ‡‘c#H3¯YøcÁ7æÜfÈéýs“ב2Áć4ñÂ!?‹ì{y"<Ú…|a(óxûç¯! ŠnEö?…ì{Ù»)÷÷d¾Æ=×»¯‹Î‰çDö_@×!ÇúùMÈ¢ó/ëò>ËcÛ‡oF¶¾$xRÞÃ%óïþJÐ7~qȶ7ÞÚ:ä–ÕÈÀ¸o²¹9x²° XtÏÚ™H“7"äP3²)ï!y¼ú: _hGnù rød×ýH“÷=ä®äc«‘æ¼@@Ïä© ¹iÎó‡Ý,º/hèa¤Éç_´ÞnüÜ€Þó«¥?ü=ä‰5H9Ÿ6qP!e¿Ú[œsá·!½­¤‰«yдÿÃòèf¤¹G0 ïÕ!§g“§gAšó—!óŸB¶½‹Ü{)ïó1ùýCŠ{iýy`XtaO9õÐÿBXä׿°¢ë§¹cž‘m H³®RƘûêBöß÷~yƒ#Hs¿OÈ‘‡‘§?4ç»Cš|Í!ÍýÒ!  Íx7ÏkÈó‘þè_ÜŽ|ñ¯#Ï.ÎioqNý²ÈN· Ç®#G.!‹òݼ‹4÷ªÏsãâìÞŒl»Œ4çˆC>߀ ìc@“_. ·¥)ï™6ë/!;›‘G×ýG‘çL>)Dzwiî5iÖÉBöÜ„4ù_B©4×6#húûîËHsŸRH¹{ÀGjZ”þøUÁÈÞ‡æñiÁqÁ.ÁFÁû=A±¿Ð=.Ø*¸ Ùv¹ûRœ£.Š—Ü» y°)ã_:6 e|Vþf ÿâËÈ Oðnä™"Ç?ŒêCö¿%xIðó‚Ÿ\Ž”çlÃ{˜îAæ\E4ùDC>Û ôöz@ÿü‹œþmä¹"§–#'¿„”÷,݇y9ÜŒìÝ„<5‹Üà½Ïäæž×O´"_XøÐŸz¬§k|9º9ò” Ìó0ÒÄ…|ºèõ܃¸‚œüÇ@߬[‡œ;Þ:ÏûsÈà°aѺ±ÌCô¨à–+Àâý—rÿ&¤¼Ÿ®yÒÄc…þ¯þ/ åýc÷ GßBÊ<óƒo"Ež CðadÿO‘}· Þ„ì}Sð;Èü,Òä¹ ù¤Üç4qz!å9K³²©èëŸw¯GÊú9²yQú§?Š”ù+¾ì¼Ùñ*Rä ó7"·w!Ÿ. M¼WÀ¢Òܲõäá«‚f=¢(nvZðUäñU‚k‘=Èüê%ø‰ÅiâÚCÊó=È¡"‡G¿#䙑… Í:TÈ ‘/^úçßFž;,܇4y'BÊóýÍÈm¤97ÐÛÝ„”ù¥ŠÆ»5@ò ÁÇ‘ò>y~XÞ!òÅyOÍ ;ïúÁ½.OÞ<±yìm¤üý\P^­ÈÀ/’ë/{.ý—þ3òÿ&òÂ:dQ>ÍaÁ5È©_Aþ%rb#òô‘æ°CŸ@öõ {ß\Ž<5‚V@îªG̼ͯ¯íUd‡ìÿ"räý‹SÎs̽—!Å}K271,œEN¾ô "ϼ¼8Gü,²ï^dË  7Ž7Ïà|B@s¿PÈžå‚WùýîdÇ6äþU@/X— xòòl²p¿àzäänäô_úyãšüQ!EžK¿e²¹€ë*~á¿Až¼ìÚ†4ó£â>xßÜŸ²mR®ï=3ô¶Ö#Ź ¿ÿad[Ò¬[Ìs9Òä ùÂ*ä¡Õ•ñü“È©¯! ³È³o-ÁUÈñבsáRó4ç.CÊxΡV¤Ì«lÎ…†<ê#‹ê¯ä… ø•Fäê: ÷„àžÕÈÖ{«"NßX‰Ý*؈”ñ’ùkKð'Èždû¬áeäþ¦¹çü–àd`~nؘ§½Á;‘A¾úŽqäÞf`ÑùáÁ{&/ÈÂ\{õέC^¸ùâ î1äÔ¿B. þMäÄkÈÓÝÈ þ™ÿ8RîcØ…”÷ÑmDÊûiZ›Æ.…yýŠòSŠýuÏÜ7R®Oµ½4q¤^çzÁkÈSÓ‚o#Í<7¤Ù—iîû 9ø~ _¸yæ%dÇu`ÑøØ¾9üÚ¢ô;_A¶ ¯Fî/ ÷Ì e^º‡}äS­ÈürdÿcHq¿¥á—ç÷>,¸NPÌw¦ÿG¤\?;÷W‘SW»ßEžy9þcÁÛ‘c-Èá7¿+øYä@#òÔä±ÈöWm­×V!÷Œ ŸkBÊs®snù<Ï!sMÈ]#È}Òä yôm ?öqäÀ*dÿ”`^ðqAq¾©¯S°Ið‹‚·"MÞ½y6#O4"yÈÃÍ‹³¥)óþ6ͽ¿_‡üšà#‚æ\Ñ<›Ï®Fî¨CîYœ"®(žZÞ_`ò¾„ì]‡x?rxÐ7÷™û^èuoúGë‘sæ'¤×Õ`¸K°EpÙ½è_ìBž{iÎÏóO 9r)×ÿeÞ‚OÔ=s?|@ÿÜEääŸ Ï~9úC¤¹g,dß,2²{y´ Ù¾iâ BÊü›&~!`QÞã_‡çÚ¼ÖV ?xRö¿ üÄ}þÈO_üRÆ‹Ë{s~×Ê8fzrðÈý+€ÞŽFdß]@ìrg°(žy èŸYœ;N=ÏÁW/"eüMïÇ‘'óH™ÇèøuÁ.ÁmÈ£#ÈÖ»W#åÏ̽­+®"摽9äÐãÈÑuȱ_ýÑg‘C ÈŸ  ‹âäž¼Ùû8òÔ äÑ;‘æ~ôf9äÞUÈ È'›æþú€EñLæ¾÷æž¿€þ~¤÷x²sÙwÐÏ?ôžY<äýéÿ„œ| iòaϳ 9ðadg=òù«ÈîµÈæ<Ð{®蟿9Ý#øß#M~íyþrêß >œ| Yø‚!'."O_EŽ~9rrx“àzdÏ:`ßãÈÞ·&ß¡ò"òÄZäñ7_¬Cv¿[‚uÈ®.ÁÁÈÎ]‚÷®@Êûç;íë‘f=>äᵋSžïëƒ{× MþÚ">%hâüBþ&Òû†‡|¬)ãfZg‘&N dQ|œ‡ì½è_ø[Èó ÈéŸ ¬CÊ|Eù  Ö!''g%ÛgÞ‡o\‰<=€» 9ú3Á;Ã>Ržãø²ÿ»‚Ÿ\ìÛ4yÑCš{‘BÊü&ÒËý‘Ïç‘ò~Œ#È-+€^÷&à³ È}—‘í›Çê‘&N!ä©7þäŒà.dáq¤¼ŸðôFäh rðûȾä©.¤¹9¤rÿ¬àRÞ'Ö²iâ$Bþžôš®ý¹¯ )ÏÏ—ËÈÁ·ýï_œ½!OÞ„”y¿¾^ôžðÁ}‹â¢>޽èv"O?†Ì·"eÞñÍ3È'¯ ·5!wÖ/Ì=]H3.Ìó r.|zž"NØk4þaHy`~²·ÙÿaäÀäÐ@ê ‚Ÿ3ü‹Èɳȉ1¤Ü'9ýRæw‘û·Ã ŸBöÿÙ×”ãαH™ÇÎÜÃ3Ï:äÞËÈÝ«Û×"›¯½¹n7Ï ¿SÀß”ç^šsHyߤÈïàuŽ O­úGÖ#;. .CÞ„l­GÊ{N76"ç«çùkÈ¢ñºI0ȳpW¹·¹¿yà2RæÉ7ëó!ÛoBšû>BFž¸ XtO´¿Fü<2ß<µÙÓ x3òøz¤¹¿ÿ|ÓÍ~VH³îrð.`Qû¸ø*òBrziòyÌó@N]|9ù"RƵºgŠ<órì'‹sô ÁK‹sð²ÿ'H9¯‘ùAÍ< d»‡<°™ëBš¼~!‹ü¾+H“W4`±ÿ} ¹ë2ÐÛRÜß…dÞÌ3Û—!Í߇lmA¾piò¨‡|¶)ÛÕWgsÒ{¨y Ùq+òT#Ð/ü%dß/2nPœ )Ú•÷#~˜¼Ï¾¯9ò.Òä¹yª™ÿ²ÿf¤ÉrðGȱO"'>Œ,<Œ”ù¯¦?‡|ñ/!/îúà#ç^k¾~[”~±¹ÿÏ3ñ`!÷ãËäx öw"å¹2yÎ?h?Í=àóÜ%¸Ip%òD‹à2d×ÍÈ£w Íyÿ’”÷%Š<Åþ³È¹åÒy~éýŽàŽ+È`œ (óuš}–yn@kúí-H'xh ò€‡Ü·¹· )×¥ž˜AÊû$M|RÈ/å‘|äš: ÷ë9äÖ!ŸÊ!e\“¤Ì°ÇGqÖ!ƒû‘} Ùí#{:r_IÐ?¾ÙqiÎy‡Üî!òÞÃRÞŸwðÒÌûCv_Cæ?‹ì_‰@žÝôÛZ‘Oç‘âÞ]ÿÓ9 ·¥ ùdÙz9øÅiòn•f rìcȉ­ÈÂû“‡‘ßîʼ†EyPçšÁ<ß×2÷‹†Ü³ùüe¤¼7²ë:òä@ü%äðÒÜR®WtÝŠl»è=_@¶ O\ú“Sȳf9s'rü§‚9ä¾Uer%²%‡Ü=‚”çÍ·5"M¼uÈð ù@ù‚sËã!½ÏùÈ¯æ š|p!·{Èà>›à~›áŸ#MÜi@oø-äȤ¸OÐ3ùÿB È© @oèµ-Gʼ*&~/¤¼¿> ¸W¦(OãÁ&ÁÝ‚{êçØRôGAu å¹õãw#lE¶oCùFî÷‘&PH¹Î`ögƒâµ>Ùˆ4ý!d[òH3²«y2‡”þzß6¤‰ 9¸ 9´9Rú§nÊÿyë=¤™—…”ûÂ&m@ÿüü?gnAŽlEŒ,ÎÖä—|äÅ›ENÿä¹gS@Nþ{ÁqdágžEžþ0rd9¸Ù_‡<ñRŽ3í¯!Ûê‘-yäŽMÈ'ë‘›ÿç: ÷­+H³ÒÜO2ÈÃðȫȣ­ÀâûqßüMda 2ÈWp|yú&¤´WÃ?AM ÞDö¯Eö>„Ìߊ¹iæ[åù¯yiòi„Ü¿iæŸý^ÓÎŽ.zÛ H—rìƒÈé½@ÿÂW‘Ó· §þàUÁãÈÉÿ"¸yv)ïñ)ã¨N¯F޽#¸iò±—ær¤¼¿äÐ dËEäùÈ Ò¬†<ߌù²}ÐÛâ#[¯ý3?€ïF®AöÜ@ʼA^ò€G®#ÛZ‡ ÈֵȖz¤\· âÔî˜AÊuÜ?̽¯>Ú€|ªä[ ¸«Y”ï³Ùº Ù¹9WŒ!ý‰ËÈÓ#G¦‘CCÈ0ïÌw‘E÷™ÝŽ”ù\ò¦½äW"{Ö!Ã|N†3HãÎs5òð*Á•ÈC×f?<ä®Y¤Ì+,çQÜ”CnoAy˜¶)ï .Cž@Ê|k&?TÈnÙµÙé#´ ;z²Üd|mËräžµÈox‚¦¼¾1ƒ”ùž- å½1&.fžMÈ¢|… ^CÊsŽCf(Ì÷e8Ú†4ñ"Þø,Ð7÷¡†î@ÊóW'nEñÛ6#[|¤ôÖå€Eù€äzö 3Èc#Hy+¥Ÿê=à#÷]Aš~°(~öÂnÁÈó)íWO"Aö™xy¾2dA°IðÈÞ!»—!Üì¸)ó>7 ôðÛf‡G':€þ·yñ—‘Ž ÏÿS¤Ì“>u)ÏÕ†‘goCޝBŽDŽ~9¸9°Ù¿KPÆÏö e~Û£7# 4q!ÍùØ€E÷-{Пºyv+rø#Hy1ÿ8²½iòq‡üªô¾2ƒüjýÜÿoâóB>Õôš2?vï;Èá+ȱäÁ¯"'‡‘~ùâ1`Ñ=¾_ô^ë2 ?ò:²ïä®kH¹ðiîÓ yøMd÷KÈ“¯!GßAŽ#Oÿ )òBûƒ7#;ÞEÊó4&ï@È/ ‹î9}þ"²³èOÎÍ‹òÉ{X·Ì½'sȧ<ä³W&î7¤¹ï6¤¹÷1¤ÌÛ~|92ÈæAjC2Ÿ÷ÄGg/ýݳ@ïñÕÈ=72¯ÇÉUÈþ›C7#‡Mû2÷ …ÿòì/€òüŸ7v°ø^ÏmÈàÞ¥Þäñ¹÷ô;_CÊû‹˜ý­#÷ ƒ|”“¿ìY ,Ú/9óyäéHs@ÈÞ<ÒäQ ùLrk#òAyoX´žßÔ„Ìåû× MÞÏÇ=Û"þÆŸúHyOà™ïv"å>¤Éërdrp—à&ÁÕ‚õÈ—òÁòøk‚—‘·"¥ý3þ•¤܇ðaÁ'f‘{ë‘Æyp9²#4ç–Cæë‘}7C·#e^+¹.=y²ðw‘fü )òXùߨG6æ€Þ½‚rÝòÀrdûu î4Ræ+<}]ðªà¦Å9¶9Ú#ØiEçç ø²ïƒ‹³÷‹‹38çPŠ2/Ì‘‚àäÁÕÈ]+Áy·àüÛ<ä¾ ŸÿÐ î xìÁ. ?Þ‡4ñ²!綯CË“÷Tõ\zõuH鯛¼'ý‰{ÿø‘/ý&òü~ä¹ Á]‚òÜù÷W‘ã§ìc[‘Ã>²ßCv7"Û×"w¯FÎ];Ò{rÐ?9Ì­Gî5ëW{6!eœ[Src=²q)óþçñZeü·É›RÜOà^!¸)ï±îÚ ô/þä…ÍÈó¿œþ-¤ÌGP8€œ¸yzóây9ødÑýÕmÈüG‘Ý»#‚]ȶ;‘‡g;[‘;š‘2ø–ásÿ9¾9´9^?Ï1äîR¬#xûrHo8ÏŒ‡ìhEL ›€EùbÛïDšñ8 ÷åF¤Ù7Xä??˜G~Õz¹•È¢|tW€þäFäøCÈÑUÈ‘û‘ß@­DÊ<¯½ŸGʸç¢sF[‘Ý3Hy_ų+€Þ7}¤ˆ“õ‡v!å=ËÒ/ ¸Þ|ŸÉ²(>kÐo½”ëþ·×"åþ†ÌggöGæÙŒ ò'4óû[[‘ò>¹Þ#÷ñ~×C>.(Ï™ïìÿÐ?gΚ¸Üâþ4ÇE ÷­dk32؇8ø) ömäà gÎù†<¾lQú“{‘…•È¢ûTûCc‚· »7#å~ï‘q¤Ì¿õ¼‡”y]žjBšõHÿ>°è^”¹ëÍBzÛfþÄwò\üà6ä©Ydûý‚w#·Ï.Áœà äs9ÁHoPŽgžñ“Bšï yd Rä-ÊÞ{rè£Àð~Ѐæ¼b@o¿`¾X´,óWšxú€òü?}Ið÷‘ç~ ¸95%¸)ãT ‡‘r½iäãH'2¸g>`ÿ8RîCºyÌØUyßž´OAþ”€{óHaw½àø€b¾çµ®A¶wý³ŸEšuÒ½[‘]«‘â\Ÿ¼ÅŸ: ¸YøkÈ`]6àÄ»È3]ȱ{2?ÆÀdÿ5A_PÌOû¿(xŸ ÌËõiÁ"åýå}?üžàˆà³‚?†ì}[ðMÁÁÈüO· 6 >(øòTýâ”ë'=ï ö ͽ%iîí )ï ’ùù$wyȳHylûJ¤¹ïÚß–CÊõjqnÉ/ü™àQäÙ)¤Œ¿{]ðaäèäˆ/¸ )ïi—÷KõoDö]\ƒ<õòøíȹagžæüNHyndkRœ³óæsž{¯ýñbÝÌßßô޽ ,Š“Ûí#·w!ŽÖÞŽ& ?ý«HY?2OÉñW2þUÞ'&ÎyÝõÈS}SÈá«À¢ñ4Ø ¸w9òBRÆQNw!Ï-GNþmÁeÈ¢õ—䙟!O÷!ÇÞBŽ>† Þ;à`²™Ü_°s9Òä‘y(Ü.(ò ËÙy(ÏËxù}ÈÂÐÿvrêEžõ×!'ö!ÏÜ‹ÿ òôëÈàÞû€ƒ×?Žì )×GLÞ˜;‘߬z÷{H9Ÿ1÷ˆ‡W@¯£Ù+8ò rôÐ?syb3Òœ;9ýU¤\—ìÚ ô‚õ–€»."[šm È®d¯¿(ýæY ÷µÛ„”ñH 4ñ!^Av¼º0Íü=¤¼—ýäfd°°à[Hgrð}È¡ ~9|§àg÷^Bž^,º¿òËus¼ø3ä‹ÿ)ï)žº yöȉ7Ã×2בW2þFæ‡ß¹è}«€”ç»Ö}sÿcȾ![7#‹òûI6#ŸÉ#›}¤¼Çø‚"ï™wp%òH²ûdÏ*ä©ÍÈüg½7#û6#çÂ3àZ¤9Ç5Ï"_ÐÿöiÁO#/þ[ÁnÁO#_¼.ø,rúÏ‘Ázh@ORGN¬Až¾)óðåEoA›E†ñDͺ\ë äÜrÎïñä¾È6É«@ð>¤¼7̬ ôº7 Í~ZÈ3_ú‡ÖÏqß& —óæ¸ýòÈ5d>ˆÛ Ú­±ŸÁ¾Õ¥?D^üòÅ!§ÿ%òܯ ~9õçÈÉ7&tžCžm”ëM¿.x2°÷Gë‘òž÷ kÈåHcBÊu»¯"ÛsH³1Ϻ9>S@ÊøMsž,`QÛeÖQå=uM­H™Ÿ¥}п°yþ5Á#È¢ø£YÁŽìÿ \[‡”ù‘z_\‡Ì!ßô§ ÈñW'?%¸96Ý'øyäÐEçÔ_GöùÈSMÈc«‘]¯!å}Ã2&¸ï*àÁ.¤XÇñ·_DÊþgâWBæ6-ÎÍÈÖMÈÃ/!çºá<Í=P!E~RohÐ7ùgC>Þ,ºgAÞƒgò8‡<<<Ú‚ìmEšs!W^Gß{ßâyö$ròü7È©Näù: ÿÇב—ö ¿½ ùâ>äô«‚!Ͻ#øk‚95)ø)ääë‚‘…?ü¡à ‚ȳ¯~9ñäøòôw‘c?DŽäæðr Ù)ó]t¯BÙˆ<¸¹cRäi+Ê;.òYø“9¾9ô:ràAdïòÄUdWèmœAºô/ü:òüýHsŽ2dÏrdëäV¹¥è™{VCš8²€áºVÈò¤wô²çn ?:Ì?‹<°¹ÛØ÷Ý9 ÷p)ü²¢³ZДƒÜ9ä!Ûr‹óÈÈc[‘=MÈÞFÁ¹sÞÀÇ‘Áý;&U@ÿü Ï}99‹œØˆY½8/ åýÖ}¯ {7"ÍýÎó4óñ“ÈM¿=Þ…<6캊4÷8•¤¹4ä¼`328ð¹&ds=rk¡W#ͽÚ½/×#woB¶nDvÞ4÷^†Ìÿ èOô!å~Mïf~òTyì:²¨ÿnB~­)ó¼ÜZ,º·a»‡ÜY@îÏ#;îDšó!Íùƒ2Ÿ“Ü¿<}91 ô/ü)Ïs=´ïA¾‰4çÉçù dÿÇò>)¹nÛv`aî½ó7ï9äÎfä‘i¤‰×èŸY‰kz/lBŽÞôGº‘rÿÍܲÓÌެ@šûTûñÖsní<Œ ·¯Aš¼~~˜ß/‡Üq¹§iî‹ iîÅ yhÒœs )ï›”ñÔm7o nóÞžkHs2äàÈ‘zäø-ȉ î@Ý‹òWç¶#§ÿ*òüä…ïý¹0¾Þ£³åñYÃÀNË<¹&ßÏ<ßEölFš{{Cžjíçœ, åy¹~Ó¹Yp#²c=RÆ[ù…Š<‚Eùë6ææüxÈ`6`GÐ?w+²è<ðÁ¯ Þ&ø—‘“ÿJðQÁÏ ÿ›à%ÁϾ9qMð{È3›Eû<2Îâ"RÞ+?úäÈE¤¼Ïhhzqv ~ 9p²ÿ‡‚‘}‚{½Ÿ\ƒ<ш,ºûNd×zÁµ‚÷ Ûf ‹³u¹ßGÊ|ß»¯ ®FÊ|fÒ¬ã…lªCŠþê?ì#ÿ ‡l¨zŸ”ùj¾â#›^Aš{Cšs´!wæ2¿ÿî5‚3HyO‡9ÒœÓùürÁU‚y¤ŒGß—AîoDš{(ClDZƒ4ëI!M>¡2ßjWòx#òä:ÁW_œú…ÿ„<ý6RÚÙO;Ç‘­¯!·/GJÿjë,RÞßÐ÷ ?¶9Јì›lBvv!ƒñ*`ë rÏš…ù­HyåÜônžfþòé:¤l§/ä‘Ò4ù]çiêßÄ-„Ì?‚콈4y¿úAÜOÔžúçw"ÇAʼ¶ý?EæM|Kþ¤<÷¿·X”ÑÜ'ïå."÷¬Fšý lr°9° y|#²õÝÅ¹ÛØñóyödW4äÍÈŸ Î"eWy/÷ΫÈ0p5rs㞣—óçþûÂNä¹_ G‡EëN{æ|zHqo¸wxý¢ôó¤Ì¯ò•FdpO´<Çv ù‚‡<<‹ó_oø$П:…<]@Ž,CìBö)Ï]È{}Jñp=ò…+‚ë‘2~>Ègaö‘üFÁ±CH9–û”§v}3Ï )ã)_DÊûgÄ}³ÞÆ<²IЬ;‡<܈ì|iîk Ù;†¹yúäDYxèŸý1r`²÷#ÈÜj wjUEôŸžzùi ßòäzd×+H¯2ÈKð[RîO<^Ü›C~uaÊþwb²wr  9ü,rlÐòœ”÷¢íÈ-JoÿZdÿO3Hsž.ää­È©ä¹Ïý¾§æÜaH‘ŸÂ{ò пô—‘“· O›yªÌ#sb ²õ~äîµÈ-9 ÷[‚Ε‡_8‹ùRîWœZŽ<&ØÞ…|ÁGæV.GÊó€Í9ä—‘sæ"¤÷ä 2ˆhòÐ… Öå|è…µÈàžé«_|Ù~àdÇ2Á[›Ç‘Eëf¯ nìAvß<~'²ç~¤Y')íwÿ›ÈÁŸ"G~ô‡f‘/Ü/_ò‘á}‚?EšûçCY¶0­F.qÏ«7—ÆcžÛæ]Hó;!»/#Í>_@¿mù|3ÐkY…lÛô_h\…”ùóϽ`_)às­H“÷+dËJdÿ) ÌÄÁ4qÌ!¿Ùˆ Ö%ÍyÕf4ä©{æ~¬Rô/ýc¤<ÇV”})nCîFŽ|)ï‰2çCîô¤Ìoï_\‰†<}'RžÓ:„xYPÆe·"M|Äé#·Ì½;êŸ÷‘‡/#{n ‡ÞFŠû²ý?…<ÿedaòÌ=ȱÁÇ‘ò|r°°çv¤‰CÙz+rW RÞ$Öä¸à÷߃ì\,ʱF°Óع“f]1ÈÇÓº (óŽ{9A™_Pž^ŽûrâçH“7,ää«Ès‚<ÿ  ìÖEéÛŒ”ãÁÉw‘Á=ÊÆø>ПüòÌUäð÷ HyÞbð6Á›‘ŸEö¾Š<ñ²gò¨`{ƒà:¤Ù)ɽÍÈ=­Èg}¤ÙG/ÉÆF`Q>Rs®)䮫ÈÝõHsŸhÈoqî_‰<¸ ÙZ@y)ï5ÈÙû)dÿ Á­@ÿÄ&dn¹)ô¶å€~áÿ…~Ù¿ ™¿ x@ð£Hs¾>ä+‚—‘2ŸÙÎÈ>RÞcb·ÏS¬ÌØçWE÷w?\Ü1³0wÏ.NŸeöGB¶^C¶ol|Mpvqv\GÙ„ëÐ^÷,R®öÕ#û»‘"_¹_øeäè-Èã7#å:”Œß6÷Ž„í!ƒ<ËAÞeÙÞ÷^EÊ8ÂcÛ€þPrpYO?²ï dï5Ádþ;È“­H³¯²û&dW ²óv¤¹8¤‰Ç yx ÒÜrßzäžòÔu¤ÌÃbî)9p/ÒÜgR®ƒ»Gðdç¤Éûòð‚+‘Âo/Ї4åRÆW˼»â>ooyRž—ØR‡”ëèò~7ÏéµmC¶¯FvÞŒì©CÊ8“ü*Á;ïBöÞ#ørànäÐ2¤™·‡»yz+òì;Ȥٜ§¹wnò$rjòÜ* ¦æïYƒìý òè dpn*àþ¤Œ'–óÿ§òÈ`~œs|´ 9ö2Ï!½ÇŸš{¯£Ë°y"¿ ýÎ:dkò±òóïd^…îW^ðœe~™ÿìù4yXBšûoBž\-¸Q°€ì}Ù÷ r 'ø3äÈ-‚· ~Dp•à‚«?)x—à§ï\'xŸàçlÜ(¸Ið1ÁÇ· æw î<$Ø&Ø#xR0/8$8&8!8-ø’àË‚ßüžàÁׯ þHðÇ‚?¼.8+ø¶à;‚¿@޾Op¹àM‚+?,x‹àm‚· ®¼Cð‚kïô× ~Vð>ÁÏ nlÜ(ø°à#‚[›· îÜ'xH°C°K°OpHpL° 8-xQðUÁ+‚¯ ¾.ø†à,xMðºà¬àÏßürl™àoüà‡o¬¼]p•àÇ?!øIÁ»=Á{ïü¬à}‚ë76 >$ø°àc‚[›· îÜ#¸O°U°C°Kð¤`Ÿàà¸`ApZð’ Ø·{Yð²à«‚W(øºàß¼&x]ðg‚?|9wì{¸Lp¹à?$øaÁ[ëoü˜àÇ?!¸èŒ »·!¿R®W|ÝCÎmK„ôîË!Ë#ŸZ|ÎG?Z‹4yíCnE¶oFY‹”çϽ‚Ì?ˆìíÊ{ؽ6SNg»‘{gÖ .CŽÿyú]ÁµÈ±×ïBŽ~_ðcHãχ¾(ø2¸ç0`Ù;-(×áÞ܃<µÙ³Ù=4ùqB¶]FÊûhL\BHs;äÁåH¹~-ï5Ûß…ÜwM° )óŒïñ›× MÞ¬yŽ M¾Ï;f‘A^\ò©ds)ó²Èyµ<_œ; ø˜”y#¶·"wúÈàþÖ€æüdÈ}+çþ«@ÿÌ-ÈþÇçßEÊ{ÑŒYÔ¯îF¾)óÁå¯[,º'´uRœÇò»z€Þ“uHs\H“·9äÉ.äÀû€þ¹ÇGžþRÆ; ý)ó–ä?ˆ<™C;²sR®ÇÞ„<8‚Ü_Ü+¸{9ò¹Hs~< ÷G>2¸,àAÁŽVä±MÈ[‘½—€E÷QlȽ¦ȧ[‘;—# ‹ò6ß„<õ*²w)ï•2ãձȣˑOæEyÑò?ú'[2>ìø ¤ÌÇôf¤\—츂”çËöŸë‘Áù €2>МÛysÐÛêÏ1¸÷! ¹o8 Ÿÿ²ãUÁÕÈCõÈí›_ö‘õÈ|`Ñý;ê‘=`Ñ9Eq?Kѹ|y^æ[9ä7×#ÿÉl°(Ž>8O0¸×% ±!e¥ÌKÕ¾iΫ…ìÎ!{:‘æ\yÈÑõ ó´/ø]äÙ! W€~ásÈ3»f¾7ÏKÈ¡äÀ—àǽo {^Bv¿+x+òØdçÒÜRúûV#åýõ¹H3¾†¬Gzßð‘;º;g‘&¯[È#Èž{½mÈÁ  p-ÐkÍÍqÈCŽLða æMÁ÷#OO#:?Šì¿ˆ ò¤ì}yÊGvÊùèo å}©GîZ<ÔˆÞôæäy>Ql™AÜß„<,¹U0‡ìª[œr_ºoHPä»è¿ô§ÿrê*r¢yúäØf¤Œ ëß„yTŠò:v½„<ºFpÎo÷_( ëë€Þïæ{7![F½>Ð?»9¾9x)Ö[亟þ׃û= ì“o,úç~„<Û‡4ëù!åù sfÈG‘Þ=¤œX”ùÊä9„¢{+_úû–#w­Bš¸‡y^\Ž|"üFRžK¿·è}6‡üz¹¥ùøjdç4àÎ:äó³HyþHŽ»ƒ;M»»ð:rúýÈ©»…O þCä™O!å¹¢á/"åyÖ¼‡”÷–ËûÝ[›;€Þçê_ñ2ï¾¼w®w2_ßäSžÏÇ+úááWæYÅ=Æþ£¤8훼3!ß°h4Xød+òiiò7„Ü}œ+ (óùŠûJ¼Ž7Ý­Èü2Á­Èþµ‚bµh¿|àmdër¤<Ç;çÎÓœ«ð{¿‡4ûB!w6!åþÓWêE÷.™ü”}s_`È'ë‘çŽ MÜeÈ#[‘/t!åyÜ/çç~ÿÙä¾M@ÿl'rx)×ý憙yv¾Šl )ï76y³Cîó-WóH9zzõâlªzë=ä×êÛW#w5#e>‡Ýë[‘¯!{Ö!M¾Ù÷ þèO܉ìÜ'ø™%¸yªc nEó‘2¿Âiò¨‡|¨Q°Xt®·èžõ+H³òÀEdÇýH³oòÔ²ï{ÈÁ"{oú'‘ýo e>‹¢<Á3Hs¯iÈíȇóÈM>ÐûZ îšEÊøŽöäñeHqŠgÎG†œBŸ”ñ{7# O"'¯!Ïý6rzèOŽ# ÿ#rìûÈï"ûnAvÏ M~ûGîF¶¯@¶ÝƒüÖ Ð òƒ”ñÒŸè@æ?†<ù&Ò¬£‡ì¹ ÙýòØäÑkH™Ç³ãòÐz¤Ì»²Ùz_­GæÖ#÷_Cšñ(ä±ÖénFŽÌ ‡¾ˆ¼iöÛKÒœÏ )Ö½ödw0¿~ (Ïû=W‘…¹¿oñ‘ò^¼¢<uȡۑÃãÀ¢¸¢Á‡‘÷½=õHsÏZ@ÿxy®Y؆?€hFå1iBÊüÿ߬Cn¬GÊõÖ;å}êEywš7 Nýî•Èc7—‘GV!¥Ö:<”C>߀ îå ¸ÍGÊõ¶' Èf¹µ ùh#²qXùÄ ä3‚{MœPÈ£&/YÈ7 zH“—:äÀäà6äЂ#È‘g‘£W‘ò\Âø4Ð/¬ü%äé)¤9rð'‹³èž½»ùWçñ닳;݈ܺ¥ßø¥zäê÷ þ#ÁO#½†ò‘z¤éÿ!ƒõÎR|*‡”ûR{¯!e~¨Ö­H·RžË—ëÇ^Ežð‘ùO þÙûì¢ô/A~ûçÈ ëçþT°9õ4òì%äØ#DÞ‹ â^æ_Fš{™B½Œ ÎkÜ;‹”ûžsÓ©yJ?àÜS‚_@ž}9Ñ„ïC?¥Å<Ïc3ÈðÞö]ÈÞŸ!ÿÐùµü|òY9t²9ÒÄ …þòX3Rܧ,ãU½®<Ð?dþݦä¹}H¹*yj=²ë2²­ iÎ „ç"ŠìHÿ4̃úÐ?÷·‘“ÈÂ*ä™m‚ë‘§?Ž~9¸iòd„”çúV ~ iâÿCõ°½€4yåC¶6 Í>}È×2¿©¼_ò›>Òä©ùô dQþÒdÛKÈ®òÄ2 |-ÐÛÙˆZôÏ=º<±)÷¥ÿ*ïkïéY˜fý;äÑÍÈ zÀÃ=‚Ëë­¯ ^Fš¼”!ÌæW!÷6!ežœ]Wr^ûLÙ\‡l* ¿â#×Ö!Yt/Á—òÈÀÎ|ªN°€Ì]CÊyð~y`òè›Hs¯×<»§ÞEöÞ,ʳôy¤¼gsèA¤¸O»(_ÆéqäÄO€þ‰zdç5dÏø¹9ù®äý>Ç‘‡W!¿U,ªçÝ›òª‰#)òÄøý?FN Ù?+؈ó}?òÅF¤†ck‘2nåùÄ,òr@/¸5à•È®& ?õÁßüuA9ùäé;c³Èþ×oFÊ~Üw²÷‚à2¿ yªiÖ÷BÊûKºßDG]…<ò’àZ¤<7/ï,:_0‹|:”÷ñÞ“CΙÏy~=‡”óª§Û=ä®.äó«‘&$dp¯OÀŽf`Q\þ¡&äù@ïy ?ýRž9óäøäÐuäÜ2Ò<‹î‹íDžº‚<¹Kp²gœ Ø~ )ãÒä}±[ê‘rýÛÆ‘§| Ÿß†4yïC¶ûÈÝ‚ò^uCï39ä v¬@y ybrpiî© Yø»@ÿ‘Ð3ù[ú…¿Œð½ÝHy¯‘Ü÷y|°(Þcg)×o÷­A¾°yä:òÄjä©›ù ßôÏ=œü÷ÈÂEÁ‡çÙ{‘ò^‚"6#Oiò †ùrè‡ÈÁÏ û>´8O,GÊ~Ú±¹g=ò™FäœÛÒ»¹ŸÎ!w´¶"ejp¯E@sïñ<ë‘Gf‘Ç ;lÈ·#ó÷ {[â¶GÐÛR@š¼Ký?ðžYO )Îóû/~yávä¹Ý‚O"'gÿ¹`r¼9šCÊýƒö5ȶõÈ=¦|d¾›'< ÿÒÓÈKï ¿Ý‚|ñmä…"ϯGžû÷‚b?nª9ù9Á¿Œ4÷ë…<ýyd_²è\Ǥ9‡òÉ+@/Èçäw¿x9õ[Èõ‹³ÿUd_›àƒ‚÷#{l¼ )Ï‹çÛŸlÜŒ<&(óž¹_ðdÛJ¤ÜÏ•q>ër@ï¹õ Rä(Η&¾ßü»&Î ¤ÈÏà}«¹ÃCî]…”÷¡u­Av¿„ìY…Ì߉ì]Žì¿Œ4÷p‡4÷~…”ù…OoCNô ÏnúÛf€Þ×ê‘&Ÿ×Rúç/ §9õUd¡kqŽäƒ"ûnGñƒuõ€æþÐrþ|t£`Ò¬;‡Üí!å|êw=¤¼?«­yê%¤È{à›ý¢b³(Î&7÷ÜÞžÒÄ[…ìý¼àËȾ#Ö"ÇV#O·"ÏüYø°¨ÿßç#Íù¹òÜÅ!d¸îcòY„”ñƒ_òç:‘g7"OÍ"­BÊsÎû[sÛJóü²ô抳z÷´Ëy¹Øÿó_¸¶8sWgÛÛÈß˽] ÈÖ‹Èã¯"O¿†AšüV!'Æ‘á= †S?FšsS!§W>…<ÿ/çÞgúnääï-γ9äðÈþ/"e¾,éßÉ<.Í9ä\³ Yt~¯m3Ð/ü%äØ2ß-¸ig^°)ïmê^†)(â]Î|)ó­ö¯Cö¾‹<å!e^„¹´/ó÷ƒû{å>¾ˆÛ.:päU`‘hî‹è=‹”y.Gö,ÌárèÓÈ¢8 Á­Èï ®\‚7#ežÛþ‡‘sÃÏ|3ò@³à¤¹¿8äžUÈí9¤ÜGÛZ@Êó»"Ozï÷€ÞïÔ!¿C~£øsŸ˜AÊyŒ¹$äŽȽ9äAÙÑ$˜GžœFö5"Mžï€Eç%¦n ‡—#‡@Šu#ïÉ&äµ@j²ðO)ïq¾žË2Ì@_‰ìx)òsûÛ}¤ÈOâ™vRÆÞ†4÷‹„<Ùƒ4÷Œ‡\¹ôÍ|9 ÷Û9ä—‘2ïöc¤Y(›Æÿ yþM n9² ˜¿oq6þë¾ÁÕHirƾ<\ô[1÷ßg‘Ã?ANw >…¸†ì9€”÷V·¯¼ÙÖ€Ü_‡4ùCîò‘ÛZ‘y —kEéú…›9ÁO .CëÌ!Û«W {?€<î#÷5!«è}34ç¨BÙô{±¯¹3‡qE÷/÷¢ÜV@îi@š{ BmDv5#åþЀÙ2÷Æôï@Ü„Ìo@vÕ#¼4ù%C|¦iî‘ ù•Ð{ÈC>^@Êu°Î<òdÒä 9ô} ?ý=乿ƒ|9° ÙwRæû=|²õf¤¼gìñ œc hâqCžZª4qÓÿyqNýRæG5ó‘a¿[‘C?Gš<!ež$ÙÏeõÞ™%¸„¿mâÕBÅß6"å= 2ÏÐó]‚ÿY˜ãöµHqn±è¼¬i_!͹òy¾‹~9r è¯Gî¿‚4q]!ŸÍ-JÏäM¹ó2rn:Òß\üTÐ;|è›sO!ûÖ½íMÈ®]ÈáY ßùòÈräî‹À¢ýÒ§æÊE®¯ÝGaÎÛ…òɤÉãП܉,ò37!ßÙqäóÈ'WÖ½¯ Ê}ê`#àöåHsoìßFö}9ørô;ÈñCȧ“ô§‘§_GŽÝƒý12Èsœ7“÷>È<Ý][‘ÁºDÀçgÆÿ)ïu6÷Ά¼ YtÇã‚{š­‚m»æüzHqßYÑ9‘ñ#O¯BæùÏ ­zæ<H“ß" ?ùaäD'rüeA³/7¾ 9:"¸JðÈ‘ÇC¯!e>Ôþ#å=€á=¦\Ìýî!›W‹â LŒòâ×k¢ÿÒ%ä·O#ÏÿdáÇÈ|Ùê#çÒ¦…ôžÌýcHã,ŠKßuù²ûU¤9çÐßUÊóâþ·?†œþ«Èá=‚Í‚â|ŒŒK“ñXÒ4÷‰Ì3ˆ8€4÷»„Üs)óN<܈,Ú¿Ë‹îU}p)òŽx-WÅ|øùõÈcf>aîÏiò ôÿñ‘ßþ[Èó_ZœçFçä_Gžù>²(îoRί{oGž¼¹¯”÷÷øfý¿ÿV¤¼[®ß{u@¯¹iÚMÈÍ@ð£È<ÒäÙyèšàˆàjäþMÈç¯ wåâü²¼'Îÿ5¤÷D+2ȳÐä¹yè2Ò¬[…nAŽÝŽ<³蟾 90#ø#d¯±GEû:Æ.Ë{ç¦ïó”å-óÙÊ}€§¯Ìñ‰ä#uH³Òô÷æžé€E眶›yÞökȶe†Ë× »7!OÎ"{€|®€z)óž{yþf ?XìoFÊó8']WíË&MÈ Ÿ…¡üŸ÷Äj¤ÌböõCYƒ<:ƒì¾Œìé@žØŠ”÷\õw ey>†ßô‡º‘"O׺ 9rèw]åC (Ϸɼ0Áýï幈NylyüNä©&dïIäà§C÷"G¿‹4çBÊùЙû‘7 ¾‹,|99†œz?òÜo ö#§ë7^Bš|ºýC¦>Ÿ( Å~^‡¯ Íùð€ÞGê€þØw=·"Ï4Ìýÿ…_FÿÀP¬g/Cš8ä=wÖ#»Ç‘Ç."^AåÃiòÒ‡üÒÛ‘Gšõ¢?ÐÔSÈgŸkEÜÕ„Ü“GžAΙ™Ò<2 X@v5.Îü*dßZdÿ+ÈÁO"‡?4yÁCŽÿiΡô ÿ9Þ…Ù‡Þ„Ì]A~¢è™}³mdoÓÜߟË# —Ÿ@Ž9â#ûù»§V!˜u“‡+ä¾F`Ѻ‡œ¼‚,u¿»ÈGStí™›ù!ä±Wr=Hæ¹Ræ{0çÅB¶û@ÿh‹ Ø—?|caÊç•ñWæŒòÞqoTQ¾]3Ï )óãvlEoú…ýȉzäø&äØ4rôAäðÏ‘C#.!ûW#= ™ÿ4RÞ &ï‘5~GHsÇ<ëæÞÆ2.IÞ'ãbþøÌ_|kqžÿg‚ÿ9ý§‹sjãâœl_‚‹sô'È¡M‚«‘òžÖ—½¯ ~yr½`²g5RžÃ“÷'woFš8·yÞ-X‡ìºÙy)ã&Ú2/Ó¾z¤Ì·/ǽoúÈÇòÈ]¾ÉkrðHéôŽ#ó¯ ~y¢Ù5Žl{)Ï[É{'ç–3æiÆóM­H‘¿È/x´)ý9“×)`ѺROÒ¬Ÿ‡<ú ²ã²}3RŽk;=äAy~OÞ³ö´||¹¼è=•GîìBš}Œæ¾¼m¯"å¹²בÆ_Ù÷óÅ9P@w"ÇGžY‹,ü–à\þ"oò:òÜ3@ÿÒ!e¾ÉÑ1dë °h~W!ýKëÿy~ rêÿüç‚›‘Eyeþ>òìÃ?Fö^q#í÷ å}&þ3ä…äÔ_GþRÞÇPtŸïä1Ù~iÖ½C>ùôjä£RŒ÷E知޵è_økÈ©_Aʼ>cë‘òüÙ‘7fG=òð«Èç}äÞ¤‰_ ¹k=Rìoz_Ü»ùü5¤¼‡«­Xä?ô~™¿Š<á!{n_œ`Ñý5²Þä~Ù\sŸ§8·æÿ*Ò{º)×ñäþÍ®¤œÈûmo Í:HHsý<óÈ£w#»oFÊó=­H3_ iöYC}9ÚœüUÁ Ÿló‘2¿Í.ì×4÷Õ„|¤iöéz枢ò^AiÿeÞû€½kþ‹}‚ŸD^¸.¸Sð·ç,ø°àmÈé‚ëçþµàÈ©Á‡ÿ>rò²àÆÅYx[ð ȳo"'Þ^‚o^Fžñ?Ÿ< ¸yúȱmÈ‘û‘æ\ï<[‘fÝ<äÀë‚ .Gö_ðUÁUȾ‹È`½;`þÇ‚«‘§š—#ß-x+Ržé\†4ë!åý„2ßPëUä ‘‡®"Œ6!÷ß@šøÏæ¾Âb®FîÊ v 6 w^DÊûuMžÑyúÈÜŒàzä3>RÞsÜ<+˜C~k9w­Ãï¸÷“ù#¿ü®à!dÿ¤Èï™ü$!M¾Å#ï3ß÷²à%äð:¤Ì‡ØñPÎ+Šî…“÷{ÊýàS]Èî5H™7¬å2rï5dsЛ3Ûó4ë³!e‹,Ì"‡î\‹<ú&ò)Ù½žÓ¸Œ4÷‚,Z;Ø‚4y|ú»»å€^?<à>²è~ CÒî!e¼ÝñUÈüEdßÇ‘· ‡®!Gæ>Ì€þK[‘ÿéâ|ñ¯"/L ç[Ó—ç^ücÁû‘SŸ@NÎ ÇîFÊ8¹£]ÈÃrnYmžAÜQ/øÂÇSï"GrÈžrôäà]ÈÍ9ä׿àåù¿ð”à/!|ÁO!û·"e~üÞeÈü„à#ÈSw e|Q÷UdûF¤¼ßGîG™ýιÕHßÑ\÷èÝ“3×Mæ¹wRæÙ2ûã!øÈc]È";ýaÁYäP9ü8rÄÌF|9zÒÄw‡ÿ´ ù½3ïGN¼èwÞŽ”ûèo Ç‘òœ¼\¿”÷Ftå‘&jHSo!w4 ŸÍ#Å}Ø^ƒ‡ür9·¬;Ï监GZ'û>ˆlþ×ÿ­¨{ÿ-ÿ¹nYÝ_ü¯ŸiÓÆÍæã²/oúææôÈ%þ¢œ/Ùò`SðqãüGÆ—Œümüãe}íÁ;ÓY8*«¬r”†¥v5‚Ÿc/$ÃÉÓEðÜÏ[¯pj\u³û±ËÐhžJe•“µ•õ‹…?–šö%;äòÔRæ,RŠ_­„üßlùÆ7¿þ•ÚÿFej™ÄwÓà¥Lv¬;Ƕ0`¿¥K†väX£Š¯ jÃTÙ1]åXŠ;{óˆ,z&ór©f@ó€*«éÅî¥&ʙĥtq/F9úDþ‘­×B9 )¶(ÉïÑÔ\ª^&­Ï—´»MÞèe’°ûfÛ…â©rçmŽCÍ=.ß[§Œ*G$WïóÒ¼BŒNMe®N".šù2eª]Ò,8óšPuÏVÎ,bÁïÀZŒéAËj*Ó–nXŸ}9jHÌtªÊV[«e ôøœ29ñâ¬~deyX¢çË„ìÖ‡6•ÓÖ¦U&èþÑ‘ÖF]Öá¦}T°.RÊ ”øÌÞªkhHﵡ¥—ô*^ìSÓ¬2“mày>•£4©Z±£X*Šïá¢(~òÐzY#¼T¦”+i‚çvˆÐ±|d‹aZ—ªA1òO– ‚½gó|u&ä¨fò¾¡Ê*§¡õX;²îDp¼_¯íhSYe•«’u_CåèåRM›)s!Óû®,¾Œf˜Jªèc—ù|ìO…\:MRÞ^åEåJ>–>Ëù\γØ:tô?nÝ6Öð N#‰z?PåxZý/²?H¦e*«ì”Ì9<« ŽGÖ¥•]Ivv]•Ivíy De•ã”—üƒpŸã´–ÏŒÐØ»ADÕ¯ºÕî*r‘¦òxdu7j’k˜p–Õ?•ͬKÜm,ú%g;ó—Z[Úd'Gç4Åpû”Îʺ„Ÿ™b‡‰¦C’ü1Íá”;¢e[ò*å—µU®H®ÞO¡|•““uÇEe•Ý”«Ï¡Ló *[–œ4Æøæ¶‰cr#xꢷeréeî"ޱ[ó<µÊÍAIæåJ>Â8Pág–t ÄÅÂ\îµZ ~gÔnŒ„Ó7•QO\×g»YËQ¤s2gR\•U.Õ`™œö”ÉNîÈq,ÌV$—³Êfé×Ý:`Mó Q¦jÉ2&³lhZ7Á4åÁ^¨4­«K‰77­µÅ‰ü ƒåhî忍A^µ¢É/Åkdg ’Ö)÷r‰d7}à$aT4Eï¦ÿg_Î^«KzýÎÍv’™b–a{:aéæ$Ǽí§ñ[N–Q:®®l+7D6dî5Û?óá4Ǭu¦e–)P|/Sýþ?…ï–ª ÊÜ$5{sd•3+;o”Juâd‹ÄòÐ’°!s¾i‘¨ì€¬Š@V÷Pe*9¶Ù&çm{:¹VYe•íÙ² ÷:a\ö×Ö"I¾õ¹ù’áËø¬ÃhÚe½¨¬²Ê*«ì†L:bq/c—˨Ôjn"(+sCõ®2Où©¬ršeR£¯2³Ìq¼‚#0‘§VTN½¬MPeNY[¦Êé’K9ÌK‰ñQùÿþ\áÒKeßžÁF–ÁWVYåê-Ké”*ûŽªÃZb{$—Â/ãûcêå›tMFØŸ¼H8³?Ð<¬Ë«*«ìˆL휰¼JÏ‘ôŽ«í0kŸ},b¾tÉ5œ®ˆ¯¢Êp‚‰SôÐÔ­ÊÔ2É#’‘†½/Y²vm2¹árñ³,kâ{>z™ÂÁç)š¶ª…ªr´fN]![=•®M×ÛØ—S±[»AIE1dY¶V”ù9hVe•³(kGS9Z„þ©éåÞ&¡m†=tŠmãªpéðõýS*»i„i ªöâ[d]‹ÙdðË™xI•k”Y·am½,]ƒ¿¢ö5Í #Û2M-ÐÇPêØ”9xO•´­QYå¤åúg²·êÜ·ê‡5lTVYe•UV9Nï$‘`ø%‡t[^ç,+NONeâÊ¡©Ië‡(7’¬Ã[/Rš^áªLÞ®UV9Ù&X2:%ÑeåÈ(C²Ê¼ð*?B}×ð™¦Ñª\Uÿæy*•UvLŽÍ¯>ò?³G¥âŽÚ#™P3¯°Œâœã[[Ùv|æDúi2ý¦5ñËqÙ$ÎÞÍ3IJ´çd“×Û2Uj'Üë ì¿HâGu%ZÅ#µÆÌ²YBöW'™Óü1½ÁÛ¨P™ª¿dáée-÷ä ×Y—2TVYe×eâ`VŠ ²hÓøÄX ¼UÂC[†Ýš’¢¼2­êÈEÖ¥––Î鵦¢Ö(¯´¿Ÿí´NÕw.–Ÿ¹WP9&k‘°I¯á†™(\…R†±ðUf–KÙØ*þjÛ¢çÍ´—6Y­€Ê©›O±œÇÕΕQ9ÃAV™–ã«á„¯ââñG5Á‚ÊÉU~„žPÃgÊ2Q¹Ó— #Çþ|™xIŠèëuÔ‘ãUû-º²Å!—1 =7»Qá‘k_¹á SPYek²`Ž |TN¬C‚3²åpå„c›-ǺÅ÷ì-Eå´Ë ÛxÇ\ û`{*rö¦]•É˵¶ø¾d®ÓN›¬2ïÊÊG8&‡<µÂ#³+GsJÁ©!•S$««MÖ5t•Ó'S{SiòÞHR8é‘8XÕï•q¿–ÊVåôNß9+“D G¦úæHT7ÚÕR[[I_¸¤F½'²Í:ç,ûªªªªªªªªªjÔØ¼NUÙU­zUUUUU5ÀªªÊ£Ò¬*ª¬²µ­<ÛËÎ,=’å9(×ìY*r‰¢/õ×”ïÀ/G`»Èí±eûãúŠÈÓó:XŠÍ!E®ˆÊ‹É5 ƒÍŒ£M¾×r颎<Ÿ%Ç>}A€i“ÓÕPù.÷œd73FYÍG¤iü²–_é¿ÈÞ`i}ÀQ™Ô¶gð„>yk«¡¡”óO9ý9¸þeù‘m¿5Ç'¼Šc}JÁw4*SËäƒ"ÍK–5_/cr ½TåÚšAÅ+GtõUŽÐd.üqãÙ“ã‘­¯w[Ùw`Ø`ppfÇÞÐ8Šßú„4Ó2÷7{ .-ÈÑšÊ)’µ­©ì’œÂKjÔ¹R9s²ƒ{géê‘çÔ­ƒ^vs†Fó|ÔÖÆvÝêú0ÛW“Œd4ÝUe•)•ã‘S<$9¶D‘lÝ—ÜÆ¦é¥,žDÍó¦2Îsœâ˜’<œ«2ÉNwôV¼öW¨ágâ³W•/ÄGþÊ*«¬²Ê*«,ä]WbÇ×U™du”8ì–ÄÉËœ\â/îµÿqä3–‰™“;øi8j.ÕhñÊQ˜sk]?Ë-’ź²|G ïÀ©öÌãÙïp“öRâ‘-WAõwTït³´kŽˆSŽüŠ2*=ò–Âd¯lvO‚eþ¬²ÊIËÔ}RsÙ»Ý0œô¯21Ϥ¬9⹈ªªÒ©ä&"V†æ-E$ºê€°·Œ1Ëu…ìÖúѼ\ÉGpœ*üLùò”½ˆ½í°?½LS€ °^:³WYe•“­O#>MWéå¥<…©¾¢ÊÎËÉds¤úFRóBòÇì2k$ÄQjÖ^³–"ÙHUû®~bU³bía*Ûìå,bÛÚBŠkgÑ…ÞPÛéé˜!£ÝÑ·–É·ÏhéNlûý©ü3"kµ§D&Yͪý18“r—:ÍÉb“b›%ëÜÙ5Ù){’pñÐ9Ãö'òx=l«¬²-¿Ne•“–3GóŽñù?Öÿ˜½L—ž·YZ…Êj»‰à ¦[2Im°¿¹ÊÚ0ž§rµ-m¦X ¸Êî ûó©œÑ:#YUYeÊ>™A'ka9ª,‰o2Eвº¦&5/I#³öFµèM"²ø€,wk–…–µÆ ·5>™j2Ž>6½\í!%¢Wp§Å”2eœH2öE|ƒLõG¹5ÚÏ¥fCóÙ³PRT‹r±¬"êÒ¤;„dàaéøI7¹8ç£Ñû$‡^¦8}B©rU¶¨ÃäÖb–¶1b™ÛX¤ÉãpsË ]rå»jñeÕ(ÇKËrÅR—pð‹Y ÇkóÈê§an­rê•ÃÜr˜†ªwÅÊðÀ¬¹z³ I,LÔ.ÜlͤCéc‘»Ù¶.&O@.#m•zF™’¹Gžr²_Øîmò¹éí¤K®íŒLÜ[ îû*«¬²ë2Çš¯îŸšÏ‰O@ÒäÛXËâ”d9,ü:W‰Ï¿M¿ÎÓ4T޽=ÐôÈe­TNŸì䈥ÅÝLx™³ã¤Y>-¯P&>åPYe~Ζ±HعŒüŠ8š:fŠ&±¶•B^=Aö6ì—Ù›>½œ*CSõà®–@e‡e·š¯[O«²ÊIË<{,¥Ð!w%=©¨lÿs¢˜êG JSžFEW,g„ñŸ±¤[ç™å0´çê¯'éKDr–ß=]ng“¡ÓL¢pVˆG U‹'îâÑVU[e*ÔÈ1G½Ú;z“£Âh 8z‡Ÿ½Ð¢'"Y$/É…—„ËXNº¹¨lµfÁ«œU™Ø³tyµž¥ÊX<Ûïäò`äÝ&]%ÌÒ¸ª÷Í]Siœ3•–­M¼l™,Ó”ý±Ê*§XÎâL†³8µ&²%§"fˆÄ{×á?å2yEo»£>@_ý•0•̦JM›â½wTGN•Õ.‘·2¬DÔ¾ÇÂÚz¢oèéê,– Ë蛉ƒ4œÝù€úK4#žÊ$5˜ôÖ4ùwDß5XÞléHjî­8êÛË )vWÒ%“.l[¯í¤Ë½y³?Ëä‘ç©Uv¥ï«L!k‡ŽEŽ07ÏKñË™hÍ$“¼4ù I†$“|Žøwîcß,ÏAÓÉ‹/ õ•°ã–S}¤Í8­­7Žò#ß’åpyªVe•Ó,³ôJf±Ô´,Ö±¿ÒäÐ4“7z™ùÌuõL^¡ çÜÓÕŒÓõ6*×('²ÊxSû^Æ`‘¡&1§ÖýŽÕ{Ë£ˆsïa¹$*P«‹øG(jù!ì;,,¾Õ¹+÷îÔö½*SËœað*×('8ÀÒËX?IÑhȫژêQº i“œ’7¾ùãý€ñU‹:$„ò–¥ZÏ’À-ˆ]ŽlÚÛÀy¯ Ë‚ÉÓÔ »ç¤²Ê*k×Q9.9™…l]>WYe•Ùd[á+4/̽8ã3[›ÌpCPÙAÙz{¨Þö&ž¯ö?NøÖñ´é›n$3ScinŽUÊΈõF‹ÊÌ2‹IØ}©Ú÷°¦N¡Æ7‡ä˜ 먣²Ë2E¿ws¨R7Fem*»,«û­Ì21ÊÆcóÈÖc«\ ¯á ™4«ÄüWTò\† ?k/.J¯+{¡*§^æX«[z«þp§1I™IHôR&ª1Ëïîèc»*³³RíeLˆª†¦~UV9rÙ-PåŒÊÚLéä¤wYb¹¦/ú—²v¿yŒ~ y4„SÍV_ÙBÓL‡šÙ®›æÑžc‰™§<\•5Oeí\*«¼¸œç“Æ,ØÎXgÛ!ßɤ‘Ów„9rÒÎ]šÎªØ*âdϼ—úõRoOÙìUN\}ÿª¡gÚö88­·Êñ^–¡Kee®<.ÚfU&jøœŽˆö©ŒÊÉžZÒ[³™‰9@'i“–9^¸µ–”°Qa©r¯ã­>£MÓ"(Æ –ŒÊÎٚݎ؊ɉN™Ñž_æHæb͵bí ì²îp¤SÖþ°¸arê˜NéQÿ½Ý·ê|Ì ‚RÙfƒ'9‰ÂÒ¥TΪì–ÇCÓ_Hæ1þb¬ƒV©ÆèlÃTYe§ ˜ÊZgÙð%\ˆW9ÂJ.õ™çi‰äT·TôLm²)•Y指Zã{fŠ»ˆ"¶f‘fËE3N² ¥–øêr3j·­â×βsp³Êew3ë2OÐÈj-¬wy'Wæ£éLó„,oÕ÷Ö} ß©¦Få¬Ë,¾ ‹‰R›PUE9éB¨ì^ÿ,Ç=(ý: ¿4ãû»*뺆Ê.X4ê”1™öYJ•‰C͈|leÞ›µ])Y;½é^ÕÛwk³Ú}Ùß›eÜgq4TVYåäl‰uó@>¸±›:ÛqxJ$³˜O­Èl Ë*É:ZŠVèj‹£²^{;ZŽöb•«K9ðIÚÃßÛ¹“Ž?Èø {ÅÏãÁD`ÈI«Ïþ•ö0"÷år†2ÆçVYe•U¦•I}9ò«™8ü˾ Ç‹DðÈÕï1[Kà ‹•|«n)“µHÊ”3“hlÁ‘ôòÍÞ£ö—ÔÈZ•*sÊÄ‹˜‰:éñuä2îðRsQSÃQ#LP5±ýq¥Þqšs ª¼¸yu³Ù«Ì G~ë Í›eD¶}Ô5UvjÝ2)«ÑS¹º;8"vìÙ[­=ñ…n•UVÙ‚œôÍÐl}·¬5s̶`{Æc½µÙJá@ÓTVÙ)ãLbòh:0̓ØòW8b6i*‰dà¤)¤dšÂ¤ö³TV9iËI#»e²¸Ãû-§Z—íµ–‡®pY§T}8ÛóYüUòÇSª™(¿t½M<•UΠ¬Sk•u”ÐÎ¥~ÊZ•µ½$É»*Sï†Y VLsTdšÇz5ži—Õb[,Vöòc>}ɌʕÔéxl7'™›öGe•Ó,k¯TYåTÊvf•³žâØšKª-¤éSàO[ïÊ,ug¿!:ÙÄÓ&»Ù(Ó%W“o£¦k ïU&–«¿ê"ÃS\µº±·9õ#TVYe&™eÆC2§³}ªˆÄ qÆï)5ú2œ¤KO$¸Œ;¬7m’µ3uÅUVÙ¹Z›GšZ–ÆÊTò‹‹äæi(*«\¡×XCSN¼°¤àиCÇd’¹@•OWªWSޱé’Ýò¨â{·ÖT®¦Z¹$K‘Ñ?5Ì^R[–ªT]êuC®ÁAb—Ÿs%üÊéxvKè¾ÌiÔ†«ì¶«ÀÖßc/÷È}„’+Ãe}'ó¢)ËZ1½œ®·©¾‡Ôb³P†.ùw•ýÚZŠ­%4z9Ëïžâ™Ev9V—<áv¶™`ý5SÑÜTN‘L™cŒ<ò;@†m~ÙÒÚÍz‰ÊQšË,W¹ $¯š˜xYJ•Ýk°4’5¹ÔøDYgêÐ¨ÌØ.YÞÆ–W™®f©=ëY%Ü|q•UNàaiW£†ª*gF&IÅòÐ,/ÎbG’ŽäNSYª¬²[=ÇUÙºÕЖïN^"Õk¯d½€";1DqpÃÉþ¢²]óŸ ŽíŒ‘å/¶?kwNÃÈÏ/SŒR<ÅAãr»ù‹ìÕËbݹŸ:éu8•SÓáìËÚx³%k –­·ÚÒ"Ǽ²E*óÍøfS_ÁSдºè òÈûÖŸ¹òª<µÊÙÍÈ…­§©gc_©Zþ½È=ö*ZR.ec*³7ºœàºœa,Ëo£2³ÌíãX:˜29E^µûrÞås«¥L?ª6“O¦Xβ¼àèXÀ½’p§.0:òÇݲTëv©Q©ì ¬ûê*«œ!yÁþG¹]Æ}LÝ=–¦µ=Ÿ}¹úYEjî —Ù‹„cŸš¦”²`nçåRÖÇ¡ò£a‰Ž¥W8ßWœ’KGW·™íÞÊnýí?H´¾wÕª¬²S=We•S,Gí>XU˹ Ð9¿º‡¨lÈ8'QYe•«2/nNÎhä÷ŽÉL¢"&Y2®Ä¡ª¯têËóä*Ûµƒ,+¦ñoÊÞ§r­rÌ—„7H§šX2‚c‹ñJàùØ_GŽ ¤ÊÌ ÃÚ{l'ˆÀ™âØâ·ý{–UVYå¬ÊK~ß¹œÏ.ù×*«LêeâùRU"¶Wí’žh,2ëIõ>¸ª±ª 4+UUUUUëC§£rÙ²Ve,H^¬Éì¾¥x5彯Vâ5«_‘bØž±>g}ŸÑÉÍrê?陵ýÚÑÝ¥ KÿÈD…¥KNzÜ·Þd\ˆ~foeøH<¶€ÅÀÒHäí%Uo–2¹œuíJ,«Çª~Šk2çøÈaIÞªµ©œ=™¥SÆ÷N¾áÒ£Lõ{üLNÂwÚQÄËÄØºR´šYm,Œ½ùQwÒ"s7?v™sBRùøm”^ôC"O½«L:âX³>ÖÛ}T™MÊ0$n.»Lpº?™`#ê Mó )Ô¥{<©1'’-4Uì–EUñ$G(5”Åý6qlË}•få¼+©\¶œâë8¼× ©± ?5üÍ@©¾·ÉHzÉ2UÃ{ªZ†ÊÎt¢lÈÌÛ[Äu+P«¿}“§•¨œß-šõÀ¤íý–ûñÂ=sá<5¢2±LÔÐSv–‹¾49Ž€³l¼r‡¤ÒË)^r¥‘+_iKÓÖrÒ#U6-qÔ‡6­.SW÷«DñtÜ%ª2o›Ì´ÌÑ!«_)ÔöêYe•3gØS Ûw” _ÆŸ”1'ˆ­È⥱îãÒô{ö°#ž’â‘õ›Ê铳Ð`ÝZÏtTN±yÔ¡Qem*S·Ž˜š'ýz*§_fÙÔ‹â;X§È¿š8ÖÛÑ–ži¹êH|•ÓÒHmÍC£wˆRÜNSüjï‘K½<ͦ¡×³?ŸÊ uÆâ~Ó´VšQ¹F™t%FKe™ÅÐeÃå­ºè*žŠƒ¹\*X B#ñÂô’4Çe7ãÜ9ÎØ^¥'¬«–Ií¸ÊnÈ54Ÿª½ŽDÁ<Æ4iw²ú¿I×èÊ1"¥ª¡©¬r2V-qóÅíP«œz™ãè¤6l•Uþ¿?³ŽHÚ½T^Zvj»Deíþ‘¿»]_ˆÁÇJºÏS{”Õî5/fª…`µ'Ö»“£ejÛ¾°iŠN—ÙîCºdŸE™u¬UYew»†ö*×大|®Ê,Ž ·oÇòtì5p—ÍB}Vj©úå|wwÊ5i™ÄžVz7Æ1¥¢ÓìöÄWÆ:SÐWv¤]Û¶Á1t%?–r2îLdZ¶ÝIb<Ó¨î±Ê*§Jfqÿ38+Ð7.nƒ 7Ç8}=•UN‡ìà"WébªüXÊ­ô3OݱŒðöŒqÔ«¬Ù3’YÒKÇJ3–ôåÚI?¬õÚá ­Þÿ'Vgå ž:qMÏçT¹\9ª³1‘¯idms\m¤¥=Mó0"9Ëïž YñŠ/¶±*þ{Ý£J—l§–ü—¥›R_XÞqc¢˜.9ƒ›h*×hcá˜kf/âƒåùlß²¼¯«²cãdºŽÊÔríƒU9£’6F‚ÞÌ2nq/¯óËéz›„„,z †ÎíÀS¼Fä“™TÙyWeGKŠ|-NkÌ=™ÜÏUÙj[o ¶h*gTÎÞ®»Ùc—“Ž@ä‘5Be•–µÿÈѬÂ.ù±2>ë|Àfwaùj­ÞÚÞ];M²[Nw%µU˜_õ#Nå— Ø>ºÉnª(öíh^ÛæRÔ•cjef© —3zÿ8…÷«ºi 3-s$Ì#sœ£Œu¡‘Óð*Û5¡ì¿È.Gï±úXéŸï¿xÕK%™cÖ¡8±¦lËôÆ<ñu´ˆè›÷Z^¦åt·64•Uލ+d¢ƒùªöýJ9«™ ª÷3yKåX:m´N’Ý¥:µÍÏ¥Çú­”Ù“Í|eûøÉþ!ÇW¤çµS¿2E؈S²®ºé»3ɱ٨âªÊ»nž¨Dãfâën¥Ê*«¬rúd–ð’0DšWä‘Ù›ýùTÖöà”¬(eÎÌÉ©Úvô±£n/Öë”e½—½þYº7O‰dYNq*6š¡ywróæh…éê€.¦ÊåÊed)s“©šÿ iÆÙ–‰vh•«¬²ÊÉirñ*„—üaŸyêXe9=!®i²i“ÓU®©ZÛeùjÿ˜¼”hd ÞÔÒ,K¶¶H¥gD3&»i8ÓÜzËÉ»½´äÊç–ª•U^ºu§Â%0ô8·÷SFFâSé${_É[´ßžTK rVem™*§AÖvœrÙÚâb†[RâœÊ r"7âÕðO Aµo¡ØÍÉ4ŠzN½«y²À,t’e‚÷Ö]‰z\ø#|I‰ÏDF†^&‰k‹|!¦Ã%<©P™ ‡Ä¤&<²”.OSI™L^ÜŽMž²,'^U4M™%¸ØUÙÉh举"ò+ ,¯D~dŸy6Cßг!ÛîÎÖ«7KÏ,uïè ¦r<²Õ\µ‘Ëq¹Nœ+…Y=h•£ßËpöžÚË´¬µ rz›‰£ ™tXâ‘m¯íig!£š%'=qªw']XZ|rÄ`y^ÌɲÔ6;¦!E%œ ™´ñÈäͱúÌ:ô§hŠö:•Y[¹ÁKÙcÓ‰s™{(â-?OW95rÝN–î•tÙÇ’´€¨žUfè.F<»ZÖ*«ìîx¤¯Lg¦Ùß‘{p¡)SûõEr.âCŽ–× ¸{ˆÊ*§X.Ç5¨:_;Í[ª\«µîÝм ‹Ce½˜t-_eBY£T¦’í¤˜át £ÿ§ÑÿPÒ©ˆ!¥gªÏî.ºùÔQ×ÑwÅ2¼’gNúëªòý䈾& 팧û²¤KJ™Ì<ŽÖþ5–¦J]lprqƒæATŽN.ÕwiPe•ã´¯n-èÚàJ>–21å|&ªš:ãipo}ˆ^vóm,eOy«·ÜqHf.n¶ø”ÉŽ…êÒÈT;Nìãé;”1x%ýänÍU*š¼·-üqãRß<¢Ö“ô&²›ßá\Î¹Ú˜Ž¤­–[¥2³iÉ´œ¦YõÆ{áÑÔWª ÊUïZe•‰º9Ç ¡åñ¥Œ(™DÇ© šbq¼Ê²¨pÇÙëyd7=W;Ó2…¡¬a„Ô]¯+è‚Q–K‚Ù£àðæÈ§è$ë2n¸•îü1y«sjH%/"™¤KدÞT?²”5MñÑ<Íc;Z"Y–“Eée’½O­=•íU·›²Êj 2Ò©G%šway¼Øþ8ƒÝÛUyé%®eô2¹H×/òÈ,Ë.þ1 fL1•µ™òɱM´²‘­;Q’Ùù>òY6»¬Ae M¦y”ÉqEj}ËäUF²`õÝcÖË×­üì–*’塈äšíºó=%#²–«Ê*/`³´Ó©ì’mÖ-â”È•Y¡R_Bùj¶PûËö:’U{B,“OеÚc‘ã½èPå²e-ü…š$ÏS©¬rªådc•¢þuGÝG;o£r”^e÷䤫[“Ä©Ì/'ÝKTΨœ´Kú÷+6*>ðšÀXeû;X+PåxÚ†õ¯vkhÌòô5‚wO…5±önuøSôåånLâXDÞ08Ò1[òÄ8¯ñL³ÁJxˆˆ*ÿŽæñQ9Ž®¯²ÊI7AšöJó ñ½MõwйJ^¥Q9‡Yúc:ŸžÅ¢¤©=žçK×cG!gp–èÀ<Ÿ¼TœüãøÆ!ëa{E$gÀ“UYeÒ_ï£L Ê2.ªlU.år.üš`‰ÏŽŽf$»…Þ°ÎVìæ%Œ-Í@ r×ìÈ•|,ǦWjë#oqõ½ê76RôÇ*3ËZ•*;ã¨ÚŽ´£^/­z+¦Uq—:Oé©EWÙR “XÍ„ÍX [i¬‚n º&“ú*gT®ÅòªQYåøe3Tv×8“Ì‚x De›-­,ÇòÎ0Ç päjYîx¶÷3Q¨™–]ŒKá0l<•XÃàCó©˜Ùd¸ŒéË•åܱå AÊnUár`©ß·Ó Û5ªV.£#Ÿäp·oÆùŒíÀˆ$0’d¢MSÒ4_í胰t‚”É,ïý¶'…OÉéi}bOíÙ¤§¦Èût ëÿÕÏ®XꆦÒ%[MßEí;ÚÀ}lòwÙ¨ò!Mõ¤ª¯² šN5Å,Lÿ˜ñ-üÚC‰Ï5ØÆÈ›i›U9£²µï¾##ÛH*[hŽézíFÖË­Œ5,» ŠN.IªÌ ¿×)-§ Ó<¸Ê*ëØ¦2ƒœÝ¥{v9ë‹àÚ¬TÖf“=©Þ_&õUª_LæÎÎ?E$”ƒ±T4mÜþc—¶¤f@ejY;˜ÊZ ‘½d%RF´)Íë:ú‹*×(—±naëÀEl~1‰9P™C¶}2D'U¼²nœ«ìºìÖÖƒ¹TQ%QlcE2' ’X>#øž˜ÿFå˜d–ak°[¶]ÎX–¸c¨ íªówçyjÙÉî”®* ‘Ó09¡œ)èj„Ê*»!'>“°îÙž²?¨WðÐÑY-^šÍÞÿØ_ÆÉ …“»Ëf›¦ñ:ÚT.’ß;ªV6Â.ù~¦ŒÏïm ܸÔÇ '*;(sŒ§ÉzÖÖ.`­ä“Mqꤋ” ÙÚ„ {¨i“ãòÛµúeîù·íYa¢qG1>ó“nêq4=žòÈ„¬C”Ê1[šçKKŒ)éø¡rêeòÎ/§ª“¶ƒ‘I6j-$¦˜4S|q|Í‚Wµ]l$}Œ£ÒŒ]YøÅT ÛY(6W‹„æAÒúØ%þ¢Œ/¡:ú¥r<²[«5ît;•ÓYñ$°ÉäÞMæWÝ2Qä½€ël¾Ê ˆÄ¦EÒêÝ|êìyr*«œ‚N§²Ê*;Óå3a2ñ’.zÉiðÐH'1ŸKÑM)WÞ&ÙiCpÍYŸRVV·¬CÛ‡¨þNp;ßÇbBcGTV™stb9àMþæäE­²ÊMh¹-CõÇv«¾Å7ãBÂÓјRŽf•Ú»Ñãö'–ªtbɦ«evþžt¥–îç¶ö¨J€ôùeuW´œèdê:ª\̹kÏ:Fj»WY•Ê:,&߸¹ÊXÇ¢¼|sÀåtC¬ûæj@TV919i+èªìX¹©íM¼ü¢>X°ä#-üZÑ*륽<5‰ I¶ìOtÜ—K @Œ}+ý!‘•”µqDiBR“ç¦eŒêV‘?lTóR¸.;Õ¢o…®¦°æÍ«œQ9ò“ûY+¬¾K6$ÁöŠO¯ì½Zâ¾dÔÁ#5¦?aŸ²±?ŸÊVk˜{ …¦ôH’õ8Z¦™–mGÕ9³’XÊWbr.èåøêÕÕŧä¤',ƒ’3FË©öìx¬YecEÒ…m½E%m;ÒÕ…X|y#[ÃRõ†º}_Uee7ýGM¯Ê©—³ÐŸT®­ÞkV]>A²ho'DšÆÙ¶³kíVS¬aZiù¤ É ““ßA>ôÆœˆ5æGdzÍȺ¤•‹*Èú“KbYÞ…¦qE-—jÃ|C²›mOe•Ó,³ A*×(§Âõʈœ‰žád¢‡TlœgМp/áÄøÕ$‹Ã±ýqõWe‘ü±«2É:F–« F9òC~*ó6é :5䣶Y*vm%*«Ì&»5|³ÌÔ–©œä°}Fˆ2~ÆÉÎçâ±z•UNÁØT½åŠBæJçÇ2b1qizGårC7µääÔEû«lY&ïÆn­C¨\n³«R<¹·îàô™Åvéw²æUvQÞ²”qЏM9±æÑ$1é‡q«U¶Þ‰*nºϱãrŽ"¿4!F—”Ü¥vkí)÷„…ÜÙÓá‡]NÑA ò¾ÀS»‘ÏOUŽÔª‘Œ"4ý‰xá²fµŒóTª&Óx£·|Ñö¨Ríh}BÑb3!³÷žŒ‹®Ê$‹ì­æAh^=¥mÝ7æyšc/(7mw´ƒåI,”LqɺDa_NßF±ÊµÊ–æ‘ÓÉ78eZfñ"i*’ÛûPYåìÉ:j†ŸmíÉÚ^­>»`ªÌj,ñ| ”œíùиŽþ¢Úw•“!µ§%Õ‹ÓÑ¥mÇHÆ×zÊŒö§ªC @tFÖˆ™LÊ–ã9Ô DXÄa™ñž*Ûmñ}uš-„NfT曲мy2'ZxŒ¼ò¼ ½¬îdݳúøØF„TXíDé–µ‘ªì°Ì±Á ²–L·ÑDó.9Åá)'z9r7Ze‚šŠÂ2q?¹ÒsÆi‘Ó´ÞUV9ýr–»<û»³?½¬¨²Ê*»+“ÏæÈ×9²ñÑÔ–«rŠ$éÝ » MydY¶sÎ×5Õzç‹­äÝì{ŽÕ¦ŒÉêÁ¥EÖZ -@k¾nÍéï}Ò¤=t•UV¹*£e)¨ˆ*ÍC-žìù¿È¯s2D(²éu¶È>ÿ©=Ï9¹â–Ç5žj‹K»¬5L,³DÃÚÞHÕ®šÊV»þq²†Å©ÃLÖ-Xö–uËÈËE2œeZæîLÌä.Sª:câ™ì™ô,Xûr’Y «ß‰¯ J/àUó<õÌ#WŸ25UOͽí£=Se'dGíœåõÛs+–ITí¯¢û‰UÉIÁ.6VŽ5ÔJ£†Ê'9SŸ‘±=Õ¦¶ü,=ý9*±öªY€-¦Èåå’ÝûÆÂá×K|¦1¶3‹gEÒ:U¶k}hê†æA¸ç)Y.Tš"Éìøî–liÿN;ŸÊœräËIéjéŽ>vºdk·wÓ¼±Ê*³Ê$KiúޔɄE²äGð‰Êøœ²âN²Êª¯¢JP¹ÜFñò…›³ò§®pƒÑú蟊;4-õ’oДuàW”t²U*§G&‰"`†µ¤ñ=ˆ³äkÈû'œåwW™XΠäˆ+T‹aÃ+\ÜríS²sNƒ¼"*“m›µ¶̼µÆÚþ‰Ú"ns0†z£‘F¶Ô$Hf~ïþYòhle¬qÏÑÉð–ÖKÓ3ly+åu6](P™F¶çh’›Òtɤ9޲,'âñDî·•<–m-x|·ÿ–ži½­«nUVYe †Âº…äþc–T¹Ür¥)mm#åÉÑO[£Ÿ1e¸zTN̺騬+3*»+«1XJÖQ¿¶’Ê®œŠ‘!»Õc‰°—Sª*½Ò0šêÊtǦ$*GúŒt ŸŽxe¬?•—h†fÇ&uP(¢[3<Ö¥ë±Yj]åª,Šõ2Næ RB‰ü­”nNOãˈAŧbeBåÔËǰ,ûºN:µ,!Ž•ü±Ã7ð$`À+ó ²2Údv1˜ÄÂ,õÍêÀ:nvì4ÜêÓèVý#$.Ou©\cËf÷ØR&3ûÿœcù›i'T™Ñ{foR4˜æA•Ë; ¬W«œ"ÙZhVl#vH•Ó$ë0®rz› MëvrŸÑU™c'›&£d œûœO¥n£Ê*GÞctäLÊ*%óOU¶,»Ùg8}•UVÙyÙM“hŃZø#X柉J„]ÖÁMeµeܲ–kæå2À&•f:ÈÈœ»ÒBO¼XÒe(t9N[CZådÓ¼Ä×ᜠŸüLË4•­›ß*«œÎ¾Mþî‰Ï•kuªáwh^?̓É!jç-X©ÆèÌÁzaG Yñ·§µY‘ʵ·ÍꯢïI©.±T\õWúº¯Ý Õg %É@d¹‰‚A¥hÓ%¡ªV}v^CUm–œS®mølÈ–k>Ùy÷Z—åÉÍ*Ê2KãaÎ8zhŠV‡Ò¡–á·,ü/£:©^‘##?÷`®²Ê*«œ>™c}ƒÛλrBÓˆÈt7Ým‹Ž×¶åpžˆQ®tBiíZl–C/sl¨¸Z¨ >¶Ž*« R9fgSƒlwQÕ©¡%ò‡7M1ƒêä(àT£Tkªršåª7uI7lSa\5EÌÛÕ{Ⱥ᭲Ê.Ëé;p§²ƒrÔ3ôL4ÒL¼d6äTU¥µyË¡‘DåR•褄¦z«w†jøkCSr<&uí@e•£U.×Xª7C+§¸·”³÷˲ «­[Û«:x”¥ÅÓ“YŒUä%ÿa뚢¨è±Ëi±%oΩô†ÊÌ2ùr›Êi—uCMå$L¹=Ô¶¿ýP9¹†øš}õç *Ÿ˜ó|;½¬+*»,'›3…d])á…vƒèäÂ"ñ‰;u2Ó)³Ô¶ÊÄÙEó¡2…mpoH˺“vÒ2e—®,È´¬ƒ‘Êj%z÷,”Ê rô‡dªŽ'â‘í=­íí^Ë_Á1×`H¦E2¿JÕèäæËp¬‚ë"±…Úã‘I¦ÚÕ[T¿“È^¬‘`©^ÎÙSeÏydëK9.mÒÛšDOFá²ÓT£ýÊv hݪ¬òÜgKCIŃƒ®‰‘8I[âE›l§Ìà뫜U™sbC/k±¥TfÞ½J•#¢²{Uï¥E<ïéhõ¨¬²Ê*ÇlØt-—J.5V;ßvh6³)]ƒ¤sø¥ê¬ Åa[Çœa•”)›©S‹io™é…\Ù•K´ìL,å¤êçjº?Ç'mÁ3l1-˜âyálÈI÷(WåL4^êUû¯˜½þF¾Rc¿Ë²¿#yŸˆ+ ¡†Ü«¶Žm»xäuéiÚ{TŽz,,õ×.*×(ë&…ÊeÉåX‹ Ìcxä-K•¥KŪ­¡¶’Š üÜš1gZf±¨UÏ[RµÞ¡r —çùTΪ\õòT'PQ{äfò*_kK§ñUNÅÝ«úŠPçVåD:/÷’ˆþbòÍ)/Éþ|ößcó7ËõBÓxže|tó9xó+ZZ“ã-€Tåå jòÇ‹|:­+@|ÏÇþîv ±­U•­y§Éª«¬²Ê*SÉ%sÓ–ùïùÚ…?•ø\ãs–¬³rջϔ[“){û/Éí8¦y/•¤ä­1K›R9«•Cr/]5ã¾ÁJÙ ‰ÏÎó:‰T {§SYe•³%«MR™SÖ–I GwCÞªwút¡YådÚ}& %ɺ&»ýR›U»%§é}Ü«‚YËùEþ|Ï"fD¶&ÉòÍìE;ÁïÕvYC™ÿa°NT®Cú#úí9V.Æ_¨iCrøªøÌ:Ï*«Ì#—2,µLØ»Åé˜JþXçk±<ƒÊSÌ1ʤm9®&TέQ/§9*'ýÆnz‚,~t|›]®t–øDc¿ ÆiZ|Í+NU†+þÞŸ¯Þß²T,Xhe<OŸdi/äïXF&SGˆ^®®&ýÔ*«ÌißhžOgsNËZS 4d¡j’«w5l§ö‘f±= V§2}óñ©m¯QEð‘­ênTJd­•«jÕ»¨ÕÿˆmŽd°ŠbÒ¢r–ä4´“DR-Õ]++c΂UYå,ÊnÆ©lUÖ•8WºbºdÎôvÖUWe™•ð;ÏɦNˆ>µúå™t²fQmTdÃ*Ç•Œ"wÜ«¬r]9‘Æ1ÂTº8É›ÚÔ»ýÕdª‚•Ñæ¢O ãd?¤>•Ó#k[‹ß®eØ”EîöÑ<Ogå¡1;Å‘úÙ·{m¿ôlY)½«ÔŽi°Vš:¼9#sŒ¿NËg™TYådÇ"•U¶5÷áyG}®R?IY™–©fOnM²µŸkÍbƒÝº¦Á;ú‹¶××XV{iê–¥P©Í]í_aåȯcÖ:Uí7]rÖ\ÀL´.7„ÙVºÕMܬiž—qUvÑ&ݳXÊLe•3([ötôâ•k¯„ª¯àžz«¬râ2{gXðù*MCŠE®O{^Ùrîî±ÔM;L׃¤LNÕÖ–£rEGÎK}囩¬rÂöÆîÉ© T§¼—LÈ1ç—bk¤L¦ŽoÑuÇä›÷L,‹V‚¥ìU.[®>MË”ÊîÉIǤKÎti–*“XK“ÃÝtó˜÷¤›‚í6¦5®%¥rtO²!ÌýÌ*3´àdŠÙ›û󩬲Ê*'akX?¯1ë¡m¿Æîv|5–e¨RÎK©ög½•q4—N’ÑËä~¢Ö_¦dk;ÛQ¹·Êñ÷ ´¿8`ÝéenŸÜŸQ#´¸\ù-ê÷dS®z¢˜ÐME¶7oc3xÕ§ç")ë“0žNcýÕ ¤2÷WÝl•#¼|IeíU” ‡êŸd*™i¹Ò­[÷5éüÞ9Í5Åí¡Û8‰édÁ¨¬²ÊtvÓÖhò–¦r‘¬s{ "?³+ÉêÑÊ iU(:ÅžÚ.Ñ<àÔ9&ø| R§¥pUŽ ÎÒ¼ “iY]•UŽÉôÙ,5ªÈ¦’ÞS´9%TN½¹Ç˜‰Q¢·$]²[+¬ËÕe ÇÉTÀÃâgà;Ô«W¹º•¦6Rít‰§Ž’v?"ƒ©x(¡)˜”É™ö¹TvFN•…N‡i#ÈYRK¤ª…ª¬íA}ÅåRoYâ]pn®!®ç"èÀq×9eÂ>G Ÿ£]Cwˆºó¼gÒF*úbIºSg¢C²¬ñ»ùxQ•®õÖ$G}€„Õ×PYå¬Ùž,Ø/ûŸ•äwöL¾­EEEÞUÎ?-JHÔšUNì¤Áw!Æ–ÕÂE=6$ýä<½ÃÅ|©®=r+£Ó¯ªuš…jÿeÈË)ò;ßQê]8{J&dÒ…q•ݳ_äÓ¾Åg€—þc[‰œ³àjélÉq³CþÕ±Mbœ|ïD[¤z¶nwõªb³¿®Ê´rÕçRáA¤bâ©]Ã=™ÚkÒ•™Ü‰ŽÏ_ˆÏ¹p´woW‘샥÷4¦£M¶Z¹T-Dý“Qï”Ó<ª!¯ñF„þA%KÕS9Ÿ+½Ï!á{Ö, ˳òËZR*«lÙ<©¬²Êt2g×MÅj3³’ ‡ÇїܲÔb‡K/cÉP•ó9ÎÚYòãÂÕ·äGšÂV9«æÈÖè†U9mþR©1€æ9͈ÆÒÄP"qÕ€­5Ý,ìvÒË–·M£m!j]‘Î7¢æCåÌô•k4äæ)EI4•kë&‘T-š§$h¤¶9B±Õ}RYe7ä¤'Ujo/k•k”ãÝ¥ºAnē𾛩rÔ®9úØ*§^Vש–‚*øÇà_[¯èÃYôxÒcfzˆÆ×>Ó¡Ò4L•UN³L2ô9$—QJù"ðn;®Ê:þ¨¬rÅrÙå˰Žäë¼*«lͼ“ü1˪œQYýâäd§Vc¾C³ôÌ­Ìÿ¨ø{yÚ½a§y4X¼T¦¾{Ú嘳=ªLÜí®$«,¥Wúzr–'TYeV™#0{¹Š¦üUNœ röç£)-¨lÊ‘_»ð+Ð<lë\•UV™OfÎk r<¶8¶ªa÷J=6gÆ(;¶«2³\9)§/f Å’£Ï§rÚëŒe¥/ý òI¶›¤="òªQ™ ûÒÐØYE‰{š¼e©§åY÷b—ÓðÕ·õø:%¿·HwáXaÌîXKÓ˜UΪœÇ‰Ä Õï“1Â.évK`½½ŸàhWÊg¡l ô& ¾ú]z/š§Èxä4-\KOm­™[Þí‹Ôøz¤úMüùÒõØ42éxÎì™ Ù~‘,㥫PYª@eW̬Ê*GÔzI6ý)¾"òDæNÆHÙÍy²\éÇô„þ®Ÿõ3åÈ6™xU“Ã!á8Gâ8X×ô²å¦dmG<Í3ôtµ@z9‚â.À™d̯ÊrF• Œg½ÛQY«„®WòÈY~w•UVÙsâæWW$G¿®âÖØo½;S¢²Ê*§TvËè²Ûy–Á9’wtôeTVÙ-Y;šÊ*'&Ã(þß1˜RÞ'£+ÃüÇ5äàà‘ùšge-@-n+æ”FNÅО‰VÇ.'e)êCM'Q´Þ8£/q —\“ÍW\çIý–.“èiO=açYž œ‰ïù¸î”rÉíŒü©HKŸÑ3.U%„cÅù·ø*<é¾IcO’µÎnÓ¤8,›ìô2óÑeöza>•Ó^ÃÔ“:½úª¥pOiÊŸ¥-Y›õ¹¸âc{¢UFñ:5Y!ñ[•`¯Õêç0PsN†=U²ÆÌGâ;«¬ršåTu†2†óFbž+éIg‹ô2Ç)C–I5œLÊ39.·(…稦6:4EMóÔ–âÐ hó9ñu•UVÙqYÍ©ë2õ¦“?˜29 Eò^3¦ŽQr†ç©Ó0 ¦ªŒÓÕF+øÁ¨b9læÚ¯x7á iíƒ6eR³«§9Ì5õÂêÒ¢ªïœåŒ^vCn*·•~MD?«òM‹æ±TVYe>9æØ(ǬQÄüÊ*gP¶ÖalÇù“e1Œ |5ó1]²ŽzZš*Ó¸æ1_Àã IýìC©ŽV*;äËÑübô&/êq=zóËÓÂm4 ›U$Q~4-Œ¡œõ&˜¤:ª]'±cÎ` R¿d•®>Æ#k¹Ú,WË’ÄŸ /~g'_3–&^i˜a•^¬>>Œ+ÌŠ¼ç1›k÷žÂ©á”ÉévRx.ò@^ž&¥rjäÄý€LŒ«<Ž–4Í;fC¶¾2ÌýƒY·k·-é ¯~O€ælÍÐhŠx†@mŠÜê™å¼D*ÞÈÑaž¢¿qt,§lùšn¤ï²äGh5e|&j7*SÈ©1èNNiªæAh^FåÔÈQ-3$z_R†íŠÊV«R[šÊ„-ÛíKxT‹*/‹µ°x/ôq®8ˆäd#±Üì‹*§^Nº¸Ù»Ò\j*«œ•ž‘®ñ7Ã3\š±5·ˆêoìMÊ /ç–öããk ™ŸD©œÙ­ZåªlTP<·j$áV ÿ4ú"zO{[¸ée­º*§¢÷d7ý… É „žUâ3O »ÙAâœQ³„ë86å®äc9]„¨ë$]øLlâ½òRå”6¸ŠÌ ‘EP™BVÓáz÷V™¤ªª¿å3Æù†Êjò«= œÄ-Àñ½Yœß¡²Ê¶ú-qÞŽõ*uUV9]rµ±eê ¤E¶]¿Èãá—!/¨,ŸÊ*söU•Ó.WÓð…nžJâ´e ZXÚºÚuY7}²%§(·©&yq룭‹ï]uÌo9¾è{þ¦” Öá/vÙÖe Ä.hTi´œY˜/§»E>õ´öOcž5;vF€s¤¦ylšw´íx¸°4åŸeYçºYjŽ©³´8õ•yå¥çÓQ–%7h‘ÍÈß“¦±¥b¨øÍ*žÑ%´ÆS™–I̯“öÞUÙ-³™åF`{¦fÈ+´±TjÕûQ—NŽHä[F$k‘°”¦¥i Ÿ>UùãñÈ$my´µæ’ôÚNÄeà ’厪…ÛÛzÚšÿƒç½ˆä¨ÏÅ‘6Þ¤ÝQs‘ðä@ee–&ÍÙÀv9ôŒ¡Ê®5ðD½@í ZRîËœc¡Ê*«\³\ªÏóì¤FÌÍ‘,éêÉ®4AŽÀCû5êfÕ©¬²[²:í®Ëäæ= %Â2hòTAôÞ£K{ˆÎÊ, ÙÍNÉÙ¡´3,!§ÙrïYÚ_„ùýâ{“ŒÐ{»g*lYäë-ÔoŒü÷“~•3+“»´–î½§³Ó%×ÚB^Îivò]•µk#—K•I‰F°p{p6§‚ÊÌ2¹ñѳI©­ZëSðÄ[ {…°Ë¥ûôî{]‘¬_eDÖrM¾ÝšBP§¶ Yƒç©-GË/&îY¹*“$¯QÙjý¦YÕADe•Uf·¶4OMê;¹5ÛŠÖë*U$¥j­œ‹ƒØßž" ¨å@FÒ®GSû›Ê™‘37nÒÈz2På êÀÒjs$2Aˆ»Ê*gÅÀóȶ—ólåÈq2ë‚ÊY•Ù[ûó•aÏIŽÐ±8æ,Ï‘ Y‡×ä¨&A ÏŸâH¶“æ{~9]Ö!Ú·)Õ -4Ëw¸S»*Û•kÿXªÖò9†q–FŽ|ÉØz´Vl³,–ù É|ô`©-•Ó#;šð`¡2³õ LÞuR5>é •k““69nö»´ÉnÖBâ&ÌÍbS9A[ªM&£²V¼Ê iN=V$]cÚÍY©›O­2±œpæ;é¶y^¡ {ïÖ qØbНˆúÌx9ßWñ×ÅVæðœÕ›'òmÛÔʥƚL³L‘q³5Ùî­²û-ˆbÈ"ª?9V¿¸¶SÔ.™õcœ“­xÆ© ÇJøv?ž¦CZÆöe[§×UvON:ˆ†fH±>,±¿"Íc;ú2*34n ¿ÏÌèôÃrŸs²Gê"Sºe7—€ôA’¶ˆ±ý±[û4¿é ¯²ÊNÉÚa™fÄuUf)À 6i–¢W™CŽ: €èÕTvÎ*Dn­íÎgZ¶½Ž½Å©-tI- ÊÙ‘#èÀ1Ûyš·×ǦœÁé\¦åªó‡qoüÛ‘Kõ!šTÙqYͱÊLò{Û£¶Íêd燽ìÉÑ7u÷IÛbüUíªÌd=¾3¥3R9]åšäÛ,ü ^‰Ï‰\á\ñNA,ÿÀæÃ©¬2©¬mY½ÏZí!Íl‰¦ÔT¶Û8¦&–VÒl¥kNš“™ñÌ©QD§Ö*ÛiSedDzt<ÔøÄs»7ÉRwä¦R-TjdŠ3óžÅ'~⇰múlÙ85ˆ ²nÓÊZ Éˤ®7‹?œtÑG¿ÑȽX¨_e+~¤í™KcsYºnœkÃ¥~’³«©óÉb{_—M…ªÏǃU¨¬2§ϦÍ멬²ÊVdš1M‹~Õ‡TØZ $Þ‚Ôa‹£]²¯éf!u;ù£y•3Zgéz›Þ=âÈÎ8å„S p¾‹ÌÒHTÖ:SÙ [’¾ä¶‘§ÿc©@–‡¦©é8ÛÑW¯¡gîD¦ÊKµmÕÈz(+9Ùö€êXg`q!¸9T¶`ë94*‚)c€²•1-er+¹‘{iÕ;÷QØl[žQÖäJ>BWøÙúpn9¶!úIckIX.§€´ï;.§wß,e²–”ʉö>Û‹0¤C‹S~ KXÉq\ŽöžðËÓ•Rìí¨¬2©Ì²[ÀS"*gTNøy’µê*™ÊŽÉ 7°Äç8‡;ËÓK§¨WøUæWŽˆ7·XmØeuMTvÖ¢U=>“ä;´_ºêTdSÞ²Tek½«LoÓ}>9â)1Ï‹¥«ei%/Á’aóɤ¤×¶L,³ø¾Z‘*G-'¾ŒCÓ¨³ÐŸi Ûþó¹ùÕô2Ë»[J Zú´%KAX+͘3³Æ×Þòâó>SÕµD*§HNïIŠjå…? —ø¼´ÍZr‡!¶0æ ÃFó 4/éf=:*»µêêª\ížN9³¡ ;­ñ½$gnN’9ñ?÷ˆi;r:Æ>•&ƒèØ²Š«r%ƒjמÃ%ÐVš‰’à×R+—rQK5»ÄÛ e#²à"–¶©Í>íršZšíÉGÍ.C·XqúlVC;ÉtÒ/¬rZ:¤½^Í1i¤—«ßc¶´zÌåõ«Ì`-H<Ëèç[ä~@µþ'÷óóô$9z;«–[å¸euîd5È´rÂ×…ke«¬²Ê*«¬²û2IÌËZÿõ§ä˜oﬤAèKŒ%®r¤u’eÛEA®rVem=eÊ);€µ3Mq‰¦G8Ú«¨ˆ¹*gùÝU¶*ë­”*—’Ýš§ÙÛʲìT½ÚZ¦ˆêDAç<²lÏk/‘ª X—•5“Ãö»²¢×Í9{=%‚âc8XÉR,½‚äU.’ݲÛìµM¾úìh©ª¬rõrTÇûyÞ(e–M=¶jËãKE¹«{J WÐB­ñ¸×ò2°†àVzz9/©²Ê*/.§Âñ¢‘Y§…Y6÷äù…TNœ8`/´ÅðȬã-½L²c5¹”Q­´IkÙ«¬²ùœ=Dítâå§GÙT¶ã†–á3ØwþTVYG™,•É€ßW“ú‘ºB¤/©åêÀƒØ>É KxÉËäž4̓Ä(Û¶“ÞjHú÷UVYýå˜Ï•\ø#´ŠŸ³7qSYåôZ=îÔYPMUÀ‘킺ÆÕ?WBФ*ÓìV”e4.$O±Æ(§b/™¦4y¼+GŸåôùJ+OWY[£Ê6«=¶–cÛ«Ô%ˆïù4^edŽå[^Æ{gÄIû0Q%À®áW“NIÂÑøX&ìFºÆÙ‹TåxZ_Õ¹Øbó„y 2áÁ‹§‘X·©Xyç‘“Í}§rfå [xÆ’*em3byIÜdº@öfëP¡R¬ÛU­»ü$ß‘fKIÜ`­M³l7³È£¨èe’ð>Žc{©Ž£ïwnºG$ÎIçi´±=ãÂ)ÉÆ‹‘.ó¢r‘óýOºÄZ‰a̲ìR$A%_Å€XªIQV¤‹•”®¹‡«Ï¹™%i•GL¹¸t˜…Ö•—tT¶4õ´ßŽXú}|ïÂ=®G,§Ø›cî‘7Ž¤ç† »Z„ûbÑW ‹VYe•]‘ÑVUʪ&Båd]+m¼u“´]KÅD#ÆŠ`©Ì¨£´*¬ÊRO‰ßÎÕ"3¼ÎÊÞã 9¾‚¦¶\2 /Zû/i)M"Ëh[åw”1©3¾¨ H…AHUõ¨å,WNz/ ";ÄÚÑøŒº¥i€›¦’Iú@SôN­åy€h~–¢vÓBð ”ý'ÓÃrŠåÒN|9Óz—®Y*0”Åû iH*gU޾1ŽŽ<äÕQ7ÁºÛF}S³U9ÅMþ’5ø‡Ñ/™YK‚¼¡&^ö$+Õ‡1–±‰h9–<ñ:UYe•UVYe)ÛžÖªœ!¹ÊàÎÕ𹑱ØTV9^CÅW» É2T© bkÍö_ÆÉVžÝí²ÎÈ©jwK>LF}7á&©rfåTù’‘¼d4y:Hâ¥ly1Xj UVYe•U&–þãq‰Ï}wÉ/ÌÜ’ÊÊÖnÄ yc–?{n4÷¡4–æò^ƒ­Æ;±Vb!JºŒÑ›¦Uf[N²Êi%QÛ¢¢Ï†œånîä(°c2Û“ ÙZÒî¥OŒ‘ä“¥8&E2-!·l–®c£y_•UVYe*9é9šuW{àã‹`™\éhŸ%;áªì¤ ‰ÏXsÞ2•P 4‹%Í„l+ìŸ"Ó M©óô•jA«¬L¹âóŠ1ÌHÌIj0’Bªý÷8oíS™BÖŠw­HH­Dío'<-«ú~zw¹XTvPNUO°îVÓÔ E…݇pîÑHâŽõâ뢉}&²f$Õ`âO#[ ÃS™¡ñ³xHq¯=ºÙbã "ccYbæÜà%˜#o.¤NBBÆ" ý_Çó8^R—®dŠéµõnçÜÜŸ¦e¤¥ô)ꚤäã³$G3xØ.ÿ50vs™Z¹Œ)¯io33ûÑŽ¢ï®²Ó­GcUV9®ŽK>EP99£š2¹’Vê„LÓíh¤†Š"‡ÄËGeµ¸*§ÞVª\vÙ9ZA/Ó¼¤ÎdTV9rd³1òî–K¬­s)7Û¡úvI.§¸Ÿ;QCGK¼òÈ4Ý‘ð,•Êm€çùâqIB˜²[<²›æ!5ÍƩ²ÊinÞ4Mó ìß/¦yrdû˜ ÕZGâžLÔ?*3Ë\![$§v²·M>bfD®66¢z“ͽûŸ=G)6¯Êv»Ú5Ñx©j_$'ÜmÛ¤Tõˆ4J*ÇÒ+}™ |é —9ó•â5’(òÞ’2¹úã÷nV*̓¤×D&n9­Ï€(²æE½¸–è#•ñ7•5þR=ˆ³ñYoÁ›~\ éçE?™K•‰e§fÓ<͸¦²U9²C³,!ÓÚUVÙ|Nx,$Ù^Ê„I Ù;Œ|µˆ¦ÌÜiE¥¬ÍfÜ,²[wZ:SCÒRÓ­reG[£­²Ê*Ó’ùe|OWuBÌ÷˜Sÿ1‹Ó·¥¸Z•­6Gå,F&ñÈK›~³gý9jXPKW7g©jWåL¼¤Ê2K_µÈéhÏc¾„‡Q•”mÓ:ᥭH“ïÞJlj´ü½Ìí1e¡¬+ú]úŠTŽ* «µj)½ÅÂÚ2â2­qW‹)¬µ®sF:™#¦™ÜµH—Ãá¨l­+“´çt5ºt½MôÞyÍ.DÒ{­:þÖÜJ{î‘#é!"z9]oC/kq«ì#çè;ªì†\ÊÇ¢y@•“ëÛÔ³ÖôlÆ¥'Â(êà}ZµÌÝ‘ÚfheþG‹XÎõÙT#pÛëc省ÖVK8׸m²ÕLñÙH–^Ù7ƒ½¥°Â™9g媃ÊiàäÛgNÅwqÌ­°£íBå˜äÚ&†ôUËþ|ìÍátÐGÄr©YA¢Õµcß,ò«ÍØ‚¢š^UyLêãS­Óôáh¡è­Wl¦"êu‡Þ"ËóOÓ3\°G‘ÈbhÁê9U¶}+š¢´dç)TšÒÍ´œ™Q&i/ƒg„prA#Ã6$áñUe†¾œ/Çöv~âÆÜz¡¹·‰OüÅNöÈôBeZÞ²TstÉü«k£²ÊtrÔ.U‘Q-xÔðO5¸¾¤Êv[Oí>¼ [™ö;ZT1À<í‡^¶nÓ0—{ï;XÊèÔí©N®f°¿ {9eâ%9b}Y°í®‘†±#rä5eküc7@ú’±È¤ó ¨a—iº̓ÐË)òÖèåt½Ê*;à5ðËY0 ‰7–…+}G‹½‚á0Fª*…汓 n *z•‰å¤—hk·=‘­¹,¹§«;*§\NÚ°x“Ö]"f_’ãçh½œ®·QÙA9 ;¾$û,£Ê̲íVRFü…cÂSC*ËnÍ‹èå¥C¦YFF0UVYe•U¶6ê`D,§ð(hí*¢ÔÛ<Õ¬rÙrš'Gj[UflT‹À.³XŽdÒÜèeå³­3Ufkõ)~ •Ý–K™Ó%íf“ÕÒ÷¾soðëÞ§MYË•WNõUu(Ï+d°2<”e+])u!¨lêѳîY¹ÙøËp¸iªÔºQ§é½<ÅG/§©~mm÷~)ž#[%Ëfý]ÜìÓ*«¬²Ê1È¥¼ˆ¨’uuÇÅ#ã$Ïœ…×ÑÇŽ¼F}Cy騦¸£ž²Ðj]•už!ÙÍj%’9–hjW×P’–}lGå¤gT:À©\SãLóŽaºdwö”,ÿ\vw$œô«TN¾4Ûnze+]·T»"l§ä8:)WgOÀÀióK¬9]â(?–ECšá©0•™ew’-j;'(©T-P°?Ÿ«2Ç~‹£ÀRÒe—®òWYeJC©r}I•]j&,ßáæ€«²{²z锓¹à·úr«©²ƒrlû©,OGSÔeŒ":ÐÔ*—*XšTYe‡å4äÛÖeZö‹7 é²rÂ.M—à‘Ýò²º–¥<)•ýKö”œ•­Ïéþÿìýw¼vKVˆoœ¹¡ÝÄ!rÁ„Šˆ4DIò†î¾MwC¿áÞnš àU… òA0€aDe®‚ ˆ"&L#(#ƒ‚^pFÅ€¿3}Î}ë[g¿k‡ªUßUõ=ÿ¬ç|Ÿýì]aåZU»+ C?cÀäÎ*Kó(ŒÆI$’m9v¿¢u`é î(W~kLyÿmûSÝÇ´†ï+G¸!¼BĤ “! ûì§MY¬,UlŸ4§àà0»ð ,x—s‡®¡Î1/ßX’ƒ¹9Ç{XØM°+»Ë‘b€I&Òóu$ ÷Ô^883×LÆaéóƒãñòÉñ<êÆñ¢ä~÷qùZ$•×é´u‚ׂ>’o\vÖ/±ª`{j!z˜{#¢`Wxk¦÷ú¹4§•ëeöÜ‚±]dÉ×d†H.ñ£.S%Y’ŠÉ‹}5[^¾`Áä0wÞˆ¥Qá-CÒº.Xpx£cº&ÌÙb‘KL3 =¸ìB3$#$oWažV “Ôb¸3”˜R°øA0;÷$¡Xçô•YóXŠ D¤ºQÊÙì,”:ŒYÇ8ÌQÉÎÒñâ)÷ÅJ×"ÃÆ²ÐÃ×õ?‚Ê~KoœSõ‹˜v;WRq¿Žò~ÚQdujM»Â ×Hf¼BæÝ*å×­"†3ÔA¦o}#…xu›ÓÃ]u2X,ÊÂÒë]û×L³œ`^¡¥öˆŽ·BuY‚KËÏ«9©dѸ¸+Xr˜„e‰ ¦ÐÌì–Š¼ª­îdÖyà!:©qífÑÐ,]_S–·û‡œ –ùrŸÜ«D=Ä1¥÷¦¹¢åWøâ®^?l” ’E'w&Ö×Lz¶ð™§;Å ßW\³üÏ`^V¤Bro•<µ2ëjrÉùWp;¥¹Õùáá^N×’køK=•|£†a‚Ó*¡ò­Õ#W”ü,Æ¡µYœÇÞExä¾W§• Á•à6qÐþ”þó/ÝzãÓ¥s`roˆ†IÈlj}D î öý¸di=?QZ…,SÐUêÕîq¶ûsÌiÕù§T£ŠMëôä‘¿J krÚ çÙùª”ö¼¦7˜ÜÜrG/$¥$÷ðJMºë?&ƒ³ð™HðÀ„3,Xp]x!\¡O¸·îÐ pE“Ï>NÜʾø¦/X  ]0g6¯õ@ÿ†±üÖï°¦D±QqÛÃb7h˜œfØ>½=׿ÜjM AzWȆ îS ,a–….o“gbhFµ–·^ å;g†Ý# ˜½7ŠÉúèM…bïÊ•®Ôu2'è0ñÀ]•ûDá¾…+Š HÍ{ . +£¤Ñ<"¯Zá/¨´)k`»ò#y`  `Á‚[»)Q]Á‚ |½^çiÕ6˜{ù·íyxà¾zfÞWKu{¯Öz^é*n]êD1†cî‹iÆ£šÐoiEñ÷“è¿cc8¼Ì {óÔˆ§7ùà ‚‚ë?&ZøÜ™ DޛƯlåpˆpHû»“×÷÷Ú®¯ÐOD}ì ‘Osø¸Æô×øL9Þ=øÎf—ed黂Ã3„gÄ27»W–“ôJ!ðÁnZDÂ+8’±é Žå,…5Èt°¦¤Úøt•íª34pÏ¿4Kÿc_*z]uŸ¥¾îÕ%å‹å´PpáÝAîÅþ\‡')ýNžA\^â5šŠÖÉÖ>Ì–(h³ž1ÁâyŸðaäQ=®IBY/8XòŸ¤¼D|©×,Wð[0æ‹iÈ›Gœåöz­Õñ‘áÜ yxºVt«øí¼…+’Ïö±Æ=É;y÷+n¢…W„_·Ñí<.X°`>˜ô˜+š†Ô 8x:SÜþ¹22õ¦Vc+X0;0§>6¼ß¼íßün½*¸Šâiu¿LºÿÔö=1­ ½MÒ¼G¤ ®ÃŽäüßÿ;1¦Y@(:ƒX Üv³ 4p“7ÙmRVœ‘ Ô°`R7XpŸp,Eؼ¢j7¦UY<{©q1ù¸±l‹z49óú ±àŠ1+s \áí×^R/Í X0;̲8PxÓ¼{ºX… Úlš! UµL"ùÅÅ6d„¦Ý€‚#ÁÜÛõI4^s/¸˜Ü€õWÞÕɵ|ü¸4Øý F_½‰ »R-N:‹°+tëÎâ-k#{ú€ªx¬ÉÅcÀ’h#Eª7 ör€œÉ$Ù\¢€‚:¼<°|–ær BÑÈyVkÿTÛ Ħ6JÎ/4÷ 6?&ò¸â³-­|%×›cÀ4ãSÑ÷äµu”»N—5®PõzPk»I3³äQ€Z]Q‡ä‹Þà˜Á “„¬j(~€‰‹G­×XLi¼[8ߘ"×uÓúW ,6˜ÆN² *û€ —©ô¨V|^ê åóÀ=ÇÑAf{´ÎDÈUÊŒ îK¸Ê+‘›2¯ñ©T5€¼pã ¿ÞkÑ·Þèp߃]a°·Op;õ'#’-'&aÿ™_1§¬Áa¿|ô+f1M¡`Áœ0©i¯Ç-ouË®°ï>†Æ\(¥áª¡=ZeÁŒHΟÿUàD“$ؕͭ‹Ë3³‘×2•5X}ˆ†n£'[w†ÖHi¤âÛ_~vì­T3ç&±4„ÚÖk‡€Y¸Pzw÷d1 T «óô†º0T°`Á%e•½3mlêI¨’–ÝÇÕ  D4”¬â>¡d4,ì½`IR²ËniIô\@Ó.xXxàªPv¸u^HŠE0v ŸˆÛï›7o¶ÔÎr¾tœ`ÙÍêÍÚõ˜Ã:ò`;Gï èÈ"w|DJ¿Ef6(Ø{亲l,+‚,¸5ܵ~>?Lc'ÔwÁ‚wwÚx_|ü´ ' ßCp!Xµ> vK癹’TÙnì;­jLWy«¡a–LhÏvx˰Q)†J—¦Uü0É:l´åš2/i¤+î†bÚÁ‚ ®¬ÁHoúV“9–n¯Ì­üÁ‚ O«{2vÅZš¡¤y" ;»3hWÓXZ¬ÚeZó”T–‰hÀVÞ)¶Ž.LÌ×!%IìwlfœçKî¨`ÍñVsnê¼þ`Iͬº©ÿð–NLƪåà‡»ÊWѨÞrŽFðL+;,}Ç'Ý4ÞwŽƒ]ôiÚççÑô¼"Üê>%¼"¡l·àNa»;‚V•<Ø;úê/m»[°à>`ù­‡Õ| ^ +’"Åš¨úºyàš ’e–é\¹±ø†4­&Y!âî¡÷šÛîZCßRв^tÀ. m¤?Í{,iFë³3]|ëNϱU=3Ì!=Š®š“[£]ê ²›œŠ©‚ «·é: dÛwl•nÒ¬|(+Ë1ÁÇnÕl»‹ÞžJTX sFAP8”ܬÜã”Ä,r¯z°ÄµûkOJ™*8Ý,ë”±Q1‡‹]É«}ŽJ’›çå–~ERÁ‚ÖZôpP¢f÷Çyz -w²¤t¡@óáƒ7c^v%ë\ÍÓqš±&g†N;ƒÝ‹Ê9vðp´Œ§àXð ]ËnFxÒì2®+P%ýdpƒíwÏP©»÷œ¤àÇõà “úîÔe^¥÷소'iÒ¬q%nŽd•×¹BeYnEØD4ÿe¸Ö6S·6—ê×guÆà}ÉÃf"ŽíHäsâ)Õô#Ä© ÍnìÁ'{µn®`WñeBZ}ꄞûìÎ ²pJÈÉ'IÕʱà…K¿ƒjÛ1:Kjª£IÌÍî$+sûëÍDÄ*iâþí{Üy&9r;ß\;bîjh9‹”!> =äq¢`Á‚ÂÜ!T!ÏËÍÎsº9‚·•XÁ¾påJ'®B*—Ñ .+Jä ´ì°X¶S¸Ç·‡— Þ/ñÃVÅå]íA±À(xTX¾àH°x­s81Òzs¬a‡8²¸XÖL™YÁ”0 ¯ñIÈ­g¬¯i¼n‹£aš†Ž{IÑ~¯5ªÙßÏÖškh˜{[ ‹H±½…†i$°|0ÉÞ.ÅQïÖ[-Ú0oˆn¬B o29¬‚-áÚ9Kl\†¥ÉýªÖqPcõ4Â<A^znâ"»Ö’Ö`蟱|Ÿm‡sñtן]Y¸X°`Áaôƒà€ð?D'ƒÂ\Õ≖k u2\ßcŽv×io÷¨ñÁ¢!]iŠewY¦º3˜ÃwÛkm~LdÅgv5&¸w¸¼¼<äèÛ9•êµÄaaн2Þ(ÚÆaéÉ7{vpN-Úµ˜%Ɔ—DF…c%: K¼:…ƒñQt8d]`W¸c)/~D€à* ¢‡ybÉŒmy¢ò*‚ˆ÷a˜}º[ŠÖÞßXvW€özU¡&J°`ÁìE$$wü¤ò+ßýÂ_Žú&š²ðWL9 å¸ ›v “ûE¤.ù@´¶šÚbé‘ÛüO¯W¶”:q‡†kYœ,îºj;3èhê!‚=•ÉÅ‚]ÀÈSæ´Þ´‘}ÂpÚnW[¨P¡B… *T¨P¡B…vˆÒÖ­LhÒ%žH>×þÙ}’Ìr÷R| eØÃÛ¹IËin-¸Lj<‡€{û ª€¦Ù4 ñïä]Ö ¼f-uì1±ìz“½}§UÂÛ+\/ÏHrñõ°]«×øMV&¼Ô±¥Nò°=ìž{ ÜwÁ½³‰ûrCÐqòŸ’ÅQža,8¼àš®pjyú° ÞO+æüX.Äèpye”{‚6[ð¨páäúÛ ¡üEÒtlWñq¥bc-†9ÏBEö#I)ùÃ]ðmëNlŽÜ·žÒºƒüðé[q„ަǴž7Â[¥ ,XpUä4ÄRøœV°«-LIn«YšG3 ûÕBW‰¦Ž§é­­ÃÐð²!XÜÓ¸“ùÚ‡û–Ñã“æú¼i„ÞšÚÃ!*ôÂI½¤ÓÓ=Ü ê}ZüpÈZô§±¯ÞŒ¯po(ÛÝÆ)éMúù˜…&–#n쫱‹uuq¤Ì]ªªÚ>ÁU4”­XG•%šf„Ë{Ø#¸\$¼ZÍç :-<˜`:VâæôKûåU¿`!baiÁ®L3í4 ¡Ë+wïJ j‡·ø “ ˜`Á‚ ,˜.âð-Ý;R¨RÏé#©5ö;ÿ¹-]OÍÓßÎ`—é;v²eó¬ûÞŠ–ÜŠFm¾dÍ“ ÍmåÝwœ™¸8ë’pkn8À°!“JT#ØLâÓ¨C{S˰óðP)Ëy-€…›ÙáÀg°3»7¬v1䥤ƒõõ…œ û½9ƒ§}‚”³˜€À·%u7LÁb³Ÿâ4q“`Át2¡uhà¥øyÉ« n¸ÏöqN»2߸/^ÃU¯°e`Ö¬ú©h¡ÖÜÛb—÷1û}Á Ò7€5L«R°`jM®ZÁ`òÄ£D¡¸§ 3Ì9 ùŸ×5Ö)$Ø·XƒX¬éär-x§ˆ9¯uÒÚKj8’+ëê‘«‹Xښǫåi_P8”£)Xps˜#I9dUBPÓ0@Ùáå-e^f‘eÂÝy)p‚ 8Š%gÍÍOŠ}öf3”7;·Sž©%Xp,¸‹Üy¼p\6wŸHb@Rní`‚÷»±ç^ Šß»÷UUËϺձxç'td“ƒ¨ñ´Op/s¶ÆÇóqÖ¯ åPr¬“:›i§ˆvé°w\ÚçuÁ‚©ÂN›ØL’q¢¿µà~`±I‡ð’J?<¬“ÑÇ-ØÙÀ#Ìñ’"8 ?ƒÂ,Î9Ò4ÄÛb¹ ÓÎK†bëg¢y K· <Ì’Ec·È4£JÓìãH“Ì[‚G…YtuWbæµV×öÕS^U: û’(¶bx\¼‘§ê"påäŠoª£¸šêdu€†ÿiBûíS—M õÄ…xdÝÍ·»Ô÷5¼mƒµÃè€U‹‚sÂmO «Œéð ^99¥_!`Ã×L¤zá3ÑXÒÃõ¦’Ç*ÏIRvG&aq´Ý#M'ì¦È—öH8CÀå×Ô´m¢š¾6»,X°`Á‚Ç…åJ <@kúæU__Íߪ[×§ÏâØ²Ã=ëÁýÃ]I4Ïb[ÏpW,#˜™{ÄjÉÀnæ<(\(|`ܺО‚5¯‚  &÷†zÖð,+³@opÄK¼*¸,ûñÀ:ÓÚ ~4 é f>Ì¡4¼C泞còÉptuБ\ vÓÕ¼·ýl}î·wùë@f”†» í„L!•,5 ¥$ŽÀ2ÊÃÄ5rwqêhbJ¥ÎÊgݨ¶¾Å2ôι²`è »Â€ÚF±ÄSyýÚXR#™+¯Á®»lz½^hj¶Q‚×…‹ç ƒI&^šîîJå +Þ,¸…Rké»õ¼r-¸w8÷R¯å°½³ÊF§æn€\ÙhÂ2žšŠ¯l¶vÖ: )µ®ç´¿éb^´“n Ø9ïú5ØÁCÃ{׸yz02Ü<Âö®¡t¶¶<­ðGp ™,XpŸpÓ4£ÀÞjòæ Ü3SÐ6ž‚hV>¸ÇRþÃN3Ѳ&ûQjå…{³#Ïls¤Jh4ý|uÀ ÍvŸ³òÉþò©R1r4f[ù’½Šÿ 3‰ë¢¸°3˜ãˆ  kñ”ÖpGW·ã¿ÈY£õK'¸Ó˜ÞI’1âWlÈ9>:ra·ÀâcÔ/- DS_.ÆOŒÓIé½8¥·Š©ºÒKbOþõ6¼,Òr`ØI‡#²[Ô½÷èpHE)ù–[ì׉M_)¸¢I½9¶åµz±Zµ.žYÞ¶»X²“jkÕÞ8½ ¸ûŒ„6†%<eOQçÖÓÙ’t…ÂÕe¹˜#¿FÂ]ôðÀ½i›³ Þâñ…5k‚GQ}‚‡9¨ÎA’¤qf6z-‚·–Öžöw²”³¶ÝvVåLÙ®3´,ÓØ\Mhbqc¬Ööskî¾F„Å?(\–”Y8V³6ØÙáÝÒçÆñÆ~ÀÑ ªÝÔÇÎaŽb÷ù*½­°bbgªÞsé£7x·ûHvŒ¥» ./rlöœÁ^l½ÚÊp¨€PT»à‘5;Pê]ÁÝÃRláàÅ}ö¤êÂ{›yƒ[¬§â«ÇÞ3æË7mO]qJ'‰»Â…eL+ŸÈB~™a¶MÜÍ 1Š‚ nëädÁõ9Hpœádv̨S#xíÜ]Wþ(¼4°4 ,‹g‹×÷Á=™ðÖ¯‹â™Õ1`g_œ"z8Œ6| ;çð´/æ8íQrzE ¼Ypþ'Y»¦asòæ=/©Nž,Xp;FÓïŠ c8ìm=Û–kòŒ»à€p_LE¢ÂIlÆf§ñ«„Cu}x`׃Mr±àƒúàúÉ>‹3xa–‘*u˜ã~c¦ü>^!,Y\ð¨pþ5,]Ñ9L§º¦§Ž˜»5å,5aõ´ÓæÍàÎ,8”›îæå$ ,¡Ô&I›Òü´ð#ÅÍ^…Åõ¦Úùš›]àU¿^ÒÕÛb‘=]ðú‡‡ì=1ìê€ý‰ä QàÈ=l«+46 à î¦O öco-ZïÅíÅöpâÇ7‚cõ£° _ã4ðh!z˜Ü¿Rœ¡±os¨Wod…‡K“ëç³^”,Ë< 总šÊÖ¶da×n‘ýØ=0±IÔ,˜ îJ‡ºÛšñP eP”GìBJz'|¯ÐµFoÊá~žÕ‡ŽÉ‹7à4Ê‚Ê.´–!vié –ÓÆ 1 Ë»Ùíãpø÷ÞK£®ƒ9׋y`È€BA3P¹!=_Qæú7Y,*òˆ§·å9=¬³Ï¥»P“›˜Žtœà~`’‡xëN‚;Å‚Rð¯òÝýg5XíûߘÓ“½Þ>4Ü‘å/ðÄ6GTV9%³à¹Cü`I&TCroTX‡D38I’ŠîBŬžj1´²à‚G‘!ö‘â°p7Þò¼ò:Œï‰3åìC'˜•ùª):N‡³U‚óÃK"EÓÀP~§`Á‘8³röµ|¢„Ôaè½Ôuº_œJ ?s­F¹~Ê®ÿÈÓ—M°B%Á‚G€e Ü>öf·}ÖÁÎŽKÿÖb¢ö î&©9PÎKJ $†¹‡¬‚ ‘cÂ=ðÞ°ù1éûŠÏD½Ü’jåiµ`Á¤0˦¼ÝÛaGvï»Â+ü„c;%å3†Q…QaŠRóR›”² ˜â°çDZl›fqŠüõÇÙ(õžWÚÞÓ3…à~`’ó¬"êÁ‚[ă™ öö v`RÁ‚½T q°Ê3t‚ûÅkÑpÁšø` ·`Á‚ öƒ#—…h­ŒmXI¶-¼I]Ö84<òHÀR$»%‚Žžû8Å|`PöV ­}†ô`Á‚ßôyû 0·K^Íã Qv4 ·6±,™øHp¿ðCìÚ†ÝTktEÈP*Ôþ™¬©ç;N÷s5÷Å1gž޵â%¸è .ýôú‰–YúìåKÀ]á˜Ã]jÉ¿ré€tpQ®t:Ò¶ëY“k0ib©ƒÆ†…c2rk{+8 ›²°zeGLzs(¸õÛ6h¢7˜}¸8 ¨ÚÁ¢1‡ƒÖRtWÀ÷`^—C|÷qžù1™µŸý§Ík=–eñM0ÓÅ´ˆ­Õn8msšÝ^Ü•¦ŒÙjÁ‚WS|ÏJc].ˆ K᳎6+Ÿ³ }í“9º’ ÒIñTÁw1Ç‚wwe>wSØ5wË¿åâý–tD§]p¸9/QŸ¿ÖSbÅ pæ\ë;mžeçVxà‘j¼•Ò[…“ãR[Î!àbÙák‡vÌS¡/JB÷ÀA›Þ¬7oõ®¼ÿßmý“x]͹Åf+–wJ `5çDB°àB¬+”,¸5¬Z˜†0™Üp¬ëÈÃ'ayøÐ‡YŽ9Zp,5xÛÀtÍ[ÆÜ‡‰ätB®Ž¤Jùá CBÞl™PÁ‚ÂæÇ%‡h«£äã””ö¥Ž­d™¬5w|PReÀJe–uÒyK<0q‚{ç=úf¶o…}%À!àíõO¢Â²è0¡Ò#…ýGjà¹!ˆ•SÀšªðpµEmoJ[á‡-úgî{Öýaá¶§Æå˜ Íæ¥?†„ ½©·ˆºw…Fû²4¯@;x„j…³Ô °°¾àµ°BpÁÃÃõ£Š6(öªRO̦‹÷h4¬¿F²úRLþŠ×¨ÑÃA]9šfsì áV¬þ“È1ö Јž`MN¤‘"7 ,Nú? ÌítöÌ)×!£†¶;üw§Y´eåóûøa€•°Ó!ñ4ýåi6wHtéáÆu{¶?d +¸{8–3*©khÃÂ2ú‚“‰w‘ »JcmÙtÁ+Ù@¬Rol{ˆÄƒÁÜËT:Ù§ƒÁìC±» Þ(H>S¤÷ð–±ÆK§ìÒÀœš`Á±Œ]_¬µ]:cÉý@§‡ç‰,C÷Õy7‡»QÑ)+phb4P‚‰4ÐÐ0‹,VXqïšÛJNÇ̾q —ˆ²o‚³ØÁ‚I9“$ëX uäCÚÕOR£!˜A°8rpÞz¤#‚ãÁ<Ǥ-Y—KSêÈ…> _«é½>†‡Ö(óÁõ_œ¾ò­Û_åÊ«ìúr3úê`Á‚O=¯ìé=‡‚»ƒƒòy³gy…Þhî\÷5)*Tï ,»«ÎËWñòç¾æ£¯ÞÈÕ‡;ƒŽ//&ƒÃ±µc`B:.עßj.•3ÜoåTg0yQݸå8ÔG­PF^ì“ÄÞ¾ŠéJ2‹3.û8D:䊅ã»2£f’M©Å‡—Æ„¦¤°ãêK»ûMÞCL›J‘}$ /q|p{Š‚÷͈àQaŽu,r!/ï_ï\v”0w o­¼Ì“+.Á‚³èõÊܱ ‹Ã‘h¼ #Xpk˜¤°À)ÓYGô@-§2…» `Š»1n§#w5 ‚w±Ãõ< v¨%Î$n=M;ö¥ÿ9@ô6‘ežû .ÈÒÕK21Þ¡4 QßS¡J×ÅÒïw>«üÚËx8¸ônbš!vóº‡ßzMžâ€}Ñ-M+]wË‹vÝ9âá©§fX2SÞcDÁÉä–©cЇ©'÷úu2WáÄ3Áìn›`Á‚½µ‰'SÏ(y»¢=mÌ ó1Ï’ÂÙè›?5€#z lH Õ8–¼§`ÁÅá`N°àXpÀl4{¿y`’±ìÊ­’š#r@3}ÁûS„•÷L±ˆ–` ˜}†&ŸyO°àGŽx{ÉÓ>Á‚—ýÑm×,i0 ÕH°"YÁšª!éâÀ:ÁsiÍöÕë ©l±ÏÞ¦fSl2ªw1q§¹K‚üaŸ÷‚´ðâñiãq,yBÓçU{vÁéXô¬› ®So‚`ágïÎ,.hkŸûk j–Ö“ê¥ò‡?÷âpS¸B­E†EuÜší"J;Õ+vòs;ãô ‰¯ˆ;+º–m÷%¶ð©ÅùÍ=9vxñ=ßÒñ Ü3ܵªj‡v´czæ»­5O«°@Ìé,X0Ÿ6q×HÄ p Ý<°ãÈÂ~cÀ,YMÕHú_³f> >X\æRv!Ø^‘X|í_µŠÆ×0•cò8}¹0$•KA{.Xð€°~D8Öb7Æ˾`¥ L sT˜Ò➆CpÎañìÄ€a©€yâ“¥R›`Á±`ÃeaoŸ%Öüh­órg©”˜ú:+§ì0 "XðVm¯è¸žAÛ_X÷µ4^ú›ebŠA‰ñ`¼¾à6õ¹‘#b» 7L°à˜0Ùãpe£ÂäkXΡK9Xc·ik'A:£=ØÿöbßX£r` %¼0‹UÖŒ ·öˆ›«&o¢gÑlÜÑ ¬>m'Y˜µV4Ýk^|ÿ{¼hº 8 ÑI ²ØòéèY´zƒÜ•x•gÜë€4º¤¸æta ^Rêý ]±NEiª\ ÖÜÞr':Žm/(¢D–îÝ•¢ÚýÛ€8¬/¹©æö:3Ã…KfXC<±}ûÜŸÑ­— Úm™× Ü& \TY’ëûM·.ДŽÏ[ψ`Á‚%Œ´pQß}iÞ9»îæWQ,ª –ö\Þ¯í´xWM×ÿéš;6®ÉOxaáe7N¾P5‡ú¤ŠkòÝÅ·m÷¬¢ÂÇy`ÿwàq¹‚wÀûÝú.” ¹€ {Ûmæsjê÷nÛ RÎòDö™!‘‘‡¯q¤¡$«^bØKU í§¥©všhw¨`Íà6CþŒ¥DyÖ7ÈݺÞCÙÆÎ"ËÑð›´Ÿà >OcÉ­òZ2Á•ø‰EëE`TÁ‚ÂŽtñ¼Ãî‚(˜c(–9BfŽçUB÷— 1³Ó~ZOiÄÝÔ!Ì"M( ̈²;E­ÕHopÓ%îÍvC³/˜ &W—ü°süÁU%‚{ZÙ k`–Y(þ‚Õ@  ‚aÝ·{°*·7³?S<ƒ£d©àò,Xp)}Ûq³šwt§Y2N»Rêˆÿ\(ßÒжÕÎ R”~¬pø(¦ž¢Máâêo ¸ó »%µšœy߸ÀóØo_®{ß«ñ¤Ò(!„³s‹Á“ðAT¸JU9ðÚòâ­Ô:Z§™*éjœÇ(4­,XpK¸+%'¸X«ø“lûކJóöSdæy†C°¤–<9ò%…©çÒ ³è/yû»ïÝam^㨊8‡Þ“OEÓX!¿àž ‰VÑ À\ëÝpËãö´®·ðÎ^$÷gèa’b ŽŠ]ŠóðF(?µ«ÁìbF ,˜^ÒšM]¬ˆµ²¼U`™ïàì(‘,X°`ÁÁ`wÓEá ÷eU)†ôú‹½ÞäÐsÑ D ×A¸ôú^¼ø¹ðËÑ)4£–²7óe»³éÓŠ~‹»Lsk’{šÐÞì Xù1¬´/˜W-25SÍ$Íç(K§§ZnÁUX¤¯ùWšLR ­”{)˸?síü]?•×~ŒÕ]Á‚ \ .Ÿ÷Ú´8rýÇäv Ÿ)Oö×x&½¥foî§ÔK2½ôeEôÎ,°Ë·•p×DÜÃq˜¥K.Ä,yCéAaM|8xsaF¨Œe“´s;*ÍæÎà¾tž<"^˜eý’¦3kç«ïEcÍU/&{pÆbv¸3uç®Η7v‡ËÇMÏÚ*Ò,X°àQ”3Üï®ÁÎàÆÝ+X$Ù6CÒfõ6‚æìZaí®ÊªÈ#0Ug}çÐiœ)Ê S*˜®åZX©`Ññ…+ŠIZÊskNŸª¹;sÄw[ÌæãÍ>iäüÐXÑ f†½ñªë©×¶wŸ‘ÃâÔ0ϼ—ò-_3D®·;­ŸÏ¢xSÌ;Oû×™Êjò¾fÓÉþÄÍøy9_<ì5°=ٿ銧‚yyfXCÂ3OP -}´¯àµp“|àxŸîÂÛ o>¸ *ÜkÙæ[}gö(¥‰³‹'ñ:+Çêk­[*bFëeæ‰f[p•i,Qˆ“Ú¢1¶¸M°”R³‘âHÏXl§Ãt‚¥I&gh¸ËÔ›À`ü-ó$X0™Œx4KºjÉC¨ê-t“,òuãó̬`Á”ú¢ø¹5’Db8èä3`ÐQ,X°d[pGlBÓ¨0syŽ`^`a3ØoùÂ}Ô(*í8 ûgpgªî=Ü@K–SIWËó¸V´e,;~‹‡«ÝëÞl§%–¶ÒÃ^‚L½÷3 [ϋҰ¶à†ª„Dxhg^ŽiöüÃÓ¯â.øÎé]bUÎa ‰}Fö‡_#-aßW'¿s¸¹ù«›© Ê‘ú®ª¶¸ow¿……yYÈÒ’íA•,¹^peØmckñØ,ª“E 5÷×¥zÝ¥g·²zp®ŽçåÊì-ü¶A¿^.;;`†æ‰—óëuÛ}ŒXòkô°Ê2Ha)ðnsñ¿ ›(™Ÿy¨‹Ÿ,Á3ûX T`hŠoâ©5…_h΢z '…î9“èÀãÂúýÅ%ïbaU–Å^x‰sšŽÏœ³÷渚ٿtQ~˜ÅvÜG©–*UsÉrõìž L “hRÎp0fÏ8¢&Á‚»€C½ý$jC ,xp¸íHÒIÝ,ºÒxó<Ü^8bö¥´Â¤®h 9‚·†Wèƒ5Ku*ƒu#EéÕÒMOo>(+ÊæcÞºÃ*>_u¼¸2¼QÒ—¸ÀÅ —÷{¨ë<ík;$×Náêð¸S¸üpj‚HdÓ¥lÏýâzýBÓ÷³k§¼® É-R·Ò×—ƒ×DqŒí¦4ò†·ƒÅ_B3b,>3Ìb0I¼Õ¦Ëó<\!Xpc¥BêÞ÷ʱÆN1ˆî#DÁf±µñáÝûwË®ix¨=é4:}Ypï°×v7·loíb³ kÈÉýOKçáÁ‚›-ÒÚ9™oÁý ÑÅГñÑg_6%ɈóÀCtr8BIèÚW6yyv%ÕÁ Ï­~tp¼†Ûݱ¢ißÀu#`¯hÀ§ÝGZ”×$f‚Må–ö/C”‹)˜ˆë¹×ΙN÷¯7¬îw›5ÒÕì=co_HÆ¥.=ì f©Êg™0±ˆààâoR¤é™—Aí¦rìÆò¾ó–‹7¯ý‘.h > ïÍ^mÔVI-ш…%¢ûäp½!)VøBΰĂ‚]áHïÞŒ åCÃÞy§$r„=`±t ·q$›9‚tꎰ<0(âM䎃»7=.s»¾ P½NGÈ‘ˆÑ΋·|LwëgN—k¸Ô‚A•íH#¨C·ÓhE…w#ž.° }CÈ;ñ„΢AÙçÐ^á¹Q¶»‰}ãzJxà<Ì£yÚGW]'ÛRHr\*öËŠdH°`B¸ñnšnM^½#˜NÞ3Ã!õ sÍ=͈ >8®Îk”M‡ã@,ÄiHTDikJ:Úþ0ëÒ!\€O½Â)’Ê¸ŽºÂÆ‚{ Žï"'/Qsʳ Ë# £>NQÄt¢b¶ÚVôÒRª—8ˆ¦œn0<îjayÁ­|GÒ7·mS×¶ïÀÀ5JFßp®ûºg)$b.‹iàiMûØG„® º¾',ä‰y în»)“|åY°`Á] ZO¯¹K)X°FNÒ4¤/˜éügÎ,©àÕ³@žaën w\ ¹ò8¸Öç­z™©*h‰o)N–¤Å©£1ûMè™›—Äe«±x6‚Âû_u®4ûûjßpÇÞ5§,F,¸#}#îîj*,xÇø/^¡Ñ¨[ê~ReO2î…#è!àñ’4‚9`w^#5 ‚»á»˜&ŠÜ” &ƒ—Ôk¿r-¸x6á8b¹£3Byà!:I{{zI˜®@F°4ÁaØk»±³1fÉ× nƈǪ¿=kÇ÷¯wÑÀmN¤ ñ¾wÁ«á˜©CzXa¥` ßf¸ÐYÒÍíRÌ¥˜­.äËø,÷~­J¤ ,˜Éˆ‘TbúÀæÇĈ¬øL4ëÝÂ+¦‡²Ý]yÉ+&!r&Žcû†`Á‚éô.‹’æn4ó:®wÁ ú¢äÜ<®ô‚dsg/Ĭ-㵘G®ý›óÖÚ’C¾i†9(¼f‰Ä| .¶®ÌÇ”sÑqŠ9ãõÌ9Ë »k³\ᮑZÂ/sï V‰ØX°»9lSðIîIQ$‰±»È•#YÄ8ÐÃ[zÓ›_bò~g;(¼¸%¦ Žì¢‚É”‡”ÛC;É#v8ÂÏXíë6#ßìxîF_|PüŒf¥$¥´C2 7 ,Éè ÖêxñãißȽQßkâƒÀ,‚›à.‚wñ?ïÜ,øáU@ΚëñŽ[ë×7¨^Á=§Ý³§·zfY!Y´7$;2(DÎ¥ôuw5f鯼X¡T·{vì¶Á5W®ÿ˜<}ásTå(ØA#ðÃÅeòí4Ûær….`ñ'FðC݇š½ÕýÓã¡ÔsGS`I¼ sÖmq¶ª3x‡[õM¨Œ[$v†’£J'O¡†Åÿ£±)ÅYÀ¿g]Í‡à‡³Ýˆjˆ\-ÐøÞ,ª'd£ûz¢BÁ‚™•5Ëéa÷N>ÄßÚ½‚î¹–Íå/öÅ£}õ¦/¸6ßs¤ÿ 4®ŸàÆÍ¡•Ü9$USöÝŽš`6øú §/|SÀׯô™‹~…§Fù£Z“ÚÔ,X°\æ4L ´`Áke„´hch8f]¹<è(0 '±”fiU±˜…£¢ÂmW“‰‚^Ún²¢½4 .¯i®ü‡¨ßÁ7°µVsÞnH0I ´M!ÞËQWA>Û!÷À ^ +µ ¸††>VÞJz\ÈÀªiñ›ô¶g„I[£ÅÉ;œ0UgViÚê($ç´Ö‚¨ÁìÞ29é4Ê1&•aÁakJ÷5$}õFú°ì_¬(}úö4D&~ÿƒÜã%T£+%I·PG²±¼äØSN²0t‡†½¹¯´|ÐXú¼ÊìÖc°æJ~kc5GIp;EmËx¸©/–, _ÿ1ÑÌ Ÿ»’%³ÄacyÆF‚5*\m±<^-w0Ï*¦WD÷V1^;O<S¼èKÒ´Š&lí .0$ãªI’ágðoŸQ4K°x½ñ wôpW»3v«5’¦ò4/f×ÙÇiÕ¶ûŒ Ò`%*Ü•àÐ TE¸ÎnÛÆ£+¡.3¡•°ÜƒEîK›†#~Фš`OE´ì&Ÿ:Á…àFðü7--‰c$༤S ²tFÂ4p©B8N? u®‘sTØÅ`ÀQ,¸c¸µD;¹\›#˜ÆÅÝïá,“‰ o)¯ó&9jóX„ƒyŒÈ¶È=ú¹8æ„ÓpM½[G8†«µ¯”;¨E¿ÀóZ§Xzˆfº;ío˜b¿IL-I<ùa–¡çiˆ`ÁÜêüÍH6€Û£\?'-*„å,6â³Îy·B°àH”a iÀ¸<(Üs)ƒ$xÛ%ÎòÈ]À üM+]Á¥±¹WÆ5×ÑÄõ9™^èðªæMŸ#œð#¸#8¦káîkÕ{`ª…Hª†„Éã7Áá}§Biê\Lñ¦'Ë¿Ç4¤Ééõ Þ/¹Ý>3ÌϲÊ܀U´Y &†R  Ê™j6ÀÍ­€`fx´d­Ì0ׄ4WOO}±E Õ–Nî/¡‡izCÓÁ‚W‚—,¥ÞpN)ù÷›Fç*M×f(øä¸Âžaÿ*€z¹ £j)eæÍ4\K‰ì#ë—Ž»Ø<ÊÞ>–N¶N,  —(G–çpkí´nÛè °Z1žtµà2ìÅÓjÁ \ÂÓ>¸c­º;?V‚yX¶æÑ̆›×GzGöá¨wæX^ñüŽÕª`Á‚ ®çÈ—ckVoðîBž. /1MK«oâ¨IVhL˜¤>l„º%™VÁ=óÌòÒsˆ5ù~'†&Œ WÑ$ewgŒf 4[j¨k]ö̵q=_ÿq¼1{^jwx•éÞh’À‰Eë²ßƒ"õR¢½ç…(úÇ#l‚Âbª*H¡y‰†U©wĺÛ\Á‚ÛjDųçìðš$ƒMðópã—¬i”[ï9ÛÈ£…¥#zé“Ñeº¶¨Ü¬5æÂí¦sbzýnÂayšN1Pôð Ξ8Ö“Oˆ+¤ý§6(×$y„ÒÉ¡{ ‚6[ð.­Yv˜Ù?Þ2RãˆCçsH~7e Ч/çÅ{˜8žç~1ÉÐ ,8:<°È+&ŒÄ6C0ªÌ²`Á;¸~„ðJ°àºNPͨQ#Ù"E0(Ìœš¬h´¨“R×¢û7€Ø:‘2Þ»&ÀÖ©%ëÁ©x`'ϬµàG3‹WôÈCÀ .­¶IaœA1®àð~û2{ÏX£©3 êÄXpù9ÙooYL Íä k JœÏã—ZˆeÖh¾@±CkÓAÞXÁñ$´/_+Æóy_µ¦™fâSÀÌ+„k|‰¦‹b h$Ï£ÍNýM¥xƒ×x.{Ý1Æþ†‚ýô ÇJ*K™®`OÆÑü æ„iX0¢nõ®·ñ#Á½KÝ&Xžotø¸Ù¼ñw•ƒO’Ü,˜Rê˜SšƒÖAÊ <ÜXÐI\Ê7‹´£D0‰å:Rõš]û̧ҫÓn‘§—šcÕäuyÅǘuŽOO‰­KnTºuh¸')ï yFè;§·%X°àvÚÌ-3Õ—®¨Ør‰x!Ї=ȧVI@XÈs+rêÕk’÷1àªõUD°¦^0',ÎÔp»Ã W4u?*ö<˜±jÝ Ž)®óR'†mù¹–àpöI¢'÷®ÜV±º$Wšomo¨M ËÜ2gH™JöK&×<ØÁc.¼[À³ÿt4RãeP²4j„åÙRû™ç!bÿŒ5µÌòñ>.`k‰î fq6ëݺ&Ã,=²Z’îïæÜE£Y¸c9-$¸‡òt¦@³›*YÊ-ãÃR¸FC»û µ^즙ʱá&§ñV™,û81—g”^ÄXÁáÏÆ$58,öfcŠÚ#æeIÁΰæLpðÄùræá±`Á#væŽ_«E?j!’‘áhŇNð Nø3.âÖ¶cÀ,½¦Wðp°Ø›æ['‚]v×#ÕÙO>™7Ðv™¾²²JÓ™‘Û· &­ë)#Ö¿Tì{yCѸ€Xü ‘Ú 3e˜ib¦cœ1àÆuðbõ°¤]œÉ!X€¦“3Ó:CÑLR›Þ•³@­ï¸#ûzíØî”w;"ËÌX Vôã’ŸWê³ÿHQËÖC…‡Iä\—ñY|žÅ“9ç¯(óed´Ú:Ü#Ä~,‘¿“úªr(4«;×loiÚ\7„jbédqG¢õ’ O]0k¸¹\‚Çe%‰¸hú"˜OjGž×p‡WiÐ&ÍS9³ËÖt†Z1²k2—+–Ù*l#bî£i_ùn7ñ ¹glÔöë+šÆvÆl‚Ç‚I4/\j1›ãÒÈA°+ÜøíÇÙ˜¦uþP^¸Vª£vÈ¿»*¸7˜dÓ¹ŒK«Äƒ½ùod¹ï‚àÈk>qk°A>0UJwn/ëâÂ}pP?Š%SÄ/ˆÅÒÕ£ =ÒÀUv¦<|¹µýì+/Î¥œz´+ SsHä.´‡ ¿ÛšdŸ‹oÓ8­{Cn#Ü/f&Í)9Ã,x¼ßA .¥MËÈ"MߪŽD V0UÄã1‘+ayÑá‹\4¼IÓ!à#2?òL‘|zÀÎ ìíë ¦8"£+D:’öÀÞöýÛ±Y”ĸIRqÛáv,Sr}ˆ; -~ÐŒ;[Á°.JâFÆ—vö kYŒ…ݸý‰1LrO à€Jª­¯è­˜B*1¯’dàª%©Bîòfi¤…4;1Ó>ÞZ‰§‹œlÞZp†‰p[¿r%*ÜÕôÌà4†`F¢‰¡z²çÔk{á…+8yLp'¬=2ü`>n'(/ÊÍÐÞºzçÇ%äs‰™©ò²‰,¸µ-g¿5ygœ—EºY…¡¾¸›[„:yP°à`ùÙõ•iL»Àl<)‹öƒ¦Í¨]CÁƒÂ+Ò©3#¹pW½$ݽ+Å_Ñëv´w5ì~UE#°CÃ$úÑëhî )Õ$ÞEÌ«À#ëÈ}—¨À!£ýÄ=Ì¥Mð6?é&»ïu¼U-p Št}=¦øñÀ¤ÓZ^ìb¹âÃ3ÌžFÁ'„Ågÿ2(ÜÃéîf÷ö„5¿$)ôÙÝR/f¥¨¶Ž†òˆáp¼²{’Îx‚L>Êôp'l°w+1³²L/¯h¶“ã]ú=»y–g–È£œP™>z¸‹#³ØÛGsDÏQD0ñäP¬³’{Ç\´úÒ§’ÙŸMÖ4×Ìš‚y,qëzö‘%eÓXwÕ3vm '6â[Á‚—:Še^´žURÙ4xW¤£h€f餒zƒÁ,Œ×\º¾ ¹_Ï‘’»á"·Í’OÏIÐh ÞÆ<×|ÊúÈÓÁðÞªÂjÖµA.O4?>ø»5Ÿi¸ssù»åŽ˜È¼n5Éí,˜YBi”B-CTüàܽ,1—àÖð~o| £´7Z4wVâ"Í¡'··- ìjRWm²Ya±xzËõ’ =}â±·E Ên©üŽbãa¨½2B=nN¯Šô’&j¹ó:Ñ)É£ìy`ö‘"±ªàxüÀa ™oÁ¢+ö¶1§a‰Ù¢/ÅÝWo—ƒ¯ÿ˜øä Ÿi,‰Me Wú1sŠÀ+´FÍ–ÄJT s°g°öšN‘,XpDÌâÓØø€Å± >÷5›]ÍÝrSeFAR`ÖæÇÉÙÒ¿}¥‚”bçç/±éªgõìM±³—:)8€á•ó 8*ãÑÜCz#ȹsë»áNbÍ9 Dbr_T¸¯NöÕR["˜¦–1‚—÷Ï °`ésCë]TÞ‚6[ðAØÏC" 3V,\áàˆ$[/H;†˜¦Îàk'ŠtŒWl8?¤Ÿü:È/«µ o‹&xÚÝ?zéË-ý•#á°Æf³6ÐÈ`LîÌ<Ü® Ü& !ǃ×)·Û_®i=¼²àØt ›Ù;ÌqfÉ/4·Ì ,·ŽµL)Øu8\ nléÕêexá 7#³âù”ãÖÜS6ŽÈ1Úž.Ö7gÙíA…Žf#šÏˆâàõ2Œ1àÖœÙúùÅEÝé¼#÷D ÅyÂÌÉMÄíôE* tøk‰žé@9\RŽ|~h=§ž{…‡Ga…eøÚW¾þc¢~>SvGð.¸u-âÀv¤3ø™k=‰ë'áú”}QLÐ!<¢{#X°`B—“ä·ÝšcÕ’fH›ƒÅ“¯áÞÅŒ4­,˜ÓvÕ<š†Œ0N,æ¸ʰæ!ê1k¨é&¯ÏçT¬šˆÄ(_­Ìrì@z^V/E3Þ…ž­@yÑ>ÁÇæL1ÛŒ®\:ÿ ¨;›ûHû% Ò<à>"Ó¾/ä†:÷±>À¹¡ÖæÉ¼!`E»àâï`òé²![ýežñŸãÓÝT!=O‚ f¹—ÕèáòÁ¶Âwç>ÿ…b¥Ö}˜ë\½®0 1µ²|àÕðþÈfëû–)»/¸™¤÷|èdÞ$óu±’¦‚©a’Ú1„z4¸#“ˆm&vÑÝ¡1`–'æŒyàÌÎCÃ$Š^0ÃüÆLð{+öòÙ(‰Š'\Ü<‹—^⚠ܼF1ÕO[šÝf_ºÖvÈ9_p@8¨ºê .¯ÚÚ¬ßI/ –|Ì·«« K°çšJ†ÉÈHq,(×ÓN²\­ «t#{ûØa‚S6¨ÕÔƒ·¾þ)ÛÒE”–¢ð«&%ªpãEPïC2ŠÈÚî/ _ÿ1a±¥Ï{Õ ðî&/ eÜBk–!,¸gU%X°`ÁÍm»×©Øp°W*m˜*¬bé_XbÝNôÜǾõ«Z”êÜ­ºcÙz&qjÏQ¡ˆcÃÅYõšL]ñvT‘†Êû»)ÄÂòµ³¢eÍ”-§µ0VK#ë㤻_Á…ó6m]ÌÂL!OÕ`—‹¨°bÁ VÿZ–gbèa3å>ëûÕl“cwK”øÓsy±˜àQáM«ø 7Ÿ“æšî«7õÜBòÀ†¦i6î´ÝÛC»bû  4̱\KÓñ®ºØ<ò¸r”`ô]4²bGuµæ—>ì©ø[çµ0ËWÚ徜Q5ŠŸuv¼[œï7`ˆ_(¬@5Ai{®ÃìPˆ?m@²­§µáÎ*:–zIÓ@RØbÇãÚ|íà€ç,XpUe).Œ8ƒÇ½³í»ãky„›ý9­mA™Ü9Á‚ãÀm•…SBQ:+ öͯ`Á»à¨r!û·Ù¼{S±Ãáüsÿõt:ÃòDzR_°ÜRÁ}ÀK¶s·SÙ®ff[¯x¦ c˜+Äwª!ì9Díc„‹ë÷Šst~¹«D£ÂX\L3DûB… *T¨P¡B… Zå‰Á¢ÂF»ÄÔP7£ÞÅî,¸8¼b‰¬ò«!Uo.¾Ûz˜—‘òx 4 ée{šé6ï±d·È›]Úì95<}äP©ñÇ3'ì X°`>x‹lÇ*te×Zîv†$™~í­·&ˆL:;?ÑÀ±ÔDW".Öm¯ÈU‰Þ0Ú-+—:avû!‘K.>S­§>¨øÇËðÖ3£{#^~˜c2xÆcÜöí-] %‡jü2º5ä%‹ÊÉ+ô°³Iåé¸à:<"x-܃³Vè5Í %Åâdì!X°à0ú‰$L+Ú L>gÍÁ®FÎŽ%ô¡qËi„äŸâNðÊÑå| <€úê©ö¯ø¡x¦Ið °ë{Jüaù|pO&A°`7Î|Æ ˆ+ú;±i¼ê¸x7^ÃÊæ4‡c ng0 —Ò4$hûÈ›ÝXÈ¿Šˆ!zûåK°`Á‚×IåßQMÓ5–9pêkÄス/ar××Lb†…ÏD£í?€ýî\¥ahÁ5x”g"96â­8FfZÚ(?Ú]ðQ8˜#"8 ,A÷W6L> ¬jÊ V?£Âäl=Ì’Û¢ŽßJŸ¨Y [:Fk#¼4µ4 –ÕíJßÓõô+EáiÈóýFæFNçiõ~ãQê] Å&óUoly4‹`õ¼Ì*X°`>˜ä¼á idä ·ö08’¯4ÓQdôœ3…w½®<.k•ZjqÓù‘Ò$„°Ü‚ æÓ&4·LsœK•Áî}uRQš`BN,X0´Æ‘á…+|ló‰|Œ“%Øn{ú7ium9‹–åPbõG2rÁÜ“+3G:»köý×Ò1­¿£Â$’TLÝœ­`éS°[N󚘇³„ˇ¤AJó±íe3Ç-‚Z1–{pOÍ”å2ø€-ˆeFX[»…›Xûà—’»’êæ£Ñ ^Ð'KWSöaB$¦·/^!Z¦Â)R<Ã!Xpiù(ïìzËòî¨Ñ>i’tGZ”Å×") Ø-Ì}1+VŒ²¼¬GóôÉœ±¨ š'²³Â0‰½¤ÔŠAÙ…ÚŽwÖ÷ë?&rµðÙ=Ä*T¨P¡B… í•ßÊk\;‡[/‹Áº5•‚s¨UÁ½«-yÍíG»À²Eøä¦­(zpڪݢÞó:ƒ{•²ã·ˆåꈳÃÁšœpp, æ,ž~x‹ŸˆIì„÷Òh5îLEãSMë1 )ÜÔüýÇ*J­7ƒCCl§¼[,Ǩìn[(oÏ®ù6¶‘Ú½“kfÛËîÕ‚yµ†$k›N ‘í­^TNm74L­d9HÃŒÜõ5ÞÃæSaJ#ÓñÆç 0© v†Ë;!WHŒ4g\ëAÒ`êqk©êa0[ ,ïA„ÁÄ/‚w K†×urˆ®‹Ñj4„eAl¿ÇI3‚‰¯[<ØõÆžX¡qyØaÔi…iÀ8¯ôûE—†pIÄ(íq_ áãÕ®0 ,þ(‹—ªðKpC¥âí•ñŒ´—‹Uêšò.7 ¬Ôt8h›Öµ6¢Æçdm ÀZO ‰Á×8 7>A‰%Ž"otgp½¾h؇ãRÁ0u„"çË3W‚ãÉ OÑ4D°àư\ä¡àñ¦»òBÊÐÿÔËH ¬[ëG—gý ÂÇa£—Á‚G,eeå8œÚ¨Ž×Ô±ÞŸ,2›Z|ÿ Iùª¾û=¨§…£’³ÀÈ­È4&#ú²‚ Ô…—Õ¢i•›ó_;ûMn<;ƒÉÝZw-£}4ãƒ)˜îÁ ,¸9ÜÔ¹þãSÖGžÑ+àÛ4>r"(K{ L{`¬«ÿîŠrð ·`ìAÃz2è‚ Ì77X÷.¸;KW3 ·lxá½§¼çtàIæƒgTƒÎ#Ku]TXGä…ƒWø-å}MÏ—ÍòÃäþ×È ­ k®¹£…ìü¸¤Ž|*TÞÇþÅ´®UsP¸ñ»¥b2²`C¸·¾ß5²cG½±ˆî)`nÄ—1z–I<,”É£}ö©aøÛ>·Ÿ î‡g•,F¨O¯™³ÛV2¯¹fíæšQ’®må/];l­]a.UZPm bf«êëâãÎÒ]Ö,’ãGj6h8Cëê¤à‚Cò@î6ÓÜšÖø 4•$jŽgf†€µàØ&‘„IœÆýZæÀqeî -1WvhÚ×oz‰f0½×ÈcJÄðXs³¤0hè1]{±ÔfµèUžz†5gñàjÖŒS7>تír. Ëâ Li2J¿À‘GA,¶jQ¹ÑLÊð Ö«•P8v”Q^03즖2vk5UJÓúk8Vk¯†I 4÷b¤àpêV°ï,”A怽·üÖc4RƒI#øãù!Ls¨¶RI¿6gG÷5o,íàÈœ9ßxËÅ^†Ÿô–¾àP^ܶÆ.ݤCx•\)Ã$¸˜Å‹áù»¸úfÖˆg 6>5Jrg©åj¦ãªŽu9B$r Ãr ‹Ââq+üoM“¡BNzø@©m-UYºšØ_&ÚnG¤,‹;é…ËÇL°`Áî0Ç9xÔõ|_7)Ø“™Y‚æÅYîÁ`ç;Á pëUÄdGÖ¤§`Á=Ã#Ñ!zòðPñ‰Åóœ$ z"¸×N.qT Érv®d'–…§šb×Ê›%.i£D(Xi…Æë±`C¾¨ZŽx^ðx°6ìã*G¬Œö펦<¦Ip@¸ÀÄ/ׂ•˜” aƒ‡Ð]uRâr\Í­`”†;—¢ÂÍ#ô¾`½ì/2,aÐà×¹³?j­µ¡Å†2¯äQ”óCõBfÁ…·ñØ~ᬕÜ-í"Ô»˜¸Þ=ÉÎá˵Ž#›Z¦ªÆ…»† ˜I"ețӳ$Yig¶†6+(Ÿï7ˆ¥ Vœ0ÂbVK´Ï뚸x˜ÜúÐÃ,¦žvç¨jSÐ:²\6?.ŬUcÙ  !h³Ý5;Iüå>]ÁR#ìÌÅkº£°ÒþJD·ZëéÌj~¢ÿkIT°`~ó5 h¶>Øt€”où7=¼ß¡´ßDðî‘=2XeyváŠÖ#ëîÔ· (¢ª›µ®g0óã®úÜÕÑ¡%fpÍÀúlY W¤@\¡µ2?¦;>1^ZÉWŠkoSHn©»Š¿xàž¦YŒÄÌØ3Q»yä]é¨ß[Ç#CÃA'‡Å€ª3‚Ÿ‡Î@âé0§ß6âR‡»E&Ù25œÏ¿ò˜É€7?‘dPž¹§‡ë àŠJŠ.”Dq]?` Š»÷àîkpÜ‚gjoŸ³ë?&ºhéó:j÷šþa´t5ÉÅ‚)`cámZ¶úY1ÛÁö¬P~Á‚‰üŽñÜVß¶žârzü’eepÁ‚ǃ7'ÍÆ³<Úß»šÀ{¡ÅBŽÑ>/_Â}5&}%X0‡Æ¦‡cö½±Š½VvÀ. Ž“¤ûi”,ÇÆWöQêÀBµÖþ²‚ÃÅOðã9Pptxà#û°–®îktF†ÛTgk6Å÷>:Ž%np­¦µÛ6 Ê#Ç‚ãÁ»Ž}6^ ‰á·˜ð’ÌÑ4°ñäì57ðb¨ÌHæà@pW5¤Œ%P‚ 惷¨¼þñèu7‚‡…xmw†•?·¥€¯M9Å4v¥èÇ%n-õ™&ºèŒÓ\bÞmm:r&ÒÌÞ>¸uá–)}À“<ü¢pÔ´Ž£×°‰SeF©g,e^¸’¿ÁàýQXÙ!?†æ€5ŒX3¢d³Œ}¬HE0ƒ-DApnµ;©áY 94c‚û…ݬ{¨]Q<0Çî5¢¡‡5Ú‚ æÁÓ©Ûâ5,V‡:ÌÝô^‘‘ž,XpmmL Óxzêd/pk÷hàÙn=ô%&Š{ó?IÜVíÀ‹ý|5°ØuíÖõ5¯}õ†f×ýšŠe±gÇÑb«Ç±ÜƘc,¢á ÓÌ‹Ú' zìóþhØóÁVU)ì]z®‡ŽÉ­ÎAð܇‚¦™Kµ¯“öQK°` !gøâ©Q†<ùÐâ¸Jî€3Ôæ§Có)‡Ú`–vÐÃ!m<©‰ / M ®!è]Ž ÞÙ#é b‘E,˜ªüG©@ë”2‚ˆ¥-Q»•5ÇœFo o™U °À‹'ø±(II·§Ò¤lš†ŒÜwò†Ð4o ˜f¸9\er~'ï¡`)`áUšaòGšQ,¸­v)¼tÙsJ—ÅáÁÝÀNæÞfzUÆsiH¶Þ‡sf î® vΫqËZ¤îñz¹_iS(¯¯wøÚYØ,Hn:«¼P¼Ð—dŒ•›Úæoó´›nm£Æ€k©ÀR&"¬°¨UG+*\¾ËbT»J²øtô <ÜODÔ¾Ñà%¦b -Xü Ž--ž©9Rÿ¹ƒ“ªñM9ä0hÇ£) ÿPž‰íŠi†mÁÄp¬xg ˜Ü÷ä>øÃ¤Î…N¸s ³Ñ4„®¼6uìµ*ì–Œ-å$to¾¸É6ýÕXõ†WzVp0ÉÂ;õ¦Û~t÷ŠÄ¢¡Õ"E޼¶wÄnò¸UU_n·zÌ kâ«ÀJ¢Óq©/Ü•ñ&‰°x„døšÓÌ“.B¾U§+¤I° s¤./X0¿²÷†D=¿ã“Ü<f€[›«ˆ&žÅ‰döƤ!®|DÅÀ#K:k›¦¤`‘ÞŠÓ@zó{–ä†Ò•áÐü1M,ù¼O{h;ç;–¨Ó]s¨uëÛŒfkf¢á1z˜$éV.ŸªØ9k¼Í˜CÌâAŸØ¬#Ï¥š[{J‚ ŽKäG‚$­8òÞã¨VåŒúµ–cñWpïpÍj’¥GR„äÅSeÑð¨`:ÙŠçÄ<žéá¬q»ö‰Ž¯[ŠДŠäŠqV#XŠÏÈïá>C¼uÓü¸}ŠÊH¶’Sì^¬çcr4ÙËŒP Úxp™9Y£ŠZ{°Ûtø*"4¢rR€Þùq«Ë³è Qˆ×°R@šú%5w~áv,{æDvÑ æá;qR§ð3–Ñ9°o{óÊþ³˜9¯øê–ZâPiòx+xåÄ’€í¾7Õž­Ÿß…ž¢5Á‚oÐ8ä’ÛZ;÷¬´i4=ôš'*†n½µgóVcòÒu!øðú¼’™b*²¿-ÄÉÉ&ÀÅͤšÓ)§¿€úbä¾zÃÞIš†ÐÀ•N,¸°å¨li&‰¦“樂wcždgš·&ß~&8 ¬‰ß/™dšnuÝ[熎zà&Á*˜emPæµ Lj°èá ãÖ+‡¯1Ë•RL+ªd£k+ljŽs¤;\ùmɱ B[‹k÷ ò¨{"dÿ*À¡¢Úȶ0æÞî5®7˨¹Í|åÃ*9 c9VüÃUP<Î!´m­v7 ÖºÍß5“<¶I°+Êç,X0Ÿ ï·;CX£ãÇÖð? v·=¨,4ŽŒWŽºÚná5¦‚[» Že6;L7»RwwÏZ¥J·™˜†M–sÐ^†FmÁ‚%:áÖ«M‚{ùqœ¾z·`QdNqÃþhtÅ/N«Ôóõ#U)ØUî£6$hßYi–v8~˜9ÓäøW¿À…bèëº7, †]ÞxÚIn5Q‚KF˜à!†dˆNÒÃ*ÉÜîÂÉ«'Yþš“üÖËûݹ®"\¹b~Øq\gÚikßóÁÓý½ðõÉZøLÙ%•à+P.çõ¤p¸èm¿I¶sXPÖpvÖº¶NUµ%É‚·´V„‹¿2­–<² OCÊO¿×¿ÇK°à8®µel|зàvE3­Ì’ÇÑd.äz;ÜZf;°»`Á}ÀÕ ãî·öÑt«^CŸ0´a6Ú–';§Å‹eGX¸oëaW+ørëÿ˜t§Ðg7ïaC‚ÊoýegzÁpéÕ=ή™%6<­î`²ëž¾àåìðL=,Iì"|4’ʽýÉÏ"3çü‰cØ@5æ1å3¨ŸÓ˜£«Ãû@²”*¸OöjÜ5«ê¾ÛŒf2zƒ™ÝM{…îxƒ6¯ž¬L•7ù‡žS$ó‚‡K/¹³®—ôÐZÁEç›tòÛV- f†½³˜»vOrÜú¾ø¡7}õqˆ‰lí#³`-¹`Á\FÁ‚GWí4íó^âÛ¯ò‡e†¹#<âZ*¡LÊÇAÔ·¹¡='¥hÚÃ} IW½ \Ž$⮄_2×ççW™Uèî;*ÙÜ7¬Éñ„KÕvT9ë±uá¯X1Ì>gÚ?Zc~Ùg½+ްÍgvÊ÷ØŸibŽ1Ì3e@½C:æWëˆxL#2ŒE' Ä!ý^NÉZÈþÃ!ÝÜœæþSÁÓ¾ ÍfPG^™w¡…Ð2•ì‚I‰¹Ï÷íՒ`O}5²^§±¢ì°TB;–¡¾˜#ßFîÈ’7Opp]JÎvØíe­ÑÐ2#JöÏÖ·ðð,?\Oèµ[™d6{öºÉmÖ‰‰õüÖM,¸²@”_ã•Ó£mòIð*%Ù¿T½Æ`±Œf•,\R°àPð®nyɬw7µ²ôœËþDšQ,Xp;8˜ƒÜ•Þ:ðueY½Ü”Ì »;]*ü)S.@ÄC4CÌ÷<4°¹SøË\t«7z—jµË4#L?ªC4Dp7ðþ×fKÆ„9Ó%Ü»ûXÚÁ=ÞÍðÞ{Eqháa]v¸uXÁ—_ˆpÄ)ö½RèÍŠÃéݺÆ; ´•‚½çvº¹¶–Gy°?‘Ú“eÒ«Q‡‰Yñü¼Û{³§rwz€D>Z¿œhË=èeˆæH¤…bâý‡ k ÷K'×i¤"Ïâ×50™‚·†Ýí™§X¼#¸¦G?ܳç)˜æ¬u,XðqiÜœtñ²8¤–MNd•!!©)a(ˆöÞúâ} ‹—tÊ’~‘T ,¸‚ëDc¶5Ò4^Ë ´‚©á-¼VüM!¬‰šZÂJd îæ¯BV87ÏKÓ°Œð°ž¥×”²ôwh˜Õ3L ˽ô€Y !Íwï<’¥!€[+ L2* å òqœÃ±üÓX­*&ìíëJ“sçLxàšÍ‘K{«[»Ö‚ws‹¹`Á‚ÃÀ¬òÈ:dä¾—)^´Z7h8©“M´(g ó½fA•™÷Žfoˆ`†€ãw{ºz3NHXƒ<L²¬Sß Ü5¬¥*Á‚€û(…’#Xp%ñß|F׈:…îd±ˆz¹‰¢#¥=÷DlKì×Yj!§Ü”`  ‡e×P`‚+i; sÇqd ©i+jn/l£±‡4 qÕA/ööÏEÖ$s ¸ø“*2ˆWÓ^¾Eë—βLçÑ,ì#,øàTRd™9ÜÇZs: œœ¥‚ê÷ÎDáMÁ0‹°±¬£ô¤_•ƒ ¦aGŽT\X˜ØÞ“8ë4£ßSD{ju8åÌ; fPƒÜALµ1L¬.­° ¦ÁëaÒDaA[ù*ô5gÕÔÒ8‹gFþgÛÐKoE‡IEZ0ìÅR#ûLOû¶ZÒ5?Øz0ÒF.2?&’°âsk.^!­ã¯'˜æÎ>ñŒS‰f×Jh” üGŠÓÉ-‹û5ë\ ¦€{Ú‹BÒïQ*¾¨G>s¥Gbå€eùáãWå@Ÿå›Úe,ß¡Õ+¸$P,…»‡ØÛØÉd93c¼F3LÈ’‹7=L![.°de‡”%º\ .ž[®s°+‹ve1M”StïʨpL!¦ˆHvö¹.¼ùŒ…GW4Š¥Ð…B+Oç–Ùü¸S¯ùL¤ûÂòV‡5戄 ˜c±àŽ`ì:™QqìYæ/êø ®;Õ$õäº.Ê]‚*RIÑ@Lª±Í=N–¥îøð;Ê+¤€w\sû­ûÉ÷ï¿ßÊ\ì\²Ò’%àuÚaCÄ.!§š¥/$£D>КŸõý¬tñÞ+å*êõƒ¦ñL·Ù6¼ùP,w=H3Aì¾ *×FØO0¬9«G>¡£/–hÙ›%ƒP•Û*s低ÁÐâNF(¯Å“§x$}EJ©¸WlÝÿjAV(I,˜ŽéËIü˜ &k–põ¦î4RñÚ'Xs&˜vgÁâé0÷Ñ å4O2±pi圔`Á}À!«!8u²Ë«ˆtÙÒäìæ:JûËÂó‚³ÂÜ»j6ݺµºÏ,Xð>ŸÜ% ‚Ù›ÍQbõ =~H$Mîµ î]ZØû>òø°jÎGl{omæ8Aœzs?=ÌÞw‘Dä¶4£|¥< ³¬ñâ쥄}}\hÒþÎŒ½‹fÕ ÷¯ù9¸ÿÐ]gŸ†ûb3¹ß,° ‰}¥‡Gî{Ä …†X\fžácwÁŠ; âºƒ§Õ‚Âä¬F½9ÞÛš;øÁÑYg„#6ÙorW]q±QT8äøí׿•OûÙ˜»~˜Gœ&çMÁ‚[À;?&ÚëÀg¢19Pn¶v—tPçpÕßVdžiäŸ$ÉÃ{‡Ò­Å~g€H ý…³iÖ²t\º•_{èöTÁ×è"/ç)dfL0;ˆIÆ„{¶]ôöíaþñ]cëJwÁ×<‘§},}÷c°ÎÈþ åÅÜi‹œµV}!žÏQøC®ãö» 巺РEF»‹ñ\EjÅdð’v¥i`£®N ³k+öö…Å-¹» ÐÒ$*×î™5£8ŽŠ0ž1%Wy½ÁÔ5`½×E  Þò1ñ²6~¦ì|(xE–ž`¤`Á‚×ËÑv‘%?bBЦþ“³ùÉ!‚ ¸ù\Ž äœ 8ú$ÝvW´xau<…@"ã¾(Ï…bFh:Iî§óÀµtXéóöÙGŒ½Õ‚à*Å7šÀ#?ç‚§k$ùž6Ì9Üø(¹dù±a§ýÌä;)Ä‹‚Å&D•fTi²Bý’·5hûœ¶ˆ–Tì/îÚÿçXb`XKðÒ:Ü žXl'U5:ÐBÎõ•PÙjÙb7ç‚·†Ùe„§á4ôs'˜aâGæjÇ'V,ºû$zž.Ð$ôÙlj&®5$¹X0ƒV`¢`W8–igÉâTìâÖÏæ•EèIƒYÁ°½>¸y=­ö‹`µ¶ÁŒŽ`¾‰åXè©dWÃÀZDÜ®wv½%»C@jÙ7÷ŒrŒ0‹A¥‡Yl{_£:r'd“ë9F̳]ÌV›°VDÓÁᇸç䬹ûü†8ò²ŠÄì )LÎæ<ðÅ0$™Ëá”ûÜ8°š4™Õ—ž`W*‚sŠ;¼ IýbÁÝÃÆ‚ n&Ø]‰ðp§º±;_ì]ïi8†#V>ð!nåTc‚y…l„t¶àNMlé9$Ç/&õdªB(óSóHBLÙ k¸»5•ð :š>Ôt$ö›1!qN:{/œÅdZ~8f©xÄN$B>² Ñt’¦!,}õn涃¦ÓÒBÀžÇÑz#5Ïà5вÎo7~¹ìžàHlB«°H éržóPÖ~- ËlóÃ)Á‚ë‹IæŠÄ[õÎ2RwFk1ApÙ&õv;ƒ;®ªî –v —ßÇGîˆÑk*Á Ë?B… *T¨P¡B÷¡rñ„ J¶Kó--¤pæ+R¦­ÏA£Ë¯…0°õ..0wFÌÙ÷ a2Áΰ¸Dp«ÊÎêµT*åQ8Ì.ëú)Oø·#ŽkEÃP6쥱°\WqÛKÊ( ÐâÇ™JªãÝš{QCˆ#¹`ovÇeÓ³`ô0‡ËíÅk¦ÎÝ_a½˜W!x8;`‚bbËÝÀlÊ»­Ôu5ÅÌ ¥¯v;õÂöü¤ä—¯ài`ÏpG E`×@J)Ö»(Ü{îD‹ã´Â½fÉr’ˆX…D÷3V' waEô4b:_0L"çì.Õ``>˜»gdµ#˜¦¼Ø9»@CäĆC-èá䈉² pÌÅ2Q+rC)6–;bœzê0¼»àw@?C\E¦]ýç)æ­yàq;Ù…çÅ2˜cð‘àxê†dŸÓ‰¯íA6]دvbgÝTì‹Vœ“k>Eœ;ÕÆílfÖ9\eE#PŠˆ©ëYe”ÅaŒ9×jõ²«K3 eŸ¸ÔuF¶6FL Á&+–¶6Fá{þá—’{Á9Ìy¾ËÛ¤ £N*çï]ü÷êÖÌØD±Á™™^•KA=3çžsƹîCÆÐò ª`Íðõð’&)j€–A/ŸÕ[;G\Lè•Á9áý–Ú™i;é£Y“t^ØøÓ5æ“fX:ƒ{HÂÔú¸ÄŒ5>óp„` ØëÅÁ^¯Ã¨çÒÑ e¿pk‡ƒ$=ÇÎ|Yì~BÓÃÑÙgš3ŒL!ð<í¼Öš»`Á‚û˜7Še™oÁ5…fKq|lV^¶FýØÎV¿•$÷ìŸàÞ°x hc%Äí“°8]4sîj\• ö+j î2¨g .-œ› ¯± IÐa ÚlÁƒN%wA‘––KN‰ä¦'ÑcÍ>ÄMÁ0ËÊÇõp¨“3h"ØvÚˆ˜<’r ˆ`êh‚Å+Ú×±¤`Á‚=awÝèZcØÁx sgE ö‚Ë+‰-X0St3‚kÔ•«BâSÄIõ:B#ò‚“j"z8èHO9N»»½0iÚÏÌ‘uæ p£-å‘"+1d{U¡9 ˜±ÓK±BK²úH±M"…ÍS¦áøK‚ Ž©ÁJ CmFWâŽhLߨõV Áž:XðQ8–¼ˆ7‡‚wo3ÑvÙî‚ Á+åÃßñd„— ¶Ï¨ÒLºw@Ö+;QéÓ®†^˦Ñ:9İÀ sC²Ï3è¤ÇJµðÀã ·R¡(ÔØäk/^ñÞ–pEB,ŒJóD8ä„ v…GÏ#óÈ%OûÔ÷Aa™Á‚G… ¾i…þUª×?üÚv,u±tóZç¾Hªiúøà|„ØÈè>p¬]ã(àe—Ÿ×}P¹÷”ï—4†Ì%ÉØRä½;€Rtø.›7F0kÍí¸“ÞÂ" &fRö†Œ…k¤¦‘r|:“DÁíƒ\ÁÒÀåýÆÖþGæH0\o&Ia‚'sIL0Á,ÈîòŒš`b.íÞ¯IDhëÊíæò†æ Ó¾àB+í»ê¸`Eì.»#j|ø€3álΨób½1a¯ÝRõx”z-)ž~`hZ4TüÙ¨º»|QOQï_¥UÐØr µÐÊÇ-åãÆG¶†Ù%\ðZ¸uR\°àÖ°´Ù1˜t½¾–ÃôÆ_Á#‰’\ Á‡¿”Â\Èzî¾KÂlièégÞëý™AábùnìÚv¸NRqî8rùuߘ¸]XÈ¥b•°xg¶[ûÌî™|§ ×P“@îm¹Ç²ÖXùшÒÈ`©}Ïáüô ›—œô¥Ï#êWÁ‚—„e ×NWs¸÷ì¥ñìÞ6KkhX(Ø îÚõ¦(EÂãYj '_ðÀ,œäïÔ ,Xp°´#Á°ä †€]WN™÷“v yšGYî·ú²tT¯õë*xkÙì%qjêp0Ûò‹{åÓ.à¾0& >6Áû­®l¶à:°Ûf‡¾øŽeD:òþ Ž  ‹ëQ–hžfj²ò´ue¼£!Žªœzw&¹x¿úò4+­—NHb£Þ`š$©^ )†f@Ù9†¥}ÍMÁ FžQf‘–ñvC³ &Ì"A#Êa…IÂn†'¹8” Ü=̼‚û‡kU% ¦™s­4†ÍVdQŠ#ZÔÝ8õsÉ¥æ”;ò¹䨺`›@nÿŠÛ5WuY•EÚFÖ4‚~r§˜Ã‚ ö^hðz·`u%³Å¢p]ÝÕìðtR‹ø±ä€ñUÚ]D¾]t¢7x\{Rþ=‹Üû›9ÊsÜÞnnt>6ÓA«×Õoy‹×ذ»44^»[Ã'4‚öv'¤cO6‰ËÜv¿•8Ú³gi3àõ¢ñLsÄùñ6µõ,؇‰… J„ *U T¨P¡ +Jœ (XÁá§©v]€³é¤cÁÎðÈü°WWlÓþ]œšßJT2&˜ÊTÞ¾Šs¾¢@+h&Åýª¢ãpé¾Ò ·Äͧ0ù+·-O,½˜ãÝ`ÁÅwi—à%q#Œ^ÜTÅ’àrð6~ä£ÄôÏ뵚Äó§jÁ‚ æWôkRÒÈ©u³ZgÜFÅ} Ç;aL3ycÀœ‚Ãëð ô³@î> Å¢CÛì›`WøÀ¢#ŸËôU×hŦÖü´ÈâÑD±Ô®²Ü£û‹Ù²€ãÓIæ”…Ëy`ê%“Ò5 áx›£Ïõ¸!ÞX0h±½Ë_$R]ÂK]á°RúBì0ipÄâR;«r¿d·Æa‘Fêdo´`­“b¶º´É\¹$ÙáÎꨓ.ýÂR§¯"§±°ÔÀLLÓÌ‚ÂQÁôj¹mº·3X&§}'YFd@ö,¸c¸`ݾx§ßÝïQx½ÏÝ”’L…;gÊ ãkwð¤ž*?ì½¢V˜á4Ññ`£#X°`Á¥Ø 雹~îžM£¥$G‚‹½ç³ÿ¶~‹íþÆ®iùƒ¢aO6i³ nj|#È®à£ìÃÓ>ÁƒòMCèab"X°x½ŒØÑ~Cë×LxeáóçxÍ55yqE—ˆXT’-¸?TüÀUnè7O°,‡ÐÌ=LšïI*‡†{pš«Õ¾t_ÐfûIµ˜‘fh"¸Îœ±O0{û:ƒÝ‡»öñôK^O !Š 7ö,û[›/ø^‡*{Ô{ƒÉ÷P±+¢¸…4äÏ»s7‹8‘‡mAáÅÅÔëÇ›LшZ7^q^%õê<¹Žð>À”Æ„øª·¾aÞæÞš`Á¤0‹ WÉ=¬AÒÏ* CS;xµ'ñqHX‘FìÉ›'ØOȽ[A"säÁrÐ'Òô†Ew†lôÈpC XÉ—zÃYû”ͨ,*x4îéB‡tÑ v‹ÉÉ•í´àn¨k.Ð:’àÁ`©ø˜pí ‚ Þ{½~ž¦Ã‚™aYX™„!aI—à0Åþ™£hñŠ 4uyÄvTÉËçÜR/¸‹¯û0©îiÃ@Œ·[M&I°àÐâ7SQi~ ÆU“ võK-^¯ðUË{¥¤~îÂX\ÿ1ùáÂçòaƒànàbå']e¶Xœ/òAUÖWp·°·Ë½…ŠÆGi=eÍç°FKp8XºN°`Á¥àë?&gáóå“¥ÆÝ^f^qý¶fyxï+¦¯^ˆ¼ûDèŠQÐ^`Éñ`95{øþÀáûE”‰{‡Ùó5͉%íløú‚#bËüva˜Èå‡tŒÉG§ïÇ/.2RÉÛÌî ÜZ+–ÖCÃR ‚ÿ¿ŸcÅOcÃ,eòìª/fE¥û­;v´;”C. îBtÆí¤S¹ût8³$8ƒ‹¯Á—ªCê f‘-ž¦8〵v…’•‚óâjÈ‹9ø«tœÊ©¨Þ‚X]—>ƒ”\u ®#ªþìÎ;M΃a f‡€7o Ö^bw˜Ô‡jiÙ–FŠrþûòGXÆâ.°4:âÁG$wæÚHWÜ¢r7•2 „{ð HÇ^I Á=À,¹j§sËÅ^oð\Q)%¸°;N±Òá-ÿ‘ÎÃì+&ìîaÌVG…;JeQgX¢Â= _¨=9)ǨpÙN.yYœ}'@ÎfƒZæ)Tb‘D½Óô¥Þx²…à:p̓4< ¨˜›MÝô¬³ÈGM0\MJUf–7좡xYpC8ÂiÆ•uNëqôZÇv×byklxw„&³Ýôx;¤¡Ðа-¢äÕü˜pÍŠÏ=hæB™ÎàjÇW09ÑŒÐ0¹´ ,Èû9ìž.êkÚ )˲Pãø¦u Åõ|Ž‚Ü¬Éž+§Q•4 ÙäÛî·ö?~Œ/]xö{HœÛ¶Ýy§vO8 ±`©šHúЧ‹‚»¥„ãÀMWÁ¤“ˆaÙœ ð¥ò|Š`ZS;`ÁUàÊ¥–U+ ¯WsÖ:j­¶IœÂbÕ¶Úñ¯±ì:‚FÒ »ƒÅ«H6ƒW»˜sõ°v;KPë“c™Uöâ‡ÂðÒÔD²Þª+nÌTç“¶.W~”ÖïËãµòJ¡$…Y„Dð°°³ªoÎq8åÎe°Ü~ï–‹9Ü¡ašYhÿ’d Ø'‰¥}±\ÖX­ GˆiZûO‚yušàþáx»íJïl¼tQ:‰`tˆ`)UÁ‚‡Õ2‘"]ªZ¦˜š¿Ôn^ôksz…ÇÉ£Æåû°°†»¸L0µpEcž!Q,œÌ¢ÂU]õÅ ûKå-t³+ÉÒqW,ì³Á»‡ºqQar#~jÖxá@Þ¾s(×c ˆf0(Ó,Îìv?‚B÷»ï”Xã7¹OÅpÛôª”Ÿ`'6¡á©€9ž)—z©«^_°¤ËC^¼jœHÏÚ®Œê5[f„^<Ÿ…‘MÍ ³­ø¼¢“’ A5HÌ`Êͪ ®ëŽØp0™"ÑD2@ Ü]“ÅÇt‘›šV ~(ìhvÕ»jßÊö5Lh­‘2[§’æ7‰+5J(ËF3GÅŽo¯7SÔó1è~¾õo6ç+ æ$±`¹5 k»'fhz.¸¼Æ;X|‚Þ\ Ø‚KXÀ¾î[8„âäHŒhº£u|éîZpðjµçq´˜z8y¸œÖR•`F¸Í™–‚9`rÓòäO{EeGCÙFØÛo Rî²`ÁÅàò ÒAáÆ‡ PèÖHì·yÿQ_†;>¼$‡4 l‹‰w  fù†`_˜Ó+Uõrì¥D<ã!Xps˜a¹?äj… /éfÊ ¹!-a(ÞGãâ€=Ä×Ù K¿<¨›¬êÆ1÷JÔÛkÐ]¸´]t‚GõõT– øØ´ëÝÇlÒÉþÄP^(Ëð¦†GÚ¿Õßjí|íÚÙÓlËØÅ”>š†,8:<°:! éa3'ßúÜ(ržn|`ÛȰDžuÞKy9¦™@š†Të?&?\øÌÓµÎxƒÜ"®^  ö çkqS铿ˆ†L°ëT²h–{ !Ct²3x¤{ÁtðÖw{tñËÍ\v“’æâXÍ$Å;~Ý»vÍýÎrÏ7ÃKˆ¦‚›±q-¼ÃÉZ¯y’«:ò¹n={ô°·EßìmŸÁý/‹W~pm2\|Ûº^A·,pìÌ"¢µ‹DJG°K å킯 dIÿ¸Ø¤–kÇNºS(¥Sù¸™^vQpPØü¸ä–ÆuW»ª*ïe3ŽbböÉr÷DiFOpËw|8›’Ž_³|õ//Z:°£1@Ò΂KtŠÀö¾P!á!X}ˆN >Æ»_kqSsýþ‘š†HÁ `Á¤°×;²ÜíµãÈS6ü2=y‚Š!ƒÈ’ð‹è[ÖksWjHpD˜DòxdhXjJ0½/û|ýÇ$\ø\Q^H÷.Ž«¼œÆ;ù®ß;en£²²—ûå€sÆèaRg‡5l0GË]êÓ’ öåÁ‚wsŒ`Áκ¹ÂB—,Æ¡!i}ôX[¦*(Ëþç´~A=,ë^.uôMëÊ…òóÌ|ôˆàþaŠsNZ‹¬K[—Ú×Ö—ä8 ˆ{ì‹÷°s:‚+ÁÜŒ$Xp°4b¸šyÞïkó¢<ÓÆ)¥4£6BIùf ÁýÀšx„“äóîÍ÷õ†ûÀÚšóî1ŠFÐÈT”TÒ’Ká¤c(ø®ÞÄ–eÒòsµßÍÜ08k¥:ïÛFuÅÕ šô«WÜÓ&Ñ´%~#Ñå$^ ŸÐÖÕ-±šåÖ‰ÆG¯ð‰V¾ Û)@d§¾ 2;¼Í•-úqÑ».ôÙkg7‰¹f´itK_°6Jt “3…ế3&¦Ègz7¹lãܘ†«t\JF¬Ë.Éîú»/E´}+Ü®æi–è^Áþh´5L>ò$®Ï|õÕì p,WcKZÀýeñ.HBDα:ãš5÷ëñ(‰ÁÍãÅ5¼L†`Á‡…[bÄ6#AR<‘ê¶rG×» ÆrÖ\WüŽn>.§Ò®³È2Ü0zÙbúWâH%ª/[¬†¨ÙÚ'XsÖt—÷?óô§^¤#´ØPzß‚ºÉõ8–d˜¥ÑrÅ};h+„®ä],¸5Üø—‚5®¥ûNRtB½Hv`©pwB€¥ÀgËÅ4飼áY6‘ ’Ü%½HóصjÈ[w‘ƒÜ;ÜõòlCuÜÖL7ŸUBûM°Ø°Òõ¦$#ƱjâY¸ڔJ\p@Xß;L3Ã4 ©ïj›{¤={Û<0µÃU ÍÕ\(·tËîtžÖ,ø)X¹_q†`Á‚ \ 6?&áÀŠÏ<½lìï´> |YRF9’‰xe}¤Î$×9äO¤ Gh´}‚ ¾ü\<Ú•ø3À#ÏÂÈ},¸g˜$É"#8>ó¯ÓŒ“`Á¡`ÒCGÜÍ4Í„îæ,ˆµL$X:l+÷òìB]R J‚íÜF;ì}ÚK`CîÙÔ»µ–ÔwÁ‚ î­øD'ÓËcé™à€Sɼó±#©ÜÌ™g®WˆÀRâp\/¯‘7ï£ØqÅí¸Ë‡Œº`¹‚ ® oÙüÊÓê@p­‰¯üÙÍxèì)Á|SÙ|bà±'Ϻߣû‹ëŸÇRUI3˜^N CçX;ƒ¯íûþ³¾½Î}ôæ(•ìi6ÉBLÐ1/ä(ÿü§ÅÁì‚¢…+Á‚ Ü5ÌQJ÷ÕÁá®XPYêQìÊ`A™4h³Y&Ro—„W¼îòúÖ>;æyøøÇ¤Ã…>o~û¬ÏlµÎ‘ 6fÆH‘˜’‹iœ˜\îÚG½Ó‹\­ðÀ¾³ØÜJ%zxk4|Ñ<Ïx±33I|_­­]Sz˜E€zž(¯^óZÏV³Ôͽ5Á*¦«Àœ¦!<0‹ â‘çá%c³7Åá¢ÔYôÄÜ÷*œp›M ±˜¬”œ±8¨QeÉi¡”§Ã‚5Sü°¦D°àjðvï<Ü)¥; û’>¢œFÁýÃçt•yd™xÁÛ"Õ…Ï\; ×OÈõi^pÿð¥iu£ô-»V¥Ø'Sh¿D;CßÚ®p8>ÇÙcÀ$‰{îÙ븶¦C|@ 3î3Ý•÷Ï1þ,Ct3«ÒDŽgŸ÷‹© &˜Ú)›Ý™†¥¶¬ˆ:˜úTÏ©&ÙáEã=à˜ÏÅ0h½Á]żÎz0¤Â#‘séŠn`n™,¸&¼"„ ÊãÀÍqM›-5|×zP°à0iž²¡û¶Mo–nç|ÔÞ†çt˜ƒ[j¬¼e«N®àCŠÍñn<°qï«7ì0§Ñàl•`Á‚—‚I‹ªjÚkwÁÝò«s@1„·ÍÞ¾ÆV£Â÷¿Ø§ÐJ°` "˜xrBª÷1¸•djdK‡â:Á£Â$úF05ÜïIû¯â4‘L‡ï”!ç†HlßZä_ nàOtq¾ÉBJW[Ê3Ìù·6C ï©ìw¸4Ä'ùGêVº5ëÀ~¥XÝç¨a\éï fRuG?öÝcDŽx HÀ#]¢;*KN~ «Ìjñ#­ðÃìܦö šaiDÄjÈ6ûÝz"Z¸?Û;0gKÁÝÀâ‚0p̨‘¦!‚Â,2Rµ‚Ë/Õý¸¤”úL£.*]GÃoü0õªÅ™‚÷ ÷% ‘öøpÆÇj÷°W¶ûè™s’Ú+xÄx¸ÔÉê+ÿáéxë±Þ8,K 5P¬'¸˜eâcåŽYL?Ëìµf˜ÇA¬Ñ ¼¸oîú¹l¥oòníò?åɖ޵eh{Ã>~m×»æR=Ú|bùà¯õq?htIâþSö$Ü‚©àXÉÁšn „àFpÈÒ¶ÙØÍ¡Mý«¼×.¯Npx„D"{ûü;i·QOdzÃ+<êcÉeãÚ[—?È6*ÌíL—– Á½Ã­ƒ€òÏï9G2²ð:*ì?sz K‹IÅè‚wñÖud“wšÔŸ©p‚\)ùxâ<ƒS—ÃI z†Ùrçžm¼àîá”–àþa’m‚9`n¯C03<Ä —~V„ šÁ»'žó„sñèÊ!QDÝjäyÚ×W³+ÂÅÊ:ëf(N㊥=(†L0Ì kB… *T¨P¡B… õE*T¨Ðâ(Oº«|ª|K+W²±BÓlw¨÷@ò1e¿µà€°øÁn¾IÓÍkz{(y"Xpðí$Y|ØÒ4Éqmò‚Á°ô/̹SC03<ÂÄ—2X׎U©-û5î5¨ëDû§dÏ‹›'áK;ñ{‚riPÞ=ž$ìBÁ6ïD½d­2»áà ãZ­ô6è0q—Å Ìx°*°3ÀÞkÏý<¯@3È=‰¨p¯B–Š8î¹o½ÁÞöb·º£6¤,G‘8‚Ä’¦!$%’=‰ÁæØ»òëåxಷ4šœ}'Àº‘M«h¼Á‚;r1‹9NÁL9KRD—”âÆ4RÒS²àƒp,W±¼Þצàäö5êMLÇÒÌ]ê ¦v?†Pt‚ <¸ŒèïÑÀ»‡òƒKe_ðx’ÆÃv#hr7&u®xò<>V‡ØÊ¯ ÈxAa/Û/-%X°`ÁTN0ùBÇZ·(ÿZs’‹½G·Þóh‚˜·¦{ØþªY\x†•ùÌϼŹT)‡±`ÍwQ)%©äö KÄ öŽØ7ÚÕ²^ÅÅU`±•7ræ!I>ó»`ÁãÁåó[=Eò™9à%æ¥i `Á•á˜T,Xp½A/Qp!¿( ÜÇ[ã;h-yL‚×gïZ>yÒ^°àE÷¢Æê×õL+þ Ó蚆Ü3ÑÙaiG­!íbBÈe)àò-ëzßÖ|&â28¨Ç´Ù콡iHP¸¿úæh»ÖWƧéöµmmÝ(ÁL ]ÞLä4Ä‚ù‚%žŽ ,X°Ü¢Ž`–Ü¿}“¥‚‹NöÐp¤\;üàø´;¥]»Ÿ[ˉà~†{ï:vÈ(}¸d1I9ˆ¢™C°‡†¬Û 9¼™f¤ƒ2ˆà‚“³¥„{ KØÜvË+Ï8Ì)]õ$´3Q¼þcÒá…Ï<“-8ž€v‡LÈЌӵèWy'^ôºŒcp{ÄÓXðz'hßI²®ÅËKÙÇ]ð¨pµªXÿ¾ìw Ò_j ®`Á‚[êZ©’°Û®ÎŽcHÓÊkõ|L¸«ÉYÒS×LÏÂçãCº'^°`ÁÁu/iÅ~g°œ£ðš¬Qã Fa¤˜]âï:¬,#r@ô¹÷q„áæ¥‰a‘Ž Eë®…á×îF^°+KW3µç 'WÁ‚û³ :«àS©“O²%Oûª çé¶]ɲ·ÊãØ¡ÓU²N°à.`I¥`Á‚%Äa­7Ž+t «ö¢¨*ÙW9§žPƒ×ºÂv·J!Ð|<Æ’µhÔTT¸‹ùŽüJQﳺj©]NiÙoÊhÔ$s͋Ѩýr܃"€a¤4~½Ãša¸ïšå®tKWµ*‚3¸yLÕ8 L³¨g£À3‚ëð*yû¼r.ôð åÈz Ì(^Ë ÔÏ+иŽ\Ñxcä5D…‡è¤à^xž½}#ÃÍã–$ÇJ!µ¶›Ð MCšÂ×L<¸…Ïôst‚ÕGR÷$èX/Huã¸Ì}0[w¸/X£Ù|êü °Q n{PIP¯„½ÙýºkL] š\ÝÔ \GšÈãÎûk¸Õw2X®5̱#¶š/Ø1ÛJ¥9ò¸ûÔÝRMÓyîUƒ’¿&òã‘,¸rjöØKå„eË$ä‚G‚7 #Ý'˜5PL»‡:yž h,âÌ™6…4‚#ÊTT¸Zb›#½ÎѽzC$>–œw sèwGz¸ó+èy+臀{9wÒÛã—ÖWÇCÃäVŒ~H}—]D…5Ø] vÌÎí9ɨ&~†ßsScj­&xÏæš²PîhÀÔ,÷f@n©Q`,xI,.rÌ &ƒK¯¼)¢è–ë#8\~k¦`Á‚wI”Ä–G&X°à‚Z¤ØÒRÛre×?ÇZ)íÿp®êËiw5˜­gDƒ)XðCáæfìËÄ—ÜÖ6eh˜û<6’!9¶ÈRìOÙ[zI¾í×yÒ˜7W»{…±ô¿œfÏäÐÿËÙy·JŽ$ò6Ë‘åÍÛúDR­ò‡ÛåŽÂäЗ‘­ù’&ñ59ü‰núçÝŽ0-fv¤‰E*T¨P¡B… *T¨/ÊS …XD] gþ®¯H¿Ä­IîњܓržS:pvé¢ ‰·{h3BITÐfÓŒÔãç”ogaQ¯.Ô© ¦†Y ¹‘ ¹Ù„cá4äÐÑ‘¢ºçÌnÈ€¹Zš VÀ/Vx@#¸ÜÚñöþK-'/‰Zs&¤þY47EÜÓ` ì%‘û#•ˆ7ƒeåäÿ  ·õèÉ3ÔÕVW(íUå=²qݽä¾!|xˆñÝOk©[0#qË®8Þ“bz4 ¡éLñÊÛ¤¹¢ëÞÆÐÒ®Q&) îf—(o~ ßEùœMãê·@Îvûó}­çÕŽð&ΨÜIQÁÑ6w÷±”uC=Ô]¡¥â*7h׈`¹âP´î=\‘ c^Á‚w {{˜Ôþ’4î˜0ùä¨LS°àà`‰DØ»v½QêEpÇæ&h³éáÒ ïh%ÔÛk:€UnÓ쟜–. v:Ljb/ƒ{¾™dåÜ»JåZi~\R©k>óȸ-vÑŽÅFp©´¹ƒ¡b´±`’¥:_§a“‰)IÆ”xÜ×ɵîØpHC)X°`ÁàÝ'þt˜f¯æoÕ.­iòÐÆwt‚¯ÿ˜HÐÂçŠSì!Ø[á'Xðf§Œ¦U‚Wk,Êv+Ö]×ÉÝÕ ^šª¹ç9sŒ 8Ïc¿W«(Ë;ˆáiµ—z”S)>ñ(‚ÀœÆ Œ×“Ö:ƒ]&ÙÛWÞ¶&į”Œ`ÁM¸´"óî^oäîfçcöö±Iµ >l~LìÔŠÏ”½\PBxZ=4ÜÓ”µNƒtd©Ðpó÷»¼]ç‘«' ÞïÏ ‘+hgÀŠÅÓ{ú”¢i#Ψ·Tw¯E¼5&¼"9@ÙnÁ‚›Xúˆîµù/å@>˜,,þà¤ö{ž¿à*<K#H\?ÑBù ^wýG2.,ìßIj ¤%ÁÌ0¹Ô¸ÛÚF‡&±É`?»‡†Ï;ƒ9ªÁºÏ™ à:½’•\m  “ó¥`ÁuÙûzN¿–é—´ÆF Rº g ¸lÃ+Ð?h«6Ö}xá™nkôXê„Hÿu{QnP¸k¬ݳF.·w@Â.¥Nó±—‘ÉY^°`V×›FyúHùµ÷(æB2/ðºySËÞùÊJyý;Ó.5ªh¨µw'kÝŒ=Êÿ´5ÃufÎ.à zŒ£”eÁvغÆNÀãÐÜQ"k¢“Œð~oÑMu’’3l¢äEÝ=-iGqÛ¼½’¦JE Ìi8ë¾2•gPØ[-X°`>˜#CÉ3ìSô‰å}Ø%‡žr2+¡—ûõUXÚ×:·¯ ,Ìm'È#Ã$¡öâÞâÏá¬0%Y§ó—f¦_;ÔÜrrÖ0O[}¤…KÁm¤„¢Š¤"¼ÿm·B… *T¨P¡B…Ž„R B…F·¥¢·¥¬ÚIåCê•6^_ð¬Á‚Y³È› ¬à*ãJºv^‚5üÙ«^«»@÷Ÿ!&MÑ;¬,˜ Ö½`ÁþB%+é H .Éè%øÿø¤Ê¶ &M±Ã>ç¥óø õžØ€¯ÿ˜4já3z/€û³‹{óFð›y&?K0“4Ž èGD±Z½TL.˜]xà¶7°‹?yí ûð s¦CSèI¨`Á…Á;›G’=dqDºÒg¾Ej¸àÑ"E¸B¼B'¾ãZ?ŽåC¾Å¼j#0®}ìÉg$ÏãhG÷H ሙúîHã—pHpC°*‡óÕ¥8PI0ÞKówû3¬DdÌ!aÉiQÛΞâÈüÆá¿ 줕 \¬•¬(,04/`ç;ÿf“dxÆZp–"w×XD,>¼pE$UßWxv›ËW_¸S¨ EFI¯ø‘Þ9ï_zëjϤ6lÐi/ bçpãòn…$˜–]àƒ»µë{ö(¸neìÉ», Ü3,gM°`Á5M9 ìæºž”,xT8¦òŒÔÞ°áúßùLAë ~oa/óÆ¢ ðæŒ‡Û4CD¯~I2¥—ŒiØÂ½!rÙv}ñõ0g²ÂÖµôXŠ[ñð“ÓŠFL 7—‘†Nò’Ì1zRò Ýúù‚—  K &ßÁ¼–Ï_ï&ÉŸòL Iî©3xÈ?Gí@,z™Ã؇„¥!EVªZ.້j™;^ÿ1™‘…Ïa5#6ܶ«¾úHbâûÒ¨4œCžÁw^~^¥¾ t·çÌ%EBÀå •G£dǃƒ…Ïm£.¿Áª'Óšð¢ƒLnÈ;ÏC9 <&¸{¸/ì«7‚)àzy8sÈ·ê]px`4Â6‚º/ÿº3–{Œ ÷œÌ쨸Ýå3Xê‰Â}`Ñ–Ò:ÍÄF°`Á‚&îe&i`ÙÍúLP~Œw¸Ð²ˆ>ws»»5áí'ŽÔ7õtb•ð,¸,Èu ·TqæÇ„§V|nÐÉ€É\ÁžÓÛCRž"ŸN-€,©-ŽqÙAÚf }Nö$gäÎ`f£#˜‚h„š¼3,ê,(ÌzîC7Xl#¸cXœ¹GµPB+ñ*ãÜnófžÖrÒzD[ßqlX‘t n,0öney÷Â×LÆaá3ewzðthžèß>–LÍ€ðÀ­¿ k\WŸÝ*X°`Á‚;ÂcDÔûáFïT—oã9€ãA•Óèn»·ž±&³HéÍ´ îæHãˆÿàÿÎàîJ¤¾…`ÁEàþ%{´ÃÞuUíðÍ ½ÅŒ ÑIr/'*qw>;¼?8^Î’Uü§"Ç”Oô‘8ý^ p·5,|œ1*8˜1—h"ø ¬œî‘o-ÿ$j®f*%‚èRŸ\ð!å¶¿~8¨®¤±@CÜO.}´øqíjÊÍÛ×¹ÿeìÆ‰„˜:+ªõ Úl˜%îeoµ<€‚3¢dky³GÓhÁ‚‡‡IŽmîhËVø'ºI:BÕ1˨ǃIž5É ù9žq¥‡%¬‚kZêƪ{C3f¦iHT˜›) ,¸‰<Œ:&¼ê=½vfðÜšÜø1|ÕüŽ—!‹9âÂ=iª¡ûô+¥\@‹e‰aØMˆ9‹ow/sq±Êe ¥Bí:ï ô®‹)…‚Âåã!¶«¦Ä"¥(œ6K{¦t.inJ…÷SÔ;Ì"¥]Çk|×a¥ŽM ÚìÂðõobá3ewšè,­#¸,£‰UâÀk¸GËuå¸ts¬- k¤xááô/{«‡† ŸQY@Ÿ³0‘øs%œD1[Oë+¼1#`ɦwmIÎ䀀¬ëAZ-ìi ÈS¨%²ÖY¸òoááwï;dK¶—*J-¿ç’œa ½ l'p ÌF ³øýîLL#4 ‰ ³ì¦äï½{²Âê/gŠ6šz"¦k<Ð4K°àÖÚ»+ÚEÖJp8N™s<,¼“3—´®ykéåx“]ZÁI Ì/b,XpX²-¸˜« ‰WYÚžîSqÀhúâk–eDö[“pj½n\Ѭ¨DyT? çxsI }g0wià~`’Ý.Bÿ¿‘Ú»ƒKsPpÔš Ý«–HNmInó©ÃžÁ£‡+.ÝótRp<¸³-—$jÍgÊΓÂ}irÁ‚cÁÞQçõSíf.GíU n4Oúñ+˜8!ÃÝmKb¼ª•QûøR^±Š@¢øh†LðÁù-ηâ¹a®³ †` >G®õûcÞƒ9:©¦Ÿ;[ …ÏµŽ§ëîÊ8ãB޼–JÇÞý2Cëã5¢þgy`=õ3‚º§‘˜£Úô­(4£@ÌÑ È€1ùŒðÃî¸À¤KWsŽùó4›¥ëªÆ1`íÄåý°ŒõèÉPéÃ(²(8 ,~,Xp\8¨ ÚlÁ®üÐUx2U-x5ÌyÄ£àQá®”§`Áu£DDpixÀŒ¶Ì1¬q=b­ÿtâ²7»^û‚Y¥žÖ»ƒŠPÛ-Ђ=¹Žb›»@Œ36«¯¸"Ü6¶U\Qx7méX²Lþ]Ø\ ·x*[¨Å ò]cCÃ, ×®Ô¼àµp¨ð€ô&ÖP¬&˜.îï~M’wÌÍq  #Ћ] *{ûZk–ÖÞ‰¬qmYd‘€ý³äväTT˜ZS½ò¡Jfmó}–nº$9G÷Ü7ñ΂ ,X°àÜÁÝÔŠ_vsü4÷Q;Ì%RÞqc7,'X°à Âî®v½i¡ö ³xãþâ±âñá%/¦œpËE‚G…¹›ãw¦Z/"}~ófÅ,æëË›ð­í"Ù‘ÕpQ{…»UÛI§Øo7²Ì‘ * Le¬”U Xì®)fi?ÜWo:ƒ¹]—‘áÚFcÜ;¼;ïvC¸q²7çCµÒ!˜ iÌqÈ{x`¬H‡¹ÜV‘Ü#l~L4ËŠÏ’;ÁÑ…T“oQaŸTšö9‹qLn’eƒI“ÄTÕ‚}•ǰ‡2ÓÏŒû¤óŒS=›MSÔR&çëÎIÿUÐ Œé~ñ*8(Cv»sšæ€`"7›¼Ýf¼ÔþŒc&ûØ­ÜHEÎûà3RR§‚)¹‡cš`ÁÍaŽí›%àæŽ Ë@t4§Á®›b5‡è‚L’dQ%‚ã ÷Ú'þ´y#÷xò¸{¯å‚lT¸Ãc5IŒ&é¬ ¨i·cŽËn‚ã(k—JpD¸›¾§ë€>ûDÙ§³°0 wÅ%‹ ÉAQņSëñ5ÍìU=<-Xp¡ÀË5Ñì/9KCÐ@ún#ІzâÞõ=›™ û1‡[*¼ïËü¸¤À—>ó hgž>˜sçŽn¹#µNVy¥ \a‡Wq O«ÙáÆ/pfÞý ]&¸ß&‰…\†iI÷•&ö9,Xpt˜Û[!]8:ò‚ . 7ÖOãíë/Ž´&*ì ³&£ÂâÞbð’‚¥i`#!ØCãIè t,Ëò‘Š‚ –wПQá¢êZé„âÇÏQÔUuÝ´NºÜ÷ãœ\Ok¸«)r-Ú•<*L. ”!C¬„[Ë“dØž½}ô°L*k'[Ÿ÷Ycó–SäP[SÇ8$ƈND`?ûªH¢O….Xp€(N°`ÁÕ„±÷Wâ’ÂîüÁ¶ï(ÉúIyŒÓ(…zU"ù‘z£áõî@V¡‡YYΙ:ž œÁ š:O³èáÖãF%埯(G0¿ïî½ÅNm¤öW—+â4ò|^À™ ÁÝÔVÜj*·¦ê,posöjT`îñ7y4ðnW#fwy8€|T{_ ipkr—]p—zs[©/7Žç x-<žÁ»ƒÆ } q 9-Ü€ÍÌÀ³‚{ŸÊÍ<ËÐok{«;ƒ¹}‰¾¸Áq»ùƒèõÎõëÒçÆjciÄ–ŒÏ›aá®4DÍNº Ô’Ží‰ —°›‡ìCè–¾àµKsþ!7¾ôzVÑZƒ†lÿªZsÞvïdñ²»°êo4ÓtYð ¼^sH(6!pŸ èÎyŠ„w¥x±²*¸WQÜ'È4é,Sï”3—}š4rG1ºAG”.˳œâQôdôxz.½>çr;‚‹2tLí’ÍYÚÁ/ ™äÛ+%¨aë®\ŸA²fÔî î–Fäƒc:ÔÜ ˜ÃE.–‹c|=\ü@E’ÃP‚ `8X–p/¼äpPZò'6\9q^{éºi Và¶Û,ê†Å5Ù\UÕ,nã@#*8 ܳqkÛ¨0¹ùfŸ1öö Ž¯È€ßí.À‚§ÕgΆº‘+/VÓh × î¾þcâ{/|&ês-Cÿû<¼j*Ö<ÇÞö´âÞ‡ÿiùÁzƒE473â’ ¸^‚VXŒm7lÍcÀÇy¶Áôíçµ#VÆÛ‡p3ÓA#rÅ*¸%; 敺â?Ì®«ØÛ7|ÀûæìPn#9q„F̸‡Zj'¼w/UéC²ç`äu ® —Ú8ß—žì«7…ámO»Ö<­|.¸ XêaaÙ ©zØO%1¼Xqv­°¸µÑ(>?zT-ÅÕöòzN¬»"VÜ4U}Ç5ã<ðˆ¼Ó ‡2©‚)tiLv:Êh„G…Ë—ÌhŒT7ûL3Ô;7Ì| ïÍ^=‘  –© ÷°RÓºÞç¡r—õÖ3ê4B#x§j^÷»@ê|b/zýðæ;ƒi„!hßIH’,.syQÖïA·>؇"ýYzeï»H’º±!‹ÜEí Iò¤µ„ôÅF,,ÚZ•õ` Ù:ò[×Z&]ÃZýx•}©0‰o8K«ãÆêÝë4®S5]°f¾ÈG¬¸ó·¢÷¥˜>ÄæYêEV‚f‘טÛ›ÛÉ-xL-R>ÊaÔ6Ûü­ïàéªw|ÊQóÜ•$¸mœn,qôp)E8&' ~¸ŒÔ›øO|pZÊ*ÙÇ%Þ£û¼7*3÷ðQ#O|±8Ê4æ] éÞ¿ndÏÓõ·«7{ûMŽ¿Ì²(šæ “¬~s¯ ¯ÿðéK?+Ít¨ï…VøéáÖ Þ˜ÌKÓÆ sì(øÆÅúä±4ÜWoVr]é*Á‚w ;‡<°ànàÖÓ-ó<&Üšïèaî¬V;_²é –ÕÒÀ¥_˜,x×È÷xÁýÀb%Á­‡,ã8ù <ÃÀ©©åƒâ„”˜åe‚yÕVƒ†xKÒ¦Ö?ûƒfêüY‹¥ëÁÒ>‚yÕ‘`×)ãvwXÚ!X°àËÏŠÝ–nMÙasÇ®âîú~YñŸ§]L Ú=F ’bJíþNzïº,¸ge,ÝD0$Å“¾»päAC0DW"Ì>~=èü¨0ùDùkfïT/ÉÅC°˨ f†7h€ýv$ÒÁÞN/n¡¨4*ïói—¥iæÇ!ೞòÁ«ëC_”Y­Ó¬¹1†íâÄ,-”å,˜–Ž£ø)6÷;ǯs¡;îš`:žé#=À(±wÜK 9Uð±ÏM øÈû£—&–Ñ‘XPþ††½µ;óóz6ù‚÷ û›¾­à~¸‡cL0ÜלõÕ›¾°ŸXÂ] “s»"ñ±à|'–¼1-ââ©—ôÅ#áˆ^¯`Á‚ v‡‹/Sî>è©ôc7¿>ùHeGcXÑ-L:%r×zwoÖâ(ÍtÏ–‡ÌtGm_( Ú×`RŸ€Ã·)Ûßí3÷“3^W¬Jºx`§(xt¸íz|=)òÚÍÔ‡i—6,x$¸½îÁy&e·vû*PÈž¡á€Ç«h‡—wÛ8oËQ¼´reyó"u]ÊICRDè}‹·¨3xä¾ …°R¥…8¹€ñ؛ӳb‰?Løú‰UXøìž8!½žáÝÛzª9Üeùb»ÍFgpPYÚl÷NÛ¸"XpcxÿNÖ Ñ[,aˆÕÚ :´£d5w4$n,¸­‹ÈQÇá¦XT_ÍÞÄLÜu{'Ø‚ÙÒžj¿hò<|ýÇ$¸ZøÜíûlNpS¤Ç^xÕ`Z?Ÿ‡¹Àž [Ü-ù¢ÉæÎòîSu;g~B–§Ä¼uÅ'²Ü£ìåœìß{Ëßc™GÁÌpiî§éXo0ǶBŽõ(1¤àá`ö¦i=¬‘Z ?‰èÈãÉC?_«ú è¶ðÐz>3è2òìË€H<wk-R°à0‹=HšâT™Šã[$jî‹âa²¨ðÞjmXYeó£Àäý\¹ïìÃ=ðÜh]™¾þc2{ Ÿý½ëbwEE~Á‚yà:ÓŸë›ëÉñzÜìí)øÜ›N.µI¶é˼¼ N©—âNr÷DððŠwMDÀØnÁí¸~„D2KþȽ’ÅžpëÝÖE¼ÇLÁÿý3e¢‚³U‚7‡É]ö® ,Xp-£s*À«öaãÈ ûæ­–Ä@ï“5B¾±+öm´Ûž} I–b+ÂÊìŒÀô¡ºÜø|Á¾ãJR«²åâ„CÞÆK3_‚8žý‰‚Âú ‚G$iÙ^àÖQñîʧ5"P¶¬Jâ%¸îäp§ºÝÇ£µnê fa˜˜]ç{òv°4šœõbö…½!΋ÍîÚ—fVdÅóØ ›C.ž‚+±CL/¸8ÂK×yüR’QÙ”*ðÒ˜Ð4°-›{1‹Mäóä ÚOx@ãD®õ¢Â$F2àÆ—xyRcKò@÷[—WÚCh(rÅ%X°`Á‚Y`iõ*p’û^J„/¹>UÝ ÁåàHÙîÆÚåZ´ôÛ§Pân¬P[,œ1D;ê5¤’Ìß-9Þq½Oð¿§YôpÝ-RËÞø*?=’¶"ÌãÖ¹N©ëæÜÊÎ,ü&Y ¢iGµpnˆ)§iM‡†5Áá`šqe±õZÝ:ïO3hÁ4ã*õK&q#Œ±úÞ=ì¬*þBâMp©c£¤¤ÃÁ>Þ\ù$_…´!÷FF‰Ü ËW,Xpt˜ä n‹Ì2þp©9ôÆ‘ˆ’M¢3JXËKi¡E©×§öPpÜ „µg²pÇ[±Y<⾺&q>‚Y6–ñ q$!G½aÕúzê³eªE9Å®£Ñ ‚—çcr¦W<]nnvy`–m0!ww¯pÃv'qÆ{à@T¡,˜* 1w9kÇvϼP:Ò/ÀDÎÞ\'MãamyØCÂãåŒù½VQÕhí…—D¢I³¼í Á'>¨â”¨VsnVå¼”dXL'0×jŸЍu'iàXʔľÓèÕÖª\Íò` rn㬂¡HbUkÍäÓÃû¹³ ÓH‹¿ øn…ǼZ¯ÿø”õ±±9d•Lu.¯‚ –Œv?ÛºvK½»*U¾P<¸§ÄVÍQ²G0£H†—Ô%#$1‡uš ·02¯a8÷/wÒ¨Kš†¸³‹#J-­+̳Œ×‰1`MU+mÁ±õF…””§Î2tp¸¯Ñ$ç¤ÚËô]é jýËÂQ,KC‚=e—:¤öyv§kX$›„M»Î: S <|h‹ôšðt5*ÜzÉåøFФ7”ckZcG©j¸¼¼ÆdS]º¢^sÓS_ jðw¼~ÖU³C.5t õºð®ÛlöåMp8mÂrz8»õ­Í*T¨P¡B…^‡ÊL *T¨Ð¦(M~Dp%¸‹ì<„ÕS!Îþ°ÿ$ÖjÝþ5óÎ`o£ç?Ö#§ôC€þ Ø¿»ç”âýî}«÷?òÃ~ñËO¯ySÿ/é/œRúÁ@?è‡ýÐ9¥ØRz1§ÿa@é”R|>Ž3ŽÎË/z{N)Î^÷ûè9¥Ù÷@QnM)½yNéíSJo½ôåsJo}ùôœÒìù3Ð)¥¯8¥ô•ç”þ²)¥8?@‘>dJéiNéýgSzgNék€~Pä·zwJéÛü›ÉÐû§”"¿#"ÝŸSŠãßß?§õ.ÒO<¥ûwï”R|þSsJ_7¥ûƒÏÇùý ø<Ôwï¤ôγ)}«ç¾öïú?"ÓŸøœ  8O¨¿‘QÏ~ìœÒûSJ?(òêQÔC(w8o8nÙýçý’)¥ø=>ïoø+¯½õiOfú õÚå—ŸRŠ×g¿?¥ù ç õÎ#Rg'œ÷_<§4³О̊ò‚öàÆœÒ›SJ?(þþPÔÿ/ŠíÇñ¾÷DJïœSŠãÿø—Ç ?ðS¿"GÔ›Åqû( wN)EyÇv¢_€üýFÛƒßã¼¼è]¿çþ+Ÿý½Ù|c?°]¿Åï‘ñ{´ooÿùŸó^áOÝÉôGÖ?hò5Žw¦Ÿæ”â8àø}ð¼ ‡y¹üËž÷‹f~î”R7l/Êþ>³@ñ{ËïÆë/€bü‚r|‚ß?ôÆ9¥¨7îL)½5§ý’{@‘ðy(/¯0(ú½hWð{ìúñ(ïØôãñ~8Þ0?—Ÿ[vÜ¢ø{¼ÿÇŸSzÿNJ1.}ꉔfþÐWµâ+´@·Æ‹x=>?ÓK)½ü»Ò/–´òHq|±½xìï攢ÿŒ~&ê•»§”âü¡žÁû[þö×ò£qþ,½ŒzÛsé9¥èïÜšSšÅßSJQnž€Âó‘ÿ1~Âߣ]ÄùÂöfvàœRô/2;ÏËø}J)ú9èŸâï‘?^sN)^ÿØ÷¿ö3Þ?Ë«\Ì)µâ™¬ßç”fúüœÒ›§”Zö¿ûsù—Û•9¥(/˜/¹Šúq#Rlæ'Ìq›SŠòú/ã7 ÈÏø{¤ÈVþ åÑêöù ã+ÿ˜ÅwÐ9¥ø{¿Ë¿Ó{Þþ_ðïñI¹}D:¥åÈâ?Ôï¨3ý ¯G¿Ëä?¸_–5žoNéísJïÎ)½ùóew¦”>9§ôî)¥¯>§Û‡q+¶7ËßN)E=Š~4ŽÏ»½úWþ¬¯ù·%Ó‡YÞxN)ʶiÖÎóÃ)Î+þ>[€çYþÆW§”bñ~h§_ ô4¥å,[—úÂg?ú‡¿ã~"»îÞœR\Wº{Ji¶¾ôÞ”RÌg£|dúh–ŸŠú ûcÅ;Ø?|¾•OFýƒ¿ÇþgñÜ/‹Î)E>xý)¥ÈWèOYë’8¿[ó¾Ö÷¸>ƒùx¼ÇçÓŠg3þ±~?§4‹ç”âxc¾ã-+†þ>ú?Ù:ð”R+žF~²â{äçl¨¹ÛcɃµþ›­?=—Òìy@­ö¢ãóuï tJ)úŸè/àøc¼þ!Þõï üWÿÅ›?ùïfñ úõïôëð÷ø=þýF¬SÀßc¾×eQàý­öâó­çáú^‡M)E=óÂ_ô6oøoïôéÙsîÝIi¿EýiùãV^Ùòÿ·æ-ûjéËl]ÏC}k­Ïá÷8¯ø|k} æï2¯xùgæÃ¾ò”RÔGýú_óÛ÷fzõÚëæ”â8a܉zõI¦>5¥ôþ9¥— ½{Jèå_îïE}úô„^åyQάö#Åßã÷™_ýlJÑ@¾²üî×L)Å8ÔòS‘ñ÷–˜ù[pKŽ‘¾¨¥>è½9¥–ˆ¿7Ö³ñÈꦔfú Ÿß_Ôjú–ŸŒ~úMVœ„zõÆÓ¯ŠüŒñü½9¥˜}qùgú—V¿Ð>á<¡¿™ù«@Ñþev®ÇûƒsÕO«NŪ«ÂvÝ}.¡WÏÉê" ¿Vݬcžã´wHÑ.a^¿7ÖiÍzK«ÞƪÅõ!lï#Ÿõ=¿ü­ÿÒ'eöØÊ{[ãŒíÆu³;O¤댟²ú‚óÃ)æç°=xä;+h»µ¾rg­káø[r€íÃþ¾øUñ’ÿå%?ózÉ  àsðþVþ#ËÏÏ)Åßã¸àïQOY~‰µž|†v¿G¾…ç_ù‡–<Á}.ÿ²ñ»}N)Ú9˜«û ~Çq@þE½œ­«ÝZGþÏ- OžSŠúdkiõiVß7§4«ÛjÔ \ñÅãø¿½öKoݘ¦Çÿ³¼ÏÛþÀ§ýÝßð/3½kñ?ÊúqVþÚª7Çq·ê ÍûÍ)ÍôÙœR+ÿgÕ×d~)<ïórûüpúä”RŒSÑ},ÐWµô­5H³:Æ9¥Y½Í”Ò‹9¥h?0eÅ1½ù|æ;þ¤ÿ=ÇŠo­: ûç”b^+«÷jÕá>Ìྌ¿³õ< ÙºÀ)¥øü׵Ɵ‡ë VÝæ½PqMæÿ5ý«sJ­zVÔ#¨ï³:ô)¥x?ìÖ YzÏªÓÆûãxYëÈ¿¸å:ËG=M)ÅùÆßãó0né”Ǭ®®G~…ù[ÊÛ]þ-ÙáË¿¬V~æ±}¿?ñ%/ûC¨7®îg­ }ý”fþл§”"ܘRzk~8µì¦á7\þeë<ï׳u È'8Oø=ò%®Û`{²u&ãþYÜ ó†Y¾aNiVtJ)>ïÆô”Ò›@ñyøý­9¥Ùþ øý›,Î rzù—õëÑoù_ü·Î_•=놬úÔè7²<ќҬ^yNé- [×»ZûÓП?EùÉ䨥׳ûÁ÷¨×Q¾ðy¨ÑO°öËZý±(>ÿuç”Þ=¥õÜ{½s'¥h§ï>›R«þ$óOžH)îÎê¥ç‡S+ï„ú*Û/ ß[ñ„Y_<¥4‹oN)5óÉSJñyÿ[ü„ü~B:…ï-þÄë±½Ö:ÞÏŠsð{¼Ÿå—eíÁþÅû[ûíñ÷¦¾úèÅýî?þÅ_‘ýû¿³æ%û(>ó_¸nÿäœRÜ7e}ôΔRô+^{N)Æ—wN)æM1Þý¸)¥{N)ÆÃxÞ R”ëÓ”ÒGþÀ¯øÎ?ô{Þes•?·Î'°ê¿nžRjí‡Az (ÆÁVG¶Žôé9¥ÙúÓœR¼ýÕ§Î)EÿÛ—ýþ¹”bœüÂïýñ ^ösÍó nÅ~ ]yù)¥¯˜Rúä)¥¯:§ÔZ§ÅsH¬:#´k˜ÂyÇçãõ˜Ÿ²ìÞP«® íú-w¦”Zõx+îÃþduÏsJa~.ÿNoõ_üÏ#/Ïêx³ýÜsJ³ïZvÛß[vó-ïÇ ãò¬ŽÛ ýÍêÞ€¢^´üƒô*ßsN)òòÖYA]ÖÕ}ÑïÅñ³â&´Co8§çÆûò/«—G>Á<1ö®¿ê>ùÁŠ1.‡þ_µßÊCfu»@-½s1?œ"ÿ _gõ$@³sÙæ”Zñ Êêmôˬz kÿxVÇçÇÃÚ7kÕ?Yû÷‘·æ'o1ÿfÕµ`|žÕÍE>Ç|S–·‡ç[ûo¬ý Ö:CoÃõ?ÝzkN©Uׂþ®“gõSJ­ñÇü%Ž7^o_V2¥4[g þô•>µìy¶¿jJé 8¯x=æA­õ kžew³z V}–Õ¼þÝ^õô÷ØÿüEf>Õò£q>ñ÷(OÖþ9‹_ñ{kêË­ù²,NjÕ[dë¾SJ­çYuäÙ~ÔSJOSJ±žâP+_žë0¥ôö9¥È@­ú ”{ÌogûQ¢ßˆr×gõqHç”fuá@³ú»9¥æ~ Ø>KY÷ËêY }–?hñkv? ØK/[uþø<+7ó±©åOfûOZûvP¾ñúl¿)üÞªËÎCšå»€¢ÿŽþ úw÷¼²÷˜ï¹»üËòèOfö(òÏ›íúó¿úóßÍKwL)EûlQ«ÎÌÚÇ`íÓ¾7§ûcɵnhÅÖþ#ËŽez ¥‹ûÈðw/ùî?÷=?ã•ß6M íÄvmÕgÖyK8ïx}¿Íü: Yž)´íwVw•ÒË¿lÜN@­u,Œ+­ºRè×U;p<ïŸSzã”ÒLþà9ÙySJQßYþ¢•?°ü]Ë_D9±òäÖy Y¾ž—ùsJ/€b^õ®àz:^yB´/Hßôu§”"Üú‚ÿãß¼ñ_=‘×Qa æEÑ®á}·Rœ·,N˜Rj­c£¾µü3?=§4ãSøÞ²VÞŸÿ¢¯ÿ´—>úÇ^÷hV<¥×eq\­ý:V¾×ãp=0«ãRjío´Î/F>Àu3+/q¨µþ‰õø/?§÷¿Â ¸?Çù:³kSJ­ó[¬øåÄÚçkå¬|®Åßxî=Æ»üõ?ö—ßó÷ý¦lý¯ÃyÂïQb½A–÷žRŠó†|Šr˜éé è9¥7& sJ­úv¼ÿí3Ð9¥˜D¹ÀyËêÎ@¡½w¦”.;ˆçJ@¿®üä½êç›èË甾â”R¬pÿlþæ”âx ž¶êt³s=¡?¯Šz ù õ‚µßûãƒuÊx?l/òg¶¿vN)>åýΜRÜy(Üïò/óÇnžRŠrnä÷3}Œñ»µoý²,ÿ3¥4[gSjÅOV|˜;rJéV? )ÖYö ã´–—­SL)ÅüÓÝSJ·®{XÔÚGaÅGsJ±¿þð_ÿÈÇôSÌõ&+¿ƒ~ Ú»—Þÿg?ðÿã‡eã±°¯ùJãs2ÿgJé[ÿøKÿð'ÿù/Èü(´ß¨·ž›ó²¸åù íú;=õäæŸûÊŒÏ29B:¥ÔZC9ü«>è]?åíÞ%»ÚŒc°V>ܪÊꘀâó±n5‹ë€¾h‡á璉Þz(Úlÿ½çRŠy£­õ èÇZëçøýÝSJ³ü=|o‚÷G½€zýŒož€Î)Eû–Åg©•¿ÌÎÛŠíÅþáïÑ_°âû,ÏÔªA~Á}À˜o¸å@­ç[òþšsJ±¿è_ |<5§õ6Öc{ñ¼D¬»ËöÌ)Åú9ü÷â÷RŠòÿ/xÛÛ}þ ÓD½œõû¹”âýž>¥4›—)¥X'féulßÓç”fõ @ñ{Kn¶Ö‰fùI x=~vÇ3«—œSj­Oeñÿ”RÔ3Sší'ŸRšó4ËûÃ÷–^ÊÖ©àz«îÀZ/4÷‰µÖY¬÷±¡Éâi¤ ÷]Ê7dßC{³çÅùÞÚëÜ3ë=tKyÌŸ¢ý¼ 4Ë?ÃõY}áœÒ,o6SŠöý+ä#”ÛL/µìg¶~ŠßÏ)µô0Ê!ê!ëû¬ýð<”kô?.æ”Zç2[þÄÖøûƒí{ì%?ößýµsÖלRºµ>2‹s攢’Í´; 3ÐiµòYäœR뼰켬SJÑÏÂñŸ í1ÆiÖ>_k$ó7€â:/úK˜'@þºsN)¶ó‚8_X·toN)>)úýYâœÒûç”fy½9¥è/Þ=¥ÇŸ—Õßµäï‘ïxáþ…ßÿƒÛët& sJ³:ç)¥h—ïŸSzcJ©µƒvÇ-«¿‡ëÑ^àùb8OhÇ­:ÓOjã‰~ˆUÏÚÔÒKÙùtØã~7O)ÅõM¬Áù@{gÕƒgûk¦‡Ó¬~höü)¥fÜ5¥Ÿ‡v óIY~hJ)ήó½÷”ÒLžR\/À}¿o8¥ô•HÏ)½ô”RÌo`>ä©sJQŸÜšSŠí¿yJèÒ_öÜ~äÛ}ߟøÌ_dž£ö  ÷æ”þ¼)¥è¿#ÿYù=\7„øáª?¸Þxû”R|.æEaŸèÕ}¡îê*î±ö)œ^Ýã¾l=(¶õifÏàzK E~ÊêíRúü¾ÜsJQ ?aùgÆ:çåßéEßýþÿêw}ô‡.Öß^Ì ½úŽ;æý,= våêùKûbÑÿǸÉò—qÕZ—´â,à“ì|<ôƒ0ÞÁûeþ%P<÷ù Ç#‹ËSº8ß–˜­µÖQq\ñܤ/z×?øuÿ×ýÆéM‹ç£>²ÎuÊΊãg­K µö•fq9Pˆo.ÿN/ø¹oý)?çÝŸË®·ò§V|Œüi­£Xñó éÂs–žgÏ€÷Çþ˜u#p=æâóp¼Ñ¶ê"ÐïÏê æ”fûŽæ”b{°¿Ÿ_öû’¢þÁs€¬:r¼ŸeŸ²s¸"¿eç^Î)µö…ãý-¿Ü´÷sJ³ºN¸ßÛ|å¯þooø™iÎÞçÞœR+ï…ßãz¢%w˜A»‚þRë|ÅP”3äC<ϯ7ÏCN³óÑà{«þçËâ«…ºšË?sʪï²ì/æ÷³zx Ö:U×ù ¬Â<¦µʪÃñ¶òbV½NöûçËòC°¿Y<4;åœRÔ¨'q<ýIïú}_õ½¿ÊÖ@q\­sà²}ç”b?³}ri¶o ¨uÎæŸúðË¿+ÿÆëò/‹³1ƒòzcJéÍSJñ{Œ—ñ\BÜŸë‡Y^h¶^yNiV¯ çùP¼ö÷U@q¼,¿ ïggbwdÕ XùØ@±}OÅ|Ò“SJ/æ”föxN)æËPŸãy¾h_ðÜÿù 7~êïÍýs øÜ;SJ±Ý¨× ÿv)gHó}h@1Î~õ9¥h°Îã<÷ ó"èW[õVï;¥ô%¿ñ]~æËnÿÕlžð¹?(æ½Ð®Xç|£>Ä|JVwpNé­9¥XG€zèÆ”Ò›§”âþ¦¥¼&æCoSŠùUÔÇÙyðÅsY­sp¬º+k}!³{@qQ?¡]G}†vÔòQ?âxZõ¥È·YÜí±êEðzk]zëyÚÖúhvnPë÷8ß[Ï‘Ìâ•…ë–¨µ?ÇÏ:ÏÉú=®Ÿ`ýl¶_hÖ^ ø=œZõV=#ÌÏåòñ¢ÿ¹´¾u1§Ô:—$ÛÏôþ9¥VŠ×qßúãÙ¹3Ø~ ˜Îôï”Ò‹9¥8ï™0§táü™ç÷µÔªÊö…ÍâSJñ÷¨‡Poá>ެÎêNJqü±Þ ûƒq¢•ï·âÜìþSJñ÷h×ûçûK¾î¥ï•ù‡V½Ö½ô·~ÍçþûOûVs_mfg‘Bû¬z|£~óòõëâùÚè7ÃzçÕý°_7€fïCžSšùçsJ­óJ0γîgç„ç Ç ©UÇòñ§”Zçëeñ“Añ÷Öûc-½dùk¨­zNäÓl½¨õý…Aqÿê%l/ÖÀó/ÿ²v ^À| ÜçJî0?ƒëOÈÿ¸?ùõ ϦýOkŸRæÏ§8ŸØ^ôï¬üBv¾P+^´ÖÅ3;ùýþ9¥ø½u>0æÑ²uw ¨Oвôƒµþ’­£`{¦”fõÖ@1?…¿Çü=®sà>Ì—b<†õš(wO)ÅûeyChÆ/è§XëV[ë[Íu¾9¥Ö> «.Îʯdç…M)½{J©UõŠ(÷€bû‘_,{då'-û™ù3sJ­|ÉÖxÝÚ'ší—ŸSú¢Ïyâæþ¿þ©‡³ù…v¡œdþ+´ÓÊceë"о­|‹|ód­ë£^²ê³ýe@Ñngõœµò˜Kçªâ¸¢½Äu’@³}ª@ÑŸ¾9¥4{ÜùÌŠcQÐÞeSjå{‘²ó5€fu²SJ1®ÆöãõÙx½Hé•_ˆõƸŸùǨŸ¸ü{þýð|¬ƒ²äˬožRŠ~¨UïÏ·ü>Ô/ú§_óaý!ïÙ÷…}í)¥ õ¥æ¹ñ˜±êÿÌzz ØìÊ/æwPž°^ ù ý2ü=ÖçÝŠëùØŸGþÐßýÂ7þ£·1ëf¬º=¼¯å!µÖù­u}ôŸz"¥¨w²º- YÝл§”f륽jùר'^úWþ䯸¸õÓ²qF}`ùAV=òò Úðk.ÿ²þ¢Þ¶êh2ÿbN)~o­¯[yä¬ý”RäÌû"¿âóÑÿ³òºÙúôœÒÓ”RŒû_'¥ø=ú%ø<¼ýqìö÷õ§”â|½øuO?óŸû3YœŠõûF>çò/¯SœRšÕ}Ì)E>Ïêƒá÷ØÎì\sJÑî`¼…Ç÷}¦”âõXG߃>¿üËô Öà÷¯z2èÅœRäs¬‹Æ<~|„þÙ[ÿú¯ÿ»?1g~*¶ùÝŠÿŒ:'sßÖÉ£þ@¿ ;Ÿÿ”RÔ‡h_ï?‘RäGÔg˜C¹³ÖQPž0{yù—Ÿ#xNèU¾òÀW¿¿yJ)úÓ™ÿ1¥4[ï‡ï³}Òp?˲(òUßkå³qÞ0Þ¹7§ÔÚ_x4³cH§”fy´)¡—ù{"¢ÿ€ërOO)Å~ ?ˆïý¾{:¥ÔòO,jí¿¶êV¬üY¶þôgþñÏùÒù¡?mÖ'£^³ös>òÅ¿óÅý¥ßŸµÏ:Ç ÛgÕ¹Yû¬|S6~p½µÿÝ’3kÝ)[·šísŠöýlŸãè)¥¸¿íºµîí»ÔZ÷6×Sæ”f÷j­wfù×)¥˜×ÉÖ“€¢þÉâEøÞª«A{üØ{çcòoÍý˜™ß9§ôÞ)Åuƒ_ýF¼óq/Š×£_Šúùóèç`¾óoèç _£`½æ­è9¥Öú´5¸>Ží}ù)¥(×èÞ˜RŠíÇý³HQ.QÏer ùúbN©•Èö+ŸSš}Çå#ó³Ï)E½üaíwB;ôèÿýµÿäì?o>_%Û¿íÊê'«îǪŸ±öQfy®)¥Ö¼gõäsJ­øý k} ©Uçç5 Ÿ£^õ÷Ë¿L^1¾F¿í¬•÷B;‚ëšÈw™_5¥åÁZ§µ¨å—YëÖ>‹O2}6§ÔÚ?™ôÇZ¯±øÞ’[«Þ×Z—·òžÖ9UVžÛúÞÊ»[ñ$üþòÏÔóÙ~¬SJQîpý9[žSš½Á è7Ü›SŠvó1О˿ÌßÀvcóº¸ÎŸÕ{ÅõoŒËQ°. çå±é“oýëÏú(s_ÍéEýíÈösÍ)E>Îä`J)Ž£Uïií¿²âÍÍz~oíãA=üØ_ú¶ßý7ôÛMÿÑÒ÷–Æ~¡~°ò*ß`=[çjå³ð÷ØüÞ:ÍÊ7¢ßgíß±â=k½¿ÏüN Öþ´wV]Ñ h¶þÔÜ3¥ó±Yû€þì)¥ïôçýù@/æ”ZïÉòÐ_Œ×1>Ç禔¾7Pl¯•?GjÕgXu’x½Õ_äo¤/ú Ó¿üæoü ™þ²üË/ÄûáùÕÙ¾Ë9¥h—±þ9;·`J)ò‰ŸeõÄç”â>Å›§”¾ÝßüÄzû‹¾Û}ù·tþþŸÕY4«Šúþõ‹µ®n­ûYyD+/mžÔÚ¿u1§4«ëšé?ã÷è‡d÷³(€fuI@ý¯}·ÿIß«ÅwÖú‡eù VþÇí2¶okýo&73Ð)¥¦ÝzšRš½?hJ©e‡p}ÇãPxŸCoa]*úEwO)µìÔÅœRl¿UbÕ{dãÔò»p~Ìz@ Ö:·¥7-¿Ñª×±öÿ ¿cÜŠõ¸®ão×~H¶žÔÔÐK¶Ö¯ Íö×½yzN)®3ÜžSj­Wâzæ5_yJé“SJ±.Ͻ|•Añ“N@á{¼¿e7ÑŸ³ÎUËêâ: æWpÝÃÚ‡öÉ:WË:· ó Ù:Ï9¥˜WG Ï»ò?­¼‡åŸXë}æ{^â8áï±ßÈ÷˜_ÃïoŸSzót ýÃë³}~@_üïø¿òs¾ÇõòÏÚ{5OÙ9=@q½ÜÒÿ8Ϩï,} ß_µõ8Æóhg­óQÎ0N½yJéiJ©¹>1§åÁÚ?eÕYX~df—¡=f]ý”RäWk>ê=ä+”OäƒÌ¯z÷”Ò‹9¥oùä»üæïþô”áøœ{@OSJ‘Ñ>¢? ùï+þE¿ýô{î?—ÐË¿ì:”ƒ×Î)Åï±Ù~ÔsJ³ßEÏÉDÿÏÊ£b½wö^ ÷æ”ZûôpçýS¤–j½‡dëþ`ô?­¼³UgŸÿô)¥¨gùÇoûŠoøˆwÏòrÖú·¢_Œ~ªUŸ‹í´ê p¬ý;Öù3øýÝSJñù¸>¸5®´ôVÇ÷ÏÖƒÎ)µò2–=¶òí8ÿÖ>‘ì<²)¥7O)E¿fëx¢cí+²ò¡V~©µŽ™å;ç”â¾%¼õ$Î×ýsJ³}í§”bÿq¼ÐîàóîžRjíkÃïï}ñïñu·¿äÃÌq´ö;YýÀ:lÚ|Ú;œ'ÔV]a¦g€b{îžRj­£Þ³ÖWÐïÄú,ß;§Ô:WËØ÷’JiVíE½dÕ3ãx/í³Ãu­O|.¥8NÖ¾]ì×#?ø+ßöo~ù[gróþžCpcJ)¾×õÖåeqÚ”Ò­ùŒ3¬s*1ŽA»cÕ›àó¬z¥¬ÎnN)~o僬¼ŠU÷‘éyø½¥×±*[ŠçMŸ¦”fõbϦíÈS§”Zùj3Ÿ 4«o{.¥Ö~ ìÿ‹ÞýS¿ð«¿öfõ1Vý"ú¸ŽŒû9Ÿ<=¥ôUSJñüŽ,?‚tN)^íÁýø=Ú%ìê;üþö9¥wO)Åüeç²ïb]2Ž/öã`Ü€ûR1ÏŸåá{Ìûß>§óÈX׉ýÃüÚËþ`^÷ËܘRjå¥ñùØ>¼ÞŠ÷2ÿ}NéiJéÅœRk¿Ÿåߣ^C»kÕOáï1Ï€ÏÃu“;SJñ|“l}N)öù9ÛÇ וðú·yÏ_ú6ôÁ•Ó‚þ5ž3t÷tJ)öí ®—[ëe¯žRú ϦîùwúŸþÈ·ÿãßwû~¾þ Ô÷  8ÎVœŽyÙlÜœRô÷q= õèó½µÙ:Ï)¥è/fçòÍüCìçœR«ÎÞªWÃñF½u˜¯;ÅþZuzX‡Šü…uˆx?læ±ïoåG‘Zý±Öÿñ~ÐþË¿l\¬<0|•×·êd­|½yNÖœRüÇåõÊ®G£Þ·Îã¹yJ)Êç­9¥Ùz9<í¸µ‰~Â)¥™ûƒíÁú Ü7ûöÿáÕ_ÿ{?oÎônvîÕ”RüýŬŸç”Zû1·î[ÈòÙSJ­}öÙ¾Ä9¥Y>h¶/"¥—Wr‡÷Gýá›§”^Ì)…øåò/_—ŠöÓªÛÇqB}–íÿø¦wøê·z·xE³u9¥Ö~ô+Ñ_B þÀåΗU—œûËÐ9¥–Ÿ’­/Á÷ü——|Èïú;ÿ6«²ê93ÿjJifŸázôË­},Ö:¥ÿ‘^Ì)ÅþâýÐßËÖU€fþPKcþŸ‡qú¿¨GÑÿÊê €ZùâÌ¿Ší}äóÞòû¿îG¿Þ|¿”U—•åýà÷çàõOSšÕ»`{€¢ÝF¿ô`yN¥UÏŸÕ»Î)µÖQ/b>)Û ÔZÊö@{±?–Þ±ô©à÷ø¼·ÿ¯o÷ƒì/Q6èW`ý³UüêSJ1O‡úýSÜ×õøŸþ¢ûÒüþ¼ÎüœRìÿýsJ1NÇùÀq°ò5XçŠzÿÞ”R'Ì+àó­uF‹?ð{\—±®Çþ#µìÆ=¨ïp|¶Öåâ|fë(H§”¢^·öma\€þ%êO¤V=Îæ›­¸ÑʯYõ V>ôPo´ÓVýÂkÏ)µê]¬za´ËÖó—êf3¹›N§–‰zÛÊoÕûx=öÛZ×ÉêÑç”â¸ß™RjåÁŸžRjÅW@3¿Àøþ…ßöm¿äï]|iöþçì\‹9¥Èߘ·¸y:¥Ôò÷ÐßÈö¡Åï·æá/2ýúpzùgîûF¹µÖG/€Zu<ø}v®Ê”R뜤ø¾cÔÿ?‘R´kZûïžRjíëĸóõIOÍ)Åxé Ï¥Ô:Ç&«{œRjÕQfóôÞœRó\£9¥|Ó'üÜwû%`žCŸÕ•L)Åq°ì§™Ÿƒ~XuG–½ËäèPüý[üÍŸ{ã‡?÷»²ù½wN)Î/¶ Ç넱ŸV^ÈÚבÕ×Ýz®ò…µž„öíЧ€¢¾Àë1õ6÷æ”fý™RŠ÷Ç| ê\ÇEúäœÒlŸß)¥¸î‚ù´ü§÷ÿš_øu¿*ÛšåQç”⸢@¾}ñÇü·ŸóÉ/üÝÙz/Þýpœ”k|ÖÏgûðuò‹û¡ÐŽ€^¿üËü~Œ÷³õ”sJQ/bœ“éÕ)¥x?¼>;×hö|¸ßÍSJ³<ДRÇlÿælPx>Ê®ÛdùRøë Pq¼>þœÒ¬^úo§…üÏäûÿýOþ³ÿêÃÍõ l?'ÐSJqÞÑî¿ðÞ÷üç¿üÆ·6óÑV}ÂÒ>HÃ/¼üËß‹}J©µŸòÎ)¥VÞÃÚ7gÕŸfç{Ì)E{ú ïŸkˆúŸÕ¿Î)E½öýS´çèÏZööùçÞ èœRïP«ýVÞÖªÃÄç[÷»yzN©µOÉÒ‡Ö¾(ô¿²úœ9¥Y^}Ji¶>:¥Ô¨÷1×[Ñ^¡¾Ä¼œ¹wJ©•±öÁeù Xw†úðÖœRkŸú)0^Ï¿ßiN)>'ó÷ zcJéR••·öYev~Ÿç2¥ÔÈogíËâ¼ÓÃ)Ú¿›§”âõ·Ï)Åï¿.ÿ2»“ùQpŸ,~6hæÇN)µôŽu=¶ÏZGAþ;?¥ó“ø=êëù¸N„÷Ã:Nü×ù³üý9¥V¾Ä¿¬Þv:§ÔŠ_Ñ.YëbVþùÏ+CŠ~=¾_ ë*p¾nŸSŠzŸ‡uÈf~(æénµêé²üÄ”Ò,Ÿ4‹k¦”fù'¤SJ1ŠqV¶¿¨µÿíªw!Åúmë¼¼L_œSŠï{Dyôo¼ýoøYÿú¹üýGsJQ.¬ú‡;SJ­uUë¼)´#È'èÏáý^Ûƒr˜û Ôʳã÷È7w€âóÍó¿€Þjí3²ê®³ºS Ö:êÏzïÿ÷/ÏwÏ)Åü3ò7êÔ§ÈÏX…ú ë÷2ýwJ)ÊÎ+æ³Pq½ å3ÛW‹ýÁvBÿp¼°~Ñ’;”³¬žgN©U‡u1?œâóð~VÝ|VçhPk=÷GÞšSŠzí-Χu­¥·¬ºb£>â*nÂøãIwÔO¨²ûµÎmÀëA?]þ™us–¿`¬Ÿ˜ûŒ¬:L¬ã´ò 8n¨¿¬u(ÌÓa{q\/æ”"¿ ?#ÿYûœp|P>3»0¥4«ó‚ßgú ¨¥¿ÿÍoüÜÿç~x~î9üî4¥ÛeÕ[ë ¨W,ÿ";O¨5/ÖºWf¿¡½Öº¶µÎgcíCƸÒ:çÇ×ÅP®ÐÏ¿{'¥OŸSjÕ [û)Œú†Œ°¿Ö~à‡+½úñòoñüÜlO)µøÐ<‡¨aòü)ÜßÊ»YíC¾x‹?ñAùûÿþßÎÏ™RŠÏÉöûÍ)µÖÃ0nFùÜ*OÖ¾0´Ö¾P쎻¥¬õZœ¬¯ÇöZ~¬µ¾k­«›çjÍ)E}mû…óqÅÅœR«n?[ïšÕkM)Åç!ÍÖçày–nÍŸE­s=¬< ʳu®šU—sû t ßßšSšå§”fqñ)¡—WzüPä'¸ßåŸéXõÞ[çÑŠ¬zù­ëÂY| ÔÚ¯b­cgõˆg §”¢ßˆu¨ßù+ýu¿í÷}_v>æ-ð¹V^¯ÇïïL)żî xÅ)¥X×‡ß‹ŠŠî§™žº9o75~oéEÔÓÖ9AÖ¹#V½ŠuN“U߃þUÿ†ë0˜‡½{J)ú¸NuûœRŒ_qÚ Ì+¿ò”RÔß{J)î{Àû!Åþ˜uðsJïÅxý/«>뻟‘Ñß=¥Ô:—ëé;)Åý‹˜§Ãz@œ|žuž¶ßú½U†÷Ãöâ9 OŸRŠÏÃûã~/k?(ÖÛYíÃö`ÿðþÆyiæ~»­õ°VüñÔ”RŒ0Ÿ˜µgJ©µo#Û7rJ©U_‡ÏÁ¯þú÷þ˜Ÿú›ë büaås¬<ˆUw•í“úÈozñü“ÿõó6ïÁ~Xù#´GV¾Ÿ‡úÚÊï ¾D{žå·Rz‡û/ÿLÄÊw¼åÿðÕ7ïýÉ4ÏQ°ò8Öþk«nÇÑ×l}h–WjÛÅœÒÓ”Ò­ë§hwñzœ—Gç|å“¿è{Ís(,×i1?‚þæÓq] ëEîÏ)Å|>^úý¤¨?_òÿòÓ?üË¿Ù\gB;eÎ7P¼?Ž+R|þ£Ÿõ ÿö¿|ü'æïº“Ò§žKiÖxöËòÇÑ#ÅqÁxÈZ¿³âl¯å/a1¿‚ù´ßÈß(g–Üa<€zåý7”W¬‹Ãu ‹ùáÛ‹u£Ø>k?0®Yë¾X—ƒu©È/¸ÞxoNiV¯ßc¼†þ?ú=üí¯úI?øäËÌýˆ™ùõNVÿzJé è9¥Ù~Ô)¥Yžzz8µêm³ü)þúgÕ‡a\Žþ®/fç žSŠýÅñÍöÃ}ìÑïü£ÿìû¾Ä\ÿ¶Î±Öw¬:#l'Ž«åWeû:§”Þ<¥ý´¿/ù±W~äÿýÕï”?qÿ”R”³ûç”Þ›SzgJ)ž3y÷”RÔsèÿá÷OÏ)E=‹y œ7Ôo˜Rší :¥ã2¤Ø^Ôs¨QïcP~‘O.€â÷ÖúOV0¥ùõ*Úä—ÐÌ5¾¿÷lJ-?ýË®£]ÊòX@­óÛ¬xÄj¿EÑïCyÅþ\Ì)µÖçNSJñ{¤Öømõ§³ç¤ß_þásÏ9ç_ý>‹ïb?²s˦”Z|bÕ×ߘRŠzÂ:'%«7ŠzŸ‡õùh‡ñ&|>îßFÿŸŸÕûµêYPáõY=”RkßY¶6¥Wü†òi­ã`ƒú"“_ Öõøý«ç”ZûgoÑ }±üœlè”R«þå¯G¾ÄåüЯzqÆwø»¬žú‰ó•Ùg ('À?—_áxbœc­;ç³™ç'gë…sJ‘¬zq|þ)¥Ø«þý +¿5ÎÌü¸?¶/ËïÃïQ^­ú#¼û“Õ+ÝšgÀõ+ŽÍò óÃ)ŽêI´OÙó€ZuÁ–}Âßo˳ñŸSšù!ð=®ï!£_„íÇû™ëí@q=Èò³OSJ³y†ûãïqaËÃüNfïáùÙy SJñû{@Q^P?Á÷ø—åýq¼Pþp|1®²ö#YñŽ•ÇA~BùBë9,û‰ß[ñž•ÇÊÖï€"¿r~8E}€çN`ý¯u®.ÆÕ¨Ÿß³s·Rz¥÷1_bå‘·î‹D=¾µÞ¿·Î'²Öç,¾·òwÈ—ü“·|ä¯þÅ×çû €b}æ!Ñ_ÀüÞÏ:‡!ó߀ZõŠÖz5>ãÓ»§”"ŸÜ˜N­óopÞ3ýÔZÏÉôÇœR«¾%/ èïdu‹p?ë kÿ;ΧyÎÆ”RœO¸>{«Uý·Þ‚íÃöXu1˜?±ê¯3þjíO¶ê\q¾0jQ”shNéP+>Áß[þòïÛýÓ?xñ~ßúîÙïŽÖf~1Üß:òÒ)¥ÙyO@­z¤LoM)µòˆ|ãï¼ÿ¹/ýaû| ÿ¸üËâȬ~N)®ÿ ÍÖãæ”fç+ÁóÌùjå­ü4úsJ­}÷VžÊÊÓXyFëÓï†çáx!?âï1¾Íâ& ˜‡¸}N©9^sJ³ñŠ÷ËÎ=0¨µïí&þã”,¯pJ)Æ}˜—F;x¨U÷z ˜WÁë±^ ¿Çþã÷7¦”Zûš^õÇ èœR´ó·æ”âú-žÛ`­cÿ,¿åáæ)¥7€ZuèVž~ë¾\ÔÖz±µþŒü„òƒßcÿ,?$[?€ç£½Â¼»µnaíßÀç=ú²Ï¿ù¿þÈÏ3¯ÃvYë­hqÝÖï.ÿòúæ)¥È¯¨^}~8Å<˜q® þåõìSJ³s‡æ”Zù´W8Ψo,¿Û‹íÃïqü±Þ'ó?€¢ü!ßdtNé#OÄG~ê»ÿóŒ¯qø)¥È_OžRŠvþö9¥Øn¬ÏC=‹ûÓ?vN)îoùœRü}vþзûßöóçúCÓ›þ²|?Ê=þççýmüÞ¢¨oL)Å÷ÀZr|ˆ|z1§ô4¥¿Gý”ùa@ÑOD>Å8Í:¿ÁدšŸË7¥õ€UßÏG;ˆÏ{é'ß»ûO^úçÌzÍ{O¤Ô:'Ûaå±Q?Xë>ø¾0lïísJ‘¯²: ·æ”¢?dùïVü¶u_jV€÷Šã—ñ¿Ñ|ÞÅœÒ,çŸë4xÿŒN)}›Ÿý­¯øÆOûP3/‚íB{€ãŽëMVþ3Û¯tëú7~ÿq§”¢œÞ=¥¿Ïæ(Úœ7È]þeñîG»põ;Gͽwx×÷üLSoŸ¦”b;­¼žEñyw¦”Z~n¶¿(ö/û~J©µo"ËkO§8>˜ÿC»ŒúÛoéü=ú%¸nˆõøY|wN)ÆsoþÛ~èÓÞû÷ýxWgë SJ³õQ –¿€þ æMnŸRúª9¥8OžSjíÈøöœÒ¬h–·Š×ã¸gëû@±ý¸~¿Õ?BÝk=ÜŠk¬zb´'¯8¥ùóN÷žK)þþãÎ)Åx"[jíÏB½pú›Ý)<ç)êÛç”>ú?ç}¾àÍ~sÖOäsxîåßé]?û˾ð{n~ÿÍöÅžR ü}ùw¹îwU?`峬s°â~ë++ÿ“å“‘ÂïQ.ñz+_—ÕÝΧÖ9ÖþlŸ•?4òg—Y^ãmÐÿ—W|±tÎä)®®Gy1ôÕÕý¬¸ÏZ7Gj3hígŠ~&ú/X§ˆ÷·ê °n çͬ—9§Ï•ÝxÎÚåÖ ,ýzü÷¼îK¾íåïšáøÜ,_Ç øÇjéG¢=D{|uu_´»hgßè#?ò¯ßî3ûâÓ{½éÿKšÅw@-=`#eé­­ôÌÕ¼šù9¥™^jù…–ݶâô,?+[Š÷Ãy{ä·ü“ßþ-?ùs³û ÿý²êPžÞá›ÿÁ§|Õ{fëw—™bíg±êe-ùBùE½‰òŽëè?¢¿ˆõ5O}ÅèüpjÝëEoŸSŠ÷ËêGá÷Ö¾lËßÅù³êgì}ÆÏèŸ<öëÿÖ|êþÛ\ß—éSJ-»…ë¸ï;m£wžKiVOtk}¼U/—½aJi¶n}:¥ãk|Ê/ò‡UwkÕýXç?gy, Y~¨‡Xy*œO?Ô_7O)ÅñD~°üDœO|^¶ÿh¶ ÷ËüÜ)¥Ù>î)¥8ÿø{˾Xû'­ózQ~,{ƒ¿7ë3¢ÝÇö[ñ¼µÇZ3Ï›RŠ~„U?ŒÏÏôÅœR˜Oü³÷ŸEÿ×P¾ßêeñ]¿õm?ÚÌcZ~É£ÿæ\¼ý¼2Ó/[ëñ¾(Vý/®dúwN©UWjéüÞªƒÀߣÿ‡öënÍ)½yJéËÏ@ç”bý)¬CÌü= ˜D õé'L)µêP¬ù´òöµòÉXùo@³ºhŸ§âþ<ëÜž×Súô)EþÄùE9Ǻ^K~Ÿšég Öyx=ÆgV.Þ/«‹j}ŸùÇÐ>«Î ÇûÆ”Rëü|Ë_±Îã²ö§ZûQ3¨åï ýÛºÿêó¶ükSÿO)Eûˆç«eùT oñÝïqãÏ}À½¢oÂ/é)¥Öú~õ`HÑÁñÆùÂú7k?&Ö¯á÷hO}öË^ÿYðwl¿²0½5§ëo0ŽÅ<ÃíóÃ)Úm¬ÿA9ÁöX~­µŽ|ôÜä‹G¿é?øÕŸô=y~ hOO)µâ+où’L¿µöû[úÇëï²: V>.³÷µô™e¿,ÿ3«‡šéïsJ³ºŽ9¥¯jå¡Ñßxä¯þóÿŽ¿õ²s.pÜïÍ)½ºµ^×s²ºÖSJ³ý 甂y>/ŸÒË¿ÜîO)Åñ@?Ûƒ~'ê'œgœ7ô{ï½{J)òÆ™_'¥Ö9TV\ˆýyáWÿ÷¿/Ïî{(Æ3ho±_ÈWþ·¯yÕûý?ßoæÁ¬¼Ž7R«¾ÕÚÿôòÛ}ŧÐÏç¯Oéâù¿VeúySJ­uH˾!¿Xvò…ßcÿПx-Pìß ßì×}È;~÷™ïƒ³Î_³üË>[ëÁØ/¼åõ»•o·ö±¼ðûäïxÏ/1ϾNi¦ßZúÆñò/ëîKÄñÀvâ÷Ÿµâ5¯ì¼|èWV·~J)æŸðz¤h'oµ~kN)Ö;Zû1>A¿)ú3(Ç7¦”b]9Ä·Ï¿§úôPzùwu=´+û÷â8Xõ¼èïXyo+.ÍôÅ”R´ÿÖ¸bžÀ’oì?޳uŽR¶_ù‰‡S”k´_ø=êw¬ËD9F.«‹=¥4;¯¾·Ö9Ð/@=Ÿù[sJñ÷Y^aN)ÚOÈ+_þåùì9¥Y]È tJi¶9=œâ¸fuñ@-{Šßß@:§ÔÊ_YõV{­øËªGÎöq½3¥ÔªëÁõiôs_ ô)´Ïª?¶â@«ŽÉÊÛ ?¢½Øºž˜É)P«^nëyV¨wp¿)êÝ,ß1¥4«Ÿ1ÚƒþöÛw1§Ô: Çߪsµö¾ð3¿òsþáý—šçìZõÔÖ¾*«ÞÎÒçÖ~<ü=¶Ïâ+‘å/¢Þµô¸µgÊÅ7V¼mÅÿÈÇ' YPÔ‹–^°òžx¿LàzËNÞjÕY¡¿ˆrß¿éœR\'Æ}Ož€Âï1ßvN)ö/[W†ëqÝüÅË¿,ŸŠöùæ)¥×b¼†ýÂõnŒ‡û˜ïz¯Ì?5Ós˜Ïì6P<ŸÆÚ¿|šRjÉËÖóH,ýŠ÷C;|÷”RäcÝî*޳ô~||÷¹”âsÿÎßóïû§{¦o—ø õˆUßbÕ/dû.Î)E=céUÔSÈ7/øœù‡ïú†»æ~uä?kÌËå_~ž8´ë#O@‘ï°~çõ.ê¥;@q¼1.½5§ãrÌ/¢>Á8ãnÔÓ¨0Ÿój ¨ÿ¬ú$´è¯âþI|>ÞëYþ§Ïþ¸÷¾ýÿÊô,î³Íêtæ”f~ÉœRËo~ô?õãÞî~GÖÞ‹9¥?¢^Åë-=mí˰êã­x=«¯€ï­xÀŠïÍ)E}…z#[gJéå_vÌg<ÿþ¥sJq|@~®ž‡û9Ѿ!E9E=ƒqæQÑß±ö“nwNSJ‘oѾ[ûWñzëü8l_¶ßuN)¶¯Çö¿äïü‚gÿ˽w<½æüÿý¿DÁ>ÿ¾Ã”^þ™ûí¬|€•Êö³µâü½Ua­Ãaþ õ¹¥_¶žG€òŸßœR|žå¿dq=PŒ›¬ýHVÜlå ³|´ÇÌ/]ZG¶øÄò‹Ño±ò6Öz;~~ΛÏ)Åþeu:產ýÀºîì¼Áè”Rk}3[—E ×[û•³ó âøc¼œíó†ß[u»Vk–gŠzdë~ˆ¬®ž·uŸŠµOÚˆ÷L=‡ãùøÏ{âÃÿîÅweãŠþ!Ž[ïA»¬úY«Ç屿ôÈg¿à?6[¯³ä1Ûç8¥¿·ì˜µ®„ë<(¯µÎÙÊ~ß[ùLÌßXþ¤u~ÂÖ|±eG­ºÉÒŸoÕYdõF@³ºã{œëüUŒÓožRŠq1Þãn\çAúÂOÿ þCŸÿó³|Ú ¬“Fý€ñ9îÂ~ÝŠõëXÏgí¿Àç½âœR7ìoV?ý9?œ¢ÿŠã…ÏG;þÊSJQN‘¯0Ÿ|÷”R´ÃŸâï-=yÿ‰”âóPnP¯¢Ÿ€~ ÈéU¼ô3ûú¯¿ûÇ?%k/è¥Ë¿L_m=ÙZÿBý˜É3Pk°uîCæßÅyÊ䨥//€fýŠþî{»yJ©•×Ãñ¿1¥4ó‡â|àxeó ïýAþÂïÿŠOÿ‰O}»ŸÈ®C»lÕ+˜ßÏ)µâSô[nL)Åy@;aÕÇXû ²:{ ¨­zTŒ«PßfõsJožRŠ¿¿1¥¿Ïž÷‡õ¸+}†yé×L)½}N)æ•0Ÿ‡v2«ÂýožRší Kéå_f¯^yN©éÿµöÇZëàf¾yN©•×·òx?+îD=„í}É?þœïxÇðéæ¾{«Áª_°ÖË¢Þ¹˜SjÖ£Íâe¸Ç-‹ïÎ)E½ƒë;¸®”í zè üG^öíŸþ¹]ŠíÆû¢?†óŠíÆõ}Ì ?…þ‘µ?ŸíÇþ¡Äþ­_·ü2Ôk·æ”fqÔ”Ò,ΛN­s ³üÀœR«Þî6PüïÿÈ·üïv뫾Ï<ÇŪSù»üËîƒö-Ë ÔòWP.ѱòŠ–Þ»ï‡4«…ûYùõÌÿZ¸îêz ' fý+ÐG>ù×õ}Ùç›÷ŸÏñ²ž»µþÇê—UÿfÕ©Xû¥q^±ž);·jJi–ߟSŠzøfñÏ¥øúû|½P3¯´•ž€žSzó”RKã¼`þç!ÛgÏÇöZçï ÿíEy5ë'Rzù—É›µŽ†vù½§”âzüûµê–¬8ób ÷C ¿ÇõwK¢¾Áç[ë”Öïq}Û‹ñ¶ï㦔bùÛóêSJñþ¸ïå ÓOç”fqÒœR´Sdë sJ­z÷ÌþL)µÖg³ýT§”fëÉ@ožRŠã‹z Ÿúú.Pœoô«­º†l½(¥—æy„¨'NÓ6jÕÁ µôÈÖu%k?å§à÷·Ï)E;Ñ9¥wNé­9¥V>ÞÊGXû­ý5VžØZ—äßü—ŸöQ?þfæ¾l«^#[ÿžN)ÍÖ÷âý­õA+Ïc­?ZçpYù+N¶ê|Œ:Cs_ú1Ùzà”RÔ_X_‚q®!ßc½ÌÍSJñ÷XxûœRܯ‘å…O)E½ˆùÒ'O)}zN)æ!1úúSJÑOÄý(8þXaÍæ_ïRzcJ)æ}0ŽÍö‘Ì)ÍÎušÙÇ)¥¨^ügí«?ô·½KæGázÖQŸ¦”¢_aùÉVþÖÚ_€ý$´WÖ>ƒ,߀îoùaF=ôåßóu£Ð^ë< «îÅØÿšÕ£Zõ?Yý Püåëã_9§ôå@a½Å¬7@¹Áu\ßÇøåõ"ê\'D=„çÞ?§ô5§”b¾ø±·ùò·œ?üïçï+?'ôò/³“È_YÝ&Pä?k]ßgü…òhù[Vh¶¾ópúü{z€šçÁ÷F­åÿ\þ™ç`\yó”RôïL)Åó€Z~–U×icaé“SJÁϺüËøü«yEýp÷Y O¤ÇϪ´òøýãðßüÎþÏçùˆsJŸ>¥ôþ³@ŸH)òþþÞœRü=ÆÃw¦”âû~qQoáyq¨7_'¥¨Ï²þžSŠûÑo¹ÿ\JQ/ß»“Rì/æžžRŠ÷ÇßÂs)Å÷¡¢Áñ@çë 'ƒÎ)E~xã³)ý¤9¥Ø?<§úÞœR|Þî…öa¼€ï=ü„;)Íö)ÂïñþØ_üíêÓϦô @qþp )êŠù¿7ÅùÇsIp=ÇÇã ”Woìæ?q>P^-}ò §”Þ›Súú'Rúq§”>õDJ±=¨o2ýrJ)ò7êc|>Ö' `þ<«ã|6¥8OŸSzçNJ±¿h§Ð/ÍòŸç”¾þ¹”¾aJ©uþÎ?¶ßúÛüƒùЧžMéiJ)ê{œ/´¿™>?¥ùí[ÖþSJqß4ÚŸÌ^M@O)}ý9¥¨ß²óÐæ”âøgöÚƒãò‡ò„ÏÇñÏ®èœRäWä?”‡O|.¥8ŸÈϨ/^uJ)Ö£?tgJ)êÌ£ ýAþÉâ»;)Eû–ÍÏœRÔo(ï8ß(hop~ž~.¥Ø?Ô8wžH)êK”ä\ç¸ólJßpN)æ±îÅulê×ûwRŠíÇñ|Õ9¥YÜ?¥Û‡ò€úŸ‡ß£<Þ™RŠýÁ|l6@ñy™>†çYöûƒúø.PœlÎ?Ʊ˜_Å<æ‘0¯…y'k ×snÍ)ÅëñyVÜŽõ,˜/¶êé³õ ˜—Ãõkÿ¶ÏzoæW°=V]ækÿðú»§‡SlÏ)¥x=êǬ~h¶?¨u–µ¿ÃªÅ<ß= Öï1χyÇÇoÿ‘øÆÿ·³qG»ƒùv‡¬>¨užæ«pœ²óáù¸.zó”R¼çåÑ¿ôŸÞìý¿ñKóõ0 ¨̺°SJ±>ÂZÏB}ƒãfÍ/~ó‚ñòúsX7p1§Ô:ýOôÿð~wO)Åë­}zh0¾Áþ ÿ†þ >o¬dóƒù\÷xËöÿÚÏý”_•åÙð\œ7´û8/¸Nz1§ópY==Ð;HÏ@ŸK©Õ^Ô7臣_Š÷Ã8/óóÎ)=M)ÍÎj½—óõ˜ß¶ì´å¡^±èMƒZõú¨ŸïE¿åìî)¥Ø>ä¬cÀ¸ãj”£[@±}/úàç¾î™ÿú^W4›/ Ùú3Pô»ñ{ÔÖzF¶þzJ)êƒl?8P\oÅ<)Öc=yN)®#bßâÇ.~Íë~øƒQÿ_þ-Õigçgbý)êc¬ïµÎ¿Âú_”ËSJÍ:1 ho­º5ìVωtJ©U¿o­£^Áö£@û÷‚?öS¾ý-Ο—ùÁÖ¾3ô“-ùÆ:¤»§”b^&ógÏ)µöÏ ½C;Žãˆ~†uê?ã\¡lÝíGæµÎñAÿ9[>§4ãó)¥æ¹?sJ1.½ó"È—[ë9±?è‡[záæ)¥Yç˪ŸEãü¬þhJiV÷ÔÒVºõ\˜¬>)ü×Õ­z0Kßdò Ôª‹Åë-½nåE¬ýofýWJ¯ì)òmV×uJ©uÞú ÿzçßðÞ_˜ÅuÖ},ýdé+ì¿5>˜·Dýk›få}ꫬ}ž—ÙóÞú×½òþ¾?û%fÝ<æë>èÍSJQïaý-®a?ßí0Ö/àóÐÇëq}Çãa¼>;GçœÒlýò”Rk? òþå×Qîò[ÊŸþžÿÝ>Gî‹ó‚íÄu|.Æch¿ñþw€fyÆ”.¿šÅñèÏ£Á¸)^ŸqŽK–ƒï­ý²V~Ûº?¶ßêR”¬+´ÞgaÕU[çc¼…ã…ñò-®ÏBžæòŒõ¯Ë¿LOb?~6PŒ#PÜ'Š×#}O /ú¾@ß (Þ¿Çûa\k=Ïú=^ó|ù—ë/Li·`¿ÞâC?åÿÑ›é¸O6þØ>ëzlçÍSJ³u½ èœRËOº1¥óO˜ß±ÖŸq_LVÏ=¥í ¶?Ë[ô]~ËÏø†·ýúŸsE³:pxÚ ´7?YõòY>kNé+N)Åüú%˜ïÂñÏêt¦”bêK¿éí>ë·}Ç·dùÜ?†þ®Ü?§4«ßœSŠy“¬Þ(Æ—~P|>ŽæY²õðsJ³õ¯)¥Ùþ¶SJñ~V=bvÎâ³)ÍòæsJ‘OÑa{ÐïÊä|zJ)Ê9Ö³á>œOü×3³ól ýøýÝSJQï \Ü<¥ãônÅçeã ïŸé™è”Rlo¶ßtNé ?üñŸóº¿ù§òóùà>7¦”âºeV÷1¥ôÞœR´7Ùóæ”šç #…~grûwûœRÔ·ho­ý€Ù>a –ýÁë³óˆ€Zõ Öó³uß9¥˜oÎÖñZëü8^V~ã+kì_ÌÆËZ¼1=œf磵ÎÍ䨵oŸ÷¿ŠG _—ù~W Vœˆóu!Ø_¬#Åöã>ë=hwnE;ukNéísJ‘1.Äï‘¢?ˆñJv? sJ­<Î>ßzžuþ‡u þåݪÇÂ|5ÚY¬ßÈÖ_N)ÅxýiË¡½Ãþ ¿ZûIñþYå”Ò»§”B^Ö<ÇæÞœRôC^1¥4[ß„çãøeçf>—R¬‹ßª_ÐÞd×Åï³s?"ÿ¢<œ€â÷¢þÇùAýŸí_žRŠãöç ã´wÈÏxü=ÆãÙ>†9¥V~ï÷Âw~›¼ò]ž6Ïʹί°ÖiqœQ!_fug@-?Çú=>õ æ-ðû{sJñ~YÝÓ³)E>0óÍ@³|0ÐÍï3A ×ãóÍó¶€ZëÎè7b^óŽ˜?¶ì:^ãÔZ?ÀñG=†ù ùõ$ê]sý¨UO›éõ)¥x½µaÝÏŠ3°½~øüµ·¼ùl¦ÿÍó‚ç”Þ<¥ôÆ”Òl_PðO.ÿ²<"ÚYô{0‚~2îWÃ:Uk>²º 9¥è'¼å›ÿy×wy$£è¿¡}Âç œXõ¸¾ŽíB ï‡y"köî)¥`Öþeë¨/¬ ¯æû•!¿´xn;òµY'õŒµï!«‡™Rjɵµî€~ŒµŽaÕ±ãúp–™Rš­ÿÎ)ÅõZüþþ9¥Øß;@Q/c¼žÕ™O)µê¬órÑï·Þ×y@ôsQa]R´ßè_¢£½˜SŠûéñþPo¸ädçT`þ ×îŸSŠ|hå%0îÇúv+.Gÿ ¯Çûy”Ë¿<ôÔò/­ùÆ|èÍË¿L_ÞšSŠç–¡ýB>Ä~dù øÞŠó­ü©µÞ‚ó…íÉò0@ý:W|Ÿ­k¦ôòïô‚ßùÿëÿ/šùC+þÉÎaŠú÷Ù¡ŸúÍòCÐOB¿íRÌW`ýæ»nŸSŠù”[|Þí^ûð<0üãclÏ›è?ûÊ/}Í¿Éúçš`žã<Çý-ÜŠ¿·ìˆun„µ_Ï©ÉøhVxN)òavNPl?΋unv¶þ3¥åí¶U×tcJ)®âø Ÿ‚úã|ô˲s§ôÖœR¨?¼²3Xïiœûsù—ÉU¶nŽt:®Gÿå,Û§:¥ôP«Žã «® ë#ñûl]ü”ROcÿ•™×Îü= ø{l_¦Ï§”¢]Á}ûè àý²ó¤Ï)EûˆûJñ\ Ëß±ö塜nõ#­¼>ùåPü}–Ÿ=§ÔšÔÛþ¦÷úèý_¼yj¶¯lJ©•ïÁç!_⸣ÜãúLæ§M@ç”b>è.Püýí9¥YÜ=§Ûû: ¨'ñ<|ÚM´oýŽ×ýW¿û/Ëä í:Þ7£ÐÓÃéM¤SJ³}¯SJq½ù Ç-Ûw ÔâÓ¬îhJ)Æ»ïòÏÿøc?ôMšÉúÖ¹‰¨çpÝóÙ9@‘²sžO)Åó„²÷ØÁó0NÉâ‡Ð9¥hGðþx'îkxý)¥Ø\yõ9¥ÙzÍœR´ÛÈ÷¸žƒñV¶ ù<«¯:¥ï—OõDJ1ŽÆùÊꀢ„ýµÖ+p_Ê1Æ+¸¿7󧔢Ÿ{gJ)Æá·æ„^þåížý¸yJ)úK¨oгì^¶?¨µN–Õñ-<÷’fþñœÒìüò9¥Ö:àÖõø  VÜ„ãaåÛñ{èÿå_¿ÝšÕ!ÂýðzkýÐÊkm¥OžRšùåSJÍûžRúª)¥˜oÂüžÛŽq^è)¥Ø?¤è—˜íSŠñ=ÆV\„×c|ŸÕãO)µòÏÖõÖ~¬ó±ü&ôw0?~ꉥü6úŨ÷ñ98/¨¯²}SJñþ>ýÓþÇýCÿÞ®Šù<ÔS8ÿ¯<§ùùë„Po"ÿ¢ÿ…þ òWÅþ¢?gÕÕZçådõ’@Ñ"XëØÖy7èl­C¶êõÍóv€ZçŸeùAx¾õ}–ç™SjÕ{XÏC}’OuJi–¯ŠùqÌ¿Âø^é“G?ã}~×;¿Ó'¡ü^þåïÍ…~eóýÀs[‘/­s™0?‡qæ¯P?âýÑßC?õaVç4§Ôòk,¿õêµlÝ(¶Ï<_)ôçí"Þ?{þœR°‹Ï×ùÌ ½üËòVÈOK÷Û˜·¼zžqÅâý3è­9¥÷€bü†ysŒÏo1îº4Ë·RŠþ,~cJ©u>ÈÁÕ¸¡þÀùE~¶ì òæ… Þþùº€”^þ™ëý†_wuÌc»ïŸSŠóiå鲺±9¥x+/ŸÕ­Åûgyz 8Ïoóì·üÚóá?ÝzŸ„¹ôÏŽzÖÚ?jíO·ö‹[ñj¶/(Ƹn†û}±ý' Öþâl}ú¹”uM—Ù:6ú-ÆzÉÕüâøà{º°½˜¿ü„'zÕ¾‹9¡WÏÜÌ‹dç=¤ôòÏÔ'×Ã̺YÐOÙ÷o_<‡ïPÌÓ]ûßc~ØZ×Ã|&êKÌÿ£|ãófõë@Q¯?öš×¼Ç'¿ðgfïûÃs‡³óö攢ŽzѪc°Ög2:¥åÐò÷¬üj'Î)µö à÷™^:¥ýOô÷q~¬º~|^æON§¨·/æ”fû" ýV\‹í3üª,~xýœÒ{@1߃yšO8¥ÇÏÿÂútìïOýw_øÍ_ûÖ¿9óËpoVÏ Ô¨ã4ë›1ï…rö×5²}ÓsJ³ûM)Å|öõ!¶ÇªSÆõ,lú—ø{ÌoaýÚy¤–ÿ‚ùSÔÏÖ|\ …öãx[õäÙ>ö)¥Ø^ä/«¾¯‹ï¸øÖŸþ/þx¦2`N©µþdùy§)¥Ùz=Pì~ÿØïø¬·¹øèÎæù¿ÇùÊÎ ˜zù—Ÿ›?'t)¿ü»ú~!N[Œç­ýqV%ËóÌ)½}N)Æß¨/­º1Ì_c>ïue˜_°ê®ñ~¸N€ñÔe¿/)öíÖÜ<¥í>çý6´Vœò¼5?m=õ?æk³<ÛœR´oV]b¶OèÖý†Èÿø|+¯bÆßÖþ^l/ê=K¯^µê ðz¬¾hJ)êq´xÿlŸÊœR«^õ5Úc§ï¤ŸÕq4óŸ& 3PøŸŸQ¼?Pk<ð{¬×ÂõA¤èoáz$Ôeq<òæ›¶®‡Y÷Ãü³µ~•ƒ ÔlßœRë*|¶?Ûß?§ôæ)¥Ù~“)¥x?”ßl ®·ÎEÊôÍ”Rl/ú·eþ P|þ (æ¬8×ÊgëË@q~0O’­Â÷Y~(ÚOìÏýsJ±=OµêÆ1²ìK¶?uN©¥?O@Ñ~XöÏÒwOáó2} ÷ËÖí j­ mÝÿƒñÇû¦ôò/Ó»Ðïìû}ÙÁã?ú2+¿Š+–Ö+0ÿ‘é×”^ýÎÊ[bo–¯œSšÕN)½7§4Û§uJi¶ÿè”ÒÌšíÛ›SŠuFx‹Ï,¿¿7ÏÍ5hv^â”Ò}Û?ú˜'§2Ï?±(Æ[(ÿXôñýg?ìk^õ£Ó›þÏçÈö§5Öë3½“å€füý¶ìbVoÔª@=eœ íƒÉò½@­zÜì{h¯UW–å‹Òç?ŸŠù…¥ú ËO³Úg¬›÷C~°ö×du[SJ1_ž}N©UÇgå­s¬¬ú+/íÏòšÐ>ËÙz> ÈûåŸyŽA¶ÔÚ—h½oçëÑ®ezgz8Íò+@±Hñ~Øž¬Íê ?V|gù‡˜?ÇxþPv> Pü½•?1ó 3Ð)¥è'àó²x ¨yÞ PÌç ÿÜ=¥ÔЇ²ú! ÖúÞŸzà…¯úöÏ|í ~"¯{ûZywܧ‰ûðð~¸„ó„úÑÊcྋËþ_R<¿ä ç”âz~zðé'RŠq&æ1ÐÿÏÎÍ€ö¾è§¿Óùu¿ê#³çâù–ø^$”g\Ìøé9¥VÝ*êCä K¿Zç¥XçƒX~~jOeÅ Ø>Ëï´ìþR| ãx…ãýÐ>>þfæÙñí›ç½"Íö-Í ]Œ;À¯»jg¶n5¥óœØ+>@;Ší¿1¥ÔÚÿýÈçýÁÏý¥ôÁÙsP_[u<¨¿ñú;SJ·®ÇãõV=ê}kú•¨·­:+ÿhÚ{ Yæ”Zöú±?ñyïñ¾ð[²ûd~RxîŸG=‚y.+¯tcJ)êKÏdï šSj틱ê¡,?k|cÅW¨g_ò“ßø¶7^ü÷ÌzÓôpúþ@q^2yŠ|‘­â}æ”Zõ7 u§fžüÆË?ûÜN¼PËïCyÇúxËÏòï@­¼ ò5îÆõôo²ú V]õSJñþ—û¬/)ú÷¸~‚y[¤Ö>s«žŸŸ7§÷ÏÜ?§4‹¿âúêÝSJñü‡'Ï)Åö¼aJ)ÞçÆ÷ò/«³Áßa>üŸ,¾ÁsKÐäËÞòÓ¿ëË_™Ÿ/뇬z3NK)þeòóæÿ+¿úßÿŽÌýæ9¥ÈçV}²QWfÖñ ÞD¹¼°è”R´ç§ (ôí;úApýå_^ïï›Ù 8N¨_¬:os?„úva=`qßß  ¸Ïã$Œ³Ð^ }ÄûÝ=¥ó¸NúÔ9¥È8ÿV>í¯•/Äûeö¨U_€ò…÷G=x(Ö‡âüÜ›Sz÷”R¬GE½z (Ž®?a\vóæ)¥È/XïŽv÷ïâóÑŸÈê7Ï)ÍÖ…¦”¢¾8ºˆy l?î/Æñ»ý”G¬çÅõì¿ ?gçžSz(®‡dûj€fëVÓÃ)Îß  ÷æ”fçÍò©' O$ôòϬóÁ~_µì0ž_…y"ÔcÖ>eœ÷üï?öƒ¯ûšß’é|žo‡ûq¾³õ±)¥·Ï)E~zñ_ÿõ¿ãûÿÌGdþ[æÇ@ÿQO£ßüÂñ)_ñ¿ìåæ¾3”7¼þéçRŠãgø?WvÙZ‡´â@Ëo‚ºÉË¿¼.¨å?â¸b\dÕßYõȸÞë!÷æ”âó-ûlÅÏÙzÿœR+¯håW.€þÂâ{ÑîEù¶ö§fñ•Ñ/sßÅœR¼vʜҭëFV}“õû,¯ÔªsÏêAàþè'eû_á÷[ß|ó”R+ÎB¿.«s˜SŠ~ÃOý·ïÿªÿß'ýxf—ŒúI“fë¼sJqž1þA>½{J©•×ÎêÔæ”ZþÓKïÿûRœß¥÷ \þåz%¥Ïç…šëC@ñzKn­}çh—ïžRjíŸEþ±òíV>ÚòQ.ñ{«¾ÛoÙ7kŸ>úOw& ç”B~øòÏôãqœÑ¯µì"Ê!þÞZÇÇûg~ûœRÌ7býDÔ×÷àz2~y‘ìùsJñýÁ—c܇ýÃú\«Î õ*ö'èŸQÿ¸ø~²[sJqJV·|'¥wO)¾¹üËžcí+½yJ)æAp¼Þ8=œâøçË=_w=§ùçãu¬£Â~¬õÑ2ê_/ÿÌui«nÖª#¶ö³¢Þ²ö dõ9@1Ÿ„úÝòkQÿgç§žRŠß[íµê¤­s‘/ïŸzùwÅo£Þ¹ õØM XGs¨UÇmž3 ×£^³îoí?ÄßgûᦔZñœÅ?™ÝšÕÓA{¬ý£ÖþÀ̃û[uåf=ôÏÊKlÍïeþ£E§‡Ó¬ ~¿uü=ƒbœ÷ø[ýÊOüŒ?ó9ßÀuOŸRŠëЏN„y7ÌcYñö^ÒSJ1~ÄqÆõrô>ö tN)úÅYÝÞJ)¾G×ÙPŸº“R|oGVôÞs)ÅñD9EÿçÌ?5¥ùý.|oö×òßQ³øá¹”fv Ú¿·ÖYñzËî[ùk_ŠU¯†~1ö÷?ã›_üå?üÛ³øû ϦãŒo3:¥û…u+˜¯·ê °_Öú)ê\/Áz»÷ŠãnÕ!µòÜ¿¿ü3ó&V]–7Çëç”â÷8®x¿lüüpŠ¿ÏÖ‹€^öû’‚Ý~þüÐ9¥8ÞØì'ž¿b­[Yë\µÖû³}°@­¼µ‘ºü3×AÌ<Pàksß;Ž+Üïù÷ZÅxÇÚÿ`Å/ã¾Ì`>ÌjßK~Î;¼Ù_ÿæß‘Ÿ3—ÅuSJ³u¾)¥¸ŽqþÍSJÑßËòš@³õ sJ?ñ”Ò}׋þú·¼Ïgæ~âéáýäC”§Ì¯ŸSjÅV> Û' Ôª‡EûléiKoZóbÅY½2Üýdôs­û£ßmí÷@ÿ"ËßÏ)EùþbNiVo?§¿Gz÷”R¼¿Uï…vÇ?‹“àû,˜SŠÏÃzŸûÐSJñyXmÝïi ø½ÞŠ~:Þïî)¥ÙxŸRŠócí§²öcá÷ÈOxä'üþ§”¾þœR¬§ËêõÎ)½{J)® cýæùñ÷(ÏXOŽõs;¥ôö9¥Y½PÜׇýÏú×gõ‹sJÑNc¬|æSqí~¶Nô±ßòGÞëY§`^×'²qŠu±·Î)Å}X™­Å~½rN)ÎK–9¥ôžþüïýà?ð©™_„þ@¦/€¢>»3¥tk܎ףüa ó͘G}ŠãŠy§GÿÔoúìøÈÊüôs‘ïqœÏñ~¸¯éÆ”R¼Ÿ¥W­õâ¬ÎeN)Þë´3;}Né½9¥hGðyXχuâØ_|ÞÝSJïL)ÅñËüb|þ9¥YN)ŸÛcÕSeûÈ Ö¾ sP+ŽÇç[y,ä'˯ËÖ)€ZõQ˜‡Ãý»H­u†,>jÕïšy V]$¶×ªO³¨•Éü0 Øžwÿ3ïû=ÿòýÞÜì—µÞ…võ;R䃛§”¢]¾}NéÓsJÑÿÊìÛ9¥h×ÑB»œÕ}å9¥/ùÏŸòöïÿ¾ßž¿/vN)>å×q1NÃûá÷ÈÿÆþ¸ŒÂõÏŸ?§ÔÊçeçÒEûnÕ÷Âý/ÿÌuJÌk "_¼(úå_`ž÷Kb^Õ:¯×—0ïƒö,“¸ï‡ë÷€¢‰y”3äg¬ÿÂõ>´o™?íÇö¢ƒ¿Ç<Âã?ôe_öN_õa™^ÄójS7Ëϰê¤Q_guð½µ_ íåïã¼bý/Êþþ5SJoÍüŠÿ?{ÿ÷ë:×ûßgelæsÚd“²IÂ"ÛÊÊ鋤T×5†¹gÎk3æ˜s"ITj­I%)e±D©¡¨$¥HTø¢T•HÉEi¡ÒŽßïw/ßk>>ÏÏãºÞ}o÷ýxÜÜç?¯Ççù=Ïã<ÎãøŸíqM•-ÏpYÙöE tž¦}=R=šßÓq™òq¼ŸóÂëí_ßßúÎWÝ€­}ã`ú~)þ”üæê=3LúÍ~û8ñÿmcý@ØûízÞsÿ¼À©2åóÜøŽOzñ|üƒÑ¯=CûÅõÑqªœJrÀëwF¥ã¬Ù/såÖT™Ö‹Ë¡ýlRÒÔÇÔ;õ'8>d[ÿ ëmZõ ÛÞDõýWMÏ™*“ßF¿žr(ÉMå¼ý—öS¢}{óÏq¤Ò~Øo?¸Í¹ÒuÁïÕê… ÷ÓÛò<—•>ß¼´Ï¦ö‚Ô`?º.i(RAóOð|ã<êÏ)Ϧí 2 ×Û_)/Æß+ï’—ê>“ÿd–´ßùç|nõ»ËÊ–Ç9f‹ M•©ÿÓýS¾Ø~vd’KÎSÏ+÷l÷ºu‹3LùÄ~‡íŽÊýì|ï“ü¶Ó|Wç£û’™‡Öü½Sá꘯w››}ÁÞr‹ÖÎgå‹ör«‹œ*Û¾§Ð秸¹×¯[wìüIò¡ù{aš/®§©NS}ð¬÷þÝûþþÖ_ãȽÕÑ÷ý€éù®· è¼HyóÉÎr½V?Ô/êû=r«’~[ûÖ›ó~ízÇcZZC®_-Nª^Ðâ(Ðq­ÿﬦ&=&É9dzþKçÊTïàwOzŒíñ|“ã¼o³?a²?›ýØä4§?ÈyØô˜òIÒ~:Îõž´N(6¦ÊQi:ï.ZVš_b<Âçi‡ÆsŽ/!×kjçj'j·èwWïÔÏkœƒýšVǾr1­ÃÉÿÕÖuè|9üò×|ûþê)}€©2Åk’¾⛫#î“â9)®éù‹aÛh‚£Ò¼šQiû§.F¥ýäº×übÐõ«Ù•£2ÙÕ-N “Þ—ô:ïz°n\YùÜüPÇ*õÓ8ÞÌ›QHù_ÊŸgûŽC×ói}Þ¹÷øãW^þ¸/lrÔqÝêðU:ÎÓºÛöÏ™*Sݪçƒ_«ÇaúûRþÞ÷1>¸>ÏþÚ¾OÊÇÓìï}¿SP½ ÙSŽó´ï]òClL•É¿¨}ÝÆ‡œ*õŸÛ?)®áûŸ}ßýû»¼ãË{¾ýéÊd/ØÎÖ£2î0U6»¶:– Εæ«oá—_Í¿g»Ò| ûO¤ý5âþÑûì_²:ö­_ò{Ƽ•©rgTú{×oå~rý®‡Þß뽿öœóP¹×ò$¡ë»çw§JûO¹åó}?ÛŸô?õã¦wŒÊ¦?M•É/©¾êï“ýŸâ ¶·µªLñç¶ßó¨tOû±¥|ªæ_•­Î\N•)6Õg%Oò£&ýÖñžüØæc$ÿÉÚ>ëä“þŸÚŸì¯Ƹ luœ+w—•ú=­?1/NûÿIJrc‚£ÒõòÄ\¹3*=¿ ïÊsýÊ[óNM•Ú3¶Oý@û8íÏ£Þm>­ïkÃÆTyý§ßøŸý÷O›oþƒO¾ÿ‡íïÛ÷ô÷ÛÐõÄzãS¥z‹ß[»ªí=Wú>ê­þÞùê>g½ä;núÜ÷¸Ù3i7¿c{O®wžªŸ)W+:Ží7Ûož›íµ}é}]§ZëTÙö!ó}§Êä§JyÄÞ?Õ·:¦¹²Õ›Jûç¼[}ßwÿÜW¼¹×¹sõƒ”' ~Öòç`ó‡r^H[ÿÂý”Ÿ‡·ïô]¿ýø—69Ñü`£R½ÀýmZþ´Ÿ’?@½¨ùõå¨ô»5»kªLþ‘æ?–SeÒ£2Ù)~gÏKõœ·Jþn¯¿lyÑŽdç;¾\ç/Í“!ÉÏ·ù1*›¿nM•Í?·¬LyÏmꩲí—Áû¸Ø?íï)N•°­W°å/N•)Ÿ íC9U¶üòð~éûoAõ åïg|öÅzúw~â]Mn8¯SÝ¢ëpò£&?cø.«Ãvìç_Ú»~]yìyçòˆ¿ç`?îûw$ï=îµ×õ0å8ÞRÜKyꮺ>*Û¾Ç*Ó¸IqÉ–G¸nü´ù)¸ß6}}*ÜûÞÚÇGe³“\LûÙ‡:ç.ï¹Á{¿ùWz~7ô¾Mþ@ç[‹S&ýŽñ¸¯¿¹åYO•ÚI¾g”ãSeòïù|íá͹R{[v²+}ãX®sæWÙ~÷­jû¤ÊfoCû×þIqK¯OzAò7xþÐ÷þÒ³ßúÇßÖôÙæw*•§)>èwJûºµ¸ôyö£qpõqã")_¾å@ç³y"žOëOÊ+M¿O÷óübT¦õ)ÕímW®ŽèïOõ‚É.QΚ_•â£î[÷û L~¤´¯DêÇÅ•ËJ×yãg¶×q}tqäÎ1=ºÉQ‰|o}jû¦ÌpªÔßë÷iñÈ3•)ï\9Ñê´F¥zƒþg×/ã Æ#Ý÷Èü#ý–ú«ì¯T¼=Wšæ¾×Æ;|þÖTi{Ì6¾¢ž3Ãv~T>|ªLùÐÞ?Ù Iî‡xÙµûÔV®Žîß*ƒß»?ïµwÿ}ìÆ½óûéñÈ™½ëõ“´ýÐêób}¿×;?ìŸÝeåÆTéýOž©T~&?Õö\™Ú»;*C]V›ï-ž S½<ãcuÄ}J“=ãso½éyßúëçÆúûh_@ßWù»5UÚ¿Æ+]?Ò~-¯ªl~¬©2æ½Ê­¹Òç»>«Çºþ½«Åÿ_Zb–z²ò0ù pž¦íM~zå9vÎê¸V®Ò¾#_úgßüs/y_{nª'Öž²Ð~IõàÊ1¯O~IõõÜ §Ê¶'T¡n¡ý^=ÀëÍc°~ßëÝ¡éEs¥y‰êAÉQyåTiÔ‰e¥ë„ýaýœz£y$~/ã…-Þ6W*•CMNÂT×›ò°dòï§ý¯B>fó{¨7:ÞÎ{×ûžøîï9§û§¦ƒ©¿)úY§Ê®›µ•é÷úÕGÊCÇë¯úòÝóîseœÏ÷3oßõÏë]/µS>€×û<Ûëïý;;Ê…Tèýœg)Ðûù½ô‡ú}ÔoµOSþjª÷Y·~©ùÓÓýùýÙÏõ ñ¨öýs'8*­ËiûAM•Ê7©ÞØüB\ßâù°ùáçÊ/…i_+yö¿Þæ±7}ó bÝPŠkë¯r|*owF¥ö©únÊWžé¿wÐ?ÂüßÓ#ͻۜ WGßw Zÿб÷<¯Óo¥Üð;©„yº×þTß—Ö¯¦Oø<ΗŽyVÐyç{¦úî$ßÒzšü?mŸ ßúûd¯žõê·^ç©÷ù<×Õ‘â{×ù^’vìÓ¿:öw¦õrÃ>m½I÷?òœg}å·|û©ž7ØêÉ8ŸüdÚåÊÑT×àúÖê€U*'w—•>Ï÷QަõŸ«zÅ5ðª¹Òþó~)ÿÂyô|ÛŸgT¦ú´T_ؾo ¿WïLþ‚–W0WÆúNÚÓò+àÆT©Þ©|Qßñ÷m>A÷kJúN{Ÿ©òÐËïøüŸýâ߈y#©_Ô‡lÇ©e¥ë™úÎUS¥ú~«£]Vê÷HywÎ ëRžgª—rž¦z ¤?¯Ý7q†S¥z%òdut93U¦¸~zßDõŨt½ky ´¯å ŽJǯú²zhók-áTy|Y©žª}àüRÎî÷ýí7ׯ6®¦J¿›ã8Åùœ Øêê8ßôœéÓ£þn×ýÛ'çÊ´¯•ÏsÞ¤zãÛ3•;•{ßý.ð‘g*Ó|qÜx=ù¯í=ˆ_¬ŽvŸ”ïã< û\û÷`Þ÷8lùf0é­;P=Ôq²_Ü:Õ¥¼´IÓ¡rôðcß|Íøèô¿s±¬¼ûT¸÷>)ïH9©¾Ÿò[õ£(WÕC’«ÕKÀ©2íïòPOmAÏ7ýq®´ÿšŸhTºÎé'rݳî6層<©þìø4N®üV/Ùž+‡úñ[ìš÷÷}]’Ÿ(é…)ÿQúû¶oßTÙâg´w¿¼ ô„ýü {×ß Þ=ÐqkœYyï:Ÿüy¶Çü€{AÏ'êÿÓ/b{}ž¿·îï ½Ÿ¿Ou¸Žål³Ë§J×Wàù®¿­~pTz}Z¿}¿¤'=6Õu&®‡nñ5hûÕËÜÿ¡Å—pT69Ï:öKwüÐÆ ¢ŸÙóÉï™ì¯oûŒJÆáêˆuh­ŽqLítïç÷ؘ*Õ“š} ƒ³÷ž›s¥¿Ó¯“ÆÑ§™'ǽt^›¯£Ÿi#°é§Pý*­—ñýyŸO·^Îë‡~ß…S¥úøöV¥ú¸÷Ó.òzó½ÜçD?‹ñmý8Æ)]·ÿü¡o=þ…—õ¿ëÍëR/oydËJ×»öݦƒ™ä¦ò¤Åç ¿Ÿ¡úFò·5¿Ñ¨Lu¡)Ÿ5å«úû4N³ãZ;DýÅ|’´ÿ–úŠõü~uôýN*÷®sž™«bA?±ëýEËJë“.•æ)º~mM•úG_Î{×;÷jú&ä{¬Ž6ÏW[§+Ûþ#Ðïn?kŸ'yÉz³×î´_¶ùÆ3TŸó¼ö‰ö‹òÂßË1.i?nL•Êuç³ëöbTz¿Vÿ:*õ»´:Ñ©Òû»îµý Ïs>™|ö[Ÿü·>ëOm÷êhã<ùͽþæ¯yǯþóå™÷q*}/ÇÁ¡Ç}Û·ÿÀsÿ5ÖG*ŸZ]ú¨œ§Ê¤‡jÏ9~üÞþ~ê¯Øœ+ÑöüÜÎë–ç£~9U2¯öݯ_}Á÷w=³]úo’ß¶å%@¿ïÉßcX¾×~‡eïzåÜb^[77*“¿©qT6yÊyÚý†ëúi=oH»ÏÃó¬+HÏoú'\ŒÊy:˜m?ãp>½¯×«zýÌÞOÿ¡ýŸêR]¿ÿì}ë{üó7º6_ 6ÿLþ¾¤Ÿ¸n(ÿ]ÿýÉî¶íõ£göù-Ž6UjŸ¥|‰Vo1*[¾Ïóû/Fáêèv&ïÕü<×v…qöŸŽßª7${ÊñæýÚþ0rªT÷½Ó¾j©~³ÕÇú^SeÚ_Aú]c]Lï·9Wºž'}U{Ìþµ?Îúý·ÿÈÉËr|[?‹÷ñ½iŸõfÇ]óN•ÛPû°ÅU:R^÷·=iZ÷ ní•îÓ ¬ý+ÝÂuÕq—æí¢ruì›§}ÎÝù1ûøKãuôÓêøÏþý…ÿì¿÷ËO¿ö|å¾ùëi¿ƒfoÏ•®Ï!o)î?°=érzæO<軿á–íï‡p<ÙŽæWš+íç‹ò(ØWýïA¿Ã)¨]Ööwæ÷ʯԾ°OC‹ñ{õ0ûG;ïè¯ó7yàhþÂT/˜ö3HúUÌ{€Žo¯ÿ±í?³¬Lñf¿³úkÛw™ë]‡œO)žâ;£Ò8¡×;ß·þ].ÇQ«‡Ûª´®ß:û­­Jó¤}¾t¿z×!ã`[S¥ß§=†ËJüQoHõ„öÏÎéJÇ—ý‘ÆÃö\™æ“ÏSO0ž‘âÞ¯­?[•ê5ÎgŸgÀ¿e{·àö\iœ³Ã9¯_Ðö:ÞvF¥û)Zÿ.+¯¾¯íIßßùÔêæÊ¶ßزҺVå‘zºïç:º•Mo¼õgóû·Úhïi^µ~›dë§ÐO¨ýãó¯ûð/ýÉ7\}“˜l^€ýåxp~io«§§ß\VjnΕ­‹ûûýSú‘ýÑ=ç­ÿÞîÛòF¥í:>*ÕÒ>RŽsåæ9ùýO|Ó]?ÑÆÅtÙÉŽÞž+“Øü3ÓÁÜ‚É_²nþ@ò7¦:Öv½Ïã|Ë{‚­=´7åÿé?Ñ;1*­‹Õ®1¢í³èør¾û<Ûg¼Òó)o§åÙ-+7çJïŸöoMu+)_%ÕÇy~1*×ÝW#åߦ:Ö¶Ý\é:¢þ©œTÞ„ºß=?ï±:âß}IþжɨlGbªlñ h]‚ýáý\/Û>j0ÕÁ¤ý!]G|Ÿôw|m?ßQ™ò“½Ôâs£ûvu´y–êºÔó•#~‡ ¨Þ¢§ùÅ¡ßÕq踸f®4ê¬[¾á%/½åš~Õôï­ÊÕ~ß+¶|.h¿µ:¦­Jo¿9?¬»±Ÿ)ÏÕüM×'ýÔî“g?»~µü59Wºþš/ºn½±ùy~Oýè¾ßºlû¡Ãäwõûho5ýº/^ú{iŸJå©ö¤rÃ8‰Ïoû(AŸ¯~ÓÖÞÇö4{kªLûYÉ¶ŽŽÊ¶Lr-éó)>Ùâ¿\ßî;U¦|Ÿ·î¾#mÝ™*[Ôöíûw¹e[ofÈõöC[o`«ó‚¡ž¦‘<ºÕÑä%y‹{ý¡ßòÐa²¿Õ#WÚç­ŽlT¶:o˜âð>O=.ÅŸl_wG}ë5_zîCã>Ú­>6û™~°Ÿýnú=ôg¦x…þ;ýd[PýrgT¶ü8CÏ·ü1èû;/ýÎIž%û2Õ'¤}¤ýíyÇa:¯ÙÏ>T¾5;oTþŽG\ó5WûXíÌ…{Ïó=§i„«£é›È½ëø®{íòû)·š¾¨¿¥ÕQM•)ßÏï;ËQ™üÞ)/Ößú;Î+wS]ÏKõUÆ'S¿÷OúW«?•~¯¹ruÄQ¹ïß6ïÂóóTÙ®Ÿ*Õ{¼þF_uõ÷_øƒmñŸk<Þç´øï\麑ò7½¿ísü¡O79¾U¹:š_Ïõbݺ Û%õ‹ÇõeTz}ZŸÓþ‹QÙì@˜ä³<ôð»üé=~ý}ß)Øâ-¶ úí÷Ïñùê%‡?ñeOzò;ÿG³K6&8*õ»G·©.´Õ%M•~û)íüYiüÄ¿µsT×õ|ËûŸ*[ý×ÛŸô÷êhzÛ~û>¥zºuýÖÉ?Üö5˜*[ÿq>íß­•ò96`ªqOþ7ÇëΨtýs?å ´x9lñÚ©R9ÒÚS¾rò—&rÈù”ö˜aŠ%?Pú>?yßß&ÿpò—lŸ©ô}Ò|Mã5éUôo³#ogÝåk_yݾ¼×Bçù ˜ò”S½qÓ/y¾~bç•yžæQzÞ¸îÃçʦ/@õ£Û=êúÿ~·×~uÜx{®ô|ÊOó¼ù¾Ö›š¯`>©~ZóYcªwùZ>ô;{?íMç£ù¬-r®lþîo~ñEÐ| Ç‘ëúN³_G¥z˜ù¶wž*ÝJ¦ý¤\£°Éý/s¥ùÎÚa柫Ç_9Wš/m¼J;éâ¹Òy¹¬Tnyý?ü·[yc”Û ØìŸ©Òq×ì§©Òçk¯:ï”­Žê7ôþúí\÷|^ËÏZVnΕÊ-ãÎÛïyç½þñ”‡ož¿ñ(ûS9ªÝÂ÷Þ³ã”ÏêãÚȧÕÑ×eeÛ¯gT¶8ã«Ô¯æxwži÷잆Ç*Ûúû©­Ž¦_ø>ÊIû—u4îGDûþ³ûµçêçÒþW·ŽÞõÊõI{Mª&¦ß{Þö{Þö{^{#]ï¾÷ª\íºð»vÞý ü.~Ÿúq†Ú=þ¾ÕQÍ•×}Ê-?ú¡Ý¿í7t ÔþuÝJûÊ©o¶|è¼×>¿þmz솿ø9mÿ7å¥û¸4àTiÞMÊ3R¹¾iÿ¸~«©Wy?×·fʶÈT™òæ]_’/ù—Û>U£rcªÔîIuÍÚ)úaZØTéúëýS¼Ãþmû<̕΃”Oa]µó.Õua7î­?ÆÇüÝÖ²Ò|&ýê±GÿõGÿñQïýûX÷x úœT÷–òæB~Äêèþ>˜ê=W÷€®ÉžtHöæ¸pªlràØÁôú#O½ñã·o~ïö^iNïÑü¼0Åÿ<ï8Oú+Œy¡êuêûú¡<ï¸;ëK¦ÿúêÙiãZ»Ây’öïp½uŸEû=ùﯚ+=¿=W¦ýµì×+a«×•[Se«§åúX_ S}WÊ«Ò.Kqî”'þéæ}5dxÇ£þ¸Õïê½ÇŽÇ–Ó~F)Ocݼ€´N·|(˜žo^Eê¹nG‹×ÂoS/‹ñ`˜âm)þµnžtª‹qã}<š¿ÛùÖö³˜ Ûº£ÎûëOÖOçïÍãðzýúUR^¶çã`¶¸ÖT™òÌ“}éý7çʕʗ”/îy×iõÃ0ù“’|hvLû?xÞõnÝ<¤¶lò–÷;ôá Ÿÿ×Ïø»^wm×5[•ökë7èºÖòÁæÊ“ËʦW@ûùÊc•W®4®îw¾r«²ÕñŽJõãJi çÕΙʔÒüÄÜ/­ûÛseÊMuqIoHy+)ÿßñ™ê[žôúTçæ]óÛAíyû¯å©@¯?ëYËû|øœOúÃêˆz4þd{´»ü>®ÃGþËíorxyǶ¾ûÝ[¼}TÇ4îcü|cªT^·¸Ó¨T¿Üœ+#÷VÇž¿ÉçëO^½çŠ­N]ŽJõmäö^;R¿·ù[Ÿ»:úß•¾ïî2p®Ôï›ì·ä÷°?mï~ýubY¸:šþh¾‚ë ãÕ8EËŸê“©ž·}gè:›ì/íýüóTyÖ¯þÙÆ¹çœ×~wwh|I=õ˜â(®ÿi¿ƒäJ÷K~¯ß‚©îÅùë¸Û˜ WG“7¶Kÿ«~:¿Ó9_úç¯ÿøöV“›ô×µþw¨ÿܼ¯÷¼ùÁ^rTêoKq ãÌ•Î?óÓßê±<]©<ã;¯ŽfçÙîLã{]?[Ê;M~¢gÕîVhy‹s¥ñDõV¸¬<[}ñ\éwݘ*[Þî8˜Æ™ZžÎ¨´^Eù£~–ö³iòëÕ£Ò~;ðð ¾ò7¿õ_Ýå"ÏñwmßI;ü®É.ñ÷­>úû”ÿÝêÆaªÛnãeZg]ñ½ûÏ~s}?ú¨´}Në®W$¿w‹gÂÇjöæT™êxœ¿©=­Ž:.Sý~гWG¿ÀVß=U¶ýt¹ŸzIzïä?kvút0Í+X 8U&wª÷òþ)/6Õ×Äú0ߦz¨t^ýÊïÓÖèxpÝ>ûêW¼úWÿðÞgu´çiJóPÌ»ô{™7±5U¶}Í`ÊKjy œ·=q=[“Ê™¶ÿβrž*ÍSð¼öA²·µS”Ãʹ#ßûŒ_ýë;õ¿Ç“ö‰höϵ_®ÿ?¿ç¼»~Öë[¼+ÑþKyû1/®ëGU¾¤}X’_¾åÃ?oûGÀTוêÀSþ‚ãÄû[ßÑêØ–•ÚµSeû{s§ [üÒõKý÷üwž÷‰›~ýsZžjòƒ¥}:’>£œrÝu1ÿ7Å|žßÍuÄqÕêâ`Û‡>b®tœ´xÖT™ò@v—•®ãÆAç­NvT¶u¦øLÛgd«ÒyîõÊ}Ûo{’^åßQô¼ùs>?Ýß|sû?íC#Õ“7Ge[¯ rÍøg¨Çh‡Ôñèó±¬lr&½½éñÓÁt~;>_)o¨ÅÏàLëfЦu|1*ãï¡ó3ù ì¯ôw;R>ºò.åy$ÿvŠ'{ÝöŸ{ì~ôÃÿþ3±~ÙqÙâÖ¾ô÷¶óÞSe’ÓÊ}ûÝómßó3§Jï:Öæ9ŒûÁ6®$¿?|³ÿ~Í%×<*ú#S^¯òD}ÅõÂõ$éÉ©>AÿqÊ+oya£pu4û+ý½ã¼wß®r/.Ãûî]Ÿò(Ð+÷îç÷2ΫüNù ˜êYÔg½Ÿ×ÛžT‡`¿(hïêhzÈbþ¿ßš*µ =¯Ýf½ýãûê7ÐÔô®÷¼÷OyºÎÛëÝéG¾éo¾MÜo¼ÅF¥r;åϧó~WÇ¡ßÕø¬z‡þA×Kõî–Ï9Uª—7½*'0æ©M•¡®«×­O•êOöÇ ûö§þÍo<¼××ÁwKue)oG=®éÐïîó“>ÛÖ{¨ŸL?sËãSeÒsmoò£EûÍûCû£Õéð{ß?µ7éñ1϶ï SÞZÊOmç¡ï»O]D[ï›> “'Ù™ ØüÅÐ<Ï”?ïy×Ñ–;UzÞ|ï§¼Ou…ö§þ\×Ù$·¼_ª÷Hvõºrký}u´¼”j~ ˜ä‚ß¿ýÂQ©ßÌöz>Ù?~ÏoÀë¿äþÇÿõçÅú‚”×j?:nS¾_Ë?š+·á&t‹d/]÷Žõ²W¼÷Ÿúþ‹\‡ÜÚ³ç’_ÅyaÜ;fuÄxòD¹ÓºÜün°ÅU ã=åµ|¿©2éIOky}0Åe—öï9ïùàÕûŸï‹í¸Þw¾ç#÷øÇ«Zú©v»vŒñwǽë—ç=þG_øúû¾­3ýC-^$;Áïæ¸t>'¿`ò··ºƒe¥ñ ó:Œ¯»n•[Se‹—Ì•-j®ô}[~%×{ß×絿ãÛyŸ7UêWMõ\Ú-ïpT†úŒýäôêˆr3Åáw þ‡¯KûAé÷Jñ=Ÿ¯ÄyoûÚý ×{?Û×ü3¡½ÞßþIçƒmuÄý/R¾¨ïu‹¯~ù9ï»ÃvÜ Ù——M•öOZ×S¾gº¾íC0ÌäKþŠ”Ÿ‘öéhuOx÷ýÛ‡¿³íëw|Yy)ÔþQN½É+oÿïÿýwb<$Õ¥é~·©2ù%ÇóT¹O~ì~ñަӾöû èó“?¸Í_~¯^”ì~×õ›äÿIvè•PýcwY™òÒâóaˆç¯ŽÖî¤ÏÛ/G¾ç¯sèþ·‰upÉ.Øž+·¦J¿_²›½?ó~u4€ú2ri_ûÎùï÷juˆ\¿®ŸÊþd~ÄýHSÜY}íaËÊ͹Òþ·ÎX}½ù5xž÷WN+N,+ýýÆTéó›Ý6U¦õ°ùͦJã§ê×IÞØ~¿=W&qó7sýUgà²Ò¿+뺈}°:öæÏñQ™ì­£²ÕµÏ•ÚgÖ³µú¶eåÅóÁt|›šö͉qée¥ïëõîç¬þµ=W¶¼„©Òý:”?úÓ>P´g¿¼‡Õ‘ý¾ps®Lui©¾*é¯ê)Oýú¿û­§ÿöu¿ÑÖyû-éÉɘ®×nõ„ËÊæ‡å~ÉÿvbYy|T†zŠÕ‘ö%hò¹åÏŒƒ™ì©TïÙôû¹poü·|{˜êêÓ¼»ÇT¸:öžä«þöÏîøÌ¯[ýûûWO…{¿Kù¦´cïþmÞMs#Ðñ•âŒ)ŸÑï¨žÐÆ÷Téy¿yùWÌ•Êù–ïÀýôÿš¿d~CÊ\ŒÊô¾ÉoØô¨Þ×òÉG¥ßËù¡Öu×ñaÿ¦¼jÇSª?Rެ«×Ÿó¬‡~ø?þ«q_Êgl󶼘⼭¾lT*Ÿ›|Yiþ¾ëNÒ÷.€æ£y?ÆáêhŸÈùäx½Ñt0Ï}ÌÛ~ê“ÿõ®mž9/õg®[g¨ÿä‹§Êæÿ…Þ¿åaJ®Ou¸ ˜öÓHy_êcÍ4*mOÓà÷kþØêä`{?èý’¿Öïçý)ŸT6ÿôùÉ?ŸÆ»ó5í{ÞòeajŸç·Ø>ã/÷‚3˜»ËÊ+§JßWÿÞ}Î_÷ãµ½ÊÕC?ôü­oyô·D¿KÓSF¥ã4ÅáR>œöxª{Mz­¼|Y™â”žoqÀ©òÜwþ?|Æý~¿ÙÕîçì÷Q®:¿Éo ÝtѲpu´ïï¸ ùÔÿé¿£—ìÓ}âÍnR¿QR/”ê?R}Êñ–êªýÆécû—«›×«º>û<õ·Tî÷ ùL«#ÎïTÿÕêË*[\ûž?ø_nôÜÏüHÓë¨Ko¿‹þ‰©2]/“ÿÀþt-ÇŠWµü®oùA´¯Åï$ÏK~Pë7×Ý×­Õ‘Àæ·…©î"å§xŠÿñýVÇ:ž¢üq}u¾¦ü”G‚ÉßœüoÖa'¿ÆbT¦|ÞÔ^óøü~i¿’ö¾Seú>‡~þ©p¯Kïó†×íç´5;¶¼D˜æYꧦW–gÊõ©^Ãu-í¤Ÿ_;¹åµÂô½Rœûcu4û\ýÔûlÏ•>÷ü¿ýÃÿ²ž5à²Òþ2ž'݇„v_û÷ vÛΨÔßpÞ¯üø¿í7>'þ½õš]¸5Uê÷Ú•£2Åý}¾ý™êíôs·ú~îŸö£ñú¶ç“_/­ëiþ̕ƿý»Íî{¦<ºdY©ÿ Õ%@¯Oum^LóÍo¶„så&ôúToª\h~=h^§×•Þß÷Wþ¤<¼¯‡Žoó[>4Ÿf{®Üš*íßT—æ÷iòú>Îç–·Éõ® mü,+[]ÏÛ€­ÎlTÇhßËçAÛ›òA’8ÚUS¥òO¿qËÃÏOv¡ã¯ùÁ§Ê¤·ïŒÊ/„Í®ãzŸ¯]ÑâiS¥öü ÏzÂóßý£7øÉ˜O)“^KÞþêèßÚ¾¦Ãuó\¯‡oø™·»jówâ~úmÜÁOeðíÑuùÔTi‹z‚ßUÿ–ui\o°Þé¼'=öä£7kã»åO•'—•[SeÊw‹õý0í{¢üSºurÊ“Ö~ßwT¦úÅÕ{/ö¹Þù£=p‘œ+•·æÍë7v}1¯¾Åá ÏÓ¯f¾¥ó¢Ùs¥~öQ¹»¬´nÀõPýËþq|ÍS¥ó¶ÕÊ&9Ÿêþß[P»Î:VõÁ¦_ÀýâHq˜Q™öYkõpÝë“?±ùï§JóiúÌnÏ_V:./›+]lOÊŸHùŽ;åñœÕ±¯Õß'ÿ®ë±ñ#åNÒ«ÚúSÛsm»GáêhrG;N½;Çuë—S}œvÄõnuþÓ~Ñ3ús ÷ÕßÐìmèwÙg\´ïc}›vØIè:e\Ëùtr«R}Êýåý}Û·ëL¥Ï8¼bÆúÐT?eEŠo¥ý£rÝø™ãÑû¹Î¹n&Þüó_òù_t÷»ö¿oqºÒ~KyöCû; ¼w{Ï©òšc•Ö÷œ„­Ÿa«˜f[—¡ï—ê×üÎÊqýuIßV¿Oq¸(×iO²‹ZÝÏoþ€Q™ìõÔ¶Ïû§}œÓþ~©Ö{®Û¿;£R»çÛïg¸¬löé²2ù{”£»ËÊuýõ~_íEÏ«G¤ú¤øü îóܽ:Œi=šgm^‘¼xª<òÑoyþþ‡›>±¬Ô®ñ¼~mõݤ9ÎR_êg¿“ã¼­Se«óy0å‹8ŽZ¾ÏOõ-É>Jú¼ßÇú¶­c•®£ö§úŽï“ò3Òþ I6{ú½®{ø{~r땯ëYÊJùëúÏGéúÔ¿‘üó-Ïœö§ç¥y¨r ÚŸÉ_gþh‹7À–'ÃõI¿ó¼÷O·I»ÏñÔâŸS¥vÿ‘›=ôÿ|ïŸèõ P¿šöð èy÷÷пâ|>½^¿–þýŒÊ#ýdiÿ‘æ•úaCþs³ÿ\Ÿô[zÍͯzËߤù‰R\G¶:ÁQiü$ØC«#úÁS^¿yÉoê¼9òÑëüø¡Ïûú/ãýæ©2øo÷ÞÏö¥¿7"“ÝÙâÖ£Rÿb›£2ÅMšßcªt=özÛ· 7¦JõvïïyÛ£¾èüðyžOrÔ÷SØœ+[žÀ²2åq8N[æ¨L㿭ã²éòû–7îïaÛó)~ Þ“öOÛš*Õg•§i?†´qÛç¶öC×7õï—üI¿_×>HùïòŠe¥ó+Ń£2å¹:žSnÝómÝ€é|´Ï¦Ê¶¿ÒTÙò®æJûÛ¼£&ï`ú{&rí¼)èyåÒ[[Þ×oΕ©¼¿t>nÏ•í~£²å1ŽÊ´^´óSeÚï%ígkû}þÖT™äŸã¹í·8U¦}ÑRÞ^Ë£*­;4ÞÿÃþýç5ÿ q'ßÛûúôSº®»?SËW£R»+å«úS~tó#M•;£ÒûLùÓŽ#¿Ÿó.«æ'â¼r:í·óUG¥íSOmç½ßTÙæ¿÷zç…ý‹Ý¼:b±ëŸë¥y+¶ÃõòÈÅWÜÿ/x‡X'ÔüK¤]^?O•Ì÷½<”g» É£^Q¯NþûVg5AÞ/Å›f¨rè/¹îüä»b^¦t^¶<ú Ε¾—íjþÚq0Sým‹¯îÓîÛüçþM_™+SÝKó_Cå‚ãSýãðôœ=ð§^ó¿õ»;R¿[?pÞ«>óË+¿´ÉQ¯Kúþ¡+^õêé¯~ºÕ¹j癨žÙêláö\éï£?¦ütÛÛò²G¥û7ÿ8íoy-œ_ŒJÛ§_'Ù•Íÿ/¹Þû»ïŒz­ò±íOS|¥ù7§JßÇyšìr××¶O˜÷•~_óm³[FeÊKKõª[SåΨôû:þÌS÷÷¶?}ÛÓòæašÿÍoS~»ß«ÉO˜öCMùHiÝSŸöþÛsåî²òäTÙ¾ßT™üV¶'ù¡mòøÏ8óþ[¿üÉó©3ÿçß+¢Çî»o ú˜çWG[¯SžS’‹iœ,*÷Ú‘òCÖÎÃ*›Ÿ ¦øhˆÛ¬Ž½þG¯¹ö=y/ÚÕ¾OÊ‹Q_SŸµÎ5í#”âA©Î5Å‹´£2ù#“¿ÓïäýÝ_"ÙUŽ#Ç uÍ/’ö4>äù©2ù»Ìw×^‘Íþ[VêO~€æ„ëî³ÖöŸæúä·ðyÚ/1¿ö$~ü=ÏS.¥ú“äHz–ísôzí5¿·ys-Ú¶g6ÿ0ÔÏ©=jÿ¥þ9üw¿üM»ò–mÞ™gÑüq°ùQF¥ë®rÝûµ8.ÔŽnqUh=šëŸrËõV}ež*›½8W:nÕ·¬¿sÜ'û}gT¶|3è~ö×¹[Ïùößþåéûێʳ_½_Ûgf:˜-ž µCõ3«·¦x±W8ÙeSe;?W:?mßÖTé8Ö.5®àzíz¦ÿÖ¸ƒíIþ¾V·]¿Í7mù%§+‰Óì韻ËÊæ§‚|—Õ1ïž©t?\íå3yy{íSbí=߸Îî±Â½û•-.;Už•¶gg®DÚkŸú”ãQ»ýØþ¾#¿7ÿÏõöª©òêQé|:rúÆ?ñþ[]÷ŸjyìS¥ñAï—üA¾·uwÊç©Òy®ü_ŒJ×Ãdçh9^”ëÊEåœþÍ›¿ãƒßþ’w¿µùyg˜ò›ÂùÕáu{óF½F= ÔwîÝßuÐõ9é3)OgŸý;}¯Õ±wžïÜÎ'?Còã¤}~Z¾L~´X—5U¦yãK¼ÒKSÞÌ7•®¯qßAžŸêÖR~…ßÃþP_kûºÁ¶¿ñ\ãúrªluV°ùaŠ+$ûØë“>¤¾ÕòÁF¥ú“ëϳ ±ùO\Vj—ø~¶G}SýÎüzóõͯ´ŽÍù>O•ÍÞ•ë^/µ“R~ïá­c?ð±?)ÚEɯìslWŠ_&¿NªGjuP>w¿ëö{¿Q™â‘ɶßíßóï|êúÐwż‰d¯¦¿ÏÔâ÷s¥ó¯ù›`Û?zô¾á¢¯ãPý^}M½[¹¬Ýšò„Sý{«w‚¾wšwÉ‘æ_ð3®Ž6ïÔG×n×ÇxÜž+Ûø•)_´åÃ.¦×ûüuë5¼Þö«ohŸë§“¶ß¿ÏrõTùˆ¹ÒýG®:V©þcÿœ\V&ÿÓ©Ó•Æmõg«?ès=orât¥íu^zãA[SåÙ=ñ»¿úÉÃ1/+ùùì×d·$²çñ¬Ž(SýãyÏ.këÒ¨LqIãŽÞ¹±:Rü|>ç±ÏþŒëÿ/o÷óïÚ“¿ìý=Ú÷;ï·ç‡þþÏ}CÓG¯Ìç½û]÷{ßùüï}ç÷ï8U&?J”O´{Ýz¼7…ׯÓGáÞ{nΕÚ3ñïߦ¼(õŒ×™*“^¢ÙöÙ€úóSÿ›‡æ÷myaü>íïò¾üýºûØž[~ò‚Û¿àÅź¶ïíjëùT™ÖqýÔÖq_¼,\M~¶}F¥íVoõ¼ñûTÒâ³Ð~8úsÏÿÀ_ð¨v_×UôÛ½÷wü®ëHã'éáêöçPû]ùìý°ß÷äãaßý)Ϻóœû™÷ÿî½ß%½ÿÈo¼ûÔ—ýÚ÷F;.Õå.`ÈŠù°É~nvC öIò(WÝ#½_ÒGrªLvPÊ«Jû±¦ú”-­÷òýì÷ ôýR>‚ýåõG¶¿øµï¹ùõÚ{¥ü¬´žy}Ê£NùxöcÊsV>Û¯­nû§ûóчýí·~×›õ}á£2å;¦ú¥O7ŸSÿžrÓç·}‡FáµëXxÛÛµÿšü ×;œ'Íß7U?oõq£2Õϵ|ç©2Ý/æ÷Ê4ïÀç©759 wÆýNM•¶÷ÈÉO~ìçæ‡ôuúóT™üèIqœøÝS?(ïŽÊV=Wºž¨š?ÔüÜså èó.XVêoù0ËJåÝUs¥×Û¿O•Ö͹m-+µ“Ôü¦æ¿‚Æ\ÿìe¯~Áùóa’¿ncªÔ޲ŸO«´ßüŽ©Ñ~ÔîiùWðøTé<ÐïÚêP¹ò´} ïÛö*/ƒæ/¥ýÒùV‡Îså«~Ÿÿô}‹øwXZ]0lãw®Lûÿ5?Ü€SeÚO:Ícǧþ¡ \ª'6{:¼Þû5=QN•¶ÏóÉžouÐuÅþv8ç·ßOù§|hyÅs¥ßÿQ£rcªÜ]V6#Üž+›Ý5*ÕÇÜg6åù}¯ißû'Õµ‡S¥ý<<Ÿöc‰ñuÉï›úü‡†öŸvûæ\©üKù*i ÇÛî²²ÕOÂdç§¼Á¤ß§ñÙòaò/nÏ•®w-¯uT¦:¬T·Õò*_¾·ãÍ÷Üšà¨lßeT¦¼gõÉ+—•)¯Úïœäß‘×Üà©¿û;ŸÝ÷K„ÊUíé9U¦z˘gHûR¿EúTØêÛ[]þTéû$¿_[׸ªLùàIî/FeºŸóÀuËë“_2Å+’¿K¦zÝæòЇoúì¯8ç7Úøöë½á} ¿7žèù{@ï¯^°%·*Í›·ŸüîÛ[•ÎO×µôÝí¯f_Á´ßnó¿ŒÊÅš|ز2Å‹6¦ÊT‡‘ä…vqÚOX¹âýƒz½q`ŸŸÚ“ö-²=®wÉ?Úâa´?åý®»ßbÊû¶?Rp[oaÛ×jªlûaÌ•éþ›r =?UšGª¾¡ŸÇöËT'—ÆÏáGí~øŸ-Öo´|Øòë¹_ò˧8Šz‡ëÛÝvîûέßúЍ?·¼¬—•íúc•WN•‹QéþW«Lú—ñ˜vžöq}hë8œ¡y"è{~@í7ô‡ÕÑÞ×ç%ýÜïi¨ïÏv=»`®T_Õ~RÞjwê7PßTÞùý´¯Œ'%ùÝìèõiþ&¹_ÚÿßüŠhoJåy«•Ú¶W;>Õ…¢ÿ¯Žù¬G¾ÿw?<ýħ]×Öè÷HycÔîµ·Õ3Ì•í»J×9ã¼ÞO¹â~ÚU'FeËš+O,+WÞ?ÑuÚxI»~®Lë]Ó«¦Êt}ÒËœ×~ï¦×N•MÏp®´?lr4å%=³ùÇÁLúCªhõ£2é#Þ¿ù‡'8*Ûþ˜[•æ7îΕ®³ÍNž+¯•Æ;µ{ú¡˜Ï«£ÉåD³·¦ÊëÞãŸò?Ðþßç·ù ×ÕÛ•ÊËÐùÖòF¥õô~_ǧò1͇Lqùæ—†-!OŒãj1*ÓwnqÒp¿›í_ðÀ_úÃùè§Î¯˜òXì÷-ØòæÊuë•ÔÛÒú”êËS^BªwJy.É/ïý}ŸCWýé‹ü†/ˆú°q^ÇgÛ÷6=c®lûíL•Ηv¸€-Ž }õsy Lö˜ëìtݵ=êQ®ã)¯Ä÷ozt]u¹/Lz¾ßËuXùf¼ÌëJ×å–ç}õ2åYÊ—Lù™®Gßtó{þÿøÊ¸_p«g™¦~_ÇQË«†)/2=/å%¿p²ƒ“ß®Ž}ÿnŠãÜyrÙ²pu´ù’öYŒJý?m"Î;”·Øu{ïç÷Iß?Õãú}ÚþW£Òû{~]{Ðç».¤ýk¼þ"ØìWžïøð»µý;hoÊ«VÎ¸Ž¤<àTÏÝúyªô÷m]^V*—Ó:¿1AÎßàÍ}ãþØ—µõ ù÷ qkåJÓ¯m—ï5Uz½zšvˆëIZ[^Ʋöêˆu7Ž7åã×|ÄV'õ³§:œ­©Ò~S¯yIJ2ùƒl/óqu´}Ýšß:̳Žùíµ±~-åí&¿UÚïÈu4ŧ“½—òŠÕ·“=Ùòæa«—€Í—h;8ïóSÞ®~?Ï;/ï>Ïñ¨ÿÌþJy¥ ûZŸæï“*=Ïï{hûÉ?öª;ß)Ž Çq´]Øü™m}„®SÛs¥~õóLüXÏ?*=ß즩2­IŸ9ôÄ\¾ñŽ'E?ãšïeþ“ùZ÷‡)¯Îñç~I¾·þ3ãö?ì‹ÒäaZ?Zþ,t~ÑTéõm¾Â´Šï+½Ÿþ™ä°Òý[>ñTéøP¾¨7Юhúä²Òy¢^´9W&Öy¯{ßÛÏüâb]|²÷ÛþŒS¥z‰ú]³gF¥~sßÃy¦^”ÖñT—åùÁ¦o¦|yãÚ)nëØ öžã8­ƒ—ŽÊæ¿*פzvå©¿—¶{®t|¶ú¸®¾ìç‹´½¶'ÙILúz³_hÿ¡¾ôîõ¢ˆù¶»É;Øâ±ÐqÒÖÑ)ö(—Z~ÐTÙê“çÊ”Oª?ÉuU?ÏÝà=½Þüˆ{AëÒ>4ÉÿÖöW•-n2U¦<>õ”í¹òäTÙô¤QÙì2¨žžôÔ4ÕÓÔëÌkM×k´çÑõo%;£Í—¹ÒõSûïœÛþÈÝoý’w5yÕüÎ0í‡Ôâ0£2é9Ú¥[p]ùîwŒß*W[œúw%œ7)NßìµQ™öI÷Oy:‰IÏOõ/­ž„÷qßÕ–Ÿº¬Ôþqhq"Ú—â->Mû¼ÚGð’QéøÑoÓÖè÷ôýS\7ÅÕ6çJò[ÜÅóúáÛþh£ý|uôßÍ•ÊäÖÞ}R^çºùÔ);ÙÕ7YÞþ›¿èoq_Á´/žß-íc•üBɯfüD9“âñÚ1æ¹9Ž}~Ú_ÁóIÏNq¯ß˜*ý½í×ßë÷mùéÐ<”ßaû´‹[>6×ëÏu|ªŸ{ÿÝeåÖTÙâF£R?Cªëö~§FeªÙ˜ ×oΕí÷´7É ãÞ/Äã|O×û¾©î3Å_SÐùoTó3@óTœÏ‡oþª{ÝìÆy›ò>ü½ßÅý0.›*]ÿÕ.Ÿ+§y^Ú…£²åÏ•©N2íË“ä¸ú]ÓW¡ß-åiÉô¼ä§HöíUÎ¥õÝuss®Lþ¸¶ŽÂÔ¿©NÆuDÿ¬y)þžòô›ÿÎ÷˜*›ß+Ü/íã•ü¹Ijù©Ðö¤üMõœ´¿‰ç[|n@¯óyªLò ͘w9*­[r~—7¿|w*ÜËg¤ßWG“ÆŒœXV•ÆéÕS‹µ:/¸5Uz>Å;SüÒùfÿz?o|ÃöÈyªÔ_sèmOøäcïð“±_Œ“§}O¼Þ¸—ú¹¿oyîg*[î\©\xä\ÙìÖ©²Õ{À¶ÿ\@Ÿç:Á<Šy=Žë/UnêvÜ:Ž|ßyªLíMöbª;TnØi_•T7’~ßô&˜âžOz5\ûåÇûïùÈs¿ú¶ß÷¿s}[-¾b<%}?Ï7¹7*[¼eT¦¼’¶ÏŸ§Êt?×EíãÚú´’Þ“þÎÄyç^ø»—Þê·Z?º>hY÷«~–üiê_iŠV§àûJíÌæÇ9SõwÞ'æíÔgãýŒ;ª?ßú–ßÿ…wûΟz¢Ô®möÿ —•›3\Vªç¥}¼Z|z^ù•î¿n<Ô}YœoR?¿q ¯¿p†<ïâ¹2í#²9W6â¨4~èyÛ×ôúÀ7‚q_ªQ™ü“>?]ïóvG¥çíÿÝc•)nª¾°9W:ïOŽƒ™ü÷êgÎ_óÒ•ÃÆy¶NW6»mÀé`zýj©Îxs®lù'seÛÏ^1W®WLõ5‡uxq×7¼®+íG¿Sã=Ï{_9UžX¹R?»räпïwý×¶}¶ü¾~×]õkóMNΕÇGåÕÐñbÞµï¹ íÇ­©²éÛ£2ùíÔ‹’=’üf©ž!Ù‹)¯ ݯùåhËï•Í/£2í¡ÞjþWÊë·ýóT™úÛyâøg‘^¿q¬ÒöœóÊû<ó/Þó©ì¡©ûÓ>êKÛ0ùõŸ8ßZ}*tü™'Êù¶OsŠ¿¥þHõÅæg¥<Ùd¿§úâ—I~ò4=ßüI\Ÿö#jñt˜üŽúEõ·œÿeßû¥O½ë öü¾ÿ~~„¶oØt0SÞ¬û¥û;Õó|žõ¤»3\Vº'ÿªLy”Ž“¶¿Å¨\ÀuëOí?ïçó/YVz½ýë84é©Òö¯]wîW¾êæ¦?¤ú0ŸkIû/Å7`ò'8O”ÃWA¯Wßqž:\ïÒ|ðzý~I.ÌÐú9ßG9âó|ŸÅ¨L~V™ò†[Ǩ´ÿ>ûe~ùu/ø‹ùFŸú÷ŠŽç4›Ý6̘_Ìù”¾³õlùËJõÜy …«#î£ê¨dÓ;$ϳØWÍ^0¾{Lzà\7¿öäéÊVÊó×]ìï”—¥¿+åJí+õ(ãÏ)õNèõGO}Õ³nþâçFýV9—ì|åŒ÷Oub­~NŸ}^[xžïçï­OEž¬Ž=;-Ù¥MN•ÉNÝž*õký½'þÅ-滵ýqw—•®gΟôÝ›üš*=ßä!lói®ÔiÞÓ~û¸µ8˨¼Õ›éÏoü_ÞÝäeË™*ýŽêoꃻ[•~7õd¿sSeÛ¿eY™êâ×Í{ó|«O•úÇS~·òZý5Ù¡1¯´¾ïÞxá»®ŽGð{¹¾¶8?LuîöOªÓKû¦ü¯Ou÷).c|!puìç÷œÏ{ÒÛ^1~î-ü©ŸïÑõ-ùÙÝ?A¿µíݘ*Õ£\oN©4¯Åy“üÈÍï;*Sßq¢žš*S]kªs_¶þŒÂÕá}öäÁåËJŸ—ò ™{ϳŸRÔfâ²²Ý/ð8\·N,å ø¼¤/§8¥~•ŨLvNÒs’Þ™ô¦Ão<õ¢W=è‹ãþ ñ9Ëʯ…êÉNSÿ6¯Pñ µc¶`ú®öãbT¦ý7Ò~-iÛãïíoåsÓ/§ÊTײý~\¿:bÞ–y>­p®´ÝÍn•Žw¿sê÷d¿&;0ùqSÞÁá'ÜâÅ}È¥±~A½+åo+GlG³Wa‹sÊtÿu¾´xtýt]ðy棥}¼^ûœupuì­ÏæE4ÿÓ繎)o•OÍÏ }ßdžê-Þ6U¶zNžŸâæmÿ¨\1ß0Õ½¦:TÇ“q®ŸhùÄpsªLûx$}5Õ·7{•óÉîñzéüw}Ð>PΦý\ß]ý>i=_ŒÊ¤ß¤<ßg†Úái]Hqû–¿Õ—Rü±É»e¥ñ×ô÷Ô£“+é;Ê×Ç×m_{Ñ/<ûo±}Wïã{­«?'ý?«ôûNß5íwh~‰~…¦7/+ÍOrœ7¿9LqçG̕ƹõ£ÎÐö'=¥íƒSÝVÚ'Îö¥ïŸê¥\ÇôÛHíß´bÛÏlTz}ªO'.ÛêÖ½Ÿýc\"äG­ŽŸÞ»ŽÿßÓïZ½Ï¨´žÂ¼3õý®~Çæ™+ígåùÆT©¾ÙžÇý“ßFýgs®lï}^Ëcð:߇÷µ?loÓ·¡ßG}@¹™ôKý‰®3iß1ç‰öÍÆTé÷hv7Ïs}ß•Ëʤ¿šOÕò±Feû¾ÐçóôÝ#ïþ—·u%Lu~~gõÛÑüSeÒ«“Ý™æY’׎ë͹²­<ÏþÚ˜à\9O•±.ÆÁLûË´|cž×ìÞ©Òöø~öG믩Ò8½ý}|Tjç+·¼Þóîuú{õåˆúý©Q.nM•ö÷bTÆü¸À”O—òKœï¶¿é0æÏBïwöS¾øôçÞü¼´_÷êˆqó´¯CzŸLûAµùÎyæ×žþäs—óT¸:öÛϧÉeëí'õ3íǹþ7Ï·ýAFeÓ¯–•ÆáS>ɉe¥ûC´õgªlqlÚ“âli:Ó:ª>rá²Rû_9çýw—•Öž‚ê;ÞÏzkó—<¿1UzõGçµ×›‡Ñü‰0í;¨Üó~I?÷ú¦¯Ù®Q¹9WnL•êÇ[seªOkù[°í¿SüÌþ1ÿÕ}Üß[VºoHùú_w—•ÎÇSó,+}ï§=ì|õý/˜+•?›s¥ß¿å%ñû–ϲ¬Ôl»Ž)ÿSÝ@ЧÌP?Y‹M•އVŸ Ózézàúèüq¼¶}p¸ÿáݧýþ«¾p3êã)/¯åEŽJåLòk´q2*Û¾ÜßuÑy`¾žóHýÝuÅó/+3êgÒ/¥Ü×^Ñ¿ªœ²nýâQyƒ Ž?è§.º¼éC®çî7d¾®õJŸ+m‡òaÝ}o[]¿OõÉ.H~×”¡üqܧú¸V'Ó¸ù„¼ûùü£hw©W:Ÿ¯™+Ûº “>êwºútå•[•®ƒÛ3œ*Õ |ßu÷QR?ö~)Ž–âÊGïç:¬âývÎTnÎ•î ¤^ÉóWG“{Mߕǡr²ù/ ýâ-Î2Ì£Ç~÷{¿êWO¶ñ|èùgûϾî®Ý_S½˜òVyßòFeòW¦ºøçñùêw)_Õöè_kzÕ8˜Ú#).•ô½vžçµ|ýQ¹=W¦|Âô~)Ÿ1í;ê+S\'å[:>S¾@ËW[V*/ÔƒROÿÒ èõê~/×oå^ŠKJíiåÛ‘þÙ£^ñ¿žÙÖßO¶ßíÇç£Ò8†z¡ßekªÔ/íwñ}|þö\éóÝçµÉqÞwc‚œßœ+õ‹:ŽË¹²ÅU ãL?®óÌþô{§q§^nûýÎû´¯Hóð¾úUeËß¹¶:r½s ñ3åÍáû¾åž¯Ì6;Â÷W¯Nù~åBŠ£´ñÁýR\(Å]6çÊ–0W*çÜwÀ8þÓzÇzÈÑï¼Îæcñ¢6nün-Ϧz ïïú¦¾på\é󯂩¾-ÙMçüàKÞù{_ñkqßXç«ï‰¼\óá{ýêgÜ÷I¶ñtäì?~ûoáãß?týMùîé~)ï+Õ©¶y2*=Ÿâ™¶/Õ‹(üNêß)ï#Õ#¦ñ“òNš¿—öig§z̤ÏÛ¶_;<1ÕzÞùÜü·¾¯ÏKu©~Åóî—üCžOõ;Í_=U¦}ž”3ôýR¼f¶|™©Òõàú~Ðÿþçßö mãnª4ÿݼûQ}Òx_Úç¡ÅQ ë†v‹ë­Ü:Véó]ßS¾ïÓäLrÂøªß'ä±Åyâ0Þ¯‡>ïгîñ¸o;ü“mýqÜ8®®XVžõÞç¿]w+þýõà–'“ž‘êuÒ>*)_<]¯¿òIJ²Õ] ¸„ž‡I/q_‘­©ÒöØÿê·úg[ÞPâTiû´ÚyÚ«=|bY©¿ ÕO•0í‹ã÷·ÿ{¹NlÁ´òµùÓOWú|Û§d¼dw®lyŒËÊS£R?ªÏÛ€úl¯þ~çCïËJí]í=ÛÓü1Se˳˜*•i_¡–ïD{¿öãgï¾vŸ°|àÙŸý˜»Åú$÷µWΦëÕ_\S^~«{™*­ÕþÙ„Ê­¶¿Õ²Òyå¹I^ûþ-þS\H½Äß›´{¦Òx¥ë½ãUý2í»$“ëYw˜8º¿˜ç(m÷~û:¿û¨¿ióO?¥u`‰'–•ö·öhÚ÷µé­£òðËn󈳿àO´[VGôo¥}˜Ú~-ã`&¿¬Œþ+¨¿*ùãR“ó=Å£´'ÍÿKþ&ï§¾Øô…©2å•nÍ•)OÛçÙ¿¾Ï¡ozØÓö—÷ŠßÝy®ÕŽÑ/Ôò0æÊã£2ù9S¼J²Ží[—Ì÷]=N9Wª_)ŸüÎÉ®òýÿàéoºïãÄ)¯LyäG˯Oyy!N¸w×EûS½±Ù­P?¢ãqkªLy¸i—¶ÿ3Tov]oùk£Ò8ɆS?A«ß˜*íÏoΕiëÖÔ»/œ+ÉËrܵqhTêå‘Ïw\ûýœWú«œgÖqlBå…z Lù‹Éï»=Wj)Ÿ›]ÇïwFeÊoí-NS}yò/:^g¨^"“ÝŸâ|IoKùÏÞï^p1*}¿O×{>éq^ßú‡ö¦õÞû©×û{û×üßOºoaª·óû5½yMúûϺ՟žzw¬3LûÍ$} Å[[ýÞ¨tœÆø<÷KþX×ù¦ÿÀ¦ÿÖÿN{’¿Ôþmr.FeÌG ½›+•ÛÚæ[kŸ¶xµœ*moËÇ´ÔûŒ'*·[Ý5Lû.x½ñFå’þHõ¿¿ë8zâêˆþŒT/ÄõM2NÚôQyr«Rù¹»¬ô~ê?XV_³nÎú¬í¹Òø£÷3¹{ºÒß[ÿ•ô­K—•ž7F}‘ïѾ×ö±J÷K¸rTú½¬KÐOpjª<¹¬TÛYVªÿ©Ï^9Uš—på™Jç•ãÑëÍãözëíÌs»rYi˜ÿyêXåÖéJíåˆyÊåíž®ló*w}ž¿w¼ú÷T.›+íóž.Ÿ+µçü{§-ND{ü{†æ¹øüQÙâ_ü~1*moÊ'•­>FýzŸçîç§ö~÷†3|ز²Ù×Se°¿›Þ¡Ÿ4ÙÏ1 “šê[›^ SþºãßõÂïŸâ橾”ëWG¬iñ—ʽûÜø›þ°¯ýÈ#b½U«+€-þ?*S>ŠÏ?÷_^ôñ·½÷¹{lù.s¿#úS/©÷nM•Í ]Ÿl¯ò/å]ø]]K´¸*lí§=)îºO¿;n÷üèíï¯À¶¯LqRý¯êƒ¾Ÿß¶¼Ë­JÇqÊ3Jy1iߨE ú¥òÔöi—¤ç;OÍÃPmÏ•©~¦Õùs¿´@³Ãa³£aò$F¿tü}ýsüˆç|¼ù•šžµOï Ǿwªc\¬Žöý|_ç£ç¿ô:wxÀ«ÞÿŽf˯š*[~¡Ï•Güªgžú¯X»žÑùr|Têo7Žßâs¥úgú½íQßr¾j¹O_Ò÷´?õ€Ç—•Ʒκòm—~øegµ:óAZâ²Ò÷´_Ï^ŸüžO~þäMçß{ë§ë—ó{rïwö{ª7hëê¨lûAç³~‡´`ʇV/pÜ¥üæöwЖ•)NÔâJSeª9ëò;=þÏ¿ñqÿçòÀ<#üº=uªLñ×7í½¤'ý3éKéïû9εg/ZV6y•Ê¿G”÷ÐþHõÐMŸ“r¾éó­ÃíyS¥þ ãs[Ðë©þØzgõiã©ê¿Îýqžß•É¿äûùüyªÔ_øî_ú¿nuô›¦O­ÿ¤¿·=‹QÉ÷lþlî··>9ô㪿¦~R/jû̕ʱQ¹5Uºþ;/gèûؾŨ´=¶W=ñÓ+7;·rï;%ÿïüZÑÎlûú¶$Tn§|æ´N©¿ØžØúsªÜ‚-}ªl~©¹²­?se«[•©¾ps®<ú̇ýð³îñCñïNµü2®W¯³]ƛ̻6ž™òæCÝ×Þ8ßo?'ó•¼?ëÅ~ûïݯՑsÿäßr=oþ‡§ƒ™ü!ëúÛSöbT&ù’êÞš?¨ru´u­ÙgÐvJÛqÖÜÿÔ¿}lóÀ“ÿÊøyª£Iu¡7~òsïwè~^wíßOòù•«£Çi—•I>kï;ÎŒ+iŸ-F¥ý˜ö™ä{­Ž}ûÁï8ä÷zÿ[žò‡ýÍ|Oý{Å´®)õ÷+?¥ò¤Ùís¥ut)>•ü’®ÃmŸQéõÆ×´Ÿ´÷Z]à\ؾK«Ã–£²ÕL•ëæ/~ÑT™òCåö\ÙêΖ•è «c??‘çWG›èS1/Ûqìèýî×ëî Ïiípü8þ¶çʤï˜?²3àTi{¿­¾€ë›ž “¬V>¤z»¯„m,ïËû¥:ðT7ï¸r|Ø?^ÿ¹²ý%ïãMZžEÊ0Mo^ßüls¥ã¨Ùéðä™Jôkëœ`ÊÑ¡üJùáösÈoYí>\׿9÷Ý{_þu´ß Ï‹òïnp†ÊAã0æ5šÏkœÆxŠñý¢úõ7\4UºÎØ~Ÿ/Ïzé…Ÿó¼Gýpó¿Ý:>Rþý¥s¥ãYýÚñíú®þîx—ú—õG·¼ê¹r*ŸSªíû[=Lû¶¥}`¼_Ò[~Ï?]¿ÿ¯÷=òˆ~è–4Ì©ÒuÍë[] ïáüô¼óS?‰qÜ–§;UnÏ•Ú Úc'ô~ïímü˜¿¼!—•ÇGe«¿œá¨ôù)_1ÅU½¿uö[{Ÿ©Òû%}±íÛS¹:âßQð½7`’ ›s¥yäù®Žkýoð¬¯úîOžó~ŠwÝSOKLû”8ÔÓ>qÉ~O÷oþ¸Q©žÙâ¹S¥zpŠ?*·Ûú]ßS>ÞáÞý_ø½¿ýŠÞ§É©Rùè¼û~W®Ž–o“ò±Õ Õóšqªlö4>êïõ{Þ8‰q¯æ7œ*ý}Ê—mqœ©Ò÷³ýžwþ‡;ÐqÐÆÑò`¶¼•©Òõ@}Syuø¦|âo¾÷i=O ªgZ—’ê?ÛþB0ùUÒ~q~õð`çµçé‡Ùž+ÕߎCÛ«þ–òÔ›¯{øw^þÚŸþêÖÏÞ×uÑz$åGÚŸÂñ¯\´ÞËvû{õJד&ŽU^÷‰·~ÀçýáÅ-îgãuu¤|„2Ÿ|1*mËG‘ËJŸŸòS½’íií*=ïýZûLeËÿ>]™öÉLq—”žâ)>šì×Täú–öemru®Tßñ{7ý‰öÅ|v®×ÿ§>± ]oš<•æ;êÇt=4¿Q»ÏõÜuà¬w?zñôÇÞ¡Õ½Y÷«ÞaÞÖs¥~¦ôw,fèõÞ¯éyseêWç©z‘óÈqšê$Z½Ù¨\À”Oí¼q^¤¼|iéÕ/èú«ÜKûÏ¹ŽøûT縕ޯå¿Aýú1×ýžÎË4~¶àΨtÞ*WÕ#|?¯·N9Ù©»ËÂÕaýðž>¨?ëÈão÷¢ïü§7¿»r£ÕWÍ•‹Q¸:ö˯Ûkç¾y“Ðvk‡Ú>çýœüáÉnÞ/δÏ{6ýÌõzŸ~ð÷ñï÷¥ýj›^<*“_Áñ—òÞ÷ÉGiû»iÿZ¿sɲÒõÛ¸ËEs¥ö©öC‹3q?åîŰçþÊiãLþ]"×I¿ƒrÏ~Où+­zÿT?îü™¡òÂó>Ïq•ä¾ë˜ëlZ—îþÞwüÌ[^ðñïz%ý'íƒàý|Ïä÷L~FïìïÕÑô[ãi¿ÄT¡æø¨d¼ïµËyÖæÍ\Ùä€×J÷áqÚ¿›seû^SeúžökËw‡Í;U¦ý¢?«#î‹æsÒº’òioÚCÊwí1çAÚ¯ù òÄyÜü)0éÑ‹Q¸:ºoû<¸Ý×ê!µ}{ϳݴkï÷¶«åOÃfŸÃ6FåÆTÙü¤Ðß{}‹¯ŒÊ”Ÿ¯^”â‡i?Šä?IþzßW»)å³;ߌo?uÝðyS¥ú[‹ßr½~hŸŸê¢õö}½Ÿv™ç·¦Êæ•-?wYi{<Ÿâñ-®ýžÞ/åSëõ¬œw~´¼ÞQ©ßóúUÜ—Ò|@¯×¢êüÑÏèïOè7òù-_`ªLñƒdw5»| çÊM¨üRo°¿ÂxØ[/’þ§?Îv©Oì—7äû%½¾ÕñÂýÞÇ÷V_Jq¬Vÿ³¬4ß©åÓŒJó!¤ãúø8˜®oÞïÂQéôý¬÷Mvœq¹”Oxí>À•«£ÿ}0Øö ˜*Û:³¬4ÿ°íãÆÁ|¾òÄüNó÷š6ÿ3LuÊ¿‹ïëüOõMBçOŠ7$~Óxží߀éú¶¿Î¨lû­L•i?¿oŠS7¿¤}MÎØ_Ú®Wêê›s¥ï»5UnÏ•ÊsãÊsý6)N69>U6ÿ;ô÷ ¨þ­ŸËö§¼ÂOM÷÷úæ'Ÿ+õƒ)?ÌÛ“êoúÌ_jõAP}$Å7¦ÊÏŽïv?æ[´GÚûÀôû$¯”¿ÆÏZ}õ¨LñCýÍ6*C}ùêˆuKi_Ûa>‹v@Š«§u1í»â8Kí·ŸR½“vCª·’\Or&ùóå¡>û—?ÿÁ_å_‹gr>ý}œMöôÆçJû1å3´| ˜ä‡ç—·|÷©2Æû`Ú‡Óû»~ko¸¤õÞõHÿ…yèêûËJõmïçùŨT¿á·ŸÚ¹ÿ›ß¹v|ªÅ+`k÷\©Ÿ¤í¹UéüWžèGv^9ÿŸùê_¿Þô©£é‘úÉ7¶Ïyb>¡Ô.j~ò§Jå¡yÅAïßü2Se“ï£ÒõàÊeeÚ×n¦øÕæ\é<º¦}ö|Ïû¼´O«qf—Ò¯®¯Ùž+[Üc®ô}Œ+=|®4Îâ÷q¾:ßõÇ}5â¾qÇG¥ßßë7à©çJ¯w<4¿ìTé÷MzªLvwó{ÐÞ͹R=ÖñîøPÏHyü¬«#Ö¯¦x“q°¤ï4} 6;yÌLçm‹NßÛï>o]û¹}Ç©Ò<8õÍçLzpðÏ­ŽäçÚ»ns®¼lYiüغó4ZüxYéLí?ôž—¼òöÇß÷Ýð|˃ʋ¸çTéùf7Cïoœt{®ÔÞ“æaøíçæ7š*ý;ÃS¥ý©_HýÆ ¦øœíKþBŸâ»ê%êmMπگɤÒôÆQÙò6 ïë¾m\Þ¯/è¼Ö±ßº¦ôˆeeË£†m_Œ©Ò~J~¿óá?üÖ;祇c¢ÏIú˜Tß3Þìõú3Rü`?=Õëö‰OG}Çöûþé}Òyõ=Ú½÷>éwžoÜçýöóKÚî&7àºùáiß”ã£R¹šüúËÑöÍïdü¯Ž˜•òM{ \7ØöÙ™+݇êÒeåås¥yšêÅͱ¬<>*Õ·šÜ¡ýi>õú”7æóÞþÁþ'ÿðMN·| èø‘)/t]û°éS£r›Ÿ 6ûiY©_2éS)?*é;i°ÔŸ­®bªLçÓõIÿHyCŽïßö‡ž*Ó~­ÚŸÚ)[0ùµÚ¾€´G»Äñè÷Ÿ6ßñãwläÐýÜ'=å5û]lw‹‡Â›^ú±gþÃÓvšòû¶8êT™ü†ž—)?Ñ}¼$óauÄ}@WÊ éõ)ΘîŸò˜[|fT6¸_Û¿sªLõ;-œû¥ö*‡Í Ô¤C¹¬¿ßº Ç©y~Ûëzk¹Þß°ŒwlÀs>ráÉ›ÿÞ5±~ùÓeË7†M¯œ*[þ_ þŽãù¡`u4ý«Åµ§ƒ©~-‘Ÿ{ÏÝ‚Ž{ÇrºÉ±Q¸ï¾`ûÕ;o¹n߿Ϛêí|¯Ô¿®êúR½øÉÓ•Ao¹v?Øò íZ³.xuD½ÈóÊëwZ^×TiýSÏW.è?nùBPƒq˜£wý/wþíïS{¯¦?ÁöÞP}Ïûµudªl~åðûoÑŽ5n¿î.+]gZ¾ 4n°½¿qív~®lÏŸá²ÒûWnù@ËJåWº¿rÌqê¼kú(ܘà\Ù샩²éy<Ïû¿ÇêØWž)§ÏºåÉ+_ùîò|TÒÎÕÑô<õ¨í3•ö¿r(åÇ¥|µ´ïAÛßbÌ©Òñçýœ/×@¯¯ÍO®w¾§uF¿žý£^êø÷ù­N‘û%{­íW S½DÛOûÙ?Žãä¯oûLÑû§ÕQŽÊ6Ÿçʤ_§¼™d‡%»4ÕÿìŒJÛsR.+SýmòK'ß?É‹ô÷=Œ‡©gºq€Õ±'‰¬ŽX·ƒÝûýW®w¾¯óy¸×Ní,ÇÜkÏçÝè‘ÿíö…­ýÉÎK~¿VW;W¦:‘P‡ÐýÒ°½÷ Gåáºåõþµ·ê÷á:õOϧý!ÓüIïmû’ükúβ2Å‹[]ót0]¯g²_wÜOÁß{^ý½åN•ú]Óó½~†Ú“ÆK£2åã«ï—TßU_hy+Ðö·x³í‡Î+íÇ«ëÙÆ—•)_#ÅK’>áßiú THõ¢‰êæEo0/âáÐþºtTýîÇÞå{þùù­]ÇŽ«í¹R¹sèÌ_÷î{½·ùÑ|?ã²¾¯þ‚-˜òü6çJ딩~»Å9§JŸçúîý[Üx‚£0þâóžø{çÿÎEŠ×¥}AR°ë‚ë˜v¢rcݸ¢ól1*Ó¼TÎúûwjy}ã`¦}´“­w¼éÕþ¼W¿ösZ>°òÂyëws|ɔǢüOú{Ëó£=þç•­_¹Þq”ì©ú~Éíû¹·ñ0U6•œ*]¿ÓþDöÏ)ØòާJ×Cç…ö‰íq]±n)åO¸>û|ã)»0Åž¬LrÎñ­?(é ëÚ·-nSþFªõ|ó·Á¸/g óËñìüPßv<ïΕŽå‹örË‹€®[~åÉ¡Ë/å¥ïÜlë|«‹˜*·`Ì‚ÉO˜âo©®¸ÅiG¥rÄïäó[Þ0Lõsi_™æ†-ï¦<­mLù¢Ž;Ç•ë˜÷óy)~ç÷4ކsϤ?Û: î»:òøƒÊåjóÛBï—òîÛþ0é%M*SÞdÛW`ªô{¯«%¿~¬C€iþnL•­þgT¦¼0ýêÞßñk<;Åq›*Ï[ÜyªÜœ+Üù%ß³ýUŸÑæqª_ñ9^ßêØÆzt}6ïJû µgªLù´ÉëúœêêBüuu\»3tÜ™×m¨/JõÕ´NèHqÚT•Î'ÿ ßÏö©¿ëßkùRSåö|0ÝÊüïßüwP9£Üòù¶·µ×q<ïBãkÚ_®Ó-ÿa®lýÃõ-M{Ì£Tnš¿Ñì/Úïýý¾Í_7*[~ ÷Kã-}í¹Òþñ}wFáêèûùŸ©ô;¹?ÉÑ·Üé%ÿëýk×Ù>Ç»çSž×t~)ŸŸm>M•Öºî·üðQ©ü²ýŽGýßmüŽJç“ò^=`s®T±}Êϳ®¹ý;ÏyqÜŸ"å9OÚ¸‡~—& úßÑö+G›#—•>cªTïpn~½Që8¦Jç¹í5ÏFmz~g´ß¸¤ùí©ž¿å+¸¬´/‚Þ_ùæxpÞ¹/…rM?OÌ…-. ×­›JõƒÉþ÷}´?›žÆýÛõPùòœ’Ÿ1Ù³©^:Ý?å9„ü‘ÕÑêïZÝè²Òyuä~ö[~ýn—̧>u~Å–W;W:ß•ÛPùìýç©Òúbý¢ÖY›?½n½sÊ[XŒJÛg€ã•ö¯Ž¸¯¤ãÜï×â«£Òq»=W:/Z>ƨlþ,Øì)èû%¹ë¬ísÞù<¿ƒýòeRB°'WGúûn{×yË›ßû³¯xaÃàw·óþÞù¼;*]ã=tåSox“Ëÿ2~¿¯zXº~Ý|¿ö¹ã1Å3Ó:|Ã_{îgüÂ/_ÞÝú?ÿ^1ùWÕ·¦Jõ1ç¹ýÒòjù}Ú_Éß«¿­·Ú¯þ*ÕY¶|!¸•~ϦÉ9¯|Ú]V¦ú(ûÅö¶xwâ¨Lò(ý>ÅÏ“3ô~~o¯OërÒ+šžÉïÓ:²®_5Õ+k·z}“0é…®‡^÷’ë<ëÿ»ïÃ5*‡ŽËŨlvtžŸXVê7¿Çø…ñ.ã'ú÷ú¥›ß’ölBýšIÿ“×»æ_Ï~úñ[Ä¿çb¿ú}Sœ"åE:Þ}¾~fó%Œ{)­g²=Ê¿dwz^?û Sý_ò“o@çSŠK_V:®RÝ­ßÛñà÷[À¤µ}Ï–•Éús–£2­·ëú%ÌŸHùìëúÛ’Åñmø|Ç‹v‘rºÅÏ rquĸŒöܺܕڟƣ-_z®ô=O,+}Ÿã£2Õik¯&ÿ€þ–­©²Åk¡z‚ñÇQÓ«ÇÁlu%0õ£zyº>Åý’Õü&S¥çÐùéïÕ{µg½¿óK¹m^ŒçmÏ ?1n ã¾$£ÒóÚ¡Ž§KçJŸo¾zºy=÷œ*µ‹ýý‘ßù¾7õôÐùÞŸú÷Ši¥}šhªTϺãe?õ˜«ßy~¯£†Í“Ý™ò?R\ åwp¾åƒL•)™üS)Ž“ê_=ï|Hzö’ò¥Åhzÿ´\ó{ÂOÝ[ÖÌG[1&—?n~óe¥ò3Å”ŸÎcóIÕ?Sþ½ï»3*SYÊ‹Ô@þ¯Ž¾oÏiñ¤QÙüùp÷Þ/å´ºm˜ôdÇý oòžç=î'.ïõé¶o äúÔÎí¹2Éã”÷g¿XV"VǵûÔŽÂÕí†Ý3•óT™ü¹Îƒ˜‡=¯ÝhÜ ýÝî¹òIJR¿B³#¦Ê+æÊ–o; çÕïµSOŒÊãÐuÙök‡­{^»Bù ŸMÿn’Ûʇ´_NÊ÷¸d §Jãi¿—4“Üöû¤¸\Ê[rÝOñõÖÿ£2Å“Z¾Ê€ü>í»Ðâj0½ÛOeªôý?'çJí*ã¢)¾®éGu|P~¥ýGµ“ô[¨§hç©Gø½Ì3kñFØö…ÚOÚ}®®'þ^;Òß;Úþœ£ÒïËø\mݳëÆÅR>°ô;(ÕR½f²ï\§6çJý3êãΣm¸1LÇy’#ÿ¿FçÁ±']ð…·þ™§·õH;£­SåñQé¸Kë‹ëU‹GΕ©®8í|øæßxü7~èÕí=l‡þáÝe¥ãK¹Öö%ƒþÞë·aÊÛt|zÞöoÏ•Ž—S£Òöx}’ã-?~ªlñÉQéüUROvò÷¶Oùa*Ç“?Ãübûï¢QiûãŸy³/»O«óV®6¹[^Ò\©Üû\]ë—•ê­æ§yé÷OõÊ´ŸZº^ÿl²ûÚ>èPyÒö¯ZV6¹7¦íIvmÛÇ*¿ZžöTxíߦ]ôËêh~Ÿ[}èq7}ÿ_~ éo3lqŽ©²é%£Ò諾¨>¼ µ]//\Ì£¿z#WÜöH³Û>'Se³aª×iõü0åÙ§ú¯_w¿…èg¡½É_ÕâSešÞ¿Õ?q}Ê—IþðÖ¿-OÞöÃuýùiÌT—òøÌ“—)ïrÝ<ùôüºÜž+×­_3 Õ-+Sr1ås$®ñ#å´ñÎT7îùv=Lqý ÆO“Ÿ¯å•ŽJÇË#`ª;YÛŸ>fÊÿ¶=IÿNñ†6~¡zbËcN•êêï^o¾Þæ\©Ý¨^Ü~ÏyßÏõ¥ùÙx¾çõ³mM•®7É>izáTéúãû¤|’T·s㿹ïƒz«û´q—ì´TŸå¼Øž+·NWª%®ã4éù¶W¹Ûæã>ï±_žlªïIõx×½ÙýîùÒs¨ûhç•S¥þïÛê á©eeªK½rT¦q`û“ÿ£É{¨+ôùè«c¾¸2ý]«ýþ÷Ó³=Î[ýÅ©®/1åoµýµø½zOª'q¼¨{Þü{ç‘q_ûǿ먜hù³ËÊ´ÞËŨô¼ý™ò“ß<ù‹Úº!¹¾ÙÍ£2ù³’=Úüe£2Õ›µu¦¼»¶ÿ t|§¼”TgŸâÉnѾLûÇ8^ô+·ýç¦Â=9¥]i}ªÏq}oû·L•iäÒêhïßìë5©^6Cõéuã)¢åkäÿ7{Jrÿt¿˜÷SØ»§+•×®úßRüÀûÙŸÆÃ£Òx¢òÄõÊ÷S~Ú¿úS²úÁ o)-åûý·çJ¿OÊÏW~^8UêóüEÐñ >•æcª—iý=*[^è¨ló+PýÅönAç›ãÑçû{ß'ÕK%ýÝóö§íñ}“|jäù¾4Þsô¯¿ï_Ÿ0¿>¿×T™ö‰Lç¥r"­¶/ÉÙ³ŸðŠû:sé|ŸOý{EãK·»Â{À´>{mO¿ð;%9G»÷î£î÷œdgíÌ•Iîú¾mÿ&¨ ‘ò¬Ð÷¶ßì§”ŸòFZþ3lãÐvs}òK)íïuí„äW`®ŽÿNùm_ ŽJÇIªSp\+OmU^5*m¯~èKF¥þMó Ô÷GgýÓßÝñ!où«yûSíYQ½éâQ©=üðe¥vì#æJ÷¥Ýž+O$¿r=Éý`G®Ž¸¯¦ã-Ï“ËJ¿ŸöÛ®œ+wFåö|0]gÒº’Ö%å@²ÿR~HË_âú´®¥}ÉÔ;Óû'½-­ÓþÞþQ?R¿ºëTéxqžµý6`ðÅñêzS±lñÓ©2Å1›1fŠÏÆü©²­k¼Ïw$å—§zõœæ'Ûç>ûÝO¹|bYy|Tª¥ø½ãõʹÒuIûH¹çüÖϸ5U>çÇÿøiúŠö½§»Ëʴ߉ëkÚGËýoR¾r6åO*gü¶W=]½¨íwÁýR÷S®- yP©.&ù Ã>c«cíùâ{ù]‚í]Ç]Ëã ÷×þvýu½=>*YWÇ|é²2Õ;Þ|ïSÇ*}Oß+úÃáUg*=ŸÆ—rªg7*c^>÷³}ÍŸwGeÊ‹k÷‡®»)NòtåÛ¿).¿1U¶<Ï©²åKŽJÛcüÈu³ù¦Êí¹Òñì|LûøýRÞ·ýíï[t>Ú?~_çƒþý¨žçûöñTŸ¿ož¬íœ§J×í¨Å¨Ô¿—â?©^Ëu/í¯åw²Ÿõ·{}“ƒ£ÒyѲÒqe~à¡g¼ö!÷öï~uÇ‹óy1*÷õÃV8*›?bT¦ú¿”O™òÙÛþ0ÙJÇOÊHvu]©žÅúÇSÛ¿gª<ô”Ÿþ•G½òãq¿Á ˜ê`œÆUü.¾§¿W~¦¼bõIýúþÞó)߯õ ÛT¯ôõWLùKižÅ}KFe³i¯rj1*“\ÐNyÞ?åÁn/+S>j²ƒÓû9Õ'[áT™¾oªo·}ö_ò§ØþhŽƒ™ê&¯ÝÇ¿ò}?üÇ}}æ¹é;§q’â‰^ßö†S¥ùÝêêµêyÆiv§ÊÍù`Úç•ý“ò[ž"\ŒÊ´ïjÚ²ù9+W‡ï½§òû½ëë8µÇ”ηÃ÷xõ=oð—_ÓãîSåbTƼwÈ:¹÷>IOpýL瓽öÏø¼Ç}ü»Ÿ÷”§Äu,­KއTOÙä6\ŒJíêV/ïmŸ©t]õëÌÞz¹}ºÒ|%úauÄ}vìÛ«üº;TÞùþžOþ ý™úƒ·¡ãöú7¼èGÎÜöŠþw&H;Z=Ô\©ÿ(ùYý}óãÁæÇ…­ßFe{>LvS¬³™*½Ÿú²òéÿµOüçoŒû *w·çÊ$—ÒþCmŸ-î—ö?RŒ~4Øô#ÚãyŸâ~Gý÷-.µkܸՙCó0”—¶G;Ì|½´¨u5Ææ_8n[\qTºŽëÇKïëóÌkKõl)O¨éñœOñõ´¯ZÚWA®›÷àzå:—ür]ÿ]‹SÔöï­Ç±ß8Ÿü%É/å{7¿)Ïoñîçwh~LÈõ«#ç¹Ð.ß›÷Ú·îšö­Žkã[s¥úïºûºhg´q“+ù1£Òû}/î卵ô{)‡S½Aò¥u8Í“ä§UŽ'Ê S³Ïó|ò/¦ç¥þLþHÇó~õèÎÙúÉ÷å=Ú>·#í[±:âße´?ôW·Ky);ËÊf¿ŒJý'êAúSR=˜þºã£R=Ðö«WÙûãIJR=>åÍØžd§j¶øÃ²²Ùþ~ªtþ(¿ý¾ŽsÇ­u-Ö—+õgÝîâwŸyÊg½°ïË3*õçï.+S»­+POÒÞXŒJãð®SI8oSÝiÊONñý¤?§ºŒä7L¿oñ‡©ÒyßòË¡~‹”¯ÐòïC{[ü¶ú ˆœ]m9÷3žxù%ÿåÆó5§ÿÏ¿W4=éÝiýYŒJŸüÜ)äx´ÿ•[Ê5ónÌ‹ºpT^°¬tß ókÍ[ßœ+Õã.˜+•/­}<¯ÕÍ•®³®;®¾¯ûW˜Oo¾ðÉc•î·¡ÿÀþVÏ66ùOì_ïï:èû^0UZ'h:>•7Ê£¦wL•)ŸFùâxwÝT/Kõ@éï%ÿŒòËçù>‡Ÿvì#Ç^ûM]®Â´ÿÖlõ…ɯêwŽëíÓ/–ö›Mûáª_;.ÚïÃýSÝXÚÙy{“—|ÿC~øßÞ:_½õþ½bo¶ËñœìPúeÏÎrœòœÕã¶q¶÷<ì°½û§ºÕä¿Üž+Õ«}ÏäßÖ^ÜWÌ•êáÆÇ•¿Î ýÑ).Óꇖ•ɧ¾ßüÉ£2åÙª·}ÇG¥uØ­~¶ñ½~›|¾æÆwxÿ^–SÓßSþìáW½âŠ÷ÿáU­_Î}É÷ºËcÞôÿî>{íAßiçÕ7Ù‡¬]Ÿê˜›=vº2å禼¡¶NLÓç­»¯—ó¯Å#¡¿·Î¬å‘L•ÚŸ)þ—âkÖ¿öxô¨t~š7²%ÏT¶um®lûc@Ïã÷ÙïhrÑqrìø}êè¯}v›¯êûÊ÷yªTþ)ßî¯g|Õñ×ìýQéxÜ:Vi¾dšom|Â6ÞábT¦}Ý”GæÇ¤xàºyI^Ÿ˜âÎoÇSË»ZVêw•Þ?}¿X÷S|4ÅK“¼Z7’êî›2 ¿•Žoïßäi`Ê“Nþª+çJõþüÈS~÷?þõúºú!í¯â¸lu™Ðß;Ž“\¹ÞüŸ&SüÍïò×£ÞÒô†Qé¼rÜIí ï¯_Êï¿õë¸N8/¼‹ïÒ¾´ïVò¤xfÒ›’Þãû&»ÆþHqT‡vøyºí÷¿ï;Ú{^9*c>ÕTéõÞ¯=jßê\ŒJõ9óÃŒ[Ú^¯×Ÿ¹=Wº¾úÚ¾_Ðïî8Ò?ßþžÔÏÓÖ³©2åc¥¸½ï»€Žó”'`û7çÂÕëÔû[ür®T9.¹_³ã§Êæo›*÷«'rÝJö:ëâžÿ©ùaÛw ¦:Ÿ¶oß>ï“öohý=o»Ž<ñoÿ÷÷õ—ëWßë‡ ØÆ×Ti€×¾ÓýÇ;Ïz`üN¶Óñ’ö©²]Í_ ÍŸK<>*k¸{Þñã{ÏIþ%ÙäŨt]HûÕlL•ÇGeÊ'HëÙºûóù¼Ÿ”£òò¹2åyÿO·}¾oŒ÷ÃVÿÛ¼à™Jç½þ±$GRÿ›÷å|RŸõ÷Ú…ê{~OõSŸòL¥õH^oþzŽz’ñðdWëŸu}ÕŸ¸µëÓ>,)nìxNõ çÝïzä‡îׯ…vDZ_´wI^z½~¿T·›âÊoïŸüšÉOçû'¹Þö•óTéw[ŒÊ”ì¸iqêQIªµ_¿vÛÿu«Ò¼?õ)ÿ¾g󧜩ôy-/cªDÿY­gß÷7üù·?³Í#åVó×lU^}ºrk«R}%íq ú÷+lïÕS¥~ õó²l¯ç•KÊý´¿TÒkÖõ;·z˜äªÏÛœ+SÜÓ<­L~qåeÚoË8YºŸï³î÷HϦíûÄû·u‰ö$žò_{³é±P{È|tßO¿–ò{.ܳóÒþ ×ý­Ïø™»\yÃXW˜òhRÞ­ûqø}|ž¿:Ú¼k~€©Òv';°3ØâS¼'ýpm»GeÊó“Æ1]¯mWªçñ÷—L•®ç®Æ‘½ŸqíKæÊŨ´ÞÀöoM•Ž'óLÔ¯®/IŸ²ÿZÜ›û©ß¹~5?ÿ±Jïßô è÷ië'tÞ¤ü×ç»v†ç·¦JõÁV÷½¬tžÙÏÏSeŠ{§ý=óäýïöçguû¶|K¨ýf¼Åï¢?@{/ùÿÓº×Öuh?lΕ¶ÏuMûwwªÔ¾UOOûô¨G¦ü÷–W]}ý=.+Û÷›+“ìù¶nŽJíå˜uri]oëò¨\@åpÊMv­ç•«›så6Ô¿rbYÙòÛ–•Í_ý½çÛþ¬£ÒöÛÞT·îýeÛW®[O¥|:çÇ~úm<½ûßGeòÏ'½ïÝêæ|/˜ö}ñ»ïBû¥Ùçs¥ú¿ýxøÊ·ž¾ø§~/ï÷S]„ó9æBý—ÖCIÇÛ߆8m;Ÿì×ÓC?üÝÿñõ¿r¨?å°Ô«>¢~ ~›ì¡§…ɾ÷þ)îëý’\°=©î2ùuüÖÿàw¾÷Ïãøkñvè<6n›âr)¾o^SÛ¶¸á>×íŸq<§8wËÏ™*ílj~ÔÔ~×[¿³ùEÆWÔGÒz’ö °ÆyiûÝÏçégñ÷G7^|ß;¾ÿü¶^¤õªµªT.Jã6þ>å·I¿ãbT‡'¦J¿»r{´Õ‰0ίýû¤£2Õãø}Z#Ü/É©¤9^š_7Ðñï|w<'?¦ã®ùæJõé&¿pòƒ¤¼Ûçóõ/FeÊS±ÿš_tYÙêñ¦Êv~Y©_J{Öó²íË4*Ûï¦J⢫c>ô¾kNÿåŸü{Œ#¦}eîý½qÌTw›òÏRmªgMr9Õ¿¶üxbYi¾Àæ\Ùäú²2­wê?‡ùÐßüïü®¸ý%ËÊæw˜*•kúgSü¨Ù•S¥rX»7åë%9¯²5U¦xÚç=ùßÿís>ö_z=*lõPpcªLû—¤z×íuëy\¿”‡Í~œ*]ŸÔ?›¿W-+õc7ý­rOo°Î3ÖÕÑë­¹^ùžêdRž¨ß»ås¿´¿ŠóV*?ßêÏ®ÿï?ýˆ6ŸôKy¾ÝY©_ÓùÜìò¹2Ùa1.7*[¼2ü>]Ÿô®tÿf/@ljõ5É?¦Ý×êÜ`ÊOuÜloU6?Œ•ÆãÚøš+õ#µ<ºQ©\±=úMÓ<³ŽÙþ5ß&íã›äºß?ùµ<ßüÆS¥zIÊ»Õo§ý—ì"åI“ãËJã‹©N³Õ­ú=œIÎ7ÿ¿?üUÇôæK_Ø×h?XßÔôÓQüØ«£õWÛ· š¿•ìnõó”W)Îx“<ý¼oøÐÇ<9ý7Žƒ¶^N•Ê Feª¯Ju´»ËÊ­©Òqxd|ÍŸ]ó¡g4±zãÏûÆõlªL~Ìoiùm0ùuSþœvö©3•Iϵ}É_®_"ù5ü}ËàýZܶü\Øä5Lq׿OkœfÛ7„ö{¾åËAý~ý 7Ü}úì¼ã3Ûï\Wߎ›Ss¥ç£ÒvÛNûÙó¶'åk¤<íèƒiܧïÖÆÃ¨\w¿ýe¾Ÿvž÷OãZ¹a^YÊóŒûMpŸví¿Mó&­O~OïøñoúŠW~ÓÑo']7Í75OG} Å‡§ÊV³¬<5*Õ«\W/š+Õï\÷w­N|YiÜÌß·<‘Q©<6/É÷õùó{íNv”vžùd¾—×Ûž÷÷÷†÷‚þÞõ5ý>7Ç…þFçÁæ|0­Ÿrkq¾Qyø’7}áמ»æJöKšGÎ×Ï´_GôKÈý=ïzžêw½Þü·ðü=yÔôˆ5Û•êsBýÝêÈþ¤Úþöœ³žò€¹Ó;îã:).f;š^S>dªs>|寿ë57ù¸O™Ï½tT¶}µ`³¯ ë}Ê·Q?•Í~‚ú‹[ÜGOþ‚ݹÒùyÖ_ùóøŒÌ/ÿÏ¿WÔ£Ÿû2hˆó¡åOÂí¹ù×ÖÙuóí´ݧÑ÷=zν>çηû–ÖŸú³Rü%í‹ï:ëï]—ƒ¿mu4{Ïq¾Ÿ\ŒÂ½û¡§îW÷±ßõQkõ‚£Òñ’êÙS|/ÉÕŨTÞoΕ¶Ïõ]yØò–•æiÚÛsåÆTiœÊûûüV‡L{}¾ýå-Õõ*·½>åó$û³åó>ê·Ñ¯*§J튫ÎT:þ¯œ+S=wªÇhûv,+Ûý¹>ù%S|;å¶üªÇ}ó}ß¼}ƒè_Ý•±N$¼§zJÒ¶aËçy1Opªd][{ò7ÈÑÕ‘ó  únÚßÁûù{óÌkµ^ìÒe¥yÌèù{ï©ý=O•-.•ÆÛ•ËÆ?ÌŸ5_ÂóæKh'7öT©½£Öñ˜Ö¥ãr çJç£úïæ\™òÙ£(0õ×ÑÏ¿ê¥_óuÒëÓyNòƒ%mógBï§ž·=WÎSaÓ‡ý}ÊCoúÈŽJõ›dÙþ©Òó®çÊU¿WÊÏNr¹ÉYhû”?ÁÏÙânS¥û‚ù>)~Ðü¡£ÒyÑö‡ž*ÓøXÀ˜ÿg¨£]e>¾þA¿3W&;Jÿ¡í÷zi{îÓyý“wƒ->]·lß Sôy)O'ÙÁw¾Ÿý¥þê¸Ò>+ÎGõ™í¹²íg2*­<9U¦8ö‘ûÿ÷C»ÉÚ¼v}nõbËÊŨlr'ÜO}#é;'Fåq¨Ühúlëíݘ*íGÛßâÐS¥ãšuzutû1Py­?­ÙóS¥u$©>åW;Ôÿígõ$ýŒ®§Í¿Cû¼ßáßü¬Óg®èö\п¯µs`ª#w~'ù¶=WjêßTïöz¿Gš·ú#}žýäý›Ÿf[Ÿù½ík~ãŸú’{«ûU û4œXV¶÷\Vê‡Iq ¦O³}_~ŲÒïæ¾í÷0哹EÿÐù¨}“êÑbü„÷ õE=¿. ò"勸.êGQOØž+oÊ[ý.É>Ö¿ÑüÒ£Òï±3f̃É^çúÕÑô3ßKûÆy·1Uº_ŠöuÊÃpœ¥qq½/z×áë_s£v]Ëg‘Sålù?¼çºõÇ)¿Ó~¶¼^ÿ”ûÎè·ôùÚ%)?Ü:§´>¦|uý²WAó]Í÷mòx®LúCZ}ó¯ÝcqûKÓïVG¯ûšfš¿Ûs%ý·ïs}ŨLþnûÍù¬>`?¶qZ¹çówÆý;Ž»S¥ßÅñãüÜœ+Ó¾ÌÛså¡G|õ/½ãwnÑÚ­¾•ê¶ý»‡®;'çÊä÷mïrª´¾¿µoT¶ø14~⺸3*• —Í•~GoÞ€íOóÎþly¦0Ù‘[ð¶°­3Ðz¶ä§Jylú‹l_ȉv›íiã^ íoõâÖžÀTf{S^œú‡ãÙñã÷LõôžG®Ž¦'9+î@ãuæ!¸ž¶|äe¥rÍõukªÜž+›?~À%äzå˜Tÿq}ð}=o{Û£=ë8öþ»[•Ž#ý9­>&ÿ„ú¾ë´ó"æ»N•ÎSÞuDy¼•‡^qìÁ_öž;´ñdÿ¥ºú´.xÿu÷\W¿[·’?mž*ƒÜ\ûþý±}ê¦Z?8ïm·ó@}ÂóÚÍz¬²Å‘FeóŸO•Éïìwj~˜¾sŠÇ¶øíT™â®¿Êý–×Ã­Ž¦'¤ý”Îyô'Ÿð/Ï`ß×ú>®×)¿©í›_ú=›¿z×ÝäwOûJ$¿dÊsMy)ŸÊþ=ë÷voý¨[~VünM>ñœ4ÏÌnù3°åoæ·Ãuë›› }ê÷•³‰ø}VGÛ'øðs>ù²û½åDó«Ç˜×uô“ßó5¯zâ7w;.`º¾ùw§ƒ™â¬)ï·éñœOrÕy–æiŠ&?‹ÏOvžã•ù°7¾Rœ¯í‹­Ó ù©«£ùOô;î§ž×ßéõÒ<š•öÊLyA­ŽsŸûî—gòùô«¤ïèx\÷þ-ÿa:˜qÝ9ø~«#úœ'Î[çMÊ;ò~ž÷÷É?:WîÍËí¹puô|åe¥ów{:˜ÆµsÕš¾›>3*g1_hªLßÏu?­Ûi¿ª¦·Â§KqÇï¯ùŽ—ýø->å횺Iq¹´î¤yØìÖ©R?·ý™âL¶×8Ž×§¸rÓ«ö¹n¿ëSÞGª;Oë€ã‹ï¿7ßý®‹Q™ÆmznÛß :/}¯–ß7çÊËÊ´¯k:ï¸Lû¾·}hÆÁlqhèû_y¬2åc\9*}~Ú—>åiºyÝ).îø úñêhã@?ë%ËÊó^|½‹þüïkþÄV¶&/š*õoZ÷åõ-ﶺ19Wz½þì×hò*Òøó;¥úçoò‹)_¬—iþý¹2íß컔¯åümù¡S%zÌêØ“ï¾ý·ïþR-bT&={?¿¬ã ùµï¾Ñê‹Q¸wÿ”¯’äµ~4Û±3Wÿðyú+6?Üž+Íóy¶?ém_©¹2õ§ëUË•©>*í£Æ|^qßÐTœô©ä‡iyr0åe'¹Ñüó^/ù}ʃô~mÞ@û/Æ[¦Ê”¯ôßÇöé/o~•ðûd¥ïßôØòÊyÿäL~<ïg\¸­;ÐyölöSZ÷íõTå„þ†”×xäØõ¾î=÷þºæoWÿ9>*ñ‡Ï—Ì•ÊW¯WŸš§ƒéq~5N•ÚGÆ‹Ìÿµ½ÊÇã…P?ãIèûøýß¶Oÿ´ã?Æf8*£}7Uj_ú}›ŸmT*÷Õ?ÿÛMŸ„Éo–ò³]÷ÔÚþ¨¿)٣џÓ>¦)>õR9*S}ƹ/øãËž|ø5M§~ö¾©ÞB¹xêw9¾¬TnœXÌÃw?uùÍ~í'šÞoÿ¨‡øžÊ‡+¡ë¹òªå+T®Ž6NX‡öõçî H{ÕC~Áê¸6ŽËuŒÿv}𧮎}×÷ýê×c.÷µÝ)o(±Íû©ÒëS{S>RÊ“kölñ©p½ãþð?þæ±ïþo·kï½9Wª/4ÿ¼|YÉs}ÏÕÑåüT¸×/®‡—Εê¯Û3<]i=‘u —ŽÊ”OÒêsGeËï™*›=U•7ü¥›½öânﻟ¼ßw]§úúÐÆT¹»¬tÝP^§<4¿WëÏ©²ù]8ŸâGR}N}ßñg~‰ýóƒ8¯)çS=FÒ¿Oi¿–©R豯ûø<àF—î1åI®Ë‡/×cZÿ·çʶ_t|¦8gËÏ›¦ò­åwM•-ªï¦ñ×òÿ ñí)ý„úûÕZžðT©½!wF¥ú®öë­ç•÷G?ö¿{Î;Ÿÿ.‹rX}ˆzüÕ÷›T^Ú_æ{¿£ý†[?ôfÿÔä²ãX¹‘ò Ã,F¥ï¯Unú^íïðð^é;;NÜ¿l¼7´?§ÌÃ}ÿÞF‹¿BίŽkýŽ£r}vÿQÙì†@ïýmOšÏé»X×x¯©RÿuÁ«£ÛÉ~Jõ”›3œ*£o9>àTÙâºËJo^vɉe¥v„ë¦çÕ+ÕkÕÛÜßF¹ÜòoFe»ßT麭ÞǺ¸:Úx<¹¬Ü• è{;Þ· uÖí½Z¼i®<üÄ;þý/Ÿ}IÜÿd†I´ÿ´ÍëHq7Û³=WÞgªŒzíOy<þ^¿©ßÁq ž«lùXSeˆË¯Žö÷Û’¿Ö÷Jë¦÷÷½S¿x?¯÷ùi"Ïû¾)®¶ný¯ú}Šh·}¡÷³¿7¬¯«Ãëö«ë½öz˜ü²É¯|äÝÏ}þ[_ú+±ŽO¹“òͯiÞÚ_ÉÞJûd¤ú~ŸÞÏ~Žu…£2Õg­ëoLz}Š?¤<Þ”½•~ÿ_MõaÚŽäçnãKr¿P—¹:Ú8H~”6n`j—~€4®[¦|gõWõ-ýÖa´<4¨Ÿo{>˜^ßôéÒ믜+}íWóŽÚßk•>okªÔÏcŠã\ýA}Y?Îö\™úC¹áóíýî×ä÷U?ô~­¾`Tú{å’ñ¢lûÔBûËïcÞ«íIöŒvmÊiqÈQi{ÿ>ßû7¿Ò™Ê ·Ä¸m’O©u?½§ÕÉ@×+ã#-Œv¥}|¯”¯âïSݺïç¼mñ,˜üÇR9òòZ?ÔOêËwOW¦xNZg“~˜ò‹íŸ³oü¼Ïÿðçþ¾ãõÚ¿Û5*W1Þ“ÿ-åƒDá§Iõùd¯zþœ›_÷+¾ànŸˆvF¨Ëm×§<åeЧö¬›¯äa²+’?2ù}S¿÷ùiè_´}).™Ö?ý1æ¦8¢íÝÏ_SÞ/?xï~ÚŽKü!ûîƒ~Þ=àíoýý»Ey’ò5ôIýr3\ŒJϧyò÷Þ?Ä VGkÊLíM~AûÇç¯0®äïmŸ×¯Û>ïx¶ŽW½5í+™òy÷ŽÏ3•MO†1ßcªt~8´c’>Ðê9à‘CÿôÑúñëú/L~ËfL•IKyNú]]oæ©r1*]_“Úû§<)Ÿ×žÏó<ïóRžÖºqÌtÞõK{W9|bYÙò––•Éß›Þ/é+)ïI=>å=¥}2|?ýMÇG¥ó¾åÑŒJóT”›s¥ý;ÃŨLzº÷Sާxrü¾´'åÕ¸.&¹vr®t|»n´ºK˜ìöv=tm¿wYé:b<Ýߟ€Ö§¸@ÒËZðTÙâ’ëõ¥ø¬ý{ýoý_ã‹øEýïÂO•ÎË —•ÊãÐ|2î¿§ï)ÓxJq9äÃêØ{^?<y¶:zý¨Lûµ|˜ò'Ó~\M•˜+SüD¹¢žaž‰ï«?È|Aë׬ 8òc·ü¿Ïiù&ú‹/Y¹²ùçG%ñ‹ÕÑÚ³9W¦xp›_•Ö]¶:̔ǤœJ~ûë÷Û·¶õ÷~q1ÇWËOŸ*­O5O¨Õ©œ®Lã]9é{¥øn܇ˆß'ÿ£lñàQé¸ñúä·YÛOïïÃû¶z2ó8Ÿê9|^òç77lz ïçøIñp¿O‹Ïóþi6õ˜¤WoÏ•¶Ï8ílõLPý ùñÒ>VéïíùýÒxSOKã+å6»&ÿRó£s^» Ý_;¸ù5•'êÍþ}¥'Þ•- [ õo«£­³ÎÓ~×#>ô‚g<·÷ýôOÇE’ ûäóí»Ç‘[}ÕÍÿè·žÖìþ–4*Ûº1*Õ×|ß¶£•M_„mý•XVZŸ“òR¿·ý`ó3$ŽJý>ßóÖk8Ÿ.š+Ý¿#å…·ý>æÊã£RùèúB¥é›æu´}+G¥þdǽúœ¿w|µx¶#Õ›lÎ…«£éMq¨eåÆTéºäø°ÿ[þÏT™â5i~6y0àT™âsm}•)ß'ùyš] 7çJýV­Î@ŽJõ’Vç>*›ßŸç¥}\ïÒýÚ>ÈËÊd‡Ø?ót0wê…Ûòt¥ímvŽ\V6½nY©Þi\èRØö½€ÊÿÔŸ¶çð©ÿ×÷¯uÞ¶8è(\­¿Ïžnq»“oü6/½_Ók ëªöä~~ö˜ÿ•Ûž?ôØO|ù_ò_c[¹öËRn¤ýÀ[È\¹³„þj¿­ëoöç•#Ÿî:òà{ÞÁTyѲ²å›Ã¶?ò€Se²;Ú:"Geò×;ŸŽJåN’sm?òöÿ{¾Se~7¿SŠ»$&ýb¿úŠuí>ç«ïÑò¡vÃôzýúÕ#õ×ù{åCb²»ô49Lu`ú[½íóïûƒ_þâÖ.ývúÕdÛç jߤ¿ë—â@¶×ïšöQr¥8ƒ×§}ÇSþ~ÊOG¿ôèq ¹¬Lþ„Tœêš’_²ÅÍ¡rÜqm{Õs\ÇÍ/°=ÆAc{ ~PçCòG¸î¶ßO•Iò¼ÏKzIÒäÆTi¦­ëÞ'<ßù¦\v|j(7mßæ\Ùì1Λ—äûµñ8Uú=Í›Ù'¿l>|ůÜà?^õœè¯±ÿR×ë=ŸìŒ–O ×=ßò‘m÷OóÅùéùs¯úŒ=k{3ú5)ÿ-ém©.Íçk׫ÿ$¿x§>O9Ûò£æJϧ:ã”_•ìÉ—ã`ÎS¥ùa)¯Ú÷uù§»þ⋟ý¶æ?õ»ëOLyéïà\÷1¸<묳[^r˜G«cÏNQ£?VG”?mŸ!êºâßiðúäwHþEûI;%­wÉn?ëÇž|³Çúß9‘´Ã÷Ò_¾fÜaßz9Úµ:âºd{Ü¿Øë­w³¾ížöGò/¤8Zú®­†ç'ùämÊLÏoï3*S{’ÿ¥ÏÊÕ×wò ö~ÿçS}ìºþHÏk‡lŸ©L~ûßõÚùa¿*Õƒ?÷?žð;·xâš}yr®4¿àÔ²Ò<<ë5oÛ¹÷9ýNÉŸc;[\fªLù]ç¿à9?éû^ýÈéï„§xͺí¦öäl«Ó›àr~g«’¸ÈêP?دN É+óƒZ½Æ²R1ùaÝ_6*Í7t·Ú˜*£IëÔ‡N,+mŸþ¿‹aÊ KvoZ¯§Jõ¢´OÅö\éùÔŸèûš§ãûx?™ÖåÉÎéJßÇ<å•ñ±”WÑöû†ê+RýFýÅëÍw0-µ7­wi½OúGºÞõ¬ÕçL•3tþ˜×¦e]»ÁõØß/ÆÁÄ/µo=`ÊÃOzínvÂTéõê!-ßi®œ§Ê§]Q9Óþ‹Q™Æ_ò‹ú^Iqýu=¸ÁS¾þoø{7oë”ñ‰ã£ÒóƱã˜ïàýŒ·œ\Vºîž<]i]FÓ³¡íiÓïžê¯ÓwHúÚ)¸=Ì&'ä¨t×ßœö5–­® ú½ÕçÕSü>ÎSí õ>çíYÿú/w¿í¯=¡Í§V_4*Óõi_ý ®¿ÉÞky™ÖëÚ>ã@þ>­GêG^oœÊû·}%Gáêˆ÷Mzñ)Ïo3_ô"¨Þsw˜ü¹ã[û=¦é'~oõ(Ï[Øâq£Òß7y ·çÊTÿÁß™jíoí•-¦}ñ{4yÒüÜSeª—c=jõ–)ÿÏñ¤=}_ÿ¶ãêˆ]µ×>õ™´WË„ÞÏùpbYyî^|—Ÿùûëµ~ó9êMŽãVÏ?*µ+µ•«ŽƒÝQé:”òÀ”?i]vŸyÇÏ·½­Žd̶/LñÊè7-fYé8TnøþÒ÷3žd^~†´_ß#å])'Ó~G©¾!å›ûýìïäOŒyk¾lù£2å¤|ä¿oó¶ßO•¾×û}Ì£´NïIJò‚©ò¢¹Òý@ô{/TŸq¾lubÜÏuÈ÷ku¦°å5ŽÊ–8®Ž¦?¸ž8ϵÇ}í}ûµù—•ÖѸžLq©”‡¹€Êyó¡“~‘ìÃ4Σ=;*õ#¶¼©Òï­}e¥çwG_ý7/~Óý¾¹É«T¯-›+“_.ÅïÂÕÑÖæ_ƒ)¯ù‡ ë¤þÔ´Î]±¬LyB ¨ýì™äÏ××àºêý¯ê!þÞ󇮨:}£ýQ««÷»égö¹mÿž«þ›ú9ù“ßMy¿7çÊÝ©R¿Ú.ÔïšìwõQýH®‡ÊQåZÊWMu‹¡^:ê{)¯ø¼ãyÁù÷Úlþì·™*gè|hû´.á¨TQO°Ÿ]ÛßEš+]_®Çúg›^3*Ã÷|Ü›ÿñ)÷lu‚ÖݘLûAýË~ó|ÚUy’ô[墿÷yÊuç—z‡z—ûþè¸&?sªc\·NËùª¼lu’i]7n¢üYÀt¾é]Så…0Ù£ÉÞKí‘-Ÿ†óÉžQ¿jû7ŽJíaý~ŽÏ¶?"ç•[Îí ¯µýÊÍ–ouºÒïÕäĨô{ø>ŽgåŒörËá½Ô»µ‡6¦Ê¶O2<íõÏT˜â¹ú‡Òõ)Þ›ö—[÷þi?;ŸŸòÚyî§žf¾ ×Û¾ô|‰þ½:º~0­Åkë÷¼Oå¾ÏKþí¦O•­¾ºî¨ßøZ\6}0P»§åA–§x>Ýßþu¥|H¯OëíY-®¨_>Éß–w “›òD“ž”~/“üQ^þ¯÷{×cúBã«#¶×º(í¿£lq¬§Ê´ŸK‹_Cï·n]_z^ÚOÑëÕwÌûÕÎIúÝÆTybY©ßúðw=êFôÀ×6žû)¹n;oô«HÇÅñQ©?Dÿ¸í“öCŠ_YßÚò*ÇÁDß›¯œ+[žÚ±JýÛÐq·»¬tœ¸Ÿ¹ùÝÉ/¨¿F?þbT&½ÀþÔ¿Ö¿-èú6Cõ`åœ÷kë¨ïÁùæ®\ýï¸É©rs®LòÒxÆÆTy|TW6/ÏyqÎÖ ÿöþînM.RŽú}µóÚ¼•mß ¨Ý4O•ÉŽHz{Ô·FeZWmŸqÊ”gíwOñJÛßþ¾Œõ)õù«£]Ç}öôôuëE­«0ÞÁõ«cßç¥8iØßcu8ŽöµCÒþ ÒëSÿ¤¼cëiíÏ»C¯Oô~©^w®\©>`ßüFÛsøõ_{ßçÜíƒþÿÞõúå¶çJ×ç}ì‡^g9*ÝGÉu¢­ks¥ú`Ø×8îãbœÑu_ûEýØ~3Në:ìï·çÊ”Ghœ6êÛP»º½ôzý|-ßúþêÅŽTï쉽ñÌ{¯ŽØ¿®£i¿Pý펯>“ât›seòä}'œ_ê±­nªG§8†´ŽâÔ±ÊuýžOqÔÓâZ£R{ÒþluãðлîwÅ—¿èåmoL•)žØâ6Ð~Lû?ÄüSȸ_1^¡°ÅÅå\éx6.ïø´Û¾°å@íVçóβ²Ù¹£Ò}I”—öW[_–•×åø¾Í;ýÐ|êSׯx¥\Vî«f8*ÍO2Év?w]7ËúŒãËJý ¶G?vå‘ïyÍ?Á[¾ÏC¨_D¨ë‰ãÁù /•I^%ÿò#'ùjÞŽïo^ßQ}H;×ß·<¾©2íÃÖâì0Õ¤}ͧÒÏwô¿yôò/}F{ŽrÏï®ÞÚäܘ*õ'ª·ºßÎbT¦u:­-¯gªlûÁ¦7Á¦÷AåìΙJí+ÇijýÑêœy~ÚÿW=°Õ«@ëµÒ8Mñ:ýSejߺù])¥ÕÂí¹Òó­NpªLõb~_×+ÏïÀô~é}[üú}Óßizù¨´½Ž¯”éïS{ZѲ²í›[>Üš*S}µß7íÛnÿkw7»ú¾M~Aë—¸ßê˜=õÇßõ®ÏºÝž›ö u”{÷õ}½q0í$íú ¸_]½÷%®µ×>õG×á  yÌi‰4Þ”¯i>¤óÍï1U¶ïØä3çoü”}ûyŸ<ÙÚÑúu®Ä¾½öïÍ.+Õ‹Ñ_VGóS'ýÕö¦u;ÖcAíû&¿÷¹Ï~r_Àºã¨åIö.ÀX—:*Ó¸óù§–•ÞO}¾µgTú¾;ÐþMíMõzÚ‰IïHz—þßwÝ<ß4ÞRÝ®ý»noò—§}MÖÕ ”ÃÞOÿ´qª{—kvкûñ¥8fˆ[­ŽöS^eÛÏßLû^¥¼D×ÃÛ¾çÃ/}Ú»ßО›âm¾@åEòÛowÛ~Ë{Þø‡6¿XòãéWsž¥ì§ÒòUÛ÷€êµÉ¬íùÃï{Ò}>ç;´¸Bª HõF>G9dÞx²ÇÒ>5úaÓ¸Nzx«Ÿ©\}߉©2寛Üò«½n‚á|ªhùŠp]»>Õ׫߭ë§:ô²<ýßžò ýïÁOú£’Þf?§:ÇíYŒÊàgõhzŒßÍçûþ¾×§ü#ýoÊs×íº^x¿T‡°O¾ýêØ7/cÝ<ßÃ~;ô-?tÑ÷ÞøÑ­½æ»˜âsS~”ïŸòm<Ÿäc:o{b¶¸ã\é÷OrËùšþ>IʃVï‰þ°©2µ7åå§u$Õ¹hW¹~¶ù gxø÷–ϾïG6î£äù”äyÇmÊ#Lñ4ã¹Ê½—árÞçµûñü“£ÒyeÜÖë“_)Ùóm~N•i}y´'ÙÏþ>ͳí¹ÒóM?‚úwGþâÅãÿúeq}vþùÞŽÓG•Öœ•ú±Œgê_õ~rgTWMí3ïÚçõ~©âIJRÿ²ù¶çø¨|L¿·½æoM•Ío>*õKù~íûsþbØüíµý«ÃïºïßµOë÷‘Û~ù/ÿÊMßÑâTqŸ©Rýßß+߂ݿ÷>ÍO7 ~¬Ô.åïê˜VGW)ÿ11Õ×Çý,ù½q#óvÚ<3ÙÏëú¿í÷–ß7Uîž©T²¿|õ‹í¹Òüó•¬ÓR×_º3*oÊý­­JÛ§ê>?®ç‡~þ+ÿêœoýÕ˜GµnþIËó†Éá{$½’ýVGÓ{oèûþý=¿{ȃÝ{~ÓûGeÊ“Qnë/DßiõÃÉO‚\Ü{ÿ–¹¬<>*Õ»ÖÝ'îµßï_^^¹:bý¾ù;g½ýòÇ¿þëŸýPÎgå·ëa‹·óûfM•‹Qé¸kñ{Øì»Q©¼p½ô¼zZª/Oïçïõk´úQ™ö¹ò÷®ÿ©žÞqâyï¯~àyõ­6`÷Ü?é{)oÐuÖ¼uÇÓö\Ùê¦J¿‡þõý1[S¥þóÈv—•®ŸÉÓâTÐ÷MyGêîO¾_[W`ÓF¥òÆûµå9‡|œ/°?SüÄyè¸2¯¶å)M•­Ž˜öøûLrÂóæ­·ûAÇ_Ë •®^ŸöSlyþËʶì¨Lõ|-_¦}j“>­ƒr;äƒ]{¿Qé¼²ßÏúäñÏÿ£çŸÛóg ýëy×eÇ—óÁu%åQ§ñíõ‹Q¹æ~¬}þÚ¾u÷Çõz׉6~§ÊÃw»Ïû¿ûÿÜþî²íš+[þMª[Hq'ç­ëyª›Üœ+õG›'«\Ç?¼7Ÿ”?îäs.™+/œà(\q¿+íëv–p®Ü–SeÚÕïa~€ß£µúüv=íWo¸ÙsÞò ßö±w´ÿOùä‘S¥rÐq¨üZÀèן*7gßìQ·|÷ø@{N««ñ¹Ü'ùçÓ:÷ˆi=6ûnT&?R‹·ð>¾¯ò¤Õ¥Jßòç¦JãÛ^߯¿w¶Ÿnö+l×û>Såºþa¯?k\öÉ7<ëHûNúå9¿:Z~ò¥ùáà9ã£ÿð±ÇnÄ~hy£²ù `ÚG%ýÞïæùQ©~Óê~ ý–ô‹YŽÊÔ_IŸKõ©þàè}Î=sÖ­îÕänò×(ŸRýUzÏèïçy®;)ßhÝ~õzשu÷•J×ûÒ:iÿ¤üóä_u\ûþIž'ù•ôþ¤ÇϰåÅOpT¦º‚óÿüßðÒãÚëŠßÙç¦yóú¦JÏëßž+­ãX7/7é=ÍoLûŒûyÿOjy Ëƒ™Ú÷%•iß›TÏîì¨ly©ÓÁlù³p†ÎwŸo>lje¥ùŠÇ—•~ßVw=*/)Þd~XÚ×ËïÛÆ'\÷zåMŠ›«ËÇI¿Oq#û'Í·­©²åWúþ°Å`ûý\éó”¿þþIJÒùíýZ= 4ÞØü©°åQÀVØò8`«£å}Óó­?3¯ÇùÚâ0Ôi¶û ÔHTOÏovêT©Þ×ô¼q0[>"\×~Nz{¼í_ 8U&¿P³aòã¤ïçó¯M•-n]Ï.š*Ûú=ïý¯Äõ©~(Åm÷íýyþºõLóTé¸Jû#¶õqªTnÎ-|èµþñï}©ÿl-+µgÛw•»S¥ñLëm“¿Sû㲩r žXVzå½òÉû·Ù„ê—ÊCâåM>Û_ÊcÖŸ½xûæ\yø‡ŽýÿÿöýöÝw¨å‰-+}®íô=íGï~X®Ë­Ÿ ¿O~zå“vIòW¦º¹3*×­ÇLv|ò ¤ó-^MûSqÊ'·ŽÄñ¢Q»Ïüƒf'r?ÇÏæ\¹®ß¡ÕSL•ÉÎNv²u8iŸ3õ¢Ã?öÄüØÿ"ÖK'û¡É÷À;ýño¿ôþwûȽ_‹£L•Ž»¶Ÿ5œ¡÷ku£2åw¤¸¯ý›ö}Ky*Q¾_šç©.%ÕÇ7¿Ó¨t^´yS>yÚec:˜Û3•È¥½õ1øíV‡ëÎÞï]·]?“_IyÄù½ç«Ÿh?*”£<§ånAóí•êåÉ~WŸ“-ï„çÅóp›ªg¯›—B{VÇÞ8QoWÞIýaž_7OÅ÷Oy±Î¿äïF¯[{ïŸâ¶‡?ôÐ/¼ÅC~¨ý]Uç±rÆùg~©ãÔó'Fe«›]LO>jÓO}¿‹–•ŽóÅ€ä¼ö]Êã`œ¯Ž½ïÆõ«Ãõuß¿kç:™âÆÑZ>×kO$¿g²[RN•É™êˆ×Í{iy8¼¯×«·5= ¶|‡©Ò﫞`{¼ÊçKß/éµÉ_åóÍOõéþ-ï{ OW¦:Å+–•~O¿GË+û§zéô=Ò÷s|§üÏ´@ö‡þ‡Í¹òø¨l~ùe¥öªý­|Ûž+=ï÷l~§Qyá\©¿ÀõÆß»~y?ý\®o-Î?Un«ÜG/ˆß¡Õ—,+õ ©O&?‚þFý2Íß8W¶ýKä¨ôþçüÎsÿïãyÑßàxlßc®Ü˜*í§æOpª<üŠýÂí=¸Å+ôëh8ÎÔ㮆~¯KÈ{ëGWhó&»,åëøýCؾ«–•ŽGÇOòÛí¸¬Ü•Ûseò/ø{ç‹ã´ÝT&DÚïI9—òb=Ïoþè÷=ò ÓÏ\vìƒó¥ŸjϊΓ —•—Í•ÆýÒãñ+®ó›],+[8t>9Þµ›”CÆ/6gÈyïç:g=S‹ãÊø½G¥ï›öiiûùò~ôÿž}£=e;w·*Õ/á¾û¦košaÓ§FáêøOÿ½3õÚ–_:*£pŸûì·¿XÚïEýÀuíÆÿø '_óùßÖþŠãȼåhCõÝyªÔ¯Òê$䀜?ò¥<ûM÷ÞZ».Ûvëº;´÷ž*ñO­ŽŸæ>ööÆÞ}Ôë7¦JåMŠ#ª?(O_-N õ™/k\Ç|ø‹[~-Ï÷ýÔÇ|¾z»ù3-ÿi®Tž:ß6 ó_;¤Å þgí¬”?éúàïOΕêÊuoù>¶Ïü.ë_íŸïáþ©~Ãõ´é3ËJô»ÕÑúqSž£zj’¯ëæ¯Èä/8rñsÞ°ó”Ÿû]Iã4Æy¶áΨܚ*Õ|ïäws|¦ý|_ë¸ü½qgï—ònøÙWÜúæúÂh¨?«ç´¼çQiÞM«û€¾·þeýóÊ%ó,Õ;• úŒ´:„©R;QÿŒÏs¾jo¤úDý£ú•Ë-zÿôýR]‘×7¹ ›?vTj×nM•ÊæAÒ§{ÞßTØ®gžîéãûíâíþîÓÚìU¨žãyãWêA®3ê ÚÇžWîè?W¼éßýò+®¹i׫¦Jõ?ý ‰‹Qé{&?w‹ËÀíù`ê¿ð¼íÛš*wF¥×·újž—ü%)>ü«¶'Å1=ïï¥ëíq¨>ò«]Ÿ]ß§úcç›pçX¥úˆöBÚo@ûFÿÌLõŸ¶×ß{¾íÿÎõÊyé:Þž¿¬´ÿ]GýÍ¿%ýÝò¼äÖ_üô—-+•ËÞϼõÔ^¿ÏsåÖ±JßçÈÍéüëų[?ª/E»}®ôzízçmÊp\+—[žÚTÉïWG[7wUºþ¨7¥úoý—É9*[2Îéx>纽ò¿þCÍOâs´Ãԧ׵˽ÞýÍ<¿}¦Ò8¨íá‰e%ýÔüeqÀ°¯ÕÞ}7g¸¬lù\ï|PÕ3?nw®t½pýjònÏ•©.Î~Úž*Ûþǧ+}¾íOö‹òÅqô•¦L•©Þ!­'-/¾òÚú£%œ WGߟ{T:žðŸìÝgs®ÔNj~!xø1ßóîç=é.qýhvö¨´ýÊoåŸú`ògé?Jö¹×·Øœ÷û¦ühûi1*ý{sŽó÷Ô_’œÓ¿–ìýkÉ¿¹Ÿ©`?ê§0þe;ì§óžñE?}ÝK®÷ RN'}¾ÕŸó{Ÿ×âŒSeÊŸ öOßòûßç¼ë¤öùÕGßùÎýó‹_÷YÍ/8*•ÓÎÛTNÛŽ—‹çJÇyËSœ*^þ;_ýÖgÜÇõlu4ÿŒóôK§Êº¯‚þ#ÏÛ_Þ¿åóÊæWŸ*ÿÏÿçøÞö»´¡ï•Ö[íÖ©ÕÑô¡ó?þßÎ~é'2Æ!gŽgåcÓë·*ÕË[÷¨ä;íùG¼9º:b}_Û‡ :/ô:ÿJý»©.Üøcó‡q>åëª$»Ã:§/Lþ8ïwjT6}qTîÀyªôýíå’~æ#Ç_sÉ_.þ®µS½{÷t¥ë˜~Ê–_<Lo?¤ºTíö”‡á8$Ü]Vªošl݃ë¶ÏWOOûU4?ÇT™æùt‡<»=¹£¼Pñü>ù½×úyGáêèû+Â͹2åÛú¾IßhûEL•3Lv_ÚŸ"Ù…_þžþnúˆzcÚ§ÝqöHyÐ: –7:*­‹ò|³C ó#ù)íæŸ•Éÿ•öÑîPŸKÜœ+3hÿ·ý>–•è «£É±Þú¢û}ý¯ÜoOlTîýŽþi㓸`;Ožè¶^8ý»ÍÛè…I?^wÿHëTýÎΫ͹²éS°åñAïŸÞÇ÷Où0žoõÂã`&ÿZ²£Rÿ'»Õë¥íKù0~Ÿä¯lë\ŒJו“Ç*}žrÖç+Çü>ö·ß9»:Úz4Ô§ÛêXæJóê×)î–ö[^sßÕ÷#Hõ-ißöV³\~¿Öo0Å7Sþ¨ßÑùc¾È ®w×[\ú;¿ÙƱú¾ç“ß_.FeÒ’œmy€SåYþüÿÉZ¾eÊëVIq¥—Lûr'=¸éEÐ~\÷»¤|Ê”?ów¡z“v‰v°lþØQyÑ\©ž«¿¸Åû৛Ͻ€öõ7-Þ0U&9¹ß~ÈëÊ_õûä÷·_/XVª›§©Üô~Ú;@ÿ.~Gë;´¯=ï8³½é~Εæ—0¯O:®C8Ì[myµp¿õ5åa¤üþCßøUßõäÛ|eô뵸Ü\©žäxPŽgTIù"ÎCýÀ®‡Îõ@ûÉø¯íwýU®$;Ãó[r®Ü•~çVoÏï£ÒçoÏ•ihvlú íñ¯ÕÑÖKç¹óF?KÊ+iy+0å9“·½:š}¯_Ûüåæ…ä…ìû¿k²Ï×mŸŠ©Òyçyý2^¯Ÿ&Õ3Ú/ÊUåŒr¶­œoõ.°å‘À›ÞíŸõmúêöžÆ5R>¢û §æo[¨½n·äýÎù–ùÊûÝô­]ÚqI¯Ú‚­^`ª´_õ«ûüfÇCï§Ü×®MËuB?vÊSl~ÖQyè±_tÍyß¿Ñìaëuô¨ùÝÒz¤òtå‰eáÞzâ¼9ò3·ø‘=ô¶Õ}ö®ÓŸmÝ‘ãò^Pÿxú½LùãêQÎ+©xɨôþúÓ²ùsF¥z¿ãÙzÒÃ{㱇ÌïŠù@îÛ­0é‹iÿOfÊCLqçæ×•ÉoØÚÅó_m_©©2í›ôoåmŠ×ÊTŸ˜ä¹òZ¹éý•›¶wgT:Ì«Hu£Æá\ÔwÐymûµ§¼¿ëFº^;ÂùÙþž8ímú,ô~-¿&}$ÑçKí8óåZû§ÊWKyÏÆ´¯ý}Š£µüÍÀ´Uû{w£puô}ÙçJåöuÿÇÏþï¯È›ó×›|lqmî“ê•W-î=LÛãïÕ‡<Ÿâ¢ëêW^ßâ rªœýn­n6ù2WR'»:òº²ßû|ŠÉŸ’¾£Ïkñ+è>9êû®K¾ßIOiù}£ò¼ë?á+wî·ã|NõAê#)Ï~·_£R¿aû»Ÿ0}gõQ¿ƒëë†í3/Ï盪>bû•O¶·ù˸ÞyÑòt¦Jãk®'–•ÊSÇ]ÚWaŸý`öÖmü«Ã}Köø½”Cúi“ßKÿ¹ß·ÕGÂ&{åÿÓö̧ÉÕÿ®„rb 6»vT¦:·äÿtܧö¶õlTºž$¿JË÷ ç§JÛwôÎo|Ø+æëNŸ:b€ëÏÆTyã;>éÅðñ6{ íGdy\úù.†ÊWçg«Ï›*•WÊ3âÿ;ñ~)¯Çû;ÿÊ[ן¤_kWDÿH¸ßÖTÙ®‡ëÆ “Îyjÿ¹žy¾ù `òlL•ÚÏ·ù—{ÿÖëïóĶï¢~à͹Ò~ÆÎÝ[xÞêèv1÷ÇÐ÷×XÂQé{¦<ŽÅ¨Lu¹­®k¯¸x>]õ_Éï“ÕìÆ©Òó'¡÷3žrèMg¿ú»>ywiq>¸•Í¿¼ÏûíÇ7²=É/“>½ŸýÞä%´ß}ïçùTÏÞìd¸»¬TÏÑ_ïûhéowžîŒJïoü å©9>œG>ÏþÑÞIuÞÆôç¸^c4½Çüý~´ou\»¿TÏJu6©^_¹uøVïþååß<¤Ç§ƒ™öAH<ÿÛ~õN÷ºÛ´ù“Æ{«³é}S·¬<ô®Ÿû©#—ŸÕ÷y†öƒçS=”óKß}O^¨WYWÓäù±ÂÕÑçŒõ·P»)ɱTïæÿìå[^t럻κûF=Q9àõÚ-Î3å€~Íœ+§-/g®´=æoÚ¾oô‡K®÷}[ÞÑT©ž˜öWãbu´û¸8~Œ çÞ™+úÇ]ªKOù)ŸÔëíä?·=íï ´Áºõ3Þ_yáû¦ýƒšž0í«\hõ ^}žL~Ö¤gÛþ6Ϲ>­/©.9­~/ç}Š{9_ìÏ´ODʇØ]V¶ßCÏoÏ•öo³‡çÊÍ©Ry´[ÓTéõö¯þŽ”ÿžæ·ýáõ-_Š÷µ?œïêkÊ çŸíó÷'—•È÷&¯µ÷}¿¶ çÏÿ£¯:zþë_óz“ŸQ;æ¬s.~ãÃosvû» öç‰e¥zŠú½ò÷ЫÞtÓG|öëã~’Ú›seˆ“®ŽfWÛoëÆRþv̕ɚä}òŸ¦|®¶Ïבê2[œ¶}•à ×Íc³=~ŸÅ¨ä÷ûî¡\p\xÞ~\7¯ÖqÛüW£rÝübίŽôœ}÷áþ{÷KúSÊ[q|$¿^ÊOX{¾J߻Ճú<÷uI÷kãbÌôùGo}æùÿôÃGã}“¿5íÚâç0ùO›œà¼ï™ö›µ=ÆÉS?º.6¿Ã¨<±¬tÝÔž¿`®t]v?,ó®ÜÅû5¸<˜)ϫͻQiÿÚ_É¿ëýR^ròÏ´¼Whþ̺ùIÎùûíÓ•­®uª\7¯C;ÚçoΕɮÖo«^îýÔ÷Ô›]³¬Ô?tä?Þóâïþž‡Ç|¯öw±§Ê´/’ú¸öSª§K~«ÇHõºÚëúW“_.å7´|–3•Î+çaª/nñùÐþäÿMçýžŽ¿ö]óïÑ>ǹýÑÎóü–78U:Zü:\w¼ÿñQ©ß¹­K£Òú³O}ÀsöôYÆùÞ}üɾQ¯÷úd&Zˆ/ÆýÐíß/٫ƽÓüp<9~Ú¾3£ÒuB¯þ'× ÇW«W†>ßñÜ®Ÿ+]Çœ_Ê‹TÏh~Ï&{Øç¥øaŠ'ØÿÊë–ïÅó›¼ç~i}u|þµ'-ê›>Ò¾{ÚçÃ:­K–•Í/8*m·u]ƉÔ/[>9Ôo™ö³r¶=‡~âïúe/¼"æ·µ¼«Ðަç-+]O“?7ùüþm?È©2í Ööœ+Ï«?þç{½ãeü±˜—šôkçá¡^pá/üûMúþ+0Ù¡êÒ÷oëý²²Å™áñQ©÷ä¹óçás¥íTžøýí·T'êþ[S¥öµùb·³n´½ûÈ' õ—שw8¯õ»4½mY¹=W¶ó¼‡ö“vùÔ~ºd®ô÷Éþ2o×öùþ—.+½Þþôýœ®{^ïýÚ8€Í•>OùÑäÃ|0]ÌûuÝòüÖ9oûü^ÆÓãûp¿§ýíº¤žkÿ›«|lþ„Qi¨ÏóýÛûM•®›þÞï§že¥ñÛÆíñùŽíhÇ›×;Þ}^ê?ÇKOÐ÷kã…û»ž*ì¿ô}š<˜*Ûû…ößUOJzܰùýçÊ”'‘ê´K¼Þõ?åaù|횦ÈQiÞ_ËK‚7ºõ—~íG¯ó†¦9ïZ¾ ô¹ÉNtÞx^=î^°õÜÚªÔÞ‰õR£ÒïtÙ²Ò~Mñ ïg¶¼œQi{¥Ïó÷-¿ë£^<*Sþ\»ß¨¼tªLygÎËk`óg-+›ž5*•‹Žïö{Éó”ëúg¯œ+µ÷<ïxOõSeóGÂSËJûw¶üâc•Ûs¥z°çOûþ®Ë¼ßêp=Þwäîê¸6î:*[Lùå©þ½ù ù}ªkñG¨¼mõySe¬ï‡~ç£ß7Å7œ/©Þïåyý;Þßþ³}^¯¿Úö{>å•¥<3å½ë…þ¸´¿kª[NutmŸÖ©2Õ»´y2*]_Ó|p}Iýáý“?%ù•¼ÞõÑñ•ö'MùSI(Ÿü½þ¦ÁeeÛ߇öØ~ý~¶Wz«I_¸Ñã¾ë3žý·¿Öü殳±®|Yi\L¹Òü¾£²ù‰çJŸoœbs®ô;èÇÓ? ýäóµ§ö§rÒûë_²¿½Ÿù‡ßô»O{ÿÿ¸k÷Bå«×§zå㽡÷sþè÷0?§Ù#seÊhù s¥çý;ÆÚñƳÔw½Þqm|G}Ô÷Q8>*õ Ûa}ZÊ©æ?Hušöãî²Òù´)G¥~ríåKð‡Äüxå[ÊW~¸ï“zkÜœ+]7ŽJÛ—úÃqa,F¥þÖüø—Ýãs~â—¢þ¾m‡ëQš¿)MýÒóMäù-¿*—½¿óY¦8«¦}©.áËJýà)~mûìoÛã÷Iù9ÉÞJù éïU¥ýAÒþe©žûðÿÜøÀòñÓÖ½QÙìØòDGezÏ–O°åÅN•iÜ7;dªô}õã¤x“ýé:zöç~ùÿ¾ÛkÞÞÞËñ“äý˜âÿ7|Ðe·üÇç>¥}?û›óm½ÔÐê Fåו—Ï•Æ{ì/ã¿ú}lÿÆT©^¥œ²_ו7Ý£þð?¸ÙòR=³ßG{µÙ÷£rž*ÕÏ<ïýÛó¡ú±v‹úY«s˜*;&»Ãç™/sñ\i<=ϸhËOš+›^3*Õ}åâ‰eåñQ©]¨vÕ²ðÚ}»+WGÌ÷×?ÕìXh{޼çÇ>ïKs~ë7ïãyïÓô¹2Å÷šÒo1×óêÓ^¯þ|5lýœöuHú¸ù§þ>í«æ:Ëýšža{ŒÏ¥|×u÷jûKÑþV?:Áq0“¿Ú÷ñyΟfr×›æ×€©~ÃñçxV/¾Í­¿ï~ÿ±ÛE=ȸoª3Lq‡uëngÊósRý~³h¯þÍŨT®)§ì÷gç÷-ߦ¸FÔS¡×«—&;%íÏÑòk|_èûþÃ{\þïO>ïë}|Žyž-^õó} Lû)¥ýfÒ¸iëL~Î+§Ê ˜êC'›s¥ù©.ò?[ƒ¼:šÞ˜êù鯽û¨§¨Ÿ^±¬ÔNRo»hYÙü [•êËÚ=ÚÏÚQêq¾ý´…{ýŒÜXq_á¶'L~­6îaËKâ|Z·w­Nº~¤üÂ8¡ç“’ôД‡–òøÎß©?û¶»G“ãÆÃ¼oÚ/#å ¬»?Hªg÷þ-~ ½¿ù0Ê{Ÿ§|3Þü¨É/å¸j×Àp?ýʉf·/+n¼ÿŸ.zÙ›ãßåNò ùíášyp«£å3í.+}®q-ýÚÇ~_ýš-Oa®lûU ¸¬Lû[È@¯7>~ä›·^}ë/½nû»`^'ÛþfrTê§Ly¦êE-/¶ruì·I´Û穲É%ØâûSe²W¾B{ï£<³)ß/éw-Ÿ¦}Í”WmηýªF%zOó7zó‘Ï:½ÿμrN?›þFçm›g£R¹à¼õ½É'Ø{çÅ‘oÿ®ÍKÞvÛ¾/;Ï;ç‚w~ë?ýãOÇý”ïIOhzlãzT¦ñ•Öóuë:Ò¼lëù¨Ôž0^üa­¾Àº,¯×ŸÚÆá²rs®t\7?ì¨Lñÿäôùi%Ï·õï0¥Ý“ÖC×S¿·í½Þ˳û‚°Çáî²2ý6Îaó»Â–oíç´/_“o0Í›¦ç,+Û>!£2íƒÐâè\o>“ý±»¬Tϳ?WÊIÇ¥vÂt¶} ¡¿O~Ý´ï@Óë§Êã£òð{^òÔ÷|ù;z¼ÚO-Ž7*[|vTú¼ËÊ&'æJçY‹OæoCÞgu´uÌüã-O]ŽÂ}ÿžöÛ^{X§¯ÝOf®ÜOÄoº÷{ó8R½‚zzÛG‚óóT©¾³Ï> ó]á=¡öÊbTºÎI×aëo7&¸¬Lúa‡p]»ps®tž9OÖÍg—ê•êízÔùa={ŠûIåã ^ö¨}¢>çyß3åÜþ>Úý·Ï¼ºÉsã!΃kæJíYÛäGã|Ó>ä//lzH« ‡©¨Å—§ÊdϤ|複59²¬t½j~¾©Òç'?Ij_’£Êiõb™ü#Í…~¿èý¬× ~ Ö^óƒð+´| ä¯·ýÉ_ŸÎëOHõsÉàøRî}ºþ‰&—`ÊwŸå†rP9¥þe³u\öïåËJÛ›êy\ßOMž,+Ž7ß/éê-Ú›ðø¨ô|²Z½Å\iûŽ|é9—¼îÂïhû^¸~?¶Ÿ.^V¦z;×Wôæöî ç'–•ÉžOù<Ž3× óË­cKöË畾‹Ò^ϧøwÊ_Iù>-ÿÇöÁ´´÷‡)N`þ«ïÛ•³Êè'†Æ1·çJí åVó#.+›s¥öUóƒi½„ímöÔT™òÅZþÃt0“_}1*“žà÷qvü4½pY¸:šŸËûŸ:Y¹ç×hòƒö§ñ–üwü~¯ýIoó:ŽÆ»·F¥×ïŒÊ[Vžš+w\ rÞu%Åßm¯Ï¿jªäû÷}àä¨4¿Þq뺞öóý”{>ßqçõÊŨLùéÆƒõ3©ï¦u¬éçÐyîx¶ýŽåRóOÂC×¼ÿ›âžOèõƒ´3å'kg:R¾p‹æ?Aå€þT/¹1Ì´¬ãF}m1*µÌ ãdu´~ÐosôI¯zæGnüå-ÎÙäõ¨Lñ(õUýûm@Çé~~÷uóçR>\ª÷hõ©\¯|Tïó|ÚÊïôÔ¤×&¿¯ó`[.ïÓÖqžïyåÓºu§çÝõŧŸûš»Æý÷ýNúӛߥ^¿ßþg«£ï¬ÒukgTÚSeûýéJÿn[¬ß[V:®£_kªlñTØü"ðйR´~×½m9*]—õÃ*Ÿôi¤qšæ]ÒsçêË)ÿ-Ù›¶ßöéQOiùè<ÿPJŠ7z½ùæK¶8)4>¡_2ÅUÏýÞ|ÓU÷¼YÏÄêûôÓža½\ûîËèøJyd)Ÿt¿xyòǦ:ç•ú¿r"Õ¿ÛŸ)_?ÀÞ{áoXÍo±9W¦ýiZ^5Lõ:-_yÞ×ãë~ô{í]·N$å§zO× ãžÉï”òªRžUz¿”wœê“ß%ÙöGª7n~˜ü*‡Ç/]r§§¿ Ú;iŸž´^éKûˆ*'<ŸäÊ¡§~ì~ßø®Ÿˆþ›äWò÷ʇf×Á¿iù¦0Ù-¯•æÍµxÍT¹=WھτŽ?ýØÊsõ<õ(Û×þ>Ú¨lyš°í?®Oò,Õùý’=Øæ••Íÿ:Wºž¶çÁ”_ãýŽ<ç>ÿ|á?¿®ËaH?®Ž–ߣ>Ôô,èùŨôzý±É×ô´q0[^L÷ou„Ðøµô}½ŸÏk¿3å5¥üDû#>ë£2õ|î§

´:àe¥q+åo“/£R=;Õñûþ®gÚ5ÞO»f†Þßùâý¶ íñ¼vr’om_ èõ©þ©ùÁ¦Ê¤ß¦õ!Õcx½¼d®Lqê—õ÷®ß->3Uú¾-"ëóöì©Å¨T®èÏIuµ­Nªruty_æ‘·ñ¼¬lë L~ýt®ÏŽå¿ß…úµüÞŽ7ò€÷µó‡ÊÑärÞ6;tªÔ®kõ}£2ÅÁš‘¡})>•Æ™ã2­»Î3êöÝg"æÅÐŽÃÿí꛾ý¼wÇu?í—Ðô™Q9O…­þ’u¬÷ùÊ×á´î9þi_cú^ h?·ë§Ê´.¤ñ¶n<íúœO¿òïŸßûÿÏÿïÒ|eõå»rWû\9¨q\úðC|ù|¿(ïÚ>&œw|Úîä‡kzò¨LvVšO«£ç%N•Ö™˜Gäó0=o†‹8Uz¿uíßäÿw]?ú/øÐÕÏûù.ÿ“ãøHñ›d'¥çÙWCçYŠŸ&;(ù±R¹v˜zmœ0ÙUi¿™Í©Òz4×oíôV/ ¯ç¼çÎyKÌCJþB™ìQû¹É=˜ô¤¦ï´;*“?éá°Å[¦Ê–½^û8é=¶ÏþÕÞQö~®wÚʉ˦Âkë~ÏT.F%çWÇÚû2^²¬ôûûþÊcïo^vË?Úªô︟½û¾çýÁe—Äýâ¬ËiñhÛ>°p1¦ú@[ç ß]¿šëA“GÓÁ<±¬Lþ”ÿ¡;û%?ðÞ?ÿ¹Ÿˆyè®{®×~Ûéüií„)¿«ÅaZç\ì§?•Æ'6çJãcÌ—Õû-åñ¦|¯w¼¸žJó“|/ë¥ôk+7¼ÞúŠ‹§ÊËJýZÇGeÒCS>Éù¶Üœ+S¼\=Âq¬œmyÐïßüRS¥óÀƒëú9“Êëw—•Žã4’>¨ÝsøuÏxì×þÙÏ7½Ó¼x¿¯òd]ûÉç-FeËû†©4æÀTÏ‘âIžø~îëêwKõ•I>€®o®æú{×Ï”oÛòè§ÊÖ¼ïl`ÊçIùVæ¯Àñä²ü2pÖ¸å5¿ÇJ§W°)MßoJö·Õ¥åKƒ©uùï2%ý–¿Z”CÐò±@Êó¸PÁ¦¤díÁq¶ÏìÏ¢äõô£Pþ±Îò§Aê±”gü>ŒËX¾9Î?»(9^©G-uÊ•]àH9Ú¥œûÒ/6}íÊM&ÇGEI¹aíê”6o:%å0ëäéoâqúÇIÊ=>Ÿã åµóý)'¸nΪÿ¦|¦´C-J7ÿ?Èã¦'+û_Ê›šè—Ôs(+Ø)9¯éw&MNV%çaÚw“×SO \ \69 Ò?lþg´w ²} rH9Ã}IvnRžS”Ûª’ßïœNÉó·5å9Uy^QòùgwÊ%ï7™×s^Sr¾²¿Øêôo.6%¿¿íY•\w98Ÿ˜÷D̸(©gp]åõoÿ¶Î7å°(“½M=òs&=ÏKz,ÏZǘü¶l¿ù‹’ç“lOÒ»“<éõ)/*ÅÓûðûE»½)yœzgú{œ¼žó§‚ìO~5¯û«~~ÅCÊU?æçNÖÑ“êLŒ÷Kû$¿{Êï™5oœýÎïÈ8)ë¸ns@ì&Ÿ6¾`|á¹»÷}xª’ãÀâ¢E9SÜtkQr]⸤¿`±)yö_ªMz õNúØ~Ž[úCL/jJê}s¯¹í•Çw/ó›2Ÿ1Õ½§õÀò¬Úê¤ý2*Êä‡HþùWÞõ‹>óá&7é_&¹/íá˜GÊóÊêŒo!Ür3å¡ò;Ò®²ï rÜpüòüYýÏ)Žnq¤N¹P•´sÓ~ôß°ýÌ_3=µSŽŠ’vÌÌë.Þ—çSeûÙÞaQZãÕ[Ï:ä¡—™ýÈ÷8 ËG ¤Âïmù| Ç/õ4«×mJÎϸŸl`г&GªGæü´¸9Ο{Ì…÷<ÿÚ¿¶÷¤}C?í'®û[«2ù¥Ù.^¿é_^û»]×;,õÿT¿¹åE)ÞãEiq\ÏïjúkQZW%õI‹ eÚGØžß)i÷“¼~\•|›¤)*J¾õN‹GvÊŦäø\)J¶×žÓ”)þšö%e>IÚ·"åù[ ²ÿÅ}Çø^î>cìw¶sþ°OÿÇáϹ{܇öý´è£?Œ¤ýÇû3®Áû³¾Šíåùôm|Ó£N;wóï-ŽÎx.ã) úÇÙ´xÿ»ÎÿûwüîZûÅó WLžËüÎcúU9~(Ï8>¨gÓÏþf}/·õm«ÿiJÊmúéRG²gS^ÌË`ò ¥ëÍžÙ>ŸºÏÖÆ7üÕ!/ýøïÊU?óƒÐî¶ç4¥Ùqà\nÊç´úù¢¤~ÅñK?õ7®ÿI?µõ¡*y>[þ+¯Sý¿_²;S>2õB¾Oš×I´}*š’ë+¿oÜOíãzNæÉÞÇpûëÎäö¦äwã849Y”´W“]Éü ^Ïóy?Æ'æÚ¾ü«G7Yo÷ìq_>—õ׬‡ãwMûá2Ÿžã›öã’–gò8õ/Oû-Í?ìÆŸºçïð88˜âäÜsFO>î)ߟëÛi’v™ê©ù¨×X¼Lñ§Ñ&%õ¤“:¥éá‰M9kí`^ÏþÜð¼rÒ_?ö‹?Pÿ7ý³)Ùn~«ã-J—¸ÿ"ÈuÇi,T%×þýqÒòdÁ š’ëaª£°ý> ˆã©¾4+’ó‚ïC¦8¦é ïW‹’÷³<â¦dD?Hû/éfŸâ~Ô+?¡\àzrVQ®¿ááû}â]Ljó˜ýÊqh÷C»©oSN'ƒ4;¸)ù¼ègî”kßô¿÷+´úsò…äõ)vßËâ§ Å@³Ûê¤Þgû{á8ç7¿›ùSšrÖüñOÞÿêÞoÛË­æÏtyT”iß#Ê;‹7‚|^’o¼?÷×áû2ÚòJð~füþŒ‹1þÁóio&=fýøÑŸ:ï‚çúº¦ü,ÎgÊIʃÇOóÔöOí”V÷‹ãÉoÉãœ'ÔŸéo[Ù­¤ô‹¥¼Š•NIÇ9õS>ŸóðŒN =fb'bì6^¨?³=Ioâ<´z®6¥é=á8õžoy< µäýy?ŽêiŸ[WÀ”?Ç÷Mó!íßÄã–×”)ÿ,å±[O§4¿XSR¾¦uˆ~ƒå¦\éÀ²:ÄüÞ³¯o§Ü¶IÉõíê.¿ª’íc^ ýÑ\é/d~¬Å•)ÿÈ4¾ø½M“?{X”)ÿÙöÓúÎö$=<Í'Ë-ÊôüdU0Õ9$ùËãþôß?ÿÄ'›’r—rhþ±O]¾ó2ó—r¼ÏŸOv5ÛoùÑxß§£7í«™äÇ·ÙáM™ô9³[À´•Í×¢dý Ç3ã”G³Ö}¥<ÍE0åñþÌ›æû³?©_Qžp}?µ*9¿É”ßÎøPŠY?Teú”ÜÐô™¢´RÔwNiJʃ•NI¿ ãrÔß?åù$ÛøÛGû51éc|þBUr?¡˜W Z½xQ&ý“\së<á€ß"þ öó )!÷öä{‚!«ÿ™2.JÚí)?,ÕÙS~†}[&ïó%AÛ½*í>hår¨÷êSý*ü>×Ýÿ“?¸÷¥÷²qüìêA)Îô°ª´}ÜÀýþüóº½zò¾?ÌkbÞ×§¤'ÙùEivî—ò1mÆl`ÑÞd7±ý¼ZÏÌÄû¦<¯d×’¼ßüK¿üˆ‡¼ìî&'R=÷ H{‰þ0ËÏîÀ¦ä¸OþÃwÅz?™Ç\·÷¾ä¿çm7½Ïçq®wÉ^eŠ[Q.ózÎKö?åÄú×¾ú‚ÏÝ|Ñüb”«Éîä|ä{¦øŠåàþC¥ý]Öß_Þ­W%õ*êã)_Ùò¡@Žö¿‹å/€ü^GÓþá)^í0ŽÍÞ/îÿ F¿3Èçó8å\o©?SžUŠ ¤þ4? ìÛþgò”v/ó¦HÆ“R>FÊ÷2½d¿ò8ûyî-½üKý¡×ãeZg*˜âJ)ŽÄë9~¸n.ƒ”?#²)m?#0Åùx¾Íç)ÏéIù›Ö#®³Ô—¨Ç0_Éò.ËêLqdËw©`QrßžO¿õ;Ó£v)yœó¼[ëiª’÷›m¾ü®÷Ûêr¿(9î1?ûŸ­ïôŸY\Yïcqæ7'{Œï‘ö-eX>KSb|OÞÓê°šÒìŽN9ÿÍo8~òþ3Û\ÏkYiºô½’_6ÉKËßMÎå¸*)ù}9Ÿ¨W§}cL¾ôS±}[@ÆèÇ¿öÚ»ïûMwØ7¶ž€›«’ïÇþOv ×ÓY×yÞ/ÕïÙ|lJŽÿTg›ò•Ó>]I$ÓóR=ï·m·2µ×Ø”V‡¦ùÉõ1ÅÒ¾Tiß«Yë‘SžR’¶Þx>åçÏ) ×7êéiÿO®—‰¬c:äúpëkû“óôû.<Ï©÷‡¶˜öÓ°SZ¼´*)×Ó¾@”Ó$×QŒ;Ó›’Âq;9îÖÜÿ«»ÿèµÑ~IÏIõɘò<özų.¹xçíßYw–ê·Ò:uNUž]”ɹW¥Õ¥Ý„œìÖÿ”·´¯¬^·)ù^l'¿'ÇåW%ñ<Ús”o¬åýIÞ׳’Ïc]ó4(×Ǥ<¥½0«=Cû.ùqø<~ŸÄZ”ì®W<ŸÏg°½#ðÔNÉëù=ϨÊ3;%ÛŸâÚhßDïæ¸b¾6ýô—ñ;s½¤^Âq2mÿ,Ö%ó9©Î™ýÉããªäýi¥ñô Ö3“©îš÷ãóÙ¾õÿãÝ·þÁµ.ŠúJǤ٠M™ò7˜_B;‘qÐí›”ÔW¸îRáó8~“?ƒó!å‡ÐnX`œÅôŠ¢dݯÅÁ‹rÐÀ¢¤œ\ó³Ç}ÿgû÷(O9.ø—:¥íûД´çy>ïŸâ_”Ô'8RüŒöŸ¿P•)/šãœqêí¦Çƒ•lÊÒòËêä¸KëÛ³æwØvËïýÞöÕOvå8ÇïrS¦øú )mŸ ²­NÎ ¯E9ëþ \Oy½åy‚©~†ýÅö³?Ò¸áõlŸ?,Ê”wbqVÐêp<ù…,Î r=ãõŒë,“MI{òœÏçzöŸJï—â“ü^œO±®uJ»&yáùÛw)9þWÜøð“¾÷Æ/ýÄêŒØ¯<¾Ü”¶¿˜ÆIŠ÷§üiÚ«¶¯8kžÑ )S¼žíMù©N0ÕwÛúÛ)“ßÌêÿAÊ‘t?æýšÿ«<¦üTØý¯®¿ëÞ}å³ïÁ¿39žüSÜ‚7;ÅÝ—G`U¦<Û×d{G#%ÛÇqqƒ7½àä½ÎÞÓüp åo‚´;¨¯ñþ|/Æß7·ÕÉñdû&ÔÓwOv’­“’ß9Õþ¹ùb)žœü꜔Ÿ)>ÕÝq=âý(/Rü’d§ü€¸?IQ¦z‚}sÙ§^õƒ{›ÿ8Õ¦}AÒ:–òÚÓ8ç¼æ8Ly„ U9,Ê”wÍ~çùœ'‹r ´¼ò¢dûx?Æ‹h÷rqžn-ÿ äúÀqÉã)îBÈNúãJSÎöû{¼l¿WÄ}¼“]A½8Ùe¦/7eªIó3ÅÃm=Qö¿YóL-þÇù–ò“<¨à¬ö-åQ´Á”ÿO=’ã†ë×]®sôËpüs§Âqlò©(ù|Ž[ÊCÊOË““cz@ ßÏò;%¿GÊ qÊþçþJ¼ýv_0íËdó»)ÙOÜo{Д)Ž›ò£8ŽS\ŠKóþæ—y<Õ¦÷{Ócþö×Çìey¸œŒ#-’uuŽw)9?™ï1,JÛ/Ç9.¨wš_÷KûP_Iã>ÕY¤¼´´¿ÓÜù§x¿_-úz ržs<Ùú‹vp=¥\aüÃâbr±)aþåÜk°ñÆ'Ü)Æ]øÖŸÓÝZ”¨×/T%¿Ç#¿óbSžÔ)MÉïC?9ã0iÝæý©÷0_‚ßÏâšEI½ÀôP°‚l_ÊçLùåÉOžö?fœ9é­”¶ÞâxÊÓKùÃæ.ÊYëÍÒ>/œ)NÁþä÷ ÝÈëJq^?hJêõãª4ÿÈù”êÒR¾1ýÊŒû1_%ùSéOŸÕI¦¼“¤?ò}ùýÆUY‹òß¾p×ùïºlæ¿ÓÊq•ôX‹Çá|Ž3~WæÝ'{;í?b~ÀT·‘ìC¶/Õͦ<üAS¦øªÅKÁ´î¤ñÖ…¤/‘Ì'HëRÊw˜5o(®+EÉþJù¶/LQÒ>±|®¢Lu(ÉnMû ï¶ÿ¥zû©ÑìüªäüW%ý§œ¯Ì›¥?uGSšžÝ”ì¯ä¡^·ñÉ›®yqµvò>ÑÏšÒäLñ¼°_yÿ³ûпMûˆïŸô êµÔ+,®ZsS®ÿÃ÷xôÏnÿžxò«Y\¤ý»¥8Î|CÚ7'U%÷-ÙÚ)Óõ|>í%rà _þÁï.û´ï[P”'wJÚ¥Ìã§ýÏóÍÎéZê”´#鯢‹òÖꟊ2ù£‚ÿiÚ~ã^Ÿ ¢ý/å‘L•î<ŠöS`:Ÿë(§¸ÌþŸ{ç#ï½ôÛR¦¼ZWÙ–7†çQîPNrâüç<Û.6å°(ù=G ýÀì¤ÓŸeþF0Åyÿ4þR>ÛcñÑ¢äºÃëm<‚l¿åYV%ÖÕø÷ª“ÆçÚ”Á?2y~òÛ¬tJø-'í]·ëGWßõÃßÇ}Z’=gùÖMIýÝâ«`Š—ò|úA©&¿ ŸÇ:Þ;ºß½.ø;ÛŸ€ç% ò &ß—ùr÷ìïÃÁSª’rŠëØbSòy\Ïé±ú±¦äýHŽ'ÆÇ8o¬.<½(SœÇûŸï{×”´Û(Ï9ÿÙúŸyœòˆýäëúSžwðš÷oþ «3Sžœí³Ü)¹ÎRç÷£=ÈùXAóSeò3²ž„ò†×3”êðx=ÏOíKò0í7ã Äq¶Çô€¦äxá÷㩬NÊŸ¥NÉ8åMÊ‹¥ü¤<¡=’òTÉ÷3?7H;#ÙÛ–WÑ”¶¯ ®Oû Ñߨ”ü>´ki7›½Z”´£iÿ.uÊŦ´8{U²}ŒOó}8~“ßßÃòß÷ä÷\SžoÚÇê Z`Qš’v õÊÏ%þ ê7œ¯Ì›W%ý[¼žúóñØ~>ÿdz÷Y°ùÐÀN¹¥(©¿âþ=”~ÄÓ•ý/ú›ÌÏU”§wJ¶ŸúC´À´oÇ?¿‡Å“ÀÏÚÿ¬Ýxî¤ß­.¢(“^Èï¶­)g¥þ`{¨më”<Îù•üV+2å¦x&û;å Îú˜.]¼_ŒÙ}À”?@9Í|êéÜw€ã‚çŸV•âLþ&[·š2Ù]Ì«çù>¸óUo9ì½&ÿxýìf_€/ùø<êG´W¸^Ò¯Åû'Eâüq/;ù½ãÙ¼ç÷´Õ™ìrÎÞŸrØöËS~H ¤ç1˜ê%’ÙüÍáú4¿Ù^‹o㪠yåv¿ù·üô—íNÖä¥B½m¤¼½ÿy½Èøýð¦ßŒs½§½€~œ´3ÅOøýù=“Ÿ•ë"×ÞŸLv~Ê{4eò£ÐÁùžòÁ’^ÆçY]hû«4°SÒ®HõŽœ$äønö¿Éq´Û޳]\/b¾ ŽCÎ÷¿8¾×=îæw¿ß-ßoö'õ}Î7>ŸzEŠ ¦ý'Ò:3hÊT?”ö¿%Ó~”Ô¸nS~±½gV%çAªw§ÌöAjÊd°=ÑR²¼Ü¢äºdõü»•)Ðü#EIÿÚšëGû,}mB«?i«“öÔví¡}ÄñA½‚ö×uê»É¿“öÍOû/X¾Èþ¦žauEØÿbÝÏbS¦}$8O˜÷ÇqÁïò¹Ìo ²ß,ž Zܶ(S®Ùw åtš7¦¡=IŸ yÂý/×ûƒhÇÔûp^²ýœ‡+’ßÛögS}!Ž÷¿‰ž0ágŸü=þû÷¿cþŒÕc¢}ƒ™ì«¤°}ÿ´g-ßÏKylO˜oýÏúÍòÓš2í7A90k¡Å¥qý )éOv0û‰úbŠßSŸàúÅïÎãIŽsýá¼\Ù¥äõü>l/ûŸûòÚûvÊåMJÊꦷ—ÕÉþ[s“ÿõ»F¬7äqÊ?®‡ E9“}hãv¤äü³q×”Ç)EܝӯYS.ƒ©Þ0íWD;ç¯ìVr_-Î[Ž»ûW%‹’q+ÆqF ãR$õL>Ÿùs´[8O(‡,ï½*igð{sß°¹Ë¶.¾Ûþ1^Ø¿O~—‹re“’õÌŸ¦}I?ïŸúûy3~Éã&¿7)_gûé—Y¨Êm›”Œ×§|$ö×R§äù$ãÉC¿ÓOW‹’r—Ïãñä÷Kù™lŸ=ezÿå¦äýø}9ïx?ƵxÜü®‰¸ÞüA Í¿¢<LñìägMû¥÷Iùmiÿ`^?ëþÃ$Ïçýl|2N”úýþî†ÅÅ@ê5Û›’þ?¶?Í_ÎGêó̤>Èã¼_ÒˬÎÏ_nÊYí‡AS¦ºæóÑ?ͺª¥NÉ|æ+‘\Oy¿…ªdŸëßbSrý%ó©·2^Æõí·z.´‡zjŠ«PÏb|€Ï§^Ëù±R”ÌeÙ>’ýEý‡òœ÷C>Vÿ³ïšòä¨_ZÞi§´åºå=á8å4¿#êYm~'¿ý±œŸôWÑ^Kä÷³üµÄˆóÙŸ<ßêâx>îgz®Ou§¤ù!xÿt¿&œÈ•iõºIOâûÚþdl>?î£aùê«¿OÎs/JOã…zFÊ×õûòz«+Êd'û5ÉÞŸë%ýìi>²ýÔoÒxfû+åI2*åÙ'¿hòó';ˆï—â¤Åá:aÿ«ó;¾xÿ§¦ïdò´*Í/P•+MiúXSR³xÚKyIyo÷“=Àþd>ã)+2Ù«Éd~`/ÊäŸJõ—éúägg|Žñ¸QQrü¬€ü~<μs’í§¿m´ DûMI¹Ç÷ãxW%¿'ïÇ÷]w­u/~Ïu³úÎKÖ¤|h¾gW:åöÝJê9|ÞùU)Ÿ—~:ž?«ß<ùSþçóŸSþzò¯òúZf㎪äý©×­}äW÷]¾óS­ÿmÊ´ŽÀ´Ž§<¶úVj_Ê'Kþê¯lŸÙM›”);Ù›éùqßë[Šoð|ê'i=c{Í_†÷KqfÒüg ùI¶ ÇgÝŸÀò‹rßs凹ÉäÇ1õqÞ‡ó€q%’ã’×ùÄÔËØ¯¶ßøç~7~—$ ,Ê$Ÿm= ›2ùÍϤϛøÝÒþÔgÉT'öéc¼‡ö$ý­i_dî;s­·ÿí“wí|Ë¢4{ÄñþíqUr^¥|%ögò70ž–âýÌkdžç)ã‹”Ô›Hö3ëÉé?¥*™§Âþä>•¬Cäý¿åß}Hõ.ù|îS@9È}ƒ­Ÿ7)íz¼ÿÉ’÷§žÏö1…y71¯½ûŸõÇçY²3ÓüNܾKÉqgqUr“r-ÅŸ¾YäwcoÒ³-ߪ(÷ºø5ÿzá•/Šþ “?dQò~)Naþ/Ïgûø|ÓÿÀA`²+¹î§z#îÏö¥ú³ËùEÉç§ûQ?e]á°S.%Ïg\‰þêAæ1?u‚Vg¶äzÄ<&«ÛDûöºèv7zÞóÿËê{-¨Sò8ç߸*Í/_À¦¤^aûÖ‚iÞP>qžÓþ§ßjgQr¦¿¯B¿ŸÕ»tJ¾?ç!I?+ý|;AúCxþÜOŸúë+ÿõr÷4°(y~M™òy>ivSSFyY”)Ïz¡ û_¬×šµ¾ˆç'ûÎü8 òxj:Ÿ÷Ÿ5®™ìÑWåõi? ¾çëæüÄiG½ùÓûÒ¾¼OªËKóžÜÖ)­n®(-.Д”óÔS©Çmï”Ôãx>åžoÊ”?G{-Õ1AŸgþ…NÉqÊï{Û@ËSé”)ò+Ö™àüA‹’ýêåúŸå Þ<ñ÷˜©€mun®JæÑX~H½bV¿\ZiOóxÒoS&Å8ŸoðŸãŽ}Ï—b]Ô°*9¯ç.~íKþö‰w6y8®JÞ‡z%íVžOùÀv²­þ„Ïé¿Iy³’þêïôOð|‹Ïò=Š’y‹¼ÞüYd§¤_ °)LûFñ~I/û2õ¿‰|Iû<…}¥ì~”ï©2åkÌêG™uŸ«/jJžÏ}NÙ¾¸¼KÉñ™êS!å߬~2Þ/ų¿¤þCùO»úBª7á>ûÜãå{¿ý¨rÕëó¬û7Û~ÎÔW9~©¯V0é;¬÷åýXÏO8å ïÇïÃõ“Çù½ùýx>ç/ûç(eÿ£\™È‹ ¢¿úßäüASËêäúÎïA}€þIæ¦üqΧäÿLñæ›r½gû¨·p½Ü•ñúûÿãúÉxÌü ¾pê=λ¡=—çQOLz8×q΋}·.ßð«Çþ“ÛƒM™âÿ”O)nM{Åò%ù<úg)y<í;E}ñ!ú_9~¬þ¶)y®ÇK Ço:Îûq¼³ÿ¬î¡*mþå¬õÕ¼Þêël¤¸á=‡þÝs6vû¤)9mƒ)?Žzåûr‹çsœ-‚ü.ÔC†ì”|ö#³N„v3ã ¼žù3üîôð–:%ÛËï•òžRÝ1õÆTwÈã\lpþ -sÏ»L8Í/ByH{‰òtÍÅwûÛŸýó—íý-î†ã)Ÿ‡y)øÞ“öÒ^"i¯R`žî`Úç7ù¡ùÞ©½Ôç8Î9nh?‘Ç*JÊÛŸ49W””Ÿ8>Ñ#)_(8Ÿéfüꬦ¤ßÄü˜Êþ÷çþ;iê7ûž}÷~pôÇ™õ­t>å ítŽ3ÎkËkyÜêP”ýÏÚÁþ²}‹’ßëÐd'×Ùk>ì¸O¼ë'Ï2}~j‹7%ç ß“íHú+íAú-“=H}”~S~žâ䮇€¼ûkT”¦gà|êf·I΋’r‰ùƒ¼ßYršÝv6HyÉ¿}În%çÛº—?ì•oÿþ?˜¾½¥)SœœïC¹ý½ÿÍ<Cýõž8 hu’ãßæ8ëqcQ¦:Ãäß2¿K§dû/à|Ky œOô»³ÿÍ^y<ÍWÆØ_”w0í#–ê R>1óª“]eë*hynhßüÂcÇ}íñžwÝÀªäsÓù©¾ï1*J³Á´ÿÛí”ýÏü„o”Oïè””£¬3cÞ>ýç\hlÓ¾üûvãªä~Ì«¢œ¥ÈñÏëé/f{YçfuzMÉó™·Çº‰“@Öq=ã|ûŽ€0ÕIS~ͽðý^äûß4e-`Sr\óø¬ù¤åEãþ<žê88¯¨wÑ>%íËçÙ¿ë·ù~ï¾ö•qŸ+³K‹Òâš í;í¤ÝÊ~àõ”“iüÒo6k^)Éõ–~;Þ)yœò—~™AS2ÞÆû¥¸ߟëå[º?ߟïÃy“æq"çÇóªoà÷LyãÉoK&ý*ÅSÒýùþiŸ%žŸî7ë>é}èWœ¹çsüñ|~ïÇ:óß7µø2˜êoLþàøü~óê»-žëCyÇ]òŸÙñ¢¤^Ä~=¤Ÿ‡ýÌ~„þjó–Çg=ÿz/¸ã—nø­ýì]79^(™Æûqý¤ß–uü¯Í+Ê´b²¯hÏQ¯ Ý“ü Ö>dœ†ëíyú_Æ íqÚËv?<þÞë ó‡¨opü$ûÙöulJË;Åól¿Ì@Ê~Ÿ'OõÇ–O„çÛ¾M™ö™äzcû³îŸ@û–×Ïê·Oú-Ç'ç£Õ¥}g¼Ï )m? 0õßÚßœ÷é/¼ø±ö6.‹’r’~ÊMóK€ô3,‘MI?¯OñEó[4%óù¹íz³û‹’íá~œÇ)o#Õ‡¤yhyж¿îor\¨Jê3–¦ý×f­Iy6iÛ¿´¼™¢äqÛï·(Ù¿éûÛþGEI;5í{‘öËåýø|®»G4ýµ”kÔG¹o ó2¹nl-J®3§V°(YgÊ: îãµµSr]áù§vJË;Áû Á”ïhë3®O~Oè;ýÏõŽÿ:à¶OyæõL®¤¼¤?%¹L¹ey ßí[¨J®óÔ[èÿ·¼¦NÉãKÒêfÀ”WÈøPògY]S¦x(¿_Z‡Í*JË'nJ>?í‘ô„t¶?ù×Òó-^Ö)Ù›AŽg®»”¿<Ÿz*í7ÆV:°)9¾-o±*H<ó—ëÇwŠX|Lyúi<˜^‰ã¶LUr‡ñŸß±<å¦LþMË,«“ë çÍú/Þæ“o<î¯ÍbÜâÈ@Öï±xÆc÷àóSœÏOq½W9~x¼‚Û7)9®?»ömq­»^çöïŒ÷¤|€¿æ{Ú¾>`º¿hë?×_0ùÕx>çÃBUÚ~[ÒêBq~¨¿‹õâ$ϧ~9ÿÖƒžð÷ßÜó•ÒzÌã¼_Ú‰zÞJ§äwg^vŠÃ¤< ê”)îÍ÷M×Sž š’ó×÷?ž7ñ¿Q>rž&?õ?Ö·%8ýP<ÎñbqcÐÆH91hJŽÅ¦¤Ÿíôª¤¸P•´£¬~Lõ-I.Y| ~)«O~›_32Å8^h7¯«ïúØáû_èû¼4%ß‹þDƽ¶‚æåñ@æG0–ü›'|¾ùo›rT”·ÉŸÆþc\0õ/Çͺµ¿»Î%ÿñÓï¹n›¯(9,N×”´GÙÏœOÿŒÃ'¿'óÊÙ®Ãó¿~ÏGÎ{Ìolür^§8%ó)­ßÐîä¿þœþgç AóC5¥Õ§V%ß{ç&åbS¦I;|©Sre~-õ®¬£ž?*ÊíUÉ:iêÇ´#˜ÏÀ|®«$ßÇÙ)ÿÀâKEÉ}k“þfõ¤}¡ò‹7Û8IûcP¾¤¸ŸÅ­Á”G›æe؉zÍžýÑÈN¹P•Ô¿§Éû””òbÙ.ê{´«Òþ%³Æ{gæqÊÍäWU%û9ÅQmýSžMŠëRïeÞ ívÌ£þ7Wèïþ÷ßÕR|”Ï›öß–—›òáÿ»û7`üìyo0ÕC¤qòõ9o’¿Üâ˜`ÌoÂõiŸ(^oò£(gÝg-Ŭζ‚EiûŸtJúƒ’_‘ëSÚÀ¾#Û…ãö=pœí!éocQ¡Ü%™ÏFÏ7;§¬N‹'uJÚëŒ{°?©Ÿ™ß´|¹¢Äñþgz¾ÛD~pþ1•þ‡¹'.>i×{Ï3½m±)“]bõE™ôpÎ+>ÏüshÇYòÃpÞ'ºÉ]ß™vDø~³ïŸÞ)y~%›’þú•MI?í,óO€ŒKÓOÄö%?NÊ«Lvi:ŸíMú#¿ã)/œr†úÞYMÉöìû‡kìý˜;n´yµáo¿÷mO|MÜ×<å)òû[=SQÒ.Ä>#¦g!4ù÷T/juGEÉãfߥåoƒ³ú¸þð»¦õ*å}¥ú½T¿Èïj~˦´:sÐüÏMiuI$žÇyÅõk©[–2±Ü)¹Žq½§b±’r!铬ïàøI~O®\÷8ÏÍ~mçyMIÿVZ‡ù~cçŸ^”´{ÉÔAŸžèYôSá=û_Ì'"©'Øþ[UÉñÇ8ÜR§d¾>ëä(×÷ÝûÜw·û¥ÍcŽcúm0ÙÉoâ þ÷â@êK§«JŽ{î£Å~¥W%×)þÝ‹”Cƒ¦ä÷àz<÷¨?¼mÓ;Â}°'ãëbÿó¿k[””GýûNØ”)ÏÈêxÜoT”|>å{Úߎzç_ªß´<Œ¢LúBŠ—ðyÔ#-¦SòïkÑo¹ïâ³¶¯}è±VwxfUrß ú-Ø»_S2îêÅÿO“ö°ååtJ¾/Ïçwäw¦½óûy9™Ÿãº:-Ÿ±)“ÞÌq›ô¸TßÁqŸôôÏàõ¶@Sš~÷¡žüx”k.»â÷Þ°ý¬3aþYò š’ò Å%,O¦(ƒÿ¹ÿùß?iw ‹Òö)J~OÚ%/ U¹~ç†[¿á®eû5H{Æþþ`S²Ž!ÙSÉ’¸s·’í ëKÿã:nöø9’ú.Ç õ5«?kJ®ÛiJ®œß<Ÿùcœ¯´ëL-ÊqUŽ:åH½ˆòƒuõ)îÁyK}“ÏOvšùK›ÒâóUÉëi7P®Ù~6Ey Hõ]Žæ9ŒŠ’zí,ú¯R]=sß…¹¯Ýü!ozËgLŸâºÈ~g¼#í+dþ…¢äwLyð°ëúŸõÿbNô~ÄOûß´8oÌ;¶xMU.uÊï¡¿ÂâMiþ“¬«sþW÷¼éÏý\»/×ù”Å~âz›âÿÉáó’cû1eÒ­.½­N³ß«Òò²Úêäoíð¢‹ýíKâ~ i_CžŸäÅ·½Y÷Œ/Äì_“‡`Š¥¸µå6å¬yÀ)®My‘ò„©÷òzcQ¦üÊØ>p¦úw>o±ì”)nÄãôϱފö÷‹‰ûÇ4¥½ÚOý#å,Te°#ú_Ì'¡½À÷0?US2>F¹ÊãÉ/Ìu éá)O9å9[þGSÆóÁ”GÎy“äFbÒŸjQ²½ãª4%§<ð¤7$a”› å;ñ:¼oÊ›3¿/îgï‹ëÍŽS`Ò+R=Ѻ‡<ó+x²ûE8o†EÉõ>Õ'̽á¸3¾³}½ù‘(çèO19Ú”–ÿ 2~ŸêB™ŸaûJ4eòOØ÷)Jö£Ùéúü=yvM9*Êiv¡ÕVåR§¤ß4Õq¼§|»´?2çWò‡'yiû€ÉÎMò3éy)þœäaŠó˜Þ2øhëwQ²9Ÿ(’ÝÇþ¢žÆñI=‘ñª¤çRoFý„¾ëvx=ÇËÚñÿ}å'ß·y0´uJï;‘Á_Úÿfþû!<¤ì“v„ukÒŽ·õ_ç#ýñ+“ユäü°}»š’çsüq¼ÐÏQA®›i.ŽOË۩ʤÿ¦¸[šÏ©þ™ò$ùAÎÓ¾ôc¤üÉ¿Ûÿ¦Ç]‹Ò쬦LûVð~ UØÿfŽâ>fwÍ=èù?:ç·—y¼¯'Ïg\ˆã6ê½ éݸÞôtp¥)éO%ã0œ'c0Ål2eÿ›yŸÂ_äúbó¤ü <¢¼””ÉïÅãæ×¹ç9M¹³Sž»IyÎ.pˆãÛ«ò¬¢¼UR_9§*ÏÞ­c'7%õ濳¿xË{+xnSÀ$ïæ¶wöÓN8"êé;%=ÛòvÐÛç\¨Jʧ\µ|´nu¦xÜ”<þgry×zô;/øð¶~¡¾~íéï¤LŽC~ØñcþÏÒîü“þçùû’ë í@ÊáT'>,Ê5{ƒ?rÙ¾+ë@,Ϧ(Sž4¿oú{É^Iëûi[S&=•ú í-úwÒþ|_ËCS½½ÝíMþdO&{ÌÚ‹÷Ÿu¿*¶?ÅŸSÞ|Ê×fûøþ\¿øýöÝ{ã)ûòñ;ÎZ¿býˆv$¿fº_²ß¬ÎLyHöü¦L~aêõnQ®pÜ¥<¬”§›òÀ’Ÿ;奚_÷ã÷XÿƒG}ô¢GŽb¾ZÊW=­*Oï„ýÏÖ‰“šrsU2¿y™´[Ó{$?;õ¶w±)Óþ²æOùýl]SÝ?ý´ã©7[ž hylUI¿ŸOyqf·:)‡M¿-J7?K·:©//‚”?´Ë6ì>óÇßìÞ?•i~S~mý?Löÿ¬yƒ¶:9>“ŸœýA»œÇi?¥<ÚÙìït>s_RêïÉŽžµ?ègà÷³õHÙÿx߉]‘ô"Î_óëÉïozSS¦û¥}1q¼ÿEû"éç|Ö1Ÿëý#$×aÖPSîr]äºÉ~Mz۳ܔç)Ó:L=1ùå¹³¾‚ëšÕ­lÿrU2®ÂyKºå âzž¿æì¿ùñ¥k—LÞŒ«2ôŸêÐâùmuš=&TÒ·’|4y‰÷Kù™Ô¿x>ý¬ÃKyf#0åÁÙºÚ””wüÖ·õLyé{YhQ.5¥Í;½ÿdZlÊ… vJÚ5œoËMÉï–ê%¹®S2{Lã6Ù”Ÿ”‡œ‡©îŸýev8H=cÈõˆïC=>̓ɸˆþó¦Lúj’?IߤüHyž)ï“÷çq>ë”í¿X”w¹.1nÃqHyÉ8gòëqÝçõw—ìÊ«TוêÂ¦Ä ì<Ë/iJÚ ãª¤ü© Ÿ—ò99Ÿm4%ÛcÄóé'à:K¿éSr{QòxÊww ÚËëÓù|?öÛËy5Þ¥dü‰ãc¡*i?PŸçó89Ï8Ï™ßA?NŒ%å=ɸ’åm¦çU¥Ù?muÒ°ýpˆã©~ŠqSö/߇ÇSÝyÊï¤ü˜f÷¦¼Œ¥N¹P•Œ³Ó¿¸û-ÙÛ©®ŒÏ·ýëš’yÖìO«[Y?ÅëS]6ÉëÙ^“—2åéY¾Py]U¦:ÊKÎC«?kÊSªòT0Ù‡i<óx-J;ZÞ È÷åøœûÜ~ø¬»ý×Ô¿Wžò@¸Þ1ï1Åß-ÏFÙÿL_ç:Áu•ö×½ÈqÈu˜ïÅv§¸åwªïJñ¾õˆQ§¤?+Õ[3/n¯ï~tÇëvm¯Ë˜ò>Óü>üþ¤ÕélRr}§õ¤NÉãËdU2?’y¢ôÿ²Îœó%å‰Óãû¥ùœü†ìÏ”7—â¹i\ZÞ˜äIØ÷)þÝ®Ï\Óz[Átœ~]úÛR]×^ORݾIÉör|§çó}¨¿$ý„úïÇçYþ’¿:÷éÃÿõ›—óž,NAe\Ç‹²‚¼ýœôÇÐ~?¥()ù÷‡i÷²Ž‹~×¥NɼÛwd¤ä¼å<¤Þ•êS>iªÏNua–Çr½§~aõRÒÞ¿*é_÷Çõ\è ÞÍ÷çøÙø•ãŽýþjëÙÊ&%óH®§$å¯ÅGÀ´^¥yÍûQÏJùGIocûÌ^“\¢Þeã°(Óþ’<ŸöÒ"H¹ÃqÍü6æÐïÍyÆãìêO”㪴¼wpT”v?ÐòƒÁ¤O¥}ù8 ÇŸŸô ®ÇG‚i½¥ýh,Ê£@ê|^Ò¯ùͯß蘭?Ûä]¬/H,J‹‚ÉN?ÇEÍ®_ýÏÆŸKyÆùÅë)¿ ¯¦ÆÁ§ý}¡)×÷¿iÿÍqeǹS¡_—ë!û‰ß—ór‡×s<™Ýr¼ÒnKyö–H¶Õ™Ö­›6\ó†ûžéu‹M™òxœy†i}Kñ³ûŠÒò1yä<¶xÕ”v¿ ¥ÏãUÉþ‡þÑÿ|'pÝóîöåágâ÷5»´}«Úê´øXU²?h—ð{.8ßô!ÜŸy\”ÏüŒ_0þhz~QÚûu`S²9h°›ò#Å¹ß åCÚãŒvÔ‡üÃß0úF¹êgú_­®€MIùgõN$Þ/æ‹á¸åùáüäïbûÙ_$߇ϣ¼åqÚ?i}IúLÒ—g=Î÷cÿrþYÞvSòþËÝê¤ßß{ò8ý:_–¯Z<¤ÞËþHç§ï‘òë8¾h¤÷µüÐâäMÉör|òüTÇÀþâûYqQòûo)Óû¦þNòf¹)ù~CëûIdqœë%÷` ×ÇS@ÎöïbS¦ø²íãZÞX·:̓ëyÿäw\“>iþ#ó9ÿ57ÿØ_ü—OµüÊä—›5OÚäLQÎ=öô7ýçøG6ÿR<äû1Áþ£=OýÐò‹’ònîóßü¶OtÕñžôß2þL½ ù—Ó~±.JÞ?ùÏS¾í°(SJŠ;ÑÏE¿ýTôcñ»&¿[ÊË€fwTårSòýyþJSZÝÚ&%çŸùa‹ÒüŒ2Ù]V¯š_,JÊ?xëÚS]Ÿýý¢¢LñË÷MiÊ´¤õƒÏã:Ë÷£}–ö¿`žÚÐì=¼/ïŸÞÏü.EâÃý/>—r‚Ï‚”ÌSæqŽÓå¦ä:Åë)w©7ò~㪤?†ï›ök udö¹n°=)o›þÖôþŒoظ*ʯäù)þùçî³H9p»¢¼ ˜öwHõä<>®Jž_AÚÕ<žÚÇ|ҔߛŽš’í vxÿ³}e§åYð>&OŠÒü¯M™âß6Ád¤ú¯˜ê;’½—òç¸NX^eîÙÿ¤¾ÂïÀûN«CaÿóûÙ~qÒâu ùƒAÎ'ö×mêa”Ç|¿¤'$ûœòŠ~º”?GyÍóY¯1hÊT_°ß3¾uî>ßhÜ׆r=Å1×>eç›.xîË£¾ô‹ßðü¢d»·mR²žvCÿ³qyF§äw6¿8xÀu¶½ä†×¹WÜ79ÕË,5%öñð”OšHynñp0Õ&¿sªŸ­`Š·¦ýb¸~’ô›óùlϧâ{ö+©÷&ûŸy3ŸKX•\Oèïc(÷k¡›þ[—A³÷À”WÏqÉ8«å97%ÛÇû @Ë£iÊ}îqàÕŽß÷ƒ±NÒˆçrüRþq=‚–/RþXü×s½2{®SZ|ä¾,œôëÑ/µ.T%¯§¼dÓš»<üâ_]ûmÖNæ¹Ñÿ”òF¶ïRšÞÚ”Û;%ÏW%íîïäqÚ‘\‡O딩N3åi°¿RÜcДgœ'\·þ\š<(ÊÓ«2ÅOSžÙº;ýü3yÔGí½8ÿøÝ8æ®<çÏ_úˆÿ}™ÝÊZ”–çZ¼®­N>Ïꢚ’íM~>ã‡y4É.Oï_9^ø¼T‡ùÚÿ&úïoú{8Îq•ö5 ¿Óòì:%×wʯ¸’x«»ê”ƒ¦äõÔӘǖêάJŽGŽöçã)ÿ|ŸqU²¿ø}FUÉö­}Ά·ø¥×Ø{Ržp\ð¾)/Ùçi]ä:fy#Ðü·`òò¸å̃°ýE@Ê=~¾OZ—éæûXž˜ìõX?¦|XË?%Ñþ´®ðþÉÞ¥Üßp½ýϘÿÀWØïýÏëÙ6)gõÿp~Ṟoû'½(­sÉ~±üì¦4ÿ§2ý=1¿fO¥ù/›’öJŠ7NÚy2¸¥›’çS¿¦ÝÂïÂïÀqdç·ÙH¹Éu #®Ç¼>½Ï¬ús¨ í±_R»MÉù•ÖŸå]Ê•ÝJ‹óƒÓü™´‹)7è·š;íÃ[7r©CÖ7ÑÓ¿÷U´8çõ,Î7öÉçËl¼Ñõî<¼ñ†WÚ:Fâ½fÎßNëÌÜkžvÂõþðG»OŒ³Î¶‹reßÝô/®÷WóæÏãx²8ÿHI}ùÔ¢Äõ6n(¨÷0n¡‚hõiúkø<æ±®Ôö•Àó—:%ã <Îë©ï§úÿASò»'ÿ¨CœŸÖýtœã4ÕQ§¸Oªû²ºMÐòŠÒòjAêõáúþçûƒVV”|®7I.¥ý>¨7X^i§D{'ïIûÖê°ªp¢÷%}—ãÚìKmOÜG€ý‡q4yŒO“W“÷Y¨Â=÷m½¯º|BÚ–W4RZ~^x>I}ÁÖ0Õáñ;ñ}™“¾;ÛC}3Ù)ËMiúkSr=YwŸÿðòçm¶çü¹ùHë5Ïÿå{}`Ü—zýBUÒ ž¼½(Wš’ršÏ£¿’ûÐ'ÿär7EÉëù~üŽÌsá|渦¿vy7ˆöðy)ïqÖ¢ ŸŸô¶Ÿò{VýËòKp}Ò7“}¿æmß>Õ!¤ý 8n)wRÝYÊ›Kú)íÚm \?«¿Ûò]‹2ùRœ.镼ßüÊkðÛË¿‘ý/`ò³%?>ó¾R^¸ù›’õk´Ó>˜œw”×iß)ŽCú›·Vå)EÉ}-–š’þä?`¯}ÆàÍíûuë—’ßýF? õžaQR~³_øwT%û‰úð ¯~î{îzün³_ŽY_IY-J¶›õýô×¥: ¶‡~V¶ÿíA{ûŸåsò=V:åQEÉ÷ø¿ü¿üÿ3‡U™Ö……ª\ê”ôk/å°)mÿŸNir¿(oe{ÉH»r…dÞ–íï R¿±õ´ö´@´r=ù?(÷©ÿò|ÆY¸ÎR¿çûq¶~ÀóGEÉ8Œå¡‚|?k/8ó>Æ8nû–€ü~Ìk? 4?†^?ñóRŸâ<â¼æwßxôÜ“?ÖüU¶ï Þ—öŠùûÉ¢Lö¿_ú0哤z.Ë£ÆõìW“GÒ꽚Òì¿MÊaQRïßðþ¯}ã÷~PÌe»Óþi$ÿŒÙ‰`²S}írÊ’öYªƒäûsžP/_nÊïHy‰©})Áó-¯ í‰ñÔ¶:ù¼´Eòw¦ã\w9¾-nÆü¢¢äøåóiÏïõË_žºëz·1ûn?í°zc<7“”Ï‘òS½dª‡æõ”ó‡Þé‰/ùþñûÚ}Âù)4ífu߸å#õ@ÛÇ\ì”››Òöõ씩Ÿ9¿,ºSÎê‡Mò‹þ.ΓËE™òÒ¸çõIÞÛxLë—ÅýÁô~)>“äyì_¶íIñê'NûTÐ/cãƒÄû¤¼o«ïÀõË ùg9ßy›? ýìéüWÒöõ¿™çÉÜùoûÂM?~ͨ÷r>-‚´Ûi§R¾rÿ5ê ©îúÙÄ.š’49Ž÷ïñïV°Ù^¾Ÿ½¸T•'7%ó™ŸÍñÄ<*ö/÷‰>µ*ÿæ÷æ¾iX扤:ýôw¡M™ô{¿`ª»Og›L÷KLu éïD®Ù´åÙuë/ãy‰ìW΋”ÀqnþÜóœv«åM)Þžü7i*¾ßh¸[™Öù-EÉy¿¹*©7ÒßʼaÊîCÀºÖ•Ó¯´µ)¹n[|–,J[gÀä/¢N½7­«&'À$GÒ¼¤\0½÷çqó”â´u¨)iǤ|Þ”7üüþ1ßÏoÊäçHù'³æ p~R¯á:jqyp±)y?Î/æýÓNäùOQ&‹°ÿÕýîóˆG}ìOÎyg íàäoçüµº´¦dÿQÞYÝE«r!~Fê¡|ÿOâzG»œypŒoð8óƒ?¹ÿ™¾ÈqË8!×!ú¹ÙO¶¿@QRµ}Þ@ó‹£}©=Ãâ|Ž+úÙAÎSæß°}ôçl-Ê õqk?ÈþJë$ûg©Sò{Ù¾€|~S¦ö²8o÷¥žÂñhr·®N¶‡û¸1îkýU”üþÉßG½ëäü‘¯¿äjxpŒ“P?Jú<õ—Z”´c¸>›ß¼S&ý‡úEÒŸ’þÀö';Õòõp}ð{ìñ#4¥ùÙ›’÷5û¾*Ñ®þÇïauA”ëöýqö?÷!D»÷üýYÐâKÊþgí…<¹?¿óöªLz$õÆw‚?ò¿»ÿìäø  í8çiò/[žCS²ƒòžy„´{—;å¸*iG\ëO__Û¶Þ÷ùžÔG’ߊúÑ ˜ü™\Gxœû½Q¥~O}qEŽKö{Ú“ú#ûÓüUIýÐþž ®·uºS¦}Ù¾T½¡ÿí©WlÊE²*ù~¦àü}NÿÜy_9úöÞ\“]`õUàMOÿÝë~ô9ÿ»ë\¯!gúߟ½_†Å}AêôÿRŸ¡>Ì~Nñ-’v×ÏQQ²îƒ~ËÛ V%åíJ«_)Íî)Ïùü¹·üäÙkcü;`)ÎÆqBù™®OqGó¿‚Ûª’ùïÛÀwçûPžqݦ]ÄüÇQQ²}¬S&gIþÂ5úâæ‹^{³znýßÿÝ“ëBÒãy_cQ¦x;åAªß`ý⸂Miz4¸½SòzêÉŸò—œµ(Mþ‚ì߯çóy¿TNû1ùASžkò§ýYIÚ}æLÿ‰r%ÙÔ;ù=–›²%Ïgû©×0¿‹~6ÞŸ÷Kã—ßú8ïoóŸlJ ûs¥SŽŠ’ë9íå¦ä|Kòíåó Äûðûñ|®“ɯ‘ÖÝàW²[Évp½¢˜öåóøø+#%¿¿ý°¸ßä½×íûÆã¿õ¨ 1NŸöYf{ùþ U™ô…ä' ~ÏÉû±ÑüÇxÛÉ:ÊcÚlåiÒGí»ïR¦ü8ú7pî®û-"®s¶>6eÊ+´<\Ÿò¬Í_Àã¡=ÉÎ2?JS¦}ySÞeZ÷¹.S^®J³Sš’z¯ƒÔ+Ò>Xôsν·ß‘æ·¸uQ¦ý3è×áøOõËì®æ‡é”µ€Mió±*MohÊ׿º’ò’\Nö†ý‡ª´øbQÒ?ÀxJÒ¸.̺ÛGHªC²}@;LuK©ÿm|ƒiLŽw“+2Õð8ãé|û;ÃM™â-©bÿ_}öÒÏ>×êÎ?WårSÒŸ“ôò”g›ì`Žëôü'á<¨`Ò“Ù>öszÿ™µÞd¯§núÉ»ÊsýïH‚ë­Ã éÿxÞŸLòaT”¼>åeÙß;âuEIÿ6ÿÞû'Õ÷ñþö÷@êM<Îx|ü>E™ê¤RÿQßHþïaUÒÿœò3,îò|ö/ó'¸~-T%ŸÇþf\Œëµí#F; €M9ë÷Nv„­¼®)ÙÚcŒ¯D¹2—üyIŽÎ*W×>ðu}íy÷Šë¨Õ1€´[—AØÉýÏúùR´·©r_.æ1[}È÷à÷X \¨J¾åã‹ ½È<ÐQQ¦þ£ÿÁòÓª’þ êû)_‹ý±£SniJê‹Ìç`Þ<ã6|æõòyl?å—õÈzðù+÷~ègµbëÇåíwÊùô÷6Ùng\ÁÆa]´“æŸyÈù߹ߊÍË¿Ùß lJÊ?ê¡IŸâúaþ5þäEãßöW¹^²Òz‘âÔ/¨·ÓߟìgÓë›’íc%}yV}Íü~ õSö—ÕW¶Hû7½/ý‚I¿¡ÿ'õ¯ému®€)ž:*JΧ3*Ø”üÞ¤ý=>Ü?åq1O‘ÇùwRÞÉüd?Ù)ÓøMúÜäqŽ[@êç¤í« 2_†Çmÿ¢=V÷Ñ)ùýÙ^è3ýÏÆå.õó[vÊ%÷ãñqUšHý:ùu“ßùEŒ³š2Åëpý$y¼ýÏüSôG±–ÇÓþ¾ U™ê‹,¬*©wròû‡x¡ïw‡öRïØøŸ»Õ_|î†VÊzêçøî{êáÁ$gRÞGŠ'Q.Pÿå:J¿¿wЇQnÓN°u¸)­Þ²*?NñÅä×JyßsßüòyGÿÞ6.-ä¼Xê”÷)­þ¥(—›rÞ®(y~’{géïFð|®/i\rÜñ;¦ýÎR<ÛÃûYž4˜þnEÊ#§ÿ‚íãùiZ|5ÜÏg,7åR§´:\§A^oõÞSžÓ“úó|¹®p}åzI¿ýQi0¿ÔŸIÊ5úqØ>®ÓœÿéïÕZ¾QQRŸâýè÷áü¦Žã#ÅùÒßùâ÷5=d—’ò$Å-8>-¦)é7ßò{«’ý1k\’òÔò»pýš –î{ÿ”ÝÇìø¢ä¸MñÅY÷éa{pþ´ý¶|ß@ÐâVx.¿Ê“Jù…Éo–üÊ)"ùÁRïC?qÊs¢½Èû³ý–ϲÿÙ¼?ÉùÊ÷¡ÿ"ùÁyÜö ïgûŽl/ßwÃŽÞáÖßû¥÷¤_$í¯FκÏçóø>ooÊ”_I¹·½*wlRr³ù„ö¤óÏS^ýfçãy”SÌצ=—ü4&o‹2Ù¿i_6ú÷ãzóª2ùAoºñoVžÉ_”«~qÝHë*Û“ê·Øÿ<ž¾WÊWäx¡žG¿Tò‹Å|50Í'_{ƒ{}üð'œãvƒ¦ä¸K§j\•ì'‹3wJÓg Ø”³ÆiȤ¯žÞ)ù]Sž ûk[UŽ•ýëÍD?ƒ~09Єf‡¦ùºæã§÷Ë+×p˜\?Þ­äøâý©ß2~ÈïLýwþi[¾wàðvÆõm¢¦\™wļ’”‡²¹)·tʸESrü¢_ì;&½ŸvÃÌù íÇRÏ`ÿÒÏL½åðH0éU³îëÊö'}|\•”Gi¿#^Ïù¿Ü”ô/RÞ¤ú$ÎæË¯4å܃Î{Ì«NYI7ºÿñþ¹tJ§d¿óï¯tJ¬ŸýorÿÛ‚ð;ÙùۛЎ§u/å#¥xÅš’÷·}mÁ`W÷¿è/¦œµ:þ`êü;IOŠq ¼'ågò‹Ìú÷ÇSœ‰ú ÛÏë“^OùŸ®Oû¥¼¶”쎅ª´ºWOyÜi\ÛßùPö?»úu2ÏÑ“ëéG]ì”öžEiy¢ ç íƒ ‡>ë€_|â6ñï़«ó(Jë×¢¤\ã|åz›ÖW®çô_¥õ/þ,ýμ'óËÉŸ9k>¸Éó¦LùJi¿ÞŸqàWŠþØTÀþá:™ô«WmJûû,’qΓ3«ÒöOÆõÿ¼~e“’rˆõ†1Ž ²ÿMiJ¾?ã&”ƒœ–7X”ægSÞ¨íoš_ ù|1ÿžõ#ô‡Ò>3ýëqøö™Ç¿˜ó¬ÿE?<óWØ^¶'éG˜´'þ`®·h—Ïx ý¾–Ïò;r¢Ü Üçqæ¥%ûagUr\Ó~ÝÙ”lïÊneŠ«’r†úõ<úSù=X?vÀÒ+®wü_ýÂú×¥™ûL2ïÆòI:ex¿É|溰P•£¢´u«(9ÿ¨Ûß¡è”<ßâEÉöZÝCSò|Ó3@ÖCЮbû­Þ÷çýXCÿß—zTUö¿˜4+¹§øÇ;õ«?ùݘg´P•ô³™}ÜÀªd<‚ö7¿ ýšVwU•l×s¾ÇѨ(ÍŸ‹öð8Çݰ(9wc^Cš·ì¿”ÿ‘êQ¹.r|˜}W”Ï”¿\/Ø^î¯ÂçQŽòyÜÂê¶7)“=göYQš¯)-ßäûBÎÇ¿GÏuúFò“¦—ú‘Íwó5é™”§”Ÿ´Ÿx¿ ã+àBUò¸Å“w+MØÿâúL9Çu†ršñ©§ßÿ&óÅò‰š2ùµÒ¾7É.dÞàÌ'á:Éó9.–«’ãŠzöáEI9E{ãØò.ñ|ÚSŒ÷1gý1ë÷}ñ3vÕm»®zîUdžíÀ›´¯h/¥~çùô×0Ϙöç·í«R®±_OnJŽ öOÊŸ¹ÍŸI¶×XÀp<åå™þ š¯(mÿ 0åQ¦|¥wHù|^99þ¹þsžq^ŽŠ’óžÏ§ýËïG¹ÂöY>XUr>°})ßcДÔ/Óþs'Çû¥86ûÏìȦ´÷Gûù=y=û×ü¸ŸÅÑÁTgü~ô/E}Lñ”óÀA‹ÿáDŸÀ<íöüýÞ18ëšÿõË—1;¥(ùGâùÖ ŸG9C¿YÊ—çýSBÊ“L~ÛÿLÇÓùdÚ?€zÀJ§ä<\nÊXÕ”<>®JžŸô†”ÏûÍê'NçS½IoHqPêMµ(O¯JöýÄüžŒS¦ïÍû š2í‡huM‰þ³<ŰÿBú»æ³þÝ™þ·'Ö)C~Òú¿¦ì'29ŸþÂ¥l ŽÓ®¥ŸÂòòª’v.ý›\'Ö´°îS—|Þü ÉŸOû–¤ßÌö oJúŒUÉùgö:ÈñCy1¬ÊŦ´¼Z_¨Jú]ùÝ-ûñzöýFü~ôS³ýlëçÏxì#^ÿ§/Øsè/fÜ„Ï5½¢*™×»¥*¹®òüdq]½öùûãÕ¾¾1îÏÅñ`û¢eò‹Ö²:“]`ññ@Ó£I}ëaÿã¿›~añ¼¢¤¼¦ù“öÀ>yõ¦ù‡\ý{¿êL¿åºÀ<ó¥NhïµØ”Iÿ§|¤¼Iò.Éï¤o&yü")ŸŠL~ ÊO»ž ÷K~§tÊûõï>æ'Üç ±N.µ+ù¹î¥}ùR݈å 7eòo‘–_ †qÓÿ|ÿ܇ýÂù4÷­nù”[ž÷£Jû$½€vªÅ«A¼oγSÝPú{+7~ûîrä÷~îZÀ¦ä{ð8ÉýK¦íÄç"Ž5‘çsOú«»Ýón[lýå{p¼Ó_OšÞՔɯ—âü~¼ÛËñgrLyniþ’ìÏu÷½îO}Õ¹ö}yç¹åM ]¦ÿ‚<>®JÆeØnÆ“½<ë~ΦÇ5%¯%ýË`¬«iÏ‘©›z»ý=Üßßòäg$í§´?S"ó‚è¿© ÷O¦½Æö¤öq|-w‰\C¼»ÿ¹¼*Êm’ïÇ÷a^â ¦¿š]Ð)™duCÉß6+99ž9~àÔ¼±¦œ5~†yÒÿÜoÊpŸºæûOi{»œÖƒ©Ÿ†òvï·þØ›]ú[—ÃEÉïlù¶`ò³§z³ONõGÉâ$ýÏÖå´þ™?í2¿˜êØÌ?r>¤¸­íƒÁ烩¾5í[’òÇx<íöE¡<ØïØ ^w컢ÿÇêÁà‰ã3é‡3Æçû_®»9þjYƒ¦Œñ΢LvsЇ°“ÿbÚ¼æ÷³¸hS"Î:‘¯¿Ìïã8Z¹¾s~q¼ÇùP”WŒë±l3pXV'Ÿ¿~ÿW^øöãßaz6ãÖI¯KqÔAS&GÒcÓüL´< W‡ó{Ã+¿qqûÂ&ãl¹ ûŸåSð= Æý i?%¿6ß#Õ¹S¶ý!AÛ/¦(m?Ŧ´úªV¥ùÑ‹ÒôKnçƒÌãq#žÇõ9ùù)Ó¾ªôsi_Ë¿ÄqÚÛµ(9?y?¶‡z>ãG¼¿Å½š2Å»Í^S¾NòW'ÿ0ÿ®í è_Ù߃¦´ã$ÎOö{êO³ÛÀt>ß/å7yØÿ&vçÏú¿yàþíÊ·Çø_Òo¶WåJ6%×´&{8ÅmùwT%Çóùìí»•|žÅ1ª’ý1.Ê4®Ò¸Mý“ä õé#‹²‚Ô˘ÏÅöóý©÷${%‡èGÆõ´WLÏ ×Ç<pî)?Û´îÂ{ƺ¯°¼„¢d¿/T%×ë¥eÒwÒ>)3ù•,/§)¹Þð8âfWíi$?™µ¤Üd{lÿaýÁóG#%çq’óŒÇnï”|?Æ_S^ý1i_&êû‹àö¢¤¿†yì;Áeeÿ³|ö‘rrëºIÖmp¼ñû$?jÚ·Îæ#H{„ϧ>OûŠßƒ÷»æ†m;ôÉ϶븾¥¼®”#7Ü_‹~]úÑЯ–ÀõŒã’yiŸ«S@~Gö;û#å½XNi÷=õ}½NJÙÿ컳î„õ#ÈK¦];mÿÃÉóR\6­6¯Èâ8¯çº`÷ ×§¸zÚÿ•ózõWóƒ€o\ç©PΛß÷c{·å¤Ÿ€~r楺^êßé|ÚU)OÎòàp^Ïçq]bÿ³>€zšíWTÁN9÷ü'Ìtù­cÝסM%õ¾ÇÇÇý‰dò÷Åý;°(·tÂþg÷]-®×)SÜmX”¼_òß§¼‹Ó)'ï™ê”ì=«’ß{¡*-îRÀ¼´“z“É·NÉqÄv ‹’óí”NÉqÄqœâ#¬ÿW¡­—ÔÓiWPâz–Ö×TO`ûh)'úã ÷“÷a{·eÿð{Øs@“— ïOR~³¨n¸ë·?øæãžgû.ÝLùi–ÏД\Ç8®¸.|þYlþ´çë7aÿ›–gÙÿR>ÒÔ¿ojõ`òÒÂó“Ýžú5åˤú£d×™]X”#²*é§0;丢¼ c½*hûàÑŽyý°()R]å½äÅO¾äiOŒõq©Ž&Åáy?Ú±i\$S-Jö¿c°ÿ¬½\çØ^ÆSéGåßcáwæó˜ÏŸì8öÙý”#Ißáóç¿ð´çœüØ»Ä<ÃTomyòx/ÆWh/Ò¿Z§¤ÿÚü¤#å´ü[·Ÿfÿ‘sçþåö¼ë÷¦7RqPšÿ ×ÓžMùÐÉn¢¾·T•¦ƒcòŒçSÿ ~”ì]«ó dž\²·ÙŸô${™ç[Üd{™GgzQQ¦ùJ{Šþ-æI–§òþ´“‚rœþIÚ¼žö(iþ¢\¨J³§ð|¾oÚï!íû‘ú×ÚÛ)‡E™êæ.=ø¼kÞéÎÑ/”ò‘ø\“; õæSq2þÄøýj+ û÷çý8îØ¾q›rŸ_zèN|{¬ã4yß„fs?®[CßaÇ&%¿+åqò#Ù|Ù³gy\¿Ô)ª’ÇÍÉãEIy3¿åí—?àA7÷vƒÉÄëgͧKùñ¶ïU'ì~H½þSª’ç'»Þü¤M™ä¯Oq¼äOázžò2—A~G§~1÷þÍ{©ù±™ÏKû`+Y•ŒS1.™êFEÉ8ñ©EÉø/ÛK{‰öõòTÏBÒŸN9„qmr3åWs}¡ýFùÏëϨJúUN­J³§Áù»\|Óß?ìã±Î8ùsR^jªëLýë#Ùî¢üoúÙúŸça7%×SÎ#ê»$÷å§Ÿ“ö&óÉT’ò×8SÞÒ¬uˆ”¯ìO®k)n•ôï…ªœ5®uÝÃî»éî÷<Þã/ Ù=UÉõu±­N^?,J¶“ãqêíK åí%å!×9Ä÷b^à ÐòùŠ’ã6æwƒœöü¢LþLÞŸr†qôü”ßÎóSýLªÃ²8gQ®è6ÿiç$?jÚÏ!}w~‡ó<'q^ÇþJß÷íSÿ^ŽíG¦ºáAS²ßbý;ÞÇü÷¸ß7壦¸§é íØ˜ÿÚ~.x¿µ/üÔÁOúûs¬9Oy½Ï¥œHß•4ÿf¥­ÇEiù8`Ê—Hvfò—¥üª˜'ò8×AóT%Ç!Û“â&Ë#eÈqjSšÿ­)‡EÉãÌãûÐ΢ÝHIŠÿózÞŸv¥éE¹Ô)i‡2^`zvSš]‡÷KýŸòl(çm>%¿Çý ‹MÉþ^¨`7-ÞÞ”œßì¶íÇûOÖÇGgÜíîlß´¿/óSÈü¼H¹Ç8K²(7F ¿ ýÉ)o`X”|åJÊ+0{dž8Û˸ëx·’yN§ãMÊYë ¨/ñüsª2é?¬Ë"·7%õh«mJÞyÍýÏ÷Íy<Õ¦|"Ú©>-å7Y}eS¦ïÆã¦ç+§Ê®i_ èÏýoæý„Ø¿|ŽÇýøþœG”SIYû«ûû¤÷œóœLoUö¿=ùŽ Å+›’ò‰zå#åõÀ¤÷r<ŒÀP·°gÝëÀ*ìq_E³Ïš’ã‚ù=¼Þì/¼GòóZ^_Sr=Jy$I/Iûà¥û§¼"Þo´K™ô‡´“Å™­n¦(S^ôÉxLù§wÊSÁaQâ¹ýÏëHÀ¤§¸pÒsi À°.Øøç÷Mõœ)?ßæWS¦üF>ÏÖY\ÏùÎçSÞ¦ñÇxí@’u~Œ£Ð?}R§<¹*ig2þÉã´;S> ý@¶^å´z‹ASÒ/L=°ÎHÞŸë?× žO=“ë'?»í+¦}_Ò¾*<ÎûÑ.¡ÞÿÂD.RŸ°º¥¬J³ãq|±)ù<žŸüɯÂãµ(S¿S~ @ê¼_ŠãÎ=ôÓw?äqÿbú;í>—vuÚ¯Åò¶q¾íGÑ”iŸ€¸ÿE¸?ÛÃýPVŠ’÷ÛÖ”Ðó¦ú_¸¿"ŸÃyŸê6˜§Âõeš}”âl6®@Ê;Ê/®“Œ§ó{QÞ¤}´ÀÉ{±Ü?sgUš’þ0æÃp,wJöïgëPU²=¼?û9ÅMFUÉö³¿6ÜlŸÃ.|ûËcüÄÆH½ˆ×óþâóXGC½?ýÝÄt¿äßæõü©þˆçÛ>_ õÊ'^ÖHI¿+ŸO=`î÷¼üÑù/ÿ;MI¹BýbíèýW{à¾dóxÖ}µØ©ŽjÍß<ë3þ4¤ž¿'µ)- 2_#Å©“>kp’ϼ?Οš·›ö#à¼Où‘³®sÓâœ?–'YÀNiuE‰ùÓ÷OÚpêßLñ┯žòÆÓ>©®ˆó›òöÞÔ¿óÖq‡E8¹/σ¾Òÿb^“åÏ€ÉOŸÖéåº•Ö Ú±–wŽó™÷5ÿÒ½þúüºçéà>Éoe~{0ù­R]ÕÁi¼Û| €”ïLjûò~¦÷ãz«S ´ïÚwì”É~eû9ïÍÿ_•)ßò¡AË¿S{)Ø~ÞŸñTÿ@»3í¿J¿&õ„m»•Vߘòk¸®‚{ük ûaÇHùßµÿf­wIõ(Qî‚¶o_QZ}ASžÑ)mé¢Lñ-ÚsÌ×7?gQr6¿$Îçx¿}Q&»‰ñ~Ó“›°ÿÑž˜Œ3Žï´ÏRò³P~ÒŽKuâ¶?Èç¯yÞo=ëkâu”»V'.T%ÏǾh¶/õ=Ê5ê{Û‹r¹)é?c¬åA+UÉû3îÇq=®Jóÿìîg@²˜÷ÇünÆŸø>K’~MÆ‘™ç‡ïÓÿì<æß]n¿ —~úîÉùœ_œ¿fÿeò_%Ú¦_÷wëòFÏËè”ÿ)_Œ×sü2Oq¹)ÍOV”!ÿ¢ÿ™¼Oñƒ°zÜß0éÅ”gVß Zœäúô‡¨'?:ŸŸâ^3ÆS£ÝB¿ íÊ5öåܰ(S¼x¡*yœí]ó‚'=í#]÷;aÞ0ÏçzÁ÷¥3ÐökÓ¾R\gùmŸj¼o˜ýÏæó‘)omž¢äº“ô]Ž×ý>ò’ÃŽ}Ébô?Çü±¦LyæwS=ïoþh¼Oò_pžÐÈy0.J«[m?Ÿ¦\ꔬc¥œØÚ”Œ/®ùÓ%»Ê]^gû Rß=< äwHþÓwÁTçARŽ~÷þgò%í[ò{Ò¾œ‡14ÿÈñlò©)yÛ¹*@óO6%ÛË:•ä—0ù[”!^55^›ìw«*JË×S~û%åSXÞ ˜ê—øÝ)7¬£)W:°)Í/÷Cô¿™ëó¸ÞôcÐÿól@‹‹5¥ùå@ó{eò¦'Ì_÷C—¼öïŠùì$ÇO²¯Òw±ïˆã£¢äóS\—÷Kqo‹ÛòxSòýR—¤=Àû1ÿƒã€þ®¤WÍwç8LùVGrÙ¼C{)¿ö}é£>têæsl½4%íu~—TçÃ~¥=žö§W¥ÕI7%ϧŠ÷Oã”ñÇQQ¦| óÂéùdÊ_09‚ç³ý”§&¯‹2ù_8î(G§ÅãSÞÅ•I´;Õå˜ÝÓ”œ¿i¿$úè‡Z¨Jú9-~Ô”¼žë}X·b]gŠ%ÿåã‚–çQ”ìó%ûñFÊCÎã•nuŽ«’r„Çéw6?~QR?ã÷ïR‹’÷c%ÿ¿ßIU™òŽªr±)-¯¤”ökOvV¢ùùš2åýò~)¯ äiù¾Ôx¿”¿žü«œßìÿäg·ø%˜ä‹Ùå8nã½)Ù^ú×8žm¼wJè{ýÏîÃu"å/ñ|ʹuÿyåEK›.ˆõɾ/ïÇãl7÷K®Îþ7±ß—›’ú´åuJö;ýjŒËQo´8f§džýS¬çqÖïZ”|¿ÓA|¿þgýËñ÷å“?=‘þ¥M¹äw£Ÿ;É-³Ï‹’íã8¶zçýÙþ•NÉûQ.YÞÐHÉïÁqA¹µÔ)™çÁø0¹òûñû0`æ}1ÁXwš¿ÏOù¥)Ï•þþdGÓ~´u´ºçN™â)ÿÔ숢´:µ¢´8)hù¥ åÏ‚AèSë&Éäg¢œç÷åºÅùšžŸöuáùË»”vߢd\Çê;Áäåóhï3–ì2ù_’_2ùy~ªGIuÉézæçl¯J^¿³)ÙÞ2½ÏöN¹Ü”;ª’v-¿ÏŽNÉ÷1ÿÎn%åífö¯çxã|´ëÁAS²½+’ç«Òú¿)y>Çߟ×Sþ¤º¸Y÷gáñ˜îŸÖË´uªÃc{ÒzÊç±)ßl_´‡ú‡åm¥ùO›’ãíØ¢äñdÇÛ¾E™ô qºX¯’Ú›òÖgÍë²ý9À”×O»,4ÿ’½N¦üÛ×¢(y<ÖÉe’)þÉõÖòqÿ½^yÌÞó´ë6wJæÁ0/5åÉl©Jú_›r¡®NÚ5´“˜gC;”ëÇ÷w£ÜçóØ~úé¿Xꔬ¯¤?™þjú?˜Ƽ&öÇBU2‰ýÅû­¹Þæ·|ùý–7ÁûP_Hu‡É?ìÉä/¡_‘Lq‰4¿“&í{Àõ<Õ0Ž‘ê Rpʳ]»ÏøóºãåÑM¿ƒùûŠÒü$ì”l7ÇQMlÊd÷0?žë,åå ç»Õ%ågÒ‹’ß…ëý›ÔCRž&õ:~Oæ;Ó®Iû Pþñ}x¿§æÈï0,JÚáì÷qU²Ÿ×]qù[?ùÀ³§æéSd{xŽ3Oy£¢Lûñ»3«‚)5Õ¹§ãô;¤¼e¾/³½)Ÿ–×›-J®Ëµ¬Î?3û¿eu¦ºêQ)ÁùJ¿Ë )y>ûgäûcÝ™Ì#Ü·ÿÙxµý_+Ø)S^l² Sÿs]uË1¾ê§èwLyvæÿ.JÊ+Ú­ô—¤ñ›ò\£‰ãÉßeß Lù3©N0å%;(åq=Kñœ´r<¤úböÏš÷¾ú‘|Ça¥L¹Ú§%Õ©Ûùáþ|ÿäÿ§CyÏþÝQ”²(×<ø:oÞçµ{E{‘ëå”é_ ³Œc3ïƒý¶¦8^Šëp\Y\¹*Wš2K®ãôÓ¤¼ö¿­{»”\·N©ÊäwªEØÿL~Y½u›’ßmÖ<ë´Ÿõã…ª°ˆóÓ>lÇ}¢:%å;ß—íIõ<¼_ª—Nù}lå;ý$œ×¶~€”K6oÁÑ&eÌŸ+ÊT?šÖsÒâå õÛ˜¿Y”ãªLûÜQQ?¥Éêg‹ÒÖG¶äûÏïóÉçÜþÛ?õ~)'6Þðé×xضc=Þ¦ö¦üŽT[3½ã´ªäº8m¿&®—”{V¿ š\h`q<îC¦ú&úŸiW-‚øÞSý?ŒÃ¦ü#æ»§8°Õ}tÊsFÊõ¼Á‡^ôFßw®(éçš5e©SZ~ ރϧžÁ~Üÿ]z߇\Ó®ãúÀº<úéi/3®<\ý/æmXáêœÜ×üM89ÏÖŦLz†í?V”Ì¡™×_ç–§¼ûŸßô*Ëç¦ÜKù„É¿–ö Ý³RO߉þW¶‡ß‹ç§÷£\e{xÜò=‹’vû›LþR¾/ûŸÇéß=äóy=û“ãÇâõ מŸöѱ}¡šÒÖµ¦ŒûázË÷jJÊÎK>o2nÉ÷?ñeïºÕ¡¾¯j§LëoÊ;£~C;öŒNÉú@¬GýÏólšre·’öô–"œ¬ã\V:å¨(¹.q½Åú:i¿Ù[#%õ–¹³>ðñçvò¿Y„ýoOýi'œ<š丠ýÉz Úc´—R¾#å ÇUÒ3©§r¤¼[ûÜËÖžtÂ{cœ†íLú(ç)ç¹íïrþÑþ±|7÷çóiPN¦<Ô”¯eq¢œuÅÈþà|dúÌšSn~×ÅöLW¥åÏÇk l³‘óë-iãû†{}áý>ÊýŸ ߃ã—ù?\79ÏSþOŠKpåñ‡Áõ¶¿H;-ù%iߘ_œ{ßIŸýÀ ?o~æ!¥ý“ÿïÕÿl_¶¤G2®iöÙ)£ÿd>çÇkŠ·$ÿO-Jó“¢}i¾˜|MNÇcÞLQ¦¸5Ÿ7ÿ×ÿyïG}óˆØ©¾ÔâB$ηïrÜŒª2é–/³KyãkÞ¢ì:áù^P•¼ÎêÐ.«kÊQQR>QÿûX¥íU”i?ú¡È”÷AÈ¢Ló—ó‹ù¡´'–:%ýQ¶Žoí”ÔçéŸJõÜ—‚~'ÎGêÕ¦÷‚)ßò$×¾èu×ù!Ï7ýy¢)•ëõPúÉw%ÇuÒ+Iö#ë‡b¾˜Î7ÿŽsÞP?ãý`Z'xœöõ^Ê-ÎKÒò_È¢Lõ æ·oJÛ7 %'½óÄô"ê½Ð{öü½æ¦ä{rÜ=­®ÿΛßýüWNÚAýrJ;&ç';…vB²[ÌÎ ŒòLúYÒyœùà”;VGY”ÉÏ:h ß ÇWŠ’ãƒy²5Ïãøâ÷¤]‘öaW¥éß ÏçqÓ—ÁÔ¿|ŸYó¥’>’ì «ï™·ÃúEøUÉúb>ßꛫr©SòøÿÛÄ|îѯ“òa“Ÿòmoôåoüæç÷š}ËÆ}¨Qþpäsé/ažI=‚q-žÏ¼u³7‹’ò‡ÇÇ»•œ_œ¯ã 6¥ÝÇ-dÿñù)þ@ýò2Åá’Žò.Ù¹É_šìwŽ{>RÏJëgZS/¿wòOÓãø^lJË“iWPJyïÔ#S~Îúß·ó_ñ²O¸÷e»9®¸pa\jK§´u§)i—.Œ/2Ï•ržëë¡9ÎøÝiÇ_óˆg|ígeh×%»'é“0Å3)Ÿ’¿…ã…Ç™Äö¥ýTSž»Í70Å•Á‰]ÃãÓòóèŸâ|\¨JÚ¡6Op>çÓßÌq–ü1Ÿ§)Óø3û LëÏŸŸÿÁ×~ºò5k§µ‹ïƒvò¾”çæ'cœ´¼Mó2ù ,ÿ›Äùƒ¦d{–w+-¥)S|Ùü² Ö‘þgë¥Å#@>‡×›>&û‹ãŠúOò7˜ýU”¤_,éc´Ÿùüdïòùìït>Û³¡ýê7ßü¦öïô·Ñ¿”êø]-®‰û¥zªÅ@úË(§S>;ç‡Éé¢LûØßå™”ê 9ŸS}^ªwHûs]^¨ÊŦdY<¦(Ó÷¢lqÛòùM yÝÿ²¿§)ª2è“ç°=ȳ²õïC½Ìâfhû×ìr÷§6%ÇÇ7ýi¶äWåù´“èWݶK™Öÿ¤—%yÇö¥øÇ¬ûÙþK å[€–ï¦ýÏÓ~§¿œÏ{¿æþ+—îx›åßÄ¿ƒrœÐçqÔsö¿˜G–êÇM?)ÍW„á÷µqör¼ AÎ×ä§f<’ßa\•+ÒêAîóÃ÷;­‹ý3±é ù^ýÏüæ‡SNžÇŸý1«?;Å R¾UŠwîè”)?)_W:e’#ë|ôGùùf›'æwÇsgµ¯S^&åŸí€öÄ:?0 ¶g3Hýy\•Ôßxœö×YÊãerkäõ´OV:¥í¯Q”ÔG¨O°¿’½‘òh™×D}œë‘Õyà||¿þ7­þ²ÿ™ž~ðåWÔcþêgû9ª’~M>g©Sr|°^“ç¯ìR.U%ýó–wVVgÊscœ9Õƒ¥¸“/JÊÑäçùƒýÏÖÛ”o@¹”üïæ¿q|ϾV ïKù“òëR^oª7KL~n[·õúþg÷¡>–Ú‘ôʽu×yéÿøÚKŸí=Ž7¾ß¬q(ÊWÊ—äNùü)n•ê‚Ò~P©ž’þÆ7ÿ·ßýå7Ù¿s]àºÌ|úm¬ŸÓ¾X\LJì”´Wh÷±Ÿy?®Ã©€y¶w–¦ü;Þ×§÷µ¼VÞŸïÅçâ¸Û6%åÙí`’ö<ë¼åo‚\·9嘆ñ~#í¡=ÀüB¾¯íRKr&ÅÃ9RÇÓšÝoÝù®¯}ÏóPÀ´¯AŠûò‘›ÜüÇ·0}!í;âCÜŸÌü¾’ñ,ÖÍS/Kû 2ß—ÇyýrSòúí Ù=’㳂”/lû#½™öA8äóXFòyß–š¿¡)Ù¿Ÿƒ¦äq¶‡q„Yóoy?‹svJë÷çü²üpÖüñhu2€í£ÿ÷§~ƒõ¨ÿÅÓ/eò¦)¹î%½:å9&»3Ù…)^Ÿô»?˜Ž“”oÿz§~þÞ7ºâ¾ïiJ«k“Þcq›À”wF&?dòg)/é±ô߬ßúõg¼þáÿnßw¼Iiù 8N?$ýÞi<š Lq³·ÁTGÀöð;%û>år§¼*{~S¦ùÏû¥¸iÊ¿Oûc¤}Í)ÿæ¯~È_wä—þˆäwáº”ê ©gX8Èûm¼î–ƒŽÙüâ )ÏM™ìL^Ÿòj98ÏSXòŒŠ2ÅyÜü1)rÖ¼³³‹2=òý¸>­Ézey”Í[Žkê Œ Y\»*¹Þ¤|¿•N™ä/×ûƒ¦äñô]9.×^qÖÞ{õû伨¦d|ŠíJ~Ô¯©.j¥S2?Šò‹û5P~3ÿbd¼‹ñiÖ'yH;‡ûù¥zí´~¥ç›Y•æ¹¥}±x=ó‹¹Ñnd^!ûû3oÜR”ãªLù^Æ¢¤ÿ#ÐüÉnâßñ4á¿¡²ÿí©§oB;ü­“ó¦Ä§ÆóRœÆò[Úê%õ«sÂõÉ¿•üa\í}:åBU.uJ««Äù\ç,©(Óz>“ýˆuÇ÷ïmÊǰ¸hù¬hçcÊŸâ÷²÷i³=s?꣯úú“<þûPLy/<÷ëñýùý9~™D?ʨ(g”oîOoÊt|Ö|µà?ŽûwÛ>‹`š?<Îï¼Ò)Ó|a<ƒóë©åq7åÜ«ßõ ½Ÿñ½¨rÆùgÞ\•[›ò”NÉûó{1ÎÎñ°µ(M.`8žö¡ÿ/ÅEƒýßÿLoLzÏ"˜ò`©p\Ò.€iýãùgô{`}šæ'ë¶?)åç åïbSrn®ÌÙ^•”÷Ì·YnJ¶‡yù¼ç¯·ü¦¢\¨`Qròy$óاvÊÓ«2½ŸÉ™¦´ºŽNÉü0ŽwöÇ¿‡­ÿ»•|ŸpT”ìÿ•¦Ly}”ƒ”ã¬Nùuì¿Å¦4=Ï£~ÂuÍ~ýô®¼šåÝq½¶üÇnu¦x›Lù³)ŸÇâ`òc’\ßSþQ-JÚ×aÿÍþg÷ás°>M®4¥Õ±ƒÓê–¸î'=gJ|Æì$Ú©¾!ä!›ŽúMÊϰ:£²:ù<ƯèÏåxãºö—]C¾xÿ‹7ÁŽå´:о+HyO9dq\²S.T%Ïg>¥Ý¯‚MÉyÂïhq$pÆ8˜äLˆcåü@åž}TÐŽ)òir~-ÿ Lù¢ìg¾Gòצº™´¾°_“?6ù©*hù(`ˆ“Ùúãn ýél/§Å½q¾Å“§Üw’˜®§œIûRÒofr²(Sþ!Çß2H=’òßôƒ¦Lã5ÕÙ~‰Êþ7-ÂÖ úù~$ó«Ù>ú=©/·Õ ù`ïÃïYÁ_Jñ)î_Àã$ã'œ¿Œ±}Ô?xö?ïÏçsüÑîJòŠùcÂùiÿ Æ7x¿$+ȺÅÛüÞ<Îçó8ç¿ß÷6 Çûƒí#ÓøcûSþ³åK7eÊ›Oyöô™´(mßfçýSÝ;×Ú=©NŽz)õZ>v?ý>¼_Ú7ŒóÝë½ÏEïxYïúßÿÝ“ûjXýE‹Òöaê”kßzðÏÿØnËG4ÿtSÒ/ĸ ÏçýÙîu/ºb¯¸&Ö!ìåMJú»Òþr¼?÷Ÿ´¼0éµfG6å¬÷KyhI/Ir9éÑ´Ÿ¨¤|tÛפž‘üT<žôöd·ØõM9ÓýÍ^ ÏOö#õæÑ1>A=Ï›è[Óâ-)/˜ã%}?’raîÒ;òéK_lþΕN™Ö¿dÿŒŠ’ú€í“Ù)yœý”ÖÞÏäÚkä¦qmû|4°§ú5 ÷¿YãѾ§¾gú6˜ÞŸï;k¼4ôW®¿Cä¤ÿa'ö?ß÷ ´¼¸¢\lJƵGâû™ÿ4ÿ4¸î¹ÿxèh¯¯Ç¼ Úmi_¢´ofŠY~OSZ}ZQ¦¼öASRïãwäú_‹rêºÒ”6~Á48_©qüP³ùGdÜq]êñü® Uiù%äqöŠùÕyÞ—×3®›žg~ÐÆ9Žs½gïûûmüÊcŸZ®úy|´*@Þ/Õ+§ý_™ïeõÚ íœYõÊÓu÷{óà[ï¹ûÔ¿?–üÁËUÉùÁïËü!î[Â|-Ö¿ñ|’òšzäk>ü’óÖÜÞ÷aùÞx/Ë¿_lJÊ»…ª¤Ÿ“í¡Xê”o}þ_¼ø¨ÏØx²<×e’ãIçóÒßÛ¡¼Hû7ÍÊ”ÏÆu†þN~‡å¦¤rT@g}'ãÕ'ƒÐûŸÇ=ª2ÕR®ð»QJúÛò¡'ïÁñ4÷ÕõÏø§—üÀÿþQQ¦}cÌÿQ”iŸ‚4O(Wb~9î7kþxª£˜_Þ}{ïý:)ãLûX\§LõQÔ¿9®-?¹(i/RP¿JþäaU²=¶¾€i¿”¿÷(J—<òû§ý:âýq<åÛP_`„Ϫdûø}“ŸpÍíîñ»éÞñ½É…ªäwæ¸gœ”zç¿î×ÿl|r>p}ãü2¥åm6å¶NIý>Ù7<Îõ™\i'sþ3ÞÇupn|ÇùÍ7ÇýÍÎê”̇Nyk\O’Þ›ö—â{‘”›‹àüoñþŸüÇ/ìûóû°8~ÌÞÂsiÓ¾€ô3W0ùåÓß ß›ñROùK–Ÿhþ+ýżl®§où=“~À}ì’=Å㜌÷Z^)îWA“Ç8?Õ%š2å“Ùû<ÎñÂõ/é‰ÖE9ë>Ù<ÈëÆüêf7q\Ùú¶:÷äë4%¾ÿäùfw‚A~NžG»Èìa0å³óz‹çñüâú˜üó<ßôͦäý’ÝÃùHש”W@}ÆüY`ï³î‡Èþæüfû“€þ·•NÉø åù^Ÿÿ·Ñu…é9ôó=ø\® ÔGO©Ê´n¥unДI.sÜ™ý &;)í?šòáÓîÏüÿ´Ž¤¸MÚçÚöi)ÊäÇbûèǧ¼HÏOyª–‡r~™~[”ƒ¦4ÿ¿žßÿ¢¿oÖ¼vÊÉd·Ú<ù|Ú±çs=b¿3?‚Ç©°„rŸï¿¥€uuž rß®S´;ÌßÞ)m ªLûæR?¡Ü0=©()·“ÿ0­CIŸçø£¿ïõg¶KŸ×ÿb}ÇÎN¹½*ç?vø/><ú·ÉºÈïlvl[‡“Ý1Íï>¥îbrœß‹ë4¿õÁzΟ<—û;qžñ>ŒË¥}EÉåNÉ8åŒéƒ õ¥¤—'ý+Ù9|íø¤o¤õ|ÚxgõoY~VS¦<Œä'Lþ´äJëý8|¾?×Ážû§ï\±ô’Åè÷¶<5pæ|›?“æ?­NÆC,ž ¦yÊóÙ®éyü®”Ô#é_1FY#0ùC’\¢\4e’Kœçì^Oÿ>ŸÏ}SÙ~dG&;!­›)?ÍüE9­)ùµØÉ¿Àë)9y>×Gö£ùš²%훕MJî30·û¤Ó_vÔU³¨¸^qF§äq>Ÿí3½Lúï—òuùýRž&çÁ\÷Š/¾ç‹õ:æ¢Ló3é×ÑÚUÉxDÙ^û;– ŸOyÎü;ú=H¶—õ0üî”O¼þ¤¢¤ÀqÀöó{2Ÿã„ö'÷gH~1ÖïrqîÜ¥Lùݼ?¿çÑÌ~10ìïÒÿ<¾Ø”Ô›8îR>?ãí Äù<ÎùG¹C»•×s=â|£ÌyÂ<ñEë:û=å-̚ǰܔÉïÎûY=€²ÿY¿pý3ÿ½ÍÚeþ'Y•)&é³ÎÏ”—MùÎù›ž—ò|R<ÀüŸE™ü)™ß›~`’ëøLñ@žÏñÄ|ú;©/Rÿ¦ÜÛÚ)™—8)O¨šÝÖ)¹¾Ð®e{Òþ†\ŸS|tþcOùÊ‘w~¿WSrÜSo²} ŠÒòÑŠ’ϳú¢Lõ"GŒ¥¼dËûyœ~^Þd˜Ü*«3Õ»ñ~ôÿPÎDû¥))—­ndû“íã÷¤Hþí”A¹J½œr3åOR®ñ~ì_ËÏ,JæƒòzÛÇÇ9>¬îçÓ.`^<ýgô‡P®ñzú×*Ø)™‡H#ïÏñöÝŒù¾é{'»-å¹r]åùiŸ{ê±µ(ÇUÉ|+Ê3Ê÷”7‘Öí”ÏÅ80ójR~õtÆA)Ÿ’žÊö“1߀ ×§ãÉ?Ëï±öç\úÞ¿z?ïÓÿüï4¥­ïÊ©<åð¸ùAöCÊ4žßÿâ>©¿kQò8ïwÈñœâ¯|ïÏã$¿ï4?ëìùœT¿I¹jùX Ä{¦ý޹N®4°(9Žæ:˜ö LöbÒCØž´ÿz´?q?êu©=Vwß”)o5Õ™ð{Á•ÝJOû@™^ òüdŸQÏaœŽöí·5‡ýî[ ¯=ÐÿÎtS2~ÄûP¿±z£N™ê¦¹~[B lÊ4Ïx}ÊßHûP.™ÜÁóY§œöUHûkRq\s1Èûñ8û“~~¯´~¤u˜ú§åg€Ã¢´ü´Ÿöí´ïŸìÉ”OŸòUR>¿Åmp<øac?ÛOý„úl-J~^O}f;·½í}n¾ýËÖÏ çuú®¶˜ò›-Ï´ø˜îŸôSëç¢4å´¸%ë§-ßL~wžÏù>ÿ7:û ¿ÔÞßêÔÁ¤“iž¥z^ŸþîCÚ>ÕÁðþ¿Ô§Ö~ì²Mÿô?ç û;Úƒ`Íߨ„{‹û¥¼€iu¸_S÷ƒÛ¸ñâsu“™žFÌ)`Ú§”äz“öƒJzàdœþaú¯¯;·ùµ›~+æ±Ñ/Óÿ&ýG? ç9× ›× ç‹Å—š2åQ.$»7ÅûS]Ç£ùið~´çìú¢4yN6Çg]7ç>{Â3οٖXÇKÒþ·ç€)ŽLû€öç í…‹r+8éŸMùwæ§áq0åoo¯JÚyœWÛ Ø”´‡¨¿rØV•ãâ~f_%õöW²¿Ì¯Ú>yx~ºý·¼?ߟó”óØäQQrÛ~`ª3½íç|Jz9¿eéf>ïzÑžÆý¬y|Ü×-éÏÉ¿cúSS2/ÇöÁ­žLu¼žöEÒ×R½ðÌy”¸_ŠYÜ×'ý<¦ÏéùÉnåû¦¸˜é M™ú›í ó¾ÿ™^ýqj<"ý=*®k´'‡EiqÔ¦´üícÝé°*9^8Òß'áü7ÿzSn|Ðü ¾uèb½OÊ31ÿ H¹™ü;ƒ¶:O¯ÊsÀs›’u€ÔÖp³nxï?¸r~Ñ®YjJÚMôGs<îØ¤d{FàBU.6¥µÇSþßùXV¿R”K’ýÁ:ÊÓÛªpÏß3mÊ”×ö¿=×Ly_Ô¨¥ü _©¯ó»±Þ÷Ÿ¼å#åWòç¥új’ßëO²ãSÜ€ò•ûû$’Éï.íkJÎ7Æ—(ïSÝÇÇAªKKy4ÌÓaÝó-Mï(ÊÔŸ)“üø)ïŠÇmiÊTšâßüþ¶ï#hûÐ4%õñùk<ëûÌÅ1înó¨)ù]’ý“üÍÆ¦Lõ>Óê䩟$uНS¿æ~.i<¥<Ö´O8ÇCН³ß˜÷”ü.)îiõ,`Ú!ùÛÒ÷HóÇâ°M9«*Í¿ôw[R8 û'ø¹û_Ê‹ö9å2õcÓ[›2îÏÞ)i1¾ËxAÊ;¦ßr±S.‹MIý‹y:¦Ÿ%ïŸæû›÷£}ö?{QQ²ßS óKlþóó!ÅÒ|HÏ30Èï`ù4`ÚW.åQ¤|RóOƒI>ó}ù~´3n´ëŸnü-²OúˆåG€|.ßÓö;—:%íKÊ_¨J«s©¿%ÿ›å%å!í-¾ÿ¸*yæÅó}-5R21ýý1{Ÿª¤|æý)o“’þ$Žû ržr]eÿ/‚–¿Ù”“ý/æÅr\¥zhê\g™¸m“’ó.ÍSÞŸõk)O›Ïc^ìúLÌA{S}ãëä‘àaàÍÀ›ƒ‡€ÜŸèÆEÉ:q^¿ äúÄöß<¤ãýhïoé”_ô Ñ/»µ*9^¹>qý"é§ÞÅý|’ýAý„r3'ŽßõwúÏOßáð£ãslï¦ä}©­tÊO\Æ7“^bvN Äõô¿òxªMõ )o{VѰ(éGãõ¶žïRš¿¤¿Áö£iJîg“öHö ïOûŠóŽ÷·ý4Aîƒ;yœëóàM~eòYÝ.hqJ¼Íó™óƒúýìÓÏ@Ú×O”û£Niöz§LÏc|€ù©$û›ã}óÇ/?ÓêÙÏÁ^Ûó÷”geSbé&ØofW€§–Cå¬uxIMy&!¯8Æ SÞPª¿Hqµ”÷C9±ñ'|äÌo=&êV÷ÚÅïJ=&Å»ÆUÉãæÿéçäz‘ò©¯p¿Bú×Ò> ‰´×(_©G“ëŸþýï÷õ?7;ñv S®Ó¢|4%õ¼dO¥¿¯ÂçѾ"ù|Ú lOò?³}¼žã"Ùá©xÜô¬¦ä:eûk4%Ç)¯§¼a¾-åóé×`ûwtJÞq7Ëó¬ÊYå„ÕŃ)/5­Ó”#|ö÷éX•§vÊdW0/”öÝJ§äý¸¯R-Jî3oq=¿ÿ™ž’ü*)ÏŸçó~lwÈk²}DÖßòG?;nñNiv/´;©/Ð/Éû¥º”}ÚÇÏ>ëØ×Å}Š“_<Ö%8ÿŒªäóŸJöAŒ‹òýØf/7eÊOˆûâ%¾kÿóúh´#åÕŒ»1¯Ðü¾UI;–þ,ÞzíÐ r='™·Áë“ÿ3Æãq|Lz.ŸÇùü)_¸Þr=´ý«@ÛÏäóƒýÓÿ¢ÝÀ~NûÉrœ-5%çûy¡*ù<÷’÷g¼&å÷Pn3?…öë¬R>ùÁ š2­‡\ï8.ØÚ Ի͟ &½Šã‰ryëgÔ;—›’zåΨ(“}6éÿ!i0.äÚ4 ¯£¾—ò̸þÐ_‘ö› }Áu”ý`çZa8žö˰z™N¹Då¬r†ëí°(MI¿ãMô‹RþsSOÃ<œú÷yHÚÁóZü—g<⚥àyù¦ý'0Þ'킜ç¿Ï ýÉKM~2.ÂqÃûŒ«’ã†zóõ÷€i’üN›”ý/桤zY‹gƒéúe0È[ãü÷–/yí÷ˆqC’ëoÚ é)ú-é?ËÊþgßãÔü4à4y &»Õôˆ¦d\v9ó»˜çbõdS¦¼"’öö‹±ãüŽƒ¦¤þœêjÁ¿*ÊTŸêÏ“™ù f6e²ŸÈïòøùÑÚ_º¿cF¦|bΛäŸWå¨(SÜÏ·}q@îC;}ÐÀ¢L~h“¸Þü¿`ÌCù<Ú[Œ—ŒŠ’÷Köõ,Ú'´«âó©—1ƒýÅëÇUÉãö÷¸Š’zæR§d^õrSR³ÿ9¯i/Ò~[ó‹—ÿå‘ox}Ü¿‚úÛ¹P•âÝVë¹NÓŸµò»ooʤç±=ÐëúŸé{”ûÛ‹2Õ)®tJŽÿ5{ÈÑoý®ÛaQÚþ+`Ú&ÕóÚzƒóÙ¿”‹Ë Snp=âß¿¶øO§äõœ×ô§| ögʳMëwØ¿¤ÿÙxa»¸¾0o-ýKÚ‘ƒ¦äñ”•â|üΔ3+rÈçqÞ³¸~ð8÷Sä8 œáû¥}|øþ\¬ît—’÷_÷¤]rò+ëvì&¥Õ¿‚ÌHýb~Yõµ”\éoZ,J¾7åýë&Ww)y?‹³ƒ)OÏä)˜ö3HyøÔ“ؾT¿Åu~©S²î0ůƒý2ñŸRÎÁnèü÷Éõê´:/úß3ý½¥ªeÊë^wÓ_zö^÷³ïE¿ íqŸõüä7¢Üfü þ»þg~;ÞÇò!š’ú8ç-åÇ5õû›søa[¾~{.ý V_ ¦õ˜ó“ï•ö‡³¿ PÀNɸ>9®JÞòÓž×”œ'üNŒ‡Ÿ\•ô«òü¤ÏSÿŠq°ª¤žcuQ’Çiñyó?>ûú8áÓŸ¸Î1Åü2 òñ,.ÄqÍçÓÿÀïÈu‰çs]á8¦K¦:žTçòÑmÿèp¿¤Ï%¦üV®?œ·f÷6eºÞö-A«÷¹OÁÜg~÷_/{¥Émú¸žP.§ú9Æ8¿y>í3‹Ç%õ³AS¦|æ11îB}•ú0çß—y²\¯é_¶þSümÖø+×?¶Ç)‡R<Ïï&ÿR^KŠS™ß)9ŽRš=¤Þ;òw¾ø…ûþ¨M™ì>~/æ9r^ŸÜ)-žÒ”¬f¼…ë#ó*­ßš°ÿ™]sÍïžü«ó{–Ù­)¿hT”œŸiîךì©YçS·o)Ê´¿®Å•É¢ä< 0ë:gqR0ÕÅq$?õk«#SIÒß“^‘îou`Ê׆¼Ø·XgûŸï÷Ý)‡EIý™zHò?¤ø<ç›ùÀ˜òû9þ¨7YÞqQò}R&¿—Õ+¥ÕÕ4å¨(ÙÔS—:¥é¹à°(é3OQZ¥_0éÑi>Œ«2î'‹û[{WçÔ:ãi~õOç|JvMú{Zô‡RÞr~Ñ4`Sr½Iù"kž{÷½¿ýÕ“=>P”ÓüDIþ’ëÞÿÉýî€Ó¾‘{öqݤ)þM9fu´EÉ÷7¹Z>‰óÓþe‰)¯rvßR§ÜR•ÔKi×q^ÐÅóù<Æ)˜ŸwR§äqêµÔcy=õd¶çOÆôñþgþÆ%™E½›~,ÊMúo¸Ï3í§?€Ï_íþ’rv<ý€knù²ü÷Ÿ´qÁqÅqG?ñä{Ñ?I})ùgéWáz™Ö?Ê_æØ~1`ªï!“_Œr†Äû™ÒüVEÉyŸö ~É8®ùõv)­Š’ú¤Õ ½|êS ÒίÊäÏæýé?ÏS¾{ªG]÷°kí|Ù}o×?Eiõë«sª^fuAáøB‹’ýOÿí«aQ²nÅô¼¦L¯€r”ëŸÇïwfU&{Åüwá|ú;1^ú_ÜoæŒNÉóéWa;xãsÒúƒY—ÄïÃuŠ×ÓHyq“;¼û«7<ùhÏsî”ãªä¼ã¸ A»‘v³ùQ@þ²aQšÝ Rn³}{ßøŒ/ÝêE·4yÎùÄïÎã)ï>ÅÝ¢´üÅ¢äx±öì—¯úÚïŸôˆëzý@Q&¿Yʧ"Ó<çºLyÎñiu»M‰}~¨7ô¿ºäzÌøågÊ›e¾åý*M¿a¾ËöÝJ®ï\©GsÝd{H³çš’÷#m_×â|ÊUæ¤çUÏOù¥\¿9O(O’¾gó(Oþì”Çöö?»n¹)m?#ç¼ØZ¾`§Lymký÷Ÿ~‹½ïLùlæ?/JÞÏâ ùA¾§í‡X•£]JÞŸëë Ùoô“p|Úß)JOû@%¹öwñ<;0Õ š2í+’öõãûÛ¾EE™â¶É¯—ä©éƒEiú˜òÙŸÈë˜Ø=´Cø\®K UØÿ|ß|´g‰l W%ý!i_‹?i»'ïOýÙêSºÕIÇMʤ¼æqŽSÊgó‹M‰óûŸ}/ÊSË‹D»(ß(/)oÙoø~“vQOÞçKŸxÈ¿>×ä%í³o«’íIú@X/&í5¿˜âàäBUZgQr]¢œå¼°uŒì”f/‚¶JU¦zhÊ5ËSßâ¤`Šë³})î–ìá™ëÒêêä:’ü²ôóÅ|AgûÌo…öq|šß±SžXÁNÉuã™ß—ãŸã™Ïãû›Ý2_rd{Ín«J¾×Iú‰lŸƒvÊ”7G½†ö6í{Ú]ì?ËÅû±ÿ?¢~Âý@éG£žL¹?Ú­´¼6~Pæ½q_zúQÿO“úÅÆãî{›¹¿üK³·`Ú!Å¥y½é1÷Œ‹ïuŸo×óëAÊó·’xoÞ4ùÙ”ß-Ê´>¤|Î4h/²}æŸÙÞt}jOòGQMþc°ÿ™~B{Ÿr7­[)/Öâ1¸Ÿ­£MÉãó×:ûW¾ï”XŸòóR>ôbSZ| ¤Þl~ÐìFÐòËñüXç ‹’zõÙE¹£SÚý›’ãfíûïò„ Þ¿ìùkUɼÚ»Û‹’ç'{?ÏûÀå¦W%÷cØR²8_§´ý!v+ùümM¹äü£œ\)w(çR\Šç'à­Nó£%õ8Žë¤Ò`þÏNI½“ý™âß–×Õ”)Ï™vå¯ßëë×yÄ]žüò¸oål²ï¸ò½é?e»x}’§i½L~ï_Jñ¤°¾ÚýlÝ#‹2ÍSÎ+ÓÇ@Þ/»˜ôâ!êܯ۔k·üÄõ/øŒÿÝ0§¼ås(/ø´CíüNiÇñÞŒs¤<;æ‹s=Kûu[ÝXS&ùÂë©g'½Êò@ËKhÊd¯Æ¼Jý•Ɡ4»äßÁNr’ÏçzÅþR.°-®V•±¾¤))GèŸMrþt0Õ)¥ø Ç/ç3Û›öMry×+J¶oJÜù\“ø2Ö);nû¦|g«Ë“]Bÿí#Õ””|çûÆKð†ë¿é“ã|OËSê”ôGRO´8"ÈyþÞÆÙ´ï×ÿ&Ç¡¯÷?§Œ3Xܦ '÷ç|Wáäyi§çÉýRœ“rÈì0æóü²:“>œü7)~aþ¢¦œÿЧæ¯xáýgŽ‹$?IÒ[S<šë×úÏõŒ#î{“‹–gR•´«0ßú_ü»;ɯ¹ï_{ÎÃýNÊ=§Ÿ‘´s9/ø¾Ïn`§äó¸î2ʸŸ¿Ô)ù|®Ó|þü«ç~ÿ±nŸäùDΘ?´<ªä÷á¼ ¼µ¸üΜ—ã~x>ç°{ûŸÏ1È~°ñ®ÿÜmžþ’ ÿž×ÎcÆx|ä<âzE¿2ã£âùI~süQŸa{¨¿0?'ý‹T'Áñ½î³G_ý”C¿mykÉÿÀü<Ž«´_%ý½iÿNêAÌ‹°üú¦äý¬Ž±)“]“ôVËËù]øSœ>Å “\£Ìù›â4)ÎMùLÿ'ÛŸò[SüÓââ8žò\l…¢Ly!&÷ÃýRÿðþiT¾ß>¿ÞvÂæO5ù˜ò+Sœr¥S¦8x’‡Ì7W°(m¶.”÷!iÏþk<Ž÷Æ|éfÿð>¬ÏKû2ñ}¨· š’ß3鱿g&‹2ùaÍZ\®S¦:³ƒîÿª+nü«øz¦ý)ÿ¹¾ÐŽæù–w[”)/×sœÚw“zGòËñ»«’ãã|O<©)Ó|Nöý”ü¦þ7ó¾/¦ò=ѾQQò»¥|GžŸò¹Ø¾´o)õAcSÀ5 Üõ€ ¯«ãMÿû¿{¦ø©íGÚ”£²:©÷Z^\§´xh~jýžê¡ª2í‹ayˆMivßç›~Ü)S>YÈôýB;eª²u¸(W:%Ç í*{ߪŒúiQ¦ýuSÞ å}`ÿ›š¯‚õerþ¤œ§fû&%Ï_Þ¤¬EI{‘ólÐV'ç¹É{ó–qÖ;ñ;Ùúò}™ÿÎurÍßù”¬ûvüûV–/Zœ í²ó“½Èu$ÅÇS¼›íOû¯%=1奼ô¤¤¼k?ÚÃû'ylþ°¦LþL‹›…öáùýÏó-§´oZž‹oʹ—àÙo;}?Ëÿ㼆¿~"×›Òöa-«~¥É}­ŽœûÊíÿã·Ø>§)žÎuúX0{Ê ®Ë£¢Lës]\lJÆQ¬N 4?vQš]2ÏÓôÉ¢LrgV{’ßÃâL ¿í Z”lÿÖ¦d{,oLq,ê%Éá¾ãìO¾Ç;ýŒœÔÃhp|š{¤äºJùDÉçÑNf}õ ¾/åøI ÷ÿ`Þ3ó˜'Êþä:Ãã¼Þü  ù¯Šò;îvçÏ}ü•ö÷6Óu‡¿­Jú±æ¾pÔõo2þ¸ëEiÏ)ÂþgóŽãšóœóyÌ“à¸ß=L¯ëþw¼«r±)™§nçwÊä¿Jûª¬+þtñ¥ŸŽû SŽSo!ùŒ›I¿MÉç:íõ=MIyÈö'û%é…#›pò~Ç€¬+X¿þÞï¸ëq—™Ì|gÄ¡ûŸýÝf>/Õ[…ü§=u«M8y>×W¾ç{ÊëLûÅZþÓ•ßÿî_¿é¹ž‡ƒóØÊ{Ê5ê=æÓó“œKþ1Ê9êA)O…ößÇê-Áä/¦žkñ0ù,nV”É¿ÀïÍöQoå÷æ÷£þprQòïÚX¾2Èuv¹*¹n§¸-õöm»•¦ÇeúÞœ×)O>ÅÛ¶W¥Ùa2ÍÏ1¹KÉ8¹åÕâø¨(™³Ü”̳¢býÒîáûrüp<ÓNb@êÔ×ÙúÓ8þi'QΟZ•lù}Ù~Ž?êûÛ@«Âýؿ̣¿ŽïC»œ×sý©EÉþc^8åsü°¿¨_°ý$ϧžÁùËóÙ^~d/™ßiÊ{ö¼æ ®ö¯Ÿ~ñ•©înjfŠwâ}ûý{Sÿž ×Cê× EÉõX”)Žú2ÿŸgùxÞbSÒ¾§ÝDýšò‚~Qê?ß<ÎñgûÀeŠŸšÒêp¿T·`ã«)9?RÞ@Ò×̯ r^¤|÷Yë"R~<çÓšo^ý ýÅlSoåñæ<°êÑf6%åçѬu0ƒ¦äû¦8vªC·¸eS¦ôßñþOï”ü~VïÖ”¶O^Sò;¤ºËC9Þ7%ã Û:%ûÇâ’u›æ/Ê…ªäýO`€×Û¾ë Ù M¹¦ºÆßO¯Êõõ5KÞôÁ&gøœ‡á|âúdyM™êéHõ[éï’ ‹rGSZ>kQÚ8lÊôw³’œåõ&ŽcÆ9S]Êsµ¸˜ôfŽ[¯:%Ï·ë‹~µþgãß}Ïø«JøÝ'÷ãü þ·¥Sžn®«“ñê Ôm¿€¦<³S¦}Žã>C8Îû3>²ñï÷Öý|ˆÉùTÇ`u·`ªó ¼`?&ý‰ëœék Ç/¿åæVÐÆMUŽAÎG¾oÊG›ÕqRQ2?ŠÏ³º¼¢¤ÿ'ùA÷[)¹NQãxâ<™u}á¼f\+åÙ³½³ú™I>?Åm’^aõŠmUîÙ—»)“¿:å÷¥ºÆÐ®þí§ž–üL©~r“ò€ò…ßÓäWS.’<¿Sš‚íéÀpÿYýv´,ÿ½)©ßðxW<ßòjѾZ”çÅqÆ-ÿ÷§¾Ç÷c\žÇcžHQ¦|O’ï’ïovK Éÿª´¿Ãˆ÷Iql«O+8Í^À¦äóù÷Ç’ÇçÍöåOÿÏÿÇv¤u€ç§yÈãâdþÅi óS8¯m¿‚¦4?¯ƒÿdϾé¸Ï”úúi/$楧ù½m“ò­ÿÅúǤ¤ze®KÔ“Í_TÀ¦d{x¿Y÷çIõ‰8žþ¾KŒRo§Ìü?Îã•]J®#”ÓôS_ýÕ_áÿ˜ûË{;L~¡´^¥8ÆQÌ;º-ÈãËMɼ¤ô<¾?×·Ûéüt=IÿŠ}÷¢\{£]‡¼ïÚ™?œvMUö?[ÿ(O8.™—Ãþ¿ÈþÝkîEÇüænûÚ{󺛃üî·ù9Ÿ9?釀\§É妰*)o­N¯)ù}“ž“ü»)o„ò$ù{ÙŸ¦GvʤgY¾(Ž›\íü¢¬ ®ŸÈwêÓ–²[I¹ò ioØ~’M™âéÇÌ«^ÇU™öA1ÿ5®%óÜGEÉuã„÷ãûS¿Jþ—”—²ÏçÖáè;>Æó ‹’úJ¨³t?˜öCY—:åBUš_·€8ÎûSNyuÉNgÜãÞê!š’ýkó¹)Ó÷`{’4“Ÿëdªa}„ío‚ë“]ü˜ýof?¼½GQòü½îøÏ¿}ã}/¶õ™ë?õcêœ?µ'ï“òh°½Ô¯l_•N™ü¹Ë íÆY8.()©WÌš¯™üš–Z”ünQ.‚ÉßOùÎö¬ýä]ß¿ë·_òýòªr¹)y~ªw3?=˜ìvê ƒ¦Lõ1‰ü.\רoó·|âàÁÏ9=æã¤zóïºÖÿ|?´¢¤_x©S‹Òê›r\•¦7\Ÿ¨çÙ¾EI¹½mÏ>ãéï>˜þ„ö3by”’y KMI½—íúa§¤\HëH²ß˜ŸÆù3hJè7{æO§e—\ýüþ7s"ùõ‡UiûÓåBUR¢~9¹î®¹ã Ö}¿¯[ür~&ê½”³ÌS9¥S2û‚+à¸*ßàýø>6¾‹’ýË:ÒµGo?ÿÙ7X´çð<Ú{ÖîÝÊÓ‹rûn%åëo¦ì³=Õ/3e?iç÷¿ºnç1uï~ß÷w锳®ëË ß—võl~gúCÇUÉu‰Ïcü‚÷£=`ãä%ÏgÞ ÷EgžíÿÔ)™§Çýý)ÏR]÷±þÂþ7u€iþ§T¯5,ÊdO°Ÿø|Ž« oýÎÊËoñ•”W´§Î\nJËÿi`Qš½Ú”Ìï uýÏÚ‘üŠd?qþŽ+X”ËMÉû§}¡¹^§| ÊyÊ£TÏ’æwÊ?çúGÒgÃîW•V_€ã7ó 哨¼-´nNþýö÷³`œz'I=ÊâXˆó©Wm)¹o0õ(®”Ë U™¾{ú{ËdQRÏLuмŸåq =)gyÔ Û“êò“?4É{Ë3ÙvJÊ!Ú«{=ù+¾äMŸð}ä«’ói¥SZÝÈqœäcÊOH~¢”ÏfþwÜÏüdÊþ—þÞIÔÇkQFÚ:ɺŽþ˜<ßôœoùEÉ~4=Hý‚ó‘ë\ª§=ò;ø~ƒ¦äºÈïÃã¸~ª½D;öuÿ›5¿eONS¦÷œ6‚¼™<ß…÷ç¸IyBSì•I»NëÀVåVuS¬¢=@ÿýWÿìCN»òSsfo2Žë=ýRlÏç{QŸ ]dñ3p\•©N4ùËù<ægsœl<êoÏ=ëyÏq'®/Ì?¤v¹)©·Ðþä{ÝLë4õ{ÊøÓ¦ÎÓS*Ø”[@ê›æ· ¤>˜ê“,?´ýhšÒâ‰`ÚÀòB;%ïÏõ2îŸP„ýoO½e§¤œà÷¡ÿ›öý„¬‹²øF§d¼šòã¡ÿÙß…c»MϹR/·õ4}ç¥ùŸ›rV½˜þ¡ ÏE}2ø]cýCªÇ\s×Þëú÷ýùÌöóèÌ?¦û¥}!’~fyˆM™öݰ¼EÐìIvߟë:'{3øÕLÞqXž^S2Âö˜½[•—ý/æ‡òxÚG3Õû³ßRü‡óŸ~ > HùDû•zýi””_l/¿;¿÷Ùa<ŠvQÒÛ8OÒß ±u´ûŸÅÁ4?!¸æñ¼Í+Žúž×SU¥ÕaVeÒKͿٔæG!‹rV¿>Éy™äÆLûß$Ú¾Hh_z?Ú%RÒîÇüÞ“‡ß”±nº û_Ôÿ8>­>w—2Å…×ÜéÖ‡_ö¼§:ÊIûx=×GÛw´ý«Š’ïŸöqXꔋ ¬J¶—ò‚yŽIâùso½ Üëý?2ÿ ã¶¶ŸÞ;åA™ÿ£S^ï¹ñáo›ú÷p¹NÑ`|eýâc¿Ï½ßTw^õÞ=S>×ï¤?‹’û§š=Ò”¶_7Ú÷‹ÄýÓ~m|훿¼SÒ’ôËÓ¸ãù\Ïx=ó3L>ã} åµ€œŸŒq\Òï`ã¯)éß6}ïCýˆíe¼ÄžW”)nžæÏü±W~s×_ÿmŒpÝåù¦¿7eZW“hz?Èç%ÿS'´[Ö|öq¼ðì‹cÝ û{Ó{ïõþçýü6®(_9ï)W(’]ðçîÆþâzB½Šr3ų’5ÅqRþHÚ_ ëaÿ3}€òl¡*©„ý+,>jõ| Õ_ƒ·&oÁ´^ðýS]Gªó2ýª(¹P>§¼_Ž«…ªLû^ͪO&ý1í§ËãüžìOóG%å ó#-äù”›–÷Y”¶ïH9Êø~Ê+3ÿZS2nŸêãSý}òŸðýNlÊ4?—:°*9¨òþ¯‹`ªOá÷aþÛcu åÂɟ™ò¤pÿþÿŽ_òkó|~~gŽCö£í+Nâù<Ÿ~]‹¯ƒÖþN¹Ø” Uiû¡MØÿܯÝMióÇ_JöŒÝÏ·ñ²ßˆëÙ>³/šÒæsUÒßÊþXYÊxlj­¯’òŸë¯ßÀªä÷¡>D{oV{?ÉÎ êç©®(í·Âõ‰ý•âèf§(ûŸå) šrÖ¼†¤ßóxÊ‹û+ƒ)^nvIQ¦ï’îŸìG^¿ö‘×yË>s°ë›`Úg‚ò…ù U‰ñÙÿ¦ÕÙ{ÒÛðªÏ½þܾÚîÃu7åc¤ñ“òïÓ¼Mq3ʱdrür¾°=iß&Þßó÷§ÜOûU0Žaöm 통»ÖŸÿÒG­µïH}+Ý—zߣ%å#ß‹ë¯g]‹ÕMtÊTÏI½Šy¯œ_\ÏÇUÉö‘VÚÀnuòù©^.åKpÜZžUQΚ¯Çñ”â—ìoæß¤óS¼Ç9O+Ù”¯ÏÚ¤<»)wtÊu<ÏO¬¿]nJÚ)Ô™·Jý“ö¢éó Ïg{)†EI»Œ×§<&Ê#®×<GS®tJ®{Ôïù½RûÍÿƒ÷¡~ÍûQ^'»‘LþŒ¤ßÒNyd”O©NÏü/ ÙUÉ÷aÞ|ògÒ ½¶ñ•goyÖ_èvȸ ó»o[”ü{:Œ³§|ûOvPÚÉüÎMiþ”¢´y‹÷Iþ™Ô>Ë{m ÚoúÈþ]»rУŸ~Ð;ã>m©N!Õi¤º³óp~-Jîχ@æÌ? ýðÊ«j¯•rŠ÷¡⨢´:…¢d­å²Ÿ+hý r·<§¦LßyV?§å}â¸é÷xÇMÚ×’z)¿'õbŽ+’z·=4½ª)“Æöó|³@çû¦yÆç§óSÞhZW“ß2ÉÛ¤$½‰ç›¥(S\'å9Ç}5šrÚ¾4 ŸÇ÷O~=Ë£Dû,Ï™,`8žêùø}gMë9ÖÓþgë²íÏÒ”hçä><ã¡*¹¾Säþxÿ‰Ÿ‹u—8oÒ¾G°ö¡ý–' rþðýØÏÉØÒ)·[ê”Ìûf=bÈ[°ç¯¿õC>ý´ëFÍÏ RNð~Éþ¡ýwÖHÉ~Nù‚”{”ÛöAÎÓTÀykz=Û ¦|¾¤Ÿò¸íãhõ<¯(b{jö¿©þoÊ£¤$ÿTò÷Øù ßï¯7žO9Îz%‹ã¶Õêÿú_ÊßœÇù‰ñ<ùްã'×'=†ó#ÔÇÙ|àý8©'¤¼¼¹ËžwöeŸ;×ú•úC’¯”cÏoJö3ÏOû½¤yŸì›”çaûIóúÕ9u?–T’ê¹Ì_Ý”ÓòK’Ýo~øp<ùBÞ‹¯+`ª»4ý¥(y>ßÇêÏÛêœUÿMñf‹‡ë-oN9oˆ·ô¿ºñk'ßvÛA_0?õRÎË•¦¤?•Çiç1>ÆøHÊ¥|d?&;r¡*-¯©S.6¥ýݪ¤žK9zbQòùißö§Å7Š’ï_A«‡Sž|Ê'Hñ•iës²·“Þ–ög4%ß“ëËUI=gïg½qçSžýT÷»5eÊsIr(Ô3ö?·;pß´žQïLë߃zã²+Uiû´T%åuêç ï¾ã9[ö^cß9ùi¹ÎX\¤)ù\Æ·SÞQò£Æuº)Ó¾*)?-å«¥ul¿óÊœóÆWż"®´çbÜ—ûŸq|Q?`œŒyLVÇP”¶/Hý—ë¬å×åBUZýQQž¥ì>À¤‡0?>ÆŠ’÷%óCâþ M™ôÆ4žù]ÌŽéÀ¢Lþ˜´>§õ‘~}’ùÛŠ2Å’¡¥åŸ€óg^úü+îø"'€|î‹Ç}j˜‡ÀºWöÛÍë9ÿíüÝJÊ'® ¼žó†d]5Ç!ë*Ù_ì_®·6o›2Åo8/c2È¿û¼Ò)éw Ýü¢éýMI9lvHSòz® |ÛK½r òzžÏûQNSÎs_]ç:Æ<«»Ù_)¯‚ÜÞ”Ì;Hr•ãÞòæAóWá´¿ƒ5ÕÏ@9EÿùJ'ìSÿþß—´ýù@®3\‡›’óÚòÞš2­©N}VýšL~c®ƒæGÓõiKûÑ¿·ï%ßß}Ä‘Ë1¯“v¬ñsÚÌMv íÞŸúµí3ƒ÷¦üç8¥Ÿ6åÍòýÓzIš .7%õwú}x®¼>·¼¾ˆó9ïI‹‡á~ø;Öfw'}ÁÖѪ ~ȨÿQŽ$ý‰yêIo4¥éà¬ñ?®ƒ)Ÿ“r*­³8ÞÿLŸ:´vá=Øok^üÃŽ¹ë]â÷LóƒÏ!㾜eu&oòs°¿m_²(S\#Õ€}ëoÿ›yŸ7>‡þ´ïKªO´üÊ¢4ùšŸ íµ:˜NÉõhïõ£·þãÑÿÆçÐÏÀ¿Sd°SÒΧþžüL$× ú¡©ÏŒ@ö›ÕÍ4¥Å£@¯EI{ËÖeÐâ> å[eŠwÌZ¯Çñ’üá¶n‘M™ê‚Í ¦ü.¾ÿ†òýž~É«l&^Çù˜ô䘊ó-îãÔ­ÞdÝ7åOò«Sf¾(å ã» ëJØ>Æ«È8½S²¿,Ÿ4{´}4À”¿kyàµo÷/yÅ·~S®úMµÃ§ì1uŸX¶#åuYü¼}Q¦øÊ†‹ºíŒW|²o§ÍÏdP¡<£qQÖ¿ÒÞçùŒ‹šÝr\3ÎÊûSïIù,œg[›Òò¸;%¿_ÊÇ4eÊçMùD&Çš’ýÃz|®çìï­’yï”3'%ír¶‡û“¥:Kú¿†EyR§Lã‹×[~®gëð¶%×ÃZ”\ÿ9“žòËöÙ(Ê”'ÀñEÿ,õê[óïzû™ßýâN“#<ÏŽ7e²ŸØïÉßbö-˜ü;aˆþ ^Ï÷c<5µŸ÷çõì_Îû4ŽR>–3ß;ÕIØ~CM™ò©OQ_KñYÎûaQr°üž¦¤?ª%û×s#)g¨?QOHñ\ö·ù@ŽOÚ ¬“àx —þ€qU²^–õ°´ƒ“%Õë&Ï )SœŠz—å±€ìß”÷’ÖêA\Ǩ¯Sb§¸ÉþæýÒ÷àxNõÐLþêÔ>Æ ù~n½6iãœõ~ɎضK™¾ç#ïG;†~à4žS>Íg;äûÁÞí3ï/ÌuâÄNÉø õiÎ;êÓ´Û“ZUžT”|íÚýô ÐîæºÄýޏ_ íóï‘EiùMÉóÓ¼JyÇw÷³ÎË4Ïx2ù’‚ëõB³w‹2Õ»Z˜êÅRÞÓW%ïÏùÈûñúdß³¿¨—›]rüò{¤¸Þ¬zFòOÇ8&˜®_¨Ê¡|¡=¾Ø”Kr¹)é`|…ùL_iJú7ø~Ô³,nòüôþ̧^锋M¹ ²½fG¡}Iþ›&\OŽŠÒÞ¿SZÝ.Èû[ý?˜â3³æ}$¿BªG0ÿOQ¦ú䇰<^ÐòdX”³æÅ&?DÚoóÓâH¸žv²åeªO¡M;Êü·x¿YóÆù=y=ýµÉOÂïG;‘óú,ýÿôçRŸ4ÿp§äõ<ÎùÌøÛ»vßWt?ÿ\“sÔkùœS«’ùÆÔsÑïýof»mДß)>N? Ï7?$˜ô5rîiWÿ«>÷éö}˜_ü†£N8‰Ã¥üŸ´ÿ×yôˤýæ_ç}´}Ößô»&}›ë9ô5‹£›¾¦<²äWNò&Õ)XÝÈöÐ~¥þöñ ~Äö¦üÛ \é”ԙט¾ÇdÞgÑ_ÓþN¯«ÇÙŽ¸_ ŽÏ=ä%Ïøà5Ïs}DÛåõú8žü®É>Löe’ôóqýJówДÉ>$)/Ó>ó|ŽÇT×Ãó-ÎS”´—S]Yʇ2{¾)à¬ùW)ÿ)]Ÿü)I7{¸)ù~”—\ß“üÝÑ)Ùß)Žcúoxß´ž³½ïéõ)ÕÕ¥÷±zœ¿Ô)©ÿ‹2ÔåñÝ”I>šž†ë׿ø Ÿþ܆ƒs<·(c½ž›ògGfG‡û[¿–R””kÈ‹™¬»l‡éçh7ô [§&™ÏKÛòƒx¿”wnþ:0í™öeKû ±})OÀâ5EiyxÞ?éÏË»•¶oLîR&=ý´c9oN¯ÊÔŸiÿPçõk÷ýí“Þ÷ŠëÚ|ÜÿjÇíõËÝ$®ßV7Žö&ùŸòLø>ÉNŒþ÷¶:Ó~–Ç ¦:;ޔ毩JúWyý°(y?¶Ÿïkó‘íoJŽïT‡ÏãÑßãÔ/ÒõÖž¦¤?ÑäiQ&}þ’´_M²Ó8?,¯-ÐöÚ¥Lßsí5?ý˽/ŽÊI«Ãf{š’~@î'@¹I½w¹)éWåº9é·C\¤ÿÕSš’ñz¶“ë;ãYd²·ÒxØï‚å»_ú—Ÿˆú`ª×Hv@Òûm<6ÇS^Æ5.Ê ÿþ’û÷ÐöUM¾%Çÿ¶ªä÷ÜÑ”g°)W@Ú{œô§±Ÿ¯~ñîðº_¼#ÅÑLo5½ Ï¡\â:Ê<‡”¿“òÃx>Ÿ—òÉØæs¦|*>ÏömSþRj?ûƒï“òhRýg( ®Oyô‹$¿v²“ÇçS/¡žód{UZþlQRO Ï©JÊÇíÒülEi~–Ny.Y•ü¾”ßìße0åíð{«’ïÇù“ô’zí,ú¡xœr›ýÍùL»}Ûnå E™òx˜WtZSr¼óý™ŸÍö¤<¤x>Èó9ŸNjJ«?9ž ·L‹‹p\ô?öÿ;Î=#ÖÍ3ÿ’úý‰‡\g>ôŸté¿>²Þîªÿîâ†Sÿ¾ƒå¡ƒæŸ(ÊŸ±þÄõG<žò/L/Ù¿ë®ü§»<èV‡X;iç®Y|ÄÉ?yóøß÷©oÁoý{ÿc²'8^`÷õ?ËæwNþe~¿mÒâ.EYAó«ã=ÌϦóÑþþgzµéëMiûò‘ú³ïR>)û5ÕÑîJùÆ)^añß×âùÓ®ëï[”–‡Õ@·xRS.ƒÉŸdþÖ¢¤}Éõ!ÅÃ’<æ÷Ozx%›r¦xoz>çiÌ/S~á¬ë‹}¿¢LãoV|º_Ê7`ûi'ÐÌëÓ~|–/ªìöÝØÊE{Èv¢'ú× ¾¯ÙÁ ù¹ðž¶_NS@ú%™_Äu‡×[ž>ŽSþÒîeþZ’·üN´;RüÇÚšþ]”O©«³%Ÿ—ò¤R<>ÕG¤|BË¿iÊ$íû4eª©eu&?•å#ÉÏ”ì Þv-¿ßJUòzާiú*ý£ð™‡uÚŽ3ŽG;…q:ž¿PÁ¦d<„yÞ¶/ Ù)gØ.5eȧÈu"|_Ðú§*íýšÒò ŠrÖ¸4åþõ?±ÏÏî}—CS¼1æmÚ~]›””\?Rhâü ¾ðù¯þéßì9ôqž±é?å¼ÛŽAÛ‡Çi‡p¶ãUÉuœã“ýÊñÄ÷ƒô¯Ò8*Jë޶PÀ â8õ%ËSiJöëÇÙi¶:ë¢dû)iQ~RžpÝJñ'úøý+Èu(ùOyœëõ(®Óhÿ³õrî¢/n8ë>/49Ãö'»‰ßk\•Ô£)™ç¾P•¶Ÿ^QžYÁ¦¤?<åÍ=÷\ÿE×8&æw¥|¾gÚ? ÍC®s)niû,€)Î`q;²(™/?"«’׳}³î ’ò×Sû8“¿šÜ^”ô? Á”O”ü )ÎÈuÔÆ_¢} Uiõ“ ]ß ûŸÇû!'÷Áø™ØíÔg©r^²_9·4%õYË›S|óbT”s~ûCßw`göZéïUðûó{@êµß³ÆR}Eš¼?ÿîV°Ï'ãgš?zFÿ³ïJU²ß9/ùý©R?¢¾Áõ.å'¿Ç ϧœâ|Ku1Æ)ÏíIýÓòÅ@óoâü´Ž³¿èW£½Á÷¥¾Á¡ûÞè-OXkã Åc¬îLþûè¯Æ{ssžp½åúÍùÇóÓþ²I/¶õŽ,J~§´ß+åþR§%ÏçñTÀóM¬ÊdQNÐîaÞí8ö/ã»IŽ™^²ýÌ›µ÷i Þëû{¡*¯§ßŠ~(Ú‰ŸÛ›ó¡ÿ™üHó"ù‰©‡§¸^òûgµkä:ví'øÐoþøvQ¯Iuÿ7©JóÛwJ«SÅóy¿WLõn¤µ¯*g­ïãó÷¹Ï£O}ñu?îñ”¢´<í¢\lJæ½Ù8"+ˆã|^ªoã{§}iù~ŒßÙ)¹/å³[ÐêÅ@%õ¶?å»§º gûÌ®ê”ü^IäzÅõu!|¿ôwaø}fŒw{ý8k½:Ç'¿·ÅÛ@Ë9h—ð{.ƒ¶HQÒ~ãóSüÙöß(Êd_¦:hÚi?úŸÒ~‘\çy<ý}˜$̯Z•©¾…÷§6í‡E¿=Ï·|+о_Qrü¦údË'S[¾˜ê˜¨ß)¿€¤Ýœò—§åC¯ßùï½ús׋q€qUZœLyûSâä6Ž¬î²¬N‹§€#IþÆ,~6R²_øØ¾$‡lÿpДi%¿Û–¢Lë6S/£l~ôª„ÛÿÌîà}*Ù”ôoX~V›2å³&=<Åí{à8Ç]¬Ÿ/Jöלµþžò×âMx_öWÚ™r€÷ãûÑÏ<„”_Ÿ}òoó}“>gÏ+‰<¤=™êÁæÎ¼Õš#6?º\õ«‡ƒæ¯(JÊ£ô]L/딩ßRØ )YÿÂu™uÖ!ÿ>Ö™ÿÏKqd¶?õ‡ù›ÐڽÎÇ}YA7=äûP~óú £ræ§[¯/—GJÞÇâO çÉ´q&y—êaø>´Ÿ¸ ¿ç!åõñå]J^O{šòëörSÚqþTê·´×ΨÊgå¸ZlJŽË —¿tÝ…çÿÎÿ~xQ¦|Côãd^ÑÞc>óŒNnJžO9›ò‘YGeù åc4e²g-[”ÉÏ™ì“tÿ!ÈñÇú<æ³s|l픬Keœ–ûGpþqÊ/úÿØ?gtÊ“«ÒòÝ;%ý)Œ§,7°(‡ ÿþ0ççæª¤ü™ûüQ?>à?¿äû°‚©ÁâÛ`Ú„z íK“CrÊC¶7åoÙ¼. ÚÃþ·u¹)mkʘ¦8ªOOñ›ASÆü6rÊu[QÚõV š?Ly1Ðòí@ó7ƒ)Žç§ï“¾'å`ª³âüâxçø¶ú 0ÅçÓ:Âó)-? *·aÿ›¶¿Núo¯¥µ4J]V·Ó)ù|ú…)¿x¿ÏäóRþ Ïg{HÊ?>?ퟲPÀ¦¤}»Ø”Ô×Óþ‘|~/¾ÿ¶¦ ò¦ÿ¥:™Éx”léÕE8y~г¥ºÖ‘iŸ ö{ÊIzPŠ·rÞò}Ò8àýÙ_ÉÞMzIÊ#Oz¨Å+Š2¶´÷iJúƒØ¾í›”É?ÀüÊùgýá…¾ð×±]´“¨ß§~NvYAæÑ_œò‘ÌniOpÜÑò˜ÓýR<×§8`ê¿YÇyŠ%<ïGýÆò ‹2Íãd_q¼r±~‘í'ùý–›’÷çóéoâºÀ:kêG¼õê£IÎØú†ó7¼ìØÿCÝG[v”çúh Ø{·ZYHd¡&Gc@ L±À “¼ƒ:H­°ÖÞ$‘D‘ƒ±ÈÐ$#ŒDðÄŒmrî˜`ÑôÖ\}ßç=k¿ÌÃïŽsïúçÝ3Õ¬YõÕkŸúÃ8®9.veò_¬uJÚ¡»;%¿;Ç åÔƒ;å¨)“žA3Çíöª¤?q~Çq«’ß™ã„ûps½`ÿO6)S\ËÆÈ8õŽÊqÞr~걋 ã6´Ëx>ëŒx>ß®ï”8¿ÿY#ÅGM™ò(Ïé2½4½§)_¤)éÅ[›Òò³7)oüŽç\w×CϰÿOû$sÚ_ƒñŸ”ïÇ÷âõ¼?ã´Ã(–›’ví–ª´ºvïÃø×qÆ÷¬pœïgyäñªìß»gŠ—ŽAÚõϹnrݧ<¡¼æøäßQ¢¾ÎyÄñ»á¬;>øUWœaë`ò'ó|ö3ãý)o„ãžãÏç¸ãó–Ȧ¤|Kz‰ù{›2Ù'\·W›2Åm’ÄãÔ/ù½,žÙ)ùþÌÛ¦|MyØô&zÚ/3Å¡,^ 2Ÿ•ó8íŸmþZ·xvQ²}Ô#)xýZSÒŸË}ô)‡8ÿ(÷x>¿å¿Ç#ûgLõN¶ßlS.U%ïgþMç§ú8r~Û‘§}gˇ<ÿLõ©æWi`Q&? åZÍ/Ñ”Iï"™÷FýÝökÊä÷Iù(I§:«oJóo‚¶N6%×sÚg‡ìq÷;ö|ÎKÖm¥¼$^OÿÞ™’ãŠu>ÌSâ¼°ý7­OÚÑœGÔ­=ˆöq}c¼Èü©Ý0¦¼)Þßâ EÉöq|&ýàÀ/ð¸ÿ6qß)>÷ŒNI½q¢IURþÐ?ÆëÓ¾e”3”W¬‹¡¨`z^²Ëù¾¼?ï—ŽóþüÎŒ«0^dññ±2ÖàyÔ³x=¿¿7ãßü|ŸZ”)¿ƒç³?y=ŸÏö“éü´î¤ñËõô:ŸþØw/xϳb<6?Ó#ÿ¡Þë­Š’ç3îÀçA¾OÛ¹Æý¨Ày…Óû§|nóó5¡ÝñU¶7æÉ5eÚÏçàëî8ä…ψzlò¯ÅýÀ”woyÁ`ÌóG{­_À˜?¦¸»ù+A~‡´ŽR_Jþ/êGÐfîCÄyM¦ñÍ~)géµý/ÚOKUóëÃqÚ;&g:%ŸÏx)ýÔƒ7ƒŒ[ÕØ_¬×NvHz¹ðÖËÞñÒ÷?Øîµu¶)韩EI=!ÅCx?ê<Ÿ÷ç|¤^Ç÷ª— Ý&ÉÊ/¶—÷ãû¦ûš2å‡ }^ª«MëÜj§Ly¦a’þëƒùž&—›Òü=d§Lr?Õ¥òùæwÍþ,JÈÇþ7kŸž˜ßËþ[xÄ=_ø ï_Ç÷ѬJÎ’þž…7üÇ1ûúÑ&ø=†ŽÓäW¢ü¤¾ÎþàýR¾Û—ì?žO?G™—dù÷m}²¿èwIö_’+ægMNlRRγÿ’\ä¸Kï“üÎl¿­+dQ¦8>Ï7½dûR]zªKûoRLû^${Îê˜ÀdWX~ ˜â´)îÂç%ÿûÿ¯3Ù;;%å1×®ë\™Ÿòj8?×ÀÈùÆý“ÀþÇïlv>¿3ýÏ|oÆsÍŽ!«ÒêjÁ´¯2åçá*˜ì]¾óêø<´w–ýÚÿbþMÒSèàqö¿ÉMp¨?"å'¤:|³;%³ý+à¶NI}ŒùçŒô+0>´°ýOõ%›b‚÷1y ¢§ãˆ~oæ%¹bûÁ€l¿ïÐý~ì8ëü@^Ï~§_#å+ð}ì;eÚ7ÄüY ÙM¸ç¿å+à~³â¬)oãf:¾Ø~ËGj ÎOy¿”—iŸòYuõè§´ÿ*åØô|Ügz>ŸÏqXɦLy¨¦/‚ÉïÂøRªÏ%M¿(J>u œ‡ÔÒûXÞÈ÷£Ü³z[Oû#qF®+l/Û—äÞÜWοџüÎßÙxOònԔ쇺ïOÚ—&ÑêIš’ò*Õ¹X^U¦|Ìt>ãV”ÇŒçñxòÓ‡úÊÁù½Ku}2pZQ2ù¦CãlõC«{(JêOV§r=I~´~Í=ú–/{×ýy»Ìâü§^È}SGMÉë9.c¾˜ÎzH¿üö¢4ÿ(H]Ú?ÌüÕ8nûC%Ï·8FQ²ýlïiM™âFæO ‹’z¹Å»ÚúLù)¿Éâ¼~}ö?û.C÷sLñtòª)¹ž°=ì‡/¹û‹¯yÉ»l]£<`;9~“Ï÷b|–~Êu?ô =ŸxÕ¿>ØòÖ¸ßÂJ§d¾á¬üö;åîÚ^%í°”FÿóÜÿ “¯ºá/žg~}ú èGf;xœ~ñIU²¤ÉÝ¢\mJÎC¶'Å-,¯¹)“ýœö¥Oú(ó é_±8ASŽ‹~Í©]†ûô?ß7}“’ãˆã?_ÁsAÆ™R¼ŸëhÌs˜qßž”·#ëJz¿‡™~…ït‡›¼ó¶6~RýejÏмÂôwÒ|JqKžŸÚ›æ#ŸÇëy<í£iûǃ!Ÿ*î¿Çö]÷}·ýÜËvÛX‡Ë|Τ×Û~¾xO‹Û4%×Ó¡ùa‰‹EÉûSÏHvS²ƒ’ÞcvISÒNe>߇÷K~Rê¼_Êó³ýšÒö3y~ÚÏKu½¼×5«»‹’í]é”g5%ŸÇ:KÚ;ü{$INš2åð¸Å¥Úúäøeü’óƒuÉ<Ÿû¸‘»ªòǺï§.¹ï§Þhçñ»îïäßeá> ‹EÉ÷¦Øì´¦Lûæðùç)Þÿ>Ù@縠9î— š?äúF?LòóPîq¢>ËóCü"î7ÁóÍïÒM?CZïm¿ eÿ³v±_hÿîÚ¤ä{Ò¯mqüª¤ÞKù@yo~HÐöù~£¦äó­.¤¼§œaû˜Æö¤qŸòR9Ïi×,U%ãìIš˜òÝR^,óRlÿ ²(ÙŒ‡ñ{š¿§)éŸ1¹š¿´¸ÈüXË—9_b½YSšÇiפ<ëZ”)1å&;tã~£kõ;ßÉùëM™âÀì—ä÷Jy#7“_™÷¿ÅmvüŽüœûyð^)_3õgê7r–Ÿ‘û‡¤<ÚôÜ”oûÉâ½x¿gá:U‹rþÞ§¼jùZgÙþl'ïËûÐlõÄd§äýHËo“ß1ùEÓüå> ”ç¼~R•”?dòg¤÷áóS‘|~šÉ_’âʦ?4%ýHKEI‚Ù-MòÙlýcûS¼…÷·8žGýÁökïÜÒÀÄqÆåß±ºâ 6¥í»T•ÔÇØ×ÀŸí¿ñ÷ÏråêózRÿq!;Ÿí#©?ò¸å)%ŸÏã܇Šõ‹g4åÖNÉu‡ñ`>ï³Ü)ÙžS‹Òú íåxäxÛÚ”¦ƒœŸv¼()oè_Kõ]–'R””?)nœê’n¨¿‘í¥?“ó•ß“òs¥Sòzóß6çSäúbú8×þñ©Ç½êì>µ()WS|Š×[\w¸IÉý’ÏæýÉÔ¾ýw3wïßù€]7Ù«d>aZß“þ0jÊhß }ÌJu…|~²KR~ ÛËxßäýc$hõsMIÿŸ(-ÿs2éõ>áßN¿Ý-?÷×M~²$§m?…¦´|š¢šwbyº å×wJÆ·9NÍN©gq¶}ŠŠòÀÅÿþ-™žrÍÚ…û0™r‰ï‘òé0ßúß¾}ý@ú—ø’}ÈqÀöÐþ³õäý“=Çö±?)Oèߤ>¿ rs¾§ºÛÇ¥(9ï蟶¸KSžU•ã¢<«[Ÿ3öÅ«»:¥ÕÇ5%å ×1Ö¯ñ|Ó«”ýÏü½¦_%í·Ý{”ü;=œœoŒòû2–öGˆþr0Õû¦úYûû h?íw³gª’ö'í‹€)ÏÛöß,JêÏœÿì?îüý/î÷lõ‡ ¿ å çõ*úm(y>Ç­ÅåAú©}åuox«>1ú›R¼%å §:8Žï5óã+ùgâqß~×”ÏÌqÁçÏõõýžöæ›Gÿ<íàÕNI»“ñÚ¥ª¤·Ö)©÷RNÒÁóéGa{é§ZmJócU°))·¨‡™Ÿ¨S.U%ípú-“N? ý(gwëÓô>Ðêc‡î7gql0kÎk>v­Åa‹2­£ì«k­> œÿÅ>ê3ß^±vòºïyE™ò8S|òÿ6S~û‡Çù“þ/ß÷¼Çß×ü¦°fî»>4ÏËò–‹2å…Rޤ:6[_‹’ÏOíMuþó·þØæ·Þâ¦ç1~·X”Û«’z“Å÷pÿ-U¹Ò)©×ñx·v}Qò|Σ´þÍCLã"ù)Í®)ÊPßhëÅPuÊHv!Û›üo”ßóO½ïã릛™|æ|Nó—ïòÀ“]—òwÌŸ²_8Îæ^w·nó‡6ÆzbË[ù©.Ç—ª’ù\,ÎŽëéŸáqÆyþÜ;îúð+ðCÏ£À{p¼,–õÉv[´ýx¿¦^ºéæï¹×—¢¿:íÉqgþ;0Õ9'{ƒù©)_7Å1©¿òý’_)ÕÁ%û†z8Õ'RþÙ«`ÌÛÍŽiÊùóžyÕûŽ8ÁüVOTÖ'Ç‹å+ɾJuôsZ|¨)G ûñÀåŸ<íÂ=Ït} ÷á{B¯é3¿7ä¹ou[ ¿ƽíWH9ÎxbZ·)Ϩÿ¯€ô³³.ËôÍ¢4}¸(Ùÿ–S”Éηº?oÊTç5+>”üò¦7€C÷aK‡aîùË?Ù½û1OÁôþTŽO®Ã´óGa»™gÆúõ0¿b}ý¡.u:O‡~?{ï¢Lã˜ù™qÜ‚C÷ḷúÚª4»¶(SþkÊ˰|¼¦ÜÒ^£\Úpå[zòsìïƒÁoÕÿ|ðõãoúèg®íu¬cûþ^&˜ô€¡ñ¢dßÙë¬xÙôþ3ηxõ;~ŸÕ¶>"—›Òòe@žO½ƒzõMÊ…¥ª¤\çýù],?¾(Ceÿ3yÍzæñÑßI¿&å=ïwÄy™âE)?„rã>}Ç”ïbu* å6õH®×¼õ7ú'UÉû¥:zËë÷縋u¶ õ®#CóÜ9¨ß&ý"ÙÛ)O>åÃZ¼¤þÅùÃÁÒâz å1ç©é78Îû±ýó_ùòï\uô…žÄ~hJÆ[)§p|*p^ÿ‹z§å€–Ç×)9N¨Ç,U¥Å‹’z!ç!ý±œ·”sünÜO”þ»IU¦qA=0éí–·ˆû¥ý5SÝêP;ƒzpÊkJz±ÙŸMÉzõä_8à^sôõ~ùÓß©PÏáz“ôúÑFM™òÀ“ýÆëù>´?ØVwZ7Èûó~©ž. ’r#í#7t7r Z^ESRßdû¨¯.‚¶/<ÚkùƒE¹ð„gŸ|ý¯/Ú{ó;ð;Z ¸ ²Ÿ™@ùcþ(ph}¤ÅÅAÞ?Ù7)®æ9ÇéZSZýFUòxò7§:¥”O‘üI¦yšüã©ÞfÚúP”ì/Î k˜òL®looì/î·J¿I²·©—ÇõLuÜIîsÝØÚ”|Ú9<îé^ùÍÄyËv§8×kó'%S¦žŠ|·þçg÷Yé”Ô/—åºÂùÊ8Œù‘;%ûy\”\?4VîhJžÏuñ=Û—¢®O>þÚéV¯T”3òˆûŸOZ^uUò{'?qšŸüþ‡ë”k›”ÇhÊÇ ù=Ùÿ–Ò/ÃïMû†ö ¯·ümåÔže=2çý-üîœ×æ/)ÂþWw•æ,Jö7ó—ø=i¿Rîa=œöüÓöNªÒâ×d§äxb~¹pÄ˯1¾ÉŸšÿŒþ:ŽÛ¡ë8iñªªäùÔ+è?âóSûFm}&=ÉX”\?9®’½X‹ÒŽƒ´ŸR='ÿ½ùÈ¢¤\¤œà:Âqmu ×1«+iÏñûÒoÅ|&‹GtJ®;üüþ޼ô»¾ôÕ™ùn_V¯Ó”O-J®“f¯ƒfw4eÚ7$åÁü¦ã?]?´.ŸïËùÅö$;-=èñdÚ>ÄM9ÍÿÆûó|ÞoF;zV0É/ÓË@öwÊËæûáüþgëå¢íŸŒvÙ8éïæ{¦ïF&{zR•CëÒ8êW„Ÿê?”7ßýÏõ×N‰uezÿäWg?²ø’%éí)`R^C¾»ÝTÁ²>AöOªIþU« .Êdßóû™¿÷gûÓ>¦–¿‡÷åõÉïÄöóþ©ÿìï%ǃÙÁx>Ï·û+M™ò(Sý3I»ÕìÐêxð~|>ÛG}–ã-Å#ì{µõÉï½R•ËMI» ǧr ûô?¯‹ªÊ4?­›’÷3ÿ[Unøä½qnÍìëä_‰vY@¯E™ô¼QSš^„öPîX<4qSÚ¼ig%½shž]Š/ïÿΗ½þÈcöx)˜âJ”/¬+›¿éÇùãC¾‘öµè±î†ùK|ó0¨çÑ~¥<™T¥Å±š’ó‡ö2íOÎOúËÂ>ýÏò$Ó¾K\GÓ:nûƒI¯°}¦@Þ?í÷Àï0jJ>Ÿþí´¯Ê΢ä<à¾2iu’ãfR•Ô“ÒþæW)Júï1NûŸ­gqÿ¸@[WËúLúFêwŽKÓÇÀí Å9š’qDêc;AÞóˆúõy5°¬Ï¡ù%¤¼g^ÖZSrÞXÈuï—â¼Cã0©Ž%Å“¿4íKbõ+`Ê[`ûG`ÊOïŸüãü^iŸ Å¢¤~N9L}ÂìÐöiS½iªê;øç?9û¢gÝÖú-ígS‹pæ¾9ó?øÞk>w÷‡F?#Éz×QS¦÷¦Ü4?aSÚóÂùÔÛx}:žÎ§îDÇïò|Oäýi¯`|Þ O{ç‘6^ù=,¾².Lö$åýj›Á%vÂÆ•çüùÝn}M›Ç×½Áö/>äOŸmã~î—<瘥.ê)¿‚Ï q®þã]ÜOƒí7YÎÚvú|^ŸòÌ“ÕöïmJޝeÐöÏD{ÌŽóm_â¦äócÞgS&;%ílþɦ´ýp}ÊWOû%§:v˃iÊä¯IûAp­¶õÉ÷Mqtê¯Ì«â<§Ÿóz?æ+¬Y~U“^½·ÿYÝdÚo‡u<$õëDÆãù|ÞŸÇ)Ö_ÇùÁu”ígü€ýÅ:ÞãŠp*ñÿöÚÇ€Ö¯UÉ}ÐèÿJúô©àü«o|ï³nv¢çý5¥Å[ö*-ϰ)'UÉqžæ·íZ”iÿêÅv>˜ä}Šû[˜Ö—䟷ý—›2ÕY=$˜ô«g)/“žÊù™êSÝߤ*9ž9(ÿéW¥½a~T¼Ž÷¿(ß9Í?P•‡WÍ_Úße9î88Ž­}`Üï¢)Óºoù¹¬ó£^@û7éi¶?MQF½ LùQ|_ê±ô?A.õ¿}ûÂV°)i7Íýhéý7ºNG‚í`žÆbQò~œô£3V2Íz2Ösm)JÓ?¹?€ÅO›2Õ7¦<ªTïh~ ¦´q Ú¸­½hOŠ ¦õŒó(åñ|ê Ìod}åù7¥Ýo’ïgûWtÂþ7óïÒï»rž¦þÂ|ì6O¹î%¦|©…¿þÓ¿¾ý¥Ï³ùÏñÇû²?W‹ÒÚ³GÉùE}1í£ÂñMÿ"ÛŸô•çLyp–—XÀªdÜ›ò“qm¾?¯7»ä:Oí"ÚƒÔ¯9Lñ!~ï´íÀøQÿ‹~¶dçòþŒ›ñ=SþEÒ÷R¼–ãl¦xQò›Øõd¸Ÿå’MIý‰ýýá ç íÞ H¹E}’÷ã¼¢_Âüª ÿ>õYê»ã¢¤œŠë4˜þŽŒå/€Ü÷fR•\W)§yœýÅç'?#å ï.ÈuŽß×ò›A>/é=Vß_•¶Ž%ÛËçÓ_ÄñÌñÄu’ñê]àJ§Lù&”O\ǯ­í·}üê+c™Ù9$ž»Ü”·Éne>$Çá¸(9™Ï¼X”´‡8.Hþ½Žkž?÷¥Ÿ½ä5¯ü{¯OØ£\xç)Ÿÿ·?Éä4ý‹“ª¤\¤>E}y~¬cf¾(ó”·wJÛ°*¹/ ó‚¸î¦ü®Kôó¦øã¥l/ÿþíOùä:Í}y¿´$¿UâÎN¹ñu7¼÷þòÎS{Šò€ëå³?Ö@úm¸oeÊûã|Iy׳‹ª’ú"åß©EyzU&¿ ýeËMÉ|ƒd¯˜üÃý(©/ñû2/ÁêPö*S]3çåŽ=JŽß 7üø†~ìW6®voRòºUÐæÅ^%ïO=|Ô””Wœg¦'6%¿ëP¯çýM¯Ý¤¤<¥]±Ö)ù<¶Ïìº=JÞãŒëðjÇëÓüExþ®1Ø)9nסÜeÞ å$í2êUo¼?ýÖœ'\‡ø<‹S¡½œlߨEÉþOù«¶OÊ&%Û›ü»«’ý™òZɧ%ß/Å÷Y§Cý&Åÿ“šêR}ÒsÌ/€÷_ªÊ˜ç îŸ{>õ3o>5î›E9›H{Äâ"g/J«ƒhJW`Š·§:ZŽ^ø{^öË'}û&ž÷Ò”Ôïª`°7â|3=´}¡@>þu¾ãi”ס.°ÿÅ:ÔTçI4ÿÈ+?}Á¥fwò9ô¿§¼ ŽÛT¯A»œó€ýËùkñ¢äýØ^Ë'kJËÃ-ïLuýô»¤ü¸”çŸö¿±ü0ò–ëu²þé™×úÚ'kïÅïÌxžÛÿL1ÿ yö÷ƒS<;Ù\ÏIÞ?Ù‘<ŸýËöðx-`qœíMëNÚ·ƒr$ùS^q’¶?KS2îbþrr¨ÝžäûÓö])ë“ý‘öZÏ?9¾R¶Ï@>/Õ1ò|óó4åÂÝ~ÖO_ö¢¸ß>û霢Œõ;Uëu•ýÏ÷ßi¥¸JÊãLóÅü ýPÔ×GMiöfh?ã6Œƒ¦8d²7Ø>Óßö(SŠú©Õ™5eŠƒ'ù—þ.Iª“aÿ$¿Xª›åûÎ?åä­§?dÑ÷ +ëÓò¦@³ƒ;eÉ>±z-pÔ”I/JrjR•< âúþW¾ànÇ¿â[þ$×YêI|?öé™`òpœÞìkë9½?ú+8þéßaÞå0ý<ßâ†EI=•y ´¨?3…ó…õr<Ÿyû¶ÿ9Ù”ÔÇù¾KUI¿=ãŠv¿N¹Ò”I¯g{ÙÿÌÓ¥|L~“”fûn€V.‚éûP¿µý_AöoÊ—c.œñ«û\ôˆ¯{}8TOg¿o«ÊT¿°Ò -ÌxÕËeŠÿ1yÖ¾V7_”œÔo~‡·½ëègÿ‰µ—qŽQS&ÿß—Lõ7ÿ*JÛŸ¯€8žò\©WšŸ8´‡Çù=“Ÿq²”¿–ôœdW™¿ LûA$ÿÛ—ò¢ÝW”ÉœöWHïk׃£¦¤bß\íÀ¢Lv?ïwZå–ùûòݵèÿ£œ¥?Õü`MÉõ2éuÔÓR|Åê š2ùý¹Þó}Ž-JÚGô˜?¼*y>íAÖ¥‘ì®§krR•É?Ãþ±z ã6Õo0†ú×§Õ¦äý©Ï±?˜×—ÆkÊ#¤>G}”äüaü›ó:íã”öUàœÞ”CõÌ¡þŽÅ6°*“üf{9_©s~P]nJ¶7åõZ| ´

¿(Ç ÙUÉör<¦ñ›òø}i7¤ùžêã8_y=æGÚGlßq½ŽÇûÛ“ö³ÿÿ—›þóÈ¢LûP¤<4޳Tˆëgþ=¡´ÚÕÿëËÖŸ”ë)o©*Ó{™\nÂ}u,zßþë±MŽ¥ùMŠÒòõAÞÇSiZ¨ç$=:oú1“}gù> úwæ<æú•ô±XoÛ”CësÓ¾¦?W%÷]aüÌØ)iGrœb½œöã¬Lª'J~;ö7óÁ-_l¬êg³uä÷5ÿ@Uò{²Î×ê®Aó{%óoqó»½èý䛿¿g½s’¦gú€?¾Ù_ìÿ`{ß3ªp*_o¤ì>ß‹’òóEÉë9>Yw’ô\ú{¬^¢‹2ù ‚?bÚ_wqŸ»ð^çô›ØwÆýR^Ó?¸ß–»ûÙ¨—Y|®)íû¦|”šìQÚãŒÃsÞm­JÖÕrüŒ ¸Wiõ0¸~¥(—ªrsQÒ?Ë8 ßõ4Œw3žÎ:ßG¢¾Æï1.Jö7ç¯çù|Î#æp=Iù‚¶ß HïÇþfüÀêÙ‹2Õ•›Lç§<>ŸÇ¹Þq|Pß >Mš>&¿õ”Omò<0Åí’< vgÿ³v¦<êí¶ÎíUÚ~.`ÚwˆíI~a~WÚ¹æ¨J‹ÃuJÎ;³3Š’ßó:éO)‘ÏcžwÊ{IvõVó¿¡=)6æYàüùýìUk q{O¹Ï¯r^0.ivvQ2/ëЯ]ðèG¼{SÜ÷ƒíµø˜ôfÊë-M™Ö ç¼NyiZ^G¸_Ê÷Nùê)¯”ë­Ç`ò[ó{™¿ïgr÷Kß›÷Kûp¼í¬JÆÓÙ?¬Mþƒ´OŸÇï“âIF\ŸòÇm\à~;Š’ùíIŽW0ùWR{Òø¥ß™ãöõ[Êñ?ÿ%÷Í¢¿tµ)©s¼§}âh/'¿ŠWÒ¾Oó—÷'w‚”ìÏù/ýáßß~×ßÚº°³S®\7xß”—ô·”/•ŽsÜq\Ю\mJ®;ôSŸ°:Lpw§L~YúÅLÿhÊ”÷Ëïkë0®çù|ý)“ª¤ ö?·¯AŽoÚë$ýVGU””g\Ÿ(ßøÝFMÉó‡îóC¦:†ä¯ù E™ò‡ÒúÀöG;äúfú˜rª?‡óì»…u¼ÿ¹V”)Áv¤ï—â¦)^dõ¦`Š õŸðxʇ²|!ûÑ$}3Åkù>Ë ýMÌHuVü>É®Nùnv?0Í·ä¯Iýiv7ŸÛ@Oyä©¿RžÇ©àJ§¤„ã#Å+¹ÞX=RQòy¼?íY^O5ïgù¶ ý·Ë õ– ÈëW:%åýR¼žß‡ÏçqÚ{«M9.Êù_Þô)v®Õ¯P/·üjœ?~ÿs{Lò0å»s|'{’öT’¿|ç[Ê'Mó5íObÇIœ¿ 2Ÿœò…ãq­‹’ã"®‡x_«÷ךò&GÞfí´ç/ú>ú ×½ù›¼âÐï?ñ1–Lr¼„|å©~4c¼ÏŒ¿r]´uÄ|³ûSÏgœ/åõ[]AUòz³‡ª’r˜÷£B9Íu!Å%mÝ—›r¥SòývìUŽšòÁ{•)…y-æïq¼ÿy^cU²¶6%Ó¾ãzy×ÿökpLóÛÞ»(yÿù¼ç¸G]ô=³âþÕl_SRž¤zµä‡§šòi—Y¾pQRŽï¹PŽ2ŸgGUR®›¿äý¹NÌ¿éà¹êã?‰ñfÊ-Þ‡ë3ŸK}ÇòjÑnŽwËkJúŨŸq½c?òýø8.(—“½dy6 Õ á~ÉÞ³:rœoãLöKª×HõR|Ÿ·üÛßð}âû¡ýü)Ÿ5Õw&ÿvŠó¦ü§”ÆëÓþvIÞ§õ%G’ñ ®§+MÉó—›2Å#¨Ç13ÕWÒïÏû‘ÌŸ²¼?ë û;Ô ö?óÃr=cž)÷CH~áQSî×çéQ×Ú/Žçfý3ó=i²óoö™{ï }b¼_Ê#æ:@ÿ?Ç!çýéUÉ÷H~óQ[Ÿì‹ó‚fÇeê×T’öHñÎŽûß´.%­+ÉÏÀïKûðLðŒN¹Ü”Üw€u¢©Þ)åA2žFÿP-Êsö*i¥ºößþÏ9öâ#®<:®·“ªä~©aGSR~Ì_]Ùœ§\Húÿ¸ž0ÿ“yK\o,¿·)¹¾ð|¶‡ö)õY³Ã@Óš’ù \“_"ícsøÏ/9øÁ×~s²ƒÿoýÛöã÷Lû‹¦þ§œdÿ±¿¸N±',J“Ãx>ësxœûÃ-7¥å»ƒ´×¨_1Âô°¢Lë û›ú‹ég Ÿ·2ÿ'é÷¼ž~Žç=­*)·yÿe[ÞñXÉïkù`U™òL¬ž£(ù½(¹®tÊÓš’ù\§9~R>ÖbQRžS^s<Í}ÿ~¿}ÔýooþT®S–G²ß¨_Ð.JãÔêŠAÊA®›\'ùÞiœS?³8=h÷CûiPަ|i˃@{8¯¬Ž÷KùI)®kr|’ßýK;˜äý¡·ýºûxô¿´/¯oã dÞãJ§¤uÈ-6ßàoO¼¹ùçiâ»NÛ“ò¬9þ,®r³}jŠ2Ç”—C=Üò˜›’þpó[%׳3p¼åÐ:¦T×½Ö)yÿIURnS^$¿÷ŽNI¿6ýèlÛϼXk/îOyÊú ó[‚|?öïbQ&û–ó|`üf*_–›’ëNŠS¦ãÔ'Òº•ÖóS€)–úÙ"È~¦½fþý¦\-ß½*ù|êóüŽ—KUÉurœúý4ÔC¨r ÞU•\g¸>¤º7Î#®'œ×)_Œú>û'é)¦ÿãþgE{’ÿŸ÷ŸûÕ–woüòw×5Y<šwJÿ§ù‹rÔ”)ï7å¡Zœ Lq¡´/ÖbQRXž7Èq›òtc%8¹~§œ¯©~{ä:™ü¼i7öƒåûTeŠ o|çöߺø£;<¿¿*ÓþZ©žÖü`ÚgŽÇAóçU%Ç/çÍRU²½ÉN§ŸÖ©$'MA{L¿ Lõiÿ„”ßN¿DZWR\‘ó“új̧“_ÍX””_¡>ºÿ¹ç›LñÒ¤ŸY^TQ&ý)ÙQå ÒI»”×~\”ôßñzú9HÚ±§ækÊ´ÿKòËXþ~SÒ”êDÌïrž¤}’R>‡É×¢<ð·¾á1÷Üfõ¦€\¿¬Þ¦()ï¬~±(S½ çû!ùŸø<ê¬Hû=°þr÷^%Ÿ_‹’ã”ãžßƒúí>¶ñTÓGÆJ‹S5åþ?ü‡Üëä«ìï6Pþ0?~Âc%óøž#yâ\§¶%¿û ÅmA¾óóX¯Ãï@yH¿!É÷™lRò}H‹§ì]Ÿ;ÆJ~ŸµNÉöñý¶uÊ›”Ì_ã¸ç÷HïKÉ®±’óœúó;S~$I9´½S¦:bÊÚô˹zòÁ{ÞýZÆú_Ür<ðÝo¹ç?}ï˜çH{“ûUp³ß™¿Fÿ7óŸèÇb\ÊÖñ¦d?P¾­6%×CÊ5~wæùR9£))7Ø_”Ï|öë0?ã~ê7K~³¿ÊúLþÇäß›;û’w]ùËĺ©Xo r½å÷c?Ðgñ!zÉñžòS)§(—¶vÊqQÒÅø×)êKU™ò7¡ô?“ט·3ÿ~ÁrNïûdæß-á÷6ûäûñ{¾íßôµOŽ~X´;ÖÅp\aÜô?›ï¡ŽxzÞ;æ¡rÜ÷ïÑÓüÜ åwJ“Û¸s?ê‡.:ìüÜå^ÖNÓC‹’yn[š2ås|PNÒ?bûRá8åóÉiop}£M½ˆòfR¾X\³(éW9¤üJ~ÞŸþg<ÏÆ-óÙÞ?ù™ø|¶—~¤ô~´§Ó÷aÿóy´¯yýaã'Ý÷G=È®³ø,Èãé½x~%Ã{ñúOéü¡íáq붃í9O,/¼*Ï-J[Ç«rW§¤^CûšöÏ79‰ó©'ðþÔãi¯§ºÞzõxÊé1˜êPI^ÏþçóyýjSr}Ou´×>yÐ79è2ßÏ¡)i7‡øãTošç±<è¢4Èõ0Õ}ÑXÛ¤dž±Å+ŠÒò.;%çaʯ¸ZÿÛgg5åLu²ä¤*Sž×Ê=^Oÿçê%Û“òJØ¿©ÞÞòÓš’ö2õFÊ ³S;eŠ—¦ý¾Ûu¾þóÛèùE™ê†Rþ*ϧÀò,q>ÇYª«â¸],JÚI)NI¦¼fŽ£qQ?‚û fÜ·'ý9¼?írË?&qާTçdu]àÐ}¯—áû&9eþÊÀ›\oÓ½ÿãž·ˆûpò¾\ÆEÉv1Ç8šå94%Û]‹2Å[’ü)ûç{ÿ‹ëí2øŸxk?üGÓç¤ý-_¶)Ï®J®³©Žc©*™·· ­›åû™¤<ú<Ûw )S<Àü%M™ò“Øž”çêzɤ¿%¿UªsHùÕ)>Â祺™…Ÿ|ÿÞ/½O³ùOùÁuÁê}@®{´\®JæÒŽÙU”ô;pœóþ‹Eyøûþê/÷s»Žz&óýh_RÿXé”\–›’yÜŒ;0”û[X^Ž3nÌñ@¹ÉqÀãÔ8ŸS=ç™à"˜ô)«{mJ~¥ªLùV§Ó)™ÇÎýÈÒþfŒ£0O:[æÐÿÅy·ñGϽâÓw¬)J~'æós~š_•÷oë“ë¤ù!›’çó;§øíøTŸmqoÐìã6eŠðþ¼_ZçGM‰÷éS} ߃ÇûŸïØ”A˜Þ'ù/,ž£œéLñeçMÉçÒ_”â„ÔçjQ&yK}*­ËGÔÓ9o¹¾M@Æ{x=ãû\×y¿Õ¦¤<¥¼;³SZ^k§äúÆûsŸÎC¬ÿýoÖþxÓã)Ÿí̪ä<¢_ÓÖ•NÉ:¾ýž±þ¶(S] ýgÉ/”ü ¶?H?ø˜ä·­¸¿Õ“âyö>©Þri*Ï0û_Ì&“˜ûÑ‹_ùÓ[XOëþçßWÓÆ5ý'ö]@Î_Û÷LûØ$=ÀìmòœßÕöÁ—ªÒÆESRŸÅ¸Ÿ~gÞ—í8§(mœé}í»XNS2Δê™×gv)¸X”;š2ÕÝò8ëÒÌ‹ö¤¼ÆÑl€¦œûÔG}uïuǦ«Ï»š;÷(mß ýÈïB9Ìïœêƨ§Z¾gU²}ã¢äýù-º*Óü¦œÚ ò|Ël Þ—ú“ùš2ÕÇS¿Kúï¨)é?€ü5}“<ê¦?{ìOü´õ;ëQÏÓÿ¼ž%óÒöKiJ›·rRÁ=Ê´¿OÚg‹ý²ñfû¿äœgÝÚä6õ#ú}¸Pþò9Cã¬_¦Ùâb ëØoün܇ é_÷;ö(->ºGÉ:_ʱqQR.±¾>îšýÜÀ¢\딓¦4¹Y”_ôWÒ¯cyYxïoyG`ò ó8í“ñYõ ý/îÿÈýRœ-Å1©ÿZ<ïkõÐçÜ狟Úü)¯#)JÓsª’rßiÚoIÎ%ûËX”CóB©ð{qMù Gk` Äù¶ƒô£°=)žiq_²)9ÞŽ>ù‡ízŸŽóˆë ïkõ!ô°]–ÿÕ)éŸNõ¢©ŸFMiù Ó¿Eý“óžö)ïoù ¸Þâÿ`Ê·*§øýR~߇ýÏû›<ê”æ¯JÊ”ÏM½„zQŠ×0þÁüCúm_›*Ü÷÷½›°ÿMó;pWòiáà§­ŽovYÔ;RÞEª÷K~;~^Ϻþ”—’ö­5¿YSò¸å_‚Œ¯Q>RO¦ÞK»'Éu›? õ0®÷¬w³8xQ¦|’¤÷¤|®Ûl¯Å‰@ŽÏX_XÀõÛßÿÒß+ÎKÜoz}Óûü§`ŠÃq}Lz‘Åá@Ê+’ýÏñêûßà|д®˜~Ñ”)¾‘êœ,äwƒŸkú}iw&¿>ã´›¬Î­)£¿£(SGðKö¿˜‡Ä÷æq~oær¼¤ÔêSYÏÊqC¹‘êÊÌÑ”V‹ãÌ{±úÊ¢LëPª³Jñ‹•¦´:.>O9•¼Žñiê“Ô?ßfü{R•v>Y”¼~¹)©_ó¸éS|p©qÿ•NÉã´7“ß‹öŸŸò€R>­Õµ%ã%\çÒúÀy7©Ê´¿õ#ËAû©ð¸ÕÑ4¥å3·a´ç%åFÊWMõÇéûQΤü`žÏ¸åŸgó£®OÊ‹_î”\Ç™¸Ü”l߇Ïg}›±(i¯¡=S¹ºñš¯¸îÓ/úT¹úóÆ“^4jJΣIUZ=?˜Æ!¯·ºVÐâ°h?×;Êeê;ÔW’¾E½%í ‡ó§ß ÷í¾?hûÔtÊ”™ì\g{Ø)~ÁþäøLã'ÅWx>ß?ùM8Þxœã‹÷K~9‹·U%õ=®Ã¦7€|ïÏþ¦_'Ù]ì”wI¹jr´üÒNɸå2åä*È|>Ës¹ŽðzÊ~—bûÓºÄþàý̦xÓA¿uÝ­»ïx–Õ30Ï‘ã$ù98)WRý`Ê«c:ú‘›r¦zHž?8~ÀçãþInò|Î+Êr¹)99N8î9.¯8ð _ö£ƒ·ûó‹’óçO×Ç3ªùÑý/î ÇñnûJ€”w3ê$íºëÝò>_ùüU—Øz–ü}üîÔ'ÈQ[ŸçkJ®ß$ŸÇö§qM=ŸÇég¥œHí!ï²}̳âqk/8©J®Ÿk’~¾ÛÃçQLþ¹ä_œûù“_úÜ÷^?æe¦:”_—âW¶ÿ ˜êS¹¾Ø¾bx_~‡”·Ãëb¾1ß?ù¯ì½Úúä~ß&çÖgÿ³ï:ÿ»{öÜ}ù‘1žù5ôOš’ýÃï•öçIã“ãéÐ/=ðe»ÿ娸? ÛAùtØ©Wl|àçnfí¡ÿ÷e~dÊÏHþ ³ËŠ’÷£\¤þÀñ’òsS½9Ûcþ>p© ûŸåÙRá8#xÀ=~ñò¿`v#¿õ]Îç6½í¤]÷‡kJèEýÏ÷Òóì>´Ï8oÉ#´ÿ».½àKuuü?ÿî™ê‡S<×sGµ¸gSš¿Lû$?HÊS1†ëS>û#í‡auGM™êF Úßÿ\^e“™{÷ùæ›åûY€qÿ 0å[Xå¨)ùÏìE´¿%ÛóÁ¤±îÜä)˜òÂ:Üÿ|Ÿ?´+Í#Ë¿S ý/«MI}d¿íÁ‹^r‹7ÿÌôúãÁ¤ß¤ñDy‘ä ó¹Øo|>¿wª{Oy*l²/lþáùI~š¾Ó”Çkô?%yËëM?“<£]h~ÐÆKS¦üÆôþ¼_ÚO™×S_àq‹K4%çeò’Córxþ"˜ê ­N»(Sý^Ê_OuCíQÛϦ3ž;|ê—Œ‹¤ýsøýÓ>œC÷Kdœ‚ù°ÔÓﵸFQÒÞXnJÚA´7(ofíÂqË~œ{Ç“¯û¡ŸŒÌŸ‘ò”XËþ3B§d]žÅï Ø”´?èÇ[é”ôS³^”ëϧ}”òÑù}x<Õ&yœÖ[Ád›¼Áý’ž–ì;žOùlñ$´/ÅSFMI¿4ë)’Ÿú”Ù³dSŽ‹’í;4ý¤ÿ-Õ3±ÿø>Ü“íåýÏè”C¿oS\‚ï“ôÔG“Ú;4Ï„ç_ÿ°_û+·¾§ùñ’Gÿÿ `Š'¤xKÒ{Òqö×…QS¦~LÇæçXÿ1¿€×§yÍû§ö’INðû2ß)嘤(WA®;Qn7e’ëx~ÿsÿÞ+­‡äzË~Oñˆ¡ù Ôïٯ䧟óã?¾Óf“Cì‡qQ&¿@:?OêÑ)¾K¿ëÍS}Ù±MÉöÎÿÞÞòV›í{'¹–ì«/‘Ÿ`öí êËkUI{cè>–Ÿ &û&ÕËŒ‹’÷{0˜ê™ÿÃgŒ¿¼ûCåêŸÉ%Û_´(ç;ƒk{”)ï‘ö„ù«À”W‘äËмŒ˜âv>˜âñÉ~Hõœ rñ×Þßϵ}׸_Hªÿâ<ã¸L~JÚùœ÷Ü'~ƒi»¹N$ÿç¬øÎP¿sʯwHëÇ ÷û¡G}“÷ãõü>éþfáüUÉã?»›räºÁþŸ€©ÎÅô‘Niy(lÊ4ÿR}ÇñLq`žÏù—ô‚¡öƒù‹’y«ÉNq4eÿKëǾ¿ÏДlÅuÀdÿ$½ï—â^¼_òp<§u2Ùñ‰i¼Cëiy}j/Ççj[ŸÉ~­à¨EIÿ…í€ó9n¿Íç¾ögG[;lžã>ÉÿI»$åsß±(+Èû³})~ir°(m]Åý-~‚ãœÇWCõ»XgT”IMþTÎ[γäoæ÷=úi/Ûp£ëo³ûÚ¾¡e}¦ýàø]Ò¾¤ißtŽ“T—K}’q"³ûBûø¾c0C®ÔŸîþ®«ö^òžoã{0´Ô”ì‡Å6%㯼ŸÉ­¦Lù &Ÿš2å ˜ˆ,J¶—ëÏOùCæç*J¶?íÇcù…ÉŸòÌ>-¾RÞÿ»¿<å#×|—ÿ¢¢Luö|Žé‡x«Wlʃoôg¯}âG޵ñ¸2žÄ÷£Ëûñ¸í_†v õGq~§~¤|ƒŒ×ýƒ xÀq?­w¸úxÏm Ù#EÉïcuû`Ú'‡þÓÏAÊ 2ØgûþžGSšü—›’ïÅy‘üËU¹X”ü¾)ÿ íÄëmS]zŠ×[zU2„Ç™À8ÕV~£û0ÿdsS®t`UÎýÇáÚñJËk±|~ëõÔ´nòúù'~åv>ó=öÿ)þ_‹2ÄÇû_ÞÇä¸ÜÿßxÑQo}~ŒÇ“I0&ÅéR?/ö‰þâè7D» ùíú¦äõ‡ýûžôóWÿ‘×[5¥é å™öˤü£¼Kû$yÃ}¼¹>Îò×ò»r7û›,Jê‰ÉîLuLfƒüþ”“f'‚É?ê'SVò·ŒšÒü“`Ò'b\LuWv?Ðò¾I´?ém&ÐþT7šê(ÙÞI‹ÒòjAê«MÉýà,þr~ЙâÊü{Ö éÙ ßßüMivæ&aÿ›ù÷~Ã|é1ï%ó]EI=ƒq Ž êOÔ“Oï”Ô¯¨¯m¯Êµ½Jæé°žwkUšþ r=b¾Þަ\.J^Ï8Y²Ï“¿eÃîß}Åë÷×qŸº³ªÒÖÓ¦4;Lû %ÿZÚŸ(åY¤¼°iÌSHþ6óG€¶o+H¿ŸØ9·¿ðò{¾ÝêY“}oùÛhǤJq [·qœ÷·çeÊ·à:Ê~æüá¸ØQ•ì¯äOÙY”Éòfþ]Ï4^“¿œï=é”Ɏ縲<%ÇûŸ]ÇïC½i~rÊ×/?t?Óh¿Òo‘Æ âÿÓöMö gæ³°?0?§÷Kzöo¨_;û ϼÇ9Ç õ%’úïǼû¤¯pÝf~EÚG"Ù¯lÿöNI? ë|8©ç¤}69ÿ(Ÿy}’ÉOŸò‡©ß¥ø1óUx>íUê-Ô£8Ÿ_â:À¸aÊϦýkûR¦ün>?µ‡ß“ãyR•œ´ÿÎÙ«äøàºdûàŒ•\WR~•$_l½ÁqË S^k’g”‡´ç’þ¸¦õÔú4½°¬Ïdï2•ý »ªÿ™ŸwãÝmë[îòû{Ëœ¯É_šü¢)‘ò‡íaÿŸ·WÉï•âÿ)ÏV›’ùÐ LâõçåÚ&°)ùwU¹Ì-‹Òþ+HùpnUò¸ÉûN¹“,`U2{GQÚûƒŒ¿ñïdòþ»ù=wïU²=»÷(Ù¿ô{œ3«r×^%¿ŸGùÏçñøÎŽ•»X•çnRRصIyn§ä÷gÂyܤäzÈörüZ{@þ]bÞã‡ó•ã•ãé!EyîXyf§Ü½IÉïóà=Ê{•çlRî+Ô”¼žã—ïÇûMª’ão¼WÉþÞ±WIyA? ×>Ïž¿IIùÌö¬uJ¶guÒþÞ+¹II¿Í7´Ÿ×Ӿᾴoø>ôߥ|rŽOÊ_Úo«{AÜÏú£SÒ^³ë›rK§äzËý}ø}Çãû±nR•ã±’õul/IýŸúÛÃñAùÄþçüµñ¼IÉ÷5ýg’ýÍëù}I¶×æÿ^°(9þI߃þ Æ—çõ|~ò#.‚VØ”´wþΟÿãë^y ‹Åý5ÐŽTŸÇyǸÛM?ýlç%ã<ŸyVlÛc~|¼ÿbQ¦8ûg¤@=+å S¯b}*û×âcMÉöMª’ùÉŽ³}€š2ÅqÿþGÕÔoJ?Vò#rMþóŸ¶ï™âCô_­uÊQS¦|ÚüNџޔ엸oÚkõ ãYÉ¿‘Æå'åÂrS.¼æKzÇ'þÔåÙ”©Ûê¡Ãù)…~Õ˜ïÖ¢\8å9Ç¿üš§DÿeªÓà}ù½Ø®T—2yœþ.«giJëwã•þ­T”ö¤ë4pÔ”æS?ÛãÑ Õ€©¿)/xÜü íG‡ç¥ü&žÏþOõÈ)Ï×ò©Š’þKžOý1]O½…z\ò§x-ó5èÿ´ú$Ü/å‹¥ºX…ç%ÿëÐz'Æ+Ò¾)"®g`Ê Àú6ÕV@«o*Jæs¯tÊeù‹EÉ~¥>ÏóÙ^Æ’ýÁqjùI ßû9ö?ë7úK8ÿ,¨(G ,JÊ#ú»L¾ƒ–^””<žÖ®ï\/q¾í¯Áç×¢LùLlû+åW¦üˇªJ«+SûS]å[Ú‚òƒvœÅo7)ù}éß±|Ъäóù=æ^}Ë ÆŸ:¦ž~õù=8ù‡\û÷ïbòn©*™‡™ò7ÒþäÆýþù÷Î÷›í”¬§a=ó‚¶T%ëmX_ÃüRÚ)|>ëu8é§ä8§ã8Iz”ù7Àä·Ju’œ‡Œó$»/é&'š2Õòü··ü3pLûÙòü”lõk Ç/×=Ê˃kJêÔÒúÍþ£Üéß»çRUZû«’þ/Ó›‹Òô—ÀT¿Îï•ê mŸ¼íÎWÆ™-Ïä~­ÉÎZm<‚–ÇÝ”i]àø³zdã-Ùm¶^Ç“]›òôF ¯7½‡,J®Û¼>íœòü¬nŠÇÁ£þü1g¼îÔÇÅýq–›Òìã,Õ_“;¦¯Â.šÚWÔKØÿ\ŸR½fªNþô¤÷PŸ ¼¥|¦ýe~SœÏãµ(9^m?ã•q¼]rÔÖ'Çgªócûƒ÷›HûQþñyi|™¼lJê›´ß—[`Ur}dÜßêgñ<¾¯ùýÁ”çÇ8n:?ù…ø|~ÏäçäxNûØüSQZÏ­>¥(‡ê«\_—ª2å½W0ÕçSÿL~“Ýúäý99~(/Ò|·x ƒ$ÇŸŸâ2i_™¹oö¯½îâ>Zi]âzÌ÷œTeФøBŠWò|ŽÛm ë(Y·‰øŒé ¬+¥Üã<Šõ‡EÉ}@†Ögñýy=í"úƒXü+¼žrˆó’rÜêqšÒôn0ÕA¥x2î?ÕÿØÏ)¯Üä7È㡞°ÿÅù˜úﻯîLÿ¿ÿÍÜ/èÐ¥O¿ò{ÝaÚ®¡qŽd¥õÑâx$®g¿Yœy¯çOß“ã‘ßy8³þβéSKUiã­);êøÅ7ò;ùO™c~ÅNÉxµíÃÒ`þö¢¤㕠￵S2žO?JÒ[~S½Àæ+Èçš2}_êI6@‹W%ç-ß7ÖÃ4%íL®oô³¯€Ü7ë9ßÏöùS}ûõS”#Ìã>`ywEÉõ~<ówT%וë?õ¸œò‘OÅ}LLOù]1¯¦r.Íÿä4¿3Ž3ïs©*×:%¿·µ£*—›’úýS[~)ÈùÉùC»ƒvïæ¢äù$í>ßòd+ˆãü>iŒ´o×Pÿ`ò+UÐâ ŸÇã\ÇÃýúßà}è,îü™)ndûaÔ—˜‡˜òT,´8zSÚýxíãq~w~Oê{¼³ýÜ_…ýKöGè1¯šuÖl'ßkDeŠš4ý¥()_ù¸~’–Ï„÷IvžÏŸÇƒq¿4®H¾¯‡öY½8ô{ò|‹GC½n¬“¡ßŠúä*iç%}…úã gT%×Ó”šò¡y¿´¾1Î:.Ê”¯Aý‚ù8©N‹û*X>4hùÛE™öNë9™ò]Nù½¹IŠ{˜ýW”iüñû³¾Ÿ~ØÔŸÐö¨J«[-îДæW“~–öCHy3ä³ç1‚Éß–ò ,žZÉû7¥Õ°)o¶þÅýR¿ò|ÚQ”æomž%ßg~ñ’ë=âŸã†)Ÿ<åS>Ð~MzeòËò~)Ÿ1úÁ”/œöM béú¸¯ÈñA"ëSýËRU2ß<éãôwÑž@‡ ¾Çí-ö_ʳ*?y<Õ §ùÉóSžXÒwÓ>@IžÙ>`ò§§ú—d?§}"x¿ä7cÿÚzˆ÷·ú-0Ÿ¨€œé~ù½†æÙ²½)NžòcS=ŸŸêkÉd¯§<¢¤Ÿ.\ãöÇM®½ë€iÇ“ŒßSOIñ}úµhò~ôwrÝá΋ùm|ìG~ïý^ß©´ã)/›ó“zû‘ãõÓçÒÿÂþ%åå)äý4O û‘NŸ}”§çÏòÃ`üy|âœëÌô|Û·¡(¯óÜ?ôåó‹îÿ©JŽód÷¦8fªzÒôýLn¡¶Ïþ^%¿¯ÉÐô¥¦Lþÿƒö{Öç/yä½l|§}_gå-R>¥=´×˜0í_s¸p­¾å /x¼Õ!ñ¾üŽ$Ïg»OÙÊ­”§Ä÷Z'Àãü´Ï臧ýG}!ퟖö—£ýšôXÚV· ~»ë_ø²wüÜÞ›võDþý~7~g~§ô]8?FM™ì™T'HyÅùšäEª7]ªJöë¶’]Ãq8©JË›iÊ”çüª¶_îŸúÏüYhÿ™E9©ßQŸLvÕ*Èõ‰úd-JËCÙ_ôr<šZÜ\y?®§–§RÎ#Ðæ˜ê»m?0勤þ ©ÏÓÿÂã잟òG`ŠËѯÀñ4.ë“×óxŠËÑ~`û9ž’ýùÞÿb^Š÷“Ôé÷®6%ç%ó((÷­n¿()·©·òý,^•£¦äw^ë”|?®+é#óGýÞÏþì1ߟëK²ûÓº94N›ìxÚMÉOç'¿/í¸¡÷Kq}Ú춇z×ö_òS%;‹~:>qIÏglJÆÓ,²)YóƒÁ˜¦ü¹”Ìþ6½¸¬Ï/Kó-»d{S\5ÕSŽ›]òþŒ“P®3nÂñºÜ”i}¦¾B¹kõ Å£I>ï‘êø™¯au.`ò÷s_5꣋EI»Öô(0Õa%ÿòKÝ'r Åi,?²)‡îocùv`ÙGÞëQoxÍÎ2yÈ|¬¸Ÿ¸Z×gÚ÷&íãü¤«{•Û«’ö>õ˜] åÐjñ~ü®<¾Ö)ÙÞ¹×eÏ¸ê ¶¯ò±EÉù±pü­6üí÷39›êa)Wi?П2«uF>oÿÛׇÖSlmJŽgúËNmJúŸÌ?×”ô«RŸ¢\XSÝ|òƒX^hû•õ™ö%2}¼)q}ÿóºØííÉyŸü¾I¾ò»Îÿrãs>øƒ?0ùQ‹2í#eö;¯Ç{Q_HûQßàºÈ¼E~oŽ_ú#m]nJú…¨§,¶¯ÈãCýæï(ÊQS²?R^gÊc´ú\0åY¦õÌêÀ]U™üŽ&ð¾VòzÊ«”óaÐ^æoÓ?¿¥SRÞS>[ü¤¬Oúw¨¤ì;æú+˜âN©Nç3oïkõ›Eiu‘EÉøgŠ;šÒò1AÎ÷W¤˜žÏõ˜ò†úå+óH’<Þ½I™ÆÛÿÛä| ÿ•ëã–ª´ùÒ”q.²8Îö[ý›²ÿÅqÌyg~_0íKì~gêõ)ï—ëíVŽ{®sIîØ8Dûíþ ç‘Ù}8žüDìo¶7Ø•ñïû±?Ó:by«¸?¿¿Ý´ú 0å°=ô‡³?Î蔼¿íË[”É~¶u äqæ9¥ñ˜üôgózŽ_êY<ÎzÓóšrî ~¶ñ¨cbý÷Ûe¿'?oêúùlƒé;[ª­Ï4om=Íë)÷Òþ'Œï¤ýÂ’ýfùE™â,$õ§tŽÃÓª2Õ«rÔ””ë©ÿh¯ò|>þožÿìw¿õ±_l½^zóUÏ~É7b½;õê“ôÇ.ø¦sþyåq¿áT÷c~‡N™ü[;å¶¢´ý@ÞŸyK¼ßé’ó’qæc¥ŸþW®‹œ¿\ø8_èï£~wèâ·ž~‡ËŸiŸ›uô ò{ŸÑ”ÇüÎ?‹àÀ¼+Ë[¢Àõy÷”#V§²8¿Î¨Jú‘ç¾{ù©?;ï}Ñ¿É÷¶}%Àt<í£ByÆóãºÛ”¼~h<4ík“â+Öþ¦´÷È š=²=IoIý›öå἞æë¾ýâ /¯[¯>>‹+’òœq Êä‡ä:Ÿü9É?”ê5W›’÷£ÿ Ù­låKjOÊ{aûF`ª_aûR]ý°l/óˆç/~äi7^û¤å‹%¿Û‘ê†æÿ/U%󡹎1Ÿ‡ó€ñ/æGÓnâóØ>§þËyÃçŸZ• ûÓïuòËbÜzïcçÏhÏ,RNq½§½Å8–­Km}Rî%¹ÊçÀä§IyTã½Ê¥ª\,Jæý1^±Ú”Ô÷e\˜òy¤žI½Òü€EiõÂUÉñÁyÌ82¯_¸ËOòý=ÆúrÊì¥NI=ñ/’óŸ~úçèÇ _…ïIûÙì 0åcÑÿE{„Ï%×mêÑ)Œë¯ç:Ãï“Æ¯— )o“ÞŸöó ½Éu™öÕ}‚g%Ÿ¿á?þò“÷xÇÅþwlš2Å»RÞZŠKXžBQZ˜òA)ïyÿYyÈ©Žã?““\'yÜìñÀ”ÏÎñT‹’þ%ÊÞŸò€þ ËŸ9Άæ?r>ì+yœãÄôZÐâ[ ¯§ýjò÷ãûq^™ŸÏ³ºO´ßöOnJ˧-J¾oÊOJõI~¦öò8ïŸÚ—ââ)þiu1MÉõ4éɶÿqQÚ~{ Íw\Ÿö—Jã÷Oy)¿ÍÖC0Ù­–¯Õ”i>P^Z}/8kà¼LyK¶>á¸ÅaA÷`Š›ãù³÷kC;-®ÝÖg²ƒH¼Gÿ³q±pÀ§¶Þ`û!ž7Ó”Ô‡8ÿ¸_ÍjSÚþ;°ÿÍúû®öΪÂéû™^‡û`žÄø õæÝò|®ÃÔ[Íïhö-Èã‘Ež×ÿ|<eÏ´óy}̳S>NŠÛ¼Ïçû¤üʘÏÌçáxЧ}áã8)ÊIUòýy~º¿åó€'%ÇÇüÕL~rÊk[W‹2Õí$½)Ù[iÜ{Èâv?0Õí¤<$ÞßïËïlz Úkuý¸žq¡äÏKq”QSòxš'ÜÏc¼GÉüúCÍŸÒÅ|PîÅ:>Ÿ~|Æ/éçâý¹>±¿ãø!ËúµõI¿í`~ÿ¸I’6þÀ1˜äZ|>Ž§ç§º¦TwA;†Çy=åaZ×’¿(åc§û%V’Ÿi<[þrSÎ}öª¿¿âmß³v,%ç-õiÚOÔ¯-?·)-ï¢*©ÓÁç§}1,_ç¥Ùß¼ýÓcç¯V%Ûcu`’k–OÞ”¦W€É>7Èø¿GÒƒR¾nª'Jþ¦$—ÒøHþ¡4þÈC?öé×ßé¯ßC»Ñû Œq ¼W’‡i$ùm~×¢<¤þÀ}îÞQÙÿ¦vùqà•üÅ<Ê-ÊMÛ?LqÆÁR]ŸÇãŒËñ}øü´¿ÇÛü]Þ~›·>ô"Ó+™‡mû|wÊÔ.Ê7ê¬/¥}àkÞ5ºâEß4ýã‘úLÚë߃rƒï‘öb{R!é#ósLqÈ—é¼Kë1߃óˆñvæÏØ~ çç­ý}†¦LúK:žä?ãÌë ÝG»”û?œ¦ýãLø|’r|Ô”I¥];ÔôŸ¹/o:ç3·ýUôûðº4Žm\€ í¿pÊO¾aߟíGþFÿ‹ý¸Ü”œ7Cý=”Ó)Š÷cÿò=y?ŽKŽÛä·ãõôð~Ì¿¤ýK}ƒãšóŽq^,Èã|>ïÏösž³}ÔwÌ-JóÏ©î‡ãœrÝòÌÁdGp~Y¾,˜ôÏßÔ¾N÷Këo-Êt|¨?ÉêpÁÔ<Îöñüß4îÎùžüß´+™÷ÊøWÊ?g\žòÇ™çK½€~‘ŸMùèsþxå&ÓwR>û™ñÏä—ötÿã|›êƒ¸~z¾å €ôCÍz®ù@Þg²?iOp0¿‰qTÊ9Ž‹E0ÕåÒŽ³¼ÜNÉçñ}“\ãùCõ­OKr·átÍŠ÷¦ú£Ô^ó眇ü^!ÿÏ®OyˆloŠÑ.³¿_Ô”–&VÊJz²Õ±àú”¯Ëþgÿ2ïœv:ïŸòÝÒ>'6^@›ßh_Ú'z(©÷Œ@ú›ÍßR”)¾O¿Ö¸(­N4¿!˜òAS~×RU®´õÉóÓ:Å88׋ázŽŸ¡q¦ä§Myj—“?ÝòýÀ¤$ý…ýÁã”—|ßÄ”GžôXó£‚&@ögª'%ù}襞ºÜ)YwG½™õ)–ÏÚ”KU8]¿aö¿ø=éKúÆgýÕGNyàc>M’{I/JñrÚïü.–OÒÏFÿ ý é~ÉïF²8OÍ/šÿ ÷3=±€¸ß¬<\Þç€W¾é[¯}Þ§cžýEŒ+pÞ&9C9nqk0å&9er qìþ—üáûþŽ{Sš†ï©çOŸ‡ó¦÷O~ý0½Šÿ/‚©žã7ÍG·¸Þƒ~ɤßñ~É•âB©ž)í“ývæ¾B–wBOïî·RZ^4úkæøJuU¶ÏpQ¦øåÇRUÚºIâyü.)ž˜üsG<÷Ù·~óèqEú7R~ ý!eú}0oû_Ì{M~Öd?ÍËKú(i~뢴ø!H¹ÊïžòYxÓ[ñ>Ôç©çpÝäù´‡†úÕù>ŒK%ÿ$í ›'Eiq?ÇõìßqQ¦|)óáyÉïÎñ`zhûmRZƒhÿ>yÚÀ"ìQ^›=Ø@܇ïëçÀd?§|³äï© í[Ñ)Ó|¦^jú:Žóù”_“ªdûøýÓþ¤¬·åø¢]Âû³ý;7)1?§ã/Å—O+ÂþçvžÏûÒßûZsŸ2¾¯­¯{”ö|þþÓ«rm“’ë1íPΧd‡m¸ßŸüÙG¾ö)»®‚)0í”âËi]å<澉–ÏW„ûþ'H½n<èÂc?ýš ¿êú^§´ûð9 óŠfÉãTß;TÞp¼¤ºA®·ÌG>âÀï]ñÿøˇ ˆù¶?j§ä¸OrþžOÿKÚŸ8õÛÐz£´o[Êwb{&`éççýÇE9jJ{ÿpÜò‹À”Ïöñ{¦qÎçY~˜êÿR^õ´4xÛϾ)S>õô¾<Îçñ8å©ù@®ìŸ,ÊX RoLóo辋dªÿKþ]Ê;ÊUó«WåÈçQXmÊÔ^^Ïü·Iö¿é:K=‡ëÆ»ìÞ>÷À‹øì>æÏ“ÿñê{çU宦dÞ Æiÿ‹y ïÔwøžó×|â¯}¯ßó÷iJú#“_™öyŠÇò=8Sÿ§}0bÞcSš?¤ù7Œ¯­4%ý„Cý»©n<ÕSýÏú‰òÙöKmJî7‘Æ#õû´«wßÉöÅ.Jóß‚l?í.ê#”¯<ÎqÅöïØ£¤üfÿ¤qšâ–—&û‰×ïÂÙßúÂÅ/ˆuõ)#ÅS~CÊIþa›_`ªKæû&?=iù\á}‡ÖQ§ü”¯Áó¯÷‰Ém~ú£—ÅýþR½b_I~°”GËMÉ:"ÊmÊÊCÚßÔ?Ã8Ú·_Pö¿(où¾7œgkE ù2}îŒvNïÿì;]Þ½ôõˆ«ÿÝ3Å)RÞûy'Ì·¦_‹q)æ5“Ðæßc¼I™ü)œqFŽË¡ù)?r­‹’íáwáõã¢äw^Óºö££Ÿ‹úÒÂË~ëÇç_¼D}Ö/ÚáÉOcó®(Mž6¥åo4eŠŸþºqPê™süÑ3O{ÿõmŸ•-EyZUòøé2å©P¯Izû×âèM¹T•CýÄìo¶ßsÃï.üÛ ®ùk×àúw0Õ]šžR”©~+åá§¿³1´~ohþVÊ/Kvßßì¢Ly§©ÿ‡ÞÏìPp¹S.UeÌGÄñäOe{ø}Ó~øCûÇê’š’~®³©Î:ÅÑyÜÖ™ vJ«—Ãñ ÿúΫ.xýSâ¾óVïÓ@ÜwR•¬ã¬ ×7úÕ¨¯l‡ú‘ÓzšêÕS\chýAÊNu¬<ßX”ôߥ}v4%ãálÏ*ÈöÐ/ÀuˆþÄ”7J9fz[S¦÷Mr"­S$ÇK²g“_$ù Hú3éµxA¸_Ò÷Rû—cû6\ö¦_ö¦Åúj[ Ø”©.bu¼>‡®¿©N…í¡=™êÒ†ê[©Þ;Õ$}*­Çqߎ¦L~5¾?ÇÆ›ßã¦çŒîë»B~cÿã¸ûWï›âµVŽX”ÿHÓ©/,–õ‰yÑÿl¾ìè”ÌSb]ЬoŠC3‚úøj§ä÷äqÚë¶ÿ)ë­K`SZ~ÞŸóƒrí™lRžY•ÇSý ß—Ï£¼Nûí‹r¨=ÌþMvFz_ÞŸö?õñÄT_’ò¿“¿Àäó$À¹çþî;<þ¸éGÉÿóïš2åçñùÜÿž×Õß‚Ôÿfî«”Ö9Æù<žÏïL9™òï©ÑŽá¼Û\”)~©*ÿb|ŸÜRÁN¹2Ï‹q2Æuy¿ÍUÉñºÿùô’ ·_îûÿà<Úã\“ë÷¬<ÎSö?ŽOÇáZ§\)JÞ—óˆÇïø€k?ý«·LÛEyÈ}¢S1õØ”·yaúÓ¸*“?3ùÑøý¹žŒ@/ ßw¥SZ<4}²)Ù“ª¤ ¡?ƒvNÚߎïOÿwª{ž?èyÿõ_·»¤îÞô?ÿîÉëØŽÓAêq§5%õDúS¸/å!S¾°=”OKUi~šÀ”× ;#ÞÏînmJÆQx>óÕù=جï²yÓ)—ªr¹)y>æEÿ›¹/ö,¿©ùËðŒËéý1§÷³º úÿ,ÿ!×ïµN¹X”\?(–@¾÷®¢¤>Ãçí$«’q<¶ßˆçQŽqüѺ֔G¼íe¯ëõ¾kòÒâ…EÉû°]ÖNÜöÇÁxë~“§\«\ý³yÉúÒíu}š B¿Ÿ>7퇓üñ|ãòòŸ4?ø›æ%§ü ”O”òEF`ªë ~o~š¦4»LþÆàWš%çì»r\qÞ“|êé8¾sÿ‹ù÷iß•NÉï“ü$Ô“,î\”É™òÌî-Jóó%åH´Ÿ›2åÔ@‹×áùœOéz‹o¶õÉóçÏ¿ë#žúÑåû*û_ŒËð8ç_Êã¤ü¥]ÄñÈþãxNþ‘ôý8?ÕSs<#¼ÿ¹_C9•SðM¯g~êȧ׳¾œ×YÞ²rú<óŸ7åbQFÿ}QZÞ˜òx?ÊW['Á˜ŸÔ@´'ås§<Ï”oÆþHóÈò$ëú¤–H={®=ñ/ŸÿÀ£Í¾ZnÊä7ZÏ3)ŸÒwLuZi\¦<µ(op<ùy’¿™çóx\/Ù~´wÿ¿ºÁÊ#ÿü‘ñ¾”“É?Éuƒ÷çºÀãô_¦<'¾ü¬ýÏûS™ò‘¦rùÓóÑÿv?|ïéýÌ>jJ¶;­£kr±(9ßmÿqÐê9šÒä-˜ê‘m¿.v4×/Ë‹hJÊ%®Óé︱½sç^ï‹÷ÔÏú>ó ù;È¢¤¼¥¿Íä7îϸeòÓZܳSš¿¯[Ÿ.8ùeÿð­óù}öÕ9‚aô¿ä§ôý>›’rxÞ½ý;7î3@}ñŸŠ’õ Œ÷p_ÖU‘Üß$Õi±ù<Þïô¦dek§¤ÿ”þf¶û¢q ›ñ8ö7ë7­ýU™Ž[{;eŠžÒ?™âú)Nžö¹ _ïæÝŽ}È?3ØÏÄqžô¢ä×1ýïeûeÚß"ÕÃÚ>PEÉú— güÙ×^09Éþ¾|’§œŒWl9þØ/”ïÉ?–òx¨'ðy)u–‹q+ʹ÷¶zéªä<çõKd§4¿!˜üÂìwÆíÒþ?|>ã‘“ªäqÊm~7Ë+Ê4n’]–öm1?-8ÿÚÕË~°s«ç)oŠzŸ“òÚl¿í¦¤žg׃©ßx?êS¦¿U°S¦zJÚIÉo’ögHyƒÉœòjÍ^£ÝÈïG»1åu&¿PòÇ}§@Žô=,O¤˜òbSÝYŠ¥ý‚’_ŒöÇÂç.ùèÏßözû{T\¯™K½ÔòO‹’z?×iæmÔ+gf=×/æ‰ÑþOþGËëì”iß.Þ?Å8Ó¸±z0·(m>%çS’Gk{””7”¿a]ߗצ×õ¿˜çÈç%ÿ—ÉãÐ^óc4%ÛǸýô‹R ¾Í|‡ Hýa­)y½ùߊ’ë7í7Ú_¬32û¡)S~û3ù;ù=ø<¾ýµì«siÇs¾pý1=äø£ý—ú#ÕßTòŽq­dߦu…ò’ò†ýEùDùê}ÌïÒ”´kÖ:eÚgvVý!çÁ¨)S^óÜyœßÑò&Âýñú_ÌKõØ”ÿô_±¿Ç{”)owd{¸_-ïÇ~¥~E}‚öÌvó™÷OúNŠïñ»ñ~¼žóówßß‹hJ^¹Øÿ¨ŸOÿŸþ®s\w·Våé`¯6.¨—QÏ¢¿°ù²_»ÿMÉ|QžŸüb©>*ê=¸ÞòQ@“ÃEÉušýqv§åÂ¥'~ïgßü…éo–GQ”¦°*“þ™âþìW‹kÉOÄqǼDÊ ÊÙùÞëŠ÷?æG¦7ó<~ùþG9?¿ôûrõ3ÓûÏÿýÛ>ö{å·c}A²{釧ÜÜÙ”ÜW…uZÜ÷ê\zçÏJSRo¦7÷…?ºß÷¿ßLÿJyDœÇô·1¯gR•Œß°ß,/´ú6ÐÖ;<ßâN‡¾ú]o{Û5ÍËë8ïÙÿ;A®û¬ä{QïNúÑZ§äwÚ¹WI8×ÝUßiÖ¾j”ËŸÓùËz®—lÿ¸(+ˆ¸`ÿ›>ÏüZ`ªÇJñw«Sý íŸÒ¯Æõë×ÞŸú×)êïùƒw\ÿÍß+Wÿöíï×”¼åÙMI9eñ;ë¹ñ!»ú†ãŸ>k<Äx!íI~çT'¿T•‹Eý¥M™ìw7ÿÈãòŸÏ;äE+÷=úâÙw³õ†Ïï”w,Êä‡â{p=]™Çõ•qè¿ýÏä‚Õ35eŠ¿¦üLËCiߥ:Ì?ÀõûüådSÒQËúL~™TWB»šÇ)‡‚ßÙ÷ƒè”¬|ÿT'Dòy´ëø|Ë'.JÊ¥ªêç¥~³Ü”¬Oàý¯sÿþì…O¸Ùm)Õê_ëúd»˜×±TÁ¦¤ÞkyJUÉõ"q¥Sºá —>ñþg›?vÿ¹M§\çõµu5ÕÏò»³>í1¿,XAžO¹Â÷ œå¸·úEãžr0ÍsË¿BûÙ´sì~ í·Üq=ÛOý9½Ò¿ï÷Ü””sé{¦þ6¿h ¿O’£¼>ŸÖuóÿåþß{Åý»ï½Ëü³ü)>BùK{ð¦~öþ½ÃëdÏÿü»'ó‘˜/K=œÇé·âùŒÿ¦üHëg¼wÚ—c òúQS¦ç%=×›|ÄùIæ|â¾$ßÇÞ÷·u¥)“üIòžï—ÎOóÏîÆïާ<|¶è~×Ô[¹Þò{[¾ žG=•zoªãZŸG»+Ù«ì/ê}¼žùü£¦Lß{FÛÔÎe{`óüþÿî Û‘öMIy—ñ;ô÷­ï¡Ÿ€ïkuöÒêYp?>Ÿíç<£ŸŒû¸ÛþCþÐé÷Oþ¾Ô/\W-¿R¯ïy_û¶>Ù?lwòÏ1ÇüUiõ>x>çÑ"È÷ežçåVÊ[åw¤^z"ÈxsåqÊ­“Àµ±’Çéob\«‚¼>µŸõíÔóopé»^wΫ~aúÏ[딩_Ø.~“ ŸGû9å%ð»Lªráó?þÄ£ï}¼ÍãÕN™ê-Sþƒù?ðÔ¿i‡s?Ö‘­tÊÍ”Œ?ΟrÉ_yìmܧì3óomp©*S~‚ÕÙ6eªûE¼¦ÿy¼¢ §ç¥:OÊÅ”_òÉRÝfðßÇ:Ìs7)Ù>ê)<Îy’ö 2½¨)yœùlV8S]1ïŸÖ™´ŸQЧï³Ú”Ôã,¢*Ó~uf/4eÒ3q¼ÿ™_‹v1ã'ì—c¥Õ=(ûßTî0?#Ô}Ùõ®¼ãwÿ}ï1ö}’ý7Í_ &ÿù£À”ŸËuƒþ® Ì_›?µ~bÇ£þÜ÷*Júq–A®7+’y>[;%óeŽøès¶Ÿø®×ÚzÁù±«)mÿ0Å5¸ÞP~™ª(S¼wèø0QQŽš’óÝòÁÁÔÉ?`v/‰÷IûTðúÏNäó,oLþ›äÏãø`Y{@ËËmÊ”ÀïÁû…¼âþ7•“)ßdÒ̼HÚéÜ×Êö­ë”Wlë“z÷ÐúT“‹MÉ÷¥Þ?Þ7ßrÞ7ßàñ€¦d|:O½ß}~ï“.¿Ó¥‹v÷-[딩žjWq?»÷?äø8§*wwJÚÍ|>¯_mJ¶o7ÈãÌËåqÚ‰|ÛK{yR•ö]›’þo¶ç`²§ÓüIö{ÊcLy˜æÇªJ>ëEÚçÏë&GRœ‡~û.8Ÿ~æ_0ŽÂç§8îü#Ùy‡iã‰~#ÆÃ+‰vÐߓ⽼žíäýØ^rÔ”I?æ|IöxZù<Ú¿iŸ£¤_X|‹ïÑ@Oû4ñ{'ÿ]ú~”7¼ÿ±à|ø ò{//Wÿ¢þ›ôÏ{oÖ}ðC/‰uÐ\§lß¾ª\mJÊ!Ú#´g)÷SüdR•3åRVåbQò8Çcʯ˜¿ÆÝ¯yÜ}oêûJW%Ç!ïK¿„Å%qœÏ£|­ óëèïÆõýÏÿþaU2¾Êq’öç7vUÒ~¡<1˜ò#xÿ”7jq0ÍO~§W¤ÿŠígÿ‡}ãþÏ|žÉ qE¶öÇGÚ…ýÃõ”òt ÚñvJ~öo-JÊwžÏyÎyÈö¦üÖår¼Yž3hþJ0­—)_ƒßßöÑ­®Çi/³ý¶¿@Q¦ö$¹É×'ûƒÇ“¿…ïÇ8™ù«2Õï$ÿ-åç¶N9T?±ú0äô¿™u£¦Lã=µ¨?2ɯ”ï“ôí”oœüæ/-ÿ)û_ž¸>}wËkÆõfwà~i/ê«æ—mÂé{¦xTªGg»vV%?h’ñH®gÔãùÞ´£¹þÒŸÃø"ýMi¿B§Þou[E™ê„ùÝ“=Êû›~²¿Ò¸æ~%lßa û=ã>/z‰éÕ©..Å9’ß–zÓP¿DÊSIr3ÅE¨‡•»”[œ—ÔCxØGÞxësãß ˆû'á¹É‘âOÉo•üI_¡¾Z‹Òü]MÉöðzc[Ÿl/iþ”ï—ìî…þͯ^úKv®ÃŒS¤uvh åõ¶¤7s]ŸeŠr^,ʰßzÿ‹úmÊWa<€r…ß×ä&Èãì§ä?à|Lþ?ʱ”¿oïƒçѯfñ˜ª4ý£)9n,¯¤Ÿö½ÙÓàÚ^å.pþßxÔý;OI§¤oíhJ~‡QS¦8²+øü$/,î ¦öpÜ ÕsL~T%Çá ¿’å“ð=è_£\[Xxë¶¿½÷&»ý&¶ÿÚovhy_$ÞÓúg“°ÿEýŸë ç—ù+p}ª/Mu\WR?ò¸ùïš’ó,ÕÓŸA{fœTeÈKõü‡ 6åZ§äß+JùÀýO­J¶¤>vÇ[šÏi>’|æ­r½æ÷¤`ò½*çŸuÕï_øÙÔc®¾¾gÒ—‹’~™qQÒ¿G9ÌuÎô’¢¤þA¹Ïž”ÓûòýmT¥Õï·õ¹X””¿ô[W0åoÒŸ¸s“2Õ“m-ÊTwO{ û š œ£>kýU•üÔCÍŸ€ë9þl?ЦL~°äÇäzjùá`’c¦·eʲ|妜¿Ý†çÿðØëøþ¸¯3ù ²ôëð»SÎÚßÝ*JËË)ÊTwÊxTŠQα¿R{9n¹¯tJós÷¼ÿ–N¹µ)·l/ŸÇþ>­(©w¦yË}vh¿²Lé”KUÉã[«’u_§‡îùϧ:·×ôJÖ·ò¾ìwêÛ«’qCæƒ2_‘vÐÙU‰yÔÿÌÞ§}9iϯuJƨORîpâ:‚ç÷¿éº>K/à})ÏŸ¿ò©¾Óçl|RoHuõ)~öQà{f¯ }CýæOhÊäWj&ý?­‹FÜzuòŒ“ýâõžG Âß5sÊŸÔ.‹¯eªÏæ<µyÝ”üŽæW)ÊdVpî_nü'·^y…=Çò¯pœß›ëŸù“:%Û1jJ§œyö{”¼ß™’qÖ=ñþìWËÃ*`Ur½¥¿¹)·°*' ý ŒÛÑnë?ŽÓ‘ô±ôw%–ª’íÅß2}‰u ì/Ì«}ûi¿®ÓézØ?ýoß:Û”á|»rqÖùi¿¹éý ·¤çÿ¦ÿ6¹ÁuÛê­ÆÊ妤ÝC»ãÈ#~ïA']ù2ÿûd$îËvP§¼c]˶¢äwàýhgrý#m*ú¶ÅÀ´ÏÇùÂ/þèkÇu³ y^²×yœr%åɤz[ÿš’zàA/=íåòè¸þ¥õg2V2NÏxÝúÿYUI{.åAX}{`Š_¥ºnöOÒw-¿)ÐòŠÀ4_RÝ ÇYjoòks^Ð/J¿·Õ+7eØ_ÖÖÊ3>ßì10åRÿfûÃ>~îg©¤:6ê)Ïšú)Ç?ï—Î7ý·))÷Øþn÷Ø÷w“ŠûÛQ¯¢ßñŽÛs@æË2Ÿ‚rŠãœr‰ýÀ|ÞµN¹c¯’ßmµ7)©§Ò¾"é·áý8Î'U™âØ”ã¦ÿeªS±ø4h~Í¢\©§§ý)¹Ô¢4¹ß”i]Jy$#0Õ᱿7^ûò#Þza7ØÎNyñÉ_ÅïLùG{‘ëå!Ç…ùû@¾ß†¹•å3?øgÖNÆwøý©os]c¿ ŸX£(w‚”7\GéW§=Õÿóù”‡k’ríÅ8é¦/òûrýIy”Ì£ƒ)¯“voÊó£ÿ$íÄãü«`Z?9™ŸO9Éq`ñú¦´zÀ¢äó“|ê§3¹ ¦8çкžHùÂñšä¶ùÛÁÔ>«Ï+ÊCúÔù‡|sÉ«ô–ª’ë'í.ŽÚýôc¥ýR¿s\š>Ø„ý/úçÙêMÌwJ<úøÇÜ÷ž<‰qì4î8N,N^”¸¾ÿY?Yœž÷­¯)ÙNËO-Ê´¯í[ò}’}nyBEIýÞ‡ë“}œüE)oŠ×So5=¤(S‘ùÊ’ë|òY}<˜ò¼’žÙ@§]FÿÒöNÉüžO½œÏg^¯§¾²c“’ã•þP~/æAÑîeÞã§W¥½H;˜v"÷`Ñú¿*¹~òý©‡ÒîMû¶p¼q<šþ¦|[OùåÔƒY÷»V”ì?O~§N¿ÈjSò{³=“ªd ¿Çõk’y+œœ§u`U®uJŽGÆCÇEÉþÜÜ)Ù>Î7“g_¬Ê%åÌ¿ÿ•ò8¯x|­SZtYŸ©^•ú%ç5ó8o'å<æ:Åãi"¶‡~ˆýO8áŠwögÄ{š¾Òn7ÿzQ²ó?>ð.—¼åïâ~îaŸ–þ×g¶óÃâÂx_Ë{ 並|IïIþ¦úgzÏ·ýŠÒÚšŸ´)SýUô³¶õiã LõûI_äúÅ멟¦¿/ȺËT§ÊyÍù ýÑâK–¯ÒEÉø ×OþÝZ®wÔ?­~†,JæÏ0^Ïö0Þor¼ö;ÿ„Û½ùãQŽp^p\Lª’~0®Wã¢ä<°¼Æ¦ä<¡žL½$ù¹yÿdß³ ÷¦ë<ó‹p*‡–›’y ´‹ØÎîvìÕoÊúÏòâôù1¯*ÅS} iûäeúž”O« Ç/ß—ïG»‡ò‡ó÷[ªJÊËwÙÞ HyÄùLÿç3¯§ü‰û$|~ú¾$׋‡œœ)¿‘ïÇ㼿í‡4¾©/ØûW¥åU%¿‡Éÿ=JÊG»?hë Ž§ùÉã¶6%çÇ4=3ö.˜âv~Q&ý†ïgëM‹2å¤} ù~´ ˜AÒL}Ф=Èü Ò^dü~Vý˜éU씋EÉqÈqÌyÂyÌqE?nÒ«¨Mª’ö×üó?wÈAW`vœí+ ÒŸò-m_¦Lñ€äâ{q¼þ—OüÉÝßþX´›­n LyJ)>ly ïOû’ãúr™¤\çóiXÞCS²?ù¾¶Î)ûÛ5Õ_ù<æùàùýoz=òù¦ÏC¾ù‹ðìxX¦ç1/:ùé8Ò¼Ju üÉÉuÊìèNɺ'ÆÅ““hq–NÉã/žgrÝc{íýš’z$ïÇï·Ò)©·±ÿR½å¢ÙÝ’÷c¾ åOöÌ3Ù?ìó éóúŸÙ±l×2ÈïÌqNû›çÛý«’r–ú”Ù¿M™ÖKÞŸó˜þà¸kÒòäAæol8ö~G¿ûë¼>’)?ÚêÌ›2åEòú¤·¤ý^8ÿ’ÿšïÃ÷_锌0NÀ8Ç%åQŒ3€ŸSü•ó›ä¼a\óò€y6ÉïA;Äê)ª’v ¿Gªß9VòùwD{.|é{Žø—/ǺA~—IU&ã2Èv&ì*¸£S2~`ùBEiöi;¥ÕgU°)-A6eò?Rîp^§xu’ßüÞ|?úHõm)¿ˆã˜´º\ozcQÎ?áfGìyùûl~q±úš¢¤ýÁ~=èŒKoø’¿¾…ÛuMÉþ6=ç§|ø´Š­é½¶Ÿíãó“ÿŠó#éñÔËmêÀ6eò'QßZ,ʔϛâÉßÌþ3%ûŸd½ ý]üþ)ß›ù©œuoÌϰ:ç¢4½LuV)>”äcÊW²ü7œOý×Ö²*-Þ‹ëÍr|qþRï¡_„rr†?bê±üØõÙÿQ”ægÄñ”çÌu‚ržz§Ùs`-JÞŸ÷KvUò?òzÊQ¶Ïôp0­{ä¦üìÔ/fîÍu(ÕçÚþ38?Õá§ùêàùÝ’^—ìækÛwÍ_ R^°=´[˜çÉøà¸(mŸ«¢œT厱rÖxÁ:²¯®ªSðæ“žÿÐ#/ò}2ÉEÛ' çó;­vJ“£ íoêÃô·Y>!ž·V”Ì¡_mÊ¡þRÊÞŸûغ³Giö+ÎOùf÷»ÆJË'¹ß+ßwR×'ï?yœýżʤp<ð„;,~੟Žýȸ!Û÷ÉÀýjQšŸäùIž'?DÒ¯ÓúòhÓþ©½‹ Ïçó™'G¿ý6«’ß‹u2Iîñy”c¬‹0½…DûCÝ¿û— ˆã#ã3åE/)¿Âêð>)_c¨ŸÖ¥$GÇEyó‡?ö¼W¯üÄâÉ?Â|ÍMv¯Õq¢Ý;Š2åUñþ))í `þ)¼¯Å£Ð~ê#Ôãl phünþS÷½ò^oùÐà¿ëI?õWÆUè§>¬ Å­@ó‹ƒÔ_™_A}7Õ/òþdÊãü¤ÝeyÚ Çqªc%õ@’ë%õÎ+^O=6åïZþWQrœ'^ò_Qþ¥yžü7#ë‹ée éWá8ï?´.‰í¥^ku#¸_z_ΞŸì†gº¾s¼¦õ0ÅÙ.øïßùQ/å8gž7íVÊ‹ß4åRU&½7ùÙoü{Zœ'ÑSÞýþ/}éÃîsÞ\ÔŸF ÛÍûRÑßH;˜ûQrü«rþ¼g<éªýïmÏ¡çþM®«Œš>Ñ””‹”ÓcÐòÊ‹’×sünÙï<ÎûÑîXÛ«äýR}*ånZ—©ð|È­©ÿ)è'ýÏó‚‹’ãÖú§*‡Ö-°VŸ^”œWx¯ø|Öp|Þè)sñîm{¦ýH»–õpÌ_¦’ã‘Ïgü¥­O·•N‰çõ?Ë{Ø\”ÔGx_ÚËŒ¿°Žýĸî¶Niþꢴ¼N0í§C{í]nJÞŸy¬¬ŸHy,\‡¸.ÏýÍ[¾|ÙƒsÝBQoÿ³öñûÓnfü’u¥¤å7%û›þwžÏö1o…ã)}Oî'½M9ï|îJ§äz`ëC§7°Sž 2_g\”\¿é¿ éŸåþ&<ÎûŸÑEɸ¹ù᪒ëýtf×íQšÚ«ä¼çz3k½œUW‘âà\_¬î äüžTå¸(©_ Ý/(ÅG-žÐ”\oïIùrÉnã|°:°e²»FMÉã)ÿ“ä:“êB†úM‡¾?õCŽ÷4^“_Àò š2ù)RÿПÈñ ¿Jÿs;—,8g§¤Þ·Ö)礜ç¼%×HÜŸ÷;½()'“ÿÀâ`’ i^Øw.ë“~_Žûùû>ö xá+Ü>S¼›Ç“_.Õ¿¤ük^ÏïžüùÝRÜ4Õÿp=ež„­·MÉõ‡ö)¿ÉõäÁEI¿ø¤*S¾»­ ûý•üg´S(Ïì8hõCÉÿ¶\'Ù—ÏÔ ûßàøôúþ7}ÛO;‘ùÝ|þrSÆüÖÏíIÚ¿o¿veÿ³öÙ¾¹EIÿÕRUr=fÞõqžÏuvìj§¤ýÁ멟3ÿeaáÓÏ»ó[^ië×Ú&%ïÃýBè¿Ly䔓ü®iÞŸß…ö,Ç òæM5åÐ|X^?4ÞÁõ4åEÆ|…LõÆX÷úŸÇ›‹2í»`ó¹)ùÝR}ßËÖ´w¨ÿÓòŠò¨ùñ»îqƒã£ßxu¼>iGÐïÊñ‘ê 9^,Ï SÒGÿÍüÅß¼ßÛÞ±b~%žÇþ òÛÖ‹IUR¿¡Þ?.J˨JúͨÑOµµ(¹þÑLy¾X”æOçz“¿øÊKñ~ªÊ3‹r¹)©°Ý\ég¢ßýhÄ{²=F¼üòÓu=ÕÕ®Âé}èÏZ·Kÿ&Ç×OÆ—Yé”Ô³éïå÷£^0.JŽcúoé/gœq¾ï"˜ü»oi߆´®PàxbÙ>X•”VwQ”¶ÏçóÀ²)c>OQ¦z°dÿš’úÕ;€i?'öWÊå:NùÇó­¾ïÇõ:åÓäû&;thÞ`º¬#ÍŽ›ÝØMÉuðØ¢L~V‹Ç£¦LyúÉÿeõr)/%õÿÜû?óÿøìWÇz䔟`ò±8žúÑú ´üOp©*ù>Ì_YTö¿é:MCÊ£Ÿ/ê¶nPŽQ¥>‘êÛ ç¦ÏMù•/ûü> ÛÏq™êhgX¼÷“2jërú^lgò¦vóxŠk%»/ùßÓ<³3AŽÚs£¦Lû¡Y}ESÚû6eŠ#¦qI»-ÉÛßTþ¦|À´~òýxœúáRUR6Èãé}-N_•éú´?}ªïO~‘QS¦8IÌ› <«SòyÉ¿–öG¥ÿ0ÉÙ´ÿ©íS„÷±üX´ßæaxß4ËǦäùlÿ yÑß•ÆOŠ»¥ñfû”4e²O’<çüKõÉHzcÚwe‘¬`SÒþµúv0é‘ì¾OŠ»Yþ˜â©?ì3Ûÿfí××SŽö?ýI–·¯œ¶‡óž~¨”‡‘ìøT—ìʘ‚ãÇeÚŸðÚOüä;o÷“ï;˜öýãý’ü‘x^ˆ×ô?‹îܤd;'UÉþa>íÜ”µ(¹îðûs\¯tÊ”/Í|OÆAæs¤ýì’}™Æ3åŠÉevýÆ”›v¼))—Ó¾D‹e}ò}9ÞÒ~ª”ÛÌÃâû0_’ró©*m©§'?-çýŒG±ýVwòyŒ?1¾O?vÊ5åP=ˆï—üÉnà|ä÷b~0¯ŸûùÁ÷|þÇ~”ó"‹’í¢¾Èq™ì©¿7}´zKœO9›âËMiúZ6%ïÇx#õ»•NI¹L9Nû–ú ïoïKâ}—ª’ç[œí£Nú>¯§œ‰û4%ïoû‚ázÜßüœKUÉ|‹W6%å"å´½?Èu‚ókµ)ߤ^ÊïÇþfÜ<í#J9Íþ°úù¦´ü´â¸íÛÆã¸òߥýðæoøýë|åˆý¢HýÁôµ¦äzÆqC¿ž}‡NÉqtv§LûؾMiñœÏïF¹œö¯£e{ùmÞ—õi~Çm¿WЮÇû$¿EŠk¥}Aƒ_¦—cS;™uÔäþß¹è Ÿ¿ù%–‡´Ú”§ü®Œ3Å8\Q²Ÿ¯wÞß>ú¢ý=¤>YAÚoÔ3’½Ëûñ|ŽÏ­Mɸ.ýÒÔ“ø<Œ÷Y¿˜/Éûnxàµö>ðZÿ`y;Ì¿åqö7Ÿcû–5%ë“›ßöŸÏûñzæ×Ûóš²%Ç)åïbQ2n1+¾I8iþ´3ÕÕs\§¿#‘öçIþ¶ÏÚC¢}¼äÇT¾?cÿ3y“xØWŸÿ䟻(Ú!)/Âò`ÚúLq…´¤¼δYlH ë¸Rý‡Õ€÷1?ûåôtü`þOÏG?îoësz}òóZÞG«2ù½’>Mû”ö$ŸgçƒÛš’ö¢­ÛMhöVª =mñàNÉãÔ?–;%õj®S|>×yŽ{Î{êÔ—¨04í·EÿÁ¶ ¿ûáÓonõê\¿ùÛ;e’Ë<~ð¶øª'}&拤øcÒÃxœëQЧø4ç«åg€ô;&9ÉùŸô·”ßÃö$¿&î×ÿb~WÊoKÏMß!Ùí)ï"1ÅËh×ð»¦}Êéç±çñ:<ßêå•ÓuúXÿ‹y>®péÃÞiçY²(S>)ßËò'š’ç§ç¥x ÇjoŠ_§8.æAÿ¾Îã­)ùÞ–‡P•&Áä—Mõ¸Œ+Øúò|“‹`Ê¢ÿÊò@úUM//Ê]M™â;a>Gy¶rÜšŸ¸)ùþ;@î/8jJ‹iÞYÈëÍÞ*J‹+‘2åSïKþÚÉÉnf~í`Þã]¿~ô¯{Fܟ󤢤\© ãœgœ<ŸýºÚ”“ªÜøŒ'ýÙW.ûFÝuõù=™'ËïGÿNʃJd{2ŸýÐÿó'/yí«c¾—CßQ•´çØÉN·¼!ö ç1çeÚÄæ9Îçw°üKßÅêIš’×ssŸFÚ«ôKX¼·)­ÞžlJ®«s»í‰wþæO\ÿGM™ôÍ”`viUrý`Ý一MÉ8 ë^ÓwLãÄÆ¡²ÿù}AÊ»IQrüØñªd½¨åT¥ù{ÈN99?ؾ¡vºÙç`-ÊQËú´üÌ6eÊç°ã ßÏò­g¼÷TÓq#žÇãçï—ò©í=ŠÒê-Àô<¶–¿€ëù ”Sû•ý‘ê;gùu)ß觛埵¼¾¢Lû¯”7Œãóþ©Îú¯O~sêõ–çXÖgjŸå75åJ§ä¾”×|?Æ£©ŸP§¼ ´¯ÿÅ<—TÞ#Õasà{ÐA?ìûûkM8}?ÞŸz ïŸö›1Ö@œÏyNýú /ô¶ÇÝýÑ^Q•V/•X”Ñ/Ð)y=íòµNÉë9ŸI®÷«MIymù`xõ²…7÷[?¹Ñ\¬ë¶}m@ÊÚÓIïbÞ"ãJ´§i?ÓÏ"H{švrÒ“Rž×ó8ÛŸâöÉßëÀ¡þ¾?ûþ ¾ß—ööjSò{’l¿oÚÿíå÷?¤üNû¦º©¡ûÒn°zxí5?zSZžUS&ÿõFú%¨çÐM?Û¿LryR•&·A?§*;à{·]ãG¿ößH¯×Å¿gÁçH;5­{i_ºô8)9ëºò¿oÏÐu;ì»Óÿ<LûõðøjSÒÞf;¹›>ߔԓ8OÒþHœwô¤ýS[ŠƒR_±üî@ögÈ÷îþ÷ÁAOñ$ÊûTg›ü¤‡_ñì¯ýÅ#¿cý˸ íGg[½4H¹`z?ާ8NªKMuKôð}R}QŠÿZûAÞŸßÕä8ÿ¢+ÏÿÅïÞ׿¹ùí@ž¿ÖUÉ~•VG¡ìq_Oê”;«ÒŽƒ´x>å™ù¡‹2Í;³3À䯈õóE¹âùýof~ÇÁE8½óxæõi½Jy˜¦7*§íÁxœ¹¿åj¨ï™ÞŸó…r’ãtu’ßý0jÊ”'Åó“¾cù§E™â|ߤŸ[¿ƒœ÷$óí}Šr{SZþ Þ?Ù”CV?Ý)Ÿbÿ¿pœi^ñ~)9Å]-¿Äxì³ö/ëÓy9Ë/nuKÊéõxÎôz›×EI}–ý² 2n8.ÊIUr?JŽ ó§ƒü{ªgT%ãìïLu{)oÏöjÊ””ô;^?+¿ÝöÕù!?úßÌ}X’¿‰ß-ù·,¬EIѨ)-·(Óù)¾ÅëÙþ”ÂušïKûŸÇù|Ë?yþ³þ7«>Â÷uM~‚©ž6å{q=‰ëASòzËÏ+JŽ—”¿Ë÷ãýG`ʃOqvÚAü¾<žö5³ùˆö¤ù~øóúøï¿þ‡®×U°) =±\ùR}ÌJSR/],Ê• vÊ”g9SþƒåÍ€g&?µ­?dQ²}´c“_/ÅϺç]ûUßyelWÊOv=Ÿ›öËJú5ë„è×b|5å•§zv¾çIò2™~™E0úI«p–^jã…vô„þgqMÞ—~ÈÓš’òÞê3q=õ¥´ßÛÇþ¡Þôr‹¤ñœò娶Ÿã%Õ™qüó|Ëè”æ—A{ÍïrQÎÓ?Ký–þ…ÿJÏOþaŽ¿”÷·Ü”Ÿ—ö… oóýáñ|.×GkÞÛÚ ò~ü®ÌJõ¥)Ÿ÷ãóÙï‹EiyhÏJ§äw°þÆó©P¿a³¾ÓÞLyíiŸ$gÒ~žC™ö­œT°(!ÿg®#·Èsé³öHÇ­ŸQ§ÛÿL.ìÿÏÿÞ—·Y]3¿;ýq››ÒöõjÂ}Ÿ¯ §Ï[nÊùc>¶÷”Íï±:`>—ãÙürMÉ~29Ü)mþeð»ö¿™~®+äŒ}Tâ~“á>1N–âíVU•ï|>í[>Ÿúiò;Å}­›Òâ ÷#´8]Sšÿ§(MÏmÊU0­çVç¦ý2ÉGëÅ̃ë©_%;+}ß”çœì0Oû_´køžfOâ=Òz˜ò¬–›rîÒ»Þû÷úõ?çk²Û9¿’?Ôç{òx¬7SFúnôÓ'½„ó?Õ7Y<Lz ïouZxýÕi]IþÀÓ‹2}ÿ´ïDÊ“ |KþOÜßæ­ùùŠþ÷éúÌyD?}º/ß;‘~ÑäGMía?Snõ‹‚3ýë)þA¦ñÃñAyaþvÐê5q¿Ô>Ó—Š2éSlå›6eð[ö¿Á㋤€r‰ç›? œlRÚýŠÒÆkYŸ)o“÷I/à¸Hz4óù)nÅøó†{p‹ µÙügÌç}yœùͳ_¹þPN‘©n2åÅñüåüdÿÙúДŒã°^˜ñÒT¿‘ò«íz÷KùÙ¯Sÿ¦ïC¦|ê‡}ø?O¾ù[þÃÖ}ž—ò!é¿b»¨gPßNë?å8û•~õÕ¦¤ÝDy`u7 ×=ÆA¬=EÉûqœðþôw…8¼½O- ÚÇãé}x¶Ÿójã+ø¦:ë^öÎ/Öëð8ÉùNZÞQ§ä>ÔoSž"ý ô{Ѿ¡¿`R•KdQšß½(y>üf·¦ø%'{>ÕQ„ü˜þõ¾èw“Ÿh&=4å¥u-éé|Îÿm å;4¥åG°*9®R¼†þÚ¿ˆ~À±Òêê@êõÜ·rÆþ¬ýÏäã9ô³s^PÞó8ãÆ“ª<£Sr_¾?ï—òPiX\’÷¯JÞo~Æs˜É÷HuU“½Ê§¢^ÁuŠþÜÔo|ï$ïS~ùéMhãŽú8ç9Ú;½n[UZü´ñ\”|/î¿@ùËø¥Å ŠÒòКÒô˦äwfû¹Îó¸ÅsA‹ËƒçìUÒ·¸]§ÜÚ”Ì÷Z锼ßj«’ò‰ú#߇í%×®ìß¹O]´|ÎQײ8!çÛÉ~¡f;OmJ>rëbÿ‹¯Éü8EÉ<­dÇšÝ\” ’íÛpð¿Þò£'½5~W³G@Ë[ÁõìW«ç9­.´xïdOq]MuºÛ;%åxšG\÷9Îî”lÚW2íç2Ôžä÷ZnJ›'M™ò8ÌÿÝ”iHã‹ý‘ò¶y}ú»Güþ|ÿT/ìLæÿòzÖó{Rn¦÷å>déû°.+å£ð{®*§q¶Õ½ÊYù@¸ÞëÎAŽWÊáYuw£¦Äwš¶'ùÿy‹sâþµ(é磵­(—ª’ç[þog\×Óî_”Ôëù~)¿aã5.¸êUoø±}Gê7#ù꩎ÆäÈã)or=Å’˜ïc烼ÿY’ö Û7´†ß5Õ)qÜSߦ]Âqdû–åмާ”/Éñ”úŸäxáõ#¥ù-èw7ÿUQâ~qÝá÷MqY³¿@>?ù#¨§ðzÎOË[yÜò²šrhþôPûÇòÀ”¿ö¾)ŽŸä+ßcîâåÛï÷‘/ç|€¦©N Çû_̃HúŸP”\?Ù´SÜ0ý}ŽC«ïÙ¤d?íØ¤L~†´¿EªÏKy#<ßòš’ñÅäw¡œIùw#0Å™†æ‡¦<µ”/`ë"hqwÐÚZ^ÈuŠö×=2å—QNquÆ'x<½o¿ìÆØ¿¦\ç8?Ø~¶—r0ÎGÜ?õ'ó*xœöìÕ}ûŠ4%ûr‹r†×§õÂê›ÀTŸdûGÆ} о´·åë ý¸ÿ¾}™š°ÿùßŇú%R^™öÓâûóûüšïëõaàü }ò“—}1êï¶ hû05áÌz5«W)JËG©Ê妴|\0å¦|_ê'<>ô~i}Kv4ýâ<ŸÇ-ß¹)¹¾ð|ú¿x=Ó®Mq¶7ù·VX”Ö>pµS&¹“ò¥lž’Eiû£$âzêC÷ScûSôî=Jößx“Ò¾ÎOõx)?Fž‹õóàR^ØîNIû~wUò;­uJÎ ¾÷9Eâ>ýÏõÐÖ)ñ™íUÉ8aZ_’~6”É^š¿Îí^påûÞiýeûê%ó+ì½À´~§ûY<LþŠd÷QîÍ´õ\OîŸâb«c¥Ý\锌ÇZ> È|BæYÐ?J¹›ìfÆËM_hJæ«Q~W”´ó˜Dr7$ÚÇë-ÿÇ“ÿ=íwÌu‚ó‘q0[g6)Ó:’üvkÒô‚¢´øMQòzê•ô °ÿØß×y½ùx}S&ÿºé™M™Æ{ºòó¤÷£]¿ÿ­~|›‡þìÙƒëxßGâw ¿÷›ßóò]|òÇ¢_„~–Ô.æïQ^q<1ÏÁüUUiù4Miñ¤¢Lñ‚¸?5hzïŒózRÞž R¿àüNvªé àr§¤]¼Ü”f7ãyË ¿×#æ‡òz»Q.‚i=¡<ª/Íoÿëk?ëÎ7Žûîó¾I¿LëBŠã%y’âà´b~È÷C{¦öQòË›>Ö”É9jJ|ÿþýçæçκ݉ÿôÅÆz÷äwHãs¹)‹yjÓ÷cÞ:õH’våŠùYAû{JEÉû[¾)îovESòûPOKñ¯E™üeCýiQohJŽ+Ë(JÞz™êèS¦ç§xÕνÊ$Ÿx½}Ït=˜â]ü^)5ÅÌÏPÖgùýؾ?âýFMÉñeù¥x?óïUÚß,ëÓö 씫MI½’þûEvõ óÛ‘UÉx¢ý¤¦´ºº¦äûOª’×q=õĵNI¿„ý=…¢¤¹°ç¹7¼Ý­Œö¥é“ ýôìwÓ'ÁÝì”+MIÿ ýŒ¶u§\ªJç󸾦ß6%×M‹5e’ãÔÛè¦}ÅyNûŠú×ÎNi~ø¦dûèߦ}ɺFÖ‡Q¯8·*Ù~>?Å-’Ââr¸¿é»à¨)“?8Ö•ƒ|¿TšâãýopœùÆÊ”—w›¯½îöÿ~ý¥éó9.gèÅ3ãÕ)Ÿ<ÅÝSý å×ÊúENWö?«Û ZýjV%åÕJQn® ž·T•éy¼óìFMØÿl^ò¾)oÛæ}SÍIy3iÿï¡q È™þ·ÏÎnB;ŽþáñôoöŸO~j¾_òÛq?"ÊQêIãxÙÒ”¦'åäqêWÔƒ¨'°=|žo÷+JÊö/ýhƦ¤¾÷o¯JÊúy=ß'­ÃiWž?“}žü†iå|Hþ ¶ÏüQE™üJ|¿§Mù–ìŸTÈ÷I~³¹ï¾á:çü®¨?‘”“)™ãÆê.›ráäÇÿoßuÓû†ú·&U™ü æÿ“ ÿ¤oñù槬ÊäoKyé» õךä÷â÷=½*“¿ó'ÖÉ7eª/u%Ñ óµÿÕùƒw|ñ×üï7KψÏåºÀuú´N™ò¬nLã"å-1_÷g½^Ú¿oG§¤^H{ÜêDª2åQ&¿’åIoM\ë”–¿Q”©%å7óü”_žüœ_)Àº¢ g¿âyǾðŠœçR•Ì3©E™ôÆûS}·ÕÉ«M÷hÊ4/-ÞŠç‡u¿ÿ Îc¦Þ™òi,d©å€ìÎÎß#_½ë!÷9áŸýïØ€´‹Òü<&}—þuÊ1æ]qò§o¿ùöw²þ¢Àzfú“™ö•ä÷ ßeÇXÉ| Æ!ø|Êë4¾Gáødû¯8]—ÁYy¼ö]A³Ûq<ÅQ†þ=¶‡ÇÓ¾Âó?Ùø”s¾ûÛϔ瑼/¯Oú3å-ïÇ:nÖK²~•õ^¼žú>Û;©J>/íÇÌç/üþøIO¹àž&_ã¾Ð ßóx0õÇ|ž¢äº·Z”£¦¤¾˜üÂIþ3ÞÁãÔ‡Æ`ªÏâüJó7­?Û:%¯g í$Æq©/[]@U&;šýqµ·\ç&·ßæõãEIß+}gößÛâE™ê ©ßÑ^f?rœó»XüíçýÏ(JúGc]'8ÔßÎë-ÿêï{óGßvyÜöPÚOÄüöd¸žzûÀ|ÔþgqêSìÿµ½Ê¤×pí›H¹lã÷u ýr´oÌÿ„öð}¸¾SާýµR>XŠÛóý-O=¼OÌ{mÊ”§8ÿO'|÷²7Ï nGòS²–Ǧýh6•õÉöÛ¸oJ‹‡¥åw€¬ï¡=ÃçY>58®Ê…¼è9çüÉn“Ô+?ÙR•[;¥Å¿ª’×ó|Ê'Ë3-JúùÖš’y𴳸þ1oˆy#«àéEÉ<¤Óª’uZ|Ÿ”gÏþ¡<æûS¤|`<”÷ç¸#¹.q\R>žW•Ôãy~þý _8ùõÏ0»ƒuÑ»6)aGõ?ׇŠÒü¸ õ‹´ï½åëáü¤ÏQOIù|)ŸdF|?î›Êv¤¼ç¸Nûµ¥<™”ÇÈçÓ_’ê x½Å…@«¿-JWUI?óÙÆEÉïÊïµ½S¦|¿¡~U¾ß!g_ë’M÷Ýw±(©qŸeʯýú±»oºÃÅ¥àýfŽË¦ä¸àw°|‹¢´q¦:-Òü^hïb›rš]BŸìuî§ŸÿñSÎ|‘Å+9O~ãü¤¦4? È÷5;¨¬Oú ‹ÒìM´‡y½üþÔûø¾VÇZœ Eiû„ûÇþÆó‹’ú`Ú?Îò…È¢´|#<ßÖ Ðüâ2õçÐ8åи`²Oãó@[wx¿¦´ú=fžÇEXÏú_ÜWë nnǽþçq}ä}Øï–7Ö)9OÙoŒÇPçóXŸÏõ›~;úÁR}(Ö™þçò·)¹./UeÚÈâ} ¬JÊG³×ª2ÕïÐ.¦½D{‘öó-7wʸ/˜âÙI_7ýä¸ãó8®,O¡(©?Qo´|#eÿ39ayKMÉý„CþÄT®¤< Ú·´OéÂ>ÚÓ÷Áwš>Ÿñ©´¿åC‚ô+¥úEö#óù)_#í«ê«mþšŸ­(ŸäýØÞ”Èöòú·ï÷®[}Ôžkz]ö¿¸/ å.ý³ô™ßì””—¦ï€|/§¼Mum¶¸ Z{H´/ÙáV¿Ó”ã²>“ŸòÂòxq>ç Û—ìö´¿žù_«ï?•Cô3²Ý¬‡KñLŽúù¸îŸU•f—€wôWcï¶/=ì‰_»n$é1\giçœÚ>EÉþIqáD®{KU™âÆCã ¡þ.Ê Žû8>š’ÇÉÛü£+ï>‰ïC¦ìuþ¦']ñ¯w]°÷JùÞì—äOö`ò·Pÿ2{Lû$§zŠä×KùîŒWFý´ú—Ä¢ä¼âýc2xlQò~Ô7jQò¸íHý-í¯pÈ-úí—Ý嫱˜þ\ÆM¨—¥øhÒ«©Û{4eª£Jã‚÷ u$ýÏìlȃéúÁ÷Ÿ²õ*ÉÊEÆ-¯ª)S¼&ù—R:å‘íKX„Óþ¢^ÈçP/Ü9V¦üöîßÿÌ1Ðß7}Ÿ°Æôy¡]¶N¦óSËä÷:³(Ó¾P©îãkR•)ÿ†Ï£½ÎõôÜ¢d<Þâ^Eɺæ+ð}Xwqýsö|üŠ›]bò„v÷a»è\™/Æ÷ÞÕ”)/ˆÏ7¿˜ú‘ëüjU²ý«àîªdûwÌ—My ·œWœ'|~/Û®S¦ºÎ{摜n+JË79¯é_ãóV÷(9î™O˜ü˜dÚ‹ë)ätÿó}@ó§)m=æ|OõŒ&ÁT_™êWƒýbóŽóŒýnun`Ú…ë;Ö§þ—ì÷˜vÝc~xòý¶žlv2ó¾Sü;ùϸþ,‚” É¿—챤ߥyÃö/)ÿ”z ¯7?hS¦ýR}3íMOý•ü½¶ ˜êy~j¯ÙÑhÕƒ|~ò¦û½÷íxpôcPNR"¹>RîÚú‹ëù|Ówxÿ¦äù\?KyÔ\¯Ù¾ÔïV—Èóio§:¨t>ë“8FMöñ19I'ã²ÛšÒö­é7›T%ã®”SôÓ¾ ~ž™vÜÜîüÁ?8k³ÍsŽ/æ-S?Ld^/åü,{’~[Ê›`—Æ:+ö3çñP?0™üìæ)©2Ëø>ãÿ¼žz2ç=Iÿ ýGI^SŽr^WrŠraÔ”|>û‡÷OrŽ×SîÐoG¦úRžÏþ`ûx<ÅãÝ<Îÿ´/J:?æQe Ly\IObûÍ~x¿Oϳ}ap=çI²ÃÈ¤Ç ƒŒÀÔÔ?RÞå$õ«qQÒ.¡Šyƒxþ¤*Óõ)ωïky¼¸žÇGà¸(“>‘âJ)®E}ÓÖ½¢´¸^›rhXÊ ·úd\¿½*yœþŸ”'Ïïw84/Öì΢ä÷¤œ·ñДÔï­´}rp¿HyÉã”gÔCR³ù:°*6]ôÂý¸^¬'šûÄI_<ö“qÿˆùÙÿÌoÊïdñì¢ä:@RŽ,°*-΄ã)ŽÄ~MùÔ–Z~SSÆ¿£²Þþ›•NÉ}Ìh§YþSžÞ))'x=íF~Û‡‚ÇA~Ÿå¦\,J‹·•õ™òýy>åtÒƒx}Ú'ƒí§_•ï»Ü)í8‰ó—›r©*Óq’ãÕâàQrÏ{?àvò¼ÄNɼoŽKŽ;®wܧŠy‘ÌÛäó¬N¹S²_Y×Cÿ7ŸÏó·%å ëNÁ$רÖ]ó~¼>åq=19Ù”#0íK’ôÉw·:$íMy´÷8ïèc];äòÔ_…qÒÿl<“œ‡_ô“0_ŸùŸ/œÇ”SVDz=\§H“[EÉïeã¿‚M¹ ò}™OKû0ÙK‹à亜ÚÃþKãa¥SRoàød¦ºØ§ãø ÿ–ÏW¥É_p4yWA´ÇÆ]Qr}¢ügûÇLyWi_£…÷{ún÷/výð)D9:jëÓâö´s쾳λšÔŸøüØ~Üç§üÏtýd“2å9p]¤Ý—üf;«’ã$åY¾îGœrñó¯|±Ù¿Å{¤ï`ñ8´3‹«Í¸oOú­ÙO«M9©JÚUôßq=dÿXžÈçÑ_Éþáý¬ýrÇ&%ír¶—ﻣ®O¶w\”i? Ê-êO\Ï“ÿ•ëÑA‡ü÷ï`ÓÓß¡üš¤åmaÿó}ùq}ߪäúHÿå>ýUçîU¦zúÇøý0žûßÿéßmIÇåÿôß'ÓçÓ?žö5¤~C¿‡ßN¹X”—Óö¦:ó´Cò£RR®Z½Y”iŸTg”Ö7>Ÿób\”lóã8/¬Ž¿S&¿¯ÝD=qÌšT%õ^“ƒEÉýSü”ñÖùó_ûŠG=~Áô8ê)&¿Á´>´O,Ï@ÉŸ=Ïö3Óþš3ä›í'À<"§5.Jž?©Ê›”܇œõ!ô1OúŒª¤Ÿ‹v-í$æ!Ó¯°ðÈŸÞý߸ÈãI}’ß“ã˜ïIû“öíbQZÞ ˜âs!>b×S_MuÅ©Î=ůy<Ý?ÅËSÞsz¶/åW°¿Xÿ€¿Ûhz÷³§Üe~ÖüwNyÎQwýO³ï&{”ôSp²ÓwHqNê”ÿ)OƒÏ·<ÐöHlJG Ù»3ÚÝ3åSQ/¦ÅqÞ÷ï3ÿ?Õ]s\'?OØ_É÷ïͯªœÞg¥[Ÿ´ÇøžfŸƒ©®õð[Ýá¿6?þÔ¾=3ë,­¨SNª2Ì¿ésFMiù°àÐ}¼†îçÍõŠß•÷g²¿9oRÝq²ßÓ¼÷­Î°)SÝc:Ÿã•ý—ü~©Îˆ4ÿdS¢?ú_\‡Óºoò×GùŽû¯‚©¾"ùil€¢L~ÆT¯aqG²(Ù_üŽÌWáýÇE™êµx|Ô”‡”w©¿Øÿ öo¾äóßñ:.ÐâƒEIùÅx åÙ"˜ö¡C?¿[ÊWåü6ùhñ;Ðâ½ ùûȦ´x5hy#ho²wRKÜ7µ(­Îç3_akSÒÞ§jù˜dS¦ü߇±ücýmß÷³|à¦ä÷Teª#5qQšߤ¥åK‚ìÚ!|Ç;ç'ýZ¶_h~wÐò«ÒêHŠ’×ÓßžâíŒÓïCýÙò@ÆcR¾HÊ—ZªJ~_ö—åGáùÌ˳óA>?åC­tJæ‹$ý‹ëh-Ê1H;ƒýÃãéù¼¿Å‘›Ïë¾/lQB®Í²g¦÷KúCòcQ.¦ýcSóBLß“µÜÀªä¼NyôÉîâ:Êëy~²C g§ßß©ÿÙø cuë“zåõ€å¦dÞe²7,oLþ³QS¦êÊ+ÞpÏÍì‡éw˜ûÿ›üÝç/.WÿfÆ7±¾ô¿Yûئûýºÿv?5H¹mþ)0Ù)Ï!íchùÒ|˜êvWeòPÏ Ÿë<ççõ~ÇCŸöß¿‹ìÿ-¿®€8nûÍlʤOšLúXßý/îÃCò=‹’ÏKã#ågQ¯c¿$ÕPÿVª{KñÛ”ÿÎïL½3å“ó~©Þ4Å_ÌŸ&ÿ]²+–ª2Õš í3»b`{Sœ2­ ܯŽþ!®ý{÷äx¦Àú¯(AÆ©WQ¯c^™÷Kuš©~›íYªJê‘ïæï-JÚe&‡Ãñäï_—›’z×+‹ 6%íŠLq³íÒæ¯ÇqΗdGõ/§çÅýÀ´NÒ® ÿn­S®6%Ç/ýý”<Ÿí3ùN¥ÅË;寛ßÿ‚•¯v)Ðüœ§©®\,Jö»Ý4½¤­O^oýZ””SÉžIy?y|=nq ÏOû˜óyIßåõ))ù«²ÿ ηKýÀãÉ^±¿cY•ÉŽO~ê<Îû±¾yÍS¿¿7ÛÉï•öãõ3öyOûl™Ÿ÷¶ûiõ¿éqÈI;¾T•|?[—÷ y¿i{yË­>·¸ÞâËàžúžË>þü÷/‹’òžþl®‹K`ªs]锣¦´ø ˜òRUÊ'Lþ\³gÜgVžCÒ“¨Ñ.cœz­(éßåó¨g®6%ý§¶ÏY”Ô“Âx趯1Çéüœyú©í¾/ˆûÛ<µyƒçP¿HvNÊÇåù¯ÔR}ÇÛK=ã´Œo˜ß äx¡žþ®VÚ¯ehÝcª3H~ Ê#»žç£ýÐ¦ë æqÿ‹ï‹÷ñxHùL¿å5ç#õæY|£*¹~ÚW!å9z·ÏýôÏžgû©lí”iÜ'¿:Ç¥íÏÖ”æßÁó-o’,Ê$'’þšò‡¹nPŸº.%WZÒ>P¿iþ`Š“šý[”IšTeZ78—ª’úܸ€UÉyÆ:IÞ?Ögìo¾?íÊ”OÎ<æ§&»—vŸåóU%ïǺXþήË\ÇìýyŸ¦ä:Ëë׿ñÕ½JÊiÖáÓ_GùÁó-±(éæûq¾ÎýéopÒ£Î7ýrŠ~SÎkÊ©I‹’óÜênÀäùú íX¶ßäpS¦üzÌ£þ7Õ3Ìßr^Ð~1 X‹rÃÍ.ø—×¼iøß››ñ±þ!É•ä7Nþ©•NyÀsï~àÏxW³?lßEz¡ùÍÐn¾gЧ<#ÚU”ïiœ¤¼2r­*9îSÞëDRÞÝ¿)mœ£½CÏOõ«c¥ÉÇ©oR¤~1´ÞËòÍÁ”÷—òlRýû;¹‡¼÷ÓïøÊk£?Ÿýbì”ô» ÿÅýûî§ꉟ¶ûY}Ñ–Ç÷î÷Úý–ª’óÃô˲>'U¹X”\GQnö÷7dž0çƒÅK›’ß…vªåããzöß—z€õ'˜ì襪äý‡æ_p\0ï—óŸç§ñÈïC{bsSžÚ)-þß”Œã™_lØ”;AêßÜ·ƒß뀫¯çSyø-¿ÿ•_\ãh“‡Ô§ÓúœHùÊñ“ö1{¼(-O L~ìäO¡|Oû,${jÔ”Ô§ìïêù3ÿŽ.ß+Å#“—â»|﹇öäÙùô$?I˜·iŸÂ¸žïqÀ*œ®ÜŒõ\‡©mî”Ô³,¿ D»,¾ÂøÌ ÈçcœNßÓêQ«ã±ÿYüãzzÆ}ØdÃmÞv³‹nbú3åÃJ·>×ö(kQbö#×WÊÛ·¦)‡Öåî蔘×ýÏìI󯃔¿[ÁQSò|ó/’e}îØ«d¿²Î‹öû=Å/R{kQ¦º¬$oy?>ãb±(“¿(åË[] ¸Ü”©’û0R¯çóæþô䮼ËcKéÿ¿)i¯¥øå"È÷¡>’úÃô10ùø½“¿„û ,7°SRþsþ¦ú‰Ïûù#?ñ˜ï™Ý’ê19.mtʰNÌúÙ:}õéS¦ºÚ¸¿˜ößš“þ>^ŒŸãøÐý[R]aÚ'ã×§z ³Op<Ø[ýÏ÷-`SR.òü”‡añ©p½ù#@®klõàùÏ\õž|f”ç©Î•ã‘ñ ”¯BÖ㩾ÃïÌýš)÷ÖŠ°ÿÅýmùøEûwoz`ÌK°ïØ”ÉÏU‹2Åá†ÆÓ÷–÷hí­}œ÷ÏiDŽÛ´¿å ýæÏÓ>[£â~lÏܗߣ/}ãÑö±ñ}òSþŸü¶>pÜò½G å÷ܱG™öáHù|V÷šÜç{áü´O ücûþ®CSÒevG[Ÿ¶.•ëôGX½º¾—ï‹S•©ÎçSϧK=nîù¯Á~w¼ØükiÞ'¹äl¼>Ŭ ¤\Jö¡ÍߢLr.ù×§ã} rÿ˃%ˆãI>›r4Œý/Å%¦ïoþ0å{%9Î÷±ü¦¤-Å!¹Ÿ»Åq=åú¤*S]qZ¿ÙßûÀ{¼ä¤÷Ùy)í >Ëã”Ë1¿‹,J«+u]_<òbGUš¿¦(§ãù'V‡Ô c×¹ô|úÛ8®üÁm/®7¾ØÿÎHÿã4\·™'›â¶”GŒÛ¥<®¿‡Ÿ²ú¥Ï¼ýY^'š ²]œì'Þ?ÕO¤}h¨ÏqþMªòFŸ¹tû]žþX{YëÊd¯’ã…þ´¡û6v~²ËØüÞ\·R]¢åg€(ٔɿiþ›ÀepÃÂÅO=ôÊoY¼Ëü– õÉ­ ã6ôG2.Á¼|Æ™7gyûEÉø™=÷KqcúÉÓºS‡îÀº‹Eiñ¥ªäý×@»´8ÈïÉur’ïÇöð¼è]’ö[-Jö?I½Ïãq¾¯ÅåÛúüûWÌCâóS{W›’í¥Üã÷ê_âûÐ/Mûs¥S2ÎB½pR”´WùýÓß “ý½T•´ŸÙ~¾/¿—åÉ7åÆë>ðNß»ær´¯mßÅN™òç¡oƺe{Þ&%Ÿ7´þ2Õבü;uüîŒÏ¬uësRÁN¹k¬dÿQNîÚ£4}çðöWþãGÏÿ–ÿ…¢\9~–ªÒò:ª’ëûÐ<$®'”UÙÿâº:#Éý xóB=Ú´=|OŽ_Ú!”I_ãwJñÇÇ ›’ýdñEÙž~•è_Hv³Éµ¦\‡îG’êÚçÚ}îsŇdv/iöž“êÏùÞG}ûÌ[}×Íž¦]A»/ÅLï(JêÌO²üÞ¦ä{q¾qSNZ{:¥Åk‹rá¿.ùâ׺ÛE¿]´×A¾ÛM¿]Ò‹’‹r4ÅÍp~ÿ3}7ùiY^SRLû¥ù™üi?"Û§ÏKyU)Ïûs„ýMú_=èÆÚøãooôý•@Û¯¤(Ñžþ·o?.åôù¦ßvÊØ/¸ÿRUÆýp¿Xƒö¤qDÿ&Ÿ¿ Lû*¦ýÒ>Yv?ý9my²É]‹’q@æëò{¥:›˜òn˜—vxHyG²?h“ÉÎOñ»þ½]R>Û÷ LztŠË%ý0Õ?¦}#v‚Ô3¸¿ŸÇõíïV—Áu™~h¾ÇŽMJúÏØO<m¬Lzòx¬äwa{9.ØOÉÅqÁ:2žou¡UÉy3©Jú£8N' þJ=É®Çó8Ž˜Ÿ¶³SŽš’rŸß›uô[°?Ïì”Ô—¹àÎ1Ø”ì¿]›„ýÏòr×6{•œ76Λ’~x¾'ýj§ûòª’þxŽŽ?ïö]ؾoôœÃÿ×½ êý)Œë÷ýhå´]œÉ¿H=`±(oøèÛN¾ô׿—¡>Â÷Lû^Rn%»Ñòåpœí±ýÆŠÒô!¼7ý'æ_‡î§–ꯓ¾I9=T_äó©¥ú|ïþgñtÎ ûÎ`Ê¿†:–Ï8jÊt| ÑæqÒ“¿‘~–ù‹OþÅ­Þvïh·sž@Ïë³êѦÇS}'Ç#ã ŒÃÒà|âü³¼@0Ù‡¶7¸X”´_ø>ÉÎùB9›ö/L×Û>¡MIyÂñ“ê5HÛ_1´‡ëŒÉ_0š’þPžÏ¸0ëŒ wöí¿¦ìq]·¼9ý—üõ7Äõô±ÿ·4eò;qÓš’qÖÏZ0Ù@ç|u ¿Ç¤*ù¼”Onù;`ʯeû(?ø}R>¿Ùã8ÎùÀ㬃6?}`ÊÇ¿îgùý›Ô÷¤ý-˜ö!í#ÊeÚõCëêØ/–¿ Z¾BSZýJQFÿpQÝgŽúß÷£ÞAû?éY'ôÃ%¿×-êÝczåå&×ÕTGIZ>[Qråø­E™Ö5ú̯7ægi/§:¡ô~ä =Óâx#eÿó}{‹’ï»á.÷xÒŸ_ï8Ó¯©ÏÆ<¸¢¤>ŸìOëEòsÞS.ñ¸=äù\ß9O8/'U™ôYêûæÿ ŒûeªcHözú;¦/eòg›Çù©¾.åó|Ó?›’ýµT•xÿé<¦ÞJ;Šz.çûã¬ÿÙºfëIN¯ã<°úœ¦Lór­(ù]mß ýÁq0Ã+'ïûÌÓö§¼3î[ÈyÊïNý‰ù|Ÿ 2.–ä,í0îÃ’öHu£¦<£(¹~0¿÷þV«g™Âãô—÷(i‡ñû²¿8âè¯>èFWY?³™WÎçÐ^ä8`ž;¿#ŸÏûm.Ê R~¥ú®4b=gQRñþ¶ÿMS¦ýfR|”í§üŸ±OÓ>9¬ìÑËñ”òÊŒM9çKÿöà'ÞÜâE”3|?Úq<ŸÇ)Z?æ÷b?M*8Vš rü¤8*×3Oã™úåà¨)“=O»™ë ÷wÛ\Á¦LuÅüÞVgÈ÷cÿÌŸÿŠ{]ù¹-6îègN~ŸôÌ/¦ïÊ÷à¸bÞ¯çzšâ+3äÆT®@_èf?ñ¾1Ÿ°)“½’ê<,Ž:ã>¿n\jR•Vß&?G-Ê”?“ôö7í)öì»þG}Ýâ@ðóNÇâ9Óó9,¼(Ùx¯é})¿+¸Ú”|ž¿Ö)™÷Kym~pR•\ÿ8lü$âz¶z.¯Oó!Ù5œüŽfG€ü¯”¬GIû'Æzû¢ºŸíñ×ÜôêùmŽöN’ƒ´ŸÒß§My…éyi°NéÏåóù¼”Éöð}S°ýlï±àмL>÷çýx~Šû3/õ7Í#å8Mù{ô£QOLùC×Õ˜ÇS”)î•ü¨i߯QSZœ,0=?Õ¿Ä87õ ð°zéãÏ>ߛâƒ<Î~LñiÚËËM¹X•<Ÿöiõ—àZ§´|¨¦äzC½…~>ë=íÕqQNª’yÂÔG§aÿÙþEI?mÊ¿NûÚ~`’–_W•)-åߥ¸Å+¸Ü£äó·ƒ´gùü?±ºÛªº‡å/5e¬[ï”–R@\¿Ò/Í8#ã¾)®Ïþ¤žÙ”É/žâU)”ýMû€ò%ÕÇóùôÇ2þCò{¥|öõúãÒ>´'RÞþHyNyœüq£¦4=§)éï]-ߤžÀû3ß-îU”ÉßÂO°ßöÅQš2ì›ÔÿLßHùÞißÛTH¿åó†o=ü;×¼ÛU&g8®¸ÿ å*Ç%õˆÝc¥íƒÂ?cóŒz ýŒ ±ßO¯JŽú'‡ÊÙ$W‡ú £½Ò”~ÿÂK¿s£ßó…íJv×Gö;Éü Ê¥ âxÊæóÒ¾lOÒ§ØïIŸ\mÊ´OdÒ§9ÿ9î©OpœSžqý5»Lv ë²FMiy{¸_:Žöõ?¾×ôÿ¹^QáxbÿÒ^±ý%;%¿íê7”ï«àÜÿ×Ú-ÿudzwÚ×Çìq0åq§<%‹tJ§Ýaõ¦ û‘ã”zçÛwhJ‹ 6eÚG2åÓÚ¾L$žoûœà|Ê)ÖG®Ôs)'–@æó{0î¹Jâþ¬÷eþ”éEÉû±nqkž¿…,ÊQS¦¸I½ëæ—fí[+?6?jò+¦¼æ·›^Û¦|ü¤wŒ@¶oÿn²ãö=ÙÎKyƒœo¶ÚI½'ùm߉¢Lû¦%;5É_~—´K²“b*8“>›ú3é\/¬®LuUv~ ß7Ïñaò»­Ï·ý?p~Zÿ“žiuÎe}RžY|¦)™¿Áz|Êg®ïãN9jJ®ïµ€ Äñ1˜â¤Œ2^–â™l¿í“Õ”ü>Œ§Rþ¤}Ю÷Åm§\üð-Ñ_J¦úÈ¥ª¤Þ”üC/ùŸã÷)ÊT¯¿g íkúS™·Ò)ÓýÓ:O9–Ö1“ß8ëöÁdG¥¼Q~ßå¦LýÃøÁRUò~<Ÿñêáæ·é”Ëà ‰ûÙóqþbQò}m?¥¢ä÷Jû›¥x[Z'-~Û”¿zùu–ªòìNI¿'¿?ëŒX´Ü”« ãR¶ß:8ÿý\úØ/Ï[½RòcÀèçnÊä4ÿY”V‡ šß7<Ÿ×›}ÂóÁ/µyÂy;jÊT•ü`<Îu*]oûË6%åã VZÝ.ÈþOûFRâq¾¿Å™q=÷¡á÷§\œTe¨ƒèyÿV0ÅQ1N¬Nrrº~Oi ~OÖ1r¼XÝb§\7ƒ´£wÌ;¡?‡zÛËñÎ<-’ë>¯g%÷¦Áóço~èŽýÀ©HùUô›\ÍÞ®JÚÉÁû[ÞIQ¦z~ÎC^À‹¿|×_sJ®“?Ëöq ‹ÒôíNù|ã²|ÞÜ{/ùÐçnñH‹SqÞ¤¸h’)œû¼rßÓIUR?²º¿¢ä:‘ì±ä÷OúwŠP^sܰØÎ®«)”öQгR?帢½O9eóLãÃêû:°))×9žÙ~Ö_qž‘<Ÿö4óÈLÏ9^Ø>ö½_SZÝÈñCÿŒéÙ`Š“´ßó¿qû7Ïy<Ï¿ÁÛ/ñîõ„´–ù«@ŽOÚ«‰ ¿óÄ'ßûô‡Dýg¹)müåRFÞŸù [;%õ‘´®'ý-ýÛ—¤†÷£^‘òšø|~Þ/ãQ[Ÿœ·ü¾Œ§™ß†,ʘÿ˜Ú[”–/€ó9y}ª+Jñ\[7Áyq±î%Å›ÓûXž80ÿ¢ÿÅýµé¿¿öÙÏ8{åq[ÞxÊ˧ϧ?ˆñ{”VÏ2/‰ñÚMcp¹)©/°ŸSÞÇ‘åÇ‚´ói¿pQNñ|®siÿ4Ž;ŽËqQZ"ÎO~$³™'žG}$ͳµ¦äóç?xäžýìw›tVNýguÊZ„ýÿ?½>ú×Ãû0^Àü5Ú“ª¤—ã‡ú-ó©Z<¨*ßfüÔòª’ã‘ñÕµNÉþ¡üáþ <Ÿ~ì_áäõ«c%ŸÇïµÜ”Œ?Ñ5yY•|_úÝç¯ó’¿íWGöÝxå¬Å @Oy&ö]:eÚÇ=íŸÇ~J~)‹ã¼ßöªÜZ”üÎôïÑÿ¶< <´ümðÌNi~ºØ”ÉÀuÊêNq}ª;å:LÿfZg¹NSî±½ö÷úÀ˜ÿ…÷ãõ¶ïhyÅMûSÙÿöý]Œ¦<ô·v<õ¾Ëw¶ÿ~È¢Lã ólÚÚOÓó¸>Y\h“2åãíØ«äù&:á´]),É#{NUò~¦·‚)ß:É?¶òüØ¢L~Gêq#0Ùgœÿ“ªäýÒ~Ð)žŸæ[Úï-å±Ù÷ÄõCóØ>Û/•,JÖoÒîâú²½Sò~[Ø)9Ó>~”3Ì 5eÚ÷apÞ#‰ówŒ•;;宦d~7ÛÇ÷]ë”ô£S¿âõŒ»0„ý½ðç眳ë_>V®þÙ|øûË”Œ£@Æ™-žR^Ô¢œÿ‡¿÷Š>)ÖEPï2¿KS¦vEÿtSZÜ´|ìN™ê(WF`ÌÏÅý9x?ÚÉw”)ŽÈy•òðS>3×oËs.ÂþgþÝDÚŇüî?=êÌëžâû™tJúg¸¯å`Êwe;ìxÃõ)ŸÑôâä÷¢]gu¶`ŠP¿åüÙð©óòèñ‰Ñ/gëCSÖ¢dž¤Õÿ€INó8ù»×kÍhWÏ0ObþAª¯Kù ©R}bÊOKþù¡ y§Öÿ)þA9™â <Îç íïT¯žâ«ð—ÆüHާ4ø>)-­³)~4©Ê0ßúŸÉ4OùÝc}î—òr’þÁöXܱ(ù~‡¼öߟÿÆßŠó÷!ùܹ‹ïwííÿyokíúƒ9N˜GÉýÙøÝ“?œ÷çñä¥]`þr•úUªcµýT:%ýæï)JúRž;õ ê?UÙÿ<¯®)ÙŽ(ÿq=å9ëqÙNúSÑî:wÉ?þÁå§<¯wõ¿{2ï—zí"Ú…Cû;Åá“þlyÌ å(÷¥ˆùx>ÛÏu!é{ô¬uJÛ7 ´o î›çÜÿ¡ÿvEÔ¯èOòŽßz2ëŸS>Úïóœr41Õ½ò»-ƒ©®*ù?¬d9­‹\w©OÐÆþfÜu¬ìv_æY–÷Õ”ÌSOuGÜŽãö°'\zÇ7;2;”ç1ÞbytEÉuv¨þÇ8%Ï7ÿvS¦ãAßúõÍ®Qö¿¸ÿˆùiв‚_éüQSR¾˜÷3fQn¼àwÖ7MyÚÿ¼N»(“^ÁþKö‘å‰7¥Ù[MÉûq}çñ´?Qô_*ûŸûU0ý½~·”ÊãÉo›Î·~Àõ1Ÿ=´?åÍñy$û—ù$”K«m}rœÛyEIùNý}H¹Áý;ÿd{,¯L~¬¹¿»óW/;êzäü[+Êÿ¢þ“ò}Ç ŸO?&õ3êÕ“ª¤<2½„ÞÝÿØ¿Óÿg0þÍþIë¡å)‚Ô§ø]1§ëåæßô}R åF-Jȉ}ùr`òs™?¤½`õEÚŽÁyÔ)¾”üˆµ(y¿ôw]’|Lû¥<‚ä7§ó˜zç!ý'´N­J³+*ˆãlOúûìŸÅ¢Œu M™êGÖ@êI”«Ô[,o© §ó*Äíú_¬¯´ýUŠÒâú¡½1Ï äøœìÓ¯³ð¡oØ8ZªÊ•¶>Ó>4‡6ö(™Oa~ئ´¿P”i ÊæBîLÇEŠS^%¿}Òï,þ˜âÁIž¥:}[×ÁT`ñú_Z¿R I}ÜâÇ ùÓ«r¹)™wBùÊünÊï´_[ª·Nùy|>ë=˜Çì´¨/Ó_»JV%õTêçãN™ôjÚô7Ï?óUß¾üó¿']•É¿@½‚õgÔKNïò|>ï~s’çóù_ë£7ûâ‹nÊ} ûŸíGÉûÝY9•—ô÷£]Óûsž§uoh]QÊOä<ã¼á:=wÙ‹Ÿõ¬×nyÚ”ŸÑFâú”7aþQò—ò'éUiû—¤øJ¬—S½×~×#¾tøüÝïz1~Ÿêº¶eò“°xþ.Ðüë ûÅüïe}rÝK/‘r–ö5ååjŠëñzæ!²=i“Ï ,JÞòãÀG_q÷ìçõð©î”ß)åó¥óMÁó“~hyLEÉù¿d^rÒ)§M®ã8ãÈÔG¨Ðþ³|„n}ž×”§k’Ïg~Ç ý‹|>õË¡ú å1ãã±rÔ”ÔsæÏÿ³É®'ÿ,î{’ê lÜ‚Íï„óùh'Ónว|±çI~Ó;wT¥ÅkÀ¤gײ>yÿd§:$ê1–§Õ”ÉîL~-[_ÇÊTÆ÷ãúG9nvyQ²?¹^Õ@êÇüžöwŒøÜ¦Lã~hçúËã)Êñjíy?»àþw}À«Î½ì1ö^$í$¾'í0Ú1ø®ýÏÆ+ÿž\òó&?…ù-Š’ò`h>oÊNú’åQ6¥é™h¯ééM™âÛ|?úxœíKõIæ·àõ`úžÉn¡ü2¿HUr}âxd{v•¬«çøÝµWß§(ùüù;Þä”û~í­V×½¥[Ÿ;«°ÿ™?–×±œëõ‹äOæ÷`^Õ¯6eÚÖòÍ@[oA«' ‹ÒêùÀ'ܗ߃ç$ÿ7õ¢oû_Ìó2¿vQ&¿Ç·ÉËð<’ú%Ç×Ïä7Oyki¾¦¼’¡õ2i½Iq´~%ÿ_Ê{µ|HpèýèúwÔy?Úmcðº»ÏÿÕß>ðP‡‹EÉçÀžœÎ[[_Áúú/Îûã7û~æUI½þ‚epsSRN§~4?/ÈïL;1Å›’ݘâG´×)ïxœãÚò@›Òâ{•Ku}¦ø0ý-©Ž(íãÁïcûsuÊÔ~®«iß…Å¢äûQ.¥<ɤǦ|@^où(x>ïŸôÎ1Hõ¯ùöô+n·t¢å{[”Ì_æ8¶u )-?½­ÏTçÀygò¹SrœXܳ‚E¹TÁ6åê^%å Ï_yÿ- ¿ÛǸ&¯g|€û)¥õœ\í”)Þ`ã4ÿB8G±ç§úO>ßòÜÂû$ýÈòJð~iãû¤zÓ¤ñù”kéù©Þ”ó‡y[ª’óƒ~êã¤>Îïeþ0­#éû°?SþéüÛ_“æKŠÓ²?&U™â¯ì/ê¿ÌëNõùiüÙ>Xxþ"˜ö;³z´?ùÇ(o©çòyŒñ|2Ö“ƒ©.š÷KëÒR{(ŸÒ÷µïRO÷çø_«J~?Ê÷˜çQ”©ñ=úŸû À”'ÏqC¿˜}WñYÚ7iœò»ílJ‹—‚´ïx?ÎÆ[Ùï7içù©î Ê)ÜÏüMÉ÷=ôï^ôÖwê-¶R?Þò8ó¶V%Ç Ç¿ ü–W´ÒîYnJêß|>õr38jJ~®æ¿ÇqŽúEè‡Yê”ö>M¹ ÚzÖ”\OíùMÉ<‚#nø´y³Æ¿“`ß ä{&¹›æ3ÿƒòêF¹|Õ¡×ú7ŸsFUÖ¢ŒöL›’rŠ~¹äG"ízpþ‰¯x豯¾¥ÅaÎî”·IïIþ=Û¤S2?šãåv/:|é»\jã*Õi,%çïÈùG{d¹’ó‰´¼lpãñ¿|ÍÃŽy_Ì5夂E99™È82¿Ç=í²ÝU™¾å×{ê]ü{ <Ÿy&Ô'˜ÇCý€äûqœ”ÖÿrýOzbòS¤8odSrü¥<’”gC9ÅçÝò‰õ—Üôõìú?ÿî™ÚMû…ãÆâ˜`êG¶›ëGÈk¡þ“þõÒä×Oú õ ú/éo<ð;÷:fç?<ÓüŽôSRo$Sœ/ùñRÝoªo¢_<Å•9nØO\§yœó}±(Í/Ý)é÷æù”?\wÒ¾žæ‡G{¹Î­EÉö[üLûÎÏøýŸßó´U·—‹’ë?õ®¿G<ås·úîG¿në“Õƒ‘MI9Å÷åxKã?å¤<†ýr)#å]?Qÿ³ï±Ü”IŸâwÛÕ„no6%×-êÓ£¦´u·(“¿™ÇÉqQ¦:J7`Qšß÷£Þ˜ò|RûÓê@ÎÆ+ù½’Ý8©ë“z ûÃêõš’ý9©X}LSòyÌûOù¶Ü'‹Çù<ÞÏgûi?ÙñMÊ”×K==½íŽW^OÇÛ—ö)Lí³|í¦´ýÚš2ÅsØÿïûß´þüW¹»ÕYÅ8XQr^¤ºMÊyÓOš’úÌ"óìÀX·P”Ážî1^Â~[­`'œæq¥¼EÊ>‡ã÷ãß{¶üú‹ÅýÁ0NûŸ;³ŸðÞµ€MiþТäqêÌ7NyO)¾Åñ‘ì3Ê?Î3Ö5Ìßà?û“7ü³É Îo®+¼/¿åÛ•Ö=««iÊ$÷yþ¬¿{4k–¥ª<øE7þÓ§?øÏ]ûÚæÛÇþMëâ-9_î¦uøXõ÷ä8JûÔÀßt_Öç°}|ŸTÇlûs5%åJô—%ç9׋PÇÜÿÜ_×å¾õ¡)G`Š«[ýVQ²ÿè'ãûñz«Û©·³=ô—Ðö_s» ÏcÿÒa{¸Ÿ3ß—×§8åKÚGÓâ<2ÕÉsüòýl>å¨EÉû¥};Îè”[›’û¼ž^•ô—PLyð)/$å‘p~Ù~màRU¦xè¤*O-JúÓ˜/N;ˆþ9Ö=џŸëÊØ>’ñÚÍô³½ã¢\nÊ”wcv ÈóSÝý{ÉŸL¿Èb§¤ÿ“õ§vJ>ŸyÀ›;%ßò‰ßƒLû Ò?<÷á/ÿÇ‘gÿ½×M¥åGeŠk¦ú%Ú_çÌ_`o7˜òµØžsÀä³úÍ¢d¾¾ù×pÚ‡ßô¨_¾ë ¿7¸Oë”ów|Áó_ð­7G?¯ÅM÷*¹NQNlkÊýo3¾ÎÛOk&wâz2.ÊUÉõŽú&õÕäçš{í—~|ù•3½–\kJÖX>uQ¦üí”C°v;þÕ)/Œñ>'åÉr=¡My•êûúûvü¬ÚÿSnÃÙÿ,Å÷Y8ýŒûÂ}~aþ¤—Z| *-O±(ù}/߸àC'^döWª'¢ß–Ç“~Éói-7åbQR?Iú ÛËñrz§4ý½)éçÝÒ”7¶Þ†ö[çX™öÅæß›HùÔ¯Süë‚íÓÓ”k{”Œ‹òyÔg9¨ñývUaÿ3ùù4s¿íä÷Nö%߇óúbÊ{·ºmrŸã•~Fö õ9Û (i¯ræûa¼X\Ôö üÛoœú_=ÁÖö»ÅÓš2íÂçÞùMoÝ~ùauñ)žA&û/ÕUñù”§–wò{Æ:yãÏÚç§|wÛgLñöGÊÓ°ºÐìqÐê@^ϼoÚ[g‹ åç/׿”/’¾gÊ'œû‹wžÿž7nëôNÐòaù~’ÏMûÔs\S.™S”ì× È8âR äù`-O¦)ÓþÔ«Ó~0ÉOeóíIóšíá÷Lr-ÉÁ´¿ÅuÛúäxÂxíƒ÷Ûæ8³~Ã{'ùÄï@\Н§ºlŽÃ´_Ï·x,8jJÚ´GRü%Å “ÿ˜ëE²Ù|^ŠWX¼;ïŸêBý¬OuÉOfþb´×êïÁ”çN¹L;™ywi—Ð?ÎñC9Ï}¤è7eÜžþÐ;€ÏoÔSžôƼö7npÛÏ™<¥=½Nª’ò’þ#û»mU™ì¯doQþ'ÿå@Úçƒãt±(—ª’úÏ7{Lõ¼ûŸë“Åר^\oz(ßd<ÔÚûÚ”ô3þ·¦ömøT{÷Æw¿‚ëòÔ_Fÿ$ç5÷ͤÜçû‹ökÿ‹û7¥¿#ÆqÉõ•òˆóä¬N8íÊ´kÚ~Û´znz팴¾¥}Òzæ}Øï¥ÿÅ|”¿Çv„º·¸¯tÒgC/å5§ûÇïz-lyWy¸üÅýD9¾ÒÛµ›Û¼•ê)ÊÅ#?yÎCŸñŸ’ì·U»‘·«vmÊï£]Æé’¼Uþè—n~IÉû]:Wú=´÷ý;°ÎC×Á”ïÖêZÎTj¯jÏ·xŅ•>?íï­?0Ù޳´o[ºŸëmËk‡)>ÏøXãp\²Þòýì¶gc®Ú£À{ÝðWªkjñ'Øöá˜*SýCò¶ï “8Ô·¡]›Úãýìÿ¤Gú}\ßšž7*[³rùë_~T¦º³´Žvó;ùK´Ó¢>í—uõñ”w¸1 Ï÷}ƒ¼hò3Æ¡ý·9U®›g§üvýhñ&x“ïøO|Ä[¿¡çëý_þ¿JçYÊópÞ5=hQ©]¥~«ý⺯_R¿kªÇñ}RÞ¤×k?µúĩҼ:ý~ÚµÞ/åg4y5UÎP9•â<©¾”ó—¿•¾áýš\„ÊY¯? ^ÙêÜl'ëÍís]Ó.ÐŽqݲ¿ä¥£2åõz}ÌcÇ¿åFwø¸ÍW·q°nÝAZR»<žìt~Ò«ÚßU Œuñ£òS¥Ç[}Õ¨Lùtíþ‹Ê´>ûüdŸµ:˜âQ¶ßãê¥éïN86§Ê÷ŒíIû§Kï—â3IßjÏŸþÏrSÎpTê¯LtVŽyÜþOñÎu÷iÒß’üÕ»se«¿›*Ó÷³=ê--¿÷Iùïñ{Ê–/6éR½+í«åþÃÎÇoIþå—þuåõM>öÇÏ|ÉÏ<£}×”×Öò·çÊ#ÿò˜Ï{ÑÿKöoêÿÔ®4Þ¼¿ýŸÞÓçû=ÔÓZ\vQi{|~Ë·æyο èúÞò€ÎTªÿ]5WªW%}Þ°oé\yPPZ¿]»3\T¦ù“üÓ~?çA«ƒ€îsf]MËO•ŽOãÊî+£Ýdÿz¾ý¡Ý¨¾ylïçÿð5ï>ÞæíÕ‹J÷·iq¿©Ò~±Æ)ýNW@ãî÷åóµG×Ý7Ñq¹7*µï¬³4þ¦=“îoÍÓá´ýús•SIÏOu€-N}¿”g«ž q×~5þ™ö-HûèïIyjIOHvÆe3œ*/YÀùp:¿Ò÷Š~b˜òº×õSo|ˆlù?°Õ›pþ¹7ý•;ÜõýÜêCí7ãR©*åû¥üÇ•÷»è™ñÙï}zÏ_˜+[\:Û|€®ÃÎß6?G¥ëæu‹Jå…þJÛLqå…z)qóæ—ã»­þ?ùýRý·újŠs5¿#tØžv~ õÔÞ/Ý¿ùsF¥ë†ýsô•oû‹§¿þæ+úþæ ÈfOŒÃ¹¨þèõê5êM/*/Ÿ+ÕGC¾ëò×÷Ë…êåÍî‡ÎÇ¡v@‹O@åšë•úd‹/@ûÕ÷Uÿõ»y\=>Õ±©ŸêÇ uyËßÊkëT~:.ì­¹²å9¨T_1/§ÙíP}F¿ÚÅSåö¨Ô~P¿Ñ®»tªô¸ßC;ÐuÝyëx1/=í¿ ]k{Ž~ÎùWÿÞg¾?Öw¸.»®¦8ŸóH;%íÂóÛºØü•Seªómzát8½>é¡·¿lŸy¢Žã”÷¢]vá}ßÛ~ïûûßý•A\É åBÒ?Ñ–¿§ l~ÝQé¸9þ¬O{Ø…—}_ϳ¢ý-^Çs[}Ǩô{µ8ýT©¾Ñöw˜*¯•Êaç›Ç“Þ½ Õ£åî\©Ùö4;`Q™ìå“ë‚÷ûåõzjØâs¥÷SßÝœ*?Ì÷æüßÌ+ŽõܶÏy¯~¼1*ÕÇõS¤¼@¿·ÇÍCOë绞Øß§Ù¿Ÿà×Dûûø-_ö ïûÁ¹=GÙ}ÝíS¥ç+—î÷•Ž ç•ïuí\©Ü2ÿæÂ+nµûÐqÇ6~RžŒz®qƒQé>ã÷þþ½×OÛÛìå‘Çnü¾ñâÛ½®Ë­©R9ÔâÂP¹¶5Wj?×RŸUkv«Ç'¸¨äù+9xàþ¦‹Âÿn]ª·UÿrýM~Vý8ÚA~넚ß¶x:t=OzëCZ?nò oígÞá‰QÏkyÊ0í÷–ô¹­¹2åÛ©g[äñOùîS/ºí}¿¦Íǘ Ó~†®Ÿ©þÆõG9åʨL~ðtûM}¯ùí}ßq8í/ïo_9 Þíp¢ÅaÚu£Ò8×§v¸n˜—fžŒç·xë\yÉTiœñWõïo]ŒãÊç·|?h¾§þ×=èúæú§þnœmk®LëgÛ¯”óýžÆ»=®>Þò •ú9ìO["·GeÒsR½‘òÜõü:¸;WšWxý‰Jý:§•~/¹%GeËWZ“ÇïøäïÿɾµéÎõ‚ç•¶ëQg+}¦2­Wì‡í_¸}‹?¼h¼¶é'çŸûû_6o='ú[ZÝÓ¨ôzÇyÊ7ÐÿÓìÿ©pùkú[ËçŸ*SýIÒ_[ž(lþ²q8wçÊdÇyËÕ¿ùô|g÷csŸæ'•Æý’ÐïkœÙz^ýŽÉ~U_òüwkqÕE¥ÏSßIqéu™ê*“½ëû§¿×“ìõ6ß8ßytnNpQéõλ”/¤—òoäiØì6èxÝ 4®nü«íO4 Çïê=ÆÓlOócJ×ûG¿§~ŒæÇæþç|ÜϾàw?ð¼Xí}‡ÍN€IŽ¥çÙîdO§û­{Þoùë~“©Ò~myãp¦|Éÿ•ɯêõ3Ü•ß+íwå·×{¾òÓ}»”®óŽCõ©´ß€ówoTÞ{ªLõ iܵ8C`‹L‡³ÕyCå»ý{ô>÷ýÀ?ùÍÓ1_7íCd<¸åßÂf7A×·p¿Õ{lJý®[ÖÇmN뛽;*½>í'-×öAÏw\¥8†y®C~gûÏ尿î8ÓŸò?¯™+í_çIšÇê )_¨å@։寋°oö*ÿ¡ý½ H{–¿ò'àމʔ/‘öG÷½$þ¬öáŸ+õ[›>ò–׿ì«b=·ò ¬Ë«ç»>¦8'ãpùkó_9l{õ/z<éý~–Ÿ;U:Î|¯=öøÏ|íÿõE).u`>±~‘´uË¿©\þbž¤íHþûA*ÍÒ¬lä~ú³œ§Žå°÷“Êiå²öã´­ß‹JßÏ}®×ºþë·?Ûù´_¿¶~Û¤·úÚQé÷Vÿ úùòwƒü•Èñ6ŽÓ~F)?~Z÷èüKùµÚÝæQ$ùÔæÇS}G‹·B×û¦ÇÃt4šG¿¿¨tü4ÿ!ÔßgÜÍëÍÖyùΕæ›WœòŽ“ÿÒ¼^Ï?(N?£ë¸þ˜uóÖS\½ùÓàywø¥·ßé¢5¹ÛîØü#£2åsz¿©2ùͼŸú“ë@Ë×[Tz¼ù§JýK¾û$¿Z2åÛ©/¨ßmN•G¾ì‰¯ìܱÉi×…{L•®çÚOz™úƒß5ù{o)à:—üprªLþà&û5÷~oþXèþ—ÚUú;¤ãØãÊ»T·i:ô_û¾¾Ï=¡í‘¶ÿÈcÞzêg¾úÚüµŽÛ–¿˜òÇv¦ÊM¹¨ôþ)Üãê3ëúåÚþwáù©Npk®LùwÊ1ãfêW)Ïg6ÿ1ïk{ÚWÃë´7\g]×ô{ß;¹¨TþYÿ¤^{zªt߯-¨?§åoÁ ÷îþÓ/úͦo©«Ïéײ>ÜãË÷_²ÕAëf®ZT:^/|ôboçó¿ ×½,*·a‹ûO•žoÞqkçTéý·G¥vèÕS¥óÖñ¦žï<óü´¿Kªƒñ~ú}šÝ µ£Ú~5Ð뛜*]Ï\'<îz—¿¶¯m«‡€ú6FeŠóÏp]ý>Å%¼Þö¥ö¦:yß_y-›½0UZ*§àö¨lþ‘QéúvôÄŸô·O¾ ×…ÁägmûVÊϕʷ­¹²ÍØô’¹2ÅY}~ûûžÞªô|Ç~œ*[< :nõc¥ýk¤÷Û€>¿ÅGe‹£C×ólu °åAåPêïgiù\ŸîŸâðé{5{’ëÓ>1®‡ÞÏ|ÍT'—Ž+—SœLΕÎwßW9¨ ~´ Õ‡Ô¶ íÑOØì ®OûŸ®»¯`Úg;Õ‘´¼T¸ õk«¯ªOéõ¸ö‡÷OûE¨6y0*ÕÛ•Om9*“Ý»;WnJ×;Çw˃•IMuiŽ–§4U:¾•Gö‡÷KùâÚuÿ»õG÷Ä|Þ9×µöj×;¿R\³ÙS¥÷—öŠ›‡º‘ø÷\Ûz5àT™ô•V×7*Ózê zÝ7Lu©^?ÕuoÀsþæ3Ÿñg¿}öR½¹rhw†ßß©ô½õ»ìÃ&÷`Ò;ìÇ“‹ÊíçJå¨ñAï×ü%‹ÊVg]g\·ŒyÖç]óÄCÜGãyÒþnãæÀ|‚íQyrQ©¾rô‹ÿmüÒÓŽ4{½Õ…ŽÊ”¯é8oóh*<°¾'ÔÇ->¿õ_š‡¶¯åÑ®dW¤,Ž_ýtÉÎÔïìû·ºÊ©2éÝ)O3å)µ}aÊmùÐû§xBÓ¡v‰ócQ©ÞÖæÇ\é|Jv«ó+Õ©ýÄç<óåç~äôÁ_Ò+VçÅúØÖQžsõ\é¸Lþ(ßkQ™ôŸ=˜ô€4ÝŸ?Õ=lTÞPç\¹üµõÐø{ªÖߤ\ðxËÓpªÜ~/óB×ç¾ñ_òc'¶£þ˜ôxíPãÐ3t}Ñf|ºí+:*7)Ï(å9¤ú«”ÿš¾£ò#Öõsÿ´¤|äV4UÆ<‘5i{Œ¿4ç¨l÷*›}Óß·Øš+Ó÷°ÿ}ŸT—²3*}×»Çðï®?Nï£~ÙöS•É/‘¨þ™â2i>ù~Û£Ò|Èæ·\Îuý£²ÙKpÝùâÎå™ò×}MŒÿmÍ•ÖCx¼}ï¹R¿7löY«ß‡~_íoŸï|jõ&S¥ùÕÎýN^ï|´ÿ7F¥ãÁõ®ÕÛx÷Oyt)O.­Çæµ¥õ|–¼ç*/’÷Iñ{ßÏç§ã>/õ—ï“ò&ã÷‚žŸü/æAy¾zg«K„®G)îhœFýÅùõ|¨þ¢?roT:žvçJ×cõüQi\ݸòZùšâàÉÿô¨EeëÞÏþNyyrQ™âî{°Õ -*Óøöû­ë×Oqpõ³ºÓ^óµ£Òýtom|Â=¸wçJûSÿÕÆ¨<5Wzܸ§óÃü S£Ò¼Kåϳým\.*µsÕï<®®¾bØù£þcܷ͇E¥ß_»Üç¥<””/Öâð£²ùu¦ÊT¯éqû/Ù_-/òleÊ¿‹qÎOë…ãÕñíxJþèö¼¹Òþv¾†}É¢¿²íoÁý<_ýeÝ:ÿæo‡Çù›{óÿ´ÿ·Ÿýîæ;n”cÉèºà{é'NûG¤~rœ¤xüÖ\éiÿ¤¶íÙÊݹÒõck®<òõûû/¾õ¯X¥_Ê<’õ{óü÷³U¥«ö™¿h×ñ”ÆOË߃)1ù™Gã›^òà‡=ní¼¸6o`ÓOaŠ·oN•[såÉQ©ÒøºùK£Ò|$ýû®k¾¿öGÛçdª úçòçxXßT7˜òÏ”ÊiÛ›ò›ý¼¨tT_WOmëÔ>T¯Ñ^Ð~Vñ~ö§yM??ÿ9wþ÷/ÿûnÊæ'Ú©lõ°ùõ¦JýêëÚuëÖwD}>°½í9Àoýã×>óxŒŸÂ¦wA¿sÒ ›Ÿ÷±_=ÞâP=:½_;_r~Ò;/þß.û×Ëâ>|)Î’öésž%Ôlõp£2Ù§ŽÛu÷SõxËó•ŽÛ£/zà}ãÝîÞÇÛTɺ¼ü­ät[§Jß;ÉÇßW¾O^þš\µ¿Œ#Ý|÷¡Ÿûw—¾¯ÉK¯³½Ê+×ãÝißš–Çó›ŸmT¶üc˜äµïãú–ôý¤ÏX¿á¸tü)/Ú>Så­¾çßþã/6þµïÿWiŸ-ß+åA¤qžô7/LóÌïäû&ÿZÛ‡¶¿g1*µk×­_MûiW»züÈßÞïÛõ+G£ŸÈû4?"÷M~šTçæý·G¥óGýC}§µ:¿¼Þõ\ùÜâ—°­÷p]?f˧„Ž»Tï£>å¼HÜ•êÓžï 7 ÷ózû/Å÷“§åOL•I_Mß{îΕ!Ÿbù‹õŒêS›ðä¨lûhU®ž»=*›Ü•‹Ê­ŽJב—·j—óÂy`IËW…»s¥Ç÷ÏV¶xÏ™Jå¿ù‡ÆI\o|?ã4×M•æ¿éÕÿçû_z$´?S½ïçqß×õ7å3êWqžºÞª?Úž+çJ×ãwæ³jo\½¨LþJç·÷oúÐ\iüÒxtÓ§w*ÍÃÛ•©ž«õÿ´&¹Ÿþëq8•£w©žÑuÁ®zž~õÔ–¯5*—Ê_õĦ‡O•žïqý¾öçî\éõ;°}Q©œÖhù´\ßâì<_½¹ùÍF¥ï—òSNû>Pÿ˜ýßò¦ÊTÿÑö!˜+S~°Ïoûlrÿ´D‹·ÕÍîú½O@ÌHûu¹>:o޾ì6_3ýÀ=â:'·æÊÔ_ÉÏjÿØ)ÏÈ~؀ȫò_Gå­¿î¿~ìyßÚôéKæÊ«§Êæ€úmô¿˜GlvÌÖ\™ò»[<{T;gù[{?íŒWo~rè÷܆ÚMæákkwiÿ·xÆ\éýG¥õìոσú‹rBùæs7 òT}@îÊ•-~ªLñ†ä‡ˆþsîï¾Yöo¢ûR§ÓìV¯OãÞû§ùêõrÍ¿ãÚÍî‚Ú ›Pù®É¾Oþ‰V=U¶ú˜êË“¿´ÉKÞ?åyz¾ï£ßÀü€íQ™ÆyË^Tª·¨—´¼…q8½ÿæT¹;WnAíJß?îgÊýÔ<Þâs¼ÏvâTÙâyPýc÷LåæT™â˜Œ§¶.!GWzòy 7üêÊÕýÂ|mÏ÷ý×õ×{ÜxYÌ;à}6aËç™+Õï”gêÑëÆÝ]']7î5U*\7ÛüpªlòhªÔþ܆¶ŸøÙòwàßaW^Ó¯ ß@y`üÒñwêL¥ë÷Whñ©²å¹BǯßÓxnóËО£¿ö;wzÒ¹û½>{T:¼¯ÏMy±)ÖuÓ~Hþ•­¹ÒyÓâÎs¥ãx{Q™â7mŸÊQÙò›§ÃyÎ^úïzÛ÷µù´½Îñ¶îw°Ÿ·¡òÂñh¿¸Þ©?lÍ•ÚÓm½œ+]{¶z$Î÷;µ}^FeÔÿ`ŠG¥ü ©¾ÜòA¦J×Gó[›>7Wê—ºtª<¹¨TÔŸ‘êõýþmh¼*qk®ôþêç~Î÷ÿÀǼôºÞšH;·G¥ïé¼Ò² ]Ç’1*ýî®§)æzêZ=ú¢pù‹v€íêI~(¯l÷Lþzå£óßû·ý¨ ùî#¹9ÁQ©Û⥰ù¹Þ÷uÜýÎ?}õÛ?ÿ3bÝøÆ¨lþBžëùIŽ·ñÁxóæý3ÿëßqÝüpÇ_Ô‹¡ó;¬£ËßAgqù‹y¢-ï50ųÓzßükS¥÷õD­}Æ·:ÎS>¤r<Õû¥ø{Ë› oØÇ êÏRþ˜§òO–¿¾N×öÄ¿Ûáùi¿ý&ÍN[3\®Þ¹²êGõ+ý<í¸ m‡ãÀz%ǽãR{Áú"ï§Üs?ãþ-þ¹¨4ßG¹Ðü£Ry˜üÿž¯ß<ÅS’~‘â})oxÝý’ŸecTž÷]Ÿù þ»qì–ç/§Ê´_G²K“ÙâTSe[a«¶¯í+•Û£2ù)OËßAûØz|ù‹ëd³+áÆ¨Ü_T¶ãseÓwa³«§Êd_¹®¥º ;~Ïþ°=uš–÷‡MßáxË[•ŽKßßuJy4O•I_köj"×ûý}ûKôæÏzf·Ó`³[xNêGyÐ>_GŸý »}ãÍ?1ïË2U:.R¿ù>î›’èwlûΕæ—í/*m¯r¿ù •®³Æ‘.ƒÆÖ‡¦úþ´_Ãñ§¡ã!åã%R’3t>ò—õ¢ç=åNq_ìö]F¥z®ñNçuzoçÕþ(\éí¶ÿîò×úigQé¸ÒïÂß9^=?Ùô÷ª=iœ¨ñœƒö“]݆Í/]¯kßÿ¦?øêw~ô»ÞØÞ'­÷Ï…«ö´|yîÛÖ»Qxà>çMÿŸ+?ØŒôÿÄ9Þú1\Ÿôb§ùìõê}Ø‹«~kõ¨•Ë_Ï*Í?Ky.W,*=ÞôA¸9U&ÿ–z{Ò£Œ—ø¼ä2~w&¹ãúc¾™qää—w½÷z×GÛ×ö;]Tº¾û>›äzïŸêôZý lyô}hŸï“òw íiuís¥öý·üu?娼ÅG?ñ¯üí¿hD¯æ¿ö¨ýôÞU»Ò¾m?ßQéxÐO‡~ØüoÚs©î.­³Í®‚èÑKöqûþs¥rZ?ˆã1å7x¾íA_jq³¶¯ä¨ôùŽ÷¶ï4ÔœöƒÖ~ð~é{X?äõöz¾ã9ÅU[>Ü´/)Nâ#I·úAèúqóß¾ÿÛîð'ÏlûúyßS;•¾—vïµ;•)VýÙó=~_h>fªÓ¿nQéqóA}¾öÒ½á=`‹‡CõĦ}¯ÕK}~³ç`ó'JífåœrÄy¦Üòü&¡ÏÓüNË_Ü=ù™eŠO&z¿V7­OXWþ¦}ß”/Í? ×~çT×äáò§\¼¡Þ2V×óV×;÷ŽÃä_Oë§ßÇþMÇÓ¾\m}„q¿ãçërT69f;F¥íMq±‡óü4ŸŸóQû‰gýnî÷QÙą̈Tþšgê¢çkæÊäWoþqÎO~——Nz½ï£]ª\rï|Ðo¾ãÙ¾•­ÞªÇ$ûzsªôùƯ¬çP7nc¾˜ç·ýG¥ñ/¿SÚwõؽþùvOúœ¿hus'G¥y·)ïzo§²­«£ÒñãwÜ•Ž'Ç{ÚwÔç{\?’~-×mè¸3_F?WòwßÞy¾v½ó Å¡§J¯×ï×üˆ‹J+š7W¦8¹óÄçyõm÷­nëLã×y|ägoöà?ù–ý6NÝÏ9Å…[|*<ßqÖäüT™â»)žÖò™ ò«½Ï¢Òq£U¾oŒJﯾšÆ·zEkϨlu˜‹ÊôÕ;ê·Ž·¤§xãêmúǵOoöw«[•Ο›×ë{Ë×?ºë±£2åoŒJåF²W“þn{’þ¤8í'©¿X»K?~4åü64ç|ö|둬ãð;¦ýŒ´/”7Mž*›_oªtÝKqŠ'Ÿ+SOnÚw&Õ¶úˆ©roT¶¿3Ó~&ê5MN@¿O³?x?¿—óÅø†öJЇ¬{½z…×Ï®Ê9שc÷9ºõ¶¹Qô¦|AåJò7Úîä/Mù¤éþ)¿ÈëýN>_¹ìûjw;O”;ÕÝ]º(\é…®¯i½E¬îïüVk~½@ǯñ£¶^N•éïÌœž+Õƒ|^ú{Ê_ï·n=°ë‡yKêÙú/†û‹Jõ MÈñ寭‹§ÎV6=jÏz¾t<ª'x?õ=å´ë|Û_gªô~þ‘Q©]1*›¿WTÞi´üÿQéõ׎ÊݹÒq®¡Þˆ_¿ùé´Óy¿åo¾r.¼!>0W¶üUØì èzâ «öéçõº+æJý—žošò.ùÙ’Ÿnݼ ”÷œü<©ÎÃu7ùå”O­.ڞݹRj« •ÊãA›S¥ïßâÁ´/=?ÕM+oÛøœ+=¿ý=#¨ýº7*?éŸp<íL•¾¿×ë?Ø•m|O•Χ­¹2ì‹ÜÖï–oÕÏâñT/i¿í/*OBí‚­¹RýaÝüòæ×›SåÑ¿ý›‡|ø~ºùœO©N{ÅçØNý´Ûãpr¿åoå7P>|ÒTy/x_xèùëò>ðÞðþÐ|ZÛçýŸy¿”÷éõi?”Ĥw:oZÞ.´®Äþ°½¾ýéßQ2žiþ¿ñKã¿êY>_zÿ£Oú’÷Ÿ}ûo·ïæ¸Iã /Õ'ü.1_kT*?÷ÏVºŽèSt]tŸ×QüˆMþ§ãÊ{¿³þÏV¹¨lç/*Ûz4WÚÞ¤Ÿ«_«g5ûa®L÷Óñ}Úx±¦¸©ÇÏÍހɯÛäl~ž5éóÕ'Z<0\Ÿ8O•¾oò7HãïÊUãt¬Ë_³ç•®7í½ ýH¿­ôç»òÐûêG~§ÕûíÀT‡a>ÌÆ¨´ÝÚ}úkýn)N­\ôùö¿z¾ç'NÓ|ží§½ëúŸÔgÍÓ×/ÖÅ”çØö5…žßöm•ØíËßAûHÇ}–›Üãú«æÊ¶Õö-­Ý©Þéê>úQÛ:[þÔÿ×êmÎT¦ºç+•©~M»Òù¦}庭þéóÓ¾ü[s¥ö[Ê[o~n9Á5oN‡Óö蟲ýêÚŸ'§Ê+•ov<܆I/S¾8’WyÕö)ñúQ9O•m~LpTú=•¶¯Å?¡zt‹[ÀöKˆë\Ê‹nyK£2}Gß;É©Ô>Ÿçû9.´“S~}ÒWSüH9¥¦]¬¾h{où5W¾÷’Îñï´ü èù»óáLû§ç+ŸRÞnË·˜à\y䙯ø•'~ò=šO9ªß­Ÿ —¿^ŸÂóS=zÛgiªÔ_g;·G¥ý•ô©¶/ío~Õ©pù³Wú•ßÛ}¤ŒO´¼êQ¹nÜÖyœêöäþ¢R}þè§¿äÔï|DϯU¯Nö»ïÙâ~´;ù#¬sØ•­žOÈñ½Qi?§:Ÿ¤w§xhŠ×%= Å;Óú•Ö£4•çú7­³ñ¸~R׋t½ÏO~á´ÿŽÏs}Jv«í3Îü¿s`Ê»¶}~ý3©~D¹§¿D•ÏsXwßEÏß„-mQÙò¦aËÄêsöŸ÷7þjçJÛÓì¶©Òï¡]bÿ5?ÍTéüÞ•Éÿh\ÚñÐâÒ\TšlýP˯€íþ;•¾ÿus¥ïwü»¿æ—?ý7¶[^Œô=Óún¾©ïÑú™û+—š^>UÚç‰íký>W:OR>Akt]qž5ý :ÍHël’ë²Ýª´¿ÿ7ýÓË_´ÃR¾xŠ $;Y¹ç¼jykP{Èöy½ë²ßç&ø•k/ù_èß²~/mu]iû: Èõ©~%åÍÙ0åó7{û5¿ô}m_Ò{.|صOù§/ûÚÖ/)¤­_SåÖ\Ùöoš Ç7•éïýh7š7¦Ýêû%¿ ÏÓ.më÷TéûÚé;'{£ùý§ÊdW¦ºØ”šò©µoZÝĨÄo³üøw}õ-ó åÖ\¹3U¦}ƒÈïjí=ÈOá}ÇÉïçúìw7ÞxÎ'¿úKßøÙOlrAû+Ú¯ãpú}¿Éïáxöù¶OùqrQé|lu–pš¿çõÐïæw2ÎÛò¡åTé|‹qAó  ×§¼²7•¶W{Þû9~¥çë×sµ÷…)Ûìu˜üï)_åÜï}îËöŽÏÑ™ž›ì䦟rÜyxdñŸ_úygz>½vŽ×i_*Ô³oÊÉ´—þÇä_Lû‡¥z"ûÙó]ÊsQŽ6ÿû(\þ¢?¨ÕuAÏß+S=ŠvŸòÎõ }/ž§?ÁöÚ¿^ïxÒnö{k'µ:IîgÊãÿø¯w{Å^ÞãßÐqd¿x¾r#}—´¿BªÿO~æG˜*[{àÆ8œÉÞMñ™÷€mÝ‚®3®[ëæá¹î¦üêQÙü0õwªcJý›â M¯›çºûK¤¸Sú>ilõõd¯w|$=Fú<åÈã•ÖݨǦ¿çtrQ™Æ÷ƨœ§Ê·zƒýSw³aÛ§qÀ r¼ÉYØúzâó-~`¿^ðœ#»ü[_ÛóGåºò$ùW7`úÞÞ¯ÕÁúÓzg¿¦ºSåEókŒÊ–ÿÉñ´²Ïyæ£2Å…[þ Ôß׎ϕ÷{¨·7»Õû/*õ7$?_Û×—ãiž§ýÖõ;´õ &;1ͯ­.*õ+ŸÐ¿c™ãù'GåÕs¥õ«ÞÏþ·îÅ÷Ù•¾_ËZTêw=çšïÌ_Þñsã¾;Λ ˜âzóTó %íIq«¤×¶ý¢§Jûñâ¹²åÁ.*·æJlj¼ðO>ùÿä“ÿºÕ}ù}Oæ%yœï²üW[é­®hªl~µ©Òù“ôˆf/M•œûŽüúï{VÜ÷Åu/é­Ž÷Õn؃é~®#m•É.±ßÌÛ·?Œ['?x»~OT6?t>ïÁ$O’ß-å—µ8ýNáòwà<Ñ1_Ëö%»/ŧ6Fe² [~<þÏ}ÓÍÞýYÑ?‘â÷)ÏÚq”ØòôxÏO¿é»ïöÖ÷þðŸG½Ã|¶¤§{}ªGu>{\ÿçëOs¼¤ù"ý®ê¥Ê—GŸ­T^´¼Þ¯µ—÷‰y%Oñƒ–Ç3WªgzýîT™ìÀ©Òùëóͳÿ|¿–/Æõ©¾_û>Ðñ©bûwa‹‡Ãöü¹ÒãÚEÊÓs¥÷KvE’s£²ù`Û÷6p¦|ÓfÇÊT'hûì–_ÛþÕ‹JŸ§¢”êF’ÿ)í ¬üö~©®ËùâSîgpé¨t?ï—öK°Î1}OßßüÍ©2ù“¾áüKù)®G-~µ€£Òïe>œöfOæyîΕú}[~Ô¾Ô.jö#÷Óÿ™žŸìYÛ—òŸR}K²?—Ì•îCf<÷âQ©T?±þ²´N7y Õ³ÛúÆùêÍÏÔn¼Ú~íF÷ép¾ØŸÍ.†ÍHû›¿˜óSÜÂïâ*îdÿú=Ü¿¡ÕΕ).½oÊ£õzۓ⓾ï_ú„ÇÿÚk~ÈçÞ°_4ížð }üÖͧßSe’ËÚÇ®ÿé;¤¼ÑäHó ÕC%¹”ü5mß§Q™ò`RÞŒúe²¿“yoT&ÿtŠ'n:Ïõ¥å¿];UŸqžî¨T¯týJó"É¿Cʳõ;»Ÿ±ç;¯©~ÕûïJÛc¼9ÕS^T*çwÞOˆí·½iÜzÿ¶ŸÏ¢2µGÿl’ëm¿/˜òÆe³}ÞT™ÖïŸê®¢> “¾šö—lr;°Å{•úMÕwÔ¤õ'çJŸ×òˆçÊ“ 8*›Âó•/)OÕø·ò«ÅÛ¦JåwÒ«R™öç/mýmy˜p]–vaÒïR¾\šG»se÷ê;iÝJþ ß'Åç¼ÞþTl@õ×Éuý¹)Ïuí¼Þ©r†>ßëÛù0Oïëõ2ùÇÓûú¼æ/•ÉOö¯÷þúëŒw9~”kæ-œ\Tz½öˆç».hGoÍ•)ïÄuÂø£ÏWΫ׺.lʂ޿í[•‡>Ïó=n<ÕuU=Åãö§ë¸yà÷©\þâ¾4Æ7åñzÞ×üìm~-Ú›m_ÊEeŠ—©—™‡ªüLû@(ß7§Jç§ëúºõðmߤÐ>ûÏñú«ÙÏÐõU½Iù¶?Uj:n”_»s¥ë¥÷óx[a»ß¨Tþ·ø ô~§OT:~±³V~|ó÷¸ïò×ó–§JýöÇ©³•­ÿjûbÞùñÿ~Áüž›_Ûå:rzª<µ¨lãêleÒÒ~Äéú¦×ŒÊ”dz1*Õ#Rþ¡ösÊOlz$ïõ˜â-ÿ|TÚ^ã ÊåoXT^7U>j®¼êï2>Ðòᆜ*wçJÏ÷yŽ÷½Q9O•ÊGÏ•¾o{>lþž©ÒçGT®_üêÃ>îšW\Õü|ê«W-*“}yÍ\é{ø÷Rþ‹q£+æÊ©rÝõ:Øå­=Æô7Pú]œw^ù'6ßêS›¿nïL¥ýìwÒϯ|Ð?âß™ž§J¿ó鳕I«‡$Z’÷Ž#™ÖƒÄÀ0Ζ¿è¿q|:R=bû{?•«vh·¤ºiå€vb«¡]-Os®ÔÞhñp¨¤l^“v(\þšß¯å£Â .>{£Wÿî·7yêwJï×ö·ÚUÖûhjgØ_Öûèµ.]Ît~{lyÅS¥õöòkºn¸>&?™ú€÷OòÉûOiù¿£òœÇ^õ€wÜg·ù_ZÞÉT™âçmžqû9å(wþþñ{Üëç_xÝWß»éúo´’Óþô}›hªÜ” 8 —¿–ÒâQ0å©é'PNÉߘ+פù˜üÊïæçƒë®~÷O•[se’¿ÚÍêS'•mß;˜â4ÚÓÚ¿ÚùÖg~Ôs7>ú‹otªÉEëÞî8Uš÷´ “œÓN´É~lyŠ0åGnŒJŸ—êö½>å÷{¾ëDÒcµ'R¾}Ó§Ê–/“¿íÚEåÞ¨T]»S‰žsCÝIåò×죶?Ú¢²åÙ@ëwHùBÊ)óö¯-~Ãó•ƒúIlŸTϳ½ößÞ¨tüi?\ôðo¼ý_ßéÇ›]ê¼Ò~Ü•Ú)þÝRÇúÓjœ8~•)»ù½ öÕW¶x÷Somùy£²Õ‡Aû~Ú…Rëѱgßôew¹åç5½*ýý´Oª÷Soõ¸ú™ú{°³SœeùkãÇõ¤ÙqSåî\™âroTú=ÍSv^ûýš?00ù¹ÓüÜÜwÉMè8Iû’HçkóŸBë5}žë›ã.íÓ¢|hû>p<åá%?Q‹Ÿ/`¸^={¦}…SžcÚOtkZ¾÷sýv|É–Û¾$£Òñ–òTõ©Ø>ý]>Ïu_}Ey¥Ÿ§ÅWÏVž\T¶÷•Í/µ[µs=¿qªô~-q®´?ͯ±®ÊïåýÚ÷[T:^ÿ[rTÚŸòèÕŸõ¨­?»oÿ{™Ü×÷hy3S¥×{¾ßÁyšü8Ê!×™Ô>ûÁ~Kûj7˜ÏòA¬Ãw=Ò^KõÿúMR~¦Ç×^¯¡÷W_Hö´×§<ô´XÒóZ¾lû|AÛ“òoÛßAYÀ©²ùGå\¹+G¥úKÓ'æJí_ó_Ô?×Öc{¿´^[ïžürG?áWÿíöáÍŽlñpŸ”â8_7nØî;*ÓD-ÏfT¦õ.Éoúsùs(ŸüÊé×2ÿ"ÕÛêï?ú¹o¿Ù¿<ã-žo?mÍ‡ÓøGû; ÒΔÑü3‹J§ý Zü—çmN‡S}W}>å#Zg¨?Áþr\¬ë_mþü©rcTºîµ8÷OrÕu ù;•[©î8ßœ*[+t^ßÐ/°;Wž\Tê2OCÿ“Çõ÷˜æù—, —¿æwÒ¿b;õóù]S¾•ÇÛ'»?ɿߕÊw§y¡é¸sœ$™rÄqxrQÙö+‚-~Û~ÕSeز×9Á–¹¨lr}®ô}úmnò¼øƒ_øñÍ^>U¦üýi?ÞûCǵԞIû¥¸ýƨt}Ð.p_ê诂)ßÎïdÞ”ãRñó™ÔëR~£ã¾å-*½Þ÷5žjûõwmN•©^ÏøHÚG%Ÿü) ÖŽÊ”¯”Æ›÷ߟ+S]U³C%×û|¯ovÜ”se“GÐuÂñ¨> ~Ýâ?ÐñîxÑÏ຦]e³qõˆÝ¹R½Âùe]IË÷•^ï|tþ'?Gò:_Ò~U>_½Äñæú“ü >?ÅÏc=1ï«|÷ï°ù|ãb>ÏõTjO„¼²˜·ßü¶0Ý/å³´ûAí?çWËç˜*SÞ¸Ç[À ¨~à÷ŠöÔžkǹ_ò›¦|<ŸçùÉo«ü[7¸q‚OíU^$}¤ÅµGåÎçÊ–/Ž'=ù±òw)'Z~ïéçYwùÝÿúíÿž4vÖê:çC³ç¦Jæëêþ®GÖÞñOŸøuo{À»[=ˆö„þÕdŸÍS¥í8ºùÂ_yê]¿6î?‘üZÊýŽkßßx+y5q½hvLù[É.m~Èú¹úî)/Dy~á?òIßö{ŸÞú‡x”¿¨O:N[w®Lûú=Íû>¹¨Ôï-©§nïwäåÿÜ—ý·vþ¿”Wò6z|”û¥ú÷X¿1*í÷½QÙüPy¼5éÒýÒN.àTiûï}燽ÿ—~ïâèuáï»-M^µºÊEe‹çÃ9?åA­™×·¼Æ@ýÖGÏ6nm¾úíòׯµãLùèw1nh»“¼V¿wÿ_5*]7].ÎsýÉï븰?Ž~àÝc÷…ÿÐõqèxIù@ëæI¶<èQ¹nýBÓÓ8ï ûG?‚ýáñ8ÿ`ZÇS½´ÏGž,1ŸúôNeó›VXÿÝü±s¥öjÒÛÖÍãkñ¾Ã¯_þúßWš*m§y^ÉÏžìÖ ¸®{ß§=ô.øþÇÅýÛOJõÎu÷½'y”æ©ò-å›6ÿœ*S=ƒïæõƨLõ -ŽÓ¾»g+Óúäûiï´ü$¸=W¶81<ñ೸ðË©û³ zØ Ûß1•žï:îÏãÊsï§_^?rû;/S¥zú¥ëq«·ZTîL•öO‹Gã/¾Ï[Þu›_oíp|º/‹ãÀóõciok‡jW´<¦ÊTo¿k?8?ÍÃJûž%ýî‰Ê_3¯ÕygÞÖÕs¥ú¨ïwÍ\iûÜßÔï帱Ãq—òÚ܇¡}/Øêc¦Ê`ïµç›·ç~×)/b†æz~Ê·]·bgªlëLû¸Þ;þÔë\_·Geª‹myú0í«‘ö™Hy3±Î˜çÛ¾Ÿ*•oÒõWy¦~º¿SéºsÁeïxÍ_Ñû›Üò»·LþùäoöýZ¾ù¨ŒûñL•)_}¶}'¦ÊVï ퟴ.Éuç«vj²#RýNÛǺ¦ú˜TgŸòÅÒü”Êãíý§Êóá)7ÿžç}BÓOÜçgª¯8¯õ©·§q´1*W~ç½QÉ8^þÌïIö¤ÇÓ~ÉÎØ+S>dÊÓRÿÝÝ©<öOߺé§\ÓÎKvüTþéßLuÇί$/\o›ž=U*÷FeÓ{¹ÞùÓê¢Gez¾çïΕÉ^Òžôûé·uܜکly£²ùãFeóó,*ÃøZþÚwLõìŽß«ÅA\TnŒÊ–Ï1*ÕcZžÈ¨ôzóÛc|j:œiÝjz \¾÷мíu\½éÿó» æ4¿= ù+ùœòµ÷Ù·¡ÿÚEeò£ÄºÇQ™ìuåPÊ«Vþ§û¥u¿ù½¦Êä_v½rüžw»Oÿ½Û}ú›ú>¢£ÒuÒñ²Q¹ü5}Ã8rÍ<(×oërÛ¾2œo~‘þáÍ©òŠEešŸ)Ï£ù!Æá\Wß’iž§úýßÊ›`·--.îwSN8ÏÎ뤿·zCh¿$=ò ÷ô¹êé=dªÏÚ•»seóGrÿ”_¢?Pùæ÷÷¸íÝ•®Ïú{S^œç·õ{Q©~­|vþépüÙ¿ý+^ûå£õƒíjù£²íC7aò÷8îR>‰Ç}û)ù{”#Öר>ýQ¶Çãö—ë“í·?›}3UZGè¼0Õ¼ý3•ʶñ\éqë:÷v*SYÛ‡êØ™*•Ÿ{ðèí^þè?ÿ—ã=ßwQi>…óÙ÷R?HqR×ý”Æe7ž¿-•úKN.*·f¸¨ôý¶§Jõcõ•£öCïüÑG¿±=×÷jï1W¶ºè|Q®&êÿ¯Ùò¡áƨT>#ßVö ý²üµu ÅWSîMŽ_yú__ÿ5ë¿÷¨TN%ý¯ùGeÒ«æ©2ù¼þ&ßõˆ7=âé‹vXŸ´“ë—¿Ø?©¾;åÈäwiö(´½Ž£æW•ê?­ŽfT¶¼Ìép¦|ì/†)ôü—?ùªÇ\üíºfN•ͯ ›~´¨lù:så9Ÿþ]÷½êû¿rú௭ÿÊåK!ç¯äËe•«û»ßù?ê§OTºn¸®œû†×üä…ßøÙ1ŸÙx‚ïÕü$ÖãÉÕhǺN:>’íý’±î<1ŸáÞÐã÷ÖÿÚ>õ_ßG®ëkßîÀV_s¦R9äûù<íÌ”šôQëÜ|~ºj÷»ÅÞý„¾í—û>\•±.û¶¼––7S^[ªÿU¯S®ê?C~µºƒ“‹Ã¹7U'Ö—ôßW9©]¥™êNÊ ™ê'µ3Óõ¶ç–?òðüæ+ßÇ7ãyù›ï ­{JudÊ)óÓ•›¾Ï‘kÿ¾ù]sˇMó­ù}`ò˳>,]¿™gÒ—|å°ýÑüOÜ/åm4=ó‰×­äQª£krmTÚo)?ik®ô~ú“ì'ǃíuÞoŒÊGN•é»;OSÑþ²=3T®z|Ýqçõw}[·NÃû§: ¿o£Ë_´Z¼bQé|K Ù¡-Ϧ¼¢´ï LyÝ-^ÛªGîJýãú‰÷ÎVÏHõ¥›Seª›Õqk˜ü'ÇŸñç÷û³ þ#޳¦/ÃW1®­ŸQ{ÖøX§Ë_̃þÈãOûÀçÞý§•‡«uÀü ò„V÷Uo ùØî›ÓôÓ©2Å¿[¼¦ùšü¤¾gÚG=Å“Õß™_Ë_›wÊ×Wç=ýr`¾œý-õ$?Šý«>¹9U¦:í Ž/kûé¶f¸¨Ô?n»êߨö! Ü•)ïØïá{øži_Ä–¯¯iŸüf_ÊäÒ }Ôôz8Ôçgû•/žŸöhù£2­é~XÀ©RûÜ÷q~{?ý¢êÎ×ÑV·6Wú>©~6Õk…|œ×Ù•úCZ*lï{¦R»ãœþä×ßóÿ÷µ89Uw4¯Îç˜e¿þl×éùÆe•Ûú‘ôG+¿wm¿¶Q©\ò;½Ý—Þþ9÷ÿœ^÷8§çk_(ÕüæÅ¿}ôï?=æý„¿Û÷UMvb‹Á”G”îŸÆKòë¦úÿðþË_ÌK~\ytz÷É—½æûz¾lïS]WªëHy~­ž\N•Ú%ÉßÚŸò‰}¾öŸñ;ûïŠQéú¼ ›]>UªOù~0Åí/üø_ûñÇ~ïícÞ‘vrû{·rQ©]ó§ÊdO$û)ÕGëgð»;OR¬÷Oû°n/Þ§­×¬Å+Vçã_YÙk-?cÀ©rÝ|Ë5ã¦ñï°µyÁõÉh[½'Õ¡XâxÓo¤æøPR.~ü'?ðœw|Þ3ç{}ðúƒ¨ŸÃï`¿Î°ÕM•Íš*ýÍ>•Þ¯Ÿ*ÓºxúL¥ëE³GFåÎT™ô‰d&¹*“ý“Ös¿·ýwäÿøß·}þ›ŸõrèßÒÏj>›ûƒ¶øL~ßüSýÀ)¿©­»£²Ù1‹ÊíQ™üL­î:/”'Íϰ¨ô»;Λÿ*lOŠ+µ“÷çʯnþç¹Òöž^TÚßíï:N•î'«]¶=*íýæÙk·é7ðþôG[·“ÿW¹æqå@Ú·hk®Lv[‹Aç²RÝ_«C•M 4/μç¯ý—Ž;_ɉ~3˜â±)ŸhÝëÓ>œ®)^žžŸôï§¾mûSþM°/–¿¾~¯Iåºï‘ÆE²ïjwÒcÂúíÞ£×>Êÿ¶¯á¨TþîB×ë—…m?hŽ ¿{ï¡Üpœ;./ž*c\Qr¾ó¦É­EeógÁd‡;>¿Çþë³>ç%o¸(¾G³—8¿Å;aÊ3®Ñü°‹Ê“P}À<Ïw=Ð^õ|ß7Õíúÿù’_FXŠÇhϤ<¾´ÏHŠï:^÷•)£ùïG¥ûøôÿ©W´)žfÓºõx)~’üxI¤øÊºûLÙŽï½QÙü:Ð}øÍK¶¿µ›|¿ó~ë_ŽßÿA¿žâzí=ö•Í9W2/oXÏF¥v¿þ#ì¦å¯­ÇÊ?÷QÞnN•­þo®¼|Q¹|Ï%“ÜJq ¶ŽBÇý»ü­úÙïI{–¿¾ïæ¢R»|k®´Ÿý.ê-¶: ¨Rú·G¥úˆv¸×û>ŽÇ~ÛyªÔ/¥û¦/¾ÇÏœúü4Õýáþ¨LûŒÚiJÚeså•Pžç[?/É–G •#Öçì/*]wR]¹ÇíŸý³•~WåA«s Ôþ½ÃÓð›îýSW5}Øqõk˜â\Ê©dǧü¯ß„!Ÿ¢×ùÀäçIþxŸŸêÜZȹ~w®lùB£²ågL•§ÏV¦üšG-*•wÍïÊõIO~mÇ‹ú\ÊOŠù0åݦ¼^ÇËþ¢²ùéåïµÚßál¥óÝñ}¯öÃ~è-W¦ûþo×?§ø_ʧX;bTÞò¹ßðWßuù÷D¥ú›ö~ª—Mõ«žßÖ£¹rgªLvJª?òýí7íë/GW,*]Ÿ=ß¼Tÿ>_òì/*ÕûÒqëyü{ê…ö·íu=NõêÖµª]•ãiÝlye£Òö©ŸmÊVç}ã½~õ5¯×Ï¡þt€?¸éQÍo6*}Oó/Ö‰µã‹ÊT·¾7*=nܲéé0ÉG娩•ÊÏfO-*í/×Ûë¸s\ĺ4îÇúy`½t‹V.]N”M7}3Å-“¾Øâ¨£2ùiÈïjçµxlzø¢ÒïÚìè©Rù6O•- Ú¯æ×µx äzÇKÊ q¸å/ޝäÿõ;­›ëxõ½œÏúcN-*1*µÔÿÍ£Qî·¼ÇQâ`ñ¸šy~ŸäÏ=5W6½qªlùƋʩ2å¥üwõĦçr½ó¨éE‹ÊV?Äó×Í“Hy>?Å;[ѨLz¨zP²?’}»n½Tª[7ßP=ÓçiûÖ@ç«ó%þ]ØÎ‡a}kßûØþ+ç_ý§ûÎGÞð7/þÖÇNËÑÚi®‹ú/Öý«ß™ÖÎ?S©ßÒã!ÎÚÚëóìOýÞ¯år|k®ô{¦¼ ÿÓLõ†ôÇJ?r¼õ‹Îÿƒ¯úÆkÔC–¿æ'R™aÊïWN¥:Ù˜ÿ6*S݇íÕÿïó7Feª»Mýãó´{Rrº¿ß×ûÛ^Ÿ—ê7Z~éTé¼iù!s¥rW;W¹›ü%Êd7:ïõcª¹ŽéÓÿdí–<à¢Òöø¾¶Çç7»˜ûÛ?®#ÎÇýE¥ßS=Ñx’ç_6*ý>êÉm›+•7®ʧ?nv‚þ³Ká­/ýí—|ôßüC·`²ŸÚzD»[ž3ç;Î’ýÝò¶§Ê¤y~ÊcOõ°Žs¿“yfMöùÜ?í×ò¼•úÓ¶G¥ãÆó·æÊ´/Mò ¥x^Я—¿¼÷MùË©-ŽÅó×ÍgvœZÓü‚g+}ß½3•£Òç·y>U*¯•ÏêáêÍm=šà¨tßò»ÿâG¿ù ¯m~$¿ÛÎT麒ì½GΕ1Oö¤øYÊK×þ3âõö{ÊßLíOþ„uóõœwŽó´?BÊHþ¥T× æiš7®WÇ~ã7¾ëÇ_ó¬¶þk7[¯Úê»F¥ã&էدW.*›ý1*ÕÕ÷[\zT¶|žQ™ê OJõ³¶ÎОT·1CçúXŠÓ,ß{Éô~pe+›}= —¿¸„~Wû¯ùó¡ö˜ñhí]ã©NÆõõœ?yàSžò¼ýöþ;0åk¤z…¶?Lqgõ½´Ï׫6y6*~§”Ÿßê«w*oþsÇŸô™·øÁ¨?i_xÜ8D’-eTšiüZ½@9} tQhñø¹Òç·<±¹r Z½9U^³¨tú>>¿ùåGeò£7¿3luÐ÷•1nÛú“?&é ¾o²·S]í3®—Þwsªlëý¨Ly•êÉ?ÛÃûù=÷F¥þ3çÓLñmå¦ù0—L•Ο§~âü7Žª|Ó?äþ8)_;ùƒS\J¹®þØŽŸ­ô{§|§”šòJOmÿ¡ŽÊ'mùp{Têot~¶8(íu<;>[\îÎpTÚ>å¹ïãûkÏ«§8Ÿý>¶¿?U:^޼eñ®ïÿ¤õøÔ8œÞw³r¥7«ŸoÍ•ög“WÞgNäÙò×ú%õkš7¶Óó]§Ò:xî§~Ô÷ÞæÛîå{ª¯muS¥ö“ò§ÙGrªLyožßò£G ç+Õ/]ü¦ïyÝÿ'îƒÐòš`ªKáû.1oÎñÜþžÂ\™úÏþ0^7ËQyÝÊ8kù|©ž%åç9n7FeÊ;[÷¸vlÊ×OãÔ~lþ該Å9+[ÿž„)ϯùï¡rÖ÷ñú&ï¡Ç[¾W ë¦r-Õ/7Ê´•{Q/•·ÿ¼¯yÌ;þäc[¿¨ßîJíÃ+f8Un¦/ÃQéó[Ì™Jòñ—¿^w±S¸ZïͳÑßêwóüg¤ÿVí³ß’ÔÖë©òÈÛâ§®{ôëš= ~ç~ž¯}á÷×_g<ØW:~Úþ1óá4Äþ¶÷\T:~®•æó\ Ó:{ôÏß÷gOù¯ßjõ¬Æg÷NTšoé{oÊ©²É…N•úq½Þ¸µùÊåŽõJÊç­ûÉøw/½þØ=ßýüœÞëþµ©²­/Sáò×ú×qñ賕7»Õû¹ç›z¼ò¼¼ït=ô;j÷êØ-¯¦üˆccë3Þÿ”ÛG{>ÙÉ-ßjç¥zlû1ù=›¶^¿üµ¿z=ô¸óB}Aù'/[T*¿Õo¼¾Éch{¬3lçÏpT¦ö490U×óü½Q™äˆòø$Ü•Ê=ûÏã©>Z»¶ù“aò7:εëÕ—Z^œ•Ê—¶ ó¦=Ïu$å‹z?ý9)¿ÔïåqõCå©í·½!¯ð ¿ëºüõýpG¥þ&ýd²åçCïg¾{ó«Èÿ¨LùxÞž*S<\~ô=÷¾ëž—|\ûÎí¹á=l‡ý–Ž{?û9í§~åÆT™ìJ¯_w¿ËTO¦^mÿ¸Ÿ½í?=W¶¼°JÛ“ê)S}NË£…éúæô|íÆu÷Írr]UŸuú=•Û)Ž¡ÿO»;å®+÷fxÁý¿ão¼÷ûb~Ÿy§Þ7ÆO:ï€óµ÷[¼bT¦¼Ì¤¯›ï–âÛi¬æ_œ*[ž÷÷ù®ç­nóõ[»ï—}Ì7<øb^‡zDÊÏoùnP=K½ µ›ö¥|éfOMpTjGÚOiÛ»n}³~´mhÞýÙê/•Ú%'•ÎsûÓyäÿ6Íg=t'íWõzÙö‚)Áõ%Ùu­ŒçiwØÞQ™êZýÈTi%ùµS½dÚgB½Ç÷IùeiŸ1ÇGËg8Q™ÖoézÖçæ¯¡}I®lŒÊ”·”ô‰Ô¿ÞÏñ`þX²Wm¿Çw¦õèû'{.Õ/¥ñèñÖÿSe{ÿ©ÒëåÿŠQ™ü}Æå}?÷•²¿¬³nûòÚ_~Ÿ–7·¨T‘ÊåKÚ·%ùŶ•êÏ1N Ge‹C'ŽÊäwLy}-Ž S<(åï¦ï“ìùvþ´S>’ñQ¿‡ýçøóïŸû>öçièó¬sœácÎT¶ù8W¶¸ÔÛòFyŸ”`=…ë÷þ¢Ry¥þézñÈEåæT™âæ=ZGzñ¢Rùdžb«û•®—-¯^²¨¼t®LûF8ÿ’ÏñyÎ_ÿþmŸñ´_‹ûÌS¥ýò\í'Û•òæ½Þö›ßë8SòúTW`{ìû]ÿÝ9ŸzÛ§¼ô®ßõ·Í òÞ[Ð÷¶®Ø÷¶7ý}®T7{“×<ÿ“?õý_Ùä8ëêòw`¾¥ÏQŽÛ¿Í9*SÜ5Ù ÊÕäï´ß’ž˜æS«S-Þ4*c^L×7»¶}Ò¸_ò´¼l˜ò˜Rñwâ}l·zÇýÅúŸoÜPýÓõHýØñ}É\™üÉïb¼'ÉßcxÊs?ð”oˆù~ŽGå6új‹‡¨çÛo®ëú—[?¸¨tÝJßɸ¤óµÅÛ§Jå\ÊIqŠ/NyQ1^yÀyŸòVö§Ê¶?<¿Å©8ßç5ùlû¡ãÙ÷Kuß­ÎÝçÃT‡™ü«Ê©ûBóÌPŽyÜû)3¤úÅ”O¡Üža’ûžŸòEŽÝåëŽ?áFOŒçÉTWªèúò¼7`Ê3·ý©þÓïÜúç9.×g…|Ÿó„´S÷FåñD¨ÓTN7ߢR}×úm•ß¾gÊËu\%½ÔûµøùTòPWã0é×)Ÿi£rùËú˜÷§úÐñ[þÏ·m}þ_D‰ò¡ÙC£Ò~=çñøéÿðìkvùºùÊåÓ;•®§æJÛ½7*­Ÿ÷yÉOuzQéþö£õM¶?­ë°ù™8?­kÍo=¾5WêGi÷›+]׎^zÑÝøAˆq{åºzì#çJõê_õ;Ÿ÷ÔW^ñ+o܈ú òC¹N>ÃJ~Òòÿ®]“‡Ü¯í# ×­ ñ;5½ &½+Õ8¾Œ7¥¼Ê”wnÍ•ÍOí¿Ïñ‡ž÷ßOxËO6?‚rÑüé<Öÿ¥ÑßuͨôüFîo<Ôó•³é}]§'É~Ù•ÊÙ&7§Ã©ÜMþÜV_Åqõ¥“Pý\ù¤ÞÒÈõŒëå/î[/Õ/6äT™òªÓþ9;g*“'ùkdó¿ÑÞyªTÿKþ>™ì¦¤¯Fr¿”/ã:—òcR>NÊ3JvŽß¯åÏýèýnïŸú†¸_}Ê·rœêwô~É¿`|¨åqL•iÝHöŸÇ“Þ±1*›};*ãxž*µÏíߔǬÿ¨ùs ëaËOœ+ÕÛ?›Ðq™ê…S>eZÏšmT¦<ç]Úχö,qUûÅ| ”m?ê·hþEå<Îæ'*µs“=šì?ÇÏOùÿÍßÀõi½µ½­=¶wTÚëî"S§û9¾ÒþÍþ‚êiÍ?*Ÿ©1æ—s½ë±zk³ï`ªWi~Ù¹rNûÏzR™üÚö—ÏkúÔï®}§ÝÐôè©ò&öŠ·üÊÎ×¶z%ÛÑô|õóÍ©²ååAý&͆޿åeO•I?ÒOkÞ§óÆ|ÛV ·æÊ¶_tÝð}\õÂW}ù·¿&þ½ù¶¯´É!S^pÓ# ÷kãˆ÷±½-=*õ¯[Ççw4¸Õ).*­;Ju‰óT™ôÂýEe[œ*OÁfÿJý)nêúÓüݼOÊ÷}´ôØ÷äxØß©Lúƒïãú”Öc¿§ýòîõÏ)wÕOÏ•-޵¨Ô.ðý\ŸŽ>ÿ_ïÿåùò¿™g‹'B¿ëÉòÿŽb³c9ßñ¶¯Û©LùêÞÿøkO|ÁâYw¹ >Çï.Sžø&Üš+•CŽ+Ïw}o×CÇeòçi7©×ØžäÇq^7?ýÙÊTÓüvœ¿7*=ôÀU$ÖÀƒòüÚ>-0Å5R=v©ú‰þˆdÇà_½‡zaóM•Ê¿6Ïh§òíòE¥úã²Õ#¥xŒñå³×«w*¿íŸ½Qéz¿ ½ŸqŽ¿òyêõ{‹Jçµë÷þ¢Òöµþ€ŽÛ«¼ö¸ó/ÙŸ¾ãiÝý`›\åüfïÍ•IÎú}ô7¹Î¨ïÅxäšLþ5¿÷ö¢rž*Í+w$åÒesåù¿ðöç_ôÌkÚ<´ßm‡û_ê_7ï×y•öCÐnKq&¯q§©2í»áóS<Âõ'Å+÷΋6na÷0ÅùÒ¾WiJùÈ•å/ùÓVz‚Ï»í¿àÁ~̉Õ}˜·}ÒÊï»;W¦|xåEŠ&ÿ£ý‘ò<ßãÉ>Ö?»3Uz~²W}~ò§§ønôs?ó"9ÿ†ï>*“ïwU?lyŒ‹Jå©~– èüNûo¥uÝë•7ú•ͧR¾{ýÖ\©¼²¿¬HyM-Ÿ òþË_ôWœ÷¤ë¾å¡¯û϶SÒ£?m<¦:û'íO×âÐõ{k®Lû›¤¿_° ÓúîýïüõOþ½ßßtÌOúªípÞÙåLJš/Ƽ^É›íQi¨vÍ¥‹ÊæŸ+õ»&&ýÆuÉ|®foO•´wùkëÁùó ?ãß¾îɱž$ù#’~èû¤ý–’Ÿ8Ѹ•~÷Ý3•Ž{ÇÝ‘×ß|ëÏü[ßú‘.[T*G®[ú÷½_²ÕCO.*íÛ¯Ÿe¦ãM/^N¯Oöê%‹Êf¯Î•ÊÕ”—lû=®ü‘êk)¾’â-ß¶| ¸!§Êt~ÓË ú«þ—yªlñšQ™ž¯œHù#©ý²éÇ£ðÀ:¨°¯Ðòëm•«¶Çë]Ç“œUN;~ÕS”OÛ£Òëõ¯íJõRÏW¾œ\T/R~yܼ8ãOúg”ûÖí5ùÅùíýÃû5ÿâTéz¡R;Æúo÷[u¾™ŸÓê•^o½zŠë‘ßÇþÐÿÝâå‹Jõ4çóMnñšÏýÎ×|Jô¥ºF¯ouߣ2Ås’ŸBûaÝ<ò[<ÿŸ¾è¶ºó~û)ùóR¾mË?‡3í#¨½“êpR½€öaó/@¿¯ãºÙ_£ò€}äÚßWmúÆ¢Òù³ ·æJûÁùµ9U:ÿþ7«÷8v޽麯û±éƒ¿ö=ÔƒRžŸr!ÍÇ4^Õ¥ÏOûc%½Íã)¯S=¬í[“¿Áþ·~Éû¹/aºÞù`|á깲ūaÚÆøÆæTùÈEe;>*Ÿæ¶ý ëò•‹JíûÏyeÿÙ_¾Ïseò7¥¼MÏW.éS¯Ð®õ¸óÙù™òZ)¿2åç§üÏ×NY×?²SYÊ×Iû5¤}nZ=Lu¾ï¹Ç6žv›÷L³'ôO˜W›üº)Ö¾Û¨¼f®T.§º&íÙê]çJõñOOþTíé¤G©¯GpLûÜ¥qÔò|¼nNçY[÷`ÓËGeZ÷Í×ñzí™”§äºì ýQ©¡í?;Wzýî\yäûîù…¿øÎ'µq–üüû0Å¿´ƒÛ8ƒ-ßkQ¹5Wêõ¸z´v³v»ãL9vô;òÚøÎojòÊï{tþ%S’ÃŽçË>tÝôú$?S\¢å /*SÞÄÉEeÚ@Úûk];¹ÅçaòÏz~º¿vÁôxÛWú½R½—v™Ç“äñd¥üÆ©rcT¦üyÙÖÚ{Þƒÿâ¦øÅnr•}Câþq©%íÖòçJÞëÀ¿«c›ŸÆñåïÀ¿Ëá÷Nzd\¿œ*S}_«ó†©<åmû>~zÙÚö~¥4¯[܃ç§}'’\öy©?ìߟ§½úéàò×ìÇ«ràf/ý~/\]¯>èø6Ôã1>;W¦xêѯú•ïzÚþ+›¾g]š~|óÄŒ3é?Ñ_e\Üz—íSßvœ%ÿPÊ?RßvÜ8­wõûè_ó}m/vÜw*õ“ßíØÏ}Ýù·zÌg´¿7àxe§å¯Ù“;S¥ï™â•×M•èÿ7ü‚E¥óÞñˆ¿j¿ò¬åߎJý¼¶ßuÎyî§'å?È ïs×gìÝù­úiÚ~«0íK°n¼"íÓ!íý͹¨4ŽÜî?W¶x \w½¶}ÉOèúõ˜êCïïï ïÃõËßj~"O–¿æ÷×£\Ö?èõ~Gýißǹqy@Þáêý71ŸâL¥ãØqrô5Ïø‚¹Óf{oçG»ÏTyj§2ù\ïÚùS¥ïÝîSþ¸ë¡íq½×àú~äEOù·§û´6Þ´C|Oç±ónGΕê}~å½q1óAŒÃ¸˜Ïkq/¨Üh~£©pù‹~ŽäLñ'yá«ßpûåãcÿh·} Ôÿäùú<_zÿ'÷zýU€É•ò>R¼)ús¡ã£åÿÚ~çËÆ¨Œþ5èüH~Š‚ê }ôÝ¿àŠK©}Çôõ¥Ú¯Üoùkó;ù5’ßÀvy<é£)Ÿ7åÿ¶õr®ôû¦¼²–‡[^L~ϔϚì çÓÆ¨Lþ{ý®Ow] ~æ/‰õt´ßþHñÕHz‰íUÏhyÍSeŠ×§}6µ3š5U¦ç·øtü¥:¨TwÕò aÊûlþ¶QÙòæÃ©^èqão[иêÉQ©^©ÿò ¿yçýî3.þ“;þf¬ËV/Wð¾-¿t‚OûšnÀ4Ÿ[¾ l~i˜âc¶Çõ$Ä¡–¿¸.xüÚ©°Õs§øB{ÞTÙìw9*C\teWsÞ í•~‡ô>ž/mŸãÔû'½Ïç·:"Û;*m_Š#{<¾oåò×Úe¦ö”ö‰~|Î_=G±ó|k®Ü™*S¼×xƒ÷kùßÜO?³u*ÚaÆm.…®Ói?ýñÍßo{§Jß·í— [^Lu©¿NNpTZ?ïû'ÿIË7ž+mßî‰Ê‹•©nÇ÷óü“‹Ê–W¸&í¯ä?ju¦s¥ë\Ë«„ÖÛ}éw¿ÿ3_÷uÑOœò¥’Mûþ5?>Lu!-϶¼}èúíû9nôkÚ?Ú7ÆWÖÍÇUÛ™*OAÇA‹SпÇî\Ùöy[NóÈS¼/Û“öÝiq QÙòöGáò7Ÿ:Qézaœù÷Î÷f?ŒÊÛŒ;úâ{›ïýÁç/™ò‰ô¿×7nªÿ¯ùc¡q–ò*Vúß97ý¡?~ôî¿bòO8>Ì[IuJ-ov®t>8_R>TŠó».º.§¼5ûWy£¿W=Ñóý¾~éxJþeõÉÔÞ6ÞF¥ç{Ç·ÇI½Xùf™ãñV'6*ÕKS\ÓöºÏŽ×«»ÏS¥õÂ×.2þØþçû}<¿µ6?2Ç7`Š‹¹^¤¼åÅ‘¿ýŸ?ñá¿ØÖaŸëß6ÿ0TßLṳ̂}ñš= SÝ|Šç¥<ï¯ ùÿË_‡óT™òó›ýÇý­oQ©ËüPýy©Î!ôûòý‚öЇ¨/¶¸ØTÙò ¹ÿ>Lã³Í_Îoy’<¯ùù•ûÐ<ävý\ÙÆLùùúåGú/R>TÓ×8Þòm•ŽCý5mÞM•-ž?`8¿å©Â´Ⱥòq7P½cw®ô{Xÿéýlï‘wÿ¹ßþ¦·Æº'í|ë)·Î£æ‡œ*7­NdQ©ß1Ù©gÝï˜þþ†ë´ëh’3ö¿×§q¢œLûy}Û|®TÎë—úmÛþÐþ÷{§:¥´ž¥ýk’^˜ì™MñÌS‹Jå¸yÆkœ~ýµÆû¬?Ò~Roß+=®õüèW›Ö£þ ë§×¾ÑOâq¯¿àS_½³õÏïhï•ìDçþÏ•Ýä:iÿ”¿¯ç!y5>êMÍŽƒö›ûQ;s¯û<äÕßÚäÐÆ¨Tß3¿B9­²žìºEåé¹R9¹õ_ =Wzÿ“‹ÊëG¥çû|¯×߬Ü=þ¾‡¿ñ}M‹Û(¿’^ßâ¦ðº¹R¹¤\ðï^¢Ò÷ö»hW4»l>œÞOù«~ª\==*É'kÇy^Ë7Û)oTÿ­ßÇyÓòV§Ê­¹òØ—<ÿíŸÿS-Â|Kižzzˇ†)?XnÀäÏIùÖÍÿ3*“]Ó씩2å„|Øå¯½§vææTéw´]Œ÷ÕsZ~0lûAõbõLå•ò;åE™7àú`ÞÒ%£2µG½W¿—ñDýìwýNz¿óåÈKñŠOý×/JöÊò×¾‡ßÏqàù-OŠã[3\T¦¼<õˆV7 c}Ø€oþÁ©pù‹þT¿“ó+Õ9¥ü× è{8Î=ŸqxÃ~:•Ë_Óm¯z<öa[Ïœgê©ö_ôÃÑ¿ó2Õݽð÷¾ýÒ_ü‚ÖŽäGr=HqÑ4Ÿe«§•!O<ÆYS;å‰{ÜûoÀæçû<ßW?Sš§-ŽÎOöiªçlyõÞ¦xšãV}ßõW9q‹§?ì+.ùê_Œ÷5/Ì8šã=ê†ýµê}—¿Xÿ˜ê¾ZýLyžëÖ©ù¼¿z¤úŠS¤|6Ïä¨LòÑãŽÛæß•~í!ý>?ÅI•»Úi]ןh>ÂÆ¨ ûÆõ|$Ž7¹ËùóTÙü·Pÿb’~¿$·ÓýÌ/IëJjOòW'¹™Ö‹^ÿÔ7¿÷Êû̌ʤO6}uªÄþ8ðïåðœåO{ã }œVçoWö¿;J{}?ã­Î«È:О§ßE¿É>lq¹¨Ü+ÛqÉù)¿]ÏñÍ©²Å³aÛ_zT¶}ÅFe‹ÃÀ°_Íòë’Û~Æ£²µ6;Àœ çkg·<‚E¥þýNú<Î<êû¹Ñ^ÏOu°×ô~Í•ê iŸßݹRýÃy—â·Æ×Òú¨ïó”Û)¾Úì4˜üˆ­N:oÓ<å{®ÖâúË_®O•›S¥ûÄÿÛÇŸó''ÑëÞFeˇ㽶æÊæ›*=¾1*“=ë¼iùïÐû{¼Í³Eåµ'*Í»P%•ßik†or¶ûô¯¼tÞ¯»_Nª4Îç÷lv lõŽ0妸–rP?VóïÔ¯êùŽGå¸r/Ål¿vºëbªõ}œÿM.Ê´ˆß+åg*×­ÏóþŽÿ4^Ãþ}©^±Ëèû¥ñÝò‡¡ç§¼yÛ«~ßö[]T^;Wj׻σñnýQ§pªÔ|êLå•‹Jíÿ.–u×ú±OŸ¨4?äº3•þ¯+¡ònÿD¥òÇxþu£Òü¿ŸõlŽgûû2è÷Iöõ­~/Û£½¥^Ùþù™Jå·×·¸ý€g*Ÿ§ÏTšÒâö'*m¯ïc¾Çõg+ýû¤Î7ŸwÝN¥Ï{ì\ù¨©ò1'*ÍËx̨|ô™ÊÇN•:[éxö}¯_NÛï÷ðþZTš'âûÙžï÷¾~®T˜o¶7*u¢òôN¥ã±Ý§òqg+¯]T:^|þ£¡y(m¼Ñû¯åG 8ó•{£ÒþTž9ßìOŸ·w¶Ryaÿ?j§òº³•MžÌ•=SÙòŠNTÚžÇBå¹ë…óÉç™ßvýNe’îË |Wvÿbç›ú„ë‰ù£×O•Îï¶þœ¨t}v|é¯t=TÞô}Û¾0S¥~ ÏWŸU×/×Εñ8Ô~0Næxu¼èçß+Û¾_£2/ï¿?*[\ *¿Œ+Ø^í7ǧú:ù/’ý¨=œü€Þ¿åÀT”òfëòy¿æG*ÛüÞÏþ´=­n(ð¼Ó—ýá-ïûÉÞwù[ùùZþ%ï}PÞMÚÿ©íJû[>äTÙâêrªÜ•±*—á|‰ý»ü5;ÐqK?ôýGe‹÷O•)oµù5'8*Ó¾J-_¦ó]÷6F¥~ÉíE¥ñó(wg8Îw•ê -n¨Ýhû=_¿êIèõŽËVÏ[}lqg¨#í3 ×'è‡Ö/üv®ã;Ðç%¿¯rÌïáx5žØ¾ï¨|Ä\©^ÔüúpnÍ•êyû‹ÊG0¾t 4³=*[ýTjqyèümõž£R=ÈãÚ-¶O;Óë“×û9~ÆœŸÛ£Òþwüi7Ͼ|Tjy?™òT>Ô¸Q²CZ=À¨TÙ¾V²€£Òï£Ý’ê—’•ì2ûÇñ•ò[þâ¨Lv’×§¼§·™*•çæ“oÍ•Gÿgïs^ý–këDÒ÷´ÇRÞ¦çk¯ÏSe‹·Êuë ö•>?õ³ãjoT*WõWÙ^¿“ýo]ÝÑo}á³üo¿ý ¿SÕó·hŸã>ù\÷§é~iûT·¦^lÿ·|”épÞå…Ï<ñÇ7ÿÕ˜¯êhÍ7õþžŸì|Ûãzãz©}³n~§~×–ï S¦÷]7ßÕ|_Ÿ—ÞßûÙ¿úÜÛëÛ÷å}œç­ ço~ɳ•iüØÏ7_ÚþMùMnAå|“kSe‹óÏ•ÖÕÌ[ïÿC'>¥ÕGûž®sÊÏ$oÔÓR=ëvªJù©NÊëO.*í7ó·ôŸ×_î~­îf<Ùû;ÎÓ~Òç¥zEëÒ´«¬ßt_"õð‹þü˾÷¹ÿô’vÏu\¥uÒuÞ÷Šù‘ÐqÚêGaó#Bǹú»~Ýs¯zë·=ö»¿ é¶cÞâ³ßü=‹O½W¯+ïßöuƒú7Òþ=I^©Wù=ÕSNM•߃×,*wÏVº¾ø½Œ“ª7›'¢Àïiœñø›ntÛ÷¼õc¼£ÕON•êoö»òO»¾ÅóF¥vãÞ¨Ôn6êõŽû”g¿5N×i¾ãòׯßî\é:§?FùâºäOÈŽò¬í3ÈõöëÎTéóÓ¾C®+G^óWoÛúÿîl‚‹Jóµlç%Ðë•ê•®‡Êí¶?"lúLúFòc¤óc¾¶äü:ÕãÕó•ëÒö´xæÏYR;ÆuÒö+ŸR~­ëcª“ðx›WÐyéørtŸ™¦ïÒ~ÛÓêŸB{›ž4W*'\?\G[üú¾çüøŸôÄùóZÞ§öZªSp\µýi×ö¨<ú÷¯xö›7¾¤­Gè¿-®inŠÿ¦|ãPÍÞ€Q…Éç÷Z7ÿ<í“ãx9ò3ý•¿÷´wÄx—ã´ÅíaÚg@¹¨\ñ=Z=¾ÏŸ*“Ü÷ym\@ã#i¥qwñ¨¼tQéº{r>œ^o¼Çç)gÔ/Z¼ zõiõ íÖË`‹Wq½ñKýÔ)žßòÀáÖ\éqõ)ã5ÊuÛã÷R®§ï«ëÿ¦JåVªûQ¤}ż^ý:ÍÏfÂà[þz=à\©kùR•®çm½^T:’Ýì{ªO8ÏõçXÆzýKö‡ù€IÎ%ý¹ík7UúÝõ8ïµÚ¾ÐyòSÝlÓ¿$Ï×þr|ð}ýÍÇß|ÏÇ_õw—õHdÜ,õ&9yÁÿóMïøíæçuœ¦ø¼ïå¼Óö½—Îó±œçI¿HqÙQ™òôZž©÷ƒ)þí¼‰íƒ÷ù)>§¾ï¸oq…Q9O•Æ‹¤÷k~¦QÙüse¯)ÿE»[?G»=ú™¿ø%¯Ÿ›üò½}N’Ÿ~—QÙü £²Å}Gåìž7éß*güž-Ÿ6¿Ü¨Lñ½$÷’ÿmÝ|å=pÝAóÓzßh—8ΔwÛÖ§Q×™5ßW»¤ÉIŽ+gµËÔ ”Û¾úšóSy¡^Ñü#S¥vžßÃn‰rμý®Ú[Ú#^¿7*µŸôŸ_pÞ¥¯úÏé;æ;~ðø’ÚÆÿZÜ_TÚŽw™+õ¿´}Z ÷s½Pî¤ýz÷çüÛgü鎾¹Ë˜üdÊÛ¥Þ'O.*Óþ<ú½ÌÏh‡hªTžgKó;÷}ÿ~ç&oaËëç|ÇáÔÑì2®÷}¶GeËÃ…û‹Ê– Sý§vÄ9Gnù±7ÝúÆ6?[½È\Ùâ:£ð ý®âþàÎcãÖ1¯zT¶xLûœº¾éWP®0–¿¸/y«„I/JqŸ×ÖqîŸâp©^I*¿Ssª/hþ]9*WëÆ•3ÞÏëÓ>GÍÞ®OúŸÌ[Óÿ“ò56§Êß²ÿ·æJßßuÅëýÞ®KÍ¿µïZÞtÞÛÛïùêm[p{Têoi~ws¿Í©Òñ ÝÀùË_ôïïAå@Šß{ÿ¶n,*S¾”ß½ù¡æÊÍ©pµîìÊV§0W:¿ÒºêxlùTµ]îÿ«kù>o®t\µy6*›*§ü-?/huŠ‹õ˜ê=Zÿ,*S}Œý±›=µ¨T.¸?ÌÇ?óÆúŠOq\S<ÏvÚ-ïÇóxžq Ïwùü´~5ù6*÷)þ{rQÙâˆÜßq™Ö«Vß6*í/ÙÚ7*›?œöûþæ+º¾ë‡hõ¦£Òö]øuïzË7ÜêÉ-o¸Õ?, Wòô’¹R½—øÚò×úmk®ô=Ó8Nþ¿´~­«G{<ÙWm?ÊU¶ñ0Uúœ¦ŸM‡S?~ʃÓ>P¿Oõ=ö[ÊëNÇmß±ÕÁÀ‡vÝó~æ‰&ÿO²K“ßÄþnû‡ÀWOãÜ÷Q¾ìN•)¾ëxÓïšâ›)î”âtéywü¶y;WªO¦¸HÚ—§åU.qÜúÝ[œªœa‹SWÆ¿f|É~LyP©ŽI9à¸Iß9ÕA?nqüE¥ó&ÍûßöÞ ¦y¦hv$lùVs¥zJË+„{£rsªÜš+]Ç´ß\ïµ£¼^;|gªlú6÷÷øM~ÿÒoºÑ7ìµ8‰óÙõ@yªž³wçJÿÞ­ò¿åBÛë¸Hqõ‰”i?¶q}žóÌ}f[ÝĨlyŸ*Ó¼6Áö&}"ÄýWry¶üE} é¡ÉíøÝ€)_5ƽaÊ‹Lþ¸Ö¿Ü/Ö9nBÇûÎäøþ\iœÈã®cW~(o¼¿lq«¹2ù¯Úº •7Í€Énkñ˜Æ›l~IØêg8Uš,]7[½ô¨´?›½4U{bù›=øõ?þÄùYûku<É…P/³ü­ä™óX}%èµñïõ¶¼ÑÐÞtÿ¤wsþò×íáÀ¶oÐTé÷ß+S^uÊS¹îoûI?÷Ìþ¾¡ÝÍï8U6¿íT®{½r¢ÕûÏ•-¦ø½ú¯úÛg¶|J8CõûTky¿d'¯k©÷ܺïKÚÇF=K¶|Q9*[~,Ïkù20åÃ>r®ô¸ëpÚwÉzHûßãÉÏaþ•Ï3nÿèóìõšuíWå¿ïëû|Jåò·ZOüþ©>3é¥mÿc˜êp“_/Íÿ¶>ÂÖnÚ“ìÿ£Ÿý­ßúößúùÖ.ëž S|A}Q}éÔ¨4þpí¨ÔηžÑ<3óZÝgǺnž²Dî­žÛòÍáÚùÓkÞ/½GʯL~ùf÷Cç£ßscT:Ž’ß:íó™ôwåË-®>UÇVާ|œíQéùŽï¤o9Þ}ßT_ÓòyG¥ï۾à 9þ¡úÇý¾'•¶Ïïuõ¢Òñm|ÞúõEå“ëz›/£Òç©'´¼§©²õ'Ü•úû[>Ô¨lùJseËÛœ+Ó¾U>O½©îŸæçÉE¥ùOö—òWý]y¬_P½¥åÉB¿Ÿß£ÅååT©}ëýõ#¦úðM¨|Oû¤¼áoåxÚÇÅëŸÉÏ“êó“?ÇómŸíOñd¿WÚ#å¡§úçð~Mÿ®?°ùFe‹g&{.=om{‘ó]íoíý '•®‡æ™+ßÔ—Ú~MÊ+õQÛ+OÊVw6Wz½ãÑõY»²}¯©²ÍGÞ§Õy|ªLöL’grªLú{Û÷iÎ4¾Sð¼ßú¤¾ò¥GÚ8ñ>—N•ͯS¹üEÿë½yªóT©¿î¼ï¹ÝÝî÷Í/jû";OœWÍ¿±¨Tϳ³?WªÇ6½qªôþÎ{åÄ)èùúcÔ{NŸ­Ü•êYþÝRŸ×â\Ÿê\m?&žç8S§<¨æŸš*÷ÏT¶x,ôù-^5gzõêdwxÜû¥¸¡zz³{!þÅå¯é×Λë¦JÏWÿ=úÝ/|Ë¿<èccžqÊwHû"ú}SÎùßæó¢R»Óñ²5Wj¹î:žµ“•?>_y“êDÒþÂ-ßö¶zˆ©rîÎpQé÷¿f®Ü•·#ϸËEï¹ñûßE•ö³õ*êöKªÿNlyǰéÿ°ãQ¹9U†ºä¦ÍÐø¥öñ¬MÇ›ý™×«8YË/æ>è…Ë_Ü—ßñ£þ¢~¸1§ßw†!þ¹z_DZòH¿‘òbÝ|*åa›7S¥òÒöÚ>ã5ÍΙ*“ÞŸôjïŸòÕ¯¼_‹‡Í•m"Þ§ÅQF¥òÖ÷Ý?[™ÖKïßÚS½E«‡ÉNjqv¨¾ŸâÈ~Oýó9ò*VópcT2—¿(Z¾é¨\3ŸóÀ|´߇iyÜúˆƒòðÖÝ/F¹šÚáüIq—–GAûŽ?ç·ýž×þ@üNÞW»ÁëS?Ø®ö|˜âµižÐOË_ôÓ)Ï[ýt>ÍS¥ëªó1å¥}û¼_ò;&yâülqkèý’üKqæTŸœâ<›Óá¼ðƒü¤ÀÔÏmÃ6áîTéùGþìfOø×Wkq6Ÿ£¾‘æEÊÃHë¥Çµ_¢<÷þáüæw”£²ùÙa‹nN•i_ŒfOÃ?yú/ß}û—ÄqÜêp`²óµßR¼_;Y½0úÓG¥ñ¯S‹Ê´OBŠÇ¥øœ÷ó|û'í “ìË´PÚ‡§q®Lu½)>«ßÍñ£œõøÉQéxÒîRn8Ò'µÃ½íÔÞ1/ÃqlÜÇïrþW¼û³?÷‚ú}—¿ƒ÷7[T¦ºíLåVŠé‡S?óï‚:>ÌÛÔoïó®‡ÚÅÊmã ÑN•Ö{¦º8Ûç:q-Ôpý\iÿú¼Ó‹JûWy—öôý•§­ÎîL•×-*ýžÖ™:/R#±ék‹Ê+çJǹõ!WOpTú÷½¿zŽy=ê©×îTšŸàx½rQyúDåΙJýÛ¾r\½ÑãÚeêa®C~S;•Ê­«çJÇïÞ‰JûÛ¿£»;Wþ¯ÇÞ@û×z$ßÏï£×þ÷~;;pT¶þç|û£×E¥ë¾ãÁþt|˜§æ÷¿ z¾ý×ÚÏùú{l¯ógQé÷´nqw§Òz¶o;[¹;Wú~íû/*ÕóìöÉëù ‹Jç‹òM=÷L¥ò¯ÉÏ .*µÓدo>}¦²å¨ôû;}¢Òñà|°~Qù¤<÷{8^”·-¿âD¥õ…~Oý&[s¥ãÙó]O=®Þ¾=*µ\O=_»E;¢åéŽÊ¶ß'Ïw¾%;$1ùA·`óƒÁ´ŸHŠs5½mT¦¸”ï§~e^tû7¼÷}/¹uÓûRÞbÚ—U½ £“r®Ttùü”‡•üìæ]z\ÿãºõ’~7ü‘=_jª4þãv0Å“¤û)$ÎÐû¥qžæEª;6îÒæ!Ü€Î#çƒþžJõž)^ œ:ñUÿöï|ËÉV¾ S>pÊskq˜ä÷º÷ouÜ¿ÕåM•úyÍOñé6Π÷¿d®ô}Õ_[^ÜÎÛVWíÛßâW£2íîùÎÛ–º¨Ü+­³nö3Lö¨Lrð¢~ùt§þ¸_§Ôví\©Þ«ª_ù¨|V/lytß™à€Wï·Ÿl¯ýlûÕÛ]šÝÓ>Ši¿Ÿä_UÎ(ïÓþ^ÚAwß‘#Wÿánôùÿ‘ÿÎÏõ;˜¯~t\hw9òG¯Ù_¿àÍÍOšòºšÜŸ*•#ÊÍf7ÂQ™òÔ’þ•ò6S>Mª·ytÖa©ÿtÝѺ½¨<)G¥~ÃVïó¦JçW’§Î×Q9O•Éïoý&ÿýÓ÷ÿå×|d\[:.÷÷œ*¯IOouös寍LûÒ8OýM¿çþêcökŠ3ú~Ê»V‡>*S¾VÓëáMN}ÄEù–WF{ í»3U*OšýÂõê1—B÷³¸ðÕ¯þ‡/»Ã7­èw²=®¿úÉZ¼˜óõÛêw6?á4Ü_ò¼äôùÖO7?(tœh¯';A}Cÿ†ú”v”ódQÙüs¥óê¼÷\ÿ¯/þ»OŒõ mèüoþ.˜ümÞïÂ{]ê~ó³ÍïØô?èx•ʽ0—¿öwe®•~×ã·½ç÷Ýt÷êø÷IõËÇiu»s¥ý¬_ÑïŸö›Ùœ*[þ d][å…¼®å¯§§×»ŒJ×Ù”¨Þ™ò„ú?ÔÌ4éÙSúG|žöyz^hßòׯ×E?ùœ¼ôîÿÞÖÃXï5U¦¼£äÙ+õ{jßKõ'õÉägsž^9Uª‡´õQ¹7W:¯ÔÇì¿´~û’þÈgÜï £¿Óvh§úó¡´ó‡{×I×ÕO•óT¹1*ï;Uz¾ñ×åŒtœ)_©Öö­+‡Ô;Œ/§çÛ~çùù—üÉ_ÿæ[ÿ¦éÊWÛ©^àù-:?ÎyÞÇýÇßå×b]j³{G¥ïkÿìAç­óÞñÖ û©ù?àAõ»Ì›åouü{ã†ú_h¿ÿÔ?ûû_ùŒßêëÒTéwLë”ïÛê'áºqÓtþºõÆÍ?óõy÷½óÇÛ¼u=ozLþœæ‡…Ë_ÌoMþ¨”Ÿ¬ŸÓüߘ÷ íoõ}ç—í×Îöû*G\—Ÿ¶O»KnŒJÛ—Æ¿í÷ùÞ¿éõüƒþÎ`ûŽ-.S/­ÿÚ¾.ÐïŸò·½þ¼[ßýÿþ3oŒþóuëƒ=îýÔk̇9¹¨<¾ñ¯úÕïÿè(Ÿ’}ìw ó¼Çi¦Jç‹ëGÒï\ߎ½ëÏ?÷~ôí¹ú|NÊ+SöûàçZþbÞVò'úþÇ?óuO¼Ù7|˜ïÝþnÀÖ\iîN•é|õÀfCûK¿F’·{ÃÞño~p{oóD”kÞ§å @¿KÊ[H­ícG{|~¢÷s{\ÿ ÷[þæ;üúÿüF_õuýïv@æíJ_ö¼K¡õ©i>Ê“£òØ_ýþ«ïø1_ÿ‹y3ú%S¾•rdZß)­¯ñyæ_Yb|ÀýûŒãŸû•ßuÑ‹_³ÝÚÑöñƒøå–¿8ŸR¼$éQÉïî|<ȳ·¨lvîÙÂÕû_’¶·­[£Òú­¤çù¾)¾§ÜMyëÍ?4*/™*_æ-^<*/*½ÞøŸz±õOæ•y¾y4ê{r‚‹Ê–g2Wê_hqèQi}œíõüÖ_s¥õpæQ(ÿ1UnBýÎŽwïo\/íK¤ümù^£ÒùŸòOÚþ¡£R½'åÃ$ù•üÉÉ1O•w|©‡ùüݹ2Ùö¯×«?ù|ïŸüÜI¿J÷kò.Þç ?üê|ÇÉA×›—ŸÆG³S•)Nîùíþs¥qÍ´Hå“ß?íoàø×.Iþ»´Þ§øSËC‚Í ½¿ò底¶÷œ_éë_û‡Ž§¾åip|s®lÇaÚ/H¿žãB¶xþTiûÔc7ê=æ¥ø¼—–0íG$õ7zýÖ\éû7=c§J×Qý…mÇép¦þs]ly SeÚ?å±%ÿ@º«Ï€i?§sîü¿w£ûÍöÿÎ#Ÿ»=*Õ_7¡ú‘öñÔþWÞÏS¥òÝõÒ¼ãGÊgýÉ _¸Õír}‹OJï¯|7¿%ù/Ô'nö¶yþµ—ýUÔ³’žâsìç­¹Òx–÷kû0Á'_7¿-ÙóÛ£²ãEe«O˜*Õƒ¤ùûëæ$ÿ_òצ<…ä_OvIòoú<·x2œáî\ÙòŠ¦Ã©]áúãñý©Òç¹ÿ€×ïJõZåFŠ—4?t¾™§¦s~'¿nÚ—í^P?ë}`:î¾qòÐ÷W¿KñA¿ŸïßêÂaªp?Ê–D{œ_mžŒÊ5/IýÐö§¼8™ô›´Þ¸^xýºyB£Òñ—îg©ÏÅ}t zÓMÿóc÷Ð7=$þ]§´oK˘*S¾fŠSµqµ|ϴχñ üðýïXJ×ñ#ÿòÛ>ðׯnúŠöáÚöÐTé÷n߇÷Æ~Yù[èå/î3âó퇛¿ðº_ºø?¾«×ÙM•¾W«Óò8ïÓì¡©2ù·¤×;Z´û ¸PºnÝu+éõÁÏØ×±@ã/—/*¯˜*­Û·~È:ã-þ3*µŒoú|Ï7^aœX»ÃxhНZ—ÙìØä7Ç[\pG¥r×xŽïçõ—,*·æJ×#ן¯¼ƒ«yâs’\hrkT&û$åç¹®§|—dO0¯–¿žg3Woñ§Àuã!)o'ýý§W±zï¤Û¿{g+Ó{oŒÀ©Ò~JëŒû˜&ý»ÕßCç¡réä¢2ù¹š?€ö´ü„Qéw´¿Ò8Û€íûj¿»N$F‹r|Q©=ìóÒ~2ÆíAÚ7ÌõÊýj}åSÒ'íw¯·µ ÓùÒ8‰í×î8÷ùú¥Ü'Ìû‡ºvT^·¨Lû„éŸ7N¦Ýá~ÀÎû‹¦ý÷£¯|r³ÞÛ¾ñÓ¾áÒöÿÉï‘ê ´“ü>-ï¶8ͨlrªÏ&?r<Ÿö­W2.i¾Švr³¿áþ¨ôyæÍSe’“Êe¯÷ø±Ýoþ¢{~àÏzžè¨Lþää? ï±ü¥ûÞðw¥+W×7}iªt<'ùç{kï¥}êZÜsªtü¦ºåŸã³å[Jå³ò íOÛß‚ú;RYù«?L½Âçµ|¤Q©|óý¿~å«ïŸöñq<ª7šwä7?þ¢ÿþš—ö}naÊ“ußFÛ‘òn’žäì ÓóÒó“>׎·¼Zi;8¾“ß&Å—½þÜ¿ü„k¿ó ¿-æï'ÿQÊ_”i Ïw>·º'¸®+}·Ôž”ìsÛ«¼Lu^-.“ÝÖêð`ŠcéŸKuŒÖe¨¯º¿E¢òNÿXËûš*Ó>a~?÷ss½PžoÍ•©Ž‘ó­[]é'®C©n6í •Æ]Š#´ySždŠ3ØýÐÛ£ÒqöÙö}Ò<’MnÐÞ–O}ÞÆ¨ ~´èÿHrÎóg˜ÚÓÖÓ8Uú¼Ý¹R;Ø<³°ßÌò×Öƒôw!¤ÏQ?3/åy³j÷Ñϸëûn»yqÔŸ“=Ðö©•›se²Gg¬+y¥<°އ¶Ï'LqùQ™ò­Ìc÷yæÓzÿ¤%z¿&FåºzZ‹wÀ”Ÿæó'-N=*S}ûÖ\©ŸCÿ¸u“ŽÃ¸/!÷×þi?e‚£²ÕéŒÃi{SþrÊGjyÓáL~Œo³=S ×{ÿV?*[ϨôúO•Ê‹­¹pù‹÷MòT9Ôüµ£òÔT¹ S¾òÛ÷þ¨£gžvó÷¼9ÕE-±®#ù+RžÞTnì,*ÓýÚþ7Ðãú<k®t^¦º åTÚgÛó}žçëßÕþОRÎÝeª<òÖ;ŸöÇžëÆ…î=U:o”w¶«ùs¡ë™ýÞêÐæÊTÏ“æ•~Bׇö÷· ÷»j®ô¸ãÒõ6½Oú»ú™SQÛ?&û)­gmèùPýĸœïä±×½ãñõaÑ?äsRJ²}Þàz˜æQª“K~—tÜñ~@¾Öò×ÿ,<`_Ófg^ô÷zèõŸþÔ¬ÿü¦zrŠ¿¥¼só@oß…ê§¡ýíýÔW6§ÃéºíûøþÁ±üÅ} ãú •¾GwP=ɼÅVÏ Cc´gŽ~ûßßá)ï½W[×]—Û÷•ö‹ON•Íÿ-GeÓK¦Êt~Š_Æ|AhÜTot½õüƒì óÞ{âåOÜ|ª÷[­[¬³ËßêxkÇTéñä/pÝu_ý£æ«]µ¨4ïI½Áz¯TÏ–öUhyAS¥r*Õ7»y®LñÚï­ç·u­ùxŸ7Ô~Hz]Ò—w¦J×í ¨Þ’òHšþ S=°ï×â-£ÒïáóSxš_0]Ÿâ!)¾“ò'Rÿ¸þí-*=Þâ rªLq|Û¯ÜMþñã}S^žçoÍ•ú•g®ïÍ_¼¨Ô¾õzã¾Ûs¥÷óyËEe²#ü~ëæ1 ¬Ö©^þÚºžöe–Mž*•÷É•ìœäÏ÷ù»g+“]ÚâÓ£²ÙQ SÝžöŸùSG?é›nü±wù£6Oí?åðî\™ìDç£ïí¾Ý)oM½Òïe|íÚ¹Ò~;ö»?ó³o}Ö§µïê{!t½jqDè¼6ÿm *'¼¿y˜Û0ùeÒú´“ÃñÛ®Ÿ*}¾ú»í]7ÿÐ÷·=)_¯½O ã8ÅßæÀ›¼èG>ó7}Mëçqj·zCóÛ@×GÇaÓ+¡óQ½«ååÀÝ3•íïÓþ¤ç;oœÿ2å癿œòâ¾’£²å9M•Q?€®wÒþÒŽhõ0Åš=ÉqûÃã;0å)ë§Kù<-dªÜ+›¾Çý´ó|õÁôþžßö7‚ާ¦¯N•1> S?é1Òú¬”WÙäꨌñ|Øê ò3­cÞ?ém^Ÿâ•)O±å‰rÜçíΕÆÔßbý.lë:ô}̇jñý•Ž÷¶ï"ôûµzØæ×T©¼oõš°í{6*ÛqÈû,Í_©œjúêGeªOõ‡m€imuYÐö÷­·x؃þñÊøýi_ä$ŸÕ\o6/ösÊwHëkòÛ¥¿›•òR>Šë±ë‘~H×ÏV_¿¨ÆÁ£þ wÊ—”Ôüðø·¿èÕŸýwmÏMzµþ›”¿’ì®æG•é½[üs:œÊY'=4éñÚmÊ«§J¯×hσoù?’÷IvnËë•ɯ¶õ«k¹¯¥v–Ï;zÓ ü#žüžæÿkq6˜ü–®#|áO¾àNúØéƒ¿•>eè§SOñ{¤8ŠLþéäaÌ燳ù/F¥qÌ´ÏC³S¦J_1Už\TšÒÖÛE¥÷3îæýõ *?›|i]P¿²?Ô;]Gnö=}ïöoMÛš+ªovÞè·Nù*Á½üÍ=þw÷_p£ÝÕsí·yªTnlŒJÏ—ŽÛ–§7§ÏKrÙç{½óúüWÿéCïüißÖþî—‡Ôïj>ý¿ü­úù º…”rì¾zÿ3Þ{AÓG}oëò”«®÷ÍŸí§¦ÂµÞ9å£5} ¦õ6Å#ƒ]ºüµóN.*/Ú=æÙœž+ÉkˆzƒTÏn×ÊV/1Nížo‚)^”üe-¯Šç9nÕsõ§´ý*¦Ê°¿Îj>§:†?Ÿ*S\“ó—¿è¯iu.0íô¡ÆÏɓ⑮³ÉÏÒòGåñ§×|ÄŸ^÷QIõ7Í?*ÍÇT~·¸Ý¢²åO•uyS¥óh]û¥é_Ü/Ä ÖÞOo¦8ŽïÓò²æJûWû¹ÕS/*·f8*½ô{ŽJÇWËç*“ÞñÖêÀ`ŒÐ>¿Çºq®uÇúCZgš~3*Óþ6-Zo²;W>pª´©]¿¨œ§J¿—ö¨÷;þäýïzÀ7Ç¿¯˜ê&7mƒ~WãïŽíÊ“£’õaùëq°EeÚ‡Äë]Úýx/äÅRoXé)Ž–ü-®6*í'õ ¿³ãE:_´ÃÚþSeó§À˜ÇãþAP½Ú÷S¯µZÜp.~÷Õÿ£_¸ëÆæT¸º_Z_Ò>mÞCó~”¯úK¢|†Þ_ýkoTz½ò°ù« ú˜÷oy€ÐówçJ×/û§ÕsÂóîuç×zøÑ˜Ÿòq–¿^Ÿý^Îç+æÊ[O•Ê}õ%ãuÃKF¥vÈÉE¥þßïÖoý»w½ä5?ýK)k:î6áGÞá/ïpîõ/kíIyg!eùKyÇÖáýî÷ßõ¼ßý‘¼_-<èþI¾:ž•—É~hysž“¿7åáµøÍ¨Ü€ëÖã¶z¾©Òç§ùšü,)¾Ÿâ¿éx“o‹Ê–7:W¶}Þ¸Êûh~ž¹2ùÔ\?\ÿÓ~)/å=§zxõ¡YÈqÛ¯}ázhž‘Ü•Žï–ß1Wÿîò×ãÔrªt_ ÆÕê¾Ö«¨§únÏoëÜóÕׯ۩¼ÉÛn÷ûwþâ_ZÉ_å©ß÷º³…Ë_¬3Iû¦ºúýœà¨t=öü§ç|×åèî\i>qÚç@{4í—“êmý‘ü-Þ5U¦ø@˧„ößéQ™ürÒï9Cïg<¤å‡Jû~£òè>í^ùÖWÄü'ÿNê—´̺ù$AÞ/M?5e¸4/M»ùÈW¾æòŸ~ùÅóþ™ÿõï%}îö¢R¹¾›|åzóçÌÓ¿nþÇ—¿f§Xïë¾%æÝYO¬“Öó ¤~;ý·¼Ë¯}ËþÍÞ•W/*­K×i<9Éå 8O•É”ì%ïŸä¢óÇ÷óúuãÏ-ÞÀù®ïÚñ©#ÅñœOŽwÇã\}E?«q·í•—Ï•—M•æÇ:RD[÷F¥ú»ýí:ãºÒü3Såºþ°Ý¹Ò÷IëôÑ×Õgþú»›ÝãúÚòryïOOqNÛ¥ÒxM~ÀT'˜öJqÇä'lïÃóÓwã/æAoÈ©Òûû}NΕ¾_ª÷ou pQ¹9UÚÿæçÙ^¿O‹ÏŽÊ–WèýÇ)¯l{Tª×Ùß'pªTÿ0F½O{É<ðSg*ó´QØöNz©ÇSüî¦÷¸Óû~ývïk×ÙώÃòÚS£ýžìåiÓË$÷ç½Vítýt=°_“þ¦4éŸIÿOÏwž4?ú¨Œú.l×Ó~ý»ú7?âÅ{Ïxì­þ³Ùe®ë»så#áæTÙòGeËgš+­'kzÆ\yü;ÿúmsÏ/núL« •¾WÒeò[&ûA=E¿œúÊC_·Î4ÙûiKõØögÌû‡3åa8ÿÔgS|³å MÐöÀäÇLã!å!Gr׋fB×Kïïñó¯ü½Û¿å!Wµç\;U®ë¯0_!ù}Ò¸IùD­î¶|¨]öM\þVzñ™å¯ù_y¯ÕõÇïuý­þÓ_¯ÿiu×ý¬3 ñÍÕsßêg­nn@í¦ýE¥þ[ãoêñÍž\T6ûj®Ô®Óß™ò`Úóõ¯ŸôøLqí$ŸôW«×7}ŠãÊ{ÛcüÙyjÜ×yÛö5 ½)ÏÐû5ÿŒûŽM•©ž²qT¶¼]ØöQ™*•‹¶W=]½_¿n«çp†Ÿ*[]Ò‰Jû¿ù ¦J׉V·7*Û÷pªL~ƒäŸÔ~q|7ÿ+T§|æÖþy¯WrÝky£áymœ©Òu²Å7a«CƒÉÏ’Öuíå¥ó%Å[|q®t=s>i—ÙÞݹÒùíõ§•®×Þ¯ù}^ªo¸Ùëþø1·ÿ‚ĿߞÖáæ…Oû!¥8ºãjj×¹Îyó{^ø¯§~³Õ]ì/*•»;•úíó¤Ô³ã~áxòÃ}æÓµùµïióV¹æsÌßmv(ô~Í.÷ø¨T5¹Oûš Õۛ߀ç§|«”šò•6FeÊ#ñù-ŽSÜÖç{ü¢xè_uŸ§¶ç:/• êßÚû-~7Uªìœ©T3þ›ß·ù ãÈ÷qÜŸø«—?÷ ïüïgn~ ˜öa õ¬kë½mÿÚ×òªGeªïÐîP^Û~¿³vY‹ÛΕ®7®›WO•­Ž:.RÝ–Ïw\6½sQ™ê*ìÏ”7ÐüˆSe°;—¿¶݇Êä¿kö܃-¿ ºßn«XTúüN-?ºO•ãZûX}ÐyæñS£2Å}ZÝÑ\©½o¾s²O¼ìëïøÔÍvzÛiT6?7\×oôÃd—ñx›?°å_Aç«ýìúmÞšþÁ·‚i?©þÓôL9U¶}¢`ò“$ÿ­ó`Qézj^jÛ_e@Úã¼Ô¯á<÷ymÿ‹¹rïD¥ý¥œ¹z®lëÏT¹Ó>P)¿Åñï÷Nû%îJçGËçž+ßÊUó5R½ó×ø&ùM¯lz0Ô¾´½›ÐãæGù½ìï¤O¦uÇö4?:ï· Õ›mï鳕ú]Ò¾c¶OÚßJãìÉîH~Ç–WÓ¾y^ßêQ zKªoù,ܯå5îT6ûº_g{˜ü)Në*x¿Ôžö|ì·åï ý‘ÛqäÍò×õ”©2é{Òyzä _õ9W}Û_ǸõYÊåsªçÚ€óT©öòoȯLùb)_Îû]¶rQé{=oµ>«ß*m·zùßÍÒþhöý‰JÇözó‡Ã½JÖ­ŸôÛiûþêwÉß¿¿¨Lþ¹=xí¢²ÕOÌ•­~~QÙü¸0ÅÚó¦ÊV'“ýåõiÇC²_ÖÕó]?Â~³Ëßj¾¨\þZý­÷õ¹í»L•)?!å#8£^3*•oúû·ú1Z}#×§qÑâvSeó#Í•úa̳oupð$lq5¨Ü°?Î{Óñ[ýÒ·½3ÖMê¿Ió¯õ÷‹yb°ù? ëÉæT©?Åø¤ýì8óù)<íGa{Rž¾þìäOÙ+“Ä÷My¤©.Â繯\ªãiñžçõÖ#ªŸ©oI×+í{ï/*[^ο¼ë£>ãÔwÏ{¼ÿ’Žƒ´¯fÓç¦Ãé¼Jvúlãhªô|í6ÇëGª0?$åOžž+£ŸrªL~LÇeÚÿ­å¬É{L‡óžðôN彦ʛ~åyùýW=¦ý¿òç~Så} ×{<‘ëWz‹ïgýºûjýŸ¦ë¥ë£ßs¶ñ"§Jïg]ðe‹ÊKçJó ÕŒ‹´8بÔãû¨)‡›_¦:¤æW[T6?+T¾hïùªûýùe?ùEÑ_Ûò¿Ö|®ö‹úOÊ_2ŸV?ÑIh½¦þªKf¸¨lyqs¥ñ6ómõ7}j‚såÍn÷¬zü?¼¤éqí>ÐúÍÿgŠ3ÌÓáÔïÏ•ÍOë}Çát=7.ïz«¾ •‡ûÐõÕyê<»éûïòª{nÔ+|ïQéwiõ…P9çýR~p¢ëˆrºÕ±-*µgüŽÉÎMùŒë^ï<Ïë_¾qç¹ú˜ýéýÚ~OOëÇ‘?{꛿ì>l¾üƒÏ_Òºã©î[9Ñüø´»ù±`ò¦|ïä¯M~7õÁ”_’üÁÉO×ꜦJŸïwmë˨ÔÎjþØ3•AoYþZœ}*¯¶æJõ«ó^z“Ÿû¯NË—1M*·Œ‹_›ï •“Þ†Í>€Í®•©~R=ÒöêÏóùéïÕmŒÃ™ü>~·d?¥ñžê5RûŽßöIŸðY·üŠöÝüîú9íW¯÷½gú=žô_ý£Œ“寽¯zq¢z›ßïò¹ÒuK½ÁõâʹRù‘òoÿ«÷Nu3k×ý ŽûúÍô«µ:ÂQ©Ü¾õËž÷®¯zàí[ý€çéTOlþÅúÞSe³G¥×ûý¶æÊ怮gö[ø+{Èñà÷LûR¥<œ¶Ïlãm®ôzûuêï×_ºU¹üµþÕOü­_R³é'Ðußñe¾”ß[»´Å9à¯~ûÇ<ýî7›>øk?¸ÅãÇáôýÒú¤V;‡õØvÎ÷‡Íß6U¶ñÙ™*[{F¥vÜÕ3œ*=?äó6ÚßÍ^•^ì wû°_úÍëÛ8÷;CŽ.mýqlyö0åÓ¤ú…V—8Ušxì®wÚø‹ßŠõâWÿ4ÿÏñ•âúÍÿÁó6`Š_Û/-ߪl~c9*SþmZw½¿ý—ìÿÿ•>O}Øõþä¢rs‚£²å'ÃT¯mÿ{<åѨõŠ­ªÿ¸~¶|íQ©½qô}µ»w¦JçõÑÅßüðíI·oi·÷Ýš+S^’ùøúI´›µ¿µKR>¿~õÊmØòº¸þä¢R;f]nN•ÊóGΕÚ;©nÖqe|¸=¶}F¥ß³åÌœŸÖiýÁÆÅÌÿvw½²nM½¤és¥ç'?­çÛþð~+}Áë’þ’ô{×Óuõët½ßQý>ŸâII¿í]þ²í—¯‡-ïÏûp¼ý=G¸1*Ó¾­>w<`_Ž”G¼§®‹)@=OFÊð|íå™vzØê}õ“´: Þ}!!§J¿»ý/S¼Ðùº9Uú>ÚW)þi=‚ûxÜû¥û'¦z ïßü6Se˃ ÇÓ>4Éßöºa~Ê ç.]¿†)þòÕc¼_³+WíTßÛœà¢R}dw®4¿ë²QyrQ©<2¢_[}V}ϸ úèò×ôuõ$í/óú¶¡zu«*•«›ÿÐj<¶z¶³•ÔñçýÀ¦ÊÿjóÚ)? ?Îê}ÈÉòÀ<Æ$Rfò¬›µî~`Æ R=¾óŠç­ú×~ÑO(S=fÊ;kù»ð?Ýò×åuyäYó;ŸðÀï™OðßKÚ¿­^&=,åa4¿À¢Òï©Ü–Çnÿ€»ÝôM->wÕ\©žå¼=µ¨luÊS¥ã´•»s¥ïyêœ*·iêg÷;êÿ5ïÒ|ïïwJu%­žw‚£2åó¶üŒð~®ß÷}ííÊ£_ðÕŸx·¯¾qßÿfªlû:L•í;@Û­?Îõw]j§¸?NÊçÒÎó;j¨'éoTózíØè‡ÆMZ] ôýô¿6ŽÃé¸U&yë:säõw{ì.ýŸøšŸ?oëLû¿V¾^1UnB×gõPë×)&åµ§¿W´1*‡G~ñÊG]üíwoþ&ý Ž?ÇK’'¾‡òÅ~sþ85UúÝ]‡”‹Æw6 ï«ÿÁùþhÿ˜'“òlÚ:=*S|ÆûûÝwçJŸ¯^‘ÖÁ$Oö“ÿ¦å»ñ~éúVo?*•#)^–âŸw^§ü ×Ïï…ŽÏäïòy^ï|ñüèqÇ[Ë;‡žßò¦JåUÊ÷°})_'Õ+È””¾—Ç7`ÊWòùìŸp ¿L½0øµcž¦÷÷½¼ÿÚv}xþÑóþî=¿õ²OKzÄòóV›¦÷O~EÛ¹9UnÍ•® Òë“}¤>aüÃþwKúÚG¿àïïùƒÏý‰˜ÿa?¦øÂº~¾ëòg\b5O´“Ÿsk†\¯ÿ Åá¹ß¥s¥û«\>Ujg{½<úÇÿrç{?ícZ©ö¸ú±ç7{ôDåÞ¨Ô^Ý‘¼‡þ-ã[Žç´?¡ã½Ù5¼Oò‹Æ<è¸ô~ê®Ã)ï‰ùxC½Aåò×çí߀®ÓÉ/­¼Ó®¼à;û¼¯ü‹7÷xÉá÷]µßýÛÖÝŸ"Éã–絓ÚþœP»Äù¶=*•#­>lªÜö£ûíΕ-Îqý~oóÐS°ã9Õ§},Rœ:ù¿Õ›[èTéüIu*¿n§²}ßÀóŸý®úüG¼ÅëçÿõÿKªß]¯*Õ÷.üÚkë‹~ú™í>Êaõeíkãç®í8ÏKùÊ^ŸÆEÊóMy$iœ%¦x²ç·º¾©RûG¹óxÆáT·½Êßïyþíõÿ—¿õ²ÖïPyNžX¾ÿXÑ~€-N7+WíJrßuÉ稶:P˜ìÇ›ïÝò”*—¿¦Çʸ¾òÞŽ;ÖßëtÓwµ?ÖÍWNû?¹Ý5wyÝóŸùI±nZý¶Gh5}HÚ´»Ù¿S¥ýêó.…'aŠ 5?3lú4oÊuƼ-×ëd]—n ½~†)o3åÿú>)/Õyàq×QÇ©v±lúÏGeOÉÏê÷7ÚuQ=Äx¸ë y­ÎÎ0­³~×Õv?˜ÆOÊ“NûÒ¤ü[¿_²Çš>=*]÷š…-^­—Ø‚>_½Ëã®Ê}Û¯¼»É›>òŸù³ÏiywÊ9ǹïµ1*|óÞrêo_Õ¾—ßÇã>G=X½Ùñe;ôÀå/êëö»ç;Zù™JÇM·G?ùS¾öÆûŸ(¿RßAy¬ñ¾ô9SeòÉTïö›Hñ¸ÿ‡3=/åw§ø“ÇS¾Hz¿´_[‹ÇÒÞ¶LpÝã‡Ó_Ónö#þò{o¿)®7Þ?ÅÍZ^ÌT¹1*Óúåwôüt¿›ë¿qwýÍÆCÒûi759åýOT¶÷~ÿn¤ß9æ p<½ßµ‹JoÊ'Ö3ǰžÏõxcTÞâÇ_ñÝßñªŸiòÞ¸ÃÖ\麮]Á{.óÍïô5O¿è¯lz»v@Ú'.Å«ï “ër\×Õ‹ìwíÔ”«ž´=*‰g·q£Ýèýµ[NŽJãkÒq¦ŸÛöi©÷iïΕæ¥8xó×M•ëŽ'å’ëçë·q<§úÆQ™êµ{Â|ÊOË[cÝdë9 ý5û²é¥PÿÉ=¦Ê{ZÇêÆVíÔnÓ¡9åoºN&»^ùêõëÆabuΔwêù®CÖÁ[7uåâpªÿ·¿KÈóí_÷«Ño±5Wê7Ш}©_¤Éã¹Ò:åiÊÇt½1îäx95à¢Òó]ÏÓøKú~‹ÁTg|þk?üÿî9/ˆuAR}®åM•>×u‚ã+û¹µüµû¥ü.çm²«’¿ÁqØþŽÑTé¼Lû\'}¶éÇÐq¼®3ų’ݙ궦JÆß ñ¥q8‘'Ë_“ Ê9ãÀÍß “^jÿ¥}ÚÛþ’£2}í«–ßЮ•¦|ñ˜O^Ÿ¿êÇdW¶¼íúœå¯ë;0åí¤õ¾é£°Å9aªãñyÆ]w úb«_TºnżũÒö^¿¨Lù/§áõðÚ¹Òy©®å;Ï•ö_ªg1ïIý×ãÈ…G¾*‡½ÿ9¹ç_=êUßëo÷•êõæ‡J¯·Ÿmg¢þËÝyMN•-?êÇÑ—ü:^¯ÜnÇ¡÷×ÿ¨d|Ñëµ+“5Ù!úAô+JÏןpÓïxÀôu7ý¥æ/0ßïü[=ôwžxõ9Ͷs¢R9z•œà\©ÝëøózõMóÕ¥ùêÖ™ÿ®_Îç=r®4Ýç_/•ö×%‹J×9õ¡äÏOy^úu“¾ìñ¶ÞnÍ•ú-´õ§ÆæT©œTλΫwµ¼PžŸö#Óù¸5WjWb7¯Æ¥ßÍý^µ—g؇Ë_\ÇöÏV:ZÝø‰Êuýq­~ *ôƒ$=O½_;ÂëÓ~Yæ‹Hýæ9ýÆË¯ß»ø1~µ9ÁŽJýr[sáj\é—R~qÝò×ßw®lïÍùæ?ÌrT¦¼)ý)^ÑâK•«÷lzãT©üpþ;ŸÒþœÉÎiõ‹ÊËçJ¾Ëê»3WïëõÞÿ²©R?š~ý,›°ùõæJÇù ©n;ÅsÔÕ[s¥ùg¾Oª[óx’/>_ùd<$Ål¯çk×˶/ÙTÉz·oŒÛå¯ÝO¿éö¨4¿Îþt|ø½¼¿ëoª#q<*w›_‰ãú±’ÜTηö¦}w?þý¯æ÷€¾ïÍþêäù¿ð˜ÿnö´ïÑök€Í5UßPð~æyjW¸._Q¹üõºÅ¹Rùî|ny.Se»ÿ¢Ò< ï×ö™ðü©²Ý‚\ßôŸ¹òÜïýå÷¾à×îÞÿ.æ\ésR¾DÌ7àü”W˜ö/Q.·xÓ¢R¹¢rÝiþþ¹Òqp\½à!_ù¾/üÓ#Óùï/L•;•ÉŸó1wúˆÝ‹~å·âß%1~”êž\wRýòºuKóT©#ÅÍÓý}å‹ß!GßÏýJµ•M®@å­zF“#£ò䢲]·fH{š}1*_mýã|ûßùêqÛo{ý>ޯ鉣²ÉC®ou‹J¿Ç9ÿøùâw?§=W}½å¯N•¬Ë_“ )‘öËV.¥ºÏ´Ï{Û¯Vq6¾«žjžx‹ŸÀ?µ¿Z~o8ÞòüaË— ÔhûO­lò˜÷S~ú½Õ#½_;>*•wÉ.LñÒæ'‚i¿‰?Œùá£2íg–ÎOù˜©Î#í/ÒŽO•›r®Lvj\pTnÍ•Ê ×“f×.*•ÏGïý²ß¸ä ¿9þýwýT©^«Å`«ƒ•Î;õ²ÝQi÷¤ï%ýȼV×w×ÿfÓýf-_ÑûqÜ÷wNúå6Tßò¸þNõÓÔæÓÞØt»è{ßÿ…ŸÿøWµyÞäò¨tÞxÜuÝyžü_ɯ˜äXН+·ÎÊÍ.߾âޕêXZ}ôT©üØYÀ ΕÞo®´=ÎOŸïøß›*=îüoršã{s¥ç«êG÷ü#?üû/þ¹‡þeÇÊdGÚ/¼G»~Í~hy¶£ò õÍõ í#1*“òMw¦ÊæÇ†iü7;…öy?Ïwýð|9O•É?žìÀ–_ ýŽ­=’ö)ÿ•MŸž*½Ÿç»þ½ÿ÷|Æï½s§ÉýÚÖQX—c]ˆû1èÇjûŒJ»6½Ž÷Òßj?™_áú¤ß»ÕL•Ž ûgž*/]Nëê?~ªT/Úœ*›^8UnŒÃi¾Hó‡L•GŸý·xæ·ìf{!<7ùo“„l~vØüuPyqîƒþþþÿqõsã¾b)>òÕÖg§üò¶Õ¨LûI¦ç§| Ÿ—žŸòßõ‹ÅüFŽÛ?úR¾¬ÇS}ÏšþÊ6þ÷Fe:?ý]ÅÔ_^ïóZÝ0ŒuÌ£²}/ÞÇ}»œ×7ÎpôY<àO¾ù9Ñ’ò¸í—ä¿ñøºõ«ÿò„[þZÜlw®Ü•~Oýpi^û=›ßcTú¾iÝlûqÀ˜3*ï~o÷U<=U¦:…T¯ïú×ö›áxÚç.ùk]_SÌÆ¨T>i‡lBÇcú~~oý(öwªÛmy <ßüó#¶§ÊV籨Lõ×›°íWÀóŒ/xÜ÷ÕÏÕ¾7T/×§^jûÛ¾£ÒóµsúýZžíivò€‹Jã9æ×x?i|Fýã䢲]ÿ3Ô¿¢¼Mþ§äoñ†uÉó“æSùüÔžÔß¶ÇûÙ>åÁ9×|àa'?ö_º¿¨TŽíΕMŸ­Ü™*ÕsƒmßõDØÎOõQÊi×áTÏ‘öKHñŸ—êÍ”Ë)ϳé 0ÅsR>GóÇÃf×Ãdg%;4ù—SÞOŠ„zÊåoí’ÓæùT¹'ÿrª×lqžßò4§J×­$ÿÚý¡òÂï@èj!–¿Õñ¶Ï×Ti?øw°ï—¿&_Õ{ö•ꉞ¿;Wž÷áßÿGþþñïIëï[W߈ûQðž©®ioTj¥ºvç[ʃr¤ý6Ó:›òÜ“¿ßþpœ¨umÉ¿`{/úÂ×}Î=é;û~£2ÕŸê§I÷s¾'?üLù~!O±Í·³•aÿ§¦ï’sã/}ïo>î’‡KzU³·=R·j/ïßÞ§éC£2éKÉo‘ü-?¤ò ¿_›òëWï—üü>_»Ýø¹usúqµ¼¿ãbgªôzã~íq8mŸrи‘ëb³ÏF¥qÀæ§ž*ýn)¿+åø¼T‡¯¼Ñ®5BºNzÜû)O]Ò¾PÚÕ©žP½Àë=ßãÉ ‘ô Ÿ—ò×=žü.¾_ò;­û=6õ¾mŸ¾¤ç:>½ø½¹ÓßiòE}Ò¸tÊkoúë¨lz4_кHç…~ò¦¯AŸß¾G yZÊèû(wR=rŠã´ºHxŨlûM.*Í;`\-ÚkËßjœ'=ôR˜ò¬µÿ´s’}ØâƒSeZOZ^ò¨Lç+¯ü›°­3£Ry–â­¾úþÉOÜòxÇálùFãpÚÉO½=*›¼ž+O¦ï‘ê˜6Fe«çö÷Ñ?ø©—?æŠ74¿”ò9Õñx~³·Ge«§•)ÎÚê°åT™ò¦›?tÀ©ÒëýŽI¯r(¯·êÊó¹Í³QÓ~½xQ©½Þö£š*Ã~UË_Ì»NùÆÉïÆÿªiŸ¿‡ãCûxsªÔoìxõûøýšœYTÚ>ó&Z}LóÉ絸íçÊô¾ä5Ç¿WÇw[þô¿­ôô…ùè_²ý„›Ý§Õ54ûΕ0Õ§ËuýIN'¹®~rQØüšÊ­ýÀdÏ:ÿ­ƒp~Ÿ^TÚêµ)¿ÙóÕonòˆënþÞ§<´ëÿ°í+1U6}}Qóòy~óßJç͇O_÷úfÇŒÊô~®§M¯•É™êÕ’^éý¶æÊV§ÆùþÏäv¼¤|ïŸÖ«G¨<½SÙÆë‰J×ÇócOT:íï/•ÖYï{üžºúI}{³ƒ¯€Æl‡zq«ùÔ™JãÙ>ß÷Véºú]Ô«}~ËÛ>QÙÆ ´ýê1-ßú÷îôçyÜöªg[?°;W>rQ©å¸ÔŸè¾)n¥žå8U.y}ª{mq®©R=ªÙ°Õ3…‹Jå²ëRªÓþ˹rÝølâæTÙò»Geª#Þ•ú[Ý(t~ݦ¼Ÿ¶ŸH`ò¤|7߯ÕñB¯?záSoô„¿yOÜ¿¥ÕýÔžåóxOý¾·ã(é/®)/ÄøkÚ'ïêEåÞ¨týs^©´ï“ÿ6å×¶qÞÏyÓö› T{¼õ·¤}ißTçÐö/•ê ÚYÎ;ëZÒ<ó¸ã/ù­7F¥÷ÛÛ©lý½S9O•Çÿæ³úäG=c¾öÌÿú÷’>׸ŽëSê‡uýC-o ò¼ƒâgýïUÍpTª¬óõ¦Ê¶.ŽJß×ü!ûG»#Ù3êÉ>ïÊEåÕSeóCMpTÚÞ£ûÇWýêïm·ïžò[£~1*Ûº0*=ßv¦<è¸ÎAóŒô·¥<û½åÔw“ꃚ^Û:‡)®³=¾;W¦þÁÿ¸’¿ú%›ß´rù‹q¨´®:l¯ý­ž²1*Óø•~ÔR½P¿¼ëØÖ|8S^ªq$íÑ)Þ™üzÇîûì+v¿ó;›¼4_äʹ’<Þ&¬cw=Û+]¯’âzœöòy­½Ðû]9UºþµºŒäýô\›¿ú½ì´Nø~iß‹x=çP—÷o9÷ò7üÈ»žþí{Líñ9mŸÚkµ:s˜êƒRœI¹DÜhù‹y­ÚȳãxÈõvÜñòIWíMû£l͕ʻgmqSØôô©R½Qÿ¦þQÛ§?YyîßûPŽú<ãä®?»såÞ¨t}2K;Êø«rË|Äæ*=îºàóÒþ3úw±ûZ|9Õ‡ºöý’>Ìý–¿æwOõ&ΓTÿÑâ¬Ð÷R¾Ù­÷l¥ýàùêÍo Û> S¥ò¶Å¦Jû·åmC×wãÍiß’”·§Æöéoózýú·Œã·|¯À˜oíÏw¼ªmN•!_:þ¥¦wCŸ×âÍS¥Ï߇ö‡þ¿—óK9oû¼Ëçäü#¿óįüÞÇýBÔsÕSŒçùR½úu£rž*õ_¨·'ûOû­Ùß0ém¿jQ¹1*•˶¯å¿Ì•'•ÚËöz”ïŸüèAolôþ^O/Ž«óÁSlÊ#]wÿ(åP«Çñ|Øò„F¥rÙïŸìÎt<­ƒÊ=ý”Öuº.)—ZUÚž4ÿ’ÿ¡ù`Ú­'˜üÑÏÀýš|™*=ÞÆÏ·?œóTy=ÔücS¥ÇmÇåse¬›+›}3U*÷ZÞÔ€›Üoõ>Ç¿ñ•ïÙ»ßmo¨ƒ«\g{RnZ×m¿ùi½Hz«ç7½yQéû(§Ô£›ÿ¦:ç”ghÞØyøI_ö‹Oøöæ·3ÿ̺óýŽÆÙdŠ3¦ý›ŸÚï3ô»«Ê¦ÏC×7ýjŽý”®‡-ÏgTº·<£Q©©¼USñ}R^Ÿí? þ×…f_L•£2Úq<¯ù§JåS«§Æ“õÿ¸Ñ¥•Ë_Ó¯ÜßÄù*îýþïn>ä±ÍîTOÔNwÜ8NvÏVÞlÿž÷Äs¾·ï~¶Òº-õ óÉm·÷kùY£rg‚;•~å¶yW,*7§JŸ§¼Ô¯íõÎã·ëúAg9*Ó>)©.©éi]MõÆ©^äÿ4/§f8U^xrQiÞŠë‰ùÝ®?®'Êïïþúíoû㢛.Þü›ùYÑÛâ £R»&Õ+o'FÒŸ¼ÞuÕ|åTÓ ¦ÊvýT©ÝfûZÞÂ\yÉT©žåûŸø»àŸ~³6¾”W¶»å#ŒÊT_’ö]q~ÛM/†ižcÿ÷/ÿ”;÷oñŽQ™âk)þ—öËMù-ï”û5¹Íýš¿sªlùVSeŠŸíŸ­lù£òœkÞså—¾øÃº¿¦8N‹#ŒÊçK÷þ ˜âÂ-ž;U&ÿ¡ýj¿KäÌòwÃþŽ£Ðãëþ{>ÿ¶wýëßò?ò}Ÿ»seÚ‡¨å%-*S<5ík²n<»ÅÓ§J¿ûG^ó¬[¾êmß÷;Kþä$ç|ï$¯› ¦ý]R¾^ŠŸºî¦z½g€×O•) ­~gí÷$¯¬‹Mûþ¦<ôý‡äI­æ¥ò'ùoýÞ<ÿ†¿G¼¨LãL½ÄqtìÓ¾éÂ[_òƒqÿrÇ«za’ÉïižxÚW2ÙKÍß í·6ÿG¥ï›æcÒ[iŸŒ¦'ÀäŸózŸŸò:RÞUŒ{?˜ê@›ÿÌöLÐ÷ãy¶ÇöŸóÏoÞ÷ÿåóš\LÏñ=ìÛü»?)¹éûS¥ràèe?ñ¤ÿzÞ×õzC¨~`Ù£R¿ùå‹Jý{íú¹Òó÷F¥ç{¿Ý¹ò²E¥ñëKŽ}ïƒz÷«ZÝŽöaÈ›nñ0¿§~ÑXQ?‡ŽÓ/_½‡ë˜ã²Åóàî™Jä|ë7ýô1¿pTý÷ÿüÇùÛîÖú·Õ¯Öã­-ïnªLù-o‰ûíÎëñ ïsÀ{¬äŒíJySmŸ”Ä©roT®»Ž¤ý’8é•­Þ ¦uÞñé<ýüE¿FÊë;@Þ´qidÚŽãw<ýÿþÎ ÚzE¼bõ~OåÓ£y~ÊMv†zší1ÞâÅP?Ÿõ†ÉÏâxV/Õ_©Jûr&=×÷IïŸòj¶ qí4?Ú>ŸÐ÷CYþb]îÑǾé·>á¿°Å‘\ßÕw¼¯|Ä\i>Ÿyžóà6ô¸q‹“’ó[ý5Ïßœ*­Ï%ÛJãBÎã òô¢Ò¸’ï¯ü½nQiÞƒqEåÕ±›þÎ9·yíW·ïj}¬óÂv©&9˜ô³d%»¤åoÌ•žo¼Áóç©r¿S/ó}üŽÒ靖= mŸï—ôý.Ê1ïçºk7=jªô}›m¿y »seó÷s?ûýS< Ù#©îf]{?=¿Õ¯sþºq-ß?å¶ziøÈ¹R½C9Ûô9Wºy?ã¤Ú£Žÿ¶.*]g¥z ۾c£rz=óeù[éÅI¾Ú>ÇCÊ¿¾Ù¹Ÿû¶‡ŸxpçÃV‡SÜ"ùwÕ¿RJÛ·a>œ)îíùÍO;*[¼?Üßë÷^Ÿüf-_bTú>ê¶O½á¼g}ÙÍßôk¿óâÔ“Ô«´ÇZ^7Ü€®OÍ? gh?^[}Ú¨4?Íùî€×N•{£R}Ê÷;þ÷›õÿs—vÞî\é>qÔgø›¯™+½ïæT™ê2Ì{mñ‡Qé8Në”ýÛòæÊ¶NyÝTéùÍO}ýÿ>’ë\ÚG£ÕM‡Óyª>Ÿü¶ÊçWêßíÊå¯ÙÉÊÍê W×§úõ¸ýEå¬ÞßûYoœìÑK§JëN[}´ß6 úI[OaË_YT6ûúweñÂþ^£2Ö5r~8~PÝÞò×ï[ýõ¨Lûÿøw“’~¢œR®Ýþq7ú/ýág·õ&ÉG™âH©nÆ86óó;vT®Yg½ü5òcõ<ÞñœöYv>ë×U?PŸrÜìŒJýÎ;S¥ùmÊ/óн¿òmkQ¹?*½~—ѾRžÙ¾kg8UÚ¿çœ<þÅO}ü_6¹&Éû;hÄ}jšßb.Ž»ã—<æ=ŸóÖ]žwCüÚçŒÃi|mÝ<¢äWß•ëÞ/ųÓ:Õä´})!ù™ÓõGøVöGßûÑ¿›â¾©Ý©NÚu(å›§qÑòס÷kûp¾þû×öWËÿ Ïó}RžvŠ_Ù¿‰mâxÓaêßv>ôþG?ñ9Ï|ù¹Ùî{rT6?] q3ë>mwª“HqÁ6ï¦Ê¶?ôýd‹çÏ•ÈùfÏ]ô¬g¾ð[?ï—›=¬þk~Ú×Û1þá{´}uÆ'ßùÌßÕç!Ô.8¹¨Ô.s?Pi]îýàýá}à=ཡûZ¥ãÞßöÜúôƒoBõ8õí ¿»ùÖhoø|ï¯ÿB&¿RËã…©^S¦x…ï+›zÜç§:gåªó!Õ»j¯5¿×'="Ń_¾­ƒÞßu1Õÿú¼£þûoºË½þ#æa¥¼Í”šöòxª?y•oqÞ¯ÕKA§8Äñ—ßçŸûñ?Ô¾¿v_ó/B·ºÐíFûÁãIÿ÷|í¼hçr<øc»ŸmQéýµk•ç¶ßüT㊎õ!åW‹wÁT×—ö—õûžZT¦|èTGèz¶®_)Égû'å¤8D’)¯ÃyÝ8Uº>¥¸®ú‹ëµúmÓGeò㦺¯–÷=U¶ï;U¦ãÚIžÅ¸ŒuŸ°Í§QÉ÷»¡îq†‹JÇAÊH~Œ´~6¿‡‡Ó~hù€0ɱ4¯’ÜKùxëæ y¿Ý¹Òqï¼uóû§xSzþޙʦ¿ÈQ™ÞÇþñûÞìÕ_ræ+òú¦/ºþµõûÜ—îážó-Ï}é?=ÿ¢Çž8Ðïûø×ÙËÆáÜ™*Í÷Mþ ó²Õ#Ì‹¸pÿ…ïxÀ×¾&Öåé_µÿýîI~§¼À4®ü¾Ú;Ž»ä‡ÓÔâ¼Ð<Д—œòb}¾ß)ÉÅuíŠfAÛÓì3žg=bŠó9N÷`ósÂæ¿ã¸í1î3Ãç_7/áÈËžv§§ÿûÓzÌÎpª4žÚòGå%s¥ÏS¯iuÀS¥uɶ/ÕñûúWÝäS¯yMû>ú»œÿÌ·åÏ~_ý¿ï©¿ÙuÝ÷4OôÊ©ÒñšôÇ£O}繿y«ëK•·Î'åvÒs’Þâ:’üÊí›æ/‚ú[›¿gTz?Û×Úãq˜ü&Çoôïxäƒ~¥Ç ¦Ê´ÎEý•ã¾·r)ÖsL•)^Õ8}ˆä~)žÕü€žSœWý;éóÊeï—âƒq?IŸ?*§Ž”ÇãýÔ 6å¨Ô¾KíkûŒÊ”šúC¹–üFÚom¿hØâ£r{Qéù»seó'Ê$§RVÛǦünÏw~5ûÚ?ú}oû‹JÏ¿j_š'c¨ù+¦ÊTÔüSeÛ†û9ž.+mŸã_ýlk†‹JÇ£çû<·8Ü¢òا?üU/û‡{¶ëZ\lTnÀy:œÊyõ@ûU}dgªT¯¼xQ©>¶ Sž°z°íoyÅPý1å è¿7~àù?5*Õ Ìs³~ûúQyí¢R{jgªœ¡óغ۔—’âõ<œËß|á[ö.ù°›<<îÃémòƒ%;2és2Õkɘ¯Õ”ƒëîO™âR-7U¦¼áµóUaÊœ§JÛïør~&}ÜûmÍ•©.=ù]Ú~„°år~“Ó0Õ‘·ýÚçJý•Ê}i}ö#•êu)¿P}\9ï>…žïºn½ˆß#Ö1O…Ë_Œ7(S\.ù1öàÎTÙäæTÙò þqýáR½-í£“ôõP?Ø÷=•£2Õ ÎÓáôú¦ïÂt½ïãq×Ñæó›wTùÙ_ýÚ+¿ö_úz1U¶<ÊQÙäϨñºöèAõ‚)¿q²>/Ñ”ò?“^’ò@‚Þvà>Œ~·6ó¨ô½öGeŠkÕ5ÙŸ)OJ½Ó¿ƒ%Õûì_¿·þ/Ç“vˆ¿¿b:7Û>öüþØoþÓîñ oìzý`¾rÐv†ý•[9å™úÍ›J÷Oööºy«-ŸmªTNè·I¼`ãÚÿùM?r‡éˆ#þ}zõXç…ç]ç=ïý×eÊ—ó{lŒJǃrV9sâÅÏ|Û‹Ÿù'ÓtÄý”ê]›S¥ù‰Ú—ú%–JÏŸø¶_~îë~áO›ž¹»Tú;õMóZœ¾‡ë¦þ̦—íV*¿Í—hò{ªôýZ]/Ü›+]·7-î¼T¶|˜©ÒqØâ Pýº½/íõùêÓÖkÇ´=ú÷gÉõú³ÛûìVÚÞ°>¯Ž#÷›OrFûCjo&&9f<ÏçÝæ‡ôú›~ówÚ:òìöæÊ·3n6O•qß"h{íãV¶ßqÉùÕÿî®ãÏþ6Þ—æ—ó#ùoÒ:áxÙ›+Û>SeòO)OZ{ óép¥ýŸË«ÃþoõØ£2íWº?*7§ÊfÀ¤_¯[‡Ðê¿`zŸT´n=T«ó€¾o«¯…i_K¯oú¾•{såÁRéó•3-OææJç³qýê7ö¯¿?ví_~Ù…Ÿô q_ýùÖƒlŒÊVwSþ¢ã¸ù¡¦ÊVW0U6¿iåêˆûêÙžGó{%»7ÅélϱoûíÏ{Ú§ünÌ Ou:i]h~c˜ü¼-þ ·åT™ò[Sü”þXm¼$yßòdaÚ&­§ú/íífϧ¸ºögóãÈQ™òLü›œ+Óõö—ñ£­¹2æ…ŒÊÝ©Ò÷s0n|«ËÞúÆßü×?û×¹ž$9pÍR™ô$ß+­¯ä=ÊÅfCí°¶Ÿ´®®\1~˜âäž×TÒ¹¹:ïßâ{°Õ/ðžöW‹—AçÛö€seú}#íßY*]|ÞlíƒöÇöRi]“òÓóÊË–g•êõês£²ÙQ0ÕCûü¤W¤¸ü•Så&Lz¸ç[öwZQ¯´]ÉŸåsíwÇ•õ>/ÅÓ>vÉþiõKeÒ?Õ/mr§µŸ÷;¾û]ó3w¹}²WG{?õûÓuªÅ—çÊ=x°Tªßy}Û ú¼æ×†-6¿Lu>Ê…¿MñÃ&—–JÏ'9—òê’¿µåyCß7åcÛ^ÉïWG‹¿pßæç=Â~>ùžozz´§S}ŒTÏhöë€S¥zC« ½-> SV“ŸrT¦}Þ›üƒÊS×õT¿éóÕ«š?bªÔß$w–ʶ>L•m¿Ÿ©2ý¾Õ£@×ñ¶¾ò{ãÛm‰¥2ÕØ^׳TkûRÝEóŽÊ¥2Ä÷æ“?Ù=nû÷—Dýˆû¬Žwü>i©ôû·º± ŽÊ¤?¥§)gôÛû]w8Uª_ÏS¥zD‹«Á´®¦øtÚï§­sÐóÐýc–JíÏ}xÝRéý¼þ†©Ò¼PíÑ=hžªz—þ ýÎcóFÕSõ+©§;/}ýêÑ›SeËc]*Í›užê/Ñãýõÿø½=ï÷RŽÙ7Í•ú+Râ§ß¿Òùîýô{ûýÔûíOû»Í¨ÿi6¹¿[Ù¾÷¨Ô³;Už9[©ŸþôÙÊæŸãyžOqYýØÊË îþŒkžðÝ77ýgïl¥~ å¤z²íæüêhß ;â0>”ìŸÇpø¼d4»&0ý>é5Ê;ûm]½[=Xý"å-_2Uú¼§æzÏû|¹;WwOy—ê9øWG[wo5¿½¤ŽÛægž*›ž+÷ ù¤M®Aïó“\ôý.þÌ/þ’—?áʵ÷¥Iú‘ûŽ)¯œƇR=x³;aÚÈõ.å{Ûo®ö³íó;¥üÅ•[s¥z¿ú–ú^ÊûHõŸ©>\}Üß{}‹3s}ò«µçñ~i%ß7ù¡ïô»÷þÉÏz×}ûw´‰¼‡ýª¿-õCò¶óÐûµ|€ôûÀ¦ç,•- S^b:Ÿòc>&Lú‰vez¯Wψï [4ís<ÿØ'¿ñ#>³Õ;ŽÒwOòÀ÷ô÷žOßÉ~jí…ŽCÛ· =ï:ï¸r_ßoTª¿¯TJþ í­ô>¶ÏëS^òó†›+S^ŸvIzžíMuDöç[½Ïw¼%?xÓ§hêÿ$Wä±ÿþ!o{àÎã[?ø\õ*ó[[¾%×·¸5÷·ß\¿Ž?ôV×Ýü†ÓGîÿj=•ú»ùMúCë;oü½çý½ù¸ÊË—Jí¤ã;Ïyä×\ù)ÿ×gÝîiW\~ê[_zd½ÉÎR™òhõï¦u¿ù_G¥ò9Õ98®ü½ùBm½‘µ}«ã°§)Ï­É_ÚýÁP½/ͫԶO=`ÿTå‰k?çÂ7Þë×£Ÿ{g©4̺ ó|R=ƒóÝut†ö»þ©¿¶¾ÈqM¼øp¼¤¿“”üK\¿:Ú}ißáuޝ–o3*õפ¼“וڛ)Îh\Wÿq‹ãAýI-o¶<ÞÇxEÊÛñú4_×õ7„zõ&ï“>™ôfçŒJû¯ÙûPÿF“7œ·n%É×Ï£=Ê× èýÒþ4[såæT©_ÐóÆ;Õ#Ú|›!÷s>ù}NÝýÙÇþñN¿ÑúÉü…öG%õò«#í—p('Õ¯”[~7Ÿ¿¹þ°=1_‡v:Þ[žß¨zÞ<–&¦JýáÍþ•iÿŠ$ü}Ú×/­ËíþpcT*ï|ß$¯Z^LúÔQù¾‡ßéü/xúÇ>í_ÜãA£ÒóއVßµ[¹1*õW¯»o‹ó4íoõU˜üËÉÿ›Æ³ßÓº¤“·{Íg}ÀŸ~r»núõGý6N•ÉŽ²=~ç”'®~mZ¿ÒöR麧ž§Ý¥Üt}¹d®´î`g©ÔPnÍ•¶×¼íñíQ©½á:íù•;Ð÷ñ}m¯öR»žö¤üÙ”ÛâÎ0å9¥üg÷‡p>Ì0å/'?ïý¦Êà—8\¿m·ó*½GÒW½¿ó0ù/ZÞ3çýý¿ç7Ãô÷~R¾´ï©ßF;Õý Óþ?iÿ çeÛ·jWiw\ðõ—|ñG|çŸÆu§ÕƒŒÊ$ï½ÞuTù“öKëžz¡yäwøÁÏüŸøE÷û$'}5Åm[|–v¦û·|‹©rÝú¨”_aû”»Êuý­#›S¥ëÄù'?ûÞïMŸ×ÿNÉRÙò‡¦sÓü¤V¿>WZgâ8LzoÉ>uœ¨7ûþÞßõ-åÓ­ëŸØ?[ÙìåÀ—â÷)>—òÓï]§ÒøY7ÿDyêzœâõ)ïªÍCžüY?ù¿òi¿Ôôþ$gèú×Ö!h¼;õ[ÓƒGe’÷I¯Nõ€¾ë°ëšúƒT¸hëQ¿÷ʇ¿²ÍßTwèyå¾ã_?Ét<Hþ.Ç«újk/ç[­{ÊÕ“ßúÔ÷ùÞ׿µ½‡ý¸1*“ã—•©Î¤ÅãGe«Ç[*·G¥çw`WÐç§ü/ãÊ]㎻”æ÷T¬Þ{EÛüÏ~éoøÛ7ùÕâsåuP}Áx©ý°7W,•MßàùO‚›S¥ý¨Úù·³TÚ~ïçwKû­¤<ƒ÷võŸT×Öþî÷?ïîóÛÿô¼ç·uʼRíVÏ»o±v«vmóà 9U¦zJßÛç5ÿÚT¸:b>WÒ/“_-í”üé÷ëî÷œòX–JÏ+wm¯Ïk럕É.ÔnÞ›áRi~vê¿u÷ Lñ)å‰õ îËzü}~ïå/Þ~KËK±•Ãö“v`Êþÿ7ûÌ«^üÔ?ûU.¹NÞæ~÷[øçßÒôzêˆVG[šŸ */üþGåo¤uD}"éÙ¶Óû]t÷ÓþÅ_óÒvíµä×òoªLû¦| ”'g~‡ï­ÿB¶ýh^ƒë¤ó&ì'wËßÏÊÿvÍêhòÉ|eå‡ó%ÙŽoßw&‚vƉç|ð¯Ýóg¢­ \×ò¡›_~T¦|Ñ”/áý.ºîò÷Ðgœßÿ>ã¨Lû¨$=%íã T.¨Ï»_úÖ\©Óêè8Wºî´ºèú¦ýŸên”k-Ï„ö9®¼ßæT™òjÒ|ñüºù)¯¸Õ…L•)Þîù¤ÏSeŠ÷¥û«ç·¸$<3WîAïò%ÛïS‹vLª‹xÔnÒ¿­ÿfk®lãºþÙ)_%å Ú¿Íÿ7Feðöï‘âü)/?ÚÃÐ듾¯½Õô?žçz©|Hö?ëØêX»¾­Å5`Ëá÷-oINó®×Ç>çê'~ê?lÇý>6`óÓAÛ1Ô§ýâñézŸ×ì©2奴ºž©2í•ê:›^´Tºž³ž®Ž´ßzÜ?å7øûV6U¦úâmØìiØê@æJå†íÙY*S|´åM•íïŸÊ©2é­ÉŽKúöº÷oovTšGsÄ>èÍNðwçþħ}ü+ÿuþ÷ü{ŸÏôTyáÓä‚ßý®³ñïѧ:¹¦¿.•Æ›Sž˜veò·ý’a«C•)ž¥ŸÅyçû«_¤Æ½¿ãÞqe©ñõÍ©rú|Ç›þ‹_u<™ŸÐüÍðÄ ^ó„güÙ[Ú>4Í.€Ê·¤¨ï$¿QªËQþ¸n»ÎÛþ¦WŒÊ ¿bݘ÷óù¶ßç%½$ý>å-z}ª›Hý‘Þ·‘ë×ÝßdcTzÞçy^¹y››óU?üØßîy…£Ryâºjþ畇Í~€ú‹\‡Ó~­Þ¦<ÌfÓþ”ïÒì>îŸê)’ý×ö¥€Mßö÷’û¥|˜?RÏKuliÞ§¼«DûßõýãÐÿÝü»•ôëêhóÇï›þ^V¯û.•ƃœ?ç}ñüîÛm=²é…)n’ö×iã„û·ü全ÙmS¥zÝ6T¯MqД'Õ쯥2íç´=Wú¾ë®ïú•ÕWÊí”_¯¥ž˜â†Þ¯åWÃuã)ï³Å§Êôü‹>üË>ç ÿ²Ñõ›QÙö™Ÿ+•oM>Ã¥Òqrz®Lynêë-_s®Lþõ ¶^ð¾Ç^÷âÇ~ÒgüùÚyG-oúœäGmváRÙö'ãzÏ;¿RFKËw˜*·Ç9¹:Ú}´g›_ˆû™•ê{Z|dªôúd‡¤øKòg:›ß[ýÁûÿ[w½öóçÆv('é;éÏ»dS¥uþ~g©LþL©Þ”ò†|ÿýQÙöI™*Û~a°Ù£RyàúvÞƒ÷³ðé¯nòL{(Íó¤%9ãóÓ¾ÊÁM9*Û¾´'é÷Ç^òÚÏ~Õë[>סûôš7ëxt½W_r<+¿›þ5W¶} ãY¹jÞ­ëpÛ·hªlós®´=®/'îô–û]÷ÙŸí1¿‹÷Õÿf¿JõÒ¶ ´ßÏÍÕã±>ggTn-•ö§ßËóÖ)mÍ•öƒvV‹sÍ•Ê}ý)Î[ïúoRû7FeÊ;Kúzòo¸Ž'=³Ù¿°é¥<Ï<ÏæŸ›*·Ilþ<è:ÔüySeÓ‡æJïg^vcÊ{Ùš+“Ò÷kya\óS`Ú?.}oŸŸâ~ÿf?¦öBõÈä§JuL­Î¶ü QyþÃ/ü¢WþÍsc|}o®L~¬–6U6TŽ+wRÞÝé¥rÝzÁä—µ})oo¦u©Ù¡se‹ï-•úÏ@ý«»Kålõis¥÷SNjÛÞ”ï®=¡}´Õ‡Õ_÷aòë@õGß?ÞŸöØ~©ÀøÙɹúk~jz]‡-¾ÕB÷ê8r߇´_˜ó&íKÒôp¨ÝἺnTê_sÞµ}–ÊX/ÞO9eÿ­+wR<ÔyÔülÐõÄûµëaÊ“Mqdû§Ù£2Å÷RüÎþ×/¡>˜òÄ’¾»9UêçHù¸Çþ¢{\½õÇÓ{Žö}¼^¿Û‰ýh¿&ÿIôg,•mßÞQ™êí—”_é¼8ÿiw{ùÕ›Kœ/Í^åúVW$¹ßºùÃÞÏù–òV•ßÚ{îëpÅ\©_ig©´ÎS?ƒù×ê—Ï•æU:]W¯É¯åø×ÏtÕ¨Toð{¤<®”§Õò–G¥÷s¼5{iªLu‘úm‡~å@óK/•~ÿFîokÏú<ã­þ~©ôùÛ£R¿´óI=wcT¦ýw.¼ú寛?;æû¥úÄ–—;*“\hþC¨_ Å£¿$ÿd“SáyΣv¿#~wS>c²O[ýLuí{s¾ù½Feó ȱ}Ö™ÕÇ{Ò“~™ú­ù?¦JãëÚ½IßÝ”r^}ÒqÝâSeÚÂïÒê”aÚ =¯Ù+ÜOù¬½ØäȨlùãÿw“çÍSáêpÜ´ú&ÆÉ¡}ûP¨Ü÷KyFÞïAÐë“}žê(=o¼Àø±z¼öŽööÞ\©>¸?*·æJóäÏêƒK¥Ïó÷ÊQõÉ^*õó˜_mÿ4ûr·²åL•Þþ)ÿñ°/ûõ6ÏŸ«c>ïÙo¿é!tçøw([~l~ 9*“œJv”þKåÐÞ\éß)v\ìN•i¿ˆ¶þJåxZÿÕWŽÊ»OzZúNŽÏ”¯g|벩ÒóIÿÞ‚ê×Þ/ÙËÉd¿¦}¼þ¼_¾äí¯;ö–˜ßœüÑ·ê)¶«åBçŸ×·ùÕ{®_*•ãúEŸìÍ•Î_û§Å–JDZ÷wÜ©×ù¼ä¯Úœ*•Óíz¸³T:>ŽýÍïÅcïpûäO:Ô+ÇÊ×åOë¨üJuŽOã7iž9~S\ßù纽1*õÓø|ã!ö—ùSÚW/•Χ'Í•ÞÿªïBó£lÿ vÅá¸â¹«£ý^½O¿±ûI™çàüQïô¼z»ïgÍP½·ýÆëy^²+šmoÒÛ}~›Ÿðˆ8\›÷¼çáuÞ_;Àö¶:r9Uú~ÉnKvãºvuºÞõÂþ¸ ªGµ|Ó¥ðpþ9O\Wœçø7VG›MžÌ•ãÜlò:qT&ù|â/?áài4·ïxÍTéïRübž*w¡ã*í`<$ŽÃ©Ò~Ly)Þß÷Ý€ÎCé¸LùW­®¶¼ˆ¹Rù’ì.íyío×Qç‡ç½ŸuƒÎõŒæ_˜+}Á~þu|N»¯òâ`·Rý&íÓ³n¾”ú¹löéTéwÜ•I¾Ç¼…¹2Å=m¿ïo{Õ§š¾¸TîN•~Þ#îóý_òˆ¨W%¹˜ìþŸ›*[Þ8÷³=Ú)/ºéýPù“üÚ->Íó\R|½íÓsªÒqÑòyaÓÓ—J۟ηüÊ©²Å+x?û÷¢Ç}õÅø_Ýâ–Íï!GeЧüÅä¿Hñ1çIŒ§Ê÷ö~®óŽ»¤¿Ûéõɽ;UªgÌSeÒ‡S¼Õûµ÷˜*ý½ãáÌ\i+¯¯?UéxÔ¿ãúÐö÷š+ÏŒÊV5W¦úûck®tßAýÉ/éó[Ýý87Û~30ÕÓÚߎWåXÊ‹oùUœ×?ê÷p=nylP½O»Iê/¼~ªÜš+]÷oŽÏƒr½öØÞ\yü õÚí=ÛÆve«#•¾·þÿ¤4;x‚£ÒqÝöŽ«d·Ë¤Ï$?›Ô~IûÛí¸T¦8ÏSŸÙ€-&=»}¯ ŽJÛkÿÛß7å‰$»ã:èûžY*S^ü>tÞ+‡|¾ï¿»œ›<u¬?•ü黤ü!åkËïàú¨ñ>¶×qÚü}á~£²ÙE\Ÿžg^ª÷÷ýO¾èÛþõi÷øàµõDåéö¨Üœ+ýû#¬K«Cÿ¢ù)-_Å÷móf©T?Ð~8~¿\°ýÇ{ÔóŽúwª;l¯öÏ&Lû¸.§öú­¹RýÅõ<Ž_ܯDN•É/pâQøi¿þ±×Æýé“Ôì8Ô×ý¡°å3ÃäQÎBÇMª¯½íæÏ½ó1÷ûª¾ÿ×™Gü]q?ÞT‡‘â)o5Éõ¤/*7R{•+é{†<¢Õq(ov–ÂÕ1ûõWÝæË>ùsŽú»P‡×¥¼ê5yK<Tj?µ:ch»ŽÝø¿]ó ß㚥2íGÝâ0É¿G8[™æ•ö߯¨Lë{Û9q¬Gßß|í°¶¿´ÕsÓúázžö)UMõÜŽÇæ€;K¥ß×|å§v´?èïÕqËü¦½ú|¾ó!åÓ+ßßôCOzÞCâßáô;%? ólu¸n©‘çù~=T_•£2úÝ`óLóÊÁV¿0U¶ýD¦Jç¥ß'ÕÕx¿äñ~î“dû/•¾õq©½)ïÖ<*å„ñR¿·çSÞ_z¾ß[ýðÖoøßǯ·qæsÔ m§íHûû^úµ7üŽúò^úuOüÀ6ßš¿c®Ôí:pÙ\y°T^ •cÖ?*wa«gž*ý}²k’Ðëç©Ò¼´”7e>È™³•I¯ ¯muÊÓW®õ¶f¿¿û'þÎÏÞù m?(öwj¿SoÑ>höߨt¾%aú}º^ùqòGÏ»ç£ÿê7Ú{¨(ŒGù\¿³ßuÝz€”?k?»®·~åyʳ–~D;úý<¶û_õôþGóO·<âNç¦z¦ö¥÷³]^°T¶z›¥Ò~ðyöãÁTé¸ð»&ÿ¼yľŸÏ?½[é¸=¸¹2Kß7÷ûíÍp©4ÏÑùîû7?#÷wö{ļ€Q¹w§JÏû=][ûw+ý^Ž×Gý|ê)óT©Üóy®ÿI$yœö3Pn™×ö+kõvS¥ïsÉ\¹¿ —Jã²i_h÷5ïÝçˤŸj_$y™öϱÿÕ;[ÝÏtn®k8Ó>l›SåÖ\¹1*?ëú›½ŸòöÄ÷>æ>?zëÇ·yf].ý¾:õ:ÖóÕѾ²w”¯IŸöûxçCË3…M/áyi¿(çÓ­Ÿ÷Î;ßû¶m+wl×îT™Æ]Û'`ªlqzßkT¦¼½MØö ˜+×Îï™*“ÿ—÷]±.0Å¥S~¨í𽼟ùýÚ÷)~‘ö§ñùö›ñiÞÞ>t~5H ÏkûRÊ©R{ÔxÕrª2Õù:¿=o»ÌwS¿Õ¾Ð¿™öó2û*¨~Õ\™žo¾†þ6ßo÷æJý€Ú;K¥þÁ´óû½¥ëê&Tž©´uŸû%{$åÇ%y–ü&^Ÿô­T'ükro®Œ~ ©òàTe[OaËÓ‚©¿Úy˜ôæ7•ÉoµnYkßTyáW\sïKïoÚ¸Nûw8¯}ïTlÜÇ÷LõI?NyiœÄº§ÀæO ÷·=ŽS/Ó¸HzMj¿ß×u¢í×Àû¬]=Ï3Ðø¥ï¡|‹ù.<_»Ëõ.Sõí¤÷xÞõek®4/¥åõM•mÿî—ò,6§Jó}^º>í£›üAmßš¹Òö´÷áú–7 Ïñ'~í^ÿíwK¥ãB;Ðú¿³v‘õ9—ΕêMîcœÓó¾wÚ'½åƒBÇaÌ;”\¿½Þ|— ¾rü÷Wï\ÿþ—ïÝòh ñcû¥?Ú•òÀüŽ; œ+õ§V_¿lTnNö_²T:nlŸÏsÛþv^ŽÊãÏýÃß<ó?Óó>`ÚWÚñåwñ»¾ÿ õÄozÒOÄ}C”ç)ßtcT¦óÞõîÐ_kÿø>Æ­’×þmû•Ãæ—“£Ò~5Î’è>ÚÖÈ–w õ+'?}²ÃÒ8X×nó¼ßûйpu´|ã;Ìï–oáz|—[}àòq§^ä÷_‡ãñö°ùé z›~‹ö÷P–ÊdG»>9žõ«´úrèxðùêU) _5ý õÌVGÕG´/‚Ÿtu4}wk®t^µºás?'ê»-¯ z^¹í¨Q™æµr¦å ŽÊ èþ¨®/ú÷Ô#• úó¼¾ùÁF¥þÌäïiûΕÎ×{å®zèÞT™ôð3»•¶ç˜âçŽ?ô­Cy§vTüTýÏþØ…Û£rk®Œ~¨ÐÎ7_Àñ®ßÇþRîøûV¿ÍõÍO7 ï«\6oN&§ç}ÿ¶u:ß\Ç“^꺧½ÒìŸΕÍ>˜G¥ãY}AÿƒãÝù—â­~Ÿ#æÙ-zTº^¸Îjûô—½áüù ×ïÕÑ~ê¹zý÷¨lõSà¨tí3§ÜrÜÿW¿ýÑÿëÙ®—«£ë °Å- ãÈqÖò”F¥ß-ÕM¤|“ÇNûZ¤};ÒþpÉÛâ0ÅÁ÷n®Lï«ÁûÍS¥r¿åÝŽÊ´N:šm®ÜY ›§\Ñ^J~R¿WÊÿÙ›+×݇Ìç)'쯶ÿ<}ªÒöú}Óßo³½²Ù«£=âp=cÜ¬Ž£Î«O^×öO˜+•ëÚQû‰S¥züþ¨g¾FÓ?¦JâY‡ã÷=loÛg*ìïGûìçݳ•ÊÇMò'«?YO°³Tªoœ<ï!O¹Õ=°ÙUþÎï´9Á¹2Ù‘ÊG×o×ßuã¤-¯]ŽÊT/í1°ù©aÓ?œ*[>þTy°T&û"Õå'}Úu3îç=›É¾Jû…D9“ýç¼Mã+í{ ~Ûò€¦s3½ã5­ç¾˳_*Õˬky r©Ô¯æý[ÞÀ€SeË›•ÉÏ¥~¥¼Ù…ɯâc‡z³ý®´S>ª÷ô~¼ê¿=}ãùÿÔ×9èxi~O¨ü:jŸ–æ'˜+· ý¬_Îø“ñ0×!ã[Á¯rØn¾ÿQ?¨ï—4U:ÏÓþ+ÉÏÖü\ßö{Éãý›ÿUŽJß®‡Á~Œë¦ó^9Òò•F¥ysæs¥|Ì+`ÜeªtÞmŒJç¿ýuü!—}ôïܶç7Oç¦ë‹r…ç¹_ëŽçW‡óàð÷®“m¿ç©Òï—òß?Æao{ã?½mëÏ^Ðçí¨Lû¼è‡Ø•ÆÅ|Oûa]*w›¿aT*—[1´ýÞÏþñúdÏ&¹Ðò¢%ïëý}ßT§Ÿî×ö‹ƒÉßk<Êu+Å‹ZËtnz?ç…òâüø÷ÿ«ßyg·¦ÊT¿Ö‡¤§'½^½¬ù`“£Rýã¡Ð¿íw4nè~Fézõc¯üÁW}Ì—·çÊÏôú²ÏRk·¿÷zõ2Ûã{û{ß[¦~JñÝDÛãûÚéùÉ希ö†÷•Ðë“ß§Õ]ÀV3U*?]‡Û>G7?רlyRк\íË”˜ò Óï[üpT¦z´Ï6(Ù%›r©lúÓ¨¼r©t]QOOvù°¼í_O<ø§ïØôTó¡ÓþšW/•Éßí{¤ó®o©ßSœ9ÕG©_Kã—O•ÚSûK¥ö˜ù„êÍ^ï<ÐÏdûüžþÞöªGYc{v§Jòì[ÿxÞq¼®W½Úy–âŠæœ­Ü•ÚKöWŠ·Snšïœò"Œ÷(—=¯ž›ü/ûP9¥žÞò›Ãó¿Íï ›ß”ë=Ÿü¾Ÿ~Sý®—Býº®{ro®TïØ*“¿­åëCå¾ùÿÍ_õZÆû¡_£ù[ ûŠŒJÇ¡ÏU_iùmSáêhóËý@Nýøþ7?ïS¿¡ïûS<#Éùãïóe[ðÓ_ã€ò¾â•ÿòCÏ~wË·¹3lëìT¹1*ýîþžq¶:šüP¶ºœ¥Rylþ¹ã7Å•Ô#¯Ÿ+­óKþ`õtçÏñoú¡¯úì?¿w»N¹—ênÎ@×±½¹R=gTú]Ü·Ò~:3Uêïi~y˜öMq]÷»Ò¾ÕÑîk?nŒJã¶-wTÚ®ƒ¥Ò¼Wÿ®Eë¨\ò|Š$ÿ»ý¼1*艹Ky“Ö—ägóúTOÒöMáù~ßÄæä~É/Ðü S¥ßÿº©Òó®#~_Ÿïâ{žwíû~Ç?}Ýí[{üžÒï¥þ¦îùN•Æáô{<z½ç½^ÿGŠ£ªÿ¦}`R>¸ß¡Å¹ uJ;Ðï¾ ›?z¾ùçJåÒs[ê¨löÀT¹1*S݈íY7¿²å÷ýßÍ©Ò÷mûmŒsÓ÷1Þqþ›¾ë“^ÿ‚wÿ—ÿ~±ñõ¶T¯f&ΕöGò7?â¨Ló³åͬÙ>ÇûÉËÞùAvŸŽv§ýrûo»ïUÏ|ÇU‡¼lù?ÿ¿âUse‹Êmèï+\¾T^S^h³?–ÊuëÁ[|n@ýÏ©îI½5ý>_¹fÜϸ™ãA¹lÎöWkþÇ¥ÒûÙ¿Æ©Ìažu´<‚TWÛêIä|ª;”Énu–ä~^o?ûþ-€ç'òï¿õþèã«c¾ñÜ<òïʶüÝ©2Õi¥õ€øêa{Ã|=2¿8|¯Ãû#Žþ;ÖSe¯ÍS^¶~„T÷”Úã÷ºtT{Ç'ÞæÇÿât\çýqá½¹Ò8Âö¨ÜY*•ƱS½óÐü¼”‡™ü¾­^ ¦õosªÜš+[½•×Jó^\ßͯJùÓíù3 çç©rcT¶ù?›IKt¥¸OÒ ‘s·äð^ŽõŶ?Ôþ´ê£ä±®ŽvëùÆ€<7õ¿¿§¿ûßm•´Ïñíºvòãç _ñÛÍí¼¿ ¶ø7Ô¯l;NÞyëM'ǯ¶uÑñ¡|ñ}½ÞxMІó«#îWìyý!é|Ê£ö¼¿÷û(—œ·»PýÎûoŒJß?Å‘Rûõwj§—Û¬\Ñï‘æŸëëÞ\™ìäTW•ìêã÷ü»woßómœ;ŸìO®?”£~òÂysÔ|öý6F¥ï×òÈFá‘q(÷_:3*Ý«ù‘¡ë¢úRËÿŸ*Õ/¶ ÏS?9yêO¿ëžÛòÔ¸nuôxøTéý}ŸdçÚ_Ê9í>ý ÚÆ­Œ³y¾çêhã`o®Lù!©~5å“8Ÿ}žò>ùš>ÈýÛ¾´/Ù³>Ï÷7˜üX®Ž›äLñõ™u÷ur½SÿÒnt§:¡T7Ùâ-~¯¶¯Æ¹¹:b>HË[›*Ó>­-Î]yd;š\…~¯f×Êm˜ò£}ÞlzÆ×u}óM•öÛÕseŠO%Kz¾~Õ´‹Ï_Ûÿ)¹¾Õ™Á–G´T7Ƴ:âß… Gúm_ª_Iö^ŠÇ'ù˜â4úÁü¾ÊOë3\ôÛ·úØò%áÅÛ/}â¾áÛ[Þ‚Lþ-ש”ßë¶áºþš&9‘ì›Gœ*'êWæùݧÞÏyÜÆ5t´|uè:kB¿‡vyd¾¯ù˜ÊAã‡Öi]1*õOºNµy“Üñ¾ª2å¤x­÷×~u<˦¿ŒÊä7œ¡ûÐ;°ë­£Ò¼7©ž»1*÷a[GçJç›ï×Îs3åñ¤¼ø(o$×7¿Ê€œWþ¦"­žœç¹þù½’}âÏzÚ3Âç4=ªé‹ÐuôØÏxàÕ?ý¢¸ß“ïïy߯å/Ãx~T¶8g¸Ÿß/Õ5%=¯Í/I{Sœºéñ0Éûd(O|_õô´V‹×L•þÖ¾ú9Ÿ~Qü;æõ;•»®ƒ®CÊqý úQÓ:xÁOþã¯n~݇µõÂ禼2ï›öŸIç½Z¿®[*ÓzŸòâ¬[·?<¿]ÏZÞÆ\¹îú›üZêG©ÞÇóîûpÕRyéT©~jœJýWýöô¨Ü†Öeø½ý½öÁ™¥Òúrõ1å…ú};÷æÊfʃ¥rsªôyûSeª“Nù)Ö÷Êí¹ÒçëÿWÖ?ßî7*w ímõÒÐëµÇŒlCÛ£üñý•óÞßó§ í;yé/ßýSþåeýïNÃ3g+}®q Û±õ§GlãÂç)½ÿæTyúl¥×{í´ý›+ÛåI¤|kÛßö!•ÉO­=9Uú|ãŸ>¿íó2*¿úä3ÏÿÄ×6=ÂuÞñ®â|Úœ*Íw6oQy×öÓ•ö“zŽyê=ÉÏ¡~Ýò>FeŒ·N•ÉÏêùfǪ×)¿”+; …GÖŤú†Pÿ¾:ºÝV¯ëûÁ–g1W¶8Lâ8'Û~§Üß…-¿êuÞèŸÞ„-= ›]ë¸p^î,•[se’w~Ƕ¯Ù¨\·î9ù/Ž}ÿó¾àk~ó 1+ùÔGœ¯~—ô¼æ÷Ý­Ü•)ÿÃùã8tþ8o[Þ8lõ!£ÒöÊyªl~dè¸÷yÇ>ïa_ñš—?3î£_Æ~×þ7oÑñ¤Üö»¸Ž¥qåùŸ0ïÒuY{0­S2åu&½:Ñz´omþÈ©Ryà:å>´¿Z}T&º¿WkùoPH»ß¨T¾nŒÊ–O4*•+Þ_¹—öûŠþÝ©òÄÓžóùŸñì¿nëf›‡pž*§©þH¿•ç[>Ĩ\÷¼ýj\ºù•*õ±˜WéÇÕ1_9WÚÞ[Æ ï¿Üå-©¬ûÍG¥ñ3ësÒüiyB0Åô;8®ô¯éOÔb{µ¿lŸ÷w¤xó±o¸ë—ØïýEóSÅ|+¨ß«ùWhg‹ÃN•)?Q?aËw…«£ç;O…‡óÀþpœ^3WbÏ>Ï~ó½O|ìôw}òýb>ªëˆòÈu½à°=M€>WÿDšûPÿ~ŠßøžŽ_×ã˜ßÀýS>TÊKny™SeÊlññ ŽJ×;ó‹’>#“_ éÑÉÎIù;)OÔþœa[§aŠGë—u|©j÷´õ 6ûgTîC×3ד¶ÏðT©~~ü[.ÿÄ?þëÏmí𺴯QÊ«³ú‹Úþ:S¥ñ í*í_û=å·Ûþ”'žìôû¶OÞ¨ÔÒîÍ·ö{éõ÷ŽsßOžïk{[ÿ,ç¦ó^¿qŠ3X_f>¯×oŒÂÕ‘ö lòÓq¤ünò¾ÞïPp?ºÝ©Rÿ²ë¹vœãÙùjœT½¸½÷7nïxPžø}lŸ÷wÝp<™'àøÕŸüÏ[se’‡ê M^*÷G¥r[½Þ÷õ~Ê õç£ñí+Çí{[g“üwmŸ†Q™ì_õš”·e{ÿ˜‡7*Óþ“ɯäù¤‡%=3ù#Züˆû{>ù ŸŽç£ó ù²:¢^á:êºîsÒwqÞ¶ñ=AÎk¯87å¨ õfóm_qç»þØW_¢Ÿyuµ¿Cû~Ê?ýÌiü§ø¥í¾õ3?îÚÍ7|c·Ÿ`Z×µ‡Ó¸UïÛ€þ>ouwSe›'0Å]R¾ª¿Oûß°¯ðêh~1ÚÙÎ'?—ýìzèú¤þîzª~i>Ëö¨ v×á{¨ç Η–?C{ÇëÆU’šêiSž¦÷óùþÞyÓîȸ[m<ê¿q\¥|!ûazÞýÔSÓ|t¾+ßýމ>ïÂGÝøSŸý°û溸nü¸ùà¼íóì}Œ§8ÿ<ßþNàRù$èõ×,•—M•ê鯹äÐzHõ7ó’¹Ù…s¥÷“þÞõmZ_¦ß'é·É_Ùöy„¶7ùlÏé›+׎åJ“ ´×y“öuHúªrżàæÏ†ÍN Lù >ï’¥R;-­Ï¶/Åß›•í{ÐÞô~-Î@û\¿eŠë§xF[—y~Z}_Ï;_|¾ù'ãŸrñKÏqÝ ¸»T*'Üß6Í› /ö¿ ³T&»ØqÔöÏ™*õ7§}_Zž lu­œOu¬©?|_ý ¼ÓŒŸû>®SÍî†)OèxüšÏ¹þÇãß«Œ~¯©2å÷õ ¦¼œTßÚò(Ge³×G嫜Öª¾æ>>_}µåªT®*Ç|žwd^¿òÙv?~Íû>òK^Ø~§~WG·.p®ô=µg7FeòÏ8ÎÕG)ïÅyÞæÍT™ä¤r6å©*7ý}Zÿœwú´;›6*“ÿÍym|ÕïãxiúÏTé¼IùÉ_£\N‡Ðöú}Ì—hßkT6-lùÐ| íôK—ÊŸöÏ?üƒ[ou¢Òùßâà°åaÀæwæ½7å\i?¶¿+Åïm_ªÏó÷Êÿä·k~98O•ëúõü½v…rJ9g=…õý£Òº¹Ô¾æÿ•mTØä"×';£Õ_M•[°íû9UnB×û­¹Òy›~ïûÌ•~¿äq ˜Î§uÙó)þp›µT6ûqªLúQòø>Çþö¿û‡¿öuqãäò½[œ|©LõX¾gˇ-Žys¥ç]/ÌÚ‡æß3oS¿ªëWËWœáT©Ù|«óÿù§³ÿüÏnë‰íÒ¬¿ZoòÏ)ÿüNÚ 2Õ'Y×â8Åÿ½:Z;Œ#XÇ•ìâöÞS¥ç_öKŸÙ/}v[O›Þ}ý¿›Ó¹é¼IûM¦ë“ÿA=Òö+ÿSþ¹¿OyÁÊíå½¹²ùkx?÷WUÎDÿý¨L×·<²©²Õ®Û¾´žÉ´/AË3•»S¥~eÿ.ší3 í#¦¼Q_ðzíDëYõ?¦öØ_ê›M߇潺N´}m úÅyŸüòozñÞ±¯g£²ù­FeØo ÿ½h<Àߟø½ú¼»?°Íפß4ùƒ?©Éý@ÖÈuóvx¿ÕÑôh¿û%£2éKÚãö«rF9¤¾Óö»€¾§vO’[¶ßë›]Óßiiv¿OqKßÏïìó7FeóãÃ6Ž“eûc¾TnÙöïCáhÝÑLùßmß ¹Òöy½rÖþQžÙ¿~Oû»é=0Õç4¿€çGåº÷OñÏOøŒ/úŸ¿÷óõ>M_„ê÷;K¥rŽõzuÆŒç¹3ŽÿËïÏu$å{ž+‹4½gªÔÞNz¯ßáä/üÁ[îwÃÛ8wý4¶;Uª_¤ü ßö©à=Ì_Jú~›gSáêˆû¶%=¼ÅÙ`‹ÿO•)/JIÒklOû;qK¥v•ç“Úò„¦Ê$SÝDÊ·L×§¸°ë“ñн¹2åO'?¤ÏO~o׿¿ïŸüÎ)¯G—~¡”'Ú(GSÝRªOpv»§yÛÖ©Q™üOŽ3ŸösÜçfÊÿkzÛšLíY7-å‘·¼gÚ8Už¼ßϽáUwûö8?¼ýâ:ÙÚgèý“ß½ÝoTßxη~ù«¿¢ÿ]¢©2ÅŸZú87¯IÎ,•êéû»/çÓ:Óâ0Õíßêÿð¢çíôzQ˜âv¡žmu¹/%Ï_Ê—£®oí1~ÐòÁçJózWìŒÿgé8SW9·æJý%®‡úÉR>IÒS|Ìö·ïÇó[þLr¡íó±T'ÒLö£ö¦íqÝMöfóƒÃ¤OÚßú»l_ú{q¾¿uæ¥&ÿˆòݼUýEÞO;Öë•OöÏÆ¨œ§Êäÿá}VG{/íõà´?dzOÏÛû³ù—î¶þJú·×':¾¿Ú'Ê›ä_Löÿ>Ôž;˜àÙJååéN•)ÕçyÞù–äYË_‡ÉŽˆû/À–Goú<ûko®ô~êÏŽC¿ò¢Í‹Q™òå›nªluž•-ï6ÿ,Lõ&[s¥ãO{Êï‘êZÜmvïÓò3¡uôi?¯VW5Uïµ.[ý¢ù[`«3‡¶÷øþî'|ß§ýÕÚy¦)ßÞq¸ •Î˶OYå-û7ÈQ¸:šÞdEª‡Kûú¤ýg]Ï·æÊyªLë™zøµs¥ë‰ó2Ƶx_ŸŸêç’_F?Œr@9±h^«ûe¸O¤ó$í¿žúcT&}­å-Ê–›~S\ÒïݨôyÆ«Û~Ðë}Þ™Qé:©Ý×â~Ðö(_–Ê3s¥òkzí–V÷6U*OÕ¯}ž~åc«š*m¯vòÕ7·u<œou¬3•¶§ÙK0å$½#ÙmÈéÜô÷i•äŸnòfªLù®2ý”ב®OÏkñû©ÒþÖ_¤¿ÇyÖêZGeªÔÎò¼ãÙü¬Ë–Jãõú[n:[yã€K¥ûrÜ0U>yTÞÕ›oØ­|ÊÙÊ'O•OƒOÞ]7‚så K¥¿¿q†7W>e·òÉ7W>e®´íÿ'Ÿ…K¥×?ú}Òó|¿Ï 7WÚžÔ¿î³÷”S•î¿yf·Ò:GÇ›ãçÌ©Êëo®4äú¹2}ÛsÃ\éüz*ôüMK¥ßÿFØæïÍðˆß­hÜp¶ò¦ÝÊO[*o8UyãTyÝ|n:ßœ?>ßxuëÚãxð~­ÿ ïäÆÝʧL•O+}ŸOƒ×Cíš§ÀëÏV:þ÷áM7W¶ï3*½þ¦Qéüð~Îßëx¶òúQéõŽÇ§ªT¾:þŸÏõóÒQ©þª|2ž¤ß4ÅåÏ™7¦ý`=`ËKƒ\¿:ã/m!èûi¿hù{Ïëojù,P{èØMw¹÷Û>øm1Ÿ|k®Ô?ÝêÒ vÕîT©¿D¹¡šüƒù +O=à[ž}óô[{}ó;ñ~+jÒžÓ?¢ßG¶÷ž+·$ï£@ÿ¦þ—äÇjõ¢0ÆQ¹_Êt\¨¦zæVÿS|?ÅœŸ©¾Íï—âpö‡ùímŸQyéTi}€çÍw¾l®¼|‚KáêÈ~@ØêaÓ;G¥ñ!õý>ïüÓïºøË^õÈæßœ*“ò`©Ô«\“{ÐüÉ'œ*Ÿ®—ú÷¶·í¹Túûv~®´ñVظÓϽã§Û8³nE¹šê¸¼^½Äy“üíæÕ&¿ùEqâÓÆÝ>£µÃëÚ÷€{s¥ù¨)º­O¼—çÓ>)- ¶}“F¥çß>ߺдooj¿ëÏ•°í›ýîŽõü³«£Ýç¯é§¿ãë.Ös¥x‹ýéú©þƒâP¯ÕÎR~oŒJâq‡ï‰<½eß…ÊÃëS+üýÆÿr\“ãSeªóHù½).d^§çSÞvÓ“FåºùY)n’긒|´½-OsTzþÖßý½O»Ç§¿¬ÉÓ6_igÛ÷t©lòd®Lõ¼áõ½ßß*Ö¡ø~×Ì•i?ßmØÖÙQ©ÝaÜÉë]W”Ê!õ«èóï=î‰_ôß¿ûÇÛ{yÏuW?Qþz½ú–í6ßTy[úO½Ÿç•«ú#v–JíQãmœÌp©ly†s¥ã¤Í{è8Ø›+Ïœ­<=W¯Ù‡æŸëß4ÏMy`{¿ó Ï|àŸØü<Ê/íƒ+—Jå‚Ïqßѽ¹2åWºÎ§<„X˜ê’½ö_?ãà növ˓徱ž Ε«£Ùµæ ,•ö§u-nœ›©¾¨õ't=7_Ùñ¢®ßü^õ¾Tò0Òßßlù‹ÐïÜÎJíî–çSCÒ÷RÝ;rpuô¿³²T&ûJyuá__ræÔo>µý¿zŽëšãÙu2Éý­¹ÒuÃûµ<”éÜLã#Íϧß'=-Õ´z€Qéý•ƒÊkï/ýÞ®£)¿Ûùî|VŸ³½Ž×eåãÞ\éûìN•i=²¿Sþût<´º· .•ÖíJû7Õ'8Þü½ýëxRÿØ›+Ó¾rŽ@û[½Öö÷þoý¢—¿ó)­]ŽÓW‚­Na®Ô¯«ÿP?¯ãÚuö(ÿ€úZª£Ö_(•û©þø¢Oºö¯þî•—ø»ÕÑúIùíùdϧýËRÜ"Õ»¤ó©Î>íCšöÁIy²é¼÷oû@Ÿ¯¼Ù=çJõ1õ[ãÆŽ7ó˜Ìk¹v©týö~¶GýÓö˜"]2*•ÿiŸ‰•­ž&»×<ÚäÏkyèKå¥s¥þåšï§\MqNûÏzÀ6xŸV¯z¶2Ê“©Òþß*›~©ló¦ñ’äƒïßâ~KåÖ\™êŠíäOn÷ LïcÞ€öC’ïê‡i_óÆÌÒÕÆÛR¹1*›>ÞáüüäŸ}ÔCb½TÚG9íÛÖ8U:ôºþê‡MyêçúŒ#¾—uzq_¡ ˜ìÝ{þîŸ_óóùÎX¿ä}ÓßAñúä§Iûµ8 LëØ±']ðÿñK·jë—ùþÝõ÷ýqnê/qߊž+}žç%úáêèvÝne˳›*÷­îiT¶yËõ­þ š‡qÉ\Ùê© ~-×)Þï–¿\¹:ÖŽ»:ï]g[ܦ}(\W“\²½éﯦ}¬Òþ7-dª4ÿ°ù1§JŸwì‡N?åý>è𾍼×_žôyéýWö›ãи•ã^èÎR™âØ[seÓGyŸM¨ý?*S]¤ýüÏÚ;þÆ;ýõå_ðøwÿUë'Ç“ïéõæùÜçzåºß=Ùq¶¯å /•ëö[Ë«€ö—÷ßšGeËW•kÒ¸«L~ü¤µ}' ë_»LûìJó|¿‡ }®gÚ1æÿ[ß „ß`uiïðþ‡×·¼è©RÿºzÛݾþ?ðÛý[Z}YÛ/ÌûBõIߟù½:Žü;)®îø3®¢¾›ú᪩²Å¿GeŸ!NvÔ÷ÿhù]P½À¼|¿›~~ýSÖɧß:låë‰ÏûðÛßóƒ?¹Gç{Ëÿ˜+[^ÉRi>ºvˆú¯q2é|uœ:_ÛþÀ¶c®lëlûåQËVoÓºÓâëSeZ—Òº—òq[]ù¨Tïv~êózóv+íç‰ùÜGÕé'³_=¯_:ÍûMû±ÉÕQi?¶øïc?ì­Ô®¾í/þãLwúäžO5WÚßi|lBå¨rC;Íû©ç9´GZ¼wT:?”3úëÕCÖÿÍ?1›êq¶7ùE×­7iuz£²åçCýI©žÇñÐô̹²éqK¥ï“ö§–îäxS=øý>øþ¦ûÍ'žð=ÏÿÛG½G;œ²ÿÚù»7Wú{ý!ÞO{ë`@Þ#ÅCÚ›i¿å[ó[rÿd÷§<Àö÷9$×§yòz×Í;ï}?âý~à7>¡½çÞ\i=ªz‰þç—û(盿gTê7ŸµÕCÑÞÝ›+[þá)¸TÚ¯êŽûM¨Þçû§}oÚ8ƒŒëÕÑäL“·£2ùù[Þ Ïçy‡z“—Káa{[|s:7•³Î7õ†¶´¿RþKò·¦ý Rû}þÉoøÌ‡ÿö¿¼º/¿cª/?þ³ßýÙ×|Ì?õ¿K}ŽzÆÿÛLû$ý·}穲­'P}¸ÕN•)/1ÙUí;Ãôû”gö‹[ñïy§~Jñ³T–üA)/@9xâÔÝïpâOŒ×©G¦|ýßÞ/Õ=¤¼ö8ÞGeª;l~µQ™ê¢o-¿aMªÇ»>˜¢ý«>©¯þ¨<Þ›+]/Œ[7ÿ°÷•ÊýÛ¶·ÅÑçJ¯ßš+wFåºþkyì ßõÆïù»·öúÑ¥Òy‘òXüniJò$ɹ6ާJç ÷_=? ¶:5˜ê”Úþ5£Òñô©²í }o׿d´ü‚Q™ü ®Ïé;¦úˆ¸ 8U®9ÚýSü«Ýz¿{›ûðO|uôÇ$;¿Ù¹<7åÿ¤|—ö]¹Ÿã*Å)S¿¤ïàïSžÔ{™ÏÛ—äDËÓ ô}ÚyØÆ%ô÷¾_òß%=Âõ"õËc;â½Vôy)¸n^çÞ\ÙÞ¶õm©Tñ÷êú­lOkßtnú~i>6ÿÅT™üPi½MvM[·¸>ù5Rœ#åU8Þ̃ð~æmjG$:þm_’ê É/Ê÷JyQÞ1¿þ«yG>?J;ï÷°ÿ¥ë¡uRÍïÕkR¾–Ly([seªû±½~í&íš”ÐêHG¥ã­Ù5€¶×ß«G4ùëï9o>o“3°Å7x¾y×®§)¾ìx0Ïck>7Óøny¡-oo®TÚœ*/•Ο–_ÄýÚúÛ¾5Ð|bç—Tî«÷;¿Ã:>Z}\*©hõÊãN•müL•Mƒ©Ž)É?¿W‹ÇAÛ“üõÉÓì–Q©¼²S>ë¥òf]»(ÉÇ/Òn5>©Þàïæû7=ö¥xrë¸1 WÇÚr<ٓ΃+çÊ6O–J×µôw S¿¼ç}™ò Òï“~ò•\'R]™÷OþnO½uû;¤ÚŽSÛ§½¯œq8ví'=ýæû~eûŽÊïT¯“âTͯ“Ÿ=ÅK“}Úô3¸1*Ûw•¾ïºö¯çS\Ay©¾ðÈ©òø±ûÞî“~æþm|>zߦ§AåMók´ïZŠŸ¤:ñT/ Þu4ÏÇu[=H=]ÿªyU®Cê9I/kõK¥ëžÜ Ü•É.JòÌyÐì ÏO•Þ¯µƒë[û`²ûÓ¼]·½éþé~®oÊåÔÎÏô=´SÒþ'WJëåÔ'ÜÍu`g©Lþüuó^6F¥¿wJr7ÄçWÇa|&OþÔ‡d{÷aZ'“~Õüu°Å'¦Ê”§Þäžïéyèó•Çú¬ò÷×,•1OŽ÷Iy×ɘ®Oý•òüRýGЇ¥}"c>´½ÍÏ ›^ Ãïü;Œ©Kÿ¥qàï ï¹=*·úÓˆÓôýG¹Ÿ×oN•ê=^oü§å)Ð^ý-ÚçëõöïþÖþwРýäzvìßßvò__òÏó#Þóïõ_jWù}­ KvzÜÚy#ÚÕú‹?mŸ¡Q©]žöWMûHÛ÷£™ çÓþ½—-…·¬Ÿ£puÌ}ÁÏ]wŸÛ|cÛ/M¿vWÒG·Ôÿ¹_ß±¿~ÕoÞ꯾Ü߯ŽÃß…¿×pø~Χdûž6U:|ïoyЧüëï~}«wô;êu\¤¸OÚç7åë:šßaª´_ünú[Zœ¥ž_QÏOz©íJvÈÞ\™ô¶ƒ¹2æ»@~¯üw]¾èëßþ¥¯ŠùÌM.ÈQ¹îxiuŒÿöÊÏ{Æ£õ:å„ïËùÃùí:ã:âz†aut=}TÚ¾äŸ~Ïío±[9¿ƒÕÖ7o)G¶¡~©¾µ9U¦øSÊO²}úmZ¼Šó->4Wî,•»p{T¶ýÚæsÓ÷Û›+úÓ÷K•^¯_ÍßË–§Þo ¶ïÚ{ÉRy)DßèŸÚ^õåhûÚ¾eÐñ•òAü}Ê×;˜*Û>/S¥yÈÉn_·®Fý²å1í¹Ò}®š+m¿ñpiîÌ•Ž'Û£ü±®„-o~*\Gî“çzŸüÆ-Ï&¿û=)/¹ßêˆñˤËuëÍÚ~0ù×’^Ôò¨¦Ê”ÿ–ò Ð—WG̳ný7Uú{Ï'¿³ú†4•ê"<ßÚÇûø¾Îצ_ñžGù‰Ó¸JýiÿÙûËþØ*“_ºå#Àö~²¶uÄx{Êk€Ñ®oö\×m{7§Ê”÷ØþŽÅ\é|W>)G›<ó=ø½íkãrT&ùºñ”Tïëõê)I^6; &¶÷S¯ŽùƼׯŽÃqæa»¾ùßõë©×jg¨7:~S^z‹rËñkÿiç%¿†þ¹$×RýOšÿ-Ï Æ|#ž§~àùo½Ík^ÿý¯èq•©ÒyÕülS¥yI¤~köÿT™ö55îëù Ç´yýp˜âÀ©n`í¸ç¨lù[£2þ>\Ÿäj²·¼¿ó¨­[S¥ñíïK¦ÊÓK¥ö¸úÞy¾Ï·ßðÍoiã,é=Ú©ŽsýkÊŸ§]ï¸U~™×¼;Þ²Ÿ4|t¾&}™~XQ÷üõ§*-g°é£òú©ÒóOž+¯•~¯ë¦Jå‚×û>©>ú`©Ü›*͸aT¦<Éë—ÊýQi¾Œíõûé×oûòÀÓså ðÌR©D¿ú‡ßç̨ܜ*÷æÊäÿor‡ö,•êKê7m?ïQ™ê"®•Ž7÷·¾Ðùäºàü”Ê»´odª{IulW,•mçQów8ßìÎ'û¡åoÂ¥Ò¸BûÞ°ù‡¸~Ý}w[ÿ@¿wŠg¥¼í ©ýpÙ\¹3Uª§ê÷Þš WÇÑ~ØâÚÐñ©ÞâõŽOýL)šòxš^;*S¾˜×§ý‡’?Sù˜òÑ’? 僭éÿiãµío3®Ž¸oIŠW{½~¿³ui_…$÷ZþÔ\™¾«Ï÷ïÑù¼d?ø]Õ{ì?ó~S€÷SOhyðP½Üxœ¿o~<Ú³ ÕÛÒ~ͱ~:½ÿÖ\ÙòhdºÿTÙüp)ßLÿºr_=ËøZ²ÿ“\lõ®ãÜt]Óî³]×Z~"Ï÷üætnnÍ•¶o{Tî,•Ú¥æ½OëïŸ~ï|»®ëïJqµ”÷›üЩÎÏù¦¼iþ·¹Òõ!é¹ÎçSŠ‹6¿gxÿgØ…ú3’«ùIæJ¿WóóÒÞä¯Ô7CÛÛꂦsso®´½)^Úþ>Ú¨LïÓâqÐù§Ì÷×Ðüðp¦þLqùäWOõœ!>ÙüÅæ·â_[‡vGðÇ­Žæ×´i_7×ßÛ︳TjϺn(‡\¼ŸuêiÝÛ•ʵˡþƒ+æJó•³êéꡗΕÎÛÛòÖaªOÐþv]K×·ý@GeÚOÑuEÿ©zÐ KåuP¢zªþÃýQ©Ý8*[þ7¼jß»îø>~ã KåæTéxl×JçþOõbž·:š_*ùyôã¨O('ìGý:Ê™c/yÑ]þ?ÞóD¹¯z£òÌù°7Wêõ=.*“¿2éꙩÎë]—ô'%;«éÐõÃ÷uôþ3LzÕeðò¥Ò¼Ù«á“ ç ñŸßüQãÜä{¯Ž¨_$?^ZZýRyòµüÙß¹í»Z<¿—§|Ý•í¹KeÚÇJ¹‘öEjû£Â¤(/’?3éÕž×.s}QÞk—´ø&×û>®§àn¥vd“ÐøVê_×?õWûëü×|õ_?ëßÚ¼Iþ»ä·NzRŠ39.“}1O•)¿9åÙ¶ë§JõèfÇN•)xݺyûßþlëlq¤©2õ×ùïú’÷{Ü·ü{ÌhùS¥ë·ñ:í«½¹òS¥ò!Ø}ÍNLyÇŽ»tÞûéHyGÖ1{ßÏöÈ¿vÞ)ÿ›½9àTÙ≜W?¦îúÐg\­ýGìƒ~x½íW®Ù¾7çzç…óhk®´¿hïa;[œ6ÿ t\¥8\’_M>Mö¥¼â¤‡§z¥Ÿ3Â<•¤‡'yâòžß„éï—ù}µ›ý¾ûK¥r'ù»•+ê!1~ ÷æÊ¦'JÛßì° ŽJß7÷”—ýx•GÖý'½É÷>€©.5夸×ë/lõÓäù×Ì•-ϦººíQ©?¯ù9F¥íUßwܦúÏ?i®Ló>ÅÝl¯öRú¾ëîàó”+ÊYõ«¦—s^ÿ¶ç7ƹ©\ò÷Ê Û£¿/ý=‘Ó§*Û~iP9‘ìÓÚ¿æë¶º8ÉûúüÔßM…iÔfGÁ»üêß¼âWÿä³âß pÞØç¹õÕú¡Ô³¶æJíó2õSª?(Gôï8μŸr2å¥9Ï[¾ÐRÙòF¥ù7®‡)Ï>åy·¸ôï޻ߒg£Å%í9ss¥úFÈãoß·ÅÇùýÉ÷{É/=ú¯ãÄq¡|kuös¥í4Në8PþÙoú “9Å£öGeZ¿Rý^Ò¼_ËsƒMßÊ¥ro®4¾¡œr^iú{åÚ%såeœá¨´ÿ[Üš+ÕÇZû¡çC\~uêÏ®·úÇeÒÏÒ¾²å}É9ßêªä\©¾‘ú³Åå–JNj߷q®ly0Ùi¶×ï™òç“|H×oÍ•i>ú{×ñV?3àTéº`{Ô‡/-¾Âó”·ëîw‘ö#M~”Þê™GeÚÏ"ù¡RÝgÊõ÷©žà½Í·OþñVïÓ>?^oÿ5?4ÞÛüÑ£Òó)Ÿ?ÕW‡ñ÷Í´ÿo÷ˆ»|ÛÝN½¡}óQ­ÇLù†Žã¶ÔO¨Wn+Gî÷|ÃÞï~I«»ÝY*Û¾HK¥ú†vˆ÷S^_Õšþ²Tš_æï›]3*/Ç/û²_þ¨[öS•Gí;”üÕÉÏïxhþFÎ;žx¯#÷mJò=Åô$»Öy ý²[ÞèTÙü#\ßÞ¶z?9*“ŸØö{?í¥æ*½>å§ìCßÏ|׋3seª#"np8Δ?§o^­nu©Ôž7~ÑüÆS¥z©yÊGó†.•^o?;Îõ¨êÏP®™·aÞŸþíøƒ³•ú µS½Ÿ~ðÝ©Ò祼Èý³•Ú)ßãäO=ñù¯ý¬‹[<¿ÉQèyÇ•þwåYÛÏáT%òêp~´ýî`Ê£R®™Öê¹F%óau4ÿQjgÊIûü)ÏÒ{'KËŸœ*7)/)å«iÿ5{o®lööR©}îz×ê¦F¥ó&ùg¿ÍŸ6Uú=œ·¶/Õeª/î,•[s¥×·xS`Š/$} ù…å±w?ÿ÷ú€?‰û¤5»wM6»&;0åqÆzDè<Üœ*•W[seÛÏxªlï3U&?L‹kÂTÛò ¡çmŸ¼ßgßê“~ø»?¾É›´Ÿƒþ æ¯ô=G¥ë]Ë „[s¥zžò¥ùŸ çÜç®ÅEGááïô¦üz¿«ñQóJÔkô?ª×¸_‹ñPo¾ ~óõR¾¡ó¦Í è¸Mù­?§Ê$_íÇ£ëSó«O•»m¦©r]™Ïß„-Ÿq®lþ“§Jõ%õ@Ÿg¥þmu £òî¿óí;ß÷q{­õ£èHz¸~ãú}ôë¨w$=2å(§RÜÐßkï9ï’>@ÿ¬Ž¸“ãssªLû6¤uÐïÖâ¥Ðï¢}Ñü’£2å3µx t¾¥ùÝô ¸7W¦}Ld‹ç,•ú!Ú¾Sešïè=«c>ñø—~ê¯=ø¶·ä?Ï…«ã–¿TyxŸæß‡)xsªLë‘ñÑ–·2*½¾Ù“pg©<9=òšûŽù¾®¿®ï^ßâ£R=Gÿ¹õ¡É?áxhû4ÀQ9O•¾ï›òbõÏ^tÞ7}üíß|ç÷Iq”Ççwò=¥ïÙêi Ï÷~í<ïÓò鸾å§ÁhžF‹›LpTê5þd}’÷—¶çøË®ö'üæ;Ú{Ø.å·ïi»í'õïo?;~[¼¦<µ¯…­~)0Å•šž2*[¾÷[7~Ÿü²Žƒk–Ê”ä÷T?ØY*›Þ8Ã¥Òû;ž/úŸl¯ëú×Û¾yªÔ…«£ýÎqôªdgéghõ2S¥ëò±ýÿÆ/þê‡ô|¥©Òvh)w\ÿZ¾Ü•Æí¯•í÷Ðö{ýt|$¥q¿‹óÙ¸RŠø|åÏ;Ô™÷«£É£uýé‰í÷£Rù¢=½³T¦ñƒ<;|Ïæ˜+Óþy·ùƒ¯¾ñé¿|CÖ àmßõQýÄç¼_ûÿ‡Bë8•'>×ë“~æ:ÔüuPýjÝú(×!õAïïõ£2éÁR}Ò÷·–J×Ýßú?xñ?=»µÛ÷Ný–Îû\û-ê?œOùÐ-Þ5*S¢ò¿É/¨¼JóRîN•3´¿\/I¯O×·ï9U¶x¨Lñ»Mè¤øšßÑö:š¿cªä;~¿ÍÊÕ÷“këÔT™êƒü.íy0æËÊö}*Ìiß±ru´öøýôm@ó]’=êøLãÜ<”o Üjë4oÚçÙÿKåÞTé¼ö|Òã›_¶ñ]7š=?U¦ýC›\š*S<õÄÎÿ¾/{Ìg4¿Xª#ÞY*ÍŸ×.HûNÌм¨ûÃæW•Éïf{RÜ×ûÛÞ¤·µ}ÃæJõ\ç͉zÁÛßu«ÏŠûe«¯·ú䥲åûÕûÊ/ý´»S¥÷=3U¶ú€¥2íKà¼o~b9à yŸ­¹Òß7?÷Ré÷´=)ïóô\iÿXcX?’Ömåªï—ü !/¥Çûœ çS<¾ù“¡r5ÉŸäöþêMÊÕä÷hy£2Õé)6`ò¿¯›ï`{’ìûÇ|»Q™ôíþôûæw•ö‡y7Éo›â)Ï3åñ8~/xöGþíÎÇÞ'ÖG&µï¡¾³7Ã¥R¹Ðô§Q™ü©5kß¿ÕeO•)ïõð½çÿë÷SN'»>ùošG{9lñÍQ¹ ­{<öªñù;Ï}PËCKù¹Æ}ÔC®†æa˜?äý\ÏìçQ™ìõd÷&».ÅÕRý¿×û>éúÿªÙì˜Ö¥ävþnú¼c_¼üÕsámÞ¶|ÀQé}ùýêˆ~¼&Oh‡zúsË«™*ÇÚç7-•ê±ê…ÊÛíQ©Å;Ôƒ[þϨÔNPÎmN•~Ïd'x>ÅÇ/Øþ°ß{ÛínÿžDÚ·*ùSÓ>§É^MþãT§=ÙÚ;UêçÒžju Ü/½¯ï£Ýl=|Ë{˜+m¿ëÁôþŽC¯oyQ0;÷°½Û£Rý ÙÛ´§Í«©ÒñxòQ÷ºäÞßse÷Ùš+]¯ü®)ÿ÷¿š/çø5/µÍûQù¤¥²ÕÝŒÂÕÑÆ™ëýînåö¨LòqwªLùmQé¸p\^>WZß–ü÷Ê•”ÿ×ä=×791Un6¹=¿ [ÿM•£Òõ5Ùõëæåµxä¨4wï7o‘õ}uDû:úkaÒ““½ïý› S{Õ›R=¾ó¦Åñ¦J¿c³ûG¥óªåAÁÿ|æ<ã ïr·?©žÁ÷JõïÎÏK—J×¶þM•Û£²É—i=¦z‚”Wìù”çaú¼TßÝìAh=É“f÷JíhÏ·:àQx¸k9ߌ÷œ¸æ ?ü%ÙïõŒr®´Þ`k†SáêP_;l÷‰+ñŠ·=ï ›ªíïS]‹Nçäa;›Ü•Éï’ü)^êxKuç)/=ùÕcžGx¿d¿¶çA¿›¿w½Ly/Éž®÷ùm]ƒÉüÕ¬Ó‡óÂç®Û¡ŸVÇÚy?<ç–|è¸Kuyi_“f—ŒÊè™*•«ÁþhÜ›+m¿ïëóÕ‚œïûâr}ªÓLñ—uë&Œ§j·´}V`’C)OÝygzÊ;Kñ`Û¯ÿ¥ùýæÊ0¯b[›ðI°îçû¤ñ¤žwòGö /}ÎEMOw^±þ­Ž#åˆíÚ]*[ÚNåĉgíléÍMï‚ΓKùrÊÏ–g0ÎÍ èóç r¾ùsêõ«ãHý1ÞªTR®8?’~¤Nû4}m©t½r¾9/û£rÚï§ü0þ²9UêWq<9”Gíü\i>Ðî87­iû0-•M~ͯ̕ ¤¸{ò«{¾Å ã9ùÜ÷¸ù¦ÊänuÅá}öw+/)/ÚóÖõžxõ·Üôã¯ùÙ¦µ8åTé{;” m¿9*›Ý›ž ÓþmÑß •»>ßyä~g'îöó¯zõŸÕöOWŸIy¼×êÐ×ô¹èOå9Êéæ—‡ÉIãÇuÙü’äß¹ø¯9þºwmGÿžúÀ •^ï8ÔïéóÌï¢}«£ï ÛþF0Ùí1/lªôù®Cæó¤zŒ½¹²É©éÜlûåAõÏû{×iÛ“ôŽu÷sh~¸Qiÿ&?D[· r¥íó6*Iïs~'=¶ù‰`Ó»GeóÇÂöýçs³Ù·Såö¨Üœ*ÕcÌÕ?ÑòÄŸÉΰ?½^9´n}Vªwózý~ÿÊÛÏœö[Êk;˜*C\ãÐîá>«£­“ç}ñÝ?ä^|EŒ+/S¼Ï÷jzüà?ùükõ¿ß·}'××Éÿ‚É߸nÜD¹êúRýHš'ösZG/2Õ‰©7:ÎS]gÊ¿Ö>Tn¹®{Ù•yÙ•÷mú¶zÌÎR¹=*õ™o«~«¼LvOÊ;Lûצõ¶}§©R}7­‡Ú¹—@å­~9óüåÎRéy×ýÆã[>àg¸Tº~]¶À©Òñ"O^÷ûo?{ųb¾P’ÿÎχnúó¨ŒuÄSeª?HyaiÓ´ÏU‹ÿ„û'ƒóÆïÞôÞ¹2µ'ýœuóz´¯Ú¸tÞ¦|ð“ÿñ=¿á¯jã¢Í¯Q™òcÖͲn<Ä¥Ö®[LúöñgÝïÇÿ座õúÑ©Ò|"ŸûȩҼ ßSêNñƒ¤Ÿèo5OÓö[m\ÑëÛº½>ÉÃd礸`ªGMò+Ýï’¹2Å“”7®s;ÐuÊuÈuÓwÜ»í»à¦­ÓÊmß‹uáÈýæ©pu´uÈ~Hþ-Û§¿^»Îë[þ$ÏSn{Ýg]s§Ç¼æÈý¼?ëêQÏ»õù¼ízŸ“ô®?l/ëNú{ãÍÏ‚žzäûQßzÔù#ó…’ß=õ°)Þ§üjœ+ÕÃ>Q‡ípýp=Hû1ÙëÖ$¿RÚo²ÕCAõŠ”çØÚ[ÝbhŸþ’V‡ [<:ì¯Vÿ[<¦¼Š´?ôyO=þy_wÞ;æËÞóïÿËy#pcTîN•)ßíÖ_þw<òÛ>óèýßF¥þ§äWsž™geÿ©çû<õŠ”·àºªÛö¹9?®+½ßýþª;ÿðW,}?˜ö•nö;TOuÜšo¢ÿ¡ùÇæÊ”ÿlûš?yªLùÒ›ÐçÞ­ly¥p†íï56{ª\7?.åǯÞ{ÅýQÙ¾<ñÅïxØß>üÍí8pœh§4yµcl·zî6ô¼vÆÖ —JûÑûÇûùžœovlò]ò|ýù^oû›_wœ›MŽÀ&§Êw™á¨Lq*ïŸü¶¿Õ)øSeÊ»rÞ´÷•Éoê÷]7¢å“Ø~~ï:r”¾¬¥|lû H~Ÿò¾Ö•gmÞC×3ý®WÖì,pªÔ?¤ÿÑy×ü K¥q}Ûg¾½÷W®ÙﯾxùT©À|Ô+—Jíl÷ÛÐ?h>¤ë†ëŒzœyúkÔ ‘›‡úði9W*o}/õµýQé{ØÇ^tüÖ÷üÃïnq:Úµ:Ú{]?*[ûv+›ßªg<ê—kõ¡SeËw•-¿ûyþâ½ö³oóüèû:@ã¾—ò©Õp}ÊÛJëXª·RŽ;¾µvo®´_7 ïãýý®m>ʽ¹Òq´ F¥óÙø’ã\ÿ¥ñ*ãøÊWÛ—üµê÷É?êñ}_å¹×;ž•+™*ý½v®çOœ¼ë“ßuÍ÷·vÚßÓ¸ \ñïJÚ¿·ÿ»™Þï§µvëHíkq:9UnŒJí¶Ïõ÷Þ¿åïM•©nvݼ‚uõkÛ£ÆçżÀQÙúkª4Nâyï—â°ÈýÕáw:Ô?såáïÓwQOð»*¿”—Ö¯(¯÷)_M;Ôx¡vœóU»_;ocTÎS¥ñ°ï×îiõÏPyç¼Õg~ÀæTÙìJ9UÆ|žéœ\­]©®ËïàüT¯Oûø«ãp¾¨×$}³Å÷`Ê_÷ýü}ËG•-n'ú{ìïo•­Nr©ÔÐò> íW/Hvµý‘êO”+Ê×´¿ˆò:å oŒJÚ»:bþ°ï¡þés=ßì ®Oý”âz±Î`Tš?“ž—ò­[½6ô÷Öã§ïžô‚¤G¥ï›ìÆôüqn:oô øþê)êûðô©JÇŸy­>x®tOnË©rk®Üœ*[ÌRÙÞ‡û5?t¼k9~×µ×]·´ÛRÝ‚òÏóIøûV¿Sþ·ë‚çµoÍhyËrTú½ßMÞºŽéonσ)KýÜy¾9U¦üTÿäï_>_yèü5n¥~¿7WÏmyÖKe‹Jã2íþ äyÆ•¼~cTªœzÃ÷<ýÆ_øƒX‡™˜äJâm®zûMÿ¼ÿým>èwõ¹q¶Q™ö!výyÇ[ccTªozþ½]çÓ~Ä-VGß×`T¦þp]Hûÿz½ënŠO¨Ç9Ž­÷‹yì0åµ¥}’¿.Éu÷%jùn£²éõsåñϼÏûÿ¯üEÿ{*£Òõ1ÕWlJׯT·©|nyFgá©JìÍÕ1ßöö/ý„ÇüýËÛüsýMßÍß§ùéõÚÃŽý›{se‡®çÆÏZ<nÊT7™öÓÓŸÓ⸠œ*­O5î¬þ¼5W2îã~êA¶ã¨¸M\— óÒñ¦_¾ùñ`Š[´}`ȧþKÏû{í!¿wÛŸuªôúW:X*›^ðEËOÿÚ³¿=ʼn›Ü:³TºÞé7nq_èw1²ÙüÞ|ûE}<Ù ÉnIùÓíü¹>ùR^ÌK‚úé¤ryž¾¹rcTúûä‘ͯh~²~ý”Ê;×Ù¥R¿šùØóTi>¡ç[ýѨTOnñÜQ‰>¿:šýBóPþ“¯·:š¿—ëïû/MñÜïžáºöKÒCÒ>UM/œ+÷ çÕÓ~;ÉÏÍû¬Žž/7*Óz þ”ôrÏ'»sk®ô=Õov–Jçy‹—Á4¯¯œ+çrª$~Úæ‹rW¡ñš#â-q¼ò]ŸÔý¶\*Õkw–ÊV—&çJíõhŸo¾bÊgÙšáRÙô,¨ž­}nBÒs×Wßç[^tÅ|ϳ»·G¥úgʈu«0Oõ0å)­«'%ÿ¶~ õH×ÙTàyã½3 ùÇmô¼öçF¥÷³½{seÚl·Ò#öçµOÓº­é÷ò}R]·ãU9g>̱3_óáÿð“¿êw^‡òÔy(õë¤z•TÑü{Ke[çÂÃv£¯Žž¿ Õ×ýŽmˆ©òÄžö¡·~è›Úüq~+W¯š ÛÛìU˜â´a?ƒÃþò9®æý)oÌÓ?vÓ¥ßyÓ¥/<|d÷yÞö\3W¦üŠ£òÖÕƒbž94/LªoN•ê7~/êš¿ý¯>ìx;ï—îõ/9õÅíýl~]ëNwá KeªËwÙ?©ÎõôRéü´}Ž£½îVê§Ób¿*wŽký\Ö7&ŒòÆû'ýÑ8iÊûòû¥xQZÇÒ>OIî4¿ê´½¿Ï÷}<¯}íûi¯«'8Oí/ëÍ› “lcT&ç·æJýúÊ;í¤çÚ>û·Åc×<æT¥íÙ›+w§Êäoô~w¸ùï~ñ©×µ÷2¾ó!ÏV¶}oaòû¬{½rG¹ØòU öHÚo¥ù§JõéÝ¥R9Ñò rÁqßö£•Iޤ|×oûkk®¼~©4]QóJ¿§ö•ë„öƒý§?«åM•þ^?ˆýcû•CKåö¨ô¼ï«þ­þÚòÏ9Ÿêã<Ï÷Yóm^ù€_û¢cïë-ZþϨt\7OA½×û%ybþ¢rÒëS]l»?ôü ]‡}¿Q¹®¶øÔ¯h{.¾ç­Ï¿Ç7^Ü÷C>U©?do®Ô~°~I‚z×»•ë€þö¦GÑÏ›£½´³T:~âþuPýÑ÷³áò¥Òï“ìËfŽJý3îÏtõRyE`Ë“¤½~ë8<¯|Øš+}žßG?ñ3ï·3U¦ñdüæüW¿òW¾ö—Þ¯õs³C`’Éï’ÖëÇHvx’7Òç)®\*ç©ÒþHyéIŽ'}¡½?Lþ@ý ê“)Òþµÿ[ÜnŒÊ´ÍS¥¿÷}R>¢÷ó÷¾¯û?{¿‡AêVÇ|x?x¨?/壦q–ò€Ú¼pªÜ•m¿¢©2Õ'Lõ¬»0Ås•§)Þç§zJ¯×bû[¾ý¨Ü†›í÷sålý“É<¾”ßžÖ•4>¥OÂñ«ŸGýeo®Tîè?ôùøòg>öáoÿ¾w•I&}ØëS~õ±ïù¢_¼Û3wÚ}’ÜÎã'-•®öíÓßH<ôÐï«ßS?ãdu´øªú—÷±ÿwáÁRÙüy¡žOñýfGÂ+G¥ßÏ菱êà’Ýìb‰\?ü¾¶Ãqâw\·®S?VòS·øÑTé{'»`ݼäÏÒo×â›S¥zlÊkHñ=ÇAòW?Úš+õúþq½†êާW±:š~ÿ©òA0íÏl?§|v¿ÚÎö]Z> LþÛ{ľ%qŸùãßõ3?}ò›c¡þ´/ˆç/›+í¯Töéñ÷éúàwkãP}Dú{Û¯\Lí‘Í3Uª§¦<åŽóÚø”ßßïïïoÆ—¼>í«äý¤ñ'õ+Ï·þªïw¸Þâç[ñýí/¿ŸëÌÖ\yìÉŸÿö/úÊ7´}c¤ã²å¹M•û£rw©ÔŽW/=ï{¿ü៸óºX/¡}´7WÚ.õãÆ©²í>W¶ú0Øö˜*“ÿù^Ýo¯å»ß\©?X=§µúÝÒ>/¾Ï_wÿê­¹ÒçÿÖžöû¤õî¦<¿æïã}ÎV*¯µGŒ_Û^ßâ½K¥ýïõÉâ÷ðýõ/¨gnÃö}y?ó”ï;0·Æéܼv97}ÿ½ùÜT~¸cÊŸÐÎØY*¯˜+}ï|Ø•ÞßõÆùÖäõT™â-ª¯'ÿló¿Á”ר}â¿ýÂýLJý^«‹JùŒmÿÎ¥2ÅIÜçøô\éõן­ô»øüãý\ï]¯õ[™guã\©œsÿæ‡æùØ^ÛçûºnJ÷ûT¯3îc>²þ õ ÷›iû—@ûß}ü×úÛº²TÚž¥R¿Yò—¸ÿ¨ßC»ºý]›+õ¥8Êþ¨tç‹v·y`Úùæyù>îKÔö)•g¦Ê&÷*WG[_l·ýšòcG®oŽ«¦ßÌ•êiýIrP}Îq¡\0ÿÀy¹?ÎMçÍ™³•Êå²Ï×ÿëólßÁRé8´}ú“”#úOšŸq:7]GR>³×Ë”?ö©nù?seóoq^»Öï¥~ãø½ªŸz^@Ó§G¥ù?›SeÛoŸöª{?ãûæ [ÿ©\s]<¾»ÿ7ßðí÷lï•êZªlzýT©žÖê r$í;—üù)H¿²óØõ£åSrÿyªLù™^/×Íçô÷©>M¹Öâ÷0É”§‘âîëÚ !þ³:b»SþˆßÙõ7ÙÛê‰)Úß“/×öwV^îŒJçmÓ'`›—¾Ly.¾¿ú…ö¥ú†þ¯–Ï9*S{”^”^×êËF¥ÏѯÑÖQ˜òe|Ïc§ßüÂëîø•qŸ>ß·ùÛ–Ê¿à~ú/)Ÿ9ʼn“þ›¨\lùÐÐu¡Õk×ëW‡ò¦ÍË0ïã ¶Çõ]ýÊøS‹/ۣ̕rk®ôü±}ÂÏþíÓ¿Ö8Ðá{¥yà÷nùž0Ô;ö¿o4*õSèluÒSeŠ/9¾•÷~Ÿ´.¿ë›·^÷_Ñâ”w~â«_yìñoiz‰ö‰ýåó¶¡ï»5WÚ?)/ÐïÁzçrO?PÊgNzŠ¿Gž¶ËuÝ~Úu)Ï«éùSeó;Cíõwý7Í.Z*½^;]’í÷þG|÷ùø»_xüŸ.úЦ—4»k)\·ü}~ï~$®CWAý.—Áô÷{X¿WG³ßµíÇ¥Ry}ì'Ïû¾_}Á±¶nµu ¶ú9Î;žô¦¼fõ²ëár×ÿüÞ?zôÚuòÍï oóÆ/ùàÍ×}jÛçko®¼ñæÊ¦J¿·y”Í<*ýNú—]÷¶æJõpäàêP^6ù™òì’=1O•~gÏkKŸo¿?icÊn~†¥²­Gs¥rËùê<òýš½3*“}uâ;oõ÷¿ü½±.ÃûlŒÊd4=Ú.ý¤êž7.j\Z&zIò÷´:š©Òq´nýrjÏš\í;¦ºŽTOçï}ïv>ܯÝ?´7­Í/ÃùfoÊVÁûµqO{Òºèû5?lö"ô~©¾]ïûÂ$S]¡ò¶¿@¯Où^·ù•ó~ù“üäøÝS?;¼ÿ]ÎûúɃðP uû«£}Wãê#I\>Uú|ãÛɨœÒ˜§JûÏïáºßæï·1*S]–qç‘y—ŽÊu÷vÞ¶ßCÇïŸüwÉïë¶¡yÑæ='9Ñö3“ãÜLþzŸ'Ó~0É©V/’èó¸ŸÏkûXŽÂÕÑ÷…iý2¿Øz&íü”OpÓ\™ü-oe®t®ë×V®Üêü¹è{?ᣣžÒêTGeZoRÝ{{=I¾¥ñ´1*›|€ÚÑö«ò2ÕwyÿöwGv+G®_­ŽvªT>—Øš+S]Ÿò8éa^ï÷IýãxJzu“O£Rùšö£T®$ùÜô˜þŽBz~³?§s3ù·R'ÙÍ¿ÓzÞäô¨œ§Êf‡@ãƒú‹¬ÃIu,Η½¹ÒuÂçY_âóô£\:W¶öŽJóXÔ×¼Ÿyr®£~¯4žô‡¶¼-¸®ý’òªÓ>I>ù¾ÊÓà?^Í¿èsZ½Lqó 7§JïwqQï݃Æçm•Öœ¸á[Þyןþáv_×Sã3ÚCÆ)íGç“ý¸5WêÕÏi¼Äçµïºœ›¶ß¸gÚÿØñ¬~sü ÿú^uÅç´ûÊ»X*·æJ¿r¡ý½5è|Ñ/ÔúcT*•—~Oã-Êó¨ÜÚ‚Ê-ïï÷ÓNhzT>˜_áº>Ã¥²éÅN•Ú]Éï‘ôн¹Òç·Iñ¸´O„v±í÷ü ýþI÷}•É¿ÑôxÞ×uü`Tž¸aù‚/|é7¹sfT^¿[¹?Wjï»nµuëS\4éƒ)óm¥×ôþoŒÊäïoúGåá:í÷U_lz8ô»úÍ/}¯f7ŒJ¯Oã±ÕߌJÇúƒßIùüT^f®T÷÷¾¿óuݿüî8^ׯ°®Ÿ(ùoG3Lyñi^®ŸM~äçÜ…‡óÐçòWGßbªLGÀñœüÀ{seò'¿]_©ÿÓýïüw/{ÃùóqÍ”O’ò"[>T.µ<~˜ò€Ûßk‚-Ÿ“÷Ù€é;»ÒÎwÞsë’ö}ÌK´_Í S_WÿIûŠiG·}JFe«—›*[}ç“ïó6§JíÏÛÏ­žrªÔ¾¸ó_ÿÁ“?éÍ¿Ýó¾çÊGKñæyªlu™KeÒŽÉÝnçO~ºû•_Iž9^Ô‹ŒûÈæ¿;U¹;U¶¿ß[>7´½ú•̓°ÞÁ÷3þ™üäúÅßêK›S%~¼Õ‘÷1©çoùÝR©œÜ›+}ß¶Ö¨Lúú£rØþ:ö7ϸá^ýÚ˜w–â¾±óižøüTW”Ö«T×Ñöc\à¨Lù6)>ìýÒßýñýl¿ã.é®·i}Nß¿éeÐq©œÑ¯Ÿ¨ù–JýdÉ?.·f8UnÂæG›ÎM×Å4^õëÆóS¥íÕo§|sW.û>êö‡~Íí§Jýž¶O»Ôþ°=êIöWÛWnTz?ç“ñŸëæJë(Ó|eþÚYmš*Ûwª\íy|Ÿ[þ.låáï]×›Ÿ—çû=oûÑ?xÛï|Ækó¼ƒMßå|Z§w§J÷'Q®9O7®·ê‘Þ¯íó“ßÎçÙ¾×^*_${ÕöµúhûÛ¾´O„ë€ÏÛ…P}<ùÏZóGeËC œa‹Œõ˜žgû}¾÷3>“ö9Oï íç|ò‘oøÛ¹Çkãþê2ù?Ü7°éseº_Òo§›SåuK¥ë‘ëéièúæóÒ¾Q)Ôy“þnŽó®íS:U¶}  ó´ýh{öáûïûéŸñ‡'ÛwOyjú?ŸÊófq¿”çº7W®û÷|Ò>ç2Õ3¦úªæG¤}ŽCŸä{î¨lãtªlû©Ðž¶¨t\Ÿ¼ð ÷€Ç=­ë<'ɓԮ´OròSnÀ'› WÇ|××?ùþÏÿ£››üQÎÜ\éþ–ÊuçQhOôË%ÿvªËÝ€mÞ@ë_ZœžëS¼Øö$=‹û·¼ÁØŸ0Å]ÔBÜô°~§ä·Mï ÅËø½ã,Þö·üèwQ^h—¦8M«kå¼ý—êpR|°ËQ¹7W¦¼‚ ØæçT™Úçið4OR¾@ò+lŒJóRµ‹”»-¾“½–ò ô 6| ý·:’¼:²®œqqx¿“ÿ·O»ámUŽÜrø_­ûHú]Ø#í[óÿë¿cœ/Å¡Ò~oGõ£ö•óÁ¿[­Ü<³[i;ŽÚ$Ùëê³íý ó<ÅaÛ¾P0í“›öÅU_óù¡Ž:ú?×Í×l~Ì©ÒçµøT¾ïN•Êó\ï·G¥oæ`®4ŸA^OÈ?úÛÕw´g¬Ómù7W¶x lùUµ}«Ãÿ?RÞ8ž’~vbú¼?½ËåŸó­[þÛ¨lùkK¥ß9ùƒSþBÛ§˜ö+ÿ¶æJõ2ã-þ]ß7;мŸ¿=*7§JûSÿRû» °ù—¡÷Oy{Öéhw¸_¡óÞýk.•WÌ•î‡è<ôù—.•)O±í“9U¶ú¬©ÒïŸìç~ØÕãmê­É8O•ëîÃîýÓùv¿¸ÏŠÉ_•ü'ÒýuýûW>/í+áõî«èûØ?úKìŸ ˜â—®_öÿ‰?ñ¿ûÇ_Úû¶¸9TÞ¦}»Û~°Ù?£Òëõc5{fT¦¼æd/z^y«^äû˦,•[s¥ëI‹¦ûÉQ¹ ÕëÚó§Ê‹.¿ÛÆ™oÊùÝ-ßw®T?ñ|ò»·ü˜æoªï q…vÿX“?Óþmã:ZèTi~®~޽¹Ò¿{¥ýçEÓ×aÛ¯b©Tž©ÏË=¸9Uú¼ô~)ÎßüŸSeÒWS\Èñ ê*Sþ‘ï}°T&=Øç¥zUß7ÉëÖ¼oÊoJ~ÿwqæø½R½BóãÀ¤7«_HíYçó]_ö¦'þèûþd[‡ýëx‹cÉ©R¹¤T;S;T½Fÿ•×û¼½¹R{Q=Ny‘êå<¯üñý|~ªñ|ŠKÏS¥¿Où¹×,•楺˜–'>*ÍÃKù»->Qï·:š¾kÜNýÓï´]÷½Ÿþõu×%õoï§Ÿd:ï|žv°ö‹ò‰þZ‡ël’ÿ{s¥òËyº5Ÿ›Û£R}§é.ç¦úŠr#µGùj|¿ÙƒÐû5?ͨlr}ªLû6}}T¶öŽJÛ«~ØüP\¯žçý•ÓMîsåÊÉOºöóú/Šû'<}såïÊæÏ´ýS¥rÊyÙús®ly°õþ;f®t>ìÀÝ©Òx©Ïu=tžlCŸçõKe[?§Jõ"î¿:š]é÷hß‚´#ÚƒüÞñšö[A¯?*ôðý6F¥òh†Ê™–·0*SÐßÛ¿þ>å-x^ýÌ÷•íýÂyãTç=âû/}ãç<¸çk¦§ŽÊV“½šêÌR~§úÏ_qŸÁ–ÊçׇL•ê)>¤¾¯¿Íó©NÈóç?ôø£÷e/ûyjWoµ>쿚GžòÑõ»8Z½õTý@’ö·õsª´~Üçk'¥|Åó_ò¢¾ócGô{§z¦”ïê…ã|äúTÇéwô»597 ëõÞ w+Óþþ>w\¼ÇË¿æoŸñ„Þ\g?Þ0Wú÷ ½_ª[ÛlO*×›¼ä~^Ÿ¸;Uz®?ÔÎŒÊ#êAbýe]S’/­î&?ªÏOã%å¯%?©útŠ›ø½š¾7FeÒ”Cê;û£Ò:À]èºãxNuêå¾_zÙÆ3ôy¾ïþR™ôgí„ôý”ƒíû¦}‘¼ÿßzÛãüsü7ù°[iœBýðºQiÝñ¦v+¿­}SekÏ©J¿·ý¥ß[yqÝn¥utŽ·ëÎV,•î íï]ýÞÊó¶ô3*ßïM>,•úÓýžÊCû·½4oÅùåx¹éT¥ýsåRéóµõ—Ù?¾ãõú›+Ûú1W^ws¥ßÓïåü²ÿOC¿‡ûù¾ÞÏöŸ¹¹rT6ùO{ýêK¥÷Wÿ¸×÷ý·û<ú¶?ÖõTØêGeÛpªTïJïE½Z;(é•­¾¶ýC ¿?ïM}ÃcÿíóíÕ£ümÿQéøUßt}´ßÕÒ~Š©Ž>åYyýæTiû-¿qT¶xLqÚíg8UÚž”mþ…ýãýmï›ü)?Eû×ó»ðÄG?à©ü_¿ÙôÚ‡CóòÃþ¤«£Ù÷æm8Ì+Ð_•üÉÿ“òâ’ŸS¹£¾¼1*õS¦<¶yª´~Z¹Öüº0ů¢<€É/Üâ0ÕÑéçVî'9.mÊkLÏoy+7WnÍp‚œ7þo<©íà èÏZ ümûVL•ÖÏxÿ¶ßn¥óM¿~š©.!å‘¶}°œ*µ“|¸Õ‡\ÿ·{ñ£[?¦|aýJišÿd} õ6Úq—/•Žk×ãÔŽcÛcž£ãÄxŒvŸv¡v¼v„v¢rØúõËcÿðŸzÄŸÿ/õ•[ökzÏu)~¿ºnÅ´ÿ§ý¬ú¶ÝßpuÀõÖß¹Núœ”§ÐüÄÐûíN•Üou´þiù±•GÖÑž~~TšWÔêîGeÓ SÞ…œ§Â#÷éiyB3œ*yÎêhãC†¿§ÑÖ÷yñýüý­óî¾ïÿ¨é¯>×yéwò¹»S¥ú¢ùöW/•ÊYÇAÚ‡ÑõÙõ$ÙK±„ëS~Hª Iù‡m?˜ô=¯WØŸ+ßþ^}Eÿ^ªCiyA\ŸêvmR±öu©Ú›Úïžw~8ßý^)>f|ªÕÃÃT7ì|XwßÝ?›+Ó~)2í§”êÊœOê9žOñN×…”w¢~à:œì¯Qéy×mç¯ÏW¿iþ‹¹Òúõ.ý3Ž7û³åGÈ©ÒïìÁ&¯aÊ¿ÐÞ’êá)_Ãç§óÎ_ûGûÔùT¾­ÏMãÖ~jù£puô<°©²í´T:¾nýÍwºú}ÿp˜òZTåaûS>†ó_ûÖv%ûÀõÔõÓûyý µ Ã{Ç¿›¥‘ò©ý}ë¿Q™ü9)ß5ÕžøÙÿKþð’˜'”ü®é9Úoi_ÛòœVGÜ7·å‘ÂV׸9UnÍ•ÎW×Ý©²í2Wªï[¥>„_au4¹ò²]ÕSƒë×Ûš+}/¿“þóç™óÂþw^µ|Ø©Òyüg^ïë›ÿv@Úëüôý’]šòãv§Ê”G¢]šâS¾÷»ðgþøîpé‰f·é÷ö¹Êyß+íW±nž£÷wÝIr×y•ü¶þ¾Å‘§ÊäÒÎIû–;·æÊVw9Ažï:Ñì`n†z¦ã'Åô³Z]êRi{ÕÏ›ñuÔÑÖÓ–?9›iÿŒ$¿dÛgšß7yØòÁaН'9ô¿sÚ·#éCILùÔ)?>ù…“½ÜÖ?˜Ö‹¦_AŸ¿Í÷Mv•ã©åoÀ´´uzÿ+Óz¾1*½>úaaÊ ëÐêhrD¿—~³´¯òÝ|æ&¡ò4å}{×|ãß~Ö[ãuëÖ›xýñg>ñ·oü’k›Þ™Ö›–‡7Un 8U&}Š'»5ù©6ŽJíý¦ÚñÉíýÿn/•Þ?ù­Õôk¤},ô·4ýeTîöOÿT©ßÖþõ÷ê¶ßxÙæT¹7WÚþ”÷«_»Å§JŸïº¯|Q¹/‡u•¶ß¿ïÑìPèó¤×ûügÙŸ*ýžÆœ[Ðù¦Ÿßþ´=›S¥þ¿qpçŸß?Å%.¾ñ³>ùo¼]“SÖGûÝZ¾ÉT©Öÿ§¿Cÿ…ñ·äŸ¸f®Ôïý½>ùÁý½íwýÒc=¬ý£î~6)©¾bÏ%K¥¿÷ûê·6^ׯ¼ók^ÿwô‚'´õÖ¿Ëf»šßo‚Ü/Åô%¶º½¹2ù™ýÎÉ.R^´zœ¥2îÃO<àñûèÿüþ˜ß­>×â»S¥íÖošê3l§ñiÛëyëüN-þ í烥ÒöîJû=õ—zÀñÿØñÆó>>ê/Seò—¸o†ýÜîG»Õwl_|>lqlú¡éK£2ÕyÛëz˜ê\’¡ù§Êø÷UàÖ\™æiŠ£ùþêË­¿a³/aóCAãÛÆZ¼e®LuÈ>/ù]ä]^õ±¿øݫّä'UoÙò†l_ÛÇiªLãG}Óïßô ¨=ªþl^Lò×¶ºž@ýJ®ÏúùZ]Ò¨¼øG~ã9ñÛÿ³É…6/§Êã¯}þëü¨—÷uhTjß;ÞÛ¾%se³aòW§¸û<ÁQé|ò¼öuóN•~ÿöw¦ÊPßÒíQéù8Uú{óÂ.[*w§Êßiuª£²ù3–J¯_w}wýHy€þÞþiõ­S¥÷óúuﯿÈyšâmm_$xÚs˜?9WªGïÈ ŽJíOå¶ÏWŽ|ä£~æ³¾ùŸnŒûªîÌ•Ú]m$èzèõiõfïÀ@ëÌ[œÚž­N•Û£Òù˜ì§›æJ×+ëCÔ7Sy’Ç?øµ/9ÿ'c|Ëyâ{%¿iËß„i=Më|Šo5½¦ü†¦ü‡”šÞÏu5åÓ®›÷ÐΦx]ó_Át}ˆ§®Ž¾_ô>iÜ­—Mvöþ¨T¾$»Ýó-t·Ò÷kçG¥ë™ú»òºùæJýëúÃ?â#Þü%wý®¸¿·ßÁ|@Ç»rñ)Ðñj?&yc~¶zU²ó¤ãèÁÿãúéûÕ݇©.;í#éõ)_)í‘â#ú}S¿¸/Ì>ô;^tÉÿ>>!Ê#å³þAÇý¤Éñ’êüÞi?å@Ê/ivtÝ¿úýŽ>ïÚ¥ÒûÙ¿~ŸcÏ|͇ýÛÆ™æ·÷;5ÿíLúyë'˜ô#åRòÿÄú9˜ô”Vw 븾èÿjö9´ÿmOÊËIõ-ŸlÍç§¼mïgûŒ¯¤¼"¯·=~?í4íÿf×-•Í¿ջ͗h÷Ÿ+õÿØ>ãpÆQSÞ^²ŸZ^ö€\ß쌩rk®ÔßÕìW¨¾cÿµüÏ9p©4??åq:_•WÖ…jÏ*/”ËI¿Mv‘ï³nÞd‹ŸBÇO²k¼Þu8Õg%¥ò(Աż½?öï X?m{Òüjuˆ£R}Ïuž*ÝÏâ’QiûB<ü°îï²:â>í>¯åõŽÊφêɾ•ÿP=Òø‡òH?^ÊwoöÚR™öás<©o©o¤xíúÓïçJõ¯o⦅ò<å“Ä}3aŒÇ@ýë®çÎOýÓžG>Þ"_Fáêhëó%ɯ6ŸReÚGÇýBRý¶ëQÛ_¶õ&û¥å+ô޺~éÿ_w_±Ô~¹ “|²})Ÿ£Å'aË^*Ï-~K{ÚúµTšGèz¡}°5Ÿ›)~¤~m!ɳ$å<­G×§4ü}k/<öæ»nùžoûJù]§òÄsîý#¯üß5y˜ô£¶ïΨlù7£2ÅÍ’þ—ò/š¿ªTßò}“?Þë]R>¿yùêgÉžÝ+}í‘uãœÉØêʸ_ªk×s?÷…hùÐû7}äT¥q3åõ;Ž·äOHú[òœøÈ³ïûý‰ujÉåíLíJ~jõh™Ú×ôðQÉóÜù²:b^fð>/æ÷AëB|ï…«ã–¿»O>ÿدþÐïÛ®Kz@²SÕKŽò7Ù¯I¿s8®Ó:—æW»:ÎÖOy½öf÷0õ{Úï´ÅóäT™Æ›ë›þqëŽÔŸ­Çãù-;åA¥üú¤_®[/öQHëg³¿a˜ßm½õ{¹Þ'DóïÔßã ÐùœÞ'µ7õgŠ·¦ñáxWÜ•)O¥íc3U¶}IæJïg{SÝ~ËÇ‚ÉÜòwçÊ'.•êó¾ú±ýsâe¿õô÷yÖ·e=ªç&½Ó÷Þ•ÊqýŠŽ³uצBÛÓô§s³íoe{F¥ëšãÜï¼³TnÍ•Ú1ú¹|¿»ûÓ~ã¿u–Ÿ£2éÛÉßÙòD¡ý¸=*Íß2>ØòSæJÛë¸>˜*]m¯ú‡ù…)+YßW‡ùõ‡ÿâä+¿ðÌ_ߣï7Ã{9?SžQóÛCÇEŠxÞ8r²‡Nü÷O¾é??â·šÐÿ³1*½oÚ%ù¯Ôo}Ϥ/'ýÔç5ÿç“ÿÊó)_@ýS}ð¼ù#Ÿñ•¿õ„˜§až¯ó´Õ¹Aý(²Å±œ*“ŸªùÕ*Šûgÿ§•êï^¯ÿºù·—JûY}¬­˹©?1ùçÒ~‚)ÿ1ì?¸:¢}­²7W¶x̨4nµ?W6;oT&=?å©9/[}ŒõÊÿ”ü–¾¯ò Õªg¤8ë­ó4ùá·æJýÚÆ‰R\×~LuηTÜö“•{Kå>Ô.ô{ú{õ0Ÿ—ì™d÷ú¼¤ÇÚ¿0Í×f_ŒÊ´.5¿ ïý´/í§­ü;X*=ݩʖ"GeZg}_åyÜ/&ÿ|²“¼Ÿ§Ê”'²1ÎMåèÁ¨Lv›‡ñpäßßV?Iù&­nT*GÕ •ÛæWëOIú´~‰äßáÆ¨ô}<≷ºíý_ðíÑNLí>Bo:ü.~O¿wZ¿\RÝ#ßÅö´ö±þ¬ïÛüÛ©W¦ý§ÒøLù©M=U™âW.•©>ÞuÝ|%Ûÿ!Ðq¡¾¥Ýîõæÿ#wÚ÷R.¦þØ„Û£ÒøõöR©ý¤Þ¦ßlk‚K¥~:õ8óËZ>Ó\éó¬?\½÷æô}½tÛŸ*“¿Þñ¶?*ý½zšylö¿òÚïeÿÙ_Ú³®7©¾®í/4*7§Ê­¹ð–8ø¨T½ž•Êo×™ÓK¥õ¡Ê=Ÿf†Kåså »•®[×­t¿9ÏëÇ8s3çJçñ S¥ëÅ“§ÂÕÑäšïâši_„”ÇêóS¬zŒý¼1*[Ý>t]Ÿ¡öˆzÅàún‹³ŽÊô>Í [7\×Ï©üt6Âtn&{²½ÿ¨4ÎåïS^ˆ<öŽçÝíáxG¬_ ~ö®ÀdßÝ4U¶z祲és3œ*mO;¿Tª)_]ç¬_<ýn®ãÚ·7ž­T_Úš+Õ¯|Þö¨´ÿv+­Spw}’Í/•£ÚW¶¿ÕC÷‡m~%h{wG¥võÞ\™üöŽ”ßÒü¢´¯Å¦Êç•mƒÉo–ò·ôsx?ÛŸÖŦÿs}Ûÿw†£R“ó¹Å#x_õö¶@ûǼYýÜi?ßwwªLë^ŠC9~ÖÍŸr|«o5½DŽÊæ—‡­}ÜßøÕîR©ÐóéþŽ¿ú^­¿NU&?½çß-^;*Ó|J'ÍÏT¯íyïwüƒ·îùÎûµ^ÇÀ}R|C¿…z€óÔqi?„¸çêhzsË· LqiÏÇüÜQ¹n¾ã½ùCœúÐßê)ïçûèUßQŸSLû$ÿ±ã@ýØö4;êoHõöm¿ØöÏ*µ×4UjÇ=>0Ð<±Cï—Î{?ó³î½Ÿúž¿Wþ»Þz?ûËùgÿù<ífÎßR'ýrà^P9óáSeXwWÇ|ØâV0ÅAío™ö+hßk©´Ÿ ýÖ«ù|ÇŸÏ7¾"S<†ç5yêxjyS¥ö‘ë\Ë?›+›<ƒ)—âœóTÙô¯Qéý\_Ò~Í>q¿:ú:èwõ=Òßáñ~®;ú´›íWõº”¿Ÿ¾£ñ û]¿Ápïl¥yßWΕ—¶´.°‡—L•þ>ùw¥¿×ïc\Ñü.õyÉ\Øä‚v¤Ï'ß|>8Uéúq¨ÜSKçÃu×ùá¼ùMnŒJæÃêhý–òCŒ÷'ûK{Ô÷Ju:ö£ß%åÓ¤óÍ¿óèžß;ÁQ©*Ù£‰Î?Ÿ¿1*W¾·Lùsïm~›t½¡÷s½mv4d¬Ž(çRÝBÊ»r¼«9¾•«÷=äT™òDÛ¾Ô£ÒøÌÎR¹5Wêò¼öªù.›Ðþ²ÖÝ¿Yùa{´“ßÈóöñ¤ÕÑëâ¦JÖÿ¶ž_µT·Jõ92õc’Ãéþéy­®˜ómß×QÙê´S>µ×oNpT:îõ™G¥~­Ÿ|wªÔÎÓ>xò¨ôûG3.âúsÝTé<<ùºéc¾äoÔâ-~5W¦:ýïÎwó“?Ï÷t~ïN•öƒÏ÷}Ý·Þq¡|ñ;§õÁþLö®ïoÿºÞ8ng躩^a¼5ù¯Óý’ÿÈõ-øá›~ïùäŒõª¶¶õ*·®˜*Õ{[|sT&ÿ§lu¾Ð¼ûëNoþç¿Ø}ýgG½<å)Ëu÷ÛpªÜY*ÏÛø­w|Ú§~|‹'ðýVG߇:¯S=UË‚-ßiTZ÷nØWN•©½ö_ʯJz²ú„ÏOõÂ- &;<éÉ)Ï3Ùõi_"¯×^kúLñÐuõ«÷¶½Ê”·Ýâ0½Ÿ~×9ý}-o ê¯sÖ?§ž¯¿Óû5ýrªôý¯š*“Ÿ'É‹nqß@¯Oþdç“¿×?ìø2Σ|ðûï,•~¯Ë þSÇK»Ÿ×M•m¼p½uA®3m|ΕÚ{Êcíêö>ܯåYŽÊ”¿Šüóˆ¯ñø ßñǸékŽÜ70ÕËÃÃç¦:Ø”WÝò]—Ê nuŸk¿ú;þxmû7ùuŽ}ßî¿íÒË[?i$ÇæÈýÔcRžzó_ÃV—<*S¶çS½^ó/WÆ|¿·qß/Ùêa©B^Ló%žv¿ã£Ù'se«—•ŽÛ½¹2ùa|Þ“F¥ý™žgû´ÏR{Ú:8U¦ómßšQ™ä`ú{IoLùtÊíÇ´O›çµ“]×âÆ£Rÿ‰óÇuÑþ¾ÕW=àéïü›/ly˜3lú Lö–¿?÷ßõ¾wÝlëIÚÇ(í[Ðì0¨¼Kzr¨ãŽz~³sh³»ü=÷·½Ž×ËFe°;›|Oó±í+S<8åÓ&;¸Õ‘ÉQ™ôô$Ï6 ý3CçA²«cç“éï}ñ ÕÑÖuã¢öwªGV¯2ÿ@™þ"ã¶íïz.û§~‘-ocª4¯»å™Ì•Ê9ëÛú>UîÊöýGeÊ£KòƸ[ÊÏð~I³½¾oò¥ºôäÕÑÛ]y¸¾¤¿ëâ‡ÏKûQ4÷õ|Ëš*Ïÿ'¼í#~þÂ6?7§JåYÚ'Êñü–{seÒŸ“Ÿ"ů.ü•wýç£ï»Ùë7§JïÓäãTéxÑîOzÓaò?¦¸¢íó}­§÷ùƱZ¿?ÿÔµÏþŽÇ¾³/÷ò¼ñ¿·uY®æ-¿JûÖÈ&oFe²“eú»ëç}ìŸ|î/ÿÒ—¶ùmþó½éÓ»•)¯.ÅuÇMŽÂ/•ö«þ¹TOÚò_FeŠK¦ü›ä_OþÜy‚ü^9ªÞ£ÿ9ÙÉ^áyË‹Î[¾¶ï+2 ÏU>»HÓÏGeò3%=Øù¡ýÕÖ‡Qi\ÌË…INû·ü â•í÷i=L~ùuÏ';!úFeŠÇ·|ZòiVGÞóóT™â¯MNŒÊTgÐü1£²ÕMpÿd&yžòcw§ÊÏu[¯œü­)žœôHí<åcúþê3î÷ãyíDëü®š+£xT^üú?zúÙKÞëc ëd§Ðùö0˜òNouÕ½ðUß?Ú}°ûVG›WÆáÒ¸nó ¶¸ T?s¿¦ð<û·åKžo&zÓÓ§ÊdϤqµ=ŸöáHë·ú…óf{T*œ×-Î[}1LùÉÎòûÜ\¹1*×®[çfk?ôû¨ï´º+¸îøñ|ê?Ÿg>æ­ßøŽOùóo{LÓW÷`ÊgØ•Îcí¥¤ï'¹kŒ~/ëT¬GPnÙ~Ÿçz£n]úÕSeÊ÷q?‘ÂÖ?£pu´õä2ˆ>Ýââ»såöRÙâ{0ÕÁ%¿¹ãJûÃq¥Áñ¿®¼qÿä/hñZØä L~ 4Òû&¦ö¥xQ‹ßNçfZ_Z|zTª7§Tø{Ç·¿w<¹ß&TÞ[éx½rª4EyÝê‚S=¥ý“ò!|?Ÿg¥º¥6ß ë·ùßê‹~ï¯Þ…®‡Þß<´3SeÒÜ·/ùÉNüö?ð‹ÿêžíÿ[>)Lõh-ÿLN•~‡T×»7W:¯7Žkõ ûÕ:Yïßò[—JÇ…çÏŒJßÇç;¯ÔoŽ¿èEŸÿŸOx{üãÏçÚ7ŒÊ´ž¤úŽqn¦üú¦ÂäIûö&ÿbÊ«sœØþ$›ß¦xk[Ÿ¹Ÿí¹õ¿ß8þàÃ?}¾bþ?ÿ~ã›êsÖ§¤<ýô=\Ÿòïµ8%lqÉ©²ýý—¹r ¶úiÎû<òTšž»=¶óê¹æ3›ý˜öƒÛ•Ÿ*½>ÝÏß?§óü±ï»öìçÞí[Úß ò½f˜òÄÕW]½Ÿ×'}&åé&»5æWN•Íÿ[Þ³óÚyëÊ“æŸ Lyæ®_Îcóá¶GåuK¥÷ÛÛ­LùŸú™“þ*Õ3ô{¤ïkÝOŠ»º¾{Þ÷ÕOpÍT™âêë¾_ŠŸû~æ)ú=ô³KûÓü+çßÕÐóÆ5ÌÏt]±ÿZ>"Lq’cßüwþÏÿü%­ö£Ï5Ž«ŸÄ| ý.ÚQ—ŽJë6}žç½ãÁoyÖ ~µ=×ñÕê(§ÊäOð~)þ¨þÒünÐxwŠ—Û¯ç?÷GN|ǧ=7ÆÁ}Žß/åÉ7ÿßT™âÚæM¶|³©2åÕjçªg®/MçÓõÍO>*“ÿÙqšâpþ>ùéíÇ­ö­ßÇyâû¹N6ûv®Ü•æ»Ù~Ç“ë¢ß'Ýï‚ûüø­¾ñÕ¯ˆú™óÄ~¿wh÷Ø©þÈï§\Hy“›Ó{Gï§|iëÁ\éïS~zóÓó¼”wìwQ¾9Þô—¸Þw|5Ψܛá©Jǧz²~Eõ¤SÏyÆÏžøêïnú†úAÚ&Õí&ÿŒß!Ù éù­ž ¦|ª´^'ÿ³~Æä_Ñïó7aÒŸíÿ]¨|R?öû¤|æ”?šäLð[Äý ”ãú ´?f˜î¯½Õâ°ùçG¥ûá8>ü½ëÎÆ¨ô|Š+'6?{úݨTÎ\?W¶óÐóM•iþµù8®Ž&gÖÝß ù%öG¥óÞvçó;'?‹r Õ…´õnÍ•Î[Ûg¾Å_Žxµ÷RýƒúDÛ‰÷Iïïûé¸ÿT©iÞ‘~x¿¿rÏ8iÊÇÖoý1UnJëä´¯¯\*õÜíÞïóúó>ùÛú¢ÝèwP^;nw¶ë`©LùÎÉŸ¨¼÷ú_*Óz¯¤þÕôvèýŽ_õ/¾öyßóÒÒºÛâ´3Õoª¿§ý@7F¥~óf6÷oõ£’q·:ºÿt©œ'8*}®þâË¡Ûëõ¿úEO{ù=¡Ù;Ðç8ŽÛ¾P½ÓñÔò<§Jçá¥S¥òÍ<$ó:Sƒýžòl.þ¢ÇýâþåÿÖæAÊÿmõÐñ£¬ËÀ6îaò£y}Òk’½³1*S¼*Å«cÞÅTéúÒöÛ•-¿oªÜ„¼O‹“†øÛ¡ÿf ZG´5W:Nœ¶Ûq¦üNyÀú3ÌóQÞ7ÿÛT™ôOûC6»ªš ßûš¹Ò:LÇiŠƒ´v/•ê_ö³»`²Ë˜ç·ü}<®C­Ž¶>'»Où׿EÚW'ÅñèïÃûú]Œûßêž?¾ûÂ÷}Y´óÕ;Í“K×›?`>“–ÂÃï£|Fï9|Oë^¤ëŒr9Å<ï÷NëÚºñ‹ÏÐ.qêÕáúqØÏ-4àTé:a{wF¥ëN‹—ÍK¥úÍö¨Ôž=}ª²ÙKeò£¸®Þ÷¦þè?=~uš—±þ2ÅOÕgl—óÐç;îÚ¾°Åkaj?~þÕq8·3Ló#±ÕÍŽÊ]¨`w‚s¥×7ÃTi?&ý\ý¥ÅgçÊ–‡9U:Ó~DÚíiQå‡×ŸxêÏ=ûåxXô£Å8ÛrnºÎ8?Òº•ÖípÏkgªgé÷rÜ8.Ý_cg©TÏò¼ýƒ\öˆrßqoÞà “Üß§zQûÛó~ßô½Ò÷7Ñç9O<¿ mŸãuo®ôú_Hzj²í¯ƒQ©çô §Jí¸χé{Ù^çO˜ï·è™£Ò~ò¹ÜguÄñéø ù¯‡÷MúgòS°ÎÞ÷Ìnåö¨ô{ù}•{3<[i^ÙtP¯õ¼ù]^¯ÿÛøæÎmß87}žëðöR©»zïõ 7¿Tž·<ŽQ™ö9þ¿Oýù‡ô¿ è¸VîÜê^ô™¿ðêÿsñÿþ·y˜ê#Ú»~ûɺ8õyý ®Ã- &¾úRŠ¥ºØ¦oqþôRé8Q.»NûÝ­V=Xà(lþŒ6å¨ôþ^ßö¡›+[|³ž?Ò¯˜ôÇ–:à\yùR©ØòU¸²“[=ì¨ÔnhùHSeÓ¯}ßéÜÜ•óTÙüåPý£åaÊ9ßòGeË™+gzÿ”×÷C¡}-¯&}y–£2øÏÞký±ùEC{Ú÷ƒ0¼ïêhïå¼ký>*§).“ìåÍ©Rùízäúמ?U®»Ï‡ñ‘´¯¢í»ÍWüö÷¾åGÚuÆ“ÿË÷Jlù°íû ]‡”-SÞ¸ïëwÚ…©Þür¨|±RUŽûÔŸ)Îqâ+?õyúÊæ×Ð_«ÿÌóÖq¨Çë1×xùeK¥ùBÆû›Ÿ†öPo;_ ÛõK¥ýcÝ”uQI?µnÎïbüQ»Üøåþ¨T»Ï›Ÿúco~êw7¹ÖüÓSeÚW-Í÷ä¿n~Õ©Òö´x;×'»$}—– ›[†Ï™*cû¦sS¿m‹C/k1ÆÿÓ~_Ç?ﯾæü_{fi?¦¶ÞÁ”wëða‹ë@Û¯üKñ‹¤gòüÕÑçWhg[áßñ—ôy÷¾$ô;{_çmÚ×"Ù5m¿€Qxhÿ…|šÕÑì€T'î÷ºý+n}ɇŽw·q©ÝšækÜ?pTÿЇ÷®üË’S¥ú«ëqòWØ?®¯þ>夸§óÉß{Þõíº¹Òù¤ŸÛõò—=äÁ·¾Í[»ô£„y{8.÷GeZGÏ,•>×þ»ÎPãyu´x–òa:®¶!þ”£ö-9|þes¥zšyçúcÔ Õ+÷æJõ:ûÉç9o´?Ž_úåöÅŸz«ö½ÕÕG?-jTªïéWòùͯÕgõ{í,•þÞøµ×ËTŸé>_É ßOÿµþSå¿þfõáíQéû7ù»À¹0î/ÓêCëï[{l¯ò—ñr8Ô5þÁg?ã°ØQ·È¯¹}kuø^í=}ßóAP¹Ÿâ)oÛ8C‹;L•›Ðëõ»oÍ•i]Ö>Hþ–×SQÚ%Õ‹$}R}?}Ÿ”ÿÑö+ƒúýôG&ÿÈîTé8ß•®ÞÿƒîôM/ÿÇÝ£ý®í““_FýùIÐïd]„òÈß{ßÓußuѸ¼tÞ8.Ôg”Ïö—ö•óÀyyëç>ëÓŽ=ïç[Ñï·³TnJχ¸Tü{[3ä|Z¼²ÃR½µç›]0UúþÚ;ŽÚ·:æÝ³•I®x}²W¼~TºÎøž×AïŸöØœ*ÿ¾ïµseêàç:òï6k/ûýR¿Ø¸:b¿ë¤úïš§ª?>ålŒÊ˜× G¥û‘µyÍ[ðýSÝe“ÏP9 œhõ\0űšÜö$=/Í»ö>0Åu\¯µ£íï­¹²å9ŽJÏëßñ|³3§Êf§ÂQ©ÿ)É9õò¤Ç+_Ú¾œPû&ÆGå鳕I_ qÈÕ‘ö½%Nчï· Ó¼Ý‡[seÚ¯i¶ø%dÞ‡b]^‡×QßÙä¸r¯íŸ7*}?í|ý¢Ž“k—Jí9ßS=:ùE}ýÚiDÇ­ßW}O}6ÉÑd§)Wÿ-ŸaªLë@ÚÎ÷IûŒ¦:cÇ‹Tδ¼5¨.­kއQ©áºîõí~°Õ›T®Ž¦ŸÄ:Øü,£R}#Ùm懷|0îïóÛ¾SåÉû~þW¿á{Îv;š§•ò['ç}o×!ÇoÒŸ[yT:?v§Jç¿qoý¢-5*½ŸþHã—Ž£ý›+7Fe‡^¯|R>ßñë>î#_åÅí:í*ãé­nÚ¿³×;?Z]à¨ô¼¿÷ú4Γ>œöÇp~ºn»;O’=âÏ8ÿ%K¥v¥õ0ÚmIþ§x³óx{TJûg)¿ÍWñùêëæ}ØízåDÓç u{ê æq·ÑÏ =°¿[¹;Uî,•®3úµw”ÓþÞü©–G>à 9×sèù/·N$Å%”OÉR³}3Lõ`­ž‰ß§ýŸM•iIù)þ¾Å½¦ÊM¸n=ŸÏSïp=hyÞ£2íà÷Hû7(l¯òÈëw–JûSù ½ŸíSïSÞê_°^*Õ§+ÿµlßÅÿñžöL•Éîjö``Š+¥y’ôá”g”Þ'Ù}©¾ÈuÑqvâa_÷|úãš½×ꀖJ×å«~[ÏKÇ“ú%ûªµ}ýœ¯îÓ&ï? Þ z¿@Ïk‡yÞçßz½ù[m¿èúcþaŠ#Ù¿æU©¤ûíJ¯÷¼úˆïó0hœÏþó÷®—~ÿphÛ_ô~ž÷}¼>½¯v¶ú͉g~ÏM¿uÍ74ùÓü´0ùRm[·aÊë´½©î¤å*ŸÕ£R{\§Í§n¿‡ûKezŸ¤Ç¶ºÄQófáÉ|ßïæ‡<6å}™—åxØ*±‹WGß—:Ô'ÍMûÉxÿQÙò1–ÊV [¾âÍ•úì7åñ&T?Oz•ïóXçJí¯×=ï?vöåÝ¿“¼Iu–Iþ´ýh=?U¦|€ô>!auÌ·¹è ^óäg=·ÍW¿«vSÚW%ÅÙÖ¥ý­Ÿ^&¿Öºqôüä·Kyg)?É_ûËû5?,T¯Nöƒ÷Ãïµ:š?Ìz3ó®ô÷éOÜS¥özóúÜ©2ÕaéÏ”~·Û=ü‡žþ³]Ñ슴?IôÇO•)žâù´>Çó0ÅS6¡ýŽþ²:º?eªt½tüø\íKý+Ú“×L•a_Ã6ïSÝ}Ë'•mý•žOyUi?×ä_lþCh¼'ÕéøwýòÿúÂkÞï}z=#tÝOy½)ž—êmÔÇ[ö¨´=i½v>4ù2*µóÇ~â¥xÜîÞÿ>Çtn¦yŸêÌm—Ïw>8þü®žOñÛŸÆkŠ$¶xÔ_ ?@y¢Eö¾çý½Ï÷÷Òï{ÍRé÷qð|Ê?²¿|^Š7ø¾ú+ìoÛ§?Åö)šž õOmN•m}üò;ÿdoûÓõ›¯Ž>_ho«•7B¯×Ÿ¯?¬ùãæJç‡ý±®ÞœÖcozãûœwñ«Ö¾ßÑqÜòã+ý Üwu´û¥übÇ¡q#õ× ë6\?ün¾Ÿç‡^ïûè×w¿Ë¦JýþÖyHýÞk® q°ÕÑûªO¦¼üV÷›ß`ªT~¥x¬ò/éŸéúfŸNçæé¹ÒöjgÚ~åEóÏ/•I¿ð~Æ탥2µO¦ö8¯F¥×»¾Ùþ~]}`Ýóiû3éŽoÏoŒÊ4>ì¿–¿Áyæß-ÏgTû£/½èç6Þ#ó>‡÷Ñÿ›òÇZ¾:Lù©>ÑþJ~KÛ¯¾öSNõ¥®‹©ŽèäïÀo¾î“¾.þ}án®¼Ý}oÿ>zÞM¾š_Øül°ÕJýb-w©Ü»¹2Õ“ØžfŸ.•úÇm¯×Ûÿû£Òïy”_9í{¢–üQÎãäG¹ø»¾þÓ÷ÏŽyËé¼òÆñº7W*ß}oçŸßÏþ5£¿Çç»ÏP½M}ÇñâøÕŸ£Þ×êÚ íµ?]Ÿµl_ª/²½ŽË¶/t>Ì0ŽK˜ô‡”¿ >êþÇRÿûö¨Lò-ÅySÞy’§^ïú`ÿ·¸Ûí<ªN8ÅÕlO«CpªLqû÷u”yäþ¤©®Y»Çö›ß¨½ÕëM•i<¤z4ÛÓò0 ò$Õx½ëiʧTžGÿé¨T~ùüÔž¶ç]¿Úó—Jý;¾Ÿým¾—÷¿ãÏ¿ð9ÿÒ'Ì×ßüþ½¢q7õ|íuýrʱ¦×Ã$7¯•þÞöÌSeŠ‹èo±ŸÔË®¶¯ùÑæÊd÷øÝÍÊýÕ×úm¿ë°v¼zˆóØþ47ùó|¿uýÒÉ®Oñûuý*~/ßßöµ÷²ýS¥íOvaË'€®{)Ï1Å¥ýŸ`u4yÙì'˜¾[²_Õv`ÚÏëij.yËSû©íû%»_¿¼ïÕêv\à\i¿X'Ôâ‚°ÙÉr®Ž6niçáu·ûÃóßô³_ûÔæ5žß8Uî,pªÜ…úµ•Cî;캢ûrxÅRyÙ\™êÇÔ÷l¯t|·É¿éxu<·ü¡ùÜ´½Î×ÿè/^*õ?'Ýœ*mO‹ïJí'äæêhòñ¼{üþ­ï}ÛíX7›ü½Íÿ}¿´>KÇëº÷³¿?àK/ÿ¦—Ü©µ³í/³®Ž6~µÈûiûåíÊ›æÊ‹¿õ£¯¹òοÔÞó Ü…û§*·ðÌ\™ü¬3¼v®l~Ò¹ð¨£ÿ€ú»öý”'?ìq;_~íñyÿìÿù÷{xxÿ¤?;Ÿ”'>¯Å'àQñÝ6.yo×Õ­¹2É•—óyÚ1R;R9ãõÊ]ítÇßÎR©?Tøö€S¥z•vÙÖ §Jï§\IëP[W¸Ÿï›êbì_ö X-¾ízä}Ô7Ü— 釞Oó§ù_|ïQéww\9½\O r²ÍŸ7›Ç~ôžOýÄ«6[¿ê—ò{§ñ”æ§û2lAÇ…óÃ÷lzô÷m=…ëê…m>-•íï€À&o¡×».$?·ó(íg’üêîkÛò `Êÿ ~ަ—Ø~/Ï»î±~­Ž#óü´c¶G¥yfŽÿô½ÉÛì ØÆÃT™ü.é~)O8ÕgÉ”÷‘êw“ÝÝì‚@ûÛù½Û>0å­x½ëH«ã•­> F; j§·ûÁM˜Þ×öhϤ8\ò‹:Ú:µTª:~õ·¥¸ÆLù þ¾Å+x¾öqŠs´öp?ý—-bÍ÷S´úèüOñGûÿÒ©Ryšöiyç*›ü…©N,íw’âHÒùrìGvïoü³/‹ó¤í{Ó>:)~a?4ÿlþLhþéÉùÈ?>ï}ï3½çhùÕ->Ó¸7>›êÓºêkߣíó2Wz^}Ã~Ü€-ïoªLûõ¤q“Æú{Ç^ñœk?ö²‹×ÖRþªó*éÍ)~Úg?yÏ'ÿôm~úÓ.zÛ _ÿ>Jª³lœ*Û¼àú#âKqÿÉäoMų̂'+o‚´éáæŸ7?Ôg8Uª§èo÷þÚ­éïEØ©=ŽŸãoø‡Ó¿6¿¢×!÷Ü€Ž™êø›~0*›|á¼í5Ž”òÞ•W{se‹gN•iþìBå„yBêó»seÛÏìæJû熩Òö;o\|¾zÅK¥rÍq¹ Ó>¼2ÙWi?¯Gu<ê/Ñßk<Âþ?þöŸx×>ò㢞g?{½ïi¿µý´x龜'½4íäûØ>ý2—ŒJå³~ýò~·½¹2É ë£|ÿf÷ʯu½2ÿ~k®´’ÿX}xzçeóÛCëôÍñzåHÒK•#ŽïMèxvý÷þ)ž›ôRï¯Ûš+·G¥ëu‹û@ûK?ù™›+•ûê+®³mÿÉQ¹9U¦u"åÿù<Ûç÷jùœÐö´üMèºRóT©¾‘òì›dªLùyô硘ökPÏPq>´ý`ªð»­[ì–Õqøþ\ßÎ'ûqž*S½JÊ+HãØóIom~ö©ÒxE·¶ÏóÊëd/´ºm˜òR=eó³ó{×EýY䯼[×ý½¹òÒ¥òúQy¶<ã¥ÒuÞö©÷ßîÊ{ÿɃßò1Mžèµß”æó¥| çm‹wŒJÏ›/·?*õƒmŒJÛg¾aÛ×ñT¥uÄŽ Ú¿:â~Ùê»Çžñ?^ùðO»©ë1£ðP^qÝásS<)­·iߢT×ì‘Q¹“Þ®püéÇnùm0í÷‘üFMÎŒÊÔŸ­î ¶üNØü SeÊ÷i~´ô»Qiÿ¤|G×…dÿ¦¸‹÷_—®;iŸÒu÷Iù²ù¥aË?š*éþM˜*}žz^‹Ï.•ŽWãÑ©Î^{øú¥Òz°瀶×ý°›¼ƒ)¿Õóæ}¥}ÐNÏ•®w>/ÕEïÁuåSÚ¿§í³“?K6¿÷¨týؚᨠzù-ëç¨tܧyÓü üÞó3LþÏï-\½]Ðõ-Ù)Œ×Ãç¤ýúÔ+çÆË©móÒ¼÷Ÿ½ZŽJýê ÚCWÌ•—/•œ*O¾øµ/üÇcivòM»ßuw©t~%¿çîT¹®¿$ù'Z½ÑTÙâS¥ë™ã/íCàõúÛ[œjGiç™G’ê/[àT™ü3ÎÛçzêïmOª?KñŒ«¦Jß'ù›S<ÄñàýSýOª_8ùý·zá<ì^ñ>~·–GÚ×)Êû'ÿUª3iù›K¥íÛ”KeŠó´u‚öoÍçfš­.gªtܵ•#mž.çfË×*›Ü±ý0ÕÛ^펇‡À”ç±1*½Þçi)ÎîƒÎ|ÕëžÑÖ³ë q=¯ØTyæl¥ýd~䃧J×/ý¶ïÆ©òÌR™ì;×WýGI›á5sáêèvL~ ¿g“«0ÉOß³½÷¨ô»<|ªT®;›ßŒû§x_Š«ß7¿LûïÅ|4ž?Ã7ƒÊ_çÉížó/¼÷½ïßÞC{Òv§¼Ô´®¥u,Õ}5r}«ï„黸Ž(Ç}¾vGògëOyj-_e‚£Òö¶|œ©pu¸™?èºÛâp{T:>Ú¼‚ÎÓ½¹rÝy®ÿ'ÕGñùúOœÒï¯Ûæã\™æ‡ýëxÚ‡~_Ÿ—üÖ'ÿhö+lý½[i}MÊÓõûoŒÊf¿Â'†)/(å¶ü2Øþ®<¢ÝGÙïÍ® ýmß&è:;Cõ+×iÇÿôûúüG@ýËÍSÜZ½ÄëÕ«ÕG“^mûmŸz‡ãÙû%¶}ÉFeÌÿ†-o=\¯ßËß«×Ù?ž÷÷Ž7Ÿ§þâqëÖû¯›ÔÖYÛ³:bœ&1ê9£Rç…/¸×]^ùïdy5*µkÓþ®¯)?ÒñÝüÕ0Å3}þys·—ÿÜSv©¼Ö_èû%ÿö]äö{É´ŸJª›NñÝ”?âÅí{@ûïØo¿í;î|ÓÇü©Hûn¤8ëÆ¨lùG¼§ëN«§þÔüŽ7ÿ·OmýßòFeŠ;¥¸•ï±îþ)ëæ/ú>s¥óy©t<\·T¶¼(îo|µÙ¿såö¨4Ï*í¯¤=m’ôï—òl“ßÐç_ôÜ/ýüüÏO‹ûmɧJõ×ÿæ€êá÷­nÊëÑOެsNu<ÉÏsâx—Ç_ó¹­ýÊeåßIýqzÞqšâ‘öóÁfç$N•)nØž—Èóü}²ûZžßT™ü5)žãúÒâK¥ñ¶´_o˘à¨:Ðùrþ«~ÿǾøÎwûzþÒ¹R»Éñ˜ö9SOKöN〜oy¡0ù½ËìÍ•In¶ýzàºï›êPš~S>]Ú¯Èu¤éù0å-$¿\ôóL•©ÿ’ÃçoÀwmyºS¥×Ÿ|ô+¾âS>î¼§HvuŠÏ4ý›ç¥xM³ó§Êèà½ÓÿëßúŸí¾®ÿ»S¥öµöT‹3B÷Ó»lT:_ìÇ´_ÖÆ€Seòë¹~üÒ_øÜÏÞº¢É©Ÿ·®Àv8þZüÚö«rA9ïúëx3ž}?ø@˜ê¤÷GeªOt¼z¿½¹²É‘Q™êÞÛ| LùÉ~hr¦ö$¹šü ŽßÖ¿g+þYqß‚ä·\ׯúÿÐ~¿ø ÿ2}Þ£ŸÝ÷›+›ÝÃþ6«£ÙU×Ï•>7åû]¼¾ÕùAßC{ež*µÚ8ƒ)^éwKyoŽå„yyê_ÚÉþ>ù Ú¾3Ðö¶óK¥rÍöµ~˜*µW'Æ%Í;WŽ8|_ýÈiß1ßÏ8SÊ[=ÿc~÷Ÿ2_öžûr®Ž¦o¸®^9*}^ò³§uas:7oû¿~ÿŸ>ô×ïÿŽfË•Þ×ß_Nu.q?:îŸö¯v%”ßáäËÞpþÇ|úïqˆ©Òx‚þ Ï;þÌ»ÖÏÐò§ÊýQ™®÷==oyò#ZÇ’ôNåËÁRéõ)!É¿ôþîëÕêXçJ÷kö8÷Oë“òÒzÞdG¦ú¯OzEð‹ê-ÍΞ*“ßÏuí¨zuŸcøÜT4Ã`W¯ŽTßtÔ~[ýï2ŽJϳ>Þ÷ò¹puù÷ölïþ¨Ü*•k)Þ`Ïóîë”ò±ý½úkÚïøOÞóÞý¬ûÆ:¶fïp¾éÍpcTª×Ø.ë­R¼Ëçµý7F¥×û]loË—ž·}i¿Ÿòë–Ê–§;U¦¼·Tçà8JãJ¹b>ˆë‹vN«C•Çðãô‡üo=Ïa@Ú‘êER¾Œò$åÿŸøþÍï¾¹Ý'ÅAS¾ÿºã%ä}6ûÝÛž4ž½Þù'ý½ëœíÑOÐäñTØò`ÍßNrYy•äQZç}¿$ç­û7ŽæwÌçÕåX²Õ“·àž¼¹Òù¥ã¼jzúTÙâfÐøïÎRi½œõh¾ŸvÈ%så‰ïúýñm>°×]L•öã…/~ß¿~Ú+/îû”À©Òz)åRŠç·<«QÙô#®OòÖ÷öû¥8lªxoóÓþ¾oÊGHýÕüãÐë•k޳ÿñYÙ½ë?¶~MúDÓï<Ïï“·ùƒŽx¿£ØæÁrnêtžìÌ•W.•Iß3^Ÿô­#Ö«ØûKáêˆòßïµ?*÷æJÛáý÷à Y7n©3æ«§¸þ¸.ºÿˆý¼{¶Òëõ‡úûp~u´uÐûà'=ìïïïýf˜ü“Çþø<òVÕæ÷IzÃQhú—íOzDÛGzþØW}É'ÝáEÑ÷×€mÿÕQ©ÜhûkCýŒm"¸1*“{guÌ'ßý>ïÜ⎣¶ÏyåáïÚú}¾÷mûèÁTÓêÿçʤØß[s¥÷׎pÝÛœ*[~ÊR™ò¼ôµ¼˜öSó¼u ­~qT¶÷¡=›Ðþ7žjHãTyÅRi~¶ïã>âWÏ•WÉQ©>tɨL~õÃQ©š§Jß'Ý/Õ¨ÿ*¿R>SÛwrü¤ýê/Žï–G¶TªÇ*¯´µ‡¿ÎW÷•VÖ>oò :ßÕ3·æsÓ¼8ý&Êå½òâàl¥ãËõEy­¾ _Ôñ¶9Uú>ö¯ãÛç{>Õõ¥:-ãeóT©½*µ#Ûy˜ü$!ŸªçO•ÑnÎÍhŸKÚ»3*Ÿ8WzÞïÉR©‡úgòÓ(·Ò¾ƒÚÉ^hõ»£2ùÒïç©R{:Å_R›~'×aõNïŸêJRýãº~³TÖê^¸Ÿïëø¹ã]ð1ÏÛû‰ÖïM­T¾µºU˜òbS»c½Ï÷9Š©^Jù›ìÍuë-S®ç•—žw}Lõ¢®÷©ncT·ñ¼ë»ú\{?˜Ö¿æg› úû“ͯÅ:³:ZL¹è|HûØßÊ=õÕ“ós~þ/ÿæ;›|6#åM´õ”ówú²¯¹æ3?ðí>úy÷æÊ”wh¶ü˜æŸë©~bóøüêïÛãÜTþ´ø ﻕogæÊTŸžü#)¿ÉûíÍ•©þóØŸ=ã£þåìÛÛwr^›ç“ò6Fe¬sõ| ÷ouùSe:ŸêT£ž“k{æéÜ\sœÊÍ”GÓò3äRÙö±€Mÿ^*½¿ön³ÇçJíAíKå½ú{ÛnN…«£ûëuñï/é7Ú…­Ž’vª—mÍ•-Ÿvªtü9~lOšÉoØÖð|åžýÝÎO•'.~üOüþcÞ7W¶xôz©B˜ôþÚ›¶Çó¾ÏÁTÙüK¥×kìJý}mí©ÒqÙò¤ù½Ï·½Ž+×%ýwÊû£Åù&8*SÜÚëS¾÷Stݰ7å\©™ümÿæÄQÙö€ëî‡íI~ŸôÇ»þ[ϧº‚4ÿ´7Rü1é=ɾµ¿6§JÛì†ï¿÷“N¿¼}æéꈟù‰P}ßýŽô¶ur®ä}Û•ê¼ìGý;mŸè{Úï~GåŽçÝ/Äu Ù-g+mßéÝÊ´ïŠvÙéQyÀ¶?÷?þúÿí[¿ä¦ö©^Ôëͧñ¼z|š¾‡z`Û_ú¼4®š¿ ¦:4××õT¯¢|Ø›+› []äyÉn[ןiûv§Jß_yª|¯ýÙÎñ·ß½}7ß3Ž6åRéï]w´Ë´³.•ÊM¹½T*wÓ~Ó)o%ýÞó~×¶îq>É…´_QZÓ¸í£2ù•|~«§…¶§ÕÇ/•Êi~t˜âê¡Éßë¹ßÖ —sssªÔoi™Gcç}žyB±½Se’'—ŽÊËæJŸožþÎRyÉTi€ÔßÁ>Oí~Ê»V5*»Î­K×uéüq¾øý/…~Êo{ê³þ¹ÉmãÓö£ßü“C¿ y`—Mçf[OæJã¼ßêhóÂ÷c9ª®ùð~É>Jû"üÈOÿªÿñɯvb\/xn««åúÖ÷=ö¡ßÇõ£åYB×§k—Jϧ<—ôw ”O1ÞÓúìýRÝyZ¯Z>Ly7ì#Ôæ—ëYóSL•~¿øw7à™¥òÄkv¾àô+Í®Õ_•â£3ô~Öðž«ã–¸ï¨´¾Í~‰qQÚ븵ßõ;?i®Lþç‰ñý-~2U/±}ê!¬‡ýª|q=r}ð¾RûÁvó^«£é懪˜O¹1*w­þ¦üåvòã${R*—SܳíƒÓ:”öÏhr”ç·}n`³s9¯wâüß½Û=®ýÞé=ÇáøTn¤ºý8žWî(Ǭ'RŽìCåHòƒ7¿ÎTéú¶¶2ÅÏRÝi‹WÓÞV[fT,•)_M}ºÍ©ÒyeÞ¸þÇyË“•Ioy S¥ïç;ö—?ó˜;ßéÝ1Ÿôÿ ø¸nÞCÚÅ<¤zÿæž*gh|÷¨ºu¯³_e«•QϘ+õ»5½nÍ•Ú[mý‡ÈÍ£äGôW4;*¿Sœó«£½ï{«—m–‡·TªÇúý[¾÷÷½[}5×7¿Ú G¥ã'éEÊó¿óøñö7<¿ëÛS¥~ ýÛȹÕáû·õ¥ÕÙL•žoùNÐq»9Užž+ïð¿¾ò˟ݶ~´®S¿Òî¨Ô®¼s]Ò_£lo®Ü]*×p¿ÖÏæ1ÚŽ{ý‰ÖÅ^°óÿò‹÷ÿ±&¬_UÏÒ•ôÐÍ©Ò~ÔîKy2û£Ò<íà3S¥z¶õ&Ž_ûÝïxì)W\õ÷w>huŽßC;po®4~ Üirf©ô;&¡~<ýªúËSVó‡CåSò7x½ãæ¿uëwã¦ÊýQiž…z‹r%ùyÚõœßÜš+}¿ƒ¥ÒqÑòGeógË©Òqyz©lû¨ŒÊ–ÿÏõê_m?~ï:˜öcàû®Žæ5 ÜtSßvÿ äÿlv˨Œv¿Oy´£rž*7ÉoÔüLÜ¿½/çÕl¿zq÷äï÷ ¼óÚ¦ïúÞmÿ®·_\_ïø/ü‚»¼ý£b=y:?Ã5÷Õj¿Wîø^Û£Òùèï½~k®lóy©ô»ë÷p¼yÞøšvFË[YÎÍVo4Uj—¨‡5ܨLõîÊéäÿ:jßœ–‡|ª2幩îJï~5¾§~êVÏ9UšÏßò¡¿WOw~n@Ï«WîA×ÿ”÷×âܯå}¿=öæ§õË_ññ)ΰ:ºdªtž;®ÕS|öø×~úû>êµßpHåœãܼøÄ¶nÑžuëµR>C«‚-Î ý¾îwößr¼&}Î÷ñ{ï͕ۣ²ù³G¥÷KöcÊWkúèRÙâ,KeË/˜*[žð¨LyÂö›¯¼_Ú¯¬­3°éïS¥¿ovï“â@iÿK¯7oÆuxk®ŒzݨÔoãõŽÿ¥2Ù/i·?“?Ûö7½¶úó¥2}ÿã/¸Ýɯ¸ÏOô:–¥Ò÷ÒŸf?ØÏmÝ MãùÍÓ¼I~Ëä_—Žóë–Ê4/žoõSe³/aÚ_Â8bÛBŽÊ”“ê"S=ÇiÓ òwúì÷´?‹r5åYgÑì·¹R{Ô~Jö”ÇÛº4*SýwZçSþI:_½ãÐöëÏxÀ#¾æ¼^ÿ S¼ocTr¿Õ/Λƒ)¬å+Lë=ÞôVØêÒOÉ¿äóS½L³{¦ÊV§FûSÝV³ŸG%yÖûùMäû®~íïe»_¶yûÖcš×}år8Þüúo¸ôç/6?cõÛoo«‡›gŠïéNu0æ·¨ïúüݳpT:Nô‹;Û~ £2Õ_ªß¤yg{|^ª1®­œPî·<Ï?ÿÆÛ?ªÙqÉN1¾®f¿{ß#Å‘S\ÏçËí©rÝ}®“]kÿ8<¶¸&Lùm}€-®mÿlþmî¯\·=ú»}žyŠÉ¼ ýn·yú£?ö±Ç~#åÍE¿°zD“0­Ûi}Jò5ÉïÔžz¿T7ºîza¼8ݯ]=Þò  ùy£2]ßò#æJÇÓöT™â$Iþ${'éÅÉϼn}SóóH®o~(˜æc³W9nÿ\*/üÄ;ÝïÕG_ý¿^—ü½[s¥×Ÿ•Æë”§ž¯ü5¹Éã@ýÉ©~²å¡ÀP§ëHôWËä?Ý[*]’^êp\¯|¾öæÑoýì'ßö“žØô£ä·¶µ{Í×7OÞ÷pëìgëÚw˜§ï³·]éû¹Î'}±ùS—Jû×qÐâCSå&T.Øç]Š›ø|Ÿ—êïR\¿íw[¾lqrØä5Tþk'â‘ù“w~ñ£¾¾ÍOïÛê¬`‹Ÿ‡ó]w6 ëXŠÇǼ5ØÖy˜Þ?úaaŠ—§º…V§)ïÇö¥üuó[’ëùÉ™Öý²²åãó~ʉ¤j?…|ÿžG5WºþÙ¿›Se‹Gÿ›SåÑ?ûëü™¿¾´çñ^-ÎWnO•ÍÎâ~ß›+OŽÂýqíÄ©rk®L~¶”ïê{û<ë¾}Ϧïr¿ƒö‰±I¸îleZ¯Rqªÿ¹à½?ÿG¾é}Ÿ.ÎKë|ÛgiT*Ó©·˜çÕöI…ök›'0ùë×Õ³šßzTº>¶ýŒ¸rsYo¾·T¶~ Ïáøê×ìuí)×·TŸ{웿ý!ïÿÉçǼÇ«ö‚v|«‚©^¶é <ÏóµÃõ£§ük¿z–×›g希q¸QÙâ^Ü/ÅÅRþCØ/mõ‹ûã8NZ>Û(ÜŸ)Ÿžq¹ß¯;~ë¿ÿËé³íµ´¿aÊ‹KyK).¡Üu^&AÊ juˆP;âqK¥ý“öåJ~ðÇNq×4ÿ7 þ…G˜*SœÌë[œ‰ç'¿TÌÇçü”OÓâxá}[{hjO:_:~¼^9’¾¯úWÊHz’lzççÊ˦Jõ?ã%§f8*›þ?êÍ;›*7¡ò¤ù¡z‚×§}’Þ™äãË¿· ¾áóÝ¿ô*˜ÚßÆÍ¨Lñ¬´>i§ºL¿¯ó}†úÅÍ#KÇ¥÷—)ïºå•Ñ~å÷“).ùŸSü±Ùp{ªlóoT¶8íàyÍÄý|Ÿ£Ÿ»wûgÿå·D¹šüöWϕ黸Ž6½jªT._4^wtûýˆoýêXOäzq)Üš+=îþ%Æý.•)~²1*ç©Ò~y0p&?«ç§øN‹÷O•Žw×?÷ ºf©¼b®Lëg‹×ù¾¼ãÔõDûÎõPù¤}é÷Þ•P?‡òßó›ý ­ÛIúãºë{ª£ð~÷{)¯’>îû$ûØñàû|ÔøÄG|ÕCîÑê ¸nõóùûvìºû¶þ?ÌÕo¿}WΕÉßç}Ï{Ø®»ãÓÞn^Úê×÷a•)Ž˜êW·žŸêØãù´gM?IÓŽ¹Ù¯þ_þPÜç#ůӾ/æ¹ø<Ï÷y^ïú™ü¾ú/÷þ½Ü”OÕê»y~ÊïÚœ*Õ÷C ÿ}èýS½¶ç{?ë\_·æÊT7Úô¼©Òñ þ´·TÇq½2–üUi^¦¿vTš7·=UÇ:(.•öiuò£ÒãWÀ§™*[Þ"íñyIŽ¥ú‰”ÿæ< ~ã¾ñ\y›·þõ=çþX“gŽõCã^î÷ì:“üÑi~¬[/ßòÆ—Ê”çíñ+aÊ‹Nu䯣?)ï\;ñØÞøÌ÷å5Ñk~]χ-Žv¥8RÊ“s\\5W6¿þ¨ôýR=ñݾaúÝŸúñq?PÛö?qÞ%}u†Ú7Žß½¥Òëµ'R¨uõ~·#_ÿ¸7üèýuô[»nk·&?tÊëWÞ*‡š¼•- “Õò’h¯ry½úÅ÷v½mûBû9ù Úwš*OŽÊK–JýV^ɨ4¯N:>õOèÐé8ÐO–ü©®w­®fTF99Uê_orX†ç­ÏZ7~•ê¬ô·x"íUÞ]»T¦ëSpêT¿¨ÿ²ÅkG¥ß'Õ©7¦ü å7ßgõë~¢Êöw<šŸiô÷µ{lzéTy_˜ì÷óÛš+ÝGÃøŸò®=z×)åÑ íW÷¥a|®~1NÄuû߃ñµ?Ç¥óZ9«þ´•³p¿=Á?¹ß>ûI¿~Šƒ»¾ZOåûºß·r¢íW1*[½ä8œæŸ¥<.Ÿw‡O¾õµŸþE'ÚsS¼5Åã<ßõ;ù“×]”G)žü°>ÿÈŸû­_ÿ{ψuFÑ [Ý.÷÷¸ý–ìŸTgÔâ,£Òë·ºý]ù%wúôõëÜÃù©ŽÙy”ôß+ÙmiÀ´ÏGò¯©×û~ÉÏíú•ümiÁT_“üçÎ_Ç¡íUlÍ…«ßûK]5Uêt<=vT꿸a®¼‡7®ãxLL~‚–7>*S¾`òÿ&?_jOˇ…q˜ò™’Ÿ5å¥|ɶ~@ã!Û0ÅÙô—«Gx¼å×M•¶Gý21Ù÷í{ŒJçÛÎ\Ùêh¿ò"Õã§|eyÁÑñcßùž÷ô¼Øò‚¦JÛ‘üpúy[žï± ›\†úY¼¿y")#é#ê?Éÿ•ÆU«Ë*S<£Å›a“K£rz|{:œ)ËöÎP{å€|ˆ›ì ¸n\ϸI’cÞÏñÒâ÷£RûÈuĸ~,×}Ï¿ð1ü]úMŸÝäöûê×âSÆMl¿z”ÏQ>´¸ô|8“}`H½F¿eúþê1úÝœß×Ì•ç¿ø/Ÿýs¯}f[Ÿ›ÿjª´©¾Æyœò3•3{K¥ãÖ¸d²/ÕƒßÂy½úµv¤<Ù”W6ÚOÛÛ•§¦JÇ·ãͼ ×ýâ-îÀùêAÖÉèÇmõå£ò$ÔîhõõÐqjœL¿¡þ¢6 ëÙ³•Ê·_MûsùýZ¾ðTiÿnŒÊGHëo«3‚¾v¤íOvyÒO‚>±úõ÷‚i°ÎËcßñ=_÷†?‹~ü´>§ý}üÞmÿ"˜ú+Õ•¥¼^¿wÓ‡mß<Á9nÝ‚ÏOò¹‡).~«§?ñ´ãwŠ÷µßÚ:Àù)Þ“ÚÎOûô&lÊ7Iy¡É¿‘öÅjõ°Åç`ªöùöߺy³Ê½#Oþʯ~Æ÷¼7æq‡|éÕoß¾H~$÷kÙ…Œ›t½€íü¦O˹R}Øïbh_$}G}9Ù³)ow{ªLùyêg)Nã¼Qmuì£Ò÷k~G˜ü”MŽT®~ÝÞž+Õ ´ãZþ < O-•ßœ*Õ;‡Æ‹½ßÉÚž¹²{Ú“ò½Û¾“0ùiÒýÜ#ÙÁÎ˽ŽJǽz·zÀÎ\é8ß•Éÿ|f®Lý£òy~Oý„i_ã›S¥~)××÷æš*ÓþÍ/(ÇáTެ»oeÓ7¼~ªÜ…Þﺕ¾OIïsýkùÉr‚oû½ÐõEû»}Oh¾Ý)¨¼»bTZxé\™ä¡v©÷ózå¿zKÚ.É¿WË“‡M>Ì•ç=ý­ïÞ»Ó3¦üöõ1Þcõ‹~Ûƒö/2®I}Âþyú!\”ÇÊû§éa£²í·Û~ Ð<ŸQéqǯT_HñyÇc›s¥ó©é ð’¹R?n«·…ç}üwþð;¿õ ÑÎky2SeÒ§Õ—S«ýfÞg°bž¤qSÛ{ä_?öãßýêÓq¿VgÉñ ¯W¿$g÷ç}Óg*÷ïçû„uó¦¿7¶T¶ñ¼T>v®T~êégn»|i³ß”ÃÉ^ó¾Öu©Ýú†ó>ë'ïùÏ-®ÕâíS¥v™Ïu½1׺ý¼ÊõëÂlÏ×on¿Xgö›q|9nüþ¾Ï©¥RùÕòg§ÊWŸ*Óúéõ©®.å›´ëaÊgjûú]óÌ×¾îÎu¿lõE0ùË/|ÏEãQßý¦µëÙ’_¦|ùæÇ•IŸmy«rT¦8´ëTËw•©nÌö¥þIíkõƒãp¶þâxó÷ŽÊ8ÿ¹ÿí ýáüLïëüKy0õwû>°åiN•mÜ×ëW¿ž7S“íHþ²–—6Wú<õ¯Tÿ›òúÚþ¥£R?F’ãÉórGeªÇK~­V?ÍñwHû€¦u¦Õ,•êç{K¥ï«¾ëùöŸzI»?ï“â$êY~Û›òR“?Z?N’³1þ?*“þj{ç©2ȇ¦/§úÇ‹ó5Ê}˜âïm݆ÊÙ´Îë7°¿ÛøúRüÃùòˆÿâGÛ?]ñʸ ÏQÿkíâ=R^£ÏkñÅQ©ÿK}¼ùÏ–ÊÍ©²åó”'ò ìßd_'ÿqÌ[lrŽãêûs¥rBh\W§Ê/OúmÚ‡¼åýÈq8S¾A“[SeË£â|üqKúºLù)¿Âu(ÉÍhñþ©.¬í2Uêß°’uô>ç‹üâ_Ç|®ô^ÑÎâ½?Øã©NK¿‰ãÒq±î¸òý›}SþnÊWôú–ï[=ŒõS¥ö@ŠcÎÐqާ8›ãÞþØ™+½>ÔÇ¿×îøiuŠò ûОuëòR^QÒ‡SýŠ×_½T¦ñzо\Ž›˜ß}‹Æ«¾ó÷dÔ+îøÝ]w'=<æIÙ„­¹rõÛ÷Ï›—}ùG¥ñͽ³•Gþåi»á£ÿ¢å•Xo±õK;^Í'Ú›+Í÷~Îß0ßöûÇvªopßÕ¯]gþ§Ç}ß´OƒçùŽgüéE=¿×ÿÂä?´]®³ÉŸeÿ´umT6¹Ú“ö)oÝûY·àü3oOý{hõk÷y0Lþý-)¯Tù²=U¦<Ÿg\ȸH‹ŸJߺþ?n® r­ËV×ÎóR]ëoÓaj_òK»n¤ºÕ•^oü3Ù…É/긽é=/zíwß-ú3R½•íò=ÔÍw¸l)\ýšÝ}z©lþ$¨Q?;òMo{öãßøƒM¥:ßæ·œ*õK9.’žf{Ú>t0åa´~•Éïw˯ºøu¿üö×ﯷ©?Å›C=Àêí›çÙooÛomT&½ØçT”â„ß•®ãêK~Gõ\ß³å1nW¦¼ljã0Ùïé~ƧZ| ¦8h’¿i}H~\Ç­y3¾kÏ8œ´oõëy÷Se[‡8¿ÕíCïg>»òok®4ߥùK—JíýÕ§–Jí¿›íۃͿ^Û·úµï¯>åñ­¹²å%OpTz¾ò"ùZ|¦¼è_•±®Œö¦õ7ÔÄqìûº.ž+§6ýøl¥ë˜ÏS>{Ü}Æõ(Ïw»P=ͼ3ýo®æY«¦ýh•·Iïhãú¾Öí´ùcÞ%lù0ø[oú»#œ—üˆÉn8HŸHy[rsªLó_½<埕Î'õzézªá÷ðüV¯SÝgÛ߇çµ=Æ?Ò¼Þ‡³Åÿ¡ë]òϵºÞ»µŸëÓåWð‘ÌûspÜü å˜ú[Ògœ÷)~˜ì”]˜âÄMNÊwjöÆäýl¿ã0ùìï£û÷¸÷ç|Tk×ÉQéúvÉ\yÞW¾ìoïó»¯iãìÐïw4^m~ôÐxvlÊSq°¾A?¦ñ«&—f8 ǵ·”£ÊA¸úµõ±é#seÒW<ÿä¨Ly”É_»9UÚÏú›GОկý}9î³úø÷¤šŸxªô{]:àTé<¹^>U*%~òÖþ½¥rs:œú•ô;¹¯†vÓî¹JçG’ïiÝjum£rݸã 7F¥×§8JÊ¿lï3gÊolù)0ù…}žvïÑË¿âW^÷±Òõ©ÄÈùŽ#ó;’½í:á{ùÞÖQÍSeÌÏåþ©?bž,Ô¯tü™×¿òÓî{aÓ#S¬z|ÛO ¶¼N9U&?ñÖ|8S^lÚÇR»Âõ·ÙOSeò¯FÿÛ¨ÜSå ƒ>¸/ÇIå`‹—ÎÕo¾ùsõ–·½ç%Qî¿ë~»ýž[sáMû“Uî·§ÕÃÂT¯Ùögƒ®7w¸í¯_þÐï¸ÓK½îº¹Ò~µ,åîÌ•)_!ÕA¦ø´×ûÌO±_[^ê¨ôùæ‹´øÏT™ò¯S\eº®)·6§J¾×M_´^·úeýZz>lúûR¸ßôôýöœZ o:¿¶kõ‹þGådú>ÉÎNëy‹«À ˜ä´÷×~ÐN87'¸T"gêï÷a4¿K¦ç;þÕŸb>ɨLëþ6t¾Ÿ>[Ùê7¡ãýÞo9¶ù¥Çæôw¸V¿øý]¿Úxš*[\PŽÊDîïñ”¯éó£ÁóÒ÷]×ߨ®Ÿ*S~•í9ö†ÿþ迹ÿé&—[^áR©=­þ©¾ÐòÖ¦ÊMxj©Üš+õ“œš+“ÿÆçµuó}~Ê8úOœøÑŸÙêûB,•Þ'ù¡ìצ—Ãéwõú£ßüš/úû?¾ß÷Ú_Í>€'¡zXªK~®·±ß7§J¿_ª“öüÔ¯­›÷Qé¯oõ:°Õ5Ε©nÜûûŽÏþò›½ôëÛzÝâ1ÜwcT"/W¿›þNlåêçûîŸÏóÚýôgdoñþû×ÏPùŸâY)ïÇõ/å•x|Ýõ5ÅAÒ¸PKùÍ.”£Òy–òÝÒQÙü²£Òï›ê•S]yЧ^ ç©R?hÒ×Ò~çý^üá_ú£±ŽA;_½;õƒñÃT'çõŽƒuó,£Çù-ÏòÅ~ĉoù¼¶oÐÎ\é|±Ÿ\gR½ŒzœóO°Ïw¼x¿T'Ç|¹©¾Ún¿—r&É5çMòg5ýw©Ü•©~¹å݌ʔGrë¿|ËßýËy—µñ²=U¦í˜è lþ]˜ò0ªu|ho(G•›¬³7ù}GeÛg{ª¼ð}{ʽÞ÷Þמ*}oçSò[+ÏšÝÍõú-[>2÷·}Ín•Íï@{ÒýüƇ<¾‹íž-ÜÿžÛK%í\ýÚº|ô×_ö˜w}Øâzo?&GŠkÚ_;W¶¼pØâذÃQÙÆ!LúxÚ÷³åãÂ÷= Ýù¿Ò¾©þ½ùI8Wî¬IïìŠGÝüšÓW5ÿþž­.…«ßjø÷ S>KŠ[¶ý®¡ïýX÷yŽo÷+r|9ÿmŸõÒ©ñ¢ü¿uÎÉß‘ê&Ó~3É/Å:Úâ"®³î/àzzÙ¨ô¸×§xµõ:æùþwþµ“/þíW>£û­ ò©Õ_¦øc‹Ãò|Ûíxuü$¿^›0åŸëÿô}OÁË—Ê–ÿìólßçJå£çoC;Õo“_Òyè÷jûŽÊ”˜ò¿[^ í?}ß¶þ@ûëÔ¨lz)ô|ç±y€Òþoß›÷Ýž§÷kys¥ýÑâ£ÒóÉClç§ú“è•m¿PŽ'ÿXªÏš§Jí×Ïë¦Jõ¹ëçÊVï½Òw]¿­[¶Úã^ožç ½Þ¼Ñ'P^:›§üÇ{Û—+pÝõ*ù9ôo¥z ÛÜÿñ?üèK¾ßÿ_ýÚúãx¾nT6û F|¸>íoô‡¦/ÈQ™üq¶/Ùý)?Äãúïô¿¾øeOùäÖOóT‰=Ýí¾À]Øüµ’û§¼ƒäwòy¾_ò‡¸kGøÝÎ{àw}ý»ÞÐÚ©cÝü‡µóÍ`»?LùÏ—Ã4Z|&ÿ úGówÏ•É_šòìSœ!í'ꧪÇXýZ¾öî\¹7Uú|ýØ×­tî-‡Óqžê(nûÜïú…ø’³Íï²1*ÓwHr±ù á6ÔO¦LvÀí z†ü48Cû1Õí'ù*×­sHþýpgÎVî-•7ŒÊ33œ*o»£òú³•׫´½×¨Ô¯`{v–J÷Á¼v©ô{¨ÛßößuK¥ï=ô}ì6>·+¯•ÎÛ§¼UÞìx®ÒýÈü^ú!NŸ¨´ÿ•?Ž?÷ÍLãiw»Ryáünò›óý»m>NpT>v©T^;ŸÕëlŸñßçÌRiûÂ8¾õ ø>Ê7Çoúþ~Ÿ–—sîpªï9þZ\t©4Êïm]C럩ÒxvOÛ•®‡ÊççÎ\éüW~¹¾›—f:>®X*í/í4Ÿç|±í?åO’om½€m~Ε{K¥òÜïá÷?3*•g[*Ûú8W:_|~û»C´_ùÜÖÕîGaÿ:Ÿ\ÏZûÏUº^)oÒúhÿy\ýËïßôÕ7œ­lv4í·½žßÞgT*ÿ[}T6ûz~Êó ûdíû-‡´Ó_Ï£‡›°Å³F¥z‹ç§x©ñPÏou´O½æä¨lÏ_*OÁË`³K¦ÊËæJŸo}ÙÞR©?I¿¦ë¬þ&Ÿ¯ý0ÐuG¹ìý­Ÿ0ßÖx£ýá~ñæÕÿó{\>W®ë§Ñ’ü‹)/P?SóJç£ýåü¸ ºßDÛk®Ô߫ޕê/ÚñQi¼Îx¢ç7-܀ȗ}9è8LuéÊkÏwý6Žš¾cÚç.í“(Ó>xi¿Tëó«î§^ˆ?zõÛ_/ø»ïýÚ¿æ‹ZÜ,åû´¼ø©2é[)ß?Åó=nû<ßïò©ìwôýõ x¿×äþ) å·Àô=Ú8…éüÆQéõÞÿ‚ŸzÔ/¼ös¬oÑnhzí¨Ly=)/Aù¢>ê#S¼½åy@Ç…v¢y#Ê}í®°_J“-os©Lvžë”ÏÓîÓnæ}W¿ùü{½â3?å5Oˆë~‘}9ÇwØ¿ïÆ¨<ò+÷zÍ¿üÒ»ÛxÕ¦W¿°×;n·æJõôèýöê=ò[oý¾¿{émÛ8G?°nÁßû›^²T¶<`¨žëõ1Ïy‚£²7èzéøÐ¯”ô8ó¤;U:~õ¿º>+çSªò#Ùù£2åUyý±ŸŸ6ÿíc^<üþ½¢r­åÊTw>O•®§)¿¹í§Á{+§Ó~yÖÍèŸõþökÊò¸ëgò¯:.wí›Ø÷ ãæY7¿ë¨¤«_Ü?Úûz¾ãg{ªt<è÷™§JýåI?q<ê?uny±0Í[Ç‹íñü¦ŸÂ¤¿§÷}Ü\éý|ÿTOúÛù¨ÿÛ8¦ýé|u¾«ç¤|ÿ– õCyþÞ¨Lõ¹Aiqnå©þâuóÊgØì·Qiü¨ùwx¿¶ŽÁ¦ÏÊdµ|⩲ååÃÖ߀Þ?ÚkÜÿÈ[¯»à½PûýÍ_ ›ßlª´ÕçµSÕÇš?{À©R9®?8î‡SÝøÉQ¹5W—Ñ/Ö¸ÎT'zä)ßûä»ÿüíZ;Z>>ïÕþÞ7ô»úÞö‹ñPãâ§*Ú÷líüè¦A×™ä'’ÊÕŽJýæ£69;W·Ý†ö‡zˆõÜ7nëý|žçÛ?®›¾_“›Se’ÃÊuãà£ÒqMœó ýóÚ{û]´?ô¥xÇÿÌG^r«ÛÝqŸÊ4î[}:Týºúõý'§ÊæOŸ*]ç¼>ý=¦Ö¯se“ï3œ çw>»®¶|uØæ7ç3>W¿6œ—|Ÿ›äã¨lùLõyqúþæç¦üĤ§%»ÓþôþrwT¢W¯~Í/b^qÊãœ'8*—¶“çÅ};£ûß{cTªïx\yÜüèc=jG¥x’ß7ÕG¥}“Ý–üéú4>[^ΨLzw«‹„i_š&ÿyþlï3*Ã>°­ìÇâ¸ãåAðÉïf{“ÂïçxL~©BÆzÀQÙâ·O÷ß™+0UÚ¿7ßÇñuj©¼õy?þ]·»eÓçÕÓÚßk•1¯g>œúïNŽJýGo×Ï…«_³oý>·ºlþ’7¼ýuÑßäu·þˆKÿß¿“íû…|°í¤&gFe³ËáÆ¨ŒûTL•Énjzþ¨\Óhë©ïë¼òýü>ÊMýÚÙÍ/=UnBÇ÷Ièýš}T&?€L~š´Ÿ’zu‹͇S?ˆzßÉQ©íóvæJídýæ›i¨7kרŸ»£òÔRi\OûÐöXGcܺåóΕÚ{i/Û×ÆÃ¨LyŽÊ{ïoø#?鯞uÁ7=:å ·ü˜âóžoý‹þ ãì¶'難²å)sþ YïW?õ¢÷é÷ùI_OrÑu,ÈííÖ´ÿ½÷u<¶ý>$ÏKù®)¸ý}/¯ ¤|SÞ§xuË~Ç£ã%/y×õ›Í?§?Òç4û¶óy/×aå ×7ÿÀ\™ìï¯]ïõÛ0ù“^—òò6FeÒ“Rœ*Ëôwéôǧlö.´n£Ís¨¿,åº.ÛŸê‘ʉVß|¢ÒzJÛ£ÿ<Åe=Þöm;œ«ß¾Üt?š ÞýÈß¿ñÛŽ;oV¿ù.P{¯ù'`ò7x}‹ËΕ©þ¡w¸)çJõžf×AÇ¿«2UZ7¥žé:³1*i~ßîͺûù?ü?c\Äû$ýÍõRýßyj?)çSܸÕ'ʶ¯2×»>¦÷KO!Õ-Ù¾–/[ÀTÙÖ•©r†ëúÝ’ßÕzLï—òÁ½_[çx?ßG?˜öŽrFÿíQ®§çmŒJÏ·ÿôû±Î­~јü‰©îÁóµ—ÔGÒ> ®ÿês-`ªT¾i'ï 8W¶ë—éœñ}vGåμוCÊYåŒv½÷³?äºr©ùG§Ê¶?À¨l~+î§ÝîýOŽÊæw°}P¿Aó«JŸw»/þ¥¿ýîOùµ¸ž%ÿgòµ}8?ØŸ«_³ÓÒxó¸öMªôú´.ªÿ¤~ðzíå•úâ.´Íwßpªôù)O¯Õ ~ïŸ|îéÏ­/ëxjyÐïþÎÄAu$ÑŸ”ô×Õ\[/•)þëøtÞ¦õÁõH=ÂïÝôF¨ž’ê׿ÚÒý¬÷оp\*Ÿí¿¶žŒÊ”Ÿ“êü>¶/íoäh²Û¾Ü0­ßéü ¨Ðß‘ú'É£&WFåéyç~ã.ɛ줷ä¸×ïÌ•m…íûÒ¾äNzÁÖ\iû\ŸÕw¬#Pÿñú¤ï¥¿ã”þ®“ú¥ëÐínöÅýÕ?ÇuŠ?'}Êßqõëû!CÇ·ï›äSòû§}ÚúÓxmû«Ìpªl~˜öÕHþËöwÆáô}ï<Ýeã§Ïþs”ãi_šàWíëœäyiOv™íU¯0ÿ°Ù‘ç*£>U¦}e<ßøv“+P½ÃóÝì“îú¨·þd·`Ú/}g®$>kȾžl>Žþ*Öa¯?èß±îÆõ¸Õ™L‡Ó8ýÖt8­ï}ì\™ê lZ¿ã¾>‡ã)?8ÅRúõê×òORžû&lùiKe’Îï”ïÖæ'Ç•omŸIh¿;/¼þ«þã½×^÷Ó2Þ‚~xPÿ»<Çûê÷‘æñŸ•m¿‰ ΕúÌouC£2Ž{9*×­«÷ú&—8žÚ?O•—ê{ʽuãè¶W¿‚ýáû8ß’]žôínyj©LzúFó÷@õ”?“ôiÇß±ÿö°GÿÙW߯ÉýmÞ×y‘ê}«æJï¯5«ÕiCãBÎ+ó Ü÷Òqê¾ ìg¸úõú±¹ÒvwqõzûÙv©G©GØOêa~'ïh?ÛO•æ1´xô}[ýû¨ÔOá8Lþ}õŸŸò:Z^íSz~³Cá-¿ôÏ.|áç\Ðü›Î—äORަ}×õO™_–ò?’–˜üqösò—¨ïø]š^›?3´'íyÅR™üyÇ¿çsï´÷±ô~ô¾oyªN•Í.€­~`Tz¿§Hu@2ÕÉ´¾'ÿBò+º.9¯üÕѯzÌÃÿ1ú˯7íË3*ý¾).Ðê¦ÊdÏ|°öS‹Ï•IŸ3Îí÷Kùò¬«_¬sò>öC“¿Ðvú¼¶̨L~Û–²NåÕÞRiüµÕ‹Ï•ÛS¥÷[·Î©éÍ’óSþ]ÊçWIyP2å¿U÷gÎÕ¯½WŒ«M•)±}ØüÂá¸úšòÂö­½ÍTÙò)§Ê”’ê­’}ýì^?*×­wð{9.µ gèùê©iŸâ´ßí.LÇ­kP/õyG^v»ýý³hóÂû¶üöyZýæ+æÂægnö4Ï.ÅýSžYZÏ]œ®{®ú÷ü»`úW¶æJëßR^ÃæTÙôz˜žrTº®§ýÍSR}Èö¦úêäOLõ·éï´u“ûµ¼ú©òä¨dü÷}³¦JãMާæ§ã¸ã缿þ„ëøCÒ÷ç•ÊyýúiÚ¸Z*›ŸTÚožÏñ}ýÞþô}m‡ý©Ýñ˜Ö·TGÑÖ㩲åáxÚžV_•§æU»>¥}#’Þ—ö}HÇÛþ™£2Å“^éû%û×ëÓþžOy'i¼4?1ç§ý~wæÊd'9ÞÖÝ/2éÊ[ýÁißí¹Òù} ¦x¾ò²Å/aÒ§}ßMØî7UÆõ ÚŸêq©Ž¡Õ‰Êï‚Mx\r¾óÙùçz»1*)Ÿ*íçÑò„]§Zþ<=UªŸZßÜòpGeZŸÔ§NÜæµŸµ{ËmùvM/›§qŽš—b\D¹éqïçñ´ÿÏýá}¡ë¢ãð~÷YýR»÷õŸ'm¯÷u)¿‡íõz×Aûß÷OÏOß{´žÚzSó{ô§/¸|Tj7ºˆÏk~b¨ÞßâvP=]}[ú|õÒ”—óaGe³ÃæJ·øLÏS.Z*}?¯oý9W*OÏ•®ƒiŸ.÷›4î«Üöï…_;Wú½’V?Žë¨ë|ªWoñ4Øâ“rT:^×õ£Ú~ßoÝý!Œ‹›åøkû AïÇ|_ýš?+øÅâ>#©N@&¿½úuò/4}g©l~¸OŽJû5ÖAÒ>ë ¼ò—4ùKûõÿ%{¤íC:*}¿_\w?ÁôþÍŸ0*Õ S¼2µ§ù…xÇ£ýµ5W¦x®÷KúÿºyÊUß§åk.•úëµ·T¦ýåNŽJõåžÇS>°Ü^*oö‡òÍ:Åí³•Ç^ýÒy﯋vt70Õ%øÞú}ÌS_¾®ëgóþ߃sâ8œ»Ð¾c=—×ßêÞwúˆçž÷øÙÖEÚŸâb©×=žâ[Žõ±Çmù¹SeÚ´}¨oq-ØêÕÇœ×WM•mÿØìÚkš—™ìíOýÉþ]×Ï›ò´<{yõkv4ãtßàýR\¹åÍC¾Ïê·ÿ<Ö=ôoçÁþý’_S{`wTª—œ÷}?ð­?v¿Ÿû ¤q®qf®<~óÏíÍ~ùSbgò[¦z ¿OËKä~ÉÏšê RÝEÒµœÊŸuó믘*[¦ü¨d—%ù˜âÜêA)ÏàJxô鯿ÏwþùK›œozÏ—Jå´ú£voºß%Ðxõ¥Kå)h}’÷Ó>ÓOwùR©>í8¹r®´}WBÇqnó;6F¥ù?ê )‘êü‡)_?ÅãZ^6lù£R¹äùÍÿ4Nױ淂©ÞLÈÚ~(¸1*[< ¦|”ä'kßú=c¾í³?“_0奦:þ6^aÊou¡ýÎ_Ûw#luÐñÔÆç·ø*lþº@õ‚vjŸ§ö§çk7»ú¡¿÷àw}xÓ7¯•ÛÛ•¶S½-ƒæ†i¿•6?FeÚ‡#Í;Ç©ëp²/ú¥G/ßôÐËc~kÜ÷&ùØÆ;Lz¥Ï¿j©ÔvϽ÷ÿוõ–¬×ÀMØüVKe‹?-•)¯(Ç£/Å·}ÂΦüÜŸÁë´Cg¨ÿYŸú“ó]ÿ¹úË©N•ÉŸÚòÓaÊÓ×?¬_)éÉ¿n}´ãFýrcT&?ËÉQ™òó#z?ç—÷Kv~í®£ÏÚûÞxþ6½Xù®^m¦ÏmuøÐ÷8½Tý£xÝÍð§Úº‘òÿS>eªCÒo«¾á|Üœ*/Ín•)Ÿíº¹ÒãÆ’ß¡ù™Æáô~-ŸT=þî;]<½ ­·~çÔÎÝ¥2ï:¦ÿÚë“e>Šë¢ÏW2Ž™ô<ÙÚ7*››ö©×y½ó×ëµs“?=µÏ㉮ßQŸƒÍß>*“ê¾\w|Å[oÜû¹ßìòêçv¾:NÚ¸œ ï½穲}7˜ò4|^Ê¿VÏVþú|õ+Û_ç}Üovÿýù–—òâÓ{¤~juhœïýlùx©žÒq#ï›?*[~ìTÙò­`ªË“®ÓÎ7õ¦æ·‚ê®ãê±®«ÊÿfÞáÇÞ÷©›üg{/ÇAª÷PmõS¥ý–òú¤÷s]uܺε¼1Øô‰§JÏO~õ¹´\‹#Àèÿ•Éì~ˆ©þ0Å™SþÏOû#ø~ÊóÌ}÷¿ñ|õ’´~5ìT™ürª4âê¹põkÏU?õ½Íƒñ9ÊÏMhü¨åU-•7ÿ¥_ß|þÇOÊOÓ>V޶¸?ǽËÏ[>8úý’Ÿ®qªLõó-Olªlþ<˜ôTýªI¿Jû£%ÿ_Ë— lþwèzâ+iþ·õe®T9¯’ÿÍë>þÓ/ø£ÏxsËçNú¡rM¹jœS¿ÌåS¥óÆûµ8ç\iÞ­ó8ÅAâþU_Wjùå0ÎK¨Jûj¤ºú½s•úlöqªKO~BäξYy„»úõ|ó¹rwTÞü’ŸÙÚzêmã¾=oyv£²ù`²ßRü8Åg]ïÒùŽKÇYŠO'?ÔLq®¤Ÿ¦º ï§>Ðò=F¥Ç­³0¿$­o®ê ­~wªlùçK¥íÙ•Ú}Goùê·œwþ‹Úuí½aÛÏz½òÜ8ŒïÙîÏõ­Þe®äþ«_ܯL¹ä÷¼ðÌ3>áÝoú¯·2®Óâ„£rÝýŸÒ8W~¦<þ”Óò¦Jõûdçz<å ù<çqʈy­žŽó· ë¯ãéÈ þýWîþ!?×ã0Éǃã¥éÑ•êÃ)ž'“ÿFÞö7ÞwÉéÏøÈ7JöVЇ§|“T·‘ê’ýë:×ìxŸÓûèß6QÀÎ\ézé8ðþÆ‘ÍRNØßÇëõ§¨Ÿjï´:‡©²ùµ`Ú—U¿›ýŸüˆ©Nû<íS™ö}Hu"iŸKÛ›êVÒ|R¦ºŸçx±ÿŽ|Á oóY/üã&§­·Kùõê¹É΋œ Ç•ï®æ¥8—TµŸõûmN•MÎO•ëÚkö¿rgÝç¥qžäjç¶G¿Šöàî¨Üœ*·æ;ÎwæJåTª£Iùðɽ5W*wÕ{Úñ©ÒãúÉR¼Áûµûs½r;]ï> §æJß7Þ®LùA-oš_þ±ŸõŒ¾àÃ>vÞÛþ?þ½âºyõ©.R}àÁpg®lq·ÀfÏŽJå¦ú€úEòGŸÞ®lûÇAíõtÛ§¾Ôü'SeÊ›kzú¨LþÆ”›ò€Ó>ÎißeåŽùQΣä_oúù¨Lù1Oã­N™ó“>´1*ýÞi|µ|eè:f½CówM•®C¾úz¿íýaË3…)_¥Åç<îý`ªWhñBÎOy½)ß%åǬ›?â)¿¦­ÓSeŠS§õ¦í4U¦¼Ž”·{œ§ÊdżB9U¦|©ô>Gÿâšw]ö_ÇuÛŸ¶|¡Qi»’>ŸòÙgIßñ~)+ÙÁ®-N¾À©rÝu0íG’üÖ{såî¨Tohz ç«wœ†üÝk/þÌŸø—®wO•iߦV·0®~}?ÒQÙò™å€÷{«¯§< çSËÿ‡)pô%?ú†»}Å_µq’ô1ÙòG`‹×„ëõ#Îê׿Ûm/|À¿æ¯Zûï ;îÀüɶnL•»'*]W÷Få…ûõw|ösþ«ç+F¥ùÅî‹é¼¿f®ôxŠÓº¥úuÒýžyúOýô“×½´§þßÃïn^ó5°ÙÓ0å¹ø}Û~<£2­ó®_uÛk?æùÏ™ãþíÞG9g;”§-?c®ô;ø-Ï®—iú,DÞß”o5àT¸ú5ý>ÅíR>Ø™©Òþ1?í <9Wê‡;=*ݧH¿òÇ|øc^òÞÇ|q“Ó¾g³ÓxϦÇO•÷øš¯yÙ/¼ëå­¿¶a³_ þŒ¤ßºî©W¨wì.•ê-ÞÏxQÒKm¿ãËõ×ãÜ<Ó®Õ/Ú“¾o²‡Õ+R^OóƒJå`Ú'Nû½Å»Ge«†)/Ùû­_wü:Oüû»£²ù¹—JåiÚ?×÷Iûöm¶ï<µTZŸ¤üIñ±Ë$÷3_Ýã;'*­g2Ž”â‹Í?çq¨t>¦økŠK¥:bïïüÕi¼\ù°;àTÙüÇS¥ãÙ¸€ú§ùZ­žb®4®Ñì´Qéü±?Ì;Úš+moós¾zd{>lû#Ê”÷™üë)®Å9_½!<õ‹y‘2ùµÓ¸OõªGýçï{ö»_ëÌÌkûßÎ0Õ‘¯²=)9í/“üûÊCõÉV¿Ówõzí.©üUÿòùi¿Å”g¬žÛâ[Pý&å÷$ÿzò_§ü­Víó­Òx±MDËGš+¯Z*µë¿õ5çN½ó¾ÍÎsJzW²cÓ:š¾»ãòÚ¥2Ågø@¨Pî¤üχ«_Œ·zÜûµüqxâ>o|ñç~ó•ñï$¤¿»ax~êëgLu7®¾÷ í÷z× åHÊ“Ky¢ŽßTâÍÿÌóÖÎ;…Éïh]ðê/¿þy}m´—Ôg[¼y®Tõ=wG¥òÕû%ÿªÏS¿Ò´1*ÕW]Ûû-•ÊkåìÕP}Y9˜üFÚ-^O{wG¥ëÿ6Tô~MŸ¦}iŸÎQ9O•MäüT_’ì[/Í>Cóc—Ê˧JóÈÜO¤í/2W^*—JŸ—òá“IEð—µþOö”ßGûYmÊ/ŽqkØê—æJÛ/S=@Ú‡mk^Þ_=Kˆ×7}¶<ÒQxà~Ù-5Uj÷ª\ 7F¥r2ÍkÇI³ `ÊCò}ý® ëæ/';Ò뛟`T¦:h©jlŸ¨Ü•ÉNºn©t]tÞ¦:í ýÖ»s¥ÇÓ~c)Ï'Å£]w·T¶ý×[ä€s¥×°uñ©ž/ú—àÆ¨ôx›o0Ÿä¼ãûvÏ_.¾ñÛÿ3¶Ë~sܶúÁ@ãižÛž¹ÒãIWN*g›þ¾TÚÏÎëQÙö{£2­÷ëú¿’?.+õwíý3úc”[úwÔ?½^}ôòŽJí¡ã~Û=þãíïlÿŸä稞¤_]?SË;˜§ö;ónõóÿ÷õ“Q¸úí7ŸD½úä¨LßåÒQÙâ`KeÒóÝÿ’?zÉ­þ¶­S-¦ü^ÇŸë–ö§zÁ}á “¿<í›Þþ®t\ÅúQ¹=U:Ì·Ò>uœ+/wæJå»lñåQ™®?9à\éø1o+ÝßówaŠOlÃuë\ÿôK&¿¢z~ÃäÕ?$c>íß;[¹=UîŽÊ“pºÞï=¹TêÿÒ¾ö{;ÿ\ïŒOmûHÏ…«ß¾\ÖDn®~mµß›^3U&«þYÇm˳ TΡWì¿—÷unò‘ûZwª?m ý“ÏÜéø—µïèzwû¿ü…ýà{~¿õK³'§JÇ[ËgX*_ÌÇýqº´úÅö$»7ÕMŸ÷Üßý‹Ï?v§h¥}¸lW’3!¾Ôæ¥ëRËC™*õ»)7Ô—ÔC]GÍ÷õ¸úóE?«í3n­žcÞu¬k‚- ›S½JŠk§¼­äŸHyjÉîTî§}qR]ˆzHËŸ•)[=Ì÷iöô|ŸÏû­~}?oè¸vž˜o§qÅT©öïN´|Ùs•ʶîM‡S}.íçÝôyè8jùŸÐq£ÿ€ç¯~ñïÃ¥ùõ¶úcèüJqÓm˜êäþì·ßöä]þ©ù_Ô›[}×R©?÷üoúÑ—>îÖŸÙüÄÚUêëÚ}­®ªW¸.Çú멲չC§:€´NʯJÜœ*“_ñú¹2ù¿“vk†£²é·w~¦¼{¿¿×+­ëºqTª{½ãÞþÑïì÷t¼§ü¹£ÿÂGüÇÞÝbþ‘×)wS=¤ëröþúÓïï/†Oy‘7Ööy~¢yšÞ_¦ë9¾úé_Xýüûî›Py¤¾åú¯:äo·ø7$n¹úå8®]wæJ׫ï'¿EÓ'¡ë{Ó/¡z¢ë{Êkµ¿=ßøHª»qܨ{~ŠK§¼ ßG{L*G®•{ œ+;¤:%õ;ß?å燼ÊÕ¯óÜodcTjGÙNýèú[®š+Û{AýÊç–_4U²ž¬~1_3åK6;—û)Ïâƒnþê£Úë+GeÒRœGÿ—úã\}ÍëeŠ_Ùž§ÃÙôšQéý]ßS~A²ƒÚ~*P¹l\F}%åC¤ýö¼Ÿó¼qTÚþÆ¥2å¿´¸ÒTiÿ¥ý'šœƒúeÖÍ'jõ’£2åëÛž¦ïAýZê]ÊG¯?vê¾w÷ë͛ä÷nþ8îÛò ¼Lù [såõKeÛç¶y“½­>×üE¼_ª£nöÙ\©>e§ï£þhû-¾ —¶Ïx¸Lû'*ì¿­¹2ÅôWÙÞèç•M?äzë’OÞO9uþ”Æ¡òÍvÙýZ§§Jó¯è·ýv¹8ŸìÌ•Çnqôntä.­ßŒëç5ÿ×眕êŸ*Ýàš¥pß~t'ýÕèß«ßþõ'œ Ûùé‘~ƃþ!çÝþý±û÷Ïg¿¿ýÿoûÀ­¹Ò<Ûíwö¸÷Ûž*Ûý¦Êc—½ô5·ýƒïïã”v;~š¾6UªO„Úeæ7²Œ{¶| ØüÒÜßì⟺rŸ©~ôËqäQ™òÔÚþ€ðømϽÿë>ó÷ûûC÷÷hvÆTÙâƒ0ÕŸøü‹~ì%O{ßÿ²×õmWî̕ɾ‘)/Ðy`ÿn@ï¯äØGܻͫ´o‘íHuëͺT&{Ç÷HùÆ—³ÈæZ*]=n¿›?‘ò=|×Mß·ÕU@ûßç5ÿlu˜seŠÓ¹_v;“¿Ö÷QLùÍ©>;îËÛy£²­0í£‘ò$Ó÷jÏã¸úϺq]å²ý›â‘©?S±ôþ~åð‘7?ýy/zÑñø÷‰Ôw“ž¹˜úÅyyË/xöoÝø–ø÷Ä.]*•oz8lþõrüä¨T>i8S>‘ë¢þÏ·nI»ªåM•MþO•WÊÍ©Òç)ß·æÊ”×Þüm\ï÷Ðnœ§Jõ8ǵç'gªƒJzšóßþSOjz<úK?ýÏ:yï6ôƒ¶¿+0U:n[=þTyr@žï¼ózçµßQœúu«çç|¿»íkq|˜ò,ScZ§Óß#pÜ$lÚ&C»>œiŸž½¥òÊQéºÝôlyÀsÒ;\¯\ÔCŒG;7FeÊ»åüÕoí}7¾§íjò¦ø~zoÛÛô!Ú—òFõçø‰Lû¤|£‡NuâÚ{žÿØ©Òû·÷9¨´7í³ [ýå\¹Ózl{šÛçŽõ˜êIÓxv½ß™+•#~¿Q©=ÑâêP9ì:èøßž*Õˉ#5¹ª¾æqÇ£õDîCpÅR©~šê[÷–Jë*“~šâÇ›Se«WÉO•ä…çù‹Ïû“O½òÓòzÏs·æJï»·T®»/ãþ>þÔçßý¶ÇÑçJÇëæT©ž¨|Oõ2¾§zSÊ£Iu®·|÷î=/þˆÿìqò©2éÙk×ã”°9U¶yÓwA[ýìŸý8­ë´úQÒŸ¼¾ÙK¥ù{÷ƒæ—RMûîÍÐúã™Îïwì_ñIOùðÇÆý$|Oóµ=îý’>f;“ÿ-å3ûS=¤×_¢òüO{ýÙ7ýÊ;¢+Ùc~/ÇC²’ñzÏß•ɺ1*•SÉ>ß›*õ#W°}i õº–o9®~­ß?é¯úøëþýxôÿì¨T>úýZžLû3¤:^¯oõñÐç§ñÓò F¥òR½üô¹Ê“£R;@y¬ÿDˆzžz°íÙž*]ïÔk]?µ;WºãE½V•z®þ óñÕ×¶æJó²ô3›_c]hógAßÇ㾟vã³ÕCí2åIò÷ùþ­Ng©ôùÞ_ù£Ýêq¯O~üTŸgûýá鯺×#¯hú¬ë³ÏMr·åéN•MNq~ÊCOy(É^NöÒÎ\éw1½·TªÿßhöãTyÝçJ¯·\¿Îÿ«?ÿÊÓ7~v¬Ë÷;¤ù¶9Uºþ;®ZÜdªT^Ÿ•æë]6W¶ü¿Qéüt~»~¨˜o«¾æýü®-^‘Wûv qŒÕ¯ÓÖ¿Pý©ÕI.•M^Í•gFeª—QþèWl~%xä»^ý”O¿æÑ_ÜâípÝúCkG%»2ÕG¦|5¯w^ÒÞÕÏvXÏKÿ­~-ú€|éö¾)oÉq¢ž”âêÉîYw3õ¸d7­ËTOëû¤ý˜Úþ&°åÁJãó[seÚE¹í÷–)¿F¹Ÿü@ê#ÊmßW9«\; ]?›Ÿê·ôü–W2Uz¿yªÜ•Í Sþjkï›ò³±SV¿îgá½<~%´ëæAµ¸!÷S/lþ4ÞÛyšüÑÉÏÔò²FeóWÂyª¼Õ]ò÷o{úÅó?ðï;Nÿçç¥õHÿÜÆ¨ÔH~ ýœ­n“÷¶ŸOÒç5¿-ô;=pªlþ@ïݧ;­WÚ3Û°éA£rª/øw¶Õã’¯å}ÀMèóS~¯zè‘/~å/<þ;ŸØä¸þ£æ™*õ·éÒ>wGß^ýª;[ýÚz™ünÊ©Vw=*[~@`óC@×c¿GËGž+S>tÚ¥åÓN•)ÀþÑn9zÏ×ѽ.zKÔ£µûÕc6FeŠëZ*Õ;Œƒ4÷¨Ü™+]—µ7•;îGäý´ÿ\¬/Û9[éqå„ï“ö0oT9kÝyuôAoýñïýõgõúîQ™üM­n‰÷rܬ›_ã¸p¾\øžñ¦ÿùoÏëöà¨l~ûépn”O×ò<8?Ù­IîµøÚ¨Lz±ò[=BÍÆ¨´NÄû¥ó]×Õ‹ùÉ3¿þ½|bûnóTiÀãImþØú¦|aéøu½¸z©lrwT&¹l¾~ý­¹²íƒ2U¦}^Ú:Âû:¿Ó>éúêdýõú0î›òNÒºÜöÕ•ÊkûioT:—Or8ÉÇä'ñ»$ù–ò.osÙ#Î\°|i̧JqWÛ±µ¿šß¶¼÷¹2OãzM¿Ÿ*Ó84ŸÏ¸•û)Oôû«¶ºÍ¥Ò¸€q5ûW½Ëqëqã;Îíõ®yªÜ†É“òâ’ÿ)Õ‹%¿‹t]ÕnK~÷}h~$˜ô»T_×î'¹¿qé+¦JãNÚ±—/‡Óþòþæ1˜WàzÚâ‰S¥ë‚ó?Ö»N•ÊçgÚï9ú#§Ã¹»Tú=޼äóeŸq}Ëà;˜GèüÙ•Éÿk{S>è w¶+[û v¨y…øÿV¿ÿˆ×'ÿ›ï“ökHuI-Šç¹¾úþŽ®_ýšs\ù]¶+ÙC¾—÷ßž*=®=d{ÚB{»ùyio«†¶'Ícý¼®ãi¿DãH[P}S;D½D?šzƒ×ŸZ*íOŸßò{x¾zï+Ï{ûƒßxÁ¿¹éwÞçÔ¨¼|®TT^§<Á¦ßN•®OmÜO•±Þœç)O“챦o§<Û£_Zy¦Ÿ¬Õ/ʶôù¾ÏñO|öã/¼ü•­ß•wŽG×ËM˜ôï縲Ÿ½ã\é{¦:›Ø^îßêÀx¿SŠsµ÷Ÿ+Óþk©^¦éÍS¥ëGª÷Lqº´N7»ÿé¿9ÿÍ÷¹O¬eý^ýâ> ©^8å¦yæù)Ñç§õF=Öùbü¬å£.•?ïiyÏ?¼çé:Í»ó¾®/§æÊV×7§Ê6O–ÊTø©²Í¨¾(½Ÿñoý m¢Q©Úš+ö7riõkqâÕû®Øô÷QéüJy/-“ßÁï–®WþÙ¾f·ð~ëÚe)¿Ãö¦qµ1*“ŸÇøƒ÷óùÍ®†¾÷wœnO•ÚuúõZ :î“_=ù›ÿ¦<õ¦g¦N•´oß~NvSÒ'=6ÿ%tœ8ïR¾[ª×‹ë(LuFiŸÇ]²³Ów^wÝö{¤q—êlS\"éY©¤Ù£2é¥Ú‡až¶‘öq¤?V¿ƒþØÿÝ«·ø÷Æû×'NòKË”wë¸Kû&ê—ìR™ì±˜W=UnŒÊÖ¼ï‘ÁÙüÛïw=¦x€Ï1žíýÔG×­³?µTêWÒ¯ÕìN¨~}Þ?oÿÞþî¾/Æ\é{ZÏg}¡ú”úO³9žüø£Òu,é3é¸÷O×û¾-ø€çt?ÙêL¤Ï LùÍiqÊ}yf<⪹òqÐ|×äç–ê/©Þ§Å?åt8íÇ£ýu_û“/ýÈf_xž÷Iù\ɯšö;öþmߘô$ç¿í5Î⨶_ãÆ¨ô~ž¿7*=ÞâLÐþ6ÏÈý¼}ÿëNTîÌ•æKîž­tÙ[*·|ÏQyÞËÏýˇž~t‹O_=Uš×æü¸v®Ôw}t?¥´®ÛãÍ-ïhªTïp\™'«ü1Åq`žÓÎTi¾úsŠwûÕ_üž?|ë]ZÜ=ååØÎ–o:*7§Ê=¨­žÒöw€m¨ÒöÚM~AõK×c¿»ú†úóÀïÜòh ý³úí¯‹Gú—æñ¯[ûü(«Ÿò²ÙÖ¹¹^§8ºvhZ’?°åýÀM9W¶ýÆáLõU~ÏTw”ä„ïwìç?éË®ý‡ŸùHi] ßí¦q2®~ÝŽ•ixØÆ™íü\éºîº+{{<åËÉ诚*SÜ+åãyü¼ë^ûÏÿø†ïö€úáA~yåbz¿è?;à>û÷ƒöOªo°ÎD{Úý ýÞ®‡ÊÙ4Í«hãi»Òù¶}¢Òñ—äŽzWªïkúǨԮöx’'Î×9ß_šO¨>f{ZÞ÷R™â·>ßüí»4þï?6yfüM=È¿o¡¼RoovȹJ¿‡ëÌug+wG¥õ æq9ÿ¼Ÿõ©¶OûÛýõS=éé•êã{Û•ÛÐï½·T^ ïö¯v’ßog®lúý9Èù»£Òöú¾ö·ßÇøº~9íNÛ»=Á•~å¡ßÃãíüQi\ÏñØêÏVî¨lï7W*o•oÞßö;Þ/­.ÌölW*µ—•§^ßäÿT¹;*]?¶§Jç‹ý¯üÚ™+½¿ýmÿê7vüÙ?ŽoǧãIy$Ûú´Túþ~Ÿöü©2õ§ó×þrüÚ>û¯åóO•×Oå¾TÎó†|_ýµmŸÂQiÿyÜý¶¥Ïk×Ï•ŽÛ§ÿÉóí/ûÇ÷ií•Ü/µçä¨ô}õ«ø½ôç•^Ÿò ]ÏÕ÷õKµ}À–Ê–¿ÕMŒÃÙê¦aÒ»’Þg§þòþžï¼hùêP öо¼7/Hù±3W¿öêׯkË ‡×^lñA¨\o~áQ¹5Wº¾h«_¸.û¼ë ë›ö~Ò_Ô‡íÍ©²é¿s¥ãåÔRéý|_åi:Þ8g«K‚úÍGPñ}ÚþÞÐù•ö•õü´_”þßÿøÎÝnû=W~—_äøºy¨êY­Níò§žy—7Æ}0”W¾Ÿþ•yªôþæ%njϺ׻ÿJ:žökñzë¡Òõé~g?Æö=Öí/¯wœx?åß õóØ^ï'Ûßñ8Wù€©R;3õ¢ýaÿïž«ÔoÔî7*S>•ßǸ”÷÷ûÊÚ?äG7¿†ßÇñ‘æŸrH®»Ÿ‡ñ‚d5¿)lñw˜þÞÙÎ\¹îß=Hv“ãñø×|Ë'?óÍ¿Öú¥íC’8*}ïd÷¤}ô ¤º•è¿ ï›ì÷”ẞüÇö'Çýµö8¼Ÿ~¥u÷HóÖç·}ÎG¥÷ß•æAz¾rBúüu×ù[ßìSÇ+~øãZ¿¤û4¿+ן„—,•ÚÍyÀ}V4ÔõS? Ï¿bT§jó¦¿7`œ$Ùwéï¤ý†|~òmÁyªT¯Þ[ W¿6.7Õí~ÿç>ê)xÊþum^Êq(»= ýžÍ¯[>ØT©ÿÇïë|Huå-eªl~ïQiÂ|~ójÿæk›n<Çz×)íõ4^7Få<ÁÈùm_–À$ßdkohOòÏ9þ?M=è¹ñן×ÖÇÉm7Þô_o>~2ú£w ç7ÿÏIùÔ¾¯þ‡SK¥q'ý]¶§Åå—¾ïÏOûɵ¼ú¥2ùŸ®W)ÏÎõêè?<åegŸ|~Ó—8UªOjgi;ßÑó/ž*Óqç©zAŠƒØ¯):ùÅ“žæºpj©Üœ§ãB;ª}÷©²Õ1Ï…«_ÓGœï>·ÕsŒJç›óÅú¶VO3WšÏõ‘÷û׿xÜ·l7¹¢]»·TÚ_¶‹yºúõ!æk@çKôóÂäþ±©Òqè¸R)|~ú;¬M^Ðï§½”ìŸô÷2âßYÖ£rÀû­['xé¨Ôšü™óôx8ßñœüÜIõy×-•Mñ~Såºë§yEÊ+í^¯çy«_“£I¯à>éÍ1žžâÈËýöú]SÞZËŸ+SžXº_ÒûŽýü½žðu?ôÇíºƒêÖZ=ôý“ßÞï×äÔT⫟íßÿåŠrU»rª)wô[©_x}“£°ùÁ ûì¸oP«ß™+w§Ã©uß9÷½QOôøî¨Tî*7Ú:Êõڑö/=~§Ó_ù쇶õ@ûÉï¸=Ušì~\¶£å+@×+Çzh¯܆s¥úþÕf¯,•Ž[ßÏy&•ÎÃömë”ý0O•ëÊÇ´Î¥¿ æºáønvÒ¨T>8\ÚýfÈqÇ‘ãBÔÉQi{dŠK&»Q½®Å]Þñ?w‹ÿöîî_•ŽGç—ë˜þ²¤ŸÚÏ;†¶ÇóS¼Âq¿n~cзâýšþ S=@ÒWSþEºŸò4Ål¿ÏW>¥üýVoÁýÕ“’?9äµõÆõ˼`ãy»Ðã®ê×@ý2®ú󛜕·ÞÌüvýÊ1ï§ÿßøC“ËW/RïIuÌ-_|T¶|óQi½Ý©¥òš¹Ò|Rå¾ù§1 :þG~~ùâ'¾w+΃v^'»V¦8ŽLùŠÍO5*“_K¦¼Ö–¯8*[óþÉo–üÒmŸ5ØêîhÇCü0þ]<¯oú'ç{põkó/å»™‘ÚÑìP¸9U¦¡?ÌüãÛæß¯k—¥}K”¿3Lv¦ãíÖ;Ÿ2}þû.šïûã+nÞ ÞzüÞkÒyçñ‹¡Ï“½Ÿç;ÎÓó÷àéN•Ž3ïÏw_ýÔ‹ZžÎÖ\ù¸Q©~~r©ô½[\p©T¿¸õ‰gþ÷~äÒ¾/#T?µTªWHýT¾WósÉ¥ÒuظºÏkûŽJížSseÊ÷ÖÎð|ÙòR ïgÿ´øÅ\éúßü€£2ÅSÞ_Û?ªéçÓïk¤Õù/•wøô³ŸúY_øÈ¦/+ýÊ…–ŸÃù'G¥ã„õiõ[Íûýøá™q8O-•¶‹üì¦øÞ©Ž|]¿B¿ÆRiÊ7ðþê ÚéÚõóT‰÷¹r]Nýáû'û9Õ9ßÔ“íß×[7Ïó[ó›>7*›Þ wæJí—¦÷A× óP=ßyìõi=rU×oväoø¯¾Ýem=—Îkõsë\Çe²Ï•³)o+åëµøé8”«_Œë:Sž ÷»ßTi¾Ä µßS|£Õ—O•ÎÇ¿íU?±ÎX¶÷Ÿ*ý.ÉŸèüñþŽwóÆ“ÿ2Õû)_¶§ÂÕO9·¿Þ¢W;àv%ïuÓ~¥s¥z»zyÛlTêÿUŸU~³^ì¿×í··ÅñG%ãuõ»éúQéú¢|Üœ*ÕWÕo[ª‡5y?U*÷\O“~­;¾”ß-7*Í'në?Lñ¥æï™*Ó÷q\5ûxT6}¦ùï÷MíI÷kö6Ô¦¾b]#úÚêãiÿ¤MØöñ|ÚÝòIF¥ãÌy‘öѸíÇ=üVwüóß‹Ï1ï/Wß[ª8›?ÞýŠ_ñä‡5¹`»íß“£2ųô3«·¤zsÇ‹yþ3ÔþW.¥ýF½Þú<íý©nÁ÷5N´îþPÍΗ<_9q5ô{¹î¹.Ù_Ž;ýRR9è÷ñýÚ¾¨þöÀóÛ¾Û•1þS}pÚW@;¯í [þx úW:žê@ÚõP½Õï¾=U:Ÿ[><´¿’¿ßã»0é Q>Êt¾÷Ÿ§ÊÔþDå¯ù,¡Î~¾Õ{þº¿æÃ»Þ ÓßÏ«_ó·ú|õ¦–O<gÛ[Òn¯O÷Ãï'Û¾—0µÇñm^_ò¿ÅþáyMŸö¿ã=Õu¦øšló»É_Ô'¼ßƨT7oÄãê Rý8ÅY“Ý–öóôz¿‡ÇõÏ{ÿ¤ÊÍ©r¦õ§ÅSaÚ_ÁþðýêËm|@õÿd¯ÌS¥÷Kvך󡯴~«¿x\ýèîß:ýþ­~÷ß[Þ’qõFã4Æô7´¸Ï‰Jë´ï·§Jý%ÆR=›ùÉú7Ì7v\&9lœÃçû¼Í©R½=ÍÓué8Lþ¦T×ä:ãøð{ž9[©hz/<ú‚?üŠû?çÍžÖ? [½*´ŸÚþ £²Õ£Bý¼mØê«F¥÷7Ÿ‰yÐòm¿ãÔ<%íß^*µsÕ¿ü®wÿ¹ßûŽýù[»¶æÊæ÷ç9)/%­3)Èû·z¢@ãäú«ÝÁzÌ– Í+xâÙJóPõ¤ûë·¿nTîΕÎÿ¶o´õbªlûwBåv²ËRµ÷KyŒIÏÞœ*·æJó_”OŽ·°ßVû¾Í/“Ý›®OvEÊCOûµ¦<¼d÷4¿àT™æ“vIÊÛn~©2ÙMiü¶ý¦Jí¢´ïY²»l¯ï«»è®Ï{ûƒ›ÞÎ{·z¿›þ×}¿“ý¢ÜTOHùLÎ;×Öá}½N=ýhÿ}ígöõÙ¿Ÿã…~Ø¿_”ƒ•û×¥ýLlg›_<×ãɯ—ØÆ´ÐoößÓvª¯ßýª×üÃÕ÷»o³Ó7­nlªÜš+OŽJóZSþŠòÒþЯy@<è øÒê×úQ9Öö ‡®iŸiûÁçiW´8ô;%=­í##§Jõnõ\ßÏûëgHùÛ^o=€vÊñþ­Wÿô °×KŽÊ´ÿ‹ó$ÙgÉïúpìûçÙyÈ·öu3Ü×u*ìoÇWóFÿ¿ï ]_’ž¼3WÆø÷Kß-½OÚÖû›¯¦¢Ý¡ž›ì­¹2ÙE›S¥ò>Õÿ¬KïŸòÞõÓú~Þßü׿ÿ®+¶/ÙÊWÙÖ-Žû}“¿|sªlý½ÿÑïü§ósâ™í¼¦'¤ïnO•úå’?9å+ΰå5M•ž¯½¬HqnïoœC…rdÚ>ûóÚ¥ÒuÚþóþ­Na©tly '*µ3Úþ7Pÿý÷Ø¥rž*õç7ûoTú=hï¾~òW¿ÖŸ^—ò«¥ýgš½;*S]Ê­oó÷ï¸ôYŸØ¾»ú¥4ÏX}+ÔS®~í<¿—qiçÒù©1ÙµiŸ”Ùü 0å8š¿pT:?|^‹SL•ÊsßÇ÷=ö´Ÿ~üþþmû¾JN•iŸ}õŸd/Ù/)ß)ù‘¼_‹—M•¶ÏïâúiÜA¹§_»ÂóO-•~g{½ó×öY§g¾öÑê÷ÝÑ~r~ßÙ—¿èWûÏkñ¥pÿzÚ¿=ïÑüfI>$» í§¨\Mu(Òqìüö|õJ톶Ǩtœû¼M¨©^¾7 W¿·kvw ÷MÏmûõÈ3S¥×ÂËçï¾ù™Ýœ*›¼•Ê-õ•´oÊ_hñß©²ùGeÊcô~ŽOíÛ—â-¯‰÷±}·yýw_þø_ç±óÒç¬k7„<òè÷ß•ILuq).˜öÿHq9å\‹ëÃÙìÕN•Íþž+›\â~)nÔìÔ¹Òã»°ågÎS¥ÇÕ+=îøñû«ß´oˆãäÈ«nÜøçŸ}Qlk«_œG¾g³§¡ösó7x?˜òn“*m_ó+B¯oûbʦ·ŽÊß…É|ôÁ¯xÝå_üeM¿w¿—”_›^•Ö ÛµÓ{¤u¨É+èúÖEó‘e’‡¾Oó.•úg[|ãp®~m¼Ýò7ÿè~÷/nu^ÉÿnÿlBõHý¥¾_¢vëÎTéøMþÚ–2*µÇ橲Ég˜ê£\Ÿ®; —Jõ&õÑí©ÒýFÔ¯í?×;×Ûïõi¿.Ç¿ö¨~ÂÖÞ¹2íkí

Þç#î{ýç\ù{mýsž9ÜGÿ¥ýh=´ñAó O-•)hg®\×þLq«”Ÿò öõ ívãì·ý¢§¿ôúßýè6/̯ riõëyLõ½ÔÒ¼NzÞ-¿åo?ñwþæÛÛ}}ÿ”w‘ôçWÔÿí¯ä÷Hùái½NqnŸ—òèZ#ï×ü´WûA}âc¿ûÉwûžüW“+öƒrÑ÷v~â§[ýÚzóC`Ëï‡-¯nN•)ï<}çMªWHyƒÍïÆû¥¿[”êZ¾ Ló#íG›ö«1?&ååû=Öï{'*[¾Px¿Ô?ögÚçø^Š£©?8þôgŸÊçdG®»OLŠW¤<ß§JLöÆÖ\™ä‹íWO˜aò{¦8x:¿ùÃ8n¤ýÔ'eë_ÞoÝõ)éiiŸ—¾OòÃx<ÅQ·§Jë$}ÿ$ÿÌiyïÐöÝüä;ßò}/|wÌCŒrzM6¿ãTyèt^:ÎNÏ•×ÊÓçà¨ÔNÜ…®3Æ×Úe{Kån`³Û¡íuœk'§¼?û_9o¿Jõ~öý–JÏoq ¨èóí?Ûk{oæmŒJë¸'¦õ<é+3T?Nñó´¶§Jý‘iÞ:ïvæJçM«{\*w¶ßyvæD¥ã¾É1Ž;ZÝÁT©~ŸÇý›ÜX*=wÀ³•îwæ÷·}>ßõÑøµ~*÷WÞê#¶?ÉàñüÕ¯ëu÷á߀æ[mêNyÁÎó¶ÿ$TKzZŒÃä¿ó»Øþ¶~BŸßôNž§^}ËöÚ¿®^ïûk÷k7'½?OyoʵuýLúÅM.,•Êõ;ï—â(ÊÑä'Jûÿ9>ŽßóUüª»þD³G“?0åh?ØïÉ¿’òxœ'óT™êV½Þç]ÍwÒ?ïK~â~¹û´ÿ“yî¾2Æ1Ò¼Jã~ÝýDR}ŒãÆïÛêø ý™öuñú”‡¤]¶;*?þáŸqû/þæÏ‰~‘O÷ü”Üü(´ÛûŸž*•'ž¯^¡žÓìµ¹R½Üç+¿\O•O>/èÙ«_Ì÷ẦßmŒÊv¿•Í_3Uª¯k·j7ÚÚ[ê=­.öÚ>Ÿ/CEÿ;SeË{-¯uT¦uV{Ey⺷3Wú<õLÿ>ƒò/ùÇ7¡ú»òúJhþ¶Ç[û½îÓ¾©î)1ÙÃ>Ïã®×óTi¼ Õ‰9ßÓ~uÞ¯åýŒÊÿ«uFM^JûÅv$ù—öÃwž¸^Øï÷»ÒÞÕo>ïôïüÜ“ï÷ƒ­ÎÀö$ûÇyëû5{…öšçÔêm õ -{éRi¾‡óX;\9¡ŸÊºô'L•~?¿—ý­Þ"½Þú”Guj®<9à\yjT^5Wš£}äý´oZ{¦Jãœ).qä÷žõ€ÿyáo´õí>S¥zþ·æ×•ŽKýQÚmÁã_ðßó¾®é-©.?åżÉù©®ÞøF‹ëÁTç¥jwùw:dú>Çþðì8ö[Wµ~Wî9_ŽnýÉ›_öñ¾vVËs†óTézåxJq¯Wþyüª¥R¹áõI®4;ºþè—iqØêÓ ãKûU»C½o úþŒÏÕ/ÆÃÓ¾i­ &ûÁõÃ|}í¡Tÿ”ö¡Kû”â?[ýöõ\ôªÕ/æQ4ýo© õcþ} × ýiÝóúFž—ò3C~Ûê×ów¡íNym)%ÝÏq¶ ›z¾q$Ç]ÛçdªT_W^©ßÜòìkžöÞóÿ¸í¿îú ý§^° •sêÅÎßÛû];W¶}æJå…ßY;Æ<ô«¡ïÓö×Z W¿&/ú¹×¼ã–ÿq‡6ÞµŸ?úêWüÃ=ïÜü0ÉãSS¥÷K~ý´Þ·øLõ³ëÖ¿¦÷OyÝ)/-­çÊ)ÇYjÊ–ÆcÕo?XýIú=Ô´Ï/|ØÍ.|þËvçË?ðï}®ý„ݾú)ïö×/×{ë'œÿ;så%K¥óY’ß³ß>å¦þ(¿ÿþ ôw´—í¸ú~´_ ýé¯ç—Jžï¸= Þdÿþ1¾(G¥×ßüNßrúKnñ¢®/ÊæÏ•ΟT¿›üo®ÇÆ%䯍œ§Ê´ï>ëäê×¾ÿæT¸?ÏÐcû~-s¥ëåÖ\©«_)í3öMmûXO•M¯ÜOõ”ÖØöŸ˜*“Ý¡ÜòùÞÏö¤ýKÒqû-íbü³ÕÅp¾ï›òSÒ> ú]wæÊÝQéóô÷š¯º9Nûϼ2ÇõÞÙÊí©Òþmöþ\éxHóBÿƒy«Ê7¿o˯•¿ù­~ý£ü§·Y{å°zJ«Ï*[=á€äxªGlûÄÊt¾ëJÚ÷z{ªt¹Î¥}pŒ›(§ô3´:?è8Kõl))í“—ê=Ô[×­Mû)¤ú›æå~IŸI×§ã)¡sì.ÿyׇ̗7y“ü'~wízçQËï•ÚÏ­_áÎ G¥ù2êÅÎåÊöçJýŽ^ož™z”í7^aû|¿­¹R=ËëS<Äï›òÆ]OŒGÚ¾TåxKù”~OåΑo¸åyÁ]¦üz]&ÏKuhi_Öûn·qžýý0ÕϬ[Ùü£0ÉMåtÚ#õwª£mq‡p}ÊËoy’psªlû¼Ì•æk8~òw0OW¿–÷å|kñÏQéxÓÞðýÌÐoéüWÏKösªƒJùíiŸ6ý5÷¶7å jï;?Zþ×t8[~,×§x}ÊS”Éÿ›ò‡6F¥÷Oë}Šzÿ¨÷q(Iþø}Ž}Ñíÿùó¾éI±îÊû6¿Õ¨ô|휫G¥y{žäõ_y·—œÿ±¾Êõ2ÕÇ9¿¼Ÿë}Ú¯9åa4}úý“_7Ù¶_}L}¯ÅãxÎAùa©½Í Ï£Òþ:ö?–—>ý)4YÒƒ›?fªLû—¤¼•ä7lý4*ýnêµæxÜ;Žší×­”×î÷¶?ȯju'-oÃvpÜy–¾GÌ*íŸó.Ûù¢«~öÞÖÅ<úQiûS½ÚƨL÷³=3´})ï?Ùá-OÂëCûÛ|àyO‚éý½ÞþÐ.Óοál¥~÷ë–Jï¯MýŸjßô9ê æ£ZÇyÃTé~S7œ«lûomW^?Už>[é¼>3Wzýõg+m¯û =ú|éûžÙ®ôùw˜¯ÐÚ7Wž9 çÊÓ'*w·+o˜+õ×\·]Ùú{»²õ/íóûŸOØ®¼ñDåõð†íJÛï>I7nW:>mÿKåãÏVîŽÊö=çJǃqóëÏUº€zKzß',•~Oßßþ½qTzóO¼ÿ§JýG>_;ÅùìüÙ•m¼ŽÊëÎUÚŸÎó{ÌÇq~*÷Õ#•¯Ê÷¹²~ëÆ³•;sekÿ\ÙÆßvåéQé>[~ÇΕ®'»ç*•ŸmÝ;WÙü›ç*›¼[*mþH߯Éù©2É[i¼ßùì|w¼ªç?~ªtþÜ8W*ßÛû ÈqíËëçJëtݯÓúë–ʶžœ¨Lú…íqýv¾8žžx¶Ry÷ø•~¿¯Ç•¿®iýµ?Ô¿?ʧ&¶+]ÍÙۮܙ+“¾¶·TjÇ}ÁC7ò;/qÏDõBíióh®Y*¯˜ W¿T—òò÷¯Ou¯)ß*å—¥z»”?—üj©ŽE?ŸöpÊ{ÐO–òù“½íû¤üqó RŸö¡¿UûP9jÿk_Îðð°ùc`«ó£²õ?ô}ýwü¶—½ëGnõ#ÑÏä{&ÿ¤ñeõgë Ì_3¿Oë©QÙêú výÖ\iœ¡ÙÓK¥ïÓö æ¸q@õÇÝ—JãÅñ©7<ô ðî–·sù\©šêqfØÆû¨Œþ¢QéñuýWmŸ ÐÞuÙî7*íoåUË•)nžâ„)o²å¡M•­.êïnq$èúè÷2>˜ê6Sž˜ëióoŽÊuýi|´¼£Qóä ëeÊ‹:z¿oþŠ7üÝûíÇÕ/æŸ'ýÂö§õå~p†)³å[ŒÊ–w6*Û¾8£Ò÷s¾ù¾i¼®»±ç+¿RÜpcT:^ýÞ-~/·ùðKÿãèO>¬µÓy¢Ü³]mÀQ™ò©Z|¦º¤g§ý!Z=ÚRy=tœ¶z9˜ò›S\?Æ©¸Ÿý/'G^ù¶ÿùº‡T\¿\?ôÓ?ÕO¨^Ãz³ú5}ÌûÊçNqæôýü>©î)Õ#´üúQ™äPÊßrÝçIžŸîŸòqSÜ+­ãõ¦|èüµ/‹y„~ÛæÝºß!ÕzÜ~:þºí¿8þ–Ony>Ix,´]Oý"}oý¯éû{ü‚·>ô3ëc.lóÖóœ7-Ÿn¬Ç”ϰ)çÊ–‡8*«ègÔnÓ®Më„r_¿s’[ú S|}cTZ—²}¶2ÖEx<Ð<$ý1WΕúîtîÑ?r›_:¾ïÏs\jÏ„|™ÕoízŽhgrý5lö TOŠy¢£2Õ?¤ý­O9úÔÝG|ßóδq°5Ã¥°Õ‰%ÿfÓÏF¥ínþÓ¥²és0Ù‰i\´qSmª‡ðy®?êÛ·ùØoy̽ž÷)m~Z›ö¡T^x½çoŒÊÍ©2å¡Çz+¯‡ö“ý¼®_ßqêý[}è¨<ö¤ÏxüÝ>ìÛ[¾µëzÔ£ÿðò¥òÒ©2í“‘ž/›Ü›+í—VÍk±}êCæÑ8š½w¶²ùÇ ×?v©4Ž©\VP.ïBå®û³:l_òï§ü„+¡~ ã™ö÷UseÛiªTNùWM•Iÿ³}ÚÖ§©gÙ¿¶Ç¿¿”öÇJ~?ÛkœúÈSîü?ðÔ_nú]³£¹oóßCãåí»-•®ƒ©¾T¹aûÓ~%Þ¿Å¥`Z/ô¿72t\9ÏÓ~¶?Ù)Ú-&¿SÛ7ŒóÛú S|&ÕÛ¦8fªcIû?ÚŸ¶ßã­`ªôþ®3¾²÷ZþÍTéq× é|U¯89*õwx}«ë]*Sÿ¦¼ýKŽÇÿÖ G¥ã‘ö®~­_½rA}Ì~Kû~ØoëúÇ“=¡Üju÷seë§¹2ù»½¿íÝš*m_©ÎÙuÁõ:í£Ðö!+[}øÙÊt?ÛÛúc©t|´üÎÎ[Q?«ãƒû%{{ß/?xõ;0/7Å—Ô£“ÝÝö[•›Seò´8ùTéù~Ÿ—ê÷Ó¾ÊïôoÜ>rå·ù›Úå{¥ügûMyã{8¿Z¾2ÏKûX— |ÒoæóZÊ\™ü/iŸûÇþоMùÓê•¶?å³ïkumP=Êöh¤õˆq¾úõ¿>*S\?ÅeÍoRÿIòGý²í6UÚO®3ÚaŽûö~Ð~×^0NrÛ/øoxï¯]Úþ_=ÉãÊ™'³_ô­›G#=?ÉùuíŒMÖÃoJv‘ã¬ÉG˜üøê Ê¿äwT?Ivœq_ûW=Ýçq¿Õo¾ëg<÷vï¸tÌ×| +Z'•òšRþþî´’rÉ:/ûçÔR©¿K½á h¹O½þ<ç—ïç¾ Þ_9êøw½Òÿµ9Uwoñ™QI{âßIùËΗ”?£üØ*•ÖñÅø3Lqº°/çê×ü_Ioiû?ÁÔî¤çh§(7Û~·se³¡ã6åáµúó¹2æQŒÃéwÚ™+]‡ö–Jç­ñ±äïkyv°åÑKÎOù±)ß µ®ëONyùi^¥|ëægãxÊ÷òû¥¼ß_fòë·ü1ØêR8Þòn ~Wԟ麯?po©Ü=Q¹3Wšgc½àÜœg‹{.•Æ'.+}¾ë„zoêÏä¿5Ÿíò©ò²¹rcT¦|#ç[Z—’¿½ÉÉô|èútôO_ôÜåqïn÷MõÍöcZw«1¿dcT6=„ö69Æñ$7Ÿ&ý]¿üÑ}ã©çϵñïC4=éDeª?¹z©T¾š_jö>ÐóµçÓ>lIÞ¶ú'¨íqç¿ßY½Z=\ÿ¦ù3£Òý£\ÜŸE»|g†£2Õíû„g>î—~äëÛx|àTi~·ïe»‘C«_Ê7<èïM®~m›_dþQªoÑîUž«_žZ*Ûß÷Z*[À¨T?qžû½\6'8CÚ£çz¤xåTéþK®®§—L•êú<®<:µT&;Q{ÃùÜöÁœ*›\†­ŽuªLñ_åw²Ï¤ú¼óô6Ÿrß½3—øw8V¿®ïO‡S¿úÞR©|u~*•g®Ê%÷ïÚ•íú¥r]ûS¶üÁ©2Å=Ô ZÙ?r‚oßrýê×îsß?ÉÁ´ÿTÓ£`[·çÊ#ï¾ï—ÞõGîÜêf\Çõ{;ŽRü°íí×#oÖƒ^öuÏèúóR™ò6ä¸ó¿ý=…N•®ƒ§¡z_”Oñi¯w>º¿˧•)¾ ?Üu£Ý¶<‘©2íÇ‘ôø˜GÉûµz}èû*®€êáÊŸ$S>ß·åKAëx’?¹íS½Þx›ë‰ßç,œá¹Ã©èßp~/q>·ûy>Tþz\´ûÓÙÞÆ•þý“æï†æ#ù÷Žoãóþ=ý©ÊKÛ×ä§ï#}¿s•Öøü4^vG¥ßÛûŸž+[­¼n©ôyþý½¥ÒõÍþqþxÜ¿_Ôú›çù>éï•™7îýíüQi{íoóóìoçù;¾¿ýÛäÁ¨<½Tú|û¾MŽñ|ûÃï»;*_æq·÷‘ç*íû÷ºÌ‡0?¹ý½—Qézèõ¶ßþ¹¶ù¶ y?ývŽ×ö÷½8_ý®é{gá¹ÃÙæóRÙî·T6ùÆû¤ù¯<Ú™+Î$ßýû`M~r~{_¨ŸÕö5yvž€S¥ãÑ}xßʯ¦OÀö÷çÂûû|ß¿Íß—Jß·®Ò8®ó×þ5èúqýT¹;*ÏL•öwú^ŽgÎ?èï15»Ù8ýæ\i»Õ›oí-•Ç~ü?äÖùÚiªíò߯åW¿æ'jõÌSeËë©#ù‰Rý¢vYÊ+Z×/•öOðûjG?ÕnÑâþP)˜ò•´ûRœv˜ß×þ÷}Z<žöµ}'GeÚ‡&Å÷7aÚ—Ñü‰wâ|ÿîu-ïg©ô{ûþæyø}šßm©4oôÈ“y×;ö õÅկɓ˗Jå®vyÛš«ükßc®4Þïû;>}~ËS…¾OÚ ù9Ö­«òý=?å=:>Œ[h÷:»ÐïŸêÐ쟶_Û¨lõëouŒ£’|§–§ezãÑñ¯¶ù›G¥~>ßoo©Ôï±=ÁQÙüÒÐö¥xžuÞ¯ÕñAý¬Í¯j{9Þêd§Ê”oèøõzçWË£>Wé|7ÙüÈ£’ûßÿ]*}ŽïéþÚ_-ï *7\w’\:H?LuQ©NÚ6ŸËñzôëýÜ¿|ùíâ8Un(ÇÖ•Û)?úò¹Òö¤}ÈÜ¥å-r¿´ïhÈ[ËõŽ£2Õƒ´¼®QÙâþs¥røÔRyrTZo«ÞsÙRi<隥ҿê¾ÖCxÜúµ–Ï4UnAש–ÿÍû©·úýŒ'(f¸1*÷–Jå¶ûïø<ç›×{¼­[Ðu8Åy¯;óáLõÿ)"å_¤<ȔϑÖ}ç[ÊÛñxÔ[¡ó_NÊ“líŸ*ýþÍΆé{¤:ã–5UÚ^™Æcºß±×=ì¯_xß÷Çüøuý#1Æ~…Mÿ…i\z~ËC¡½©žÀû¥u+ùRÜ]{F}‡q½¯/Þé×n{¯{áõÖWY§çqõýMÈþâ«ß~»RžH˃‘£r¦¼ÅTâ÷¦ÿV¿h§8ÎÓ8Hó=åóµüèó[{¹>Õ5¦}m7§Jý"úi×IßQNi%?ÅLû9ÿ[OzÌ‹þò–ê7ë’ú‘춯/luK¥~Aí`¿‡ý½5WÚÞ4~‡úåb>ã¨LëušçIóýgØöU…Ư›ª/û~Ž—¹Òùæ|nþ„íÊc÷|Ä[^ò#/‹û·l¶Où\É8ÜŸÞ'ì¿úÙï1Þå¼iõs°íC<*÷'á©¥R9à<·}ö_‹§@å¨ëq‹ʶ9Ç•»›0éiˆä×.ˆû+Ãd׬ٿ«_÷Ê÷ö—Jíÿ6¿¡ï¹=Ujÿ·¸T>y?ýÒiÜéÏÜ„úƒô§™¿uô©÷}×nù M.ªßs~;Ÿôë—büìË—G›*÷«_Ë{J÷ÁuÛu¢Åk¡ß)Å#WGwîýEþæ?Ä}C[ýEåþû$¯½¿ï¹5Wî@ó‡”3§–Jæç~û”¿2íÏœö'Hu¿Í~‡éù­n˜û·úNxj©¤Ÿö¿—òíOý|ÿ™˜?‘þÞÅAëvÓoaªŸ; ¾þÀzîg†IŸNõÉ>lvõº‡Ó<†dÏÎS¥ïýkÐ÷OõJÊEçY“KeÐK›¼Ñÿ¾ [ÚŸ7Õóñªgœnû™¤8ˆít'ývk®t]/䓬~ñ;¦}„“_]û(î?›4U¶}  ç§|qïüQ«ßyúú…Ôwl¯vxû;”såe£òŠ¥Ò<õ6ýTæÉèÑÏ“þNA³3 çß´_Lû7ù?U¶xlwfªT~îΕʋæï_*[ÞîT¹7WZã8¶æÈ÷¡/ßü6­Kl~GÚö-»:~õ[zå…íµŸæ©R½$“dG'=Ëû§xºÇÓùiþ4=:|žãÌ<0×IíŸçþ«~o×Õ¶ÎÃäoÒï­¡ÿ—|ˆVçîóÕ{œWÊóÕëœ?¶Ïùà¼Ö¿ì÷t;LJq@ë‚ݧÂùëûZ·¬<°Îqž*ÝÇÀºlÇÓ­ïðÚŸø¡ó^ÒúõÆ¥²å‡A¯·¾V¹£=é{mŒJõû1ÕØ™+ÍUOq¿ëvÌ+ºd®t0~ã¸uœªw˜_ëwOù–Žã6NF¥óÄû[òÊnò#ÎÕo~ì\™ò9Ôãš_lTnÍ•oþÏ©Òu´Ù{Se³Fåºy…)o1ÖÂçµ=ÚÏ®3É?»;*7§ÊTWÑÖ±¹²ÕsŽJ¯÷yΗô÷–Ó¾ŸŸ§Jë±íoõ*çO‹ïL•ê1rª§¹.+Û|æ~)¾áºm]RÛ¯c©tÝõýÕ3ÕÛnýQ¿÷ôùÊ_h~Nljúïå<÷;¦¼°¦çN•i?ÇEÓ÷ÎUnO•®³-þ>*]·[þÊTÙò—aøûíý“WÎSåºù´­Î:Ž›ßšóÕ»|ÇŸúªß¿Ù°å?/…«_ÿ»K¥ò@ÿ™y]Í;*õS)›?1°Õ-•úaÔ÷|¿K§JëÞõy¼=¶öÊ9pT:oµ#›~7W*ô×ìÀV¿9*ÇiŸ Ç}ÓGæJǹùV©ÞQ9¤œwžú~Éo¡¾Ýò1 ýñÁÆGšŸ¦ý“½‘êZÿÃæpªT0?ÎãM‡3ùüž^ïxXwÿÊÔŸ-~ÕÒùÆS\ÂuGùc~|²ïS}[Ë“*õã›oq@þ]ß/aTÞö^{ûŸßíMûö¬úv÷qlŽï·¿áAyÜMî¥y›ü<Í^˜*C}Qσœ*[þtܤ¿·íZŽ+S÷øæíþù‡~í¼æ×¶~úš¹Ò¼÷Qp~z<ý=Ï×ÏlþEÛ—`:œ~§´~§z}×3¿³òÐùü¯ú_ü¹·‰ßËñoœ¸ÅG§Ã™â¡ê½£2é©_­_tþÚo)¹ù=¸_[—yŸt~‹·p~šÿmß„©²ùɦʤǤ¼Óó÷¾/ÿì×ÿUÓGZœ ôC—Lõ~÷Ôoi~ú¼äLyÚöOÛÿšö$9ïúßü°œo{oy«{?÷†ß_Ü/.ÅÛz ×­ÇNõÝq~Ižïù›SeÚ¯íØE7Ø‹öOñï7û©t½ ~’ƒòAÒ¿sýÒ¨\×/î8Kv׺Lq7Û£>i{ô¹h÷{ÿ½¥2Å3›¼†iünÀÿO~æ”oÕòÀä¨4.e>’ãI¹–â2ÉSïKùêóm?“épÚ?Êùô=µôû'?EÊu¼ÙÞd‡'yßüõ0]Ÿì¯ÔŸÚ>ßñâøÐnq¼8|ߦON•Imß÷ß•©þ5íÇ›ô ¯Oß3ÙM­n|T¶}ϼnT&û#ìwSÞä¨ô=]Ÿñ7¯~®ëû÷ç½n:¦¿c˜òxSüÉ÷²ÿ<¾nž»ógcT:_Û߃ã|Ç[¿9žöehûPŒÊyªLqå&ß`Ì LöšùhƼ~;P}&ù»”çÿo\øÜkÿ²ÛGÜ'íÏḼj©4}ó{üØÿë…mqnýÚ©®Ü¼ÜäwMõÐmÿà@å¹ë!úÔêwSô(\ýú~£R¹rݨô|ãu©~P½¯í'2*7§Ê´hò£¦¼w×í€&w8*üÈ;þëGŸz—ÖNýSͯSž“Ç7 óug®Lú°÷C¾­~Mîm͕ʕz½ò éÕp]»poÿÈ?yôòÃþÛ6[>˨Tþ6ýçJûéè¾á7žüï›Ýé8pÝ3ïzwTú^ÎÿÞÎûέ~m5=úý§g óÂï{§ÿÏïέö‹ë†ãÂyžöiú1ôú¦ŸO•Ž—fÂ4oÚz>*›ÿ¦:°–‡‰Ã¬~í¾æô¸ùËÒºjç­z€÷oùÅÐqâ~Û·ß´ëÕÛOŽÊ©r&;-­¿^ïý“¼ ñç}ýÄu²Õ¿Áào\ýbœ¢åŸBý³éxÚ¿P¿—íÛœ*íí:ÏOvoÓO¼ïÓž?ÎÖžQéùÊ%ó·´Soÿ’ûÿöë¯xC³“_ܸ¯q^ýCOÏû`ãÒÞßõÈüíißw†¶'Ù—>/õ—qzÏ÷ùé{yÿ§÷ú¸^N•®‡¾¿ëcò¿Éyªôx²§“¿Áñîçó]Ÿ]‡ìÏWºŽ)Wv¡rÉ*µsõw´:âQ™â»>ß¿s›â­Ž_Ûßî?*SüÂñk|6ùÖγ ôý¼ŸërÈÃÜ×›´+½úåê—òöïŸò/Z~ê€Seª2¯>Å <îû§}Ôo¯’K¥ùëÎõý7ƒ)ÿÃþ>s®2éʼnʡãÿtýÍžþߨôÆöw[—éŸO»'å[Ы_Ì·#ïôÀý/6§Ê°/°Ü¿¯óÔïa¿Ø¯Ú;så…¿ûø}Ë‘/mãöús•­Ž¦ýÓ>mÖ ØÎT·à¼\7þí¸u=LúòZýÑû©û>-<*mr-å•'k«„Oû0¶ï1Uš§ŸòŸÕÏR^¾úµ~ ûÃ÷u]Aÿ\ýš~å\Ùâlðè?üóþÛE?ëF[~ôxëOžëù×/jûÔŸÜÇ庥òÌ\¹7Už†ú‰õ³©¿7¿ô\é÷ô¸÷W_OuYÊ˶.Â6ßæÊQ©|iû7Á”Çšö7jq¨Þ¡ïÌ•»£RûÔùyj©löì\¸úµýcôÿkGëg¾º®8ž·¡rD?¤rÚq×ô~˜ü©®Èùô>ÿûw÷ž:U¶ù:U¦zýæÕè¿>9*½^Äl©l÷‡­ÞãMÿ‡æÁ¤¸šúŸÏKñzû?Õ{ÅúY¨Èq׿ãRyrTêòýõ?9þlò8­Ï®Íž€Úgm¿ ŽJ×ó7`óÿæüV¯Çý[^õÏ}×­ØþŽÇ¨ôþÚ¿ÊEí¡V¿4*›=:U¦<óäϽóeyæÙÓŸë¬ZS¥ã>­^ïúáøt=pýW®¦8þŸwç|Õç=ëþ"Æ])Åv¤ü«´ßLÊOOu”IÏly†Ðü®d‡xÿf×|lßy©L~µÇ‚Þϸßog®ôý“žf{½òs4{{®<9*õ#lÁv>´¾ïò¹²õ稴?wÏV¦<ÆÓê×ä½ë‰ïéwRŸÒq5Ü™+çÞÏ÷Ð/áù©~5ùSÓ>ŸÍO·a«ß™8UÚ^íŠä—ÑÏãýÕcvæJýÒ8MkïRÙâôKe²'ÕóZÜzªôz¿gÚ'!å$ûZ}¡Å3FeËK™*“ž¦>ÖòáÉ®qžnŒÊ¶#L~,ÿޕ׷}_ ë@ÊSî*9¾úEûüÛ}ûÖñÑüV•?¶xÖ¨Tþ7¹•ÿIîœãÊ%ýÊ9¿SÓ§Ê´~û}d³?§ÊdϹN4¹½T&?[‹‹ŽÊP¯ÜëµæÊu÷Hõ©®Õð>§}ûó‡õ`õ»éø\™žÓÖxþkøõsüq¿¤˜¿3*ý>öïµKeÊQ팴ÿCúþÚYéxŒoŒÊ Èýò®~1o•þ¾)¿—ç¥øò¿F)džì¿OËŸ:œûïãxoyl)/6åÅIå¨ó/Õ9n]G܇ËuË÷iqJÞ?åC»®¦ñ‘üãåG§ü¿´?Šv‘òæ ?A’Ki|œ·|Û×¾ä{þµµG¹Üö3ã>ÚÊå$OR|9Q=p–r<ÕÏŸZ*Ó¾f­¾bTº¾;G¥óp{®l~}îç÷iñ9èzåߣõýÚùKe:®¾eÿ¦¸h‹“r½õK~¯Í Òžöý“~Ýüˆ£Ò÷=}¢Òùwf»2Ù1¿8°å±,•Ú#ö_ò«´ùÿ©½~vê?½tÀ r¾ßÇ|#ë?Û{Þû‚ç¾3Úóê3Ékv×8œ®ŸÊ}ëÿqœ5ŽJýý~ýýÍ®…©®ysªlþ¦QÙæ Ïk÷çú6ÎF¥ëŽvqóL•®ƒŽ«4>Ú8àù¶ocT&¿Fð×4ªß$ýÝñé:Ùö£•êK¾ÿºy´iNûŒ$ÿa°Oâý’þžö1ŒuoSeÊ_Jñà#¯<ó¯O|ëg5×µq4*“?`k®lrmTº^´|üÊÕÏçîÛ…)ßsªTŸ>½]ù ©Òý´”îOö?›¡ÇÕ¯­V.¹ÿ× õäúÅ=g®|àTi{=.mßÅ0Ô¸¿|ØOyõ;È¿Öâ]ÉÞ5^!ò‚{ñ‹~øÛoˆù.Éþò¸rÂu3å©&{ÕùÕäý¨Lyx©Î:ݯå™L•É?Ùü»°Åµ¦JãˆÞo®Ü•G–­¹ðu¯ˆëÏ&LùD~gÇIªcMyÞ)¿hݺö”?Õôɹ²ù¦Jí*í ×ÉT—³3UzÜ8vÏ7ߦµÇãS¥ù9—Í•WN•êã•ö¯y—§¡~9ó:ì/óúÌ›0dw»òª¹r{ª´¾Îû»Ú¾íÊmèþÇ-þ “¿ºÕ¹Áæo…mýš*“ß5Õq´:î¯Þ“ê’g˜äIÚ@ùâùî+eUª/¤<àVÿ0Nõ…‡á¸vcÚ'isªT?×ðùÊÉ­¹Rý%å§êlþPèû§ý.yþñç|ù7\ÿÜÍ6^OB×_íbåF«#„£ÒñÜâÓ¡\ýöÇqŠ÷µýÏæJÇMÛ ¶qy¢²å•öÞOpT¶¼ÔQ©¾èþ;úEìWãÃwþìóïñ Ïú‰ô÷Ÿ›Þ«X=7ù9=îý¤~^ï—Ú—®Ÿ[Þ lz,lòa©<þ׿kë…ß0}àwðßÓ•ê«-/FÿÞ¨luS¥ë—ã/ù7ï®çúo{ŸKžõ¨?þ¸v_çåöT©jëþT¹1*S|1Å÷ÔR^rllyª0Ù¡)¾ëqïgû<î>©ÞÏøî÷|Ìoî|Ês¢?=åëz<åûÞÞoSΕ®/èU«_Ë;qžï,•ΠשcŸñëß÷Û¯øýöÿ©îI¹”ê»]oþòg|×—ýÖî¿~Ý}9fÜÍuÙu*½Çö¨LùgÎVž^*ÏÌ•èûï—òóZ>äRÙühÐ÷ЯÜôjè82_-éá[3äøÉQ™üÚ>_}®Õµ-•¶Ïó•+mÿ ˜ö—Lþ­VÏ(GåIè|Ü›*ÓþliÛVwOûSžxó‡<ânóÈíîyо×T©Óø~Pã5^¿1*•Ó{K¥ç+_ï;U*_Ò¾CI¿tRÞy~ŠŸ{¿í©R¿izþƨt=¶}ö·óÊç©ïx}‹óCß_;7ù|¿¤§6¿ç·xÇ•1ž ›Ü™*Ûó¦Ê$÷’œ‹ûûÀ´¯£÷Oûª$;$Ù-´oõÛ×GBZÌOKyöIoâúÖ>Ú³ú5y|jT¦¼†¹2Õ-ùÞ·|â¿¿üYùõæýöµøOåM~îQÙüÇÓátôú3SåFeó­TþÇutªÔ®Hu:)¿Äç¯ËTßã`Oõ掣”çä|ÑÜòEæJÿnz%zçþ8T?%þ´ú5½UºúI²SSþtË?•Ðû¥õp{ª4Ññë÷Jq–ïާ|ªd·7ÿ¨t¼§ñÛâˆ\¿SüK}Çûyú—?ë…ŸtÇŸnûâŒÃÙò6çJåRó³-•i?ŸO3·1*m_‹—Á¤—(÷ô7&ÿyº¬“•)>Ðòg–J뇴ýþÚiÆ×õC•>Oÿ‡Ï׿l9œ-Þ=*7`šGiþxÿV÷1gÚ/"¿ ÕCÚº=gŠ;®¯•Û­ý¼oÜqªô{µº‘©2µ_6ÿ'Lþ í`i+ßÔK<î|½Å.ºîª‡}¿ráÀúƳ¿8”?ø™÷ï“üÆÊ·ý›F¥~´“£rk†\ߎÃÍ©Ò÷ñ;)‡•›orpT^5UF¿'lïµTêGvݶ¾£ÕKÂó>ó^'=ýTËËnq«Q™üVúuZ^ô½”—ö“y 'G¥÷;µTjg˜÷d¿9.Ì»IyÀòØ}¾áÿx~Xž·W™'8*Óý½^¹ç:ÕöW™*=®½—ô6Çs³Fe²‡’~n~tËߟ+“}%}~ªçlu6seËŸƒ)O@ûIy­|Kþ×ß•°Ï©ò€|Ëhw%¶:eßgª´]I?𽎞ÿßÞú]?þçñýÝÔvk¯§üÛµî{øý’œWî5ÿÁG¥ßÁùaÞ´òe]yÑò¼aÛ/àÏmy ¼Çy¿)_¢ùC—Jô±›Ú3W*Œ‹™gêfÚÿpÿù­î£Ò<¨§ÙzÊêw?½í“¢_`cTênyLs¥×Ë”Ÿ“ê¨g˜ê`Âþ“-Ÿ.ùß“žò§R݆òðÈuOû¯~Î÷Yhþ®¥Òñkž’íÜšáR©^½9U^·À©ÒüŒT{ÑSÏ¿îë¿þHóGû^ú´ÃÕkï|ÕG?ïq÷|B‹Ã_µTê÷¾zTª[xÅ\i½“lû¨Aó<ïGÍÎódŽSç¡×{ÏWOKùh®ãI/p¼:fhûœO)¯Ðö(gÒq¿ïyüíŸÝã~?Ýò‰m‡÷ñ;xÜ÷Lù˶Ûv†~iëœñ£ËçJë{GÒüç»÷׎¥®¤ïSS}¸qjí|íxý%Êë`lë}[?G%rvõkß]=´Ù}ç*S=ÑæTyå\©?A»Ù÷dýØTêú¡¾n­½ÂÃñ&÷§Ã™úyg®löÄ\©?p{ªŒub¡ý©¿¥ö`ª£ý`÷Jíky“£2å¦|ƒ´ŸjÚß#ù;d˪\ý’or}†®+m?#èúìäOóþ-ÏdTnÀt}ò3¦úÇd·<“ÊÕï¦}¤¡ó4ýˆO‚-/:[Þ Lr%å…¤uN»pg®T?ly§p†{£Òç=~ªÔ:ú˜‡½ïÿü—b¾¨ãF?K«^Ÿü]öË´Ÿ×õúüuí”$OÛ¸†-kªTŸ4ޝ]p%Tôïq3ï@»Rý°Ù©PýÙö©ÿz¾v¯ý§¾àøå8œëúk7ÆáLþuÛçõΗuççÑO¸ßõçÞûœè§v}3?)µÃv§üã(íøR™ö±ißiT¦ãrž*}¿opÞ5»nTj´y7*>ã—}É7¾(îfÙú+åÇS¥ë¨ò¾Å¡ú¢yŽ«Oœ*SÜ(æûO•~ǃ|—}}çøæUwzýßÝTׯóv¥yÔ®ßÇÿü›þò†ûߩżnªO+-n}ÞÖ\éýÚq¨½§¢ÜiûàCý­Æõ·}ý§ÊTOüÄÖ9è7v\ÇR¿HzðùWýÈ7~7½bk®TžžZ*Û~ž£R¿YË«YàTiÔ7œ~À£žòíïø\ýO-¯d®T®šï¤Ýñ©ÿNýÅñÑü)rî—äGhrxªlõ‡ð »:ÖñܰÿÃùým_÷¹²ÕéŒJÛ±5Wz½ëþ¼ýv²~¬~î ‘ö3mûWtŸÕO¿äMû/p®Ü•->6*Û÷€éïvù=Žþ׃^ÿçïº:Õ¿ì¿'ëaôçØçUÊÏMï×Þ—öoBõ9õÕ–Ï?W®»\«G†¾ÊCRNyIÉoÜì’Q™äb:n{ÚûBåxÊãóý®›+“}’üÞ)&Ù±Êå‘Üú¾Ú/->Žû<çÏÆ¨Ly ÞÏç©·+ïô“¸žz†q<ïg¾¸òW}F½dçD¥?Úýç´ÿ\ïwG¥ëé‘÷Üý^Oü‚‹[;n·uÑö/¼ýÈôßAuw7åÁæÇŸ*[>ë¨Lv³ß}Çþ{¥û´|ÄÀ¶2tÝ3OÞõÛ<õdç¤õ)éÉÿ-SÜ2Åõo¸þê×t¼oAíý5ÚÉÉïœüåÉÏ–üiú‘“¿ìöüÎq‡Ï:¯}§û¿…~WÛ‘ôç§ý8O•¾—Lqýë©~Z½H9Üì*¨žìö¶_Ô_Òî7*=®=áù¾ïÖT©\ò}[T¦:±´/e‹ŽÊGŒ~cçaóŽJÇSÒ{íßí©2íC+õ¯}ú‘£¿þô74ùÔÞ{]N•)ÎÔΕm\À¸O Lúq[Ÿx?õcÙô÷©²í#ýîʹ¶¯TN4{tªLã<奸>ÞO¹—Æi/0í×µ®©É9èxóx« }Þ¿íÏ1*S½nª/nûó½õþø¼÷NÇ®~¿ãºñޤ¤z­¦Òþ¶>À–/8Uš/¨žì<Òÿ›ôÖ¶^Ó^¿[[Ï|_èq¯÷ùéþö_òmN•i¿¤TWŸò¼§ø¼æ'‚)nœâ°ÉOÐæ lrnŒJï§o>³ùÈêËžŸìaóˆZÿÁ¤ßØþæ×\*ÍÇÐîLù*ö¿ñ7ç³òpwÀépï1žcÂ: õwå—÷Ó¾8òUºÙ+>ä]=oz®4æwP_qýÚ›+·§Ê¶Lë—rNûX9‘üÆÙ\_Õ´Ã6§Jí×u÷›±å5s¥þ¾ä·¿·¡r©íµ­ïIy¼ö÷ÑÓ/9ù„éª&Ž¿èmûOúˆ6ÍŸu__ý¥êÊ1ýÍŸ •ûÉ¿’ò°• -_jÇy|{ \*ÓþQ±Î~‚´{Åfgä6=•ëý¾Æ»ü~ÎO¿çÎ\é÷õý“¿¯ù­àTOK~/ûÏ÷I~:ïïû´ñN{›};*“]qf©Ü™+O)þzÝRi^ãCùçqçßöTÙòœ8ßõì:èó\Ž<ùmo¼Ï·Þ£é+>'Õã¶çœ¨´ê'Æ•Ϋ–¯;*·'8à\©¾hû|þõ£R}ª}Whn럹Òqäýí?Ûkºn¨ç´}Ç¡z‚ã#ígšü£-Î[Ý6´?”³~_LJú°÷w¼¥8”×7¿ Ü”K¥ã­?W§3¯MûÅëÕûŒ¿ÚêµÉï—öYsݰŽRû:ÕI{<ÆÅF¥Ï³îJ½Rj·ºîŸìe×}ß7µGÿÞ?~ÓGßí¯b³œ¡×ûÞmŸ xÐ~ÿwi?;îZ] löèTé<Öï¥=ÓüWœ¿ µç®^*ÓþhŽkÇ™rÊï±1*›~=¿é§S¥Çç©Òö¨ïù<åPò#&?mŠsêJù=í{@õoÇ[«×_*­Þó€vìç+A놷§Êt½z&ç¯~Ñ¿:CäÝMù¨Ìïƒò–÷Ûå÷ׯf^¶qóCü~êyM¯œ*S¾Œò-ù·ÌçÚ•ú…Ã>@«ß|þeŸùµ÷{Ù;Úø3]y–ìsÇWò‡Ù_)Πޮ^Ùê,àÞRéõÎísÛ“âß§çJó=mo;>*}^ÛG¦}Μ¨t<·xû¨Ô¾½ëƒzëÙ¯ú”6ŽÏÀT�]©þ®½ÖöEæþ)¯9í'àºã¸99*]·\÷´¶æJíƒ=èóšyTj(7wáæT™æ±ç«—ù>¶O?û±çáïýì]^Úü[Ðû¸þ7ùµó[~"ô=Æ­3NùèÉÎP?WÞ¶ü¸ÕïR\°Õyä¨ÿ\ðeßû_rŸizŠ~<ýK>7í÷ä¸HvOÊ/S^mŒÊè×…©"µ'쇵úíëS¾¯×';Éç«ç¦¼çò%ù;¤óHy¾·T¶¼¨œø¸î½àô']Òól*Ìg÷û·ü¨¿¶å@ýg-¯Š÷SJû9þš+·§Jõ·ºÃ¹R`ªã;òµ?ô+ò¦»µ~höÞ¨Lö ß¡åEÁô¼OK~¦–¿8Uzœ¿ƒëáÔ\ÿš½>έ¹ÒûËæ˜*›œàxÊmñH¨œzìGeÚ_S>êçnöçTIþÀê·/‡Ô'.ž*wG¥ë’ù"ÊÛ¿Íþáü”GhhÏGÑ^Õn]·ÇíoÇãEO˜žóÈïý_í;+ïÕOšþ9*cZg¢¼÷z÷}ÐŽÓà8ö=¯]*ÝÛõ|g»òôÙJŸçz¤Üò;nŒÊŸ°~ÞõG9‘òÌ›>1U¿Ñnq\kw$?ÇSœÜu/æEÏ•ÎSû«é¶kª4>šòžS{“Íïwì›üÿÛÿ­}ý­~€v+o’¿<éõëîkc¾[Šûz¼Å­§JíiõýŽÓVHûïüÔsßrçg\Óü~—†)ÏÞ~Lõ\úcÌŸ0¯RŠþ åAÒûš^2ÁpþtÜ9.RÞdË•>ÿÈÏ}æÿzÛ¿Ü7Ö§ý6aóÓM•Ê…&7 úK«ÿ˜gûîsàTéß¡=9*•›ÊáV¯ 7å¨tœÞá~ïâ·Üþå=o7°Õ!/•í¹oûöÌ•úÑN-•Í¿Éq픓£rk®lÇioˆ×,•®ÿ-Ow©´ýÖ)[Ç­¿Åë­cö¸rßû§ç«—»Nz¾Ïß•æ±[×í>P¾ýÛ÷uΣ熮óÚõ£2ÕŸ*ŸüoüÄŸûó?‹þ]Û•òw½>í÷šòR~Èêý7¸nEåoËó•¾_ªËJù-ÞÓºéýdÒÃÓúës§Ã™òýÓõ­]£R=ÀöE½ Úÿ¶'í7‘ö‹Šþ©¹²Å⦅׻þ7»ºn¶÷› ïëù®“'a«O…~¿”ßÐü…Se‹÷ÊT7Öü„WÎߪx?ûËñá|Zw]ðû%¯v€ëvÛ_fª\·#Õo·ºŽ;^ôŸû>£Ò÷oyŸëÚY©þG?œz›Ï·^ªQÙòÑ8îüQ/Ý•;seÒƒcB`ZÏRþH’/)žìTó]“>uôÒ¿}ËE¯|fÔ«Ôƒ¼ã$Åý›žÃ{®»FØ?¶Û P;×<‡Vw •›¶×y–ô æÇá|çÅôýô¿&ûÓ¼Á4>’?¥å•M•i߉µõ6¯çùiÿ†´/Gš×éúv~xÿ4¼Þx@ê/ûÃïﺢœOvK[‡aêÏæŸ•ê1q_™¥2í‹ë÷pJ~©4\‚xõKûâö<¨~¾n~zÛ‡ãúE”CŽ#ã†Êáæ§’•Éßéû®k_§| ǵõ•©nËç§|÷”/—ô³T¯‘ô÷[½â¾ã'.ú´(/§·{öÍ®ùÄ·>²Éµ§Lû%¥u!ÅÏÍ7·lÝxW²wÕ«Ÿò…y¼ú59ÜüÊ£ÒùßâÕõ½öåÊ&lí•-Nç;seÛ?:>½_óï¶zµ¥Òü²¶O•êSÆWŸp¢òô(¶æÊ?JuSéýo}Ÿ7¼îýÇûbýZÊ×oõ£’~Yýòß •WÌ•;°år<Õóû}ÌßÓ¢=ožj¬û[*4UÚ¯^úi?ù¿ú_1NŸâ0I–É=Oã)O1Åa¼_ŒûÀ÷Wε}ÇàAþ!ן+§Jï{ìîßöˆ¯»÷­Ûßi7?Y»Ð| íJÇ™ãV;ÛãÖØ>õÉ”OeûŒó4ÿÐRéù-^0Uêo×?ÝÙJíí’&w8~F¿lþÌQ©\Ùšg‹cÏ•í|¹T&?ëÒöç­~=Ÿoª<9*“aû¯G_õ¦{_ôŽ×tçt8S>…þׯ<WŽ›¹Òý+Sݹë›rÒqp«×¾ýS?ùO~¾ï/UyÓßK•öó,ý] åvÒw]gÔ/ŒWûþê³7œ«lór®Lu”Ù9Ø•öçšþñýûóÜf5=rüwg;?é_›ð²Q©þŸôíV§Ryàß­lñíQ©üNõ$Æ9Úqè|S.$¿ˆ÷Û[*·§Ê´ÿŸvšu*Ê©6FeŠë×™å¨ló¦<¨uóf’\J~–”WšâÕ)©=Ƽ§9ýHá}S{S>szŸdï¤8^óÿÃt½ßÇû9ž’½ã|0.–ò>[ûexŸuí)™ü²Ž—ô½R=^òg¤|)¹îþGñþúî¯ý“8¯ŽlÿØüõmOúÿýâ¨ôý<žÚò=W¿ƒüä±ÿÂñýû¯«ß¤|ð#_úYßû›÷|M´›ÿû&£ë³õ*Ê£ã/}Î~ègÿA[’?D9¡ý‘ü¶k®?±Ž¦åoÁvžçwHýî:d{’¾îõ®{®›i_δŒýßò°çÊ”W¢?ę̂lùÅÐëÓ~¶?¿r®4ïáò¥½j>þÙ/ÞýæÛþg‹;kÿ»ÿß©©2É”÷åóœßÆI[½÷o6»u†£Rý4Åû[qT’—zP|³ÙMê5Øi«_ÜÏÆ÷Õ^k~»Q¹Q¹ÿÜ´ë¯U~¥¿ï^¶ú5ý)剦zË”O˜îïxLûTlN•ÑÏÁý¼ÞãÎޝ~±¾ÏyÓü3Ð÷4ߨña?nÃP'Ðô¸´_Œþö´ ~;Ï¿íeÏ~ä}ÄÏÆ¼—¶ŸT^´¼Ô¹òr¨ÿÆñä:Ñòb¦JóŒ{ø•ŸÊ1ÆÙê÷Oö½]šœž*•ÓR¿y{ͯ5Uz?çKª·iqb˜òÞÖÍiù/0ùS×¥úÐ…÷¿çšžl]¥ö£÷1Nöÿçÿ³Lþ&íˆf7Bõ‹äoJë¯þ ×¥Qé<œ¡ç;þÌ“oëÚ¨lzѨôxÚÇN}ÍyobÒ‡ô¥ºž·¯¿¶ï²T²þ®~ñù)àû§ý=ÛýaÚ§Çñeûáþ{¦yÐêFe«c¨ÜÿÁŸ²ßž¤_Åøß Èñ–‡?*¹¾éù®ÿmŸõ¥Òq“âÖÚ3ê—Ž ý~Ÿ •q¿ŽQÙìÒ©²å%,•i½OyL[s¥ãåæ»×N?üÇšÞåyIž§} ”—ÍÞ‚Úö«ëE‹ŸŒÊdžԿö}U¦Jïï|]÷»µ<ï©2Õ6ûÚßÊ­‡L•ɵSý× Wñú¹Ÿý%S~fz?ûc¦<„Iï{äy?õæ¿ùâ_ˆßÅ÷Nï¡S¦¼ZÇeÛÏë[~ÀTânq_.ǵóL9§.Í[ÛŸê}µ“Kÿ©þÇþ<òÝ—¿ñ£¾÷å1¿ßqâç-¿TÎS¥z”zmÒ;ñoìËCõŸ«ß`oÀ¹y°úõufTúmï³ß~Ï»/düî·gcT6½öðçÇ¿«éýSÞ+Ï;0_Ûv¡×®~QO±ýÆŸvG¥ú˜þ‡©Òx•ãH;¸å™JŸç÷ºÝÿîÿ¼ù[¦üº\‘Se[' ûú~Òçgå›ï‰ZýbŸíIë¨ãÝøÓñ¾úÛ>bû»ZûÇ>á~½.¦ù¥~ ^ |4FýSyåõm½†öçlã †qÑæ‡ú/ÏßÏ­Þ—ûô]m¿ã‡õoÿyúcRýð©¥Òuð¸U¹ßÞ”·)ÍërüȶŸ%<ÕÏ/ž*ïð‡¯»à+Þ÷ŸmXŸ’äªzFóOÀÏ‘ŽŸuã)¿4Õ;¶ú`Ú“ògÒ>¬©Þ-éI¾Ošo-¾;*S¾+rê&;}T*Ÿü»ñ)Žáñ‡\WŸHõëæ&ý©­S£2æŸÀd©OjÏø¾Úi=X7®ÓìE˜ô×&÷:ï<ÿ#ßý[wëhz·ã;Ý·íc7ÎfGM•Í®ƒæ`÷íÏ7ë Íçq3Ï¢åÛ.•©Ý«÷]1埪‡¹Î˜gÝê‡h¿þ1×KýËöÏî¨ô¸´5¿Lþãl~åî³?~ioʧž¡íÝ™+͛ٞ*•_®Ö߸Î)\W”¿ÚíÊã4îöúºíõ}Õ6§JýÈöO»ÿ¨Lë ë…~඾Εmß~žŸü®öWêï§8༛$q©LqTý?HŽ¥|ê ïW?ÿ?ý}–ö=Z])lq’ÀÄ©²å_JûA½4=ÿú¥òƳ•×Ï•ÞÏüÛsú\¥ÇÕ/”¯êÅêg¶g÷\¥òwF?Ç]”ÎõõhóH\öŸvnÚ' ù5R¼7íŸâõ»K寍tʇ݃q}‡öOËgëq]?@OÚ¥~ã’i_r¯G·óC=A;?<¿Ÿÿ~¿fÇé‡uÝiþ¯ÊýçYOç|‹ûhÀ¤¶ëÆáÜ|ÀTyôÚW^ù¶·~E{Nªƒ±Ý©ŽmsªLñŸwåR™ì¸”ßÐòÿG¥rÂyæó<_9·nÞkÊ?IqKßïP;(Õ3ØúRÝŽ÷S/Ú™*Sc{»2ÕŸ·}] zýÉ¥Ry’ÆCúû·ëÖ5¥8…Çoiß¼t¾ã1åG´¸þ¨LãÍñàx1ÿP=ºÙ'SeÊâýôO¤ý Ów×_˜ö‡ÖÏ”âogNTªÏû÷Š]'Ó~¦i§zÉuåFÊSò~!¿}õ;èïºîùÍ_Ÿò'¢]=U®›Ÿšì<Ÿä‡þë«ú[6¢>™îÿŨŒñnÎOß!Å)½Œ;r~ª{ß…mÝ•Ž_õký!žoÞ´ö­ßk¦úåÉ‘íGo<ÿçÇñ•êõ[=×q¼ÉA¸9U6?ä¨lûŒÊ¦Ì•)«íS?*[¼€ë½¿úIZ'Ú~:>/ðØk?ç³ôƒ_0oŸø?þý®~M>ª¥<ަ?†óïðK/Ø»×<8ê9I¤¼£$Gõ{ý­~áGöNÿÞmÚ<æ¼Õ/Öï{<Å;R>ò¹í‡ Ã~†ûïò‰÷õ§¦¯@Çã8í#qŨԿ~ùT©¿í²¹Òûé»|© y&ûýà|NòÊ~:òø•»ýûÓúþ|°íÛ·a?¾–gÞú ïЮJv×)h{Ú÷O¹ë÷q>¤øÿÑ/zó;~çá?ÙÖƒ¶îN…«ßþ÷ß•)ÜãM/Ÿ*“|Oû ¥¼Cåä%•«_óǧ:’–=žÖYÙâ3\*›¼p‚w½Š÷‡æKy|k†S¥ï×âHS寍\7/Pÿ¼Ç]?]¿´OeË›•»Ðë·ÏVªg®;O|¿¶žqÿã—¼ð1÷²·4ù¾9Uºnµ|PØôëQ™üQê1WÏ•Þ_ÿbÒßR?] o~âÌí~í¯?¶í¿s¶R}g:^oÛ0å;šW¨ß)íï`?¨·}`G¥û]'ýiÝJ»~®T¿4®âùé¸û:n=ßyptýÔ?ªžtí\i{wG¥v™úƒújÚOÖ|fý¯Ž?í#_øòO¾ò?8ŸþÀù+úý®)þ®¼0>ìqç+ÇW?õå›êGáþù)».•{Oú¸ëœúC‹Ã@õïÌ•®ç;•)ÿ2Å‘R~YÊS?Ù€)nêým¿ë¤ölóç@íY×)ëFôÇÉÍ©òÖoúؼÿOŸÛê.•g ë„ry÷,ðD¥ú‹ñnå¨úƒzºy‚Úî?,›_b®tS^)×›ßoT:.•Om…æ½;ïlý‘⊎sãöiÿˆd§<]×÷€G_zû¿û¿û91OÄõ¸Íg¨¼8z§'¼ù^¯ø›–7ŸêhÕ “þ¹1*½_’‹- ®›Ÿâóô3µ84´}Žç”–êºÏ)Ï"Ï´_‹zNÚ?7í{èýì?ÿ¾Ø©¥2íËØöÝœ*Ûþç†ó“ß%홎{?ågŠ/Û¾æœ+ý>©ž-ùµÓ>áézÇëÖ\éùoq§QÙâ0Åû½_óËJûg®Lñó¤§]³T¦¿3ü^ýÖöwÛO®cÎCç­íjyK¥ûzØÏ~ûýtßÞQßÚ•ø V¿¶.èwrªWœ×Jå¤þi¯whoûžÚ©{PEËúí§Üòÿök×Ë+î?U¶8îX®§>oݼ õç…ï§¼~ûýq˜òšS~EÓs¦Ê–7*ßM/©\ýnÊÿ€;s¥~cíóáRþÀÖ\©¼ðx“/s¥ëòÍ¿ìú'þà½?ý@¿«ã\û7í_àóÌÏUïÖÎÙ”K¥ãgg®tü¨gxÜöø>­}s¥ýoû|Ÿ”¿ÔäûR¹5ÎT?›ì«5ó©âþÝÊ!û¿å%Ãï÷ù'a›?°åïL•¶_ÿ©ý¡<°¾ú´?šžèxluI°åiM•-n[]ò¨\×.MùƒŽ‡M¨<õû¶|ØòVçʶ_lzTwýQ^zÿ–·οa®Tßjq@èýS>‹ùž¿)g8*÷–JÛ§>ç÷¼ûß½åç?äÛãHK¥íð;”s¥ñÚ?^*½ŸÏ7./¯˜*õƒéÿ5¯1ÍKÛë9Uê?õ»Ûí|ï7Wú=‚ë~ZbTêmu'°í #§Jääêwà߃D.·óÉwlßËuog®ÔÎÒ.Lã¿å+ð¼Ô>ÇßÑ›}Ñ;?ìSrϸ·ykÚ…i<Øß)Ï»‡©2éáiýHv[ª¯Ú„ÉßO<è _k·öyÛçr®tÞÛ϶;ÕÍy¾rÓq»3WúÝ—úÕC½¿þMÇñöäxÚÇ?É}ýIî7?$Œû &9Üü)•«_«<¨þKÿÁºöx²×ÔÛ­?iySeªÃô{z<å‰ÚÞV “p«‡~ê½_¸÷à¾ÓTù`h^öås¥uo—ÃÇ.•›S¥ëã¼ék°ùµ`Ї¥¼0å{¨Û‹ó4ù Ûú [¾Lyj-ÿ:ïG®_ÖÉ8NS¼³É™@ó©’Ý!]7¤ë‚ÏW.h_Y÷)[~tüµ<ç©2ù’Ÿ3é/Ž·”ïò´ïSþOÒÇÒølãú=moŠ+7¿¡íçÛ¾ooñEîŸò/>yªÔþx(ô¸õ"êïO×Ûž‡À‹¡óÓóå¡ñaí%Ï?òð¦¯ùÙÏm×µz­©Òu3æJ¿»ëˆù~wÏOvr¬ƒ›S¥rxcT¦<Ç”Ç×êKaÛŸaªL×§øvòÛ¤|Èuõoï—ôšäWnÏ•ÉOcÿ:\çÎûÙ?ýª/{õS[^µ÷u=lû Àó6¿ö¥¯¹Í4?vÚŸ@¹¦^ŠÜØ·CœÇ×mWg÷;˜ïœö]0¿\;H=ß8ªëÛ©¥R»§õ< ÛþÎå õ|«_ÿ;Ke‹ÏCýÀÆ5’F½^½ É»?‡®cI/JòÉqÚòœå¨ÔO™ò¤mOó‹jGžZ*SÞeû¾žSÝüØ‹nxÝ×ÿ\³R~jzNÊ{hǹó¡ÉÕô^ƃšŸn.\ýb¾‡ãÇ8hò§x‘ãÃñÔê­`ª÷}’Þëýœÿæ;î.‡3퇗òí¬gtýÞ™+•oÉ®°}1?ò€ûDZÿÒþ~_í„$ïüžÚÍÓõ)d{“d{<_¶xÐTi{6`:¾n|×ûÙ^û㢿¸ë¯ÎýݸŸeòg¤ø•ó@ùÛêàÖ\éz l^yòû6Lþ•æçTïhuãP»ÌyÚòô§JïŸòö­Gº:Î|Ÿã÷yÖŸ½ô_ßÒÚ=Cõv÷±ñ¸óý±óáT¿j®lyFÐùf>¾ñ ÛŸÚwåRù¸¹Rûȼ&ë(ᆵvuYÆ»fh{®†Î;ÇÑÆ¨TÏòzë+<çD¥úTþÙ~׳+–JßÿAS¥~/ï··T>:¯’ŸNº^ú½ÝO1ù “ÏëµíŸçJåƒzºruk®lzõ¨TOWŽŸ„æe%ÿ í5o+æËΕÚÇ)/³åsó¾-þ1*Ç»Žx½ß·½ÿ\éxsþJûÿøkÿìÅ?õ7¯‹u¶ãV×ÿÄ'_2ÿfÛßÄù±1*SžY³ß¡ë`:¿ù#ÛºËñV7?WºÎ;>ý~î‹ ×ü«Ü?ùk½Ÿòj#qªLþ“æ?_*íô~-ŸTª¿«/¨Ç©ï´öM•úßšÍõÊŸäñ{5½zªl~QØü•«_ŽL•ÎÓWr`ý—÷5.ì>·~竞ògÏøÕÖê‘É.3ïI9¢¹=U6ÇTé{8/”#Ú•màþí~¾×·÷›*õ;$;[&¿—ím…ûããØ~äóÿôV¿–öÙXý¢¿Öç&ÿ›ëG̃†Ž;ýCI~¶ïþËæû|àøxк¾úſӶn<¤É˜Ö-ïׯ5ôyúƒv ö•úeËŸž+wG¥ÇµïüûT®?êI­¿G¥ò*ÅŸVï½Ï©Ò¼Së›Ô{ÎÛ¹àmŸp÷»Ä¸†ómcT&»o†I¾y=ó)åw·ö9¿RÜ:ÙuMß LçûþÉ>Ðß}r†S¥z„ñ\ë´/¼^ù¦]aûSœ2í >½½Tz½óÂöx<õ¯óÈó^¶ñ´·^ôyÍ~ô>)ïTÿzÒS¿·}ù¦ÃÙ¾+ísܦ<_÷¡ÔNJzBŠC5y~¢²wG¥ã|Ýzú–× SÞy«Ã‚­fT¶}€ þMõ:óŸÐÓV¿ý Ö;¾ö_”³Se˯„pÝùs@vÜï0Ý7ÔƒÇ<Ê”¡ŸJ;8Çþ{ÍÐ:©~‚>ÓÖiǯï}j©lñŽÊ›þ~ÕRiœÂûyé{þýý÷|vîWŽ·zƒQ™ü žßÈýS¾iÛÇ6çT™ê’b¾ÎT™ê¢S½`‹Óχ3ÕÛŸIÞ&òÊy|ÞG?õÁßõÞ§÷ý‚—ÊæWlõÐï þ‡~xPýãê×ä‡þСrą̀<=Wz~ò¯ªWg8ò´;ÝûãþõY-@½Íñ¥>Òö? T?ÐÏíøðï/ð÷,{|eª4ŸÂüǪ£OùøÊƒ xï©2ÙA̓ͯc>4L~òäÿHvcª‡\ý’Þó϶§Jÿ®D²Ÿ7œ*SÉ ú†y<ÎKãIúœ×AŸiy/ê-ä}¬~-ÿ)ù§]líÜ—»ô×ê·\ÿ¥ýë:ÔâSe?©G;Ëû©Ç$ÿE“3Ðy||þË/ûÓç¾i>ó篸·T:ÎR]eª³Ý®£Ryâ{úݬ/°ŸO-•æ?lCëb\@ŽJý$®—)¯³éA0í;¢ȸCË£…{S¥zÑÖ\i¾ú´ß§é‡£²ÕÇÁ¶ \Û^•q_Úׯ?ÏcýÝ—WÍN˜ W¿¶¿¦ýáºpá“®¾ÏΧ¿«õkª#MuI/Hò‰~ö×ôó g˜êRÜÕëÕS6FeЧ<É¿Tðù¡?cññßüÇ}“v¢²íK0U¦8èÖ|8ÍçSy¿ämú9ôþ®Øm«_··FeªûØ€ŽoçuÒûAã¶wg®lu#’ëyþê×s‡ûÚŽ}y©bü¦ùy`ó ÃVO8*G®«§–Ùæ¯íó}/_*GúK.›+[þÙTÙâ{£²åÉÂnŒÊä¿Mu¯¶7ä v?Ö¨Tßß™+S½©òVy`{Žþ×­õÌÿ÷ø÷ï<®üuÜ)ç›1U¦:qó½ÓþëîOæ8?3Uªú>Éï×ü¨¼_‹G¦qüŒ©ŽÌï³·Tz¾ú}Š?ªûýµß=®\hu~œŸâ¥æ›@ý,«_ó_êߨ•»êÍÍß2*üÉ;¯9ýúkô:×õÍ©2í;tôÜÿzÃ^ð¤}:ÞBÿ5¶}—xžq æ¯…I~¥ùØêa²ÇZÜ*ÍgÚœ*͇Ò~MñmŸ—òH”/×Á¾a»Ò÷ñþÍþ<úäןxÔü¶ž·?Wªè±޳–Ï8W:ÎRžpë穲Gê;ê÷êÏŽS¾Çñß¾à¨ôù­n&dz^ÊïJó>Åe[’ÇaÒ?“}“òî?óæ _|·i:à~IMù«-2Þnú»Í0Õ4}aT¦÷°Ÿ‰Ÿ­~-Eˆë¢y¢ÖѧûÀã¤öÍ¿ú¿®ù7µ÷½n©LþÔ•üÎ+ÇEó³Á½³•)?Âõ¿ù‰>ë«ßq³oúã˜_sæD¥í´É_hØï÷— ½)þ–ò8¾úe¹{@ûŠÏ¦v5¹ [þíKq$Ÿ—â7i‰Ôþ´îXOßò6 yK[såÉQyéRéùÖ»ÿQ_rºn®T>è§KñT'wz©Ô~V»~®´µÿ•—-_kª´}ëÚ§çÇïüà/ùõø÷.dË“‚[seò¥üĘG c<—ãÍÏ7a³K–ʃüÜêµÉ?k»½ÞñÐŽÃ#ÿôg?}ï}e{ÿTß@»z]L~1åTOëæ)çš_ ¦<æ´¶z´Q™ò*µçÜ÷¤ÕM•§–JåB¨ÇnrÌ<õEïï>ú{´ÿ.•æß)õ[:ÿ|¿+¦J×õ]ý®•ú9R‚ú–rÞþó~GŸû¾·>êgÞÞúešç8Ò>‰ëùTÉßY‰WÊõÛï Üqÿ‰«¦J÷#JõÙÊCåF’{©ÎR;¶Éc˜Öï#?ô¼/|Û÷mµñ¥¿UnO•;s¥ítmŒJûmîÍ•É_ãý]÷ìó ìã?öãÔëR^zòǨW$¯~צçM•©®¼Õ}@úcõërêÏuŸ·­¹R?Jò»;.¬¿Lu§OT^7U¶º˜ì×™¶î,•-ÞÈý®;QÙêU¦JÇy›Wö‡ò-éžü)qråÄ‘ïø7û„X¯;ô;&?v²W“_ù~Ðüfçû±Ë>qûy׿>ú÷“]–ôŽTØâz0Ù»®—ɯ¬ž“öU9~÷ÿ™ûüêMþødoÛ~õ¼–÷ÀñÓ£²ÕyñüTÐü´{Eã’>ßõßqë:¢¼hz6ç·øÛT¹nÜ¿å©x=ï—ê¸[þêTÙž}Þ‘ïùß¿çÅý¥yV[ðä¨l÷Yà\i\Ãö]2W¦üž”¯¬~`}x‹?Ì•ÎãT?Õ¾{ ã@»T= í‹0W:oÔkŒ›ÚŸ©Þ ûqõkŸmÍør“ÿƩܡÅKyëËMûßÊÖŸÛ•êÇ©¬PoØ™+­ÿKñ”ŸXwÝLërŠ3»®µ8Õ¨´}IHyÄ)Ï3Å¥9õkã)ÉkïÛòÒig«G€i}Nù¢MÎp¾Ç»ÄUw×/º;*½Þv*¶çrx%Ô/éõúI¯žïúéû$ÿy€¶O¹›ümöwÒS@;Õõ+{?íN×WûÛ:¿ÿõK¥íKu0ö§qmØüŸãpzþ\ÙâJßÿÿdÿlŒŽú ´ÇS¼²ÅSaÊÿjò˜ã)›â_›SeôcAõæ“£Òû7¿%LyŸ‰-¿¶}I¡õcúõ÷øþÆs<ßñ£]ré\i<ð¼z}Ë«˜*}¾ãËø\Ê«1Þ–êJ¥r=í{ÒÆ+Ly3~Ÿ¤/l@ç{«‚Ú÷éýÖµ×S½}ª×ÑßìøHþÃèo€® êÅ>éÁŸó%×}G‹³œ÷Üo½áqo|m¬ÿShy=P=co©LyžÚI÷ïàxÜñ£ŸáÔ§ÃyrT*­ëou ž?U¦|dãÙŽ—–u¶Rù§¿Ð¸3ï»oOãÇ_ýší7ßü صk_ßò– óvž Ç•{Žc¿{òw7ûŠûµu^;Wª+WÝÇM;®ýèó›Þ3UÒíû8®ý×»ïþ{×þR´_ì—»ýí³nxòÝ-Æ1›?b‚oõîSeÚ—¢éÑÐóíO¿‡þDå¢v½ë€÷?ÿk¿îø—é‹ÖΧX7Ï$ù-‘‡«_û~ÚÆÓlçÎ\Ùâ7´+ÄÇöÛ•â3U*ÿÝ?Ðõ ø]£_=Å©R?˜?žòÍÔ‡[ܶq2*Ó¾ei2õaÖ¹Õ/î[’üRQNÊV_Èù› œ+×­··_´ÓÔ£O-•޳æG^*|í'>è½ï¸yó‡ÈäßJyÊÝä·_vGåÖ\™äxi_VWÈùÚ·öOŠë'½!ùwcÞ ÷OùŸÍ?בã_ðÓßøWœîzÐAí8 ½Þ7Õýú}•ʉÿž*ý^»°Ù?Ð|ø”wíó’=Úî½¾í[½Þï¹·ÀQ™ò1S>]z?Ûïxhþö¥òÒ©ò²¥2͇˜÷?*]7¨kß·ïÔŽ^ù¹×Þy\ÜýߣÒþhû Aê V¿ö)Îãwj~ØüX£2Å™§·øú¨ô¸ÏkqJŽk%¦xü滦ü¢ï8Hy¤Í¯íϤ'n@ýRéû¤ñáøjûøñü¦—ûœ©r]¿¢Ô¯i}¾ý!=ßý¸Ì/2ȸœq ë•‹­½£R¹i=dóC.•ê¯w½ê?žó7Oý’o0Þn<­ùA—JíhóÄ._*Í«Ò.·¬rß¹–6UZoÜžÚË8Xýö×Övÿp;î8s=±¿S>Nªÿׯ£~g]¬×»þ§z¤¶¯#Œû xý¨LõBÉ/uì!ïxõ«ïû1ÑîJþ.ç•zQÊ{P¯ó=<î>Ia½Üo® ÞçAÐu\¹§ßÍvxó“¼ÞuÈûé÷³N*åSØGßûÛW?ô“^ÑÖ'õ‹fGÁƒú›÷ÙÿŸ§ÌõÎy»;®~íýíoïk;¼þècvÞð}ÿñQßtݸðí¿{æ÷¦/ïusS¥ñî i»9îwJý¨•ì%äÍMõ ¾ÇR¸úµõÊë’¿C{;ùô§¤÷MþÆo½åçnoßnógÛw¹ù·|ûsð mù„\¿ú%¹³ßï©Ncï\åöT™òãÒ¾Uqý­¾z¼Õ©Ó>ÏtNñßãè_ýÇÃ/úíÖ_^çøHþ³T?‘òKÕG’?Äïå÷iq9Øì/îïõ-î2UÚ^ëWNò+å§¶zHØò¿aú¾ÉÿÙüÁSå ç*Sþ¹Ï¿àϸüêoz^{n«C…i$¿“ñaýæÚIúÿONp®ly’S¥óÂç{ÿMxìyo?þUŸ9â¾ã®§Ú'Ž¿¤oÉæW•-¿ ¶ûÁ´žmO•ê³¾OʇqœéÖ» ÛzL{[>ÛT™ò¥=î÷kvL~ÁnBã5Î Ïo×Jäëê×ãiS¥þ"íä¶Ï0lyŽS¥~cÇÅÞr8ýnÚá;s¥öæÎTéýwG¥í;3UúþÖë7oyÁ£Òû1ŽW¿ù>p†ÎíÓfߌÊuãï£2Ùím½‡ë®·©~5É;Ûßò`ÊPž¸ž·øaxžã¸í{:U¦}““?)Õ£x½ëtÒ#쟦Ï–çõŸèWBž®~Q¿÷¹Îƒ¹Ò~ û¾ì·£é)põž+nÍ•~ëöæJ¯oûâN÷<9*Õç[~ûR‰_&ÎÏo~˜â³1~ªt}v½=µTžpªLû$¤8VòOýdõë~Q™êÆ\g’=‘ô¬´O°ë¥úLÓ_8_9£?nk®<µNãÚ#¶'í;›˜üo~Î7ï:Õ%¿Ú.lózTª_&¿ŸõõÛSåuP¹°w·óô€K¥çû¼´?êÑ¿yÛ¯}áÆ£›¿ÅqçÍT™ôµMè[¾Ê¨Ly÷©Î,ÅûZeå¾Þëæ©R{$ù[œo~åð-žû3û¥oº¾­ÿ®?úZÞã¨T?`ªLý•ìÔV‡Èñ¹Òñì|é¼2OÕökG¬›¿D{o/0½—ë°zUzïÿhûkBãñOy}úgv–Jޝ~í9iþ†¸î|Ëgü'}ÅûïóaSÝTËÏ™*ÓþÚ·-Ÿ;¼‡ëSÒ£=¾=U:OS]ØîRéû«G*÷›^ ¿ãNýÚ¿|Xï·%pT>v©Lqåf·Ðn¯ß‡óqs¥ytö›ya§–Jó S^™yp-©TþûÝ•‡­^gªÜ[*¹ßMû^T®~Íá÷VÿPT?ïoûÖŸùÜhú–óYMªwXwÝIñ'ë«Õ7¹ÿ~?:Þ´ç÷–JåLòãHãxÁ?°úí·—ñ¹úÙ®ƒÖÍv?õ¿ÜwiTzÜï¤ó|ǧãÊ}ê›]3Wú>~ïä±’]ÜüУ2å )/\¿íOçYŠ«Xßí~Ķ/Õù6N‡s[ž­Œ×/•¶O:?•+®ÍËõÉ>òx«Ó…ʃf¦¸M²WÒ¾2ëæm¥}qR¼äößyÞÕñÙ¿ý ö³r¢íŸS¾_ÊGKçTÎøÜ—ÃÇß~ý]þqó´ö¯Kõj1_¶x ´~@¹ëúª½¥^eˆëµrô±Se«ƒ†-oiª´}-> [üòý÷¿£ïÕäÒ¨´ÉôéÕ/úÒºÖý»¶óüßyä]þù.ohýê¸5¿U»9Õ˹/‚ç›G¯ÿ,Ùéižëglv2Lr%ÕUGý’ö§õÁõ-íG°}^ò/lê‡W_95*ÇÉæ'€®¿-O¦ºž&G ó®éÛ\ßêx—Êö÷¶+Ûø‚ãpú}ÿÇ?éã÷–Ÿ|~³ë• Gð©ÿöýïÿ‘˜W¥|Qþ¤æ}ì×V¯ •ûŽcë”ýŽ‰Î»Q©].“Þ°®^üã¶7ùÏ=ßç«g$}1Õ ¥¼!õïT¯ëñ“£Òx¾Ç·§Ê”OÙòG¥÷sÞ[¸3Wú}ZÞôveŠ4½¦úãäÐoµ ®›ž¯½i½ ý¹¯†ÍÏ2Uú=ï¾_‹Ã´/„rØuÂãê-Oo© ëÖMöêR¸úµ}.…®ÛwŸ÷‘P^ÏÔ`<]}.ÅeÕ_üNÊí´¯\ª3QßqÿMåì ·Ž;ǵׯ[_ÏýÚ/õÀïuôæ_òÒÏÞûΨ÷$»Ëù&}V¿È{)ORÜrs®lóMr¾vlÛªlyBÜ?å±êñ¸óùt½9ÿ'~ó#/ú”ëûÒAÇ¿ú¸ëˆöM²—Ò¾„ú“ô¥ã¶Gz¾íQnû¾^¯<ó}=ß÷½_àý¡×§÷_·¿Òº–Ö9yj©T/ó¸~ìä_ÑÜš+OŽÊV4U*—´·wæJõú¦G ØâQÐûŸÿeó=Çߟn÷I~ÁW„i]ò¸~¼“Ðï¢Ýéù—Âd÷oN•m_Øò…áÑ«ÿìvø¦'7{ºå›Ì•Ú±Êa¯w]óûª·¦}¿éï–¨ÿ¤º½¤¨ß8nÒþÍ?>U¦øøÑÿâ“¿ô¬WÅzÑ®ÿ'çÊ&wF¥ß¡åÌ•úÔ'lëxªÛhö˜×JŸÞ×|ôn|ßñæÜœà¨lzï½Û<•ökËט*ÿ«_Ü/;åõÆñ6Uªÿ¶ýnaËÛ•ê³m? ˜ü¼iŸ°ä—Ü€)Îrû§þÙ/üû_Õö}1ßÍïßö‹X*Sý{;ßã°Íù2ÕÛ¥}ZîøÚG}ùû_õ‡1nèu®~¿£¯ýµÍýé¯ésªLã¢íï:*S^qŠcûžÚ™)ŸÈy¬~ªÀãêÿs ö@Ëkí9úÈÛm=òvmú™íhqíq8[œªço H{¼>ÙÚ=~ÇVïÿê—®m•ÆeZ½Ñ¨¼f®¼bTϰ}Ê•+§Êæã~Æ?œ·­Î}T¦ãæÝ¥¼.¿Ïy÷øê7ýö¥÷u?¸ö\ç›zˆö\²C”sIoKÏ}I×ΛfŸCëwíãôöGÒÛl÷sÞoŒÊ8.a²·ÕïÔ—Ì/WŸVÎ]áë~1æiÛ¿»ÿ/ÒÞLËñýã¾fæ™iE¡’5‘H¡…"zL*¥Ô4–JËL»"ÚP¢;Ò"Qi%ÑfI"òTL²-´g”"E„÷3ÇûŸ~Çõ½ÎwŽ÷é˜ãó\÷}?÷r-çù=¯ån¯O«þhý.ZµGóñIcãÙUþï¾ÿA;OøÔëãFB­w‘OÝ/÷Yð1×Ûèy‚÷' ƒ~m¡Æ³z}?”z¼5?EË_í‹ÕlíÆŸ"ŸVû5ý®Ï‚OPÿ­¸ÄêçµÞƒ©ûƒù‘Ï¢#;=¶éººáxƒPŸWõ@[aÐ_—ðÙN¨ñ’öŸXóå{Ç}êxWŽPû5´ë~ý½RÇïƒ÷ {Å}j·Žÿé¼T¿ ýd:Aûtÿ¡Æ-Ý>{9Ÿªo4Òy²úü½"Ÿi'¦¤¯ßvo {Íõ©õ"˜'ùÔ¸=˜gbü>èwNøÔói?Rçç[ë#¬y6Ö¸5Î`­¿²æ ýËr¼úWµÓÁùåù¬qºà~„jç­~ @çêý U×)õ÷šßÁ{ ÍÿíÑ_³ÃçZúXi½GEŸKë]fÜgДΧúí·ü‡Pϯý‹ª¬y¢êÿô~u}¤²]äSíˆîÆ«„ª¾ Þk'÷¯ã8ê/‚÷ŠÉù5ÿ´¨žŒ;ŸiîšµcŒù¾ kÜQu¡Õo zKëy‘ûºnº}wOóÿ¥·ìBð^÷ß ú?„Á|y® > ­ö£¿W?¨ú]õH ×d¿êݯëJÝØî¥W:^Œç‰.)ø„ÿO½ÒùT}Ó)îSçcj{ÕüíùÔòQý¨ºEõ¤êg«?Aë“¶?ݯó)T¿kýS)‘yæ‡O¾ØUã´œµ½j¼!åVð þ€ ?Bhé2}žÀÞ&|jþˆÑuÔá{AÝÓÕú¢ößšŸùÔu‹jï¬õPz~kœåÿïz«Ô=Wü]ô¢:…Ï Æ‡„úû ®w>ƒvâ|ª]µìºÕ¤T»¢zZçyj¿[NÜgà·„ZÏô÷ÿ6®¤í<3î³°ómõ¹­ñьȧu¼î~oœ? óiÍ÷V]è„迌_Èýší òiõ—Y÷Ðø½5?ÒzÍo}O^п§Œþ›ªw ;þnÕŸ  GõÃÖº_õ‡z>íg°âðÂÆõj5þ²Þ_¥å¡öFç»h?P0îùT«ýUjWƒqç„O}~ͯ`žÊñ꯭ut–}Óò²Ö³¶u>5>ÐøAËWõ¾æ·5O^ûwµŸ\ë»¶WÔßhùéñÁ¸†œ¿­03îSŸOõºÞ¿>Ÿ5n`õûßù´Æ”¯h{Öú§:BuŠÆgÖ|~í¿°ÖË(u\®[äSó3Ûù´Æÿ­ö¤û‹moSõµ×Û™qµnÚz ÆI_ˆû ì´óié6½_«^÷' Úóü‘O­š?E.]fRÖÊÀÞè{q´~h¹Yïűú[ÕÿZóÿ¬õÖþ¸Ðê—Óßë8…5.¡ó+„ó}Hõ„z¼ÎÓÐß+õ÷zz=ÿx©Ð:¿Ö+¥æ›æ³>Ÿî·òGýºÚmK×ßî|jûW?¬‹Z~°­PçYïÁ´æIý@‘OµG턪;;$|j?¨úå¸0#:Ÿz¼¶[õ»™q¡ó©~Uí§Rïß t¢óÙ.òè6¡ö/ýØÊȧÖ-­zý Ÿ<á3K¬ë|j·Žë븽ŽËë{8õ=Öýó6Ok²úAk_`„Bk„îWû©öPÏwB9¿õ^‹ Ÿ"òiõCYý4Áï…ú<Á:óȧµ^Kõ§ú;)ß“óÓõwbW >ñ‹„EJϸ­w÷±¾Ð÷!ÿÛuÿe~\Ð?¯ñ´µŽÀê? â{¹ÿÔ½^¨Òr~¡ûM´þé~«_Þ:Þê?·úµ¬yz™qŸÚº¶Ö—7µª̲ú‡-?Œw'|ï êK¼Jé|ªÝ üˆ0˜ Ïk]ßòêÛÚE>‹Uipû}Õ«›ïÑ~2µª×²OÕjϵßÀŠ«´'#ò©Ï£q’΋³â6ëýQÖ:?ÍÕóÖûbõ|Ö<õ_Öûq‹Vù¦òçÅ¿2çû¨îP]¥ý/Ú¿¦ºMíƒêlëýKª“t~ŽÖ»[„Ý#ŸÝœOOïžð©çÓçÕßëókþ©ßæ‘E>‹¦×=ó…6“‚ú$ç9éG­÷"çø,øõBýG ß„ú{KoÕj<¬Ôz§v\ã› ß7îóf¡Îcí¹×§ÖË‚ç.`ÐïùÌ($­~£à½NùT½6ïDñþG“Ìy–Vœ í[Çtþ°”KÁ'Ò÷ñj?³® Rû«ï±ô’5ÎiÍûÐãMý&×·æ7ïÕHø´Ö[óÖ¬x.î|jA>Z÷£vOó!èGs>õ>õ9¬ñNµ3V¹Þ¿êéŽBíç°Æ§4ÿT/ë›âB¹õבOkþ€'ªÝ¶Ö·j»ÞKk<¯¶+µzÿÁüŒÈ§å—t¿'ëùõx}^9¾àc® ³ücð\BË¿qcܧõ^$k¦ê=>õ“ä§Ç¿7×Ý«ýP=®÷m7i}µú¹Õ¾H|\ð ÇÏs¯ºå”çî~=è æ›Õ^äÄ}ªŽÆã…Áx¨óiÍk·ÊKí“æKV§ÖíQûªçÓ÷6e;Ÿm…ª»U§«=Rÿdéüñߟ`@0O>îóRçóìïœ;ñÐhs=¨Ö_µ¿º~?Û «øì±×g°Þ[(õáßþ¨‚¶ç“Û­þm½oë= :¯Jí±5/P¯oÍ“ÔvlQí¯¶]G öUÛa[¡æ‡oõ[ZïAÊŒ #ŸEvÚü[ÏÖÿ7.èGÓ|éžð©íYú âUÚ.]ðþ·v]Ë?#òié-K7Xþ;ð[r=µ+VÿºÖí·±Ž×ýÚÿ¡ý+Á¼è¿iGYýìj/Õoóu"ŸÁúueäSýPÐÏðiÍk´Þ¤öÈò«í„z}-¯b×Ôûí¢ô@é8™Ú9«^I9|NÆ¡ÿö~Í¿ Ίû´ú't¿æo°ž/ò©ºÓª/ª#ô½$–nÕùÖü9kžµÖ/kÞ»ÚÏQö¡Û^¯Q9 ç µj;Öë¨_Ðë¶u>}%Ô~&m'Á|W¡^Ïz–ÆEÖûl‚÷¹G>užFñooöXµ3Âù*qŸÚßÌûu>­rR¿«ã,–ÞîÏùÔrÏÆOk°ÖCk£µMû™‚õdz_²ßš·›í|þÂù̈|j{Vÿ´w¡õ¾z­>”ßkyhÿ¸ê<+Ôži»Æá>U_ý¿Bõ÷Vü åcå·úYkþq[çS÷9ðº'º42ûi2…j'Ô^êñz>Õ½A0Xÿ"ÔrÒq-'õ³…]¯lµÓ ¡õ¾@«*­ù=Öø–žÏê¿´ú5ÞÒã­yiÖ{C¬þV«üt^D·D>­q1«~ý°‘Ï ¥ói­—Òö¼¿*îSí°Úi«Î÷’û âVaÏȧŽßÇ…ºÞЪú{½¾Æ1VœiÍ Òú¡vZçkXý@ÁxAë|J}~—“y,ø„ï/òù¯ÿ?»õ~õ?:¾nÍÓn'ÔýV?€¬Ç‹û´æ·éùÒÿê?ðÍgų÷þ¿éæÄ}j;îùÔã­ñdõ3Aâ<|Â÷PÄ=ž,WKïh¼jÿgD>-ý¤vIýF`Ç…z½`¾€PãFë÷V;Ôç×z®z-°+BcÜÀ¼ß MhíW»dõ·[ãþf¹Ü¿Õ?fåOaß#P¼Á§?Ìh…ýÔ Ÿ:Oõr ·OÇÑvlÅUmOÕ':~ôÓ Õþådðÿë¼wWG¨÷ôû»ÏõÙ#îSãÕµÖúÝß3Û§Æ›:ÏSןi<¬ù®××ç½E¨ó<º%|Zó}û$|Zówõ½UÝ÷úÌê{0ô½ÈݪøìùÔzšùTû¢í_ÛEϸÏà}3qŸjÿº&|šãÊèÿõy‚ùYBíOÐçµâkÜXýµÆ!Ö{–Õ[ïµSÿÌ+’ëYq¾µÞÈ?Ðü׸Dý{ŸÎ§wèþ ¿V¨õ]©ý*šÿz½ÞÎgw¡Ö‡ÂçSÛ«–§ÚOßÓß·jý ÞW î_®¯÷säS냎Ckÿ§²{Üg0Ï"òÙ%îSëoNÜgFäÓºµ'Ö¼=Õ=Vý¶úëÕÿëýd;Ÿúüê»E>­õˆ9ñÿfßBÍ/½_Týbé¸@ÿÊù5­ûÓã5ÿõxm/Áÿ#´ê“ÆÝÁ<²¸Omßi½3^ï½= û>õ<:Ž̃LøÔëjÿ‹êw=¿åw5_Õ¯XýÃz¼¶ÃÔ¹%|ÚÝ\Gª÷™“íÓè?2ãà ÞTÊýYýȪµ>kýÓx@ýA׸O­¯Áza0îë|j~ê:¬`jôß´ÖËz˸?=¿–Ÿõï`=‰PõƒÕ¡ýèU)ßõ›^/ç-ìx„ÕŸÊõ >A}ÖßYã.Vý¶îSû¥µŸ]×ÑI¾œìÔüÒr°Ö¡ê:9õ;úœz½ŒÈç¿Ì2õ´5/£]ÂgÐ/-Ô~ó=Àò{m_Ö{ØÚ:ŸÁ{·ã>Õïå(Œ ƒõRÂÀE>­q2­'–Ÿ²ú+­q©àþßõP¨ö>. ú¿•Ñ3§•ó[ãŽúüõ:²?ð§s}êý(ÕŸš÷#T»¢öÊzO™µÞ\í¡RÏAÿ®Ôÿð½'>ƒýÚ¡ý5úžýདÎgпý7­÷ Yÿo[Ç}šÿO׿\§€Aÿš0[¨ë†t³êc­ošŸz~§Ï“Sŧ·ó>¥¿$\' 0á³dí'›¼tÿró½PÖ| ku0¿Dh­¯²æYóW´ŸãÖ„Ï`£PçÛXýDú<ÖºsœÕù4ò·àcÆ·Úÿ¥ã)Æ{?N^'Xß&|êý‹}ýß¼x¡æ›µþÝÊ7µ_Vüô—û,ø÷Ý#Û§þÞZW¤ t¡ûoêsh?Ô¿“Ïaå‡õ^Ý‹[n‰ûÌóeœ0òi­U?T¤uµW_ûãs¾·>Ÿõÿ:©?ê/­uªÖüý½õ¾¾Â®OJ½sØŒÏ~¬f¯»ö¯óos^¥¥×úfê{íŸÕüÔvg­GÔò)lTð¾l9Ÿeÿ¬uÁz.¡5ÿ]Ÿ7X7ùÔý¾4ž×Òß5Ìu>ƒòŠ|vr>õÿ=×øOßšmPϯë¸õzj¿»5/^ó'X¿/´Þh­³Öù:Ÿú<Ú¿¤ÏôgÅ}ãu Ÿ:ÿDç9©_ºÅùÔ÷OeE>õþ,]hÙ#}~õ“z}ݯå§õEý´®7ÉJøL[ß~}÷óJ× æÉït»È§uÝ`¼Kh­·°ô·ÿóJ„V|Ð(×Ïj¿I Óäúúû¸óiõ;q»ó©õØŠÓ­ùÆ’ãÕXïm²ü²Ú-µ‹j;ä|šó³…Ú¡óÈtžuÐù ÆÅ„zíâ>Õv_¨ó8´½é< mOÚ¯¬:Aý¢ï[ñx±ÝŠónjÐ_ªÏ‘aPõ¦µ.Eë>gï„Ï̸Oͧ¶B)÷‚OP¾A{Œ|j?°¶ïÂê.}NÕÚ^ÕþX××ýÖ-=¯ùcÍóÑü·æý«®)>àԳϛùJ¡ÿœ¹>u¿Ú+™GRðQ{²ŸQýI°.ÛùÔûµÆÕ¬uÅž|òÎæ}SÍþÚà} ŸZŸtþšú7]÷×I¨¿×ùx–V]iéÒ`ò¿üîßÊ!î|ªωûÔyJ­Wº?Xß Ôëi›öh¿¬îWû¥ç»\hÝ¿5~¬úÆ*¿ _Z¨ë!´¾«ýÓv®ï Ž;ŸZ5?ô~Õ>éókœ¦í:uÆyµî®{9î­ç ú!ÏÀNÇ}jÿwVÂçÍqŸAüù ô¿q¾ _Q¨~Iëu`"ŸÚÏe­«Ó~ í§ÑçÑuJª{ÔŽª>Ìv>Õ/«Í‰ûT]¨÷¯~Üïèžð©×ÓþKgZãÁ|/¹m÷–®jë|ïMû Þó¥ûOµ3®s>sâ>ƒy ŸV¿»žßêÿ°¨ç â#'Œ|ï¶fÆ}êýèù¬u-Ý>­þk}½þ^ï_/~ì¤TÿeÍßí&Ôëèü^+^(l»ÓrÞŸãþ›ZŽªg}/ì. ú×…ÚnÕëóëý–º«ÆŠû?:Íœgj½/\×™d;Ÿº_í¯ÚwÕe:. íOã,«¿Pýg;¡5É*Gõ_z¿Ö:kü=hŸ‘Ïà=l‘Oë½mm…Öû`ô~K/>;¶£rÏ }k¼¥ó1;Å}ZóÆ5µ_ÔêÔ~PyÏIÁç¤=S}¯úU®¯¿ÎŒ ‹|3¡Íœ*úNãÈ Þ–çê÷©q‡ž/˜ä|¦Nj°rÐ3Ã÷(%|j;Ôóh| íHÇ˲>Í8@é|Zóôþíý'Ö:cƒ¬y&Ö|9½žÞ·9'Ïuê#Ƕ7ZØ"8ú?´ßVãiµVÿ©Ú=k¾™°àc¾gÕš'ôgT;¬óûÔøGóM×]h{ÔxÆZÇ®÷«í*ЯBkÝ]ÜùÔüSZó-}¯v1ð—‘OkR0^"ThÙ k|ÔÊO­z~íGÔú§çSjü ñ«úõ«ªg¬qkŠê©`¼^héÝo­#Tž2­Å™÷ܵ0ègÒzg=—¶Ën‘0î3è_NøÔ¸Në¹–K÷¸Okþ»Ö£`<"ò©vHû ¬ù•Öü0«XóLºE>µž¨>Ðõ¸:/@ýÚuc|á¤Î;­÷£?Ï©»Ìœ—"v©àcþ¿_º®Jõ€Î£Òö¥Ï©çÏ0¨ïQ·ÖÑëØ„V¿¸î·æ÷h¹[ëènv>‹ßR²Ù”ŒIA} Æû„Ú^²>µ½¿ å|ê7¬þ=¿ÇïG‰ŽV¿´åW­ñq«ßΘ‡öosAFäÓ ìvÂg0/Óùl+ÔùDÁzçSý’öoh¹k=ËŒ #Ÿz}µ'ú{=¿¾·Kó#o‰ûÔûÑzؽŠO«Xóá4?]`ð6çSû5õx¯W{¦~IÛ]0¿P˜ù Öm;Ÿª·´ü5¿Ú:ŸV¿¤ÆÖúÕÇÅõ«¾ûå¢a?š°{Âg§Å}ï_ÝëÓšo¯´æ­fD>U·j9«~µÖ/K—ù‹ÂÎÑrë÷iÍÕz¡v¯­0ð§BÕw…Õ)–~ t†Pë­úwýÿ\‚ùh>OêKÉ·‚96X¯% ú?"ŸÖûï¬õÖ¡µ~ÏòO…}O„5Vï7[¨ó!U¿eD>E¯Æqæÿk¦Ï••ð©ç×çPj½ Æ»”r}ký˜þ^Ϭ“j¿®5a­§ æG8Ÿz?ªk{ÌõYØ÷OèýëÈ…Öºk½`_‘Ok>XG­qk~_Ð?ùÔûS;¤ë¼µ>뼩¯ÕY'Û«µNYôfÁçäïÛûüßõ"Ÿº^Zí@°Þ áñäyõ½MúžPí/Ó~ƒ`\Æù´Ö-ã4U|Zí7ˆ3„z¼‡êýZëè­ucÁ¼¤„O}¾b›†äõ<ã” ¿ÅÇÐëãOÁÿ§¬ý=×h¤ûU?ª¾Ôù:Jµó„Öøƒ5OÖŠÃÌþç3?t>u¿ÚAk]·úE+ž¶ôñ>¥B¯Òò²ÞKÌKZ÷«~MÏô¯ ­qDíŸS;`Å‹Zžz~}ž^Îg`ÂHhìæyTñ©Ï—í|êóÏ#Ô~+´¼t¾U?­ñçôuÞ‰u½® ŸÖ<<³>E>Sïhz}ƒù¿v7Ðû ŸÚßU¢ê™6¾-øÿ:&|vˆû¼5áÓšŸgè¦À~j?“5î£:/Xwù ú_"ŸVO°_¨å¥ý;–=°ú·ôzºß:>˜·/,3ïøÈ%Åšÿ²5ŸÑò+VübůZŸoNøTlõÛ[ïÑûëùÔ~sk]ˆ¾g¢§2î3ˆåzÚ?¬vKu‹ögéü=íïÖü ìKäSËOû)UªŽÓvè¡eǃxàÕ-;­÷§¿×ýAÿqäÓê—Òýz=Õ1jÔNvO¨û&ÇçÄ}Zó_5-ÝnÅ5îˆ|º&ò©ûµV·ú-µ=[ñ±Æ!Öó~H˜áóãlB½ŽÎw0ôlÁ'èwÐûm+T{¥Ï£þH×Õãør¼Žw©½QûXôöÜêë—õ:™OZž—k}Œû,øÄoûÔ|Ñ~]­–¾ëÚó¤…–µÆ/¬øYýL¶0X·&|ó >­uª75^žÓù̉û´æ…ö,òÌ/’ç±t5ßÀšï­~=xï€ó¼GhõÓêñÖüñ`^ŸA­ÿqaaç3h{µÆ1¬q õ Ef h[Á^sœÏŠ«¬qjý½æ“îæc8ŸÖøƒÚó ] ­ñ€ _Ih­ç ây^½¿`ž•q>ëþ,=hék^]7a0>"´žGó³ØEkÔosQ°>Bû)t½®Î ±ú³u¿5~«q`•Î Û­o36œë|fÔçÒ~“À.­~3+^Ñ|P»­å©ñ³úaý½Î.xî–|üÌWÿr«éï/ÔçÔrÐ|T]¬»í^¨ù¨vOÏW¦ü€—?ºôI3^³ì™õ^+_Í÷ *å÷šoª#´GuL𞊸O«ßN¯¬£Jø tŸPçQXïùÔúo­ÌP:Ÿ–nâ‹È§5^ÔS¡Ú÷mÅ»V¿¤w(õ÷ú„‚ç.`†Pãkµ×Z^:þ\O¨ï°ÞÃf­÷ÕòI}¬þW[?_Ü—¾Gá–Èg;ƒÚÏô« ³>µû#Ÿí…Gk»ÑýÁ<[W8Æ…jﵞéñR.³þèyÔîíÙ žßêŸÒö•!Ôý:nCèñV‘ÖkœSïÏêG²Æ=‚yu‘Osõü_ë8œö/j´Îçº%á3X÷©úD×qÀ›#Ÿí„šÁü÷ŸüßüiŸŸ +º¢ê¡âcÍy-Zo{:ŸšÏ:Rë¯×Óçîì|fDBynmï=ûÓrˉû4íPŸ÷F¡^_óC×…ÞžðiéõÂöϨ}ÓýÚ.­yzz>ëýS‘OËþê{žÕßvÓù´ôúûÀo ƒþ+÷ßÌŒû´æ§«jŸðÌq>uÝ’ÚMµkJ—hù ô€Ðê'³ô¥krâ>ƒ÷ÁF>Õêø©µ>CÛ—¥ó‚÷þ 5n¶úùÔ>ýï‘Ï`žšóèq¡æ•_–.ÒãµßÜÐAŸÀÎww>eÿIÿسŠÏÂŽ[ïý×ãÅ¿¼]/¥~Ï¢§ýZ a0.&l+ æÅ9ŸÖ<8kÝQ O…Úïß!á3õhÅ­-=è:­ï:OTû­þ•óî0ÿ­{›ùiù ë=!V~XëJ¬xÄj÷Ö:3k|ß*o}^«ßÆê§ úi#ŸV-}ŸðiÍß×üÒþQk}‹ú}'Ñø*蟕ßgZt>5ÿõ|zÿ7Å}êùÚ%|Zïõ×8@ï7˜Ï! æÇ}j·5ï×Zbé`þÐê_°üx`Ï„Zžæ{œOÕZ¾Ö8cP„Ö|™ŒÈ§¶‡Â®‡²æ¡jœ÷ŒÃ uœGïGu‹ú1GRû¢ûëý[D0ÏËê Ê5î3h‡Î§Ž·©~ÕrÕrÐøI¯¯ãÅ9qŸz>¿®ã»š?º.Eç›f;ŸY ŸA<÷©ãxOª Þ“ùlë|j»S»Õ+ò©º¾W¶O]G£ù©õ©KÜg¶ó©Ç[ºHû¿ôx]_¬õ?˜ÿâ|Zó³­ß[ý´Áù…êg´¿Êú@d¾ÍI;ø?÷ß”v]ð ÿ¿fç³]ä3¨Ÿþýõ!˜/ùÔú¦:Cד[óTUǨ. tGÜgZ¯çJÞ7)˜§­öZ÷Ç…ZOuÞ¹ú ݯçSïë‹|õX(÷w²^q±ó©Ï­~K©ó'¬ùz}ñ³ëýƒ'ŸÇšß"ï5°ÇýœÏ NZ:¬°ï=´®oý^í½eÿ‚¸+î3î|ãB­?ÁxÄÿ¾àO÷jó­5ú˜ó±ÔÞvˆ|Zq®Îë×ãƒþ$ç3°r¼µŽ#¨/ÂÂÖ7S¬qrSÔž«Þ±Þ¿bÅA#ŸÖ:…ཌBÍŸ`>£<°N"ò©å£ýŽê'´ŸÉ²—Z_ŒúSð ×8ŸÖø´õ«?Ë\/#T»§~_ãu+ÞÊßùÔr¶òËZŸ¡:Ïz°u~k|߯6ç™Æ…b' >áx°PË%èŸÏöiõ«ý0BÕ5Öüi­V¿¯ÚÕÍj¯ÍùyΧ>5ß/õÝM>ûgÉPÏ 3„Zzõc÷|ÔÿŸÔQú{™'xò÷â_OþÞ—Õö£ö!{®Ï`ž›PíYPo„æýM&4×YÉñz>õ— »G>-Ý­~EÇûT_ï0Ž·âÕi9qŸæ8¢ü¾XÙŸ¾7¢±ùÿbk{ˈ|j»³Ú»Þg0~(ÏmÎZïMÒþ-½?k\Ñìïªý·æ#÷Š #Ÿz~­ÇVж›nÂàýU|Zë¥4ÿ:'|êók•–¿®W)ìàÖ7ÍOíoÕv¯ýÁÁ8X§Ž{© æO u~—5ßÙ‡T?ÐMìOøÔx:[¨v\ïßz¯‘^OŸOã#õ“ª{­÷oêýhŸ²Èšý ÷}7ÇFÿMkÞˆµ.Cí°öYã7ש¿´æ1ºPh­CìZ§U¯4ÎÖùÆ}Zqy𾡯ý>Öø¨µ¾=˜G/ æ½E>ƒñi¡ö+ýòBW»gPÇnêùu]Ž®»Ñù:–æ] µ<‚õ‘Ï þ ­u Ö¼?k¾5Îc͇Ñû±âmëù4ÿ­Zî«àc®/Έ|Z~5˜o/T¿ ~]ëC0.œF>5?tÜGŸO¯§ýÎj­ùv©jï¨÷V S_e­xÀÒ÷Ö|p­wæ<´Èg ï…šOÖú$½?ýšµêóª^ ô¥°hùì¡r–˜ós´üµ?Âz?Œ5_FçèøªÎ7Ñyãú~ÔŽÎg·ÈgVÂg0¯<.t>ÛE>ùÔûmï|ª Þ,Ôüi÷©í&xOó©q™–õþ"=¾­ó¼—0îÓQ½ÌÏ‹|óߌýÅ›÷=ãØã¯™ï± öG>ƒrq>ƒù]‘O=^©ó(µÞêüO ãój/ÔYö1˜GùÔß[:;ð;ò¼ªË´¿Xuž–³RçÓtjB—„O-õ«ú^d-]Ç×s¯OÕñÚŽtý„Ö'µÓª+T·êùôxë}$Áü¡„Oï’÷ÙÖùÔçé]ŧ¶OkœLûQU§9rïì'_:d¾^ï[ý£5~Pè÷RE>­ñ-k¸Îó Þ3÷Ù3áÓç±âEÕ9Á:!¡ÚÍOÕÖ8VßòúJkž€Õf•Ÿ5.®þ3ˆ…ºßòÚ?£´ÖÁY:ßZG©ý?OšõOZ~N¯ûƒqU¡5.i­¯ÑçS]¯öÄÒSV?¤î×ói?©5oÙ|¯·Ð²¿ú‚ã>u„ŸÿÏïÃ8«Õ³ƒóoÎ'Ñy‡Öü>í7Õõ¯ªsU'k½t²PóQË)+áÓšŸÌ›VO·‹|êñ·8ŸG¨±Öëñ:^¦z­È¥w^pÚeÛÃ÷9$|ª?îùì÷©ýÑÁïe¿Ž©½Wÿ®ÏÕ=.”óéõ5¾{Wð1Çsƒ~|çSç/ê{)‚~©È§ÚéŒÈ§Ž7j?…úA«Éš7¬¿ê8Šöóéþ`ü0áÓš§ öI푎cèõƒã#Ÿ:_Oëm±-ý¬Yµ °{ÚÎ¬ç²æj=°æ-ZúÍòÿ‘O«Ÿ.. Öaƒy_ò¼:>gèñ‚O¡uŒ>—µ®ZÏwSÂg»Ègû¸OíßP{.ã6'ŸKìÆÿæME>åù >ÇkÚ\'øW¡þÞÿ¶ü«Ú“`§ó©ºMýsÀ¸0áSŸGûw´ŸW㽿àú²_õM©bU+^õË๵\t¿ø³]¯a‹ëþ Έþ›êw­qî n‰|êú +Î âjç3ðÂ`½ƒÐò÷ÖûˆÔ.ê|­ÂÎ÷Ñþ?ݯúÃzŒÖG]gý?ÚÏ”í|vOø úñ…Ö<̾OÅjÿ?öE¨çW{œOžO×»é~}>¥5<_ä3·ˆ„ΧÚ!§‚ó 5^Ñëk{PûjÅGú{ͽ¾ŽOèýª¿V®ëQ¬q,ã};æ¼Õ#ªŸ­ñeÕ?Ö<µ¿z~kœÞZ?fõ“鸩ÖÿÒ´HžØû;û}7Χ¥¯u\DÏo­£×ýAy;ŸV¹µu>­yz~+nÕ¸4ˆ/„V~êóg 5¿­øEu…>¿úU«?_u‘æ‡ê Syzìy­6›zI©ýezŸjOÕ^«=S{œ•ð©þ$°ïr¼Ú7kþ{@9ÞšßZõÒš×ßÖù´üu0O5á3ÐóB+?ƒþ¸„OÕSúžm‡j_µ¾¤Å¾½$¥D›@踩–³ÎÿÝw2~~¸‚O×Ý’ð©õPû95nÖýšf¿§PÏoý>Ð=²_ý¢Öƒ`ü5ò©å“3×§Ú×òí6MÝ|kGë½µ'Ë)èþÛ5Ÿ´¿3˜‡÷¬çå( Ö©Êóh9[ºÄ\- ô¾ÐŠ—‚q*ykœXÛÁ©]Òlïžz…ž'iÍ×ûR®ãéÁx¿ó¬Ÿs>­÷äëñÖû´¬yJÖüƒ@¿E>­õÀ^•ç·Ö'ª^²ôÖKŸêóhyª>ÓßÇOý½Õ/“¡t>UgýÑÆùÔÏ«~ æÑ µ<õúšj—õøœ¸OÍßà÷Χµ^CoÅ_šÖzë½J> >ÚŽþç/#'7êíÉß[ïíèQŧêX·²Ö¥ÆÝSϧã\z¿:¾ªãt½œOÕҨ×q7ÕWÚ>´Ÿ\ÇŸµþéþî‘O=^ïWõbV§Øo?±ßïêÿ>¨êߤ=Ÿ¼N™ëï:2bu_ó½TÁó%|j¿nð¾ çSÛŸŽOÆ…Z¿¬8XóCÎWð1׉ëu´ÞëñúÜ:¯]ÞOð¯ö#(„Oõ‡ZÚþtþ¾Rãj-o—‚÷&|õ_ΧºWÛ¯ÆÍº_ûeƒy9z¼Þ°Èƒ÷½Ý:ûÑB÷'«]ÊJøÌŒû´Æ Õok¾[v@óUãtµ³W[ëH­øBã3k~tÐO*´ÞKôÓ Õoéó:f®OígP{¡×3ìN@ý½Ú1Cž´zœÕo¦z@õ æ›1®Yðù×þ7¬õ<Ö{źE>­¸TÇÙµÝj9Ëþ“ÏaÌç+øýjjŸŒëvFçE©Þ×~†œ¸Oµ 9ÂÔÁÝ{vôHûÿW‹|j~öMöýÑB­ÖºWµ^k{æ«E>­þbkÞ5ÞP~Œï ­÷Mëú…šz>Õªƒƒ÷=Ä}Zë(,ÌÓŽ|«ta•ÞË. ÿßȧõ^Ê Eôƒ%„ú\z|äSu£æ“´‹‚O8žÊ~½®ßÖùÔß[óàƒ÷HE>5Î Þ‹ ´ú#5ÎÓú¨å v^ípÁsPËAuªägäSŸ/¨ïÊ„O³¼â>{EOú© Ÿò»‚O¼È¦[.{xl× _{Å}j¼Û=îSûgºgûT»¬j½Ò÷M¨Îˆ|ëÊ…Áü2çÓê? æ5 5.ÔçW¿<ÐòKÁuý¶æw°ŽRîOÏg­»´Öó«°Ö%h»·Ú¥ï3"ŸÁûœ0òyf«ë^Èú9gÝ—5N¬‹ˆ|ö«à<å×µ>Zý}ªW5žÔëI±Ú¥Ö« YXâÑ^ŸøÈ4}Þ‚O0î’÷è(¡eO,:N˜!´úgÓîiòî¸Vþ-ø ¶u>­÷3¨ŸÓûV?§ãi¢÷NÖ§à8¡–‡æ¯Ú³Y‡ùoã¶A{·æó)µ~ïUû³t‘oõ—[q€¥{­yÅÖ<ç`¼@Ø1îSýBÇDáÄYB½k¾zÇE>­¸ÇêïK]~n‘#c7šó/¬ëZëõ>´BÇ%UZïã´Þ—§û­~fËÞèýýÿBý½ŒK|‚û´Þó¥ó0yOÿöÞÅ Þ·æãPzžÈ§êr­/êgM¿$׳Þo«,úÜ´zw<»5x]·Ü½ŠÏËÏๅú~)]OcÏk;Òõ9qçS×Ëéú8OtœÍz†µ_óYóWu§æ—5N¯ó¼ÕÞ¥=Ý|ߢë5ç}ž9¿ïÍóûÞdö/«N Æ;”Îg—­y6Ö{X¬÷¿ýÂŒÈg0OÓ åϬy•V¿‹Ú‰×­YtÁü— ýÿh=³Þ£÷­þK×I[ ÖC Õ¾ï3Š<þÛÇçn+ÔòÓyTVœ¦ó‚uÎgû„O7Öú¥þ͚όoõ|Ö¼ç`¾xä³Ä/ÿìY6ü)³>ê}Zó«3ã>ƒøHé|j}Ö¸ °BÕZ¯}à|zB¨~š_§í9hß‘OÕÖ:6KϘÏ'¿üœÜ_açZó Ój¯¾áýÙÕÌyŒšo—-Ø‹„OÕ'í"ŸÚ¯Ìã‹|êñ:ïNçýi¹¨ÝNëòÓjül×þÕ:¬ó_‚qè*BçÓŠ»­û±üh0ž)´ÖOXqeÉû‡•yiç÷ÁºW?°Ö{ëuµ?_ï;xo^ôßlë|šë'…ÁûY„>ZýΚ?Ú¥þFÇÕ¿"ç×ë[ëbý©Ç+å÷=â>µhŒËËõµÖzï§Õô(#ŸZÿ¬q|k¾XFäÓ¶æ èùâÎgaÇÑ­ñ3Í?óx¥üÞz£>ŸÕ?ÙVXtøŒú÷Ž;5¨·— ë õ½iêW­yùz¼ú]9Á'ž^oY4¬ù#áûÕ>­õ„jǬþv?‚÷³ ͸.ò©ù“ùì&T}£vQûåu>kï¹>õùÔ¿ZõVßC¨åß-Û§Î{O{gWö¥Ÿ ì¥Sµ¿IíE0þ&T¡ùj½¨­óÙ.ò™]Åg Ï„z>õ×Áø’0'î3˜—"Ôÿ¿£gŸz¼ê­ÁüC¡Î‡PÝØ-ò©õLÌ“ûý·qhk\&C¨Ç«}0ç ûü×÷ôª^°ÞeÆAÕŽkÿ®Úe«¿ÓŠCõúÆ<°ýÿaƒ÷µ£°ýˆ&Ϭ„ÏnÂîBÑßk<¤¿×ýÚŽ²OÕå—êùÕ?ªnUÝ©÷£þ&'îSϯýjz¿qçSë•ÖC=^ûu¿ÚQ]'UØþ«¿Ã¢ÚÑ÷bˆŸ)øó't>³–›®/ÈŠ|ê~]Ÿ¦ãZ®7E„Ï[â>u¼GûS {oéó ¬÷B¨Ññ£`\UŽ/ìøˆ¥3­þØN Ÿÿª?×ø¿SܧÆ3š?ÚÎô~ôüÖÿ‡ô uý€–G0.. æï9ŸZ¬uo…]¤×·úµßÜŠï/r>ušÚi«ß]ïWýœ¥çTo«¾í÷©Çký³òKã˜ÒK·Ì¬óýÌ \ºÆ}ª.±æCh>i<ôwÊ}éñæ|M¹ëý3Öxžõ|ê7tü#O‰|f%|óOk~ªÖ[Õg'h~óW"ŸÖûH¬÷#댄ÝZýxV?®Òú½>¯ê;µ›VÔã~ÕÎëý„…õ“úµýžyöÁâsަ㵟“qË­ Ÿ`\'`äSǃuiqa§5_Xß¿ ën‰|êº]ÿuÆuîm÷óµÁsi»Õ~EÕ‹ª7U¯¨.Ö|RªQªn·æ[XãÚÖº)Õ¯zü)SZöÝúî©æ<-=¯õÜ…w#¿/ø„ë…#ŸæûöâÿM ­ñŠÂŽg˜å#´æ1šýñ Ÿš?:¿ÎšÏhùe»•Á{Z„—ûW»ªïQÖö]ì膵]ÞÞèH­7ª—TöJøÔ8LŸËÒoZ®šÚ_nÅïj¬ù z~ëx½žîWêýXvμ?¡5—VamÙ®]ôãXãÁ};ŸV?u>k¾j0ï%òw> û³>5NÒu[ê¯î×óéõt^£–‡ŽßëLäù´ÿ¯‹Pëƒæp}¡Æ©z=}>ëýcZ?ôþtÜDë¿RËCë³Ö_­Zÿ¬ú‹óܧæ>ŸÖ‡.B­O:nÕÞùÔþ—Òù.'iÿKaí…¶GÍ?Õ%Aù³³}ª®°Ú£–‡¶'í? ~ï|jùg%|ê~=_0.•ð¬#‹ûTûØSç3¨/Âà~ã>µ|ô÷AÿcÂgPßO­¿z¼>ê õv>µ=çOü7ƒçsÿMÍ?½_}½_¥öKêýYöKÛ{ÐßùÔú˜•ð©õ!ÛùÔúdÕG­Ú~ô|ÚϪzQËW럵nSÛ‡ÚkÕµzÿšÿÁzj¡Õbõª~ÕxHÏoÍsΈ|Z󖃸OhÝO!ç«|Ây[‘O+_u¿õ>îžϚÿhÍçÖqÖ ÿG¨÷¬ƒR:ƒr¼Þo7¡úyëzÖñªt‘ÚA-?ÕUVþý! Ÿ:N«å¡÷›úôêÛ®üeMðÿêuÍzì|fDBçÓêÏÕxYû½Ôþê:sõÖºqµ¯:.¢ýÝ:.“)ÔøBǃt¼^ûùÕêùÔßë8‚µŽÛZ'nÍËÑþ™ ~­v¬õAËKë‡U? Û¿o?˜Ç+Ç[ý¨–³úÕÔnëýëK…jÍ~r¡î·æ‰ëõ4>ÓçK›¸¡×Õ•G~\û L¿¬çw>õ÷–?¶ú[µ¿ÑÊWÍ7½_ËÎþK­9~dÏYë&ÍyyΧeO´~YëAÕt>Uvûìù,ì{ªô~­÷RXöTŸÇšÇ¼ÇI˜úÈ—ÅV]¿3¨oÁúׄO=o°þD~¬#Nø´æ븳ޯ¥?­zØM¡•?Ö<·`ü>î3˜? O=_°ž7òiÍÖß«=Ôç/6·cö’O÷óÉ‚y‘OË?ãB˾XóŒ­u£:®Ì£q>ƒrj9jÿ³–£¶_í?³æ›Jþóì­÷”Xëà­y¿Zï¬yG=#ŸÝâ>ãÎg·„Oõûº.QãOÒñ·ì½>u½l0.íSËWãݯý¹ÁýD>u>¤ÞŸêÏÊ)_u/•6>È—¸ÐÒ3Úþ‹<9mö7Õ,ôÿG´W¡Õ^µ¾vA¶ó©÷«õCã=kݾö‡ã›r>k¾µ¶'ë=V–þÐüÖó÷NøìùLÛ}úÈG>¼?hÇæ¼;¹®ê0}.Ë?ê|6ë}H:.¤q¿Ž«Yó„Uo[ýmJµ q¡Ùÿå„‘Oó‚~K¡'[ý[Ö|N½kÝ`@ãþôx+Î âxÙÌòYð1užÖÃ@_µ]i;ÈQF>µ?JõJ¶Pï×zgÐ?å|j;ÕrÓvbélK/j= Úa$t>­þˆ`~¦0x/ˆÐê'×û+ºiêuçw}(œf<·ÕO¥Çw‹|j¿‹æS¶Pušê8Í­÷ÚOiõ·²ï_ÿ=k_п&´úO´½Xç×çT?¤ó¥dþRÁ'ðO}Zï§°Þ·¤v)èGëªäx+îÓþkÝXðþ ¡çýNBÕ}Ázh¡Žë:Y¨ó¨t¿¶§àüµ<´ž—zï¾µ¥îše¾×,xÏ–ó©ÿßU¹>u¼Yu¡êeµÚ_×#òÙ}¯ÏžÎ§úOoÄ_r/d%|êù¥ÜNÚ©œ¸O¹‚Ú‡ ¾W»Ü=ò©ýni59¿ò«k»£þ ˜©t>u^õ¾:G¢õYç1:Gé|¶‹|êïÛ:Ÿ™Â¶ aܧÆÚNÌ~ÚÈçmΧأ‚O`÷,}bů…]w—ù´ú]õ~Õ¯¨¿.[ìªAKÿm®ãÕße ­qBeà£ÿ¦öOwOø´ú¿ÕN˜ý˜rÁx—ÒùT;a½ßAï7ÐkΧµ¾"˜'ùÔy¸:L¯§~Gû õ~Ô.jÜ å™ùÔçW¿dÌû ®g½oÍšßa˜>o­ßT=¦íÍšW¡úNOëúàû·M[n¾¯ÏZ7ªÏ¥T½¢×Ó÷dÄO-}í÷(,õyt¾©Ú[k¼À꯷ü…öWª_ÔýZO KµKÖ|e/©ë3‚ùÁΧžOõ¡Î‡µæÏêús¾¨>0utÍ×5[\GýENܧÆÝ>-§þXÇ©$=©sU'Zã/Åný$swÊæûò´ß]í±¶CËŽvŒÚ{Õ5Á8™2òŒ×F>ƒx<ò™÷Ù.á3+òè]¡îô˜ÐZÇmõ/iù¨¶ü‹µŽNËÓšÏÙÝù´ôcà?…Öû,?fõ_g » 3¢ÿfaÇ”漷ȧ^Oû‡ôù,½”“íÓŸéePŸOßߪå«öGíšöë©=ÉžëSõm\¨óZuœ8èÍöÌ–ûâÀÈg°Þ#î3诒ûM]vtÑñ7 üL «#ŸV»R¬ë—4Ÿ´ßMϯù þ»[äSËUïGãk\Ъ÷Z¯­uþúž:k=²Å`þsa™ðÙ.îSí‚ú%õ“z?#Ÿz~=^¯gõ“ëù3„VýÒú¡úWúÉ‚þ@©'u˜¶«à9ãOžOç›Ä…º¾:èÿóA…Ö|QÉÿ“÷©÷¡ùš÷©×Ñø_óKûK¬~Ö`¼B¨ãz¿Ö<Íg½¾^ϰô¿Úÿœ¸Ï ÿJh¼×ÊœgfÍ«µÆƒôy¬yq·éñÖ<œ,eܧƥ‹ûÔxA냥¿Kÿ\kέ;ËØóf„:Þ¯÷Ä)B-k^màO>õþô9µkœ¤åÌ¿j;ÒûSÝÌW‹|º,áSû1ƒ~g¡þ¾­ó©ó%u¿eç¬ù*ú|Z>ZþÖ¼nÕOÁxFäSã&‰{ >Ÿ æ/ÌZó1,?oéëÀþÊõ´öM¨ºÊ˜§ä—–“¶ó¶Îg0/Úù Æã„Öü?õ÷Ún¬ûÕz¨õJû5µ0°+Bk¾€åo­úcÍ·Ôñ¥5ÁšŸ¬¿PÊój;ú?ä÷ú|Z=å<|Âqb¡úå ž0¨ålù+^P,í¸àsR×ëï­~)«_'¨wBëxk}¾µþÃê÷ê÷ô-»ÜMé|êóªÝÌšãrΧ֟À8Ÿú<:Fí€Æ“z¼åŸ}÷عȧ–¯>Ÿö³êùrâ>ƒqHçÓŠ“‚u™Êȧ–·5ÏΚ÷l¾§A¨å§öEÇETZëT5¿KßX{èÃÛ‡ñ†§õBíœö§ëçœO-­'z?ú{µÛÖú<+Òûmë„ ¡ì×ûÓÿOEŸOÛmG>­u¥ú{=^ŸWó?ȯȧU‚õšÎ§îü»PŸ'Ð%Æõ?ùÔòÔûµüúÿ߸ESäóæ„Om_ªõ½Q:~¡ýÒêÇô½LÚߥóõô÷ê‡ƒß õþõ÷Á{!…A< ÏkÍkÓþmŸg´iuÓ®–‡ÌóëׄZµžXq Öm—A»Zý’A»ZýýªGµ]Œ|Zý-V í4#ò©ù¯z''îÓš§©ã¬m…½â>ƒ~ZçÓ²ÃjÇ{&|ªßÑú£ë6¬ù@z~ý}껓?Y_íF³_Oï»›0ÐÂ@fûTÝŒ·GBçÓšßaõ·j9éõõ|Ö<5mwúÿºª½½%îSuºÚ ¢óŒ´¿C×Oj;×q²´Ÿš,‰×^¾oRhÅÇš–°Þ/¢ãìÁzua0>(Ô~¢La[çSëÕ¿ íFã ¿¨õBë½úaµZoT¨îW?­~]ãu½^07ò©ñ¡¥# Ÿó„„‘O=Ÿ¯óÖ¬yÁÖúC«ÿÆê7 æ½Êõ­ûˈ|jþvž\0OhõËëø‚þ¿Ïg +Õ±Aúëá¼'”먮ÒÿÆ:ÞìçZëñTªÞâU9^uDaÇw­÷:Xñ¤å+l\‘»ýp°Ýz¿_°Ž<ò©õQë[0ßY¨þÅZwèw¥_!ïã¿5êü¿zœê\-/Ɉ|j} Þ÷"Ï©¿W;nY,úe­ÑS¶üiæ·ú/¥5_\ãøàzBÕYÖºÖ`¼<þß´ÖÑZãÚŽŠ6žÕèösV÷mk;ÓyÙz_–. âB¡êÁ`=`§êKÕj÷µ\râ>U÷©®±â0-çlçS¯§ãè‡YQì¦wæ·ò­—Pë³Î# úI„Ý"¡<·¶k}ÍÍgÕkJ}nwªzUãg¯ûU긶êM=÷¹>µÞöê| ]w¡õTó#'.LøÔòÔú ã5mÏàù„šz=í/‘õ'Ÿ ^ ÆÙ„ÙÎgFäÓš/oé«@÷ ­õjÁ8‘óŒ›È~k\TÛ¥Þ0ÿ@hÞ¿oõ¿hÿ¨Ž+éó¹÷ïâõÚýjÎëÓç¶ÞŸøç3ðò{µÓ7%|êñAÿ€ü^õ€þ^í™5~g­;Výª¿×~k=Ÿõž#ó=H=-ûUßÖZñ´®§Ôv¡ù«ã›Öû¹õ÷šq¡Ögý}ÑÌ®¼¢yž ÎZù¢z즸Ogu¿úAí¿³ÊQóAÛ¥5^ØçSÛ®ÃúÅäúªCê8ŸÅ¾|òÕGª×ÿ¿tµ½Yý°„óà„‡i¹þ>ò©öÐÚ¯ýª³U‡Ç õ½™qŸú|ZŽª?tœ®kÂg0ŸW®§ö7˜-lë|ZýM%¦6=’Zòê°_KhÍÏ,ìøêx½/]O¥÷w>Õ¯èõÔ¿«žÐëóvÜÓšOoÍw4õŽóê{6ƒûŒ|êýï ‹|ZãÊ ¿Eö«ýÒ÷ߨýÔ~wÕsú<ªƒ,=­ù£ãù…×¥÷gõëZýìJë½ÅÚÏ¢÷ø;½ç3gf µCíT0..l'Ôßt>Õÿg*å÷Á{'…æ8´Ð˜kÎ;µú}U÷©_µhsXóf»Æ}Šýÿß:»½>Õ?fû,øïó+WvÅú²7lúk¾­¶cëý¤j‡º -;Œ­xÒœß!Ôþ4Õ;ª‡ô}tÖº€`ý¥PõQ o"ŸÚNõyôyK~zeÍŠ«Žë0/Öj{º\¨çS¬íÏW‘zx²=è}Xº)˜ÿ-Œ âs¹ï ¡ÆËÖúêà~#Ÿê7ôþ,]¢õÁúÝ>­ÿ§#è¯j¦å“÷©~²h§[?ó§7L{lŒ#|NÖ+ÕãjWô9µ_%g¯OµC:þ«ýªz}ígƱýç1× þÈý' >ñR]¶¤=ºr{8N/´ò? üÞ÷ÔçëùT»ÚÓù´Þ3ô³'|ªÝQ{§ûUOZãŽÚ/¯í4x?aܧá >æ{-ƒuÊrú{£_ædûR;#íþäýYqI°ÎÝàé5/»ýÌ›F¤úW‹V?–Õÿké -Wk^|0o\hcXó…­õÕÖúª Zã0Áx¿óiõˆ~+øØï3Ž|Zñ½^Wçý€á|=¿ÐЬu:Ú?£çSÝ® ÞÏ% æçêu"ŸÖºo뽯Á| Èg[çÓÒVyöK¨þƪÇÇYýkzÿÚßcWv¾²žOïOW”º¬Ø¥¶” òYã)«ß1#úoê}ûç²æ5Yñ°5N¡í$¨…¤ê:ÕÇJõgÚϤï Þ')Ôò´Æo¥áº7a¶óy³Pç!踗õ>‘`¼d®OÕOi¿=0ý¾;Kýí„™qŸÝ>ûù âD¥ü^ã÷`£ü^í™—Š~.øÄOymǯíèÄÍòû“õȘß[ð ÆÝ´:þ­~m9þäy‚þs¡Úµ¿A?›0Ði´Ç:w.r|©sÿr?Öü^e†PóSï/3.LøT} åô× ÕεûÌJøÔú­÷£××õ-ú|Ꟶ<´¼µ^éûÕ/Z~"8^¨ñ«î·æm(­yÔÁ~¥^Ohùak>DÐÿ(ÔñõOz¼e_³O±g'í€æ‹Ú=½/=¾sÂg0ï×ý7µÞ[úEë¹¥ëƒuñÂn ŸÚN•ªg,¬¿/ìº~kýWðÞ"aЯùÔüÒv ºÇêoP?lŹÁû, ZëÐ- úHã&k^bÐùÔóéóó_â>¥|Ý`­'¶Æ“‚ùÌqŸ>u\VϯãˆA¿·Ðz?õ°ÀîF>µŸSë—¶?k¬ú¥@÷—vÉðKœU;G‰|êyU_Yþ5[¨÷!ýËá{V#ŸúÜ…Z¯­u~…e0ßDh½?$x/•03îSë…_hþXýAV¿¦7óê>5tü@Û¹ŽWè¼Sõcz¾Rk›M>åÐâ`}['”óô®âSurNÜg`¯#ŸÁñ‘Ïî ¡ó©ãçUlÌùLó@÷èøˆåwô¾ƒñ8¡5n¬vM¯où]k~}†PëÑoнp]zÐnt¯Æ-…P}hÅZÔ~k?Žeß­ñ„ì„Ï`}“ó™÷©ùjͱÆã3"ŸÁ{|„ºnBìnÁGóå_û¬ñ2Ý/~ääõ¬qg;D>õ¹þeÞ³Ú§“×·ÞßlõÛóˆ>ãÎgðÿ{D>õù­÷a©ýü‰¯ûƒqÕȧ5?ÒZ´+9ŸÕÔ+¡u}kþ¾æ‡ê1õ¿j·ô~K<öPùŠ]kšïë î3úoZïy³t’µ.TóQë½5o¸°ñ¬ï[ãpÖ{ã –^2eÝ’ ] ëY”^Šû´ô¥åwô÷n-_sÏ-Ë´]|Â~bƒ:îbõçv<ÙoU?¬Ç+u~’æ—Žói½Ñu[…G ü5N¦ïõÐy—Vÿ£5I©÷¯û­yÁúv¡5?\çÿZù«í°ò§òºN\cÏ?u„OKoª=ý—þ—à:7F>U÷fÅ}¶‹<|Âqy^-§`¾räSËјçmÖÍ/­·²¿à£ý V:è×ñÞqŸúº€Î§ÆËÚ¯Ù[¨çÓu›ÇÞ÷©ýäÝ"Ÿq'Œ|fõúzþî Ÿº_ãbµŸšÿz¼Î/²æëKõùœÏ@ïF>oj{ÓuŠAût>5>×þ!ë½h–>µÖ›Xý –P]£ú]óÇš·ê㟎øòŽ–³ÞÇe錸ó©óÀ*Ì] ë7ççë¼ÐŒÈ§ךþSŸC÷v½´Õo¬ûužo:ŸÏ]@SÈ~­O–ýÑñk<9X(<ãšÅ×V¾ãü RÛ‘ê&}.µSÁþ„OÍÕ‰Á¼J¡Þ¯¶Ã^ Ÿª?‚ñ(¡öã©ÿµæÑi;P;§íOuµ_ýÿ-B­·:¿IóOíz0Þ'Ôz¥ù‘!̉û ö Õhÿ¦ê~}~'Ñãu>—êÕöq¡ó©ù¥çS»¯¿7tiÀ¶Î§5_ZûÍ ·XëD´ýhƒÚ%ݯ´æ'Xý+Füö;É~=¿–—Ru„ÖW«¿]ãöÓ+_Ó§ñóÿÐyÖû-´ó" Ik¼Åêï æ¯ ­ñ7ÍGë½:Ö|qk‡Ú=0/%úof%|êü1=^õb–ð–„Oµ+º~_õyÇȧÚÑ®¿×ú¡õï”åϼóñ6áû–•za°ž$ò©ºÎ÷µÖ­óŸä÷Aÿ¬Pó)ÛùìùÔzÚ=áSïÇZ—!Ôý=öú´Öi~óF…Öüwëþƒçq>­y«ÖG0_3òYØuaV½7çÏÊùt¿Ú³àyäzÚ¿es[çÓþ"Ý_ØüRÝ­çë™ði–Ÿ0. ⾄OKwêõô~{'|Z:7o‰„Îg0@سŠOk>˜Ïâ|êóª]ÐùB–ÝÐ8WëKûȧ®g׸³È‹ë®}#±2xN7õ9TwÄÏ¡•ï)­ø¦[Ÿ¯ëñV½Wû¬ù¬Ï«ý#:o¡Cܧ^_ÿ­§zr?ó9‚¸R¨ö&C¨û­ùzZ­ùzA¿©ó©ùÌ›ZñN0..´âXÕª»´ßGûô|/êø¸O©=ÎŒûÔ÷+êõ*=_ù´fËšúHý¨5ßÛš¬“–ç´æZãwÖýXóbÒ²¿¤—y]k}^!×C|þíý ó=Ú¯ 󘃸9˜÷ùÔz¬ã mÏœ¸Oï–ðÙ.ò©ö\û?­þ'«FÇoNøT¿Ú>áÓêÏÒëýà ŸÚo ù}JzÔ´Ä=Kƒy™Aÿ’ó©õ·GÜgF$t>õzÚÏ®þFã‰l¡¥u¼Ö:^©ã«V?…î·ú ¬ùóÖ¼°ÀŽ uÜ"˜OhܯúÓ`>—œOýc°.*î±àcÆ Úÿ¯zGëêpô^ª=Sêý©}̈|j¾éóèýj|®Ô¸ÛZ/¨úYë>¿5ï@Ÿ_ãm§ã>õüú|ª+õ|ú¼Vªþ[ÏW²Ás—¯=6Ü|/õmÏ9qŸÁú^¡ÞçÏ»áM«v ôðÞ•ÈgÐí„‘Ï ßZ¨ÏQäÍ/¨~,üéœOõÃê§&|óÝäzÚÿÝÖùT?¨öY×siùh>ª=Õßãä ŸÖüHËŸXã=Ö¸¶1ï¶àsRýìB«^óK¯¯ñŒŽ¨nÒqV«1î|ê~«ÿM¯zAízÐOà|êù,ª³ÖýBý½eï4ôyôüžùgœßø}ÁÇÔ‰z]Ãßž¬ÿVÿb°n>úoZvÙê—ÒëýwBk^FaÇ…¬yfVoõ¯ÈñÎÅ’Kþ‡/¥òü+“oëñßb=r†*ø>¸ç Áÿ÷=õîœÛ‡ôüž’ÿóS\ÚÙºäÓæ»ØºËáØ.„ á"x\ ¯tÉÇZ¸Ô-áx=ü¶‚Gakþnàû1þ~sÉ#_t© otnЇ.©hqÒKHß_‚7»”½ç¹´éÇ`uø<þkÀãðø¼þéÜ]]Rë9¤k’>A:›ôSÎz€ï9|ŸË¾‹Ø÷¬ÿ†µá?ðb—6ƒÇÞ{ L‚—ÂdX¦Àº0ëÁT—2Kë<®…ƒá»pˆKÉkêÒàwyÍ ¿Ëkù]Þußåµ€i.åÂn.õ«°;, {ÀS`Ox*ìOƒ½a)Ø–†·ÁÓa_xìÏ„·Ã2ðXö‡åàð,x,À³á@X‚á`X •áÝð—²çfòç|x ¬áRJœáR׼τoÃ2p, ßqnÒ.é¼ÏภN…›á4¸…ãÊq\‚ôtÒ[á ø9ÛÏbûjX®gõ°|V„ïÁJ0Ϲ+¿rncU— u1âʤhL‚÷Aêï•_³?ôpÒ)¤¿!] ~ ÏeûýlÁ`*Û¿cûy¤GN#½tuÒé"¤¿'}>üÖ`ûH¶…BÏ•ûÙ~é‡H‡£` ø0,ÉþÙ!¤.n¬É c4¯<È÷‹8f4ÇœÇÀSáXxKÁG`i8žÎï~âwµà!XÛÅNÛêÒÖ­p)“¹´ûáUðGx5<Ã0‚×ÀC0†MàÏðZø ¤·8©Ã-~…ÔáG1”ÿdêq Úädêq Úää–69ùzH›œÜ Ò&'·†Âà —2/É¥ux&Ãe0¾cp9L…¯Â4ø,_‡E!Ï6¯|‡oÂp%, ©ó°U¨óN…ÔÇy§Áw`)˜€¥!õkÞéú5ï Hýšw&¤~Í+ßsÉÃ.w©—î€ àNØîrnàÃ.)í]8æwÛw;W¤>߯äû؈¿«ø»šô^þ¾äï+—Ôïi«Fé7^à\}ÎóA égHS'ê¿GšºØïYÒ5!ö¶õ¢ö¶Z-ˆ½­Vbo«] ±·Õ.ÏÁK±Ó‹øþ<ßëÀ`]ø"¬—Àúð%x\ /‡/Øù6.íõê.ùçù.u1¹x¾/à{—2Žz§>£Å©Oã¨GqêÓ8êQœú4Žz§>£Å©Oã¨GqêÓ8êQœú4ŽzÿŹê´ûqÔ¥ø¾oå;õ)N½ð¥K»àQøœ¿†Áoàãð[8~'Á}p2ü>€Sà~8þ§Áp:<gÀŸàL—\rØq¤vàϪ‘ÿ;ðgÕÈ÷ ËÆgÅU#ÿwàת‘ÿ;¦³ÿb;e[rØAðœý7iDR6>òèÕl§\vPîÕ(—ùiÊeGcH™ìˆCÊdÇ52Ù‘)“äs5Êdǵ2ÙÑR&;š¹äø†ŠIßP_²|ìB›[Hv¡Í-$ÿºüîbE;»´bìâ»øÞ…ï\«ål—šÌ³µœy¶–OA|u˹gjù4ä[΃eIã‹[>KšgjIýHæZ}ʱýfÒÔ‘äüë-„<[ËEgk¹òl-Ÿƒ<[Ëç!ÏÖòȳµÄç'7‡øúäë ¾>¹\ [:w6¶ö좤_&}=\[ÁW úáê¯\ìØpø5¼~€ßÂ.åø.íåfð.ˆ zçu—”u ®€¿Á7 öêøöP½ó&iìÖñ¤[ÀAûxg%Û±cÇ“¾­àݰ5¼Þï…´•ãCa[8 fÂû`;8fÁûá.éÙ7]¬Ó5p%Ì€oÁ&ðmx-\›Âw`3˜€äW=üÔ²ÿt Ä/8 ⇔w®;Ïø;¶¨þèÀÙ?t Ä¨ñC*A|ÍÊ_sàˆ¯9PâkT…øšé_s |ž 'Àóàc{Qïqx>œkp}òöwÚV½I¤±q©‹ø>™ïºX¬œK[yžÿ€å!¾¡Öv—úíCpw‡á.8î†cà8bS¿±«ß>¿‚㫆ߟ²ÌÅZ5„¯À+\Ê=”ÛÅè—{(·‹«@Êíâªr»8RnWƒCù£Ì.>—?üÿ*îwÈ˰&\/‚¯ÀZp9Äßy^ _ƒ—@êØªK!ulUH[UR·VÕƒÔ¥Uõá[ð2ø6¼®‚ à;°!LÀ+àjx%\AüÔèË]ÚUh˜™.é lâ褿u)o`Û,€‡àBx.‚?ÃÅðøœKšµÁÅÚÝìÜé÷£=~tÉ{йÔiË`qø ,—Ã’ðUx | ž _‡§Á°|ÃÅŠ=åÒVS÷ŠÍ…Ô¹b·Â«`'x5Ä6­ÆÖ§¤Ö§¤Ö§¤Ö§¤Ö§<ǹ•©?ISV!Ͷ߻¦^¤^Ö§^Lg;û~ï «Âl¶SO¢ëz°ï÷ÒÔ׃ç’fÛïÝ ßïÎvêïAêo}êïAêo}êïAêo}êïÁz{ðH=ˆON}‰ïOð½&œ/‚S!º«Çyœ³éi¤kÃéðb8^gÂKá,XæÂºðIXΆ´Õús m¦þS›].Äf×ÇOÄf×ÇOÄf×ÇOÄf×ÇOÄÕÇ?ÄF÷¨Î}ôtɵڸØ7ß¹äÕØô¡-!6|(¶s5¶{h+çŠaVc¿‡0GÔ±3ñ[u “ï"êX|ÍjìùÐ ö|h¶¯e;::z¢Ÿ£÷`ŒýØù¡m!v~h&ÄÎm±óC³ v~(1]”Çñ©¤±÷Cñ#«±÷C©Ñ:¶§‘Æî½b÷‡¶‡Øû¡ ö~hGˆ½z+Ç¿ÏñEH/'Ý ¾ ©'«_ƒÔկîp¤>¬~æð»õü?²úMÒÝàJH=Xý¤ìV¿ ɻիø{‡ïÄ[C{»¤…Ôá.<óBêpžyacȳ,ŒÃuÎ5Ùàܧ¾ð¶s 3 ×\Ø~¯…ĵøîX—`3ø1l?×Á °Üè’‹gºØê½°üÒ%ßGœUçuô&ç,RrÎ"ÅØNÜU‡vxqW7ØÎ5Š;ßGüUçMÒ\«H ÒÄYuVBâª:oAâª:oCâª:«8Ž{)R’4ñUâ¶ÜS‘SHgÕ!>Ƚ9•4ñVÕ°2\Ïkaø.¬ ÑÃ÷¥Ã ¿æ¸sù;c?æï¶Ïg;>û\Êfξ B21[}p1üžc8÷ò½.v{oçšWî¬÷@übs®¹óöÉþ>¤¹öÎ*¤Ñ·Ó6šs;ñ‡Í¿†élGßÞ—4×Þ‰lÎuwâ›sÝø®æ\wguŽC;ßÞ¢o¿~iC͹Ÿç“ÞGº?üÞ €wÁýpü„à xæ÷?ð{âÝå?‘Á»Ù¾ŸíhÃæ? Ù~˜í÷ÀŸá½l?Àvâßå¿ Àavqû}vqûpH»¸ý~—ò%dæ] 2s|„óà ø  Ÿ…Cà|x7\ïq)ýˆ«Gö#~¬FÙø±qd?âÇjÄ‘ýˆ«GöCcU#Žì‡Æª6Ó¥ÄÛ»Ôß“`ˆœE{«½ÒÞjÛÏ¢½Õ&¦ŸE{«Çq9.Þ cÎÕììR.£þ|Ro®‚ÔÛƒï@êíAêíeØíƒ«!vûàˆÝ>ˆ¼ {}ð]ˆ>øÄ>ä—aŸRÏ/Ã>|bŸRÇáÒ^èï\­%.¥æ/.õë\x> …³áQ8ƒO9·ú2—tÓçjcobÑêØŽX%ˆíˆÑžÞÂvÄhOoa;b´¥·°1ÚÒ[è„Õ—óÛ»]ò²Ç]j_4Ͳ‰M³lDÓ,› Ñ4Ëž€hšeS šfÙTH ½l$Þ\6¢—̀ęËfBâÌe³ qæ²\Hœ¹ìIHœ¹Œ¸·/qæ2â޾͜+ú$߉}û;-#öíK¬¹ŒØ·/±æ2tR_tÒ2tR_tÒ2tR_bÌeh¤¾h¤—hkMÐã£^Å7ÿzõSˆzõ3ˆzuÄG½ºÙ%C·-¡>C·-¡þC·-Á_C·-Á_C·-Á?C·-Á?[ñKÇÂK]Êõº´äM°&Ü /‚[`-¸Õ%—_ìbŸ’G埃äQùç!yTþH•’Gå—ÀkЮŽï/ñ|*¿’Oå_†äSyâ¤OɧòÄIŸ—_É£ò¯Bò¨ük<*ÿ:$ʯ€äQy4ÿ§äQyâ×O‰ÃË¿~Š^,OüúiHüú)º°<ñë§èÂòįŸ¢ Ë¿~šå’¾Â†ÌÂf|… ™5u)þ [ò¶d¶ã+lÉ,Úêô.­ 1Ýù¯ñ}ß…»á¸>ƾ×ù¾—ï»ä^×¹ÔJ?Àp?l ±/Ðú½®çû—|*v2o0Ä.æ Ø½<êè©Ø½¼{ v/ï^ˆ½Ë ¹×¼a{Í»ryÃ!÷˜Gü4ª»K:kžsó¹¤Ëîs)wbkîäÞï$Ö<Ÿvr>mä|êЦ-.6¾Ü ;ÃÏaçn@C~}*é/Hw…Û`6ÜsàØ î„݉o'8WŸYg¯ö8ù›äRéâÒ2JàÓ~ã{W¾£UɆh•Gr Z%ïm—öÀ0¸ r¯yïÀá0±¡y«á.¹Ûí.õltc·; º°[ˆìv'Dv» ¢ßº €¥à@X‚§ÃÁð 8ž ï†eà=°,¼–ƒCáYp,ïƒg»3ílâÕîIð9˜ Ÿwnîµ.©ÞC¤SH¿cðE˜ ±iÝÓàK.i^1ë0‡“` 8–„OÀSàx*œ OƒØø‡Ž¹´+Ÿ¿Ágáïp¾K®þßC¯þß³¢ÿ÷lèý=[icÔñhþ=ŸC4ÿž/œË9áÜ1lZ ´ÿžmí¿g;Ûÿb;í·1Àž`ÏNH °g$س¶„øüœ¿9žø.‡8íØÕÎåÏó;Ö&AÚyë9ŽX¡F+H¬P£5DtãýwÃË€øšc´ý7°mÐ Ãp PƒxqÚ [ilA¶¤¿…Ä {ˆ#kƒìÙç’n¥-Ÿq¥s—¿wiÚôÔù[iÓg\WëáØ®…qø.¼¾3`lÂyjrtÉ¥AtÇ­ëØNùÞú>l ×ÃfðØ~¯ƒÁðcØ~¯‡`+¸¶†ŸÂàg°KÒÆ¥]ôl ÿ„™ðlÿ‚Yðox#üÞäÒïS†Ü ñïCnɰ=Äéc°#L…·Â4Ø !±Z_´ß?´öÔõRåœ;{ß©ï¥Îâ;mølÚðÙ´á³'ñ7™}´R´…÷?q©öèý =T {ûþF¾uîb«÷?å;véýÏ véýMp¸s3”E¿¿™ôýp |€íÄe‰ùÞßJzüFð 8nƒÂíð!¸Ž‚;áÃp^™å’ö‘çOÝÉó§Úc¿Ñ¤û°qûÈû§:@òþ©Ž¼êV¸ bûöm†Ø¾}ØÂ§º@láSؼ}ØÂ§°yû°OaóöaŸÂæíÃ>Eœ¾xr4ñáâÉÑhïQØË³ð;ˆ+G'n ®Mœ¸xr4öt±øYø£ øìÑøì øìÑøì øìÑøì øìÑ´ç øìÑ´ç AÚó†Z»¡6¤-o¸~/Û\ r<­2v©7v©2viöa<ñqMb´@êÃÐä=z õŽûœ»ŸX¢4±ÄýÄ¥Ññ÷C”ÞÃ~ÊæÊê~t~iÚєի”ÍØßW)›;(£W)›;"—òÞ—vÿp-d{-lÄ7ü®6âÚ|-lÀ7_AlÀ7_ClÀ7ß@Úú7ߺ”¦<÷‰Ï Ï}mÑ”ç>¶hÊsŸ@[4å¹Ol…<÷‰Ï!Ï}â ÈsŸà¹›^ ·Ã:p¬ wÂzçËE#^Œ¦nZŸ41SÓË ±RÓËá^Ø~ ¯à©é•Û“‹N¼˜˜ ·D‹7mÄvâ”܆¤©û¹WÀ¡l¿ŠíÄ-¹W’Æ5½šô>اäb.&ßs±G“¿¹Ø£‹ñkMãì'ÉÅ.]L[ÈÅ.]<‚í×°}?Ì€è„\ìÔÅäwÓ&¤‰?r±W$}-郰)ü 6ƒ‡`sx¢;Nü Ñ'~èŽG šãį°< [ÃcðˆŸnÚþîR[d?‰-²çBb‹ì§áa8þ ñK‹~ø¥EGà|ø+\Â…ÿ•½⿲©§‹¨ŸÙÔÓEÇáóðˆß\ô'Äo.:ñ›‹þ‚/Á¿áRø|Ù¥,¦¾g/ƒÔ÷ìW ~8{9Äÿf¿ ñ¿Ùh³ÅøßltØbüoö X¾‹Â7a1¸‡oÁxýžuqI¾ó,>ó,>ó,> ó,.‰y—†Ä<‹O‡Ä<‹Ï€ï¹¤w¸X_axÞ Á»àopü„Çá ø ÿ„Cà x7ü Þÿ†÷ÂàP#LM0 &Áû`2Sàý0±¯Fð=•?ü@…}.udþñ®æˆðgù޼ ¶y>l>ò®–.e:¬éÖ´?D‡5½Òî›ÓN Ý7%¦ð.$¦ðDgNȃhÍ ÄzÞç;š³)Zv=v/Âî­ÇîEؽõ´ÿ»·žöa÷ÖÓþ#ìÞzÚ´߀*›ŸÆDØ¿õØès¶Oc;vq=ö BÓ<8tþ~ìB„¦Y]ˆ¶CìB´ƒý3ØÝ\}ˆvâ³°Á뱺f=¶!B׬Ç6DØÀõ؆¶Ûa:osie„Û!¯ó8 ”!–žÑÞÅÚì þæšSÛ‚ŸŸÑ‘ô—ðVøì¿†á7° üv…è™ÓŠ¢Ûg9×ù\ç~Æ·œ†VÌË…hÅ<âÄÓЊy³!Z1oD+æ=ÑŠysùÝyü®¬{²í˜÷4,çÁÒðx:|žѧ ¸¤¹¹XûQ8º=Ï5—8º=~õôeÔ‘ÓœË ß?G#ƒ/ËÝ)Ë\ÊòÊ2—²ü†²Ì¥,¿¡,s)Ëo(Ë\ÊîÊ2—²ú†2Ì¥Œ¾¡ s)‹o(»\|X |¥[ñ•îÈù]r~·r~·r~·r~÷.äüî=Èùº£çwë çwïËù»„¿Kù«ÃeïÖó÷ò÷;WîSç^ëá’ZbÇ6¢‘ÆVh¤±UÙÞ“íÏÂ^p>þ”˜ðµÞ|Ƕm$®›‰iÆVƒÄ4cÏ…Ä4c)‹×úp¶oc7ÒÕawx>çÄ>tjKìáÆl«Aº/iìâÆž¤/€½ z¶&mhco¾×„}àEð6X ö…µù-µ%¶tc?ÒóüÝÆÛù~ ¼»oìëÀ;a]x¬Àúp ¼ ‚—ÃÁ°¤ÝŽÅ×ME#·FÃNE#·¦nOE·¾Á¹8:qóÇ¤ÑÆ­Û@´që¶mÜ:¢[·ã8´äæOH£‘[gOE#·¾¢×ZßÑk­o†è´Ö·p<ºsóÒèµÖí!z­5úm*z­5úm*z­5úm*z­5úm*z­5úm*z­5úmM J¼µæ¸^_†5á2x|Ö‚ø:ý\êþ3!ñåþ2ørYçfœí’.ê@š8s9Hœ¹}<£Û;ŠðV¶wî/‰;÷'Ö!îÜ_w;÷W‚Äû+CâÎýç@âÎýÔ·:Äû«B´øþt—<ý—zÃrx*|ž_ƒ¥àë°4DÛM?¾Ï€oÂ3áJX¢÷¦—…hëéå mlúY66½<¤M?ÒÆ¦W€´±é!mlz%H›^ÒÆ¦ŸicÓ«@ÚØôª66ý{Ãzç*¾ï’fR72©3©™Ä73©™Ô‰™Ô‰Ì¶ØÅ³±‹”áLêF&uc&u#“ºqM¶S¦3©™Ô™ÔLêÆLêF&uc&u#“º1“º‘‰¶ŸIȤN̤NdæŸ:‘™ÿ{êD&ub&u"“:1“:‘I˜IȤNÌDÃgvu{š<ÛÓ[4Ñ[4Ñ[4Ñÿ1[Ñÿ1цXx>¢ ±ð |D|Æ |D|Æ |¶?yúÛŸ<ýˆÍOž~Äæ'Ï@/bó“g ±ùÉ3Ð…ØüäèÂ|›?ý×fDïµù¢÷ÚüÑymöCô]›!ú®Íˆ¾ks¢ïÚüä’¯éb'êÂY°Ì…õá“ð2çz×uîϤg“¾œt=ÒØŸÞõá`¶Ïa{ølçÂ+àÓðJ86‚ÏÀ«\Jb®†Ä\†»á¸Žuî‰A.é|tY™½¤Ç‘L}VæKÒÀ¯àx¶a;í®Ìפ…ßÀ ð[øü>Ñ*O„ßÃIð8î‡OÀáxN…á4øœÁð0œ †³à/0OÂ_álxÎÇ º·Ìo-Xæwˆî-s¢{Ëüñeþ„èÞ2' º·Ì_ßPæoˆí/óÄÎcJR?ƾ—M‚Øê²ÉÝ[–x½,±zYâô²il{¿ù[ºw7þavz7~avz7~aåúFªKj}-LƒMaØ …hº7ŠÁë8ß1r£8é¤ñ!Ó°ë»ñ!ÓB|È´+ ¾cÚ•¿1­Ç—àø–°$¼žíø‘iW‘>…t+Hœ‹på_“˜_²3íj¶5ç;~fZcö•b_Òø›iqˆ¿™v ÄßLËpîÔ¯8¦4Ç´e¾gZˆï™v-Ä÷Lk ï†Íà=0ÿÜ÷B´êš^Øîƒ°7ü ö‡àmð0ì v®å<çv Ÿè°5ýØþ ¼èô¡èô5èô¡èô5èô¡èô5èô¡èô5èô¡èô5èô¡èô5èô¡èô5èô¡èô5èô¡èô5èô¡9wFþ¹ÑêCÑêkÐêCÿA?Kž‘-4;¡xÒ4û04û4û04û4û04û4û0êCóâ.õoÚMóvÒ¼$$®iŽ_ø›¸¦9~áoâšæø…¿‰kšãþ&®iŽ_ø›¸¦9~áoâšç7º´îhÖç?…hÖ-äÝòtËPHžn©/åÑ…·¹Øoƒ\2¿Ií~üÞ ?ƒCá&8Ì%WÞîb[ï€;`¸ÞéÜY5ø¾‹ïw9×õ˜s¿b‡*ï&=îØ¡Ê{!רü%ÄþTþ ¢WúGT'ÎèOQ8£?qDuâŒþÄÕ‰3ú¯ƒÄý‰%ªgô_‰3ú9Oüüçø¹*øùÏñsUðóŸãçªàç?ÇÏUÁÏŽŸ«Râçª\ ñsU.ø¹*—Bü\•:?W¥.\ç\üSÞ$˜'»¤. »ÀÙKlÑe/Ä]ȯ²Ôû²Ôù²Ô÷²·¹ä;ºÔ+’à­0v‚)°3ŒÁ.0v…i09°(ì‹Áîßø`Xö„%a/x ì O…}àið6X ö…¥!êŠÓ+Òïè¨+΀è¨+Îtɋ׹ÔêÊâ÷!ueúàÔ ¤Ñã9wA4yõd1º<‡z²mžC=Yü1¤|‡À 8r1u4‡:º˜:šC]LÍ¡Ž.¦ŽæPGo†÷Á-p¸Kþ>÷€stIU^&½•ôø9Œœ½<û:—¼ÿ;»ÿ;»ÿ;»ÿ;»ÿ;álÎßu|ǯLøÙ¥4Êt©Gþ€íàŸ0 ž€7¿àMðox3ü.p©¿b-„ؾF‹`&\ ÛÁç`|Þñ ¿Þñ ¿Þ ñ¿Þ_‚íáRˆNmô2¤® ~×%£Œå~§LeÛ{l£>ŒåÞÿA:4õb,÷ØøOçælqIuÏ„[!x#ñîX|áFâݱO¹¤±]¬1¿‡´üõTŸ5&} iôߨ ¸6Àkᇰ)ü6ƒÄ c›Cb±×A4þØp#l ‰ÅnåÞ£Eмãbï´rÉ<âb_žÇC´ò…ïºÔ¯°¾û;7{ª‰ÿ¼04u+ý;¶­c[þúêÝWØ£ô}|§î}E;ŒÏ^Dü{Ÿ½ˆø÷0>{шÏ^´â³-rÉ?çO] ñÙ‹žƒøìEÏÃøŒÁa*\ñß‹^‚EàRXR×~.—Alú¢W 6}Úþglú"´ýÏØôEhûŸ±é‹Ðö?cÓ¡íƦ/BÛÿŒM_„¶ÿ›¾mÿ3ZÚþg´þ"lÞÏhýEؼõ¯ºÔ‘]àk°+|fÃ0ǹ_wIe‘~ƒt7Ò+HÿFúMÒØ´s6³í ¶ýζ•lëß‚=áÛ°\{Ãw`Ž“ã“N¾Í¥dýæÒJÌunöƒ.éÒÕ¤'nÊ:ÑMY@üðì‡Ø¿†ôŸ¤ÑOY' ú)ë/ˆ~Êú¢Ÿ²þ‹8~ǯu)˜Ý´è¨“ :êÆdˆŽº1¾ÀqsÜ»¤c¤_„©p Lƒè©‹À¥°(|ƒèÕ‹Cüí%àrÎ3šó¼ÇÀ<¶—d;þ÷ÆS þ÷ÆS!þ÷ÆÓ þ÷ÆRÿ{ciˆÿ½ñtˆÿ½ñ ø<¾ ËÀU°,|ǹØŒËñ=Ï‚ø¨{¨7µ©o÷PojSßî¡ÞÔ¦¾ÝC½©ý"m™8³u/~²u~o~_ËÏ]ƒú¾Yƒº¾ùm+—6»1O1çÞÌqI7P6ovƒ”É·­ÙG,úí XôÛ6öõm[H,úm&LGÏQnWb¯Ž´qŽX.©vQÒØ­#ÄtÄrIµ‹‘Æ~Éäyð}ÄuIµ‹³ [v[v%¶ì¶ìJlÙâºyO¸XGâêyS qô¼©°")Û4¾W‚Óae8ž‰s:VÄ9«B✎é8§c5H|Óñ\H<ÓñÏ…ÏÃóà °:|ž—Àð%Hl_ ‰mâ/Cb›ø2HlÛÄ)Êçºä:Ý\ì‡?`wø'ìOÀžð/HìðÃßøá‡ 1Ä~LobæýÄuˆ™÷CÔ!FÞ~¬CŒ¼ÍX‡yªK:ÒÕÅžûfÃ`ܹîs?B®ûÜÈuŸ#6?ÂuŸ#6?ÂuŸ#6?ÂuŸ#6?ÂuŸûÙ%»Ä׻ě»Ä~ ;Ão`ø-äº ¿ƒ\·á>ÈurÄ.±†Ü±K¬!÷AìkÈ}»ÄrÄ.±†Ü±K¬!÷AìkÈ}»ÄrÄ.±†ù÷Áó6$n'n‰5p"\ 'Á5p2$žú$žŠoÈBã—@ÿf¡ñK´†hü7@4~‰6pl _™p9lÑ%°WýOwIÉlï‹]IŸMú Òìï‹]IŸCúLÒY¤±'éOAìIú\—Ü{’Ž}ê‡IŸ±#éø†~Ø‘tìQÿ2ü›Ù¿,$þí_ÞÌ~ìKú|Òg‘¾…4v&}éò¤Û“ÆÞ¤c§úã瓉‹ûãû“‰UúW„ÄÀýñûÉÄÀýñûÉ9»”ŽöëÿO&îÿOÆ~öÃN¥/&HΆè€dômt@2±g?ìWús¤ÑÉÝIcÇÒ±{ý°c騽~رtì^?ìXúå§|G{§cûú¡½ÓчkF»´aá‡cá5pÌ€À&p<¼Ö¹å™.é:ÊtÍ£¤›’nGš²]3t3øl‡×Á‰°œ[ÂÉß·<‹ßM†è¤ë¨ kž`{+8¶†Sá p$~\3R¶üNJ™m9)³-ø˜ ”Ù|Ìb-Ô øŒ-”ý|ÆÊ|±ÎÊ|¾"ªØ|ÅVÊ|¾b+e><ÛJ™O ϶R¶ȳ­”é|ÅVÊrùµ•2š°Ô¹‡O?_ ÿ‚àßð*—2¢¦K»ìsxüÖ‚Û`m¸^ wÀKàNx)Üë@|ƈºŸ1¢ÄgŒ¨ñ#.ƒøŒ—C|ƈŸ1¢!üÖÅJÎrið~ø$|Ά#àÁ§àHˆ*‰*‰*‰,ù,Ûäï!þFñ÷0£ëJÙ¡¾TÄöoz‰ô¤?#؄ϬˆØô2Û§°}DÛ!®êЦ;²N‡dv×ðs8~Áïð›–‘žEzi|ǦWœ;«(h÷³Š³Gd;u ߟäûH»>²“ãñ1›ð]i×Gv‘Æ×l"¶¼ê;;Á}p$ü>€Áýpü>ì\ùGù~€ï£áA8Æ%ÏÜåR39fænÈ1÷交ÜGå$¾?Éwî£2>cæöó»™{aþトcÙ‡™ùßÇÁ¯!úîžÙüŽûžù éñð[ȵg~'À}ð1ø=|Ü%qÔ¥NDÏ~q ¢gG/§~!ýilÖÔÿ‰O;W%ξWÙ÷+Ûh ÑW£_#}”4mb"mâ ÚÄDÚÄ´‰‰´‰/h±SU®q®1Y• ¶Ñ>&Ò>¾ }LÄUiâ’·‘õi#Ûh#i#Ûh#i#Ûh#i#Ûh#‰Ïª\ëR¼èRßì\µ+ùŽ?| ÄŽnO|„ý¬u#iìùaìàLìh­›Hc×w„Øõ÷BìúáN»~¸3Ä®ÆV£}U£m5 Î?ÜçΆÄù‡±ƒ3±Çµ¸öLìp-´ëLìo­öì'î?Ü ïî‰ñ÷€Äø‡{rΫùNœ¸—KÙÚË¥=vì /‡}`xlèR–ÝíÒú^ï5á½xé)ìéSh–ºøÜº?9WòbçÎÝÀßFþ>å¶òÝ¥.u6õgÜ6—Tù,ÒuHï€u!u¢$±ÍZlçqlÝË·ClÝËw@lÝËèÉã3àp&$Ö=N[™X÷8mýå.鑿.vÍ'ð:ȵKsí$êÞpž¿^Èó×à çùëeCž¿^äÙëá?†¯‚øáïÀ0{ÂÕ°\{õ°|Þ‰Éëõ…ÄäõÐÃÉÅ롇‡‹×C_ûÃàðCxD?×ÑÏõBôs½Aý\o0܇ÀOáÝ.ej1—Öj…Ky¼£KkN,þø­üñN°¸KZRÊÅzN‡¥á x:œ Ï€³à™6¼¤ ÄŽ4£=n'¶XR–4ö¤q×vb‰%èàžèà%èàžèà%èàžèà%èàžèà%èàžèà%ØÂžèà%ØÀžèà%ØÀžèà%Ø´žèà%زžèà%بžøšuäÿòwù?‚ü]Gþ בÿ#Èßuäÿòwù?‚ü]Gþ בÿ#Èßuäÿòwù?âvÚìu|§ FÇë(ƒäñ:Ê`1õƒ \RÙ{HS#Èëu”Åòze1b û²ÿ^Ò”Éò|e2b0Û¯`ûPҔ͈!¤¯$= 6‚÷±²q7¤¬F䟟²‘ÊjÄPŽ»Šãòç¼^ ïg;e7bü æÿ~7Ãüý[àp+?‡Øíu_@ìöºm»½n;|È¥ôÓ¥U§íö_ {·`/çΛÈm§ÿÛ¤{C´gõ>íYý6ˆö¬Þ®æÝY½´±Óö»ÔuèÓ~„Sà8„ÓàOpºKùÍ:n4ä·ã°ñ÷.t©— [¢wÒ&AôKZvé—Öç<8V‡ƒàùp0¬‡À v¤vd)v¤vd)v¤ÏEp(¬‡ÁÚð>x1/÷ÃKá°ëÂÖƒ#a}ç^úÈ%][‚4¾¼öl)þ¼Ïålÿ˜í%IãÛû`×–âßû`×–¢ûú\áÜ)Ä‹KÑ~}°ßKÑ~}A´_ìîR´_leñìýh–<âÑûñ¹Q—Ú „sƒ¸¤"h¨'é’°<ö†§Â>ð4x,ûÂÒ°<ÞÏ€wÀ396­qxÔŸt—Üz_;ö3üáÇ:P÷Kwã;¾¬qÏæß!qÏæã¸g3ñ`%âžÍă•ˆ{6V"îÙLñu‡äs݉°¡KÎÅ—eu‚ø°,´~.>, Ûœ‹ËÂ6çb«³°Í¹ØŠ,ls.¶" Ûœ‹­ÈÂväb+²°¹ØŠ,lG.¶" Û‘‹­ÈÂväb+²¨÷ÍÛºÔ¿ÃLøl‰ÉšgAò¡#ç9ýVÈyNç~:ržÓ;;ׯºsÿpÞŽœït|n¿óIsþŽœ÷ô®Ä ´ùŽØ¡Ó¹ÇŽ”Çé9.eAe—Ö™|\ÒÄ%e$Žiÿ¹K+Á/àH¸ RGÚo‡Øóö; ucN—T‡ûi¿“ôÃp¤´ß )ÿö{ eØ~/¿„À¯àxø5DGéìR/¢éâRkÑŽ‡t…´ã!Ùv<$ÒŽ‡tƒ1ئBlX­4ˆíªUb»j…Ø®ZÅ ¶«VqˆíªUb»jaã†`»jaã†`»jaG†`»jæÜ€»]Rê«ðøÛ±aµ°yCî„Ø¼!wAlÞ›7d <‚غ!ƒaY8–ƒwC4ã{`yx/<…à0XÞ+Áá°2¼žãR>[êÒ¹¾ ïu®&ñRM≚sù£^¬8èÒî¢^¬ø R+AêÅŠÃz±âgH½Xñ ¤^¬8©+~…Ô‹G!õbÅ1ø<ü ¾àÜÔ¾.éö§v©Ûñcécà%lïÇöçàíðyxÌ?¾?|‘ãÆr~.}¬ã’æ'¹X§±0Žƒ)ðˆ-î4¦ÂGaœ±ÍƒØæNÃbp",'Áp2, Ÿ€§À)ðT8ž§A4e'4å|4e'4å|4e'4å|4e'4åü3ùCOv¢w"&|éjëõZ’ØpÇÙ.eVÜ¥e†×ÀŸ{þþþtIqôWü ¶g°ýØ×Â_aSx6ƒÇœ;?ÿ{s¾ÿÆ÷c|¿Žï¿Ãð8Û~ã{K¾ãó¶Mq©“®‚SáÕpl §Ãü8ñ¨KªPô Ò×À™ØoÛ,˜ïåÂk9îÇ¡%Fÿ/cû“lo gÃfplÎþßÙ9é§H£I·Í…-àÓ°%œ¯‡ÏÀVðYØ·77¢£ªäo_@º D[Mj‹Öº­E~z ¬àRÕ¼ÕÌ€ÄC5›87ï+—tyUÒÄE5¹ïy_“N‡ß@ìí8í´ÍÆIOÝ=ý8î‡3áp<s!v« ~p:v«ÍlˆÝjƒÿ›ŽÝjƒÿ›ŽÝjƒÿ›ŽÝjƒ›ŽÝjƒ›ŽÝjƒ»­‘K«ò-¼ ~¯†û`cø=¤ýVùÒ~«ì‡´×*?º”Jè£-Ä•ÐE[(ƒ)Ä‹5vAâÅø½Jh¤-”ÃâÆ{H£•¶PéÝøŽnÝB\_‰˜m q}%b¶-Äõ•ˆÕ¶äÏÙèÎwâµ-Äö•ˆ×¶ t)^æÒ^9^O… ~&QÔ%ÝHLƒ×±ºûJ)HÝ}¥4¤î¾r:ä9_9òœ¯œ yÎWÊ@žó•²ç|¥œKYÓÙ¥ #½¦ ÌOw…gÁlXæ@Úäšn6¹¦;Äï|Aü6‘øí â·‰Äo_¿M$~û‚ømâƒØˆ¥.éìC¤‰ã&>wÀQp'D÷~™ý‡Iï"=î†cؾŒíÔíѯ@êò{Ø>î…ãà—ðø¿†è€/¾à·ð1øÌïOÛ'º”^ri’ç༠âàܫĻ-h»¯ﶸ϶ ž}•x¶Åý°1|€ã—qj¿„ áWð ø5¼~ã’¿GWÍE}®š‹>ú]5—ð{tÕ\ôÐ÷誹è¡ïÑUsÑCߣ«æ¢‡¾GWÍE}®š‹ú]5=ô=:j.š½xþ1h©¹h¢ïÑRsÑDߣ¥æ¢‰¾GKÍ­àÜ#Ý]Råy¤ÑTs©£ß£©æ¢¾GSÍE}¦š{DSÍ­ÑTs«B4ÕÜtˆ¦š[ ¢©æž ÑTsσhª¹Õáð|8Ö€¼Ž„ÂaMø¼Ž‚µàð6Dͽ¢‰æ^Ñ-ÿ]IÄâÓðó»ñ1Óð1ÇwiKzÁ‰°7œ‰ñM†ùûŸ€}áØN…·CôÒüÌ1ôÒüÌ1ôÒlÞ1òg 6ïèB—ö"e¼êg—”u éE¤GÀÅ[vô9HÌvôyˆ _õ ǡɾ@šØíè‹p\±á«Ž°¿üÖe;6öÅѤћYõHck_$–;Š­}‘Xî(6ôEb¹£ØÌ‰åŽb3_$–;ŠÍ|ñQøœàÜ"tèUõ]ÊÔ<—Öz\ћȧñäÓ&òi„ÔÇMAlü¦aþ}}ï ±ÖÃ9ß­¤7’ ?…ø˜‡+±½éÏHÓ7ÑÇÓ7ÑÇÓ7ÑÇS>Wæ¸Î¤i“ãis›h{ã#¶ŸÃö.¤iƒãi{›hƒãi{›hƒãi{WaWXf³69ž6Wl6ÛÒÙ–Ã6ÚáxÚÝ&ÚßxÊêájlïFšv8žö÷06¦|wxì«Ãžð|HÝD;?–t ÒÔÝM´ÍñãH_@:¿lh£ãñÏ›h£ãdzýB¶ç—~z<~z~z KÂÑ{ôƈyc,< ŽƒøÁ{Ž¹Ô‹‰'û¦ö#þLG×ÏunývÒÄ¡éÄ¡ýˆCÓg°ýI¶cºgÙFLšNLÚ˜4}û(ßõ;IŸIšß—"ÞéGŒšN|Ú¯,œ ËA4k¿³ šµ_yˆVíw6|V€ó`Eø ¬ó¯UÎçs¸Æ.—R€sS›·c ª¢Ðd)UÑh²”ªè4YJUôš,eÞ[.­#åùâ—tÍAÒo“îïbEk¸´Dqî•ë½€ïÄçEñ} âó¢5!ñyÑ‹ ùS´$ŠÖ†äKÑ‹!ùRôH^½’Eë@´îó™Øé˜K~Í3{û&šgy÷Àr—t:ñЯÂ_ÙŽö°¢yì‚hÄToòŒˆ§x㎒æ }ÞäñÍÉoòŒøç¤™/¸X&õpæ‹z8s ¤Î| ^æ\ñèÌ¥|§îÍ|R÷f.ƒÔ½™øñLêÞLüx&uo&~<“º7?žIÝ›‰ϤîÍÄg6晈sºÏsî‚«\ Ú6mâkέHsI­š’&–šø:$†š¸CM|ƒýEØßŒ4±ÔÄ7!±ÔÄ•Xjâ[XjâÛXjâ*È5&¾‰¥&& ±ÔD|ÝÄR×@b©‰k!±ÔÄw]Òʪó²ê<RV©Ë («ÎÓ eÕ™:¼€²êLnBÝüMÚ„ºü9åÑ„zû9Z´ uëó]GYvžIú)ÒhÐ&sá¶S¶i+ ¨ß9G“§Ù¾—4u¼3çJÆ÷|ÿ¨K›ÛÙ¹·Ð»m‰¿Ÿ@º | b/˜æb©×¹´·/„-`MØbvÐ6&Ó6vÐ6&Ó6vÐ6&Ó6vÐ6&s­¶\㛤i#“i#;¨³“ŸqÉ©´å·Ñª©@´jêxX> Ñ©© :5õ1ˆNM}V€!ú4u¬ä\Ùø>™ï•ËŸ«ûv4õ Òç¾4ö3u i4kêTˆfMåyÞF³¦N‡Õ8®&ÇaOóçòþ„=ÍŸ³ûÓíìŸÁþsI×&M;ŒaC;^Ìwü`êLö¡oSgAômj.Dߦ> Ñ·©³!ú6uDߦ>Ñ·©s!ú6õiXË¥œ‡ÜE tþq1Ð!êçÂ7 õrá›Î½ýKjWŒ4õsáJÒ’.Nšzºzxˆú¹ðm¶Äö¤©§ W‘þ˜tIÒÔ×…ÔËCÔ×… ¶ÂvbãCÔÛ…««…¦;DÝ]H=DÝ]¸–m™|§þ.|—ïh»CÔá…ï¹ä¾Äé”Q_b€tʨ/1@:eÔ— 2êK Nõ%H§Œú¤Cô%H'†èK N Ñ— òèK Nyô%H§<ú¤Cô%H'†èK N÷%H'û¤Ÿï\ÿd—”| Ll'&H'Ïû¤“ç}‰ ÒÉó¾@ò¼ïxHž÷}Sô)Óþ1~ßĹ øÊþ©|¿b’›BÚr3ˆ¿JnñWùïxï‹oL§ôÇo%·€ø­üw½÷Ço%_ñ[ùïxïû8ǧô‰SúN‚uàdX>ëÁ)°>œ /ƒÓàåp:lgÀ†p&¼΂W:—FüÛ7—ïà“ð*8^ çÀÆ.–„í#ͽ“ïØÿ7Ò öÿ"ûÿFQ—£>¾EÞĨo‘7±yx+ö $ÞŠ= yŽØ|ÈsÄ@ž#¶ò±Eçˆ-†²>ò3|dâ…Ͼ…Ä Ÿ}ç’ç_Áuç_Áuç_A~uèåÜÁù¤¹Î ®ç¸Î ®çð%+È3‡/YÑâKVÄ!¾dÅ5_²‚:æVðG<¸¢ ×¢«ñÍ­‰¦â“[£½¡®:Ï¥”œëRßmŸ†Ô‹Iؾêg“žGšú1 ­Qx{6»zE¸Vbÿ3ì'+¾“ïÏòتä|H Vr$+¹¶u®óÎýRÌ%—¦lÖ“×¥)›õäuiÊf=y]š²YO”¦lÖ“¥)›õäuiÊf=Ï^š²Yϳ—¦lÖóì£ÐÊÐУÐÊÐЃñÇEÑì£ÐÊÐУÐʈ[G¡•¡G¡¡G¡‡=ÑÃFAtp#ôñ(tn#âÒQèÛFc º¶1è(tm#bÐQèÙFèÜQèÙFãá·}; íÙh܃ßÃÇáp"Ü'Áádx>áRws©¿aûw‡Ø¼Æ= 6®qOxªs³úº¤Ú‹I÷"MÜÙ¸7,ûÀÒ.¥)ùýùÝ”üþ‹ünJ~ÿE~7%¿ÿÂ>6]±‰MCìaÓç ±nÓç!±nÓ ±nÓ!±nÓ%ðøl—Bb¥è¦/ó½#\o…¯ÀNp9ì _…øÞ¦¯Á®ðu˜ WÀ—²¸ŸKË¡¾,¾V†wÀs`XÞ «Â»`:«Áð\8RO†Õáx>¼Ö€÷À à½ðB8Ö„ÃàEð>ˆßZ<Öv)Й×n‡ØškÑ% Ñ0Wn†h˜+·°»s-uzvçÚ]ÎÆœ€í¹v7D{^‹V¬ŸçÜØß~+]¬Zéu¤±ÃýÞ"}®ÿ>é"p=Ä÷{›í×ÂU-ÝïØ &`s¸^×Àp-l ß…×Ã÷`+˜[Ãuðø>l×öð˜ ?„íàG0 ~ o„ŸÀ›àx3ÜoŸÂöð3Øn‚áfˆÆê·v‚[agø9ì¿€]á6H™ßÿ•K«?~ ƒßÀÇá·p"D+ÔŸÑ õ'C4B}ÚÃýhƒúS Ú þTˆ&¨? ¢êO‡hú3  ÿýþ%¹´w¹vÉßà6—2³¸Kk‹ö8ÿs¾—à;º÷¯—¶œr¾º¸K=ú mê ÚT;x&Ì‚eà°,¼ –ƒ´…«KpürX¾ O¯ÁSáëwÇÑV®>ô ÒåI·‡gCÚLµ»ÙWŠ}hòYØFÛ¹º4iîoVEÒ·ÂJ6tõélç^¯>¾ÅöÊlG×Î"ö¯M›ºúL¶£•fëצm]]†4Z©Ä<—\¿±{_¿±{_n)/ó·Œ?|Äìþ†kùkʺ`ZŽKºp®K©ÑÌ¥î9›ÃÃð:ø3l-áx=$nšþ¾Kms'\ï‚è¿6 ú¯Í@øÄöNÿ“OÿàÝp#¼~ ï…ŸÁ¡p7ÃûàH ^Ÿ8ûÞû>ûÞæˆ]oƒ]ŸŽ]oƒ]ŸŽ]oƒ]ŸŽ]oƒ]ŸŽ]oƒ]ŸŽ]oƒ]ŸŽ]oƒ]ŸŽ]o3Ú%}M}Í͆ԙ\òákêkn7¸v‡;`ˆîÈí wÁ^p7ì ÷À>p/¼ ~ ±Ñ_ûÁ¯áíðxüö‡ßÁ;á>xü€?Àp?„ƒá8„wßà=ð¼†CáÏpüÞÀáðWx¿Kz ®‹ÕÖƒ+a}ø¼ ¾ /‡«`øl‰«¢G·] Ñ£Ûê@ôè6â­ªèÑmõ zt[}ˆÝvD[n»¢·5€hÇm !ÚqÛí¸íJˆvÜÖ¢·ÓVE;nC3UE;n#Þ­Šv܇hÇm×@´ã¶ ˆvÜÖ¢·¡aª¢·WE7n#Ö­ŠnÜÖ>¯ƒh™mh™ªh™m-]Ês»´n‘s§,uI£Ñ—WåÁ8\¯ïà ¸Ò^®"vM›¹êCç®zܹO‰=FÓ~®úˆôDÒH7#ý1éI¤7’nN:ÿ¸ë`þþ0{Kø)¼~[ÁM.ùø.õeb‘ãwAb‘ãàÙè¨~|Èw´VÕzüÕçï2þ.ç¯è£ã´³ã´±ãC8®"•øÃ§Î=Û¥Ýò¬?„áG.¹ùC#·"ÿchäVä ÜŠü¡‘[‘ÿ14r+ò?†FnEþÇÐÈ­Èÿ¹ùC#·"ÿcè¶Vä ÝÖŠü¡ÛZ‘ÿ1î«ùC·µ"ÿcè¶Vä ÝÖ C·µB+ÆÐm­Ð-14k+tK ÍÚ ÝƵB·Ä°a­Ð-±&Ý»¢[bM!º%Ö ¢[bÍ!º%FlÓ ÝkÑ-±–Ý»¢YbÄ4­Ð,±ÖÍ»¢YbmˆEˆZ¡[bm!º%– Ñ-±vÝË‚oÀá›ð&¸Þ ß‚·À·a{¸ v€ïÀŽ0o…«a'¸v†kaø.ì ߃Ù0æÀu°ÄÞÆºCìm¬ÄÞÆzBìm¬—KGž]ÓÚ¹!ÄoÅÐçCˆßòßU;Ž<¼†gG^Ã39•í<û8òò4øÓHßKÁüý¥aþöÓ!Ï?޼¾&“4~²ù0Ž<¿&Ÿäù5hˆYØ–vØšYG!¶fÖ1ˆ­™õ|þGÀã0‚À‘ðOø <‚ÁQðoø0üb£s“àX˜ ÇÁøŒÁñ0> ‰ ÛM€Ä†íƒEáã°D{ç’ïY·Aò=«/$ß³ú9wÏf—Tò ÒäÖíüϺ’ÿYý!ùŸ…¿Ë%ÿ³ðw¹äþ.—üÏÂßåâï²h‡¹ø»,Úb.þ.kˆK¹]{^9—RŒó­¾r¾ÕwAηzä|«Bηzä|«Cηšßã|«Ñ™™.­è°üfÁðFø¼ þí’òFºØh˼!±~ÞC?o,á\+bý½äcÞä©+y£!u%o ¤nä…Ô‰¼q:‘÷¤Nä‡Ô‰¼G!u!oD3å=˸”kð±ÇGC|ìñ1{|,$v:>;;‰Ž? ‰Ž£ ¯!v:Ž6¼†Øé8Ú0¯—K{½Ÿ×¢÷óú@ô~Þm½Ÿ×¢÷óˆ#@ïçG<€ÞÏ#¿@ïçG<€ÞÏ#Žx½ŸGžçC<€¾›×¶®K-ò‰sgcwÚÖãûXn„—ÁO!±{‘Ï\ò]]ê€"0…9¸õ âµÅ!ñÚ€xm@IH¼6àHœ6àTHœ6à4Hœ–ßïÿÆm°4ì O‡ý uïÛá™ðXö‡e]r‡V.µÔ~Øþˆ¢Þu¸ï¸ÿ9|oÃ÷ƒ°-ü‰mOñ=“ï‡`;xfÁŸá}Œ¶~“¸"mýæZ—œ1ÍÅþÀögL‡ØþŒÛŸ®þ£®såñ³øŽýÏÈ…ØÿŒ'áe.ifGkû%¼æ÷‰w‚_ÃÎ0¿ÿ» üv…ßÁl¸æÀïa7øì÷ÃðGØ€½àAØþûÀCð6xö…?Ã~gK}ߥ½ý\Ÿ‡Àà‡ðEøD'§¢ÞF'§~— ðe¸.s±¤.íF°'¼ R'߸ڹÑÿ¸¤ ùsìГt®Ø»|G{NBknC{NåÜÇ1ùóïР“МÛh“F³=‰íq˜ ¯)X± 6xLŒïùsñhC“Æ@ÚФ±l'¦¬p-ÇäÏ“£=MiO“añe…üùy´«IãI!?Oö5éQÒØ‚ øÆm´³IHc*äÏ×£½MzŒ4¶¡6aL ˜?oö7éq¸¢mÆ`#*äÏãûž4Úf ¶¢B+ˆ­¨?Ÿï¶O†ûálÇvTÀßlû‘ôxN…á4øœÁð0œÉï°5òŸïgÒ³à/0OÂ_álxRç·ƒÔóm¿Á¹ðwø4<‰ƒ¶ýŸÂg[@>\&õ˜Kkt¥s%w³¼¸}8êq¶¡CGM„èÐQ“ :tÔdˆõ¤ÌWW #GM!5¢GGMƒèÑQÓ!ztÔ ˆ5¢GGÍ‚ù×Î…ù×{æŸg6DnÁÆM ½>Å%]¿‰4¶nZïõ©¤7“ÆæM@_oÁæM@_oÁæM@_oÁæM@_oÁæMhˆ->ÕÅîç7y§Ái°œKÃðt8žgÁ3a.,Ÿt)ë±#ÑùëBtþúA¿~0D篹õwCîcý=ûX/ä>Ö…èüõÃàøÜòøÜ¹ðlø4¬çÁŠðX > +Ãùð¸V ]r‰.¶ TâSˆ*ñD•ØÑ@%6C4P‰- Tb+ìí\§éÎÞJšønmÒ3HNš8oím¤©o‡¿ M¼·¶/éY¤·‘&î[‹Þ.AÜ·öv¶#>o'Mü·öÒO’ÞAš8p-š qàZ4A âÀµw±6ûw"X¨¯%ˆ ×b§K®E” &\‹>(AL¸}P‚˜pí~3‡ßì‚OÁÝl'F\{7鹤÷&V\{é§Iï%M̸ö^ÒóHIšØq-qs bÇµÃØþ Û¿"M ¹ö>ÒÔýÃ_Ãùð¶S®‰)×K— ¦\K,]‚˜rí—2šXø'e4±ñ[М:_óS—6?þæg?þæ&ˆs3Ä¿¹âÇßÜ ñão~ñão~'ÂmpÜ'Ãð ¸N»àT¸b'þéR_¹ø›ðçƒ|¯éÜcèÈôU™þÛb;šýÏQxæÏ‡amb&òë14fz¢1ÓWC4fúˆÆLÇßý9šc/&ÖL¢5Ó߃hÍô<öa?þðObßWð‡û¾‚?ü“Ø÷b¡?‰}_ÁþIìû ¾ðObßWˆ…þ$ö}…XèObßWhWÖq©¿ì€è_vB´Æ/» Zã—Ý­ñËˆÖøe/l¿„ áWð ø5¼~Áo]òF|þ˜ß!>Ìqˆ¿óÄßùÓ¹Q·º¤³°£ñûcN@üþ˜¿ØÞ‰íÔëQ!õtãMlÿÞ ÿa{¶cg7ÞâRq=nTWÒÔÑQÙ{»±=Û“HçÆînì@:v„)ðVƒ`*ì Ó`X„ßuãwØéhª±h©hª±h©hª±Åñ¥ÔÉ誱è©èª±è©èª±è©èª±§º”ee]ÚmĵËÊAâÚegÁ`yø1$î½íH]¾mƒK9†][‚ÝíÓÕ¥U) ³a1˜±éîv1´QR‡{à/ð^xĹKhÓï¾Dz(é_I ½”ô0ÒGá}ðÛ²ýeÒÃIÿFzéep0|ÒÎß]i×ï¾Êq÷sÜïðxŽ€°Ÿzûîk¤#ÒB´|©-_ê/ˆ–/…Æï€–/…逆/Î耆/M™\‚]x÷uÒhùÒè‹hùÒè‹hùÒh‹hùÒh‰hùÒè†hùÒè…hùÒøÇhùÒÅ8ÏPγ‚ôã¤óóg"Dt˜Ñ&Ct@‡' : ÃxšK9H,2m~Xd>ÚüàÍm~ðˆ6?Ø¢Ív€hóƒ!Úüà­°ìkÃÎðbØ^âÜÛ­]R&6æ å7ÿtò›:HùÍÇ?ìñO»ÃúÇ£uÞnÑ8o·…Ø¢ƒè¹ùø­ƒè¹ùø­ƒè¹ù ØŸÉ~lÔAüð|ü×Aüïü+ØÞŽíجƒøßùh†ÓÐÞsiÏâ_Þ®Á¾Þ¤óHã_Þ¾€tÒëHÏ„hÐgñ+o_ÈöÛH£EŸÍ…hÑgñµТÏΆhÑgi_o×ä8|Qþ\„LâÑZå¹÷2öW—Çö/Øâ’®<“ôQÒóà1ø ü > ‡óáq¸þº¤ñÄçMˆÏÇŸ7!>O|Þ„ø|<ñyâóñÄçM°«ã‰Ï›`WÇŸ7é\é½ü¡éǧ7Á†Ž'No‚ OœÞ:ž8½ ¶s~ D/>Þ¢ïÑ‹w„èÅÇñ‹Ÿ“gwr){‰ft…èÿÙý?#¢ÿgtƒèÿÝ!úFç.º“¿»H£ÿg ;ŸèR»•‡ƒàÙp0¬à’ç¼îRoîWÀ®ÎUFÌyƒïÙðMˆ¦³¢iç¼Ñ´sÞ†hÚ9« çžó$î=•X4_RêVþˆ«OE‡å½ÑayË!:,ïUˆË{͹5y.éêšuü½Ïwìü-´±SÑgy¯;w1öàT4ZÞ ¾åÿu1>ëb´õ(µ^Äg×çSRëáÓ©7©õðéÔ›ÔzøtêMj=|:õ&µµ±Ñ@üaôu(µ~:”Z¿NJ­Wö‚øtêPj=|:u(µ>:”ZïTØžûÁRðvXÞO‡ýáðNx&¼ –`YHYÔ+)‹zg¹ä•Ä·ƒ&@âÙAAâÙAĵ+‰ca_V·š‰[¿®$^ô$^Dܺ’xuqëJâÕAÓœQÖ%qiâÖAį+‰[¿®$^4¯Bo­$^Dܺ’xuúj%ñê ôÔJâÕAÄ­+‰W¡õ‹þÈwbÖAh¨•ĬƒÐD+‰Y»®$fDìºò|þÑï#Êq7“þ›ôÒg‘¾…ô?¤‰—ÞrpL‚‹a2|Î¥œxÁ¥-¾GÁ%ðaøDÛŸX ÇÀ—áX¸ ¢õO¼Ñú'–C´þ‰W!~øÄk­ßížÎyú¢ÝÓ9O_´{úçžÆ/Ô—ôÒœ¯ï^8Ž: N÷†«a¸Þ×¾ð]Hü5ç=ˆ“±•sÖAâ­9ïCâ­9ëá]ðHŒ5çCHŒ5ç#ˆö*zŠs÷>ç’JþàRŽ7si/WrɈ1?{c~¶ c~†6ëJ|xd!$.´Â¥Z¡ćV¨ ñ¡êA|h…úš†®]E{îØÜ¹ŸF“Fß®¢-§¡kWÑ–ÓЭ«Ðè¯cÿÒè×U´é4ôë*Útºum: ݺŠ6†n]E›NC·®¢MÇð•+‰³cøÊ•øÇ±] ¹´ÿ“ÚÜ¥åÏ5RÛ¥^„or1ÜèÜ€.)•|r i|ôK!>z±ÕEøè!ÄVᣇ[]„Blu>z±ÕEøè!ÄV}Áyqòg1ÖEøêƒI¿BšXë"îg±ÖE;Ø>„íËIs]„ßBÌuÑ.x$Fr5$6Ò“‰Cbñ!×@bï!˜»"Ï>¤ ߉»‡\ ‰Û†4…ßÁfpŸK"ŠÁÅÆä§sà÷°üv‡ûaø#ì @|؃°7ü ö‡\ò‘ .õù{áF8~ ‡ÁÏà}.å±Ë]ZÓo[ø6zò餿ƒ á>¶¯bû_¤¯ ý=¼ÒŽk÷ëàðjx6†ñç"TrI•;¹ä}çºÔ9h­}çA´Ö¾êòÜw>Dkí«)Ç}@Êqß…rÜWRŽû.‚”ã¾ZrÜG}˜C9î£>ÌùÂ¥L-åÒZ½KÃ<®†gÀ5.åSìÓ8žõÓ×ù[Á÷áüÝž]ï’ÖÓ¢7 m zÒ"´ÆzÚ@ô¼ ’7ë/‡äÅzthôD‡F ˆ¸ÖqbÌ¥?CbÌ¥¿ÀŠð¬…•!þõ-â¶ÌFè|ôгèŸè¡gÑ?oÇe^‰ã2¯F÷ÇåÏñ>€Nz–Øç:éÙüØ'‰íq—rô|—öÂß°$NG#&eU_Áªl¿À¥½H¼ŽVLÊJ‡ßÀjl¿íĆhƤ¬sI×$ /‚)°Œ±Ÿ:˜uéÚ¤SáÅ0 ^‹ÀKaQŽ£Žfã­Cšúh]XÖƒ%ˆYð½>ßKÂËà):÷"qûQêڋĉG©k/–r)ç}áRw„Ûàƒp;ÄO·â§ÎÛ ñ/çí‚ø—óvCüÔy{ ~å¼½?uÞ—?uÞW?uÞ×?uÞ70ÿÿé½Ú%·äÜÉÄã}ÎwîD/Xâ‹Zr­ä!k%Ÿ÷¹€íø¦–\3ùÈ5“iO-¹f2í©%×L¦=¨èRŸÁ–¨±¥*Clés ¶ô@H›ô/¤7“ÞIº:•z»zß+²ïû¶ÞMºiâÙÕÄ(ňcWÎö=l¯ ÷B|s1âÚÕÄ*ňkW«#®]M¬RŒ¸–빋gòØ–kÅŠý ‰§VÓn¦-\<‹m'؆>c‹}HŒpí»`"$¾\0 _.˜ ‹Ã'` 8–„Sá)p<N‡§Á°œ KÃYðt˜ Ï€OÂ3álXÎeáS°œ Ï‚OÃòp$ß<+Àg!yµ`>$,€è•è’›:÷=ñö!òfÁ"ˆnY°˜íÍØŽÎ:„^Y€Ö9„NYð]O|:’øt=ñéHâÓõħùïê¿ü¨‹B÷_~ >æ\ÏrÎG3_þiôÿå¿CôÿåÇ!úÿò? úÿò?!úÿòp ¿;‹ß¡­/ÿ‹ôTÒåI·'ý7iâžg“î@úÒÄ $hg²Ÿvp¼#édÒ³HW$M ׳$/zRçwf û‰Ä ñBƒTH¼Ð /4 þæ¿Ógå½.mÐ%p(¼ƒuà}°.ÄÇ ªçÜ…—¹”ŸV¹4êº{û!|þð§wHO† ø\ §À5p*\ §ÁwátøœóàL¸΂ïÃ\—ò3çYÌy~æ<‹9ÏÏœg1y4«¥Kª=¾šØöXHl{¬'$¶=Ö Ûë ‰mõÄÇnƒÄÇúBâcý ñÀ±Û!ñÀ±; ñÀ±þxàÚù‰Ñ.éü÷\JÙ!.õòñ‰1¤óàXHÜûÄ8ø>|®‡ãáðQø!œ?‚Á9ÏÝœçÒ“þ„ô=¤«À{aU—\=½ ý\=½ë=çržuîèפÑÕ»°ýÕÑ»¸n1ÚQ´^u´Å.®ŸCŒv­•C;>ú\ÑX9´ß£ßÃçàÙ…¯¨ŽÙ…¯¨ŽÙ…¯¨ŽÙ…¯¨ŽÙ…žªŽÙ…žªŽÙ…O¨~%DOUoñÕ¯‚ø€êWC|@õÆ=U=ÑSÕ¯è©ê=U½ ü^ ÑåÕ›BtpõfplwrŸÄ6G÷“¾Ž4:¸z ¸›í/°8¶zKÒùÿG:äèÒדFWoÑÅÕÑý»ÐÅÕÑý»òó­ ÌÏ'´ÿ.4qõLˆ&®ÞîƒYí¹³£K›r!D;M© ÑNS.‚h¤)h©h¤)µaWˆfÚ™ i#;s mdg7HÙÙÒFvö€õ`OXö‚´—½áå°loƒ a_x쯄·ÃFέXè’Z¡™wÞA ·»Üjéþ¤¯†wB´Üλ Úmçx 3à Ø†×Â!°)¼6s)×¢þü¢þü¢þüÈ¥T~Ì¥nå>+?18SV¸¤¿‘žHº¡s鴱ʓøÎ=Wž ¹çÊO@ôgå)ð*8r•§Aî±òtç·´ËÊ3øÎ}Vž ¹Ïʳ ÷Y9rŸÍ:¹Ô¿Ñ†Í:C´a³.mج+,ê’z‡VÄ_ô¤½T| Ò^*¾i'¹×ž´“Šhïž´ŠÄÁõš8÷þƒ¤©ÿÑà=©ÿÑà=©ÿÑà=©ÿÑà=©ÿßAW¼Áo®å7صž´…Šhÿí”ídÊv;e;™²ÝNÙN¦l·S¶“)Ûí”ídòl;e;™²ÝNÙN¦l·S¶“ɧí”ídòi;e;™|ÚN™N&Ÿ¶S–“ɧí”ådòi;e9™²ÜNYN&¶S–“É£í”ådžcÅ Ô ¤)ÓÉÜãŠ6¤#MÙN¦l·S¶“)Ûí÷Àæ{>ù:ˆ=ŸÜbÏ'·äwmùÝã0N„íà$öcç'_±ó“[Áûakø¼Ž€m`Û‘0>ÛÁ‡`o„Ûàhx3oca{—2ꆞ.yós.õÑ,ø<¼¾Ñßî’Êc¾¾ÀöÙŽŸÝ¼â77¿ñ—›—Âüõõý9îEÒ/“Æ/n^o…¯@bÆÍËag—²®ºK{àkbÚô‹”ßQÚô‹”ßQÚô‹ \Ò°q.V§|–†ãáéðQˆ>6ž ƒeœ»‚{ü„øyØã¤Ë‰Mp¶ë“!6ëâéa“Ø~œ ËÃ'àÙp ¬§ÂŠp$Ά66ƒïè´:縔¥7º´>EáM¸héͰ¸s/幤ki3Ko!M|ôÒ:Ò´¥íI—$nÞÀ÷|'NZнëCœ´{×ç4—<¸¾K­‰½|D+@Ϧ¢Q_N»=¸Änn±Ûƒ¯€ùý7qÜÒW’Þ Aìöà« v{ú-u*é«Ic· ãR§‘nL»=8¿d;º.m3øÒ_‘Fߥ¢qgþštGÒhh¼ÔYloÂvìúàk!v}pSˆ]Ü b×7‡ßÃë ~op ˆ_ÜâG_ñƒ[Áƒ.%—:œÿî‰\êpþ;&N¡¾|ý¨KÍ­'ÀË 61÷rˆMÌm±…¹ !v0÷ ˆ̽bsAì`îU;˜K\ø5v0·1ÄæÆ!60÷çÆQ敨§_c s3HSö•ò¯MÌm±‰¹×Â'aS86ƒs`sø¼Î…-àÓ°¥KÙH<=æWH<=æ($Žs GÁ–o$Žó;$†sCùCùC9‰¡Çü¯€Ã+á?°‘K‹TßxL‚ذùžÌñ~Ö8—VŸ˜õ¬ëÜì.éÒ¥¤Ç“Æ~f= ±ŸY í/ë1˜ÿNSòëGÎU—üú{X—üú{X—üú{X—|ú{¸’çøä¹îwîåæ.©éhti¾VåþyÆ Ï8r^É3ü‰c¯ãXâû•<ëÀCgxò¬†<ëÀ_ Ï:ðäYþʹóõ/Ï;ü\y5$?WòÌÉÏ•qH~®¼’Ÿ+3 ù¹² $?W^ ÉÏ•M!ù¹²üÛ¹;6¹¤äÓ]òmاªØ½Û°OUo‚¯Bìåä™.­%v|ò,H9×xÃÅöÞà\·ªÎË&ý&é6p%l ß‚™ðmØ®‚ØÕï@Î_#9Õ;Zƒøu/v´ÆZˆ­ñ.$Þ¨ñ¤^ÖȃÿE÷osýÇüsî8Ù»Œ®e†›•™KF¨dï])"ëZ¹eï‘=Ëh"²W2#Y! %?¿çýã<žçó½Ã9çûù¼ß¯÷ïW²ÿæ‰ þÜöÖÛ­Íï`îdÛâS÷.ÏS_Ûn¦~ïv ùîtGšíNw¢Ùî´Ü~:!D?õ9Ÿ.HŸós[ƒi4·5˜îúc®ÿbŸñcÆðÍX‡£ëðEš±_¢ëðeª_çÁéÎày{jº3xÞžšî ž·§¦;ƒçí©éÕiOM¯Agnº3wÞ™›îÌwæ¦;sç¹éæàsu^uë¼³7ÝÙ;ïìMwOÎ;{Óëúºy;¯zÞœ®Ç¦˜»óªg)æî¼êXй;¯ºu~ޝ׳6çU¿Îϵ®ÏylÀùtS俼ò|ŠÜ—W];¿Àu÷úüBº×ç?£{}~›„¶çúèô<Ÿã1×Z?®ž–}j~‚Y)¼k-Õ”FË@5e Ñ2PMh´ Tó[Ê=5¿£ æ&šjn¦ æšj~O3@Í­4ÔÔƒF›jê=£Í5·Ó PÓlùÄss@Í4ÔÜEs@MsGA3ñ ÷± ™ø„ûX·lˆæºúR0ÔÕ—‚ù£®~Ìuõ£`þ¨«óG]ý(˜?êêCÁüQW úY]}(˜?êê?A««ï}¬®¾އØt§Cüfsdº_ùÏpÏrt™Û ™ÛÒ³þÐÚÜVÈÜ–Î>Ü,s¥³7¥}¸yíÃÍ2T:ûp³98}¸Ùüšîwš_Ó]¡98Ý4§»Jsp–Î!~»~œ¥ 3³+³°³²;³…Ø‹jǬ‡¨vÌÊÉ$æbæf]æás|˜õøë3/ðQ6¤,qñyš?/6b6f›° _àc”9f¢Ì1«pˆÍ”/ÄoÝÎüÜAsÄVsD&sÄVsD&sÄVsD¦ÇèóËTˆ>·L…é~ÎK ñ­Jñ–æ(–¡žÛê)ê¹­ÊRÏm¥ÏÓs[éÁóôÜVzð<=·•¹äѾý¬õÞVzñ<½·•^<ϹoUÉ×ÞóÜÙo¥/qï;ÈKÜûÎÒY£ƒŒ°DÆè #,‘):ÈKdŠ2™¢ƒŒ°D¦èðeŠW)St¸F™¢ÃŸ”):\§LÑáeбo²!Õ®%Ïóñ6Û%M<¿ãñOˆ‰È™¤œ¹á!Ê™äÇæfý?ÎÑŒÿ‡?õß ŠÈžr¹fÞÿÃ{ŠÈ rSö܇²ç†‡)knx„²æ†¼¾ÿ3ßï½GdÎ Z/²öDdÏ ù¬[û,"2›ó‘É"rXd²‡Ü™ê1ÍcºÇ ™³<ÔÈõ&2Ïc¾Ç…Ÿy,òXì±ÄC†Èç‘å+Åe,Ëå,Ç,Ï•Lä*š‰¾]Í \Ê\ËJüœ•ù«pŸázV ‘ÿbBܚь凌£ÚºÙgÓWïØìóé»-„ç&„pJÚì³êûƒõDëCÖ>·¾Û­?±þÉÚgØWOyîSëÃÖ>ϾúÊfŸi_}e³Ïµïnúlûî¡Ï·ï^¦þ÷Í}Æ}å¾úÉwûBü»}¸Ÿïòûò û…0ØÌ™Ãü6ØL™ÃžýîG×Õ”ï±?â€[ìÝFý,Ö—êg±~T?‹½ÇÇBøduˆ“+‹õ·VG‹ `a×׸.gh]Äz­µTlõãÖŸ[ËðÅ[e2‹qŸàP>Éa,Îá,Á,É÷YŠ#i¾)¦îž‘‹©»gdr³w¤˜,[Lý=#“SÏÈäÅÔß32y1õ÷ŒL^Lý=ó4Õß3¨þž©Hu÷L%ª»g*SÝ=S…j¼uF†/&o‘á‹É[gä­ÓòÓ$ùé´ü4I~:-?M2»œ–›&=GùhR=ÊE“ä¢ÓrѤ!Œ´‡Ùe-MjHyh’¯e¿¶ÏkÙï£íóZzh^™z´½]K/mo×zÏ5ùz´ý]Ë>}˜x„y”ƒBx`QˆœT#&ª'Õˆ‰jÄI5b¢qR˜¨FœT#&ª'Õˆ‰jÄI5b¢qR˜¨FœT#&ª'Í5«Ñ<3±:Í3kÐ<3±&Í3kÑ<“ú÷Á4ÏL¬MóÌD³ßIóÌDçû¤yfb]šg&>GóÌÄz4ÏL¬OóÌÄ4ÏLlHsÌÄç ²C=×'&6¢Yfbcšc&6¡9f¢}ôwæ¿T?ú; õ¤¿³rc£åérÇßÙ¬eìÑÿYË£ï±2ÿÇ*¼ÏgB%#Ì!g÷ýúÙß9¨§ýý ¿ !?+aZˆ;.%L§l”0ƒ²QÂLÊF ³(%̦l”0‡²QÂ\>M½á¸L” 7¯h.Ký]úÃq¯«Ý®þNÇÝLïº~q\FJÐ/Ž›—ô‹ãæ¥ýâ¸×™ _7/%èÇßýâ¸y)A¿8n^JÐ/Ž›—ì…ãæ¥{áxmÚ Çó{á¸sž`/wÎì…ãÎy‚½pÜ9O°Ž;çÏËLQyäy™)z)„nB¸—ÅZvŠ^‘öÊb{ㆽ²ØÞ¸a¯,®BÓ!\¶oØ3‹kY¿b-Ë4}•K\·‡?kýšµzÞ´'—¹nO-¶‡nØS‹í¡öÔâ:¾þº¯/·¶·ÛK7ì­ÅöÒ {k±¹­é¾¾ÂÚ[lOݰÇ«OM{¹¾’½¹Êu{n±9.õŸ»¼šoQÍ¿a.¶çš¾m½–ïðsö¡š|ÃÞ\ÜÈž¼å¹ý¹Ø^¼ao.VÓºµ ñùî³mˆÏØŽÎ|·öŒaƲ#ãØ‰ñ4c䆨Q¿†hM³Ë¨3tÆ_Ö»2Ë›/ë]™sRïÊœ‹zWf™òe=+³Lù²ž•Y¦|Y¯Ê,S¾¬GeÎK½)ó£Ô›2ç£Þ”9ˆn†©’‰f˜*™i†©â^ïÁ¬|…Ùø*³ó5æ`O>¨¶¨OÃ_÷Ükþ½¶á½èµ ïM¯mø›ôÚ†¿E¯møÛôÚ†¿C¯mxzmýÇ*^Ûpï±Jêkó« ÷X%Þc•‚!’lW{’íã ‰!TÎÂ~³tÄì_ÙkÚÿ"âK”Í÷7¥¾ÿeæ¦R9›óa¶à#lIù{+¿ÛÙ¨`v©,ïoM¹{º™ûÛ²Ûù>g§Bëëö,È®;KœçÊrÅþŽÖÎTõ5Ù™ª ÖT.äz'Êû;S®Øß…òÄþ®,Ên¾ßÙ« ';{Ôádg«‚:œìlUP‡“­ ÎZ²3UÁYKv†*¨ÃÉÎLu8Ù™© ';3œõ.“Cü£^×krgä5ë)Ö•8•jK—iT[ºL§øš\éi- <ªÆt‘UcºÈV±w†èÊÔÿv¦{5¦ Ý«1ѽSˆöã˜Â´Ç¡ý8æqÚcŠÒ~SŒöã˜'(+y’²Ò˜â”•Æ” ¬4¦d# „HžvÖ2Ó³éa™iŒšyXf£þ–™Æ¨¿‡e¥1êïaYiŒú{XV£þ–•ƨ¿‡e¥1êïaYiŒú{XV£7–•Æø<ËJc|‡e¥1zBþÔ?K^ã3ÉŸúçÉLc|‡e¦1Õ\“×ÖW Ñׯ±ÿdeÊ“ë«P~\ÿ åÆõU)/®¯F¹n}uÞb š9ÇûŒŸ³—ßY 'œ·öY?§>—»Rÿ·Åñr×sêóùË!~úÇ!¤¬ ‘¼fÖó¿[Ëæ)ë­ýžóW¬eó” Öw¬ÿ°–ÍS6Z›eÏ_µ–ÍS¾´þ×úšµŒtþOÊHç¯SF:ƒ2Òù¿(#¿Iéüß4_ž¿EùèümÊGçÍÊÓSÿ7®(ÿ—sCxbOˆ™T0Ä?¿“QFœTˆ»Y˜©_/½|œûX”f€IÅx€Oð Ÿä!ô"Q½¹ˆyï”9²ˆ™ï”Y²ˆ¹ïÔšýNùóŠ˜ÿNùóŠ˜OùóŠ˜OùóŠ˜OùóŠ˜OùóŠ˜ Oí± êññŒTgbfabÛ)*Ntö‹Ît]ý<žÅº½õ,:ûEgÓ™/:Ç×ÕÕãY©®ÏFuõxvª«ÇsP]=þ ÕÕãQ]=ž“jêñ\TS籿ц…ð…¹©^:ëo¬‡[›Ÿê¥§ù©^šŸêyÝ¿õõüŽïsGr3S¸…ð{Ž 1¯‡¸©ÞàhþÅy“rgÅ¿©U¼Åq¼Íx‡ãù?±m[…hÎx¶¦>Ö¶ `[¦a;¦ aæÛ!òÔZëöÖÞOÛô>f¾ãúçÖ­½Ÿ™}¬¿°îdí}µíL÷£mffWfa7úœ·z?s+“¹CB\¦U!ºÍY)yÍÃÙì“-DK|Íìü†9øm…®„0÷­I\ãÚƒ®}bRÔ¢êjSŠZT]mJQ‹ª«M)jPuµ)E ª^’jPuu"E ª^ZÎO"iå§µ¨ºÚ”¢UW›RÔ¢êjSŠZT]mJQ‹ª«M)jQuµ)E-ª®6¥¨EÕÕ¦µ¨ºÚ”¢UW›RÔ¡êjSŠT]­NQƒª«K¸)f·êêRŠ:_]NQ߫˂)ê{uý¡³Ü™·åμOPîÌû$eμÅC([?„í£¬eͼ%¬å¥í£Cý\“;óêåμ¥(wæ5¯Þ¢K›s[p8[r[ñ}¶æH¶a Ûò¶ã(¶çhvà‡ìÈ1ìıìb­цp ‡r-‰L[=ÿÜóá!öA÷jOñY q]G2†)!Ôþ'„æž•±Ö0ŽÞçÊxšWWF)ðg×;Wš»Ž¡Ù±ëX?û¯Ÿ5+­4CvG3d×h†ì:žfÈ®Ó ÙuÍ]'Ò Ùõš»~Jóc×I4?vLócWõµƒúžú÷ŽtPßó¸gÔ÷<îÙ®!~ˆÚµ+j×.µsˆÚµKí¢víR;‡¨]»ÔÎ!j×.µsˆZ¹Kí¢VîR;‡¨•»ÔÎ!?RírˆjçŸXœ‡Y‚GX’GYŠÇXšÇY†'øfYžd9žbyþÂDža¨½‘óuë§­ežaEže%žceêo»ªðŸáo¬JóÅ®j¼Äê¼Ìü5y…µøŸåUÖæ5&ñOÖáuÖå >Ç¿X7YŸúïûp^«¾Î"ZÛód¾¯³X?om_γo¯Ø—óìÛ+öå<ûöŠ}9Ͼ½2Ž|VßßÈú#kû÷ÊxÚ¿W>fçÙÓ:Ä ;Ç6<϶¼Àvüíy1„fÕ_ÿ±î`}‰y9„/yÞÉóßÙ™jUަ!f¹Ï½³û°ÜçÝù—ÞË"™eÞ÷rQæ}/7eÞ÷òPæ}ïaʼï=B™÷½¼ôþß{”Þ÷{ù(ë¾—Ÿ²î{2Wf™k¹ûØÙý}/Áº½µûÙÙý]î~v>BóØ7^cÄÏÇšÿ¢‹Í0æ¿èâ±ü’ãø?¢ž¶x|ˆt/Dñ\Ìû\b.e„ËÃåŒå Æq%㹊Q®æT¿§¡38-õ”Á騗 NÏu!Ì—¯+,´Î`½Þº»õgÖ­70723¿d~ŬÔ;ë!‰zGô@ˆÿ¦ò=þÈþ<Ä!Œ»"…ôƒqQNŒþäú@ë›ÖO…PÀœ_ÀŒ?îoë²4O*ÇÛ,ïûûþAÖw¬­XëqÑ£Ôã¢Ç¨.FS]Œžà0=OÏߦÞgÒó·©÷™ôümóCLÍ‚!î߯Cèr3„»úQÍǬ¿ 1¹Ì,û͹Ì*ûåÍ\f•ýòf.3È~y3—d¿~–Ë ²¿Í ûëÓ ²¿Í û†˜ô‡¸ÍKù—1/—óQ®`>® 1iw‡¸M-¹‡©ÿ›Ý^¶æ>¶á~:oÿ˜W¹ÿœ¥ûñÏ9~BQµxX¿W9Â÷ÃþŒåÆq ã9ˆÑª˜×Œµlý“™†2Bå´ÊtôùUÖ¿‡ gŽ`F?ßØÏ§þ¹ï[gâHªÃR¨^ û€êÀ°QÌf&•‡ö<{ˆŒ>âj9ÏüÂæÈgœ™­Ñ?ºî<>sÖÚÙ}Ⱥ%¢Ytôa¶æ¶áQú½£Q}œòçè”?GÿLùsôIvâ)š1Ÿ9ç÷›ŸGÿbÝ…§Ù•¿ÒY}†ÎÀè³ìÁs|…çù*/ð5þÆž¼È×y‰oð2{ñwö‘¹ö\Kc®ŒÑRƘ+c´”1jª9G¦XË-Í¡s劖rÅ\¹¢¥Þ1W®hYšKXÆ÷«MG¦Z/µ~ŠËX–ËYŽ+Xž+™H³{K³{¶ÃG¬Íè-õï¹öwK³oM5îÈ4kû¼¥™|®}Þ²2íó–fí¹öyK³ö\û¼¥Y{®}ÞÒ¬=×>oiÖžkŸ·”¥æšµ[Ê sÍÚ-ÍÚsÍÚ-ÍÚsÍÚ-kó;&qëp3ër Ÿ a™ZºÌ^Xv&Dj¨¹5ÔÛBì¼GC´å>æ£Yd^~`ddAâcü‰…x˜…y„Ex”óXG{^Ôóã,Æ|‚?óIždqžb þÂ’<"õ quþÇwyŸ}C\]Ûû#篮ó÷‘óW×ùûÈù«ëü}äüÕuþ>rþê:9u£tîê:w9wu;y.®®y bF•éâê:{2]\]gOž‹«›!Ät\âSÿNª‡Í¹¢!~ŸÚŸëªý¹ÒpUÿ";o¢ù*WZ×õ‚\é¨äJO½ Wê¹2R/È•‰ë˜™ææÝcôÕ9–qõÓÝ1—ÞÜGoþÂz¼µ¾ºûcê«»'P_Ý=‘úêîO¨¯îþ”úêîItwO¦û¼{ ýÝSéÌÏQ/Zd£ZÑB­˜ó!sÐëiáõÌñzZx=s¼žæÃõC4ëß!ÌX"enX7°¾Å†¼íúZ×ÿ²~ÞÚì_FV½4—²ê¥y”U/éedÕK («^ZHYõÒg”U/-¢¬zi1eÕKK˜ƒzršy!þ;³ÁGÞC!Y(Í|ë†ÖÞK!™(Íëç­Õ›B²ÑG±# ± SMú¨»ðqveQv£¥Pwª…zPý(ô eûB¯RÝ(ôÕB=©nzÝŸ»ÐŸ+ƒ¥ùŒ¹ˆM|]=)ô˰Õ‘B½©ŽzÓ÷Ùcß½À%|‘Kù—±)—óe® ,õ‘ºSè-ë•ÖfŸ4«höI³šfŸ4khöI³–zÚÙCü=öìCü–9i¶<›‹›˜››™‡[ø0¿ç#ÜBŠÞ”7õŸÌk½ÍÚ9É›úÏ>jýƒµó’Wo>›Ïz»µž•W>›ßzÍSÌgÍSÌgÍSÌgÍSÌgÍSöú¹Œ~NO?k¦˜b¦8k¦˜b¦8k¦˜b¦8k¦˜b¦8k¦˜òciÿóÜ\1Å\qÖ\1Å\qÖ\1Å\qÖ\1Å\qÖ\1Å\qÖ\1Å\1«EˆoaKÆ„ð¨÷1«•ç±!¶Õs!šÝ¾mU7Cì‡GC4õŸ\8ßcAˆT’Ÿ+wý˜ëïó8GòÍyE {±þÙúžä(ž¢ú÷á/ü§)›~ø+eÓN7Bô‘©ü‹Óx“Óù7gðgò6gñgóÎ῜«–«?5Ô="ÚòUʺ-Sÿ[G?¹žÃZæmÙ“ßÐ~Õ+¢-íËŒ^«~mÙ+ļ螤·Jé«“©¯^B}õâP^á0þÁá!tœÂmŸ©«Ö#xïóOŽäu¦„˜M·B|߼͙¼ÃYü‡³ù/縧yCÈg|4DÌéú]×ÕŽMÿQíØÑ1Ä'gaȬyÈÜ·£“µl4d¶µž6dõµ!s)ã ™Gsߎξ/“õ|kóߎ.Ö™Ù•YØYÙÙBìÅ!ºR¾½³„òí¥”oï,ã0.§™ÿÎ ŽàJÚwVÑž¸³š)\CŸïµ´î|N{áδ>Ú¢ußå.öånÊóí¡<ÿÑ^Êóíã€ûmÕ}ç«ñŸ2õ¼ºçÿ²Z/¬]ݺ¦õ¬Å{|–ÿcmÞgRˆj)±ßÖa„ub/5 ÑÙ !|•"¾³nl]0Ä^ðý3rÑ÷ÏÈMß?#›Ó¹™ñõ‡úÏ }+Ñ8H¿JÔ¯éW‰úÕ ý*Q¿¤_%êWƒô«ÄÔïׯõ«AúU¢~5H¿JÔ¯éW‰jý ý*Q4jû éTÛÍ Ú>h&ÕöA³¨¶šMµ}ЪíƒÌ#‰jû Ù0ñ‰*éÝûþ´–ÕøA2b¢?H6L,!ÈmƒäÃDu~|˜¨Î’ÍS•VûÙëÖrb¢œXiµYkœ˜¨¾’Õ÷Arb¢yªÒZ_7ƒ ’åÅAòb¢¼8H^L|šrbbß÷¹ï3› ’åÅJ_X›ÍÉ‹‰òâ y1Q^$/&Ê‹ƒäÅDyq¼˜X5Äþôiˆ~¨·=!gý4Ésý­ótÃŒ×f ÷„óûéU(Ä=¾4(Î,Ê•,ÆU|‚«ù$õþ^Å©×÷*A¯;1>„]²h¯’ÖrJ¯R\ÇÒ”oz•¡¬Õë)ndY~ÉrüŠåù5ù Ÿæ·¬ÀïX‘›X‰›CìÁ!úA~¶¤ìz°BìPõ­Ò+Tß*©ƒCÕ¶J¯…˜žB|áXª!…ã¨vޱYÆ…øíø}æã„Há¯8fÕtW<ä¹y;ËxßS‰³2'° 'ò~B÷!˧¬b_ê¢ …0}L”Áz€ua¤^ñÒ >ÎÁ´GÏÉBS'Qš:™²ÐÔ)!41»]H½.M5œ“‰¦š#ÎÉDS§óAÎàCœéûÍtR>§õ,ksÏsϹ\Ö³­Í5ROnk5ó\ª™çÌÏSçùº9åBêï7GOU3Ï™£§êçÌÑSÒ=õ3æç"àb&p ÍùSeµëYCô³sÌF½³³ñˆÙ–û[öÝß²jRg5ã™r–û\Vmê,S>"S–“ ®ì¥LpÅ\RN&¸b.)'\1—”“ ®˜KÊÉWÌ%åä+æ’ròÀsI9yàŠ¹¤œÍ ·Ð|p»!Í·Ÿ§œ~»QˆÉ¯þ‘WÛ¹7e“üêÐy5¿:td§ëîçMg©]{:CíÌ7e•üêÓ96¿útD]mg¶¸)»´3[Ü”Uò«WGäÚü=ÔªÔ¿ìȾJ¾ã¡á–|×£¯G?÷BÈ’ú÷ô÷°–v ÑN±ÍZK;SÏ]Ú…zîÒ®ÌÂã‰O{èûsò>âɹykSÎÍ›Äã¬C³öüs!ÚZVSocçŸ÷ü^à§!vc|ˆöRç2E=znV(õ–Ü–žoÓ\êf¤Yüb&šÅ/ÊO¥Ìâå§Rý<Þóèï1ÀÃì}Qíº¨^]T«.ªS ±72‡è"¹¬x¯ðcˆ+ׂ‡¨>UòاF øÉº³5° ÕrÎêgµ\;g{ž`þÌŽ<ÉN<ÅÎü…]xšÎô€_ÙgØgi΋ÈÎyþ ÏóU^àkü²óÙ¾¢³4D¶¯(ógP[†È÷?¡°37DƯèL}¢mÍúŸùlÛšõ?ó¹¶5ëö×3 70-72Ý›ÏÒÓyù,õÂë2É"ùãºL²Hþ¸.,2O^—G™'¯Ë#‹äërÈ"yãºü±È|x]þX$g\—?É×åŽErÆu¹c‘\s]îXT‘rÇ"¹âº¼±H®¸.g,ÒÏîx=+~¥×³â ½žg™‘êùLTs+.0  ±ŸêgÏËNE–y®§=_’É,Bú%Ξº}KÝ®ªnßR·«ªÛ·Ôíªêö­C!LqßK˜…ªªß·~²vÿKL£û_ÂLTµ¸G uü–:yK¼uÔ×í‹úß¹¨¢\4D.ª( ‘‹*VåVãFVç—¬Á¯X“_Svò Ÿå·¬Íï˜ÄM¬ÃͬË-|Žß³·ÒìšÍ¼´ÓÈf^Úéd3/íHóÒÎA!.ýï!ºe¯P]Hÿ÷ñ*÷óðOäu:'é͈[ÌY]¿ñù^æ:6ãz6ç¶àF¶ä—lůؚ_³ ¿a[~ËvüŽí¹‰¸™¹…ø=;s+»p»òvãvvçöàN¾Â]|•»){uÝÞÜËש7æ{ƒzc>sgW½1_oêùÞ¤Þ˜ï-êùÞ¦Þ˜ïºçùúÐ}Ï÷.õÆ|}©7æSƒºêùÔ¡®zc>÷¡«ž˜Ï}èª'æsºê‰ùQOÌ7˜zb>snW=1Ÿ9·«ž˜ÏœÛUOÌgÎíª'æN=1Ÿù¶«ž˜ïýY«®¿²™•¹…U(W¯}†[CÈ.ƒgWsÖVµÞ"¯ª+©+¯ª+©+¯ª+™Í˧ a§ýõªúòXOy\Þ~õ¢ç¯Ó þØ!vÓ¬íÛœ³)×e’U7Íñ¼%ç²ç±5ç³ °-²?c{.¢>¶VͨÓÛڜ۷cˆí15DjqõÜÓ©çö˜A=·ÇLê¹=¼–=·‡×’ çöð:ôÜ^G‚žÛÃëHÐs{x zn¯#AÏ¢ÿT”!†è=eˆ!zOEbÈo”!æËÇåã!­'Xﵖņ\²žÈËÔ³†8?õ¬!ÎOEy¸µ<›C.m–Ûj–k-Ïæ˜Ey6‡œ[Úœ¶ÕœÖZ®Í¡G—6§m½AóØÖ¿hnÙ*³•6gm•ÛJ¯ã-ß/÷æ˜k½Þú¶µü›cåßòpkù7Ç_ßàëw¬åàrqk98Çg®otýky8‡|ÜZαØuyhë¿4_l½ëúc®/±Ö·þgm.Ký÷ Jc}ÏÚl–ÃlÖÚl–c¹ëߺþ?k3Z3Zk3Z{¦µ-‡­µ-‡­µ-ÇšS`Wˆ;æœØMç¼€ÚsÌ9/ ösÎ ¨=ÇœójÏ1ç¼€ÚsÌ9/ öë*ÓøÌnþj­sÞ èÕÇœ÷zô1=³Ïèæk½ú˜s_@¯>æÜЫ9÷ôêcÎ}½ú˜s_@¯>æÜЫõ ±ËÔ¹Îs©ÎužGu®ó|þEÙ{ÙM.äßüŒ·¸ˆ·¹˜w¨¯,û‡æeÿRïYv—ËùWðWò\Åû\b}¤ÑÎkáZÆPßþàá­..°w*•²~ÄzóR6Ìü˜G¡{y}ˆÎÑû¿ò™7ºn½ÁZÿ¿¼‘2õå/iþþʾûʬÜè†Ç_®庌Ýܬ‘UÎknÆÈš+„ý͉öÈ 3h{d†´Œ½1ÃüYÆž˜1˜öÀŒd~'dö³oøYÙpt^G=òy˜‹G›‰G'„hÍ»§ÞpNo™& §Èdy'[ë1ÓìszÌ4{çœ3ÍÞ9§ÇL³wÎé1ÓìszÌ49ëjÿ· ž¥ ¸àê{©ÿÍ‹«ƒ™–ÉLÇ!LÏ¡47\ÆŒ!Äñ|¸ç™8‚™ù>³p$³2…Ùø³ssp4ä‡|ˆc˜“c™‹ã˜›1Çóa~ÌG8y9‘òæã§ô™þ¹Âkûs%Í`®â0®¦ÙëÏ5”ÿ\K³×ŸŸS^üó ¦„˜*/‡¸›×ÙŒ7Øœ±o²%ÿf+ÞbkÞfÞa[þcNîmN¶;™³–ï;™¯þÙõ7]Wó2T÷ü-ÏííNæ­‡OZ¿mmw*g}Šåù yšOóWß÷ŽïsÖ›AÞÈÂ*÷îY=`½Yä<4‹¼ñpˆý¡@ˆ<ÂxnŸ üÅsßÛÏ{*}šÞSi¿¯¢ú¼×÷U4CíýÅuï±´ ¢ú¼7õû¼×Ògé½–>纚³7õçÔ–½©ß7g9Ÿç|ŸÏ¢´Y³¢ú»÷¼µÏ¤´Y³âBë Öí¬c{^d^bG¦þýø»¼Ÿúwstö<õïÜèÂ?Bdœ}PǾgÔ±/ÆÙuì‹qöA¼~æ Ïí…:öƸI´7ÆMf~NaªNò˜ÂG<Žº>ÕõNcANçcœÁBœÉÂ!ds6ÆÍò¼ˆçÎǸٞ?î¹32nŽçE=wNÆÍõ¼XˆmòIˆ¦«Âty´´=ÖäSëjœÄêœÌœÂšÔãÓéñMôøtz|=>ßDOçþ6ÑãÓéñMôøtz|=>ßDO§Ç7ÑãÓÕ÷çɽ¥Í>ÓåÞÒjßôúTóšèýéÈù{®ÿ§Óÿ›èÿéôÿ&rHºF”CÒ5¦’® åt/¨»f„.e9„å8”åCLéù!îR•:º÷·ÏY›‡.=CóÐ%ï½£=pû¼µ¹èR5š‹.¥þ7Gí¥½Ò^Ù{=„¸«žÛ'{¹œöÇ^½¿>}ã7.âE×í—½Î`Nûe¯3˜Ó~Ùë æ´_öÞ!§ù:§ý²÷ŽŸÑËo\²¶oöþîü—Ýx—Ýù{ð_áÿø*ïóµ·/°'#!¦ÎÛ!>˜§ë¼Cót>ÌÊw™}™ý˜#y8ü—Ãú=ëÙŸqsr õy9ü—úõAÖ¹9˜y˜Ì‡9„p(órõsöî©¿o¸u>k3Ö©¿w„uþrûlë¼ïyŽd‚k>çÜ>ß:)Ö=÷çöyÖùÀú1Ž¢žy¦[ˆN‘aÏtgEö`%¾ÂÊ|•fÐ3¯ñê‘SÌpËqÇ0 SÿÙÈ‘!ÿöâñí®§u}Óñ#¦çxfàÇÌÈ Ìĉ!2Ò÷Uõ}#}_Uß7Ò÷U•E«xÍ«Uäă¥é}4kôóUeÓ*òâAùy¤ßSu¢µÜxÐì=2³õ'Ö·¬Íà#³Xjmï4‹Ìj­6T±šÉGf³žÌìœÂœÊ9q:sÒl;RÖ­:3ÄVtoo¨“‡…Hñ-ÖîíÇéÞÞP# ÊáÝßjDE÷÷Æ!¶™3œÅnæ gñõfÎj9½™sšÅ9mæœfqN›9§YœÓfÎiç´™sšÅ9mæœfqN›-á‹\Ê—BL½É!>ö)NaYNe¹—YŽÿa'å÷dÐÌòû»Cìä¶!ÚXf™ÜŽYØžYÙÙBXrɾ,Î~,Á÷X’ý)O®ÀÒÈ2ħ8˜êàZõðÕr!fõc!¾ûnâæ^á>½@ÍJÒãÆ©YIzÜ85+é²þcŸþø£µÚ•ô;Õ­$}nœz•”ÚçÔ«¤«T¯’®Q½J2?S¯’dÞqêU’¬:N½Jú‹êU’}‘aÇ©YIóu𕯽A3Ò¸^4 ëM³Ï¸7ùoˆôÑ÷Jê{}ô½’ú^}¯¤¾×Gß+Y˜z^É"ÔïJ>N½®dQês%‹qŸ ^PòIê%‹S(Y‚jÉ’TûK–âb–æ:·}–Òyí³ŒÎiŸåt>û¬ sÙg%Ç>«ø4W³×°"ײRˆYt3Ä·ŸÊ¿9·8·9ƒw8“ÿp–YÁÞ­ao`ïÖÈF{7õÿŸÿ +íéìÝöôön‡hïÖ0 |`ïÖÈE{¶†³ð=[CîúÀž­!“´S§rªgíÔ£œêY;u(§zÖNýÉ©þ”1{nóù·Srª?©óÄ63gê<±í.ÍÛþ£ybÛ=š'¶ýæ‰m÷¹)e5”ÙÌ·0ÆïS¿rª_e¾·ŽåVÆqãé‡~ˆ†E-m§¶å”ʘ¡~0´SãrN±Þa-#¶SërNµ6Ký–»(ó´SûrNó‡«=µòÎê@g­¼³:Ð+ï¬tÆÊ›¿æ™—+èµòÎì@g­¼3;ÐY+ïÌtÖÊ;³µòÎì@g­¼š8ÐY+ï¬tÖÊ;«µòÎê@Ù£¼³:Pö(_2Ä4/â³ ¡‡~p¿”u9ëYž‡˜H}8Y©ùÓžfaEê™=ôûzH=ä~×+¹~ÌÐin^Ùóã¾æ\ÝÊï™âZ×Nðþ̪<Éj<"· ‡¸eæý[E¸*„— á÷–Ö[›Ao壳zë ~Î'ù…$cÞ*îù:–àz–ä–âF–æ—,C{æAgüÖSžͲü†jü²oYžß1‘›BÌ×/†ø·ì­AzSö-Ö/YÛcƒ†[Û7ƒFоô>í›A#ùƒïkêûìÁA)ÖÛ­_¶–“¾nâß¶©÷ÙwX7·¶'©ëÙíAêov{gЇÜMù »:ùu ßc=Öz/å‚ì× ý>û~_oéë±lE{x=›ý€ukëx¶¡½œÆ¬5ÈYË~е¶®=bÍâ~ZƇ¹œpór%å*æ£Y,Þ=jk6ºù¨kù][Ã\bÎñSñó(“yŒCxœCy‚Ãø3‡ó$Gðßç/ÉÓ4gžý•ð Gñ,Gó?äyŽáÊR)êhÞ׬³Ç‹üˆ—8ž—)å·GÏþîù^áDþAu'¿óœ¢çíéÚU×Rÿý>õ8ï뾦^ž½æÚ$ÊŽg¯{žú÷Ùù}C¿ ñ•:‡ð–½™¦Žõ·Ö]ø»r»…˜…‡ø6ûX”îáÂbtÏ>A÷gá“t>§ó¹°bI:› KÑÙ\Xš²üÂ2<ƧxœÎ{go¡sÞÆÙ[蜷qö:çmNÑoó ñ6æånÍC4¿=–¡y³“<ê„H9û»œ¹¿[ _S# ™¿ºµôÜ+TÓ£–dzµ=Ì\ÝZùšýÖ'wˆ/ñ%óð+>̯ù¿a^~ËGùóÑykw?ÄçÒ{ÚÛf©ÿM¼öÎb g3–sGóô«C$Ì³Ž·N5Êù|€ ˜† ™–Ÿ11=3—0#—2…ö™é,´ÏBg¡}V: í³ÑYhŸ«™ƒêÓü±!®õCÇœüˆ¹8ž¹iomŸoo­çÍ7‡·6‡Ï7‡·ÎK3xk3ø|3xk9/› 3ßÞÚ>ßÞºÍÝ­ÍÝóåÖæ‘š£B8²ÓZi-‡Ì—CZË!óåÖæïš£}}—µ<ÒZ¾®ù¡õnk¹¤µ\2_.i-—Ì—KZË%óå’ÖrÉñŸCÜøŽ<ÉN;VßMÒgÇê»IúìX}7©D eÃÊæÀ±úo’l­ÌIÙÏÑœ”ý<ÍIÙ/М”ý7𓲛³Z™“²›³Z™“²_¦9)»ùª•9)û¿ï=¿O†je^ÊnÎjeVÊnÎjeVÊ®Fµ2+eÿ3Ä>75DcjqíÉi‘)Urv©êŒe ÆQߘÏÔïŸîûksõœiQ×S^Æ.•z}¦ëu8‹u]—µKé3ÏͶ~ŽsX/„‚ûCHÀ×õÜR©ß?×õú®ð|žç 8Ÿ ¹€Ïs!ñ3ÊçÏ-b.æ \¹”/q›r9_æ 6ãJ6ç*¶àj¶ä¶âZÏ=oíÑ&DßqOë«ÉâëÓrcr„rcr åÅäXʇÉqTã—›ñjاó„hë‘<Ê£ïlï'.bA.æc\ÂB\J;qeìÄå”­WP¶N”½ËÖ‰²÷*Ÿý³Ï†Øõ Åy½~•{𬾞)¸ö¼kqlÄx6f”Mø_`¾È´|‰éØ”éù23„ØãYBô#YãxVþÊl<Ãì<Ë<Çyžñsò7æâEææ%æáe>Ìßù¯0/ÿࣼÊ|¼Æü´_àu&ð ò/>Æ›,Ä¿Y˜·Bì¬Ò!úò¯!<^ßó2žŸ aY½©þõSÖ^û¬²ôÚg•£×>«<½öY‰ôÚg=M¯}Vzí³*ÒkŸU‰^û¬Êtæ·WgUñÜëŸõ ¯†˜²_„¸+ ¹ŽÏs=qs#›ðKªÙe¿â‹üš/ñ6å·|™ßQ¿)»‰zGÙÍÔ#ÊnaK~ÏVÜÊÖÜÆ6üm¹í„4ª¬~q¥=õ‹+¸‹¹›¸‡¹—rpÙ}”ƒËî§\ö»ó {ðG¾ÂC|•?ñµ»ïnˆ¾ÿ5ÿã7¼Çoù?~Çû4ë÷Ö‡¨bú¯ÕÏdÙÞw­+Ò|ý@%×?w½…õ=ëÊÖ_X·ÔKkz¾Îsgv¿ß=rSˆ=­LR7È1 –PŽi°ÔuµaRky¦Á2Ê3 –»®VL`-×4XA¹¦ÁJ×ÕŽI©vL’5¸)ÏÐ}L©J÷1¥ÝÇõ²¡ÙäŒsÀýL©A÷3¥&ÝÏ”Zt?Sž¥û™R›îgJÝÏ9ã€û™R—îgÊst?Sì×îgJ}ºŸ) è~¦4¤û™ò<ÝË”F!ÒAfÊ#3u™òÈLd¦<2S™)ÌÔAfÊã}t™òÈLd¦< Z;Üõ|ÿãPÞ£ù¹Ãÿhnî þåB½:íÎÝ´”»¸Œ»¹œ{¸‚{éó+$³h‹±…d–“æå‰gC¤X‚µìrÒÌ2Q¯+&OÔëŠ=æº,s2–æâ“f•‰z_±BÔûŠÉÆõ¾bE|ݼ|R=+dN>©ž2'ŸTÏ ™Oªg…ÚQ=+ÔžêY¡TÏ u¤zV¨3²33± 3³+³èI•<ïæyVvg6ö`v¯Aß-ö¸õ+Ö9ø*äk|ˆ=™“¯3ß`nöbžûκ-ÑëÙ‘؉Ù™_² ¿¢óÖ_.|ÊüßûOû¾¤µ|øÔ¿” Ÿºb›DC4í >@Ÿy“44ëäÓG¯!WQbO¸¦§Þàù“žë+‡7z^Üs½åð—!¶¡ºÿÕÝøíTwãwPÝßbëü¢a¯p"ÿà'¼ÊOy“Bl óÖy¿¯„yëüW!|êŒ<1ˆÕ9˜ÎƲz sØyµ¡ÄƒTJ°kؿؿ5ìßìßÉ´wk !«\÷ý[ÃþýÀþ­1,Äþ¥n/qÿR·—dÖ7ëé›ÎèàúôýƒPÜrààç)nD9p°ü˜(–åÀÁòcâqʉ2à`ù1Q,?&ž¤ü˜(û –e¿Áòc¢ì7X~L”ýËŽ‰²ß`Ù1Ñy,;&:ƒeÆDç`°Ì˜hß– ¡Ò!ìÏf-;&^´>dmVú‰9hÖÚÿ ¯Ë”‰—¬X›iË–‰—­Zçä1šm˘‰¿[˲ûÍ/ƒeÍÄ+”5eÅÁ²f¢¬8XÖL”Ëš‰öÞ`Y3QïM•äNÌÂÎtN’»Ð9IîÊììF¯oþ·!Rá!vˆy«â“ÖßYß·6oU4‡ 1oU,bænñ-»‡ÐwFˆdÌïCÌ·ÕBü;Y—XƒÎëàô!’ã9ëšÖ¿³åËÁ\¯gý¬õÖ­ë[×¶¾jɺu’õ5Ö៬Ëë¾®öåE¿}Îú†uë癕¨ÆäI¿­çë±>o²ÿfCÞò}Ù}ŸÌúíóÖ·CH›Öµ®½@u(Ç‹Tr¨‹éõ°-3h–ßâ^/ÔOÚ˜íê'mRŽoó#åø6‡(Ç·ù‰r|›Ã”ãÛaåã<Æ¢<bzmå¼Ö^[9¯u ×TÎk؈·Ø˜·Ù„wøÿ¡žZîß‘õYi­§–ÓK_ðºÒésß«Mý+Rmê/ |?”•9ŒU8œÏp«†PL–,æü/Ù¢ßãÚCK䤎B\fgá‡v!¦ü™wµ_ˆ¹½'įx‡{Ù‡ûø.÷³/0õûò=þÈþ<Äü‰y˜ƒx„öÞ‡fþ²Â‡_RF¸}Ôõd£þøáW®ßµ>n=Ôúkëÿ¬OXãÏB:ùÿöIÏGðß!Ìÿ¢ú™¡kˆüz5ÄM~‡×؇ò]^g_Þ`?þEyôW¹t²<ú«\:ÙYzP_xPfÊœ)Äo[ÇÌ\Ï,ÜÀ¬ÜH9b›‘YŽØ¦>f–¶©™ÕmÎj3`fçt›Ìٹܦ6fv·©™¿mjcfçn›s—Ù¹Ûö=áVæå6¿Ãü˜ùQÏåžÌù¸=„¯„H3Ò½c¬>qÄûÛÛuóDóÄóDž¥4GäYæëúÉØ7©ŸŒ}‹»ù6Ýç±îó°!¾rÓÙ,¯÷“×7ËëýäõÍf¯~iöêׄf¯~ÎQö›{ÜrÍÖÏ™Ê~;Dî}â>ÏB3¡úGxŠy]ÿÔõÖúâ†ØMjwß’T»û–¢ÚÝWؤv÷-£¾?ÂjsDíÑ4GÔþ^Wí1ôºj¥×U{½®ÚñŽç‹4ç¬~‰è}՞ȗù ›ñS6ç$¶àd¶ä¶âT¶æ4¶át¶å êuµg²=g±g³#ç°ç²3ç± çÓ¾¬½€Ý¸fšÚŸ±Ñ=­½˜îam÷pµ{XÛ=\íÖv~W›k/§°¶º°Ú X{%{sßäj¾Å5|›kéÔþœÎAí/èÔ^Gç ¶ü½Ú9¨-s¯vjËÛ«ƒÚ_Ò\V[6^m.«ý5åÚÚöôj¹¶¶¾³Z®­­Ï¬6“ÕÖ_VË´µõ“Õf²Ú[h&«ý=Gp+ß§ý¼z$` íåÕpGq'Gs?änŽáŽå^Žã>~ÄýÏü˜92éꉔEWBYtõ§”EWO¢ ºz2eÏÕS({®žJ™sõ4žàtþLy¯¶ý¼ZΫm?¯–ïjÛÇ«å»ÚòÝjù®ö¯œË3œÇ³œÏs\Àó\È üŒróêE”—W/æ%{_^éû”õk}võRÊÁ«—Q]½œúêêÔOW¯ä5®âŸ\M}tõ꟫×ò/~NçuõtfW¯£>¹z=õÇÕx‡jsêßÁ·ZmNýûôV«ÅµSÿ=y5¸öü†÷(/×þåäÚrò&ùªoYëM!’dT_mJ2K¯ÞB3ôêïË­43¯ÞÆxþÀ(·óî`½zÓq7Ós3p/3r3q?3óÍÆ«ÍNIYivJÊF³S’ydµÙ)I]_mvJzf§¤‡hvJ2¬6;%å¢Ù))7ÍNIyhvJz˜f§$5mµÙ))/ÍNIÒì””f§$µoµÙ)I­[mvJJ Ù)© ÍNIÑì”Tˆ¿±0/²ÍíIó2ÍÄ«§¹xµÙ'é š}’Ì'«Í>IÅiöIýÿ‡V›}’Jò:KñKó/ª¥«o2u_ýÍÔû¤f'•£zTžw˜È˜ZwÿeÞeEþÇJ¼ÇÊü«ð>eŒMru_¿Oɉ$Ék"¬ÆVg,k0Ž5ÏZŒòY>@™~MÚ@kÒ²Ó±.åͤç(_&Õ£\™TŸòdRÊI )/&É‹käÅ$yq¼˜Ô˜ò`RÊ€Iz×0I¿Z#&½ÄœlJ³gÒË4s&5c6çÃlÁGØ’úYR+>ÊÖÌÇ6Ì϶,ÀvL qyfˆ›ó8g±(g³çð Î哜ÇâœÏ\À’\ÈRüŒ¥¹ˆe¸˜Oq Ër)ËqËs9¹‚Os%+p+r5+q +s-Í—?§™âò4S\^G³Äåõ4C\ÞÀ!¶÷£!ZtóQ&=iœpžfÀ hœ Î­w~˜cNš'¨wëãÎñzç¸AF×s»~ÉÚynà<¯wž8Ïëçæ÷“y|ý2æï|„W˜—êázç½ó¾Þyo`¾?éuM¸J¯kÂ5Êôþ¤ì<á:eú êãzu¡AvkÙ~‚ŒuR¶Ÿp“²ý„¿)ÛOP'3ýb“G…hêßc>_M¯pÎz´µ¹4ùCVàÊãÉc)'£<žü«„˜ö…C|®­,Âm|œ?°(·³wð îä“ÜÅâÔ3š3ÉG‹Ê„h»³^C±!þŒùµØBš_‹}Fók±ElÂÅ|Kø"—ò%.cÓ;õŸ}Á<:õ_šG§ÞåþÇ¥¼G¹c©=Qͬ0õÖòÇR{£ÚëûÖ+B¬ˆ}a%#\ÅÊ!KíjiïT3‡N‹u]‘XjU3 ,5‡VK¦ù³šì¿´eþ¥Ïrks¸Ÿ‹ósrÌÒ$ëÖñÖòÌÒ:Öï[G­åš¥u­Gò9¦¸þ€ërÎÒzÖ°>Gù,Í¥²eµÑ¾'ï‘ë§¥¥ ´TÖ¬ö¡u:kYh©ÌYmŒuzk™h©ìYm¬ukÙh© ZM]*ƒV“A—Ê ÕdÐ¥2hµ}_Fß';-•E«M°Îd-C-•I«É¤KeÒjŸ¸žÙu™j©lZM6]*›V“M—ʦÕ&ûz_7;LËJ³Ã´l4;LËN³Ã´4;Ls_0;ìô™$o£Ï ÙܰÓûLÞNï3Ù™Ýéý%;³;½¯ä]ô~’wÓëMÞC¯3y/½®ä}twú³“÷{˜ëÿ¢qæ°i2f©µÖ'­GXËš¥Ü›i²f©/\?åºÙlšÌYÊUÿk÷hšìYJöœ&{–ò¹O“=K™§êŸöu÷®þ¯tÏÒË_éOZŸ±E{?Î}û{vˆ.{—sØ7„oôÀÌϵîÇy4çþ=Ÿöîß hÏÆ›«¿ºGóôW2Ì8Yì±ß¬›ZË2ñ/‡x·+6¾#lζ`,[2Ž­ÏÖÔÇ~U'ëu±²å¯=×ï”QÔ£~ýÒºfˆ WBtý÷üƒ[y•Ûx?ðOš¿Âuš¿Â š¿p/¿¹H÷ò›Kt/¿¹L÷ò›ßé^~##¬â^÷ZÖ ¦žº.™zêº!”§êt ágõkÝPk½uÝ0ê­ë†So]7‚zëº÷éu¯I½u] ³„˜Ï_ ñ¯ÉOܳ¬îÙ÷,«3’Æc€™!ë—¾ç5ßó {R¶`†Èêœ 0CdõÁ0Cdµÿ˜!²ÚïÌYÍÌY7ù¹×ýœ,6À,‘u³õֹ؋¹Ù›2Ù3FÖ-ÖoZËfÌY¿1*…ø‘çX™çY…ø cUêAùäÜ|ÿZW³¾Äê¼Ìü5y…µøŸåUÖæ5&ñOÖ¡Üu4Wˆk>8š›æƒ£yh>8ú0ÍG¡™°‘œxNVh$'ž“ɉçÌ“Góúº¹áè£tŽæ£¹áh~šŽ ½z4憣iþ/ÿfˆ»šžo1ßfF¾ÃLìC½´“œrG¡îäϾ3Ýõw]wOË÷eÖûÏ ]¥'ü3˜/3™Í8„Í9”-8Œ-9œ­¨ÿó¾ç­=Ú„Ø—œïŒ#égtŽ_rŽSÿÞ´—œßŒjït™¸L‚µsœúw]¾tŽêíKç©Î¾têëK¿Q].;—)h}Ñú#^¢ú:]–.ó˜õekuö¥ß©¾¾äŒeœHg,£ºú’3–ñS:c'Ñ˨ž¾äŒeœBg,£Yÿ15³Mbˆ>xšOóWVà™Ó⯟í#ÞäxþÍ5½þžßòܼÙÍçO>îæóÎ'wóùæ“»ù|ÝêH·~”‹»½G¹¸[ÊÅÝP.î6f¢ræúX7g9¿³ÜÍYÎï,ws–ó;ËÝœåüòq7g8¿3ÜÍÎo6Êb–éæçwŽ»9ÇùÕž,æšnÎr~™*Œ 1gv„ø)½¹“orß a¤9!oëÝÖosßqÝÜ×Ü0ÒÜ·¬ë{]ïcm~È+ï4?ä5?Œ4?äMôõ}¾þ.÷SMižÈkžižÈ[Áõ®÷³6Wä5WŒ4Wä­äúA×ß³öùå5_Œôùå5_Œôùå}Æ×ôõþ!¤øóVµ>d=ÀÚç™·šõOÖrFŠÏ5ouëÃÖƒBHûOˆip<ÄÇ{O NðþÌ><ÉwCè6=„ÿô˜n3xÒõS®{íÝfZŸ²þźOÓkì6Ëõ_¬µvÿœ¡×ò°™m†³÷’÷4Ã^xÉ{™a/¼ä½Ì°^ò^fØ ÆŒÈ {¡©×>Ã^hê5ϰšÚ 3ì…¦ö {¡©i†=ÐÔ˜a4µfØMíö@S{`†=ÐÔ˜a4UÇg¸ÿMÝÿîSu|†{ßTŸ¡Ž7UÇg¨ãMÍH3>`ÖSE͹¹ŽjÎM½¸‹YóßîÖjÏÍ T{nn¤ÚsSm¯¢öÜü*Ä$ q÷í£¤c´’Žó-ž Ï:égÚ?]W…pWî~_ެ*_¾/?V]Baý¢ð—Öú­(­ºÔCÎ,üUˆ÷Tˆ&9{›¶™)eÆM?p0·3™;8„;9”»8Œ»)+nÚC5iÓ^ʆ›öQ=Ú$·ôU6 z´é å‰M?RÚtˆêЦŸ¨m:LuhÓŽãQª?›Žq<3õïtJý3Nx®öl’‰úÊtż©b©–LÔ÷óƒy`“ÔWÚ¤>öU‡6©}Õ¡Mêc_uh“úØw*ÕžӨ.öb·¿¢ƒËðm>b_ó~ õ¥÷SHÎyÍû)$ç¼æý’s^ó~ É9ÅÛ‡øóéØf¯â™hæ*Þ™™Ø…™Cì‰Å!ú±ßwb ý¾îÉÇ~߉e´¿×;·ëíÿõú|ý =äáL=~ô}Ë}ß@® ûvb%Ý·«è¾XM÷íĺo'ÖrXˆÙq)Ä'«©;.ócþÎ ! ù)Dræ°¾b=‘ð^¥|<ä°¯?Hu/§œ1D­Ë)7¤5ß9æ¹Ì°ãšï•¡‡·ÎÍ”†üL™aÈI>ÂSÌË_ø(OSŸò+óû=ú=“yS\?㺾=D/Ë™àú ×õ!zU΂ÖúEò4êÉzíý"yõŠdueˆÞ•ó1ëÛÖ³x‡³]¿àz!þÆÂ¼È"¼ÄÇ}ß?¾oÿå\Þå<_W{rµþÏz¾õïÖŬïY/àÿ¸÷ùYˆÙ¸ˆÊ;c¸„±\Ê8.c<—‡˜ÛýBü ïëö{ôºo÷§×ù¡œS@-¼=ÀÚëýPÞ)pÚz uâã®Ë?~µl]Ôz®õÊ;κžìº×{{ŸàP>Éa,Îá,Á,É÷YŠ#Y:„tjLÖº!~û >G³|Öz¼ÂøC¤°¹&k}k3}Ö4Óãº9'kCëÛ|žw؈ÿ°1ÿeÞå üæ‡í懬æ‡íÿ£¹a»:–ÕܰCüÏjnØanÈjnØanÈjnØanh6*D³”åh–ã‡,Ï1LäX>Íq¬ÀX‘ã©~4û˜•9U8‘ÏðV姬ÂŒrÑlëIÖÕ9™58…59•µ8Ïr:ks“8“uä—BÜroù¦”{Ë¿L¹·|3ʽå›ó:[ð[ò/¶âM¶æßlÃ[lËÛlÇ;lOý¹|Êáå;ò.;ñ?væ=váÿØ•>çÛÍBÔˆ½Ýœ¥Bx´yˆ™=-Ä7¯é¹|úоQð ê{Qß(Ø›úFÁ7©o|‹úFÁ·©oÔ«fO ‘rǬõ‚2Îì©ÖÇ­õ‘‚æÌWÔÝ‚êî+ênAuòu· :ùŠº[P|EÝ-¨î¾¢4ë\Zâf—ã2–çr&rŸæJVà*VäjVâVæZVáç|†_°*×±׳:ͳkÐÌ9»&Íš³kñ+>˯Y›ß0‰ß²¿£œyiŸ ±sä÷2ã2gµzêßwïŒVOýgQÑêg}½¯Ë‘ËÌ&ÕÏY·µ6W,3£T?oÝÎ: Û3«ëf–ê¬;XgcGfg'æ`g>È.|ˆ]™3DÖTq=¶„ô~'¶YW±þÞZO=ñƒõ3Ö[­…ÁÛùw¸^ÕõmÖfŒ \Òhîâ‡ÜíëÕ|ýë1Ö{¬«[o1ËÕœ.jçr5Gþ‰Y®ætQƒ–«9]Ô åjN5h¹šÓ¥Dˆý|Cˆ¾öZ+¿‘Zso¹¾Ñõžü’¯ó+Ú‡ŸÍ^!’2!ÄU˜©çø‚õ'Öyù)å$æãdæçê5Ïèu_¤^wð%×§ºž`­çlj=ͺ u.ë—­§[?f­ïlF}ï`s×g¸^ˆ3Y˜³¨ÇDÌáw‡¸ò^ÓÀ=|‘{éϸþŒûéw<Àf4´~ÕÚ øªlž·~Í:{2#_g&¾ÁÌìE³ÛÞ4´}“Ùø³ómÊ^mßáƒìÇø.s²/å«¶r\ÓV.«bÚÊ©¹**ǵ• d«ØëCü¿í¹¸‘ù%;ñ+væ×ì"…¸­ùÛ„ð`#Ï{Þ–GØŽæíiþHíwÌ3:Òü1£Í3:‡˜â¯„¸ó>çâ¯Òç\ü5úœ‹÷¤Ï¹øëŒ C½£g1õ{ä…¿û”ÌP㊯-ö5™y”ìPãk3çAy” Qã*»ñšŸ1ŒêîùŸæ5¿¯•×õç…“áÉ·åëœÕØ¢eBüé|Š?³,O²O±<a"Oóiš_‹VàV¤þY´õÍ¢•y>Ä´ðõ¬GèëYÒ׽Ϙ¾î½Ä´¨Â|†?³*O²O±:eï5(s·¨I»E-¦þoVÏR¶nQ›ç˜ÄÔ?·½ÇòrÖß(/g½Hy9«=×BNÎz™rrÖß)g½Bù8«<ØB>Î*¶³Êƒ-äã¬ò` ù8«<ØB>Î*¶³Êƒ-äã¬ò` ù8«<ØB>Nýo ¼Ù+DŸPÞìM5øÍ7©Ï.¢Í~ 1‰EBÜÕoù8¿cQnb1næÜB÷êê÷,έ,Ám,ÉXŠú|biî`îäSÜŲÜÍrÔ÷"æÓ ÎCÄ|ºÁþ|Nû?òÍ rM\çüŒ%¹ˆrhö%=RŸ—v}±ëf“ìe<žòý·öѲþÖ”õ·¤¬¿ueÀ‹5CÜLYåb-Ê(ŸåÞSO‰ÍGY$Ö žßÍùýo õ(ëBMóY7½ò¿AÖZëùݪ[f &»>ÆuóZ7Yú¿!¬Å¡|–ÃX›Ã™Ä¾¬ï7Ïu«cý¾õ8ëbÖêÛ#­?²–¥ê§,UïcÊRõ&Сy®Þ§,ÍI,bo ÑåÎà­'h–ºõ$ÍR·Š3.ÄŽ?âq4DŸî1"D¶þâRÿ¿‰­7©Îmý›ýCøæËibÆX9Ä·þ"„¾æúL>ÇY¬×Y›ç3ÉXšÑdum½kfûLòU_3}&¹ª¯:•ÉgÛWÊä3]Í÷m`vnd~Éù•ïSÇ2¶~Èúkæä7®«Y™ÌÆ rYÛß rÓþ^‡ö÷‚‡¹Ùk™éù#žÛã òÒ_ð(íñùh/ÈO{|AÚã h/(È!òçµ÷Ù»zè*Õk\ûÓ5½áÅ!\üÚúºµÏìÏ4ÏœY¢SÌ;g>£yçÌ"šwÎ,fêחмsf)Í;g–q —sWp0W2™«8„«9”Î×”at¾¦ §ó5eDOŽôÜ›ò>×QÞRÆOS#Ä,œâÛÖâ >˙ԣ΢޻p6õØ…sX—s©·öÓ»25±žg]óYŸ Ø€ )?-üŒrÓ1ä£.ü†]ù-»ñ;vç&öaÄ¿!òpëÍÖ¯p _uý®ë­¿·~[ÙÓõÿ\¯d½ÍúuþÀ7\—®l½Ýºw°7wRIëÞÛåù[ÜÍ·¹‡ïp/ûpßå~öåöãA¾GµôØ!Ïe³Ü¯aÑ­´†p-Óðs¦¥³1ÿzˆT,eÎzÓs=3PŸÃ×K[g´Þhý—µ7ÿ&Ÿr=“ë_Zÿm­æ Ëlý³ðkf¥s0ÿ–¯—³Îfý-³ó;æà&>ÈÍ|ˆ[˜“߇ȹªŠ¹a„Î~?jŸ“‘æÉ{-ï†PÓ}>²ÄZÞkùŸµYðÈRk¹¯å=k÷ûˆß[óu.wÝëmù?k÷ûÈ k¯»¥×=ÏënååÌó:[©q'úŠÍuÙön¦}ž¿ç¹l¸þ©¿ÂZÿø¸¾µy²þJ¯WÎ[ßÛóU¾¦§|Ü€zÊÇ }Mö[ÿ¦¯­vMùøyf#&³1‡° ‡ò£sý[~Î9¡®~üG°)ßçËÉf!.þXˆ~ý%SÍ«z6„C !2^Ϯ뽎׳ëzUe¿C­õ¨w×UªÊ‚‡ÔÔªrï!3éx½¼®5^/¯»–zyÝÏ©—×ý"Ä6„h–ÅŒáÆriˆ=6)DÓØc“ÙS؃Sù §ñUNçkœA³ú±™4«›E³ú±ÙìÅ9ì͹|“óè39#ŸNV¿Ïȧ“åË3òéd{íŒl:Ù;#‹N¾B9tò”?'Ë›gäÎÉ×(wNþ“2çdçìL:OgÌ)“ÿ ¡‰™ö‚yûŒye²ótƼ2ùo× ÌßgÌ-“›3æ–É·]7ë_x9„Ø)®™W&ß¡yeò?4¯LV§Î˜W&Û·Mrû^3ûûx²ztÆþ¬þœ±o';OgìÓÉöåûsŠYõ»hˆï³œpÓp%ÓrÓq5ÓsMƒC$‡ºô]ëµÌÈÏ™‰_Pïí³ŽznýuðÓ¾_ýúN¿í£® ®`­Ž}§¯öQWËC9ú†HóK!.k§ú/‹Gš_ö¼3§Y±ùvåìÆ«ìN}/kêuY÷æz\ÖW©ÇeU—ó=âOaN ¡­Ï禺/­õ4kçú¦z/õt¦§l/õå|9‹™8›™9‡Y8×)“åËêù<¿KM¸iîj«Ü4oµ½O«·tSNk§FÝ”ËÚ©M7å±vêÒMy¬]å°vñ”ÃÚ™SoÊaí̧7å°væÎ›rX;óåMù«¹ò¦ÜÕÎ\ySýhg®¼©v´ËH5£9ñfšoªí̃7Ÿ§9ðf#šÿn6fv6a¾À©&´³7o¾D{ñfSÚ{7í½vöÕÍfÌÃæ4ÿßlÁGØ2Ä<²)Äz‘›ù·°)¿§ŸokÎúë?ë­Ö~O[½á/ŸYÛoù?×·¹î÷¶ýÎú¾õÖ-¸©¿[q'[sÛp7ÛR¦?äÃþæ ðï{³cˆ.}Úzµ9äf'küfgVdªß¬÷õÛÖ]­+³Ý¿âêÍÍîž?ìÊWè~³ÁÏ8ƒ©ÿ=™ÎdêÓcæTfç4æàô—N}Ù<ŒêËf3}:õe³™>Ý|šéÓ- Y>,¶YÚäÌ75Ÿ¤“É6›ÝÓÉd›Í(éôªÍf”tzÕæ}ßmßWž^CÓD×õ®Íföt2Úf3{:m³™=Œ¶ÙÌžNFÛlfO'£m6³§“Ñ6O Œ¶ybˆ-âOª³…cé}Žã2Æs9Õˆ“+BHPã?É"Å껦^œ\Iõ⤾TX½8©V/Nê)…Õ‹“rGauâ¤ÜQ8£G&ÌY<Ôƒ“_x¬óXï±Áccˆ¼^-ÄþÕ¹5¸ƒf¦Â²îëf¦Â»hf*l†z½6ÍP¯'q/ëp_å“CØi/•7ßìÜäz]×÷ó9pݼ³s³u=냬ÏÙ€‡Ø?ñyf#ñsæ£[¬[eã <Îy"ÄÎuï[êµsÝû–/†È—^_o¯ïK¯¯÷>z=½½ž/½žÞèuôö:¾ô:z{_z½…P׬y²§µ×ÓÛëùÒëéíõ|éõô6]µGÈéWí‘Bøzpˆ4–³®Ú+ dÿâòë–µ!þ=ggËçtv¶øÜßkBò !òàxk÷à=gh‹ûð^;ºïµçFvO‹yþ¥çù;Q†~¯3eè÷dé-2ô{]CìÌ?CôåY¼ÎÙ¼Á9ü‹sy“óø7çóð6ò?ã?\Ä) ̼K{tæ´GgÞã²sohˆÿÜÌyoÍœ÷ÌП›9?7sÞ3Cnæ¼g†þÜÌyÏ ýyš¡?ŠfçÏËÒìüy9š™?/O3òçføÛ„èjùu¡|Üæ«SÀ}:ú ݧ£§CÌŽÊ!~ðyVá>ÃßX•Y—X—Yƒ¿³&¯°ÿà³¼ÊÚ¼Æ$þÉ:¼Îº¼Áçøëñ&ëSv29D:jÝÀú–µºôÐ1ë†Ö·ù<︮N=tœêÔC'\oäzê?#·×}6íhlý¯õ>Ï›x~—/PíÞñ"ïñ%êsC¦û?[7µV³w¼â»˜Íasêwß|¥^ê½Ke¦êO„ØrZS5¤³™0¯}8Ë9.—ÞÚ\˜·-Í…yÛq=Ûs;p#;ª×Cü©)¼Á©ü‹Óx“Óù7g„HçÿB\Þ¡¼Çaü‡ó>G„H—À÷áHÆ0%Äd(⶘É2ÅÞ!Ò:¨“yä—BúBµ2}ÑAŸÌcÆé Oæibç|¢-Þáñ1žoõüncŸ–™?ª_åJ^£¹£úŸ¾þƒ¯¿ËíìËìçë«}ýºõNksßœ]T?ç즹yÎä^â>æ~&óõ”ŒÃ<×ów=— {šßbÔ£ž}­eÄžrXŒºÔSþŠQžçký|Mn|x¾çïyþû3/ðQd>b~ß»Àc¡õ`ëžæy²ç²wÏ!,H= °ùòáE‹=–x,u]O(\ÈssúÃfœžzCáž›s~Ñ·>íÂÈÊ!òHê?“X…ý]×Ç>íÆï؛؃›ùŠï{Æ÷ °Þbý*¿çk®Wu} õVëžÖÕ¬Yo³~ݺºõ`Ö`²ë?¸þ·³wЙH{É÷Ôô=öØÈZêk;}íMëg­í³‘µ9Üõ]®¿ÅÝ|›{h6ûe/Í\¿ì£Yë—ýìËìǃ|?2õ=bê{ú‰©ïá0S_ûæQ¦¾æcÂãL}]'¨®^»âzo/Ê g[ß±Ö^ìhm½h®»8×õ\ÂéLÿ#ÄŸÿ„Wù)¯qÿädªóçÕùâêüyu¾¸:~Zˆ)c¸Üf€Ë2I3Àe™¤Œà²LRf/e’2ûØ•ûÙ-„ŽfÛf¾ŽfÛúX™®»Çe²‡ëf‘Ûf‘2?Z»×åÇÛæ¸Ž›BÐ:cÊrýUsŸÁ¹ãf×ô¸2?¹fÖ,s˜=y„¯ó(Ýß2Çèþ–9N÷·ã?§'vüžzE™®¿ÉŸù–ë[]×'Êœ´vOËœ¢{Z溧eNó]ß·Í÷ée~µvoËœ¡{[æ,ÝÛ2çèÞ–9O¹°ã¾_?)sÁZ.ì¨oÝyÀú7ëAÖz׳fÇ4kvÜE³fG}ëŽzSæ¢ï³ʘÓ/Û eÌè—íÑŽ{|]*cV¿lO”1«_F³úe{´ŒYýòšÕ/¿O³úå‘4«_Ök˘Õ/À¿8*D’g…¸ E8›s‹r.‹qŸ!bF®l†Ýßĵù®=É,Î…,ÁÏX’‹˜ú÷h.fi.¡^”¼”zQò2êñѸýÚçço!d‰õ<ê¹÷}€Þ{4 ½÷hZzÏÑtôž£òáׄPòIÏ3xî}G3RO*YÜóLžÿéy ’Ö™­¯{^ÊC.m™â³ýħy˜x„)×µ¬Dy®¥¼™í8åÍlò[Ky3› ÖRÞÌv’òf6}¢¥¼™MNm)of“S[Ê›Ù~¥¼™í åÍlg)of;Gy3›ÛRÞÌ&Ƕ”7³É±-åÍlrlKy3›ÛRÞÌ&Ƕ”3³É±-åËlrlKù2›ÛRžÌ&Ƕ”#³É±-eÈlr¬Y(>›>s·cˆ_“!„1ï…HÂFëNÖú×ÝÎÔ¿îv¡þu·+õ¯»Ý¨ÝíNýë®þ·Fÿº«ÿ­ÉAýo¾uWÿ[£oéï÷~i­®Ñ«îêƒkôª1\—ßïê‡krS?\“‡úᚇ©®Ñîêƒkô£»ú`ê¿÷Ù¡@ˆËý¸ˆ¹˜q q) s‹p9§lÒ¡(e“Å(›tx‚znû$·þÚÁÞÈ­¿v(A=´ƒ½‘[ïìPŠzg‡Ò\O™4÷ʤ¹7†ðÔË!üð ›ñS×íßÜ_RFÍ-owQsM5÷7”OsKÙ4÷w”Ms›‹;Ȧ¹Õ²§šû=“¬åÓÜjÔS-¬ÍäÔÜßSNͽ•2jîm”Qs›Ó;ȧ¹ÍéÌé¹ÍéÌé¹ÍéÌé¹ÍéÌé¹åûæôÜæôæàÜæàæàÜæàæàÜæàæàÜæàæ«Üòî_æÃ%;i>\²‹æÃ%»i>\²‡æÃ%{i>\"?Ÿì¡W\÷fèä½ÖYËËM¿ÐùÚ~šÎ×v9,«óµ]Ëê|mOÍaÎ×öst¾¶Ÿ§óµý¯í¿ÑùÚ~‘Î×öKt¾¶_¦óµýw:_Û¯ÐùÚþ¯íWé|m¿Fçk{ê?¿ê|m¿"“}î6ÓçÝh }Î|Γ}Îô€êöòO/Yû¼ù¼'û¼ù¼'û¼ù¼'û¼ù¼Sÿ}³F>ïÉ>ïF>§îÿ Ñæèî÷iŽÖÖ¢ÌÑ="4G÷ˆ¡9ºG,ÍѱÎíFÍm\ÁyÌŒëünü‡ÎïÆéün¼Kçwã4n¼G3àÆÿÑì·Q÷˜Ÿ7›Åš¿Lý×P Yw²6 ~¡YðK}o\a×;[·°ŽµVëëbÝÒ:ÎZͬ«u+ëx¶fÔu=à±nÖm¬`[¦a;¦e{¦cê{Pc¾Lï¡/-ºâÛËž‹þG¹sÑ}.1bb|{¹rq„2åâ:ß×¶Ë&¹ƒzË5Ycá ”5¾HYc¡ûrMÖXØ”²ÆÂ—)k,lFYcasÊ [P¶XØ’2ÅÂV”!¶¦Ü°0õŸ{šå1ÛcŽk2ĶžÏõ˜Bì×䉅í(O,lïú|ÏeŠ…²Öƒ <—+Ê@Ïð–,øŒ3Î¥÷™q½ÏŒóé}f\Àç¹Þßµ¾fzßw­}ßµ÷èû®õ§ï»6€Bøzjˆ46+^híó¸6ˆ>kƒù“鳸6„/q(}׆ñeg³Û¿kˆ–ÍÆn”¥ ÷¼»çæÂyúèÓ_Z÷°~Ð×JxþŠç…˜&²€9%¦‰,Vh" ¤•šÈie&jJZY ‰Z’Vh¢–¤•š¨%ie&jIZY ‰Z’öÕ’´æË&jIZ3d5$íßT;ÒÞ¢Ú‘ö6ÕŒ´w¨V¤þ;_MÔˆ´ÿRH{—jCÚÿ¨6¤• iåù&jCÚû!v‡9=ùcšÑ“'ð'NäašCv¡9dÇQšCv£^²ã8õ’'hÙñ3§ñ$§Ëo©ÿßâ/!úÑ žæJþÊU<ÃÕ<Ë5<ǵ<ÏÏͤ«Í¤êË•¡!n^cFg&Ž`f¾Ï,ɬLa6~ÀìÅÍù!íë+cho_Ë\ÇÜüˆy8žóc> Ìˉ”ºÉÖùeën²u~Ùº›l_†-g¿ìP»ÉØùeìn2v~»›Œ_Æî&cç—±»ÉØùeìn2vþ²\Îr\Áò\ÉD®âÓ\Í !òý‹!î½|‰?³)Oòežb3þÂæ<Íü•-©n~ߊgCxNþþÅ,ð}këslÃólË lÇߨžٗؑ—ý¼Ìþ‹÷÷}'ëß zÞÙó+ìÂ?Ø•WÙר~î9ùþùþ¹ô™|ßÃu½ÿûWx#Ä.î¢raìâwùDˆLø>Äկǭ¬B5ÙîЧ”ÍM¢LvHΩ֒S|ß6ß×Àº•µš0áë†Ö­­§Q94Ýu=­¾zZMo94ÃZo«¯ŽTkg=Ó,%?LÐçê7vM9¤'UÓ_éKÕÌð‡ÌðÕÌð‡ÌðôÁúM¬;[ëQÕºPOš /Ö·'è‹õõÉ úb}}r‚¾X_Ÿœ /Ö×''è‹õõÉ úb}}r‚¾X_Ÿœ /Ö×''è‹õõÉ za}}r‚þW¿ õ¿úm½TsäwhŽÒ‡æÈ!ïêëWôïù'ð*õÀE×ø ÿä§¼ÎI¼ÁÉü‹æùGeÔO3†¸†BÐ["Ÿfò|¢÷'Ìú×gtÈ5çðSgðÓ¬¾ö‰Ç§~×¾M!þýÜÌWBÈçÞçsïó©mû¶¸öªçêÛ¾ï=[Ù“Ûø:àÜÎ^ÜÁÞÜÉ7¹‹zû¾Ý|›{ø÷²OiÍýûöyþnˆôØâêr Ÿ£=•`Oõ°§êÓžI°gÊt~åÉöL‚=S.ÅZ®ìa¯$'¸Ï=Üç÷¹‡ûœà>÷pŸÜçîs‚ûÜÃ}NpŸ{¸Ï îs÷9Á}îá>'¸Ï=Üç÷¹‡ûœà>÷pŸÜçîs‚ûÜCÆI{zÈ5 í)×$Ø“ANêñ³çy’xŠù »ð4»òWvãvçYö±éõá-úkz}x‹þš^Þ¢¿¦×‡·èÃé?£¾š~õÕô‹©¯¦_B}5ýRê«é—Q_M¿œújúÔWÓ¯ds®b ªñ[Zr [q-[ós¶át6Óñ|çíBìU¹eÁS”[”¥Ü² ;±<呉짩—/¨@½|AEêã *Qÿ^P™z÷‚*|•Ïð5VeOV3;¥þî×=¯Î7Xƒ½XÓ×Rÿ¼Þž×â›|–oQºú6e «ïPºª¦-®ªi ž“UúÊ*ë­e›²ÐUÙfŒsU¶Yà\•m¸We›îÁU™f}÷û 7W¾ÏöIˆßY5„ñfåÂêèx³rá¿\ÿÔõjœÄê®› §þ{€fç²Ûx³sáÔÿÏì\ø6ÍÎ…ïøþɾ¿†õFë(cv¾Ç›™ ›s²MñõšœJï7Û4z¿Ùd¾Þo6™/õ¿OÿÅì×Ó¬òÅšM¾˜Ëb!ÈÈáç!Öó¬Õô/ôÏžOº^Ëõ¡|–ÃX›Ã}]_í©¯~¡¯öÔWeèðóÖáû¬KgU†?;£Ùø^=·gI×ê¹öõŠŸG¹®÷Ôoê8ß?¶Ö‹{–¶v¾þPï2ß¡/÷Ô—¿Ð—{êË_èË=í¯ïÍ×ýå•ïÍ×ýå•ïÍ×ýå•ïÍ×ýå•ïïòóŠ­öH½þŸõ!drN¾¿çùº;XŽzzHó? ‘ ‡­å©§‡Ržzzå©§‡Sžzzå©§ß§<õôÈ[âÑþ‡>­"O ±Îg½ù¹ƒ¸“ 4ë–(ÈÝ|Œ{Xˆ{Y˜ûX„ûC(hŽ,ñ¸çX”YŒ?ò â“ü‰ÅyØk¨å5xí%JX;—%Jò(KñKS/Q†'øfYžd9žbyþÂDžæÓü•x†y–•hF*Q™çCLâ•'¯Ç$þÁá¼ÊÔÿ®½OýïZêßôMˆT3OwŽ^²Ïê᤽üµ™ë­öË׺öµçß»^Ïõƒ® ríæ·Læw¾^ß×´vOn¢={r³ë \?äwlõØbŸuŽî©Ï:/÷œ—Îs²z³ÃëHVov8ÏÉêÍç9ù™¦«õ¥eç&öMºùÖj~iº‰½“nA_½"V°åç‹ÿ ÑYûyŸîÛ¥@÷í…õ!š^F™þ¦Ÿ·O_Ø`mæa#;òKÊ*Óßòuûô…¯¬;ókvá7ìbªƒ¨¯ÕÁìÿƒêàré¡Ê!nÔšGù¼™GyÏ }–g³ÐgwVþ>dvµÍÚguV?d†eï6ô•Ç™¥G駇ÌУvÐì O”§ÈÓ#ÏRŽ)G£GÊÑäè‘rô9z¤}@Ž)G£GÊÑäè‘rtÃQ~Ÿ÷@Žé=¡GÊÐdè‘2ôz¤ }@†)C¡GÊÚdæÔ¿wç€Ì¯lOX«I=Õ¨4[=W—z¡ºÔó¨ïñYf{ÒZ}êyÌÚgš­8}¦ÙJ¸®^õz:뜞ÎÅ:ç£çßt>zÞâó”òÉ®C~ q{†PY½Ù?Ëú¢õë¼DõjÈeöòu¹tÿlëß­{Sí®¨> Q»+ªCCÔîŠoSí®øŽï7Sí—c‡¨áÍ0CÌ0e÷!7(/ ù‹ýx“ïñoöç-êÿCns ïpÿ¡:^YÝÛoFò¯u2ïRò‡òeÊf·ýó¬ÿg-ƒ ¹Ï!¢ÔÇU|ŸŽd SËG9chƒ’y|ï*>Lù¯cS_so:¾L³uÉG\_ü\ëz3×?esšK>êúçÌÇ/˜ŸëX€ë™À ¾¿…ï7“—,h½‘Ñüݱ¥ëS¬ YÅÂüšEø § Ó±•ï›j]Ôú;ëÖÖÓ¬‹YoâÜÌ'¹…Åù=KP-Mýÿe/lc)þÀÒÜÎ2ÜÁ§¸“e¹‹å¸Ûgd”,ïùž³ç?<_CÍ+9õ«¡æ•œöÔPóINóÉPóINóÉPóINóI>5pO?“?Ä|“âß)ÍX†£øGSíûæC– a 2èÇÉ‘úßKÈæú×Ës,C\šµ!ú³RR^Ìå3Ü·.„6ûBø+“µÏpŸÏ<—Ïpßú ÷ù¬sù ÷}b'|¢õ{ò;¾B‘Ažoòü nf/nao_³'|ïù›ÜÊ·¸j]wµ«€ÚÕ]í* vuW» ¨]ÝÕ®jWwµ«€ÚÕ]í*0˜jV5«»šU@Íê®fP³º«YÔ¬ræ¢f†K{BtöÌ[÷\ˆF>äyÊu/ÐY>—!ÄOµ×Îe¤½v.íµs™é}ŸËBïû\Vzßç²ñKf§½u.í­sR>èµf“ó©­ù:‡˜)ãB|“D~ħ9žø1+r+q"+ÓüÚ¤ Í«Mž¡yµIUÊÏMªQ~nRæÍ&5hÞlR“æÍ&µhÞlò,g²6g1‰³Y‡sX—sùç±ç³>°²!?ãó\ÄF\ÌÆ\Â&\ÊBlñ‘æÒ´'Ï—¡=y^^.nOž——‹Û“çËÑž<_žöàùDڃ矦Ïé|úœÎW¤Ïé¼ù ¸Ïé¼ù ¸Ïé¼ù øDŸÑyõì¼L›6D7ža:žezžcžgF^`&êϱ™é É q;œi™!n‡3-3ÄíÛ[ÿîq%„fó²“ ·Cnsγ9¿;œólÎîŽí!ô’µ£²vŸv!¾dŒµœõs½ä®¨ŸíÓÞõXk+*cõé`g-cEe¬^2VÔ ßK>ŠÊG½dž¨ÌÓ§£ï‹·–m¢²M/Ù&*Ûô’m¢²M/Ù&Z–úKÔùîu›åy‡‰ü‡Oó_Và]Úk}:ù½Qëÿ¬+QÎŒÚs}:»þ»0ëÿs½ ïÓìÓÕõ´!¤þ'e£Ua5ư:ci/öéæûÒYÇY×d<íÉ>Ý]Ooµ¶7ûô°Î@9»dF×p½6ÓÐ^í#w—ÌdÖºÓÑží#‡—ÌlÞú9f ½ÛG./™…ryɬ”ËKªs}äð’Ù)‡—ÌA9¼äƒ”ÃK>Ä·™“j°>{±™Ñç9·çí=÷™eNh4ÖºƒµýüFBˆÙÍ‚ÜÃǸ—…¨fÎi"åg±g»^ØuséEh.}ãq 1?íñ¾Í=|‡{Ù'„áöJ{å§}Öïr?û†Øý5Ctä¬Å4|–iY›>Ÿózå4¹ç¼^9MÞ9¯WN[L½rÚê‘Ó–†Ø^G/s\±¼ž{-½äôfkC|g¹êñwû-ž ×VõgzmUO²OÑkªú û†ÐeRÿÊIUO[÷ã¯|Îãíþto óx{ ÇÛƒè<ÞLçñv2åäÛCBÈ=ÏsYùöPÊÊ·‡QF¾=œ2òíþÌÉþÌ£Ö²òí÷)+ßIYùv eäÛPF¾=Š2òíÑ”‘oH}æ¶#×ÄTÕg䚘ªúLj®É=ßs½Fމ©ª×¤æ˜ªzÜSU.NÍ-UåâÔ<âhÄÉ!÷Ïec#ä^è¹|œš/ªÉÇ·§»öYˆ¯oÔÕGÆ?D}d|NÊ(ãsñ[ææwÌÃM!¼#û¦ÓÏß™@3ßø‡]ßl=ÑÚì7þkum|^~©Ïõ\^ŸêØxÙa|ÏðØb³¶ ñ;Ô¥ñcC¤°½œµ•u|ˆýõ×,¿m0×7´ç~=c½&„ö?„p+b âNé …¿¢žPøkÚG…¿á ü–òa{µòÖ!Ä;ÛÛ ñƒG†0D/H¿¢—?$‹ ÑËò>·Ÿöu÷±ñc!>÷߸]o\˜2Yã"”É?Nï­qQªß‹Ñ{llNã=66 §Q«›…ÓÈdÍÀiv„Ð]»§66§‘Í›ƒÓÈfÍ¿ivÓ¼›F.klÞM³—fÝ4ûhÖM³ŸfÝ4üuîžšÔØÌ›Æý设ÝS“ºg šÔØ œÆýilNsÈuuîžþÚXNOóåô4fòîêÜ=ý¶±¼žæˆµúvOßm,·§1ŸwÏb­ÿ6ÖïÒ£üžÆ<ÞX~Os‚ò{³xcù=ÍIߟÕ÷»'åø4§¬³Y»7Í¿iœûîÙ­eøî9è56§9mý õ‹Öæâ4föîY¿dm>NsÆ:§µß=åøî¹)·wÏC¹½ûÔǻ?Bù»{^Ê×Ý¥\Ý]Æ½×Æï3g§9kߺ- °hnî^æãî±£ï7§9g]ÈZ¦ê^˜rUcóyšó4Ÿ§¹@óyšßh>O£¿76Ÿ§¹DóyšËlÄßÙ˜æ›ÆMø‡ßWÄï3—vœ]Cl¹g{#Ê=ÛSîÙîó?ÌÙØb-ÿl—w²È?Û_¤ü³Ýì3Þ\\ø{ëeÖM¹œ/s›q%›s[p5[r [Q ÞÞšŸ³ ¿`[®c;®§ù0Ëv±&¨ÝuCX•?Džõ}&Z?ÇOXŸ²>'±'³!§ðùéo~~J]‹ä 1·eÙåjÐmYv¹t[MZ®ÝV“–;ƒ·Õ¤åÎàm5i¹3x[MZî ÞV“–;ƒ·Õ åÎàmµg¹3x[íYî ÞVw–;ƒ·ÕåÎàíü4ÝV{–;{·¸Ëk8"Ÿ¨¡ ‡‡PÍQkŽcc\Ã÷©Î6I5¶aJˆýÇœ±JÝývkˆ¼gmÞX5æUjï·Û\WãþùÁz†õÖ²Qæ©®mwÍÌðÏÎâNÎö=Û}üÏ.ë9!ö…á!š^~›ÞÓL¾Ìz„µ7ýuëå|ƒ+\ßõRIùÆß!ºxgˆ\Oâ>Sϯ§§z~=ÍÉ/ê…7Y»GŸ™Ë^j­Æ¿h®¹¸…>§‹ßûz&_÷¼¨/^”]_|Ÿ²ê‹êëE5úŪ½/~@µïÅQÜÉÑÜåç3ûy=üÅ­Í¥/ŽáŽå^Ž£Ló¢yÿâ~š÷/ðsYüÜdfåf£ÏúÅ}ݽ¼žÝzsp:¤ÏøEûíâô/rý!×g2'e¦½×‹?Y粞ÍÜœÃ<œË‡9p>órå›|"D+¼ÏŸi/Üóy®ý„>ǵŸÒçµv½ïµ^ÿ=ïc­×ÏûX;•ÞÇZ¯ûž×¿Öë¾çõ¯A¯­×yÏë];‹^ïZ¯ïž×¹Öë»çu®õúîyk½¾{^çZ¯ïž×¹Öë»çu®]H¯s­ŒvOV[+£Ý“ÕÖÊh÷dµµ2Ú=YmíRÊjk—ÙØÕ=7¯]NsøZ{éeç9su:Ï™kÐyÎ\“SY‹Óø,§³6gPß="_Ž•áŽÈ•cß a„=šg¹µ|9V–a¯æYÁ^\éú×eº#)Óù‘2Ý‘C”éŽüD™îÈa¦þÚfç#G<—ëŽe²ßÕÛïZÅ7¹Úõc®áqÊxGNPÆ;ò3‡‡ØÆÎEÚ¼Eç¯ñm:ïP–nüç„ðXÏÿõ|.ïrÿã|ÞãþöDãûü,Ä*áÑ´‹ábÆp‰ßõ¸ç±žËÆMâ¸,ĥϢ›e½ôyø_ˆy;}ˆr)3p3Òg÷v&Ìž«ñO® a¶Ï°œ{Ô]( ÌöY–óY®Òó»¡žßMïë_ D²èyý¨çõ/H=¯ÿcìÈBÔëúfg¡ÕÿqveQvc1vçìÁ'ù ‹óU–àk,Éž,Å×Yšo° {ñ)îú—å›,Ç·BH#¯’Kºc³àªªÕ<ª{˜ùVÉÝÎ{\ðøÍã¢Ç%Ëféþåý®·Cd@ýWöG6 ³? !õÏó0ñó(›ð_àq¾È|‰?³)OòeÊ9•ôÂ}ê^%lŸºW©?ðõf¾.÷Tªo=ʺ¹õi¶à¯lIù¦R_mÝÊÚ=ªÔÐúCëÖÖçØ†ç]Þõ1Öm­/°c{^d^bG¦þ7Œù~¹z@'ëßÙ™WØ…òG¥Æ¾>κ«õUvã5v矾nãîûȺ‡õu¾Â|•ñ5ÞdOþÍ×y‹oðvˆ™ÿQˆoý4dz?fEN`%Nde~B÷xþ§tŸçO¢{=2 4š{æOñܼÿ¨:ý¨¾ÓW/Èdîž?Õõ®é%šæO³Ný{w§x>ÝóZœA³ÿü™¬ÍYL²Ç=Ÿí¹L>ë†Ø$Ùè¾l”$Ý—’d£û²Q’lt¿MSÕâ’§¬e¤û²O’Œtßyšª6—t¯§ªÍ%O».3Ý—™’d¦ûÎ×Tµº¤l;U­.éžOU«Kº×SÕê’2æTµºäyß¿Ñ÷;‡SÕì’¬¿´îįؙ_³ ¿¡Ì˜ô-»…˜=òÏ0ùgü3Lê÷æô{‡ú½9í¡~_Î ÔrþF= çEê9eÕ=òÒ0yi¼4L^Ú#/ “—öÈKÃä¥=òÒ0³Êž‚4«ì1# KýßÍHÃÌ*{ÌHÃÌ*{ÌHÃÌ*{ÌHÃÐŒ4ì ÍHÃÌ$ÕÌØwdŠ.²ÄÝk³öu¸šYûŽY»šYûŽL‘Ûì×Å y7Ö5óöóv5óöóv5óöç,÷ÏÍÜwÌÜÕÌÜwdŒ.²ÈÝ8k³÷³w5³÷³w5³÷³w5³÷³w5³÷5¦šÙûŽÙ»šÙûÎø»¦Gˆ¾ò(_a>¾Êü|Ø“ |æ…•MB¤–Œ²ò¦þü®›V¾hý±u/ëBìÍÂ|“zÈš·¨þ¯y›Eù‹±Ÿà»|’}YœýX‚ï±$ûS®ë¸;D~›{øNˆ]¶7D;'‡ØüÉ!þ¨ß—ý¾üCé÷åF¿/ÿp–q±^oêßïëu¦þý±^gêßïëu~Y?Dþ~6Ä-ÝÇÚt_ã·„¸¯Õ¡¥B¸úºõ÷Öf¾ø­4ëÅo£9<þšñâ·Ól¿ƒfºølJ{)~·çjè×ÍBÌ öoº´Ó}Iû1ÝW!äñ»^°'Ó™ ^°'Ó™ ^°'Ó™ ^°'Ó™ ^°'Ó™ vôñÉ©W½½ýPêßg0Àº0²1õï¬ÌÔ¿›Þg”œúwÒûŒ’ŸðsÎÂC—(=”ú÷øÌ’Ÿ !Ÿ}¼Ãç–\œ>·äÁ’|Ÿ>‹!²ÓC©WÂHëÒÖˬSÿ΄ë2ÖrÔC©wÂÖOùæö´>·£¬Ër4Ë…ØZ·CüòèT}°ä[Öw¬åZÿPî¯õ/eZw9/Äì-⇛Å÷>E³øÞ²<Ér<Åòü…‰<ͧù++P.Ø+ ?Kù`¸^»WÏn¶Ý[…fÛ½fÿáfÛ½fÿá>Ó½fÿáêÅ^³ÿpŸÑ^³ÿpï{¯^<üŠ÷ÔËsóþpïu¯ù~øUšë‡_óžS¯™é‡ÿI³øðë4c¿A3õð¿h¦~“fêá©ÿß“~+»µÙzø-š­‡ë-{ÍÖÃïÐl=üš­‡ÿ"“ôæçõæIöÕóêôíc!ºB>úVÝ}áŒõqk¹°¸\ü¬µÜ¾b5åök\S3‹«Ã·OZ¯å)~bËË®WߥÌzµ/eÔ«ý(£^}/„‚öϤ!R< ÍWÅÓúšÜzµ?åÖ«(·^b[?¢9¾ aæ£!ò”ÞÒ:§õwÌÅM”sl¦ ˜Cœ™Ï÷™Ë[?lmÎoý·2/Õú™æð§ÚR¶{ʼÞúQ×`>šÁfÊzOéE­ó[ï`îdw± wó1îa!îeaîcîçã<À¢<Èbü‘OðŸäO!æ›!¾Ä'ü›zu/Ù+šîeÔ½|ç–ë“h¯—г߱ÇKè×ïØã%¦Ò/1öx‰éü3x3ýÙ-šÃúÖ³xŸ³CLŸÀ9Œp®ï“í¢©ÿ›{Œµ³Ò'–óÇŒçBFù œÞPmŽæ¥ÚÕ ªÍQ½ ¡ÚÕ ªÍQ½ ¡ÚÕ ªÍÑ‚T›£QmŽªù PýùN&y·Vƒ;…H¯kpgÎcÎw.ÌÜù††ÈØñ!.)7?fNàÜÈGø óòSÚ;c'ÑÞ;™©ÿA'5gìÏ탱Sé¾FìtÊøcgPÆ;“2þØY”ñÇÎæã!d‹õ|Žçrþع”óÇΣœ?v>åü± (ç]H9ìg4sLk"¥&‡Øúöwì·´¯cíëúöu¬ú|è?:_Ã[‡HîilÃélK³W‚šuÌ™MP³ŽýB5ë˜,• fû•jÖ1çvbË):ÅZí:æ '¨]ÇÎQí:æì&¨]Çd§µëØoT»Ž]¤ÚuìÕ®c—©vûj×±+T·ŽýAuëØUª[Ç®QÍ:ö'Õ¬c×C˜ž%DJëÓ³RÆžž²ôôìlbî+¢©ÿûêôÖ/X—°>b¯|¢óºÓ=¯ÍÑóÌL_»×›Ó½nÜÂusõ<3Ô×îyã–tÏË¢WÌÙóÌT™=7kÏëI³öÓæ2óÕüÖrÅFY F®Øø‚ëöÁÕ”¡¯&¸.gl”3bäŒrFŒœ±QΈÙÅ—)kl”3bö°9÷²÷±%÷³ÐçØ\¸ZÐú uþȶ }–×Y›7Bìr}¾³¾¼\Ÿïüõù·©ÏwV–ëóRŸï|Œú|çãÔç;Ÿ >ßùgêóORŸï¬>/×ç;Ë”#:…øgÒ³33° 3²+3±3³;Íê#zÐ>ñ ³ñUÊ#^£~>¢'õë¯ó!¾Áœ!¼¥o¦™kÝË:{37ßd¾Å‡}Ÿ¾šFŸñ¶µZ4B¿yF чjψw©ÖŒèK5eD?à{TCF˜žqæG˜žq¶G˜žIíã-õñ8¶b<[3ªß™3J¹o ÛX?À¶”ÿRÿ¿ïRîcÃvÖr`ÃöLÇLÏŽÌÀNÌÈÎÌäçÌ¥Ü÷†]¬3³+³°³úº£”ýа»µ<5M¿/e_44³ÊUaš£”ýÑÐì*…i+¬í“†fX9(¶¡6úͰќ4ÃFsù¾•¾Ï>jhŒæ¦Y0š‡fÁèÃ4 F !½š›Æ}œ·;Ä·ÒCæíá[!ôõçd¼J¿'£œßweüy{}ýmÊέޡìÜJHë»Ú×eÿy2t«w­×X›æÉÒ­úZ¯µ6 Ì“Ÿ[õ³þÜú&¿ ™ Mi_“©[©ódêVýy˜jż#T#æå £š¾|ˆÛü¹OsG­ôÎ?—[W°Þiý†õ ëŠÖ»¬{Y¯´®d½›•¹‡U¸—Ïp_ˆ)¿*Ä]Õ˯¦~Ø©[wdËòk¬ëq-ëósêå¿`ÃûäÃ!þ¬Lÿ¤ù÷¬Lÿ¤ù÷ì6šÏÊðOš}Ïn§Ù÷¬ìþ¤Ù÷¬ìþ¤Ù÷¬ìþ¤Ù÷¬ìþäc”ÝŸ,Ľî•ú8ÀçW®/}VåúÑgUÎg6ÀgUÎg6ÀgUÎ\RµTˆ¿åüW-M翪™ò–ó_ÕLyËù¯j¦¼¥¿Oi"òwlU9í–:PUN»%§U•ÓnéãSÚûºÙ5ýRÏ;xnn­*»ÝÒoªÊn·Ì_Ue¶[zö”޾nž­*»Ý’ݪÊn·Ôƪ²Û-µ±ªìvKm¬*»ÝrƪÊn·œ©ª²Û-g¤ªìvËY¨*»ÝrªÊn·ìýª²Û-{¾ªìvËž®*»Ýú3&Òðý{îÃ&öK3Ó¹qT£Ï}ÄÏŽ~Nío8ÒúcëNœÀΜÈ.ü„])ÛMëFÙnšŒwN¶›&ã“妽BÙmÚ«”Û¦½"“í¯F›Bd³ýѯ"í~•hôÓ7ÛýôÁÍrZ?}p³œÖOÿÛ,§õ«Âs B8uÞZ^ë§ïm–×úéw›åµ~úÝfù¬Ÿ~·Y>ë§ßm–Ëúés›å±~úܯ£CÜdùô×ù ùØ~ÁçöÏK!ºêI6eq×éœéoéô˜^v½›±$›S¯ÿ§KS­\U&ÄæÓ øœóé…G|ÎùôÂ#>ç|záŸs¾ ô9çÛÈŽü’>ß|_Ñç›ïkú|ó}CŸo¾oéóÍ÷}¾ù6Ñç›o3}¾ù¶Ðç›ï{¾Æ­”ómãëü2R¾ít¦—Œ ‘ªÎ˧GBôùY¯ Ç'ëñrRo¯ ·'ëíôöd½½‚Þž¬·W0o${ÿôôdï¿‚žžìýWÐÓ“õô zzõý¨úKmæµdIC¯!KZz Y¼§f^Cï©™×Å{jæ5dñžšy Y¼§f^Cï©™×Å{jæ5dñž¢2x3¯#‹÷ÓÌëÈâý4ó:²x?ͼŽ,ÞO3¯#‹Þ:âtˆ>ó!åžáXž¥l>âeóç)›¸ÀCxÒ½xÒ9{ÒË33ĬÃY¬Âçùñ!Ö³­ŸãÖã\Öç<¦þ;ÂÎÖg+½³µÅÙJïlmq¶Ò;[[œ­ôÎÖg+½³µÅ}ÿhNˆ¤þ=é±-ÎXzgl‹3–ÞÛÒÝ×çúº}›ÞYÛÒÃzžµý›Þ™Ûbnýh¾µÚÞÙÛâì¥wö¶8{é½-=}}¯«ééÁ-Î`zgp‹3˜ÞÜb&M¿ƒfÒô;ù&wñ-Ê[Þ¦|±åÊ[úPŽØ"/¤;bÆûÜŸsÿÇûÜŸsÿÇËtÏ¥þ³e2Ýs2Ýx™î9™n¼L÷œL7^¦{N¦/Ó=g?ˆ…9˜E˜ÌÇ9„E9”ÅBXx=D*«océÚ>«±ÎtmŸÉXgº¶Ïb¬3]Ûg0Ö™®í½Žužkë_cåÚ¿ùù~^]ë<×vŽÇ:ϵõ13O´¶>fÖ‰ÖÖÇÌ:ÑÚú˜'Z[3ÓDk«Çfšhm}Ì,­mo˜e¢µe|³L´¶Œo–‰Öþ‹2í›!vÚ°}±lKß‘j+Ø‹+Cx<“¯ ÷µrÁò|Ÿ‰ɧ™Â jNV5çfã·!,8"•œÑÍ—õÆÐ|Yo,Í—õÆ…˜ßd“;(›ÌØIŸûorÉ ÷sÆÿ)ºó8ë?àßÙÙ„IÖÍŠÜWQ9Sø!‘3BŽ )GDEÎÜGî²ZE±’#ä(**‘«"D¤’üÞóǼÞÏç™ÙÙ™çù~?Gæî;ô¹Ÿ×§>÷óÿQû¹z<ÁÌY×Ì9ÁÌY×Ì9ÁÌY×Ì9ÁÌY7þ÷þ¾¼b³gÝââÅùÄfкfÐ fкñ¿'pŽcshÝ’^ó“טjéWöéYKÍáé!òèNãw|“{9r퇅B¬{üü ñ÷œIóÒ‡…——?,Â}!á¶§Câfùô¶Žüƒ(—v˜’rWálVå>À¹|0„žC¸uCü–ø!ñ&ñ¿âyâjœÏêÎovþ¦x¸åÜ5wný'–r×¢<»6åÜSÈ-ßwrËñÒø(—².Íݹ년o›†¤Ñ×ø¯³ÿasÞad®In.n!öù¾mIŸçÛVôû¿mÍ[|2$‹¾mC¹þÛ¶LàSŒ²C(~+D}b;ªiÁñÇz€ASž´–òÔ uÔk•ˆ8^︫ãÇ«k%¢æ¯AŸˆå­f°A?ë82õ ‰Ÿú¼™^ Ï›éEú¼™úÒçÍÔ/$nñy3õgDO»ž¾x€8AœY¬wÏô’ØçÏ4>û,Î7'ñeÆß`Þæù¬ž×Ûg"6÷µ¿Cܘf¹?õø™^q^ýÉô*ýŽöÙo"~M¬eJsà³zÎÂÕ¨ç,\zÍÂ5\¿ZŽõ›…kR¿Y8ë7 צ~³ðÃÔo®BÖæŽõœ…¡ž³ð£Ôs®ËyóË…õ€›ì»öÝ&ûn@J '„pd—ØþPL+n--þœÓ®|ƒ;©ïÚõÇÑŒöÀxªíøœ»Ì<}Í£¥õB}ûS/Ôw‹ð%å@¦p‹ñeÞÃÁ4Ï÷Â|…÷òU–äk,Å¡,Ía,Ãש'î;œzââ«<2Ä#Äå]û‘ŽåÝÒúá¾rliõ¢¯[ZÞï+Ç–Ö÷•cKßG9¶ôý!!û®¸³CÔÙ‹ébyrçÓtÍvv¤k¶³]«öJ9áúÿ('\×Ô‘ ®7¤\p]OPG.¸®'¨#\×Ô‘ ®ë êÈ×Í™uä‚ëM)\‚élÆe´vê¼Çæ25½¼Þt®Ú]^_:÷]ªguÞ÷|K.g+®`k~À'½.Ýëô«u>·áJ¶u~™óê^U⧘Áv\Íöüˆh^¸þ´×¿çõêãÉ­æ¤iæ¯Væ¯éâmb}Ò†ÖââíâøùÏ?çLîà,îäl~Á9ü’sùßâ.Ú'ws~ˆ>ãçó›žñóùû¸¿y<ôþÏxŸü/„°°}ˆÜïçžñ~ùÍYk8öžùõ/Ϙǟñ~ù­ËüýCX;6D3³ï×+ØJÑýz…‰òä†!iâ%6â_|Œ—Ù˜Wø8ÿf^¥|=Q¾> _O¼ÂèÌ!’Ož: oOüGœE,?¿'Êߣ³Šã”‡Fg£Ÿø¯8»¸ s°)sò ÏËóoŠï7£:ÿ÷îäý‰ÿ‰Í‰ùZˆåÿ‰·Ä¹Å-Åꀑp@˜$¯Ž¾Ûyû|t¶v^]˜$¿ŽN[#£Õò|mœW'&ɳÔ‰I‰lOùõ@ʯžæmìH}üN”³G«ýù¬©Ñùù ° ²= ±ƒ×wözýþ.”g˜i&é÷˜i&é÷˜i&é÷˜i&é÷˜i&é÷˜i&夙f’^ÿ€9b’^ÿ€9bÒ]!Üþ¾c³Ä¤Ü!zì§›½‚GøòÃðÓ!iú»¼EûZ’4}#| ô>G¢\ÎD®`?`ŒÞçÈm\ÉL\ÅÛ™ÁÌ\Í,üˆY¹†wðcŸñ°ãlŽ×2;×…„»†Äo^àÏ´vß,"÷öfZó¹­Ç݉+Šõé¹­ËÝ—Å•ÄÖþ›•ÿ¹ûØ—÷³«P¿žÛúÝ}…Öïêü€RÔ–7p¬‡ÏmMï¾êœ|œÛºÞ}Öõîë´žwÿCëx·uœ"W§¿bäòôÿw¬7C,¶”ÿñ]Þbº^2kˆ}vžw0þçpœÍñŸ!a@®TÖ5p]£¹ù1ï¦ë3 ]ŸÉ\ϼÜÀ|ü„ù¹‘¸‰¹™…ø) s õ¿e·Rÿ[vS¸zಟ…ð¢<ɽTC“Ê~ÎâÜÁÜÉ{ùKR­†&•ÕG«¡Iew± ÕãÛ¬ÝeÂÝöþßß…ÄÚ…ÈÏ=CâÌK!Üe†læ¾4“ƒNex¬ö\/Ϲ·w]pÜÛñe>Ï+ÎýéqÑ#þ³fˆ™É!öøNæ¥ü53¿d~Êq3 PýY»©o~ükê“ÿ&„;Ì3õÊË¢ÜÃ~ÇbÔKϼ‡zî™Åù=KP¯=ó^`Id)bifþÀ²4Ì–ƒÊ¶¤œSVΙ-ç”U*[Ë¿ù.•­á߬áÙrOÙ'ÅÖèoÖhekô7kôƒY!òˆß—þŽõå}>˜->H³Ä#~oúç½ïsÅ~zšØû§/¥÷K—ê\z:ÛrÕ·ô÷¨¾¥¿Ïö!1Q²ñ)êA6¶£dcü¼dc‡™::$6”¯§Ž¡|=õ ÊÓSÇRžž:Ž9C¨íú~Ýx±<=uåé©)?OD×dêdº&S§Ð5™:•®ÁÔi”§¾Iytêtš“jë}õ«µÍGßÇï çåÕ©3)¯NEyuêlö:sÒ÷ñÏ5G\„zɆzÉ©zɆf¸©zȆzÈÈÇúƆúÆáúßj‰Ô÷V“çOÙ_ó¶‡0öõ)hÿœ²ÏæÙ'c‡‹í£SöÛ<}áØâmÉøëGñ3ÏÛ‡óô‹cG‹ã¯Cûé”}9Ï~:e_γŸNÙ—óôcßð|ü¼ý9ï«é{:$–~žg؇¿Ñ¼Ü÷,íÕ¾¿³/ÿ`?žcÊ3¥åµœfÎzêEßc/¾Oùt×r¯¹à5/y~¸ïŸŽò"ñ_æ_ÌËÂ+|…óU^åk¼Æ¡¼Îaü‡®Yßt­úþKרïMºF}ÿã¨MÕ¿ÕϦê_‹êgSõ¯Eõ³©ú×¢úÙT}kQýlªžµh9êY‹–ÑíC,‹ÙªEÆBäV±øñ¼‡²8W†ßõ~ÍìTEOQ}Dßn›ªÜ¤Ù©Ê43U¹E3SUËá53SÕÍJUh6ª¥µQÕÚxÍÚ¨šD3QU¿ûµa¼¯3}ß×|××FŠo÷Èì‘%D’#ÿÜÂ׻ܳb¹òO3üsH¹bùòÏýbóH¹Tq9±}ÿPyÊ3U ýþPEöº2^÷ËÒ=žSŽîñ5³œ{\ÌìõP%¯ýÁ9õ³œúùPeñ¼?ñ~aeUþÌxŒò¸÷2¿=ôã¬Æ_X'Yƒ§X“úï‡jñ´Ÿ©ã¸¶c=õ¥¾!ö^=ê;ß«¢mž±y؇z×6jh޼TCsä£×çˆÿùñfˆÕ B˜¤OM1gMGu熙bµþò†™bu£Š>á¹ñžS‹n˜/V›uo˜/V7¦ùbµÞò†ùbµ™ö†ùbuSš/Vë)o˜/V7£ùbuó2¿ì½&x¯]œÈÝž3s¬6s”Ï¢×¾±•ï‡hLϸÙìÓ#nŽR¸ÙìÓ#n¶6czÄÍ1ê7ßF=âf?Ó#n¾z¿Í™©÷Ûl}Äô~›ÍØ1½ßæ;¨÷Ûœz¿ÍÙ©÷Ûœƒz¿ÍúáöüÜ´ççÚÇÍ+‡ð«œpÂÞŸk/Ÿ°¿çÚË'ìí¹öò {{î`¯»ÏëôFÍï§œqÂ^ŸkoŸ°×çÚÛ'ìõ¹öö {}®½=«OHlò7_àU¾ÈkìK=Ñ’Ú!ÖN}^ñ‹ú£ÿYò°X­^qR,¿®8E}Ò’:Ϋß+~›m—<"VïWœ—àÊW+~£œ°äQÏ«‹+Ίå†%uÅz¿‹åˆ%õij>¯òÔ«-iÀøçjH½Ú’F¼ÁÇø/ófH(X3$~¿‡µøks/æ>Ö¡ý™œÛñ#ŽíÍä»=Ì[ÉÉyC¯ÖÔkêWkj5õ«5µÀZ+¯ªIy¥P-ç­±ÖØ¯ÖØóʯÖÓsʯfÕæ“_ͪ ZѬºÀ<ò«YuÁ“4£.0‡üjF]ЖfÓOÑlº ͦ ÚÓlºÀ<ñ«ÙtÙü×i6ÿu-Íæ¿®cg®gnà3ü„]CBgBâ_®I®üÝè³Qÿ§»¯G:Ðý<ò4ÝÏ#é>éD÷ïHgºGºÐý;âý¦»oG¼ßt÷ëˆ÷›þ»óŸåùÙ÷hH§Îí«Ë]¬Çݬϯù?~Ãü– ¹‡øã^6æ>>ÎïÙ„ûÙ”ø²±9åÐ&jù/rû¾by²‰ýK"Õì_äø}-ÿ‘­ø“¹®ãÖŽðIeþ̶Π!:ö@ˆÕÁƒÉCÔ;Œ=ÌÑücø#ß y·ÎXšw댣y·ÎxþÌ !š$o’“äãMòq’|¼I>N’7ÉÇIòñ&ù8I>Þ”5„)ËBä5,I^Þ$/'ÉË›ô¡SÞsþ7±ü¼I~N’Ÿ7ÉÏIòó¦œ4›oº“fóM¹h6ßtÍå›ÌåI½)ŸdþÄñóŽÕÃ$÷g“û“äþlR“Ü›øs9õ°þÔ=ŸúÝë©?Ò=:»7Ä/á>¦QmZlö<»Ÿfϳ®Ýâtºv‹—ѵ[ü]»ÅjØY×nñrºv‹Wе[ü]»ÅúýýüþìÏ‚ÀB|‰…9E8ˆÖmÒËT’Óüœ4„rÒ+”ó“^e‰˜õ¼¹Wߣzÿ =’ì¯5ÄCÄŠˆåÐ_×e=þÌú<æùZžUü?±>%_Ç Ÿ`CþBùóå !©RÅpÙÚ\þ¿&ØÓEó‰õËõ~ë7.ë+–ë+.ë+–7¢^b¹^â²^b¹^â²^b¹^â²¼¿¼‰Ÿ“ŠËÿËåÿËòÿr=Åeù~¹|Y¾_.ß_–ï—·°ÞŸ°ÖÝ_y(6Þý•‡bãó…PVýú­]ˆ-Òãþ¦·]TÞ¾koß½¢óÔÉ—¨¶0/ÎS[¨‹ËÍdÏãÓœï¼zØB}\ÞQloÍS[˜KÚãóÔÆ~Ç<µ±…ùý/!6Áýþþ$ÝïïOÑýþþW®äi®âfð7®æY~Äß¹†ðcžãZº¯Ö…Ä„[!¶áPHŒZ»Ñ­Ýh­Ýh”?…Ęï²Ùzˆùì›ï¥Ï¼¹$}ÞÍ¥èón.M¹hsÊA›ã”\±9þ÷?ɛ劘\±Y®øüjˆ½úQHXc ôú“Ö@¯‹4k÷Ò{dZëØ¼ÝKßQØ}Ê»=$~§ÞæýŒO†ðÎæyàfˆºb]Û¬ï„èö !6Øþß^‘öûöJ<ËÊü÷ñ²5p|¿cõmüs!ñ=P­å!ìUÿÆ÷_b/þÅÞ¼Ìçy…z¬GôXãõXè±v™ïFèåv™ïF˜ïvéõFèÕ6ªCý쓆C8²@¬õ³7ªEýކË,»Q=ê÷sïš¹«7ÑSîí|÷蹎!–"ß=׉òÝs™9$ܧÏû}byíûÌu¿O¢¹î÷É!ÚR^ÉúJóg„H¥ïÅòKÖWÅ3ÅûÅòLÖ×(Ïdÿ7lCCRûÆ{ù:Kr8K…ð²íŽs!Šÿ·v#œ+í8þßÛt\Æñ@Ç£—åh–snã1ŽË‡„Ý…¤‘êÌîËTkv_áþÍ·y• y‹x‹ùßá .á¿LãM.å|—·˜¾\Æßcßg”Ë™È!ŒX"yŽ‹“Ä0ÆyW2Wñvf03W3 ­Ó¯³r ïàÇÌFkôëì\Ç\ÏœÜà÷½ã÷Ém_ß)þD¼Dü‹8—x#ïâ&ææfÞÍO™‡[˜Ì­ÌËmÌÇí!Üžj?œÑ÷ÿ ±g¬ù÷­ÿgÔ•÷/Ñujp>$…7xcù'Çñ"Çó'Ðý éþ„øß=3Ķ™¯3Ï¢ù:ólš¯3Ï¡ù:ó\š¯3¿Eóuæy´ž®æ±þàÝ<Ç<<Ïd^`^þÉ|¼Èü”#¯ yµ /³¯°0Í W‹P¼Z”×B(g¾šâؼpµõ7Wï¡þæjqš®– œpõ^þÇ’¼ågÍÍWK…؇Ú«¥ ‘!w†ÄÊs˜‹syßbnÎãÝœÏ<´‡$ómæåBæã"æ§µ5¤Ýó!é^)Ä4æRá»,Êt¦P¿2¤õ'Cîáû,Nuþ¥Z!VN{ÉÌVN{ɬVN{ÉlVÎõn‘9Ä2Çÿ|ç,”ç[d¥<ßâÊ!-²Qžo‘똃ëCt£ïßïËPÍͦïÙXÖñI–ã)–篔OûYkåÓ~òêÆJri?5¦ßÙ0Z­­¥öŽVkk©½£ÕÚZjïh5¶Öã!ô—3ÙS£ÕÚZjpy1SûÓÞ­öÖj*6g²ÇF«ÁµäúÑjp­fοäüš‘3Ùs£Í`µÌýýÍÊñú0Ú,VˬßßÌœiÓm6«ÕRlVÎd/ö7+g²ûëk3m¤Y9Ó&åf£½7Ú,WËl7Ú,WK­m–«e¶m–«Õ&„‚zî‚ñÿÜLW«m· ôˆÿwàæ»Zæ½Ñæ»Z휋ÿ7áf¼Zí› õHñ0g¼Ç£¸‡Yº Ü;Ú X«ƒã’¥ÄfÁZO;6;÷û;ÄÊ,¢zYf1¯Ñ¾ïwö}¿h½¥^5W+ë´ aÿt¶æ ª•ûgÒçß?‹>÷þÙ|ŠÖÿ[ê[s=JD®¯ãsï·ÞRëšëOêøìûߢ϶ž=¿Ñž_ÀM”ÃíImõ|‹Po·è _ã!ª1‹sàëü‘ÃùG„0Èì}GMññHå(þÌÑ<Æ1s ~óS}æ@ýæ§úÌúÍOõ™õ›Ÿê3¦y{î®þbýæ@}ç§úÍï꿲‡„-zÎé^SÕkôÇ[ôžõ [ôžõ [ôžõ [ôžõ [ôœW„È{a¢=ÙÔºøEÏpÀšhF[;¶N'Ú'M­•_ôÜ߉ÖsSkæýÄ÷u¢yã€ë=Ñ}oj ý"ïpÝ'^§ë>Ñ}8àZOt¸Öÿ¥kÿï0šZk¿èC¸æ݃jèuó€oâ­8)x¸CŸ‰U²±9³`KšÉ‡šoªšÅ‡Ê£UÍ5CåѪG)V•W‡Ê£U™³ô-ƒõlÛõ-ƒõlÛÍȃõlÛÍȃõlÛÍ•ƒõlÛÍ•ƒõlÛÍ•ƒåžÔüú˜íæKË.ºÝ|9$¢Ÿ ±øŸMû޵÷€ZþŽõõÀ&çÛ8oÜ~*$m"KäÕvòìù´<»D>m÷åÑvòëy´ÝyÊ£íäÕ%òh;yu‰¼ÙN^]"?¶3.qÏÚéS0_OÓGý ÷™¦úÁ|=mÍ×Ó>¡ùzÚFš¯§ùÿïÛx”™ø3oç±æ­ ‘Š2ƒæ&¯…Xì^eI£\\¢_ˆ¾þ@ˆ=hV+4+$(ÍÙ”—;^á²{PhŽX~îèý.WÏ— #ÌÉÕ½~„¹zš«›G˜«ÇŸ7W÷ó#Þ Ÿ1–òw?ë/Süü8±<~ÛóŽÇ;–ÃûY“™äü~Öd¦øk­ÉL^Óï/ÆŸ¿L9¾ßÊñúÅH&9^¿É$Çë#ñ?“hÄïw'2þ:9#ÓƒâIâ*œÌªœÂøë§ÒóÍ^ I·gc_Ê}Íú1û3'ðN¾Ä\È»8ˆ¹ù2ïæ`æá&óæå«ÌÇטŸC©Çn6Œù:õ×͆SOÝL×L¯ØÌµ½½ˆ‡^ðö”­øhH:m.ªX—zÙY„H™¸Ò.–·g­›k+6ë?f},6ßVl*¾Æ'ÿ»UšQ^¬ØœòbÅ”+¶¤¼X±åÅŠ­y‹O†$mf´bÊ×Ë/„Ä®æ¤åRÎ\~‘rûòK”ß—ÿEsÑòË4-¿BóÐò¿)‡.¿J9tù5š‡–_§yhù?|78œÿror$ÿã(ª]GÇÿ˜Ža„o„h—‡B,¯9³K5þÂêÔG÷SJÛ9+8Öc—Ös÷Óc—Ös÷Óc—Ös÷Óc—Ž¿V]ZÏÝOo]ZÏÝO]ú4õÐ¥ÏP]ZOÝO®/-×÷“ëKËõýäúÒr}?¹¾´\ßO®/íÞçÔ§÷“ïKÛoýäûÒî{ÎJŽåüÒîmª!éšœQçª]uäq>DߥN5ú.uªÓ¼\§ÍËuj2þß³Öbü¿W­ÍøŸú0ÍðuêÐ _çšáëX«×¬Õ:Öêµs´6¯Y£ëJ„XŸy/bIÊiëJñhwXëÌï}|Æuæ÷>>ã:³{ŸqٽϸÎìÞÇg\gvïã3®3»÷ñ×Uâ¯f.³vÖhÍd]æÏI­êrõ탬¡¬fíùo‹ë‹­¥¬fíù Åú÷AÖTÖuâEâ\̆|‡¸„1¹”‡hùãt~ʧ Pþ8]òÇiû»xøÓ>ƒ|”‡X—‡Y?°>äÿøðH‹ÕҪφèó‡Xñ«lBûìù¦´Ïž‚öÙóÍhŸ=ßœúÔâæÍwÕÆŽæÍwÕÅŽjå»jbGµ2S}ÇêbDZfÞfÞa!l•w[Ë»æ9–{[˽[åÞÖ÷{ÍÛ^ó:z,r<ÜÜ[a~t ‘GÌñïú\OëoJîwì³!BÉ!z>1ÄÒâªki©ž¥¢z–v˜êYÚTÏÒ¬‘ó™iœÏBkä|Vª{çï õq>…„ê5Câ%׳z-ºžÕkÓõ¬þ0]Ïê®û%׳ºë~Éõ¬îº_:B×ýÒQºî—~¦ë~)þ~®û¥ãtÝ/`Cª•Õñ$ã)6¦õÖíçþq«?.>Í&<æüúÍKg©ß¼ô;õ›—þ ~óÒ9ê7/§~ó’ú›·«c=ç¥?©ç¼t‘m<ä•KrÞ%9¸µœs‡=ÐZιãdóå‚Êê÷|õ`¾ž¯²¾ªr9Ï×ð¼½Ñº&íßÖµ(¿ô)K¨}ÊPÞïS–ò}Ÿr”çû”§üÞ§åõ>¹–•¸Ž•¹ž÷qCU5°_m[#%>aê]«šq¾ŠÇUÅ›ø7óA~ʇ¸…Õ¨gìSÛXƒÛéÞ–øÌû¼ê}âï÷7Ñ\ôUü}ÜóŸ‹­Û¯âïçÞ—ØB¾ƒÖBÿB!©Ì§,Ì-TOËl¥šZfS¸=„›…HÒq1ñg¼‡Ÿ³8w°wò^Æÿ óxÒTqIñ—ââiâRâ¯Xš»X†»Y–_³¿ay~Ë ÜÊü.„üWWr¼×ñߎ+;ÞÇûø=ï§}Uè‹dNŠú’}ùõu…v±?ws¿æKü†ù-…è×zôQ«C(ÓÊñ%Çîy†y Uï•aH•2Ìn©ö†¹-ÕþÏ0¯¥ê½2Ìi©z¯ sZªÞ+Ã|–ª×Ê0Ÿ¥šÏ2Ìg©æ³ óYªù,Ã|–j6Î0—¥šË2Ì©fã ³ðsfã óÙsê|Æšk.IWZ…PÌÌ[Ìw«¹BÜšðÉͨb©¿…°òŽ©ÛX\U¬ödèiSw>›óòqƃb5(CNµ/Vfw¾‰ØÞIU‹2ìTýQ†=’ª/ʰGR/†PÊ “aŸ¸ae?ÓT\[lße˜õ\“°2§óOˆõì®M4ÃÌçÚ„•w:ßLûÑq.ÇÍ=gt½ÂÊ»Ä-ÄæA×-šatÝÂÊÜη› ]¿°òn±ï¿2}ï ó¡ëV&‹ãßߜ躆•yÅmÄ Åæß•ùÄm}þ­Žó;~ŠØÎkyÚšñõXC̵f¨%®}4CÎvíÃÊ‚^ß^,o?gÖÌPSžK¤šò\Õ”çb!zvSˆ-žÌÍ4+ý”S¹…Ó¸•or§s;gð3ÎäçœÅœBöŽw:žÃ/8—_ò-~Åy!!»¾m§ù-»¾mç„:ô áâbýÛNs\výÛNs\výÛNŸ­ÖÙô÷›!dYæøwÇ>G­?èsÔ:GŸ£Öyúµ.Ðç˜Û:DÊÇŸÿSì³ÔºHŸ¥Ö%ú,µþâ¼Y°9$¶®ÇO©‡xÄ\x@o¹`‹ØÜº`+Í­ ¶Ñܺ`;Í >£¹qÁç4/.ØAsâ‚lÂ/Ø”_ò ïk®< ·=bž< W]ð•órÕ‚]”ƒâÿŸhk¹gÁ×lÉoØŠßÒwY°‡Oò;¶á^¶å>>ÅïÙŽûÙ>$¬N I=Í<«Ÿ£™guOšyV÷¢™guošyV?O3Ïê>Ì£Hsü‚csÏjóTOsÏjýPOsÏjýPOsÏjýPOsÏjýPO}Ñ k!Vñ^çþÃ4ÞàRþËwy“éüîå [|/D_|Ÿ.gW0ʨߨøaˆîŸbŸ ÑEöw½è"{»^y… Î§b{»<°ÈÞn#,²§Ûè•ÙÓmÌ?‹ìß6öþ"û¶yg‘}ÛÆž_d¿¶‘£ó ‰ß¬baf°W³(?b õ¡yŠñãòÈíyöyÈçyîqnm¥k…„žò~Ê^Êù)r~O9?ÅkzÊù)ûY…úÇžzøýNO=|Š×SŸ¢ß驇OÑïôÔçèwzêáSô;=õð)úžzø=vüïNè+Ö˧è{zêåSô==õò)úžžzù}OO½|о§§^>EßÓS/Ÿ¢ïé©—Où•æË”Ó!¬*"õRCtƒ>îE×sƒ>îÅ-Ηqþ9±~îE9i•ž¤^O±¾îÅmârâ^,ÏÞÎëó^ÜN}Þ‹ŸQŸ÷âçÔ罸ƒÙ¹3D/Ž ±eíå µëâ8Ç8žOs;†„jéú¤G¸ŒêÑ–‡p]ïUí=q]±aÚûâz\Nû¸ÛΫÝ>¤5Òm%õdÝVQ?Vm…×ý°óΫÝÔÒëêE7sÇu³t·5¼ìuzÙ¡ÚJšª­¢Ù¡Z{õpÝlÝ͸n-U[íüãüˆM¸†Mù1ŸàZ6ã:6çz¶à¶ô>ë¼ÏUñ'âVÜÈÖÜÄ']ë?C¤~^dÅݼ8Ä^R6¿Cyóvð¼> ~%êêWv>Íy×wóRvä»ìÄtvæ2vá{´×6¿Ï®\În\Áîü€f˜Í²WÒÚÙbï T K ÑgV…X~µ«ø]Ž3û|ÿ¨Ñ¹hg8ÿ¬½^ÈÞÖ^/dï?k¯rOKþÂô!Rr^ˆz¤}j˜ŸOÚ§†åoÏ$Ï?íùùâbµ,ÿÓ¼-„ ò`“¹lÏøÿë¨/šg=žü‹ÖãÉË´O^¡õxòoî ‘ÓBâkjñŽ7©ï˜NõwÇ ª¿;fR]Ý1‹…8›…ChüXÇÆÑ:86žs‚ççx¾ˆ¸‰x¢x®¸(ßb ç±çó¯kêu“Ä ÄÅù6K8¯~›Lýȱ)lΩž7»½v/ÑL¹c1KñÚË;–ÐÞÝ‘F{vÇRÚ«;Þ¥½ºÃÞz­í­×*Òžz­í¥×*Ó^zMŽÙa¯¼v?í•תÐ^x­jˆþ,¿ÎRc2Ÿ ‰Û^æïÌ?8„çø ÏóU^àk!2*kŒc"Ç3‰®×¨]§Q·Ñu•‰“y;§03}ïQY8Yù&ïàtfã fçLæà,椞 f÷¾Kã³\êüÎÏa.Îå]|‹¹if®ÙÃëÞß-6×L§‹óˆP7*¯c÷©ÆÂÝ97Ćêëv¾EsÞCÃBâÅds —·ƒØ¼}1¯bg®HÝ’Š>BïCrxñvqWñaqrˆvËb6ðN~Â\ÜÈ»¸‰¹¹™wS®î–‡úÝnÉÜʼ”›¾"ñ?£áBšo.â1.æq¾Ã^ŸÏëí‘nùit+@óXÖz^³ÄkÌ¨Ý :g&[˜&>).$–Ç»æ,Â/Y”_ykÿsûº†÷›¯ºv÷«3 —ñ ߣþáû<ËåüÝϧøù],ÆÝ¼‡_³8¿a ~Ë{¹‡%ùKQM^¸Âû˜º•«¿›I/ çÁŸ8’G8ŠG9š?s ñ çXž õ:ξ}ľgß>bߎ³o¹‡öküÿ=xü`ˆ% Ñ—†…Xù2|e9œfx¿;V¾Äí¬ÆÏXŸ³åŒÒß{ì÷8àq0D?7 ¾:Úñ!Ã?x˜µKÿ"_©#ÃûRÞêÈðþ!ÒÕw*àwvõ Ô¥ïRÀìÖÕw)PŸ¾K3[Wß¡€™­«ïPÀÌÖÕw(`fëê;0³uõ ˜ÙºšÙ ˜ÙºšÙ ˜ÙºšÙ ˜ÙºšÙ ¡¯Ì£_¡¯Ìó¬ó¿:?™§©¡ÏÌÓC|F,¯|õå¯\ÏáoúæYû8iøtº¦ÃgÐ5>“®éðYtM‡Ïó]â²]|”»Y—_³¿a}~Ëÿqð;6ä^6â>>ÆïÙ˜ûù8å›ÖrxkùùìkCoâ¼ë5™É—éÁÌd‰Ëô^f²Äe?°9d þ¢ßn ±1#¹£øGósŽá¾ÁË/8ÎLbïí]A{o¯™4E^Oi,¶÷~H{p¯Ùtzs³ÌTq&±uºüRršøv±Ù4KÇ™›O§Ë9%­ÙüYÄÖ^þ¬´öòßÁ™æÐñòPá+!á‚ϰÔþ¿à3,µÿ/øÝKÍÅã×zÞ¬zÁgXê3Œ_'6s^ð–ú ã׋¯‰}†¥>Ãø âëbŸcéjúýKÍÉã?qþ±Ï±t }Ž¥ÓçXº–Ù¹Ž9¸ž9¹wòæâFÞÅMÞo£÷»!Î-ÞÌ»ù)óp “¹•y¹ù¸ùù ðsäâNæ,Â/Y”zñ )ÜÅbÜÍ{ø5‹ó– õ÷šž¢jmêª>³Ÿ±Þ§¶éjCê‘®6¢éêcÔ ]mL=ÐÕÇ©÷¹Ú„zž«M©×¹úõ.W›Ñû_ÿ]ÀÞÿj ꮪáµÕþ«­¨þ]U_ºÏ áŸbuðª^[¼jÞ¨­^U»k«ƒWåžÚêàU9§¶:xU®©­^5‡ÔV¯Ê1µÕÁ«rJmuðª|Q[¼Ú™êàÕ.T¯ª1µÕÁ«]©^•#j«W»Sý»*7ÔVÿ®ÊµÕ¿«©Tû®êk«}Wõ€µÕ¾«z¿ÚjßU=_mµïª^¯¶ÚwUWÁ¬PFÎY3ĪËÕ#kQß;R?Z]ß;òaê{KÈo%&ŠõÇÕÏS\ýõÇÕõµ#õÇÕ/R_\ýõÁÕõµ#õ½Õ/³¯°!­û¹ß‡¤ææÔ¹ûiN{€æÔ¹©ç›{ˆCy˜ÃhŽhþ:åôææ‰¹rysóÄ\9¼¹yb®œÝÜ<1WÎn®Ç›+W7—ÃçÊÕÍÍsåêær÷\¹º¹Ü=W~n.wÏ•s›O Û|"娿“(·6—sçÊ­ÍõtsåÖærí\yµ¹\;W^mþ&åÕæòì\yµ¹<;W^m.ÏÎU«šË³sÕªæ³y‰søçò2ßâÎãßœ¢£ž ±š·±3±=ogfæÓÌÂŽÌjF<ã;¨.×ÌFu¸fö–ªÕž«Ç5sP®™“êpM÷|”:\3Ÿ¥ú<ªsû9õ¥ZqªXõåÀQ=i¦^ZÚóæŽ¥eø˲§ç{yÞŒ½´œ¸—¸·8Ÿg~çË;¯?YZÏ;ßÇy³Ô¨X/²ç+z¾¸¯¸0ûÑ 5ª?‹rSø‹q ïñs•üÜ âAb3ᨗY‚ƒy/‡°$_¡ïØÖžÉ©7mkÏäÔ›¶µgrêMÛÚ39õ¦m활zÓ¶öLN½i[{&§Þ´­~1§Þ´­~1§ÚÑV¿˜SÍh«_Ì©>´Õ/æÔ“¶Õ/ælMýbNýhÛ#Ô¶=JýhÛŸùTg†ð™šÙö˜X_ÚVO˜S_ÚV/˜S_ÚV/˜ói=àŽõƒ9õ¦mõ|9;éwõumõ}9õ§mõ{9õ§mõ{9õéú¯öô›ÇBì1}Eº¿†½ýæq±ÆõÅ1!’d>¸-þ÷ã¼á8þçÙåì›öC9ûf€ýPξ`?”3½8Öëâ^}QÎþ`_”³Øåô;/šÕ“âÿ.w<å–'0þçÙ/å|†'ŠåùöM9Ÿ¡À]¹CBJùxXI©@u$¥"Õ‘”JTGR*ÓçK¹~Êý”ÿSª0þgïÊÕ)Uû])ÐïH1VKRÌG‡¿ñy<ÅŒtø[š‘ëgþ¼3$¾ÿ;\­ç3úÜ–Öó}nK=÷™÷Ø‹®ãŸ¹¼nïâ|ææÞÍ·™‡ C´Û'!V°+7²[Å«8ÞäX?W¼ªãÍŽíÉnŸÒë¶…©ÜÊç¨×)h/uÓë´‡ºéu öÖÛæÐÛnaNnåÜÆ\ÜλøsósÞÍÌÃL¦bÞ¨©èu/…X¢ï}Çà]8:ÄÚøl Çð¾Á9–q«q<«skp"k†èÄ“!VO¿4ñõF¥~~¢]O??ñ g†È¢Cbۼɑü>Ï¢["ƒĶÖäâõÝfá rq‚غ[¥õµ8‘Ö×â$Z_‹c´öîÜäø6Ç“˜‰“C´ßÒ+c._|&Dú½+6Ofõþ‹sN>è—ø§Îu®giþÁ2<Dz<Ïr¼Àòü“x‘©¯} ÿbeï½Ì{·_ßÇ+¼ßù÷œo%þ[\…Wéô{ßy}Æâkb÷¢ßrñ“\Á6>ã–yßZëbí½ŸLkïý¼\È|\Äü\Ì|‡¹„…˜ÆÂ\Ê"|—E™ÎšéÞ/F3Ýû÷ÐÚ¿8åŽ÷Kpïå,ÉYŠfÙ÷KsUˆfÿ<$í”ß³ï <ž}'ååì_ðE~ɾüŠý¸‹ýCdì¢XGÍ»˜òóØwèÄÿ~½òd­4/Õ*ÈöT+öÊc—x{T«°Øü>6M¬&]Jµhì»T{ƦӽªUÄëäбËÄjÍØ÷¨vŒ}Ÿ•Cˆ ÑÏ'‡Ø«8…q*ÍŸOãã|“M8M9ƒO„h½á!éfŽ`YŽd9ŽbyŽfŽaE¾ÁJKë¥Þ8ÞÇñ´NêM Ro"­z“h]Ô›L{´ÞÚ£õ¦²šYEް“nÚ§öbÒMûÔ^LºiŸÚ‹I7kq&ksælÖ Ñ•êBûuå š¿WþBó÷Jû»‡ù{¥ýÝÃü½Òþîaþ^i÷x‹öwyüz˜•g¹€¿ómþA¹qå9.ây. YÜ·í¾Û•{Blù ç¿,Á›!úBÞ»Wn{!å¬òSn{¡Õ­âiŽ :–ß^(Ä/X˜_²¿bQî’«ž”«ôU ÛP_õå½!6ì4Kò Kñ7–¦nt´GÒ푎öHº=ÒQ}¨›#„Czt{¥£½’n¯t´WÒ핎öJº½ÒÑ^I·W:Ú+éöJG{%Ý^éhî«›ÓÏë!Ò홎öLº=ÓqË0ƒe¹šåøÕÅŽk¨.v4S¦«‹ÍŽéêbG3cººØÑ¬˜®.v4#¦«‹Í„éêbÇ~ŸÚ~H¯’®6vÜ4 I­þ aÐÜÉzXÜH|Qü–ø‡2ÝîXËúc…Êyþ1Ï_ ¡÷Ý!‘¯zç¡üÔ;™O2/å¥ÞùØ–ùi¯ö.@{µwAÚ«½ ± S/Ó»Í?݇¤‚æ‹ÞEÅú™Þ)4u7³u7¯u7«u7§uoæuzì‚úë‚zë‚úê‚æŒ†ØkæìdyÿÛ¹!ÂJ<ê|1ç»ð>ã|eçæ}<ÆûiN_…'B¶.!i°Þf˜!weñ3â,ìʬìÆ;ØÙø,³³s0•9ùï¤ë28{Q?=L¯‘û>qo±ÞzÛó¼›}˜‡/0™/2/û2ûQ­¦GÉ}¿¸¿¸° _b!dab¾Ì¢LsYå&!é·«lÊk|‚×iÿö›S¾ÙWÉ\÷²9®’¹îes\¥”Þ9"Æcs\%óÝËæ¸Jæ»w~qÞû¿lž«d¾{Ùœ™9‚Y8’Y9ŠæÖ㣙-D¿ëbcÝ»ïºÐlþÝ3tϾëJ÷ì»n,²š¶O£Þû›ÔûoŸN½ÿö”o¶Ï¤<³}å•í³)olŸC9cû\ÊûÛÕ¬òþvu kVªYïàfãÛÌÎ…øs9/bNêS²Z/ÛåÊõÿ„Ø‹¼ÁÕ!zlqˆÍÖ¿{‡ý¹„˜Æ—hö˜=fŽÙƒhΘÿ33ä­z¾òG©Ÿ(_”’OúÊ¥ŽR¾(õs%­ÝùÞ³•Ù¶xÃøÓQ6âÏ|ŒrKéBÒ u8嘇SúC±zœrÂñJÇjrÊ/ŽW9~ŠlÇÕT—Sì>Cb‰3!T•—¿úZÜEl6êó õB}ºÒ<Ô§ÍC}ºS>¯*?e®®:…ß:ÿ¬óòzÕ©b³uŸbsRŸTš“úÏ;–úô¡Ù¨µ^"þç{Ô± ò,Ä,̆”C®6¢œqõ1¦„„Ò¾Óñ¿ÍüÛû>ǽÇí®ÍÖ6t]¶¶¥k²Õ5¹Ý5ÙêšÜîšlmÏØk¨W™úlˆ_Ê|—©Ô N}ŽËØ“ï±ßgo.çó\Á>ü€úâzÀ©úâ+½ÿÇÞ¿#×Rï3Uÿÿóý§ê?âÆÿíëœï,6·Þn_/î Tgnÿ„]¹‘z‰Û7±»5,we³N>ÿ‰ÖÉçGؘÖO¶ÇiýL3‹5êC³X£hkô"Íbúr7û…ð’Þ4óŸâ¯Åú¡—ô¨™õ‹/éQ3ës¦}ãü±^5ó_âoÅ/qò;â^¾Ì}¢…ª„¤ýÖz¡ªT+ =@ë¹Ðƒ´Ž =Dk¸P5Z¿…ªó$kðkòצë…Kþ¢ëS¯^¦~òê>N÷?‹¼<7_Hj¶•ùi=Ì-Àí,ÈÏXˆŸ³0w°w²(¿` ¿d1~Å{¸‹Å¹›%ø5ïå7,ÉoYŠ{Xšß± ÷†0P¿”åwqYñ>–ã÷,Ïý¬À¬Èƒ¬ÄC¬L=ûÜûøïçt-›¹×s]Ëfîõ\ײ™{=×µlæ^Ïu-›£kÙ,þç® ‰ãà*>È >ÄÕ¬ÆXkXƒ³&ײ×±6×óan`~ÂG¸‘rã¾âfÖ㧬Ï-ü·²AHŒš÷6Ü ¡üQÇæ²OBH¸r8$­Î8‚?r$â(áhåþÌ7xŒcyœãB˜èó}]|B<ž¿pOR:Ñç,ÿ=§ÄòßDŸ·hü÷ý*–ß&úÜEGÒç.:Š>wÑøï=íyyobqü÷ŸË{Šß`#Æ?ÇoΫcWÎR»ò;Õ±+P»rŽêØ³Í uìŠùf…:vÅŒ³B»bÎY¡Ž]¹DuìÊ_œBY=uYýôvup𪃃'R<‰êààÉTO¡:8x*ÕÁÁÓ¨~“êààéTÏ :8x&ÕÀÁêþv5pðlªƒçPÏ4Øì¸]Ï4ØÌ¸]Ï4ؼ¸]Ï4x¾wÚ±¾i°k»¾iðÛÔ7 ^H}ÓàEÔ/ ^B£C8*×o×7 ~‡ú¦ÁK¨olImbECX$ïV1‹¤¶'±c!!×ö¸+þ÷-ëw6y/þw)ëy6D¨çÙ@=φhw»§ úž ‰Tƒ7$Qß³!BÛ=!œÏÎïh¾¿Û:Kâ¡ÚàznÐç|©S¿T‡©_ªÃÎQÍvžjÝ0µîKµn˜Z÷¥Z7L­ûR­¦Ö}©ÖÅûý/Õ:ýyBÂC!q½Ü“PrOBuÊ= 5(÷$ԤܓP‹rOBmÊ= SîI0׬—{¡Ü“ð(åž„º”{êQîI¨O¹'áÜKûmý¾ø?hu¬§X/ï$¨ë÷»w9CdQ¥Øf]ˆNVgë_1ÓøÌ5*‹ÕÛúòé»f‹÷‰ÕÝúWÅî_ûÅêoýk!Üq·c5¸¾~rcê÷'?Nýþä&ü—My“Oð¿M7ãv2ó¦›q;™yÓ͸̼éfÜNfÞt3n'3oº·“™7ÝŒÛÉÌ›nÆídæM7ãvÒËýùfHJ¯Áé¬É¬Å™¬„;C¤H3ñ,ñÃb³d‘æâÙâ:œÃG8—ò-Öå<Öã|Öçþo³²!±ó1¾ÃÆ\ÂÇ™Æ&\ʦ|—O„„#jð 5÷ˆ<£Õàý©Ï@µw†šzD­¡¦Qcg ¡HWÇê쌗ws¬ÖÎLµv†õ{D­ñ ¿ç«!¬û)DÏ¢Gª…،̬Î,¬Á¬¬É;X‹zõ#µ™3ë0'á|”¹X—w±sS¯6Ã:8b ÍÈCkgF2­™yi­ÌÈGëdFüóX'3 Ð:™¡Ç;bÌÐã±NfèñŽX'3ôxGšQw¤9ÍGZ°˜¢]ÌïySÿ÷ê¿óþHýw^sþÂä¹ÿI±><¯¾ü;=øØTêëÇ>G}ýØžÔ×íE}ýØÞ\Æçùûð}¾Àå|1DÓr„Xû­ÌÉm¼“Û™‹Ÿñ.~ÎÜÜÁ»¹“yø“ù¥yliˆL’›êë—'™Ñê›Õ&™Ïê›Õj× aß0±9­¾Üy'$ô0ÿÉNó‘4ÿÉIó‘;Cè­Däˆ}ŹØwÑü_$7ÍÿEî¦ù¿Hšÿ‹$Óü_$/ÍÿEò…ÿöCÁâü!!étHÜd'¡ñn=ðÝæè¤ßÄÖ³~1q›Ú›ù2åçÌW(÷fþ›j|æ«Tk3_£›ù:ÕøÌÿPmÍ|ƒãø/ÕöÌ7©¶gþy‹“BBén›ZÞþ™þŒÿsg³å6µ»}W±ë“ÅŒ¹m*͘ÛÔê,fÌmjuµu›ZEmݦVgQ ¶©ÕYÔÖm³|}qõu›zE}ݦ^gQ_·©×YÔ×moùÅñŸWc·©‘—Ë„Ä÷ׄ„åjzW?³\Mïj¬Nd¯Hu"{%çÕø®Þcùeªù˯ÐìºüošO—_å‚ ÝôøÏCï4XžÎ^Ùs×<÷v…¥óå×/ä?4Ï.¿Aßù¿ô½—ßäþÇ4ÞâÒ`dIêú.#LgÍ9%園rMÉÁCÌ©QsêLä‡L¢¹¦oŒ«hÎ-ÿ»Ê2ÑüÒ÷v~ÄÌ\¢kç†XŸ¦|‹Op›q>›s[ðm¶äB¶â"¶¦ù»}ºÖüÝÇ\7ìÛ{PÞ;¬ßž¢¯>¬ßž¢¾ÖgOQßFï ‘üÖûèïiÖwOÑgÖwOÑgÖwOÑgÖwOÑgÖwOùÁë÷{½ýpXÿ=E¿}Xÿ=E¿}Xÿ=E¿}Xÿ=å¨×ðºÜ<È»yˆöËa}ù}øa}ùsz‘úêÇaýù”ãÔŸO9"›Õø;¨ÆØI5~ÀTãØ÷ ׄpDýݬÖøJ¬:¢þnVó좚?`7ÕüæøÍjþ€o¨æ0ŸoVï˜Ë7«÷¾£ÙpÀ^š ¸6›Í†\›ÍMè;onJßió<¢Mï ±Ø×!Äÿ“J·‹‹‹¿¡þ=ö­ó>C%u¥©>¦§šç³TR_š–ÇRÜËÒÔƒÜq\Æñ÷Ž—u¼Ÿåx€åÿ½xˆòvLÞn*oÇäí¦òvLÞn*oÇ~¢|“¯›V¡Ù²iUš-›>@³eÓyÜLxÆñCŽÍ—MÕ˜ù²©Z3_6U cæË¦jaìWª…±ÓT cñŸS c¿…è?)!¶JóO1êqþqmVéqÞ<bäAŽâ!ŽæaŽ ÑZmCÒß¾k­§e;&†è¶Blð³ü=B(—)DK™qù ¥jÑg(U›>C©‡é3”ªÃ³|„¿óQþÁº<Çz<Ïú¼ÀÿñÏfŽ‘ÒŸ‡¢Æ”jàœy~æçâqCñ%6â_4W3W—2W3W—2WÓ¦ìôøÂµ”óS¬Í™oøyçfŽ¥ó)_ym¯½Ê¦¼Æ'xÝs»7s캕jN×­T ê _rÊ»~/ý@×ï¥éú½ô]¿—Žð åXþÌq<Æñ<Î <Á‰ü…“¨Ç,?9DÉ’®æ® ‘ò—ù1õ¹s×òoÏßéùO˜‹_ç¼>wîzêoçn ûþÈ]žßÄÜÜÌ»ùiH8%·Î—KOÉ­óåÒSrë|¹ô”Ü:_.ýUn¿Œrëü÷(·ÎŸQ.g"W0‰0F5ó×Û¸’™(·îÕSÓ£íÕSÓ£íÕSÓ£íÕSÓ£íÕSÓ£íÕSÓ£íÕSÓ£íÕSÓ£íÕSÓ£íÕSÓ£íÕSK!ÛÇúªqú´½zªqú´½zªqú´½zªqú´w¿ ±ŽCCt ¾¼Â›Ô—W˜Â;æÍäƒúó 3¨?¯ ^–J ‰Ç«q)«ó]Ö¡K½þVïK¥‹kŠåÅ¿ÕýRËÄúöRï±6ßçÃ\NýMkîo}A©býº”xüÑ’×;þбž]J<®gW‡ëÙÕ¡5(ñ¸œx¼›Ð.D÷ëÓ&¢>mâËÔ§MÌTßöÛ“_¡=9ñU®äk\E߇q5_çGÎ5Ái-ï_Kkyÿ:ZËû×ÓZÞ¿ÖòþOh-ïßHkyÿ&ZËû7ÓZÞÿ)­åý[h-÷Ww˨»ýÕÝ2ênu·ŒºÛ_Ý-cmôWw˨»ýÕÝ2ênu·ŒºÛ_Ý-£†¼£o|àqñÇÌʵ¼ƒf¿þÙ¸žÙ¹!$\?’V ã!¾ÎÃÔ·]ÿú¶ë?Ò}¼þÝ¿ëGèþ\?J}ÛõŸ©o»~Œú¶ëÇ©o»~‚ú¶ë¿pB“Š…HJñI±þíú)êß®ÿÊÉ<Í)Ç“ìÉSìÅ_Ù›æ³Qd¥ùÄlYi.1EVžå‹ü}ùûñûó<ð_âŸÈ‹”OfèCë)®\±jjµ,!éâG!Ìi"åf‰³ŠíÃ9mųÅwˆíÃjÙhVËÎužÊóæƒ9í8×ùί·¿%VË.ªes:ˆ­ájj×Eµ«šÚuQíšó´óóÙ‘æ…9h6˜Ó™Öôœ.´ž«©e7‰Ÿ[CsºÒºžÓKØi|–K½^Í»¸YìZ—{—®u¹tºÖå–y^-¼ø©Ø5/÷]órï;ŸÇù-z5¦Z²c³pµ¼tÿ«å£Y¸Z~š…?1ôÓû'o I{ÌÞÉ[iöNÞF³wòvö áÍ !R²¼ø3±<ùsšÁ“wÐ ž¼“fðä/ÿ{Dÿôú â/Å}ùûqûs7ðk¾ä³Z¯Éß8ègÍi%ÍiošÓJVrþ[çÝïä=T?’¿£ú‘¼—êGò>ªÉßSýHÞOõ#ù‡êƒª…è|³L«f!,ÿ4DþOl¦ieö™o¦iÕœUÜ£„ǽ%õÉíC´U½˪¯kUŸúºVÿ£¾î{ñÚ5Åï:¤vMñ»©]SÔªCj×µêÚ5E­:¤vMQ«©]SÔªCj×9É™lCó{£¶œíuƒ¼Î Ýè)±ýÖ¨ç:ÿrH4îF¶f„C˜àùöžKüŠX-Ýú*ù“8”1ãm|™BÈeÆÛ:ܱÜÙ¨ƒ÷˜'!ÎÌ‘ÌÂQÌÊѼÃÏüâáš%unŒsÙø³;ïæú5$$Ýá~¨!IÙ¨†$e§’”ƒjHRNª!IwR IÊE5$é.ª!I¹¹ÈýÍåþ6ß-^Ì<|‡É\¼ÔÛ&å£Þ6)?õ¶I¨·M*H½mR!ª;I…©î$¡º“T”+üž»üžâ±7©ãÿ\è® ‘éz¶Æ†„èŽø‰ÏÝI¯~Á–ü’­ø[sŸän¶á×lËoøTHÌô\ˆm1ãfêI3n¦^lB…¾òº¹+±Òyö |28•öS59í›ÓâçÄöþàž´÷÷â_ìMóøàçi܇Ó:®d¶Ž+Yǃ­ãJæžj˼ß±õ\éZÇ•nÐú­ô/­ÛJÖí`ë¶Ò´.+Ý¢uX9øy¹ô›ßÄÖceëq°õX9Öaeëp°uXÙ:lV¶[‡•­ÃÁÖaåÛ,äÜŽ­ÅÊ™hV¾Ö_eëo°õWÙúlýU¶þ[•ï 5W9[H8¢O™aMѧ̰¦ŽèSfXSGô)3¬©#ú”ÖÔ}Ê kêˆ>e†¾äˆ>e†µtDŸ2ÃZ:¢O™a-1'Ͱ–Ž˜“fXKGÌI3¬¥#æ¤éñåNké¨9i†µtÔœ4ÃZ:ª§™a-ÕÓÌÐÿ³ý:ë=˜í×YïÁ\¿Îzæúuú‰\›CÒ.su®OÙƒêÉ.¹,E/‘KMÙ¥¦äRSv©)¹Ô”]jÊ´?BäÞ2b5eWoý¢95—º²K]É¥®ìRWr©+»Ô•\êÊ®©žìROr©'»Ô“\êÉ.õ$—z²+þ÷Qç ‘KÖÿ²÷hÝ/{?„Ö•B8«ß¸dý/[BÔ»d,[ÁâüÀkÜø³êVüÏä½\éüƒÎëM.•¯b)f°4W{þ!Ï—ëQZW¿,.+6#_*ǯîü`qyñZ±ùíìq±ùREš‘/U¢ùRe~Âû¸‘÷Ó¼ÜKOYÌüßKOYLß¶Èg­ržö}• ô«üéùbžÿZì³V¹(¾Gl¶ìUœß²÷ð^~Ç’ÜËRÜ"Ž…ÄIú•zÂIú”zÂIú”zÂIú”zÂIú“zÂIú“zÂIzÂzÂIzÂzÂIzÂzÂIîÑ=á$=á=á$=á=á$¹ã€žp’žð€žp’žð€žp’ûp@O8Éu? 'œÿ3Ô/1þç¨ÿE×ñÀeº~ä;¶‡'½"'? ‰óççlB9p^SÊ󞡹{ý«ûÔ\oò«²¹¾ä×=/7ÎkF¹q^sÊóZPnœ×’rã¼V”給Ü8ïI~K}éÉ=ÔžüŽúΓ{©ï<¹úÍ“ßSŸyr?õ•'°cHHh×ckç“<Á6ü…my2$¼£Ÿjןz©v¨wj÷õNíRïÔnPH¸¢wÔ %\Ñ+.ßB}âò­Ô'.ßF}âòí!L”ÿŠ>Lù¯hçõË?c~΂ÜÁBÜÉÂüÂëåÉ¢ˆ‹ˆÍJåË¢Š‹Š¿b w9/­+.&ÞÍ{ø5‹ó–à·¼—{X’ß…Èi¹hžâ´\´`å¢z‰Ójï=ÃiµwÁ<{ý#Çêï‚ùT,‘Ý›CâÈzü”õ¹…ÿ áñWB8þIw¹»·:×€ÛØ0Dz©EÅÔ¢^jQ1µ¨—ZTÌšê¥S‹z©EÅÔ¢^jQ1µ¨—ZTLOÕK *¦§ rM/u¨˜:ÔK*¦õR‡Š©C½Ô¡bú§qÖI!³ë™CÒÛÇÅÖK!ýÓ8ë¥öÌCλçgªQ¿2Îú)¤gýÒœ©î¼5p¦õ,㬧BoÑz*äZd¾Ó±5UH=9SÓk~›Y ™YÆ™Y ™YÆ™Y ©+gjyþ4kó æo¬Ã³|„¿óQþÁº<Çz<Ïú¼ÀÿñO6àE6ä%6â_~ŸÙ¨úuæ1ñe6æ>οلWÙ”×ø¯³ÿasÞÑÂO‡¤ƒ·±#ÍÎ…;Qÿ7ݼZÊL\¸³X_=}جQ¸‹Ø ]øfuÞš*•ƒ{iVž.·•r½¦Osrá®^gÆ.ÜÙœßï¼þjúææAÞÍCÌÃÃLöúî^ÿ}ÏÒ,^¸s2•êfáçèý»™5 ˜5º™5 ˜5º™5 ÈÏÝP^î֗؈…„/Ÿ I¯GÙŽ‰lϤ†[ßwwÇÄo‹Š]Ÿ×o£ëóz&º>¯ßN×åuץĸÑ*ĪGBBúŠÔIÿ—þõéRÿ—¾’ú¿ôUÔÿ¥gPÿ—¾šOñ#¶ã¶çÇìÀµ|:Dëê þÕÔÕü›®õI+ïæóÌÃ>Læ ÌË™}™?DïÕ›5ßÞ«79ºœz“£úÜ™•B¤ô ¬L=½IÎÀ?äm\ÉL\ÅÛ™ÁÌ\¢²…ØÄ#!¬•#û)„2öV™“j©þî=sÅ%ýÝ{z¹Kú»÷ôr—ôvïéå.éíÞË¢FËgG³Ç8¯×{OowI¯÷žÞî’^ï=óÄ%½Þ{æ‰Ü[ë÷Þ³Þro a¼ù¬°ùâüÑ´t æ<Ʊ<Îq<Áñü…x’yŠ“ø+'ó4§ØïzûógOåoœÆ³|“¿s:íÝóçÏð0³×‹_æóèÇ Ÿ !§m¢šVÏL¸þ¡yÜþó#!6Ë ³¾šØà¶¾:³ã÷Ä£ž·7Ö×Ë©ëkñUÖ¦Yù纞ÏMk~–=³þaçÍéëëpáë|”fçŸí‰YöTYseYënÉ!©ýpþÄ<‘!¼¼6Dî3–¸ŽíGÑul?š®c{×u‰ëØÞu]â:¶w]—¸Ží]×%®c{×u‰ëØÞu]â:¶w]—¸Ží]×%®a{×u‰ü·Dî[âÚµŸâ1ÕcZ™*‡è©µ!6ÿ6èašXs§Ö‰Ç†¨ú›÷÷q ¿g÷s)ð]dzHLÔ_m´·º¶­\Û­®m+×v«kÛÊ’¨ïÚ˜…¥™•eh.M,Ksib9ª‰å©6&V Ú˜X‘jcb%ªØFu1ñ>ª‹aŽ>^í s©v…·Ø/$ ®’*à}<ÈûyˆU<ª:>ìñCHXeIU7V™CRåóUæTóÈ*sHªyd•9$Õ<²Ê’jYeI5¬2‡¤šG2Ì!©æ‘ sHªy$Ã^O5dØë©æ‘ {=Õ<’ao§® ½j¦Í°·SÍ´övêJÚÛ©«ho§f0 W3+?â\Ãlü˜Ù¹–9¸Ž9¹>„Wº‡HŽ4êms,¥Þ6GüsÞéù b=n{å=nŽøçÍå¼Þá½nŽøç¾K¼Q¬çÍÿü¹Å›ÄzßfWô¾9âßC–º™ú°TýX†>,u‹çõÄ9âßO?–*G¼b]åˆO}Yªþ,C–ºú°TýX†>,U?–¡KÕeèÃRõcú¯Ô/¨ïJý’)z­TóSê.ý`¹ôÔ÷öŽÙçeýöæƒ;\¿wÊ;¿ßÚ6ß$žµFä€Äß©¯MüƒúÚÄsÔ×&ž§¾6ñõµ‰ÒŒphMˆMÅ)?®Ó6~„zÁÆ:oÏLC{eÊ\ϱž×6®+Þ V—}ÂñÜÈ ÜĉÜÌIü”“¹…S¸•S¹Ó¸oò3NççœÁœÉœ¢ ÿ ±ˆ½ÚðíÕ†ÿÒH_"5Ô„ô4ž Ñ7? ±Çºˆ—ŠõYéòw_÷}‹ÿyéâÓbßû±®ô=ëFßó±î!ú½Ï5Á÷øÞçšà{|ïsMð=¾÷¹&øßû\äïl‹ûl|—ï¿ ü½ÇzcﱞÇXÇ{¬ç1ÖñëyŒu¼ÇzcﱞǬ§õüzAêï¢>üº5YG~½õà׋ò º®uƲXkÞ‘†gCt·½4òA¾Ì‡8˜Õ8„Õù kðUÖäk¬Å¡¬¢›s‡Ø€ox7¿eîa2¿c^ª“›óQ.ÛœŸß³÷³ °²0…è?¿ôwúù¥ÐÏ/=G?¿ÔËx@mÿ™òâqVã Vç/¬Á“¬ÉS4ó§šC2Ìü©öy†™?Õ>Ï0ó§ÚçfþÔ³z‘×õ"jD†Ù?Õ~Ï0û§š#2Ìþ©öz†Ù?5þ9Ìþ©öz†Ù?Õ^Ï0û§^¤Ù?Õ>Ï0ó§ÚçfþøßSñÊpï«ædÈ3©W(Ϥêç3ä™Ô«”gR¯QžI½Ny&õÊ1©7(Ǥþ¢ùG„¤}rüôŽ!RR^È?R\Ž£Xž£YcXÑë:y¼‘ÿ q%Ž¥ž>ÿ8ÞÇñ¼ŸX…Y•“ø'Ó:Éo&Ø÷PHHÖ_«·MÖ_ûnO¯ áÒU5Çw|Zoyéõ—®SÏxÉwHÖƒ›¢g³„Ø¢#ÌÊ£¼ƒ?ÓŒºè³ó8sðsòÞI½ÉÙ\<Å»¨'9k .Ò‹œµ¡5¸è·Ù®Ö Që¶«uCRChô]?ç«yCÔ¼íjÞžÎïu^Ù®ö é%Þ'¾S¬é-Ö;þœK¬y^¬güù.±š8DMÜ®&Q·«‰CÔÄíjâ5q»š8DMÜ®&Q·«‰CÔÄíjâ5q»š8DMÜ®&Q·«‰CÔÄíjâÁ¼Ì!¼ÂWø7_åU¾ÆkÊëÆh¦L¯«7¢Sï ±¾[z=±ÙñÞ&!!INK2SmŒÿ»ØÙ!2¢yH¬v˜-(÷Ôžµ4—íYç|Kç 3Ç­ÿÄÖ<Â'y”mø3ÛòŸâq¶£û·ä«k?$„’fÁ%»¿ÂÝ|•_Ó¼¼äšKš{, ±"êvw©n÷H§ºÝc›ó=ªÙ=ÞgK.g+®`k~À'ù!Ûp%ÛêÚ9^åø)ªý=V;nçÑ>Do>bkÔ³›u¨žÝ4ÿ¯QÏnšóרg¬Õ‰?ÒZøSH(T/$î7#ªÏÃü͈…ðG6düux„ñ(SÞ*ô8å­BM(ojJy«ÐŒÿ=Í(oröË[…ÜŸýòV!÷c¿¼UȽØ/or/öË[…Ü‹ýòV’ZPÈýØ/wŽ•Ûëa©{S]Í+Ç×)A9¾Î½”ã딤_§”ësɱ<_§4åù:eBbBƒÛP” ©ÿºí…ú›]2ÕeŒõxë3ÿFè½Gl IÕŸñèœ!R^/7禄hõs!é/3Iõó4“T¿ÀÙž?éy}]õ?ÅñÿV唸ñEñ\^â[Îÿê|qñ_âyâÓbß«úeñü*êÍ?;"OÉ79§ðnNuÞïøì 8x“ù&ór:óqós¦×û Ÿ©óçR}¯èwöƒç x~ zr<ÛcNˆÚï±!i43±Öí÷ØëÙ~ ‘÷ì÷Øe¼È÷¨×ò>õzC–S¯7dõzC> ^oˆyx·~„ù~·~ÄG!Ø«‘<æ¤Ýúþæ£Ýúþñ?«¶¥óoŠÍI#ÌI»ÍI#ÌI»ÍI#ÌI»ÍI#ädû8’g:[s†óæ¦æ¦Ýæ&÷.Ø×‘<¾¿}É3Ëys”û™°Û5µÛ5âSÏ›ò¸¦ö{$ÏçÍU#ÔÌÝæªjÜnsÕsÕnsÕsÕnsÕsÕnsÕsÕnsÕsÕnsÕsünsÔˆ/B´Õ­»#=þWÓõj¡ëÕ:®Wë(]¯Ö‰t½Z'ñƒ>ü&DêÞ¢+õô=j‹¿ëÕ>ÜC=Ú‡ß1÷ROüá>ê…Wêý{<̉¬ãü÷ÎçO?ÂÉ|ÔùýÎë‘?´¶êæá¹õCë©îÝ!,Ë"5ʱ®Û½Öß½³Ctf«k’èØ:º×ºW_ßVNÊ)'µ•“r¶¥|”S>j›Aù©­œ”S>jkþÎÙæíœO›ßšßÕÙ²öñ¡CŽ]Ÿz°ÕòÝa”ïn¼Nï}c8½÷ óÑjï}Ã|´Ú{ß0­öÞ7ÌG«½÷ óÑjï}Ã|´º#ÍG«;…PJí.u=D?~1Äž/áøÇ}Ë÷cIçnxèC>6·=_Šæ¶çåÍmÏ— Ñs®iÚÓ!l²†šÙãç\Û4¿ãœkšÖ‰®iZgNaNå3œÆ®|“Ý8Ý9ƒÏr&{pS9›Ïq{r.{ñ-öæ<ªÙ›¬Õfîɹùâ>\Àø6_äBöõ:}_³-Ô§5Û"ÿ˜2ôXÿ˜2\›6ÕBøCþÇ‘áó?:'$ݰFËGùërëq>ësÿÇ·Ù€ i½¼ ‘ ÖÞ£‹Ä¸˜fÚGßñXâXßxãñ™©‡ib^Ÿ©wi¢w™©wib^Ÿ©gib^Ÿ©Wib^Ÿ©Gib^Ÿ©7i¢7™©7i¢7™©7i¢7™©7i¢7™©7i¢7™©7i¢7™©7i¢7™©7i¢7™©7i¢7™©7i¢7™©7iâ{ÏÔ›4Ñ›ÌÔ›4Ñ›ÌÔ›4QÏõ±„œL¥=Õè9ÚCzò.ö¢=óÖÍ©hžhÔ[lŽlô<ÕÝé§B¬±œ”¾Û>Ê"þU<ƒ§©VL?Cëhúo”sÒ¿öº¬â³b¹wúï´ÇÒ倸Ÿ_:].nl¿M—‹›£§ËÅÍÑÓåâÆ ì]=ðtù¸ñÛ~FžˆÿY§ÓååÆfêéòrc3õty¹ñbÊËÝéòrã%”—ËóÓÍàåùéfðÆòüuŸmÕúL«ä¿iFz®iélÂKï†Hf5|Ú2ñ|Íø>›{>Ýójû´åâ\Á–Î/s^­Ÿö¸•ø=ño4Ãe>ëü‡Î·æJ>ÉUlãùåž7»LË·åj>åü çÍ2Ó>·SÓåÞik·çÇìÀµ|šëØ‘ëÙ‰Ø9$ôx2$ÅÿLémhNéÑ–züOñFˆ¬M ‰Ï/ ¡Ïû“ûÚ@2ÿiŸäLÏó¼ï±ö¾ï¼Ïû“šº¶¸x¹X¿ö“þtm ñ ±ÏýÓñ½âX’:ïóÿä¾7hOõ¹AÎó|)ϯ ‘3Ÿ„Ä…úá3©>³‰z•™C8ÝP¼Yü?qq#ñ§âÜÂøó[?¿q;ó3>îç²ú¹Çxãç?w¾I¹åŠjÏi{÷Ìçšr'Ÿp^-:MgÇêÑik£…zt:þÜlæµ_xmÜ/imäîâø+Ç-¼&—×ÄÏ=ãÜ.笑êÒiÏåîêÜnçÔø3_Óuoaߎ¿F:?ÿóîC‹<âøóÉçîæ¹o=ç^´Èë\Ü|t/Zä§:fçãq±kߢ ]û…èÚ·(Ly¿EÊ›g¾óz÷.º1D«šÏé1«šÏýE³ñ¹Ë”ãÎ]¡™øÜß4Ÿ»J3ñ¹k4ŸSªš‰ÏýÂly¹œ·¬j6>wƒfãsjQU³ñ¹›lÅÿBÂktà-Z£Æš„-Öè ­ÑA lÇhÃÜ׻ƉۋÕëaîã]ãéÞÝ5M81„ÛÝ›aîã]“¼¶ƒ×&…„»ô˜»Þ¥sW:õ–»–Qo¹ë½ò q¬¿ÜeçyÅ,lí]åœ^s×rê5w­ žr—&Ï«Ž :Ö÷Ý¥·Üµ’…¹ŠE˜Aýø.ýà]öØ®h/íZ£?3›«¶yŸ éËÄæ«möIŸ¥‚Þi\y}½9f\þÄŠ4‹«D³ø¸Ê4‹»æ“‹5CRºœu±妋µ)]|˜æŽ‹u(]|„rÍÅG)·\¬Ës¬Çó¬Ï üÿd^¤5‘~‰ÖDú_´&Ò/ÓšH¿Bk"ýoZéWiM¤ëO&Ô‘"¯‰­tù碵‘.ÿ\´&ÒoКHÿ—ÖDúMZéÖÄÅÖ´&.ZÒSÂEkc™5qÑÚX–¢£ôV5G™™‘jCŇţÅuÄÃÄ?ˆÇðG¾ÁŸ8–G8ŽG9ž?sq"sOp2ážäTª5§QÝ«ÿ;¦…¤}Õù&ÕËüÓY“3X‹3Y›³¨È?›u¨Ù§ɯÙ§ɯÙ§ɯÙ§ɯÙ§ɯÙ§ɯÙ× „éC¤¤Ú—__²¯!õ#ûô#ùõ#ûô#ùßaüï;Гì{œilÂ¥4«çWëö™]>1'NçFÎà&ÎäfÎâ§4/%lánå\nã[ÜÎyüŒóù9ÕëLÝCŠ—CR·"Ì¢!ÚàötËßÀ|tk5ÍG·>¢¹èÖš‹n}LóЭµ4ÝZGóЭõ4ÝÚ@óÏ­Ohþ¹%O50ïÜÚDóέÍ4ïÜú”æ›[ê{óÍ­­4ßÜÚFóÍ­í!2îÃøHU®ä\Å™Á‡BˆLt¼Úq5~Äê\C÷·§þ·˜ûÝSÿ[L<¼xˆ=ôKp/ïå>–ä÷,Åý!úã¢{Sÿúãböå;ìB6?ûãÇý™Æ!¬ÓÇ5^K}\c×áǥοÄw9é¢IGCÒ&k<égZãIÇh'§5žt‚Öx÷ãy¾ˆûqÈÜþDó»M>~¢åã'ZR>~ÂtÛlM{ï¼ë–f.<ﺥ™ Ï› Ó> ¡Èώ͆ifÃófÃ4³áy³ašþä¼Ù0í á—,ʯ˜Â],ÆÝ¼‡_‡°EÏÛòý©ï[ó9õ}kvPÏ·f'õzkâÿÎX>H•2äƒTŸ-C>xN^Èž“2ÔŠçÔŠ µâ¹(Õˆç)ÿ?'ÿg<Í;ò¶^"9¶q$·s}·WF3þï®;y]&ññ¾ÁË/8Ž_r<}?3FÒs·³ õ,¯LpÞ÷ÍxFœ…]©yÅÚʱ›“èû¿2™ßx¾›çõ&¯LË©Üã|wçõ'¯LÇ7¹×ùgן¼2]¼3ø=õl9âÿ®|nˆ¬«ûè¿×ýúíu ¨‡^×fíuhÖ^÷ÍÚëÓ¬½îqš­×5¡Yz]Sš¥×É}†ËwX×Ìñ!6ça¶àlÉÙŠ?y­ïi6NÌY‘³ײ2×ñ>®çýÜÀ*Ô æ¬BŽ^f¥¶zœ86†,b½aÎC¨øzŸ™+çÖÊ=ãÑÕ£›ù[^9eíÌw³›3N™æoÑÍ»B쥑!¬º"õk…PZo—­Dˆ !é‡eŒð=&P.¥úøõ4µ4‡³ G°,G²G±È)|ˆSYêÎÔêTw¦ÊCsž±fz­9Í¡=ÞLœc7Ó;½ï^=l~›c¯7Ó;m13¶”sÿ{9Ä>~‚ƒé ¶È=-åàÿ†ˆ›ó¶à«lÉרŠCÙšÃø$_gg[ŽàSÉvÅöMýgöÏqü4ß`GŽe§p{ˆ=ê³MÈLŸeBʃ²R=˜pÕƒ/õ@Ãô©_ê†éS¿¼Ÿ—C(S4Dz‰E:Ðü_äi¢>·Çaêù«”áK}tÄÖ@•{ÅÝÅ?Šõð=~¢¾½ÇêÕ{eüõ?³»uh?ö8æøY?[ÒÏ>+>.îav®”s=œ;á\*ás<Éž<Å^ü•ÖxÓ|>Doÿ&$m•ãoÿ–šá©füâkBÂý^ÿ‡žó~¯ÿC?u¿×ÿ1”g8Œ¿1þ÷âY÷Ÿu<œ¿s„sÕ-n}mÞ!¡Êó!ñœÚ‰öçP=ïNûr¨}¹Ó¾*Ïße¿ÞeßÝeŸEcÎÛ§CåþÆjDã>Þs…ÇÎÛ·CíÛöíPû{§=;Ô^Ýi¯µ?wÚŸCíÏöçPûs§ý9ÔþÜi¿ µ?wÚoCíÏöÛÐçi¿ íCûm¨Þe§½6T_×®~ˆÝy!„{Ôvÿsü'ð"Ržj׈òT»ÇhžnטæévÓ<Ý® ÍÓíšÒ<ÝNN¿ózˆ|*$N:Îv<Áöü…x’OóTH¸â^.w/¯¸—ËÝË+îår÷òŠ{¹Ü½Œø®ë{Ów]ÿ<}×õ}è»®¾ëúé»®ïKßu}?ú®ëû‡ÐvyçÌŽßy½>µ­k|Î ‘gÖ¿Ä?8ç(wµ5ßž;Gsí9³eä¼ó/‡ØÊñǃù'ÍÞ‘‹|…—(ÏEþ¢<¹Ly.r…ò\äo¾Î«”ã"×8‚òEäÇ#=F…è¥k!öÞ×¼ÎoB´´qB],-GœHa¦µQúœX®8¡>ÎüPlóÅÿ~ÆÒœ—;N$Rî8‘D¹ãDŒrljÛBtH髬¯R†BXroˆ<¨.,)I5aI)ªKJ3ÕëÊzÞiI±ÆuIYöt¾œó‡ÄåĽĿþÊêÇ’òb{cIZÓKôOöñ|ÏÿÀŠüÑyýÔƒ/ˆ+‰õ[YÍYCÔÅÊG¨.V>Ju±òϬÂc¬Êã~Vöà‹Ôƒ=Ø—z°Í$Kô`šG†<àu'Äf¥Ýï%f¥Í!Ctþ>Ä“¬ÆSž7C=¨v ©.þ•5xÚù‡œ7¯ ©)>ÃZüµy–ówÖá|„ÖÍó׃ÖËó׃ƒYƒCX“¯°_õúG½þ<ëÒ½Röß{²²ý7Ä~¬lÿ ±+ÛO곿ÂïWyˆø/ñ<±÷­üŠø²x>¯ÐL»Àï©ì÷<ù·ømqmñkâ«b³ø“ÖZöE´Ö²/æ?|‡7¸„ÿ27¹”ÿñ]Þbzˆ¶ ”7ÚD¨÷l“@½çËB¬¢èå‚ü‚…h¦ê.÷T;ºËýÕŽîrAµ£»\_Píè.ÇT;ºËñÕŽîòBAµ£»¼PPíè./T;ºË ÕŽîr|Á•”ã ®¢_Pè.ÇT#ºËñå•îr|Ay¥»_ðãù¾ZH¿5D>z.$ö¼Èžt/éßkF=ã{zÈKzÆ÷Z„„uz›ä‰uz›†ðš<|§ï±nx¿£ûýš¼|§ïµn¯Ø}M~¾Ó÷[·Oìþo¹"­ª†Äýã†NÔ?nÐÃm¹æüb}ä†.Çg8žjù´Õƒâ ânœÈîœÄg9™=8…©4ëo°W·üãç›ù7øŽ oÒl²å†óÕø/«;?ÝùÞœA}VÂLê³fQ•0›z¬„9Ôc%Ì¥+á-ê±æQ•0Ÿz¬„Ôc%¼M×§¦ïzY?T³3õC5}ÇËÿ†Ðý¾þ‘¯kú®—õE5»Ò_Rs,õ7Çn§¾æXfêkŽe¡~昙t¦úXÚ:-©¯9fV*©Ÿ9–ú™cÙ©Ÿ9–ƒú™c9©Ÿ9v'Ÿc.öä]ìÅÜìÍ»ù<Í%û0™/0/_d>¿W=.Fë ´}Q²¯óùÙØŸ9€…ø s ‹p‹òe¦p0‹qïá+,ÎWiÆ+ùïåP–ä0–¢ÙîXišíŽ•¡Ùî˜Ùî̯!iádžæžáTþÆi<Ë7ù;§óÎà9Æÿß¹óœÅ Œÿ?sr/2þÿÈ]â[ü‹óx™ñÿî å"fÛqzŒBö虿‹ÿ?q/ŠíÕ3WÅñÿ7îãÿÏÚu.æ?|‡7¸„úÍ…úÍ3úÍ…öÚ#!é¾×åž½rL<÷íc<ç}ÏxŽÛÏxn;@u7Ë͸=þç)þG×"Ë-N áî[!ú©<6Ð|ö©<6Ð|æãƚ϶ÈcÍg[䱟„‘۬ݒwÓì¸%êüFq±rK¢x“¸™1~êùdÏ›-·Ü&ÞÂLÜJóáÀm44Óo1üÌ_ѱqàç4#ÜÁl”C·dç!¼3=DØÇü>DþbÞâEΣÚPAî¨&TX@µ ÂÛT *ÈõÕ€ rý@¹¿‚\?Pî¯ ×”û+, ¡¸ù³¸žn PAΨTpÝ;ÙsÉf’Nö\²™¤“½–l&éd¯%›I:ÙkÉf’NöZ²™¤“½–|íµd³H'{-ÙlÖÉ^K6ƒt²×’Ífìµd³G'{-ÙìÑÉ^K6{t²×’³‡ÐKM úªNö\²­“=–lFëd%›Ñ:ÙcÉf´NöX²­“=–lFëd%›Ñ:ÙcÉf´NöX²­“=–lFëd%ÛÃ½ÔÆ _ëd¯%ç«AßÖÉžK.@{.¹ í¹äB´ç’ ÓžK.ÂÚBä15ùÀŠ›dýø€¯éiõ¨“õãõ¨“õãõ¨“õãõ¨“õãõ¨“õãõ¨“õãõ¨“핃zÓÉöÈA=éd=͹C8ÙR¬7ÜzÓÉý©<€úÐÉfìƒúÐÉ©<ˆúÐÉjÑwûùVbýèäÁÔNVƒžÈã|k±¾tò+Ô—N~ÕùdçŸëO'¿&Î+n#Ö§N*vÍN¶_»f'ÍGõ®“ÍïO›“Þç¿4Ã?QÐysÓAûqòHÚ“GÑ~œ<Ú$_Ü%?DÍPÚÉÄÉcáLàØ¶~"­³†ÄÛ{„ØÖFâoÄwð[fãZ3[¿£yuë^æôúT¯ŒÏ±±óûœ¿SÜSü8{± {³)ŸçìÃf|Íù"[°/[²åƒÔÁ 3Ô?ê`F_ªƒý¨fèCÿQ3PÌÐ~Ý-ÄFÉë_w§¼þõ³”׿ö½FÉë_û¼£äõ¯ŸóðGéÕG• a£yô uñw}è;¾çÆ-byìwýè;¾ï“‡ðû6ñhêx¢Ç¤¹zWHüÀõMô3‰9ĹÅoón.d.b2‡ÈµÂ!ñÃe,Â÷X”ï3…fÝkŸ‚÷0þçã¦x›C®• 9äÚ½\Å’Ì`)®!û“!¡³‘WÍé¬.äUs:«yÕœÎêA^5§³zWÍé¬äUs:«yÕœÎêA^5§³zWÍéü՜η¸ $t |›ª/]¨¾t‰r±ý=Îþþ’ãù•ó‰Î«7]ô¤yå¿Xügõ¥yÕœ.úÒ¼r_}i^ý\}i^}\}i^}j}iÞ÷¼×ïµK¬?Í«_í¢?Í«_í¢?Í«_í¢?Íë:õšèu»éž„¯9™ßp ¿õ:ýk^³f¯©â=œÆïœ×ÏæU3»ègóêo»ègóêo»ègóêo»ègóêo»ÜÍ5rPšd½XJëíÀ»4×H§9æÀ2¾L½ú÷ö0Ã.“»;˽ËäîÎÙ)ww–s—ÉÝåÜerwg9w™ÜÝYÎ]&ww–s—ÉÝåÜerwg9w™ÜÝYÎ]&gw–s—ÉÙåÜervç|”³;ç§œÝYŽ]&gwÖ'M0_Ô57LP—ë.§º\wEˆZƱºP]®û!Õ庮G³ïC’=™Ðl?õÍмßì ûóð0õíÍ~ ù¾ÙÔ6û‰/SOq»Y¾ÙQºÍ~¦šÓìÕ†fÇ©&4;Á¡!ÚÓ\ÿ{kzš#ãgMOsdüï«éiŽL1Oö4?¦œ¢ù1ÅÙÓ~M9Mû4ÅüØÓܘb~ìinL1?ö47¦˜{šSÌ=̓)fûžæÁsaOó`й°§y0Å\ØÓ<˜b.ìiL1¯ôlH5¨g#^æc¼b–6·÷lìøo>ΫlÂklÊë|‚ÿ°o°9ÿe ÞdKÊ9=[ñVHxÖ=,ìž?ëV›b[»…Õ™ÞêTD?ù¬ûYX}é­îD¦S‰ØãϪɅ՗ÞêKd&Õ•ˆ½þ¬]Xé­®DfS=‰Ì¡:±çŸU» «;½Õˆ½ÿ¬^XÝéÝAlîí­fDä€gÕôÂêOïŽbù®w'ÚÏϪí…ÕŸÞÅr³j{áB!ä¯ê\çä‡gÕùÂ…{À¹gœÓ‹>«æ.B5¿pQªù…åºÞ]=/g<«ß.\ŒúíÂ÷8o‰èYŸ)..6Dä‘gG‰KˆÍ ùäÙÑâ{ÅæÄˆ¼òìqI±91’N}Cdõ ù¥·¾!ò>õ û"Û¦´£;7óY~ÊÜB÷<ÛVªÙ¶±'·³?co~Î繃}¸“/„0íÁ)!OdûB¬žeû’êY¶¯¨žeÛEõ,ÛnÊ/Ù¾¦ü’Í\¼#þsæâòK6óðù%›yxÇ`šƒwèÕ³™w¼BÑ‹!d¶O²Ù¿;ôLÙìßzölöïû+›ý»cíßzýlöïŽá´wŒ ý»c$íߣBH_"5.…p¯=]å¾ø‡\\å~îf~MóößÐ|ýÇ·!tµž®µ›§ÿk»ZOמ›“ÿs«Tã^š‹ÿÐowµ®®µ×ÏšÜÏZ<ÀÚ<ȇyˆux˜ð>ÊY—?±„h†Y ÕìaH5;d˜R?¥9 ÕÌaH53d˜Rãæ¤9 ÕÌ‘ƒŸ…h)×üø 3è[fÐÄ®ýq×¾”kܵ/åÚwíK¹öÇÍI¥\óã®y)×ü¸k~t[ˆÍœÆí|“Ÿq:?ç îàLîä,~ÁÙü’søçrÍ!GwÓrôkšCŽ~CsÈÑoi9º‡æ£ßÑrÔ7ÓrÔ7ÓrÔ7Ó,Ô7ÓÞyøx­&—°VÝÕÇÎs%/pÿd/z]š×Õë3þ±&ºÄ¿¸†f›îóŠ×-õº‡ÅkÅ‹ß× AýMx8Ýñ#ž[ç99óŠ|½ânÊ×+äµìúòÍgB¤…=¼ù7êÙ®Èá+’)‡¯ÈK9|E>Êá+òS_Q€rø µîо¢åð…)‡¯("g_‰‹®óEþB‹f!œ6¯¶hN}ÁÙ¾Îß·ëÎöÿËþ¼Éü/ñ†DmOäì Fø28˜Qa"_a_eŒ¯ñ6e&ãí!Äÿ›È„s!áys_‰˜X¿—p^lþ+q›Xß—à¾ä_¨6ü⼞¢D&ñ"ÏéþtNQÂ,ø¼þ¢Dæµ>ÄšÊ_³6Pþšõ å¯Y)ÍÚDùkÖfÊ_³>¥ü5k å¯Y[ù­å¦òÖç‹CìÕ!1“Z¶EȤ–m‘2©e[äLjÙy SkÚÿ™ž¤}Ÿ© «ÉMjqŽGCÒNµxß!6ξzàétá6v¤ï3Û¬Q.»¸“Øu™mæ(—CÜYì;=`^¾…æå Yi^¾p]· Ùèz]ˆÿ¼ës!þs®É…œtM.ÜI=×…\Ôs]¸‹z® ¹©çº Ç:%7Îrãüá”ç Ü8$åÆùrcf³ù)ýÍüÑÔßÌÂØC¤ =pJŸ3ÿ êsæ¥>gþ8êsæç/œÀ“œÈSœÄ_9™§9…g85D× ±ö±0¿gî‘-ææ…-æÖÏóÀ@û¸á­Žš¿·˜ Z7[JÓ~6Ú…£öp£íÑF ¬ãù2ž7Gl)Kû»QÔùGÄåÄæð-幆è;n©Èµ¬D{¹Q¢×?*®,^/N׫7ÐZø ­•CBfêò%6ç_lÁËlIׯG+Ê=ZÓ¼.‡ØºÝ¼Â¯ù7¿áU~ËkÜÃëüŽÿp/opÿ¥Ú’l¶ßc–N¼îØ|¿ÇýM6ßï1G?-'üÿÿ"Íù{ÜçdsþžQ4ßïq“Í÷{ÆÐ\¿Ç½M6×ïqo“}¾=fŸ ­Bâ£?±5ðIeþ̶<Ƨxœíx‚íùKˆüçý>~Þïcóý×8‚×9ÒØÁãiŽBøØïlôeˆ~§Î½aæùØÜÕè«ʨ=ß©yo|C5ï 3üójhñTC‹ï ¡j½¾)VK‹!®/¶¦«þ£W[‹Iµµ¸÷,›¢÷çI¿«‹÷àç,È,Ä,Ì/X„>×ýEùS¸‹Å¸›÷ðk§Ïx ~Ë{¹‡%ùKq/KÓÚ¿¿ ­ýûËr¿™¿Œ™?!$¤ÜëõRrÑ ™b&?l†L1‹~fñÃfdzøa³cŠYü°Ù1%/?`>ªM)ùiöI)@³`JAšS Ñ,˜bv?lL1»^C³ûáiv?¼–f÷Ãëhv?¼žföÃhþ„öèak?Å=¼‰öæáÍ†ê ŽíÏßÒ><¬ïO±ëMNÜbsÌ;'ró×Ö ‘&yÄw‹Í='òÐÜs"™æžyy6D>ù>$ök'ØëG^ïëñ?9@½ý'i-5”Ž ¥ú|dÕæ#öG.{û“C^£ßÿä0õûŸüÀÎ!|à¹GÌ=‹&„XÛ!¬x#Dê¸ÿ‹&ŠkŠÇŠ­©Ögë`Ñ$çkq2}žÖikj…Ù¾Î.šÝë˜ÝW˜ÝëX‹¦xÝÜÊ:œÆGø& !Ï©2*‡H}õhËÇ!6¨ø>±~zËZ±~;ã~±¾zË:qüuêà øóêà øyup~{‹:8H¿½E¤ßÞ¢ÒooQé··¨ƒƒô|[ÔÁAz¾-êà =ß=Ý =ß=Ý =ß=Ý sì7æ–Ñehn]–æ•ÑåhN]žæ“Ñî÷7æ’Ñù+q,+sïãxÞÏ ¬Â‰¬ÊI|€“ù §PÎúf*«q«‡0Bmˆÿ3ÛoÞ×àtêõ¾™ÁZœI÷bįË-ž%¶F›7GXgñ¶ûÍlç­‡ÅÉâ9âG8—ò-Öå<Öã|Ê%#~ðú¼ââÿñm6àB6ä"6âb>ÆwØ8„ÛÝ£îÖvA}zwk» >½»µ]pk }Ö*æâ…>c=cwk½à6±ÏZEï¸Ðg¬¢OìžÏy}|÷ü”¯î3ÿÿó¨Í²eõÍ÷™yO¡Y÷÷b4Ûþÿó¨­õ²fÛÙÖzYýô}fÛß‹ÓLû{ šc¿—f×ßõ¥÷™]/"kí“>rrƒCøI­]k¿ôñkí—>æâµ?²K óÿäØ ¼öͺk²[HÈ7"$îÕ{äI×=ß(ºÞùFÓuÌ7†ùøós,ÍM퇿†³.Õ°Žòú_jEG÷à/µ+ß8¯+Èñ,Ä ,̉”Ç’>±MSø!§†Äˆ:¹^®ˆÜ¤\ùrEä}OíBl½ï—¡ï—@ß/!Jß-!‘¾[B}·„æm<ÆLÍÙ‘kÙ‰ëØ™ëÙ…ø ?aWnd7šûOv!K[Çfÿ“fÿ²fÿ“zç²fÿ“zç²fÿ“zç²fÿ“zg54éÜyÖ§¾|öëæ–øâ?Ù€æñ Ö]ëî”nž×m°Îš˜ÛNéåæéÙ~ÞL”‰}¨wØœr-3Í)ײÐ\r-«™i…™é±¹äÚ4—\ËFsɵì4—\ËAsɵœ4—\»S}ùͱÙäZ.šM®É ›M®ÙKÝ?ðžfއÍ(׬¿®‹kRg†ps?gÑ ÞÂuÊb†oá:e1«·p²´a©=WÝž›+Äöýûe‰¥ýlNû¢_dz˜ÓC.=ÛcŽô˜\~H.ƒ‡9–?päø½Ù8ÄÖØ›7ç=lB{ñfS– iö`‡¸ö`³âË_‡H6×èåoèÚ¤½î|I±Þ'›k”&/w(Ey¹CiÊËäé4y¹ƒ<&/w§Óäåòtš¼ÜAžN“—;ÈÓiòry:M^î O§ÉËî a±yòC´ŸýSæ)ñ?â‡Ä+Åí¸Ší™Á\Më´ßG´Nû­¡ujÞeÖû˜wc™¿ a¾¼QÉ,ߢ”XÔ¢4õ@-ô<™õ@-ÊRÔ¢°<²±"³°®ÍÚ-*;þ‘÷ñ'ÞÏ#¬Â£¬J}êXû°NOÚ‡uzÑ>¬Ó›öaçiÖéCû°Î <ËC¤ç[!±X ç±çó.`q¾M÷ìûÇBÒx½þ÷©×ÿþqêõ¿oBŸs¿¹}¢¹l¿¹}¢¹l#Ê÷û£Þg¿µ1ÑšÛomLÌKkcb>Zó‡Èš9!±·yÍ\¥ÏÕÛçZãsõö¹Öø\½}®5>WoŸkÏÕ»ò^.bI.¦u¼æ––ßsÈïM™“O„„R½Câqýg)û÷x”öïq3a)û÷xíßã1Ú¿Ço£}{Ü>/eß·ÏKÙ·ÇíóRöíqû¼”}{<+íÛãÖp){ö¸µ[Êž=n—²gÛߥìÕãöw©Wy'_£½]j(ííR覗zöt©átÝžø)Ä2âŽæQŽáÏ|ù"?˜ç¦®£9nêzšß¦šß~0¿M5¿ý`~›º1DÓW„XüÏJMW?:YÇéÖ'ë8ݺïïßÒ#ZwÌ£5—nt’ÓíƒNòoº}ÐIþM·:É¿éöA§îÔÏu’{Óõqz„„<ÖØ·¯„„.«CR¾æüˆ-Bèµy¬‹|–¯=å³|(çç{šr~¾Ž”óóu¢œŸ¯3·³ ?ã3üœêø-³ÃÇKivøøÝÖšµ'…èÁA!6¹_fCf#ác|…ù*çkl¡T×ãÞo§÷‹‰_7!¾M<\Ü\lVkœIÅñl"?ÊáÓÔ€'äí“ú¬sŠg‹çŠó-êõ~”ß§Í¡lÚ\šÁ¦yî.×áGsØ4ëàGsØ´ù!¡^1èeèÃ!ä•èƒ~¶>1ègèƒ~¶>1T§>1ècèƒ>¶Áêc¤±6—Rÿ³î¼ë¸Ó©Wm°ŒzÕïQ¯Úà}Ö ÑzO„¤¯³ÿasÞ` þË–¼ÉVü/„· ‘ ÃÅ­Åê|½'CÒÍÀ6Œ°-ø£lÇD¶§µð…{<¬:Ýãa5è«"›[„Ä®áæ–ü‘­ø[S~þèRˆõ²¶Î|zý™5¬Å©‡o‘)„Óÿ¯»-nÇÿÿçuâ:\ÏGBähFHœùW³½ßÌêô~3kÐûÍôþG½ÏLïÔÏϬM??óan ÷;ú ͉ÍÔ»SÖE3sæ)÷üèFç]££›X—›YŸ²>·Ðç<º• üœþá”j个‘ã¢T#Ç%R—D5r\Œjä8ùólû[\žè "Ywð º—ó‡¤VoðÇòŽãIêS[¦„X–],ÆÝ¼‡_³8¿a ~Ký]ý]Ký]–隷ˢ¯k©¯Ë¢¯k©¯Ë¢¯k©¯Ë²?$´´v²\¢5“å/Z/YôL-­—,ÖVKë%‹ž©¥õ¢·Khi½d±žZZ/Y¬§–î{ë©¥ûžÅzjé¾g±žZºïYn²­‹–i]´ì’´Ï -Ÿa„]©·iÙz›–Ý©·iù,õ6-{PoÓ2•z›–ÏQoÓ²'ÕéóC¬±ú6}ÍõéêUM×{úÛâÇCxÚôWyþI×ýisÒ_CÈcJ–ö´r|ѱœ°G½šýHˆ5½ÈGy‰uùëñ2ëÓu)_#$žÚÂ3öÈUuº|Mñ÷¬EóÌ3öÌUu»|m±¹¦üÃ<È:<ÄGx˜òÖå~λÚU\OüëóˆóöÜUó{ùÿ‰²fCc#7ƒ qü˜ãlÌ_ø8O² O±)å<í½íã«fÒgÌ1WŸu¾™ógØœ¿9_Êy=Ryõã”Yø=êÕT±:rêwqñsbõ䔹±¼zrʬWþIžg^`[ºÏ”õúžâ§Ä®}ùv¼ä|9ç{ÑýºÚÛùöÎ[“å;ð²óîßÕçÅO‹ã÷ #­Íòrâ)k³¼sÊÚ,/Çœ²6ËË1§¬ÍòrÌ)k³¼sÊÚ,/Çœ²6ËË1§¬ÍòrÌ)k³¼ó«µYTn9t+„NúËîYQ9F :©A—Ý»¢rÍak·¨\sØÚ-*×¶v‹Ê5‡­Ý¢rÍak·¨\sØÚ-*×¶v‹Ê5‡3…È¡Š!qòZê'ëé'ëé'ëé'ëé'oÔÛ,ôX䱨ã%i³Û¡ª^³I¬nzÀñf>ÈOC´Ztñsdüï,Ä,Ì/X„_²(¿b å˜jÅ(ÇT»‡rLµâ”cª• Sí^Ê1ÕJRŽ©VŠ{CÂOz©é ©—šÞˆz©éQ/5½1õRÓõž˜·–ä§ykIš·–¤ykI¡²ßçØÌµ¤påòf÷S.oV…ry³ª!z«Gˆ­}8D}b³§p §r+§qßävNçgœÁÏ9“;¨ß\ÿJˆ<þ‰x§Øý^ÿªØÜqì ñ~ɹüŠoqçq7çók.à7|›ßÒ<}l…È"÷¶{»È½m³ÁâºÓ±ûÛÆý]äþ¶ÙH÷°{øÈ‰š#¹mÜÇEîc›Où·°·²:·Qj³rO›Ï(÷´ù%KK÷)Ù³tŸ’¥ã7!öÒ!a†óu©=¯KêÜ çë’:7ÃùúkVHø¾7g³¿a_Îa?ÎeÎã~Kõy²\Vå8å°*'(‡U9Iù«Š¬X{ˆZ¶¬¿ƒ²bý” ëÿD9.ážsÿëï²vŸŽ­ F…GM«¤v†ÂT;ƒ>Zi‹ð#åÇôù}®Öøœc+M´Vc*Mb‰óºZÿÀ¯Õ_M{FfZå3èØÚZMK¥¦õWÓRE¨–¥Š¡–J6Zå3ê(C®ÚLÙqÕÊŒ«¶R\µíé½u”ýVyoe½UÞ[ÇNôÞ:v¦÷Ô± w³+÷°÷²;fîã‡~µ3•L¶j¿uO {³ê Õ€þÞgªxª©dµU‡\W ú«¡©d¶U‡=ޏÖ×C èå BWÙ+ÁYêå,pÆ{9Ëœñ^Îrg¼—³\Àïå,pÆ{9Ëœñ^Îrg¼—³\Àïå,pÆ{9Ëœñ^Îrg¼—³\Àïå,GÿNÙLÕ=wž 8罜çÎy/ç¹€sÞËy.ý3¢2å+„ØÆï„¯=¶ñ»|ŒÍhVjÜœ³Ÿðý²ç+ª­©\{ϵ'ù>ŸbK>ÍVLÁÖLI¹+Õ3!¦Œ˜ueĬÛ)#fÝA1«y¶Œ˜õ'ʈYwQFŒþ]mrsóp/óòg¾Ì}ÌG³Õ!!óо:"…Ÿñ+y~Øs¯µÕ“¾¶’OqŸæj_?âë©y”i\Oáú¦ä|†k™ŠëBÜCÂVy8˲¬ISôñ—þ¡¾ýÒ¿®/w]ÞȲ‚òF–•”7²¬â»\ÍfTÏŽ©gYÔ³cêYõìØ{TÇŽ©cYÔ±c-©~S¿²¨_Çœ™)ÎÐKrAgè˜:–Å9Ö–ÎȱvtFŽ}@gäX{õ3³úiNÚ¸ØcIˆÔ¹éñ»ëY\7£.+Ú^±G¼ß±úäïwìÿBdçÁ7°¡y!ÞóCž7òkÚÇÇää,öï199‹ý{LNÎbÿ““³Ø¿Çää,öﱩ´É Yìßcrqû÷˜ZÅþ=¦æf±©ñYÔ÷,öî±/=äâܳSîÙ îÙ)÷ì÷ì”{ö‚{vÊ={Á=;Õ"Dæ qÍßæq¾Ã|7„Ôrâü“ž7ãÿèÜÍ?ÅèÏüÂ÷xšïó [òW¶âY¶æoT{º¥ñ¹í©Œ‡<œëni¬W2-W…˜N³ðÕ'h¾ú${ð)~ȧٓÞsÒ!a…Ù0éMfÁŒÌç‘ñ¾¿B}…èû+üË^ü½CÜÑ¿>­õ¡ÒzÒaÿ§´ç‡Ëø‚:YZ_:\–²õár¾·¯ïa?Ʋ?ã8€ÎÌøLà &ã`šãÇar¥ºúwÙ°<=Ë1Ëó¹~|\ž®l]Á:£÷¡Ïþíý-÷þþöþ–{±I!¤ÝëaÞΠ”_¦dVÔŸ ÎÓA¯{Jë·™•zü”D:#SÌŒ/9SôŠƒ3­Ÿ·v¶2èÍ¢ô‹ƒ_S¿88Ë×_ðuu*ƒ¾qp6åÀƒòL9ðàÊå¾ ràÁy”~b¿–ÿ™Ã¾þŽMCX4)DÊšÿíÉ„Fêct?6rÖíÉ„FÎú×ßÓëúz)½ž¯—Ñïûõrª_¯ úøõJÊy/Éò_¯ò\†y©§çæFÎï!÷yLòjxíçÌ&‡Üï1îé¡a|‚Ãù$Gð)ŽäÓÅÍ”Ãghþ£®2Ž12Ž12Ž12Ž12ŽIlj“Îà`÷!mk™¦ú¿U¦é£þo•iú¨ÿ[eš>êÿ`÷)íkÙ¦ú¿U¶é£·d•ß¶Ê7}샬fÜÁîcÚ®ùŒûè[}Æ}¢¯ÕgÜG?Øê3îsÜ÷ê§S#!¡†Yjj —2–ËÇåŒçйøEˆû2;¿dÎ`NÎäKüйø5ssóp6óò¾Ì9ÌǹÌb.ëÓ3ߥ>=³õé™Í©OÏlAÙf¦Ùã²l3ÓìqY¶™iö¸,ÛÌlEÙffkÊ43õÜË2ÍLyÿ²L3Ó8Æï•E¾¿,ÛÌü „Ç}¾—å›™²ÿe3ÀÌè×Ì3eÿËf€™üL~?]›fš.›fvq½€ëfƒËf‚™fËf‚™fËf‚™Ý}½ ¯wæ+43\6#Ì4\6#Ì4Œ)äzôçÌ 3Í—Í3{¹þªëÑ_Ǭ0³7Í 3ûÐl0³/Ó,pÙ\0Ó>¹|”öÁåcô9_>ÎA<ÁÁ<É!ü‡†˜¤'Cür¹#é)ÊIOs5Sp Sò‡&˜YŸ?mýŒõÚ²Õõ<•çë(Ë,_ï{fúž3Ö²Ìò Ö_Yÿj-Ó,ßbšÕçt:7?}ƆüœràO_°1¿¤ÚþÓ ê9?ͤšþÓWTÓúšjúOfÚAjúOfÚAjúOfÚAjúOfÚAfø§£_3×R×2×R×ç6 ‘âf›DyäøÊ#Çå•DY丼’(‹—We‘ãòJ¢,rüe‘ã²J¢,r\VI”EŽË*‰²ÈñCh&ÜŸg-“—Ye’Ñÿ¾­ëßZË&'d—DÙä„z’(›œÐó›Ù‡÷ç[Ë('d˜Då„ “(£œae”2L¢ŒrB†I”9Nè?éÕ½ô¬eûuìßû ¬Õ©úп BÜÊslÈó!42‹Ü¬Ã44»Çš¥×™y»Ï ñyËs6ýzÝ¿¡úÙ}ßä\Vä쾈5¸˜5¹„µBèÒ&Dâݧîß[׿RÖ¡¹'ï[4çäµ·º›sòÖóýrV¼û×]vÏ[ŸjBÞT¢ÿÞlw5!o#ª ySMÈÛ„jBÞ¦Tò¾M5!¯~Ð]MÈ«¦tWòª)ÝÕ„¼jJw5!¯šÒ]-È«¦tWòª)ÝÍ•ÝÕ€¼-=Ô”Ç…Ð4G·ÕšÇîZ±£å‡²öàhù¡¬=8Zv(kν"%^°–ʾo}ÑúEë5Öæ°Ñ?Ð6z-[sÍ_£×Óü5zÍ_£7Òü5zÍ_£dnfGn¡ž?z+;s»p;»r»q'õêÑ?±wQÖ½›öΓ溭úà$ß_EÝúv ÌàìNòsU|ÿ$?WÅ÷OòsUä¢I~®J/îaïI²Ï—ÿIû|¹ž›dŸ/BÃC¸±ßÚ>_.ÿÇékIöúò¿i¯/—9Nô=¬íùåf߆“¬ZÛûËåê${¹\dÏ"I^ïŠõä2s’ž¼BfN’·WÈÌI²ô ™9I–^!3'ÉÒ+dæ$Yz…Ìœ$K¯p–Nöû˜í“dêÎRÃ)Öæû$ÙzÅÖŸXá§4Ï'É€+d¼$Ùo…Œ—$û­ñ’d¿2^’ì·"¥ïŸêûYË€+d…†Ó¬‡È(¯§Œ×9Êë)ãuŽòzÊx£¼ž2^ç(¯£Œ×9Êï_Æëå÷+#Ûòû•‘5GùýÊ8ã£ü~e¼ŽQ~¿2^Ç(¿O¯c”¬YÆë%k–1«Ðk®øì è5W|vô˜+>»zÌŸ]½åJoê-Wú„HG}9‡>ÝQ_ΡOwÔ—sèÓõåútÇyÔ;;~Ký°ã|á59s÷ëÖú]Ç…Ôï:~ÇB!öaŰ4K›ÍÔõd…xõ|ƒ÷¯žo³[Cìá>!al9ö¥—g‰çý<¯àù÷²úûŪ¿_Ü ¡Î„.ýl­q/Ĭ‘c:É1kä˜NæÚ5²j§,È“|…ÿc!žâ«ü……©¿­yzØš"Ô»ÖåYão,Îs,Áó,É |YŠæð5¥y™ex…ey•åxåyxƒoð&ßäï¬È[!öFðME~ÈJ!l°/j¿iÝÓÚw£«¸nŸÔ®Hû¤v%×{»^•îç7Õè~~SÝ×íŸÚÑŸsO¿©Áþô¹m°ŸjW±`]‹YÛuû«vUÚ_µ£¿Î ×ëp0ßrÝ~«ýÿ£±®Ë¡¬ÇaÔëo §^c†â5ÏGz®ßßEýþÆhê÷gr…„O27Õˆ5jCõâÖy¬ÿf^ªkÌÜÕKX¿l-ßÉGþŒèµëLà¨Æž)HþÌ+Œa!ÆòUƱ0ãùX„ÉX”±“³8ÍÔgJð‰3Q6¬üõ…ʲâDÙ°²¬8Q&¬,N” +Ë‚eÁÊ2âDY°²Ì7Q¬¬¿U)$<~‡•y—UxUyŸÕøÀœÕ6Äÿ–Ší˜š0 Û3mŸ:k¹Íè¹:X?ËŽLÇN4ûçêL3b®.|Ž]™‘ÝhÞÏÕÑy¯³„˜sfìÏæ…0ZMÊ,œ3k¦÷ŠñŸÍw]Ê,#œX/°V«2Ë çc¬2–ß1Ž‹ÏÅLà&ã÷|ŒK™œËø8—ó *ì£íñÌoÒžÎ,{œ—Q?“QÏ˨ŸÉ¨çeÔÏdÔó2êg2êyõ³(›~&›&—ÓÎ˦ŸÉ¦çeÓÏdÓL2Vï¯ð7ô¾ Ï13ˉ­äÏÅ2b+ûq±ŒØÊ~\ü-íÇ•z[‡ÔÛ: ¢ù¶ƒ^¿ògá>å~3s_õü€çÃy#xˆ#}íšÇõûa¦ðòNê³/Gÿþ­!Rd¼uk³àìšÖjÚìZüˆµ©wήCýqö[Ôg×åd?—ÕÏí±7ÍýsÌd7ÏqÏseˆÝØ"$|è3ßø}æß§Ï|cKfa+fek&² ³±-Ÿg;Ê/? Ü²±=³³s°#s²_bgæbæ–ýÍÀËw˜¾6 ¨£Ifáåfà$³ðrïÂ,×£þùsü†6Ü„9TW“ÌÊËÝ— s­/r/ñ[ª¯Ifèå»­ç[_᪳Iæéå{¬Z«·Iæêå{i®^nŽN2O/ßçëßùúu.â .¦:œdÎ^n¾N2g/?@sörsu’ùzù!𝗛ù‹óNT3ö³qsõ£4Wß9Âô!òòwìÈE®ëOwŽSºs‚úÓ“ÔŸîüúÓSÔŸîüBýéÎiêOwô¥k…øY_ó!gñgóoÚÛ×’8ÇÜx?D²²þÇz®õëWù SFËúe´¬E|Ÿ³1K.¿ælÌræÝ’øYÎÌug}–¹âº3>Ë¿îŒÏrƯ;ã³ùù‡~¾¨µ³>ËY¿î¬ÏrÖ¯;볜õëÎú¬¥¾ï‘ï+fíÌÏræ¯;ó³œùëÎü¬tÆg­ô}j~ÖâÖÎú,g=¹¬´YkZPÞVK“ËL›Ÿ¤Ì´ù)ÊL›Ÿ¦Ì´Ùüž\fÚœ’rÅf™kÖ§!òšÏ£‹Ù2—þ8kªõ1k3f.}²‹3—~ØÅŒ™Kÿë"“äÒ7»È$¹ªùþi¾ßçÕŬ™Kÿœ5ÝÚçÖÅÌ™KÿìbæÌ¥>©.tQOré]Ô“\µ©žäÒ+»¨'¹Þâ|ê‘]Pì²zd—ï¨GvYDõ¨ËbªG]–P=êò=Õ£.Kiæá™æè^ûLst¯}¦9º×>Ó{màµ/z#Dʳö^èÑ3½×^óLïµAMz¯ ¼Þ™Þk¯w¦÷ØÀëé½5ðzgzo ¼Þ™ÞW¯w¦÷ÕÀëé}5hÂS²ãLï­×<Ó{kà5ÏôÞxÍ3½·^óLï­×<Ó{k}ÍÞ[3üLï­þc9¥’úñ±œRIýøXN©¤~|,ŸTÊMù¤RÊ%•òR.©$ƒö–ñ Êþ½eü‚²oû¤ LÝÛþ(¨õ¶? êW½í‚ !ï¾õÖöIAý¥·}RPémŸ”™zËÖe£Þ²uAY¨·l]Pöé-[”}zËÖeÞ²uAÙº·l]0%ÇðŽe*ŽcjŽgN`Z~Ägù1Ó™ÃۛçHÖ·F/mÔÁÚ¹Š$ZG¯g£ºÑ¨£ëziäyë¨/Ð9‹¼Hç,’ÎY$õÔHN. ±ÿ _îâCêqÿæÞyØ"Ä}ƒïñ&ßçïlÉ[lÅÛlMyû¡Üý½¬’Ù¬pÔ¬Ù¬p´OÏ›a3ò¼oˆù²Jˆ¯{‡U)›gÉèy5Ïï…Ы\ˆ8#1_V·¾ïk™<2{È_ÖpíA5š…pn&›ó+¶ ¾q@ÖyÛÚ<}nÍÑçf³%õ‹²ÿÈ;Ö­¬õXûýk´¶Vûj´¡¾q ½ë÷hF©>0£ŽT˜QGª‹̦#ÕÅæÒ‘êâséH³k²R!¦Ÿü_È|ÐOþ/t&„®¿…H²Dks@!sB?s@!ý­Ÿ9 ~Öõœ¯g³62/ô32/ô3Ò×ú™ ™ú™ ™ú™ ]ösçýÜó¼Àx‘/úº9¡þÖõ’uvkóB¡«Ö—­sð sò*_â5æâuæ¦Ï:Yú¬“å¥Ï:ÙËôY'Ëç×3wÒ'û™; ™KúU¢¹¤_eê‡ý|¶…Ì%ý|¶…nÑçZè6}ž…|æý|†…î²&}ÞO›á¶¨3}Ô†-êLµa‹:Ó§q+ê…H%3öŠúüÄuu§Z±EÝé£VlQwú¨[Ô>ïø¾¾O _Ñfê8Í×Õ£>ïZ7¶žÎ&üÌuõ©O3ªM}šSmêÓ‚jSŸ÷¨6õyŸjSûw‹ÚÔ§UˆüQ4Ä-ÚÂbÜÊâÜÆÜBûõzSë’Ö2M³ìõ·™•fÚ?^w}§u¢õ»Ö¥¬eœÙ¬íí>×ëÍ]/íºL“Ö^û£ŒçòKŸõuû½Á‹|Ïõ²®ïa9:¯”§9÷ ÜÇ7¸ß÷g÷ýï[¿i}€y•<*{~Èãpq‡¸§7„„ÎWÊFžoôü«û˜™áG3Ãcf†Í ™~43Ö×ÕðÇÇQ |<ÕðÇ'P ü#ªáL5üñ‰ìÆIìÎÉìÁ)Ÿx½w=CÌ$ÙºÊLÊÖU¾¢l]EÖž$[W‘µ'ÉÖUdíI2uY{’Ì\eeæ*sCÌd™¹Š =Yf®"CO–™«˜KÖ½â¢õ|{­çëÜËh_ç^Fë÷:÷2Z¿×¹—Ñú½Î½ŒÖïuîe´~¯s/ÕïØ–;BBæN!d/b·n }ûr+ûqûs;Ð÷ö5»nÝÉA걜¸õ'ÏåÔ­»h~Ýj¾íëüý¿·\ ùû[òª‡Ÿfkža›™⪎aÇ2žã˜ÀñLÆ |Œ19?¦ÚSubˆÌy6Ä5ý2„ò½C8¾†òÃñØ—æöòý¸Ž²ÚqYmN:ß?Ãz€õëôÖ3™òALnÏŸóükß3Ð÷l´Îhm¦œ“‰fÊ9™)#ÌÉBÙ`޼ÕÔ,¹ôÃ׿öä¿!TTÃO©áK{Yÿg­†ŸR×öqmåͶòæRy³­¼¹TÞlë5ô ±KÞ ­þâ›|ÈŠ|ÄJü;Ä^¸¾XBÞÏBH‘b×q=^~VOæ. ñïÔåbÖ ¡·œÓÛ~:¿G×—¸^Ÿß³—²!—±—³1W° W²)Wñm®æ;\Ãwù›q-›s[p=ßã¾Ïlb¦›¿k©cÓÍÙµÔ±éæêZêØtót-ulºyº–:6Ý<]K›nn®¥ŽM77×RǦ››k©cÓÍ͵„Ðsxˆ<¡^N77×:h=ÂZÝœn~®e®žn~®¥_õéº::Ý]ëÍ͵ŽÒÜ\ëÍ͵ŽÓÜ\ëÍ͵NÒÜ\ë47×:Ess­_øå·éEhŽž^”rÛt¹®–Ü6]®«õå¹ZòÚty®–¼6]ž«%¯M—ãjÉkÓå¸ZòÚt9®ÖeÊqµ®PŽ«u•r\-9jº¼VKŽš.§Õ’£¢ýwݧ|‚Sù$§ñ)NçÓüŒ)ø9Sò >Ã/Cdɪ×úu®f)®aiþÀ2\˲!¼y˾Íg_:¯KÖ¹&‡LJmá³ÜÂÜ.!Rü{våR×Ó¹¾Íº›õ2vçr×Ó»¾(ïÌíáú ëç¬w2#囹ºnvŸÛ“«Ø‹öûÜÞ\ãû2ù>ygnë¬3[›IFf¡™ddVîe"f6îãóÜÏhïÌíëç×Z¿h}Ùyˆ9x˜9y„/ÑÌ?2Íú#s3úßõçaô¿ãÏËè»ÿ2ÿÇ|<¥xW1¿}â§;‡£äÀÌÊ™c(fvޓ˺Ùg‡¸ÓEù ‹qe“æCBxàLgŸk]‚óX’ßòuΧY"û–æBÊ&Ù¿cY.b9.fy.a~Ï7üúCýú²Gö¥Öor+r9+…ØŠ_…øÿÔùŠ_³ g±jŸO ‘üÞÅÙÖÕ¬§[Ÿàgt*~ãzuëÏ­ÿÇ/xÊõ9®×à\Öä<Öâ·¬Íù¬ãûíÏü¿X/°~Ëz†õië…ÖuéžþWjÝõ©Öý§–Ýlâç<ÍVLÁÖLÉ6m=þÛZfêõyB\·e”_º-¡²÷tZZ/¯t[aí=ÖÖËÝV2?íÃÊÞÓéq¬Áñ¬É ¬Eýi½ì×Í>­\Ûúcz/§'Ò{8=‰u9Ù÷ÉÝô«ÊöÅisKåúü„ ø©¯ËŒÝ~ ÌØm-eÆnúXeyìôTkYªÛzkyìô4šNû ÖË’Ýôµõ²d7½k½,ÙmeÉn?R–ì¶™²d7ûq½,ÙÍ~\/Kv³×Ë’Ý¢ÆJ–춃²d·”%»ýDY²Û.Ê’ÝvS–ì¶'„g½¿g½·èœøí¨)é,OVª¨ߎ¶þÉZM¨âìOVª8ûߺß%áoÝç’Îîd5¡JôçÔ‚*ÑïW ¢/ßdg½JôëÎx¿×·òAIg|²³^ÅŸì¬WqÆ';ëUœñÉÎzg|²³^Å_kÖ«aÖ[kÖ«aÖ[k֫ឥˆ×Gè£z}^ŸQÞIÖ­õús/†¸éß1;13'—ð%~Ï\\Jùxºýtξš¾œöÕô´Ÿ¦Û?çì£é«hM_MûdúÚÓ}Îç|ÞÓ}Îç|ÞÓ×ÑçýsZç|ÎÑ?—uÎçýsXç|®Ñ?wuÎçýsWç|®Ñ?ouÎçýóVç|®Ñ?guÎçýóUç|®Ñ?_uÎçýóUç|®Ñ?GuÎç:]mdŽw.b_7‹ß¿G³øýû4‹ß@³øý?h¿ÿ'Íâ÷å’×kQ.y½6å’×ëP.yý-&±.ÿa=þËúü BüƒÀ†Œ°cؘ±l¸»Ú¼ÞÉ|¿Ú¼Þ©1ÍåÌó«ÍáÌó«ÍáÌó«ÍáÞ¡9¼Ó»4‡w2§¯6‡w2§¯6‡w2§¯^Lsúê%4§¯þžæôÕKÙŠËØšËÙ†+辬^Év\ÅB0“†¾µB$ÅG!fIßßڌݷ¶µ³Þ·í£¾oÑYï[—|ßztÆûÖ§3ý{´ûÚ“)ìɾöd {²¯=™ÂžìÛ˜ÓÙ„z÷’~~ó{ߦ֟óm~A¹2…ÜÛWžŒþûY}›Ñœ±¤¿Ç~N~j-;µÎéëÍ}]¾íÛ‚ö{ß÷8+Ä~kvk–‹f·f²ï|3N³¿hÆiöfœfhÆiö7Í8Í’(ë6“uç˺Íþ¥ŒÛì?ʶÍeÛù²msÙv¾lÛ\¶/Û6eÆqãCÌñ›!þ#æøï”aŽß¢ sü6e˜ãwè>¿Kæø=Ê0ÇïóK>à þAïÿøŸ4g7w}dÎ:nîúÈœuÜÜõ‘9븹ë#sÖqs×Gæ¬ãæ®ÌYÇÍ]™³Ž›»>2gˆþçäóiîúhÍ]- aá¾)óTˆž,$ÔRçî·~š˜ÂõÇ\—O¦'ç!f”¬WZÖ%ë•–õ2˜×è÷ÌkîÒ¼vàÍkîÓ¼vàAˆŒâJ?Áá|Ò íÂ3›BÈi.»æÊ"·b)‹ÜŠ£^|+ž^xŠŠž'x®ßò:çê¿ô¨ y˜jÿìá}ÔV#oy½sõå[^ï\ýöÊ!afÔ'©ß^yŠgø4e žõ{¤÷<¥ç¿…Ùž++—“•ÇÊÊådå±²r9Yy¬¬\NV++—“•ÇÊÊådå±²r9Yy¬¬\NV++—“•ÇÊÊådå±²r9Yy¬ûWÎýëþ•sÿÆÊÊådå±²r9sîÉC!n¢³sò0“GèìœB¢™âVGÏÓ±Ó»f¾¸ÕÙó ìÂçB{(D£¿nWëŒÖ‡­£¿~7ëLìÎÌìÁ,!<.—ÞúÐó¬ìÉDöb6öæóìèfÎ{‘êÚ¼ì~ÿk×Cä´ûü‰û|Ú}þDm:íþ~ò>Ý×OZ†ÆhiÊd´4e²GZš‡2Ù#-ÍC™¢_“öHËŠ´GZVâåÚŸ‘ˆ×ݲ²µ{ÐR¯Ëä}·Ôë2™«Zêu™ÌU-õºL檖z]¦›~ó>[êy™~§ž—éõ¼Lfêö¿úzk½/“3ÝRïËäL·Ôû29Ó-õ¾LÎtK½/Óê}™þ Þ—éOê}™þ¢Þ—é!õ¾LØ”zií!!¹~ñ¥­ s_û¦õ§üzÆ‹Ù<ž÷Ѓ^tOãV„8y-&n%eÿ8ó¼g¾“×bâÌwòZÌ0µ¶¤_·{áy¬»µš[R/êþšukµ·¤_¥º^åõ»¯yHá÷X©¾W)‚©Ršê{•2!vÀ›!¡ð]Vä½¾¹"Å ð. ò_ñõJ¾.[ ¨L!à›û®¢zWìUþÁÂü“¯Q*V„úP±¢Ô‡ŠóóUü¼L2 *e’Õ(“ ¨N™d@ Ê$jÒ}P‹I!æÓè8¦Æª¦WWã?UÓ««ñŸÆRÿ4Ž Ïï˜ÀELÆÅ|ŒK˜œßóq.å\Æ'¹œOqŸæJ¦à*¦äjšAª¯a*꟦æZ¦á:¦åz>Ë LÇLÏMÌÀù͆Ÿf¤îÓLÜÊÌÜÆ,ÜάÜÁDîd6þÄ繋/p7_äÊ Õ÷2‡GN—ýru2õ½«Z[éªä~–ê@nõ¥«:;=ÕÜjKWu ÷sTrg¤:Û™ìªävƺö§³ÔuÕ‘®òKnu¤ë ª#]Sé:„êHס´ç»cv§×Ûu½æ®#éuwÅ\ÍÜÃ<˼Ç—9žù8ùù ðcäD¾ÂI,ÄÉ|5D†uq%ìãaiOËÇáàëNÖöó°Î´Ÿ‡ÉU%ìçarU {ôË™!¡žù÷pƒ06«³¤æV}ƺ¡u"1óy6¡3¸J-®šÊº©õ‹|›Ùùsð]æd3¾Dgwl.?wÄÏ¥¶na-ó¯:jÆú=ë<|Ÿy]?æzZë–Ö/‡g®ç­<ÏÇÖÌÏ6,À¶,Èv|Å÷ÎóøÖ¯qܯ¡ß¬:ÁtÿªêÙ*ŸUõl•zVU=[¥žU-F¹ºjqÊÕUKP®®Z’êoÕשîVUwÅÍHUuwµº[µ åêªe)WW-G¹ºjyƳh_Œoò1VdrVâã¬L9³j>ɪ|ŠÕø4«3k0%íïÕÏ0úw)¦bôïPLÍèߘ†Ñ¿31-ëòYÖc:Ögz6`6äslÄŒlÌLlÂÌlÊ,|›Y)»­Nä»ÌÆf|ž²ÚêØ‚/RF[rR޵!þŒõ§yB$·.Ç:ëèõõ4ûåØ@³_Ž4ûåØD³_Žiö˱™ÑŸÛB9-ÇV¶ç6vàvvävâNv±oËÈiÌoËÇi~à3\ËT\ÇÔ\Ï4ÜÂLï·™öí´Öêü–i!¾>¾e:õñ-ŸQßò9õñ-_Pßò%ßà ¾É™¬È¯X‰_³2g± gÓç;Øçœ6ªÏ9m5׿q=êVç\Öà<Öä·¬ÅùôygèùÏëp!ßâw¬bžÝâä…nOq2Õ³¬[ð ߣ¼¾ï}ÊëûdØgåõ}­(¯ïkMy}_ÊëûÚR>ß×.„§?óø<Ä1{yÚÃ={Ì㸇™'ÏZuú浓!~ÖþCyŠÃø ‡‡°VN¯ñMˆ½¨6~éÜ®•×kÌ¡l^C½»¨F~鯕Ûk̳V#¿|•jä—…©6~é<ÿ¨ÎÕSç~Tçê¥ q²`š?˜•2‘ùºúW/½u6ë‡|žøÿ!ßÏ_ô<Éóžg÷üæ 0е"opßä¬ÈÍô9¯”;Ûûuúw ‘g¾gWÊ%+åÐö~Íþݬ—±;—³å“•òiû(Ÿ¶ÿ—òiûÿ(ŸbVʧ"”O;Ä„ØþéC«[™Ûø·Ëe;å²ëŒÖ;˜‰;]ÿÉõdÖ™­¢ûóê.º?¯îöõ]¾þ˜µûôªýòÍnëäÖîÓ«{é>½ú3ݧW÷Ñ=zÕÌÚßýyõÝŸW2'ñ%f.anš“+›ià šiÃJši…ØØÊfZE5¶²½œ×ÊÎkp^+;¯A+^3Äݹ*4ÊNÅkynV(^›öuñ:4+‹7Y—¿‡ÐrVÍ(ÅëY›Š×çm6 ¡xCÞu†dšOËQ}x„}y”ýxŒýå+sô'Ç=ÀH{»ú ÚÛÕ‡˜=ÎáPços8ÔùÛãUs“7ó|‘çõ)»îYâ¹Ïw¨ºÛUM0of2“6Óg2“>K3ùáßh&?|ŽfòÃçC˜bÿ¼´ÌÚl~øÍæ‡/ºn?½´ÜÚŒ~øÍè‡Í[S쯗ÜïLfõÃWhV?|•eyæ¸Ã×iŽ;|ƒæ¸Ã7iŽ;ü;Íq‡o…ð„,0åC¿–Ï,“™îðmšéß¡Yî°™#“Yîð=šå›-2™å? Yî°Yk¸l_R¶.Û—”í‡Ëö%eûá²}IÙ~¸l_Òý.Û—”í‡Ëö%eûá²}Igh¸l_R¶.Û—tv2§ a‰þZ¾Bˆ]Ø1$¼'‡,ÑgËë³¹äÅøwÌXöIü»´Oâ›Ñ>‰oNû$¾Í’ñïÑ{l,ýÞÀú}k3eã Ö ­[ZÛ/ñ­h¦ŒoM3e|š)ãÛÒLߎÞgü4SÆ·§™ÒŽ[o¦Œ—K×›)ãåÑõS]oŠ—G×;ûñòèzg?¾ýøî!NK q=ïá¹óÿ!cØ“±ìÅ8öf<û0!„gå¤g£‡³÷ÍTÿy¯ÑLõŸ÷*SŬHR_¾á?ToûT‡:[ÿk=×úë.ÖÿY›ÓV:zíÍi+Íkíç‡Øï‡øO…0©vˆäøØº¥µ^¢S°5S² eém)+§hGÙ7Å”yS´§Œ›¢ŸeG¦c'¦ggÊ©ËÔ­¶êË2u«­ú²LÝj«¾,S¯Úª/ËÔ©¶êË2uªí1ªSmSj{‚êTÛ“T§ÚþêTÛST§ÚþBuªmôß×S§Úža:ËòÒy\ö2Çeùè<~(Óç{‚úV¾'C˜ýNˆùÒZ¿Êç¾Ì~×z†µ~•Ï}ùP¿Êç¾|¨_åKéëÍ|}¦µ<ŸïëæÖ_YËõùìëÙ-¬¿¶–ïó¥¶~Ïz–µœŸÏ}ûPÎÏç¾}(¿çÓ÷fû¬‹Ì¶noíþ}Øöó“SBÈ®nÌÖg‹|CýµÈ_w^ò¹¯vâsìÌŒìBg=û‹Ö]­åÿìjÊž}!aè„V ‘Ê[8ŒzОý®ÄüØõá®ëI{ZO´a­7­ÉE=iåhêE{ù¾I<ÌÉâÏ›ò¦¢ù ojšò¦á¦åF>ËMLÇ™ž›™[øÝ›\2êÂ1zÓë!îéÅ!aÇÇ\‰öIEûDßì]‰úfïʼïÌʽ½«x®wö®Ê?X²:åØÙòYQù¬·=^à!íñözoû¹€vøŒ÷º¹;⼟é¹Ùû™Õžå¹ùûõ¾!”ÓŸYã¹=wP^Ýž;¸Þ÷|í{^â,šÍ_·n°žm;Ä=5)$l×›žšÌ!¶ú´_–ÓYŽŸ±Ï™îï ßé_÷÷rv7†HõöþÏÖæ¿ûzËwrÈÆM®ÿË©þnÜ"oÙ ÷õ˜ïä’[¬ÕàûzÍwöÎ}=æ;{ç¾ò\r_ùní±ïÒûî;?·ÕÏ™›îÛkß-¢½öÝbžàž¤ZyÿT+Zyÿª•÷OsEˆKpÎ6¤s¶ñê Qߨø*õ…©gl|zÆÆ"¬Ï¢!¤Lð¼çÅBäúµ7[ž¿~ÝCxËþ¼ìý^¿a-·_¿I™ûúïìÉ[ìÅÛìíû‡ú~uø­aôþ®ßq½ïÒù~Ë|}y›õ=kgàš‘g¤y¶stý/:7×ÍÆ³‡Ðl<Ûy¹þ7õûëIÔ߯›‰gðkF_׿žëí×ÿã(×zyô‘¢ëìÑž{M7"žñÜëJ}-^Ã×ôö±çš:“v Ç ÁîGZ¿÷8_×ëoÄS¯g—wVÇÉóå/SÆ-…2nù«”qË_£_þ:å÷ò2ð8ù½¼ ,%\J²–ãËߢ_þ6åøòw(Ç—¿K9¾ü=uyDˆí&æ–3»É‡¹íûnòan9³›|˜[Îì&æ>¬Sr–\Õ-¿õÿ¬±–¯º°–;»¤ÜÙíêÕÝ Qîìö*µGVØ#Ÿr%e™«ö××/ÒþúZ]ÿñ‹Ñócÿ[VO‘ó߇¸Ïí©óKYœË(oœ_N9ã¼½û¹|q~%å‹ó«(_œ_Mùâü–å,ǵ,Ïu¬Àõ|ƒø&7²"7±deõkÏ7{^…[X•[YÛXÛYƒ;X“;Y‹?ѯ'ú¿½¼jýÕïú]ÁëÌMxGê[;òú~¯;m5k{gÇË43îÈG³â56¸ïo{Oi£ÿ@ºôª˜ÔjÁîT vÿDµ`÷.ånã§úœºfIî£Ü°[N]ŠXšY†‡X–jtêr<Âò<Ê <Æ7xœoRvL]‘²cêJ”SWæ©Ò™1SWñ\~L]•§YgX¿²ϲ&c-žcmê±›Ñzòx~=9¿ÞôÉ™P}¼|©/|ò«çx–f…O~£¹ñ“s”…>9ÏI!|›äñÇ¿!òºýûº½ûº~øÉ_7|r‘Sx‰Ÿð2eþO®Ð9ùä*§…Ø~rQ!}0ƒüy05åσi({LKÙòà³”+¦£IgVÙg™¼ÈZNIgVÙwÂz±µs0y e¸tf–}êÜäï­ƒÉòPNy(eŸù:eŸ}5YÊyÇÚ¬²O½K';ì;íº|”SöMgfÙ§î¥3³ì3o§+B¹nò _—‰Óµ6w§+Fsw:÷jßyºWû.Ð=Ú'§¥söÉiéÜ£}rZ:÷hߺ?ûœï'’yîí»F÷hŸ÷Zûë\ˆþf[Zϲ®ÊÙ¬bªíñqíx€ð Ûó;ð0›jG؉GÙ™ÇØ…ÇÙUþ1??g¯T;aÝ-„6ú_’¼ÝFÞNZïúI×»óìÁSü¿°'O³ÏP_ý§Wˆ[iæŠSŸÿ1·­4wýcn[iÞúÇܶ2žæ¶• 4·­LbÆf ñå¶3+Í\=º†Hò¥Ö‰Öf¯rHòeÖÙ¬Í`=º[/§’|…ëÏ»nöê!C$_I}?ùª’}é¹L’\IÖ'$l’§“õåÛj@S¨ï„Ø4æ§=æ§4æ§=æ§4æ§=›|Î^sN³BsÔž­½öœf†4æ©=›­½‡œf‡è ™óM×ÍW{ÌWiÌW{¶2#ÍžfËHΊ֙¬ÍžæËHÎJÖ™­½_sd$gek÷aÏNº{¼O3e$§=%súìÓ¸{¼ÏèL™S­Î”9«»î¾ìÙM÷aϾÀ½|‘?3;åÜ49¸Ÿ9y€/ñ sñÃ=Îaçps˜Æ9Üã¦q÷Èiœ¿=òDçn<‘Æ9Ûs2ÄvZr6—#ô»×FZ¯±na]Ùz”õÖïq-ß§\Óžî´ž­¸­¹‘mBd«¾ÓGÆÞªïô‘9·ê;}dë­úNYr«¾ÓGvܪïôq?«˜Ïüi­ÿôÙAý§}Så×Í£UÌ’gº®õq_cä±­zRôï?Œþ[ëOÈOÑký ómôßZâÍ£Ñïç³Í!¾Nna[n¥s÷Ù6:wŸm§s÷Ùv±—e°S›‘Dl†Yâ°9sìû!|"SäÒk²õ ñ'³±7Ÿg¾À¾”¥²õcvög`NäKÄ\ÌÜÂ<ʼÆ—iÖ:™f­“ùCìô'CB­õ|Šöüô§iÏOOAóM¿ô!®ÐLfàW|ŽrS¿ŒœÅLœÍÌü†Y8‡Y9—‰œ'n¨»ûóYg³þÖZÙŸßúyëù| ø"2;ÍBÅͧû Xç°Vçûåäb×Í«û ÒgµßXÜgµ¿¯¿äëK¬}fû_µÎe­î÷ËÍ¥®ÿázaë<Öê}¿¼T;Šÿéúk!<ÓÅs{dÏÕÃâ=7 E=ä¹9±øß”Ÿú½ìgWXËûõÿ~ù¬Õ›gÔÍgÔ¤~ù­ÕgÔ¥~<_í¹šÔÏLVÈ-.;ì/I3ä~y·Ÿ­=ÚñÓ‰‘‹:& ñÙ¿åcœÏä\ÀǹOð;>ÉE!dœîùSž»??óøÜã מvm Sð{×ÔÁŒ3”\a=ÂúUŽdaŽâkMùkZ {ï¾ÇT|Ÿ©Ù’iØŠiٚϲ Ó±-Ó³3ðšk¦µ§yfZfbGf±#»„„ÒzÝ;kBü³ ø†ØRêýƒMTçüHõýÁfªçÔóRêùõ¼”zþ`ÕñÛ©~?ØAuûzóY¶É×ÌZý~ðÕë»BìsBB¯wBLÿïB|á:\Ä·¸˜u¹„õø=åòþKÙ@ÿ’¡ú/ó¼!—³W°1W² W±)Wómzo…õ´KÓÔ¶œÎvüŒðs¶§z4C½ºô%;r;q&;‡kFˆ]âk­k…°Ä95»Æ.ñ=­kÓ÷´®Ã¯øe•ÖÞÇ/jΔ—©æLÉG5gJôßñºéyŽbAŽæ+ÃBËW9Ž…9ž¯qí‘©=CBMupj/ªƒS{Sœª¯×T§êë5ÕÁ©ý¨NíOupZEþÁJü“•ù«ð!«ò«QÝžVÎwN5ršœ^SížV“ÿ²ÿcmûÉ89ÍÜ[+Bso­ÖelˆmØ#$¤Ì™•^{ÊDzí)åï™>«öÃLŸUƒwi6hb¦ÉZµQÖª5˜²V­!”µj ¥¬Uke­ZÃù+Gð,Gò7Ž !³ÙbÚ9ÏGó<ÇðÇò"ÇñÍ?™y~Ùó žÿíùÏ?âU~ìZ’ç×<7uÇË-GÝãñòÊQ÷x| |rt ÍÒ뛄¸nç(ou;Ï·yïð"ßå%6ãe6§ž¼¾¯ò=^ãû¼Î–¼ÁV¼ÉÖümx‹my›íx‡ð.Ûó;0úï­˜;.š›§¾"y†[›?.š?ò½AsC¾7©oM5¿ça]ÑÚܯõ¥©òMù&_ekýhª|“G¾ÉWÅÚ<¯*õ¥©U\m]Íú«ÓÌWƒúÎÔª¾>ƺ¦µ½˜¯íÅ|µ©çLu󌵮c­÷L­n­¶N­AŸÙT"Ïkj-~ÄÚ4¯æ{Ë÷Û»SëXû¼òÕµ¶óÕ£ý›¯>íß| Bü¥àûÞò}“¬ZÛÇùÑ>Îטöq¾&ŒcSÆómʼv q‹“ØfÇyjÔ»Îø<5ê]µižõ®Ú4OzWmš§F½«6ͳïß}'„>éCäiõí± ®9ï:óœwykÙœëØ‚ëù7ð}nd˹d†˜!_2CÌðš.  ~i åíKfërö%³õŒÇC¨##\²g.™±gÈÕ—ÌØ3äêKfìòô%3ö yú’{F š±g¤¤{Æ3!¤uï/™³g¤òké©—ì»Kæí©iÞž‘Æ÷ø\.™¹g¤¥™{Ƴ4sÏH§X˜M/™»gxï—ÌÝ32ÐÌ=ã9š¹gd¤™{F&Naf~Â,!òÅ÷!®n.e4›<ð|™çŸœ²É+(“|±’%¹Š2ÆfŸº¥¸†¥ùË„˜÷dúçöR~Ožîg3B Ÿñ½¾Ãè¿õ.c3&gs>Î|‚ïñÉ¢FíeõµÄûÖO±%Ÿf+¦`k¦d>bÒU qÑüYñî%ëÊÖ¿° O³*ϰeuže þÆš<ÇZ<ÏÚ¼À:¼È·ýuëò2ëñ ëó*м½Oö!oï“=FÈÛûdÑÿ4&Dª”µ–AFä 1ÍÍEúÓÜ\dÍËE†Ð­mˆ$“ÙªÝEÔîjw‘Á®·s]†¨†QêáE†ºþë2Ý@µ¼ˆZ>P-/¢–TË‹¨åÕò"jù@µ¼ˆZÞ­½ï—ýªçEÔóêyõ| z^D=¨žQÏS«­»oSmÝ}‡jëî»T[wߣںû>ÕÖÝöÏjy¸£<¼Z²mG³Ðj™¶£Yhµ,ÛÑ,´ZŽíhZ-Ãvô¯–Y;þÀB4W¥ìù«ž¯ca®çkÜÀ"ÜÈ¢4[¬6×u4G§â¹Ù®£ÙnµÙ®£ÙnµÙ®£ÙnµÙ®£ÙnµÙ®ãvšé:š‘SõÜ\×q'Íq ‘E7B\Ën¼Iù{Ñï”9ݢܽè6{ò{ñ.{óûð>ûòûñöçŸÀ¿89ˆèý.ú›Þâ$z]‹þá0þËá!¼92„ÿ™Cýg="DÄó¸–#á(Æp4c9Æ<ÚÜó8ÏÇ2žãB¤ó¦÷’>ÕùGêG7Sóyˆ/WŽ_°<¿¤::fßàL¾Bº!’|²õWÖeÉ©žíyôטÅÊœÍ*ü†U9‡Õ8—Õ95Bxa’l{$Dò§ö|rˆu($”Hs¨#žòb×L +r2å„5S('¬ù„rÂúy!¡û»!|íýþ*„'£Ï[xþ5ß㬳Tn+›/•…ÛʽKeá¶Bè§'¦´ß—ê5mõ˜¥zMÛ&®ë)õÆÇ>õ\N9Þ×ôŸ¶úÎRý§­¾³Tÿi+o-ÕÚê5Kõœ¶zÍR=§­^³TÏi«×,ÕsÚê5Kõœ¶zÍR=§mKê9m[q[óG¶áf¶å¶ãV~ÀmlÏíìàué )õë~úuJÙjé×;r';ñ'væ.vánv ‘aO†¸“Cx½LíÃaOYOáÓüÄõ²®b9Ú—ÃR¸î>¼^ÞÚþ–Òzªukµçõ78ŒöÇÁá¾þŒ¯O³¶?Ú§ÃRYOgj~Æ4üœiùŸå—LÇLϙԈ=çùW_‡¸x5sCEšÛ6¨óñæ¶ ê{¼¹mƒúonÛ ¾Ç›Û6¨ïñæ¶ ê{¼¹mCóþ?!>“9öýù%ÿãŒÓ2Ð Û2¯ïK{§eg3žß0sh®Î4—æêLóh®Î¤f·4WGÿnÖ–æêLjrË'=ÌÓ™z˜³Ÿv¶Ï ¡é¹îd !Ýs®¹'ÛçzžÑ#“µ{³]K—Ù#‹‡¼ßÉìœÃ,ÝÉìœÃédvÎa–¾gXX怅ÕCØhî¯c¶¾g–YXƒf™…5)g/¬E9{¡yëžœ½Ð¼uOÎ^hÞº'g/¬Â˲Û=goa=ÏË{ƒ=×ßbþ k„Ø)zZ5sõ=­š¹zŠÏ¥š3Üð…n´à‹tîéKõB=*Aω՛ôš0çí)ö…õkujÎ;Ö_ò]Î`3Îôõ_}]^Õ»ô¢0Çù.ö•õoÖãyŽxžñåU½+¡ˆœ:ð½——é} ¼Â)¼ÊOxŸò:Õ±´ÙCÜÞÕÌÁ5ÌÉø×2×17×S¯Û»zÝÞÔëön¢^·÷Gêu{7S¯Û»…zÝÞ­Ôëön£^·w;õ¹½;¨ÏíÝI}nïOÔçöî¢>·w7õ¹½{¨Ç핱Òêq{¶7¾ñ°Óêu{÷…˜Ê„ø²È?eyåxæ”7h>Ya>aŽ,å3›[/DŠOa}º/#ì§R>ù ¬ÝŸöU)f„ýTʬ<Â~*eVa?•2+°ŸJ™•GØO¥ÌÊ#ì§RfåöS)³ò{©ÔË´JåãæçPà0äp¾Â,Ä‘|•£X˜£ùÇÐì>b,‹r‹q<‹‡Ðædÿ¤15õ²dE¨—%“oÛüÏõ ”ÿyŽ¿Ðyksš™x†™}¿ž—¬˜õ¯ÖY¬õ¾dÅ©ç%+Aý.YIêwÉ^§~ýûkêwÉJS¿K& ×Ôï’• 1ÕÛ†øø8¶c¿I¯ÿ¸~™Õë>®_fõºë—Y½îãúeV¯û¸¹:«×}\ÝÈêu×—_Üâ~1?¥×C^Üêyùoo/”×îÛÛ åµûööByí¾½½P^»oo/”×¾?"o¨Q«Ÿ rWìê§¹5ÄæOa¶[ÔüÏp-SqSs=ÓpÓr#Ÿå&¦ãLÏÍÌ@¿~þçýõ3r3q;3s³pgˆR*$Sƒ†”æu–á –¥30¤—ÔÑ!å=¿Å 4Ÿyƒwø&ï²"ÍãC*ÑÜ?¤2ÍáCªÐþ‹º3e%Õ)«¨îLYMugŠ{ð‹º3Å=øEÝ™âü¢îL‘oš%Æ¢YbÜ/TkǦYbÜ6¤½X3kçÕÊ£¬Ýï£ù›ð›ò<ßæÊîã.Rvw‰êñ¸Ë”ÝÇ]¡ì>îª_7ѯ«ö•áÇ]³Ö“Î7ãólN5⼺^SM8ÿ³ó}šgÎkž5s²_bkæb¿Þû~½ëÖ¹­£ö\^9ÚÒµlÅ›lMóóÑ64ûmËÛ!Lœ"Ù/ñ[^æ|^ ±O˜S¶êX_µ6¯lÕ ž0¯l•…&.tÝçýÄ%ëBx|AÙf{¨‘Ùæ„ØsÔÚ¡4?­bÏÚ§Se šSq;e¯'Ø.„·=îèå)NZË`)þG,Å)và/t^Rœ¦Ì•â e®¿RæJ#ûïEÙ¯9+ì¿×œ•Föß+w¦‘ý÷z?ït1¯~omØ;Þº«õRvã2×Í{'ÐL°WÖKc&Øû±¯w÷õåìÁ®› öNÔ Ì{'Ñl°Wï; Ò;èÁ£¾¦Þ;j–yT¾«â|ÐkGͦ^;êê±£d”Uò^•Í4TÙBóH•­”ó¢·Î*ù.úwêЋGÍ¥^Ÿf†peˆIü!Ä]šõ´^e½ÖZfK\Çš®÷r}5{SoN\ïz-ë>Ö?°/õèÄ ®×¶îg½Žý©W'nt½Í?'Þr}€ëzw¢9èD]šƒNÔ£x¢>Õ¿æ…Äm4/$ng#î 9!q'›ð'š wÑL¸›f‚Ä=4$ C¶wÀç“áyz¿^ ÷™áEz_颇üqÀ{Ë ;2ȼ§ òǹ#ƒüqÀ{É ðÚ3ÈäŽ jô¹#ƒ}@îÈ F;2¨ÑäŽ jô¹#ƒüq@îÈ ;2ÈäŽ òǹ#ƒüq@îÈ ;2ÈäŽ òǹ#ƒüq@îÈ ø™òÇy#ƒÜq`?ÍØÐŒ}à`ˆ-&Üv‹É·ÕÞbòÇmµ·˜üqÛÙßÖ?Äõ‹ãƇȟÞ×âô¾¯ áÙ´!¶¤ózßy-é¼Þ7c¼ÐÙó_<b“ôýæªÅæ¨Væ©Åæ¨Væ©Åæ¨Væ©Åæ¨Væ©Åæ¨VÎôbsT+óÔbsT+gy±9ª•³¼ØÜÔÊY^lnjå,/67µr–››Z9Ë‹ÍM­œåÅ{Ø•{Ù?³;÷Ñù{,zm¿çò{ò {ñ{ó0ûðû†˜¢5BÜ­K¬ÉˬÅ+¬M®hÊpEߢ WT¯¸u#„–CxØ™¯Ðk+ªwܺI½ãÖïÔ;nÝ¢Þqë6õŒ[w|!ßï=Õ;nݵ~ÕÚë.ª‡Ü²‹ê!·î»^Øuï­¨^rëõkÖ=¬õ”[X±ö>‹ê-·þ¤Þrë/ê-·Ro¹õˆzÊ­¿©ÜJ ‘ ¾¯»z^Ùgyz«µïï®mðýݯÒ÷w׃b¶{îgº_§žÑ]ÏØ gt¿ég‡ûÙmÖzGw½»òëè÷ë!Ýõ zH÷ÛlÇ;ü€wÙž÷Ø÷Ù‘؉°3ÿdþå×é×ÝaÝÕZýÚÐØÝ£‡çju÷¤ÛngHxÞ¾l÷»p»r7»q»s/{ðg~È}ìÉýìÅTß¾Vc Ë6íZ÷á!öåaö ‘³wBÜ´^¼ËÞ¼Ç>¼Ï¾|@õ¯¶ºrÑû:«MëO=hšºW{ëÞçY½hÚ@kõó¢÷[[Ž»è}žÕ›¦Eÿ{ÔXÏõ§iƒ}M-þÿj¯çß®{ïÓ†Xo°ö¹žÕŸ¦égõ§i^ÿYýišqV?š¦Gü¦Ms?c'{®'M3ÞKÈ`÷2ð÷{ødH«7þgñõ¤Ãz×X=é°Þ5V?¬w5+¯~+Dªšïë]cõœÃz×X=ç°Þ56úgæe±ÃúÏØÔwÆ.tM.;¬÷ŒýŽòÚØE”ׯ.¦¼66úo3Ékc¿§¼6v)åµ±Ë(¯]Î\Á›T§òÈx‡÷<úkßbt}›2ßá;”ùߥÌwøåÞÃ÷)÷~@¹7i¶Zæ³Nú†>ë¤9ìǹìÏyb¶É¿}õãÁòUÚyÖrp_}yp[ëo­åá¾jý6y¸¯þ<¸ëòË6¹¸ïö²FF6î«îoËÊ®E.Ñ#›Çó/¸®öUÿúª}}÷„Øa%BB ùkXIFÿ¶>»V®/ñÙµÚËçø33r3q?3ó@ˆÌ·_šËóí“æöÉ|û¤¹}2ß>inŸÌ·OšÛ'âZ\ó‘´Gšb G3–cDZ!.Yí°IÿJV‡úW²·¨fmž"õZ×µV³6ÛoõY׳ÖÏ’Õgô¿IOåkS|í°k \ÓÛ’5¤Þ–L­LÖØsïySÉ;()$µ¯ýÃùü—öÔ ÿ¸0Ä: Eí§ÁÚOƒch? Žå’SL_¼}”úâíc,Íã,Ã,Ë“!¶Ñ‹!!¥{Ø(;ÝÃF9è6ÊÉ|‰új£\<ÄÜ<Ì<4¿4ÊË£|™Ç˜Ç™Ÿ'X€Ñß§ ÿÇWxŠ…ø _åiæ¾FÙ¸QžeQþÆb<Çâ<b²Ëb§kSö:-ce—µN¿EYë´l•]Æ:]/„æ“BxpÐZÖ:-ce—µNËXÙe­Ó2VvYë´Œ•]Ö:-ce—µN7 !úçjrÔ ñ§ÿæ[TssÔå?¬ÇCLUócÌbšcÜóªæÇyºªù1f)Í1rtUç'F^NxÑsg'F&«êÌÄÈdU™™¬ª³³šÎIŒ<ǹœ³%DŠˆë#]×os˜3†ŒòüUŽfáSaUˆKªÅÕtï*¬¡{WANrï*È¿Iî]ù7I.­à'¹gÜã$÷¬‚{œäžUp“ܳ îq’{VÁ½M’K+¸·Iri÷6I.­àÞ&É¥ÜÛ$¹´‚{›$—Vc“šSŽMjA96I¦ª Ç&½O96I¶ª Ç&µòúwxýzÛ=¯¸Þ6DÏ+®· ÑóŠëmCô¼âzÛ=¯¸Þ6DÏ+®·=Tï–î aÓž©û¸µº·TÝhjO¦> ýºP~k{3õÿ¬õíB¨or›Ú«©OYëß…^±¶gSÿbnÎs÷µia×<Šx˜3šÚ£©õ‹ÔzEjý!µÞZ_H}.Ä”roþpoJ¹7¼bßêžÈ—jhAçü­­³²'Ù‹fâ/ÕÒ‚Îÿ[½­Ÿg¾À¾|‘ýh6Î{/Ä^}6$|ý»¾î‡øÌŸð?åœB‡§C$bÞ邿œ–º>-„Œ~Ÿ)]«éÚ_®M·~ÆÚ^iùÐú3ëTÖfœ©YÇϨÙ-ùÚçü›_¸ö‚çIžÉýï´ìù–ÿzýߺÿãW!ÆØŸùkF8‹1œb.˜«¿OsõæÎ æé/Ìk£Û‡Hæ…Ö—­?æNt½ƒëßY_µ6w^¸ÆÉ!$ú½.\÷| oн¸p“Ÿú™Ž~f‘õïÖSy‹Óx›Þw¢×wáŽçŸñ.½¿ ÷øEˆ}ÚùÞ¾)„I™B$úçUŸvη›cŸvη;‡“2»Þ”Yø6³ò&ò]ß§lßB5`»~k&Zk–ŠÕSÖš¥bõ”µf©X3ÑZ¿^Ü»!ŒÙ"YŸ1×Ú„øYϰ-S±Só¦a{¦e>ËŽLÇNLÏÎÌÀ.|Ž]™‘ݘ‰Ý™9Ä´þ6Äg­ìsîâsVËZÏ·®bÝÕz)»qåшšÖ¡WðCÊ%zreň,ØAVŒÈ~dňÌ×AVŒÈ|dʈ|×AFŒÈwP®ë09ˆîu‡Áü‘úxÄ|Ùz×SÕZ?È ôóˆ{Ùz¡ëÕø«síñÖ‹i_·^Bû¹õ÷TûZ/¥Ú×zÕ¾ÖË©öµ^Aµ¯õJÖ±ßÈÉM½¹)®|yª…å+„ðÌi3Öjbù7¨&–SÖßǪ‹å+R],_‰Î~y÷ô™_CLcû.Õ¸>(Â}ù:û¹n¦o]ʺ¿µý˜Êhl/¦úˆöbªC쇲\¾èŸwWÛòEÿ\»š–/úçÙÿ`ôϱÿÉèŸ_ÿ‹Ñ?§þß„ðÖ!\^"×ß q³ö[··–MßêÀïØ‘‹Ø‰‹iλ¼„]ø=»r©Ÿ¯èçe«ë•xÐõn®/³®l}ˆUx˜UyÄ×»ûúrëjÖGYÇhuœfÐY'hu’fÐYÿ£4úg»®›A£¦ëºtÖiš9gñëš}/›Û¯›=gýJ³ç¬³4{ÎúòÔ¬s4sÎ:O³æ¬ 2_Ú×ì >Ë/™Ž3˜ž3™_ñ9~ÍŒœÅLœÍÌü†Y8‡Y9—‰œÇlü–ÏÓñ¾õ Ö‚f…Ö-™“­\Ñõ…ÌÎ‹˜“‹ù—0¿gnúæç¡û>?/Ýßù/Ó9\m¾­C³jµØ{¼yHøÈÜ>ÓúUëfmBBúgBxñžÇ}ë¶Öré‹ÞSmë¹ÉõfÑ_'É©Çf*"#? q¥ŸåÇLljLÏIÌÀÉ|ŽS˜‘ŸPíù)ÕÚ‘S©ÖŽœFµvätªµ#?c6~NïaäôºG~ÉQµkä ϽΑ3™ƒ_1gˆéS:Ä”/û”á–åE–ã%–çeV ^Ûç ^囼Ɗ¼ÎJ¼ÁʼÉ*üUy‹Õx›Õy‡5x—5©—9âoåyªÓìñ—³Xë‘·ÆS¼5zä­¨7ÞR–˜9Z?F3Gëä4g´~`'þÁÎü“]ø»òaˆ='}¦~þà÷®‘ÛZú¬"å¡Ï*Qú¬2å Ïª„Ø^ÓBB½×tVàg|ƒŸóM~ÁŠ!Ì^"EìåÙ?ð/׿tݯ×kýz½f2úë}ŪüšÕ8‹ÕiF. Èüq§¯™'ÔÆ>ÏêÎéëÖjäƒß©F>ð¹æP‡Nß°Ö+ÜtÞpMM:}3Ä.XZ´är¶ 1c¶„ørmCèÑ$D’Ëc¶Z·sFd²M]ûœoS¶êñåª1Û|ZÞã]kùªG3Ê;c¶»Þž;Ø;Ù‘fêrh®.×9ÄÖ13'ßJ3sòm43'ßN3sòÌÂÌÊŸ˜È]ÌÆÝ|žfð:/p¯s|ËÃûÌtÇã®×þ>Õ–L÷=„ß yÄQž‘5ve–‹&ÊE¾þLk{û™™ÕuótŽƒjÚys·ü;ÿ?àEÊ‚ó/Qö›™òÜü+ìÄ«ìÌk”_æ_§Ü2ÿå–ù7éìÏÿrËü[”[æß¦Ü2ÿå–ùw)·Ì¿Ç>îìXN–£w—ûÄ{”‡{x=ɸ¦o—“±Çè×å¢ÿ]’~]Nžã,‘ËM÷ø,DvÙ/ƒô¯]öÇ ¹a—=1șޥO Ò·véSƒô­]úÔ }kWSž¡ÚÎ~K°~ÛZÿÚõ/Òyä<ïrž9Ï»œçAÎó.çyó¼Ëyt-Äþz7$Lõyÿ*7Lõyÿ*7Lõyÿ*7Lõyÿ*7Lõyÿ*7Lõyÿ*7Lõyÿ*7Lõyÿúˆ>ï_ÿ¦Ùé×$þböÉM#Ì|û䦿š}rÓ3ß>¹i„¾0Ô{KŸÅz•µ¾0Ô{Lï³ê=¦Ot}µëͬ½×ôÙ¬×X› ÷ýÀ®ëÙéÍûÖZë/ûôŸöÖP÷ ½9cŸþ3Bê^¤WÓ‡ºé³»®p¶ömdk×Ý›ô9¬õ¡m¬Ý£ôêü¾­½¡îUú—¬7[·£39â:‹#œ§}ÎÛçiŸó5ÂyÚç|pžö9_#:ÓùÑ…Î׈®ÜÍnÜÃîÜËü™r{r?{ñ{ó íµ}‡Ø—‡)î;BypßQà1 ±w}. 䏿Ç:æÇ»>Ÿ¬—:rÇFû³Î×}^ òrÝù©³Ðú_ëÃürZŠfÑ¿ÄóèÃá1Æðx³ü¯ù=:— Ñ?«Ú¹<Õ³ÎÎsôϨv~ƒ·ø&o³"ï°ï²2õ´ÎU¨.Ìò_3Óv®j-wt®Æ?X²ÿò}ÞÃkÞCçšÖzDçZ|ÄÚü›u˜Ä·øëò_ê9ÿ£øR ø’ºÓ¹!c؈²PçÆŒcƳ)ø6“ñê¥ß¥^Ú¹§LõÒlÁ'ùŸ 1giÎÀYg`š30j|ˆdÚkí L{—öü4{>ï}No­‘‡zk¼Ô[k¼Bª·Bdª\Cœª×ð}Sõàî÷®±!a°µkõ¨]ã©GíšÀüˆ5ù1kq"ksëp2ßâÖå'¬ÇOiÖÙ5• ¨·nH½up#ê­ƒSolîÝ¥·nJ½tðÛÔK¿C½t°9w—^:Ø~2Ó$¤šÆÛœÎ;üŒjR*½mÆ!òŠÏ©±Ú”Ê|ÝXmJõ%Õ¦TzÛŒÍ!RÈç×XJeÖi¬F¥2ë4V£R™u«Q©Ì:…T³}ÿßïsnì,¤ú†ö~ª9´÷SÍ¥=ŸjíùTösû=•}ØÄ~OeŸ5±ßS™‰žLãy¬çß1Ž‹ÏÅLà&ã÷|ŒKi4±7šÔús…¦´Ç*˜YNÈOœÇ_R/:aoUpO˜÷˜C›µ6ŸœøŠzω¯ùgQÏ9aoUÐkN˜£+´âê-'æRO91zɉoéþŸˆÎ}2Ú‰è¼gÎ>aOU0gŸ0ß-0ï6?fmÞ>aÞ®`Þ>!SV0oŸ%+˜·OÈ’ÌÛ'Ìy ÌÅÍÍÉ ÌÅÍO¸nÞ>±ŒæêËéÃ;aî«ð!í“ =¹Š½¸š½¹†}hTè˵ìÇu!¤6w-0k7?éZ×Ös}î ÌÞÍÿBŒÏ¨Â@×6r7q0ßæòææôòqssú9§ùé³·_ˆföªß¤[hÝßÚì;TnK÷å¶tÞÿP¹-÷?TnKç\ìàûô罩/ïÄ\ÌܾO®KçÜìb­~•ïÒÉÚCå»tÎÏÞ¡®«§Cå¼tÎÑÞaÖæ×½Ã™#˜Ÿ#i*¦sÎö޲6''7·îíù+ÃBËW9Ž…9ž¯…ðE¿)à~ÑŸîÛ¸é^}1ˆ›Blµ !!n¼õ`ë­/ZO°b½Ùú’µ®Úe~bê~âŸÔ Úê½ÿ>ký±µ×^w"½öº“X€“YSèõÖý„^oÝOéõÖÊÂ~ûæßtÖÓ¬½î¶>ëÓÓgûo×eÔ'‹ð3åç,Æ/Xœ_²g°$gòu~ÅRüš¥9‹e8›eù ËqËs.+pÍEu¿å›œÏŠ\ÀJ!t" [BLïûfaYº÷Nç4'õþ“Ÿó/~Á‡4õ~Äü›f¢ÞIüŠÿðkþËYü³£ÿä$¿a„sùŒå<Æñ[Æs>(ógV×z½™W²W±2W³ ×°*`5®eu®£Y2ózÖäÖâFÖæ&Öá|‹›©ægÞBuð=¦@¹ùzˆ9¯®~ö?¾ÂS,Ä_ìßBýtˆd®Î¬Á”¬Ég¨îŽNEgztjúýοêgO[§±–’äºCìQý|kêÿãÛPÿß–úÿøvÔÿÇ@ý|{êÿã;Pÿß‘féñh–oö¹–òáÈu”G:s1ÞËZg-Æ{Yë¬Åx/kõ°™7C\ûO–ŒÌüÝs=aæ-~ÈÛìÉ;ìå×’©G:#ûeê‘2ô6ﯟû´Íûëç>móþú¹OÛ¼§~îÓ6著°bIˆT2+móÞú™¿¶yOýܧmÞS?÷i›÷ÔÏ}Úæ=õ󽽄¸‚¹¯ð;â"¾ÊÅ,Ì%|ß³—²(—±—³8Õ¬‚%¨f,I5«àëT³ –¢šU°4Õ¬‚e¨f,K5«`¹ŠÁ¬éí>,o=Æz—àø¤kêXAû²øX×v[»Çß {\ðMªg+R=+X‰êYÁÊÜÊ*ÜÆªÜÎjÜÁêÜÉü‰5¹‹µ¸›ê×8Ù"Q¶¸«?/ÐïîêÏ ô»q2FâwÖúô‚×8úÛ]}uAQ_—=Yë« ŠYË ‰²ù]ýu~wW] ßÝÕ_èwwõׯû>%QF¹«Ï.Ð÷îê³ ô½»úì}ï®þº@ß»«Ÿ.Ð÷îê§ ô½»úé}ï®~ºÀ¹'Ã$Ê0wõÕÎï]}u~rW_]àÜÞÕW8¯wõÕúÉ]}u~rW_•£cîê«rtÌ]}U~¹«¯Ê•1wõUy1殾*/Æ~¬¾V’§sê©9ýz_¤ño™¾HI³ÃÏÐìðE*þÀÔ43|‘†ë˜–ëù,7072=eÀž§}ü™¬3Xÿh}Æ:3ežeVþÆDžc6žçó~î9?·Ùú‚õ ¼Èy‰²cÏË”{^aN^¥¾ç5æ¢ùÉÜ~Œ~-Öfå'Õúžfê'óºžÉõ­ÌÌmÌÂí!${èyVÏw0‘;e±V²˜Y±šsWºµµs]ÍÌW’fæ¸×ifŽ+E3s\iš™ãÊÐÌW–zf\9ê™qåClO}*Ÿ>ÕSŸÊw‚úS>ý©g~Ê_Ñ¿o²ˆZÖ³€µþ׳ á+<ÍB<ÃWù+ ó,_ão~¾—Ÿ—óg÷¦سˆëçX”úNOý'ß§¾ÓSÊw‰%y™¯ó Kñ*Kóš_¯_O-íYÆú:ËòËñ&ËS=ë)+ä»Å7x›oò+ò.+ñ^ˆ)÷rˆ{¸“ùøós p7 rO­Î‡ð·½Qîë½,ÄŸ]×ÿþ~ÁúUë},Ìý|X„æÖrEyˆÅh^-WœæÕr%h^-W’æÕr¯Ó¼Z®Í«åJÓ¼Z® åªre)W•+Ç_ôNgÛ½ˆÙäl»aЋzê{Öθ{e·6;lrÖÝ›˜MÎzÏh¯ÎázKkg½g´gç´6Cz‰­]wö{F{¸³ïžÅlrö{F{·³ß3Ú³ýžjÀ&g¿§°ÉÙï©lrö{ª›œýžjÀ&g¿§°ÉÙï©F.oâÚ9ËÓù[Þ„Îßò¦tþ–¿Mçnù;tî–¿Kçny3:w˛ӹ[Þ‚ÎÝò÷èÜ-ŸÎÝò–tÞ–·¢ó¶¼5gÞb[Þf;Þá¼Ëö¼g¦éyÏï³#°ÿá+¿á!¶ÕÛ!!‹¬“¤W­Ð“’ôªzR’^µÂ«:0$ľÄAÌE™/Væ«*óÅæ¡Œ+ãU•ñbe¼ª2^¬lõEg[~­*ëÅÊzUe½Ø”ñbe¼ª2^¬ŒWUÆ‹•ñÖ8Kìù5ÎR'ù ^~ØðS)ƒç2Ä})^Ú /ÅËCöPÚ°—rÐù.^NØ ßÅË öSNØp€r†ƒ”6 ±­—‡„¬MCø:ƒ{Ðϱ‘ë+\Û:£ucë•Öïpßåj6ã6çlÁµ|ëø>׳%7°7RÆo½‰mBLNŸ÷™?éó>ó}ÞgÔËœ>ï3èó>ó7}Þg’BìYuoš™à¬º7Í==«îM3œ5+L3œ5+L3œ5+L3œ5+L3œ5+L3œ5+L3œ5+L3|R;$]b?©Ãßb ë2–õÇúŒg&°!“±åÛOÓ¼4\|}ns+„Hñ¡Ö²àërÚð¿)§ O¢œ6üʳÃÿ¥|6ü?Êg#å³Êg#b(ÇŽˆå÷òZsyí9¶ ™iÛ{ÌÄ÷™™-™…­¨æö{lkíybˆù¥IˆŸǦo{¼ãñ®kæÍ)fÍ)É< aä–ÉáVÆ„È/jÒä],Oyë— ÜÃ7¸—oògV¤¹ç—J4÷üR™BìWBBC³ÎWÎOÃü!,ª"e§X;G ƒ¯œ£†ÎÁWÎQÃWBpîùBL£§C|J¹ª‘‘R~j$G¤\ìë×}]n$O¤\b}Ã:µ\‘RÎi$W¤\J¹"å2Ê)—S®H¹‚rEÊ•”+RÊ'䉔òI#ù ¥žöêéÃ1mtˆäýÉúŒõHþÊQ®›¡òÊ¢ÓÆr·ëg]Íß8†ç8–ç9Ž8>Ä´x9ÄgÐcZäãÏÌO½¥Eê--ÌØô–fì zK 3v½¥…y9ÃaÌ֢°çúK‹×¨¿´(Bý¥EQê/-ŠQߟmÎj2™æ¬&SÜóc!R.mˆýæ@Hh:Ø8?„§&Z´ÂC´_¿9Ìa<Âá¾Ï,ñ’ýùÍQk÷ä¥ïBXlOèWaq,Ë…H¯j!.ÿaVç¹\¶Ú׺†õQkkß{Ö5­½Ž^µxœµy‚uxR}>Ä-÷ë7ì 3IÒ Ö‹¬»X›ávåRvã2š¡n,÷}/ú¾ÅÌÎèÏåà÷ÌÉè÷÷ð}+¬_²^Æ\Œþ\n®ðõ}}¥uë¨y¹Êõž®GíE™§ao®ñuÙbytÝÇúöåZöã:öçzàäF¢ÛÐý¿!¿6By´¡Ùô†<Ùp·Ò}¿±M±7?%É/Ë£¿g~Ùe¹yiùÚYiþê`þZiþê`ÆHÝÝs3XóEjóäJsXsØJsXù2µÙr¥Y¬ƒl¹¸jHhùoˆ-´.Ä_W£ ­§]hÕèBÙÚþþÀþV? m²ncmþÉk/úÑZ .´™jp¡-Tƒ m¥\hÕàBÛ©ÚA5¸ÐNšiŽÍ q^æ<æã·ôþŽÍgšE'˜E™E'˜E™E'˜E™E'¼BM÷ùü:k3é3é13é„×\wßϯ·vo&±vÿÏo°v&¸G5}ç7Z»Oܧš>ó›¬Ý« Å­}.çÍçÇܳ îý1÷k‚Ùõ˜<0ÁìzL˜`v=&L0»óYLŽ™]'85}žç}ž5}žç}ž5}žçÕÐcfÚ 2[MŸëùmÖfÚ fÚšÎÓùíÖæÙ úÅ1sìsì1sì„75¥†ž›e'ÈiÅ&…¸;j^±ÉTëŠM¡™£Ø'|™Ÿ2§2?§±@ñæ‘bÓ=/ÈÏø ?g!~Asl±/Y˜3h~-6“æ×b_±(¿f1΢yµØlšW‹}Cój±9|>×;f•ÂCüÍY|ÄÙü›ß0‰fžÂÿЬSø_ê…ÿã·ö—³—÷~ˆõQÆßÔ#_‹Ðþ{-†öÝk±T:Èk19BL;}+Û\ê]ÙæQÿÊö-ã|&ç>Ns{»'¨Ÿ´{’úI»§ho§Ïd3g·Óg²EÿÎǶžë5ÙôvzL6=¤Þ’m¹¯µó\ɦ´Ó_²é#íô—lúH;ý%Ûê[ oˆ¿|”êýåcTï/aêüÉcö) î_V£ ¨û—ÍfÔýËf³© |ÝLT@ý¿l6+ þ_þÅõ…®ë‰S¿£Ù¨€~pÙ¬V@/¸|ÆõE®›• è —Ílô„Ëf¶ÅóCB+ÙnÉÐ)o?.Æ­®/p]¶Ë5Þc‚ÇG!fvçß$»0=»2»ñ9vgFö ü?¯aÕiz «ÎÐï½êWú½W¥~´ê7êG«Î±8ϳ/°$/†ðøÏ_÷üKñrˆÙ±,ÄhÂå”Uv¬ ¼²c%e–«ønƒï…ȳöóŽÕÖ͸†Íù[p-ÍL;Ô¹êÜjÙ­Ó“”Ý:=%=îñ„µ ×éiÏ}íR§0Ã|}©3éµ£B¤ÆNë.Öf€K]iξÔì]óÓÍÊ4?ݬBóÓͪ4?ݬFóÓÍê4?ݬAóÓÍšöºÏ2¯Ï²°9êf-š£nÖæ|ÖñuŸi^¹fš¾–÷&õµ¼æß |ý-.d]~Çz\Äú\Ì\†üžò|ᥔ㠻·7›Ð½½Ù”îíÍ·éÞÞ”ï »·7åûÂîéM÷´Ò‰ôÝÖ§BH²*´îÆÿ±;O±ᇔBOÊL¡e¦Ð›2RÐ/[ÛÏIyš™hÿ&eöuÙ)ô¥ìúQv ý);…¼È¼ÄA¼ÌÁ¼Â!¼Ê¡¼Æa¼Îá¼Áè¿ïP$$ä>G³Uîó4[å¾Àâ¼È¼Ä’¼Ì×é¬v+Eg²[i^cúܺ•¥3×­ÍjÝÊÓçÓ­oñ Þæ›¼ÃмËJ¼b¯Èe_­ a}«©5‡­inX߆󨖿…+|ß*^¤Ú’øAˆ?‘†í)Ï%và³ìÈtìÄô!öåÃ!þb?¡¾8µ¨!ÏL-FyfªlGž™ªÏåñ¹LÕçòôõýG}¿¾9U¿ËýùcÖyœƒ¨n½l\ìá¾O×Ókw ¡çg!òÄI러;q;s7»p»r/íŸé?Óþ™¾öÏôý´¦ ý3ý ½Î,F÷é‡<·‡¦{OµûÐ{ªm¯L÷ZkÛ+Ó½ÆÚöÊt¯±¶½2Ýž­m¯L÷:kÛ+ÓíÕÚƒC¤Q\ˆK9ñÄF¯'ã>Fµ²Qrª•çp>Á|’#C(P+„m±6?¦óºm¢¯?åëê…¹%.åh×ßr}’u ”Ïx¤òHí‘Æ#­Ç³é<Ò{dðsc<ÆzŒóï1Áã#=&zÈ)e€”æ§j8óšû¾¯ è¹Õš¹f­fNŒ{œæÄ85®š91îÉ“}dˆ;­~gEç.ûhf¡ß÷tVú½O›³ûýOg£×púyz§_ ×rúEz=§³kÔe<÷ºNëÇÙ½¶Ó9ChÞ!„útsûâüÞ¼ÍmÍåúúlv¯ÿôKÖrýý¶¹úò@¯Í.ÓœÎe-ß?Ðs³Ë6§ežì²Íé<®ËûÌqÙeœÓy­åúò{sùý>œ]æ9ý²µ}þ@nonÿ<0×e—N糶߬±–ƒNËHÙå Ó2RsûÿÁÖòÐé‚Öòüy¾¹œù`ëòÑisisçè\ßÜùx ×7—'lôu¹é´<•]n:-Ÿ6—+l²–ŸNËUÙå§ÓrUvùé´\Ú\Î| ÿò[ˆäN ±ÙK‡ø_®XŸ³Îæó,êZ×®†ÈŽ‹!n€Ü½ã;ð2;ò ;ñ*eêר…×Ù•7è>¦ÉêùMÏÍ;~§{V­~g?±¾em.Øq›=y‡½x—½y}xŸ}ù€ýøûóO±ûç…„‘mCX%W‰®¿µ6ì—?Fš öË#ÍûÒ\p\ÿýè%ý¾¬~åxåyƒx“oðw¾É[¬ÈÛ!2:Uˆ+3©ùY¥ž áPUê釪¹žÆõÏ™–_„þQˆÉÿkˆ»¬¾ä?Kû#ýßIÿ˜«í‘V“C|Y¸ÕúÌZ}BŸY«O) ·šJY¸Õ4ÊÂeͶùÌZí áïǭͶ]µÞký„µ÷/™­ÕÏÖÎ]Y³î_ÞcY³î_úzü=Ïßòüfˆ,1´.Os@ksÀs@ksÀs@ë7ih]‘›Y‰[X™[Y…ÛX•Ûéý/ÙÁêÜÉü‰5¹‹µ¸›µ¹‡u¸—oñgÖå>Öã~Öç6àA6 1yíµ z¯üwASâ.è½rJܽWN‰» ÷浿.Œ ýua$í¯ £h]MûëÂÚ_ÆÒþº0Žö×…ñ´¿.ȇyÿ¢Œš÷!?æ#NäßœÄ$Næ?œÂù ÿã§!FIˆ»05Äú-$Œ1W:GsÅ!=xŒ¹â;æ;ê±cñó2—ð ¿çU.å5.ãu.ç ®àM®äïÔ³ÝâêÆ­‘DŸ÷=ýk¡~uOÿZ¨_ÝÓ¿ª%ãÌ=‰÷­õ±…jʸUÖ¬õ³…jɸÕÖXëk Ý÷{úÚB÷ýž¾¶Ð}¿'ƒ-tßïÉ` ͘ãÖøþ?­e±…fÌq?Xÿe-“-ô9Ü“ÉúîÉd }÷d¯…>‡{²×BŸÃ=Ùk¡ÏážìµÐŒ0gnˆ“‘O ÅÌwƒ'³4§PVü ËòSÊȃ§Ò|;gžŸ“©O³–•OçüŒoòsVä¬Ä/)KžAYzðLÊÒƒ¿¢,=økÊÒƒgQ–<›5ù eèÁs(CžË:T—ŠEÿ»ûù¨¹ ³ý|Ô\Ù~>j.Èl?}Ÿ‡Ø’‡Ù*„wõÓûf ÌG¬[ó(Ûð͆™Ó˜ù?àI¶çÿاؑ¿PÊ|š²Pæ3”…2«EGe¡ÌjÑQ5z®ZZ|}ˆÙ$$”~ŒM©‡|›zøÈw¨‡ÔïK›QFêñ¥Ÿ¢_úéûÝòð~+®`k®¤×›I¯8ýŽÒx®_Ñ×ÞÝá½Å[ëGìÅLÎò{1“³|DvÊä,±ßÝéûø“¹îl‘¥29ÛGìÁLÎö{0“³}ÄÌäl±39ÛGœýLÎö{ïÝ]~þ1kgüˆ½—É?bïerÆØ{™œñ#ö^&güˆ½—É?bïerÆŒ±¿ÿ/$Ì•!RØ/¿Ÿò\ŽØ ‹ÕÞΑô~6È\µÍh¿ÿâëÎëï§é¼þ~†K}}´¯ÿdý«µsûûYšå7Œq}—µº0×ùý]]˜+“oëúnkõa®sü»ú0Wöþ]}˜»†êÃܨ>Ì]Kõaî:?7ÎÏí±V'æú<W'æn :1w#Õ‰¹›|ßxß·×Z½˜û#Õ‹¹›©^ÌÝÂÛ4§ÿ~‡Ûx—Ûy;xŸÑ÷û€Ñ÷õ£ïãOF_÷_Œ¾Ž‡Œþ>øsˆÙ¶=Ä÷³?·í ý¹Mvï'›%×÷¶ÉíýìÑmr{?{t›ÜÞO.ÿÑ‘êóøfˆ)à,_B†§CxïÓþt3¤ðHéñŒG*Ôi<Òú~gþŠ3\ÀY¿b~xªwHØÞ$ÄÔïâŸ~.„vuCøWŸ®ßß:#Ð,R Í"õÑ,Rßlù´Y¤þšEê¥Y¤þ0šEê§Y¤þ¾b ˉ7¢ÿÛˆœxãVÓ¦†HÞcÖòâÛÖÓ¬SfÌ{‚fÕ¼jü41ïÿøOùþJ¾ß¬^¸2ïºþ¥ë¿XW±6³®J{¯p5Úk…«óÖàŸ!¶WbHÈïÜõÊFç®×ó´§{½@{º—=žˆöJˆ/aVVˆÿã«<ÅÂü…¯ñ4‹ð ‹òWãYço,Ás,Éó|XŠi®(q‰f‰—)o—¸By»ÄUÊÛ%äïaòv Ùt˜ûXBþæ>–¿‡¹%äïaîK ù{˜ûRâ6Ýwè~”¸K÷£„|3Ìý(!Ç s?JÈ/ÃjòY¦ÿµ{Ÿú_»–ÔÿÚµ¢þ×®5cžc[žg»R7óü‚ç„PQ;%Ç,3µko­—Zkm.jg.Z¦×µ3-ÓçÚ™‹–éoíÌEËô·væÌÔÍ=×ãÚ™–Ýð»—ýëæÑÝ£‡Ç‡!.þ‰°Þû´"Ä/{›+ùWñ]®f3®¡\ñèÊÖR®x´ŽrÅ£õ”+m`+n¤<ñhõçG?Ržx´™òÄ£-”'m¥<ñhÕëGêö2õú‘º½L]øó§°d&wñ+îæ×!”qNT§3zDîŸ\,ÄU1g–q^Èÿ“‹[of nqÝ>b˜\Òz«µó|Ä\0ùuëmÖÎöóÁäRÖúmçüˆ9arië,Ã,ËŸXŽ»Xž»Y{ø÷òMþÌŠÜ"_~âêÞe{ÞcÞgG>‘¹BÜÛòsùÙ!7Ï-h-ÛÎ}…öÂÜB´æ¾Êu>·r!aË,Ïì¬À|ƒ9C˜ž=D^ö¹4ÕÃÒ¸ßMõ°4îwS=,ûÝTKÓ!„Ôûÿ[ëaiÜ÷¦zX9®©–¦³¯âëG¬õ²4zeS½,<×T/K#Ï} VþwÔZžOÓÝzªõ1ky>ùûƒiÖÇ­åù4ZO·>a-×§ÑC?0Óþ§>4•ïÓè¡Måû4zhSù>ÚT®Oý»>÷}êGS¹>M?k³îêHSù>L×T¾O#Ó5•ïÓ ¤|ŸF†k*ß§‘ášÊ÷id¸¦9Ô<<Ä¥x&$Dçþ©¨Ž§HM™-EÊl)ÒRfKñ,e¶é(³¥HO™-EšËRrñPˆLíâjFØ—1ìÇXög\©ÌôSxÏLà &ã`>Æ!LΡ|œÃø퉚Oú5ê9ÿzçÑt®pí©"Ç\¯o=ÒúiŽb ަš“ªAˆ½Ò=$|%S\éÁ7C¨®ßžËÀS|.Dö=â†Ïç \@çwøÂ—Ügþ£ÚŸ<–j~ò8ªõÉã©Ö'O ^6«kˆoœÝø»S¶˜Õƒ²Å¬)[Ìò™7–-fùÌ˳|æíY>óÆöÀ,Ÿyc{`–ϼ±=0ËgÞØ˜å3olÌò™7¶fùÌÛ³|æíY>óÆöÀ,Ÿyc{`–ϼ±=0ËgÞØ˜å3olÌò™7–{g ‘§‡Eߘ5Ê5ûaÖhàäX¾Âq,Äñ”ÑgM`a~Ä×ø1‹p"åÃõ½BBwûj½ÜÕ½`K? ‘7Ì3K{Ò³¾ë¯X÷²VW—öæöáì˵ìÇu¾¿¯ï/ÂÓêþR3êë9€89ˆfš¥ƒi–YßÏÏÈ·K‡XoæPê5K‡QY:œfšõý}_a Ì»ÔL÷†gý@ë"Öf»7Ì:ëYGßÛ` !·<»~ˆçòﵯB‚Ï?öÚ×ìÆYìÎÙTg×Ï ‘Z9—ø-/Ó~«u…ö[­«\ÈküŽ×¹ˆ2‚z—¦)ÍýiÞ¦¹?Í;4÷§y—æþ42Š:—F¾P§ãÒ´ ¹?Í{”{ÒÈ=ês\¹G]ŽK#÷¨Ëqiäu9.Ü£.Ç¥‘{Ôå8})¢.ÇéKu9N_Š4µïõ¥HSû^?Š4•qô£HSG?Š4•qô¡HSùFŠ45ÃëC‘¦fvý'¶wÉPà2_ç•û¿9!a’û³Æ{©ö¥õ\k{eW†7è+>ǯ™‘³˜‰³™™ß0 ç0+Ýã]‰twe£{¼Ë™äïr¦¹Ç»œéAîñ.=y{¼KOäïÊÉÅ|‰K˜‹ß37—2—1/—‡Øþæ™Â©iž)œ†æ™Âiiž)ü,Í3…Óѧ—å’‹Ñ×%—\” žx×sÙäbÏûŽYïÙ§¬Yǰ1c½õ$Ocë&ÖqlÊx¾Í¾Ãd|—…Ø/„„JæÛ/Ò|ûñ%Náe~Â+”_¢ÿfîÇW=ŸÊkœÆëœÎüŒ7ù9ç¼Eûi±šß*gˆÝt/$ôüŽ÷¹ˆ¸˜p ÿä÷ü‹KùËøˆ>ïMs“¸’2COulÉ·r@ÓûÀ¼HxàÞ,*a†v™…˜…™…˜…™…Ø;‹J‡ð²_ïý³È<¼}hHè_JMYç¡¶åV×r«i¹Õ³ÜrsîÍúŒù|³œ›Ül¾YÎMn&ß,ç&7“o.bRÿâö4æ.šuSïfÓÞy)„»²~ê=Öo[ç²–ùSïµ~'Ä®ø8$´7s¯˜HýqÅ$Ê+&SX1…•Bø~|ˆTØË ü™Ñ,¹â_¯ÌOY…SYÕ×?öõýœHYaÅ4׫q:ÍßOr]vXñ™u ëÉÖ‡8…‡]ÿÜõšÖŸX±þº–õ§ÖG­e–öµ)³´¯ÂS×Bìû~&“÷ò¾ïÍôF_é¯êïûÞLÞÓû¾7SE×õ„W7[Ë9™¼·¯ô†W·X«ã™¼—÷ÕñLÞËûêx&ûï}u<“×þþ7ôÚ¿ÒC^ÕC¾ÒC^ÕCÞWÇ2Õ ú•©&ç±íLµí‡èÿnh¿ýmŸÿmÿíž-W3–«ËÕÕæzææzææzææzæh~Ñ™² ÿbW>¤¹±Þ#šëýbÊ©ïäôrêû#9½œúþHNoõ{ËåÔùGrz«[Öò`9õþ‘œ^N½4ÀõÛ®çç!úß~–ÓÉîåô€Gƒ|í®¯Éåô‚G2|9½à‘ _N/x4”zÁ£aÔ  §^ðhDñ=×äïE³ï£Ñ¼Í1¼Ã±¼Ëq!¦UëŸå1¶ar¶åãlÇ'øŸ ±Üÿœî{'÷?§½ÑÉýÏY‡óùPUûãŠâ"Ê%¼—­[¶¾g-Ÿ”¸O¹£ÄF¿ïF¿þ'e…H?³ÄϨãúE\Qy¡Ä_¾VÄz©uQ.c1.gq®` ®dIßÿÐ÷G¿o•õëÖ¬£ß¿Úº×°4`ô÷[˲4g-Çõ,Ï ¬À|ƒ›ø&dEª!EeúI)BBå LÉ4gUÞDsVeµ¦Z›Îê¡;[†¸²ÇÎV¼ÉÖümx‹my›íhŸ¤Éá¹}<À>Þi°wÚÇìãöñûx§}<À>Þi°wÚÇìãöñûx§}<À>Þiø›=˜Äù{ò_öâ!vŒsT®Õžrå©ö”sþǨ5åœÿg=WoÊ9ûã…„7ôŸñ©ÿŒoÂèß]16$¤öÙÎØ"…¢Å8ky°Éx¾Æ ,Â(ÿ5Q/SË3öú~3`u3µÚßDÝL]‚êfjŸëŒŸ}Ýžl¢~¦Vÿ›x­©Õÿ&^kjÙ±‰×šZíoⵦ.K¯3µ÷ÒD=Lí½4QËR{/MÔ²ÔÞËŒ}~=}·‰Z–Úûi¢–¥VŸ›¨a©}®MÔ®Ô•}ß~ß÷´µ–ºŠõë<È”®«i©ÕçæµBÏð0S…ðdzÏxž:Ĥ)¥7`iÔ3Ôç»Ñ'C=¾ýw1ô¡=jõ;êñÝè¿¡í9BÜ1Ïõ¤=G|MÝ»û±uyë£Öjô݉Ö¬Íkï¼e=Éú ëã!²û@ˆÒÀ<–6„ßêòYÖsý ë yˆ\OçºYo÷aëÆ<Â&”‘‡ÈÈ»eä!2ònyˆ\¹[F"#ï–‘‡ÈÈ»eä!2ònyˆŒ¼[F"#ï–‘‡ÈÈ»eä!2òn5tˆŒ¼[ ÒÚïëþüÖÀZ-âŒT7;þÖϱ‘ëjêÙy·Z:¤ë]¾>5uˆ ½[ý¢ÖïV?‡táÅÁC<†z ±ƒß Eï²"ï±£ÿ»‡Yjgcš¥v6¡Ùi§Ì±ïTH!ãìû…3xš3y†_…°*mˆT©ký«õ×ÖÏZ׳>k=‹¿q6Ïñ_7OW©o}Þzå³s)Ÿ˜GùlÄ·!&q^ˆ;Q‚ß²$çóu.`)š™O”¦{¢ ÕØe©¶ž(Gõò„¼’¨^ž¨@uòÄT'O¼IuòDEª“'*Q›8ŸåúFôY®7#uIâ_²º<Î…|‚ßñI.âS\̧¹„)ýïnäÇ1ææîÅËö{ÍlÂly¯È‡Ö[¬ÕöÙò\³r­Ö­å¹"½(ÿéíú6×Õ‹Û©^ôØAYè‰,!ÁX÷DVF˜Èfc,Ÿg_`<_d³3sð±*„„5™ø3SoY“…Î皬!äÏââ;†„ úwþDÏ;y®_ç>Äü×0į¶Ïþ3߯¶Ïþ3߯¶Ïþ3×¯Ž ‘–öf}:ôóÜȬ7·t2ë-Ìz^K{?³žÜÒÞϬ'·´÷3¿bÏ® Ó†‡·«ç+=ÁUÉÕÅ5MûuÚÚ¯ÓÆÒ~f¨“.Ä'_Éô\¥`ë%u2x¾šÏq 3òfâZfæ:fázfå&r#³qŸ§yqŽÚò¶Z3Gmy[­™£¦¼=Gy=DÊ™›6¯sZÜc2åæý”YÌðîqÿÝãþ1tûÇÒyìï|nwûÇÓyìŸ@5¯¿<º]ÍëïÜn¯Açv{M:·ÛkÑYš#£Ó¿çÈ(Åœ¿7BB‘i¼ÉéT'‹|Fu²ÈçT'‹|áûe™bÞÃ@õ²Hôßû”iŠy/½·"Ñ÷S¶)æ=ÍiM}~ ÷Z$úï€z¯E¢ÿî§úYDý¨~‰þ¾êg‘ÙjónÏÿò<úké·EÔàúm‘诡ÏQ{{ì´Ÿ}Æ=~b7ûÞ¼S¤õ.ëîÖ%­Í£³ÝÏ"ý\ßíºž×c£çh/£ççgöâ>:7ÿØ÷+Ѿ_ñ7íûI´ïWüÜ4Ü–)çÉ˷ߤ<|»"åàÛ•(ß®Lù5ö¢çU<—oW¥ü{»²:±åÓÛ5y‚µx’µù?Öá)¾Å_X—§Y w]ýþÊRëúÖ¿²ϲ!c#ž£Œ7ïYÍZqÖcNV÷üÖàŸ¬Id„Ï4ãsÖµ¬²6±ÿæ[Lb]þÃzü—õùŸŸ·2f´nâ'êß'ÕÕ‰êêIuu¢ºzR]¨®žTW'Ʊ)ãù6ø“ñ]>ÆfLÎæ|ܯoeÌdÝÂZqÆ:3í±ŒYheÌêëïùú“ÖöZÆDÚkÑ÷b„½–ñy^à ´¿2¾ÈKÌîçÞ÷sOYÛcsÐ˘“öXÆ—|½¥¯?mm¯eÌE{-cnÚkóÐ^˘—öZÆ—}+ßoqË:o3?å¶Œx—}_kß—’mø Û2ÛÑlzò¦a{¦e>ËŽLÇNLÏÎŒ~Ö]ý»ÒçQVÎxØ”rÆÃ·)g<|‡rÆÃw)g<”ËÊåòrÆCù°¬œñP>,+g<”ËÊåòrÆCù°¬ŒñP>,+c<”Ëʋۆa‡çzæC9¤¬~ùðê—eòúåCÙ°¬~ùP6,«_>” Ëê—eò²bôß›+++Fÿ¹²²âC5¡Õ/!ü}/2côß++3Fÿ½¸²2cô߉++¿=t†Ëše:Ãvznž}Ø›æÙ‡ÎnYsìCg·¬¹õ¡³[ÖÜú°¿ïýÉs3ëCç·¬™õá@×vyì1áϷƹ ѹ é܆GtnÃßtnCÛ6ËC|¢ŒÖfe´6+)£µYE­Íj6äÊgm~ |Öf-›p}VmÖÓgÕf}Vm6ÒgÕf›…ÐaSˆDœ½6?ZûÌÚl¦Ï¬Í¾çë?úº3ÙasˆÄ8‹m¶ºî3l³-]ß⺳Ùf»µÏ²Íú,Ûì¤Ï²ÍO”õÛì¢Ï±ÍnúÛì¡ü×a«Ÿw¦Û¨¥‰>Ï6ji¢Ï³Zšèól£–&ú<Û¨¡‰>Ï6êg¢Ï³ú™(ë·Q?}ŽmÔÏDŸcõ3ÑçØFýLô9¶Q?{QýLÔ×¥ ]â3ÜÅTÔ—×¥æ¦á^¦åÏ|–û˜Žû™ž˜ù1#303R.íz,„Üù<—M»§lÚõeÓ®')›výõè®§¨Gwý…zt×ÓÔ£»ž¡ÝõW¾Ä³~Íüžçòü7ææ9桹öžùt¹ôžùt¹ôžùÔ\sOÝ7†q“õ¦CÖê¿ù0æžúo>Œ¹§þ›ø)¾~ØZXýïÞõÑÿ¾]ý_ýïÚÕþÑÿž]í7†qŸøþ#ÖzÀ=`ܧÖG9•Ç\× è÷ô‚\Ÿæúqk=ažpOOXäút×OXë ô†{zÃûóžÞ°à?ê íÃ{zÂBûîžž°Ðþ¹§',Ôîé eÆTß„øÝÕC˜dçø—öqŽÿ\Ÿãz ÎeM×ík¥9L²sÊ ©æ¹.ÛO²/sÚðëu“¶y.¦úÖ×dýIۭ㸃ñÜI¹4Õ|_¯cý“µ|šjõ[Ö»¬åÔT ­ëZï¶NÎ=”WS}çz=.b}.f.aC~ÏF\ÊÆ\Æ&T#v7 ±×F„„Y¾ïÚHú¾k£èû®¦ï»6†ÑïK³Äµq|‡ãù.'°?bs~ÌœÈ÷8‰ïs2[r [ñ¶æ§lélËilÇé4ë]ûŒíù9;ð vä—4Ë]›A³Üµ™ì³ÙB\ò‚!asjóg³û_?–î{}3\òW|- 1-_å³,Ìt|éY„X”ϱ3²øÿ)ºïxëÿàŸûÜçÜql—d¯ÌdeeDF%Œ#2Cö*!D…$#d5l’J8Ù ’•‘†‘q$d&¢d~Ÿçûñ¼Þ×}Ÿsß÷u}Æëýûõ=¨ÇK_ƒz¼ô5©yÆçÏP‡>†ºôù3Ô ÑÈŸ!aÝ ^¢þ!òõ‘Ëœ¤C¤h6õµ>"ò7ßçUê&ÉÈE³«¯©õ“då¢9Ôÿ¨õ ‘9×yÙ¹è½êëjýCä?ê"7¨‰Ü¤Þ!r‹úI2vÑœêÛj=„u©~[­Ë‘_}J=A­/Ë¡/[Z=‘pÏp2ÏòžãžçT^à4^ä»´ž˜NëùùdK¯ÿÊßìM½n“¿CH}HÝGmÿoâ\ªùÐÄqj%çû:ÿÚ#Õœh"ÿ¤Vq¾ŸóŽ›È?©UùáÞˆ‡Å÷^{XÙ'µš×ö÷Z¯‹ÓÃmàØk›Üôœ9ÓDJ­áü@çoðEz®Émçkª_R{M¹&µåóÔGBx\ŽI­íùAž¿Í—é5{ÿÔ:ôRëÒçH­çùÁž¿Ë!!~XàPFø ã8Œ^û¸¬“úhˆî/bn±o³<ïðAÊVûíÙíÏe©ýöç‰q´?O”ŸöÛŸ'ÊfûíÏhž(7í·?O”—öÛŸ'ÊIûíÏÓÓþÚož˜!D×÷“mK²?à–â@§eß2!ºxhˆµ+ÍW˜VcYZçÚÉá‹­sídçÅÖ¹vÒ×Îú·Ø×Îú·ØúÖ®"­oí¬}‹­oí*ÓúÖκ·ØÚÖκ·ØºÖκ·©Yˆ ñy7=MŸwS}ÞMÏ0#›3[03[2 [1+“)?ljM9aÓ³”6µ¡<§‡[/wÅéáÖË]qz¸õrWœný !LNg¿nÈôl$³Úûâôsëe±8ýÜzY,N?·^‹Ó¿­—Åâôoëe±8}ÛzY,Nß¶¾¯ß‘èw4Vëß\ïhœþÍõŽÆéß\ïhœþ-ízÇéß\óhœý Îzg³oÅéÓÖ¿ä1ÈãeÁú®[²^Š×ß’õR^¢¬—2ˆsù2çQŸvz`HøÐsúEZ Nû]æaÜÙÉ_Rí÷~h 8íwX~ÿ‡…<Î󨇨 «Ï«K©‡ª‹¨/¨Kó"ËðO–õü+ž/ª¾¤.Ç¿Xžæeþy…h}Èÿ×óúbÎâÁ|•iŸo$Ó>Ç(zÿëÕCÂrýØõ<„}!R8«º¦úkñ4á¬Í3¬Ã³¬Ës¬Çóî­žúºÞnù¿Kî,œM­Ç[~Q-gÎNù²pçõ|ËÿTË•…ïUëý–ëý&È…sRN,,'N çö¼^pù_jù°ðÿ(Îã¼Þpùeµ|XX>œ ¾öƒÂùhÝ.ì^]×;.¿B=ãrkèëwa÷n‚u»pþF÷ìº^r¹5uŽ^¯¢<Òþ³Ë­ßi¿œú˜öŸ³uˆ+ß0ÄŸ>ÆFLecgþÆÇy‚OÐ5.ÿ$O²)]ÛòOñtˆ\ìâºß»Ò}¾ØîóÅè{åœä¸»c÷úbº×{ò*í ¯ÑÞ°ðÚþK{ÀÂë´æ/ü/DGbµ|‡ÑËè;Œþ„z±ÑŸR/6Úw¬Õ&„ârñhß³–~l´ïYË~>zõc£W²½×ÈÌ£W9Ö“N¡žlôÔ“^MY`ôêÉF¯¥=}±ý¢úPõ:µ½¼¸¼=z½cëÄè ÔŸÞHkÂè/iMý­ £¿f¯2žpüãÞ~^N½É±µaôfêÓFKkÂ;rN£•!òÊÌ_Ñ}äs<ËqAÎf!¾ÇÂ|ŸEø‹òCãÊ#¯Ìõ˜ç¸„Gɪö8âq4„½ÆÚ^ãl¯ßzzˆ7ï#§gÐûœöÞæ}ä´÷5ß#§½¯y]jéØœóÙBþÌåxc}õÒ…l圞hé"ÇîÓÒÅtŸ–.¡û´ô#ºO‹­5ì-ãdº²ê8™°®¬ºØ:RÃÞò–LXWÿð–LXW&]l]©a¯yK6¬«xK6¬«x˵ª»‚2a]Ùò-Y°î*Ê‚ueÊ·dÁº2å[²`]™ò-Y°îš}⇾%Þ^ÿzYîaãäif=ë{ÌB™[!òsjˆ»+³ã @=U_÷¸ÄG!ÌO ‘*ïðNqÞ=/¡_žß\=5Dû¹ç%Òþm1÷¼Ä²ŸiZˆ}7(Ä5p|»?ác!t3n+ÝúðSç?u¾!?£ý¹›}öægêåêÆj¿øærõçê&êþêÏÕ+ÔSοýWñI¦°)¿àS\Íf\ç¹–I\Çg¸žÍCè÷^ˆÄÿâÚSK[÷û½¯>¬¶§–¶þ´§–þí©¥­ûí¥¥óÒZú¾½¢Ç\ª‡¾¢Ÿ\*ûfiâžèâ3°?3r3Ñ>Ÿ™öñø,ôžñö½'¼W¼=ë ïŸÞ+Þ^õ„÷Š·G=á½âsÒ¾Ÿ‹öÛxŸí ûm¼Ïö„ý6Þg{Â~ï³=a¿¿öÛø|!ú—uñ£·h]üh<­‡½mÎô5gŒÅ³2äa~ZK Ð~Ó¶~ÙÚ6 ž;± óËÕÖŸ¿ôÞ‰…ÔŸ«õ !—kœXع,•!Äë‹:^ÅbLaq~Aûñ¦Õ,É5|€Æy[ë×_iŸ«”zKs=ËÐøÍå&–u¼‘åø%Í™M_…¸“Cüß2qwXšSX†S)‹×˜Ær|—åiÏÿûAÚóÿ–ÁóȾ5ìûËá5ìû§ýýS{Ï_îk5{Ï_îkµöt_«u ûZ­#Ý×jè¾VëÌ›|žæg÷ßC¸S8Ä5×Ïdì®–Ñï躟bQçw9ßC}Z]ŒPîo¾Ûùžê3jù¿ùµ Õý¬ZŽé~ŽPf¿SŠòúß¹ù^¯³?t—×ïøîÍõKûpûòGöãO´t—ßï¸6ÍVPËïwÒþ]¯_ÔÕòú´ßk¿úEµ<{'íßù: ~I}EíÚu—ÇïB¹¶dm¾Ë:!îÄÇ!a¶yb›ó¶à§”O|ÆV\Îd~Nýû‰|6„ôÖã+›['V±-Sø¿`»>’ujÊg“ôm ›©£j9m’Þ­áÓÔó4L¢¾­á3Ô·5ÔçM2Çšã“Ìñ†æø$s¼¡Ïòå¿!á¥9¼Î¹üóxƒóy“ x‹ y›‹x‡‹y—KBœH•ð’Þ =þ«ˆã¥ŒãÇŒrYˆŒú&ÄWkÈM´&ÚÌÆü–M¸…îí(¹§š{9Jö©öd5í ?tWoS7åv>ÅlÆ|šßSo2jõ&£vSO2Êø­Ö‚Æoµ–~_i¿Ï^U³ {:o 7ä÷z²!ç°ç²1ç±Iˆ*Ä6ÊîñÍ(³ÇÛ6N qq‡øuûCh-k_”rð°OÅ=áüÇöª¸'dS qãeØzòÕx¶žü3^†­'ÃŽ—aëɰãeØz2ìx¶ž ;^†­'ÃŽ—aëɰãeØzöí—†„HÚƒ;^–­'ËŽ·~דeÇ[·ë]¥õºÞµ¹š3Ä/›BK{Ñ9¿7‹þs[-ê?·=Býæ¶Ú!n·Þjt¡^_"¹ÍÁÝz¬Ñö©Ýz¬Ñö£Ýz¬Ñ2În=ÖhûÏn=ÖhûÈn=Öh™f·ktIê±F?@=Öhùm÷kLûwT×ù½2Öî×Õ²Ìî7(«ìMcèõõž—½vÛFK¯oPË`»í£ÓþU}MnYl·ý`´1óú—j{·}a´1óúWjY{·}a´}a·}a´}a·}a´}a·}a´}a·}a´}a·}a´}a·}atµ Èbé{ªí£í»§°§²&§ÑuÛý.]·ÝÓ™vÝf°Nˆ–ÛN÷ä·ìÅ-4ÆÊ}Ç>ÜÊ¾ÜÆ~ÜÎþÜÁÜÉ”-O¿HYòôK”O ‘½³CüØB|…ù>‹ð凴wîC{äÞ¹,Áy,Éù|€ h-‰>äx¡ãÒ\Ä2\̲\Ârüˆå¹”òcV 146í硱i ­ÄÏX™ËY…ŸÓ¾¸wæJV Ñ&YB,²–Y©ÿýð‹yHÖüP¯üе}ö™Ë&;<ÛœúáŒÙBô@Ï›Tƒ½X“½i:ЇúÅuC|¿|‘zëu/ññ6_榞zÝß?í¿Q3. ÊÈ/e㌋‚†è¹qLãÉbk¯ð>š_-=ŸÙÚØ£…Ì:Mmüdöó-›Ì~¾¥q“Ùxía½ó.[qºóÆQf㶇µõÎŒòÊÓ=Z;žé9c+sÚ¿ƒcÿ»3Ës²u™âÎlZcï¼G ã÷½ÖøËl|·4þ2ß-¿ÌÆwË™4¾[΢ñÝr6ï–ïQîiù>ë–Ö¼ÌÆuKk^f㺥5/³qÝÒš—ù™Ú~ÛÒº—Yÿýy¥ßÍ<ü¼2Ϳϫмû¼*Í·Ïæ×¬ÆoX›Xƒ›©ïïö-õ÷ݶð~ÇÚÜJý}·m¬Ëí¬Ç|”zñÏëSOýyîâcÜ͆ÜÃFÜK÷©Û´VwÛGër·Ctð=!V^¦^ðaˆT=âšZ+NÓZ™ ¿ G½e­kjÍL8Ckf‚µ¹©Œ›`mn*ã&X››Ê¸ z²ŒÕ[Ö°¦²n‚µ´©Œ›`n*ã&\ Ñ'ëxãúIã:~³q=³ssp#ï¥ÌýdN~Å\üš¹ùMˆ+`®pO ˜«ª„ÐAÿ~UÿÞAÿ~õ êÛ¯Ž¦~ýª~½ƒ>ûª>»€ù|À½/`>pï ˜ÏÜûæó÷¾€ù|À½/`>pï ˜ÏÜûæókZóù€5­€ù|@–+`>¨Kóù@=šÏ¥ù| >Íç ¸Š1…>ÓëOö.´þdïâÖêqú~M=N_ßo­Þ¦ï&êmún¦^¦ï·^oÊÞM­§é»Em½Ê®_«·éûõ6}·RoÓw›œµÓkJy^|„u,{ÏéwúnW[ϲ[Ï×ê{úî ~§ïNêwú~Ï¢ÜeÝ6Äu«òŸ ½9ÿï´7çׇ½roˆd‘e?óù»|EŸ¿‹ïñ™ÏßåÏçô¼Œû™ïÑÅ÷ùÌ÷èâû|æówñ}Òõvì³wÙBŸ½‹@ÿJ.?#æ;tÙ¢¬g«ÓºqÖúVÁ:qÖúVÁšpÖ½IµÎ°¦ÚGg”¦ýs†ý3Õþ9Ã:ô¦ï™¯'­ÛùzѺOK¯O|ÓÚ¯­Ýùì=“Û„X£ôò²5º¦=fr[u"Ÿc¶cF¶g&v`æýïVˆ­ø‰·ùsˆ[ó£k§wZóõNk~¦ÞiÍ/Ô;­ÙO½Óš”‡ÖdÚò?÷DÞ^sH=Š¿Rï¾æ0õîkŽð åhã¦Òø^sœoò7Žã ¾Åß9ž'ù6OqOSN[ó'ñ 'ó,ßá9NáyNåêu† ñ•îá(¦ãkLÏ×™È7˜£™‘c˜‰c™™o2 Ç1+ßb6Žgv¾Í²¬ý[O_éÞÍW,$ü´‡Å¹—%øCÓdß’+Ô%ÕûB4›Ï¾c }öSé³ï˜FŸ}‡þ,ÛEN矜ÁKœÉ¿8‹—9›Wøÿæû¼ÊxòΡÞhÇ\êvÌ£ÞhÇ|êvèó³év,¤ÞhÇ"êv,¦ÞhÇ’¦, ‘â'Õz¤z£)‹Õ§B4»^iÇRê“v|L}ÒŽeÔ'íøÄë–xÝiu¼úS&ð3Ƹœ÷ðs¦£ë“==W2‘«˜)ÌÈ/˜‰«™™k˜…ÖêìYi­ÎžëCH¼â8»cëuö÷:Þèa½~î‘»÷ÖæÖáYÖå9Öãy>Ê !2¡]ˆ¯Šíi>>"ãü¤Ÿyä+ñš‹:xÞ~ôÈ¿j¹iBGõõuµü4¡“Z>}ä?µ5¡³úœú†Zv}ä&«;ÿ¼óçÙ…iïß•=¯7ù©e©Ÿjòky¾›çÿä ¼Äîü‹=¨Çxä®×ÉVzª¯°ÿfo^eê1&ôå?ìÇÙŸ×9€ÿQ6«/›MÍêËðíÝ«\ѽʥGnï^åÒ#·w¯r- ¡§üìWíݳ\ŸÐ=Ëõ)ݳ\ú˜žr]°µwïr-§{—ësçå¼`_kïþåZÁ\I÷0×*æd sñ Z×s­¦u=×Z×sé©Ú[Ïs­£õ<×zZÏsmq#e«‡í‹#e«‡í‹#e«‡ë…pŒ—o¯ZÆzØþ8RÆzØþ8RÆzØþ8RÆzØþ8RÆz¸!嫇q>sõþ«_ ñ}b´þô±þ¬¶þô±þ¬¶þô±þ¬¶þô±þ¬¶þô±þ¬¶þô±þ¬¶þôÉBŽaŽ­A}¬A«­A}¬A«­A}²†h-}еʔw¯U¡¼{­*åÙkS޽&›×²]³Õ²]³Õ²]3f2XjÙ“®ÉܵdÐkP½V›2è5=P-ôZ]ºN×êÑuºö(]§kõéú\k¢ç‡Øc͸€Os!“¸ˆÏp1›s [ð#¶äR¶âÇL‘]ÖÑ7rÐú†5tÒ!ÖÐ8é ­“ÎÒ8éåìÌòÔV¹*³œ´Õ5Xžb]­ËcÔŸnÚâ‡4ãN>Íï™Ä]|†»Ùœ{Ø‚{Ù’?°÷ÑçÚô#eû&2þ1½Í¦ŸÔÏògÊõqÇÿâ¸mˆv+bù¿až{U¹©ºˆz‹r·Þç)ÏÙC*?å\1çìÝŠÓÑ­`IÚº=À´ãµí×ÝJóg?oï©ìzw+£þ…e¹Ÿåx€åyò+ðW>ÄìÈ#~½«²ûÕ­’ú(+óXˆ¦èzú<)ù˜ö7¨îgÚßœÊOŸ'¥ÓþÖTA¦ý©BLûÛR¾{OŸ#Åwîés¤øÎ=}Žß³§Ï‘â{öô9R|Ïž>GŠïÙó}ÏžÞ?Å÷ì™öþ¾gÏTú~=‡ÉÚœâ;öü¾cÏô{þNß±§ý(Åwìy*ÄM7†›Óï‹Í½÷ÅæÆÞûÆbscï}c±¹±÷¾±ØÜØ{ßXlžLc±yk‹ÍŸå2¶á't_ßÿ”Ïñ3¶ãr¶ççìÀìè³>ïx¥ãN\ÅÎL¡ó º‡„ÛÙÙƒòÂ{ B¤üêžjã½A/ædoæ ¡Èg!®5âPnZ#ýÖˆCyh8”—Ö‡C÷…Èl½A’Ì8[o$3ÎÖ$É‹³õIòâl½A’^¶Þ I¯?[o¤×Ÿ­7HÒëÏÖ$Ù»fë ’ìY³õIöªÙzƒ${Ôl½AR5ê ’ìM³õI5økr5íA³×Ð3{-õœ³×±ŽltÖñzÇu¹õ¸‘òKÖçWtMfÍÇø r…Ènów´ù»Ûümþî6G›¿»ÍßÑæïnów´ù»Ûümþî6G›¿»ÍßÑ­iÞŽ6ow›·£ÛМÝ–ûù°²=±eGf'agåó!Ü›ö»9îÂTvåqvão|'¨¯¹7íýw܃'Ù“§Ø‹§Ù›°Oˆ©ö/•õÞDB(¬(œv^ÆÚo=«ÿ{•úß¹2È[SBĺwVÿ;÷êçÊ oMuþGµ>x®~÷¬>x®ìñ–ll]‰;«ž+{ÔëœÕ ϵ§ŸÕ ϽE½ðÜÛlÁ;lÉ»læYúÎ&3Â֌㳌² ãÙ– |Ž1¶ã=lÏtìÀô!ZÆžrÒžRÆžrÒžRÆž{R_<#>DJÛsÊØ{O6¤½÷d#Ú{O6ö|‚çÓ~Î|² íÁ'§=øäö9s»ÌBÇO†h÷Ì!VPV쮯/hŸè®¯/(+v××Ô×w××” †Øï*Ô aÀ ‰É«‡øs®_Åt½*Ö¤¾©b-þÂG¸Ÿµy€uxuyˆõø+åá:ï ázVu}õ6àÑò”sü˜ãclÈT6âq6æolB½mÅÇ©·­øOòIžò;Ê;nêø4ŸâlÆ3|šrgÂŽ“Ÿã3<Ïæ¼À¼È–”%‡™3•ŒÙaæL%sf˜9SÉœfÎTz.„åBØkÌ3w*µ3Ï‹;6*™?ÃÌŸJæÏ0ó§’µ±Fy¯í£6*™GÃÌ£JæÑ0ó¨Òó4‡*™CÃÌ¡JæÐ0s¨’94̪d 3‡*u§ùS©Gˆ»h¬.4V/« eâñæTùó¢1»Ð˜½hÌ.”Ç›cÌ—‹ÆîBc÷¢±»(8oÎX¦6†™_‰>ßxߥ€ŒzÑx^§öy |ʾ”UÇ÷£ŒzÑ8_dœ_4ÎçóE žïïùÏÕÆû¢˜9å¾t?/÷‹Œû‹Æý"ãþ¢q¿(=;21„MãB¤Åöû.ľÒgeMt¼Õ±u<¶ÖñØvZÇc;hí¤u<ö=­ã±]´ŽÇvÓ:ÛCëxl/­ã±¸2„2úÌ“CÌž=yˆúµ“¿RV/£÷Œz¨šgBüÕ×x–¯óß¡k–n4UŸWVû¾7|ßšÔcx‘cù'ßä%Žã_|Ëë³y}3õeõx^áÛü›x•C|º6!öu/][>âªÈê£çþ,Âó­mó­1ú²*“œ+áœ=òúváBç';_’ïðNa)Nei¯ëêu‹ÔÓÔeø.Ë:ßÍùÅêéjke•´ÞU™É9‹8›ñ=êÏó<îñ„ú}u%~ÀÊÎ="ßø]ƒï§ß58?ý®Áèw .H¿kp!ú]ƒ Óï\„~Çà¢!šj¾Î˜â^h œ¡÷„‰ìâDÊû½'q'so÷é'_xÌkÓþúäÛdܤ‡ÆMú)4nÒOåK!îˆ94ÕþrÄšj9bMµ¿1‡¦Ú_Ž˜CSí/GÌ¡©ö—#æÐÔÃ4‡¦ÚW6Ƈ„Ö² 4‡_Í"9’Õ1µl¹ñZË6¦£5k£>~ >{£>~ >{£>~ >{£>~`ŠŸÏëç[«õñí‹õñõÛõñõÛõïõÛõïõÛõíõÛõíí«õí7Rß>ðKêÛ~B:ûÎF½ûÀ¯©wø õî7Qï>P.Ù¨wø-õî·ð~~ÇüÜÊÜ¢3¯‡X³BXö}ˆÔITÿ§–¡JØsKè]fÞPÛ JXOSßÖÓÔÚ´ž¦Ö¡õ4µ.­§©õh=MuÏJXOSëÓzšÚ „ީ֓üjëjªœÒÑ¢ñOµœœÚPý›º Z^Nm¤>¡.¤–›Så–Ž¿« «åçÔ&”ŸS§üœ*·t<éù"´§ÿSÔyy:õIÊÓ©M7Öþ1ïJÈÔ©zÊŽ¨Í¿ŽgXÂy;Õ|.!c§>M;5‰2vê3”±S›SÆNmA;µ%7³¿¥±²¤sHhoýZò<­_KºÐúµ¤+­_KºÑúµäf¡§½µgh\ˆdv—èuÚg£§}vç£Î»®Kô:ísP¯Óþ^öaNöe.ö£¾gIê{–  ¾gÉ@ê{–¼ÈûøóqïçËÌ¢9dàÿPÞù/eß×)ûîü2ïΔ!vÞ¤ ±óe‡·);ì¼C™aç]Ê Úú¨ù“ð}„òÁ÷q”¾Rø>žrÀ÷ ´ÿo_X¾5$tëÃmìËíìÇìÂ+KB$KÚßÜ© þHö·¿Wä.¾èüRçÝÛW>fÚß"Üí¼5bù2‡^ QkN¬˜=Ú+fϰæÄŠU×çÿ"UÊ«­3Åj¨/«T[oŠÕ¤õ¦˜Þí·BüÌ,Å•,ÍU,Öå,ÇÕ,Ï5|kYëø׳"7°7²2¿d~Ūü:D&ÚsL{ÎcCBÈvÃñßW=®9go|ìa!ºç«32„ÕYC¤ÉSê¯Õ£Btˆ~Ðþ_Ðu=hÿ/øßâ¿´ï¼Nû~Áÿhß/xƒíçÖ”‚7Oâ-Næm¾Ã;œÂ»œâ Nc„ï2ŽöÈBQÎ`õõǧÎP|ê,õǧÎqÏÓ÷êU*ÄŠÈú½JSÖïU†²~¯²<"/ÿ/Ä—›Ã<œË¼œÇû8Ÿù¸€÷s!ós p1 Òúør!ÚÓ«YÿöÈ“Õô°{J:_ØyëâËEh]|¹(õ0ÕÎyþžg)^ \Yí"ËðO–õúb^ÿ ‹S>ªvÉùrêêÏX’ËÿËùòjëc¹ÏÕ—Õò +ðo>d ®â/ í쳋?á3!ÚîãË•æ26ç'lÁOÙ2„9‡HÅ·ÔŸ©[©ŸPW/W'ós¶v^V­ø¶z…úYuSõõJu®b[¦ð9~Áv\Íö\Ã\ËŽ4gruò{žò{&ªÍ\æN;s'—¹ÓÎÜÉÕ…_²+­»¹ºÑz›ë~ÃîÜD½ø‰ !avNdUNâÜÌj|‡ú—SXƒSY“Óèºx—ò؉é”ÇNÌ`Ú:“uCxóbˆÜ¯81K-?œ˜M¹ìÄ{¬ïù?=_Vý¾º? \öæ%çõ '>T7äÊcéõŽ'æ:nÌy”ÁŅ vbõ 'ÒZQÐwb‘c¹« uîÄbÇz«K(cøˆO‡h…!áìÞäBÞâ"Þæâf¿"åÌÛ:2Âu¡ŽŒp=Æv¼'Dö?âÓþ÷¹û›ñ@Oµá÷ÙæÑþ§?È$â3ü•Íy˜-x„-y”­xŒÉLekç³ümx‚mù;ŸãI¶ã)ê¹'œ¦ž{ÂÔsO0c—C\?9­dVÊi%å»~rZÉì”ÓJÊuýä´’r]?9­¤\×ON+)×õ“ÓJÊuýä´’r]¿Á”ëú ¡\×o(åº~¯P®ë7Œr]¿á”·û œÝïUÊ×ýFR®î7Šòt¿×X„¯Snî÷‹…Hצ¤kÓßµ)éÚôwmJº6ý]›’®Mצ¤kÓßµ))»gËíØõ)éúôw}JÊëUc!|ß@í:•tú»N%]§þ®SIש¿ëTÒuêï:•<ÃN<ËÎ<Ççyž]x]i\÷ïFã·ÿ 4^ûw§ÌÖ¿eµþ=y…½(µ¶§gëC{y6¹£µ½<›ÜÑÚ^ž­?íåÙdŽÖöòl2Hk{y¶i/ÏöíãÙÑ>žíeÚdzÉ_­íãÙ†Ð>žmhˆXfâ³½Bûx¶a´gNûx¶´g{•öñl#iÏ6ŠöñlòKÈâØ^žíu¦§<öl"G3Ç0#ÇÒÞžÍüx63Ç1 ßbVŽg6¾ÍìÔcwz2Äçù™Mù Í<æN's'½§“¹’Ç\éd®ä1W:™+yÌ•NæJs¥“ñÇxèd<ä1:yŒ‡NÆCã¡“ñGOW±MÛf«‹<æL'c"1ÑɘÈcÎt2ò Œ…V±ó¨‘<ÆH'c$1ÒÉÉcŒt2Fò#Œ‘<ÆH'c$1ÒÉÉcŒt2Fò#Œ‘<ÆH'c$1Ò©7åçN}(wêËØÿ²?¯sÿã@ÊÝ^äM¾Ä[ÄÛ>§µh›µ(kÚg}Ù¹;ÎY—¶ÍaGÚß; vþ®Ú¾²m;s~í•ÿê}ÊùŒ§ãè3žŽÒg<ïy{è¿ýhýWnNæ9Ÿût‚s öùOë§Êùü§ïq¾’óú£r¾Çétô=NË‹å|Ó2c9ßã´ÜXÎ÷8-;–ó=NëWËùì§õ«å|ÖÓúÕrC¨_í\Ùï{Q­×8M]E­¿*§ï8­oí\U­Ïê,Kþû²óܷΕNë\¹´Î•{•Ö¹r#i+7ŠÖ¹r¯Ñ:WîuZçʽAë\¹Ñ´Î•Cë\¹±´Î•{“Ö¹rãhû_õ¿w7kpkr/kñ>Â}¬ÍCX7%DžÜ¢¿É 3O¨§ªÓÎOãO΢3­iëÞUËp¿Éš3ORÖœi¯›î¼L÷›Ì9ó4eΙPæœiX7Ãóû9“œ—Agž¥ :óeЙç)ƒÎ¼@tæEÞOù«ÌËŽó;–¹ÖÍò;†è;φXãtlÃôlËD>G÷²{ÆPðSfâgÌÌåÌÂÏ™•+˜+íSú¢îÙ¯bê·ºßË/˜“rÿûúÓo„hÓïB,Ö‡[Ù—ÛØÛÙŸ;8€;9ßóEîâKÜÍA”±c¾[SÙ:6˜²ul÷qhˆV[.›³…HÙ±ê jy«ÚFêUf5vþMõ—j¹«ÚW”»ª}M¹«Ú7ìÂ$×]Æ“\»"i*rˆÖž"¿†¨Å;a]TmÍ)rXÝF­'‰Èëdˆì±NöˆÈȩ̈Ĵ¿Y×Þ±ëéÀô!’/#»ýU¤³ã ÖìDßoó ú~›]ëÏåïúîÿz™Þ天!ÚvIˆÝÛŒQ>Úü|ˆ ½Ÿ]˜Ÿ]Y€ÝX0D?y=Äž¯Â7X5D7Õ ±ÁrÚò-ß…„n½×ï|Ïë:y¾zÃIuÚûžbÚûézŸÚÛCøY^}GßÖHßö޾­‘¾í}[#}Û;ú¶Fú¶wômômµwx}:µ~­‘~íýZ#ãåýZ£eÔ‡5Ò‡½£kô)õ_ô_ïè¿é¿jïôóéÕú¯Fú¯Ú߫եÔ+Xš+Y†«X–zÜwÊñ –çêù %Ä·¨Á/X“«iýLÿnˆmz9„MrCË´¿%©çÚ4…z­MÆqL¶üªe˯JS¶üJYhSˆÌ¶/=m_ýähˆOûÿs4ˆ á~¥¹w¨ío‡¥½ì>¥ yH†üä˜×›ï ̽Cú”騿Ý!ýIƒD6f6ñúT¯ïÊãì"]ÌÁ|Öô.rS>c ’=k{3Ú«¶› ]ä¨|ÆhÚ—º=‰÷ò椱ÞE¾ÊgìVÊ¥6λÈYù¬é]ä¬|Æl¥ÜÎëO+ýúÒJy˜Ì¼ÔVºiÿf<–ÏÔ%­A]î¥5¨KN¾â[ï”q˜ ±™jë݃íi½{°­sv¤uîÁN´Î=h}àwÇÌ™|ú°ÁÖ¼Ÿç&váfv á½ýÔy!RBN›:Ÿ¿…h.ï·G›Ëûì±®æò>{ô±¹¼Ï?3u×P{¿=ÖÕ\Þou5—÷Ø£ŸÍå=öô ÷ØÓ“ß²·°7­C{ì¹¶Ò>‘kí¹¶Ó>‘kí¹vÒ>‘ë{¾è{¸ùž qCjúìÇY‹úŒ|ÍCôÛCì×8E†j”ªž£v­S|·FÇÕsÕ®yŠïØÈϤø|‡oç9/¤§˜ƒ~WÏW·á¶åB>ÇElÇÅlOëò+ÖŠùÆzëBxÔ;`ŒÍÏ­þÿ£~s~úLóóÒg™}†ùùè3Ì7ÿ[{ïùækó¾ùßÚüŸoþ·^â÷fô{W[ZDó¿õÒýÈ÷éðt%ï8ö:X³/Éã‹åïKòøâÔ¢²ù%™|±žì’L¾Xö¾$“/–½/Éâ‹eïK²øbÙû’,¾XvI_,s_’Åÿâèù'éùèù'™Sc¬kyç©õý“Ì­1ÕóÕúÿIMÔÏ«¨ç«çòI.bSêÿ'éÿèÿ'™scºø¹…4?ó.rþ#çŸæR&ñcº÷–±9?a‹ÒË#>uÜ’Ÿ±—3™Ÿ³5WðY®¤^dŒ¹Ÿw±z•º-Sø¿ y6æÏ/Q¯V›gÖÐ<;°–æÙu4Ϙ'“:Ó<™dn0O&™[Ïî iÿ»‹gw³gy­£d• rÉ„&!¾þ^ÉYlÊÙ|ŠïÑX(%?¬}ß±ñ½Âû6h¬þ@Dó¼Ÿ5x…ÏÑ ‰Ú<ïgþ¯5ú¥²†è#?‡„†óŽà~¾ÊɃLû» ‡øåë<Ì7x„£C\¯Ê!A>ŒëU…Y•‡ø0e5fua ¥õ©È1ZŸŠ¤òZ¯–õ õ3ËúS?³lí Cõƒ™ýü²j}Ͳ©¯Yöõ5ËQ_³ìeæ÷zëKfï³l°Z³lõ7ˆ²_aacgQŽ`±Òþ÷<Ë^u\Á«|’ר”z›-Oñ_6ãu>Íÿ˜Ä|†7Ùœ·Ø‚·Ù’ÆÒ–V4–¶$§ýŸMØšÆÒýß°8êû†E©ï&‹Ž2†sãŒáœúâ-úÀa²é(c9§ýh‹~pXŒÆê°{h¬KGcuXz«Ãi¬Ó“oyžÙ…™Ø•™ÙYøeËx÷|£|ïžo”/âÝó9×?½,¶IK/‹m’ÅÒËb›ô¸zÌhzyl“ýè{f†´ÿN¢{ˆ?æ{—èAß»DÏ/.Ä•èEß»DoÊà÷…ðOVuµï_BNOg?&°?}Ïè{–H߳ċô=KاR}Ïö©Ô !ºTo×Q¿¸To×Q¾T×qõpß qýŽ…„’¯†¸üz_6óA~Ë Ô¿æˆß±"·²·±2·³ w°*õ;í弫ÖÅü«¿g5îbuîf îaMî¥>æ—ø÷±6dþĺü™õø‹ÞFîÚ¤.¯w.¯ot=D2T qÓj‡„ÇO‡p¿Ï>­Žc9jZ]ža=žå£<Çú<Ï´VÞï{N{̱µrÐ~ßÃÎùÎÓÌ‘Çÿ¤9ò¸¹2Íyü/ϹÓÌ“ÇÍ—iæÉãæË4óäqóešyòøU¿g»ßãþL-šü¬Þ¡Ö+ ÚI÷ij9çQ¯Ö3 ÚEyvÐnÊŸƒö0÷23 q9µ¼ŸÛ¯Þ§6N¦>¨¶_N­ÀƒÎÿè|6õCjûæÔŠ´oN­DûæTûkûÞTûkûÙTûkûæTûkrÐO~>»Ú>ÛÄþ9Õ>Ûä·—^6þFO›ËwÉåsçÚâ~Õ_N)Eýå”ÒÔ_N)Ã7X–£YŽcXžcù ßdŽãC|‹9ž•ø6+s«p"Ýã_'ñaNf5¾ÃêœÂ´ÎO©Iëü”Z´ÎOy„Öù)µiŸR‡Öù)zÝúɱk˜¢ãd¦ºRfª[Ÿ2SÝ”™ê>F™©nCÊLuåò´L_£Znª+/“—êÊGã䥺²×89©®ì5NNª+{3vëÊ^ãô;ue¯qúºÍ¨ß©û4õ;uå­qúºÏP¿SWÎ÷[p)[òc¶â2ê·ÒzŠ…ÕŸ¨[óS>ËϨ¯·œ¾ç¸Ï©¯·‚úªq+©¯·ŠúªÉú‘†¿‡Pû~2Þ&ëKžTOQo“õ' õ+“ÛÓ\‹Èµ§zΘ›ÜÁ¹?ä8ëý5{Õ#ÖûköªG¬÷×î†0Û¾_N?úˆuÿ{Ö#Öý"!ÚÍ–ßÚÍ–ÿrór†Heß¹[cµ½´[ÚK»=N{i·'h/íö$í¥ÝšÒ^Úí)ÚK»5£9¼ÜúÑu­]ÍÅåÖ®æàrûyWspy}š{ËÐÜ[þ­OÃ|¾Šö«a>_EûÕ0ûRÅ;zvãg˜½©¢ïR~{ˆÏðoˆ}{(DæÉñ­c!Ôs=Èyõþ Œ7O®o}úŒºϲ$ÏQFš'ï·¶Ô;¯–•æÉý­Ó«­Gd¦yòk9|žüßZîž'ÿ·–ÿçÉÿ­åÿyòkùžüßZþŸ'ÿ·–ÿçÉÿ­³q<³ómæ‘ éBü€ILÏÉLä;ÌÀ)ÌÈ©ÌÄiÌÌw™…Ói/0#„ÆB8ÚNM=“Ù9Ëù‚Îk€¢±´!‡ó³Õ…ÕÕ÷ªßcN¾ï|çõµôòdñ öØ2ö{ì=ü=üùmƒ~€~ƒ~€~ƒ~€~ƒ~€~ƒ~€~ƒ~€~œìX×ܸëî q˳„„®2í+µB$‹ ñŠ^.ËpÖæÖ¡ýoyV¯[Ël”y—gçzæàÞËÌÉ/™‹_17¿æÿø ópórsˆ¼!£Ö¬Gµæ£”QkÖçWlÀ¯ù¿aCn¢¾õÍÔ»¾ñ-›p çw|‚[ù$·±)ÉšOq›q'õr÷âï'qŸán6ç¶q+.„„îÓx‘ïòONç%Îà_œÉËœÅ+œMûÝŠ«ŽßópOÓé¡KË[¿Ëå‰o]ŒòÄ·›B´º÷¸òn³> ‘²æÈ¬¥<ã¼÷¼2]ý±ú¬Ú{_™Aï}efE::öþWfÑû_1¦Štrì3\yÏÏ-ósæÔ¬OxÞù¿Ÿ>וxú™Î2|õÔsø/ç:×Å£«úºzÿã|çäºê7/p,ÛU¿éx¡ãî!nÎúЪ#7°7²3¿äó” [u¡\ت+åÂVÝ(¶z›Ù=D;±<÷q óñEÞÏ—˜ŸƒX D®˜ã›ÓWŒé³‡s³Ç·!zã|ˆ­ÜÌ L«/r ÿäw¼Ä­ü‹ÛBÈòQˆ>;!ÄôNÑg'²j® ‘‡¬›ÏNR?ÌÉÔCu÷¸=8Ä%¹·‰Žó6öhâñ¸sï;gßMú€5œ3'XwøŒ¬; ¬;¬; rØd÷Ÿ¥¬þ“q?a‚ó÷ª­™?ÿ&ªs†èsCìÞ/˜‰«CÜpY¢ò”%*ËÃe‰Ê2ÆpY¢²Œ1\–¨,c —%*ËÃe‰Êå­Ó Ë• !ßxÇ2EeYc¸LQYÖ.ST–5†Ë•+…0Ðõ½§Z¶¨,s —-*Wq¾ óíÕ2FeÙc¸ŒQYö.cT–=†Ë•«{]!¯ë –5*×ÑCì]ø%«_ÑXêð5£â߇„c/r_ân aºý±T/ê‹Kõv~ó/‡0ø\ˆdræé_ìqóô/ö…¸yúûBÜ<ý‹}! >ïu®Ó<}Œý!nž>Æþ7øçð û8øá~å¾ÂƒÆCÎ_9‚‡i]|„#y”£¨_xð5¦R¿Ç=|Üñü£y‚cø;õšƒO2íßPÑ› ‰×ëÍèYÖ[+ØóÒpìû ð½Öû~|¯õ¾ßýÙzßo€<â›Énï±)D «0ÂÚšCÏ;â[ê×ûÞ|ßõ¾÷9y½þm€|¼¾;åáõ=(×®ïÉ!zX=5婹)Lý厩y(wLÍK¹cª9zXî˜jŽ–;¦š£‡åŽ©æèa¹cjÊS òiÊ„‡“(“~†EØœEÙ‚ÅØ’ÅÙŠ%˜Ì’lÍø,K± K³-Ëð9–e;–c{–g>ÈŽ¬ÀN|ˆY‘ϳRˆ|+ÄJWæxçžtü¶ãª!Ò{Dˆ/–@™¦XŒ2L±{(«“UªØãw¶WË*ÅÒSF)¦w©bÏßiŸé-«ÓÃT±çï´ç÷–YŠ›Uìõ;;±(;;/ÓazË0Åô6Uä¦Ï«­sÅd™ÞÖ¹b²LokJ±lž/îyët9jgW7µç¬3Ŭ3½­3Åä›ÞÖ•bÖ•*2ÖÎnjëJ±œêÔ/°»;?Éy÷ýE÷¯ô!,ð9ªÊè/º¥oÐ},}“îcé[ž—±ªÊî/ºŸ¥åÚÝÏÒrí‹îgé»t?Ëȳ/ºŸeäÙÝÏ2qt?ËDé~–±.ð½ªÊþ/º¯eè¾–±Ö·L ‘eúãNÆö2ýq'c{™þ¸“±½LÜi õǾóúy^\­Oî´•rn'9w™œÛIÎ]&çvÚáuö°ƒzñúö¯ƒú”ero'ýy}{ØAýÂ2ù·“ü»Lþí´ËùEΟTËÁv««eýe Õ{ÔKÔ§C\›[!!‡½¿Ím¾Ç;´÷÷tïÎSßU ¶ßÞâÚµý·çójŸ¥§ûx×gèé>Þ]äùˆçç0Žs¥ßÓ6ži?ŸÀŒq!ïaÚÏ¥£Ïس›ß³X^½„‰üˆ¸”ù13q3ó“½l]ÚˆöØ¥z·Ë/Sïvy0õn—‡Ð¸¸<”îÿåW(g½\*Ä—[ÁÒ\É2ÔeyÖC¯u¥wˆ}\‡}<úzôóèï\]zzÔá«Ç<zÈzI£=ÆxŒ ÑÆ2AÄzÓX&ˆä á=ëúƒÖƲAÄºÓØçŽäwþ‚óÖ…Æ>ÄúÓØçXûüëOcŸ?býiìóG¬?}þˆõ§ñ0Z§õ§ñZ¿JëOã‘´þ4Å´÷}iïó:Ë„ÈM¹s•|ySî\õ4åÎU²åM¹s•lySî\%[ú#ĿӇgØ—gÙçØŸç9 „fýC8ù¹ú‚z /òEç=wÒu>ô§ú%õ@õJíç.97ˆñe^æ`¯ñs'W©¯¨‡„p¯lsèoÇCy•¯xßu2E}M­¨gÜî×_Èdñ­dœ¸´žÍØÝoþÔ3f÷ë5æÈà­dð92x+|Ž Þê ÏËûõ s\“VOªéýz‘9®M«¦jcs¿ždŽkÔJ6Ÿãµríæ¸F­\»9ry+×nŽ\Þʵ›#—·ríæÈå­Zp/[ò¶â>&‡èâ_C¬ÝxæÛ< !”Üáø¨ã‰<ÆILåd§¾¾¤5 ä÷êßÔú¾±®oí—èšÖvMǺ¦µ]Ó±®iíÁt-k¡ëXÛuë:Ö~…®_íaü‡Ãù/Gð:_åÉÅ›|-„ZúáK¨o©å‡Zúâ­Ùµdø­ÕÙ¬}co{î Þ¡¹1ö.Í7Ç2Â7ÇqŒò­½°"ľΕ|ƒ«8š)Ã/hŽ]XÍ7¹†ã¸–i?¿Ž®ë…õ|;„/eÀ§Û«7¨'P¶[èÚ^íº¶d»…“½N|º ³#‹Ð¸ú²(¥/‹QïqA\ø¿áç‹;o }éz<-+^ØäüTnæ4~K=Sž!z÷!¶úRßèÙ›ÿ@÷®ù>çó8ÿ—ZïÞüGu^õeµ¾ùOêûÔWÔzùæ?«ó©ÿVëé›ÿbÍ2fîÞïÜUæç5à?,ÈYˆz„»…iÏüf†ŸÝOýóœÅƒž/ây{èÝ¢¼éülç©‹©o±8í¡wKÐz·$í¡w1-zôn)ÚCï–¦=ônÚCï–e<ËQ>ùòÙÿâolC{Û—miOûò9ÚþlG{×—íy:„ÛB´¤^îxÚß×Ç_HûØñE´_LûØñ%´×'Š Ç—ÒþtücÚŸŽ/£ýé¸ýãûÓñOi:þíOÇ—ÓþtüsÚŸŽ¯ }éøJÚ—Ž¯ Ñú¥CÂM÷¡~þ²ÜÏr<Àòt-ë?H×®~þʇxغŸ7DÊ·VWTa%ee ÑÄa!a³õ=q8­ï‰#(7òšÄW›k…Ò^7Ò±/Y(Õñ(ÇÖúÄ×h­OÔ{m–5õ^›eÍD½×ær!$O‰ú¯Íòf¢þk³¼™¨ÿÚ,o&ê¿6Ë›‰z¯Íòf¢¾k³¼™¨ïÚ¬¯Ê°(Ä«ï<*÷¼ë=ŽÊ³ïz£òì»Þã¨<û®<{Tž}×ï?*Ͼë÷•gßõûʳïúýGåÙwýþ£òì»~ÿÑ.”gveÚïïÆª|úÙ£ÝY=X=©O;Ú‹5i¿~·Vk†È“òýÑ>êGØ—µÙöó£öðwëÒþün=ÚŸß}”öåwë‡è„ßC¬Á;!®cÕð¿ý|˜XY‡Xƒ¿êÿ§ol¥o¬*ÉUÃëñ>Ê3¬Ï³lÀs|ŒçÙ؈õ¸úªáÿ¢)ÕC¬gš5x‰5ùkñ2áֿ߬Có>E6éiÞ§È'=Íû¥§yŸRŸ×C\¤Yˆ_{˜Oó“x4„Ööä‹+ÕϨ©í¿W©›«SÙ‚Ç·ç^L¡>÷âÔ×^\M{öÅ5^×ÒëdÕÖöì‹k9”ëh¿¾¸žöé‹8œ9‚_ú¹V~î„úUõWɯ9Šßx>Ùó¿«í;7Ñ~sq³ó­?©~Cý­Úz²ö”z´z ÇPÖn=–[i㹸ã¸oQÆn=žöÓÖöŠ‹ßû=Ö£µÖ›Ööâ‹2uë‰Üí¼õiíêIjYºµ=ãâ^ç­Wk퇭íËP[·ÖºçëÖZûak{ÄÅ}êêóê©ê9?ÑÞpñgÏwôüõtõ/êNjc£õ µ±é¬þ“Ïó»ð/v¥½¢õL¯3V#ÝÔWøÿfwÛg„ØÈ!¤\ ‘ÆåBd¡ÔVZ(µ}‚òOÛ')÷´•‘Ê;må…òN[yg¡¼ÓVÞY(ï´•wÊ;mŸ !»5|¡ÌÓVæY(ó´•yÊm“ù#[ó'>ËŸÙ†¿°-÷ó9`»·ýLHi^n?Ë)ÃÃ!ömÞ²ê3Ts|Ÿœë:‘צ q¯õ Õs±s³?ÿÇÌÃÌËy_b>âý|™ù9˜8„9”…ø Ó>S½í3Õ‹Ò>S½í1Õ‹ÓþRݾsOgÇö—ê%C\TžÛðå¹ ãCœ¶8~ÃÛ”ç6L <·a"å¹ æJ=­þþÚ!òÁÂߢ4í!-ô ,fYº-ŒÇ>by.åƒü˜¸ŒñV䧬ÄÏX™ËY…Ÿ³*Wða®d5®bõÙgŒ3Æöc㌱}ÆØ8clŸ16®²}MÍÇ?«©;ðWväavâvæQê-šš¯'d°¦æé‰ýÎs¾ SÙ•ÇÙ¿ñ÷YÞÞwÂqwþÎ<Éžž“Á÷rÜ˱¾ï´ãÞÔ‡Ó‡íÓ‡ëë9Ù|Ÿ^l\?«†cýØ8ýØ>ýظÔ‡Ó‡íÓ‡{1DN¾âß»ÃA¼Ë—C¼v?rr0#Â8e”¯ÐMò™N¬¦–ÙNg,„œîÓÉŽïá«Lçœ{vr¤ãôÅD¾Æ |ù3q43s ³p,³òMfã8fç[ÌÁñ¼—o3''0'27'Ñ^|r2óðš-÷†„̽CèášÝùŒ®×åÔ¯ÞùÜó?x¾÷±/d?þÄþ!nÂÚÐÀ˜xéŸI”&¬Së^úW]E½^Ý‘؉Ù9Ds/ {“ø1­‘S¿ ‘2sîeêæü„-ø)[ò3¶ !C:ÇËësN1÷ >Ë•lÃUlË>Ç/ØŽ«©Ïɽ†ÆíŽþ!~äuàÈ|‘7iLŒ¼Ecbäm#‘ÆÄHcd‡1a Žì0&F#;Œ‰QÆÈca”1²ÃXOã`”±±Ã8£10ʸØa ŒJGc`”1±ÃeLì0F;ŒQÆÄc`T¦í¬çÉûmˆfëvdaÊä)¾WÝY‘ÏÓë²uafve–=(ûM®E™o²ÌwPæ›,ó”ù&Ë|e¾É2ßA™o²ÌwPæ›ühˆ\Óã~úõ¸Ÿ¾N=î§úÕkzÜOõ«×ô¶ŸÚ_®éc?µo\³î}jý¿fÝûT¿úuïÓ·hÝût<­{Ÿ¾MëÞ§ωLà$Æè;m}"Äÿ‰OÒ:³µ)áS´~l•Ó† œ6ü å´á‡(Ÿ ÿ•rÙðÔˆ¡Ü5\îÝ*G ?Fyix*å£áÇ) ··ty?Ä߯§íò‹†Péñ¶[Ç3¹Ÿße¡­ t9½Ú}ý. Ý×ï²Ò}ý.Ý×ï²Ó}ý.Ý×ïî¥ûú]Nº¯ßå Ñ\=BžÆü(cþuOõ½ìÅœìÍ´×õaîMÕN—gSõÓåÙT}çty%U¿9ýZˆ,â'}Æ’\Îø9KqKseÍ ‡pRßÞ¬õíÍ|Ç“Öéƒe<¿Ê:iN,ëX9XŽ_„¸z2Ð ù¢ž t£=e (Ý0¯ëÉ@7Ìëz2ÐÎzx9°žtãyÊA7ºPºÑ•2Ðn”n¼@èFw?#+æ‘ëÉ@7zPºÑ“2Ð ë|žB´¸ží˜~ª¸ží˜~ª¸žíXÙ¦— ‘RÝÕz·cúªâú¶cúªâú¶cúªâú¶cúªâú¶cúªâú¶cúªâú¶c•BܧrNûÒ+ÖÐ,Ijy§ËLÊ;]f…è#C¬·×í²½Ñ‚Ö£7ä¶×í=¹eó]Ö¥7ô7»¬Io$ÓšôFkZ“ÞHû÷•ºz­½(·ÜþúHÊí¯»ï¹¿¡¹•[^ÝÜʽ™æVîoinå–Ï ÷{¬io´¡5í¶´¦½ñ­io¸/»V{XÏÞhïaÝ- ¿( W( (p2ÄU2Îë£*™ çeåÎgC¸.£T2'ÎËʕ̉󗜗ï? 67ÎÿåšWrN¿^Š2÷õÒž3_ÎËÑy*;çw]/Ã?YÖsæÐù+j¿ëºº³ßq½¼óz…ó«ýÜõÕz„óW©'8Íy?s½½æúCÎë ÎÿC½Áù©'8¯7«$ûŸÿ2ÿù”õÏߤ¬þeýóöSéBìýCLÏ_™ÈÃÌ@=Ýb9·Ü»Ø}o'÷.v¿Û¹ß‹Ýïvòîbù¶¼»X¾m'ï.–oÛÉ»‹åÛvòîb¹¶¼»X®m7‡rm;9w±\ÛNÎ],×¶“s˵íäÜÅ·)ç.–mÛɹ‹ïrqˆ[¸$Ä}˜%$´Ð#¶>fܩΪÖ+~˜zÄÁÖËŒz®³«×1×ó^ê[G3îRçTod.—æ¦17ØúšÑœüðꯙ‡ÆÞ`ëmÆ=ê¼jcp°u7£9øá}j½ã‡ùh,~Çy=Û‡÷«·0?õ >á”÷?,Äí,Ì,´ïS”iŸ¿w…h³­!–®/·±·³ˆ6Úb¡ ¿dW~Ånüš/ðšç6±7³'¿e/nao~Ç>ô>Áû4ò>Áû4ò>!í}vpwr ¿ç‹!n¬ùUûYš_µÛ„ðâºIwëù7ð7Ò¸kþÕ6ÇʵÍDZæ`ívžÿÒóÆãX¹¨¶õr¬·žÆï¹ 4~Ïm Ñüß…„ýîSþ­tŸòo£ûTËøººÆ×Õí4¾®î ñuÕþ;[Þ*—ö7г«ßÓ8»j\Õ2ήî¦qvu‹S6ªU‚öZ%¹ðÇ×û·Pìužàü£Cxà°Ç‘>ù3Dê– Ñó9ClþÌÅ3!ltÿ›ÝTçV[K7ºßÍn©ÿ§¶†nto›Y‡ÎçQŸ§Ì6ÿïãEæãŸ¼ŸÖʲéçwü ð2 ÒºX6Ñq!Çöüó2À|{þy`þ5Êó­“]ö‡„û_æê‹»äâÐzË›‘”7#9ÿ«ó¯ð0‡9/FRþŒ4rþˆóÃy”#xŒ¯2•#yœ£èúÝÿZ÷é©»¸†÷»–]\Ãû]Ë.'9:ÄÍq/[Z+渗-·†¿–Ç#!¤“‘港-­sÜ×–Ö9îgKëÆ÷³¥ûœößGGj†Øº{Y‹9ùs±6s³ÿB¹ÍŽë:NûïÕ¿u\ÏqÞy;Cˆt 3r*3q3ó]fátfå fãLfç,æàlú ¾"‡§†ø©yå&ŸÏþš}ÏD~xšçïã»ÌÇ鼟3˜Ÿ3Y€³X³Yˆï±0åÏ©òçaùsªlÖl·ß›‘òÑ©LÜK=áá=_ŒsXœsY‚óX’óùP>:¼¥¹ˆe¸˜e¹„åøíÕûg…„‰ÖŸý³iã3åµ^ñ™òÊxûßs¾¾º¨Úú´ÿ}µ±5ÆgÉkÚÿú1µÏ”· }¦¼rßþoÈ9LûßùùŒy»ÑgÌ+îŸë|cÎcÎçã\À'¸Or›r1Ÿâ6 qUõg—2SvI.¯ª?»$—WÕŸ]’Ë«êÏ.sUõg—äòªòü%¹¼ªI.¯*Ç_ÊE9þRnÊñ—Œ«ûpUYþRÊò—ôËUeùK÷Q–¿dìWÕ£]º?Dç6±Vö‰’úѹMßàã´VLb *óMVá8Vå[|Xg•S£Y [­YêÓZ‘¥­Yã%6¤u"K#Z'²4¦¾ KZ#²æÿ¸ŒyøIˆVk.Ç…0ëá)û2«q°óÏ:eƇh>{úÏíhOÿ¹=íé?w ½ü玴—ÿ܉öñŸ;Óžý³q?W¿œ‘úídótðîÉ”VwS—s_ q9·;³ZÿŒ£¹zÀdcs®Þ/ÙØêw<¤·êw<”H?û?Ÿy´ysˆ´Š„Uÿ‘lnd­Cs#«L‘lnd5g“ͬæl_B¸{/÷ÓØN6W²š³y§:6_²6àG´$/¥y™ü1­ýÉËØ8„X/Çú¬æb²~'«¹˜¬ÏÉj.&ës²š‹Éúœ¬æb²>'«¹˜¬OÉÚ,„¤í!üa¯ùCÏÿ¡|´CŽÖÌ?¬™IÖÌ?=çy™÷(‰‘?…ØÃ¯ògŽä/´Ïœ>(Ä!,Ì¡,ÂWX”ÃXŒÃYœ#X‚¯RŸsj$õ5§F±õ‘X ™ãå|ÎAæw9{à ó»œ=pù]Îçd~—³¦2¿ËeäfâXZƒ½É,Ǭ|‹ÙBt¼}_oß×#GÇÛ÷õÈ‘3ö¯9Òþ5gÕ9si¬Î™"qIšÆì’ùÌ˼ CÈù‘ã|Žñ~.f~.a¦=_K).ù˜²à’e”—ȄɂKd¿dÁ%2á_²à™ð/pÉç”—¬ð^i¿C\"þUŠ«Xš),Ã/X–«YŽkXžú•OÊM+ù"åÈyrJòÏ!²ò‰ßý'>É´º)áSÜÏf<À§yIÔÇ3ÞŽ&Óx;jm-f¼}–ÆÛQ9}º{VÊž2Ý=+ÕØy9þh[µ{Wª‰Zž?ú\Ö¶èåN!¶Tïú•=8IVÿª ‡ý7©½‡y~¹³ç­Ï—Ÿ§õùr>Ì®¬Æn¬ÎXƒÝY3ÄÕ¸âÿžÈkœÄ8™ÿò^çþGó°Æ NãM¾Ë[Ô“Ö¸MëX;Ô“Ö¸K=iMÿo=iMsêo=iMsçï÷õáiÿ·‘ÞjsèïBôÇ•!öÖ®âP¦ð~Áa\Íá\Ã\KsîÇu4ç~\ÏQ!š·ZHØw"„iöç’/P†(©÷Ê[ÝùßÕæOI=XÞê“j™¢dOÊ%}¦i2EI½XÞšž?¥.¯îÃ)ëç­åüiuu?>Äþ¬H½YÞG<ÿ‡º’Z–·¶ZöžVYý¢ºŽú,ëòëQÖÎkÿÜwÁëªxÝKjûè>ûh^ûè>ûh^ûè>ûh^ûè>ûh^ûè>ûèG™C¬ý×ÌÂo˜•›\ãà­RÔ—þh ¼UÚ£Lˆî‘ýG›£åÏš~ÿhÙ³æŸ!,–‹ªw¦ÆÜÌ´ßkÌÍLû}ÆÜLcà¸þoÆÅÖµ ‘'ßSëg›Çõ€3Œ•ãzÀ…ø{d¤¯õLYí÷ÈI_o£œôõvÊI_ï œôõNÊI_ë…Ÿ»b9ð&í‹8¾åxos1ïpIE7ylÑE‹Cì¹V\ÂdùUϾè#ÇÖÚEKi­]ô1ÛpÛò>ÇO)/-úŒòҢ崎.úœC\J…Ðó⯬ÈìÄ#¬Ì£¬Âc¬ÊTº·=Ó½í駸·=­Gé>sì¾öüîkO÷7ÅýLûw¥RÜÏžîkŠûØóº=ÏÐ}ëy–îSO÷¯€>#Žê鞥¸W=­äœ÷«§û–â~õtßRܯžúóa×C$[Uµµ¢§q"s÷¼L™»§ûŸ"¥ÈÛ=ÏžWCdÅ3!þ…_Ùœ‡Ù‚GØ’GيǘÌT¶æq>Ëߨ†'Ø–¿ó9žd;žb{žfþÁŽ<ÃN<ËÎ<Ççyž]x]y‘Ýø'_à%vç_ìÁËìÉ+!ä°Çf‡ØWz¥Ø{¦±!Ò˜,_+D— ±®YœÖÂå%è{ïØâG=IãuTÓm9:Ä2—ã–§^(óƒÔ e®@½PÚ¿Åü¡ýú!ûuK=QæŠÏJ|›öìåúèGíëËõÑ{ŸXK;ëi>±–vÖÓ|b-í¬ÿÊdüft¯¿=Â;rsñˆÚýþÖ}~ç[uœÚ}ÿöbˆÏb=ß&¯gu-³”q,«l&&3B½Ãä8ê&G©W˜϶LàsŒ±ï±¶mpÜÞq:v L°#eúƒ˜©?8ø<3QöŸœöÞ²ÿd}ÂAÙ²þõ ¾ar¶ >ìXï0YŸpPß0Y{Pß0Y{°sê¥G꥿V÷Vçò3Õ÷qœÛqu²ÊÁ¾Îém—'¹Žz¬ý²ÀDkÿþ!a’¾äÀêo ¤uúÀ‹¼Ÿ/1¿÷iá}d—ƒÔø2 RNŸ$§Ó'ÉéäôIrú9}’œ~@NŸ$§Ó'ÉéäôIrú9}’œ~@NŸ$o<÷}ˆÏé³=·‹Ïp7›s½÷s{Ù’?°÷1™?²5â³!T¸ÂV}Þs?«åÄ 7ÕÕÕ¿¨­½Ïí§\Xá–ó5ÔÔ2a…Ûêšêƒj¹ð¹CìÀ_Ù‘‡Ù‰GØ™Gù¼Ÿ³oo­Å»|$C:l­íùcž×Ã=¤ÛZGªîÊãìÆß(c=¤?ÝZW}BÝ¿³O²'O±O³7ÿ`ža_že?žcÿ-bäÅ蔣¥('Fù ñ4Þ7$°,c,Ç{B\¾Y!þç2!´_Âß׸†ÿP¶ÿû_ÏÏö|Y¾Çrίsþ:×ó?çßw¾ÝÓ&îiëÅÏÖ‹©îeY¯NT]ñÔK¤ý=¢©îo“EÎ%8§¨cçÝï&‹Õö«ŸS»ïMdÂ:ÆÍÏÆÍT÷¿ÉGjãæçFjã ÉRºÿMÜÿ©úœ©î}÷¥É'!ÚoAˆ•´×÷[ȧ¸ˆÍ([–|:DÖ[ ø™õÖ‚z£õÖ‚Åi-P‚óX2D_Ò/•ÑO½¤_*#¿d/#¿d/#;¿d/£z©!õO/5¢þ饯¼Ê&¼ÆÇùŸà¿!,ðžU­Ñ ¼gU½ÜKO:/×ý1&ÄÏɱÌÊ7™ãh¬þñsp<ïåÛ´×®{Av_"«÷ ±™uCtÙÙÜïõmH(Ú…[ؕ߱·òncwngî`Oîd/~Oë]¯]´ÞõÚMë]¯=´Þõ²µÞõ²µÞõ²µÞõ²µÞõ²µÞõ²DëaQë\›¯CBŽçø ÛqÛs3;ÐçÎÑÑ×<„»SÙ‚öø6¾GŽNô=rt¦ï‘ãyú9|Ï6¾Gß³ï‘Ã÷lã{äð=Ûø9|Ï6¾Gß³ï‘Ã÷lã{äð=Ûø9|Ï6¾Gß³ï‘Ã÷lã{äð=Ûø9|Ï6¾GŽ!º95ĆÎäqÎâoœBŠûÐȸM±_¦ýÓûe#ëUŠý²ÑÇ´_6ZB)ýr©Ù~ÓsmþïS5ôꯆ~HýÕÐ9Ô_ KýÕÐy!¼l‰È`]š¦7}b†:¢¶>MÓ£>¡W¦G}Â{¼ç|]FYÏy=Á>çËñêGÕz×'Þ áþÎ%8Wß¹kν¯Ž©¨ÿQÀù!¯sŽçïñücêÿÔsyƒ>Û=?;¾éغ¿ðIy:á!ÊÑ rô“rt‚ý¤`Í}r­¹ONdÕí_Ã=­W鸦ã?X‹záù¯…H•MêGÔzáù¯«7ó ~ËÑÜÂ1üÎëj{k¾>¡Š>aþ›Üæ|çϳ.åðùãœß®6ßKšïýÍ÷’:ÿ–ó;Ôæ}Ió¾¿y_ò/çÇ;¿Smþ—Ô{Ï[í»ö·”´ô·”´ô·”¼â3o±­‡è.èõ3”^÷ùK»7eG„ð•Ü–4?D¯üb[Ï.ÊŽ‹ÚPv\$^”=GYq‘L˜Ó‘ÓÞpQf\¤Ï]úmˆuÄ-|Ù89hœÈÒ›qбö®ÇtÎýêÜTæ4aÚóiãù¨ãé<Æ!îõr!¡ú/,OYäõy€úèê©®®Ÿ~]]ýW÷¾G%Æy¼¢³W…XRç>1®êXë?1žê4 qSç1ϧxþy~AkàìÕìêùtžo¨Ö$uS§WË ŸØ7ë4v~­ó/p»s={p{r#{y½þ­Žþmö—êÞêŒêÇÕ_©ûðköå7ìÇMìÏÍ4Çg»¦Iéš&½ÈïøRˆÊr1ù**ËE帘Œ“¯¢Ùô; †0Å]üGµl´C6šb¯..oL±Wÿ™öêâ¿x^VÚQXmÏ.¾Ÿ3éwf“v¡>eGQêSvØÛâ±öÞøj´÷ÆW§½7Þ|ÙhÏ7W6Ú_ãÍ•öÓxsd£}4ÞØhÿŒ7æ7Ú7ãùöÍ zèoåÆáùCB¥oY€[Xß±·²0·±·³(w°w²8¿g îbIîæÜÃRÜËÒüe¸eù#±J?Ñ«dínŒUr}f¹O÷¢û÷toºoO[›[Xó2M ¡G‘îØ ZXó2M¢5/ÓdZã2½ãù¢ž·G´°ÆešBëZ¦©´že²—´°žez—Ö³LÓiËdÌ·°Že²†¶°†ešÅ[œÍÛ|wh­~iVˆ•­ÏÙl@׳¬qýÒûlB±=Ž?p܈ÒØ-`Ò¿F ؇ô¯Ñö!}k´€}Hß-`Ò·F ؇ô­Ñö!}k´€}Hß-`Ò·F ؇ô­Ñ-òŰ(å‹añ”/†%PžcSÞ¢—†„-I!¼“jŒåW¬~†ËØœŸ°?eK~ÆV\δë¼[ˆ5ÏÍø?vgsêysjAˆ“ÊXךšƒ1sº©{3§›ºw1súýõ!òàj÷0Öæ^L™á¤có/f75ÿbæqSó/f75ÿbîÿº¡!Ö¿<_áƒÆ Nûʺ´¯¬{•ö•uæcÿÊ!”‘7Úë»rËíõ]¹Ój}Wnù£½~+·>«½~+÷ê·rë±Úëµr¿B¯"Íìg¬cs3Ð:6WuÆ:6WuÆ:6WuÆ:6WuÆ:6WuÆ:67­cs³Óž=WwÆž=÷^Ú«çæÔB=âÇÚ´÷Çv\Çñ¶š˜ Ç쟛ôpƒ·S7xåÎéw0Ä—lÏCìÀ_Ù1DÊ(¥«q«‡¸›•BÂÊ£¬Ìc¬ÂTVåqºf+£k¶ò]³•®ÙÄþ!Røsµk´ò$kòkQöI”o>âøÖæÖáYÖå9Ö£ 3ü@ˆU~ö¢Ê¯Óž_ÙXúÇzõÙbZ¯>“I'èÑ }£¾«þ(ÄiC>ÓÏþ¡l:A¶*´I§^Æ(?aHN,ko$'–•'™7eåÉAæMÙ!ô_" æÇ ó§¬\9Èü)+W2ÊþJó§ìa¯[èuæOÿE4o™OeÐ<*k2Êš‡ƒÌ£²æá s¨¬y8È*kVoâ/_c[þÃçø/Ûñ:Ûó?và väMvâ-væm>Ï;ì»ìâ¯Xbªwc„/0ŽÝéÞ¤èã{éëSôñ½ôõ)úø^ÙBh¸.„ÃÆDŠ~¾Wvõzõ!èY#)zû^9œÛàœq’2A}¯z£ú¦×twü¥cc&e¢ç¬y)“˜‹“™›ïð^÷•×Ýæ×4¦R¦8oÿnøú.7…p$P/uÄØJ™êù¼j=Õc,ešÚž—ò.ím)Ói/K™A{XÊLÚ³R·†øOr›r;Ÿâ6ãN>Íï™Ä]|†»Ùœ{Ø‚{Ù’?°÷1™ú¢­©/šñ,õE3ôI©ú¢ú¤TýÐ }Rê¶£u|†u<Õ:>Ã:žjŸan¦f§ž–#Oíæ$îqþˆóz±Ô£”mR± SÙ•Ç©'yZÿujo÷šß©¿9ç~¥ž ¾?õwêûSO2íhî§žr¬÷O=M½È½îyêŽûð ûò,ûñû{öÔêóêj}Ü©}ê ê¼ÈŸêüê?Õ/©§©R_Râ_|™—9Øóz½S?«¯¨‡ðou^–8õ‹Z¿:Czz†z¿úšzÿápþ˼ÎWùGòí1©7i/I½E{ÆÛBü£kù×±"óûy¼¬WÔ7.;$GÊ•³ž“ñíý³Ú1sˆ‹šGë¯Ò¬B® ŽÝ‹/Ò=Xñ]û®é®ý y½<~[o ß–ÇW$„Ø ë£=kÅ=ÜÀtÜÈôü’‰üŠø53òfâ&fæffá·ÌÊ-ÌÆï˜[™ƒÛx/·3'w„ðŒ~û×þ¬ï?Wîž,ƒ5þ±9Ô=6—z ÇæQ_þØ|êÇ[À'¸iï©qˆ-ÍG½ÍÒû©·Yš?„¯Ò…HRÚßmJÏFLdcêó“šPŸô831íïGé…–PgV?IëoRSZ“žb66cvÊ—õLKÓþû«jùð«{™ößhé¡–âS,ÌfÔŸ_~šz̯¬»IrÆå$u1µõ7©­¿I-ù?ê¥.?ãùâj½E’žêrsu µ#IÞ¸ÜB]’-ù[±”Þq¯ÞQøÒ4/KT‘/ªYo¿aunb nfM~«Ç— 7®£L¸q}ˆ 1ó#>Zˆæi´0ÍÓhš§Ñ¢¼Íb¼B÷ï!ùë¬ýi¦ëWÆ}yH;kÞÎtËÈaeWÛå ±=i™1å{Lú„rÓ¤O)7MúŒrÓÏréÛ ø+ò0ñó(—ð?b*—ò8?ñ×w])ºŽëJÓõ[W†®Ûº²tÝÖ•£ë¶®<“ù [Óy–Ö HV ¡c.Ü!\s¯®µ qEñ‡å›¢®íaù¦¨k{Øÿ`BˆÏ’?Ä´ ñY Ð:q÷7Nž¬ÛœòdÝ”#ëú=ãäǺ­(?ÖM¦üX·µŸéáÑS-GÖÕ;Ž“#ëêÇÉ‘uõ„ãäȺzÁqrdÝv^Û˱,Y·½ãÞŽ×9îÀõÔïÛ@}Þ¸Ôßû’úºq_± ¿fW~ÃnÜĸ™iŸÿ[öà¦}®ï˜öž[™ö~ÛØ‡ÛÙ—;Ø;ÙŸßÓ¾tÚkv9ÈÝ´'Ýß×£ŸGÚëö8g_ ÅC¤m¾Ÿö7ë²¾B…z!|7ŠRo\Ášõ5«íý^óרSÚæwü! pŽ×4ð½M‡ÂzR™¥Wi½¬ëÚ« }‡Eœ—az•Uû.Šªõ(ŠQoÒAÖÍýeÝÜzÂ^å¼Îwí óæÞF™7÷vçË;/l÷z¾K/{AðÝ;ȹ­¯½Rûndâܲr™8÷÷ÎWt~€Z6Î-3wsSäâÜ{<_Éó®Sù8·±Õ«²ÚõêU…/9//çþòrn9ºƒ¼œûGÏWõü µõ:·<ÝÁz[žî`­Î-Ow°Vç–§;X«s µ:÷ÁòZ—;X¯srlmî`ÍÎ-Ow°fç>¢…φ„_§ð§ò<§ñßåEN矜ÁKœÉ¿8‹—9›Wø^ˆ\ÈâÌb6Îfv¦ÏA÷ý™1ö¥ï8–[¿×ù˜“:ÿ¦óÛÔ¹Ôs˜›sù?Îóü8Ï»?ϼEýú…<ÎÏg^ê!.ÜG=ÂãlႱ´`1£Kh-øˆ¹4ćš!¶Ögµè3„Gh]øæ«in= µÕ>C¨C9:‹üê:ö¾¡­Ýßë!^;I=Äk§¨‡xí4õ¯ýA=ÄkgBtT÷«–“=˜‹=™›½(ûŒêÍ<ìCÙ»HÑ­äº^x/DŸ¹b\Ÿ̉ 2ürVyᙜŸãuÍCBÚÿÖ´R Z¿gÊieô 3å´2òF¥–Îße+¿/0™¶fŸe4„jæÎùœ\®£ZþßÇ-L{Þ½ÛOsgO-Š{btOöÜCscO:îdzs^/SͼؓÈ]Ì@y{OFš{2Ñ<Ø“™zÈ=Y¸YiÜïÑ#Uû‰z£j?S?TíꃪígNê÷ØsÉôådújÆýëz5c~½wL_®sˆ{*$¹B†êŽ›9–‹Š=Í!zqtˆ-j—zù8zqŒÚ}q,íißôçØ²¨×éIäåè™=!6w.íÑsçÑ=w>÷Ñ^wæGÚëÎüD{Ý™Ÿi¯;ó —„°Q¯Ò̼بWifÍÛ¨Wiæ>oÔ«4³ÞmÔ«4›ËN4þ7êMšÍ§Þ¤YÚïßï÷Ø+ÏØïçÚ+ÏØïç~L{íÜe´×Îý„öÚ¹ŸÒ^;÷3Úkç.§½vîç!î‹BBïÁÜÇ!!¤³¯¯{/Äú7ãû”Ö}@¹hE¡iÐAý¡Z>Z7‡òϺ¹lÁy”{ëAj¸o‹õ5r„è›§C¬Ž5æÍ?hyó ]ë7ÏÒµ|ó­1ož§5æÍ ´Æ¼y‘Ö˜7ÿ¤¹ðæ%¾Ï¿ø/óC^¡k¶@ŸXUï²@ŸXÕïÔPnÒœ/Ð/Võû5RÿM9³ìUÊ™e¯QÎ,û×é'«z¿AòcÙ)–½N9°¬13H,kÌ ’ËêÃè;«ú\ƒäÁ²·(§”5É)eïPN)«Ç^à^Wõ¹É+åÌÁAòJ9sp¼RÎ$¯”‹R^)Oc­\BˆK’å‹$Y Q¾H’å‹$9 19„îµBЃÄ%ɉ­)$ÊIò@¢|‘$$ÊIò@¢|‘$$ÊÝñsÃÕrA¢ŒÑ½¶z„Z>H”3’äƒD9#I>H”3’äƒD9#I>H”3’äƒD9#I>H”3’äƒD9#I>H|Áï«ã÷½ª–å$!Ñ^ݽ®ó#Õ²B¢=;I>H´W'í¥½8ÉXL”)’ŒÅD¹#éGÊÝå…Û£Ôz®D{o’ž+Ñ^›ô í©Iûi/í.OÜ~M}@mOM:H½fwùâöëêCj}gwYâ¶,‘ô«Z_Üý1µþ'é°zP_Ü]Ïq{Œú¨Zþî®÷¸mÿê®÷¸ý¦óÇœfÕcÄÒþwMMKu.íÚgÚ5ýi×âGzÍSŽwœö}NÒçí—+$”XÃÜ\Ëÿqóp=óR³zß&Ç÷9ÞÈ|üҹ͎ïwüóókà7,H?3VUûq.â\Ì'¹„>óØès]Êfü˜Os“ø Ÿ¡Ü[[î+÷Ö6.ÇʽµËÿ…„*syƒóx“óy‹ B¸çÉ9þWˆŸ©o¤G(§'¤G(g /èen, ¡Ø9çô åäå½³v Z®~ÖsçCdï÷!~lwñîfsîa î¥5|ï´FïÝGëÁ^ûöXëÁÞŸhØû3Íó½¿ÐüÝ»ŸæçÞ´ï=È´¿+U%„úþ½‡ÔÖä½öűÖä½öš±Öä½ö–±Öä½GiMÞ{Œ]˜Ê®<Înü/ð»ówöàIöä)öò~U½ß õiuoõÃê—Õ¨ûð ûò,͉¦ÕæyÇÙØ…öøâyÈcºªÓþ&|Í_Tv¬âõ;ŸR×Roá#”!«Èu;›©k«õ½ëP–¬âwí|Z]W-S¦ý[‰Ud¾æ|ïzÎÉü½åNÖç÷lÀ]|Œ»Ù²eq§5¢w#õ^6ælÂ}|œ2fr§5¤÷j™¥÷“”Yz7å/!zeQˆ}l ]YÌWB\k=Q¶ñÖpýĘ©!þ=À˜i¼ï2§ó~Î`~ÎdÎbAΦ5æ=æû,ÂX”²Xˆâ'eçÛt]LཛྷȜœDÙ÷Àdææ;”yLaú|“|¾>_ÚC¿VŸ×o õyý¦RŸ×oš¼'Sè"Ù—;çûõ{—z¾~Ó©çë7ƒz¾~3½Î:“]f\«÷ë7‹z”~³ù7ßãU¾Ïkü€ÿðCþË9¼NûÄZûE?ûÄZûE?™¶€ì^@¾Xkßè·€ö~ y›‹x‡z¹]…ø7ôç»ôooèÏw}Lýù®e|(„'­_¿­¡ûÛZç?q^_¾ëSVrÞžþÛ:ÚË[ïügÎëÃw-§>|×ç´ßû„‡=ýÞ¦Oy¯»Vxîá9j|NÛNcrš1yÔ˜œfL5&§éw¢Ö¾£Æå4ãò¨q9͸ëoÎË=ä»aúü¬'Ôòc{Z:ck¥ ÙceÈ/S†ì¡ŸY)CöåVÊ=†Rvìa¯”{ÈÌ+eÇrÚJÙ±‡œ¶Rfìaÿºùtˆ_y8„dýÎ…wÔIê#êgÔSØœSÙ‚æO²~ç»^÷Œ×Uë%/L§lsA/’,Ï\˜éùæž?¦–g.Ì¢^ò‚^#Èqk¾£ ·f+e¸5Û(íÙNnÍâNæ÷,Â],ÊÝ,Æ=,ν,ÁX’iÿþòü‘¥øKS_=If*b­eÔÆZ(Ëý,Gýõ$Yªˆ-”Wë¯ßqü ãC¬À_ù³"°†¨m+–Ó8mg|æ4NÛÅÑ8må'!Ìy(D*öWÇ«íWíhj£µÝ=üÜëÌáŠÔéÔ+˜ž+™ÈUÌÀfäÌÄÕÌÌ5̵ÌÊuÌÆõÌNýn»Ü¢[íÁ#ôi[S¹õ7ê/·žàþN=ÿÖ“Ô“§˜£íQ)¿ð^çO9?ŸúÝroÊ~çsªí«#Ò¾:bõ½#Sß;¼ުïa^oÕ÷ŽXB©ËŽõ¾#>v|%DÌ ñmJpKr>!®HOf…Èõ!~ùw´ÿ.·¯^·ï.ßFûîrëÕlûR’}i¶})ɾ4Û¾”d_šm_J*BvÙn¶½)ÉÞ4ÛÞ”došmoJ²7Ͷ7%Ù›fÛ›’ìM³ç°8}®$Ÿk¶Ï•äsÍö¹’à–ò;åÄÙ [KŠÅ…„#î}±(å—bñtÏ‹%Ð=/£{^ì~Îtt¯‹¥§{],‘îu± t¯‹e¤{],Ýëb™é^˵!>£ü´Åž˜Q~ÚbOÌ(/m™¢·íå_È·—PþU)Ä>ÎÊüUx"„Á‡B$Óÿø+󄸹ö d{ÑÜ»\âÜþ„ä%ž?ìù¼ÉŸZóÒ~Æ5JþŒ®Q²}{žk”l_žç%¯ k”¼’®Qò*ºFÉ)t’¿ k”¼šY©ïœ—úÎyÙiü»÷,B~½á¼ÎéAçÝË´¿ñvÒsÆ]~ý⼜Îmtî”sEÕúØä/©MþÊkô’óô²ÉzÒyzÙd=é<½lrÚßx;ígŠ©õ³É›Õ¨‹«­‡Éòcþ§=ôžó¬‹É[h]LþŽÖÅä­!ܯ‡©gý:`þÕ“aÈFsõ0ÉÖþ±ö€Úö‚±ö€Úiµ= ¶½`¬= ¶½`¬= ¶ pZok¨m?k¨m?k¨m?{úö±‡8’¿RÏ>ö0õìcðuåzÜñŽ9ÍTŽáqŽ qï¶ OÜf+Þa2ï²uH°-ǽû,#zd=âL=âq=âÌ!<½*„Sæÿq½âL½âq½âL}Àq=âL}Àq½áÌ>!äLûYýáLùþ¸þp¦Ä7\Í)_Õ~;„ŸdÈJç*8'kM~ˆëX‘ë½f‚×È@“+©7°27² ¿dU~Ňù5«ñVç&ZÏn¦õ¬á·´ž5ÔGL¶ž5´ÎMÖ?4´ÎMÖ?4´ÎM–ËZç&Ëe å²ÉrYC¹l²\ÖP¯0Y&k˜öyd²†»C\MkÔÕZ!tM†jëÔÕGÔéÕÔ‹Ôµ¹˜u¸„u)ƒ^­Gô꣔A¯Ö÷s‰~®±Z½Ú€²çÕÇ({^Mûý²æÕ´ß+k^M{¬yµ åÊ«s%Ÿà*>Éš5¿ >jb—ßà»ò"»ñO×Y^ýiúõ%õÃjýüÄîê¿ÔÕÔƒÕ=Ô—ÕÕÕúú‰=ÕWÔ5Ôrqm}ÿOö€‰½œ7^j»6? £kòÓpÖ¦>boÏ_U×QËKû¨¯±/ÿa?þËþ¼Îü/DRŸžößÃ8?ýºñ%¿JQ{~zÚóyƒ/ò¦çÁS_¨Çé·8ˆ·ù2ïp0ïrHˆ³"©Ci¤¾Â8?ÿ²Ÿ7fS‡©õÄOë N­QWÇËéÆðÓú„SÆnêçä|ßëi×â”qœúªs1Žä=Ecå^ß5õ5Çéù:ù†ÇhÇ<2†è‚¦!öìÝJ¾§Ær=o÷…LÓKæøB¦ée¯×­29Dûþb%äÀ¾—ù¯Péû7e¾W)ƒô½F¤ï?”AúþËy¼N™£ï\À”5úÞ¤¬Ñ÷e¾zˆ²Æ&Ùcˆ×o’=†xý&Ùcˆ×o’=†xý&¹cˆ×oú“i¯¿DÙd“Ï9$-›¼íØg"ÏmòY‡ØÓ7ù¬C> ‘2F)c€ŒQJÆ c”’1È¥ô¾ä‹R…BtÕ !Ö3»Óëg»M/јmjÌÖÙÂ/z”ÆlSc¶Ž^ý—ljc¶©1[ç'uvZÿ±þ×±þÿbýŸaì6ý›ÆhÓ«!z¯~r—ïv¯~r—ïv¯~r—ïv¯½|—½;C$„ÂyÕöt½e4§=]oµž&è-£Ö¾½e4§½[/ ßçØ~­ŸŒæ´?ë£9íËúÇhN{²þ1šÓž¬WŒf’‰·ÈÄ™dâ-2q&™x‹Lœ©2± SY•òG¦‡)dªÆ¬ÎßYƒ'Y“§X‹§ùÿ`mžaž qÓÕOž¦úÉ?X—gXiÏ?Ês¬ÏólÀ |ŒÙ²/±1ÿb^æã¼Â'hxYÿœáEõ“ê«lÊk|Šÿ°ÿåÓ¼Î$þÇgxƒÍy“-xËïÓ‡gxImÏ|Òž9Ýžù¤=sº=óI{æt{¦6nº=³i„mǶŒ†ÈëLëÌëLëÏëKŸÿBhÔ%„# ÕÖ™>Ö™5Ö™>7i}éc}Yc}éc}Yc}éc}Yc}éc}Yc}ék}Yc}ék}Yc}ékO\c]é›ö~Ö“¾ñ!r®]ˆŸ'ÜkÏ3ìÀ³ìÈsìÄóìLëø¹çi?g]Ÿgï=g]Ÿgý~¦YLR[ßçýEscÞešódsæÄÊ/YŸ_±¿æcü† ¹‰¸™ù-›p çw|‚[)(G̃÷¶9¶ÔíeÍ×7ÕíMks]ø—O=¿ÝóO©MÚ_>SïP7ãNÚsßûžIÜÅg¸›Í¹‡-¸—-ù£oʇØËÖ×oäYûŸQjˆº‚úâyVäÏ u¬§|ù"õ”/ÿI=åË—BôêW!öÉ»!”µ?\ýÚñt~ÃÜÄ™ÜÌYü–rÁÕ-” ®~G¹àêVÊW·Q.¸ºrÁÕ” ®î¤æ´œŸ}Ësõ䬌7{¾Þ z¾ÞË4Þ2ÞÚ­ì1ÄÃß>Ä6ÊÒñ(çF…ø ]ø+»ò0»ñ_àQvç1ö`*{ò8{ñ7ö¦ÞfCêm6ô¥žfC?êi6èSâŸw¬¯Ù`çšåXo³a õ5ì/Q}Ícø1}Ø×©»£ïz¯Kˆ”·Ç?¦»3ZÝU½ˆÝhzïZ£ÞÓW•×—¿×ƒrÌ{ú©òúñ÷ôSåíñéãîÎXêáî¼B™í1}ÜqŽ78þͱ¹÷Ø Ž‘ƒñ!~Rš ”)£íÇOà=œÈt´¦LÏÉLä;!î¿å!aE2?gk®à³\É6\ŶLás!L”¥ · !íÿgþßεãj¶§>þ¿µŽ;xt á¾ò!²XÏóœžg±žç¹ÝlÈ=!<ºP¿ü;]§úùÅœßkSµ~,nìø‡²Ûk7q,‹=ê:Ðã/~\ýcˆkùYHȬWiéógÖ«´ôù3ëUZúü™Ÿ¢ÏŸYïßÒçϬïñ|wÐ|Ç^ÒÒ÷ɬ÷né;d~†¾Cææ\Ãô=2›ƒ;í£ìÙ;ós ÐgyÂgÿ­°º z ñ#æRáÇ,Êe,FùtgqZ#v– µagI.çüœ¥¸BƯ帴㕎 qrY°qtχ½Åß9>„Ÿ9>éømžâžæÄÒWqü‡ãI!º,)Ä:'ðÆØœ÷°Ó±%Ó³™Ì ´7vÖO,³7vÎD{cçÌlË,|ŽYÙŽÙhîvÎNs·svä½!ú´µ#}Z;Ò÷¥µ#}?ZÒ÷§µ!ýZÒä÷4ç>|0$´8À Ÿà|’²)çð)Îe3Σyš)í¹ùŽ“¸€Ïp!›så¬Y‹)gÍZBûã¬(gÍZÊÖ!,s­–¹NË~‘:z¾:…< {þcÏË_³–Qþšõ å¯YŸÒøØ.·¿*·n—Û_•Û·Ëí¯þGyýUy}»¼þª¼¾]^U^ß.¯¿*¯o—×_•×·Ëë¯ê¹Ÿx%„ãëÕrûH‘a»=m¤ü´]nçùažß –ßGÊïÛå÷‘òûöL ¾¤¾»¾¤¾»¾¤ñ´]Ï?RÏ¿]Ï?RÏ¿ý f ¾dFŽa&ëÚ¹±Ž3‡°üÅytUˆ~úCˆuy=„º‡è¡ÏCìlm±yâyõ õ(uqµõ1ó–™(C70'ÊÐ ŒÃ‰2tãp¢ ÝÀ8œh]l`N´.60í ñ ŒÃ‰ÖÃÆáDëaão¢õ°q7ÑzØÀ¸›h=l 3Õ®ÂOÕÖÅÆßDëbão¢u±Ágž¯ìyŸ}¢õ±õq¢õ±õq¢õ±Á Z¬d®bY¦°¿`y®æƒ\à \ˇ¸Ž²ƒõnNÚwªäØý˜X™Y…_²*¿âÃüšÕø «skp3kò[ÖbÚµ{„ß±6·²·Q¦i°õ¸ƒr'ëó{Ú+ÈCWv…ØÇó(}œöw9öp÷Rθâ^~¼ˆû¨?¹ò#õ'W~¢þäÊÏÔŸ 9biÿÌ!~nþĶú»Bú»,Lûô3EhÝ;ó³ç̓3¿Ð:yƺ9×:yƺ9×:yƺ9×:yƺ97íõÖ͹ÖÉ3Ö͹ÏÓº9W:cÝœ+‘ÇæÊ@gä±¹2Ðyl®œ–U¯±}õÛ'§ýc€ŽõÛå‘lÊíSáTÆqõÛߥ¬³}:eí3(çlŸI9g»Ìö±¿£žóc=~G=÷PŸ#³Œ1ÔçÈlßêsd^ây½G½ÿÇzÿŽzÿõþoQÏßQÏÿ±ž¿£žÿc=G=ÿÇzþNÁÏËp™?Rëý;éý?ÖûwÒû¬÷ï ÑuîI9m…õwÅ!ÒÀû6xÁy÷¨¿Ì¶Î=ê?žîQÿ·ù 'p?'Ò=ëo¿^w“yˆïðWNáaNåNãQº.÷b¹ÛÚܺxN힬ë*Çq쾬“—#îË:y9⾬s"îË:y9⾬ë¢SG„Øãeø*Ër$ËqËó5>"Ÿñ2‰‡ø  ÑÒòðïoPþ}4åÙßÇèýÎ…HéÔríïrmi¹öw¹vúyçí3Ó/°´ó2îï®Ýô‹jŸ£´Ìó»kVZæù]Ö™þ§óiÿÆÕ%ú\¥e ß]ÃÒòÏï®aiùçw¹gú_ž÷yKËA¿»–¥e ß]ËÒgøŽçõp¥íQ¥Ïªµ¯‡„2³Bèß'D>Uÿ§žÍ|7ù>oñÞ¦¾ÇØ%Ë8Æ~,YÆ1öcÉ9Ù•¹Ø¹ùÿÇîÌÃÌËž¼½˜½yŸê ëº×sû¨ó³/ ° ²?ÍáOõŒu…¹Ôö·¹Y„/²(_b1bq¾ÌÔk%—¤~+Ù}™;”¥ø K‡¸MC¬ùÍ¥ÍøÍ­YæÌ sk–9sšeΜ0‡f™3'Ì¡YæÌ sh–9sš-ÒŸ0‡f›+'Ì¡ÙæÊ sgv”æÎìxš;³øclÇ{؞騟˜ž™ÈNÌÀÎÌÈ癉]˜™]™…ݘ•ÿçè¾ãm®ÿ€¿Ï=÷{¯’=B”‘QfVVF¶2n‘­YÉê W!Ù”•u/ )™IFY©Ìô­$’Ò°ê÷¼¿?Îãùy}ι÷œóù¼ß¯ñýŠÞÌÁ>ÌɾÌÅ~ÌÍþÌÃÌËç™/„IÖmÁ2âÄ÷p ïå æç‹¼ƒY€CXCYˆ/±0‡±‡Ó}›dÝ|@)˜vƈKs,Ó>Ÿ~o^ÚïÓçÍK{^ÿ6OvQï6OvQÏ6OvQÏ6OvQÏ6¯õló*RÏ6¯§ða¾Nõ¹Ú­="C;„ørçBtìû!öH"7ó™×4cHˆ˜¥šfârfæ f¡Û4+åʦٸšÙùsp sr-sѾk𛿙¦y¸y™Â|Lå=ÜÈ{¹‰ùù>ïãfà,H³hÓBÜÊÂÜÆ"üE©æ4-ÆXœ³w°$?áýÜÉRÜÅÒÜÍ2Üø—e¹åø)ä~>ÄÏXžBÜ ë`ªupÂ:˜Z”îÿT÷ÿ„û?Õý?áþOuÿO¸ÿSÝÿîÿT÷ÿ„û?µÝ÷©îû ÷}ª}{&boš·ŽÓ·ílj1ÊãΫýOìÇ‹O0'ãWžŸàùÝ|•{œOçü)¦ç×ÌÀo˜‘òû™L<íõI^¿WœYlÎÚ:Q¼¯ñSç³8VŸæfvæìÂ-ìêçÌYjŠ·Š»qù!íÉ¥Ûù,?¢Þlœ¾è‘éLÏÌÀdfäLfâÌÌ7™…³BÚÿa}Ñõàù–ém«™[–ém«E©·­O½mµêm«Å¨·­–ŽzÛjæòezÛj¨·­æ¾,;ÄL0Ðù#λ?/º¿ !vŸ^tŸÓþ·åe_гñ(³ósxÞý`0p?çÐWcUˆÿ£W³~ÏýÂ-û©Æ{â\Æ!Ü«ª±Öñã!$t¼Îq#çû9^ï¸17° SØ”©lÆ|‚›Øœï³7³%?`+ná“ÜÊÖÜÆ6!n“œÑ÷匾')gôýŠrFßS¬À¯Y‘ß°¿åÃ<ÍÊ´_6¯dW‹7UŸeUžsÞü¢ßŽÛTM|žðåw¬Î‹¬ÁïY“ÿc-þÀÚü‘uøã%ÖåϬGýæ¦úü… x… y•óWŸÃü¤ßÛÔH|ù›ð:›òw6ã|‚7ØœROÒ÷/êIúêM6éIúêM6éIúêM6éIúêM6éIúÞö~æ43EÜ&½Iß´ë¢7é›vô&}ÿ !ý;Žõ'}Ó^£?é§OÙ¤?é§OÙ¤?ég½§ýyóÚ’´?c~¬¥G+'íW<Æ„h%?w9B?w9Ž~î² ’¾ær<õ5—¨¯¹£¾ær:êk.§§¾ærêk.g¤¾æ²|UI_sÙþ¨¤¯¹l?TÒ×\¶*ék.ËW•ô5—³S_s9GˆÊWÛͳQùj»Y6*Wm7ËFåªífÙ¨\µÝ,•«¶›e£òÞv³lôše£ÏÒ,ÕÏn7ËFõ³Ûk…¸kÇBÂÊQ<Ηy‚£y’¯ð+Žá)Žå×Ço8žßrÍ+_¥¹`eÍ+ͯŸ‘"…xú¤k惕¯…PÄú¸fFX9‰f‚•f‚"ÖÊ5óÀÊ)Ž­—kf‚•¯Ó °r*Í+§Ñ °r:õþ+͘×ôþ+͘E~÷>ßyõ÷š9`¥Yóšþ¥þÿÚeš5¯ýB¹¯È7B¨/לjAëàTËYfŽï´_lMœj%6Ïw’ó–™ç;pÞ:9e}ÔÏÅÖΛï;ÉËÌ÷äÀeæûNrà²Ç).kD9oYcÊuËšPŽ[Ö”rܲf”ã–=ÁãlÎlÁ“lIu<çûkY+ñ)šÏ:™Ï–™Ï:™Ï–™Ï:}˶<ÍvT#—µçYêï:cGº'Ë:Ñ=Yöåˆèn#ºœÝC9-º—rZt}ß¼s<Ìâé'†øúêô¯1·AÞ½?å^Ïp¯' ‘üz¶SîñŒ´¿_ßýáþžrg¸¿‡z^/wÊ=ž1…îï ÷÷”û;Ãý=åþÎpO¹¿3ÜßSîï ÷÷”û;#™îiÚÿŸqÊ=ážžrOg˜Ö–±î§Y†gøÏ²,õ$kËñ<ä>ÄïXžC(£n”i ® þÞqCÇÿÏñãŽ+9þ!D·›Ý›µ¶›Ù›µ¶›ÙëÙS›˜ÿ'‰ÍnƒÍ\ÛÍnƒõnÛÍlƒÍ\G͆“ÍÚG͆“Í´G͆“Í®G͆“Óþþn«¢‡§…XRsNg Î`K&³gòI¾ÁÖ!:XÍ,û"ÕÆ²jã`µ±¬Ú8Xm,;”ùq˜ZúŸZZ[|X<œG8"D†ÏñŠq‹s!KpKr1ïç–âR–æ2–á;|€ï²,—³WðA®äCT«+”§Z]¡BÕk†pd”X­®P‘ju…JT§+²Ãr±ýÖap~Œó8–9Ž™8ž™å‚Ž'8ÎÂW™•IÌF9*%;娔!îœü4g"å¥9òÒ9yi޼tN^š3™òÑ5'ƒ÷Ÿ”+D ´fnêÝÎÉQsä¨srÔœ©Îçq¾-ó²órÖ9뜜5GÎ:'gÍ‘³ÎÉYsä¬srÖ9뜜5GÎ:'gÍQ‡Î©Csfñ g‡ÈD×§v<]Ú ôýkë·kmáè¯bס¶ëW+E|©üÍy×¥vzº.µ]¯‰®Im}x­ž¿Në꨺XËz:ªæÕ²ŽŽÞð:׬¶ë9Ñ5«ízÖ²žŽþIëèè_놵³ˆ­££‹]ËÚ®ñÄIt'N¦k'§Ò58®éÄét 'Πk81™ù8“÷„°«Bˆ´{!„l?‡h̬¼£ÍÊ;äݘYy‡¼3+ï(E³òŽÒ!d´î®ëËVG©/[O}ÙêêËVǨ/[Žú²Õé©/[ú²Õ©/[‰ú²Õ™©/[…ú²ÕYC\«B!!ïØû·î–û®½]ã»rYÚ¿t·¢óEœß΢´—Z£½Ôª8w°?aIÚ?­î§ýÓªÍéùk†èÜU!ÖÊ\¹æý©ãž­ÙL½Êšè­Ù¿B(e­Ùêøon£ë¿æCÞô;Vûù;q Ÿò3føRŸzèqJ}æ¡§)õ¹ï9Ø÷,À!,È¡,Ä—¨o»>ŒúªëÃY”#XŒ#i6¾î^­.A÷juIºW«Ía×Ý«´¿ƒ*kÚ¿ÿÕ'Dš¯ Ñ êã\9¹c¯®¬‘ÛêÍ&uå¶z³I]¹­ÞlRWn«7›Ô•ÛêÍ&uå¶zc–ŠÜVoÌR‘ÛêY*r[½1KEn«7f©/OÞVsÌS‘ÛjŽy*r[Í1OEn«5æ©ÈmµÆí¢&çÉI59O.ªÅyr³?ó„Pb[ˆþh†]4›fØEshv]¤Êúrˆÿ4kùJ9¶?Íâê ñ[/'ÍöÓºÒl?Í Òl?Í ÒL?Í ÒL?Í ÒL?­;ÍôÓzÐL?í9~ÌžÜÁ^ü„½¹“}¸‹fÚ“»i†=¹‡ý¹—¸ÏóS¾ÀýÈÏ8ˆø"?§šsò õoÿõñ\ãs”_þëÉëìEk¼S¹®ö÷ÿÁ>”OþëË?Ùf¸öæ…¬jU{óBV5ª½y!«¤¯ÿ_¹+í¿¿ûWíko~È:\,ö^CŸ/ew¦ý;ÞcÊÏùÌÇͳSÌ'ÇͱSÌ$ÇͱSìó$yï^=òqóìsìqóìsìqóìsìqóìsìqóì×à¸yvŠ9ö¸yvŠ9ö¸yvÊMufŽc3í³ìq3í”Û4ÓN¹"o]ñ-‡ówúnZ™pR¿S7BýM]3ëɺ!nmRHèQŽù _ãCœÄò!Œ4ƒdËD3H6ù}¤$›|¶v²çí‘‘f‘lÖîH³H6ëvíç+ŠÍ$Ù²‹_WâT>l–¶f×Ns\™ÓYÅkÍ-Ùäþ‘æ–l9Ÿá|U&Sß5Ò“ͬ°v¦ø¾ÁG7×dË-~S\]ü•8x–¸†Ø|“-¯x¶X8Òœ“-Í9ÙÔˆ‘æœl÷z~ŽçͰkߢÞp¤¹'[~š{²ÝGsO69mí\Ï»†#Í?Ùä¶µo‹ã<¦]Ëù¬Ç4 Œ4e“ûÖ.7à"6äb>Î%läuæ§lrãÚ¥âÆ\Æ&Îëw²É•kß7å»læüEç‹Rß“­ÿÇâÔïd“;×.÷º'Ä?ŠK†PÈš+dÏR Y_kWx¾9WÒÌZH-(d­]%néØZ[»Úq+ÇÖÛÚ÷?É5ÔÓ²ö Ý ‘éÿ…øÇ'†È ©òñ×á$Æq2£œÂx¾Îê}êè{Ž¿)މ§1§3=Óþ¡vž7[×iO=ÍŒ Χý[Cï9Îèx&3ñ ffÚïÒ¿ÍÐWÌÈ&žå1ÛÃþh˜+ÄßYB/kþöqnñz桞¨—q{¬8¯XOÔK=¹=ŽîßíñÎçs^žéÕ@lFmxXOÔ«¡øU>Î$çïuÞÌÚ0?ͦ Ӱ?`Ana!Ê3 SÐËý¿mæíÕ˜zʆEœ×S7,Jõ¿a1ªÿ ‹SýoX‚êÃ’TÿÞOõ¢ž»–×OÔs×òú‰zîZ^?Q¯]Ëë'ê³kyýD}v­´×ë³ké&ê³ké†t ‘ôsÅúíZ{ÄO‰ß量¥Ö>êWj}JýI­ýÔŸÔRÿ‡<íõóÄú”Z¨O©¥˜¨O©uú”Z‡¨O©u˜ú”ZGXš_° ¿ô{:û=óÙ… Ø• =ÿ€ç²,±{¾›ç‰ŸàC<ÉòüŠxŠù5+ñ>ÌoY™§Y…gX•gYçüþD¿±øñy>Ê Î«éÕ‰ÕÅß±/²&ÍþCÔ…ôêÂu!ý2çk9o.H§¦L¬íøÖá|Œ?±./±f}^fþ†¼"[ôÄ/艷è‰_ÐoÑ¿;„Æú 3ú -zãôÆ[ôÆ/è·è_÷rÙ£[ôÇ/È}{{íJñâ{ù&󇸾ýBB±Ìúh3gm3çD3gíFÜÅÆÜÍ&ÜæÜËfÜÇ'ø)›s?[ð3¶ä¶âç|’Ù:DKÊ™gPÎ<ÛråÙÇ)WžmD¹òlcÊ•gÓþj9òlÓ³!ÄZte »…è›­C,íßù}³ Õ¸,i6¡­ã8¶c4„UsC¤æ)q{q¼ømñ×ââvdŒ˜ŽO1=Ÿf†uMc÷¼ÜB{3æe9÷µvÍ(ªµk^æÍ|…r ÿâXþÍqü‡ãy“x‹¯ò6“x‡òëwéÞýñ/å×?äÝ5ò«V>~y3ºyCî]#ÇÞ{×L ‘>zÛ¢„PE~;à=ûèq‹ê}ûèq‹ê}ûèq‹ê}ûèo‹ê}ûèo‹ê}ûèo‹šúèo‹ê{ûèo‹ê{û¬¥¾·Ï:ê{û¬gn >¹O «1•p#å&Vçû¬ÁͬÉX‹[X›[Y‡Ûø?d]ng=~Äúü˜ ¸ƒ iµ^~°Ž Ñno†X>³O·Y¬ÅÙôû÷ñè3 >sðóT÷ªéš¿ 6 UÓ/4ÛVÓ4' è¼¹uð š‹ªéš›¿(6ŸÌ[Î뱚¡ë۸͡¼ã¼^ó ™jðKâ»Æ9œÿqDˆ/«´ ÉG1Žf‚²QšÊšç›çËšç›çËÆhŽ/kޝ6Êï7« 6¿—5¿6¿—5¿6¿—ÍHóyYóù`óyYûz°õ4ØZl 6{—Íâ‘ÕCÝ,klv*[’f§²÷ÓìTÖL5ØìTÖL5ØìTÖL5ØúJûó8Õ^öþÛÅÖWYëk°õUVo_m´ó‰­³²ÖÙ`묬u6Ø:+k ¶ÎÊZgƒÕôÁk<¬¯²=*y<¢Oübñoð2ßä/œÅ+4C}‘1Ä&b&ffa~Á¬ü’Ùx”ÙyŒ9xœ9y‚¹x’¹ùíñ‰rÄöøDõbjjHhÐQï»d¸Íé¾ÝÁ»žßèùNòú*ç>qî_ç69gFºSü_ˆ.-bõª¿W ñ«½æ÷jôÜïp¥ܾ–|"ü^]¬·×‹^–G~¯!ÞËšÜÇZü4D³½öëOßh"÷Ï ¡¨ù½è?ΛÁ÷p¾óo°-ß q¬…ùh-œPî1_˜èX\à5Êÿ&ñ>Z'ô¼¦P¯[@Í9Q(D¿û/ÄÞV§·é÷[d£>¿Evêá[äÑ‹Áó®÷Å]ï‹qT§·ÉQ-ÌÇ£b×ýb<]÷‹ üÊózüææ‹1ñ)±ëÕÂü|1øk±Þ¾Eqzñ7ÌÀoi¼}ÚózýyÅÖÃÛgh=¼}–ÖÃÛçh=¼}žÖÃÛh=¼ý­‡·/Òzxû{óú1óº=µXî{x ¹}‡sÇ{™'h]—PºœtüJˆVþ%$\±.+_¡uYù*ç„ðÐÒ}wzˆu6/¬3÷Ö« ž!~ŒÉ”—³LqyŸ ñ‡¯ði^ ÑÂf›S5h¦9%6Ëœ’Ç ›aNÕ¦YåT- _:îúзž 苎»®ôEÇ]×ú¡ãÖsýÐqë¹€~è¸ZW@?tÜõ+ :îúÐ?MýÐq×­€~è¸ëVtkHøænã³üÝC˜­†—™!Þ.îÁøœójz™dñÇâžbk²ÌLñq/~ÂÞÜÉ>!ºluˆ=e߬³÷ë^æZþâü{Î?Å5|ÚùuÎ_¯wæ:vázªÿËäý§ô€×Í«Ìmõî—ì­ëfŠUÉ4S¬2/\7C¬²¢—BôU÷¸æº¯5ÕŒWÝךãèžÖϯ8!„ÌÖË«§¿Ê¯™Äo8‘ßR¿ÞC?RÀ ØÃÌVÀ ØÃ¬VÀ ØÃ¬V >Íbô7Ÿõ ±±¥ÙeB(k¯|Ößñ@E`ýþ©¯ÿXí½žy]ü™X²Ú{>3•Þó™i<ÍéBB‘[|Šòÿ€ÏC$.ƒøi±:0à 8£¸³ø®ø8330‹ç»x^mèÓ•ÿ±[H0ÂÇõId„Ï0ŽÏ2ÊîŒg&ð9ÆØ“騋éÙ›iŸ§3j$:„` ‡/wÑþR]±~×ê‰õ¾ÜKóæ—êÈ=Lu³¼u¾ü”“¸Ÿ“i¦«©·üò­Å/}ï zêzšfø/rq:}ß zŸê®Q޵ÎÙ‹_úîôAÕïPÿSÝõ©iŽÿò ±>¨ú¿buëKõ¤¦½ùåQ¾Éc4ÿ©fLÐ'UÿOlÝ~©FLÐ/Õb9öK5b‚¾©†~¿æ[b5b‚þ©Fœx®X©ù6¿v^?UC?5A?UCï_sžó߈õU5ôUôU5bΛ=¿üV¬¿ª‘Žúªúª úªB(Þ/D˜}Æ5 á Ÿó»b3Ð8ÃÇêÜw9y‚¹x’沨Yí€ùhÜ!î7kx¥5û›5¼ÒšýÍ^iÍþf ¯4·ÿf ¯ü8D þ/$œ´× þ@{½à´× þD{½à%Ú립>peˆ•6O \Å6”_K·¥|ZºåÓÒí)–î@y´tGÊ£¥ÍþÇñS>ôYë‡Ðâ“.êQWvNow¼ õ?Çõ/Sô?Çõ/Sô?Çõ/Sô3Çõ/SäÜãú–)ú™ãú•)»©_™bݵ0+]t[X“FãÈqýËë°…µù½{×Âk¾wÏ2í ÑÇW„„[ºÎxlñØêÜJçÔ~æ¢âæ¥~æ¢âæ¥~æ¢âæ¥~æ¢âæ¥~æ¢âúÛþæ¢âzÜþf¢âúÜþf¢âæ¥þQZÓUÜŸÏÍÍýãÅÖvXí8Á±¹©¿:R|ÕâÓ©~ŸAõ£¸zÒ?#g†¸–7BB:k¼÷O!ܽ?„üUœûÓ9ë;ý!úòÁ«üqs8p¿àH~IýÆ»›Bä‘ßÅGÅz—ըʣ©FUÖg¼¬FUÂý•«S•Õ­—Õ©ÊêÝýúå—Õ©Ê®M_{º¨¹ÄL?Á¼e–‰Ÿ`Þ2ËÄO0o™]â'˜‡Ì*ñÌ[f“ø æ-3Düõ+EÝêm¦¨[½›‡0ê—Éþ€Ø}éÝB|E\VìžônÉUlåüUçˉW‹Ÿä{líü¯Î?(^#nõlËulÇõlïu×¼î!þÆòÎop¾S¨ÿ¥‡Ê^A¬ï݉úîÞzìQ¿;_‘f»ì•h¶Ëžö¿3Ëi£þt\Ùkõã½õ£þ»O)ï‹;‹ÍuÙ«Š7‹»ˆÿW£ë—ýÞ⣞ÿÀó]¹…Ýœ7ße¯.Ö#õN¤©÷3Ô#õ~–z£Þz¥Qò^vÉj”¹/{MÚSÙõø£Ì}ÙõöF§Hö:^¯‡ê݃z§ÞÏ…¸Ñz¼*5ùkq.kómzýèyÔsŒžO÷lôê9F/¤žcô"6àb6ä>BýæhýJ•FÔ¯TiLýJ•&tß«Èi¬éÉb÷¿ŠœV@Žù¡™Ùº@ˆ¤Ê}Ì¢©rf93UÎìcM•+ûÈ•©re5iýåÐÓY¯7îùõÆ=ÍëõÆ=gñWÎæ5Îáo|‹×9—¿ómþÁy´×zê?ŽÎ ±ÉÝ8Ÿ‰\@=êÑ…Ô£]Äî\L½éÔ&!VßL¿šuÿmqSñß!îg½õR×÷g½õR×÷g½õR×÷g×}©ëû³ë¾ÔõýÙu_êúþìº/­¢ùô-G6†ð¦|QJ™Oÿrdõ/GÞwÞ,[êg±>æÈfêcŽ|@}Ì‘-ÔÇ‘Ï2 » r( …¸ÅBüm¹¿Aqʯÿ©/[ZP]ÙÒ’jÇùï¿O©Ïþo?åú_>±wÌkQ³~ÔlM ±íiž/íÏòéÍ>ùäÑÅ)f™kLåoΛ…òÉ­‹7Н‹ÍDù¶šk̉æ¢|Ûô¾Äæ‰DóQ>u!íï—M4#åÛîØ¼VÂL‘hvΧÏ*a>+ñß'‡=ü»ão=Ìd%Îxœõ8çqÞã‚ÇwC\¹Y!þe8›òK¹9”WʽÅr!ºjˆ%Ê—«>£|¹êåËUŸså×Dyr•üš(O®’_åÉUòk¢Þþ×Cl´¨IˆogV]Ô”fÕEÍhV]ôõ‹šS_±¨õ‹ZR±¨Í”‹ž¤þaQk굡þ`Q[žf;ža{žežcGžg'^ 9¯Ýw4çµ»ÈÎüž]ø?våìÆ™ÈŸø /ñYþÌî¼Ì”›=G9yQOÊÁ‹zQÎ]Ô›rê¢>”S¯©+õmÍj—Þ«¡+õƒmÍj—–‹ÕÒ•jç5µt¥ÚyM-]©vþ¦–®T;SKWN¡ZºRÍ̳ұzºRÍüM]©WÉóbH8œöw fZç‡ Ú í ïýæã4Cå±îâK,Ìa,Âá,Ê,Æ‘,ÎQ,Á—Y2„b%v|?_a)Ž¡ù*ÏX–á8š­òŒgÙ}½·½Ÿ'„•jÌÊòB¤FÚßMöwO¿àù>žÏKsZý|4§Õ¿‡f´ú÷ÒŒV??Ÿ§ïøú ô_È‚!2ðÞ_jIUí£ÏÿÖS˜ æwn©söÓçjËÀûÄËX€ï° Ý‹…è ,Ì,B×w`Q®¢üPJÎ(?”z/D?Ïbãì¿ÏÓw>_Ñœ10Äõ3·Û!®$$.$6ïô+LóN¿"4ïô+JóN¿b4ïô+NóN¿ÜÇ’ü”÷s?Kñ3–æ–áç|€Y–‡Xއù ð!~Áòü’x4D’K}O9dÑÿ˜›?„h-sΟYiÎù3[óÒ{d‘‡y4vÞÜógvš{þ4C×2÷ü™“}™‹ý˜;DûÉ[Å>¤÷)¶Þ§ØGô>Åô×ýòpóò“-åýÎg£ß>{sª‡HÚß›RÊûœ÷>¥¼ÏyïSÊûœ÷>¥¼ÏyïSª?­«ÒÖÂOKBlñ .å‹\ÆÁ|‡f£tO‡Ø'zßtrô'µ)OR‡]ùX»f‡ˆ\Ÿ®›¸®xŽø¤8Q\Oü–ø+ñ3b}ú®¹b3ή·ùµóÏ:߀ÝÙ=ø8Ÿc#ödcö¢¼˜ÎžøD^Lgí¢Öïšç÷|#¶>‘ÓÙŸÈéìOô~»æ{þ[±½ð‰<™Î^øDï·kó§ÅöÄ'òe:{âù2}ÉÛ™.„òßïX/¾Í«Û…„ר˜’Lú¯7q|=„W䔜ÖÔ¶¦bõäýxNkk[3ñb}yÎÃÔ—çÇwÙ“Ë=ïþuËL÷¯[ºݬՕî_7ku}/¯[ÁÞ\É>\åy÷³›5µ¾¯x5Íõìã•îk7kk¥ûÙÍܸ¾¿ókÄîc7kl¥ûØÍ[é>vËC÷±›µÒ}ì–Ïëå¯zkÅîg7¹êMk»©™Ê¾i}7µ¯ßÐ×5mFý\S}ýúø¦ÍCôØð›R‡#øÕÖc£×õÐKæ+âõ*qùî§üÕÕõøýbùÌ´ùÔÿ|Ö^<ÒÀ½Ô5DÒþ[Wyº\ÊÓiÿ¾ö nÎ/ á>ùð¾ÌY™ƒ=o¶O|fûÄ©ÎWq~ˆØŒŸ8M\U<”Õøá0Ï›ý§‹§•uÍyYGzþ’çõï#Í{i†iÕÏbóèHs_VÃÆHs_ÖÑ4÷e}…®yÖ1^§_Oœ)vm³Ž¥kšÕ\9²>Ç{^Ÿ¨_¥OÔǯÒÇ'êãWéãõñ«ôñ‰sB(”võò‰o96Ólàç'8§¯OÔׯÒ×'êëWéëõõ«ôõ‰rÊÃ!þý<âñ…c½Óûú¦è7úØíü–ñ4õÇ»Í#Í»Í#Í»Í#Í»Í#Ós<ÕŒÝúâ‘CÜÎCÂðü+CÜ®ÀUŒp5ãø£\Ãx®e×1ÆõLÇ LÏš†§†0öÕÉm¯í2 ßHóÀðM4 Ÿæ€á›iþÍ÷0;í±]9¸9ù!sq;sÓ\°+?f^î`>ªé»î¡µ¼ë^ZË»òÓ=ØuÓ>Oªéf„ájºY#a¸š¾K/0\Mߥ®¦ïÒ WÓw醫é»ôÃåß]záòî.½Àpùvl’ï™öûôÃÕö]z‚ájû.=Ápµ}—ž`øQê †ózýdî´÷Õ ?N½ÁðÔ ?I½Áð¯¨7~ŠzƒáêÀ®Šü†•¨×Þ¡çªçÝ¡çªçÝ¡çªçÝ¡çªçÝ¡çªçÝ¡çªçÝ¡çªçÝÑ—×Ù¿³?ÿ z4ôŸçŸ!4ѳý[ü‚ؼØD¾;«_Û1Pœv~Óây“ƒy‹júÐÛ^o>:›v~¨ØÌ¿ã%šùw ã¿!Z÷ƒpÓÜZw Í­u·ÒÜZwÍ­u?¤¹µîvöÐï¬ñX«ßñúÅùœŽ³'w°?aoîdî¢Ü_w7ûqûs/på´S]×ÊœÆ*œÎªœÁjLæ#œÉGù«»ŸÝÏùbóóð4?7Gï4?¯åù.ž_@õ ÷BÊÿ¹åÿ±‰\ìuæëáµÅψ—ˆÍÙÃ눟ë“Ǫù—9oînþÞiînþÞ9jÒÎù¬¢K¦‡XÇÚœA5l‰šÑQÍX¢ftT3–¨õKëÚ« ³ÅjGÇ´ŸS3:6 ZÑQ­X¢Vt|Üë䞺sÄjFÇFz9÷dÉ\Ç=×Ñso‰ß7wÏÏ7å|6ã>Á…T_—,b .fK¿Óý]¢?ì¨_*Ýñ¥ã“!n¤=]ÑžiOW´çGÚÓíù‘ötE{~¤=]ÑžiOW´çGÚÓw†ð¢œ³ÇGÚÛíý‘övE{¤½]1í¼½]Ñ^ioW´GÚÛíý‘övE{¤½]ñ³Ò=ìØþ®hÿ´¯+Úÿ#íëŠC|†÷CLÊ»†ååº7RŽûqå¸ßá-½LÙ÷¨w)kݾ¥')»–檲ëø×{½\øãfÊ…?~@¹ðÇ-~·Ù1Þ5üh4]Ã^ ‘ÿn„ø-cø'Çò/ªñ3ÌøF…°*cˆÔt/VebSf¦{0ÃìßH[•Eü³²9³Qÿº*;Ý‹,æ¸_x­Z¸*‡sîɪœ|Òù/WWå·ç·«‘«òˆÛ2/Û1Ûóê9g÷:5tÕ½âŽÌÏ´sø„óãy’ø_å)šg|͉!>[¶ûô:³ó÷=ní˜aCVëô¸µc^ µ‘Vú…Zrzˆ; >U—¨OcSéžU¸gc7…0^ßœ×lvÀ½ëÞ×?çÕ?Þïa-Œ×Gç•ϸWc7‹õÓyåõîÙØ¼Æ9à¾uß ['Ô±±ê×ul¬œ9þ ¯—ÿ¨gcåÄÂ=y¨ïÙÖ„Ø~Ÿu¯=Þq™x­x:×q×S¯²WïÝñññL¦ð çõâõâ{õâ—S¯Ýq…çS=ÿ&7r7q6­ÝýsB\ù‹!þ§üžz¤òÿ£Þ¨ü´Vº»¦ë Êÿ(ÍŸø /QoTþgŽåeºŸ÷üëñ_÷ñ»»ÝûúùUúˆò¿x~©üê{Ê_¥ž²ü¯to º'ì¡‚îÇ {¨ ûpâ}ºÞ'ì‚®ó {£ k|b ]ß[CôQ}áõÔÿ]O¦>ïúLê﮿AýÛõ7©O»>‹ú´ëöì£ú´ëÖË£ú´ërØ£ú´ër×£z´ëoS_v}õe×çS_v}õe×òOÊßiÿ-ßóæÕ’òÈ,y¤™u0Kif Ì’Gš¹Ï/ý"™Ô’YrI3=Ã,¹¤™µ6K.if½¤ŽfRcféšYc³ô ͬ­Yz…fÖÌ,=B³cÔ#4Ó+ÌÒ#4Ó+ÌÒ#4Ó+ÌÒ#4Ó+ÌÒ#4Ó+ÌÒ#4Ó+ÌÒ#4ûFKûÙ‡ËÊ<Í*<ê<Ëj<ÇGxžò«ó;ÖàEÖä÷¬Åÿ…h×Ñ!–÷~¾ÂRÃÒË2Ç8žeÍ_ê@ò¿!ÖØl–üåÁ £B¤þ‡!ºþ‰{Îú)cŽØð²sÛkb=­§2“·pœöçåø2fŠ2SBt`\ˆ•ò»Féw-k"UÝçñb¹u`70ÆÏ«{UgS]«êþLç|*Ós£ójZUëa`±u80#åƒej[Õ¹|ŠÖÇÀLÎ[—3Óº˜…ÖåÀ¬Ô3-{ÚëæQ_Pu>ÕÿªÖÏ@¹«”|°LPUy„sòX)ß`¦ý}òzƒª‹B´ÇË!V $]ã®q׸€kÜÃ5.à÷p ” ‘oï„ø7&ð.Õ¾oÿ¥~ôÛÿ¨Ï<ø#œÄ8Nf”S¨Î¼ñ:8•1Nc:Ê‹§ÓS><òà錔ÿNg¢¼v:3ßdÎbVÎf6Ê3Ir`M=}’ÜWSNLÒË×ÔÓ'éåkªïIzùšê{’^¾¦úž¤î×Tß“Ôýšê{’º_S}OR÷kêé“Ôýšêz’º_S]OR÷k¦ý¹l³_úábu¿æ^±0½ü–¤þ×´?“ÔÿšŸ:o&L/ß%éjÊïCÌ„éå½$ý@Í´?¯m&Lÿ²Ø~®y@l6L/ÿ%Ù×5íë$ûº¦}=Ĭ˜^>L²¯kÊåCÌŒéåÅ$û»¦ýd×4 $Ù×5íë$ûº¦}d_×´¯“ìëšöf’}]Ó¾N²¯kÚ×IöuMû:ɾ®i_'Ù×5íë$û:íÏäV5{]µ¶«š½®naî!RN¯>w ÿr^­»šBµîªµ]Un½*·V•[¯ZÓUåÖ«ÖôÜ­^ÿ·X޽ª¦ÍÝ&þG,×^µ¦«ÊµW­éªríU¹¶ªûxuÝÇ«ÖkU÷ñªûVÂly&/Í–gò…èœþ!Öâ>`{^¾œó¼ã‚|…8…íåêŽ9.ÂY”ƒY,„ÕzüÚrÈœ!ââÊ|‰öÅœa´/æ §}1gí‹9#™ös£(÷̱Z”¥}Ô¢í£Ò>jñí£å)Wµ¨@¹ªEEN`%¾Ê‡™ÄÊœÈ*|U9‰Õ8™p åëLû~SYƒÓX“zôµ¨Go¡WŸ£Go¡WŸ£Goñ˜ëeïÏѧ·Ð¯ÏÑŸ·¨Gýy }úýy‹!nÁk!¡íCœÄòœÌ œÂŠ|•hži«]`žik®Y`ži«-0Ï´Us˜gÚVS#î86Ó´5Û,0Ó´5Û,0Ë´­N³L[3ͳL[3ͳJÛZ4£´­M3IÛ:4“´5›,0“´5›,0“´5›,XÀú\ȴϾˆ ¹˜s q)s›ð6å»lÆå|‚+Øœ+Ù‚«Ø’«Ù*D‹ÿNO§Þà´Þ ¸Þà´Þàð¥KZÅŸ¹:„‚Óô”gô”êÈŒ³|ç8•ç™öüú]3¾£ß5ã"ý®ßSŸ1ãÔgÌøúŒ?R¯•ngˆ}²,„]ëC¤^'Ý.±Þ-Ýn¾Ë=\νԫ¥ÛÇ•ü”«¸Ÿ«ùßã®áç\˃\âìåø«ï„ÐCýÏ[ìĹÎËÉWõ„=ž¿-–›¯.§Ü|uåæ«z;{:þê*æ >ÍžŽ¿úsq sÓÌ’ W®šÇqÚ{æåzæãÞC½uÕ{©·®šŸi¯¿ò͵‚!¶â·>V3žüR\H|]¬v%-¢û”´˜îSÒš»ŽÜçQÀ£ G!ÂE<ŠzÍRóH’u›dÍ&Y¯IÖj’uj…ÜCÜíú–Æ•½lÆXfV»lÆX–dîJ1w]c*sÞ̱l"7ó5~ÀI!®…\“¯ZÈ%1ùª…\“¯ZÈ%1ùª…\“¯ZÈ%1ùª…\«F¹$&WµKbrU ¹$&WµKbrU ¹$&WµKbrU ¹$&WµKbrU ¹$&×f7 —Wk?:†¸7}E÷å£STË?úšîKú?ãØýùè[še>:Í !Œy2Dr™ÏÆ´æL¶¡¹lL[¾éug¼îU±Þ4×,ñYqÏq¢ózÒ\³ÅçÅzß1zÓ\ú¦.ˆ]£¾ãd^ä~Ï×ù?ê×F¿â+ßä`Þ ¡F›¾°·FßæPÞáK¼Ëa´¶G§5=zDˆ¯8’Žbœßc†ÿB_7úeq”£ï¼™þ }ÞèWÄ ÃÇ2õUÒS?P%'0#_e&&Q~Ê(gîÞO9s÷gü‰(OïþœòôLýUÚŸ?Úíóµ̹_œ3;g¼Â#¼Ê/ø+¿tOåÈŒ×u¼ÎñoŽñ:ówÚwå×{lÿ!>I{y÷W´—wë¹:é ³Bß«!üWN¬'Ì®í¤Ì®í¤Ì®íTÒCß—}ÇÞ7Í똧y]=ã4¯kpzÅfÀi^Û@8MØ@8MØ@8MØ@8MØ@™¦Gl Gœ¦Gl Gœo͵±öæ[SmÌÑó­¥6æèùÖRkj¾5ÔÆšöMˆd¾Gl µyÖP›Iê¼<:ß:jc=Í·ŽÚXOó­£6ÖÓ|u³ÍTª›m¦QÝl3fê63h¦n“L3u›™4S·yƒfê6Öù|3uë{¾™ºõ<ßLÝÆ:žo¦nóÍÔmÔ¦ùfê6jÒ|3u›y4S·™O3u›ü‹ ù7ñ.æM.¡|Üf)åá6Ë(·‘wçßå»!.YßÒ¸º¹ºeˆdôù“õ/kˆ[‰}d}Lãšbû6£}û’}›Ñ÷I–‹×Û¿íß—ìߌoÒ¾Í8‹öiF³ãKögFß+YÎj,§$ËYë8ovÌè{&Ë]å–—ÌŒ}ßd9¬±~(Yk\Ïy3dFß?Y.k¬/J–Ëë‹’å²Æú¢d¹¬ñã^g†Ìèú$Ëi‰Í’Í’Wx¨ÝÉr\cýR²×X¿”,Ç5Ö/%ËqõKÉr\cýR²~©±~)Y¿Ô¸…5`ÆJÖ35Ö3%ë™·â{|’kØšk=Ôúäõâ6m=ìûô®gŠûÕÛ}Jq¿z»O)îWo÷)Åýêí>¥¸_½Ý§÷«·û”â~õvŸRܯÞîSŠûÕ[oòr®Éî½RÜ·ÞËŹÅr×Ëy˜öç ÿu^¯’ò}ßTmHo½Jj„z•Ô8êUR£\ãçòú9Ÿñå|lï|¼óz——ÕÈìÄæ¦Þ¾Sª¹©·}ÿò½Îë›^V³wr>‡™©wÚŸ¯4?ýñUˆ­YÃS\˯¹ŽßPÿ“QÞØíþgL¡š’1•úߌé~gÜDýoÆ÷é>gÜL÷9ãtŸ3n¡ûoíeÜêXœqÝÓŒÒ=͸îiÆèžfü˜îiß­¸kö|½‰ÇúÂ}Ã7p¬.=ßêÎóSM~¾å†ûÌÄý]‹âÖÑ3c33ãWúàé®Õ3a33áWúáéëÄfÂff¯ôÅÓÍœ_é‹§o ¾xºkô•¾xºŸ\2Ä7ZËû¹Ž¥¨÷M.Í ,C=AòL{}Yn ‘©;B|Ÿsê'ô9§î¤Ï9us7õAS÷°)÷²÷Qí®}>„ãú–©ŸŠ›S=i`×¾à¼^fªºÒ@˜ª®4°ÿ§ª+ ìû©êJû~ê!ÚïSÕ’öûTµ¤ý>U-iÐ>DÊiwçPN»ûå´»s)§Ý}›rÚÝy!Ìo"å§Ñ{•ŸNïU~½Wy9f¾÷*o^h(÷ÝO¹ïîÚKwÍÇ í¥»æ¾†öÒÝÅ´—î. !Óî-m†»`Þ,m†»P5„9}BäsLi³Üsgi³Üsgi³ÜsgisÜsgisÜsgiùð‚¹s¿>ú• ,ÁïBxÿÛir¯¸¤øbˆQ{NéWgý"eüÞ"jЩãTƒN tê$äW|ˆ§Xž_³¿aE~ËJ<͇y†•y–UxŽUy>Äíh†Þe{þËüCÂKáSŒãӌꓬÕ\ÓÍõóg&°+cžÿÐó7ÅÝÄöøŽD¦ç3ÌÀg™Ñë¶{Ý-qwq&ö`f>Ç,ìɬìÅl^oÞÈu[Ü[œ}˜ƒ}™“ý˜‹ý™›˜‡Ï3/_`>¤Z½cïå‹ÌÏÁ4Ce»?Äö§×ÿt ¡‚ïS!‡¸BŸ»B¦ín†ÊÿÍPùÐ •ÿsš¡ò¤{ŸÿÝûü‡éžç?B¿;ÿ,E³Y÷Ò4“u/Ãc!ú޹õi³Ñ;æÖ§ÍFï˜[ŸB3×ÓCCôtÿ{ÓÚ:=€f¥Óf•7ÍH§_`äcD9±à!þ¤üSð'Žä%ŽâÏ|™—©/ø õá϶ ÷þÊV4Oä¿áøIÇæÉþfœpZÜZ|êÔ½¿;oæ ghæ gW»îÕ¿?kÝ{ÃïøÓã/k'¿uó¬uw¯9óD®{Ý:=‘›~nBþP]7á>êñ&à¤oB!îca~Ê"ÜO=cõϨ¬®œ ¬®œ ¬®œ ¬®œ ¬®œ ¬®œ ¬®œ`V×N°ÿªë'ØÕÝ‹5ÇB¬{sbˆl|3Ä÷U»6΢9n£ù¸oíåùÂ/óGó$_ aéƒ!R¥¿X]+<†êZá±T× £ºVx<¿åž¦™®—ÚPØûöR ›áz©…Íp½Ô‚ÂæÓ^jAáÉT OáE¾Îï9•ÿã4ê÷ O§~¿ð ê÷ 'S¿_Xnì¥ß/üõû…ߤ¿°~ò¦ë’â:Üt]RôÂ7]—½ðM×%åå¥óòô,!RLm¼)?¥|Eù)ES~JùÚóY=¯º)O¥|Cy*å[ÊS)ÖÑMy*å å©”³^ŸÍë[ˆå«”s”¯RÔ›éÙ×;ݬ&Vg¦çë¡n>"þŽò"«ó{ÖàÿX“?°dmþÄ:¼ÄÇø3ëòr³åçäç’ÖÕ™âÓâübëëÌçâ3âûx–xŽC(¶Úã=ñyq!¯·Ï_[gÌS™ª:¶&ÏÈ%­É3òAIkòŒ|PÒš<#”tíϘ¡Ò- ‘¹ú˜V5¨iU“ú˜Vµ¨iU›z˜Vu¨‡i¥ÿ|çXÓª.õ1­ô*sõ1­ô*sõ1­ôB¦†ø…9EB¸Ç5Ÿû¥çôØsRO=×ÜÖJ/=×ÜÖJï<÷õÆsÍk­ôÄsÍk­ºð»òkvã7Lä·|†§ù,ϰ;ϲÏñ9žgO^`/~ÇÞ¼H5wî÷ìËÿ±`Êi­PNkõ<å´V/„è‡fÊõš)_Ô?~h¦|Qÿøá_ÔK}ø7õRþC½Ô‡7™Ê[ÜÈÛÜÄ;|?„J;¾ëxs©z¦†öæ‡ÿŠ?ëÚ£þ'Þ¢Û·2ÂmŒã‡Œr;ãùø1cÜÁtü„鹓¸Ë{§ý]«ëG¶gâçpœÙñ^fá>çʆ¸û‡„øsêêýC™‘/Q=½ÕÓû‡3Kˆ~íz$ï£ë‘ü)]äýt=’Õ²¯]dµìk×#Y-ûÚõHV˾v=’Õ²¯]‹dk÷k× ÙÚýÚwO¶v¿ñÝ“­Ýo|÷ä´¿×?}ˆ<ÑHì$ˣ߸Éúšo\ƒd}Í7®A²¾æ× Y_ók¬¯ùÆ5H–7²îrì:$ëm¾q ’õ6߸Éz›o|ÿd5ãß?YoóMVêm¾ÉÆóÌN=×79øsR¯õZ“ü=Õšäÿ1`^þÈ|ü‰÷ðïåÏÌÏ˼¿„èü5!Öæi®eg®c®gWn`7¦0‘©|†ù,7±;ßgnæsü€=¹…½¸•½¹}ø!ûr;ûñ#öq«å¸D9oµ—(ç­–ãå¼Õr\¢œ·ZŽK”óVËq‰rÞêz”óV×çe6à/lÈ+!:§Bˆ5—sWGC¤VÚÿRQìzΩD׳ìð½þ¤ìçÔŸ”=HýIÙCÔŸ”=Ì—x„ÃôÎ?…HÙûÅ_ˆÍJs.‰K‰­—²úž²Çœá1ÒcTˆ¾ß<ÄúGØ‚qlÉ([1žO2­c¦c[¦g;f`{fdê×ÞïÈÌìÄ,!dqoßÊqV>ÍlìÌììÂìÊœìF}e½ì!þ¦ù·^®aNšÛëå¢9·^nšSëåáæe ó1•÷p#ïå&æçûÔsÞÜÌü€¹……¸•…¹Eø!‹r;‹ñ£z^ ávQqqñÇ,Á4#Þü„fÄ›;iF¼©¿ªgF¼©¿ªgF¼©¿ªgF¼©¿ªgF¼©¿ªWŽòÃ@û¿ô Úÿ¥WÒþ/mhÿ—V󖑪rÚ@y ô{!:H(-ÿ’JË¿ƒìÿÒòï û¿´ü;Èþ/-ÿ²ÿKË¿ƒìÿÒòï û¿´ü;Èþ/-ÿ²÷K¿O{¿ôfÚû¥?ÑC~~‚ÜwÈÏOÇùù >ç!??A;äç'Èc‡üüy쟟 òóä±Cîÿ!ycÂ!Ã!”“[´ßM qÙÞ ñûÍz™UË}‡’MÕá?û·ú…ØÆz!®Lñf3Â9Œã[Œr.ãù681Îg:. ¨LÇ =…P>Å#5Ägt]wË]ØË×ä¤GìåkrÒ#öò59é{ùÚ¥æÞ ‘Í›ØÓ׬ßGìékrÓ#öô5¹é{úš=üˆ=}í*íék¿òq^c#êãçÞö{Ì«4_ß›[i"þ¾ûµ?ØŒ7øõë4ç_lÁ¿CtÃ!Öó?Ú³½´¿/ñï•æ–áR> zË|+ÏNáp¥}ºíýÓÅ9Š%ø2Kr4åŽâ¯PÎ(>†jrñ±T‹£šX|<ËrËñU>È$>ĉ,Ï×XÁ=®âJéyÎ?G=ÏùžÔóœ÷%žÑþåF?ó p^t¾·øŠX­-¥:ßG|U\Ž¿òAš•þzÈóz¤ó}©G:ßz¤óòt)=ÒùÔ#žz¤ó/ø9÷ã¯ò!$èoKé—Τ~éü ûlˆ="?íNùilÊOcŸ£ü4¶'ͽKõÉÍOKõÇõÍKõÅÍùKõÅ/P_ÜQŸ\[ßô×Xù¢·¬ñUÃB,Ñõ\¬¦tPS«)Ì+‹?æîàó!¬ÓëÔÕë,þDì3g1O®èŒÇq+žb„O3ŽeƇ¾¦ã®ŽØ1&2Ÿ¡=±âYê_Vt§þeEê_Vg.ï/WžÈì\çþàÞàó4ÛçÌíøÇq ÿæ þÃy“ƒ)ÍÔ«6–fêUß qû;†„1‘24tlMQó;[w¹õ@­·Üz Î;©꼋z Î»i½P§K¦3gûÞUå‡êuÉôbß¿ªu=@Ý.™!„™¿‡ÈýC4‹¼¶WNŸé;¤ýÝYä·½ò[ùm¯ü–E~Û+¿e‘ßöÊoYZò¶âM>É[líÑÆñm;!:Ã>j$_ÍÎûCXé{׬Fß»æ#ÎpÞç;m¿¾©Æl5³<¡.žî%®ÆÞôºÓ}¨þ”“ÊÉS[_ð:uót_çåëÓêЛ5ªó§ P?]Ÿ²÷³0?£ù÷!²qtˆïÏW˜À1Œq,]÷Fφpz)»s™óãœwýãÆ;ïØµoÔÃsïˆ'ˆ3òUfrþ9çßeO.§Ü{z…瓽ãñxê›îÓ;77ܧw<ž.D¿b“¬£/GÑ:úòe>ÆÑ¬ËWX/D[L±˜y°Å«´þ[$Ñúo1‘åCÜ?_‡„”qü†ãù-'ð4_å&ñ,'ò_ãyNâNæwœÂ‹|ßs*ÿÇiüÓù#gð'&ógòg¾ÁË|“¿p¯p6¯rå[¼Æ¹üoó:çñwÎç\À\È?¹ˆq1ÿæþÃ¥¼Ée¼Åw¨¯My7Äýäó/öùòùûü?ùü‹}þŸ|þÅ>ÿO>ÿbŸÿ'Ÿ±^aŠÜWhåºBC)·z‰òP¡a^çû-öý~òýë%¦<êüp±ï¹XO1¥ºØlù“ï»Ø÷ýÉ÷]ìûþäû.ö}ò}ë)2šù.˜õæší.˜õæší.˜õæší.˜õæší.˜õæší.˜õæší.˜õæší.˜õæší.˜õæší.˜õæší.˜õæší.˜õæa’ÚR`«ØÌ7·ˆX)` ORc XÃÌ€s‹Ò 8׬wÁ 8׬wÁì7W7I *`m_0Î5ó]0Î5ó]0Î5ó]0Î5ó%œ ñ÷å9öãy¦ý¥qƒ_p<€ßñy^ä üžù?¦½î¾HóýǃCôú‘[½”_p¿ä;!Úú@ˆe|‘ŸÓëZ¤ûµP/WqŽøx(ó%ú=ÕÖ~OÆá!Ú69Ä2Ëk õõ õ¿p~¦óòÓB=BÅ/©7¨xÔù7œWÚ¾Iu í,ªmgÓþm;‡öoÛ·hÿÍlß~É,<ârø^¬›¾×¹%_Ǻè)~×·çëäñTˆÛ £V3Žf ½QêïÆéóXã{ãÅk™ÀuŒQŸ7N_™G_9N_™ÇÚß›Îù LÏf`*3r#3q3ó}fáff¥~oœ¾4¾tœ¾4¾tœ¾4ÏrÏg󼜸7;­§½9hÓ¯æY!Î)¶žöæ¢õ²77?b~L3Þ¨4Ûú$Dך%{¨}Ìõ'„å#çäÃòÛ§EClô9ãyç–àw,É‹¼Ÿß³ÿÇÒüeø#àO,ËK,ÇŸù /ó!þÂò¼Â ¼ÊŠü••xó·]µ,ÄÛ„hf×xO ]ã=©t÷l¤k¼G/=sCˆ”TÓg¦ÐÏgvÍ÷¼O×|Ïfºæ{> k¾g ]Û=[éÚîÙF×vχtM÷l§kºÇõÉìšîù˜®éžtM÷¸–™]Ó=;i^Þ³‹æå=»i^Þ³‡æå={CôgsùR}×Lý{“Çø!ÕçÈvÇÛ× ¡Î™NÜ'þHlî›ù1Ý£™;hÖ›ù õŠ3wÒl7sÍr3wÓ 7sÍp3÷²Yˆ6Wr§8å•;%(ŸÜ)IùäÎý”Oî” Ñ!æÈ²®Ý;B¤Zcšµ«5a&6õ¼¹²¬>é³uµf!džæœÙ²¬û3ÄlYö:Í”e§Y±ì!îÏ!a­þàÏ–ÔüÙŠzœŒí?éXðgkêþlC}NQMHÑûB˜–3DŠ>é|[çõ Ór‰[37Û0ÛÒ|]´Í×EÍâÓÌ×EÍãÓîeG?ßÎÏë{¦åÛóÓ\ã¢öýŸí×9â¿îÉãìÅìÍ“ìB‚œÛZÝʨž·V·2ªç­Õ­Œêyku+£zÞZ]ʨž·V—2ªç­Õ£Œêyku(£>½OÓî¦W2ªë­Õ£Œêbkõ(íÏ»¶VÓþœkkõ7crˆ¦Ú½í«Tû¡·}•j?ô¶¯Rí‡ÞöUjeÚW©Uh_¥V¥}•ZöUê#´¯R¥}•ZöUj Ú©5é¾¥Ö¢û–Z›îÛκ!6ìëñ6­‰awèÞ»K÷{Ø¿t¿‡ýG÷[Zît¿‡Gh†G3úp½çƲ!òxßxÙ9óïp½ç£›a‡'Ð,8Ç”‡·}ByxÛNÊÃÛv±wÓ5xåíÉ™ö÷«íûÞÛöÒçݶzÝmŸR¯»m?õºÛ>£^wÛêu·}ÎCHÆñAǃyˆCx˜Cy„æŽWæy¯oÄ_ˆõ‘Û¾¤„÷Ê|ç¿›7¶ãHç(žàË<ÉÑüНðÇ0íó›õ¢î†Ø¸Cج¦5QÓ6«iMÚ9ÿ¯óúÿQ¿±R>ï*ϯ”Ï»Êó+åó®WBX¯W­·D,¯w•ïWÊë]åû•òzWù~eþBéãŽs|Ýñ Çò}Wy¥|ßõÊ÷]o„è2yã© ^£f•þ=Ä_PãJÿÁI!<û@¹¥oˆÓžÿ“j]é¿hv-ý7§z]Y¯3—”þG¬Ö•¾Iµ®ô-ªu¥oÓ XúÍ€¥ïÒ [ú_šñŽ5 “¡ˆÙìXSÇiÿ6¹ùìX3Ç7øÿdsþE½Æd½Æ1½Æd½Æ1½Æä›ÔgLÖgÓgLÖgÓgL¾C}Åä»ÔLþ—úÉúcBÂiûXGF؉q|ŠÑÛb;ô݉zÅ|úüD½b>}~¢^1Ÿ>?Q¯˜OŸŸ¨W̧ÏOÔ+æÓç'êóÙ¿‰zÅ|úùD½b>ý|¢^1ß6êóéã PŸXÙóæ×ÄBŽõò‰…©—O,ÂOBÜú‹5æÜ?ôk¼î}ÅsîúŠ5æú?ôkÌõè+Ö˜ëÿ0ׯY¢uŸ 7ãÙ™êpÝ.T‡ëv¥:\·ÕẉT“æ-‘‡Ns!Ï8ÿŒóù,39¿Èù³âîbµ¹nªÍuŸ£Ú\·'Õæº½¨6×íMµ¹nªÍuûRm®k&¿™›fò›öÂσBü’[|‘·9˜w8„wÓÇCÿË—ø‡…xcYäçáŒpã8’QŽb<_fGS].Õ>zÈ>Àò|>D—«g]êˆ+ˆ_«k]ÔÅåêZuq¹¹µ‹z³¾¢çŠÍ«]ÔÇåæÕ.êãrójõq¹yµ‹ú¸Ü¼ÚE}\n^í¢>.ŸË&|›zìåó¨w_>ŸOp›‡èìçB¬¹ž%KÇ=ça/æeo棣ù=ìË{ÙùÙŸ÷q ðyä ,Ä,ÌA,B©‰Ž_t\ÔñkŽ;6GÌBsÄì¡TŽ˜—“Öмœd>>bNN21''­§99É<|ÄÌ–dŸ1³%Ù'GÌlIC(|Ù±¹-É^9bNK²WŽ˜Ó’6‡0AíOû÷|Ž˜×’ì™#æµ${æˆy-i«çõ÷d›Û’ÌÂŽŠ³‹íÉ${èˆ=™d±'“ÌÂGìÉ$ûçˆ=™dÿ±'“ÒþÍî_<äÏ êÄû3Ézº}!Äoê"¿ýâW½BÛÑ!\úHü“x /q拼ÌÁü…Cx…Cy•jHŸùzÿoõ'C\u%Sÿðÿÿ¸[þ.]C´»9ÿ ó”þ¬»99ÿIš“óEsrþS!òRÅÿàVVâ6>ÌY™fÈ—ªÐg|©*?f5îà#ü„Òw{©:w±w³&÷°÷²6÷±?åcÜϺüŒú¸„èõ£!¶úÝùî`ˆ» QÝj%„Ÿ ½ôcsç;¯ŽµV2˜_Z«GÌ/­Õ£ æ—ÖjQóKku(ƒºÖZÊ ®µV‡2˜_þ*bë奿ÌCë奿ÌCë奿ÌCë3„¸~CB±Ÿ©V³žú©Å~¡Qì ÕˆbW©FÓöS#Š]£Qì7ªÅ®S(ö;ÕˆbæÖ~jD15¦ŸQLé§FûË};áX(¦ÎôS'ŠýÂó•C$NÑO½(¦ÞôS/Š©7ýÔ‹bêM?¹¶˜zÓO®-f†ª¬ÿºò0õ_W*Sÿuž®¬ÿºR•ú®+ըﺢ‡¯¬ïº¢‡¯¬ïºbTÖw]ÑÃW~“zøÊ³¨‡¯<›zøÊs¨‡¯üåªÊs)WU~›zøÊó(GUžOóÉÜ !’öçØ*/›Mæ¾*ÞÃ$îu~¡órWåE”»*/¦ÜUy ›xÝD¯Û'Ö›_‘Ã*ëͯÈa•õæWä°Êzò+rXe½ø•Ô‹_iI½ø•VÔ‹_y’zñ+­©¿Ò†zñ+m©¿b¾Ï4Ò±~üJ{êǯt ~üJGêǯè›ZâÔç?´žúü‡6PŸÿP õù¥RŸÿÐFêóÚD}þCïSŸÿÐfêóú€úü‡¶PŸÿÐVêóÚÆV!”SëòÈ)‡ôlo– ‘R=x?Ÿs^Ž9¤gË#ÇÒ³å‘Wí ¡X¯)å5=ÓÚåœ<œGph·ãBž/íù^Îé ¹ÅÒþ>q}Á¡½Žåæ7Ëx¾·sz„C®y=¡O©?8´ŸúƒCŸQpÈ>ÍS”Ÿ³²8ù]i/y LJY’Gx?¿`)~ÉÒ<Ê2<â’Í8]ãd3Nã§hÆiü4õÿå¶dýcs@²þ¿±9 Yÿߨ¬ÿolHÖÿ76$ëÿ›’õÿÍÉúÿÆæ€dýcs@²þ¿±9 Yÿߨ¬ÿolHÖÿ7Öw&ëûë+“õýû…øô‰!¶ÓºnàZÜv-¸·]‹®Åm×âhÓ›,­x9DªoÑת„X틬ÊïYÿ ‘7'„øfiÿækýX¹NôsîUçô7=(î/NgæDfákô»ãڇȳ÷³×Cd¢œW»-к­µ=„£z˜‰_ˆÛ‹õtGõ2¿wàQvä1vâq>Å|š'ÙÙÏYkGõ>¿wá)vå×ìæùž¿+þFœ(Vߎê‹&~+~Fl ÕM<-~Vlý ´öŽEh½‹£ï,Ê}Ô'M<ãõÝy–=xŽÏñ<{R½¬ö‡7]Ÿ‰ß9îÍ‹ìÃï©–®KñÏåãLÞÃ7x/ßd~Îâ}œÍœÃ‚|‹…8—…ù6‹p‹r>‹…ðø¸¾UßÖ-çB–à"ÚŸëÓþ\·„öລ´×Ö-£=µî>ÀwiÖ^·œfã›õBBŠzr³>Õ“› ¨žÜlHõäæãTOn6¢zrS=J1[MÏ"Åž«K)f˜é¹Ä­ÅêSŠúrS}JQ_nªO)z>·çÛPÏ[Lnþ+ÖÎóêVŠÙ榺•¢æÜT·RÌ67Õ­µæ¦º•¢ÖÜT·RÔš›êVŠZsSÝJ1ÛÜT·RÌ67Õ¬³ÍM5+Õr½©V¥šmnªU©f››jUj”jUj<ÕªÔš Rc4¤ý·Öëk†„ç¾a”kœÍ^_Kü?ÖæλæÙìéõuÄ?Š]ûlrã(×>Ûstí³õ¤kŸÍšåÚg³·×?æõ?‰ÝƒlöøúºâKtýŸSß»T ¹ÕÞ.Õx2„~[BøÏuéòˆø+>ÊS¬N³u—üÆëôŠÿ¹n]|îÜæõ.>oîÓôys›ÿõö ¹ÏÒûç>Gï›û<½oî tßsG÷=÷Eºï¹¿§ûžÛ÷ÖË'äö½c“»÷¹}ç~úÑÿÜ#}}BîŸèžç¾äü‡Î»gúû„ÜißɽϭgÑß'ä¶Æº¸Ç¹­±.îqnk¬‹{œÛëâç¾â³ÊSŸÞËG˜Ÿò>VgÖ`AÖ¤Z²;%DÚ_c*s^öiaêÁ>-B=اE©û´õ`ŸêïÿÜbëf„Èb{¶ƒ=»Øží`Ï.¶g;س‹íÙöìb{¶ƒ=»Øží`Ï.¶g;س‹íÙöìb{¶ƒ=»Øží`Ï.¶g;س‹íÙÅh¯v°ŽÛ«¬›Åöjëe±½ÚÁzYl¯v°^Û«J‡Pï龚'¶g;X7‹íÙÖËb{¶ƒ=»ØžíPŽ+ø WÒ<·xÍs‹WÓ·ø=š×¯a%¿Wnýj~ˆþàú,”Ë?L ‘‹Å®ÓB3ë®ÓB3ë®ÓB3ë®ÓB3ëzÕ…fÖôª ͬ?4 ¹ì‡†4—ýð8Íe?4¢¹ì¯µzÖ \ÇWCtýÎë9˜»8„»9”{ø÷r÷q8?åˆwI?´Dn¸¤ZÒžz¡%¨ZÒ‘z¡%êô¥TªÓ—Ôí%êô%u{‰ïZd«cµ{‰Z}Ií^Ò5„)χH¡u|ë½f›çÔó%ê÷%õ|‰ú}I=_¢~_RÏ—Øû—Ôó%öú%õ|‰úmFJXb1]RÓ—¨á—Ôô%jø%5}‰}~IM_Ò'„*kC8ðKˆô«â‹}.öÞÌaU¼÷«Î7pþ xƒøW¦ðšó ׿T‘ÄüFsäù¶Ê&ʳUÞç4C¸áõ{ýañâ?ÅÄGÄòÇý|ùáÀß´gè嫨£nRÍ>p‹jõÛT{Ü¡{@5wÄûB¬ÆPcÍñÅ̤æøbGWk¨µæøbŠlµÖ׌˜Gâ‹gsž` ždKš÷ÎX³Þ 50ëͶšÕš±µ0k–ØÌÖ<"¶&fͦ51k÷ó-~ƹ<À·C˜¯W)¯¯E/4[¬g)¯'¯U>ÏOù÷Óüý¢Ù·ŒûT­B­×ÍÀeÌÀ/šË¸_Õ*:Ÿö:³p³ð‹fá2î[9èEóp÷¬š}pæç”㇛ã_4#—ÑC¼hF.㺿hF.ãz¿hF.cF~ÑŒ\Foô¶uô¹­æ¤p£"'³Íu7Ìu5Íu7*‡PvOˆž0£œèbS‹z q·Ô¥Tuã–z”úÕ£Ô©¥ª·Ô£Tuï–z”ªFÜRR/ëÑ «K©¿ˆ«O©jÆ-õ)U͸¥>¥ª·Ô§T}ÉE÷nž½{ѽ›gï^tïæÙ»Ý»yöîE÷nž½{ѽ›§÷¾èÞÍSŸ'ý"ËS?[°‚óîå<ûø¢{9Ï>¾è^γ'ýîùŠb÷tžžü¢{9¯ÝËyýCÈ ^t?ç  û9ïyºŸó^ñ™¶‡Øž…>눰1íÚŒdñŠÖw<Êq Çf¹[/;.é;×öG³_ácúëu£½î~q=±~pz}ŽgNðü+ž/Å1,ͱ,Ãq|€ãY6DëN 7ËñU>È$>ĉ,¢Í.‡XôMþB{rÁ“!R!™­9Óù+ÎÛk ڈߠY ‚½¼ gyþªçíÙf¿Òž[`v¨öz³@…´óל·‡× 1=jÔk¶›ã¯b«×ò[®ãi®çnàY¦ðSyžy›øßçEnæ÷ü€ÿãþÀ­ü‘Ûø?ä%š›fz¾‰ï=ÓóM|™žo"Íô|Ÿ{æÏ”ƒfº>M|þ™®O“·éz4™Gß»‰:;Ó÷n²€¾g“…ü‹x‹CÈRÒñð. ‘©f¤æüRîÝy½@Ú¿…TÊý;_Ʊ\öo!•rÏ?@÷ñ|Ù·Öó=ÜïµÎ÷p¿×:ßÃý^ëþöp¿×º¿=ʆPHßÞÖÍl_´µF3Ûm­ÑÌöE[9'³œ6ê¯{xiïš yOü·xÿá;¼Éwy‹Ëy›+x‡+y—«B¸_0ê_Ç«ëFýçØï{Y ùðší÷tˆO`gÆØ…騕éÙhæ-ž‘Ï0Ÿeæ2÷ ¡¤Üݯ»8 {0+Ÿ£^¦_Oêe½þ«Á7Y“³X‹³Y›sX‡ÖÞÖ^£¹¬Ë·iÖn4õ9Ÿ ¸€ ¹sÕÚ ™Íæ¿2 õ°²R/š!¯3;gþÁœ¼Á\ü“¹ùóðoæå?!ú¦ç›î ñ™‡…ØÞNΧ8‚úÄìúŠÌ#w‘êÀ0u`§:0lÕ€aŸP¾&ßï”ï‡É÷;åûaòýNù~˜|¿S¾¶—µ¹uø)ã~ÖågiÿG‘ãzŽÐûûœú—a©_vˆúa‡CܮϚÇéú¬iÄÅlÌ%lÂ¥lÊelÆwøßes.g ®`K®d«-Q6$œ>Ár<É©Ÿ(ñÕ¸Ùf2×ÄåÅ_‹ÍeôO³7òºóœ7/ÍÞ$ÖGÍ~Ÿ8_ÑùoÅ›Å7ĕħù0ϰ2ϲ ÏÑœvú<Íi§/Ð|vú;šÏN_ ÑÔñ!Ö§*'°_å#L⣜Èê|Ögê$ZŸ©“i}¦N¡õ™ú:­ÏÔ©|,„ z­i秉­ÓÔé´NSgÐ:MM¦uš:“Öiê|\®ùÆñ›Žqs6›„PFnLãØý˜ß+$´ÉÊÞÌÆ>ÌξÌÁ~ÌÉþÌÂ0=^æ´x€87Ÿg¾À¼È|Ä´¿óïEÞËÁÌÏ!¼CY€/± ‡±‡³0ÕÎ6E¨v¶)Ju³Z:_ÍlSœjb›TûÚ”¤üÙæ~ÊmäÆùrc¹q¾ÜØFnœ/7¶‘çËmäÐùj_›rTûÚ<È×øõ>mÊSïÓF0_ïÓF0_ïÓ¦§òaN£þ,êÛ5…«ù:ßãT®á4švM§Ùh׌×Î “Å:og†Éb¿s<$<=’'8Š'ù2¿âhžâ+üšcø õï|Ëq<Íñú¦X÷ÕÀº¿Q ¬{j`Ýß©Öýƒiÿ?ì ªuÿ¤X÷/š=ëþMõ¯®\W÷¦cyá¦zó\¦+ †oz?Äúé©7m¦žzÓÔS§t³üžM[ÄjAŠY¶ššò —ðY.õ¼¿Ÿ^{Ó6êµ7}H½ö&=Y¿¬ý£Ž?r<S¯œÒÝÏú ›vˆ_ä'4¿n2Çö3¿n2Çöêg96Çô3Ãn2Çô3Ãn2¿ôîwôð;ÔËMæ—~#ÄωÕÍMæ˜~#iŽé7Šæ˜~/ÓÓOÏ—ÒÓëÔÕåö{y`¹}Þ¥vˆ»ü\HXffŸòYˆNG9¸pzÊÁ…3P.œÑëzz}{Ù>^–=„¾Ñ}ï„Øhµòó|Šù¼¥ZœnUˆ¶R‹Ó­f„js«8ªÍ­¢ÔµŠ§þ«Uõ_­bÔµJGýW«ôÔµÊ@ýW«ŒÔµrïÒ¹w­ÔÄtú¯Vjb:9¦•š˜nKˆë,‡äÎ@9$·ÏÜYîȉrGîÌ”;rg¡Ü‘[.ê,wäö:˹}§~SBøï€XÉ-'u–Crç !ÿ^ÇòHî\”GrËGå‘Üy|Q{¡³\’[Nê,—ä–“:Ë%¹å¤ÎrIn9©³\’[Nê,—ä–“:Ë%¹ ø½û<>Ë)¹ :ÞïñYˆþªwYñP‘'õ•¿êaVè›Õì¨@=Ì sÓ¯z˜æ¦!£B¬Üý|™iu4õ½C^aŽ¡¾nÈXêχŒ£þ|ˆZRN>D-)§?¢–”ó>CÔ’rÞgˆZRÎû QKÊ¥½ZRÎ|6D-)g>Ë<Ãñ×=¦z¤ýyÖéiç“=ôòCìù!öû{}ˆ}>Äb±·‡Ø×Cìé!öó{yˆ}<ÄÞbÿ±w‡,õ>U<ªzTóxÄãQê5Ÿ"Ï ñ÷[÷Uûüuñx±õ_µ¹xªx‚8£¸…xšøUq&ó¯¹ùù$Ç™CtV‹kv‡-y—­øoˆ(b%އ°ô‡©ZBü€X¯1 ,õÊQ¯1àAžâCüšå©¾¨ÀoY‘z‡•¨wð0ÏêWå’•ë¸^iÿ¶òÒ½—™oéO´6¸†%ô\Çú‰®e ýÄ׳Ä÷tMKü®k‰èÚ–ø‘®o‰Ÿè—¸D×¹ÄÏt­K\¦ë]âºæ%ÌÑC³‡„r©ÌÁÌÉM!¤SÓFf ×1#×3703S˜…~vdVúّٸ‰~gÅ÷éwVÜL¿³âÌEû~dnnens|ÿƒ…Bdà’_º—²4—± ßá|—e¹œå¸‚jtW½|^µ·«^>¯uÞïjˆ„rü•òÕð®zü¼U¨ÇÏ[•zü¼Õ¨ÇÏûõøy¥?ouêñóÖðó¿ùùò¼Nµ¿«ž6oMêióÖ¢ž6oí´¿Ðɱ¾6oª_y£¾6o]êkóÖ£¾6¯y¿«¾6¯Y¿~±+íï£ù#„Û•BdÏ?jBM¿ á|ñ]ñ«ü—Iüÿÿÿ²‹õ#œÄ8NöszßóyÅQ±}²7ž¯;¯>ŸOœ ¶?öÆh_ìMÇéLÏÌÀdfäÌôvˆ/S„óX”óY,„jöÞÁF´ç6v~óŹ%œ·÷ê)«Ùs›:¿Èy뻚™í =œãÇY?á¹Åž»_¬®´sÜ뜵PÆZd-”±Y e̾ղyM ±5Qæ±:p°¥ØÚ(cm ²6ʸ÷Õr8ßJl”±ª© Ÿ¤^õ`kyà„çVzî!®¢û[-·çÚˆW‹+ð=Väº7ƒÖòa®ce®gn`U¦°S©Ç?¤ÎM8B³ßõ÷Ùo—4ûMÐoÜèbkõîûä÷Ñzþ}òûhµþ¯ó!¶^ü[¿±Aþý[¿±Aþ[¿±Aþ[¯±A.þ[¯±a^Ù&9Þë¡ÇØ0ß#íkÐw6é@}g“ŽÔw6éD}g“§BX¥/©©/™©ÿlò4׳37°Kˆ®–«å•ÕòT¢¼²ZžJ”WVËK‰òÊjy)Q^Y-/%Ê+«å¥Dyeµ¼”öwb•ëþǧåÓŒggš÷³u Êg(jÆÊÖÑq„~f\ˆ|åÞOwï¿rï§»÷_¹÷Óå¯ÜóéòÀWîõt÷ú+÷zº^}³íÛÔc¶G=fÛùÔc¶]@=fÛ…Ôc¶]ĸ˜ú̶Kx‹Ky›Ëx‡ïð.ßå¿Ô‹ý½ÉµU?ÿÖ‹nPCÿÖÓü­Ý GÛ0-„O–„H¹ì“¥¼Àe”»SBì×>1•Oq#]óD¿ï×<Ñï»Ç5/!ÿœ1»•ΘÝJÈ?gÌn%ä›3S¾9cn+!ßœ1·•kÎ4¡\s¦©™Õ­/| æ‘Îy¹çL3Ê=gž Üs¦9åž3-h¦>Ó’fê3öʱö!~²úÔbi/ˆ;ˆÏ±#ϳÓÎ?Åïø4/²3¿gþ]©vëFuíX" qSÌÈuÏÑŒ\×uÚ0D2¼ÊǙ伙¹îVçwÖu‘ýùFˆ-ý”rˆ|Ö.Ä9CŸuÌYúŒc|ÆÏ|Æ1>ãg>ãŸñ3ŸqŒÏø™Ï8ÆgüÌgã3~æ3Žñ?óÇøŒŸùŒc|ÆÏ|Æ1jïgÏðRˆû¶xH˜yˆ%x˜%y$„×r‡È}m(7ß×Öùûÿ‚¥ø%Kó(Ëð˜×ÉÅ÷µ !ƒ¾ñÛœÓW¼&ß×^\V|B|¸ƒ¸œø$äW|ˆ§Xž_³¿aEê/J­ çíñR˜ö¿š!Ï[g¥Ìç­³Ri•ÚDë¬Ôû´ÎJm¦9 ÔìÆ-LäV>Ãm|–²{sä÷^o÷àG|޳'w°?aï™ñeˆoÔGÙ‘ÇØ‰ÇùOðiždç9Ÿ5ÄÏ™ÍlœÃì|‹98—9ù6sqss>ópór!óqïábÞK{ò|~šê7îì`^~¢[o…Ø@sÌÖÛL !5kˆ4TÈåÜçR›žø/$ÄË+žJˆ—WšG(¯4£¼ÒCk´ªÏ°àõk[ƒrs[µuù¹­Úº`:ksë0™q&Õâo°ߤ\¼`åâ³Ù0„µ/†ÈcfÝsÄ‹‹7rõÍk‡ÒÌ»à-ÏËÕ æR®^ð6åêó(W¯}ÉëÔêu[9zÁÊÑ RŽ^°ˆf—µÃ¼N/°`±X®^°„­hÖjû$—Q?³Öìù˜Þº–½qC¯^ËÞ¸¡W¯eoÜЫײ7nèÕkÙ7ôêµìzõ5Büiy«DMêINÿboÊs[džÈöÈéÿÄz—3–Ø›z—JmBÂÏf¦JmifªÔŽf¦Jíù_sõnåä¢Jêûeë:½>b§Ï’^±ÓgIomìôYÒ[;}–ôÖÅNŸ%½u±Ó>Mo]ì¼ÖÅÎ!rü¡?e³šdN¸ø?äMnç-Ï—÷ü¬À-Îë¥/ÞæÇ¼Ã¼ëùŠžßÊJÜ¢XÏ»¿XÏ»¿XÏ«µXÏ«µXÏ»XÏ»XÏ7 ‘)úéºæÍ)úèºúè)úèºúè)úèºúè)úèºúè)úèºÉ!ÔnÂ1}úýt]ýô”L|ƒ™ù&³påÀºrà9°®8E¬+N‘ëÊSäÀºoû}zêcò¹°®Þ¯¶µtL~˜â¾×•§¸ÖuåÄ)®uÝ…ž×k3LqÍë.›—¥}~×¾®9ŵ¯»ÄyÉíØTZsÇô2µ[2íû¸'uõµ[‰gP},í{YsÇf†Ñ{nÉíÚ!EmXTœGü¹X½mhVHQo§zÛPŽHQo–ôº¼^wP¬î6Ôÿ§\b)þÌÒ¼L=Ê/|Àëóyý!ñqYñ=âü—úì-ùi­n¹_ÊûjÿùçÉBøa½X0ç{ñ@ñ±^`ŽÏ¦ÆÏñÙÔÂø9>›Z?ç'¯äu)b=ÁœKâÅ©âgÅ>£Ú?ÇgTãçøŒjbüŸMMŒŸs5„Üiǽ›CÕÅø9ל»¢c_ ±G*0‰æ‹ur{÷hµÕýYgmõ°¶ÖY[=¬­uÖV÷bµÕÃÚZgmõ0£­³¦z¸ á[{`µÕÃÚZgmõ°¶ÖY[=¬­uÖVkkµÕÃÚZgmõ°¶ÖY[=¬­uÖVýó}!aÜóü”®Ùøí!’÷–x¿x ?£k2þ#çí±ñÓ¿ƒwù ÿåNÊãw…H>eíÀ?çÚß-ŽpÕŸñ{å>ÆóSª=ãõyùbÔËæKÇTkÆNufüAš/Ç¢ùrüaš+Ç¡™rü4KŽ·ò™Ç¥9qü1æðyÔÐqƒ©†ŽB5tÜPªŸã^¢ú9n¿àp~É~þ¸ŸÏ)>*)6CæË%>&Åã|™'8š'ù ¿âžâX~Íqü†ãCÜÒÚ!¡ã¬ÃùÕÂ¥u©]Z?³>/³aC^áã¼ÊFü•yMø›ò:›ñw>Á?Øœ7Ø‚²%ÿb+þÍ'ù[ó&åþŽÖÃR¹¿ãmÊýïPîïx—r~ÇižëøÍsÜÿ¥fÀNš;ÅÑ Ø)Ê.ŒgW&°cL¤£K×Ë“f7¦g"3ðfä³ÌÄîÌÌÌÂ瘕=™½˜=Ä­u}º»>k]Ÿî®ÏZ×§ûo!¤O ¡ý^È/ô³‡k¼¶©G3תûu3f÷?<÷‹Çû»Ð¯!êúŲ/¤ù$û"þÅÅü›Køõž®_,û2ê9³›»]¿Xöw©ÏÌn¶týbÙWPý;2DŸ=bù‡ñ ç—¢+ô]åôõmB¤Þ!”Þâ6X§½ä€´vƒµÚËšÝ`öAk³—µ:jMˆdó½6X£½¬Õ Öh¯´×[£½¬Õ Öh/kuƒ5ÚkŒ×¯õzklƒµÚËšÝ`­ö²f7|KkvÃiNà¾Ê³4Ãm8G=mÊë!¾wNNeÚß!hŸÖ/5²O7¢}|Ú\‘2Íófª”éÔ§Ì`Þ}wgˆuÄ]”;âÌ ÝÖ„ø|•¸–‡è—éBìµLÏÏCÜšïÜ£I¼ÈÉüžzæ5ÿãëüjÜÈm!’U/1òCZ×k~t~ât^â þLµ.½~sÍeÇ3ù ßà¾É«œåwÉ•Yí5¿Šgóçð7¾Å´54—iëH®]óÍknÐL±æOš)ÖüE3Åš¿¹ˆÿp1or oq)osïðÞå»ü—Ë}9:«=ºÆìÒ}Eˆl*âûº§›îç:–¢š¸©4ÕÂMe¨Ömz€jܦ²ÜÈrÔ×6ï~É盿O}Y_}Y£ ÎËë›ôa}?›çOËï›ôc}·PßÕw«óæžÓòý&ýW_×ÓÃtý7U¦k·© }æMU©®lªF½[£‰~N}ØôˆX}Ùô(Õ—MÕ™öyô¯}w[Cܯ5BÂòÿ±&ñ™? ±½ï…½‰ãŽ­ŸÌŸÓúÉ|ëxˆëy˜hßíM¡}·7•öÝÞ4Ëf6Çšeâ3Ÿpn“Çû›=>qóÌ!­Í!óÌ!­Í!óÌ!­Ÿ¥Y¹uwš•[÷ Y¹õs4+·6肋Ÿçítl~>Ò%Ä&¦¼7±H›õ­MÍ.G俉ECäS}Åè«ÔSŒÖS|ª§}}øûòº=sÕž‘‹Þý•rÑ»×(½ûå¢w¯S.z÷wÊE}ôäEÎQO^ä<õäE.PO^Ä×GO^ä"õäEÌp}ÌjEÌpÛå¸ÁæçírÜàÊqƒÍFÛå¸Á)Ç ÞD9n°™h»7ØÌ³]Žl¦Ùn¶¼%DÓþ“ßÁ[¡Þü£8~È(·3ž13FsüGöÿ`3ÊGöÿàÌÀ]!šêýû¬§÷ïãó¥zÿ>>_ª÷ïãó¥zÿ>>_ª÷ïãóßb}|¾Þ¿Ï·Ñû÷ñù6zÿ>>ßFïßgkˆ[¯<§Œ*'7š³×«ŸÏÝÑKrÔ’7¹›³¸‡³¹—s¸o…hFkd·Ù4£5²»;­‘Ý=hì~ŽÖÈîž´Fv[­‘ݽi}ìîÃ]ìËÝìÇ=4çgÜËÔ¿í~žú·Ý/Pß¶{ õm»åÒŒú°Ý/Rÿ³{0õ?»‡Pÿ³{(õ?»_ Ñ×Ý÷z?„°²dˆÔðù^wÿë™Ñ_wÿëýD÷¿Þ%ÖäϬÅˬÍ_X‡Wøõ»¯×¥Zùz=^c}þ¢w3…ØûÖÕÝÌ´®îf¡uu7+`6þB6kânvÇjô’'B¤òë!Ú]ï|ßCœÈò|<ßÜóSÅ“ÄzëïôÖsõÖßé­çê­¿Ó[ÏU¢îÓèoC¬JOSž¹ßÜ?úŒã×x–f›Ñç8™ç9…èýGÇ´?ÏáïZA÷x×J~ÊUÜÏÕ”ƒv½"ÝÍÂùÍÝ#4¿u£¹­»Ï—ßçëîóå÷ùºû|ùõþÝõþùõþÝõþùõþÝõþùõþÝõþùõþÝõþùÍ“ÝõüùÕ£C=CÂ«ÙØ‹zÝ ½ô¦+ĽÅ9ĽÅ+Å}ÄzØC}©w=Ô¹ÙŸy8€yù<óñÞü—ƒ˜ßïëã÷­b_®vþEçïã`àäPâK,Ìa”Û&ôós‹‹r‹q$‹sK„¸e§žæfvÖsÉ©Ë>pÜ…[¨6/ÛÊn´¿žJ ÑOí¿WÆÒ½yeÝ›WÆÓ½yeÝ›WÔ©¬BÜÖ!a`f>G³Ã+UC$§Y`«ë9Ð ñJ5±™`«ë:ÐõÝêzÔKnuº®¯<ây³ÂV×s`Nñ£bý×V×u ë»Õu˜ÛùêÎëǶº¾óˆkˆõeé;çZtÍ·ºÖ L¯Ôôœm«k>еßêští·ºÆóÓ5èZouºÖ[]ãý\-?§§ÛêZtÍ·ºÖ]ó­®ñÀ"!ºf}ˆu†(­I¡…™öÿU­IuÜÃñ£!d‘×lËIŸ«ãåÐÏÕŽñrèçjÇøÔ7@ÿXÒu9ùVH˜öç².ßf=Îc}Îg.`C.¤>0ɬŸ¿”x‘¸³±óæêüfÿ$suþ2Î/q¾ —²©óæìüÐl¿¬ó˜קŸ|‡Oð]6çr¶à ¶äJ¶ q¹K„øƒú”®zÐßõ ¹õE·ˆ½÷﯉õGåúÜú£ƒÛœoâü$zïß'Sïý»ž2·¾éà‡Ô7ÜîüοB>=tn=ÔAE-Ÿ>:ßXqú§|z¥ø“´öòé‡òÉ9ùÒÞS¯uðã*Ø—{ÌL£ÌJ{ÌL£ÌÈãš„H=í³Ó(3Ó³Ó(3Ó³Ó¨¹4\ªÿYYH®î"Î+Þ#.,î*Î'ÞË{˜öo¥„¸íöÍ`ûe»}3Xϲݾ¬gÙ®. ~6„1 !’«clÈt|ÜóêÕ`½Ìvõj°^f»z5ØY¦zJ°WcO¥Åz¢§Ô1û4ö”:fŸÆžRÇìÓØSê˜}{J[ö!åŸñƒÌÖ6§™úÃ<É–üŠ­xŠOòk¶æ7!äÒ§~ØÆñ·áÿÿáÕ\úÕÛŠO‡è !!VF/5h(­ýA/±(‡Qž¹f®´N¯Y§+ë‡ðºßŸöw­\³^WZ¯×¬×•Öë5ëu¥õúº÷-"^³^WZ;¯#¶7¯Y·+Ó:]i­¼þ­óöê5ëu¥òšõ¹Òú¼f}®´>¯YŸ+­ÏkÖçJëóšõ¹Òú¼f}®´>¯­â“\ÍÖ!:[OÑ\íž-§5W»gËiÍÕîæ´r\óÙ9.‡ù쀗Ã|v@ŽËa>;ð*ÍgÔ¸æ³i>; ¾å8Oõ-Ǫo9ÌNÔ·f§ê[³Óu4‡ÙéÀ4šL§YéÀ š•$‡èfÓF„Øóz<$Ü•?þ Ñ›êgêû!|òyˆ´5³ßTGSå•›êhªÞê¦:šº%Äõhîóú jq Ÿk‚Z\Ã~[.?T/Eù º|°\>¨^†öuû¹ý_½¬×«×5ìËåúâêåÄÞ·Æ”2[›õoýõo›õoýõ—›õýõ¯x諭Û+jxUßí•‹ôÝ^ùžjì¹E!~ŽÞçÜbÞÏ%,Å¥ôYž|2„Ì…O¶¦|n™ó>Û“mÄfò'ÛòM¶£ÙðÉöœÍœÃŽ|‹8×Ï¿ãçà»,ËåÔcžÓWÌyúŠ9Q_1§<õs*ð=êqΙk昋ϙkæ<¬·ÑWœ3ÛÌ©L³Íœ*4ÛÌQÛΙmæ¨içÌ6sÔ®7Øô‘êü ¯ìÓT ¨ó—¸ ÿfÕrºæuÌÌ'ªñ&ýLDþ„½ß™ö~¼üó„½/ïµyCêS›?ÎkžŸãù“âFbýjóƼîü[ÎE÷®Â)ç›8ÿ;›ò6£¹ ù´¶›7ç_lÁ¿Ù’ÿ°]ËLß…P<ís=)¾åXïܼµãÛlÃ;lË»lÇÙžÿÉ7£C¤ðG!`¹™äª™`yç_qþc±Ù`ùñ±yúõ±üÄy³ÂòçÅãÄ;Åf†å/ˆÇ‹w‰Ý·åé¾-D÷mù‹!d¬äؽ[>˜îÝò!tï–ë™®êe®ºgËõˇéÛõkÙ¬‰ßß ±÷ÔÂO†Hkûf‡}³£c{§õž_ã±ÖkÆzŒ qSꇄº—Ù€¿°!¯ðq^e#þÊÆtŸ†6 ‘ jù”&âßÄÅêꔦâëlÆßi~«ûÍmuo°ÿdKþÅV´Þ‡ª¹ÔÜ)OŠ­ù¡MÅrL:{xh3ÇòËPsH†×½¦µ×ÜdÞb[Þf;Þ¡üV÷.;Ð};f²fÐ)ŸÒ :eˆ7ƒNùŒfÐ)hò9å°)Côìå›ýa[/{ÈÍËx<àü/Λ‘Ï^¡ù¬Ù¶ù¬Ù¶ýyVÿ6ÛŒ|Vÿ6ÛŒ|Vÿ6ÛŒ|Ö쯶DÏþÁ=¼A}ÂÙ?éóý‹>ßY3þlŸï¬¶ÏwÖŒ?Ûç;kÆžíó5cÏNû|fìÙ‡èûÍ>Lßoöú~³¿Ñs¾ßì/éûÍ>Jßoö1ú~³íÕsrôl{ñœ=Ûž;gÆŸýÍø³í±sfüÙ_ÓŒ?û›½ê{,÷¹¯úË÷†ðqÏyr¹Ø÷Yîó_õ}–ûüW}Ÿå>ÿUßg¹ÏÕ÷Yîó_õ}–îçÌIO® ùèɕ֫ðªï¸Üwºê;.÷®úŽË}§Yöäi££=ùD$D?šbC1™9“Mø›òM6ã,>ÁÙlÎ9lÁ·Ø’sÙŠoóIΣÚÿÑ|ª)Yó:^à¸-²±=³—°#—²—ñ©Q4Ä*øm'„Xfõ±í«|æçÌêõBky¡¹³â÷³­y:³yº­y:sš£3W ÑýÀÇjf‚~àc53A?ð±šÙÀÜt'+ÍKw²Ñœt';ÍIwrМt''ÍGwr±Ÿ‡™èNn¯Í%vçY­WÑ=o½šîyë÷èž·–—æY×­×z}n¯w/Öæ¡û0Ï:o½NœWì~̳Þ[¯§õÞzƒȽxZ>Ïy‹ÖMN¹üië&§\þ´\žS.Z.Ï)'<-—çüB,—õõtGZ_OwbŸb”O3ž©÷º cìÊtìÆôL¤žëég˜‘Ï2Sˆ[øIHhד;Ù‹»Ø;„ájHf5d¡Ò®Õv}©v´SSªíúSh§– W[2«- ÕˆvjÈpµ%ó±ZÑîªí:¯ÖdVkªí‰ÕšÌ;©ÆdVcªí^¤úÑn°óœß-VÿÛ 1ë—v¬ž´Ó¤ý}ž õí^òºW½ÎŒ3<‰öþð‰ÜçyýA;³øBýA;3øB}A;3÷B}A»‘4³¶3W/znC±Ùyîã4ÓTºâ¼šN¹·¢ çã!lëëÅÖëzZOëõ=;//Ö×›­·.{ZWë­ËžÖÕzë²§uµÞºìi]­·.{ZWÞ 'ÄÞeZ¼œÖY´Î ¬¤uV`­³挮êÉ õ¨«z²B=ꪞ¬Pºª'+Ô£®êÉ õ¨«z²B=ꪞ¬°Þºª'+Ô£®BÈðXˆ>ì=~ñ{_¼ÇÃÞãïñðjZË¿Gkùá5´–^Kkù¹S!Vp,¿æ8~Ãñ4÷´ÇŸ3÷|•æù‚öösæø‚yŽrê’Ã!R%³ø¼xÍð­ççÌð§Ð _Ðìøœ¾àÔW-!Äÿº1.b:.fz. qÞ ½êrë…>íÿ+Ÿï¸>°²a£Ü·lêØ†Eâǹ˜œwß²™6,7æR6á26õ¼:—mÕµl»©neS·Òþ;ŽlêVÚÇ‘m_ã§œÄý4¿gûŒSx€ú³lzÕ´ÿn#ÛANã!NçaÎà&ó š«²}É7xÔç±^z5£õÒë Z/½šÓ½ìÕ"Ľ»>$tnÇ )özgsKg3KçŽ!.—ýpÐ>Ée?´OrÙí“\öÃAû$—ýp0cñ_8¶'Ú+¹ì‰ƒ™Cèz_¿?%¶7Ú3¹ìƒYCȧîçíØ¾Éõ í›\c˜Ãsz®üÜÓ,ÈΞ빜Ç\ÏÜœÀ<|•y™Ä|œÈ{øÕŸ|æÔ\“ççdÊo¹¦°_§÷éZÈ{uOâ4ætá e2‹ùfÞ\3wü’ã7—KÕØ¹fÑ–¿Ñ ÚÒ :× ÚÒ :× ÚÒ :× ÚÒ :× ÚÒ :× ÚÒ :× Úòoš=[ÊÉ¥õ)¥]§ 9Ìy„Ñ>ì[žrÀ€ß¼®¼¸‚X.è[‘ÇX‰Çù0]§ûúyèñûV›¿ž,oëcç>«§ZÊî\Æ4g=<Åój÷ïSí~x*«„¸<öéaû4}zØ>ÍcŸví»êß&¶_Û¯yì×Ãökûõ°ýšÇ~=l¿æ±_ßK{õ°½šÇ^=l¯æ±WÛ«yìÕÃi¶G󨣇íÑ<öèa{4=zØÍc.FûópqÚ›‡KðM–ä,ÞÏÙ,Å94oäy‹î]ž¹t¯ò¼Í²œÇrœO÷$ÏšŸ»êwÿP¼Pì:ç±&W 5y¸"­ÅÕh­~˜ÖÚáÊ´Ö§]/kípUZk‡«qáJ>ÊUÔëÔðþø¹Þÿ*!ÜkN«á3üágkxï?ª…°û‹é ·îþ’Ùx”ös¶j!¶ß~Ìö󇈾:¾åAš+Z¢¹¢¥úªŽoy„抖~—ßÒï’Ãâ[ !rα٢å1š-Z§Ù¢å š-Zž¤Ù¢åW4[´¢ï陞ÍD3ü³ú–÷ÌðÏf¡þÙ¬4Ã?›føg³‡°Þ5ªŸ®Qý{èÕ¿×ófû´\¿ÞµªoFzÏŒ/çGß3ãËùÑ÷ÌøÏæ¦ÿY¹-Ë:ÇÝçeÊË ¿‡ØÇ'øåÂòe<ð(ëÜ ç̨Õç“zÙ‚êóI5¹ šsRM.¨6ŸÌAµù¤}­‡‹?é}o{¿MzñÛÞkSuz¯M5øk²'k…°3Sˆ´ÕËÞî%®ÂCi?ÓÛqöaÚ¿i¢³6ã:迲=*Ï=çX–ͺï ËVƒz¯l5©÷ÊV+ÄM’kë¤[G^œ$ÇÖ‘'É­uäÁIrkyp’ÜZçKÊ¡uä¿Iò§ú7IÞT/â&É›êDÜ$ySˆþdYœöÿç©C+Õ¡kêÐJ½ÍëöI‘L´OŠ˜®©K+Óbû¥HÚ/EÜׯòê§CtMf×þ÷í/÷ÍL³&‹X¿&+õ„˜ƒ›Ž Ñ/Ö†ØkÏÓ|÷Ú \Ï!d5›o¢_lb _d*s#‡„h¦ô!aw*Ín»72#Íh™2ñ}šÝvof~À¬ÜÂlÜÊì”—³Ø‡û&Ò¾Û÷í³}“hí›LûkßÚWû^ç-ê³³Üæ4ÞátÞå þËdþÇ™!NZŠß÷#|“qœÅ(g3žs¨oß÷õíûæRß¾ïí:Âuù=«þfß<êoöͧþfßêoöé÷³êoöé÷³êoö郲êoö郲êoö郲ʇûôAYõ7ûÔ±oo‡Øy‡‡x—‡ù/ð?~¢§-Ë7¾d„iÿL1ÊãŒç &Ð::ãWLÇSLϯ™ß„°µWˆÿp¾®óz­xåîF=Çz­´£úò q}±ýCý\cßßP?ר÷7ÔÏ5z­´ÃúòŸÜBûþ†zºF ¾¡ž®Ñ³¦ý›Ö—ÿæ6þã¼úºF ½¡¾®QCo¨­k|¯jë9yô¹PåÕÌùq£Ï;NâN ¡Ò™öß"‰ú‚{ŠR_pº™¨'¸§8õ÷¨—‰ú‘{ÔÉDýÈ=êb¢~äžRÔÜ£÷MÔÜ£T:ë÷ëKîÑ'êKîÑ'êKî)G}É=zÝ9¯+(ÖŸÜóõ'÷”çjVðüyÏ›£*]`açßs¾¢ØþÝï^'®ë++©÷ûÓ>÷ZñÃ\G÷6q=õ7•ôûÓ¾ÏqU¦PSÉšÞŸöýRÅp#­•ÄM¬Î÷Yƒ›YÓëõ ûÓ®Ãbõ¨’¾aÚõØ"®Í­¬ã¼¾a¿¢Ò%¦]ŸmÎËщ²®ó?;_š—iVHÜî|=ñ/bµ´Ò¦]¯œ¯BöÙÎ]uN_éW¦]»kÔ3Vúi×ìc¯mÀlÈOø8w²w±±ß5ÇñnÇM¸‡M¹—͸OðS6ç~¶ð×½Gñgâ–bk|Eñq+~Î'y­yˆmx˜my„íøÛóKvàQvä1vâq>e¦=§Ç¸G?•x’ú©Ä¯¨JÝdÞ¶O7Y·íÓM÷‡èæOBl€z¾y'ÕóÍ»8”»ù÷p÷r8÷qDˆÞ÷uH8>Žßp|³ú†HéÕâoÅÄýÄï‰O‹_å&ñ,'Rn9þå•ã“(¯ŸÌï8…ù:¿çTþÓø§óGΑBü°wX®E“;úoûog!±k²³0W°Wzþ®çkŠ‹ŠW‰ÿׯ!N¾ÜùÝyœÍUðsçÎ\{Iö}Í’,%{Ù I²¤ÅÙ³"ûž©±T„²-»È^È.=!DJh¨l)”ò¼çûzÿÎïÞ;sïïwÎ÷|¾ÏŠ8^Ê¢\Æb\¢ç‡Xí&”ék?Bòý!R­±±l_»)eúÚÍ(Ã×nîùÌžÎXF¯Ý‚2zí(£×nÉe”Ý'Ê`µe÷‰2XmÙ}¢ VûÊ^µ[QöªÝš²Wí6”½j·åZ¶ã:¶çz¾ÊÏØØ‘ù?g'nbgnfn¡¬7q+»q»‡hãC,æž4þ‰îIãstOÿL÷¤ñyº'/Ð=i|‘ïñ&Ѿ›ÌKœÂËLý{Y¿%9ÚøWãÔ¿ÏõKãw2Ž»õüožOý{ZwÇÿnüñWÆ ÆWŒ?äUNç5ê­_§ýº±¾#¦§j¬ïˆÍ¢^#6›òcþÅOx‹z©Æ·9—w8SFk,£ÅRçVñÎt ‘Í„ø¾jEõøLgsÆ~ÚÀv¦ Õâ3]ù0»Qý=“úÿaV Í`ežeþȪü‰ÕxŽÕù3Ÿày>É ¬Á‹¬É_X‹)¬ÍK¬ÃˬË_Y¿…h­q!áN9ŽgyNࣜÈÇø+põ µY‘ï²ßce&QïTk2õ[µ¦P¿Uk*õ[µ¦ñ ¾Ï'ùõXµ>dMN§}ì£!RF>Ô'Ü©M½×:Ô{Ý©K}×z!zéë›ë^\:B5o‹=¨‰Þ1Ï=æ‚]¢ïlÿ`%õ›Ÿ¡.Ì‘w'ú\ù—«sjR}˜S‹êœÚTæÔ¡º0§.Õ…9©uA.™;rÉÜ÷)—Ì5¯.É%sÍ«K_Ñ^piͧK{i/¸´æÑ¥ýœB‰!:G?Úò+êG[îaNîõ\CgŒõ¦-÷…hûdQûgûdQûgûdQûgûdQûgª¨ý³‡ UÔþÙC†*jÿìá³íAŸµ¨ZÐÃg-Ú“>kÑ^ôY‹ö¦ÏZ´}Ö¢}CXüOˆ<¡Æv—ŠÈ¾gäq9±»¼PDŽè./yÁy5ñq5Ñ÷Ž<®õ½#›—Ýåˆ"-õ®›ŸÝå‰"rFwy¢ˆœÑ]ž("gt—'ŠÈÝå‰"rFwy¢ˆœñ<1AÆûFž˜úw„ ±îrÀÚã”Ö~G9`í ÊkO21„U½C¤®ÜºªW±/W{þ”ç僵ßS>X{šòÁÚ3”ÖþÀ)j¹L¼ö¬ã©”=º»ÏkeîîóZÙ£»û¼Vöèî>¯•=º»ÏkeîîóZÙ£»û¼Vöèî>¯•=º»Ï«úù kŒeîöþµ2H÷Ô¿¯Uöènï_+ct·÷¯•-º§þ=­2E÷Ô¿sU¦èžú÷¦ÊÝSÿ¾T™¢»=c­LÑ}eŠîöˆµ2Ew{ÁZ™¢»=àÎø[-›Ý™@ÙìÎDÊfwÞ¡lvgåøû? ¡³žîn‰×À^‘%:ëíî–4¶çFRµçFJÑ:ÈõzwSÇÖk¤4­ÓÈ#´N#eh}FÊÒ‹” qsÞ /æå›ÌÇÌÏ,ÀA,È·XˆƒY˜CX„o³(‡²‡ñ!gqŽ Ï?g$}Þ9£(ÿ¤Íãx´ã‡9†>뜱ôYçÈ#/ú¬sä‘}Ö9òÈ‹©ŸUy±<å‘å“4r̶ß)Çl»Â§x•Oóëó:Pï–ÞúMÓÐñ|†7ÙˆòYþÅÆ¼Åçx›Mx‡Ïóo6å?lÆ»lîÑÂñ¿ÿ…¸ÍíBB¿´lÏt¾§¶ùUÇéCz%Dôý6w0ÎÀŽÌèüUçõÜC¯±,¯³oÐ÷Ýüš×eb'ÞÇμŸ]hª}ðQã®Æ°Sÿœ—>ôÁÇŒ»?¢íE³OÑ^4û{Ú‹fŸfFÚ_/f¢ý´¬ßóËýô{~‘‰Êú=¿<¢ßÝ ±÷ò_ aÃ!ÒHÙðõžαfa¯ûÏëŸ7Öcn¸À¢¼Èbž¿çù¯CôDàçq^¿y"b¬'>Çÿ1JëþD<Õ¸ ´×ž°ç¾g¯=aÏ}OM;aÏ}O-;á{¾g¯=á{¾g¯Ý82Ä÷NÇQtê á´þ`ãhã ÃŒK×¹I®fss=óð3æå†íš'Ä îb^îf>Ú#ºæ§9Öµ÷² í ] q? ó€œ"Ͻæº~*Ͻ&w½ÿIˆö!ÎaqÎe Σž¡¦Ï{Ôç}¾±µSs¼ñNà^ç8ÿ0²4ñÏOôü>¾ÃýÎ';ožÕœd|€êñуÎ/v¾,—°—²<—ñQ.çcü”(_=«äû”;Ä"<Ì¢t?ã>D÷qPqºƒJÐ}T’îã R<"ƒÛ„øGÍÁmin nÇ_B¨j¿úZî¬úåÍÁíO !"S~Õñ%vàev¤ÚWÕdúZ&üšñoìÄßÙ™Ößà.´Þw¥õ6¸¯{ßIï“aw7¶î÷ u5øuZGƒ{òOöâ_ìÍ[ìÃÛìË;ìǿٟêÄæY!ÖOØ<›öåÍS¿ùêï7Ï¡}wó\Úw7Ïcê¿™`ܵ•öÁ]ÛBä°{1Ö½8ì^Œu/»cÝ‹ÃîÅØÇ)뎭HYw¬ì{XÖ+û–uÇʾ‡eݱ²ïaYw¬ì{XÖ+û–uÇʾ‡eݱ²ïaYw¬ì{øsʾ‡eܱµ¸™µ¹…uè³­Ëm¬Çí|Š;ø4¿`ý¶1Ä*uäç|-ÄÕŽ†ø;³Ï™ÀOã¦á\¦å<¦£¼Y;=åËÚ¸0D.ë)æé!.ë)æ©AÍZ„ðË´²É™—õó R1O=ʦ×ΦÏÎ&oèbU¼~áG!REÑßXíZ8ÓøgQmñ†óÞ»p¶ñiêAªœ¡ž£ÊÔT9˹üÑëßôz5oÄá@ªu çyþ§2~"#ß ñUþåþǼÇA!¾ªi=ò-F8˜qÂhˆÖ××…tÔ×…ô”êëcƒúì%Ô¢EæU›çBX&Ã×ø4D?ìbÏéC—Éò5VPîª!w-“»jÈ]Ë䮫)ûÔXÃþ\ë}]¼O?üaWætþ ç×w3Ö¯ÞŸzoô,ë jëYRÿâÚz–¿ûRÏòw?êYþîO=ËßÞ%gˆO½NWrÑõ¸’›ó™‡zý+yéž^ÉG½B3k?E=¼’ß8™¸˜¹„…¸”…¹ŒE¸\vÔqQÇŸ²Wð!®dq®b ®fI®a)®åÃô=?’³› œÝt õMåÜôMåÜp0rõœMßq/üî›Á»üˆòÀ}3ùgñÍ{‘;á¾CÈ=Èqı¹ß2Žæ~Ë(]ß–ñœç5o9Nplþ·Œqsƒ§q,gnù,Äúë¶l a‹µÖ_°ÅZëß—›Øz“þý©7éÿõ&ýߤޤ¿ïºEoÒßwÝ¢7éï»nÑ›ô÷]·èMúû®[ô&ý‡„p_ŽJ¥þÙ=Jÿ·©Gé?”z”þÃèÚõN×®ÿºvýG†¸òÙk¿Q>{íwÊg¯]¡|öÚUÊg¯] á]s¾°þîöÞ ?ˆ»½æÕíýìçù¨çk3žú¾Ûœ7Ïnä<Ä7=ŸàyýàíÃÆø5ò]÷Ûßе½ý?ºž·¿å¥{yû‡ò8‡…¸œjÜ‘çChó{È©9Õº#M¯Ës9Õ¼#ͨæQë‡ë+í¤^±Ò.5@¯[E¯»P¯[e©ózÆJ»CxH]žÛñWŽõŽÃåŠJöõ…zá*zá…úß*æõBkºŠ5=\Þ¨$W —7*Ù×Òg—9*ÉÃeŽJöô…Ö{•ƲG¥ƒ^ÓYí‘9†Ë •ìÕÃíÙ•ìÕÃíÙ•ìÕÃíÙ•ìÕÏ´ ±hZª5Qµæµ&ªÖ<ó*3P½‰fdGfâk¼x³ „H¹6TwËémžQ¢2Î3êITv|F=‰f¡:}Ðë y]»2u\Øq{á«,JýϬbìHµ Ük!IýóŒòQ¹N”Ê鯟éîçeeÊ ³J:ß…¥Ø5DÖÙÿSÿ®õuöÿîî×ÓŸ…ð½}|úw®¯“º›{=ôÅ©ÿî\ýp!zØ‚LÐþN…¸¿…„VSC´1D2Ýâç¼íüïÎOã¾ïü&çï_5þ€×ø!¯szù‡{Íf¯ùÛ¹Ω þ š±à&gz~‹çÿ1þÓX:h«ñ]㿌gË™þåvê9ÜrÞ^ºà6?ÑsÈü î8VSüM=ë÷òÄÔe”'¦.§¾zª9õ½¾zªùò½žzêJê©§®¢žzª¾ü{=õT½ñ÷zê©kCè)Eõ½Õ¬âêRo5«¸ºÔSFŠú½½Õ®â ©n_Du«x2լ⋙–K˜ŽK™žË˜Ë™‘Ÿ2Wð>®äý\ÅÌ\͸†Y¸–Rfï•2{—'CB³¬ÁY“?±ϱ6q“¶†„º¹òɤíìÄìÌ/Ø…_²+wzìr¬ÇJýsbƒF„XùÒI™{¾[Ù¾?_Ž­¬Ç4Êù2ͲÃrËò!:efˆ5TS§È‰ RNlø íç QNlø,åĆ)'6|ŽrbÃ&œÏç¹€M¹Í¸ˆjÑ”dÊSS„rçuhŠù0e¹ñ‹/y¼âÚš‹9¦Ð\Ì1•æ`¹ª‡5Ô¨Ö‡ØÚI´÷¬M¤½gí»´÷¬}/ÄýÖ*$,H`kÆØ†iØ–úâßôÇ ÒQ¼ =õÆ ô¿é‰È2©ÿ-BMuc†ZØDÝš¡æ5Ñs&ØG·&Ó>ºuq…>÷ØBÒg!RTÿ³¯nUc“6ëãcöÖ­¾cÌ<Ýê{ÆÌÓ­æ}ÌüÜjÞÇÌÏ­æ}ÌüÜjÞÇÌÏ­æ}ÌüÜj~õ±'”ìBo8~eàøáÎÛ#JÊ4]ÿ ñ…Æðdžˆx_h#Ï8êϯÂ>ýÛã ˜z^þ-4‘òo¡w(ÿšDù·~ìñ†^7ÁX.ô.åàBïQ.”D9¸ÐdÊÁ…¦0#§2Õ¡ÂÕCüÉoøÿB»¥!¤þ9ªÂOBΜ³·¤þ™ªÂ5œSs¶t\Óñ1ÖâqÖæw¬Ã¬Ë“¬Gõ0ëG!þ ½0$…øy8™y9…ù8•ù9B´Ñ!¯–Ír­Êé™Ý4žÍ?ù1ÿâ'¼Å9jý%Ç·«]îP*¢Ï{;kˆ¯ FV+¯_ëÍGÙ‡±/+PV¨ö8eÚ·³y½LÿvvÊòoç üU­¢çÝÇ·eÓ jfµJÆo˨üþj•˪æW1h,³Vaß–Y+Ìw^pÿz±ìZA–}[f­ ˾-³VXD™µ‚ û¶ÌZA†}[f­ þ-³Vpo"ö±·eÖ rìÛ2k…å”Y+èï2ÛÛ÷šW™íí{Í«Ìöô½æUf{ù^}A±e!áŒ5^l9õ?¤þúõ˜†O9ÿ©óî÷iŸ6^aœúoŸªí“¬‰£jû$kbïÑ>•Ç8Çù>¿ã!Ô·¯Ÿví6˜ ©gnÜGεuNO´Á¼Hýûqõ(á´ÞhƒùÑó Ÿâ!>ÍìO=І<†´Ö7šw½džú#¼‡±ù×Ë—®?Òø có°—¬S”ñ—ÆzÏúÎ~O¯ý<¦þž!,ÖçVH}nu96iFˆÕ÷½“>¢u¸Xß[]®MRs뫹Ijn}ëm±>¸ºœ›¤öÖW{“ÔÞújo’Ú[_íMR{뫽Ijo}µ7Ií­¯ö&©½õÕÞ$µ·~Ó™¤Ç¨£ç˜¤Ç¨£ç˜¤Ç¨£ç˜¤Ç¨£ç˜¤Ç¨£ç˜TšzŽIpËp=Ëò³­•/$ÜþŠù¹‡(÷Õ*È},Äý!²EÍè§f4¨™QÆjF?5c‹šÑOÍØ¢fôKrm¶†ðàF¯37ÎŒæST»¶¨%ý&?ml]nQSú©)[Ô”~jÊ5¥ŸÚÿ ¬³å>Çïó~~ÀÌü0D›O±Œr"­ÁÙjYyóav"SÿL÷;Î[“³}®òògóIÆÖfQ{UóDÇù.+ñ=VѬû|߬û|ßþ¦ŒûÃ?´'üp—~öÿÒÏüá?Ê´?Ü£L«-} ÓžðÆñŒò[Æó(xŒ1g~Ç´<Át<Éô‘F5ŒÕŽ$¹ï„Ú‘ÔÃùˆó5ÕŽ¤×õ°ÜûjHROª!IzôjH’ý„’¤G?¡†$Ù¯îÛæ±ÝX-IÒ«ŸXà!Ã%õ÷x#„Ç ‡°Çuy¬_ ‘öêgÎ#Æ2æßÿ±bÔG‘?+˜/ †ËÛ9‚;œ—?+” ‘µ³ô9ú«µ³©¿Zû1õWk?¡l·võVkçÒž´võRkçS/µvæB–æ">Âd–1'}¶µ‹—å–ãR–ç2>ÊåT#ž¶|ÒØ×½Bˆ^Øb³ß q“„„úר×ù o°ÿà³¼ÉÆÔÃuîâóß`êK:¿N}HçžL}¾ͧνi>uîCó¨s_šGûÑüéÜŸæMç7h¾t~“æIç4?:¤ùÑyPˆ/`t~‹î{çÁŒ !³}®óÇQ¾Íxe‡Q8-µ)Ä•â´_µÿjf<ÆØÚKý35gv¶p~¬ó2U‰q”©JŒ§LUbeªY€ï° ü&Gä”éšq¹Ç§+&>eíK)»i_JùŠö¥”=,ǽ,Ï}|”ûù°íÅä³[2bùDZ"³¿feaʪå«ò¬F5W.ÇrlÊQʱ)riyù5E.-/³¦¨ÑJ„ØÈ–¤¬x /óaþÊÒü-„õ-C$õßÁ>ðˆñï,Cµuý‹ÎÛ¿”5¾Êr¼Æò¼îù—ïX­Oº@5>é"Õø¤_ø÷l÷ž.Æ)Æ2CÒ%–p~‡óö«ØìÆ/iŸŠídîâëÜÍžÞ§—*V’¿²ãÃü2HÒ>âõ_y½ý+¶‡ö/ IÂ6ûWlí_IW½NýOºÆ²ÎïwÞ>;Àþ<È7xˆoò0PN‹q<Ðc÷_÷~sí=Êýè7+ù"Wñ%®æË4w&¼BsgB«FËÕ9íߘCÌ¡ÑòuN{Ç7æÐ„64W&´¥¹2¡Í‘ íiNL0'FËá9í1ߘÌÑòxN{Í7îù„ŽtÏ'È£åóœöžoÜû îýèÏŒ­óÑø—óîå÷rôFã[ÆîÓ„.t_&t¥û2¡Ý— Öâ7îË„!î™Ë!!:š¿r ãXþÎq!.öGˆß6œ79‚r$ÿâ(Þ¢÷ÇnÓûcwèý±¿™úþ8žw9ÿr"ÿ£=7v“B\}æ¶Dê3·½K}æ¶÷eã9™ œB½Ç¶©Ôsl›F=Ƕ÷©çØöõÛ>¤žbÛtÊ«ÛfPNÝöåÔm3)§n“'gé›}B-{Õ1siÖ3Æÿ3^c¬×ZK{ý¬FÎ[ß³ž¥õ=«1y~çe€YÏ7^o, ÌjbüñgÆîW­ ” f=ï¼õ>«)eèZÞ1aV3c™¹–úvLV˜ÕÜØ:ŸÕ‚Öù¬hÏjIë|Ö‹´Îg½Dëü|û?ÓÚ:ÿ*­­óhmïHkëük´ÿ4íê!W^\ì±ÄùNÎ[Kç;Ó÷?ß…ÖÄù®ô½Ïw£ïw^æ™é{—yfÊ8çež™¾Ïy™g¦Ï^æ™ésŸ—yfÊ8çež™2Îy™g¦Œs^æ™iŸ"W¨%'Ž”¿0–‡+èU†È¿ô ô“•¿ähît^® Ï\ o¬¬N-Ð/VÞÍqÔ«‘“+Ô£|\á)ÊÇôÞCäâ õ)WÐs‘‡+4¤<\A¯=D® ×"Wx6„‡Ê;–…+è·‡è«+è·‡ÈÃôÛCQ¿=$™úÇ!‹Ù,DWÉ«ì»SesÚßž—ñgØßžö·Ô¿su€¾<ƒ|;Ã>—úw¯˜nü±ýîyYtã+!¾—ܰ±å…­y>„ú£C8m>½•3Äʧš‹æÕ[¹i^½•‡æÕ[yi^½•{™ŸûX€ûYXˆY˜‡BØò|ˆ4I Ñ”!6§‚qSãÉlÆ)Îwtþq¾FýzJ'VbgêÓSºPžÒ•úò”nÔ§t§><¥Í­”שÿNéI}vJ/ê«Sz³Vˆ+£g¸ w(£g¸ w(£g¸`¿Hx˱¾áÂÿBôYâ‚\õÈ æ[,ÂÁ,Ê!,¢Ës„Xßy¹kÖÁw^îšuз¬Ì"uäÒå®]óüÇË!6ÝZÿñWšSKK„„ö_‡ð–,žúÿÓ/-i¬Ïï\Ú&!2Ƭ®&±öª«Éc¬©êÖÔkªº55ÆšªnM±¦ª›³côÕÕä1úÎêúÎ1úÎêúÎ1úÎêúÎ1úÎêúÎ1úÎ'ôcôOè;Çè;Ÿ°~»[Ï÷††¸WBB–ùÆÖõ½aÆ1ãLÃ…LËELÇd¦çbfàfäRfâ2ÞG}dwõážìñÊýÆŸ23Wð®d®âƒ´ow¯íõ#hÿ¸gvWtîÉ(¯dõ¼þó•l\Ëì\Ç\ÏœüŒ¹¨Ïx%7õ¯äáçÌKýÅ+zàWò;–Ͳ¨½·w„Ø*=Üí/¨W»ý%gp'õf·wQOv{7õb·¿âlî¡Þë¶ÚºJÏu{Õ­Ûû9—¨Çº}z«Û‡¸€êÛª…üš‹Bt=k˜>dýjX;Ú¯†µ§ýjØ«!®”~ú§/ôõýôõrL‚ZJoý“} Ï˜].oã3f—ËÛøŒÙ{ÒgÌ.o·ñ³÷qsõ`/Uç|‚òINg Î`MÊTsg:®åao¢ÏM£On¢¿Ms‚úÛ4'©¿MsŠúÚ4ßS_›æ4õ±iÎÐ>šæê[Óœ¥¾5Í!ÌÒ”×4ѯ¦ù‰úÔ4ç¨?Mó3õ£iÎSšæõ¡i.RšæêCÓè×›Ô¤=ºI-ê×›Ô¦~½I¦þ}ÇúšòÅëë×›Ôã>E}z“§yÍëô=åõ=Mê_gÞp^ö*_Ò¸¡±~}– V¾”ñ3Æ7ioJcojboJcÌp9Ä%_tkdßä_(û&§PöM¾DÙ7YFo+û&Ëèmeßd½­ì›,£·•}“¯PöM¾JÙ7ùÍËöãC,WùŠÅ9žàøQÇöÛO¬ñ ÕiWPûÚOôÜc|‡²LûI|<ħ•A¶_¤ ²ýÊÛS({l¿DÙcûeÊÛ¥ì±ý7ÊÛ§ì±ÝµËÖ,$´¯fkNûj¶´¯f{öÕ›Cl°^mçêÕ¾5W&Ú§¿5W&Þ a„'›g÷ë!ám}sk½€õ¼»§qvö¢¾¹€µ½»·ãœìÃ\ÞÛÜ{]«úŸÁú úŸÁrïˆÎOã |Ÿ-éÚíÔ înü¢±þa§¾upÒéM?ß"ÏúÜ?- ±oq);¿Ãyßã§eÆC¸œo;ÿEˆ4–{>ÿ’òÂOŸ:?”+8Œ+9Üó;=¯ž~¾‹QçW9?‚«9’k8Šk9šë8&DWÊ5ýÜ•rMg÷x¥\ÓÙûWÊ5ãCøL6nøÇs'ÐÞ{äBˆ_‹\Ê_¸Œòëøå¼ÄOi}±6Žüfì3÷yǯ ‘Ez‰Öæõ"½Dk½Å¢Nú†Öîyk÷;Ëã!aŸ5œ¥"­á,•ø#+ÓÚÍR…Ön–ª´v³T£µ›¥:­Ý,OÐÚÍò$­Ý,5híf©Ik7‹³ÏgËR›>_–:üuiÍf©ÇÔÏñ¯†P8ƒã§[·…3:®ïØšÍÒ€7ØðZ£YÑÍò,åÇ,)?fyŽæe–&”³þ'eâãQ&>~‹{B¤ëO!¾PžcWþL5*|äø¼ãî¼ÀT ½Nõ¸POªÇ…zQ=.Ô›êq¡>T õ qýd«RŸ†Ð[¿“úçxýsoýsünÏË\¥dª~2W)™ªŸ¬•úïŸô“µJ©³½Õx5$zÒ[‰WGz«#ñ{9‘û¼V+%_ô~ÇØäî=‰˜Èƒž—ÓJ­ ‘ß„ø…p!ËpË2™å¸˜åiž-|”æÙÂÇh~-¬@ójáã4ŸV¤ù´°ͧ…•i>-¬BóiaUšO «Ñ|ZXæÓB½éïæÓÂ'i>-¬AóiaMšO kñsêIßÄ:Ü̺ÜÂzÜʧBt¤£ª>y¤£jVê1ªf££jvê1ªæ £jNê1ªæ¢£jnê1ªæ¡£j^öa>öe~öcögA¹®xˆ U'÷”à…Ö}" üœ=%ÕË=¥¨^îy˜)!ܧ—ØSÚñ%¯=íµ~מGŒÕÎ=òÙÐ_?ã¼ß½GNª†î±÷UC÷Ø{‡ª¡{ä´¡rÏ9mè5ÊiCÕÎ=rÚPµsœ6Tíì¨_Ë£—éX„ú·ŽE©‡éXŒzõŽQ¯ÞÑwÈ£g)–?ÄÍ”¥›šƒ3 ð+äâ^¦ù5³÷Sÿßô@ˆ»®.Q¯«‡KÔÁëêáuðºz¸D¼®.™¤çB¤ úz]]\¢^W—|ä¼^©à{Ô[L¢ž² žr’ž²àÊ ÕÛëê璙ƲBAYa’¬P0õ÷©§KÔÑëêéuôºzºD$Cü€²CÁÔÏ¡¾.QO¯««KÔÓëêê}ÛuuuÉ<¯ÓWLýœ/s_¡z}ýoÏÏç?ÔG]¿K}Ôõ©ºþõQ×ïQ%v&,ÑG݈Pu#Žú¨Q.g<õO7ôiK¬õú³%Öú Y)IÝ?!+%åaìˆɽƒ#©o;Š_RíÈ­vŒU;r«cÕŽÜ»©6äVƪ ¹Õ…±êBn÷íD_?/±ú{Õ…ÜêÂXu!·ûw¢Ÿçó«¹õ½cߥ^ì{<Ì$êµOô÷º|Ɠ͙±S¨çN·ÅñTÇÿã4~Ë÷yÔ{ÞðsëÄ›,àüÎ3`\ÐøCããœÎïœ×³'2ža|ÂXïžTØXíÍ}ÒXŸT„zø¤¢ÎÏtþ”±^>I/¿r”½±"岕cëW:WqÓ^ _¦½~Ú+Œc+FÙšñlöeŒí˜†í™–¯2;0=;2_cFvb¦ÞÔÏg°ÇN³6ºöÂF÷«Ûß:¶6ÊÌn|€Ý™…=ø åêFY)O7ÊFyº‘\=Íüh”ƒæG#™zšûÚÈ|™æþ5Rw¶©Oo–¦úôæ#|ƒeø&ËrËq Ëså[ÔolÌ !¬–!Ÿ’¯WÿÎÔŸ7ÄùÇù6]ÛmCY‰ÃX™ÃY…#X•#YîÅ›Õ9šúšmîÇ›Or,kpkR_ôf-ê‰ÞÔ«nÓÿ¼Y‡úŸ7å‰ÏÕë>…¨^÷)LõºOª×}ŠR½îãÞ®^÷Ñ“~®^÷Ñ3~îzôÑ~îzôÑ~îzôÑû}îzôy˜®GŸÒöæéöæœÁ‚üˆ…8“…9‹Eìÿæh×ÙŽ‹òc áq}Û¾ÁÆŸ?Ä9,ιó—ð(éuOxÝ>I½Èã58”5)ÿ|“C–ד“úïorñLˆ[°&$´z‰kù2×ñ®g+~ÆÖÜÀ6Üȶüœí¸‰í¹™¯r ;p+;r_ãvvâv¦þ¬UêÏZéÓèÃZÉ@Åß‘ä¦!¾ÍI6ã©ê¨'2Óú?!ïÕ±þOÈyuŽòA¯kîuß3ÎJëýD6ç[8Úø;ãìÆ/Ûÿ’[òçO8Ÿú±Ë É/:w–/ñGÏô\Nã—2ö9Nè/³Üsîçαöœß}B=­ãwÈã|kçϳ íÛuÎ8Ÿ×¸­ñE¶ã/Îû 'ò·7Ná«´w×9ë|~ú'Ô´:~ÿ µ¬Î9š7ɼß}BíªsžæO¿ë„šUç"Í:~lj‡(œ(N?ûD zï s¦ŽB½Ô ¹-¹£Çkú¾äβkrWŸAæl£ÿo£lsÅ㪇ž«ŽÇ‰²¼Îr´a(Ï?ø(oò1ê'N¨uô'dö:ú‡úŒ:·©¿¨s‡úŠ:³ ÿaUÞe5þK뿯þ¶Tõ·¥&S[ʾ^L–ï«Ç-eït*Ä—oÏïù*O³ϰcUåƒÃ‡0ö]¥ï;èGvö¼ÜpøkÊ ‡8/×wÉðå»:ï÷6O«Nåÿœ—éËw£<_^ž$Ï——çÉóååùAò|ùž^/g6Ÿ«¾Ï£ÎË÷ååûAò}yù~|_^¾äZ—ï«o¹Ï±k^¾]÷òýCôeõ)‹œù²ú”E~Y}Ê"û½¬>e‘õ^VŸ²È™/«OYäÌ—Õ§,ræËêS9óeõ:‹úwô¿›´—÷¸/DóÊ9G?¦\sôÊ5GçP®9ªOÌ+×Gùåè|Ê/GP~9ºòËÑE”_Ž&S~9º8Dmñ G—P~9º”òËÑe”_Ž.§ürôSÊ/GWP~9º’i¸Ši¹:Ä];áŽådzÏ9?q"ÏñþÌI<ÏD^ ÜxM¾X_~M¾X_~M¾85'Z»ÕÄkúôÅúókúôÅòâ5¹t±û—^Ýôfˆ4ÖK^ø7ÄfË4›fìšÎ–ƒ/¸¦³ešMßÀAÜ¢–jlö7ŒP}Ûô–óŸÇË(2žÇ˜ÀãŒñ;¦¡3taH¨(€ôÓ¯¤ͧèÚ ]äü³Lfc.æsžÚó®ÙÐ%ÆMŒëcºvC—:ÿ<—±©ó ŸÀg8‘øŸå$6f¢üÑÐ{–{O3~Êæ\Á\ɸŠ-¹š/†hù1!á’Q~,åˆòã(G”O9¢üÊå'RŽ(ÿ+på†ò‰”Ê¿K¹¡ü{”v®±Ôÿí¯”9ºsãî!ºFßÍ\^£Çïf.¯Ñãw3—×èñ»yÝ=~7sy¿›¹¼FßÍ\^£Çïf.¯Ñãw3—×èñ»™ËkôøÝÌå5zünæò=~7syÍmšËkîÐ\^ó7Íå5ÿÐ\^s—æòó¥Ûjš'ÝÖÐ<é¶6DךÝÖѼèf^­5º™Ok͇nh>t3ÖšÝÌ—µæC·M4º©{kÓRnÎt6D—n ±W{…èó‡B,Ý›<Ìüšy„ƒø ßâÿ8˜ßrR¦H”×Sÿ>õ[òàJy>Qn/¤&&Ê멯z¢¼žú÷©ß’ãWZä‰ên!s:Qf/¤Æ%Êì…dö[2ûJû[¢¬^Èž(£²g'Ê?…ìÕ‰²y!sú–L¿²eù•ö¿D½Œ~K†_)Ã'Êæ…ìˉ³hNœÍÓž—éWÚ?6¶÷&~ÂBÜæþ2sús~YSêþ0¿—5óh¢ ó‡Xd poˆÏ¨gNýo˜3ê•SÿæŒzåÔÿN9£^9õ¿SΨWÞ•5D‡º>‡óGð8Gò;Žâ ꆞä˜ò»†žr<–ßÓº{¨…ãÓŽÇó 'ð³ŽåÕŠêÖ#†ø eBè=„[ÖÓ#råëåŽýou꿟-ÄúéÁ·d§|‹Ì×OíÙ"óõ;B™¯ŸZ³%7Ý—Õö—zæâ–<ÆjÍ–¼Tk¶ä£Z³Åõè§Ölq=ú©5[ òDˆV—ñn¾Fïf§2Ìv,çÝìL9ï¦}ñŽ,°Z»so…_ÒñuǃChiÿ­’ñ c™µ¥}þ7û|KûüoUœÿÃyó­¥ýþ·ªÆ7eÙ–öýߪÿi<Œq¸órÀorrËÿø„ó·°Ï÷!ûïó}G ¡ï;ÂuÉ* eu]öÝ2ÊÛt=öÝápþÍ^##e•m÷ùþ#ôøûîR¿ï_š‹õWíÔÙÅú«vêìbýU;uv±þª:»XÕN]¬¿j§ÎÚkcíÔY{m¬:k¯µSgíµ±vú3{m¬|¶B¨mžÙscí|†ê@móm…:P[X¡Ô6Ïìűvò›½8ÖNÿf/ŽµÓ¿Ù‹cíôoöâX;ý›½8ÖNÿf/ŽµÓ¿ÙƒcíôoöàX;ý›=8֮ߧûÑÓwû‚¾kÜ—!îõ‡CBÑCÆ£wr w9_Úy{uϱƻ9Ž_)¼jI¹áõG<¯¾å±ßå±×å±Ïå±Çåy×C^Ì#æIýoÔÆ†øíújûgüv}µý3~»¾Ú~¿]_m¿Œß®¯¶_Æo×WÛ/ã·ë«í—ñÛõ /wáÊRöà2¾Îåž×óyŒåÄ+Ÿ¿g¬î¾ÜËx…q’q>N¦z*†++§«›i¦² §Q½Ìþ•ã÷«Ù÷8þÀqª+Ûõ Ù÷zì3VW¶ ‘Iÿ…øº®Õ¤{t|õøº®Qb„ãÇ Œr"ãùNˆÞ:b+í¥·Ò^:ý‹kÒ›_²Oˆ´ïŒ~öÑrûAûÎh¹ý }g´½þëixŸ±ýgôTª¯£Í”ÇCü'ÛBhª¯ùE_ÓT_󋾦©¾æ—ž¯èùíÆú›_Ô›”JÆ;Œõ9¿ès¢«ìܬBsã%Ù3óÊž™çRö̱>íËðò{>CûqÆF<ÃgiÎØ˜gùdþÄç©ÇÿØqSÇ?³ÏS¿óõô;/R/¿ó——]-;,«g7W[‹ÙÍÕÃ2º¶>þ°ŒžÃ\=<æêá÷i®þ€æêá™ÀéŒqÓð#¦åL¦ã,¦çlf Ï—##? ¡Í¬nø®92›G9î£y”ã~Σüpx>å‡Ã ¼~¶×»&9äˆÃæL9â°9“#+“Cd—k5Ø}ÞåZ vw¹VƒÑµ,#54—Ï–2vÍG×lð º^ƒOÒõ,5ÔÓŸÕÓ7ÔÓŸÕÓ7ÔÓŸÕÓÇ1|Qˆõoc½wq!Wˆß`”Ê5¢|TîYY¾¤cs´œ¾a œTî9ÊöåšP¶/'K ”íËéú6‘Ô¿G·o ê‰ò>ã9y¿œ>` ¼_®¹ç^ðœ{0Pî/׸¥ñ|‘îÅÀ5Î뮥þ`à:¾Èõ|‰Ÿñen ~làF¶âçl"Ó„ø&s!Ks q; 63+eâá2DÖ·Œ³oevncngNî`.~ÁÜT+vä¡ý£À`ÇyÛCväãnæ§½c¸ý6«Œ3\É*Û ’öìá58Ôë xÚ»£ ÕÛCr¬îî(Ìý,Âzûë`ûßNûë`ûß­ÕS½ãýzÙŠ?‡ø+>GÅóô3*^àÛ¼H¿§â/Æç%ŽàeŽä¯Åß8š2ÊýbE劾°¢ŒrE/]QF¹2^%?>æú]ÞJ×íò6ºn—·Óu»¬ÎN× –ždìú]¶ÿÉëØ5¼ü%]ÃË;é^Þå¹|Ž]ÃËöÝ o8v/¢ê„X¾ßX—¿³¯ð)š·Ô®|רvå»Nµ+ß ª]ùþ Ú•ï&ñO>˿ؘ·øo³ ïðyþͦü‡Íx—Íù/[PÍìôï…èßîÉ릌^¦¬‡üô·û³¦­ãòòÓßrКv!î”z;%-Û1Û3=_ev ½àTGf aœ=,Ogã׌ïc'ªÃ§:Ó~pª íãìmyºPÈÓ•æ|}î8s>õ|ª«×e1~ÄX¦W†2Ÿ²”%Æ•£ 1®Îþ¬È7(³çy“•9Àïéæ÷Ì;ÌCýê¹i\=¯3×OéO§ÈM§ô¡SòSŸ9E^:¥Ïœ"/Ò_N)D}ä”Â|‹rRŠ>ñûiJsÚOSZð?¾À{´ÏQ^SìÛs"´Oω£ýyN”öç9ñ´?ÏI ýyNŒöç9ih¾Ì1_RÌ—9æKŠù2Ç|I1_æ˜/¿ åˆß‡Smþ}Kq$æ(–æhªõïè5 ¬3c\†ciξ£÷(°Þxœq9c=HόǗç¦þ›öùßaNâãLdE¾ËJ|•™Ä*œÌªœBùÿ½Muë½MÎOu¾:§ñ ¾Ï'ùkðCÖätÖâ ÖæG¬Ã™¬ËY¬ÇÙ|Šói~Âú!.Û“!^Æ ñ²F¶Ž¿aMþµø-kSÆÉ&ë”q²É:eœl²ÎAûë_gCüŠ®ü‘Ýøåõ–úŒ_eã¿Î÷ z¼âuªÇ+¬±–úÁ_eæ¿Ô彨.¯Ðoÿ¥.¯èCuy…µ–=£‡ì5wsˆ½Ô[؃[iÍ~ªwªõ?ãmÆ=¹½¸ƒ½í—CÂ@ygǯ”wvüFygÇï´×î¸BygÇU~hzÛ>´ÅøšñtcýcÖÔ=ðºñ û‘Z?\/™5u?¼áÜGÆzʬrõðLÝÿp~fé¬í7Ë@Ãõ\YS÷Ê?eœáz¯¬©{æ_ÆòÒŽ[ü„·i‘Ð_í¸ãXVÚñ7e¥ÿPVÚq—òÈŽ¹ÐkíwÃÜãJzï~íC$÷÷{•Þ;Ì=¯d sÏ+™ÃæÐ6—æÀ°ylÀùlÈ”M†-¤¬3lŸe2åœa2P%9g˜ TIÎ&ÿTzÞïëà÷ùŒÃä J©ÿ{hGcŸu˜µBÇm¦×LÍÍñMæ€f ‘ò›õœRÏ™aõœÞ¢ž3Ã`ê53؋ƞ OÊKcOÑ÷è?:DÒÊ|ý­õ´rKk:­ÌÒ_œV?=ö{¯ó}úë‡ÓÊucO2Ö§•ïúë‹ÓÊvcÏ8?ÚøãýœÄLäA¾ËC|‡™Ä¯9™jXÿ)ü†êAZõkì~ž¼6ö,åµ±?R^ûÇó­±±?Óú{žïð'Éö#Cô¯U!¶bWÓçßÛ!Ļ̎ü•¯ñ7vâïìÌ+ì«ìÊkìÆëìÎìÁ?ø:o†¸cß„„DyûØÿ(³û–®õ±£”Y£Ìzì8í÷Ǿ£{pìeÖcîI¢ÌzÌ=ItmÓ项î‰öòc®w¢ëpÌõMt޹.‰®Ã1×%Ñu8æº$NaŒÏ[/pÌõIt=޹>‰®Ç1×'q]ŸÄDº>‰ïò"ß ÑÇíÅ¿§£½ø÷ô´ÿ®w~·]ˆ=¥W~·=ï§ùøTfvàìH,ywˆT7~ÍXVJþÊ8Á¸“qVã=Æ1îeç;;o}&ï3NkÜÅ8;»2»1'»ÓÚKÞïuéx€>ß»=œÏÍ×™ÇùƒÎ['ɇ¨×·§órù»½(ƒ¿Û›ùÙ‡ÖÞ»}YýXÈû{ŸýéÝþÆ…ù‹„øxß{‹=3Þ÷ÞbÏŒ÷½·Ø3ã}ï-êp{yIÙ ½¼¤lÐÇ^^R6èc//)ô±——¬F{yIY ½¼¤,ÐG/) ôQ×KÊ}Ôõ’²@u½¤,ÐG]/) ôQ×KÊ}Ôõ’²@u½¤} º^2õ÷«ë%í}Ôõ’ö>êzÉ!ô–1ã͹>ê{IûAõ½¤ý º^Ò~ÐG=/i?è£~—´ôQ·KÚú¨Û%í}Ôí’úÞ>êvɦT·Kêqû¨Û%›S½.©Î÷Q¯Kªó}Ôë’ê|õº¤:ßG½.©Î÷Q¯Kêeû¨×%_ !öc5»¤ßGÍ.©Æ÷ÙJ5¾Ï6¶ ‘z±$YíÄuÊT'nP¦:ñßâM‘éC|/uccª3RÝØ˜‰Óxßçýü€™ù!àtfá >Ș•öû¸Ogs<‹Ù9›9ø1sò“êëNËzõq£ó¹œ·_×—ûON¹ÿô&êOëÉ'È!µôþäZÓ)sÔ²çL1j}Dù¢ÖLʵfQž¨5›òD-¹b‚ÃwÙˆïñY&±1'ó9NaNåóœÆ¦|ŸÍøÕ–|2Ù1ß-ŸmIõgK&‡¸Ezè6e©‡nSŽzè6zêEzè6zêEzè6zêEzè6zêEzè6‡Žc}t}õ"}t{ç"}t›ÊžSÇé¥ÛØ?éÛØ?éÛØ?éÛØ?ÙoÛØ?ÙoÛØ?ÙoÛØ?ÙoÛØ?©¥‹ìµmdë6æö yøùa”‡Ÿ—µ2¬•½í£ÖѵΰžzÜyuC¤¢Ì5¯G‡h/÷²xã§Œõ χخ¯BXôuˆT“‡Æ¯ ±šæÆøu47Ư§¹1þ3šã7ÐÜ¿‘æÆøÏinŒßDsc¼>¸¦¹1^\ÓÜïúÖ47Æ»¾5ÍñúßšæÆxýoÍ×ùõÅ㿤¾xüNöæ.öánöåWìÇ=ìϽÔ/ŒßGýÂøýÔ/”,¢K„Xû»!dZ¢ üÜVÞ·ÀÏmå} üÜVÞ·ÀÏmå} üÜVèç¶Ò_,ðs[é/ø¹­ìÉë? ñ¯?Á ”=Öod ~ΚÜÄZÜÌÚÜÂ:ÜJ×~ý6ºöë·Ó5_¿ƒOó šû²lB=óK–M¨g~ɲ õÌ/Y6¡žù%Ë&Ô{œæV=s+Ñܪgn%š[õä²Dóªžy•h^Õ3¯Í«zæU¢yUϼJ4¯ê™W‰æU=ó*Ѽªg^%šWõÌ«D9®ž\–hnÕ“Ëå¸zrY¢WÏ|J”ãê™O‰r\=k7QŽ«gí&ÊqõR?¿WOž(ÇÕ“Çå¸zòX¢WOK”ãêÉc‰r\=5óãŸBì…É!,×oÔ*g|ÎxJˆþ¯JˆÙc£åƆ„”²!|¸3DJÇq£ÎsÞëËYŸ)å—ËKËåå¬Ó”GåòÒö½åñÒ1ç]×›ç‡ryi¹¼œë›R®oÊãt}S*ÒõM©D×7¥2]ß”*t}SªÒõM©¢I¹Bìé=ÌͽÌÃ}ÌËý!>f}l›NëcÛ ZÛ>¢õ±m&­m³BøBŸÖb±u²MþZ*›µŸI¹¬½\¶T.kŸz^.k/—-•ËÚËmKå°ös˜›s™‡ó˜—ó™ ˜Ÿ Y€‹XÉ,ÄÅ,Ì%Ô´_Ê¢\&X<縘ãå|ˆŸ²8W„hF}Ý.µ&£¾n×pêëvé­'ÿ"é)2êïvéG3êïv¢Þn—Z“Qo·k õv»ÆRo·K¿šQo·k<õv»&PO·K š|Þϳ~3êív½C½Ý®IÔÛíJ¤Þn×»ÔÛíÒÛeü…jwÆNæ%šK/s*å4?÷‚Ÿ[”YŒ¿ð!¦Ðþ˜ñ7¯{Ÿ¿ó^ᇼÊé”qwÍ Œ»ë#ʸ»f†èÑ!6I->:ˆrÆÑ·hÍ´ÿ2$ä’aÛïä«ÜÅÜÍŽüНq;q/;s»p?»òåŸöه؃‡i_mÿ5{ê=äèöGË¥íõê¹zS¯ž«Oˆ+x8ÄŸð ~MŸ¡à¦þûêamuö¥_Cìiü®ÁK¿Ó5xé ? ác}ÃÇæå£§<¾wþªóæù}óCì+4sjÏäz”œJ™¿ä4Êü%ß§Ì_òÊü%õ}dþ’z„>2qI=B™¸¤}­L\RÐG&.©Gè#—Ô#ô‘‰Kún}dâ’z„>2qIûl_™¸¤=µ¯ì]RoÐWö.9_o¨¾Æ1–ÁK.0VgãÇÇëz×7gœ`¼ˆ1&»~ÿ:Nãx±×4ðšñÆiåî¾é¸”鹌¸œù)3qïãJÞÏUÌÌÕ|€2L_Y¸ïƒŽSûÌuúƒ²úuê^9ªO÷Ê3-e:>Æô¬À |œúÿ{©Ÿ¿W‰öë{•y?ÕÏ ™Y•°³°:äÌÊ'™5˜5™ƒµ˜“µ™‹u(§7§þ.VïeAîc!îga`dQb1æCüZþz\þêÏŠ”½þ.îüãJÆo—0þ†%ù?–â·|˜GYšÇø³ ¿cYž`9ždyžâ£üžñ4+ð ç¬È³!²þ]ÉñŽí…Wvü«ð\ˆnqMû]§kÚï]Ó~òãjù´Þjc×¶Ÿ ¹Åµí÷§óòj½5Æ®q¿¿è÷»E׸ßmºÆýîÐ5î÷7]ã~ÿ°.ï²ÿåSü/Ä5_26 ¡ë÷!üç^t=MýBóO·Ç6_A{ló•´Ç~ožÚ(„qï†H÷á{{ñÔÔóöâ©i/žúíÅS›p1Ÿç6åR6ã2Z×ßûýS[„ÈÑGCü;Ÿó1nbnæãÜŠÜÊJÜÆÊÜÎ*ÜÂj!’ù-VçàÒªÑ/«7YÔ›—Õ›,jÄ~ýèHýè~ýèHýè~ýèÈôÔ‡ŽÔ‡îׇŽÔ‡îׇŽÔ‡îׇŽÔ‡îׇŽÔ‡îׇŽÌLýçHýç~ýçHkn¿þs¤þs¿þs¤þs¿þs¤þs¿þs¤þs¿þsdŽFÞÖ¿ÊUûõ¡#õ¡ûõ¡#õjûõ¡#õjûõ #]ûýzБzµýzБzµýo0ˆN{6ÄžùGæLíÌÿÖÖÃ"ó¿µû°È|om=,2Ï[Mó¼õšç­ÍûEæykó~‘yÞúÛ] ‘ûJ›ï­ÍÿEæ{ëcÎ_v¾¤±yßÚ:XdÞ·¶™÷­­ƒEæ}kë`‘yßú”ëœÚg˜û­­…E2ä"ó¾µ=¹õ™½&,N aëï!Ò´´±<²ØÞzMn_lo½&·/¶·^“ÛÛ[§š› ÿ ¹ÙðfÅeø©O;þ3Dþ¨â—îc-îgm`d] ‘‰ B|-ëþÉBøßûÆ ¿1niü_¤=çÉ—8ÝóÏxþÆ/Ïà+üˆ­(3Mläùoù,²1ñ9÷ºÖ^gïšØÄø;>ÏlÊ“!º[Ö[NÙ-ë¿m/+õmˆ¶¶³þNß7ëú¾Y¯ÒwÍzõ©&´Öcd½"·ô²+«P/»²*WÓ|¿µ†æû-}ÙJýÃ-}ÙJýÃ-}ÙJýÃ-}ÅJýÃ-}ÅJýÃ-}ÅJýÃ-}ÅJýÃ-}ÅJýÃ-}ÅJýÃ-}ÅJûÛ-}ÅJûÚ-}ÅJûÙ-}ÅJ{Ö-}ÅʆÔW¬|†_²wòYîbãâ³9ÞíXÞ»õ›P]ù<÷²)÷±åÚ•Íy€-ôóËõóòÝ­OéºÝZÁ1!2ëbˆoþ:aO¦°/±wîI8žÕø²qþʾ!î²}c®urÙ¾1×:¹lÝ̵N.[7s­“ËÖÍ\ëä²u3×<)¸Û±µ3ל(ø•cëg®}â²õ3×:¹lý̵O\¶næZ—­›¹ÖÇeëe®õqÙz™k}\¶^æÚ'.[/s­ËÖË\µ5½u}Ùz™k¯¸l¯˜k¯¸lÍÌ=KûÄÜi˜k¸l˜{ŽUù3«ñ|ˆVV§®Ù§+«S×2…0#Sˆ<ÒÈX½ºf¿®¬^]³_WV¯®Ù¯+«W×ì×Ë „Ø«ÿcAš‡Ë ñ( ó‹ð8‹ò;ã >DsyYqžb ÊiÝ«r-é^•{‘îU9ëj¾ú]É4p¥ñË\ÅW¸š­¸†­¹–mBd«Þ_ oà>žYi\Õø ã>Æ«(ŒYÍ~\ãùjžÿ’Õ¹Óyûþ™µ|ƒ©ÿ¾ù›\O½ú™Ï¼î ¯Ûe<Ðxƒñ“Æz»­5¨§Ûª¶ô×ÓmU[úïõºA^·ÑX靿lµV¶ª/ýÍÕþBÔ‹5—ÑͱXs}–}¦¹¾kyRˆÔüÚØ~Ó|6åÛæSžmþ‰ºÝÉñ5ÇòeÁy2²^»à|Ú . ^»àBê Ó ;Šñm>Ä¡ÔG¤ÆÎ’ÁRɇ9ŠjmÚÑ|„cXFöøÆ±¾wGYêswèsÓêsw”§þvÇ£ÔÏîÐÏ2GÒêewèe{¿b%Ì¥Þh.´gÝ Ú³Nä¦=ëDÚ³RÿüâúS!þõöüž¯ò4;ð ;ò¾B}YãôKÆg;ñGvæOìÂsìêuy¼îe㟻ñ<»ó{P]x]]X¯.¼®.¬W^WÖ« ¯÷¦zðzŸ½¡æêw£7Ô\ýnô†š«ßÞPsõ»Ñ˜ëµíßýKƮ۶Ôë¶Ë±ë¶­¬ãÝŽ]»m®]ÌµÛæÚÅ\»mzî+=æO¡}ûCh“=„-B܃„øýÛY†;X–æw}ÖƒåÉò4—sè¹”…öï ‘Ž½C|ž[ìCÙ¡c_Þa?þÍþü‡oð.ßä¿Àÿ8÷8(Äç |‹f‡0Ê·Ï¡Là0Æ8œi8‚i9’é8Šé9š8†9–jQÇq¼ãy?'03'ò¾Ã,œÄ™Hµ»ã»´wt|®Ýc²Î^û]Ç$ãœÌœœÂ\œÊÜœÆ<|Ÿæ`ǘ2?õ’y øywý<ûfÇÆù q& s‹p6‹òcã'|(Dþœâ?}˜ó<¬ÛOK{Xc¯O±bzô×gPþúG¬ÂÜ¿B¤âãÆ3ë»—+Ï2~гù4?f}~œC™¼˜:6×}¯Xɹ¹Î=ãÜÇóËàsÍ…Š•õÉÅž !c_Ç Ëáen…ø‹ïò6ßã&ñoNæ?œÂ»ÔW—ù—úê2ÿQ_]æefÓ>þ¢¾ºl„úê²qÔW—R_]6žjà…Œ!6Ëž6GÚr=õ¨-?£µåêQ[n Ñ7ô˜¥õBó]ïJíézWzÕy=g韨ç,­/zCÏYúgêJÛóÞЕ¾@ýQé‹!®±úËAõ1&K7Vc²tcõ1&K7Vc²tcõ1fÏm¬>ÆdéÆêc,?­÷XZ籂´Æc…h}Ç ÓúŽ¡õ+Jµ1VŒêbì!Nbq&RŽnü.忯ﱓh®ëâ']gwÊrÇzð¾Î›ìIùöX/þÂs‡ðs7–fwªI?«sÇÔ‚I·Bˆ6 ÑŒŸ…„]me ;ãÇí¸‘íù9]ÏŒ›Ø!Dß4÷ÊÈt‹dÂ6²â"™°Í!ÔYÂw>×"Ù°Í“!d±Ö²¨!‹dÄ65B(™-Ä߯‡ÜS”zÈ=Ũ†îyˆjèžâTC÷”áËB¤e>cµtOIʯ{JQ~Ýãû|yÖóù[3÷?C5ñþFTc¿üÑóŒõ7{ÔÆûS]¼ÿ9ª‹÷7¡šxÿóÔÞß”BäW¹s¾üù«Ü9_þüUæœß˜2ç|ÙóW™s¾ìù«Ì9_öüUæœ/{þjŸ/{þ*sΗ==H=诇ø³eˆ;]Poº…¸Ÿ…y€2åT™ò´L9U¦<-SN=¬'^¯'Ö·Œ“9òü鼌9õkc™#Ï_ƲæTYó´¬9UOvZΜª';-cN•1O˘SeÌÕyCByeˆ–Y2D ËÜÚù|Î˧«óS6]]€{BÜ·ÖÜDkì[knâFZs?§57q³p3äfåÖƨù¹êg3ÞÆìÜî¼= —ú5Æ«žó9œ—ÏÆØ r=eœÓø 梽ëÛÜÜÉ<ÜEŸ¢Ïù­Ï;ѾX° ÷Ú?r=MûG®úÎYkßúS?¿ï1q/]ï‰öÎ1ö–\ Œ]÷‰öÑ1ö˜\ ]ÿ‰Œí5¹ž1v&ºߺ9oïÉÕÈØý˜è~¤SϾu&Êùߺöõ…cìK¹ž5v&ºߺ݃o­Ùo]ÿ‰ßz¤þYê‘!öq3Žbsަþäâ¾À±”}/Žã‹!îµ”o/q"/óþÊIü‰üzà8ãMï‡äó}ÖØùMúÓ$ûeÑÆÆWŒ?äUNwÞþYô9ãkÆúÔ$ûhÑ&´}^-XîØ^Z´©ì‘ìu×½N[h±ãŽgzÞ[ÔwŠûÃX^M²×mÎìôÝân:/·ÆýI¹5î/~"Ë凎!„º¿…pÒz®û;Õ§ºW¨>Õ½Ê2^'_tŒ_3.k,gtŒ3¾n\ÎXÞè(o,—7:š{ËåŽæÚry££¹¶\ÞèhŽ-—7:¦ qcZ‡„'âÙ† lËXýõ¬iSÿû9=kÚÔÿ^N}“sC=«ŒúëYeÜFþï¯o•sC}«œúë[åÜÐ_ÝqCu#í$ªi©n¤}—êFZûæ˜ví=^õèàÑÑã5=Öi<Òz¤óHï‘Á#£G¦÷—ùõ©ùõ—ùõ©ùõ—5þ©5þ—9ö©5þ—>òS=WyßéRZ¶c:¶gz¾Ê !¹Ïãþ><ïq!DJÛ/Kõ¼ð’°¼ðR&êý.éýÊû\—äõòz¿Kòzy½ß%½_ù®ÌÂn|0Dÿ›bŸuávåTvã4vçûìÁø:?dOÊ:Ÿõ¢¬óYoÊ:ŸÉ×ÿÙg>“?þ“m>ëâdÊY,N¦LÅâdÊYL3ïØÞ,ÅÉ• rXèqaÜÚ£‡}¾Æ!Í¢o¹Ö qMâCBšO˜À9!äÖ?6‰9žë¸²G•ºÏáÞi~L¹¬Õ/!!ëªSYÇRÊ:ŽêTV룻þôÞÆêUVu¬•ú”Õ:éîçß;k¬>eUÏZ©KY­—î~×½Õ§¬êZ+u)«uÓ}žó?«?Yß3žo|Ž ø³ójQÖ$ã…ÆçÕ¢¬“_0Vƒ²Ê¥­Ô ¬ri+5(«:ÞêåÒV·)—¶ºC¹´Õß”K[ýC¹´ý !!§½·}KÚsÛ¿È[|‰·ù2ïðþÍVü‡jMλTkrþâV]´·ú>Cì)™eí!êtfûÆ*×±‹ï5DÎ,g¯r=»ø>CÔçÌÏ»®]äëU®kßc•ëÙÅ÷Xåzv™æuêvfu;µÖ Q»3?ï9×¶‹ï¶Êµíâ»­rM»øn«\Ó.¾Û*ײ‹ï¶Êµë"s¯rͺÈܺ‡„ï²²³ñufgOæ¡ð°¦ ‘’úܽœËéÜpÇzøïRÏéá¿Ó‡á12Ľo-<[‘Ö³æÔûÖ³•i-<[…SY•ÓXï³:?àüOr:kpkò#š·ïÏdm΢ÜñþlÊiN8þر¬ñþ'Ô• )Ëåršó)ŸÒœOYAó=e%Õà”UT‡SVS-NYCõ8e-Õä”uT—SÖ3?£Ì”²2Sо¤¼Ì”ò9e¦”M”™R6SfJÙ¢å~à8žåxþÈ ü‰úÚŒBl—kŸÞwû²}·/}ô¾×—z¼ô¾×—rÏäwB¤Ø~ã9Æz½ôsÙóø çS†©örˆ¿q“¯Ð|®ÖŠæs5uá†> õÿÛ­¦>Ü0§«µ¥9ý£`º½êG=ÀtûÕz€éö¬7Ó¾õãzß[Ù)„ñï†H^ùõÇmƹ]¸ƒ]ùõ"ãßó:yj|åÙñ“)KŸB{Ü_z]wîdîâ랟êy{ß»{ò+öâöæ^öá>öå~Ú;~<Àþ<È7xˆoò0„ÈY=É˨'ù`9õ$|J=ÉæÆ+B,Ë^ä>¢kþJa`dQb1æCôýZé®]qõ»ZP_±ëê+vé 2ê+vÉ|õ»^¢=b×Ë´Gìz…öˆ]­hØ%·g´?ìjCûCjß?ϱ=Bß—Ñ¡o‹ËhзÅe´GèÛâ2Ú#v¹gí»Ü³Œöˆ]xœîUÆÔ?[mŸØÕÅ£k÷É=÷ö°ï¶W¿Ý”öê·å½Ýöê·eØÝöê·}ŸªzÑòTU½èÔ¤X¯ª½‘†úѲWUýètÔwÞHÏ>”GRÿ›ƒª}gd?Ê:UûSNÉ¥ïüë…[ñHˆ~ùDˆ ÒÏ®«"õß2~Òøkðv¥Ô¿Rrð—5ï„h)5ïÜtªyçäÛ†ÈÃ~_Y¸”úwî#ªçÔ½Rêß¹Y´Wœ“WKÙ+ÎÙç>8ä=2Q){ƹOhÏ87‡öŒssiÏ87öŒsóiÏ8·€wi?úà°÷ËR¥þ5^Äÿ(K—ºG9ZôM8·„.¥uNzX:§F=¬FS£V£Î­á‘!lý8Dž·ÿ6Ò«DõXô*Q=Vî\Žõ)ÑÔ£DõSô(QýT#Ù1ªŸj$;Fw…h1ëàÌ´μIëàÌ~Í<ÂAj¸¹_ìÇo9V‹ýÏñ`êiÎ áQ¾íš>áø˜ã¡<Îa!îîÒ°®—±9—Ó\¹û)Íý»+hîß]Isÿî*šûwWóåÞÝ"…ÿ3^cl Ü]Kkàî:Zw׳×íðº{ÆŸ·å¶sþ‹)ŒÕ°uæØ]5lõpW [×Áó_z>b¬–­³.îªeë^s~§óqÆjÚ:ëã®Z¶Îú¸«–­SËîªeëÔ²»jÙ:µìÝ]^ånê-îª]ëÔ®»j׺Îå¼µqW [§†¥îÜçbΩcëzï5¶Vîªgëzï3NËý´fîªoëÔ·»êÛº>ÎpÞº«Î­SçîªsëÔ¹»êÜ:uî®û»N»ëþ®SçëÐý]7îïºAto×½E÷uÝ`º¯ë†Ð}]÷6ÝÓuCéž®K½§ßq8OpDˆ6Øb×:õßp*WÎx£q{~Nk·Á&vàfv侯­ìÄmì"ý*„øR›5„r]%×ã€ÚÛïqçdâ~¹••¸•i¾?PÚqÇt¿ûU£ûÚ¯:ÝÇ~OÐýé÷$ÝŸ~5è~ô«I÷ _-îõ³ôœ•\÷+œ«íœë߯÷;¯Xi\רuïWjI¿§¨>ô{šÖy¿úTë+¹?Vù™ú×~ œ³¯UêëÜjöãç:ÿ Ÿáÿ؈ßòYecãs”áû5¡ßïyž`Sžd3Êcýšó{?¿¿Ÿ¿Ö¸…ñi¾À3lÉø"φÈñr!>qËs#åç|Œ›è~$n¦{èw݃ãîA¢{pÜ=H´>»þ‰®ÿq×?Ñõ?îú'ºþÇ]ÿD×ÿ¸ëŸèúwý]ÿ㮢ëÜõOÜÂs¯„ðóGÆîC¢5pܵOtí»ö‰æþq×<ñ€×µòº™lÍYλ‰îÁq÷ Ñ=8î$ºÇ݃įéº'ºîÏ©?Ï6v½]ïã®w¢ë}ÜõNü6„¨ë¸kžèšwÍõÏ»~ ±!jû®ªí».Qmßu™jû®_©¶ß×$Ä—ýgE)ûϲöÏËþ³¬õó²ÿ,ëû¼ì?˺>¯'Ÿe<¯'Ÿe=Ÿ×“ϲ~ÏëÉgé%Ïë½gÙÿÎë½gÙÿÎë½gÝG½÷¬û©÷ž•™zïYPï=+ õÞ³¤Ü>++åöYÙ(·ÏÒ÷ž—Ûgå ¬>+'åôYö‰órú¬ÜìË<ìG½õùþÔ[Ÿƒùù&õÕç°`ˆÛlê»”ö§¾Ëh껜ö§¾ŸR†î»‚2t_}ùfºï*ÊÐ}WS†î»†2tßµ”¡û®£ Ýw=e辩áá›m¿½ð5í·ŽÐ=¹ð Ý“ ÿ£{rá[º'ßì ± ²ó7»¨Ç|øÇ»§ú'q¹—C…„ѧYgB%ÿå¸lü¸±þx”˜ãWãŠÆúÕC•¨?=T™?y^Êñ›qãs¬Jýè¡jÔ‡ªNýç¡'x‘OòÖ` kòk1õ÷Öfêï«ÃÔŸ[—¿³SÿLÌSLý³0O3õϺÔgêŸ]iÀ!ºAííõ:ÕÞ^=©ööêEµ·—¶ê^ˆÔ{ÒX î¥F)G‘z5ŒÕâ^}©÷êÇíìÏ”6|Aa×”6¸Ö½d„ ®u¯At{Éc\ç^²Á×¹—l°!õßt{›û(lØÏa<@=ㆃ´‡\kb‹+ðU>άÈެÄ×X™X…Y•]X]YÝøD÷?븻cßõZê{/ %p R6)ñ e“zñHú$s–û‡oð.ßä¿Àÿ8®á A!¾¼­ªêàoâêë¦Ö±†…è´å!ÖH][¬Ž=‘ÖøSãV\ÁÖ\É6\Ŷ\Ív\C{ç´µ´wN[G{ç¼ÇCì¥ !”§j_-uþS5­ÖiÏUôÜEÏu\Éqê¿Aô{ˆ¥ý€Wø!¯Rnr3x²ïÙÄûÐç8û.}޳ïÑç8›DŸãìdúg§Ðç8;•öð³Óh?û>íág?`gê>ìB=‡]©Gø°õvçLöà,š§ggS·C~p²ë½ãÙuÀaÊ®¾¦ì:àe×zÃ¥ø¿’;ÄÛÍ<ü*„ýB¤²>kAêÓ‡äu~óÑ¿à çõíCòëá†è鳿/xÓy}ü½Ýcz¹!z»Çôrÿ¸k}¿\µ¾ßÚt!Öm+ÓSîî¬&PÓ;«ÉÔôÎjr5½³š\@Mï¬&ÈÂëMB$òž±Ú\ “ñóÆIlÊÉlÆ)žW³ èybÛ«ÛÔýÎêvu¿³º]@ÝÿAîú`Orde¿N9Åï9Ú99ð‡ÓŽÇ„è«îqnkéU÷8·µôªï”ú¿çµñûoÈ*9\·©ÿvñ丧°¨s{Ou\ÌzrÊè‰îµ ± ~Ö½¶ô³îµ£uyÏúÝP%Äå;âɘù.P}(goLIý3öÆ”Ô?ó`oLI ½1%õÏ:ØSRÿŒƒ½1Å:)goLI¢y_ GãèýG½?¯÷õþ¼ÞÔûózÿQïÏëýG½?¯÷õþ¼Þ4õýöÖ£éio=ê>´y3½N™7“ùÖBæÍ$ëu+Âzè²o&Ùº…ì›I]ìVÐy}D 8“ëÛBÎäš¶3ÉÖ-dàLoè·ÔÔÜ}ŒÝ“L2v ÷$“ïßÂýÈ$c·p?2ÉØ-Ü‹L2v‹3”±[ü@»ÅYêr§þŽËÙ-~¢œÝâåì?Óýnqžîwì…íê^rý»º—…ÜËb›£…ÔÆ†æpÄÜnhGö³0Íé†EhN7,ÊC,ÆÃ|ˆ_³8å¥9•C¤‚ÿªZžÛ5šSÅx «R­UmOýÞsôàÔüWÕx× úªï{D_UãsÛC.d ±YöÐÒ©{ø}ŽÏò~þÈÌü‰ð³ðg>ÈóÌÊ ÌÆ‹!úG|ˆ-=ÉžbŒjà¶×C¤©ù4Æjáiy†ÖéÒh.õ{ÿÈ@¿÷Œ´ooëé}Ÿ²õÔÛzs%ûPnßÖ—6ÇmêISõd›zÒt-Õ¦ë¨^4]ÏüŒ¹ƒ¸‘oñs¦ýaÛÚþpM–ú¾¸Kå„ý÷‡„™™ŸónbnæƒÜ¬ÜÂÈßåÒÆÙŒÕŸýÙ©VìÏA=ÿþœÔóïÏE=ÿþÜÜé}W¼ïã<Æ»Œ¯—1Îk¼›ùøóS&yÍóe «û r q? ó‹PÝÞ¯~8BºæÞ«ÌQÎ9µ|„¾_-¡ÎŒ¼á|yc5}„Z¾_Mñó8ÿ¨qIu}„µ8âÛ½Ò<Ä=Ä,ÎX‚-Y’/²_âÃ|™¥ù  ‘U2}g™~•LßYµJÕYµJÕYµJÕYµJÕYµJÕYµJÕÙÜŠ37Vé¡:ë¡Vé¡:ë¡Vé¡:ë¡Vé¡:ë¡V½Äù2â+<ÇVü™­yžmxmy‘íø Û3…¯ò;PÜc?¦Öﱟ “ñ÷ØO†Éø{ì'Ãdü=ö‘aÙ\»ü!’½µ±}c˜¬¿Çž1LÖßcÏ&ëï±g Ëåu¼NÛ#ó“ù÷ÈüÃdþ=2ÿ0™Ì?Læß#ó“ù÷ÈüÃdþ=2ÿ0™Ï@â öó úymYˆíœËy{ÇžÁ´wŒ,ì|{ã!ÆÅø6r¾ˆó¯5.n\Ô¸ƒyó”sÜK½¿eÝ¿H[­Ñç?5.ggì~çá‘Æé8ŠrïáÑÌàùëž÷ù1Îȱ”Wž½á¼ïsxœñ}Ïû9²ÉÈÏBBUópäšg#Õ´‘Ÿ;¶/Wm""!¾ÌxÆq£œÈx¾ÃNbŒ‰LÃw™–ï1“˜ž“™S˜‘S™‰Óxß¡ÊyyÜ\p¿ñÌÌù§ îÿx<šsªÈÎ2Nd@ÏÍqÏèåâ¾¥^.Ný˜R#Ä7‘jüÂчŒkïa-Ê”5Rœ/n\ÛxŸñ%ã¼Ì’Î×q~?ëRÍ\eMw±¶WYÓ]¬íUÖtk{•5ÝÅÚ^e-wÑ¿¯²–»XÓ«¬å.Öô*k¹‹5½Êî¢_e w±–WYÃ]¬åUæj—¼! V_2ËlÔïUæm—|ŽÕãUænk{•¹ÛÅÚ^eMw±¶WYÓ]¬íUÖp—´†»XË«¬Ý.EiívñóÒÊ—«¬Û.ÑZíRœÃY"D¦õ ñÏüÉ^ü‹½y‹}x›}y'„šÏ¹&îë´~ÆS¿õŒ~kš~ëýÖ4ýÖ3ÿ†è\ýäKúι2ÈKúι2ÇK2É\Yã%¹r®¬ñ’,2WÖxI™«Ÿ|Iß9W?ù’½¶¯õWÊ|íký•z”Ëù?e®àã\ÉŠ!¤þ½WfPÏvà#¶âLϯò|%ãÖÆú®¾«å£¾kXÅù6ÎëÃú®5–ú®£\Ôw=«ó3>Á |’©ß¾$¯Ì‘g.É+sä™KòÊœï)¯Ì‘c.É+sÔŸKòÊ9æ’Ü0G޹$7Ì‘c.ÉQs~ qìó̩ öáYöá öáYú§ƒ‡CÂè!Œ²VrØkÊ¿£åуòïhyô ü;ú-Ï[C9ôSí¹£åÒƒòïh¹ô Ü;Z.emåøŸ±ü;z¨±5–ÃÚ8(fü¾±:ÊËqÌy¹xôpck-Çqc¹x´ìzP.=’rñhóè \sÝ7~§™¢³Ôðæz’Yjxs=É,{Aó ´4ÏÈÖÌD½Uóû¨·j~ˆ~¶ÚcMˆõìäásù8Äÿ?aÎáã!äìBÉ!Z]ý¸™êÇÍì!d(¢âBÂñe!LÛ"%õS¢ÆËC(,×îmo,Öó–Ý $Ûc ÷óèo¬Ç*`ßÒãFõ·Q½mÂñ•«’<›²J²{ÐÖ^‘ì´µ$»mÕþä¹T“çQÍOžÏR\@ûtòB–æ"ʦÉrCÛÔßHnhk?N–ÚÚw“Õ­¶êV²ºÕVÝJV·Úª[ÉêV[u+YÝj«n%«[m+R}j[‰êR[u)Y]j«|^¿”Vvz^¿”võKie¦çÕ´«¨î¤5¿žWwÒ®¡º“v-Õ´ëBÜ¢Ú!¡õ%Ö¡<º¨.e=ÊiSÿþ§ÿΧy…õy• x yÏðñ>Ë›lÌ?ùÿbÞâó¼Í¦¼Ãfü›Íù[ð._à¿lÉÿBÜâBB»y¼Ëùü— øò…¸%ÉŒp1­‘vKhm´[Jk¢Ý2Z í–3ÆO™†+˜–+™Ž«hM´[Í \ÃŒ\ËLt-—ÜÇõÔëµûŒz½v¨×k§WLÛȱ~¯þo‰~¯þo‰~¯þo‰>¯Ý–a¾V1_G˜¯U †ð€º5œ­"0W«˜«#ÌÕ*æêsµŠ¹:Â\­b®Ž0W«è£îs½wߢë½û6]ïÝwèzïþ›®÷n¹hŠùøPOc×}÷]ºî»ÿuÞü|¨—±ë¿û?ºþ»ïÑõ¢÷½È_b\ˆüûCˆ_ß•gÙ-Äåÿ&ÄïÈÿñµÚþÂMu,ÿ·Æx”ê\þcìÂãìÊï˜úþ좞±šÿ… §=RÍ:¯–×ù¦Îû<š…X-Ÿg‚þ±–Ï3AÿXKí› k×Ò/LµkÅSÖ®•@õ¹–:7A}®¥Ö-Ybí[q)íû™z,òHöXìü2çÛp9ÛòS¶ aÅ6í;<¾ðø2DjÿëñŸÇ½©<|ž%+¼¾=WòU®bêÿ?º(Ä"êbƒd6áb>OŸ'Ò”>O¤ýþHsúý‘ôû#/ÐÏ´¤Ÿy‘~nä%®æË´—D^áZú~ Ö±5×Sš`ßÚº5„/Ú‡H u-ÁþµuÏp;àžåü‘_ò'îä9î qi÷‡ø-y€/ò _ !»\’öcY+ûaLJ¿âŠêANç ¡½úû§^²¨^ä´|[TrZ¾-ª9-ßÕ{œÖ«Õ{œÖ«Õ{œ–g‹N¤<[Ô>rZž-j9-ϵœ–g‹ÚCN±Oöplÿ8-ÓµœÖ—µœ–g‹Ú?N˳Eí§Õqs=¾Á–çF>ÊÏ©O©àx“GêßíÙ+Ä2ädoæbæf_æa?š›ÍúÓg^ {·ò™ÈÞ­|æ²w+ŸyìÝÊ÷´4D2©» dðVúìAËŒõƒ–Sý] “·’ÍÈä­Š†hãì!–°9¸ƒ9ùsQÙ87õ‘ópórwˆ›·9$¼üªŸkoÌ$ó²7fjåüçõãƒì‘™ôsó¶w4V{2ɺƒì•™ôýi]ÃyÛwË9ón— Ùy|H(P’XŠù0ßaiNâ#Ld¾K½Xç÷¨ëœÄòœÌG9…r]穬¢Ï±¸½,È},Äý,Ì!º{pˆ½­g)kŸï¿%ÄJwæVvá6ª¹‰zκûCxRoúmqêI¿5¯õ u°ò)âÓLý·“ÕŒ¼jF?™öá1TKµàáqT Oµàa×¢­½6ÇLÚksÌ¢½6Çì—Uÿw0Žú¿ƒQêÿÆSßw0ú¾ƒ1êû¦¡¾ï`Z`:dzb¾EYy€õUÖz`}•ÍGë«lþŠÉ|â÷=CksŸ=õÍ|–[ؘ[ùÕ´}M¨¦í{žjÚ¾¦TÓö5£š¶¯9Õ´}-¸‹/p7Õµ¾¢ºöÀ¾Ä½|™ûh-½)Dðû× =Üÿuãèþ¯3oz¸ÿëÌ›å½î>¯{–÷Óç[gõxÔ8³±>ùíh(ß*$\²O•oMûTù6LÂ÷1£k4S®h*WÌ”+šÊ3劦)S4•)fÊMeŠ™2ES™b¦LÑt‹÷»ÿ]Û™ÙÕýü2ös!cFçr8·9iOpØùLüš÷9ŸËùÌM{Ý€#ÎßoœÇøKæåN棺³ïZˆ;÷]çêÖLJHâúÖeŒõ˜†O1-Ÿöú^¿Æ8q}¦gf`Cfä3^÷‡×ɯûnÒz_ï4hD׸dߟÎ[ÿë]ëz‘õ®q×x½kÜÀ5Þ÷—çÕƒõúöÜ}·ŒÕ…õú‘Ôÿ.}VÚ{÷Ýv~#ïðó­W,$ܵnê=įYœGX‚ß„Èeëp®ë|Ùº›ëÚ^¶î準—­»¹®åeën®kw¹>S_߀ÿcC~Ëgx”xŒÏò8ó;>Çl“|ž§Ø”ß³O³9e¥Ë-ø_àY¶ä|‘ú³Ë/ñ_æÏ|…çÙŠØšCôÏßCìS÷õ¶:±Jq[X¥¸­N¬rn««ÖQX店Ñ;Þ–V}F¹a•yúU¡ðö>¦Z5Â÷Ȟøˆñcß'{Nã¢Æ}¯ì¹è{e— ¾ríß–)¾ríß–'¾ríßþš®ýÛGX’ß°ÿLJù-Kó(á1–áq?×uÊ.g|UÖø;–ã –çI>ÊS|Œß‡èR}ù«öü¥iÏ_Ú…öüŸÞ ±í˜D9ï§É”ó~šB9ï§©ìÈi|-Ä¥þ€¯þmO}1„4ö›Yú‘fú‘Yú‘fú‘Yú‘fú‘Yú‘fú‘Yú‘fú‘Yú‘fzõ§<\“Œúߌ®Ë,ýI3ýaúBì‹?BôË™!ö–¼øå,Ê‹_Îæ !ÜWËñÇŽÕ´xómóqšo›}÷xómó‰ôpˆ•;ÎÒüŽ0õ|ždYúý:.çØuTž§ù(Ïð1þ¢Ïí ±4=¸‹¯s7õÏ}E}Ås{Ø›{Ù‡ûØ—ûÙ/„YîOy×÷¹ÆýÍçòö‚ç¿ÁC|“‡9€_s p¿á[ü{¿uPÞòÜ·ÆCx”oó‡ò8‡ñ;ç ŽàIޤ¹ŸfÍý4£iî§±g>gî§±g>gî§±g>gÞ§±g>gÞ§±gvUç É ]å…BòBWy¡¼ÐU^(d¿è*/²_t• Ù/ºÊ …ä…®òB!y¡«¼PH^è*/Ò?uÆÇCÜ(™²šL9J¦¬&SŽ’)«É”ý~‘´¥y…~Ï(Ù²š\Á{|2„ 5aMÆQã[!ÊÚ´ŸïµÇVH =¶BŒöØ ²ÃÞ§Bô;ëõ=}òwÖë{úÒï¬×÷ôÉßY¯ïù6‡È3W0Ö/÷8åï*Rù®õËßUfZV¡:ÿ]U¦g5f`uÊnß=ÁL|’÷±ïgMff->ÀÚÌÂ:|u™•õ˜-ÄÇ¿b[ä¯߆„²oð(ßä1àqäwÄ|‹'9˜§8„ßómžæPžá0þ@}Å€³ÔW ø‘#Cè[glîø™cxžú‰8Ž9ž¿P‰¼Äwx™“BÜÖdÅ!áç<š„P ·Gsèߟ֞²C–NkOÙÑ/D—m±jè2}@5t™> ƒºLÐA ]¶jè²L}ýìÏ/©fæ—m¢¬xL?›_V<¶…²â±­”m aÚü)qŽ ø3ò¼çeÇcúÏ©ærÃõ4—Úã§šË å§$½aQ{aTŽÜ¤/Ê›ô¥Q¹q“¾4*/n’#¢òâ¦Ý”7}ÅüÜÃÔ E R/•6é…¢2Ã&½PTVØt2¦C” 6ÉcQ™`“<• 6ÉcQ™`Ó7” 6ý2Á¦o)l:J™`Ó1Ê›ìwQ™`“|Õ¦zˆÏ¶“OpŸänÖàW¬É=¢õ÷¨>ë«NÎÕrn/k{ÈÙôÙä›GKxXÏ_é¿ê"¿é_  þuÁ@ê_ ¢þuÁ[Ô¿.Lýª¾?ò›þTßùMº`(ÿâ0êM çmŽàŽäßÅ8šw9†æÑ‚±üãxãCä÷À !ú”kó¯kó”kó¯kó”kó¯kó”kó¯kó”kó¯,ð”œô¯,ð”œô¯,ð”œôï)ÊIÿÊOÉIÿÊOUà™fß‘Gˇè õC,Óuã?Œ5n`|Ãø¦ñcÆ õë³ÿ4Ö¿ðŒñM6¢~}ö_Î?nü¬ñ_Æ·Œ+76¾Åçx;DWf ±NææÊLÜÁûh®¼ŸæàÊÌ4WÊIÌÁ•Yh®|îí×o‘ëwÅõ[äú]qý¹~W\¿E®ß×o‘ëwÅõ[äú]uýM`„Çwå$Æ3‘ |7Dú½âÎÎ$æ0‡äì~“çäÊsý¦27§1ßg^~À|üù98ƒù­½~3Y˜³X$DgŽ ±f®ñÌÑtmgŽ¡k9s,+†Pü®ãqŽ+q<+s«„°¼Tˆ¤þ½Ø3'Wå;¬ÆI´?ÿ×q¢ã'ø.íQÅÿs,7³O·oY¡„ýª„½ªDÔsêY3k§„½ª„½åEY,³,ö¢,–Y{QË,‹½(‹eV›—Í êp6ëòcÚÓä‚È}7?1~Šsø4ç²>ç±çSß(/DîûÓxñ3\H=û²E|–ÉÔ“/S‡;<Ç%lÂ¥|žË¨/LÛÊñrÇÍø)›s[p%_à*¶ô;7ø¯6¶-[׸–/s_áz¦þÛ’j_Y=ô@µ¯ì.ª}ewSí+ûÕ¾²jOßGí?}ŒÕÀ²{©–ÕW TËî§XöÕÀ²©–Õ7 ´ÎËê›ZçeõM­ó²ú¦ÖyY}Ó@뼬¾i u^Vß4Ð:/+¯ ´ÎËê›Zçeõ ­ó²êÁôA!Ö¤ߢ:WÜZ›>Øq)áÃ!dªãømÇ¥9”pËp8ËrËq$Õ‹éæluÂ~‹³—4”éâôU ?§Œ×põU í…qúª†ö¸×h/ŒëD{a\gÚ ãºÐ^×UþO"åÛãºg0nhloŒëNýJœ~¥¡~%N¿ÒP¿g¯m¨_‰³×6Ô¯ÄÉ|ȆˬßIöĂ繈˜Ì‹ž——å Ñoõï|Dsü™òUSùj²±¹þÎ,šëï̦¹þÎÇÔw¼ó õïÈÁ÷ÉØ¯ á%9÷÷9!.ŒñeØ0†2lK6Œ£ ÆS† (Æ‰ÌÆw˜“˜#DK çôK¥¾¦~©Ôê—J}CýR©ÿq0å­sÖf)y뜵ù—ûµ¢%ݯ/ÒýZñRˆÞ5^g|×x]êØý[÷2Õœu¯PÍY׊jκÖToÖµ¡z³®-Õ›uîó]u&õÏì7ßfê»Ï›o3¿§ù6ó4í+3Ïðqþ„º!’o”qEã³ÆõŒå±ó•Œ4~Êx ŸæXÖ§\v¾²ç2n`,Ÿ¯b,ëLhh,§¯jü3«ñ<«óŸ û{þIþÂLñ¾g¼O®;_Óøkñ2kóWÖáo¬ËßYWø¯†ÈÐ|!þq9kh~šSC МZæÔÐB\ÌÂ\Â"\Ê¢\Æb\·ø)‹sKp%KrKquÕ…ðõF¾ÅÏØù5Æzä¯7—6^ËG¸Že¨Þ-Kuth9ªmCËÓÏYl^W7¯'÷ ±Ø—Ùö¤¾ÛC|)÷¢ïº}¿ {Ñ÷Kº}wҵﻋ®eßÝlį¨ç«Ô6„Sxà“Ùž9Ä¿ù!àtfá >Ș•3©wxs³s6sðcædêÏÉÅ9Ì͹ÌÃyÌKùw»ûò¦û²Ý}yÓ}Ùî¾¼é¾lw_ÞLѹKCì%u|¶ûØÜ}ý4Ý×Ùõ)¤µï ¬"õ³8wM·ö;Œ£µßa<­ý2Ø2k¿ÃDZûÞáINR?eëe§'ò{¾ËÓ|g˜ÄèúŸb5k„È¥ª!~Ž {©eØK2íö’L;Gι$ÓÎÙC™vÎ^ ávÇríœ}”eçÈ®SåÎâú‚ìæî¡ßhîúæî¡+ô]¥ï|È÷Êî;ºNßóÐ 6ä|†²\öFü“Ïò/6¦ì–]Ïsèvˆ›Þ.$4IÃöLËW™Ž˜ž™¯1#;1õ÷Mô÷Óõ÷MÔÆéúû&jãtý}µqºþ¾‰Ú8]ßDmœ®¿o¢6NWÛ¨ÓÕê&jãt}|}üt}|}üt}|“\ìÇÜìÏ<|ƒyù&óqós p ò- Ñ׋„XÑC!¤þo® ð'Z¯uþ°ñ9ãBü™…)V”Û^/æyýÌëQ?ózqÚ£Ê-­å–…rKëgCd^ëÿ’÷Ìkà lË‹lÇ_Øž)|•—ّؗ¿ò5þB¬!|×̸“±Æ N6ãæÌÎÎwvþ »ÐÜNýGÏëx|÷‚s]»Æn¼Îî”ýçõ Ì?ïuÊúózzôr¬ŸyI.Z¢o?’úñöêøýx{õ{‰~¼½~z‰~¼½~z‰~¼½º½DÿÝ^½^¢ïn¯N/Ñw·Ww_¶_eIýsÛ³²ÈF­F„„¬îG«‘t?Zb!ŽfaŽaŽeQŽc±í½*ÄJسz¯¦=«÷Ú³z¯¥=«÷:Ú³z¯§=«÷g”MzË*%d“Þ²J Ù¤·¬RB6é-«”MzË*%d“Þ²J Ù¤·¬RB6é-«”±{Ë*%º…è¤!V÷é’»…Hµ%ìÎ¥ÎË“fzN/U·A›ôƒ·R?Øx[ˆ^,›úO+°ÕMúÃÆz¡‹åãø(åï‹1ž(_|œ1VdïÓO6Ö;]¬dœ–•™ŽU˜žU™Õ˜‘Õ™‰Oð>>ÉûYƒ™Y“„hÖÄpPÏ–õ]ê5²¾G½FÖ$Vádê1²N¡#ëTVç4>¡åP^0~ßøI~Àü59µ8ƒµùeϬ3Y—úˆƒú†©z­â2LVýÄÁ§Œõ\Åe—¬úŠƒOS?q°>õ]ç©z±â/Q/V\¦Éª¿8¨Ÿ˜ª'+nždÕg|ÆXoVÜ|ɪß8؈úŒƒÏÒz=ؘÖëÁç¼NïVÜ|ʪß8Ø„úƒÏS¿q°)õ›q™‡>ã`s½ÅœÖ!áÅx¶aÛ2FuóE÷màɤNÎQ?_Lk|ÐX½œ£Ž¾¨ŽÎQG_tÿJ\ ?NáeN寜Æßø>ç¼Ây•Óy3xæb‰œÉ?(Ë–¸ÉÙ!>ýß!öåiþÃ3¼ËBt¢»ÖŽ©!Õ¡ÜSM01«óú†‰Ù¨GŸ˜zô‰9¨GŸ˜“zô‰¹˜úo?©3Õô sï Ñfö¾ ãB(ê6;ëØžZå‹pÝZªò%»‡0C¶xÄ[e§±|_e_w^ÖxÄž[e·±œ_å+ör^öxÄ\eqo’õóŸz¯ÛÈã7äó6¯r.;p;r¾×mò:5:ëfê-³n¡Þ2ëVê-³n£Þ2«\äÞÇe•‹ÜûÐæ5ï_`,™¡M'ã…ìÌEÎËKæChÓÅ8™zš‹—ŸRçHVùé þ3«üt°%姃úά{¨ï̺—òJÖ}ÔwfÝO}gÖl̓lÃCT㎗±ÄBä‚×Ï–ñ.xýl{įŸÝœ^?ÛÞpÁëgÛ.fK~ÍCh:+„‹ß1~‰ßðeþ¯ð[¶âQ¶æ1¶áq¶åwlÇlÏ“|•§Øß³#Í·Ù¯Ñ|›Ý‰?Ð5ËV×ÚÏ&{^8ëœë–Mþ¼ð£c5·Šýäzêý·Ÿ\O½ßö“ë“xžòÖ'Bì…»|–ÿ²1ÿãs¼Ç&!¦Í~ò<#lJµö“fTk?iNµö“Tk?yjí'-™†/Rýä%ª±Ÿ¼Lkô“W¨Æþs-ÄÖÊiåþZö‚;–ýkÉþeÿZ²ÿDÙ¿–ì?Qö¯%ûO”ýk­ðÚ¯Ëÿµäÿ‰ò-ù¢ü_k5åýZk(ç×’ó'ÊùµÖ…èæe!ÖÏÞµy9í]eþ õ¥eþ¢¾´Ì-š÷v ‘‡åß2·çòçñoÎç?\À»\ȹˆÿ1õ}÷¸8DË.a„ö¸²q\æçwõóSŸ/7¶>œúºxãO™ÀŒqe|æ²i¯bZúŽ×ô(Éz›kz”d=͵G¹ÙÍ’³®=æxKÍÕ€×îZã­|œÛX‘2ñµJÜÁÊü‚Uø¥÷õô¾O©V¤¸Ö©ÿn@ŠÏQZ~8y1Ä&fßÖT;¢‰íC¬žý0ñUÚ7?b}/èíÝßÍe_tŸ/¹ÏöÜ.S-üçWª…×[…Øi›½¦©õzãDHX:‚')7Ý8E¹é†ù†þø†ü´T¾Y*Û,•›‚º°QÝ êÂFu'¨ Õ .lTw‚º°±)Õ…ÍholNë|£z¬óêI°Î7ª'Á:ߨžë|£z¬óêI°¾7ú|ÁúÞ¨žë{£z¬ïêI°¾7¶¥õ½±­ï2ÓÞs!6ܼÙû3Í›ãæÝ»CBxøï·À~ÕÊ~¶@îo•!„AúÞL)Æò+ùüßJþ_ ÿ·’ÿÈÿ­äÿò+ùüßJþ_ ÿ·’ÿÈÿ­äÿò+ùüßJþK~x´å‡Gå6Ï„X6ýJk?›~¥µŸM¿ÒÆÚϦ_icíg»Mk?Û>y2D{ÛX Èö7Õ€lÿP Ȧv´Q²©mÔ€ljG5 ›ÚÑF ­CFs¦:]ýh£dW?Ú¨ÙÕ6ê@võ£y]ýhÓšêG½‰^5šFo¢W¦Ñ›èU£iô&zÕh½‰^5šFo¢W¦Ñ›l×cLŽ…H±zÆz”ízÉiŒŸ2Ö«l×s¤ÌÔ{,­ó²Pš!Æ>_š·ù‡²xˆ«™âo}Âç0 ç2-ç1ç[Üç§wlO«™ ™‘ö²qú­ú­qú­9Cèoͦ½fì»ÕÐwóÝjäv^J{ÝØw¬‘ÇX½J{ƒëø‡ó¾s ýØ8ß¹†~lœï\#¿ç×{þ¦±ï^CßÕÿ3ã?}÷úq¾s ýÀ8ß¹FáùYó‘lñ³þæ#}l!=ÇI™¡=â¤=¢=âä;!¼o+)²Wœ´W²Wœ´Wº@½y¡‹Ô›ú…zóB)Ô›’»NÊ]…䮓SýœýùªüuRþ*$”¿ É_'S¾üuòCµ­tˆ+R6ÄŸÚB»Ó!üé´;üüù\ç ŽÏ:ö½ÛýH}OõïÔnª§¾¢úwjçò|Až£9Ñîgš íÎS?TDm<µ—jâ©}ΫUší.²áCL¡¹PDÍ<µßø’q cµóÔª§RíïÎäüzãÙÆîãˆyÆùûœ·_ŒøÄØý1‡î刹t/GÌãO^w¿×m0žo|Î8³ñF>ÀÏ_àüÏÆYŒ7…®ŠãÛóF,ôœµ¸;«±}oÄ"ã ÆÙŒ·2;·1·3'w0¿`n~É<ÜIëm·µ¶;¿±,=D~òUˆ ´vÊÊõ»ÒZØ×Ù7؃ðuÞdOþÉ^ü+„ªú‚Ã=Œ{ß2.cl®j<ÜÓù>Îßf_Þ qõõ”Á¬¯§ æ^}=e(I=e(E=ex˜zÊ`Õ×S†G¨§ e¨— e©— åh/åi/R/ Ñ?†Ø¨9ü‰òÎûÖ(ûÖûÖ(÷ãˆ}u¼žáˆ}uü³´¯ŽoLûêøçh_ßDö¨ìØÞ:þù²öul/÷7–'ÎÉnGì³ãåþÆrŹÆöÛñò~cùâœwľ;¾…qcyîˆýw¼Ü}Äþ;^]:bÿ¯®±ÿŽ—·ØÇËÛGì¿ãåí#ößñòöûïxyûˆ|=^Þ>"_—·È×ãÛùlýËØãõ9Yû;–³ÇËÝ'Ôð÷¦P o*3qïãû¼Ÿ03­¿к;‘ÅãAÇ3<> ¡¬ë•áxˆíÜ¢'\Û$¹í„k›´š®mÒº¶IkyžjýŒ!¾‰y;£ õ>µ²„pìyãBÆ‹)#7‘fÈÇMäãòqùx†|ÜD†¬õ ×ëafÈÉM\ërrÙ­VVç]óZÙ¨§™!37q­gÈÌM\ã2s{Ó ™¹‰½h†ÌÜÄ4Cfn’ú¹ÊкÎòºcuº‰}f†ÚÛdÕÞ&©ö6‘Eg¨­MdÑjk“ÍT;›l¡šÙd«=ÊçM{™2iÚ_íMzýzýqzý©_¹Ïö·òUuNß_Cßßß=]ŸbòyO{J1ù¼§=¥˜|ÞÓžRL>ïiO)¦N]T›g¯ !}B¼/ß?ΩϳÕå‹êóluy‚Ÿ“ï.ýœ|ÿÒÏÉ÷ŸçÕíÙîcÁEæ×?7ß=Êý¶Õ0áKF¼NŸýÕíÙêñ„Îǫϳ7ï2Ž«Ï³?§ú<{ÕåÙ›©&ÏÞBµx¶{>a·×ǫų}¦¥®uûÄê6á„k¾Ô5oïš/uÍÛË-n†X¦Ùü“z³QoÖâÕ¨·©Fµ¸C5ªÅß”­[üC=Y‹»Ô“µø—z²ÿQOÖ«fˆ=t™µø+kó7Öáï¬Ë+¬Ç«|Š×ø4å¥^õyƒ øRŽî%O?$G÷’§’£{ÉÓÉѽäé‡Ì¯¢>ãˇØGYšÇBdËÀßï…øþ©Eú[Œp0ã8„Q¾Íxe‡Ñ:i †±Ÿnnl4PÇÎØW·Œ0¶Ftݼêœ=vËHçÒw0žç9÷`Ë(笓Sß·Œ6¶N¶ŒaFŽe&Žã}Ïû9™9‘øYæÖ–w«Uîð0—¶L2V‹´Ÿ6¿2¾Bî®!zjMˆMɵÅuÍõcy´‘Fîï©ÏŒÇ«ÇÜçSŒÇ…èîr!6ÄýÛ]ÞãQÇ©_áo!²Â5ìä®p ;¹†+\ÃN®á ×°“k¸Â5ìä®p ;¹†+\ÃNú„®]'ýÁ ׬“~`…ëÔ)]›N®ÍSBø>½±kÓɵYáÚtÊèüAçSÇ®Q§LƇŒSϦq\GϹn\·®['×m…ëÖÉu[áºuz€®Y'{Æ ×ªÓƒLdV¾Ël|ÙC´z¯p3'õ7sQ/qSÏ0Cö(#3Ì=Ê”s^OqS¿T]OqS¿T]/qS¿T]ïpS¿T]ïpS¿T]ïpS¿T]Ïp³õ 7eã²K×µºžáfc¦Ì£Æz‡›E©Oº©Oª®Oº©Oª®OºYœÃXÂëe2rDõáÆ%eúp\*D‹Ë.g+Qv9[™²ËÙ*!Ì?"•ïÑAÝC¬¼Fqþ7Æ™ù?š[óÕÜÊY<ßÃó9Œ›Wó­ŸÊö´ùÇiO›ÿSß‚©¯;IýÖüSÌÅïéšÍ?M×hÐë~^êógŒõó k5¨§ó©¯?k¬ Îÿ‘úªù?Ñ5ÔËó¹Ù›©?§]ëA}™úþ~t­õ§þ$®_ˆÿ\}­|_e¦7ÜÛGÜÛ7ÜÛG²3‰98™99…¹8•¹9z!×(”µÞxß8/?`>~ÈüœÎ”=)ÈXˆ3©ï{c‹p6‹òcº—_[‡zËè×Ö¡Þ2úµu¨· ÷Y£_[ƒúÊè×Öž~2úõF¾ÅÏ9˜›8„›ùv¯¹owž q•乫¯QŽ»Ú‰òÛÕΞw?ï41–ã®v¡wµ+師Ý(Ç]íN9îjÊqW_§wµ'師½(Ç]íM9îjÊpWûúùêÏç師ýxšýy†oð¾éuæÏyô5óçN3çÏ:?€?r óæÓæÆ?â9¾ÅŸ9˜ç9„˜ú½Í»;-Œ/å/Æç%ŽàeŽä¯eïÓÓžhEó서ºxnˆoW‚óX’óYŠ ø0²4ñ&³ ³,—°—²<—ñQ.çcü”¸‚«Q ¯t\‘«X‰«)¿/^Ã*\˪\Çj\ÏêüŒOpŸäFê[g뱚ëµf뱚ëµf뱚ëµf뱚ëµf뱚Ë0³õXÍí ³óR¯5;wQ¯Õ|wˆ~ûaˆ½Ó–ÓÙ.D7ýb}íç›®Ð~¾é*íç›®q1¯s opiˆ¦VUÒçS«*¥ZUI_Ÿ¦©cõª’Þ¾ŸÞ!Ítcõª’þj˜ZUIë§—H3ƒz‰49?Òyõ¬Ÿž"ÍLºWif9?ÊùRÆz‹4³CØ¡Ÿh.ÓÿW)Ä>û?E÷¯cýÿüsŸqÛ«²¢lYe ‡¬dd$›"ÅWFD*ëTFVÙ ˆÓÉ!Q¢agž’Q‘‘Í÷yÿq?ž÷çºïsÎ}_×çz¿_ïß÷W¹ß3ûûs ‰³&Í»/«ï9äð—Õ€öØÜZŽ›_V rØCsk[³Vrt°N²6Ï­CsïܺüÝëjEŽŽÖY›qçÖã ÇÕŽ¬ë[ÿ½±~µç'٧؈±öV}ÉÑÙúak9|ncG<šx4õhæÑÜãQ-=Zy¸Ççºçº×æ:ŸsÝCscß%öùcŸ9ö¹bŸ!ö»»xtõˆý3¸±î¶›GwØçŠý3´±nöig<ÔŒ¹±ζ—‡ú07öÏÒÆþ9ÚØ?Cûçgcÿìl쟛ý3³±^Vìü—Çßÿxœõ8ç!ot>ïqÁã¢Ç%ÿ<.{\ñ¸êqÍãºÇ ›·Ë^”öUöb|Åùí¥voÒ^n÷Kq,KómÚ¿íÞa¾Ë²ÇrÏò!,P#jõ ñ#ÝS>l­VÔ2ƒ/P+j™½¨µÌÜ ÔŠZêéµ¢Ö@ïÿÐû·T¨µôŒ‘ÓÄZݨ¥®.P7jé ÔZêèu£–¾1r†÷5áL6u\©5ŒêH-}dä,Ç›Y«'µô“‘³­›ó#>ê¸úRëUë­[X׳ÁúÉ| 9Êûæx_KëFÖ£ù0eÍ‘soÅylÍù|Œ ؆ ù8±-³?aû’äærÀÈGBBlBy/ižãÇ9Ÿ!äyÛkM½¶“Í(ãŒlNÙfä£üYPuÎF¶ð\¾Ù’rÍÈV”kF¶æžÿë«!:Îyûu›†øzBâå;3Ž]Âôçä.5°^Wë>ÁD&3JóõåL4__ÎL3õå,!~€Ù¨œŸ`6*§v¸ÍOC|mûï|Úçï§ýwþ—´9$\pÿ&m¡{8é[šAzž ášý—´ÕÚ=ô͉2rÏSjÍ5uõš=™´Íkî÷¤ítÏ'}ÏØ›åº÷“d‡ îÿ$Ùá‚$;\P’d† jA’ÌpA=H’.¨ I2Ãu!If¸ 6$É Ô‡$™á‚‘$3\’d† (3\ ’d† ²A’¬pA6H’.È? ÌÉKCøÌÞjho}s"D:Æþ[Ž#Ctë“|OqŸæh>Ã1ìÉ×ùlˆ?Å9ø;òMvâ[ì̱ì·ٕïð ¾ËdŽc7ާs}ìÉøaV>Ål|šÙù s°'sòYÊŠcW‡Há«Ö½¬s³7óð9Þâz͉Eê„ûoG–YÏ´®ËY|Èñÿ9þ™õlëz!Dõê^y^Ÿ³ç°aˆ«*3œÑ+ªÊ gô‹ª2Ã=£ªÌpFߨ*3œÑ;ªÊ gôª2Ã=¤ªÌpF©úõ’ª«©ŸT]C=¥êZê+U×Qo©ú5;ØWs<_ï¹>Suõšª©ßTý†zNÕMÔwªÚ³gôžªöìý§ª={ÆyÍy8$~kžÌy„cy”oóß á=5¬´ì›ó¸õ»Ìà8þÎñüƒx‚ù''…¸Ä²!aí*–cËóKV`zzAøÇwJ¼ßú+>ÀÕ¬È5¬Äµ¬L9*± å¨Äª\â_:¢¤ðO¾Ç“|Ÿ§øOs2ÍÅLá_œJùéi!2Ö5©¯þŽuMê«¿c]“úêîXפ¾:;Ö5‰ýÿVŽuMê»죄úêëXפ¾ú:Ö5©¯®ŽuMê««c]“úézÔ„®Gý&t=ê7¥ëQ_ÎëzÔoN×£þ£t=ê· ëQß\4Ví¨oot³ÏÅé¸nöy¾íó|q´ÏóÅÓ>Ï—@û<_"íï|QÚßù2ÑþΗ™}˜…ÏÓ}Óíf áùŒ zj·¾ÖîŸnýèþéfÆÎ'³=ÿ»×õÚnfí|¹(cäsÿt3[ç3¿<ÿ‡×õànfì|î£nfì|wÒŒï.š±óå¥;Ÿ/r÷ÏÍÙ±þ»›9;öÏ}w3_ÇþyïèÏÍֱ滛¼ûg´»É«ùÌ“ƒº…h5zPwfeºïãú™'¯†Ðy§}ä~ûŸõ5öçu¾ÈÀ›!qŽ–ùޱ™¦HÔÃ9Zæ»Æf–Ø¿ß{™ïÙÓg[æ{öôÙ–ùž= Ò÷ëiÎíV-Dóbuf šÿІ„y™‰“˜™)ÌÂ÷˜•ï3?`vNfNaNNe.N ñ囌âtn2JÐyÉ(Iç%ÜZÞyÉ(M9>ã>ÊPe(Ce”¥ •QŽ2TFyêazXy=,C+¯‡e<@*£"e¨ŒJ”¡2*S†Ê¨B*£*e¨Œj”¡2ªS†Ê¨Á |Y““X‹)¬Í÷˜Ä÷©¾f“+Êày]NæCœÂzœÊú!~ªÒÚg˜ª‡´ö~j¢oçg;`{º&‡„ û©‚ü‘qòGÆo!ëéÞ½GÞêéÞ½GÞêéÞ½G-Џ>é¿ÐuIÿ•®Kúnº.é{躤ï¥ë’¾®Kúþ—¥XHØð9‹s9KpKò Ê'V²4õž,÷QïÉR†zO=iC:õ¤ zN=iƒž“EOÚ°&Ä_öÝå'hï_ö}RíýœeBâ–ŸX–?³ayþÊ ÜÍû)¯æ|€{Y‘ûB|Açý'ç½ óþ“ó^ÐyÿÉy/è¼ÿä¼tޚ‡}nˆúbˆVRû†à=È{9ˆE8˜Eù‹qÕŒ¡CY"„yibõ%ë—­ÕŽ¡ÃhæŸ÷¥ãÿY·VC†¾B5d¨™b¨l]©ŒGÙ™33$t.ÁY,ÉÙôó χ°·2/ÐŒ4ç#ÇK[_´6+ÍùØú>ëKÖf¦9s¬å݆ÿY›™æÌµ.k}ÙºFw¬öüŠçf€9ó¼VŽóYž X y?ñ.¦ùmÎ'¬äçõ€½æ­9ŸZ›ßæ,aǯ9.»ÌYjûlËûLŸ1öYRi~›ó9c_vëû=²[çØÏÉnÍmsä„ÎrÂ9¡³œ0ézHh:š78†7ùzõ6‡ðk¼õ-ë7B\99ü¸¼^N?.¯—“ÃËëåäðãòz99ü¸¼^N?.¯—“ÃËëåäðãýCä×B¸BœÌœÂ{8•fånëõG3H· ì®_ЫXo´îÁoh鶉Oq3ÍݶмÑí[š7ºmå³~þ¢Ÿ¯ÊK¬æøwŽ›?ºm£ù£Ûvú>ݾ§ïÓíú>Ývð…¿~ˆy/{?~ýÏÕ‰õ©N¬ÿêÄúCT'Ö¦,¶þõ¼õGù!q:s383„w…È#æÐõ¿[ÏâœMpÈG”‡|LpÈÊ€CÜGëeÀ!ó(™OpÈÊ€Cò.âY.q¥»„„CgÙ•çB(ðŠçOxþ/“yžÝxÝiß?¹"„Kÿò Æ^ïá¸ý_àUÏÍI‡ìýfôf¨'WzOìgÍM‡.ÓÜtè ÍM‡ìã'Wyý¢µùéý[à5ÏŸõ\ž)Ý‹òLéÞ”g Œò0ÓãØsŽÝòüõÉP;§ïáq³Ë‰W­ÕÐé{¨†Nßë¸æ„Ïóx}Žt\¯›¾zÛôý!äU?òºç3ô¸éª«ͤåÕÿfÒòÕB¶5Drékþ£Ü¸´vH|ZnXšD¹aifx}›×eÉ¥u­å‡aÛ­³ð{ÊÞKr\~XZ'XŸ²O²!O…Èɤ C„Çÿ áOßådë-¬Ëoù·ºÉݬëYûl'ëÓg8Ù€þöɆü>Äs¸NñÃÜ®SÈþ¹çî×*~˜{Áµ‰ûêVH|q!osQˆSš_tO¬Žð“2ËM«ã<ÿ4Äÿ—-D—gvúÞ÷oõ<‡ç¿3'ÿ`.ÊHÿåæŸÌÓ¼ƒ§BüâB´Ç=!|6>Dþ`Ý×Z[ÜzÜâÿѵØ#3LO÷<éñ”ç•=Ô¹½%Câ„,ÅCxÓÌv÷«4³Ý=ÂñҎ˃ošÝîvï½iv»û5šÝîvï¼iv»Ûýó¦Ùín÷ÐÞû¼_^|Ó w÷ëÖzþ„Ÿ¨çOø™zþ„_¼n¶»û²8‡GŸ Ñi²îÑ>”u>Ï:ôݦ¹7N^Ñw„°ö!òØgÖ7¬äMî ñŽ Ñx™úÑñÔgÚŸ•ìÏG'X?hmVzú^¥¾Ô÷*õóúD¯ËÜN¢Ìýh k{½’×ÿG}°RêÑ•^¤þWÉý4Sÿ«û÷,é•bÿ~%ý¯Ò`ê•^¢þWI>}ô=¿Ï÷yô}Ʋ»z2SO¬4”zb%™õѼæ;>:™îÿG§ÐýÿèTÊòNc~ȆœÎFœA÷ð£3Ù˜³èž©ÇVF=¶RìßÝd¯$?:ÛëîáG?¢{x¦ë\Éužé:WRÇfº¾•Fzýc¯7ã6ç\>ÊylÁùlÉlåçì‡J¯Y/´nÍE|Œ‹iVyô>ÎO©÷<º„í¸”í¹Œø;2•BB¦Ë!ª&dºB==ÓUêé™®ñ7Úú`üÒø}: ü2ÄçÓG4#äû‘®A¾t¾ßŸ"÷eXï²vÞóýD³B¾ŸiVÈ÷ õ©ÓÑ(ÓÄÎÄÏCxgeˆÜ«×œÎl½Üz•µÞr:‹µÌ|:+õ¬wdÅ{õ«wdÃ{õªwÒ)Ÿ½óõ¦ÓÙ¼OßzgµõUëìÖ²õé”­Oçä—^_ãuó÷é\Ö2öéÜ”±O硌}ú®á\Ë»¸ÎÏ­õs×¹Ž7ø5oz=¯×¿¶^o­·½³·¹1DНçóúzæçàF¯›=ŠD¬ Zû¹ÉñMŽÇY²V[ßÙlo]Øz ïá·¼—[Y„ß±(·±·‡PFî˜g/v}L]"9ƒO‡Ä§Z[µ6g|ú‰uìõ—­‹O?µnÃ%|ÜñaŽ;7Ÿ.µnk=ÜZÁö £O—9ÞÎZÿÎé\}ú™uûîݧ·µNµîÀÏÙ‘ËÙ‰+Ø™_°K_M‘–ûCü±ûÔ#9û«ÖzúW3yÐqyÚU–å5–ãu–§kQÁ~;VÁ󛼟·øo³bˆ~X‰f½Ëî—T÷Óe÷Kª™õ²û%UNÞV1$¼fm«Dû¼’Yè¤Y¨’Yè並îÔƒsZ›‰Nš‰*™‰Nš‰*™‰Nš‰²="‡‹„„É Y”‹hœ¼˜æÀÉŸÐ8ùSš'/¡9pòRš'/£9pòg4NN¥9pòç4N^Nsàä4Nþ‚÷ÓýsøÊdmä™?ô6òËzH¹åQ^÷Ý&ûn‡}·ÉîŸÃ•éþ9\…îŸÃUé¾9\küœ\ó‡žÓæašWw|­µ,ó‡ìv¸†µ{¢zø‡Ó¦ ßtüAÇ݇kÒýp¸7x]=üã-áMÏå™?Æz­¶×Ü#‡eˆÉî…òÃd{ÿ°ì0Ùž?,;L¶ßï1‹í®Ns×î4wíÖsºÿÂÅ<Öæ¯Ý5­õ¼‹wðWÞé¸ylwì¿gÛ]›æ±ÝI^×#.Þem.Û]‡æ±ÝuiÛýÍa»ëѶ»>Ía»Ð¶»!Ía»Ñ¶ûašÃv7¦9l÷#!~ÀÚ-'XÇÞüš2߀õ”õl Þ9`#eºTý¨—~ªõjBª}ÒHþHÕ—zé ©úR/}!U_ê¥/­e_gemf³õöT}ì²Þžª]ÖÛSõ±Ëz{ª>vY^IÕÇ.Ë+©úØey%Õç¼ÜŸúÕe3|jSšáS}ŽËføÔæ!òËæðî£ÜÂü–-ChõCÙ¬·ZëO­ä†ŒìÖßY·æ6>Æílãu™'#‡õ÷Öó¶å¶ãlÏìÀ]ìȟ؉?³³½#ïüò‹ç]Bä¨ûiª¬×fš½dVhãÿÃlpÔý5ÕýuÔý5ÕýuÔý5ÕýuÔý5ÕýuÔý5ÕýuÔý555ÄÏWº£¬ÖUNœ_…zØüª”çW£Œ8¿:eÄù5(#ήÑüš”ç»&]OÓ5éz†Iü+ÄÇ¥„ÄÕrWÜ{”SâÞ§Üg&Y-“Ä™IVË$qf’Õ2Iœ™dµ{8ëbÏÍ!«]Ï8óÇj×3μ±ÚõŒ3[¬v=ãÌ«]Ï8³Äj×3Î ±ÚõŒ3C¬v=ãÌ«]ϸ9”3âæÒ~Š›Ç!LŠ‘’±ß;ßÚ¾Š[ÀV\H9#nåŒ8=cµœ§W¬–3âôˆÕzÁ¤?û·ž°Úu”É:öùõ†Õ]¨7¬îJ½aõ\Éd®b7¦±;¿d¦SæŽûŠæ7AâjsÛ)³{,_¬*Óî±6ÃËñ§ÌðrE|ñWBâ3ãäÞ!RÖl]üUëÒÁû8’æÇ⯱,G±G³|ËÔ»[ø¿ ñsF„hgu8á@ˆ®]˃\âwŸ Ññëù/7ð<7ò¿áEnâ%næÜBùl¼ß»[>onÙ-ŸÿŽòÙøm”ÏÆo§¬>ÞìÔQ®Ìåzw”+s¹Þ=ô¹®W}®€\ØCŸ+à:õ ¸N=ä®S¹°€\ØC.,Ð)Ä~+D{;?Ÿßæ!^$‹ö^Éõ˜»=ó\&\.öÖ+—ˆ½ÓC|[#›¿ÑÖßÈ&Ì"•ó¶þV¶!”´÷Ûú{Ùü½¶þ^6¯íçìÌåtýÛ® ëßö ºþ*„Äkþf£ûé:6z€{Y‘ûX‰²C£Ê<À*”Uåo!.Í=Ö¯n¯êoyäÂ4÷Z?u>ͽÖOOsŸõSçÓÜgýôÍWåÃ<òašû­ŸzŸæ~ë§Þ§¹ßú©÷iî·~ê}šû­ß#t¿õkB÷[¿¦t¿õkF÷[¿æt¿õ{Ôï•ó\·v¿õkA÷[¿–t¿õkE÷[¿Öt¿õ{Œî·~²Xšû­ßãtŸõ“©ÒÜgýÚÑ}Ö¯=Ýgýd¬4÷W?+Í}ÕÏ}–Yo³>$$™Çl`n¤^\·L?õ²þƺ7QÍ£æ'©ùcÔü$5ŒšŸÔ’j}’Z_·¬Ÿs¿ŒQë“Ôú1j}’Z?F­ORë#]=Wç“Ôù1ê|’:?FORçǨóIêüu>I£Î'ù¼ôÛëÎc#ýöºóØH¿½î<6Òo¯;ôÛëÎã>÷ߤrtÿMrÿ½)Þ}ÐzŒu¾Îûùà›¬È·X)Ä}`.i!y,$<°—m¨g yœûÙ–2gí¸~4s ig}Ð:ÞÚ,>¤½õoÖ Öfò!¬±#ÓLõÀ¯'zݬ>¤³õQvá1våq>Á &ówvãìÎìÁ?ù$Oò)žâÓ<í÷Gý~½pÈ3Ög¬3YËa±ÿ–ß®ñžŽÿeź©õ³Ö³ÿq<«ã®ùÞÖg­³Y»öCž³>Ç>ü—Ïó¼×³{Ýžò‚õöåEÇs8n égm.«ÓZ>¨‹­ÿŸãÿ±?cÿÌTnÇí™!/ZËøµóXÛ;CX_µ–Ý~lc=ÐúšõÖöÑAÖ×9˜7øozý.¯Û_C†XßâPš»jçuÜ~òrH¨hKƇ3ޝPïò*õ°!#¨G Éhˆ_ønˆvS§Ž£½PÖ_8Áó‡<ÌòÛß £ïæ,B ŸåXëÉÖ…­Í€ÇêZO±¾‡Sy/§Ñ@ØÂg<öPNU8û}:^”ÓY,„»dï–¯Õwl†cÅ9“%8‹%9›¥øKócÞÇ9to?ûm×C\ý[!áÊ4Þæ‡!NyK¸2Î`g2ž³˜ÀÙLäG!þ̱§œ9N=àLWñwªÿgþ úæÓC¸?Ÿçzþ•çù=?éùjžâžæZž¡9úšs¹Â9ºæ\®pŽÞ¼É«4£u×óÏ¢Þ˜vÉtUÝÉtUíýdºªrVw=3¿ÏÛ]ÏÌÿ1õÌüs¨gæŸK=3ÿ<ê™ùç‡ýÏõÍü x“ ©ïåý»³Fêã6N™=ÍóJÅÊÍ*!rÜž™.Ç·g¦»ÿ¿'„OX¿f™£˜…£é~{ü^¯'[±–¿N™ùø”¿Éœ|‹îŸÇí“ÝX”Ýëxn¾M÷Íãöɉ,Î'Çñ;ø.ïä8º?/áõ§¬Ç[çåæ“¥gz­¤×žvl¢cù­e¡ÏXO².`]Úº§uŠuAëû¬Ÿ¥ýu¢õ‚½YŽÏyß{Þç¾8îšNw_L+b^–תÈQ§cÿwx9ê´UE?-GUQÇO—§ú}ºÕïÓ÷Sý>íúTQ¿OW¤ú}Ú5¨2–•Cä²s‘ê»^v.R}×˾{ê]ôÝS}Ç˾{j>úΩùé;§ ï™Z¾_ªÏyÙ÷J-DŸ;µ0}îT{ñ²½˜j/^v?§ú—ÝÇ©îÏËîãÔbt§º'/»oSÝ“—Ý·©îÉËîÕT÷ä·ùB«³˜Ÿ³Y€¹ïk‡pôeë‚ÖónÎa!Îeašq£êÎ×jjt<ÕШÚóµÈCÈÅóIž¡¢:šâ¹š}ƒ3g<+Ÿ™g㟕Ï̳ñÏÊgæÙðñO!R=·u¢õgŒÒôl&~Î̔מÍâ‘ÕsYÌ\þ£ýteÌOSÆüô%ÎåÎãPÎçË2i'™´$;³»Ð~úr|ˆÀÅtßyÊC=iþ|‡Í?q¼?¥½¶q Ýïe”—«RFy¹e”—«‡83}b¹ÜÀ'¹‘O…ÐPˆ$|ÁÁ\É—(;÷—?Ò8”_zÿ7Þÿ47ñ™Ÿ£dHܼƒ¥è¼ä(Mç#Ç}tr”¡ïŸ£,f9þÂòü•²òfY9‡¬¼yO)úxi÷N™y³ÌœCfÞ,3ç™7ïq¥ìÁßRCx²k—¦ó ê ¥ìÉßÌN±ÿæØ%ý¡”½ù›AàI5é’>Qêë¼—_°W²(W±}Ï'»{¿~RʼþÛ—ÖjÖ¥¬Íé¿¥ÓœþÛW4§ÿ¶šæôßÖМþÛZšÓ[ççžôsÓ¹½4‡Os.Ÿá<ï+ë}_[÷´žo]Îz=Ës+p#ïç74§ý¶)„Ds@©Šž›»n¿¢_š‹n›ã¾4ÝÖ¾4§ÜÖ¾4§ÜÖ¾4§ÜÖ¾4§ÜCsÊí×iN¹ýÍ©·ß¤ótÿº7½UHls‰­ùãe¶á>N3Éô¶4sLoGYgŠŒÚRF"£¶”Q§È¨-eÔ)2jË”M[¤LÚò7Ê¢-eÑ)²hKYtŠ,ÚòeЖ2è´¥ :Em)ƒN‘A[Ê SdЖ2è´¥ :Em)ƒN‘A[Ê SdЖ2è´¥ :Emyš²gË3”5[þE³¥Œ9EÆlùeË–g)S¶”)§È”-íÅ)2eËó”%[Ê’SdÉ–©Þµ¼Dõ®¥Ì8E½ky™²bË+”[^¥:×òe–±ó$¶” §È„-oRl)Evy.¶¼M9Ðè™"¶’§È­äÀ)r`+9pŠØJœ¢§·’§èé­ôö)zy«LÔË[ééSôòVzú=¼UVêá­ôò)zx+½¼ÏVÌgëã³óÙúølÅ|¶>>[1Ÿ­ÏVÌg«îžØ&ËTw/lÓªÛÛÛôƒ>>o1Ÿ·Ï«­‡êöú6ý¡Ï]\¬nÏoÓ'úøüÅ}þ>>q³Iu÷À¶yÖ¾Gq³Iu÷À¶ùÖ¾Oqß§ïSÜ÷éãû÷}úø>Å}Ÿ>¾Oqß§ïSçiµPÎÿR}`AìÑvÇû˱X½ý›®Óíh^Ù`϶˰>kízÝ>ÇïBÈåœßþ×óm¾çßóþ^È"á1ë‰Öfýî“hÖïžB³~÷÷X™ï³ ?`UNf5N¡þÝ}*k„øÒ;Câaù¥ô.Ê/¥â0þÌá!ýw…Í?¥±~…¿òUîæˆ7¾_Hlœ—ÿc>ög~¾ÈÀ‚È»9ˆ2ò`µ7k ëÁÖ…ùïáÞË¡,—Y”ÃXŒÃYœ¯0öó¯²$G°eîÆ¥)s7–««íYc¯ËÞËPön\–²wcù}°šŸUþ¬æguí«ùYc?§æg•ëùYå¯Áj~Ör~NVo\ÞZíÏZÞZfo\ÁZÈÊLŸ9&¿7¾Ÿò{ãB¸'ÅëzCV×ïž÷<ײºvãåúƲØ`}"kL}"k%êY+{ïûxßÛÞ;®od­âØd)ÖúGÖªžOõÍsÉ [ÍS¹Ð<•k!Í ¹ÑÌk1Í ¹>á»!>sž¸ÞŒšùšQ3ßI3j滸Žy©eÎGu(s~n¡˜{?sÏ7†Èw§CÂk/ò ð/äß”¿û‡ró _…hɧ¹šÏ„¸´ö!±¯ºÖêBZGÞf§ØO=HëLõ ­ Õƒ´®TÒž`“iÎOëÆ(»3{03Ÿd>Ŭ|šÙø ³³'sðYæd/æboææsÌÃ>¼ƒÏóN¾À»Ø—ö}šýßÏìò¥ý¸ ‡°)‡²Yˆ{')$68Î:Ì`]þ·øëñëóO6àI6ä©×™¹†p·lÚ¹‘çÇø0;&Ÿvnìy†ç²içG<÷»;7¡ßݹ)ýîÎÍèwwnΓ!~Åç!ÚGæ^±œzæç5BäáÁêøoŽ™{ú<Ë/Ø‹+Ù›«øÓ؇_òy¦ó½Ëû&¨¯{¼oÂô¾ o†Èûp ù~}80íÃæù5öá@µlÙu ™vÙu ™vÙu ™vÙu ™vÙu ™vÙu ™vÙu ™vÙu ™vÙu ™vÙu ™vÙu ™vÙu ™vÙu ™vûc ™vÙu ™vÙu ™vÙu ™vÍL–ñ§Í…sÌ §Í…söÓ\8ç€Z\Ìó,ž¤ù0ößó›å^kŸƒ¾cûœ!4¸Â3Ó,ßµ½ï:ËwmŸÛñ‹Ž»O\b5þÇê^wÚç±¾l]ƒWø ãÎI{çd–sÒÞ9™åœ´wNf9'í“YÎI{çd–sÒÞ9™åœ´/àç¯úùšÖÎM{çf–sÓÞ¹™åÜ´Ws\óz-kç¨}aëëÖfó7˜Ä›¬CYmO]ïsÛßc­_ïyÈÚ¹lï\Îr.Û;—³œËöÎå,ç²½s9˹lï\Îr.Û—à,–äl–¢ŒÕ¾4e¬öjlDfœ%gµW—ËÈlGÝ_ed¶£î¯22ÛQ÷×ÊÕ!ñ…§¸†æÅ•k©~¬\ÇžüšÏÒ<úB/šG_èMóè ÏÑœùBš3_0ëf6»­Üìù ܾü–ý¸•ÿãwìÏm|‘Û9 ÄÕ‰†„ 3ç03ç2 ÍbudÉ f°:Ù¸€Ù¹9¸ˆ9¹˜¹ø sóÓ÷œû³èiº?‹žá£ü‹-ø7[òš©Šž ¡P®Öf«¢çh¶*ú/ÍVEχPÖì¶Lé™™˜%„§ê†ðß+|ˆ¯†¸²²û±»­ëY`}ŽtÜž>f¯<ÕÀú56ä(ÇíñcútY{û˜>]ÖÞ>voˆzSz¾Ãª|—öøD=¡ÄçÖ㬫[ë %–[·¶×'ê%VXË5éRžI¯Iy&½å™ôÚ”gÒ“(Ϥס<“^—òLúC”gÒëQžI¯ÏilÀÙÓÙˆ3ø0g²1gQæ[oÆb6Zo¶"߯7[ 1­7S 1­·/‡˜%ÖÛ—CÌëíË!±{ý°{}½™bˆ™b½™bˆ™b½™bˆi½iH6ïsï®jí|1+­w~‡¨ëÏ!êâzçsH®£Iˆ®”WP[o4õ¼HHˆÊ‹_ÿHyñë!ä¶Ÿ¢2ã×»(+~-{W¬ï¹¼øõÏ”¿þÅœ2Μò½õyë_y»y‘{x‰{ù÷ñ2÷ó ð*ò aøŒÉu Ä¥® ‰½’™Ænü’Ý™N3Ýð™Þw³û¹Ù<Äx˜f½\Gh¶Ë¥§ 7ÓåÒÏR¿òófÁárr.½2Õ=ßË=ŸêžïûïÊǹô¸á ¨¿¥ª½ž ‘êc9õq€úXN} >–S¨åò…û罿—élB™>öÏsÿ›q,›ómïWGËÅþÛO>kìŸáþþÇÔÔrú̵´œZ:@--'¿Æ»®käƒx×s|ïz®Q«;· ¹·²%e÷JBØ<Õº•õ6¶ævÇ;;>Íú1ëïÙ†?ðqîðº{{ó‡ìÊ鎷uüGk³ÆæLæLŸÕ^ëÜÎköE¥nŽÍ¢ùz³ùº’k±Ù|]É9Ýü1ÍÓ›çйÜ<—ææÍæÙJzÿæù|–Îmçö~ß.ë^Ö Ù›‹ïàøOìÈŸÙ‰¿°3õ¾ç¼o±uëÝìÊ=|‚{™Ì}ìÆýìÎ!~ѺíÞ_Ó ¹h=ÕÝ¢BÂÞ¥,Èe¼›ruÑBLea~Bç⢠Tôëå¼—ê{Q÷ÎÞ/X”+YŒ«BB¶×Ct“^Ñ»RH,ò+óçwÔ 4m(Í@Ó^¦hÚ0𦠧ÙgÚ+4ûL{5„±„Ha÷ÙØÉôýÇNán¯›‰¦©¥c]÷Â{è:Þ˹®gáýÞ·ÇûFZ»¯ »¯Žîµ~-Äÿ°;D_ŸÌ=œÂ½œÊ}œÆýü8=„U»B¤y.º6Ís;~Ðq{d•kÔ<õoÖöÊ*תùÖ‡¬gñ0gó?âQ~ÌcœÃãœË ÎãïœÏ?¸€'¸0Ä_U§–›¥¯6cÑÖ/ ‘¶Y7·–—®šÉ—§™|¹Ù9—ïvÕ\¾Üìü@ÏÍâËÍÍWÍâËÍ^ë?óó[›É—ßGó÷ò24{//Ks÷òr4o/7ƒ=PÐC»ç“^zÚ,¤Oº›Úû÷|ê±$ħšuÔ¬øÔO©f•¡ê­geè…zëYùyá?!¼»>DŠ˜CÎÊÐ õØw7X›GÎÊÒ õس²ôB=ö¬^½ð<õê…zÀ»f _=½P­÷ë71Ž›Ï-4·œÕÓ^¢ž¾P|÷[Ç©vò;ê/ïªEÍ1gõü…—©×/”ßÝî¸~žµ¶cúþ«Ô÷^ãã¼Î¶”éÞU_Šš}ζ³6k5s-Œ}G3×ÂØw3s-Š}v3×"³ÖY3×"³ÖY3×"³ÖY3×¢Øg6s-2k5s-ІøI2EÓ„ËtuÔ’Å2]µdñ}4;LêèußiqkµdqYª%‹ËQ­X\žúܤNÞç;/®`-›-¾Ÿ/ðöeEª“:{Ÿs²¸’õÿX™ý©ÿÖy1„ûdšÅzlÞÛÅ{3[W³h¹3DÇç]Ì`^þÎ|ü#ÄWvNþGçùäe:Ï'¯Ð¹=y•ÎíÉk!þ²Þ˜º“zcªù÷²Þ˜ú¯ógÞà/¼É_y‹»y›{B¼KMÝËÍWâh¾¸OµðJÍWiû$)D{¸>©ÃX—öeÙž?äù9Ö㿬ÏólÀ lÈ‹lÄK!2ïTHèÚŸfõ®rÙ<³z×!4rÍöê­óÌì]å±yfö®föyfö®ƒCÜ…K!qÉlþG÷Ô¸Õö“cÜš%Æ­¥bÜ:Úo㾦}vá²÷ËÉÜ‹Kää WéÞ¼prò…ëÔwƹçŠÚnXËËnR^¾p‹6æ8÷`QûôÂmk¹Ù핸Dn¾¡Ü|qiH\ÚžËØŸ±#SÙ‰Ÿ³sˆß}ˆŽsMw?@×twEº¦%N†Äƒ)<Å÷xšïó ?a²ÜRö°õ_ÖjW‰¿9Åq9¦ì묧ZË3eZŸµV§Kœ£>Y¾){Ìú_kõz²|SÖ^,qÞZžìÜ—µ'K\°V§'ëÁeíÍ­ÕéÎÿAuº„óP.á¼T§K8¯ÕéÎëAçuO¿8A~yÓLv·,ð¦™ìn¹lÏÿ7}Àóþž«—E+zþ¢ç²Ìž,Ä”í÷ ¢l¿g0ïåK,Â!Tä²èÉ{†z^,„n¥B8o»óËð}3¦³9¿â£\Í\Ö\ËV\ÇÖ~^½?oÿ%èÃw~íØc\Ï6^3ž×§ïÜ`ý87²mˆ?\,D'ÛÓ~?\‚jpúùiY™X…iÞN·÷[Vó¾’Þgó¤ÿgmI¿ÌŽ—rÜLž~ÅÚ r¸´µšœ~ÕÚ,rø>k³yº9µ¥™äpk7réQ!~Tέ¹š¹¸†¹¹–y¸Žwðkª?5íók²Ñòß)-ÿ#„|>_>5Ꚍ´üDˆÿî¥}Ígí®^ä_âE¸hþO¨^äÿ”êE~ý¬‡z‘)Õ‹üúmo¿·È1ú½EŽÓï+’A™«Èï!Tóy·=h-{ùƒ²W‘Ž»·Õ¤ûx[-º·Õ¦ûx[’÷õð¾?­oZ×á-š!«ÝæC^Òë'Cp:özÖOYŸ²Öû¶Õ·~Úú´':¦nkàØ3ŽaOþÅgù7{ñöæY>Çs~NßÜÖкõ¿ÖzζFÖÏ[›s«ë1Û¦²­±ã/8nôîK{ w?Ú½ÿG×µº²ÍÌ×»¿µ=ÐûE:?Õõ‹mf„êúê¶¦Ž›U{«‡½ÕÂÞƒ½çªÇ5ë7Bü˜!š¤/ù†rë˜MìÏÍ|‘[¨ù–zИ­Äï8˜Ûø·s¿çPþÀ—¹ƒÃø#‡s'_á.¾ÊŸ8‚?s$¡ü8æWÚ›cäȤє#“Æ„¸Ú·CÂyõ¨§l-WˆKrÛŸÎÕ¡žæÈk¹ù3óP¶½veÛkwz_œ÷©O=w[ßeomÞè)ã^Ëk`­O$%RŸè)ó^Ëgµ6ô”}¯å·Îd­$e¦º•”…úARVê=÷{_ëlÖúA’y7öߨIÊÁEÌI} )e¾ž¼¿ unký )—8n½¦¾%Ýa­f%ÝIsDÒ]4G$å¥9")?g~š’ÌçÍIæŽóæ‡$sÇyóC’¹ãü*š;ΧѼqþKš7ΧӼqþ+š7ί¦yãüçZ–àºwEöK•ý®È©ÿQæH•í®È©W(s¤ÊsWdŽTyîŠ<—ê¾,¦~_‘éRÝ›ÅÔï+ò\ªû2«,%ÛDŠsL¶KuÊ8‘âÅ­e¼T÷ª¬).{Ë:‘â%—ùŒNqWd¾Ïe¾+2ßç2ß™ïs÷ÛøÞWÊZöû\ö»"û}.û]‘ý>²3±;åÓ+=˜…ORÖ¼ò³ñifç3ÌÁžÌÉgi^éEsô•Þ4G_yŽw°í¹+ÏÓ^»òí±:fúØ¿§õY÷üµ‡­ÍìËY»÷¯5¶6¯_,OóúÅ 4¯_¼Ÿðïsï_{Äz²µsXg +q*+s«ðCVåtVã VçLÖà,>ÈÙ¬ÉX‹³vˆOÑ#šÊ{)e)凜£¼—Ržò^JÊ{)2ISy/E&iú›¼ÚD^}ÓZ6izÈZªó–u%ëÃÖͬÇZW¶>bÝÜúmë*Ö²GJUsüQÇß±®f-k¤T§Œ‘Rƒ²Eʃ”{SjRßI©Euþ¾Ç<ÚX×¶>Iù³©z~ßãzoŠÚô4åЦg(ƒ65ëM¢È÷Åþ[îǢþ~NLJ:^š/S?¿¯¼çÃ<7ÏMÎØû+xÜâ×ɯƒä²uòë ¹lü:è:å×Aêíº‡y“y‹ð6›„èà@sèàÍ¡ƒõšåŸ‡HcY9ç=Ž™EÇÓ,:8fÑÁ‰4‡6ˬ3ƒ¶7–/÷32õ:³èàÌ4ƒÎB3èà¬4ƒÎF3èàì!þ=µ¹¹šüžÚÜ\M~Omn®&¿§67W“ßS››¿" ±ÿÜÆÆüp›ðG6¥s¶±Íó›Ó<¿ñQšã7¶ ù}cKþÊVÜÍÖÜÃǸ—m¸s?ÛòÛQ=ŒûÍóöžÇìÀCìÈÃìÄ#ìÌ£”)†ÊeŠ¡êËF™bhFˆ{`iH8Ñ(„¿ ‘ûÍLIjÌy×!IMÃâ“Ô” ú6Y9I]¹Guå‚󟤞\pþ“Ô“ ‰!r`NHxÏ|x`.͇æÑ|x`>͇Ð\x`!Í…Ñ\x`1Í…>¡yðÀ§4XBóàŸñ½ª!!Û¾Ý$ƒfÛO4ÛÊ ÙRÍö峆f‰«òUÃ8ÊW ã)_5Là2&ò3F™ÊLüœ™¹œY¸‚Yù…¿¯Ç¥L —2‘z\Ê$'§çú\J õ·”÷¨¿¥¼Oý-åêo)“©¿¥L¡¾–b¾xìµ~—!èo)Ó¨¯¥|H}-e:õµ”Ô×RfR_K™E}-e6õµ}ù±Q~™ê€þ–b†9 ¿¥˜]èo)f•ú[Ê<ïí}­õ¹3Ê}.Ålr@ŸKYH}.eõ¹”ÅÞ?Æû¿±ÖïR>¡~—ò)Kr Kq)KSf=p?c¦²,ݳÊqyw™3”÷|…çfÍ<ÿÂóµfÍ­¾Ï³ÙVßc„ï±Õ÷á{lõ=FÌ ¡E§Ž:ow™ƒ¶úN#|§»Ì,-:;>͵K[tñÜ9Üê;Žð·úŽ#|Ç­¾ãˆ…Þ_Ü£„µï:Âwº=$TjÃïù8`[î`;þÈöÜÉÜÅŽü‰ø3;óvá¯ìÊÝ|‚{˜Ì½ìÆ}ìÎýìÁ|’ùãÓ<Ägx˜=y„Ïò({ñ{ó8ŸcíÅ¡¿óyþÁØßåû†IðüOÏcÿm—“üO±?OóEž¡Œ<ô/ q#¿‰öäzšÛFn`/ndo~Ã縉}¸™Ïs _à·ìË­ìÇïø?ncnç‹üžB(¼Íó<ýíÄ9˜;ùR™Úz¾Ëó!ü‰Cù3åë×ÒÌdOñK>Ít>Â÷`­_¬¿²îÉÕ|–kØ‹kÙ›ëø¿f®çóÜÀBüËr}e9ÿe¹¾²Ï’ý“·fnHh>^3æã5ói>^³€æã5 i>^³ˆ­¹˜fâ5Ÿ° ?¥^\Äù[³ÄsßoÍR¶s,ö¿kêÙo ÑãyŒxœæ¯…úøÂÓ!’¤Þ&•u<ÃñIü)üƒïñßçŸü€'©–¿}ŠSxšSy†Óø?äßœÎ8ƒg9“ç8‹ÿr6Ïó#^àÇ!.E¦lf¦Ë´Þs¹²™œ™"W6“3SäÊfrfŠ\ÙLÎL‘+›É™)re393E®l&g¦È•Ͳ‡ð„¾s®>õÿs B\&{w½pð„›ý\Ck{xýK´‡×›¹2dŽy(s̸ƒ2ÇŒ;)s̸‹2ÇŒ¼”9fä£Ì1#?eŽBX ‘Võ­e){̸›òÆŒB”7f¦¼1CÉ7fÜKycFÊ3ŠRΘQŒrÆŒâ”3f” œ1£$Ûy´÷è`]Ê£´Ç}!>ë¤øM-¦PîÌú“ø>ëðš×SƆH©­|›ß9>Ùñ‡¬ß±Þf=ź§Ò÷É: ø!r:õü¾YC$Ò,„B÷„¸žgCâ=zZ¡{Ïæxsfç£ÌAûºç9ïIá¿|çù>/ð?[ÄÃ÷O×ù>‰#)&¾F{4qËq4eÇÄ1¬À×=Þð•åãıŽßïñ€GEJò|ÒÍ5a(ãù2å¡ònE9x¨œ[ñJ]ñ\Ö­( •q+þI·¢ûi¨Œ[ñëñ´÷ʨC훊òïPû¦¢ü;Ô¾©ø7훊ÿ¸×íó¡öNų´w*žósf¹ä7Cb^óWò[”—£o{î³ç-Í·yßa¾Ë²ÇrO³Mòšm’'Òl“lä5&ÛyÍ4Éö@^3M²=×9H¶òši’]ó¼UC|ÁCâOöhÁ´G dáŠ×õ|çöiÁÁ´O ¾Dû´àºN‡Ò>½¥Þê¢iÎQÚCî?s\3s]Š9®™¹.Å×Ì\—bŽkf®K1Ç53×¥˜ãš™ëRúÒ\—Òæº”ÿ1û3?}Æfè363Û§øŒÍÌò)>_³Bôùš¦Ï×Ì^LñùšÝKŸ¯Y¾Ì¢FsqÊpš‡S^¡98ÓÏ_õܵH±÷š™uSì½f®Cн×ÌuH±÷š¹)ö^3{ñvçý²2»°Jˆç•mèøø_C´ñhîæî¡ý9~/ß¡Üá¿Å|ðê»!îiûòî¬L9“1\ŽØÍñ1å‰ñòÄnyb¼<±[ž/Oì–'ÆË»å‰ñòÄnyb¼<±[ž/Oì–'ÆË»å‰ñòÄnyb¼<±[ž/Oì–'ÆË»å‰ñÝeÙt·L1^¦Ø-SŒ—)vËãeŠÝ2Åø§½gbˆÏ"ïnHU'V'|·,rï†Ï­[¿ÎGè>Ì"oƒ³ÈÁäà,rð†/˜+™«Büfç使ýìÖãÔÏn™+ÑËn©qèe·Ô¹G–±?cG¦RžË¶ÙóÏ=ïâöÜÇË{¹•Eø‹R6ØSŒÛYœß³`Iî`)þÈÒtMöÜÇ],ßX–?³ayþÊ Ü›q!r·³GÝqÍC–OC(jö}3Þñ†žÇþ]9êîFÞ£.ÙáM3ÏÝ[«Qã÷Ñ~¿ßñ¨ã­í‹ñX…æµ739þˆuUëßX‡Xf¶eâ7Ì?ÞÏ•|€«X‘i¬DsÚ•™Î*üŠf£7äë«Q¶þ±:ײeëä׬I3ǵhfø±6Í?&ñ›—ÃŒ±y1Í›å›2ùæO)“o^B™|óRÊä›ÍQwë+?ë+wë+?ë+wë+?ë+Ô ‘2CY›/3‰ÃX‡Ã½o†÷=l]×ú>ÄWY#XŸ#Ù€æ¤r”Ÿ›éçs ñ»d·±^/ÿJˆüU'$ÌÛºü–q+ëñ;Öç66àv6¤þ¯F4Ãÿe¦Ÿg†¿mFIs®o»iÎõm×"͹¾íZ¤9×·]‹4çú¶k‘æ\ßv-ÒœëÛ®Ešs}ÛµHs®o»iÎõm×"͹¾íZ¤9×·]‹4sÕm×"m]‹´Ít-Ò|þÛ®EšÏÛ÷Ióùoû>i>ÿmß'Íç¿íû¤ùü·}Ÿ4Ÿÿ¶ï“æóßö}ÒbŸß÷Isl¼_^À[\ÈÛ\â¾ t¿1#¿ìcF~Ù5þÆŒü²küùå¥!¼¶?DòÊDYä×x^0„|Ÿª·B|5³€ù¿GWÊzŸ ‘†¾Óß“C‚{9…E8•浿§QŸiìoÝ07ö·n˜Çû[7ì£ÆæñæñÆêÓ óxcué†y¼±:tCj¬ÝP‡«C7Ô¡ÆêÐ u¨±:tÃý‘föìûYM+‡ð[V¡™&Í,Ú×,šfí«Î5­ê¸Y£i5tÜlÚw9]ó¾æÒ¦ÕdíÚ÷5›6­a=ØÚèë~L³úÆþž=Ð×I³úÚ#iö@_{$Íèû•Ÿ{ÐϽdm/ô]m]Ózˆµ=ÑמI³'úÚ3iöD_{&ÍžèkϤÙ}ã4{¢¯=“fOôµgÒ쉾Îoš=ÑwSˆëw9$–6óö³Oâåë~W¬?´¶_⣴_âåì~WŸÎkœÁëœÉœE{¤ôlÚ#¥eø¿G…èõûïÑT¿ÿCõ{¤ìSãeŸÿÊCâ]—؉ÿ±3/³ ¯°+¯ò Ær’™à®ë4Üuƒæ»nÒÉë{'Ë'yÍÉòI^ß7Y>Ék®H–Oòš+’哼æŠdù$¯¹"Y>É›òIÞ”OòÆþëkB¸ûœrJ^y'YNÉ+ï$Ë)yåd9%¯¼“,§ä•w’唼òN²œ’WÞI–SòÊ;ÉrJ^y'YNqïÄ%Ë)d9%¯¼“,£ä•w’e”¼òN²Œ’WÞI–QòÊ;É2J^y'YFÉ+ï$ËÇyÝ7{ú‡è9~Ï‹To÷  žTþ²‡¬»g µº›éÏ7õXHl=–Ç)NÍà;üï†0DžÈ6òD¶”'²Í¤<‘Íž˜ú‡÷㠎矜À“œÈSœÄÓ4 L=Ã÷ü|w?o/MýËú}kY$ÛGÖ[À8ÙqÙ$›9qªy£õk%Û>͹|†óØ“ó½ÏÌÑz*Í­§ÑÌÑúCš9ZÛÛS/ÒÞžz‰ööÔÿûî‘Ö±ÏãÞhûî…Ö±¿ë^híïmh"íÌ;ä´v2ÌÐM!Z©_óÜ—^·Þlý?na~Ëý¼kÞÚµšêš·v­¦ºæ­]«©®ykÙtªkÞZ6êš·.A×¼µ\:Õ5o-—NuÍ[Ë¥S]óÖréT×¼µ\:Õ5o]Ö5üÝs×½µaêë4#L}ƒf„©æÖf„©æÖf„©fÖf„©fÖ•BdÃc!aÈ^¶á>>Nu|C[ªáÚñ`ˆô^ŠêŽӨ÷þ’±ÿý7±ÿÝ÷+Æþ÷ÞÕŒýo¼kûßl×2ö¿Õ®c죽+„mòmﯭ[»y·É¹½×[?bϺ=óSÞí½Áñ&ÜÈØÿ&û ÍŸÕõ™m©Çl“ «ßM9¸÷&¯7çf>Ê-lÁoÙÒû yŸœÜ{«u+~ÇÖÜÆÇ¼nÚÖ•÷Ð~ï½Ýñ6ÖzÚ6û¾·œ^Ôõï-§më¸ùu[7¥ýÜ[n/û>r{Q¹½·Ü^´Cïý/DJë7ïõ§~•[Ýú.›µžSZŸyo—‡Pì¶×Ô²ï²S-û.Gyg†ÈYçò¬>½Ðß_øC äÂZ²w¯‹!¡Èp^¢LÓë?¾ÊËÁ+ÉØÿvýcÿûõ(Æþ7ìѼA½¸×M¾Î[|ƒ·ù¦Ïø#Bçyœço‡Pí¸ï\Ì:Þú&P½¨–áxqëDëqÖ¿[›¹ª™³·•ä š}«ýÉÒÞõ¾ñ!ÄþHsËÕÕN:~Ÿã™Ÿ`}ʺŒufë‰ÌB÷a5³ø¶²ÖY­S˜ï1;ßgœžà19DÞÞ›Ï{¹€Eû¿ñê‹z¾ˆÅ¸Ø1ýð`qÏåÙææu8…u9•fÞÙ²l‡z!Üû€GEJ•Cäšk…uÍ|µBºf¾Z¡F]3_­P£®™¯V<ËCìÅÃìÍ#|ŽGÙ'„NI!ü5Ìú˜õó<ΘÁ¾üýøí¯k'h]û“/úù:~ÞÞ¸vÒZ†éT×Ú¹vÊZ–¹vš²Ëµ3”Y®ýEäÚßâýy¿½tíë¡eîN ho];çu™½“>ó×(ê/Ùc×þu<ö9ÎSvï¤üeÏ]»`ûýöð {õš=¼Â^½f¯ˆý>{x…½zÍ^û=öðŠØÏÙÃ+ìÕköð {õš=¼Â^½f¯°W¯ÙÃ+ÆÒ^ñvˆ\·‡WØŸ×íáïÒþ]a_&¸V×íÝãiﮘâ4 ‰Wþe3žgs^ࣼȼĖü­x™­©¯6xŒWC˜>#D8`ÝÆú§Ñ -o°o²=åãèÞo 'ùñørÒÕ夫q!Ü÷\ˆ?Gˆ6_âRü­¦2TŠ¿ÕT†Jñ7šÊP)þFS*Åßh*›¤øMe¨£© •âo4•¡Rü¦2TŠ¿ÑT†Jñ7”Ô¸Y¬™ UÎþ8û÷ â¯Ñå¾ÿµ{èû_»—¾ÿµ"ôý¯¥ï­}†ŽrwN3CG¹;çâ™nicV™ni³%„;ì³éæ‘6rètóH÷ÞtóH÷ÛtóHóÊtu®yeºùªyezcšW¦?BóÊô&ü‘M¹“͸‹ÍùSˆñÉ-›=„¹B¤ÆŽJ©»¥R­ÕŽØûlî$QcÕŒæýŸ ‰oeMc-gmf0‰zíÏu¨–•ë~®ëù >Dõ¬¨þöºÏVPVü¹žc'YŸ§Ø€§Ùg؈ñaþÍÆü‡ð,›ðíÉ·íÉÚß…ÄóîëÕ®ûÕÔLχ¸1rq’<;F.N’gÇÈÅI™Cü¢B´ÛVäQVâ1VæñùDM|R/|Ø=¼Ï=§W~b{²0ÍbOêwfòÈlm&{Rÿ»3‹çæ²'ÍiŸ|H=ïάžO÷˜a­v>Y<Ĩ¢ïé_ê2bNÖc.Ögn6`6älÄ;ivxï.šÞËËG˜M˜?ÄG*†Äô}¬Äý¬L÷Z¤ ²* a¢{½ÄvêY%¾§û¼Ä^¯æõC¬ÎìÁ#^·_JØ/í“?:n?¤;wû!ݹ‹ØéÇi?¤gÐ~HÿöCú´ÒOÐ^Hÿ“®úIºþé§èú§Ÿ¦ëŸ~†®ú_!rÊùã\Æ›ÛN9¿sôÔSÎï=ôÔt– ó;§$g²gQï<5›÷…ÐVvúS-<õ‘µ^yêcê§æ°çR.ì=)$­ÌV ñëʆè ßi]9úNëÊÓwZWöøò%!ÒØg^w¿µ¾½|©µÏ¾Îþd¿/_fý—µ}6Èw]gŸ Ò¯—æøßÖöÛ ØÏWaìçªò/¯›±ÿc]Í:ö¾êŒ­kð,dìÿ£&íýuµx>„œ…=¯í¹š´.‰jÒ:ûmš´Î~¤&­³ß©I{‡èÄ¡!|©6´°ïö~bý2?¥>õåOŽÛ‡{—XçRêO_þì¸}¹w™õ«!Tˆýìgž`*Gòs¾Æå+<7Oíó™ñçu ]œ»FÍCØ«ÿÌëníÜ5zÔZš×ÃÚ¹kÔÂZ^j$—îµGç=éøI>ÅS|š§ù ϰ'í—yÏòoöâ?ìͳ~O+¿ÇŸ÷œõ9öá¿|žçù·‡—„Äfõ‡—Ò¬þð2vàgìÈTÊÔ3쯊=­?·îl-“U|Öz¹ukû¬b/ëÖ]ùŸpܾ«ØÛz¥u2W±ÓØÝëöcEýìá/­{0Oò+>ÅÕ|škø ×2ö9Ö1ö÷¿¦¿ûÄ轫<ǰ_çý|ƒðMVä[¬Ä±¬ÂG!DªÖ³~ÛÚ=ðÄ;¬ÊwYãXãYƒø '²&'±SX›ï1‰ï³?`]NæCœÂØß›J3ùÓh&âC6ät6â >Ì™lÌYt_g·çŸ˜íy~Ħü˜Í8‡Í9—r[p>[†HWsÛUB¨¬ÖoqÍ*›o¶˜o*«ï[\«Êêú–dšc¶˜c*«C[Ì1]ÍywVµ.f݃Åù$åø-OQŽßò4åø-ϰ4{šÔ¬®fÃ;«Ñlxgu¯©O[äÝ®fÄ;kÈøî½ÜÃ/ã¸üÛÕÌxçƒ43ÞY“fÆ;kyÝl»E.îjv¼³vÍzw ‘rurÊÕÉOR®N–·ÈÕÉòö¹:YÞ^ W'ËÛ äêd\ìï-§“ýÞòt²¼½@žNîCy:YÎ^ O'ËÙ äéd9{<û—È‹ dédY{Œ”,k/¡“Íp dèd3Ü:Y¶^ C'ËÖ dçd™gìœ,[/‘“‡P&Nâ¿ÿ-DÇÌä!Î ¡¼ýñ½žôýk×|ŒÍºJ?j&·¬’[šÉ-«ä–frË*¹¥™¼SÿeÙQß­?Œ%8œ%ù KñU–æÞÇ‘,âÊ.-á\Ê;¹Œwñ3æe*óñsæ§õYsûµ×­ X¯°¶G¯½Á&|3„Äý^+èµ/x7W²W±0Óh»ô%Íb—ÒýlS?û–µ™ìÒW4]Zí¸`zm¬µlqIö}ÈLvi-KpKòkïSk¯½m]Êz}ˆ/' “ÊÉÇ~£žLÏ/§çs~ËéùÇä£rzü1=¾œìXå~òøYÖxTÖ(ÄtϤ7ÓÆZ·´vï¤7·~Ûº•µ{(]~jñŽukk÷Rz ëw­³.Ê6t/å”{o, ++r!+qí­‹Y…Ÿ°*?¥ûèÆVçRÖà2º_n|F÷ËTÖâç¬ÍåLâ Öá¬Ë•4Ó•7[–>Äïü:Dßz-„´!ÒßDŸ£‰Ï7ÑçhâóMô9šø|}Ž&>ßDŸ£‰Ï7ÑçhR;Äå5—íH qùŒ`;Þ£¹lÇû4—íø€f²“i&Û1…‰œB·×C8¿É:j=™ø!3s:³p³r&³q³s6sð#æäÇþøžçò|ss.Ý;æ…HßÇBBɽlÃ}|œûÙ–ØŽÙž¿±…P#Û;Xw´>ÌN<ÂÎ<Ê.´Ïjð¾ŽÖ]­åñ¾O0ƒÉ”¿œ°_Òø'¿ ñ__ Ñ—>ãLåe~Î+”A¾¾Ê¼Æ/x+yƒ«x“~ß×·û}·™â×~ÅW3Žkϵ!¸½#è]ë¬×1‘_3J÷ÙúL´OÖgæFfá7ÌÊMÌÆÍ!~Ô]!ZÓûFå¥÷ÊG›B(ý?Ï x¾9„†H-ù~TAë-¼›fÑQ…¸•fÒšßÑLZsͤ5·ÓLZó{šIkÊù£Ì¤5w°8ÕÏÒý=/áùN–ä.–¢:ª4Ý÷£îã/ÞkÎ*=ÀºŒõ¯”“k\såäš{)'׌}Vù¸¦Yd”\\Ó,2J®©þŒ’‡kª?£äàšêÏ(9¸¦úSPÝÙ¥îTwv™- š-vÉáÍ»äð‚f‹]öAA³Å.³EA³Å.³EA³Å.³EA³Å.y» Ùb—Ù¢ Ùb—œ]Ðl±KÎ.h¶Ø%+vÑÛî¹BÏõ·;ôòJû=xÔ_íÃ-úê–»½®ïÝ!‡µ—usÈíeÝ(ëæèÌåìBy7‡¼×þ >âo8—_\§sùÅ :—_Ü ‘ÛÃB—‰Î(_a&¾Jsåí4SÞIsäíט£˜£™ƒc˜“¯3ß`n¾É<|‹wp,ïäÛ¼‹ï0/ße>Žc~ާóq{ r"}ÿÛ“('u®)gèÑ·S¬Í÷ßã=|Ÿ÷Òìü¥ø¶yùË¢4/if»mŽûRþ¹m†ûÒÌvÛ ÷¥>\bKH<ØßÒ>/±•öb óüÁ¹öšY5ñà@~ÏAüƒ¹ƒ/ñGáNÊ%vÑV3:©=sÔŒNjÏ5£“Ú3GÍè¤öÌQ3:©=sÔŠNjÏœD¨‡Ñi•Gš‡l˜Óû¶Øk9½o‹Œ•SMÙ"cåTS¶ÈW9½‹|•SMÙbO?òxH¼y=„ŠÑ µµâdª§P¬8Õ{ÚzÏ ïñ÷içùMÏ}†¢o†Ä}f€¢oÑ Pt,+ómÊþž Ñrf½½x{óN>ǻ؇yC˜».DjØÛž·ÎǘŸ}éšûµ×oZ÷³v?Í]o}ËúÖw³?å‰/Rž0€öÔX½³¾Þ9VאָwŽÕ;ëëcõÎúzçX½³¾ÞyÎì¶èûò¿Ú½ÂÉUB3ç¹~Ž_æÿx…ýy5Ä-›{ÖåT>Äi¬ÇYŸÓÙ q<’+v|†uCÎd#ÎâÜM¹oxÄûê3Ž ÿÈqùox¼uìç>¶–‡'X7 ¡HÇæ8&ß W rÅ~×\ëfœÇæœÏG¹€-¸-¹ˆ­B|çWC4üÚyå×Î#Y†¯±,ÍÞyÊQNÉcìlÌcìlÌcìlÌcìlÌc/t6æ©BÉiž› óØÍ‚yì‡ÎfÁk°Õ~Žv/]óš{ ’{l¦½^)vÅÞwÀëcBü@³jysé@3Kysé–Ý!úê{ÜÃ÷õšô˜l!~šÑZ?¦G´Þâ*˜2ÌÌ f æ„ ³FsBÆrš2VМaž¨`>È0OT0d˜'*˜ 2ÌÌæ‰ 悌tš 2ÌÌ«Y𿇠÷ÑüP¡ ÍÊÒüðÔö.g±.g½žå¹¸‘÷ó>@´BEnf%nae~Ë*ÜʪüŽÕ¸ÕéoøÅóžÏé¼<õ½¿•ž_ÎæxMÇw°å–¿z^ÛóLâ.ÖáO¬ËŸù ñiÃB´Ÿ=ž6œê]Ú+´¿ÓÜCýª„¸†ÄŽws q0 ó%ÞÃ!¼—CY„fËŽEi¶ìXŒfËŽÅi¶ìX‚fËŽ%i¶ìXŠfËŽ¥ùÝ«Ãô’*‹¨—TÑs†é%UôœazI=G݉VÑsÔ•h=G]‰V1ƒ>&çd2G>&çd:@9'ÓAÊ9™~£œ“éåœL‡ù0°1òcgSf°‘}æõIæõ}æõICx,)„߇Y›Û'™Û÷™Û'™Û÷™Û'©µ…åY$¡ß4?ôÓƒš>Âofq™$¡Ÿ{[&Iè7•fˆ~Óh®î'ËÊ$ ý¦Ó\ÝoÍÕýfúù¶~Þ /›$ô3û7mgý¾µ9»ßlš¯û}D÷H¿éé7‡î‘~séégV‘Múͧ{¤ßºGú-¤{¤ß¢ù¯yHXö+ån¶àžòêÿµôÜœó_+ʱõó…ÄËr}ýü”×ë ¼^¿ åõúwS®¯_ˆr}ý”ÑëßC½þ½”Ñ롌^¿(eôúŸ=Äýë÷/výë÷/výë÷/výë÷/výë÷/6Œ“«Šv·öw»Ïþõw»ÏþõwBV½ç_kñVŠö°ö7g-ƒ}ÒÚß^ìÞû×ß^ûÛÅé¾û·`IºÏþ-ÅYšî±ï£{ìß2tý[–î±Ëñ—é¾5$äoÅïØ:„*æÒo}æ*op³ãÛÌúMë-ÖÛ­Û„{¼co9æóWKŸ½ÊÛô™«¼ÃmÞû½÷>ÎhTy×ñíÖ;¬ÛñG¶÷»d×ìæãRBvsÏf3tvsÞ‘ÝÜ£w$d7÷è ÙÍu(omæmPÜZêPÁÚ½Ù „µzÕá~ë?¬eèÙz‡¬OX—²–:¨s³e€zyùy¶ÐA­›-tÐËgËôòÙr@½|¶С:å€úøl9 ƒ>>[è Ï–:èãùÚ„ÄúÝû#Bä>3o>ùs‡üùþHk³o>Ys‡,˜OÎÜ!óåkOY/_ÞfǨlÇŸ˜¢³}®s)×'‰Æ„ð¡sõ€sõ¡sõ€s•tÐq{èCçêç*é7ë7xˆoò0ßâŽåQ¾Íc|‡Çù.38Ž¿s<ÿàž`ì¿Ï(''ýéù$žd OQŸN:Í÷y†„øRúÃ!×·”þpè^ê‡|ÖRúá¢!L>"åd¯RúÄ¡bÖg¬e°RúÅ¡âÖfÏr²X)}ãP ë¿­e²RúÇ!׳”þqÈu,¥’íJé‡ì¯ÉÿxŸÌVJ9d_M>kíºO>G×»”¾rȾšü¯µë>ù<+ó«ð"«RV.çš—åýöÝäÿ¬]ûR£­í»É²r9{ Ôkûn²ZXÎ^(õºµ}7ùªµ9pò5Ú¥Þp\†,ež8ûæ‰C±¿Ýë2_)sÅ!{¯”¹â½WêÚ{¥ÞeìsŒ£™­NˆŒ2/Ö’ýG™kÙ …H­.4kÖêJ¯Õ2W,¢5ÔX{7šã«ó0kðäQÖä1Öâq9;IÎâ>û/$>«¯ ÷7s ·¾l=›Wø¯òc^£¾2SæikÆj°4„ÝgBüCÎÍ®ÙCÎÉÎI‰×Bü/†è»Or:Ÿ q­Õó¨œÖZ=Êi­Õóè!ôÞÂÍìÖêzt¥µâfîdNÇÕù¨üÖZ}Êo­Õ÷¨üÖZ}Êo­Õö¨üÖZMÊo­Õò¨üÖZ-Êo­Õò¨üÖZ-~Mµ<ª¯´VË£úJkµ<ª¯´VË£úJkµ<*·µVË͸ÖjyT?i]žrÛ÷ì{ á-ó}¡nÔ‡ éC:;g­×Òkt±Ž·Ök é5ºZ'X›û 9/ž°–×ß*iý´u²u”ݘÉñRŽ?ÃÒìÉûølˆëçž.=šîéÒcèž.ý:Ýӥߠ{ºô›tO—~‹îçÒcé~.ý6Ýϥߡû¹ô»t?—Ç¿¨&Ì›¢]Ûs;p!;r;q1;óvá§´'—ý" ÍÉó–XÛ›ó–2™Ëè<•ùÈóÏ<ïÎTöàç´Wæ-çS\Á§ùŸáJö ñA­IWk‚Z“ûw‰ª5éEB˜Ø3DJÌ×ë';¦î¤«;Ÿulµº“®îLìe½½¹ˆÏQÎ êPº:4±õ'|žŸòÊ›A]J×g ¾‰é%ïë¸üÔ¥ôRÖý¬—Y«OéêSPŸÒåÙ .¥›=ƒ:”®MüŸ÷}f­Î¤«3û[§Z«3éê_p¥»‡‚{(]] êHº:Ô‘tu$¨#érzP?Ò+‡ÈÙæö¸¹ˆêL;õá¤,yv±uì}ŸP½kçÚœ”-Ï~j­îµ{Âz“ûÿ\âx5.¥úÓε:©&´ëÎÙìAóì2¯×дԕ<ÓCâ¶FœÁ‡9“9‹fý¬ÿ†¸ÉösKsédû¹e"»3â•Þ½@ÙáÝ‹!tXÂi=ýÂÞ°äI¿ÿ¦çû<JþüÉóýž?"{ÍGÌž{ÍFÖÉãîµßX›‘&˜7÷š‰&¬§™hš‡&l¤yhÂ74MØDóÐl¯yh‚ìµ·¿e}neÊ[wÍ ñmú…h–üü °? †0Ë=^Ùþmó¢õÝÀBÈÂDûµÍ`Ú¯m^¢ýZ2ö9)‹šñnÇÐPFz·õûw;S¿· õùw»Rz÷ f„PÑu¼ßœ}¿|p¿,p¿,yÿ›!!akˆ®u­¾£kœ°®iÂvº¦ ßÓµKøŸqSù#?çN.ç.®àOü"Äïx&Dß°ïgšu*Y·8¢ þn ýdÒ!ÚDíÌõMHØÚŽ›Øž›Ù[Ø1„üu<ÿÖóN”‰·vv¬®çrñÖ.”ƒ·v q»¿õ´¸¿Ýß Ì–»¿˜-ÿvO/pO¿ë31Ûÿíž^`ÆüÛ½»ÀŒù·{tóo÷è3æßîÍf̿ݓ ̘»'Üâºl‰wôæ÷|.„çå†Û½ –CC\1ûfŸ¬_̾Ù'ë³oöÉúÅì›}²~1ûfŸ¬_̾Ù'ë³oöÉúÅì›}fõböÍ>ów1ûfßn6ä6â^>Ì}lLój±Gh^-Ö„æÕbMi^-ÖŒæÕ|rýÝ(Ïÿèì&ÿŸÿκZHØ¡åsìØJ÷ÁŽØqû‡&Ÿï±c»°Âsße‡9&Ÿï²ÃwËç»ìðÝòù.;|·|¾Ëß-Ÿï²c—k¢Oæó}vø~ù|Ÿ¾_>ßgÇ/þ¾¹ã|ì÷û^;~õ^½4Ÿï¶c·×ÌçÍMù|Ǿs>ßq‡ïœÏwܱ/Dº yoq(oóå/p#Î8¾Âx¾ÊŽ`"GÒ\Ýí5fâ(fæhfáfåëÌÆ7˜=Ä_Pc>•·/¨1ŸÊÛ#zËIwñ9æeæãóÌBéfž¿ày÷¬,ÏÊð÷¨O…J{È…ì™Bêy!5¼ºÝí@ˆæC÷E>÷ÅGB¤ª>Ôí7kÙ¼Û!ÊæÝS6ïv„²y·£”Í»£lÞí8eón”Í»ýN}¸Û”Í»àDþÉIþNGgŠõIkù¼Û)ÊçÝNS>ïv†òy·¿89Ä%Ÿ ‰yÇó'ð_NäyNâ¦ð"ßã%¾OÙ0ï” óÆ~L˜w e¼S)æf®ræêã]ÔùúxYgÁ×!1¹'×SfY°½¸‘îÃßð9nbnæóÜÂø-ûr+ûñ;þÛØŸîçäé~NÀ8;8ˆ?r0wò%îâþD÷ü‚Ÿù2¡¼àWÊ¿ vóîá«ÜËÜÇ‘ÜÏ×hNKEsY²,¶À<–,‹-0%Ëb ÌcɲØóX²,¶À<–,‹-Ý’e±²[²,¶@vK–ÅÈnɲØÙ-y\ˆ¼bfxåFH¨fŸWs~/}¢Ë&…H_÷K)÷K_÷K)Ù2·¥¯{¦”{æÕœÞ;™¹8…¹9•yè:EäÇWïð\FxõNNq-eÄDߣ¥Œ˜¨·ôž£ֲb¢ïÓRVLô}ZÊŠ‰¾OKY1Ñ÷i)+&ú>-ÿ¦ïÓòªSw—õÜ~KôZÚo‰¾SKû-Q¾li¿%Ú‡§ã¹#Bx礚®6Ÿv®çŽ´>e]ÆÚ9ŸëŸvÎçŽ ‘•íBÂóÙž¿±Qÿ|^ÿ\©>D0B“ÏC8h\©—>Ôz¹õ9šYšWê­Ï³64®ÔcŸ×cWê±Ïg0™²ÈÊnüÃûÌ%/pÍ+»;~‚=ø'Ÿ¤ï±ò)úü+Ÿ¦¹wå34ï®ìÉ¿B|úÚíÿ"×ѼŸþ5Íûéë9ˆ8˜ù¿ánâPnæËÜÂaü–é÷÷…zÿW©÷÷A½¿ÿHêýýÍdézÿQÔûû¦Þßß¾J×ûû¿N½¿¿š•®÷÷W³Ò¦š•þ Õ¬ô_©f¥ï¦š•¾‡jVú^ªYéû¨f¥ïç„rÆ{®>öW·ÒÕÇþ“¨.öW¯ÒÕÅþêUººØ_½JWû«Wéêbõ3]]쯾¥«‹ý§R]ì?êbÿ©.öŸNu±ÿ ª‹ýeµtõ°ÿ,ª‡ýͰCäéŠ2Àyº¢}6Dž®¨†È"Qeˆ\]Q=PÀº£µ|]±ÍçËÓ|^±Íçï§ù¼âÏŠœÀJœÈÊœDy{@A¿OÞ’b-o¸Ûº³õ{ÖÕø>åìfú¨ 4äëœÌ9…59•µ¼ÏÌ•‘†L³®Í™D¼¢|5D¯(S ‘Á+>D¼b=Îfý ǾÓGž7àÇlèwÞãw>a=Ǻ‘÷ľï\Ïæ<6æ|>ÂlÂ…lÊElÆÅlÎOø(?e .aK.e+.ck~ÆÇBHS›šËI]¿ÓÏuuüN?×5•~®ëçl%£=.£¥°-õ¥®Ëoâ÷Ûã)†^?DZØãûíõûa¿½žb?ì·×Sì‡ýözŠý°ß^O™M{=Å ºß^Où˜özÊÚë)sC¨`ÖÛo¿Çþ½VJznϧ̧=ûwZÝê?Á=L¦y¥~7šUêw§9¥~à“<ȧøÍ/cñ¦y>2Ìó#ž›WÇ¥þý:$|íœD×Ó9‰n sÝHç2*oÝ:Dݺ­äT›™‡öÞà×¼Éõ¼Å ¼Í!ìó'Í‹ ÝÒ¬¿±–¿Ì ݾde¦;¾ÉqsU£ÍÔ_ma¿e"·R3W&tûÊÚœ´O.3W&t[MµÛʨÝÖz}›×3S.Ý—…ß3+`6î`vï—e»­£,ÛÍ,·H–íf–[$Çvóýè}9B¸C–\$Óv3×-’i»ùqµC(ÍL"ƒ4íF¤iw® L2é >É•|Š«ø4Óø ¿¤ë‘ü6)ÝógCXªÖÿ5ÄϺ;DÛmg!~ÏÂôÙ—ÚÃõåߥúký=œÆ½Ô[ëïó¾{¼oïå,Â,Jy»Œìi†Œ¶û‰Åù3Kð–dìo—¢¿QF>-cöœUÚzOˆOU{©“©êc/u2U}ì¥N¦ª½ÔÉTõ±—:™ª>ör_¤ª½Ü©êc/÷EªúØË}‘*/ör_¤Ê‹½Ü©òb/÷Eêßt_¤þù<ËyÅBì?é>ÃóâœÉ~×(¿Ëìß}–µÙµŠLó­½Ò}¶u)k³ó·ßXd]šS.ê>‡e8—e9å8Ÿå¹€¸÷sàbV¤ù;%š¿óW6««[ßóx?DnßÒ‡ÐY¯ù»·õ½ÖŸ°?eQ. ñkV‡è@Ù`ÍÊkd†ƒôÒœžË åƒ5rÃ@ù`Ü0P>X#7 ”ÖÈ åƒ5rÃ@ù`Ü0P>X#7 ”ÖÈ åƒ5rÃ@ù`Ü0Pí\#7 4[e·—6›Ý³ÛK›·„ÈW2Vë+«¿Œõ•ŒÕ_ÆjjÈã!!G‡Ý¢ÆæèH£âo‡<‡¸39åî/™‹éÌͯ˜‡«yׄø:rúEÙ²Žœ~Q¶¬c6º([6뢑8v¡ج+cÿíØGBBKõ¾¾þúk쿯ÛÄúG6åN6cì¿IÛœ?ñQþÌ´ïêÏ÷s\ÀØ·¥ã¿²w³5Õârî¥Ây]˯™ë™ŸöTá´§ ¤ÞñÁ‹öÀçÖw[ob!nfaná=ü–÷r+‹ð;å6£þP¸8õ‡Â%øCˆë]=$ÙÃÜË©’Ç 5±ÿQ6²V½¤^®U/©—kÕËAj}3½èÐ|kusº¹Vݤn®U7©›kÕÍA²ãZõrz¹V½tŸÓ·97Ízq¡ãêç õs­ú9Hý\«~R?תŸƒŠQí¤v®U;• š9¨$ÕÊA¥¨FR#ת‘ƒÔȵjä 5r­9Èœ7qDHlRŠ#Y:„—|—¬î•‰¯YËÛGÑ<7q4cïCYt¢\ÞDÞœ(—7‘¯'ÊåMäë‰òxùz¢ÞD¾ž(‡7‘¯'ÊáMäë‰rx“*”ÛÈÕ/9gYÝ“åñ&rõDy¼‰\i¥ç2y™z¢LÞD¦îãüÛÇšÜÏZ<ÀÚ<È$ºúšãüÍ>u¬±.ÝW}ÍŠq>CŸ‡¬ÕÁ¾¬eý¾fÂ8Ÿ¥ï%ú }êyÝüܧ>±{ý?¯ûl}Íëq>WŸ†Žg°çÃüƒy‚ðO6áI6å)6ãi6ç>ʿ؂›¡s„Ƚrã óûìšßgËÎ'Ìï³ß§ù}öÞ—ÓûäÊæøÙ²Ä¼ü!Úžn£.d–óèï£ß µý¾ÑoÑûGe.¾ÍÜ|‡yø.õ„Ñò@m½`´®ï4ç¿yÐZŸ>þ í©ã=7÷¿iîß©'½©'íÔ“ÞÔ“vêIoÊÏY|ö WY€×X×)»m¸AÙmÃMÊnnQ6Ûp›²™XœE6Û¡l¶1ŽrÙÆxÊeB\Ó¼!ávj½V†pýåíë)G_¿Ä/ùåçë—)_¿ÂÕ¼Ê5¼FyøúuÊê×eõ^²úõ›~>¿ÿsæçrà ¯Ëð×õ«^òïõÛŽtü ÞM{¼i!®ba¦Qθýeˆ¯{4$^2«×=F³zÝã4«×Í Y½îï4«×ýƒx‚æôºÒœ^×Þ¹dN¯kï\2§×µw.É1CýýŠÓ߯¨wõ÷+Î¥¿_qýýŠêÖPù¦¢ý3T¾©¨ •o*Æþ½¸Å¸˜Å)ÿ -AùghI.a).ei.ã}üŒe˜Ê²üœå¸œå¹‚øÍDÍDCÍDWѬS1fœŠfœ¡fœŠé4»TüŠf–Šf–U?‡„¾ù »È4Bø­# ²“ã¿:ޕ濾æ¿U濾æ¿U濾æ¿U濾æ 3Nâõ!”­Í9‰×…¸Êjø)µ¯²~Jí«¬†ŸRû*«á§Ô¾Êjø©ûCHt¯VVÇO©•ÕíSê_euû”ZTYÝ>¥öTV·O©•ÕíSU©nŸRs*«Û§ªSÝ>U#„Ï]ƒ‡3Büª¼ùBôóò 毲û=ÜoŸ»6ÿ.ëÉ ›½ç’}¿ô2íû¥Whß/½JóÈÒk²™û¶¿ÞÕÔï8d†kj†;d†kj:”Íëîçþ~wS½ýPvšÕ™ÕšîdNšwåâOT7¾rß÷÷9šþl­~|å¾ï﾿ӞúʽÞÿ·tTˆN“ÉŽŽf[Ža;¾Îö|ƒø&;ò-vâXvñï\ цsBX¤o&u¢¾™;~Éq™ïÿhÏ^SãVøL×Ô¸>Ë55n…ZvM[¡–]SãV¨e×Ô¸jÙ55n…ZvM[a¶¹¦Æ­°_:=Â_}Y‘±߆š·ÂþéTÉ:öïÝÐÛWÜmm6ø+öïß°/V ñѬcx¯ó7¾ÁC|“‡=Žxîûe"+í…ôð•ö zøJ{á=|¥½ðB‰÷íÕ8b.¯q¯s>opeà y‹‹x›‹Cœ±>qÄ'ŒðÓF]‘|µ­ã¬—0žK™Àe^¿áõ$ëDëÏe*3Q-Ûš™jÙÖ,\Á¬üÂÏÝôsu¬³Y«a[³S ÛšƒjØVÙs„ì¹Uö!{n•=GÈž[eϲçVÙsÄÞɵ¼‹ë(ïøšòÞˆõ”÷Fl ¼7b#å½ßPα)„"jt‘Øï+ä!ë·Gl q“dÙ¦#)Ë65—¾ä>Ï:“î󬳨³ÙƒyßïŃÍß8†‡ø:ó ïÒû?¶>bý&Õè¦oQn:–jtÓ·©F7}‡jtÓw©F7G5ºéxªÑM'ø}Où}s¬ÕꦩV7Dµº©Z2IŸoªïOÒß›êû“þæü‡“y–SxŽSù/§ñ ‰UêZ«AQùfØt뇬՜¨œ3l†u=Τ,<@ˆþAý!z‚úCôOêQ¹gØ,ï“—èQóá}"*ÿ ›íxìÿŽ©_DÏP¿ˆþEý"ú·×?òz#k}#úõÇÖ[ëѳÖs¬[ë#ÑsÖs­á<6q\_‰þk=ߺ©µþ=o½Àº²¹ãúMô‚õ"ëG­õèEëÅÖ-¬õŸè%k3fyk˜³J+.ak.åc\Æ6üŒû9ý*úŸuªµ9tØçlç¸þ;˭eßa+höÍ£ÃÌ­UÌ£ÃÌ­U:{¿>ÍÈæ×*æÒaæ×*æÒaæ×*Ox]ÿ‹Æfgslóé0slóé0slóé0slói^½ý÷w^½ý÷w^½ý÷w^½ý÷w^½ýÙ$¯Þþƒû:¯Þþƒûz†ÞVÞ!‡·•Ãg¤°&ßc-¾OufÆTOfL¦ú0c ër*â4Ú73쯶õi_µm@û©mÃ÷ñ !±ÓìË»Øyù?æcæç‹,À,ȼ›ƒ(Ï$® ÑuîëNÎ_n罓ó–ÛLÓÉyËí|wrÞr;ßœ¯ÜÎw'ç+·óÝÉùÊmþïä|åvž;™ûs;ÏÌý¹ÍÿÌý¹ßNæþÜÎo'snç·“¹?·óÛÉÜŸÛüßIÊmþïdîÏmþïdîÏmþïdîÏmþïdîÏmþïdîÏmþï$säîmžìë¹Ì‘û¹WópîUžàþI5­æI¾ÆST³jž¦šUó Õ¬šQͪù7ßà?T«jž¥ZUóÕªšÿR­ªyžï„гOWõŽš¬Õ¬š9ÎñçÿÔú’µÚUó?NàeªY5¯Pͪ)»ŸS³jÊîçÞós/ø¹Ø›I?½ªçÔ”åÏ©a5eùsjXMYþœVS–?§†Õ”åÏ©aµdùsjX-YþœVK–?7]cÓjÉóçÔ±Z Œý÷©úùÝËBBä¹ýªû°aˆÌñ:¿Lߥó0ú.‡Ówèü }‡Î¯Òwè<‚¾Cç‘!4Šý߸e£½jÇÞ¦ŽûN_£ïÔÙ¹~]}¨ã¾]]¨Ó:Äÿµ?Dç/¡þ?)õÿù˨ÿÏÿ,„u„H›¾ÖrÀüTæçŽWt¼ŸµL09rñ çJfp§9%WmÏÿðÜ|ð× ê­åäícz`9yû˜žZNÞ>¦§–“·é©åäíczj9yû˜sXNÞ>¶!Ä÷j¢÷^ãã¼Î¶¼Áv¼Éö¼E³ä½·Ù1D‹„y§[Hhð»ó{ðO>É“|Чø4OóÆþýéîÉJ½ù5Ÿãzöá>Ï´gæ­ ‘}®¡ßX»6¿_‘“7c5ÙãõÉ»Éz¼µY|ÔÖ›ù&õþÍW«6«Y¯<èø[Žk­v½RÓZþÊ»ÕZ {EíÚ¬†½RÛñ·ÿÎZ-{E Û¬–½¢†mVË^QÃ6«e¯¨a›Õ²WÔ°ÍjÙ+jØfµì5l³ZöжY-{¥õÆWôª,²þfýï•ÆÔï^ÑŸ6ëk¯4 ñ›ê„è0³çÊ!ÒÔõßT×Ú ºrµœµr0Í«+_¢}°é!¯Ëø›êñJˆ¼fßÖIû´¦}úš}ZsÝk5G»XznžYÖcèž«ùºcz~„v5rÌýWó‡húkü„£ø)Gs Çp)_ç2ª+kÕÆA=CÙ2Dî”mÖª‘ƒžµne­N¬U+õ²nm­^¬U3õ¦š9H}[«fRsF>æuud­Ú9èyªƒ^ Ú9Èõ_«vêGµsÐÿ¨vêOµsЋT;  º9h  ™míæ|‰;9„»8”?ñeþÌaü…ÃCüGo‡hÇZ|‡öŲ’NãÓ,ÅgXš¾÷²ûèû.+CßsYYªáËÊñ9–§ï·¬ÕÐe÷Óþ^¦&4P—© Ô¯e•ø?VfVዬʬFóè²êÄìó½ëó%që8þ ã/±&‡°‡²6_f‡±‡³._áC|•õ8Âïï÷Õå>ĉ¬â/·ÑÔ!¬Ÿ"m÷Z·´.â§œÑVsxf²)f¶VóBü߆h]Ÿ{¡¿WÛß[èïÕ~Åñ­Žâwô=Þ0×Ö}‰Û9„ßs( Ï½Ðç«ýªõëaü‘®Ó;û}»èó/ôùkûüoüdógŽä/|¿rws4÷Ð̶îÞäû¬+Â}4GÚOsô 4G:Hsô ßBÈiÞ[WÒóC,E³ÝºÒ<Âûx”ex,Ä=hþ<[ŒæÏ³Åiþ£gÒ3žÑ3 éÏè…ÌU¯xݾ}Fï(tÒúªµ]õíßgô’BzÉ3zI!½ä½¤Ðöä_fê[æéE¼ÍÅ!¾­•õFø)ã¨?·§þܾSˆæˆ„0kcˆT ü†Ç;;Ç.Œw|“ã±uWë>ÁD&3êõÍ^·îfÉz‹µzZò)Ǻ;&G”T3f}ëxìçz8&WÌÚjûùï˜Éñ'Ïʧ˜O3;ŸaödN>K{`Ö6?—Ùº—unöfží¿Ý´/ÄÝ!#nWÓî·Ë=3+„„¶fž™÷ÓŒ3óšmfV¤™ff%šQfVfzˆ÷ßm4›îéFÑ=Ýèã_ìfHÜ¿·è|»Mç»xì_ä|Ðù.Gç»x<ïâ ”‡Š'ò3F)ÏÄÏ™™òOñ,ÔÿŠg¥üS<åŸâÙ©ïÏÁ4æ¤ìS<}Þâ¹ùóp5ïàÞɵ¼‹ë˜—_3×3?e â¸‘ù ïæ¦²ÝBñéÖ…¬7‡ø™ò]»w(ßµ{—ò]»q”ëÚ§\×nå¹v)ϵ›Dy®L¼Ýü1Úœ°Ýü1Úœ°Ýü1Úœ°Ýü1Úœ°Ýü1Ú~“9Dò7±6‡Œ6/l7‡Œ6/l×kGë5YÌ&ÛõÙÑf†íúëhýt»¾:Z¿“ÅÏ6µÖ_G÷¡þ:Z?Ý®¯ŽÖO·ë«£õ1Y½¯³±¹ãúìhýu»>;ZݮώÖ_·ë³£õ×íúìhýu»>;ZݮώÖ_·ë³£û=Ùý3ó˜lḾ;Z¿Ý®ïŽÖ‡Æät\“‹²óv}x´þ»]m¯nׇGë¿ÛõáÑúÄu.¿™z»~÷y¦Ïè>Ï”J÷y¦Ïé>Ï´œîóL+è>Ï$OGåš¹Cô‹?™‡'yO™­ÔŸwz~šwÑÌr#/õ™ùø7óóàYä¹Jøø?Êëy±ÿ¿½8óûj{$Îü¾Ú‰S›WÛ#qjój{$Îü¾Ú‰3¿¯¶Gv4‰¯_ࣼȼĖü­èwùÌýð·ukë+|ŒWÙ†×ø8¯³-o°o²=o©m?†øæòIÄ~™ñ_ˆTªn]Öúg–ã/!”ØîyyÏeîæýÜÃ(/5¯Hy©y%ÊKÍ+S^j^…òRóªüÕ(+5¯NY©y =W+#GCHUµ ñKÌOw£9ãéî!þÉ×C´ k]Òg.y;„RÆ™¥òÀÓòÀRyàiyà×s!aÜþË¡4÷3÷ÿjT–SNºŸ+Ë)'/„ðô¬.Ëp‰<7]¶g+Ë,'ïÊ2ËIç{§¹ï-óÞNsß[æ½æ¾·\Ïæ¾·Ì{;Í}o™÷všûÞ2ïí4÷½eÞÛiî{KvÛiî{«±Z­Æí4÷½eÞÛiî{K]ßiî{KÞù1›qÕàsù(çyÌ÷ܵKÍ|ிeHˆ¾Z…CY•/³‡QæÚ5?$ŒuÜõ¢ç <¯â^ÖG+}Bauôe½´’{ãe½´’{ãe÷d%÷ÆËîÉJî—Ý‹•¾ ™õþ ¿Pïßð+õþ »)ÏoØBî’ž_ò|/å ê¸Á!ñáÂ|‰÷pïåPªo®EâÃêšk‘øp±ËYdÅÁé¼ìøpÇåâq¯P}÷*Kzý+¯ÛÛãFXËÇãFR>¼Úq{}ÜkÖ÷qËp4Õ•qc¨~Œ{åÍÉf¹á i–Þˆf¦á‡ø[övš|wËÞN“ãnÙÛirÞ-{;M^»eo§Eio§Éi·ìí4¹ë–½–…övšÜvËÞN“ÛnÙÛirÛ­”Û2ëmÌ.)2l)³Lf=nƒÙ%³·AK1“•zÙZÛ`†É¬·m0ãdÖÛ6˜]2ëmÌ.™õµ f—ÌûhvɼŸf—ÌhžŸnx¼7±97óQna‹$…°[œþ­µýÔÀœ¸ÛßoP—¯8¾ÕñVn,÷Òôï<7«OßF3ùôílÃïù8`[î`;Ùs³ìÙ—[h޵W6ÍÇ}Ìï¸ù/‡¹¶¤Ü2ÖlQXí;âžšúµ}[X <âÞšêÞ:âÞšZ?„¢êà÷×ÔÞcn(,_Œ5Žw¿Mmhm¾-lŽ?â¾›ÚÈÏÄž»÷¦>ì5ç»°ûîˆ{pjìüÓs÷àÔGBü[“B´žï]z…‡^°p¢y1ö3ßJñšY÷­÷hÖ}ë}ÖçôYNòÞLá.¾GõsáûT7ûÕÑR¿3‰°O°.õš~Q¯éW§XŸúL¿ÔgJÖ ‰ÿP›Ý×%ëzîgK>D?[²ýlÉúô³%ÐÏ–lÈØÏ6¢UòaêQ%S*ùõ¨’M¨G•lÊÙŒç©ß¼@ýæàEª9/Q¿9¨—•Ôo^¦>sð õ™ƒW©Ï¼F}æàuê3oPŸ9x“úÌÁ[ìÀÛì•Üø’hÖú¾EˆÊŒaUÏi6ߺ¥usõ ž·òܼó}kæ2þÊA ë(%|M9(a=å „ ”ƒ6RJø†rPÂ&Ê? ›)ï$l¡¼“ð-å9¬¥¼“ ‡Eeˆ–2OÂ6Ê: ²WKY'áû¿Av:=„öê#ƒ¬[ϰ¶/±/WØ—¼Dûñ‘!^ÏðúLþÎYüƒf© 'h–Úð'ÍRNrOq.OsÏÐùØððoš¹6üC3׆³4sm8GYj…½þÈPçÍžÙ výÔ1uåueƒ>Ô¶A jÛ †5‡mP¿‡šÃ6¨ßCSC(3Çc®‡¿?eˆ>Ñ3Äo¿;DGp} ¸>­ YëçÛ SÖ«%·ü;*ÄU»/$œq-ª•¡kQ­,]‹jåèZT+O×¢šôŒkQÍ zƵ¨f=ãZT3ƒžq-ª™AÏ|G3èסZºÕªR®V2pµê”«Õ  \íAÊÀÕjR®V‹?±6feÝju(ëV«KY·ÚC”u«Õã^Öç>™`¡ç <—s«5¤œ[­åÜjÓw¯Ö˜2CµGx˜M(çVkÊ£lFY~Ø­ûwÄÔNáÇËÖ·­ß ¥7¡Ê[Œp¬×¿òúõ×¹çØÛŒç;^[íµ«Ö ÖïZ¯±¾fh=ŽQŽw|­ã×­3YË5µ×Yß°Îl­Æ ÏBõkxVª_óQýžê×ðü€99™¹8…¹9UÆÝ¢+íÛÛißÞøžöíhßÜØAûöÆ´ooì¤}{cíÛ7r…h³ørw³ørw³ørw³ø2w³ø2w³ø2woÔÖ;ÕÖÇ­eï:›({×1‹¿!{×ÙBٻη´_ël ñæŠèªÂ=ªÝ{Ö²ì*õÆü]¥×›¢«ôzóCt•^o~ˆ®Òëoêõ«ôú›zýªLæç}C;¿ã}¶ç^ÓÿWe¶î`=ÙZX%Ü”Veu¼£ãS؉ÎÙM¹`•\pS.X%Ü” VÉ7åÞU9½¯³÷Mc~èxMÇs±sS?Y•‡úɪ;¨Ÿ¬º“úÉ*™ð¦~²*oˆ_KαïÆ×æ1&ñ8õ“‡3¨—<ü;õ’‡ÿ ^òð‰Ò…Hs9b§kû–½•ö°õ˜_wMH¼ô ÍÑ—Ô‚ºæèKÏÒ}©ÍÑ—zÓ}é9š£/õ¡9úÒó4G_RÇ뚟/ÉuÍÏ—úÑü|é4?_êOóó¥i~¾4€æçK±ÿŸ«ØC­­k޾Ó}I­-18Ä_5,÷™¯š– aý†i«¿\]fý:?£{.ׇrsaëTë7ù9ß á>ýû¾]!¾¼‘!–—2dÂò²C†LX^fÈhLy!C^(/³g4¡ÌžÑ”2{F3ÊìÍ)³g<ÊyŒýw½e¼/SÆhöX#Û NÙnà+”í¾ÂÈœ!ûç£ÖÈxGPÆ8’2ÞÀ×(ã T_×ÈxGó Çð7¾ÎCô=Gš›îŒý÷ÃÍÚßä¾EûaÍ1ÏÇz¼â ׋‡Ð+!„ëæ”Fo[—°N´6¯4zÇÚ¬ßè]²zEol=κ4Çó>ÇÝ×Í2&XËÜ&Ræn4‰2w£–ç{4ƒ4zŸæ·^î›ëfŸFXë·&³"§°§²2§± ?dÕ·^ÞxÉ °^ÞxIæ_/o¼d¾]/o¼d¾]/o¼d¾]/o¼d¾]/o¼t‹òÆK·)o ìÌ»0Ž]Ï'<’=ºyt÷èáñ¤ÇS^OðHôˆzdòÈì‘Å#kˆ«ÿiH¸"k4KÕ_â¹sU)›úËè»ÖÿŒæ¼ú©4çÕÿœæ¼úËiΫ¿‚òy¢9¾¾ÙëŠlþ¬^pÍ÷­¿ÒZ&Vº&oÝ|Õ½.oßÁöÉjÇSjGì¿U÷4õð ÏP=¾ùš×;ZËWíæóY.`/ªË7Gy½G³3ǰ ÍÛ«ºz_oïS·o¾aýßd²ãÏ9¾˜}ø‰ão9ÞÍúyëO­ÇZ›Ûoš¹VõpüÇe›f¯UOÒìµê)ŽãÓ^ïëõ¥ìGÙäæxÇÕž›¨öÜœHµç¦Ü¾Jí¹)£¯R{nÊè«Ôž›2ú*µç¦Œ¾Jí¹9™jÏÍ)T{nN¥ÚssÕž›Rí¹9jÏójxq¹æy5¼øoT³‹ ñ-õY2¾¥¾"KÆ·”dÉø–ò,ßòê;-量ӲeÉéBäåÈ!¾žšyÙç®§f^ö¹ë©™—Ÿóú ¯a­v^öùë©—}þzjçeŸ¿žÚyÙ篧v^öùë©—ÍQÙR=W?/ûõÔÏ˾C=õó²ú¹ð‰í¦¿ì÷Y&Éüû‹Ræß_Œ2ÿþâ”ù÷— Ì¿¿$eþý¥(óï/M™ÿ}”ù÷—¡Ì¿_Odî×K'ÉüûõÒI2ÿ‹C´®½øÆ'´¿™"†»MH0F·´f?>Æÿ1v¼?ç‹Ô£Ÿ‘­ m§lUè{ÊV…~¡êù¾«l-cÚA«Ð”± í¤ŒUh›SÞ¡ž×0;¬"™F²ÕÑê{Tßk4¤ú^Cý¡¾×P÷F¨ï5Ü»#Ô÷îÝê{&!^î¹_Ãý;B¯Ṉ̃ž«ó5Ôýë·Bô‹Ý¼Í=rŽ1⋽Œp㸟ñ<ÀÚg7)CVþ*$œjÃÕ|œkØ–kÙŽëØž_³׳#7°7²3Íþ§ºÐìª+Íþ§Ô´ÊfÿSî×Ä÷<7÷ŸRß*›óO©q•Íø§Ô¹ÊfüSj]e3þ©§BxÚe}Ðz`ˆ;z-$N›ÇëœÏ\À›”×Þâ"Þ¦ÚTTÿK4¬5g$šÖš3Ík͉怵æŒDsÀÚm!tÉÂ?Îo¢y`­y#Ñ<°Ö¼‘hXkÞH4 ¬õý³É­ßœ§ÜúÍÊ­ß\¤ÜúÍ%Ê­ßüG¹õ›Ë”W¿¹Byõ÷Nª¼Ò«å”^ê`ªœÒKL•Oz=Mù¤—º—ºœê^ê ª{©_PýH5—õR?RWQýȱÍó4Ïû„ðZÙ¹ËuXÿ‰ÞdO­ÿ”öÔú%´§Ö/¥=µ~í©õŸÑw^ŸJ{jýç´§Ö/§=µ~í©õ_ОZ¿’±>¹Š±^™Æn!òÕ"‰«X‡i¬Ë/ùÓYöz ÷åöz‹!Ô×—~5[|`Ï·hH{¾…,ú=ßBýÀžoјö|‹GhÏ·ÁJýMà N䟜ēLá)Êü¥Nó}žaìßmøåõRs ÿ¡|^ê,§ñåïRÿr:Ïs/Ð,_ê"Íò—Íî©_Û_…¸ýö`Š=¸ßL±÷Ûƒ)úesIóKý#þÑEÿȳ)„’fÿ.zH=¤‹’G颇ä±7/ú»K§Óß]:ƒþîÒ™ôw—Îâ%ÎaÜù)V™(#]üÏñ¬/ZWå%Vã¬îõË^ÿØÚìY¬¯ðAǯ8>‡W9—¾ÛRßí¢ï¶t¡Ÿ3«Isg±ZŽû®KÝoÝoK‡¸KÊÌÒOá§ŒãÆs)娥Ë(K-ýŒòÔÒTÊTKå§KrÕRõö’lµTÏüAŸsšú̘34³ù‹f¶1ÓÌ6æšÙÆès?˜ÙÆès?˜ÏÆès?èécô¹ôô1úÜzú}îsؘ؇íÂSrÖrVyµ1Ã/¯6fØãåÕÆ {¼¼Ú˜!×âz•1k™M³ö×çÉÿüŒëQÆÌ}äcš¹ÈläµÎ{³÷סŒÙûHlmö>â:”1{‰Õ¹!qê‘Æš hý õQë®Ö>ÓØ'ès­éø1ëdë™töyŽš§·înmíÁ7/NͰ~ÒÚ>+Kö½Žš§þnŸë£cåÊÂ>ÛQ³äÔ?¬åËÂó¼öšç²eaÙr¬lYX¶+[¶_ŠŽò\~,¼ˆòba5y¬¼XX+'VßÇÊ……í‘£fÓ©fѱr`a9°è貜±– Û3GͬSÿ´þŸµ½sÔì:UÊu,$l5'&?¿ö\®ãÖƒ˜ÁÁü/ñá åŸ4Ÿå:IóY®S4Ÿå:MóY®3|•Ñ\–ëošËrýãqÖó×<ÌeM;‡„ÛØ…Ù•—øÿc2/³í³¦Ýi~iڃ旦OÒüÒô)š_š>ÍØ??ö Í/M{òvˆü¯tH(½Œ÷ñ³jèÛ—[—±Nµv¶¯à ~Asòö•|‰«høÙžÆ¡ü2„ ÕxÙót¿£¬ßñ¹õ0ë¯BäBBÝÁô=ë¾ÄsÂ9”ú_Ý—©ÿÕFý¯îpêu_¡þW÷UêuGPÿ«;’W)‹µS§³›QÛ©ÓÙÍâÏ M·’¬Õëìc­oZ×á-Öåm>‚nÕc„2^Ÿ8ê#}âÙfÚ[h–½e&ëcv½%ÓµSÿ³¿mmf½%ÛµÓ²¿C} û»!n“>9\ŸÜ¤O×'7é“ÃõÉMúäp}r“>9\ŸÜ¤O×'7é“ÃõÉMúäp}r“>9ÜÌôo§ý¤|_ ‘ÇcëÎÖØ…fßÒ­=óhãñ¸‡¿U/oHøÏõKíã*îþìã*î¾ìã*ÞŸî¡â/†Pý¶ÉVÕߥlßÇ=Uܾ­>Îú{óZT}¼ç?xÍ}VܬÔÇ}VÜLÔÇ,î{UŸàu¹¿½XÜ^ìc/·ûØ‹ÅíÅ>öbqû8w†çöcqû±ýX|¸ŸègÍ }ìËâ¯XO²63ô±?‹ÛŸ}ìÏâögû³¸ýÙÇþ,þ¯q¯s4op oòuÞâ¼Í7ýíßCDùI(þ#Ë8¾ÍxÚkw»v?©sSõÄVzäT=±•úûwÓOÕ[Å^Ó[©}CZ„H6ûrªþØJ훪?¶Ró¦ê­ôË©úc+ýrjVÚS³Ñ¾˜š_„ÈiyinSÊKs›ÑŒ0·9Ís ñÏÉ¢E7PF)*£<'£•Qž“QŠšÖ…èZ9eÚ?!úØlžel}Žó_ê[9šz~Þó¹¼Ày¼Èù¼ÄürQ-½ñœ^SKo<§÷ÕÒÏé1µôÆsúJ-=ñœ~ÒÓl{Õw­¥7žÓûjé‰çô”žýwŸô´¯®úîµôÈs±ß«Gž“Ajé‘ç‡x³AtÚ¼Á!|5>DZÆÖ7­¤ymÚNš×¦í ñÚdtÚO4¯Mû9ÄM46Q3&š›<ÂKùC$«™ö¥tïO46iB3a3áD3a“f46iÎù|” Ø‚ Ù’‹ØŠ‹Ùš2zùq¢ÚÓDVŸ¨ö4Qƒ&ª=MÔ…‰jO“vöÏ!¡DmÊØ%dìçeì2öó2v ûy»„Œý¼Œ]BÆ~^Æ.Q?ÄtMkl aÁ½!R+ÙÚµ­ñ­ukyfAQvw\­±•²hï(‹ÖpÏ.(æusÊÈ{­·³¿gQ:Ÿ#‹q‹ÓyY‚ÎëÈ’t^G–âO!d—oG–öügÞÇ_X†¿²,ÍÎqõCâW§Ø€ò^\CêýYí§¸FžË|qSæ‹kL™/îÊ|qMx.„‰îÿ’±ï¯{±d þÁ’^oêuY0®eÁ¸æ”ã¥,ׂ—Ø’ÿ±/³5¯ø='üžRÖY_µþÓº4Oò>žbžfYïkã}׬ÏX—³~Üú:ÛòÛñ&Ûó;ð6;†ÄÕagƱ ãÙ• |‚‰Lf4D†ªV⧬Ì%¬Â¥¬Êe”Skë/;ï±þ̺:SYƒŸóA.§l_[¾ÜiÏ _a]‹ö_Uûo¸ýWÕþnÿUµÿ†ÛUõæÚòçN{j¸}XÕ>nVµ‡Û‡UÍzÃÍzUÐŒWU®í†Ûiï 7ëU5ë 7ëU5ë 7ëUmìu=ag1Ê£;]ÏÚòçÎ^WÓªºkËž;KZ«mU›XËŒ;K…¸:zÒEY´ ŒWG_º8J룎µàólÉØŠ}ÙšýèÜí^ïÞÛí^ßVö¼Ïs÷ãxàú´øE~ȆœÎFœÁ‡9“êÅõY”-®«_˜Q7kÌ”CrºÆ¿›7fFYƒ™ø 3³&³°³²6³1‰ÙY‡9X—9ùs±s³>ó°ï`CÞÉF¼‹3/3aþ¿zVˆhÏÙìÀØ‘³ç°3çRŽY=]9ŸOpÕ”Õ Ù‹¨–¬^L5cõ'|’Ÿò).áÓ\Êg¸Œ=ß}õgž?ËTö’wͪ!…fÓðͦá}šMÃ4›†É4›†)4›†©4‹†i4‹†Cèe߸7¸í­ÍÔÍ̤ÁlÔLÿ f´fúo05Ó{ƒ­™Þô§fznПšé¹Aj¦çý©™žÌdÍôÜ /5Ósƒ™¬™žÌ:½Ü7ŠXç°Öšå¤™¸Y.ê÷ÍrÓ|Ò,—h:²[vùpsåÃÍuØ•uùb2ë±ë³;°òI6âS”w¿q_wdý´uc>ÃGØ“Mø,›²›±7›ó9>J÷Ëf÷Kv÷Ëf÷Kv÷Ëf÷Kv÷Ëf÷Kv÷ËæÇø?¶a>ÎÙ–ØŽÙžƒØƒÙ‘/Ñþš ?²„zñ#ò΢c!R§¨µžüˆ¼SºTH8¤0•6÷’MK›{­ ‘‰æq}32q;Ûð{>ÎØ–;¨oNü‘öø¯òɸµ”OÆ­£|2îkÊ'ãÖS>' ýz™²Ð¯W( ýz•›x›C\‘­!ao~Ç®!ôhÂEû²ˆÏ³×=±éûþ:àÜÁ7ù#Í89›{¾Óó±ÜÅ·ùeäròÍÊE!Òô„c?;önˆ?è=ïËZ½çý9tü}9ëà/ÔþJ9ëànÊY÷p!÷r÷Q:¸ŸŸð? ‘Af‹ò³h¦(?;„ÍíßëƒäÓòYû,ß롃Ìå?¦}Z^ÖË£ö2_”ŸKóEùy4W”÷óyÌj±ÿÎYõ£¼ß‘§^ˆ¯ûŠî;ÞÆúø÷Üsï±)»Ù«2"2¢dd5H —†-¡p‘™É*!›ÈžQfEBdd\«d¯ºÒï÷¾œ×ûù<çÜsÏyžï÷3~¿Ð)$Ü’ªu¦üS­ åŸj]™›Ýø»óAö`¾Ã¼ìɇø.ó±ó³7­³h­‡ù ò}b_ªýfÑ„[j·Y4áÖ#LbQ`±÷ë¦0ZÎùu3ßä·|‹[ø6·²#¿c'~ÏÎÜÆ.ÜήÜÁnÜÉîÜEsÎÐ’!ò`êûì›mVØ»w†7Ò±ýÛqíߎf£OÓL”í ÇönG3Ñ {·£Ùg…½ÛѳÂÞí¸7„gÌÿG/‰íáŽ?‹õÅG/‹íåŽûh/wü…örÇý´—; ½Üñ í县Ò^îxˆörÇô—;þfŸ¦ ±ïÌrÓÒ,—1ÍnÓÓœ–1õbçÕ«Ï3„Eí9¯f}®fW³>OýoN†ØÊÕ<Å5<͵Læ:žázž¥ýyïíÏ{çiÞ»@ûóÞ´?ïýIûóÞEn q¥?ñg r$ q s4õ¥ÇÐ=ÿ={ˆM<ÃÔ;¬qšÅ3Ÿt.§sú‡5Wœ+#6My‡±<‡óQŽàcü˜s$+p+r4+q õˆìɼc?Áq¬ÂOX•ãù$'°'²:'QNÈû)Í'yõUjR_u õUjS_uàiê«Ô¡¾ê@]ê«è«òšË˜;óšÃÔ£9쀹«âç!þr%~ÁÊœÉ'ø%«p«r6ŸäVãWôù«½iõ×ÕÞ´ú¶ æ îé|÷®¼;ßìÛFÞoöm#ïÎWWÚÈ»óÕ•6òî|u¥¼;_]i#ïÎWWÚÈ»óÕ•6 ¨®´Qóæ«+mQ]i³˜æÕ6öó9 ¶~h¾¹µÍRª‘m¾¦ÙfÕÆ6ËCtÖ¡Í74¯¶YÁ8®d”«OûnAí»1Úw ìé6öÝ{º}·Àžncß-°§ÛØw ìé6öÝ‚Œ´ïdâ·f|Ÿ}AfÇöž–-–×wjïw§þo·}ÂŽë!ÒÎúÍ“Y¼B|ƒ+yÓyë9õÜÎzÎsŸó«œ¿%¶®óX×í¬ë<Öu;ë:uÝκÎc]·³®óX×í¬ë<Öu;ë:uÝκÎc]·³®ó<Àñ|˜'„ÐÕñDÇjǽUS×sŠÞª©ÞzŠûÛTo=Åýmš1Ä•0Ïœ®"õ[ ¾§~«Á¶÷MŽð¶ëñ‡ëú…u ž¦rê¿ÕÔ×<¬'™Ó®ß@=Nåüâþb×q ^§rq’ØÏÔóT6ÇÌ ÞÄÜÌA”Ïê…*«Y{Ó¼:çç·p0õû8¯† |j˜þ=Öl;å¨fæõirR3óú49©Ù.ÊIÍÌéÓä¤fæôirR3sú49©™9}šœÔÌœ>ÍßÌœ>M^jfNŸfŽo–úg?̵å ‘ÓSBüóÖé©4gžÆ"œÎÔçg°(í·)Åh¿M)NûmJ‰:- ‘ðgˆk»($'ÖßBvõꘞxüÇ¿y«¯ãSÿ—£ÇB\B|ˆß0– BNýzBÌñ'Žõì9õé iÄú¸ëuC‚½wý^å³¼Æz¼Îçxƒõy“ x‹ y›x‡¾‹½wÝ÷±×ã®7a ›ò.›ñ_6ç=¾Àÿø"ÿÇ—B‚­wýeFØ‚qlÉhˆ[úPHè`.ÍÇíÌÏ,À|˜»X»Yˆ?°0 !¿™:¿éî¤û¦3?eNfW~ÆnœÂîœÊœÆwhvü¦'ÍŽß¼K³ã7½Btgƒ˜Þ\~É\Þ“—ù.¯°¯²w‘Ôÿmášã>¼Î÷xƒïó&í³¾·hŸõ½Mû«ï&…PHíª¤î\Qwv背¥>xÀ¸­g†§­ã£Ö±^²žÞ$$‹‰õ”õô'APOÎÒLÎ…¸…æµ¶+h^k»’æµ¶«h^k»šæµ¶k˜•k™ë˜æ’…òEÛ ÌÉÌÅMÌÍÍ|€ß†ÈFßõ]ßu£ïú®ïºÑw}×wÝ軾Û/„zæ ãžó»¾óFßù]ß¹Þbçÿÿ- V+Žëý6þ#(Öû¿lÁ¨Sœ“_6Þå!úUý{õ_µ¥aˆÔB±Ô¿3åþÕ<úDVšGŸÈÆ…ÌÎEÌA3Øæ„«©ÿ;¬9áêRš®ªG;w¹Ïæ™’Ù<²{äðÈé‘Ë#·‡~cçn¯"ç|·I!>{³ÙìÆ=ÙlvHã^l6;¤q/6›Ò¸›ó³: ð)Ê÷eq\ÃqAÖd!ÖbaÖ¦91ÍÓ4#¦©Ã¢!nâ±Ðpp½õÞÞf)êá'wþCþÎ!<Á¡<ÉxŠÃxšÃ™Ì<Ãy–#yŽ£xž£ycøåšœ§Büžwxš=™Ìwy†½x–½yŽ}xžïñß§¾{¹7§¾{O?ê»÷ô¡õg!\?Bü%ÇSËy­§òˆ×èÉ÷X+¹RÿM ûoÏÚ{¬\©ÿ>=¸gíÁ=ÐþÛ3˜Öä×$§5¹Ç5ÉiMîêgRÿ-!÷në’ÓzÜ3Ì9sG.³FßÇC$‹ï·D_×ÁÜ×·‚¸'+Ò÷\¢Ïë ¯Z¢ÏëPú¼O…V.yàRHØ7‰—ùiò†H±WÄWÄ“y•Ÿñ§ð:§ò§…è³z¬0z¬0ƒz¬ð9õXÁ¬ü¬+˜•ŸÕc=Û³z¬ g{VôlÏê­‚žíY½Uг=«· z¶gõVAÏVOô7õô7Až[;DªÚG#õ?µ×‹Ÿ[[sëðCÖå>C×mî³´7æê+ªºfsÕ«ªÃYŸ#¼Oï³AÜ@lÆyŸX¯0ò~êæÚ§UíÓ¹8ŠÏs4s ›PΙÕëõs›ŠÕµ¹Í¨¦ÍmÎñ|ø"'z}6¯×ËÍ}I<‰/óSçÍF©ÿ†ÀÜâÉlIפY©¶d¤ž#õßÈøŸc}Gíï©ïHý÷æ¾âµîÑHýGê¿#0·•ؽ©©­?©©­?©©­?9Û:Ħ›AξFyüìë4ƒ³¿NŽ¢ýur4í¯“chô]‹Ù_'DžȰ¶!þ©?ØŽ2‘òå°ö”‡u ½Q=Â/µO÷oØΛù†½É+Îëíq‡½%6“ {›×Bt¡ù²µµÐ|ÙÎÚZø­­…—hmÑWÓÑW;H}õ¸_©¯wˆúêq‡©¯÷õÕ㎘!k…HƒAbýõ¸£Ô_;æ¼ÏÖÀÚ:¢ÏwœÖظßÕ‹U!¡Ý«\ÍÖ\Ã׸–¯sÛp=ÛrÛ…èA??Òï=h&Ö[üG¼SœF¬Ç©Ç:¨Ç©Ç:¨Ç©î Ùåù´b½ÖH½ÖA½ÖH½ÖA½ÖH½ÖA½–mwP¯5J¯uP¯5J¯uP¯5J¯uðƳS?Ï«Lýý­™ú{_cêû¿ÎtlÃôlË lG³ÆÁDf q乑“)ÏüŒòÜH¹|ÈÇ!òÀnޤ^퀼7Rn2J,§ÿFNËçnЧ‹Çˆ÷p,÷:Ëù¼ÍÏ·oøY|Gü…øñ>ñßâ™âñâ_Äÿˆ¿d g9?Áùýâ»âÙü—sœŸèüñ=ñWüzèÿã<ß3Poq0Bù3÷<çXq=­þV¿=—ÓuºžÁñ7ú¯a#CBÇ8Šs4+p +RßWÃ|?lÍ÷Ã>¡ù~Øxšï‡M ù~˜ºTÃ|?Lª¡ S‡j¨CÃÔ¡Oñ3ÖàÖäTÖâ4Öæt>ͬÃÏY×Únbm[S˜%ÿ‘–YÿÿÈ Ë¬ÿaú¬§¬ÏGä½aúà§þaC¦°ïòy¦þ¼ùä«¥!Rå²s»Gïý”;¬)ÿç5òå°f!VÃÚÜa °wXƒ¬ÁÖàkp‡58ÀÜa °wXƒÒ…ðššó±µ8À5Þa-°wX‹¬ÅÖâkqG{fffñsù¹Vâ7Ä÷…¸kœŸê›¼Ÿo1+ߦÞo¦yµÂ–}»kˆÌÍn| „"/9îîXþ¶Ù¹ Þûm³rA3ùÛfä‚…ð‰úóˆú“E¾ñù£YäŸ?šE®ó¹£Yä:Ÿ;šE®ó¹£Yä:Ÿ;šE®ó¹£Y6²7ñ næ›ü–oq ßæVväwìÄïiæ©ß9Ä¢9Ù…¹è;D}‡ú¾CTÿZßçúüõ}þ¨Ï_ßçúüõ}þèC4ÛGóÑ ÍO3|´Íìчifšíë¿O³Vý¾,l~Q'ê÷slž¯ßŸ8§§+$o×O ÑOÔÇç2Q}|Îý©%_¦t ‘ÛχøÅ¿±1ͺ·›Ð¬s»)Í8·›ñ8›ów¾À|‘'ùOñežf &³%Ïðže+žã«<ÏÖ¼ÀרþÞ~êïí6To«Ë‹ÕßÛêòbsÉmuy±z{[]^|…êòbuö¶:¼øÕáÅ©öÀ÷×¾÷¸FÀÔj s›ð6å`6ã‡lÎ!|Cù"?¢µ÷Û0¾l.TŸ“ìÑêsÒ÷!¬8"õÜóêtêß \Qý¿,çWTÿ/Ëù;Rί؉jPâ+!ü-7'¶âTç;;oÿUìBû¯bWÚ»Ñþ«ØéBôÒ™›³Šg¹:„¯†H½ë¥sâ5!”.äQX|^¼–¸ÎëZ{œ¾ñ5Îàë”Ã7¶¡þãÒ^§ÝØV,wolÇ/™H9{c{êq/écæè1KñxD¬Ÿ™c.U ñw³:Õ˜ØST[$™øjJ¬&õý±ZTKbµ©vÄž¦š«Cµ"V—jC쪱g)ñ·Ôã_N×ÿ*–¼.›Cbω±>³Í.-kz~ ¸¡Ø kÄ£ÎëÝ.›UbÖûÆc´Þ7§õ¾Q³Þ7žðºÚ^g–‰Y÷OÒºßxŠÖýÆÓ´î7šÿ[>íuf˜õ¿ñ ­ÿgiýo4ÿǬÿçiýo¼àõu¼ÞL³6þAû`㟴6^¤}°ñ/Ú/Ñ>Øx™öÁÆ+´6^¥}°ñí³äÀ²?²2—ó ~Ã*\Áª\É'¹ŠÕ¸šÕ¹†®m£³!$¯×à:Öäzê1l žòÀFêol¢9åÀfšS|Ëg¼Ï9ïSD¼El^9°•æ•ßѼrà{šWl£9åÀvšKì ¹äÀNÚ§ÔŸKi¨þ\JÂä!Rêx8þÜñïü‚rÐb{+Ñ5Xlo%Þ ½”x“öRâ­ùh˜\ мãx¸ãû8‚÷ócf ¡Ú}{6ñHqª£˜£™#Dæe ñ¯™yâ\ƒy™ëUæeá$ÞÇOy?Í9Og ápf¦ï6/«óŸ1§0;õ_OûL‡}çy9ÄÓ˜“Ó™‹¾ï¼Üô]ç=@ßuÞƒœÉ<ü’y9+ÄM-šÚCSKÒšZŠöÐÔÒ´‡¦–áA–å¯,G{fjyÚ3Såo|ŒfŠÞûB$£Ú<õqñQV ½2µ"í•©•h¯L­Ì|‚öÈÔ*´G¦V¥=2õI&³í©ÕioL}ŠöÆÔ´7¦ÖäÖ¢=1µ6퉩OÓžÈ31Äï/ÆI,ÎOY‚“Y’Ÿ±§°t¯ á†yôµ¸Åù©Î—á4–5ȯy¦;.çXŽÍ3ÃqùŸÉ,óý šc¾¿IsÌ÷·hŽùþ6Í­ßß ÑÏÌ÷M‡É:ýÌŒßdI Õ¸jñgfý&KCTj5ù:Ľ–?$äÜÄ4Swü/DB5þúÆ×vÞgídyýãkÅ>ók…¸•…ù‹Péñ:ýåkˆÕ™×ŠÒLôZ1î`qî¤5‘s­‰œòòkÖDÎBX–1DêÔÑ5óC¬[k.àkÎgrÞ~<%MV§OÉG“ÕéSòÑduú]k´”5ú®5ZÊ}×-e¾k–²FßµFK™î·×ßµNK©!•þ áÇâÎÙ÷ïZ³¥¬Ùw­ÙR³øg3ç0?¿bÎåÜǂœÏB\ÀÂ\È"\ÄG¸˜E¹„Ũÿ}·8¿f .cI.g)~"[~ ñï©[QmÜr˜®C¶‹!<×;„ßW9ÖwlùÍyµr˪•[ŽRÜrŒjdï=!¾ì ÜËù3õ éÍb['Ó,¶õ3šÅ¶N¡ÙkëTš¹¶š¹Ò›ùÓ›·¶N§ùj«Ú<μUd¯Øœµõsš¯¶ªÑéÍU[gÒ<µõKš§¶Î¢9j«ÚœÞµuÍO[¿¢ùië\šŸ¶šŸª¾âodãûÌξÌBû“!¤ä÷çŸ÷çbs‡ð€™»êÇp ä æáÌËÁ|ˆ2‡0_X; Ñöq!–w!£\Äx.qûÌjÃV„ð¡Y5·YõC³jnëõC3jn}ľŒž_âš÷ ©¹©ù;474ïIsCówé»5ïEß­yoæ`æä{ô]š¿ÏÜìKߣy?úÍûÓ÷hžD3Î[C|óë[ò~óê[r~9ÿ-9¿€œÿ–œ_@ÎKÎ/ 燉!ܧo~K®/ ׿%×ëß’ë L¥ýS`ZˆËõOˆß;’)¢cå‰g–0Â¥!Èí‘'[Š]§gäæÃOŸå¬Ç™|Ž_²~ÃÔø¼ï‰g‰Õœtòè‰ÙކP õï&šã¸¿âó^¯Èû¾x®¸1ç± ç³)°²9ñ.æ‹\ÂÔ¿§Åçô-}îA[BÈœÂÊ\z`½ònŸ}ÐVºÇƒôÈ»ÝãArWI¹¹dq‚x[M á\‹9m=N‰ç·d^¾â¼õ9%JërŠž9jßT?nài~ÌdŽäºžÕÏr4Ïq Ïs,/pÿà'!rG¿ºdõ«Kv†è¬£!öŠ÷™uÌã¸Çï'£äýƒ®Ç¨8º£\—ƒöç¨xÚŸ£hoŽŠÑÞ•†ö樴´7G¥£½9Êï¸/ê½í½û⩎=ü¯ãÇêXz3Ø1ýÔxýÔ1ýÔxýÔ1ýÔxýÔ1ýÔxýÔ1³ÉxŸë˜ÙdüšMÆÿÍü‡ï0…=y—ï2õÿsíÅ{ìMuðXªƒÇä%­Uä˜ï9Á÷<æ{Nð=ùž|Ïc¾ç„ÔûßDZï:Áw=æ»Nð]ù®|×c¾ë÷a­\ÜЛ­•‹N Ñ«CìÓa\Ãá\KëçÄ:Z?'ÖÓ}?±Öω´~Nl¢ûsb3­ŸßÒ}?±…ÖÏ‹úÔúÝóúÝGĉõ—.±'/ó]^a/ùë9ùëëó&ðò6ñŸçßlÌØ„)lÊ»lÆÙœ÷øÿã‹ü_ ©ÿ¤zܾ—iþÜׂæÏ}-iþÜ÷ ãÙŠæÍ}¯2&Ïê/s›{>Ô_æÖËí³¾‡§«Ù¹õtû¬óá®ï‡jwn½Ý>ëvx:Z·ÃÓË;fš}Öîð ´v‡gd"3…èä‚!öü>â/!ú—™tvêLZÎLÙUlöœ½žfËÙh¦œ½‘q“93¯ãKŽ7ó2õKËûÙnâ+â-¼J9ç¯küÎóz¾»øºXîÙø˜¸‡ø†xor»ó;ÿŽø–x‡¸‚¸'+ò]ço;¿S\IÜK|G¼KlÖjÒ[ü·X2ÌRÕñ?Ž` ä]þĹÇϘ˚ôëg«ïégÿL=ãì}!>bí­ÕëF¬½µz݈µ·öÓ÷£ký¡ký£kýazºÎºÎ?ºÎºÎ?ºÎš9ÒµsÜÞqæg=Ö³ÇYõ¬ÇqÖc=ëqœõX¯¯²wˆkâ=ÒZ?M¼GZ막ŸOgý4é@ë§É´~š¼Ië§É[´~š¼Më§IGê§›t¢^ºIg¦eÊk5ÌwNÑŒpç4Íw’iF¸s†f„;giF¸sŽf„;çiFHý;F. O«;#¿fê¿ÙU1Ä&Ë»'+1-+Óµ9÷lH˜n>W×C~2SxŠfª5h¦*P“fªµh¦*P›fªOÓLU S߯.𚥠W,žã˜ÀOÔNýÆéK!ò‹œ4¢—Xÿ{ú²XnÑ›¾Çˆ>ê~-Ǿˈ÷¼æk¯¹Âe¼Ê弯ohß72Cœ¾Á•Ô³üâ»x_lž;mßÿâŒèK×`D?º#ú{~µçõ4¿¸#’èZŒ@×bÄ@º#ѵñ]‹ƒCô‚¾à‹OBtÚékî;Ëâ8Ùñø½¦žwúày¿R<ïõ¿ó3Æß˜†G˜–f¤k騽–žzÑk¨½–‘zÒk™x’™)·^ËB{öÚ}”#Ž=ÆË-Ç*Pn9V‘r˱J”[ŽÉÉãå–cròx¹å˜œ<>õçääñrË19y¼ÜrLN/·““Çës>Z"yô(ÇäæñÄkÅ«;¯sü×3…x—©_9VÃÏüÁšüÓùMÎë_ŽÕ_dmþŧy‰ux™ué~´Ùëå±¾åÿ¸Å£N{ÆóWCdÍë!¾«ü·¦ /°-õ²kÚñO&ò"ÛÓ\¿¦­½5oК[ó&¯ð-¦¾ßÛ¼F½pW½ð½pW½ð½pWëj^¸«õ´F/ÜÕºY£îª^£îª^£îêz¤þ;~Ï á˜äØ6çõÆ]õÆkôÆ]õÆkäë®zã5òuW½ñ½qWù{Þ¸«ÞxÞ¸›ïù»ë3ÑõùÝõ™èúüîúLt}~w}&^¡ë0ñ*ÕÁ‰êàïêàÄëTÿ&úܧf…øÏJr6KqKó+–á\–å<êËNͧëÔ>j&ÓŸ«-^(ÖKZD½Ó©ÅÔ3ZB=Ó©¥Ô+úš•ý\‚Ÿ{Z¼L¬ÿ9µœfÖSßÐ,zjŸäJVã*Vçj>Å5”ŸÛ ±ÌŽm†²,?¢ÏÙîhˆÏÓ6„ÇôW;õ@í¥þ§Ý1çÛÉ£z¾YÛÌlz·çõSiÞ¤=›F-x^/ŸæmneÇéæÚuí»¹öE­±Š¿…ðCn±{PÌ|ÒÍ|R,¢]ú„Ø#ù ñ}f_a?>—ÅC¤â›,A¿¯Kç‹2‰Þ°ˆy¤ËÇÅ«_º?}ž.+ÁA,ÉXŠƒYšÒµèâš_2‚òùµéŽ|¾d$åó%ò|–œ!~û<æâ|æfêß‘ñòA.b.f^.áC\Ê|”Ï_Uë®u krMÍÎ’ßùe,ÀåT+·Cµq»üþªëuMMÏ¢n_Iõpû*áj>Â5,ʵ,Æu!ZUïz#+õ®7²ùþ{|ÿþÜË$þLµ{ò>ªÝ“á îçTÛËù“ÕöÆRmo<„‡8”‡©^Vÿ<Äß~‚_° g²*¿ä“´oW£½x»zLpl?Þ~Šöãí´oפýx»íÇÛµCèÐ&„”/Äöåí§i?Þ®Cûñ¶¾ä`Éy›¥è—ó=¢ïÕ§ÏÈN}úŒÔ§ÏÈI}úŒ\^'gæ+*î*Ö·ëÆB4­þé[3ZZýÓ·Ñ8{»ˆ½”v§Ø|•ví±´»iŽJû{òGšŸÒþDësœy©ˆy)íqª{Ù'Ľp.$dú0„·á?}Þ çÅz.PòÂüÈó=¯ÿ{áO±^ä…‹Ô‹¼ðõ"/\¢^ä…ËÔ‹d’¶¹n™ämµ)ïls½2É;Û\¯Lòζº!´:d-¹™äŸmÏPþÙö,åŸmõ(ÿl{Žk©WË•Íñ:Ç ¸žz´Væˆk®a+ùâZn›fž×e?àu¼®7òynbcnf~˦ÜÂfÜÊæüŽ/x/÷+Ó÷Ž_tœÓ#—x›Ø°/²_ˆ›n.h¾æ‚æ;h.h¾“æ‚æfÞ>îaFïÝGϨ/ë#g|Ïóf…æ»iVhþÍ Í¤9¡ùO4'4ßCsBó½4#47cM/A3Öô’43L/Åý!´•¿nw qÅÍ6'ÏÓlsÒ,X¼9ÿѺ/„„{ÿñEšqê¾´¢|™òsÝŒcKFù ͬÇÌ~ão±!o³Sû™çù7ó6a ›ò.›1µ‡iÎÔžÅïof>æ÷73óûSÿ¯Ác~ÿ3ó1¿‚™9èY×è-[¨—æŠõ¢kôåAºf€Ú¤¾µ.âsè«Z?JýTëǨ—jý8õR­+P/Õº"õR­+QïÔº2õD­Ý‹ÖîCëªbë(‡5”cka»ú÷hµh{¢Gûf<"¶Ñ—¬‹,æ†EÅrïŒb|ƒjÖ£>ï 5ëÑ·¨&=ú6õ vôsÖQsÆ ½Ã£ÄÖR–¦b=Ä£ÅÖT–f´¦²4Ñž_†X©†œÅFœMsˬ¬!R©‰Øú-Õ˜Öm©ÔØç*Õ”~O)ïÓÓû—J}ï[êzßR/r­ÿž‹ù²÷ËæýRn‰¸…8»8õç—Š[ŠsˆSßçkñ+\ÆV\ÎWù [s_ãJ¾ÎUlÃÕlË5lǵ4w¾ùhHÈ¿ŸñõÞùõé³åÀf!VÉúØ<Ä´BaN÷yâkñ bëtà‹´N¾DëtàËŒg &°%c|…iØŠiù*Õñ­™ž¯1Cˆ>±<$\{E}”w®Ë;YÓ†ø]Sä#½g®W?êüƒ<Æ<<μ^—Î릆¸ÌIêä}Àû9Y9ˆò^樆dL9)ó‡”;3ajþ3 \«$*VC2DŸ#ó0ú½ñj~æáŽýîVzãk•Å#Ä>CæùG2G1?G³ÇPhe¶¸öÍתð_ª­™Çz^huOü$%„kÕ¨»VÝóã<_Èwv®=Åk0Ž5e-ês¯©³¯ê[¯©™?ñsöÒ«†Ûku˜†êÆ«i©^dïù"œ@ûìÕtΫ™'Šõ5¯¦«#™'‰õ7¯f?ÇŒ¬ïü§Îçd–p^{­3³¡óŸ9_RœE¬†dž".Å©,íü}ÎÛO¯ÞO5%ó4çËp:ËrËQO²½<õ$Û¥ždûcÔ“lÜú(¢«? ±®Ïp<ŸåÖãD>ÇI¬ÏOÙ€“io¯þŒöv+ói¶•4Ÿf[Eói¶Õ4Ÿf[Cói¶µ¼Ÿú±VY¹^îÐ{<¦/n•M¼!„ÂöH«ìŽ7:6çÏ0Ç=æóµÊáÜ&æäfæâ·ž7ß=¦'œa¾{Ì5œa¾{LßÜ*·ç·ðnåƒLý;—;Îãø{æå6>ÄíÌÇÌÏ,À]|˜»Y?°daþÄ"4ƒþÆñ#Ž÷†h©ƒ!ጾ²Ô¯T›ÕÞ„3jr©ÃÔW–úúÊRG¨¯LÒ×Wt¯.™éf›y?~#Dò%6ÛÍ6Û]2Û;æü›Î«'—Ìx³¯‹ßëÃ/™õfß`}Þ¤z7[½»¤ÞÍVï.©w³Õ»KêÝlõî’z7[½»¤ÞÍVï¿ÚÛ‹‹{Ñ^\ÜÛ£ã|ùCÈomçO";†ø¤lă|ž¿²1± õD Ìe'gR:ù¥óêyÒoTÏ“ä¨jÒÉY!d/ìœÚž”úçêŠ8~Á±Õ@½:9[ü¢X®j Nœ#~Iü;_æ ¶àIÏ«_'¿·Ÿâ+<ÍVLæ«<ÃÖ<Ë×xޝSŸ¼£ ­ÅmiÍíhGkkG"/†¸·ÌÜÎÑý) /yË}) /yË}) /¹h^›¥æ\4¯ÍRk.š×f©YÝ×YjÖEóÚ¬—ôf;B¤‰¼~Ѭ6KíÚ°S,¿›¹b³Zp[r8åó »Ï]lÌÝÔçE¾—ôT­Ç$½TEë1£¼™¤ªØJOÓÓÔ Ñ.fçGÌ]ÌÎô ¡È'ãÅfèGÌc> Ϙ‰ÇŒ§™x̪Ûc&ÒL¥z=f2ÍÃc>£yxÌš‡ÇL¥¹nÌ4ÖÑÑÓC¬®š4zդџSMýÕËõìƒõƒÛ…H®/Åz÷Áz÷õîƒõî?êÝŸq?êÝ?Ô NôºYb=ü‡zƒÁíųÅf‰£4K|h–ø±õù­É_u¬?ÜÁkçˆ[‹Óð5¦ qf€„núð$k!kq’ØLnHè¦GH²6²š Ö ë’ÌrYÍIÖFÖ!˜•ãÖ òœ—dd$þ@\‚ƒi'Y7Y?(.%¶~²—æPêÑgŸñ­ºð»òvãŸÔŸÎ¾Èü‹ïð{ò2ßåöâUš³Ê¯jR|«>4ï´zæœVï{NÎU‡â[™1¿¼b-—ð?.åÿøuˆÜ¨âÈK7êR^ºñ å¤ÏRNºQrÍ縟õ©öÜh@µç†Z´@í¹¡-P{n¨E S-Z ÖÜP‹¡Ú³à(ÕžǨÞÈ3‘j<¹¡ÆÈ/‘j‹ü¹¡¶È+‘j‹¼-¤†¹ÂDù£øÏ”?Šïs^M=r‡jê‘¿©¦ù‡jꑚ!Ü¥òÈ¿´Ü£uxÄ [È:£uPb S8•w9ÿr:ïqÿãç!î/CBþڜŧ}–'B謦F–:7Û¹:œÃºüŠÏp.Ÿ qÓ‡„4z†ÆhÖkœ‘f»•BBçÌ|ƒYø&Íúý{‡Èý«¨ÞÞ¿Úù·œ7û÷·6ï·6W¾-ÎÊŽÌ¢CŸ±jrÑÐ*”‹†Vå>I3ËÐjü“Õy‘Oñ/Öà%ÖäeÖâÖæU>Ík¬Ãë¬K¹tè3¼Égy‹õx›ÏQZŸêäÐT'‡6¤:ùÆû!–¿P3s‡H…—Ä}Å…ÙEØŸ0‰E9€Å8ÅiöÊ_‚f¯üfÿ7Ì^ùKÑì•¿4Í^ùËÐÌ•?õÿ3kâØ¼•¿Í[ùËÓ¼•ÿQš³ò?FsVþÇCtý»!öŽ÷Xß‹eBÜöQ!!©"G³RƒÌŠ9‹‰Çˆ+‹ÍŒ9õjƒôë9Kð/êÑ]b)¯ëuÖÈ ËâÒ¼ÂÔ÷ç¼Þx»^9Io¼]¯œô¤ç¯z¾¬XÏœ¤GÞ®gÖK†Aל/'Ö;ë!ã¶ëõŽqÛõÎzǸízgýbÜv½³þ0n»Þ9µ/Ù9Ä×¾Bu¹ä—{â.â[âÍâÿh¯þò?n1SFvõümvãvçßìA÷°ó?!VdS8›w9‡ÿÒšŽê¥Ö©ïQ½Ôº³!´¸ÂeŸ;jN_§ÎGÍéëÔù¨9}:5§¯Sç£æôuê|Ôœ¾NšÓשóQsú:u>jN_§ÎGÍéëÔù¨9}:mOu>ÚÖæk¶½5¸Äšmo .±fÛÿâ2™}¶µ Ùg[Kš}¶½B³Ï¶Vü¯òG¶æO|{ø:÷² fÛâç;ÞçX_–éªõ™öS-Ét€Bhu,„kyÄÅj~¦_©æg:D5$Óaªù™~£šŸé;…èܳ!öÚ$žã§!ÒÙï,òý¾"/Óï+Ò‚~_‘–ôûм¢íÍ_é¿Ûïg?`d¥Y£ŒÙ3r_ˆ­1Äw ± úåøîÔ/Ç÷ ~9þê—ã{R¿o_lx)„,7BÜ=½Õ ×ôžÞjÅ?Ô[­H¡þwÅ]êWüKýïŠ{Ôÿ®0‡ÝÓÿ®0‡ÝÓÿ®4‡ÝÓÿ®TWîéWÆQÿ»Rÿ{ÏܵÒÜuÏܵ2f®•1šµVšµî™µVšµî½ÎtlÃôlË !¤Wk– íwðaîdAîb!îfaþÀ"ü‘ð§ O aFÇytAˆ¶x>Äî“¿Z4¦µß¢ S¼Æ½iÑÔñ]ÇjÊb×CŸÒ&†ð¾=“E¾XìÚè9ÂûöN–Jb×Hï·Ø5Ò{D®O6k<ÌÏXSXˆSY˜ÓX„ÓùgÐüØJÿ}í!k唵òŽø„8Ÿõ¸ÀñIÇzïL§=×3„\¹=Rÿ?Éd±!Óö ÑU™B¬óVfæwÌBsþ*k¢ó6ÞÏíÌÊÌÆÌÎ]ÌÁÝÌɘ‹?27âÜù—yø3ór__¯ ‘§íÍU‰¯»Î«ò‰%¡¯×‰]ïUùÅX€ù0eAb!faþÆ"<B&y`Õ#޲(õû«ŠQ¿¿ª8õû«JP¿¿ª$õû«JQ¿¿ª4Í-SÌ›e³Ó¼Y6GˆÖÚRÞä·Lý·ÖÌŸesÒüY6—ó[œ›[iýœXâ?­À¥¬È¯Y)DÚTñ¹7ó ~Ë*ܪÜÂcYCØÑDü¤ø;Vã÷Îgs¾)}¦͘ƒÍé3ìxÁëª{Ý6q.ñ‹tïwد=@9£ÍSžß.~P,w´©!ÞÁšÜé|ç[2/_q¾–ó»X›»ù4ðüCžoEknǫΛés§þÛjùÅ­ÅfûÜöÑcį‰Íø¹÷ˆ¿.6ëç–KÓFCl³ù¯ô¶Vþ-½òoiyú¬ü[Zž>+ÿ––§ÏÊ¿¥åé³òoiyúl[ÊÓgåÞÒòôY¹·´<}Vî-í½Ïʽ zßÒòæYy·´¼yVÞ--ož•wKË›gåÝÒòæYy·´ü|V¯^Z~>«WoçÜQJËÓgõê¥åé³f®ÒòôY=ziyú¬™«ôQêÉK£½ØÎµ¹“ú]Ž‹õ楧}Wú{yÞ5»“úOŠõè¥íᳩŸÓ~=ûžç]Ã;©ßÝ~=«W/m¿žÕ«—>K½zésÔ«—>O½ziùû¬^½ôÔ«—þ“f±Òi+ýõè¥/Q^ú2Íb¥¯P_^ú*åÊÒר//}úòÒ7¨/o#$D¿fN.c..gn~ø‚r%óp•Úr=ÄÖº_‘t¿"7é~Enñ§¹¸:ÄϪÁ5¬Éµ¬BŽîŽ×9®ÍõÔ_ç袇Xåáü#x‚ó$GòGñ4G3™cx†c©žVGõ´ò'<Ïñ!Ì™"OÈ#/ˆ'ðN䟔ã^ä§ü‹“y‰Ÿñ2§ð §ê/åºWOã5N§kPy]ƒÊŸÓ5¨ü]ƒÊ3y›_†h¡a!á¨~´ÐpêGþb ð‡0íó)'ç¯"äÊu¸?DÏí±“ÅÅÔesC]9ãÞ¯”3pï0íý{¿Ñž¿w„öü½£´Çï£=~ïxúçp÷;±½~ÏïÔG‡»ß‹íñ{'hoß;I{úÞ)ÚË÷N³“ùõ~uëÓÞ®Û€z¾º ©ç«Ûˆz¾ºÏSÏW·1õ|u›Pÿ|(_ˆ='„çï…pF/ü¼þôLµ²ûî‡ò{î+à\>Ìy,Èù^3Áõ8TH¬v—ü.$$ë¥Jšï“íéIgC¤daž££¤y?¹ ÍûÉ]iÎO%ª”¥Y¢J¹¾Ô'½ÏYìËÙìBë«ËÔ{¤Nˆ.þFÙ+øWòÍÞ]"éôE#†„§›r›q1›s _Ñëæ¤ùhNZŸæ¤؈S¢G›ª†HÓ÷Åú½Bôº~D¯½®Ñ+D¯7£¹ézsš›®¿@sÓõinºþÍM«Íw]ÔßÕzå.êîj½rõvµ^¹‹ùlµù®Ë]šïºüKó]—{4ßuùæ».ÿ£ÏÝ5Ðçî Ñ3‡Ø4ýÁ3Â4ýÁ‡®Ý“ÏÓµ{²1]»'ÍbΡëÑõ‹PÔìÒu&Í.]ÍÖEÍ.]ÍÖEŸ¦yº¨yº«yº¨yº«yº¨yº«yº¨yºë<Öã|>ǬO×»hºÞEÒõ.Úˆ®wÑç¹”ù5›pS?Ïrª­1sG×o»G]Wð®ä‹\Å—¸š/‡è¤é!Ö¨g°!?g#~Aß}ÒLúî“\‹F¾û$×¢QSºšÑµh¤Ž5SÍ*b-õ ³Êó4e2ã>γ¬Às!,Ö?ÔtfU›÷gU¢yVeš÷g=Aóþ¬*4ïϪJóþ¬'iÞŸUfª"fÄãúï"fÃãÑÚt áÖ±Yð¸>¼ˆYð¸>¼ˆYð¸>¼ˆYðx¯ëäu ÅïˆõãEzR?^ä]êÇ‹ôböfFöa&¾ÇÌ´¯ŽË[Eì«ã÷±ïgfe³q³s spsòæâ`ææ‡ÔïÂ9”yB´¶:–bþr]¯&×ÖVÏR6S=K1ÿN¹á¼Ü[[]KÙBu-E\[]KÑ×V×RôǵóR\û!ê¥2¬sœÏ±¹v~ê‘k›;RìÚæŽ{ ¶¹#E\ÛÜ‘¢G®mîHÑ#×6w¤¨µÍ)zäÚE©G®]ŒûXœ¿°åû9êÆ«_…°¤zˆÔ2ÓÍQ?^Ë;œçüSΛñæØƒ¯Î§=øª<8Çœþª{ô_i³‘Úð_ª ÿ•¥Úð_9ª ÿ•§ÚðߣTþ{Œæ×‡õ+ÿ=îø8+ðwV¤zð_%ªÿU¦zðßTv\ ÌE;®p2¯ò3^ã^çTÞà4Þäô>¨"9Õ êRŸ²ã–ó3Äψõ+;n‹?ç~Á¿9“ÿðK¦pïr6ÿåÞãW!z[]_âþÞV×—¸¿·Õõ%îï®×Bl¼»ëu6ŽÍƒô«%åÒ)j~SŸmÑý!RÃ>ž¢ö7U×§¨ýMÕõm#C¬ÿ3!ºÇ 2äÍ CìÅ=æ!öâóÇ{qùcˆ½¸Çü1Ä^Ücþb/î1 ±÷˜?†\¦ùcÈ–áU–å5Ê CÌ5{ä†!7(7 ¹I¹aÈ-Ê CnSn"·ï‘†Èí{ä„!rû9aˆÜ¾GN"·ï‘†Èí{ä„!rû9aˆÜ¾GN"§ì©bCåö=OQnßSƒq¬I9"soÇêÈÐxª#C¨Ž Qš†êÈдTG†¦£:24=Õ‘¡B´ÂÏ!áÒ{ÜÇ÷C˜¼,DJùÎ~÷/ûîö‹ûñ­ý i­Wø•xˆy˜ƒøõPŽp0òC£uõ†õ™L‡„HDó†uš¬x¨Ø Õù#Ú߇q‡s§×YÇùÇÑ:Îÿ ­ãüãiçŸ@ë8ÿDZ·ù'ÑzÍo¼a½æ·Þ°^óÛoX¯ùíƒ7¬×üæ}}^lc{ê96và¾Á¡4sn±Çßûšöö{Ëho¿·œöö{úð¿íÇ¥'ìÕ!òÅc!þ%óóSÿñEn ô‹JŽ7zl q“̱ÌF“Ì­ô*½å IÔ—g0SL2Ç62+MÒG52+MÒG5ê¢CõÈÕõÆCí¥êzã¡öRu½ñP{©ºÞx¨ýR]o<Ô>©>•öIu}ñPýqu}ñPýquûg¨þ¸ºý3T\]_‡¾{u{y¨ï^]þz—óø/彡÷¸ „¯:‡H•EâÿÄ ù?Š?RÞ«/f„KÇ¥4Vw?ЧküQ]ãò-BÂÖ}ù–ŒòƇøt}Bl‹yyËy1›ø=ñ+|Ÿ­Ø—¯²[‡èüÜ!öºz0ÿªó¤¹yÉ,yû4g3™s¨ÖÏÏãyub~^ªóâ^Ïëkéæç«óóS½˜/g½n>Ȩ§íd¯’k:Ù«…äšNöi!¹¦“}ZH®édŸ’k:Ù§…®„0smˆT+:Ù¯…ì¿Nök¡kÎ[GäŽNöm!¹§“}[Hîé¤ÿ+$÷tÒÿ’{:éÿ É=ô­…äžNúÖB©ï§o-”úóúÕB)ÞÏz¬ uÒ·’ƒ:é[ ÉAô­…ä NúÖBrP'}k!9¨“¾UËí¤o-,uz™îE§t/:µ¤üÓéÊ?ZQþéô*åŸN­™Öïµþ+¤þ>y¾°<ÔéuÊCäúÂòP§¶ÌÈvÌäõ½>õs%Š3³=³°ï㼟o2«×oòz3ËÌÍLýüo9Ÿú÷êÏ*¤~·ÅÙÅ[B¤bàVFøS¿OGÏç/Ný^Ä9Ù™¹Ø…¹Ù•°dwêo:õ`^¾Ã‡Ø“æ‰NïR]ëÔ‹æ‰N½ùpˆk+ÿ{³có×hkµŽ58ÚZ­s-ħµ–¿5û”Õ›&¨msQmÛ˜›jÛÆ¨¶m|jÛÆ<^›×±ú¶1UõmãCTß6š/Ô·ùCÜñn!a¢^ñxwê÷`¾Ã¼ìɇø.ó±S®7 °]Ëãï± ßg!öeaöcöç#LbQ`1dq¢¼Ý³Lˆ/¹’e¹ŠfÏ’«Yžkø(íÓžò{ÉuÑŸŽåø’öTO9¾¤5Þ³"­Ýžò|Ik²geZ“=Ÿ >·Ò’~¸$®"¶{VåVç—:Yü¤ØšìYÖbÏêT+}íyy¢Ò2^uþ)ç·³w°&wz~¹çåJßP¯Ý³–ó»XÛãi:âÝ?xÈ}•Vx|rVŽŸ®wÞ`÷´¿6Øß=ï×cdsl÷ÌJ{¼gjl÷ÌN{¼gÚã=í• övO{eƒ½ÝÓ^Ù`o÷´W6ØÛ=í• övO{eƒ=ÝÓ^Ù`O÷´W6ØÓ=í• ötO{eƒ=ÝÓ^Ù`÷4{o°w{¤=ÚÓ̽ÁÞìiæÞ`oö4so°7{ê7Ø›=ÍÜìÍžfî öfO3÷{³§™{ƒ½Ù³$íÍž¥hoö,¢oË­ëqÞ–[–cß–[vMÞ–[–c³® »m°Oö„HÑLâõâDn`{ç÷:/GeÝ(î þY,WeÝ$~ƒ›©¾OL ‘âêiAëýȃâöbuµ uÄž™ØA¬¾´þä¿!Vg ÚG\§‚öÁש }pÄu*hq ÚG\§‚öÁש }pÄu*hq&6ߎc2? a¾uV½4¯° ­§êeCä§?Bünü“ÝChøs§³pï£ÚvZþÓEÏ÷ïgÿ%~G|@œM|IÜ“—ùnÙ_q|Åq/^eoÊ+Cúð:ß㠾ϛìË[ìÇÛìÏ;LâßÀ8Pa*ÂÆ¸iR3Dÿ²îf›!ÿ²îf?æ|ÔùZbëoöãâxqm±u8»­ÃÙiήB–ÔsÖâìÊ´g?AkqvZ‹³SÿÎkqö“´gW£µ8»:­ÅÙOù ~ÇÓbkrv qL\GlmÎNýŒÖæìÔÏdmÎNý,©GJê߇bMÎÖÌÖÌ®+'™ý&£¹o‚¹ï¸¹o‚¹ï¸>s‚¹ï¸¹o‚¹ï¸¹o‚¹ï¸¹o‚¹ïx&³*ÏðIž ¡€òx5ÇçXçù/°†GMÇxèYÞÌbùW2W©‰æÝ jÇ›™Å«™…kx×ò~šÃßÌÊõÌÆ !zC?¸P_tC?¸Ð}C¸ÐšÙ¤jªº¡\x Doê¤~pá¯Ô.͡ۼ–‡¹Ž¿q=pÒÜæÍ)‰!ay¦×Õ¼Uô=š·Š¾OóVQs[— !-Ê?XŒjUT­ëj+Úæ°¢ýyœIüfŽ®'80ÄgbßuãvÑý¾Ï×tNº¦ûsÑ5ݯ§q’zê®Ý~=õ×n¿Þy„k·_ï<µۯwáÚí×3píöë™G¸WûõÌ#Ü‹‘j¡q?ŒÔ—= qîqÂBµr¤ZøpÕ‡ͼ#·1žjßà ^óº¥Lï™–˘Î#½ãåß„è/C¬Úóf’*fóîYâÆœÍ&œÃÔÃÝ<5ä+ÇÍBh ᪽ÛïDˆ=>‚'ù1Oq$åÕÇGQ^}|4Ïp ÏR?ÕïåÝ~çù /p<ÍoO ùíñ‰4¿=nžëg~{Üïïg~{Ü<×Ïüö¸y®Ÿùíqó\?óÛãfÕtÅÌ3éYœX‚Y’™XŠ™YšYX†÷±,õ̉òcÞô!|!ï>¾†òîãk)ï>n'Ê—yõä‰òdÞŒÎËÃÛ׉òe^½yµ'QÎÌ«æ%Ê—yÕºDù2¯‘±¶çÕ¤Dy3oêï’7óêåͼz‡Dy3¯Þ!QÞÌ«ß.¢n%Êys:V»åͼzˆDù2¯"Q¾Ì›ú÷ò("CôGOZCôGOZCôGOZCôCOn¡Zçö-b.¦ÞvŸuT­õÚCôKOꗆ藞Ô/USçöé­ª©gûôÔCôKOê—†Ôæn>ͨozR¿TMÛ·\\WüŸ¡¾`ȳÔ ©GõÈsÜÇúT7«õôs߈ˆ÷³!ÕËjêã>=Xµ^\ÉÞ”s«õ¡ÞsH#¯;(~O¬ò¼øW6æ!6áa6åolÆ#lΣ|Çø"ó%þΗy‚-x’-iÿž2ã¶‹füÏÌÊ§ÌøŸ™•O™ñ?û‘rúg?…¸±†„gKrK…Ðë¹I?\Ê‘|Œ£ø8G³ǰ"DzDZ2?á!”ú0D÷¼bCÕë=}©^ïéGõzO>Å$ªÓ«Ôéçìõ=Äêôž¬å|ç늉Õë=P}ß3˜uôÇ}è8õ5C˜ú¿Cå³!®Ð¹´/ÏSÎ-trn!}ÖQ9·>먜[H?ut õQGQÿtô꟎¦Þéè‡Ô;²_B¤®Þ\žö–Ël¡|\f+åã2ßQ>.ó=åã2Û(—ÙNù¸ÌÊÇeôû½åã2îw µÿo9ªÆŸ”£j\¤Uã/ÊQ5.QŽªq™rT±V!á¤y¿Ø«4ïkÍ4!nööЪ3w° w²+w±w³; Þ§^»ì-êµËÞaÖâ©ô—¸øòo6â?|ž)lÌ»lÂÙ”÷ØŒæÿ>ÍiîïóBˆ•Ký« _d„/Q=™µÄï¹$6ï”3ï÷1§Y§œïÕçsN9=F¹4æãŽ!rótˆ_Ô‰ÉìÌ3ì³ìJ÷{‘þù¦û½¨;ÝïE=è~/z‡î÷"yàE=ÈÅü<Åλÿ‹äO‹[‹ôÊ7­ƒEòÁ‹ÉΛ¿_Éå7õÖ‹äò›zëEr÷M½õ¢þ~+"Öc/ÒKßÔc/ÒKßÔc/H=ö¢AÔc/úÀëõ6¡ú|Q/ñ¢^éb1Ïë½Y—ÙþâⲚ+ZWázoqD<^l^—ÇZW¡üÕº*ßç“Ô£´®Æ~¬ÎÔKÿ|=‰öãõ¬Iû"{œ÷› ¶¯¢sÝþÈu~"ã9Éù§÷¹²'ˆ?eŒ“·O¯Û?ÙÓˆ?cZ¦þ9íŽÓ9žJõô‡iTO˜Nõô‡!ÚêÇËþ.b/îaoîeŸwõÁ0÷;æá÷!|l¦* ×}l¦* Ç}|àÇfñåyƒò&å´«yýÜ6>Dõ«À-Çù«Q#ÜßZÖEõCøEÍá>ײ.F¸Ïµ¬‹êrÁ/jà÷»–ëãÜPçÔÃî}-kb„{_Ëšáž×²&F¸çµ¬‰îy-sÕÝÊ!~¹žëîô;îV¡÷¼[•ÛBxù¹þ.Vw—û|/׫¿Ëwˆˆ?«ÃËÕÓ—ŠGŠÕãå»ÄÄ£ÄêîòÝb=Ø_£Ù˜cœW‡—«¯wÕÝå?RÝ]þ“ç›x~¬Xý]®¾ÞU—«¯wÕÝå©ÿ]{ÁPÜuïQˆ®{©AjÓ5µIÃZŸ¯¡ß½Öçj¨–ýS.Ä–¥ay¦å£LÇǘ>Dv»ƒ¾¥k1H_ºÛµäív }Bûï”ý·Û5Hý{vØW§ŠÐ~9õˆó®Eêß·ÛÀ¾9UTìZ ríØ?§ìŸÝ®Å ×®ÁŸââb×`ÏÛࢸ„ص¤ÙíZ Òƒìv ¹F»]ƒAzy]I±k1ȵjpI\J¬´G²ËáX?2h¯ç.{®´X_2È<ßàŠØúlp•fþÝú”Aæû×ÄåÄú•AêËn}Ê ³ZƒëÎ[· nðQçõ-ƒô- m§ëO¤¾dЯÎßrÞ¬Ý@.?UÁy}Ê Câ;âŠbýÊ Ô?«ü·¸’Xß2Hß²[ß2Hß²[ß2Hß²[ß2Hß²[ß2Hß²[ß2Hß²[ß2Hß²[ß2Hß²[ß2è_ái¶brˆüü`ˆÿh&óðKæå,>ÄÙÌÇ9!úºüžk)͹¾¦Ù1×2šs-¡°žçuóc.3ÄëæÇ\zµÂ?96+æÒ¯Þ¢gôåÓÔà'V†„k­¹Š¯q5_ç¶ Q¹%á‡ÌHóuöL\ÅÌÔëM⛹ÿSg³¤ý|5ÄÙÒ uç2ÂyŒã|F¹€ñ\HóRÝE4Õ]LóPÝ%4Õ5IGóÑ3Q]óÑŸ¥®ï÷ÐÇ>OÝoèóÔ]âÞJ ˉoÝå´:»®q†³Î®kœ:Ôù yþ_ÏOŸ6ÄÿàÜ=çf8wÎ9óî[ÿyüϹÏ=¾Ñ߆X­ÎÜÂ.ÜÊ®!š«aHØs›¨îçzžê~®ÆT÷s5¡ºŸ«)ï†0~eˆµǯ¢57Þõ+šúóÍ<ÿ¯X¯\4õ}š‹õ¹^ ¾ ׋üŸç×z>õý_ ¶I4×ËÔäjÁ8¶¤¾ ×+ÔäÒïìMðsëü\êçÑ÷ìÕ÷äÒ÷ì•Kr½F¹$×ë”Krµaz¶¥Y*W;f¤¹}o&¶gæ2ØÓž‘ræÇúæÉèÇâÆbsd}seÔœYß\5gÖ7WFåÎBG=Ž…èL½M Ÿiñ!Rs Sþ›©×iá³ÍÔë´Ð»,þÐy¹}ÚÜß¼ çQmª)wüj¾«)güšÉùùÎËÓ°<ÒžŸ¶ˆöú´Å|l/þpËyƒöá7iýp‹öÑ·iý ï^M3Ìà54à 6×fÖƒ}¿6Ä÷ÓWÔ·vNV¯ë/ê[+'«Š×‹kqks#õõïyþIñ&±>¢þâjâÍâºü–Ï8oM¬.Þ"~–[YßQ U&ÃɧÄß‹ÕбÏÓ@/zÒçheêïßæy/n/NýÛÅæ¤ïwМôýNZ/ßï¢uòýn6álJ5ôûŸ˧ýš‡¸¶“Cƒf£¶ŸÑlÔv ŸàTVá4Våt>ɬFûõA}Ùƒ)!reBˆŸû'2'1??¥þõÊdê[¯|Fù¡¹Ú~Am¿2E\ˆS©^^™Fýç•éT'¯Ì úxås³ å÷+_8V¯Ì¤\xåKªuW䯹jܹq®ù²¹þàÂX6å86£´ysê=›¿@=có9‘/QØüe~Êœ"ÕÌ‘ú‹ƒêåH‰ »^å Z9R­Ì˜¢ÝÆ…X1ëc´«>hž³«¹öYóú19hÞ³«þbž³«þbž³ë(ÏëÏŽÉMkôœ]GSÏÙÕ5Y£ßì:6Äu6éDsPóRì÷¿©#OÐùØI¦ž?EsTÌì±É3{l2GÅÌ›ÌQ1³Ç¦4{lz‡fM=iöØô.Í›zÑì±Io3klÒ·ÆÌ›Þ£cÓûÔkn2«Æô˜›Ìª1=æ&³jLo¹É¬ºYþêòW¿zgbfæÌÂ7yßâý|›YÙ‘ÙØ‰ÙÙ™9Ø…9Ù•¹Ø¹Ù„ø¸»!¶NŸÞçéPV?•Wïßãñ‰½ãØþVí+ šùjˆT˜&~Zl®{«/³.¯„¸b…Bü‰5,̵,Âu|„ëY”XŒYœ›X‚›Y’ß²·°4·² õ¡ÅÊò{–£~¾Xynç£ÜÁǸ“s+p7+RÝ,V‰?R?~B^~Â|ò“¾¨—>¨ô1ñT±þ¨—~¨´~¨—~¨´ýÒK?TZ?ÔK?TZ?ÔK?TZ?ÔK?TZÝî¥*­n÷z•êv¯ÖT¯{½F5º×ë<Ï6¼À¶üƒíø'©/}B𓾬W{ñ_ìÀK|ƒ—ù&Í>½Þ¢Ù§×ÛÔSÞßÜqGÇæŸ^¨¼ÿÇ›zuá-våmvãvçßìÁÔ?·89Ī˿_µ‘*©ÿ­Ëg⺜Bù÷«–Χþ·/SÅÏrëq:Ÿã Öçç”_3êá¿zÅÏL Ñ_^±ùØ‚æò’ï‡èÏ«ClX_ª#?¯uÜÏÃŒz_þŸÖñ·®cÚþ|-„²ö›Ïëå‘[æøÌÅ~ü­dê±o¡Þú–ßÛA®J‘«:ÈU)ã×kß:G½õ­óÔSߺ@=õ­?¨‡¾õ'õη.RÏ|ë/Êñ·.QÏ|ë2­•[Özukä–Þ±º5rëZˆÒ“ý*„‰_…Hñ³âÿÄêu!}ÙÑy!õŸ2L8:ßós=N¬×<º@sXŸªûÛõR­­ÑzÌ çÔyë7‡õÛÚúÍaÆyôYç?[Ç9þá;Lq¾žóÃÄ=Åwù®G/ÇÿzÜ q_Ì ©³wŸ!’IÞüb¶XßÐǬ•Iþübޏ¿bCÎe#ÎãóœÏÆ\À&\Ȧ\D믔k]Ê5>«›¾‘z±é›¨›¾9DÓºW›Ý«´îÕf÷*­{µÙ½§î1ã¤u¿6{qê³NZ÷l³÷KëžmvÏÒºg›Ý³´îÙf÷,­{¶Ù=K{õÞ‡ô¢cô¢‡ô¢cÌ¡‡ôžcôž‡ôžcÌ›³…pF?sH:FzH:FzH:Fþ?´„æËCKi®<ô5õ9V 3í¥?«Ó^úó)ÚKÖ 5›þ!Ç5ÛOÖ¢ýôgmÚOª13í§?ëÐ~ú³®Ç3ޝx˜— ì‘_Ò‡øá㘟0#õ»¿dâfæDfá$ÞGýF£ÏB8}X|¿XßñKV:×Hž?-Ïÿ’M<…Ù9•989iÆš×:DžLõ5𝿽ÎÏCtœ¼VO>›×Fl“ßê5älÄ™|ž_²1gQï4¯­×Ûkãf‹õPE_p<Çq3~E¹i^;¯ùRoé½Zë3sê;[ë3s>â¼þt»^¬µ^3§þ³µ^3§þ3Ôq¬ßÌ©ÿl­ßÌ©ÿl­ßÌ©ÿl=‡úÏÖ_±4­ßœe¼—k¹=õ³YÇ9­ãÖÖqN븵uœÓ ÕÚúÍiý¶¶~sê"KBlíP.åGüšÃ¸ŒÃC\Nµâ'õ>ÞÚÍ©^ütœêÃO¿S}øéÕ‡ŸNR}øIÍÉ©>ütšêÃOêMNõá'õ&§úðÓYª?Ù9Õ‡ŸRßW}øÉžÈ©>ü¤¾äÔCüd?äÔCü¤ÖçÚìñ­‡™ò =G…B´CÞ{h›XPáAñCâíÌÇÎs>õ&òRoRá!êM*ä ¡ÈU¼>¿×ït^¯R!¿¸€xæn¤~¨Û?!¡˜½Ñõ¾‰º]åø¨|Ö-Åù©¼Ëiü—Ó©Æ›Aµ­ØçTÛŠ}⺫mÅfRM+ö%Õ°b³¨f›MµªØªUž¢ZULm¬*\W «Ê#×ÏS¹®V•G®ÿA9äºÚWU¹®æU•C®ÿE9äºþ³ªr]ÿYµ.¯P¹~•ÏRM®Z×ùo„è>k¸]rTˆ‹Þ ñë…ÐÂlzÙl½-VçZ˜E/›Ñ¢wăÅfÑËfµèßâÅfÐËf¶––òå§œÿÇyµ)¾½ãÇC=gî¼\C|WüÕ›õÃxÃC´²ësEOý7Sÿ½Ùʮӳze×銚^Ùuº¢¦Wv®,õ:=cé¢bõâŠzQY½¸²Ìy=débbu㊺1Y/Yº8ÕçÒ%œW?®¨“ÕéÒ%ÅêÇ•bõºt)±:re¥XÝ.]Z¬ž\QO*«'WÔ“ÊêÉõ¤²zre-ïç:fåzf£~>ÝS!þÛ=¬Á½¬ÉŸY‹ûX›¿ðiîgš7ÒÕåÁZÉ Wßëï¾ý•ú»oQo÷íaÚ¯ßþF{õÛ#´W¿=J{õÛc´W¿µ‡¿»úšCÉß9¬Óï.‹'Qméû)¯r2¯ñ3^çÞ Þ?ÿ?+çç°¶¿»éœµÿÝ-ZûßݦšúwW~wÇqêkþ¦õÿ}Ô×úÿξékýgßôµþ¿³oúZÿßÙ7}­ÿï웾©?oßôÕ÷£µ7\ß›} cënx­·áh} O=om Dkjø!º!cˆ½ó}˺†HkeC&ñ6f¦œ±! wð>¦þ7‡÷SØ•»Cä†þl~ì†þlÁ êÏèÃr˜—2¨¯[}ç êkê¿Ýت½ûã{dPg·úÞÔ×­_8ßÁyß+ƒ:»Õ÷Ï ¾nýÒù7œ·Ïr^sN­Ý:Ëþp_Z½éü\¾Åy|›zâV¹ÀkÕã­©¿G=Ný7óÍ ¿ªYù>§y#ßÔÓ4ö&묦5YÇÌ9Úš¬cæmMÖ1sŽÎN3çè´FG礙st.š9G禙sô4sŽ~fÎÑyhæ—fÎÑÑÌ9:Íœ£óÓÌ9ºÍœ£¦™stAš9G¢k8º0åØÑEhæýbQÚ+£‹Ñ^]œöÊè´WF—¤½2ºí•Ñ¥i¯Œ.Ã,K{dt9Ú#£ËSϳ3!ÄÉG1 Õåi©ïLG5t§Þj€Þj§Þj€Þj§Þj€Þj§Þj€Þj§{?@oµÓ½ ·Úéžø”îù=ÕN÷zÀgt¯è¥vº¿ôR;Ý»z©îÝ€éÌÅÌÍÏù¿àƒÔµü)IJöâö¦9#kþÌ÷¸fÄ–¿ÐŒØr?ûñûó “ø+ðò0ñ7Ú'-P¯bæÜ£¿ë#W•Ý.. 6WVy˜ö|¹«¬~©ÜUVoÔGî*«7ê#w•µ_úÈ]e ÜUöGóÑ!áXOþÈwù}ŸÂ{èûÞKß§ðÏô} ï£ïSøú>…÷Ó÷)|€¾Oáƒô} ÿJß§ð!ú>…Ó÷)ü}ŸÂG8˜G=Žy÷øÝã„ÇIÏ}è1Äc¨ÇGÃ<†‡øL[Bl›}xŸ¾%ÓVÇz®LßQÏ•é{ê¹2m£ž+Óvêµ2í ^+ÓNêµ2í¢^+Ónêµ2ý@³B¦iVÈäžn3+drO·™2¹§Û–Ñ=ݶœîé¶oèžn[A÷tÛJº§ÛVÑ=ݶšîé¶5tO·­¥{ºmÝÓmëéžnÛÀ£ÜÈcÜÄãÜLýð6{ú¨=ó‰=rÔžùäpu ‘< ÅöÎ'êÉQ{çõäè£<êùΞ7cÔ…‹Ìyõåèã<î¼\›g »q©óœ×3­ÈÎwwþköà2ç+9¯‡C9µ«ù9)“çͺ«gŠëñK>G3r×ÔŸ3w5%eöº†ÌB³ðj3rW³ñj3r×FÎë%³ê%“ô’Yõ’«ÍÌ]ÍÊ«ÍÌ]Sc3sWý|RVÏ›™W›»š’²‰ÍΫÍÐ]›Ñ ݵ9ó.á‹\Ê—ø5_¦y©k‹·¬MHx+]i'8në8=Û1™‘홉˜™o0 ßä}|‹÷ómfeGfc'fggæ`ædWæb7æfw>À|ïP¿Þ啕/IÜSœ—ïÒŒ¼¬ó±7ó³ ð=>Ì÷Y}é/ëÇÂìÏ"Lâ#À¢ÈbD}`6óØ¢B!¾Ý¦ž³·sCÜ'/†„z÷øÿãËü[„„ç[2ÂWÇVŒòUƳ5͘iÔÂO^sãëLC÷â¹´tžKG÷á9÷ã÷á9÷ã÷á9÷ã÷á9÷£¥œ•Õ÷l)oeõ=[Ê]Y}Ï–òWVß³¥–Õ÷l9œ¾gËô=[~ÌâÉÅ’ÍR!n“ëÜËuÞä:÷2 Ø"Ùôû6Ñwßäº÷rÝ7¹î½Ôƒ›×ï§þ››Üƒ^îÁ&÷ WAÏ}ë9×g“{Ñ«xKˆd7 ØJ×i“{ÓËgÞäÞô*â¼=»ë¶É=êe`VÏ¥=»}€=»ë7@ÍÉ£š“Ý<>@ÍÉž–jNvëy€š“==¤k·É½îUTü“8#÷0÷23¦5½ÉZèåm²zY ö9ooú@ìZmL×j“kß+õZ¹ö½JÓµïU†æ–M®{/¹³W¹]õYˆuiÄ)|žSÙ˜ÓØ„ÓÙ”3Ø,„¯Í¨uòŠ?7ç|3ù"¿äKœÅ—9›-8‡-ù_á\¶â<¾ÊùlÍ| ù:± ³m™n;^⸗ҚŸ"‡4•K¦È!Må’)rHS¹dŠÒT.™²œ-ì‘eöÈUñ7â–\ÁWBÜ¢BB»iï´³~Ù;íìEöN;kc‘½“hï,²w­‰EöN¢5°ÈÞI´¦Ù;‰öÎ"{'1öM¢}³È¾I´oÙ7‰öÍ"û&ѾYdß$Ú7‹ì›D÷~‘}“hß,²oí›EòW¢<¶HþJtÏÉ_‰îñ"ù+Q[$%Êc‹ä¯Dyl‘ü•(-’¿å±EòWbÎù`Jˆ×E>˜Ê‚œÆBœÎœAk:ÒÐñçŽá,Ê™,Æ/i=ùB?ë#?˜%.A}F•’ÔgT)åù=¯¿ü@¿Q¥4õUÊP¿Q¥,õUÊyÝK^§ÿü@ßQ¥<õUuþeçõ£è?ª“‹®õ™ÜT+Î<@µẫT+Îä¡Zq&o“þ ‘’ÕÄjÅ™‡(‡Ñ”’ÃÎèa'ýÏóÕÅr×ý@)¹ëŒ~ ”|uF?PJ¾:SˆòÔ™Ôÿ?¸LˆÿjuÍŸ áÂP±>á«5,ǵ,Ïu|”ë½N/pá#ñcâ |œ7w]&® –?¯T¤|y¥åÆ+•)'^y‚[½^¹0\\E,^©J9ðÊ“”¯T£x¥:wx}}¯!ÖŸ%^Ñ%^ÑežÊ>9ÄÿX"„\æÈ\“<>õ0ËgÿÌù’Ž?ó˜¢w> ±¥]8™])o-íFykiwÊ[K{„°ÙlÒLï|GþZú寥úù;ò×Òw=ofi¦¯¾#-Õ×ß‘¿–êëïÈ_Kõõw䯥úú;ò×Ò÷CÈ2ı¶ToG[ª·08Ä*• aNñyâMñ‡b¹tÀ–ÑW®…X6Ÿù•ëœÊœÆ›œÎ[œâÞü4$¨B}Ù›“?áØõÍãšuv/SÿQ»p£sêÆÀMlÏÍìÀoùFyÍí±b!~£Ï+NŸ5V‚>k¬$ׄñ·é× Ä?¶?„Ô¿“ò¡!®ì{!þ¼<]ö}ÊÓeûRž.ÛòtÙþ”§Ë&Qž.;€úͲ©ß,;ˆúͲP¿Yv0õ›e?d¡\ÒÎ÷±NãÊëƒÊ~DýfÙa”KÚ)VÖo\YóáyýOÂŽG8Ö÷”ý˜©¹rˆìðùÄÑç¥Ï7 ž>߀ú|b!úï_!¶â»ŸeUˆí°_³¬¦ý™e Õ˜,k©ÆdYG5&Ëzª1Y6Pɲ‘êK–MT_²l¦ú’å[~"ëåôwäôõrú;>×z3å;OÐLùNš)ß©J3å;OÒLùN5š)ß©N3å;O…0µ@ˆ”Õ;<­_ü·"õ‹ÿVâVÑýBìãÇٙ؅^·¿+½.ò{HXûOpXcôb©®>bþ^;\¬'Kýóõcôd…õd÷˜ Ö›¥þùúÈ)¯!Ö“¥þ9ûÈiñÇLæHžá(ëû Çgæ9ŽáyŽåŽó¾òáÓĈ?áŸÏ‹ô;þÔñ_ŽÕÜ÷`¹šâ,7¤¸ËÕò÷`¹Zžâ,WËS܃årVŠ{°\ Oq–«á)jüòRTÛ—«Ý)jûrµ;Em_®v§¨éËËQM_®f§¨éË¥š¾\­NQË—«Õ)jùrµ:E _®V§¨áËÝ×5|¹ûš¢†/w_SÜïåîkŠû½Ü}Mq¿—»¯)î÷r÷5Åý^¸ßËÍX)î÷òt¿—× ‘v-Büƒ'Ù’§ø O³“ù*ϰ5Ïò5žãë<Ï6¼À¶üƒíø'y‘íù;ðßàe¾É+|‹Wù6¯±#¯³o°3o² o±+o³ï°;ÿfþÃw˜Âž¼Ëwù/{ñ{SÿЮõ íäãg¤<“'Bû8}ÜÎ>Îc·³óØÇíìã<öq;û8OŒòLž4”gò¤¥<“G?7Êc´Ç˜¿î=ä›.úéGÌö]äö.zéGšx˜écçB´ƒš–OMë ¦åSÓ:¨iùfð6?çZçþæLþÃ/™ÂY¼ËÙü—sB\ù!þ‚ÚR>'Õ–ò¹¨¶”ÏM¿¿¼ÏuAm)ï³]P[Êç¡ÚR>/Õ–òQ¾.Ÿòuùü”¯Ë ÚRþa®eAª+åÍÏÔ•òæç êJù"TWÊ?Bu¥|QnVë¨ ÿª òéÀ{œÍÿ8G=£žìÿOüUˆ$ÕVžKõ³ò<ªŸ•çSý¬¬žR?+›ÕßëçöŠÕÑÊêê u´²ï>H­ì»RG+/õºq^÷sYí [C|}Ÿ—C—Ÿò õI^¥i„õ˜¿¬øšx ¯s*opšç­ÓüúïÖiþòÎßt~ºØzÍÿ¨ø–XOòçm~Î;tÿþ«b«r„hR|ˆUð™2~ë±Eœ þš1.c.gZ~Ãt\Áô\É t_Ô ÿÉZ¼ÈÚü‹Oóëð2ëò ŸáÕ†<"ŒfcŽaŽõü³ž¿&n*–7‡4ã'λVžóœëðñ ç›;?>DÿâÛ¿ÊClÍÃ|¿ñuae[c;g"g{ž`žä<Å7yšo1™oó ;ò,;…PwhGôɋω;ó<»ð»òv£|´ø¢c¹¢}W#sˆ¿cMÕÈBkªÆ}\`Áu|¿c}Z¬\¢³Ü³–WøÍ»ÛÔŒþã©^ôŸÀKœHk©ÿ$ZKý­©mÖRkj›5Ôÿ3ºvý­¥mÖPki›5Ó­•þÓi­ôŸBêŸaÈ©¯ÙfÍô·v¶ýÍ/øg2…ú•mwim³ŸúÛGÛì§þöþ6û©¿ý³Í>êoÿl÷µúÏó¾¿z_}Òvû©ÿ|ñ!±~i»}Õß~Ún_õ÷½·ÛWýí£íöSûh»ýÔß>Ún?õ—C¶ÛOýåíúÒþrÈv}i9d»¾´ÿ7!¤Kýûèõ¦ýå‘ízÓþòÈv½iëu»Þ´¿<’úoMnדö×oö_¢¿ö ±ÑÏò=Öãû|Ž}YŸýØ€ýÙIl¢£!Vx1í§ÂKh^Jû¨°Ï˜MMÛm?dSÓv_2ûtw¬®í¾B“å!œµOZ{“;„hõÅ!á¶¹{ŠšY¦_æ:V7Ëô÷ÜÏ™µ§¨Ÿe’Ärùm=ðu´Ìñ×âbõ´Ì@±ü~»¥¸–X"›R›ðif~Ⱥ4U_îõ¯ð¶â ¾êùg÷sÐzÝê¾½ÿÝ£÷_¤{óþKtOÞ™îÅû-Bôšþy¾3ä^ˆ¯ö!ÿãþf~—9¾š™~h„fø¡q4›ÒÌ=4ž3fŸ¡1ŽbŽfZzÿ¡é¨& MO5gh~ÂŒ”3‡fâÊAÕô›Cå j“(Uû”òOµÉ”ª}ÆlœÂìœJµ½Ú4ªíÕ¦Sm¯fNª¶Wûܺ½¢?±´zóÆ#©7o<Šz󯣩7o<†fåB8©GÚy%Äì%Þ(Ö+í¼*îÍkìãü&çïQ ?ùÕ­“z§×=ÿoð}Þd_Þ¢õÖ`K§,¿·Åýy‡I!d×ïüÛñþÃL¡½’½¬Ÿ³fOéÅvÞuξiðXO¶ó_ñ`º‡ÝÃîáÀ!ž·ŽOéÕvº—ÝË]îå@÷r—{9нÜå^t/w¹—ÝË]îå@÷r—{9нÜå^t/w¹—ÝË]îå@÷r—{9нÜå^t/w¹—ÝË]îå@÷r—{9ÐüÍâØýè~îr?ºŸ»ÜÏîç.÷s 9/úiˆ­×kF'S¯ýŒzÍèö Ѽo†„÷ó-fåÛÌÆŽÌÎNÌÂ÷¥Ø*qgqNva.venvã^×ÇëV‹»‹dæá;4÷Npߊ­÷?$vÿŠ­ ¡àËνë\>çÜËbëĽÄùÙ›؇ó=š Ê}[Šßb_f?a>âýúy¿õâ$qQ±5Qlƒx€¸²8±?`If)~H3ÕgúŠ&úŠÏôMä¹ÏôMôŸé+šè+>ÓW4ÑW|&·7ÑW|¦¯hò†…x6„š¾ûÁWœÓc4Ñc|¯çí;‹zÞ¾³Cxî÷N¸Ï kðÜIæ§…|ÂLü½ž¸¯~õ¹Óâ‡Åzã¾_Qoœúß«|¯7î;zã¾ó©7zã¾ ©7z㾋©7Ũ'|.ÙûÍ\Æ’\ÎRü†¥¹‚e¸’e¹Šå¸šå¹†rmˆÜ–'Ϥ<±øKšûÞ·Í‹g‡Èv=±\ÙþSÿœP3{ÜZßþ½8õÏ 5[óÛ·‰p;rq'õ•ÛwQ_¹}7õ•Û ~rûÔOnÿ‰úÇí{ø÷òEþL56ûƒŽ÷9V_³çqü‹cë+{^Çû· qWôBs¿ ácóiëïcóiBÎëæÎ›S ë‘æê®è‘æºg›[ ë•æê‘®è•æªó›c <"Ö3ÍÕ+}lž-P4Äi•æê•>6×(F}dâÎë¡æêõÜ‘%Äz¨¹f½w¤@Išs ”r^O5wQé«9ÖWÍ]ì9³oÒbýÕ\}ÕUýÕ\}ÕUýÕ\=ËUýÕ\}ÕUýÕ\}ÕUýÕ\³ÙUýÕ\=ÕU½Õ\=ÕU½Õ\=ÕU½Õ\=Õé !aÊ8þA=ûé?©O=­_¢O=­_¢O=­_¢O=­_¢O=­_¢O=­_¢O=­_¢O=­_25„áòêCµÄúÖ)úÕÓúÖ)úÕÓúÖ)fœÓúÖ)úÔÓúÕ)úÔÓúÕ)úÔÓîÑ}êi÷dŠ>õ´{1Ž8í^LѧæžâVƒZ_ á†k˜û+ñœË*œÇªœÏ'¹€®cî…¬®—3Ïä^äX¿™{1kp kr)}æÜ_³6—ñiEáŽß÷—ßWÒ¹åÎéÃ¶Ë IrCö|Žå„$9a»¹#ÉܱÝÜ‘dîØnîHêÂë¶ñøJÙû¬ÝÆrÿk·ñIJ<èø%Ç“BôÂ!öE3¦}³áeç?(~Cø"‡ò%~D½ÊÛ¹BÂÃkBèlýÅYo盳ß~€æì·äzÏ[qÅÄyÄæí·óÒ¼ýöC4o¿›CÜ%5aNnª s Z0çAªsòP-˜“7Ä ‘o«y¿!òm5ë{ˆ|[Í="ßVs­† ¡õæ£!ô´ÿÓš+‡Œ?ÆQ|Üyù ­µ:d´¸ǰ"DzDZ2?á!>aBˆmì"³Ü‡W܇ÚíB8dÿ×N¤6Ë<øJ'š_1Î2¾bœe|ŸWï9t_²„pZ®Ú[_ü‹ø>ñ󼟙•M˜M™rÖÞ^¿_¬þžv?åä ÌE3C£Ü”»©»§å­FÖÂé~®¡Ÿ; Î#64R{N¿Bõåt+ª/§õùÔ—Ó­Y€¯ñašŸ÷6òóÅrÜé6,Dõn¯<»·±çÌßC…è™æ!6M=óÕÙÌÿ a9¦‘¾âÌ‹ÎåKTcϼL5öL –ð:3N#3À:³M#½YÚ·CÜâ!Áü·x»q7ÍN‹`ò›#ÿèøþÄžÜÃw¹—½B\ûÏCÂCÕùíÑö3i¶ÿ’öhûY4%­ñk™CF˜C4nU?fê|±ÁùÚâ‘âÔ9c£Ø®:Jœ:olÛ¿I›iŽJú–楤-4/%©gÕ³$õ¬âsTÇ*ªcë¯êhï‘:«¨eˆÇˆSg5­¢š–¤¦U´N’Ô´Š®u’šVQMKRÓ*6 ÑÚÖí]}tmëöneZ·wŸ u{· ­Û»U9žOr«q"«sŸâ§¬a^Mc^]Æ´4—ÎÜ"õ€Ó‰¿az®pþ€ózÂÎÄ+™‘zÁΙ¸:„"]gv,‡éæ8‹cóuçû¨ë|?噽ž²sV±þ«s6n Ñó^7ã½n†˜Åܽ£µ™Y­þáuùs¿cõú‡6T¯hKµú‡vüÅC}þ!Ñ£}ˆŽ\bO¿Áu|3í^täzÇo9Ž86=ý¶ã8¨ø;q÷æö‘ª®ÅÈïÅ=¸ïp;{rßåNöâ.öænöá|/„2kC|8bkVó$]“,úFIlMês§¹ŽÉtMʤŸqlÝ…³´ÞÂ9Zgá<åÓgz…øÿÝÇÞ”3¸è¸cyã¿ëïÿçþl|/ÄÞ}”ïó1ö¥yl£ëù®ylcšÇ6&±Rˆ¼î}s™¯‚Zòº÷Îõ½o.3ÖëÞSz þÂŽb³Cîˆø8§Ø ‘Ûlôz?ªÕ¯÷g<“˜ÀŒq ÓpÓò¦ã`¦÷~‡½_.ñ‡â ÂŒÎÿæ|nñPq&~ÄÌFùôÑ#ž@<\|Gð~~̬ÉlÅìÍÔï1†©Ÿ,Sï8¦þžOø@ˆG»Ÿ~¦û9Ñg/^—>{ñgœßçüûbß¡ø³LÏzôÙ‹?çù_<ßWœQ\_¼_l&è;o > –÷&ú.ÅÒ W¼}‡âjÂDß¡¸š0Ñw(®&LôŠ7õsýœ<9Ñw)®ÆøU<€‡8‡9ˆ¿ñá`¯÷‹7(öÝ‹ë ›a'ºÅÕ’‰®Aqµd¢kZ\-™¨.®ÿ¨.®†LÔWC&>D5d¢¾¥¸21?Õ‰f”âjÈD³Iñ×½ÿqï?”¿ó#çÍÅÛˆOˆ‡‰ ‰ÛŠOЇ‹ ‹Û‰O‰Gð4åä‰EœWo'>Âö,ÊžOö¼=±˜Ø~/pF<Šg)ÏN,îü›âsâ1<ϱΗpþ-±¾õð8ê[B}ëa=ÖÄ’ž[¬=<ú×Ãú¬‰¥œ×L4ïä¼~öð$qqg±¾öð§â²â.býíáÉârbù±€>÷ðgÔçžâ|yçåÊúÝÃúÝ‰Š»‹õ»‡§Q¿{x:õ»‡gP¿{øsêwAýîá™Ôïþ’úÝó¨ß=<›úÝÃshæ8ü͇çÒ¬qx^ˆNÙbM“¸×ãgÇ<†I_øXÛp1Cˆ7wŸÒôšâfïSfïâfïSiæ>eæ.næ>UØk~vlîNý{€ îslö>õHˆ¦qÝ7¥ë½ÙõNãzov½Ó¸Þ›ÇÓuÞì:§q7O¤ëºY/›ÆõÜìzŽ³ÞŠ´»ž›'ÓuÜì:¦q7O¡ë·y*]·Í®[×m³ë–ÆuÛ캥qÝ6»ni\·Í®[×móLïkýyUìúmvýÒ¸~›]¿4®ßf×/ë·ÙõKãúmvýÒ¸~›]¿4®ßf×/­mó|šÉ6/ YlóBš½6/¢¹kóbš·6›³'ÿâ¿ÃKìÉË|—W¨Çœ|•½y}xݕC S|‚§Y…ɬÊ3!|p;Dréew?)>Ëj<Çê<ϧx!„t/8®áø?sÇÏè{w×ÿÉZTSvצz²ûi^b^f]š{v?ë|–×X×ùo°>o²o±!o³ïðyþÍÆü‡M˜Â¦¼Ëfü—Íy/ð?¾Èÿñ¥Ôÿ ‚/3ÂŒcKªåßæ ±ÞÖê·¹h=~››ûB\†\!~ë<ææ|>ÀÔ?Óò ݳÙß„X+9fI$DjÕ¡‰|}v}ˆœ˜â?•·NL£¸‰¼}vƒxºX¾:1ƒòÓç„ø³(ÝëÏ‹q)‹ók–à2–är–â7,Í,Õ,ËU,ÇÕ,Ï5|”kù×ñqú|ŸWàDÝý¼¢ã¬ÄM¬ÌÍ4Ǽø-«p «r+ŸäwfÀ5fÀáÔ7}!ïž×7}.ïnÐ#7VOÎë>—gKv¬wú\\ê7Çæ&ʯç7Ó>?ÿ-íóó[ø‰÷©í}Ô£ó[ÅöûyýÖçöûy}Öçöûy}Öçöûy}Öçö{ 5éÀ÷!2Q¿ÑÐý˜¨Ïh¨Ï˜¨Ïh¨Ï˜¨ÏhèûNÔg4ÔgLÔg4Œ…õiÇz†i¼ÇPï±M¬çh¨nOÔs4T¯'ê9ª×õ Õë‰z†êôD=FCõy¢£¡ºÏZsLwŸg­9¦»Ï³ÖÓÝçYkŽéîó¬LŸgígLý÷Nê[ï$…¸Ž­CBA9¼ãk©K™¯SïØ†rxG=G¡(Û1ž‰L`{ÆØiøÓòM¦ã[LÏ·™™1Ä•²æÏ¼B­û3=slíŸy7„¶)!ܱÖJÛ¥ÌgìRÉ´7J¡ú[ê,ßç9êësw|Þ±‘ûwâ âþüƒI!òVǯ¯‹¼Õ‰7Ø™7C¨`ïò™*T à­.ÎßbWªãou£ÚüVwŽÿöø'„u“B¤ÑÁ=g>œaî>g>œ±šæÃkxæísм}îO®çEªWgÕ¿i_Pý›6“êß´/©þM›Å<œÍ¼œC=×Y9oš}>mnˆ¬Zâ»Tä×47®ZÆÊ\Î'ø «p«r%Ÿ !›k±j•ãj!³Dk®àk\I³rU4÷XM3q=Y ³p=Y‰DêÉJ´Ñ¿åÚ¯ÓòQ¦ Á<ivNü˜8=§¹íï ÌÈŠÌÄJÌÌÊÌÂ'x«ð~VeV>Él!ºÿáñ òO¢ùà=µ¯ÜTûÊ™ÞSûÊ¥ž7”37”Ó‹]ÈI}Ø…\Ô]ÈMý×…¨ÿº &–Ó]PëÊé¿.¨måô_¢þëB>ê¿.ä§þëBŽàÃü˜9’ŠÈ2=ZFú´ÿéÓ††ˆq<¾áGŒpã8œQŽ`~Êû9ÙÏû€гŠ?c6NavZû“rpš×éƒü*Î)žNù»á Êß ?!²Ç±ÞPNŸ$‡7”Ó'Éá åôIrxC9}ÒC”Ó'Éã ͱ¯Ž ±•9–O„hgk¿ˆd·Áçh|˜>Gãßès4>¢¨%3Õ?Ô’™¨–ÌÜÈ¿¸‰—¸™—ù-¯p ¯r«áޝ96cüq߇ E„Òöes{)£½ÕÜ^Êho5·—2Ú[Íí¥Œz¤©zˆfï‡Ðûpˆd´Ž¦ê%š©½ù²8ÖO4ëÇ_©æN=DýÅÔÃÀß8Gh~ylWH¸Øƒ»ù`OþH½±ï’ÐB_ä»$´Ó|—„ú"ß%¡…æ»$´Ã|„r˜ï‘ÐB›)‡µÃfÊa-:ûlz¶™;wqÜÊñNÇzõ™~ ½úL¿¿…º~Çü¿´w/u áâBñeq±÷¸¨nݹ"~Wù>¯ÑwOýc_òÞÍ™w®;×7ØŸ7©ÖÞ¹EõõÎmª©wîpõK?à?Ì~È»ÂiÿܹÇüž®~Zyç?±}tÇþZjýíc,µþ¶¿–ÚGÛ_KGÒþZjÿüm-µþ¶¿–Ú?ÛWKíŸ¿í«¥ãh_-µoþ¶¯–Žq÷Wñ;áÕ%!\»äÍͲ¯.u|™_S}ÿS^³/„\œ[æœ^ûþÎýšÜZ}횸–ØþìðYˆÏW€S˜úª¸ÌòùÌòÌòù Ñ ŸÏ ßÁÜ•Ï ßÁ,”ïš…ò¥Y(_±í”7Ä m‘ùææ×­ë§‹…pø ±ùùõïÄêæá7Y‚o±$ßf)v¤E¸“×Wózsí|ßùõmΗqÞ=º,Í!ó}Ï×Sïöúún¯ï¤ïôú.Öæn>ÍX‡?².â3”æ?˽¬G×öérÞßl3ÿ9ñ>Öç/l@¹o~CºfóQnšÿ<åžùyˆMhÎoÊߨŒjt6½ÿþ>!öq ¾Çš!Œk"Ef³åœtf¢-öy:3Ñû¹§'Yù.õ$+{QO²²7õ$+ûP/²ò=êEVš'~ý_H=/Ä2ÚžÏ0Ž å"Æs1h>=ãÒ÷GÚðÅ2¦ãr¦ç7ÌÀÌÈ•úXëëŒõuXï8öQ±õpÆz8¬‡«‡<¬‡û8—°õúcõú‡õúcõú‡õúc+û¹ò~®›XÏ?VÏXÏ?¶ŠóÞóŒ¼vXï?VïXï?Vïߨü¦‡Xÿ?¶õüc«;¯_5—EëýÇ>E}ÿX}ÿa}ÿX}ÿa}ÿX}ÿa}ÿX}ÿa}ÿاCÈ.7ÖûÕûÖûÕûÖûÕûÖûÕûÞÊz!2¾yˆîhê?ÊⲚ÷v÷ 9o÷;4çíîIsÞnù?«9o·ùoñ¾Ð^ίé^3$;ÍZLfmžáÓ<B7=y¼ÜÞ]?TìœXo/Çw×;O}Q± ÎëÕ㻋õGÅþ»Þñ>K÷zâ?Å®{¼ÏÔý9ñE±ëï³u¯/ÖOuoÀKlÈËlD9±ûó”»7¦¼×½ ¯³)o°o²9oñÞæ‹¼âr ñ{Ìò9± SÎ÷;©{1}ë›;C¸—†»¨ç|÷ý+]$„Yæ–Jo‹ûŠa?eÊ—ï&Ñl©bk áÛc!ò‚Þ$RW¬‰<Ãü|–Xó9d}bfCú½Qó×9unFÿ][:ĺf&³,ϰÏRŸÜM_¼VŸÜí|%r8Ö#w»@=r7½íZ=r7½íZ=r·‹Ô#wû‹zän—¨Gî¦-»Oiv]v?õK˲² ³±)³Ó̰,庵zênWÄ9Å/0å¼µzìnW}–œÎåvî%>@3ÄZ}w·kâÅ-˜‡f‰µÕœ—oJär\Ýñ Çú€Ìñâ§Ä7)ÿ®­éø–ÇíMs"$lÆ“ÎSÁÓü˜ÉÉ3ų¢%åèd9º¤üb“’C¤dAža!çåìdsOÉ¥ô™K~MsOÉeôYK.§¹§ä7lÅ4ó”\I3OI³i²™§¤Ù4ÙÌSÒlšlæ)i6M6ó”4›&›yJšM“Í<%ͦÉfž’fÑäÔ§%¿A}Zò›Ô§%¿Eë5Ùz\Ò:Ä:˜e–¼F³Ì’×é ü3ÄW–Ÿ^d¤¦ð³ùþIóýÏòÎÀ¿œ—êË*÷ áþ©ž‹óœzöd”rÑ@=Zåw©7«Ü‹z³Ê½©7«Ü‡ú±ÊïùÙiŽõd•õm­ÕÊ}©'«¬W¨'«¬W¨'«¬WKy<Ä/ÛÄ ÜÌŠü–•hþM©LýÆË÷…ð—õ÷òýlìüÎë;âõ/guÎZ|9­Å—³ÓZ|9›ÓZûË|9ÝÓ—­¿¬»—àË|ÖÛËyØ’yùŠßQÅïЫ¤èy–m£^g™Þ$E³L=NÑÃ,Ký·Nìï¿Z‰õ.ËRÿ­“|âW™Ÿ­Y€¯Qö×ë^§·Y–úo XWµË÷)®oŠ<Ÿò´‡Üž"¯§Èé)òyŠ\žòœG} =Ì{)Ï{¤^‹&M=šy4÷xÁãE½EÊË-ü¾<~ôøÉcÇ^Ÿ=öyüâ±ßã€ÇA_=yöøÍ㈇\¹Lž\&G.ûÝㄇš²L=Y¦–,SnªÕ Õê›jõÂÅ!zBŽû47å¸O ÷©¹wPÑPy‹1õÏŽçÏ,Á},I}í RÜÏÒ<À2<Ȳü•åxˆåy˜ò7>Æ#|œGYÇX‘ÇY‰¿³2Oð ž !ÙePǾSúâ!¶Õ|›¾Í·éKÒ|›¾Í·éåÞ­æÛôrïVómz¹w«ù6½Ü»Õ\›^îÝj®M/÷n5צ—w·Z+ôõ¬ÃzÈz®ÍŽì!–´9ø sr?sñsó à¯|‡˜‡‡©/OúѼº#2?±‡Èoúþqúþßôýãôý¿éûÇéûÓ÷Ó÷ÿ¦ï§ïÿMß?Nßÿ›¾\1~I½}!ýä˜Cü38„CÈ*?<Õ>„ýæë1CËĘ™Ã˜…Ãiï>ÕÁëæð ~åüçÕ’1S-3’òÔ˜QTKÆè3ŸQKÆŒ¡2f,åÿ}kClx×q×s`ˆ6ÎbiÖPošf-ïç:f¥>µq6šß»ÞiÌï]ï4æ÷Æ®wó{c×;ù½±ëÆüÞØõN³•®w³{c×;Í÷t½Ól£ëf;]ï4;èz§ÙI×;Í.>ÌÝ,ÈXˆ?²0bî !]ê¿íª¿™ ?9®¿™ ?9®¿™ ?9®¿™ð7õ7þ á#óIÞlb}΄±9%ov±~gÂ]±y%o±¾g¿bsK^}ÜqýÏ„{ÔÿLøúŸ ÿãK!abàËŒ°ãØ’ÑI6ãLÑ·$ë#§¡©ZpΜ¢>ÆOù/ò„óµœ7·¨‹ñS죦µÅæ—¦úÕsælu2~Ê)ÊCSN‡£¸ã–ŽÕVµ2~ŠÚªVÆO9ËW©—lZÇÏšmÔÌø)z—¦uÅfµ3~ʾÎ?؆²-/²ÿb"/Ñ,¦nÆOQ»¦¨[™V„ضI\ÉO¹Š“¹šæåLk8%Db£›ñCêg~ÂBÜcçBüÅ$žç^à@ÃË,Ç8DµöâTk/¦ÚzñCª­‡Ðg¹8”>ÏŨŽ^Fuôâpª£ÍpŸÚ‡%ÕüÒÓBÂY×ãSû±¤Ú_zº¸.gð~ÎgC\n!þ^zvgö`F¾ÃLìÉÌ|—YØ‹÷±7ïgª¥±„Þx%„»Sœ{Ï9k®Îû´Öêô¥5V§­­:ý™‹IÌÍ|€)××Ä<ü€y9˜Q.¹—/D>õ™Ý¥ÏÔè_úLî…PãW³©ýÿ©ÏÖè?±ñ <ð©ÏØèô¹´‘fç¶Öä³s[kpÙ¹í4+·µö˜‘ÛZG ÌÈm­Ÿfä¶CCd¡Ö¡íG4 ·F3p[3ðB3p[3ðB3p[3ðB3p[3ðB3p[3ðB3pÛÑLË1LDZLÏqT3Ú~¢õš…Xø—Íy/Ð÷˜jí–3'Ô{Qü?¾bZ°h½—iöü"$”ªÉ™¬¢9̳?~Cóì+B/gÕæ0×þ¸’™¸*Dk›RnÐÌ”¢®-§¤Ü¢œ’¢®-§¤Ü¡œ’ò7å””(—¤¤„¸Òú³³#©?;;Šú³³£ù7ÇÐu>;–®óÙqtÏ~B×ùìxºÎg'„¸tÖð–´†·Ø éô[ì…túÀ-öB:¿g‹½ÎïÙb/¤ó{¶Ø éüž-öB:¿g‹½ÎïÙb/¤ó{¶Œ ß³åcú=[|ÎtîçŸ3û¹ÅçLï~nñ9Ó»Ÿ[|ÎôîçŸ3½û¹ÅçLï~nñ9Ó»Ÿ[|Îôîç–‰t?·L¢û¹åÓýòÛkÙ[¨O^gÍ52$ÿbSgŠÍ1Ì1ÉûÄ_òÎrÞ,ÓÈ\¼_<[l¦id>H> V÷Ö™i™’Š¿â¯œB©=gÎi¤ï\——ö]©ÔÿÎÄL’|Èkæ9ÿóf‰äÃâùbû¦‘™"ù7ñq~±Ù"ùˆØÂ^W@lÆH>*^$~Xü:ÕÿFfäcÎ/ë™9’‹—ðw.å ~íyk­Q;ê%RÐH½_'/5RÏ3[×É'½v™srS#µ}ÜÞÈ\’|Êùåi;„ürÕ{¥½z¼Ä^i¯/QoÛÛ;ƒýΪSéwVF¿³êtúUgð:?ç ~Á›œâfÏ ­ð+6ä\6â<>ÏùÔ×ÏÊâ[Z[µáÐ;ú­}Î=äœõU»‚s=ÅùÄs˜ŸúªYh]Õ®èy³Ú¬‡ÅÖPíJâÔ?ÃQP<Ÿ…¸ ÄÇ&…ئ>P$DvxmÒ¿dÎbCÎf#ÎáóüŠ9—M8M9Ÿz‹N ¨·øÎ~ì+åsý®§ëwp]¿ƒéº´Ö_Ó[ÝÌ/výn¦ëwð[ºn·„Ð>]ÿè*- ñWô`í%Åꉉõbí3ˆŸ£ÞýŸúÌDë°ÒbÏë/Úg[•–ˆër)Ÿá×L}ßeL}¿å|Žß0õ}²ø9ë·Ò qêû­dêû¬bêùÕ´®+­ac®e®cS®g3n y=a­ãŽõ[•6ñEnæKü–/s [p+[ò;šß*}ÏVÜÆW¹öu¥|-Ä•4%—£9(¹<ÍAÉÒ”üÍAÉÓ”\æ äŠ4%Wâ,Væl>B[ë÷ö ñq~ŪœË'9Õ8ŸÕiÏ%?E÷(¹†Ÿ_éçorå’îU²ú_Ò=I®E÷"¹6Ý‹ä§é^$ס{‘ì•t/’Ý£’îE²µÚÑSPþëhŽ)hMÌü$DRÿÜGóLAy°£y¦ y¦£y¦ y¦£y¦ yæu©Ê æ˜óª¤«OUôðsv‹Ó‰Õ¢*ƒ©UùjO•!žÿÁóéÅjO}Õ-×eqº‹Ë†ð¢9å¢ëô¢ùäbšK.V¥ïâ“Ô]¬Æÿ±z/>EMÑÅÞÇõ\\NlÖ¼hþx)JóÆKñ´Æ_Ò«^|Úë\ïÅåÅ1±µüRš^JËgho\|ÖëÜÅÒýXüÝÅÓýX\®ÿâŠtýW¢ë¿¸rˆLù9Ä7õájúŒûÓg<˜äü>ç_»—ˆ·à~¶äÊ£5}öƒúÔ)Å­ø+_å!¶æa¾Æßø:° ²-Q-®é»ÔçšÇâ›&òwªÉYS?Ë Çx’oðßäi¾Åd¾Í3ìȳìD3MÓÎ4ÓüŸ¢;³±lã~Ÿ93'k$eße'4ˆTBÉ’%¡,1c«xm•%"ÊÎÈ’5‘¥”"Ù¢¢b””-K‘È–÷{þ8Ÿï¹Ÿsfœó<÷s]¿«·7-^ ™¦Å‹4Ï´x‰æ™}hžiÑ—æ™ñ~ÿ¾fšý<7sM‹þžÇ?ŸÙ¦…~3ËlÓb åƒBt§9}Ø7!”W‹Ê«Cå³;ffö-ÍìÃö„ÄLSCl³y SÍ™¦q`ˆŽ|1Äj´çäÿZ®Ãbù¿–ë°XïªUÇë/y½P¥&xÞÇóžOô¼¯çEø?õþïw=›qk9Ÿ‹i/-N¢:™íˆ÷öóÞbŽÅ‹ÿ}c·Ñ~*5Éký½&KmtMúu¡kÑϵØèZô3ontú¹]‡~®ÃFסŸë°Ñuèç:ltú¹]‡~®ÃFס_/ƒøž»ý\‹®E?×b£kÑϵØèZôs-6ºý\‹®E¿¾!º=¬ë²'í‡ÍÛ7/„^ÖöÅæÖêËæ47„ÞŽ?ÊøíÏõ h®œöàú†´ÿÖ7¢ý·¾1í­õMBX)ãÕ³?—ËÐÏO¥Ìü|eæç§Ñ5|þmÊÌÏO ßm Io¾Àí|‘;øw²¿büÿzÃó]ž»GGÊKyÿ¥¼”÷*奼jr‘›Þ³Û{Ü»#e§¼×­¿¶îÏo8€ßr ÷PFÌl>ûn¯ç/ó;¾_’‚>ôø‡Ô‡_AYáñ•”_EYáqù;4¦üd„Çåï #<.‡¦!ä»ì¹  õù®xøÌ±»CÂÏãBÒÛúðÏã©ÿ<²lÑžžOôüþMsþš˜ýZþ’²™ [þÅ !ÌÍ"Uå¶Ö¯…Øíe9œå8‚åù:+p$忼~~ï úù½3y³Ì܇H™ªÖ­åý¼SÞŸml9œfÀ–#hök©GÎ6óµÔ#gë©-GQ/mùõЖ£©‡¶ãº~åºÑBï…¤åÇBæ‚åÇBæ‚åÇBæ‚›‡&—9lm>øQŽ,d>øQŽ,‘'$ÒëKä¥Y§D>êñ%òS/Q€z|‰‚T#J¢Q¢0ÕˆE¸“Eù‹q‹s7Kðk–ä7!¡Üäx¬§°4§R¾.—FùºÜ4Ê×åÞ¦|]n:åër3XQÆ™"ã|g=ÓºgQFè<Õñï­e³c²Y9Ùì˜lVN6;&›•“ÍŽÉfåd³c²Y9Ùì˜ù§sšŸûÁZF;fo”“ÑŽÉhåd´c2Z9Yä˜ZVN9&›•“%ŽÉfåd…cµCä«1!qxü¿ó&sò-ÞÁ±ÌÅq¼“ã™›x'ònNb:/ÃÍÿ_9/ÃÍý_9/Ãó‡„7ß I¸Þ\èá?ÒÈ£qˆ´»ï4»µû—f´vW©W¶»F½²Ýu⠾̛|…ÿñÕ­Ö5$»Ý˜ƒ)ÌÉTÞÁîÌż“=éó_’a–Ë$—d–åí(«,—E.É*Ëe‘Kjåòge±ïe%çá’¬²ü9ë¬K2ËrÙä’̲¼“ãûw~.É.ËõÖ?Zçæ~ÞÅtž.©ÛËe—Ö­óð'æå!æãaæ÷>™g¹>zIæY®^Ò_—ë%­3¼^€G¨ÿ·þ™…¼®ï.O±þź°µþ»\Ÿ½¤ÿ.×g/é¿ËõÙKúïòž!$FCt+}°dë†Hãc|¿Ñ Ýøwš¡ë“ëÞç š‡Ÿ¤™¹ñ)šƒŸ¦9¸ñò‹çåãžñ8ë÷·öûïñüœÇy?=þò¸ÂífænfžÂÐÌS¸.Í<…ëѼSXIžÂNß'yÍ{ÉïòW.ä1ï3–G’ß³ö¹“ÑçN†vúÜÉfÿ>w²™§ÏlŽßés'/¥Ïš¼Œ>oòržñûÌU…åšä­Ïr}öä•ôù“WÑwH6ÇïüËûÍ_…åéä¬/X›Ã ËÕÝÌa…ÒV¸Ía…ÕûJ9BâñÅÌIŸ­‹Lu¥£õÖ>c—âÖöRÞ³ŽårìÞIŸ7¯Ï‘÷¼unëe¼‹Ëy7}^õ:áËßCÒ«fý/Síÿò'ð$'êY=?åù$žædþÁ)ßÄÿž]µÂç P+|ÞPÓuúÆuªé:}ÿ{wÕŸ?Ôt½¾‰ÿý»jH%5d€RI  †TRC¨!•ò‡pGkÏÕ×JöÿmgóQΡÚ3yAˆÜsÔz®uÎããœOù-ë6¢~úec.¤ Y[Æþ[ ïzÝ}ª¿×–µÿþ²öß¿SÖþû8›ðŸ {¥ë ï7Ët½ÉÚüf˜ÚM½~ŠÍèêzËq3®™aj7wü>É3lAu«öS<Ç–T¯j·¢ÚT»5ÿb^àÓm=¿è!SöÝË5åN6ãW”÷j¨‡»õzênç¦ï.ÇŸ´ÖCwëáÇv;Ö±çÓËú~mý”uWk=­ï7Ö-­}øÝjO õl·ÞÖ÷[Ç[Y§Z«!5ºSëkî.§Öô•Ê©3}e„rOSF(×–2B9Ù¡¯ŒPNvè+”“úÊåd‡¾2A9Ùáõ¼†ýº[¿ì+”“î(áa¾ì+”“úêóå:QŸ/×™ú|9st_ý¼œþßW/ç{Üaöì«——óî0wöÕÏË™§ûêçåôù¾æérú|_ót9}¾¯yºœ¹`í¿!©÷|^¥>:äݹCâ<ÝqÌñkŽ¿Ëë”ÍÖÞ :=Äy»ã·y³ŽÇ#!±ŽëSǬçW$>=šªAuå˜jö‚ë7­å™j÷‚¨õ[!äúØsóäÓc½&ãP/êÊ8Ü7¹ÖxÍLùô8Æ8žfɧÍ+¹ô–™<ŸÈÌœÄ,œÌ¬”Ÿs¥{žÍó©ÌN8×:Ïo÷|ZˆÌé[žc õµ9©ü“Ý©®ÏéAY$×4³åÇï†XÏÖ\È6|OsÛr1ŸáûlÇ%lÏØîÿž®{öß=_æùs\ÎŽü¸‚¹’êÂÇ«øÆZüÐwN¨Íã|'øOòaêÇÅôϬŸ‡Ø—îç-eC¤µûnK9ºï¶”§{eKª§[*²õ¿Öúß}®µ>·EŸký¢ß£7|iÖɪ7|iÖɪ7|iÖɪ'|iÖɪ'|iÖɪ'|é^ëþªçþëþªçþëþªçþëþª'_uoÕëF÷U=÷ÕX÷U=½çjRˆ­Ê`ŒÎÙÕÛèœ]ÍDçì®=^ ‘3¯…Ä…™9œfí3#˜5Db“íŸôÉÏr"틟&Ѿøi2틟¦Ð¾øi*틟Òh_ü4îÿ ÎûOo{noü4)!Úæ)³ú ¶äMÊó·«ßsÍUíË6ò÷í·Ø&Är(•se˜ª>K›§­#lËÇ‹8nßÎ-JŸ­Í3Ž›Ú´c"Û3Éëżî3·é`ã³¼Ï1;23;1 ;Ó9hÓ…Ùø<³³+ÍlmºÑË“1î I>ennä]ü,„aúrnsꦻ­?§9À&šól¦9À4çØBsþ€/iΰ•æüÛhΰæü;hΰ“æü_Ñœ?`ÍùvÓœ?àkÞÃo|Ž›>GmëRÖßZÿg­On*m½Çú–õCÖe¬÷²,Í÷›ÊÑ<¿©<Íç›*p_ˆü.ÇÎv~—ag¡…½~BNma¯Ÿ0ý.›Î–5[Øó'>´–AgËšwÉm¿»f»¿ËŸ³‹sKðê-¿Ï¦~ñûê¿ÏeéÐujH*T5„^'B$b.ëu’¥xŠ¥yše¼/Íûî³þÃZîïe6Š”£Ì)O55RÁû¦y_²µÚ©Hµ5þßwFîõúÛ^¯f-+G*Sn‹T¡~‰ŽK¼Ïû¦{_u묓­gX× ÌTè~ÊL…j†hç·B,ÿ}Kî=öVçqžW UÜ¿§Òý{zÝ¿§å㤩žë§åÚ*zãéW©7žÌãÂÊ“ÆS|-$4Ý’bø%ŸåV>Çm4·5ÝÎNÜÁÎÜÉ.üвHê.Ý!ÜÌì‘Åñ]Ž«5å•¥-CtãÕë÷¯ñc^çÞàÚM®’Μã£<ÏÇø'Ð=ãÕ©ð‰õãÖØÙˆ³1/± ÿá¼¢+±nÞ·²½oZîkò%ïâÖY³2$öªÎU¬ÁÕ¼Ÿ±fˆL76•Ŧ››ê'Yíí-ûhooù‘¹ŸzÓ½)«Þ´Eoʪ7mÑ›²êM[ô¦¬zÓ½)«Þ´Eͪ/mQc³êK[ÔØ¬úÒ–_¨m‰gb}h˯Ô¶è?YõŸ-úOVýg‹þSqOH:>ˆ{ù2¿ã+!L÷ʰþÞúÕD°èè—Cìa{¿”Ypñ›!Rk§c¯8V𝲠³,‡Ðþ/eN,µÒz¨uycÇVyþšçææÚkCÒ%µT®ÖN÷\=­½ŽC˜iF®TÃz½µš_{ÕüÚŸPͯý)ã=©dH¬»Œ÷P-[ŠjÀØÒ\Á24«>4/„ï¶.k½Šå¸šåù+Pþ[‘²ÖØJ”«ÆÞKÙileÊKc«p=«rïã'L槬ƬÎÏXƒŸó~nbMnf-~Á¨ug}YÎc9ÎgyêÛëÕ o¯W7ÚÊöç˶2ý9™¾­{çœ,ôóõêÉÝ}<×Ó׫)AO__™‹Y…ïS-¹»¯çKÁEl*W¹—JØß‘ÅÖÍø>›s Ÿä4ßd™ãùRÏŸâ2ª!‘ålÅ)»FVPv¬¤ìYEß+²š¾W(BNõq¦ÙþI3þL³ý““C87D²á<þÂmç=Ÿïù/ÞsÆ{¦ð,ÕÓ™ç˜ÆóœÆ?ù6ÿât?çûd=j}ÁÚ,<ÐÌ‘õWë‹Ö3ù7gñßá?œÍËœÃ+œëçÌ(YÍ('íõf’¬fÚ™f™'Í43Í.O. ÙåIûfà"¯›ugšaž´fÞ¤ë=ó?.â-. ³´…'ßg„K˜ÀåR&R/î|<„+úi†Vzršž¡§ÉRúpšì”¡§ÉNúpZ±ž”Ó·f^¶¡™ç¸ù1CNÓ¯3ôç´ø;Ê tÜ<™¡O§Åÿ÷Kš¾ü¤ktÜ|™á¾IS£ž,hmÎÌpÿ¤éÓO²6of¸ÒÊXËÇÍî§4¹:Ã}“¦^E‡xî¾I“­3Ü7i²u†û&M¶ÎpߤÉÖî™4Ù:Ã=“&[g¸gÒdŒ ÷LZÕ™ðxH|tr/ñ;6æ÷lÂøåš Mù#›q?›ó@H¸©Æ¯‰Ï#CÂB{¯½·ÐÞk7™öW;ó\&Ùâe×<»k¾Ð^kg¯-´×ÚÙk íµvæ´—íìöÀB{®=·Ðžk7öZ»´ÇÚÙc í±vöØB{¬=¶Ðkg-´ÇÚÙc í±vöØËöŒy-a¡=Öní­vöÖB{«½µÐÞjg>^hOµ³§ÚSíì©…öT;{j¡=ÕΞ22'µ³§Þ³§ÚÙSïÙSí>¡ðKžÛWíì«÷ì«v˘D3Ü{1~ÈÛ¸‚™¨®îãÑ7D«ûnçgÒw;?‹¾Ûùwè»×_ªûnçÕ„ê¾Ûù¹ôÝÎÏ£ïv~>}§ó è;×§«ûNçÒw:ÿ}§ó‹è;_LßéüûôÎ/ ѾÓyßasƒ‰ÿov7Ì2kÌ$7Ì2k̪7Ì2kÌ#7Ì2kÌ#7Ì2kÌt›÷þÑÖfš5Ýi¦YÓƒfš5=i¦Yÿçeæ™5½ižYógðEÎäKœÅ>|‡ÎG}]¦‹VÑ×å¹ ´D*<Ìë8®¿ËwÑ*?p°ã Ž?b½ÏzäPÇ£Ž×µÞo=,$f/bÛb¼‡·±3±43³ ³°,³²³™Eë˜Eã?_Þ:;+ðvVdVbNÞË;X™¹X…wÊcrÒ9)YN:#'%ËIgä¤d9錜”,'‘“’å¤3rR²{茜”,'‘“’å¤3rR²œtFNJ–“Îè#ÉrÒ9)YN:#'%ËIgä¤d9éŒì{›\³éYÊ5›ž£<³©#å™M(ËlêÌáìB½qÓóÔ7¹îÓ³„XÓ !”^¢Ù> I[ílŸÓȶ‰ææl›éÚgû‚®}6Yz«kŸM–ÞêÚg“¥·ºöÙdé­®}6Yz«kŸM–ÞêÚg“¥·ºöoßbO áƒÄy°žu²µïòv5Ê|oWçqÖà ÞÏ“¬ÉS¬ÅÓ|€°6Ïøì“=Ðó³|ˆröÛrñrvöÌþl¹<{~ÂdóO©rÖY­×X›ƒJÉÙ³YËéÙ³3·ssp=srï œž=?õóæ§RòEv3ïÖÖæ§R²cv³ïÖÏhöÝú9ͼ[7ÑÌ»u3ͼ[¿ ™wë–æ›ãªÝ¢ÝÌé…ÍéÝÌé…ÍéÏg áßF´GÿmÌìlÂÛùÍÜÿÊÏçd3ÞÁæ!¡š={ö}ë\ÖOZÛ»gÕ²jöîYý±š½{V«v'Õ±j¹©ŽU»‹êXµ»)#?§ŸoaÇz%óróq5Íg?ò¾ÜÞ÷”µ9âìÇ,È5,ĵ,Ìôò™³«ñ|‹r=‹q‹ó–`üß5W+@={˜ž½CϦgïг‡éÙñ¿çr˜žÿ{.‡éÙñ¿çr˜Y:þ÷\Ó›ãÏå0³tü﹦'ÇÿžËaféøßs9Ì,ÿ{.‡•¦Þ;¬ õÜazî=wX9ê·ÃôÛúí0ýv‡~;LÆÆÿN=w˜ž»CϦçîÐs‡é¹;ôÜaUBtçÀ{ͼ¼Æ~hh?ìd-·¦ü Y"ßUk!áqsCpÞ77„–^?äu#Ïu!:¢iˆÕ¼Æf¼Î挒7Ù‚ÿñ)ÞbË«åcŽhÅ[3måÓ´ÇF´eRˆöWë+Ö¦_ñAªñ¢_ñaªñÕäþj|E5¸¿_QÍÍT $mÚÊ‚ÜÆBÜÎÂÜÁ"4‹e*ʯXŒ»Xœ»Y‚_³$¿á=ü–¥¸G¾ˆÿLiÏ÷² ¿cY~Ïrü!$Üg¾=Ó€æÛø¿ùßõ˜þ†ù@;'ýwÃz´µvNûï¦õk9ìœößÖoZËaçä°ÿnY¿"·Œéc—ÇÎÉc·"Öã˜ÀñŽqÜlض(Ÿ£¬xÎ\ض8;y_Ôû&XˆçÌDmKÒLÔV&“ê@ú,ºÿÓßñ{dÌs)Öê@úlªés¨¤›n©鿆[ê@º™á–:n¸åþO—ýo¹ÿÓåº[îÿtùí–û?]î˜ö–z[“cY‹ãøåŒ'ì­irÆöÖ49ã {kšœñ„½5ÍÞ{ÂÞšfï=ao]ûÂ|6ƒ[(/]û’òÒµ­”ýÎè= {RïYØ‹zÏÂÞÔ{¾ÂØ»C¤H+k=há‹ÔƒÊmgô …²ØØ<^omý•µ9óÌ.þ»Ù_³?¿áïÏëýrÿØ||ÚñoÈ=äx~ÇÛZË3 _¶V¯Š[žßè³åù>Sžãô™òè—}–<'éÏÉsŠ~ožÓ”sòüA9'~ß±+õùŽÝ¨_wL¡ºÜ1•²;ÿb^`O^d/þÍÞŒÞø¹»•ç/z~™/ñ ûð_öåUþר×CBaYm¿}Sø8Íì…Oðež¤}Rø_åiÚ…ÿ ýQø åÜ箄pIÿH*æØYdž9ö¯c5¬ÏY¿f­§\ºßú¼µ½SøOÚ;…ÿâë^¿æõšÖ¬í¡Âiþ›öPáK´‡ ÿÃ1¼Ì7y…oñ_ŽåUŽã5ŽÑîõ,Õè^ÏRîõ,5è^Ïr?ÝëYÔ†îõ,jC ÷zµ¡…>“Emh¡ÏdQZè3Y ‘•úvо½RßNÑ·WêÛ)úöJ};Eß^©o§èÛ+õí}{¥¾¢o¯Ô·Sôí•úvо½RßNÑ·WêÛ)æä•zvŠž½RÏNѳWêÙ)zöJ=;Åœ¼ÒœœbN^¹œ÷ñC&s«Q¯I©N½&¥Wó~~Äšü˜µ¸†„Èxµ±¾Ú9^&ª¯vŽ—‰ê«ãe¢újçx™¨¾™u¼Ù}¯ó˜Ovßÿýùù%塽òP>yh¯<”OÚ+哇öÊCù䡽òP>yhïW!1QÆßøPHˆî ‰Ÿê ѽlÏïØßóYþÀçBôäþ›g¦?y€fú“i¦Ïá\ŸüÉs3ÜÉC\ÆÃ\Î ~HçiÞ :OóVÒyš·ŠÎÑ<{ä䯔ã7>"ÍGZ³þ˜¿q §ùèäqšNž ùèäIšNž¢ ~ ‰ëŸç!våavcSx„©ü™Ýù {ð(õõð+õõpŒúzø/Pý\¯Ÿõs½~ÔÏõñ–¬~®ÿóbõs½>ÔÏõúøÔßCRcùm€:Ÿµ¢õqk5kê Êo…\÷Bæ²µMB¬·¬¼ö ÊÊkeíÞ²òZY»·¬¼VÖî-+¯•µ{ËÊkeíÞ1ÊÚ½o£¬Ý;eíÞ™)k÷ÎBY»wüÓ2£æ3Óv6Ÿæ3Óv6Ÿæ3Óv6Ÿæ3Ó>s:ÄrM a*Ã?ó‡õTžaZˆ¾5?Äê>ÁlÊwiÎ+õkHÈ!»î˜D™uÇäÊ‘Sjμ…!:©aˆ5Ð3JÛ·“y®W”¶Ÿ'5öü*}ïfŠI¾w3Å$ß»™â9?\öœŒŸG.{n ažŒyß”1ïÛïøLÇÍÏÍb½²¹?Ÿ{ÇóúÞ#ÞwÀz¶õ£œÃÇ8— 8ÓwËÓ¾[žFôÝò4ÑŒÜ!æúE3Ô-×-š¡n¹nьʿ•æ£üÛh6Ê¿f£ü;h6Ê¿“f£ü_±goý+2’Q¶•ß’ Û£½X˸r\Ráý¬NŸ½a® 2AÃ;)4T{ÂgT{‚þ0^ý{Tí¯Þ=ªvWïU»Æ«uª]ãÕ¸GÕ®ñjÜ£j×x5îÑ&TãU·Ç«q6 !»¼5^{´Õ¹G›‡„crÉLsÔ˜ý!Rè.kùd¦ïxL>™©N“OfªÇä’™rÉ÷p!½~ÉÞëèÞYaN¯ëþ\aN¯û‹ãß9>‚ßóuþ@çb… Z÷¨õ>ëQÖ²hÝ_­´~ƒrEÇÑ”+:Ž ‘¿Í=Kÿ¡¹géåZ›óþ0çݵÛ13ÐRóÎßæŸ¥æ¿Í?KÍ;›–š/¦~#7ù®æ´¤=¨ßî™È“œÄSÔ«¦~ë}Ù¹‡²§¹-iÏþAýÏÜ–´Gÿ3·%í™Æs|›ç9ÒÜÙ¤WGãÿßý!qXSîd3ÊWÚsŸän¶ :5ì)ªSÃZR}¦níP—†©{m?‰wÈòmeÊ;j…PÙÜÿ糕ǭ_:.cÞ!Û·•=ï¨Í-|_ÒìÒv+æ6ÚïmåÐ;Ô¾ÍsŸñ{¾­Ïx‡½ÞÖg¼CªìšlÝÊ7¸£¹c¸ƒor§÷û.wÌ™¬ÃY|„ï°.g³ç°>çòQÎãcœÏ\ÀÇù.r!ñ=6æ"6áb>Á÷Ù”KØŒêø3îïwÕñgž¤:þŒ½÷ê€XÕ¬ñê@š/^Ä[|9$Þø #|• Ì(‡PMu(“8Œ1¾ÆÛ8œ™8‚™ù:³p$³rí¿Wß`vŽæíÃ|“9ùïàXæâ8ÞÉñÔã_@óÝtõ¾i+ñïõ¨ì¹Ù¢©:4åÕkd~›2˜æ·)Ch”îÚü’r¼Í«œÎkœÁëœÉœÅ›|'„‡ðßEëÿ¬g[¯±þÛú–õëµÖ—B‚H‘”c.#œçxºãÿp/;žàø|ëõÖW¬£Ö ¬7Xÿkhý®µzüßUë$ë…ÖŸZ_³ŽY¿ÇÛ¸ˆ™¸˜™ù>³p ³òfãR?¿ÑÏ_·Înm.»~6Ä>ÖK¯Ÿ£Yñúyš¯ÿI³â‹«C¬t;~Äöü˜ôß™ž¯ñüY®åsŽÍò<ÝóŽ! þ4Drª¿ƒ7òzEä¯"êN9«ˆ,P±yHú]F­ø$eÔŠ-è}Óó…Hù§­Ÿ²¾aߺ­uKë›lÅÿBÂj5U¶\-£¦Ê–«eÔT½~µŒšª×¯–QSõúÕ2jê7”QS¿¥Œšª—¯–QSõòÕ2Bêw”RõñÕ2Bê”RõïÁE|þgY”Ï9.¤þH™ Uß^-¤ L*s¬–R¢QÆj`ÿO”©L¢LÕ`2eªS(S5Ðë ½ë¹\Õ@/ä¼L”­L£lÕ@žøÕè‰(k ("YR¬/Z«Õÿ¦Z=ñßá?œÍËœÃ+T“'ªù æQÍo0Ÿj~ƒTó¼¢9^I;*p$+rå…,'CBÙ®!ñ¨ú[¶]ò)T§:W árjœ—åŽÎf¨ËòEçjìç}©ÞwÓººuüÁ¼ŸY“ƒ(ã]v/w~€¯ø¹î~î?ëÚÖ¯ZÛ“GoÑ^ü5Ð^ü5¢ô Içf/ê‰ô¦lþÀ ÌÂÌ !Rñ_ë­óò%æsüǯR½®¨?ÐÇñüìËü ² ±? s‹p ‹†„Á²O²,4XöI–…Ë>ɲÐ`Ù'Y,û$ËBƒeŸdYh°“, Vc’õ„gÌèçå¹gÌæç]ëØ¼ø¹Ì›O™-¶€®Aâ+!Ü­ÎÝmßÅÞuL¯ÕürŸÙæÕ…lÊ÷h®yu›s1Ÿäû4Ͼº„æÙW? yöÕ¥4ϾºŒæÙW—³MˆL172O172O17Jæ VãJVÑz£CÒõÊÃ*!ˆ ‘{ãïõ›ÖUùïãX&Óü[o¼çúÀu?ñ•[ªî5Ó[b;CЗBü¿ÙL‰émÍô˜˜ÞÖL‰émÍô˜˜ÞÖL‰émÍô˜˜ÞÖL‰émÍüÞ˜ÞÖL‰™¡/|b˜U>:5ûÉeÕ´²Y»×1³×òRÇcŽeõÍ«æPíè0—jGóÝbµ£ƒùn±ÚÑA^©çwЫ«!Ìq‹Õ C䔌8?¦©È/w=£‰!öÉ‘¾("­ÜCÑ$ëŸã/¼z_ ï=$?•èÈ؉òR‰Î”“Jt¡|TâyÊE%ü®Cöm¥î!éD.öàt?œp?Tr?œp?Tr?œp?Tr?œÈî:¿Ètß=kþ¿¸Éú¤õËÉþopÀ1sl–aÖ±~ÍÚýÐ@öšä~hpÈq³m–áÖé¾h Mr_4¿&É] ä¯IrWùk’ÜÕÀœT‹¿òcmþÆù;âq>Ìþ³s–Öu¬õˆIðëò´×ë{ýuëzÖX?j=Òº¾õ>ʳ|ŒçØ€çù8ÿdCþåçä­,£¬Y_`cšE&5¡dÒtïLjJ÷ΤftïL’µ¸w&ÉÚ Ü;“díîI2v½l’lÿgî]äù(Ïë»ØSäúù-C$YžßŠiޝs¼#׳“ã­W»ç«™ÉoóiNg[Îð¾ Þ×™Ÿ° ?åóÜÈ®üŒÝø9S¸‰©!Z×u»ªfÌú,D*é±³>§:kõÄY›y‹_¨·[¨Öu¯þL×ùê/Žéx‚µë}õ(]ï«j^]×ûê1ºÞW£ë}õwºÞWÓõ¾z‚®÷Õ“t½¯ž¢ë|õ4]ç«Ðu¾z†®ïÕ³t]¯ž£ëzõ<]׫Òu½úWˆ¾Ð0Äîqo¿à¿çÝã÷¸§_poßãz5VK¢ricµ$*—6VK¢ricµ$ÚŽ[Øž_²·òYn£¥ñvv¤šíÄì̯ØE‘­oLä“”Çïr\Mk¼›jZ㯩¦5þ†jZão©¦5ÞC5­ñ^öàwìÉïÙ‹?°7÷ñþȹŸjgãìÃìËŸ(#¥Êò7äÁƇ¬e¥Æ‡ÙŸÀ#T«ÿÌAü…jt㣔‘ÿJÙ¨ñ1æoÂß9”riT½h,—FÕ‰ÆriT]h,—FG„èÂ!ÖîÃÊÌÑûõ‡¿òPNúKNº_NúËL:Ù¬ÕЬ5Ù¬ÕP>{ؾÚWØÚ¬ÕЬ5Ù¬ÕðUÇõ×}fÆÉf®†f®Éf®†f®Éf®†êØÃBÛ>³ää­‡ñ*_ã5÷º¼¯˜õuë¼Á×y“#ùÍ\Ÿyþä—Esûù]!¶XÆía6+.Wõ0ƒ¯K3Xñz4{¯O3Wq³]3Wq³]3Wq³]3Wq³]3Vñ†4c7Ãõ0SoL3Uñ&4S7³õ0K7³õ0K—]z˜¥Š7§Yª¸­‡Yª¸¹¥‡Yª¸¬u¯kvr ]³“oÒ5;ù]³“céš”‹îuÍNŽ7÷O4÷kíÚœ@×îäDºv''ѵ;9™fŠ“Sh¦89•fŠ“jÔ½fŠ“Óhž8©&MŸä÷íádîuÜlqRš>ÅZFº×ŒqÒL1}ªõ÷Öf“3iÖ89‹fŒ“‚Ýô4¯ÿ`mÖ89›f“shÖ89—f“óhÖ8i?ÝkÖ8¹€f“f‹{Í'Ò¬qò=Þà"ÞäbþÇ÷y‹KB´²‘_9Bý¼r—…È?[Câ‡æÞ¶Ñ|ûÏv6ç>"+å›”^”oRzS®Iy!„Çô‘Ãñ×D¾IyÑÚ|{ØòØEÊ®ýÍø¿srÚë/ñöáöåYþçØçÙŸrÿâ@º_RäªÇd—Ãf¢Çþaüß]qÿ¤¸»lÿwXÜ?)Wé¾Iq߬tߤ¸oVºoRÜ7]ñþø¿ëâ¾Iq߬tߤ¸oVºoRÜ7ýëõø¿ã¾Iq߬tߤ¸oVºoRÜ++Ý7)î••·øFˆÎ“‹Ú¸^óþ¤ëUO-½Þ‹jéõÞTK¯¿@µôú‹!ºèþk¯æ/ªI5Q-ªù‹ š¿¨6ÕüERÍ_ôÕüESÍ_T‡ø/².õ€Eõ¨,ªO=`Ñ£”ë=F¹nQšÛ=ΫÔ;ÚË»‹ôŽözö"½£ý êío†„Ëjò 5ñ²š¼B=ï“k/«Í+ÔÆËjó µñ²Ú¼Bm¼¬6¯P/«Í+ÔÆËjó µñ²Ú¼B¦¹¬&¯].«É+d–Ëjò 䲚¼â ªÉ+FÓý½b Ýß+Þ¤û{Å[t¯K÷÷Šqt¯¢¹F„¤]åiÖÞeÖÎeÖÞeÖÎeÖÞU‰oÐl—ËlµËl•Ëlµ« ÍT»ÌT¹ÌT»ÌT¹ÌT»ÌT¹Æ±ÍU»ÌT¹&ÐŒ=euˆ”rþsM´6kgq®sMòܼ=å#¯¹&¹&[×â>À©¬Í4>Èi|(„ 7CôàO!6ÉýxðÝs3¸<„Ázêj½´ûÿ¨—vïçx Çõ¸Õzjw½mµžÚ]o[­§v×ÛVë©Ýõ¶Õ®_w½mµë×Ýü‘iºç®]wײˆï3ø)¿g e²œS½æzvl-›Åÿ7ðÁ²XNY¬Èý^s»»Ö«]ãî®õj׸»k½Ú5înÞ,¯å4k¯v­»»‡ŠÔôÜõîv½»¿î=²\ÎøgpÝ»´–érΰvý»Û«]ÿîo8þŒã3­íƒî£ý®ZXÛÝí‹ÕöCwûbµýÐ]ÝòFˆUs=‡Œ¦ë9d ]Ï!oÒõò]Ï!cézÇÏû959‘µB$à ™ÖG™Â_™ÊcìÎßh†Êøf£ õ1M}ÌPÓÔÇ õ1ÍýÞj_ˆeœ£æ­"Ö?Z«?s̸U‹Zï·Æ|éÜÍ9æõbÖöGv™¢s¹Ë÷C÷˜é*¶I¿Ë©Å¯y¸g+¶ IÇÆŸ¦ùrÞØÇuÛ°—®É†ïè¼oøžmCHPï7üà¹s¼aÛñG¶ç~và>˃|Ž?±#±³33Ø…Gø<Íà}ºÒùëÓ-„Çõ‡#úÃç±ó¸ÁyìãÎãç±ó¸ÁyìÓËÏé#G*[;Ÿ}œÏ ÎgŸ¨Ïôy‘úIýdƒ~ÒG?Ù ŸôÑO6è'}ô“ úIýdƒ~Ò§Kv‡Èƒæà´_C¬‰ûiŒù´ŽyuŒù´ŽyuŒù´ŽyuŒù´ŽyuŒù´ŽyuÌ`šWÇ ¡yuÌPÞÃa,Å×XšÃY†êP²T‡ê”£:T§<Õ¡:¨Õ©Hu¨N%ªCuî¥:T§2Õ¡:öqû¦¸~õù8 1„†Ÿ:׬‡Z'qcŽotüºõkÖfÿχ3“ãŸ9~Ãz„uf¾Î,ɬÅlÞ÷¹÷Ý´~Ã:»µYÿÈÖ£­oçæà›ÌÉ·xÇ2ÇñNŽgnNà]œÈ»9‰yBB¦Ž!q“Y4S'šE3u¦~¶ó»{MþÚù=e©ókCâ⇘N³úùu4ŸŸ_Osùù 4‡Ÿÿ„æä󟲾Íÿ“ç=7 ŸÿŒfÛóŸ³7ñqnfC~ÁFÜÂÆü’M(-~‚2ÐbYè¼ ´X:/-–…Îï¤z|þ+ª¿2râbõóün¶ ÑÙ¯…XK½eöpº†³GP-šý:e–2ÙCôeý¾²™ðeý¾²™ðeý¾ò‰¹åw®kÂÝ)©!´}$„sjjÛºTÚÖ£rËŸ¹Nm¾åÏ\ç¿õ5Ýã·¾áÓ!¬œ"õ̪+Ë„X·Ã,Ë ªÝް<ã¯Wà/¬H3ìÊJ4î¼—fØ••i†]Y…>ïʪôyWÞG3ìÊdšaWV£veuÊ3+kPžY)ßt“g¦4±†ÿñIÞb‹kd¶^âž®½Üú)눵{»¶™i‰{»ö Ç[:nÆžÒŠQ¶¦û`‰{¾öJë6ÖIÖîýÚ«¬Ÿ¶Ž±-oã3ÌÄvT3§´§ûJf !{ü¿}Ös÷@¸?D:, ‰w©S> ºÓa)«på×Ëy?¤ÜÙaåÍ+)GvXEy±ÃjÆßG¬É©ŸtXøÖÃÞ¾«¶‡,p³sˆ­Õwnv¡ÌpóyÊ 7»Rf¸Ùñ÷¥ð!¦òavgöà#ìɺìÅzìÍú|òE>Æ—Ø€}ø8û²!ÿÇFìÇÆìÏ&!:K|Rœõå•YMézÎjF×s–ëkÜŽÎr}[Dèú¶pÝf¹®-\·Y®c‹DºŽ-’è:¶pf¹~-\§Y®[‹L!áýé!鹇8ƒs&ë„ðŠZs»9ðýYÖî‰WÔœÛ̓ï¿cm}6Í£ÅÔ©Ÿ Rú©Õ©ŸÔ÷bêÔOê{1uê§¢!tœÂ¥ÃÖêÕOê|1õê§â†"5º˜šõ“Z_LÍú©¤÷ÎñÞ ëÉÖj~±)Tó‹M¥š_,eB4‡L¶C±÷"¥Ì|ö^¤ÔLê«¥Ìz9d´¬õ×Rf>{0RÊç°ÿ"¥üSô×RsC(¦—çãv ¤·cå¸/‡è‹îÛR?Ò}[j?Ý·¥„?žÔò}šçZ. WÌÙ+ÍÉWÌÙ+Ÿ’O»xnÖ^Ù’fí•­hÖ^Ùšfí•mdú52ýßÖfî•OËžCeϦÆfT×&5§º6éIªk“ZP]›d?8’j×íŸy>ÊóV”Ç&µ¦<6© å±Iñß-MjKylÒ3!aKRHzÙ}ÿÚá¹+¿uÌz…u†uaAþÌBü……)OÝåºn¹ÍûW2W13W‡ÃŒÕé™Éçì´”ÎÅ=·y¨ –Y«×–Ógíô!ã¯sÓ´ÙŒ”¹ÍH™›ÓŒ”ùIš‘2· k”ù)º'2·¤{"s+º'2Ëe›Ý™å±/Ü™å±/Ô¶Éêõ=iÖm­Ý™Ÿ¡{#s;ªi“Õñ{dìÉêø=o;ÞÞq÷Jæt¯d~–î•ÌÏÑçÏÜ‘jZæNTÓ2wfVva6>O½&sWÞÎnÌá÷Ë€÷L·N±ÎÉTÞÁîÌż“=™›½x{ón¾À<|‘yùó±ó³/ „„ZúíE9³ë†®þk­ï^|Æúë«ÖúïÅvÔ/¶§þ{±õß‹ÏzŸ¬sõšµ>|ñ9kçêukýøbGêÇ;Q?¾ØÙë²ÎÕ”e®Þ¤ sõ?n¦œÜÕÅ•jé±»Xo±ŽX륟§^z±+õÒ‹2k×/½ž`­§^Ô»nµŽZkJùúbwÊ×{x}›×­åì‹=­·['YËÛeÙ®;¬cÖ2÷ÅÞÖ;­íÅ®_QV뺋™½.‹_|²øÅ)‹_|‰²øÅ>Þ·Ûû²ðkfu\6¿Ø×úk}¬ë·Ì~ѬXKV¿Ø²úE3b-Yý¢±–¬~ÑŒXKV¿hF¬%«_4#f¾;$n^BûÒ!üÕÍ:õb楓9Õ˜Ìùùœòç<_Ê‚\æØ÷žòÜìz÷žöüÃÍS?$}{Žò¼¹ÅŒžç1Ïÿô¼b+d¿º{CtÉ+!ÖÑ¿äUzÏ㟆Xpþ­¡6UÏR<¿ßó_Y“ÇÔÍò<Ìû„ØD{ôÀã´G4¤=z íÑY€úÚÄ‚Ô×&¢¾6±0õµ‰æ´úÚDóÙ}m¢9쀾6±8õµ‰%¨¯M,I}m¢ÞpX-ª–fö«£SÕºV!IJ9OYÕ†VÏÍ÷­h¾o¥üÓ*‘ÎO+÷{+÷z+÷y+÷x+÷w+÷v+÷u+÷t+÷s+÷r«îÝVwø¹+=Vy¬öøÈãc5k=Ò=Öy¬÷Øàñ‰ÏvÅg›Ï¹€Wù.¯qaEãÿ~Ëì) G¾îØ{¼ÁE¼Iûáð|?„õÃB¤Éç!¡ ºO/-¨î33Ô?÷é£õÍ}f¦‚úæ>稠¾¹¯TÏ­ áïKÖúç¾Ò!zÙç^ñ&}öo…Pñ;ï=~Ñ Cln?¾Çþ!ºVßë%§®•W{É©kåÕ^rêZyµ—œºV^í%§®•W{É©kåÕ^rêZyµ—œ:ö—‹ÿïåcr|ˆŽëbõ×qrX}çvœVßù'‡ÕWÇÉaõÕÆqrX}µqœV_m'‡ÕWÇÉaõÕÆqrX}ûnœVß¾'‡Õ·ïÆÉaõí»qrX}ûnœVß¾'‡Õ·ïÆÉaõõ³÷Í̼g-Õ·ÿÆÉcõí¿qòX}ûoœna~~ÉÜÊ‚ÜÆBÜÎÂÜÁ"ÜÉ¢ü*Dº¶ ‰±=cþÎgyœÏÑ\ÓÕÜWð$Í}OÑÜWð4»ð>Ï3ìʳìÆsLáy¦òOvç_ìÁø¿<1$Ë$ŽcŒãy'„¬/ì\@õ~ç»|ž ½žÉë™™“˜…jO·¬œÂlœBÎÏ=ÏîyšŸíêgß³¾ÝzsðmæätÞÁÌE¹/禰omH§—2Ïä[an­—2¿ä[IsK>yeß:Çõ´}ëÙÉñ¾Ž¯¶Þ`í;ŒúŸõGìÇÙŸk¼þ‰×e»}ŸR}Ü·‘zؾϨ‡à}î³Q™îøçŽ«û6Ñ|9jãëø2×;¾Ùq=mßìÁ-ìÉ/Ù‹[Ù›Û¨GíÛN=jßêQûv²OˆŽ<bµÇ0ƒîé‘GøæXºÿj»ÿFºÿj»ÿFþÊøßûsŒñ¿óç7N añí!Rë ëß­'[ç°–IG·žÂœÊ“tçôº¬:ò”õ4ž¦,5òÊ<#ÏpÏr&ÏQ6yžïðOÎæ_œÃ œ¢Ío…X¦%!ú¤Zžéªã™–†0'"UÌ[Oªç™ô½Í®sKsëÍæ&?ws'çñ+ΡÒÏwy¾€»iOVè!ãßüÚZí­ô²Ç+!!cQHJkÊÅlÆ÷iÊXB³O†ŒŸ&ãgÈøiOQ¾O“ï3äû4ù>C¾O“ï3ô¤´6ÔÒžæ*¶åjÊÞQËø˜rXÆÊaönÚ³´gÓž£=šffØ£irW†½™Ö™ö`š=˜a¦Ùƒö`Z×½’K?Í;ùGHø¹qHš¦ÞÿÜ„ÿð ^¦¼=튞yÌs™{𬸳Ì=íª>ÔÝÃ>üYöžv-DzV ‰Åíçj‹Cøê8õŸ¯Np Õ—ž÷z=f÷žæöžU­×y¬÷Cƒ\ÓôᎠ¥¹òØ0š'½"{Ýû£§X×µn­ŒVšÖ³Áú|Ýqõ`´½ÖôQë‘ÖêÁh¹½écÖ£¬Õ…Ño[7°~ƒs´ãêÄèéÖ ­ÇX«£Í‰MY¿ÉÆÔ÷š6áX>ÁqlÊñlF5­isN¤ÍxLíÚ«ÞŒžÉ;9‹¹ùï¢ù²©Áü˜{§©Ùç˜Ú¶W¾m`ljV;6ÕZ¾=—y=d»ÑóÄRãv Þ¹êYæ aåΩ/ï®Ô7êË6«žsüNë]ÖrΪŽÖzê*½8UO]¥§ê©«ôâÔ<Þ·Ûûd¡UzrªÞºJONÍBÙÅžëË©ùCȾ×Úž(ë^]¥G§êµ«ôèÔ‚!aã¼Ô¯çÓ5öhˆÜ9ÒzuC¾K×bØc޲^hÝ˜ï± Ýý\“a ¼îº{œ£Ùc¼î>íç~Ýè>íçZeºà¹{µŸ™yС«<Šêbå7¨.VMu±²:9H]¬¬NR+«“ƒÔÅÊêä u±²:9H]¬<>$$œ ‰ŸÈê ç(«'œ§Z‘ð'_å_Ì ‹Ê¿9Œ—øÿaüŸ'ž á¼,ÖöK;~Ùñ¼Â×ù/£„«tN®ñ ^çhÞ ïžp“öp÷׿ÓýùßñÐZ®¼}:åÊÛg„„œBâNû<þïø]8jý‰µs›óS>Áts~F5OÿMÜ©æé¥‰;Õ¼œfÈj^N³ãN5/§Ùq§š—Óì¸SÍËivÜ©æå43îTóršwªy9ÍŠ;Õ¼œfÅj^N3àN5/§ÙogûòÇÿ]P¿ãs÷Ö3fÖgÌ©çÝ›çg:îw~î^»{£ç~ïçî§»e«Wþ ±ªóy™êù+Wønˆ\UGVÉWÕUê@›C8››ûy—ãêÇ*y᪺±*žÖ„ÄÂÈÞ»Ó{ãÿŽÓNïMöçï< f©=ÉòÄ΃!úÇ`!!ö®{ï]}îÈ ›ö8_fCš›¦5¢¹iZc9Éþ($+tµ? É]íB²@Wû£ÞßÕþ(¤÷wµ? ½Bû£Ð«´? ¦ýPhí‡BCi?’÷»Ú…^ó¹d•ó­í‹BjfWû¢Ï[èÓÐü¶t›þ–¿–ç™<×Ûò?àyfÏß ‰Q3Ú§²mÞBÒ^½2ïeÎ aê¥)sÿa²ãf•½zçÔËÖÕx…Õ7»ìuÞóÚc{ý9Sÿu¼†µ½¶w!Í-{ßsüªã÷[›_öÚŸSõ‘25­Í1{ÕŽ¼æ˜½ïóÕ %%i¯Ÿ/B=~êuï¯e`mfË¥™-_"Ílù’¨çç‹q%}ォè;ï]íçoøù¬}ï½1 ?fV®1ª•ù²y¾–Ù™ÎÛ¹Ž9¸>D»ë¡Eåúî¹iïµy7Är4¦¹(Gš‹rÈImQ>j³˜ö‡^™tèYêᇞ£~¨#õðC¨‡êL=üPêᇞ§~H/.Gꢿ<bÓÍã¿´£yü5~º9û5~z%ªññÿÔ/júôÊT˧W¡Z>½*Õòé÷Q-Ÿîšþ¢†O¯F5|ºkù‹ú=ݵûEÍžîZý¢fOw~1WMwî1WMw1WM¯MsÕôi®šþ¶^.DjÊ ‹Ê³Gˆ{#ÄjTµ®`ÝÓz´µ?Øúó‡½I{iQE¯÷²~˺ºu%ëÞÖc­}žaãèó OŸgØú<Ã&Òç6‰>ϰÉôy†MáCœÊ‡™Æ:!ád•4÷Po‘²ÕI½uîaÙf¹cE“³Nê³s3¨ÏÎ=Âjü™Õù kPÍÀßY›jïÉy‚ñ$æ)Öái>B³×Z÷vo="eZH*Ro³§óþ Üïù Ï}ÿAy¸oï•‹ï½ÂÂ¥!Rã4—ñ²Í ô×>S_í£¯nÐWû4¢~ÚG?Ý Ÿö‘q†ª‘¹ä‹ új}u¨Y*—œ±Aí£lÐGûè£CÕÊ\û­õÒ>zÁ¹·^°Aîí£l{ûèäÞ>zÁ¹·O+?§¶æ:`-ÿöÑ6È¿}ô„ òo=aƒüÿßÁ3ö\î£/lû´ Ñ–_„X6û¨åÚ?-¿d/y_^ªò½õVkû¤å6¾Àí|‘r¶—(÷g3Û}.kõŸC«¿Œõy^ΣœÕ_ÝüÉClÁÃ|ŠlÉ#lÅŸÙš¿° †h—š!–ÿkñ·æËTÉ#)C%Ë;]püwÖæq>È|ˆ'ù0O±Í ]á¬Ë3¬Ç³!Ò¶sHÌés´íBŸ£íóô9ÚvåQvã¯Lá1¦ò7v§,ùåÃ’¿Ó]ò8ÍÑ%OÐ]ò$'ñ'ó4Í8Ó~‘r¹¬ÿ°6?—<Ã4ž¥¹¹ä9¾†øóªÉyCüyÕä¼!þ¼joÒŸWí-úóª¥?¯Ú8úóªÉ©CüyÕ&ПWm"ý9Õ&ÑŸSm2ý9զПSm*Ï3rÿbüÏ¿@ùq«Zöªš¶U-{UMÛª–½*»wݵÊZM{UmÛª¦½ª¶m­K×§ÈæÊÊÖõ¬Ï°>Ïú¹¾~nµõ£Öçøçá/†XM3Ãð—X}ÿ;‰zÞ×óÂæ {ÍAßÑïí¥®—øÞÃùœ.5“‰‰†ðc]k™¨™Œ«ƒÇ³Ö²Q³”™›½î}‰Þg¶|$‰fËGbtÿL—¥›™+§ÿÇQŽ›™~t?M¿eýFˆˆ…‰ÍÌ“3"4GÎHà›Œò-&r,“8Ž1Žçm´7Þ’®ôã×ìÏo8€ßÒ÷|xq/_Ñj½BÒ9óXµÞ4U{æ±¥=Ñs³Xª}]tð5äpþDypA³±¢©æ ¢¯ÓTt$ÍAEÕ‰TsPQsQª9¨¨¹(ÕTÔ\”j*j.J5µïSÍAEíûÔßh6^ÐÜïµÏS·¶ÿS3þçœ`üøINò¾'½Ï}zÊÚ}zšSøíÿÔ3´ÿ‡ú=Õ½o¨ßSÝû†ú=Õ½ïcy¡§þþ±œÐSÿX>è©¿,ô¬Cù ç#!¬jeFMckNcÆÿž&¹¡g]ë§­§[Ë=ëQ~èYŸòCÏG)?ôÔc?–z6 üÐÓ¬ºª­ŸsáËîñüÏgzmš×dþߦ¹5»ú[v¯õtk3ÖªvÞ7Ëz†µ~k.ÔÇz¦µ¬øñ,ÊŠ¿C}Ö¼©?Ûz¶µ™õã9|’sÙ‚óøç³%°UˆNvíªùKº…HíEÖö@üß%/ý´G[k{¡¡yyIŠ×åíÉöDC×x²½ÐÐ5žl/4t'Û ]ãÉöBC×x²½ÐPm›l/4tm'Û ]ÛÉöBÉ~·-þÿ!ŸlO4tK›ãJw°¶7ª1[Õ ÁjÎV5hp|­ Vs¶ªAƒ§ª“Ô€=ÖjÑ`µg«Z4XíÙª 6‹e®á=“½g¯cêÒ`sÙð)Öîý­êÓà!zê뛯žŸú†óB´¨{ë {«¨{ë {«¨{ë {«¨{ëàÀð™\ß/r}¿uÌÉõ¼ƒ˜‹Ÿ„0¬GˆÜ©v ëÉ¥Žßéø§Ö½¬—±7õ¥a/ðC¾È|‰+½?·÷o´VïT?»Ë:þw©{wª{ŸÝmý¹õÿ¬?²Îc½‰y¹Ùñ~ŽË ÃÌŽw®q<Ÿã_0?·°¿dAnõ>³åke©ËŽrl s;‹xõ|‡Çκå ášy:ß ðœ™+ÏÜÐÑÌ•GvìhæÊcÖëU6DBªµ™+Ïš¹ò¼K3Wž…4så1Ûõ’ûCwk³WžE4{åYL³Wž÷iæÊ³„f®<ÐÌ•ÇùìhÞʳŒæ­<Ëéºäù®Kžt]ò˜åò¾dþÊ¢•|¾ãfÂJ>ßq¹!#WHœj&o®/e}§õ,k™áxiÊÄÇË8žÛñwxg;®'ÿ}ráÔ9Ög¬ËQO:^žçXçÿ;䯩s­ÿ´ö!šÿÅøß} GN•#3äÈ©ÎWs™ñxüïB'§.°–Wá߬ê¸|9U¾l~Éú>kyrª<™!ONu›ÿãxrQ×;C¶œ*[fÈ–S{í²×ÌJͯ°ºã²fü÷kþ¯u k™sêë«Öæ…æ×XÓñâŽÛÃͯ[Çÿ]ÚÖæéæ7¬°.i-seÜC{¹ùMÇk[—²–µ2JÓžnþŸãZ—±^i}Ëú!ë²Ö«XŽ«Yž±?fE®a%®å½Lge®c®gUnà}ü„Éü”Õ<ª{¾ÑÃÌdfÛx˜æ´4§mùŽšt¯šôÎ@¦;^Úñøç³ ãÿ]ϲ4Ë5(ÇXžûX?²"÷³Pîûï`HØ&‘y·ÉÀCdÞm2ðñzÃf®»syø^Ûdâ!2ð6™xˆ ¼M?¢mÓ†èGÛô£!²xæ‡BXq+DêɈXg÷‡m©'_,kd}“é>Xq\ÞXÖÄúŸ±.®÷ÊDZnja3&„heuìäê/'?¡þròSê''7RŸ8ioWÖN~N}áä¦-nÆ>Ôœðrˆ”]omÖ>¤÷7kjéø+Žû½ÅÍ܇ÌÚÓ^µöû‹›½µ¶l­_MB}hÚPúsЛŵ¡YüÐÓ4‹’Š›Å=Csø!=½¸9üPû^ ±õfÑ0˜fÑ0„fÑH•Û™U™…÷1+“™Õ˜Õy;k0ïgÎMþ2$íÅ­4Ç'o£9>y;ÍñÉzÕYs|òNöáWìË]üõù³ú|²>VŸOÖçÏêóÉúüY:Y†>+C'ËÐg_a†¼^a»õwÖñ¿Dn¯°ÃÚìpöUþÀÁÜÇ!ü‘C¹ŸruòÊÕÉ)W'ÿÄÔ÷oVå%ú3 ö÷à1Ðc‡sTÐy)øªÇàzd„p«@HxÚ÷‹ÿÝOOû~9_f_ázo#ÞW?³ã?;ÿù_¬ÍjOÿb=Äú¨µòôQë¡4׿FsmÎ×èžÎiVëñ«÷µvoçA÷vN³ZcŽ£Œ}«8g ¯»Çsޤ{<ç(ºÇs¾A÷xNsóÓîñœææ§eÎœææ§eÍœææ§eÍœjÈÓ²fN5äiù2§mšóÜd;ç&;B¨ã¼ì[OçfßúÎûô¨iΓtþ›|e¾|Øs× É.ºMv;VÇû‹}zÙ´GûÚڹطÑú1ëoØ€ßzï#ž?îù6ä^6âwlÌïÙ„æÜiOPljV‰=@³J¬6Í*13RSsIL-kj.‰©aMÍ#15«©9$¦F55ÄêÒü355ÄÌ@MÍ13PSsGÌ ÔÔÜ355wÄ ¡]H\gö꺓ì@3x–fþðÿ`GšõC'žegšñCžçóü“]ùõÐu¨‡®»H=tÝßÔ3×]¢ž¹Nmk¾8÷ŽµÞ¹N&jk®?7ÛZ]w…zè:™¨í³ŽËv‰O:¦Ÿ®»J½t\Ôö9¯ÉsmÞsònÐ[×]§ÞºîõÖu7©·®Ó׃޺No0+$V*ÆwXœ³Y‚sX’syçQ0Ÿ¥¹€rè€w)wXH™yÀ{,ÏE¬ÀÅ”7¼ÏJ\B9sÀ”+,e.£<9`9åÈ2™+(/ XIqÀ*ÖÑÜ CÒn=;w#þÍÆ¼Ä&ü‡Oð2›ò ›ñ_6çU>ÉklÁë|Š7Bôûü!ö¦Œõ}ºgã§C#µ þw:4R â§C#Yìû‚^—½¾/DÙëûÂtïÆÿ®‡FjBüïzhÿyY¸‘{<þw=4Š¿¯ˆ÷Éférp£øûó¸ãE?aý¾uÜ%4¤@yíûb^—ß¾/N³@ºY¡‘üö} k3Áí=/é¹,÷ý=”å¾/E¡-]n?^ÚúËоÜqsBºLÜ(þ¾Œ¿^Öëñ¦(7½i.H_éxüý2q£øq9êMsAºlÜHŽú^žzÓ\.#7’§¾—«Þ4¤ËÊâÇeåFñµ¬ÜH~L—•Ù÷é²r#û=]VndH—•ÙçéêP#™?]}iä}/Ÿ½ÿ9õ¥‘kõý½ÖñŸÿÌ:~Í*[»ÖßëÝoºÖßëÝoºÖßëÝoÆÏçÞ'ë|¯‡¿ÿ}zø›ñߣ‡¿ÿy=üÍøëzø›îëCÒÇjõõA,Æ—Yœ¯°DdŽâŸY¿j]’ƒy‡°‡²4‡±LH¸è}K½ï¢÷-õ¾‹Þ·´”|.Ã^ôÞ¥Þ[^ <ö+ÕÀcÇØ”¿±gsç“´?:›Í/«Aå[X«Yåe™cjVyY昚U^–9f&ìlιlöë,ø]V£Ê·v\ +߆®yçUŽ«YåŸ¶Ž¿oµµkžÔÕóÛ~Ÿ¹ˆÏ±ßw.âsìWw‹øû}®">Ç~Ÿ«ˆÏ±ßç*âsì÷¹Šøû}®">Ç~Ÿ«ˆÏ±ßç*¢nï÷¹Š¨ÛûãŸKÝÞ¯ÎQ·÷ÿKu{ÿÕé¦VºFµ²Y3Yß¹™#ø…ãæ’B7h.)t“æ’B²t²¾¾s GòKÇÍ)…Ì–É£¬·Z›W ËÖÉoXoãhnçîðº9¦pĆyn–),ƒw3ËŽr9”æª{c!ñÄÞÆ¹ÌDõÿ^öÄ|ʰ'P†=ñ.eØ )Þx2ì‰E”aO,fN¾¢v†Ø]òi‡¯(ŸvØEù´Ãnʧ¾¦|Úáʧ¾¥Ì5Om¿ïªí÷É»ö8.¯v0uøÎó—=ä¬öæ‡;WÐüp§½Ù3Uî1¶7GÜiOöìnmöïÙƒ8n®¸ÓÞìÙÓz©µùâNû³g/ëeÖæŒø?WêÙÛz¹µy#þÏ—ÚçáZæe:óqóӜ۾7„„ífî!4sQï‡1k´6{ù™fï!¿Ðì=D}þ³×åÂífð!îÛífð!îÛífð!îÛífð!êûð_¼ÏÅ~”EB´K¿+P(„ù CÄõŽvéoíõù¬ß´`ß@å £óV 8_a š_ ”¤ù¥À=!1v$Ä>ß"ÓÇ…Äfwr¢kYó0]Ëš!Úé÷Ë7žÇ9'¨_v:ÉI<ÅÉ<Í)üƒSy†i<Ëi<Ç·yžÓù'gð/ÎäÎr-ow-Ÿ`6uü¢ãïXç´nfý·õl^âþCÙmþ^on}Ùz¯p>ÿå^廼ƅޟËûŸ´¾nýopor±×íƒäøÿ?é?ë÷­í‡d³v§[ÖKB´sàŽÛÉ-­#ÖK™ÀeŒr9ù!“¸‚1®äm\ÅL\ÍÌüˆYø1³r ³q­?ÇþKneÝ:·ssp=sÒìßùšù;çâ§¼“™›fýÎwñs¿Ï>Nnm}·õ&æáfæåÌÇ-”éò}I™.ßVÊnù¶QvËgvî,»å33w–Íòí¤,–ï+Ê\ùvQæÊ·›²V>³Î$¯düŸÃÙŸ÷ÓþÜx€öçÆƒ´?7þ¢÷­ Igže:Ÿã:väzvâv‘±ÃBb½_ãmÎLÁÌ|YBä’9b™ÜÕZo9±6O,3_2O,3_2O,““Zéu=ã’ybÙ?4G,»LsIJ+4;,û—f‡eúÜ%³Â23Ä ß+›ÚVØÌ>H~Í&¿’_³É¯…«y.ÃfSÛæ~’Z7·–a³©qƒdØl2í Ù5›¾>w©×Í(s—±—ó)yb<¡ß–_kdmþ¼¬ï–O·nÌulÂõ|‚Ø4„¼jBùO°ÑúEk™©çKŒ÷¥>Œ÷£¾Œ÷Ÿÿ1ÞwúQ¿‰ÿ}í‹øYy°}Q~ÎbÜäµ/f ×0•kÙéìÁuìÉõìÅ ìÍOø?¥<½j#íåìî›UŸy.£¯úœ2úªM”ÑWm¦ýZVo¯°)$ÜÈIkFñí‡ _‡H‰¬Ö?[æ/ã|“¿ò-ãXþÆqüãÍ­jêãžËRôÖ Pop†z넳Ô['˜'+D=­õØ ç©ÇN°ßè±Ô»zìõ®B’G,„ÇŸ !cRˆ¤Ÿ ‰/ôåYþçØçÙŸrÿ¢¹#a¦ç<Ä‹|™ó^â«ü‡ƒy™Cx…fùôiÖJ¿Ê×xÃy#xƒ¯ó&Gò?Žâ-¾"ÚZâ £á&ðMFù9–IG3Û ãif{aÍl/L¤™íß}™í…É4³½0%Dþ3÷®ýæÞµÇiî]{‚æÞµ'C¸»µçfßµ§hö]{:Dͱ!úÆöyñ:æ Ö¡ZVî7ÏñÜÜZî÷ÝÚ#Ä«á[{Ò|qìž›©¯+E}åXiê+ÇÊÐï?V–~ÿ±rôû•§ß¬Õñc©v«D5rƒ:ÒT9voˆ‰ÊÑc•©Vv›Â5³ÁÃfê+9h¦¾’ÓñIŽ›6[_¹Ãz²µ™áa3õ•\4K_¹“fæ+¹i^¾rÍËWî–䕇ÍÌWòÐÌ|%/å­+ù(o]ÉOyëJ¿{Šß­?,w]1û=,w]1ã=<’…9ŠE¼oª÷}Ï4šS~Ãñ¢ÍbÃâ^ŸæuóËÃoZ—à[,ɱ4=lV»RŠfµ+¥iV»R†fµ+eiV»RŽfµ+åiV»¢ñu{Ûï5=lf»R‘f¶+•hf»r/ÍlW*ÓÌv¥ ÍlWªÒÌvå>š×®$Ó¼v¥ÍkWªÓ¼v¥Fˆô<KÈ¥=3Ø…Gø|Õv…°Kíù³uWþÂn<ʯïöz–rÚ‡=u,•ÇØ¿±GHhØ*$…?Ùš± õð†Oó"Ûòo>ÃKlÇØž²cÔ>K=¾ásÔÓv¤^Þ°¯³3õð†]hŸ—•+ÊÊ›õ½Af·Í¿Ðy‰}on^ÃhFɪ—•ó;e áíÕ!RN*'³—ó{eöÈ29_›ËºéG…Ð^Ïù«½cÎÝf×*“Yw³k•i+p>]£L èez—®Q¦…t2½G×(Ó"ºF™Ó5Êô>]£LKèeú€®Q¦¥¬Áe¼ŸËYÓç(ìst°þк–µ}ú׳Ö+¬àJÖæ*>ÈÕ|ÈûÌð=gý‘õÃü˜uèœl~„²ú溔Ñ7×óþbÞßÑZVß\ßÚ>ÿ«“µÌ¾ùQÊ웣¼¾¹åõÍSVßܲúæF”Õ7Ëü™dõÍ2&Y}³Ü '‡¿:[Ëì››Rfß,÷g’Ù77çVÊü™¶QæÏ´2ÿ´*!©ÉAVåO¼‡˜ÌÃ¬Æ VçÖàϼŸ¿°&²å<ÆÚTC¦=Èßùóašu¦ÕáI>ÂS¬ËÓ¬Ç?XŸgø(Ïò1žcžçãt?LkH÷ôFt?Lsn¦9/ÓÌAÓœ‡iÎÁ4ßšï>Í÷žÿÎfœiî§&=þö›ÈŠMäÄ&2b“=®z\ó¸îá~È®FmSû²«QÛò;ßîÙ îÙöæÚ 2Avµj›ZØþëlÖjÖ¶‚ÖßZg·V»¶©‰ÙÕ®mjbvµk›½Ö~×o·Vö©…ÙÕ°möJû½ŽçàwTÏóäôšº¶Í¾É£žçQó«oÛ\÷öjêÇÚÿÀ\ÜGµ=»º·MÝÌ®ÞmS7Ó IúwBú~ aÈW!’+“õëaÿAÊöùbú^]ªòpˆ¼"ûT-GÙ§jyÊ>U}¶WdŸª)ûT­DÙ§ê½”}ªV¦ìSµ eŸªU)ûT½2OÕdÊ:U«QÖ©Z²NUyöY§êý”qªÊJ‘»=ÿØC ªZËÃ~¬µ"„oÏ…Èéœ!qþÌžº7„“/°2_tüÇg1ßq¼Šã/Yßi=›¹9‡wq.ïæ<æá|æåæã»ÌOû÷)7ûÉ>¼æÝÓ¹ÈñdÇÍ¿§ Y/fa¾Ï"\¢4ç?UÍûÌüOU§ùøt1Ç—²8—±—³$?ô>÷êɼŸ¿Çñ,Å•,ÍU,C9øtY~ÄrtîN—çVàZVdzˆ´­s:ÞÖyÍéxÛ?^›ëø ×ó!nàÃü„uø©>Ò3„ÊmBØú¶c8¶‘uùëñsÖç&>ÊÍ|Œ_°·ðqÆÿ®É†ÜÊFÔ+ø¹Š2À?WQÞ1ODøÙŠúþ?[Qßàg+êûülŽô³¿cc~Ï&ü!DKÈq‡þ¤wÈŒPBŽ;trÜ¡‹æûg𙾬Ü4ÍL_v×d»CÓŒQ¢‰çòÚ¡B(>'Dût±²ò•Yßð“ÞgNÝþ„µl{SšÁ¶7£l»6Ä ¶]bÛÞ‚f°íOQæÜÞ’7)«ù/$,Ì’žYÇ;¸ž¹¸!„—Õüøßõó²Úž]__x§ãŸX«ñÙÕø—ÕøìÕöìú{áç½'·÷Ø7…»:®¶gŸjyvõuá]^Ûh­~gw¼¬NgW§ÞíøgÌCyçå^Žë­/÷ærÇó:¾‰ù¸ÙñÿÐ:¿õ,À-,È/Yˆ[½OȾº°õ6ávåãNçW,A3uán!d*"›Ü£ܳ›Ü£ܳ›Ü“ܳ›Ü“>¤{r€{t“{r€{t“{r€{t“{r€{t“{r€{t“{r€{t“{r€{qS%º7ÝK÷â¦Êt/nªB÷⦪t/nºîÅMÉü”ÕèþÛTî¿M5èþÛt?7…èñ»ClöÉ-rOHÚÿ-KÑ>/Rš{Y†ß±,¿Ñû·¤3fïûþäŒ=¸8Ä&©A·oöü}Ïr ñ¾"d¡Ü£) åCY(÷›”r¿E(÷XÊ@¹ÇQþÉ=ž²Oî ”{r»;È<¹Ý‡²p2³r ³q*³3·ssP ê äžNõ?÷ ªÿ¹gRÝÏ­tP÷s¿Cu?·,vK&M_M™4ý#ʤéS&M_Ãl\Ëì”yoÝN÷­t/Üro¤o {#ýº7Ò?¥{!}#í÷t{÷–½þ9íåt{õ–½œ¾™önº=zËÞM·GoÙ³éöè-{6ݨï–nÙ»éÛ¬õßø?—¹e§Û«·ìÝt{õ–½›n¯Þ²wÓ¿ Ñd×ìì ³„s[AíœáÜVøÆñ¿×/g8Çìä Ö³Bôú†ûx?ád~Ê)ÜH³ÌõϘÆÏé|Ë›‰ãrÐü9.'Íãî ysœY°é!ü–ÛÚÜ9îNëýÖwñÍM2b^b>¦9·i͵цžñ¼ ßev—ÛúgëBü……y”fÚ¦¿²¨÷™iÇÝE3í8ÙA¦M—'$42k'ÈýÌÛ r#3w‚¹­‘¹;aJ©z÷øß£7ߟ™ÅÌÌã i4“'ÈÿnPþot“ò£ÿ(ÿ7ºEù¿q üŸª·ßˆÿ=3kù¿±y)Ážkl^J0756/%˜››—dðÆæ¥™?U¯¿ÿ{iÌM 2vc{4A¶nl&¨³íÑõ5U¸ÿ{kìÕYº±½š C7¶WdÖÆöj‚ºÚØ^M‡Û« ê黿ÙgÌEïšgŸ¯–T»X›kŸ1½k®}Æyz×\ûŒóô®¹öçé½:!©¹³°sóž¾×îõ¹v§CB÷Ó·KBxÖ,sñˆµ<õ­þ¬<~ñgk¹êÛ¥Ö¾ßE×íYóÌE×íYýãâ¯^—·¾]Fyë[5=¼õ­žG¾úVÎ#_}»’rÕ·«B´©ZkÂlõ²²ÝT=Š5·V7+_¢ºYùÇÕ§Ø“TŸâÿaâÙêhåËÖK­Ÿâ2¶är¶â‡lÍlÕ|ÚÏ©»•¯X¯²nËÕ|†±?fûå÷¶p|–ßÛÂñY~o‹ö!,†HºÖ~‹ôû[ÖñøëãØÅñWÿÄz¼µùÿ¿ 4ÿÿ7Ñc’çÝÂOY—YŸ±>?ç£ÜÄǸ™ øçª7Ùåõ®Coço­ëÐÛù[ë:ôîF×¹·ó·v S¹–Ý™Î\ç±Þóž½B´sËw:„{²„0?_ˆ$?“6‡Øgïò š­’¶Ðl•ô%ÍVI[é|'m£ó´îã³êÁÂUTêYgÕƒ…zÖYõ`áÇ!Œ½'DŠÈXgÕƒ…kBÈRÆ19¥HWÇÔ†…úØYµa¡>vVmX¸Î륽ÞÍZXh_-c²4«žU3êogõ·…úÛYým¡þvV[¨¿Õßêogõ·…úÛYým¡þvV[¨¿Õßêogõ·…úÛYým¡þvV[¸5DSφXÑi!,h"ÕâÿìsÖoóÀßY›Çù Oð!ÊJÕæ)ª}gÝ#ÕÔ½³PÝ;{F?tÍ>Ž÷O×ìcŸçºkö±ÏsÝ5ûØç¹¾ƒ>Ïõôy®EŸçú.ú<×wÓç¹þ5ò¾Ço¹(DV] ‰©îùUÓ=¿êÝã«þá`^æ^áPþËa¼Ê×xÃy#xƒ¯ó&Gò?Žâ-¾"«å·ÔÑ!$Èy æÌÕr\ª·ZŽK•ãVËq©rÜj9.UŽ[-Ç¥Êq«å¸TYcµ—*k¬–ãReŒÕr\ª·ZŽK•ãVËq©rÜj9.UŽ[-Ç¥Êq«å¸T¹bµ—*Ç­–ãRå¸Õr\ª·ZŽK•ãVËq©rÜj9.UŽ[­ï¤šçWë7©æùÕúLªy~µ~’jž_­Ÿ¤šçWë'©æùÕúIªy~µ~’ºúIªó}µLˆ9‘ ç;ÍùÎp¾Óœï ç;ÍùÎp¾Óœï ç;ÍùÎp¾Óœï ç;ÍùÎp¾Óœï ç;ÍùÎp¾Óœï ç;ÍùÎp¾Óœï ç;ÍùÎp¾ÓœoÑ&1M^>â<§9ÏGœç4çùˆóœöVˆÖ}/$]{‚‹Ø”‹ÙŒï³9—P«û[p)õµºË¨¯Õ]N}­î‡Ô×ê® ¾Vw%Ÿ £Þ I6äB6¢?ïÁÆôç=Ø$„Û^öÜŸùàôg>Ø”þÌ}†iùB¬ÉNæ§Ì9­w± w‡°d_ˆ<(û-ù‘¹/ä¸,ºd¿õ]Ö…­eÒiE(‹N+JóÈ´bÜ«ßçyqÏ¿ó3üŒÜ¸ä ó8^Âq3Ê´’4ßO»‡ûXŠ?²4÷Óumr€eyå(s.ùÉïÉk]Þú+ð0+2ƒ•x„÷ògVæ/¬Â£¬Ê_y…è8Ÿ§žjœÏSÏ 5Îç©çóóyêù|ã|žz>ß8Ÿ§žÏ7Îç©'¿ß!D˜Íg9‡ÏQ½çsÖ“•ßïh­nŒó9ëùüã|Îz>¶[!ú„~žT““Y‹zwÒœÊÚLボƇø6 µw‡ÄKzBí¯©ö×þ†)ü–j~í=4sÔÞK³FíïØ“ß³`ïVd„H=}ÅäÏ,¢K{„Xç¸z`gù|Å/ŽÇ=J9}ů,êõ^^·6ƒ‡Ç+æXoÇŠZÿf]ÜúëbÖ¿[—àq–tüEÇ㯿ÄìÃøñ¾¼'„²%=î±þŸu)ù­—ü¶,D›˜cõñ&æ˜D}¼É&êãMôäD}¼‰žœØÃû{{ÿrk½9±'ÕùDý¼‰:ŸØ›ê|â Tç_¤:ŸøR£þ ‘ü•B²ôøIÖYßk-SŸl}Áº²µl=ÞÌ1ê¢uk{¼Üõãš5~~º÷ÿíýU­ÍwãÍ?šçÆ›çF]rü>þCs̨Ë4ÇŒºÂêÞgÎo&)*Œú×±Ž]tìë«Ö÷[ÿmm/Žºf]“×YËñKŽ›W~4?7¯üh~/×-ë¹j¼~VÈü¹O-(dþܧ*Æ]!¤é eÔ‚4½¡Œ{?Mo(ãž/TÜëñãzD÷~¡Öñ×õŠ2j@¡’Öñ÷ÝÃøë¥?^šî³Beè>+T–î³Båè>+Tžî³Bè>+T‘êÀClëyc??ä®àA® ÑöíC,w;0æø®­Ìjs|×V¾ûß³•ï>ǬØÊ¬6ÇlØj>͆­Ìhs̆­Ì2ƒÔîlæð9fÄV ­õÊl_Y›[½G³b«Ef¨rž›[™×ŒLI­Ìks͉­–„è×…ØëÿñaºÏ¿–!GŠÂ_?ÂHˆ\(—¬b®fY~Ärü˜å)³_¨@óÐ…Š4]¨D™/zÚó{=7Ó\¨Ì ¬ÂOX•ŸRv¿ ·_¨f-G/‘¡—|¢C[„X5ŸmèS¼Â{öHMµghË3îF‡¶b„­™À6Œòi&²-çrÍCÒ¯Wù$¯…ðö‡!Rî¬u ëë|Š7Ø’7ÙŠÿ…µ‘ç­=w^ʵ IÇBˆœÒ³ç¿ÂSîó“]­õîùƒ­K[w³ÖÃçëÙ§ôðùCwœ”qŸ*ËT–cw¯ëíó‡Y—·îa­ÇÏͺ‚uOk½~þpëŠÖêÉ)=¾JÏŸ¯ÇŸÒóçëñ§ôüù£¼¯’÷©#§ôþùzý)½¾^J× çÛ/§õþùöÉi½¾LuZïŸï¾9-cÍwßœ–±æOÐ Îxœ ‘Úå<ʇhüï'˜¨w>&;>öMHX¼)$=«ž/ÞLõ|ñTÏo¡z¾øKªç‹·R=_¼êùâíìÍ|;ù"¿âKÜÅ>Ü;üšÿã7ìÇoÙŸ{8€{9ßq¿§±ø¾Â}t½2=äùžæ~áåAãO|‡8œ‡9"$,³/:_§}Ñù[{´ñi–µõxÆ£G{Ïz<ç½îÃÎîÁÎî=ãrR÷\—¨G¢G’‡û?¹kÚ—Çœ»çšs÷Ô¦9wσ4çîñùó˜s÷è©y̹{ê„„CÎñçôs<Å9=äOqN9ÇS^ at›) žr®§8·‡œë)Îí!çzJ_¯?íuu~t[Îà3œéu×`Êÿ¬ÛY«ã£ÛSí-?P³GËä‡ÑòCe´ÜP@݉êÔ!×nJ?ëÎÖêÕ!×pŠkvÈ5œâšr § ôz¯¿kíZNqí¹–S\»C®å×îk9ŵ˼Ûs×sŠkwÈõœâÚr-§¸v§eÉM(K.OË’ äÆÓrä‚f!¼µ,D ÿa-O.hNyrÁ“Ž/wüŒµ,kL8-Ë.xŠ²ì‚–”e´¢,»Àõ>-Ë.pÍO˲ \÷Ó«èÚŸ^M×ÿôGt¾Ž?gïdêMƒÍ‚Éf­ÁfÁä÷Ô°ÏCäþ›2ÕFÏ7y®¾ ¾æ5uº”^ZJ-¥‡öß’*ÚSý?¡}ÕÿSÚ[ý7ÒþêÿŸãçìH÷cÅNt?VìL÷cÅ.t?V4§÷·W*Êaý핊îÛþöJE÷m{¥¢û¶¿=RÑ}Ûß©è¾íoTì)/ÕÑo…XsÙoÆXª¿3ÆQö›1žµCX¶"D>g=ÁZœ1‘2à ™±ùÔ›×¡ÌØü‘}ôtÓï}t6å>ƹlÀy|œóÙ ¨?j~¸Ù8D¯ ±©£¹žc¸oòšcʱÜÈq”Ã¦Ž§6uå°©)‡MD9lêdÊ_S§Pþš:5„õêx“ÖrØÔ4ÊaS§Q›ú6å°©ÓiÞž:ƒæí©3iÞžjN?lÞžjN?¬fN5§6oO5§6oÇÿûJ·ËßÝbcdŠïrP¦ø.'ãÇï Lñ].ÊßÝI³Åw¹)›wâÝ<*é·Ç·Q¯=¾zíñÔkË•ôÚã²A¥û(+%¹Ï*%{îÞª¤ïÿšÕ)™!cMªp$«rÍGfÈX“dŽf5Žau¾É´OšÜOû¤‰ý"ÅšØ/òX¬‰ý"Åš˜ä°XûDþŠ5yÈ«ì¹=ÒÄ^I³GšØ+iæŠ&öJš¹¢I]š+šÔ£¹¢‰½“6öNÚ Ú;i3iï¤Í¢½“öÍšÎYR}ø¶‰ž«óuÔyç-©Ž^ÛÏ|—9µz_G½£Þ×QïÇdðu¡0ÔÏü–9¯õÏÖ£ø ßàQŽöú!¯ç³þÕz ñMþÆ·ø;ÇzßaïËo}ÜzOp<å÷:(·×‰Ny½Nüï •ÓëL¦œ^g åô:rû9½NZ„„A©!©r¶0BF¯¥ÖÑkM§ ^Kf!w×RÓGÈÛµfQ¾®õeÎZ2癳–Z~›{„ÜYKî!wÖ’;GȵÔórg-u|„ÜYK½!oÖZHý­–œ9B«µˆú\-óuÛ«–Œùº~Wk õ¼ZPß«µ”z_­eÔÿj-gŒº> уõBlÒ¬OsüÁGi~ŸÝ1ÄZæ ¡Ìm™¬;YßÁÎÌåXf,Ö]<žwÌýÒ2wHÐV»BŸB$é”sfv,XÈñg¿áøRÇO[«µÚ;æ;Uü/Dfõ‰OšŸfõ¤¹iV/š‡fõ¦ùgÖ ü'DSdÍ"2hЬYDMy†2hJ;Ê )²~4EÖ/ã³¼ÏÑ÷Hñ½Šd¦ïSÄçOñ}Šdef£ïR$;»òvvcŽîq?¥¤xž“©t.Rº3ÍÄEœÃ3qç0Åì[Ä9L1ï¹›æÜ"yh®-’7„œ5CbÖ‚…BlËòîSCB,k)¥l;G&­²Ôz˜u¾F™vŽlZŬûÔpërAyñ)5$«,;G&­bzJ-ÉZ1D;:yŽÎG^磣ó‘×5·9Dîóçvt^ò:/—¼®iÉ‹ž;7y›Y'C¬…z;ëå•å9B¤NSëÓÖêî¬?¨îÎ:CyeyN¯7³>k=;DÚÏ ‰¹ s‹p>‹r‹ñ]çB–à{,ÉE¼‡‹YŠòZîÒ”×r—¡¼–»,åµÜòr{y-wyÊk¹+„„ æÂ—~ a¨~’k£u%ëø[ú^Mãÿ½èÊž ¡I–Ž6 !÷m!²U¶,ëo•é«CIBÂ#±ø¯{ò‘Ûèž|$Í‚ñÿm·!\—'Éì˜ûó‘,t>’•îÏG²ÑýùHvº?¹îÏGrÐýùHNº?¹ƒËüÎtÏsy¾Üóužßéù‡ÌÍŽ­÷ü.ÏÍ´uÕÙkjê,5îÞüÌ`ÇÕÜkéæ^AµöÚëTk¯¤Z{mÕÚkoP½¦·×Uc¯éíuÕØkz{]µõZüŸQª­×ôöºjë5½½®Úzm¼YeNˆ<¢ãû…أŭçZá<þìxÇK„PVv{¼qH¼uœMx‚Oð$›ò›ÑÀ”òu7²Z7·þÃúkµöñ'­ÍG)ßZg·na}–Oñ[ò<[ñO¶æ_!a”\ý ü=J>~Ðl3J.~Ðl3J.~Ðl3J.~PN%?('’‡4ÛŒ’‡”GÉÃÆÿ©,ü |Â?X—gXæþ‡êS^}èQžçcü3DoK I›ÔÓÛôÔM꩞˜´I=½­ÕÓÛzR=½­ÕÓÛzS=½íª§·½È¼|‰ù؇ÎóÜ:!RÕ¬?÷ºGæÖ¥Ù~n=Ž`}jšs¥û|îc4ÓÏm@÷ÄÓ‡XŽ lÈ‹Ž?î¸{äéFÖ³1/9ÞÐq÷ÌÓM¬õ¦§Ÿàåí_.Ä*È’ýËS–ì_²dÿŠTsª…5žµ®d-Sö¿—‡X™‡½®FÖxÎºŠµkÚ¿*]Óþ÷ñg½(þÿã?ËÄ!ÌÌ¡ÌBy+é5Ïՠϲ…H·>!±Ð¿ìË«!$¿ÂÎ 4çíü„ƒù)‡ÐŒ”,»íüŒÎßÎÏéüíÜ¢­c!–}¥þ`´¾ÍóUÌÄÕŽ¥zžÙó<ïnOüÂlõ¡²ÏþÄüK2S<±€¼æ¼>ñ®çæŠ'²Iˆ®XbÝ:s îe'{Lñ0”5¬XíøóžO ‘_/‡Ä™Cy…>c 儹³ÅrɉæOzý_¯¿Æ«ÎkÁëTãUëgޤZ?sÿã¼ÅÑ!r,p #|“ |‹QŽe"eÊ^êmIµ¡—z[Rmè¥Þ–Tz©·%ÍͽÔÛ’Îiùµ—š[rXˆž0GÍUcO˜£æª±'ÌQsÕØ樹jì sÔ\óÓ sÔ\óÓ sÔ\óÓ sÔ\óÓ sÔ\óSA³é¾®!Äÿ·¨2_X›Q÷u³öýÊl¡ïWæKú~e¶zÝìº/ÅÚ÷,³ÍÚ »/ÕÚ÷-³ÝÚ,»Ïõ‹ÿoUevX›i÷õ ™v_Oši÷õ¢™v_oši÷½¢jÈ jK§û©¶tªI'pÞ?!’l~éTËú7ëËÖæ˜NXÿÎÚTc:=È|ˆ'½ïŠ÷™s:=l}Šu¨¾tz„êK§ºÔJÞð\~Í«Æt’_óžó³öz²Ù¨“›W­éôÿôÞ›ž7ðü/º¿óÚ‡ÜßyÝßó®ú5´“û;¯û»“û;ï%º¯óº¯;¹¯óº¯;5å6ã¿lΫ|’ר‚×ù㟭%ãn+þÇÖ”¹:µ 1­!ÚI–Í'Ëv’eóɲdÙ|²l'Y6Ÿ,ÛIvË'»u’ÝòÉnd·|²l'™-_üï6–Ùò¹÷‡ÚÕ»Ðõ¯þ<]çê]éúVïF×µz ]Ïê©t=«›?†ºžÕ{Ðõ¬Þ“®gõ^ÜÎÞÜÁ¸“/ò+¾dviì¹ÞZ]oª·V×[‡ê­ÕõÖ¡zkõ~!2_žo#ÏÏ—çÛÈóóåù6òü|y¾Í¥Ð!{HÊ-óô4‡Ä{y‡Û­Í&rPæé“+xW2ãÿí9(Þó;Üiÿo@¨IzèéµxïïÛñøÂk2@èéù-9®Ã]ŽÇÿ›D·.Zßm½†y¸–y)uÈGÙ«C~®÷þ5Þÿ·uë ,ÈOXˆŸ²0eÌEøYˆ^»'ÄV»ö×Jѵ¿Vš®ýÝ^ÿf'‹ò«¦¾"¥?±.f½‹Å¹›%ø5KòÞÃoYŠ{Xš{Y†ß±,¿g9þ¢õÌ×gÓÜyÝœùŽÌ~oSÊæ÷ª“ïÜÁæ^7^ŸkËúIkséõy4“^ŸïøŽ·°6›^_@³éõwi6½¾fÓëïÑlz}Íq×û¹Ü~î)ÞÅ–Ž›U¯¿O³êõ%Žßíx«­/^_ÿ€fÖëæœúfÖëæšúfÖëæ—úfÖëöF‰Åž›[¯¯ ¹õºì[ÿ6ê?õ3Ñu~'ßÙÚ:³õGÌ™•k˜òz Ÿ£¾}w=öÛõu!úžZܾ;ÕâöjÝ{jq{µî=µ¸½Z÷žZÜ^­; ±4ç÷H"÷1‰zü}1M?¢'¦éñGôÄ´ƒÔÓ~ W†¤²áÄUlÃÕ” o³ç&~ä¹L8ñcÊ~×°]χH¶Šü“òeá;CÂlûâ©]Žý嘌Yج=Ûyj·ßuÍÃÌ]ø.Çì—§äèî½l•éÞËV…î½lræ@³t¶û¨6g“/ªÉÙªQÍÍVêg¶T³ÝÏk¬Éë¬Å|€7Y›f÷lò aPàÃŒ°ø£¬ËDÖcm‚A1>JóW¶Ç˜‰ ˜™3 Ígƒ²R~$ÓdkÌìlÂÛùíólöù û<›}>È>ÏÿïâØßÙž¤ýœ­íÏlöç û3[KÚÙZÑÊæ:-qtœC÷Aǹ´ÿ;Î áYñvYñYñöQŽ»:ÎÑûÜÿè•÷¹¿ÿpßçþþã+º¯ÿØô÷¤Ör¾þžÔº*ÇQ¾×ß“Z'sÿLæ=>©µl¯Ç'µ–íõø¤Ö÷s kr*k1®Á=zØÀi!v¯ó|šÖì¯tÛX^à¸R‡p³$å÷›÷8~Ñq¹â}¬o,„Õ5BäÑÖúY_}åý¬¯¾ò‰~Ö73õ³¾Y¨ŸõÍêý÷{ÿ@Ö¤ ½º_öº>×7õ¹¾ÙÀñW¬õ»¾·[×¶~ÕZß뛃ú^_¹mõƒŽ¶ÖÿúÊo«²b­ö5|¢ö5|¢ö5|¢ö5|¢ö5|¢ö5|¢ö5|Ò‰æ€O:3?»°@H(ö\H<¨†ëH½§X'þÃμÌ.¼Âçùo§‡pi¿uWë«ìF÷X¶|!ÒïÏXaÿâ@^ sÿû±¾6#õ»hý2ÿæ+¼Dµ¾ß?LùµÂʯäØ~rj…a”S+È«ýäÔ òj?9µ‚\×ON­ Ïõ“S+ÈsýäÔ ò\?9µ‚×_N­ ¿õ—S+ÈmýåÔ òj9µ‚¼Ú_N­ ¯öOâ8Æ8žî·þ™<Ÿàÿï–›u‡È±Û̺CäØmfÝ!rì6³î9vÛ~åš1¶É½CÌÿ ‘»sZË¿C†Sþ2‚òï×)ÿIÙwˆûfÛÏ”…·ýÂÑ<Ê1ü•oú}ßû}öBæ;æØ[!A‰KñõŠK©WŒXF½bÄò^/"yä˜ÝzÆ=ãõ ÖòÌn}c„ ±[ß!CìÖ7F¬¢¾1b5õ‹Q¿ñ1õ‹úýëý¼´[ß¡NïÖ3FÈ»õŒ²ÁneÄzÊ(#d‚Ý2Ê™`·Œ2B&Ø-›Œ0K½^Éï‘£vË$#ÌT¯ßk-Oí–EF|NdÄ&Ê #6Sñe[(ƒŒø’²Çˆ­”=Fl£ì1b;Õž;¨öŒØ")ëBb÷PÊz>Ì 4 §|B³pʧ4 §l¤Y8å3š…S>§ú–²‰ê[ÊfªÁÉfÕ¯ÔÅ”/¬ÍÀ)[hæMù’¸•¹M¸Op›r'›ñ+6ç.ªÅÉ?ù½yyˆî©”ÝŽ·à×T›“ÍÀ_å·þƺ%¿e+îakîe~ǧù=Ûò>Ã}ÔG“3üžÖ?Z··>b]0„à¾HÙïXà³<Èçø;ò;…°å‹iã»}nˆm7Wß>Ãi®Ý>"D‡ö±êjÎШæ }‘B(ÕÈó—,ľ,Ìÿ±û±hHÿ|HzTýß•ÙBè8D²ä·îf­žöϰVÇÆ§X«§ýX´NµÎaý³u!þÂÂŽwwÜ=9¾ÝKý:^ĺ§µ¹ÿ¯ÖEyŒÅø‹{½—×ãÿNŸ^þàC!:íLˆ=1‹gùŽùµ¿ù5YÖ}_À½Þk€u^d>¢ÏÝëeÑ7RBì!u{èTßóa¦±õ¬êðmÖåtÖã Ê+_ ‘zrþÊ—(ï}¸(ĺ>ÍÅlË÷ù —°]ˆŽ×ÍÂû3Cä{öýY”½ŽI3Êqˇ0FÝ53‡1ê®Y9ŒQwÍÄaŒºkcÔ]3pÂÑ×½¿GR+úº×ÔbópÂÑQŽÉdcÔdsqÂÑ7¬ïåhÊ[cÔhsr£F›“CQ™aŒ:mVN8:Æ{d£o²jˆt˜ï*B÷Áv÷A‡ÖE¬íÿíùiÿn·—ªØ·ÛíÛœ~W•Ÿ=w­sŽòüÏ û¹™~Îõ¬rÔ:þ󿲨ã³/Æøÿ'j¶çÅ=JØÿòFóùv׾й|{ñ}!ÄZÊù³/RΟý7åüÙ—(çÏþ‡‹BX>9Dêìåš?f_v\î_>Õú{¦QNž}Åqy{ö¿\«”÷g_£¼?û:åýÙ7(ïϾÉùeýÙ·èÚab-eý9®‰Ùò„Ø—ze¶¼Ô+õ䨗ze¶üÔ+³àÍð­¾òÆ›ÔWÞÐC¾ÕKÞ¾ýãø;Çó8'ðõÁoOrOq²š}&DòÚCßž¶žÂ?8Õñ³Ž—·>cƳœÆs|›ç9re³7fR6{Ã=µàõk{G2™£X-D¯¬ ±•h.Y9‘æ’•“h.Yéóäí¹Ùdå”*ê!ô¼zT'=$ozÓº‡HüïÅ.nª@{øPEÚ·‡*…è#y4Iÿú\ÿš%Fމµeâ‘r@m™xäDÊÄ#'Qí9™y9…öèÈ©T›G¦Qm9ù6 Ñž®mOŽ´—k¡½YÛ^i/Ö¶G¾Ãâ´k—à–ä\ÞÃy,Åù,Í”«F¾Ë²\Èr|úþÈEÔïG.¦¾=ò}ê»#—P¿ù+s)«pÝ{#—ó>~Èd®`5®du®¢|<Òž«-÷ŽüˆrïÈ)÷Ž\C9wäZÊ·#Ó)ÏŽÔƒkëÁ#õàÚzðH=¸¶»’B3é•TšI¯tgü¿On?ýV†öÓoei?ýæ~+o?ýæþ*o?ý¦—·Ÿ~«Hûé7×wKø²:õÔ¬˪w<õõŽ’fÔ’X϶~”shÏ?¥gm@ý;«,³§_H|ÃL»§?Í´{ÐL»g Í´{QÜórHm¦Ýó Í´{^¥™vÏ`ši÷ ¡™vÏPši÷ £™v¬0ZÆÞ#+Œ6ÓîA3íž×i¦Ý3’fÚ=£˜-$T’GNÈŠ•ä‘/„hé/BÒ/=¸…=ù%{q+{sãïÛιƒ/q'ûð+öå.þ»Ù_³?¿¡Ù/猴S/Î9“zqÎY4ŸOÑKé‰SôÄR›©ÿ•úÂëïxÝyž¢ÿ•Úb=ÛÚyÎ9‡ÎsιtžsÎããœO™qøùX³?ÍO5ÍOÃÍO5ÍOÃÍO5ÑÜTÓÜ4ÜÜTÓÜ4ÜÜTÓÜ4ÜÜTÓÜ4ÜÜTsHîÕ°÷Öæ§šCC¸ã]Çô³½ý<_è¸yª¦¾>\¨é; ×#júÃõˆš¾Ãp=¢¦Ï>ÜH}ªl&¤>U6[RŸ*«wƒÔ§øß»Ü×,›m­NUv¯ R§*¿ä¸Ù,6ÇZ½ªÜÇÚŒ›ký­µ{oк÷í¥{oÐwtï úžêÌ*3bªq•1ÕŒ¸ÊŒ˜jF\eFLõYWÙÇ©>ë*õ7ÕgX¥þ¦ú3W¹çãÿÍÙw…p¸%ï¦t•ÿoÏ606‹®R R;Q-HíLµ µ Õ‚T}~•Zª¯R R»Q-HM ‘å•ÒòÊ‹òJiýìEy¥´¼ò¢¼RZ^yQ^)-¯¼(¯”–W^”WþOÑ€ËXö¿ç̜ɢÅZR¶,Y³U–;¯ˆC!û–Kd'û–½P Ù…Q–È’-É‘¥²DZÐû9×ÿšëóÜÏÌ93ó<÷ý»¿¿÷/ É+)òJ!y%E^)$¯¤È+…ä•y¥¼’"¯’WRä•BòJмRH^I‘W É+)òJ!y%E^)$¯¤È+…ä•y¥¼’"¯’WR̃BæAŠyPÈ¥JHˆ?b[Õâû×:ÖûmU£&œñ꣙Ê1ͧó h>oHóéüÿBBƒ¥!1±:—ñ.g ® úÑà}ÖäJÖâ*ÖæjÖáô~ Ö°ž&PßÜ`­cïÙ`½gƒé=¬§÷¬Ù;ÄîÈR5ûðnÊxw2SÆ»“…ö«;Y)ãݹ‡2Þl”ñîd§¹rç^Êxwwç~Êxw¬÷¸½¤ó„þÝ뜼w'å½;9)ïÝÉEy½óD¯Ûg,÷ÝÉC¹ïN^Ê}wôü±L!ÜwÛãŽÜ,³^´ïÝPV—ÑÌUCâççYì_ú¤‚í¨O*hže®î¼<>]¿TÐ|ËüŒñ%ÖàoLâåÝ­ÇZ•zÌ¡2Þn=æPo÷ZË»ÇR–{ì¢ãqŽå¸ÝÖÈP9n·52TŽÛm •ãv[#CëÐZ—ÖÈPó õÄx¿¼ÞzåõÖ¯S^o=™òzë),Á©|Ü5Ôc·žæ¸$§Ó}m=ƒ¥CxÉ~ŠÐw{IÒþÝߢ!šñxHül¿ápžàkLåžäH~ËQ<ÅÑ!dHuüã1ÖrˆÌÖƒ6²_F¾w¬m¤­mäúÎÖ‡6r}gëC¹®³õ¡ô¡³õ¡ô¡³õ¡ ‡­»c=Îl}h£"öÝZòÀy –×h„ïºÏ5Jûßò‹ÚS64ñZ÷kŸë5Â÷Þçzð½÷¹^#|ïý®×ß{¿ë5Â÷Þïzð½÷»^#>óóÏùy÷y¿ë6Â÷ßïºðý÷»n#|ÿý®Ûß¿ë6Â÷ßïºðý÷»n#|ÿý®ÛˆýtÝF ë6âËù]MY¦6=70„_e¸ßõ”Ë2‡°^n¨mŸØa¿ÐØ:WïwØs4¡=gÀs´ç hJ{΀f´ç H–Ã?’ïs#Óþ-‹|!^Ä{÷~˜Þ»w~~ÉGx0k/¼Ó#DJZõ¿ñ˜÷­/ÿÆz;Ÿâ¼}èž´.êËñ>ƽŒååúûí[õPoZÿKêMëä«^×Ûëäéú‡Œûó08¯,iÕ?bÌÌÏÏøwñQ~ÎÜÍ‚ÜÃBü‚…i/H)Bµ>å1îgQ`1~Éâ<¢ÃíÏq1Ÿå6æRº'×QÖ\<%D*¦½~¹±{3|Ý›áïÓ½Y<Õó‡ŒW77žf|Øx•q ãéÆG8ƒG_í¼¼3üÊ;Ã×°eeŒákË<Ã×Qæ©oÎEÓ®©9ýæ\ÔÚªoÎE7„„…mBâ w±-Ó±Ó³=3°3²#íÅ ;Ñ^¼°3íÅ »Ð^¼°+íÅ »Ñ^¼ð%Ú‹v§½xá˼7DéMÊèûõ¡hÐ+Ô êK=Р~TÓɪì ƒô£eòˬìƒúë…  ^hÐ@ê… ¢Z8h0õBƒôŸeôBƒôeô\ƒôeÔöAÃiôíkA?¼IÏnÐïÿ»Pˆ¯±‡—Ð'”¶Úƒ_¹D{ð+¿±&/‡î/ǵ_amþÎ:ü#„aÃC$»y¹µ®ñUÖã5ÖçŸl@kqØk^gÞnmh|Ãx„±ù»õÆ7Ùˆiïó,ÿfc&Žÿñø×ëGz½z4U†¯-‡N•ákË¡SeøÚrèT¾¶:U†¯-‡Ný”æÈT9¾¶:uSBX¦oxÒúšºÓXú­÷©»(NýœòèÔÝ´®§î¡u=U]¨m]OUj¿Ju ¶õ<Õú¯=€Ömëxªõ_Û:îµIm‘wz}L9§—Ï]D®îåsé¤6½¥6¥òmžtÞ÷("g÷ò=Šø~½|"jü{ïxþ[cß§ˆïÙË÷)â{î–m‡¾­.þæá=vÅã÷™§çI6æéy’õ¾ó¶²õ¿ÉIü”5¹µd‚ù!!ï¾ûºU/÷øÆãDšêÿ|Àóû=ßš¨§H”ó~é¸Mˆ¼-÷¥ý§ÕÚ‡ðµlñ¶0íï:­ÖÁx!;r}ç¯{^o˜öwžVël¼ÄX˜öw—Vëb¼ÔX¯˜öw˜VóÝ¿^f¬gLû»K«u3^n¬wl¢w|[ïØDïø¶Þ±‰Þñm½c“ !šË<Ï3|gÙ’?† {‡“[[ÿÄÖ<Çù3Ûð¶å¯!d×g¯jçø<ÛSÎ\ÕÙ‘²æªNüy™úÒWBô»â!>Ógþ®ïðqþÇ’!þF`)FXš ,Ãhˆ^6§—¼KszÉ<šÓKæÓž¶díeKÞ£½lÉBÚÖ,¢=lÉbÚÖ,¡=lÉR~Íe<Îåü†+¨Ÿ[ò~ˆ®íâ]s°#s²s…ðÁµ©an|ð'͉®Ó\øàËñ&Ÿà_,ïç:û9ýË› k»çaW¦ý›>ÿ8_Ѹ›±>æƒõ/Übeç_r^}^«ïïª>¯}™³óSoÚU=^Û“êñÚ^Tתó] ú=·ýž'i~ÔxÊyu¿«ú¼VÝïª>¯U÷»ªÏkÕý®êóZõ¾«ú¼VïZŒê|×âTç»– :ßÕÚêç÷e|*$Ì<ë÷7þÏøé½¥ß]oŸ»¥ß]oŸ»¥&¬—!›ä ñ ²Y“¼”Íš ‘JöÉLúÒq3B¼jUç¶;÷w„He/_²“~Æîb”Ÿ3ÆÝLäÆùïâ^¦ã>¦ç~fàf¤kP9“÷é}õÁãÞ >xܛԛE}ð’ƒ^w·ñlc½ð8¹¹jÍä áÌ !²ï×!Ëî;ÏžÎ[gZ_0¶ÿýúKˆÏ×Cüú+õ¿ž§â× ÔClé"¬Ý_/o 'v…Ä©/ósö ŒyB¾ÓXÿ%—ñdã8…9œ?å|nã©Æ9¿3Îc<Í8íõÓ™öü ¦ŸÉ¼|ƒòM>ÄYÔoþ2›úÍ_ôŸóô›¿è?çé7ÑÎÓoþ¢ÿœgM«5ñÎ>óûMkµæsê›+ÆöÖö%öÖöŒ%öÖjÍ9¸œ<`,—Ó« ‘ƒËÉÃCäàròðù·œ<¼(ÕëÔ¾!òo¹æ”w˵ ¼[Nî"ï–“{‡ÈºåZRÖ-'óù2ïõ|‘؆±mHø$wHì¥ø$w…0tuˆd“é>ÑOôúÜøãËÆúŠ^»×ËwŸè/z¹Ÿè/z¹—Ÿè/zé>±>{é>±>{é>±>{é>Ñ_ôÒ'|¢¿èuú‹^‡dÆBÈ©6Ä®…Ä-ïðOÎåuÚ[b7ho‰Ý¤½%öí-±¿io‰É}[ì-±)?|<7D¤ýö²í}ÈÙvŽ>äŒl;'íï¼A×½˜úuf¤c×üÌ(ºægFÓ5?3†®y1µ­˜ÞêáË!–:’W8*„6ÞçÏ7Í?8†W9–×8Žr<åéÔ ”§S'úùÅ~þ'.á9ço:?‰ñuþÍÉü‡Sø/§ò§ÉU%ßvöçÃ@{é yºŒœ=Hž.#g’§Ëôµë}¦Ë eä±A2H}ô¢&ÎO7–EÊÈ݃d‘2ö®A²H{× {Y™A^÷œ×Í0¶§•‘óÙÓÊ ¡=­Œ=j½«Œ=j=«Ìp¯çõöÆÁÖgÚ¿);ØúLû·`[ŸeÓÖçxÏÛ3[Ÿe­ÏÁÖgYës°õYöyÏOð|ÚßÝa–}Á¡v¶VËêQMôÜ>ck¶¬|½h’±=n°µ[¶µñëÆöºÁÖpY¹zÑdã/­å²Öò`k¹l[çõÔôÔƒ7·3ÖCW°Æé+èë5Êê5ë5Êê5ë5ÊÊÝ‹ôÒôÒ‹ôÒôÒƒõeåðE3¿â<æ¼Þ£¬<¾èMã¯i߯pÜy½HY¹|‘ý¿‚ý‘ý¿‚Þ`‘}¿‚µ=XRVN_¤‡©p’z• êø"kµ‚º½è]ª×‹æñ4çó{. ú°H¿PáŒß£·)+ß/Zh|–‹(+/Ò/T°žé*œ£þ ÂÏÔTøÅÏé…ʾd¬NW°·,ZÁó|Ÿ<¯ç+ÛÝX~¨pÑXÏWöec9¢Â%c½_ÙÆjc…ߌõ€eS¨,k\¤FV°çÖ –µGÖ –Õ#6wËöñ¼šYAÎl—5‡›ÃeÓæ°¼QáwÊþ ¯ü‹é³<•XÌwÿÏzß8–ÖúFóï?k}£yößœB‹º!ü¦¾ˆ±¡:âÿb_÷|=ϧ½®>Óž:?9íYª+!‘êJˆsÒQM é9“ø3òMfâ,ÞÍÙÌL÷¼÷Ó!VDŽé]…rL杖czWã>¥½®wuDzLïg¸/„òrzyûfyù|¿kµÿ¾ž¯áy§weœÞzÑÞµë'‹˜ã—†ø"ýö¥E´þ/-¦~ûÒZ÷—쳋¬ûKöÙEÖý%ûë"5ÿ’õ»Èz¿dý.²Þ/Y¿‹¬÷KÖí"ëý’u»ÈzÏb¯¾dí.’K/Y³‹F„h;ã\Öv;ã\Öv;ë7—½·u›ËÞÛÎzÍeïmgæ²÷¶³>sÙ{ÛYŸ¹ì½í¬Ë\Ök;ë0W[Z‡¹ÚÑ:Ì¥/®1Î%r½VL ±vÙ8‰jtñÎË+d v÷Röi§FgÏáXþiw?åžvòÐ y§]Úyy§]NÊ;iÿ]v‚z¹Bæi'­yÚÉ@+džv2Ð ™§ ´Bæi'­yÚÉ@+džv2ÐÎ !6ðú\}®>×@Ÿ«®}ðôÆ>×À{ík§õª;}¾÷Ñgè³íôÙúl;}¶>ÛNŸm Ï¶Óg(›íô¹ú\;}®>×NŸk ÏµÓçèsíô¹ú\;}®>×NŸk`Úç’ÅÊf;e±²Ùι”Ív¾ËœÇ‚œÏB\@ýÕýÞG²åýÞGUCdÝ×!ÖMÆ]wœêoÂHÇß8nÍÔ?¬K¥¾aÝIªµÙÓÎ}ëØý;÷vˆÏíÎw¨nÓwû $<¾+Ä~yŸ³%w³÷°5¿à‹ÜË6ÜG™ìñýlÇlOsþ—<ÈŽ<ÄN<ÌÎ<Â.<Ê®üŠÝxŒ/…„{Ô‘½Öý=êÈ^ëþud¯u:²×ºÏ¦~ìµî³©{­ûl*Ä^ë>›z±×ºÏ¦^ìµî³©{­ûlqµb¯û²wN­õTWÛP/uÕçO9 àYÊM)?r¢¼”rŽòRÊÏ”—R~¡¼”ò+Õ· C,Ïc\Ä¢\Ìb\Ââ\Ê!”Õ}QËx™ñã\Î’\ÁR|Ÿ¥¹’e¸Še)«ç)G=ŒÞAFÏ#£wÑóTà:V䇬Äõ¬Ì |’ñ)n¤þ¯Ã&V á®ÄЧQH|L-ïó,¯²1¯…ÐÓÞ“{û41þÓØÞ³7÷´7Ç;ÿœó×Ù”7ØŒ7CÈ}Ìq²ã¿Øœûûuìˆq ãø<ÿå ¼Å–¼íuöó´?PÐÓ>ûÊùVÎßakêI{Ú×ci¿ÿÅXÔ´ïÓ†zÓžö÷Ø×Æmí&}ÚQÚÓ~Óç÷´ÏǾq¾½ó1ÊžEÓ¾»ìYÔÜè#{½‹²gÑt”=‹êY{Ú#b'ŒeТBÂ"Ù°¥¬¸H6l)+æ‘s™§yÌ×cæióõ˜yšÇ|=fžæ1_™§ZÒØ1ó4¯ùzÌ<Ík¾3Oóš¯ÇÌÓ¼æë1ó4¯ùzÌþ”×þvlÍÙcoÑþvìmÚߎ½CûÛ±¹6ÝûÛãŽÉ#󼦙{6Ïkš¹W󼦙{5ÏóÍ\ÿyöÀf3B¨®§>®^̳6sçÙ ›¹®ó²Ðuœ—•®Û¼{èºÍËF×a^vÊGóî¥\4ï>ÊEzÜX3¹Hokö®ßŸä÷2Îa<ÏX¯~|´qNãù!d{Ûsoª×r~Œó¹œ_`\Û8íïsâYåèæùñQ¦þµùäP¢¾)kaùônÇz§¬E¨wÊúõNYM”w“C¤ô›lÎYlÁÙ|žêÁ»/ð-¯×_e-FýUÖâÔ_eµnßUkKûÜï¶¢ž¯¹~+ëãÆêmi½_ó±Æ%ÕØÒ®Á»ênißýݶÔ6çùR!áêû!qÅs\ɦ\Åf\Íd~Àæ\Ã\Ë繎êòÕ©._]OuùêªËW?¢º|u#Õå«›¨®]ý˜êòÕO¨._ÝLuùêªËW·R]¾ºêòÕO©._ÝNuùêªËWwR]¾ú»s_æçìÁÝLáöäìŽìÍ}ìÃý|…(4fHrü¥ã~<ÈWyˆýy˜x„y”iÿÄã!“{êÃá!¡H³ûá"“y)„´?oŸc£qsãߨ‚—CXš9D*7ÑUÍC¼cF¶`&>OsgÕ ÌB‘y!ášûó¾ûsÍýIû{.¯¹?i×å5÷çýæ>·œ:I¶Î÷eé|—CB®Ú!vä[Öá)Ö¥áEuöŪ!\ê1ÌùzΟf}~Ïü y†ÿãY6¢ž=׳ü‰y.Dõ_‰—C˜=,DŠm3V#/Å©F^º‹jã¥tT/¥§šx)ÕÄK¾·~*ñR&??ÜÏÊ׸Ýy5ñ’ë ¿J¼”™jâ¥,T/e¥šx骅—²Q?~);õá—î¥>üÒ}Ô_ºŸúìKPŸ})õÙ—rRŸ})ÕÒK¹©–^ÊC}ö¥¼Ôg_zúìKQŸ})õÙ—¦>û’úPv Õ‡²ƒ¨>œÒ£Ì´†Oé¯gZ«›> ‘:ˆSúì™Öì)ýõL5sÓ.çÕŸMrƒ˜óúí™ïR¿=sõÛ3Õ©Eõ8ú•E™è~Gº„HÚßϸT“òÁ¥Z”.©§|Ï¿ªË —ê„ð‘ PW/q¨žGý{·Gf9F(¤Î¤¨…ôú=RC$šƒ'i¿KQ7 ©;)êF!u'EÝ(¤Ïïñ­çeõ§˜›ß1OÓ¦×ã{>ÈøŸSg ©S)êL!ù«Ççóñ,v^Ý)”–ÇÔBêVŠºSHÝJQw ©[)êN!u+EÝ)¤n¥¨;…Ô­u§º•¢îr]RÔBÝBôÝ!ÞìÙVþ"ÕÔõwß3nL½X³&Ô‹5{.D—è[ëÍ–è[÷ aµ}¢ú,cýqk=Úýqk=Úýqk=Ú}qk=Ús®µš´Äœkíº.1×ZëÑ–˜k­õhKÌ­ÖjÕs«õpš[­õgKŽÐ¼Yr”æÍ’¯hÞ,9FófÉ×4oîÎwíb~´+!R°„q^ãÝÆ¿?nü ñ>Ä/˜{ù0÷1?÷óêM×5 ±®îÙ:µ³«{¶Níìêž­S3»ºgëÔÌ®îÙºçy&„Zú‡oç¿`ì^­kI}ÔºVÔ?­kÍs|‘?³ a[þÊv<Ïö¼À¼È޼ÄNTKçë³Ë©]í¯y}¯ŽöÕ¼%iÿÌ[*DŸ0.[O˜?—­ƒ'Ì—Ë]i¾\v¿Ÿ0_.¿Dóå²þæ óåòË4_.÷ ùr9…æËåž4_.÷¢ùr¹7íS—ûÐ>uY__¢rˆþk}Øßñ“O›Cpü´‡Ú^¢ªsæÓ‡Wó¨îñŒ‡œUB*!ÿ”uJX%¬ÁjJ õ¤D} =Òþœ~#sµDc&Ïy4õhæ‘ìaß)!4™3–ä ÊMf²4ß`¾É²œÅrœÍ'8‡åù+ðmVä;¬Ä¹¬Ìw黿²ï5™çø)ÎçÓ\À*|ö´\öÄ& Wã"ª5Mó.a .¥Õdk†XÂÇ!þÉôvDB¤iUãOŒåþñæ^Uso¼¹WÕÜoîUUÆ›sU͹ñæ\ÕC¸g·có®êOŽ÷86÷ªš{ãͽªæÞxs¯ª¹7ÞÜ«jî7÷ªš{ãͽªæÞxs¯ª¹7ÞÜ«jî7÷ªªã;ó2»Ð:ß•Ö×ønüƒ/ñ*»ó_æŸ!¡ý¥˜{"ã$^æë!tß"=Cû+Æz„ö¿SÐþêÚ_¥¡ý5º9ï÷xÀ#GHØr3$¾"‡lù‹óù70íÏŒ¼Ç¹·¸ˆ·¹˜w¸„ÿqiHتExe#\Â0y5»=p˜œš]N&§f—S‡É©ÙíyÃÚQÖžï±½ÏÖ?¿‚Q¾ÂC2ß֘㕎徭‰ŽW1ÎÕ¼‹øùŽ~ÞçÛšÎxMˆLÓ×)Aýoýï4ýoýï4ýoýï4ýoýï4ýoýï4û[²!T9±ŒísuôÁÓìsužp>ÕùÆö»:åOçä·Ìå¼}¯Žþxšþ¸Žþxšþ¸Ž¹^úFˆ]pOJߤ{Rú/º'¥ÿ¦{RúêÛJëï.èÛJÛó/èÛJëï.èÛJëï.èÛJëï.èÛÊèï.èÛÊèï.èÛÊèï.èÛÊèï.èÛÊèï.èÛÊèï.Ì¥þî»Ôß]pŸËèÝ.¸ÏeônÜç2z· îs½Û׿ŒÞí‚ëXFÏvÁ}.£g»à>—ѳ]pŸËèÙ.¸Ïeôl–SÏvÁý*£g»ð>õlVRÏvÁ}*£g»à>ûÀÆBhñ|¿ùÜÁ~°Q½o!üæóûÂFY4X›eÑ`mn”Eƒµ¹Q=þAˆO–iä ‰±õ!t­Ï8š»œÏåüã1Æö¯´çèÖnçík19½Ë8ã=Æö·ØÆy×õkê\ä¶c×°éxº†M'„Ø]§CüÓíüž;øwò ? oØóêï á.}þö½ú_„ðj¶ɨ¦æ=àœ=°þ^Ç_:¶ÖßÇG¹Ÿ˜öš‚L{¾²0±‡ÈßzÚ5ïQ/»faÉæŸlù[»f‘±ù'ã†dóOÆüÛùÅÌÃ%ÌË¥|ËB¸¿˜ã‡/g>®àÃ|Ÿù¹’påj¿û”ßÛ¸€±Þãï‚´¶þ.ĵ,Ìu!¤3><_Ò#}(§¾ôåÔ—FPN}i$åÔ—FQN}i4åÔ—Æð{ŽåÇ3ϳœÀ©æ}ø'…Èp5±¼š8\M,ÿg•}ÿþÿðÆ×™ÂÎûì‡åÄ´¿“4í¿­ª|šrbåï)'V6?äõ=½þ&{ñ/öæßž77ç3îcü_¡L>¼/o±Íá¯òûó¿]t#Ä[.åMºîmg†pý«PÐúûîã7ŒñM~ÍY<îyëò;õ²ílão8‡'œ·N¿S?Û¾eœjl½~g´^¿³Ž Z¯ßYÇ­×ï¬ãÎz°‡¨{(J=ØC1ê¹J¤žë!5!šâ›Õà æKµ…4_ª-¢ùRÍ<š`®T3&˜+ÕÌ£ æJµe!rçLˆ}Ôgù2dþÄžcOþLygÈ“!^ö>Å´ÿÿÒ~¹°b=â§?Ï*¼Àª¼Èj¼ÄêüÏð2kð “ø;kòÖâUÖæ5ÖáŸ!zl{ˆOšÀœ¢ãc!^u-iî<ä8îøCÞÅõLGµdÉq}¼>s|zc5dÉ7ÆúÍñŒ72#71?¦§ê'ÌÌÍÌÂ-ÌÊ­!zfYˆÏ‘éßñV«y‡ö—è«î…<ÚŸzðèêøÍýþÞ¿¹ß¿Àû6÷ûxßæ›CÂoYBâ¢MÌÊy?a6¦=Ÿ[x/·ò>nãýü”P?þć2hKý¹ŒS<Î/¨¿b½ó­¸öó%‹B¬uQ.¦z²d ‹Ó^ÛZ¯ðU¹Ÿp;„Ìo8~Âñ–ç!µ·¼üuH,ð*³?¿áªRí(0H63D¾ !~Ú9u¤À`ª#†P)0”êHûÁËêHuçeu¤€~§>+±SÞ}çÝ)ùñãÿq)ѽH|–ËÙ8D«'-ÿ¤:ÒRY¬Ž´¼Aõ¡¥ú°X}h©>,VZþMu¡¥º°X]h©.,VZª ‹Õ…–êÂbu¡¥º°X]hù„X+ÛÍâ”Gb3¢ Bâ'YØ™YÙ…÷„0E>|ÔµMèjœÍXN|T¿’ÐÍ8;_â½ìNs5áeÞ"#g„XeuqäLªá#ß :øÔÃ!‘ÅF¾iœ—³¨>•ßyÙlälcuqäª#ßâÃ|›ùùá\>ÊwY€óXóYˆ X˜ï±ˆßÿˆß/ó\hüÍ¥ÊEÔùö,@p¤¹UÙÜinU6·Fš[•帑r\e9n¤WYÝ)ÇU–ãFÊq•帑r\e9n¤WYOòOޏvG“½W~}ú?rÃÚÆæoþnôù_¢÷ÈßÞ#ÿËôù{Ð{äO¡÷Èß“Þ#/zü½ý>yc­ü1¹¬qc9c­ò|±ösê›×Êÿè—×ZW·N…ØúNüŽyš]ø=»òú\Íí—ô·ÔÙõ>_sYú’º«êœš»Þgm¾Â¹ó”/é3n©Áë}öæ2ò%ýÆ-µx½š|K-^¯&ßR‹×«É·~¡ïÐ|•×]¢=þ’^¸¹ü|é2×Ð|»õ«×õ6^kü;ÕÉKðCêKn÷|c9ì’½øÖãWx‘}y‰ý<¯†^²¦nýfü*/SÛ\-½dݺb<€¿s ÿà ^å`^ã>•«›¼¢7> ñÕoRM_=‹júêÙ!Òÿ‰{\RÉ<>ØÊ¸¼ñ6Và§z7óºEÇÛY‰;X™;ù$?ãSÜŧùyˆîâÞäpêÅ÷¼Æ§9‚U8’úñ=£X£Ycø DzÇ1‰ãY“X‹Y›“X‡¯³.'³§°>§R=Û3 9êØžTÇö̤:¶ç Ú3ö¼É&œÅç8›MC4Û‘¸o`Ó†H¡{ŒâWBþÌŽ9BuzßPªÓû†QÞ7œêô¾×¼VʦVïAõyßHªÏûFQ}Þ7šêó¾1TŸ÷¥ú¼oå¼}ãC4ç€x$?òâ£Lµ`f,D »Ž9‡äPâ0æpák|Œ#X”#YŒ£Xœ£©~æÃÇýÞD¿×}É9Ö¸$DZdz4'°LˆN“jo =¸öG´×¶çO³×¶'ŸÙf/ŸBsrÎTš“s¦Ñœœ3;9ƒŸq&wѾxæsšÃgvÓ>³‡³ùçp/ßâ>¾Íý|‡8—_ò]ä<â|æá{<Ê…üŠ‹xŒ‹ù5—ð8åÔÿ†xÏw¸EÏwMòx¾ƒl’Çó äªæ7)W5ÿ‹rUó¿Y—ÿ°ÿe}ÞbÞѦ^—Ikêu™ä±¦^—Ikêu™®‡0w}ˆ”ºÆ ”ãç~Äëž÷ó™ä÷¹z´RinâM~Lïß´¡çÓÆŸûMÿgü—ñfcŸ§i#cù}îcŸ«é³Æÿo5¾Eu¡”Œ2÷S¦ýyäà5½æ_çÔ‡R2|Ó&ƾKÓç˜ö]šÒkm¢W ñå®ÇÕôy®¤Ïqµ½ÿÕÂô¾W‹Ðï¸úýŽ«E)m?âýÍ“í©4O¶Ÿ¤y²ý[š'ÛOÑ<ÙþÍ“v2UÎÓ”§r~¢úýD}vT¿Ÿ¨ÏŽê÷õÙQý~¢>;ªßO¼ðï⦣:þtÕŽc5‘ñ·åy=ôÓÕ­é§ŸáÖàH&1íùšíõw¼>Íÿ8F?`Kª6–úèjúè§kyÞ;¢§[q%$¶{“¿sÿ ¾&]³ú ½f÷!³ ºâªçæðßâŸ|;„¿u|ݱžéA½Üƒßß0žË›|—Q/´âoê…VüÃ^«×{ð{ãß aaÓ)ïÚö{8Ä‹`~~é|3çß‘ÙÛB¬Q?eMêýÕ¢Þ¿QmêýÕág¬Ë]¬ÇÏYŸ»Ù€{Ø_ðÜËFÜÇg¹Ÿ²æìlÂ/ù\;æ†HSùà®WBüS×h‡ÌÚTN¸«¯q2û±9õ Ÿ¶ >áÓç©Oøô…ÍïÛ×:„:‡hÝoBÏc|_³%S&lÿ õ°íOðE¦²Mˆv³Æò?Hk,ÿC´Æòç£5–ÿaZcùå”n)§tD9¥Û`àÊ'݆R>é&7æ—OºÉùå“nrc~ù¤›Ü˜_¿Ó牱®†¨{åfSÝ+7ÇysÀ:O¢þ•³ÿ?Õ*$^³5õâO½Èt!¼eΔ°>Ÿjcœžmi>¼u—óòåSíŒ3²=3±ïÑ Bâ•3¬È³¬ÄY™ú…DûUÚ¿’h¿ÚjS|<·c{ÖÖ»Õ#×µ©Ï¸Ãumú]צúÁÄbžÏÌâÌÂÌB–¿?îø–d6–bv–æ½,ÃûX–÷‡h•×CâÍ'8™åÕõ¢ÊÇÖÄ[/ûnêH•©Æ9æü[zœ´¿oê-=NÚß9õ–§„ºReºç+[¯%ìUfËòUfR–¯òeù*oR–¯2‹²|•Ù”å«Ì¡,_å->¢æüæú4ç7Ëâ““C¼f"›Ó=šÜ‚îÑäçiÍŽ0—+™Ë#ÌåJæòs¹’¹<Â\®d.0—+™Ë#ÌåJæòs¹’¹<Â\®d.0—+¹æ#ÌåJ®ùs¹’k>Â\®d.0—+™Ë#ÌåJæòs¹’¹Ü×µ,ö½}M¿^¾ ]—òêm?{A‰´¿CÿLÏ(‹&‹g”Å?“Å3žážåÄíóQˆmÂ{ÿúùJÆÛ…X\¯±M_·ÃþßÔúŽë9¶¥ýï9‡ÄG°$²Óþ÷›SŽK;>Æ2ü:„Ù B¤Ø!Z®gHü-'{1{3·çßó¼yZ®q¾Â¼!Ò×þç»EúÚÿü|(¯~¨dlôúHßx–-ù£çÕõê`ßVÆ?±5ÏñEþÌ6Ôg÷mKýuy™ð€zÙ×÷,vžíyÁyûÀõ³oã‹ÆöƒêhߎƗ؉¿±3/³ ¯„`Ú†êlß®ÆöØ¾Ýø_¢ºowÊÅÕ ñ5y­=Ä_²ö=lqŸ§¸þ¾¸÷/î=‹ëÕ‹ëÓ‹ÛŸ‹ûÝÅõäÅõãůzÈÐÅåçâ2uqy¹¸l\ÜÞ×çõ¤™zb}—u½¯. ñƒCBƒ¼!1¶‰òc>ÄO˜›ù0·„¨5p_ëì5Í­Œï7¶Ô” ×Ù jêóv´vþ¾ÈÎÛj¦ý=mŒsÛ#jšs;Úç2¶WÔ4÷v´3v¿×Ù3jšƒ;Úç1¶wÔ4wt0ÎËŽTŸwt¢ú¼£3Õç]¨>ïèJõyG7ªÏ;^¢ú¼£;Õç/3íï<éAõ¹ª5ý—¾²êÛÔV}‡êiÕ¹T?«¾KýyÕy¬­†LVC¾4žo¬O¯º€úôªïQŸ^u!ë{ݯ;h¼È¸ñTãCœÆÃÎ/v¾¡ñtã#ÆKŒõñU—R_uõñU—S_uõñUß§>¾êJêã«®b3®f2?`ó°N.ë¶„rY·¥! ^"Yæ2þ>”Óº-3^nl~ ^ÁóÎËmÝ–Ëæòó‡r[7çoä ±UKBHv¿.ªG7òû}7¤ßwã!ú™d÷ï¢:u#ŸqÚÏ=Ì÷™Ÿ+ùWñQ®f~"›d§že)+õ,"7_ ±ÕwØ—ÿ±_ˆ} •¸ù*#ìOÙêæF92ÕÍA”¥’;ø Ûo¡ýðæPªÇ7‡1=‡3_£ìtse¦›#y7G13G3 Ç0+ÇòžÐñó˜·S/ûl‘*Æ»;s»8ï³FôY/û¬‘jÎá|Wîe·rßçxŸã—[K¹Óþ.íÎí÷8à|w¿<·u“[M\£·í¥ž¶K,„>‘1c=mûÏ}k—xw›wkô¬]䯵ÖS’õ´Y.é#‡>VÞ±l"wD7Ë&rFtÜý!^å3>À]ÌÁÏ™“»™‹{˜›òZÆÑ!þ™ïùÎS!±ÉO|šçX…?³*ͱwªÑÜê_ D2¹'ý ²£óÕ7×Þy†Xƒ™ÄK¬ÉßX‹—Y›WX‡¿³.ÿ`=^e}ª{ýõøúö„yŸ…Äd×·¿_ßúë-õí¡¿_ßž0o—ç]óþúûLêwÿ!"Ö„þ;)»÷ÿŒ ÜŨ׻ÏÉÝ]ï»]÷þ»ižõßøçÝ÷ä—é¾'÷ ûœœB÷9¹'Ýãä^ÜÏÞto“ûðK¾Âƒ”ç¢Ì7ï0í£óް?2íÏýÈyìãÊbG)s} '…Äér0 p r( q ‡XºOB|û;Ü̹ÜB½óÓ¥Bìºy÷ti`~ɲ<B'5퟉ÆåŒñ v^mûg’qyc{þÓhϺ"¿b%ó:µîŸ×+Û÷;ýÏx²ñ“ÆÇO1~Êø>ÍÎ?ëüTã*Æ©¬Ê“¬ÆoYrÅÓÏð;Ö ~¿Sc?7Í8ÉXïÿtMþîŸbÕÿ-·Cü•x‡­=wÒ)ãÿŒ7…¨V0þÊÇŒP߸Vžôçñ´ó Îof”öÇ­1ne"·1ÎOy·3w0=w2õˆ™e9;þŠu'gÇ_±îdìø+Ö,ź“¥ã¯|Á¬ÜË{¸Ù¸?DVFB¬ý8šíÇÓ¼h?1Nd"'1Îש®Lçx²Ç”íbïͧGèbÏͧGèb¯Í§Gèb¯Í—™öÚ|Yh¯Í—•öÚ|÷Ð^›/íµù²‡„Izé©×¨‘zÙ‘™Ø‰w³33³ ³°+³²ÕÕI/1Õ¿i¿÷eÞËT3'¥ð~ÊŒ5 ÌXCÝœ$3ÖÈIY±†½ªÎ7!œ¾?D¶ÉËýäåmòr?yy›¼ÜO^Þ&/÷{Ñë̳ÓjoTæp^~î׆'Ù–ß²O±=¿cžfG~ÏNüy†]x–]Cä÷k!¶l0ÿä^çPÞà°î[ïø¦ãá!²±iˆ¥ý™ÖÍø“yšònÚŸiÝ(ïöwkËã§æ³eèroÚŸiÝ(÷¦ý™Öro)ïöw7Ê»=äÝònyw£¼ÛCÞÝ(ïöP£k·÷{Þ !ámÇjõ)ûçFÙ·‡ì»Qöíq2o‹”u{ȺeݲîFY·‡¬»QÖíq…2nw£ŒÛCÆÝ(ãöq7ʸ=®ñeþIýÚÆÇ®GY5A¶Zo¯I­®µ)„ooÛó_’ÖÛó_’ÖÛó•âÈz{~wûëz{~wûëz{}wY`½½¾»,°Þ^ß=‘öúî2Àz{}wó~½½¾» °Þ^ß]Xo¯ï.¬·×w—ÖÛë»ËëíõÝe€õöúîæê½b¥ÊÔ+Vz’zÅJOQ¯Xéiê+É#ôŠ•ªR®¬dÏ!WVªN¹²’Þq„\Y©åÊJI”++Õ¤äËøT „pÖçür£±¾ãËMÔW|ù1«òVóº/½NßÞ@í>ë{|¹ÙùêÜÂg¸•²ü—Û(Ãù)eø/õ¶£Ó>‡½f´¼Û@f=+}¹ÓXVÿò3Ö á^ýé—»Ëç_êýF×çn6à6¤¬0úÜK™6>!$n+É,ËI,G½þ6y$®×ß&ÄõùÛ*P¿M×ßoÓwÆõñÛ*Sÿ¾Mÿ®ÿLܦ×w&nÓ¿ÇÝ“mUBÈ ËÄÝ—mzø¸û²Mw_¶éáãîË6y?î¾l“÷ãîË6y?î¾l“÷ãîË6y?[‹¸/ÏSæÊöíýÓåÕ‚—[Ë\ÙZQˆÎ ±Íp6íÃÑ9´GßbÁ Ð:~Û±½8jÿÝ\˜ößÍEø.ã<å|ã—“­£UÖË ëhÕuZG«nÐ:ZeÜèA=^²÷¹Ø‘…¨ݰ¶Vým\ØX]ºÑÓøö¢^þFoÊGÉE<¯^Ýèc|›ò÷*kî†ü½Êš»aM®¶<³ø}{"ô{öÈG­*‡ðÇ@>ÉA4?ÿÐSfñû÷ÈMYüþ=²I¿w¼ÔêiÏ1öû÷È©­Ü«?†{Ÿ=wÑûìIGk~}$‹5¿Ç>’ÅšßcÉbÍï±d±æ÷ØG²Xó{ìOïɺϻGï=Gyø½¦toÞkF÷&³ß»ÛšŸüUˆÕÔŸL>Æh_¨i_˜l_¨i_˜l_¨i_˜l_¨i_ˆèqVËE7Q.êø1墎ò@ÍI!œ´÷®–:n¦\ÔQþ\-u”;WËC·yÝë^wÀX.ê(®–‹:nw~²ó_ËGåÏÕrQGùsµ<ÔQ.¨9Åó塎»Œ§2–‹ô‘Õò~#Ôœæ¼Vs:8/é?"«å#ýFdµ|¤ß5gxþ¨±œ¤ç5gÅ7xÌy¹Ißj¾iüµ±Ü¤ 5gËg5góç娎jK‚ý¢æçì5ߢ½³¦½ãäI¾Ão9—§ø.e§šóh/[]ËïP—jÚ¿N~Ï´§Õ´ÿœ<Ã…<ËELûû½ó'êAOž£~ö¤^¶¦þõä/Ô{žüÕï­í÷ªW5WŸçû¼À•¼ÈU¼D“ùäoÔTž¼Ì5¼Âµüëø5É'¯r=õ57ðO~Äë”OÚ·jÚ«NÞäÇ´kš'­»š›ù·ð_ •'­·šæÅI{\ÍOi­®ãs§ÝCóâ¤õ¶º®qÚ½¬Ç£Îï°šŽ«ëE5vuCÇæqǯCtž¾­ÙžVZÓÕÔÉyú·fòâ-}Û‡öß÷ä˜çå…g á›®,JýQÚúL1Çz¡læÒ3Åw =׆ĹŽMa=VÏ?ÇõlÊ lƘÌlÎMlÁùÙJÞ\bŸl%o.±O¶².±O¶²n³Ù3—ØËZÙC—ØËZY»…­ýÂÖ}áÍ æ€½­°u_Øš/l½Þ¢ß¸¯SFÒ}2Šîë”ÑtO§Œ¡{:e,ÝÓ)ãø1ÇSÏ=eõÜS&RÏ=Åþ±ÑZ®ŸM˜ö»·:gŽl4‡êg§\ÿ^ç}žßæùÉü”z¶o¶s*wpZˆ–ÔßÿZ˜ÃY„¯ñ1Ž`Qޤµ>k{ˆýöÃ0ËžS,âùQž/¢Yd¨=U(?푟²ÈO{ä§,òÓù)‹ü´G~Ê"?푟²ÈO{ä§,òÓù)‹ü´G~Ê"×î©M¹vù—eÍ¿,ïÑü˲õCxX|XœÞL®zÃùEÎ7àb6äþK)CfYFë Ër6æ 6áû|Ž+Ù”«ØŒ«™ÌØœkØ"DÚésêÛésêÛésºþA?×ÎΩi§GÎ9…éi¶3sN£¹›s:ÍÛœ3x7g23ß`¾É¬œÅ{8›Ù8‡jDηx/ßæ}|‡÷s.à»ÌÁyÌÉùÌE½^»Ü|y¨Ok——‹ø ó!.a>ªª+í#Ûä•&ŒÕŠ•öþmrI“Œ”Cšè¶ÉMÑ$33 íEM²R~hrÍÛ&æí6sµ‰¹ª¿Ž41Wõב&÷QNhr¿÷Q‹V£Z´òkçO8¯ÏÖ_Gšä ºÖ$§çÿ󼌡ώ4Q“-ÑøÊoá &P¾ÐGš¨Õ×£Ær†><ÒD;3¶AêÇ#Mò'Ÿbœßñ.žf:Êòk˜×'Dʬ Ñ„øýöðy¯[û/64¾¢çRB|nÕŠ©¥çz:Nû·º\Ës½[çzÓ:Ø^!Ä_•Ö ‘šö•í¯²¯±2ÿä“ôÅÖòºN,ÌÎÎ?å¼÷_Wĸ‹ñÓÆêѺnj»W1þK–Íâ-óaa~å#üŠò˜:5Üã5ãƲÁ×®âjºf? kUq ]£ŠjÞâOB¤â߯®UE×c„kUÑuáZU\ÏôÜÀ üˆ)÷,–y+þcœÉxïæÇÌÌOBÂg%CâÀ,ÅT–æI–¡{õZµ¹o¸qYcñ5½é}ö¡×ô¦÷p¾œó2ãkzÔûF?a|šåù=+ðV¤Ì˜^_õY%ÇgY™?òIþħxŽOógVá/¬Ê_YçYø /²/…È ÷B¬Œû3h!e¨{R/r\”‹YŒK¨W´”%¸Œ myCd“~¥gõ+=£Â‡2‘ÃçpÊG›^£>ÈÚJ̰–÷ÒÞÔµy·gßgü!ïçz>À ÌÁ˜“ö”úö£XÚbmi?е£ýH?ùêLˆMÔ÷}u–raCôÇ,Æ?wãO|‰çØ?óeþÂü•®ÅWçٓ؋ٛ—h}õ­¯¯.³/¯°ç«üƒý)sMÀkÈ?9ˆ×9˜78„rØÄ¡”Ã&ãßNYlâkü—rÚW·(§}u›£x‡£ùÇ„ˆå›86y4r,âxhÏ®Ð+$þ®UèM5§Bª5^¡S¡/d?>ÄW™ýù00?òâ£Ì!Ú»]ˆ?v7ÛS­}OïøÄ¿ÆŒ³°#³†h×BüaûV×5lÁµ|žëøe’‡åê®g9ë´«lòp+Ê&·¦lòð‹46nÊd ¡öÁÐm«Gȡߜ''•-mœÛxóðsæån>È=|ˆz‹¶êQ޽Trì£z”c?Õ£¨åø’êP½Þ<ù«lã‚Æ‡XˆêYÛÂTÏÚ¡zÖö1ªgm‹ÒÞѶíEìù+÷…x÷×ÁÜ”‡(7ì:Ìd¡5’à½vulŸß¥ç¬™x%$>ó&§54ñÎæUÎá5¾Å?ù6¯S›w¢ãŽçò&ßå_œþ©תý“+…HþÆuŒõJÿÔå5Ö㟬Oµre¯È'9ˆOq°üSÍkxÍ 6äMþzɇ«;näøo>Ëؘÿ² oñ9ÞfSÞ !COÇÍÿÇä¨t$üÓœ‘Pÿ|HŒâŽæEŽá%ŽåoÇËO×-6®[L.ÏüjˆïnÂÎM!ÒÌ:ÌÜßøyã­ÇÌŒ_à@¶ä ¶â`¶æ¾È¡Ô¿í´ÿ4“wÚOšY¿™‡9Ÿöï,[ÍôÌ;·Ò:Î<Üùv|í9‚8’9Š8š9†úƒÌc©?È<ŽÝB4áHHüd Ò=˜ª¿|T.MøÊؽ˜ª¿|T>M8fl$|Më$á8‡ñç Ú¯ŠÊýGÖzXãûy¼êœšRTþO•{¦¤|3ÍœYâÓÌù“rÍ4sþ¤½yÚÑ0OfNN¢Ìœ\“2s²ÞxžÌœ\›2srÊÌÉuCè¿!D2™Wódåd½ðÇë·à‡´ç­ç ÜÀ–!š]¿²_¿’]¿²_¿’]¿²_¿’]¿²¿õ%ûõ%ÙG³ÇðqŽeIŽc)ާú•}Õ™ìY–“Xޝó NfyNaNeENc%NgeÎà“œÉ§¨7É®7Ú/Cì¯ÖûýÝË„0$[ˆÜã­÷>ÝËÒût/GïÓý zŸîåé}ºWðúì^ïZ®÷~Ý+Òûu¯Dï×½2½_÷'ùŸ¢÷ìþ4õcÝÓÞW?Ö½*õcÝÕõú±îjÄzýX÷g¨ë^ƒú±îæÔzs«{Mï{¯÷uïÖ›cÝÍ­õæXwsk½9ÖÝÜZÿž‡ùÕ]íê^Ͻ“;î¶ßÞŸöûÏÕ·»í÷Ÿ¤ýþskgººWp@ˆfVSvO7Vß Z[™Õ–Ý3¨¶ìžIµe·ë—YmÙý&Ֆݳ¨¶ìžMµe÷ªÉ»ß¢š¼ûmªÉ»Õà„è±çB|ÒƒÖÕv;kꜽ÷X3æÓ+Ûêmñz믄õw§[ˆ¤w½óÓþn ûúîŽ]§åCìß#¬@k°FEê‰:— á_õ³F%ãc¬Ì¯ù$ó)~ç)ßÖ¨Bù¶FUž Ñ1ÿ ñ§n±oóYªÉK‡H¥ilÂéÎ7vþ?6 ñ§E1¾ßÓúð1¾ÓÓ ôžŽ2™16g"[0Îçy_`:¶dz¶¢oLkfä‹ÌΪ[oÉÛgÕ­·^c*åì³')_Ÿý–ö…³§h_8ûí gOÓ¾pö{ÚÎþ@ûÂÙ3´/œ=K{äÙ9‰?ñužãdþÌ)ü…Såt5>V#Ä·d ±& ³‹„„*öêXûÇ ½Q§!üãžwÉÎÛOnè‘:2þÌØ¾rCë4Úx—±ýå†zÖiŒñçÆmŒÕµ*miOIÔ/t2GþÙÍqÜÃñüÂkì17ì©Uì17ì©Uì17îÐsÃ~ZÅã­C§ ^¿×Ø^sÓ¾ZÅ^s3öš›QvcŒ/1‘Ý 57„Ø´›î#ª±57Rý¨¹‰êBÍiÖü„Ï…hÝïB<ÁS÷4}æwäó’ ¿76Çëþ@óºîNàYNäœÄŸø:Ïq2æþ©ü•ÓxžæeÝ ´vë^¤µ[÷­Ýº¿ñMïŸÕûÛ;Þ¹‡œ¿ì¼µ\÷ g;¯–”Õêþn<ÇX½+Ù8„Œ²]Ý?œ³¾ë^¥õ]÷­ïwÔ¦’MxÓ¾óŸÎÏåu¾Ë7Ïó˜¢]¬ç|÷ÒZÎw_æýìAµ¢‹Þ=_êÛó夞=Ÿ,ßEÏžO–ïÒ‡²|—W˜Wv®#;»–]úËô]ìãùÔ•.²N>™¾‹Œ“O¦ï"Ûä“é»È6ùdú.²M>™¾‹l“O¦ï"Ûä+HÙ&_¡ýXvíy&$tÌó¬ !w&»³¯v,÷çÎâ‘Õ¹¬Î}báPˆoÒC†ÃÔC†#\®v™7á¨ãŽ?ò0oÂWÆïóÓþ­]s(|íxUH˜¹)$Ö‘³MH¥'¬¼¹¸ƒ¹¹3„Wr„H:{ö¨<ÆÖÒ¨¼Lû3`]B¼ê}êÕZõê÷ÐEÍÎgwQ³óM¥šoÕì|Ó©fç›A5;ßLÊÑùÞ ϼ™¥G.úõÈE»S\ôe>Î,É–bO–f/–ao–eŸ-.kœÓ—5ÎÉ¡³Ê9ÿбÌqN_T\Þ8§/*.oœ“/ŠËçôCÅåsú¡#óe´Ž!|ôFˆÔÕéÜç:9VOŠŽ6~ϸ3²K«ô¬ÕÖ‡è½KóãÔ»4ÿ†z—æ'¨wižJ½Ks{À½Kóoéþ7?¢§…¸:=8æ÷ÁlÊ™lÆ7˜ì3É¢ueуoûŽgQÏwp6}·ƒsè»|‹¾ÛÁ·é»|‡­ý¼ìZWv=8×XÏwð]êùZ7côÿ}÷1úÿƒ¾ï˜öô=Çt ï9¦#±Ó÷?¨WÓ…zÅ1]Côº»êxÅõ…Êr|Õ7Žw‡„ôkBl‡l’~-e“ôë(›¤ÿ²Iúõ|&­Ù¡å!üÞ7„û…áû¿õœy½C^I¯îWÒ›×;dàôæòŽZ!úÙ7!>HúìÕ©ÏR©N5±¯e´ï5iCû^“¶´ï5ÑWg´ï5ÑWgÌDýtF}výtÆÌìDýu“ÎÔ_71Ï3ÞîÌ¢åôõ¿É³†H±³ÆúûßòYÕÝrÏê>!rõ§[aî6™úê9ã”—V¤P^ZÑ“òÒ s¸™žïÂÇ”™.ÈÚWýž½y}œ×w\½¯^4~…—hÎ]ýýSqŸ©»s®Áò‘ôÝ—ûî÷mó\ ϽìÜ-ßyùh´ïý¸ó=BÂú™ÎS?Ó¹$õ3iYtP—ɲ”]¹ŒÝ¸ÜóúœÎ¥©é¬ô’ó+Œõ!ËûYÞ—ãå÷ô$Ë9çý³Ø'™«YìèQ:ëQ>Уt.ï¼¹›eµ±^¥³^e9œåc½JçŠÆ½Œ×ÐÜͲ–ÖB–u4g³|Hs6Ëz¯×Ót®dÜÏx_åGÎëq:ëq>ÐãtÖã| Çéü”çû{~#ÍÝ,›hîf±^™»Y>ñ:=Pg!yÐ`ãÍ”ó³ÈùƒÌÏ,[é¾dÙæu³<ôG«xT Ñ·s†xã½ÌÅ}ÌÍý!¬Ì"Uí+sóy桺úvÏ`^~ÉyÐóy=¯Þ¾ýñ!ãÕÝ·óëçß~˜úù·óSÎyû~ÅGyŒ¨‡¸í{lP'oëå6¨“·}Ö êäm½ÜýÉÃúâÛú¹ jåÃ-ëé6¨·õt’B˜|&DÉg¬·Û FÞÖÛmÐËÝÖÓmÐËÝÖÓmÐËÝÖÓm¨Ë÷Xúº õCdäë!VùÞ"-B,½¼¸ã3Ê‹;vQ^Üñ9åÅ»)/îØ¢]KË2߆PÀïyÌÚ:3›ÖÖ™9´¶Î¼EkëÌÛ´¶Î¼CkëÌ\Z[gÞ¥µuf­­3óimY@k댾ó±Ì\È,\Ĭ\Ì{¸„Ù¸”Ù¹Œ÷ryˆæþ<$~Õƒ»™Â=ìÉ/Ø‹{Ù›û(;äÞOY!÷öå—ìǃ|•‡¨žf”sv¬·Í}„ê÷Lë°ðRã£Æƒøó‡ðkªË3­ÓÂËŒ ÑrviûÕ@9»´\=PÎ.-W¬â¥.±:ã3¼L½Q©+Ô•úz£RPoTê*kóëðOÖåuÖ£œ<°>o²ÿbCþM}iÚ?P_šößÁÔ—–Ò§Ô‡–Ò§Ô‡–ºC}hÚó>PZZY¨-­/¨-­/¨-­/¨-­/¨-­/¨-­/¨-}WHØÕ5$¾‡Ý˜/1;»ó^¾Ìû؃÷3…°'s„ðšÚqßã^Æ9Ù›¹œWKîSKvõ1Îm¬vÜ·Ñøã<´–éR wÙ»ÛËJû{W†ho×þ1×¾·ç1=Mo=ÎcoRóج2É~½õ9ͦ¾æ±9Ô×<¦gé­ŸyLÏÒ[óØ;ÔÃ<¦Gé­‡yLÒ[ÏòØ<êYÓ£ô¾Á!zu}ˆÛ¯žÖÞp½r}Ê^¹6Söʵ…²W®­”½rm£ì•ëSÊ^õýã²T×?.Gµüã'¨v\žj÷Ǩf\‘jõÇ•Bô¨Ü4Áç9*7MðyŽÊM|ž£'ùž¬¨/«ÛX¶ÓoŒ™f¬«›–QõcÌ׃úŽ1æëA=Ç×ì ^cŒkvP¯1Æ5;¨Ï£ï;xœ®×Aï7Æõ:èýƸ^½ß˜·CäòÂ["û_^DÙÿòbÊþ——Pö¿¬×Y"û_Öë,‘ý//§ìyík÷Ùƒ/ëq–Èÿ—WÒ>vŸýøò*Dzä}³¯v\žú§%ö­ûf;–I—T ÑGBì{XôQÚ»Z\ árÚŸ±,`¼–¹.$LX«ëÇ'¬à³!ôm"ég²õ1Þw^Û7ÙøMã•Æúô «ø\y_ ±ˆ¾ïãfÆdgs¾F572‚Ïs$_à(¶äh¶â¶æXêÝþø($.Os#õpèé–·¥žny;šKËÛÛ+ô•“ê†H>óìójyšWËõ9“ê9?ÁØüZÞ‰æ×òÎ4¿–wávvåvãN¾ÄÏØ»ø2ÕÚårÊjír}ÚÃúØ?ÔÛå=©Þ.ïEõvyoª·Ëû„„$ûÈmŸ;i}î¤/ès'íe{î£Ïš´Ÿy€>cÒ—ô“ÒgL:DŸ1é0}Ƥ#ô“ŽÒgLúŠ>cÒ1úŒI_ÓgŒ§w|ܱϘô }Ƥô“R™öOò•ð×ฦ‡° ‡²P¼ß_Ãæp ‘ó¥Blþ'!4‘‰~QΗ6–ßÏ—¡œ~¾,åóóå(—Ÿ‚Ÿ²<åîó¨ß! xšòÀ¹`‡<0@.Ø! vÈôO;ä€ÏP ì°ÿÐ+í°ÿvØÿÈ;ì­;ìýj{Ô áQ½ÙÅ_CâBë{¢ óLqñ¼±~ýâÎp^–y¨¢rb>¾È‡Ù†ùÙ–°¥{wñ¢Ÿ×ç_¼Dëãâo´..^¦vñ e…‹¿SV¸øe…‹W)+\¼FYá⟔.^§¬pñe…‹7éû\ü‹²ÂÅ¿)+\ü‡²ÂÅ)+\¼EYáâmÊ ïPMÉ¢¦ï1²¨ç{ÌŸ,êùžÃ!؇"ÍÕ–,êúó(‹º¾ç¨óòrsu&‹ú¾Ç|Ê¢¾ï1Ÿ²¨ï{̧,êûs)‹ú¾Ç\Ê¢¾ï1—²Ü¤¹”å/šKYþæ·ü‡§ø/¿ã-žæm~Ï;üzê=gB,«éºç,#ü‘ ÔgfR™5FýeÖDê/³Æ©¿Ìzõ“YÓQ?™5=õ‘Y3P­ë`/üË}/×4Ä.ýFõé’œQjQH<߀‹ÙKø?.e#.ã³TÏÛ'J©‹çí¥ÔÁóÏ…„_s†Äy;™‹Ÿ17w1?g^š¿>È=|ˆ_0÷òaîc~Êäù>²Ö¼bÇûý6;ñNHxÊøÏÿh|]&µ$ÄŸôYF-¥Ú»$cˆTªk¼Ì¸)—³W0™ï³9W²Wñy®¦Ü?êÊ÷£ÖP®µ–iÿ6s£;öcˆœ¨bS¬Û•¸ƒ•©G>ñ$?ãSÔŸxšzÞU¨×=Q•{B¸w©ãjŽõ·÷.s\ݱ·Q~ê`üŒñ>ã‚ÆkëmO$ñkòKÖâAÖæ!ÖáaÖåÖãQÖçWlÀclȯCd‹<ÝÇÞ¸Ežî3‡òtŸ·(O÷±Wo¹ïð~Îå|—9899Ÿ¹¸€¹ùóp!óräb>Ä%!Ô©Âwzø-ùŒ]‹-ÓuØ’ŸËiöè>²Zµë;½þ{týjºÆãíÕ}V±W³0? š¼å1Çöü>kC´°<ÿƒ<_Xžÿ¡?eùdù²ü)Ãÿ Öáá Ëð?Èð…eødø7õõm7–áá Ãá<ÁטÊ<É‘ü–£xŠ2dáï8†§9–ßsàxžážåDþÈI!ºÊ|ìØ–æcÇv²š5?^ßzÔšodžìغ¯G=jÝ×£µîÇ Ñÿ ‰‡äýøw3~Ö‡0~ÖXîÏјrŽ&”ûsª¯>j˜Ú‘ýãW2VC²Ÿ ’=•jHö“TC²ëuý½.Ÿ±Z’ý”ñã‡9ù9ˆPöêû(e¯¾2ØVÙ«¯Z˜Î¼}ÔÏœÊO?sêú™SÒÏœ2¿õ3§ÌÛGýÌ©B”ÕN¦¬vª_ãc!á¹5!1SC®åÿ¸ŽòþsòY®gcn \ÿœìÉ>÷œì©i]¿ áŽkóœ ž©eðLÉ”Á35÷üiÏ»f]¿çƒÎËá™Zÿ`ìZ¥ý[wò9/—gzžòx¦(gjéù³žwmž“Ë3µ¢\žÉôœ\žIË%?'›g’Éâú“\ròs2z&Ù,—¬ü«7Õ¸ùjÜF}yJ–Öü"IúÂúó”¬ÔŸ§ÜÃVÌÆÖÌÎy/Ûð¾îþÛq[Ç÷³`{šOý¿‘»ïrÌ¡ù5BbòEçö:—Î8ÉXîè¿ÏØÜŸ_ÓXî˜_‹—)›&_aþκüƒõx•õy ø'ò:Õ·äTß’oR]Kþ‹êZòßT×’ÿ¡º–ü/Õµä[TÏ’o‡È<ýbrÙ²¥ý»`òîñ´?Lߘ\ŽöyöŽd9=¹¼R"$üV<$.:"ïŒ ±ç2†Pm[_ßæ§¼ãühç3q ï‘ùmü¬:¿-e;žg{^`^¤,ãúDæË2®KÈfÿ›ßÙñeváv¥k“©oˆíгï¢sWºb¾CË!ü~Þ¹þιΙPÉ4jL¦ATc2 æÝ!Úo[ˆ—èÊOÙÛùw°;wòe~ÆÜÅ~ΞÜÍ^ÜÃÞü‚}¸—¯pûr?ûñíÁý¾¤=¸ßAÚƒû¢ùÙï0íÁýŽÐÜï(íÁý¾âP£½·ß×´÷ö;N{o¿o8"D^_bI%)Ë'• á×øuù=©4W² Ýó¤²tŸ“Ê…„ê^ ó7u¸@íkaþ.PûZ¨ Ô¾j൯…u¾@Ík‘—j] ëyZÖâ!ªG-Ò~^=ja½.PZ¨e Ô£jÙõ¨…Z¶@=j¡–-PZè'¨G- Q=j¡—\0‚E8’êÓ‚Q,ÊÑ,Æ1,¢uF…x$ÍÑ,Á1|œcY2„· ‘’Ōǻo›G%Ó^?Þ¸4'° '²,'±œ=k·ã×?ÁÉ,Ï)¬Þð]ø.oø. |—7|—¾Ë¾Kßå ߥZ[ÛÚÿÏ~[oû¸ ñövùøñÿBÚG‹ÖV þ»lOÜëXøï Õÿ쿵Õÿì¹µÕÿ®†hÃü!ž¸ŸP¾iø(囆(ß4,ÈC!¼³Äï>g\Èø0 óˆóreÉŸ‹åcüŠE)4,ƯYœÇY‚ßðqž`I¦²O†è¼ !ÞìWVäyVâVæE>ÉK|Š¿ñiê«æU¡ï9¯*}ÏyÕè{ΫNßsÞ3¼Æü“I¼Îš¼!«¿"«ÿKkÊ-ZûSÔ¯Öþuç„õ>Åõ=a½O ´Þ§Fh½OM õ>U¦91„1e"‡1ÎἋ¯1G0=G2Õ»´?yB}›šIOR\O¢7>¡ÎMUçNŒefŽcŽgVNà=œÈlœÄì!²ZÏÜ©õÌZSÏÜéEê™;µ¡ž¹S[ê™;µ£ž¹S{ê™;éVë™;é‰Vë™;u¢ž¹SçýªIˆOÌÍ瘇Miÿýxhˆ4Ø¢?¨+³ß£º2{!Õ•Ù‹¨®Ì^Lueö’ýë¥_#ÓýÕiÿ}¾}¦¢}f„}¦âÍú|"éÔ‡ö›Šö›ö›Šö›ö›Šö›ö›Šö›ö›Šî×t½Z½Út½Z½Út½Z½Út½Z½Út½Z½Út½Z½Út½Z½Út½Z½Út½ZóôõnöÒý=%Ä—ù|¿÷ä3!×÷þÞËq ö¦Ì™U5?Wˆ¤ýêíÌ·œæi;ó-§}y~nçÓþÝeó.§ùÚμËi¾¶3ïrZ›óóx>íßc6ÿrš·íjѼmW›æm»:¼êuy½.íßk®klþ¶«Gó·]}š¿íðÒþ\Ãü¼%«Ö0?oɪ5ÌÏ[²j óó–¬ZÃü¼õÍÏ[9h~ÞRk˜Ÿ·\ïæç-õ¸†ùyK=®a~ÞRk˜Ÿ·Ôãæç-õ¸†yyK=®a^ÞRk˜—·òÛC3ÙCgðnÊÃó3SžŸ…rðü¬”oç뉓åÚùzâdyv¾ž8Yž¯'N–gç뉓e…ùzâd9v¾ž89íß Clâ@~ì¼9Y<_œ<ßùAÎb¬WNÖ+»±d½²ëK^èùÁžßl¬gN^d<Äx‹±Þ9Yï<_w®®=¾ÕXÆÍ×;'ëçë“—{~˜ç·ë¡“e‚êÃÕãùzéä÷©‡NÖCWÍùíÆzèd=ô|=t²z¾:Yþ™_„k¨N^Ë¢\ÇbüŹž%¸ó#–äF–â&–æÇ!¡V•»“ʪ<ÉjÔÔªÎS2¬þ¦Ö3Ž¿c žf¿§5tçZCwÎкs–ÖÐi Ýù‰ÖÐs´†îüLkèÎ/´†îüÊÿQFªÕˆBèü~ÿ^0~Öø"ó›PF­õeÔZM)£ÖjF9¬V2eÔZÍ)£ÖjÁk~ŸëúoÚïyÞXV­õeÕZ-©†ÔjEk¡Vkªµ^¤ÚQKV¼£vԒ洞ØéŠ\ÌJ!´ý<„1ã%Æ•¹”OrŸ¢ìsúi¯Ûíu‰Æ2Ðé*”NW¥üsºåŸÓÕ)ÿœVÛ ~À”uO«9F;^ëX¯ZpkñCÖæzÖáÖåG¬Ç¬ÏMl 7ÿç~qßÅÒ䱌p8>DFì ±JBxR/tx6Ÿç×ÿ<·ÏsφèŽB|@JëeñÚ²äŽÆ2çŽMìåüÎË–;>6–=w|BÙsÇf¾âùòž—9wl1îk\ÁXöܱոŸqEct‡ < í¼ < m,IwÈÀdÒ2ðë6s%Çrð¹t‡<@.Ý!¦ç‰uöòîã£ÜÏ<B?µ%ƒ{zAã/YˆY˜òK?5'ƒžzzãÃ|ŒGX”GYŒz÷éúûAÂôLû}3íçJR>½O°4õÞýÔ° içËëÁû©eÒž/klÝM/G뮟ږÁëïÚBÞÎ?á¼58½<­Áéh N7§Wò0ÿ¦?éÜg<Îzüè÷¨¬ëØùÛÒ—èZ?Ÿ-„ËúéØEãWy‰ýùõ§±ËÈ+Äß9˜p¯ÒuŽ]ã0þÉá¼Î×xƒ#x“#ùGñošÏ±8†ÿr,oqos<ïpÍÛ-CB¢y»eÍÛ-¯Ó¼Ý2Y>–-Êd‰>dF® ýZ…Äâÿ…çA=}/õ5Q=é×:$–|‘¶aÛ2Êv´žûµ§õÚ¯ã!Ú£kˆÔ{÷èF½wY¤ Þ»€Ïû¦¾@†MxS_ Ã&¼©/aÞÔȰ!¯{úæXÇzÕ7ÇñqŽgIN`)NdiNb¾Î²!!‡:uHË¡NºBë¯C¸fΡ^úÝø¸±ÏÑúÞÏ|€æÍ5ýSkóëš½:‡ºvèãosÑüºfÏΡÎ’Zgœ‡§)›µþžöîêß!õ³õÆ®cë3Ìdz´‡çPýilž]Ó[åÐKRWsè¥Ýpþ'çá9êOrè­Éj­6.À_¨OÉ¡×>¤îæÐkRws賩»9ôÙ‡ÔݹËBbÓÿq9qÍݹï³1W² Wñ¹™l¿HJ¥ý"é$íIòádûEÒ)Ú/’¾£ý"é4íI¾s•'Bøª¯±}#éÚ/’ÎÐ}H:K÷!éGºþIiÿ¶äMÇ®mÒ9º–I¾×=9vÝ’~¡ë“ô+]—¤ót]’ÌÃÌÖÎnk!³µ³ÛZÈlíì¶2[;»­…ÌÖÎns+³µ³ÛZÈlíì¶2[;»­…ÌÖÎnk!³µ³ûõZ¹Æ´3¶†vO¦5´{ ­¡ÝSi íž²XC»§ÓÚ=ƒÖÐò Æø&9‹qΖñ\ãy†x–ù#'ñ'úó«{<#¾æ1ÂùsÎOæÏœÂ_8•¿rÏs:/Ðçif}Þ}‹ÖçÝ·i}Þ­_?ïØ½û?Z£™­áfÖhfk¸™5šÙnÖ‘Öp³N´†›u¦5ܬ ãìÊ»ØéøÓ³;3ðefdfb ïfOff/faoÊDÍúð¾ÂlìK9ºY?Z£Í^¥ݬ?åèfø@ˆþ3ÄÇmâu~Ìü$$,·?´‘ÖÛÚ¨×ËímÔŽåöƒ6§¨þ·Qÿ—«ÿmÔÿåêõyEÊ`Ë+ÑúL×ÐqeÇgCôÖ÷!¾þ#ºë7Òý[ï½o¹ë½÷-÷oý'tÿÖo¦ûµ~ ݯõz³[î×úmt¿ÖJ÷kýö0ÚgzÒgí3=é3ö™žô™FûLOúL£}¦'}¦Ñ>Ó“ráhŸçI¹p´ýéIµâ•jz5{Åè§ŒåÃÑOSx¥ºóòï+æPºö¾~ž«â9™qtUÊŒ£«Qf]2ãèghM®AoteÅÑ5)+Ž®E5ttmÊŠëN„ÄnÞ{]*íSëNÒ>µî[Ú§Ö¢µ¹î;Z›ëNÓÚ\÷=­Íuö×nãB¼(D²ú.ƒõY}‡uöÜnÖê:ûn· Î/q^æ]÷£±5»î'Z³ëÎÑþµîgZ«ë~¡µºîWZ«ëÎÓZ]wÖ꺋´6Ö]¢µºî7Z«ë.ÓZ]w…Öêºß9›p¯ò-^ãÛü“ïð:çš'óßpü.o2müçóo.à?|ÿr!oqoS¾ktˆÚY_koü÷jˆ¸7„íÙBä9YñßkÆûh¾¸Ÿæû‡Bô-ý~ãרßo¬F¼¥ßo<’úýÆ£¨ßo<šúêÆcø ÇòÇ1•jÑ['© ÝâO¼Ââ»C¤b}ãÆý}&µ=óúWÏÂÎÏB$Y­Ë¼ÁxåXu-–Y~Ý=‡òkÚÏöOá_û‹„øº‚iô'P–l(W$Ú§ªS‰ö©†êT¢}ª¡:•øo]> áVÚyµ*ñV¹ä€†êU¢ZÖP½J¼Cõ*Qk¨^ÅÕ±†êU\k¨^ÅÕ±†êU\k¨^Åc!²B¿×V¿·B¿×V¿·B¿×V¿·B¿×V¿·B¿×V¿·B¿×V¿·B¿×V¿·B¿×V¿·B¿×V¿·B¿×Vÿ»¢ õ»+ÊR_»¢õ³+ž þuEyn kއÄ.òÝšo(ß­±nºX7k¬›.ÖÍ릋u³Æºébݬ±nºX7k¬›.ÖÍ릋u³Æºébݬ±nºØÓÖX']¬“5ÖIë$5±Æéb¬±Fº¤­‘.¯‡hùá!ñJ¾ÆÇ8‚E)s])F™ëŠŒ•Ñ<(/w])A¹ëÊ㔹®”¤Ìu¥e®+¥)s])ÂãæAzsNOKoÎéeV«kÕµÕêZG™(:7$\›߯À©”µ¯M£¼}m:eîk3ød“ôêùÔk3õ~×ÞàÓ|“z¾k³X5„ z´k³ëû®Í¡¾ïÚ[Ô÷]{›5äX{ÏÅ´÷\ÌI{ÏE¹-£y>»Uˆ{Ç9ûÐÅ´ìkº˜‡ö¡‹yiºø íC wu ±mzÜ»ºQ{×K4‡ïêNsõ®—ißÕƒ²Ö])´ßÕ“·C¨!c¦Þ"ï ±ö-øõ†Ùó9>æø¯‘?Sï7þÚ¸%Óç|ÿ¶æ ¾ÈT¶áI¶å·lÇSlÏïØ§Ù‘ß³ L˜N_¸}>õ…ÛP_¸ý=ê ·/¤¾p»=žp»ú”NO¸]ožNO¸]ožn7õæéöPožî êÉÓí¥ž<Ý>êÉÓ©)ÛõäéÔ’ízòt_ROžî õäéQ?žî0õãéÔ´íúñtjÚvýx:5m»~<ùµÝüJg~m×§SÓ¶ëÇÓ©iÛ?¦š¶ýªiÛ7SMÛ¾…ßr+Oq¿ã§!è›#Me¾t§·[¯MÕýr¤©Ì—Î~¿}í÷ÛwÒ~¿ý3Ïêy9Ji* ¦³ÿoßEûÿöÏiÿß¾Ûó;B¤™Œ˜Nؾ‡rÀvõO¿i&3¦“¶ï¥<°}åíû)¿m?À‹ü’—x¿ñPHhnoʪWëfÿïQuq¦‡=¬¹½*«½¯¹½*«½¯¹½*ë4ÏÙךۯ²ÚÿšÛ¯²ÚÿšÛ«²ÚÿšÛ«²¾¡¯•«3 3æ‡ÄzµŒå댅yEœ_à|mã‹Æú³ï×áBZƒ3±³¾×]ò:ýÛŒ%Æ ¸”²Ô ½G½ÿ…È"s·¥¹»ÈÜmiî.2w[¶ á½ô7hm~£î.2—[šË‹Ìå–œ·}£/2§[šÓ‹Ìé–æô"sºegžaAaÇgwåìÆŸøϱ;æË!ú»y¿lÍûe3iÞ/{ƒæý²7iÞ/›Eó~™üþ»y¿lÍûeö¹ßÍûeoÓ¼_¦–ünÞ/›Kó~Ù»4ï—Í£y¿l>Íûe hÞ/{æý²…4ï—-¢y¿l1ÍûeKhÞ/KûßÄÍûeËhÞ/[ÌÇØöž&˜}ÁŒmïßb¿$Ó¼ý¥9ÍÛ_Zð3>"G…Ø39š™8†öú‰c™™ã˜…㙕x'R™8‰Ùù:ïådªgc½_•Úô~UêÐûU©Kë¢J½žÒ}ÐØú¨RŸ»Ù€ÖE•†ž×}Èø cóc¬uQ¥­‹*ÏÒº¨ÒX?h͵6ª4¡µQE:ÖÚ¨Ò”‡ØŒ‡™Ì#lîwËñGÕ×±jn5w¬š[ŵ«ÞVyêluv¬:[E«ÎVií½¬ß±jmµv¬ùZÅ|k¾ViBD_;Öœ­¢Oì]*$9J=G‘¯BôOyìÏ!¾2ÙÃûÛ»#IyCx,âø{Ç:NÑ> ñ)ÜÌžÜÂ^ÞW¸sWHܰ†é¸Ö>g¿“Þñ:fà‡ÌÈõÌÄ ¼›…0ù·y¤/³¸ó™·ßÉÂMÎ_q¾„qVãye­É¿;ÿ8ÿ`Iç³9¿™Ù¹…÷r+ïã6¯»êu¥x¥ù'eÉ×Y6DVËRe©Õ²TGYjµ,ÕÑš^-Ku´†ç\ ±gûð7¾ÂËt]ç\a?þÎWùûSŸÿìêóŸ©%éìó–³W0‰ï³¦ü¨–ß–)­4VÓºØoË]ÔîÛOñ?ÊVy^më*£Þ–-­6VÛ}@µ­ÑªmÖ²>×QMkô!Õ´Fëù?n`#~Äg¹‘¹‰Mø1Ÿã'l¢—ï ñÅ¿ð~þ¼!RfS¸:D_¬â÷ÿnÜÓøãÚÆ÷2^c\ÇøªqoãµÆu]›Lzƒ]ß„„gå¿ô²å³ò_zsêY=Rú‘ž¯îùGù ° 2‰…X“…éýwÉË™¼ï.y9“÷Û%/gò>»äåLõ(/î,c?ëm\ߨ½ÎÔ€æÑNs@_ËÔÐØ=Ïô?ÊÏ™Q~Îô,åçL)?gjBù9Ós”Ÿ35¥üœ©+„ðþË!ReeˆÎü'Äë/ç¿\B!ëmæ-Çï«û­BHÊ$?Õ ‘•êc{AÒÝÆjÎJ5²ƒý`¥ý ƒý`¥ý ƒý`¥ý ƒý`¥ý ƒ÷Xù {ø¹Ì~NZù«±{²ò<ÕÛ¤,Î74¾`ì^¬¼H÷`¥ùÜÁ|^iý­4—;¼âÑ×ë³zýÿx1ŸevªiI÷² ïãs¼ŸMùˆ¤LfNª'I²kj æ¦ì˜”‡rcZImIõ%5í:ºç©ûéž§ {žú%ÝóÔƒtÏSÑ=O=L÷<õÝóÔ£tÏS¿¢{žzŒîyê×tÏSõ‹Iîyªž0É=O=A÷<5•îyêIºç©ßÒ=O=E÷¿oPHèZ1$æ;ÉJü–•™ög8ö8~Òñw|Чù4¿gþÀª<Ãj<Ëêü‘Ïð§9¦w™¤w9¦w™¤w9¦w™¤w9¦w™¤w9¦w™Ôœz–Iz–cz–Iz–cz–Iê~Tž9¦o™¤o9¦o™¤o9¦o™Ôšz–Iz–cz–ImBôsn¯ë|¹¶×õ¼Ç\Û«ï½ÇÜÚ«VO_"06wöêGî1wöêGî1wöö¢¹³·7ͽ}hîì}…¨fOÏÏŸ1þÒ¸òUbæ¡Ú=}¡×Ÿ5>j<ˆ_q0q¿æP§¹WD¯y&?õšgá>Ê©”YÚÙÇo¨éíìã7Ì»"Óœ/Èé,Ä,Ì™,Â7øßdQÎb1Φ~©ÈZËEÞâã|›ú¡"ï°ç²4ßeÎcYÎg9. ùvU®_~žðsPÜV:D»®Ws_b.þ¢¿®ñù£¹cødž„ÍùCbï}|„ûù(°¿dAd!bafácÔŸn.ʯXŒÇXœ_³óqê6—ä êk{§R_ÛÛ:Ø\†ÖÁæ²<År´6?Ak`syZ›+ÐØlýô¶6[?½­ÍÖOok`³µÓû'Z;½ÏÑÚéý3­Þö™’úƬ„ø‰®Z±â9ª+ôLWÕˆͨF¬H¦Ú°¢9Õ†-B´ûû!þ¨×u_I¯ë¾Š^×}5½®ûL{Ý>ϵ|ëØ’²Ý‹´ç¾»{ñè‹t/µ–ºo¤UDyVˆ·—ÓþíÄgêÏ6Ö'ž°N¦ö¡u2õ•P¿IHŒ^æs¼Â¦´v±ÜZfÜÌØ~X?™WÙœ×Ø‚òy^ç ¼Á–¼ÉVü‹­ù7_ä?lÃCÈ¥Oȕ۸­ñ-¶ãí<6$f)Àq´N’ÇÓ:Iž@ë$y"­“äI´N’_§u’<™ÖIòZ'ÉSi$O£u’<êòt÷¤®º<Ý=©«.ŸÓ?ÎÍIýãÜ\Ô?Î͢苹–3>µÇÞ1Ö’Mgl7þÏXŸ|HF±#D´ Ñ6˪3vGŒ·ˬ3>3N0Þj܉Û(»fLÂüC¤œ~GïíT1Äóª;*QÞ™¯—{ĸ²ñO|’çøÍÇ ÖVõygKÙ:Áþù³!fŸŒ|Þ˜©l“|Žß²)O±¿c2O³9¿g þÀçy†/ð,½Ç`ŸuÖÓ!ÖPö¬*‡~5®b,ƒVuîë˜qUã=¬Æ/X{ù ÷±÷3‰X“_²²6±eѪ~÷׉Æu°²>¿bcC~Íÿñ8ñº ÕŠÃö–qÝio'¶·Œ“?ÛSÆÉ‡í)ãäÃö”qòÇa{Ê8ùã°µ2ÎZ9l­Œ³VÛSÆõ¥½d\?ÚKƽJ{ɸþ´—Œ@{É8{ɨ!’c‡±½dœ=û°½dÜ`ÚKÆ ¡½dœsØ^2Î^rXÞ7œ²Î8ýÀ¨‘~~§±¼3NŽ9,‡–wÆÉ1£Fy^o0j4w9/÷Œ“iË=ãdšÃrÏ85ú°Ü3N.=,óŒ“KË<ãäÒÃ2Ï8¹ô°¬;neÝq¯‡hÉô!ñ—uÌ@½Ï¬Å!RTöžµ„æ`ÉŒÎë…f-5þÙ8“ñÞM=ѬeÎÿbœÙx#³pSˆ¾+ã4{’2N³§(ã4{š2N3ùp¿Ï7ÒçÛïóôùöû|#}¾ý>ßHŸo¿Ï7òuÊâ#'S9…²øÈ©”ÅGN£>r:åð‘3(‡œI9|ä”ÃG¾ÉËœÅ+œ¢CŠ…xÙoXœ'X‚©|œ'Y’ß²O±4¿cžfY~Ïr”Y†Ã·Yƒï0‰sY“ï²ç±6çÓšŒÊ´›_¤L»¹MHè¢_É——ú•|R¿’ï!êSòå£>%ßÃÔŸä“‘ºèOÒþŽÆ£C|‚¾ähÊÎG»RÎî»í³‡d÷Ýö¥ýÙ±œ!\mN{ÅÕÎû®ûì)Ù}×}ö”ì¾ã>{Jvßoß¿ìF{Iö—h/ÉÞwø2ÿcÓ 'dOa„=™À^Œ²7cìÃÄËô{ˆ§ýå™þ Œ›é*…h»¢!ž3Mó%ç×4_r§ïÒÎ\Éù‡ù3WÍ~N†š«f?§ç\)[V5æ>m|™Ux…Uù{ˆÜÚbëkqkóSÖávÚË›ë/Ùní0®Ç”µo}ÆÜņüœÿãn6â>Ë/ؘ{Ù„û(çßÚO9ÿÖÊù·± /ñ »ó,_æìÁŸ˜ÂsìÉŸÙ‹¿°7eêU6¼Â ìË‹ìÇKT7XÏ-¬ïÖs ë{õÜÂú^`=·˜BýãÝO[×-¬óÖu‹©! ÏUñ¨ê¼uÞº_`·°îXç-¬ûÖy ë~uÞº_`·°îüNë~ÁœÍ«œC¹fÁŸŽ­úù7î ‰õ71?fv~Â{¹™÷q ïçÖî’WßxÀñ6æà§ÌÉíÌE{Á¹©¦¿‘‡j÷G³B¤®¹sä@ˆŸÎ/9ÃùÙΫEGÏä!¾ÁÃ|“G8Ë|ós¹ô9óŸ ‘²ƒøõÌóŸ¦~y¾k¤W²zÜãõ~.}Ð ¿¯ž~f†ßWO?3Ãï«7ŒG9œ_ñ5£}¬Ïª+Z–«YŽð ®ay®e…Ê{¯ý®EùaÜF}ù~ªÏ:ÏW䇬ä¼ým¿,Õg½qec=ÒþIªÏçŸ4¶Ïí—¡ú|dì»õÙHß­Ï&ún}>fU~ÂjÜÌêÜB½×=ú™>ÖUÑ´®Š&Ѻ*Z“ÖUQë­õTÔzëc=µÞúXOEëÒz*ZÏï(ãØš*j­õ±¦ŠZk}¬©¢ÖZkª¨µÖÇš*ÚÈkÓ®‘uUôYÇå<Ò®‘õU´±I{ÎØµZ%Äš¿É¬tÿÜC÷{A6Îav¾Å{ù6ïã;¼ŸsùßeÎcNÎg..¡ú©¾ÉmœÛø½²¥ý71ß9—ǹ<Î¥ý·.§ózîcçò:·ˆÒ^¿à!Úëä£=~ÁÃ\¦pfuœßñr>Â|”ï³Óþ›–ïýÞ ¯2þÁø!ža>ç 9¿š…ù‹p ãZå:ã‡Ôo5_ÏÜÀÇùKR¶øáRˆÏNûoË~£ýô‡Ëü4Dÿ§ºKOô¿MlËÙŽŸ°=7³·°#·²SH÷QH¬ÚŠÙšú€ª/Rþ¯jÏ'÷WmKy¿j;ÊùUÛS¾¯Úò}ÕŽü”i¿o;;s»p'»R&­Ú2iÕ—BôIýÕŸúˆ'õWêžÔ_ý©oxRõg”ú«?cÔ_ý™žt¯®©MOºW×Ô¦'Ý«kjÓ“îÕµÍ!òüË6ÿQ](éúîú¿ŒÕ‡’g6Ž«%õŸëEJÊ%Ÿ?BsõóGù3 x]‚× e”ãµr9¶WfS+Rû…ø4ù!õUÊ©ý)?¤`6å}d(Vg3¨Õ¯S­n|ƒjuã›|#„®ÖÝm°ñ_Æjvã¿©f7þ‡³=_ßóöŽÆÿ«Ýoñ-Þ¦ÚÝøßñº^goiüŸñ\ã†Æ¯ó´ÇtµfoO¡õzÛÞÒÕ:½=Mèó!1ûŒp8ŸQ.`ŒÖX×ç¼^ÝîÚ”¾G“Dç2ÎE¼‹‹™ŽK¼®™×Ù“šÈÚ–RÖΠßn"[gXN™:à ÊÔÞ§,ÁúŠ'9–§3X[]]ËÛ®M“¬Æ«i¿ÊðAë­ÝÚrúgëC|~'½µ³}+­íö¦ôÖÎv{SúR´7¥/M{Sú2´7¥/ËÏBtéà±x…íCK‡8.áX®Y:ÔñãF=õÒá,"=~ ±‚öû—i¿ïq…ýÌ=rß¿Ê?ØŸW9€×hžöø“ƒBô”u<Óz>eÏ´žO]¡õ|J›¹²ØÌ”Åfîä5ú¬§þä.^çç¼ÁݼÉ=æž>´A:㿌¿àßÜ˸ÿr?oñoóKÞáAþÇC!ªŒÆgf„zÒ3¾óœ¾!ÚftˆçÿÚÈÈ9\›62rצÍ8–âx–æ–áD–¥ž(G9ê‰r¾lzãw­ñ6óX[/SÊszû²¨·/›Ñsó=W‡ X—ïy,ôX䱨c‰ÇRež¯çQߣGCÿy4òx6$ì}=$¾öD#ì÷ëqÒ[«#ìiÿèÞÉž+Ï)¬À©¬ÂC_9žæ¸§³2gP¦aŸ¹ÿwã™ÆOñ Ê™{ߤ>tï,Ê•{g³õM¯U§\øÚ3Ô7½Vƒú¦×\«r‡°·MˆtÑ#ä{ÞXÝÛ–êèÞvTG÷¶÷ü1Ï¿À¯ÙÒùÎw‘^2Q‘J”…Фe¡ûd¹¼— TD®ë%ûyÊùû—Ó{É@Ed ^2P‘*Î?à¼ÜÞK*RÕ8‡±ÚP^ÿ´¿¹ó²QÙ¨—lTD6ê%qïËë«ö·0–ŠÔ0Îmü¼±œTÄ÷*ŸÇØçí%/‘—zÉKEä¥^òRy©—¼TD^ê%/‘—zÉKEô%½d¥"²R/Y©Hƒ=ð^ˆr6¬ ‘:ú¡ ÛËu~3^dl/>°˜wŸëè,1îÄ¥ìì¼{^G¿tÀ|ÕÅØ}¬£¯=°Ü¸+W°ß§=õÀJvç*¾¢‹¬ñ–+i·\2L ±ùBhéžýn±ÅvêWíG±úUûQlç#|ƒòMѬ…Ä=jHÖ|TC²>L5$k~ª!Y¡’õQª!Y P ÉZjHÖBTC²æáQ>ƯX”úˬÅ<Š;þÚãxHˆ/ ±m%¹ˆ¥¸˜¥¹„e¸”e¹Œå¸œOpˇp¿ž%þ¾cë$¾’)×o³Fâöøk<Öz¬óøÐc½Çsp[e'=žòxÚ£ŠGUjÕ=ž Ñ…?…ø ú”…çøf«¾ ‘êæíª|ÀùŸŸeœjœÃøãÙü•sxžoñßæE¾C9ï…¹´?¼ð.í/Ì£ýá…ù´?¼°€ö‡Ô™…ö‡Ôš…ö‡Ô›…ö‡Ôœ…ö‡Ô…ö‡–†ðÄû!ì»")rR¡1ÆöØ}iÝwI^Oôˆ{Ü¢Ã> ñò/…°¸eˆTôÙ†m76¿†í ù5l'{ð3¦p{òsöânöæöá´_îkb¯éë÷µæ9¾H¹«þßÿ„pF_uFï´¯ó¿°-e;žg{úû:Ðg¿·š‡u¾¯£ñ%vâoìÌËìÂ+ìÊßÙð%^ew^ãËü“=x)¼Áž¼É^ü‹½ù7ûðŸPòËûU.y²pÉC”…K¦,\òeá’G) —T7•…Kª¿¾Dõñ×î! µ¾³ýNý@¶?BÂ'ÖK¯Ã´^z¡õÒë(­—^_y~!ÛUãbÆÇhíôÒ“R‚ÖÏ'ó–ä –bjˆ6~<ÄÓË5K25„¹je)Ùv®kXJ®m\Êù“,ÍoÆùÆeŒO±,¿c9ê«æê5K4~Âø{–ç¬À3¬È³¬ÄY™?ñIž ýäÞ~Cb ߣDñpøç8n ¡Œ:jLˆäøÜøWcYuÔXãÝ!¡uRH¼ï'Ö¤ßÓºfmþÂ:ü•uy>D¯È‡Kdž°uAˆ<«OÛú}¾+œÇ8Þù…Îû¼WôTK'ëŸÕ/lÕ+>ës_Ñc-h,w>«oتg|ögçõ\K'Qϵôuê¹–N¦žkéê¹–Nå6N£õµt:­«¥z‚ˆº²é€ºÕ×±ú²éËpÈ=s’¥ù-ËðËò;–ãi>ÁïYž?°ϰ"ϲdeºf‡ž¤kvè)ºf‡žæ/®­žWI8TÅØµ;T•çYXù Õ‹Q÷x½žbT6Ê.‡j8ÿÝ›1—éÞŒ‘[¹7cdCî͘?dßñû3Æü=äþŒ¹Æzü“õy <:Ö+¹ioè¿ÈΗx/»ó>¾ÌûÙƒjnÖªµY{2'{1{37û0_a^öåƒìLJø*ó±?ææç@Ê8Óû„HÁuƃŒeéjZÁ§í—CXCYˆÃX˜ÃY$DŸ:¯¿ÊCìÏÃÀ#È£Ô<õó‡Ð¾x}(s¿ápžàk!a†³ž^p†³ž^°ŸZ—ñqcׯž^°Ÿš—±$Õ¼ŒöÓzÏzz½zÎzz½zÎzz½zÎzz½zÍzz½~jcFûî =g==Þ =g==Þ =g==Þ ½f½%!a¦Þ±žÞn¦Þ±žÞn¦Þ±žÞn¦Þ±žÞn¦Þ±žÞn¦^±ÞJêëÙwîRãfêëÙ“Ï|çŒâ)Žaœ\ž÷.ãïŒÇð4­áqrzÞt”Ïó¦§,žW'‹çÍèuß{Ý8þ@kzÜ—Îg2>clM;h|·ñYck9½ùwæGÇzç3?QÏ<î×dæafqþœó“©>ÍQŸÎ¨Os¦R]š3穇>sÖó™‹Ô¯°Ú^¢µÐÖÚXa-´µ6VX m­ÖA[kc…uÐVÝ_a´µ.VXm}® h]¬°ÚZ+þÇ!a•ùÐq0͇ŽCh>tJó¡ã0¦r8OÒüXåÚvA×¶ãHº¦]ëU®iÇÑtÍ:ºÆ«\³ŽcéZut W¹FLJÈ,=ëÿñ:ó‡ð&‡ò/š—Ë»½šSÎíÕ‚rn¯ç)ßözòm¯–”k{µ¢<Û«5åÙ^/RžíÕ†òl¯¶”g{µãj¶ç”Ÿ?^ÃŽ!ºÇ>2ôo>Åø4ÿeÞbUÞf5ÞauþÇgB|X` F˜ÄÖd”µcmêA÷Ô¡ÞqO]ÊG{ôpÃôŠ{ôqÃôˆ{ôrÃ2P?7L?¸GO7,õuÃîæ³ÌÌÆÌÂ&Ì6Y)ÖÃ&ë"ENßd]¤X ›¬‰uS:Ê©›ÒSVÝ”òꦌ”Y7e¢ÜºénÊ®›2ó#fáFfå&ÞÙŸ„n¯ãìŽåäM÷r ïó¸ßñVm!:4{ˆ—Kó^~Êû¸÷sàÎÉq5Îaüsr—ó?;¯&Íeü¹±ÑÙkô^ÅìÃ'º8öžÅôçÅìÃ'ºûýÅìÅ'º9®äØ~\Ô>÷£}®¨}îÇ!!dlìXmûÑ^WTmûQ-{~vHÌæ½_Ò£ÿ÷‚ñãò|‹ú»çߦþîùwè3??—•ù.Ÿä<>B®µ~G^¿£¥só{ÚøAãV|ˆ­_à|c½ò/¿g\• Y‹X‹ù —°Fq™æù¥Ž“¸Œ5¹œµBBý1!1æºçÊãx¬c×¾ËÀn}ÌAüÄùqλõÇÓõ¯?(Ç r ñuZ#ñ¢Ž';.B÷7öÝÃXÑýÛú[£—(úkˆ.Ä'?¢OZÿ×>¡õm3­ýk[hí_Û"cr†ØSó™‹2ò˜Ü”‘Çä¡L<&/…ð”ýóˆýw̃ƋíŸG¬É§&Ñ><æ!çeã1ù(y˜Ë˜ŸË½ÎÞzÄ>=æã|”ï³õ£OYG¾ !ÒÕ¹‚έb!ª‰J†Ø)u¤m§®ËJï6îl,ƒ(m¼‡eøËR+PŽûø÷³<°½WŽW=ú‡„fîqfýd·Ö!Ü‘™º½ÈwÙ†óØ–2R3s suãvÆ Øžï9oNd6'š™™kÐ|Èl>432›ÍÌ‡ÌæC³¬Í÷Y‡+Y—«X/Dÿšçþõ 9±C+Bx@Fϑñþ=¯üÿ¦ûÞ°Ý÷†OÐ}oh=¼iÍ6´Þ´fZoΠõðæLZÃÙ×X³YÔ—¿ìk¬Ù¿ìk¼OìFˆo9Á›Ô>žÕën†°£qˆ4æü_ΟtþÇ;þ–ÿðÿåw¼ÅÓ¼Íïy‡?ð?ž ±DÓvËYF¨§ÚÑÄïžÎç8ÃïÎæ‘ÝCyü>¯KðºŸå9ª‰[~öÜýx¨-›·‰jäýËó¨Ò…ëóUYBŸ¯ÊRú|U–Ñ竲Dóô¶\\Ó<½­÷¯ižÞÖû׬ȯBä\Ë{G>׊öØs­io=÷"í­çÚÐ^z®-/9æMcëîgëîà̳¶#ß`¾É¼œÅ9›qóñ->Ì·™ŸïðÎå£|—89Ÿ…¸€…ùÕ¨ëú´U÷SŸ¶Ê½{Ýïx¸±~m•ûøºßõp{c}ÛªœÔ·­ÊE}ÛªÜÔ·­R?¯ëÛV奾mÕƒÔ·­zˆú¶Uù¨o[õ0õm«ÔÙ ÍBB™½äÊì%'Rf/©^õn"ñy!ºÆÞÔE/¸Æ¾ÔE/¸æ%ê×t§^pÍËÔ º/‰·í¯îKâmû«û’xû õÙ·ÏRŸ}ûGê³oÿD}öísÔgßþ™úìÛ¿P}[m®©¿¾}žúëÛæmMýõí‹Ô_ß¾Dýôíߨ‡¸}™zˆÛW¨‡¸­¾¿Ý4DŸi¬—¸ýõ·¯R/qûõ·ÿ¤^âöuê%nß ^â¶žº¦^âö_lDºæ³”¡—üâ­5t«[„HõÙ|žsøßbK¾ÍV|Çëòú7xŽo:ßÚù¹Æ?Ï2~Ñø]ã_ŒgóWÎáy¾Å ôû>˜"ÏÈo« ñNóy™ x…ï…èÑJ!nû‰­L™ý¨ì?Af/ho<]ŽöÆÓOP}<]žêãé TOW¤úxºÕÇÓêaAõñô“TO?Å7ø4ßdÎbUʧ«Qî8]rÇég(wœ®A¹ãtåŽÓ5)wœ®E¹ãtmʧëP¶8]—2Åéz!2\ͬÐjf…ŽT3+t¢šY¡3ÕÌ ]B#ÃáJÆjg…®Æ·Œ+ó6…Gy2–oäÉpøi¯ûÑëºQí¬ðÕÎ Ýù3_æ/ìÁ_™Âóì¢íÞ ñ\Ï„P@¿ÒîmwŒõG¹|·H³¸IßI‰bK4Òœ‘¦L‘GŽpeè)3ùßà1¾É¯9‹òs¤…ŸKáYŸûœ~ò»Õ!öF9~@o“ÚT_¿˜ªoœÖ×XªÿÕ¨úúÆT}ä´~ÆjU}¹m“ZUß~½I­ª¯LÕ_N³ŸoR³êÛ·7©YõíÛ›Ô›úúÈT}ç´þÆêM}ýdªþsš žqzˆöŠýd‡ã޽÷ãz›Ç?óØåÜLçdøŒoP†Ïø&eøŒ³˜öó³9s(ÓéQ#‰ CÈã»êS#‰²S/÷6QfÊuìþ&.qóH ¯¼ëa¾SŠÉ›Gôãô}Gôãô}GÒ{èýÆ­óø0„ÿ©_?Ê[Çozè½'õÐÐÞk?-x8DÇëÕªÚ£šÈeŠ.cB<ßãË’ÇRÏÒœÀ2œÈ²œDkªËë´¦ºL¦5Õe ­©‰½Cü5rbª‘_¡Œ[ð¢Ç%ukb_çò‡„†¿‡ÄøÄ=«?xK>Ù^,$¾jn ¯"÷úÌëq¸óÅÿš%xœó–ä –b*Kó$Ëð[–¥\´½¿£:ýêiªÓ¯~OuúÕB‚\»îÚÊ¥±ë²¼\».ËË¥±ër›<».·É£±ër›<».·É ±ër› »^;D.ÊC sq:Í׋3hž^´·.Ô_D¿pl]hŽ^´¿.4G/Ú_š£í¯ ÍÍ‹ö×…®MŠïZОŸâ»ºo )¾kA{~ŠïZОŸâ»üоkÁcô] ºF)¾kA×(Åw-è¥ø®]£ßµ k”bO*è¥Ø“ ºF)ö¤‚®QŠ=© k”bO*è¥Ø“ ºF)æ]A×(ÅžTPϘbO*x–ö¤‚?ÒžTð'Ú“ ž£=© \šbO*ø íI¥½¨àyÚ‹ ^ ›ôu=SO×sõt=‡†„¦yCb¦Í²s&Ù¹ïf}çt~‹qfãÆo5ÎbÜriÚ¿_ß4Ÿó²[Ó‡)»5ÍOÙ­é#”Ýš>Jó¿iÊnM r QfkZ˜2[Ó"”Ùš>F™­iQÊlMÍÑL2[Ss2“ÌÖÔ}Ê$³5uŸ2ÉlMݧL2[S÷)“û×Ô}Êäþ5uŸ2¹MݧLî_S÷)“û×Ô}Êt,DïídçK¼—Ý)“ϸ/D =g,'Hû·Tö†Ä¾½¸½¹Ÿ}B¶€ï3n+{£¬Œl‡8FfËJJFÉʪÐÉ•™‘áD"Ù•Pv‡2â'Š’UB2²Už×yþ8Ïëú^÷íœû\×õý|ÞŸž~i†ÊízoÚcmÝ´—f‡Mû8„ßÓl³i?“y€¯ÑÜ=h(ÝŸAîÏ&÷gû³Éýäþl:L³÷¦ionú‰£C¬þ)ý—üúKü%¿‡þ)oˆ9pOˆŸ°–YùEãÒB¤`”öDÁ Îgs~³s=sPCg¦,˜ÑÚœ:Á<|Àœ:á+šS'xÆ}ëõLTó f¦,[0‹×ͯ<ãöXßc×Úsq =òÓsq = Òsq j{¦ Ž 9öl(LÏÆÏæÏÆÏâÏÆÏàÏÆÏÜÏÆÏÜ3ov³ãV3òS2à]™i¹ú®,´Î筸ȱ<´nå u›)ÿ¬ÛBùgÝVÊ?ë¶QþY·=DÞ–¡›ÊÐoËÐMeè·eè¦2ôÛ2tÓ²ü师ð#–!WE_•¬Õ·¦¨¾5­Hõ­iúyõ­ieªoM«P}kZ•ê[Ójþle_éçÕ¹¦‰!f„,]C{Y–Èà™!S×µGÈÔ5dí¯QÖ1”²öˆaTËF g Ž`IŽd)ŽâýÍÒÃ2K³Áˆq,Ç×ù@ˆ=¤—¼%WÒ?Þ’= ¦\uh1×ô1×\ !¯ ñäTsÍ^ç^tîZˆyíÙ_5°##ìÄvf,Ÿc»Ð@Z¸‹ã®Ž=£…Íó…Íò…ŸwÎ,òÚóÎëÃU3†Ø>fÏâ+hÖ,¾’Q®b®aÁ”Iÿg}2Z¯a&~ê¼L›þÏ$ûd¶Ö·LµÞkÅúsëiÖû¬ï±^k=ÝZÿî“Õú fã:fçzæà†;ûÛmõZ¥Í³¿s<”»9Œ{8œ{9"Dz~âî{†ûÙ–Ø.ÄŒþ;Äךë|Ÿ×8—×978ßsp D2æ´¾iÂ[ü€·¹€w¸ÿðCþËEüñ.‡˜1æî1~Ì.e,?a—1žËCÈÐÙqÔñ ºµVRªµŠ™(‘‰jÉGc²ðSª?µ>£úSësª7µÔ£1êM­/¨ÞÔRƨ3µÔŸ1êL­ Tgj©;cÔ“ZêÎu¤ÖFª#µ6Q©µ9D^7{×9E³wÓ4{×1‹¿nö®cÝì]Ç,þºÙ»ŽYüõ®4‹¿Þçø<ϳ;ÿä ¼Àü‹=y‘½x‰½y™žù:Wè9¯ówó‡Hµ|!¶ÃêÍÝÎúGëüÖk¬Û[ÿdm®ž„y” ^ÿÔëòôüŸ­ ñvþ3矵>fmïÏÿ•Eyœr^‡Ï½.oÏ?a}OÒLÜa­óò÷|פZqë/¬åðëø׳ 7Pþîð%åî_ñyÎ5¬V‚®aµ’Îot¾»µkY­”õ&븙=¸…=¹•½¸½¹}ø5_ä7ìËTöãögÍ:vr wñ%õ¯I}½­ù$ýŸ{E{;nïø&;ðÕ–ì·e!ÜÍÀ]Ô³Úª5ÙïP­ÉþÕšìÿR­Én6ë­WÜ•ßÛª9ÙïR½cBïïœÏlÝÍZ­j«ÞäP«Úv§ZÕöªUm{Ќж'Õ©Þ»ý¹,ÔîêymõäB\Æ\!ºå*sóóð:Í[n0Í óó м¿R_zÁ¾R_zÁÜ·R_zÁ\¿R_zÁ¿ò<Íï+ÿdJKò„HíÖ!v¢¹<}þŸx‰óœ—aj?Å||ÚùËÎûs¯0%Ä>¼3Äÿ70„÷»†H%sýÃ2ήýûݬÒÌTéCçežÿ^¦Ìóß+”uþDç¿Á”qþ3ã•P–sþ{•rÎÉ”sþ{rÎjâÃrÎjâÃrÎjbv¯§y=»×Ó¼žÝëi^Ïîõ´ô×Óÿý³”ƒÒFRJE9(MþÉ.¥áŽåQŽãÏ|¿ð ã›ü•ãyœx‚Cätó÷þ!¶ ½|º%íáÓOð'}M/ú}u+k{øô“´‡7›9Óÿ[›Íœéÿ­‰ÍfÎÁe ‡Ñ|YåíRÕíg/†¸<ÞXe¦µ¹¼Ê;4{U™Esy•wyˆïñ0góGΡÏQå}á\úùÏ^òý†ð2Óÿ{´c½æÞ§ª'Ï^q.ÙZÏHý%Ä.é¢ ±Õ˜%/²û²(ûQmYÒŸfÈ%¨¦,Hµd‰³s š1;« Kä‚Îj¹ óý” :—¦\й _eY&³_£œô\5V®úN®+W}'W•«¾“«ÆÊUßÉUcåªï䪱éï—«Æ–§<5VžúNž+O}'O•§¾“§ÆÊSßÉScå¦ï䩱òÔwòÔØj”£Æ&Ò¼8¶ºyÐløÝ*Ç5¸šr kòSÖâgL ±Ÿ Ñ%>ûŶ”….¶£Œ·iVˆ´úÁº½uv Ü·é]çY?km¾¿Ø‘æû‹XÅëïyÝ}Ý4›?:ßÙy©ÂCŽŸslæ¿Ø…fþ‹]iæ¿Øfþ‹ÏóAvŽ?«Ÿ r+¸Žƒ\Ç ®ã ×±‚ë8Èu¬P6„šŠÚî– ›>5È5­àšrM+¸¦ƒ\Ó ®é ×´‚k:È5­P1Ä49âþ•cz¨wÖÐŒsGorÂù¡!4Û49éØ]{0DûÚCkàDâ$ædþÈ)ü‰oñ§ò(§ñgNç/œÁc|›¿r&óžà,žä»”íû¾GÙ¾ïlÊõ}Õ˵r}_õr­úÙW\«~öU/תŸ}Õ½µêg_uo­úÙ÷ªŸ}„PöOÇ/ä_TóÖª¥}Í kÕÒ¾yÏÇêgßÅT?ûÊM‰o‡¸?àLz&ºÝ á¦ûÓíkRoºY‹w˜ÄXÛûßñþ œEÏL·— Öp¬?ݬ˻¬‚–n>Äëû3ïú3•¬c¬ø3†Ø6®65²ëŸm¤^-Dª6·v²²ÎnmVŸŸƒ-w_²©mÜ—ljg÷%›ºQÁó|].X9-„NéÍC!&×Ú÷í#ü‚rãz>Î lÊ/ÙŒ_±97²Eˆ,¨âÚš94 ™sACš-4¢>ÜðT‡‹[7¶6K.hB³ä‚‡i†Ü7>Ľéóï›À!¦ŽŸwµ5ý¼«OÑÏ»ú4ý¼«m¸‰Ïp3Ûr eë:[ÙžÛØÛù,¿fG~CÙ1¢&nhlŽ”Ãž.l­6nð™"jãŸ)¢6nx„jã†G©6np=õûó²xbF~ XËÛ‰™{¾ºýì^²Îl-—'f¡\žxyý_Ǽ§°¯"Îgu^NOÌF9=1;ÓŸ·”ÓsRNOÌÅO̲_Fsß=-éMkÙ/cqÊre¹—e¹Œæ¿1z]ÒxžäçeºŒ¥(g¼ŸòqÆÒ”3šÇœò¾‰rOǧO 1©ƒBüpŸ1u0åÑLµC˜ôRˆÜ+ó_èâ?Êmý²µšq¡uÏWŠçëQÏ_VÏ_3ë¬Óÿ>z¹°ÍÇ;î뫟/™ðšYkùišµ–ÿF³ÖòßiÖZ~†9ùGˆé}&Ä÷ûôþƒx–yŽ>kïóœÌ?9…øÿâT^ä4^ât^æŒS¢xˆ;b&)Q‚f’%i&)QŠf’÷ÓLR¢4Í$%ÊÐLR¢,7³·„Øõ«BtÀó4 èN³ÀÙy½Ì?@v^/ãèB¹\Žåùòózù}€ü¼^n ?¯—Û¸Nëåöòózûs€ü¼^nÐ_f¼¢[ðêÿ>cÆÛŽæþÂxŒÿòWþGu>ã]ªë™Äë­'Clï‚!Zl;ø5 ñ3ðH3ðfëÂÖ©,Â,Ê´sLŸevÓœTX9&ÏŠRþž•ò÷¬Œ^7?®d-‡ÏÊb_~#D¨âbŸѯ*² õÌÔe!:ÜõI]N³Eê º6©+éÚ¤º®Ã]›T×u¸k“êºwmR]×á®Mªë:Üs”êš7[¤º¦ÃÍ©®éð—èš—gS]Óáòlªk:\žMuM‡Ë³©f¡áChö.˦šy†ËQŸ"ÅZ›}†Ë¬©fŸá2kªÙg¸~˜jöžþÏgñÕ÷³<°ÿÇŠ<ÈJü•yˆUx˜Uù#«ñ§ûÆ[!Z¯6§²§±.§³gPnxãmÖ§žùÆ;Žøjb·Þ¢CdÇOK…ÈÞí÷Yû¾[‹ñ‹ó(Kðg–¤œØÎžÌù8²)?¤}Ûn›ÛÇãíã4N Ùk¾ü\u—×?òz .¦Ü1’ójüüÉüÎù%Î?a=ÅÚÌ4ÿ-îqþcç[YOµÞËiÜÇéüÞëK½þ$?¡9§ç#çSô|ä4×|Öûk²k±'eÌåê]·­Tïºm£z×m»ÌQßWku¯›ý8‘ 6Qýk`?N4_6Pgºúy ÷ÐÏKHÿÿúy Ùèç%d§Ÿ—ƒ~^Búÿ¿Õœ®æ„Ü4$¨Ó]õ¾„¼ÔóòQÏKÈO=/¡õ¼„‚!|à:%ªg]õ¾„š Ì]Í 抮悄"Þçú%¾@™4Ñ~îjNH0gt5'$˜3ºšÌ]Í æŒ®æ„}ë3@¢}ßÕ¼`Þè:”æ®ÃhÞè:œæ®#hÞè:’eü9ù6±åÛDu¢ë(çåàäÜDõ¢ëhkY¾ë>à¼Ü›¨~tk]žæÆ®fÆ®æÅ®fÅ®îu× ^«à«¢¯J¾*ûªâË}ÏgFÝkFÍgFÝ+å3£î5£æ3£î¥Î™—g½Bóò¬A4/ÏLóò¬!4+Ïz•fåYÉ4 ÏzfáYCiž5,Ä<“%Äg[B‚ÚòÌ=Ž?aV. 1™w†¸íòNæ]”w2Kyg¼ÞVõ¶úïRo«ÿ¯p6ÿæ^åû¼Æ¹¼Îy¼Áù¼I¹fü-~ÀÛ\À;”eÆÿCYfü¿”yÆÿGÙeü]Ê.¶U|}ÙeB„²Ë„Ê.bé÷˜G¿Ç„x.g”+˜+™‘«˜‰«™™²Æפ¾Œ1Áõ¨ÿ]úŸ3×2;¿`êårR/Ÿ‹zysÐñZ4—Í»z^¯ËƒeÌCÇeô2æ¡ãuhÆ<.w•u®Ë‰eÌšÇåò®÷Zw²6s—“˘9ËçeÌœÇÐÌy¼!ÍœÇѼy¼1͛Ǜмyüaßç>ß§³µ¹ó¸œ]ÆÜy\Î.ó9åÊ2ò÷q9»Œü}\Î.#W‹+Nñ¿›ßm"˜‘*N´®fýŒµY©â$ëDë¶Ö‹s“S—*N¡YãÝv^3GU|ËÚÜòn{kóTÅ©ÖêTÅiT§*N§:Uqõ£ŠoS?º¦þ,?ËÜ<Ç<<ϼ4S]ËGsÓµüü‹x‘rÆòK”3–_¦œ±ü å‹åS¾X~•òÅòkÔÇ–_±•V…ø3m¹ší¸†íù);ð3>ËÏÙ‘kÙ‰_°3×ñ9®§ëQi»ú½õ³Ò¬¿´îƯ¨_VÚÈî^×çØi½ÉZ~«´™=œ×÷Ð÷*m±V¯*m¥œRiÕŸJÛ©îTúšêL¥o(§TJ¥¬›E ­´Ã±¬R)²Êò†jýµyñVˆ+™þß8ø4Dž“ï táQv¥lW [Uÿ!­ªµŒW }Pt¯Ÿ“ó øÌU¯z­šµ¼WàÊ{|æª×œ÷\T½Îê¼AÏBU³kšg ªÙ5ÍìZÕìšfv­jvMKòçåIJjU3lšÌ_ÕÌšff­j^M³?ªšWÓêyßIïSƒ=Š!ÍÜZÍÜšVßùSÎ÷æiöq^ŸN3¿V‹eCêÏi(G¦™¿ªEÙ„ø°?÷›?÷"gßY×,Äõû›ó [ð¶ä!>ÁÃlÅù$ !÷ë¾Þ°nm}„OQn^™" ×ó5n±KdçÎË);w^B9i‰üÜy%åçΫ(?w^b?–Ÿ;¯a„jÒô!þÑ-,È­Là6¢¾>x¸\±‘#hn˜^Øù¯­åìÌæ‡éE¬åîÁ£¬Ó¿OQëTëÑÖéßï^ë¼ò÷ôbÜÉâÜÅ”»ñþôŸ[Òú;–ânÞÏ=,ͽ,Ã},ËïC\ÖwC45™ïÑõøª]ˆ{é8Ûó;ðd¥eâIO˜õ¦²§ñINgkÎàS|Û,ØÀH|Îúië™T·î}‡êÕ½³èÙ½Wš¤&Ýû^éÿ=ÙIêѽ³Ùsø,õª }¯óÖ­õ¬ ¬ÿ´îd=9ŸÏQïºÐØë¬í¡{Íæ“ì¡{Í哺q!Ÿ§v¡‰÷ýeÝÝÚ\>ɾ¹÷£[.)ÄŸ8ÅÚ4—–«Csi¹ºü=„Y‹C¤\úºžµù´ÜCüÃþ~Ìq}Çg½g‰÷˜a˹'\‡Y[ŸáRþá¼ßé„ßiÖ'Öéï_F5µœßí„ZZÎïpB--ç3žPKË=̋޷ÜûÔÜrX«©ååå:ªk—õéìï…¸´rœÍ8‡å½®~\ö»wT7.H5ã²ß¹£¼vù£âôÐìï{oÎ¥¹.û<šß²Ïge¦° ?`U.`µSº^ˆ“]bJ?DóNéú4ï”n@óNé†4ï”nDóNéÆü‰Mx„ó(áÏ|”¿ð1ããü•MyœjÁ±T ޤZpìÕ‚c§©ûjÁ±ß©;C5àØTŽåÓ<Ç6<Ïgø'ÛòíƒcÑ>8v‘öÁ±K|–—Cäî¾·®½kgþ¸k­óÜÞÝOÏíÝìB;µíÂXªmÆQ¸ðº×ÿçuÏï݃”:ë=ù;PÏÉ/—tÖsòËõšürGg½&úûôšüÏQ¯Éß%„ó‡Hhc­çä÷ ¼XÀZ>ì¬÷äïF½'ÿóÔwò›u:ë;ùÍ8w²w±'¿e/ʰù{S†Í߇2lþ)ÃæïK6?ʰùûS†Í?€2lþ”aó¿DY9ÿË!ôP÷ï¨ûéo]µÿŽŒÔÈýºí>4r¿n»ܯÛîC£V¾žôå>Ý>ïëO_îÃy%åAÊ))5)§¤Èrgä””$Ê))2Ü9%E†;3“uùëqe¶3ïRf;óe¶3³éóœ™C½hbÉ)êšyßZv;3—²Û™ytß2ßãx¾c¹íL å¶3Pn;³€rÛ™…”ÛΨ/gäã3Y7óÕÜ—ç¤Ë+ú™[M–Kh=ÈÚµ©¦¦½d=Øú_á|•w©>Å"]^c„CÃaŒåpÆqã9’Qê)]F;Îà+cÕî¿õ€Âñ!îæƒÂQª¹Õò¿õ„ÂÞ÷?µ·³šþ÷÷Ö­Õà™¨öÎLóBá,4/¾‡jná¬4/ÎFu¨pvš ç kQ8']¹h^(œ›æ…Âyh^(œ—æ…Âùhö‰w­ çwlf(\€f†Âif8 ÇMô¬»"Õ©rÜD÷í€7ѳ~À^š¨¾»äuõë€=5Ñ3Àžšè™?`OM”ßz¤†è½rÙ‚Â!R½‹ðY¥<Ùc‡×û[ßk݉÷±3‹ñ9§=¸ }žžŸêêì‚RTg˜›«Ë|=Ò|Y¯ÇNtÞœ\]®ì±Ëú%kóruóro­_æw|…»9(DV¿âzúŒ«gÑg\ý.}ÆÕj}OsÉ#9B8ÚÒZÍïé3®Vó{úŒ«Õóž>ãjõ¼§Ï¸Z=ïé3®VÏ{–òçrúsúùju½§ÏºZ]ïYÚù\Îëï«Õ÷žæìûø‘ÜÎéõ«:g^_ý!Íß«ÍU=Íß«ÍU=ÍÝ«ÍS=ÍÙ«ÍS=+Ò<Õ³ÍQ=+ÓüÔ³ ÍO=eÙÕæ§žrëjóSÏDšŸzV1Yû†¸oî²_ˆ…b²ö§l™?»ãŽ=û»dÔÑ=)ƒŽ–AóȳyjZËž£eÏ]²çè>”%GË’»dÉѲä®3ìÇ?ØŸg9€çhOîR{FÛ‹\¿®ß×o`‰Õûqo7¸ŽKZëç¿ÜO½ÿ÷tƒë:Ðu}T?ÿÅu{TßÿŵÚàút}7¸¾ÓßçºtÏ7¸–ËzŸð‹k¹Á5˜®k:Ð5ÝàštM7¸¦]Ó ®é@×tƒk:Ð5]ô`ˆë°™5¹…µ¸5Ä5ÓJ¡™þÐ4ÓZ@3ý¡…4ÓúfúC‹h¦?$÷5ÓZL3ý¡ôÿÝÎ;!úPCÎb#ʉ5¦œøPÎæÃœÃGø>å\ª‰ ôû›úxýþ¦>Þ@¿¿©7Ðïoêã ôû›úxýþ¦>Þ@¿¿©7Ðïoêã ôû›úxýþ¦>Þ@¿¿)o}ôZˆv|€CYžÃXÃY‘#X‰#Y™£X…£Y•cXc™Èq4'_·OWΧ}ºÒõ»n®tý®Û—+]¿ëöåJ×ïº}¹Òõ»¾‡®ßõ½tý®ï£ëwý{º~×÷ócàRþŸð —ñš9®âŠù­kˆ›{žÝø'Ÿçvç_|2`ÞÚŽ{8–Eº- ñ…ônË©ït[Áf\Éæ4CjA3t¡–4Cz‚fèBúm73t!=·›ºPkš¡ =B¡ŒŽÍÑ…ž¦9ºŒÑÍ]H¶è¦þjKu·P;ª»…ÚSÝ-$ÃtSo É0ÝÔÛB2P¡LŽÕÜBjhTï&Ë2ŸO:¢ô%uC¤ö0ëÓÖÓùÍKÌ—µ‡ó!Žpþwçßá~y÷þ+!v®÷?5“Þÿ”ÙbùÔ©¿×ì–Ã9ï}jÏð]þAsF5¯L.ë³Ö³CìÌ“!ÚÌÏœé³4›b?©¢]ìß•fÌFjÞJ3f£<Î?è¼|þIMÊߟԢœþIåôOjSNÿ¤/².åóOêñ2¢ÏüI}þÍ4³—-ãklÄëlÌl›|˜·BLCÏÁ-5±¡çÀ¸ÓÐ3p;žŒa/Ʋ7ãØ‡ñ|‘Qª©·3PM½íþ6TSo»7 ÕÓÛ™9Yøõ߆/3+e–ÛÙ(«ÜVÊ(·sPF¹3ÄÊ›ñFéØÐ–¶c Û3–ÇgiÞŸ*—xߺ£u”˜™‘Ï1»03»2 »ñ>ϬòØÛŽ»;ÎÆè³ÝTÃô ˜›j˜só.=s·D =(æV„2Å­Ê·b)SÜŠã Æs%£\Å \ÍŒ\ÃLü4„·d«â²á­ÌÖŸ1 ?ç=4KÝÊÊ/˜ë˜ë™ƒ˜“_2¿ 1y&†¸Ý…CL…ÿBÜoïð.g…˜ŠÆ‹ßÞe„òZÅÎf,ç0ŽòYEyî7ù¬¢<÷›|VQŽûM>«(¿ý&ŸU”ß~“Ï*Êo¿-‘e3B\7²ñÿBø)—õÛÖ Ö­s[Ï´.DÙ£›ì±Löè&{,“=ºÉËdnrÑ2™£[úßÙ+st“9–é™ÝôÌezf7™c™^ÙMæX¦7vÓW>" Ý·Å)!Úé ~ÀV\À'¹­ù!Ÿâ">ÍØ†‹ùŒïó´ï“þ¿‘kÃôÿíÛçÛòc¶ãR¶ç'ìÀe|–Ë)Û-^ÁN\Iµhñ*Êt+ŸñýÔÅ«­»p »òSvãg|žŸS¶[¼–²Üâ/([ø5Ä—ÅãÍÓËSÇÓ|¿ñ þÎ7y†ãù'ð,'ò'ñ<'óONá¾Å¿8•9—8—9ƒWø6ÿæL^¥çlÀ5zÎÈ eÞUŸ¯:–ÊxÖ†ùŒ‰BxÉü‘¡^b`$ƒ9j˜Ïœè3 ó™}¦a>s¢Ï4ÌgNô™†ù̉>Ó0Ÿ9Ñgæ3'úLÃ|æDŸi˜Ïœè3 ó™}¦a>s¢Ï4ÌgNô™†ù̉>Ó0Ÿ9ѳ?ÌgN|/DÎyÖz¶ÎyÖz¶ÎyÖÊa­Û„`Ö ­=f½È9ÏÞBÏZë¶ÖïZ{Ê_ç<ƒ å¯.GÌB]x”]ù3»ñÊíÕô¿´·­Ywç¯|ÇÙƒrgA¹³‹ÜY°åÍ‚½ý¹§ý¹™ÖrgA¹³‹ÜYPîì"w”;»ÈåÎ.rgA¹SŸ‰+(wê+qÓgA¹³`ú hî-ø2/ðþEs€¾Wp0/q/óU^a2ÿæk¼Ê¡¼Æaáÿÿ¥¢j®QÚ;Î]wn8opor$o1}V¼ÍѼÃ1ü‡cù/ÇQ}*ø:Õ§‚o„ˆ±'®à›TŸ ާúTpBˆ}¥Zˆ>p,„3†Èƒ²á+‰Ö¿²:SŸ}àD¥¾ñ•j­¿>p’úë§œÛB¹½!¶‰ºùÏzª›ÿl ºùÏ—T7ÿùй¹‘y¸)„!rT–?CÌœ:!>ý¿6d¥õëºÖ2åœz”)ç‘W»>GyµkÊ«]eíŒýCt«Ï˜q}ÆŒé3f|‰>cÆ—©÷4»¢qò~³;”÷›ýCy¿™û'ï7s_ãÜßfîkœûÛÜýŒ“÷›»—qò~s÷2Î=mî^ƹ§Í㸂ñ\É(W…å˜ã ŽW3#×0? ‘¯}ž×\˯]³×\˯]³×ÌVY“ÍÂYlB™'ëkŽ=#Y‡2kˆ¼gþjùm¹ô·¾f˜Ržµ¾f˜RƒBì_Bô£»¬¢‹e·¬²Yj¥>eù…êSú}xJ}Ê¢^=¥.eQ¯žR—²œ ÜŸEzJîÏrŠr–Ó”û³üF¹?Ëï”û³˜UŸ’û³¨'OÉýY<›OÉýYÌOÉüYÌOÉüéõjƱÿ¸<0C~x\˜!?<.Ì—fÈË3ä‡ÇõÞzóãzï ½øq½w†^ü¸Þ;C/~\ï¡?®÷ÎЋ×{gèÅë½3ôâÇõÞzñãzï ½øq=+-{ˆ¡w¦å ž™–“znZ.ÎfnÎa¾Ï¼œË|œÇü”7‡{Žª›I†{Žª›I†{Žª›I†{~ª›I†{~ª›^–)3˜‡{Žª›M†{Žª›M†{Žª›M†{Žª›M†{Žª›M†{Žª›M†{Žª{Ƈ{Žª«ƒÃ=GÕÕÁសêòÿpÏMu³ÉpÏMõœôÜTÏEÏMuÏW†‡{fªç¡g¦z^zfªç£g¦z~zfª1£“C|­ûø‹q(‹sK„Pø¨ãáŽeÂ?;áXî(l_.7˜±c–›ÌØáµ-!’í?ksY;Õƒ–› ÌÛ1Ëõ8³vxm«÷˜ï–ëufî˜åz™;¼¶-D´œ˜åzžÙ;¼¶Ý:¯é/×Íâ1Ëõ@³xÌò¼ÜÈ|ÜÄüÔŸ^ûÆû݋嬷° ·2éÿ’žÝͳ»Ü^èæÙ]n/tóì.·ºyv—Û Ý<»Ëí…nžÝåöB73ðr{¡›x¹½ÐÍ ¼Ü^èf^n/t3/·º™ÙËÊËí‡nW?êØžèfnS)D³þÈÊü‰Ux„Uy”>WÖŸClU{ãœ^TÕÞ8'cTµ7ÎM¤½qnísöB»B!>‡«]aº.íŠÐuiW”®K»{¹Io}Bo½ÍV¼Ã'ù[ó_>Åÿø4ÕÊþmB´´ZÙÿšsû·¥9·;šsû·§9·ª¥ýŸ¥ZÚ¿#Í·ý;Q íß™jhÿ稆öïB5´¿lQZ í/7”VCû?O5´wª¡ý_ Ú¿ÕÐþ=™‹½˜›½©föïC5³ÿ‹T3û÷õÕÏW_z]éü¾ ø*èK­,;1ÄŸPãËNbb³¦‡H¹ï­'[«Åe§P­-ûäTÖô¾Þ·Ÿ²r¹ÎOs¾§3‰3X›o³g².ßa=ÎâC|—õCl©†!þgÏU©Fô\•jLÏU©&ü+DÚoq¹’¸…µC¨¼'='TÞKý®ýVçëpër;ëñk>ÄoXŸ©lÀlÈ46âN6æ.6á·|˜ßñîæ£ÜÃǸ—s›ò{6ã~6ç¶àÿØ’ù`+â“<ÌÖü‘æãö?Ñ|ÛÞœ’Ë|ÛÞœ’Ë\ÚÞœ’«-e¨öf“\òQ.3îÔŸBô9lêÚSR¯èêú'T¡ëŸP•®B5ºþ ‰týª‡°Býoð¿»`Oˆ¶“!ì¥ ¹`eÈßs”÷™´Þo-K.8@YrÁÿ86„2éæ ãqŽeâŸ\ÿé®ÓO®ÿôÇCx¢G§[»Ó]¯ŸÜ‡éÍl(³ÕOîÅt×ì'÷bºkv^¶[(ã—íÊxçe»…„˜Å†øŽÇX“¿²3‰æ‰äójh9ëÚÖ'ièxŠòGù±üßQí],ÿw”ÿËÿÏPîï¨ÖM“aMá~À¿¹€W¹×( N»NYpÚ Ê‚ÓnRœv‹²à4™ñQYpšÌø¨,8Mf|Tœ&3>º,„<ÿ†ÈñZ!îÝ­~ý¹¾gáæzn áçoëõ=7_ 1wíÍuîÙ]{r]uÚ“ëjО\÷ íÉu5i®«E{p]=ëjÓ3°®=ëêÒ3°®=ëÌôwíÁuõù„Pìdz7ä6r®‡ã÷7æ\6á<ê©wçóïéé8Åñ£Ž{9þÀ± ~wçB6å‡tï‹õv¼ÈqóÛR&ŠÚÿ-e¢¨ýß²1íÿ–M¨¯´|˜úJËG¨¯´|”—ù¯ðqê'-›òjs÷„Hõ´e3ëklÎëlÁlɛԢ·¨Dõƒ–ú@T?h©Dõƒ–ú@T?h©Dõƒ–ú@T?h©ˆÈ¡¤ÚßR/È '´Ô 2è -õ‚ éçõ‚ qÞ£/´Ô2è -õƒ Qçä ’úCK}!ƒoTRþÉ3)Äí.ÂÉ,Ê)¼—oQÉ3•²Hži”EòLg Î`I¾ÍRœÉûùKsË„Èâ”×é~~ÀÒ\Àôó Y–²œ°á™.ïT÷³†Ë;éÏÄËEd¶g­ežê~æpy'ýï›x¹¨ó­GZûÙÃGñ~9H >Ú±¦YXf>Æq™ÛcpˆÞ+{÷Bٻǫ,bïšQÖÙcwÍ(ë> ‘3q!.ýß?Ï·åTfà4f¤^u&õ¢3™©ÉB5íÌ=T³Îd¥l{&eÛ‰•B\ƒ/X™ëX…ëY•X_2‘_±:7²ÍûõZ‡pÀÏ›ø µ\Uï)k?wbMk9o¢}Ý@–›˜DÙmbmn÷¾§½ÏçšXÇZv›X—2ÙÄzLåCÜÁúLcîdCî¢y®Á·lÌïBø¸XˆÔyNù(¢ÞÇ¢ÜÍ{¹‡÷q/‹q‹S_ŸV‚ûCLÇ !>Ïw¬ÈÝ!ôYÂ]û¦,z÷šó•œ×cÍÂÏjóZ³f_Ï{͚}#4köq®ŸãaŽc÷÷5Àz¸uG0ž#å(ÊC…ô÷öw!ýý€ý]èaÚß]·†hB/ncú¿×½éÿ>÷×Lÿ÷·¿¡LÓ5•ýBÌ¢R!¾ÃnÞOŸ7YɪÆ/*m½—e¸eù=ËÑï¿è`yþ®G‡ƒ!,_"õÕ¡yrÔÓ…¬WX§ÿÝŠòÔÓfÉy}YÄù•Χÿ]‹«˜þw,ös¾¨õjëô¿k±¿õ½Ök¬Õ«y²×Ó÷éžýy{æç½D{k¹¿¾Œ\Æ~˜÷²s%ø KrÍË?óÙyùçTçæÙGOÛgË×Z»oË=ÓõÕ¹yöÕÓöÜrÏv}õnžýõtkÏxýôŒ×¿IÏxý[ôŒ×¿MÏxý;ÜDuo^²?W–¯±‡òÌê±%Í&G¿¤™äèW4ƒÝH3ÈQÙº¤äèfšAŽn¡äèVš=Žš5Jš=Žn§Ùãè×”Ù~Â;+|­ôåš–ýÓ×_®mIYþh*eù£;B(®N””ç¦Qž?º“÷qWYdÙ’ÅËâ´7J– ½Q²$í’ž™£öFIÏÌQ{£¤gåè÷¾¯Þ^Òórt?=/G=Û3‡ød³Üv3]òg4Ó%N³\²ùm»9.ù šã’ÍmÛÍoÉæ¶Q'B$¯ûIýÞîz%›ÝFtNMÝîº%›M¶»nÉ_9ÊyÏÁ¨ÓT[·»ŽÉf•í®c²n»ë˜¼™®c²Ùm»ë˜lvÛî:&o£ë˜¼®cò×t½’¿¡ë•œJ×*y]«ä4ºVÉ;é:%ï¢ë”ü-]§d5a»ë”¬&ŒúÍçÑW¶»^ÉöÖ(™,¯¿ÝuK–»GÉfyõ™í®_²=¶ÝµK¶Ç¶»vÉöØv{-9ýÚkÉöØv{-ù íµä¨ö$¢Z“|˜•ù#«ð'VåV£y{{"ÍÚÛ«Óœ½½åÁíra²<¸].L–·Ë…Éòà¨?|>ýo»|˜,n— “åÁíra²<¸].LV+¶Ë…Éòàv¹0YÜ.&Ë›ÛåÂä³4›$Ÿ£ÙDƌٮv%ÿIµ+ùÕ®dÏé³ñp{p‡Ùxøõ)Ã?Ø…2üƒ]C¨í¹ØwÃZ–°áó”çìÎ_)<Î<Ážk­öäï䫳õ9ë²^¯èu7γ™K?ÞµÍëÏùr­®ë×+ôéëúõŠ÷˜³™ƒsBx&oçõÜgòQO}&?Û°ŸaAš“®çôþ÷CÈ{Íq.Çs™›ó˜‡ó™—)ÌÇ|óyB$Äïÿ$„™%C¤L7–âóÎÇ8¿Œ±\î¼U¦»uœõ Æs%£\åuùªÌ Ö¬W3#×0?¥º²ÿ3ª+û?§º²-Õ•ý_P]Ù¿ŽêÊþõ!6û§!>­?ã³üœ¹–Bìλ!:J­U££ÔÚ]ªµ»b¨ÖZ»+Žß0žjê®(w0ÓBx@ڕѱšº+w13ÕÓ]Y¨>ôx6Äý—)וó®éue¼kp,Ës+ðuVä¬Ä7Y9„9™C¤âcÖã­«p«r"Õñºæžk‰®¥9¸Ì;2‚ºs`Ÿµy¸Ì,kuç€LSHÝ9 f‡#!~½Ytê°)á9ž:œúR8êü8þÌ×ù ßà1šÃ¯4;‡ãœÀœÈ“œÄSœÌÓœBæwÿæø-þΩ<ÃiüƒÓy–3xŽéÿ®ÂyÎäŸô»„ ô;„¿˜þý.ò=^âl^æ^aú¿/ñ7çò*ç…ØTsÉðì4— ÏAsÉðœ4— ÏE3ÉðÜ4“ ÏC3Éð¼4“ ÏGóÈðü4 /@sÈð‚ìÌ>ÇBìB¹'µ+åžlO9îæ¸(Ÿ§ç%µ;e—Ô(פö`qö¤,“Ú‹²Ljo–¢l5\ý(òRˆû!ž/3ÊWh*2ˆ9˜™8„™ù*³Pýáž“ø^ˆû³2g³JÍÀ‰sWulN|ßq5Îebˆ]âÞ®ÌOX…Ëè½Oèý¿eç~æ0Ÿïµå^«æØ¹<Ìé/9·Â¹Ä[ý‰ÿ§™±z+š«?I3cõÖ”ª?E3ãÒñ!Ú%‰X;„•²`ÃK”÷š]—zÆ–NòZú¿7T×y¯aú?Â*Ïn#5wÕª±ÌÉeš„Ð_–ŽmLY:Ö >à#çÍàó‘ûˆŸýŸŸýÈÓ´7iãëÇwCü]¿F]=ùêÿì=ù½b}ưózôÕƒÔ£¯þà|¬ó )ÃWl伞}õµŸ_±±µÞ}õ0õî«?Rï¾úSˆm¬7Þ‘ëëwôÄÆzã‹r£Ì>oŽ ù¸œ+ë”Ñ_ʤçÛ÷kʹlFÏö¼ùŽÍëO·±ÝÓB´Èîä@îâK4/znb»›=7±Ýws÷p0÷r÷ñÕJÕtü½ãäSßsp³Qp“BäÜ—!na#~ÅÆÜÈ&Üć¹™˜/šó‡ð2_å&óo¾Æ«ÊkT‡_§{¹øÝËÅ79’·8Š·9šw8†ÿp,ÿå8³x-Çÿ9~wùFˆ,Ѫ:½ÉÇ3†ˉ4;wšD³s§É4;w2K/1;w2K/1;w2K/1;w2K/1;w2K/1;w2Û.1;w2Ó.Ñ‹;™Y—èÅÌÒKôâNfé%zq'=z‰ÛI^¢¿vÒ£—è¯æPíô>õ×Núîýµ“¾»$?õÝ%¨ï.)ȘÀ,Ä…,ÌY„‹X”Qþéd¾["ÿtZBù§ÓÇ”:- ±Ÿ¢/öçF1/¨½E'Qí-:™joÑ)T{‹¾Eµ·èTª½E§Qí-:joÑT{‹¾Mµ·èLª½Eßá5Îâu¾Ë|79;„¾5B$2Èú–õÞæû¼Ã¹ü‡óø/çó?¦Ð-ú¾êÑ,º€²HÑ…”=Š~¨±Ën=䢋(wýˆrGÑÅ”;Š. ±§/†è\Ùj[Ëyú­÷sˆnô ÇýÂ-<ÆôןðúTë_­å¯m­¬§Y·ÞÎüš'ù O1•§¹ƒ¿1¿s'Ïpÿà·!’â^¶q/SÜË6îeŠ{ÙÆ½Lq/Û¸—)îe÷2Žlã^¦¸—mÜË÷²ÍRʲm>¡,ÛfY¯ì ‘LzÂøž!¾~vö¢ZýŠŸ•)¿£1¾·ó9­w[ëãûXç²Þc­gŒÑ:·õ^ë¬Ö}­ó°ó²?óqós ð% 1yí¥Ýîu^{i÷lÚK»Ýã¼öÒn÷8¯½´Û=Îk/ívóÚK»Ýã¼öÒn÷8¯½´Û=Îk/ívóÚK»Ýã¼öÒîi/ívóÚK»? AÍ WÖreú¼öÖn÷;¯½µ{ í­ÝÓÞÚ½”öÖîOhoí^F{k·¼ªV…+ë˜Lsˆç &¯{´{Ý£Ý+CäMëzîÙ›Öõܳ7ݳzîÙ›îY=÷ìM÷¬ÞâêšÜC3à¬Î»‡õÜÃ7ÝÃzîá›îa=÷ðM÷°ž{ø¦{XoÍ#õ–ÓþK¹«B;Çÿ9–ß/™a>>b/§ÿ«âÿ£æãƒ!f¬¼^{åõÚ¯S^¯ýåõÚoR^¯=žòzí ”×kO¤¼^[ý+«×VÿÇÊêµÕÿ±²zí·BÈð’cy½¶0V^¯­ŒÕ3jëcõŒÚzÀX=£¶0VϨ­ŒÕ3jëcõŒÚzÀX=£¶£v~Y˜ÓY„3X”oó^Îä}|‡Å8‹fî˜wY‚²ì—fíYöËR”c¿”‘cdØ/ÍÔ12ì—e8fè˜ù,Çzfz¬ Ñ{ÛóSvw agºúz¦«›9m Ñ·Ì&‡¶ÓlrèkšM}C³É¡TšMí Ï³4D¿ÃO86Ä^´^2Ì=KÿïÄx–s¡g9§Y g9ç½!Ì—Kªš'Ûy¦sš Úy¦sš Úy¦sš Úy¦sš Úy¦sÚ#å¿ñ§_ä7”˧²wP//ŸFù¯üNÊåwQþ+ÿ-å¿òßQþ+¿›ò_ù=”ÿÊï¥üW~_å÷Læ~¾Æbs›¯¿U‹ë%ÅÍO¹sXo`N~É\üйi–̇›˜—›Cäßæ!îóÃlÁÙ’?ñ a+å“ü™­ù Ÿâ1>Í_Ch»%„?ÿ£Þüç]çÛ8œÏð„óêÏ…ôÿÙÿvFø5e÷Ûzý¤õ7Ö±L¥Ìþo;çO±=O³ã³üy†ø;ó,Ÿã9váyv¥œüo7^àóüËÏQ3.ÄS½¸`ù·»óù/±/³'¯°ÿö~õãBëÞÖWÙ‡×ø"¯³/o°o²?oqos Õ§ÍŽŸ«Oÿš?WŸþ5;~®æükvü<ýú NÿŸ5‡˜YjB‹ ! ‘ñ³Œ¡ŒŸe,eü,òõ?‹š2KÍh¡fÌR3Z¨³ÔŒjÆ,5£…š1KÍh¡ÌR/Z¨³ÎúR+Z¤ÿýOÓC¨órßëUcë…¸¤T>D×(ò”ãúŽÓØ€;ÙòÌØF”_Æ6¦ü2¶ å–±S^ûå”±rŸŸ¡'}¯Ž}ÌÚŒ:öqî1OŒ ñÕ˜'^§óÄTcžx“f­„úŽÇ;6s%41­[„øÌ²%=T½ž á_Ù¥µ¹6ó_4×f¾Hsmfój¯Ž^—iZ›o3_¦3³{º¥Nˆü5ëòúÝûÝ·øÝï ß{°ß{‹ß{°ß{‹ß{°ß{‹ß{°ß{‹ß{°ß{‹ß{°ß{‹ß{°ß{‹ß{°ß{‹ß{ð>ú}û}·ø}ïgS`3þöààƒ!.CõÝ’?„²V†Že¡ RÊP“ !2Ôþ«z$×7ì»ÇÚ>¬jµ«þì¼L³/k9õöôk¾/›×ìŪ¿XëWû²{M¯wÝþ^³?«³>`­ÿ'™­÷É›I)gF¼¿¯÷Ù§Uíó$³õ¾<ÖögUû{¨ýYõíϪ'iVµo‡ÚŸUO‡Øã9Cô]û»|w_/„°¡Cˆ4Ÿã|.çO17Óß—‡¿1/g>ža~þÁ<Ë‚<Çž±?W Ñ™1¬ÆX&2Ž®åÌxºŽ3£tgf ë83cëÍÍYײ–¿×››¶N²Îlmlö£umë,¬Ã{X—®ïzsb³Ÿ¬ëYgãCtm³ýä5³c³#ÎÕw.е]o–lv”fÉfîÕz³d3÷e½Y²™{°Þ,ÙÌ5^o–lvœ²l3µs½,ÛÌ5\/Ë6;EY¶Ùiš?š¹fö‡h™a<ÀáüGð GòŽâ!ŽæaŽáÔø=q<Î×ë!¶X–ÿã缇ŠPúß±SV*–Õú kóaÙA|òýæDYIýØì}Ozß•ò!ºô.+„è'a%ºWW*Ó½ºR…qú±?[!ýϹ—Ÿ¸gWÜËO¢Îé‡WÜÏOÜ·+îç'é~~â~UÐ#¯¸§Ÿ¸WeÚ†˜ÝrÍ89f·\3Î|³[®g¾Ùm7'„{wl÷~ÕÌiòvW¹7á9aeWþÌnü…éÿû3Gš[í5Êå]9ïy®6ÔúKÊi_q87r7q$7sõÇj£©?VSÇÓôÃjêxš~XMOÓCOǯ;Ö «½A½°Ú›T‡«§^UM/HÓƒªMä.N¢üºÿ­ÐÚóçü¾ÿo‡Èãöô3)‹îŸêkš÷<åëé{r@ˆÎi@YNCÊúsÙ£îÿIyNã[õî±9?b .fK.áü˜­¸”Oò¶æ2_Ë«·çüÌoä¬oî Ñ¡ž¿¡?†˜fÉ#fÆfÉ#fÆfÉ#Ñ,yÄŒXÂ,yÄŒXÂ,yÄŒXÂìxÄŒXÂìxÄŒXÂìxÄŒXÂìxd9ÕË#æÁêå‘•4;YEsá‘Õ4YCsá‘Oi.<òÍ…G>§9ðÈZš˜ËŽšÿf˜ÿŽšÿf¤ÿ{OjÿQ3à 3àQ3à 3àQ3àŒ•!<1Ï×üNÛק壣fÂf£fÂf£fÂf£fÂúìQ3áŒÏ|O}䨹p†¹ð¨¹p†¹ð¨¹pFúÏ7Îðœ5ÎXb/ì Ñ>à>.à÷\Hûÿ£iÿ´ˆöÿGÑþÿh1íÿ–Ðþÿècºþ-¥ýÿÑ'ü‰îÕ5à£å<Êü™+ù WñWóW¦ÿ½ _†ø¤.üŠ]¹‘ݸ‰Ïs3»s _àVöà6¦ÿwZ·³eè$3é:©eè¤)C'õ5ç¤ÿ9:©åè$¹ºw¦-ö©9Áó×;³ãϘ…êVï{¸6Ä>g®,`N}Î\YÀœúœ¹²€9õ¹1| „½>Q¯xn¬µyõ%¿9ÏÿK~ÿroÐï_îMúý˧߿ÜúýËMäqNâ NæINá)¾b×è]=Í”)…h›[êT}Çûjjm®ls'„"BÌf·zÓWt,“Õ3¿½a~«7ùJŽÍpõÌpo˜áê™áÞPëê™sFû¾5¯…p¿:9úqÇ×é{×¼Áf”?OÞqsFñ&GóÇð6ÇòÇñ¾Îùÿ£Yèä]Žm'nÎF8‘1œÄXNf§0žo1Ê©ÌÀiÌÈéÌÄÌL5êTªQ§î¡ßih·­¦Ÿ}žÙÙf›EæÁEõC¤æ_zÚМ7ï íÁ\ìÉÜìžÈü!&Næþê.enå:&NæÞ¡Ì½1†CËWÇdÆó5F9”8Œ9œ™8‚™9’Y8Š÷p4³Ò,º1Ç2;Ç1_gN¾Á\|“¹9žy8y9‘ù8‰é¿Çdàtƒì©¸·'p* Ñ\¿Ñ\g®ßh®3×oT‡—ÎÑ.j{µ¡´>µ°EˆÔðìöW#JëW [Z{†û«¥e†þjEi™¡¿ZQZßZø„×§Úï;gß”Gû¦´þUj®¯yÖöOi}¬Ô|ÇöPi½¬TŠcû¨´~Vê_êXû©´¾VJ-ëoO•¶·úÛS¥Í1¥’BÜÏûX›ßSfÿYv7ÃiüƒÓy–3xŽoóþÿ»PŸÞæüpç;sŸ£~µ¹ õ«Í]©_mîFýj³ºM½~Z^LÿûZ¢zÖæî”Ù7¿À×Ù#Än}'D_•Ѷ΢Œ¶õ]ºÇ[ߣû¹Õ¾UFÛ:‡îãÖ÷ùçRFÛ:m8ŸÏ0…mùÝÓ­ Øž i–{Cߨ§Ô•Id0/ös,—Õcú…ø/ó³? p r ø ñe±›}ÖÁ>ëfŸu°ÏºÙgì³nöYû¬›}ÖÁ>ëfŸuðÓ!&Þ¾Ù”LûfÓk´o6 ¥}³ií›M2y¾ô¿ëé7¹a2çžá[üƒS©'M£þ›¤ÿŽÑ“fPïMÒ{Çè½I3Cì„èÔ;4ãLý‡fœ©ÿÒŒ3õ?=f¥ã: ]EÏþ¢¦ú•º4tµµgQ3kõièkÏð¢æÖ“©þÖœBu·æ[T_kªSC?õ>Ïæ¢VÖêÕÐϬ;ñsvæZ>Ç/Ø…ëØ•ëÙø|ˆíªÎ'˜ »ªï êý=µä|ó×óØIs×óØIs×y褙kŽ9줙kŽÙù¤™kŽì¤ykŽûzÒ ='ÍÎs2ÓÌ<ÇŒ|Ò¬<ÇŒ|Ò¬<'+ÍÊsôò“fä9zùI3òýnvÎÿÄzæâææ—Ì™›˜Ÿæ¨!rJ–¯­ XoaAne·±·³0ÓßW„ß°(Sy/w„ØM²× ù`ÓÊ‹›þ¡¼¸é_~Áÿ¸Žw)wûÑÑAá—ŒáWŒ¥´9ŽzÄæxê ›£Ü ÜÊŒÜF™uÐvÊ«ƒ¾¦¼:èÊ«ƒR™•>ßælLcvîdîbNšõ6ç¢\¹97w3÷„ÈÁ–!nÒ!>ÁÃlÅù$bkáS<ʧù3Ûð—óqÛßùn áµ’!’M–ÿ¸]ˆNFú¸=Óÿw{¥œW‹^»Ÿ²ýÇœ—™>~–2ÓÇ)3}܉2ÓÇ)3}üÕ‡×Jûs/° åú»8/C}Ü•ž©!žÏJòƹ£’¼1D¾|([>¸›²åƒ{œ—C*ÉCdJ2ûÙ£’Ì>Dæ¨$³‘7*ÉìCdJòÁ£’}8D^¨dÿ ‘*ÉCä…JòÁy¡’|0D^¨dß ‘*ÙoCä…JòÁy¡’zÙ,¶Í3—¹*=s™«Ñ3—9‘ž¹ÌÕéžV8âóý+œ¦ï_AýùÍ÷¯ þü¦ÞTÿ)Ä]È#|‰Gù2æ+ü…ƒxŒƒù+‡ð8_å ª}ÕORí«"“ž•«È¤geÆ*2éÙ¼!tK áÆ1kÙô¬ìXE8+;V‘MÏÊŽUdÓ³)›ž•«È¦gåÆ*²éÙÂ!Ä«‰UäÓ³E|/y­ÛßOᄀoÏ«' ±­dŸLïY?d­Æ´’2É@­d Lsœ—ÛýÜØV²P&y±•”i.¯r^ˆÙðOˆ¸(„úu®óÖÿZ›_ó— ñ{Ýëü¥¸—÷sKóûÞÖçKŸ³.c½Ÿey „ÒCä“ò‰LíŒã‚Žå‚òjë³ÿp?«YíŽËN;ŠZË;±ã>.ñz¯ËT;ŠYË;ŠSÎØQ‚Ÿx½®×e­%­}Ž¥¸<Ä´âs¸Žm‡³P½÷…pWæo;ÂÚõìísß•ýÛŽ´vM{˲wÍ7½}î»f€¶£œ/ÊѼ—cxDzDZ8_g ¾Á’|“¥|Ÿÿù>fˆ¶ã­ïç–æD–á$–åd–ã>À·XžSY!Dn- qkªs9kpäJÖä*Ö á9(ýßM»µÚ:‰kX›Ÿ²?c]~NÏË­µôœÜú‚õýyùéÏôŸ³Îº׳!7°¿dc~Å&Üȇ¹‰p3å>Æ­|œòÕ½÷Övê¹·¾¦^{ëêµ·R)Õ~ Ä_9Èòüx(„Ù²_…+Ö­³deþbçï3¿ë£ej8þÞñ(î§Ú5ÿÇ„õÇÿs<6Äô¶ÿ‹«OK·˜»^ aå×!ÒHïÝa^¡§î0¯Pÿv4§žº£õÔ-©§îx‚zêŽVÔSw<Éì!.65D¿ZÂü˜i\Êü„»¸,Įԋ»Ë¶«<óô²•zrwù}¥žÜÝï¹²>eܲÃ|ÉLeGøòû•5/”íËïSV.;Î×ë!æ|Ó¿ð*›ñ›ó:[ð[ò&Ÿà-¶âí&ņȽ ÇFÎ?éü¶æ?|Šÿ†pß.ÇO;þÏñ·ŽÛ86³Ÿ&¤ÿÕè1çõªÍìçõ§õŸóúÓ‡úÏyýèCýç¼~ô¡þs^?úPÿ9¯}hf?¯}¨ßœ×>4³Ÿ×>4³Ÿ×>t½ww ÑqÅBXk–yÌ,³»«uqvc çÍ2£æ1up­æ±ã^Þë%Ù¥øïgÚÇ–†øYf§ñÙC¤p ëO¬[sŸârÊ´ÇV° Wò®b[®f;®a{~ÊüŒräø¾oKëÏ­åÅñ9­Ÿ°^k݉_°3×ñ9®gn`W~IýþØW|žÙ=Ä&yß¹2Éû®È•IÞwÅûò˜9¾sóô û›§'o³ï„Щ]WÞ³îmí¾æéÃù"ÿc_ºŸyú…8m=öcY´óIÊ¢OQí|:Ä‘a¦+Ãü2ÌÁß)ÃØX7Ä¿ìón¬GŸwãC4«Ž,"¹»°]÷õ×§FÊ[¹]× ¬Ï²!Ͱ#å­ÜîÇÆFÖfÙ‘rWn¹kcck¿ÏHy*·<5RžÊ-Omlâ¼wdYëž,Ç^Î?ì¼™wäÖ½­±¾ÈGéwÜøýާßq£ýý²ßq£ýý²ßq£ýýòµ»Ë¼?ú‘ÒÿÜÕ᲎o:~ÐkæþÑZß²®éµrÎMpNžÌmfþʽxé×[S.¿(çÖ”Ë/ʹ5åò‹rnÍû¸+DÚ• q9>dY.b9êÑí Ý®<—°?!¤ÿY3ZW´Ö£ÛUâ'¬L½¹Ì–C¶h'³åXA™-ÇJÊl9VQf˱š5¸†ú\»šŽõ°æ„2ï„øãõ8‹…0«wˆ”[jý®µ6«µL0ëE. !KcÇ}/g?®`®ä®â@®æK\ã{½ç{5àl6ä6âûl̹lÂy|˜óùSø(? þ7$wˆ«8‡yø~µËCìÈÃìÄÙ™f ÏѬS¡ Í:ºÒì9ÈœSAͬ Æ7ÿ¿kÞ?nþw3ÍÿïnÑËä·ÂîÍxù­°{r<¿óf°ãh;^Û½.×v¯ÆËù…Ý‹Lêç}C} ±E·ø\ƒ™úuýºÈŸÖ®ÃÌ…Ö'¬/XÏâ_|—ù^ˆ­ÒÇ׋!ÞLŸ>OeqMßý=DÊËÚ%r„Ø„m!þ@on§÷&|Íù û2•ý¸ƒý™ÆÜÉÜÅ—ø-=· ßQnLØÍAÜÃÁÜKsMÂ>¾Êï™Ìý|Íïá•1×&°ÊÿQ–Ë’×ñAÇæ´„h>K8DóXÂaÊ­ ?RnMø‰fî„#Ë£4c'üL3vÂ/”aŽÑŒð+ÍØ ÇiÆN8A3öì­!ÚʳSú7ÇÛÛ£Ãj…¸j[™Äm¬Íí¬CYxX]~ÃzLåCÜÁúLcîdCêÃñ[6æwlBõkØÃÔßsºVK>‘!:pŸårv 1/úÜ%GÓç.9†>wIýÅ“G³{I÷E³{É7BèçQ^”áK¾iíYyßÚ,_r<Ïp‚óžýµ¡Ÿg?FmèçÙ™OÏ~LŠ÷ýá}jN?{ F]xñ¬õ$žãdçí‰uáEÏjÉ)ôŒ–ô÷ëæ¼úÐïy~è¼gµäTëîÖêÄ‹žÙ’æô=³%§óÕ~/x]Ýè׃êF¿ž\âõË^W'úõ²þØúе½ÑO­ŽQG^üÛÚÞ觯Å|b}ÕZ}è§¿Åèýô¶µ£Ÿš£^ôS“cÔ‹~jrŒzñâ5ï—×ùžóîÌjëÖjí‹79Çy½/f _æ§Îßr>ýºÞæ\Þá<þC5öÅ™~ÿcúõ»K×K)‹/™~}^ñ}>³ŽXbkÔ ñ<ƒ5d± ¿S»p†²Ø…?({]8K™ëÂ9Ê\d¬÷6ÛßÿZË\d¬÷¶Xÿg-s]­²ØƆø¿–3Ž+O=ñÁ(W1õÂ3R0?efÊfá缇k™•_0×1;ׇØÔ$_µ}Õ Ña×|]÷¥7Ý£¿}ãYÌáy¿Goûf¼‹ð¿S÷Ãw­.Ñ^Š}Çü7„³øjˆI1ß¶9Hsm›h®msˆæÚ6‡Y…?²*b5a"²:f þÂyŒ5ù+kñ8“x‚µy’îE›St/ÚÈó)îEù8Žhó{¯Ê_÷È£)îI¹>Å=i#×§¸'mäá÷¢<Ÿâ´‘çSäÜ6R®m#çȳmdøy¶Mú÷‘gÛȵ)òl¹6Ežm#צÿ}mäÚô¿Ó¢\›b^mc~M1¯¶‘ÛSÌ«m̯)æÕ67Clïq!Z¼_gE¾ÁJ”ƒ‹W¦Ì[¼ åÜâU9‘Õ8‰‰œÌêœÂ|‹²r𤋮Éi¬Åét¯{Ï ûÝûmÖ ážŽg:®K÷²¸ÚÛ½,þߥlSG=¾ª×Q×®z²È³ÿ ‘ŠuœS㮪ÍuÔ¸«jó˜B´Öa–ç¬ÀŸX‘GX‰GCìɯCtNú¿k`/ÕU#Þˆ¡Úð†ç¾®šð†ç¾®lñ†ç¾®ZðJÛÉhÏ¿áù¯»‚žÿº+éù¯«&¼áù¯«¼áù¯»†žÿºöüžÿºöìžÿºŸÓó_w-=ÿu¿`®cN®g._¹›Gë~bûý¢÷ëIý~¡kÐïõ¤~¿ÒïÝï8ýÞýNPìw’“yŠSxšoñ7NåïœÆ3œÎ?8ƒgù6Ïq&ÏóþI¹¡ßÊ ýþ¢ÜÐï"ÕºâCÜ=¥ø%ê)Å/ó ^á›ü›zHñ«ÔCž“¥¯å±–OL¤\zDöyîóy­íý#zÅs‡­óñGæw^N=¢g—C¼E™óˆÌY\æ<¢7—5ÈšÏýäý¬eË#3(3y›2â=à¹#^/bJȉGô€çŽZ'XˈGfQ<â>—ˆ¥]"Ž‚y¸@gëxk½²D”òrY¸€\À¬["ƒsêz‰ŒT×Kd¢º^"3SB\|¦Ý(ËÇg¦½­xˆKõLd+AÏD¶’ôLd+Åu!<{:„Ë%¬ï·öld+Í 4?¦ÊºÙÌ©òm6ócêFšSåËlæÇTù2›ù1u Í©òd6scª<™ÍܘºæÆÔ¯inLýÆÏûÍÏ+im~LMµV·.—²6G¦î!qÇfÉÔ4š%SwòAî¢y2õ[ÊA©ßQJÝM9(U^ÉŸþ{ÈB©{) ¥î£úú=e¡Ôý”…RPJUë³ÉB©jy6Y(U-Ï& ¥ªåÙd¡Tµ<›Þª–²wËË ƒìÝòò {·üG´wË/¦=[Þ<1P·gÙ»åÍõóx{w=\ÞÞd—·÷ÙÃåÍÕ.q‹Êq! Þ³¨<õžEø+r1+…ÐZ8sØz‰uekÏÍ™­?¶®b-œñ|¶öÜœ9âüRç«òVã2&r9«{Ÿ¬uæ¨õ ë!ÄîuNî:c®øs¥sZË_g~±^e]“«Y‹k˜D3þ¢Ú!¦¹ÌÿeŽxY§§<ó¾Ò\öˆ÷¼7—=â=ïÍexŸ»§¹÷Ÿ¿húç¢Á7ÑkòH¼ß¡§LóÞcüŒ÷»ô4óþ£µPKã=ÿ-ÜxÏ ÷#ÞóßÂýˆ—kZ¸ñrM ÷#^®iá>Ä/¤ëïþµpýÓÿ®ö®¼û×B wÿZ¨¡ñr] 54Þ}‹×—²§ÌásñmŸ§ ÏQÐõ*èú4ógö³·É/™ýìmòKf?{›ü’ÙÏÞ&¿dö³·É/™ýìmòKf?{›ü’ÙÏÞ&¿dö³·É/™ýìmkC(¦—döó·É0™ÕðmögéCÌ#îáÝFtï6¦{x· ÝûÓ½»ûݯ»Ò}ºûݧ»Ó}ºÛ”îÓÝfüŒÍù9[p-Íõ=äÐ;jÆ#_X?ÁulÅõ|Òëîç÷ó‘ Ö­ù%ŸâW|šÙ†›øŒ÷»¿wä‰G6[·å¶ãV¶÷ºû~GÎxd›unç³üšfŒG¾a'¦R]|dŸc»p'ÕÄGv±¿¥ø‘ïhþ_aÆi˜‘fœ†™hÆi˜™fœ†YB쇃B´ÃýÌÒÂ2^ßãõ{¬_µ.Ëd–ãk| „þaÝÊiz!Äê¢oU a•™¸‘™xÕ !Ú£ µ™¸‘™xUëöd¡Êz¶ËzŽV}èõ“Î÷r¾0{³ˆ×<_e=_YÍmgò‡¸ù°}ÿ3éûžI`ú­±0?b.fQ.á½ü˜÷QíÉîùH«OÏGZz>ÒÒó‘æùÊîùHÿ»8;öP“Í:qúDvÏJšg-»g%ͳ–ݳ’æYËîIó¬e÷Œ¤yÖ²{FÒ«s.kpåËý !:þ ñW¦{¼¿ÝÛýEéî¿—§xO³ÍLû‹ÓÌ´¿ÍLûKÒÌ´¿ÍLûï§™iižgþɲôlí/Ç¿(oŽ¿Hysü%Ê›ã/SÞ…òæø¿Y™WY…×X•×Y7˜Hy|uÞb Þæƒ¼Ãšü‡µhv»-‡*wTô|W”Ãc÷„ø¯s/‡„0­vˆ”|ÍzŸõ«Öu¬‡².‡±‡{ý{¯'s?Ó߀Cù?ãA¦¿ïŽà!ŽäaŽâÍŸ8†Gh~Œ=Êqü™¯‡Y]þLˆ>Ÿ™m™Å>+nŸu±ngíÙZÞžž­åèÙZþ,³Ûo_9îè8‡?SŸéÊ’ìÆR|ž÷S]YUš/° í•UeÙ“úx£^ÔÇõ¦>Þ¨õñF/RodÐ^U‰ýX™ýY…¨O7H}º‘ž³JŸnô2«óÖà >ÈÁÔ‹¹«ôâF®ÿ*½¸‘ë¼¼“ß#§µûÓÈõ^ÞÙ:Ÿcnva¯»_܇å]­åâ±æÒ$séXsi’þ7Ö\šd.k.M2—Ž5—&™KÇšK“Ì¥cÍ¥IæÒ±æÒ$séXsi’¹t¬¹4É\:Ö\šô;Í£IæÑ±æÑ¤?B䀺5A; nMPǨ[Ô±êÖ„B(óLˆÝ×"DßÌ"izÜH×#M™B3×õøRkµl¤ë’¦–t]ÒÔ²‘²J3×ûø'ÖjÚH×'MMéú¤©c#]Ÿ4uldm9'αZ6Ò5HSËFzfÓÔ²‘žÙ4µläCTËFÖ§Z6²õ¹‘ ©ÏlD}ndcêo#›Pù0õ·‘P_ù(õµ‘Q_ù8õµ‘M©¯lbÖgf>J}fæcÔgfª¥<÷ù†ÐsŸÏýís#D‚úÔÉóŸ/™žÿ|¯ÑóŸo(á0šeó §Y6ßš_ó¤ù5ß(žähžâ˜±6ÈßÏÿÙ;âùÙ {G<7dïˆçfƒìñÜl½#ž— ²wDïÛàZfÿ5„’sCl»ïC4§ç¯Ý~zîÚ ç«Ýÿ¨dÖ³o¼â=w17f²nSô§bžïX׳vo‹ýA÷°ØYçg9ÿµ¬\ì—óqÖú{{94§¬Û^Í)ë¶—Csʺ}â½®ï÷‰R¯o/—æ”ÚË¥9Í*íeÒœË(“æ\î}¼OhŸÝzsP6ì#k¥çÐö9­e¿>2WzmŸËz5sSŽNð3Ò¿k¹¾LžWÛçµþŒùø¹óêwz~mŸßÚìÚ¾¿pþçeŒö­×1f×ö…hvm_˜f×öEø•÷gõ~¹·}QëÖÙ¬]ó>ê¾üú¨ùéù·š™ž{Ûßë}fÜö÷q³ó¹œ—ƒÛ³ÞbÛZ¦çàöÅ7û¶/ÁmÎçu^.n_Òz»u>kù¸})k³pûûù K3•e¸ƒe™~ËÑÜÛþš{Û—§¹·}š{ÛW¤¹·}%îaešyÛWá¾—iUˆn›.Sêy=ô¼Uz^=o•ž×CÏ[e¿÷ÈNû½GÚï=rÒ~ï‘þß®°ß{è«ì÷yh¿÷ÈKû½G>>Ïü!&à !nóßìÁ«ìÉk!2{XˆkËáTgg`ûNj˳?¢<1{1+„Ø–ùC4º•¸¹jYT-k©–EÕ²–jY4•êXtÕ¯¨úÕRýŠî¤:ÝEõ)ª>•Ô[Ê­Q¹¼¥ÜÝb^ ñ·Í» ¯3…7øAs~ ‘J%­oZ«Ws~·.Å3¼Ÿz}¥Ò<Ë2ÞwËûÔ³9ç¬ÍU o[«_sÎ[û}çüIóÕœ ,ïõ;^774ü‡ñ_šKæüåu× áÖKx—jÊœ‹ÎW ±éÿY¯ÛKá'Œá2š×o›×©Ÿ·ÍëÔÏÛæõFêæmõjÎ%¾’µºyÛÜÞH½LŸûç\v¾²µºy[½Ê²Á±ÚyÛ ßH­¼m†o¤VÞ^Kµò¶ù½‘Zy{ÕÈÛë©FÞöç:Æ„hŸ¥c,}–ŽqôY:ÆÓgéå*f ÏÐ1£¯LŽ×øú4ÄÍ…4­ùæ¡5‹hZóÛѼԫ=ÍK½:мÔëY.eG~ÂN\ÆÎ\Î縂]¸’])örß׬¦û¾F/ë徯ù”îûšÏ؃Ÿ³'×Ò}^óÝç5ëè>¯¶‡?d½ÞÚ}]³îëš/é¾®Qs{¹¯kÔÜ^îëj{½q}ê]͆«õ®Æ ½®÷rרÁ½^r^/k,4¬ÖË7v^-îõ²µžÖ¸‰µšÜË}_£&÷rß×lç`~Í!ü†¯2•æß5;hþ]“FóïšÆ]Îo9‚ßѳúkˆþBÍÔ¼ã¯PÍ;n§w¾O°'õðá½ônõ/U®7SÛû©§­ûð7ê7ÍÔÉãjAêïÖ}y†rqꔉSÏR¾L=G}&õ<Õ¸Ô?©¥^ º“úÓ?ËE1S΄ø&žÙ)Ð3;å,=³SÎÑ3;å<=³Sþ¤gvÊÎä_|‡9‹—ø./ó=^álþÍ9¼Ê÷){6™Â`÷&sck´É<Ê MæSöl’Bٲɔ)›, ìØÄŒ`Ìÿñ5äPþÀa!fU¿o¦YÕŸfÚUX€Y/1/³e—…)«ôW©ý=Šrï !£=²êU_~æª×œ»ÏW1_ÅClÖäŸZ<„éòÌýZ{=µ„µ\sMë¡Ö°éö÷ýµ¬‡YË_Y‡ó~Ž`iޤy*ë(š£²Žf¹û˜™"˜)3S3ÅcfŠ`¦xÌLÌ™)ÑØÇ2Ò\óþ!RÙ½~Ì|dÇ2Ós¶èÝÿl=¾Ç‡8›êhQ×kÑÇ ø>:7Üï\Éz®u#ÎccçG8žïØ^[”‡Clò!~߬ÀC¬ÈìÄY™?± °*†˜QîIM÷f”{RÓ½åžÔôL¾¬Ne°G^V§2øÜ£Ü£šîÕ(÷¨¦góeu+ƒý2ʽªéžr¯jºg£Ü«šræËêf†µÖ¯ZßK÷§¦g³Ã[!>wyNeNcEN§ßµÃ VæÛ¬Â™¬ÊwX³˜H×1wuºŽ¹kÐuÌý ]ÃÜ5éæ®E×.w]»Üµéºå®C×-w]~@÷£Ãº²>?¤{Ñaò#ºÓ=ˆº–8v:|̇¹”ê[‡Oø(—Që°œ‡ØoŠ…èP×þ›â<Êü™%ù Kñïç¯,Íã,Ã!|¾4Dýú¬õI–ã)>ÀÓ^ÿÄëg­Ë[ÿÆ üy†•˜þç+3ý}Uh6ù¦*ϳÿ ‘M‰!XYƒ›ø 7³&·„˜é„øGг÷èÿèÙ{ô º,óe–ùË|™¿vÞ³øèô,>zÈù×ÿ†o0ÕyÏæ£‡éÙ|ôGz6ý‰Õx$Äð,LtÏx&š;Æý"KY{&&š?2i(ãÎ8w¿sž‰îãÏÇD÷ñ€çc¢ûxÀó1Ñ}<àù˜è>ð|LtÇýáÏ•¶öœLlÂGMB¤Ö8>Ì×CìHùëÁgB¸¿[/é7Ñf4OG›‡˜!jL%uù%su´ÍÕÑ–4WGŸ ¹:ÚÊûÔžJf²—Ì×Ñ'­ÕžJêÚµ§’ºV8ýïð*c­UºÏqYÇêP¥b!.³gd»lšÙ3²=JÏÈö !ä¨"‹åŽNrÇb¹£“ܱXîè$w,–;:É‹åŽNrÇb¹£“ý¼Xîè$kÍõüµ>@ß»õÿè{·>Hß»µ2×ó×Z ™ëùk­†ÌõüµVCæzîZ«!s=w­=Çs=w­=Çs=o­=Çs=o­=Çs=o­=Çs=o­=Çs=o­=Çs=o­OÐóÖÚó;×óÖÚó;7‘§YžÛ¹5hÖ^Þ!Dêϱ~ÐÚó;·&=¿skÑó;7‰žß¹µéù[‡²./°ÿâC¼Èú¼bêeq×ä‚S|yv ÊZõr8gÿŒpÍj¸f#\³®Ù׬†8BV«¡æÕj¨m#.Qo¬ývûp&ÿçüeçÍw#®0™zq×¼þŽ×ZëÉ5†RO®1Œzr u>Rñ¾\Ã|6B_®!»Ž0óÔ00óÔí{Ìò=~à»´j¿ÇÃ^7 Õ0—0 Õ°÷F˜…jx†kÏöº>4ÂLTÞa&ªñ†ósœÿ)DFšjèÿµß·>bmFª1žf¤hFª1‘f¤f¬öÈõn‡Z:B½Û¡–ŽPïv¨¥#Ô»jéõn‡Z:âqª¥#äµjéûfô•ɧ¦ïPSGØ?;ÔÔ-¨¦ŽhIõt„««Ù(ÁÌÕÕl”¾6%˜¹ºšÌ\]ÍF ­Cø 1DÍŽ]íѳWW3RÂÓÎWwÞsÞÕ¬”ÐÆÚµM4[t53%ØË³ß6»g%ÌyI~ö?+ÉϾâg%©åWZyÏLï±7’Ôô+~f’š~Åœ—¤¦_yÊŸµßK¤ÿ9µýŠy/iý¬ö} ¾Ä“¾Òß¿Òy?³DúŸñÙJ˜ “ä…¤ÕΧÿóˆvÎ¥¦wü<µ³D[_ΕÎï«€/½¸t‚/=·´ZSZ)­¿–V7Jß"C‡¸Šrâ&”‡<Ì=!ÔºÂÞzÖXïå£ÜBRpþ!ÿç_çsî{>ÎýlÊlÆÿyoÄ{ë[7·öìiÁØ’êù?Btá—!lÜ"OÜ´>kýÏq#Ïsÿäf^àïÿÒûoYÿe½•¹—¸—ù5¯PŸÈ.—ûÛq*¯r¯1×¹“7¸‹7ù-oñ;ÞænÞá¹Ñ}졯r{´¦û×ã)º=ÜŸŒrì*÷¬G®â3t¯z´åº7C=Ùõ»UŸZ··vï²»wCgÑþú.íÏ¡ïñ0gS_[%G­úÜŸéàëYçç8¯Ï H ñe^àö`{r'{q{ó[öáw|‘»Ù—{hFO³OFšýÓì“‘fÿ4ûd¤Ù?ÍþiöO³?FšýÓì‹‘fÿ4ûad®¢™?m5Íüik˜þý>¥™?í3àç4Û§­åKü‚ö_Ú:š­{<Âñ!¦I™÷þßÃÌvg‚uYk9 I9ºŸOù:mý€µ{ÚÝÜSÄÜÓÝÜS¤Í;E ÓœSÄœÓÝœSÄœÓÝœSÄœÓÝœSä>¾Êb!¦Ñ¡wgs äKü‰jxrÉWyKq¹çÚþÜ;Íú~ë,Í•ÎÛ³{§[ûü•WY«1{gÐÞÝ«f$û=*¯¶öœìUï“ì÷½î}²ß«òú}*ËÌspryÇŸ±?÷^{|¯údïU¿“ßfÎdC¾ÃFœÅÆ|—²ë÷§BÜøÞxY?\úu›+‡È“êðe}qé7Ô—ª›—õÄ¥záe=q©^xYO\ª^Ö—ê…—õÄ¥záe=qéwžuµ&¨ùëß š¿þÍsC[%ƒÝƒVÉ`7ä U2Ìõ¬Ø%~ÊËôÌ»âuùh•,vèÉ}«[³xˆYÞ(Äw;ÇÆ<Ï&”Å—yÖ»y~È¢“õÈ|®2;6gü…rÄ®÷dóß­í!~þvK¯¸õ/}qÍ‹¾úúò,ÆéuñBÜÆ}”{6~O¹gã~Ê=Í¢ñòÎF½9^ÞÙx2ÎF³g¼Œ³QOÎ÷±c9g£Ÿ/çlÔ—ãå›úp¼|³Ñ¼/ßl<Ê'ø3[ñ>ÉclÍ_ùóiž`žä3<ŶÔçâÛñ7¶§Ùõ‚~´Hß¹ -ZI}hÑ*êC‹VSÿYäú_Ðo¹þô—E®ÿýe‘½zAoYd^Ð[}A÷u‘½yAXdO^PûÙ‡ÔðE²Öµ{‘}Aí^¤F_P³m aåiTÃ=2Çu5¯í-¢¯›ßöfúºÍo{‹Òü¶÷^šßöÞGóÛÞb´Oöš'_÷{öTkï»?„¾zeD¾î+'EäȾzdĽï+E䣾òQĽè«ÿE䣾òQäGÊC‘Ÿø>Pß‹å<þÌùü…)<Æè>ôTÛïÓúê{‘ã\Èü'¹ˆ2Gßxš‹ù—МÙW¿‹œ¡>ùƒúZä,e†È9.çyºg‘?éžE.Ð=‹üE÷,r‘îYÄžéëžE왾îYÄžé©çܧ'õÔsîÓ“zê7÷éI=õ›ûô¤žúÍ}åCìÎ\rÔ÷ÌÍýÌCsúμ4‹ìÌGsúÎütå˜Ó(·ìœNyeçŒé~4đ喿ÓDye§¼’(¯ì4‡&Ê";e‘DYd§,’(‹ì4K&Ê ;eDd§{ÑýgßG~H”Evº'ݱ–#e’îM÷cÖÝù+_àqöà öäIö¢žTDOê®'éC½§ˆÞ“(Ëìto»ë=EúRÏ)bŸ'Ê6;e›DÙf§{Ý]Ï)ÒŸzM‘Ô_Š äy_ú2£§ÿ]‡éÏaúßU×¾Vˆæô|¶O¢ç³}mºï>[Ì.3ëh3ë.3ëh3ë.3kúÿcŒ{–ï²µÙu´Ü:ƽËçÞí2ÃŽ6Ãî2ÃŽnF³ëh³ë.us´º¹KÝÝÒûíË|[«Ÿ£ÕÏ1ög¾«Öêåh÷iŒ}šïšµyr´ùc—9d´ùc—9d´ùc—9dôÓ4‡Œ6{ì2ƒŒ6{ì2ƒŒvŸ2¥ÿsÈèv4‡ŒnOóÇèüŒîQ[_ºOwÔ£O¥zôéqªGŸÚqÕ«IŸž¤šô©ž|GMúô4;ОÈ÷cýúSuêŽ~ýév¢}ÑÖ}ÿÓ}¿ÓÙú,Ÿã9v¡{q§+Ý;ÝxÏ3ýï2qŸÿtŸït·¾Èx‰=x™=y…½ø7{ó*ûð_äõóÜ¥_`*/Ósÿb· ²í‹ÏóCç¯8?s¯òm^ãL^ç;¼ÁY¼Éwy‹ïñ6góçð¾Ï97Ä´—ûrU Ü—K^l/÷å’ÛË}¹*‡ÐÇŒ~×}i/ÿå’Û˹äÆöïPnl?‹rÊk²]Õ:”íªÊ|¯ÉvUe¾åß…èóòÄòÝ‚~iôVeíﲞ•SÕCüýçT ª{§¤z7!oˆñ ªií>OÈgíY:UËZ?:•DýèTmªÓ§êP?:U—¿³Ïð!þÁú<Ët»èWÔÂ.úUóShçXÏ* vѳ ˜ªe!í1k½«€Ù©Zkû¨Ú=lê¼^VÀìT-«u3k=­€zÙEO+`ïuÑÓ Øs]ô´æ¥jÙ¼¯9³³…óz\{ª‹WÀ^ê¢ÇÐóºèqô¼.z\=¯‹W@Ïë¢Çø*„ê[úŸ;͵ìbFIÿoƒTËiý„u ëM4¯Ø"§Õ§¹êÐiõin?ªKsÕÓêÒ\uç´:4WÝ9­Í}‰êÐ\¹úIÙøwŸåôykùúIÙøwŸéôŸÖƒ¨>ÍÌ¿8„ù*/1™—ù¯p(ÿæ0^åp^ãßW¾þ}‡Òïxúºó#yƒ£x“£y‹rçÐÇ=Wר”×ÙŒ7Øœ7Ù‚·Blç!š¿;7Ñ\˜¢öWÓ‡SÔ’júpŠ=_í¨×7{ݼ˜b/WÓSôãjúqŠ]M?NÑ«É ·xŸy2E?®&7tÞjm®LÑ—«y>SôåjêsçmÎ÷ævÊë)út5õºó×Ör{çoh&IÑ·«ÉáS­õ‡ý»šZ•¢W“Ç;ïpÞL’¢W;cf=€;9»ø¿åË´Ïòëí³üƒ¸‡ƒCLÕù!î\º™{oܰN±~0„ÂjÏØL!>iuˆZ"DÞÂ’¿B¤Ž™ejIkY'ýÿÏ;µ”c}zêýÔ§§–¦œ;µ åÜéMBôÑ¿ù0¯òê oßâÿŒYù9³q-³ó æà:æ¤Ï6سšù_ë\Öž‡Á[¬ÿãVÞu>·ó_2íÁÛBÄv ƒ·3¯ãõ¼^ßÈ|ÜÄüÜÌÜ‚Üêýßx,Sç|‚óÛXˆéÿžÎÇ[¶–Ýß.ÂôÿÿNšóQë¢Ö©¼—;xÓXŒ;Yœ»X‚ß²$¿c)îæýÜÃÒÜË24¼]–f€·Ëqˆ$ë?•õ¥dý§²º•¬ÿTÖ—’õÊúR²¾SY_JÖw*»ÉúNeý(Yß©,·%™•÷¦ÿsý§²¾”¬ÿT¾â¼=¾×ìœdoïMÿg:úQ忭ͼ{ÓÿÙŽ™yoú?Ã1+ïMÿg4êÁÞôö¢ìU’ûzÿUkûwoú?Cég­¯%÷çu ,ž<7)ËT¾bJÖ qGÍ4%ëÑLSò!šiJÖ§™¦dbCšgJšŽšgJšŽšgJšŽšgJšŽšgJšŽšgJšŽšgJšŽê'%ÍFGõ“Ù³C|«úœÃ|Ÿ 9—Bì½YBü!¿ïLÏAÙ8kÏí!¿÷L÷¿l¼µç÷ߦû^6jí9>´ŽžãCžÛ™;Ï`íy>´žçCêØy=c¡ë~^X¨œ×ºÎçõ†…rÕy½a¡ýðôo!>ëØÊ/±§Í¯j^øRoi1‘zJ‹IίvÞì}z ÕÀÓŸÒŸù²¹×'S/i1ÅùÏœg­/´Ðc¿ÔZLuþsç_·ne-c|ù$§;¿Öù7BÈî÷>ý…ã7½ÖÚk3øßv~ó㹞¸ù%Ó?ÛWœLõvnúgPoç¾EuunúÏV7çN ‘“CÜã¹9…yBˆèQ3Þrœ7„‡Ì+ZOµÖçgLc~NgÎ`A¾ÍÎd!¾ÃœÅ"|—EùïålÞÇ9,æçØ+ÑsP¶yÈ>8XÅëï{½¸µçÿ`Uë¹Ö%8%©†>^ŠjçãfÁ‡<÷åÎX—æ– !WúgX踬ãôÏñ¡ãr\ÄøË{í^_éŸk±uÇÅ/q\ѱϑ+ýglí³æ*é+ýg›ãf|✌ðx•*ҰíÑyúÍ3Xv«(“ –Ý*Êdƒe·Š‰”Ù*V§ÌV±e¶ŠRf«X3„žËxóÁàw­k…Ø?ÜÓÜÓ?ÜÓÜÓ}‹CôM=oѱ©U$Ä¿¢ÕSxð:=·Ãop!oòCÞâ"ÞæGfñ3!ÚMöZ!ÄW5î¢ãê‡ð@_‡ØG†øÿγÿdc^`þŇy‘ðRˆ­ #žÖƒ+Ȇ§ÍîdÂÓzo™ð´^[A&”{bËêÇ·P8¾•zÀñmÔŽ«ñ³Æ„H¹ôµÚükë±ÖÛ­õ€ãjý¬qÖéç_ç7ÎëÇS©ßA=àxõ€ã;©ß"“ÜËFžçIîa£J\JÏ[Nù¢ž\y@½žä^6òìMZFÏܤåôLMZÁD®du®b ®æƒ\Ú!¦ÄgêÛ£>›¹çb!ö3Ù©V4‹z’f±S­i;%GçŸâöæDá$¥}¹ÏóØI¾rÞÚþÜwŸõ ë?éó^¹`Îòœä·_÷£}º¯8íÓ}%hŸî+Iût_)Ú§ûî§}º¯4íÓ}ehŸî+Kût_9Ú§û }º¯<íÓ}f‘üöã>³H~ûpŸY$¿}¸¯2íÃ}füöá>Ï{~ûoŸç=¿ý·Ï 2¹Rˆ6ú™•ù «P†[Ò5Dj{N'Wµ–å&W£çgr"=?“«Óó3¹Í‡Ç‡ø©~Îá ôsO¤Ÿsxí«Ã“i_žBûêð[”©Þx&DÌ`‡ÍTSÝ£ÃöåÔZηuÞLvØþœšdmÖH0›¶O§Ö¶no=›8‡ÏÒŒvØþZǺ£õ\vâwdúOí¯|µËõŸþrý§jѦT‹î4cúÿ¤ŽãæŽÕ£;-èwËW×qKÇ?…ØI‹ÔvýqÒGÔ'É6ôG½:Úè)~̧¹”mø Ÿá2¶ÕCjé!¯Z/·nÇlÏ•ì@ٽѳ”Õu¤¬Þ¨eõF)›7z޲xú_b’ìݨ+åîFÝ(g7zžrv#ÏùžÕ!þõv\Ãöü”îëžÏølcå’±2ÊXsK_±¾Ì±{>÷zG®e'~ÁÎ\Ç縞]¸]ù%»ñ+>¯wØ+{6:Nÿ ›h¯íÙL{mÏÚk{¶Ò^Û³öÚží´×ö|Íô?ÿ íµ=©ìÇ´Çö¤ÑÛ³“öØž]|‰ßòe~ÇW¸›ƒ¸‡ƒ¹—C¸¯†È|µ ^7_-h£ŸÍW ÚèñóÕ‚6ݨ´yžjA›îT Ú¼@µ MªmzR-hÓ‹j@›ÞTÚô¡ÐæEªmúò û…Ø™%B´©ü:³$°ÿÇûy¥ùËðËò0ËÑóø±¹¯Ž=?ókÏäÌò< <ÊŠ”_fÊ1Må—™rLÓc”cšÊ-3å—¦rËLù¥©Ü2S~iz2Ä$|â<Æu|œëٔ،_²9¿b ndKn¢˜°™­¸…Or+[seÇ„í´7Îùý¨Qçüþ Ôøs~ÿjü9¿ÿ‚ôWÊï¿ ýßòû/¸M¿ÿ‚;ôû/ø‡~ïÿÒï½à?ú½Ü¥ß{a ß{a„~ï…1ô{/Œ¥ß{¡õœß{¡™üœß{¡YüœÜ¶Ðì}Nn[˜‘2k23kQ>§†/ÔkÏ©á ³R _¨·WHÿ{pÍQÒ¿—z¾0»YØüUÁ÷<:1Dß¶¿N¢ý}t2íï£Sh}‹ö÷Ñ©ìÂúA!Òìó²É ë;Ö³Nóš=t:íù£3hÏ}›öüÑ™´ç¾ÃîœÅø.{ð=öälöâöæûìù|ÑÏâçÉGçY÷å|z^¦°ˆùjˆ>X’É,Å×x?‡²4‡± ‡³,G°Gòš×,ÏѬb›^ÑØ9¼Â÷ù7çÒ|;æÃØù4Æš›šcÍ‹M͇±rxSóa¬y±©ù0Ö¼ØôÍ‹Mÿ¡yqÃî8.„5zC×kÃë×¹—o8¯W4qý6ì³~ÓZÏh¢v­¹ŸÝi&oâ:nøÞëãCä§]!núÔS§·¢ž:ÝsþtÞ¬ü´9ñžÏiN¼'ýŸÉ˜ïù"ÄL ñéGÓÁê4G¼Þ4D N´®aý+Í¡“ŽÓ:éÍ¡“ìǃæÐI戃zð¤ÓÔ{'ýF½wÒïÔ{'¡ž;éß·™ï;‰Í9™-8Åëzñ¤³!¦CÅŸk7+q+SNµ¯Ct¸uë}¬ÊïYûéóç:@Ÿ?×ÿèsçR§jÝñ—ÝZ7¹ „ûzÄú–µûRë6Ý—Zwè¾Ôú‡îK­¹˜ÿq ïòãóí‚?FÝùv!Õo?¤ºóí"únÈ.«d—²Ë*Ùå†ì²Jv¹!»¬’]nÈ.«d—²Ë*3Ð }•—Ïñÿ›n¤ùçÆ4ÿÜ8D=àÆaê7~¤pCoX¥ÜÐVé7ŽúúÙ×/¾ôƒUÝ}½à«‡/{«VîIN®•‡rr-ÏÄ%9¹–gâ’œ\Ë3qIN®å™¸´-„Ù÷ûò|UÐW*xÆjt^n®•@¹¹V!Ê͵ 3•E¸ƒE™Æ{¹“÷q‹ñ[çw,ÁÝ,É=,޼ŸûXšß‡Ø‡…ø#y˜£ø#Gó'ŽáŽåQŽãÏ´‡ú…oðßä¯Ïãœ"OqËrq"sSN_–‡rú²¼”Ó—¹/ËéËòs* PV_VÓ™Bsè¹cÖ3¬eÆ6Xÿj-K.“ÿ–%—ÉŠËŽËŠzÝsx ¹ì^Íà¶sšÂ¹ÎÉ“ËäÇ¿åÉeÅBì«f JfžWÍ@•Ì<¯š*™y^5Ur/_5Ur/_5Ur/_5Ur/_5Ur/_5U2ó¼jªäÞ½jªäÞ½jªäÞ½jªäÞ½jªäÞ½Z˜îÝÝ´]§žÝÝIûçî.ªg+eÁÔù•²à ²Uö*!nÇ׬ÊoX©LäÏõÇÕ§…¿ºãŽw:®áëA_5{й]¬IÏÇXóA’ì0Ö|d^kKҋǚÒôâ±æ°$½x¬9,I/kKҋǚÒôâ±æ°$½x¬9,éŸ3,Sˆ¯¶‚™¹’Y¸Š÷Ðlºn›žâ6î¢SÕüÃX‘Y‰Ï±rˆiìþþcžoì¾þcžoì¾þcžoì¾þã}gõ CØ89DžøŽSèù>ûó/Y¿emöÞ8•žó³ œ9„ò>óÙ…Ž_q|'Ääâö™Ùâ.9ék”¯Ñ¾ÌáûrùÊí+¯¼!æšú¶âªo+P][±êÚŠ©®­XÂu·Ø$kõmÅGÖjU1õwŠú[l [ò-êÅÌ£×Ô¿‹­õbÓø$§³5gмVìmš×ŠÍô~urŪ“+ÔÉëKá'Þ§&{‡jb±YÎÇ8¿ÌZm,ö®u¬õrÆÑ½ºO÷êz”îÕõ t¯¦¨¡ÅÞ³ÎhíÙºîÞ®øÔy5µØlk÷xÅgÖjk±9|–ï;Y¦¨¯ÅæZ»÷+ÖZ«³ÅæQ-6ßù¬Îë‡×³q³s}™ŸuœÃñæ¤~4EM.–bËú+ª¯+6R}]!ofø/D·ÈáîRϨ…m‘Ã3F(‡gŒáéûŠ^_>™z|ùר——ÊýÆÎÿqR=|媇¯¢zøÊaª‡¯üHõ𕟨¾r„êá+G©¾ò3ÕÃW~áøóŽÞÕ¼iCÔ¶,ÏXdmC Qã²´µ^lÝÜÚ\œÅœöÎëÖ…¬Íkï|l-c¿³”O8¯æe1¿½ó‰u+kµ/‹7ÄœœÅ¼öÎ2çe’w–Sö~geïwVòi®bš ›§saóôÏa.lžþóÍ…ÍÓ®ù¯¹ŸÓú±ŸYÆhý8ÿ`SÊ­›ñ\ˆYx>Ä·ŸÁ?ù6/Ð3»ð/¾Ã‹ôL.¼DÏâÂËôŒ-¼BÏÔ¿9‡WéYZxž¡…×)þkŽ];UžV‡ÿÝàxš¨—M¶¯êe“ííƒzÙä1ÔË&¥^6Y.|}¢?§6ÔÓ&¿N=mòÔÓ&¿I=m²{xPO›<'˜žÛNÒ~?xŠ“yšé9ë7¾ÅßiŸ<ÃôÏû§ó,]«ƒçèZtí&»V]»É®ÕA×nò,³ó‚ùõ™7Kßûµ-õ»_ÛQ_ûµ==ï9î Ñ´¿˜•©—¥]¢^–v™zYÚêeiS/K»J½,íõ²´ëÔËÒnP/K»I½,íõ²´ÛÔËÒîP/Kû‡zYÚ¿ÔËÒþcÞ ‘ÍBÜ “|–§Ø‘§Ù‰¿±3çs<Ã.”Y?Ÿ"ši?ŸÃŸø>Ͳ_›e†ÚŸÏµ>Êyü™óù Sh¦ýÚ¬3´%Í:CŸ Ygh+šu†>I³ÎÐÖ4ë }Šf¡fЯÍ8CÕÍwÔ’æivmÞ„f׿ÓìÚüš]›?J³ks³qÉ!îgû¢dÕ­’;iß•4ü܉fƒŸ;Ólðós”YÖËKʬ?w¥Ìús7ʬ??O™õçî”Y~!„.2ô5õ$eMˆ>cÖKù”f—”ÏhVIùœf½”µ4ë¥|Aù1eÍz)öË3òhнòŒY/åKö1ëßñjs&ëðÖ a„ß-—g}ý,ëz|—ñ=Öçl6!£y`ýÇ ù>q.ûùöÉúyÖM8Ÿ3…„˜®í-5¦k{KiàÚÞRc¸¶·ô’2bÙœ”ËÊŒeIJ¹Cx0Cß¹eŲ²ã@Y±¬ì8PV,+;”ËÊŽeŲêë@¢lÁÂÿËeÕÔrDYµt QVí(–U3Ê‚eåÅgÌêçõi=/n…ÞûLkýZï‹[¡?#+œWwŸÉEõöŸëü“òCïÉì=3™…úï3y¼¦‡ëq+f…ØÓ²ÖÜ!|™"-^¶–¹æ¤Ì572×\™öËê^—O¾¬ÁAÎË`s S›[Äùl-‹Í-JYl®lûeMç‡XËdsï³®eý*“˜ÌÚ|u¨ç–ÙæÊ½§[±xˆ KBt½^·æÉíekfàSÌȧ™‰m˜9„²Ÿ;~Æq¶å=έuÜÎqV¶g6v ëºêbˆ4®ÈK”áÖ<ë|Ê‚½rRì•‹²`/×uÕeï«Ì+¬â¼lØ+»0/Óÿ›.Ý«U½Ü÷ÅCB\Çÿø*ï†#÷æºB£!þÓùä×)ð5F8”1ÆXgeÂNñÉ(GÑý]<š)vÊıtrÝv<Îq¾Î{Bìe¿óR¹öuõ±Ž ¾Øóšþ¿‘ZìyMRw^W/ë˜Ó^W/ëÈᯥ9íõ{™þߺkâoGØŽ1lÏXv`Ÿe<;Ò½j؉îUÃÎt¯>G÷ªaffWºO »ñž3kGˆoÑ—iìÇìÏ]B†Ž¿u<ßñ%îæËÜÃW¸—ƒB(rÒñ>ÇžÉaãB4ѽö:+ó ºwÃÞdUŽg5N`"'²:'±'óANaM¾ÅZœÊ$NcmNgÎ`]¾ÍzœÉ‡B(y>Ä>WG_­dß6”#nO§q{åˆÛjT µ¦¡,q{¦ãwCäì£!îƒý|Œø8ÕijMyÍø›óP­“B8£^´®Mõ¢u¥þpfëq¸÷·ðþÃlÉùb+ñ>÷áÌë'­õìÖõ­GZ·¶þ™OÑï~öiú϶á¯Þ§¿œe-ó|àw?+ó|àw?+ó|àw?+ó| Sœ•1>)ÎÊÈgeŒ~1mÍg9d̶æ³2f[óY³­ù,‡ŒÙÖ\–CÆlkîÊ!c¶5Oå1Ûš§rÌ 1íÌS9Ì']íÁ‚7h¼I{°à-ÚƒoÓ,h†ìj4ûvµ þK{°à´ Þ¥=˜ uµ"´bøÌ"{BÜ8ùpO!.da~BówC8á^6‡9›rUssÚ ¹ªùûtšÏ¥{ÓÜ\vBžj>ŸòTóãtOš/àq.¤{±§ˆŸ³ˆEùïåbÞÇ%,Æ©¯Œ[Êü„%¹Œ¥¸œ÷sKs¥ïﳟp÷”±^BlÇe¯f9®áü”åù+ðsVäZVâ¬Ìu¬Âõ¬Ê ¬Æ/™È¯üL3û ÏÓžêÖYƒ›ø 7³&·°·2‰ÛX›ÛY‡_³.¿ñýÔ–§i¦?ñÕ¿ócžáRª9{êy*âÖgš×Íð'ÎÒÌ~BíÙÓÀy=¤ùrëóÖ ­w±¿ec~Ç&Ü͇¹‡poˆýapˆN‘Ͼnâ_»À‡ùáE>Êÿ£èÎãl®ú8€Ÿ;wfuÊ®±gß%[¢,•-B JÈ’]²'û²ï[d+Q©¢} Jc­,‘,¡<ïùã¾Þ¿ó»wîÜûûs¾ŸoσkÔÛ ºN½Ý ¿¨·tƒz»A³o²!o…0\>΢o.“eÑ/mÁùÛ!䱦¶7r|DZu• ŸíÎGùlw~Êg» P>Û]0„G'zL Ñ{öþÏdÚ{öþÏdÚ{öþÏdá2Ö÷EŸ£Œõ}Ñç(£‡¸ès”ÑC\¼E=ÄEë´ŒââéÞ)ļÊÎü3„L;~Ýñ5Ç7wq,[tïJÙ¢{7Þ`w¦¼¶o†è‡²uʿӹֽª©>¬UjªÊÚ)ÿnçä³Þº˜œ×XÖÿÏ~³Þ<žœÏøUæg[`»ò}'tÜžQîÿÏÞ´~íMë—ÓÞ´~EˆI«wÛ®WM«wÛ®WM«wÛ>Šz·í®yZ½Ûv=jZ½Ûv¹=­Þm»ìVï¶]šVï¶]šVï¶]šVï¶}bˆ.,Ä·þ‘…xœ…y‚Ex’E©ïZ^Œ§Xœ?±fIê·–—âi–æ¯,Ãd–åªùËÕûåjýò Îõ8çqÞãBˆ¶;âsâaʤíŽPyìÇG‘¥Ôôô2×õ€èe®ëñ>ÐË\×ã}Ð…z¼ºR÷A7êñ>èN=Þ=Bô_ìó¿(s}~ƒ2×çSæúÜ}þWæúüóÒ<êg—Lùÿ/šÃ%ÿ’…²:nìØì÷"ÿ¡wÊ¿±d‹ÓÃÆ]t¾‰óæd¿¦4'û5cÊ{½Dµ£_sÚ¿û©)%ÕŽºƒB\Lff¾E¿§îf !Þz©û¶ãìÊF=ÌëzÙAªëËÔõ+êú²Ãꦽìâ]~Í{ÜÌûü†ÿzº¿LÝ¿¢î/S÷¯¨ûËŽy~‹çåæ+êÿ²©®/Sׯ¨ëËÔõ+êú2uýŠº¾ìTÏ—¢:¾L¿¢Ž/S3¢²Åµ<åÿ×yE-_–RË·zïÆjù2ó£®^%r›z”ÈêA"2úüÛ!RFþ««‰Ü Ñ«™BüróçjÏòaž£yq5³cóg¹ùSÒžvî*íiç¬õüÿ8¶¯Kùÿs>çaO;wÝÃ}þŽ}j·=I?0|‚ãBÌŽ¥!î­º|Ÿõ¸ŒõCtËÐß_þÜ2Œ•CX§ÖÖyÞx¸±|´NÖ¯S×x„±œ´.q=ã‘Æré9¸¿¼´.½óõ™ œ—‹ûË©[äâþÕ)÷¯A¹¸ÿÓ”‹ûë© ëeNËé…õ2§ÓSïr:õ.§3Rïr:õ.§¨w9ý0õ.§¡Þå´ùUXïrÚüÚý¿7Üþ±ûí»¢ýc÷Ï´ìþ…öݧiÿØý+í»“iÿØ}†öÝg9‘ç8‰çù.eÙá“)ߢe»‡¸ß³²³…˜ËúŠezˆËzŠezˆËzŠezˆËzŠe}©§XÖzŠeý©ŸX6€9‡8ˆ‡9˜GørñmþÈ¡<Îa!LP£òø¾—OçIÚO/»Ë\Ë®Ç25l‚–Çõ¸ìº,KÑuYæº\v]–¹.—]—e®Ëe×e™ërÙuYæº\v]–¹.—]—e®Ëe×e™ërÙuYæº\v]–¹.—]—eS(³/›J™}Ù4Êì˦S^_6ƒ—93DÿŠÚ»ìÏÅÒþüWSþ-Ï?C\sÙvñ5ʶ‹Ííæ²íâ¿(Û.¾AÙvñßT‡ߤ¼øeÛÅ·)Û.–‘›/¦ÚÕü=ªYÍ—Pj¾”êPó÷©5W—ËÈÍÕ¥Å2rs¹&µ{*Æ5_ÉW1†0ÊËÕŒãGŒç¦âZ¦æÇLÃOøõEË„øVÿÑ^Ñêí­m/Ëì­#!lx.DŒ ÑÓ-Büì¢!”ÐÔ—hcœd\,DŽüb'¼Æ_اÙ1„Ì#=FÿjÜÉÚøÎÚhB[YëVãï[q'[s_æn¦ü›ˆ®ká«ñ…÷ðUîe[î£Úžòg ïwÜ>DÞybŸ"Ç2ÂqŒáxFiOšKûÑ„8Nd<'1ßejNfNáCœB‚=|BZÇÓ˜ŽÓCôçÇCüL½D‹"!.ã÷,Ê,Æ],ÎÝ,Aû_‹’ÜÃRÜËÒÜÇ2Üϲ<Àr<Èò<ÄÇy˜x$ÄŒ|&ÄUù5ùkñíÏU.Óþ\Eöio®"{Ž”9«Ø¯ûÈ·©‹Û§«È #eÏ*jïHÙ³Š :Rö¬¢îŽ”=«È~#eÏ*7ýœœº˜±Z]%åÏœ©ÕUÔÛ‘êtõv¤:]E½©.WQoGªËUôj#Õå”ÿr¤º\E¯6R]®¢W©.WÑ«ÔëÙÎcFêõªFB´|•÷‡úS¾*ÕŸòOò<«Qý)ÿ/²:åÄW¯…Øìý)·e@¹-»^º¼þmç³Æò[öA”ß²¦ü–ý-ÊoÙõÔ¯ÊoÙõ̯ÊoÙõʯÊoÙõ¯ÊoÙ‡S~Ë>‚÷9’ÿÒœ~õ?ަ9—Ýœ7c³›sm͹ìãüþ4~¿uÓÖÜËnîµ5÷²›{mͽìæ^[s/»¹×ÖÜËnîµ5÷²›{mͽìæ^[s/»¹×ÖÜË>•æ]vó®­y—}:Ós3p&3r3q68‡s.áó|ˆ¬:b_íB­|!œxÕø¼q7ãüÆm]»W]»U®Ý«=ø{òwöâìÍK|#DcÔðK¨†o\J5|ãûTÃ7.£¾qyˆVœâþ”Yç ‘’™§Wåtºþg°gR6­8‹²iÅÙ”M+ΡlZq.Ÿá<Öä|Öò¾z†’YŒ×6Ö;””ý*.4®ÃE|–‹)“W|²tÅ%”¡+ÊàÊÎeð?eå9zŽ’ÙŒeñ?eæŠËÙ+ø‚çõ"%³S/R2õ"%sz~¥çÑÿÓ¯hÿiW´Æÿ´Æ+ZãZã­ñ?­ñŠÖøŸæBEküOküÃ3úzÙëC=j»Yz}K™§BXèzÔÕgƸuõ™1Ï„È5{Ûʹ!4íÂo2QÓδ×\³×­”Jë“.¨‰¥õIÔÄÒú¤ jbi=Ò5±´邚XZotÁÚh/cÜ–ÑJ·0þ“ITK·¤šXºõ1íÛx Wºµñ ãWe¹Ò/ëMãäÜÒ¯8Ö–nCõ±ô«TK·¥úXºõ]íŠÛò_éöÆzÇö2Ìm9°ôkÆêeéT/Kw¤zYºÕËÒ©^–~=Ä^T/Kwa$Äô5wJV¢¹S²2Í’UhJs§ä“4wJV£9Sò)š+%«Ó\)YƒæJɧi®”Ôõ5WJÖ¤¹R²Í½_L_sDïÓ×Ñ÷Åô5Gô}1}ͽ_L_s¡¤þ®¯¹PR××\(YŸæBÉ4J6¤¹Pòš %Ñ~_²1í÷%_¤ý¾dÚïK6¥ý¾d3ÚïK¾Dû}Éæ´ß—lbFù¹'›‡˜ÞCßVs{ˆ½÷rôö÷¼¾æc÷»“y|ÏÏÕ”E﹯)ÿfë=?_S½'_Ö”Eï¹Gr:ŸÄ\Lù7k¥¬ZSF½çž¥ü›­÷dÖš²ê½ö”Sï½F9õ^Ê©÷:RN½g¾vÊíõ²mMYõ^gàë<È.<Ä®<Ìn<Âî<Ê<Æž!6ö™ÿuAÖäc!ºÿÃ?FÚ¿šêÐþØ#„ ƒ¯q¬í_KµhÿÇìÍOh?Ûÿ)ûpß a½Þ¹®ý`½Þ¹®}`ÿgÎ÷åçìÇ/Øßó=oØ¿Þx¿ä@~Ŕ߻ƒ¹‘oq‡ðk¾ÍÍ”µÖûŽ=ZÒwìÑŠ¾cÖü‘/ó8_á ¶áIÚÇ×ÿöïõ§ØŽ?Qþ_¯é¡Y¯é¡Y¯éÑ‘ú˜ÌÎ<Ã×y–]¨NôèJõ¡G7ª =Ô…õêBua½ºÐC]X¯.ôèB&{P¦y2Þå¼¾ýBrÈ/ê×Ìÿ…ðÕe=Sq^a çÓ:ŠéøÓógfà/ÌÈÓÌÄ_Ý¿”ãÇÉ|˜gBxCMŠ×¿ âÊÊðÇP&8–Å9Ž%8ž%ùKqK‡˜!²O{WŸ²!’ª—± TA/5Dª µêâQZõdvö¢õQðCÕjz«ÞÎÙû[½Á\ìCk#úÓêMÇÖÅ¢ïC¤|œq_có~ÑNãxã~ÆyŒw§2îoœ×x·qjãÆù8ù9ˆ<ÿƒçÓ6.È·hî·ÂB|›…9”E8ŒE9œúÓ‹z€Å2ÿE=Àb™ÿ¢`±ÌQ°xhˆÞ2?×N ¡ø†éeN1'z™Ẻ^æDs¢—9QÄœèeN1'z™Ẻ^æD÷¥—¬PDVè%+yƒ—Ù‡Wø&¯²/ÿd?ê[Šè[zé[Šè[zé[Š ¤ÏZD¿ÒËg-28Ädñ÷é'²­w¬WÙ7žz•}ï8÷¥c=WýV}ʾ =&iFôN[ê†øþQÖc,ëÓ}Ù¢ßïºhˆÔ‘/¶èûû»[ôýý݇-úþþ®÷–Æ|ˆ/2-›0›2=›1_bF6g&¶`“ø0[ò¶¢<´¥5³øý±~¿\³åecógË+4ÿ¶´¡ù·åUæ`[šs[ÚÑœÛÒžæ\1ù|ËkŽÍ¹b2ú–ŽÍ·brú–ŽŽÍµb²ú–NŽó²3eÁbÝBlܸ¿Y Ï®|‡)ç'°;'²'Ѿ÷.{q2{s í¡#2‡øÊ[™…Û˜•ßÊç{åóµ!|»#DšGùõ~ö9ÿ1÷óà§!”–3JËÞ³\»†îÅ,×®¡{±dVˆO’é–̦L·D&J’é–ÈDI2Ý’y”é–̧L·díákôOï7^hl/_²ˆöì%‹)Ó­Ñ[>}Àø=cnÉÊpK–R†[ò>å¨89ýksw0oטÏêÓ|î`¾®1Ÿ;˜¯kÌç/Ð<î`ž®1;˜§kÌãæéó·ƒ^cùÛÁ}]cþvÐk¬1;è5Öè›;4‘û‹CìçECÈZ×ñ{ŽÕ…ûKXœKY‚ï³d³ ‘⯅hÉ·CÜyu¥äPª+%‡Q])9œÅ8‚ênyå7½÷»²W–”»ê´¢ÜUGFì¢ÇÏwƒzü|Ó¼Èw3Dî¸/»îwÜ—]÷;îÇÇ_†Ð\ž¸ä¾Üq_>þ*DNW ±³¾a%naenencU~Bc9óü ã'·³w8¯O:¿’¯s•óO9o?:]jõéT£O?Mµùô3Üíõ]¼þãšÆ?ë¥ÏËÍóó«¯åüãîÆQî>Ëý|Žø<².±³>°²!õЧ_à!LË"…ä—iùÙ6D3<â¾ûމüž¹¹3„6‡Bø;SˆIœbÉI‰³)'%Ρû•8—rRâ<ÊI‰ó)'%.`iý\vÇ —á"–¥ùs¬Ícåiî{<„YîO±Û!ZL¿t¦®± Qì­bú½Y›¨Ï›õ5ïq3ïÛ?íÑ)÷´Ø¿tO‹ýG÷´Øº§¢c´ØR÷=–yè·ÎÔó¨ïÑÀCÕåtˆË?Œ¿RÚ%™#Bôî!~ݶ¶È M½QÆ•!fÖ×P<ëoΡÿó!’vœñMc wë"­l1ë–ñBãzÆïß6ÖûκC=ﬨu—úÖY÷¸4Ä”Z®?Õg–ZA}f©•Ôg–ZE}f©¨Ï,õ!õ™¥VSŸ™Óõ<ìzæt=?NkñpZ‹‡Ÿà2V¤÷?¬ÏÍéýWvë…pCjã:Þ˜Àœèy¿÷°þ7§ß{Xÿ›Óï=ìsåô{û\9ýÞÃ>WÎhŒ‹u¼Æ±Ï–s-}¶œêóá”Ϧ>Öçü”zàœëX;„–­B¸êZ¦²~¾ÙkÜÚØ5m©ß¼êZ¶Ôg^u [ê/¯.¢9{u1õ•Wߣþñªk—ʺûf­»oöÓºûæ­·o†è”C!þ9ùtÊa ¡°ýrÊÇÃy”îõ”cÂür!RZoWë¯wßg™_ÞX>©å¾ß÷™æ?n¬×«åþßWÇj¹ï÷Ý×"ÃCì¯Y9‚Ù8’zäyÓC¤Ôá­¡¯¾£ž7Ãøˆ±¾üŽ=®†¾üŽ=®†¾üNkêËïèjèËï¼B}ù6ü’¯ò+Z³56P¯QC/r§=õ wìµ5ô w:p3;òvâÊy5¶RÆ«±ò]o)ÛÕØNýoTsk|G{qï©÷­±“)ÿv]Ÿ»éºÔø®G=|“{©×­±zÝûÙ?DïÜ ñŸÈIwþ¡{rç.ñ]Ÿ;÷éºÜù—Gùñ Q[@ü'ÇC(%/ÿq|‚1<É(õŠ¥2„Ø4zím3CLY}Äï#¨ø}$õ¿ !Ç£Žõ¿ËS뺅ø.òìºî”g‹nw¬wë¢gZ§wë’ò÷N ±uÕ½i‡Ø‚‡™D=wÝ–!T·'­l¬÷®«÷ž¦÷®«÷ž¦–Õ5«Û«ŽV1Öƒ×ÕƒOÓƒ×ÕƒOÓƒ×5Ÿ«ÛÃŽV5Ö‹×Õ‹OÓ‹×Õ‹OÓ‹×Õ‹OÓ‹×Õ‹OÓ‹×Õ‹OÓ‹×Õ‹OÓ‹×Õ‹OÓ‹×Õ‹OÓ‹×u_ëtqÿéêô`6óÕg--—Õéi¬¨Ó‹9BÌÙBܫ߄0èÙÉ0&Dö{¿1ê^æ—{Ï1Þs¿÷£¿ß¯—£—Û¯—£—Û/£ÑËí—ÏÆèåöëåÆèåöëåRþ;ÉiYb¶9rZ–˜ýFšèÝeÊÓ2Åì”?ËfÞž–+f§üY6s÷´l1Ûœ9½œúÿ M½^ö<½ÂØÜ9½’¸ŠùñCæj¾E¹aöÊ ³ß–/9–f[û§?¦=¾VÁ{ï>Æ-”ïm¥ xoeÀ{ßR¼·=„N…BHùïPµdÁ{2@§ÂÆY„)ÿ=Jº't*F¹ “:qO½ïT‚ê|'9(å¿CÕ’Qî}g\ÊXï¤>ÞSç;•aO“;â5ò˽ï)¿ÜÛI¹åÞ.Ê“÷vSž¼÷åÉ{{(KÞÛK9òžý¯–yÏþWK†¼gÿ;71Ä-PÎM¢pî]ªç&S 87…•9•öúsÓh¯?7öús3h¯?7“öús³¨›Mûü¹9´ÏŸ›Kûü¹y´ÏŸ›Oûü¹¬Í…¬ÃE|–‹ùßãóTóÔåRÖãû¬Ïel@5{:}n_àJ6â*6a¼9.“ÄœûÀøE~È&\ͦüˆÍ¸†/q-›óc¶ ½yAíÉ Z†˜,ýôþ©ÙŸi8€q ÓrÓq0Óó-fàfäÛÔ¿÷Îâ‹ìa>îe~îcê){¤=±÷c´'ö.D{bï´'ö.B{âàQ!¾¼ù²¬fˆTÁZT«–Õ¦=mYÚÏö:ói™5]IŸ8xŒqYŽe9çŸs~¬±ž½|ycÙ¥’Þq°Þ½¼ ¶Lv©4>„”?û?¶Cˆ«î;ŽíÈ”ÿìþíäØ÷Û™¾çØ×)ŽíÂvåÃìÆGh/ªž™ö¢êYBÌôƒ!®^âæ@á å`ã[ü‘Cxœoó‡ò$­åéÿ£¼6ýíõÓ¢½~úÏÅ_8šò]½1”ïê雿1•e„kÿ£Œpíeðk?Qæ¾ö3eîk¿„Сÿ¬ç~é¼ ~í´ñ@㯌eñk¿2Þ`,“_K6l¼ÑX6¿v†²ùµ³Î¿åü&cýÚ9Êè×ÎSF¿v2úµ‹lÄߨ˜¿û¹!~îkÚ×þÙìü‹ÎÿÁ&¼Ä¦¼ìù¡ž·¿Unf|…/ñªº×ÊqsDz¯1‰×Ù’…˜Ò†Ø‹®SékËë”mKÿE™¶ô ʲ¥ÿ¦¬ç—¾éxbííu·?4¾e<ÉXos{5íu·?rþ¶óïò'óNá]Nå=N 1í{‡¸\æTû7hNµïCsªý›4§Ú÷¥9վͩöý™5„n2x`<ÀXþj?úöƒ¨ÞµÌœ|‹¹8„²@{½i®DêMså1½Ú…¸"Q¶g¬}Ùuêõšã8ZEâiMIEë¡Hêlß‘¨ Ü3Bûb/ë£Hãcûc/ë¤ÈC!ZW¦ˆ‘ Xóu{9ÎÁÞÌÉ7èsUI ±×¿p§»‡s§Ì¿ÆG8“GÏã¼·Ã,ãcÆy¿2žmü£q>có±J~š‡U м«¢þ]7ÿ«¨×Í£*êßuó¥Šúw]=¬¢þ]W«¨×ÕÃ*êÞuõ°Šúu]=,ô_ˆ})ÄWŒq,§mî8Âò‚!R¹½s2ëÐιv…äÖ¡IŽãØ’ñlÅTlÍÔ|™iø ]£¡m˜ÖÏʺC_uœÎ±¼;´­cÙoh;f`{fäkÌä52ÅÐŽØ‘³ñÙóÙdã¡3óuf ѱÛB|uwì·”[Æn§Œ;v{ËHz³¶ú‹ôfmõfܧ>rµßÓ^–Zí÷´wWû=íÝÃÕÞ¿}.zÿö² Ù•¹)o¶ÏCy³}Þ³@–oÚ†²|ÓWC䨻dãønMôÁÖ]äxãÉLÅ)LÍ©LÃi|ˆúŒ?ÒRñG:š'MôvÖkäôƳ(/™ÍŒœÃLœËÎãÜÏG¸€™¹Y¸ˆY¹˜Ùø³s sp)sR¿ý9ÄoÚ"_uü‹ã­Žÿô¸æaO‰žvN_]ʾýÕñ·L¦ùUÊ=ãXÖ*õ·š¬,°÷ŸS ØÛÆËȉúæsjBÊß <^VN\BY9q)eåÄ÷)+'.£¬œ¸œ²râ ?§†,P3Ω! ÔÒñrnâJʹ‰«(ç&~@97Ñ~vNY ¦œS#Ω/ FyŒ±éç†øï‡È†Í!¶·z¼áªÇ¶P=Þ°•êð†mTw7øŽ½ÕÛ Û©ÎnØA÷ç‘•Ž¿s\Ÿß³w²!wñ¯Yåx·ãF!/b2Í ±»Šp6åÏ—õÂ×OÏ1.ƹ,ÎyLyý|–ä–âB–æ"–áb–å{,Ç%,Ï¥|œîé.92Ó2Ê‘™–SŽÌ´‚rd¦•”#3­¢™éÊ‘™>¤™i5åÈLQŽÈ´†rd¦µ´_fú˜öÉLŸPŽÌô)k†­–‡kºçë;RöÙãZt­÷¸Ö#SλÖ#]ë=®õH×zk=ÒµÞãZt­÷¸Ö#]ë=®õÈz!ÚÈKýͯÔx–yŽ“xžïò'ó"§ð7NåïÔÇ4úƒú“F—8ƒ—93DL ñ_ê±L¥^ìÁ4ê±L§ûÁ ê±̤ûÁ,Ú̦ýçÁÚ˜[_êŸÌ£ûÁ|ö ‘qjm·¨ÆÖHù÷DSŽÕÕo‡¨ï?r¿£,¸ç{Ê€{vRæÛ³‹²ÞžÝ¢¥†…¸ E9œÅ8‚Å9’%hž_(ÉÑ,Å1,ͱ4g&¶qµìû}ׇHš›Æ/Çòª•ÛP­œø*í÷™Î…¸]rÁ´qö´B;=v9Þy×<Óºæ™.Ò5ÏôíqõBy>§^(ºø¸=dwic=Q¿»³ž(Ï—ÔåùŠz¢<BöÑÎú¢<©/ʳ‰ú¢<_ó nfE~ÃJÜÂÊ”#:Wá6Vå·|’ÛYö¥Ç¯û röã±,o°œçŸòüw¬ÎïYƒ¾gç§¹‹2gžÝ4—;Ë›y~ðÐŒø/ÄWùP:"UæQ>âüçW‡¨¨_å#F¸ÆóÇ<ŸYÍs?GÆ8·Ö¹ËÂ㔇–Ÿ þ¿<¿ü¤cõjdÔk?6þŸqž¢º52ÖùOÇOÿÉyuld¼ñ:¦âgÎÿìü£ü…êÚÈÔÎn|ÚX}™Æø >ÄõLË/™Ž_1=7072#71eÛ7å%ûM¯ò!®°ŒÓëqÊ6½*P¦éõ³"O°SþmÍÊ”å{U¡}ºWUÊò½ž¤,ß«eù·¼¿}¬×SÆöË^Õù+k0™OSVïõ Sþ-»ŸBl+uåýŸùZ5Û…p\½{ÿcõåýÓT_Þÿ•êËûÉTOÞ?Cõäý³ìBŒl´¯sˆõ'_ç5váuvå_ìÆìοك®Ç¾žô¹÷õâmöæ¾Á؇wù&ï±/ïS;ê_êaGýG=ì¨ÔÃŽ¶uìÓÃŽ–W÷éaGË©ûô°££ÔÃŽŽ¥vt‡2žÃ˜ŠÃ™š#˜†#™òç9G1-ÕÆÑé8†òÚWrm¯ÂìÃ"|“ö¯úÒ¾óU?Úw¾êOûÎWhßùj Ç Áo9WÊ£´Gµj±³¹~`±3åï+ðiˆ¤³7 XGësÀg´>s×ôýgs½Ââž´6ØOÒY³¹Õ—ܵïå¼µ’»ŽÇ³Æzæz‡Åzæ9Bdב;¬e™‹;>ê¸UÑ Æ%Ìoù·‡èBü»yÔÒsji?uT–ÌVÏø¼±<½ ¸C¶M/îmÓË€;ä¦léË;–QܱœràÙ)½¸ceˆ–ÏâþØbÒ˜ÿÛzÐüßÖ“æÿ¶^4ÿ·ÉÏiÌÿmoÐgØÖ'Dÿ®â?²ý]‹róßµ™3„oÜ»¯×1¶ïüý,å翟£}æïçiù».åç¿ë1/ë3ŸŸwÏ_¼nÜÀ8?²_`Aº=¢F…ø±u8šÏ†0ÐúÉ ¿¬Pk^Ñ“®øzÒPOºâõ¤+.s:õÓ+®:žá13ÄTw o}@×ð–¬XÝ5¼µš®ß-=ou×ïÖº~·Ö†hsûcûisûc†ÏhÌð9íì›Ííì›ÍÝó öÍæîuûfs÷:ƒ^®‡Ú[ÈXj-$ÙϊȯE‡"êþRµy©µ‘$['ý¢k††øå8Œå9œs+p$Ÿ kÒA–;2-ÄMÙŽLç“!¤™br˜+‡ðò"ñ7æï|‹p/QVÏq™Cy…è8$sçø“#x2u½À¡QÔMÙÿÐþͱ”w£¼shÒ³dó=Ã!þ+9:çDz¨ì™º eÏÔU){¦~’²gêj”=S?EÙ3uuÊž©kPöLý4eÏÔÏPöL]“²gêZ\ÀÚ\Hk¨Ñ">ËÅ”¹G¨UâCH°oÜÕ3­sû{Wß´Îý½û3Ýß»¿Ðý½{šîïÝ_éþÞMæ;C5´¡ëw¶£óÙ‰•Ø™•ù:ݧ³]è>íJ÷él7ºOg»Ó}:ÛƒîÓÙžtŸÎöbÊïïM÷鄽còO´wLþ™öŽÉ¿„˜äGBÜœ¯™™›™…êÈ8ýû£öŽ4¾grVç¶0·2;·1¿õZ=þ£rRrNãíÌÅ|”ß1‘ß37w2w1/wûyYéQù*9ŸñT7æ¨É¸—¹q? ñ ó ‹ð‹ò0‹ñ‹S>L.Aù0¹$ôû–ú}É|Ÿr\r)çåÅäÒ”“ËP^L.Ky1¹åÅdys޼˜,oΑ“åÍ9)×PÞœ“òýåÍ9öÔK_†ø÷õN—¾¢>òÒê#/m¤Z}iõ‘—¾¦žæÒfêi.}C=Í¥-ÔG^ÚÊi!d”w.ms¬—¼ô-õ’—¶S/yI?÷þ,êçÞŸMýÜûsBtEËÿJZ¶¢œuJ3MsJ3mSÖc8'ŸŸÒëL“©½g|šKø«ózŸi›—'ë¦éNé¦éNé¦mõ¼,p^hÚ6cûÑ9™ø”žhšžè”žhšžè”žhšž¨ÑrÏŸ3ÖMÓÒMûÞùΟ7Ö MÓ Ò MÓ Ò M3GÙÇÎ]0®iüƒñ*ã‹Æú£i{X›{e¤Žë8ÞÇg¹ŸÏñŸçAÖå!Öó¨ïø°Ç‘ÍònˆÛW1„éõC¤ð6 û•e²óÖd–)´&³L¥5™E-ÜgMfQ ÷©…Óz½ûšEÝßWÍøc÷7ËLck4Ë,Z£YfÓÍbÏØgf±oì³F³Ø;öÙ ²Ìg­³Ä:h±›ÖA ëb‰uкXb´°.–X-¬‹%ÖA ëb‰uкXb´°.–X-ɪM[ -¬%ÖB kc‰µÐBÿ8äÓ[AÆ²Ž•ù«ðsVå|’ëY_ò)~ÅêÜÀÜȧ¹‰Ïðkê_‡lf-~ÃÚÜÂ:ÜJºó­—WÍì|›jfç;T3;ÿCÙ¢ó]ª•ïQ­ì|Ÿjeç©VvþjeçT+_T+_piˆþaÿ]jßýÃþ»Ô¾ûõòitÎØ>¼TžÙØ(Äõ¾ÂÛúü‡ïÓø_ç;¯®æéèÑ)DŸron¹7O¹7·Ô¹§POÐ5SˆË¯îñXˆÄ¼fœ`¼Î¸q¦÷èQ„X”½îa¯Ó+÷(füº±}8ÿç´çÿÂy=DŒž°G vuÞ¾œ½±>"¦›±=9ÿ—~÷´«}9ÿWž+å¹î,My»«}:¿<ØÕ>£óeœ—‡ºÚ§óo¢}:¿½ÿšº·J½›˜"y[«w«äš‰¹_6V÷V©{ó¿bü§±{uíÝ«k×9/DÞññÖ÷ë·¬_Àõ,ðoˆ¾39Ä?£f½3…ÖÅÊô!Rµ~…N‡è­!~­Éó!Z`kˆ;õ:·Ñºœ¹Ðýðþ¾5îÊíìÆì¢{ôK#k…ðÅ€y^¶G/9R.Þ3†rññæòWá^Ÿ¿²GïŸÖÚjâýÓ¶¡÷MûªççzþõÿÊ$Müž´mé÷¤mÇïØžßÓþÓd';pÝŸxYµÉnÇøí=MöОÓd/»pí1™ÕÍ=òOfusß•YÝÜ#ÿdV7÷È?™ÕÍ=òOæz”2«{äŸÌ (ÿdnH9.ó ”¯^iÂ_òuæFÆrVæÆ<ë|3çåíÌ/ŸcžgS^ðüKž×_enf|Ѹ¹±üù%ãߌ[«™›ÿÎüƒI¼Ä–¼ÌVÔ‹gnÍ«|™†è׫Bü›¯†èðØ_ÉšG{ÎðxÚs†§¢µ7<5í9Ãõ㕬¹áúñJÖÜpýx%÷t¸L]Éz.SW²Þ¦zŸç> 1•ÍáëúÚÊæðu}mœßÿõoôû¿þ=DÿÙâ?}Ÿû¸Œû¹œ¨oÛ)W Õcï”+†>Iybh5ÊCŸ a„š’µ£±<1´º±Ú’ÕýÝ)W ­a¬ÆduŸwÊCŸ¦|1T¯1B­Éê¾ïTˆ֤Z6Ô¡Öd5vªiCÕ´ Y‡‹ø¬çÕ ¬]ÕA9q„ú“UýÙ¹ØsÖ~q„º“µ»sï9÷<—м۹”õ<¯eUvÚK†Ú÷ó|ãØ~2´—³¡sú‹+¿À•lÄUlÌø"?¤,³s5›ò#6 ‘úî1òZØÎÈ ôßc&Rÿ=fõßcÞ¥¾{Ìdê»ÇL¡¾{ÌTê»ÇL£¾{Ìtê»ÇÌ‘ÇBl¦Fü‘yœ/† ‹Ž´8á¸Ie\ïCO›ïež6fü?cŸ­Å)ê'[Ø73é'[Ø73µ ý2Sí—™ZÒ~™©•ŸwŸv 7Nù;[Ó¾™éeÚ73½Bûf¦6^WÓëFÛ?3½Jûg¦¶4÷2µó¼ûºc$ks”óæb¦öÆuŒGÛW3½Fûj&ûy‹KìÈË´·¸Bûx‹”¿sÙ>Þ"åï\îbSëe¶Î‘9¯†Øäï9mùÛñw¶ç|—Ø—Cx:cÇäã9¯°¯Z3ú˜ç{SóüÔnj㛌g_¦ !Û·Žû9NÍþLÃ|ˆ™–ƒ˜Žƒ™žo1ƒikÊ:ÄqF¾ÍLÊãÃÎG8‚™9’Yü^}}ÖQ޳r4³q ³s,sps†èÖ!~@®¤}v«ýv€š¼õ¶ã‡lÏÕ|±×°cˆ¦‘m¶ÚgÓÈ6[e›©Ï†ÈccŒå›­rîÔçŒÇË9[í»i䜭rN9g«œ“FÎÙ*礑s¶Ê9i䜭rN9g«œ“FÎÙ*礑s¶n ÑÙîuC?7Û½nèçf»× ýÜìŒôs³3ÑÏÍN Ÿ›ý0S~î~ËÌÜÎ,ÜÁ¬üŽÙø=³s'spsr7sñ>Ê=Lä^ææ>æá~æåæãAæç!àa¤þuöc<ÊB<ÂüB¤´z9ÿCþÎÕüCïSKï“•µ™MO´DO$ ýQÇ8;Ÿeç—:/ýñœ±ûúÇóÌź|”2öÒDÊØKsSÆ^šÇϽïçd©?dí¥‚ô×ËŒeª?dî¥ù؈ùÙ˜ø" ² cSb3ʵ¼Ä"!ZUݺ¡«ªnÝЃUU¯nÈTUÕ«2UUõê†zeM‡»o‡˜j;CìͶ!ä˜àx—cy©Únš{ ‹„ø¦räïýBü’çØŸÏsër ëqës0ð-6ä¾À·ÙˆC©Võy+ÄOäææÛÌáÌËaÌÇáÌÏ,À‘,ÈQ|Lö–¿úŒv\ȱ ÖgŒãÂË"Ç¢Ïb|‡Å9%8‘%9‰¥ø.Ks2Ëp Ër*ËQæ(^Þµ²6º¯oDé¾¾¡§Úè¾¾B†T!šO ?ézäS¿OºùÔï“®G>µû¤ë‘Oí>ézäS»O6!ÿÇê÷ÉCtÔ¸ÿ¤^|Ôx>ÁwX‘X‰Y9Dö±#Ö±?cI~ÎRü‚¥¹žeø%Ëò+–ã–çF>ÎM¬À¯ùõù{*RŸ¿§·°2·†Ð _Éjéž*ÆúŸùÕÔ=U¿å“Üî|çÛW3NùûP ·7~Êø;c÷/ù5ºwÉjëžêÎÏLùûOåþdµvÏÓÆ»ø w;_ÄùN,JµwOMç0.fü:‹S/µ§–ó{X›{)·ØG¹}Ä~Êí#PnqrûˆC”ÛG¦Ü>âåöG)·°_4ÐG'ëÑöÈï#~ 1­_ qüÍæ¼É¼Å$ÞfKÞ ¡ëÛ!<»å7Fy®u+Ïÿc<Üx«qkã»Æ#Œ·¿l¬f¶~…jfë6ü7„œj\ëWÿçµ2̃”q[cõ³u»—Yë:Êy÷¢ëhº]Çð;Ï·÷|Äx¬ñ÷Çοæ¼|Øu¼ñ.ãÆêm뎌õ;Õ·Ö«¹­;SÍm-+·îâXïž9uˆf²–v™·™¬¥]æm&k)åÿ×ô^½ï:êÕûÊÿßèÑû~Nu¬ïTÇú®§úÕ÷Kª[}¿¢ºÕwÕ­¾CH#¤wíwÈ!éõL;ôLéõL;ÎR¯´C?Ú uˆ‹ãËŒç+´.´¡ÏØàU¦a[>ÄvLËöLÇטž˜™‘˜‰™À×ù0»ðvefvcv§Ò ³±'ÕŽ½˜ƒ½©f4xƒjƈ_C|•‰L椖›·U|®gŒßåYNÖKÝ ñ•Wò>Wñ_~Àÿø!pµ×km+Ä×È}wC$¦rˆéb~äw_»˜ùå¨.î{~÷ôZƒ·ÒַܽC˜p/DòVá}Vå¿|’ÿ±P¯51P=™a ?ÿ‚Ÿ—ÿ®5¢¹=1Æy=ÖµÆÆæöĨñ3Æ/›Ûךð¾óz†¼z®kMÍñ‰qƵŒ››çãõ^׬¹•ŒSëÁ®Y{«äÅkÖÞ*óãšµ·J^¼fí­Š†°([ˆ”{)D›«gd‚æE)4/F™ yqÊÍKðXˆ&ÈB»¬Ñiï„H!$A&ÚµÅx‚±,’ í’qd£]2NBÊ8 9)ã$䢌“ð(eœ„DÊ8 ¹io›¦ï*$Ë$ä1–uò2å÷äcÊûçgÊó(ë$¤¬“ðe„B”u SÖI(ÂC!<¤oO(êØwK(Fß-¡8}·„<b:?âòȸŸãï|ž°./±õ"ñö‰Îõ_¡y‘çªù£Œ46?òüI÷9ϵ^Ôï]ðÜÙ›!v¾}îE=ƽâÙ[Æö»õ|¦³gP_ra¦ço{^xöõsgÿ¡~íì]Žä=êËÎÞ§~ìì¿Ãÿ8–8.DΉíóÇ3Âw¼sï?‹-8ÛùçÝ»sQºöçôÂóõ¼çôÀóõ¼çôÀóõ¼çôÀóõ¼çôÀó}Ÿszàù¾Ç9=ð|=ï9=ð|=ï9=pʟߟS8Ä¿ð#Í«ŽÓ¼zA^šc^½p’æÕ ÿ£yõÂ)–äO,ÅŸCtµÌÜÎ|Y-3·3_VËÌíÌ—Õ2s;óeµÌÜN&^-3·ÛBúuŽåævæÊj¹¹¹²Znng®¬–›Û™+«åævæÊj¹¹¹²Znn§Îµ´G&ØOZÚ#ÔÁ–M¨¶lÊ”ç›QlùÍ¥2éõ¦-›«‡-[P=l™Dõ°eKc+þB¦>Ž[;>Ηy‚¯ð¤÷²÷ì¸lÜÆøÔ'œ¢¾8á'ê‹~öo:Ö'üB½qÂiê~¥ž2!YQ{ر¾2á õ• g©¯L8G}eÂyê+.P_™ ÿÞ“I­6ö$pæÜ2§üÿ_qÔç~“ÙCxãÇI•ò|_cýîà~ÌÉþÌÅ|”©<ˆz€Áƒ©¬7(¯¬7(¯¬7(¯¬7(¯¬7(¯¬7(ÿõå QoP^ö¬7(/ûÖ”—ýë ÊËþƒõåeÿÁz‚ò²ÿ`=AyÙ°ž ¼ì?XOP^ö¬'(/û–cÊËþãe÷§eùfú«t)¿HóŸÞ4|¯bˆ<Þ/DÛmñ9õãí¾a'naÊ¿ÿ,G7“£ÉÑÍÔ’gJ‡ðc–aOçåêfrõ"¹º™\ýLYç{ËÕͶQžnö­óåœïM“ãÇ7ø8­µErv³í”¯›í \Ýì;ÊÑÍäèErt3µæ™ ^o]-’£›ÉÑ‹äèf»)77ûrr³=^÷„×õ5–—›Ù'ÉËÍì‹äåfö‰Eòr³&h$D“WÞÓcþÖ‡ÖСwCìø,œÌ¬!4Îxφ2ÌïuhŠójð¡©4G¾ëü>N¦÷>4ÍùœÎœœÁ\œÉG9‹‰œÍÜœÃ<œË¼œÇ|´vÇççê™/þâÏ1Øó~8G{ÞçiÏûáíy?\¤=ï‡ß\ƒÎ®ÁJê#~\"‹„Øæ-»`|Ô¸•qWãÙ«?æ|kþÈ—ïî¼ýó÷ûG{ß3=¹–½ø±×÷ºWŒÝ×?¡ûúã§ÎŸp¾ ORµøÔ[->E½Ô⟨‡Zü3_ã/Ô;->M½Òâ_Ù‰Éì¢Ô—^êÉõ¥—z²A}饞lP_zÉÔ—^jÉõ¥—Z²Am饖lP[z©%Ô–^jɵ¥—Z²Amée”±®ÒùŒ;ºÒgÜÑ>ãŽîôwøÞ)ÿeÊŸƒK÷³‡Ï¹£§‡ïû~%7„诩Cül5r¡,Þ,SE=r‡Øè¹¿é{žçN^à.^änþÆø;÷ðú¬»|Æ¡ÇCøü·y¾°±Ï:4åßûݸˆ±z8T-*.ÏïR‡ªË»©.ïÊMuyWªË»òòæãiæç¯,Àdä>Ƴ,D}Ç.y`èyÊCͯú¿†¸ØÁLæ[ú'ûZý3އ„{Eì¡»!ú¸¾èÒgÔ]úœú¢K_P_ti=õE—¾¤¾è’~hìÖW½·±3¿¥lìvváº/c¿£û2ö{º/cw²wÑ|L¬í!;Ýmì¾$>ëñœñÆæeâóu=êyÔ÷hàÑÐó{ªlRç£jÀ&u>jÏßô¨õÞα}“ZµÏoRë£öùMj}Ô>¿ÉšˆÚç7©õQûü&µþñu!ör]~Æzüœæ`ÜŽ¿pÜ Ä¼:/Äe×˾:ŸU¸€zÔn-B$Ì6^hü$±Zˆî|(Ä¿mïÛ™–ö¾é¨î•õGÊþ{eý‘²ÿ^Y¤ì¿WÖ)ûï•õGÊþ{ÓSöß›z—½9‹²åHÙr¯l9R¶Ü+[ŽœK¹r¤\¹73çS¶¹€Y¹Ù¸ˆÙ¹˜9øsr sѼYißk3'„µýBäûÂJû_ór¥ý¯y¹Òþׯ¼\y‰æåÊË4/W^¡y¹ò*ûùþ~Þ~²òOcóså5šŸ+¯3å÷üÅ÷yƒËø7—Û“í™éSÞÿ¦ñ cûæÊ[ŽWò6Wñ?ÑN~gk©“ß™ÇZêäwå±–:ù]y憘TÃCì– !Èéáª{™j„±ì™j$eÏT£˜¢•íI×ß ½èzŸæ6‘’í=×ß4nhlíW¶÷\ïË}ìçü ÎÛ *ï7îoÜÈØžPù€ñãÆÆö†Ê¿hl¨|Èxqc{EåÃÆƒy„oñ(‡ðßæÊãæçšú9{Ke{àõáÆÍŒí1•í…×í…•í…×í…•í…×GÑxÝXÙxÝXÙxÝXÙxÝ8üç_Ù8üêg—"•­Ýá§í…Ã¥ë1<™2VºCŽÏ8ö݇Ÿ¥\µü+?s›hWW+ûîÃÕÕʾópuµ²ï:Üüªì³7¯*ûÌÃÍ«ÊöÅ“»BüTó9ÙZ›K/ÕK?clÍΕɒ­Ù¹2Y²5;W&K–ÍæÊdɲÙ\™,Y6›+“%ËfsíýɲÙ\{w²l6·`YÒ9^èø1.b!.fa¾Ç"\¢!Ú%}ˆÏgîvÉ@µ°KF~Â’·C¤Âfc9'ŸLÑEÎÉ·‘rN¾M”sò}M9'ßf×é5DzN¾o(ëäÛBY'ßÖS¨wˆýE?Uè ꧬŸªÏr ÕEk1®êó!æ¨99Ñœ=(Drlà`nä[ÜBš÷qü5}¾~ïè¡ÔŒÆ-ÞÃ<žø&Í߉}iþNìGóvbš¯Í×Ñý^o0z·q$õ£Gq»×™ÇÍãÑ£w›ÇÑü8Øù1ÎglO”?F5þžã¨7(Þ"D÷»¦£Ò5­ï/žäØõ}˜®çè#t=G¥ë9ZÏ¿îÓÛ¥íÓ]*Ó>Ý¥ íÓ]ªÒÝåI®g5~IýI†!þ{÷?Ã&. !µvâgkjæÛ´¦f¥55s­¥™Ãi ÍAkhæHZC3GÑš9šÖÐÌ1´†fŽ¥54s则ã)GÌ|‡rÄÌ ”#fN¤ü0ÓÚ+/>ªoüYŽ˜ù.则“)GÌœB9bæT÷õ´cYbæ4Ê3§S–˜9ƒ²ÄÌ™”%f΢,1S úY–˜9‡²ÄLûßϲÄÌy!f×3!nè%ÖäeÖâÖæÕF´ ‘¬^¿«ŽñŸ|–×ø¯óyþåu­¼.åýêß0ÖƒdÕïìªgü·ñËÆ ø :_ßù›lÀ[lÈÛ|w؈ÿ°1e]/òžŸ×“d]dÜÄø¾±Þ$«š2Bo’õ=ç›:ÿ¯±%ëãfÆÿëU².5~Éø›‡8ÛeÌ®Œ¸¦jû®$Ç1lÉ([1–­Ç—i]îz…Öå®64qFè²¾oüªq¶åClÇ´lÏt!fÁ‡!®ic®æ‹! ("éäâ71.e,/XcÜ”kÙŒó%Ï—ö¼~f@ötþç›óS¶à:&ñ3¶äçlÅ/Øšëù2¿¤ž/Õ¿!šËõ?l?Ïåú¶GÏp‹¨å¹Ü‡Ãöê\îÃa™,—ûpXË}8|®ÿáût½»Þ3Üï"js.×ûðt? ë|$„PÚýØþZˆt)„ºö£_îw0¾ll_úå¾qGã+Æö§_þ5Ö— ºÊÎ4÷âå¢Íæt¼\´YM?£>̳Ǟ‘;æÙcÏÈóì±gäŽyöâ32À<ûë`žýõŒ 0o+e€yÛ(oÌû–òƼí”7æí ¼1O¯zFΘ§W=#c̳Gm¸" +òVr^æ˜'¿‘9æé]ÏüC½ë™»Ô»ž¹Gýà™ûÔ»žù—z×3ÿñÐ~w6PÝ<¡½îl íug£´×å±2ÈÊgãÿÈxg*ž vžölÊEgeÌyúɳ2æ<ýäYsž~ò¬ú5O?yÖ^;O?y6£‡=vž:>O¯ÿiˆÿÆ~radˆ[T‚£X’£YŠcXšcY†ãX–ãYŽï°<'ðqNdNâ!Œÿ;Dr—á!ëä»ιžão:—òÚÉÆ•8…òô…©”§/LcUN§}a«q&Ÿòó·ü|Êï˜e\³Yƒsø´ço{þ ã¹ÆÏ»¹+Ëí‹j»Ÿ¹+ñ.+ÓÜÌò{åùEµŒÍÍÜ)¿_®_T›òü"ýêy~‘º<ÍZyÞ6ÍZyÞê'K?ô3eé‡~¡,ýÐiÊÒýêuÖÒówŒ—'ó}žqÞÚzÞž7ÍÚzÞž7ÍÚzþ­©çö]C\®‡ô›õ)ãnÆö—öÝii߃éM¦Ž{:–o»}ãµÖg·-üÏù^Îg !Wlˆ ‘—*$†PÕÞr@1DnªÛ¸¹±~bˆüTAŽ"?U£†ÈOä¨!òS9jˆúYAŽ";U(HÙ©‚ 5Dvª C ‘*ÈPCd§ 2Ô¥,Ê÷Y,DÏâßS+Jè 7~âßèÅ ìMõù ¹{£úü†ž~ã×|“›)goü†ý¸…ý¹•¸ù-q;åç;(?oüŽòóÆï)ÍŒ ±õÇ3ÊwË ŒãDÆsSñ]êÑêëÑfÚ‹êO ¡†þáèìÊÙ«Ùy½ª¾n¦®þ4çíßG×ëåêëåfêåêëåfêåê»3õrõ]û™z¹úz¹™z¹úz®ÈÇú¹újñÅ!nñ \ÉF!¼ãšç~®yîÖ–9µdˆ>÷ZˆéÙØ‘Öûs˜‰©Çyîu>Ì.|„]™™Ý˜…Ý™•=˜=™½˜ƒ½™“o0ûðQ¾ÉDöenö£^»åW!îas.çg檬ÙrƒqsûP‹?_Æ>›DóãlKg+–`kú^g_f)¾ÂÒlÃ2|•eÙ–åØŽåe<÷üû•tÏ¿_Åü D.±ï»G— Ò=¹ü׆Ðdb]ïË…Œ?fa~Â"ü”E¹ŽÅø‹ós–à,Éõ,EýÒåÒÔ].C=Ðå²ÜÈrÜDŸñý¯ù8­íËhÝN²>këk&Y—µõ5“¬ÇÚÖã$ë±¶õ8Éz¬m=N²k[“¬ÇÚÖã$ë±¶õ8Éz¬mnL²k›“¬ÇÚÖã$ë±v‘½8>Ä/nÉwØŠØšù2'ñ¾Ë6œÌW9…m9•í8í9úš‹3Ø3Ù‘³Ø‰³Ù9Dßö{Ÿ¨@¿÷ 5¡P=”?_ÒÀ9Ÿá‰ŠôžPcßöž°'jèØçx¢ }Ž'ªê¡Ôì·}–'ž Ѫ2û }pU™ýÆ0Êì7†Sf¿¡ïm¢oxHFh¢oxèë“Ï5;YÚšÉnÍØïÞÉAêb{ú:ãœÆIÌEYêâCΛ¯ïè7sËTÓÎtü‚é¹>„¼«gpü%3ò+fâ&p#æ&>BŸåbfÊ+…Õ»Ó¾_aõîtUªw§}·ÂêÝéjTïN?Euîtuªs§kP;ý4Õ·ÓÏP];]“ê×éZT·NצºuºNˆÖð™oAŸù¶^¶†Ï{[/[Ãç½ý}ÞÛzØ>ïmùª†Ï{Ûµ«áóÞ–¯jø¼·e¶yöÏR>w,Æ2ÛtýXûFv?wÀÏe÷sô¡Ót> Ó>’Ýûð>Ù½Ïï“ßšÍî=¤¼Ç ¯±ÇdÏj¼Åø¤±½&{6cÙ-{vê?ó[ßÙs8–ß²çäv¯ýŸ×æà)Ú²çr~‡ñOƹüLyçuî;ÇòÆôB\½F”ËëÉåÓåòz/R¯×„rx=9|º^OŸ.‡×{‰rw=¹{ºÜ]Ïœ™.wד»§ËÝõÌ•érw=sdºÜ]Oîž.wד»§ËÝõ^¡ý¯^Ú÷꽪þ_ ‘´²ÖôÆm¹‰íø5Ûs3_ã7ìÀ-ìÈ­ìÄmì,Ïpü­ã×CÌ?ýBܧöÚú3¯õ£Æ>|'Äý°„ÿp)ïòý¦¹æ…³Ñµ.ìZ?|Ïùe¼Ïåü—+øWòW…è#0ÂÃÕŒò#Ær 㸖ñü˜©ø SóSZs?¬£5öÃg´¶~øœæéæé#æéöÓ!Ëä†â\ÎrJ kôÀl9ίp^O5Ä^_A/5Ä^_AÏ4äꙆ|Ȳ\Írüˆå¹†s-+ðcÊ‹ÿ<â>ÙÏBtmÿ)Ly}mÙßá\E{‡ðq¿©é3®-çÜyãþÆÖÔÚòÆø8/²óüÏ[kkŸ0þÝx ±5·¶¢ñ¬ÄK¬ÌˬÂ+¬JýxÑ7<úxÈBkŸtîOÇ}=úyô÷à!ÿ4WÛ3ªíÍÕöŒj{sµ=£ÚÞ\mϘ9„EêE9{xs5>£ß\ϘÕyõ£œ=½¹ZŸÑ:l®Ög4'š«õÕúæj}Fk«´yu1/02?±³ ßâcÂB|›…9”jPéaTóK§š_zÕüÒú‹j~iýÇE5¿´þ㢚_ZÿqQÍ/­ÿ¸XÆœïbFë7F?âžüŸÇ©}¿ ÖiZóa»œŸÖ|Ø®¯Hk>l×W¤5¶W ¡õ;!\Ûml^l—ïÓšÛõiÍ‹íú‹´æÅö§h^l¯îõ¼þcóc»þ"í'|šŸò®cͳªDˆks„%y”¥xŒ¥ù#Ëð8ËòDƒÔò öƒUåŒO²<ÿGß©Í)VàO|‚?³"a%žfeê+VUa2«R?±êIž ‘¥rNÒ‡”s’VSÎI’{–Ê7IrÏRù&i-å›$yg©|“$ï,•o’ä¥òM’¼³T¾I’w–Ê7IòÎRù&é‹”?áXÆI²F—Ê8I_†PS=^ßXÖI’}–Ê:I²ÏRY'IöY*ë$© 5õ(ÇËÇÁ±ô9Žc}Êãx}¯W'ʃã伃2à8Ÿã  8N3àùI7.Ä,œâš¹Oêg=ZÃ̳tÖæó(ì> !'ñ¾ëç&ú9÷v@#ãÉ!¤Ž:ç7{ܹÆÎéã¼È©lB}Ú€¦œÎfœÁ—8“Í9‹-¨î Hâïg®4«`ÜÒx.[q[s>_æ¾Â…lÃE|•‹Ù–ï±—°=—ò5ªÑ:p™ßc.6“™t4^ÎN\ÁÎ\éys³™=o¡¹ÙÌœðºó«Ø…úÔ]ù¡çÍÙfrõ÷,̺ÐÜmV…æn3{áBs·Ù“žw/Ó}D÷(ÝöäZÏ›ÓÍì‘ ÍéföÈ…ær3{ä€^žÿ˜½ù ßà§ìC¹zÀ›üÌëÍóföÐ…æy3{èBó¼™=t¡ùÝ̼SW"õp%ì%ïg ‘Š/„ðØ.çÚ;§Ÿ}S[B?û¦þ¶„~öMým‰¯Ùíñƒ±>·„Ú÷¦ZXBí{S-,!Ÿ¾©–PóÞT KÈ£oª%Ôº7ÕÀjÝ›j_ µîQyæˆ<ó¨2|q×íu)ŸÌôºŒ”Ï~ûºŒ”Ïçy½'e¦×{1Gñêe'Ù.,ÙI¶ËSU/þAˆ‰Ú÷7¹¾Qûþ&×7jßß”:„¬rzÒ®–sN Ø”Æøoc=}T-ØäšGíý›\󨽓kµ÷oJ¢ýÕ¤Ò2b5©tÊXM*-öW“JË…ýåÂÒra¹°tåÁÒò`y°´<Ø_,-ö—KûnýåÁÒ¾[ßµ´ïÖßw-í»õ÷]K˃ý}×Ò9å0µ´»LúÉrÙoÆjjw¿÷ s³»ßû…9Ø]]ÿB]•å"_¨«²\ä uU~ ÏÞW\—gÕ©Ÿžt^ífŸ~ö?ãjÆêm7öÙÆO«»Ý~P?Ô²Ÿª«¿ÝöPýí¶—u¸Ïr?Ÿã>σ¬ËC¬ÇìÏ#lÀ£!æ…Û!.•¹ùšƒ/üC{à w9“÷8+Dñeñ óßâaá¾Í£ÊcÆ9œÇ9"D_ú#Äg˜ÎKœÁË´½t…³BLOk­p ­µÂQsê’cë­°õÚÓz+l½ö´Þ LJÐãhˆ¤ü‡Èǘ™?Òºéi6ÏzZ…­ãžÖ]a븧uWØœêiÝ6§zZo…Í©žÖ[a븧õVØ:îi½–Ozö¤|Ò³­Ûž½iÝö|ƒ)¿÷¸ßg}öìclÝö|“)¿¿/SÎ÷£Lܳ?³‡ÈÉ!v©^ì3ìb.|âuâvæV¾¢Õׇ¸Ûmø%SþN†!~@ÙÍj?ßïÚeµŸïwí²ÚÏ÷»vYíçûÝ£¬öóý³©öíŸCuoÿ\ª{ûçQÝÛ?ŸêÞþT÷ö/¤º·Õ½ý‹iNìæÄþ%4'öëGóÛC²šûõ¤ùí÷YïyÜ7^æ±—yºÉ<ŸË<ÝôߟË:ÝÔge¹Ÿ|ÿÏežnêCŽ5!î}?ÇZÚ÷s|Lû~ŽOhßÏñ)íû9ÖѾŸã3¶æç|™_ðºN‡\§®Ó!×)ÇWlË lÇlÏM|_³COËr? ‘…ÖhSkt¡5ÚÔ]h6Õc-´&›Z“Oÿæu…­É¦»i-6ýÖ`Skp¡5ØÔ\h 6µZƒM­Á…Ö`Skp¡5ØÔ\h 6•™Ú\ ñÙ¦ð7NåïœFk"›ûÚÆšÈæ¾¶±&²¹¯m¬‰lîk›«”O"å7þÓØýmsîo›ëtÛüE¹æÏ!ne/îboîæü}¸‡or/ûrû…0AÉ›h¼ß¸?pRúó…ð}kí !¶ƒõ¶VßÒÁ:XÛ˜'¨_ép’ú”ÿ£þ¤Ã)6ãOÔ—tø™Íé÷­mAukm 1í·…¸\¯ò[¶åv¶ã¶çw|ß³}×\黿²–Úû®¹¬¥ö¾k®×黿êBß5—5×ÞwÍÕ-„”^:¢&µ÷]su§ïš«}×\=黿r ÛË€¹\Ãö2`®7üÜ.?goi/ æêcl^Dì1íeÂ\®i{™0—kÚ^&ÌåšÆ«íåÂ\®g{¹0—ëÙ^.Ìåz¶— sÉ•íåÂ\re{¹0×[ÞÓ‹Ø¯Úˇ¹äËöòa.ù²½|˜K¾l/æ’/Ûˇ¹äËöòa.{ëOKCü Ÿñ+ó¤þï\Í?ø/q /s-¯xýû^ï;|õ±ñUc9pƛƟÿi,Îèkü©ñ5®ãu~Æ¿ø9Õﯾ ºýÕzÞôsrã ßý«/oñ+ÞæÞñ¼<9£¿ñFãŒåÆ(7ÎH¹q†Zó“¼8C­ùI^œ¡Öü$/ÎPk~’g¨5·æ…øµ½õxÎÝšïØwßR!Dšø[ž`_ç8߇ ©»µˆ)ç³ߣÏRRÏÓd{ˆOkn,ì"e?g?~Áþ\Ïü’ùqƒŸÛáçº6Þhüq~ÏžÜÉ^ÜÅÞÜMŸµ`5§<ª{ÔðxÚãÏëÏšìñš>¾KÁšµ!ÄÕ+B?{EÚG'—7¶g¤•uûÙ3Òæv~’óË´ió¿k\“©î—ì|^ã)ÆÏç3žj\‰ÓXÙù³Îç7žn,¿NŸA9­ß9ç ð< :?Óù'9‹î_¿ Î?f<Ûø)ÎauÊÁõÜÓTûËÂõžæ|º¿õÒ½õ¼õÒ½õ¼õÒ½áãT©C¤fgCtµ\Þ¾åòöOP.oï;u]RþÞÉÕòy{½ýê1ÔïË*ǪÏ'C´•ÞúáæÉªù§hˆý䳚û}—5.flÿSœæzó_œO4.alÎ7?mœ›¿2“™—g˜g™Ÿçè:5?Ï‚¼ÀǨÖ^Vkÿ)éýRþýn5õ²šúO)ck(6¿ãÒŽí ÿ”¡=៲ÜÄrüšå¹™óVà–Ö¦ ‘gê†èòœ!¾õæâ^>Jëyy"÷3702/Õãåùx˜ùy„îKë£!Z2oˆ;·›ùh-–ÌOï_²½É‚ôþ%£÷/YˆÞ¿dazÿ’EèýK¥÷/YŒÞ¿dq¦¼ cIþÈR<ÎÒ<Á2<ɲüËQ }Ó=*¾.„Š+CHù»+®¢ë›ðŒ‡=¢âÆzø7Ý»âîqÅÕàQqµcµ âGÔ·¿é~·ÇU\c|9Ä â*çh–à–äX–â8–¡O›IµÈx¼q¾C=õPëµ¢>n¨uZQÿ6Ôº¬ø8­ÇŠÖãPë±â´+V¤õWÑújýU¬L뮢u7Ôº«X•ÖYEël¨ž`¨µU±šÇS!úOÍÿ©>ìŸZÌeŸWëšø~[Ôº&¾ßµ®É%Ï×ö¼ùÝa_ˆMÔ_wØÏf!d2Ÿ:pü’ýmWˆÆ¦q›Ö3¿dF~ÅL´·Çêcv,KnÚB¾µ‡˜\±!öðlÆqNˆiìû§)Bß?MÑrÖqì¤)F× kÛØ5HS"D¾îbûÜfoÞáü‡}x—oò^1æø#~ç#>ó×}»Ï~Ô;vN áþ¶äÜSÿÑý’‰´®rfwœÛñ桺Ô&>Ägý˜©ø SóS¦á:>ÄϘ–Ÿ3¿`zºFm2Ð5j“‘jzÇj®ãÊщrtG9:QŽî(G'ÊWåèDy©£üœ('u”Ÿe›Žòs¢üÜQ~N”Ÿ;ÊωòsGù9Q~î(?'ÊÏåçDù¹£üœ¨‡í¨‡MÔÃvÔÃ&êa;êaõ€RØQ&M”I;ʤ‰2iG™4Q&í(“&ʤeÒD™´£Lšh=u”IeÒŽ2i¢:ÓQ&MT_:ʤ‰ö½LÛË¥‰jKÇ–TK:¶¢Ò±5ÕŒŽ/Sèø ÕˆŽm¨&t|•Ù–ö¼Ç„°KêØÎøw¶ç|ÖcÇ”Íèu)×¶£ñvâUvæŸ|ר…×Ù•±o°;ÿfÊbÇÕ×É_‡ð¥ïgŽD«³“7ûžæJô¸z;ùcõÔ|‰×[LÞB½Åä­Ô[LÞF½ÅäoyƒÛù7wð&¿ !åß4É,Cï•ã2ËÐ{å¸Ì2ô^9.³ ½WŽË,Cï•ã2ËÎ{e¶Ì2ó^9.³Ì¼w(eæ½ÃBô¹é!><Â|s¨Œ>¾9TFæNâÔü¤áTë“FPmOI5=É– †'Ùà Ж f'ÙÃÔè${XB!Ú» ÓÞ•`Í&Y» Eií&X¯IÖm‚õšdÝ&Ø “¬Û{a’½+Á^˜dïJ(M{W‚=0ÉÞ•`L²w%Ø“ì] öÀ$!Á˜dÿJ°&É öÀ$Ù Áx?{ˆûlsð[æävæâZÓŸ}¢g ñ«/…˜hÆ»QÍD)šÀ…|˜öäè#\ÌÌ|Y¸„Y¹”Ùø>³ssp9srsq%¥Ú2;>DŠ×ÑËÕŸ†\ÁœOå¼:[V).§”Xé¼>vcYsöC”1g«ÏÅåÓÙéXÏëVy]cãôÆõ?0~‘² W³©ç3x¾ñGÆöìÙS~ÿã—¸–Íù1[ð&ñS¶ä:¶âgl¢yÌ›ãEiÞ/Fóæxñf˜óEÍù<æÏñ4ާü½âæÏñR!²@îh²1„§ÕÈc—å&rÉù£‰=yÁ”KT¤\² íÙO«ǬÝ•·² ·±*¿õüÇž·¦@Ÿ#ù ýþäCž×«ÝúÂØçH>LŸ#ùˆóú¢[2`vß©ýë–úRÌgK>JŸ-ù˜ç¶:öù’tl.ó“e™ÃÕBü;Q>ÅXVgk0žO3UˆèâËdgæ`Oæ ‘kBìªg¸‘5¹‰µø5ks3åäkßðYnásÜÊç¹uù-õG×¶³>w°¿cC~ϸ“¸‹¹›ææa½æ;®_q½Éá»VÅ„Ð6³G–n6ñhb æ ±§Ö3?]§‚˜ò÷»q' ò->Æ!,Ä·™ò÷Àeš£'Š†È²[!¶õÞæÛ¼Ã¡ü‡Ãx—Ãy#xŸ#ù/Gñ?޿ޑ!ÌûïíÑoËÅôêä…bzõb7=ôæÅn{þ–çåÅbzóïo;– ‹ýãq×C)vßCæ(öŸÇß_¤,ñˆñú;^/#|ÿÍY&ÒH¦è7)Ä—Ò›ô{—z“~“©7é7…úª÷;‡ˆí7ÕXÒo«ÑÞ_JÎë7ƒÕ9“58‹Os6õPýæPæ}_ÿ*GûÍ5®ÅyÔ'WhÂî‰!ÒÅ^˜o¾qCãIÆöÄ| hOÌ·öÄ|‹hOÌ·˜öÄ|ïy½}n÷»ÆöÆ|KhoÌ·”öÆ|ï3‘˘›Ë™‡+˜—+i>äÓou1ò}@ó!Ÿ¬ú¡¼ÝkÔ{·ë@½w»Žü•˜L׿Ã3ôÝ><Ë.<Ç®<Ïn¼Àî¼Èü=ù;{ñöæ%º'^f^᛼ʾ!Ú¼dˆÏ i^ŠÖms½b=Hó2Ôƒ4/K=HórÔ³6/ÏŸBX”=DÊÙƒ›?n¬—\”ÃØ^ܼ‚ñ/|‚§Y‘¿²“Y™zÇEÖx9{vó*ÆgY•çø$ÏÓþ‘áí.Òþ‘á7Ú?2übâõ/›7R¹yõ›¿¦rófê!7C=äfûWl_ÇöóÍö«xûøf{U¼}t³ºoݬîÆÛG7«»ñöÑÍßÑþ¹ùûZêó¯¾elÿܼӸ)ã!ÆöÑÍ»hÝl_n£GÈ–bž\bÿVãì±O~é¸qˆþ>,Ä/±Ÿü>œjÝïzû%Mõæ®ËîK+×åá3t=v=Z¹»­\‡]·]ÿ ?Óõ¯àú¾íºWp}ßv½+¸¾o»ÞäÓ“z‰)z‰“z‰)ÖoæõŽõSîQ1EqR1å_öçÀb§b„ƒ÷åÆòmÆq(e„“Ã(œN™àäÊ'GR89вÀÉÑ”NŽaúÝcÍtMöXó#]“=ÖüH×d5?²­ù‘êýk~¤¹¶ÇšiŽí±ÖGš;{¬õ‘êýžùTï÷, z¿g!_æ"¾ÂÅlÃ÷ø*—°-—²ßg{.ãk\Î\ÁŽ!‘#6xßÈçô¾‘/è}#ëé}#_ÒûF¾¢÷l ÷˜¼od½oäkzßÈfv a­ž¦f&êij&POSóáäº/å» ×})ß¹îKù.ØË¾”ï‚=ìKù.ØÃ¾\Bu½à‘9!2¹pˆ­#{T·Ç™ËVœÇÖ´V™ö¾ÉE¼îcå',ÆOYœëX‚ŸÑ«ó9­±:_Ыc>M¶Æêèe&[cuô*“­±:h}ÕÙH뫎œ4Ùúª#'M¶¾êX“]‡4-è:¤±N»iÜ¿¼KÕ¾z!Ì4׊Úãó¾o,æ]FûøLs¯¨=?¯zBÌ+‡žxrç‰F”+OÈ•3ÍÍ¢5åÊæU^¹ò„y•W®/†xµ=Ú§ ÿcS>`³¯ÎGû¼Ä›S½ïÓ‚r]Ÿ$Êu}ZR®ëÓŠr]ŸÖ´Œ1Ǫ™cc̱jæØs¬š96Æ«fŽ1Ǫ™cc̱jæØs¬š96Æ«fŽ1Ǫ™cc̱jæØs¬š96Æ«fŽ1Ǫ™cc̱jæØs¬šk;Æ^Mc¯¶…öðj2ø{w5|Œ=»Ú·´gW“½ÇȼÕdïëúèUúæëúèU7©^%eY¢¿ñ‹ÿfAê©{Œ·XˆòÓo…);ýV„ÿ„h×(Î5kàŹf \£8׬kgŽÎ’È ³d…²Â,Y¡¬0KVhòçIç„pô¸±ÌÐ@f˜U)®Ôš>zÂø1ãBxXÞUÈñZû ÖÒuoàºÏrݸî³\÷®û,×½ë>Ëuo ë=,#Ïrí¸ö³\û_8§W{Øüå4å6‡g¹ ¾tl?Ü0Äôü=Ä~'„\›=ÔמO‘ööú\öúööú\iC(/oî¼B&}d&ß)“ïÑÞþŸËþßÞþŸK8^¯Pc7kòÖâÖæ^Öá>>Ëý|Ž(9xüó޲.í£ãëÑ>:¾>í£ãð(ò_ ¹?¾]ÛñéZŽ‘rÎ µ§œ¼9Hí)'oÎoâ_´.æ7¤u1ÿZó…x‘?:¿1ÝãùÖO÷x¾õÓÄ=žoý4±.æ[?M¬‹ùÖOëb¾õÓD¿3ßÜh’šæF“447šÅ‹¬ÎßBLr—7÷vefvcvgVö`6ödvöböfN¾Á\ìÃGù&Ù—ævr?æaæåæã@æç  nAêñç>Â8uéÑ»Æzý¹…¨×Ÿ[˜zý¹E¨×Ÿ[”ÃYÌëÕ¯GõÙãÔ¯GõÚãÔ¯GõÛãÔ¯Gÿóº^Wœ#Y‚£X’£YŠcXšcY&D~N ±3~eKê ~nE×·®Ü£¯íœ=„ûÍå—˜F”_bS~y‘òkŒM®s¯“×êʱ1MsËš­ßû-—çbšÛ;îËší ÷[;/ßżDù.&å÷|ÞÏíù—·§¼OãWŒ·ˬó·a>¾ÊülËlçuÛ¼.å÷4nO×úþkÎ뼌۹qãíÆ)¿gíAñùCôsë¶ÛTZ·Ý¬»Ï­ÛnÓCÌâ‚!î¥=|Œ{C †¦»B54ÝUç 9¿…¹?Ä\mâ–ßgSþËft®¾ÄlâV¶`„IŒaKFÙŠ±lÍ8¾Ìx¾ÂTlÃÔöV{[^káê«ÆiØ–±Õ‰«í™Ž¯1=;0;2cÙû¯vrœ‰™Àש¿¸jݬxÄû[cW­ÖÎUkg…µsÕÚYaí\µvVX;W­ÖÎUkg…µsÕÚYaí\µvVX; WCìnûmìö^>Â_Ùx’)äOÏ©e ×8‚×9’QMJ¸ÁÑü›jQÂMŽå-Žãmª= w¨ö$üà ¼K5'áí¹ß ñ>äm®æÊG¯ÖOýaüñÞåZÞãÇžÿÈó—ŒïÂù)ÿã:>àg!ú‰)ÔésFhÿ$†öðO¢ü’±´gÇ ŒçFï/—Õ¼lœÊxSók¦áf>Äo˜–[˜Ž[™žÛBô€Ú7Ö\= öU#¨qcgP«6PÛÆÎ¢š6v6Õ´±s¨¦K5mì<ªicçSM» ÄFõË›ôòQýò&½|T¿¼ih]«îó©tŸO©×ÜçS¹h<¥N°GžR§ Ø#OÙ#?Yâ:׿"Ö !OYÇ‹?Ë÷ø\©ÝÛO–8~>D—Œ ñIêTúáŽÇ:®¢%¬±³rÝ,Y§¸ZWÂZ;{ExˆEyØó2Pq5°D1ã#ƲPÊ¿ƒ3K*®–(îüQª[gQÝ:û£çe£âjd õëìqª_gOPý:+û•P¿Îþê×ÙST¿ÎþDõëìÏ~^¦*þ„±:vöcÙªxÊçVÏΞ¦zvöWªgg“©ž=Cõì¬lRB=;+‹”PÏÎÊ %Ô³³Bôäö?uz_U‘úoï0vO~Ç”¿ûð{º¿'wrvˆÙ¦î ´73¯2_6VªCÛÔŸêÐ6õg ½q˜=,ócõg =r˜½,óUê2ÿIý@ækÔd–чéÃ2ÿE½@æ~N½h/Mc ç|#ÄŽ ‘Iz…ZžŸ¤W¨¥O›¤G¨¥O›¤?¨¥O›¤O«õ•l¾À±^­Ö†žº‘”¿{DÏVKÏ6IÏVKmœ¤g«¥æMÒ³ÕRó&éÙj¥ü'z¶ZjÞ$=[-=Û$=[-=Û$=[-=Û$=[-=Û$=[-=Û¤§ø«ó{ÖàN>Í]Ô_ÔÚ¢ã¬÷«˜òçƒ> u^Ã~1Î:¯a¿g×ø(DÇ[ç5ìã­óö‰ñÖyi×° Ú¢¿æ ñ³¯3Í×®¾[~ß­«ï–ßwëê»å÷ݺúnù}·®¾[~ß­«ï–ßwëê»åßRǾ_~߯«ï—ÿÛ*è“vÿfì{æ÷=»úžù}Ï®¾g~ß³«ï™ÿ{¯ûÐë~7ö}óû¾]}ßü»œ×#îþÃØ÷οÛýÛbNZ§S­Ó“²ÌTõvŒ5”«œ±L3U¦9)ÓL•iNš[SÕÛ1ÖT.ýÅIskª9uÒÜš*Ûœ4·¦>FsjªLsÒ™Z8„µíq…BôC{H»F\ÄÆ!-êx±ãù›p ›r)›ñ}¾ÄelÎålÁLâJ¶ä*¶âlÍù2Wó~D=Ƈk¨§øp-ÛòcÊ CV„¸ õCè“?DRÉ} ° RŽèó_£¹šª ³#‹°eêT½ÏJï£î#S§’©ûÈÔ©dê>2u*™ºLª›×­òº†Æ¥Œ»³4{P6KÕÓóxþ~HùkÈj6‘ù„Øç…ð´}ôØhãÌÆó™…ÖÕü¬\Èl\Äì\b/‡ØcCy…è&Óód—ËâÔèDuø˜ú›¨SÕácêo¢:ì÷Ä$ªÃÇìщêð1½`v9.»9“¨S‡Õãcêp¢z|LNTé³›OÙÍ¡DuùØDÇö¦55Cäi}ëšZÔ_-žâ›?¢‰öÜ£öÜD{îQ{n¢=÷¨=7Ñž{Ôž›hÏ=jÏM´çý™öÚ£¿Ð{Ô›h=jM´ÇÕÿ͘"E†ß¼H´ßµß&ÚoÚoí·GÏyÎ\I´çµç&Ús^pμIÔG½H}ÄÑßXƒ¿{ÏiÞS½I|Úøã鯇Ÿ1–kR=O¬Å+¬Mûj~3¿ÜšßÜK¬ãœ=6­Þ5ñYÇ×øí‰ê_b]ÇyÜa}Ï©kŸ98#Ä3ïΤ\\¼¿ãYŽeâõ½¼Ætp¶±ïzÐõç{œKßåàÃúÞ^/ËTÛÇÉÐÅ8÷†srÍAktœù¿¾ñ:¾ÉÏØ—òÍAkwœu±¾Ÿ±œsÐúמÖï¸×hýŽë@ëwœõ±¾¿×ÉA­ãqÖÉúÆú×õ©¬Dyè õ=NOzÐú÷:­ïq]h}ëJë{œ^ô õ=®;­ïq=h}ëIë{\/ZßãzÓú÷­ïq}B4íÅ·} £ŒŸöwÊMiÿ Ü”öÕÕ´—©®¦½Bu5íUÊMiÿ¤Ü”öç†0U.|ÌýN{ÝX~Jë~mŸ/SÿÏõ”¸Ö\—>B|q×¥ÏFº.}6QÝçkvâfvaéý©XÕøcß¿Ïúþ}¶Ò÷ï³¾Ëf!>á?¾ÄlâlÁ“ÖŒ²cÙšq|™ñ!|º/Dê¤ ÑÍîg_ûêf÷±¯þ+C>Çîe_sìÓý^“ž˜Áy÷¶¯½v³{ÛWõéAçõŸb&çÝã¾z¬bú½b/y¤¼¯ûÚ×Üì¾ö5ÇVñOÉ5c«Ðú[•Öר'ù;«QÆû]ß±Õi=­AëiìÓ¼Êgø'kÒú[‹ÖÏØÚü‹uxƒÏòo>Ç›|ž·X—·YwXŸÿ°ï²!ïñÞg#þËÆtýǾH×l“_ÝõÛ”®ÿX÷§ºë?Öý©UãÌɵeB|{Îv}å`si»¾r°¹´ýWÊàÛ“im?C|ûY.à9.äy.â.æE¾Ç߸„¿s)ÿàû!ºÎûw‘Óÿ"­Ž†ØGÔVÇø"dgSž ûU¶dßu3>iüÿÇæ;b»ÊPϾ©3\Ƴ\N5üÙ<Ï•¼àõç¼¾+ÏÓœþì»ó"Í×Ï~£ºúÙïT;?ûƒjâg—¨~&+uUÿ>“•ºªŸÉJ]Õ¿Ïd¤®êÞg2RWuí3©«zö™ŒÔu ‹;Þ±œÔuPˆ™Û!Ä5NÇŽLÏNÌÀÎÌÈ×™‰]˜À®|˜Ýø»3sˆy|aˆ½\‹ø³"ßc%.ae.e¾Ïª\Æ'¹œÕ¸‚Oq%«sk0åß©øÐ±þà²ûUÔL)§¤ôÄòd±S”'‹É]E­Ëd벨u™l]µ.“­Ë¢Öe²uYÔºL¶.‹Z—ÉÖeQë2Ùº,j]&[—E­Ëd벨u™l]µ.“ßõ»ôÛE­ÍdkÓz‹KžâœhÍÅ%[ŸÖ\\²õiÍÅ%Û×òŸô ­½¸ä!ÒmWˆ-øw³ =¯Û¾Âöáž1Þklïë¶MuÞ|î¶ß¸ÐÞ×í ›{>Îóæy·CÆ-x˜I<–´·´Çu³·LÙãôÐÝì¯_¦ýµà+´¿lCûjAYë µ÷‡ÚÆöׂrÖ÷uŒí³ÛÑÞZ°=í©_£}´`ÚG v¤=´`'&³3ÏðuZ#­‘çÆ…ð“~﫱!¶WŽ£ýœÆõ'ýîWã3¿c¼ÛøãcYý§BxdŠsœ*™ê¼ÌþÓNâ^ÏMôÜ#ÆîÛO2ÄW“Œ3›ûK›ìœÌðÕ»Îe1v:@ïó“¬ðÕdç³O3–¾šbœS™Ó˜ƒÓ™“3˜‹3ioú§Sˆÿô©2Î ±Ñ!~Ó§<Èu<ÄÏx˜Ÿó¿àQ®1ìk_&Ò¾ö¥¾å}íË<´¯}©?y`ûRû@û¥wr¥)ÐߨžöeãÊÆròC“Óï~©ß} ßýò±òé'Wñ¼=`rUZÿôÀ_êè¿,Ì¡,Âa,Êá,Æ,î=ô–ù:4.ÁQ,ÉÑ,Å1,ͱ,Ãq,ËñÔ«?x‡zòîÞ÷1=ywïû˜ÏØÝû=¦'ïîýóyº{¿Ç|žîÞï1Ÿ§»÷{L~hjˆ¯Ï>4rÛ¡éÔo’‰é9ÆË•ã[†˜ó[CÜB}íCQÇÛwá·ìÊíÔÛžßÁîüŽ=ø=õ´çw²w±wã¿ýdÌùÝÆoðöá¾É½ìË}ìÇýtOÎàä@¢k~þ0‡È¢!öñOXŒŸ²8×±?cI~ÎRô†”æúªV áÀ >É”÷)ã¼^¥j5c¹gHYc=KUsð€Œ3¤œñcðÀÛÆå7×0ʧ9ŒÏp¸ç÷ü&Và×Î×t^-­Z‹öܪµ9ÊóOx~³±ÿÀh>Ë”¿¿©¢óß°·°2·² ·…È”Cì³'Ù„úêÖãëqJSãSlÆŸøeÃ)Íù‹×Y§Gdü)-ŒO3‰¿²%“ÙŠêÇßÃésÿ="Ää±›ËyfÓ\Î3‡Å9—æpžy4‡óÌg©=].ÄÏ–O—§ÌqúqêMNW ½vÃ!Ò /+²ŸóO8o¿Ü`-6Ðïž®hœŠ•˜šz‰Ùi¨—˜ýõ³ÓR/1[osZ/1;=õ³õ/§õ³3†èƒïCü—òôïz¡%¥CdóW!¶oõ”ìÁñÇ5¸‘Os}ïç]£Ÿ]£Í_«›7Ó}{ÞÞö³½mó7ÆöõÍ[h?ß¼•îÛóöºŸíu›·?Çoù<·³.w°^ˆüäÞNworo§»·?¹·Ó·†ÐXY9_ÝØ=žîÿT•ß:qÞWã4|Žñy Œëý¤œ{C/õ¤œ{C/õ¤œ{C/õ¤œ{C/õ¤œ{C/õ¤œ{C/õ¤œ{C/õ¤œ{ãvˆ|ô|ˆmïZ|T—¾óGõx˜õy„ x” yL})ìøÇ?²³1Ox®ˆcó¹½ùü‘ùÜÞ|®u:„“¹ÍçöæóGæsûŸ¼¶¨csº½9ý‘9Ý^Í|(uˆß&×=”†rÝCQ®{(-庇ÒQ®{(=庇2ðZˆy,ľ£·?RˆkX˜kY„êû{Ë;ö–#ö–wì-Gì-ïØ[ŽØ[Þù,ÄTt¯ ûxõ`9š˜oãÌ·W9žmùÛqÛs"_ã$ªk†¸Äs¬Åó¬Í Ô$êG:ºO‰zæ¼jÚ‰ÄÒ aÆB¤h5§<§Îßóªs'ä÷¼ê܉¼TçNäsÒ¸NætÆŸC¨òvû7‡È@u¸lvc{×~sq z\V=¨—UªÇeÕãêqÙG½ÎÞ¶ í ûíCíe}ž*ö´ýæê@ûBÙÜÆö¶ýßÛÊæ1e¼ÝØ>QVOQÅ·‡±ý¢¬Ï6Ð~QV ޤu¼À±Þq \¶ åà²Q.[ˆrpYóh \Öu¨2Æ{}DZüÞy¹¸¬ù1P..«ª"í—ÊÇe‹S>.[‚ò±82P>ÖëFÊÇ)ým‚,6ðÇjnGõ'·:ÖQýÉ­ŽuTr÷¦ú“[ýê¨þäV¿:¡úÕñ(Õ¯ŽÇ¨~uü‘êWGýonõ«£þ7·úÕQÿ›[ýê({çL9;÷[”³s¡œûmÊÙ¹‡RÎÎ=Œrvnýsç»!>¯Þh‰l[ANî|ÏxïSôXÝÒµ6þ×xEˆ©÷gˆ‹Žç5¾ÃëœÀ¿(ïå”çrf1¾a,÷åÌêøoÇïò&e z·8…·95ÄÜ”7ÖØûoÊkìý7å5öþ›òÆù妼±F~¹)o¬q-oÊ/kä—›òËùå¦ü²F~¹9‡0©Xˆä{Ýx¢qc÷*Ÿ¬qs’±>èæ»ÔÝœL}ÐÍ)ÔÝœJ}ÐÍiÔÝœN}ÐÍÔÝœI룓5—Çû>¦Ö?VÍØÚËóßeENf¥}©vˆO•uø'Ÿ¥^>ç{Xÿ–ómêßr¥þ-ç0êßr§þ-I–Ið=’d™Ÿ?I–I•’Ì¥Y)É\J•’Ì¥Y)É\J0Ç’Ì¥s,É\J0Ç’Ì¥s,É\J0Ç’Ì¥s,É\J0Ç’Ì¥s,É\J0Ç’Ì¥s,É\J0Ç’Ì¥s,É\J0Ç’Ì¥s,É\J0Ç’Ì¥s,IÏ–`Ž%éÙ̱$=[ÂpêÙÔü$=[ÂÈsè½7þy.a].e½F­‘ìö¬Cï×7^ilï:´Ì¸ñ*c{Ø¡åÆ CÈsϹœû͹ν`ü¡ñïÆ+¯6þƒöåì—œ_å¼Â8Êþœý2íÏÙ¯8ÿó/òC6qÞ~ýªñjcýÞ(ûvö??2nÆ5ÔïubóÛkºŒf:Žazê¡ò롺è¡òë¡*t a·õT¡Sþ‡^*¿^ªBgã•”‹w§üy=U~=UýØîØ•²}—.ú«üú« Ý?b®aO®e/úì]ôZùõZdåÝ>{½V~k³ÂÆŸ²Õž.ú­üú­ oË·]ôYùõYd©ÝŸ³¿`ʹô1»åÚ ú•Ýòl™w·›I-¨0ر [á-nâ~í=õjù³«»eÓ jÄîo¨ì–Wº¨ùÕŽ jÁnµ ‹Ú‘?‡÷”/+¨»·QØ­tQOò«']Ô“üêIõ$¿z’Iö좆äO¤Ú‘?wÊ?^íXÝÈŸ‡êEþ¼T'ò«]Ô‰üù©Fä×£e’Y»¨ù :–[»¨ùõ>ËÌÕÖÏÒ\mýÍÕÖæî2s´µ½1µýh™ùÙº^ˆNù1Ä?7*Ä4²S[Ÿ¬ÃÔÖg#ë0µõÙÈ:Lm}6²S[Ÿ¬ÃÔÖg#ë0µõÙÈ:Lm}6²S[Ÿ¬ÃÔÖg#ë0µõÙÈ:Lm}6²S[Ÿ¬ÃÔÖg#ë0µõÙÈ:Lm}6²S[Ÿ¬ÃÔÖg#ë0µõÙÈ:Lm}6²S[Ÿ.Ðúlt‘Ög£ßh}6ú)ßãŽæ%ŽáeŽåŽãUªÔ„Ôï„èÒ“!¾å;!‘k×èUž¾ëÜÿœ›ÀSœÈŸ8‰?ó]þÂÉÇ\|ž².Yrݵú”ë®5 \w­!óñæ§÷_U€Þ•õ°Ùzx1åu~ÏªÇØ„…Ø”…ÙŒEø‹²9‹±‹Sÿ¿ª[²$[Q]ÏÞ'ÄŒç›LžÔc¼ò[7 ÷3Ök¼ò»±|öŠ}ü†ž1{çõÙìçÙ8Nëø²ãŽÓqÓs03ð-ºNÙ¬G½y4›õ¨'f³õâÑlÖ£<šÍzÔ{G³Yzïh6ëQï¦ï ‘"zÄlÖ¥ž;šÍºLé¹§ïu^ϘÍúÔ{G³YŸzîh6ëSÏÍf}KëóÀ8ZŸÆÓú<`½d³>XÙ¬ÏCÌ•Ò!nÙ –áI–åÿXާB˜ðBˆä‘£®”7þ‰ógVà/|‚§Y‘¿²“Y™gX…gY•z„+OR½½Rêì•§¨¾^©N=Ârkóeks¹µùòZ—/[Ûk+„È3o[Ÿ/[ŸË­Ï—­‹åÖçËÖçM!þ“i!²¼BˆmýµÞXþZþ„c}Âr=Nk{M×õ¸µ¦ýý¸ý½¦ëyÜþ¾\ïÓZ_PSÎ?.ç/×˶Þ¢óô\¿¦ž«ñæô~ˆ/×Ëø—³W°1WòE®¢>jÐlÊÙŒ«ù?bs®a ®e?fK~ÂVü”rð u|Ùœ:oNÙƒå“Øƒö`¹$ö =X‰=h–AbÚƒe؃ö`Ù#ö =Xæˆ=hNe¼Åϧ2Þ¢–¶Ö{_«i¬¿Üâ}Ré/·xŸTúË-Þ'Õ5zŸT×é}RýÅ”÷¹A{yª¿i/Ou“®é¶Ò!ÒL6xV=Õ"D>-b;ÁÒ\Ï2TÇŸÍéù$ã²Æ_±7°<7òqÚË?u/;Û'?u;«áÏæòs-ÝÏÎú½OÝ·ÎîÛ³jñ©VÆî[gµüÓ*ÔÏ}Z•ßê·å¶gõy§Z;÷¤sÛ“ÛžU¯O½ì\5çôsŸ>E½XÌ@ÇÕëÇ>­Aý×§OsŸánÖä¬EkõÓÚ´6?­Ã}|–ûùðyd]b=f}aeCã ü‘xœiƶ±›dÏØ—)sƾB{TËø®Ö6nclŠ}•ö§Ø¶”5<âÖ_çóü‹uyƒõø7ëó&ðò6_à6â?lÌ»|‘÷Ø„÷Ù”ÿ²ÿãKÔß/Íb“f3sø0çòÎcfª“ÿ¨§ŸZcÿ¨§Ÿ~CõôÓ-!ú×—!þC5ü¯¯8)D¦EBìóãÃñŒRýXß?-ÖñÆq"ã™ò3©ø.Ss2ÓPÝX¦›öcuÿ™¡Ÿý䙡Ÿ[¬½c¹¡ŸZûÜÐoVˆìö™‡ùÌ»}æaó™… B¨oÎ$Çg5^ÈlÙËsÇÈQ÷v‚{{Ô½p,„è³!d¶7ïî⇫Q»»³dŸß ‘ç+÷0.Åž,Í^,ÂBØóXˆôºb‹ å?Æ»Î{Áû´·=qÑë QmÛS˜jÚ5í óeOQ^¢¾µ×¿^?Šÿq´óz”=Åy…%x•>ß²T ™½ö׎qœ%DÄýØ"céÞçu×¼Î^ÐÛ=*2ÞøºqÊçÿ‹eyƒåø7Ë{{XÄ= œ»éœ~ú‰[Ôï>q›Oð+òVò3îu‘ Æw+S–ÚS…÷Y•ÿR¯üĬæõæDs¢·9QÄœèmN1'z›EÌ‰ÞæD‘)4dÉHoýUïtŽõòWd\Î[} sq)åû!ú”º{KÝ}Jݽ¥î>¥îÞroŸRwo©»o· ñOÈMo·§<ðök”›ÞîÀv¤ÞªPg;ë¡ ='cÉ’Ã> ,9ìCÊ’ÃV‡è•R!^[U»ã—GX†1,Ëh«ÉO¾sc=Ñæ§(o¨çñËí÷›«ë‰6× žhóÓ”;Ô÷øåqÆÏ«“›kÒž¾¹GzþqÏdzS9_ÛyõrsÊé~q;ôwSå¶Br[º=Æêuº½ìË}ìÇýìÏ@¹uÇ@ê_v ¢¼´CO7õŒ÷‘ÓÉM;ä¦trÓß#Ü´Cnê'Ï•òyúµf*¾ÌÔ|…i؆…H‹ïCl&ß±ÅN>BׯûEZì2®iü”±ž±Lu¾íünç}ç?°¶9u¼Ç±ïÙb/Ÿå>>Çý|žX—Y‡XŸ‡Ù€GØGùBˆÉÿvˆýŸ{üê'!ümM½ª7þûšóC×/¿ºÎØ^˜qgÖm)'˜ïÝü‚+Œeãó¾àÊ$”ëFÙ \wÊåzP6(ד²A¹^” Êõ¦,Pî ÊåúP(÷&e€r})”ëG \ÊåP(';TÑ—ï¿i, ”ÓWQ×÷Û¿ÉåS&(ç:ºÅ!¼M×w½«œ½k½«œ½k½«œ½k½«œ½k½«ÜHÚ“ÊéSÙG¿ñ}³~ã8‡ãŽÕü¬[­ÉoV:ÞæØºüf•ãoCtg†ÿöfä^fâ>&p?¦½¦¸ùÞ©^÷Þ 1µK†Øû;ëO0–]îë£jË.÷w;ßÀù‰”%îMr^–¹ÿƒ±qï]6âd6¦ÚÒéENõ:çþã&ÆÓŒeûú¯Ú²Î}ýWmYç¾þ«¶¬sßgêÔÔë¦Ë<÷õaµeûú°Ú²ÎýÞoæùƲÎý#”us_méô’çgË9÷¤lsÿ8e›ûòCm¹æþI¯kîu³Œå›ûò~mùæþ)Ê7÷åüÚòÍ}9¿¶|s_ί-ßÜ—ókË7÷åüÚòÍýä⣎eœû²~m羬_[ƹ/ë×–qîËú]õ(äÈ®öÊrdW{e9²«½²€ÙÕ^Y@ŽìªG)0‚z”#©G)`t=ÇÑ<Ï1¼À±¼Èqüãù;ÝË®Ð=ìz‰zœ®—éžu½B½L׫œÌ?9…×è^u½N÷¨ë_tºÞ kÝõoº¦]oÒ5ëz‹³y›sx‡sùçñ.çóð>ò_.â\Ì|/Ät \—2†ï3Ê”ÿÉŸ¤&¯Y"Oÿl\ÍøŠy|"Ä•Ovžä,Ê0CgS†:‡òËй”_†Î£Þj¨¬µSo5tõVCRO5tõTCSO5ô=žãžçRÊhCÕ¼2ÚPŸk§Œ6t9Õ©¡ö£êÔЕT§†®âeª_;¯PýÚy•ê×Î?ù¯q ¯s-ÿâÇ!dxÅñ ÇŸðo~Ê›\Ç[üŒ·ù9ïP±`lˆmšã˜‘㙉ï0ø0'òN¢³à]Ê0 &3kOë= þðÇ”?ú1ÅyynÁTfw^?ñcÄX.hªÏyZ/ñc wPí}ZüQ}ú{Ú_ž¶§ü(›?½‹êæÓö’SÓÞñcÚ~T§L÷~òè‚Ôç<½×ydÁLãG9‹‰œÍÜœÃ<œË¼œÇ|œÏü\À\È‚!ºð¿ßÌ5^ø€‡è"K·™ë»(B×wQ ]ßEQº¾‹béú.Šã!æë‰!îM¹l¨ÜðˆÜ0TM}då…G¬Ý¯'y^^*7<"7 UC±†¿~×ù'8™9…•8••9U8U9ƒOr&«qŸâlVçÖà\>Íy|†ó©—ýzkq!õCédõíË)«o_A}»šÑZ¹foJ—ÍØ\=ùNˆŸª÷>9zï“©÷®1"ÄÝ)Α”ÕkŒbIަŒ^c eôcY&ÄÌx;ÄÕŒCYˆÃX˜ÃY„Þ¯¾ìÝï^ˆ¤•Wûݧï=Ãû×/Fï_¿8½ýôþõKÒû×/Åq,Íñôû qMÔ‘…©Ž,(Â!šÑøûƒ!L{RŽlìü÷‡X”êÈ4ù°\•±˜ñc9±4M>,$NsŸ ¹ÏÓÜçBòaÆâ^§‡¹%?¬•nÉkå„[òÃZ9á–ü°¶ˆÍ(‹ª¯±eÑú¥ŒrçN÷ £|¹3‹ «&îÚÀþzžkz×o×Fcyp×&ʃ»¾¦<¸k3}þ]ßÐçý?Gwgcù÷ü:sfN–¡ì{É’}—]DÖ á§’­ÉV²Ëš-k¶PŒeH*ZQ(»eß&¢’%²E–’ž÷<œ×û¾îsÌœû¾¯ë{}?Ïã§©ܱÉk³ãá^ö’böÏŸwÒ¾ù³5•c•c{çÏ2ùF=Ç@=ÇF=Ç@s6«Ü½Qß1Pß±Qß1Pß±Qß1Pß±Qß1PÚ( K9gà¸QâÊ8›dœjL\»['ÃÜÿ«ãöŽË‡°éi-7mºÈ’ÎëQ×Y3›.ËO›.S~Úäš[—æUÊE›þ¤>!N/»ÎÚtÍØÏÞtú„8½í:×§·]çšâô¶ëôqY5D¾Ò«öÓw4J á'½àWúÕ~‰Ô¯ö{šúÕ~­¨_íךúÕ~m¨_í÷ õ«ýÚR¿Ú¯õ«ýÚS¿Úï<Ä!Ämr|Øñ³<Âçx”Ï3•ù#_‘áMB|Å”}+š7Ãeߊ‡Øœ‡Ù‚GØ’G™ÈT>ÍÙŠÇØšÇÙ†ú‘"êãñbT[/EÔÅãÖKuñ¸õRD]Z_øç÷9oÑkÄÖOë5â ë§õñ…õÓzøÂý|ÎZÛiÿÑsĶ^ôñ…­=G|a}µž#¾°¾ZÏ_x0õÓ…õÓ%:„¸lžÓ÷/„ð"›gõ}§½m¯üt핟~"I)!¾€zRÑ5|'{$-1.nœÉX/[Ñ5|§w­x?õ®3³¹Ï-õ9sµbc½k˜îXý®eˆöµ'·?÷µ'·?÷µ'·wôµ'·wôµ'·wôÑÞÑ÷Ú;ú¦ãç!²ùã?Xfo¬±9ñ¡ñ'Ʋ{c÷ûÄ ãO«»Ï'Vòe~D÷õ„ý¿qÊF_¥lÔX®–»é=?–»­¡LØí ªåݾ¤¬×m-Õðnë(ëu[O{U·¯¨¦wûšjz· TÓ»m¤l×M­ýX¶ë¶™²]·-”éºm ÑɃC¬þ#¢|r(‹q‹ÓÞX_ï2yõ.“GRï2yõ.“_§½wòh–á–åX–ã8–Ñ÷„XGÏîý†¼Í'ù7y5vü×]Ñ=ĺäeæcOæáck°ÞPZƒõô[ƒõô[ƒõô[ƒõô+zù|ck±Þ(ãÞÆù2 ñö¾³ÞëÆ}Œõ¶+^åÃìK÷eE?º/+úÓ}Y1€îK÷*!VðV寬ÆS¬Îß(gï攥È®“dϲë$ûÆÙuR²÷ÝÓœúô2ì$ô€ ;I= ÃN’AȰ“dÐ2ì$ô€ ;I= ÃNZJv’>ú€ ;I}@†ôeØIËCœr™0é}ʰ“d½±ò[ r¬üVC†+¿Õ!ÇÊo5dȱò[ kø¼%EOr^’¢'9¯GIÑ“œ·÷¥èIÎÛ÷Rô$çõ()z’óz”=Éy=JJêQRô#çõ()ú‘óú“ýÈyýIŠ~ä¼þ$E?r^’Ò)DVZË]¬å•Örky¥µÜÅZ^i-w±–WZË]¬å•Örky¥µÜÅZ^i-w±–WZË]¬å•Örky¥µÜÅZ^i-w±–WZË]¬å•Örky¥µÜÅZ^i-w±–WZË]¬å•Ör—­¬Ám!Z\æÿE6..óÿbï-O{oñÚ{‹Çhï-~Õåâéhï-žžöÞ§í ­Ç§³1Sø—° —²)ße3.cs¾Ç\N{ÿÓï3‘ðéj<¾ä£Oy\Ÿ2FŸò¸>eŒ>åq}Jç½/LÖèÈ…Ô¯ì[ÄN\ÌÎT»Ç\÷ù׌»/¡}qŸç?æ/ç‡ò‡ñ&‡SÏþ¸ž}Œžýñ‘Ô¯?nþ~ûsH1¿pb¯«%ª%¯[/ª%¯[êñ_7ßLûü¯>7ÉXÍxðuãSÆ“Cȯ¡]F}PFýö7ç¦ð4§ò ßô™ÍŽ­ÛÖí·Öíëö[ëv„uû­u;ºýÖºaÝ~kݦýßbº¾bykr6kqks.ëðmÖÕCì ‘Šéß1Në9æ±>õyåÖyË並|͸œÍù>[ð¶ä‡Lä >Í•lÅØš³ ?á3!ÌÞ"iÿÆañõ!áW½Jñ¯èYR÷Ší¸7PŸR|#“¸‰/q3õ'Å·°Gˆ¦¨£í~§:Úî<ÕÑvB4Ã3^m½Ú…„-êÂ5aK\ôÌ?¨v·V“õŒÓþ=™‡ŒÛ0}¿s²-s±sS._¡·ì¼>„'ÿ”qÊòË…ÈZýtŸÆ×e°¸Žÿr\Á{zì>zìµænsw­¹ÛÇÜ]kîöBs²Ïk4û˜ƒkÍÁ>æàÚ›^æ_Ÿá^æà<}D¢>bž>"Q1O‘¨˜§HÔGÌÓG$ê#æé#õóô‰úˆyúˆD}Ä<}D¢>bžÚ“¨öÌS{ÕžyjO¢Ú3OíIT{æ©=‰jÏ<µ'Qí™§ö$ª=óÔžDµgžÚ“¨öÌS{ÕžyjO¢Ú3OíIü:„: C8$«ÎSƒÕ yjP¢4O JTƒæ©A‰›}îIŸÏF|Ãy5)1íßpol<ÁXmJT›æ©M‰ÛX“Û½ÿ”÷'×2þ†µù-ë0í¿-'ošd\×X6™W;—?M6®o¼‹OP«#šbÜÀø6¤ö€>ïIÇ{؈{Ù˜ûøå÷yòe¢|9O¾L´ù<0Æ+íß—3õè¤ÝY3QÖœ'k&ÊšódÍÄ£!ºøy:–‡9ŽG8^¼ a¤ÌœÍß4ÒøQŽ¢Œ5R†ÎfÍozÝXÆißÊ6‹ö­löì‘ö­l³ißÊ6‡ö­löêM£}^ÖiÿÊfÏÞ4ÆXVÝ4–²ê¦q,å}ûZ¶wŒÇ—æ,à ,ˉ,Bú¬Ž'9Ö›mÛbC‡s;Gðꥶ}K=Ô¶Ô+mûŽ£¹“c¸‹îÁ¶ïélûã¹›op'p/'r'q?'‡è¨ó!Vu6/е޻ßñŽçò"ßæ%¾ÃËœÇ+œO¶j2eت ¨W¨ºz…ªz†Qz…ªz†Qz…ªz†Qz…ªz†Q·¸”·ùnK¦…Hå=!:Ðï-öæ97Ý9™}É îóžïRz®ñLcßq ïTÚwè;•öÝf±I'ø O†ð…ŒþÔ*ÊèO­¦úñÔªO}ásòѤŸ)MúÅyõä©/å£IzʃòÑ$=åAùh’žò |4Im=(MÒS”&¥|4éå£IjèAùh’zP>𤆔&ýÁ"¼È‡)ƒ¦6é…Ó aa¾Æ"!®¶Ì{«yòEøûo~Åœ—oÉ÷rFøûޱ,|˾Q[¾eߨ'{ý#;Ö“½þ‘‹¾âO>ÄÑÔ·Ü!¼°?„zàðZs7²ÒZ»‘öß 8Ì씃o<èÏõçrqs;Ôù‡˜Êü‘9½?Þûyøóróyÿ˜÷ÓþüDcâ…ãÆi?ç'¦}~’ó8™9……8•…ù&Ý—¢Ó(÷ÎG8ƒÖxBÇ3«Õ™<ƒíö§ÌjI&Ïa{”žÃöø—lmmM¶¶¶&ÛG[?ÃOÙ–ŸÑ>5H/4H3È>r¯Z}¯:}¯g‘.íg|î3í¹Šÿãjvà>Ë/ø\ˆô3SíuýÌÔÿÑŸKí@.õYús©iŸóçRŸ§?—Ú1D?±†“¬ùO¬á$kþk8ÉšÿÄN²æ?±†“¬ùO¬á$kþk8Éšÿä­ùOÒšÿD]L²æ?Q“¬ùOÔÅ$kþ“£´æ?IåþÈ©<Æ7C\–ûBü"Ëý”!²d¦ ‘% eˆ,P†È’•2D–l”!²d§ ‘åAÊY¢ ‘%?`N~È\\ÁÜ\É<üˆyù1óñæç§,ÀÏXŸÓþ½cíß;VÓþ½c íß;¾ ý{Ç—´ïXKsbÇ:Ú¿w¬§ý{ÇW´ïøšöïhÿÞ±‘öï›hÿÞ¡gÌbÿÞ±…öï[iÿÞ±öïÛiÿÞñMÅîÑOÕ‘¤ï©~$ý@õ#ɘÉzúøBˆ¤åøOs{åñRC’ÒžiÚóÔKû0„¯n…HËÊ!úGë[j^uÛ¸ŠqcÙ÷ghïúêoç«·5¶w}õq5ÞauçÛ9_‚íio:{<$,ËŸ8Ž'h<{’oP¾P~V¾p"õÙ 'Q½prˆk\.$D\×kÍC¬ÜßlÁØ’w˜Èù4ï†èIûÒ{ÄIûÒœù!¬µ—6µ—®µ—6ã¼9>ÇžqÒŸcÏ8iŽÏ±gœt?æØ3Nº'sì'Íñ9öŒ“æøsïn³°ú&›óVSݯ•[ßfKª—SÝ·ÂUŒÿÑ«ÊSݳÂUé^v¯ ÊBSݯÂÕ}îiŸ»ãÜóŽ[9þ×qGÇ­ßeþÇgB‚í#în[FBt53^_£gh¬gXã:»Î5®³±=lž¡qÚ¿wxÜçäª5z†ÆiÿîáOÆòÕ=Bã´ÿð„±ëÞs’®{ÏÏL ñ!b_Ⱥ!Žj{ˆR-Ýônˆ´úÍ8ÞX-Ý´Ìø´Q‚ñOigyÂù÷œ?c¬?ÿâ$õÝ_üÌô´ßmZîý³Ô·:ç|ç5Ö·úÝ8£ñ)cýq«óÆ÷§ýÞL<í¼~¹ÕãûŒÏë›[ýA}s«‹Ô7·ºÂýr¸ßgÒ~—ºÕeê¡[]¡ºÕUê¡[É›ôЭäMzèVzúÙŸ;g¬—n¥·YŒÓ¾ÛLûNY™ö²ñê¾°ÇV1'.ߦ9qÙœ­b.\6g«xÖ—ÍÙ*žóes¶Šg|ÙœÝmN³š‘ÆÖÐns{\VšÛã²ÑÜ—­ø ­ÑqÑÚ—ƒÖ渜´&Çå¢58NÞÙ«~Œ×ÿïU?Æëÿ÷ªãí){Õñö•½êÇxýÿ^ýÿxýÿ^ýÿø¯©ï¯ïß«ï¯ïß«ï¯ï߫￙úüñúüfrÖ¯³õùãõù{õùãõù{õùãåýúûñúû½úûñúû½úûñ;¨¯¯¯ß«¯/¿îÕÏ×ÏïÕÏÿžúøñúø½úøñ»Ct¨û[~#Ýßò›¨Ç*¿™z¨ò[¨ö•ßJµ¯ü¶Ñ<â¾lKÒc ᾦŽ_r¬~ÇÛ£¾ÒËÄÛ£¾ÒÃÄÛ£¾R³+èñ/œ¥ÿÂ9êñ/üBÚ¿+ÞÙ¸UÔ¹Dç·Üù¬Pˆ4x!D7ùõ4Ÿ6îd¬î<@}Û@½ÍgEœïl¬xˆjïÀÃÔ¿ Ôãï¢j„Øc~g‹§BÂ=gØ„¾K‹¦L;¯öÜó;Õž{ÎÓüºçͯ{þ ùuÏEš_÷\¢ùuÏå-w5$œ·ÆËýI5±Ü5ª‰_ÈjO}¢‰æqúõ4ÓE÷9ý×tŸÓo ûœÞ}OtŸÓ»ï‰îsz÷ýýöÛ[ÕÔÝ!Ò,“±¾ûm÷}­œÕì>cý÷ÛÛ©ÿ~ûê¿ßöû~Ñ¿íùïУ¼Ÿz´‘™©7™…z±‘P/62+õb#³Q/62;õb#åþz±‘òþ½ØHy‡^l¤Þ²É°~6wèÇFÊý;fÑ:Øñóx¸÷Íï³óróq.óómà;4o>Qê_ ÑÕC¬WMcu¢þŸÆ“Œk«õ¯O6®Í)¬Ã©¬"=B|!yµGŒòi{8•éø&ÓsZ§‡ð¬QqíÇgÒœª(~'›öÈàsòHŒô™ŠêýwæVEõþ;}sEõþ;ù´Ç½Þ÷g+Ê)ß™[ߦ~¹â;Ô/‡%zÓÓ>—Éçüì9£B¤„çZZ.<[ŽráYY°´Lx¶'³"§°§RPúMV !cÇÓëJO§½mÎë~¦9Rz†±ZVz&ç,Öà[¬ÉÙ¬Å9tïd«„³îL•p¶.ßa=Îc}?W–/a­—žoü“Ù€ Ø ù$±³1Sø”??ÆŸW#J/1nb,ã—0gçÈ÷%¶s<ÍÕÒK½¯^”~—͸ŒÍù[p9[ò}&ò>ÍÙŠ+Øš+ÙF­ðÙ¥}B¬ƒ¬µôUÊZKû²ûña=š^xiÇp‹r  aåå©[Êxq1¦^néê³–¾Æ’ÊÇ8ŒiŸÎÒÁ2ɲÅr!Îý?û­³¥h œ-­Öu á¦ÞÚsˆ?[†ÖÂÙ²œÇ´?7Ÿå™Ì \ÀŠrÐhÇ Wâ"ê<ƒxó$Î3ˆO›#Éz®Öèçj=œz®Ö#¨çj-w$ë¹ZËÉz®ÖrG²\ÑZîHV³[ËÉjvk¹#YÍn-w$Ë­åŽd¹¢µÜ‘,W´–;’åŠÖrG²©µÜ‘¬j-w$ë}Z»×ÉzžÖrG²ž§õ›Ôó´žÆ_8¿rOq&ã,žæ[<ÃÙJN¦|”¼€òQòBÊGÉ‹(%/!1%„3¿ËIÉ)”“’—PNJNû½rR²¾ïŒœ”¬ß;#'%ëïÎÈIÉú¸3rR²>”¬;cŸMÖ·‘“’õigä¤ä•!Tú „¿‡ÈËz§¢}¨w*újYt›/럊öåEöã%öçeàäUâŸÌkBýZÑרO+*;¿|ƒÃx“Ãy‹#x›#ù7G©‰ú—ÿq¬n½|‡êÌËÿR½˜ï»´ò]æû.­ú‡¹áØ÷iåûÌ÷}Z ¡Ž|u8íïýù^­«»‡ÓþþŸº{8íïûùž­|Ïù¾g+Ù¾Ž:|Øž5ß÷m%ç×ùÑ8§±ïÝj¨±ûp.ê­ۻ滎V®c¾ëhå:滎V#¼ÿ“÷Óþ>Ÿëiåz滞Vêù|×ÒêuïëÁ§ý=?×ÔÊ5ÍwM­Ò®é.Õ¾ùÿQí!â[©}Éê ’ã8QZCý:„XÉ{BxØþÝïYÇéBä-ý`ýà[úÁ&úÁ·ôƒM¶PØDNÿpH¨ù=á,ÊÝ|”{Bèg®¦K5.flß»G._ܱ½¯Ÿù›îGãÆûY’œ7ŸÓ3~Ìø KñKó0ËðHˆt'{þÝ·ÉîÛA÷m²ûvÐ}›ìùt¿&»_ݯɞ3½Ý©¢ÆîÛdsà û5Ùý:è~Mv¿º_“ݯƒî×d÷Ëv?Ùý:ä~M~ß×#žR§›é OsÞý›ìþrÿ&O¤¤4y’÷/x_^Ž6uN_0Y_pH_0yŠ÷ä–S%Œõ“õ‡ô“õ‡ô“õÍä™S%õ“õ‡ô“gÐ~?Y}Ê{ $ʃT_ó¢úš÷0Õ×¼G¨¾æ=Jõ5o*Õ×¼?R}Í{Œêk^YýúšWV?¤¾æ•Õ©¯yeõCêk^YýúšWV?dnä•ÕÓþïô‹÷‡øvòæâ”3¤|¹ø;ð0Ÿ ¡®l{äqã#Æ2pÝ»Æ5øõWèÝõÞó!Ô³4è±êEXÛyY´]GÊ¢í^p>Îù:ÆÇŒ;ñ8;;u^ïµXm×E`Îî\¼sõœ;á\WããúÆri»n”KÛ½è|Ìù'Œ1Nâ¯|‰§ØÝûÖÁ‘Ærh»”{Ûõ¤œÛ®ϲ7åÙv/‡Ènunœ:·[§Îe{α:7NÛ­¶ŒëçÜóŽÕ—qjÝnµeœÚ²[m70Ä=·'$<Ø›{ùr=ÔŸPÑxŸñ+ÜÏ>ôü|•žÿƒ}éù?ØžÿƒòÅü®!ÖÊ}XÑ9Dj«õ™ä”ùÝœS§½7Dt ±7õG:Sÿw¤ õGü¹7õG|öMýß‘i_¿b ¾gÍ]±ßSï&Ý ‘öý+Öâ{Gi-¾g}_)KõmÒ-ï§ý¹rÆÖð•ò<Î ü‰y‚•x’•ùsn8®âø?ã¶Ÿ¡çœô7«:_Õù_Y§X¿ñqžf ÊRWjR–ºR‹²Ô•Ú”¥®Ô¡,u¥.e©+õ(K]©OYêÊ”¥®4àe6ä>É«lÄ?Ù˜×(»½w=Dºæ»®yž=ªôÆ®ù®š>ÏPúKÚ«J¯uÞ=¸«ÆÏ³g•^G5«ôzªY¥¿¢šUúkªY¥e±†îÕ]5žÚUZ&kèžÝUãç©ù¥7Qí*½™jWi}rC÷òîIº—w¦ûx÷ºowÕ»ëyç©o¥å¸yê[i½ð<õ­´ÜÖÐ=½{ŠîéÝßœWïJ뺷wOÓ½½{ÆyûEéo©Þ•ÞAõ®ôwTJïô9÷þîYcµ®ô.cÏàî9zw§gp÷|ˆô\â‹”—M.9^é¸Byõϼî·æºëîz6Ït7Ngü‘±gôLãôìÉ ìÅŒìÍ{ù23ñÞB®Žû8¾Ÿ¯2³s#÷uœ…ýøû3+0ÒúÉ5*Ľ¾+$T³Ö^ÿžÖÚë?ÐZ{}7ûÓš­6 „¾?Û¯òS_•®€óÖp5kúuk·Ú Z»ÕÓÚ­6„Önµ×híVJk·Ú0ªÝÕ†Sí®æû¿®vWó_W»«¥}µ»ÚëT»«éÁ_W»«©å¯Ì±Gå©WæPžze.å©WÞf}¾C9ê•ylBŠyYɼ|e¾±<õJ2å©WPžze!å©Wñ).f“Ÿi\ˆmOâx¾Ä7Ø=ÄÇ> ± ³BdµÞ±§^rµÞ±§^rµÞ±§^rµÞ±§^rµÞ±§^rµÞ±§^rµÞ±§^rµÞ±§^rµÞ±ç‡!4¼ÂñŠÆ¯0¾i\‰·XÙùGœ_É¢4?²öðÞmï© ÿfUçÔêÕzÿcã',ÎOY‚òþê’üÜŸùÇŸ©fü˜±œ¿ºW³4×° ¿`YZ×qöãÕå¯ey®c®gEÚÛVWâ×¬Ì ¬Bkyßã!6Á~·Æ:i¼‹Sø½ó5œ°&ãX‹QÖf<ë0uc=Z/º¾Z—Bt®gÛ¢qEõdé<‡ïÓsØø=‡Òsظ‚žÃÆ•ô6~DÏaãÇô6~BÏaã§tÿ7~F÷{ãçt¿7®¢ûºq5Ý×kè¾nü‚îëÆ/é¾n\K÷sã:ºŸ×ÓýÜøÝÏ_Óýܸ!„®CíKçžnÜH÷tã&º§7Ó=ݸ…î鯴ësO7n qÛ󇄡߲w° ¿c!îdaºÇ£Ì¹ìö‡íEŒõªÛõ¬CõªÛõ¬CõªÛõ¬C÷PÏ:t/õªC÷QŸ:T_º]:ôõ§Cõ£Ûí‰Cõ£Ûí‰CíÛí…C„¸¦×BBÂT^ç›ü‹ÓxƒÓCH²§ýïß’–P]NZÊS|—joÒ2žæ{Ts“–SMMzŸz×$™êŽ4ɹ£©£IÖÇýf’ºyGÝlzÓïšÁ[œÉÛœâ–|þ×–Ÿ±?g{®âÿ¸š¸†Ïò >Ç/ù<ײ#×ñ®g§<û¸%_9ÖåëáøkÇ]¸]¹‘ݼ×Óñ&Ç/r3“œë¢³7†X³ÞÜÄ—C\ìÛ¿¡w°5¿cîä3ÜE×ûž®#ö]Gl7]Gl;hÜÓþ;Õ{»–Ø>º–˜Þuƒk‰é]7¸–˜Þuƒk‰é]7t¢ÞuCgêY7¸†˜þtƒkˆéG7t£~tƒïÓ‡nH qÃCH¨¸Œ¾Ç8.g”žYÏ+u7<ÞØ:žÀ´qŒÖáð{hOGëpxzZ‡Çv„„™z½cßÑþsl'û†ÞÜ;fOši:fOš)§ŽŸ"¹ÍÝcö¦™ö¢ñ2Cn9k¼•Û>f¯ši/:f¯š)³ŽŸéü~ª×¹Íécöª™ƒß2Nûùö¬™²ëøÙÆæø1{×L{Õ1{×L÷ô˜½k¦½ê˜½k¦½ê˜½k¦Œ:~ŽÏËÇãçÒZ8f/›9Òømcùx¼˜[ŸxÌÞ6Ó^vÌÞ6Sv/æ–ÙãfÚÓŽÙãfŽ¡=næXÚãfÊŒÇä“™ã)ŸÌ|ƒòÉÌ !nè}!!í¿±zÏãŽïw¬N ÍLujhªSC :54+Õ©¡Ù¨N ÍNujèƒT§†>DujhªSCsRš‹˜›êÓÐ<”‰oßâ?q}·3ÓõÝÎÂy!zuˆ½ÿ.pò=âræû/',úÒØï^dï­ Xdï­pÛûU¼¯¶.²WÐ,²WøÇùªÎ«µ‹ìÅîW3Öïv­Îßh?ΣÏíjÿÍs†öß³1™Ù¹ Äíþ3$Œ›G=øùÔ3ŒKaôÅÉQÒXï0.ísz‡q i_·ˆöõq‹i_—¿¹„ÿp)ïð]þK{Óî»´7íþö&e&aœú2ZþÊñÕ‰¥x…¥½o/g¯Úc/§ÞŒV/r”áŸ,Ëk,Gu"GyŸ³×³—í±Ç³—í±Ç³—í±ÇSÒ÷ ÑéBìÉ›lÌ[|ŠúõåMBäñIzÖVÎ5qκ˜Þ”Öíôf´¦7§uðÍ«!6¼tˆÆä Y)nÈ´oCäáwðçåà Ù)nx0D'f ±:_ò^š3qïãzÞϯB´’ïâAêñ.¢ïâaêñ.¡ïâQ}¶õ×ü­¿æ2÷\믹ºTÔÏœk 6—»ç–篬@ý݇úÏZjË\5°¹š3Wík®æÌUÓšëóŠúsÕ¯æêÎ\õª¹º3Wj®îÌU§šŸ§:ÕüÕ©æPj~‘êTó´þ_j~™rBó+!º°PˆµQãWÜ ‘:Õ `ºÎ…Óu.|„®saQºÎ…Òu.T§Ú¨Û Õ©6?ÒújsŒêR›ãT—ÚüDu©û±Ð}iã~,t_ÚüL÷¥{±Ð=iã^,tOÚ¨» Ý“6îÁB÷¢{°Ð½hs&Dv4ñ#~`Cî¦=qÄÚG쥽lÄ>Ú»Fì§=jÄÚ“F¤}h„}h‡}h„}h‡}h„}h‡}h„}h‡}hD*Ÿæ!4Ñãü¼V!Uv´rεý90Ä>hÂAlÊÁlBñ´ÿQ5/ÏbÈ5/ûÓý«CôÎ7!¶*™ßrwpaˆæÔïëF=ð¾©Þ—Dýï¾—Btä‹!VÅ™Äl|‰æìÈî4gGöàC!¼ûjˆTýÔ¸§qöbNçû:o/·?w¾·ó¹ø2s;ßßy{ú»hOw ×xÿïçaæu~óööwÓžþ®ÚYU?Ýâ×7æF>âšéƒôSÍôA ú©fú ýT3}P‚~ªY^ê§šå£?ßL.KÐO5“ËôSÍä²ýT3¹,A?ÕL.KÐO5“ÇôSÍä±y¯™<– ï5“Çä½fòX‚¼×LKØ"sÕææjõ\µ¹¹Z=Wmn®VÏU››«ÕsÕææjõ\µ¹¹Z=Wmn®VÏU››«ÕsÕææjõ\µ¹¹Z=Wmn®VÏU››«ÕsÕææ6×¥¹B¤JÚ¿­w+ÄÊ-ámÊj÷zCþv,¯-Íí3iÿîÞ?ÆrÛÒ<Æÿ ÑôUBÂ&ó>}Uš÷é«Ñ¼O_æ}úÇiÞ§¯A5!}MZ÷ékѺO_›Ö}ú:´îÓ×¥uŸ¾­ûôõiݧ‚Ö}ú´îÓ7¤uŸþI^ aºÞìá™ÆŒÿdc^ãS¼Î&ü+D‹|Ž¿Ìoù eãú‘·¬µâúš"2ÈñW­¹âYŒe‘ãjúFõsÀ·T?ì`f~Âg‘iPÛ8‹ñN>À]ÌÊï™?0;wóAîáCÜËÜÇœÜÏ\T·6榺µ1Õ­y©nmÌGukc~ª[ PÝÚXêÖFup€µ½Qý nmTÿ¨[Õ¿êÖFõo€ºµQý nmTÿx~Õ¿žßFõo€ç·QýàùmTÿx~Õ¿žßFõo€ç·QýàùmTÿx~Õ¿žßFõo€ç·QýàùmTÿx~Õ¿iu;ƒzm_2—cÍÓöûTó´ýÀ>Õܾôæ³!Ö0cïÝ´WV2~Îø^>Oý蛩}óêGßìDÏíÍÎô¼ÞìÂØ•jΛݨ漩5TsÞTƒª9oªA ¢ÔP­yS j˜“jOCµåMµ§anª5 Õ7Õš†y©¦4ÌG5¥a~Ú§`_d? áãl!RïéMuÝÓ¨îOÑ8ݾjÿ›žŽö¿ééCø2}ˆ4yÒØ>8=ÕÞéiœîúSíƒÓ]ª}pºëOµNwý©öÁé®?Õ>8Ýõ§Ö¥ëO­GןZŸ®?õ ºþÔ|Ðï³4iÄŒlì|CçÕà/ï5~Š™Ø„÷ÑÞú¤÷ݧT½Ít÷)Uo3Ý}JÕÛLwŸRõ3ÓݧTýÌt÷)U?3Ý}JÕÏLwŸR[Ð}JmI÷)5‘…ø4 ³‹°5f>ÂgXT_ÕÉuËk™ÃCd˯!~ÈK<Åîü=Bh¬×;qŽ2ä‰ß?í|Oža/žeožãËü¯ð<ûð­ÿ¬·ÿáØÞ³å"í=[.Ñ^³å2øúÅòicùôÄç¯8oïÙr•öš-r°÷åÖrkc¹õ„ÜÚXŸxB?ºåš÷íËå×—éúNÈ­iÿÎjZÚ£ó„>tËuŸ{ÍØwBfll;¡Ýò—óCyƒÃx“i÷æGð6GòoŽâ?|w8šÿr ïr,ÿã¸Ù8ž¾!÷êW¶Æ9ž¢ýÍÃ’îï’"!R¹³±ùXÒúïo>–´þû›%eõáO„ÈcBÜ—ãCÂ+¥eCŽ !/9ëË7¼_†X–YŽ“¨ßþr2+p +r*+ñMVq;…„we©‹i »bi'léOövóqØãy¼Êùü“É!n×Õ0úÊ%£å’]rÉh¹d—\2:í}yd´<²K-ì’GF/’|ÿ‡ÆË%£å’]rÉèçŸt~¼þ_6Ü%£Œ–QvÉ(£e”]2Êhe—Œ2ZFÙ%£Œ~/D7é·•ã–çk¬À¡¬¢ï¨y‰÷ëií1µí1ï¨}‰™CÈÔÚ±ú—h½¿£þ%Zï降Y}6Îg뫃‰Öý;ê`¢uÿŽ:˜¨î½£&ª{¡OHø2Wêk¤°ž.¼j¬—Rg#…°#òêC_ïç1îd¼8„ ³wvìÚÕÜHÚ¿ÅõÇ̰ôqÎb ¾ÅšœÍZœÃÚœË:!Lª"ùû¿m\—ï°žŸ]Üñ<Çõ9ŸO0™ ¸€ ýÙŠþl?ã…ÆOrq1õr¤P/÷Ç6áR6å»lÆelÎ÷Ø"„t‹Ct»¹;TÛ®–•Ŷ«¥Cÿ aÕg!ò¤õ¸êsþÉUÔ[lWc‡Þ5^m¬ÇØ®ÖýÏx±^c»š;,„ðõ†iéç|½‘wCôò‰{Oouù$?ãÏ´Ö¿Þä}þëÍ!’˜öç¶0­Œ£ž01ÊíLûw*¿aÚ¿G)&Ê„_Ë„‰iÿîäw´·\þÅÏ]Å_©¿|ŠúâË¿ñ ž¦¬¸p\ˆ=c¯]8ž•ù«„HŠÛ^MQcÛ«±)jlûTSÛ«©)jj{55EMm¯¦¦¨©íÕÔ5µ½šš¢¦¶WSSÔÔözûõ´½zš¢ž¶WOSÔÓöêiŠzÚ^=ËB=µâHÚÏRKÛ«¥)ji{µ4E-m¯–֓ͼLÙüHÚïPCÛëãSÔÈö¯QMl¯&¦¨‰íÕÄ5±½š˜¢&¶á™LòLÈ8Û½¾ñúÖk‡—^®øÎ—åÅ¿ã6“ø7_â?ìÎ;ìÁÙ“wCÜNóéuói§ùôzó^·oõÛ2ÂvŒc{Fù?Ƴõ6õŸ¥Þ¦þsÔÛÔžæ_ýŽLϨ§©¯VßÑÓÔW«ï¨ÕCæÈu9—õø6ëË9~ÇñœÇœÏ†L¦>iÈê_2ö ÑréCÂïÖQ¹ ”Ëe¤y_î^Ú+õ–‘’rn¹LÆæ¹ûhþÿ¾+Ä«}¿Oy6W yUÏ«$õܹ£ž;W)ê¹s•¦ž;Wê¹s•¥ž;W9ê¹s•§ž;Wê¹sU¤ž;W%ê¹sU¦ž;—Ì´ï—µvnVñYï7«Ðz¿Y•ÖûÍj´ÞoV§¹úÌs!\HáA5úAÏ÷æãÎâV÷ ½Ôåaöí,Ûûçåæã@æç à`äâk,ìÏÛﳤý¼¡ÆEŒß0þÖx˜ñÃÆŒw7~Äx¢±53lwr2wy„÷‹r$å(ãë,îsS|î{ãÑÆ%8†%9–yª÷0g\Šú‡^¥©Oèeí{Óû»)gÙã¼¾¡—Z0L>β×XÿÐKÿ°ZÿЫ¼óòr–}Æúˆ^úˆÕúˆ^úˆÕúˆ^•¼/GgÙo¬ŸèUÙXžÎrÀxšqNgUçåë,gW3–³³2¶çõªN{^/{ßj{^¯Þ—¿³6¶÷¥ýýúarx–#ÆöÀ^öÂÕöÀ^µ—˳5¶öªC{`¯ºÎËéYR)§gùÑyûa/{ã°ùÆÇŒí‹½ì«í‹½ì«í‹½ì«í‡½Ò~ØË¾¸Ú~ØË¾¸Ú~ØË¾¸Ú~ØË¾¸Ú~ØËšø@ÞÉÚþ@ÞÉÚþ@ÞÉÞòÑùE¿ð>½“=&Ó ÇzõNÖùzõNÖùzõNÖùzõNÖùzõNÖ¹ž2V®4Dz í/åÊÒþRN¿£§Œ•ÓÛÍ/ž6§æbÚÿffXˆ#žÃ™ÀŒq$ïá(¦ãë”—öަ³w eÆlÖÓÞ±Že˜½ãhÝïÏûBhöR¿.gwÊÙì1{ßðÞýœ@}U3ùá׌'gá$>ÀÉÔ[5ëéý§Ëw{§2»ó½œ_aü¦ñƒœÆ‡898ƒ9ýN{ãÞ™ŽsqÓþwLoÑzÞ;›êôÞ9´n' u‡ñ‡ó(G0•#ù#G…è!¹rŠçwH®œâù’+§¨Í‡äÊ)jó!yrŠgvHžœâ™’'§xf·äÔOžbš·°i÷Ïp<Ðq3bsêS?iA}ê'-©OýÄþuKŸú‰Œ{k[q8õ¦·F°MˆÚ[bŸ«§»–‡Øè$¾Ï—ø»óCöà º·%ì›êE¤Ñ&ÇU_é¼{{_ck®Du¯Ç½¬¯ÖÔýg¹”mës™ý¾¶ñ~̶ü„íø)í“m?£}±íç´¶]Åg¹šÏq ŸçìÈ/ùײ×Qæi»ž]ø»òkvã¾Èt½m7Ñõ¶ÝL×Ûv ]oÛ­ìÉmìÅíìÍoø2¿å+ÜAû[Ûïø*w²/í[™ûѾ•¹?àîæ@îá =÷Wˆ-ú–7¨Ç)©Ç8wÓ±ºý•ûý•õÒÂ|n!¿–Ôwœ»å½¼Í]!:±XˆÕ±ÿM,Nûß8ß¿¦ï7Î÷¯éûóýkz6Ëd…j ]GMßsœë¨é{Žs5}Ïq®£fŸ“%ªÉã\OMýÞ2Y¢š,±Ìs¬æ9Žs}5}ÿq®¯¦ï?ÎõÕÔó-“/ª-aW.e7¾ë}×]S~^ö¢ñ2c×_SN^–d,_sj5ÖÃV³ö—éa«½ïü^ç‡q‡;¯§­öõ´Õ>t~¿ózÅq8’i­;Ä×y˜£y„cx”c™Êqü‘ãC´w\ˆ=¬nöŽre)Öw%¹7%Ÿe~Ú×S ðy¤y×;Þçõ@½ø1cü„÷PnèŽúÞé©ßéúÞ©Ïï}/õ9½3ñ mu­Ø—¿6ímùëð`õÛן3®kl/Ë_‡/à¼ïÓ± ;:_ßù#Æ…ŒåÛüOÛ³ò7 =ª£þáz'ê®w¦~ázê®weQvóù†>ÿ£ñ£Æ/²“œÒùcÆúƒëêtÇT§;–¤šÜQ_pÝ|íXŠêAGázo®‘?wœ©ßºõ¤º“ŸX€YO±›0íÿÖÔ.Ħc{çÿèw~i/h¢î¥v0ö»¿Ìl¬§ÿÒ^ÐDFüÒ^Ф%³RýK}Öçãs,Ey}ºïvŸ>nM|ˆï5)„'Ý“ãæ÷šc=Òšõ@kî¡^gM:êiÖ¤§žfMêeÖdä Þ½<î^>é^w/Ÿt/w£{xܼ_s¯ÏéaÖd¢ÞeÍ}|Ëûîíqë`ÍýƳÝÛãîí“®óxÚSÜõwoŸto›÷k2ûœžeMêUÖ<À·e2}Ïš¬Žõ#k²Q?²&;ç‡Ð@V=¦ÇÉxÏ~â³7ãºgeååoôkeååoÊ:ÿóîaÙkÆåxú³ ¦—ýËqÞ`EÊ6ßèÍÊÞ¢ž¬¬Ló<úìN?£eˆëBBñÅŒ0…qT^y=Dâ7‡pOÔ¹¨sKÏ´E6¬¼Ž²aåõ!:М(%K 4'JÝdSÊP›ñ6õE¥þ¦¾¨”Ì4P_TJ(ºw®c=Q)¹i ~¨”Ü4P?TJn¨òø£Åå_¬ËârÈ/Öeq9ä벸üñ‹uY\þøå‹êZû‡õôq²{]ëíðväB¾ÀE!<°8DnñÏèåŽf o®•-¿ !íïÒçò3Ç¿bµüÒeúñjß6vß—éË«éË—™sÕvÑœ«ö½÷õfµôË÷^p¬?«¥¯?«Užú³ZžÃ2ó²ÚÆú´Z9•8‘•)CתÂÉ´O–é9 ˃Çô…åÁczŽÂòà1=GayðXºÞ2O‹í7– é Ë…Ç28oÞ;@s­˜ºô–Þº˜üUX^<&/–É‹…»0í¹…»9vY³©ÖÒ´©!´“[R­©iÖTª55mšó—_R­­iÖVªµ5M.Hµv¦ùN©ÖÎ4ß!ÕÚ™æ;¤Z3Ó|‡Tkbš5‘jML›ëç<åç¸Ï©ÖÆ4}{ªu1ͺHµ.¦Y©ÖÅ4ë¢EŸsÿS4ö|[è«~›¬ÿûØq3ÇžEêCÞ󼳩ë³ôKMÔ‘Y#©Æ-ÿ&Djè¹—K÷qÖ(çõÓÓ ±'õSÓ‹òPÉ·ô?žGs3“¹ÚƼÌd®¶1/3É÷mÌËLÿúÜmŸÓ[%ÿMÏ«yšé®ñ?Æúªä;¬î¼>>“yÜF¯eÉÿ:¯ßJ¾K=Wò¬)¿Ê„ûÕ£Bîw¡ÆÆ2áþ¢”ýö«K³:–ÿöË}%<›_çÓ3ùÕ½èdNßHû{z°zª¹z°zª¹z°ê\&™ÿ¼zš"7œWOSä†óižžæéùN”å~—éËr¿Ët‹+Q¦[\™²ÜbÙíwnqUÊp‹«…¸ ½BBlìÍì|™ò>Ä>ÌÁW™“}™‹2vÜ”­ëä¡l]GÆž [×Ñ«O­ëÈØdë:2öÙºŽŒ=A¶®#cO©ë¦ûV§ݯ:ÓýªóÝ«:2s‘%!þ¸ï]d)}ï"ïÒ÷.²Œ2f‘÷(cþ©ž¼¿šêÉûkB˜Ü!D Ì3¶ÞWW&?klN~ŽÉÎßïü—T?Þ_Ë,\"ûí÷vÒþ>aíë¾§}} YMÇöì òv3?ï×cÆöê {hï°—öÞ ûø÷³ °)²ÍÕfžý¯Ç›ë1š™û¿þDµî×4/~=éýÞ—=÷·äQ&2•OóG¶â±ýVï6b*õj#Þ´FºY#Ùø"³3‰ò묗ø»3{0'{2{17{3_f^¾Â|ìC=ŬW©§˜Õ—zŠYòS=Å,ù©‰žb–üÔ¤e§&‡H{Õc-¹‹‰üžOó¶ân¶æ¶á^>B–´ÏîsÜ–ûÙŽØÞ~»Ç~{_ˆ|´ Äwó;>ZÈG¸ˆE¹˜2…öÿ{}^}üȼêVœæU·4¯º•¤yÕí1šWÝJq9Kó}–á´wô!ËqËs%+ð#Ú’¬árT’5\@ŽJ’£ ÈQIrTýl’U@ŽJ’£ XóIrTk>IŽ* G%ÉQÔô$9ª€•$G£’ä¨rT’U@ŽJ’£ ÈQIrH9*I) G%É!ä¨$ù£€•$S’ärJ’üQ@ŽJ’; È'IrFù$IÎ( Ÿ$Éä¨$y¢€•$GCÒþ¡rHÚ¿%T`pˆk\'$Dޱ.õëñ'Öç >Á“lÀŸÙ¿ðIþÊF<ÅÆüOñtˆ\ý5Ä¿/ƒ\=E½ØÕß(›]=ÍÞ<×y–¯ðõ\Wç«ßÞÚJO_5$¬ÿ5„iztu=L“Q‹,w¾šó§X¿…A¿ÿ¸ãÓ>#¿yŸæJyuš¹RD^¯áý3ÆæLk4~xˆ}¥Ü\#DZ5Ö_|õõ_u¢~â«ÎÔ;~%[§ýûn³õ&-õ §Õå–þìé…ÎsÞs?Yœž÷Éô¼O–¤þöw¹wñ”{û¿Ë½‹åÝ’ÇBÂorqÉ㔋KþD¹¸ä ÊÅ%Oò þÌ ü…ù+'ñ'ó7Náiªõ%ÏP­/y–ÓxŽÓù;g„èuf’¼~@™$¯Pg&ÉëÔ™Iòúuf’ïu@™46D>â“"|žiœµô‰û•ä9f­BC=бZŒ°6}æXzÿX]Ÿæ³ñÆ^Çê7Ö·e}ÂñÇ1Žä=Åt|é9š8†ý îX}ã±Æ÷ËÇžð³87ιLOYÖ†Žßp¬¶2™C´¾½ýŸµ´·ÿ³Ž0ís™#DÒþ>vý¬Æ_1¿fvnàƒÜȇ¸‰9¸™9¹…¹¸•¹i}ÔÏÃí!ºâJ[KgöÓZ:s€ÖÒ™ƒ¬ÉC¬ÅìÍ#¬Ã£¬ËTêCÎüH}Èõµ´>äŒúZZrFPJ¯5ÒÜ©26„¾zç{¾76‡ªŒ£9Te<Í¡*oЪ2æP•‰4‡ªL¢9Te2Í¡*SdÄvŽÍ£*rC_y瞌ͧ*oÒ|ª2ç98ƒp&/r/ñ-^æl^á^å\þÉ·yïð:õi#ÿ¢žxä êÏFÞäÞ¢šRJqûZˆ}º3Dû¨¹}®„X±w¼æ…¢Ž§ý7)SÔï´ÿeŠú]ébˆ›£4³§Ì©ÉÓ¬E5A~d|“z‘Œ®iNmçÏÒ^ÖìíeÍ~§½¬ÙyÚËšy¦sìeÍþ ½¬YÚÏ·—5»D{Y³Ë~ž>%£{3ÇžÖì íiͮҞÖìO6á56åu6ã_lÎlÁ›lÉ[Läm>Í¿e¶^zŸ²òWY™;Q¿—aõ{^ã ¡H ¯’Ƈñ‡ó0G„¸§‹„„ [ø0·Òþ˜a[ˆÏ4$Ķwàk|–Cù‡QïòÃí»žÓºùáZ7?Üá†J´qü¯ck燻´v~ø›½g½i™cc­ŸÝZ?»ãhýìŽr;ãù ø-cÜÁ{(ÇïNGÏwzîbÊïgþ±¾Ç™‹´~Ï\¢ïpæ27…¸\ÛCüþ´ÿ½ƒœyÍ<¾9§:ÿóæ|®o©—|¾…óæz®Æÿ3nil~äúθƒq¢±ç›K»ÿYêc÷?çüÓÎÏ MñšµK_»ß¾ñ|kck"—þvGêo÷¿@ýíþNÔßîïL½íþ.ÔÛîïJ½íþn<ÈyˆI~^?ï-ꉯͦkº6‡í(‹?ï®Y[¹ûüK<Âî<ÊLeOþÈ^<ÆÞ<ΗC(j[nï}ü½Q(Äé‘–Ûƒ·ߪbŸÈ·êS6¸õeƒ6úÂûô…;ˆØ(=O ug9Dz<õ=;+P³³"Í÷‡V…ø= ¹šOr ñ 6æ—|ŠkÙ„ëØ”ëÙŒ_±9¿¦g¶Qÿ´ÞøFŽ[©6ÜÈÉ+ÌÅ«ÌM}ØÆb>§w¾‘ÇØ÷º‘—¾×|ÔWÝÈÏ,@ëð¸6KÍ:®†Ír_«a³Ô¬ãjØ,5ë¸6KÍ:®†ÍR³Ž«a³Ô¬ãjج…TÃf-¢6k1o3…s ÿáRÞñú×ñ»^ËBtrˆM”ö/  °!e€ý‹è:÷/¦ëØŸB`ÿÊû—RØÿ.e€ýË(ì2Àþå”Îû\Šžþ¼Ï¥xvç}.EOÞçRÓçR†„ð•:ÚB|þ}cõåüÊ©®œ_AuåüJŽðy}q‹KÆë9ÎL=ÇùO¨çÈóqH8Ø–ŸÐœ5\?û5GкÍó©óæð¬‘Æõîùr¬ŽäùÌ{ÿãç´{m ‘¸hˆ{) ¸‡/Åó]&pc|÷p9Óñ}¦§>±×v>Þ8ƒñ‡Æß'g4^â ¥ÔÈ©F,Äm,ÌíTCK}C5´Ô·!ô‘Çc9ŒÕÒR;(c”ú޲E©”%Jíò9y=–“ǘ‹ò,7õó±<>'k”²—”5JÙÊ¥Î>'¼oÏ(C”ÚC¢TÚ¿¥“Û±QJ~ésÒgòË¥ôå‰RzòD)½Ç@9¢”Þc üPêpˆ¼¤·(°‹z‹ßSoQà6än>É=lĽlÌ}|Šûلٌؔ‡Øœi?¿°%2‘r΄Æ!Vû&Ÿâ-6ám6åß!>ù¹IóÃþ0ö5àPä0âp¦ýì‡#ÂhÏ0‡gøÃQãQLåëÎë¼ÞqôÞÃ;™žîAŽ >ÿ£Ï6v/rè?³ÊŒMÕ÷_’Cä{ýð½nSuýy ©Zù‹¾¤é \ä}=ò=pÓNÆ‹õÁcôÀM;§° —°+—²ßõ9ýñ}nÓ—ë‘Çø®MÕû_d ¦/q9»ó}ïëÇè¿×;q M{8o>7íIó¸i/®`o®¤ºþËG|…òLÓ>ü„¯R~ù^ï=Æ=h*+ÿòYÙžtÜϱìú½~|LãþÆ«¼×È9½ù˜ŒÔ“Ñ“7à=9õ{ýøýø÷úñ1úñh!Çúñ1úñïõãc2ûóOtœÅñSŽ'9~ ÄGú‡ØÚ¦!l2Ç[ç¥yÜ:Ÿóœ7§"iNEÑœŠ ¦9ѯ¬5§"ú•µOS¿²¶UˆŽ7jÙ»—½"Õäõe³yÈyõ®–=|™þ©š>^Ý«õ4Õ½ZiNݫ՚ê]-½Ìxõ®–¾e¼zWKݯÞÕjGõ®V{ªsµÔ¤ñê\­Tçj=ËOù\ˆ>üfHø© §±*§³g°:gòq΢\š²!Ä·—“R6RÆIÙD¹&e3Ÿäz)[é^¦èÙÚ»)ú›öM¨Ÿiß”ú™özdû½LûæÔô×÷¦è]Ú»7õІpÄ|@îOÑÇ´×»¦è[Ú?MýJûVÔ¯´×Ã<°Å±ž¥}êYÚë?ØêXßÒ^RïQ¯b~ž9|ļ}`›Ü˜‡jlŠž¦½ž5EOÓ¾=õ4íÿG=MûÔ«´–z•öÏQ¯ÒþyêUÚë™6Èhý×SFëÿe´þ_SFë¿2Zÿ”Ñúëõ6Èhý7SFë¯~oÑú«ßd´þê÷†¼T¿7ä£ú½!?¿¥zß_ÝÞ Þ÷W·7¨÷ýÕí ê}ÿ]Tïû«ËÔûþêòu¾ÿnªóýÕ‰ÖKV=þõ¾ÿ^ª÷ý÷Q=ï¯oPÏû!ÿ«ŽÕôþæåˆUþŒ<°AMï¯.oPÓûË„Ôóþ2áu¼ÿQŸ³¾²Ê Ôóþ²áõ¼¿l¸A=ï/nPÏûˆ*ò'Vâ VæIVáϬÊ_X¿²:OñqÊIä¥þrÒy©ÿÊKýå¢ òQ¹hƒ|Ô_.Ú õ?¢§»…Xre¾HóütÍóÓ/Ñ<Ï×-$¾Ÿ/RÏ—Ä,|‰°;³²³±'³³do>¤(ìXß’ï¯>^¯zõõêçÕßK/“O“O“Oÿ’O&ʧ_ɧWɧOɧGÉ7ÂKO’O?’O/’o´×¯±^ãüóç°¹sؼ9lÎ6_›+‡Í“ÃæÈaóã°¹qؼ8lN6› ‡ÍƒÃæÀaÏý°g~Øó>ìYöŒ{®‡=ÓÃ¥CÜV×üZºæ× k~-+]ókÙBe=gŸ@ë9ûDZÏÙeô­îÅkÙé^¼ö _æC|…ú­}˜“¯2ûRO°µõ[ûSM¥.d—õ·0Ö#lÈüÄÌ‚ÂB|…9”E8Œ‡h[½òý²Y[½òý²Y[½òý²YÛ‚”ÍÚÊ ÷Ëfm S6k[„?ðaîæ#ÜâÜËG©w)2Ökœq1ãý,Î,Áƒ,I5¼ícT»Û–âf¼×^œ+íÜQ–aªsC\¹çCüï7Cèlï»y‰ö¾›²zçOy…ö¼›2z9µ¦Ü >{Ëë¶óŸ;/3t¶ïݼÆÕ´;L ÙŠr"å$ãdpÇ8žâ¸§²$íÙ£} [)Ú²™ìÙÊÐ>­,íÙÊñ-–çlVàVä\VâÛ¬ÌwX…óX•óY²H‡Ž­ïl‡¸ü'Cüu'ÿÏìË_Ø¿²?Oqã@žæ ž¡õô¦Ò°‰,‘kË# ›RiØŒòHÃæ!Z__vÇZ«¯/»c½Õ×—ÝÑ—Í+"¥åúú²;Ö_}}Ùk°¾~ëŽuXÿ­ÅúÇiÌ+ãóÖ{ýŸŒÍ‰ú'è9Ï+ë¼Pÿ¤ñü™ž{ý_8‘¿rOq2ãžæTžá›<Ëi<Çéü3xž3y³øߢ T_®©/[ÖOû»éràÏæŽçrÇ3¹ãyÜy'D>¿?Äw×k|ž™zŒÏ³p.ðÊê•Íøm¯w¼äÇûò‡øíæa‡S!\µæî+`üYˆVt=]OE×sÑõTt=]OE×sÑõTt=]OE×sñÍæÚ{Òþ®ZE×uÑuUt]§;o))çVt}]_E×wÑõUt}]_E×wÑõU¼ÈÙ¼Ä9”{/Î¥Ü{ñmºÞ‹ïPî½8rïÅù”{/&S€rïÅ…”{/ꉿ.âû­ey® Q™,VàcÞCëp±£¢ï#›Å |Êôtý2Y¬ÀçÌÈU¼—«C|‚¼ûõ˜6ëZ/0–{¿6_îÿ×¹ŽÎ-tNï÷µ^4A¯÷µ^4A÷µ>4A÷µú›âž’¥žAµðù‘T ŸEµðùש>?šžËóc¨>?–jáóö‹‡æx>Â7¨&<¯6<¤&<¯6<¤&<¯6üŽêÑ©TNí¢ztê{Êܳ¼rÏ„ìîüÎËJ§}¯ÝÆêÔ©=T§Níå`îãÊóäÆSrã<¹ñ”Ü8oXéÿs¬FÍîg=ægõ Ñ,ËBÂwjW–÷Ø‚ËÙ’ï31Dß8&“ª5o§ù³Lî­®‡yã'ckô´Fß8IkôŸi¾ñ ­Ñ±SB¬†^hìTêùǾI=ÿØi¬Áé¬éç–—Id²e¨·;ÃùZÆå±e•¨×;ÓùÚÆ•Óþ¾hdUêÆÎò~¾ÅºœÍzœÃú!ú^‹3‡¢ïµdÍEs&î˜50Óœ=f Ì,Nk`¦=ì˜50³dãG…Hnýõ1ka¦½ì˜µ0Ó^vÌZ˜YÚû¯{_ß}Ìš˜YÆx´ñŽ¡þû˜52ÓwÌ™i;f̴dzFfVð¹±>§??fi¯;fi¯;fi¯;fi¯;fi¯;f龿y:$¸ÃV´¦ò´¦5•§ ­©<Ï„­v4O[šë_¼â_¶¿|ñ}Ÿ~æ\É^4ÇJšÃýÌ­’/ÓÜ*iÎö3·Jš³ýÌ­’æl?s«¤9ÛÏÜ*iÎö3·JÚCû™W%í¡ýì}%ÍÍ~ö¾’æf?{^Is³Ÿ=¯¤¹ÙÏžWÒÜìgÏ+94„{îulß+9Œö»’æfŸž!’ð¡±}¯äÚïJޤý®ä(ÚJ¾NûCÉÑ´?”Ôwô³?”KûCÉq!ܧöÿêy¿S0„µ?†H³œ<Æ\<ÎÜÞ7Þ)DóàÂÎÿä¼ì¶Vo–×y5ê"Æ2y³|ü™ùù ðWô95ìýá¯jØ;8ÊùBüú÷_Û8_”ÏP^\{Úù"ÆmeǵgŒÁu×ýR½~¥CiÿÞÀ—rù+φ¸ÁBB™‹lÌK|Š—Ù„öååÌåÓ¬È3¬Ä³¬Ìs¬ÂßY•òËòj¼ÀêüƒÓ^¿¼í÷ËkÒž¿¼Ó~~mê“ËO?C¹ü´üÛÙ}½ÙÖX>?Ý.„ë2ÁxLN?ÝÞûîwçÜ>ã½›í—ÛOËÀWû†øåwØÿ²?Õô«¨¦_â•èÈÕA4w¯f‡0Ê×Ï¡Là0ÆB´‡oÈ ™Ïž‘]mÚ¢ß2“ú½!úŸ-ú½!oyß’}@ˆü9)Ä“™Sø`Ù·{}c<Õø!¾Isã™ßå+ýä3ç©{æõ“ÏüAýä3îõýúÉgÜëûõ“Ï\¦~ò™+ÔO>s•zàŒwCl«L’ñ?þÂý}›WXŽ}Bü½Úµ­2ʽÊ(÷Æñ·2×uu|:„E¯„H=eó*·yÕżʽޜ7G»˜[¹Í­.æVns«‹¹•ÛÜêbnå6·Vߺ<äxsp3sr sq+ssóÐý¸Wþé’×ñ7”…sËÂ]dáܲpY8÷wúÝc!¾'gçÍ á§9Ÿêï×?9ßÅ8ÙXþú„±~ªÑcs¬ÑBžà"ª»_Ëoý»/6þ™)T¿vïú¿Hy®’óKœÿ•K)S4z—îW£eTo¿v/û뫽g|†ËyÖy÷¶wÊý{Pþë¯ïk¤øütŽðwçåÁþ½x–½yŽ/ówz_Ÿg^à«üƒ}y‘ýx‰z˜d÷G(¯ç8*§ÿíXfϑʲt¯Šü㸜ãc,ÏãTßsüDõ=‡û“öo¸_\â‚ß÷¥y¼*9Ä÷,BÙ §½¤á¶Ž«“«ä‚žzÖU‹XÔyÏñ¸ºµj±±½¨á7Æêçªc=ëª%”å~ë|Œ;xóKד®z—zÑU˨\õKq9eÝUzŒžzŒUzŒžæô*µ©§9½Jmê™öß~Ó±ºÔS¶O‰ íôö)Qê½Sâù¡ž^ÏTÇ8Áxe‚v+w=™êËí>2v™êÑ÷ÏTŸ1>á}™¡ÝÇÆ¾w¦LdžΧw^öJgoœÞ¹'ËàܧÌÈÏœÏà|#fdcçïu^­|¯ñSÆ™ŒWñ>®v>“óMŒï7^c|ŸqSãÌ^Y¼ðÊê•Íû_x}éµÖk—µ§çØü\ˆdŽÊvñƒôò\ü ssó <ÇN47wæyvávåìÆ‹|‘—˜ÄË|‰WØWÙƒ²'¯±¯ÛCÒ¾CoÇ9Öûl~Ùñ Ç'½¬¹¬¿„hÙ…!á÷'¹ˆ¸˜™Â§¸„MB´ˆü||no ‘âöÜ"rôqu¯ˆ}üçígÅíÁEäéãjÃ[‡íÅEäêãru¹ú¸ÚðÖçíÍEäëãòuùú¸|]D¾>¾ˆ·¸˜·©&d¬èøoÇö3ë'á¸}¬È¾Ë¹ŒwùÿãòµLŽ¿¢ß¬±áòÃ7_Q¿š«@ˆß÷9 Ò³ÎUˆžõóæï5}p®ÂÆžuBœã"Ž¿àÃü’p-‹råzãW,ίY‚X’ù7ùòÀ5=v®RÆ2E®ÒÜÂ2”%r•¥¬«­åç+ú¼^Öâ~ÖæïË}×ôý¹ê¤}mß!ÖãaÖç>A=G®LeCþ⣲åzó>*[®7ï£öç¨\¹^ß·þ¥™e_h’Du¿‰ñkCüÒº\Çz\ÏúüŠOðk6à6äF>IýîÒF!ÒÅuÙ CGË_ a‡Ú×ŵ¥í‹å/—âʃå¯R ìâší•‘.µ½êx¹Æ´g4íßµWF·Øï ‘SzàwôÀ§ôÀïèOéßÑŸÒ["‘SzàyzàSzàyjã)=ð<µð”xžxJ._¯LøzÊÀ׫R¾.?>ƒÕ9“zÝÇg±ßbÍ6 Ä*ÊhÃRÖ6ˆ2Ù°Á”Á† ¡ì6ì5>¡”Õ† ã£ÎbÁâÉÅ’|q4Kq Ks,Íóî±½%rÞ=¶—DλÇöÈy÷Ø9ïÛ;"çÝc{FäüÌ | D“ôù¤~ ¿~ I?_?¤ȯHÒä?Ay/ÿIÊ{ùÕì{Û:–ùòë-›{GË~ù¥ì—ÿe¿üz¤ÅÖEÅQÆ2`~2IÌ/C&É€ùÏzßz©øº±,˜_–L’óË’IuxÞûÖQE¹5©®ñcë©âãzƲeR}Ê–IOP¶Lj@kf±õVq¬qCc3éI^e#þÉÆ”㓞¢y—Ô„æPRSšsIÍhÎ%5ç-ÊûùÍ­$¹>¿¾*I®Ï¯—J’ãóß¡œžÿßwò±0[9YŠjÌÉÒÔ‹¥—MN–q¬Îœ,ËYŽÇXžÇY?±"e “²Ñlè¤L4[:)Í–NÊD³e “2Ñlè¤L4[:)ÍNû=2Ñlè¤L4[:)Í–NÊD³e “2Ñlè¤L4Û=£N”¼?DËÈ;ç¦SÞ9'‡”‘wÎÍôþ>ï[£eäsiÿ½ÃýÆrp¹çœ¼3瀱<<Ǿ\Ò¾\F:'§”¹Ä9ÎÛ—KÚ—ËØ¿ÏÙ¿çØ—Kf§}¸¤}¸Œ}üœ}¼Œ}üÜ;´ŸSœæõ¾ì\Æþ}Îþ]Æþ}.™öísöí2öísöí2öísöí2öísöí2öís)´æÏÙ³£sCÂú:|›uùeëè<Öç|>Ádê馩¿EôéÓôžEzQïY¤7­¹"/ûÜŸS§éA‹¼b¬Y¯‰ê_Öë_¢ú—õú—¨þe½þ%ªY¯‰ê¢z†è2cµm½º¶¾yÊ„¸‹=C»ÙÙ‹²7]û¨5!Vµ¿`g~IçÝ!RÕ³{w%­ƒQkïÊu”iÞýÈyëb”þ£ê‹ÔTMûwú‡Øhûú}®c—ú5Ú^žÉ<_s4ÄzOa*§òG¾ÉcœÆã47ÖüDscœß[F]#ß÷V«×Èõ½eÔ5r}oÏ~ͯôì‹Ç‡¸5¯„„Þ9؇9ù*s±/s³ó°?óróq ós p0 r ñ5¦ý{2Ÿ†H–+ÆC‹p5`é69î8íßùÌg®0.Ê‘”Q†}îüŸÆ£Œ‹ñuçh–ðþ*ï_ãjêg‡Ùs²üåý1Þ/ɱLû·d¾pþ†ñ8ãRÏÒ|ƒiÿ–̗޿ɵ¼åüçËr"ËqËs2å—5SX‘ö¨Þ•hê]™ö¨ÞUhê]•ö¨ÞÕhê]ö¨Þ‡¸ûCB)½Û€Ô« 8È<Ä!rNæ\$cž“9Ó²þ9™s‘ŒyNæ\$cž“9ɘçdÀE2æ9™sQÊœ‹dÂs2碴Ÿs™ƒx…ƒCd¬,WC–+ËÕåÆÊr5ÜŸ#BГFÆÊt5¬«±2] ýLâpýÄ×ôþ™ ÉE=kâëÜÌÑÜÂ1ÜʱÔ3%Ž£>)q<åÍÄ7¨GMœÀ!rºIˆŸ¯þœnJuçt3ñþDïÇIÜÉÉÜåýæÞWwN·`jÑ·tü#yŒOÓ>ùÁÅë´(ÄÕ˜âÿz˜“ù§Ð«1•Rÿø—¹UcÍ­ÓY‚3hÕ˜ÉÇ8‹æN·hîÔ˜Mµ¡Æš+5æÒ\©ñ6å…œo8~Çq…yiwˆ/Øš{؆{ù ÷±-÷³°=ò<Ä<Ìgy„Ïñ(Ÿg*;†hùÂ!áü÷,Âø0w‡0·™­n”ÄX¯>·¹±úQ¾¨ñ^>Ê},ÆýÞoá}u¥|qã,Áƒ!jN8b°G'±Ø£ŽÌ£Úd~³dÓbÅ(›Ó+Ù³ŽØ ìÙ Gìöì„#ö{vÂ{=;ሽÀžpD†›%˳žgɲÅôVöð„#ö{xÂuÙžpäÝ÷¥óŠó¥óŠó¥óJaª-¯QS\sþÿ…¸!Ä™Åßbg3Ê9Œç\&ðmÆøïá<¦ã|¦g23p3ra9¬á÷:6¿ dâbÞÇÞÏ%ÌÌ¥ÌBß½À\Ƭ|Ù¸œÙù>í+rüׇ!n˜{WÑwæÞUô]†¹wiÿ^å0÷®¢ï2̽«¸îUEßc˜{UÑ÷æ^UL ‘Ûß„øO[„ðŒºöG%cùãÓ–”A>Mäw|š;Ù*Dö»'&Ñ=™0™îÉ„)tO&L ¡™Þà×´ÿ=®{3áÍéùaˆ/R.DFÈU•õ™#äªÊuC¨þE{nËW•õ#ä«Êöñ\YB‚\Íõ×3+¿ ¡PÚ{ÙÍìÜÀ©Î²ïçzÈñ&æàfæ¤ZSH/P¨¡q.c5gµknôKˆ~ÿRˆÑ·ßæâ÷=¨oÿ¾'Í­ŽöþŽúʇ®yÙ3>TwjëwŠêý^Ö3B=RQ×»èXŸTôMêŠN£µPÔ^û^¦{Îw}ï>ú®î qÓíKÔéöŸFjÈtûO#5dº}§‘:›×¾?C käwÎPùŸ3Ô¯FjÚ õ«Q*Õ¯FêÙù`¹|pE>X.\‘–ËWäƒåp"³R}[žêÛòìTß–?HõmùCjäYÇjÜòTã–ç !ûÇŽÕ¹å¹BHûﳞ[g¬Þ-ÏMõnyªwËóR½[žÏŸùıš·ïºó77¶.±æ.Ø?—Ô Œ·¤&g³ç°6õ’KÒþ=Q÷) c=å’ºÔS.©G=å’úÔS.yÂçÜÇü-õ–KP︤!õŒKž¤žqI#ê—4¦žqÉSÔ3.iÂ¥l¢m»…Xf=zÛ©o›D=x[s1³Þ{Ú_No¾@í/§kknfÖ‹·573g ¡ˆ¹VDÝmkŽfÎÎ^|Ð9óí”ß5Ïï:åwÍkÊwéžÒ§ÎsoN½Gë|‚g•·óñYç—;ïÚN½ÏD~À§½ïùå}ÎøCãV\ÁÖ\É6üˆÏðc¶å'lÇOÙžŸQ=õ9íM#ÕÄÊ3¨VžIõ°ò,ª‡•ߢzXy6ÕÃÊs¨VžKõ°òÛT+¿Cõ°²y3R=¬<Ÿ2™jbåÌÁ…ÌÉEÌÅÅÌMkd.a^.e>¾Ëü\"ž}|Ú¿UìÙÇ/y˜É|„ X” ù(±³8S¨gòÌã—è™<óø%2È=Ô’R!<=0„³úÎ z©%iÿèËwŽõQKä‘ ú¨%rÈ…÷YÎgù¬^ô‚¿¤<ÕÐ%œì¼ô ãŠ\I5ûÂG¬ÌY…Ÿ°*?e5~F}åI™pÎ Ê„sfRœcÿ;©žÍ±ÿTÏæØÿNªesì'Õ²9ö¿“jÙûßIûúûßIûú{ÎIûú{ÎIûø{ÎI{Ñ{ÎI{Ñ{ÎI{Ñ{ÎI{Ñ{ÎI{Ñ{ßI{Ñ{ßI{Ñ{ßI{Ñ{ßÉiï;y—ö¾“ÿqyˆÜb“õ÷S†›õÛÁœÏV?„ÖË?›ûÙž ¹žÍúí`®g³~;˜ëÙ¬ßæx6ë·ƒ9žÍúí`Žg³~;˜ãÙš„ë;Çæy6몃yž­™s;›ëÙ¬­æz6u¤ƒ¹žÍZê°Š‰!<èÅÛ/×Ë^mò†X¦o˜ß2?w°¿cAîd!îbaêÕdŸ˜L•yb2ETæ‰ÉQY'&SDe˜L•ub2ET¦‰ÉQ™&&SD6ÛW×ç>ÁlÀMlÈÍ|’[؈[Ù˜Ûø·³ õ ƒ›R0X¿¸Y0¸yˆ¶bé p †0ÿÏ)[Öx°q!aáÿ¸û6‰ãùß`wN`NdONb¯⾕Õ×W›Ân½ÿýFYýÆýFYýÆýFÙ©Ôg”Õg у•æóòênûæ½XÙéTwʪ;CÔ²êÎu§¬º3DÝ)«î Qwʪ;CÔ´ÿíèu§¬º3DÝ)«î QwÊêeT ±Ç~c5žfužáã<ÂÃ?y‘®ýB|žØŸwB¨Ð0„ãŒÿ˼Bf{i×AŽÿó™'}f|ˆ›*;7¡§ÊÎ d該szªìÜ@†žª¯m COÕ×6ÐßNÕ×6ÐßNÕ×6ÐßN•™ÈÎSååöÓ©rrYfªœÜ@–™*7e¦ÊÇ d™©újWŠÞ¡ý}!ÔË‘ç¨1>’ö¿3ÐK´·§è%ÚÛcSôí³è?åΣCBè(ï]ß`,Õt”û®o4–C¥ztåУÃ)‡!7þ 7ê%ÇÊ;5ìycåö¼±òN yg¬¼SCÞ+ïÔwÆÊ;5ä±òN yg¬¼SÞ2VÞ©!wjÈ;cå¾÷Xy§FGþÈxŒxœù»ð»ò$»ñg¾È_˜Ä_ùO±{‘´÷~s܃§Ù“îE óu¬{P£7]{ ™|¬k¯!“uí5ú„øôÉ!¶yÐ}*mn—–WKOñ’µÌÇXÙµ¼Ÿú_ó1VVÿk>ÆÊê—úõUj1ÂÚÎ?à¼^ØüŒ••¹ÑW Éæx#³Sî^ç³uŒôzȹÍ^[B¤¯ïZÂwíë»–ð]ûú®%^ Á¾ví7öKô1Ö‹ì:`칕xÕø-ãƒÆ÷åEösÞÝeö½dÜŸ—9Àykq×aÊ»ô°}¯8o´Ÿ‡]Gùõ²}¯:?ˆr0¯Ñü²Ï‡]zܾ×_ã_ê¼,¹ë“yÜùÎãMç-š›ú°ë'ãÛÆ#ù7Gñ¾Î;^Ödß»^ÿ97ÚkŒ×X/kvhÓ_þ šbî©ùÿÿô\ØSËùfλޡzôòjÍP=zy×7T^^>T^Þu Õ£—÷ý‡¶â1¶¦ï;´ }¯¡ÏPÍÚ–'ÙŽ?³=áÿø+;ðŸåo|ާCÜ븎<7)„þB$½=l‚5]Gž¹˜1Ä–þÄ{y‚rÈÒ“4Ï–þLól©tÑ<[ú+ͳ¥§h^-ý-„ûwln-Uë.šWKÕº‹æÕÒ³|çBøÚþÒr°±¹µôwæàyæäæâ>WÝç†ç6¾È<¼D{âÒË´'.½B{âÒ«´'.ýÓŸ{ÜŸ{ÍØÞ¸ôíK¯ÓÞ¸ô/á >Ì›|„·X”·ù(ÿf1þÃâ¼Ãü—%y7ÄßÓ ÄÒþwÒ߸¿ÃÜßoÜßa§ù<Ï„gŽ|ÓѱŒôÍ <ÇNüyž]x]ù‡Ÿ}ŸÊtü‘éy,D§Úçا§Úçا§Nf5N¡ öžõö¸,ðžuöxVšggóþTï{&Sßd NcMNg-Πº0u&­ù©³X—o±gS†ž:‡òòÔ¹lÀ·)O}‡Orq>õBýŸ %g#žgc^àSüƒM(ÿöoÊKlÆËlÎ+lÁ«lÉ?™Èk|š×ÙŠ±5o° oòÞb[Þf;þÂ=÷9nïøþžg«ú!–ѼjõÍ«VžgFóªUCšW­ž¤yժͫä7ô(z°VÍ«Vr~FóªUšW­šÒ¼jÕŒæU«æ4¯Zµ yÕª%Í«V‰4¯Z=Í´ïÑŠæU«Ö¼Ë6üτؽZþVma;Ʊ=£!:nQˆÕ”Ç-¦Þr™½­š~w\бkܶàR¶ä»L ÑËÖå2ëñ²u¹ì­ËeÖáeëqÙù3¯  ? á-õ®ØfŽæç9?ÜxŒñVŽå6ç;¯v¾¥þÛn|ÄØ~õÖxcýk¡£Æ£ŒÝÃbîa¡Tã×'ëg ýh<šÇ8&„Œ²Ï[½§Ç-tܹ±Æ“Œõº…~2g¬¯+¦ç-tÂxv[>êc·å§>v›Œp¯>v›k¸W»Í5Ü«ÝæîÕÇnó}îÕÇn{˜úØmP»­(õ±Û¥>v›¾µ lžZ†²yjYÊæ©rsÇEúÏ“Æ2zjyÊè©(£§V¤ŒžZ)(ŽåôÔÊ”ÓSeæ«„øUz£«r+«q«s;ç7¬ÁoY“;X‹²ü¿µ¹“u¸‹uù=ëñÖçn>Á=lÀ½lÈ}|’z¯Ñðoc Ѭυ„]žÛ ýCQ÷<ëóÆéØ‘éù3x__QÔ³ÈÚÉ8£±þ¢¨g’µ³ñ½ìÂLìÊûØzƬ/2³ÏëCŠzvY“Œ³ð%>ÀîÌÊÌæsú”¢žmÖžÆÙÙ‹úˬ½ù_fš+»Ì•¬æÊ®´ïm®ìJû~æÊ®´ïe®ìJû}æÊ®´Ÿg®ì2W²š+»Ì•¬æÊ.s%«¹²Ë\Éj®ì2W²š+»Ì•¬æÊ.s%«¹²Ë\ÉjÍd5Ovõ’qæ=eÿyƉ»ù(÷°÷†è…?Clɶ¾úCQÂøš±zpá:Õ Q}»pƒÖý…›´Þ/Ü¢Úuá6­ó Ó:¾ð­ß w¸;D¨£w­ßêç]ë·ºywÕË»¯‡h?õ©dªO%{R}*Ù‹êSIu¬ŸºTRë§•TÇú©G%Õ±árhE=Ùp9´¢ÞDÿ©ZÊX­h/.V´ ¯A{ÁðšÔ“ ¯E=ÙðÚÔŸ ¯Ã‹!ò™LÔ½sˆp9$”šBs8–žæp̼êcÇ2zÿŠ÷g›Ë6³¸Wå…>æt,Íé´¶9»ßûz¯QnècŽÇdìˆÜ¿V/‘û×¾¢Kìyÿ³—Íx!Ä›3:13;Ó<œÑ…æáŒ®4gt£y¸°bˆ”ï¢Ïé³{>Ïé³{>ë~±Wçò¾Í_)¿¯;E{êºß8Ÿ§™Ì3\À³\Ès\Äß¹˜ç™Â \Â?¸4Äu×ç¼B¯[!§Žt×ï¼b|Û¸Š±¾§ ¾§»¾§ ž#w¯bæGÑ!Vø1Ž¡çÖc,KsËp<ËÒ}*\ŽîSáòÔ7®@}cáŠÔ7®D}cáÊÔÖWöÐÖWöЮâªË¸×Qƽ6˜2nÚßÓ«.ã¦ý}¼ê2nÚßë.ã¦ý}»êòí5Y½º|{MÐõB7–s¯¤ìxmeÇk¯Sv¼6š2ãµ1”¯¥ŒxmeÄkã)^{ƒ²áµ ”¯M¤ìwme¿kòð}žÍÃ)!á§§¸„M¸”Míûÿ…Hq9LÜŒ—…gËÂÅkSÎ-®ç}ø]ŸÓ?ÍŽ×e<ë1z߇—y_?õð{ÔO=¼œú©‡ßgbˆ;q3$Ì^Ä[\ÌÛLáß\ÂèÙŸ¸Ãwù/—ñ.ßã\âNÚbf¿Ï?`?d”+ôDæsÎßC¾<Ï™¼@y»ë+äÚ éåsþ᜵S¨Ž—ë)¤K_ÑtõMõoé+šÊÊ™ìkËÍÅ•C亜»B_w]Î]¡¯»~‡úëÿRŸs]æIëk®Ë¼i}Í_úªìöŒ¿"Žõ2ÅQ/óW”S¼gø+ÞñTÇ.0»œúW‚ñ›Œqïát¦ã ¦çLfà,fä[¼—³™‰sB4㸰ÕÈ8žÖ@Æ7h dœ@k ãDZ'ÑÈ8™öóγBBnû|ç·hŸï<›CèiߎDç»/=íß‘xã¹ÆÖjç·iv~‡U9ÖJçù¬Îd>άÁ…¬ÉE¬ÅŬMó4wš§¹=ŸÅî[E{Cw{G!5¥»½£ÐBçÝÇŠöŠîöBjKw{H!µ¥»=¤ÚÒÝRHmén)´”öBïò_.ã]¾Çÿ¸ÜÚVJ ½Ï?`?d”+B\Q¹õ„lUT=ñWˆÌÜâŸz‚Ù€›Ø›ù$·°QµË„pðeã­ÆË¿b¼Íø)ng~æü–͸ƒÍù[p'[rù=Ÿ¶h·‡ð@¹7W~k¡üÖ".„¼räÜŽ=³¹ÏÒ³š«ïi‘@ýN ýëzÓ2Á—C¤‰{ö£u†LðóÇ!6×þúó'´¿þü)呯քH Yî¼ý å3ÚR>wþ çe»óö…”U´/¤¬¦}!e í )_øÜ—>'û·?¤|IûCÊÚ7Ë\lâ¾äýÖ±ùØDß™W¸{ˆ×.„¦×Cøµ¼ñãö<Èÿ9o‘ýZ7hŽ6½ÉJÞ?ä}yo÷a>Ë#|Îû·¼o-ï>jü¼ñmc}êîTãŽÂäcŽtü±íåãÜŸÝ?± ÕþqúûÔË!6}#¯p¯r3õ@ÓeÁT½Ïô­ÔûL—SÍßéz¡Tówº^(Õ¼®J5o§ÛkSÍÛéöÚTóvºùžjÞN7¿SÍÛé߇¸¸a!~]zgŽ "n$õq£˜‰¯SžM=CÜfæXf qQ{Äz{SÔ±~XˆŽ.biÿVÑèâ<Ì<Â’<ÊǘÊRü‘¥yŒexœeùËñËó$+ðgVä/¬Ä_Y™§X…¿…¸—Í×GîÐ\}ä_š«Ü¥¹úÈ4W‹êÍ‹Êù[’BlˆvËKÔÃnéÎÂ!¬ª"Oºž-=Œ‹×2Ö¿néi¬§ÝÒ‹8_Ûy{ðª:4Ç·ôv^Úò2å¡-¯°û°8_¥^vK_/½Ñ9vËçÜŸ!îÍ÷eˆ:;A¦¬ã÷OØG¿wÂ~êU' ß3á ­¥ ‡¨WýÐ<è¬Þ|htVo>4:«7šWÐ<è¼’æAçBdÂÓ!¾ölE¹eBkÊ'Úx=ãØü¬m?¹«N­>Oujõ¾@ýøÝNÔ›ÞíÌK!.Gå¿g'e´=»(£íù>„YCäÑÆöIu}Ÿý?§º¾Ožu¯óú‡œêû>{fNõ}Ÿý?§ú¾ï êûrªíûx5 ¡ôx¯7B´FŽpݺ¨‘“ÖE\´.jä¦uQ#·‡¸í÷ù†¸¯g„„þÕB±(DÒþ·0#ógçg:_Ý8Åø.á¯ÎÛ¯ú?"õP9zS•C½í¨‡Ê¡ÎvÔCåèC=TŽW©‡ÊÑ—z¨ý¨‡ÊÑ?ÄÇYëìÏqÖÁ:ûsœu°ÎÞç9¯³'ÇyÖëìÉqž÷:{rœu°ÎžgX—ñqÖugX—ñqÖugX—ñqÖugX—ñúÛ˜u¯¯Y—ñq2Ⱥ(ƒ¬ËJÙc]6Êë²SöX÷ euQöX—ƒ²Çºœ”=Öåb]æf=æa}æåÌÇÌBçÝ!ÜR/Ê;w~ñcu£I‰ý†%ùmIφpg¾ñcÆ;XŠß9¯žÞI6.m¼ÓX=½³À¸Œ±ù¤ž'Dͧ$uõŽçª¦'D0~Áx;Q?ؤ¼ó¾KRgãváv¥¾°IïûnIÝŒßå‹Ô6©èü^ã$c}b“JÆûX™ûY…X•Cø,gˆ4h¢›2‡ØÀ´ÿf|.c{Ëg¹ÙžyhOù,/;0]ûgùùœ?—ÅŸS—7=À]Îpþyã¬Æ®ó³‚ƳË$›²SFN'lz•2À¦¾”6õ£ÞSš·›мÝ4æí&Ùâªû¿üÝ÷å‡é¾/?ÂäÂ!RÀ½›\„îÙä‡éžM~„]}ÎóX~Ô¸¨±{6ùQºg“‹Ñ½š\œ/ùœç´<Õ¸„qwcÏkùÆ%{{^ËÛ ôd)Ê[“K³7Ëðe–å+,Ç>þœç¹ü8=·å?9oß.ð*+°/eÌ®ÿªç·ü„±ýº@Ú— ¸W=ÇåÖýdûr¬ÊA¬ÆÁ¬NYëªç¼ügck¿Àk¬AûÚUÏ}¹ú0Ù~P@öºêù/W'®Vã)V§}çêã<â.] ËæPV_6—2ù²·C˜ôAˆäÿÝX&_öeïeó({/›ïý½Þøº±upé/šÿ—nP:i…÷/Ë?ËäŸKòÏ2óý’ü³Lþ¹$ÿ,“.É?Ë–úüJŸÿƒj}þ‹ü˜—ø eâIŸòŠÏËIËä¤KrÒ²eÎæüU~N™xÒ*^ãjêW/©«Ë¬KrÔ29ÊJX&G]–£–ÉQ—å¨erÔe9j™ï|¶`ˆ_àÚÏ¢k<[˜iç‹Ðw<û0}dzÐw<[”Ÿèü¾³:þ4„Dëá¬}äl1ãÏŒ­û³ö³Åõ‹‰ÖûÙLÆ%Œ}ß³%™öç£ól)ê)Ï–¦žñl®eY®c9®gy~Å ü𹕏‘ö¸›h[°9Äu? ™{ÝÒÚë~ˆæ\÷ôöº¡µ×ý(åúî©4׺ÿH¹¾û1 !÷ËŽ;æøÇ?9–ﻟàˆù¹ZˆŸ³™Õ¹…s+kPŽú¹&õí-ß átªq-ãoŒçÛã®mü-ëPüs]~ÇzÜÉúTƒZš‡§õ??aü=ð6¤{Ü2Ùûz„ŸŸ4VC[.0–Gnd¬v¶4OO[ƒ-ÕãÓ'oìü>ãÅÆ²èÏOïgp^}>ý‹qSc5µ¥:}úWãfƇ؜‡Ù‚GØ’G™È´ëÔÃÌI»>=̵¥¥yúÕõÓ¿9¯§™“ö}ÛPíhi~Ÿ>Í÷xÆy}Î=ÎÏm™ö}Û1í{¶gÚ÷úÓ¾Ožâ³Lû¹Ïñ4õFsÒ~ŽÞhÎÙ.GTúå…JòÂpy¡’¼0\^¨ôå„JÏS>¨Ô‘²A%Ù`¸lPI6.T’ †ë½*ÉÃeƒJ]y’Ýø3_ä/T{«O aÏã__¢½¡RwÚ*  Õ§{ßs©>ƒûœ·WTêI{E%µ7¢v·_TR³ŒqlϨ¤×nϨd–èâý‡/RO]"‰ÿ†H?k¶Ä FïÛϺ-a÷³nKXÇý¬Ù{O?ÜÏz-¡Þô³NK|¢—r†Ø»˜‹07/2/1//3¯0?¯²ÿdA^c!Êp÷ë/v,C^*B™ñÒÔ /=Â[,ÊÛ|”S_öî?Ô—½{‡ú²wÿ¥¾ìÝ»!ZjPH8#”Ly Ôæk,¡Ôÿ—ÆG8œúýR#¨ßo§/Ï¢oo§/Ï¢oow˜òÁ‚¹!RNjwÄXÿÞî(õïíR©o÷#G‡PDßÛî˜ã1Ž8>îx¬~Ù|xtIˆæ^´66/]j¼Ò¸±ùñè»Æ?¢¿¿b‹r…hSý_üo!Ì#DÊȉMõñÖÂü Æ;8‘ú˜ù“¨ÿš?™jÂü)üÞçõ‹ñgŒ§«¿óߤš0Õ‚ùÓi®ÍŸAk~þLî÷çô—ñgCÈho5×"Ye&ó,’U3Ï"Y¥|‘µXˆ[ß2$¼z›‰üÛyy#kqã§ÿ1–;²–0nel>®oÍ—C²–4nc,ë­†²Þú¶!A‹·¾#lÏ8ʈ}£”ûÆSFì›BÏ›!©âº~ò>¥gsü¡ã&tßó6¥û·Ýç¼Íù1[„謔k’æ¶äR&Ò3™å4yÚ«U5Ü«ý÷…Èx9ª¦û0^Žªé>Œ—£jºã»ÐuïJ×;Þ¬éúÆ[ƒ5/Ѭy™/ñ »ó*{ðOöä5öâuöæ_|™7ø oZûz¬,_yÙçÆ÷qî_åmöåßìÇ(ÏԼôþÇä]â~†=rüà_Ë?„¾Æ8e”âSþ ±'äÒ)w)—NùriÚ_Ñâ#Fø1ãø £T;¦Æó3&ðsÆh¯ïªŸÈ£¿èªŸÈ£¿èª6åÑ_tU—ò¨K]Õ¥<…P¡N;F«Oyô]Õ¦JûýÍxÚçoš»d«›1Ÿ“íN}`lMß¼‡ÖôÍtÎËz§ôe%e½S+(ëZ©yó—Œ ±ÿUäXV a¥u¼Ò~Q÷~¯ÌÎs¾2dz ß`UN`µýpjˆuv?N"õž4~Ó¸.§Qþp:eûgP¶ßr'Ƭ¦¹0d Í…!_Ð\òeˆºôص4†¬£¹0d=Í…!æì} ›C¾¦ù0d͇!C(®‡)®†N¼buçò¾Í‹|‡—8/D÷, 1k/¬Ñ×7V¯÷,6îLëØŒî±Ž­Á`ϋ­Ã¸'…„ÎåBbþܧ—N÷?ç&;W>Dئ^§ýgªýèˆýgêŸÉµl³?gr-ÛìÏ™\Ë6ûs&ײM^˜¼:$ÔïÀ5”ûëó2˜“¿0~Ž_òy®eG®ã \ÏN!î¾OBü7uù)ëñ3Ö§ùûÍ\Å\͆!<›-„«O¯1~’_°¿dc®¥>-½}kó—!Ü3+ÄM|4$ÔÙÃbÜËâ”'Êöud㉲eÙx¢lYç eË:²æDÙ±Ž¬9Q6¬s„2a£”ë¤R¶«ó#e»:ÇBtiçë]˜=DŸêbÑ>ËŸã=!>Ýý!¶ñjˆ«3)Äß~˜“ù§°(§òQ¾IûJi´Ô™NûG´_Ô™ÉÇ8‹¥øKs6ËpËr.Ëñm–·fþrüŽã œÇŠœO{GdVæVáBVå"VãbVg Ñ]öÿÑæç.ûÿhós—½´ùÙzaˆe²–Z›§™ÑüÌÔ˜æg¦§h~fjBs3SÓ:táŠ~¿ƒ9te~ˆËà÷oqmüþ-®-ƒß¿Åµeðû·¸¶ ~ÿ×–a ][†¥,Ïwéº2,£ëÊð]W†åt]Þg•žS{þ4ߨâwvæ~váv¥^x§5ó€^xç‹Ô ïL¢^xçKÔ ïìîç¨]š¯è‰wö žxgOê‰wö¢žxgoê‰wÊIè‰wêMÐïì¢W΄ØrµâÊYªWÎq}_Û¿Õ¨+¿ÅóT/®¨ ËÕ‹+êÂòT–o Ñh÷°>+{ÐŒö¤9íÅÙ›ñeæà+ÌÉ>ÌÅW™›}™‡ý˜—ý™˜ŸY€úÌõų́>s}¡¦•‘"jqT¿¹^¿Õo®×oFõ›ëõ›QýæzýfT¿¹^¿Õo®×oFG²G±8_g ŽfIŽácËRÇÒÏ2!šðVHøº&gÓ>ÍZä¼ñãÚœË:|›öÂiöÖ"zø„wŒÕö„yTÛæó‰ ªã ÉŽÕè„lâFÏ ÕÍýѳhîö;«?B_Ï(µ1Úï®^ƒ~gõšÎë9Ò¥}Þï®^‹~wõÚô;«×¡ßY]ÍíwV7Gû}ÕÓþoÇ…BÂÞ],L=kÎ"üs7áå^ªk{÷Q]Û»?„™ÿé¡Ý‹œêÛÞTßö¤ú¶÷Õ·½‡©¾íÕËçTßö¥ú¶75D÷éÕ'¤„¸ÁæLÙ,4gÊ>@s¦lVš3eõ”ƒÍ™²ÙiΔ}æLÙ‡hΔÍAs¦lNš3esÑœ)››æLÙ<4gÊæ¥¹R6Í•²ùi®”-@s¥lAš+e Ñ\)[˜æJÙ"4Wʪ›ƒÍ•²êæ`s¥¬º9Ø\)ûhˆü ñ³ôý?©µ³¦†hJkon§ôd½Áò©£§_ù>Ï9ßËysýÅ­!–_ó°gõÍ!A¯÷MV®g6~ÅìüšrâFæ Þ(ÿÇ9of.nannenc^ng>~Ãüü–¸#DßÖo´Ôýͱž£eÝ™òGˆB¨•5„‰Æûñû;o_<ð´ñeãÆÙ[_1hü ±ÜUë!Ê[µrðæd[æb;Ÿ¿êóƒŒs·§ûuàÌK5ºV>ªÑµòó9ŸÿÓç0~žÙ‘j¼ÍûCx¯9_ØùNÆ5.bÜÙX¯ñÄ0ã‡eÅ)7‡Ë[dÅ)·ŒGð6G:/§üm<ÊX;ð¢ñ?Ư3Nbq¾äüçåÓZ%ŒÕíZ%ÙÃùû”Sk=æ|OãÿŒÇ…ˆ¾>þ‰ñΗr¾K³·óçß0.cü2Ëòç㜗IõýñOȤúþø'dR}ü2©¾?þ ssª¹ù„,:5eÑ©é9ÍÏÑŸèâ&˜oµÍ» æ[món‚ùVÛ¼›`¾Õ6ï&˜oµÍ» æZíM4×jëÉû‘ôiÿ]hs®¶¹7Áœ«mîM0çjë½ûýä}Ï´ß z¦ýN2í¿m.ÖÖ“÷ûÙØ³í÷ Óþ»Ñæfm=z¿_=Û{|Ç~§{¾ý~£çÙï4=Ç~gèùõ““Ó§ý7¤Í紿ך×|ËûŒqAc}}?¹1½ç×OnLï¹åmë=µ¯öwTûjï¤ÚW[~ÏÛαúWû{Çí«µå÷¼æd^}çµ°¶Ÿ÷Ù™`ÔéKk£Žµ1ÁÚ¨ÓŸÖD´ê ¤9^gÍÝ:ƒiŽÖ1G'˜£u^£¹Yg(ÍÉ:ædd¬có±Îpš‡uÌà æayl‚=`‚z?Áüª3Êëu/ó¬æÇr²¼;ikˆ¯×˜Ûø·³ ¿aS~ËfÜÁæüŽ-¸“-¹‹Öû¤ïi}OúÖõ¤ÝlÍ=lý|†ú™zm©Ÿ©g=OÒÏÔkOýL½ÿQ?S¯õ3õžÕ‹±MÖkéÑŽG8–ëÓ¤\ŸnåúØû!¶A¯û€“C\;÷<³úÕÎþ“YýjgÿÉì9w—)þÓ³µ³ÿdÞAûOfù-×ï]öž>®½(óNã+Æú¹vö¤Ì»hOÊü=íI™ =)ónê¹3ïñ3æ:ÖçµÓsgÞëeßk#³d²?¶‘Y2ÙÛÈ,™|6Ùü+§n$›gå̳dó¬œy–|žêBòê5Úõyûh›G™öóŠq?‹ÓþÙ¦íŸmJÒþ9S†~JVž)C?%WÍ”¡Ÿ’•gÊÐOu·ß´´ß ¡¥rÚ>ÒRÍ8ÝËùDçSù4d+ckZ¯?µ¡uùÓ3<¨B${Ë·ecHò¢qVãDfãÓÌÎVÞßä}=é–Í|Éùom¼ÅXõ±µ7*ÕúQ9©ÖÊÅvÌM5~TZO£òR•jü¨ü|ލ¶*HseT!Êp[¶ú==Œ Ë¢£Š°3¦^zË6ïë…·l§Ú9êçeÒQE©·Þòó½íÙÙõØ[¾5VKG3V»G§^{ËçõÌ[¾cçõšÙ»ï4~Õ¸¤±Þ{Ë.ã¾üžýøÓþýÝÝÀ=HógÈ îãà—³Nˆ×'Åå¬K¹/g=Ê}9ëSîËù=×ø7p,ûålHÙ/ç“<ÆFô,»~âó–ã ÊZA=éºÒq~ÄŠü˜•(ûæ­LÙ7oʾy«RöÍ[²oÞê”}ó>N™7o ʼyåþ®2oÞZ”yóÖæ:Öázêu3¯wü•ãz!d’-V4 ±ÎóIþÃF¼ÂÇöî=ÛzÏ{ut¾±óÿò)ÞeþǦ!Ö%°#lÎ8¶ðjé•èõ´sQ¯x¯/¹wÛ䪟Þ6…2ü*=ø“zðmSŸ ¡øÇŽßt,'n›F9q›h¨œ¸Mÿ3TNÜ6“M9‹Íø›s6ýþ{õêÛr!ýÌÏ܇ú„ÏôN F…èæ!6È5lv´+á³zοnì^ v-›Ý‹Á®e³k Ñ“wClŽ^ûäÜÂZ5´©œûs0ÞÂcÝBôªëyßzøbfˆ<¥nêbSʆèKåC¬ÀqVàO!Ú@?{W=Jû7 JËÆ ôµwe úÚ»êÒ<{WéùÆúÛ»²ï›pW}òýîÊB ô·we¡úÛ»²PYè®,Ô@º+ MÜbueɉÛù*¿a_~Ë~!ÚQÿ›C&ì¨ÿÍ!vÔïæ ;ö¦LØñeÊ„_¡~°È-¯ÛÆ}ŒeÃŽ¯Rÿܱ/eÃŽý¨_îØŸ²aÇ” ;¤lØqeÃŽƒYˆC(v|2aÇ¡” ;£>¡ˆL~¼&?  ÷‚Þâ/õ¥ˆµt\/žöß?.7±ŽŽ›×/è9þêdl=7·_Ð{ü%ñ®Ž×7Öƒü¥þ±¾Ž?AëëxÚÿ}vˆ¬ÆmžC}lcµíD2Õ¶ œŸë¼Þ§±gzb¡ñÛÆjßæwh}lžGµoó|ú_ð¹EÆÉÆjßæTû6/¤Z·yí?ÕÆ‹«u›S¨Æm^Ââ!îQ{ôÏêø£öèŸÕñ„6ŽíÓ?«qÚ§VÛ=BµôÑ£ìÅTöæ|9DsȦ{kP6Ý+æI÷Ö¢LºWÎ!‹î•ƒsÈ¢{ëRÝ+ÿæE÷Êž9dѽOPÝk­æ°žöZO9¬§½Or­ÏÛÝCìS?ç¶9õ©µuG´j4õá«ôÑwô߫Ɔ¸ý>?±³1Sø—° —²)ße3.cs¾Ç\N{àþ÷™Èhïc—wãöhÜÊØ^.ïÆí_alïÛ¿’ö¼18_Âø#c{ߘ‹Æ%?6Öoîÿ„zËýŸR_¹ÿ3þŸS_¹Ÿåj>Ç5|ž_Ðü£·“§ãöiüBˆ¸'ÄûŒéø9Ós•,)—?| „%z¾Ê“ë'dðÞjLJ¼äñ×8–ÉÜëø fâ—ÎÙw–ÍÜg¼6Dúåñ%–±ßcAʳý ñý*/ a—~¼_aãX„†h^ßÿÐóôý©ñy}ïC¾wÞµìÄu´††zÞ¬¡Wo‡È=UŒ=Ç ÖÐPϱBzŽÒs¬ð$=Ç Bä {Víj!ÚXŽ{œêtœùØXŽ3«Óqæcã94‡©9Õ–ajNEµe˜ZSQm¦ÖTT[†©5Õ–ajMEkò‘š^þü05§¢\rcPHø¨ S½˜"Ëü€²[Áâ¼5:EÿUp…ñkÆêÄÙ­àJã¡ÆêÄ”—?¢ìVPÏ>¥?ñ¾šý‘ÚtC­þ¨(ÕêÔê)¯zÿScµú#½äy£àgÆjöG²æ¹£àç!d0gn¨ß™ƒ7Ôï̽ê÷GæÌ õû#½áÙ¤à*cuü#½ðñ,Ã7X–¨ç½1‘å9‰8™9…•B\§ßBB®Ñ<Í1¿Ó%Náe¦ý?¸–8¾âøM^å4þÉé~×G~×EãkÆ3x3ùgñß ÑÂú÷í…+ÐÞX¸"O°O²2fþªü•ÕxŠÕùçiÖàÖäYÖâ¹÷] _Žû®'³³ ñ+‡ØÖœ!î¡v!~·{óP{úÞý—Btö‹!ÖÌÞ8;‰öÆÙúûÙݽԻf9¼rz¥ÍÛƒæáˆ–êùª¦ÍßCÆ#y˜£Bd†<×Xž›!Ï5–çfÈså¹ò\cyn†<×Xž›!Ï5–çfÈså¹ò\ã6!z:bóÕƒÓêÊü£!zç¯[õ=oPæ¹s“rï¦&^iÿíV²Õ$¯É^S¼Ëûúõ9¶JÆQŸc«ô-÷«-jtl•~åÎÊ9wþ¥ºtGϳJι£çY¥.ý둯òþðhˆ«’>Ä_^Ì LaFšUîåRf⻼Ëx?ß ¡«þò¶ÚY%³ñrfáû|€ÖlׂÞïhœÕØÚ­’ÖìÄN!¡nzvfvaFvå½ìÆL|‘÷1‰÷ó%ffwf¡¹P÷š u³Ò\¨knLìMscâË|¯ð!öa¾Jseb_æb?æfæáæå@棚T7?Õ¤ºjÔD5¨®5Qí©[ˆjNÝÂT[ê¡ÚR÷aª-uÕš‰jJ]µf¢ZR÷QªuíuÕºúÁtö¢MÏQ-ߤ–§SËÓ²{ó!z.»GÓ©ç²{˜._<ÜßX]—á£éÖ³ ¿bW~M=lº ”iÓÉš›dÚt2å&s>L¹É¼O'KnêAYoSOÊt›zQ¦ÛÔ;DÓ«A›+q*+óMVá4VåtÚÒÏ`uΤý!½~e³ý!½~e³ý!½~e³úž^¿²Ùþ^¿²YŸ‘^¿²Y¿’^¿²Y¿ÒÄú‹na.nenncng^~Ã|ü–ù¹ƒ˜ö÷Cþ"eÞ ¡°ZÓ¤ siWD_^F_Þ¤ñ.¦µÖ¤ÝÛ­“ÕÖÉ¿ÖÉjëä_ëdµuò¯u²Ú:¹k¬¶NîZ'«­Õ»q´gß•ƒVÿHYhõ1ÊC«Õ¾Ã»Blªßwø{ΗVË×¹†9ÿƒóÉÜÍÜÃ…ÜËEÜÇÅÜÏàªIS—R-šún÷ÉU‡Õ£©Ëx„ïñ(—3•ïóG~âªþâ¯Ú;ª^¤þ­ê%Ú3ª^¦=£êÚ3ª^¥=£êŸ´gT½F{FÕë´gTý‹S¬éÉÖô.ãÆSy“öª·hߨªo¼:úÆ«3|ÞŸ¹ý½±þñª}£êÎrÞ¾sûãßâ]ÎvþMçwÿg<ÇxšñžWML¿:—¾Í8¾Ã(ç1žó™ÀdƸ€÷p!ÓqÕº«j]5µîªZWM­»ªÖUS뮪uÕÔº«j]5µîªZWM­»úÕ¸«Ë}{âí½ÆjÝUµ®šZw5­Ö¹ÖÛûŒÕº«j]5µîªZW-;õ%ÕìQW?âCü˜9¨©–“úŽj¹¨Ï|ðžðÃ'LÇOC˜9 DŠ®6Noœö~êCÌÈU¼—zN}fô/{ÙJkê/yp¥5µINdïÚ´ƒ²ò¦ï(oÚÉÑ4_¡ù:h,ÍÏAãh~OósÐ4?M!ÝʆÞðº"Y*zéQV =\÷ªâÜÏ<À’<ÈÇxˆ¥x˜¥y„e¨îõdˆDÌÃõùŒs—ñ*ëUΫ¼W…}£fˆÕºÀZüƒµy‘uho£./³¯°>¯ò þɼƆ¼Î'i=¾Ñˆ7B´Dóðë-¶ |\¢%ÿaö!RBnž}Œzƒ‰Îÿc¬7(‘›?1OPo[âiïßa+þËÖ¼Ë6üÏ„„S!D‡z>Ò÷ÊøCeö 9ôÃB¤ÊWƲ{¿sépã¯õÓüî¡úé ~ç#eë©+詇ê©+ø½CõÔôÔs‡X‹Iü‰“C4£¾U Ϩ†o­lïiV3ªå[ÕòŒjùVµ<£Z¾U-Ϩ–o­BA}WFõ|ëãŽõ^Õô­jzF5}«šžQMß*Ï<çX]ß*Ëw’rÕ¥ÜKvï)Ë„ÓÆr`.¹£§LÎ˃¹ž0–mÂY¾O}]'ù0—ÒI>ÌÕÐy'ün,'æ’G:ɉ¹äÎNòa®Æ!ÚötˆeVCt ‘rjcÛ3Æiÿ¾åYª º9¯V.x‘êdÛsÎ[» ’ŒÕ˶¿ÏàyÎäÎâLû÷3/rvˆ|ª.¾4ˆêâKƒ©.¾4„êâK¯Q]|i(Õ×<ÃOÕ×<»OÕ×FP=|idqiçÔÄ—ôŸª…/Y‡‡Íƒ©öÌÃæÀT÷÷°g?µfˆ3Ïj¹WæyB­³¬C÷È/ð êyÍóë"Î3<ŸFžÏ ϧ‘{öâã!>ßV×£§ ãkocMng­ÿãèÎl,Û€ßg–ƒ¬Ù²eIûš¥H"*ÙzI BJ²/‰”"Ì`’]BYKö}*Y"Ä‘-QJ*[R ¾ßùþ˜ï÷\Ï9s–ç¹ïkù^į؈;øw²1w± ¿æƒÜͦ~š96«”Ì¡ï’Iô™é·«Æþýóeâ9šý}ö¾Ëi= Ò‡WÕ¯Ò‡Wý»úðª¹B|½Gö7õ[îC ½`=Hvë»$»:Óæõ ¯è=«u¡Þ³ZWê=«=O½gµnÔ{V{_ñEî`w×N¯ýÊNÇ/q{ðk¾B¿r!½ÆnqOîa/f°7÷²÷±oˆ¯j¦>mŽªj¦>F3õiy£ªYúôš¥O¿K³ôiù¡ªYú´üPÕ,}Z~¨j–>-?T5KŸžânù"$lmÉMlBÇN!\ÔwܲYÜZÓbf¾e‹ã6ÜÊÇBܲBb·‡ø!å¶es)·-“C»5§ÚíQÊÝZPÎìæ=–É‘ÝZQŽìÖšrc7¯»LnìöXCë†HÞAb9²Ûÿ¸„m¹”í¸Œ«ãý/wÜž+øWòI®âS\ͧ¹†hFéÖ‘f”nÏÐŒÒ-™æ“nfÀeæ“nf½eæ’nÏÑ\Ò­3Í%ÝÜóeæ’nîùe3Þ23Ýe3Þ23Ýekn™™î²µµÌþ»lm-3Ó]¶¶–™é.›ñ–ٸ㻇Hý×ø—¨ïºlæ[fÆ»læ[fÆ»læ[fÆ»læ[fÆ»læ[fÆ»læ[fÆ»læ[fÆ»læ[fÆ»læ[fÆËñbHØ,ÇåèÎ+öæß!’³Vˆ›¬ßzT6Y¿õ¨þl²~ëÑUÔo=ºš¹¹†y¸–y¹Žù¸Þëüãuîß*ÞÀüŒýðü”ù ñsæFÞÆ/X„›X”›YŒ[Xœ[í =×䎿äíÜÆ’”g&—âW!n×êèµx­Ž^k×êèµx­Ž^k×긕^§£üòªœ’'>„’ãóš·9'¿äIpN¯¿ÀëwÜîœ\“'‘rMž(åš<Ù(×ä‰ý·®Í |†Ž±ÏPš;X†;=fFXp‡ã],˯y'Í îâÏ1?,(çXn*iÿ,Hrl&XPžfzÎŽzðzÎŽû­çÚŽõ3C|»gB4W”ÉÌÆNô™ ›yª¾N›¿«N¤ù»ê$VädªEäܪSW¶^õjÏ«#C«ØS/‹ŸßäSÖ±r¾ìiFØqìÈx>Ã&3‘å³ÌÆç˜™ƒ](§.ëJ9u™ýÑMNª¿ieNúXMm¨'NZàœ§ÕçÔÓ†zä$}ÍTýN«©!~°çW—¿{Nuùk°óÕå¯Áúžê“B˜·1DêêMë{ªËcƒõ=Õå±Áúžê±ß×÷TŸF}Oõé¼Àüƒï…ø±]B´I>vå­!,r]ê¿,~^œ?Äw~2D‹©«Ÿb\” ‘»Ÿa)&;ÿ´óÖÖ¥ÅÄÄÖÕeÄÏò>ç|Gçé>³¶>(ë|gÞÉ.λ¯ÅÜ×Îîk1×±Ä#!á€ZZ¢9óQž¡“Yå/õ·D ñlÉÙŠ'Ùš?± ñ‡ß Ñw|®Ãø,ߥÏsx";s½ÿáÉìÊ)|žSÙÓø‚Y_}mq‹xºøEñqNfÐ}=<Ãy5mý^qî*Çžûžs/q&{˜ïWûYãÇÜwø}çÔ¹Ê±×Øçwò87˹žœÍ^œÃÞž{ý÷á‡TïÏe?ÎcÎç.à@.ä ¿û,±×^$~%Ä×Sß.Zõ.к¨÷­‹zi]Ôû“ÖE½KœÂŒ!R¥ƒø/ñûü›³øgó2çð_~àù·{~Gññ‡bë¥Ê3â«â¹¼ÆyÎ[?U¬ŸzYb}~½ÿ¨¯ŸaUQkgX?Uܯz×_(¶Žª¸oõnˆ‰­Ÿ*î_½›âBü=3ÂÅŒã'Œç&p)¹ŒQ.§¹üâ ¯gV±î1Ÿ_\Iu⢹üu⢹üu⢹üuâ¢ûw:qÑl~:qq=Õ‰‹h/Ýs«uá¢ÚyQݼøY›*†HÛî!þr3¼™ôò4“^.Ëk¼“Y¼‹öóår4k^N¢YóryÊSõGU¬›lzܾæDu` ©JOñpñ&šEÕƒz¦*½ÄúåÄ-!Ò½pH(­Gí~g³ç°(ÍÝ‹ñCç\–à<ÞÎù,I÷¨¶¼µ«·¸”Ø<ؽ4ÍÝËÐü×ýšÿº—¥y¯ûü„wQOÚ½õ¢Ý“¨í^žzÑ¹’•¸Š•¹šU¸†U¹–Õ¸ŽÕ©6×–;wõÑ«UЫ٣+²»Àl²EŽê¨\|‰•©×ÌaFÙ"Wu¬"vM;V¥ëرõš9Ì,[äúf–-rVᣎÍ-[äûæ–-òTsË–!bÎOè˜@sJÇDšO:Fi>é˜æ“ŽÙùcÏÁ[BhÒ7„þóü‘b¹ I?±ï>ÿmq.ŽbnŽfŽa^¦0Sy+Ç2?DZÇSÕ¤¿×s 秉 ñæÞFµ³c‘ò›é櫟‹:þÞ±Ú±ÕÐŽÅ;îX íXÂñ‰½uˆn®âS›†è—Ôxu£±¸™ø/>Ä¿ù0ÿá#¼Ìæü—Ò>HmAû µ%íƒÔV´R½þöAjÚ©ñFˆÛ¯¯LÑWî×W¦è+÷ë+Sô•ûõ•)úÊýúÊ”‚ÔG¦è#÷ë#Sô‘ûõ‘)úÈýúÈ}ä~}dŠ>r¿>2E¹_™¢Ü¯LÑGî×G¦è#÷dIb)¾ÂÒLóËþWy‡°l9Þv<Ôñ|wqËñu&ñ êWö§µ:ÒÞ*ò³øM±¾eÿ[´VG.pÞ̺„Xï²$«ðmVå(VãhVçÖq#½nï3Òë5ð>#½^}ÑH¯ÓÀëô: ¼þ¹6»¤×kàõGz½öB¶þ޽fï1Òk6ð#Sè=F¦Ò> ?g7Œ+®ÉqÔ_OýñÈ4êßF¾Ã:!|ñHˆüoLˆk/'æ1—´—ó˜KÚ›'ò<ÂKš¯rËKjí ùþ%û÷†<ÿ’šzÃ|ð’}{Ã|ÐÞÜ‘çi±zzc1íÛŸ„5»´7‹ä1Ó´ÿ‚=f/ßX"Þ$Ž=¾™ÉÎˉ7–ŠÍ­y|ÿöæÖ<¾K{sk3N{skžÎ!òéÜÐÏýy$ÇÏËãŸÎg%.`e.¤¾éÓE”C>"÷Žñ£nÑûÌö }÷{LjKŠw‹›‹SÄ¥Äúâ…ŠSÙ‚cÙ’ã<^Úãzå…­ÄãÙšilC³í(µä¾½TKîÛGµä¾o¨–Ü·ŸjÉ}zçQjÉ}¨–Ü÷-Õ’û²ÙËÿÚËr[g³AQ3Kgó@Q3Kg½~Qõ¥³^¿¨ºòòä Äzþ¢êKgý~QóFÎC—5åÍys§ØuûÒZÈéz}i-””3éKÊ™‡réáN‡ðwì?¤l_•”?éQ:ýêœ=Rr¨ØYò5š#KÊ«‡ì÷’òê!ýi§ß<ÏÚ.)¿r_:ý.¶ÆKʳ‡ìÿ’òì!û¿¤<{Èþ/)ϲÿKʯ‡ìÿ’òê!û¿¤¼zÈþ/)¯*æuÎx{¤¤üzH¾ëtVl¯””gÉyΉ+‰åÛCòBIùöPìóË·‡ä³UÂ!yÁ<•pH^0+%ºÃï÷{êM§ ´wÍI ‡ÊRÞ=$G˜ƒÉ%åÛC±ï/ߊ}?¹öïUЇùÒÏ!ñŽ‘!ô’ûãZ‰O‰ß¡¸ü/})$¼õ*ÿâþÍ¡ü‡¯ñ2‡ñ_¾Î+Ô?|}•ú†¯¯Qßðuõ _ÿǼΑ¼Á·y“£BhY2„“Ï„ˆåœðÖhq)q²8"Ã8¦0ž©LàX&r£ÏlLcv¾ÃœÀ[ø®×-íu;‰sŠ'2'17­ÇÝy8…y95„ò5CüìŒm?Ìq-?wû©íÜ^ç^q³~ ‰ãiš‡gýJ3ð¬ßh¾õ;'˜=Ív³Î86³Î:Kóê¬sœD=ôã“©‡~| õÐO¥úñiÔC?>zèÇgPïüø{Ô;?>óÿÿ*tB’kv«ùõÖ~ôu–…ðõy¹~IcÄËÅÄ®c’ëØÇuL’#êèU¿þCìz&¹ž}\Ϥqίtþ¢ØuMr]û¸®±ÿYUΛ5û¸¾I®o×7É÷«c±fBóˆ5éãz'½K×9Éuîã:'¹Î}\ç$×¹ëœä:÷q“¦2§ñVNg~Α¯‡„×­ƒ¯ŽÐ}ûê(åÖW\‹j®Ù+®E5×ì×¢š9¤±kwÍüÑØµ»fþhìÚ]{/„œzéÆ~çÚLúkfÆ~çÚ¬WÇZ¾àžÕ±–/¸gu¬å h-_p¿êXËܯ:Öò÷«Žµ|Á{×±–/xï:Öò÷«Žµ|Áýªë~\p¿êºöܯº®ù÷«®k~Á ÔUí¹¢öÔuÍ/¼/V{®¨=]Õž+jOWuæÊª+W̧]ÍlWÜÏ®nô÷±«ïŠûÖUowEo·U.’“rÑ=ÞV¹hˆo«\4D·UbŸo•{bÿ š¼íBtG>κlÏz|‚÷ÐŒ¾ã^šÑwÔ§™|Gƒ¶ž ‘'ôæyÍä;î£|GCçr^¯ž×,¾ã~š½w4¢Ù{Ç|–ù›°3ô{?û=½}Þ.â¦âSâØǧ«¸ŸçCìÆ‡ùÍñy_¤9>owšãó¾Dó{Þ4¿ç}™j\¦y"Å<‘é3§˜'2}ÆóD¦÷L1Odz¯óD¦y"Å<‘ižH1Odš'R\÷VîÕO߉Í)æŠLsEй"Ó\‘¢ÇÎ4W¤¸þ™æŠ=q¦¹"Å>ˆ¿Ï±Ù"Ål‘i¶H1[dš-RÌ™f‹”õ¬Á ¬ÉtÖâ§¼›Ÿ±6?§û”²‘îSÊtŸR6Ñ}JÙL÷)Å,–é>¥le~I÷'er;Ý—”¯è¾¤ì û’²3Äwø5D Lào|—¿s"ÏpRwšq;œu<Ù±9·Ã9ÇSxžö[‡ œÂì_C¤V9Ï1wøÃ9{°ÃEZÿw=¾¿À§ýtpü‡Ÿ‹!ײ×ñ¾·ïÇ8:…'™ÊŸ¨_©ß*2Z¬FŽ– Gê·Šè5÷©‘£åø}rþhùbŸœ?úbÿ®Ô>y´<8R/V$öšòÿh¹cŸü?ZîØ'÷–;öÉý£åŽ}rÿh¹cŸÜ?ZîØ'÷–;öÉ_£åŽ}ò×h×nŸü5ZîØ'w–»2? ÑÔ~\Âþ\Ê!¬û:DÍâæèÍŸÐwÌÑ›?¡ß˜£7BŸQÇ^8¿žöÂù ´ΧÓ^8ÿiE›9¶ÎFûáüçÎ=BdOˆL‘{[ʽSäޖφøÿ|†5júù§CÂ|{ø¼{:ßÞ=ß‘¿„PH=>ÿŒãÓ!þæ¥]ÿ5ÿânþÍ=ü‡zѼúÌ›—ë;oê×Çâ+ÔwÞ¼J}çÍkÔwÞÌ¢¾óæÔwÞ¼N}ç–¾!újEö£5±JßÛl¬¸¿¸2ÐZÈS×ñ@ÇæE„Ääߨ˜¿³ ÏðAžeSžc3žçC´†=Ì?ø/²9ÿ䣼Äü‹-ùwˆd- «­á¬e¬Ç弇Ööê{im¯¶6³¬áÕÖf–µ»ZþȲfW7¤5»ú~Z³«q=à6f:›ðS>ÈÏØ”Ÿ³7ò!~Aë:k­ç¬Í´V³¶Ð¼µ•®[Ö—4/dm£šµ­CüÁ­!:^ž8ø%剃Û8Ñ5]äx»ãIüŠÖö]jöñ—iÝïIëæ¸Zöœ|òO¦ø;qoc~O5­ð ?¯„¸È×!!ýqǃ%‚v!þËCthg.fZC»Òú|ˆO+¢M·„°H>­ÿ¯¸ x+ ñKçå×úWÄ…ÅÛx·³¿bQî!w>ÇÅïô;rqý«âââ],Aë8Í ÖÔ:N3{5µŽÓÌ\M3h¶jj §™¡šZÃif¨¦Öpšª©5œf†jê»y1$ÖÌÅî4§ô“ç¢_‰_ç1+×qÜñYeÈË4« éI³J?}pÔçì§‹š‹†ôrÞÌÒO?ÝEý[Ô|ØÏþ‹îöxoëߢ{Ä}Äf™!}YÈy}r4CÜOl¦ÒŸòq?}]t/õÍÑ}Îp¾ˆX?ý†ú¹è~ê碱ï4ÐãfŸ!ƒXŒ¯°8³_¥gÈêóûéÿ¢æ¾!CÅf!¯Q_ÞO?ýVÄøpo>æç!RH )¤þòCçá\6ç<>ê5æ9žï¸°%²±5?b~ÌÇB\²|_XÝH–ç —q³;…ÄöQ>Ël|ŽÙÙ™zâÙ]x »Òžè+T°úÊ#òR©`ý?ªFÇ©åÞEµüÑrŒýÛ€îUõÇÅIb5ýÑòTÓ­@}iGÈ47Ék+ŠˆåØZò[ÇJbýjÇÊÔ¯v¬ÂC´ç ö<9¶–ü×Ñ^/pD:IÚ‚“Ù’SØŠS©Û2m8®G½%!áâƒÔk^t_ž¿?„«¯‹õœÝ›zz΋…øåï‡è ®g©!áÐ ¾Ì›!<[#„¿û°&õaÏÖb?÷ >^xV®ý»¿Ø~>×›9ž­Ã¬ËA·ÏÇÑ>?Oûüpû1‘ýé>•@÷©Ô@ºO…N…„ ¿_úÃpD.?#žÛ“¿°O³7eþƾüýx†ýy–xŽyžƒx¯ÐÜ9w0/òUþÉ!¼Ä¡ü‹¯ñoã?|=„¶CøUqæ²ø ±<þ«^âÌ¿âáâdñ,vâlç¯8/Ç·}V<‡Ïñvæ‡!Ä›ËÏ\õ3Ô™kÁ,Žä|›×i>sƒzÄ3fã¹ú¿³Zâ¹ú¿³¦†øYzâÇŸ¦žøqõf–žøqõf–¹ðñg¸ŒêÚ¬åT×f­ nÖJ>ÇUô¹Ê›Ÿf­vÜ%„%ráñ±>{ÖZê³g­c7®ç ÜÀ™Îîü”/…ðê‘É£|õ(‹„¸kCâ3®á«ß‰å·ØŸ÷ÌSŒß³8³OðvþÀ’~oß{†ëég77-~2$<çñÅOñGšAŸ;I3ès?…ð šzDN_l}îgñ±ï³Ø<úœuq2õe‹;ñ4Ÿå¯ž§æ‘û?'þMü¶Ø}ZÜYü;»ð õ`Ïåó<Çn´ï¿@û}ñ‹´Ÿw§^iñKÔ#-¶çžÓ#-¶çžÓ-¶·ž3.¶§žû‡öÎs±?3¯§ÍgÓ½¦—ͧ—]%¾ÔJ¬—ÍwT,'¾d¯’_’Wɉ/É«óü„m¹„í¸”sÛs9Ÿà >É•|J¾?Äß«¿¤ža]V1OͰ.«˜£îÕŸ_ÒÞ«/¿T.Ä7Óß+f&‡HµYbýð }™™;ñ†\1³“ó³Åãĵ©ŽÞ¨Ã4šÁ›½ÃzœÀ{ø.ïåDÖç$6 šuã>ªY7Rͺás6S³n4¢šuãªY7‡Ðþ‘ÎŒasÚ#—Þ ‹­³öêÌ™T¶àX¶ä8º®gƳ5Ó¨g?óÕ®3ìÓ¿ë×Ϙ{.MôZÖjû¶bsoûv4϶7§ž™L=û™)|‚S©_?3®í™é|š3ØïÑ~83“rÉ™÷i}Ÿ‘CÚË!gfSî8#w´—;Î|àý'yÿœÌÛCä¼ù}9þ¼ù}9þ¼ù}9þ¼ù}9þ¼ù}9þ¼ù}9þüWlÍô=ã8Þéø1î¢Z}Þܽ -w³÷ðqf°=÷ò îã“ü†Oq?Ÿq ‡„Ͼ5·Ëu…õ ˆ†HVö°Ê̘•ƒfƬ[hÌÊI3_V.šõ²ô-«ÌxYyhdå¥}e^Zeýg™‰VÉÃYúšUòoVšÁ² RÞÍ*Ä9,L×,ë6~È"œË¢œÇbœÏâ\À\ÈÛ¹ˆ%ùKñc–æb}­ÚzNŽÎ*#þ„wp‰óÍœ—³³ÊŠ—ÒÌg¿E²îâr–ã Ï{Èóäô¬$±Y"«<ÍYfŒUæ‘'õMçFÓ:>'×g™9V郳ôÉ«ôÁYúãU뀚ŽõÈ«ôÂYzäUzá,=ò*½p–y•^8K¼J/œ¥G^¥ÎÒ#¯Úâf…h•…úDk¥®ú1ð?±~sàu~Äü8ħ¿¢}Õ÷•Ö\Skv¥5×T]IËyõ~eI±ú’>B\O\J¬Î¤ÛÓéoÓžNE{:}4íéô1´§ÓShO§§ÒžNK{:}íéôñlÌ46á;4»¥O`S¾ËfœH}硳!1m2Ïq Ïs*/pÿ }8ªZˆë%¾(žÁ?ù/Ñ~UÝã½Å‰ßçßœÅ8›—9‡ÿò^¡µ~è*õÇ®QO{(‹óùð:­±cëB¤û¸ž ¹÷Óü:ÉüzÌü:éš]'™™]'™™]'™}A3â±M´îÚè;¹•úÍ_ÌÇä…IfÂcòÂ$³à1ya’üͼ8ç2Í‹sþ¥yqÎöáUöå5öcûó?àuä âM¾” f„¯2ŽCÏ¡LñY…èê’|˜¥øÝã¬æt³¥{œÕ‚îqVKºÇY­ègµ¦™1« “øËó¬À¶¬Èv¬ÄÇY™íY…O°*Ÿd5>Eë%ëiZ+YX“iÍz†w‡øØ¿ýYõíûo.˽Oúy¯ÐçÈ{5„Ùz¡šòÌ“>OÞkôyòfÑçÉûŸÇõH5ÍŒ³õH5Ç:ïóå½.Ö+Õ4;ÎÖ+Õï¼Ï›÷}Þ¼77cÕLûÜùŒYOúÜù"ηq>ö÷Ž}þ|qôùóÅÓçÏç:?éóçSߟôùóE=ß\Vs‚8YlÌÖWÕŒý½d}UMóçlóYÍØßGîäñì|–9øíÝ';ÓÞ}² s±+íÙ'Ÿ§={íï]µ›ÿp/3ƒÿr/¯p_›Î‡H;µuÓÚŸ›þ ½¹é"«ñOV§µÛ®­Ýv5ií¶s?®]õ:߈­ávwÓnWÛùkÎï[ËíêˆÍ%«ô²y?vκ–gÃ&ëZž ›¬ky6þšYe•þèšYe•r“uÞÎŒqÍ̲JŸtí&õ¤›¬ûvêo–´¼ê0õU«ô ›ìƒvf,ýÕ*ýç&û¡Y$KŸµJºÉ¾h×0„ÍöE;3I–¾k•~t³ýÑ®ívf“,}Û*ýéfû¤%KO¶JŸº9AlVÉÊ&>Áìü9¨'Ýœèq3Œù7ºê$sò'æâÏÌÍSÌÃ_B=ÄÞqžÓŠãÙ:Äç{0$îðþùšÒ÷Ê׌¾W¾‡¨¿Í÷0}Ÿ|ð›ó/>ʿقÿ°%õPùZñ_¶¦º”¯ ¯ò1ªGùþGõ(_[þÇv¼ÎÇ©ÞäkÏ›!¾¼kåí\ ú¬B¤†ï?ëcúîíäñ\RÎ5—òn®y”osÍñÏ:_Äùg/âü³Î‰—k‹, \[d!åØ"‹(Çù(Ä?'·ù˜rk‘Å”S‹˜Ÿ“K‹,¡ÜYd)åÊ"Ë(GYN¹±È ÊEVRn,²Šrb‘Õ!´ØÂIùm×äû÷‰wMa N¥Ù×4šõwM§× šíw½G3ü®™4³ïzŸe9‹wr6ïRó9žãX¿·ëê×v}ÈòœË œÇŠœÏJ\ÀÊ\Hsä÷òÔä"!äPkFëQK¨Ï£Í %²{Lîš\Tüµ8‡¸¯¸˜x·øq?qqög àíÈ’ž·ÇóÌÐß—â+,ÍÁ,ÃWy‡°,ÍÚ“ÍÚß›µ'ë·ž~7Dó«‰OO¤X}‡Þ¼OeõÕw:îË]ìǯi)›;Ä­„Ä^fòõq4‹¯§|؉Éïó­O/ÿ .)N/¥žº×2çt^Þv’>ïz½u¯åÔO÷ÒcûÉù2ü™wð}þõúì^+Å¿ˆïäiºOÃ~e9ë¿{­ÿ&NëÃ{Y'Ã~—ëÇ{éË×ëÇ{­U{¶9Ö“÷Ò›¯×“÷Ò›¯×‹÷ÚÀ[™Îüü4Ä¥ ‰ÍÔ¨´·©¥¢û›6šU9†Õ˜ÂêLe ŽeMŽc-ŽçÝLcm¾Ã:œÀº|—õ8‘÷pïådÖç6àTÊ}â„fÖ¼8¡™5ŸfÍ7³æÓ¬ùfÖ|š5ßÌšO³æ›YóiÖ|3k>ÍšofͧYóͬù4k¾™Y'Ízof½§Yïͬ÷4ë½™õžf½7³ÞÓ¬÷fÖ{šõîzDÒ¬w×#’f½»‘´E¬ÊX³:³?aM.¡Y&m)ïæ2ÖærÖá ÖåJÖã*ÞC¹ßõˆüôXH˜q”ÿãwlËclÇïù8³=­ËŸž õøÓ“´þ~zŠÖßOOÓzû©­·Ÿ:òTˆÛv%$¾&G¾9%D éßœJ³ü¶«ÎÈkœË,Îã” ÿPÓMá—œÊmœÆíœÎ¯8ƒ;ø^Uô§ÿ ÑÙ[y‰_ò/ªO§õݳզÓúîÙ_Qþž½ƒò÷씯g<ûkÊ˳õé§ååÙúôÓòòl}úiyy¶>ý´¼<{ååÙúì-¾wû2!á=ãóe¾Žõ[ôçKÌ]ôåKÌ]ôãKÌ]ôãKÌ]ôáKÌ]ôÞKÌ]ôÞKÌ]ôÞKÌ]ôÚKÌ]ôÖKÌ]ôÒKÌ]ôÐKÌ]ôÎóî O»¸„帔IT¿ç•çrVà VäJVâ*VæjVáVåZVã:½…:¸Û÷ëI6†øíú¼aÖï$½Ss½Ó$½Ss½Ó$½Ss½Ó$½Ss½Ó$½Só±!®•þ4š‹Ÿ…ðß5~NC‹iæ{ñ šñ^ÜÄž¯wšÅ^4üg¶{qK/n¥™îE=Çuýò‹Û¨On¥Çf£þ6ª´Ò×FÕ€VêETîo¥6DåöVjB4Õ‚¨ÜÛJ-ˆæ¡ZÕO·R ñ½ôµå S_[N?ÜË÷-W„úÚrE©¯-§/-WœúÚrúád}O!=R²¾§)ù>ê‘æØkµÓ^«¥ÇInè¼Þ6ù~š#æÔw^ï—ÜHü»X?VK˜ü€Ø<‘ܘæ‰d½]¡s—«jé “õx…ôFÉz¼Bz£d½]!½QòCÔ%?L½Qò#¼B.õê{þjKê÷®¶¢~ïjk®c®çcÜÀÿ1m­sóìlóýióìlsäióìlóãén4~õø"ÍŒ§Í³ÕÃÓf‡Ùrí1ýÖÄ+ÔoM¼JýÖÄkÔoMÌ¢~kâÔoM¼NýÖDk¡¥{—èÞµtïsi~Ôƒ–î_¢û×ÒýKtÿZº‰î_K÷/Ñ<ÔR O¼5ÄO|+D›ÇþmŽ®~ž÷ÓÍÏ !òÇg!aуüœM¹‘Íøâ&>ÌÍ|„[Øœ[ù(¿d =œ''%,jÉí4‡ÈI ‹Zs]ÏÜ·‡„mêqî’\ÁR\ÉÒ\E9cÛjÞÁ5!t´.úþ¹ËŠ×ÒÞÞ¶Îy{ã¢ë‘Ûߦ¶æ¶Ç·©­¹íñmjkn{|›ÚšÛßfŸu´w.ÞÛëÛì·Žö´g6LØfßu´—þŒˆíýmÞ3öïËüiOÅþM™?í©ÜrÁ¶M” ¶m¦\°ÍkÄþ}™?ͤ¹«‹·RžÛö%kR»·ón~ÅÚÜÁ:ÔcöÐïßB1Ÿ±˜ÏUÌg)öEˆëðBH,`Æí`¶-`þ>Ö2$Lü–­x­yˆmx˜jÖÄ#T³&ª]ÖOÂDµËúI˜¨vY? Õ®cjÖÄãîUoÇêÖDõ똺5ñ‡ÿ¢ž­´5ú¢ž­´žíÅIlÀɼ/„›ûyÔO‹©-¯Õ–Ójõø›‘^œÊû98ØgO;žá¸1ßc“yÇ{6S3ßQ+›©™ï¨•ͬŸwÔÊfjÇ;ý<ãøg?jæïI!ñƒoXžûCH"%­‡ß+ˆ3ůˆõZ¿W[¿WËÊTc¯Býrê«·^~¯*>,"NçP~Ê×ø™Ç«yü«ó¨óÜÿ\\Cükòkñ{ÞÍã¬Í¬ÃüÞë~o£¸®øGÖãIçßpÞýþýñO¼—æÌT³{Iëí÷úâSb3|Ik8Õ|\ÒºK5×´Þ~oàñ_ÄfùØ¿¹–j–/iÝý~Ÿó§Ùæ°T³}Ik5U}*iþ~¿órmª:UrÝÏ’Öcª{ZrÍø%¿¦¿änÏoäù¿óžacžõ¸Ù¿äq±\œš&Îà;ÜË ÜÇw»æ×ÎÓüúÁš_?øƒæ×.ÒüúÁŸ4¿~p‰æ×þ ‘¡rN-9h¨œSK*çÔ’ƒ†Ê7µä ¡òM-ër¨|SKþ*ßÔŠýÿAvRþº‹mø5ãnþ{Ø–lǽ|œûØžßð îç“ÌäS!ÜëšîÓË= ~šß²ÒÚzˆÏð0“y„x”Ïò;>ÇcìÌïÙ…ÇÙ•'ø< <}¯{µ/‰êá¾ò±Òyyã‰UìÀÕìÈ5|†k™ÌuìÄõ|–øÓÙ™Ÿ² ?cWêÙò>Ïì"‹|ïN¾÷"ß»“ï½È÷î$7.ú}x†}y–ýxŽýCäœÇç‹Ïy|~,öøüôøü¾_«xä_ªóG®P?rÕuPO+Œ¢µ\a´óêþ‘kT÷dQÝ?¢œbW#Vÿ\§úäFˆ_®aõï/|$o Ѥî!Ìuê¤Ðý¨ã~ôÞìüKÜÂ4;$½L³CROš’zÑìäz÷6;$õ¡Ù!ÉlÞ{'Íæ½wÑlžk°ã¯ðîq÷x®{\Ç=î½Ûyß¹÷b_á^Æ~oõy½¿¡¾®÷~êçzgòµ÷óÓ!q¦ûsª¥?w¤Ú÷ó3Œ2™úÙŸ;Q?ûó³ÔÏþüõ³?w¦žèç.ÔÏþÜ•ú¡ŸŸ§~èçnÌBé)!¤ ‘Øîgõu¦Þègõuæ­ÎuþIqwq~êÑgð;Së¿g¤¾zf!ê«g¦¾zæmž3ͱÞzfÚ/3í—ÒÓÛ+3‹Ñ^™Y<ĵ^³=Ä¥|˜Ëøˆ¾]¸^Z¼\Üœ+ø(W²W±¥çýäyeÄ«ÅzÕÖk¨Wm½–z«Öë¨Wm½žzÕÖØ–élÇOù8?c{~N×¢õFúî­¿àSÜħ¹™¸…¹•ÏðK&s;q;ŸÕ‹Ö q í£ËoÒ>ºüí“Ë#hŸ\IûäòÛ´O.âyŽæŽá´Ž¿¡èôºõô#/\[âg©s3<ç¢ç¤òOš§^â8þÅñü›iü‡ïø÷_v<ÿòÝWI°žBgµþ²}ÙYÿuYÿ]I]°¾â*© ÖW\%uÁúŠ«¤.X_q•Ôë+®’º`}…Îz¶ËúõJêƒuWI}°¶B⋎ՆŸcª ÖU\%µÁºŠ«¤6XSq•Ôk*¾òk!ñÔ]!L !RIÿTy˜¸_gß`yg¾ÉŠ|‹•8‚•9’Uø6«z½ˆ×Ó‡U%®ÆÑÔÿO‹sþñq ¦°&SY‹ci¶©<Žf›Êãi¶©œF³Måwh¶©~üÛñ,þÃÙ¼Ì9ü—x޵óãdžøÁÿƒœ›·5DêEėņÈÔ+!¡Õ!4Z·—ÄWÅúª©×¨ŸššEýÔÔÿ8"ÄÿW)D×ı2ãY… ¬ÊDVc”Õ™-„ÙCØ.Ÿwx;$0+ÔÈ!ÖÏ׸…öuœÔ3×0§m——;Œò¼xqn±y©FÊ¡F;Ÿ –£¶«“ƈ™B½‡TÆÞ/ŸÇõ2ÆŠ³ssp>ÂoØœûù(3Ù‚h¦~ÍLmÏ%¼f¦¶·^3SÛ# ¯ñ}÷Ø¿½ÝÑw/(/t|šöïì¿C¤V-þûé^Ô’';vð¸}<û_q^aÝWÛl{Î,SÛl{î/väß!¾®žá"Ô3üQ”ú…?ôÖuõ §žúÔCÿq;õΔ q÷­ ÿèî[Ióx·jãPñ*±¼RTý,ª>Þ·ZÜ2ÄÒod´§~#ã ê32ž¤>#ã)ê32ôÚ…ôzíBú‹ ½v!ýEÆ3!L2%M¢¹(i2ÍEIz©ØŸ}MšêyúŒd±ù(IË™èø)Çê÷$³QÒ š’Þó\=J†ºûs¯I3iFJzßy=K†þ½ž%ã9çÍLI³hfJší¼&£³Øì”4‡öpÒÎëi2ºˆíå¤i/'Í¥½œ4ÏãzŒ®b{:i¾XÏ“¡ÿ/¤çÉèF=O†zûs²±³¶Þ'ãEê}2ºSï“¡.¤÷ÉÐGÒûd¼ìùrB’\ûó´IúñBz¡ ½Ê$3V’¾¼ž(Cß2ɬ•ô1ÍZI‹ÿÊùÞb3WÒ'ââ>b3HÒñNq_±Y$i©x—¸ŸØL’´Lüµ¸?wS/>ÉŒ’´\¼Gõf…øõC´Òi6௼¿ùžzÿŒBÔûgv}t}õ …Ì·Ñ^ΰ— ÙËör!{9Cï_RM;¨>”TÓª%Õ´ƒêCIõìà†9©/žá^ÔÏ0gR ©Ç… „ø/K†èyèËR<ÂÒ<Ê2üŽwðËòû?¶[ˆ6ñ{c_ y¥¦z~Fn¯©ŽŸ©BuüLUªãgª…Ðe]ÿþ#VÏÏT§z~¦Õó35©žŸ‘纬÷¼Ëâ÷ÅwsÕžlC° /²+ÿäóÔo­ÔWuÁëÉ|;„‡‡pìM6¡þkåMçG…ȪÀÑŒp ã˜Âx¦2c™ÈqŒr<³1Ùùspoá»ÌɉÌÅIÌÍÉÌÃ)ÌË©ÌÇi¼•Ó™Ÿ3X€ï± g²ßgaÎâm”£%„ÄíÙF‰´WEio6ÊÆÌN{²Q®â-Ô›¾z-DòÜâÅ…Äd¹âÕ,ñ½âxñbzÝäOèu“ÍA¯þçñúb¯Ÿ¼”^?y½~òrzýäôúÉ+™“«˜‹z—E¹©wY”‡Ö梼´6壵¹èVê]éu’õ.‹ô:Éz—Ezd½Ë"½N²Þe‘^'Yï²H¯“üõ:É›¨×IÞL½Nòêu’·R¯“ü%õ:ÉÛX’ÛYŠ_±4w° wòî ‘¡Öm­ÛiÝÖ*BU3cüÁýl}ˆì™FÞÅ9,ǘ$ñ” ñ'íéÑþ˜þ·YÍœýoiš£ÿ5G›wN•¢~ú”ùÛ¼“pªŒÇöø<ŲÎë¯OÝAýõ©X¬¿>u'õ׿¶8óO‚y-Îü“`^‹ûù†yoò£çeg~ÌÝÏSîóL÷ó”û;s Ýß™îã)÷w¦ûxÊ}é>žr_gº§Ü×™îã)÷u¦ûxÊ}é>žr_g® ‘qýCB“k!4Ü¿¤oÜç³ÄÛÄú–†Û™àü@çÿ%6gŒ$¾.Þ!6oŒ{E|ƒƒyÓùÎg¿4£ŽÂØûìrÞ2n¨ØüÓðk±¨ánšî¡èV×»a†c3ɸ×<×g¹Õ5n¸×9óɸaÎé›î›S~C³PÃýÌçñ×=®§h¨ï=p«ø qT|@,WFô ¿ulF7Ücf¥†Åyˆ…x˜f•qozÜÜÖðˆØÌ2Nþ7Â99ãÁ[B\qfªÅåŽLógq¹#ÓüY\îÈ4—;2? Ü‘ù!åŽÌ¹”;2çQîÈœO¹#såŽÌ…”;2Í;ôÅb9$ÓÚ(.‡dZÅåLk£xZÅ‹ÒÚ(^ŒÖFñâ´6¶ê¿‡X{[õßC¬½­úï!ÖÞVý÷ko«þ{Hy꿇Ta¸Þ´\½U>¤¢XoZHo:\oZ¨.¯²å B÷Pî)$÷lÕ¯©Dýú5d«~}ˆ²U¿>D Ùª_¢† —‹ ÉE[õíCÔ­úö!5œ¿î¼¾t¸uTè>çõîCôóÃoІ ýG ÝÏy|¬ÇkqÕ˜­ãYÛãÖq¡Äiâ:|‡>÷›ñΫ#oZÏ…Ô‘öí›Ör¡=g‚çøNoZË…šŠß˯['ò^ç­åBÍÄ“ÄõÅÖp¡‡h–.ô°ó“oÀ)¼Ïy³u!óü›fëBúî­SoÈi¼?ÄÏž¢íõÙ³g³ç°5?`›¦»U\‹é®E¯7Ý5¨âh‹#U\ƒ®A•F!¾^{ý½ý–s¼s¾w•è{Vñ=gøžU|Ͼc›p†ïV¥©ßy"$^4RÏðª4£ïRå!çŸtÞìRï)Ú›3|·*‹ŸdzØ‘æ½zÏмW/™æ½3Bô9}ÞÇ{éf-“;–}"M|Ž&žÿñ>çõ}C}ÐÇû9’™|›8*ĵ©³™OÛÜCói›{ioê­"{Ì+#ï¡9eä½\Ãú\Ë\Çû¸ž ¹÷3B(Ñ)Ä<¢UÆñ'ŽçÏLã)¾Ã_hvxšïòWN ñÿ|¢KÅÿ|Fq13W¦™«˜™+ÓÌUÌÌ•iæ*fæÊ,ÉA,ÅWXšƒY†¯R­¸Ãµ-6ıºSl(綠šyW¹å®EƒC¤þú?øá­¦& ~„fÀú„h)ýâ }iö{¡‹‡ð¡\UûqÊQµÍn/ôwÞçza}®²dˆüs.$,D5qé+¼@ïõÏ|•9„r(/ñ5þÅaü›¯ó¾ÁËÎ)W†Ú!º!wmÛ…ð«ÞéŒZ9· Õʹ…¨6ÎõYϨs}Ö3jãÜ"Tç¥Ú8·ÕƹÅ9‰%¨7«¦ïõz£òÓë’¿÷z½Qòv|eÇ^s”÷Øë5Gy½^s”÷Øë5Gy½zº½^o”\9ʵ{¬Zˆf×'?VúäÇjPŸüXM a–תÑN\K¬_~ìnáÎ[ûžÙOØ{zž÷ªñ¸suœûAì=k¸ÕÿÈzÔKÌòj˜§»GüïåÏ4Cd?E3Dö_h†Èn¦x¬!õ~jÖ,צ†ü±û3_<Öˆ¿óžacžež q•BâHû'£2² ±*³°:²¿cM qEõöûåñ¢zûýòxQ½ý~y¼¨ž~5êé÷ËßEõSûÍEõSûÍEõSûåå¢ònõËZÿë9ñ\±ºRtåå¢óY— (÷v*ëyæõNw²‹ó —ƒ‹.¢úRô#ªËä¼ç¯‡¸/ô>—†ðÆ’)pV¬¸L¼T|ŽËx^ž—ëÞXîøWÐüñ…>iàrñJ±døÆ*šC¾ÈîGÏ4p…}w†™t¤kœa&y&„µC¤yAq%±kíÚFGžcžgU^ u5òZW#/Òºù'­«‘—h=´§3¬§‘öt†µ4òZ?#/Óºù/­›‘Wh½Œ¼Jëeä5Z/#³h½ŒüÖËÈë´^Fš©3¬‘‘fê kÄøÖò¹Í¢ÖÊÛú°µ‡ÅfÒµGhͰvÞ–ó×›I3¬¡·õ\•Ô¨Œëµ*µòøw—{2š:'G­=&.Æï)­=Î<ÁÛùåÂŒfž¯ÿZû£XNÌxH¬çZ{R¬¿^ûåÆ ¹îm½ÖÚŸÅwˆå¼·ÝÀµ§ÄÖÇÚ_h}¬=Myr­šÐ¼£~íï,Ï3¬à÷›ûý[ø(õ•yzì¬Ç*:×¹\âsâJâ–âÜlE=åÚóÎ[ÿÅÚZw§ÙŽöâmÖ^±ÇÿÆöüO𠟤µXì)ڃŞæyvàvä!rô±0Áµ?ú?ºæG½Ç×ö¨÷˜àšõú\Ó£^‚kzÔëOpMzý ®éQ¯?Áµ<êõ'¸†G½þ×ð¨×ŸàÚ}†®ÙÑdºfG;Ñ5;ú,]³£ÏÑ5;jŸàš5OpÍŽšÇ'¸>GÍã\—¾õs0$<éõŸìBcýÿa÷½±¾ÿ°û—3Ä®~Ï:<κÈ÷©ç»}›q6õz·Ï¡þãöø?dsÎå£!rÚ÷›íûœöýfû>§}¿Ù¾Ïißo¶ïsÚ÷›­‡;i¿ÎNÚ§3ÔÓ“öÛ =ÑIûm†Þã¤=6CïqÒÞŠý÷^Vî¬@5àΊTî¬D5àNõûe9ÿÎ*”óï¬Bm½í×ú¸—åþ;«ñcª9¾kb ³Óäë4;M6?·XÂ+zÙœúòWô®9õå“ÍÓ-Šõã9 qSÌÕ-ÌT¯èËsê˧˜¯[˜©¦˜¯[|ì¼y3ç£4cælÁÅ<ÞÂ|>Å<ÞÂ|>%ÍçSrs óp-ór]ˆëâ}‹ù¾]¼O1ß·‹×/fVìâõ‹™ »xýb‹èõ‹}ÂËêYPϺxŸbfÅ.Þ§˜ÏßÅû3+vñ>ÅÌŠ]¼O1Ÿ³‹÷)æsvÉÇå±ÔÁñ­Ž}Ö.ùé³v)@ŸµKAú¬] ÑgíR˜>k—Ûû¬E¸žE¹Å˜â/èŸê·/èŸê·/|Nýöo„è[x‘[ù'¿ ‘oW„„quC|©ã!ñð(žàè&ËcäþÉòX…rÎÿàüý´BwGìyrÀa9àŽÑŽO:Nõ\¹®B’ø'ñXþÌqÎË}Ê‹O‰}¶R¿Ðg+uš>[©_i(õõþ¥~§Þ¿ÔNâYNæ9NáyNåN ‘´OCB³øós6áF>È/Ø”›ØŒ›ù·ðanå#ü’͹ögÚv¶àWlÉlÅlÍ]lïùX÷›˜Éî7°Óv;ÿ?±¹ðÀ6åHš¸Ž÷ÛCFñaŽö|9«Y[ÊYÍôõ÷›m¸æ÷7§k}¿=s ÕãrY33ÈýöαlÉqÎïs¾=¿áÎÛ;Æ‹÷‹Ÿd&Ÿ2Ü. ‘Å®Qg×h±kÔÙ5Zìuv»F]£Å®Qg×h±kÔÙ5Zìuv»F]£Å®Qg×h±kÔÙ5Zìuv»F]£Å®Qg×h±kÔÙ5Zìu~Œ®IçÿÑwíì».ö];·£ïÔùqú}‡Å¾Cç'è³wöÙûìŸâ>ÍoÙêfçŽ<Ägx˜É<ÂN<ÊgùŸã1vq 6„Äg:1ÏòSêŸ|ÆØãŸS¼`#»†øó[Btµx~+­Åó_ÒZ<¿ÖâùíœBÞåx:wpwò=îâL~Í÷C()—Ÿ2'¿/¼ïº¶s]ßw]Û¹®ï»®í\×÷]×v®ëû®k;÷3ÿ»Ž]Ûv®íû®m;×ö}×¶õ—ßÜõ¾ëÛÎõ}ßõm×6Ä­‘s{ÈIkäÖrÒ9®‡œ´FŽë!'­‘ãzÈIkä¸rç9®‡|´FŽë!­‘ÛzÈGkä¶«CxÍ^¾µ¼XŽë!/­‘ãz¬u^_sk±\×C~Z#×õŸÖÈu=ä§5ò\tÊs=>¥<×ã3Ês=>§<×c#å¹_Pžë±‰ò\Í”çzlñ>ú¦[+Šå»[Yœ_²·ñvngI~ÅRÜÁÒÜé÷õ[·V—ïâüše¹;„Röd)5mÍâ=!nÀ›!±ò|‹zã¾ÖRâññIy²¸¾¡x–øm±^¹¯µ–øx”8‰£éº C×i@ +úÿ§:ö™Œeeçô¾Æ96Oóà€4š¼CµyÀš¼ËšÞ¯³÷û]8×ù‰Î›LâÝœLsá€)4˜Jsá€i¬Çé¼Ç{ßp<Ãñ½Žo†¸Zz’³¨'9+7¯ÓCõšË œGu¥×ü9cÝÆþÜáëv®uÚVžùu:ŸæŒâ¿tÜÁñ{žcMϵ~Ïìðc-ÏmãÇú­u8„fü®yBBñ)ÌË©ÌGy¾ë­œÎüœÁôz] r& ñ}æ,ÞÆÙ,Â9,ÊXŒ²8ç²çñvªÉï­ ‰ÿëÈu|F¿aÆþÿ¯¬æ%ç×;ŸL9ärÈCúúîÙCúú®ßCúú®ÝCÝB‚Ö*î¡ዌcwÆó%&°ù2£ìÉlìE³òC½™#ĵWæn !õ¿)eF?kÏ̵WÎÚ3s핳öÌ\{å¬=3w 홹öÈY{e®=rÖ^™kœµWæÚ#g핹öÈY{enìÏš_÷º ÄöÌÜ´gæÚ#g핹öÈY{eînÚ+sí³öÈÜ ÞŽ,Ç}Lâ7!”޽FyÇûY™¬È!|®æ´ÑÛþº;Dç¼Ï=œÅ Îæ^Îá>ÚGy‡„¯|¶<Ÿð>.aC.åý\ÆF!îvëïà“´Æ>EyóàÓ´Îv œy°cˆ?ódˆÎ5Ÿn”ǾFy|à0Êã_§>ð Êá‡Sø&åðoQèóoôùޤÏ?ðmúüõG}þz£>ÿÀ1ü†)ÜÏTfR´ñÇñ[ê6¤Þ¨ß!ZÁ¬Òï.~ÃrÜÏ$f†0PíÌ11Ä¥Ú¿†mªc{¸±k‘jÿ6nâ_*¢ev²4w…ð¡£ö&qñ×¼ƒ»Y–{è=ËdÐ{–ÙKïû7Ð{— Ñr^§·×+çuæÖ ‘:±?OìuËyÞ^¯œ×éíõÊíñx=›çÞÃÁ!’ª¶7VÛSÕöÆj{ªÚÞXmOUÛ«í©j{cù¢á2Ó9”Ÿ:¯Ö7–?¾&þŒÃø9_§}Ðð ~áyzÆzT½@c½@ª^ ±^ U/ÐX/ªh¬HÕ 4–¿SõŸóûÃýþ&êÙ27;¯7h,¦~Oy4õ8»òŸ÷¼·ÉùTˆ—¢Öa*놰È=¯¿@¬ñDVæ$êÁO¦,‡|µÅ¬C¾ÚbVÈqÀܳ¥³Ÿ.!>ãPˆ¾=5„µÿ†Hó:¼B³uÆaçÍk¯Šë‰ˆÍGi>ÈøŽæƒŒcœB%k5ã{ÇêbÆqª‹'¨.fü@u1ãG~@óÃÛò'êË2~æ<¯agœr<Ÿ¿ÐºÍ8Í…!îÞ÷BÂ¥»Cx~AWOq!q~¦óµÅ‹Ä§CÜMBbž“|?…P$öó³ŸS!nª™¿U¬®=®^å a¥©©i¥©é%®á_\Ë¿¹Žÿp=/sÿe:¯xö^'¯XÞoz•ŸQO½òsfyü Û+Õí·:¿Ñyûo¥üßÔÜø”óùÅÖmӔϛj¾VÊׯí°Ržmñ¼§=¯€X¾m'î .(–w›Å‹;Š ‰åßf ”›%:ÿŒó…™ÌÛØ‰E<./7‹ŠŸïg?'6ßmìÌâìÂìÊÛùËV‘æ³l•h>ËV™æ³lUh>ËV•æ³lÕh>ËVæ³l5¨çÌV“jgÂ0ǵë;³ÝM}g¶ÚÔwf«C}g¶ºÔwf«G}g¶{¨ïÌv/ÍfÙÔÁ/ôŠyõx;„øEöE§Ô–õ ‘Æòß"û£“^i‘ýÑI¯Ô_~«(¯õ—ß*Êkýå·ŠòZù­¢¼Ö_~«(¯õ—ß*Êkýå·ŠòZù­¢þ§¿üVq³þä`ˆÔ-(.,6[Î=$.$¾M¼•Eø%‹r‹Ñº¸©O_gßÔ§¯³ÇoêÓ×ÙÛ7õéë¬Ù§ª„pþeV¥:³óYâjâ^â¾bk÷©êâÞâ~âëââ>âþâ@kø)óÝy×âæÀ°ÞZ~ª–¸Ÿx8"¶—Ï÷§½{~€ó¯8'–ƒÎ¤Úu~óƒç«´¶ÌkãåÀ¦f®ñr`ÓÛ(6-B9°iQÊM‹…p«âì öãJºŽgWqå²+fÊåfÇ+fÊåfÇ+fÊåfÇ+fÊåfÇ+fÊåfÇ+fÊåæà+fÊå h¦\¾öóòE´Ÿ—âþ—ª9ÿ¼Ió9 ¡@HüÌzM0ß}f½&˜ë>û"„[Ôö³ÝgÖl‚Ùî3k¶ŒÏZÆçœ`. ·½ÓwºS}H0ó}¶…f¾Ï¬Ý3ßgÖn‚™ï³Ø«Foñ·Þ¢Á7|•û9„™Ôoϰ>g˜+«Þë§¾óœ×w—íå§w9Õžß:gFjp¯‡¸ÌË!1uÿ¥-ó ?äUÎå5ÎcÍÕ™ÿq¯SʼÁE¼IׯX˜˜ú1#\ÂÛ‘)j¦;'þD'~@/–$PN<Èe·¶‹6GÅrãl”d§k–c’ãŽåÇ·P~<“òã\~r;6û§®3»ÊÉ·½÷ÝÁ!,Â$µ(I-ºm¨øN¾Æ»8Œåø:“øËÓ½ÞWîõ>³æmo±G°2G² ßfUŽb5ަ|)¢þæíü'Äÿ92D?Ö§þù6õ©Ž¢>õÏÑ|:Ä¿õFˆÞ[IOj.íïw+šéç–ÓÔ-÷-ºD/ì¾E—è/þöÜ%z„¿‡S/ü©:ÔÏZüTêç»ú"K«g÷«£æáO»‹Ëˆ‰íÏ•Ð\üéKÎß!n,6ÚCìZ­l"6'ú²Øµú´']«O{ѵú´7“BÈ{3$$š7®¥xã:š7®§~jãêŸ6ÊóÝÍÞeôÕÝÍÞeôÕÝÍÞeôÕÝÍÞeôÕÝÍÞeÌ¥ÝÍÞeôÓÝÍÞe¬ùîrJk¾»|RÆšïnö.3”Þ·ŒÙ¿»÷-c¶üðó±þ¹»÷/cÆüÐìZ[ÝÝç(ó}Ž2¾swý[ßµ»:UÆwì®>•qÍ»«OeFRïVæm¿ÿªßW§ºëáÊŒ á®–ŽõqeFSWfŒç ñœØwÓÏ•I¡~®ŒÚw—¹§»ž®Œº×]OWfœçõ\u®»¾®ÌxêëʤQ_WæþÊ üïòwNäNâYNæ9Nñfª_óšjf÷óÎMåêU?漜Ôý±^µûEêU»ÿI½j÷KœÉ¿¨Oíþ7å¡îÿP®è~™jB®Î!þwõ÷µc†µü˜\ó€¼wÐ|<ã±ó€5{М<ã²ØûÎø—¯ó ­µüjÝŒ«Ž‡óßdßâ4?PÙk˜±g\ä ¾Mëë±Q!òž²ð˜™ù½DŽȥƒ!a±üyé;ñ0Ÿå>Ç£ìÌïØ…ÇØ•ßóy§yðÒ ¾Àhö¿ô#»‡Ð~pgôº—NŠ}·K?Ñç»ô3ÍÂ…ìù {¾=Ÿaϲç3ªs k0…5™Jõ>§^uP\ˆVYÊx.c幡ry-u¾ß±ɦV÷ûžæ©¡r{­A”Ëk½Bù;öïûô;îqsÖPy¼Ö«<Ä!<Ì¡<Â×x”ú»¡ßQ¾zŒîÇð´)˜A³aÁ½!nKÇøª~b¸±à>š ~C3bÁýÆã‰LfÔy3cÁLN¦¤?| ¿õx'gã³Ì._›‡OõØANã!NçaÏyÎsrˆgˆˆ;‹o«ùŠ»ˆs²+åö-Ï3·Çõ¿wçá 4w WG ê1¶¼(ÎÇî4g ×+üž³©çØò’óùÙƒø2ÍÃõOˆ{ŠÍÀ[z±°óz†‚?ˆ{‹cßGïPðGê ž¤Þ¡àOïãqóÄp=DA3Öp=DA=×p=DÁ_¨‡(h&ÛÒ×óÌÃ?뻆L}×ðÅüÝãýÌ÷ùg±9góQÎa ~@5ôíÙ*ÄMw½Z»¦¯È¯9c®D~Í©o|åeZ Ó]ÇÖ®çt×±µë9ÝulízNw[»žÓ]ÇÖ®çt×±õöúÚ“‰'CÜ ×£ÊŽßcHˆ–½S “¯{ u¬éñõ/=ôSeõz=ôSeõz=ôSeõz=ôSeõz=Þ¤ußã-Z÷»_ Ñu9˜õBXkN{dµøUñ=âbsÐZsÚ#k÷Þ#î¥÷¡ßí}G4ð¸周¿uçýG˜­v{ÿ éýGÜOï?¢½ÿ3ÔYu}žùᬺ>o3Õóy愳êùêTˆŸÝ0D¿Â’o<®&.ÙÏ|ÎßïülÄ‹|€²1/± ÿâƒü›Mi^™ÝŒ—éž<þ/æ>«!þjí]©F\­ÃܬË<¬Ç¼¼‡Þÿê½¼•õ™Ÿ X€÷± }î•…ès®4ë\õ9WÞFŸs¥û–¶&D›éCÓÖ² ×±+×3ößßÀnLç ü”/†°èHˆ4ð:iŸ‰»ós¾ÄìÁ/(7¤mbOnf¯W¢|H8 ”¨@µ DEª%*Q-(Q™›X…òS‰ª”ŸJT£üTÂìw@~*QƒÛBè4/„¿Ü·Nóù³ó5—ÿKÔ¢üŸ˜Çc <¦®tZÈ_$®ŸÊ œÆ?èZݼÈ!¼Ó"DÊŽÿ)6D½ÓRl}§Ç;Éyßùæ_ô]nþÍYoíñ4ñ?âÙ¼Ì9ü—x¼Çß_È«œËkœÇ,Æ>ßÔÞÔ®×ÞÔ®×ÞÔ®·¾‚å¿þcê׫ýï<æuÍÀA_¸þ“n‰ë ×/ñõ†ë—Æ"Z·ïüÏsÍÉA¸ÞzÄõ+B(fíç+¶L£\±e:åŠ-®Ç9¡ýmb9cË{”3¶øþ™›CbjwnáKÜÊü’Öwæ6Z“™Öfªõœim¦Z‹™Ödªµ˜iM¦Z‹™Ödj¿Fþ"EõÁ™ÖfjZ›©Öb¦5™j-fZ“©f»Lk2ÕÌ´SÓZLµö2­ÁTk/ÓLµö2­ÁT³vŽ Ž­ÃTs]¦u˜ûÿãY©Ö]¦õ—:<Ä_‘×W˜1ª¨áÓò‡„Vf¬i¨ŽL+HõcZ!¾B£ÏCø6‹úØoÿã¼îñ·éϾ½!vÍZ™¡¦¡YiZQ~â O {“8•åéšï­@×|oEÎ`%ºÖ{+s&«ð}Vå,Vãlº^…ç°?`M~ÈZœË»C\ëBb¶&!¼h»nÞiý±øA.fS~Âf!Tâo´ Q½nجWk§W»ñ?±ïF[êñ¾Ù¢c<ï›/9šÛ8†Û™Â¯˜ÊË"]Ãfߎ®a³oGתÀÔò½îØu*`Öíè:0ëvt ¸þ‹ù)î8öoúÌ aŽÜl&O~>D Ëÿs‰Íæsàp6æ›ïæqµ4ùª¥É/R-MîNµ4ù%ª¥É=¨–&¿Lµ4¹'ÕÒg}æ"}½žžàn¯óì.q?~ÍþÜÍÜÃÌ 9Gïpw>fÒ=ç½ß³{=þ ÷q0¿á«zl½à³ûa&‡ò_ã·âãÌ+éTKÒ÷R-IßGµ$ýª!éû©†¤gRÍH?@u"ý[ªéCü óÅTµ%½lˆ´Ôœ0gLU'ÒïëN˜7¦ª1éw‰õ 'ÌSûˆË‰õ 'ÌS]“ô$±¾áÄ\±krb]“óéšœX@}}ÇݳmlJsF—CØ®ìØL¬~×ðY¶«§5|†íjj ï½}™Çòø>ÌÎû Û—‹ïû Ûå«òÅö•Î7w^Mïø(w³÷°%3Ÿœ¼såäÖx>9y§5žONÞiO"åÜï;bÿ™ ùyçÇÇrôNë=Ÿ½ÓzÏ'?ï´ÞóÉÏ;íñ|òóN{û–ØWDŽÞ)GçÓ#ì´¿óév¾E=ÂÎÔ#ìI½Áη©7Ø)GåÓ씣òé vÊQùô;å¨|zƒrÔ~ó`йr¿y0e=/qÿbzyÆ;þÛñ§ü‡Ÿñ2?ç¿ÜÈ+”ÿ+¥9¾êØÜ¹ÿÍû³hîÜÿÍûõ‹)_R¿˜²úÅ”í!^‹MùŠf­3x¦Y+e§|äs©ñÉ>—Ÿìs©ñÉ>“Ÿì3©ñÉ>“Ÿì3©ñÉ>“Ÿìó¨ñÉ>Oáyôy ϧÏSx}žÂú×dŸ§°þ5Ùç)¬¿èäóÖ_tòy ë/r™õ;ùL…ÍÉ%B´Ïœ|;Ý×9w˹örI±ÏÞë‰-çþöz’q|Šº‘^O3ÁkéƒîR3ç- ‘ºæá””}À œ’JspÊXÆþœÑaÇãßãøH ÍçõK97Þ93rJÍ› O:_ZüŽØÌœ2÷y³YÊ»ŽÍ˜)iÆL™D3fÊdš1 ÑqfÁƒEiø\}ðv+õM}ו㹇iô?W·Œ¿#ö]?ý¨ÑFûã¼÷hª.¬ôMÕ•Þ£©þŽ0ßu<_–KB\…K!áäè:?ÂeóD…¿Äf Ó ’j>h¬_N546/¤š ›eRÍÍ ©æÆæ„Tó@cýaªy ñ‡! |9Dr|"646'¤š ›RÍÍÅÙb¯i6hlVH546+q›o×ÿŽ54þ(„/ê„Èÿô)—ê…¨kéæâ½Ìíñº—Ã/Õçaæ !¯ïóE=Éë—îsN/u©!õR—î§ÞæR#ê¥.=@½Ô%}ôb½Ô¥&,‚ü6$|¦_?Gýzüy¾âËÉñ'Þ ü~B~·ÏOÈïåä÷ò{9ùý„ü^N~?á~–“ßOÈïåä÷ò{9ùý„ü^N~?!¿—“ßOÈïåä÷©ÖÊZÇæ¿úÐræ¿ãxŠòz¹_(g—;ÍwBü÷¼¥<4e å¡)òRKµûjÁ¸BŸŸ–-DîPW¯ÁÂÜÄÛ¸ÙãÙ=þ¸ˆx‹8‡øaqQñVÚ¿+ìß4ë÷ŽGÄöïŠm´Wl§ý»B>MËéñæbûxÅq.ñ£bûyÅNÚÏ+vÑ~^ñ5íã»iÿ®ØCûw…µ}¶VˆÎKäÝŒ²6í«³uhO­Ë´&æÝBkbžµqÖš˜gmœµæå¦µ0O¯]] xYÞ¼S>}y åÓ—§²Qê×êx—§‰åÕ—§³1g° ßボɦ!ÒëŸPî5^æ0þKs@¯+´Æÿ.N“k?’kåÇür_ýßiïÕ—ÃÆŸñ¼éb9¬þYÊEõå¢ErQýóÔ7Ö¿ÀüÃóÏz¾yv‘¾±þEñ9±ú:þ<Õ×ñ¨¾ŽÿƒêëÚäíi¯íDk|í³´Æ×>Gk|mgšÖvámìÊ"4Ÿô4KæÖ»¬5‹ô,F³HÏâ4‹ô,A³HÏÛié©7»eMˆn5m¹jÖVÿ¶\£Ú·%‹÷ò?Ö÷<3úVóâ-fô­¾{µÙ~æøÑ“Ýb^ßêûå«ãج¾UŸWMÙb6m߀fÒöjcµ¹Žo:nèyfù­f«jóüÈ)Õ8÷©sï‡HŸ¡!¡|_c<‡1¯3‘o0Êá´?ú¼Iû Ï[´þûŒ õÞg$s†PGnß]Tü¶Øºî3й9šy8†y™Â|L¥9êÖØñXÇù½†š°Û\Øgœ¸€X]Ø]\<^\Ðsouœæ¸ßaaNàm|—E8‘±Ï1‰±×šÌâ^ë¸×*!6Ÿ—i>/;]ïò%=~Âã±Øœ^¾”÷ÊïØ¬^^ÝÇŒZ^ÝG¿\^/ÝGÏ\^?ÝGß\^OÝGï\^_ÝGÿ\¾\ˆÓ{%êåB±Bèá^ó>,Q_§KÔ×ÅéÃõuqú°D}]œ,Q_×)žêA§ª9ŸQª²Q_7heˆVí¨×ê¥×Šýoè«ÄÏp5“iÍUíDkªê³´¦ª>"kÍC/¢ùçåÃ|ŒGø?e[~Çv<ÆÇù=Ûó8Ÿà‰Yèþ&»¿ Ýßd÷w¡û›ìþ.t“ÝÓ…îo²ûµÐ½Mv-º§Éè^&¤û˜ì>.t“ÝÇ…îc²û¸Ð}L¶Ïö ‰—‹²/í±†ýhýQÎZâ¯ê‹WÊ…WõÅ+Õö«ú╱ÿ~«ù°\wU¼ò›·Û<7Â<·Û<7âîF4 ‘Û†‰Íu#Ìu»Íu#Ìu»Íu#Ìu»Íu#Ô†ÝæºîÛnsÝsÝnsÝ=i©ãŽÍv±ÿíª”53â~¯÷:ñ ™÷F˜÷v›÷¼WÜnóžç„x|8óMó]²ÇÌ€~/n·0öøÊ—C‹±'ÿf/þÃÞ¼Ì>ü—}y…ý(§¬ìOëlåÊ)+ò¿·¯gH]˜½x{Óµ¯~áS>ÂýrÍŸÄŸ‰‹å?sO9ÿ¹óM¸‘ò 6õøBÿ"Þ$Ö$߯Ï9pZ¼YlÖ°…;¯ç9ð«x«ø~ÉæÎìüoâmâGÅf›¿‹·‹[ð+¶ä¶âN¶æ.¶á×|Œ»ù?îa[f°÷òqîc{~Ã'Bd³×ìõ6{½Á^o³×Ü&„Ø¿crÂþl.·œx†rʉd{ŸÁ…P@®+`_mö~ƒ½ßfï7Øû ¾5$T“ûïõû{ýþ­Ï:—ß9óýà|9“…(—.ÌY¼³CdO©0b!KsËP½Ý£·á:µü_'õ½{ô¸#\§–mÅúß=wŠ?·Oß%^"~\÷׫…û;8ßúüSŠˆÕÛØßÅùvûQ?1¥¨ó°?dqÎe ÎãíœOµ¾Åºþ-\ÿ)® ׊ëßÂõŸâúÇþ½ˆFý½®ë1Åõo¡ï™âº·Ð÷Lq½[èw¦¸Î-ô;S\ß±Ïéú¶ðùþÚ÷È íû?ä…öýòÀBûþy`¡^ây`¡¾ày`¡¾àAÔüñJH°­" f„¯RÐW¯ Æ÷Uã+¨ñ}Õø j|_5¾‚ßW¯ wí«¶WPÛûÊýäþ¾r¹¿¯Ü_Aîï+÷WÈBÅ‘~ôò[Ìɯ&Мüª~u‹9ùU½äsò«úÕO„hYsp'iîñãõœÖ^móg®—œ{Ú9¯Q½^HüUΪ~ ¡¬>·ú½Žå­êõiƯހ¿ð>žfCþÊûùÑ|]ýž ‘?Í,¤™åãA¼ÀWøó"_åŸB³àÇCiüXû§ðc=îŸzÞÕ€BÕ©ÑêTuŽa þ¹ô‡•!aZ½CϼEß•CϼEß•CϼeXˆßþWˆ³o~ÑgÌÒWü¢Ï˜ugˆ›¨xÄŒ8QðˆYt¢à‘¥Ô<²ŒÙ¹œ9¸‚·p%srsq5ss óp-óróq=oåægºù2öXÇŸ†È§ö`_{ðS{°o,¾›Ÿ±6?!ÎçþTOÚw#ëò ú®}7ñnæ½ÜB=nß­lÀ/y·Q¯Úw;ïçWlDû÷Ó¸“¹+„‡¯‡p¼¸‰øk>ÈÝlJuÿÓfÌàCܡ¹ÐŒÿ{{÷ºßµ]ˆ¿ÎÇyÃy÷úîõâöâ›´.K¸u]­ËÖgW버õÙÕZ,Ï´&»v¤uÝõZ×]ͱÿ6n.óQW½WW3E u²DŽ:>ÂEýÞ-òýÖ§)ßoíâÓÍÔ}þ¥™º½½Aé£ÎlPgú¨3Ô™>ê̆ý|’™|Šø4¿edG¢zóð”¾ÿV|X¬îl8ÂNL×>ýÞ`sºæér…´Ÿ.WôuÍÓ劾®yº\Ñ×5OoM×<½ ]óôÇ qSŸ ‰­˜ÌDvbìü³ÌÆç(Wü; D—ë Þè"ôÑí™jÔ/ˆõo¼ÈEÎÛCV‰»‹?ÛKV‡ýǹüØKÖøY«·WoN q…Äx˜y„ƒ<®þÝœ*>*~…ßq0ñU~Ï!<Ρ<Á×øõ¨~äë+q+s!«p«ò#VãǬÎŬÁOX“KX‹Ky7—±6—³W°.ÕÖ’õ¨Ÿê¶Ú±šSòÞž1oüyŠööŸ¿„¸|òÚÎÞ”×vö¡œ¶³/å²ý(wíìÏŸh/·²®¢ön«ÿ8fú¨=Öʵ§Z™ã£ï…¸ÖæøèLšã£Ö[ks|ÔzkmŽZo­Õð¨õÖZ Zo­Õð¨9¿µ5ç·VãæüÖòQìßÏj-ÿDå§ÖòNt!Õð¨¼ÔZÞ‰ÊG­ÕðèÇTã‹©†Gõ­­ã¨¡µuÕ#´¶Ž£ËBüGCtÍ ~Ç•»3öøK¼=Ø/ó~öd£bÿÆð½?ÀÞTõ¬ÑEMØ—zŽY1öï Çþ­á*:ßÏys`•ØO3qqLy{ÑC!®ˆž`Ÿõ˜ìç¯üb½Á¾o©7ØwÐùo/ Öì;D½Á¾ÃÔì;B½Á¾£ÔìûŽzƒ}f°ÛÎ8ÖìûžÍi¾/ò(O°`KþÈV<ÉÖü‰mø3ã)þÖZ‘¶<Ívü•ó7¶çï|‚±÷}’gùÏ…¸&úó¬[©?ÏÊoaÝp¬GÏ*"/ùLeôĵ՜]f¯—|¶2æï—|¶2êüK>[™ƒôÙÊ¢ÏVæ°ç«A»Ì`/ùŒeŽÐg,s”>c™ïè3–9FŸ±Œyô%Ÿ±ÌqúŒeNÐg,ó}Æ2®Ábµ¨³Z±X-ê¬V,V‹:«‹ÕžÎjÅbµ§³Z±XÍé<>„’®õbu§³z±XÝéüNC^‘<ÅêOç T:«‹ÕŸÎjÀbõ§³°Xýé¬,V:ûÎìÍ>êò†ŸùO±áËzõá{×`ÃiqOþÊ^ü½ù;Íz«™ß»FΈ5›·¿w­žA×hÃYçÍ~«cß»VÌ }Ìl«gß»fÌ }Ô‡ æ…>êÂóBõ`ƒy¡:°Á¼ÐG^ß`^èóªßSÿ¾w7˜úÈß±¿×GÞÞ`nè#_o¸LsĆéÚl¸Â7x•Ãyo2‹oñ?Æþ­–Ct`g.f~®\Âç¹”ú¶•ÖI³Øß%·NšÅþ®¸kÔ¬ Ç—y\·Òµhû;â‡û;áË×Ç­t-šÅþnø q÷òÜáx¥csÙÆUìÁÕtíWºNÍŠˆ×ˆ{r-{qÍÛŸt¼Þ±ë¿Ò5lû»å®I³Øß)ßà¼ûPQ³Òlûûåéι+­Åf±¿gþ©¸??ã~ηF›ÝNk´YìïŸot~¿à+ÜÄÁÜÌW¹…C¸•z®KÖÞbkí’µ·ØZ»dí-Ö×–¹Õ{iyþ±×jËŠ4C-=n†ZZ9Ä%©?ÜÂs'B¸|»XÝÿAmIR÷¨Ouÿ‡T÷¸/„ÌÅ ö0|‡{9ûø.Íl™?ìç$f†øIæ…æWĿĿ†æWÅòCƒožkókb9¯ÁA±ïÜÜü1ÉwnþŸóÓœ?$ö½››C&ùÞÍÍ!“|Ïæ7CÈí;¥^ ÑÆú‡EÅC¤þÓâ«â…¼ÆEÌâGüó:ó?áM. ñcµÄ—2Bµxl—3žjòتÉc¹ŠQš5Êýìç”8›x ÍõšOo ‰ù;s;õ¸OÅ®ÜÁ繓ݸ‹æšSCBåÛ9%9¥B¨ë:ïÉ-ž!.Í÷X†3yßgYÏsöäÏßÉÙ´nêº/{òÒ}Ù“Ïù9Ηã´†êªS{n(.O}Fe½á½ae½áöô0Ìßþ)­Ýퟱ1?gnäƒü‚M¹‰Í¸™q æV>Â/ÙœÛø(·³¿bËZÔáGy§EMöu~‡ó­¸“­¹‹m<^ËãrN‹»Ùßù¯,„¸«Žcÿ83û0õsXÛªªñóCô³Q\ÀÑ\È1\Ä”éxWH0kF:–ãB&qËó#VàǬÈÅA£í¸’ãØŸ¥«ÌØŸ¡û_Ûߥ÷Ün/t¬â|ìÏÔµÛ«Šc¶®—;ÿ¸ó“©OØ.ÕPÿ·«‹5ÌŠÛc³ºç­` škȹÛc.³¦Xݱc–în®ñ¸r»ºXÃ\·]=¬a®Û®Ö0×mW×j˜ë¶›ëj˜¶›ëj˜ë¶Ï¡9mû^§¶×YË:\ç|gç?ׯwÏ×owÏãóœOõk{ìêë ¤‹Õ«ízúêÓöص¼×ùO©w-ððsÞGsZ ukûG|‰±kÝÐù/x?7Q_Y`3õ“¶P?Y`+õ‘¾ô{=üž½ÏÞÛ©®å³÷vªkùì=óD|>{Ï<ŸÏÞ3OÄç³÷Ìñù¾¦üšo7Õ«|{80Ä5µ'®Ë‡Mí‰ë ôáú¦öÅuýtÕÅ!ñt[~Âv\Âǹ”í¹ŒOp9ÕÓª+øWòé7ÂÌ\ß½ _ÌnÝ (Hëf@!¶ó¸Yº¾™d„Yº¾™dÄUšI¾ð™™…¾ð™™…¾ð™éwÞø1D –û새OŠKó'–q>Ãyß鋽Ä}|…ßp0÷SÍS"DcÿƘÛù5Kr7KQ (·ÑqiÇ,ý¼ƒòO¹/—uü ïä~ÞEµ`L9ªc’¨ÿ/·ÉÏfqy±Ü?¦åú1y˜•x„•y”Uø«ò«ñ{Vçq¯µ%Ä/ø=DŸ±î—©é‡ŠÏˆgò,ßç9ÎâyÎæÎáü€iÞ¿1$6•«ÇÁçCä ý6.öÛ¸OCh]2„ŸŸÛwã¬ãƒöÍ8ëø }3n#í—qÖíAûdœu{Ð~gÝ´þÇY·­ÿq[C(8α=0îKÚã¶Ñš·Öü¸¯hÍÛAk~ÜNZóãvÑš÷5ÍNã仃f§q{Bü×§’ë5Àõ©ô]óC¤®™m€ëTÉ 5/*n*®!þ^œMlvPS¬›v4$´~–ßñ9cg~Ï.4›·îJ³yk×fšÙ¼u7šÍ[Ûïþ ÁuˆL3£·~‘æ€Öæ€iæ€Ööu#ý€ë™fhm¿6Ò¸N‘iæ‚ÖzÓFú×+4Êâ½Î›Z›¦™Z›¦™Z›¦™Z«ô ®ghtîû4sBkýi£b=Ý4¹¿µ:ÑH¿àÚF¦™Z«ÓÌ­ÍÓÌ­ÍÓþðc&h=ȹ`~ÞÐA_2?õ’M|·ÃêÂü[ÅrðüüœÁ|9“…ø> soãlá¥\;¿åÖùÅ)§Î/Áy¼óY’réüRÔÏÔ-/Ø{u Ñ>«[˜öÐt÷¾ŠþvúêkëÞæüfq†8—¸ˆØÞ¨[”[YŒ_²8·±·óv~Å’ÜÁRÜÉҔꖡ|P÷ÊuËR>È9F-dùûk÷¢Ît/êøl_»u|–¯]û:[BØí©u¬ûÝÊ×»ã¸ñÜÎ~ÅDî`”;™»û3-öE’}ÑǾHòœ:_;Ÿƒ^|wìϸØ'I~§ŽÏ´;§Ø~Iò»uô­»cÖžI²oúØ7I®]û&ɵë£gé£_é£Wé£Oé£Gé£?écvOÊð³×Ï>?ßøÙï'Ó|6÷rˆ>­Ïœû/Õ®¥öÿ®CùiÎéMŸþXŸ:ʱ¾ôi}CùéŽõ¦Oë=çêMŸÖ{ÎÕ›>­÷lj¸n†kڛ泦}X4Äåëvüî¼Ìçù/»ñ _àU¾ÈkìÎ,¾Äÿ؃×ù2o°'o²WHp©âòõf„}ǾŒg?&°?9€Qd6Ú+;³óæà`ÞÂW™“C˜‹C©‡Ýì:nG×r°Þ'öß9ÑIìºnO×vpì§w}ëš—ñ¸\´Ùµüði~Ë<ÈØÿn‡çÉU›‰åå͇ûßïP¯ûÃ6Ëmƒõ<±ÿ¾È ¹l³7XïûÐËÄþ;#'ô2±ÿÎÈ ½Lì¿3rBo¾Y¬j^A¬—inæ:¡Wi^‰/y\n¬7j^Y,§5¯Â——+Ç^·ªXÛ,g޽~5±\¶Yî{Ÿêb9m³:Xži®>!·5ןÐo–KÇÞWÏ{B.k®ç=!‡m–[Ç>Gm±šûwÿNÈe›åÚÁrmóºâAb¹vpʱƒcŸKNû$__tŸ?Êrì Ñ-æÙsfíùѬ=ßlÒvA¿ž›±ç·ånÊãçÌØó§¼>ß ÛÖ¬÷ë/bù}¾<~N^Ÿ/·]äüiª¿þê¼?'ÏÏ—ÏÏÉïóåósòûüŽ”ßç›YÛª¿þFuó×ßù ÏЬýëYÏ“ÿçËóçäýùêÈ9y¾zqNÞŸ/¯Ò›´5ÿzÎ9¹¾pNΟ/W2óŸ“×çëeÏÉßó­•¶Ë<÷¼XÞž//·5£ÿzA,oÏWÎÉ×óåá¶+œ×/ž“¯çË¿mÍæ¿^ËÓóÕƒsòò|ùöœ<<_Oÿc9x~OÏ]幊åâùjÀ9¹x¾<{N.ž/Ïž“wç›MÿwKˆæXÍœ\Ã\\ËÜ\Ç<\ϼÜÀ|Lq¯ýïžÁøÍ™wϤyòî÷Cè ‘lÄæÊ»gÑ\y·9óµk4g¾–ÅŸH«ßîU¤¥:|b¬8ö{ã{|þ†<Íûùk9ò9näø7>ÀßÙ˜gØ„êλêñ#-ø[†ûÿ?Y»‘wwˆ[Qý|¤uˆ«{OH¸°Ÿ÷2“õy€ ø-ï£~°nC¢ÙöÂašm/¡YöÂQša/|G³ë…c’«œT×üzá{š_/g3žàCüóÇénv+}f·ÒY!ä;æØüVú?šßJ›Õk»ö»\Ûîæ¸ÒföÚ®ý.=|wó\é›4ÏÅ"Ýõ¾eÔîzß2êCw½oµ »Þ·Œþsäß!ÚàÃÊMtücµ¢œýTn²ØœÜ`^ˆÿá«f6þaÍÂ?ìä ê=¦½âo. Ñõ#¹”osÍÏ7—s4Wp W2…«˜ÊÕË5ǵÏuLãz¾Ã œÀtÊóÌ+|×yæ•f üGü›[:˜[Öä =¦†`‡crš|âi¼•Ó×£ûMœ_<ƒ¨î–Ž%qËs2+p ÍÏ^ ákøÙk4w=ëÞücý–êñJœÆÊœÎ*œÁª|Õ8“rpÙ÷Y#Ä¿3$DÒ_fW36«ÙÕŒÍjFv5csáòºWË…èŠëÚ‘!:zwëÌÀÍçŠõ£÷P¯1ZÞüF¯1z/õ£÷Q¯1úê5FïñÇÝ›)Š|Ô2w†ÈØÂ!¡ñ,qªxÇòën=è±Û<6Û¹qÎyÏ[9ïxÓ˜á9E/®Ì ´¦*Ëc§Ô•Έ«ò"­­ÊòÚ©”ÏNɱ•å³SêËÿ¾ Ñ[^ aššZiVˆ¯úGH<íZMÓ{Wr ¦é½+¹Óž£rš~»’û7Í:«$LÓkWÒ/N{žóýþE¿ïOë&vϦé±+-tþOç傪—¨ŽTý‹ïSo{Úû®3޲¿cMc-~Ï»©/*\›'B¤‹½YÌûÔ²vvX;]ìÑbîi-ëcÇ~Z;¬‹ZÖÅ뢖u±Ãº¨e]ì°.jY;¬‹Z¾ë뢖×Úa]Ôò;¬‹ð’ckc‡µQËÚØamÔ²6vXµ\—êC-×e‡üü°ÞÏo„¼ïjÍÃzÀ¡0ÄQû—…^ðyþ»U¬ bŸë¿üâ±AˆöwˆÒþÙ¨' f»‡õ‚Ál÷°0˜íÖ3ü ¾ÏÄzÁ`†t¬ ¹© æôÏdžH›¯Cüï³CôÃ>!T¾âÿ†è2ŸSÃikÏoºŸ¯Ë'o:näø >Àáž›ÍsõŸÿfç”g–ýHùeÙIÊ/Ë~ ñ‹äüN¯†¸ÕfÙñ4Ëöð_Û"·±9¶‡ï¸ÚüÚÃw\mníá;®6·öÈBv3Æj³kßsµÙµ‡ï¹º sR¯Ý#õÚ=|·Õ®wþƼBŲ!îß!q¹}4~mˆ”ù[¼Rü4WÑ~ùw5í—×ðê?—'sõ_ã×ù½ÄëÅÏrŸc:;óSvágìÊÏù<7²¿à ÜĹ™Ý¹…/q+{ðKš;ǯ÷~—ÅÛÄfÏñÄÿŠ·‹{ñ+öv>Ýù+ââ>ÜɾÜÅ~üšý¹›z±í…„aÕBhQ=„Í®Û?WçbÖà'¬É%¬Å¥¼›ËX›ËY‡+X—+Y«xWó^®a}®e®ã}\OëqûZß´ £­ÑVîÍOÓÅOˆOˆå¶ŸÔäožÿ Ösþd϶êHûµÕ3|ßãOyüG±^ù'û¶•{õ“Ùê›§?Éü‰ù3Ÿá)&ó}hVˆaÖÏáø??zª7œ³&ë[›×­›µOÑzYk½\·^ÖZ/×­—µÖËuëe­õrÝzYk½\·^Öv¢u²Ö:¹n¬µN®['k­“ëÖÉZëäºu²¶ki>SÙ;ÄÖËZëåºõ²Öz¹n½¬µ^®[/k­—ëÖËZëåºõ²VκeŒßõ=ÊZÛ×­µÖÎukg­~ýº5³¶'­•µÖÊukemoZ#k­‘ëÖÈZkäº5²Ö¹n¬µFöËÙ)3)g§È…#·šáä·ýrwÊ,þÃÙ¼Ì9ü—ð ?äUÎå5Îcí÷ýÿq¯s!oÐÜ6òK¯/oî¿)Ö£Ü&–S¤ÏĽÙÈíâqD¼Xü•XnÉŒÂx.a—RvMYÆ(—3Í(™Ùi6ÉÌÁU!nœ´‰™tœ´‰™tœ´‰™tœ´‰™tœ´‰~gà’ÉqV|—Øl:®3˜Ä½_êquzà2ªÏ—ó‚ÇË{|+ðçW8ÿ‡¸¢ØL1®Íã*Sm¸ÒãÅUÄf‹qUi¶Wf‹qjf³Å85³‰ÙbœšÙDíʶȱºÙÄ|1NÝl¢v \åµþ«ŸMÌãêP3®.Õ°qõhÆw¤«ÉÉb¾3aqˆëçõ*¨7}^»Æý¼nŸ¥Ÿ×«à³ôóz|–~^¯‚:ûóŸ îA?¯[Á¼ÓÏëVðyúyÝ Çhv« –Æþ|h‚{ÔÏ WÁçég†«àóô3ÃUðyú™á*ØÇ±??šàö3ÇU8Is\3`?s\…ŸÕ¾›ŽÍrÌýä/æ“A擲|…wr0ïâ«,Gýuƒ$¥>{äk¬Àa¬È×Y‰o°2‡³ ßdU¾ÅjÁê!>器Cœw4cñêãó¦°&SY‹cy7DZ6dzÓX—ï°Í×;î¡ùzǽ4Sï¨O³tì¿k£ÿOÜqÍË;†¸8=dº{§‡Lwíãî µ˜>6$ôÍÏq,Àñ,¨(Û;ë…Ž;~X/t¼õBÇÍ»‡ÇoóÜ4Ï·®Ž¡~èxQZSÇ‹Ñ=<^œrõñ”£ßN¹ùxIºwÇKyw¼Nìu­©ã¥ÅÄ·‰DvßÁS,ëñw=^„f®¾Eiæê{?¹ùøb³Wßâ4{õ5§§›±úÞN3Vß’4cõ½¯«oìýÌX}Ë„ø7BtìW¼É!Þ’ŽÆþÿO‡í½4{ì°½—f]¶çÒ\“Q…H±Qb{/͵õ°x´ØL³çÛƒiÖ÷a{0Íú>l¦¹6£ñß´¼Ï÷ýb¥äö}®Áèî>ƒ^¨Èê…Š ô˜9,Ç«!~±9û9×rq>~É[¹ù¹h]..Hërq!îdaîâm4/Û"MnïfQš»—íq>§¸˜8Clo’K\\lî_\‚æþÅ·ÓÜ¿¸$Í+ËÌæMr‹K‰ØeûÄyÄ¥ÅX†ßòdYâ<Ì»x„åh~[œDóÛâò4¿-®@óÛâŠ4¿-®DóÄâÊü!D6}^y „Gþ áD^¡þqÓgÎ7æçlÂ|_°)7±7ÓÝ´…ö榭´÷6™Ÿ_±×6™“_±§6™‹_±§þ£;³±ü|Ÿ93cÉ^ö;ÙטHD–LB*I([dk‘ IvY“5üIÈTÊš²“j¬ERûš,ÙRô^çýã|®çûœ3sÎyîçþ.-¬7¿nO­7¿n/¬7¿Þ‚ß±%¿g+þ@÷äwBBò½ʲÆrNsø¬@¹?¹b¯š¥_à10D2éÍ3éÃ3}åy5!¹Õ„dóø5!¹ Õ„äªT’«QMH®N5!¹Õ„äû¨&$פš\‹jBr2Õ„äû©&$צš\‡jBòœÆºœÎCt{ë8$wˆ9gú|?\ ñÃñßâuæ š›?Â=eT.oÞÌñÏýí¹!â±\ÕüQÊUÍ›sãx¯»éufÊæ-ÄÄÿˆ‡ò_s¾¥óÅ·ÄÃy›#øG†ˆÛ:~Ø(¯kåu“ÄñhÆÑçHò]Æ{˜¸Ó=29§Þ S놩sÃ&„¸NúÐBÓCtì{!±¡k0v2ëñ}Öçº?6ßÔy9„Ò:7Õ¹Ž/8žæ¸!§óaÎ`#¯7Õy…òNWŸé|c~À&ÎËuú‰g‰›Šå„:rÂÇîï:ýi>ªóºçg{þÎa3šÕ¦0•†ø;<¿y0=¿ùmz~ó™ñqˆoY‰f·–•ifkif›afkif›afké;Í0³µôYg˜ÙZú¬3Ìl-}¶f¶–ö\ä°cs[KŸk†¹­¥Ï5ÃÜÖÒ}õb¯PÜÌýboæ¡—ÇÕ÷çGÄõÅ}Źøsóeæá+¼“¯ò.öc^¾Æ|!>úuH\û?~ÃT®ã\®ç#í•OÇÈG{åÓ1òÑ^ùtŒ|´W>#Mú9$6ÁÉ_8Š9š¿r ã»ücyˆã˜Áñ<Ì !dOr|ÄñDå$ã{!ò|³_`S¸—Ö´ÀlΟø÷±÷³%cÿLªtßvevs¾•ó±Fu¯ø–¥úžñÜãžÓ£U/ç\qkqìŸ]•ÇþYVö !öç•>ÿ„ç~ ‘Ÿz†ø±—Ù‹±7¯°¯ÚóòéO}_ãK¼Î—yƒ¯ðo¾Ê›ìÇøÿeÞâë¼Í7øß ñRDä§tïü4qÄ(ߢýü“û}œ=ý“û}œ}ýÓfâ;ÌÌ¡ÌÂaÌÊἃòÇOrÇO£ÄÙ<²{¨g[ ‰oM a¹úùˆú¹õ'±3‘ëVrWq?WÓý±n ÝëÔ¨D÷Gìï¯Ì+wí°Þä¯Ë›Är׎‰”»vL qŸ ù®³-åÐêã69)‡ú¸-3ÕÇmYBØd6|ê¼XÜ–•êä¶;¨NnËæy3ãSŠÕËm¾Cõr[VdNVb.VfnVaV嬯»XyC4^ùºz“^‘’ŸóÆþÞ¿Wù…çÕŸ¯kˆû‰¿äk\Îþ\Á×¹ÒëÔ§¯ï¿!^¢ç|¯ù7è{Íÿ›¾Ïü›ô}æÿCßgþ¿ô=æß¢ï1ÿ6}ùf¶³CÂü’ÄR|‹¥9˜îûwõ'E䟳o‹Ý÷ïêOŠä«ÇgÕçùêñYõy¾{=kÇjô|÷û»»½6§X­ž_1DNœ ñs|¿Ð÷;áúÏñýN¸Îs|¿è{¸È7y‰jy^50¯^ℽrâ/çܳs…è€Z!±êQ&óXˆ>~9$fÅ¿8;D>¼âÛù=ú™v~O\)ÇWë >TwÛ©»ª»íÞ Ñ3ú²¹jÍ}ÙÜ‹!:uwHlþ6÷P­]d¯Õ5NÝ+~‡îçæCéþmî^\dÖ5+Nu7N÷qsùmªû¸¹ü6Õ}Ü\~›ê>n.¿M•çšËoS广jxT¯ø†Y¨ò'Œ0öwÄê™Öë2é™ÖëË3é™ÖëË3é™ÖëË3é™ÖëË3é™ÖëË3é™ÖëË3¥S_žiŸáN¶ ¡Ý¿!\Ô›dÚ%Ö—gÚM}y¦=ìàù[ž×³dÚ+ÖŸgú‘úóL?Qžiõç™öSžégšQâ‡8>àXžéêÑ3¤=Ó¯ìÎߨƒ¿óÅé©7)¡7¹ïǾ7oŸã×” áQ=Ïáub5iˆõÚ®& )M5iHªIC4¤,?¤œû¨5:¼^¼@\ž±Ò½·]­R)„»Ê9V¯‡¨×'åß9òíIùwŽ|ûøÒNžËÃs®‰ÓÄðSžw^^ž#Ÿ”“çÈÁ'åä9î‹“ròœ›îQ}îIyyÎ?Žõº'åæ9®y^ýîØc!¾¡ï=ö8Õ倽Ä'ĽÄrÁÞ‹ü‚—œ?é|ožbžf_‰{ªã3Ž_âYê—”/ö^¦|±÷/Ê{}¯±ö[Cýу+ž߃«¨–Œµÿ¾*^-ö}ÆÚ‡ í˱öaCýуkœ÷ýÆÚ õI~%ö=ÇÚ— íÓ±öeCûTíŠo¨ßþD-«_(Dgމ­’Å¿‰ ówÞB™cŽ9¾ÇkÆx}2ó]ÖæXÖQ¿›;çø¯5—ÔWÏgŽ×ëêÑwÉq›³„¸UæË¾îëUæË¾æÌUæË¾îçUæË¾îçUæË¾æÌUæË¾îãUæË¾îãUæË¾îãUæË¾îãUæË¾îãUæË¾îãÁw…Hûl•9³¯{y•9³¯{y•9³¯{y•³¯{y•9»¯{y•9»¯Ú>8¯Ÿ{‚ùh_®2w÷íÉ-4¯ÚÊÞÜÆ>ü–}¹/ù¹ü~Î>^õøe~ÏWøÍÓ«ÒÙ;øw²?wñuî¦õ˜%Ä·Ö§ÏVÏZë{f«g­'Sný>Õ±ÖS¨ŽµvÍVÇZO£:Öz:Õ±Öú“ÙêXë™TÇZ@u¬õ,楼:[ߨzN©Ãû̹³ó‹ÿÇLu~¢óêÆì‚â¹buß.¾G5av!çç‰'‹ÍÀ½O}ÙìÂÎÏOË M¥þlöÝÎ(ž&ÞÇéÜÏÔ§=4“¼î¯[À$~D÷Lë…,ʽî¯Ó£=4‹z³‡fóWú.û~ãÿø;}‡}‡è³ïˠϺï0}¶}Gè³ì;ê÷ó{‰ˆ‰‹‹‹?çBžp¾„óKÄ>þ“ô3ûNÑk÷¦çöá'<ëõ%½þ–âR–fËPß2û^êOf—åç!îýÔbîé¼3$~=„¹íC¤Ælñ.ñTË ¿Iµ¬ðªa…R +¬ŽvVà «Õ®Âƒ©vVû:«]…‡Pí*¬æuV» «yÕ®ÂèvVë:ëÑ «uõè…ÕºÎzôÂj]g=zaµ®³½°Z×Y^X/ßY^X/ßY^X/ßù8õòOxœô0žà1ÑCO÷mÓ0ø¡<7Ô>ÍgŸ~ÛLüSxÅyû0Ÿ}8Ô>Ìg~û¨óWÙœòùPû,Ÿ}öícâëâbuóÛââ‚bõóÛ–â¿Å…Äêè·­Ä7ù8åö¡…—¾m-þ—OðŸäm>ÅÿB¨«/س‰Ã¹™#¸…#¹5DF|âë6›±÷l£9Ï·ÎãüÃ\ÇF\ÏÆÜÀ&ÜH³ÁˆMÔÕãç¶‹7‹õI#¶P-¡¨«Ð?ÔUƒFèê>FýCÝÔ?ÔmIýCÝVÔ›Ð;Ô5ËÔu}S}¯§þ¡ïõ”ï™ê{=å{¦¶áí2›+SõÛOé#SõÛm´X©Ï0ÂvŒã³Œ²=ãÙ ìÈD>ÇL|ž™Ù‰r|jgfeÞÁ®ÌÆnÔ¦¾@}hjwê1S{Ðü›ú"s‡È"óËsæ—Eæ—çÌ/‹Ì/Ï™_™_žËìƒºŽ‹Ì0Ï™a™až3Ã,2ÃÁ»ø$õO ñËŠp‹r:‹q‹‡¯’㙎Kð–ä,šqÿžM3îßfàeeBh£—ù£ºØ ¼Ì¬û·xYY¿ÃÌú·9x™öosð2sîßæàeæÜ¿ÍÁË̹›—ÅÞËü»,özóï²*4ÿ.«J³ï²j\Ìê!®›uH²~ݬC’õëf’¬_7ëdýºY‡$ë×Í:$¦uH²nU£!þô,Æs68‡‰tVÍÄTfæ\šMNë£;ëÙ¯ÿ,¶Nϧ}tZ?ÝÙ½~ý€Øþ9½€öÍi}tg=ûõ_ÄöËé…´_NLûåô"Ú/§Ó~9½„öÉéOBÜ«‡„ò~¶ðŸ!®òþÊüUùgš¿* ù«ò/|‰iŽîlß\÷•›¿*ÿFóWåß)¯¼º9$–ïÂü[!Rëñq_n¥9nþmç늷‰ý¾æMC82*D~0_3_ÿ`¾öÍÕÃúÓ<=Ì<ýƒyz˜ùíóô°7ù—ÇÇòæ0}úýú˜Ô¯™Iýúßm¥­ÙÊ ÍÌ5+å…fz=úø1³¨cmþ}-$,Obáë,Ê7XŒo²8°DV…Hñkââ’ÄRίvþºø-qif¾Í{C\muá²^¬¶ºpYî®­.\–»k« —åŒÚêÂe=cmßëò]!tµî« —óR=¸œêÀåüT. p¹ Հ˅¨\.L¹ÿ²¬«ùëïcb5àò=ÔÇ]ö}këã.û¾µõq—}ßÚú¸Ë¾omýÛeß·¶¾ír Êm—}ÏÚrÛeß³`gÇãû޵ÇÓw¬=±ï8‘e9‰åBÜx}ÍÃ穯yؽ6I¿ÑD¯“Þá½!:·AHl£ŸœÛúɹS?9·õ“sÍÉs›8¾æaüìÕi¨O3+wu?Åý¿ÚBNõ~£Üüd—-èšíÉ‚2¹W/_еۣ)›¢»·¾ØµÛãZM‰?Ä(8ïZîQ#›Ÿg,¦ùyÆšŸg|BóóŒ¥!úáêØ®×ðÅÒ~ ‘j͇_‰ÕñS‡øÔ¡¼Éaü‡Ãù/GðGò6å›SÿqtˆœÖJ¥Ža„ï2Žc)w§Ž£Ü:žrwêÊÝ©)w§N¢Üª×9-w§N¦œú>åìÔ)”«S§†× tZ¾NÕÇœ–§Sõ1§åéT9«}Åx×þRÕ½êĕĿ˜ö•)w¥ªƒÕ;‡ÈûmдßÅþÛ(}é{nžî.½è] æ¸-öß |!¤X»Ã5in?\‹æõÃÉ!î™!!ö÷?³‹rþ3»)g'p¼Ç±¼¯‡^k¯ÆëŸ×^ þyíEêŸ×^ á=ÓŸ©gÿ³‰óúéµ—©Ÿ^«OŽ×O¯½BýôÚ«ÔO¯•/ãõÓkåÇxýôZŸë=ÖŸMŽÅ³o²/ÿ±8/8~ɱ|¯÷^k^©g?]/Hûéz!ÚO× Ó~º~7í§ë÷Ð~ºžDûézÚO׋Ò~º^ŒöÓõâ!:ôrH¬ý?þÅÔ>Ú"µõÜÙ¬ÁÐ+ÎÍåUΣ=Q{>¯óC÷g÷g6>@}àšN!Ò\ ×_F×uÎïÑS†X?© úÆè=>÷>ŸûŸ{ŸÏ}ϽÏç¾ÇçÞçsßãsïó¹ïñ¹÷ùÜ÷øÜû|î{|î}>÷=>÷>Ÿûy`_ ÊûJÚSjܽæÝ{äƒ}¥(ì+Mù`_Êûìÿ{äƒ}z¥Òφ¸ÑfåzûiV®§çmV®§ÇmV®§§mV®wfåz¿Ò¬\ï7š•ëýN³r½C4+×Ë Y¹ÞaÖö¨ãaF®§¯­§‡ª§þ$/ ñálÆ/™Âå|”+Øœ+ùW±W³¥:V_{[¼FÜŠ_ñq®ek~Í'ø Ÿôz¹æï!!$¬snsOq=ÛpŸöš^óŽx£¸­Úæ\Á¶âMâg¸™í¸…®YòVšg3ª†øiê}F5®au~Å\Ëûøuˆ[zé»VD©ïZÏ¥L`Z±ÿVÝ<·"Qü)3ñ³2/Ñ jÝqsrµî¸9¹‚Zw<3Õºãæã jÝq3JñóŠÕ¼ã敤í!~¿ÏœôŸ ¡£~ùŠ^6é{q{þÀLgGîàsÜÉ繋¸›C4“Z½î?ªÕëÕêõ‘ÞK‘R‹ÕìõqT³×G©f¯§š½Þ¼ŸÉ÷Xï{dò=Öû™|õ¾G&ßc½ï‘É÷XoÎÏä󯿃jözû*“š½>;Õêõ9¨V¯Ï"_êƒzFCh2=„_÷‹õC=ã©êé3}©ê)~©ê)W5ÑSÿjFûR_û9šè¥= VÏzf¡¾¨gVê‹zÞA}QÏlÔõÌN}QÏÔõŒ½¿¾¨g.ê‹zšù¾ÔõÌC9º§ý¥Ýó.ÊÏ=Í>_ÊÉ=ó…HŸ'B|©_ù$ãSüæïRæï>æïRæï>æïRæï>æïRæï>æïRæï>æïRæï>æïRæï>æïRæï>æïR'ùOñyž¦<^ê åñRg)—:Gy¼Ô”·K§¼]êÏ‚û·Ü]êåîR)w—ºD¹»”šÓGî.¥ÿî#g—ºB9»ÔUÊÙ¥®Q¾.uòu©|…óUÞd?þC½p©©.e^è£.e>è£.õõÂ¥õ}ôÂ¥õ}ôÀ¥õ}¬}iýCk^Úš÷±æ¥­yk^Úš÷±æ¥­y kþkUÙlùkUY®l`æ½9Ísf„æÞ›ÓC´ú#!á¬~¨z3þÂŒÖ!Ra2ŸàûΧ8¯?ªþ(¯:ÿ¤óOQmŸÑ†~猧û}ͽ­X}¯þ˜X-žñŒØûVo!Vûfè *| n)þ›­x“ó¶æ¿|‚ê^u}óÙÛ´ÏÚ‹ÕíÅsöbu{ñ\„öà9{°º=xάnž³«ÛƒçìÁêöà9{°º=xάnž³«ÛƒçìÁz¨‡Sé]÷}>0UZAóW¥•4UZEóW¥Õ^çú]÷}ë]`ìZp~ ò+ç/:ïûÖ»D³Øƒœ_+¾,6{Õû‹³y…s<ÿ–ç¿_«Çõ®1•ש×»A5¸ž¹õº\ï&ÕàzÿpÿåG¼Å…¼Íù…¨Ò‘p]Y?B=f}yùº||Ÿžðü4ê ÏOqZ¦øó3¨'—'B¸ñ¾XoxÞ\_SoxÞìXSoxÞçï¢Þܘ"Ö#ž7ß×Ô#ž×O|ر>ñ¼ï_þÚ•“f]¹¨oÞ¥o~_½(cíóë›wékóë—wÝIýñ.ýq~³Æ®¼4cìÊG3Æ®ü4cì*@=Ñ.=Q~½Å.½E~½Å.½E~½Å.½E~½Å.½E~½Å.½E~½Å.½E~½Å®¢!rU½H{<„6jÉ9óÌUu#­µØ¼t®³1…zœsz^I³?®ª#iöÃUu$Í~¸ªŽ¤ÙWÕ‘4ûáª:’f\UGÒÜÿW÷Ð}u/ŸåTK¯þÄ!Zî®päæå:æãzæçàFä&âfæÞÍ­¼‡Û˜ÄoY„ÛY”ß±¿gqþÀLaÚü)w„ò¨ó%ßÁRÜÉÒÜÅ2ÜÍ{¹‡e¹×Ï-ðsÇø;_ÎùYž?±÷±"÷³õ™åôaG°Š‡ìÈ/C(oÿï7M0 o©ã;PmßÑã9ÇÙ=Ô¦×ÕžÊjÏëjOeµçuµ§²ÚóºÚSYíyÝ<^9?ßcNfA¾ÏBœÂœJ÷Ìá©ú×nœÆÔ0yüEyüKyüEyüKyüE=z“÷ÕÒ½bùüEùüKùüEùüKùüEùüKùüÅÿ¼NÎüÕÜö¥¼ÞS©i"wþú“X~ï©—h"çüºO,Ï÷”ç;ÿâ wá!ve»ñ0}žÎGØGÙƒÇø"ÓTßÂvµºó q/ñ±y¾ºuÚ®fw>é|ožbžf_žáK<Ë—yޝðš…;Ÿg?¿çG¿GÍïü§øµr}æø‚cy³óEÊ›/QÞì|™ozÍç!úMáØÏ½ðÍÝt/|s÷‡øÈÞ¸f‰9lYˆëº0$Üc®êú1›†PøNÇ‹ë».f³í²$$ÞÝšŸð .å“LãSü”møõ´ƒê‡H.½ó²‘!¡G%ñCb½ñ Ôÿ.å|eŽf•ŠH„ƒzn¨scœ«ÊwYc©Ÿ\6Ž58ž÷qkr"kqÍœËÞãý¾ëÛ!ñµda,~‡µ9”uB(×Òñ0Çp8ëräHÖã(JæåZ9íø!Ža¾Ë†K}é7ãØˆãi^ÍQ$Ä}aÏöØM{¶‡{bµÍåša¯öpo ²Æ¹¾Û³=¬qf½â ~Î}éœýÛã'Ú¿=öÑþíavôšç—ÓÚçR3Yû\jæ kŸk•×Ùß=~«¹VS­Ì¥VR+s}åyóWs×ö~_œW+s­¥š˜ëkæ7|›ë8„ë½ÞœÖÃ|ö…9­‡ùì sZóÙæ´æ³/Ìi=…°p„™V~õJH¬WDÕ/Lõ©þÝTŸbÿ-ÔñÓ^ë:}¥vOmñ›âCâAÌà[<ÌÁž·Ÿÿ‹ý3%óy癣Âc”ož9N¹å”kú¿[tMÿw;„wõ#IfÒS®íÿþ£k«Š;¥ÏMPŸ›G}nj”úÜÔxêsS¨ÏMM¤>7Õ¤/êûoej1öß˸;O¢{±ó{”:Of¾O¹çp35Oÿt8…±Zø(݇›3)„5êPs½æáÇÄú¨Ã-X”-iÿnÅâ|œöÍáÖ,â¾Þ.ËwXŽCYžÃ<†{ŒË1oË/oW qõͧ7ì‡úæÓ÷Ð|z#‰æÓrY}óé¢4ŸÞ(Fóéâ4ŸÞ(Aóé ï[ß|z£õ7JSp£ õ7î¥á†ÏU_pÃ窯G¸ásÕ×#ܨ@=ŠÔ#܈}.= ÷Y‚<ÐâzH̤·mqƒúós~ˆËpOsg¸‡§¹‡G'…ÈÝíÅz¼ißP7mõxÓÖ{¾ˆç;ˆõzÓ6P¯7m#õzÓ6Q¯7m3õzÓ¶P¯7m+õzÓä®%BbÑt–¤ž­G)êÙz”¦ž­GêÙzÜK=[²ÜËr”ççéßç=塽oŠÇTiž/ïyõºGª×=*R閭&Õ»©™‰EõnjfbQ¹{Ãw!ò¤~?È«[Š¿g¿)n"f²øùãin˜?æ…ùi^˜?‰~vþ{ô3ó'3+ßçô¹Îe£Ïv.;§1§3'g0g27?`ÎâœÍ»h^É«ç9—×ñÿ˜f­jmËTk[Êé‹_ ‰Ï»ÿ3V„Äé#¹’£B´¹kïZ4w-â]‹æ®E¼kaÖIØ}žø'ó›ð"›òÍÜ»ÍÜÍÜ»ÿ¢{·» {÷UÊ×»åë‚òõnùº |½[¾.(_ï–¯ Ê×»åë‚òõn³rAyz·^¹ \²[~.(—ì–Ÿ Ê!»åç‚rˆR-(‡ì1+”Cö˜• Ê!{ÌÊå=få‚rȳrA9dY¹ ²Ç¬\Ь¼Ç¬\Ь¼Ç¬\ðyfu}ä•çë‡èP5°¶Ú7Tm«-Ï UkË3CÕ¾ÚòæG›ÕQï7ÔëkË7Cå¡ÚòÍPy¨¶|3Tª­×*ÕÖë •‡j× q%õ‘¿ >ò7×ÿfzHüâÃÖ ‘'ä™›;Äfß›;ù‘óÇœ—wnî›oî¦øæ.òüqÏ—à –t^ÏùÅbñIq)žbiçtÞŒ|ó'š=nîãRÏŸö|ñ~qæ§ÎŸqþ^ññgâ³â²â_ÄzÞ›¹,„œ =wÎsåœ3×|ñã—üËyˆ+˜Á•<ÌU(|œöAá´ Ÿ¤}PøíƒÂ§i>Cû ðYÚ…ÏÑ>(üíƒÂçiÄþ}}û ðÚ…/Ò>(|‰öAáË´ ÿEû °}uërH\aî½õͽ·®ÐÜ{ë*åÌ[×(gÞ’ËWÈ™·äòræ-¹|…œyë&åÌ+Öd©5¹bM–Z“+Öd©5Y·%DZÛGWŽŠ×ðõhWŽS¶n«çí¯+'Äú¨+'©Ÿ]·ÍyûíÊ)±~íŠ~o©~íŠoéÏëyûðŠ^o©¹ÿŠ>o©¹ÿŠ>o©¹ÿŠ>o©¾öŠ>oéV¯ßîõöë• b5áÊE~뼜ÜÚþ½rI¼®ÇR×ãŠë±ô{ÏËÑ­íë+®ËR×åŠë²Ôu¹âº,u]®¸.K]—+®ËR×åŠë²twˆt+âïù„¥¸”¥™B ýÙvûª†þl»™®†þl»û¶†þl»}TC¶=ö:ýÙvû'è/¯WñŸ~Ã\Çû¸ž5¹!D—ºf]fÒµêò]«.³B(kö[êzuÑ/uºÌ q)ÃBBT¿2œú…+òÛR=ÒùmiBãv„H±lbyn©^éŠ<·4å¹¥™CÈÚ±\·4 庥rÝôê!ñ±£¬AyæÚZŸ«¿fc~Ã&\Ǧ\ÏG¸Í¸‘)ÜÄG¹™ÍCôí:!±æ)>ÀÓ¬Ë3|ú‹·ëñëó>D5æíTcú&„ÄÒŸ1‘rMßL\¢{ó‡Ä1¿³Í@ý)W ÑaòK±t/×¢Eì±ýjM{lÿõ¦ì ‘²ÙÅöÚ~5§ˆ½¶_Í)b¯í¿Bñ·ÛoûÕ"öÛ~u§ˆý¶_Ý)b¿í×ÃìXíÙ¯öQ{Œ~Ñ"jÏÏjOµçgµ ˆÚó³=SÄÚülo±6?'„Èk‡B|Å®!$—!½«8C¬ß|í0_p¾ŒóÝBÈÝÚñ½Ž_ðÜÏuçQš’Ë:‹‰_äqºçí ‘š¹C´—ý\RÝèõõ±½þ¥Ü\Æ^.cÿN·¯[L qÝå´"òWwù¬È‰Æ«Åõ7ô¯Ÿëoè_?7ŒWŠû\ãÕâ>Óxù¿¸Ï0^®/{ûñsóÊø?ıן§¾ò†ûósóËxkS<æê/oèƒ?7ÏŒ¿(®,)ÖoŽ¿$6׌¿LsÍø¿XÍó£<;E\]ñ»âØëÆ2öü8ÆÎ§9hüu¯«)ž ®Å‰Læ$ÞÏ÷X›“Y‡ïó?wÃÏÅ^?E\—Sù §Q=¿1õ9ƒ…øÄé!qÝ›œA³Rø*įnD{kucÚ[«›ÐÞZÝ”öÖêGho­nF{ku í­Õ†è4yë1ë:MÞzì£W½wˆ×g†ÎûB¸q—¸81Ώê}ÛóÕ_bf¾Lû½ú+ÌÊWyû1[ˆÞ·&$œ7ÓÞ÷Í´÷­e~Í®ü†Ý¸Ž/p=»s{p#åÅŸ‡H=á}›Ä=¹™½¸…½¹•}¸}ù-_âv¾Ìïø ¿ç«üý˜Î׸ƒý¹“¯sß‘>f¥ÒÙiV*ƒf¥Ò9iV*‹f¥Ò¹iV*‡f¥ÒwÒ¬Tú.š•Jç !Wìßa™—JÇþ}žy©t~çbÿ>ËÌTº€\nÖÉû÷Zf§Òßòˆý{-3TéBŽå„…ÑØ~yŸ>" †ˆãÅzž…rY{õu¡\Ö^}](—µ_ÍÌ´/f¡ºº0+×òª§ ³ñf§:º0ÕÑ…9©v,ÌEõsanªŸ óp³÷oàýßß)VGÞÅ­ÌKõsa>~K¹´½º¹P.m¯n.,H}ÄÂBT/¦z¹ðnª— ï¡z¹ßû?Dï?>#„ò'û ãÓg$DsÙëÛ+Ñß^™öòö*´‡·W¥½»½íÙíÕiÏn7£L”³š, qkÓB«OòS>ÅÏØ&„·#!r§½¶ösñÓ\ƶü‚Ïx>Îó1ÊŒgCÏéùv\Îg¹‚æÖµ+ÙAÏßMÏ_€/° »³Pˆ,PמUï¨kÏ6 ¡a¿~þ2„¦®™{„>¦îtê÷êΡ´Ùt„ž¯î̺gk¿Ã†ê¼°®~h„°î,êýêê…FèýêΡys„~¯îÿ<üžÃîÕéêÐMB|eµþ¦ÜBíâ!ì|^üˆXo÷F3îa ÷Ú·fèç?ñ‹ÙãÏrlÖÊq;$l3cåø‹B4§ôºm1#4C匣*g”KO³SÎ~"ÿÜñ_Žæ!òoðˆˆå¤Ø[ðåØž–3ÿX"/ÿâË>B-Ÿó‡çCôúç!ñ3³øõem¶2^ÿÂñ˜·ÂžèmO¬°'zÛ+ì‰Þmh/ô¶VØ ½í…öBïgèžïíž_ážïíž_ážïíž_ážïݫؑ«ùÕ‚ÞÖ…ZлÕ‚Þ©ôîBµ wWª½»Q-èýÕ‚ÞÝ©ôîA5 ÷‹Tz÷¤лÕ€Þ½©ôîC5 w_ª½_¢Ðûeª½cÿíŒÐûUª½ûQ è­L›UàÛÔûMB¹fò;”k¾»/$¹ÊšÔ~W‹×™L½ßw÷Sï÷]mÞ¤^uˆ¾ï;½ê}ßwzÕ!ú¾ïôªCnS¯:ä¿wçÍÿÃ8·‰^âòkâÄãù/c6C-çû‹o‰'Ò=ðä-ªW< W,ªW< W,ªW< W,ªW< W,ªW< W,ªW<`n*ª?`>*ª?Iß9Þ±þ€Y§¨þý€™¦¨þý@쿚ณã;Ø™jzÑ.ÔëíÊìÆœ|¹ØúÅ¢=˜‡/òÎÝÜ'$,þ4÷o~‰æýÍ/Ól¿ùêó–¿"M×qգͯ:¯\þŽX]ÚÜOl]6¿FýÞò¡Î«S›û‹õ{ˇ‰7q8Õ«å#¸…#©Nm~Ýëô}ËG‰Õ«ÍoˆÕŒÍoR¿·Ü¾jjþ[>†ê׿Ϋ!›²†óï:¯žm$¾OX›CY‡Ãø‡SÿhÍ&š³ÈÛÖ=abå‰êƒuO˜¨>X÷„‰êƒ5O˜¸ŒYø³R=°Þ Õë0Q=°Þ Õë01ö{sR=ˆýݱ¿#Sã¿nÇ^CˆâJ=â»B=j©öŽ/³ÿbG^ás¼Êçyxyƒ]ø7»ò&»ñ¾Àٷ؃·ù"í¥R=Cüï±?š¢ÕôÙ C|kóúì‡ùÑš<ôyû̳}þÖ±ÿçZ~oû¬å÷ÖÖ&ϤžÂE5Cüæ\ÂÜ|‡y8”îïþú›Šú¡þú›Šî³þjFÅmróƒròv9y”œ‹ë‰¿c}~B¾‡]/s@>sñ¿úû/õF;õL#Òïñ+ýο™ÁõšE[†¸‹fŒEf†‹fŒEfŒ‹fŒEfŒ‹fŒEfŒ‹fŒEfŒürÈ® ”CvM ÑŸÔ·qzÁŸ.Q/¸ËûŒô>»¼ÏHï³ËûŒü>ûHsð.½ÙH½Ø.½ÙÈ &Q¶«õa»ŠÒ|¿«±8‡°²`ˆ4{Z\Bl\©×iÖV\R|R\XüŒ¸”ø”ønq;ÞÃg/íüiq’¸½¸ŒØ|¿ë^žu¾ˆóúª]eÅçÄEÅÅåĈ‹‰Ÿ—Ÿ«»*ˆÍÿ»*ò‚ó%œïÄ’4ŸìªäüEq)±9eWe±{xei±yeWñeVå_ΗqÞ\½ò^š_vUsþЏ¬Ø³«ºX­ØUƒ×œ/ç¼Y{eyªÑ++ÐŒ½²"{±{³2õ:»Ôš‘×ÅUÄ}Y•æš]jÏHµf—Ú3R­Ù¥öŒTkv©=#Õš]jÏHµf—Ú3R­Ù¥öŒTkv©=#ÍéÑ—œ£}‰¾fùõßk0oð횸f¿ùlËÿÿ)ö—«Q½äáåî«^òîr÷U¯ažw-óÙ—«M½äÝåjS/ywù”wW¸Å{É·+ô)½ä×q”_WDù®*®ˆw,—®H :ØÄ:üæ:¬HË¡+2Q]‘™rèŠ,”CWdeìçïàd?g½~s½VdË¥+²S]‘ƒS™“Ó˜‹Ó™›3Bte‹ØG\Ù’ê¤þ,q°{@–8ØÚëÏ›Uõg‰ƒ_—õy¨wú´ÄÁÖZŸ–8ØÚ.ßë|nþHõOß–8øE~J³ë¶Ïhvݦlvݦl­·éÛ]·}Ik¼m9Í®ÛVÐìºm%Í®ÛVÑìºm5õ åV„ø£æúr+i®/·Šr5›‡Ðij×~¯?&ž&Þ'þJÜ‚kÙÒùéÎï-nÅoø8×±5×ó ¯Ó[_ûY¼A¬_,·‘úÅrf™£f¨Núík’=^9sÍQ½c¹-Ô;–ÛÊØŸãÿ×ü"Þ&ÖC–û–zÈrÛ©‡,÷õå¾§²œ>ö¨²\:õåv0öûwRYnõåvSYN-:ª‡,§U+²^ ‰›ð:Ñ—Ë™}õeô}õeì½>ÇB$ªOîsœ%œ×–ÑOöÕ–ÑOöÝIýd_sH™—¼î„וï¿,>).%Þ#~E|J\Z¼W¬Ïìû#õ™}¢uë»ú¹¾ûùzˆv2“2Çt2“Äþ\¿Nf’BîËNrv¡™”³ ™Y:É?þr<Ëcvˆ¬VSûú,«ÕÔ¾'Ctû/úI¯ß~^¿ýWšq¶ÿF3ÎößiÆÙ~ˆÿcÍ8Ûsnˆü×|Ÿ¸”û˜Æýü”?ó3àçô~k–Ñû­ÑC´0›g*J³y¦b4›g*N³y&×µ…Ù<“ëÖÂlžÉõja6Ïä:µÇ2Ï{©Æe*K5.S9ªq™ÊSËTj\¦Š|Ÿ•8…•9•U8UC|9t[쟷TñYôh;†°q_ˆ–y8Žwr<ïâæåDæã$æç{,ÀÉÔ3tŸ…B¸ï޾k&ž"Ö+tŸJ=B÷iÔ#tŸN½A÷Ô tŸI=@w³vQµ¿»9»¨šß}6Õøîs¨ÆwÿÕöî©TÓ»»ß‹ªáÝçÑ=Wù¥*_ff½«ë\ùÇf¢MO…ÄæœMm˜+„õB¨h–þ+¯zV®Y"×Ô£½s´>í£ÑÞ9Ú€öÎц´wŽê›ËÙ;GõÎåì£åËX^ûÂq“9¢œ¡G<Ò€úÖ#ú×ØßŸ|Dÿûû“è_coò}ë ýê}ëŒ]Ô·ÎØÍG¨>iFõèH Õ£#R-¸£Xˆßd¯ÞQœúý;JP¿GIê÷ï(Eý~+{8K‰z˜¿nÉ•­ìå,ön+{9‹½ÛÊ^Îbï¶²—³˜í–ªI]Ô¸¥k¨Æ-ýŠjÜÒµTã–~M5né7Tã–®£·t=Õ¸¥¨Æ-ÝH5né&šÉ—nfn¡\¹t+ßà6¾Éo9€Û90„2zê2<‡hvûr«96»}¹UœÝ¾Üª¯ÏªÍnon}öäV½Ãä!RZÍ,¦ß™ìþ.­^Nv—ná5öëÖ÷ÅîóÒêåd÷yéVtŸ—~œîóÒ­ýì¯=çµSø§ò<åöìR-v1D¯»>“·VÔ ½N±>õ¼oõ ‘ÜŸ°7cÿÏÏCΟ÷›åV4ëßê+þ”/ÑL·¢¡óçø0íÝöp/}\fë¸Â>îõgˆœx5ÄÏÖ~*u«ÅLæHš-?E³å§£i¶üt Í–Ÿ¾ËºË9Žõ8žõCøäë©÷¿¡ß?ÃzµT?Y'¾ÅõÔΰ~-_oëCgXÇ–Öy†uligXÇ–Öy†uliíÄ–ÖÙHlû3Ñ6†ˆ·‹Ú ‰-­·½Ør`ˆ¨†WW›ªÙÕ_¢š]ýeªÙÕ_¡š]Ý}•Ú>$¶ÉÎÌÁŽ´§SŸ£^.õyæf'æ á^÷нî¡ÔÎâ;7Q{'©»÷‡0W¿[ýÝé=qm±^µ†{¼Ódq±4öïjçêÙk¸×;½ï¼kÙi ÍéÅä²_b¿ÖÿW¯d® ÑúŠ9fØWh†=q•ÛBÜ3o†„Ú_‹kÒþZ\‹öÕâdÚW‹ï§ý´¸67†¸lî“-ú¥lî“-ú¥ljá÷O6µp‹û'›Z¸EÞɦnÑ/eS ·è—²©…[ªR-ÜRóY²ð>~Äš\H×öÙÏB¸¨7Èö±X_mïçbÖ¦º¸Åµxös¯» V·<@õq‹}M}Üò ÕÇ-êg6õq‹k?ϱ¹E ͦFnQC³©[ÔÐl_R Ͷœjh63ЖÆtOmiB~ýó˼ßEçÜ_[šÒýµåº¯¶˜—²¹¶èá²¹¶˜—²¹¶4§û`‹)›û`‹ù(›{`‹}˜Í=°Å\”Í=°Å\”Í=°¥uˆö¾K}ÌÛ\âš ñÿÝÅÌËAÌÇ·h5L{¨ÉÛ´‡š ¡=ÔäÚCM†Òj2ŒöP“á´‡šŒ =Ôd$õ×MFQÝD/öŸþº‰^ì?ýu½ØjôµŠ!!mã»…H±Ä•Äæ¶k•y€Uh»V•Y¿†Èe3Ö’'iÆZòÍXKÚÐŒµäiš±–´¥kÉ34c-iÇùlˆÞ)çþ wß)çþ wßi>úA¾Ó\ôÀé«,£ì«,£ì«,£ì«,£ì«,Sˆz¿2z¿¾z¿2z¿¾òe½__ù±ŒÞ¯¯¼XFï××ý^Fï××ý^Fï××ý^Fï××ý^Fï××ý^Fï××ý^Fï××ý^Fï××ý^Fï××ý^æ^ºßË”¥û½L9ºßËÄþ{V=Óõ“lNuºþc<Í<ÖÔÿÕoEõ·þãTë·¦Þ¹þ´?ê?I÷ý§è¾¬ß†—ø4õÿõÛò¯ jÌ»©ÿ7Õø„S!>Ú4$®Õ¯E¡ùtcÅy²—¸™Xo¶Qz²·8E¬‹>Jý[´9Kó1–a ÞË–,ËV,ÇÇYž­Y!Dw¨µ#Þ¥;b,ÕØ㸃㹓ú©»¨ŸÚ±›“¸‡z©{©—*ÿ¸c³äˆ÷i–¡ú*OH|ùûb†N£>!”+èQÈù;ÿw1zê—w0w2?w±w³ ÷°÷²0ô» ;¾ÛñOŽïv|ã}Lâ~áÏ!ZO»^‚êØõ’TÇ®—¢:v½tèÁ*}"VÏ®ëkë©g×ï¥zv½,Õ³ë娞]/Ïatíê gEš¯W¢þùzeꛯW¡¾ùzUꛯW£¾ùzuš¯«_å}þí®ëñ!,¿"è!š?ÚÿM½[û›ìÇøÿ !Ï Çýß ‘)çCü£jë”?©öÕ!„ŸŠ/ˆÕÀúÝų9Ñù×y‰oð2ÕÄ)Ñ^r…j×”«Äk|‹×9˜7ø6ÿæÞä;ü‡Cù/‡ñ‡ó6Gð?Ž ‘[B|ìï†Ù©~Æþn˜ÛØœßò1ng ~Ç–üžrðŽ™!a„z°ãª;fQÏ?L=ÌoÖÝ1[¬.ì˜CuaÇÿ¨. S'óÿ'N« ;æòçõ•Æó¸óÄjÃŽùLq~“óæãŠÕˆ ¨FìøˆjÄŽ…T#v|L5bÇ"Æ>ßbª;–°5?á\Ê'™Æ§ø)åÖCr÷4sÆ!¹{šùâ9zšþ³•9ãÄD=ÝhçÌÔÓ̇ÌÔÓ̇ÌÔÓÌÔ‡äÓiòé!ùtš|zH>&Ÿ’O§É§‡äÓiòé!ùtš|zH>&Ÿ’O§É§‡äÓiòé!ùtš|zH>&Ÿ’O§É§‡äÓiòé!ùtš|:H­Q*„:æô]mY˜êÀ yµ†½Sçnq;ÞÃg™Äöž—okÈ·ƒäÛ÷:_ÄùÔîêÈb|Îóòp²b¹n—·Ž·«“óòr ýr’âÎbù¹†>¹ŽÏ²KŸ[Ç{ïÒçÖ)C5o>¥FêSjÈ™ƒô'5äÊAú“•½ÎgØõ‚XŸRÃ>¤O©¡¤?©¡¤?©Qú“5¨?©¡·Ì;%„Ö'C8­–ü™'Ä4‹wr6ïâæåÿ˜©ÌO½zÎ'BôÒ[!qqKf+¾M¹òÒš×¹Ö?/~G{ýP>é¼ë°N{ܵx¼³óÜwÝ¥H—Gó¿ç!ïÆÿ⡞ß5ÚÃ}•^È#öÿõ® »ìÿ÷õ«÷FÅÄòÀû[ÅñââÅÛÄ âMâžâoʼnâÍb3}þ-4÷äßJóNþm4Óçÿ–æœüÛi¦¿,‡/>¢ßª#oÇþ~“!~¸unþvGô¯é¿ˆ­wúAZçØŸÄþMÿUì;¦ÿFëœþ;»ð»2ƒÖ7ý0å·æïø¹ Jû8ýˆóÝy”¾_ìÏ‘?b§û~͇‹õíéÇž_ób×$ý„¸—x¤Ø5I?)î-%vMÒÕâáfðôÓ4Ÿ¤Ÿ¡¹¤ùhÏ»FégÅ/ó;ÍÇ8¿ïò;çÿpÞ|ÒÜ|vä{±\=\®N—«‡ËÕÍÇ9ÿƒX®ÞŸrópóJsµàHºXŽ.G§ËÑÃåèt9z¸.G—£Óåèártº=\ŽN—£‡ËÑérôp9:]Ž.G§ËÑÃß Ñ™æÐVs*…èB3~3ÿnýÃè\!´—.µr/}ârØKÛj…ès¹zb.W/¢Sô êEtŠ5V/¢Sô êEtŠ^A½ˆNÑ+¨Ñ)jšz¢WP/¢Sô êEtŠ^A½ˆNÑ'¨Ñ)úõ":e‡s?GðgŽäŽâ/̓Ã_ùnˆËäÞXß‹îõ½é^X¯ÏhwÛ,`ÖÈäžXo&o÷ŸØÌ‘É=±ÞJSá¢Ù#“{býËt/¬%ÄPŸv· ¡Ãåþ2P§v?Muj·Ü×A¿ö—Y©€zµûªW»ÛQ½Úý,Õ«Ýíù;Po½»#õÖ»Ÿ£Þz÷óÔ[ïîD½õîÎÔ[ïîB½õî®Ô[ï6³w¸âýÌ¿®ÒLVà'çí×Äf³ûÄݹŸ=ø3_¤½·Û½Þáº×™Ý Ø{»]§öÞn÷xü ÇöÝî>´ïv»Fùõ¤ì½Ý/…ÈÛf“Z™i6©•…f“ZYåÐ4OåÑ?<Î;oV©eöÊýžcóJ­l4¯ÔÊ"Wõ/Kõ(Wõ/KcÿÝKq}ÎQ–à1ýÎeýŽÞè»’âãÔ}WÚñ “!òNÇŸó9žâó<ÍN<ÃÎ<Ë.<Ç®üƒÝè³½óÿdw^`^ä‹Ôk½Ó“>Ã;zë俨§N¾Â>¼Ê¾¼Æ—x/SïõŽþ,YöŽï—|3D¿·†f£þ{höV¨™tëÇæ >|hÎý°XH|foˆ›ùjHheþ›Ùæ¿™¯Ñü7³?Í3_§ùoæ4ÿÍ|“jæ=ú˜™úØVfÀ™úØVfÀ™úØVfÀ™úØVfÀ™ú×V¥BÜ·CB•ùü†¸7U0ÂBôA}ÒµÆÔ']kBýѵ¦Ô]33ò|=óö(Ï×ÓWò|=}Õ(Ï×ÓWÝS?ÄE¢!~õÆs"8‰‰|™¨>µ•“Ï›“#™Åï3 §0+§òNó:¹úübq6ñtfç æàLæäÌÅYÌÍÙT“WÏ¡š¼ú~ûþü±Ú¼:•jóê¹T›WÏ£Ú¼ÚµÑÆ¯vm"éÚDÔÍÕææHa.äÝÔ;¯ÖS=ú4õT¶ Ñ_„Ä÷šq õ²ãSBüÃ{in|8öw·›ã~4WŽ7?>û;Üω͗ãÍ‘ï£9òáý4G>ü3Í‘ 9òá_hŽ|ø Í‘Çþ.w{íÇòbóäÿÑ<ùðï4O>|ˆæÉ‡3hž|ø°×Ÿ÷ú ü“y•x‘ú /± 師RNûQÿ3þ?$„ˆ~f|;ÇGù,±=‡ðÉG!R/¦£Þ‰–;$Öþ†æ¼Úëh®«½žæºÚ¨'¨½‘æºÚ›BøèpˆÔ."6ßÕÞLó]ìÿ9f¾‹ý¿æÃÌw±ÿÇ|˜ù.öÿ”3ÛÕÞNs]íïh®«ý=ÍuµÍÊÒü8ÌÞªm~&ÇÔ6?“cjï qf„„IÑü0©AŸN ‘;9‰æËn‡ÄaëìÙ)öìâÿÄëÅSÅ?…hzûéúéqÜÄ(7‡¸ËæÄ%úÊq=B¤¨{ü²yq‰^vÜ‹b÷òesã=츞b÷äeóã’ò4?.©@óã’Š4?.©Dóã’Ê4?.©Bóãuè²ùqIìÏTȺ/cV~Á;ø%³q9³ss0ög èÿs=¢÷7 ÿdc^`^ q÷<âúÍø;ÝË?¢{ù§ º‡:âöÝÆ}Í»øM#¦…HÁ}â¼b×oÄtñ~ÎàÏÎçsÞu1S|€PŸ:Bï\ð õÎõºü^§—áž+øõÐ}Ž}œß(ÖKôyö»FÌg„åCÇóÇ>[!ÏmÏ»G|È£Îv~KEÍ#8§æŒpÿ<î¹»=·Õsrç¾{oóœ{ºà ~LýþórÁSžOòü·,Bý݈ÅΟ'^">#.&þ^ü‰ø¬¸¸øñRñ9q ±jDšØžñ)Ï;_ÒùâÏÄöìˆÏiÏŽXFk´¯”çݳ#¾_—»·÷•ánÞË=žÿÒóöôˆå´§G¬àÏ—õ¼º³¯姢橹q!Rã!FÙ DŸŸ Öç ÆÎÇ;ß 4gg«é¹™ž‹½ö6ä,zîY¹ä¢y òcHX£ŒüÄ·B˜è{–ð='úž%䤉¾_ ßo¢ïWÂ÷›èû•“&ú^%䤉> Ÿ¢Ï_ÂçŸèó—¸â÷íóû‹WŠõAWQÿ3q5¯{~¿çÍ׈oˆ›-²¦:÷•ss-ÕêÈÏé?#¿Pÿ9HóÂį=ÿ¿á¿4¯”¸EóI ½äÄ ÔCN4o¸|a¢ù¢d„抒q~ϯ~þ5òÍÍ%£4W”Œ§y¢dÍ %ÍV‘ß½ÎÜ1q»8Í %3ÓœP2 Í%õ[Í%õWÅÌzÅÔÒw]»¤ !îÌ!a^?¦Ó,ñ®k™ä^9³CÜ?DOo ‰sgð[Î ÑcŸ†ÄYf‚_Í´ï›i£¯:þÌqM~ÎZ\Æd~Áûù%k‡è®ú!q”ï¸ë!š#w5 ùq—{`×ÃŽ<C\çÖ!¡²óü+Dô ‰3ë²7dÖc_º×޼ćø2ÝWG^¡ßyäUšS–?{Þb3ZƒÏG…ÈÃjÃò=WO¹ÚøÊ›+ö<Çè¡ËäÙÇrñææRæaå±ýk¡rŽå²„Ï(‡%˜y“³äÖÇ䤹õ19(áË­ê~:ã=ªºwθwªºwθwªºwΘ]ªZû3Ö¾ªµ?cv©jmϘ]ª¢Ù¥jÍ.UÓìRõßåQŽå1ŽãqŽç NàIªWÛô¥oéK·éKßÒ—nÓ—¾¥/ݦ/}Kw;Ä5Ö›Þ¾#DÛç‰w­ ¡äÊ÷ Þüš>òA}ù5}äƒúòkE9ŠzÈGSùàʃ¾K=äƒc©‡|pKs<ËpïåDêoz½âí‰H¯7C¼=é5€¤üÒkå—^oQ>é5˜ö@.½y¯·'r3ѼáþfW·V º¸µ"ÕÅ­•¨.n­Luqkª‹[ÍÙÕÅ­ÕBxïŸ)í^Íþ®Ø¼ôÞ¿â:öÌYçÆ:Wñ>ì=óHéœçœ}ðÞmq]ú¥ôùª˜\e«EJ×£ïSÚ½š}¼×ËÙ'Ð\œ}"“9‰÷ó=Öözß»´{:ûd±Ù:ûû|@.:äxŠcû!ûTÚÙ§Ñ~È>±÷Ыlý¬^e«ýýÚÙgyÌvü°‡¹ý‰ã!1›ûä sR6÷É'9‘§8‰§ùÏp2Ïò}žãþÁ©<Ïiü“ÓyrÆ)gêw”ãÕ,× ß1Ç®Q?׬ÂD¯ÕË×Ò˨—¯¥—ïçVpÍú¹†äØRzÊ~®cìÏv,¥¯ìçZÆþ|Ç~®e×®ŸkYÁµëçZVpíú¹–±?ϱŸkûsû¹–±?¿±Ÿkûsû¹–±?¨Ÿkùÿ‘¾q–¾òx<÷QŸ‰ü9„¯ª†Èc/‰3‰03adVþÊ;ø³ñwf§{ì¸ý?+ƒ9y˜¹x$ÄgÙ7ÎçF~¢£÷…ÄúrØèýTÿî‘:9¹‡¹œÿÙy9môÊi£¡œ6ú G…ÐGmû#DË® Gºs­ÕÇìh ?ÞHkøñ&ÆÎoæ‹ÜžÜÊ^ÜÆÞü–}¸}ù_â÷|™ê]ÇW¨Þu|•ê\Gõïã|»ØŸ»ù:÷ð îå›Ô›t@½IÇÔStD½CÇ·(ÇwL9¾ãÛ”ã;¡ßñÊñ‡RŽï8Œr|Çá”ã;ª÷™íËWÛ‡ÄòrØ«˜…™•ÏQn~õyfc'fÑ™ï„ÄVrØÌ¡”ÃÊX×™ÃWçpÊYe¬ñÌŽåª2¿{òÐÿ–±¶3G:_Ó±ž·ÌQñ(±Ü”$WìoÂýн7¨ºW4EtïMêuîÕë7—·¯jËe—“Cðó‘Šúà™£iöª-·]¾_{>3F¾2!zPΟlN?x…æôƒWiN?xz±ƒ×é^9xƒæô©Ÿ…Äæø9;rŸ ÑÖÉ!1ëÞÏ£!²¦dˆÉœ´¦ÍGkJSNYS†ú³;Í}kîuü™c3ßš²Žõ¾kÊQ¯»¦<Í k*ðËš. á7õ=Î ·¦¢sËCôu þê5 ºðŒGÝ|FÎÏ£&<#ççQ7Ÿ‘ïó¨ÏÈõyÞ qÓ‡„-¹„­ø çR¶fŸà§|’Ÿñ)~Î6!nËŠ0H]ܲ’BxÇþÈëÞØ²J¬>nYMõq˪[¾¢ú¸e-ÕÇ-_S}Üò ÕÇ-ë¨>n‘kÉ­[äØArë9vܺEŽ$·nqo‘_õôп÷Vˆ”ú:D³šý7šý³šý7š»Þìü7â&â‹lJó×{æƒRëĈ/³õñYShËú(¯²9¯ñ1š¿²¶ <óÞ?oæïnp¾¥óòÎ{CÅÅ­Äf°¬óš6þKóÂF}~Ö'©{ídˆ¯Ø›§Ø‡§Ù—gøÏòežã+!$— !½‡ø±¹æµóìÇ?ù凊ý)7T”^“*¾ÁË|“q¯p ¯r¯Ñ5|í:]³×nÐ5zíoú®¯Ý¤ïúÚ?ês”÷9bŽÆ¿b55¹‚¸§ø–x8osÿãÈ‘²â+ʹý#”sûÇQ®í¥\Û?žrmÿʵýé^ꟉrmÿÌ”kûg¡\Û?+õ0ɽ¯õO®ÄÞ¬Ì>4§§÷eU¾D5'ýeê—Óc×Q½I•jMz?ª-éfËäZôa“Õˆôש&¤¿Aýnú›Ôg§ >7} õÓ部ŸN‹úètó{r}šÓ“¢ù<¹ßaCÆ®ßÃŒ]7µ+}8SmMnB³rrSê=’áhÊwéc˜Âwù(õƒÉÍ9ŽQ˜Ü‚Ø’zÀäVœÄÇ»^­©ßK~‚ïóINáSœÊ6œF}cút¶å >ÙlÇø,g±=gÓÞOŸÃŽüŸc*Ÿç\vâ$Nï–¢‰Ó»¥”¡Þ-å^êÝRÊRÍK)G½[JyêÝR*Pï–R‘z·”JÔ»¥T¦Þ-¹hˆ¿à»tÕým/vÕý­þ&sÞwëZR¬'Åô»–rÞíªŸú[]NÖÃ\ð»–«ÏÉz™ >²^æ‚ïÞõ^çÕëd=Í× kY±º¬¯¹àZtU·þ¶—»ª«ßÉzœ ®MWuão3’ºÁ÷TWâ/øžêIüßS~¿à{Êïñ|Où=þ‚ï)¿Ç_ð=å÷ø ±ïYzTù=þ‚¹vù¹¿Yuù¹¿Yuù¹¿þq¹¹¿Yu~©¿Yu~©¿Yu~©ÿê—úÿú¥þ©Ô/õŸKýRÿy4÷ŸO³q³å:³qÿ4÷ÿˆfãþ i6îÿ1ÍÆýÝË9ô—ëÌÇýÝÏå\×r]ÅæäþKx™ŸPÿÙß}]®›c=hÿ´w×Ç!>ý~.bm.f.áü„u¹”2õø)ëó3>ÄÏÙ€ËØ_ða~ÉF\ÎÆ\Á&\ɦ\ÅG¸šjP!ùêEë{ûvˆ{Ú=›ÓZ=ížÍ)‡’à щ®E×x¢kÑÄ5žèZ4q'ºM\㉮C×x¢ïßÄ5žèû7q'úþM\㉾{×x¢þ»‰k\"µn‡èÞ¿Šëÿ†÷¯"_¸Áy9êCï­Ý‰¾áóT1‹ôñ¹KùÜ}|îRæŽ>öb©/C´žžýzêÙ¯»ëéÙ¯»W·,‰ƒúpûr%_â*¾ÌÕ|…k¨þ.·Mÿ%îǵT‡—ê¼ùÏL8¨?¿áë\Ç7¸žorp#†¸/…ømrjŽ— áYùÿ’¾ðYùÿ’¾ðYùÿ’¾ðYùÿR¯{ÅëâÅêÀ%ýá³êÀ%ýá³êÀ%ýá³êÀ¥^÷ª×%ˆÕƒKúÄgÕƒK5ïç|"_c¦w9OHX¼–wòkÞE¹ñr^Êí—Íå‹åöËæòÅrûesùb¹ý²¹|±º0®cˆýŸØ|¾8öïYÍç‹å¾ËæóÅrßeóùb¹ï²ù|ñ·!ræí?/3‡0 ßaVåÆlÎìÁÉœÅ\ÍÜÃ<|—wr,ïâ8æåxæãæçDà$ä{,Dóÿ¼Â4ÿÏ»›æÿyöÇóÿ<ûâÌ4 Ñ3eÝ÷f¢3åh&:Sžf¢3è>=S‘ÿ±RHÔ>DÏTf„UǪŒ²ãY ¬ÁDÞÇL!´T_´‘_û‡øÉjsÔõëëŽÍ]¿¾AïÑ{`H,UŠƒXšoQ®î=˜÷òmªeóþ‘šåÅCÄåøcñPVq=.…„b“CdXû_û8;Л? oÜ­Î> oÜý•ó?ÉçxŠÏSó€~r·ºû€~r·:û€~r÷7žïäù3ì̳ìB}ÏúÌÝênä)çº:§Ê-ç ëæXô€þs·}?ìñŸìÎ ìAûá}énûØ‹âKìÉËìſ؛W؇WÙ—×h¯Õ¾N{­ö=a gÿâ:ê;òí ¾#ßNV¡þ3q²ãªŽw³÷°:÷²ä}ü‰5¹µ¸ŸÉü™÷ókóÖ¡ÜÜ+.D‚ùªW”j[Çœÿ•uùäï¬G¹ºW¼×©}ë‹3ø³°!òac#gcž`ždSžâ#´v½ü^µ´c3ñ¦ð,¥µê•èys^¯LTc;6w^½êøϳå¬^ötP{;¶_`+Z«^öx0ö²Çƒy°—=šyþqÏ_bk^æü‹Oò ŸâU¶áµ×ùxH(<Œ'8œ'9‚§8’§9Šg8šg9†çhþ˜÷tˆÜg>˜×–æƒlf¿yÏ8ÖWõ°'‹Z“yíÄf…yÏrVˆ»ýLHXe;ʹn…H }ËígÅ lO¹ôvÊ¥·;23Ÿc>ϬìÄ;Ø™ÙØ…ÙÙ•9B´ƒš—Ï —úDˆT_¬öåS;:ì¢ÚÑa7Ír©Oz~ŠxX é°—ù#ñ'¾Å}Ìý|›?sðÙz+Ä¿5œ·9‚ÿQ~ôþ¿"F¸ø·F1ÂÑŒãFû3Aþqïxlˆæ<¾Gëó­:žÓú|«Žç´>ߪã9­Ï·“h}¾}ÖçÛÉ!ú]ö8dsp'srsq7ssóp/ï伋?1/÷1õB9žwœßqìÏp×[Óƒõ¸I3[¶ÎŽÿq¬ëñ/õa=nQ¶V.|õþ]òfH줟ÿT~k(§. ®H9¶S%ʱ*SŽíT…rl§ª”c;U ÑŠ/„„¹B˜®v”o'î.Î-VCÊ?K5¤¼{nzv`Qvôº^—G\LüœøEñââb3Ïôìä|Oçõ}ÓKŠ;‡pG{çz9——½™}˜Ÿ}Y€/± _f!¾ÂÂ!Úⓘé‰f‘ªzÆÙ¿Ðë[,uþIñA±Ÿk‘&~Jü«ØÏ·øTÜ&ÄG‡Äµêlt Õ٨߷VúùµêlÔÏ­¨ï^ ïÖsÜõk…P¶EˆnÚ¨Ëí±¦æñåíi_Þú»M[<¯Ž,×W4ÕgoÚ*v/oÚF÷ò¦oé^Þ´ïð;å÷Fýä€áÔOA{k€{{ùs~Ÿ~}“½5`”øy±9y'*ÔË;ÓœŸ£‘רwFÓ¾0†öÛ÷ýò.^£§ßdß +î*vOm²ÿ؛쿱ÿ?¨›óñºÇ6Ùì‰Mû=ìÅ=&éÁò…ø­‹˜Ÿ‹Y€KXŸ°—²0ÍS9îæ§¼‡Ÿ1‰Ÿ‡¸ûÅWP|q%‹pÍÏcóó+æÔebsóŨܬýû öã—Ô¿þ½Üóæè‹æèûÍѱ?Wë~³ÈE=áýf‘‹zÂûÍ"õ„÷›E.ê ï7;\Ü¢iöl—Í´g»˜ÒìÙ.f„4{¶Ë6Ú³]ôúiöl—í´g»|GûµË÷,@soZA¦³冴ÂÜÂgrvCspÚÝb9"íÊiI”#ÒŠPŽH+J9"­刴âT“}âo=Åo؆ëø4׳-7ðnd;n¢=›(—7ÚìØ=ú¹Ù³{2ÍžÝï§Ù³{mš=»× ‘ÉâfâÉâf±Ø,Úì=Ž>f²y´™9÷5>ùXw›Ñî>(Vë“Õè¤Ù!~eΡ?é¬ÊTêí;êõ¯Äâ¹âØßû9zü¤ù¼Ò>K²ßö×¢ý¶?™ iþN2‡ï7'™Ã÷›¿“ÌáûÕ±$sø~Ÿ+ɾßüdßoþN2‡ïý{E›Å÷›Á“Ìâûõ)Ifñýú$×c¿¾!ÉõØo¯ì3œò•}†SÞ£²ÏpÊ{TöNyÊ>Ã)ïQÙg8å=*û §Ìø•}†S~eŸá”ß_Ùg8å÷WöNùý•½ÿ©Øï÷þ§ô•½ÿ)}FeïÊŒ_ÙûŸ2ãWvýOé+*»þ§RB\‡Eú¯ë°˜^×a ½®Ã'ôºK{] qGôE3ô#GôE3ô#GôC3ô#GôC3ô#GôC3ô#Gô?3ô#Gô?3ÌT£—‡Èݱ×éƒfÜ þgÆßÔÿ̸I}Î =æ}ÎŒ©Ï™¡Ÿ½ÂÏÅ~¯~gÆmêwf˜gG¯tÞ 7zcï£ÿ™īű÷[ÃØû<í|„mi~<¢W™©W9¢W™O=ÊL=Ê=ÊL=Ê=ÊL=Ê=ÊL½Ú1sÓ,sÓ1sÓ,sÓ1ù|–¹é˜|>ËÜtL>Ÿen:&ŸÏ2737Í2737Í2737Í2737Í*Âãz¼“z†cæ§Yjà1óÓ,µï˜ùi–ÚwÌü4Kí;6jß±,BÞrŽg:VïŽ}@õîØ,–´KÚ¿êyZ)`iþÂ2<È{ù+Íd]~£~¾Ëï4“u9D3Y— šÉº¦™¬Ë‘Í¡–n»‹êç6õ3‡ú¹MýÌ¡~nS?s¨ŸÛ „°IÏûTãÇ!qs’Øu{ª‰¸®X޽ãAʱwÔ£ÜzG}Ê¡wV+¡7Å7ÄoóoáMêÑ7üá^WÇëˆÿ£Þý ½û½û#ôâöÃ$õ¶‰:Üþ˘׺¥V2'ô/ëÛ¯ þê´>"uõ©Qߺú†ÔéžN]D÷têbº§S—Ð=j>?ížN]J÷tjõ©ŸÒ½›úõ©ŸÓ=›ºŒîÙÔ/èžMý’îÙTùò´{6Uþ;]‘òÝéJ”ïNW¦ÆëlÁlɿي7ù8ÿakþË'x‹Oò6Ÿâl³Êõsé·õ°?-ް-ãø £lGóèœÆ^§Ç}üYqÛ3‘˜‰™™Ï1 ŸgVvâìÌlìÂììJóèãݘ“/0»37{PÍøðÛßÎýÿáv¶àwlÉïÙŠ?ðq¦³5wÐlû§š½Pô§š½Pô§š½ðªÙ ë†hœõ•ϧF}åsÇ™£¿Šý7Ö„HÉòbóôW±ÿÖ:öߨÿé\y/Î|ý•ïg¾þÊ÷‰3_•=„¬ <Ìzqæì¯r„¸ëÏôO×ÇRÿt}õO×ÇSÿt}k…è{øÙ†!¤]‘f¼öò³‹ÿ›õL7_WçUÖp~ªóÅ×Ä÷ñ:kòc¿wšç厴¿ÅɼI3wšyºAmÏË=ϪiÿŠíûìîãòгjEÚ-çô“i·éZ-—ž•g|ÀçÿsþÁÝbûçÚf°A/ÐÌ6¨;?c~ιŒ=ù{Qî$g¼46$Þ{DZ&ÇÓgi}ælo…¸xõúëRT¯¿.Mõúë2ÔÇ~}/õ±_—¥>ökõ}°Þ®f5êíjV§Þ®f êíjÞG½]ÍšÔÛÕ¬E÷IM½ö`÷IM³ùª!±–º>¤c÷ËK!rÿgâêbõ}H ªïCî£ú>¤&†Èó!þs¹¡ÍÞþÈ-þSü/Pî½q‘rëKÈË”«oüE3h›ýœûýÆñ`ÊåŸËÕ7äòÏåêrùçrõ 9üó¡”Ã?—£oÈáŸ÷ó?ùy½Õ ¹üó”Ã?I9<ößÈßÃ?Íÿ8&„øb!òwìë}—ŽeÇ1ÊñŒç„òÝë8ÁñD&r3Q®›2/$>Ú"„E{B¤®ý;5*þ‚ñü’ \ÎD®`&®”å¡•öÓmyhe%Ê?+Í%#‡„ºÖ{ÄÛ´Þ#†PŸRêÙm9ט¤îµôž™Ý-ç3…òQ.`s~ÄǸêkË©¾¶\ÄV!̶WªºßZ.?Î%lÍOøÝ×™Ÿ¤û:óSt_gnC÷uæ§é¾ÎÜ–îëÌÏÐ}¹Ý×™cŸS-̬¶T 3wàJvä*>ÇÕ|žk؉_±3ײ ¿fW~Cû«å:Ú_-×Óþj¹öWË´¿ZêÅ2Û_-7Óþj¹…öWË­ì¢ãê„Ćú©qzˆú©qzʆú©qzʆú©qzʆú©qzʆú©qzʆú©qzʆú©qzʆjUu9/ö÷¹T—óÎÉáÕåºsrxõn”ë¿@÷@õî´æ­ ñmäjÖãÖçW|ˆkÙ€fæ¶r`ƒBøYΞgvnû0ÍÎmÕ§yfç¶êÏ<³sÛ&4;·mJ³sÛGhnnÛŒ[¨š·•r›‡G=Ÿ§Ž´UGæ©#mݯ þõ^êÂ<õ¤­z2O=i«žÌSOÚª'óÔ“¶êÉ<õ¤­z2o'Ÿä.šï¯š•Ò´DWÍFif£«f£´¸Æ›GŠ™ë¯š‘Ò¢!»Û9³I±g3/¥©¥ãÍ(ÅÚÓŒR¬ƒóæ§4óÓUóSšùéªÚ”–Éóf—bÅjTZfªQijT±{«OiY©¥ÝAk“–Ö&-;­Mš:tÕڤ夵IËåwÚ÷ÅôäW­QZnê5ÓòðEÞIóJÚ]^gF*æýXžëp’öËÇróÇÉbýN½N‡3!î‘BBÄŒýÈBš±ù˜fìGÌÄ3ö#fâˆû3qÄŒýˆ™8bÆ~ÄLÑÝNµïõWäÂ'ÖŠíñ•òèýë_› ¶9g¿¯|ƒöûÊ7i¿¯@û}å@Úï+Ñ~_ùí÷•ƒi¿¯|›öùÊ!~§¼úÄ7bû}å;´ßW¥ý¾rí÷•z¡ÛöûJ9´_÷_þ{ð"_ä%ö¤zݯÕé~½©>÷ëCõ¹__ªËý^¢\ÓïeªËý^¡¤[kcéAüªø¦x“8ÂÍŒs¾Ÿóêt¿×¨>÷ëO5¹ßëT“û½Aó{­-^﫵•î«ZÛ˜àù7C|…ØïÀÒ½þðšo½&‘Ûé«õ3‡[Që{ÇæÆ~ƒ¼>ö{ërë3jùÀéfÈ~oy.žƒ©ì©_)¡Gè©O)¡'è©/)Qúõ©Ï(ñõ%P/Q¢!õ%æ,ê‘{Φû¡ç6áÿhÖééþ(!ç÷t_”h¦È—=Ý%äýÓÖ{îë´ÞsÝgõóÕð³zÈùzœ³zÈùuø"`Oú¬g{Ñg=Û›>ëY}ú|Ÿõ¬>}¾Ïzö%ú¬g_¦Ïzöú¬g_¥Ïz¶}Ö³¯Ñg=ÛŸ>ëÙ×鳞}ƒêÓÙ7ésž@õéì@6q= ‡„¢_ón~BïoC$ξïqx“¸žE¸E¹‘Ÿ‰Å¹™%¸…%¹•¥¸¥ù-Ëp;ïåw,ËïYŽÖ¶÷vïëèýå—åOgî`Eîd%îbeîfîaUîe5þÈêü‰5¸÷q?kògÖâíKõçZ¿Þ;ùF+£!ÒÌußiG–¥uiÎÚiGêÉwZÇ‘hGêvZÇ‘•B(¯ï´–#+ÓZެBk9R?½ÓZެâ^•Ê?Bù¨¼ûè¥Ô‰?$–—ÊëicOç«rSùGÇÎËOå­ÕÇï‡„Žµ9…u8•pÝK×­ýgzŽëÖþ³ÇB\{¿#¯÷iïçó6cSø)ågô{ÛÎØë—Q=úHY»Xˆ3¿Õ6§ 3¿Õ6§ 3¿iÏ#C&…øäü|8™ù> q s*ïq_=^–Ÿ¿jÀ³lÈs|˜°ϳ1ÿdšM›ó\7_ä#¼Äf¼ìy3sžëâñ_b³sžâGÅWÄfèœoß¶µçÛ·míÃùöm[ûp¾}ÛÖ>œoß¶µçÛ·míÃùömÛB´ÎÕð×ÿx©¼Î¹¼Áy!”ÐÓÕùÛñ|Çúº:7ȸ€ÿÒìYçò6?æ\¢F¹„¿3Â%Œã'Œr)ã™Æ~ÊDšyÈÄÏC˜y:D*•g/cêñÈJ=þwÐz<ÖáìtýÈÁUÌÉÕ!®Ñè«8ǰD/<Â?³¨úg6;p;ò|Ž©|žsýÜ»~®¤¸“Øuy¡3]“ºðCv¥9ü…nüÈëÇz})ñ â…âqb3E£ñ4C6š@3d£‰,ëuݽîc±½v«íµ[åi¯Ýª@{íVÅ×Ûz•šFëUj:­W©´^¥fÒZ•ú€Ö©Ô,Z§R³C´Ì±1ŽÇ9ž'h¾š¦/-7ž-8Áù“ÎO qaZˆ_]ŒÓ麅,A3ñê’4¯6+3ñjß+˜‰W›•ò½¤o !:wxH|ºF÷ÊsG8¾/Äõ¹JO¥ïPÚwèã;”ž.ç­ò°F£Þ õüîQæ°z~÷(sX=¿{”9¬žk6êºf£†ÒÜ=j]«QÃéZA×jÔHºV£F±GÓ|7j «ð]V á½ã¨±ŽåèQãXòA½”êÝB?9)³Ü1Ê~¯'Oô“ƒ2ËA£ì÷zµhŸ×K¦}^ï~ÚçõäìQöy=É3ÓÇöz=y{”½^¯.íõzrcŸÁ~¯§õõ¯£fÑl2*[ˆð}fçæàTæä4æâtææ æáLÞÉxg1/g‡H;ósó{;ósó{»ÌÎ,Ôs¶ËJs{»;hnoçýó˜ÛÛyÿ¿bì¿‘\"áXˆë¤²:©A…Ô±NjO!³F¯<\¬öRÏ:©=…ìßóòÂu”¬g-n`27ò~nbmnfnáÜÊºÜÆi<_æ³óõi>;ÿ¿gþÀ†LçÃÜÁFÜÉÆÜ‚{B$öÿž-H¢þjAvÑÑXM70žŸ9oOÆþ_´ödòsÎ'8¯ç[`o&?/Nëùf¢|=ûÔØÉÏì¼p`êf¥pàÔÌF=àÀì\Ít¿:â÷¾Ì ¾BÇv!ü¥g*tXü*°ò5cçë<Á7x’o†èfï7 ö÷;ö ‘¦¾ßfï;`«ø%±ï¹ÜlÑÔl±Ùçûû}Žß2'c¿c.Æþ>ÇÜŒý=Žy¨7ß|'Óyw0/w2w1?w³÷° coc!Æþ¾ÆÂü‰wsïáþm|9$ܞſ¨7l¬/»=‡ú²ÛfÆú²ÛfÆzËÛòÛ,Ÿ¿²ÏßXy{õ˜·çSyÛ,ÐXyÛ,ÐØ,pÛ,ÐØ,pÛ,ÐØ,pÛ,ÐØ,pÛ,ÐDM¸mh¢&Ü6 4Qn›š¨ ·—†¸÷†„ªé,Ë,Ç,Ï]¬ÀݬÈ=¬Ä½¬ÌY…?±*}ßÛõCâÊü|ˆØ€Ù…ø0 ËÏËw±ó²3ó± ý|ZWúù´nôói/Ðϧugìç{ðn¾È{Ø“IìÅ"!ªIøþ‘&"¥ÿ¥½Zú–óóœoÆùLá‡|4D{¼‹™{L¦Ù±Çû4;nµÆ[Õ“·Æ{Äzw9¦Ü={o={>±\Sn åšrƒ(×”{Ëó}<Ÿ_,ç”L9§ÜÛÎ÷u¾€ø!ñê9˽ãüKÎûže^¦ïùªëQ>]ò9éz”ÏE×£|nºåóÐõ(']ò®ç«®Gy×óU×£|¾÷ÉÐùmþÂ!<Èwø+‡ò7£šÜy8ÕâÎ#¨wâÞêîs½§ºÿÝJ÷ÿ£ÛBÈ^ͱ=ð¨ywQéÐqGäœÄeÄî¡Eî­ŽrS’º´ÈýÕÑ}´ÈýÕÑ5ýeIH|Ïuüå Ñ?"!ñCûç8þdž©Â×ò|« ÎÉaÆþœ¹!a|¾È;Ù“w…0boˆÊÍ{¾—óyÅ?‰c¯³Vã­Õˆ}âØë÷3öüÏtöY«ñùimÆ[›œÅÖd|Añ/âbk3¾ø 8vþWrþç ‹¿*¾;ÄÅ«©kÕæx5u­k¯¦®U›ãõ´kÕæx=íZµ9^/»VmŽ×î•+ãõ®kÕæOÔ¤Îæ¹úÑÄjSg3Ý'jSgsÑ€eÎ_«Mk‰õ§9.‰Õ¨Îæ£OÌGõˆ¾tþ2—ó/çÍKõ‹Ÿ˜—:סY©³Yé³Rg³Ò'f¥Îf¥OÌJÍJŸ˜•:›•>1+u~(DÏŸ‰­çŸÜÀ ÜÂXóH¹äOký‘ñ§µþèGçÍ'EÜE86£ÙI3J÷ÆX3J‘Ý4£‘_þ”w>²þYÕÕ‡Ämc¸ˆïr1Íø9Ü;ÛÌö9Ü;ÛÌö9–ÒlŸ#~ÿN5u„»SM¡ÆîTSG¨±;ÕÔjìN5u„»SMñ}Í áha±Ú:B­Ý©¶ŽHwþwçïæ!ª¯;ÕÚ¾Gó ±:»³‰X ÞÙ”»øw³÷0…îÍÒ½¹³9}·æ‡ý¼½²ó1±{rg º'w¶äÏžwŽåQªÓ;[9@|L\œÇ©.ï|Üù_ÌæŽ­ôÜ Ï•äI–¢ùë¨ùkçžw¿î|’îÓOñw¶á!>íÑÖ±úÉ…|*Ä=·;$èË=|‰{ù²žõY=«ïúÜâWø_u¾½ó³ÅûÄz­çöÓ|Û«ƒósÄ?‹õ\Ï©ô\Ï©Þð|GÏ›½z=ÇTçÕoŠŸÏ«%±¿ïù9µ¤€ZØ«“óæ³çÔ”ƒ¨¦x‹jJÁõ†“­ÇA½áäÿQo8Ùu?¨7œìzÔNv}ê 'ϧžprìºè 'Ç~§žpòGÔN^B9ù ¾pòÇÔN^â~ÕN^ìstó9¼öWýáä%ÔNþ„úÃÉúÃ_ã™ÆšGM¤yô×L4þš™æÑ_³Ð~ÿ5+Õ¼üÃBü.57ÿAÇë§ùGP}íðI—Ív•ú…„“÷„¸Lzúõf€L§ØÏ>þÇ>6··7cç)×äE¹&¯™½½\“×ÌÞ^®Ékfo/×ä5³·7cç5³·7cç5³·7cç5³·?I3{ûS4³·—òšÙÛË yÍìí冼fööçhfoÿÍìíÕ¹¼fööê\^3{{u.ï ^¤ÜÒþå–ö—©·oÿõöí¯Poßþ*í›lÅ_ó¸.Nõˆý³móÍ-{¢‘ùæ–=ÑÈ|sËhäZܲ¹·ìF§94„ú…ðëÚèŒØ^ˆýÇ|/Ø»ÿè+un¸¸¿XÑèœØ¾h$?ݲ/É;·ì‹FòÌ-û¢‘¼r˾ht‘öE£K´/^xÝÏëK]Ûþâx^¡}Ñè*í‹F×h_4ºNû¢Ñ Úþ¦ë8I~júÕï¦òU»a!ñN}\»á¬È¬Ä‘¬ÌQ¬ÂѬJkÛî]ÇÕ<ª»~±¿34gˆ/2¹8¹9ƒy8“wòÞÅYÌËÙÌÇ9ÌÏÿ±SC¨q.„ïʉ ŠÍ[5þ—çyV \ÿ]E^`%¯+äuóX˜óy7?ä=\À$~Ä"\È¢ü˜Å¸ˆÅ¹˜%¸„%ù Kq)K3zÆ"ŸRÏXä3ê‹èÿºë‹è÷ºë‹Øg —ãp–çVàHVä(VâhVæVỬʱ¬Æq¬N½æãzÍG áðÙ¦§yKöhñ;b½Í[ú´»ò:Öß¼¥¿Ù¦¿yK³Ák_÷Úf‰!j$öÚ×½¶Y&qcf¦¾ÁϽ¾'„8u}ƒŸ}}owîóÐûlÐ#½;¯Gz]ß¾AoôºÞèWýÃdýPK¹êøiq;ñQ>ËclOýPË%ž?C¹åøY.å9Ïw𼞨ešØ·ü”æŠ_;:¯Gjù™ØZ·üœœÎy=SËeâ‹âçű÷íÄ3ìÌØïÿÂó—Ä]ı÷éÊØïÿÒùËânb÷RËå⿸‚W¸’W¹Š×¼î¯‹½ÿjñuqw±{®åñ qñEñWâ¿Å/Š/‰×ŠoŠ{Š5K-¿ÿÃohÞm¹Ž·<ßËó±÷_/¾Í üÏùÞÎ_a^e_Æ>ÏK¼®§|ÉñËŽcŸáÆÞûUÆÞ³ÿ Ñ?õå ÕûŠÉ!ú“ùmì÷4¿ýf¶±éŒçŽ×õ‹pOk½ß1›týRü„Øï‹˜QzýC3I×åÎ?É|Êù7£t])n#ö"f•®«Äz°®«Ù–kø ¿¢Þ«×m¯3Ët]+~–_SÖõšQ»®£Þ«ëz>Ç ÔsuÝÈNÜÄÎÜÌ.~Ÿk1uÝ"î¢ ‡ÄB[x7ÍÅïá6&ÑL|²yH˜sñ:[ð[òo¶âM>Në6Fž¤_“Á$ç[;oÇ?!¾Å'iÇq¾¨ø)ñl”š¸“O3¶Œ3GerüŒã¨Ÿ±o’Š‰Û‰ãù,Øž‰ìÀØë;23Ÿc>OõfŒý–¤7sœ%œïäüââ’âÎâlâ“âRâ.âììÊìÆœ|¹Ø¹i®ÿ_ž=¬¾Î0OV_gl¤ú:cÕ×›CX3&Dšo«³3\ûÃêì ×þ°:;õ?|߆èMýÀk¨øâ+ê¾XKýÀ_S?ðÅ7<åqÚCðÅ:õBd‹YsPnš5å !%!„Œ‡)¿e4¢¼–!¯¥ÈkM˜…Mée˜MR\“Œft-2R˜æ’”lΜ|Œ¹Ø‚¹Ù’Þ+£ïä㼋öLJ^Ú+)ú©Œ'™ŸöFŠ^*ÞH1d¬Â¾¬Ê—Xæ—5?ãªGæ–”û¨ÿI©I=OJ-êuR’©gI‘?2Ì))µi.I©Ã|€òSJ]âƒ|‹õhnK©OóXŠš—aþJQë2Ì[) ©çJ±æz­kž¡¿J±æ#hÍ3FÒšgŒ¢5ÏMkž1†Ö<ã]Zó }UŠ5ÏGkžaÖH±æ±ÿ ÅšgL¤5ϘDkžñ­yÆdZóŒ÷iÍ3Ì)Ö¤5ÏX@kžñ­y†¹"Åšg|Lkž±ˆÖl^˜qÍ 3²q$³ssp4sr sÑ~a¿¶_gä qƒk…„û~g2ñ~f°6³ð áÕ:!’Éü:¸®øäqÖã ÖçI>ÄSlÀÓlÈ3æñ1æñû©gm[›cY'DSCº¦œËG8Í8Ÿ)ür›ó#>æç[„ħÿcK¿G)ž×Š‘²vü¸ã¸×pYˆÿ'…_ðQ~Éæ\N÷Ù rÅ?êhÃâ\É–\EóoÃÕ4ó6\Cókïhm¸–±ŸûšOñ¶á:ª· ×S½m¸êmÃl¢ ‰‰úÐÆ¿„øÛf¹ÆÙ¿ò5þÆþüöì îΈ‰ß`ßäaZ‹ÆG8G9ˆæ¥Ûæ¥Ææ¥Ûæ¥Ææ¥Ûæ¥Ææ¥Ûæ¥Ææ¥Ûæ¥Ææ¥ÛCiNº=Œf£ÛÃi&ºm&jl&ºm&jl&ºm&jl&ºm&jl&ºm&jl&ºm&jl&º=–f¡Ûf¡Æf¡Ûf¡Æf¡Ûf¡ 3BBãzœÉúü€qp6ræÿØˆî‰ÆéžhÜ„î‰ÆòH&3ô÷EãGè¾hÜŒî‹ÆÖx‚û¢±5ž°ÖxÂÇ|Œ‹hm',¦µ°„ÖvÂ'´¶–ÒÚNH£µð)­í„Ïhm'|Nk;aŸ‘ƒ[ôu)ÜJ¹«¥œs\O~p›¸9¿åcÜÎüŽ-ù=[ñ>ÎtÊa-åªãzùƒ;ÄOp'å²–r×q½ýÁ]⧸›m¸‡±Ï±—mù#ŸáOlÇ}|–ûÙž?³°#Ý{“Ÿ ÑÞùBbI}ϱó?z_#Rd`E¯[ÎJ4Äþ>¤]qe±Ù ¶>g—¾­öêÙjoe<·QRû[&z}¯7CÔÞ.ÖÔþŽ™¯ê¼Y¢ö÷b¹u`5±Y¢öb9¶v:åÖÕÿŠ5¸–÷ñkÖä7¬ÅuLæúù£Qˆÿp's›p7Í~šéZ«k§ÒÅf¿Í„˜õ>üQò2 \mÓŠ1…æàø¬!q­}ÍH«…È“êþÆê4kÄgsÞL´±†XýßxÕÿœöh|vÏÅÌA{5>'íÕø\´WãsÓ^ÏÃ+!ZUŽ?mþ›®® ï™®o®PÔy¹þôIÊõ§õUåúÓzÁªrýi9½ª\ú,åúÓç(ןþƒó<ñO6æ6áE6å%>ÂËlÆ¿˜Â+!.¿{içZºvšÙ:¨«—Õœüî§ßÐý´sÝO;×Óý²sÝ/;7Ò}²s­ÿÎÍ´Þ;·Ð:ïÔ o=ßZÀÓüˆzÛ·ò,?æ9.â\Ìó\Â?ùIˆö³wÊ»W³Åþnû¥¼þ»_nfAê»û¢÷ºaúÌw¼aúÌw¼aúÌ5¿aúì*‹ð‹ò:‹ñFë†Hëâââ¿Y‚7Y’æÊ¥ø/KóËð6ï¥9lÊ‚ÿhy~Ä \ÈŠü˜•¸ˆ•¹˜U¸„Uù «…艊!q¶ßw¢ÕÙ•C¢¶(z¢ ÕÙœ™WuÇjŒ²:ãYƒ ¼‰¬ÉL¬E3Ó‚Ê!¡Ý~VáϬÊ!dÖg®$®&–wö ñìóz¨cz¨z¨c‹œä¼}ßB/uL/ÕB/uL­l¡—:¦—j¡—:¦—j¡—:¦—j¡—:¦oj¡>&Gµ°Ž}Nýó±e´Ž}Aûç˜üÔBÿ|l9õÏÇäŸjñ±•Þ÷-ïÏÁLàÛ”gö¡üÒB}l•ø±¹§…>ûØj±n‚<³_7A~i¡ï>¶F¬‡› Ïì×ÃMÐÃí×ÃM0Eõ®-ôäÇäžýú¹ ú¹ýú¹ ú¹ýú¹ ú¹ýú¹ ú¹ýú¹ y8Žwr<ïâæ ÑCCBâ4=tŽcfüfÃ'œ{Ç9ýôš|bµfM~ê›× ÷^#‡7Úëô+Óç0ªUÔà5…<§áZ#÷7&D0¯^1«Ý1Ó±™õJ.šY¯ä¦™õŠ™õygˆ;¦Â(—2žiLà§LägÌÄÏ™™jþá,ü‚Yù%ï úðK|ˆŸdv¸+Íq‚ãqL¤<û3L³ûî[;Ñ÷ÝÚ9D™‘k̡ٸ†Þ~ÁŠI¾Bk›l/2+×Ðë/°†É×hí’¯ÓZ%Û“ ¬G²½8È,]Ã,°@MH¾I5!Ùžd¶®a6X 6$Û›ƒ®‹ç‡¸*zÓæ‰½RýÀéç¨8ý<õ§;…ȇB|­ílÀïØßóaþ@µ¥–Ú1Dm©µƒjK-µfˆÚRK­¢¦ÔRk†¨)µö„¸v¥BBu²§yì?=]»Òbõ²§¹ì?½]»2â­¼—ÛX–ß²·³<¿cú7åÞe®ùM¹w™ëvSî]æºÝ”{—¹^7åÞe®×M¹w™ëuSî]æzÝ”{—¹N7åÞe_‡¨Þ4AÕ›&èìÞ!RÙ^Õ‡öꬾ´Wg½Äϼî¤×Mä)NâišÿÊL Q÷dâcòÏOÍCâ8÷pï¿C|©!¼Éwø‡ò_šQkš•¿U|K<œ·9‚ÿqdˆHñ¥F1ÂÑŒãFù.Ýo¥ÆÒ½VʬZÓÌý}?±{®ÔxfâfæDf¡™5× ÇYûÜA?RÓŒþýkÎÝáÜdfãûÌNýdM³û÷ýÅ9ÄúÚføï_çë kšå¿—kjšå¿Óù\ÎOgnÎqo6 U.ñ1^á•B$Ñ,úJw~ì| çÿ÷/·Û¯¼(–O_éIùô•^´_ßlåù«|œöÅ+Ö,Ñþ}³µø:Ÿ ý‘©¢ã'ÿͧho¼b]­ë+Ö5ѳóÿðiþ˶¼Ågx›í¨œ“"U_ÑV¿‡Ä,#Å÷‹ßb†ÇaÇ£=Ì$Óþ }È[\ÀÛüˆÿqaˆ›nû=¦¶—Ëެf.®an~ŦªmÔÇTõ±ú˜ª>¶Qk|þh§~ tü¥ãg¹œí¹‚¸’¹Šf'ë•ðÇó\ÃNüŠC(¡¯±Öq~Í®ü†Ý¸Ž/„èõú³ÒlÉ2lÅ{ù8ËRNû¬ÕéëO:.ïQ!ÄU»âÏš­SÌÌQù£{³þuß§˜£òE÷±™<Å M¦:*Ot7£þ«î¤˜¥£µi–ŽÖq¾¹órX÷Çû½æêè4WGëÒ\}æêh=¯káufúóuÔ,Ÿb¾ŽšåSÌ×Q³|Šù:Ú0„B¹›±£æù3vÔ<ŸbÆŽšçSÌØ±ÿØ2öߟ¥˜³£MiÎŽšçSÌÙQó|Š9;jžO±.Qó|Š5‰šçS¬IÔgM¼×±u‰šéS¬KÔLŸb]¢fúë5Ó§X—¨™>źDÍô)Ö$j¦©–<軎TKô]Fª%N”·†…¸ÓCB1×­Ç ÞÏ™t½z|À:œE×§‡ë_Ìõéáºs}JÛ߇^§ý}HN~Þ y-«Ø>?ô&íóChoH{ûÐ ÉÈw.mz‹ö÷¡Á´¿½Mû[ßWÚü§W‹+}žCCÜlßç =Ãlßç‰N!$åsì>{¢3ÝgOt¡û쉮\ÏnÜÀ|G¹uöFÇrT’œ‘$WÌÞ$îÁÍ|Q>] —6çG|Œ Ù‚³%±S_Øj [óº_[-å“LãSü”úÉ9eän{ Õgâ§Å÷ŠåÌÌ íð Ò=Þ~¯ñ-^ç`ÞàÛTßÛ«ï©ïíÕ÷Ô÷öêûGê{ûa!Úò…˜YÿÙ²;õŸ-{PÿÙòEÞ¢ /…„>àeΠѣf´™æÖ£f´™æÖ£f´™æÖ£f´™æÖ£f´™æÖ£f´™æÖ£f´™æÖ£f´™fº£f³™fº£f³™fº£f³™êäp¿ÿ™ü‹ð gñ*góçð:ÿÇLåß”»‡ß¤Ü=üÊÝÃÕ¶äîájÛrw¿Z!’¹¿X{@îî§VfvWë»G¸½»GDh^ê(/çK¥|œo. q s>ïæ‡¼‡~5sÕ6}@5sÕ¶%Î'9ÿ‹Ð\Ú±(?f1Æ~q.f Æ^_’Ÿ°—²4õèËðSšïó}Fó}¾Ï©·Ìg«¦n‹ýœ3Ÿy¬š9n[ìçõšù¾¤^3Ÿ´£^3Ÿ´£^3Ÿ´£^3Ÿz[M·-ö>zÎ|zÑŽzÎ|kœ7ÿm‹½ou±ž´c ªõïãמ7n‹}žšb½{ÇZ\§67sœìx½×˜·Å>ëý⠬ͬÃM|€›Y—[ø ·²·±>¿¥>?Ÿ>¿£>?Ÿ>¿£>?Ÿþº£>?Ÿ>¿£>?Ÿ>¿£>?Ÿ>¿£>?Ÿ>¿£>?Ÿ>¿£>?Ÿ>¿£>?ߦpoUÊÈI!î‘C!!ò3øfˆþ}!$.ÛBÅ—BôrbH\ü 3ñ`ëÌû¿â²Î ñ›Êq6Ës+„¨15±ªy:ÛÇÇKÇ4Fù)ã©OŸW1$>ý;+ñ+3#„4}ìCfè4ýëCz£´7h­Òô­éÃæUñºÃbyà!k•&<ôå‡ÖRxÈ¥É}Bö·Ë­ Ñ÷ ‰ÍìÏ÷Ðþ|¿!/™ z†¸íjÐ5`»4D Ø® Q¶«ACž¢ú3¤ ÕŸ!OSýÒ–êÏg¨þ iGõgȳ!1K õÝOqÛÕ¢!íÅ>«û)Ù¢Ûô’Û¾ ‰ƒû{Ø‹§ìáT{ö”=œª=e§Ú«ïÖ ‘¤Ab{9Õ^=e§Ú«§ìÝT}Öi{7UŸuÚÞMÕƒ¿û ×«§ÍΩú­ÓfçT½÷i³sªÙù´Ù9U_}²pH˜³…wÓ\wòšëN&1öïÚ‹Ð\w²(Íu'‹ñûƸ'“ôbcÜ“I±¯]Üy5lŒ{3)öï·KˆÓÅîѤ,t&Åþ=·{4)öïµÝ£I±ŸíMÊN÷hRºG“rÒ=š”‹{û÷Ø%ý¾4ŸÎÙéüÎëNšOç좹tŽ^tÌOÎßÉ}¼ËysêsíIsꜽ4§ÎùÑóû=ŸWl^ó“øgq>`~çͯsö±"÷³feÑ'BbK³äŒ“œÆSœÎÓœÁ3œÉ³T;fœ£Ú1ãÎV[:¨-™Ø‘™CôçM!qâdnæûÜB½ñÜñ!áéœÀû8‘59‰ú·7\¿ì®ß®_v}ùÜ÷œ7÷½á:f×—Ï,Ö—Ì}Ÿú’¹S¨{ÃõÍîú¾áúfÏM×3»ë9wªçõ+s§Q¿2Wó´~e®þæézÔß<­›«¿yZ7Wó´>n®þæé†Ôß<ý°>AO6WOùt#Çú²¹úʧ;Ö›ÍÕS>Ý„zʧ›:§§lù@Çí‹jù${ø€Z>ÉžmY×y}OËiOPÛ' ë-ǬOûú€Z?émñCâ!lÀw¨·<®ÖÐLÒÐLŠ÷›í[ú|ÇÍR-}¶ã `K}æq3ý=¤¡bŸï¸Ùþ€^aÒ0ÞâpÞæþG¯ÿ%Ðë~‰p4ã8†Q¾¢ûë…Ä 9XŸ9)Åþy\7Ÿ;Éç6 „í‹}Î$Ÿ?øÝÝ|Ö$ýJ7Ÿ%Éwèæ3$ù Ý|†$Ÿ¡›Ï{Ïä3h×â“|†|†$ŸáŸ!ÉgxÁgHz×{È‹ÛÍÖfŒ°ýçã+–·ÿ+Nc"Ç;¯–m¿Eulûmç39?™9‘æ¬ÌX/˜“&y¼çá>Û6$Î/Ïg¨œmÇŠ!2V­k ÖUë¨ucÕºjÝXµ®Z7V­kðmÎ a¯ðà<ÊñÎç~È£Ôkì=æõjbùg¬šØ@Þ«&6oƪ‰ ä›±jbùf¬šØ@¾«&6°_ƪ‰ ì—±jbûd¬šØÀ~«&6°Æ>JûalsÊ'c£|2¶å±-)_ŒmEùbìãü…­yOð×"ï…¸òæÈcEiŽN{ÿéhï?}‚kx’keŽ~2Gc>Í&!òO¿[wOó:ûÓùgoðšÇÿ ¤ùûÏ þËÁü/DKÚÿ×_”´‡¯¿X—;Ä{}Ê<ÜͼÜÃ|ÜËÛùYˆ¶R³ÕàVjvbZ dߪ'ŒÕîD5¿ÕEªù­.QÍo%+%ªù­~§šßê2ÕüVW¨æ·úƒj~«?¹ñu^å"^ãb^çþÍ7xƒKùßäMÊÓ³eÈV2äl²• 9Ûºj%g$Íáy8Ûúje}Ͷ¾ZY_³­¯V²\Òkž—ß’ÐüLZÈc|ǽÎúkeý%-2þÖá!ë0É:þÄ:<źü™õxšõy† x6$´N‰ñ¾<È~üšOóûó0õÖ­ðå@~ÃAü–ƒù‡ð{>ËcÔ?¶>N}|ký||(õóña<Éø#õ‘­¢|]È5o}ÊñK!:¸AˆWø…²j…_)«V8OYµÂê—+\ Ñ¡Ýõî2ìÐÌÅžÌÍ'™‡O1/{1_ˆ,>b©}y†ýx–O‡g­ãsŽûË)²#¹ãí¢!ÞYmnolnÏ›nol¾ŒöÆærÈt{cs9dº½±yÆC²7ä·Wt6óÛ+:›ÇùíÍãüöŠÎæq~{Egó8¿½¢³yœf¹ì?Íåüö‹ÎærþY4—óÏ¡úS!ìÎøïTætþ94ŸóÏ¥ùœÍçüÖSgs9ÿk¼ ˜Ÿ Y€öÔê½¼ÏøÑ°{&˜ÀáŒòEÆø9‚q¾L½aNõ{úSýÞ£~çT¿÷¨ß9Õï=êwNõ{ 9CÍ)“f¬ŽïQÇsªã{Ôñœêøu<§:¾GÏ©ŽïQÇsªã{Ôñœêøž»©†ï©–A!’ñg/¶ ¦ ù‹¬¸ØúEV\l ý"+.–{¯¿bkî ¡½žå¼Útý]ãšÆú‹ójÔõ÷Œkq%õ¨íõçå´ë«ŒïåjÞÇ5¬ÃµÔ“ÆŠz­^ä¼,w}sõø>õ€íõ"çe»ë7 ýa°½ÞäüÜÎ[ÎÛ/Öè Ûïøÿ¿¢3rݾ±Æþqݾ±Æþqݾ±FOØþÏ»'×íkì#×íkô‚íå¨ îÑuûÈûÉuûÈ=aû]λg×í'kô„í?5vï®ÛSÖ4§=eM çå¬ ‰”£.¸—×í1k’å ·ñ3f¢üqAÿtÝÞ³ÆtÝÞ³FÜþ ç³p³†ÈÇz‹!šËæB8~5D_Ùâ z‡í¬ã÷øÛ…„vëBbö‡ø>Û„„¿¯„ĵ¯Qm\»€r!ÿ¢¹9¥Tˆ”xÂøªñ"^ãb^§ýàï¿i?øûíÿCûÁß7i?øû_Úþþöƒ¿oÑ~ ½L\k?¸á;L ½àF”ö‚1® Ç͹Y(7̪H¹aV%Ê ³Ô¤ãrì*!ô},D‚:ßeQH¼£ñãÆóŒßÏ%LâlÈ¥lÄ7ù—Q¯Ÿïø-ÇM¸œòm6å 6ã;lN}Ã-¨o¸#™+ÙR­T¿»¬rÜŠ«ÙÚ¹sŽ×8Nqü‹ãµŽ Ñrö•²öìŽ!r·ì_ÎþrÂþRÎþrÂþRÎþrâ¸ç;y^ÍxV¬ÜŸ¿på3{‘Öç³—¨³oÆ*?"ÿšÚïÿ5ß>”mþ5¯>ô™SχpñncóëCç_ÙæCç_ÙæCç_ÙæÃ‡¼Îb¹XÁXÆùPÖùWÆùPÖùW¾ùPÖI½èùŠÆ2·òNª±ceþN÷+õ2«z ôa;c¹çb5cYèC™èßý”‰þ=ÀT~I÷øß¯èÞþ›Îÿ…„— …ÄÚ;BÂÈÆ!ñÞólBŸñ¶Žt,gŒlÊK!Òm~ˆ*Nù¦lSã¹ö¬7^`\’ i¾w{¥¹ˆe¸˜e¹„åøËs)]³noÒ5é¶Œ¾{··X‰ËY™o³ WÐwî¦.ò]»©‡…ªS,Tƒê`¡{¨þ’m»©…ÔGý|¬Pmª…ÔEý{¬º¨Rõï±Bu©ÖR õí±BjaxÒ±ºVHÔ»Ç ÝOu­¼¬wRïôî±Bê]7u¬¼ÜM+¤ÎuS¿ ÉËÝÔ­Bê[7ó¦¼Üͼ)$/w3o ©gÝÌ—BæS7ó¥ùÔÍ|)¤Nu3_ ™GÝÌ“BæQ7ó¤yÔÍ<)$+w3? ™?ÝÜÿBæO7÷½ÐÃtß =B÷½ýª›û^È|èæ¾2º¹ï…̇ni>tûšæC·C”³»¦ŒÝí­©nGiítû†CBâ=!¶e;kRí<—ÔÅÄZÆŸ°6w†è™Õ!þúË\Ñ!lšæ1ÝC6hý¥ÇWzº3k=?Šë8šïs ? ¾ç̇|%$,‘+SS®L=ÂóçB${YþÂrÎË™©G©¤~Cu õ[ª©ßQHÕ‹ß!sÜ!/Ü¡¶Ï["•ä­:jëY§ŽÚzåíñÿ~O¼²‚jë•w¨¶^y—jë•÷¨¶^YÉD®bœ«y×0×23×1 íóu³òfã‡!²Á<ïožo0Ïû›çÌóþæù{¥Cì‰÷X†>ã{e¹Šå¸šå¹†wS¶{¯×±"ßg%~ÀÊô{Þ«Bëô½ªÜÀjÜÈêüˆ5¸‰îí›éÞ>±…îé[éž>ñ1ïå6ÞÇí¬Ã¬ËOX;YŸ»Ø€Ÿò~Ú¯«Ãß1N2¶o7þÁøNã†Æ{Ùˆöí¼jÆ{8þœù›pä~6åïb[ÿ04Ç?iü'Ÿâ_Ôn½JýàÖkúÇ÷åù=®/Üzú­S_¸õõ…[ÿ¡¾p«¾ï!Þm$¿¤yúÎW4OßI§yúÎAš§‹ó†xF¦)§7\œÏñ.ÞÎOC4}Tˆ×;¦¦çÓÇPï˜>–-ø íÙ|¦7é3íü—>ÓN™«ÃÛ!ünOÌæ³í¼e¼Âø\ˆ6,¯ïgi`~ɲ”í–£5Ö°<òn~M½Ûu½[C½Ûu¹³¡ÞíºÜÙл®wkh]×»5´¦®ëÝZS×õn ­©ëöÖ†ÖÔõc!!Eoÿšz³ø!êÍâÖhŠÞ,~„z³¸5™¢7‹[“)z³¸5™r?­É”$~φÌx¿F<ÎøíIñ´'ÅOÒ~ÿ‘ö£øOlÆSlΟق§™Ì3lI×í¯¯¯'~ÅëëÿF¯¯ÿ;½¾þez}}ýí+^_ÿ¶¢9ôJkšC¯¤Ðzå!^cš;¯´¥¹óÊÃ4w^y„æÎ+íè>¾ò(ÝÇWÚó?¦ò ‰"VÂ+3Âÿ1eGÆØ‰2îwvgÞÆ®ÌÄnÌ¢3¶‡x ½ÞÛÃC¤žþàí©xû%nõüÏ÷ç'À|†»8ŸrPYÑJ5=ôá?ëm>B ßõ²žf…:{YO³¢<õ4+î¦|¹B¾¼,_®//Ë—+ä•IöÈb#ŒåÌrË${e±—åÍUø*«r«q<«skp"ïá$ÖädÖâêu&Ùs‹4žj|/§ñ>NgÎ`]Îd=¦±>gÑÅŸd¯.6Šöêb£Ÿí¼œ{yåÜËsÙ0„,2îåyŽ3œOY÷òk”u'Ùß‹1^`,ï^^ÈCtô…¯;9?D›<ÿ-Ä,ÌA,¢K®„øco„°rvˆ4MëìZÞÁ,Èg<Ü·ÕròêÂ!2wvˆ=dÏš;‡wq.õÓyäŠ<½Œçs,_äéJا¾UÛJ4£ÚV¢9Õ¶-¨¶•H¦ÚV¢%Õ¶­¨¶•hMµ­D Aþ”ÏK»[}É1˜jLŽ!¼+„ÕC¤Œù“ãYã¢|ŽÅø<‹s(KpKò–âp–öó5ü¼Ì”ãEã2Æ÷›9^2.KYiw9ÊJ»ËSVÚ}7e¥Ý>ÿ¼Í!ÖF~™·…„а@‡­Ïy[å‘yS¶˜·öá†wxÞúœ·Ý¸©qAc=ü¼ÆÍø ›s'[pÕÀyŸ²¥šmÞgo+1šö¶cho+1–…ø óUá8Þ©GNu<Þñ]œ@ûÜ9žè¸'±8'³§°$§²§±4§³ g°,gR–,‘FY²Ä,º¿;®„ØÐ¡üƒÃø'_¡…œöƒ>sÇ_Æò펫”ow\£|»ã:Gðo¾Ì” O] ‰¯½Âøj!rçã?Œ»ÿwÚ×Oýi¼ÐØý¼S ï>Þ9Èù¿œW¹ˆ×¸˜×¹„ó ÞàRþCõáÔMš›Y…øN5'ëbºöY—ptˆ¼¿*ÄúÔäjÖâÖæZÞËu¼ï³?`]~Èz\Ïú!43‡u ‘}ï~¾÷‡¾w?ßûCß»ßHÏ»OÇ:ÿcìÚ5“GŽu6¾iìs|ø/Ç8_Üù.,Á®,ÉnžÿÏócy‹jÔz-s¿Wá¸ð >­6eïi²÷7²÷4ÙûÙ{šìýì=Möž«¤üÂsýB$ë{ÆêAŠú0W=HQæª)êÃ\õ Å^}§ü2W–L±?ßyÎC~¹óWye®l™"kΕ-²/¯”“º¢œÔ]v~pXß}d,/u?blÞ|·ÉX^ê~Ôx¸±¾èÁ¹Åy¹©û7”›ºK¹©ûw”›ºOy©»}l”½ú>5{”½ú>{÷({õ}öîQöêûìÝ£ìÕ÷©á£ì÷í¡ˆÏ:Ê>pßž}"™ò8§6²'Üg/eO¸Ï^>JÍ¿O&ä;d’KGÙîûÂø°±|:Ê^~Ÿ½}”½ü>{{9k뤵UÎÚ:im•³¶NZ[嬭“ÖV9k뤵UÎÚ:im•³¶N–!ñÇÖ×I½Z9Ùõ¤úóœ9Y%3Õƒ*Y¨TÉJõ J6ªU²S=¨’ƒêA•œT ªä¢ZPEN ÿ9V ªÈ×)ö€¸ïžbˆ_ᩃ!ü+§˜qù2ŽۋRÜû¸½(Žÿîu²Ç¿?oÄåÌ÷?n/Jq¿ãzñ÷;þ§×òº¼t¯ÿu}Rôñ¿‚èX·/¥è/â×¼ÆýÿW¶OÑgį‡è/†xá2|‰êó#X.„Åjä=Œ_6V§ŸIuú‰Q¬ÀѬÈ1¬²v ±O|Ƭ]é3fíFŸ1ë´OfíNûdÖôy²ö¤}2ë“´Of}Šöɬ½hdíÍBè04„ß7÷1¶²ö¥ý2k?Ú/³Úï?1÷³ÚïwÚ÷³ }?ë3ÔgeH}VÖAÔge•‰wê³²ÊÄ;eÒÖÆïËÄ;o3¶6~ßd, ïÌDx§~+6ױܻS&Ê*÷îÔoe•{w귲ʽ;e¡¬rïÎ!z衟T(„ êqòfã6ÆöÜCmiÏ=ô0ï G2…ÄÉk™™ëB{K¶h`œÅø}få2‡5]Hÿ}$›ñ‡ÌÎõÌÁ ÌI×èH.ú.GrÓw8’‡›™—[˜[½ŸÌ^Hävc™ìH~ÊdG p;eòÉÖõ™|²u}Ä:Ÿl]±Î'ï ѯ„øÄ{ù ïã@Öá Ê«_¦¼úõÊ«_?Ky5ymˆGç:þï³?`G~ÈN\ÏÎÜÀ.ÜH5x\Pu¤ñGÆÝ¸‰O8ÿ€ó£Œ7w7–ªŽ6Þb܃[ÙÓy¹¡ª ™ü±ñ“ÆeSÊ’Éۜ׫.ª¾j¼Ý¸wPϺ@ލªKþĸw²/w±Ÿç勪ú»äOõvɻٟ{8 D·þâCæðçò$çñGÎçO|§h/^{2D”Á¶þl¼§ù:Ïp‘çô¼l¶õ¬ñbžãþÂ7ø+—ò<ßä.ãE¾ÅK\Îßø6ç ^æ;¼ÂwùßãŸ\É¿¸ŠW¹š×¸†×¹–Ó|Þ0Ûü?¢‡Í“Éîÿaódòý!2`yˆ•«Ì·Y…+X5„Z'Cø¢¨ñ;ÆrÉ€wYÝù/füžq 㟌‹¯4–KÈåd‡²C9Ùa€ìPNv ;”“Èåd‡²C9Ùa€ìPNv ;”“Èåêsp#3>çGLâ&6¤lZ®Qˆes¿v)6¥SCô—2!¾Xý¥,ÿf9Þ‘ ö˜þ…ié_„ö—þwrïâ\ú®æÑwÛ0Ÿ¾Ó†×X‚ X’ YН³4õýõôýË*x ë úë 6è úë 6è úËŒÖqlò"äbâæ,Â¥¼“oò..cQ¾Åb\ÎâÌø»+JpKò–â»,Í÷X†+Y–«XŽ«Yžkx7ײ×±"ßg%ªs÷èc÷®æ3ôúž÷„ØrÉ=òç^?׳¦±|Ò³·²6?!—üÛó^ÇÛëïäõÞ¿ç}Îé1ïlü>‡ðçë8Ÿñ3uù ëÑý¼çYÏÈ稾®µ/?%‹­µ/?eïYk_~ÊÞ³Ö~ü”½g­ýø){ÏZûq/[þps(×pcûr/{ÐZûp/{ÐZ{p/{ÐZ{p/{ÐZ{o¯D¯7×r½hÜÉ8Îδešé¸‹ãL!ìÇÛÓ>¼Ñ|míÕµ¶Ó‡øøLlÂÌ|YØ”YÙŒÙB´ÔÓ!ñXö§^iÖú)/ÌÚÀ«ÜH¹`–|XÞ<.¥_<¦_,¥_ž'ÿ(Ï“”çÉÇ?ÊÇóäãg²ÓXŸ³Ø „qÛC¤È-ºÚ°„g;ooüqíi?ÎeCÎc#Îç|¹€M¸R/óã"Çúÿyêþ}Ó}ÓýÃýÃýÃýÃýÈ‘Ô7ŒEýˆÑ!´4WOš«{ô #ô -ÍÕ“æê}Â{KKsñ¤ZÍ䜞a„ža¯81BϰWÏ0b8žQN ¹¿±Ï:r;q?;ó»ðKvåWìæÍìÕ¹Ó?ÁƒìίÙ#„޲á:÷!ãž<Ì'y„Oñ({ñöæ·ìÃïØ—ß³ñigþ@}cîÔ/æ>Éü‘úÄÜ?q0Oqæ³!:é»o<.„åCB¤îÆßÛ3'£¼9é8'Ò^Ùxí•'Ó^Ùx ÕÞÆSi¯l<öÊÆÓil<ƒöÈÆ3ilœF{cãY´76žM{cc{ð${cc{ð${cc{ð${cãù>׳>—°ü9®wÞ^ÙØž<É^ÙØžœ=æØ~ÙØ~<É~ÙØ~<É~Ùxí—õÂïô‰ÝäûwúP“©mwÉüw}í\_çdõö‡HkëóGï?OK2¿®§Ñüº>‹êM’9uݾqÝç}oZˆw€ÓÙ˜3Ø„3ù ÓØ”³ØŒ³ÙœsØ‚s™ÌylÉùlÅר:D?}ú¢ÌÓw0ež¾C(ëôuß>uú>¢7d±u®ÿ lëC[çúß½Ö¹þ7d®u®ÿ ™kë#ãï]uýodüÝ«®ÿ ï¿nNHhçÚdÏL×#»LÝ®eêvêUv™ºz•ñgÊz»Vÿµ5V—2þlY;u)ãÏ”µS‡2þìX&=ÒËöº|æð¶!ñ9ëcÛG”‹>ëx“ckäe½]>ó{ÛfcëdÛZ'Û¶²?¦ŒXTíÏì÷}Þ¹mÎ="kå^rHSûí÷=å^5(ô’?ÖʽäµòG/ùc­üÑKþX+ô’?ÖʽäµòG/ùc­üÑKþX+ô’?Öʽìkå^ö„µòG¯û7}yS½Ø÷²jSýê÷²iÓ»i³iZ½CtJˆÍB…‡Œõc]— mBdxÓ«q€Í˜ñ—ÓÉÛ;þŠ-˜Îd ‘^ÕB¬˜½À÷Œ³ø~±bj¿ï+¦öû~±bö^ß/VÌÞëûÅŠ}Lûn±m´×S›}¿X1µÙ÷‹³·ú~±b;YŸ»Ø€Ÿò~îf÷°!÷R¾*öàç!úg—¯&»²V•äÑ?»9¶‡üÞ#$¾#„Iúób-Œ{»“ôéÅ’©O/Ö’úôb­<ÿ¤çsQÝû½—c}ÒÛÖç$ý{1kàÚ“!¾ZN½öïÑÚ¥Câ¥,Ã/Y–_…0×5­”ݸœq:Ëó ïæ×¬ÀC¬Hù·v%aee~êü–Õø÷ýÒûêkW7þž5xŒ÷ð8kò‡JVv\Ëñ ÖæIÞËybžb]þÌz<íg«8®ïø ð,ïç9&ñ6ä¯lÄó|€ؘÙ„—ø £½óÒïlÆËlÎ+lÁŒÿX2ÿdKþÅV¼ÊÖ¼ÆÊµ¢¬‘5ãÿGÖÆ±¼Q»-ÿ¡,vé&e±KÿR»ô_ˆº¾BZJˆ”³?Æ+Œ2žJë œ:U8⼞¦pÍ¡ÂQʬceâz2ñX™¸žLjü²ñã#Æßä·Åï8šßs q,óþÀWy‚ãx’ãù#e~âDžâ$þÌÉ<Í)<é<Ëi<Çéü…3BÂ÷ÙB⌙ëCxU½.ü–qã ÆO/7Îi¼Ñ¸—qÆ¿’Ëø#ãÞÆ+ŒÕ‚›˜‡zŽÌûçu¼…ù¨æ­ø3ĺ¾À¿8œWù"eÆ®2ã ™±«Ì¸Bfìêš5nÂ7“Œíí]eÇ_Ô¶Å_Pm[¼¹?„Û}æ_š8VW~yêÀ/j÷bù.‡Z”ñï1äèEµ:Go¶d¶b_¶f?Úª\ô¸dü´ñCìÏ6À¶Ô‹ï~˜zñÝpÛq0å¶ }Þ ‰%[ò=ª}V²uHèd?Íÿí£ù§}4ÿÿBBö_CìS½Oöó4Ÿ²_ ù”ý"GÐgúôeþFó'ûï4²_¦ù“ý åç.ýCøsUH(¦oþÆž×EOøçjc9è{_yûÏ5!ÚúñGÕ3õ¤³=0ÿõJ}æØþ—_ )eïèÜÆ±Ò¹-ÕÎó¦ç¾püˆcu¤s;êåžW³\»„çÕ,×/áy5«ÊoT³ªüÂ@ûyÆŸqy^íªrÙØ¾žñg]žWê\¡VåªaU2þ>2û}ÆŸy^«¢ßhßÏø³0Ï«gU2þ2ûÆŸ‰y^]«¢ÿ(Ä_ ·>Êq×ñyõ®Šï6ð~ã—˜Dës`CºžÏ«ƒU|ߌ]×çõ¦U2þG…p[çô©Uô±ÏëS«È•ÏëO«ècŸ×ŸVù/„"ú çõ¨Uô²ÏëQ«ŠÏëQ«êaŸ×›VMð~½Ÿûô¼µj4DÞz;Ä:Uá Vå;¬FY©SuÊHj„èKcC¼V5¾Âê|•ÎßÈâk !çÇYÛ³nd£=ëFvÚ³näàiæ¤ýꆚ¶6ãïôWÓÖžóÝäÆAWCbyrÐ5ëŽõäù…Ñä}ÆøAåò:Ntü!ãT+Êås|›cu"û“Ž39ÞÈÌüˆ>ã#›èó=¢&”x$D[ñXi¾È2!,è"U—²ÕÝ–/9_–úöX9êÛcå9’ws+p4+r +ÑuŠÙ×[ºN1{tK×)fh9Ž®_ËñtýZN ë×r"ïá$ÊG-'³§°6§ò^êbæâ믅أ%¸€%¹¥ø:KsËp1Ër Ëñ –çRÊÙ¯¿IÙ³QŽ 5^fl_kT×x˜ñ[Æ•¸œ•ižG;iÌ‘ÅNšsd±“æÀYì¤90G;éþÏù&$l݇¨=#ìùyOÑžŸ÷gÚóóÊM#ìùyÏОŸ÷¬×ïõú!:Oj“…ÿcÖæºW¯C×½ºkRXO\¥oˆ²c|š‰!l?"íò…XØâõ–•õ9õ]{\ëœú®=®uN}××8§×ìqms~J×6çnº¶9÷е͹—®mÎÏèÚæüœï…°Ëþ—º<„\z‡ªÅí©?÷…çWÛÿR3þ]u9&ç>çV…h•¢!ñÌ^£šZ¥8ÕÓ*%¨vV)É}!Ì"Vó®á@®õ|)ÏÛ׿ 2^g,GŸ‘£«ÈÑg2þ ó`ç­Í*òôyzÎãŒåé3òtyúŒ<]Ež>£¿›£'¯`ÝV‘«Ï¸—Uäê3îe¹úŒ{YE®>sÔëôì¬ë9Ïsƒórö9»Šœ}Fή"gŸùŽòõùºŠ|}F¾®"_Ÿ‘¯«È×g~ l}F¶žcm¦Ôá]ïw¿÷›c¦Xss¬ÑknŽ5š¢'y×:¸_ݘc­¦X{s¬Õ”{·îWGæX³)÷Ë÷«'s¬Ýsd޵›b®Î±vSÌ÷ìzŽ9ÖoJ}šG)z‘9æQJÆy}Jõý) ©ïOiD}ÊÔ÷§4¦¾?¥ õý)RߟҔúþ”fÔ÷§4§¾?¥EeÝï…åÕ·oCxo~ˆ$eøõ#ï- ë´ðnÏgŒó9Í¥÷^wìš-¬à¹Œ×T¤k¹°{~‘ç]Ë…•3¬ÂÎ/v>C™;Iß²°ªóV£þeauþ¤6t\ñµøž\ž”ñÜ=Æö……5i_XX‹ö……µi_Xx/õ1 ï£>f¡k¼°®ã_=·„çÐϵÿÔ¿Ÿó˜Äùô;ǾÆF\@ï;v!½ïØ×™ñ¾‹h»˜M¹„ÍäÀOClIkî¦ç—=ÔÛü²—z›_>c[~·ùá>¶ã~>ÊlÏ/™ªObõíãc_dŒ/1‘#ç˼#™‰£˜9DúȾ%Õã>²oIÙ·ì[Röí#û–”}ûȾ%_Ñ߇x¹WBôô!¾À½8]zÊÓ…¨§<]˜BxÂ\¸~WH¸§@ˆWKž8i\”²ÁõbÎßá¼Úò„9q]ýzÂ|¸^Âù‚ί5V£¯—¤}½”óú¹ó먟;ÿ>õsçíÿ‰ËëéÎèµêøõÒÆz»óë©·;¿z»ó©·;ÿÕÄóz‚{ôvç7Sow~KˆLb ÿáÞä³ü—Ïñ?>Ï[b¦YdÂ0FøèÚ7’]ô Aï™à4Š÷6ÖKNp/Ù2þ\¥ž52Á=i7îkü®±{ÓȽ™àÞ4Êä|?çõ²Ü£F™Ÿ6^i<Ú8‹±}íà*ÊÒ]ã2ôA×´Á@®õº1^—Õxñ:ã±ÆÙø ³;?Øyûë„Wspsrwú-úÜ}îƒúÜèsŒÒç>è:ò™&Òg>§Ï|0ã}|Öƒ™è³ÌLŸõ LRÈg=(“òYf£Ïx0;}ƃ9è3ÌIŸï`.ú|sÓç;˜‡½)7êCY¹P_ÞÎ~ÌϧY€ýyPÝ.ô …èÆB¼ÿu6æß!áø«!qVUŽc5ŽguN` Nä=zòc!R¤°ñ$ãšœLûì«Ç/b<Ÿ6§ò^Nã}œÎ:œA5úøLªÑÇÕìYjôq5{Vïóƒ÷¹ÓX힥VW»g©ÕÇÕîYjõqµ{–Z}\힥VW»g©ÕÇÕîYMüü ?¯fWÃg©ÙÇÍïYjöqó{V3šß³š{ÝI¯+jlžÏjAó|V2ÍóYæùñ7Ù*„Ì?xí^«Þ_æœ>ûø[ÔÏ¿ú“óÅ—?d|ÊXý;þ¶±yw|Ûò>L}û¬G¨oŸÕŽúöYrõõÇW3•kø˜÷ûÙû•4^k¬Ÿ?¾Žúùãï³?`G~ÈN\ÏÎÜÀ.ÜÈ®T/orlÎÍz"$ù.Ä©K?ѯë#‹|ol-9Fõ¨óNç­—"ÇðªKw9oý9a,;9Iu©ó§ÎËÎE~4ÌŸ8„§¨//ò3õãENSß]ä õÛ+ބĮ/†0ÌÞ™cŠñQc}ô0{hŽ©Æßà·|Ùy{jŽiÆß Ñ­yC|°¬»Vni"nÍg¼Ÿ·S¦ÝšŸ2íZy¦‰³µ€±L»VfibËalµ–k·Ú˵[íƒåÚµK½Æ¾¶VÏÑľ¶VÏÑÄ~¶VÏÑÄ~¶VÏÑÄ^u·œ¶Ö>Ñä¬ãdÇöˆ&úß»[:¶?4ùűytwëm%gÅdÞVrULæm%WÅdÞVrULNk%SÅd¸¬—”<“áZÉS±BB÷æªkÙÀ=¹ú\õÕ Ü—«®g÷ãªëÙÀý¸:ŒîÃUy6]Îÿp­ÓBøékcyc¼ü‘.oŒ—?ÒåñòGúWlB¾ŒŸIw,ƒ¤äc!2Õ=lª™ê6íC÷°©½îþ!!|ý±{Ù´ÏòižcþB=ÈÔ_©™zžz©¨÷˜z‘z©—¨Ç˜úõS§^aêeÊöS¯P†Ÿú‡…è±Ü!>SÞ<–‡îO½ÅÆ !ÒR/tÌ|˜é^mœh,?nœD=Ѻ÷B¼w®dW®b·4?Ä®ßCý÷uµ,Iÿ}½õß×Õ°$ý÷u½B¢|š¤¿®Ž}{8$N‰æîô!¼"SV¿¾5w§¿LsvúÈPó¡»pŽmø ÛòW>LïWó^Ñ•C¼‡z¾² ÕóåæB§S4:ÉÓË̓N§e7ûyIûyûyIûyûyIûyûyɼœLýjއC|wM>ÂZlÇÚ|”÷²=ïc*õã9c]ê•w×£^yw}v`väýìĤ>Ù"Ê—9|îÝ ésïnÄ®|€ÝؘO° »óAö`Sö¤:<1½ËD¾Ç8Wò6®b&®ff®a®eVʳQ†œ˜2äs0sÆûä0–#‡˜‹™õз-p.§szÏ!æeæŒ÷Îe,SNÌÍΛ§™e¯!æiæŒß•Çy5sb^ʘóQÆœx;·0?·²?æÜÆ‚ÜÎBÜÁÂü„E¸ÓwÿÍw·¾rüN¡¢Š~¦ªV'Çec5§jÄñLJø;—B®ŽÆ1Ž:þËñQ^å7¼Æoyj{Ž¿ù½×Æßp¬¦¬ù0Dÿ¢®ñ~ùí/Þïù$DëÜ/[Oó\£Jòè<פÒjçë8oMÍsm*­1®kl^Ö©G}^úÔçÕi@}^û©Ï«“D½E†Ô[ÔiD½E˜ñg×ó"›ðRˆ~`þô½Ýççsî16úÊ1õùÕîÎúÇüÖ}gýcþŸX‡ÖIg=d~uyÑ“!Rã->ÅåÎ×s^^ÔËømãúÆ>gçT«©i5Vßo¬^/RÛj¼cœd¬f/êkü.Í«ï9ßÐyߣs#úå§ü¾Ggù)¿ïѹ åâÅöðT{úb{xª=}±½;Õž¾ØÞúÍÙÅöíTù1õ!²Ó:~Á:Þi¿`ï´Ž_ÈÇ)t=Zl á5fçTãüœÆÎow^³sºñÆ;BЮEvÎ0.È™,Ä4æ,álÞÉ9¼ËÏÉ'ô?;çëíZØûOèƒvÎ3.flÏ?¡Ý©V¾Pœjå %¨V¾P’jå ¥¨V¾Pšêä e¸˜e¹„åøˇh7õ¢ÜÍý.”%D†ªIU·QMªºjRÕT“ª~B5©êNªIUwQMªªwª&UÝÍ$î¡ZTu/Õ¢ªŸQ-ªú9Õ¢ª_P-ªºjQÕýT‹ª`3~ÉæüŠ-˜ÎddKÚ;‡¶â!¶æa¦ðÕùªG©ÎWý&$쇗åË,Ç‘,ÏQ¼›£Y!„‘ÃBäöhϽ]Ù5ÆùŠÆú÷ÛÕš]c+ëãoßB}üí[©¿ýc¾LscäHš #GQÍÙõŠŸ«Ly~xÊóÙ‘£=¯í’ë‡Ë÷»äúáÕå[ÇÝeð"2~w¼ˆý°»ì]Ä~Ø]ö.b?ì.{±v—½‹ÈôÝeï"öÂî²w™¾»ì]D¦ï.s‘é»ËÜEì‰Ýeî" B´krµ]“«æ@×äjÆßøfó«†He™s~5êçW§¬9¿õÀó9¿&ûY×ñªë7¿–±Œ¹K&ÞŠ2ùpÙ|—,><…2øp½â.|¸,¾KÞÖ÷õ=wÉáÃåñ]røpy|—>¼k$/Üþ…±<>ÜÞe-·†wYËíá]Öòpkx—µ<\ß%‡—ÇwYÏÃåñ|2Ì>{>fß(Ê0ûF‡„g·†ÄÊrù³S.våòg·Syvåòg?awîdîbO~Ê'¹›Oq{q/{ó3öáçìË/¨~våúg÷³?PžöK>ïèçÐwþö|ˆ/×ÿìð;‡z~çPï±Ãïê=vøC½Ç¿s¨÷Øáwõ;üΡÞc{yäѽ)Ó~ ßÝüJˆÒÏÝ-?Ý}Ÿñ«ãœSo%…èaùf’úõ¥úôªúô¥úôjvµÍa-ìÎøóqÖÀîÊ4§wW¡9½»*Íéݯ3—wW§¹¼»õ¨»ï¡ÞTŠæÐ›Ê@Q½E¢ ÕS$Ê@Q=D¢ Í¡'•¢9ô¤2P4‡žTŠæ°d 0Ü+cÎå°.d¡hëBŠæ°.d¡hëBŠæ°.d hëBŠæ°.d 0Ã-#'ϨÍg·Nd¢hëD&Šæ°Nd¢hëD&ŠæÐ›înN=éîÔ“îN¦žtwKêIw·¢9¿[?‘ÃœÏøÿ+wÒ_\™d¾U ±/ä‘|•(ä«Ly$_ª ùªR ÈWê|ÉŽõøù¬‰|Ö}>k>ŸÌøÅ.O=v{ìñØ¢W+‡øªÄ"ŸTZHù¤Òë!,m"µGòŽr^N©´È¸±ñh6áçe–J‹4¢ ·Bâ&ûrT¼ÞdŽFhÿ&о;Í|*e>yAâ¦÷Œï0Ö£L³·•Ju^~Ü$ßM³Ç•Ò+O3‡J=î¼<¹iåÉMòKTžÜ´Æóö¾Rÿ£½¯TÞE9(*gnZk\Ô¸SYV:'snZG™sÓû”97}@™sÓ‡”97­§¬¹iåËM)Wnúˆrå¦M”#7m¦¹i åÈM[)GnRçó;;Ë“›¶…X–#!þÉF¥½ÁÖyÔ>—åãMü–›ù·ð{nå1~ÌãÌxŸ¸'¸ƒ'ù ¤šå'ºÇYNñÓ°ocH£íûˆêѾMTöm¦z´o Õ£}êØ˜ž!Œ~%D düœz6F]Ú§žyÊùWßM®ÀçÕ·1½ŒÇï5VçÆô6Ö¯øŒú´Ÿ;¯îéc¬þP÷©cô˜£'ï3V“ƨEûÔ¤1O;?ÅùýÆjÓ5iŸÚ4ÆÞ1zªóŒÕ¨1jÓ>5jŒÚ4zšó_«UcQ}3˜êã{È>õqŒÞó¦ìüAw~Ï!¤Ž á‚lq­dˆ­2×Ú?ÂùyÆ¥ŒW±4õ íÍ«óóË›kíͯó¯±#8_Öùµ,Çu,Ï÷CX¥nôeóF†P>—Gn½¡÷½ ¿¨éý.XÏ5ýü{}wyðºýª¦÷¹`ÏïžßؾÕ]¼n¿ªé}/ÈÝåÁëö­šw[ï5+Ðzï^ÐyûXMuâÂ.ªÜÇšêÄ…ÝT'|ß„šêÄ÷«¦:qá3V§~ºÍ?!œ©Ã›T/{d ñ"ÖCì´zä õÐ#'­‡*z‚3z‚*z‚3z‚*z‚3¿„Hï5!VBMì½–÷rïãû¬ÃX—²׳>7°­‘÷ó#&ÑÚ(Ñ0„šcBøLVìm”hd<ÖXfìm­”PŸz[+%Ô¥ÞÖJ‰&žÅó²dok¦„ºÔÛš)ÑÔùW—-{[;%2þŽà³!¶~ Ïqá`þÊ!Ãë!Ÿ£Ç@Çso„ÈܧB,å·šw‡SŒ{ÿÎÞ¼Ì>¼B¿+Åïšëw¥ø]sý®¿k®ß•âwÍõ»Rü®¹~WÊuú=~6OÇ~WÊ Ç]vü‡ð&Ÿå¿|Žzœ¹ÏS&˜;4Ä2þ¬ìÜaÔ›Ì}z’¹Ã©™û"c!¡ Ï÷Õôù¾ºEŸ/=ÐçKÐçK×?w¾3„?䳂>gz”>gzÆÏûœé‰ôÓãôùÒo£Ï—ž‰>_zf?¯Oú££±Ï™ž…>gzVúœéÙ4ð7û¬éÙ鳦ç Ïšž“>kz.¾ÄÜ!TRcrÎ ñ=Þ+çlz¯œsè½rÎ¥÷É9Þ'ç|Ñí7CüùCXgM<8Ìø_cëmû´Þ¶ßâFÏ[+~xµ’ñç†×Y+¾¢JBüyûÒŽíK;h_Ú¥µa_Šo2gíKñMæ¬ý(¾É¼Ø¡ok÷¤qcs7zÍÝhAš»ÑB4w£…©~í(ïõæT´ˆñ_¼“Wy¯…p›×ÜöWHxí+tƒ!ñáç<ž÷Âs‡=Žxè§²é³Ýî‘?D- ñ òРŔ‡-a˲ɔƒÞp,e’ù¶Ë|™d¾í2_&™o{mûù>ÇS=¦yL÷˜á1Ó#Íc–Çl9s=æyÌ÷xÍc‡œ“éuE‹=–x¼á!m¿×ã>:u=êyÔ÷Pó¶«wÛÕºí =y<àÑØ£‰ÇƒM=šy4÷há‘ìáûÿÚãPˆÎ/âm¾åÝüŽø}ïž‘¤»+3¾`\Á¸’ñqã‹ÆzÈì;'¯µùUx‚UyÒk.yl­ßŠ·ù‘Õùåñ6§<ÿ›ç+SH’¹õ_ñ6?³&O³Ï„PöŠ×¨IòøüÚÎ5V+’äòù÷Ÿ3V3’äóù÷ÿb¬v$Ééóëÿj¬†$ÉëóëŸ7VK’ÜÃùõŒ/°>/:¯¶$¹§ó_ò»í™eÿ4ÖK´1OßUs’ÜëwÕ¶$ýéi÷dÁ)º/ ~¦{³à4ÝŸ>ûxyàNyà´{µà,ݯ>ïøéÎgüA3h~žvøÜãg4v?üJ÷tÏ;>ÍùŒ+h9ï>güÿÍÇÏ66—ÇÏáçÝûéþ/¸Ds`Áo4üNsaÁeš ®ÐœXðÍ‹²%­›Ó­x•­y)¼Î‡ø7ÛðFˆþ­.¬=Luaí‘U~ãk†P¹´Gcu`í7ŽË:V Öšk7Ô‚µæÚ¿—÷ËûÉ!lÓ—?<Àxˆ±äê³´Þ®>G=ÈU}ãªåCÆ6|m9œæãÕù_b;Ž Ì’üTH”ù’{QmNîMµ9¹Õæä¾T›“ûQmN~šjsrfæªÉÉÏPMNÈlDõ8y0Õãä!T“Ÿ¥zœ¬îD3þMIµ'šñïFe^ª¬ãaŽóñÞÎáÌÏY€/ñŽ`A¾ÌBz_uðý+TÿÞÿƒêßûæéMõïý¿X”WC˜ò]ˆ”ôsÿš˜ÏS¾7.dl^|`^ük^|`^¬>Ÿ|•'9Ž?r<âžâDþÌI!¼°2Dr^0>m¬·[}†Sœ—Usš«ÏOå9Ns~µóæãê_Œ§óWÎàyÎôüÏû<«/§ñ"gñgó7Îñ:Ù6gÆçýÝx./sžó²nNózõãùüƒrñ ï;¯~¼ ÿæ´–_sÚ^XÏ¿¸æùê?½~ñFcûÇ Ñ|_ý—ó CÈô¢s›œ3÷W_uîu^ã"^çbþÍ%¼Á7ø—ò&ßä¿ÿ9ÖS?ùVH¨gßþÓ½®gßþS®î áF’±ýûO÷¼Þºwõ^f!ÏË74.ÌQ,â¼ÆöF#ãÑÆwr 刞1ç0k\”¯°_eqŽc ŽgIN`)NdiNbN¦õ»^?¹þcm!þô@Az›ZrÄ%óº–q)/}¯Kùôõ®S-ßï’~"ñ}ǾÛ%½D÷.žsíjùŽ—ÌóZ¾ã%ß¹–ïvÉw®å»]2OkùN—|×Z¾Ó¥"ô].ÉX[8ö}.ùžÝ»z/׿–ù[ËÜ­eÞÖ2gk™¯µ|‡KE=Šy÷(á¡ÇºTÊÏuósîWÞÂ!öùÊËÔ0Ä·{.S#ê»2=@ýQ¦ÆÔej²!ÒïHˆ•îÈ£ìÄoØ™ßRí'w•–AûéíJwã1>ÁãÔóõû=x‚=CäýÛC¬·Þíýü”®âkìo˘íco˘í_o˘­éÆz®oÚ˘ÍÕÆz­oReÍÎö§·eÍÎ2qcsæ›ÇŒeÎÎ sBÇrgg¹øm¹³óÍí:9Ä ÚïºNamNå½!,’ïiÂbÙøžûŸæü}Æ2ò=ú §B¬EoþÌ><;<Ã~ÔÇ´xšú˜ý©i1€ú˜ÏPÓBŸ3CÓBŸ3C&l¡Ï™!¶Âýÿ†pHÆœ¡Ÿi¡ß™!¶ÐïÌ [<ïCmw,¶ÐkÌ [èyfèiZèyf¸V3ìï3ìå3\öêz¾÷ ½À }À =ÀŒ[^o®¶0?[˜—-ÌÅæa s°…ù×ÂÜkaÞµ0çZ¼";¬“¡¹h ÍMëdhšcCóÒ:*Kî˜ByrÇTæç4àtÞÁ,È™,Ä4‘o÷‡ØôGBxè©~^n|ÀXÏýP/ã·Ù›+œÿÒùGû¿cü•qÆŸ âaû²q–rš§a´sÿãvàXvä+ìÄWÙ™ãØ…ãÙ•Øù'±;}ÇàûódcžO†è49«©\óvÉ©×ÍXÎj*ϼ]Êø c9«é¯”³šž§|ÕTîš&W5½È$^¢5Øô7ZƒM§5Øô2­Á¦ö»iÖ`SûÝ´i¿›Ö”îwßU!Vª&W³õý¥ôý}õý¥ôý}õý¥ôý}õý¥ê„K– öª¾úÿRz¾úÿRõœ—Eû®w\?„Z^ò¹Þ¿ïcýMß¼ßyuúsk ïGÆnbCnf#êsJ=À­lÌiíõÕû—Òû÷Õû—jJ=©fÞO]ÿ<ãç?1nÎlÁ]Læ§lÉÝ{·ò‡Vë¡zçgÔ;õü¶ÆúlRÇø)ã;Ù‹êûk¶I]ãÞÆE­ß&îÕk¸I}çû8_Œ}YœýX‚O³$û³°4Ÿñ°õ/ãa_{R[ô­–T ‘šO³*ûS­9€Õù kp ïá šo5Ó|«©f-1ßj>Kó­æs4ßjªUKêPϹÄ<«9ŒêZÍü^Ù¹èrc=tM½÷“2tÑ·CÆ_=/º‚²sÑwBB›½!1s~ÆžüœOò >Å}ìÅýìÍìÃ/Ù—_QM>aŸ›ý‹p)ï䛼‹ËhŸœý핳՟öËÙoÓž9[Ý9aoœíód)b;\¯Bø}$à(çïp~yˆNU+šºSí-MÝ·©ö–¦õ¨f4u¿¦ÚKš6àtZOÙeŸåî}=ër¹{]/ãgfx.‰3ÙilÄY|€³Ù˜sØ„sù`HxéßXKÖzIΪµ,„A‡ÈmræK·Œe®bH­åŒðm&p£ôÝFÄø.ùã\ÉÛ¸Š™¸š™¹†Y¸–Y¹ŽÙ(çŒÈΘƒ2'×3707eÍ!o‡X%ónÈ V áÞÜ!ì{ÈøcóoÈ»¬Bî‡<Ú8÷žs5¼6×fŒe—J÷ë)öµµ^õÂCÔÃJ5CB¿wBbé–|—­ø[s%S¸Šq5Ûp Ûr-æ:>Â÷Ù.D–½b+q9+Óçïèó/óù;Z7Ë|îŽÕBx@/pTXæów´~–ùÌ­Ÿe>kGëg™Ï×ÑúY¦^w´~–©×­ŸeêuGëg™zÝÑúY¦^w4/˜êý«×­£eêuGëh™ZÝÑúY¦FwT£—©ÑÕìejsGµy™ÚÜQm]¦6w4_2>£úÜQ}^¦>wTŸ—©ÏÕçeêsGõy™úÜQ}^¦>wlFu¹£º¼L]î¨./S—;ªËËÔåŽêò²ÝlEµ¹ckî¥û•Ç^²ì3ÇîÛluwöN]!RA†ªà Ñ»?‰?uä‡ìÄõìÌ ìÂìÊh_½{eÉIo„Xãò\Ê»ù&+„hDÿ¿ñ¢º;ɱžo£=5¢×Û˜±§ñfêÌ´/ù"¿bÆ¿Mˆu°·,Kâ6ä^6âg|€ö•e)[,kÂ}|÷¸)í5 •ܧ±î“︬™sö^1¶‡<ð*3~Gsç¿b ¦3™Ù’_ÓÞÖá[ó0Sx„ñ(Ûð¶å·|˜zÜePo»¬ñQ§\Ôá÷âŒãTÇ'BB[ýzýx[ýz}K[ýz}K[ýz½x[ýz½x[ýzýY[ýºš—ÐV¯®Æ%´Õ«g±¯µÕ«gÑ£´Õ«gÑ£´Õ«gÑ£´Õ«gчµÕ«g¹‹#iß*ÔÔñ(Çz°¶£©»ÝúØ_ŸÖÇþ´>ößOëc¿^ðvëc¿žïvëc¿ïvëc¿zÛixW6['ûëO¯l1¶^ö7¡u²_=¼Ý:Ùï÷Þnì—5b?…P@–,°Âã?÷’ŸÛêy5évkg¿û³ß½ÉÔM¯ã~gz‚îw¦ît¿3Ù»·»ß™ìÝÛ›…èß™õ*'C¨¬UÎkœÅøÇ`¯øH½LÐG}¤^&è£>R/ôQ­ ÑøòøñC|›m¸‚m©^},oÄÕ«¡zõq;ªW?JõêãöT¯>N¥zõñc!únÎïöIˆ¦éZ>ÅM›=¶Ë-e‡–}B,ç}!¾§pŸ˜síÕÚO̹ö>û'æ\{õós®}>¯“g÷È$¹žpÎük¯GË)ÓîÑ{~b¶×«å”i÷È'Ÿ˜íí‰9eÛ=îó'æe{=Ú'æe{½Ù'æe{½Ø'æe{yç ™{tÓ>Ô»4ßH½Kóœ—ÁG»Gêašoâpú_È䣛¿h¼ÅX6ÝÂØÚm®'ÿBFl<Âøc¾ÌmÎÛ‡G·¤}xt«r pl/-;~a/B{ñh÷a¤û}_ŽÐksH,Þ!½m$ÁÜïµÅ¸#·²?fgn£>þ™ãí;Œ»zèwW[‹=}çÕÖbÏc!Úëë¡*ê¡j±ÞΣԃ ÖKU´ Ö;U|”z¦ŠzèÁéÔ;>ÈǼþ¯—GjK½Ú௜‡ø?fê­*väQvâ7ìÌoéºÔþÎÏëñgÜÕø{c½Þàï]£ÁǨŽ>Îîžwöéÿ`܃'ØÓùãÎ1>iü¤±ë¶ïNãÅÚ'Œï2þÉXŸXÛZÜgÖ–Å÷£õ¾¯8݃}%èšï+ÉÓÔ› ÖÇWÔWÖ>c\ÚX?_Q_Yû¬qêéö•u^_Q?X_Q–¬¿¯¨¿¬¿¯¨¿¬¿¯¨¿¬¿¯¨¿¬¿¯¨¿¬¿¯(+‡KŽõøååa®KŽÔ°üTHìGýÌÉçy‹C3þªQ£¼pòêÛ¼çse|ÇáÆQ¾È_b¢çWz>ã»0ŽóeÞÆ‘Ì"Wôú+ÎQ¯¿Âµ»¢×_á{^q-Wxß+®å ?ŵ\áÚ=Ú$„_Ç»¦+.?h<ÖØµ]áú]q=WÈ9W\Ï®Ó×s…ëtÅu[á:]qÝV¸NW\·®Ó×m…ë´ÐïÄ=i¨?"G.ô9ñ¹úø\ }ŽG~õ¼{s¤ /Sv[ès=rÞøŠ±|¼ÐçzäÿÿqÅpõLH\5•g9ç8¿PpõWÎäy¦ñgñ"góçð7ÎåïœÇËœÏ+|pÿäBþÅ×y•‹x‹yKø·Ç K‚q=ãÓ¬Ï3lÀ³¼Ÿç˜Ä_Ø¿²ÏóšÅíËqÙ{ëEÊÝ[åî¸Ü½UîŽ7åïlÆËlÎ+lÁ?˜Ì?Ù’±¯²5¯…èÄ&!ÞÈë'>H¯ŸØ”^?±½~¢ùÓèªÞ¹LˆÔíal5ºBßcb²ãëžSÃëÚOÊøN[:÷7[ñ[S}]^Îkì1Ëõue¨‰)λߢû¼\ŸQ׳¼íÍÛ8ÿŸqEã>Æmoù®×ćƒKÃGè^OlG×y⣌z[ÆuœØÞ8ÆT&ò1Æù8oãÿ˜‰˜™™…˜•™]˜])ÇTžbg*q+s.«p«r>«ñ5VçÖàBÞÃש®¼ˆµ¸˜µ¹„÷Rÿuæ>ê¿ÎÔ ÑÔê!žÓ¼L­Aó2õš—©5i^¦Ö¢y™Z›æeê½4/SåÑœæeª¼™Ó¼L•1sþLÙ2§=º”>.U®Ìé^¦6 û—z?íU¥&;Nrl^¦6¤ë™Úˆæeê¼ÀÆ4'SÍ¡œædª9”ÓœL5‡þÿÿfíõm…jn\o­æÆÕøÖjn\o­æÆÕøÖjn\oý7Óô72ý•¶z§BBÞì!öù"çò9÷°qãÅžëfZ×-ÎѺnñ ­ë¿ÒšnqžÖt‹ ´¦[\¤5Ýâ­é¿Ñšnázδ¦[Ø«žÕOdõ»ïÜèœõÝÂ~uçGŽ­ñÐo!Ï<«ßȪçœi­·ø‹)¼Ê‡<Ú8ö½ZȃäÕ òê yµ‚¼:H^­ðåÓ òé ù´‚|:H>­ Ÿ’O+ȧƒäÓ ä8÷í =û 9µ‚œ:HN­‘S§8¯‡$§VSsßëXF­ÐÍsîåúúÚÓø¥ó2k™uÌZ¡;eÕ ²ªù«‘U§{ÞÞ¼‰Ux’2j5÷}uŒò8åñ³ÇiY²‚¼PAV¨ 'T*ô³AÈ¢µgx¯ôPõfˆ³WWý—öêªÿÑ^]õíÕÕ´´çìÕÕ"´WWK ½zÍîøÔÓÜÃþ! Ï"¹šïõøÌ¹Ï„i|›|§ÖoÐwj½4DO«1 +‡h½ÜæÍ‘Jö©:z ¹'Ì›cl­ÌÓ—TÒ_Ì›GûÕ¼ù´ïÎ{òÿ¼”ûç-¤|?ïuÊóóQŽŸ·˜òû¼%Têè­ä©0ï cù}ÞRª uôZòU˜÷¦±Qg»q/ê¹ä¬hO¨þÖÙɾÜÅ~ü”OÓµ¸Ò?D稱)jê56EM£Æ¦d¡é£ú°Y!²®ZˆõÒ6moì;¯«nü‘qª±~¬©þè{¡4a¤ãÇûÞëjxÍ&ÞÃͬÉ-žÿŸççS/ù½ë±®–ó[;».ëj{˜këîó¨ã¹=¶yl÷Øáuæì÷ Ù™²Už¬!ö™¬•'3ÆÖòg²Vkø3Y+ON. ¡£ëzEÞÑu½r—󹜃¹¹”yø&órõúŸ½EýýgËýœþéJQcýýgoS_ÿÙ ÞÁwXï²ßca®d® ±ì³CüÓçCB}À—Q꾌Qðe"õ_ÆMZ5£€^àËÛ¨ø2õ_f¦^àË,Ô |©Ð |™z/³S/ðeŽ­%]4ßæºîíãµd¤‹äãŒe¥‹ö¤Z²ÒE{R-Yé¢ù7WŽ«h_¯%3]´7Õ’™.Ú›jÉLÍÃZ2ÓE{S-™é¢ùWKfºhÞÕ’™.þš­‰A}j¶mBˆp¼ÑqÛM—7Æç¤Œ1>eŒñ¹)cŒÏC™b|^ÊãóQ†;e‡ñùCÂø/CbÃgùŸ aH¾ɬVO7~Þøvcýý=}æv,ÀG=ÐóCù5‡ñ_àa÷:½|æöÆGŒ_4ÖƒfÖƒŽ?jü’±ž3³ù=DžÙÜ¢çÎü?Ïãùü–/ó;Žä÷åuzñÌæø=xfs{HQvòü1ÏæqŽáË|ÅëŠy¹=¤8»8ÒùWù#Çñ'ާ¹áêN¤ž¸¡}q¼^§¡}q¼^§¡}q¼^§¡}q¼^§¡}q¼^§¡}q¼^§¡}q¼^§¡}q¼^§¡z:^¯ÓP=íÓ/$–”—ú<Íœ!<]3D÷7ÎEu²dn>Ã<ȼDûVŸÁ¼C˜ßÏëC†?k\ÀØ:Op?û/[Ÿ}F°_fqŽd ŽbIŽf)ŽaiŽe¾Â²|•å8Žå9žws+p"+råÈ>“©OMÿ<ÄÆ›óù†9þ±lñ¶ï\oHˆN“=›¹†oûÎõž5îfl L{‚ÖÀ´î´¦õ 50­'­iOÒ˜öó³ °7ï` !{Ç}b?¡ìýŽŸvœñ\Þɼ‹Ï°(²±8³‡°$Ÿe©-kíxžÖÞ‰¡!Ìn"wc ŽwÞ<1ŒÖÚ‰œOv^N,kͰÆf·4–ËZ{'¬±Ù­ŒåƲÖà‰—híBÖFŽ­»/Óú:1’Ö׉Q´¾NŒ¦õub ­£cix%$ô*‹mb!n¡°½«°ýª°=ªðc!á³áš3…õŠ_»_Çï¢:ÿǧÎë¿®aüª±¹SXùµ³°òk=fa=ä×zÌÂoRYxõ˜…ߢ³ðrÖá۬ˬÇwXŸï²ߣëTx%“(|ݫوkø×²1×±Iuú†pàݪ/ÚÅ£kˆU•Í«žõÐgF2yȉudóïñiº/uäê«8€«)OXB.ûZÛŸB8kž´5ŸÎ–‘³BlÑãŸK_4~ÖX{¶”ñ%cû}[óëliãߌŸçïÊË4ç“Ô’ëjI’Zr}Õ‘ëêH’:r]IRG®«#IêÈuu$I¹®Ž$©#×Õ‘$uäú+´_•öãëãB´¦µqAªim\jZd šÖÆßåíjzÆÿ¾éê·g~âÉ~næ÷Tg£Z8ó8ÕÀ™?pRˆ\ý,ÄV=Bûº!œ·g\µ¬’_Ú×3VCó'8®ïXýÌõˆy$zĽÖþ²ª÷ñQî§ðêªwùoópoò»7ùõ7WõhWõ‰«óГ§«?H™ºzSî`3~Âæî—{v@-¶ÓX¶‹Éz5k{اŽÍõa»©ŽÛÃÖ~Æý= n ÛkœB߯úCô½ª·¡Ï\½-}æê¾wµ^¯¾ óÙ«?BŸ½ºï4ìKªÝ¹{yÍ:¯±Öë¼Oµo˜ïPÝ÷¦×­®×¦×­®×¦×­žñ½ôºÕõU<ŸmGˆï’뇫Ç5Ôïájq kq¸\Cý®×°‡— µ7¼$÷°õ‚ÃKS­^†Ÿ‡p›õ4¼¬ã/XŽûXžûy7°¿dE~ÅJÔ«¯L{Äð*´ —Ïk¢\^ã0åñG¨>×8Jõ¹Æ7TŸk|Ks°ÆwT†›5ÌÝrûû„xïklÌël¿ù o„„É!±Ö¶älÅ?Ùš1…Wù¯± ¯³-ÿæÃÌxŸGøÛñ&å¿lÏÿ˜Ê[!zí×_½ƒçù /p'/rWˆ.{%Ä;Öæ«¼—ÖɲñŽïó¨"O5 ±¢ûø ÷³)°Íá§šó+¶`:“i$ú¾[Ë…°£cˆ´[Bß1!vr,ÕÛ¾¯Ð½îº.$”Ñú¾jìžw}߸-? ^¢ë‡|„ú˜‚í¨)¨‡èª‡)(KôççÌ‘®ëºn¢lÑu3çê ºneêÛ ÚúêÓ Êþ]õç;‡„aÿ ‰Õ\¯Yÿ…x«•¼ÅU!:[ËÔj5#\îe”ëBô-¯“÷–Œ×IŽ{K¾ë$ǽ%ßu’ãÞ’ï:ÉqoÉw丷ä»NrÜ„{B¼¡š5¡&õmjQß6¡6潿wôÇô;Go£ß9z{­Ô¿çûÝ£wÐïý ýîÑ>gT¶Ïk~ÿèOé÷ÞÍ$¿{´š6Zn+¯Þý§­W[þS{ÖÿjËú4ïÖ›oÿ©=ë;QíYoŸüï0í•ÿa×}¾JˆWùŽUù}ˆ³÷¦é¥ŽÙ{ÓôÇì½iú‚cöÞ4½Í1{ošžæØû´&ŽÉ6iuù!ëq=ësp#ïçGôùmbCnf#náÜÊÆü˜MhH³³¤ÙŽÙÒìÇìi²Ô1µ?Mí?¦ö§É@ÇÔý4uÿ˜ºŸ¦îsÒZS½Ïø·Ž©÷ÿ¦Â1õ>-£:áqÒXÝOÓ E_r¬ö§=L5?MÍ?¦æ§©ùÇ\ã4ûØ1×8M}?æ§©ïÇ\ã4õý˜kœæsÓ܃c®qš{pÌ5NsŽ¥{pìºǾ¥{pì; ‰µ*„ðyoÊØŸ÷¡Œý¹lSKÆþ¼_ˆô“ŸJW¡üT:ãß™“¹?ÚXŽ*-o×rîs™¦–ãÏ8/W•®N¹ªt ÊU¥ïñ¼Œ÷ù3Æîqi÷¸Ÿ{\Ú=îç—vû¹Ç¥Ýã~îqi÷¸Ÿ{\ºŽŸ“?hì^—®¢­Û†xâ?|˜7ùÿe;þÇG©~´nâq—¶u*#!zuUˆ¯’1sÊAWW;–3?vÏÚÊW¦…ø;=8=9ƒO†„æÃ—îWãÖð•ñYˆ×ֳ޸œzÕ_ð9î£p„ž¥¶^c„ž£¶Ü5BÏQ[¯1BÏQ[¯1BÏQûEê9jû#¾¦<6â屇)È|ÄÜÜDýÙÍÔŸØBýÙ­ÔŸø˜ú³Û¨?;°ú³öšú³öšú³öšú³öšú³ŸR_v`7å€{(ØK9àÀg”èŠȾ p`_ˆNü3ÄXÂrkª®Þt¹5U×çŸø—óoð*勤ÇCìš=5é´§&u =5©#í©IhOMêL{jRÚS“dékÿ„ÐSn¾‘ñw»u3Îø7ž ½5©;í­I=x‹=Cìzà“Œð)ʈ‰úª¤^Ž£ìÍû0‘}g?Ê„eó²²ï¡-!>IÖ=´•²î¡i/>´2ëá‰!>ù1NâãœÌÿq ;p*;ÒœšÜ)„ G›W“;Ó¼šlíy Äê~ÎÆü‚ööºöö1ööºöö1ööºöö1ööºöö1ööºöö1ööºöö1ööºÙ’_³±53…Gø² ¿a[~ˇù¡º«ŠMPëõA± j½>(6aÕû {ÙˆæCž!~gN>É\|Š¹Ù‹yBXlߨ)/ö^5cÎ÷v>¯±÷¬™hÜÇ8íÕwÞî¼ßQ3nlϾ3?íÙw =ûÎ;hϾ³`ˆöþ9ÄKLa‰¬RÓ¼í}Úxб¬RÓüí}Æxª± RsÇÓ<î}ÖùiÆŒ}þÞ猧óΠLVb&e²i”ÉJÌ¢LVbvHX&£vE—ɨ‡I¿¹LNí .“S;È£ËäÔòè29µƒ<ºLNí .“S;|O9µÃ1Ê©ŽS¯”ñ¿­¼k¦cyµƒ½à®4Çz¦'Y‡?².b=žb}þÌ<Íûy†I<¢»¶y\ÛÇ]Û<·Ó5Íãš>îšæqM‡tñJYØ…YÙ•ÙØÙùs°;Ýã!=èqÏ+¹ÇCÜóJyèžWÊK÷¼’ß7Ä=®ä÷ ñû+ù}CüþJ¿Ïï¯äñû+¹‡ÍÖ‡x°šm`—JªCÍ6:–š}Än!¼fNWÍí9÷¸Ù&çž “ß ‰Mì‘Cþ ‘,úÿÉïË£“WR¼ŠòèäÕ”G'¯a{®¥:Y®m"‡N–g›È¡“åÙ&rèdy¶‰:Yžmb½¾=/Ä»´à|&ó5¶ä¶âB¶æëLá">òÎ ±/J32_ÞY,ËÙ”»eÐpE¾Í;Ǹ<çònΣ½W6 WäÞ¼ó+ò5VâVæBVáë¬ÊE¬ÆÅ¬Î%¬n+b¯ ÷ÝV&„ÇŸ áÒcï»Íç¹ÍûnóyèüZcï¿­¼ñ c½d~Yó6¿kÛÝ!Úé“Ïß'Dž¹bå_ä5Ê(Ï\çþÍ—C¨]6„/zß0É8Š79šÿR¿ñÌÔo³Ÿ?h,&¿Fy0Y¸AL^Hy0ùuÚ“’±+û¹,~îkãnÆöù Oð vçÒrdüŽŽß¤ûŸ¼ŒOò-ê ’—³ßfo® ù”üûò]Ê–Éö÷ ²d²½wCº–dÈäÕ”“×PöK^ËAÌøw‘ó}Ÿ1«ÏxˆÙhÏgn&™›ãÌͤ—iN&™“ãÌÉ$srœ9™ä>3'“ÌÉqæd’99ΜL2'Ç›“Iæäxs2ÉœoN&™“ãÍÉ$sr¼9™dNŽ7'“ÌÉÕrö“®ëj9ûI×uµœý¤ëºZÎ~Òu]-g?麮–³Ÿt]WÏŒÿï1ºž«³»Ðâ:­þÁq¶ÅCäá&2êóŽosü 3±iˆþu<ÄW~`œÙ¸³°9³²³1ãïÈΖÌÁVÌÉÖÌÅææCÌCÙv[^ª¯ÛòñaÞÎG˜ŸíX€òêó·¤>r[!>ÆÂ|œÖæÃÿ㔃þúÁçýÐø.cõõ¯Æëy’ø#7ò'ʺ¢¬û—½~¥¬û—=~¥¬û—½}¥¬û—½|¥¬û—~û/û÷JylåöYñ¨öú8Ûó¦ò£k… ÚåGÊ ]~ ¡±>åsl…,ÚåeÑ.?Sírš²h—3^§_ùF ÍuN.í¢ço¬ùFñj¬ŸùFÝÌóœ¬Úåœs537WȪ]~1®e¬G_!³vù•2k—ó”Y»\ð|mÏ?k,»v¹HÙµË%Ê®]~£ÜÚåw¯»×ëž3–_»\¦üÚåŠßèa¾¬c»üA9¶ËŸ|šöÊÖÓŠŽÕð.×Bô3ûûÈ’´¿,EûûÈÒ´¿,CûûȲ´¿,GûûÈò´¿´'|fY!$¬”oºË7+å›îòÍJù¦»|³R¾é.߬”oºÿ@Ù¦û Ê5Ýåš•rMw¹f¥\Ó]®Y)×t—kVÊ5Ýåš•rMw¹f¥\Ó]®Y)×t?ˆ”ãW6â/|€¿²1õ+›ðäE6å%6ãolÎßÙ‚—™Ì+lI×mJÖk2ƒÙ8“ٙƜŜœÍ\œÃÜœË<œÇ¼œÏ||·S½ß\ùZíš’ßX­,q\À±z›ûO÷hÊÆ‹BBiëÿø žà`žäþÈgùŸã)>ÏŸ9”§9ŒgøÏr8ÏñEþ—ø+Gð<_æŽäEŽâ%ŽæoÃß9–—ù ¯ðUþÁqü“ãù'Ð;>‘rÂñIT‹O¦Z|| ÕâãS©ŸFµøøtªÅÇgP->.—V‹ËÂâKìø,ªÅÇåð2jññ9T‹Ï¥Z||õqedƒã2Îñ×B4Ïåøùüfè}Êʤy®gœÿƒ ø'Ý‹œ_‡Xhâe¯íÛBä‘ÿB¨l¯Ú®žÄrlÃòlË»ù0+ðVôþ;½¿ïÚy¨k!ãϧ«gA- êXÈø3é¼¶’Ge*U=ªyT÷¨á!#O‘q”q§È¸ʸSdÜ;†ð¬=!K+ã Æ2é”ìì¼="Kk㌻p»r3»q eñ©Þ§iGúù¦~~ªŸo*»NõsMeú¥MC¤ö+!”–]†\•ûe‡¥Íœ{•Í©rÍù7x²DétÇ{Ü0~ÓC–XÚÂkͯïr…Äé177…ðª=«pã<Æ›™—[˜[y;?f~ncn÷sö¸Âmï0ÞÁ‚ü„…¸“…¹‹Eø)ïänÞÅ=,ʽ,ÆÏXœòòw%øE™ý̼9!±MÎåý!áï.!qmfvevcÖÔ€H }ÊßOg ¡xUçì­%ì­Sì­%ô,w÷\vÏÉù÷p¬/["“?6;9ˆ»88D{7Ä—¿DsùʘË_¦Œ¹|$eÌ壸†òÏi=ý‚Ï©§_ðà>6fÆ¿§YÇqÇB Á!±‚>½½\}þ«¹îgWû™ë~vµŸ¹îgWï§Ÿ]}€M<tü¥ÇW!¡  ”Þ—2Pz?Ê@éOSJïBkŽå ôޝ;VÓŸ¡:˜>ê`ººXPLW ªƒéêbAu0ýÙ=·ås,ÆçYœCY‚ÃhÏ‹½@{^l8íy±©ÈL“JÉë±—Œí}±´÷Å^¦½/6’ö¾Ø(VàhVäVâXVæ+¬ÂWY•ãXã)G¼)—Þ+» â÷x¿á/Óû Iï÷Û+î,µÕ¾±uaˆ´ùÞã˜ó¯:ÿ8ÇñÏ!T’›àØš®ÔÌñDÇ8‰zìß&³ §PýÛTvã4>ÁéìÎìÁ™ìÉ4>ÉY|Š³Ù‹sØ›sÙ‡zåå}©W^ÞzååOS¯¼¼?õÊËðuE‹ŸñèaîaÃIÊ~ aª>¦¤>fª>¦ä\çe† ?QfØpŠ2ÆŸCÈ2ñܰá4å† gØÀCfØpÖCNxß裮W«sG¨¦æNà.F=onô1GzÇB¼¸®w"WQVÜ\è­÷*®ïȯ7˜4&ÄËדÆR¾žô åëI¯R-4Žjç¤ñ”¯'M |=i"ÕªI“¨öLšÌ|!4øV&°Ö'éËÙ“ô‚åìIzÁÆê¤éÌx~Õ‚I3)gOJcጿpÑñ,Dzö¤Ù”µ'Íá]!á5º›ýÎVvçÇìÁmìÉí|’;ø?a/îdoîb~J=ÚóB¬p1Ú[ çk,Á,É…,B !ì¹jüºqi.b.fÙréõ‚õK¯—KŸ—˵n¶?ăõÛìŸã—|ž_q(Ó9ŒùBY?wüµãá<ÄCxíë©šÇø°±ú×ìG8Èù¼ÆGÕÁfßPlö-ÕÁfßq4¿çãXê¯Â+Ô·„W©_ ö«fú•0žú•0ú•0ÑïÑsVÍøo™æMó¦‡ySDÏßCÏ^d-õÞEô«‹­ç{Žñuw^o]DÿºmEˆ?gMn{‡Öä6uü9kr›:þœ5¹MΚܦŽ?gMnSÇŸ³&·©ãÏY“ÛÖҚܶŽÖä¶÷iMnû€Öä¶iMn[OkrÛZ“Û6ò~DûɶM´&·m¦ýdÛáVºGÛ>¦{´M¿õœ{´m;Ý£m;èm³/=÷íKϹ?ÛìKϽÈOé¾lÛM÷%‡:·mc÷dÛ^ÊŸÌÕüòI's5¿ZÖçJˆýYÆß™²Å÷ìûmñýû~[|¿Á¾ßßo°ï·Å÷ütˆ,¬b¬gUn`5ndu~ÄÜÄ{¸™5¹%„†êÉóxa-ã­¬Í?í|)ã{·ë˜× ï3–Ö¡<¸°.Õ˜…õ¨Æ,¬Ï]!ZZV9¦--£ÓÇ––QŽécKË(Çô±¥e”cö‚Ò2ʱm”QŽm§lrlG³¾ ‘» Ë(Ç>1þÖøcYåØNÊ*Ç2~¬rìSÊ*ÇvSV9¶'D†U ±jï³?`e~Hשšë4Ìuªæ: sª¹NÃ\§j®Ó0שšë4Ìuªæ: sªm¡ëSÍõæúTû˜®K5™y˜ëQÍõæzTs=†¹Õ\a®G5×c˜ëQMÍÖ€Ÿò~îf3>§,Qm/e‰jŸQ–¨&— “%ªÉÃdj2Æ0y¢šŒ1¬)eŒaÍø%›S&Ö‚éLæA¶¤Ú0¬Õ‚a­i­K¡¾`ØC<Ê6t­‡µ¥k<ìa~ÇGhÿ&ƒW;F9¼ÚqµW&Wû2yµ!2Ë{µô^³¼WKï5Ë{µô^³¼WKï5Ë{µô^³¼WKï5Ë{µ-O„ôR‡\ãYr~Ë“”õ[þHy¿åOìÀSìHó6Éz:ä^Ìêd|šižæiä¹—=çþÌêâÜYã‘ÆîÓ¬®ÆçØ¿ð þêùQž7ï’FÓ|KC÷oVwÏŸg^`O^䓼äw=àø)Ç¿±go^ÖêºG©îÑ÷(Õ=Z⥺GKÜ£Ôƒ!4òYgGKzXkKܳT÷l‰{–êž-qÏR‡àš/qßRÝ·%®uªk½ÄµNu­—¸Ö©®õ×:Õµ^âZ§ºÖK\ëT×z‰kêZ/q­S]ë%®uª{¶Ä5Nu—¸Æ©®ñ×8Õ5^⧺ÆK\ãÔŸéÚ¦º¶K\ÛÔ3t=SÏÒuLu—¸Ž©®ã×1õWº^©®××+ÕõZâz¥º^K\¯ÔKt­R]«%®UªkµÄµJ͸V}¨î-éË?ØòiþÅþ´¿.Àk|†×9sop0ÿáÞä³ü—Ïñ?>Ï[beüçˆaŒð&p8£!ܶ($LL ‰®ò!^ áΗ·q|=Dßâí÷ó.`Q~ÉbÔ÷-.N=Ýâ<È’üš¥xˆ¥y˜ex„ey”åø Ëó[ÞÍïXß³"eâÅzßöö‡Åúßö?PÜþõÁíeÊD=ږϨGÛ"7$êѶ|Á’ÜÇRÔçL[,ûû¹ÄÒÆ¾Gbú‰eé{$–£ï‘Xž¾GâÝô=+Ð÷H¬HuåÕ!Öàõêï á ¬øêÆ‹X~Ç«…¸$D>.bCÞei¾Ç2\ɲ\År\Íò”#Ý ñIêú¡¹'D ž ‰éÓCBUuðì´ÆÎž 5vöd‰¯:¶ÎÎþHëììO´®Îž¢uuögZWg­»'ž áÚckëìZ[gÏÒÚ:+CWµ¶ÎþBkë쯴¶Îž ωU&ó§ð"§ò§™;%ÿæØç|îwÎàeÎ ÑgC<ß4žãtþBy¾Ã¯œ¢,!R£9]Ã-(o×HöüyϧËÝ5Z_0žÅ‹œÍKÔ;,’Çk´¢<^£5åñ)žÿÍózŠ¿s/s¾çåô_1~ÍX^¯Ñ†jN¶Îÿá¼~,Û]Žÿt¼Ðsù<÷°ñ_Æz›W©¿ép‹yKø7ßà .å?|“îi¾etOó½Åÿ¸œ·øvˆŠ@ñ|+B(#§ŽâuÊðêMG §ÞtÔ‹Ô›Žz‰w‡ÈHóç^óg¤ùsïêê%†ðUccóèÞ5¼›kYë(Ü+Œ”î•FÊ÷Ê#åƒ{僑òÁ½2}½¸÷ÑÏ”î•FÊ ÷Ê #å„{å„‘r½rÂH9á^9a¤œp¯|Óð¶xÝüm˜‰rpÃÌ\Ç,|?$Ôû+Äþ4gê]å4^£ùRï:g„Ð3o7Úÿm<“7˜Æ8‹79›ÿÒ}OLwüŸã¹~VuãaÞÎG˜ŸíX€ò¶gA¦²óó·üüÅÜìÅ<ìͼìÃ|ìK5gªõSòYã~Æùù4 °?ïàä3,ÄTs6ʳ­Ô¨òl+½Þñš!>Ë=Ø(×¶R«6ʵ­ 9_Ëù8kó6ÞËL¼™C´¹½5bomnoØ[›Û[#öÞæöÐHí{gs{gÄ\inþÍí‘׿¹=2âú7·GF\ÿæöƈëßÜ^Yàþ-pÿôÌi )·§½N5+IÍ=4Ãx‘qcµ÷ÐLc5¬eY.a9¾Áò\Ê»C4}^ˆW/sL |ûšÓ/ ‘ÜjìûŒÍïï4Vc_¼‹jì‹Eég^,F5öÅâìÂìJŸ/w7?¿ßÏ»‡ {òÁ—|Κ³åz)Äöº¯¹FÐ}Íõ2Ý×\#iÿ騶_>f<ÊØýU[b{o纯jCl¯ûª&Äöº¯Özl¯ûj­ÇöÚS:ªõ—õŒÕøË²šµÛ[˜X„y''ñ.NfQNa1NeqN£=£@CÇÓ—ä Ú/ ¨s¹f:.Í4ºîôdiúñdýxš~1YŸ˜¦OLÖ'¦é“õ‰iúÄd}bš>1Yßɸ†zÅd½bš^1Y¯˜¦WLÖ+¦é“õŠizÅd½bš^1Y¯˜¦WLÖ+¦é“õŠizÅd½bš^1Y¯˜¦WLVÓÓúzè“ÿðø3DwO ñ—Zq:[seßÝ3)ãî¶w¼Ô†ö‰—dÛݳ)Çî¶W¼ôçÒ³Ûz|éQÎg{¾ÆT.àc\ÈÇù:ÿÇEìÀÅìÈ%ìÄ7Ø™KÙ…o²kˆ¤Ê ¹ÔƒT$—z*ƒäRRe\²lª ’«e\)ƒä’wRe\òNª ’«JpqË!¹džª•CØÕÎïzZ–(Cæ á`ÞÉ!ÌÈòϲ(Ÿc1>O9íu½t{©—®qŸóC·ö^×S×°_½®§®aÏê —ç“Û^×[רG½u ñu½už—×ó•¢¼žOmÌ–ñYdö|²|™=Ÿ,ßa}ÿsêÐâÛBhûWge²sêÑâLTg¦z´8ãï$¯¢r„øRýí…œü‘¹øsóóðgæåiæãÞγÌÏs,À_xeAžg!^`a^d^¢~éoÔï/ýúý¥—©ß_z…úý¥P¿¿Ô\¼ ß_úõûK¯R¿¿ôõûK¯S¿¿ôoê÷—Þ ~é?Ôï/½IýþÒ©ß_úõûKoQ¿ÿf ~ÿÍõûo&°£¬Îk0‘÷P³ÅzjSÉØžú¦=ó‚=ôM{æ{è›öÌ öÐ7³ÐúfVÖa6ÖevÖcÖgN6`.ÞÏÜ!zÔur&„ z¢dßë¨ë;Åõ>êúN±ö_Üb5á¶ã—Ô‹Ô}<„/õóýůœkÏt¦ò õ%•ÔüÓ卿Ÿ.OõþôÝTïOW ÞàtEÎf%½ýîf…øþ!VäaVâVæQVá7¬ÊoYß…„«CâœT®¡ß}b-õB'ÖÑ~|â}vàìÈÙ‰ëÙ™¨×9±‘zœÑ>|bŸàfêmNlaneÏ©¶$Û Þ^"õ~0Vc’eì[¥Bâúý2•:P²OY&;V Jöõ\iÏ0VJZûSõ@%Ÿv¾Œó_W5îO=PIyyju>ãù²žÿŠå¨o¼Užy7¿ö:ýQÉÆ®áz{ÏTk²ä c×r½ky˵\ïZÞr-×»–·\Ëõ®å-×r½ky˵\ïZÞªÎïCÂXÙ¾þC”íëËøceûú2þXÙ¾¾Œ?V¶¯/ã]Åvtê?J÷ ¾ý)b­l”«·ÛÇÚ4¶f>Rþ*oóØ¢'Õ€9?†„ Bì§÷xWÒkZÅB\ÍÂ\Ã"\Ë;¹ŽwQªP”°?dq®g n`In ùå–rK~¹å€ž7ãï¹ýb,¿_òË/ô¾ô¡WË1ä˜v¾vù ·,ûŸ¾»·ŒôŸ9ÖÎõÈÞœ®Göt=²»÷í\ìú«v®GöV!rXÝŸ¬÷<¬æOÖ{Ö{NÖ{Ö{NnÀÔþˆIÜDýOÊ!œe¼Ù¸‘±^ðÔhÊ<§džÃ[œ—™o¥òðÇÔ+ÞF=àáí”oRdScwëíB½ÝáÔÛÞE=ÝáOÙ’»™ñ¹÷°5÷Ò~<¡mˆ7TË&<â>NX ‘º?b¬¦MhG5m£TÓ&´§š6!•úå‰^ߨø1c}O[}L–õ1Y¨É ‰¿†ØVY÷q½ß%óÿq½ß%ó?ñ¼óχå'1ûëŒp¸˜Q.aŒo0‘K盼˘‰o…èßYC|L4í­kfmN[NkrÚÛ´&§­ =úþù!|-“M{ÇØšœö.­Éiò@3knš<ÐÌZ›&4«éõ¯y½9?M.hVËxñ÷”Ë¿–á¦É ÍjËÙ_ËrÓä…f÷R^hvå…fuhÞ4«ëurø×?p1O8o5³wß¿Äø¤±ùÔÌ~ÿƲÞ4óª™y5ͼjvHxäzHÌ6›sop.ÿá<Þä|þË×øðõ«í\ïl®w;×;›ëÝÎõÎæz·s½³¹Þ›õƒô›õƒô›õƒô›õƒô…/é×óê×7ëÝa|Õ¸¦±>r¾c³>r~ró ê'_ºæy×í¥ë¬íü`çõ›‡ÐúÝü,õ›Ÿ£u»ùyZ·/É@yï5jlÝnFè%™(ï}”…òÖqþçe —d¢¼®ïK²PÞzÎw¾_¤¾dóK,Ã,Ë—i?Û<’ö³Í£h?Û<šö³Ích?Û<–•ø +óUVá8VåxVãVçDÖÑ 9B¢z­“™‹177173/·0·òv~ÌüÜÆT_õf· L7[òQ}¸ýƒl7[?òQ^cyúùn¶üýƒ|7[ßðQ>çåëä¼ÙÖýô§B¼yþ²»–ÙK÷2.ÀÞÔïOïÂìK}þô~”§?MvzʰÓP†³.Äëé}ßÊ"u’ß7–³Ç|À®üݸžOx]v¯ki¼Á¸;7²?¢=xÌ&>ÉÍ|Š[Ø‹[Ù›³·±/·³wPæó ûs'pŸá§ÈÝÄ=̽ÂÏø,?çsü‚Ïs‡r?‡ñ_à—¢kï5Òµüαçz aÍm!ÒøAc¯é¥Æ¯‘£75þÊxŒ±<ÝØ´& ›;ŸîüX¤þµüsfíׇœ{ÕCŸZÞ†[ÞÜ92Nž“òß´§M ÍO†ÄÈ0þÈø‡ó_äÏ|‰§9‚gø2Ïr$ÏqáhþÊ1<ϱ¼ÀWx‘¯òÇñ7ŽçïœÀËœÈ+œÄ?8™r ÿbÆç½Êi¼ÆéTÓ"3¨¦EfRM‹¤QM‹Ì ‘Áo†XEÙtð2Ê`ƒÕøŠjü`5¾¢?X¯¨ÆVã+Ê[ƒÕöŠjû`µ½bÆ¿½aŸ¬¾WTß«ïÕ÷Áê{Eõ½Ö‡!|þ'×SïS˵ÿ\M7ÄÊÎg>ÚrgõÈ–ñ 9w»s ˜ŸöÜæô¹§lÆÿž:‡cÙ§¬:Ÿ[Fo®4¢>6bm®Ø7›Ëš‘&”1#æJs}lÄi®4£>6bn4×ÇF¬ûæú؈õÕ\±Þ³îw¬—XëÍ—Q¯==[ˆ73?¦g§Ú2]ŸÖl‹<+‡Ôa¬_k¦ÆL—Õš©1ÓõkÍÔ˜éúµfjÌtýZ³Ô¯5û„úµf;©¯h¶‹ú‰fŸR?Ñl7õkÍöP¿Öl/õkÍ>£~­Ùç!!ŸÞaŸœïköÅzËbÿn}(ß!çz:vÍ Ø‡ò6~’Gø²—Ÿ‘·¯¼cü±Ÿ/°8DzÉ>ÅÝÓ^²Oñæ!Ô`>³kÊXŸÉX½d¡âr|Më3ë/ÌsN.*.õ’‹Š»~5å®Ïä®^òQqù¨—|T\>ê%Oág|ˆŸ³ ¿`[îãÃÔKDÚ,Ýàê§è!›¥²É7ÔC6ù–zÈ&jÄÿäæ<éôº<éuy¬óÿy]žC¬è¡GüŸ3Ïa#Þï>ûéeõ÷>ûçeõ÷>ûçeõ÷>ûç墴^.Fûçåâ´o^.Aûæeuþ>ûäåR´/^.Mûâå2´/^.k>Mulo¼\ŽöÆËåio¼|7í—+„è-k½>ÿ–y¶^ŸË<[¯Ï¿ež­×çß2¿Öëóo™_ëõ·Ì¯õúü[æ×z}þ-ók½>ÿ–ùµ^ŸËüZ!„'ÝçÞ¦ûûÏŠÐDOùoec÷þŸwB(xÚãŒózÌí½Mô˜ÿÊrñxˆ>s,ÄË¿ÊãÇ8ž'8'©WˆÙ÷¶´ ýn‹ý³_zˆ$ä ¡°½«ßAǹwñè"³…Xù™ÌÎ4æ :40'g3ç07ç2ͱjFy5c šQþ5ªååÅÜw9V+Ê/¤:Qþuªå3jDQÇz¤òæõ@=Rù%Ô#•#Dÿ±'¿ßöä÷ÕìÉï«!ÿØ“ßWC<âåÜëÏÓ½0”²ÐÏ…ˆz 3”sÏÈ åd c]BbZfvevcVÊîiÙ(»§eáÕ]!RDv?&çå0þÔ8fÜÓ8§ñnãDã']ÃW÷ëŽ=eœ›½˜‡½™—}(S“-ÓdÊc²eZþ=­§\pÖÄ‚¿iM,¸¦ ‰ÍícÓÓ>6ýícÓÒ>6ýÚǦKûØôïh›þ=ícÓÑ>6ý8ícÓ }lú ÚǦÛ/›ÛǦÛ/›ÛǦÛ/›ÛǦÛ/›ÛǦÛ/›ÛǦÛ/›ÛǦÛ/›ÛǦÛ/›ÛǦÛ/›ÛǦÛ/›ÛǦÛ/›ÛǦÛ/›ÛǦÛ/›ÛǦÛ/›ÛǦÛ/›Ï¢ý²¹ì>Ý~Ù\vŸn¿l.»O·_Ú'¦Û/í Óí—ö‰„éöKûDÂtû¥}"aºýÒ>‘0Ý~iŸH˜n¿´O$L·_Ú'¦Û/í Óõö‰„éz{D¸íÇúûDÂt}@ó·B }@óå!š­eHÜù[ñ*[óSx=„韅H™LÆ»GÙÚðÛR½Ëö0oòþËvüR™­}HܘJ}e¶Ç¨¯Ìö8£!òû‹!övœ/Qnú}å¥ß_¦œôûHÊI¿«ë¿vœÕ#[ˆÞ<âØ£ê¿ÿ’ƒë¯`ÛæÛ+·bNÚëë÷ÿ’ëëïÿz$D‹&…Ä#jQцü5„4߯¼ïW´‘ñycû{ùÌü‚Y¸öþ´ýô{‹>àuؘÙ„—B(!+}ÐñoއzÈŠE›ÿÎf¼ìœÜX´¹ã+lÁ?Bô—’!¾Øõ_99Ä{$q ­ù•Si_Ën¿^9ͱ½mu¿yà=>Í•ÎOw¾qˆ|s6Ħ9÷Í9öç/"i•B,ùƒ’ô“‡†³_äý|Éó•=/ÿ$%0®b¼žU¹Õ¸‘ÕùkpïaÆß§×ÐϽl\ÓXÎHòyÙ‡“|ÖCrp’ý÷ÐhÏ×òüVÖæÇ¼—ÛxåŽ ö§å‹ ö§?•‹õ½M2þ=@ûÇÓrÆûÇÓrÆûÇÓ{CB¶þ!fN…™p ¡˜³Xí¹P<Ä–¾Ã|7„‡'†pöó­j¿¤k3εIwmƹ6é®Í8×&ݵçÚ¤»6ã\›t×fœkÓZŽÿIÝLwmÆÉé®Á8× Ý5礻ã¶yÝ«^§ž¦»ã¶³w°.?a=îd}ªËé ˜ñ¾÷3ãç’¨þ¦7ä^6¢9þÍåôÆ4—Ó›Ð\NærzS`3~ÉæüŠöÈqöÆôdÚÓ[òk¶â!¶æá™[.ÄRV³<×ðn®e®cE¾O×1ÅŒwìZ¦¸–s]Ë×r®k™âZÎu-S\˹®eŠyÿ#!>6Ûñv>JûÅþöÔ«îO¥^uÿcÔ«îœzÕýÿ£^uÊJû;RVÚ߉îýþÎ,‡—B¤E%þÆÊÎwqÞ|Ûß•æÀþn´ŸÎµ¯>TVžÿ>ÄÊuÓœ á }s­ŸiŸ­%—|QÊóÇ<ÿ³;`ž`Ožä“ü‘Oñ'êi'éËö“ôeûIz€ÆzãIz€ÆjXõs’> ±:6IÐXÿ>IÐø!ê«{“ôõý“ôÕ¹IoQ;<$Ä3þ;c÷ôÙµ¯ÚØô»Žä÷,ä¼,ÛW–ý@–íû°çy¾°ñ—Æò+¶g:S)×÷}Œr}ßǽþ¸×1–éûþ²|ß”åûv¤,ß·eø¾ù-»ð;Ê[¸¾}»Ñuìë:~à:öí¢-C<ºŠq®¡äŽos¼Æ÷|0ÄP?'5¥þ­ŒÞ­ÌUŒ7C¦˜ÔÌùŒs«¡‘9d^O4¯3þžÐCæôDßaâ×!¡Fjˆýú;ãe>Î+üÿ`þÉŽü‹x•y]x]ù7»Q†©ñÿawÞdÚÈtSê¸/>[ûíÙnJ]YWýúgkóÙÐØµ¿Ù‹®ýÍÞtíoÊÃOÞëùçŒ}þ›}ï3~ÞØ½¸ÙîÁͧ÷;þjì^ÜìO÷âæçý®†ÉΠι/7Ÿq®žs/Ð>ñ¼ÕØ}º9îÓÍAÎÛ7þ‘¿»_7Óýº9„î×ÍŒÏê~ÝÌøLæýÍŒÏbÞßÌøÝæýÍa4ïoÊsÍû›ïŠï÷3幯§)Ï5>Cy®±ýì¦<ר~vSžkl?»)Ï5þ•ò\ãó”ç_ <×ø"幯—(Ï5þòÜDyèyh¢<”ñw@M”‡x“²Ð²ÐDYèYh’,ôÀrFø6¨ObïÊ,;MŠëC†è3ï4ŽÛ[†Œ5Þeœhl_òŠñ§Æq㕼«œÕùÝÇ=ÎgrÞ|2ÞØ~6)³ñã ÆŸq"õÏ“²8¿–Y¹ŽÙø¾ç'yþ ãìÆjëÉÆûä¼·Oq¼ŸSy€Óø%§ó+Î`:õ7™R“ùkêo2¢þ&óaïÃ{ËCô9™PŸ“ù(õ9™¿¡>'ó·^—ÓëÖëw2«/CP}¢×É|Ìó¹<¿ÁXÏ“Y²ˆ?P¿“ù„çs{~#óð#çõ?™Oò þÈ¥ü‰oRý²Œ?{}^¯ßdü–±:ù¢£ZœO¾è(_ä3ÿBuÇ2F>£c ð!e~öü–ó;>ÂïCBTæØd.EeŽMQÞØ´‰òƦ͔76m Ñ‹7C|ÙþKkckŸióŽñÆ_ñ­‘­}·Î·ÊÝmÞ Q1?¾ì #üš <¢[¾ ñÁã™Î <ȉüš“xˆ“y˜Sx„Sy”Óø §ó[ÎàwœÉï™ÆcœÂZk¶‰ß¿å¸ñlck·‰Ï±åã9<Á¹<Éyü‘óù_ã).ðsÖz“ŒÏý³ñBck¾ÉaãÓÆ¯ó 9oí79b|Öx1Ïq áü•K©ü&/p/ò-^ârï£vdü7±-¿¿m¬†dü·±-¿«³9îpN=Éøïd[.;§Ö®UOš¨'kÕ“&ß;ÅùwùÝ‹-R´å/Ê[®r5¯Q>Ørjç[zöNSB¸K¹hï~ó,íÝož£½ûÍ_hï~óWÚ»ßWÑSžù•zÉ3ç©W<£W¬¢W<£W¬¢WY$=ãsÉ"é¿_IÊ&q,‡¤Ë5et¹¦ ¬‘®žõ®âÅÍÁÞ•hÎõ®Ls¦wš+½«Òüè]ß±:Í‹Þ5xŒ÷ð8kRNì]‹'X›'C´äôø}Î`]Îd=¦±>g±gS<Ë-ï÷–œc¬//9—úò’ó؈óù_cc.`.äƒ|M½y]Þç.¹È¸³¹óæwyߣäãÆæyyß§äÆz’K©(ù&õ%¬Ë’ËëJ¾E½@Éå|Ès‹¿íX?PrÛ†H}d}d}d}dõ¾ˆzßC½/¢Þ÷Pï‹èµïiÂ^¹¦‡º_D?ÙC½/¢Þ÷P÷=Ôû"2É=z¼ÓCÝ/¢î÷P÷‹¨û=Ôý"ûBBKsÁ,²cFNîî8«,4L²Nìaœ=™O2ŸbNöb.öfnöaöe^öc>>ÍÛCBký=J}ÅêEýÄz“2ú‰ô&wÈðeô?Y%7öqïWÉ}ÜÓUrc÷r•že•|اGû7¾PH¬£öŽ/Lýò¢{!R]¾_D¬–Ž/Jù«Ÿš&7„õ·•äŸ~ê™>Ô×VÒ×~¨¯­tÊyõLΪK•N‹Õ5¹#|¨Ï­¤ÏýPŸ[é¬óêœ\×O“Câú©srH\?uNîˆë§ÎÉqýnP-.aß¾DûîôeÚw§¯„ð®~©D±ýwú*í¿Óæçößék´ÿNÿCûï´¹´„ýwúßéªFfS3»ª‘ÙÔÌ®jd65³«™MÍìj¾Í¦fv5ßfû‹½x½©aÊè¾”M/i]wíãÜ%>ÇËìË+ìÇ«|žó^cþÃy/1ö™ð?¾Ló}ùdï¯Ïî:P|3Ä5Ër,ËqËs<+p+r"+ñ-š¿g­‘²®MóIâ*!nï !qt)ögi¾Hµn{ÖØL²Æ½j|Æù—œ÷ûö ß·÷e–÷¼{Øø,Í(u~ óÄf•Æ¿ÑŒÒøwç_q¾¢ØŒÒøšMŸsþUA¯y^]­¦®¢çK†„ùf´ó¥x„¥ùËð(ËÒlv¾õPãï†HÞšâòb}òù 4›¯Èã¬Ä_X™røù*”ÃÏ?J9ü|UÊáç«Q?_røù4{·òÖ×û^¶c$ïcâZb9ýüc”ÓÏצœ~^Ÿ4_N?¯Oš/§Ÿ×'Í—ÓÏ«!óåôt8VGæ_¤õ<ÿ­çù—½wÄ{×[×ó¯°±‡µ<ÿªÇßžz¾NˆüþQˆŸ[Š Yš‹X†©,ËÅ,Ç%4sü¾”¸Œ¹œ•¸‚•ù1«„ÐÚìú{ñJñ£\Ūü„Õø)«{Ý ¯{X¼Z\ƒŸ±&×°?çc\ËÚ\ÇØç^Ϻü‚õø%ësçF6à&6äf6Ò§vtü•c½EÖNŽ·8n­lÊ¯ÙŒÛø·³9õšs[P9·%õ–såÇßõ”såÇßå˹òãïòå\5¶‘µsïçf~"eìµFÖÐ=sýÌ â[bkéžþ«‘µtOþkd-ÝÓ5²–îÉ{¬¥{ò]#kéž½ÓÈZº'Ï5²–îYK37zŸÛÜÄ;Î[S÷~£µtÏ^id-ÝûƒÖÒ={¤‘µtOÏÝÈZºg- W#ݦèp5²Š9\¬¢FW#«¨‘ÃÕÈ*jäp5²Š9\¬¢FW#«¨‘ÃÕÈ*êÍpõ±ŠZ2\}¬’Žjc•û©&VQ‡«‰UÔÄájb5q¸šXEM®&VQ‡«‰UÔÄájb5q¸šXEM®&VQ‡«‰UÔÄá/2_bv`¾Ì‡89ù sñUææ æák|˜ÉÌËÁÌ⺨KYͲ]Ô¥¬XŒêW—âT¿bk·Âkâbõ«‹ú˜Uýê¢ÿΪÿî¢ÿΪÿî¢ÿΪî¢ÿΪí¢ÿΪoí¢ÿΪ_mœ-$†ÍÌί˜ƒ[ø·2'¿f.ncnngîàÃÜɼÜÅ|ÜÍüÜÃü†¹—0öß¾¨ÇÁ ßX=ßÑ÷ ûCd®ÚÒNm™«¶´S[æª-í®†Y­­Û"„#“œSgÚÉuõÎG&‹Õ›ØßM_·•x õ„G¦:¯þ´ûGÜFü¶Xjw]ÜVlŸ«µûWü¤øêùŽ˜Óë¶§™z®:ÕNš«NµS§êêý޼G½ß3ñ\õªÝMŸm¶ãWß⫼ÍA¼Ã×(ÏM¦<;wpˆ÷ö‘¹¯3âgç8âXÞ››Bk|ˆzPþ ÕƒòîõËB$MFd&¢^øåô&‡¨åS½(¯® Q'Ê«+CìõòêÊ{¼¼º2ÄÞ.¯® ±·ËÿH{»¼zRU¯vE¿UUveõeW^£>ìJ2õaWó4_çáY¦ðW ‘rì³rî ¹õY9w…ÜúlÊ­ÏZ¯+äÖgåÚrªù&D»9–WÍ8‘òª'²B^5ãDVèVÈ©±9Çl-îÞ¶ï‹»g§íûâîÍiû¾¸{sÚ¾/î^œ¶ï‹»§Ó†Ð}²^ò[±ûqÚþ/î~œ¶ÿ‹»§íÿâîÇiû¿¸ûqÚþ/î~œ¶ÿ‹»§íÿâîÅiû¿øPÚÿŇѵ.>œöñ´ÿ‹¤ù¡»uwý;Nå~çÿç¼|P|Í æöâ£Ë Åß œPüMÊ ÅÇPN(>–rBñq”ЧœP|óq"óó-à$ädª¹g7…„Yæõ³›Ù‡_Ѭ~v Íêg·²¿æóÜFóÿ8³Kžâíâþb3K=ï¸Î´ïÆuálÏïð¼~ÿìNê÷Çuu~ÝÇÃNÔ“wxËù½â§Ä¿òiþÆÎ4ïÜîBóÎí®4ïÜ6­þÓÏMòsûÜ9æ¶™hµÙç¶™hõ_ž“3þúVl6Zmºm6Z}‘f£ÕæžÛf£ÕjÓm³Ñjµé¶yhµ¹çös}=úy¨M«ÿö¸æñ‡¹g¶™ôI3éìï¨ÆÄþÿ‹#zÂÙæÓ'ƒºîû½áìâÒòÚë²®yÿˆ>±®Yÿˆqö!¯ï$N/Ö+Î>,~Jü€¸3PÏ8û{çŸ'‰›SM9¢wœ}ÄùÎbµåˆröâ.bëáˆ^r¶¹ÿI{}¶¹ÿI{}¶¹ÿÉghî²»¦Î6÷?ÙƒjÉ“=©–<ù,Õ’'{…¸êú›¿óSów¾Î‚ÂØŸ!­ß¡?Ù­ß¡?Ù­ß¡?Ù­ßñ3õ#އ¸äoBbY3Uò^ê’÷1™ßÒ>Éù`ˆûúPH2‘‡ùíá¯86q34 a¡Þ»ê›!nøòXE]_ØH<†9Öùλ ]ߪãBH¯§þ±s®óB׸ªõ¼P?^Õº]èÚVµNêÇ«Z— ]ÓªÖÙBײªß·Ð5¬ª>,ÔWUêÇ«¾Í¶œFk£ê;Þ¥÷wß¶ëC¶ç»Î¯rÞ}[hmT}Oü‰ØýZhf¨ú¾øS±ûµÐÜPõÊçUg8¿Úù®üŒÝ¸†ÏðsvçZöqO, ‰ fƒ'\‹„'é»'´£ï›Ðž>WBú é÷'ÈŸOø½ OÑïIxš~OBgú= ]è÷$t Ñ?óXãñ¹ÇZuëCÂÛrÞÛrÚÛòÙÛòØÛrØÛÖÓ×-—ë6ÆuËåºqÝr¹nc\·\®Û×-×´WFNú]N*#'ýž5„÷†…H‰b¹éw5ù½áâMA=n¹ê÷ìÔ³ÿžƒzöߢžý÷œ!>Iï¼3‰zçöFF×jÍŽø‚Ü»f'åÛ5»˜ÂÝ¢Ÿ® }ŸâgtRf†HF½Õ§kÄù9»p-]‹O×Q/ð©ïß÷~Áîü’=üü,?¯'ûtƒ¸§Xo™Ñ¼–¢OÌ(¦Ì¥YÿÓžVêXÐâ_ ‘2†øå3˜‰®å?™éšüó ]‹²Ðµø'+]‹²Ñ5ø';?dÎçC\@÷uùGÌÅ…ÌÍEÌÃT>ÌÅÌË%ÌÇ¥ÌÏe!ztFH˜R3Y?„7}†œ?‹g‰çlÊÑi7:žã¸!ç²çQßpôC6á|6å6ãG|‚ Ùœ‹Ø‚©lIýÎýÎQýÎýÎQýÎýÎQýÎýÎQýÎýÎQýÎýÎQýÎýÎQýÎýÎQýÎýÎQýÎyk‹½´Å\ôäwjOš&!qsÉʨ-e‰›ŠK9V[Ê4ñ'˨ežðP/ʘ¿Ê˜¹2ÚeÌZeÌYeÌVeÌSeÌPeÔ¶2êYµ;M3ïU:„Y…H¹!®eó˜æ_¶àlÉlÅ›!rñƒ¿¨g° gòÎb!ÎfaÎaÎeQÎc1~ÈâœÏ!Ä™wFݪ}Êô\Í(Ê@ùhTå¤Q)/ÊD¹iTf®çƒü‚Yø%³r³Ñý•›˜ƒ›ù¿ ‘;ËBüšJú }Í…¼<Å|Î/w¾²X_s!?í“ ¨Ÿ¹P¿Òw¾³ÂëÌMwÌSkÌMwÌSkÌMwÌSkªÑ<µ¦º×ÿæõ®ÍsÕ³ÓsÕššÎÿî|aþA×êŽkM-š±Ö"O’ƒÈÅ“äà#rñ$9øˆ\<©åâI=)O’ȵ“ô0̉ór_áG|• iž™W*$´7‡Ï3¿·7‡Ï3¿·7‡Ï3Ÿ·7‡Ï3Ÿ··.ç™ÏÛ›Ãç™ÏÛ«óÌçíåüyæóörË<óyûã4Ÿ·—ëç=J9~^Užd5žbužf žaMže-þÊÇøkówÖá¬Ës¬G=qBκþÂ5³i3þ÷f´œ)ÿµ‘gʱ¿g&ÍߎåÀ6râL9°œ8Sl#'nj^½È†¼ÄF¼ÌƼÂ&¼Ê¦ô>›šñŸà?!èm"þ#n.¾Îü×ykýÁXÜRü[ñ[ó¦õuÜÆñ-¶åí÷Ë…ø®~â—‹ÔG”” KÆþßÌKbýÄ/—ùUˆûsTHœ¯oús4õM¾A}Sò}!±Ìêé‘>ÄçœÆø3p:õ9͘=Ô¼œïQÍËù¾üº(ÄÍ®Û^a]^e=þÍú¼B¬¦Õ>#~\ì{u‹ær^«}ÖùÎ_gCúþ±šW[~yà9ç9÷Ÿsê_íßÄÅ7B(µÛcOˆ–•cÿ¨D9öÊ”cÿ¨B9öG)ÇþQ• X-„c=ôÈ=ôÄÿîôØå±Ûóy^žzè>Ç ×pl†y(x‘¸&SY‹‹ù—°6—²Nˆv°ô!Ñö€>$ôݽ ¶’¬½öB’=ÕÁ^H²§:Ø IöT{!Éžê`/$ÙSì…${ªƒ½dOu°’ì©öB’=ÕÁ^H²§:Ô§=ÕáqÊÏ}·ú}±u™$O÷ýZ5gŒwÎM²Ï:X£IöYk4É>ë`&Ùg¬Ñ¤s^;Á±ušd¯õÝæçãÄÖkÒyZ§IfÏDy¬ƒµštÁk¶{M¼Ÿ›èœõštѹÎ%ˆ­Û$û¢ƒu›d_t°f“ì‹Öl’}ÑáIÚÚѾèОöC‡¼î}ÜŸ{‰!îıøÞRþÈeü‰Ëù3W„¸zÿqrݽÿ8¹î€Þœ\·ºCHì—ži¾\¥W¯?YÜIœO1‰O3#;3»Ð<¹JO_Џ«Ø¬¶ºõð«ŸaVvg6ö ^}uOêÕW?K½úê^Œýót÷§ò_t_*_ {QÙuʽͱûQÙ5î~T¾,ß襆»'•]§Cf Öã!óÆ„´4sL°uçýìÁôìÉø,3°“؛ه™ø3³/¤™dBšI&d¥YdB6š=&d§ÙcBŽ­ÿªa¾mæ¯a®mæ¯až­¯aŽ­¯aŽ­¯a®¨©×: w­žÖ0ûÕÔw0 ÕÔ{0CÖÔx‡z°rËhõ¶†™°¦~ìÀ»4ãxröóúh3} 3ýh3}n!DÌó£Íõ5žñ½âÄæûÝi¶¯Ñ#Ä'¼7¶æ¶áËlË|’¯P­Hx•jE ª ¯Q:Tý«¨Uÿ*þÂÀBDŸªV<*Î ÖkL¢~x¨ºXñ˜8£Xï90õŸ3S_w™<ìåsW<®†È½!þólȃ4»|~ˆy˜Mø=›ò›ÑzËÖÝ£‡ø ñQ6ç±Iu}ºº>©®OW×'Õõéêú¤º>];Äþ2`Ç®QW×(Õ5êꥺF]íÏTû³ëÓ´/»êsSí»®]huµ¿Rí¯®ÝhouµÇRò°ŸbÿF×!nNáøäá,Ê£,Æc,ÎY‚?±$f)giþÂ2´†ç”¥þ{N9ºwsÊÓ½›SîÝœŠÔÌ©D÷lNeºgsªÐ=›ó(ݳ9UéžÍ©F÷lNuž×?¼ä¸†c÷mÑÌØ¥gQ_´h6›‡¸CzÅ ¨Wœ ÿk®%ȽÍÕ¢5ª¹Z” F5ïH5ªy'ªQÍŸ¢žeL¦XK¿µèÅ©ö±8³X¿5æA~åüKίgo ‘+]Cüb³N»‡CøÓ=¸ÒM|ŽÏðOºÖ‹ÏS[l½Ò“ø,/²/±7/³õ^Ẏ߬£ùð›õ4~ó͇ß|Ióá7B(ðPˆ\íâ—üËù_â  ùöê˼żÍWx‡¯ò.õÚKîñµ¿T:¾šÌ3Ê×§¾q7…ÄúÏs3_àW”cR„HõØÿ[³Eü"·ÒýÊíóòùsûü‡|þÜ>ÿ!Ÿ?·ÏhÍ·‡ô¹?[CÓ‡õ£œ$¾ aÝ[!Òl/'q'ó[Náw!d»×©MÍöómš×éw›¤~·Ù!}s-Ç5;L½o3½]Æ‚!~§y<ã#4g,ĵ!tÂówÆÂbsyÆ"4—g,ÊØùb4—g,NsyÆ4—g,IsyÆR4—g,ͯX†[X–[YŽ_‡¸ûBâpsìÎo9ßQïÕ²xHH£Ë©OmY±,§^µeIÇ;iÞK³‹æ½4úÝ–æ½4úç–æ½4ßP½K³—ê]š}!nƒ½>Ð^Ý`¯´W7ØëíÕ öú@½çÝ×CÂç9„0……8”æùüfջà ÑL/„ø]÷hÝíŽý¿”ê^v5/“õ·[¿šÉúÛm¦éà'}¢ïÛÂÝÛb÷:éSfåjfãgž·ßîÞg»rðsßw´ã‡¯eNºrÑ}è›îC‡¨n‘ϲ†ø~³˜³™s˜ƒsùç1'?d.ÎáÁØÿG—ÛñÇ=çqlæûìašñ>Ö3ôjB½B/½ÂÑ,!~òLú}“g…ÐR.<+õ{'û½GýÞÉsBÜv¹z¨Ùt»\=TmË`nÝ>ÇqGÎe'ÎóøÐ±^~èÓ!šÃšÚo-å°¦ö›]rÈiûã)§íOañ£!û3w¦L‰ª†P¤¶ã‰Ž«ñ-Vç$ÖàdÖôš:ާ8®Å©”ŠÔuü¶c9¢H=ÇÓÇ^÷cÏMgìü»Ôwm\"­Ô¬K?„ÄTIsã±Úué¨8öÿ},›¿6.£Ùk£­•¶qÍ\õb­Ì[õ\­ÌWñ?¡¾ã’)u¹øSñšå[]ågü›kxÍëÌP©ú»Ÿ‹Íâ×Ò¬µqÍÞ×Ó¼½ñ š³“ôz¿t|“x‹y;„\éB|¢ú·ñoª{¯QÝÛøÕ»×™•Þ·LEÇÙ{ï2•BÈhf,SÙ£ŠóÙ¿Aë,ñ!Ç7=üžM×C¤M¥÷φ¸b7òª)+¦3öwá¾K5eÅ{TKV¼OµdÅüš3¸3¹³¸ƒ³¹“ÖÙ?»8—»i=ý³‡òÎç^.0¥š‡Ìg‡SOh [s)ÛpÍ8ig9^îXhÛñc¶çJvà*š3}ÂNü”Oq5­ãCŸ±3×° ?gW®e7®£«V&LèÎ/؃_²'7ðYnd/nbï÷ý›!ñ-}ð÷cûwÇÒ¾ú~}αúžÇîRßó˜œ=Vßc‰GÇê{jËÕcõ=µí¯±O3.ÄmÕë Ö£mÕë Ö£mÕë Ö£mÕë ¶Þ·ªÓƒ­ó­z½Áz´­jõ`=ÚV½Þ`}õV½Þ`ýÙV½Þ`}õV½Þ`}õV½Þ`}õV½Þ`ë{«^o°uÁ¾Üªßûó€W„øfù1+ÑÞxg•ãÊUB¨mÎ<¬1¨mÎ<›3o› GñGó.ßà=¾"oŽa„cå¸Wìïpʺ)v³Cxwž‡üWü„‡šXìç­£b×iû—^Sàgã!Üß(Dõñg³6õ%ëðHÝÕ‘Íð%ëŠõýÝÕ“Íò%뉲>õÖɽBbÙLìÍÌìCy;½ušüœã,ìˬìÇl|žÙCÜjöܛԟϽE÷l®ý»ANnéûýáÞͽC÷nî]ºwsõV¸w¾FÜîݼÝ»yQºwóÜû?Ü»yñtïæ%н›—H÷n^š-ñxˆ?ý#Í@§¢è´kÒ}q×çþá¼™è´ëÔ]^¼.v—¯ËÝå³ëç=oV:mö-aV:}"Dœ O½É“ÃSËÓÇ3ϳœÀ_©GZðßâï8žä19Äå³gŽö¤=sôÙbýôÄ)Vßãqçí¡£½hµ‡òmf~Å縅}¹•ýø5õ¼ù¶QÏ›o;ûsõºùvR¯›op7_‘¡fíJfí¡fíJfí¡êf%÷h¨ºYIÝjÆ®dÆjÆ®dÆjÆ®dÆjÆ®dÆjÆ®dÆjÆ®dÆjÆ®$?­H =]Ëû䇉ŽW0 ?æ}\É´\Åtü„÷Sïµ"=õ^+àgÌ@=× óFOýï ýzOýÖ ýzOýÖ ýzOýÖ ½\OýÖ =\OýÖ =\OýÖ =\OýÖ ½[ÏMòN+y'Oˆ®ÿ1$ øâ(Ÿõ¸ãŸa˜ž$³õ³þ¸ø þB÷½u0Àý_o pÿ×[ÜÿõÖÁ€ñ~N/‘ùg±õ0`‚X/“9ö¾ÖÅëa½u1à-çõ6™¡Þ&ó ÚÛ™Or>OqO{ýoÖÎzkg€µ3`²ÇÏëu2Ÿ¡^'óY.â¯LåoTû3[ïÃÔüÌf¿aj}æs!>¼×éWÂû|)DK™Îê9K™Îê9K™ÎêýK™Î~M3ÂÙm4#œÝN3ÂÙ4#œÝB¨ÜQGlV8«×/UžzýR¨×/¥ŸýÆëÌfÿÖWëùKÉ—g÷Q->û-åw¬Êý¬Æ¬Îƒ¬ÁC¬I9­T-Êi¥ä¸³G(ÇýrÜY9¬”Üvöå´³òA)9í¬ûYJ~8ëþ”’κ/¥ä‡³öy³ê!!îHˆ»Û1$~n¾+{;$ü±w¸ˆw™Ê{\âöê=F¤ÞcÔ!ê=F¦ÞcÔ÷ÔwŒò~{õ£~`¥^c”ܺ7'd.þ³^ãØÏåÿÌ<<·i&Ú›—f¢½ù(ÿïÍÏS,ÀÓ,ÈØÿ«ñÕÆ½…û2ÌT£¬‡R¯‡83uâÒ†|•8ˆö|ï_C|Þçù_àïìÏ?ø"­›¼/ñOš¡{Ÿ§ÜÑû/ä¾Â‹|•—8ˆ—ù¯0™W98Ä%™wø®IæÃ®Q’ùp‡k”d>Üá%™w¸FIæÃ®Q’ùpÇO¬@×&©"]›¤Jtm’*Óz»nˆ)®"v’¥½ôv=çÿ'®*>-–c Ûïo?ÎÑÎWsÞ^z»XA~ÛìTøMç­‰®eR º–I5éZ¾-_#®%Öo$=FýFRmª%é¼öm={=ûbסƱ¾½‰¾ÿm={“:!—üÝvåí¶fóYòv[ù{–¼ÝVþž%o·•¿gÉÛmåïYòv[ù{–|ÝVýž%O·U¿gÉÓm'zß Þ7ö=Õñ¶êø¬ß9Éy=`úÔ¦}où¹ídžãþÉ©<Ï·½®²×½Ê*Œ]—¿œŸÆ |‡9—ø./ó=^áû!¤ÑM3{4UÛ§™=šªíÓÌMÕöif¦jû4³GSµ}šÙ£éË!®žktk]£[Öy=׿–õ=3!Dʘgê7Ê<Î4l@3ù¡žkwËú¯çÚݲÎë¹v·Æ†Qk&}âÔäZÖâ:>âξgYƒ%õ6gõû³Ú‡ðÈWÖá!1«~±ó šk&=¤ !õ«©~[ìØŸÏ½•~MýÞ¤Î^w?»0½ý¢ÿœÔÕñfߢ^·ÍëÌÚïö ͽßk®ëý®ë»=Å÷óYêqßíE½í»½™ÁëÌâ÷[ïö'ñ9fd_fb?fæó|/0‹Ÿ«êç¬ßwû‹³òEfãKÌÎÌÁ—ù2'_a.¾ÊÜÄ<îçñ¹¨Æ.4#_Tcš/ª± ÍÆÕØ…fã‹jìB³ñEµu¡Ùø¢ÚºÐ\|Qm]¸!„6êú±ÿÖG]h>¾¨¶.ÜDµuáfª­ ]ç‹jëB×ù¢ÚºÐu¾¨¶.t/ª­ ]Ç‹jëÂíT[î Úºp'ÕÖ…»¨¶.ÜMµu᪭ ¿¡Úºp/ÕÖ…û¨¶Æþ܉]Bâˆ|ŠÑ=‘“îéˆ\tOGä¦û9"»ña>üìÎ|ìÁüìÉ|–i.ñÍ%# Ñ\2¢pˆü:%ÄÏ~(„ÖÓCøí°xªXÎûõmÊy¿N£|÷ë;ÌÃé|˜ï2/ßc>¾Ïüü€~ï ›!±´^`Ð-. aÚWåñm±ž`Ðê ÝåÞãÒ÷Zà2F¸œQ®`?f¾‘Üx\~ý¢«ø7v£~¾±\y\_ÑX®<^Ûùgœ—ëÃë+ë³Ý÷ÈÝ׋4Žë-›/ÝÿÐ8‘r~ã4Ôï|ÑÃë̽ïë{¾è)>/N+nD¹õ¸ñ‹gÿ‹î×€ ìÍ‹ìÃK|Ž—Ù—WBxpuÑÕâ~â«|ž‡è/o„„wKóM– alÚÉÝHÌdæå`æãëÌÏ!,BÛ'Ôí‰!rÉÞ^ôííEçh//ú“öî¢ó´7Ùs—ìÉEöÜ%{p‘=wÉ\dÏ]²Ùs—ìÁEWBô ù8¡%媄V”«ZSnJhC¹)¡-处')'´£|œ ·=!'tà&ÊeOlf'~E3Â[ø4·²3¿fncWš!bÿßfˆ9ó 3DBwš!zÐ ‘Гfˆ„gi†Hèâú^ ‰Þã%¾ÏËü€W8#„B>K³Ìç‹™KBècßÜžFûäö;Ô{ÞÖ?7KòüRfä2çõ¡·ß¥œ}[?Ý,“óË™™+ø ?fª™óœo¿žÎ·ÿ‚ηÿ’Y¹Ù¸‘Ù¹‰9¸™ñ+æäæâVææ×ÌÃm|˜Û™—;˜;™Ÿ»X€»Y{ø¿a!îeaîc~Ë¢üŽÅ¸ŸÅy Ämw ‡ê5¶»†CõÛ¯r¥^©DH~Ž%)ïgP·o}W«··R½½e]­ÞÞ2w®Voo™;W«··–p„9ÕûÜZêXͽµŒjî+úü’ ¨Ï/ùõL%õL¯è™JÆz&ýW•Nb=SI=Ó+j~I=Ó+j~I=Ó+z¦’K½NVEObTJ,©wzUïTRïôªÞ©¤ïóªÞ©äÇ!>©XHÜy¿YŽluÈl\ÕllN(UÝq5ǰ:õü§{Íaq q’×Ôp\ÓqFÖb&>F3Æ¥Ú|u˜…u™•õ˜õ™S{©õœ¥jÊO“Büû=ódÚï™õ£{ Pº§ õ¡{¡>tO!yó?y³ŠX?º§0õ£{Š8ÃùGÅúÒ=E©/ÝËßúÒ=Å©/ÝS‚3ËÃ3Ë¿³¨¶fžÍ2Tö”¥:°G ͬìQC3È ~ÏM¿§ªx¾¸"°?beÏßò|µûèÑÌ ‹}ÖEŒ}¶TÆ~v1«q «û™Û~¦ºx©¸—1vm–³Wð1º‡{Ô­¸”ø¥<7”ò|Ü0ÊóqÃÙ#Ø‘#©¯Znž©m®¦¸Z†ú†«e©O¸Z.Ä 3{TN¤Ù£rš=*ßG³Gå´4{TNG³Geóå0³Gåô4{TVKê©û7í·zêþMû­žºÓ~«§Þß´ßê©ó7¿ ¡×?!ܪÈë¬ÄYÙóêþMû°žºó€óîñ-×­žú󠨽½åúÕÓÜ<$vnU¥k}Ëu¬§¸©6×ÓÜü>¼ënªÏõÔÿ›?x­k|Ë5®§¸yT|Glˆî¥§¼åZ×ÓÜ<&ÖCÞrÍë¹Î7ÕïzêÿÍŸ¨þßT·{k+n¹õô7‹õ”·j‹õ7Õïzú›êw=ýÀMõ»ž~à¦ú]O?pSý®§¸©~×ÓÜT¿Óþâ·¼ÂÓµ<ô¨O×áòPaí£I!dûÍC›M=Oû›×¿ÊßivOûÍæiÏѬöOæy¾Î¿8„˜Â‹—<.‹‡z ó§þgN¬fOÿÏœXÍžÞühHt…rÄ «”ýMùaÐ5Ê ƒÜÏ EC(Þ[,7 ºN¹aûº8>DjÔ q“·„Ć/ŠÄõÅ[Å/ñkp>ÑùÇÅÛÄ/›7̾“·;è¹4žk Þ!~…;ù*Í: yþ>Ï7›yc6|Fb³OÃdš}a¥¶žï²Êgï}I¬—­ç;­òz_¦ÏÞ[ÿ½RoûóƒWù½cÏËo½ÿv^¯ûó„Wêuc~ðJ½n=ßu•¼×;v^Ï[Ïw^©ç­÷Ÿóò`ï(ö޽Nì{þ Ï[Ë+¿äMçåÅÞÖúÊ bky¥Þ·ÞmçåÉÞ±×éëY§+õÀõî:/oö¶öWÚÏõìçU ŷ؈Ö÷J½°q%¬ÜJërå×4ã¬ÔÿÖóºÆ^w‡MhÝûÈC½YÕT{¿f!±O‘NyC|¦ÌÇ™ÌÏY,ÀÙ,H½u§G8—æŠLóh®Èôaeg…°í'±ù"Ó|(£s³ûÙ9³F¦4kdòûËÎqÞ>*;—¿8oöÈ´Pȯ™…Û˜•ÛC(ÚÏq6Ç;˜;™ƒ»øw3'÷0¿anîeîãÃü–yùóq?óÓôa Ñ:z‹ÿ£ÞâÆ(ê-nŒ¦ÞâÆÔ[Üx“z‹ÖS‹´nê\â8ê1nŒçNàUZ/uþ¦õQç'ñNæuZuþåTþÇ·yƒÓx“æÖ^êÅ-y²Î-±ùµÎmšW{ýâ¼µ‘ ¦ö:áXîì¥Fܲ6êÜñ³l»|Ÿ÷øçOyÞš©«Õº1ƒÎd”jÞ(óIõ¬4ŸT·–kZ‡±?gWþ5ý®O{ÎÌR=»Øï;ÐYlv©žƒf—êöfͼÎÇþ¿™|ìêgÕŒSÞïƒìô³ä¡•:ÿ›~´•ºü[MêCÓ¶V>{Ìë¼ç±N¯®ÿ¦Gl­®ÿVÇy¿ãƒœ!dMçqˆÖT›¯™µkªÍ×6ù~%B¸)§ÖT£¯™¹kªÑ×ÌÜ5Õækfîšêñ53wMõøÚ×®û^S ¾¶-„‡ôN½î=Jz~އ8.åXN®i/Ô´jÚ5­ÿšÖ~M뾦z{M}¸¦6\S®© ×ÔƒkjÁ53Bbbˆßè^&¦á;¼îaïs!!¯Ü’Ëì”ËL”ËÔûOórpï ž·ÇòÚ_yí­¼òI®š!®‹½u3í…¬_…ðˆ½’?wH8ºy¸#„é±ÿ>h”øa±ý’?/í—üùh¿äÏOû%Ú/ù Ò~Éÿí—ü…h¿ä/Lû%Ú/ù‹Ò~É_ŒYœæêü%hvÎ_’ß³°4`eYc9þÈòü‰hÖøäRˆ4(â6ÍÑS·ç\vÐows<ÏqG~ÈN!nÖç!±m¯×^]Èp‘êB†KT2\aN.Ü!R¾“ÇSΫôÄíõ„ôºíõ„ô¾íõ‚ô÷íõ‚ô°íŸ ¶}sþËÔã¶oÉlE=é‚á!ReSˆ{­cH,O3e™„ ]pl®,“èXíLÿØ|YÆœùšù²Œ9ó5óe™´ž÷yå¡ÄŒò¢<”˜ÑÚûÌ^i¤gÿìêÕÏ« ÔÁó¾çuð¼ï¹@<ï{.0;œ÷½¨ç}¯¹è{-ÈMßkAú^ ¦ïµ /}¯ùè{-ÈOßkA6Xÿ¶‡H«8ßç¼ï¹  [ó¶a!¶ea>É"lÇ¢lÏbìÀât]” ë² $]“¥èZ,pÏ» Ìæç]‹fóófífóófíåiÖ^PÝ©~è5TbOV¦ùmAšß<B½ÍòU½ÍòÌ…BüBß«Þæ¹é qAΤšØ_]+¬ÞõW× «wýÕµÂrG³Mô_±½WØ~ïoÿ¶çûÛƒ…íûþê[á2^gö‰þ'Vç —µ7?u¬Ö–â}¦ ±ÿvfsH\ú¿ât½R;½RÌö”¿7uà{ìÈ÷½Îì¸ô]š—ÆÎ[»­åìMOqåÞÖ3)ç¶žåufʥˆÍ›ºrŽófË¥±Ÿë&6glz†óœ7g.AóåRï“ÔÕ±siì½Ì˜KcïÑÝkÍÓv…HQk6ûžðÙtÚn±µ›ý±Ù4û^šM³ïã ™Ñ<Ä·úž-x„-ù[ñ([Ó½¨S1„ïŠÛˆ¤¶•Ùi†žµ•yi†ž´ÕqêE[©o‘ßC´Åû!!^¢Å¬È¬$—š6Õ§þÓã\O3CâlB'¹ã¢˜h.ؤ—J4l27Äql&ØdfxWOÕ\ïô®žª¹Þé]=Us½Ó»zªæÖÉ»zªæz§wõTÍõNï꩚Ñ3ýâX_Õ\=I,7ebYf6èûw©ÍjWÔÛÎæ¯+§7ì2Gd4ìêæ¼yìʱy`—y"£y`—ëû3¯ú¥PÐo(õý†QÐOÞY­?è7‚úƒ~#©/è÷?ê ú¢Úßo4Õþ~oPíï÷fˆ|æ«÷C5¿ßXªùýÆ1ŽjQt¼ãxǘÀ‰T¿ú½Eõ«ß$ª_ý&3-§0§ò~¾ÍôœÂýWCˆý{õrrv+9!­:û÷ëå:Q^.''·’#ÒF)G¤s>óO‹åŠ´ñâ‡ÅÅrFZ¹5öïßËuËi)w¤µF[Éi­ÍVrGÚ´”;Ò¦£Ü‘ö~ÊiÍ&­äŽ´f“VrGZ³I+û4­Ù¤UošMZõ¡Ù¤Õs4›´êK³I«~4GÅþ½9{¦Õób3J«(ç|ìZ×ÕK|ìZוG?v­ëê]?v­ëªÇ»Öuw†ð€½¹Øwë–Þ9×½î.ºæuwësÿð8çyßµÛŽÍoEÍfEÿò0[UKŠª EÕ¶¢æ®¢®oÑ¿=®yü"§„ø%ùKq!Kså«ÖrÛo}Å©â²\Ìr\Âòž×óüÖO¼T\ËX‘ËY‰+X™³ WòQ®bU~Âjü”Õ¹š5hŽŸQ“æøµhŽŸ¡¿;mïΨM{w†¾î´½;£.íÝõhÏÎÐÇœ¶gg+6 þ•æ£Á¿Ñ|4øwšÿAóÑ`½p¹·äÔrfeù,Q_û²|–¨_ü§çÌLƒÏÓÌ4ø/š™ëË™™_¤™ið%ê³_¦>{ðê³_¥šz`lH÷ÇѼ~×|°F¯u×|°F¯u×|°æSÊçkVÓ|°æ3š Ö¬a ~Î’\ËRÔ+Ü-Íõ!tÔï]xœihÞ-ãüâûÄ ÅeÅ_Šõ}YŒœÓ+¬ÙÀòÜÈ ÜÄŠÜìµfœ ŕĮIÇûÅM(\hê|eç·° ·òQÊCå ÍÄUÅÛXz»»Õ¹ƒ5¸“5©Îß­EõýîcÜÃÚü†±?Óh/ëÒê˜Áû>Á$Æ®a=ç­õŽÅ-ÄõÅßñqîg`Cd#bcfêî6å‘bVw…qf½~¶ÆÔëgkÂùlÊlÆè^vYÈæ\Ä!.9­¾Z‘[0Wo®wX0'œOçüÞÏÏiß”Y¢óÿ æòçñ&?ä-Îçm.àªÕƒ …È=ÅwÅ y‹BTyOè”Ê3Ê%ŒãRÆs¸kä—|Ÿ5òË ¾Ïùåycüò‚¼±F^yabˆÔ ‰ëÍ<ëÌF/Þ¤ÙèÅ[4½x›f£ïÐlôâ]š^ôý×™¤ã¸uf£—|ÿuf£—|ÿ¤ë!aç\þKýr’õ±óCZ;çÓúØéf¿­¯.{u²ó#Z';Ò:Ù¹ˆÖÇÎTZ;‡8Û#aç?§/ì}3Z';—Ò:Ùi]dPv¼@5`Gª;^ÔfÕ¶«;|àÎz+OŠÕ„ÄÙÅ혃íWv¨)Ô‡zöåwB¤N }‡ú±ü®ãš¼ÇZ!¬ÐZ×yŒÖf”uhþ«S7ÄÍÕ+µÏB½R{ŸcE¼óõ˜ÀúÎëÚ›KçêÚû+\¬‡jïó¬H#n ÖKµ7§ÎÕKµ7§ÎÕKµ7›¯¸Ïóêø\½TûÜâ´byqE:ÚûsõVíóˆïËy+Ò³)`3f 0·¿×=,N7gF¶`&¶df¶âƒlÍ,lìlËl|’fÆ:®å ³bö|ˆæ‡zØ:©w­£w]¡w­óõªuôªs_ôûóŠõªuôªs_çëUë˜Vèëte~êùWà34‹Öéîõ¼Þ>÷e¯ˆ xôˆý]õ£CÂssÕ7hn®ú&ÍÍUÇÐÜ\Õ{EÝü@ïTj¤Ø<{Åü\Õ<{Å&ÿ@N)õ?ê¥JrÞ\{Å<]Õ\{Å<]Õ\{¥²çõX¥F‹Í·WÌÕU͵W¥™öJUNe5¾ÍêœÆ|‡59µB\ŸÙ!1ŸûÞgÝß>sé¾´gÒȵÃÍnUêp&ërë…¸öÎ5{§†½sÍÞ©aï\[l^Ÿe^—w/Ìfaóüæy÷æÂqÎeQÎc1~ÈâœÏÔ/,âô™‰3Ô}fâ ³NI=ßm=Þj½Üm=Þj½Üm=Þj½Üm=ÞêiÔã­~‡z¼ÕÓ©Ç[mnïÐ/„¿–òy.sþçßc¾Ï$~ÀŒœA³áê™ÌÌY|³™…s¼Ï Þ'V²ŠÕ®ÛÙ¨vÝÎΙƒfÉý½n…ø!ñ椺¯ÿ¾m}ÞÎ-Ö÷¯^¤–ØÃ\ëóöìûφHì¿·©àšŸ¯/î%–¯*¸öçíÙ ³ÙÀùÞÎûÙ÷ûÐ=¨0ÇysôûÏ‰å± sÅ8öh…i†N/mÓÓ¦—¶É?éåŸmzÚô§©§M†zÚôg©§Mÿ+_ãoÔϦÿƒù_ç9šÑÓÿÉžçPþÅa!,ê"ÕV„¸1iBb­ÏxÕ÷1ê-õ}Œz_k-ÕûZë¨Þ×ZO}r­/¨O®õ%õɵ6„hZ3Å–'¸™Íùõïi·PÏžv+õßi¿¦’ígÇÛ·ávÊ#ÙŽ{ü"Þ!–O²ð8)Þ)–Wí•;ú–5C¨oY“âŠÎ 'õ5EP_Sô#ê¯Þ"Å?/ëoŠ.¢þ¦h*[r1[…¸÷ ‰-…h|«ÿåq¶¦Ï߆'Ø–>Cü“<Åv<âÖªw/ªwk›S½_Û‚êýÚ–Tï×¶¢z¿¶5Ó„hv×å;ß»ËÊ®^»>ßùîÙ]ŸïÔ§ì®ÏwêRv×ç»vtm¾S²»6ßÉ¡]Vy|âgͯW/;ï}ב®Íw¸‹Oq7Ÿævæ74GdßË®ÜÇnü–Ïð;vç~öàö ¡ï!ÜS+ûeöí°:$dt½ÖTç+ó”ãÖ¢·n4å¸uoPŽ[÷&å¸ucè¾­3;¼$Ç­3;¼¤v~¢V=n¬/~ŒX›Y‡o±n\ãu“Ëoë&SÝ\7…æ„âOuÜ DÓ¸~›Õ¬§n…p¹šØuÜlÝ¥q7ûÜmÌgéÌumÌgéÌumÌgéÌumrÐ\׿!n áu¡MNÇf»6¹¸-Dûô ùô}úQOÖçyšÖ¼"? qß ‰£b“5רšûFýeîÿÇ^^Ñ—öòŠ~´—WäIª'Oyÿ•Þ¿2W±ŠóúÒ“§ÅŸˆ« 'ψ?W/Ÿ¥ü~òW¦ò7.æïÔŸžüƒêÚÉs\Æ?¹œç½ÏjïSM¬q<ù?æÊ '/Ò?i7³ÏO^æ§¼âç>ósÕÅ«ÅWi>;ù7×ð?ç?^·ÆëjðsÖäZÖâ:êSãô}»Ö;Ö«6[ëg®‹¿ÛoS„ÄÆÃCÜô‹!ñ ×ÑW‰Ô´/§_»žEÜû%úÜšöèôËι¶E&;¾âX?>ý*õùÓÿ¦>ú5ºžEÌLÓÿq¬vN¿N5sú¿Ô§LÿjäôT§ßäÞ¢™/:6Ä‘…㘕f±/䤎ÖÒÅLâ b¹)jŽùBÏybrˆO/zb õ¢'¦2vþmêwNLcÎZ á×/ÄïˆÕüÓ©'=ñ.õ¤'Þ£^ôÄûÔƒžø€úÑÏÌÿ±ÿÏã3óc9~ûÞ8Ô^úl§8‘»˜†»yŸütÜköy}öÙçÌyÛ¿ÛoåìÕíöj9{u»½ZÎ^Ýn¯–³W·Û«±´=ö÷'{ÿíöj9ï±Ý^-çg·Û«åìÕíöj9{uû7´G}žPÎ}ò;C9{Óï åìÍíöf9{s»½YÎÞÜ~ „ ¨ï.až¨ß.‘+D~*Ä1DF>âÝ̪”_jøNûˆ«‰·°:}ö¾ãþ†ââ¯Y“ÛX‹®ÕÈÇèZ¬M×hdºF#ëÒ5Y®ËÈúôj¤õ~úÜéØ˜÷³‰ç÷¼ïV#½¸©¸XÙ¾c ¹x¿y¦F>á|#ç¿ccúÎ5’œ7×Ô0Dîoá|çå§‘MyÍ(/|‚‡Ùœß³å¡‘-ùõ¥áÑcÔ#<ú#õþD=£?Sðèq¶ç/ìÀìÈ“ìDùg¤ëý¨|3òiÊ3#;S~1“GFvqükˆn®éG6W¡~dó£Ôl®JýÈæjôg‹…ø™Ÿ²8W³?cI®a)~ÎÒ\Ë2\Dz\Ïr´'Ζ痬À ¬È¬ÄM!´6ý&?´6ý6ÇùÊÎo›Ë~ÓwŸ­"þŠÖÐLkå¬54s+­™ÖÈYkg¦5rÖš™iœµffZ#g­™™ÖÈYkf¦5rÖš™iœµffZ#g­™™ÖHksßoúú³ÖÎ̽´vfZ g­‘™ßÒÚ˜éÞŸµ6fî§µ0Ó½>k-Ìt¯Ïº÷3Ýë³îýL5'Î pÖýŸù}ˆ»t'$¦îç]à= qRqbê!Fx˜Qzýå8a<`2‘Ǩ·Ný‘zëÔŸ¨·NUŸ6ú­3‰õØ©êÔFŸ§uf±^;U½Úh ¶~P¬çNU·6Z‹­³ˆõÞ©ê×Fk²uVZ“­åÃÖdëì´&[çð:½yê)êÍSO;o¶~ˆÖhkûýrFçÏ0­·Ölë\âÌâ_ù cªk­åÖ¹Åz¨Ô?¨‡JýyVÖvëõ:õê©ÿ²ÿcaÞ`ÞdQÞb1Þ!É\p¹¸ã;,Á»!n{ñü†VÍ‘ú®Ñ÷äùt/ž×®qž×®qíŸ×Îï;åTcІøõêo½L õík4Þ=ý}VHœûÍìsÍ–ª„HËA|”¯Ñ\Ù2™Õ8˜Õù:Õé–êÐuºe Õé–Cù‡y?³ÿÜiöŸû’ïâ~—”÷KÊù%탒òaIy¾¤üWR~/)Ï•”×Kª%cΡµ¶Oˆîý+$ŒÖ_å•Kö^pünˆÛ§GÃ̺OþFêÑßh¢ËŠ„„îß²(¿c1îgq` dIš™–•âa–¦ýp²VH|_®]ß#Db=ÀÉÇÄY›ÖûÉ:Ìì³™ùKºf'늭󗫄Äbfª—¥uùrUže5Z/W§õør þΚ´_öûŠ£ßSÌú{Ùï)fý½ì÷³þ^öþŬ¿—ëÑú»Ù)$~ªoÝ,?´U+’æ:÷”såù4+„èí!á3÷ûöËTodn¾Bk½‹ûœÍ5ëâþdkH÷'›š5·qˆT"Sñ}ÿ©ÇÙ“¿ðYšï÷¢™ qoš ÷¡™ ñs44îBfýËTsAcóÂTsAcóÂTsAcóÂTsAcóÂTsAã½V3ÕlÐØÌ0ÕlÐx€µ9(Äí-$Ž5{m—RvQHÙMû>eíû”oh¿§ì¥µœ²ö{Ê·´ÏS¾£}ž"n·¿Sbÿ¯“ý"n·¿SäÃíöwŠ|¸ÝþNqÿ·Ûß)òávû;EnZðoˆjÿãpÞàÞäHÞâÿx›£x‡£y—oðß ‘Ø?žyj #«?ì®?´ž¦÷ ¼9½'Ôkꥊø¹ÿôo«ò‡Ð^?}þ’X·ªõq« ráLâ,æláõóúðó—ÅsÅÅÄúñóúñÿ手óC–à|–ä–âGÔ_•›ÎÕâ»ÔK—{úçrï³Nˆ¶|2$¤1Ë·lÇ+lÏ«ì@ý}½ýk²eGñ5vâ?Î{Ü©(~J|Oó_væ!2ÍkjM³ÆšÆþã|õušuÖô¹j›Ç›-§YoMͦӬµ¦ýœ7¿~Ùš2—M³îšZwÓ¬»¦/8gF«íqØ :Ílj N³›šY§YM­¿iÖ_ÓØûšM›ÆÞ§’ã¿t\ÙC^œvAl~v‘¯†¸7‰µÆñ8Çóêk ›› /ŸO q^‰ãìÑýYúÖqæë…o†øÎfš…c˜æ…ÎI4/tÎHóBçL4'tÎLsBçù³„øðzH\×:ÄMÛ›Ú7Óvó5îarˆ;¬žOóî ñ?tæ7ì½ìÊ}ìÆoù ¿cwîg`Oä³<Ä^<ÌÞüžrtÞ#|Ž?PÈQÆñQÇýxŒòeÂ#ŽtübÊ5?¼H¹æ‡—ì{ûuLìÏ//"±¿ßhèÆP©G™§é¦¸N\§)®S#×iŠëÔÈušâ:5r¦¸N\§)®S#×iŠëÔ( '1+ÍWä§)æ«FrÏóU#óÕóU£‡BÜÊI!±·YrådÖåÖãTÖçÛ|<„䤕Ó7aåbí®œ¾òq¬õ =äæ×g†H†Å}ÄI|ŽÙ—f¿eý˜™ÏÓÞ}–×ÿ$~Alf\ÖŸYCÜ=ZÃO¨Gkhÿ.6çÕxJìÞ6\â®®‰KÿÇi&ÛÔVO3M¼R<:D›Ø[{¬‰½±ÇštáìÊìÆ›|†·Ø·ÙƒwØ“wù,ï±WHˆúžÑ}¿h”¾_4޾_4ž¾_4¾_4‘¾W4 }¯è}|‘iùÓQÝŠÞOu+š>D>.âŸ]‚\ÊG¸Œ…¸œ…¹‚Eø1õ7Ï®¤9âÙU4G<û ÍÏš+ŽåñSô÷Ç¢þûXN~È\ÔKËM½ô±<üˆs!óró1•ù¹8„,Þû˜Ï8Åg<æ3NñùŒS|Æc>ãŸñ˜Ï8Åg<æ3NñùŒSV†Ð²Eg'‰}Ö)>ë1ŸuJìý|Ö)±Ïjæ™b:fæ™b:fæ™b:fæ™b:f晲Ög°Z¶ô^“3ÿLY'n%ž"6M13MùÂùÖÎO›‡¦˜Ž™‡¦˜Ž™¦˜Ž™{¦l¢¹gŠÙù˜¹gŠ9蘹gŠ9蘹gŠ™9NOpÌì3Å,tÌì3Å,tÌì3e{ˆõGH¬ûûöÔ¬jêǨsbýÚ¨?i/T‹ª•Ÿ¿Â³nùqú]Jï:Hý.¥w¤~—Ò»’Jm¡ú]j+ÕïR_‡¸.…„íïó2?àÎàUÎäßœÅkœÍ8‡×©gzà_Î ám9¡p[ñâyƒú¾n2öïxåŠÂOR®(ÜŽrEáöž¿åùx› Èùâ;âE¼ËTÞ£µòvNÏw qÒBÂö%Œp©ó¹œï$ŽŠ—1ŽËCH§¯Ïïxø1¹’i¸*Dy($LßÊœü𹏹¹y¸#„ôu‘±!ÚÛÜýð1š»–—z›»–ozWçϬÁã¬IózïZ4¯÷~ŒæõÞµyÊ iÍ •‡+ÉÃCåáJòðPy¸’<Í3ì̳ìÂ_Ù•¿±ç3üƒÝyŽ=ø'{ò<Ÿå_ìÅ ìÍ‹ìCëxås´nWö¥Þie?^åóü›/ðûS_ÓàWßBøé½ÙʿΗø/P³òeÞà@Þä+¼ÅWy›ƒx‡¯ÑÜ·äñØÍìøï©¸rOs=ÏÐþNšàø¬ã/ù+7ð7n ÑÅry79v±\Þí~µ¦˜Z£n/–Ócÿâë®k½ÕëzÁ }—ã»=@9¾[ÊñÝÔ°År|75l±ßM [,ÇwSÃËñݤßMíZ,ÇwËJ9¾[6ÊñÝÌ÷¯ë13è ËõÝrP®ïöÍ(ÝÌ,‹Í(ÝÌ,‹_¥ûýº^4ÃóâAâ<|3™y9˜ùø:ós 0…9”úŽÅÃXˆÃY˜#X„#Y”ÿc1ŽbqŽf ¾Á’|“¥8†¥C4·>ùpeê“WáB>ÊE¬ÊTVãbVçÖ°ùÍŽ]¿ áoõ6÷Rçjrkq9ã ÖæÇÔcç^ɺ~ÎÌÿ·úœ{•¸?a}~Êǹš øõ!¹×°?gc®e®cÓù´mˆÎüÿ_ñ¸*ÂŒ²$ãXŠñ,Í–a¢uöVˆ¯âOe}Ê)ŧœR¼ ¡ûய7ÇþLÝ×Åë9„_8ßÈùØŸ©›"þRÜX,çoB9§xSžôüPÏo7Ë=݇‰­çâOˆO³9ϰϲ%e+ڃ݇{ý&qkqìÏô!ÞÌ‘üÊù6ÎÿA×âTìÿ¡üŸó[ÄOŠcÿï¤~꺚×Ý\výk¾A9¶x;ÏŸg{þåü›ÎoçʹÝÇr'ÇqÇs·×wðú b3Âõ=œÈoœïèüEvâ%Êq§ÌUÅå¸SæªârÜ)sUq9îÔß”ãN™§ŠËq§þ q?¶‰o` aºÚL]ý±­ø>ÉBlÇÂlÏ"ìÀ¢ìÈbìÄâ|Š%BȰÓñÓŽK²3K± Õö»R-ÿ±Ëò– q Í~÷¬§†f¾{ÖSC3ß=ë©¡YïžõÔP?zÏzj¨½g=TïêI率žôÞ}Ô“ÞKÂý;ëKï¥ ‘ýòãùq¿ü8F~Ü/?Ž‘÷Ëcî2™÷88ÄÇþÂý¯3Â!Œ†ÈæÇVr\uü­ã¡üŽÃB´¨YïäK4ëô½º»Ž×͘EÍ|'_æ/È|…fÿ“¯zë|Ý Zô”xÝ¿“¯Ñ};é;vwý¯÷¤ë~ÝlZÔ}89˜®ÿIߣ»ë}ݬZÔ}8éówwݯ›Y‹º'SèúŸJ×ý¤¼ÒÝ}¸®&uýO§krÿâHšýOþfÿ“£x‰òBìÏC*zÙñ¼Â7C\Ê«!±b>b~¾Fû3%™9˜öeŠù½¢}™2„öeJ íË”¡´/S†Ñ¾\m¿ö3]3›-W¿'~"ùÕçkêúrõ{âwbuúšú¾*xF¼]ÜŸ;h-§›ã93SÁ³ÎítÎLÙE÷}²ªà¯âÝbk:²‡ù _ñ¼Ùª œ=Ù<]Ð<Ùë¼5ÙGk~²9«àâoů‰Í[ω¿[“Í]ÿïæZ“ÍaÏ‹Ї˜õœ½ôœë9{é9?ÖsöÒs~¬çì¥çüXÏÙKÏù±ž³—Yûãw™‡ïña¾Ï¼ü€ù8ƒù9“8‹ÖøcCÜ‚‰!ñ©š|‹µ8‰q2ks ëp*ëòmÖã4Öç;|œÓÙ€ï²!ßc#¾ÏÆü€M8ƒM9“Í8‹O„PÔ ´`¶ãæœÃ!nN³øäm>Á;lN}朼ǖ!ÑÈ7§åó9jL;ù|ŽÓN>Ÿ£¶´“Ïç¨-íäó9jK»DZ«íäò9jK;¹|ŽÚÒ.-Õ–véBX~0DêXƒsÔ˜vÖòòCâÌbu¦]zª3í :Ó.Õ™vITgÚe¤:Ó.öóÝ©ŸZ~ØÏ?Èï™…G˜•?0›×õðºÙ“Yø,³²cÏ÷fvöa>LJؗ9Cز#D|¿°e'Õ«Øß™”¶VHÜ¢ï,žMý]Æì\Î\Á‡ø1sr%õ´Ås{èa‹ë_‹ë]‹Ç~^ÏZ\¿Z\¯Zü¯ÕÛÒ×ÒÓÒÏÒËÒÇÒÃÒ¿Ò»ÒG%¨SÝ_–¯> Ñ&gBBTŸÔ§x·íåDk¯Ú}Û>îS’jSNµ´O)Çϳ4_ðsgýœüÜäWÊwM~£|×äwêrÆþ™ÌŽå¼&ç¨d?¤{*D'Ë Í “僆Þý‘îi±|ÐÐïH³Ö±œÐÐï™,4ìOy á‹´ÿª“íÿ†hÿ7T&Ûï ÕÉö{ìϽùÑœó¶Úò£9çmuåGsÎÛ«iÆyû3šqÞ^Âófù–!®ÝŘá=±¹³|+š;Ë·vþ’óï‹ÍŸåÛˆ/‹?àÎÑ4ú†Í Ô7lv³éïÒè6§¡Þaó}!tz6„‹Qý¾hÞÏf¾N“â9×µSoç±Sé\\ìù¡žw Ó £Üf8Ósåè4™Cü¦¹|óBdï!~t~Iý~Ü#Ž78®Ç¬B–ÖmB4ÞÏ|égã³p³òCZ_ΧõøåŸ%Îg©+¶.¿ŒýKõ0ÞÚür!­Í/1S™›>w|.áÃ\ʼ´ÆãóÑÏÏ!4לI ‘CzÑñòvs½À™4b=éxs÷!s÷xs÷!s÷xs÷!s÷xs÷!s÷xs÷!s÷xs÷!s÷xs÷!s÷ø‹Þg·÷qÍ›ëϤuÞ>Þ~È>þ²óß8¯ñ—kÜÆ¨?üå:w„èÙ†!a¦™ål#šYÎ6¦™ålšYÎ6嵯5 ‘<æŸqf”<oæü?|‚×Ùœÿz¾¹çÍšg[ˆÿcKÞ`+šŸÏ¶¦yølÞf[ÞᓼËv¼Çö!aV ¹dV$DG U‡ð{êG¡>pä”G¥|8òåÑ?Rÿ7ò'šsÿéøgÇzÀ‘Ç9š¿Pÿ7òßäIŽá)ŽåiŽ£\]u<åÞª(÷Vu FʽU}בroÕIògÇroÕÉ”{«Nៜ¢™j„ø]ß²&¿ q7ÔøOÜ¿êû'îß õý}Ó¹Äy4ÜøÉœOýÑ|q2%Äõ<sëa{þÂ1ÄáÌÉTã[Œ¤:ßâTë[ŒâÃ!®Ú'!áª\RíSÊ%ÕVS.©öå’jk(—TûœrIµµì¢OV é`5euc þ¨FË 9cõýyçj:÷“úßÖq-Ç?‡¸örMRÊ5IR®IªBz}Y{ù&©囤ê”o’jPÏ™¤gm¯çLÒ³¶×s&=Âʬ!R¯mˆ[ ‰=Ö„¸Ëú´ÅæþËú´ÅæþËú´ÅåCd™|Ü]>^æžtwO–¹'ÝÝ“eîIw÷d™{ÒÝ=YæžtwO–¹'Ýÿ ¡þ!uO–¹7Ýcº7Ýo:ÿ¥óîÑ2÷¨û-ñ±{µÌ½ê~[l>êž-sϺßoÇÜÌ»4ó½G3ï±@3ﱿf”fÝcq~Þ½îî^/s¯»Ç^¿Ýùxšy%8¯?èûyuï˜>¡¾zwL½[¦Wè{?uëØ}b=Cìﺩ¯~S¿–éb§M}u똾l¨‡ž G¼‡¾2ÚÞs{='¯òÆû.‡|—ñÖß!Ÿi¼ÏtÈg>ƒÔ9äwNˆÐß1Áw8¤ç˜Oï?Ág>¤ç˜«ÑzŽ ±Ú<’>ã¡ÿ1V[G1VKG3öûß úqèM>À1ÌÀ±Lâ8fäxê»M ~ëÐDê·½E}Ö¡I´^Mf6š¹&˜¹™¹bg÷!3×3×!3×3×!3×3×!3×=æ!3×=å!3×3×!3×3×!3×3×!3×3×!3×3×!3ׄ‚œM}Ó¡9,Ĺ,Ìy,ÂY”óY,DGéc«ÛCi̧¯¸÷5vNO[ÝžzÅõ¸¯‰XO[]OûŠër_S±¾¶º:ûŠës_3±þ¶ºþv”þ¶ºø×ë¾'ÄúÜê/‰]·ûš‹õ»Õõ»£ô»Õõ»£ô»Õõ»£ô»Õ_¡¹¶ú«4ÏV7ï¾â:ßׂ®ó}-é:ß×ÊóæÛê¯Ñ|[=™æÚêƒyˆ¯S}«®¾Rߪ«o£Ô·êêÛ(õ­ºú6J}«®¾Rߪ«o£Ô·ØŸ×WWŽº)GÕ•£nÊQu娛rT]9ê¦UWŽº«K~oU¿w¤ß[Õïé÷VUG¾:“Õ…¯R]øêÕ…¯S]øê{ª _¡º°Wÿ1úÍÖì ‘&æ¾½úÑcB(ažÝ«=ÖsßzÎ,¸w·xœçô={÷8ö{ö~C¿gï^ú={÷Q mòŠY%_e’yÇãvsf¤ëÙ'[z~çK4‡5yÍq&&33óÁä^4D×¼k>Éwoà»OòÝøî“|÷®ù$×¼k>É5oàšOr͸æ“\ó®ù$×¼k>É5oàšOrÍè)&é)˜¯&é'è'&é'è'&é'è'&é'è'&é'è'&é'è'&é'è'&é'¸M«…ÄèVçYÖà¯!¼P%D"ÖÒ Òçï}Hxx¹¸ªØ÷è^¬—¡šx0«óuÖ ïÓûÏ›c{gàJçk:ïûõN¯bFšA{gâ§žW‹#¾wïÌâÕ|Ÿ9ÿ˜ó®Cï,â5ÌÊÏ™fÅÞٹνø"D “°²8…ðæàɹN\B|˜%ù=Kñˆç_÷üzqiñâ!âØû•«GËRx3Åù/ÅåÄjè›òqÎ âòâŸX?³"³aež!mìwTq|’òÕéɧ½×0諒9œ›œW·'Ÿ¡º=ù,ÕíÉ¿R­žü[ˆË>>$|WX‘Y‰o±2'QýÎ>™êwö)¬Ê©T»³¿Mµ;û4ªÝÙß¡Ú}:k…P ´ãw?Æ÷X›ï³? Ùp†¾½ÕEêÛ[]¢¾½•>~†¾½•>~†¾½•>~†>½•>~†>½Õµ-[9Äÿ¾U¨-û(¿cUîg5ºe«Ó},«oýýõ­¿»ekÑý+û°6õ:eëÐý*[—îW‚õ_¶žãYŸ?…¸I¥Bâã1KSŸ3© ³,a9ž`yždžbEžf%Ú/“*Ó}ù×>[i_ýkŸ­´¯þµÏVŽá­M!’ßLñ¯ý¶R¿þ¯ý¶R¿þ¯þ}å[žßìy³Æ¿úø•“¨_©gÿW¿RÏþ¯~åT¯ûÊëôÿêåW¾M½üÊiÎo ‘zŠtÏ:wÞ¹wœÛêœ9åß¿ÄÓyïò"ßã%¾ÏËÔÿ{…3x•3ù7gñgóÎáuÎ応Çÿø!op>orAˆ®Ñºô!$q÷ÉK_½Ayé+3Á}òÒWf‚û\¯¯\¯UúÝ>ÅBbÞÏXX¬ïíSœúÞ>%8š%ùKñM–æ–áX–õóøù"âqâr´/ú”wþœóEÅöGŸ ´?úT¤ýѧí>•iô©Bû£Ï£!Ü7:ÄÝy-$®iÎdšgï ¦yöÎëlÂWÏ„HÛyâ!âÖLa›Í¡‡ÚŸ‘z¨ýjB=Ô~5!‡j¿šCµ? õPû³Rµ?õPû³SµßŒCµßŒCµßŒCµßŒCµßŒCµßŒCµÿaê¡öç !ûÇú¨ýêR}ÔþüÔGí/@}Ôþ‚ÔGí„ú¨ý…¨Ú_ØÏÚÇ9ôRû]Ëz©ý®]½Ô~½N½Ô~÷&‡^j¿{“C/µß½É¡—ÚïÞôø($äªÂó;äêñBq}.âãLe.fC.a£W»vH°®Ã 9¯ô&qñŸ¬Ëó¬Ç¿XŸø8/²å›&öBt´º\F]ÖG5±¢j_ë?ª?ˆ­Û/Šíƒ¨ØÄ>ˆZ{M샨½ÚÄ>ˆÚ«ÖM¸ý’Ø~ˆj’cëç¶~«‰}µg›ØQ{Ö: ·õ_Mì¨~äÖʸúÍéè:eÒkut2éµ:ºN™ô´]§LzÚŽ®S¦¬!”U·­ë=3ém;ê=3ém;ê=3ém;ê=3ém;ê=3ém;ê=3ém;ê=3åöóCüüb=h¦<âñ—b{/“^·£™6“^·ãBæóüPÏo/ço§Šõ¾SïÛq õ¾—²× ÷:ù«ã2±¸ãrq~„óòVÇb½pÇYŒ+Y<–Œ¯r\‚Ÿ°$?e)®¦ý; OH(––Ï1ûò~öcz>Ïøõbú3‰/ÒÞðí­ho x™öÖ€´·èáŠÙ[ôpÅì­zµböÖ}Z1{k€>­˜½5@ŸV,gˆ[jVín-.5«v×?.}zÅ¥ï³)?`3ÎàœI¹aé,¶Põ/“c½‚¾er¬7зLŽõú•É©_™«çú•ÉæÊ7_Sßõ/Gõ-“¿bš/ßLv^?sô!ñVæä×ÌÅmÌÍíÌÃ|˜;™—»˜»™Ÿ{X€ß„¸1Bâc3x‘3Cd›£¾vÛêk·}N}ì¶µÔ¯n[Gýi—ì!>ëæà\>Äy!”—“wtçÈ\œÏÜ\À<üˆs!óró1•ù¹˜¸„¹”0ögµ»v™¶/?±//S½í Wó*õÏÛþæ^ãçü‡kyúæmÿz×>³ÏZv½ø?~Áü’7=ïždŽå“ â[b÷&³{ÞɽÉìžwro2»çÜ›Ìx>vÛm±{”9–O6‰ïÐúßv—_ñ­ûíÒFÙ­ŒðkF¹qôäöxî`w2‘»˜†»y÷0-¿a:o˜Õï¶.2[o¬‹ÌÖ['ë"sÑ÷¼þ­ þîyý[AýÝóUx*„BæôBfó©ög¡ÏC\ZýسfZýØ–)Ôm™J}Ø–·©öl™F5gË;Ts¶Laƒ¡å—!î\Ýøa±¡¥ë¶Aßr£óõœÏÊúÌæ¼Ú×Rí;÷¸8;0ò!6¢naZne:~Íû¹é¹p3p'“¸‹if0—mÉäx3S^Þò ÷2 ÷1+¿e6~Çìô™·ä ~zËC<Èœ<Ä\<ÌÜü>ÄMߟÂ}Lá·Êïh~¾¼+$,ÖÓ\ÞM=Ìå=Èoø ÷òÕ&êKò=)Þ'6ÿOT+òµ+~ß1Ùyµ#_{ªù:8¿ßùÁ<À×yCxˆæþˇi¾¿ü=cŸç‡‡¸Ô7BbWójê›4¯¦Ž¡y5u,Í«©ãh^MOójêšWS'Ò¼šúkqͪ©“iVMB³jêTÖåÛ¬Çi¬Ïwø8Õÿ® ¨þwmHõ¿«~ UýïªHUÿ»êRÕÿ®úTõ¿«~ UýïªHMý@êšRçÒ¬:­ø!Í©óÙ† Ø6ÄÕ}6$ÜÌ ÷Ý"eŽÄIìÍŒÔ'ÝÌÂýkë•nf¦^éæƒÔ+ÝÌB½ÒM¹¤®^éf6ê•nZßuõJ7­ïºz¥›rH“ÿBbôCÞà|ÞäÞâG¼Í…¼ÃE¼ËTÞãâ×4p #\Ê(—1ŽËiEWÐ>Š~Lû(º’öQtí£è'´¢ŸÒ>Š®¦}ýŒöQt í£¨ÜÛÔ>ŠúÞMí£è:ÚGÑõ´‡¢_ЊʱMí¡èÚCQû¸©=µ›ÚCQû¸©=µ›ÚCQû¸©=µ›ÚCQµ¦Xi}œkÒÝwXêšt÷–º&Ý}‡¥®Iwßa_«øF&¶¦{°¯ ݃'¿ ‰ôä>ËìÂìïC¤|ìÏz=B÷æÉMÎ÷æföáW|Ž[Ø—[Ù_óùWdNH8a™Kë°È¤uXd>­Ã" h1{°‹˜¹NX‡EÌ\'¬Ã"f®Öa3× ë°ˆ™ë„uXd)­Ã"ËØ6DÆËuô$ï ñÍ;óêYÞ=Ê®<Ænü‘æÞwbwþÌ<Ξü…Ïò{ñ${‡PJmº`ï.|Ú±^¥T^±=¼°³ã|!îï!qY`IFXŠQ–fË0že™Àr´_þ.Ï4¬ÀûX‘i©¾/KGõ}ÙýTß—¥ç£4WDŸ ñëãÓü=„Žz“ z“Žz“ z“Žz“ z“Žz“‹ÊJG½Éň×wöú?ÄÖÍE=JG=ÊE=JG=ÊE=JG=ÊE=JG=ÊE=JG=ÊÅ4~®‹Ÿ3ãvT.Þ'î*þ“ÝxÞy½ËE½KG½ËE½Kǽ¼Ÿû˜žß2ö¹Ÿñú¿ØBˆï万c5ûÃ×CbGóWÑ—Bx`„xˆ¸D+Þ‘:±¿ C=øp¨s®qÇR!n΀Ø.?_fdA¾ÂGø* q «!Éjˆùoññ©©ç˜>X\Tü‹ØºøÝÛÅ'©\|ŠîítŸë ½ÇtŸç‰âLa ú,O”ä0ú<Ó‡Ó^œ>‚e8’eù?šÍ‹Äþ¿×QŽËs4+„¨Ù1þä\ÞÏyLÏùç30‰1#213Sù 3 —0+—2õŽnmâ—§)÷}y†rß—g)÷}ù+å¾/£Ü÷åï”û¾üƒrß—î{ÒEÇòß—îùþ÷CÂØ:ü€u9ƒõB4ÿ!þXs~I3eþ lÉl¢·õ ŸM¡ô³©Ôƒ~ö6õ ŸM£ô³w¨ýLß—´4$ƒÌ’¥ôðÞ ‘„#|Ÿ?Po–p”z²=Ù=YÂÔƒ%üäçÌž¥ô¬f‹¦Ù&á¸ófÑRzûfœ„_ÄfÒRöÏýV ±Ù´ÔfšMK™m™MKm¡Ù´”}4@?–pRlF-e¶dF-e¶TfÛAÐ>J“%D¶_ñCõâÛ¯P¿‘%³ã«Ž‡HosÐÃKC¨h/ÍCK"íÉÝqâBâå,Ì,ÂY”+YŒ«¼ÞÞÝ/..þ„%ø)Kr5Kñ3–æ–¡ª¢Ï¸[/Ú»¬Ø,UÑžß­'í]Nl¦ªhïïÖ›ö./6SU´÷wß'® 6[U´çw§W»?íýÝéĕĮ{E9`÷ýâÊb×»¢\°[.¨(ì~€ß1ƒç«x~åfV¥ü•q—ãjŽå°Œ»Ww¬î-·¿zV ýÕ³b+…H½1bû¬g¥&w ‘‚„¸P;$¬µv'?%ž!®#þ“uyžõøÍkÍÁì°V f‡µf‡`vXkvf‡µf‡`vXkvf‡µf‡`vXkvf‡µf‡`vXkvf‡µÿÒ̰ö?šÖš‚aíMš Öš ‚Ù`­Ù ˜ ÖÞá“”»K&‡¸S…CâûÞcyžØc¿¯÷[þ°c=ôò¼ÔC/ÏG=ôòüÔC//@=ôò‚<ÂGøCˆë¯g,¬×ì¯g,¬×ì¯g,¬×ì¯g,¬×ì¯g,¬×ì¯g,¬×ì¯g,ì÷õ×3Ökö×3®"ƒÔÈÒjä 5²ô³!Tµ×¾Õ7R+Këªþ$Î)V3K«™™::>å¸åžÒÏy}øm.±Tº¯×¸Wƒä¡Òý(•6¿V+ë5/†HòÀ_ÆÜžü ÍëɯÒ<ž<ˆf©ä×x—ÉTëªÉ±ß¾$â½EˆØSɯ;6“W+ï¹â!âØùÚcÉCiï$›Ëʪ{Õ*xÝËbóYY{!Ù|VÖH6Ÿ•µö“ÿGk>y­õäÑ´Æ“ß`z¾É8†ÖvòX&q3r<3qå‚ä‰|o1Kˆ®¾úÉû«oQÞ_}›òþê;\BÊO!’)'¦9:E-Ë”Ûów=¿H¬–Åþ™jŠZ–I-KQË2™£Wßó|ªXMË”/hWŋŧÅùy†x–ù+ñºˆ×-ÿ&.ÄßY8„ûœ›h†Ï'O^õY—~$)–/¯úÌKÕ¨«>óR5êªÏ¶Tºê3,]ûGWT£þöÞK忉ÿósöøÄQÜê|ÔùeŒãrçG;/Ïþ/^Á~ÌD®d®â}üÄëõ ùäã¿ÓŠ?e:®vþMçåç¿ï»LjåÀ‰c¹ÓùôίË}ÇSÎK×ÐñÇ{¼æ¯ùœ¸–I\ÇŒ\"fîøäI¼“™–S¨Î'O¥:Ÿü6ÕùäiTç“ß¡:Ÿ<ê|ò»Tç“Õ;óv|²zgÞŽOVïÌÛñÉêy;>yfMj…ðËP±zŸ¬î™»ã“g;ÿ˜óÃÄÙÅêžù;>y®óµÎ:tÿÌãñÉêžy<>Y]3Ç'ë£ÍãñÉ ¼®®×¹¯[òˆÝã&õÄî×–‡Å ™—‹˜©ÌÏÅ,À%Tã’Ýãè!n¡^öéß©—}ú·BïÛóWê}{þF½oOϯÐûöŒ=ïõ=ÏÑë{ÊÛ+ô¾=åíU)o¯¨Fy{EuÊÛ+jPÞ^Q“òöŠZ”·WÏÒÝyók–4¿féÉø,3°“Ø›CÜakibZK›ÒZšØŒæ¦‰OÐÜ4Ñç=ü}¾Ão²%ÇÐç9<–­9ŽmÔ+½_Æ!úÉ™ðÜñÓby3¥3g± åË”®œÃn´§SžáõAåÇ”g)/æ­á5¿zÍ[ü“hÞyn2Í;Ï™{>1ïÝÛþçxc÷wþGlË…|2D³éýôOq¿÷ ‰s«³k„°¡xˆ´”7” =^Ò<ÿûóž«éØüRR.iþ(©îŽ/"ËÁã‹Rn_Œrëxïñ°<ñûâ0·•ý•!„|{¬ô0å“óɇùV{ͯiÍ¥´ò™Æö ñ]åóü›/ðûó¾Hu`ìKü—ø_æ êGÓŽÕ>¦«}L?:V?ú˜~t¬~ô1ýèXýèc÷¨Un#cõ µíÁúcCÂírÇòOýæý›Op\‘YÉúUã&Ú§‡Õ¸‰ñTã&ÚŸ‡Õ¸‰‰Tã&Ú—‡Õ¸‰÷Q›hVã&¦£7Ѿ;¬ÆM´ï«qí»Ãõiß~œöÝáŒí»†ÌÄFÌÌÆ|M¨F&„Äõ=8‘=ùÍI'CÜ-ëtuZ§«Ÿ qO™S2ï ‘ïÔ½7? ¡´Ú9ÿfˆï¤îÌ¿Eugþmª7óïP7ÿ.õmóïQŸ¶ ö†ôg "ÔŸ-ˆR_¶ Žú²ñÔ“-H }YOÿƒþ~A¢ø-êÃ:éÃèÃ:éÃèÃ:éÃèÃ:éÃèÃ:éÃèÃ:M !³>/ó±~¬Ó;ŽÍ²Q9?ó^çôf¦;ÞçXÖI¶@~\ .è:½çñ¾ÇzˆÌ߆¸×/…ÄòæÎ×/s&¯p¯r6ÿ¦œ}%DVmñ}ôV6 ¡a–~²·Žé¦ÊÙÇôGS­…cú£©ñ!zyLHX\–ÖÓâr´ž—§õ´Øzr?#ùZˆ­©ÅiM-®Ä·X9Ä­7'¾d.\oN|é(͉/c!êÓÖ›=_ú‰Eø3‹ò8‹Qý__œ'B\Euû/÷»¢ºýW_ªÓ©Ómj„„t?²&b-šûžëÂ÷ʼnÓ|žîç;9ÿØ|žîÍçéN:ÿ”órwszºS4§§;Mszº34§§;Kszº_Cô€š:NM= ¦ŽK aôÆÉq[¬¶Ž*Þ$¾Ãͼëü÷Î%6?æ5{ç½çüç‡óŽàQŽä1þ?râh?¿%D2o¦ëÜÏνÁã|“¿p O0öüIŽã)Ž——Üþ§«MùÌ©ù¢qΩWã¬ë|jt>si>59Ÿý^9H¸°‡ø ÒMµ¿ºÚ_©öWWû+Õþêj¥Ú_]í¯Tû««ý•juµ¿Œ~ñ]í¯ÅöWרçò>c÷òîc!~ËÂüŽE¸ŸEy€ÅxÅyˆ%x˜%ù=KñKó×È “ãqñQ±Y&ÇQqYñ1±™&Ç1q9±µs <­ø3+ò¸×éÇsÄž¯$¶vFË-9b¯«,Ö“ŽÖŸçˆ½¾ŠØ­OÏa­xT|Jt^OýÓ|6 ÑŽzßL=BèkÝÞ«%ÖgÒkwÔgÒkwÔófÒkwÔófêâºërÖ¢^!çcÔ+ä¬M½BÎ:!šõϿϞé2Òw0Ãg=/Ê¿8Œhnìò?Ïo_ÛY/ÑÞÈz™žË®g7“g½"åØuÈzÕ±}’]}ή>ÇÛ»YÿvÎ>Ézo:o^ÉþYˆÖg–³þë+ËÉuƒõ•å¨,—H}d¹4ÔG–»úÈri©,—ŽúÈr÷³Óó9>À¾Ô/¤)㸟ã¤^Œ ‘¸º!úÒû!¡hUq¼¸žøq5Î`uΤþî¥Y¬ÉÙtÍ_r‹>F÷¶hmºwE]Ë—Ü«¢uCäïy!~™žåïiM­/â_ZÇò\Ï ü‚ù%+q+SîZ_…涨™²ÑŠ~þ˹G3Ã5r¾@ëîç‹Ôÿü|‰®ñÏ—½®ª×™ñ¹Þ?_WËSë«s«ó®÷ÏWiîûùo®¡^h} Ï-þ\¬'Z_S¼M¼V¬7Z_K¼qkS­__‡Ös£u^§wZ_W¼›õ¸ÇùõÎë¥Ö×[×¾ë©Ö?.–¿Ö7à>çͱ?ë±Ö7+Þ ¾EsìÏ·ézü,‡7r ~–¯ùŽ?ëµÖ7òúïÄ[B&B#ßñ¸|ÚÈw9.§6òŽÇQ¯yÜ}^ߨë÷³ °)²y~ôx‚ø ña6ç÷ÎÛ»ÇåâF¾ëñ4´wßçùž?–T[ï=×êÝïéƒ×Ö á+¹9öwÞý+$~î3}%GÇþ.»Ä>ÛWruìï$¼{Q¼z‡ÏwPïðùNê>ßE½Ã绩wø\¸{êÀݸ—×¹ÿRÒq@HŒýóÂ9~_y×fŽßSÞïéø²ó±¿Zm(ïóÌQÊûsÔ†ò~Ǟϭ^œVôíõ}磋ψûÒì›ú«c=uW3ùû)!¡eA¥Yøýa4¿Ö?Dî·v_{‘;?Üysðû#X„#YÔó/y^ÞxÿâbÅâÍ|ƒ%ù&KQÔ²tˆÛŸ=$ŽÑ»ìÏA½Ëþ‡øSˆœâõ‚‘óènž6ãÌ0OŸ6ãÌ0OŸ6ãÌ0OŸ6ÛÌ0¯œ6ÛÌ0OŸ6×Ìx…暯†û;±O›mf â"¾¢åw…ø?»…ðP1Ÿ±ünñ3Žíñ5zåçÍ— í­ŸË‰³ŠÍ™ í±ŸË‹³‰Õ¨5Ù©6­ÉAófÃkž×»5ü‡ÈùyÔC?ÿ!sq~ˆþ¡§›§§ûCO7OO÷‡žn^eNb3QÇ“?Ê)¬ârëEÌÉá5¦¨5“[Ob^ŽË­'1/ÇåÖ“˜—ãrëI§~äðêAO¤Ù÷ð[4ßžDóíáÉ4ßžBóíá©4ß~›æÛÃæÚÜæÛÃïð/N‘Ÿ ñŸ`;žd{žbž![ÇŸ qoèIk ž´ÆAêIk¢ž´ÆaêIkè3~:ĉy™]x%„®júµÁlNk°h Z{E[r[ñ¶æ^¶á>¶å·|’ß±÷³=°²#±ó)~ϧy„ù»„¸„Ä\îys|;„y]B¤¢™¦ÇŸbóÔ¼®b³Mzóý¼nŽçzî¼ç¬‡r`®é”ûr™¥ºúLÙ}¦®>Söö’wóÊë}w¨åßâ^N¢úP~2Õ…òS(ß—ŸÊýôv ß½Cïê{eï 6ËíÏË›ßvæ»”ÇË¿Ç#|ŸúÓòP_j^ ;ô£æµ°ãGÚ»;~âlšabóÚ¦¼=»CÿY~õå͹;ô›åçSX޻Ú.ÿ­Åò i-–_Ä_©¦ïøÍçtݳ»î]]÷ì®{Wµ¦ë÷jI×<Ž:ÿ”‡užÝÏn}gïâ ¯ ¿<ÍÏØ™kè¾þœ]Ctv4$´]Â8.e<—1Ë™ÈLCyyö}”g§¥žmv:~¢½’CÂÃq0sÊ)zâyzß?ôÂóÚ†¸’f¹3Ð,wæÍpgþ¤îÌyšÝÎü»j}‰GÅf¸3h†;s‘f¸3ú–wÕürUI³Ü™ËlÄ+lÌ«l¿ٔrrÉfü‡Oð:›ó_¶àlÉÞ÷–÷­ÆÛ¬î|+ço²5o± o³-ïðIÞe;Þcûà¶…ûÛ…h‹Û!!Í{¼Csl‹»´núüaNUËZÜ›W if2Bë§Ï9Ï»'ifÓ=I3'Äuz=$f.È!|„),Ä¡,Ìa,Âá,Ê,Æ‘,Îÿ±G±$G³ß ÚØéM–á–åX–ã8–çxVàV q_7‰C¢lÂ86e<›1O0‘Í©¦~Ý‚÷…ðYrˆèã¾n)NËVLÇÖ¼Ÿm˜žmù@Å? ѺúÂ沺úÁ決úÀfÿºúÀ'©ÿ»a毫¯»aN««_»an¨«_»a毫_»a毫_»ñ[½ì©[úŽºúµ¿S¿vÃ}éå¹[…Äú³ç¨?»ñ'[ñ<[ó/¶á¶åEªU7Ô•ºjÕ u¥®Zuã Õªj{¯ß½¯>¦®zuC=©Û‰êI]{õ†zR×~½¡žÔµgoüKûöÆT‡nÜ :tã&Õ¡·¨ݸMuè†u¸ºlHì{–åø+Ëó7Vàï¬Hûnu%Z_œr\ÙñŸ!¬R?ê«ç««ˆÏ‹Õ‘ú㩎ԟ@u¤¾º¾úQÏÿŪ´'WW£=¹º:/±íÅÕ5i/®®E{qõc´Wצ½¸ºíÅÕui/NëY×^£u=!™Öõ„Á´®'X÷õ¬ë Ö}=ëz‚u_Ϻž`Ý׳®'X÷õÔÝôöåk¿žµ=ÁÚ¯gmO°öëYÛ¬ýzÖök¿^ÙÞ7ÄW6ç ×V¾Êçù7_ ¹fxšg†¿HsÌð—hN>€æ’á/S¾¨¾,„ï\ÃêËyÞùÎËMÃ_¡\2üUÊ%Ãñ_ã]&Ó2|pˆ×†E†¿Î‡0Êš7‡ëK«˜?†ëK«˜/†§Þ:"7&å ;ôöIù©OK*@½}RAêí“¡Þ>©õöI…©Þ?"ÄU2_°Ç*™‹/˜wËÆ‡øßå ² œÅDÊ=eÓPß¹oeˆ£2W± ?á£ü”fá<'CÜ߇ÄVoðõÌKù’Bô’ß•š^lnÊ—Qìw¦ú—Ìâ©hO½Î,žš1ÄìÇ[»Ðz8Ø•ÖÃÁn´>Cëá`wZŸû½ýõ¡ŸñøÁ±üÔbˆ®Üz?ËMìÂE!’$¬Ü,îͯ؇[ø·²/¿f¿÷ÚòX¦=W°?fG®d'®âS!fÒú—éݰû± ȉ™Þs\›ïÓ\—éšë ˜) ¸ÖI3CâΡ!dìíx–ãa!”}ÐÃ<4[ì>'Íñ0ì´–wŽ ÑZzÃÌ™½š†ps¼XøÏNêÿÙ¢“+‡„rää*”#'?J9rrUê5e‘t­ÄÕÄråäê”+'× \ùôúE?ÕOÏtï[ñb=Q?½Ó=릟ÞéÞ~ç¿t¾#7°“óz©{Ä®w–§èzgyÚy½Õ½ƒb×;KgºÞYºÐõÎÒ5„œß9vͳt£kžåncwngî`Oî¤{ùô.öânöaSi=$Ä]}:$.ÕSoª)Na-uÞZZª–]µ––ªeW­¥¥jÙUki©ZvÕZZZÑëóúabkji%qmñpqqeq±}sµ§Ø†ÝTW<’õû»žuþQq}qìï0û¶í|/çõ)W{³ûP_qÕ¼¿´ÍûK}æ3óBüÌbüf‰ÖCøm¬x¾XnkÝDž–Þÿx:Nåý|›é9ðf ™`ó•øÚR^¥~u¹ž©Ç’^7c½¾)D2xï wœ×CõÐ×.××öˆ½N_ÛC_»\_ÛC_»\_ÛC_»\_ÛC_»\_ÛC_»\_Ûã“ÙõUˆÑ[؈æ¯æ¯]æ¯êç.ó×us—ùk„º¹Ëü5BÝÜeþaþÚeþaþÚeþaþÚeþaþÚeþaþÚeþaþÚeþaþÚeþaþÚeÖaÖÙeÖaþÚeN¡§H<$nÛÌ_øUˆ6ÑWGÌ!9ã=b‡„þ:òcˆ\Íâ—¸WóÐ=¸ú0Íq—çu¼Ø}Þì8Ÿã%!î„Zü^CªÅï52wÈW;ä­òÞw‡µÞù¯Ÿu /ð^䫼ÄA¼Ì×x…É!úZúPÚu}íº®¯eઘU³‰“ÄŸˆŠ³‹3Š?e&®ff~ƹ†Yø9³r-³q]±?SêµìŽ×‡hªº×åª{]öRÝë²E¨¼K,âmºéõ>ï8v- mu|×±k1ð­­W—1ÂåŒrEˆôÓð=úé øüýô†܃J[CØ£–÷Ó#púé üD=bŸ©G,pœzÄ¿Ðý,p‚zÃ'©7,pŠzç©7,p†zÃg©7,ð+õ†Ì„ýô†~§Þ°ÀÔ8G½a?Ù“úºJ_û\z‹~ÏŠÿb/^ Tà"ûðŸ£õÑOT@ÔOT@ÔOT@·XßÕMOµXßÕMNé©·Îe†î©·Îuˆzê\æÒžzê\f猟y¬ ‘+¬±,œÈ¬|‹Ù8‰Ù9™98…q*s†Ð._v¿-ÎÅiÌÍw˜‡Óù0ße^¾Ç||Ÿùù xŸüÞ§›x†¸ gòÎb!Îfaêw®Ìu\Ä£hˆ\ré /¹‹ô†—\‡EÿØ7³ë]wlÎý?°—ô‹Ì•î¨éW†¸±/†ÄÚ¹CûQˆä6ÛµsˉcíÇÜrâX91·¹cìbšÆ.¡YdìRêÕÇ.£sìrºiÝ›sú²yòä9ysž±ý[!|ô€–´Yˆ{}uH,ß…ŸQßR Dž|&„Ò?†øèùøÅ6Ç?9þ˱\½@=MéŸ=އxsnâæÔ÷lV_·¸FOþ*ž'þŸØµzò7ñ‡âQœÏÑλvOºv[\»'ÿp~óoð#êE3fs¼Ðñ.âX¦rÓw;˜=Äsïæ {yð!Î ‘ËÖÅbëâ²~lqZ‹­‹Ëjöb5û²š½¸8ÕêÅ%¨F/.Iµy±zY-^\šjðbûå²¼X ¾¬/.Gõ6öçÀ]Vk«µ—ÕÚÅ©Æ.Vc/«±‹ÕØËjìb5ö²»Xï}Y/¾¸*õâ‹«Q/¾¸:WS_tù3ê-.¯¡~èòçÔç\^Kýͼ«!¾Ã`þÍ×C¨{$„ìËy×ÄCøSxCù/‡ñ?ç ŽàMºWQk`Þ-Çú¡ôÿ„„msxsù/çñ?~Ȝϛ\À[üˆ·¹w(G§¿ËTÞãâØ_gL¹ù—†0Už+\”ò\a3áêÿ6¹úõ~›\ý€z¿mÕûmS½ßfO> Þo[âTö|GµaÏ~åãAç!–àa–ä÷,EóÆƒ¥ùËð(ËòËñG–çO¬ÀŸY‘ÇCHgî}°’ã_¨oßs‚úö='CôFrHø$?³_gAá#La!eá&ɉ:‰‡‰‹p8‹r‹q$‹ó,ÁQ,ÉÑ,Å7Xšo² ǰ,DzÇQ?8IÎ- ¿¿1^\X‘Y‰o±2'± 'SO]‹¿ó1þÁÚ<Ç:ü“uyžõøëóçE6à%6äe6â6¦:}L¾˜ªWoÙ#„³±¿§KÞ˜*“7¦Ê#Çä©òÈ1ycªû“e­c¹cª9¾eO?³€Ï2öwzÉ%Så–crÉT¹å˜\2Un9&—L­éuæê³ Õg“W¦Ê3ÇÖQž9¶žò̱/h~:ö%Õ’c¨—<¶‘±?£yãMŽÍLÇô´SP¿=UzþÕ¸ ¦¾tA#êK4f2›p0ÍBv„H«ñëbuèüš…J¥wœâØTêÇz—-¨wYÐ’Ãé^ö/ m£Þ±Ðvê í üPÈŒÝ_~(dÆî/?ÚMù¡ÐÊ…ôšýå‡BzÍþòC!½fù¡º¿üPÈœÛ_~(dvî/?2+÷— ™ûË…Q~(t˜òC¡ï)7:B¹¡Ð” ¥™¾Ð1šé é-—¾â»Ë»KյuO¢ºÖ=#Ç3Sˆü,$”x’kØ.„—ÔµøâÏÅfþ—>Ë=׊;pÍø×Snøíýfÿfû4i›ÿKØ?Íý%ÌõÍý%ºÒ¼_ÂL?м_ÂL?м_¢{¹Nxœô8圹¿„õ™ë´‡ž(×Yç¾vÎúËe¯TÒ÷ÿõ%õým ¾ÿ¯Ô÷ÿµ)DÓ˜yÒ˜Å6ë577qƒ.…ÄÒ3BXðRˆTYÉ4g¤×s—=7“fÅÒ³hV,=;DsÕñÝ›\5¹?„®ƒBøÛŒ‘«–Ø=ÊõÝ£\µéåªC÷(W]ºG¹êÑ=ÊUŸîQ®Çéåj@÷(WCþÈFü‰ù3›ð8õÍ¡¾ù {‘Ëw9èäÒ7trµàiš3ž¡9ã ë”ËœqðWš/þFóÅÁßi¾8øÍÏÑ|qðOš/ž§ùâà_4_¼@óÅÁ‹4_¼DóÅÁË4_Ô÷¿Q8Ä×XB;!ÐW½¡®ñ1‹Ò5®ÙÏy=êÅÄ«Xœfå7JðSÏ?ïy½ë%Å«Cˆôp\Êñg,M3Áeø9ËRz£åƒ7Ês=+ð Vä—¬Ä ¬Ì¬B=ïÒûFU~ÅjÜÂêÜ¢=͉¹ÜÛžfÄ\æÇž9h~ìù×1'ÍŽ=sñ ææ—Ìà |˜ ‚Ëçul öÌÇÍÌOë±gn¡\’+ö;å’\_S.É%·ô”KrÉ-=å’\rKO¹$—ÜÒS.É%·ô”KrÉ-=å’ØÛÕS.É%·ô”KbÿMWO¹$—ÜÒS.É%·ô”KrY¿=å’\rKO¹$—uÛS.1E{Ê%æ±hO¹Ä<í)—˜Ç¢=å’\ÖmO¹$—uÛS.ÉeÝ>¬w;2‰·9™w8…w9•÷øvˆæ œÆßa”ÓiF8ò.ÍGÞ£áˆùâú6á>ªoÒR}›ŽêÛ„û©¾M§©oäèCêÛ„ Tß&$Q}›‘êÛ„LlÂÌlÊÙŒYø³²9Í•KÌuϘó–èߟ1ç-Ñ¿?S(„ú曣#hÆ9:Òyýü3ú¨úõÄÿëëŸÑç/Ñ×?£Ï_¢¯¦˜çÕª££ÄúûgôûKô÷Ïè÷—èïŸÑï/ù?Gwgcý¿qü3sfŽ¡$ûNÖ$[d‹ì„ LQб´Èš5fŠ(¥±&KYj”=K²¦I߈,•%[¥ ‘%¿çùýq¯û}ŸeîsÞŸë}]…áï»ñû‹øûnüþ"þ¾¿¿ˆ¿ïVÍû›{ÿ+j>¿ß¿ˆÏïÆ÷/âó»ñý‹Ìín|ÿ"óº›y½È¼îVËûZxßXµ¹Ý­¶úõ8µùÝMXdvw3»›µtþU>ü¡òÞêÁ,7kåÜk^cŽw3Ç™ãÝê9Ïÿ|?^mžw3Ï™çÝd…Efx73|‘ÞÍ _d†w3ÙáÝÌðEfx73|‘ÞÍ _d†wk†æw7ó{‘ùÝÍü^d~w{À–—ŠÊ©2BQ÷:UuSõXQ÷2U•ßjìag^µ^+껦굢¾£qPôUÔkE}z­¨ëî¡×ŠÊl=ôZQy´‡^+*öG‹¾‰òqÑ ŸûÏͧ–“‹ND9¹è$çe²NY¹¨üÜCV.:e墲sY¹¨ÞþÈžíe¯}dÏö²×>²g{ÙkÙ³½ìµìÙ^öÚGöl/9¡ž9{á‰f~âªÜ‚{ÐZÌü­Ç̽x~ƒ¹ð¨·ë™Ëºª¿UçÆ}˜÷£¯gN_xÍç O9ÿóùðæÇƒX¿Ç‚^g~_è†æ÷³wæ!ç ©Íñ æîLÞ¡Jaµy~ÁMžyD]bQçÍö =Ñl¿Ð Íö ½Ñl¿ð4šížA³ý³hž_xÍð tæ>§˜úsõóøöÅíØw`ÿIý=D‹¾æwÑ!Ìëâî•SÍì¢3ÕÝÕòbªÙ]tšÝEÍòÔ h–§^Äw½Îl¹÷=ìüë<~ô^y2õ’çåÐÔ0ögJ.ã<Ï÷ò<ßZÎ=H½â\ìgü‹±Ïèí¹ði”=õn´¨Œªw£EcŸyeT½-*£êÙhÑ}–û7ïïYˆÏâ"þ£ãç˪óú lª·#ny´èBsõÉBBk8¯‡ø‚D¾v³ùœÈÏn6ŸùÙÍú*—ý“ÈÏn6£yÙÍO"/»ù)äe7w×°;¾Œ©8{„ÈYŸ5W¾3[ˆLpßšù®ï. q÷ð¿é—Ìn!¼!”¢Ö7™úæ úRr(ÖÅaÎëŸÌTÔ7™=PŸdÊ oЖ’ÃQF(9Ây}“Ù õMfoÔ7™O{žÖ”|Qþ•?ÓC™Ï8GwJŽDºSrÒ’iHwJ¦{ËäAÞ ?%_RëµLÞã :TòeµžËÔsoУ’£Õz.óy5]*9F­÷2û¢ÞËì‡z/³?îÄÖc›uл©Yèsæu¶N±Þ낳µó?ÚcÛx¸áÿS{þG{k›5nïnãå†Û»Ûx¹á4í™{B¸Ñåç° ñn ‰ÙcN\‚·!oÑ!.ÃÛq9æÆξùáì+‘ξ ùáì¼ÕpÚ™S}×xŒWxn=Æ+¼G·£_ïÑ­Çè×{të1úõÝzŒ~½G·£_ïññ ïññ ïññ ïñ‘›BtÖ›!¬¿âÚú.ë/¢ï²þÊšëÿÁš^·Ùë2ðSœˆŸá$Ü‚“q+ò/¿ëzß !.I–x9C]Sý¥:I=Q] 'amœŒup šuƒvy]võTõ}8 ëá[X§ãýø66ÀØgb£ŸÇüÙÅëä1vM4dܳösv©³«G¨#êÝêêձω±Ï…QLÃl˜Ž±Ïy cïyû7Bâ×fcÿÐlœúAˆ»S®/pSm>NýP}â™)œ_„q¸ãѬ,Á¥˜€ËP­‡ êá¯õpA=üµ.¨‡¿¶v““C´åØÝ.örÞôî¡5_ BóÅ !~Žë딉®¯Ót]>ñs]G§ÑutZˆ®£“9^‚ÆÌu-Ìña2í­¿8ÇG— 5s]['>×µu¢ás]['¹9)—c××i¹÷,õ0koýÕüëz;¹þ‹w„è’KX ÿÁÒxËà,‹ÿb9¼ŠåñމױÞÀ»Ð÷¾Xo†ð©<ÞáõݱȊ•0+cWeîªòDU{yôöà{R…p¥Pˆ¯!ëýÚ e½_›£¬÷k‹›|µý!”¯¶·Aùj{[”¯¶·Cùj{2ÊWÛÛ£|µÝ¼¿m+vÄmø0fá#ø9vÂ/0·ã£¸ÃØ¿Dëy0$n¸È—Ù[‘‡ëÉHÔ“‘¶x™a=®„øXÜíƒÅòàßoxLðÐÿ‹c¦)ö発‡È¨Ö!z¯5õ ZÃQ!]Õéʨ¶HWFµCº2ŠnÞë{dš¯uoUÓÏ{é˨H_FuDן)ÇÖ•c3ÍÛºrl¦[7—çö¼\3ê‘%±¡¼û”)ÛÖ½ùâº2myûpT'ÏÓ¡Q)H‡F=ŠthÔcH‡FuF:4ª Ò¡Q£y•ÉSו‡ËßçÜÎ%aWÌî\=ÇO:6wF¹5oA÷¡¦Üûw¬FuwìšË»÷OÿîŽp^ÄñŽÄp^Æ4¼‚zñé‘_xú*ò OËawðOó‘wðOó‘wðOówðO›;wðâM¯º!ÓÇ96ïŸá%ï|ðjV áK£fUìë|¢ó0Šob6ÌÀ$œˆÙqæ@úvð¶ÍøsáOx;ÃÜxýɽ{Û½ûɽ{Û½;æÞ½ÍGsßÞvߎ¹oo»oÇÜ··Ý·cîÛÛo ûô¶ûtÌ}zÛ}:æ>½í>sŸÞvŸŽ¹Oo»OÇܧ·'ã-8oÅ©!äû×qNÇÖèØmøæÂéx;¾¹qæÁ™˜ga>œùñŸuÕqÇïbAœƒ…p.ò¡oÏÃ"8‹â{X ßÇâ˜é3ìÃ|¼Þ±êXy“_º…Ä÷r`w¼…VÇþ­šTÇ·†¸íBBÑ!Ô¸ÂÎêêdõAlß;OÛwÖPwPÇ~©Û`Çñõz†„¿ob¯àíñõz£ÌSïiŒÇg0‚ÏbÊ?äŸzòÏ…(Ê=ìÑÂò~=Ùç‚ìSOö¹ ûÔ“}.¸æz2Ï™§Ÿ{Aæ©ÇÏ^yêñ³nC~ö¿T½p;ò±r‡¸U´ú™mH£Ÿá·çѱúº¬£{óèY }êhŽç8‰fyŽŸÑ<ÏÁov4ÓsœFs=ŸÙ±!žÅFx.Äýx<$LO ÍÚ¾k§¬Ý'ÕÏZ‡3!îŒù1Ç5œ1?æ˜g\ÓœÏÑ5Í1:ì á -ì {œÉå¼92g;šsxû3æÄ9÷Œù0‡îŸ1æÈ¯gÌ9|väÇfÁœ¯|Æÿ|ÆíêfjZ|Fö™#ëäïèXþ™ãguøÖkèiþ‡“…æÐà32Ðïí°ÏsyԲк{¦5:×a¿óyÕª÷ãCø¶A}“ÿÇmë™3ziÎ÷¨‡æB=4ç0ê9G¼¶“c½3G=ó0þ€àØ Â´óó„ÇíïŽ×Û“mö =ÙÆwZoO¶Ùëy:5ã¸ÚÞlóMˆœ5æÝ…f¼Šh&Ì»;D†¼¢UJ†Èb™ªûÛ(SuŸÂò?B\ìÏø/–­ºÏ !'M[,_uŸ…2q÷Ù!ÜÅk.–‹»Û£Ëÿôzsñ/êwCääß!:[o¼€ŸãEü/¡ wò4×7ÜâÚê‰ •ð9ç/;o®o¨¬îƒUðyç¯8/_m¨ªî+Gf8÷¯sfý†jÎõS_UïÆkø^Ç=x¿Æÿн9I³g»'?ÓìÙÿCš=û[×þ’kçƒÈ S. œ0å"Ê SÌý#rÂsÿˆœ0ÅÜ?"'L1÷È SÌý#rÂsÿˆ|0Ež8"L±¯Öõ qÉ]Gä„)öÕ9aй¿îyçå°#òÂsþˆ¼@:#Gä…©q!nÛ‚0Â}ÙöºÛ>D÷cÛBt¶-Bß}Ûb¼— ÚÆ KÛøá¼Û6~xO¶í#¬…+Û¶Òc•cžnDÝ¿t`HìQa|‹â`,†C°8E:¹t–”×þp<Üñ8Ká‹XGb…e1 Ëa:–ñU g‡Pȼø•?¿9òçï·@þüý?ß<ü•?ß<ü•?ß<ü•?ÿÁiÅÏÄñ7­x˜8þ¦'gµâ_âxšVüK\vä_âø™V¼K?Ó*ù²V=0'öÄÛ°æ a6-«VAÝ[};>¹ñ̃Ïb^|yôV}0¿÷ýâ}öZ«çÕ¼z«¾È«·ê‡¼z«þÈ«·€îsßs—’Ç÷Ü%‡äñ=wÉ!y|Ï]rHßsWì߸CvÉ!yä]rH9d—’GÙõh»{¤zôpN&Ù%“ä‘Ivuv®§c¹dÿ[ó§xþµùpYˆ>É÷~¸ùÞ?§B$Íþ¨¥_Eüh-ý™nÔZ†9}E=ÿÅ÷ð*¾×0¯ã¼|äéÿðC¼‰ Cü™€‹0c<.Á.Å\†‰¸£øfC{ªŸy|§×Ï<¾s"šÃwNB3øN¹¤Ÿ|ç4æîÓðWß<ôf¿ß=þpþ-éo{Ìð˜iÆÔ0côé‘{QFfÏ0‹™Å3Ìâcfñ ³ø˜Y<Ã^‡fÆšZÞ÷#ÖÆŸ°úxïÃXOb}ämÖܼ͚ÈÛ¤¼s•fæøÂ”±Žùñ”qÈ 5*Åêøš üÌjôël“Rßáò.5;ÛéØÙfHÇÎ6G:v¶Ò±³àJl‰rÅÙV¸[ãÇȇ¤Nðyú°ÚõCø ¶ÁµhÎW[‡íp=šç©zêòWê jÞ¸ÚF4×«É gÍój²ÂYs<5Ãëb¿˜—>kžWã¥ÏšãÕxé³®Ö›—õêdÔ{ŽÏ>û„súó²žOÖ.Ç~§0¯}6öï~ ‰?Ðßò…p+ÆmXeáòEñóz¯ áÚ_¸ÿñ-£!áæ¼ùÇ,^Nûÿ1‹—ÓþÌâåfê?fñr3õ³x¹™úY¼\ùÇ,^.üc/çÿ1‹—Ë#ÿ˜ÅËå‘ÌâåùÑ,^.‡üc/—Cþ1‡—Ë!ó×™O‡Èeyõ£x”W?â Þ“o;ˆòícߣ|ûØ!”o;Œ^ÿØù¿‡yûÝ—‹¾ÑnÃp;Ç8wâ‹^SÔñ—ŽGâ.âîoÍÏã-Øo áûý¿üê~j³ïáþxÀ\!¾â=!áøv¬Ž4³Ð§Žk8Þ‰÷â—!²‹¯mfÐ89,²‹ÏÝÓÑl qrYd—Ì?º‘Úì–Ï"»^V7ÆÑØÇ`Óî®áq¯úu³!åÑQ2ËvÙh”̲]6õÊF£ôÀvÙh”Øžˆz`{õÀölø9&ᘷcÜâz>ŠÃÎx<„àž¶?¢Ùyþö'ð <‰GÌn¼{_ˆ»Ç=oÏ+f·Þ­§vïÛóŒÙyÇö€ ‘¶×i„´½g5Ï÷S7VÂ&x›"®Ó bsü[ Ý«óÒÚ:-‘ÖÖi…´¶Nk¤µuDZ[ç!¤µuÚà©)(?~ýÊ_ÿòã×P~üú"Ê__ ‘«ôuŸwÕ^_e¯_µ×WÙëWíõUöúy\Âfó»½{8oï/ çíý4â¼½¿€ïÚÌ´—+ÏÓ€´â< X×y> ½œyž_ÀWnæÚW7UÓŽóÍvœoŽ´ã| ¤ç@{3Ð^ožo©¦ç[¡½~¾5Ã1ö{»ÂØK†‹ÛÌS´×ÏçÛ:w¶ÃR˜Œ²óùöÈ»÷©Ê|ŒUpM5…°‹gëSUý VõHʬCºPf=Ò„2P?–Ùè}öÓ®;ðòx}ôg™Mê“jóñösÎéÕ2›Q¯–ùõj™ÏP–‰ý>œ_¼þg¯]—^-³Õ]ìX¿–Ù†ú´L–×ýêñ›Z¿–±ßÏ Ñy2Ù¹bø{ˆßµ8$Ž6¿v-Á‡q)š[»–¡¹µk9š[»>ÂGC}-ļO½Bý˜úºš—}yèÑÿáýž_éùÎê›êêUjómLPÓ½X(Hïby `cŒ 9ŸÝψe‚fü®ÕÞó8~ŒOàìêy¡`3” 6ÇlhöGì‰ ö^ÄžØð=Úì¹H[ä—û=„ß+«Û©í½H2òGÌÔH{Çö_¤þè¿ñØ^_ŹŽÎý¤þS]Uý°ÚÚà;#8¶/#Ðz&tsœâødˆ¢iøÁHæøÒÑõW²¯q܇⢧œÜÚw\84ÄÕÿD-3·nŽrsë!|4 Ä5åë?ˆ+C¤ð„ø¿šø&Ö ¬Â4÷¨‚Ÿ1Í=ªà}Ód¨   U¡¥×Môº:8 ëâd¼§`=œŠõqÒÞÂo¡ùUx:6Ä·±‘¹A?FÑ›ítc½ÙN/F] q—‡„¥zàÒ°ÌÚ_ŠÖþÒ0´ö—†£µ¿$#.³î—dÄeÖ÷’Œ¸Ìµ_’ —¹öK²á2×~I6\æÚ/ɆËä¿Krá2ùï’\¸Lþ»$.“ÿ.É…Ëä¿Krá2ùï’\¸Lþ»$.Ërá2™ÿ’\¸ŒWùR~zÙ®q-­¬Õ—rÔËrÔ—rÔËrÔˆ'C´:Ý!W§{#äãêto„|\=öÿÌ]+ Œ“«Çþß¹k¦å!Ó5ÓòéšiydDÏç áV™mDOÇ´qD/äŸFôFšøª9Øðm”ñÎ@¯¡,ñÁ‡!î¾Ó!BK¤âFì›°'nÆ^ø)öÆÏ¯*údHÜ—„O¡^+Ú }—¢ÝÑw)šŠ¾KÑHëËbç¾FìÜ^”ÁÎ}ƒ2×¹ÿ¡¬uî[”­ÎíC™êÜ~”©Î}‡2Ô9Þi†û[©½Zv:wP-WWê –ÎñsÕåŸsü\uùæ?W]®9wå—s²@uùåœ,P]n9÷#Ê!ç~B9äܱi36DÍåwf…¸j>§Í8uU|ÍÝwf;oß¿óúÜ6¯9OˆûÞ¾Ÿèzò-rlßOüíû‰‡Ð^Ÿxíñ‰GÐþžxíï‰? ½=‘>ä[™îa™n‹üöð;!rüW#7Ì ù4r£Þ…±">Œwã#XÉû佇ßUwRWÆô}¶ÈÏQ?ªö}n<†¾Ïyðá¹êÎê{° VÇDZ>¼á®H võá+áóèówõÅ*Ø}î®þX-D†ñŒU—!ÏXuyïOqµy›÷ßFëøþ t¿ÞŸ‰<Íûîwmyô}÷·¶uÆcVý½<÷¹¶û<Œ×¬J›ÞWm‡ñœUW†ðÙý!®#ßýÏ|¿>ùç&à÷yØå|þev¹¾¸ìz–[ÏË®g¹µ8(ÃM¬‹|áD¾ð _8‘/<ÈNä ò…iÓûeC´ów!¾ä]!áÀ&¬ˆ›ñnü4„§Š‡pÑ<)YIýšç¶ y~`+šã¶y] ¯3oJšç²Ð´¤9}€-iFàCKšÑøÐ’fóûëŸ ß×>þ‚¿5 ùÛQo!;j:ò·£èÂüí¨!T<îø¨ã™øÎÂq6þ„zò‹cønˆßfþŽ3·™©#Ìá—ic~yw›Ù:Â=Ùf¶Žð·}‚fìË43[¤™ùåàmk×áS¸ͺm´ˆ†ì¥Ó#úJNqL“h](9Õ1]¢uñÛè­ /ÓßüÉ!¾OžÈOÅ÷É‹k0~‚ùq-Àušƒ¯î#ÓòRñ}dZúßG¦¥ñ}dZúßG¦¥ñ}С֧8Zã>%Ð÷)‰Ö¸Ï¸ K¡µíS­mŸ2hmû”EkÛ‡–±¶}h`kÛ‡–±¶}h`kÛ‡–±¶}h`kÛ‡–±¶}h`kË+&–‘Û_¨â’ú„Pœ—.žÝCÎ|…§ªÿˆã[<èîšñ!ú¼½qB6˜¹ eƒ™»CèÀŸî¨–bç脌û;G'd„Øß9:!#ÄþÎÑ !öwŽNȱ¿stBFˆý]£üÐLÙ%AÇkÛyĶQ>kÛ±?ß¶©c­m3”ÑÚ6G­m ä— Wô`ãr¨—G=ØøNÔƒ+ lL§®èÁÆtêŠlL§®èÁÆôéŠlLŸ®èÁÆôéŠlLŸ®èÁÆtéŠlL—®è“^;C¸– ¿D}Ökf÷<½º¢7Ó«+z³1½º¢7Ó«+t§1½ºò Ò«+ÿCzuEæmL¯®¸ÇéÕY·1½ºâÞ–Q oö ¥…?óˆ}'vÅ}.,Ž}'ZvŬ(û^2ñ÷¸±L|…“hFŸß4ÿ›ÙÓošÿͬśæ3s%ÛÇ<@³Øky€ff÷à/B\ŽÜމ¸£¸}çÁ_¢ï<ؾÉa Þ9Ð~Éa ¶_rÜŠöK>m°ýû]Aƒí—|Ø`û%Çíh¿äÈíçòḬ́úî.ûö=3¬–ŒðÞ´þïÍEóÿ½yÈ‹ ØæuÏcöu~¾ó¼É€ÏÕýÔï©éô€/ÔýCÜF>x ¬´‘(+mäƒòÇùàAüñF>x¼‘ÄoäƒEBhuO?ÄÞÏâ“7ÚwƒøäöÝ ÷£UuÏËí¿AîK«jÙ`£}8ˆÝhâA7Ú‡ƒøæöá ¾y£}8ˆ­ü.DŸ‘·W@9z¥ôŒL¼Ò Šý®«^Û¬µÚ,zæM4‹žÉ@³è™‰h=3 Í¡g&£9ôÌ4‡b¿×j¥9ôÌ´q¿6f¢ûµqAˆotHo ÂÃøÁÁx‡à8ÄaøÇc8ã‹xG†øL}ÓÅþÍ´Ž]ìßLÞ±‹õþ¡Ç—ó´ÇçyÉ.ò^&/ÙÅ^Τ+]ìåLºÒÅ^Τ']ìåL:ÒåÒ.'‘ntùéF—SH/ºœñý̬òfW?3«<-é«Ï"ú,*§÷Õk½ÖW¯En÷³¬¼¹ÖWÏEô\?3­üzõ>uµÙVÞŒëg¶•7ãú™må͸~f[ùØ¿“0*$ž/ÏOû>•ΨÓÔ|gÍtä;k¾„|gÍ—‘ï¬9ùΚc¬ù òƒ5Ç"?Xsòƒ5_E~°ækÈ_ÖüeÍב¿¬ùò—5eÍóüeMYó¼¬YSÖ<_eÉó²dMYò|ݪºÆªw†ð~<Ö"Ä}~9$ŒLSÛ¯ÇP_Q§ã¿ø^Å—ñŽö:ûùXËâÿ ·æ Ѭ?ð6üsá_!âÞEËoØ…Eðsû®–}7X]Týó(îx»MÝÝ.$޾‚Éø/¶Ç«Ø¯aG¼Ây¡`õÃêøþ‡ð&¦„Ä1.q÷£‡aqœ¹·—O·+DÓã·ŽÅ0öû:ôùíÛ±îÀ’¸ïÀ/±ÆÞWwcü*D"öíÆº8ïÃ)X§b}œ†rVä-l€Ó±aˆlœ¢ƒ·°MˆìY¢câj„£Þ3ËϧsfuDo~ $ÒƒøÏb:~/á!|ãh<‚cð(¾‚?àXüÇYožìsÚýù15 ùZˆÛ]$$Œ6‹wE3xw1|‹c&–ÀX?À;ðC,…tuwi\„ep1òt£— O7z)òt£—!O7z9òt£?Bžnô äéF¯ ‘u֢߷h-úíCkÑo?Z‹~2ð:kÑO^g-úñàë¬E?x,ÛÊ{)$ì~5„®æûßÐ\ÿ{ Þ‹öy^Ú¸û5uMµ{œ—Æî´u÷ëH[w¿âö wýŠ=ñ7ì…ç±7þŽOãø þ‰Ïâ_!î½ø¼^üD/>¯?Ñ‹ÏëÅOôâózñ½ø¼^üD/>o]?‘UžçÁ>‘UžçÁ>‘UžçÁ>‘UžçÁ>‘Už7?‘Už7?‘Už7?‘UžwŸ>ý*D‡ŒÅ=8¿ÆWq/¾†ß ŸòéÿOùô[äS>݇p?ò'Ÿò3Cø“Où™!üɧüÌþäS~fRNïþÐ0„·®‡¸Šõ'«¨Ç˽í|#5oVQ¯—›¡nŒ3± Φ!î4¿1ç9<‰}ðg|O!Yåø´ã~xy·Óg‘G;}­a‡/B8ÃËþEÍüuØ®æéNÿª~ÃÁx‡àï8ÍÁ9ÃМ3Üûvx_Tý—zDˆëêš <‹®©Às!Äþ­ÆíükW×VÀµvu]\kW×U /º®®³«ë*à:»ºž®³«ë(ÀCvu¡ë(຺ºŽƒc¿Xɱk)0$Dî¤Å?•EZüS9¤Å?•G:ü®ôDH8)§UêŠòY¥'ñ">…—Bè~$„ËæHw^í²¹Q©›óòX¥îxÙyÞû²9R)U}E̓_6O É•ôvì÷;tÿÉ93¥û1,é¼^?i¦WÒë'ÍôJzýäuÔë'ÍòJzýäD©cý~Ò<¯ô\HøÙ<¯ÔÍóJÏc3G;Žðü)ÏoÂÓh6}fžv|Q}Fý)žÅÏBÜ„å!¡O0á#4ã'¬@3~ÂJ4Ë'ÈÞÍüŒ «ÑϘð1úÖ Ïœð Þk±®Ã†¸álŒ± nBûf+¿>üi´†?ƒzu¸^ݪW‡ëÕÖüá®»u:Ê™­_B×»Uï×»[õîp½»Uï×»[õîpƒ¥õË^·E­‡‡ëá­zx¸Þª‡‡ëá­zx¸Þª‡‡ëá­zx¸½µUÿ··¶ÚKÃí­­öÐða!’üTˆ&eÇn(O¾C+ïá“»«åÊwhæ=’3$„É!ºî5}|ä6õõ³!ä:èxªc½ÌÚuz3˜µëôf˜Žô¦Ù»!|4Ä-¹;$t§=K*ájçç8ÿƒº²úãÙÿxˆN°/÷?fW‚>Ü´õá¦ïPn:€úp“_5WˆÔ—i.|†rË…-(¯\Ønéǃ·ÇþØ`Gˆã |$Ä¿(Ô¨üE{‘¿¨af¿È_Ô¨…üEÚÈ_Ô¨ƒüEºH£k܇4¹F=¤Å5ê#-®q?Òâ p66Äw°¾‹q6Á¹Øça3œÍñ=lï㘉-q¶Â°5~ˆâB|a\Œmq ¶Ã¥˜ŒË°=.ÇøvÄø0®ÄØ}Y…p5¦àÇø(®ÁÇBx1gˆËõÞ†~Þ²ßBbÏ©x§9ŸËù¶x;úùË~wþ-unu2æA×±ì秇°öÕ÷ _øX:ÿû.ù¿ïâñ«_Ý^ÿÅ÷¬n¯ÿâ{V·×ñs«Ûë¿øžÕíõ_üœêöú/¾gu{ýŸ_Ý^ÿÅ÷¬n¯ÿâ{V·×ñ=«oFß³ú§Ø‰ÎÎñ­x”V¼Ümz«¼ïô#-ï;ýHGËû?¾Âôªæo_µkÿ‘ž–ÿéé{É!ÚÙè©ÀUˆý}Äy!®ñOηw>; ½.¿?Ä î*]Â~øOuâBøŠ6 ŒÐ,©ãõ_5Æ6Ayí«¦(§}ÕÌëzÝ¿8¯:u¾¹úõ5ó§s2îW2îàÁÎÉudܯ@ö+¶ ùª•ç‡xž×<Íž:´ä«Öêaê›8<$Tö‘uhÊW2Åàê8|ãq$Ê•Kö‡ÄÔC(ñ³ãïD~:uòÓ©i!2‡_ ¬0o;>;°/îDtØ÷~~Aõ—êþ¸  ÿ÷è@äÿ•Ùçñšƒóø¿Gã^‚ßàPüÃoq8îÃHó}éý£ú½”ÞÏ£÷¦á÷˜Ž‡ð%<Œ/ã‚Ü—Cfÿ>#$LʱҠIq2Â)X§bœ†Eñ-,†Ó±8¾%p–Ä™xÎÂR8Kã;XßŲ!ä[âxŽãr!$óÌ?óóßÏU—Çyx'ÎÇ øÞ…ïcEÌÄ»åëTÇ W°2~ˆUp¡GìÏv,VWõ¨æqOˆ[.ƒöüeО§Píy:„ÛB8bÆ.—E{žAÙ³çY糜7s—Ë =Ï©?Wó-h÷¡…¼~„Gh!‘¿—˦=QïTó-¾Ä$çåÓž¿¢<Úó7çw9Ÿ]-—ö”+–Ë¥=å‰åriO9b¹\ÚóO”I{þ…|Ï¿‘ïïi,çû{šËù›žüÍrþ¦ç?È×ôäk–ó5=¯ ßÒS.îȇœâÎe…„ù|]Ù#!á¨þ,{„Ð?¹ôªúµ>-û#êÓ²?á žoåy^«[k¤YÝDšUö˜ç«yÔK´ª¬lwT—•íŽêã²²ÝQµ[ÏOPËxGõsYYîèçy×Koªeº£¼L·vê µlwt¤š‡½4Q-ãÕçee»£ú¼¬lwTŸ—•íŽêó²²ÝQ}^V¶;:e»£cBüBóÉ5˜ ? a„¾Æ.¼]½sã:̃ë1/nÀ|ÈÐë·uQçWoB9èÉÍ(=ù)ÊAOÒÉ……‘F.,‚ôqaQ܆Å0 ‹ãçXõÎ{ç6º–ä¾°n£i Kzn;Þ;°îÄÒø%–Á]Xwc9äÙ¿27ǘ›_™›cÌͯÌÍ1æ&Ÿ›8FÏŽyÒã©WpŽÇ\çÍÑ1æ(Ÿ›8æW4Cǘ¡|nâ3”¯Mc†ò²‰cþ@³sŒÙÉÃ&Ž1;yØÄ1‡„h¹ý4–Ç$¼åå«O‡èª†ø 6ÂgQûÐÜïÊ|hîw=Á·f:6û»žt¼ÀãµïÒ•'øÐwézÊýáK>ô}ºú~ú>]Ïx݇!òô÷Ý×»ý­íz÷ ¿µ]o ûóDë­ak¹Þö·–ë­ak¹Þö·–%ä¹òm yî€|[Bž; ß–çÈ·%ä¹òm yî€ÜWBž;@JÈsä¾òܹ¯„Ö #éc ú8’>Ö #éc ú8’>ÆþM”8³g$¬A#GÒÈ4r$¬A#GÒÈ4r$¬!Û”íjÈvõèöÞ(¿í¥›õä·½-=/ëÕ¸†ò] ù.÷0Dz\ Yn¤,WC–Ë=ܱWã¦÷É{{彑òܽ.e¤w¯3RŽ»×L)ÇÝÁQ˜€i˜ˆé ECtãßœ°Î{x¡±¥Ôtâ„õÞÃ-­¦'¬ûÞh,o´‡7[ù¢±|Q:rBß·á-Nèû6ôã„ÞlÃSœà)öðKcù¥=üÒX~i¿4–_ÚÃ/å—öðKc+z=¯q‚רÃ7½y¦±•œßí|5ï4–wÚÃ;åö,Ώ«!5–wÚ³«ãR¬n;¢Ûׇ¸ÎöWn{½³ý•Û^ïlå¶×;Û_¹Cû+·=ÞÙþÊmw¶ró8í£Üöpg{(·=ÜÙÊmw¶rÛÃí›Üöpµå!|{¿ý“û’¬:ÛC¹íåÎöPn{¹³=”Û^îlå¶—;ÛC¹­yg}–ÛZw~­mçÑh¿vƒÿá+hM; yìÑÎãÐíü*Z»Îz25ë¬'óТ¡4ë~c:ŸÞ–¿™Î§·åÓ§óémùšé|z[¾¦8MŸÎ«·åÕ§óêmyõé¼z[f:¯ÞÖ~Ϋ·åa¦óêmcŸÉ«·åa¦óêmy˜éG‘‡™þ¾‚?âX”µÚŽCY«í«®©‰k2¯¶¯ iupÖEÚŸvÒþ´zHûÓê#íO»iZ¤ýi ‘ö§Ñîí´?Í÷ÜNûÓ|övÚŸÖíÕ´fHûÓhðvÚŸÖ"$Äý¢ë¿ÆË¸¯à7!TùÎñ¿Žÿ‡WñÛ:}Â/¿ã ¤óV¢¸H;bÿíä"íˆý·“‹´cÉûH;–d"íX²‹áX?ĸÐç¬ò9zèbI5ßñ\Œ¥PÖ¸XiÙÅ2¸ Ëâr,‡ay\wâJ¬€«ð.\ñã9uGˆ¾ó–¿±4^À2xËâ%äÞù'DêÉ…0óÇW¥¸Z¼ðÊ£xaʆ¢xaê¯ ÃQ]ú단¿.ŒD½uaTˆ_¢3åì´=!ZËëÓ¾F¯OÛ‹^Ÿö z}ÚÿÐëÓ¾Å4܇z¯æ!á·Ÿ°%ÃVÈ£ÕlüIÍQ/×|ù²šm/©Ùyö\Ct‡ü°MfJ)gñN¤)¤Ü…ô …m£)²Û6û9…m£)•‘¤ÈÛôBJU´–)դ܃ô ¥:Ê<)5Ð˼I釿MJ4oRôWV ˆ÷¢ý”UåÒ¬Z(fÕÆ!HÿR†"ýK‘;³è_Êp¤)t9‹þ¥È™Yô/E¾Ì¢)£þ¥¤!ýKIGú—òÒ¿”—‘þ¥ŒFú—2é_Ê+ØÇâ8ùÄšœÅ÷¥ÈËY­Q^Îz_LJð lƒ°-¾‰í0“q"¶ÇIÈ[§LÆŽ8Æ©øNÃNø¦àt|ù“\“ìËØýzL=;ãL삳ðqœOà;ØßÅ'qÊ‹)s±ÎÃîÈkf¥â{ØßÇž˜‰½P†ËêàÓø!>ƒô9ëY\„ÏábìƒKðy\Š}qöCó>«?šYЬȈfEÖ ¤õY/àjŒã\ƒCQÎÏâÍSÖ"?ž²Gàz|7àHä ³F!?˜•†ü_–<˜Â÷eÉ)|_–¹šÂ÷eÉ)ü]–ü—ÂßeÉ)Ä"KþKáë²ä¿~.KþKá۲俾-KîKá۲侾-K¾KáDz& ÿ•õ&Êð—'†Äêà$¤Wošu¥äÁ7ͺRrð›f])9ðòd)^#?~¤§ß;:?"5–…Ä_;árLÁðQ\áJ쌫Ðþ/SÒãõjµ^xŠ.T4„êGBØA3žâ‰ ÑŠ§xáB´â)=UˆV<Åó*"‹&„h·!þ·øø¾¬ð[—bZÇw:Nt¼£øQˆôyH¼›Vô7ßb¿#ì 5ÍèoÎ'˜5ƒ¶«iGó>ÁÌ´CMCú»±?Ñß½H0{ítþüiJ¶$ÇæìÝÏ¡ùz7]éï~%¸_ƒÌÙ»éKÿ…ê3È$È©ýyƒùyù{w_4ïî‡æïÝýC¤‹Œ’·.ÆŽ¸Æ¥ø.C÷»Ërt¿»|„î÷òÁ!Ú«Á»p(VÄax7ÇJ8+ã‹XGbU…Õ0 ïÁt¬Ž/¡¹·Aÿ·ÕÿôÛÕ|Æ!úîtÜŽoãœ;q&~‰³pÎÆÝø~…ï"ßðxWˆ¶8ˆñ{¼a%<Œ•ñHˆÔÿ#$^ôùõÿDŸ_ÿ/ôùõÿFŸ_ÿúüúÑç׿„>¿þ?8/ã<¼‚óñ_¤'¾‘£!Úu-fÃu˜„ë1;nÀhÏ.1ÙáKÌðFfø3¼‘¾Ä od†““¸F CdÖ!Ú!g±{mVWDZ?O±"D×ñô9ß Ñ/䕜hÎŒ6Ÿ ´ñ;ê…Ä4½6Úœ.`N6§ ˜Ó£Íéæôhsº€9=Úœ.`N6§ ${_}ï³OG›×ÌëÑæuÎßï¼>ÜÑÏ`C<‹PÿíhŒ¿`ü›âoØ Ï‡½™ãæŽÇÈ'uM ùb{üÞžõ·Ó±®Ô‡ÔüËvzÖµ£ú0>ŒGð<êy¾f;ëÚIý¦àr•Y×õQÇ?ácxÌkyŸí´°kgõq5´Ý<¬Îm§‰]»8Ç“øþŒ]ñ>‰§ñ)ä»vC±«yÒ5Õñ9qÈ®PÅ̲ͼ!_!ŸS—ï±¾Cö¨ùº´xu"oT1‡ÈUÌÀ!ß 8DÖ¨bùùžº4ûký0dŸÚ ²ÍÀ!²Iº7äšC¢8ä{ärÇ>ãc(û[!~ŸõxýgÆÝ¤/Ï™q7éËsfÜÍshÆÝü%„"òÐsó¦5~‚.æ{éb¾L̆fg‘ÿ9Nrl~ùÖqvÇ~N‘}Žs8^ˆ·`ì¿ÕünÈÍBþæný˜þsH¨m¾¦ŸBó5?¯m¾¦ŸAó5ý,š¯éîymó5ý4_ÓEó5ý7¤/éç‘·ªg^îå§ÓW›³é 9›þ'š³é!UÏ<ÝËo§ÿ­6oÓ/ y›~ÍÛôKhÞ¦ÿƒú4ý2êÏô+ÈkÕ³§÷òééÿªõZúU4wÓ¯¡K¿Žænú ä¹âx¸ôÿ›½é7ÑìeÕj¿"èÓúÔˆ>]¡OèÓúÔˆ>]¡OèÓúÔˆ>]áwn‘éѨ+4ªº27Äg¶æ áqyãO÷g|VHhÌÇÿù¸ñ_ 7~;òqãw 7~'òqã¿D>n¼žnL È;ßšS äo­Ïx=Þ˜—o ÷|kV5{¾µNãõ|c=ß@þù–Žã1ÆëûÆú¾,ô­µ¯ïóû d¢o­áxýßXÿ×ÿùþ®ù[~¹Yñ-ÿ×@Fú–_n #}kMÈHßòË d¤oùå2Ò·üržã[kÙ@FúV?5 ¯ßZÃñöSc{a¼ýÔØ~j@o¿µ¦ãí§ÆüD.÷y‡ûœË}Þá>çrŸw¸Ï¹Üçîs.÷y‡9Ë=Þ1'Ä\.$>·Ë£9RÌí¾Œ”s»#é[n÷c¤˜Û})æöÝGʹ}ç‘r`nßq¤˜Ûw)æ¾×çÝéóöb´×’–†ÈÉ×Bt¶kÞ@ËÛ>¨¯–6Ðô¶©_WwÁ7PÚ@ãÛÒø 4¾m[çyœÙO Y1[6Ú`µm§63f?‰²ïì§×žÝ 'cwœ‚©8{à4ì‰o!¿sÛ5ÇÓ÷Æ·‘;9yåÉkBB+ý=ù”Q&¯Eeò:¤ë¥Ï†HÅïB≴nVHœO‡_çiJ˜)çf«eÒ×y›f˹wÔÍñ]lsðœ‹-q¶ÂùhöMæ…b6k2/ÔJ áQsð¨CxÔ_aîÁ‰hí†L½8¿ñ>Þ©•ž2EMË&£ŠÿCZ5ù[ŽûpDˆ´ü0DC2.ÄöÈsž«%Ïx®–΢ϙ +èJ³mêÛÔ1æB¾~…½× sÒôt¦Ùçž»Ýs1æF^Ýiö…:z;æÅ˜wb~ü à.,ˆ»±~……=Š8æÁì…¸IöXKym’½ÕÒ¬šdVµ4«&™U-ͪIfUK³j’YÕÒ¬šdVµ”×&™S-åµI‡Q^›tÍ×IGQ^›ôÊk“ÌŒ–òÚ$3£¥¼6éòÛ Í¨}fð$Y¢¥Ü6éÊì Í«}¿"?¿ï7çO:/ÇM2gZÊð å´}öï$ó¦%k(¯í³'™;-yî†rÛ¾?PnÛg?O2‡ZÒµ†üë>ûz’yÔRÖo(Çí³¿'™K-iÚ$s©%Ýd.µ¤a å»}P¾Ûwå»}öý$óª%mk(çíûå¼}—ÑÜÚwÍ¥}ÿ¢ù²ï*Êyû®yŸùÖ’žd®µ4×&™k-õmCùoßu”ÿöñ–“̹–´±!²ï?ä=öñ“̽–òå$ó®¥y7ɼkI+'™w-iã$ó®åH¯×_ûÙª†òâþ8çÍ¿–£èºëm¨·öÇ;g¶4 '™…-y²If`K3p’Ø’ÏÚ´5Ä!aÓ6Œ ‘_›†èûùÕYêøŸ^'$Öú ëâ1” kñiŶ9æekÉUé¼i-y*­ÅÛ2'ÑôlÓ=Þvž7­%W¥ó¦µxštÞ´–¾ÏÖÎ1Z‹Ÿ)–å˜G­EWÒyÔZÙô+û6ŸLú•}›ïc´oó­Á®ø ÒÝ|k‘îæ[‡t7ßz¤»ù6 ÝÍ·c?wÒÝ|›±~Š47ßgø´,ð™,ðvÓäÊ §B¤D¡ø5›&;V8­.¬¦ %Š`Eû¿D1´ïKGû¾D ”õ§É˜ΨKªíÿw Ì?>W Û%J©é@‰ÒHW§Ñé çÔeÔô DY܃fäwòÐõó!ú±Ÿwýwôó®ÿ~Þõ?‘Î\ÿ ýœë#¹~}~Ê!ñXeº:UQ¦«S eº:÷ LW§:ÊtujàQ¼Àšø#ÖŸ°6Æ~w¸÷UäKy_Ežt÷UÜÞg&…Á´!û¢™òtˆ¶.€Ï`A| …°Ç¬¿RýœšöMéƒEðy,Š}±˜×ñ õW©û©‹«íÕú²î”þê8Kâ@¼!MŸò–F¼u”Á[—E¼u9”Á[—G¼õ!~̳!±^n|ó`Ì‹Ïc>ì‹ù±ÀþX`!ˆ…qÁ°(Æb!n‰¼Ùý-Ì…ÓCh¦×¾? ¾]í¸Ù õAœ‰r\³Y(¿5›rÛ’Ü^ç5ÍÞQ[§¾o1÷©‡ï[¬ú¾ÅŠ£ï[Ì}éáû+Â<ûÞMjß»˜ûÓÃ÷.V*„rîAß½˜{tº]ˆÎñÜédtïN·ÇØùèÞîˆîÝé‡Ñû¦ ч*†¸?y×…#¯ºPþú“?]ÈþÉ—.”¿þäGÒ–?ùÑ…fÙŸüãB³ìO³m¡Yö§Ù¶Ð,ûÓl[øa“çʧäÓ¹òi§£(—v’KçÊ¥~D™´“L:W&ít eÑNÇQöì${Ε=;_[‡p`<Êí^G¹ýÀž—I;ɤseÒN2zïo3W6ítZ-ÏàqæÊ¨dÔ¹2j§ØuuÇs(§v2çöÀ_±'š‡s{¡ù7·7š{siJ'óî½_ärHüv^Áùø/¾‡Wñ}¼†™x„HóÔxãVì9C˜Ý,ÄU£î©¾ {a.ì|è˜j!á¾µxš{qrC}3ù¹³¾Yü™^ß þf©×T÷3±¾ÙûY^ßÌýf¹ó5œ7#ë÷W¤¾W½kâ&¬…›±6~Šuð³9K7çM ¡’{ñ†oò–\ðª\°]­×›èõ¯©w¨õz“·Q/7™yp&æÅY˜g‡¸kƒCÂ*³õÚûUò׆¢™ymš“׆cG`¾ˆ‰!<*«ÿ6åôßæ†P ‘çFz.긱ãQ޳a&a:fÇ—0¾Œ·àh”®AùàÚ+(\“WçòùÝ|þ<õ8µûíU̯ayñu̇o`~œ€ðM,ˆX'baœ„Ep2Å)H;®MÅâ8 K„ÿÿ$C^ç«¿äŸçŸ#j½ƒÞŸ±GçÚ£gAúv¦ÞÉ#Üâ’ͽ3)ê ø(Þ…aEÏWð¼yx¦³únì‚•ðq¬ŒO`ìŠUñI¬†Oá=Ø «cw”Å6Ýåód™3©ê{±ÖÄžX {amìuМ˜[7Äÿ¶0$f¶ÇEØ£~~£Vˆ+)‡ä¸Û¹%Î=ŒKñä)2;!O‘™‚°“ðÌŽk1®Ã[p=ÞŠPÎx`#ÊØSéBB-{-ý.\q%Þ«°®ÆÊø1VA×”^]Sº}_˾O·ïk­C{»Öz´—km@{¸¿[ÏžØKCÓíåZ±Ÿk/ײ—ÓíåZö2ߘP‹¯­gÏìýç!å#jmÁû÷ä!jñ¯õæ{žöò’ µxO^2¡ÖçØ¿À†hÿóŽ µx¡Ü±ÿ6ÓØñNÇrï˜P‹Êýªã¦Žwa3䃞šÂEy±ýÿþ\`&œ›ê¯QÊ,øž×,e|/‹<5ÍyÞ£”™ðýoh&|Þyt‘Ù.DÛ Éî«„h žfbUäi&VÃCüé/CbìïÝq%ªw©eˆ×iM‰FêÝêÔ4§DcõWêÁ(Ï‚²ñ™ö´¬;G¦=-ãΑiO˸sF„pÇBE‹“w缈ò¸ùÿ×éX‰&j9~Nššž•ˆåøDŒå÷(6GºU¢Ò­rûé^ŸŽñ%çéX 9þô÷jYáuzVBž?}H=ZM×J˜‰¯Óµ:Øù1x_Á£8Àqø#ÒñØï¢ˆýŠùòã±?§i ²¹ŸŸÑòlîçg´<›ûù-ÏvÒòlÕ‘–g«òÉ:ÚóP/¤1јCŸ„èäqjñÐÓÈK<$c®»ŸÅJh~­«Œ}¼~­×»–uUÔæØºªh~­«†æ×º{ÐÜZW` ´®ëîEë¹®&ZÇu4ä!²®6ÊxëêàPŸ¿Îç›Qëꪇá}8ë¡u\W_Äûq¤×¯÷zÞb]õ(õõë¸ßÀM87ã›ø)f Y9y"nÁØÌä±mu<·!½ÏùVˆ~14Ä ãgªò3Ãø™ªüÌ}w…ðµ<>Œ©Ê¿ ã_ªžB¾¥*ßrŸ}òõ3j¾¥ª¼vßÝj|ÿRUf»¯’ú95S•ÆÇTåc†ñ1UÍîa|LU>fSÕª÷Š=no§Í²/ùÅzcÕöxÚlui|Ëà»Xç`9œ‹å½Þúî¥ióÔæO=ë·—&¤ÍWW°á¬QÚ{Ž}¯zîý^þ í}µ^HËD½¶õBÚXÙëÜó½;ÕªõBÚBÔ i2UÚbÇ1=¼'„ šZú÷]&Y}TM[Kÿ¡–MVÿ€2ÍjûÿºL³ú'ÏÓÜÒ"Í-ý—ó2Îjçº<½ú8ÊÓ«õ~-.ý·Z®^-C_·'VÿŒ2õj™ùºL½Zf¾.C¯>ƒ2ôê³(C¯–•¯ËÏ«é×uÙyõ¯!r÷c!ñd•ѯe~öà¯ËèÍ2îEòИ$W%C¹*y8ÊUÉ#P®J~åªä‘X0„§ÿõ¸Â:|Aò(ç嬺®áÏUèþ\ÅðcÚ¯Wy])½rè>Ô#‡ê¡9Táý¨O5À%HóK-EZ_jÒøRË‘—úépbeÇ+7ÕØWa‹ùd\ˆö­ y¥¹ìúÉ«êúøÞã±¾Ž ½Nži.³}ò†ºNÀÆ!ÜuÓñ›Ž›„`Çç’!¶ÿ‹2Äv÷à‰š!üE¿ž¨…ôë‰ÚH¿žpoþþß$'¸¹žñúk!RqVH<Ñgc3|Íé¼BÅÔïªÍ’¥ô¸Qo¤Ãèð×BÈ)}Ø:$tý>ˆßâC¸ÛàþØ/tÜÖñwØð¡„Ä–öÜä–øGˆKå=ŠÈ©‡ÿ„P`´ã>Ž/‡È“2¶yRÆ.‡2vAsþIÙº 9ÿ¤l]Мÿ?ü`Rˆ/’¾å± EOt\'açOv\§xLu\Σ¼Ù·'$üeÝë~Ö½î^ìß õ®û?´Þu¿Eë]wZïºûÑz×ý­wÝh½ëDë]÷{´Þu¡õ®{­wÝ#ÈO'Z¿ºGÇþÝ”k!aøh¼ŽüÀÖh­ã;þϱì·õ&Ê}¬BÂp™o[ìwˆÊTÛdŸmòÎ6Yg›œ³MÆÙ&ßlËîu¯yŒ÷xÝã oz¸WÃÝ£áîÛ¢v!ñ©0/c{¼‚Ðü\Ô¯âÃx ÁëØ o` þ‡âMäÇl×øEüX·8äǺÅ#?ÖÍÚ,âǺYEüX·DäǺEñ)̆Ý0 »cvLÅØoÁžxkw›kù³ÍÍóóBâ9íYGûÇ~}ìoŸ¬£ýí“uô±¿}²Ž>ö—;Ózz_&öÂÎÓËþöÍ:zÙß¾YG/ûÛ7ëèeûfÝn¯<èdÿA/xðqI߆ø«Þ»JvÍ0—KÛßW}Æ*6Ã\.=Uí³VɲæréijŸ¹Šæ^¥Á«hîU¼Šæ^õÙ«† ^5Í÷UÃÐ\_5ÍóU#Ð<_õ"šç«ÌóRzïªY¾jšå«ÒÐ,_•Žfù*³üäG!:;Æh¦Ÿ\‰fúÉUh¦Ÿ\fúš‚!Úg7¯°0îÁ"ø5E³}M14Û×G³}M 4Û×”Ä}|ò!®Ù)õêýX ¿ÃÒxËàA,‹ßc9<„¼CŸÃÈ;ô9‚¼CŸ£È;ôù+"/´ænü +á±™Ð,D›þ…Í‘ÖgÈ…ÍåÄ 9°¹œ˜!6ÿ åÀæÇBȶ± Ø\6Ì›Ÿ@°¹L˜!6— 3dÀæ2a† Ø\&Ì›ËA2`s™0Cl.f4E™0£þŠÍñ7l瑯nÎSdðÕÍͧŒVh>e´Fó)ãAŒ]óCh>e´Aó)£-šO4²9Ì ‘ÍidlN#3hds©ï›ÓHý–ØœFê³Äæ42ƒF6§‘4²9Ì ‘Íidâ3hd ™A#[ÐÈ Ù‚FfÐÈ42ƒF¶ ‘4²Ì ‘-hdlA#3hd ™A#[ÐÈ Ù‚FfÐÈ·b/̉½ñ6ä÷ZäBZÐâvä÷Zðü^ þ/£òÏ£\™ÑåÊŒ~(WfôÇ‚!òåO!úòÜ>¾âZÕSSÏÃã8O lûñ Ï×ÇÿP–ûò¤óï«oª„°&`ì÷u™e­b¿§ËgS4ïs6Có>gs4ïsÚ€Ïò9)!rÖ}›'·U:ëØ½›'³uoæÉlgÝ“y#q)ÊjgÝ—y²ÚÙå˜î=çÓöyrÄôå!¡mÍÉÅûÏ¢¼_žþ‘óµÔ²ïþ_PæÝÿ«ó+œ¯­–}÷˾ÓWªëà*¬‹«ñ>Ï˶ûeÛé2AÛz(´­üÛû‘ÏoÛùû¶ ‘ooÛ(Ä­àÇ{û9+øñÞ>…=ÑÛ笰'zÿŽöDoYl…=Ñ[[aOô–ÅVؽÿ¡Å!ñù+ìÞÐÞè}íÞ—ÐÞèýÚ½/£½Ñû Ú½ÿE{£÷UB×ß±ýÑûÚ½éÆŠ!HVؽéà û 7]Xa°ñcù‰ûù—±üÄý|ÅX~â~¾b,?q?_1–Ÿ¸Ÿ¯ËOÜÏWŒåîç¿›w ×isó'‘67 isónH››wGÚÜ<cÜ=ºN››»G×iss÷膟ßÜ=ºA››»G7hss÷èmnîÝ ÍÍÝ£´¹¹{sƒ67wonÐææîÍ$}aÖÿ=DgÊÇÏm Ñ2¼T¹^Žå•2±?§h®ÏúÍõY¿¢¹>ë74×gGs}Öïh®Ïú#„õî^ˆœ4ßgý©võBXïê…ÈIs~Ö_!Üö¯c³~ÖßhÖϺà5î¯> ëÝ_}9iöϺˆfÿ¬KhöÏúÍþY²×I³Ö4ûgÅ>ÏìŸuÍþY±?kiöϺŽfÿ¬XÿÃ*x«ò2rJÝÜBÏ’èæ{©GÝ-z"D.oÑÞÅ8'D~ì¢ÓËàÃXÁrØ Ë£,8ýN”§W@Ypú]¾ìÓ¦‰Z&œ^Ñw?îX.œ~7>Ž•ð ¬Œ]±Š÷ÈJmšªŸTWŧ°vÃ{°;VÇT¬âó“yˆÃ<Ådâ0O1™‡8ÌSLæ!ó“yˆÃ<Ådâ0O1™‡8ÌSLæ!ó“yˆÃ<Ådâ0O1™‡8ÌSLÖ§‡yŠÉúô0O1YŸæ)&ëÓÃ<Åd}z˜§˜¬Oó“õéažb²>Mæ ²y_2oÍ{Z~¾QSÍ#dóþd!›÷'óÙ¼?™GÈæýÉþþq¹=_ÿ¸Üž¯škùRPnÏ÷(škùC¹=_g”Ûóu ‘s·Ól½x.7žÄ<øsˆ¤ä ÑÛ6a>Üœü!®úÃêüêO±ÚÓ)|úm[O¿m+ÚÏ·mCûù¶¬yɈýÞ¦—ªáÑßÕúçÿ-„çÌÃPL­òŸW›‹¡¸Z?äý=ˆŸÔ%Ôú"¿>ëª/òÛïÏs¾$Ç;§¥<¯_òë¿®ú%¿þëª_òë¿®ú%¿þëª_òë¿®êʃæ×]yÐüú§+š_ÿtÕgùõOW}–ßßÃ+u?öðJcA^il'䕯š¥{ìù±¢=?ö1䕯væíÌ•ÖöÙži¬û¿‡gû8òLcŸ@žilWäÆ>‰¼Ñا7+“îÍÆMÇÛQîß›g`œBÛH'š`6E={¢™çóz~–:ªnŽzöD çó9?óã;XßÅ‚8 á\,Œ¼í"ß3öo:Ýå}·|¢Yfñ-ûÐ,¾e?~âß+‰Cñ†¥Bx}Oˆ+©÷®.#Þý¬çf뽟õÜl½÷³ž›-³ý¬×fŸF½6û êµÙ¼ÉÏzm6¿ñ³^›mvü¬×f›?›³ÍŽŸÍŽÙfÇÏfÇl³ãg³cöhfÌþ͈Ù2ÚÏæÃlóágóaö4f›?›³ÍƒŸÍƒÙæÁÏæÁlóàgó`¶}¾õþ5+$D_ ÑOŸQó†|®~Mm.FÇ£¹}ÍÅèø|·Ó…ë2ÚjýŸñ± ®?¯ÓÕÕtõ:]]ûÿŒtuuìÿ/ÒÕÕtõ:]]mže¬ñz}|¾®ŽýCúº:ö~úº:vž¾®Öß×í¯Õúûº}µZ_·ŸVëïëöÑjý}Ý>Z­¿¯Û/«õ÷uûeµþ¾n¿¬Öß×í—Õôñºý²š>^·_>¦×í—éãuûåcúxÝ~ù˜>^·_>¦÷Ó¥K=‘.]2ã8¦M—z#mºÄÃÜO›.ñ0÷ãA—.¹W—x˜^ükìÏ-ôâ_Kð©½ø×|j/þµŸÚ‹-ÑùרŸWèÅ¿Æþ|B/þ5öçz-ÂÖ¸Ä%øPˆÛúCHÞ#„ÖÃBøq­úGuOü ]ck^÷Çu8×㋸ÁóÇ<ß[=R½Gaìw¾ñ@ܳ’<Ð÷¬¤ë?`îå ªìáýÁ!®¶›õþ\ã|E¡ÊwîÇKECbímX ³°8~Ž%ð ,‰ÛñÜ¥p'–Æ/± ËáWX÷àø5VÀ½xº×/UÄÿáÝø-VÂ}X÷cü«bì:«áA¼¿Çêxkàa¼`M¤é/Õ°6þˆuP¾y©.Ãû'i±6$þGËZ¬Ãn¸»ãLÅØ7aOÜŒ½BÜ3•ß?Bc¦òûƒÓBBåD”õ*GQÖ«œ _Æ$ÙQ†«œ_Á[B¨“3„¯ôÅà±ê[Ñì­l6s+߆fnå\!ä~Ð#öºñj³9w¶!î—b!aþ,Ž` üKâB¼ežŽ…pæ µŒ;1–Æ%X—bY\†åp9–ÇðN\p%Þ…«°"®Æ»‘nüR éÁ/•ñ¬‚úû—ª¨Ÿ;ºÞ3ÔÕÔúºc[õ›ê{ÔÔíÔêêêX7ὸkâ§X ?ÃÚ¸ëàV¬‹Ûð>ÌÂzø9ÖÇ/ð~ÜŽ p6ÄØ¿ÄƨKÙ‡¡ýxè´ï Æã8OàP<‰ÃðgާpžÆñ ŽÄ³8 Ïaþ‚²i¡ŽuüRïÉëµ …È Z_ñk¤õ÷:ØùÂjš_ñ¤ùÿ‡4¿â·!Ò\¾ºÑ/„Ùú¢êj9ëF܉ðKˆ»pîÆð+Œ{p~CCXØ8ÄÕ—&›I-÷¨›¨_V›M-¿V7U!gIçÌ©–{ÑœjéÚ&»ö–öó¸ë!±Áû!dëø†ãLüàMü „x…¤ïWH²·_%Í >Ä8\è<ït0„âÕ=jxÜë!»—ӋבIfñüÜ$³ø~n’YüÀçh?@³ý»½§pžÆ7ñ fàYœˆç0öÿY~ÁÉø+N ‘K2Ͳ*(Ó,“C.É4Ëø£K²Ì29ä’³L¹$Ç,«rÌ2×Xy•cYf™k­¼:„\îõ°þ!Z­(ýµ7j›ã•ÍSmÐü8ÕÍSíÐü8•ÂÛw‡¸Øßó/-ÃU6KNµáÞ«²yrªƒópi^¯²¹rª#š+§vN¶«¼Ô1ßWy™ÇrÇæå©”¿œvö¤ËigOÚ¹œvö¤ËigÏòْ־⤇š„hFnlŠy°æÅæ˜[`~| `K,ˆ­PhzöÀƒX¢!²tqˆöà%—.AßgéR|2„Z‡¸¦ãÕËÔO©T¿Î˹GK—;G“—~„4yé ¤ÉKW"M^º iò«=C´aì÷÷¼!|0:ÄÝÇ÷¿Ú[íš_}ó;?Æy}óê3j×þê³èÚ_}]û«}е¿ú<ñzžê>ýõj_µ5¼•¿{µŸãbh]‘©·„hëõx+nñÅøŠýݯØßežý©È[ìï2Ïþž>¯c¹g/”{ö÷qã±q—Ü·#Õß©§ó»œkàÜ(ç8÷Ä®Î7t>Íkv;÷½sOâ!| #>þvÇ£˜Š>(‹Ls”E¦¹Ê"ÓÜÇiØ4÷ïAY¤ï_!Z~¶9uOˆ«eîôý[ý^Àw¯îü¬ñ^4‡ú^ôü¼„sñ”ãú^ÆùxßÃñ}¼ŠæH‰­¼-­{òB««·©A¹ç@'3µ¬G9òw:/ÿH q'x¤™™¨çfòJ'ôÜL^é4“W:Á#Íä•Nè±™¼RrºƒZ¯Íä•Nèù™42ŸøQHØ\W`}\‰÷ã*l€«±!ò‡›!¸¹1~‚òDâZ”'ס<‘¸å‰Ä (O$nDy"qʉ›QžHüå‰ÄÏPžHÜ‚Éþ…Ämq¶Ã•hމýwUŽÛãjä7º~Œq >ŒŸ û7âbH¬>/áLügáeœWðüßÅ«8¯á\4ó«ÏCó¾ú|4ï«¿‡æ}uë·ï³}ãÕ¹9/D×Ãù8ßÃø>¾ˆ™8à(üÓðCLñ}¦…IJµð-¬Ó±¾uCèûHˆ‹Ÿ¦ž¡¾g¢µê3 ­UŸÙh­ú¼ƒÖªÏ»h­úÌÁF!íx®cëÕgZ¯>r`YëÕG,k½úÈe›{íÇfyÙŽ_qlž—µn}Ìó²Ö­y^Öºõ1ÃËZ·>æwYëÖÇÜ.ûPˆÌ‘¿:Å8¢{4ç{| ¡¹8zZˆÞ×ßÂÆ8›àÛØg`3œ‰Íq¶ÀÙø¾ƒ-ñ]l…s°uˆtÙ¢yÝë.ûѽîâzòº×]\OÞtt=yyÁ.®'/ØÅõä‡q ÁWð(ú]~@ߣËè{tù }.Çp|K쯆gBdÏ”| òLÉ´i¿”œŸÄÛB¸s³Ç§ê§Ô¹°Ê;w~æ±%DNø^³úè ßg-{Ó÷YË—·’ãâôú\ù²“|9W¾ìÄΕ/;É—såËNò償Bb³qx _ ñéyCbìï’ÌàË“ OžÌ3KÑûWòÍyßs\¢š¿EÞîƒÎûÞ㲩?Æ$”¯ÇeÇO0®EþàþuÈÜÏ'ŒË‰ð6܈¹pÞŽ›17úþãòàg˜·ð€ËC$G¸Í½úÿ_ÃþWù¾ÿdýOVĸ¶ q¯ ñÝ^‰…ùŒnƒ1Áü8iY·aX‡c!…ñE4Çûð a£z¤º(ŽÂb˜†Å1KàKX_Æ;p4–Â1X_Á28Ëâ8,‡¯by| éu·ñX_ǻ𠬈ðn|+aVƉX'aUœŒÕp ÞƒSÑœèF7 ×@ºQØ š52$tˆà(L@Ù½ƒì>Kvï ¡q¾ª6g;d ñ•½þ”™(VöžSîeeï9å^VöžSBH•ã/ÓãÊÞsª Z/_–ySe÷Ëô¹²Y}ªZ/_–uSs#N̓<~ªÏ¿Ìß§æÃŽæ×/Þc®Ÿ²•ÍõSÖ#•‡½L·+›ï§¬Geóý”õ¨<c¿îWǯ:¶&•_CkRy<òRãdñ"ÿ„øCÙB⤘„zäPv\…9P_Ç~h‘Ëê[Ôã­¸Æyž¡ÈuNµf‹ý~Ð"„§± žÁ¶xÛá9LFZÒ¬=Ò‡fð7ìˆçñaüÁ?°þ‰)ø>Šãcx;ãEì‚—ðq¤+ÍžÀË!övð}é CüN’™¾ãp1ÆãŒàÒF· qÌà êeêVê×Ô‰êåÅf¥Ó¬4+fí¤Y髼¾µ×WÓ®ôÕH³ÒiÖNš•N³F?èù×Õ4+ý¤Iék‘¥¯C”NƒF?äuöÚN“NcF·QOPÓ’tóo' Ißä|[çí½Ñí0“ÑÛI[ÒiËèöêI(;˜ŒqŠçiKú§HSÒiÊ臟Šüj~u'MI§ƒ3ûò—°þƒýñ2À+8ÿÅAx_Àk8å™CðÅÿpÞÄá!Á¶Ž›9ãðEŒqûŸ oüÏàŸø,Ê}·Ò¦¬íH›²v mÊÚ‰´)ëËI•‹‹È©r±™I•‹ÍŒHª\lFDRåb³!’*› ‘T¹Ølˆ¤ÚëfC˜gÝïåSíy³!’jÏ› ‘T{Þ,ˆ¤ÚóEc¿òÆž7 "©ö¼YIµçÍ‚Hª=oÄoàÛÊLxö¼÷ž}`ËÒhvÞœjÞ} ¾wȃol„öÆÆÆholl‚öÆÆ¦holl†¿yÿ)ï—%ÓN#Ÿ²±¹óöÊÆh¯l|í•-Ñ^ÙØ í•­Ñ^Ùø Ú+B{ec´W6¶E{e#Mè~?¢3?a½™Ô–öÿY­o×›MmͦõfS[xü”ó<åñÓ¨3û‡ÄÇixæ¤áÏ-‰ed¿çdÁ2É( –á…Ÿ“ËÈ}ÏÉeä¾çäÀ2üÃsr`™Gä¥ûä¥ájy°L'”ˤ /]æQÏ×óü¬/:¿ÎùÇp=vÆ Ø7â㸠ŸÀÍØ?Å'ñ3| ·`7ÜŠÝq¦úüû}þHu–º~Ž=ñ ì…Û±7îÀ§q'>ƒ_⳸ ŸÃÝØÇç5ðy£°!¦9ÿ•óÏ«©åÈçö¨ûª«_R­î‡{±?~ƒð8¿ÅA¸yÀçöã`üeçàP<ˆÃð{”o÷ï Ñ Óp7¾…_áôîþÂÃþÚ¿Gý6~3œ³×öïu,ƒ÷ñ™e}VŸYÖÝÒ0$lû&„džð' ¼¥‘úêAjþí 9<‘G>hO䑚Ã+óø«·ÔæñD^ù ï=‘W>È{Oä•7à@õ|`¬æÁòÎxð¼ó| ï¼x/òàk">PßÀƒ¬m¯èÙ¼z6MÏæå§6ðäeó <ù@Ù<¯ÊËWmàÍÊæxó²ùÞ| l¾7(›oéÊædú²ùY~`#”åÊådùrùY~ \¾A–(—Ÿ³æÁÈ·œã›æ áõ·C\‰j>i>üú õAœ‰æyìw|”8äyþi~ õlõa|à»xçà8Íës|Ö|þç5Ÿ¿Žýîfß9>k~ìÏÌWÃ÷ð8¾'0Oâ4ÇÏñcóK«?PŸÂÑ8§æëƒsúa~õ6ó¿ø®?.„è‡ÛÕüoÙf3¿Ûÿúã¢óú÷KÈǾF{µDÚÛˆ¿ö>Òà×2ñA\€¼Ôk õÚ‡('½¶iÙk‹–½¶iÙkK–½¶iÙkË–½Fû=‚´¯ {ö5¢a¯Ñ¾F"íkD³^£}hÖk´¯Ízæ5zˆ/àC8Ûàl‹C±ÃdŽíqš÷=î E­]Rh­z”ÆEX‡pûJÇe/ qOól%÷!ÏVrH¸EŽÏâ#o‘ã³øÈ[äø¬[Cˆýý¡Nüâ-w«eÛïs\ɱlû{Eš¢ÜÚ‰‡¼¥²ó¹° ʘ±¿oÔ‰§¼¥ª:7VÃìÓAͧ÷éˆ|zŸ‡ñÏË…ño <?å¿xù¯¯üŸáuxÝeì„W0ÿÅGñ*>†×°3^Ç.xÇÿ𠼉]y¼€Ob\E_ qSd¹V²ÜY®•,7E–ku3„†¿†°¿"Ê)ûïv^¶k-ÛM‘íZËvSd»Ö²Ý”‘h~L…fÅ”44+¦¤cÔûÏ{%õKêlø2&áhÌîy÷ueõu|oÁ±x+ŽÃœø*Þ†¯a.·ãëhîä²Ïvl áƒÜ!î>só•+!Zþ‹àUü¯áB¯Ëãuæê+×Õ‹ð.Æÿp ÞÄ¥!26à2ŒÃåaW`®ÄD\…Q\Ù†&Ó¡$kúŒû}ƒ¿L¦GIo"=J²¶Éô(i¢çã=ÏwÊå‰I“.%MFº”$ÛËå‰IS‘.%Ñ=¹<1‰îÉå‰I¼þ3ïo‚ ȯÊé‰Io«Õ|«¼ž˜DåõÄ$z(¯'&ÑCy=1‰Êë‰IôP^OLz×û¬Ýæj³%‰.¶7[’èb{³%‰.¶7[’èb{³%‰.¶7[’èb{3%‰.¶7S’èb{3%é4S’> ñ-ãBÂM?¯e<úy-#èçEó8NpìgµLD?ë^¾å×SØO‡È]üçñ;‘ÿ<^ùÏãw!ÿy¼"òŸÇïFþóx%ä?Ó´»øÏã4í.þó8M›>1ÄÅþüÓ]<èñjêIê½j^ôø=È‹—Iöš{ãÌ»½æÞ8ón/gÞí¥ãhКRHVÙkþ£AchK¡šH[ ™Ë{iÈ8š4抺¶Ú\gî5Ç™‡{ÍÅqæáZV¨^Ef +t^Çzh’]öšŸãÌ̽fç83s¯Ù9n›çíÛB÷ãMlBìŸs/ÔíÓBÐ>-¤·öš±ã²Ôök!½’ýÇöl!þî{¶P3äç Y÷½æð¸ÏÕöl¡hÏz³cK´W µB{µaxÅ^-ÄoïåaÆÉ¯Ø³…øî½¼Ì¸íÈˌۼ̸æÎ“!ÚŽ¿\Ò'Ä5´ßÞ~J »!ŸÿvwÌ©Hßîy±'æÃ^˜?D–L ÑÔð-l"SìóÖö÷ºí!®Þ_·£!rôÛöžšj“M½Oý>îÇLüéÅÑH/ŽDzqô{\ˆ‡N=ŒtâètÝGÍûitâ¨y?N¥CÓèÄQó~8jÞO£GÍûitâ¨y?N5ï§Ñ‰£æý4:1\Þ½G.ïÞ#{ÌCŽ.÷ÞS#ÄM¥{Ò½©tïAº7•î=H릾´lêÌ‹ob>ÌÀü8 à$,ˆ“±NÁÂ8‹à4,Šo¡<Û¨ ]~^=]]߯8KâL¼ga)œ¥ñ,ƒïbÙ7·AHèô6Dy®‰ž9𚺑ÚÚÌmŒÖd®üщיÛw¡¬ÑIÖŸ+[t’õç¶@Ù~îø5¶DYqn+”ç¶Fqîƒø-Ê>dŸ¹4¤Ó~¤!¾Ãvx“Q>_8.ÄÕç¹§Þ¦oìÕ…¯ªy啕ÔüüÔÛñS̼üÔ<ÈÏÅm ÑõîEÜV¤§M.„„«t½ÉE¤ëM.áDüéy“ËHÏ›\AzÞä_¤çM®"=oÂß]¥çMx»«|l“ÈÇ6áé®Òí&7ÑϱU®Òí¦tô*mJG¯ÒѦtô*Û”†^¥¡MièUÚ4Šôºi6¤×M“^7ÍŽôº©ý¤yß.`Cçí• îi;^ó¤¹ßާ<ÙyÓM<_Òó¨yÄ“MÕw¨?T›“'Íþv<ßIû¬]6´×ÚÉ'í·v|úI3¿]¤ßínA3¿?©Ç¿+åsÌÜvzûäCh®Ÿlƒ¹°-ÞŽ.Ò<'“½¾´×ÇÖÔœø®¬ãÅKBˆ´ ‘t¶Ý–™ó`ˆ>r-DÊòrGy¹²¼ÜÑÊ!¼µ)ÄÝå~½µݯ·>E÷é­ÏÐýyk º/omåéÜ—Òzª,ÿw”ÿ+Ëÿ­Š|ßQy¶,¿w”ß+Ëï5sßÚæ=qê×Õ5ð ´¦oe9ï^–v¯ÞúÜqÄsgØûœ XßÄ:˜uq"Þ‡“°NFžðâ3!q)ï|ñYÌ‹Ïa>ìƒùñy,€}± öÃB!L03KåR÷WÆXbQ„Åð,îõfk©ÛÕƒÕ%p–Ä¡x‡çÍÜR¹ÕÃÔ¥p8–vÞ .»¾júuñE,‹#±ŽÂò!®·\X’Çì-–ä1{˃%yÌÞò`I³·…IØ ³cwÌ©x öÀ[±'æÄ^xöFk¹öi´FkõD?k±VOôsï×ê‰~yCHâÃ×ê‹~úc­¾è§?Öê‹~\£Ì’GfY«?ú铵ú¢_!Ôý {^†É#ìÕýôÉZýÑOŸ¬ÕýôÉZ}ѯ8ê‹~úc­¾è§?Öê‡~w„ø·Þ ‰mhGñ¯¿ï¸uˆÛ~8$Äþ­¡íG°;íÔg=Â1:¿ý¨s©øöÀ±gˆÌ{,D¥GËÚ…¸ÆHOOt¾³óôiY{õ$쀓ïâü-ø8ÞŠO`N슷¡ò¨Ü1OþxTî˜'<*w<#W”ºåŠR p:6Ä·±ÎÀÆ8iëu^ác^á:¯ð±™[æûpäy<„}Ñw=¢IºÑÔK4µ›ïp©¥ó¾û‘þèûà¼ïpÉ}êFc/µvÞ÷?2PMk/ÉWe܇#ƒð'|á`<ŽCðÅ“8 Æá!ò<Óõ5”gºŽGy¦ëë!òß#!ú }íRM?„÷àa¬ŽGB˜Cûjо9t¯ÝëRÃù£x/þ­2X—šŽô>¿F‚º–ú'¬®/úhˆ~zZ»O롵ú´>Z›OïGk󩜵6ŸºÇ›]ëàIèZ[ÃÍ®uð”½OEÙkð4”½¿…²×`ž¹ÒÜð3½î~:„Ë´¥Ò<µ}Wi>êíJï¡®ô>š¿…9Îtlw?ã=åÕ Ô÷áX?D:[i!Þ‹°šY?7Ä%Ø—¢Œ]i6ÁåØ?Âf¸åêJ+±®Âp5ò³K*…h÷ŸBÜ’Ž!¡{ì÷T<ŒGð<ŠðLÁCäûíf‰fóŠU¿UÛw7KªíªûGªÊ?`ޤϳy¥ªß!¯Tõ€óöåÍRH§o–Fú|“w~€>ß,‹ôùf¹îZÎcËIwɲ+«ðÇ'¯ðeWVUŸ ¡Êúh€>ò=þˆ­p¶ÆPß–+¾‘G óqßðã6…hƒgBäY¹»tÒÞÒéhíK¿„Ö¾ôËhíKFk_z ZûÒüo.{¿òé¾M†¯%çÉ𵊡ì^‹—O“ÝkÉîiòj-Ù=Mv¯uGˆLx(D›þ‹mð*¶EžkB;¼ŽÉxÛãØobÇe#F~i iFLHA:0Á¾oÆ[æŒ=gï7‹¢½ß,ÚûÍ’ÐÞo–íýf9.7£×èr3z=.7s|*$¼u»áYìŽç0Áø+öÄß°žÇÞø;>à3ø'>‹ásø7öÁ ø<^ľx û¡ùýc4#€fáúçÇAŽåø·Ü»”Ò!zÛn,ƒ_aY”±RÊ¡Œ•Re¬”;‘÷zªaH(¸álŒ;± ~‰Mq6ÃÝØ¿Â¸À¯±%îÅVûÜÖÈ«=õ òdO=„<ØSmpˆž-$V“Û‡óó;^ê±,„b¼wòàM*CPŸtŠhÝî#P¦¨Ñ#„ï«_T› 5zª3Õ#Õ|N^êêQj#ôrœæ8ÓQ¾¨ÑÛk>P¿¤–3j<­æ«k<ƒ ç‹ðÝùÀ"|`w>°Ø,Âv·¿ŠÄ

ÞkæÇÍX?Å‚øÂ-X·b܆E1‹ŸÑ3yîRSŽÅñ çõPžŠêê˜_*‰;ð܉¥ðK,»° î¡äÃŽË:þÊñ#ŽË9Þƒå‘çY{'îÅ ±Ÿ[QýÇÿ<¬Ó ¹´â,”G+Ê£ƒøÒŠï oZñ]äO+ÎA¹³¢Ü9Hî¬8eÍŠ²f…gCd~NÞe3Þ†Ÿb.ü oÇ-fõ!ÒUž/03Ä×äοˆüÁù‘!$®t|Êñ(¡9?qƒOhÎOÄþÿOs~"öÿyšó7Ì‘æüDìÿ×4ç'n4 q_ÜFšÑ_äÆh.|¡7FÒ쑳B÷Lˆ+²0Äü4$N쟡=4îYç©·¨ŸÁ­ø,nÃç0 ûàçÈ—üùÒƒÛ±_ˆßbŽ ãO¶˜cÃø“-s‘?Ù2ùÔ-ó±òñÃøÒ-<ü0s}K&>„ ° ~€mñCl‡ 1ÙžÐ[9nïXlYì¸.ÁŽH‡†ÙC[–¡ý³e9v á¥Þ!.ßêÔ)ê§ÕªW¨Å•ø®Âθ»àÇøxÙe-k?Ÿ`W\‹Oâ:|*Ä7¶VÿZ«ÆÖê_kÕØZýk­[«“1>øšÌÓØšýkÍ[³cÿ¦ý?!ÒT\ãÕg]ç«äò¦úá}êEWŠÓ¥^t¥8]êEOŠÓ¥^ô¤8]êEOŠÓ¥^ô¤8]êEOŠg!=)NzÑ’â_ )N‡zÑ‘ât¨)N‡zU@:Ôë.¤C½èIñÝx7ÆöB%¤?½*#ýéUéO¯ªø VÃÿá=ø-VÇ}X͉^÷âwX`-<"­Í†ø’8yˆÖÃl=ùÈÖ#lý"ò‘­Gb¹ù_ÿ_3„OdïÖ{Pþný5N½8¿ñ:>r|-õõÿÔüäøÚÈOޝ"|îÀèsÞ‹£<ÒË ±?'˜i¦uY9¦eÞ‚«ðV\9‘dÞ†k0~‚·cìϼæÆu²r%Çy¯Ç¼¸Íœ.ÑÌébödš9]¬q¦™ÓÅgš9]¬q¦™ÓÅgš9]¬q¦™ÓÅgê‰.Ö8SOt±Æ™z¢‹5ÎÔ]¬q¦žèb3õD—!,1kž‘C´Ýv,„;œ7sžTVïÄ"ø%Å]X y‘Å‘™Qy‘%‘™qò"ÓZ†èƒzxZ+¼Œ­1ö÷uD¾pø ­|S7ÏŽz»9Ö—w+Ÿˆ¼[yž®/ïVž§ëË»•çéúònåyº¾¼[ùØëeêò<]ßî(Ç–ç8Õ±Þ·Êá}{b.Ͻ긗cY|¢ïÑÂ÷™è{´ÐÛhw×3€vW¸BÿZ!.Aö@Ã+Ðð4¼ @Ã+Ðð4¼ @ÃïbG¢±÷Òñ»x™þµ½W^@Ïï¢ç|Ç»èùßñ.z>€žßEÏÐó»|Çtù¤¶’.ŸÔ–CÒå“Ú¯ |R{,Ê'µÍ¼³ôv½=KoçÑÛ³ôv½=Koçõ á}r–æÎëçX¯œÝáXþ?»à—8w¡œv7Êùg¿BßõìtÝg¿F9ÿì^”óO¶ÎÜ ¼Øºlȃ­ãñÿµÎÚþk]Ž ÐüÀ{­»y­u´*ðZërzÎüÖºÛBü©WB⻕CoÙ÷ñ§Æª«¨gª¿WSWÅW±šó¼KqyúÔkê{p¿î&ÌrÀè<(ŒÎ‹Ÿ…¸ƒ~nÆiôs3déƒ~n†,}ÐÏÍ¥ú¹rÑA?7C:èçfÈÒýÜ Yú Ÿ›!Kôs3déƒ~n†,}P–Î¥ÊÒ²ôAY:C–>(KgÈÒeé Yú ,!K”¥3d郲t†,}p þ‹òtÆU|é{²|øs õ`5upÞÀ¡øÛ(§N¤ïÉI^ÿ€Z^‡4q¢ž=H'F&NL@š8Q&=H'F‘N̆ôp¢ìyNÌB¤‹cz8Qþ<(N”?ÊŸoÅq˜3Ä]öñËE?ÆBxòµ.˜ÑOŽG>­èçù碟 ÿ\t-òÏE×!ÿ\t=òÏE7 ÿ\t#òÏE7!ÿ\t3&ã§Ø?Ã!²´iˆ¦º—¶º±ÿ7÷j'·£Ÿr‡óÛœý¿:×qr§:KÝ?Çñ |·c›yqrˆÖ¨Sð~œŠ p6Ä·°NÇÆø66‘)×8žá¸)ÎÄf8 ›ãllïàø.¶Ä9Ø çbkœ‡†ðŽ^º§*ê¥{ª…Hòs!š”û`~| `_,ˆý°PˆO¦ÑIe‘F'•CTitÒHŸ“äîdúœD¯“ésRÅžÖc7èr2N¢Ét:æû’Í$³!Ù I2óŠðüÉÓ›Éo¡ù<͇ä·Ñ|HžæCòL4’gaìßb±3õŒý©rV’y•3’e­¤Øïä’µ’b×!k%™]ɲV’Ù•,k%ÝïçÇþ<Ÿ¼•$£$Ë[I±÷Ê[I±?O(o%Y³;ñëBØ ‡0utˆ»s«z€ºÄ¢Îq~¾‚YÎr¾¾€Åëüç!|\?ĵ|1D¶=¢#r«iyKZ¾í1uìŒyC¸MOlãGX§¿'†èbóé>øîõ! hâ3B(JË^à‰ïæ¡_à‰ïæ¡_à‰ïÞä5É^#ã¿ÀßM³^§åMhöë´¼ÉÝHË›X“Ͳã`ý¿Yn,7n–Ë›åÆÁrãf¹q°Ü¸YnÜ åÅÁ)('–7ˉƒåÄÍrâ`9q³œ8XNÜ,'6“7ˈƒÍäÍ2âà®ü¿y¸YNl.o–›Ë›×£¹¼yšË›7¢¹¼yþE÷ocýü{î¹÷Ú×Þ²"•Bd¤²÷Îá'²Rr‘²w¨\$$d$J„B„’¬„h™eþÞçûz?Ÿçœ{Æó|¿ŸÑÀ÷Þº•êòV³ù`uy«Ù|°º¼ÕL>X]Þj&¬.oÕ#V—·êë·êë·ê÷ ‘³Büœ|€3ChªÏøí4ý6ØùŒÎëËÎf¢~ìlfê¿Îf¡~ëlõQg³r¾ßÓWýö²8›Xu6;õQgsp‘Ç­Ç߆ˆsŠßë«~*Î%^ÌÜ4‹œÍC³ÇÙ¼|ŸùøóóC¿WÅï½". ^Æ‚La!ª±g¤{¶0ÕØ³EøQˆnÐK÷ŸD½të%ÃÇúéþSxœoógN Ñnjy^ë£Ûë´>º½ÁRÃG8–òMÊ%EõÝÆ9–OºgN`Y¾År!,"å­½nÅfÊnÉtÍ‹ê)ºMr\‘“é:.zÕsÕÔnÖz^óh··Y™òg^ß?ögÀ—ß&–Gó>Ay4¯¼ÚMÍ+¯v“GóÊ«ÝäѼòj7y4¯=ÔMÍ[3„Þ‡C¸ŸâZËI™ô¥­å¤LòNk9)“¼ÓZNÊ$ï´–2É;­å£LòNkù(“¼ÓZ>Ê$ï´–2É;­å£LòNkù(“ž´µ|”IÎi-e’sZËG™äœÖrQ&9§µ\”©å¢LòÍqï÷®óǽ߻Î÷~ïÆÎ{¿wå¡ãÞï]yè¸÷{·&½ß»O…è½Úœç¨W›S?„Ïô cö¶ßÐ}ùLŽoèžœÑÃÍQÎØ÷s†PÊüwÆÞŸÓˆöþœÆÔÇÍiB÷~ŽÚwƽŸÓŒîýœætïç´ {?§%Ýû9­è¾ÏiM÷}NºïsÚÒ}ŸÓŽî÷œöt¿çt {=§#Ýë9ÏÓ=žÓ‰îñœÎtçt¡{;§+ÝÛ9ÝèÞÎéN÷vNº·szÒ½óÝÛ9½¬k=Ú=mëtƒž¶¿uºÁuêÿ]§þ®Ç×£¿5ºÁõèonp-ú—£kÑßÚÜàZô¯@×¢¿u¹Áµèÿ8]‹þÖã×¢¿õ¸Áµè_…®EëpƒkÑß:ÜàZô·7¸ý­ÃÁCâ#òúàï9’‡8Їù*àhšyæßGôæƒíÙGÌÁƒíÙGÌÁƒí×GÌÁƒí×GÌÁé…ø§Bhÿr*n,>Í&4_¤kʳlÆ_ÙœçØ‚¿±%ϳ/˜Mox-½úßëkíÜE¶¡~=~¦ã¶Ž/±/³=ÿð;CýÎq±^=|Ç_^ON?¼ãoÇÿªÇòWìÏí¬˜¢}¬ƒ"®ië ˆkÚÇ:(âšö±Џ¦}¬ƒ"®ië ˆkÚÇ:(¢Ní"÷ô‡ë3Q¸>3Ç1 ÇÓÜtÏü´ÞÜtÏü´ÞÜtÏü´>;ÍOëspsr2sq sómæáTæå;ÌÇw™ŸÓX€ÓY3Xˆ3ù g±0g³ç°(ç²çQ¾+õ_Høu1oq os)ïð}Þå¼ÇyŸËBô‘ÀF¸œq\Á(W2ž±?/2«˜È™Š«™škBxðŠã4Ž×2-?a:®czê7ÉÀõ|€üÎUÇod&~ÆÌÜÄ,Üì9zîæÛ¼æÝîfÛ¼ê{w³mÞû4Ûj}âºw¡Y·{WƱ£ìÎxö`{2‘/0{15{3 _dZöaºúœ ‘Hq_qzö£Ù¡»ž-ßÔ³åËH½Z¾LÔ«åËL½Y¾,Ô›åSºfV¾ÌlÂìÊ|…úáîØ‹Ãûó•N{óxŸ3,äüçóp$óróñUæçhÆ>ïk,È×û½7ø ǰ°×;ëõbñX±þ»û›ÔwGýw÷ñÔwןç{ÈóõüÂb}z¾âsâØïé×ó•¤~=Ÿ>¼»~=Ÿž¯»~=Ÿ>¼»~=ŸZØ]M̧v4Â…Õ!òw•ÿá—|‚_±*w²íå¿«Ó,ô÷“Ümžóþ×pü krŸâÞ²-÷£7ù»–x_ˆ»h-¼çÞ½5=Dò«ÉoéÇòÿ༵ñž{xÑÚx/Ci]ï‹ÖÇ{îãEë㽌!üR}ûnQ•æãrRÆ_=¶Ôcf߸÷iöû€f߸iö[Æ×BÜ&3Æ@sبý!’äûl2k 4›n2k làüç­ÓMfŽfÔM²‘ó·n7-7/¶~7éÙ6[Ç›ô‹­çMzøÍÄ?ˆ­ëMzùzùMzùzùMzùzùMzùzùMzùzùMzùzùMzùzùMzùzùMzùzùMzùzùMzù©ø|¯}"±¿ï`§}3²€x“ø?±ý3Ò:ßiÿŒ´ÎwÚ?#­ëöÏHëu§ý2Ò:Ýi¿Œ´¾wÚ/#­ïöËHë{§ý2Ò|¹Ó~i]¿¶ÙëÞÛ7#­ëöÍHëz§}3ÒºÞi¿Œ´®wÚ/#­ëöËH=ÞNûe¤o§ý2R·Ó>Y6„ëÛ##õªÔÒöÉH½ÞNûd¤^o§}2R/¾PHørä^æ>á·,ÊïXŒûYœø²¿gIâÃ<ÌRüðåѦ® ‘¢‹ciþÈ2ü‰eyÜóÖz^ìÏ{)'þ™åyÂùOœ¿Âu¼ÊOyëy¨îOÝÈ›tÿŠªÕSÝ·¢ÿÑu.ª§J_ÁëýŠ<ÉÇyŠ•xš•y†Ux–OPÏqM]YáÚ^SWV¸®×Ô•ú‹kêÊ =Ã55eÅFª)+>£š²Â {MMYa†½–Ä-ÌÊ­!$Ë5…Ô…kÙÄŸ3;·1¿ ¹xÅvš…Wì YxÅ—4 ¯0s'ïöûêÉ5³ðŠÌǯ™Ÿ»X€òX²üU(µÜco^+èÜ7!:1³9Ù\21 Íå©?ÓSžú3å¨? õgFªaf¢ögfªašë+ªa&Q ûÓL_Q û3Õ®?³Síú3Õ®?å¾ãæŠwkÑ\ñnmš+Þ­CsÅ»uC÷fˆäÙÉqü:„4CØR?DOd&‡è…ö!q‘žøBê‰/t¤<_Ê=½ð¼ãÒŽOú9âêûñju}ß#^­®ï{Ä«Õõ}xµº¾ï¯V×÷=âÕêú¾G¼{Rß÷ˆwmëûñju}ß#>MˆXñ+¦‡Ð2%„ß/ˆÓ‹åzk!~…Ù;zß±9|…yÛzˆ_aÞ¶âWÌñ;jÆï¹‚¿;o_aþ¶>âWÌs~¥ó—Äæñæð–‰/‹Íå+„PÌ<;fAH¬jN³õ¹ˆ®Ë··BüØ×x›¯óßà]Žá=Žå}ºÆßiƒÇŽ ¡Á!œÉÊ#Ô_~q~<ã8ÁyûöŒ~󻍸-Æs"˜ÌDNb*NfjNa¾Í´œêuÔ3úÕï\¿±ïÐuû.]·±ÓèšU;¿sÍÆºžß¹fcg†èT3Ò3µhFz¦vËÚ†HÕÙb³Ò3uhVz¦nˆn¯‡Þä“´ç×Ö‘ºæ‘í5Äÿ±&íýíOñ6kñkó.ëPWõdˆ¿ö OqOSÝìñ@·ˆÏˆGð,GR½¼fþ)v#$ü²7¹(D壄 BdEùßEÞYQ[B¨½0„c¿ˆ+Š·òqªý+*q+ó‹ùÀÜÓáÍ=~¤¹§ÃO4÷t#k™?Žþ&6ÿtø™æŸrd­eΟ›ƒ:ü"¶NZ§˜:è->0uÐS|`þé ÏûÀüÓáŒçY›G/ŠÍAΊ­Ñ£f¥¸ Ι…:è…>0 uЃ}`ê{ïN<ï¹ÖíQëöƒÎâØ{u¡užåªã®Ž½Ny:‹E~ަ„ȹº!~ž¾áÜÓÔ'œ«G}Á¹g¨8÷,õ›ÿ ñƒ^æßÂhF‹ÛâøŠãWx•ÃB°N kó5ñp^çÞàHÞä(þËWùGÓÞdïl¶wÅ~ßÞdïl¶wÙ;›íAöÎf{g½ã6Æ’Ÿ¶Ø+ƒì•-öÊ  ´GÙ#[ì‘ACô£Õ!ÑlýhŸµŽ»ùé"— ñ‹ÕªKQ­ºTš±¿{¢{痊ˈլKeií\*Gß÷’µ´Øš¹d--¶f.YC‹­™KÖÐâ/\W=ì%ëhñv¯ÕÃk½/¶žï Þw±>³YOç?à ´†šõ¢5Ó¬7Ý—KzãÅzãKzãÅzãKzãű×Õ/V¯.é«;—ôŋՕKúâÅúâKúâÅ{©^¼µù-ëð»WÈw<ö}·cjÕgúÛS©¯ðŽžN/åw±þvÀ»ÔߘFýí€éÔߘÁ¿h~ÿL;`ÿál^á^å\^ã<Ú‡æÓþ°€ö瀅ü—‹h~ðͯÓü:`I©Õ’jÞóºTÍ{^ŸEïy]î©æ=¯Ï¡÷¼>—Þóú˵ò˜Ï2åú,Sþ¤Ï2å/ú,Sþ¦Ï2å{¥‹cŸgÊú,Säªc>Ë”kôY¦\§Ï2å}–)79€ÿr ÿ£Ï4EMù©xHœªßÜX;Dê¿!~Hü/KPß¹±ŽócX—c/éü-ñÓâ7YãœØyµé§RT›~z„jÓOòã}–‰¶Lô§2Œ°,ãXŽQ–g<+0™ÈÇ™Š•˜š•™†U˜6Dþ²g?°gÿ²g?øŽrôrô_rôrô_rôrô_rôrô_rôrô_ÏÑŒöW}šÍþÒüÕÐñ?GCäCü¹šs +…P­XåÃ7ÖŠ+óVq¾¸óòWD­csOðSV qÛ†„!¹9ˆyø?æå`æÓ/Z3Û^vl†Þfnbn­ïÈûosÒ\¸Íü6Äü¶Íü6Äü¶Íü6äAçòxkæ¦yq›ynˆyn›ynˆyn›ynˆyn›ynˆyn›ynˆyn›ynˆy.g®¿%sSïÖQ¡¸bctÔë_¹ÃÏiÆï¸÷(g_¹OùÚ8:î`„òôUû'g¯³J¬×¿¥¾øª}”3¯ó‹õÇWí§Ž»h/åÌçüj±žÿj*~C}Ç=LýLË}LÇo™Þïå÷{k5õ¹£Æðjç 8·–ù q]9Î;~бù'ga®wîBˆŽhËY£#šÓÑ"$–·FG´¤5:¢ãBXª^WÚÈaüÌùÖÎ[³#ÚКÑ–¾ÓRõ»Ò¦ÒÇžÓιDýoÇzÿòÖð½yß­X^?î{±üΙÊ[Ï#Ìå}Ïbî}±‚âNâtìL3Έ.4ãŒèJ}]±BŽÕæò[Å û)⧨k´Xqw÷x&Çù1³+é\ç2;~ØO©ùxfˆï™?„¤'Ïr\€³YsXˆsé=’j„hZsåö_Y•çX¿±:ÏóIº¶ikð"kòw>ÅK!2§­åø2kówQ­xoYˆÓr%¼—Bµâ½åT+Þ[Aµâ=kôwµâ=µbîåØLíšûÕ®¹RíšûÕ®¹SíšûÕ®¹W¨vͽJµkî5ª]s¯Síš{ƒj×Ü›T»fM‰+…hùF!á’¾|–~¬Ôfqc±¾¼|Ê¡å›úiæX-¼$÷­={OãiNçÎàYªÉk¥š¼öÕ䵿QM^{žjòÚ ô½Ö^¤Y*ƒz¾öwǾÛÊÿBb7=k‰Žo9vVÞ¦š¹òí­›„H­·ÅwÅ«õ£ú¡yö_t™c=Ñ<{/›œuN_4Ïþ›ó\ˆ<ú–š»+$Üx‰»9€ßp ÇͰ±ÿï©úñ ±ùh2rq²Ç÷züÜÇÁÎ7v~ }žG}žêß:ÿ²¸©ØD{½Í!üYJ\Bl¿GKr=æ†ôlH¬­ÎMzŽîå¤út/'5 ¾¡´þûÂ$ê¿/L¦þûÂê¿/¼Mý÷³aWsóÍ#b}ø…w¨¿ðnˆOÈ·øÝ„lô» ÙéwrÐï&ä¤ßIÈE¿“›z÷„<Ô»'䥜”u{HØ×›;ø"¿dŸÞµ?‹w%îËìBZù+ë׎û{޽[üy±ûºÏ}Íê¾î"Gõ¹“õ½GÕÌÉòjcùù×§Äjçdùµq¼¸–X ,Ï6–Ó~ÕUK'«­GÕÒÉjëQµt²ÚzT-¬¶UK'«­GÕÒÉjëÑT[ª§“ÕÖ£x„©¶5'N6'5'N6'5'N6'5'N6'6–7Õ5'N6'5'N>AóádsèQsádsáQsáäS!ÚIÏ‘ãõ9ŽRÏ‘ãõ9~ ñ鷆įòs.â6꟯ )ø²¿gIâÃ<ÌRüÐ=¿ò(ò1ciþÈ2ü‰eyœåø3Ëó+ðVäI>ÎS¬ÄÓ¬Ì3¬Â³”kS~¥\›rŽrmÊo”kSÔ´+rmÊ9õÇòmÊEÊ·)f’+òmÊ%ʵ)—)צȵWêðÏýR­þÕºá©Ö ÏDµmxì¿…Qóêm«qóPžDumxVªióQMžêØðTdžç¤ú5<—×Q3멇_ªcÃs‹ÕÈzjä:9µžœú¥º6\üR]®.®3óÖÛ"VÛ†ç£6\}Zg®·U¬~ /ÀžT'¿|já—½ø {³0_dö¡šXî§v땺™-óèaÊYg»õLÝ̘yô2å~çá úå~¡]î$½¹ST›ËfÁ2­u|Æq!ž¥úXîWªÃåÎQ-.÷cï}žjr9÷jwqïi^Í£o ƒËÑyôNå.zLÎô‰c…p·z]N½Ü]’—©^—“ÛvËms廹ëBB³¶~څ蛄ÄêÍø!›sÕ‰7SØ’ËÙŠ+Øš+Ù†±-W1ö:³½þE=sµã\CùæÍµ”SÞü„¸Žù)»p=»r»q#»ó3öà&ö qÏûÌÙÍkÏ·£yíùöÔoöI"á9š“B}>Àïàñ;!ráõ¿(ß`úšÞ0ûWg›eÎW¤z}þqšaÎWòøXë—šš]ÎW¦÷:¯_oª·=¯G¿ð¦ÇõPMõ¸ç«R{¾šóãœ×;5Õëž7Ä6s»Îë‘.ŒwÞþh¦ç=_Cß.OŠ=GNß.WŠ=O^ß~’òúvù¢Pìwäöí§)·o—/ú® ‘ÈÕ÷Â;!¡`9ñ§âk\O³Lß ¼áñw=^žÓXÓY‘3hýñý?Uÿþã|„òQ.ãcLai.g™íÞ0$æ½ÉF´Gm‘ –M÷Æb}P÷&¼"Kö‡øvæÎZC8:_|@ÜJü¼xø Ø¼Y«“x!;s‘óß;߆‡h^r˜íøÛÓ\Ý®²#ñyªÏí¼Vá×õ-ôúçêõ~Ãø=‡óG„¸‚f¸£f·N>ÛµùbëùèáFåg,F5&öçæ¬.Ö#Ýâú›‹›Ãû›‹›Ãû›•‹›Ãû›•‹ç£Y¹¸¼¿Y¹xš•‹›¹û›•‹›¹û¿Æù:ÍØýß »ÿš±û¥»ÿ›4c÷G3vÿñ,Á ,É·ø0'R>ïŸÌG8‰r2ã–¡Ÿ^)šCü¶¸ §²,­¡âåh­·Vú[+Å­•þÖJqk¥¿µRüqÎd%ÎbeÎfÎáœËªœÇjœO9/Ϧ·ÄÞh«çYbO´Õó,±'ÚÚ+¯¨]ÌÚKì¶?Šÿ'V—–Ø#mõ@Kì‘¶z %öG[=Ð{£­h‰½ÑV´Ä¾h«Zb_´Õ-Ñó´Õ-Ñó´µO^ìõÖ‰õ>mõBKô>mõBKô>mõBKô>mõBKô=mõBKô=m/PßÓV-}åe¿¯ÿ_¢ÿi«Z¢ÿi«Z¢ÿi«ZR—ú¡%OóOÖã_|†óYþÃçx…õiß.iÀklÈë4#¶µ_—˜ ÛÞ q+\.®Ç°‰!òÀ±ëÑÅõXáztq=V¸]ôÃ’=®6‰zïa“©ç6…ßñmîçTêQW¸~]äœaڞö®cýê ×´‹kºÂ5í¢_6Íyýë ×¶‹<4lºø0gP»Âµî¢6S|„³èÞ®pí»¸öÃf‹õµ+\û.®ý ×¾‹Þf˜:ò€>w…{ÐEû³øóëWw[w£­›ÝÖÝhûm·u7úIZw£kк]“ÖÝè§hÝ®EëntmZw£ëк]— ø4Õ¨Ñõ¸ˆÏð=>ËÅ|ŽKXŸKÙ „×­Éì±¿ËÆZÌ®zÝÊn&|ÝZÈû;l†0öw×¼ïù ÅCŨ×Íû;l>p¾?dc.c¦°iv„HÛŠ!>ó>ε¬ÄO¨¯Ì,··ÕOf–ÓÛêñ2ËU!³c=^fy½­<óFš¿3Æ'¹‰5¨~·­É-|Š[i^Ëü9Ík™·Ñœ–ù šÏ2ËßmÍe™cŸÉ\–ùKšË2EsYæ4—eþšæ²Ì»h.˼›æ²ÌßÐ\–Ù –ȇ%äÃòa ùp€|XB> –ȇ%äÃòa ùp€|XB> –Ð÷¾¤ßŠ"–KÈ‹äÅúß—*;?T,?–È%äÇòc =ïKU<›õåÉòäy²„<9@ž,!O'K”ò<ýZü0±|YB¾ _–xÔùªÎË›%äÍòf‰Ò”/KÈ—äËòåù²„š›g—ŸÝ~OŸ¯® ?KÈŸ±w3À.a–?§o ºp »r+»ñsvç6öàÔÛN7³7xfö½hfoЛfõ/Ò¬Þ Íé úÒ|Þ _ˆfklýh¶ÖÔW¾ë:B×­øPçÛ8G½ó·Qê¿§ÞùÛê‘¿MdG¦âóLÍNLÃÎLË.LÇ®L¢³‡„Ä&Å9”îC†úŽ_q\‚ÃX’Ãù0G°GòŽòóªŸÑbsw3wµ*ÃË!º°@Hl©/[Xú²……¨oH0SlÕß&˜)¶ÆþY‰™b«¾6ÁL±U?›`¦ØªŸM0SlÕË&˜)¶êeÌ[õ² fŠ­sh¦ØªŸM0SlÇÍÔ«ôÑ›ÉH=y‘LÔ“±ÿúèÉ‹èÑûèÉ‹$…PAŸµ§¼Xo^$«Ø,±Ç,ÑG^$›Ø,±Ç,QAŸ´Ç,QÁ,±Ç=é£w/’]l–Øc–¨`–ØcíöÑËÑÛ÷ÑÃÑÛ÷ñ‹èí+˜1öX³}|×"zû>¾k½}³Æ³F³Æk°ï^DßÇw/’¾{½}ß½HúîEôõ}|÷"úú>¾{}}ß½HaÎg.`Q.d1.¢}öÜ¿!!úÿ㻼Eký¹ÛœÎ;œÁ»œÉ{œÅûœ †Ÿ;~ßX–Ãç†83^‚™0ÎŒ—`&Œ3ã%˜ ãÞ´oÌ„qoÚ7f¸7í3aÜ›ö™0îMûÆLbÿýã›öNl.|ÓÞ©þB©F‡È]=ä§zÄ»zÈOõˆwõŸv¢òÓÎÔC~jæ} $VÂûê[eõí}õ­²þ~ôAçGò{Ž q›½ï ût³÷ä½6{ÏAöéfï9È>Ýl¿²O7Û¯ƒìÓÍöë ût³ý:È>Ýl¿êGûuPÿ^M"IêÓæÝâ—ø pz<ÇÕ­Í{ŃÄiÅÏÐüšû»³ö9ÿ?±™7ÉÌûª™7IÛü­óƒù_æ~ʧ›p¨š1ÄG„ÄÍ£¹¯qÍÆÑ÷h6Ž.æ˜égM³¦úYSŬ©~ÖT1kªŸ5UÌšêgM+¨>©3ý¬«bÖU?몘uÕϺ*f]õ³®ŠYWý¬«bÖU?몘uÕϺ*Vœïñ!.f û0sHÜr5„íúøÓBx,·sYœ»¢_L ‰C„H÷!>_}~M5»¼:¼[Ô}—¸!w³‘ó~v뉺#nÌ=l½T‹Ë7ö¸^©û>q³½º÷h¶»H³Ý…T<ÆÔ4¯Íü2$6ȯ8ˆ;ù¿7T (­Wª—)­Wª”Ö+ÕË”Ö+ÕË”Ö+ÕËÄþLÊ¡z™Òzž¡z™Òzž¡z™Òzž¡z™Òzž¡z™Ò5­gýÿPýLi}ÏPýLi}ÏPýLi}ÏPýLi}ÏPýLéº!ZÂ,~Ê,^Â,~ê3šÃO™ÃK˜ÃO™KK˜ÃO™ÃK˜ÃOm ¡éü~ÓK6]À!rîLˆŸÿbÙê)&‰ÏŠûxÜœöÛ/â_Å}yŽýøûó<_â u6 §kTUxU¿7ûó™:<ûOªUõ…W£~ðêyêɯ^ðø_T¬7¿z‘zó«¿So~õõäW/SO~õêɯþ¢I®ÃÞ稯۫%éëö6 ~moCêÏö6¢þl¯ûÿÎ)õ±O³ óúµ½M¨_Ûk<˜ÕñrÇÖGÒ 6çJ¶ðX6Ç9nÉUlÅÙ:DçZ+M7†°RN¯a^)§×ðøÜ4λ/sÓÒ}™›ŽîËÜôt_æfàV>ÀÏ™‘Û˜‰_ÐþhºöDÓLâ—Ìʯ¼O.ï{ÿlâÌί™ƒ»˜“»CÜ–s!á“ø'Ë­åy{Ëyñ^àÛò…9eËEÇSù;åð-—ø®ß1«'Éñ[.‹íÕWÍìI³ÅˆÕ„-RMØògzÜ,Ÿ$÷où[û½¨6¼j¶OR ¶\Ï›ñ“扯Šcç¯1›•¶Üpl_üoAˆœîâg]dþή¼Än¼Ìî´ÞN÷àŸòHM5Þ¼ÿŒ|ò0Ÿe)>ÇGXŸ²õ€³û…„&ÙØŸÙùs„0DÎHg¾b¾J·ßùÎçä@æ Ñ:†„;{YØOÇrõØŸ#]:$&ßa?eßõs/Dfè5f ¡Æ!>'Ös4ÔsÌÐs4ÔsÌÐs4L¢^£aVê1f£^¢aö]çµ^´‡Ö•£=´®>bÿN²Ø¿“ìã#öï$ûøˆý;éuáì"vá{Î÷t^9òÕ‹#½üôöó¢Øg˜äý']QÇZ„茕!±a;~Äö\Å!º¿NH—*Ä52÷$þGsOìÏ¿idîI¼MsOâš{ïÒÜ“xÝxŸÝCBªÀŒ°'ãø£ìÅxöf_d"û0Uˆ\<âßÓ^ü‘]ø»ò8»…hóKæçi~É܉æ—Ìi~Éì:,x'DÊ›c2w¥9&sì÷¶°;·²?gOÏ×ó¿oë•L!îÅíìí¼~¸ìaññ‹ÔódÖ,Зý!„"òt‘¹Îë2÷¥(³9´Í×Ôß.˜éyGBܨBBEóñ¨#É£ÔO:ÆWCÔ(DRÙ7£~æO|-DV¦ ñ]§2ß ¡¶}ú£y(®­ããŽs‡$%é5W¦÷ßkeú>+ =5A¨©Gš wª©Gš wªY—z§šO‡h^÷ò°6¯{y8ÝËÃн<,§<¨®çu?ËͪÝÍͧéôÍåñtúÀæeøåßtÇC´œ{}) ÝëKfÄt/‡0Km+å:•sß/Åþ§<ìoÊÁÃþ !ög.P{Z¬£ÚÓâS>Æõ,Í ,Ã,ËÏBÈ2Ûq9Ç›Bxê‘ޏ/O=J}Ù‚òÎofnq½´çYäS}Câ¬ê!Ú@ßÿ õñë¨ïˆÿ4„yòei}BýGüú×Q•í õWÙΆûG¹D}L.úGŽII¦œ’¢‡øG>IÑC$ëÅ“åá‚É~bçå—¹ðù%E.üGnI‘ ÿ‘ SÞ Ñäë!±ö’ЧáCùá }kò çbÂ0±ïš!ög¡Þtî}þËBܼGCB3kp¨ž*}+êyÒ·¦ù8}?æqko^iu>ómÅeÄÇÄfšôíh¦Ißžfšô<^Öã¾çP³MúŽbõ¡™u7ÔÜœþyšoÒw¢5—ÞŒ:OÍhf-5ç¤7«Î« þ™y‚óVâIÏ3¥7ËΫ,>Å*<Í'èZÏÓ#7;âú6 En°o†ÐÏõŒSƒú¶ÿËV”«ú¶¦\Õ· 媾m)WõmG¹ªo{ÊU};P®êûs‹,‰¾r\ш×53Å©i}庢J?³RÜ·ÔßÄéoúéoâÔ¶¾r`Q¹¬¯XT.ëkß•ËúÚ7Eå²¾öMQ9´¯}S45홢i(MKû¢h:ÚEÓ{]û:î€Øž(šraÑØ—©ï*š‰ú®¢™©ï*š…ú¬¢IÔgµ—~;RŽLtæ}f ÿ+–+;…¸>Çx¯sÀçïuøã½ÎŸc¼×9àýÇg¥÷¯Ï;àýÇëóxÿñú¼1ÝB$ç±Ï1>§¸»ØÚÓƒï;ïsÏEŸk|nú\ãó„F~;0Èq^Ïíé¹Öìÿ‰óq0õYc^pþCñËâ‚ÊB|…r s8‹pÍÑÃßñå|Æ*Öç~ëøT±ý0üÆâwi? ŸFë¸Y¾\Þ·Jþíáó­’{È¿Ã+…HÆ!¬Ì¡Ôoe|ÅãòqùxŽ<Ðäw½îj½î_bù É%š·š\f]þⲪñûÆPß76Äý`í'[ã?XûɧC+岦°ö“­õ¬ýdye¬¼–ËëÞå²¶°’¥½|ŽæÃäß<¾ÉãÿQnËu‹[hÍÿ`nL>/Þ*¶ö0?&›Ç~.¾Ëm¼Ç/hü`žL¾(Þ"JHÜæÊäßi®L¾äüçÕñ|ïäËâ/ÅöÆØ¯hüàû'û¾?øþÉÒ÷Ov]~xš³ÿá3¼Âgy•Ïñš\÷§œÖ4ħUw¼GuwÇbª»;–P½Ý±”êíŽ÷©¾îø€ê뎩¾îXÆ]Lán.ÑT¯†„mq4K„0U_X´žø5qI¾Î‡ùKq Íß©ÆR혪_,úŒøMñcÇÒO½|ª Ô˧z‹zùT©—O•L½|ªIÔË«å Ûôò©¦P/ŸêmêåSMe¾Ã'ø.«r«q:«ûúÕ¢úÕT3ÄOr&kpkr6ŸâÖâ\Öæ<Ö¡š¿­.Õümj|*5[ì:¨ùÛbßï=Æ^1ŸãÖ÷¾é½o,^*nÀ÷Ù°?dc.c¦°)—³W°9WR¿™ê#êR­¢Þ!ÕÇ4cß}5ÄêÞÜÍ´!´þ&„?R‹_§ïÇ],W¶Þ+Ž=o]›»o8ŸA,Oÿ{\žþ#ƒócœ@¼_ü€x¬XÓú€8æAfrþMçõ3­¿gæ!fáaêYZ««˜1ïŽó¼ØãGÄÙ¨Žþ‘ÝùñÎÇž¯Žþ!ÿ´V/ÿwîša?õûñµ““þЫµVÿƒîšg?½¦yöSsë]óì§±×2Ï~šƒæÙOå×Ö?{¾\u×\û©vWŽûÔï8âË÷áoÔãŒ8Ï~¼Àþ4§”7§Œ0§”7§Œ0§”7§Œ0§”7§Œ0§”7§Œ0§”7§Œ0§”7§Œ0#”7§Œ0'”—û2r,•׋ŒÇÊëAF\ãp^çÞàHÞ䨟Ð&$n}‚fÞ­UiæÝZfÞ­ÕiæÝú$ͼ[kÐÌ»µ&ͼ[Ÿ¢™w«u<öéXU~ø XˆTÑ·­'¾...Ö¿}F|ƒÏò&Ÿ£Z7¶>ÿcÞbCÞf#ÞacÞeÞcSÞg³XÍh4¶9#lÁ8¶d”­¨Ö¯U#{«•kÕÈÞjåZ5²·Z¹Vì­V®U{ç ZØ;'ÕÂÞjâZµ°·š¸Vì‡ê_oõg­ú×[\«îõÎOu¯·ú·VÝë­þ­U÷z«kÕ½ÞêßZu¯·ú·VÝë­þ­É¢Åb”÷z§¼×û!Êw½KP¾ë]’ò]ï‡C( ·Äþ¼èLÖsìïñ\+ÿõ.Eù¯÷#”÷z?Jy¯÷c”÷z—¦¼×» å½Þe)ïõ.Gy¯wyÊ{½+PÞë-ÿÕ•îÉGuå£{òQ]ùèž|4ͺ¨Ÿ†ÖEý´´.ê§ Ñ–“Bâ~¯ådÊ›-§PÞlù6åÍ–SYÅ<%?••ŸZ¾#–?[¾Kù³å4ÊŸ-§³zˆ{8âÏÌbŽïrì;=ìóï\Göq+w‡„nýù _âÁ¼ÉhM­Ü+È}Äoù?~ÇÁÜÏ—y€CxCù=õd+qs8ÍÖÝÌÖ+ÍÖÝÌÖ+õvÝôv+õvÝ^¥®›n¥™ºÛk<Î×ù3ßà êÙVþB=ÛÊ“|“§8ާ9žg8æ¾noÑÜ×m"Í}ÝÌ+ÍyÝÌ{+ÍyÝÌò+ÍyÝÌ}+ÍyÝÌ}+§¹oå%¾ÃË|7ÄÕ\âÿ3Ÿ×\AóyÍ•4Ÿ×üˆOsë…ë+Ç;~†«ù¬s;¯qü\X;®KbÞÂNyâjæ°|³p3“¸…Y¹•Ùø9³ssð æävæâææ—ÌCŸãj^zï«ùø5óÓZHŽÍ¼ju²™ª ™êjçw³ ¿a!î჌=ϬUð[qaqìùE‹‹ò;£ÙëjqZ¨i]‡dsYÁØc9w%ø=Kòæa–â|„æà«æååGi.^~Œæâå?Ò<¼ÜžL6猽—ùw¹š-Bƒ·C8­—h0•Þ¿Á;ÔC4x—߇ȷ„ø1Ó™‘3œŸæü!q&±<ûmfÎr~ºó‡ÅYÄòQÏ=ýƒ8I<‡Y9—Ù8Ù9Ÿ9¸€9¹0D_«âË|Cè~¿>”æê_ ñ=‡1ÂáŒãFC¨kF8®¶~ÖwõÔ#¬Ïê©ûXÕSÿU×,qü!±¾ª§¾¬®Yéx ±þ©§~¬®™âxI±¾©gFê“zêÃ>ÖõÔ_Õ5cX¬7ê™…z£žIÔõÔ3}¬7ê©gúXOÔSÏô±ž¨§¾+Î\ù±™¯gÎm50$fÌÃAÌËÿ1]³Œùéše,@×,cAºf]ËV¯Ðµleïdt-[Ù;‹p‹r$‹q‹óUš1Zf ¾F³E«×©Æ.pÊv¿!6c´C3F«±|”oÒlÑjÍ­ÆÓlÑjÍ­Þ¢Ù¢ÕDš-Z%ÓlÑJ̨FÖ3%{¿Ãz¦d³Ìá.ô>‡»ÒûîFïs¸;½Ïáô>‡{Òû~Þçp/zŸÃ½é}¿Hïs¸cïÓ—jñá~¬âÚW özCû*A=mh_%ØÛ í«{»¡}•`o7´¯öÒ¾J°§ÚO ötÃrÔ§ç~ØqyÇöZà <ÀŠ´¯Æí‘¼„¸Ÿõ ÓäÀŸÍ/ÓÌ/{k†Ä7ôg{Ÿ¢þlo-êÏöÖf<ë0u™H}䩨|#uˆ»Ü-$,ÍÀîôú—{0#{2_`föbö¦¾`b¹) V]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-Õ÷]Öÿ-•Ï/ëÿ–êû.ëÿ–êû.ëÿ–êû.ëÿ–Z“¹ÌyÍy¹ÌyŸ aš™è¡úbóÞAó^.óÞAýS.óÞÁØysÞAs^.sÞAs^.sÞAs^.sÞÁÆ~ß õPìqóÞÁ&b{÷!½Ï4{÷¡FÌLó`.sàAs`.sàA½N.sàÁæ!¤ËìØ,xÐ,xø%ëÈì{xõn‡í×d½Ûaû5YïvØ~M®Nû5ÙÌ{Ø~M6ó¶_“kêG„¸óO…„—X‹—Y›°ÿd]þŧù7ëñ>Ã+|–Wù¯±>¯³o°!o²ÿecþÇ&¼Å¦¼B{=Ïß+Íyòxv¯“®|ˆß±Óù~Î$® þ:DÛ‰Ioñ 'ò,“ù+'ñ'ó7N aûO!Ò2WˆOógHÜ~€ñ`ˆ6µ'Óf£=™6;íÉ´òßü§C¤Ì›âþb9°©kœ6]ã´z˦®qZ9±©kœVNlê§•›ºÆiåĦ®qZ9±©kœVNl*'¦•›Ê‰iåĦrbZ9±©œ˜VNl*'¦µþÖ¸î/¸þk\÷\ÿ5®û ®ÿ×ý×ëþ‚ë¿Æuá3Çãf=Ý×ÿ…+âJb½Ý÷á…«âÊâØ—£?Zãž¼àš®qO^poÖ¸'/Üðœ*ž£ÿ[ãÞ¼à­qo^pÖ¸7/¸GkÜ›n…Èé4!~ÖT¦å;LÇw™žÓ˜jöiµ{Ö ªÝ³ÔêÓjö¬YT³gͦZ=kNM¶‡ð›šzZ­ženh¢WþMm=­fÏš§Oˆ½–º=K½>­nÏŠý;yu{ÖBªÛ³Ñ=õss1óp ór)óñ}æçÞCÿý›º}º€øCä2b äræ áJåG,ÆU,ÎùW‡èúÒ!±ï9–áo,K=ÁêÍ!Rû·Ðú^½•ææõå<®Xý¹Øü¼¾¼ø"+ðwVä%>N5|õ6Ï»Ç/h¾^_Éù?ÄÛC¤ŽKµ¾²øOñ±|¾¾Šø/ñ—â8~E}ÊêŒç×Là.ÊëëŸðü¿Å»Åòûúªbë«„5µúçRs͘ë«yÌùWWwl­Þë±´ÜGsçú'¿&þV¬Yýõ/«Õ¡:ú–Õ˜‘™‰z¾:rÚú~ï:Õ¥¾7¨.õ½Iu©ï¿ž§¬“E¬>õýO¬÷«“$V§úÞ¢:Õ÷6Õ©¾±ë¬Nõ]ßgxÏ2výž ‰ýb×­>c׫]§â¯›ï™?â}®Š-C~Ló[}÷zºÙ­þš&È)ùsÑÌ™_MZ~/$tyŸ÷ùAˆ[ø!#\Æ8¦0ÊåŒç &p%)Ç­HÅULÍ™†Þ7—ÚxPŽÊ¥6ÌAµñ Ü”Km<(7õÓ×ÓgôÓ×ÓgôÓ×Ógô3û3ó÷3û3ó÷3ûS/ú™ý‹©c †Äªß²¿ãƒÜ¢Ç̽oÏ£¹÷íù4÷¾½€æÞ·õÌÇ̽o/¢¹÷móí1sïÛ‹yˆ±ïfv~÷ŸøœçÖú$$ÜnÏuìÀOÙ‘ëù<7°7²3?cn¢ž¯ÖfvãvçVöàçìÉm|_°·³7wðEŸÅ÷œr7$>½‚îïÓjLúº!ÚÝ:Ëk¿u·ÎòÚoÝ­³¼—i}åý#D?ú#$v÷?R7ºûŽ©Ý‡¸"òÂñÏ(/7‘Ž›‹È ÇÍEä…ãæÀ"%h,R’æÀ"ÓX¤ÍE¡9°È£4yŒæÀ"¥i,R†zÃ"e©7,RŽzÃ"êâq½aõð¸Þ°HEî Ñ<êÄ÷SøÞþÖV1[¬^|…êÄ÷ömõáûkT¾W ÈÉG¬Ýrñk·€|ÄÚý½ÌG¬ÝØßÍ|ÄÚýýÌG¬Ýòïk·€ü{ÄÚ- ÿ±v È¿G¬Ýòïk·€ü{d5åß#k(ïYKy÷È'”w¬£¼{äSêÉ ¸¶GÖûÙâžÓóÆí á…Ê!Ü*ÖûÆþ]åszߨ¿[|NïûwйÓ9ÖûÆþ½bìï%|Nÿûw‹Ïécÿ.ð¹Çi¦}®Í´£„„Šê䨃TSÕwü½cupÔ!ãaqëô¨}’¨Gí“5„‘jTæTG2×tÞ¾ì“M?¥Öú¾ëìÑ>úØuöh}ì:{´ONÏ1f®%ÖÇö‰ý}ÎfÄ̵iFÌ,‘LEýù:ýmŸÜb3bæ§ÅúÜ>úÝuúÜ>úÝuúÜ>úÝuúÜ>úÝuúÜ>úÝuúÜ>ýž™2³™~¤™2³~u¤™2ó³×ÿö)$N/~N¬î£^§îãÚ¯Ó÷ѯÓ÷ѬÓ÷ѯÓ÷ѯ͇øKðu–ä4¬ÃR!ò«{8W½üÕþ˜«^þjÌU/µ?æº>þ e_àNöâ×ìÍ]´_ª[±ÿÎeØnq~þÜÃ~ÜËþž§®Åþ;˜aûÄ/‰Õ·TêÛ@õ-ößà ûÖùüŽæaû9ˆîÙÿÑý/;˜î}Ù—ýžzûïg†Ye­aÖ@YënØ´6†¡µ1ì(­aÇ8‚?r$â¨=p3$Žß̹…ÿq+oñsªQî8Þæç‹-w5$\’kË]ãüf ‘Rj̬A\ëüuçˆÿ'þ„ƒ¹Ž/óSázå¾Â~ï†ß“ËÝä"ç‡9ÿ™ø_±|Vî?ÊÙånq cNÈRÞáû¼Ë¨¶]ú0DkΛkKsâcíhN|¬=͉u ~ⱎÔG<öá±®LOsäysdó*!!Ý1>Á^³P¯¥!Ü=ë\Uç~b5guþìñ÷=þ«øIñ Öà/Îë÷îžã‡üÍùšÎŸ/Ÿ›yÒ§ˆ/ˆÍ>éN‹—‹/ŠõâéΈò»¿S͸{‰QOÖkõ`½>¦Þ«×jêÑ›ëÝÓ»wõT½ÖR.îå¾ÝÕ7õrßîê™z¹owõH½Ü·»×é¾ÝÕ÷ÚÈ›üŒzž^›¨×éµ™zÉ^[¨—쵕wø9ïz_³Bº_ÅÛÄ÷ÄjAºØ÷ÿB|_¬&¤Óp÷Òwk%C/ýö½õÄ÷ô>½¾¢±—yëž=ÔëkÚCÍÕŽt±ë¥v¤Ó³öÚå|"w3•ójIº‹âoÄúÄ^òõ½4ÜK=a¯}”Ÿ›«5éb×Q¾¾§'ì%Wß‹ÝsóH:³gsóHºØuÝïübóHºØõ= Î(6—¤‹]çƒb=c¯ï™ÙysJ:½n¯Câ,bóJ:3RóftÝswóØa%ñÊák&ê÷„èÜ„ØôS&r=SqCˆ|üNˆï)?×õþÇcÑ»bù¸®÷?þˆxš8§ÓüwÇ<·® ÍsëÌëwÌsëÌëwFÒ¼®?<;†u9–æËgßd=Žã3Ïg9Ïñ-ÖçD6`2rq2Ó|»¾ ßfSNe3¾¢û÷„Äq±ßk.~W¼Wûýâib=Þ8sò~=Þ¸)Ôÿí×ßÓ#Ž33fîâw›3w¥>!s7šç3w÷ÓÃñM?ÿ†è=}÷zóï=}÷zóï=}÷zóï=}÷ú‚!®D¥ê[Væw¬Bõ¹ÄTŸKT¥ûÚå±nÈï%ª‰ÕéÕyˆOò0kðÖä>Å£¬Ey£DmþÈ:”+JÔ¥\QâiþÌz”#J<Ã_ø,Oò9žb}žfžaCÊ=%ÑÞJhí¸±ãs!n©õÕî›ó6[ð[Ò~\ÚŠöáÒÖ´ÿ–ÊíåÎöÊíÕ¸¥rg{5l©ÜÙ>žrg{ûn©ÜÙ^-Z*w¶·Ï  ñÇÔÈ‚Gù"Qm,ø#ÕÆ‚?ѵ+xœýù3_â ª¡Xð$ÕÀ‚§¨f›Mõ1ÛªÙæR}Ì6f¿lóC\GK%Ûšý²-¤Ù/Û"šý²½G³_6sDG³_¶%4ûe[J³_6}xG³_6}xG³_6}xÇ´Ô‡wLG}øMBüNëò¦TûhF¹>‡^íæŽÕ»ZPÞ~ %/„èÆ6!ñ¥Ø–ÙŽ™Øžfïè»nìÈØß)e.Þø¼ã¬ìÄlìL3èÆ.Ì"o¼âŸÐc¾1†êyáÓ!áø[<É<Ëä¹þqˆÿ¨2W³ ×ð ®eU~Âj\Çêü”OÒðQ n`MnäSüŒµ¸‰µ¹™rìõ-¬B¶¿ouü´c58Û?âÏÅòíõmÔg»âø ÇúâkÓCÂÊêœÁ'9“58‹zük³ùçPÿ~m.ksõíi;žïØ{'5qw¯ÓÇßY@ýû…¬ÇE|†ïÑûÞYL}ø%4ƒÜYÊØï¿Ï†!LÞ"ªñ“?§œrççñCzÏ;ÖÄÇj`¬îô_‹·àJ¶ Ñ?‰…ÍÅ/ê3 ›‹_ü‚½ÝÛå!>­}º]ÿ‘Él™Ö^ÝnÍo?"-Íbi³Šo0o†È²—Cüów9„÷8”÷ùJˆï8Œæ¢eé?ÜýRHý(PNÏú¤÷qùöµõ4ß¾¦ß©/§ž.,6ç¾¶‘>KìïØcÎý½{̹±?Ç9÷µ-4羦ï)ªfõ{+$+¢ úúé[æó“?„•ÇB¤fþH3×ÊŸ˜+D^—«t¡¼X¥kUÛ…p`%ås—'«t£Â±|”oò1ŽciŽgì{L`Y¾ÅrœH9²©9$m1Žbq¾Ê‡8š%øK†è9µÿ“œÈLfMNâSœÌZœÂÚ4'ô¯Ã©Tï › ~Ò îI½°Úÿ“}PÑq/Çúaõ'þ'ýpáCüqýpá>ÔîK{ p?ê‡ ÷§~¸ðKÔ@sg'õüºï^x X_\xíïœ]ÿÏq¦Ù3§|RXí:žÎ—¦üºkUX-;žžjÙñ Λɯ»v…Õ´ãˆÕÆë®aaµí¸ù³°Úv<GP.é¤^^//)6wE=báWi/t2Ë_¯ –‡Žg£ñ4~Ëé4—MœA3ÙÄ™4“M42“MœB5!¶Wk˜«ë¿güâcÿoäßGCâ²å<Æü‘+ù?âq®âÏü8D§½ëËYÓ†QΚ6œrVsJþT4£äOM3Jþ44£äOK3J~3I®LÏnÌÀî4õèAsPž4õxæ ½hêÑ›I|‘f }hêÑ—f zÎü9ØŸ9©çÍŸ‹zÞü¹9y8ˆú¹ÿ£ž¬Ç`êÅz¼Ì‚ÊBô}ó?Hß7aú¾ù‹p‹R.Ï/—÷Ëó».=äòü®K¹<ìºÈåùåò¯óa¾ÁRÃG8–jÈfթ懟¤ç©fʟ̪S—Ó¬:uͪSÍÐ?™U§~¤¯Ê¬¯2südfj–þÉÌ:Õ,ý“™uªYú'3ëT³ôOfÖ©kifú ͬSõ?¥§~ñ§ \ϸ¹1„êëÓ­×EõBb«C4Ï…pÈzÌs‘Öcžßi=NÓÏS³£µjãx–Ç yÌýË—)Ä^Âóúÿkjb¾Ìâ¥ÌÂ÷™DŸåù½O+Î*þÙh]äËNë"_Zùr2öº¹h]äóDßù°õÏw;l=äó][³›…„Æ·Øœz‚Ù-¨'˜Ý’z‚T—·r|/„!C$`vk±Þ`v›àÒÅÍnK½ÁìvÔÌnO½ÁìÔÌîÈ„òy½!É^c¯sÏ;§O2IlÆÉ§ç˜ÝÉ9½ÂìÎLÍ.4 ™ì9ߊ»Š]ƒÙݘ.Ä%«µÕ‡dõ¡öë! þ2DÒÆñ+zÿdõ¢ö<Á1ü…cC´Þ³!áþU>Çk¬Ïël@ýÀÜ!RZ¿_¯¡ø&ÑZ¯×˜ÿÑß ÑeBb—_CÜ{ü;´÷Ç¿K{~ü4Úëã§Ó^?ƒöúxû`Ìø‰ý? ìùñ³hÏŸÍ8‡W8—W9×8Ÿ×¹€7¸Ðë¨Ç9w‹oŠ]ï1o‰¿ÿ+v½üÇżŨÿÃy›®ë;Œý¿›wûÿ2ï1öÿaʵãí©ƒríx×í \;Þu;(׎wÝʵã]·ƒríx{ê ;Þõ:(ÇŽw½f›š˜f›š˜f›šÈACä”tì¥ËΙš”tîç¼Ñy%Ý÷œFsýl3D3Ål3D3Ål3D3Ål3Dõ`¶¢IìÏ%1C41SÌ6C4Ñ'Ï6C4ÑÏN¦~xö$ê{gO¦þvöê[g¿M}ê쩬ÄwX™ï² §ñ NgÕ­iò2õ!M†PÒd(õ!M¬³âçC\Òá¿·G}¯+zÎ$=Ä^½hÒ¾àüÃÎëA“ŽŠcc,þ‘zÒ¤Ÿ¨'M:N=iÒÏÔ“& ž4é¾äuJyØóOŠõ¦I§huÔë]‰ý¾9{¯5Éœ½×Þêø¨ó±×3oïÕ«&™·÷ÚKs¾ÍWú³ õ¼Iæð½zØ$sø^=l’|¯6É ¾W›dß«‡M2ƒïÕÃ&™Á÷êa“Ìà{õ°Ifð½¯Ò ¾Wÿšdß+?%™½÷ê_“ÌÖ{å£$³õ^ù(Él½W>ê`.ËV…ïð ¾K×¾Ã4VãtV§2›¹¯ƒ2›¹¯ƒ2›¹¯Ãlšû:Ì¡¹¯Ã\šû:Ì£¹¯Ã|Öå>Í…¬ÇE|&„"›¿çøY.æsÎmv¼Äqý>"åzSo]îEç—:߀ï³!?`#~H5uá#ž×G¼LÜ„)lÊålÆlΕlÁØ’«ØŠ³5W³ ×°méÍKÿ“‹þ›rñÃÿP.~ø ›ò*Õ³‡¯Q={ø:Õ³‡oP={ø&Õ²‡ÿ¥öð!®éœ¶Rˆ\/âW~Ä"\Å¢ü˜Å¸:D_Ò>¤ï|Iÿù¾ó%ýçCúΗôŸ™)ëw*® >§bì¿[á1=éCæŒÅýœÓ3¿¤7}(»¸¿x_¢Þ¹ÎÉpwÜ)—US[¯™ª©­×ì•jjë5óe5µõš=RÍürÍ>¬f~¹¶†æ—k®m5óË5½H5ó˵u4¿\û”æ—këi~¹¶æ—k™‰Ÿ13å½jY(×UKâfåVfãç!î–z½V¾¥.¯U‡o©ËkÕá[êòZuø–º¼V¾¥.¯U‡o©ËkÕá[êòZuø–º¼V¾¥.¯U‡o©ËkÕá[êòZuø–º¼V¾¥.¯U‡o©ËkÕá[êòÚ'B˜\'DT+n©Ïk«R}^[ÍùºÎ«Ók«‹Ÿ¿)ž!~’3YÃykçÁqâYâšâgÄÖÁ­Ùâ§(ÿ­­åü³ÎOÏ׿<Öá|Öå>íyÏyÞ[â…âzbóàƒÅ‹ÄjÉäâdñ{âgÅöüƒ“Ä‹ÅêÊäFâÉlÌ)Î/q^™ÜDl›Ü”S_ê|¾Ï†ü€ø!Õ˜B±Ï¶Ìq¦°)凵Í(?¬5³Š}n9bm Ê kå„BO;–ÖšÙ Õs,¬mM¹`­\p6sHœs&„Ïn…HÃÊ!< ï?›Å¹³4“Îù•fÒ9çh&óͤsÎÓL:çͤs.†Ðûz÷ËÓLqß½oc.ÊtK|S\‘ÿÒhcNÊt[lÞ·Ú˜—2Ý{î}k¢Y)Ó]š2™“Ú˜2ÉãmÌGFÊÐÛïÞ·fÚ˜2Ëç½ýî}k§·yë¾5ÓÆ¼”Ù\Ö¦;åð6=h.kÓ“ |‰ìÅT!ú›º¾@Ï÷›º¾@Ï÷›º¾@?ô¼µÃë=o-ä°ûd ‘`ì“D×ÿyk"GuZ 9¬Áç­5èÞç°öúdõ<÷çy÷<‡µ÷¼{œ£Vˆ¼S!Ä?³…¹•ósVâ6Væ!:ÿÕØâ1Žfi¾Æ2|eùËq åÑùcYo²"ÇñqŽg%N`e¾Eý×ü‰ÔÍO¦þkþ$ê¿æO¦þkþê¿æ¿M9k¾¾­…þk¾¾­…þk¾¾­…þk¾¾­…þk¾¾­E2è…æëÝZèÁæëÝZèÁæëÝZXÍÍ:éߦY'ýT÷,u÷¬ÑæfžôfªæfžôfªæfžôÓBtæC!±áQ–à1–dìÏ#}˜?±‡’"Õ|†O…ÄŠ}J¢ØgIIźLMŸcF-_amš‰gÔ¡™xF]š‰g<ͬG³ðŒghOÌx–fáÏÑ,<£>o³ï°!­Ù‹òï"³éEùw‘™ô¢ü»È¬yQþ]´‰òï¢Í!¼50Dò¯ !mçäâE[(/ÚJ¹xÑ瞣žæ7^Ì.Ö¯¼¥žæÿDœCüsR¯r1w07¿ô¼Ážg¾¾˜Güór'óñkæ§yôbš'/¤9òb!îáƒÜËÂÜ"/µñÅϲeGžãóüxžú–âØ…Ù•¿³/±;/³ÿ þ¬øŸÔŸÿ‹ú³âSý.þÕîâWløï«ßůRý.~êwñëìÏ|‰79€ÿr ÿã Êm/ý·9˜wBä…F!¾À6æQ6¡ž*ög%ùºüµ¾)ç|SçËmßÈmåå¶o*8ßÌy½Vy¹í›ŠâæâãlÁŸÙ’'B´¤^÷Œ^·¤>ãŒ>£¤>ãŒ>£¤>ãŒ>£¤>ãŒ>£¤>ãŒ>£¤>ãŒ>£¤>ãÌ”fì ‘‡ÓŠõgô¼%õ¼gô¼%õ¼gô¼%õ¼gô¼%õ¼gì—’—9pÿäL=ØD?êT-³Ým³Y-³Ým³Y-³Ýmõ¶–Ùî¶úZËlw[]­e¶»­ŽÖ2ÛÝV?k™ínO!×ÏŽÍw·ÕÄZæ»Ûja-óÝíØk›ïn«}µ®q2¯SÍ«uƒö|­›TëjýK{½ÖôÙ‡™Ïʚņ™ÏbÞÃ0³YÙú4›•UÿÞ–½Br¶)Ø\ü¥Øüû÷W4ïþ½“æçÒuCüù!î°ÞjâJê­&~D½ÕÄUÔ[Mü˜z«‰«©·š¸†z«‰kC+7çrmë±&Úg‡õXí£Ãz¬‰ŸR5q=íñ‰öøa{|¢=~ØŸh¶Ç'ê± ü Å#|5„iöN‰ÅGÅ£yŒúãiöRìÏÿŸf/•ÐßZg GõÈÖUÂQ=²õ”ptLM>áœ}r*9ÄÏR{NM¢Úrj2³…¸+íBÂrõíŠz»\}»¢¾.Wß®¨«ËSQ=]žšêéò4TO—§u=ÍŠÕÕåéÄÅ‹Äêêòôâ.â÷Ø•‹WW—g ºº<öw§©«Ë3R]]žÉóºyÞ±úº\¡Nî.^*Vg—g÷¿/î-N÷ ~Qœ•}û>}inL~ÁãŠû‰åÉ+ý™“/10721/ÿÇ|Ìü|™8„9”fë+¯Ð}Q?]çyjoé{ü‚÷ÿÙù±<Á7ù Í% Or|éÎ…¸¬?†ø}ÖfÇ>!\1çp½:öulýe5Ëí3'ï+Äs=>™~,Íþ,×X–j’‘ÖêLT¦¼"…w†hDMÙ¸jÊÆTS6~IµdãWTK6Æž§–lüšjÉÆ]TK6î¦Z²ñ¯7ÎëÅWS6²q/Õ”ûô¢ƒ=g¼çÄ~·ˆsß:§‹˜í6ší"f»û¢FΛñ6ulÎÛx%ø½s¯øæg¸s%;äx„Ÿ‘â‡Å‡YŠ?87Ê=YȼZÈ,dö/ô†÷¿ÐX?oúçÇgëñuˆÏ¯¿ï±‹úú»©Ÿïñ õó=öPßc/õñ=ö±™ò•ão7çw4³—7ï¾"Þ/Ö——_'VÏz·âA¶ö»;ï¸ ±-ÓœÞã¶çvðŸz µ°ÇQqGãó´&óÇþÌÆE!’þdˆ[`öi©/]`öiY“fž–úÑfž–µ¨ÏmiZ ÏmiÎX ¯mi–X ¯m©7[ ¯m©w[ ¯mù õ³-Ÿ¥~¶ås4³´¬O3KKùz™¥¥fy¥e£Ý1$$Ó¿î0ç³æ×="õ\ûuòm=×]mÊw;ÌÿÃì…ufÀzcÄæÿaÖý:³_=÷f™¯žû³ÎŒWÏ=Zg¶«§¶îîyöÅ:3]=5j™­ž»c„óúá#iþXgv«§®sO멹;F9ÿ¸Ø½­§öîÐo«$vë©Á;ôÝÃÌDëÜëzfþúïaúæúïaæ’êñ=ø°ªŽõ²%ßñ£žm(û™‹6”çEVàïúb}䆊Ž/ñq^f%þÁÊü“Uûdõ0u|¶Õz˜:z÷ O8ÿ7«òV£>vCuêc7ª%±¿ã²¼²ó·bu¤ów4ËwÞO5£ó¾ÂƒÆï©^t>DµbQz¿o­-Ê@½gçÃΫ ^®ó¾Ê£ÔÃu>Æ×ø#õl¢ÖY/‘Kîê¬wÈ¥wè¬wÈ¥wè¬wÈ¥wè¬wÈ%gu>Eó@çÓ”«6– ‰ýÏËúŽòGÿØ/ô—?6Êýå-†HãÎ!zÞÚ\¨ŸÚRXÜEl.´fÏ[£ õ [Š8ßUl­.ÌFëtavZ§ sÐŒ»0'͸ sÑŒ»PopÞŒ»0͸ óÒŒ»0͸ õQ3ÕƒFêÁLõ ‘z0S=h¤ÌT©3ÕƒFêÁLõ ‘z0S=h¤ÌT©3ÕƒFB\‰!þô@þÂA!t±‡oØÃ]ìáæ…'ÿOq0OóeÛÓ7ÞfSš#JœqÞÚî¢æÞ0O”8+Ê_i wiîü»âsbk·‹:|cšø7±5ÚE¾1]|^l ti%ž!6#I3ÒéQ4#~•f¤Ó£iF:­~%´wlN:mf(aN:mž*aN:=&D.·ñKN‡è=yz}Ö}»qH|ú›Ð=~»iHŒýu#o7c„ÍÇŒ†hV=ï>÷*«žwŸ{•UϻϽʪçÝç^eÕóîs¯²êy÷¹WYõ¼ûÜ«¬zÞ}ù©çÝW€zÞ}©çÝWˆzÞ}zÞ¬Ãhöx7{ˆÄþÛü¬ÃÅf¬#X”#YŒ£Xœ¯ò!Žf ¾Æ’|ó –â>±|”oò1Ž£ ëx–á–å[,¢uͳ÷̳uͳ÷ÔкæÙ{æÙºæÙ{æÙºæÙ{æÙºæÙ{3ùgñoÎæ?œâJm ñ¿ª].„p³¸ø3±ZÑ墸¡rþäÜ&ç¬ÃR›Ù˜[Ø„[Ù”Ÿ³·±yˆÎ³?šýGû£Ù-ÚÍnÓþhv‡öG³»!>ÍݸÝÚMsÖnšû´vZ‰Û­Õ´Z£iãh¦ÒÚLOk2mχè•õ!qùÄ-þxHøå+ÑZ*^™gX…gùeUʡūñ7V§×)þ$å‘â5(¯Éßùõ ÅkQR¼6õ ÅëPR¼.ÿâÓÔs¯ÇBXµ1DžºIuý©©®?õ7ÓuI™;»ö«Ôõ§\Ÿ”¹b×~ÕV±ë”2O¬L™ÏÆ\À&4ÿwnJóg{yAÑ)Û-„"êUû¸ˆ½[Ä~-2"Äelâ¿VG26¡:’±)Õ‘ŒÍhŽž’/Ä×]“zéC3ÅùÅï‡ùŽãŽ?`AÆþÿ†»Ž 9^Æ™ÂÂ\Î"\AŸeŠ^ªîJ?…¸îfû|/‡Èó×C|޼Á‘¼ÉQü—¯ò?Žæ-¾ÆÛ|w¨¿zÞzÉ!O<ú¦²…ðõeñ}±þIûŸCŸÔ)B}Q§8N`”ú¡ 'íïx"˜ÌDê‰Ê®òZˆS‰åÕ²‹ÿ§O¯ë1Ë®¡ž§ìZº¿eõ_›Q:¥ñÌù,Å|„ ù(ñ1¾ÇÒ\Ì2\²\Êr|ŸåùÍ1mô™õmô™õmô™õmÎP¾hs–æš6¿Ò<ÓæÍ1m~£ºÚ=sHÈ»šY¸†I\ˬtïces¼ŽÙé¾÷ù)D"¹Ä9ÄîuŸãb׺{N±{Þçg±kÞ=—XÏØ=7õˆÝóP8cfHhX=„!UB$Ý+âYâ'ÅOˆíë!U9Üy3jC3ê 3jC3ê 3jC3ê 3jC3ê 3jC3ê 3jC3ê 3jC3ê =IC=É =IÃz!:#cHlð93q3ó fáv&q³òKf£þFvî ñéõ{_m ~ï+µ$½~ï«ÏB´˜Ü{Bî-&÷ž{‹É½'äÞbrï‰s!ÌÈ"%[Šåà¿…Èú!¾ï‚ê=ÂÏ}Å9Å CH"o6 ñÕ~¡š=tð ßå÷Î7r^¿^mšøX®«vT<]|˜3øƒór_µc”ûªýH¹¯š¾½ÚL7»Oo¶ ûófKž`+þB½Iµ“lÃSlËÓlÇ3ò¢}ûûUßl/ö]« ×÷„0Gÿù¨þ³úƒâ½býç£úÏê…ÅûX„ß²(¿ ¡~ÇNÍ‘]æ•QŸÓ¼2jÍ+£Ìd»Ì+£Ìd»Ì+£Ìd»Ì+£Ìd»Ì'£¾¢ùdÔNšOF}íõž÷z Äæ”Q»h>µ›æ“QßÐ\2Êç¬/yžZ(6ŸŒÚKóɨ}Îwv~‘Øœ2ê[šOF}G³É¨ý4›Œ:@³É¨ƒ4›Œr_vÕ§ùjRûP'ÊŒa°kŸV>šÔQœ ¶WÒÚ+“ž'²Sé? ñK«jöö‡Ðlqç]ëË뜫ÆOi4[âüñzñ“´—Ö¡Ô¿!zñøž­ô»!áBUNc5NguÎà“´×.Ô =v¡&í© O™Uç…¸¶7CB½nÛ©ÇmûgòõQû‡„Äq•9”Uø Ÿà0zÏýÃé=÷ ÷Ü?’Þsÿ(zÏý¯Ò{îͧøkñuÚ·§ä…™_†0^ÝÊ+’fš•Oå¥YùT>ºÇã›xümq~±™ùTš™O¤™ù”µ8ÓÌ|Êœif>eíÍto ê×OY3¿õM½†ùà”u8Ó:ßLl¯oNóÀ©bΛ§Oçç[8o.8õØ\}ª¿w¾¥óöÞøVtÍN•tþ¸µØµ;õ°Ø¼}ªíç‚f…S8¶‡Ç·ñœYâGÅfíSѬ}ª4ÍÚ§ÊP/zª,ÍØ§Êñg–ç‰í®Ê÷ ߣ¹¶ûbšO‹ê•»/q\ßqy½™þø¤þ¸¸þø¤þ¸¸þø¤þ¸¸þø¤ûZ\|R\\|r¯p.¯r¯q¾üå¾”œ"¾.^À\Hëæä"Z7'ßó<÷'öϽŠ[?'Óú9¹„·¹”wø>ïòÏw/bÿl,µPüžsò>—…èC±4—3Ž+åJÆó#&pù1Sq5Ss Óp-Óò¦£ÞåAùÿ¡ôŽ?e®qëõÒ}OQ>ï{šòy_ýäzù¼¯~r½|ÞW?¹^ï{Žz龿Q/Ý÷<õÒ}/P/Ý×L1rUˆdþC¬§îû;õÔ}/QOÝ÷2õÔ±?/õ6Çúê¾R_Ý÷/ê«c¾ÝȽFìü3âø,¯„PÀ¼;rµÇbÏ}髬ÏklÀëlÈlÄ›lÌÙ„ÿ±)o±o³9õâ+*†D3QtÅãü]®®eŸ¯¨$¾$¾'¶ßWT›VT¡ï‘aã'›VT¥9a…·‹9aEuþÃ'y…5x•5yOñ:kñkó&ëPž[Q—æ¬OÓ<±¢Íe¬í‹Övkû¢7+!DJÕ[ãg‰Åu(×–ªËÔ|ÚãÖþEk¿ŒµqŽóiœ×#”±.ΧÛceì…‹ó¬Q}hûáâ|Úíƒ2öÁEu{V:Ï}–éùœóöÅEû¢Œ}qñ=Ú‡¸»]C§éÙØ°3²'3ñff/fao&ñEfef a²ú]Xu·¯8;û1G…ÚxLM/¬Ï½Ûß¹œÎµuü’c5èîêÓîdÏU÷ ë…ïÇ~çŒÅƒ©7¾û2õÆw‡Po|w(õÆw_¡Þøî0æpê‰ïŽ žøîHê‰ïŽ¢žøî«|(Dg¶‰Ò±Ó³#]J»BüßÏs7;ñvævá^vå>vã·ìB÷.!ü'ÿtïJ×¹ÒwÎ÷›ÿ["Þ/îÉ|Ù‹ß³·çyÿ–Љ_äaöáìË#ìÇ£ìÏc|ÉïyÿÌÝ{R>ëþ?ôøÀŸ8Ðù^Î/›*ýÌÿñó¾Ì“ÂSÊÓÔW:Ãa!zûFHüDuû&¿ã¿ÜÏÿx€·x·ù=ïðþµmHlhnšÑŽæ¦®C׆ëßÐõŸáú7ÌÀçù;1#;3»03»2K)Öy5õ&%Õš”h¶OÉH3}J&6bf6fÊW)Ilʬ4˧dcsfg ê“«µdN¶b.šÕSrÓšNÉöÌËvÌÇöÌÏ,@}eJAêS Q¿—¢7­¦¿KÑ“V³VRŠÐZI1¿W³FRŠÑH)N÷4å!º§)%螦”¤{˜ò0­—”R|‘°ëÒÍuI?*îËÇØ¥ÙŸeh½¤”å–£u‘RžƒXÿcEæã|™•8„•9”æ¤j¯Ð|TÍ|”b>ª6œzÅj#X#©G¬6Š5ø*kr4Ÿâk¬Å×Y›o°ǰ.Çòi¾ÉzÇg8žÏrŸã[¬Ï‰lÀd6ä$6âdêªM¡¾ š™?E½¯¦Þ§è¹bóMŠž+6ߤè±bsMŠž*6Ϥè©bóLŠ^*6·¤è—ªÉå)m9›í¨_™ÑÝuÏ*n/–³S:P®NéH}KÊó4g¥t¢<Ò™‹Ø…òEJWê¹SºQÒKÙƒöuJOÚ×)/ðCöâ2öf _äröá šåª­d?~Äþ\Å—ø1p5r q-ÿG3vÊ`êMR^¦ù:eÍÕ)CižNy…9Œæ°óbµMÁÍÉ-Å­|•Ÿs4·ñ5~Á×¹opÇPÿ2–_ñMîä8ê»SÆs'p7ßâ7œH3UJ2Í|)“¨ßN™L½vÊê±SÞ¦ù&e*õÔ)ïÐl›ò.õÒ)Ó¨wN™N³l†ÊŽg8Ö7§Ì¤ž9e†hÅ)!áÏJ|›f’ŠSi&©øÍ$ÍAêU*šƒþÔ£T4ýi&©húÓLRÑô§™¤¢9èO3IEsПf’Šs¨­8—ú‡Bb9}ƈƼBz×½X.qñǹ7u|7D_Ó«Tҫͳ/J¿¢Ï ‰QûmžýQÚþ˜g”¶?æÙ¥'yü˜Ç_ã|?ñ çþ̱<Á7ù Ç…¸âfß_äõ‹†ÄE×BäV·¿FoØ»eH(¤¿ëÝŠú»Þ­©¿ë݆ú»Þm©¿ëÝŽwhV-t—fÕB÷hF-tŸfÓͦFØ™qúô=!ò°úQòxH8ãó•ü™>_ÉôùJþBŸo¦ù¥¡yf¦ù¥á±Ú,Ä?fîÚœÇÙ‚z–¡-y"„*ECøNþDslÿ må1ýÈÐÖ<É6<Ŷ<Bìïx­RÜsåé*†„ïz†èâ^!±mìŸùÙƒë³Ó ñ_é«d ñ1‰«˜•3W3;×0×2'Í3„Äœëùí»…‡HùÇÄÅÖÁÂĥřğ1371 íÃ…W<^Fœ$Þ¬ÜÊlüœÙiþ蜃_0'·3w„¸K§BÂ’ <Í·x†y–Éü•“xŽ“ùÍÍ—ÎÓ^»0/Ä/RÛ.̧ÚvaÕ¶ ©¶]XDµíÂ{TÛ.,¦Úva Õ¶ KùHˆk¡Ì Þ÷–cï5ë3èC[è3èC[è3d£~0ƒþ³…~0Cê3ä¤~0ƒû²Ò}­!¯®”WkÈ«+åÕ„è¼Cbó<ìüÎ˳5äÙ•òl yv¥<[à 8¯¯Çó‰åÛfÁyýı?7Iޭឯ”wk˜ çõw¾_bA`!äƒÄž/?×0;ÎûŸ¸ÓZ\)_×0KÎ{Y\ŒCh­eèêx¨c½ë¼WX‚ÃX’Ãù0G°Gò‘}¾LHÌþËò8Ëñg–§þù ü%DÍÎ}É<üŠy¹3D7ÿ™ƒ7ÿCµfkWǵ[ãÚÕQ“Ö¸Vu\«5®UØó®xžZ´Æ5«{¾kU'»Fu\£5®Q×hóUÏ3Go¾FµêýÝæëŽÕ«<³B\lN=!?LO ü0=‘òÃôT”¦§¦ü0= å‡éiÙ…éBHs±gºç„gºžþ„gº½xÂŒ3ÝŒsÂŒ3=Sã䇼ÖÊ ³Ît³Î ³Ît³Î ³Îtkì„Ygºu7îGϳ–N˜y¦›y vtlÞ™žÝcrK^ëkœÜ’7·Çô|õ{Í 'ÌBÓÍBå‹‚f†æ éúÊóÖüBkþ¼5ûùÎ[ó±ÿ—oˆžû1×vˆžû1×vˆžû1×vÈYº¦C~¥k:ä]Ó!¿1ögaé5†œw¬ß«âý¾Ó¿V1o}§­â³}§‡rÁãúÀÌú‘!ýü.~É~ ‡_ìWvä9>ÏßB¨¨^ìÙ+î$>/ÖWíQ[Óž ÑZîÇíTt?n§¦ûq[~®å~ÜŽý݈ÖòeyµµœzY_ÛÚ¾,_¶–//ëk[— ïx«³úq‰]hŽ_%Ÿu·WÉgÝ­ÅUòYwk±Ù<Ó%šÍ3y^õ.Ó4›g2ë·1›g2ë·1›g2ë·1›gúG>-•àk,É×ùpˆ‹ý²ãÝûñòí“[ý|îg[ˆÛÞ4$ U¯¶7£zµ½9Õ«í-x7„Ñú¬úÑú¬úÑú¬{<®þ ½'Ö‡dÕ‡ŒÖ‡dÝç¼z8T]Û®j›ã¶«‡¯¨kÛÕÃW⨾ ‘݇øWõaõõÞ§ô_õõÞ§>u¾”óú²úzðSëň×ñQêÏêëÉOm?&Ž=^š±?#ΛÚ(.#ŽY–Ÿ±7±<7³·°"·òq~ÎJÜÆÊü‚U¸Op«òKê^ýŠÕ¹“OòkÖà.Öän>ÅoB´ê7!áÚ@îá îåÿ¸ƒù-_æw4‡ÎwßZJ=ÕÝÇxŒz¬u?úÖŽõYë~bYÊgr…øÙï173Í5˜ù7­ ‰{ó¾Èu4»nú”}¹žý¸¾sIýBgýZNýZgýZÎÔ›åü%„r„°Kì¬GË©Gë¬GË©Gë¬GË©G+÷¨ÇåÆrQ­íÜÎù3âÒb5¶s{ñYq±Ù¨³˜Sì,æ”;Ë9£Ü—ó<婜(Oå”?;wåïÔÿ政:wçeöàìÉ?ùÿb/êá:÷¦Þ­ó‹Ô£uîë!ód美õÔûñ:ûóåéœ79€ÿr ÿ Ñ[_‡ÄµÖð­]´†oí¦5|ë.â¾Ç½4c>jÆ_[;ÄÇþŒé§Õ¨ã ÅuÄûX—ßòi~ÇzÜÏgx€Ïò Ÿ£þ¿ìG!á÷–\Euf–½RÊ=,û±¸5W³ ×°-ײ]ˆ+*Oü|ˆòÄÏæ¬œ¯8–+~¶Þvy­W­Ã]^ãUkk—×xµM¯ÛÙ­‡×íì/9ï5_mK¯ùª×Üõ Û{ÜÞÈnoìZ'î .'ÈòDß?ûÿX‘òìëSžMó´ßùÔï¨ë»Öóyn`'n¤Z¾ë3v qs…„¦¹©/mš‡úѦy©mšúѦù©mZ€úѦ©mZˆúѦr s$‹p‹òU£ºÕ´8忦jfÜÑùâ«?ô¹’ô_ìtl¶ûâk6qÝåÍ|ê_µ$ò”XþÌçšõ×bk;¿ßyy$1öïÕ8v½ºä@~ÏAµ°¾»°ù£ö@±ù§¶u}'/­ë;ùh]ßÉOëúŽy¦¶u}Ç<³¤[Hl—Ý™=˜ƒ=©Gnf½§ÓW5³ÞÓÅbë=].Zïé¼o¯)!ÜýNlݧ³šY÷é\‹^o;¿ŸSyÀyk&ýÔÌZIgÎêõŽóÅÖK:ûª™õ’ξjfM¤³¯šYéô¼w=ï{±µ‘Îþjfm¤+âü4çåfÖH:½i¯ébµ®™µ’Î~kf­¤³ßšY+é¬ÇfÖJ:ýF³dZsÍ&Ñšk6™Ö\³)´æš½Mkn‰ëÔÎ|øÊÐɰAìzµ“–Èí|Þ%®K;Ÿw‰ëÒÎç]⺴“–¸.í|Î%®G;y`‰ëÑNXâû·³g^yÅëm»í|¾%¾;Ÿo‰ïßÎç[âû·óù–øþí|¾%¾w;Ÿo‰ïÝÎç[âû¶‹}>ß³=a¦Oh§Ö3·ý¬Ç{?D>S«_ÒkÔ3ïþ¬Ï¯gvûY­ûLí~Iݨg†ûù"­¯ŸÕ¼Ïò:¿„ù¸”ù{4&Íó3ßÏç :÷! q¤×Oz*DÏšKçFi.OséÜšKç&²"S…°ÉViø¤øq±Yãl%š5ÎV¦¾âl¦ãLϪÌÀj|€ÕiîûÁ8éÆî ‘ÜfÇ̃“2ŠÍ8¹Í,cÕÁÜfȱê`îôTs›0/NÊDsâ$ya¬º˜;ö:êbîØï«‹¹Í“i|÷ù%B¤Ì !ÚduHL£vÍ7ç•éEs^™Þ4ç•y‘°ÕÍ2ú”ùzÌ2zŸ&küžzÙD¯”¦õJiÔ¶ùj`ù|¾Xæ%çõNi:P#õNiž§Þ)M'ndg~Æ.ÜÄ®”ÒÈ Mä…4òÂ!¹ý­}”Ûßú–rû[ßQnk?åö·Pnë ÓRý?”އ˜ž‡™?ðaF¥yî­c4Ͻ¥gü´Hˆ<ãsìi_w-?-*6'~ZŒ>Ïž¦Îga3&±9³²å=-)ïìiE³î§zÄgzˆ[‹s² å¹=m™›í˜Çóò¼žâöbùæá²Ž;8¶gûY§q'¨ŠÓ[öÓÿÇ©Cýô±qjO?}lœž2ÑO?ë>îLˆë× $ýSlýÇé#ûYÿq¿RÏwŽÖ|œýÕÏš³§ú¥ð—Ó^ê·‚¿s%/y½†^ﯟzLHüB™z,õ©ß¤2õ8ê!S§2õê!S¿E=dê‰Ô?¦N¦þ1õ$öÑéöRý_i/Õ?G{¨þo´‡êŸ§=Tÿí¡úiÕÿöP}óöt{¨¾y{º=Tÿ–é=Ô´èô'Åæîé5hîž^“æîéæôúÿМ^ÿ Íéõ¯Òœ^ÿZÊ;6«×¿îµÌ êbtº™½þ šÙëßä3ü—ÏRŸ;ý9Þb}ÞfÞaCÞe#Þccšµ7EC€ŒçJ&ð#&rSñc¦æj¦á¦¥¾hS:~Âô\Ç ü”p=3ÒŒ=ê£ÉrYœI,GoÊÌϘ…fÁMIÜ̬ÜÂlÜÊìüœ9¸9ùsq;ssGˆ¿;$ÔèO3s }oÑC!þÄ <Ì^ü½y„êþ¹1!~¾¾æÜXÊOMÕÌßä¦súùú›súùú›súùö^¶š~žòSË9½Ï|=Î9½Ïü$¿«Ž6U3ûÞÏ!çõ@óõ<çô@óõ<çô@óõ<ç&ûÑÿÌÏáG½?¯.TïΫ Õ»óêßBõî¼ú·P½;¯þ-TïΫ Õ»óêßBõî¼ú·P>¯þ-TçΫ Õ¹óêÞBu·P;¯î-TçΫ{ Õ¹óêÞBu·P;¯î-TçΫ{ õ~çÕ½…z¿óêÞ²Tßš×Óf‰ÛÿeþÇœ¼Å\¼ÍܼÃ<¼Ë¼¼"Þñ‹äì Pξð!ÕÓfúÕóµÅËÄrô…ê5/,g9ëcÏסzv¾®ó+œ7—\XIsÉ…h.¹°Šæ’ ³W³2×° ×ò ~ª!zB>žöS÷øQǤñ£&žŸ§§ü<ígÊÏÓNP~žö åçi')?O;EùyÚifáʽ'²:>ëGþh?:$fÕŸYçø5Ç%C´âC!áƒf¿Mf?û´b ±ÚP±$õZÝ:…„<öc·Î!AÊË&í»EylßmÊcûîPÛw—òؾ{!Äû<½?4ƒüµ˜ƒ¹„/s)‡ð}êµ[X¯ÁL=Øš|$öÿ²ÈyOŸ¥œ÷´ÏÞìpHL7’?pðUåhãkü‘¯ó'¾ÁãCׯ٠Çrrº7CdùÂßE½Z¾ˆêÏò÷¨¾,_Lõù– ¡ö[!ûF¼Tü°x¢Xï±Üê¢Xn uÑ,·†ºXSË­.ÖÔrk§‹5U;ÙóÝÓåÖPkj¹5ÓÅšZnÍt±¦jOò¸že¹µÓÅZZnít©àüdçõ0Ë­¡.ÖÔrk¨ËãÎë½éi–[K]*‰õÜÇô2Ë­©.•ÅzïczšåÖV—*bùã˜ü±|ø ±œpì{ñ§âªbùá˜Ü°|½¸7°ºózëc‡ÅÅOò3Öà&ÖäfšQK»_ä€Òæ¨ zò®¯„ps#Í]7?ãpÊ£¥å— zá®#Ä›9’æÌ®£¸•¯òsŽæ6¾Æ/ø:åÓÒæ² rJisÙ³t×7œ—_K›Ï.XÓ]Lj¿›Ó.È1¥Íiä˜Òæ´ rLi3Ú9¦´í‚SÚŒvAŽ)mF»à>uë÷¿›Õ.”¿)ÞÉqüÚy³Û¹§´ÙíB9Îgyœœ÷}Hܤ¯Þnno!o7¯·0¯o7¯·¨ÍDÖñ¼CžgfÛžJ\—©ù4í÷õ˜–Ï0Ÿõ|k~ÓGâôâç¨.´¨Oón‹TZ4ô<{b“ugOlúØyõ¡E#ffcçí‘M«ÅjC‹&4ÿ¶hê¼=³iXMhÑŒjB‹æTZ´ 9¸EKϳ§6­›‡[´¢y¸Ekš‡[è·›‡[´e^¶£Y¸…~w»Y¸Eš…[t !ã9¯e_núÄ9sq‹çi.nÑÉyût“5÷3­M½\â&kR/—¸ÉšÔË%n²õrñú¸xý[â&}ñ&=ñ¦Í!:X\Êw_â½o/Ö —ZM½pìï\â³<®×¬'Žý½‚ƒõÄ¥>¡ž¸”|8X.õ)åÜRë)ç–Ú@97ö÷ –sKYÏéßq,ï–ÚDy·Tì½åÝR[(ï–ÚÊ$~N¹·”µüŘiþeˆÞû7$®×ßûúñ{·(÷~1Öã_‰o‹Õê/ä§æÖÞãø5Çs—Çïxüx‚x·ø®ø°ø-ñ7â{âÄÅ{Ä÷ÅúøûÚÞõúøûóx²Ç÷º^ã~œs?2J5è‹I3KÜw=׫=÷]Çõ?;¯Ghn¶¸ïz®×g1ElƸïz®×oñ¶Øw»ïº®W“î»®ëÕ€û®ëz=wGC¸Õ7ÄU+â¯í?&î'Vǯ}+¶o铪•Ç ÜÏŠt­†ì‰õå—4c ùŠzã!;i–ò5pr7ñªACöP ²—jÐ}Tƒ†|Ë¡üޝp?å®%®áã®áâáû³úäç!äµ~ò~¢é«‡„/Í韤!} Æþ?=½ÖÉG©×:ùõZ'KS¯u² õZ'ˆФZçF„ȉïBüt9¡‰ÚpNînò$G9¿ßù–<ÀV<ÈÖüžm¨ßÞ–úÝéí¨ßÞžúÝéx”yŒòATÿìfˆ4¬¢g~ ‰sìÉ3ç¸Þw6_œùͱ}yæ<íË3øYˆ¬Ð/w•'W蓻ʓ+ôÉ]åÉúä®òä yº«¼¸BoÜUßÜò».eà~ê³[ ç]û*įlÈlį٘»(w¶´_/yk»ÅMù ›q›s/[p]k;~¥ëbMǯt]¬éø•mBôý!±C#.dc.¢uñ¾ž©ƒõ𾞩C3ê™:4§ž©C ê™:´ aðÈIc™8#$Ԫƙ¬ÎY|’³YƒshFì^¥1·Lœ+V·'Σ5øUçÍ1ç‹ksëp!ërŸæ{¬ÇÅ|†Kø,—ò9¾Ïúü€ ø!r1…¹œM¸‚M¹’Íø›s[ðcúž©–:^í¸Uˆæ÷GÒ{qíò{#®]~ïqĵËï=Ž4 aÚÖyÈl™ß{q ó{¯#®a~ïû{yÒqìýŽ´¤÷;{mïw¤5½×÷'ÿ¶ q£þ gñ gó*çðç†è—«Bâðž!¬{?DêéS¿üXüW³WˆŽZ+ª;£ÖR |_ͯü´ø±<1J©(OŒ’?*vÑd3}-3~²™¾–?ÙL_ë|ˆ›T/$Ôþ‹Ïðo>ËÜ¿£!bŠ›ôœøŠø˜8‡¸¾ø*ðò:ñó¦ëk¦žÔÄñ¿lJ3À¿rÍê•”kVDyfõ*Ê3«?¦~`µÚZÆ,|A+c¾°fá _Ð,|a;ÍÂvÐ,|Ao–,×ÔÖƒ%Ë5µõ`ÉrMm=X²\SÛœ—l®«mÎKžH½Vr2õZÉ“Xž“YSX‘oóqNe%¾ÃÊ|—U8Op:«Ò^©m¯$Û+µí•d{¥¶½’l¯Ô¶W’í•Ú5iÔ¶G’í‘ÚµhoÔ¶7’íÚöF²½QÛÞH¶7jÛÉöFm{#ÙÞ¨­Ë—ìØþ¨m$Ûµídk·¶ý‘líÖ¶?’­ÝÚöG²µ[ÛþH¶vkÛÉÖlmû£Xæâfá‡!tžÂõŸÄIâeÌÊfãrf§´ó<Ï;ÎùüÙy3ý =gçââœb÷¼X.®r~¡ó¿ˆs‹?fê;/rþ$ßã).fìÏÙ¨¢ ‡ÄVEù2‹…è+ãBbµbÉù©‹Ç‹Í6K.ˆ‹ó"r~‚ózæ%¿‹KˆßWàDVtþ’óf®%—ù°óÉÎ?ÎI¬ÄɬÌ)4Û¤_æømÇOp*ÍÒ¯¼Ãj|—Õ9æ—vÃC|–9‚ÿq$oqoóUÞáhÞ ¡L4„zù2ñ”'Ë$°¶Ç_óø=¾NU™Dçë0ë:ÿFˆ²AÛnŒãHˆ#$néÎ1ì¡ç­®çUC·û\-¼¼™t‹²Ý|ÕÂçˆSlÎŽw]·˜³ã]Ï-æìx×o‹9;ÞuÛbÎŽwݶô¥ë´¥]§-ýé:my‰®Ó–t¶ ¤k´E°ÝüÖÂ÷Œw­¶è¶?%ö½â]³-ƒÅµÄæ®í¾o sÖö:ô]â]Ë-/ë¯9ç»ÆþޱøéÎ qO«s÷{R»ÿÕ¹û½¨/¸ß›ú‚û/R_p¿õ÷õƒOë îëŸÖÜ×ÿ=­/¸ÿ’üÚ:$T¸Ç6¼Ï¶±¿J‹ía{Ʊ£ìH÷jPÕIeæd–M5ÂùçO`'&²3S± S³+Ó°Ó²;Ó±Ó³'3ð>À^ÌÈÞÌÄ™™}˜…}™Ä~ÌÊþÌÆ—(O@ùyÔ@æä æâÿ˜›ƒ™‡/Ó<µèÏßz0ÿâËü›úÖGÔŸsóy xƒ y“‹ø/ßã\Ì[\ÂÛ\Ê;|ŸwùïñÃý¯DH4.Eÿ+ÉfK1ÊGÏG™ÀÇèº&¥„ø½rmÒrʵI+(×&­¤\›ôåÚ$sêÞ!t,•.âÅrnÒjʹIk(ç&­¥œ›ô í¯ŽE<¿«ØŒ¸WîM2#îUGÿûÐûâ2¾Â6µ¿Ù~λΧ8?Z¼M|O¼\üZˆË.~û>åÑoåÙìòè·òlDZÞç+±|ú­<›]þüVžÍ.o~+Ïfw¯²Ë•ßú~ßúnQuz³U§7{ÍèôšÑªôšÑjôZÑêôZÑ'éµ¢5(GkÒëEŸ¢Ü­Å¼¬Í|¬C³ëïÕ¿]Çþåé:ö¯B½^!ü¼Lì:ö¯H×±ÿãtûW¢ëØ¿2]ÇþUèúõ‚®_ÿª~¿·ßO›µûëõë½(^Î>\á¼Ù»¿|µÁìÝ_¾ÚðÝ¿$3é†MŽõ–Iæ˜$3è†Íb93Éì´a‹c÷±ð¤üANfaNa¾Í¢œÊb!òá‰ÿ|7þÂî<É4ï?ß3Dk¤ 7×…°â“yRŸó¹ïÔt(}§¦æ¶+Ï„Äåyù,óé›Ìص? ñi‹‡ÄiøÓ†è-9smÊ™k»RÎ\ÛræÚî!|œ.Dôµ‘e—C|§Aüƒÿ£}ØÉ>\fv²—Ù‡†ðå¾BmëúXñUñ0^ãp^§9jÙ êݗݤž|Ù¿Ôƒ/û£y‹¯ñ6_ç¾Á»Ã{Ëû|3DRÇQé䞤Äq£tORâé~¤$Ðìš’H3~J*šéSRÓ,ŸâuzÛç·ÏŽu§Oe:¾Ãô|—8p:3r3q&õ-fÑžè4›öD§9´':Í q½ôÑ…Þ !O7ÇzéBÓ»î}O‡H\AçäµBÓëáXn+4ñºÒK~+4“ò[!ýx/ù­~¼øï!þ䫼ÄÑtßNÚßÅÝ·“¯Ó};ùÝ·“cè¾K÷íä›tßNÆþŸ÷ëäxº_''Ðý:ùݯ“é~Ô×w¿NN¢ûur2ݯ“æñÎWC¸¡g-î¾|›îÛÉ©tßN¾C÷íä»tßNN q¹o'§‡¸’>¤Ï{Æç-éóžQs»è÷nè÷JúÜg|î’>÷Ÿ»¤Ï}Æç.ésÇþ_‰’>÷™ñž¯ï‹ý9j%}þ3öcý_ìÏSë¢ï‹ý9j%}Ÿ3¾OIßçÌDçõ}±?W­¤ïuÆ÷*é{ñ½Jú^g|¯’¾×™)ô}Îø>%}Ÿ3¾OIßçŒïSÒ÷9ãû”ô}Îø>û>g|Ÿ‡­Ã3îY óû {­«l…½ÖUîϪ×Ù§ffÕãì3ƒ?k½ýbþ~v*ÍßϾÃ!²£Jˆe;ŸàEÿ¬cu}G5ñ—~¾ò\kè—ïC\¹Y!þ’Ù¡ÜlšÊÍ¡ûPn.ÍåæÑìPn>ÍåÐìPn!ÍåÑìPî=šÊ-¦Ù¡Üªgå–R=+÷>Õ³rP=+'·\òÊ-£Ù¡œúwI+§þ]z*DÛ‰Yå¥ö9Œßs8qs$ÍZ®K´½YËu‰¶7keM³VÖ×hÖÊú:â<Î1ü™cy‚oòZ‹ m'†hûìù4=vhí«Cú…<öÔ!ýBûé~!ýtH¿Ç~:¤_È£_8¤_È£_8¤_È£_8¤_È£_8¤_È£_8¤_È£_8¤^¦Ëãø¾c½x^ãÁ¡”=_:$.Ô;œ/C½Ãù²ÔOgÌ츜cýÃùòÔ?œ¯ÀDVd*>ÎÔ4/LCõu¡¾¬Â×!þŽÜÅç¹›ø ;sõöRŸPaå˜ úÒ?ºS_ú‡œRA_ú‡|RA_ú‡>µ‚¾ô}j}éúÔ úÒ?ô©ô¥èS+èKÿЧVЗþ¡O­p”ýCd‚z\S=ž ×4ÓT/Â÷ÄêrMu¹úƒâÎbu¹¦ºBÊÕ©^6Dg\ ‰ g…P\Ž).·Ìø]<›—ûv/S~›ñå·R~›ñå·3ößQ¯Ô×É›·>¢¼ykåÍ[SÞ¼µšã¸†ã¹–ø ßâ:ʧ·>e2×S\õ\Hè®þpˆdì¢üþ"yú‚ß_äý.øýEêö”'CBÝßXƒçi}ÖµO§XŸuíÓ)ÖfÝßi_Ö½Dû±îeÖå|š²ÿâ3ü›Ïòúu¯°>¯²¯…èÇï‡Äž­ùå•›Cª“|œ§B˜dÚ-®$>ÍÊ<Ã*´n>Á_Y•öÎ$ûµÐ7âjbßçfuú>7}¿U¾ÏMßo•ïsÓ÷[åûÜôýVù>7}¿U¾ÏMßo•ïsÓ÷[åûÜôýVù>7}¿U¾ÏMßoÕ?ÞG>(´Gì{®ò½núž«ôVi帛¾ëªkô]W]§ïºêò&ñ_6ælÂ[!ú¯=»Úžýמ]½‰öêêÍ´?WoáoÜÊóüœ¸Öàê/hí­ÞNkoõZ{«¿¤µ·ú+Z{«wÒÚ[ý5­½Õ»øwó ¿áUún9{…øýwØ›wù"ï±ï³oˆ×ÅåìÇHˆ|U9Ä—|ãþp¬7®7úJo4|«òKê†ÅêÜÉ'ù5kpkr7Ÿâ7¬Å=ú(9ò¤™åY÷ø¤ÞÿÙßXÔãµ=¾W|^l>ûªŽxëò[ç/8_œùóO;ÿë1ÖÓ©='KˆŸñcžúê9çÕÜáêíp}[šŸBüv³kösŽ;6‡æZ£ø3D?ü2$>ÿ?~ÅÁÜÉ—éÚ~¸Ëñ?CCt£8NO±¿1³° “Ø”YÙŒÙØœÙÙ‚9Ø’9ÙŠ¹Bx@ÿµ¿µãÜlC=Íþ¶4OîoGóäþöÌÏ,ÀŽ,ÈçYˆø ;³0»°»²(»±»S¾Û߃±'Kð–d/>ÌÞ,ÅùûðQöåc!̹"é±k5 ·nëìçZÍßasÞõœ=çqþÇJηpþ[ò¾ó·œ¯ÌÛ¬â|«à¥¢µZSÿV« õoµÚ2ÊvÔ»ÕjO½[­L ¡°||R_;SŸxR_;SŸxR_;SŸxR_;óCêkg. á³6!Ò`–X;S¯8ȼn6‰zŽ7XŸ7CX|"Dwý5ÿˆüî¹Ù$:È=7›D¹çf“Ș_B|Õî<É<Åž<Íx†½x–½ù+_ä9ö !ózÇ¿9îËóìÇ ìBìÏ9h†sQüÍœU8ßÞysZìÏ 98Ïyu¾ª:?F¯ªÎQ竪ócÔùªêüu¾ª?F¯:$Do|W™¡§ ñõõMÓÌGõh>ªŸÈÑLÅטš¯3Íÿ9ºïxëÿàŸûÜ盈(’=²K$£½GV!I$Â1¢Dö^ÇŒäØ›ì™ŠlEQhXQ_¥ßóüþ¸ÏûsÝ÷9îûº®Ïûýz¿%~ÌÔÂ4Ê´ü„é8ŒéCˆØç“‡{ž#(ÿLI™fò(fâh>Ê1´gî,ö™Ìw–𣊕ŸF‡¸bÅ8†Å9–f®‡zÅz½â¡^±^¯x¨W¬WGÆÞ ‘§ÍZõŠõzÅC½b½^ñP¯X¯W<Ô+ÖëõŠõzÅC½b½^ñP¯XÍÏ»·Ÿ6£=Ô3ÖëõŒõzÆC=c½žñPÏX¯g<Ô3ÖëõŠõzÅC½b½øPŸX¯O<Ô'Öëõ‰õ>ÓìF!¶ñw!TV³NÀ+«Q§ R>UÈë½þ½µÏpÊ@[ù:‹8ÞÄñslJ÷åìfüÍù#[PO­|Ãû‹Z·´¾È×ø[Ñ ;»5/± /‡è×zôP9ñk=zè›\ÈN\Ä·èZ íL×b¨ŒñõRv¡L3ôÊ4C»R¦Ú2ÍÐwCÌù-!nŠÙçüVv aØåÉ‘×z›õ›ÖW¬Ÿ±Þnm:¿ƒf¡ó;i:¿‹f¡ó»i:ÿ%í‘a2[Ž|Ö{¬ÍDç÷ÒLt~“ÿÜýìÎ|/ÄܼâNáuNå NãM&òNç-Π™uáLšY΢™uálšYÎ a”s™+·µÙuá§4».œK³ëÂy!&ÃÝ»dY_ô¨äñRˆîÓ›.¥ÞÛsû)ãÚO?e ÎeIÎc)ߣ‰GSëϬK‡hÛhˆÌwiËåŒãŠÍmÿq_å¶ïÎ\¡}wæÚwgôë<²<=&yLvÜ>­zÏ®úö ‘t›ØŸfå¾h–œ?2Ľæ>Ÿ?Š%ÿÀñ­ÈmŽë7¯¹ïû²ÞιƒQî;˜É¿ÿcîö~}éµÒÖC¬¿äPîá'Üëuýêµ2Öì÷q8÷Ó ”î@)õ€¾æ›t_Ñü‘N.î;š‡üì8?[ÖzŒõaëñÖå8Ï9>Öñ¯­'ZËR}ÇYÃñ<âø$ÇËs2_àVàTVô¾ Þ§ÇΟf­nõhý­u¢µÖw’µ¼<ºõKœÁÊŽOvü¸õLë*œÅªœÍjœÃ—ù)_á\Vç<ÖðórGºœÊ“ŽæxMÎ竎OsüyšÓy†rPº³Þ÷¹÷Õ²ži­§ö•Òé}gó\OêóxOm&±².±³>—°—²!—±—³qˆnHâ»™Ó6¤¤9mC*šÓ6¤¦9mCšÓ6¤¥9-©hˆoý‹ÑžO*Î |–Y‚?±$f)^biªŸIe¨~&•¥ú™TŽ¿ò9þÆçù;ËSIz×X×Y‘昤y“•øG+ÌAUF°G:þ’ã·X™·Y…²*ÍðIÕ('½Ì;~®¶ŸeýŠõ߬Nón)Ù÷joʾWû˜¡>ó\þ½ª®¤ˆ qÛõˆqÔ#RÄs%SpSr5SqMˆùS¶_Âh×9—ëü§Œ¿4žm˜‚m™’혊¯35ß`¶gZv`:v¤,:Ú}’Ë}2Ú}’ë{Çßt<ƒµû%—ûeôžç§üÁ뼞üß{›ký£õ[ÖÙ™™ø6“ÿûnó¼~Áº‹uf¾Ã,ŽæøEÎçOüœÉÿŽ— S2pLý+S5—ï—¿"•çYËVÍåúåí­?cÎw\^hÞš²Vó6Ž›5*›wæÊ\ÍÛrÛ9nö¨¼€fÊæŸ¹«ÝÚ RÙ4wõ\ËöŽ›I*/²^gÝë)Îý‚²Úr³JesÒÜ Ö²áÜ|Ëq³Kå%Ö›¬eĹ›)#ÎÕϚˈsõ³æ2â\ý¬¹Œ8Wk.#ÎÕÇšëwsõ¯æúÝ\ý«ù{Ô¿šëµ'χØ1¾óI÷Ôßñ¤{jŒïtÒý4Æw:ižãϯW=„Ÿ?¡Zòó0Öäpª?««'Í[c|·“æ­1fûzjÅϲY½ÚÅ:TcOšÃÆt±®k=†®ÍÏjêIsÙ™³^}k5õ¤ÙlLWëÖjëI3Ú3ÚI3Ú˜wi6#cœ4›Ñ¿ë5ô>µõ¤™lLò÷2“1“4“1“4“éå}¼OÍ=i6c6;i6Ó‡·˜ÀÛìË?©Ÿü‹úÙÉÿQ?;y‡ø=ýµúäßÖ­e¶ŸÕè“2é}ìä=êc'ïÓ\U¯©×Õà“¬õïzͬÕâ“ÿXëßõš[«Á'ÿµÖ×N>¤¾vò?&Ÿ÷^W›•èØ1úÚ©õµS1tþOE©§Ò“ÿ7µSqt¾OÅS/;•‚Îó©”t~O¥¢óz*5·Si(+FyžÖóI!º{zˆï×3Ø(DÛ\—;§RÆ~leìÇ|¦¿ ±Ï©uî¡Z÷á^ª]îcî§ë-CG><ày=~Åú<È<ĆÏ}!…ϳC_HáóìÐRø<;ô…>Ï}!…ϳC_Háó$ÿ]T)|ŽiC(îúwmŠ¿ì˜Ï”ü÷R¥ð™v¤Ñb1!îòRF¹Œrèeß¡˜z9ùßUsÎ7éÅ1Y¨ÇÛ™H¹lçtÊe;g„è.Ÿ#Á5ÞåÜ'¸Æ»œû×x—sŸàïrîÌIéËzîü'¸Î»œÿ„ótþ~aM¥ye µëà:ïr\ç]®C‚ùe—ë`~Ùå:$˜_v9÷ æ—]Î}‚ùe—û!Áü²Ëü“`~ÙeþI0¿ì2ÿ$˜_v™Ì/»Ì? æ—]æŸûs—ù'Áü²Ëü“`~ÙeþI0¿ì2ÿ$üAóO‚ye—ù'Á¼²Ëü“`^ÙeþI0¯ì2ÿ$˜WÈ ­e·›=—C[ËŸ äÐÖòç9´µü¹@m-.ò™Ûúî‹|æ¶îíE>s[ßy‘ÏÜ69׫‹KÇR]\:ŽêáÒñü•ø'òwNâUNaê)œ"D ©ï? ¢úþÓ‡Tß’¿¦~åõ”ÖêüOƒ©Îÿôqˆö÷ùJÉÓý}¾Ròt9¹”<Ý_N.%O÷—“Kù>ý¿¤ïÓ}ŸZB|TŽ®õ{ð {òßçaöâ×ìÍo؇G¨W=íÞ¨uÔó¾ü–ýxŒýyœx‚ð$õªbÙBìå•|œ«øW3;ÍrÅrp-srŸäz>Å/˜‹˜›™‡›ø473/·ðne>nc~ngêñÅ RO,Vˆz_±ÂÜÍ"ü’›CìY¥ØÊåíŸáïë­ÖòwûòÖ}ùû±û³"õèbÛ¼O¾nÿ¢µ¬Ý¾“¿ÿvÇåìö/Ybe~È*tÛ«Oö¾Þ'oÇÉåíÕ«¿õíb;“¹ÛëëßÅvY7çnÊÖí_q|¨µ,{¥¥µyçoý¼˜L{Ež*&Ó^‘'Û›þÖߋɶWZ[›ƒþÖ»Û›ƒþÖ¿‹ÉºWäËö柿Í?íe¼¿õûbr﹫˜Ü{EÖloú[ÿ/&ÿ^‘¿ŠÉ¿Wä¯bòïù«˜ü{Eþ*&ÿ^‘¿ŠÉ¿Wä¯bòïù«˜ü{Å\V¦d_½"‡Xsv¤sžcSê%eJyÝ<ÔY0gG:ËæëHgyÀé,˜›#åss¤³<`nŽt–rÉå€\r@g9 —ÐYÈ%t–rÉå€\¿QÈ%t–rÉe€\×ø&¯³o„˜Ú¹C\tko™Áÿ™aÇz›µsûÏÌóLÝ{îgÖã%Öçå^÷]ÿ—üïÅÈšÿ[äxǯ°!a#þJçáÜotÎýîýfÑÿ-¶v>Î]uOTòܹ8§þõ7C—2{÷W¿J½Iµ«”™»¿ÚUê­¨æ—5»Tó˶§š_Ö5i/Ä%ÿ·íïs:pFñK<ÿÇó™!¬¬"ò_(X+D—É^ |Сåƒ9Š/r4+q _âXÊ%ËÆQ.ÙZ#Ä¿BXmŽ}y­uMk¹j뫌q¼—ãë¬kYËW[kS¾ÚZ‡q¬ËxÖ£¹µ>Õ­ ˜Š ™šòÚûiB´ŽóçûÖq^â:Ðy‰sžê8/qÎS53Îyª£fÆ9OuÔÌ85´Žš§†ÖQ3ãÔÐ:jfœZGÍŒSCëì¥ZgÕÐ:û©'ÔQKãÔÒ:jiœZZG-SK먥qjiµ4N-­£–Æ©¥uÔÒ8µ´ŽZgf¿çž^åÞ½çž^åÞ½çž^åÞ½çž^åÞiæº_+díÞ^å¾çÞ^å¾çÞ^å¾çÞ^å¾çÞ^å¾çÞ^¥O®Ùâßö¹×8o›Y–q}Ç’üž¥xŽ¥i¯ þ+D²–².cýËòGÇÿçxiërÖúzà !>õ^äHþÄQ!Ì6·–)þl=š—8†—i&hx…ãø ÇóWNàoœÈßinox•“yShnOmnohnOmnohnOÈ?8=„éwB¤X™­0-Äý¥¶N—«ŠÉ+­Ý‡¦Ó}Xaåã 3)W˜E³ïfÕEêýfÕE iV]ÔˆfÕE¹ŒM¸œM¹‚jñèÌ!’+ù}+­Õâ?VÑ,ûÇjšeÿ0Û.R{ÿ0Û.2Ëþa¶]d–ýÃl»È,û‡Ùv‘šú‡Ùv‘Yö³í"µtÍ[!îíGØ™ù63…ð”þ’£~ˆ–•-n8ee‹ãCH3ÌsùâÆ}¹ˆç2Æ ç³¬ŒqÃù,+cÜ1ž.êù5ÏÓ²×霖½Aç´ìMª ñ=CìöÀ÷Êõ½x3k¼y5¾crùv™|{lˆ´b3';”q6xÏ?ñ<žÃ˜‚Ù’#˜Š#™š£˜†£™–c˜Žc™žã˜ãù'0#'2'ñQN¦ëÐj ³p*£Ì›9+eÞÌÙ(óf~œ3˜üwþé!–¯~þˆrÕÏf·„Ù!’Öž˜3(Ä5ÍÇ™Ÿ±€×çxý¼õ`ë‚ü˜…8„…9”E¼ïSﳇæ|b]”ÃX,„[B$ùï•:·*ÄO–ïέ¦Þ¿q«ã¬×XËwçÖR¾;·ŽC¼¾ÍëÿXËó“‡RmŸü‰ãæ×Úÿr:®ÖOv?œSë'«ßw:þŸµZ0Ùž=§L¶gÏ©“GQmœl¯žS'Û«çÔÆÉöê9µq²{ìœÚ8y|ˆtгëƒôÁì7øo²3ÿàÛ¼Å.¼M³Gö?Ù•êJ‡nTG:¼Ë;!:ó¥oÿFgV¦Œ>³ eô™U)£Ï¬F×gæË”Ñg¾Â䟫Î俯+]ˆ¯­/:"3Z§·Ö‡·ÎdÁz{ˆž¾âÇí3¿l aWÝiâ>‹õݶΣï¶õ3ªû[çSÝßú9Õý­ ¨îoM !ƒy-Víߺ0DïËÿkô¨ûòÿ=ê¾ü¿Fº/ÿ¯Ñ£î›YÖèQ÷Í,kô¨ûf–5©BLÙ!öF}nbƒ}t^ˆ;$s屯ó<¢éÿâöÍá~Ê¿9—w9zö¾Ï¨gï›O={ßçÔ¯÷-à¿L Ñ;jãŠ}TWì‘÷Bli3£¼™ñCëûÖ¹¿v?¾ÏohÏ9B{|ÎQöá·´÷çc_g?ž`ò?p’²îóJÓh^i*ãαŸš¢ýÔôCšSš&ÿyßS¶sŽòìœó”cçü@¹uΔWç\ |:ç"‡ó'Ê¥s~æH^¢<:ÇœÕTþœ£6Cµ°©¹kŽ:Øt\)Ó{®65{ÍQ›š½æ¨ƒMÍ^sÔÀ¦f¯9j`ÓÉT›N¡Øt*ÿà4Þ¢š8ç6å¤9Ræ›óe½9®YÓYt͚ΦkÖt]³¦ŸÒ5k:7Ä,)â^?Éâ<Ågyšúñëg¨¿~–úñëúóýøuýy‰>üºZ´D~]ÍY¢ÿ¾®¦,yŽ?òyš9—”§ |;eˆMþoÍÜNʼnLÍILÃÉLË)LÇ©LÏiÌÀD>ÂéÌÈÌÄ™|”³˜™êãí,To?FuîvVÎ¥ùnñ<ª³·Ÿð0×-¶¿Û[‹?1+ÿ qdà”î“U¢l§E!È®‘ ÷­#Örîª.q\=ÌðÀ:j½Tï+䘘áÏ {¨±fßH†½'Ö{–Y«RÍËðŸãqŽ/·Þ"èi«â­W0…GJÏõíN>Hò?—úˆ^·ó¨úà\„Ù!~c/Îaò¿?œüwÐ|ë5¿d§zÓÄù ŸzM? siÞ©î4q¾Â<ë¾!6º(Äo1?»bš½âÒ› š½B3A³ê¼Ì44«I3@³WihV‹f€fµù;ëð*ë2ù÷ÕãuÖ§™¤YÞdCþÁF¼ÅƼÍ&ÔïâÍeÍšzþ›ñlÎ;lÁ¿Ù’wùï±]Ÿf­éz4kÃØ–Î}³v|È×ù__¸?^=BaùnºÜ_ÿnKO†ÈK™­åþú÷øª‡¬_ÿ¾Gò¿Ë.ïf:My7Óʹ™ÎRÎÍô]ÏÞa¯üÙ,ï¸Ü›É¬øšÜ›É¬˜”"ĶK÷ëqtÿ·Ö³’Üÿ­í‡$÷ë‰!ôë"éר/#CÜ%8Š%9šæÌ~æ“ôk­ÇXË»KƲŒãæ“ôë¬ÇY—åx–ã>lj|ž“Xž“ù‚ŸëíçÖ[O±®À©¬H9õ)Ÿ¾až["Ÿ¾ñåÓ7*S>Mþ»Ê–ȧoTålVãÊ«K>å+œKsþ“'<×OÞ¨ÁÏh¦2¹ÞÌ÷üU~ÎZ\ÀÚL¢ùýÉäZ´Ðóº!: bf\Æ.g”+Ë•Œãª›þ³¿Oy¤Qˆ¶0ßd4ß´0ßd4ß´0ßd4ß´0ßd4ß´0ßdLÑ[ï„øÅæÃ[]i>,¥W\Õ“ß ‘"þŒRzÆU¬”žqUö)¥g\•}JéW‡Pϸ*ó”Ò3®ÊÀñ§7/Ž“µª'ÿ>û§º:ξ©.k³oªËZãì›ê²Ö8û¦º¬5ξ©n½¯î–¥ß•²ôûjoaYúýÚ”¥ß¯C5˜½SIæfïT’¹†Ù;•d®aöL%™k˜=SIæfÏT’¹†Ù3•d®aöL¥q´g*É[Ãì™JòÖ0{¦’¼5LÞª$o “·*É[Ãä­JòÖ0y«’¼5LÞª$o “·*É[Ãä­Jæúœfëa2W%™k˜}WIæfßU’¹†Ùo•d®aöY%™k˜½UIæfOU’¹†ÙK•æÑ^ªôí™JóiÏT’E†Ù3•О©”b†'ÿOk iÏTZbÖšù»˜ýךù»˜ýךù»4 a€^–Ñ}½VvèÒÌú”µû{­Ù¿Ksšý»´ Ù¿KK¯ëkÝ÷k×Z¿ÆulÅõt­×~A×ví¶åF¶ósú`Fûdí&kûníf¾Á-l¢Í²‡øô{B˜cÖ-ÙÄ:‡õ^æ¤üßìIîáÕ-!üp?D¾¬bûd5âË<,ÉUŸ ±÷w0w2?w±wÓ>¹ÿ% q s/‹p‹ÒŸ''T-æù6u ‘:r\‘÷BLº÷BìÞ({0–=Ç÷OYk¯L–®7SR®ÚkfJ—ÀÔ!U‹¶¤ a|¡ÉÛ9D·fñ=‡èæ¯B|}cóAª‹›õ£î÷ÍúQ}c³~ÔCߨ¬õø„úQ=ãÆòŸdö¾±‚~þÆJúùfò$?ÃLžäço˜Å“üü ³x’Ÿ¿aOJþy3x’žsà ž¤çÜ0s'é97ÌÜIzα.!~¤|1Ⱦ.gfd?—³ŸÙÏå„ÈÜi!¶¹½>7‘ööÜéÌEu©¹ú;w&ÕÛ¹³ø4g3/çð~Ê|œËü4Ë&ÿ7®ªì áÔÖ2wó‚”»›;gsÍ´Í ÓLÛ¼“X” YŒ‹Xœ‹ù,—°„ß·+„ÓÁz©uI.c).gi®`®dYÊÍÕ칫ù×ðy®eùÞé"Á<?Ûó·<7 ¼Ó™öÛëC\6³Îë/Ò¬3Â5¯¬/Ð*ëK½âB$• 4Bÿ©¬/Ð*›ñFè?•õ£úOeù¼W¼÷½Ì|…))#é#‘TòÑý©²~5Bª¬_П*›¿3>âlbFnf&ná£ÜÊÌÜbËêídìŲz;{±¬ÞNÆ^,«·û“²z»¿d«CžËëíþ'Ö–G…È|óSË™!d:âq4„ª2ç鎛§Z𝿛§ZÊÏóÍS-ÍWóÍS-ÍWó§ùjþ4_Í7WµTÓ.¨ÿ‰êýõ?Q½¿ þ'~Âp¿+‡ùñ‚>hƾ $š±/ÈO‰fì ²Sâ0ïógåpÎ/ÈP‰êþ*QÝ¿ $ªûôDuÿ‚>¨î_ÐÕý ú@¢ºAHT÷/è‰êþ} QÝ¿ $ªûôDuÿ‚>¨î_ÐÕý ú@¢ºAHT÷Ç«Ù5Ôìñjv 5{¼š]Ã÷¯f×P³Ç«Ù5Ôìñjv 5{¼š]CÍž äÔP³'¨ÙÉÿ‰ÞôÉùìHù©÷›ôþ òOò_¢·û/µû¯·{/µ{¯·{/uòϽM³çù(ù¿;Ñ[íJì;\ê¸ù2ù¿CÑ»«µ9³w7.wÜ|Y#y-Ǧ6WN0_ÖH>ž‚Ék3f•LEsfo4uò:µõj¦áÇßs|•uZëµÖî‰Ôɯ§³^gmnImn™Þz½µ9%µ9eBë/¬Í'©Í'ÜÃ56X›;R›;&¸—kl´îcü¾&¿Þ—½î¯±ÉºŸu²ý¹Ùq÷|dÝó5ôÞjVê-ÖY¬·ò1n !Åvϳz¾=Ħºâwà/üŠ¿ò £½ðCŸ75˜›}™‡ýø4û3/ð™ôñHŽç¨wå0[ýðãù¬Í‹9Ôý<’ãÇ:žßú_ë |H3ÖƒWõ÷H³ÖZtÏ«g9*1—(÷å¨L9/‡™ë‡¼Ok]5„T?{®öäP{~ìµÂÖjL5f¸“ÃöÃÇŽ±VkrT·b]4D/š¡OÐ •x’f¨ÄSŒçi¦à™}F–9ÿ)e™ós)ËœŸGûâüg´/Λ ž±/ÎNûâ¼üÿŒ}q^þƾ8/ÿ?c_œ—ÿ¦¸óò>ûâ¼ûxô­É­®oÞb{Ô¡æ£!œoh½Ûº&¿ä«ÜÃZ^ÏìõFÖ{­Õ®ÍûX‡ûY—®sz!¤M!gT–3~!¯\ܬŠçWY•×X×ClÜÓ!~›~Ÿü×ñ%Úg}®Ä%´/í/ç).Ñ>Ê¥9Wq‰ös—h9Wq‰öŒs—h\´§í‹öT¢=qÑ^J´.ÚK‰öÀE{(ѽÑÞIü‚öL¢{>×5í¢=“hOä塦]´g7…˜Áææò5if.oflf.oflf.oflf._‡æåòu¹ˆõ¸˜õ¹„ ¸” )?–—_ËååÈÁòcy9r°ÜX>ùï }Ós™±|3ÊŒåeÇÁ2cyÙq°¬X¾eˆ•S¶Ž£œ²u|»\ƒ&£­å•­(¯l5£žâXyæ”Ü2Vž9µÆCf;ØCž9^\‘ó/4v¿=Ã&ÌǦÌÏf,Àæ,È,Ä–,Ì×X„­è¾¾ÐšÅ؆ÅٖϲKðu–ä,Åö4ã]è@3Þ…Ž4ã]x“åB(™2„}ÕC¤õ¿!6Ëkì¾Ö­‡Z§¶®I³ê¾W)ì«åõÿ¼þIˆ´ ÔÏJʈûܯm"ÖÃÃŒr¤×ͱûê0ÝÇmb×—ÛÄq´ãòþzÖñÖc˜‚cÏèx}ë”Öãh&Íâz”ÌäxÚOûì§6fÔ,fÔ6fÔ,·ö5b6vÜÌšÅÌÚÆÌše²ã9Þ„YÙÔq3l–)ÖÙ¬Í%gsÇÍ´Y¦Z?aÝÂÚl›ešuvë–ÖfÜ,‰Ö9¬_cN¶rÜÌ›ÅUòIëÖÖfß,3(‡d™I¹#‹¬ÐFîÈ"“…Š!,¸"åÝ#Ÿ ñ/8÷ ~±ÎbŽq£Jr$KqKs4Ë„0Ôò¸ûûøë²ËrÇç8žÏ«§Ó=Ÿàyùýâ¿ßm]ˆÚžñÝÖ3Â/à T?»m¤úÙM6Ûç¡vvÛì!›ÕÏâSe~Ë‚<ÆB<ÎÂTë¡ú[¿(O™åÍ<áZˆÝhêÓF³x¸A³x¸I™=üA™=Ü¢|ì×!òtÚóì²NvùGvY'»üc†]gfýÇ »NŽOefØ59Dþ;b7´ã)¾ÎÓ|ƒgØžg)¯ü÷;†˜ÏJ†¸gYŠß±4e¸ÏÊPFû¬,χè”Ô!¾¶s1% 7‡Èi¿w\ú½ãÚÒïçÏ=í÷ŽóçžþžþÜÓçèÏ=}žþÜÓ?PN:ý#å¤Ó(¾È·BÌmq‰=5ZöÈ¥ÎÞ–—¨Ï·eÄ%2âmq‰=5ZÉ¥þÞ–—¨©£e‘\2Ëh$—¬2Zöȥߖ!—¨··eÈ%c—Erm°–%—Øc£e’\2Ém™rɸRë«·åÊ%råm¹r‰\y[®\b_–WrÉ+£å•\›CÈüïÝÈ(¹ÜÞñ5ó°Ÿfoš¶8=‡-ÎCOça‹óÐÓyØâ<ôt¶8=‡-ÎCOça‹óÐSNÜòåÄ-?SNÜr‰òá–Ë”·\¡\¸åÊ…[~¥<¸å7Ê{[~§|·å*åº-Îé÷]Ï÷CôÚ”ÿy§¶e ‘jɶGÙ™ÙÈëS½þ–uëÆ´Ï¨Û²RÙ–jŶÇÙzMq¿7…ZÐÃÌ߯1}§¸?£û¹_À\Ûý<͵Ý ¹¶û4×v¿@sm÷‹ÍŸ8†?s,/q/s|ˆ–6Ë]½B³ÜÕ_X‰¿ò%þÆÊüUx5D–±|ŸezZßgÙDú>Ë&QÍ«v'„³æÌe“­Õ¼ä¿ú¬ysÙëœÊœ4Wwð}—™«;øŽËìǹ¼ÿ®÷›K—™¯;ä¶¾gm>]fÎî`Î^fÎî`Î^fÎîà^YfÎî`Î^fÎî`Î^fÎî`Î^fÎîP€æëæëeæëæë½êéõt¯z:@=Ý«ž0[í5Ç ˜BòßmpAïÞkž`žÛkž`žÛkž0ÏëúÑ…ºt_Ðöšï|Æ4ÏÔÖ.Ô§~sÁ=R[¿¹ ßìÍéusNm}悼¶÷IëÖú^Ùû”usq!ssóp1ŸææåR>ÃeÌÇå!úTwÚùžü}ˆ|º§µ3ùœuvë÷­õšÉç­sX÷²~’½ùeþÓ¹(óŸvÞ'ÿà}ÞŸgˆcòÿiûô)ùÿ´}ú”ü:/åÿÓúÏSòþiå)ùþ´|ßöûþr/´=Çì!æ‰6!öÛ[Ö²ûŸ² ÍÂO´uÜ<þD;šÇŸxñ &ÿÿ]“C\}¬ÙêcͦRk6e˜È²!´èÂu93RMý?—y”êR¤ºçßzè5W†‡ø9-Bô^®¿Jƺ—›w™‡÷(û®ºÏ¼|ÀgøOˆî—Áe¢ 6Èõ\çÜÔÌi-‹ ÊLYlPÊbƒä„u?zÝÞ]wÎí~Ùlܰs¼_F$7¬ûÉÚ¹^÷3ßý2Û Ç)³ r ÷Ëlƒ\Ó$}þsV’þþ‚!éWÊ‚#‡øÊ}eû¿<ÿÚó~ü†ýy„êìfs]<Ää9â0圚î»ójTMŸ÷|Ç¿vÜ}¸ù&¯PÎÙ|”jVMŸÿ|òÚ¹ì!çl>ÆŽûç“_—Î'?³ù囚îƒórÐf=¶‡œ³Yí!ßlÖ {ƒ1²Ã&Ù󽬔=ßËFÙó=ça“ìùžó°Iö|Ï=¼©Ý»›Þ¢ó¿©3ÝÃ›ÞæS!&§=uÂ}Ó^:¡æ´—Nèw9í¥æœöÒ óFN{é„>—Ó^:¡¯å´—Nèg9í¥拜ùi¦ÎY€f霹5„l™=/ä¹yºQ¿~Ù"W§ù¾÷Uçi¾ïyÕù™ß2„…pd{ˆ ìb˨/¸ïìàGÜÉÁÜeÀ-á=ïyÏ]ö Yz`Oº“®…ø6³ysxƒfϤ›4{&ýA³gÒ-š=—2;¸o—æ?!¦˜ {y>eØËjO{õõïä.Xvýÿ¿ŸùÕwéOÖ¢{¨hmþux‡ué³§iåy=Ï}ÆI+Cl-õ|Ò*ªÓ“VS}ž´†Ïs-Íü/á„;iõ \Ï ü‚¹/r#+q_âfVæVáVVå6V ÑI‡B|­¾tï×r¿Orß×r¿Orß×à\ÈmÔ¤$™¢š”$S´±W’úÐÜ””@sSR_š›^Qïæ¦÷Ð|E{øt3_ ‘â3¬Õº‡jÝ+jÝC¿×œ_¿cùy¶Þ`ý&7R6Èÿµç›<—æ? ‘ç*†h?ù¯ÄÖÿY¿hÖÚ}ß/ÝwÃq•vò îbv&ÿ÷ýrðËÞß")ÿã®1nÅ ÏéøëÝÖ~ÉÇŸt|/Ÿâ>æâ~æææáW|šC̳ëøV\G¹ãÌzÊg¾ ûä̶snk†øWÕË;2ÿò3”ù—Ÿ щ#Ž£øF{1‡9!Çéóñ§!î…WBä;a¢ŒðŒ0QFøNF˜(#|'#LT?3ïõ\N˜˜?Ää÷~Ô?âê{î3üØ“>ÃïÓŸÿc¯^×»îÇæ‘ürææ‘üræêðë·½¯„:1Û1™óG³I~™óÇþŽÍñ\îüqåÎ?‘oZ†Ø¡zÂ7¯Q/ø¦õ‚oZóõÍ¡—©OÕ¾Ñ'‡êßè“Cõ€oôÉ¡¿±=gÊhßtä5¾Éë!zkiˆ_<0„íÅB¤aWg·ŠvòÚ2¯©UEßò|¹çr?âJæ*~ÌÕ”n™›åZ~Âu”Io­§LzËY,“Þ²7ˤ·ìÅ2é-ûb±LzËL¸Ø\±ãÛiüHˆÞâ×ÈÉ;ŽYËO;ŽS¿½?Èñ¦üzL5îþGž71Õþ ±ÿŒåÿ8Žwhþ7cÿ1È‘±ÿLä=Nâ}NæNá?4Vû—fÃji6¬öͽ/Î`„3ÃY!&ËÎûµlÞÆ9»½=„¬K=–9¾Ëq}5ërÏw{Þ˜_zìñ°'³ìs¬‰GSfòÿoòÃ<µè7ùa^¡¶‘úzÂÖ¹›ChÿoJû}ë'ÜËaÜÇáÜïçåŽy…)gÌ+båø=úlÄùß4ŽÎÿ&¹=âüo’Û#Îÿ¦‰!ºÐ,ÑÖl°Ð,ÑÖ¹Á"<ÂÐ/Bäq9ìdQëS,Fûìdqžá³<Bªž—ðÜ,|Òl<Ú,|Òl<Ú,|Òl<ú<嵓æâÑfÕÑöWÚ+>ãþ¯ø+e•´¿QVIû;e•´W)›¤Õ ÷È&iõÂ=2Þ—ƒB\û÷ËY€±`Õ ‘,î­dó,¾Ó—ƒ/ÄY˜CX„CY”Ÿ°‡QÏzêS¹Öííù/GОnk^þSÍÌþgˆ=þ ÝLJÑýwܬÝýwܬÝýw|$ÝÇG…Èu9gÿºš¸@M¼®&.P¯«‰ ÔÄëjâ5ñºš¸@M¼®-0Û^W‹¨‡×«fÛëjÑ‚Îr‡lýëÖjÑ‚·­eì_³[«I ̺×Õ¤ï8~ÞqóÖuµi™÷ºz´@?¾®-0ó^W‹˜y¯«E ̼×ÍÀ ̼×ÍÀ ̼×ÍÀ Þ÷{~ð{Ì~¤LÛèŸâEÊ~¢ Ûègæá%ª½×ÍÎ zÑì¼ 7o°×/{]M¾~Ó:PíÌ2Ñó[ž÷ãmö§s½@†½î\/øÀ{&yî|/Hç{Á :ß >¤ó½à#Úï d«¢C´w†_t3áfäVfâ¶Í>Äéq!Ïø¦È0û8–Á±Ö²LÁêgåÜ8¾ÉZ–)(ûM‘e ʹ3:îÏȉþŒÜRV,¡ÞîÝ"­äŸÌú[+ù'sÇÕ½ra+9(³Ù¥„\¸w‡µ<”Yžj%eöYZÉC™}†VòPfyª„ܸWh%eöZÉE™}†VrQfyªÕvÊS­v°’÷;{å…VêUf¹ª•ú”Y®j¥6e–«Z}I¹ªÕVã^*z¡¨çû<ö{ØŸ™_ñ0Ce®¢ë‡ø/d©‡ X@=V£Š a¡yõ…+!:æ§ÿòx}Úg™U>ˬôfÕ¤Ï0ëUú ³j…˜®_‡¸gÞå7ìNûºëQÏßóèbÎ¥qòd̹4”ßÏ¥¥ü~.å÷s®ŸsÎ5“#cιFrdf^Îþ«µk#O†aææì¿ÑÜœýwš›³_år^ó>×NÞ ÃVX_·v åÎ0l¥õ ®âÍr5õhæõÌ^—;†­vü®¡Œ0l-e€aëhž='§LÚN9eÒf¥œw.Õù\úØ9Ùo’¬wNö›¤_œ“ý&éçd¿IúÆ9Yo’,wN¶›$Ë“í&Ñb§BÜ•AÁ©<éøçŽ×áÖeëq!ësp1r q)s›p9eˆ‚+ØŒ+©÷\Å\Í–\Ã×(_4/¶¦L|± eâ‹m)_”‰ näëÜÄ7¸™í¹…¸•¹2nÁ‡!:øÓ_¾ç²6çÑwü}ÇÁóé;þœ¾ãàô'Ñw¼¾ãàEô/¦ï8x }ÇÁr^yßq°LWÞw,Ï•÷Ëså}ÇÁò\yßq°¼…òæà­”5o£=x;ßæváN¾Ã]ìÊÝìÆ/ù.÷°{­†pëJˆyDý?0Âz‘õ/\L{ÿýà€>üˆ~p`å¿£)ÿbº]qùäƒn7(?v»Iù±Û”»Ý¢üØí6åÇnrrñ¿†hÏ¿œÅ¿8;„ êÈ3׬ÿgmNOs‡æô43ùŸ+UWž‘ÃÓܵ6¯§¹GY6Í}Îç~Îh.Oó/“ø ù…hZcÊ—‹áÆp)£\ÆX.g“ÿþÉŸB\Œ™xès!¾‚¾›”Í5t }ÞúŠõãÖÍ)O¸OB’á> Irƒû$$å¤û$í…ýµˆŸëžýuݳ¿~@÷쯲û\÷쯲ú\÷쯲ú\÷ì¯rú\÷웆øœzî›™©ç¾™…jâК!®Â|•·X‹·Y›jçÐ:ü‹u)ƒ­Ç;¬Ï¿Ù€wÙ÷؈÷٘؄ÿ°)ÿe3>dsþÇ!®¢YzhKFøÍÐñCCìöLü„r3s8³p á ™ð‰’!©â6þÁ¼Eßk£z¦ç¾ÛÆ?é»mü‹¾ÛÆÿ…0NÞ7!Dž>âqÔqßuãú®ÍÙßuã]ú®ïÑwÝxŸ¾ëÆô]7þc¯âW>D© iÔŒFjCØ>Š6RÒ¼bæÙs-Ìeóì¹æîyö\ ³ö<{­Å§´×ZÈóóìµóBH™Ûsû­Åg´ßZ̧ýÖâsÚo-Ì2óì·I!æ3û­ÅBÚo-ì¿1Ýä›òÎ,yç{ëw­ß1ÝéüŽyO±Û1=™;DîL ±®CäÎd>É)tš™7®šÃ›=K™üÎTÇeêfî­«j\³’|Ï šÆkÓ¼&g7+嘜~'Ñ:§óiÙø×J{Mv¿3Ã1ûÎL>ã¸ÜyU–o&o^•ÉïÌr<Ÿu9kÙüÎlëüÖÏY÷±žc-ßeùDZç“Óï|êXÁ™‘;Ä6XÄ<”³f¬ì¼ž4óÌ(e-VvNO:§3J[oaºg”¥ ?£eöÏQVŸñòRq¹©¼T\nê#/—›úÈKÅå¦>òRq¹©¼T¼có? ‘r{9Œû—ŸŠË‘ó‡[ï·–£ŠwÒ›gx.K÷ÝúÈRÅ}·>êeqß­ïZÜwëã»ÇÏŽð³8’_ùlÝ|¶¬!Lï"E7Z¿kÍÚ ^Ô>™n7?‡éfðäùYý¸õÖæ£éæpst˜n/ºÝëæ¶ÛO„èî !¾¯ž=M–®'Oôi"i¦ZËÔõäŠ>Í­§YËÖõä‹>-¬CH!£ôqo¤™î5y»ž,ÚHÞL“¬ó—ÆÞiäü¥±w&¿âjgg/æ`oæd>É>žÌÅ~Tû'÷g >•ã·¸Q9~‹ë•ã·´a¼™=oOky~‹ë•ç·È³Qy~‹<ÝNy6ºƒoyïßz§µ•{¹ceëåØ.Ç\ènvqÜœŸ··õ—Öî¹èvuÜÜŸ·Íýyßë¸{0ºï:^Þq}7ºßÚ½=À÷ø{ð “?ó!ú, ƇøTê÷ìgì[ß¡ÁëòœÈ8‰8™ÂP^½«ÁÏ_äTVâ4¾ÄDVætšÌ 9°ÁLVó³ú]ƒYž›̦Y°ÁÚ+ Ì=©ì•-òGO5a‹ìÑ3BÙ£g ežQÊ=Í![džf-rGOý‹ÜÑ3ë3%02µ¡*cÝÈ: 3-›0›2=›1›ó‘Ò'¿§…ç)kôÌÄ×ø([13[3 Ûð1¶eV¶c6¾ÎÇùÝûîøž2ØQçz¸Ùì¨s=ÜlvÔ¹n[bGçb>Ë%,Á¥Tc[ ávê“qEˆýê%®de®b®fU®aµÓ½ZˆË™/Ó<ÔýþB¹4¿9¨»\šÿ7Ê¥ù§Lšÿ*eÒü×(“æ¿N4ÿ Ê ùoRÍ/Ÿw—AóËçÝeÐüòyw4¿ÞÒ]Í/Ÿw—·óÛëÝåíüòywy;¿|Þ]ÞÎ7„n‡H´¬µÜÿžõ]k¹£Û=>縞ÿ¾õ}k÷j·,ï¸\ž_¦Éþ¥cÿ8ö‚c2z~™¤Û¿Ö¼¶Çó‡žWôZ+¯ÉùÝ[SÎïÞ†r~÷¶!N” ñ7½÷?ï}ѱvŽÉüÝ_gŒÙü !æÆš—ôÕ­¤VT¯’ZSJjC5)Ií¹±í¨v$½Nµ#é ªIí©f$u š‘Ô‘jF’Ú=jNˆ<¥oßP;’:QíHz‹jFRgªIêD/3R‘|Œ»˜•»™òE¯Ç¹‡Op/³S蕃zC¯œ”ñ{=Iu¾×S<È\Ôÿ{åæaÊE¾¦_ä[æç1êåEŽS//r"D‡­ ñ•Úr-õ¶aju%µt˜Z]I-¦VWÒÛ†éu•ÔŸaz]%5t˜^WéÍ3Nm®®6S›««ÍãÔæêjó8µ¹úÓü€yCLÊ.!v‡Y/å;4ë¥ìJ³^Ênt¿,x-Ķú‰­ø3[óÛð2Ûò Ûñ—’ÿ®¤Óû­_·þ•oð7¶çï^áõÖ¬¯²#¯ñMÊ0 :ñ†|û»çoy~“ù‡cÉïÛó[ô¹[Éb™®ù#ýίBdÏTÖgä3••]_XÂö Ÿ­ì/ô™ÊúLƒ|¦²ÉÇ}¦²þœA>KY¿{ÏRÖgä³”½BF½|ÏSö}–²îóŒ£×î¤izÙ:µß·{¡µÏµ[Æoú‹ãi÷]wËúM¥¬ßô7ÇÓ9~“éù3ðámfäŸÞ¿Ôû·Îdý—õ2ëä?ÿQëÿ13eÍÝf„¦×¬Ýû{ÿ¦{ï]º÷÷Þ£{ï}º÷÷> {ï?tïïý—îý½éÞßûÝûûŒNéÝûû"tïï‹¡{_”îý}±tïï‹ ¡JB§Ì sS„ØfæØ¹)iŽ›Šã™šfö¹i8Ñ,ü±Y¸%‡ð5¥ÌçÊ+w†Q^¹3œöÈ´G=ÒÏ^*a/õ³—JØKý ñ$ ó‹ð4‹òŒ¹øÏeëg)[—øŽÏz”ðü{s!lÌ"µ…èY½i‚×ÎêMdø³zÓ„’Ô›&Èì³x_cëÖ¥Ù‘2üÆÇ׳ξi]–¨V§WsξåùsìLuzcVïÕ×ξm-SœíB™âì;”)ÎveEš™'ÈgÍÊ䉳få òÄY³òyâ¬Yy‚ušM¢ëÓÌuüÔõi¦N}êú4S§>u}š©SŸªSÍù§ówÎàUÎä5Î ‘[zãâaÔ±$v±œÓôÙ~×Z\,KÜÖ#¢¹X†¸­G.Ã8Ž 1žqOîa^îå3ÜÇ|ÜÏüT7v7 ±}ϱ)ϳ`sþȼÀ–¼«s=æ…ðÃÉÇeº¾2Ýn™®ïÏ!&ó‡!ö°}Û¦¥ùÈ=Ðæ5ºÚ´âL¶æ,¶álïÿÈûµnk=Çz°uf_úŒç{ž…Cø‡z|âyVl!,ø×Ã\Q¾‚‡6D­`~¢&ïí!úhòž¢&ïÙ!úg³ã}³‚Ùqˆ¾YÁì8DϬ`v¢gV0;Ñ++˜‡è•ÌŽCôÊ fÇÜUCÜYlÊ+!RÐ=–ÛLwæ:Ítgd¯4êFnsÝsYñÑ!öÙ¸øæ ¡½ù÷çÖc­Ÿ¡Œ÷K>Žg~N`NdANb!NfaNa‘“gSˆýN̳™ê`ž-Tól¥:˜gÕÁ<ÛÙˆ;ؘ;Ù„»Ø”»ÙŒ_²9÷°÷²%÷ÑŒ•g?]»v_‡ð?õ=Ïk×°Ý7Ö鬿²6så9H3WžC4så9L3Wž¯ù†÷ñ~} ÝQêy¾qÜ –ç;8þ­ãú@uè;窚ó?} šó¿LŽ«Gß™Eò¨;ß™Éò¨'ß™Éò¨'ß™Éò¨'ß½Mõä».TO¾{‡gØ•gÙÍï;á÷é'y¾³~—ß³;Ïñ=žgþÀžü‘ïó{ñ"{ó'öáÏL‘Í‹BlâòÇž/ö<ùß ]”Mz”¤\ң她‚e¸’êñæU,ÇÕ|Žkø<ײ<×ñ®§{~ó¬È |‘Y‰î‘/Ñ=Ò£2Ý#=ªÐ=Ò£*Ý#=ôùV%CÜ£GYŠj~'ùæIù¦“|ó¤z_zgÌâäœ'§0å£Np3RꔉÓù(g03g2 Õ´N1ùß…ûÄs{÷Ióu§lü4„GdŸN{>—OPm)-³}¬³[æ=rN§žÏgN~Î'¹€O1ÉÏìö3ë\Öf£N¹i6ꔇ‹CLzumïoT×öšÍ‘á–ý–^}3gŤWßÌY1 ^q)ÿ ¡sáþu?5xÃúßÙé&TQû²«{úØNç2Á¹Üé\&T£ý–ð2í·õa§ý– 7í´ßjÐ~K“^Íáçõ¿ö]‚œc†èlÎÎmï¼™æðÎ[h5æðÎzwnÙº³Þ[¦î¬gçÖË;ï¤lÓye›Î»Ù…_òîaWîe7îã»ÜO÷|B¹Wü{>GsIß/…9>áyëó!$ß«ñöBByëød^`E^ä‹rgÂK•ûÉãgK—C̲!®C“ú™éû™™3˜2¨yËV:®-[EµhÙjªEËÖP-Z¶–f·L~ßA³òD™0¿úÉï>¨WgòûêÕ™.S¯Ît…zu¦_¨Wgú•zu¦ß¨WgúzµÙ?î ^mÞ;¨WgºN9f¢\“_/šx’úB¦ŽëÝ™nRïÎôõîÖ_˜Uô«¼Û<ßà¹y±õFš[»–Y\ËÖ®eײµk™ÅµlíZfq-[»–Y’ç$×2Kò|äZfq-[»–Y\ËÖ®eײµk™ÅµlíZfq-[»–Y\ËÖ®eײµk™Eýºiï&¹v©Íz£¶‡ÈSÿ:VÚ±ó,C×ífYºn7]ï$×í¦ëäºÝt“~¢ë›¤wßt}“.ÑõMrÝnº¾IWø"a%þÊ—h/Ýt­“~g^ ‘CöùàÙ´ÇÛã‡ìñÁöxfûâ=>xnˆ¼â.Îã=~ÆûœÏüœÿоª†V”y*~·;øw:®¦VTS‡ª©ÕÔ¡jjE÷éP5µ¢š:TM­¨¦US+ª©CÕÔŠjêP5µ¢Y«¢™ðÛ]ÖjkEµu¨ÚZQmª¶VT[‡ª­ÕÖ¡jkEµu¨ÚZQmª¶VT[‡ª­ÕÖ¡jkE3ÕrªJŠÿ~ˆM__úeˆkÿ¶û|cˆ¤ÿÛŒÔÚ±=ŽéIK÷ROZºzÒÒýìÆLþ»¯ÿ ñqI|È…!ÌR g}"ÏÊYÏ^tü?Ç…hÝÀÅŒp c¸”Q.c,—‡èýr!~Ç|ž®ëÆòt]6¾@³úF×`£ó¿Ñ¹ßXÉ1õò]å]ùäÝ}!zklˆ_l¿ÝGûmþ3!¾¥Z:?ÍKóóó ð, ò;â÷,Ìs,Âó,ÊXŒ?²8/„hö‚!î˜,2¹yˆP ²²>ÎÂ<Á"<É¢ôçg/F~öâ4ÿLnáçÔŽìÏZûÙKÐçÈ®÷ó9²Û¿Ç|Žìöì1{¶Ô›!ö÷‡ò¢?ónFëNÖÿYËAwå Ro…Ø«.Y©ÎŒ8.ÏÜ•gJ½mC÷Y©w<7\ !N¦žæ~«×5„œöô4÷\½n!2L¾©Ô‘òM¥7)ßTêdü±ÜÖrN¥·¬¶ÎÃK|š—)ÏV¼Âg¼Oªdž¬¨¶SׇÉC•Ì“Ã.± /ó^ñøÅó®rX¤wˆž(âG=`IþÃRü—¥ùeè»oè"µ6[›™G‹…·{îÞíûÞá¹û{tL‰·C¤¨ü¹Ü!îæAë?­ÍâÏå±>dý—µ™ü9³ÑÍÃÖÿ³6›?gFº)ß&Þ±6£?gVº)ß&þm]–wYÎq³ÓM96ñžõsÖf¨›GY€ßÒ½róÝ#7Ý#Ï™žsÜ<áá—ËÌï÷.¼"ŠXç¶>Â<ô{F>â+ûœù¾ !ÉwyÁwù”c‡ég+M?Sùú™Ê~vÔhóþóÃò´/ª¾@û¢j…³Çw똾Sÿ¯é;ôÿ†>{ÿ#ôÙûË€{|öþßÒgïŒîïþÇéó÷?Á¢îíþ'=ÌùöI¤œ~ÔëÓ_Tޱ_"åô¥^s­kqkó3Öñº<\Në5ߺ.?g=.`}¯«éåº['Y7°VÛ˽g½Ðº!±³1—° —²©÷ëåzP(×ÓñeŽ7ãr6ç ¶ðºÞPî}ë•Ö²E¯U|«ÙŠkØškÙ†ëØ–ë©Ï÷Òû‹ª;½ôý¢êN/}¿¨>ßKß/ªÏ÷Ò÷‹êó½ôý¢úüÁ¡!~ðËü„¯p«s8kpkr$_ ±Ñ”!~³9;ùïçIxR~’kSØwÉ?OŽ<*x$ÿõ/zÈ\ÊäçQ&?øeòƒó)“4o>*“\@™ü`eòƒ ©W\D½ú |ü¨^}P/I/“ís¾ÒËdûZP&Ûç<¥—Éö9Oée²}ÎSúutžÒ¯§ó”þ :Oé7ÐyJ¿‘ÎSúM4ÿ¥þÙóÍž;Wé·ÐÌ·îRˆÔôÝÒû}ûÍàƒžqì²cy­ÍâƒòÑ,>(ˆœ­bÇd5âË´‡ë7 áÒD6æ$Ê™—&{ý¯ÛÓõÝ—Ì.g«[Û{õ›YËzõ›sÝ—Ì0gkxÝÞ®ßÒÚ,s¶¦µYµþkÖfš³®Íx3ÒÙZT›3ë…gk{.“ž­CÙñl]ÊŽgëQ/8önˆY–Ý©~{êÆ±”×Ò˦Çzznß“FÚ·Çz±{³"ûP¾>òmˆÖ/„!²L¶Þ4f39æxçÇešl Öjΰ¬e›l})ÛdKþy}5[òûíãayŠƒ×k³%ÿ¼~›-ùçdl)ëdK~Ý™MbŽÌö‘Ÿ;íç>äÊfCÌBÙ[Ÿµ–±†˜‰²}LÙ/Ûš‰² õúw^ÿ˜ß3ù¸)Û'Ö笓_?ÏäõÆ9Êq= Ïh– 1eŸ ±×·1·3?wPfº¾“2Óõ]”—®ï¦¼týKÊK×÷P^º¾—òÒõ}”—®ï§¼týå¥ë_Q^º~òÒõC”—®«Óeå¥ëêtYyéº:]V^º®N—•—®«Óeå¥ëêtYyéº:]V^º®N—­@uºlEž áñž¿èù)ÊO×O;VÓó—ÍeÐ Q¶!ÍãïÉ 2mdNlˆm2ŠqÔì«d áT3ëxë1LÁ±LÉq^Üëör•'h/W1ŸŸ2ŸÏIåõñLÍ LÉLËILÇÉÞo?eŸ“ÞzŠuNëVÖêju¢Ê“Ö­­Õ×&êED6«ò”cm˜‹m½¦æ6I´ÎmÝÎZím2ÝZn:õºµÜD ™£7™I5¸É,ªÁMf{Ÿxê kµ¸ÉkùêT{k5¹É§4;5‘Ñçx8—îý‡óø*?c-Îgm~Î:\ÀºLb½Yz%ÄšÓ"KåVsZdé¯|—¿QVõ›Œ5•¿Ól0ê*eýQ×8×9ƒ78“79K¾ûÓó?Q.õ‰rûCä’ë:óº®3¤ë9óB Û‡pÅýrÉu›éz4Ôƒ¯ÌgG~Î7¹€æ€+IÞçúÍ444\Yhí:Ît½.¹~3]¯öÿ ±Ùð?àßÔ3žLbf6q e÷ŽöÊ={åqý9N†‘=ĻϢ#rð+æäAʾî¯èy×ý!ï&ßWIßÉÁ[˽î¯è¹×ýñ4eæy){0ÿ½${0ÿ½${0ÿ½d>aþ{édˆÉÝ+ÄžMÅÞLÍ>LC½2w_ÏÕ…³éBôù©!îV%NãKLdeº÷nU¡{ïVUº÷nU£{ïÖË!|¦¦”õç¿÷fˆ/˜‘˜ÉqY¤¬Ùí3¤¬ÏóžœSðQÊ73S¾)˜…]øßaVve6v£ïÿžû#ùï‹yÏý‘ü÷ļçþHþûaÞstŸ¼çþ(è>Ùw Äʯø rq8s¿æÈ9².Ä“ ެ§lpä ÊG6P8²‘²À‘M”Žl¦,pd e#[©÷ÙF=ÿÈvêùGvPÏ?²“zü‘]¬ÁݬIóü°Wi¦V‹æúaµ¹u¸Ÿuy€ö⑯¨wDû…ø-êY´?Í_ñ9Õ¤¹_†H™ë7¬Ó°=Ó²]׎™>DïÖ ñ«äË»u©ŽîX"~±®gÏZjô«u}ëülÀlÈ‚lÄBlLóÝÝ&4ËÝmÊ¢lÆblÎâlÁgÙ’æ¹»¯ÑLz·Í¢w[Sþ¸Û†fÏ»m)3ÞmG™ñ®ï·Jf¼ë{­2çÝõ½VÉ‹w}¯Uæ 2ä]ßm•Ìx×½·Jf¼ëÞ[õ"Ýk«ÜËß»7&¹g¿W;&U ¡HÆ÷jÈ$³É÷jȤW+çáÏú^-™TÝóä¹ÒWÕ¼6ÊWÕ¼6ÊüVÕuHçwîUgÒù{Õ™t~×^u&ßµW}Içwì5?´$Ä?±‰iÿ·ÏÄ-|”[™™Û˜…æúöÑLß>+w2w…èßECüÊØSÿý—2{ñµX¾{ãßâMvæ!ºè»ßn4¿çžãXžç8þÀñü‘ÎᢠœÈ‹œÄŸ8™?sŠ™¥zˆÛûGó…H>õr¢™$Ÿz9QýΧ^N,Hurb!vfa¾Í"ì¢|‡ææ|ææô5ü¾[¬ÉÛ|•úBúZü‹µ™üß¶u¿m–-côì÷Úfça³û«@Ö÷£óS Ÿs7Ÿà—ÌÎ=!Lm"…ô¦9¬÷2'÷Ñlùã~>Eõ¸@.ê÷S[x¿V ·µº\ ÕåOS].—_óªÇòQ=hÞ-« ÜÊäÿNâ6vÑÓwCü8¹¢ˆšxúžçþ s`ôô}ÏÍs“/‡ØÚïP¯­­×NÖkk뵓õÚÚzíd½¶¶¼>ùw¾Ç«ìÁkìbVqo½Âyä½}Õ×Ö½ø {óÍI«Ž2!„”£<7K½Õ—f§·úÑìôVÿž*é¹¹é­4½eÖï­å5³ÃS¥Cø¢dˆ¼úK±‡ïòAˆy%Ä““¾(íXO–¡ÏôEYöòzu¯ËO_˜Ý^5»}av{µÍj¯úL_˜Ñ^íë}5¼O-ûB=~µŸuMë4Öêò«>_á¶í<ÌÕG^õšÌõÖŸ!üës×!Ä¥õëW ¬ÿHúv ‘&2YñWBôŒý9Þ^?cŽO^ÛŸã«35Ø—5©¾Ž•êëøZÀÚ!3äÀA44î34#î3 4î3ó 4óí3ó B³ž³Ï¬§G…þ‘ÇÊZ›ùôª˜}f>½*|t×ñrÖ¬GXß³~Îú¢õHëûÖÏ[ÿdíºîû™£y‰cx™cy…ãø ÇóWNàoœÈß9‰W9™×8…×9•787™È?8·8ƒ·93„Vrû2Öcrn+½å!æÔ¡7ö}ºOÇö áõà‰.ÖîÓ±îÏSîÓ±îÏSîÓ±²È)÷éX÷æ)÷èX÷æ)÷èXóú)÷èX÷å)ç~¬sʹëÜŸrîÇšÏ?Q_žxÇÚ5ëœr ƺ§\ƒ±®Á)×`¬yüõ牮֮ÅX×â”k1Öµ8åZŒ5wŸr ƺ§\ƒ±®Aªž;ÿcGÐy;’Î÷Xçû”ó=Vݵ4Ä÷íÀeT×Ù5zZ/·~“+¨6ìZIµa×*ª »Vóm®a®å;\GŸqqBˆ{ý)öe.öcnögàÓü€y9ÏpóñCªÓÿb—gáh>Æ1Ìʱ”±: ñO%ð(û†0O-/ãsvúÖºŸµš^FMŸ§¦—ñy;sÜ~œçZ–ébÓ\ ñ_Ê)i~¡œ’æW¤ùàKµ³ ktq]›‹†ç„Gò¿;ï]üˆ®ÑE×(•ŸÝÕœ~vW bK÷“¬þ˜þØÏ—B7"DžV³#ECÜÆSÖrÜÓ²t¤˜õéóHé»Ëp?ËÒ¾}¤¿ ‘û²Ü™í¾,·Ff»/Ë­‘ÙîËrkd¶û²Ü™í¾,·Ff»/Ë­‘ÙîËrkd¶û²Ü™í¾,·Ff»/Ë­‘ÙîËrkd¶û²Ü™í¾,·¦~ˆìíbØ«{ßçÊâþ¡,>à_Êâ2ÿQWz#{û1ÂþŒáFùcC¨m]0ïhÇA4ßîýæØ½1%Sý­-ß]èhý±µ:[;¿õ›ÖC¬õ½C©Þïý„é8ŒæØ½Ã™Áû x'ëÖ²ÇÞ‘ÌH÷×™èþúàQº¿>ÈL÷×ãè¾Û;žî»½˜ù8'ñ NfvNaNeNNã“!róû»Ð÷½y޾ÇÍóôùoþ@Ÿëæ|‹Ø™ù6bþL½öæ%êµ7õÞ…zíM½w¡^{Sï]¨×ÞÔ{êµ7õÞ…zíM½waOê½ ß§Þ»°¯³7o°o2°/o±o³?ÿ¤yñæ_4/Þ”otŸ¼bWÿAYnµL§^o“ÑâÔëm2Zœz½mBãׇH^Ù(NÝÞ&«Å©ÛÛdµ8u{›¬§no“ÕâÔímæò8u{›ì§no“iâÔímæò8u{›¹ëgîÛ>&Ä÷–w¶¥™&ý3žó¼F«Í ÉÿlïöñÖ²Ïö ”}¶O¤ì³}ks2ëp ÍBÛ§²^…œïjAµ`‡ZÐG-Ø¡ôQ v¨}Ô‚jAµ`‡ZÐG-Ø¡ôQ v¨}Ô‚jAµ`‡ZÐÇõÝ¡ôy"„šÿ á÷Æ5¡š°CMè£&ìPú¨ ;Ô„>jÂŽD>åýw¼_îÜ1Ý:g07g2gñiÎf^Îá3ü”fšs©Æ|íù<Ï<æ;VÀ£ ‡™w™sÚÁ5Xféà,3óvH"½Š‡Ø"_ðYn` ndInb)n¦¾Td õ¥"[©/ÙB¹«!Öc{éOE¶ó9îàóÜéõk^×{{•·ÞE9´ÈnV ¹¿WEšuÊ]÷>=¹×‹Ö{­oXåM£ùípq¯Wòú>ë[ÖÏZ¿d½ßú¶u ëÊÖX…úe¯ª<èuYû°üß«šõ!뿬íç^/[æ+üÚq×î°k׫ºõ7¬Á#¬É£|•ß²±6³O°.O²OѼ]D¦/ç6»—û›ey—Éÿ=·^?B0ÿöjèùY6¢šQîž÷˜7z™‹|O3{‘s4³9¢·…ø%f˜Û‹©w±yÇ0Ç2%Í]Sqdª7Í÷ ÕǛŨ>Þ,Nõñæ³To– úx³$ÕÇ›¥¨>Þ,M{ófÚ›7ËRæù`IˆdüKù;—Ñ~û`9¯…3i\×ÍÓjzm5}Äë!¾rz¾Á lÏGØfø™‰oòQvbfº~•³Ðõ«üßfVv¡Œ=â&ÿï¸]ù»1;ßevgN¾Ç'ÙƒO±'sñ}æ¦9¶ršc+'ÿǾëfÇzØç…Ì_…Ô÷Í^ëQŒfÜÅiÆíñ,͸=JЌۣdˆ6Ûâ3˜Kší ¼ßl'åü´úJ³]ž;Ív³KsÔ…’Ý­¿´6£4ÛîÜËnÜÇw¹ŸÉï;À÷ø{ð ÍDÍñ}f/Úzó&ÿ÷^Ì"Ì"óï†ø×ó—ð>—†h•4!îÞ:¦åz¦ãLÏ ÌÀ!:Óý×ðÝ ÕŽüîÉ™îÁ†gèlx–îÁ†ßÑ=Øð{ïq¿Ît6Á,\óC§Yv æI~¢ÿÈwëìßä»uöï?òÝ:û÷ùný›a­ç2Þº¼!ztPˆ^•²?âË!:Fz¹i ç†È ?ZëU/7³–S^¸`½ÄZo³”z˘eT›Ç,çkÞ'˼pÑz…u+®dk®b®f[®a;®¥ìœN~³Îó7Bôã‹!þ…±ü‰f“¦ÙäãKœÀË4“||…úáÇ¿ÐLrgaˆ_1¾ÃŠA!ò“L=C†þI¦žñv ‹‡p¥Ÿ¥ì'{†Yí'õx†Yí'³ÚŒ®!dÉí!Çýdf›áýÑ9ž›Ûf$ÿŒ¹m†¹íŽùu…95ƒúþ‘žŸ¥OˆÙmê7Õúyë–g_ÇÍDý¦…*¯çæ¢~‰4õ›î=/xO?kóQ¿4õ›I³Q¿Y4õ›M³Q¿94õû”f£~si6ê7f£~Ÿù}ü¾þÖf¤~óiFê÷9ÍHýð!“ø†˜/1ÂÅŒ¡xpCˆ¬FÜH5òà&öåföãöçVà6Ê6\÷µCC(Ö:ÄÔhbÿ»Åæ”÷:©/ÿ¤çQ:w•Ÿ÷(ÂIçê¤vÆG!¶aJ¦¬;ãc¦æ¦¡sÞ0-?a:czgš>B¦Þfä愆=÷û3%ÿ~óBÃL!6õ!~÷Åä¿BŠî4ºÒÄðRˆþiÖüs~ˆ_ª§-õÝgëMQh¢OÌÖš8G³PŸ˜ý—…˜É[C\íöÜÆ!ôþ7DÒT°ÞnÝ‘;ø&w²wñ-îfg~É·¹‡]¸—ïp»r?»ñßåWì΃|‡Øƒ‡iÎü5õ¿›Ë'é{,e¡öé¹!ÄÆè›íÏ}`³ý£l¶?cÔÿÍögŒú¿ÙþŒQÿ7Û—1êÿfû1Fýßl~Qû7›ßcÖÓüóÍï1êÐfó{Œ:´ÙüžvdˆßóG±+ýlZ?—ÖϤ瘬»GÎÝ#ãî‘ kë…Ñ?©Fÿ¢^5ÕÖ£wX—³å¶Úõ)›Õn@³Dí†4KÔnD³DmsyÔ,QÛ\5KÔ6—G͵›…øX­¢vsš%j· Y¢vKš%j¿F³DíVŒ ¡•^ù‡<×{uˆ-¦ô^C}£÷Zª‰Ï¯ ák™¡÷:k=¢÷zVp|½ãfáç¿ Ù÷ù 4«>¿‘f£ç7ñ®÷áý­7[ß³vŠ½È¬ÄM|‰›Y™[XÅû·xÿ}ë­ÖU¹Õßêønã?Žowüeîà+ÜÉê^ßîuu¯÷.ëÜÍšü’¯rkq/ksëp?ëòë…˜¾/†¸gb%þÌ—x‰•y™Ux…Uù «ñ×sMmš¯]S‹æ«;¹Îx®Í?Mµh~òZÖœ/G_“5çGYsþ÷”5矣¬9ÿ<ƒòôá™|³Ø*Ä<]8Ä~·“E¸‹E¹›Å(ÄeÉî¨3wbCüòï<ÜÏ}—‡¸ ¸‚ ¹’¸Š¹šM¸†zMßµlÆulÎõlÁ/Ø’ø7Ògêë(!çõu”hC×¾D[ºö%Úѵ/ñ:]ûo„УˆÄo¶v”“úºJ¸WúºJ¸WúºJ¸WúºJ¸WúºJ¸WúºJ¸WúÊA%Ü+}å ]ü¾~ßky¨„{¦¯EY±g.ÊŠ=sS.úÌ÷*—5„g¶:–DZ¯CL53÷³J53÷³J53÷³J53÷³J53÷³J53÷³J53÷³J53÷óm53÷Ù¦š™ûlSÍÌý@¶©fæ~ ËT3s?aª™¹È0Õ2P†©öe˜j)ÃT“éÈ0Õ¥ S-3e˜jY¸’q³r5³q çZ>ÁuÌÎõÌÁ/˜“ø$7ò)n Q×+~°\èzÅ>ÂGèú¥Û󌞻†ë›ØïfR×,~ð1>J×p}SǧXg¶–]£øÁ'ùO1+O3ÏðqžåüŽÙù=sð]¿Áçéú þ®ß`sû!×o°ÞrÈõ¬·rÍÿÂä;!R°Lˆæz"Äþ’Ù¹Çñ¿/kÃz/åîÓúA.=â´ÜK8í>É%_ŸvŸä’¯O»OrÉÕ§Ý'¹äçÓÉùy¸çòói÷vžzZçÿÒc|›öÔð.´§†Ûc/=N{ì¥'h½”=Ä\2÷Îr]2÷Îr]2÷Îú4„fé%óï,÷Ò%óï,÷Ò%óï,sï3yN×ú’9x–{ê’ùwÖ玿çø*öàjöä¾ÏµìEYkDoÊV#Ì9]ûKr÷,¹zD‚µ{à’ü=Ë=yIþžåž¼$ÏrO^–·g-ö>óeN÷Èey{Öë~Ö›¬åîYîÑËr÷¬eŽ«9e²jWNµë²>k¹õÖ[­åñY+¬ZËZ#q»ãòù,ßï²|>˽|Y>Ÿå^¾œŠîåË©)§·îⳘgZ÷£þغ?órŸáÌÇÌÏA,ÀYúi–BÔO³¦~š¥õÓ,E©Ÿf)Fý4Kqê§Yž¥~šÅ¼ÖZ?ÍR2ÄÌjâGÙš±lÃ8¶e<Û1…¹0¿¹PÍŸõºuJëÖjÿ¬7¬S±=S;^Ðq½`Vë4ìÈ´|“騉éù3°3áÛÌÈ.ÌÄwø(»23»1 ßåcìά|ÙØƒ³'ŸàûÌîóòy:³0õ¤Y½ÏÁÞÌÉ>|’ |Š}™‹ý˜›ý™‡ø4?`^ä3Ä|üùù p0 òcú ß_ ±“ºð2ßávå/”›¾ÿ•öÎ÷¿ÑùþwÚß_¥=ñý5Úß_§=ñý ö !³¾öýMÏí‹ïÿð¸åqÛºG‚Gß]næé˜:DGÊ«UrÐÌ•üït,L"/˜Òš§F¾ç˜¹|dšÃGöd.¾ÏÜìE÷ëà6!¾¼ë¼@†}Þœ5¸­µy{p;¦u\¦}ÞÜ5øuët|ƒéÙžØ„èŸæ­¥îË?Í[KŸ 1ËeŽo†ò-b¹ÌÑÑýµ\æèèXŸ5CukÙ£còë²GÇ·OåáóôOãusL3L†W½¾Çc¯Ç>9¤£ûª£{ª£û©£Ì1§vˆkò'ëð/ÖåÿXwXŸ³ï²!ï±ï³1° ÿaSþËf|Èæ”åS¦ö¼EˆkØ’òüœ×C{¯©½7ÇÞkjïͱ÷šÚ{éôã=Ó¨ïI¤~¼g:õã=3¨ïÑÏÓéÇ{ôótúñžÙ!ÄêÍéôä=êq:=yžžNOÞ37Dß3ç4׾缌£ó^0žæÜ‚)Øš)éúL"]ž±y–0/—òÊÆ]òq9ós peeÔþ¯~°.h­Ž—™k-ït)d­ž—™g-÷”Ѿ2“•™O}®ŒÚÿÕÏÞ'7çYC¹9ÏZÊÍyÔû2jûW—B4^ŸÛ¶/„ñfª¼æþxýn›~¯ßmÓïÆ­ ñÕ[sÛp5Ûr Ûq-_ç:¾ÁõlÏ/ØØ‘ù&7±7ó-nagn¥ü0n»p;ßáv ÑŽŸ‡øœæŽ X7„¹‡B¤Œ½×1ÉÚ<Òq!Í#Ñ<2ï‡ßb,ä8^àx^äþĉü™“x‰òJÕ!î9§jýÞª é÷V]D¿·êbšsª.¡9§êRšsª.cš9˜oªš9˜oªš9˜oªš9˜oªš9˜%–Éíw‡Ðo¯}å]&w´7Ǥ4?,sMÚÛgË\‹ö²HË!>“ßÕÒµÈäwµt-2ù]-]‹Lf¥–®E&³RK×"S+º™\³–®E&׬¥k‘É5kéZdrÍZº™\³–®E&׬¥k‘É5kéZdrÍZº™\³–®E&׬¥k‘É5kéZdrÍZî¤kÖrÕþÒgBì5óEé³4_”þŽæ‹ÒßÓ|Qúͥϳ`oþÈ>¼ÀÊä×úò'öãÏìO5þÚ€ú¼"i>1SÍ[uÍUSÍ[uÍU9ôÜÌU×L5ÕÌU×L5ÕÌU·cv‘ÌrÊNïMðúNïKðúNïK0síô¾ýw§:™ .îTôÙêc‚z¸S]Lðwª‹ æóf²³ÖN3YBW¿ÿm¿_&ßi6KèÂSŸx®.&¼ë5})³œ¾Ó|–àüì4Ÿ%8?;Íg =¼®_e–všÓœ§æ´„÷ýŽaž›Õœ«fµ„Þ!¢¯…øéÛBô³w™BøÜ ö|fk3x™ !ä{Éssx™ŠžWöºö|ÇÌäe^¤™¼L%šÉË$¿×,^¦2ÍâeªÐ,^¦*ÍâeªÑ,^æešÅ˼B³x™êœÍ~¿™ïyÙöƒ9Ö5õ»žêù«œËZœÇÚüŒöïói}`?—±¿>°ŸËØ_ØÇeì¯O …øŠòÿ'…)ÿR„òÿ'Eùï¥þå›g]ÌÚðIqš)ó}æù³ž›>)A³À'%iø¤ÍŸ”¦™ögÏËxnþû¤,­»ùnù^1ç ‘²fëÏŠRýéæ»æÓË?+fízVœÝ÷óՠ&}ß|¾w7ß7ŸïÝÍ÷Íç{wó}óùÞÝ|ß|¾w7ß7ŸïÝÍ÷Íç{wS·òùÞÝÔ­|êJ·ÅTWº-¡ºÒm)Õ•n˨®t[Nµ`ŸŸhÏâ.W ‘ÿ±ËŸàfçDæà$æäd>BÓÿ…pµ´õ맬ïX—áß,Ë»,çõ©^ÏÅiÌÍDæát>ÍÌ«7Æy>Óógüì=?ûœõ,ë|œÍä&zåÚÿ}ê1×s½ly¡“ñÕ{àkÑŒßú‹nÉ k[ÿÀ:üÑñ ŽËëZëu­7ZËëY»ž­7YûÜ­Í·|†Ö[xŸ[ù€æˆ[ÿp;ÿåÊëûùŸØ€?;¾ÓqÙ¢õ®nË:~‰hÐi­^ß–326¶¾b­^ß–726±þ…Mù+›ñ76çïlÁ«lÉkΙÏÑÚÌy[FÙ!Ïöq.vȳ} « ®]æ–tí2¿æøÇ‹p(‹òã0çp>B*3ÁŽž—àHšAvŒb)ŽfiŽ¡Ùwâ˜ÿê Ë ÇŠ!ºÌ¬ÚÁŸ»¥Xˆí±žÅùŸå–àF–ä&–¢Ü°¥4·° ·²,óšEC8ÿ‹Q&ßRÎq9vËsÜÁ繓幋/p7+ðKVä¾H}rK%îãKÜÏÊ<À*üŠUyÕ(ly™‡ù ¿Ѧz~úQÔóÓ¦žŸ~ /SVhz…²BÓ_8>Ä”ìbw^K¾O³VÉ^4k•ìM³VI³Àïf­’æßÍZ%ûÒ¬U²ÍZ%ûÓ¬UrÍZ%? Y«ä@šµJ¢Y«ä‡Ìf–MK~ä¹y«ä`š·J~ÌìBóUÉ¡4_•ü„æ«’Ãh¾*9œæ«’#h¾*9’æ«’£h¾*9šæ«’ch¾*9–æ«’ãh¾*©~ün¾*©~ünÖl©7ËáÙ#!ìMo­GË‘–z´lž=êx†BVÇôk9#<û­cð3ò83ñåIfæ)fái>Æ3Ì¢déš2óryÅ,].¯˜E¢ËåsFt¹¼bÖˆ.—WÌÑåòŠ™#º\^éø.啎Ýmܘ™ãû6}”¾oÓÌô}›ú3«” á”™nŽïÝô1úÞM}‡9¾wÓlT7›>Nu³éÞÿœ÷÷±V?›Ú›sÔͦ9Þñku²©ú:Glú$ÕɦOQlª~ÎQ'›ªŸÿn ±ë«†Ðü·®«…ÿn¶V·ÿÝ—¹•¯põ›æ¿{Ÿëðïvkó׿;X3Ä3ÛŒ4Ë3ÛŒŒ§Ùfd ¶eJ¶c*¾N3Ò±7è>Öžîácè>Ö‘îácoÒ=|¬ÝÃÇÞ¢{øXgº‡½M÷ð1sÞH÷ð1³ÞH÷ð1óÞH÷ð±nÌÂ#!òxòï{×:»Ó}|ì=ºõ ûøXOº½O÷ñ±^tëM÷ñ±>tK ûøX_&ÿ3^þŒT£ü9Gý9î»!ß2ùóöóúÓÖǬ“?wk÷ù±Ô“r%–<Ïç=ǽÇý8äÝCä§ÇÝCä¤Ç“¿Ó@ïËo-×<î¾r†Éßí,íÏ!ßñq~Ïäï4Èû XŸ³NþnZäGTÓ©í# Sm©†SËGª‰CÎ{¿{hˆ¹îñäs ¶TÓ©í#‹;n¾{<ùœ¨ñ#Õö!¬“ÏZ?R}?6ÂCYÒ£Tˆ¶èâ3šý[¼EûnNÏ)¹ÆZ=Oþ{­ç¼o½Öúmkß{N/k3àû äzº¿Kê½sÜÏ%7x_ïs^æôµÖkçôã&ÇßqÜšÓßz³uWk÷@*ù~—lœê¼‡l¿ëõ~¢º^S]Ÿ¨®×T×'ªë5Õõ‰êzMýï‘B!ìR¿›¦ úÝ4eÅGx®†7ME5¼ijªáMÍâ©Ú‡ø]jzªTÓSudu¾éáìªáQ3DFÚÿ#£!¶²ZXyd‘a!rÂ~m?ž°GÛ'd–ÑòÌ Ye´£}yb> ñsæÊŽ'’è×5ƒÿœüç,´–O,¢ìxb1]Ó諞/ñ¼„÷Ê?'–¥Ö%­/Y'¦eÖ¥¸œ2Û‰,Õ,bö›î£9qàþ>z"U´6»<À\üйyyxÈûþó¾­Ÿ¶>̼ü:„ÁNÕc•¬Ÿ±þ†ù¨þŽ8þ×Ç*;žßqõpÔºŠuëoYjÿàXÇ«Z²>ÎÂÔËŠU³.b­ Ž·~™)øŠãE?Åb<Íâ<Ãgy–%hœÒû«[»ÿ~ÏR”#÷—¦{pÊûËR~ì¢f5®Ï“Åùhãódq>ÚøYœü»C´±Ù:­Ùº±Ù:­Ùº±Ù:­Ùº±Ù:­Ùº±Ù:­Ùº±Ù:­þ—W&ol¾Nk¾n¬_¥5_7Ö¯Òš¯ëWiÍ×õ«´æëÆúUZY½±~•Ö|ÝX¿Jk6Í+Ï7Ö³Òš±›±ÓvrL¶olÎNþßz?W#[©+Ÿ«‘­ÔÌÏÕÈV9CØf¦m°(„¢jÕ6ógƒÅž«CE zØSEÝw÷„ØUuChæº^KËo˜Ž®ç5ýüî^¯×ã>ÖwÜõ¼–Áz¿uƒ3ÀŸYZàÏ,=„wB$Ekõ¹´ÚÕãok÷àuº´6@.­f PK«UÔáÒêøu¸´:>@ .'D;›—r››:›—r››:›—r››:›—r››:›—r››:›—r››:›—rûÉçµ³™'·Ù©óBE‹=–x,õXæ±Üc…÷Ô÷hàÑУ‘Gc&M=š©'KB¤‰>üH֛œ•üïϤ0g%ÿû3)ÌY;ÆzÏRïùÝÚ¼µcœõ2ë«\ÎkŽûsvŒÑ¡åC|…_BHÒû“ÿ;¹C_°þÕZHþïå&©9Éÿ­Ü$µ |;ÚçÉÿÜ¡¼ï7Väï|‘~’}ŸüßÎZÉúZˆ63›gx)DÖ˃]SQìššò`×4”»¦¥<Ø5åÁ®®ïzy°«ë¹^ ìúåÁ®)vÕr|¢åV…¸›îõr«é^/·†2_¢~V4»õZk÷|¹uôÝÊ­§û½Üt¿—Û@×¥ÜFúNå6Ñg/·™î÷r[è~/·•¹îõrÛÙ)DÍÜõ]óD3v}×<ÑL]ß5OtÔwÍ—® ‘J7¹š8îž©_Ïzõ-k÷N}3t¢{§¾:ѽSß èÞ©o†NtïÔ7C'&y˜³ë»ê7 1O}bOËROmà«ÜÈZ!´{5„¿ôÖ§dµÓµ)£®Cít]Êh§ëQF;mÏ´ó3é/íjS6iW‡£é³ÿ5Æûd·Ó ¬}æ¿ÆZËp§r'9îwüåÞjç=gCNðú.¯7¶öž¿&Zï¶nÂ/=ìëÓæÌÓÉÿì„z3¤Õ›! To†ô¥z3¤Õ›!ý¹ÕC2ÀロkÞ‹Žãù<'°|iô¡§ïxüíaž~:ùŸÑ7+5šD³R£É!,3߿ԇÏ3åÙ—/П9Ó,Õh ÍR¦:^ÁqŸa¦™ªÑ4þÊDþÆéü3Bôö¿äÿ¦žÔwFˆ+ñ¢:#›ÄË&=d“ø ŽÏt\ê;‹/q6õ¤¾sXÅûd–øÖŸZëA}çRÏé;/ó3ê5}çSéû9kø9'~“õk÷Fß$º7ú.d-.¢{¢ïbº'ú.¡{¢ïRº¾ÉÿNòßµ³Ølýz¥¹×Yý“oó/váÿ(­rŽ›]SoÕé{]­ïf×­å‡{ݬïò]ÞcwÞç{|Àü‡fÓUÿ†+«Ü3Ÿ®Òûï™OWéí÷̧«õò{æÓÕz÷=óéj½ûžùtµž}Ï|º:ÖŸyßYÔÚœº:ÎÚ^»&«Ü3¯®Ö›ï™WWëÍ÷Ì««õÜ{æÕÕrY³?¼O–¹gn]-Ÿ5»eý¬µÙuµštO­ZÜsn;^ÂZÍZ­6ÝS³V«M÷Ô¬ÕjÓ=5kµÚtOÍZ­6ÝS³Vg¢šµZNmö§Ÿ/i­v­6ÃÝS»Vg¡z½ÚìvO½^mv»g¶[mv»g¦[mv»g¦[ýÍt«Íl÷Ìt«sÐL·:gˆM»;Äï‘ÛÒ|â¿”¥Ò|ÃU<ÂÕ<Ê5f[sÝkM̶f‹×ì¹Læ‡×šÑüðZsš^kÁSꋽV߬š¨·×7«&Úoõͪ‰úz}³j¢ž^¿[é^ñ|§çæÕ†zKj ¡^’Ú~n(ƒ¤–AÊ ©Õå†2Hju¹¡ ’Zi(ƒ¤VÊ ©Õã†òGjõ¸¡ü‘Z™]'DJŒ¶VR«Ë Õ…ÔêrCu!µºÜP]HÝÞûêzßêÿ%Æ:î³§V§úì©å’ÙõW—f7 ×ÐwI­n7ô]R'g9#¯œ1»¡×'°'zÝwLý–uck5£¡ï™Úßp›†Î{jç¦á—tnî¡sÓp/Íñ ÷ñ]?ßÄÏ«5³›R-i¸ßã€×º{¼¢9oË>¦ó¶l·eCåž•ž;wË>¡s·l»eÃéÜ-¢4 qÄïGš3ÂÄ·B$ßBÊTùdŠGZ8c-Wå“/iiµîb-k<òšu,Íá왉ï8¾”æ|2È#æòñÖݬå‘GÌçRÐ|~ %ÍçRÑ|~ÀÞI8D¿»â'~Åû4ûüiFYš×‡´ßÿ4§,µÇÿ4§,5üiNYjùÓœ²Ô<ò§9e©™3Z5Än>ÂjM5î­¼!º~jˆï*¼äÏÕ— ^vÌ,ÐU^^ŸH×»àϧ{.3¯ŸAçjýL:WeÒ†¸k뙎_0=707ònbFn–ù'‡Hõ¡Í“fâm|ŠÛ™‹;˜›;™‡»ÌÔGÌÔé­Ÿ¶Þͼ”OÛ<Ã=Ìǽ!¦­½’Õýû޾[Û+Yíµ¶öJV{­­½’Õ^kkÉ*[·5‹d­O³HVsh[3HV¹øý>ÈÀmÍ"YÑ,’5ù÷™E²&7‹dUÚšE²6 1—}ÿYÉÿ<Û‡!’Óç¿ì<Ìú‚ÎÃ,9ò²ó0+ùŸWsf%ÿsjÎìÍÌÄä.íQ&ÿóh™é|\ÎÂäí1&ÿ¾¬t>.gã®ýºoˆ*KÝåÙŸ/Pæ6ëE¿þ€éž6ë…õöëŭÝÛf½è×îí¡/ѽ=´2Ý×C«Ð}=´jˆÆœ q›‡ò<õ·˜¨¿ÅüHý-æõ·˜‹ÉŸ8Š?ÓL2^þÊkÆŠ¹d­÷çN !µ¹9æ²µºs…ê~Ì/T÷c~¥ºóÕý˜ß©îÇ\¥º¿À|ÝZŸ\á÷Vq/®ëª˜VÈuUÌ?+äº*rñ ¹®Š9g…\WÅž]ñ(]Ïò\óÍ ÷E³Î ׷йB}¯Ò”ò\ûu…½Â<^EVZ`l­?¯0—WQW˜Ë«ÈJ š:žÂÚ|^Em\a¯"3-h渾½ 9õí-¨o¯ÈëuYj…Þ\EvZÐÒqõ}…]E†Z¡GW‘™¼æ¸¾B¯®bæ]ÐÊ:[3=ÛP}^QÐëoY·µ~„협¯3ß ùbA{fffaG>Æ7™•ÉÆ[žgóxܾo_ ÑÒÚçúmé¿8›ÿãÞá§ü›sy—óxŸñ>çó?ç?T·JÿK÷Pâ¿ÿ¨õCë…ürT™@ù©L„rS™ºßÊD)'•‰¥|T&Ž+BäT†;f*á4fd"3QÝ=õ(g„üߎÿ9yÙz&³p£~|*+焘–¥B\Fù§ei á‰%ž—ñ\kY–'Ô°¬!ü§f´,g}’ÏQ–oåšd–ÙZ¹™]ûV®Ef×¾•k‘95]‹ÌièZdNK×"³kÚʵÈìš¶r-2g`'º–­\Ì®e«Ît-[½Mû`Ù¦Ûá%nfenaneUnc5nçËÜÁW¸“Õ¹‹5¸›5ù%å‹e{X‹{Y›û(,ÛO9`Ùêõ˾¢Þ¾ì õòe‡hoÆÈË{.×/“a:ØŸ/‡ÎêkËd™òù2¦ƒ ³L†é Ã,“a:È<Ëä—òË2ù¥CKÊ,d–e2K‡äß+³thM¥ƒŒ²LFéЖ²IÙd™lÒáuÊ%ä’—eô³ÉçH.éÐ>ÄÆ›Q¶Ë¾ñf’í²o¼™dû\š=¶Ï£™cûg4slŸO3ÇöÏCÌßîÛ• è¾]é¾óeˆä‰±vß®\H÷íÊEŽïq<bîºW.¶Þkkí>^¹ÄzŸuœµûy¥Ü?f¿µz2æS8îþ^¹Œîï•ËÿÊñ”Öîó•+Ï•ŽËùyÌÒ¹ 8–±UŽr,µuJk|ns֘Î¥q,•cfR™2’'­ujëµLÃuŽãx:k}o¥¾'cFòȃ涘»zßÊ/;êXk=p¥xW\©ÞÕWêwõÀ•zà]=p¥xW\¹5„G^4ËQ_šív«{MÕ½Ýê^ÓŽËU_v¦,õåÛ”¥¾Lþ{êd©/ßá(v¥™=ÍÏå/ß5¸/¶´ ¡…}£œµûc‹ºÛâžõsÖî“-oð´‡{d‹k¿¥Cˆ¹*“Ï—®.¤œpuå„«‹Ù²ú|}e”ýõTòZfŸ/'\•CæË WåùúË(ýç)9âª2_^¸*‡ÌoN9d~ ¯ëKO%ÿœ<2¿%å‘ù¯9Ÿù<—Iæ·¢,2¿5e‘ùm(‹ÌoKYd~;Ê"ó_ç&ú.W7³=·0ù»leGn£ëtu;;qßâNvæ.šŸ‹è½—ôÞ"×hæ*rf®"7hæ*r“f®"ÐÌUäÍ\EnÓÌUD¸¤Ñ.éEô€Kz@=à’ðžž^àê±þ áõù=}µÀCê£þ Ñ*rϽ”{îÉ=Uçî=mv糜ÞOŸå´y}œÏrÚ|9Îg9m¾§~o8"µõ«ÓæÌq3­ÏXë[§Í›ã|¶ÓæÍq³?ëx6ksç8Ÿñ´L>Îg<-“Ó§NËäãæÉñêëi³ç8½ê´Ùsœ^uÚì9N¯:mö§W6{޳ç7|çw>nm§W6ƒŽÓ«N›AÇéU§¿£^uú{êU§ÏqYˆŒ»b«Ä4TêgöÙdýõÇü—Cïï¸,]i·8þÐñ¡üŸ„ÈøÀa^ÿÀë[­#ÖíZo³Ž±Bd•çQÏGzm×¶[ÇZbå¹J:¾ƒq§ãñŽËu•|¾ãòy¥¹Ûñ޵öùŽ«yãSZ³j­ÖOeíƒUúÄZ­ŸÚZOŸ†÷y«yãÓZO²öyï§Ïy\Í“+c«›ƧçêãÕõññúxu}|¼>^]¯WŸbR±;³„Ðʼù‡}œr„õcÖæÌ?ìç”#­³r³…˜2­Cìµÿ± ï°-ÿf;Þåë¼Ç7xŸêĵT›®ýÃŽü—oò!;Ñ}<5.Ä×YÇx𓦦 9ijJ𓦦âÆ™¹&Ä6zžkYžæ¿F/„PÙL{r‰µ9°‘9p¦9°‘9p¦9°‘9p¦9°‘~9So¤ÍÔã%ÿ{šUBüVe”ÕË—ÇWÏê”A×  r¸&eïR9\‹2ÈáÚ”Aס r¸.eÃõ(Wš#5¿³®om¯¶Ç‡È"‡íñ!²Èaû{ˆ\yØþ’Ùûe©šß[ËÉCäËÃrñûõ°<Ä>=,±/ËÁCì¥Ãrï'(ç‘Éê½ÃeÙ£zïðB!Dˆè7cCü'æöoÆÑ PX^ÿf¼çêsV{çÈxÚ+G&Ð^921Äd³WŽL¢=rd2í#Sh_™JûáÈ´Š'ÿ¨ÿè)?ð_þ賬ðYºq%ßå*vçj¾Ç5좪ƒ‡ÔÁGÕÁCjÌ£êà!5æQYøÐÜ&Þ‘üÏóÍtÊÆ‡Ôœ‰ÿX›í•‘}fý¯µïQYùúó¨¬|èsÇ:^‘ÿÑÌgûDòWb„f½Ge’CêÓ£2É¡äyì_Ïå‘CjÓ£òÈ!µÉ%‰;¤6e–?É“bü¬û(³üqHÊ,o’§3ˇÔëÌrÆ¡Þõ>ócfyãÐJʇVQ¶8´šòÄ¡5!ÚøÉŸf?ŸâæâWÌ̓¢ ž–Yl¥§eÖ?[éi™›†h'ûçÉ´žôû;Ù?Oúý'ôûÑM8šúì†!Rk›µÞ?ºÝ £›Ó½0ÚºXß¼¥.Ö7oé£‹ÍÆ·ôÑÅUô“žë¥‹ÍÇ·ÌË‹ÍÇ·ÌË‹ÍÇ·ÌË‹ÍÇ·ÌË‹ÍÇ·ÌË‹ÍÇ·ÌË‹ÍÇ·ÌË‹ÍÇ·ÌË‹}†¦Bø½“µ¹yqmkóÖïfœ¦úÖïw>;·œÏÅææ[Îçbsó-çsq}ï+ì}o[›§›ŸoéE‹ÍÏM‹8ÞÅÚ\½Øu¹e®^ܘfêÅfç[fêÅfç[féÅfç[féÅfç[féÅfç[féÅfç[féÅfç[féÅfç[f¦Åfç[f¥Åfç[f¤Åfç[féÅfçˇØò»øe¿+ðË*¼ÂQóe…\íxEÇ÷„èozþ¼|Ôëçå§^?¯@ˆMa?îpRØ;\‡öãŽ!ìZ"Mn˜õÿß¾ðÞáÜÀÜHµà·MT ~ÛL÷Ìo[èúÿfnŸ76Ħ3î}Gß¾äqÙZ¿ØÛ5„C¤˜½_Éý|ç>ÝÓw°Í$•ÓL2ãMïS*5±~híúÓ;g¼Eû£RSÇå»JÍBÜßn—+rÕùåŠ\5G~ùíŽÏ¡Ïýö7õ¹ßîò`[åžúßs6Ï9~ÏñC¼ÏÃîͯÍñÚyÇ8ö5åŽyßPî˜w„yÔû>õ¾¬ÿ³þ6D<æwÈ{¿G<·7~á Fy’±<¢½ ‡ø¢Éái¥ZÙ»ϲ8å¹ÞÏRNë]‚>ït™§>9]æi ON—yè“Óež¯Sæi ?N_K3h­Ö!.FޮՆrt­¶”£kµ£]ëuÊѵޠ]«=åèZ(G×êÈÿøfˆ‹†Óâ`ˆË¨‡NÕ‡ëV§>\·õÞº5©÷Ö}5„t²sþO=Ìp}ôòâjN½¼¸šÓÇϯÂ|3U93e¿£x5úÅÕ>~Gò_¢þ]ÜŸÑGÿ.®ÞÌâýÿGÑ}ÇÛ\þÎ=ç^»½÷¬Ð Ù„d«ˆÙ!+²*ERFfÙ\*¡A¸YÑPH¥¬RÜSv(~è÷¾œ×ûû9ç\÷œïó<ŸÑ¯_vˆÕñ*~×pu¼Š\3\¯Òœêw•T¿«È«ÃÕï*­üœÙ¬†s0\¯"¿WÇ«èS‡«ãUÚR¯ÒŽ+Ùžï²ߣgøûÔ Ý°÷7ÈairLóQšÓÁ™¸á,l˜JgaÃ4: ¦ÓYØ0ƒ[hž¿±•3ýœÜÝÁº±Ml–¾‘F³ôÏi–¾±fé;h®¿±“úû×Ú‡X³íkø “y$$¼X?$Ö<ÍLgCÆCxî‡Él{Î,žYòb#ÏÿɇøW™ôUÏ™Ë3ç§9<³ÞäÅÆ^;Ã&<˦<LJyÞûüþÌz—›‰/ð^ds^b þÍ–¼ÌV¼¢þIýVØgBXë|=ä|m¸ì9unêuœÙ~æò Îl¿÷½ÏùzÈùÚàìö[%^$Ö÷opfûé78³ýô¦œÓ~k¼¾Øë'ÄÎk?=ê絟xƒóÚO¼Á9í·>D7:§ýÌ„Ñ~fÂÎh?3á$³MƒÌ!¤ ‘ZÿÝØ.b³Ø¤®4‹MJ¡YlÒ4‹MêÆ!l"­6É=yCÒüSâÄ›Åùħ™Ÿé,À8 òOâ_,Ì3,³,ÊsÔ³Ï?O=ûü þÜÑþÜÏÄz÷ù©wŸ‰¥ø7Kó2ËÐ=?U–WYŽÿ°<ÿe^cE^áNßýT%×ÿsm&>%7Í¿áú×òÓ|ùøÎO]ËQóåâ;7ylöÈø,òÕ|³\ðÚ'‰öö{û†ØóŸ$Qû$SHøæXHœð*s"Opõ–^£ÞrÂdê-'¼ÂKß„HìâßÅSøßà)¾ÉÓ4O~“Nóä7qš'¿ù“æÉoþ¢yò›34O~s–æÉoÎq6ÏsNY¸¾àz./r/ñmþÍwh~œ0ŸæÇ h~œ°æÇ ‹h^œ°˜æÄ Kh>œ°”æÃ æÃ—öù.9ÄæÀ ËiœJ3à„4NÐïî3Nx—fÀ ÎÁe³Ò*sËe³Ò*ýÊ]öüeóÒ*³ËeóÒª>4/­ê¾5ï½²Žæ½W>dV®g6n`vndZïjî_\ΪæþÅå¬jî_|zsb!r§~°šû—»ª¹q¹«šû—»*VÑ7$~l ù¸ùi~ ø9 R^…¸#$\~5$®ªÊ‰¬ÆI¼'„’rÒå×\ßËɼ¯ó~Nau¾Á4 ¬2 \6 ¬2 ¸7‰«ÌîMâ*³€û’˜ñï N¬¾Æçh®Ÿ<„æúÉCižŸ<ŒæøÉÃinŸ<‚æöÉχ˜’™<’æöÉ£hŸüÍØ“G3æ Ó]q¢©òyŠy0UO1¦Êã)ƒ(§èÁ*ìr-—§<çz·Çê§~&§üØIÿ’S~ì¤Éy…ñ*;Q½îÔ™ÎꙇCÒ²BzK!Ò¶š^Þ}ûìo×^æ½!Z‡ÐÀõý®‡°:‡²‡ñgMŽàƒ|ÞŸåûæý޾[Þý!¡\Å;º••¸•™Æ;ù9ïâöº/ áÊoâ»Å;Bd\$ÄjLd'1Ê×ãd&òuÊ›5¦0ß`f¾É,tfW· I=íÅŠ“Cøt·š`/þªç˜«ÿUÏ1wŠç¿ð|’Xï1ן±×ì2¾u-¬û¯yÅf˜ñmhvßÖóöÁ¯ùÄf˜ñíh†o¦Ùk†¯šörHjæÞ®ô\mûm¥9§¶ü0m‚çÝã•æÚòÄ´WÄîõJsOmûn¥¹§¶}·ÒÜS[3íU¯»ÿ+Í?µõ:Ó&Š3þ›Ï“Xƒæ†fмЬ&_烜ÂZ|ƒµù&ëp*ͺÓäÊfõB4]¹È~¹SÝM×G.êG}ä¢þÔG.¢i»CÒˆ±!²¼dˆuYÉR|—¥ùËð}–å*–ã,ÏÕ4;u1#-·º¬¥}ÐżµÜ>èò!íƒ.ëitÙB£q!ü¸MltÙÈ*üˆUù1«ñÞÃOy/7ñ>n‘·²…Xsyç­ìtÆë»ß ‘î†XÁš\Ϲúîœfœî]׶ߟtmÆ+X‡f¼‚uiÖ.höNïb ÍÙé=©·‹úÝéϸÖ×}p $öxž9’ßsTˆÖ–Ûÿ¶·çÆÍaæêlÖ°¶<ÿ·¾¼vaê³k¡ÜW»(w³¿`qšÉj— ™¬vI~ÉR”Ù{Ù{‹ì½Çì³EöÞcöÙ"óócö×"óócöÕ"óócöÕ"óócöÕ"óócöÓ"óócC‚gBbÇÛØ‹·³7s²s±/s³ï`æáæå³T› d~¢ÞxÁ`ê}<ÇBÂÂÊ"Æ¢ÎbÁâ|ž%8’%9Š¥ÌÅO…Xæfn÷þsû'ù‚ø6ñ…Ø?$UЗ/‘˪›é— ¦^vàÏ?'ÖÓ|V\Pl?T×Û(.ÄA,ìù¡ž×ë,."ý¯„XYýiÿ«ÂV%­]=ªyíê‡èE=áJ½ßVµ¯\¹Uík×ú‚v äÖDšÕ.êWÞ¤^qå-êWþçõ$¯›á.êßµ¥.êßPønͳï$o7w]4Ó¾ã=Ô;ÞÕÕõ½®å­‹÷1ïgfV§^üb êÅ6kM7Cý,ïM—oËø; í¥Ÿå¿éòàÏòÞtyð“§=zxô ‘K=–y,÷ºÚ=]?™¸4ĶTá2:‰O…¤-jSâÓ4ƒÞõRHüãN¾Ì»8jÐìr!R¹‡øq•ÉøgäÕÅo2_ Ï:ówЧŠós­[Ãsž¿K<]\3XˆoQý\<“ÿ¿c{âǻųÄE9›Å8‡Å9—%¼Ï\ð£ZØð"«z~žçKòm– ‘-zñ¡æì-7i~Þr‹BhfO=/Ö»}%DìƒØÐW©F U£¬l¨eýcCÕ(ëê>7[çç.ˆÕª¡j•õŽ U«¶ªUCÕ™­jÕPµj«Z5t*³rå°¡rØV9lè æà[¼3y;g1'g3ç07çòÎcš…OÊÍóäâ“ró<¹ø¤Ü)7Ïs–NÊÍóäâ“ró<¹ø¤Üèmë[%Eü¢X¿ý=xÃ|ȼa>dÞ¸›öÞ*Ô_ßð¹³ I;»ò¦p4ŸàvãXvç8>Éñ”ƒ²¿È§ùÕ„ìjýΞ!l¯"õÍÙÕøêBvµ}g/ªá;{SíÞÙ‡j÷N3Hü³¸¸·°'·ònc/¦±w¯Y¯bçÄŸ‹ûp;3~~ûq'ûsÍgñÝ|–_p ÷p÷rpˆ5¿šKóÛ¡y4¿z›æ·CïÐüvh>Ío‡Ðüvh!Ío‡Ñüvh1Ío‡–Ðüvh)Ío‡–ÑÜvHÎ(jn;”JsÛ¡4·Z¢ÅÌm‡Þ¥¹í¹­Xßg”«£Ù­X"W3‰k˜‰kiv;$·3»’Ó‹™ÝÉåÅÌn‡äîbf·Civ;dv+vÍéÅnç'!á‹Bâ˜_Cx1Kˆä{X\Sü›8«¸™øAñÉ}ãýÔ¤S+ôãµóR?^[Ï·zMˆõ´Ö«×²×ñê/zê/Vë/zê/Vë/zÖ¢Þ¢§Ykµ¾¢§¾bµ¾¢§¾bµ¾¢§¾bõ§¬ÏMlÀÍlÈÏØˆ[ø·²1·± ÓØ”Ÿóan§Ï¿á·Øï5žädþÎ×C-¿æÒë–OsÙ7þðüž¢Ü¾ÁŒÛïMšqûM¥·ß4ï—WsÙ_̸ýô²£åï\öÙ³n¿4ëö{‹g9“稇-¿æ²7œϦ}×oí»~sißõ›Gû®ßÛ´ïú½Cû®ß|Úwýоë·ö]¿E´ïú-¦}×o í»~jÕorå\9ò7¹r®ù›\9WŽüM®œ+Gþ&WΕ#“+çÊ‘¿É•såÈßäʹräorå\½àoy9Ÿù˜ñw|ä§ü3Eík\‰j_ãÊ\N÷tJ*ÝÓ)+è^MYI÷èæáÛø4fþBuõæ>cVÔ£Ý<꺗úø[ˆÜY2D«µ ‰éÿc{Þ`ꪙƒÓõ ÕÌÁéú†Ù'½¿”Ø<—«™‡ã‘–~"Ü¢Ïw IÕ²±;³óIæ z]ÍëÍ네„S¬K½ózLg}ÆÙ€²!ÿb#žáC<ËÆ<Ç&<Ϧԇ57'\d3^â#ü›Íy™-x…-y•­ø[ÓüÞ¼ ¯ÑÌ–píø?_pBˆ=b3忟F‡Ä©å8†å9–Bt×Õ4z}H˜,4|/„¢ú¶ÅCld*KpÍ0#Í0;Ì0#Í0;Ì0#Í0;Ì0#Í0;ÔÉ‘f˜êäH3Ìur¤º¹C)ïP'Gª›;ÔÉ‘êæur¤º¹C©nîP'Gª›;ÔÉ‘êæur¤º¹C½©nîP'G~Â#‡pìªX½©~îP/GªŸ;ÔË‘êçõr¤ú¹C½©~îP/GªŸ;ÔË‘êç{p”=¸Ãeî°G™ùï¸áÚ>¥çºã¦k{q”½¸ã]šýQKëMw¼'®Æ÷y3¾ó®}ŽQæQkî¸åa¯zÎcHˆfRŸ¶=Cõi[/ªOÛzS]ÚÖ‡êÒ6ùeZî)«_ͤ>m3OfRŸ¶õ÷üžoǰlÊ­e“=¯~m{V¬,ÛQ¬Žm(. ~T¬žmDõl›z–éKúŒÓô‡e%Îø¼_s¨çõ‹e;‰¿ã>ç·áu}dÙÎâïÄÏs?GÒL·mTYÍ`™ÌuÛ^ ¹nÛhâ?kF(û¸øñXþÈqü‰ãy˜/òg¾Ä_ø2pò•°Û¹ýglŸ®ÙÛ»ë1vb;3ÊÇc&²+“˜ÂL|‚™ÙYØYù$³ñ)fçÓÌÁ4îîI3àn3á3àn3á3àn3á3àn3á3àn3á3àn3á3àn3á3àn3á3`åÑ!vÒû+¡÷WKï¯<ŽÞ_y<½¿ò‹ÌxÿK43V~™fÆÊhf¬ü ÍŒ•_¥™±òDš+O¢™±i¡»µ…¹‘Eø‹òc£šßT¸õ)å[›(ÜÚLyàÖg”nm¡âü˜Ýø »‡0]­+wDü©øInâSÜ̧©OÝk&œ®–;*Ö¯îÕïNWËË {Õ³é‹ÄÇÅòÃ^ù!—ü°W~È%?ì•·‡ûýU !“¸ÏP¥}†*éwWyœ~w•.!düIÝBä”ï7ßÄohf¿M¨fžjÊïø0÷³ðds~Ï<B»¥!œR³OµëOµ¢þðTkþäõe^W£Oµ/ÿÎTþÁ<åõ¶^ÿY¼R|šïÒÙ?ÕÎó¿ˆÕ±Sqq{ññûâ?ÅÄG™ÌcìÈã|”'øe'f|ÎÎÌø<ówvá4ÿÌÏøæŸù§iþ™ŸñûÍ?ó3~¯ùg~Æï3ÿÌÿ‹æŸùghþ™–æŸùçØ“æãSæžùæÝSæžùiæžù‡È'Bìc5"ÖÚõ¯®ûñ7ö§úžñwzü÷;ŸåÈSÄÓÌt>Ç8‡ðOå_Æ3γÁs|žç9’8Š©G8µ:ÄèãOéëèãOéëèãOéëèãOéëèãOéëèãOéëèãO9_ êZ3þ© üßYŸ¿@_JŸ¿ ¾ç×{þ7Ð=8¥ï_ Ï?¥ï_ Ï?¥ï_ Ï?¥ï_ð÷mô¾Ëbýÿ‚ÆâÄWô@úSfM<§8¥8e&X`8e&Xð°çõ§þá§ü—›xÍëf…ÍÄ›Å×ùõUí¶ð·ò&·ñ–÷›)t“êéC·¨Ž>¤¾NQGÝÒ„)êhcuõ)!v¡,ß žò7©î>0•89•8ƒ•ùïäLê»ÕŽf¹¾›³Y…sX•sYóxßæ½|‡÷q>ïçVçBÖà">ÀŬÉ%|æ µ¨¼P›zÀ u¨¼P—ú¿ õ¨÷»PŸz¿ ¨ç»Ðz¾ òaX’>QGÇ|-D› ‰· q0 ó9áåPã0çp–‘±‰!Výu&q 3ñ fæ›Ì©ÌÊiÌÆé4¯UŸAóZusÛXóZusÛXóZusÛXóZusÛXóZõ9!ÔzÇc~ßÊ‹ßñ¼ù­º9n¬ù­º9n¬ù­º9n¬ù­º9n¬ù­ºÚ6ÖüV]í[€jÖØ‚T«Æêª/¦Þ¡úꪛ#Çêª/£Þ¡úr÷ÈøžjÒØR¥=Êx”õ(ç¡7¨îÞWwß«»çÕÝïêîuu÷¹ú*}uõÕ!únÞÔí‹r,vϵ¾òÝüÔä³–ûª‡bÞ¾ôÍÙ—Ôû|Öv_ ñ ±ºÛðÛ­Ÿ»mõs·=OýÜm#iÎK÷;šëÒýù 3þ7þBs]zšëÒ Ò\—^ˆæºôÂ4×¥¡¹.½(ÍuéÅh®K/Ns]z šëÒKÒ\W[¯¹/õø—û…0÷zˆÜ]S¬×¿ÜŸzû˨—¿ü,õð—Rï~yÙW?°«ZH|á0ïáϼ—¿ð>áý<Êê<Æ<Îx‚5ù+äozfs]ÞÓâZ⓬ÍßY‡°.O±%­ñ濼éâúât±90o\Ü@l¨oÌû§¸¡8ÃFÌø{=ÍJyÿ?$>ÃÆ<ëyóbÞŒ¸‰øœØÜ˜÷¬¸©ø¼Øü˜÷œøa±z1Þ™÷¼¸™ø¢X~Ï{AüˆX½o®Ì{QÜ\ü7[ð2[R=oÞÌ{IÜJ|5„âk\·výÛð_¶å5¶£¼?Þlš7ãÏj/–/wÉ›/È—»äÍäË]òæ òå.yó³ßx3lÞŒß)Ž–7wÉŸ£åÍ]òçhóÈ.sÈè¨ß½ÖµYd´™d—Yd´™d—Ydt’?Ãü›÷ŠØL2Úl²ËL2Úl²ËL2Ú^Þe&m/ï2“Œ¶—w™IFg!‹\·Ë\2Ú|²Ë\2Ú|²Ë\2Ú|²Ë\2Ú|r¥bH\å\\©Dýð•Êü>„)I!R²±øN±~mJ&qñ]âx7dþĪԧMÉì}MÅöæ*{òн¹Êž¼bo®²'¯Ø›«ìÉ+öæ*{òн¹JÏûÁªÔCoýÁÔ·îb£ÿÇ¡T_[4 áÄ‹!äÉçZ?ñ¢/S=?1Á{‡y¯™}·3>Z Þ팛 CžüÞÓÔ{^ñœóž1¶PëO¼*vî͇‘Ý£¨¾&¨Í»_p­Æî6ƒ™#»Í`3bÏU!±˜šÝ¿jˆDž nÅÕlÍ5lõlËulÇÙžëiNï_ÍÏ›ÇûßÃAžßàùdš3Šuôü½žÌûøœçõýÅß/"Öû{Œzÿbf€žzÿbjxO½13@OsG±.4wëJóF±š3Š=AóE±n4_ëNóE±')'{*„ÂêrOy©ØÓ”Šõ |T¬'å£bÏP>*ÖË{ïr-'ëͽ”—z~I=jaµ¼çW®å·ŒÿvVϯ]ëSwšÑFm¦mÔg4£ÚB3Ú¨­4£2;Ö2C^ÊÐ yÉ YK¸d†¬e†¼d†¬e†¼¤/ꡯ¿nÆ­e–¼d–¬e–¼d–¬e–¼d–¬e–¼d–¬e–¼d–¬e–¼´×ÏõsExŒfâZfËKfËZfËKfËZfËKfËZfËKfËZ>÷%³e-Ÿû’Ù²–Ï­Ö$Ôò¹3jM-Ÿ;£ÆÔ2[^r–j™½.™yú›•ËÈ­ýÍÊeäÌþfå2re³r9²¿ïYFNìï{–‘ûûžeä¾þ¾g9¯¿ïYF®ëïû•‘ãúû~eä¶þ¾_9¬¿ïWF^êïû•‘oúû~eä û4Væcú>e>¡ïSæSú>e6Ñ÷)cì«XëÐß÷)cúû>e¬Cß§Ì6ú>eÒèû”ùÁÛÙ9Ù¹ø$só)ÞÁ§™‡=˜—=™Ï0?{±{³ ûPßµ¸/õ]‹ûQßµ¸?õ]‹PßµøYê»d bIf)>ÇÒÂ2ʲF½mIóÊáf4Ÿ~„æ“ÃÍi9Ü‚æ‘Ã-Ct„ïUÕ÷á{UÍÂRkVC½ZjÍjèFøžUo[»êÔRkWãoÏûÞUÝŸ¾w՜²Œ³¿™²Œ³¿™²Œ³¿™²Œ³¿™²Œ³¿™²ÌŸ!T/—zûþfË2fÍþfË2fÍþfË2êh³ršºŸÅlœ¦îg1§ýF³pšzŸÅ,œ¦Þg1 §©÷YÌÂiê}³pš¾ ‹Y8M½ÏbNS糘…ÓÔõ,fá4õ<‹Y8MýÎâs§eü>Ÿ;M½Îâs§©ÓY|î4õ9‹Ï¦.gñ¹ÓÔß,>oš¹îÀ­{M?ðåêƒÆÜ×äèƒN ¡•Ùì·Ä âIŒò5Æ8™úè×ôÑõѯé£ê£_ÓGÔG¿öfHX¡¦§˜í2ëéW¨ë)êû u=E}_¡ž§\§zžb®{^¹Íl°B]OQßW¨ë)êû u=åVˆV,O|ÉRüŠ¥ù5Ëð–å¾²5v]Îõ·,ÏïXû©öž8¢U‡Äôù3_â/|™G8GùJH¨ãû\^Lßçòš ./¥¹àò2š ./§¹àr*Í—WÐ\pye=ËÉsryóÁåwi>¸üžçË{^n¯cN¸ü>Í—W…h>½Ê¾êUöE©WÙ£>e_"õ)ûô'3Æ…HùmbýʾLÔ§ì“òéSöeüû̇¤úWØŒfî%B,yåÅdyq¼˜ün }¾zˆåÇdùqü˜ü¾ç}¾zŠåÉäUâ âgÄòeòâŠbµ¨a%öö¼ü™¼Z\YÜG,&¯ß)î+–O“åÓòi²³¹@>Mv6ȧÉëCt®|ÒV>™+Ÿ´•OæÊ'm哹òI[ùd®|ÒV>™+Ÿ´•OæÊ'm哹òI[ùd®|ÒV>Ù-ŸŒ©JùdL5Ê'cî¡|2æ^ç}!ÜöX¾ ‘fr¤ž%iÌý!T2{èU’Ƙi*™?ô)Icjpà £=ÆxŒõç1ÞãE¯×ôxУ–Gm:u=êù³ôå•äŠ ßù}·‡ÈäÃ!ÖH¿5ùgv‘3ÎøR³@ôëÚ¿ÂéoBÈëLžqæ—ž¤3¿ôw:óKå¦3ÎüR¹éŒ3¿Tn:ãÌ/•›Î8óKå¦3ÎüÒ?éÌ/•“Î8óKåˆîúÆjiw}cµ´»~±€ZÚ]¿X@-í®_, –v×/PK»ë èK“Þ Ñ,…BbÚæNá.ån£9qZ³)+oL{„“<_Üó{ÄÍÅæõ,%Äú€i-Ä“ÅÎtÚ—â–â×ÅÎvÚWâVâ)bg<Í}™ÖZü†ØYOsÖ³8ëiû蜧}ëõ6^Sì¼§9ïYœ÷4ç=‹óžvÀëm½>U¬çN;H=wšï6­ç§‰õÜi‡¨×Nûzí´鞥ýD÷,í0ݳ´Ÿý\{?7]ìÞ¥ýB÷.íÝ»´£tïÒŽ…hou¸¤óÙ[.™9õ3rÆïX=.™Eì¬Ü画‘ûåu4r¿ó§ŽFîÏøï «k%ÕùÞêZIu¾·:VRë­n•Tç{«[%íáÞêuIu¬·z]2§ŸàçSõ7r¿9¾·ú]RÝï­~—T÷{;o%ÕýÞÎ[IuÿÔ¸´ -dz]ˆÖÊ/}dFÖÝeNœ«'ºË|8×¾Ë\8׾ˌ]ë6ïû8„Ò}\ßîúæä§ÌÅMÌÍͼƒŸùYçþ.5¹VñæåV棜V+?ÓX€zŸZ¹ö Þ3ZËÔsFkÙƒzÎh-{PÏ­eê9#]äÔ;¦QN½c:ïàŒªÕ a×HÖæ(IY×u\¿Àº4,Vs^wVªÕçX6 \û¶ºÝîgªÛí~¡ºÝîÕívG©n·;Fu»Ýq:ÓíNÐn÷+ávÎxƒÖ!Rßv–Û9Ûo;Ëíœí·åvx½×ß;Óíœñ·évæþm=?Uìl·3÷7h'žÆöôßvÖÛ9ûo;ëíäšfžCÿ'u½ÈÛj};yàm½I»ŒXoÒî,Ÿá9öâyöæö¡õiÔ0$^ÿ‹x†ñ,ó\ˆÎ˜’š›W.‘ÚöüŒ9â&œË¦!¢¯½g›eVkeÖšeVkeÖʤše^kõ(Ík­ ÑËòå*ûò²œ¹Ê¾¼\öååúÔ^n@ýèå†ÌêºWô =Íh×g‰}ÿ+fÖžòúõÙb÷áŠÞ¡®ï~å}÷+ÿÑw¿jä¬ë»_Ðw¿jM47×õý¯šA?kbÏíãÃT#>kF¹û³G¸ŸÍy€-x-ù}H¨~)ÄνÂÓ½Cøw¥øoñd^æë¼ÂŒo{Wˆ´RÓý8$ÍÈO(W®ÎjwVgãV3Ò„®íä+ÜBAódÍCìb¡ÐötHÌò2Ó9qêWÚþÉWù'ò 'ñ,_ã9úLmÏÓgj{Sx‘oðõmmÿæT^æ4^át^åŒY§ïî]Ÿ›èŒ4Uç‘ÃÖm7ß%6ƒ6½›rÙºÏ<߈[øç«x^ŽZ·UÜ˜ÛØ„i´wÖ}·¹Í¼¿ª÷ËeëvˆÕ–u;©¦¬ÛEµdÝnª!ë¾ Ú±nÕŒu{©6¬³{«ë¾¢œ¿îkÊá…ØŠë!tBº¹íÂ`ñÿøopõ¥†ò–÷=ï}æº ÃÄÿqxˆió"F0Âç™À‘´—.Œ¢µž¡w›‘’Yï±Á™yÙ™‘˺å Iù­y·¼”»å£Ø-?åÀn(v+H9°[!fü\aÊÝŠPìV”»C(ó»ëb®¿`qª½æ™`–‰v+!ÞË’TsÍ5ÁLÌ3Ñ_؃ð(Õ‹_q smHhõVHLªÂ™¬>žŸ•3Çd ‘Üæ²g‹ëqõúÏeÎcÃØAa2õ·;R;ñQº?ãôL5ô\ãä>Ï8y ÆŸ”jÈAãägB(×˵\PC'Ô‡Æ5¢šT®·ë‡\›ûÊ©Gã»–ÇÆ5á%6¥™oœÞ¸Æeêkè‘Ç=«lN³J¹¾®[¸þ—-yÍsý\·r}­ù¿ËäÞo5—ü1?$ÍÂ&µ»•Ú½É~o¥vÿ±ÀóÏŠíóVîí Źˆƒ¸˜ƒ¹„Ïq)‡p‡ú9û½•µøc¹xS9œ+h¿Þ®øc¥ëçù.Gò=ŽâûÔ¯þ±ŠzÖ?> ¾uŸ}6A_³Ï>›ð“õLµžÖ©Õ 6äJ6â»|ˆï±1ßg®bS~À‡)·'™Ï[ÉíIè«»–Û“Ìè­äö$3z«Ù’ëÙŠØšÙ†±-?f;~Bu£Õ§ìÀMT?ZmfG~Fµ£Õ>Æ­ìr¼b»Êq&Í/1sXŽY®+p6+r+q.+sïäÛ¼‹ïðnΧýžcí÷ Y‹xóÞÐðƒ»î~4\M÷£áº ×Ò¹h¸ŽîEÃé^4\O÷¢áº 7Ò½høÝ‹†Ó½hø Ý‹†òìu÷¢¡<{ݽh(¿^w/ʧ×Ý‹†òéu÷¢¡o÷zf£c¬ÏãlÀ!ôÓÏý|?µ0¼çy=T_©‡* ÿë'G9¢ŸÌÕýä†ð×õVNRoUàwÏ;ûaµ¸‰ø6å)>ÌÓlÆt>Â8›óO¶à_~~ Ÿ7÷Dù»{KÏgÌ€­x–­yŽmxžmyíx‘íy‰øwÙ–‡hÝ ¯„Ä«f£«ÎÆçîáóîÙçîáóîÙçîáóîÙçîáóÃè>?<„q‡<ì¥q?†HÞ<y=òyݽ}~÷óyàHä(~Ïxˆ£ùÇðGŽ ‘‰¿…X}óÔÄ“tß'þN÷}âtŸ'ž¢û<ñ4Ýç‰ét_'ÆéþLü“îÏÄ¿8˜gøÏrÏq(Ïs/p8/rõ{õ}îkòÔº')O­{*„7Jx” ‘ROxt󼼵Ξ¾&o­³§¯É[ëìéköú:{úš½¾Îž¾f¯¯Ó;–4Ÿ”¬#¶ç×ÙÛþœØáË4 ¾B½ïaMl7ë{Ù–Òûþ‡zÞÃÿRÏ{øõ¼‡¯SÏ{øÔóÖ#¯þ×Ù¬¢ïß’ž<%¾&~@|ŸXO°úº¸&õA !Çz×z¡Fµ¼ç~ïÑ3T^Bóë­‡™•r^²9-ûÇ4§eÿÄóÙ³p³raäôRÙ\/bv.f.ám\ÊÛ¹Œ9=Ì´‡—{¤†èÇz½röZ3\ã;Åú½î×Z³\c}÷Z³\c}÷Z³\ã*^×p×^W븟ËéÜ¿µ—<_ó^æ½^—»¸¯—æO”¿fYþ¬LÔGZ¿,#Bâç%ùJüü.NàÝ”»>w?ÌG‰Ÿ»æ£ÄÏ«qïákô½ÍG‰ŸßÇ×yHøÖ ôª5üÖ ôª5üÖ ôêBþCë÷í¿´~ß^ã’Š;£ß^wm ¿ý­á·7¸œ7™Ê[ÔŸ|ûí!÷"á;cè«ï†h)³×ÏïÐïýÙý(å÷þìû–ò{^H¿÷çEô{^L¿÷ç%ô;^J¿óçeô;–·Kù?Û7¥üΟýÎ9þü6óèÏocÏÎñç·y‡þü6¾ç~ßsŽ?¿ï9ÇŸßÆ÷œãÏoã{Îñç·±OçøóÛøŽsüùm|Ç9þü6¾ãß©ïhéÛø}s#4ÏM໌Rmœ£Z˜Iýš›èz“¨ÎÍDõonf®aªcs³r³ñCfçzæàÞÆ¼…èà»BRE{wðÝ´wW¡½;¸* ‘Ùú­Öu©ßj]ú­ÖæÚÙòTë!:h„÷é]=Ï2I{sÐ(Ú›ƒ^ ½9h4+p íÉAciOG{rÐxÚ“ƒ^ä]!²VßÖë!êÛz™×êÛz™×êÛz™×êÛzÉ­ êÏZ½[¯f4ûö2û®5ûö2û®5ûöjÂÍ=ÌÀkÍÀ½ÌÀkÍÀ½ÌÀkÍÀ½Z‡0øXˆd*F ‰÷¾B³J½ÐHõ}¤½pYîžÙžëãaö9=$$-lÌ¡lÂalBê‡!ò yjâ@3[Qb1ϯ÷ü%n ^!u#/ó#š¯&ö¾â|Žjcª9ûAy|¢ßS¿¤Ø<ýà?b¿¯~)ú}õå‰ÔO=o›8\ìÞO´õÝû‰Ö¢~9¯oòºÜ>ÑšÔ·­I}k0ÑšÔ·­I}k0ÑšÔ·­Iý;C,ˬô¹y=Ëlš×³ÌáHß=.o÷“·íÉnýi?–˜b?™%º¹g—íËfŒŸüŽéw„¤fæòéæ÷fæòéæªfæòéæªfæòéæ÷fæòéæ÷f»i~of&Ÿn~o¶‡æ÷ffñéfÈf_RNoöåòf_SÎnö åêfûBä¸ùavMšf?HóÃl}zÛñ!ü‘&6GÌ®MsÄì:´¯gÛ×ÇíëÙõ¼Ïºÿñ¹Øþžm·¿g7 ybvC¯¿äõí|™;8;ù wyŸycv#ñ«âÝbûwöCâ‰â/Äöñlûø¸}<»‰ç'y~Ø~žm?·ŸgÛÏm_óü^Næ—ž··g7¿.þJl϶ÇÛã³íë¶S<ï~|q=$Õ[¤/‰‹Ì[é iÞJ_D½Gúbê5җм•¾”æ­ôe4o¥/§y+ݼ»È¼•nÞ]dÞJ7ï.j¢;ÝçQòÃA³öäþ!º:cNÉøgr?ò5þÄÉ<Ì×c½R…ã!,чVß*ÖUÐÿ/'Þ&®.þU<^œ&®!þð$kòw>È?Bô·!iÞLîâ,5“i›Ù2Ó74[fÚG³e¦oi¶ÌôíLûiod:À !ÚÊïOJúü)éó§bf_ ¡Âç!á˜3;Ë™=æÌÎrÖK˜×9·³Ô´‰·…H‘–ž3»s†g9ÃÇœáYÎð1gx–ºVB Ëeî5æ2»í5æ2»íBW}í%Ÿµëôcr[þÇ=º„èäÛCRÃϘ“[B˜oލæýóÍÕ¼¾ù¡š½ÐÁÙÏ>Îafš?Ïsîáü·ù3ß¡{7>púy"»œ<¡øQž˜¿˜Îaù#»\<‰X~˜¿”¿qÇ?{ý%þB¹xþrÏÿÎT:ŸŽxÞÞá(_á1¾ÊãœÈ”·:üJy«Ão”·:œ¤;…?çTˆüp-ÄÞ«~¸N9ê‡ÿñEÞàK¼É—y‹ø_ ·'öÆ«Œp"8‰Q¾Æý¾÷¦›õïÍ â½·¨‡È±&DRÌ~ù–ï~ÊkùªS^ËWƒòZ¾(¯å3‡}QŠÜ–OÝKQ÷òÕ¢z—O½KQïò©w)ê]>õ.E½Ë§KQçò©s)ê\>u.EË×êX¾FT¿òé¿RÔ­|êVŠº•/ã÷¨WùÔ«õ*ßÃTŸòé½RÔ¥|êRŠº”Oï•¢÷ʧçJÑsåÓs¥è¹òé¹Rô\ùZs/“”/Ù–_±¿f{~ÃÜÇd~ËŽüŽr?ãš§RRnKùžrZÊ!Êi)?Ðü”ò#ÍO)?Ñ|”r˜ÝBô¨ú1Ó,qTý˜i–8ª~Ì4K<±Êì–Ìè÷^0¿®x“æ×Sin]1æÖÓin]1ƒfÖæó fÖæó fÖæó fÖÎÑ3ë ³_E{óœÞ7µõ¾©í©÷MíÀ—èwŸ{™9ò>ÆWÙ)„-#C¤í§â‰âÎâQâMâIâÇùçs“Ù•¯3…Søß {pîMvçT>Éi|Šö¨œ=gÊeÑsö¨<=7“ÏPŸ(EÏéå±è9}¢<=7—úäsóØoSÏpîà|>ËÈ…ÄEÌÅ|ŽK8$$$, ±MUBèd†?—[¼L\U¬~»Clîßd>ïtHœ‡rÕ¹¼žOõ¼y½“CyNŽëôó{~…çïåJÞÇwy¿×å¯sÄó}Öà*>@çr“ÜŸà\n’ÿœËMzÌNòݹ‚bçsSm:Ÿ›êÐùÜT—Îæ¦zt67Õ§³¹Éìt QHzM <ðÕÀ©hB5ð@SæÐwÿãñoHèúaHÌ«'뺞m¹í¸‘íù;ðc&óvä§|”›ø7³?cgnáãÜÊ.ÜÆ®!ôM á¿ÿÄiâ±þX¶Ièú¹ø ñvqD¼]Ü;Ø;ù$wñ)îæÓÁ—qý…ëÜÞÜËgø%{ñ+öæ×ìÃoh/µO IYW3‰k˜‰k™™ë˜…†èêkæç§¾f~êgæ¤~f~!êgææ’èc~(!."ÖÏÌ/JýÌübÔ¿Ì/NýËüÔÌ/É•,ÅwYšï± ßgY®b9~¢w IïÛ[?J{ëïÇxWˆ¼;.ĺgâxfæ‹Ì—˜5D^M±zÏ2Îü“ƒ¨g¬7˜zÆzÏ…„Blç_ìÌ3ÔûïÔûçÐûïÔûçÐûïÔûçÐûï¼B—=!\Ì$6ì¼(6Ï^Ì,î&¾Äîü›Oò2Ÿâ>Í«ìÁØ“ò^Žgx½x½ù?öá°Gþ—BùoÜ”ÿÆÉG{ä¿qòÑùoœ|´Gþ'í‘ÿÆ=Mùoœ\´Gþ'í‘ÿÆ=‹/„H¾Íbypœœ´Gþ''í‘÷Æõ ¡ø.×rÞ¸¾”óÆõ£œ7N¾GΧ'ß#ç{6„ìÿ ѹf¹Îy[³bÛúf9}Ùþs!6i(ÏsXˆîXo¾V++T0_ígE`%ª{¥äâRòïµClíNÖâ.ÖænÖ¡ùðÑxg*hBK{®®çÌ‹×êqoˆþ%,};„ÏNê䴿䄥æ,CýoÛ²i.ŸÌOšË'3䓿òÉ ù¤¹>p†<Ò\™!4—GfÈ#Íå‘òHsyd†<Ò\™!4—GfÈ#Í»Sþhþ$åæòÆ y£¹¼1CÞh®ZZ $u¶Ÿ?Ø" nŠ ŠÍ›lß Ñ½úÆñÖq¯¾q|ÿ*;—{W»¶'æ%…Ķ0W33ׄ0ÜÙÏö‡8‹x-³r³ñC¯Ë ÙN‰³‹×‹å†l§)7dK÷|ÏoàmÜèy¹"[\|»ø#æäÇÌÅO˜›òõp¹$ÛŸâ;Ä›˜‡öý¼¼üŒù¸…ù¹•¸™"›r†Ø =í¦\4nÊM³á¦;hÜ$o’77É›ƒäÍMòæ ys“¼9HÞÜ$o’77É›ƒäÍMòæ Å!<|5„£æžMòç {éaýÏQóÏ&ùsü¹Iþ$n’?ÉŸ›äÏAîá&ùs{µIþ´RŽ_íZä>m’C¹/›äÐA¾÷&9tºIôA½ƒ›¿„„,¯„ØçzÇ,¯2'2¿~Ýl“®>,rþÛ;#§ítu"㿳ÙÞY9m¤«‹úñwZûè׸Öóæ{%$î«ÂWY•Y“¨Gav(ï¼ç{M|/'ó>¾ÎûCBUßù´5®ê;Ÿ¶ÆO á{©ªï~ÚWõÝO«ÑOÉ9ÿØ[U݃ÓÖºªïúSúþ§7eüÇ•C(¨g«ê>œ¶ÖU݇ÓÖºªûpÚZW-Ok]µ­uÕŠ”{ &¸®äúsVævÞÉt^Oïôž¨ß?Ðï_ã¹»='OV­ÂݬÊ/X{x£‚1×÷ºþ’÷ñ+ÞϯCXã7š¢苟þWì<7šGç¹ÑÛž×'?}Mì\72Ã} _~úºØùn$_}ð°Xþý oð:³4§³úA þÇ–!IK­Gl­Wœ­Gl]8„÷õKõ6ŠõŠ­õŒ³õŠ­õŒ³õŠ­õŒ³õŠ­õŒ³õŠ­õŒ³õŠ­õŒ³õŠ­å×ÙzÅÖ¥C 5¡¢ú2HM¨¨×¤®Ø+„æðر^¸¢ú2H/\QÏ;H/\Qm¤®¨¶ Ò W´Ÿ ïu­®(— ÚÇgù-ò;â~æš¡¼«í6c%® ‰[Ì”‰ÐL™¸š†0Õ)sV¼Fl¶L\K³åÔ5ž?'^'îL³Ç–Ç=¿Öój}φ!±hÆ¿{?&Ä–erf8ÄcÅz3zeYBÈûªkýÇ2ýÆýDzl!r¥Cˆ­:ÆdgGžà£ü•ñ7ê;VùWô«Ô¨+úŽUjÔ}Ç*5ꊾc•uEß±*úUqê3VýI}ƪ¿¨ÏXu†úŒUú–:BìŠY¤ÎENæ%¾Î¿9…—ù¯Pín+ÇgÞÎBÜÁÂÜÉ"ÜÅ¢ÜÂüÄ©¦wŸŸD={ÛbžW“çëÁªéÝÛïa Úûóݧjzù¶%ÅjÈ|½Yµ‡é^UkF÷ªÚ#^/åõ¯ÄÙÅÍÅ¥ÅÎÇüââ2âoÄ·‰[ŠËŠ÷‰o·—ËòüލÇh[‘rNÛJÃÛØ‹·û9ýK¶·Ä½Å9Ù‡¹Ø—¹Ùw°?ópÕ"ù&±µZ$ß$¶ÎÏA,ÀÁ,ÈçXˆCX8$œ©—ê ÎÔ§>àLªógœÙ¥úø3¨?ó‡3©?Ó„Îö™¦¼À‡y‘ͨo?óõígšSß~¦õígZRß~¦õígZS¾ž\5DŠËQgÚˆõïgÚRÿ~¦í§3íyÃûªyŸv¦ƒØ:ž±®K­ãëºÔ:ž±®Ë¬ãëº,âý÷x¿\w¦“Ggëº,Á#êÓGæ IKÌÀ墸¯Üüwðæ¡~ê£ê!±ÿ±2«wu68ë­¸‘6MÏ:!\Aü‘¸ ?f[~Âvü”æÞžu½o´x“¸73™Ÿ±#·ðQnåcÜÆNÿ±L×i®}þ:Ÿóqngî`WšÕå¶„:fu¹-a‰ÜÝÙïX"wwö;–ÈÙýŽ%rvg¿c‰\ÝÙïX"Wwvoú¿ËV囬Ʃ¼‡Óx/§ó>Π£ÿ[¬Î™¬ÁY|€³Y3„¤£®ç¸~sY‹óX›o³ßa]Îg=.`}.d.bC.f#.áC\ÊÆ\Æ&\ΦLåÃ\Áf\ÉGBÂq{vÖ¹&ÊEäãöî¬óâÊb5ô¸=<Ë>nϲ‡Ûóìá’îÿáötïw¡›|tù„ØvOKZƒÃîiIkpØ=-i »§%­Áa÷´änZ³ú¹ 婟3³% ÔÏ™ÙêçÌl õq*SWáNêã*ÜÅ)¼›Ö¦BZ› Öh µ©`Z› Öh µ©`Z› Öh µ©`Z› Öh µ©P#D‹»O?¶ á-u³¢¤¸ûõckº_?¶¡ûõc[¯«§õ&Åß·ã{lÏ÷Ùúƒ“CÈfÞ+nŸý¨G(nŸýø(í³õÅí³;Ñ>ûQOPÜ>ûñq®gn`×=–’f ÇʆęûXŽß²<¿£wæ~šqg wæAVæ÷¼“ÎDZ»øïæ¬ÂŸX•jȱjTŽÝC½û±{y„÷Ñ^=v?Ñ9Ÿyœ5h­=À_CÈâQÂ|¬¦ø7>È“´¯ÙÓÇìçcöò1ûø˜=|Ìþ=&‡ÎüÝãS§=Ò=âzü¢ÙÝ—z¥izšrúÃìîÏN÷'»û³S¯:µiˆ5ÝLJùm¹õO¹õS›‰¿ã#ÜB½7B8ø¸¹Xo5µ†È~}Ô$½Âþ—¨WØÿ2õ û'P°ß 3Io°ß 3IO°ß 3I/°sò5æâdææë¼#„jfú]òaµEÔ—uÑåÉøÿƒ9#»|—.ú¢<£¨/Ê“ñÿ 3›ír«©ß»~£$½ë$—ówªÛ»þà ž Ñ„¤µCCôÉÖ!©à¿lÃklËëlGýú“í©_RÿQP¿þd2õëOv¤~ýÉGCR!ýú|¯'Ë÷󽞜H¯''ÑëÉ™ø3þ»éKBÒ»~ïÅ¥ÆeÎåAûõÝ繂#¹’£¨w~÷¾ÇÑ!ú@ZH¼Ð›Ÿ³·³/wÐÌÿÀNö§~ÿ‚™ïýþ…g©ß¿ @ŸaPs …È]ÎÑúý ƒ©ß¿ W@¿aõû|Þôú|Þôú|Þôú|Þôúž÷çöç8‡èù/øÜèù/øÜ¤õÉö†ëï]g|öCÃ86„U×B¤Á¼Îš!¡­™?óÚpBÞš#æÜ'Ÿêß‹˜ßNÈ_säŸò×ùç„ü5G8!ÍñçLœè}æ»òصbâ$ñ¾F½îÄÉ4ãßæ¨'ä·9ÎÙ ùm޳vB~›ã¼ßæ8s'ä·9ÎÝ µg޳wBÝ™ãüPwæ¨'Ô9êÇ ugŽž;‹>æ„Ú3Gß½vjHêõ§1#žÎ&!Dº†PÇgÝ?$tÞìñYHÌ­ÇÏí >’¦}Ìt~Â8?åŸÜ«ÿØÕù/íÛczêYzèczêYzèczêYzèczêYzèczêYE¨§žU”Ciæ¯j¿¥Û[Uíµt{«ª>'ÝlWUŸ“n–«ªÏI˜úœôfÔ礛áªêsÒÍnUõ9éf¶ªúœt³ZUõ;ÝŒVUÝNW·«ªÛéêvUu;]Ýž½7Dî”êªÛéêvUu;]Ý®ªn§«ÛUÕíts}U5;½£3//UU·ÓÕíªêvºº]UÝN—oªªÛéîUUõ)]Ý®ª.¥«KUÕ¥tgcö—~WñFq ?âžÿÊóYÅ‹»ñv÷üמÏ&þTü$7ñ)næÓ´>é=¸…=¹•Ïp{Q>M—O«Ê§éŸ[>Mï«ÏÂΧs!1—Ù¼ÓyšÍ;™As™Í;™As½I3h®©4ƒæšF3h.3]'3h.3Z'3h.3W'3h®™4ƒæšåÏ7Gü'¯t2‡æšMsh®94æ2ãv2æ2ãv2æ2ãv2{æ2ãv2{æ2ãvÖÂç2ãvŽÐŒÛÙü‘kQˆF­ßfëµ~›ÛÒºm¶nQë¶ÙºE­Ûfëµn›­[ÔºmÖkE­ÙæGC(ùnSïñ¸7DÊ òP¢Öq³uŒZÇÍÖ1j7[ǨuܬÏ(ù^ÿ[hÔzn¶žQë¹YµŽ›­cÔ:n¶Ž%ß ifÜfÛ43î}Gñq®Í¹#2»ïÚ¬;" ͺ#̶ifÜfÛ43î³mšw„Ù6ÍŒ;â¶X9$•?Bv¹rÉS!R}‰çîôÜâ§ÅKÅw‰÷/ß-þ‰UxØó==¿\\Uü3«ñÞÃ#¼—Gyñ~guž` fü»„ÏøsRňÍkÒü7ðAšÿÖ¢~dI/ï[!®-Ö— ¬ÃÓ¬ËtÖcœõùgˆž_’V¼–E!ÒÖï=¨_˜¬¾þ:$UR—Cuyð>ª!e3þ½êo]«#eå¤Áß¹V—ï§~bðªÉƒRMü=ÇòÇñŽ÷³òØà]«#eå²Á?¹~Éõ&ׇ]ˉ•ÕòŠ–þg¥×»½F¯u›¢V‡¤röÍ€5´o¬¥}3`ÿÒ~àû•³_l ý2`#ŸàGtÞ|Ìîü„Îù€O霛•ëÌJ‰‡õ?f¥ÄÃúŸlÎÄö÷èLlŸæòí«ì?k•-æú&rµç¬Û´iÓC¤¬Þ·ì~¯%ym 3Ѿ~õ|Hª÷N©+CäAëôêñ|^ä^âBþMgðÕËÔ³¦¾ëýÖóÕ+b½jê{bëúêU±}©&$Õ³Õ„¤zzÖìgCÔÌ5Ï'}¨ýÐ|X~dˆôÏbeÞâmœÉÛ9‹99›¹8‡¹9—wpóðmæå;ÌÇùÌÏ,À…,H{«!.fa.a.eQ.c1.‘žåC¬èjVàVäZVâ:V¦~¡ç\Ï»¸ws#«ð#VåÇ­þ¤g5ןð~Ê{iŸ«¹çÅêѽ,VŸîa±t6Š™‡™yŠ5â>D÷±˜ùüÐ9šË§yüКÇ]¤yüÐ%>¿ٜ—Ù‚WØ’WÙŠÿ°5ÿUßJ¹nãÚÜP¬-Í ÅÚÑÜP¬=Í Å:ÐÜP,™·BäÚW!¶.™_³#¿á£ÜÇÇø-;iÀʹþÎugîçã<À.ÛŠBôyV¦Ï³¢}žEéó¬Ð›÷9V˜·Ïû +JÐï_Q’~ï ûæ¼ß»¢4ýÎeè÷­(K¿oE9ú}+ÊÓ<¹¢Bˆv—? ꣺˟åÑîògAy´»üYPí.”G»ËŸåÑîògAy´»üYPí.”G»ËŸåÑÞo‡¤’f•ÅCBäþõâwÄzÈÞói>Y<ÔóÄæäŒÿ^åM=âF½ôM=âF½ôM=âF½ôM=ÆF½ôM=ÆF=â¿…Hé’b½ÆF=õM½ÆF=õM½ÆF=õM½ÆF=õM½ÆÆŽÔkl|”úо×/BÒúŒ!{ø\Kó…H ½É½â!âüb=Ê/ÅæÒ!_Ñ\:Dý»Sý¢þÝ©GÏ>5D§’qO¦»wt a利-Ǭ|žêÙt÷ò÷hº{ùHŠçå×ÚjÛt÷ô÷jº{úˆ{5=ã¿¡æLwOQs¦»§¨9ÓÝÓGô–ÓÝÓGô–ÓÕ¤Gô–ÓÕ¤Gô–Ó7±WH8ôrHœr—¹peއH¡b<Áâ^›àµ»Å¿ŠKÐý+äþzÅóUÄ'ťĝЫr"«yþwÏ—OëÑ&ü!.#63O1323O¹få)÷{ý”׈P¢œçÌÍSÌN{.#6?O1‡2?Oy€ææ)æðCæã)æãCæã)æãCæã)æãCæã)u̲·‡¤gv0'w†°Fh$ß®Í%ÞÅÜÜÍ;hf[£>4’‡×æïa^šÛr|ã55£Ñyªäæµù¼ö%óó+à×,ÈoXˆûX˜ß²¿cQªÛk‹ñ‹ó Kðû0Æw­î¾Œñ]«ßOßµzuú®Õ݃1¾ku÷`ŒïZÝ=ã»VwÆÌ¤{0fk«IfJõ(ÒÓL©…Œ¿;þvuh·:t»:´û¯°ütHìj>XžNóÁò8§†PLï¾üO×f„åqzˆö|,$“‡²›ÏzvrÀÎŒ†„"CìàY>ÎsìÂóìÊ LáE>ÁKìÆ¿CxBOówÆÏu_擼§x•Oóöà¿ìÉk|†×Ù‹ÿcoÞ`Ê­O¬ñçf|޾bùõ‰µâŒÏÓO,Ç>±N|!„Ù]è:ã³õ±ï•÷Œ¿w¹ÈבŒ¡Åõ³®8ßucÌD>G3B‘!ÌÄ¡ÌÌa4ά~Ïz¿'ã»›Š<ό߿Áó‹GŠ3~÷(ÞÆx;G3'Ç0ãóŒenŽ£Þ)fïn¾B{vóUÚ³›ÿ¡ý¹Ùü~Tß•ñÿm>ªïÊøÿ6ÕweüšúÙ·ô]Gõ]o黎ê»Þ²îe3‡Ø3[Ù,4³•ÍJ3[Ùl\ÄìÔ/vÌCÐÝpwe¶Ç³`Yýßýcb×zÀ#K©<²Œ>Ë‘åôYޤº×òe¡Ã<çsYAŸëÈJú\GÞ¥Ïuä=ê˜ÉÊꬢ~ðÈÔY¢­ÔîD=U+µ;Ño¥f':Ë­ÔìD=Õã!é5sÌ\¢OGBRa³à"}Â}«Ä â÷Åú…ûôÜOGÅÏÇø}ï -ÒCÜçw=è¹ “¨÷~:õÞOgæ:fá‡ÌJµëélT«žÎN=å:}Oo3æí=:ˆõ?½û¦uBøå±>¨wwq]ñh±~¨÷“bŸá=Ë:}QoýÒ:}Qï§=_ßóf›¦ ¨Y§Oêñïmfü¬^©·j^©·j^©·j^©·j^©·j^©wÆsI¯Ô[µN¯Ô;㿵tšÿm¥tfü7“âÈ?iæ^÷ó ŸãYªÙëÎQ^wžê_só­,43ßÊJ3ó­l43ßÊN3ó­43ß2+713ߺÏ0'{1{37ûðöeöcÞæ6 ‘»^ Ñšæû‹úŒšæû‹jhüÍ´XŒO¥ŸF52>jd|ÕÈø[T#ã3©FÆg±g³7ç°çÒ<ŸGó\\¿’ñw½bêSBÑ[”?‹þÇé!AI©O rhL}J?c‡f2ÊYŒq69‡ItžŠeâ<:—‡Þ¦syÈ9-æ\rN‹9—‡È#G=Ž…p¹ˆGQÏ;§‡œÛbÎã!綘³xh1ÅCKè,r6‹9‹‡œÍbÎß!g³˜ów(•Îß!ç±fZˆ]|ŒŸ³·³3wðqîdîbWîfÆ[ì >Á=ìÆ½ìÎ/ùdH8[8$.S“'·‘â“ÅEÄ»Ä-ů‹‹Šw‹[‰§ˆ‹‰¿`qîa îeI~ÉRüŠ¥ù5Ëð–å>–ã·,ÏïXûY‘X‰Y™ß‡È+ÎA]çàç ®sðŠsP×9xÅ9¨ë¼âÔu^qê ¡ŽÏz Qì<Ôu^qê:¯8u‡Wœ‡ºÎÃ+ÎCÝa¼Àá¼H}ß+—¨ï{åofü3uýÈ$ñeñ(Êñu_[×ò|ÝÑ!äÚìZ®¯+'L|-Äêç ¡n’Ÿk,ž,ÎÍ×y§0ß`^¾I½ëĩԳNœÆœÎ‚œÁB|‹…9“E8‹E9›Å8‡Å9—%8%ù6Kñ–æ|–á–åB–óy3ù¼ÿ{ƒï>q‘çÊs1+x-³×œç‰KĹ”•¸Œ•½žÅë‹—‹ïd*ïâ ÞÍ•¬ÂwY•ï±ßç=\Å{Cô_ýàóú¿úÁ5æõÕÔ5†°mYˆ´?ÉåüÝójìš¿B¸ýu×êìõæ_uvzó¯>pzó¯>pzó¯>pÞ'«yy»óÕ¬¼ÝyÈjVÞî„ÎÁö¡t¶«×YƒíÃC(}+D[‡”ñ—7—þ/D.V±•ÛBè 'Hÿú‚ô=_Ãóiâ¹âŸ8‡ù6æ;ü…fêô#”ÓÒú¹üÜç¬Éíâ?]?èzkq'ksëp7ëò ÖãÖ§>¾ÃB¦ÙaS“n.Ïøÿ¤›o.6ð¾/Ù_±¿æCü†¹Mø-›ò;>ÌýlÆ|„ÙœrÉÅ<Ä–ü­˜qOZó'¶áa¶åÏlÇ_Øž÷b©Ï÷—Ñ~ì°œ¿S•þWðÍoé§i-ÒÓ©¿IS_“n?wXEû·ƒ~&ý õßég©_N?G}rº§ƒþ8]ÜAoœ~‘z×ôKÔ«¦ëÛ;läe~Ä+4³¦_å'ü‡Ÿò_nâ5nfÆñ3þ[xƒ[©_ï`¿¤gü÷팿۳Ãç!øØ¡ƒõÎø;=;ì`Õ‹x”êDZó¸Ù½ƒ5›×;Xóx Zóø´æñš´æñiÍãµhÍãµiÍãzÞÖ<®×M¶æq=n²5ëi“­y\O›lÍã iÍãhÍãÑšÇÓšÇÕdkoJk˜Ö<ÞŒÖ<þ­y¼9­y¼­y¼%­y¼­y\2K¶æñ6´æñ¶´æñv´æq={²5w 5ûÐÉÖ<Þ‘Ö<þ(­yÜ|”lÍãf¤dk7'%[óøã´æñ.´æñ®´æñZó¸¹ ÙšÇÍÉÖ<.ÿ'[ó¸<žlÍãOÑšÇõýÉÖ<®F$[óxOZóø3´æñ^´æñÞ´æñ>´æñ¾´æqµ!ÙšÇõ;È3öd²µ µ?KkHk×ã$[ûø`Zûøs´öq3\²µ›ã’­}|­}\mH¶öñ´öñçiíãz›dkEk×Ó$[û¸~&ÙÚÇÇÐÚÇÍ3ÉÖ>>ŽÖ>>žÖ>þ"­}ü%ZûøË´öñ ´öñWhíã¯ÒÚÇ'ÒÚÇ'ÑÚÇ_£µO¦µ¿NkŸBkƒÖÞ¼’­½y!$[{óBH¶öæ…líÍ !ÙÚ›B²µ7/„dko^ÉÖÞ¼’­½y!$[{óBH¶öæ…líÍ !ÙÚÇÕ½dkW÷’­}\ÝK¶öqµ*ÙÚÇÕªdkW«’­}\­J¶öq5!ÙÚÇÕ„dkW’­}\MH¶öq5!ÙÚÇÕ„dkW’­}\MH¶öq5!¹?Õ„dkW’­y\MH¶æq5!ÙšÇÕ„dkW’­y\MH¶æq5!ÙšÇÕ„dkW’­yü£]ðWHêø6Ïðžå|žãžçB^à"^äb^âþM߯‚ý±êïipç.{Îw­`¯T¨'¾"öW]öºnÁUq*ÿ¡9Á¿ôÝW]ñú}âkâwyïñ|Ÿ7hÎ_p“æþ·h¶_ð݃UWýüý!j9’:šñFhÆ_˜@3þÂ(ׇÈ%=ê{ÎYGkô§5êhþ\êy=ë{zÓKzÖ÷ô¦—ôªï9w­ÝŸ¾OGk÷§þò’Þõ=½ê%½ë{Î_GkùgªXûžžõ’ö==ë%=ì{÷RûÞ}Ôþçv´æ® ®ÎÕ¬Á5t;Ú ®¯×ä:>ÈY‹ëY›X‡Y—±^HX ‰Éï1Æ÷™ÈULâÌÄÕÌÌ5̵ÌÊuÌÆ™ë™ƒx7†hs!ñülžç^ 33çwó|iñEñ<^¢9¸ðÐ;˜™Ã˜…Ù•#˜Ï3;G2Gñ6¾ÀÛ9š99†¹8–¹9Žw„„÷‡Ä*êx‘®«»þ9D›Üo~œü”¹¸‰¹©Çy»}ˆT™.¾Cüóp ór+óqó3ø9 r; qÍÆ7wÒL|sÍÂ7wÓ |ó šoî¡øæ^šo~I3ðM½ÎÛ|Žb³ðͯi¾ù ÍÂ7÷Ñ,|ó[š…o~G³ðÍý!úʬT·gó¡]¾+$uÆÝÎ/8‚{ø<÷r$¿ä(~Åø5GóŽá>Žå·”ÏsølË¿s=žûù"ð%äËüžBdÑæ{¬!?£üßP/øc‚x‹Xh¨'ü1*Þ*6÷.ÚÆ&L£zÐP¯øcLü¹Ø¬¸h;›qáN6ç.¶àn¶älÅ=lͽl¢-z„¤ØmìÉÛù s²s±7s³ï`_æa?æeæãæç³,À,ÈA,ÄÁ,ÌçX„CX”CYŒÃXœÃY‚#X’ϳGÒ¹i1ŠæîËCBìý[tnÞ7§]vn¤þÈeçfU„ÎÍ*ýV̽½ìì¬Òsutoÿro/;C«ÜÃËÎЪD:C«’è ­ÊDghUf:C«²ÐZ••ã™/2;_b¾ì1Áõmîaû7CR¶8•59r:kqkó-ÖáLÖ¥ýšMnúì…8¤ G³,ÇPoT\+®Æe6g’w¶Ê3™ä­jT&ygëÇt¦·:Ó™œé­Ît&gz«3ə޺™ÎòVg9“³¼ÕYÎä,ou–39Ë[åLÎòVg9“³¼ÕYÎä,ou–39Ë[åLÎòVg9“³¼ÕYÎä,ou–39Ë[åLÎòÖŒ¿_ÝYÞšñw™¸ßeŠé­Ît&gzëWt–·:Ë™œå­Îr&gy«³œÉYÞê,gr–·:Ë™œå­Îr¦Š<ÀJ<ÈÊüžwòïâ¼›?² bUf5š_²f|Ö{\ÿÂ{i†™f/”•'2Ý'>J¹rë1Ê“[³OðþÊšüò$kñwÖæ¬ÃS¬ËÓ¬ÇtÖgœ ø'ò¯=T$$½î}‡ŠÒûRÕúµ=UOQÛSÕøµ=UO±ÉWw ‘†úTµ>EOUëSÔøTµ>e Õúµ]Ë””¢¶¯PãSÔöj|Êzªñ)£>§„þ;˲°¡eHì{…­hzáZˆäRk‹7÷\kÏ™‹Š·pÝÆµÙ(³º¸¡­kóÑ ×½WüÂÿ¨?~áky½×¯³=½¶ñ­ë_˜3Y„³h~¸Coö°¹åˆÞ5á-ÏÏö|1Ρyâ=ÛúµÊzÇ*æÂ*ñËñaHÚåÏË´!$móçdÚÈŒÿ.ÜGôs™>æ\~Âyü”osßáfÎçg\À-\È­ÔÇõý<$•îËíìÇìÏ@õ¤ô³!šÏüÆ =ã…)ïŒå³¿±óÙ‹ßØ‹ùìÅo~ ±¬ÝCÒöF|’ñ)6æÓlB¹x{SÊÅÛ¦\¼½åâíP.ÞÞœrñv=Îû\ËÇÛ[†èÿÖ†¤õ¯r'Ò½Y?‰ëùÝ£õ“CdK©ò.Kó=–áû,ËU,ÇXž«YkX‘kY‰zçfzì£zìfzì£ï«ìùy'õ[îâÞͬÂX•‡Èoê×ö“XŸ;L}Nìgêsb¿PŸ; -ößâÎäY΢~ý3ýzL¿þ™~=¦_ÿl.õéŸÍ ¹;…Ø^¹ºõm!)Im};ÕÙÖ9©Î¶ÎEu¶unÊ­ï :Û:ÕÙÖy¹5„lÖ u>×jm¶ä¸ý;ò?>µƒÑl1ÂNL`gFù8cêÕ|õꈸ‹8‘]™ÄfâÌÌnÌÂîÌÊ'™O1;Ÿfö 0[Oê_²=C{*[/ê³õ¦0[ê³õ¥0[?ê³õ§0Ûê³=Ëj­ºœm k}`¶AÔfL}`¶ç¨¼cvHüª>ç°Aˆön’JüË6¼Æ¶¼Ââ§Cäþ¥âvâÿ…Pè—2)$æ«À×X1DKÉ»‡åÝRòîay·”¼{XPJpXPJpØÜSJý?¬þ—Rÿ»¥ÔýÃGCh ZKµæ×@½9ô!‡p=‡r‡QÝl0œq?æóü$DÞþ-ÄÚ›OŒÊQÜÄh®j0šŸyßIïë##ÞBçîÐVÏÿîù¾bçîÐ6Žgšçÿð¼\ùö)öçi`:Ÿ¥šØ~ ÷¿èýŸ‹ÿâ_ô¼äùí!äÎø;¶ÎxÎ÷kð²çlº¸Óóg=ïû6pvíŸåyúÞ‘K‹/ˆ‡ó"GðŸçßÉËÅ+Tß¾ÊÑü‡¾oÇë_×ÿî³~§’µ¬ß©´,„%C¤†ý6XßSi9õ=•R©ß©´"Dõ‰'íãÊöñÉì!Ì:"•Í•íç“öseûù¤ý¼D?ÕIo¹¤õ–KŠóÛ†œ ‘,•CÂ$=M}}γâ;yŽêÑóT‡†\`^dÕŠ>ágô>õõAC.y®šXÿS_/T´›k½N}½Ð÷'Ë=¼Ì{=¯÷©¯šÔöî+ž¿Wy?ÿauþËÞ'/Ô¿Ay¡þMÊ õoQ^¨ÿŸ÷é˲èˆ蹲蹆諲蹆蹲ÔâMÖö™º»6#e©C3R–º!ØÂ‘,õhFÊRߟ)Ç4ÐrM’cD£¥ÉšQšl¥¥É6šQš¤ÑŒÒäsšQšl§¥ÉšQšì¤¥É.šQšì¦¥É4›4ÙC³I“½4›4ù’f“&_ÑlÒäkšMš|C³I“}4›4ù–f“&ßÑlÒd?Í&MP_Øä å¥&ßS^jrˆòR“(/5ù‘òR“Ÿ(/59Ly©ÉÏ!ÒÃÜYÔ<ÚÃÜYÔ<ÚÃÜYÔ<ÚÃÜYÔ<ÚãešG{˜=‹šG{¼BóhWy'òvNbN¾Æ\œÌÜ|wp óð æå›ÌÇ©ÌÏi,Àé,È,D½wQ½|½|Q½|=xQ½ü}z§=êy½xQ=|½xQý\½xQ³ýT½MS3ÜKzÍx/‰ÜBv¹ú%ý΃î]DŸü‰3{=W?ï±âæÔ{ì¸Úy=7§ÞcÄÍ©÷Øqsê=ö@Üœz=7ïÏñ½ïl-¶âú—{ì…¸~ä{!®ï¸[¿5"$}Ô:$dbiÎWl’ëA!ö¹s‘e0#|Ž !ä(ÂÊ®!R[¯6-ã1?$5{ÄCXDúe/‡ù}Î+/„¤Ús4;p “9–9Žr<ã‹ìÄ—Ø™/óqN`¾Â®|•)œÈ'8‰ÝB¸K¹Kÿqå5q÷¹U2Ä6êëoéû7êëoéû7ê×oéû7šß¦î‰÷çÀ=|–{9_r¿â`~Íçø ‡p‡ò[ãwÎýÁ|ž9’ßsñê7m½ûZï«ìÇØŸÿr¯ñYê:Í á¬³±VŸÈ¥æ‰™ˆõú䆸m±9¿Ó;Ô#D¬ß'7ÅóÅGÄÖñ“[âb5¿ÓBóüÏ[ûN‹ÄÇÅCCLéNˆ £¼Øi±çOp åRþæõá^—##åó” ##)FFQ.Œ¼@¹02šrad ³p,刳þi6:ëŸf§³þi:ëŸÞFgýSóñmöߺ?B¤I™ÝZ3$ Õóo}zþ­µ¨çßZ›zþ­ux•zÿ¡ÿPï?T­ZwÊÏ›ù×f9¦³¼×ÍCõ\[ð:òlÄ|ˆ7Ù˜úÖ­M¨oÝÚ4$i B%ûsëîݯJöèÖf®õ¯[aú×­Íc ê[·¶¤¾uk+ê[·êý†é[·êý†é[·êý†eõgÙçgI¹72?¢><·>üq}xn}øãúðÜúðÇõá¹õáëÃs;ëÃsëÃׇç–Gׇç–G׃çv>ÏOyäñ”G/HyäñB”G/L}Ñ/rà 9ð9pFÁæ9Kw›ÓØ÷×ìó9>ï×!ô5…œ<À\ž—óó~BÒÏékBn~Ï;¼¦äÝ'>$ÎØ×óêB^}JßÅùÄêCÞïÄ?‰ó‹Õ‰¼êLŠ:‘÷€ç{¾€X›W½I¹Ÿß{^ >kß_XÈóÕ=H|D\X\C¬¥<@u(¥&­”éL¥ÔâϬ͌~»¡”º<ÊztvRêÓ™IiÀ!²¨Iˆ=ú ›ræ·lÆïøåû†zÎÜÛEÍÅî×¢tµ¤{´¨Ý›E­ùƒ÷ëIГ.j#voµåOžÕó»ÅíÄîÅ¢öôÝuà/^Ÿèu¹¾¡yó‡=4_þ°×ëÉ^?"ž,þRÜQ|”ò£Þr‘ÙïÑŒïÕ™¿òqþ¦‡Mõ07/ê">™Q,\wuý»çWºNqí¬.z‚§BBÞ„ûú-F9“1Î KõõKõõKõ­ÿóC$‡½TÑY±TÑÙº/Õ».Õ[t–[;«£ßÿ’^_ÌŸ¸$$lóüp¹v›œ;\®Ý&ç—k·É¹ÃåÚmrîð14ÛK3ýp³Æ¸»B$O?±Ù~øø9/w­Ðÿ—»V$RîZ‘D¹k…¾ä¼Üµ"³Õ=;/­ðýÏË_+ô&çå¯z“óò× ½Éyùk…Þä¼^e…Þä¼^eEÆ¿›Ò*„ô)b=ËŠŒG¥µØ|r^ï²B¯r^ï²B¯r^ï²B¯r^ï²B¯r^ï²B¯r^ï²B¯r^ï²B¯r^ï²Â9=¯wY¡W9ïܮЫœwn3þÿC«å§rÚj¹©‡œ¶Znê!§’ó˜9NÉy ̸§ä¼fܘ¹ô3sil.rñm>ÄwؘóÙ„ Ø” ù0±YSÍDeä§Øbñ#\Âæ\Ê\Æ–\ÎVL¥¾%¶‚m¸’mý9fª2ò[ì]q;±ÙªŒ<{OÜ^lÆ*#ßÅÞë7b«¨ßˆ}@ýFl5õ±5ÔoÄÖR¿[ÇÎ!”\ïúC×zŽØzÊé± ”Ïc)Ç>¢ž#ö1»ñš5¦/ ‘r'C4WzHÜ;-$¤Ùg#ì³4ûl„}–fŸÈØgfÕ<«ÅöÙˆŒÿßñÏ|‘¿ÐŒ:ξϳ†f×<æñqƒ¹ÎëG¼n^÷œØ\>nÍåã̧y6xý¨×å”qÃÄæóqæÓ<æóqæÓ<æóqæÓ<挴cÞ÷ óUžàDþJ½_Úo”#ÆY³<æ‘´“b9bœ{ŸG5Î=Ïc.IûÝó¯óNá)¾ÁÓ|“îÈ©ŒsZˆÎ™’Ú4 ÑýCCÒ¤9Œµ8œµ©T‡Ï³.G²G±>õ’“ìÅýzÉIöâ~½ä${q¿^r’½¸_/9©±þuyHÈ¡ÿÜi†ÉQ“f˜Ò “£åšµ)×ä¨C3LŽº”crÔ£“£>õá9ð`ùo ¡Ëî.êir4ôœy&‡}§y&ÇC”Ÿ»È±õ:9‹Õ“êÀNõ$‡:°S=É¡ìTOr¨;Õ“êÀNõ$‡ü¿S=É!ÿïTOrÈÿ;ë³[ê³_g+NÑk§è³Íû+[‹ß?!Î!n#~SÜMlîŸÖrËJýxí©â'Å9ùsñiªÃ9JºîáÚyŸÖ“Îû´g˜7DÓʇ¤á'X¿²"c%Úãi•ù;ïäz”á®ïr}*D¿ÓÏL”K¾ÓÏLôg§Ÿ™èÏþN?3ÑŸý];æc{æg`2 ²# ñQÊYß=Æ"ìÄ¢ìÌb!¡BÞ;þóñýºÿÂÕêÔã]­Ák|€úæ«5½/¿÷­b~À‚\íu}ôÕÅ…ÄêM…Â\Ë"tî*å‡,Æõ,Nç­B n¤㸞l ýW¡Í2*Ó,SáNše*ÜE³L…»i–©P%Dû¸O%õ¥}ܧ’ÿÒ}*©ÿìã>•ÔöqŸJÊÕ}ܧ’ru÷©¤\ÝÇ}*©ÿìã>•ÔöqŸJ)C}ܧRºO¥ô}ܧRúÎ>SßÙ§ õ}ºRßÙÇ~*¥Ž­z:Äžú‹=x†=y–Ïð{ñ<{óûð"Í,O]¢™å©¿C°A!ñn}ݰÁÌÃ稟6„ú¸aC©6ŒúµaÃY#¨?ö<õeÃF²G±(_ õ6šÅ9†%8–%C´.D/ˆÇ‰Kqîš¾­ae~O½ÜµC4C\ûf†k?Ò|pí'š®¦9àšÙ6»·wMHÿ,×r ×q?ä`®çsÜÀ!ÜÈ¡üˆÃø1嬽Ÿp?åóÜÄ‘ÜÌQüŒ/p G‡°ázˆ4«)Þ*#þŸX-Û»M<–iÇÏ9žÛù"wð%îäËÜÅ ÜÍWø_åNä^ê×o{Êõ—®Õã‘%Cä¶n!A]H|â2[ñŠçKy^ÿ1²4Ÿ ¡Ø'†÷b›¼§µ÷\eþö”‹möøÌc‹ÇVm^kçµklÏëìÀÿ…„W›†Äºçø0ϳ·WáE6ç%¶ <ðªÏW÷rCæ‡Hæ#!úTßTXþªåÿ§úSþjåÿ§ž¥üÿÔ@ÊÿO ¢üÿÔ`ÊÿO=Gù %‡ùê}ÞFy<åvÊã)9iï_Ÿbç,–àlÊoÐõ9®K…èâS!©Ó,žæl¦sãœË?9ñmžá;<Ëù<Ç<Ï…¼ÀE!au$$öXɾË(Õ¦Õ1úÌ«é3¯Nâ!d6g¬ÎäZ¸:3ÕÕY¨î¬ÎÊu!/äQØCíÛi®å,î4×rwšëG9‹;Íõ£œÅæúQÎâNsý(gq§¹~Ôw4×rövšëG9{;Íõ£œ½æúQÎÞÎ"töÒÔ„Ö$MMaMÒô#¬Išžb„5IÓSŒ°&iz‰Ö$M/1ÂçJÓKŒP“Óô#ŠQ1¢8õ#J°õi½éþ§õaiÚ#ÊОQ–öĈr´'F”§=1¢í‰iOŒP[Óì‰jkš=1BmMBµ5MO9BmMÓSލ"/šÇTÛ^4=˜™æ±Íg/šÇ4Ÿ½h{0[ˆ?’ªŒá÷t~‡â¸I[b>W$m!ËqËs1+p ÕŒ´¥¬Äe¬Ì弓©4O¦­àÝ!áÍ!±éÒ2eüóý›®ˆa~>k/ñ-ñr±?'koñâÔ ü$6]A{«éJ¯ûó³öÛcMí±©öXÓ÷<ï÷eí+¶×šêƒ†ù½Yûñnfü³M{¯é*±û’u«2ãŸqÚ‹MíÅaÕÄy…Pt™×ìͦz£a÷z.ãŸ{Ú£MÍ$ÃîgüóO{µ©ÙdØýâŒjÏ6µg‡UgüóÐlb=ÓÔì4£ s³ãÌøç£ÎrÓ âšâŒNêL75³ {Pü˜bl,L1 6–¦˜3þ¾ë)fÁÆòÁ½xcù`Š^<ã﹞¢Ïøû­§èÅW£^¼ñ=Ô‹7¾7$L0£×1«O0£×1«O0›×G³y3ú³y3ú3x3úGÕ¶Yb3w3y&{q‚¹ºÎš«ë˜¯'˜«ë¼ê<é'˜­ë˜±'˜­ë˜±'˜©ë¼F3tÉ4C×1KO0C×1KO0C×1KO0C×1KO0C×1KOø“Óø§ó gð,ßâ9Îäyf|¾ œÍ‹œÃKœË¿9—ù6¯ðŸUŸ>áªëùü‡ ø/òÕº ×¹˜ÿãÊmu–R^«#wLÏê,ÑÓ‘´@Í9@5çt”jÎé…°ivˆ´27ošCýÞéDÏgÄsÅ?qõ}§“<ÿ£øm±þoÓ;ü…ÎT+ýÅéL^×'žÎÌŒ÷gáÏÌÊ_˜ïËΣÌÁc¼ÇCÂkÚø%ZËÆ/Ó:6¶ŽS¬ccë8Å:6~•Ö°±5œb [Ã)Ö°±5œb [Ã)Ö°ñë!ò‚¹ô^Ÿñçþ^ŸñçþÞ!äÒ§¾¨þÖÔs¿¨þÖÔs¿¨þÖÔs¿X”zî‹Q±8ÕùKP±$ÕùKQÏeÚë|ä2 íu>r™…ö:¹Ì@{\f ½ÎG.3Ð^ç#—h¯ó‘Ë ´×ùÈeÚë|ä2íu>r™ö:¹&ÒùÈ%wíu>r½Æ{9™÷ñuÞÏ)¬Î7XƒoòN¥þ8×4ê‹sMg-Î`m¾Å:œÉº!¡Ì¥;âŒtoÂû»Ìßb÷¸Ìeê»·ó¼ý^æŠØ½.s•îu™è¼”ù—S¼¯½÷9e®‰ßwÏ`2ßbG:e®{]®N¬íú®ÙîzÍY)sCœñ»n2ãϺEg«ÌôgÊ×3]öPËFÄúÉc?…¤Yjô§ò}Ë>âÃâwù3ÕèOÕè–}Å¿ˆßç®âQªÁŸªÙ-û‰‰Wó8ÕÛOÕð–ýÅ'Äêí§jxËâ_Åëø?äI®çïÜÀ?¸‘úÝYQ¿;ëcêwg}Býî¬O©ßµ‰úÝY›©ß%?§ª9]ÕœT5§«š“ªætUsRÕœ®jNªšÓUÍIUsºª9©jNW5'UÍéªæ¤ª9]ÕœT5§«š“ªætUsRÕœ®jNªšÓUÍIUsºª9©jNW5'UÍéªæ,1‹wºF³w'3×3w'³Ö³v§4kwºI³v'³÷³v'³÷³vg³ï³vg³÷³vg³÷³vç¨Y»€ëÑ®c!¡­ž#³>ª­#³5ê)„›M˜™M=¯çȬwo«çȬwo«×ÈüAˆ¶´‰“h _£5HœLkøz¥/¹¶‰Shß uH|“Ö!q*­Câ4Z‡D{­{¯X0{33û0 û2+û1û3;0ŸåmÈÛ9ˆ9©gëþœkŸ½`î]µ $=Ý– ÙŽ‹Øž‹ÙK˜Ì¥ìÈe|”ËùSÙ‰+Ø™+ùxHXòCHì¬Z¢~vV?—¨ŸÕÏ%êggõs‰úÙYý\¢~vV?—ȵåÚ%rmg¹v‰\ÛY®]"×v–k—ȵåÚ%rmgy`‰\ÛÙ½~ÂçÉß’>OþVôyò·¦Ï“¿ }žü¾ßïÒ÷{â=ú~O¼O¹`Û¾é#D¯gü· åÅë(/^O¦¼x½#åÅëR^¼þåÅë(/ö3O•þœæ©ÒÛCXlOßFl®*½ƒòziýa±§Cì9»XþËž4S{†fêb½h¦.Ö›7؇7Ù—·Øÿ±ˆ)… Å0Âg™ÀŒ†{-1Ñý¶ÏÍ-så¶öÙ\y£mÆß¹f¶µÏæÚ£mí³¹öhÛé´GÛΠýÙö-ÚŸmgÒþl+͵?Ûš‹çÚŸmÍÅsí϶æâ¹òD[sñ\y¢­¹x®<ÑÖ\<×\ÜÖ\<×\ÜÖ\<×\ÜÖ\<×\Üv/r1/q ÿæR^æ2^¡^aîU¦ò®à¿”_übåúòšiª÷ áK³Rõg˜Ê^\ÁÞÌxÿ)ïëÏÓÀt>Ë8Í8!Í{ûx¯œ5àOÏ â_g\Ë9åäôzþ"›©ç/bvè¡ç/bvè¡ç/²•%hfèQ’f†¥hfèQšf†ehfèQ–öDr43ô(O3C ü‚¹‡•¸—•ù%ïäW!Îåú.×_ónê³ çv]Åõ>Vå·¬Æïx÷ó^à}<Èûù=«ókð>ÀY“?ñAf-þÌÚü…ux„uy”õxŒõy´÷ùßqÚëëêU¯ÚkuõªWíµºúÔ«öZ]}êU{­®>õª½VWŸzÕ^««O½j¯ÕÕ§^µ×êêS¯Úkuõ©WíµºúÔ«öZ]óöÕ•!ZO[pUÍ®gÞ¾úÍÙWÕêzæì«ju=óõUù¿žyúª]Ïü|u ÍÊW׆„õfÌ>öÇz3fûc½Ù²ý±ÞlÙçó^0Cåü[lÆìcŸ¬7cö±OÖÛo}vzÝl•ó2ÍV9¯ðcfüÿPÌT9ÿá§”SÖÛ—}ì§õöeûi½}Ùç ¯›³rÊ5½äØrr/9¶„ÑKŽ-!'÷’cKÈɽäØrr/9¶„œÜKŽ-!'÷’SJÈɽä”rr/ýl 9¹—™¤„œÜËLRBNîe&)¡ÿíe&)¡'ëe&)¡'ëe&)¡'ëe&)a†ée&)a†©’+ÄN­dnª·Uîà{ÌCõµŠ~ù”úZE¿|êƒðv7ë­Ëê‘Í#{ˆþþå½*¯­6s®Yæ¡/id5ú=D×ô IÏg–à–ä³,Å,¢…|ǯÓw< >òÈ›…|Çòf!ßñ€¼YÈw< oòÈ›…|Çòf!ßñ€¼YÈw< oòÈ›…Ì]äÍBæ®sBx«eˆTÈø=æ¯òg!ó×ù³ùë€üYÈüu@þ,dO˜ïý­¼?ãóØÛìíBöö{ûć!iÎK\Oksü‘8Ë:Þœ—Ù‚WØ’WÙŠêÏñÖ´WŽ·¡=q¼-ÕŸãí¨þoOõçxª?Ç“©þïHõçø£!q¶úsü1ª?Ç;Qý9Þ™êÏñÇ©‡:Þ…‰ìÊ$¦Psü êcŽ[ËÙú˜ãÝ©9þ$õ1ÇŸ¢>æøÓÔÇïA}ÌñžÔdž9Cä£É!6 7_çœÂXÔÀk]›î8í›èù¿§ý2ý\ˆ”×CßqHlßdýŸkóÁWúÓ;Ì_£ùà«ñ4|õbˆ|x!Äú ¡©}÷ËfçèeÏ]ôœ}ýá%ÚÏþÍ‘¼LûõÃ+t–?¼JgøÃè¬~ø/ÇòÇѬßg<Íù}2~—ù¾ÏK4ß÷Éø=æû>h¾ïóJˆ¬7Û÷y•fú>™ÀIŒò5Æ8™‰4ç5õ1+¯OOûοlg¿ÁÌ|“Y8•Y9Ù8Ù9ƒ9øoãÌPùpˆÀŸù,á@á åàžÜÂUç6QïûäV×òxåc^ÓÃV>Î!<Á¡ü•Ãø‡ó$GP}òyê¯Oޤþùä(êŸO¾@ýóI½DeýóI½De=óIû®ò_´×*ë›Oê%*Ÿ¥^¢ò9ê%*Ÿ§zUÙúžÔKT¶¦'õ•­éI½Dekzrbˆ.û1$u™Âjù aÆßý.4lìùŸ`ŸË©Øãçrêöø¹œú€=~.§>`ŸË©Ø“ñsêÿõ?§ú¿GýÏ©þïQÿõ‰{Ôý^â=­~/qº¯ßKÜ£îë÷÷èiõ{‰{ô´úºÄ=zÚœzÚ=zÚœzÚ=zÚœzÚ=zÚœzÚ=zÚœzÚ=rVN=í¹(—í±GO›KO»GO›KO»GO›KO»GO›KO»GO›KO»GO›KO»GO›KO»g-3s³ðCfåzfãfçFæ ¾µ³ý“ûIÚ?¹Ÿ¢ý“ûéª aWa±}”»‡ø¨X]íl?å6+t¶Ÿr› :ÛO¹åÝÎöSnù´³ý”»í§ÜæÀÎöSî~´Ÿr›ó:ÛO¹Íyí§Üæ¼ÎrDî”#r›í:˹•ªÇü¾¢b¹"÷s”+r¡\‘{(åŠÜjog¹"·|ôå‹Ü#üìq?[Œf›]êzgù#·33ÐÜW^ÿ>ÐÜWÞœ7ÐÜW^_>ÐÜW^_>ÐÜWÞœ7ÐÜWÞœ7ÐÜWÞœ7мSÞœ7мSþ+šwÊ›ñšwÊCóNyóÝ@3_yóÝ@ó^yóÑ@ó^yóÑ@ó^yóÑ@ó^ùƒ!$ Ñß…ÄkÏs?GR޾&G7£¯ÉÑ äèk£)7_Cyùš¼Ü@^¾&/7—¯ÉË äåk/ògê;ü—CHÑ3]z4$Ü¡®|—(}¾;Ì}_þIsß—fè]îõhùx—{Þå–w¹Ç£åã]îñhùx—{=-¿.´OO˯ íÓÓòëBûô´ó±Ð>=í|,´OO; íÓÓÎÅÂÁtÊßõ ýõõ ýõõ ýõõ ýõõ ýÕèÑóC$—Ù|£Þ¡¿a£Þ¡¿a£Þ¡‡pedHü 4G±LSʆHIçqJ9:‡Yu]ÞuOïyÁ{ÊŠ+ˆŸaEöòühÏ—ã–çXVÐ/•I#‰ >÷ÃëB¸M~ÞQÁs¿²"c%ž¤m¤9m‡mä!aæžØRm›¹—jÛÌ/©¶ÍüŠÎëpŸ/›Ï7ÜgËÖ“>S¶g¼þµ×ÝŸ™ßP}›¹êÛÌo©¾ÍtZªo3ƒ–Îîpß!›ï0Óyhi^n³õ ÏÉ£•ߦ¿¾f Ð=Y_¾ûúBôצﺾ}·õEé»­/Fßa}q¦ê¯2þ›Øf®¦rÂ/ú_¶y¤éõpëKxÏ –äJ–â»,ÍŒºgžÜ›“½hfÈÕ›¹Ù‡wЬ±7Í{óÒ¬±7Í{óÓ¬±·² ±³0ŸcÆ¿³øPH¼ë”ƽKtïÚl‰™;ò3ÊŸm¶ð1ne'¹»¾ëm®;3ósv¡}•¹+í«Ì)´¯2?Aû)s7ÚO™»Ó~Êü$í£ÌOÑþÉü4í›Ì=hßdv¾ÛØ'™¡6öIfg¢}’ÙYhcdî¢gÍ-ˇÐܲ|(—q—s8S9‚+¨Öœ]Iµæì»TkξGµæìûTkή¢Zsöª5gWS­9»†jÍÙµ”Û·t‘ŒÆ|vXÍ9kn[®ælyÜóz¦³æ·åh~[þ 7òÕn¯ïÚ,·\yÖ,·|ÍrËõ‡gÍrËõ‡g7Qxv3õ‡g?£þðìêÏnõØæ‘&žê1ÍCŸ7üfHª¢~‹ú§áÿñ½î;‚ýyæñ+ö»ð$»òw¦ð>ÁSìÆÓìÎt>É8ŸâŸ|šjç3=x†=y–ÏÐ<õL/žgo^‘ ýB¬ïßìÏËÀ+ÎÄÇÎÂUñ³â ò¢3(GÇúªƒž£ú·aÕÚÅBbÙm,Î4–àç,Éí!¡°Ú}Ьó„Çßz•ÂjøA³ÎÍ7¨g)¬¦|ƒz¦ƒoRtp*ÍX§ÑŒupzH(¢u88ƒf¬ƒoÑŒuÐÌSÄŒupVÓÌSeÿGsTY=@Éxˆf¯w8SÓ¶zÎ|?mo1jÿ´ÏC¤\Ñ)öBã§i/4V;VÈ%µÔ )öDãž´'«k9nsm_4v*î ±_­Š_ÒÙªø­Š_ÓÙªø ­ŠûèlUü–ÎVÅïèlUÜOg«¢~¬âAï=yÎúýjí~µn¿:[-Ê…¤è·T3£ßQŒî§:=@u2zêdô{ª“ÑC¼‹?ðnþÈ*ü‰Uy˜Õø3ïá/!¼Ó5Dªš+ZÜ+>Âûx”÷ó«ó8kð zÝ¢&Ý«R½nQ‹êu‹Úüß›âÏ5§´¨#>ź<ÍzLg}Z« ø'ò/?÷„Ÿ3×´h$>#î&6ß´xH|–©mÑ„çCÈö“÷t÷³O‹¦ž»À‡y1„aÎQ6}ÈŒ!±¹1AO³© õ-›ÊRŸ²É뽉ų&æƒü…µ¨WêU›Gi_eÔg¿7¶Yüà¥Ø£_feNà|…wñUÞ͉¬ÂI¬Ê×X“y_罜Âûøï盬Ω¬Ái|€ÓY“3ø`©ÖðÁŒ¿óÍ=Ð=e[HªÛOì^>è^¾"WÕíÏÏ9 DÛYÃÅöÀcrÒ›f ¦£BÈsmÊøg+õ†…pp£ç]ë ~DýÑAy£ž¾èà'!DÖx¿¾©þM=|S=ü›zxu7¡¯Ï^Úwíë³—ö]ûúì¥}×¾>{ißµ¯Ï^Úwíû}×¾3é»öEßµïlú®}çÐwí;—rkñmÖæ;¬Ãù¬Kk]ºR­ì»ˆ ¸˜ ¹„¸”qSÿ\ZßWÿ\º)õÏ¥¦þ¹t3êŸK?¢ííÓ¬ÑþÌz†öeVû²½}™Õ¾lo_f=O{1«½øØ¹”svHhÐ0ÄþÍøÿ‚þóéyRNqOó¦óUÆ9‘rÿâk!dääPƒrrx@ G¦œñÚdžåë<Ç){Ê5Î ¡PÆÿwUœo.õÁùæQœïí=§ægô·›™¶¼ ››¶Øm?óš>@?¶Øm·ˆõ}eWCì|qNd‰-W7$•#ÊÕ£Q®>åˆr (G”kH÷¾\#º÷åôNGÝûréÞ—kB9aV©ô¨¸©Ø”{˜ÙŒ—¼nV¯ô˜øñßlÎËlÁ+lÉ«lÅØšÿ² ¯±-¯‡hQýÑ!}OQýÑ!}OQýÑ!}OQýÑ!ýó“ú¬Brý“ú¬BÏ„há"!ñÀ.ånª¥¾á­ä©ð–XM=°‡jê½TS|ÉRüŠ¥ù5Ëð–å¾=z*$Ít>ï”ã2î_ƽsß’fªk3Õ²™fÝ…æ¸{Õº®Î~ù¿«³ŸGþ/ó‰k¹?ÜßUîÏ#÷w•ûóÈý]åþí~Wu¿O»ßUÝïÓîwU÷û´û]Õý>í~W-Gµ¹jyªÍU+Pm®Z‘Ì1úÂú§ìzÃÏ…è{ÖáÉ>!¬Ö¿5ª(¶&Oö¥þâIyºb%×ú‹'åè{CRöÁü’Ï…0ÿ­©¦ÎwøJ¬×îð5í¹ßОë°ö\‡o©×îðõÚöS¯Ýá3þÛ¬zå®OR¯Üõ)ê‘»šëWß" ‰õÊ]{P¯ÜUï³\oÔUï³ú^¯û<Ë}‡®½è³wíMŸ½«>e¹ÏÝÕ,{S¾ß(_•“jÈ)cå¤rÊX9©†œ2VNª!§Œ•“j̡ȗ!<70D2­ñœüTcå§rËXù©†Ü2V~ªñ¶÷ê#ÇÊQ5Ô¸LÉ®å©fï±òT ³÷Xyª†Ù{¬É#Ÿt1ŸäéD÷:Ogº×y÷óQ?ßPìžçéB÷:OWº×yR¼®îÞÛHìžçy‚îužnt¯ót§{ÇÚuq¯óè)7}ë57m¢^s“™qpÆófÆÁzÍMfÆÁúÙ1?„Èyù#óyÞ 9X>Úd~l®Ûd~¬§Ýd~l®Ûd~lŸf>éÚ 9غn2C¶GÇüäÏÈÏÃ,ÀŸYÐëfËÁýi¶<€rÞàg)ç è}¿x_!±sð š1¦s°ý=æˆ× ‹åÒÁC(—Ê}òèàaoð£!©Rc” aÉæ©.î,NäãL !»¹ppיؕ™™Â,|‚YÙÙØÙCô×ó!i®|òë~b‰WBÒ–CÈiöH¼êú'þÃÃü—?ó}ÇY›B¬Uƒê¯ á{sجÍâ†üŒ¸…y}­×Íg³¶Šs›0Mé÷¶z˜ÛÙŒ;øˆ^k¿ë®›s[p7[ò ¶â¶¦¥UšQZµ¥¥U;šQZµ§¥UšQZ©=³Ì(­:ÒŒÒêQšQZ=F¹¬U'dç‹N I›Í¥ÑI4—Få÷ÍæÒèdÊ%³†¨«ë9”8ŒzÈYÃùQˆVXO<*!ÖGÎzžúÈY#©FÍÅMÔ?TÒ?ÌÒ?TR*¬ñs‰õ•Ô‡ kÅÄcÅêD…ubç­Â‡|œëéœUØ@ç¬ÂF¦ð#:_>¦óUá:_§~I 6†H¿º!Vzëq7ëó 6àêáJïe#~ɇøók6á7lÊ}|˜ß²¿ã#´Žýšó[ð [ò{¶â!¶¦³Û¯ Ý~méüõkGç¯_{:ý:ÐÞë—Ì#!„÷]wt}”R ¿Ûw>å;ßí;ŸêÂÛ%C¤Šïþ¾üFMêËo^"ÍͲ¹ïÜïÜ÷î÷Gîû÷û#÷}€ûý‘û>ÀýþÈ}à~ä¾p¿?rߨG£·„H®ÜÊ›jÆv×Û\ßòk2ÀZ|dMX‹¬Ékñ‘5`->²&Ô§u—C¤É½!ºUÖW|E|ŸXæ^mU'‡¹W[ÕÉaîÕVõq˜{µU}æ^mU‡ òsWýÜýü‡Õ=¯^sﶪ—ÃþOÑÇÙX¶q¿ÏÌ9cß·¬eKöµdKHÖ,e%²f)b¨¤(„BRÚP¶±¯©—(i!%¡$ÙeÙy¿çù|Ïýœ™1ó<÷}]¿ë}SzÌ ³Óƒf§f§ÍN+®±6¯ÓÞßè so7zFÞsý†ëux“ÎÂFÏl˜{½Ñ3æ^oô̆¹×=³afá·|ž³²Ñ³æžoô솹ç=»a£èÙ MÏnØ ôì†Ùc=»aöÔFÏn˜½´Ñ³örˆ X¢Éõ¸Žõ¹žöç€ÏhÐk’íÇzL²}8@IÖcè1É©·$ë-ô–d½e€Þ’¬· Ð[’õ–zK²Þ2@oInN}%Y_ ¯$ë+ô•d}e€¾’¬¯ ÐW’õ•úJ²¾2@_IÖWè+ÉúÊ}%Y_ ¯$ë+ô•äGCèIÙmiOþNµ¨cýNÉÿ°îŃìÍC|Úû ¼¯?t¼Ÿ/RÖ;epèøÇ°_¦Œwj,›ð•¢ÙBâ×zÉ(½àk½dÔ4ê!£Ìû_ë£fPïõ6õŽQf£»Wx­Œz‡pÿ¤úëÃ4CýÍÐ_¡úkfÔ<ÊCdE±}úÞÉOyç³8„ÐT†ÿ]Ö[QÂz!KrQ ²ÙŠR^Ë+’™ÆÒ\Â2\ʲ\Ær\λ¹‚å¹’¸Š¹:$ÜûLˆžËÀAÌBA3ܽƒ½ÎdðúÂk³ò¹ÌÊ,|–ö÷½Ï1‡1»¯‹ÿ÷Øó‡ØêM4û¯þ’fÿÕ›C˜,W•Ìi]ÐZ/š,_•ÌBæ—]+äÚW®ÉZ%sSÖ*™‡²Vɼ”µJš“&ËZ%óSÖ*YÀ×öu_³·º.{•¼Ãº¨õ7,Æm¼“߆ľBR ójVsrß‹^{>ô1çf_ªyôc^ög>`~d>CÏæý×Íý¾ç#ƒ¬ r0 q s(‹ðYås,Æa¼“ÃyŸgqŽ`‰²¨_Œôº$SYŠ£˜ÌÑ,ÍX†/²,_b9ŽáÝ!áÎ !úkQNd1Nâ|ƒwq2‹s Kp*KòM–â[Læ4–¡ä¼ØèDˆ]wFä4×>ñú”×ÓCdABˆ>î~,HäF9‘1N ¡q†öés ’¬eµÆöؾ¦´¿öéw 2¸.³5ÎlÝŒYh¦jœ•úÞ‚ŒÞŸbïë¥ 2y=•™ù&³ð-få´°îlˆ=ó6ÿ¥³šñ[¯ÏyýŽY¶`ˆä–e×·žÅ |×õB®ËZë.Z¿ÇtÎæ%¾ïýÂÞOavaQªã/£ú½î?Ÿ÷õÖêøºËÖÎø`}·\ûî)ÂOXë¿åôßÁúo9sÝ`s]9sÝ`s]9sW.?Ç`³]9³T.æ`ó]9óÝ`ó]9þ=¥|µqðÏÖ]¸—~Ž{’]W+ÿbÝ¿ò1š‡Ë=N5µ\wª©åzPM-ÿyÔÒrOúzÏø‡§¬ÕÔrñ–‹¯ÿ Z;øOªµƒóiþÅ><¾!ÒS*¬õT‡ «C=Õ¡ÂêPOu¨°:ÔS*l®®¾/„o ð7ÞẺTX]ê©.V—zªK…Õ¥žêRáÕ¬Ds_ÏÊ\Ë*\Ǫ\ÏjüŒÕ¹5ø9kò Ö¢ÜóšC'¼’âÿÌá„÷øPHlþrHJ(ϱ¬ÀWX‘¯²’YLn¬"76g]™ãY%$Öù6Ä.šê˜. ýö‡XÉTþNyrk»4Z_ÙÚžÙCBZ«{2­y‰ó?¶áe¶å¶ãU¶ç5>Âë!Ôv6~4·Ó#*ηv~ÜÁ©ÜÉ7ùßâ.:Ÿ?îætª©Ãô”ŠzJíÖò\í·¹—ÎÇjë0=¦¢3L©¸ˆúKEýe˜çZÑsæ¹Vô\‡y®=×ažkÅe¾Þ™úQMæùVô|kϲV›‡y®=×ažkEÏu˜çZÑsæ¹Vô\‡y®=×ažkŵ!±kË”GÎëÚŠr^×Ö”óº>L9¯kÊy]ÛRÎëêþæQ'»º¿yä¼®PÎëú(å¼®(çuí’´P®FHøð@ˆu˃|…‡ø*ÿà8þÉñ<Ì×ø_çNàß4‡fÌïõQ¯'ñ¾ÁcœÌãœBµ²ãTª•ߤ:Ùñ-ž¦õáN§ZÕq†s”-D˪£ƒ³3¾ÎÁ·™“3™‹ï07eÇÁyø.óR?«uÛù5‡ Îg=;Äÿo¨ðƒydp~ë÷Y€æÊÁwðCïG¼/'Ý“@sÊà‚®dh-/Ý¥yep!×?faÎaÎeQΣ SV†,Ô•aÛŸee˜Áö[Ù´¯Ê. ‰E²„ØžÕÌÊ5ÌFϽHv®c:ÏkdŽþfÁ5òF³ày£¿Yp¼Ñ?þßÚ‘7ú›iÊÂsй£¿pÍpzîëÕ³ëS¯žÝ€zõìû©GÏ–7˜½ZµÖ«gû=sÈüë׳eà æ±Ö¯XëÛ³Sߞ݄úöì©oÏV;ºŸIwÈ„ÝÏP&ì~–3ù/åÁîçè¼®–ÕSŽ<bïéÁG†Q>2œzð‘ç©A=øÈHêÁGR©E=øÈh–æ ,Â]úÖ‘½.Ë—XŽc¨ïy™å9–ø +†ÉÌäU¯+q+s<«ð5Vå묯f IË0ÿfveþÜ<Æ\<ÎÜ<Á<<ɼ<Å|<¿Û’ÆLæNNáOt624 Ñ?ó!îe3þÂæü•-hFÊÐ’¿±÷³5çÃ<À6<ȶ<Ävüƒíù'áa>Ê¿ØfÞ ù7;ñ(;óóÀ‹^§x}Œ]x<„ ÎH±—BÂñ’!öávk9¤˜™b‚3RL~=^Êõ­í¯bjÌñdkõy‚=UÌŒ1Aö)¦Ö/íºz=Á¬_LÍ9^ÆZÝž S{Ž—µV¿'˜ý‹½F³±×)›@{¾ØDŸWÎç©ïZYËWZS:~·ë{Xžîíñ toWä/>ïaŸ§N¯dý«uk½dB[ê%ÚQ/™ÐžêÕñÊ>OÏž ³S·ŽW±ö,ŽWå~×e˜bzÌ¦Ø ׫¹îÙ¯NÏæx z6ÇkÒ³9^‹žÍñ{èÙÜVsש±·ÕÜujìm5w;Åï[2¾V{ש³·ÕÞu~¿Ûêî:?ÿmuw:{[Ý]g/ÝVwש³·ÕÝu~îÛêî:?ïmuw:{[Ý]çÌNÑššï§èMÍ÷Sô‡¦æû)h¾ŸÒ™æ VÎb,ŘzßÊYŒ™7Z9‹1óE+g1VÎa¬POë£7Üß§õÃön+ç2V˜Îe¬˘<ÞʹŒ©­œË˜ZÐÊ™ŒÝåëÔ‹öz+g3¦&´r6cjB+g3¦&´r6cjB« TZM¤šÐjËð ª­&S/ŽdIëÿ‰‹? IOvâ§ìÌùLáv ‰ ‡¤EçX„çY”B¨¨ÿ½õEˆ5’ÿcOnäSÜÄ^ü’½C&ße>k½ÙÚ>̼™ù_ë-Ö}øûòköãVöç7Àm"çdײê9Ùu¬zNv]Ð#³O8.Ó“aȬçdØ2ð9v¬zN†] «ž“]Ȫçdײê9Ùu¬zNv] «ž“]Ȫçd×ý(».èÏ¿9 $V5ê_ÂL3d…;¬#Ö‹BÂQgyö:»³Ý×Í9E¿¥9§èw®;ó¢³;{ÍÙ»é,ÎÞãóÌAE¿ç$þÀ7¸ÝûÎèlgô¨3:Û=êŒÎVÿŽ:›³í¡£ÎÞl{â¨37[^~}²¯Sc^ŸÂøÏã ÎV:s³¹£ÎÜlgî¨37Û™;êÌÍvæŽ:s³¹£ÎÜì?Cb­_Bìì‹ü•/qÇð7¾LYö¬YK–=«Ö’›Î¾J¹éì8ÊMgÇSn:ûᳯÓ>;ÎðÙ‰tvÏN¢³{ö :»gõtÙ-Íìš.»¥•Õƒûy-¿¥™_ÓÏ´»é|¦ÉåéÎgš\žî|¦ÉåéÎgZ%¦POïBy<½+«†Ä†C쪽á34£¿k«tÈzuüßqÿ‘µsÑp°µY½áv]Æ©äÞ4j]ÄZÖ©tØúYë¢Ö2O¥¿¬õò«fø†zùU3|C½üª¾¡^~Õ ßP/¿Z‚êÇUó{Cõãªù½¡úqÕüÞPý¸j~o¨~\uªWÍï Õ‹«~ÿ†êÅU}üÑhˆeÃç2‰ó˜Ÿ0#?e&Îgf. œ•u!嬬öî£rVÖÅ”³²¦QÎʺ$„¤ö^çôz)sqss9ópóreH|¹ZHªí¾\ÎTÖ«!ékg/ë5Úo£ë†X ýut=ꯣëóHEdìÑ ¼þÛk½oôý^õzœ½nç“!6>+{2Ÿ¢Yig/æ`oæäÓÌÅ>Ì;ÌÃ~ÌËþÌ'ã  õ¿ÑÿÌßõ·òq~ÃîÜÆü–Oð;ªmõ¿gϺ«céîç]ÝBô×ó|Œø8/†„’ Bt¿³Zò~:«%ÒY-ùՒ謖lLý±d:›%¤³YRÖÙï^•”uöôç áR9žâÝ<ÍòÂb3Rsìb3Rsìb3Rƒ_Bâ; !éáÖf¥òÍb³Rùe±Y©ÁoÞOôþJë÷¬å—ųù»ëQ×W1FsÊ;I4Ÿ¢³ÿã@^¡ŒôÐNFúGnËWχ¹ëè3Þ7·Ä«®™½Žšef›U‡™*©ÃÌñ·ñ\½éžO­‡[«Þ§Z1lÕŠa#©V K¥Z1lÕŠa£©V {jÅPyºüÈâÿl·¶»óãèI=éi½ëNõãéÎu]ŠèAô È®'º>Oø*Dž4ë2ë?iÖ/”fpÔŸ4ïZ œ±ïòÍ™Ó~ ‘²9¸‹9¹›¹¼Ñû³™Î÷C(¡6¸äõ^«ÏþóúC^æG¼Ây•sxsy~®,™½¾áõ'¼I÷«À-Îçm.‰Ê{l§Ùò¿ëÎEô»î\L¿ÛÎ4ª¡;ý»‡¤\™Bø@ƨ_÷°ÎlýŒõRâ2ןp= ŸdVö¤9óƒÁÞ_ný”uvë!Ö+¬{Yç‘Ó³Ct^ríåàcú}û´7ۿͽÞßû¥­eÄc¿X`]†zÓé¼.ëÃó,©¿þ®¿–Ô_×_K꯿ë¯%õ×ßeä+êñ²ÿ172?7±¿ä´®äâW,̯Y„[Y”ß°·ñN~Ë»hï\)ÎïY‚öÊ3Ï2yåŠgÙ”‡–ÉWä¡e;)ÿ,“®È?ËäŸ+òÏ2ùçŠü³Ì,rEÎY¦v^‘s–©Wäœejç9g™ÚyEÎY¦v^‘s–É9•V‡È\õ)e?Õ§”ß©>¥ ú”rf·”C4»¥üA³[ÊŸ4·¥áSyñ>gïµ—BÒýêç§_X_çÿxÃõ1®Ë¯½L{õµ±¬âýÞ¿iýе<ñÚ«4¿6ŽÕ9ž5økòuÖâÞɼ—“X›oð¾Jïõd¯ëp ër*ë…È;cC´Mf¾Â,|•Y9ŽÙ8žÙùí·w^gNN`.NdnNb¾Á¼œÌ|œÂüœÊ|“wð-ÊDñ¿£ûÎ4¯ q: ‡ÄyWBRWgkž^ßÕÙš§×wu¶Þ*’š™Oã9º®÷ß*e½›ÉÜÃÒô¬ç«ß«ßóÕïÇÕïùê÷ãíCéçÊ®ŽÏWÇWÇGúù²?b½ÔZéçÌ×Ï™½ƒëË\»œCÈØÈë^w aÝÖi í¬3ëíVRïh·Šþìv«éÏn·†þÌvkùHH|Qm¯%×¼hFªµ*„OÜËÚ[g´^mížÖnC÷´v[º§µÛy?“÷×Xûjû]>ñ³×Ž¿Ì®¯µö³×~Ô:‹õ:fåzfãgÌÎ ÌÁÏCbÿJ!©¤Þôñª©yÁº²µÕ¿ õ¦ä>Þsj^¤^T3ݵ¾Þ¯êýß][ëÚ%®ã®Ëi%PNSKû× Üvê·4׳;µŸêâ©ß©ž:@õo¶l[E¶m­÷ÅâëyÖG¬Ý§˜ºØÚ}Š-wý×ÿ¶vŸbêßè¼!©Æ&æã—!ÌûÆïo–ßzsH¼ð—YÒÏÖçLˆ–gùÿå0žãpžçó!Ô|0„ï^µ¾àã¢k#|èoá½XEž>®GV‘§ë‘Uäéãzdyú¸YEž>^&„ù±ÝžsÝú8w7GXh­O÷©c=Òú#ëúü˜ \÷¹7S­e–Ì÷SfÉÜ2Kæ(³d¶ïÚÉ,™SfÉÜ„2Kæ)³dnJ{>óC´ç3Ë>íìù̲O;{=³ìÓNÖn'g·³—3·ôÑÊGëéä>ä4vrrê½.p@Uš†ðõ8k÷"§ÞÕ)zV§KÔ³:ýG½©ÓeêI®p(¯ÒýîtÏù>ù>ã­¯[»ïnÐ}ït“ñ¿ ßÌû¯±9_g N`KÊ nù¼Ö­¬å‡N·­G†HçÀT×[»n¦í±6«WyØÚ¬Ú9Áz4ÿwÎØ5<§Ó²L sÏiY¦†¹ç´ÞWÃÜsÚÜ÷Rtϱ¸æÓ4 …óÙ… Ø5$,tÖ{t¢³Þ£3õ)tÖ{t¡³Þ#þyÎzn\GóÀÂõ4,üŒæ…hXø9Í ¿ y`áÿØ“ù7±¿don¦|»p ûð+öå×ìÇ­ìBYÏqƒÞ4ø³Î'>>õ1߇ÜòÙw!ið üžæðÏ~àK!q®ÖÿIufýaª+ëÿ¢z²þÕ“õS=Y”êÉú¨ž¬?æÏ\"ëßÑAE9“Åøï”Û§Éí²ÚúYÖwñ]ç{,AfPIÊ*ƒJQF”ÌYšrÊ ™eýÇ,Ë9,ǹ¼›óXžŸ°?eEÎg%.`e.d.bU.f5¦±zCôò Ũ—gðsg¨Rå êc)U7S¦¦y2õ/Žãš'Sÿ¦}\d×G½–™RÿáãDç$žà>w°×'½žÌSœÂÓœÊ3|“gùÿå4žãôpÄž{¯[¯»ŸñÿŽî{ï½Ç¬Ý×ø;÷ˆ=øÞãÖîoQ{툽ø^wk÷9þßž}Ý}Žÿ÷gØ›ïÅß·7߳؛ïůۛïÙ‹GìÍ÷ìÅ#öæ{öâ{ó={ñˆ½ùž½xÄÞ|¯Oˆ,É¢=Í5KòÑ\³$?ß ™3‡èæY!tm¹—¬³X¿Ë¬|Ù8›Ùÿüü€9ù!sñ#ææÇÌC³EfÞæ¹ôçmžgf’Ú˜sÞBsÎâ…f«ã\Ä4c40÷.Nã)Ÿ7Ôç™Þy–%]_âúikóR5þóR5þsR›Ò!¡ùä?y·Ùä?ý¦ Ÿ­A¯eÞ2ô[d‚—C¤…Þó³z1iˆõXë-Ö ­‡Z¿bý•õ"ëg­õ›_[/¶~Ži溺Ûb«õëá\Êçi¾4‚Ë©7•í ¯S¹’£¸Š£¹šÎùÏkèœÿ¼–/qÇ„Ýôóz¯_æg´Ç›b öNóm´'šK{¢ùw´'šO{¢ù´'šo§=ÑüGÚÍwОh¾“êSóŸ¨>5ßEõ©ùnöçàÏȽ|†¿Ðùiþ+æû8$$äk¢Ûgs` dKb+þÁÖü“ó0Ûð/¶å¶ãߔ﷥|¿=þߔ﷣|¿ý8åûí'¨†n?Iù~û)Ê÷ÛO³ ϰ+ϲÿåc<ÇÇyžÝy=x‘O0Oò{ò?>ÅËìÅ+!ttnO}"—„èÒïx?ÍÏßSæ¶Ë ­àÜÎFü‘¹ƒM¸“ÒÌ|¹)åæŽ=|ýGÖYï¶VN}líþ.5;FeÍËîñÒŸé/5?^v—š/»ÇK¥{¼tÝ㥿Ñ=^jVºì/5+]v—š•.»ÇK=£íÍCl¬ 9¶GˆpŽ··°–%Ç>aíg‚ÏùŽ2Z{3[ï÷ÞN–àOÞ“×êü`mnklÿÍ—Óêø~óå³:ñïe~klΟbÿžSÿzó\cû±Lf×Þtí'×Ìv¶~ËÚ÷*“ÅGV×˸¾—eù‹kÙ|Äÿ>~9ë_½Îák¦ùsâw»fæ)“ÓG.ëòÖfþ2¹}ÎtŸÿ3ó„°Ôüû€ZviHüÄlöI›¤Õ&u‹„Ħzùí©ÔËo¿i<ÐO*{~MõôÛoYë#•=Ǧúúm¹ç½¥Ög¸ŒžgS}þöô²lóZ¯¿=ƒzýí·}ÎrŸó¯µž{&õüÛïPÏ¿=‹çù®Ï[áóÎq%ÏÓ WÙ ×ô‚÷Í+M/r6Óù>/ñþÇ}¾¹®òEëËÖY›ï*§[_±þØÚlWù’õUë9¼Æ¹¼ÎyÞ7WU6ó5½a-_¾·Þú²õMëOy‹óy›2§ vÛ¼þP„æù‡h&|(‘f‡¢4>£{þPÍ~e sYèÓÐY–Ê%uvÿsÉ_Ýÿ\òWg÷=—üÕÙýÎeÿn:¢ÃÍ+›ŽÓ¼²éÍ+›NÒ¼²éÍ+›NÓ¼²É|8ܼ²É|8Ü|¸É|8Üœ²É\4Üœ²É\4üyš‹† yh¸ùc“yhx*ÍCÃGÑ<4|´¾ÚÎGû¸µ¸ùb«½?*þÏñÆÿÞƒ!ÄÿÞSüï<ݽ6$4kb*Ñ·š=H}«YSê[Í¢¾Õ¬õ­fjhзš©á¨XØku3è]ÍÔÍ ÷–un”±V?ƒÖLý zX3õ3èaÍÔÏ ‡5S?ƒý¹F è¿9D“Ìóíùœ1¯Íðó†°ù©yÔsÞÜ‹2u’™~£œ•d¦ß(×%ÕdÖ¢z“t ò^bmæ},BsÕÆ¢¾_oßÏ,²ùiÊæIu]—·7ËÊèIõ¬ãß[Ö:û?ÊZg7†ÄŒöÿ—öFûÿËwiŸiŸg´Ï¿´Ï¯$…¤e™‡h–YöÍ2Ëâ3ûÿÙ*zŸ­æA®á!®å\Ç?©N~ I<§´Ë!Ò°–uÌz ý9ÖÒŸÓA]ýПÓ!þùþœêê‡êm‡ j¡,÷¡šÛásª¹¾ ûÝáTs;ø>47u' ±'Ü›‘ölö%´g³›Õ w½Ÿ§{²hïâHg*Kø|{;û2ÚÛÙ•‘övöÞåý’ÍR4û>‘L³ïòì"³ïöË"³ïeù2Ëq,ïæ+,ÏWYãX‘ãY‰¯±rHl%OƺS–Œõ ,{"$æÏb?ºWù³s¾å,•‰¯sX»gùsò3×­2îeþ\ÖîÝ4g¬LüýÜÖî_þNa~Ne¾É;ø r q: s‹Ð ÝÇ ½Â ÝÇ ½Â ÝçNšû˜õV˜û˜ñV˜û˜íV˜û˜éV˜û” ÄÍâÜ}åÜeqî¾²·˜3êúݧٟÍׇ„}%ClÊv–âLæ–æN–áO!¡÷c!Vì¶z³ÑëÇCÌHœ˜CMþf93r3q%3s³p5³rMHè#o7+ô‘·âÿN¸>òVq9ªœÿwÁõ‘¯ŠËQ}ä«â}C K&´–³ŠËS}ä¬âý]—- Q¶LPÿúÈ]ÅX´.b-—³úÈIÅå¬>òQq9«|TÜ,ÑG>*n&pÈçµ–Ê¥VüYšEŠ?G³Hña4‹N³Hñçi)>‚¿QÎ곟©üæ®ÉjA“µr„ÞXGoœ¬&4±¯'»çMìçÉêAûv²zÐDöš¬4±¿'«MìïÉêAõarNÚדsѾ®:+ÄN<ÀwÙˆï±1g³‰ÿgGÞ÷úA~À¦!Ñ™Nz¢_fMŽ¥:æL'=q_å½ÇÚÏûøëðuÖåÖãDÖç$6༟“ÙSèg\4•~Æ«çBÒ ùæ‘wBRVï?2‹Þä]zÿ‘÷èwxd6›ð}úùù€~þG>äCüˆÍø1›s[p.[r[ñ¶æ§”×™Ï64‡gmKówÖv4wgm¯Wv áúÌÐÄLsÃÜ×ÄLsCÿìÝÙõw˜ÂY®›qnè¡MÌ87ôÐ&fœzh3Î s`3Î s`sä s`sä 3Dsä ³Csä s`sä s`sä s`sä s`sä 9kLëtï5>Ìë!”æµÌyï ¶åM¶ã-¶çm>´Y>J¹tL&°#Ù‰QvfŒ)LbÊêcº2#»Q¾ó3óqfawf áEµ)OJHø¢Dˆ ýžjÇШv UC¾P;†ª!_¨CÕ/ÔŽ¡jÈe©†|QŽ»x7eýÕ¸<]¨ÆåéJ5.pý¢—ç1ªqyÌm_”÷ù{X?³"÷²aeÊ÷/ª…yÌw_T±ÞǪüÕ¸ŸÕù;kðkÒ\úE-â=”Á¾¸—2ص)ƒ}qŸ:>êZÿå㈿CâÒÿBR/Yvée. EÔéŸõË"êôÏæ´Ã3CÒ¬§Cøìóiå™vfõ±þÂúºµ³0«/…Yýè,ÌêOga–³Á|’;Ù“?Qï,½‹zgéÝÔ;Kï¡ÞYúgê¥÷Rï¼Ã¬fNM±rg }”;#í£Ü™håÎL{(wÚC¹å¹{(·<—bå–çRä®Üò\ŠÜ•[žK‘»rç ¡Š ýõÙ‚ —"ƒå–íRœíܲ]г;~]ËíŒT‘³¿þ×ZË-ã¥Èb¹e¼Y,·Œ—boæŽÿûžíÍÜ2^н™;þïªþˆEBh0(„=ñ7Ú¾mú8cwîgþÎ'x€Oò {úºÁ¾ÎŸÝ@ŽÙ³‚C¹’Ïr•Ï;äóÌnSþ ÙmŠÙ§©™kÊaš¹¦üEµ(þß6>×'Dç_Ð@þñ:þÏ¥ö³6ÛÎOáßïø*>G÷¾{ƒ+ Vv¿Ÿje÷†T+»?@µ²{#šW»7¦yµ»¹¶€yµ»¹¶ÀQšk ˜U»›k è·Ý͵̨Ý͵ô×îæÚ'Câ|½ëq=)“Œ³¹qoº'ÉZË:›å„LrÎæ]w’?²–w67µv¯’?¶þÐZnÈôå†LSnÈ4‡-BXá^6™??’†~hÝÓz®õqkuc…{×džõ kßïó“ôù Õˆ«ÏP¸:ˆjÄÕÁ”Y¯¡¬zu(eÕ«ÏR6½jl(“^ÕËGìIUeðõjÆ T3µ¤z1¨Õ‹A­CxhzöX«ƒ¦º1¨ ÕAm©n jGucP{ªƒd¨Œ ÏE£2‚>™—¢]^g"'„ШW¿~bµžH³~—ILâÌÀÉÌÈ)ÌÄ©ÌÌ7™…o1+§1§3;g„ÈXu©NgªKuR¨.ÕéBu©NWªIuôøHüõ¯^?F{¿Ž½?ÖÞ¯ã9µ÷ëx®cíý:žç+…9‡æ˜:sY”óXŒ~—Wîä§¼‹óYœ X‚ Y’‹XŠ‹™Ì4–¦9»ÞC!ìo]ÆZMª×Ìú56§{÷JY×Õ„zöÍ® Ö嬽z-­'²'ÑsÛå¾r·÷W°ãyÎóüÎxžó<¿3žç<ÏïŒç9Ïó;ãyÎóüÎxžó<¿3žç<{­½ŸïØkÏuÞ ëÕÖ­=ßyo[¯±N·öœçÍd¾Ãœœ¥Ž¸/gryý®×îI{óϱK®åví=æál×ÍÿÇþ³Îký¾õzëËÖù¬?`~:í?sýŠuë¨×Ïû˜úÓ¼9Þßàý«ÖúÔ<{âŒ=2ož¶Ëkûdž}qÆ>™g_œ±OæÙgì“yöÅùéŒ=2o¡½jŒSûª-µQm©Ý˜jJí&TKj?Hµ¤vSª%µõø1jIífœËæœÇü„-ù)í"êá˜ù^ÛEÔÄ1 ¼~˜ ÙÆµø?—ÿç‘ÕÅ1‹\këµÚ8f±×f•&/„ØÍ2|‘eùËq ï‘ÁB´ÜªÙåF2©!òçº}§>׳?ãýÜÀ†!´µ‡ê]~ný¿`#þ¹‘M¸‰Rz§)å w¢ôN3ÊAï4ç×>Ô³wZøðûwYbyÚr5Ûq Ûs-á:ÊU]ÖS®êòåª.(WuùœrU—/hîèò?ÊT]6²kHœaÆkõ(Íx­:Ќת#Íx­:ьת33…iìÂ%ŒýRv ‘~ÿîñ¿Ïí÷׿" üþúWdß_ÿŠ,ðûwÿq¿¿þYà÷ïÿ»â~ý+²Àï¯E¨éÝãGÜ=讦/PÓ»«é Ôôî­©–wW˨åÝÕòjywµ|ZÞ]-_ –w7“6¾3„}æŸ<×ÔõîPìþ(åÁî|޼¼OÍ\ vïH¹°{'ª¿ÝÕßêowõwúÛ]ý] þvWs¨¿Ý㿳ÚÛ]=Z övµ·»Ú»@íí®ö.P{»«½ äŽîzå¹£»¹@®è®7.+ºË äŠîrŹ¢»\±@®è.W$ÄïǯãÿLŠsÕùZè\õp®:W=œ«…ÎUçj¡sÕùZè\õp®:W=œ«…ÎUçj¡sÕùZè\õ°¯:W=ZÑ™êÑšÎSçi¡óÔ£ ¡öÝB秇}·0öÝÂ%´ï.¥}·p;„È ™¬OiÊd}ʄдx¿»+>¶.Ë9,ǹ¼Ûû%¼ßƒ%é­˜çzyëRÖîÕŠO¬+X›S~—Õš–¦{¶âS×+r>+q+SêS…‹XÕ\vÔ\6™ÿp q*óͲÈÕNxýVHÜ~OH{9„5jr³_¬ïµ¾b­673¯™Å}®×výªõ»Ö¿Yßg}-„òøhd]Çúº×½®ëõÙÛ«@÷u˜ûºÑ}æ¾nt_‡U¶ðÚ½æÞnto‡UåbVc«‡Äk‡¤•µBd±}ûdÚ³OÊÀ‹ÿf?¥Yq|ë«)„gõ¨Œù!QoÊ(ØûÿYëQåáñm¬=—gå–Œ‡©Geü‹rKüß™8¾­÷=§gõ©Œêÿ³úTF=àY}*£>0¾÷=¯gõ«ŒzÁøöÖ×ø=§g嚌róøG­oXË7åçñ¬oš«Æ{ÝÑë[ìÄÛìb Ü–ñ)Œ° Bâ²ÏBRïÜÀ4S÷–q—™©{˸ËÌÔ½eÜefêÞ2î²M4odûÞë/½¶—m¦|²l åÜe_q8¿æóÜÊü†#¹©ü–£øGó{¾Àø"·ó%þÈ1ÜÁ—¹“cCBWóG÷¿«ù#ÏŸ!ô{>„Ûë¬Í!yÜ÷~#¬×[›Gò¸ÿýFZËý ¶·7¸n>ÉsÄz”õçÖæ”<æ•®æ”<æ•®æ”<ÿ„ô²×f•<žEW³Jžã¾f´¯ùÂÚ̒ǽïÚ’'ÙŠ§hÏä9M{#ÏÚyÎÒ³Ïó/=ã<çèÙæ9OÏ6Ï…PJ>Ðjôþ!¨á’y¾”Z}`ÕêžSû¾!)KöcÞÞW«Î·îo˜Ÿi&={,D?ÄãÌ“ÊS|–§ùÏPÖ<{–Ãù/Ÿç9ÊgÏÓýÌÏñÜ'ç•E>•=ÎÊ"ŸŽ¢,òéh^â ü/ò2_ —ÌOK̲oÔ ‘âžÁòJñÑ®›§–˜mß[Š¿@¹¥ø‹®ËÇKì½7ZÇ¿^N^ò,åã%ÏQ>^2Œ;8œ;ù<âîâHîf*÷pfüÏÝËø_NÞ¸ô‹×ñ?óWú³Ú%‡X¦¯Xš_³ õúœ¥BÒ·òvÎdf‰•ý ÇœÊ~†cÎ@e?Ã1g ²Ÿá˜3PÙÏp̨ìg8fΔßËÿ`íg9æ,Tö³s*ûYŽ9 •ýÇ^ôyò}ùíÖ~žc/YËùå´ÞgílTþÎFåýËßù ðUä8âøØ½jH*°ŸÕø;«ókPûp}ˆTWÃ>üŒjÕ‡xÕû5½ˆµø‡ëŸ»~ÍZ/*ð'õ ‡©çø‹zM#Ôc üMý¥ÀQÖã?¬ÏclÀ㼟'Ø'}ÿ/|5ïÃÿñ†ë¸~ŠxÚõ®ß´nl}†Mx–ò_6å9>ÄólFç¬o±â3Â9Là\&r£ü$„¡ö~óÌP{?ƒÚòRjˆÝ[‚£X’£YŠrú½É”Óï-M9ýÞxnNN/Â{2dåW)CVöš s]Ö{O–¬ìy4n}ŸgqŽ` ŽdIúso–¢?÷f2ý¹7K‡Ä«¿…¤˹Ÿ+ø;WòÍueÍ„)”5¦ªeû¼–7d‰íùV…íýþÝC¬T{0‘O0Ê'cO&ñ)f`/fdofâÓÌì{Ê« Ó¬ûXga_fe?fcfçæðg¿àõ@¯szí¼õÆë\ÄÜ!aÆÝ!ÖrËs7+p+ògVâ^Væ/!¡xïÝwOóûð&ûòVë–…H ûã—ž!ir ™'ݵå®ýKs{ {å—§¼W3$Nu6šÊ¸áxHZ/ÿ‡”ÿÃIÊÿá¿ ‰mõÈL½Ô`Ù¢ª^ÙV¯ÌÔ›ze¦§]¯îºÞÙV¿ÌÔ‡úe&ðý®›÷Ûê›™úQßÌÔ?$ÎSû¥ÞµÕð®wòš_—v ѧþbW ‘åfÜÞ²Är3noYbù]”%–›s{ËËKpa:G¿ßg]ÒZfX^Š‹™Ì4–æ–áR–å2_'cü^‡²Åïu]/çº{¶ünºgËËs%+p+rµ°1ÀëJ^¯ae®e®cUª1Ë«ñ³¸þfHdß®¿ÅU¼ÍÕ!Q»N´†®e×1‘륯ÿ,Æ LâçÌÀ/˜‘ÿc&ndfnbʧŸeåffã–U>_DõàóÅT>O aªù©Ô{ÖêÂçKãR&q3Ð9Œf¤sÍD¿O43ý>Ñ,tO2Ç_gõzMÍç‡pèŸÙb¾ù¨õëcÖæ¼‘f“-滑æ»-滑æ»-滑æ»-滑æ»-滑æ»-滑~¾-²ÃHóÝÙa¤ùn‹Ì0Ò|·Efi¦Ùb¾i¾Ûb¾ivÙb¾ifÙb¾i¾Ûb¾iVÙb¾i¾Ûbïì>Qsº©uŸ¨9ÝÔºº¾_úPú~éúo]ß/]ÿæL·ÈKç¹E>:Ë-òÓYnQ€ƒy‡° ‡²Ÿeaª•-ŠPmlQ”jb‹bT[ÜI5±Å]T[˜Ó2ü赺ØB=žægla&v D²¡¨|7ÍÏÛÂÏ;Mmn¡6OS›[Äÿ;/js‹2ò|™å8–wó–竬Àq¬Èñ¬Ä×ÿ÷p I Eø,׿ÏÑÏÛL 2w352â4S##2w352¢Æ6S#‰6¶ßµ™úQg›©u¶™úQg›¹—u¶™{Qg›¹—u¶™{ÉL÷2¢¾î›bSër:ëqëóm6àLÞÞ’+šË†rDsù÷-9¢¹\Q\6Þ§F—÷é§Ååâ}(ï»Hyx_:åá}—(ï3Ý3§˜G3î3{8[õÒÙª¿ˆÎTýÅt¦ê§Ñ™ª¿„ÎTý¥t¦ê/£3U9©ú+èLÕ_Iç©þ*fãjfçæàZæ¤Þ=>Íãsó3æ¡}2>/åÿñù(ÓÏÏÿ±7ònbA~ÉBÜÌÂÜÂ"” Ç¥l8¾·òN~û¸Åù-Kð;–ä÷,Eð !v­zïš‹+粞h­G½k>®œÛz’µ¾ôÀ¬Åɼ‡Sx/§²6ßä}|‹uh\«K{äZ=Ú#×êÓ¹Ö€öȵûùrà»lÄ÷Ø8„¼¿†„fÌWííæËqööóå8{{‡ùrœ½½Ã|9N~Øa¾g_ïèJûzG7Ú×;£}½ãqÚ×;äŽqöõ¹cœ}½Cîg_ï;ÆÉ ;äŽqrÃgjœÜ°Ã™—ƒÎÔ¸œt¦ÆÉ ;œ©qòÂçi\:OãÔ¢ÎÓ8µh‡ó4N-Úán¦o†}ÜL;ß û¸™vþúsæ_eü¿C^;ľ7÷乿žÊWÙãØ‘ãÙ‰¯±3_g '° '²+'±ßàcœÌÇ9…Ý9•=ø&Ÿà[|’ÓØ3„ 2ëáBtÖ@ã3<ÎA<ÁÁ!¡Zþ=±4„'e³'—„pù”Ó®p]¯¨võŠj©WT+D½¢ZaêÕŠP¯¨V”zE5ú„9/6Ýk9ú„~QMŽ>¡_T“£OȘ‰Èm¯ñO¾ÎÜÀ¿8‘G8‰ó ådþÃ)<Æ©<Î7y‚oñ$§ñg};RÊìŸxÚzÏðmžåLïßïý­ÿµ~‡ç8Ëõ†®¿Ä8†ø²÷Ï{ÿ]^  ›x‘êÉÔÆÞË&|Åõt×ß·6«–2«N5«–Rä§šQKg3ÆÿK>ïëæÖ¯³ã÷á?×?´ni=Ñž_éu+¯'±5ß :P*~O.ûܬͧ¥â÷æŠõǼÊ9®›WKÅïÕ5ë¹¼Îy®›]K™]§š]K©‹SÍ›¥Ôé2~ïäæRñ{vÃç›ß§ÊÏ¥Þ¦ü\*~ïäçRñ{vÓûŸZËÑ¥â÷NŽ.¿G·\ŸÏÛ\ «ÛŸË*7ô›ÕfÔÌ2Ó =gµžsCÏY­çÜÐsVë97ôœÕzÎ =gµžsCÏY­çÜÐsVa²ÚWâ’µÞ³Z﹡÷¬vþç› 77vú7$åô³u:ÇYÌèì~é™etv¿ôÌ2:³_¾B±{}Ô‘³…è'»Bh"„ãe­›Yï¶>i]ŽêÚñ»yšúcû3ÔÛŸeEþËJ<Çʾ¾¹¯—϶àÏlɽlE÷ìlkþJ÷ð“}t?ùm¹_ÏŒn;¯g{š§Î>ƒ!¡lžýÃŒzÇ<¯ózí\ Ýbå‡p7Í„C÷ÐL8Ô¼QÞL8Ô¼Q~Íå‡Ó¼Qþyš7Ê y£üHš7ʧ†0hqˆD퉡æŽò£¬Ó¬ÝƒAK¨¾5‡”w‡Ú3å_p}©ëg¬íòöü eÖîÍ åto­à9ïÛSåA+­Ïs/¸®–—7ç UËË¿ìúj×/Z«éåÕÆAk¬ÓéìF/Qn‰šgÙ›ÑËüŒW|¾Ú_þªýåÕÎArKTÖ$·D¯¹®”·Ç‡êåÕÒArLT$ÇDå°ArLô¦÷í³òöþ y&zËÚ~+ÿ:í·òh¯•W[É9Q9|¨ýV~í·òoÐ~+?™ö[ù)!vï Çï›}W~ª¯ÛŒ™”‰âÃé ™(&ï ’‰bfÒA2QLÑô }â mLâ·ÌÀß3`fngþȬÜÁlÜÉìü‰9¸‹êè 3N,íÕXnÚ«±<´ÿbyi¯ÆòÑ^å§½SCÙ«±;(;Å Ò>ÿ»/Ù§1sÿ ƒ,ÂC,Ê?XŒòN¦Ú6è/ªcƒŽP ô7ÕÃAGYŠÿ0™êM¬4³ O°,OÒùtŠÎç Ót>¡ó9è,ÏAÿÒùtŽ•yžUxUy‘Õ˜N³ß K4ó ú5y™µx…÷ð*ÕŽA×X›×yo°o².o±o³~ƒ0Âû™@3ÃàD>À(1F³Þà$6a>ÈŒlÊL|ˆ™©ÆVccæŠÁjjLM¬¦ÆÔÒÁÙÙŠ9Øš9ù0s± s³-ó°ó²=óñæç£,À¼ƒYXˆY˜),Â.,Ê®,Æn¼“ñ.>ÎâÔ— 8¸$Ÿ`)>ÉdÊ ƒKó)–a/ªÍ±Þ,ǧy7û°<Í,ƒ+°+²?+qÕäØ@Vá3¬ÊA¬Fepua eM>KóHì9ÞÃa¼—égÄžç}Á:ɺT?×£º9¸>GS–Œ©“ƒeƘú8XFŒ©ƒƒeĘŒ8XFŒ©{ƒeÁ˜z7XŒ½B0¦Ž – ú‰#ކ¤ªêÇ\ûîÞÚÖÿXëƒ#ŽQ†qœÓBÂæš!ö¼^±¹ñþÁ{ùg/‘¼ßX›“ž?LsÒóÑœôüš‘žÿ›f¤çÒlôü?4=Œ÷óxwNôº¡×'øõË—^ó½·Y7²>ÅÆTû67¡±ùAžeSþˇ¨7lnÆólN=as ê›[RíÏ$Ãmnåµì¶¹5ÿãüÌ6¼'U IôÏù=B¤ÎGÖ•¬Ñlf®­f«+CÒ Yy“úk{'^]e-3_]M³ÃÕ5”“7©ËD¬×Z›!®®ãd×ÕéG¬×[ËËW?£ç±IÝ~$ÑzƒµçqõsÊ%9䯫_xm®¸ú?Ê$W7R&¹º‰2ÉU¹s…Lru3åÈ«[(ó=kg|:$¼2;Äêª ÏÚëûX¿oݘòVÝ&”·ê>Hy«nSÊYu¢œU·媺Í)SÕmA™ªnKÊTue¬éCRK¿ó½¤^&ëCÖzXÛGBLNJhû(åš>êìM?OÛÖžSÛŽ¼B!?KÛN^{Vm;3)ôœÚv¡çÔ¶+=§¶ÝxÅ÷R«oú]Ú>f}•SnÛjé¼!ÚÕ™ÿó]Ùy‹èÌÎ[Lgv^ÙyKÿgl—Ò™·ŒÎì¼åtfç­ 3;o%Ùy«èÌÎ[Mu:A]™·ÆkçvÞZ:·óÖѹ·žÎíÅgCt‘z~ñ9ªç‡Q=¿8¢Y{ÀÇ4k˜C³ö€¹4k˜G³ö€OhÎð)ÍÙæÓœ=@¾|H<`æ_[Âz!KrKQ>\›Ì´XctˆÖ›ßy9D*l‰Á¾\oöåzs@°/×7£}¹^šòlˆ”\em®oAûs½üìÏõöc°?×ËüÁþ\/óÏßm.S— ‘–Yï±6'Ïÿ™¯r/ÕÆù¿p<¥ì–ÍÙ›¿Ïk¹mŒúu¯:6Fýº7þÏxª_÷ÆÿùNµëÞãT»îUÃ6˜Ñ‡Ì¢}ˆnƒ}È{4“™M3÷÷iÆòÍÏC>¤¹yÈG47ù˜æå!sh^2—æà!òúóîOh¾ò)Í·C懄ÏÍ·CÜóŒ~ÆÏ#^/T[µr{A9¾‡Ü^PŽï!·”ã{Èíåør{A9¾‡Ü^PŽï!¯”ã{ÈçS)ŸE¹¼ ¼ÞCþ.øåí‚/RÞ.øåì‚òwù¹àË”Ÿ Ž¥¼\Pžî!/|•rqAù¹‡<\ÐŒØC.øåá‚îs9¸ |ÜC.¨7ôƒ ÊÅ=äà‚jJù· \Üã§Ðý.8•îwÁ7é~|+$,ׇz !UnÍ)·¦Ê­9s¸®/õþÛZ~Í)¿¦Ê¯9å×Tù5§üš*¿æ”_SåלòkªüšS~M•_sêËõ³ÞG­åØœrlª›ó×íÞöÅrû£·}±ÜþˆÿþTù6gAkû¤·Ù0UÎÍYÈÚ~ém>Z®Çõ–íSåÞœ…­õºÞfÄTù7§ü›*ÿæ,êºÞ×Û̘*ç,f­ö6etϗ냽ÕÙåú`ou6UFÎy§µ~Ø[]®öÖ—ë‡½ÕØåúao5v¹^Ø[0.ĨÈñ¬Ä×X™¯³ '°*'²'QÆ}®mˆdrï'¼a]ƒ“Y“SX‹S)ë>×Îçy6êQì{ùksïãtÖá Ö ‰/Iµ¿âüš¹5$Ü‘?DwÚ×Ó{‡HÙOCbáe!¶§—³3W0…+Ù…«Ø•«Ùkø×òq®cw®§ ™¥ ×Ÿyý7ðI~Ξü‚OñìÅŒÿ7Þ7ñi~É>Ü̾ÜÂ~üŠýCä;}hŒzØò»ËàßéGcô£ïô£1úÑwúÑýè;ýhŒ¹¡å÷>Ï\ÖòšËZn§¹¬å4—µÜAsYb®˜>7$¥ÉÍ ínXϳÉO˜ÊO9Šó9š øòE.âK\Ì1!±ø!öÛ³ÜÎçø#‡…Èå?Bt™¬ÜQN>¥ž_þÓº/³ÿ¢ßõòÊÌåèS‹BˆÊþ—ÿvMo¹|”zÂå¨_>ÆÁ<Î!<Á¡Æ­|œß°;·±¿åüŽOò{ö¤çž¢çzÑs ½¹ƒzÃC;)C=ôûrûq7ûsðg¤^ž¡^…„WýÜõ|¿YêLù{–:ÓF½™¥Î´Qof©3mÔ›YêLù{¸\Ÿe[düá¯{ý-'ð;Ÿ#·Q‹fÉãmä½YòxyoV[í¼ÖÛÈy‰sCôsµ)qÕ¦ÄO¨6%~Jµ)q>Õ¦ü²v~ý!QüÜyÊ/cçÓGüÿƒ›"'Î…èÇ#xž#y©¼ÈQLçh^â ü/ò2_âŽáUÊ-'®q,¯óÞૼÉq¼E3Ó‰ÛtÜ‚èÇîÁÉ݃“æø“‰^Oôÿw êïÕõÿTý½ºþoŒU×ÿGéíÕõÿQ ÔÿG%RÿåƸI\Ä \ÌŒL ‘þüÕþÜ›þüÕBè´.„ÓÿYû9VO´^o}Ù=2ãwúÌë+ÞKðž|ßiƒõUk?çê7eü>·ñÑÖ‡:3æÚ&q*3ðMfä[ÌD÷ÿffN …œïÝòD¡Ó”' ¡­–ß%Ë~þTHZ”½XŒ½y'Ÿæ]ìÃâìËìÇ’ìÏR!¼}"DÊ— ‰åå½#/émíCBº~˜¦®¤ë‡iêJº~˜æ>M’1ŠËéúbšú’®/¦©/éúbšú’®'¦=Büßœ®/¦©1éê[š“®¾¥=å{È%Å‹Qö(.{¤«wijNºz—ÖÛõîße­æ¥©=éjGšÚ“®æ¥©=éj^šÚ“®æ¥©=éj^šÚ“®æ¥©=éj^šÚ“®æ¥©=éj^Ú`ªyiC¨æ¥ ¥š—&嶺yiònºš—&嶺yiònºš—&嶺yzfBºš§W&¤«yze˜ô—Ÿ³¸µÚ§g&¤«}zfBºÚ§g†IG¼_ÂZ Ô;ÒÝ_½3LúÛõ’Örµ&µ.e-_§ÉÃéòuš}›._§½âý¼ŸÌc,íº¼fO:n]ÆZîN““Óåî4û7]îN³Óåî´×}žç[¼¬µüæO:im¾žtŠw».§9Ï“N[—çVàYÊzérzš}7é_k™/]^O“¯Óåõ4û=]^O³ßÓåõ4û=]^O³ßÓåõ45tÒ9_§§Ëíiö}ºÜžfß§Ëíiö}ºÜžö6ÏúÙÓfúx'$®h’ž¾Èû™Î†¼Äøñ2ó ›ð*ä56åu>DYgE3ÞdsÞ a™ß³qëÖ·Ù2$‰,‰+ZÑŒ½¢5ø0}¾ûѸ¢YoŸkm\‹†Ä¥=BR¯¼|‚ùø$ó³' ÐÙìuÍ^2ãRg³W!:›½ ÓÙì%»/Ó/m´vF{9ËKÑ^ÎòRg´—³¼tå¥é,/}†Î²95©—³¼t0K…ˆ¹1zwI¾O{ª„ì´ßlVBvÚo–öÛ£%d§ýji Ùi¿ìs‡šy‡s^Bݯ¦–Pc÷«©%ÔØý/‡h8’Ö¯‘+»CtyWîa7þÌǸ—óvç¯ìÁ}|‚¿ñIîgOþÎø[y—>‘Óú€u/¤Ì~埦¹¼åÇåòãùq¹üxE~\Þ_!½ËkrùÊËåÆ+rãr¹ñŠß}¹ÜxÅï¾\n\êózùK}^/ßc©Ïë%ƒ.õy½|ýRŸ×Ë×/uzùú¥îQ/_¿Ô=êÿz÷¦—ܹԽé%w.uozÉKõŸ^rç5Ïfez6+¤g³²)=›•qÕõkC©®_{–-ÿÚa^Û+[…Äê}v×;¨ïÙÕ÷òlv×s_ ±ï?á-óe{,÷Öò2? ÑĪ!ésùsùyTî®ä%Vs- «Ó,PÉœ›Ã¬YÉ=H¬áZ6ÖdvÖòq×9|˜w+™]+™S»– ±<Ûx7¿eyÊa]+ð{Vä¬Äí¬ÌY…;X•fëyB´Ë÷lL³J#‡í×ÖM¬·óAþ?È’]ÇŒ”1Ò¾ ‘†ø3ºžÉuy#Í÷jhîIû~ï4ߣ¡¹'íGfõy™}ÞfáçÌÊ/˜ÿ ‰¯‡¤\óxƒŸð&ÍŠoq>osAHLÁs-d„‹˜ÀÅLd£\—2‰Ëè÷ȵœ~\+èçε’~®\«èçʵš~®\kèçʵ–Ùé÷Oñr­gN~Æ\ôû¤ä¦ß'%ý>)yé÷IÉG5$%?7…ÄùWCÒãfª¥Ï‡È²[¶Ù®]sMÆ;T,ÄfÈ×™þôúN¯=×CwÑÌ9^(Rκ¸µç{¨=ßC%¹=$þâ{LþžîßäèþMvïŽ Ñ÷3S½x? ÇÒsøä¹Ô­4íñne8œòÆ'ÏS*»Ì‡ûôÉký(U¶¨nÆI•-ª›qRe‹ê²HªlQ]J•+ª›qRåŠê2Hª\Q]I•#ªË ©rDu3NªüP]þH•ª÷4KÔöZ†¨n6U"$U·×F•ä–âN&ó'–æ.–án–å–ãϼ›{Yž¿°eEê£*ñ7Væ~VáïtF« sYý Ëê‡è,VÿƒÎbõ?Y‹‡é{UïZQ‡z׊ºÔ»VÔ ‰53…Øé•!¼#›Wpojf¶¶kfáj×eõ »åG}&KÃݲ›pO]Ÿ áÜ*k5`ËÏT¶ì¥³¿åó€y.‹ó¿åW6å>>Äß|ís¾vµu3ëýlÎßقؒيúFæ½!i˺9¯&.,Çy7çPmÐÙHþ1„9%B¤Vkg$y‡µ|QË=š#oÔzÒug&ÙÙèÌ$;;™d}}N²÷ݳ9¥éÌ t†’¥ÎP²û4ÐýJv–º_ÉîÏ@÷)Ùýè>%»?ݧd÷g û”ìþ tŸ’¥ÎP²³4ÐJv–:CÉÎÒ@g(9þß‹S÷îû$„O~ ‘ûrpsº®nݧ¾¿¬nݧ¾¿¬nݧ¾¿¬îß·Ðçíöy¹BâÈ !©šŸwäçô\G~ÁÞüŸæFê]ór…Ƚm¬7Y÷å—ìçzn×ÛZo¶îÏ-À¯8_ónå ØcFH*XŸo³AYkÊ]3å.{´ûªÒ×îÎWúE×ßq]&/1‹ö`÷5®§s-/QOÿúfºÙ¼»>™~…öqúUO3»£Kñ¡»}~_ð:ÿÇÜHC÷M”“»ÉÛÜ‚?"tß¿b¿¦|Ü}+£ü†1ê/—’ø-õïîzË¥Œüž™üïúÌ%Þc•pÛ¼¶Î¼vÛ¼¶Î¼vÛ¼¶Î¼vÛ¼¶Î¼vÛ¼¶Î¼vÛ¼¶Î¼vÛ¼¶Î¼vÛ¼¶Î¼vÛ¼¶Î¼vÛ¼¶nDHLÕ7«é“©úf5}2U߬¦O¦ê›ÕôÉT}³šßqž}zoOkç«Zü¿'c¿Þëù§:gÕœ¯T笚ó•êœUs¾R³jÎWªsVÍùJuΪ9_©ÎY5ç+Õ9«æ|¥:gÕœ¯T笚ó•êœUs¾R³jÎWªsVMJuΪéA©ÎW5ç(Õyªæ¥:OÕÔÙT穚s“êüTsn–úùŸòç-õó?åÏ[êç~ÊŸ·ÔÏû”\Ö?gˆ•\Á\\®/±U0r ;p);r;q9;sõßë+©ÿ^_Eý÷újê¿××ð±&O‘rÞuýz•>|]¿^¥_ׯWéÃ×õëUúðuýz•>|]¿^¥LžâëÔ‘ÉS¹Óuý{ÕSÔ¿Wõ¢þ½ªwÅÛúœ7}ÎO®é嫞¦^¾ªõñU2nñv>G?*±Ëµ-®õãWìϯ9€[9ÐçéO%ô§âí]ûƵghÏ­²ç®Ûs«ì¹ëöܪ!>wºÏÝcmï­²÷®Û{«ì½ëöÞ*{ﺽ·ÊÞ»nï­²÷®Û{«ž!óH¯í¿Uöß_êÇ»ææ¼ÃChÂ_Bä§‹!úÚH¦3•—8Šÿq4/ó^¡™ð§«|‰×8†×ù²ï)ÓýtÃë±!{/$V—±OªÕ«Qm¬^jcõT«×¤ÚX½匪ží u`æ =[«êŸèJÏøD7zÆ'£g{âqz¶'ºû|Ù°‚Ì6óïvݳ>ÑÃú´uyš©+¨[3ÍÊ*zß8¡WÌü×Z½šyŽ•]·'Nè¯3Ï[«E3/°ªëöÈ {dæEëjÖöÆ =vfºuuk{äD/ëKÖòOU{å„Ú\Õþ8ñ´ì¡¾VµGN¨Ï3ÿó95y™²ÑÌ+¼‡Wy/¯±¶Ï·—N¨ßUíŸýhÿœP·«Ú?'âÿŽUûç„ý3óºÏ—“fÞ`Þd]Þ¢|TÕž:¡®Wµ§N¨ëUí©ƒ½Ûûê{U{ëÄÚS'†Òž:ñ,í©fÀªöÔ‰a´§N §=už*¥vu[’òy^› ‘ùB4Ó¸´ùiŽg¾Æ¾|ý8ý9‘8‰ùŸádšm¿»¢cÆ…ø¢1:f<#| |=„–ò×á;¸Ÿ]Ot}£œÈ'1‰oø¼ß}^!`a×3¸>Ùú ubQ×3º®|Ÿ‰êÀ÷™é¬oVã<Ÿ•Ó|þ>¿˜l–×ë?½¾Ó{fÖ1Îç÷fÖ13˜ƒo{ÿ°÷ïâ_,îzN×g2ßanÎb¾Ë¼|îç˜ÙÌÏ÷Y€ðš¯W’ú·çG|„óQšÓûw 9½GšÓûwâ'ìÌO™ÂùìB¾¿3¶Z†ï^Dglõb:c«ÓØK(o­^Ê'¸ŒrÖêåÔ§V¯ þ´Úžè/Ÿ¬^Eg`õjÊ'«×°×Ò¾^½Žöõêõ´¯WFûzµœÓßy™iÆhýïå1ÖæqÞǬÓ!1ÿ!¶£'Ó9šæ”ÑòO±vž¦yeä¹üS­ÍÓÞ¶ÞKÏ ŒŒ?Í3(ó+=ƒ2û蔑ëò¿éóïã[4wäŸFsGþét®òÏ ó“ÿmÊGÓ<³2öã4ϬŒZ—¦ë÷ó6ä,>ÀwÙˆï±1g³IHh$/ýìCòÑÏ>$?ýìC ðMÞÁ·èo˜ÆBœNçtà áÛt>7ÈŸCŠQÞâÌm7‡Ü·ØS#Õ¸¥f’^I|„ø(3²3±#3³³°3³2…ÙØ…ÙÙ•9Bâ›ÃCR³d>ÏÒÁ2IýéÍT–ã(zoŽfy¾À |‘úÍ›/±RHXP?Ä?ª7®óº×ÿð~cCç<ÁF<ÉÆ<Å&<Íy†My–ñ_6ã96§Yû•]!©î !,o"_ ‰«ä¶¾zñ*¹­¯z¸üA×_eSŽs]Žë«>.Èz¼µy¨¯½Ê<ÔW}\ÞÌõ׬ÍE}õêU梾Ò\Ô÷0ÍE}ÿ¢¹¨ï‘°qOˆ KåÏ4{oÜËÑü…/ðW¾È}|‰¿qLHlõlHŠås,Æa¼“žE̳nåYÄŠÓ³ˆÿóÒ³Û*æ±VžI¬$=“X)z&1Ï®•góìZy&1Ï®•góìZy&1Ï®Õzv­^¦g×j,+„#JlÐF¸ \ÄD.f”iŒqIñ:Éë¥ÌÀe!¼0$Dr¯àPʼŸet}93Qþ,3ã׳p³r5³q ³ûÈáCv$ó ’wâÿ¼W¹,¯\ÖU.Ë+—u•ËòÊe]å²¼rYW¹,¯\ÖU.Ëû2e²¼cy“¯„PuA[Ñ|¹õ8ñó¤aª²×i^Ÿ¢ßm«Õõ–¯µ_ª.µ>C¿ßÖ³\N9ª«ž×>šfm¡®O3¶w/ÊZ‹å틲ÕbÙjÒò¹ë_®à9®äyïËX‹{†„ç^ ±ŠÅC,KÆÌƒGÐÜ8X>}æý—¼ï¹–ScæÇÁrjìs×Ǹ^ÒÚ}‰}aý²u)k÷'ö?ë±Öêês¯P]}îUª«Ï£ºúÜxª«Ï½Æ»ù:ËsåvöGfû£ý‘9¾~…Îv»W)C–}#$Î1s§Èíþ±ìöz‡?i¯w8L{½Ã_|)„¾#C¸eƒõ•¿oùúޢߡÃï±mmþíëüÞ2ÿö}‘æß¾¾öÖ&Ÿ÷·Ï“·ûúÜ[fþ^ß2'ÉÂ}eï[fᾞó-³p_ÏìÖ׾樯ñ^ßqÖfâ¾ãùëÿ¸îsû¾fm6î+_Ý2÷@³q߉Äúšný@yêÖv_wÌ×½ÊãÇô=ûÊU·~äš§úNåN¾ÉŸøwQŽºeîé;{8ƒ?Sfº¥?÷Iý¹ï;ÔŸûÎâ>ÎIŽŸµï»Ör`ß÷¸ßõS®ûÙûζVßú¾Ï®Ÿv}ÏÐïÒ÷×å¾¾R]ëûå¹¾zå-Y®ïÊl}çRfë;êY‡³¾~ÿå<ÇÉ<Ï)¼À©¼È7™Î·x‰Óø§ó2ý® ÛCdã‘f^l&7*H?÷!ýoãß®÷ãQöç?ÀcÈã|†'8ÈשۇôË'­óÕž§©öl<Ãgy–Ïñ_ã9𛹇ôÙç­»8Âu÷çPQº?‡äÝfîÏ¡;éþºË癇™-Gt ±ª‘Š˜ãG<æu‚×|ÈŸŸ;7CÍ'+Z„H“ ÖÎÏPyêsçg¨9eEK×'Z;GCë…hö¯CÒ7ŸRŽüÆÞÈéûL>"%Kó8Ù›Îך×è|­ñÌ'›K–¥9°¤3|Óy[ã™ßtÞÖL¤sµÆ³»éܬñìn: k<»›öþût²¹±¤3Óž^ãÞ´§×x†7íé5žáM{ngxÓ[ãÞ´§ÖÌ =µæmÚkfR¾i_¬‘ùÖÌ ëõ¸AÎýz=n·^4†ûù2çXà+È[lÊÛ|($ 1ŽnhƛӜ÷GˆÔvnçýIçvÞašEçýE=vÞ–‰/d I5×1õÚy».K½ÝÚóx!=rÒóx!=h¹ûÜýˆÞM5|ªß¹ÔëòÖöTæ5^ë•ÑŠÖòßçêùT÷£”Ú:Õý(5/$LXb<ÂsB$“šÿ\g¾ãú2×ýçR¬¥ Ë­;r;q%;sS¸š]¸†])/=Ð2Ó…Pôy¯×{ý8e’ºS&y ed” _ðIþ²È„|Š›Ø‹_²wˆŒ2ãW7WŽ2ãW7OŽ2ÓW7OŽ2ÓW7OŽ2ÓW—KG™é«ëS÷ÉI;+Z›í«ÇgûBføY˜f²ï‹pnHÜS7$MŒ²c¬OóÌûd¢™mkÙ%wµÌŸZ—³–¿Z°v¯ZÞÁŽ®ßíº|µµ<å«­¸Š¹š•¸Æçë9v !¯9pke×Özÿgv ¹ÞÙëø?·[Øëaêvõ^üŸåµ·þìF{ëO÷¸¥½õçã´·þt.¶Vñ=e¸–òÚŸ=(Ÿýé|l­êº»µå ¼ñXVûS>ÌkÎÜZÝõ ¬ÁÏY“jLÞì>Ì[kYËt_ö±çåã/ŸfNöa.öenöcög^`>d~>ÃD÷î¥6!’W/ÿr°uAa!ea>Ë"|ŽE9ŒîÁKm}¾ñåpk÷â¥vÖúÇ—Ï[ßÅ,Α,ÁT–ä(šù¿ÍäÑ›£opor8oñyÞ¡¶Ló£^_[†ùñ ë#BTô µe™Y´Ž0•ÎmÙæG5Àü­”h-ãü¨˜Ã¢•¢|1×ežÕóX´’ý6EÝkº€ê]Sý#[á¸O­™Z€jÍÔ;¨ÖL-Hµfj¡ØF ÍøÕÐŒS ͨ´ñ½2ÚÛm|¯Œ²Ôl¿WÕºÖjhFýb¶ß¯j=ë›ÖŸ†ÅL0û¶kõCðëFª6 ß©êýL`CŸ{Ëçê'ýeˆR•(;”ªÌq¬Âñ¬Ê×X¯³zˆ¬x%Dûd ‘.­B4·L[ÅŸe߇*çY…XÕû­½/ëV¹h]Íúaky­KʶUÒ]¯ÎK¬áz[×eÝ Cuiçµ¼[å?ïÕ´no-÷V¹l]Ëúk=¥Êë{x•÷†È— !:\–IØéu¢×åDÆ8‰I|ƒ8™9…™8•™ù&³ð-få´8Ú½¯ù)ÝóšîÛh÷º¦ç;Ú}¬¹·¹H]7BÔ\ÌÓ˜@óß—r×£eB4òWHú̼ò¥¼õ¨Z9b­ŒP§ª˜ç~"÷ª[#Ô«*æÈ¹Û¬“ø-3ð;fô¾~Wåõ»*§©ßU9Cý®ÊYêwUþ¥~ç%Îý>$uIåÅíÍùwðEîäKü‰c¸‹/s7Çr_áÏ|•{ifû ÇóW¾Æ}|¿Qf»ŸrÖpY¾²9dÈÝ!ÿ‡ò†”§ü^äÞø–Ÿ©ùHú™âÿ~³åo†ØÓµùïã4ÖátÖå Öã۬ϙl@Ùñi{=U–Í)Ë.ŸeÝïò¾ÇF2›œ¸|¶×Câá÷CÒ¬!|ö¿i%'þÀZ~ÛrGˆŽø}è9#>ò¡4·Ï™ñš›ñ}ç9¶ñãϳ-Ë…ãPHü¬pH$}V„»X”zý‚NÆL=bé˜yÀì¹ôeÊ\ :»ž™)Ì«éË'»R_>ÙúòÉǨ/ŸŒÿw£ôå“ñÿ^”ž|Rox§rˆTh­7Ÿ|‚zóÉ'©7ŸìI½ùäSÔ›OöòùU|þ3ÖzôIYªš}òiêÑ'=›wœã ƒ¬7[÷åöãWìϯ9€[ÿs¿aüûm£™êç¾Â`ª†¸þ­ëƒùãëï9”?ðYŸ§TJg¾Büß¾Ýõçø#‡q‡s'ŸçO4c½£&TˆÞ.kû§ÚnÆÿ{[{h¯Wû™öz5ù餽^íÚëÕÌ'íõjf‹“²vI5¹šùâäË!¬Ý"-äÀÝcBÒ„‡h›ÐŒf¯ Í©nNhAusBKŸÿ•Ï×/Ö~ÍD×ÕÑ ­¬·ZË#»ÕÓ ­©žNxØuç¼…s¾[]ІØ–ÙŽ“ØžoðN¦Œ·V=h¡¿ìžb-¯¬UZd°žjmVÜý&;ñ-væ4ÊkÕêÆîéÖ]8ƒöÖî·ioížI{k÷;´·vÏ¢½µû]öà{´§vϦ|—_úqå ¿ S쵦rà{­é!dXëµýÖT&# “‡†™¯3˨™åÓø¿—yŠ}ØTFœbÿ5•§ØMíË¢ïym6íM{¯éÓ®ÍöÚþkÚ'$äù:DèÀ­”gó|ãc›×|øS=«êéYU×܇Ú†„„ÑžsM:C3×ìµ öÚP{-óÞóÜkš»ŠÈ͖ͣ5Íš£Í–5Íš£Í–5í‰"êVY´È{>fûÐ\‹ÈE>ô9æÎšc½–ЍEä"zvA?ÿ.õmzî)ëùô;ìr† :C»œ¡‚ÎÐ.g¨ 3´Ë*è ír† :C»œ½‚ÎÌ.g¦ 3³Ë™)èÌìrf :3»œ‘‚ÎÈ.{¿ 3²Ë)èŒìrF :#»œ‘‚ÎÈ®t6v9]ÎFAgc—³QÐÙØålt6v9]ÎÆ"™¤ÇMµé—i”Ϻ…µyiQKš—µ Isâ¢Ö”-ž‘ãKËñÏÈñ¥åøgäøÒï„P«ß/¶–çKËóÏÈó¥ß¥_ZŽ&g3?ßg~@u·´ºûLA~Dµ·´¼ÿŒ¼_ZÞFÞ/=—E9Åø ï¤ Tk€?7Íú.ëù,ÎòÅï©óßëɵžáRï•ðÞB–ä"–âârùôZêØ÷Ë\KvÍœ_K=û~¹]2$=þ3Kq/“ù KóW–á>–åo,Çý¼›¿³<„ȵ!!ºB^½6”rݵg)Ï]“cWÈp×䨕2Ü59v¥û|MŽ]©ÎtªÂéþÖòëÊDÊ­+åÑkrëÊåÕ•I”SWš{®É©+Í(×äÓ•™ø3s õšÅ«CÒ“zÀâ5Ô¯e®£Ú¿x=íÛşѾ]¼BäŸë!úÁ+¼ÁWCÈ×Ö‡ìþÏMëq¼Åñ¼Í×BäXàë2Ü}2Ü:Ö¡9¦K]~Æz4·t©OsK—ü‚÷SoîÒù7±¿dcnfªÝ]¤šÜ¥)Õä.q«¬ø¯¬Xɺ™µÜ¥9ÕÔ.-|´ôú[ß…„ª‹BôÄ!<9?„ËÿX/¶nÄ46æ6áR>ÈelÊåÔ/rÌÿ‹³‡0™CYšÏ² ŸcYc9çÝ|žå9‚æÿÅ#©¦-N¥¼¾xåõÅ£)¯/~òúâ)¯/~‰ÕC Yácóú Yácóú Yácuú„Œð±yý„ºý±C͸$w-™GYp‰¹bãåi_‹W(go¼Ê{yµy÷Ñþm_‡öo{sÉ%r‰3¸Ñ>n_öqûú®Ë”KdçK2åÙù’L¹Äl´ÉþnoFÙd·—Û6™QÚ›Q.ÉšKdêK²æ™ú’¬¹ÄÜd¿·ÀZæ\âo²ïÛ7²–=—,µ¶ÿÛËt—œ¿KÎÞ%çî’3wé€÷—ùXîc…•>V…„/‡è-³æƒWø¯Ræ¿ ³.ZÆßéÌ_ðõ‹V„„­fÙÑfÙ­fÙÑfú1öo>ßCmIZÿ.¿¢¶¨[ˆ=•3‰‘}C$»ßud?Îmvu&ûbŸó˜Ï‰ñq&±;3°3ò fâ“Ì̧̞˜•½˜æø'²‡„¬úòW©/¥?÷¬b…÷³.݃frBij+¹ÍÇ·ÖòBÄ3|ïß©¢W¾wŽöU3ù!R‡òCÄ3m&7D̘Í䆈gÙLnˆ4 Üñ̲l÷Zvˆxni2QOy>MêY›²OÏûBbñ!¶Oï(Þ1Ä~Ó;Šw¢ŒU¼3˜BÙ©xÊLÅ»RF*î>þ&ów¯~“uŠ»W¿É2ÅÝ«ß2ѽúMn.î^ý¦–w¯~ËJ÷ê·lt¯~ËN÷ê·!t\© !råÓ]nfí¸Úú¢õ|k™÷ÊVs}ëæÔŽkiNí¸Žÿy¡÷Í®×[›I;~F³h´Xˆ<«î”7ßæjìµÚS~ÕžòæÙ{|¿Ò­ÕžòæÙqú\¡ƒ!aŸ39Õ™ÜçLNÕTÇé{…Y;›SÍqú_¡?¨ÿú“ú_¡ÃÞ—µ¦ö´Ö ýE}°Ðꃅþæ§<êóä°©OY냅Բ}r×T9kÜëcÖò×TYkŸü5õiÊ^Så¬}²ËTµ¿õÇ!)Iæm=‡2oë¹lÉylÅOØ:$ÔrÿΚ¿j¹gï§ûtÖÜUK-=k†žUCk©¡gÝŸ%Ï„hO÷sÉ ºÊ_û7ò%ªíK»®ö,Ñ#{ª=KôÈžjÏ=²§Ú³Dì©ö,Ñ#{ª=KôÈžjÎ=²§š³DoôkG–èO©-KôƧԖ%zãSjȽñ)µc‰Þø”š±Do|JÏ\¢7>¥g.ÑŸÒ3—¼L=sÉXê™K^a¾Ê¬ÇlÏì|9ø:srsq"åÀ%“˜‡o0/'SÆ*jßïµï‹Ú÷{íû¢öý^û¾¨}¿×¾/jßïµï‹Ú÷{íû¢öý^û¾¨}¿×¾/jßïµï‹Ú÷{íû¢öý^û¾¨}¿7Õˆ½9ù4s±s³/ó°ó²?ã?Ïæç@à34#Ä‚!qÏÕ4Ñܺç·ð:¿â ~͛ܪ]Ô‹ôƒlÎË2¿w#óÍât×ôÖrõ}¨#‹/Y/ Oûï”3ïnb‡/°9/²ÓÙ’—ØŠÿ±5í¹2Ú=gCâóÝBR÷èùÇhÆž»Üu=?ù¦k»æ~=ßY\»^¸bµdù¡2K†7eö5®ýçÚû¼Ìx¾7˼pÅëCâp}£²¹i¸ÞQ¹›ïág¾Êk³Ópª²ÙiíÑ4ð]þÃ÷xŒ³yœïó?àI§|œ¶þÐÇG>> 3…èOæ‚™éç(˜…~ŽÇn…pQ?-±1$–™b˜kf~¢—±Éóúc¯ËrËq.ïæ<–ç'¬@uïáŠt^–…f:¯W¦óúp:¯«ƒ3ׇÕÁûkÏ=2Ó¹}XÝËm†›)ÿ<\ÃëÎ>R¬å ‡ÍR3å ‡e†û÷ûøÝ×™ýör].zø®à½\ÉÚ\Åû¸šu¸†u¹–úM_9ºøO”£‹ï !þ÷ík~i-OßMyºøÊÓÅ ­‡‡XRîž–õnê½OCýµõó®çáæu]ÿ»©ß¶i/Dþvg»g»‡³ï¡Ùà³Áßîåìòš•Úú·û9ÛýûÛýœíþýí~Îvÿþv?gë™ùß±ò6凔óÄfü˜êhþ9l¡g:Ûùçz­–æŸGµ4ÿ'lÍOùpÓÌDeXÏ·nc­g”9h½ÀÚ<™!§ü‹Øž‹ùÓø(—°—²#—±“ï£Ç”9d½ÜÚÌœS\×kÊüa½Òº WÑ~Ï¿šÝ¸†öz~¹r‡½ž_®ÜÑzØŽ!2É<×È<7É<×ÈÏ>É<×ÈÞ­ÿy»ÕîIæºFþìIæºFþ¬IæºFúÚ$s]#}m’¹®‘~6É\×È=Ÿd®k¤ŸM2×5ÒÏ&™çéc“Ìsô¯I%|”ôQÊG²Ò®ÛÇìáFöo#{¶Ñ’9õTˆÎ9Ë^”uNõæ¹Ú áØ맭ϳeƒS})œêG=ûT^âêY§R>>¥‡ÍÑ£Néasô¨SzÖ¿ç)=kŽuJÏš£GÒ³æèQ§ô¬9zÔ)=kŽuJÏšëøžÒ³æêQ§ô¬¹zÔ)=k®uJÏšk'šQNé[sõ…+êÄryýо¼üyÙ/1Äz,b”æÖ‘jYvµld{ʳ‹b®ËÍ#±žfd½„¸”¹Œ™¸œ™)ç.ÊBÃçÈG}Ýtë¬Öòò¢l\ÍìT/å ¹('e¤øï$û ë\Öë™›Ÿ170/í‡ø%ûÛTO²Ïdg¾ãý|ÞÿÂZ]É>‹]ø.»2ž«ó{ÿÖݬÕÉE¬å†ø'%ûû|œö\ü¿“’ýCïßá}CFü¿—’ý#ë‚Ö_²7³0·°¿bQ~ÍbTGŠýèõ^û¨vÛáuq¯¿e š•ä÷,ŘL¹¸OÓt×9>ÄólF½­Osê}ZPÎüØÏ_ÓÏŸõ1¯ý5õˆ>-½§ßõiÅÿ\÷;ÕÔ‡ú´¶¾ßb×ÿä½<,Ó›“×öú¯¸î`Hzæ-¢yfÝœ ûª‰ùiÝŸÖ3¬e &æ§u‡­ßæ_œÉ#|‡sõµgôµuúÚ3úÚ:}í}m¾öŒ¾¶N_{ÆÏ¼î$ýŒëNñ#êoÏ|Ì3œÃ³œËiÞ¼îû¬ÒÓ®û>«ä¾-=CtÄ©ÙÐ!DdG !Á^|M_*2($üñjˆÍ¬Äq¬ìz5×SO,2Äõñ®Wák¬Ê×YúæLsñYƒ“X“o°'óN὜ÊÚ|“÷ñ-Öá4Ö wž Ñ_Çð,_!þßtM·÷ïü×z,Ïñ×;ºþ¶õyëWyãx‘㽯&§;ÝõÓtgàÎt×_ã%¾Îÿ8æÌ_'†p‡ŸùNóꯓ|º>ËÚÜúëÖ]¬ßµ¾f=Ùçú½î¼îõ¯ÍñÝ»zß9ºó†kS]ó{ÞyÓk5ã¿«üýõ-¯Í…wø]#?„èg¸ù#;q;s'Sø»p»r7»qãÏ|œ{Ù¿Ðܳ¨¾sbNYÔ€æ“E÷Ó\²¨!óž`#ždcÆÿ æ”O‡ðÒ÷æoY菱™Û)ßÝéÞ¼ô£×æäÍÎùfg|óW¾Fî!óŽ0‹¿d>Ë—;™?ÑŒøÒ.æänæâÊ/ýÌxa/Õ€ ¿„P@?‘½¢;š„ÿw¨Ë_QÙ2AþŠÊ– òWT¶L¿¢²e( ïÈ`Qù2!¿g!_&ä÷,dË„üž…l™ß³-Ãcïø3~µþŸõÃÜÈ6ÜĶü’í¸™í¹…ð+>ʯ©äßJõ ÿ7Tòo£zðÝ–ÓÎÚ˜þüšBâÖy!i´¬¸õöà§|‚óù$°gH¬$W•#²Äÿ^š=V~4í±òÎP%sl%3l%Ùâ¨Ìyô3ô½DÑð ÙûV š½o•¤ÙûV)š½o%Óì}«4ÍÞ·ÊÐì}«,§°§òn¾Éò|‹89•Bè­¶\ÿêíõí®Ïp½2ߦ¾óàLê;¾C}çÁYÔw|—ú΃ïQ p6íóß§³X¡Lˆœö5óŠË|j×i_7OÆ=íëæÉ¹¯WÑûײ ×±*׳?cun` ~Κü‚µø?ÞCY©¾Z·»պݭ]¿×u½÷õÚü’÷q3ëp ëR6Êal³GrØ#Ûì‘öÈ69s”ûW#?Ý¿èþÕ¸#„:êðÎæÌÊ®»Ÿ5Ì„uÔÜ-éçØéç¨ãçØioÖQswš{꨹;Í;uÔÜm©æî”kGy5 Y›ávÆÿ\Ï£†ú5Êý¯Q„î¢ÞÏç}E N~>ÊÔ›ëø™vÊ£<ŸŬý,;åÏQîy;é~׸K 7OŒrÏk‰  ±ÿä¶Í(·5hN¹­A Êmïö ‘JòLƒ–Ö²ZƒVü­)£5x˜f„¯ôÏT?óWúgªŸ­ùO!ü‘ÃZM•±¿ÒGSeç¯ôÑT?ãWúhªŸí+}4U6þJM•‰¿ÒGSeâ¯ôÑT}¶ý9µKŸ/Ô#„>ške¥>ñ’œûöç½?…8•ù&Ó©ÏzÂëK^› ÚÿGµ®Ð“!á€ßwÚú}§]¤ßwšYh‘=û„½¸Èž}¢”þáwZô×É!ô•Ñn õ¾rXG½/ÇPê}9ž¥Þ—ã9ê}9†QïË1œz_³LG½/Çê}9FRïË‘J½/Ç(ê}9FSïËñõ¾/RïËñõ¾òXÇ¿ù2Rëø_á1Ê_Sþêx‚ãCÂ3JC3Ê3JC3Ê3JÃÏiiøÍ ÍÜ£ æ†i®hh®xN¿ËäÏž`®hh®˜`®h¸Ùuý/Ó˜Šñº‘×òáséç™`æh(L0s4t®&˜9š9&˜9n¥y£¡yc‚y£á6š5š5&˜5ê Ì Õü f†rÏEsñ¢…4/ZÄ\Ì’Lc)šƒ/&s)ÍÉ‹–± —³,W°Wòn®by®fš“/V¤ús±ÕŸ‹êÑ"õç¢z´Hý¹¨-R.ªG‹ÔŸ‹êQüŸmî _ž”.ªK‹Ô¡‹êÒ¢T—©;Õ¥EêÎEuh‘ºsQZ´Å×é‹'÷Z«G‹¾¢z´èkªG‹¶²¿a}š‘/6à·f =èF?êA7úSº¡5ÞÊü†Ï„ð^ù©Ü×z›õ ë Örá{ÙŸ•ÿºo½?˜ßq¿çPþÀg¹ÏñGãšÑïäó”oÈŠwùØícgäÆH©>Fù"ã> ÑúzÀ¸Y–sXŽsy7çQ_:àÜL·¿87Óí§ÎÍtûû€s3Ýþ>àÜL·¿87ÓíïÎÍtóÄçfºyâ€s3Ý‘ÎÍôItn¦¿Açfúd:7ÓÍ ãåá"jóxy¸H.×£éjÉçhºZrÀ9šþOÒ9pŠÓyšæ¡ghþ9p–fË2•CìÐ>Váo¬Êý¬ÆßYXƒY“‡X‹„Ä=BRAYÿÃk!R£6¯ó>ןp= ŸdVöd6>ÅììE¢GoÊ=ž¦^“UöìÑÇëÜìË<ìǼìÏ|ÀüÈ|†wp †„æ—lñ¿#Ü`mŽÉÿû1æÓ[Y…ö\ߪ´×úV£™µouª}kp(kòYÖâs” n©•ÌCÙâÏæ^ëáô{ßzžòé­”Kod]¦²G±>ã—Ê•-þ÷sXÇÿN•y*Ûaš§²ýÅ&<âýû½ÿ"2þw­ šÚáAïÿͦ<êz#×ã‡J~½ÿ{Q²ê­øßƒzñ¿×¤of3ÏuÐG²s½©ëñ¿ç¤Ÿd;nýµ½ÙA_ÉvÂZ޽evÐG³´–nÙ«ôÓl§ô2Ù²ƒžší´÷Zxoeˆ[ñ¿“$CÜŠÿÝ"½6Û¶áY¶å¿lÇslÏó>_Ö¸%»õ•5nÅÿÒ#®_°–9nÙï}eŽ[ñ¿‹ô¨ë­ÛY›û¶güï$up=y‰ø;ó2Sx…]xUN-'åà tŽº¹ÇçÝãnîñy÷¸›{|^¯èæžžwO»¹§çÝÓnîéy÷´›{zþUº‡çÇѽ;?žîÙù×è^w¯ôÂè6û¹›ûsÞýéæþœwº¹?çeÖn~ïó~ïn~ïó2C7¿ïyÙ@ïŒnËÍ1Ì×)cusÎO¥ßÿ¼ß¿›ßÿ¼ÌÐM~9?²Õyy¡›lu^ïÖ‘jv·N4ËtëLs›Ý&“uK±žÅ.4¿éÉÑm2Z·®Öæ8½9ºMVëÖÍz6£yN¯Žn“ݺ=nýÍçÍuzwt›³—CîßVˆrÿ¶Â”û·19Ýä¢óf¿f€mEiØVŒf€mwÒ °í.ʰۊS†Ýf†È!Ãn3CäY·™!r¨k9äÍmzè¶Ò!qÃØ4¤_a]¾ÊzÇú4ói@3ïûiæÒfÞ!ÐÌ;Äl¼aÓÜ;¤ 'óANaSNåC|“Íø›s[p:[†Èχè¤~<Êþü‡xŒyœÏðñ$‡„Uf⾋i&î›F3qß%4÷]Ê \ÆŒ\ÎL\ÁÌ”÷FÉ9ͨ«²X¯bV®f6®ñ¾ü‘Óù%ä<íºù®ïZk9$çÊ!9ÏRÉù/åœç(‡ätVãï"§º*‡¯[Çœ\O3`_™m•ìÖWf[%»õ•ÙVÉn}eŽŒzgtfHúbßáÈͺ!$}-¿fýœòkÖ/øAHÌ$'l–2É ›„ðæs!’¼ÚZ^ØìÞõþ=Dï|‚ø$Rîï}ˆOñöâŸìÍÃ|š±O5ôïÌ%5Ôï~Äõ¾!g3çkÏîN¹£†úüÝ<Ì»Bb1õä—ª'¿$R=ù%Ê®Œ±“ø3ðqfdwfbfæÔ‹=I}±XOê‹Y†…ØWwr8ýyYž§™'Ë– |òUIÊ(_•¢œò•œÿæî^÷æ‡ô»eþÅ{£½ç\dyeø"Ëò%–ãÞÍ—YžcY¯PÞëÞÖqoǺ·uz†Pïîv¹wõʳ¯ëîu§¬+X»Wõ*Ò>ëÞ×ée­ïî²ßÇzuz[ë»»ôÝzúî.û~¬gRçikýw—ý?Ö³©Ó‡žEø÷÷ êø¾¹ì¿±ÎPù¯ž½k°µ³TǾ¨§WïbíLÕ±/Æ:Suôôzz÷®¡ÖÎVø÷v¶êèíõôò]ÏZŸ²Öãëéé»ì­±§­õúzzû®aÖg¬ãŸw–ñ÷ÿeüú9çy>Ï Á‹Ét¦†Èí¥!ºNè¬Þqýö2ëû¸œu¸‚u¹’rAgáLüëVYË];3Êzµµ|ÐÙµ3£éõ™\_ãúý\K=«³þuæEëuÖæœÛëiƹýÍ8·7° ?çƒ!²Øœð„¹a±9á sÃbsÂæ†Åæ„'Ì ‹Í OÄÿûÀCtú%>Ãÿ8ˆ—9˜fèƒCx•C)û|–²ßÁçxƒÃx“Ãy‹Ïó6Õí)´µ'ŽznÕ‚¦2£˜H}zFÔçÙ3G홃úõŒõÕIÔ'gdð¾=tT†kkµ?ê›32Rßœ‘)„¼y­çÍÈL=nFêm3²R/›‘z׌ìÔ»fä Þ5#'õ®zx[{í¨½vPßš‘ÛÚ;jÔ¿fä¡þ5#/õ¯zk^Ù-Q†hkϵ—êg3òS?›Q€úÙ =´­=xÔ;¨¯Í(Èi,D½mFaÎ`‘pÏ÷!úïüO†Ä•/„$™5q勬Η(7¯Ú|™µ¨/ʬ‰+õÅxV]^*DÇ¿^ŒgÖåÉÖÎ÷òÒtž—›w÷ò¾¾ϲËÍ=ßåæžÆÎërsOcu`¹Y­±s:³Hˆ¶žË¢œÇbü„wòSš…[ϧY¸õ‚îÿ2„Ÿí™fâÖ ­Íæ{ƒµÙ¸õ"ksæ^{a¦¹µ^6So­gÍ4#·Ö³fš‘[ëU3ÍÈ­—ùBóèLsrkýj¦9¹õІ8#Iÿ£3‘´1$ŒØbU‡ÓŒWõy>ä%ïo²þÅ:þ÷¾e*÷QVÏPÅk³]Uy}„Ù®ê !ñòó!iÙÃÁ6ɶLe;Žb{Žæ#ôœ–=JÏiYzNËä²Mï‡H{3ÕeÏkY'z^Ë:ÓóZ–BÏkYzN˺†Ä‘µCRÕ¿y²ÿa]c=g}ž`žäý<"‡õÌYêùau}–^yX]Ÿ¥WVÇg镇ÕíYzåaõz–^yX}ž¥V—gy·ÕåYòÌauy–:XMžeo¢çÝÔóšèy7õ¼&zÞM=¯‰žwSÏk¢çÝÔóšèy7õ¼SCÒ\Ïí 3Å~®¶öU[}è”yòÔÞ[îÃ3ÌQ)$þ’âÿ¼Çµ®õ‹Ö]¬õ›¯»z]‘ÝÿÜÇX™³ »³*ͦ³“¿Í¢³“¿Í¢³“¿Í¢³“¿Í¢³“¿Í¢³Õÿ ýY/Y›Ig;/ÔÓÖc¬Í¦³— êj뗭ͧ³Í¸›OgË›OgË›OgË·…¤\ƒø-ó;ß{=ćº±ï±r”óv§¹¬M¹üY¡~ëÏmüþþŒÈ¾Þ7§µñûû³"ûž°6§Ýmv 7$ßA¹!Yþ 7$Ëßä†dù{€Ü¬† ’eîrC²Ì=@FH–¹ÈÉw…0ð­IØe-+$ËÞd…dÙûãB¬ónçPþÈg¹ƒÏq'ÍÄÿD³°d „wY›‰å „w{=‚ÎbggíéCì.sÖ€ÿ…Hä†õëFœKóVáö^Ïóº ?¡™kÀFŸ{ÓúS릜χ¸€Í¸Í¹ˆ-¸˜-™ÆV\ÂÖ\J3WáG¼^æu.g[®`;®¤Ÿá¹[4‹çiFºpf£ 9›é4]¸D³Ð¤Ñ!r—¼;I ºë®ÿçú‡ÖjÑ]jÑ…ËÖæŸ Wø1¯r¯qnHÜbÿìÔI³›I¶¬ôºWQ.Þ²šÎÞ–5“†ØÆ|†wp r0 …0õ;¹Ð™Lb]Øú{kg3i¨µ¹lêÖÎhÒ³ÖEù‹¹¾Ýug6ÉþÚ(OýÑZ^M²Ï6ʧIöÙFù4É>ÛÿïUéµ½¶±¤ º9Dnõ Ñ5fˆÎúá3jÔ|ÜÙ|yæQï=å½sìÅóìÍ |šÙ‡éìKäV?Ê ·úS¹5€2È-e rKFY#ƒÜ’QÖÈ ·d”52È-e rKFY#ƒÜ’QÖè?·dcOä–Œ²V¿¹%£¬•=nÉ(ke[2ÊÚ(e“µ2Ç-Ùd­ÌqK6Y›²ÉZã–L²6e’µòÅ-™d­|qKY+_Ü’AÖÊ·Æú=Öf÷‘#$=’Þ_É¿h¦ºömˆ®lÇïØžúýÊG¨ß¯t¿®mgþHý£“¬sZ¦í$—œ–e£2R'™ä´Úrm‡ÏéÄ4ów’AN?Bþ{]ûÉ5sþÚ^ïòÚìßI9-ƒ\Ûmmö爛Fõï´¼{mëÝø3s]<í\çWÿ® IËÍËWÒ¼|åš—¯ bÓ*ÞðqÓÇ-·C0$^콇¼ŽøH yåóíúíc²ûcrÜ…¥≯yåôízo^ù|û !˜ãc®µ|¾ýEÊçÛÕêyÎAW™eÞZöæ:ª¡eçùø$$¶ü$$E[óSêÝ-çSïn¹€zwË…lB–ý^/òº}³ÕÜ* ­[ëã-Ó¨·\B}¼åRvä2êß-Û¨þÝÒ¹¦„„|2÷jO>™ûGµ'ßT{òýs#ÛØ‹í‡ZLã=\B÷=¿çw˱Ösºe~X+‹åïìµb­¹"Š×戵æˆ[戵õh~X[?$¾þ_Hj¨–¼~™óx…îÃëWù)¯q>¯soø¸éµûÐpQH,ñnˆíWwJ¼G϶Äl6 Á:±Äû^{¾%>`S~ȇø›Q]ßßœêùþTÏ÷·¤Z¾¿UˆŒŸ¢ ôüñs)KŽŸGYrü'¬ÀOiþ?Ÿ•¸€•¹U¸ˆUé¾5pê »åîñî_ƒêtÿÔ {× &Ý»îïx÷­û;Þ=kàŒwÏØÇõ~ñõù¬Ý»îq½_­Õ¨zû(§7ƒ5p¿ëýf-¯×ÛO9}¼¬{?Þ ÖÀ½oöj`N«÷»÷å÷ñf°æµz¬ÕÜzæóÝjm=óùî¢Þ7›5kÆÛ' dŽñöIYc¼}Ò@ÆoŸ40»·O¸÷=ÍAWôÇÎÂéWè œ~•ÎÀéq4£žO3êé×Bˆ¥ymN=ý:Í©§'Мzz"Í©§'ñßð½c¾wcëÿ¬'ó2§ð §ò*ßä5¾ÅëœÆœÎ›œÁ[|›·93$(;ÑÓï0B=´fõК‰|ÏŸ›äÏÕßkF­g[›å®o×¶‡ÏëQ³ÌÈ_µ¶—ÏÛ˵íåóörm{ù¼½\Û^>ߊrÉyu¥¶b¾K"÷Çÿ; #ÿï~¤rGñsÊ5÷Ë5irÍýf«4y&þÏ.¤™¡îßÄ14Û¥½L3]š~Ÿåf˶U“e?W²Ÿ+IîÙøqoê½ÉÎÇ›zoòý®ËAçPÚ8×u½8¹¡õuk5,é=»¤›TÃ’nQ KºM5ÌÖ‰mT¯3D¨†eH`üG•Gúɰ«dß~%)ûö+EÙ·_2eß~¥Cµ5DrE­eß~eBˆÿ»;ît&VÉÀýÊr ËñeÞͱ,ÏWX¯²"ÇQ“»Ó™½Ó^^5Þº2_£¹ä€ùpº=tÀ|8Ý:`>œn0N·‡˜§{ÎÌ…Óí¡æÂéöÐsát{耹pº=tÀ\8Ý:`NŸnO{èÀk´‡¼NýèÀÚC&ÒÁi|’ÓÙ“3øTHT2cçÝ÷ûÜ÷óîû}îûùÅάRq†u¢u£\BIç쾘×z|ÉøYëèóÞv-ɵeÌ@ûÿ¾Œ\ÁL”“’î ±ÿ™¡’Šó{ûéó)u_ðºë%\—•2d Iñ?\†¬T3d£Ú˜!;ÕÆ 9x>$öm’ŠŸažåƒü—My.$3O˜æéåµcæésÒ<ýa®P¦HˆZÁ¢\Éb\Å;¹šwq ‹s-KpKr=Kñ3&sKós–á,KóC™r47”¹››Xž_²7³"·°¿be~÷Õ ISc¬Eóù¾{h>ßw/ÍûjÓ °ï>ÊþûêPÖßW—êÄ>¿ÿÔlôûOuöùý§ºûüþSs†Ðçõn~Ú›ó3Ëv}&XljüÞusfy¯Ï$ë¬Íÿñ oû'aOÊ~íŸb"{Ñùkß›1>Í$öaöeFöc&ö§ºßGÿº¹Ýz€uš…²d¥Y(K6š…²d÷y“}ÞÖf¢,9hÊ’“f ,žg{³O–Ü4ûdÉB!óJ¡G­Í>Yòr¸óN–|>ò‡Ä‹îËâq0Í"‡Ð 2q(Í Ÿ¥dâs4ƒLF3ÈÄá4ƒL|žf‰#¸’#¹Š©\Mókö³!雟BâÑ”¤f?œÀÅL¤Zýp”K£:=û[=\íx8ÉÚ\Ö¡tˆe‹ÿ;XËp+Ë2þï^-Çm¼›jC‡òüŽÿw®Þ‚¹>¡CEëø¿{µ¼u_V`?VdïWò~üßÉZ™?Ú¼®âõVåNVãO¬Î]¬ÁݬÉ=¬ÅŸy÷ò^þÂÚü•÷1þï_­ÃßX—ñïj=þÎú´Oöx¾JZâÏwb„žïÄz¾Í{îeÔ3kù/ßá9Îây¾÷~’ÞðþÞïèý½ßÓû{`üýí4Wíý‘³¹ƒïÛ2ÍÞ^Þbžà·|’ß±§ûR;$þ¤î¼¥ºóZ,Dvÿ¢ä¹D3ÅîÃ^›ƒãÿ»ú_'¬ÿ²îÃ#4ßîþ›ýx”ý}ž¾ý×Ië¬X§YŸ¢¾ý×i×¹>Çù OpÍïÓ¼>aÍ(†òŒ=x³>ž áƒwC¤Úo!šøTHú¼>{±{ó~>͆ìÃØ—ØÙŸM8€r ›òʇ‡¤YŸñ7ð$?ç)~¡íRdÇ‹»9_í›§ö9Ó÷X»ß¦,sq/…ȆÁ!:ø ýN†zmŠÿ{,/È ÕŒ 2ÆB5れ±P͸ c,<B0gvû(DóÉ‘9Õùn{]–fß|fßnfß|fßnfß|fßnfß|fßnfß|fßnfß|•BB×7U£ë›ªÓõM5h&ÞT“fâMµh&ÞtÍÄ›î¥YxSmš…7ÝG³ð¦:4 oªK³ð¦z4 oªO³ð¦4oº?„”gC8+Ëd0ûnjH³î¦hÖÝdÍ`ÖÝÔØçy¦gWs×p8×òy®ãÊ:Ì›Ìy̼›dâ fÞMæ¹ fÞMæ¸ fÞM²`~5!e¤¯1¤¤Òü‘2Šæ”Ñ4¤¼@óGÊ‹4¤¼DóGÊš?R^¦ù#e,õÝ”W¨ï¦¼J}7eõÝ”ñÔwSÌÊg·Qÿ=«×¦èµg嘇þ¬š•"¿œÿ\rÆÙí”#ΪI)S¸ƒS¹“š³?ñ-îâ4îætîá þÌ·¹—3ù ßᯜÅ}|—¿Ñ||v?ÍÅg§špöÍÃgÒ|öÍ¿gÿ ™ê쟜C{0Å uö/Îã~¿i®9{”öÿÙ¸€Ç¸Ç©Vœ=AµàìIªgÕ€5àìiêgÏpÏr9ÿå žãJžç*^ ýqVO±?ΦÓþ8{‰öÇÙÿhæ¥r­Üû”géÞ§¨a­Üû”çèÞ§T¥{ŸRî}ŠÚÕʽO1£·rïSªÓ½O©A÷>¥&Ýû5©•{Ÿâ÷·rïSêнOy‘î}J]º÷)õèÞ§Ô§{ŸÒ€î}JCº÷)èÞ§4¦{Ÿb¶håÞ§4¥{ŸÒŒî}Jsº÷)-èÞ§¼D÷>¥%Ýû²•{ŸÒšî}Jº÷)méÞ§´ !,3uEH¨Û†æÍ©êïÔï­Ûúiç§}ý‘ŒþLÿéÏô/Ä´ë…ÙEørìñöwÿ¢Ö=¶Ç Øßìíöu{º€LÕÙìþÀšÝHû÷F˜Ýø‚f÷¾ä=\ÄŒüŠ÷r131™™)WvÎÂoxÍÖ³ÒlÝ9õ£ÎÙi¶îœƒfëÎf±ÌÖsÑg휛>oçûi¶îœ‡fëÎyi¶îœfëÎùi¶î\€fëÎi¶îüÍÖ¤Ùºs!?…=ÞègSˆŒz1Ä?ë³W¶ÇöW±®ký ëñëó ðòW6âa6æ6áQ6å16ãq6ç ¶àI¾Äߨ’Îwe{z¿\7ª•µsyËãÖÿmøÛò4ÛñO¶ç™wÓw¸DM/‡~ÍÚw¹ÄwqÓw¹Dm/—îlí;]â;¹é;]â;¹é;]â;YçÞôS³‡\ ‘¥­Ý£~¾ëuîQ?µ{È?®;ÿCþ¥ó?ä2ÿ!Wèü¹JçÈ5:ÿC®Óù"_åpþ‡üGçÈM:ÿœÓ!·¡yí¹8š×ž‹Ò¼ö\<ÍkÏ%0™Îã¯eïõrw n`Mnd-nbmþÈ:Ü̹…u¹•õ¸õ¹ ¸ƒ ¹“øs›p7›r›q/›s[p?_âÏlÉ_ØŠØš©¦E­ý‡Kó[Sgs–ù­©>4ËüÖ´*ÍoM«QVkú<×ò®cuªCMÕ¡YêPSuh–:ÔT¶ŠÈxUõÒƒi§šÔTMš¥&5•³ªêuÓ~‡ÚÔTÞª*ÇLû]jTS5j–ÕTšå>5uŸf¹OM宪rÞÁ´÷â~5u¿f¹_MݯYîWSù+Ë“!ú·³2ÿA:#ó ± ³!‹°‘ŸÆ~šXõSÌ3±Æ{é«N®ñúzk¼‡¾ÞÃ÷°Æ{èk¯¬ñ»ûÊ~µÌ€Çå¥ZfÀãrC-3àq¹©–ð¸¼öÿ¯èë½­ñÞúÚKk쥾²a-³áq9b=ÕמZcOõ•k™;ßkì­¾öÖ{+í¿3±ÆÞê++Ö2C7OÔÒƒŽËkìµ´ÿÞÄ{­¯½¶Æ^ëk¯­±×úÚkkìµ¾öÚ{­¯½¶Æ^ëk¯Ý”%–œ¡,±Ä|ö/åÏUÖZ¦XòWˆ¾ Ÿ¥êg/èg©úÙ úYªy³Èõ´T=í=-UO{AOKÕÓ^ÐÓRõ´ô´T=MäNHÕÓªëi©zZu=-UO«®§¥êiÕõ´T=­ºž–ª§U×ÓR¿¦Œ™ú eÌT¿¯ºŒ™º”2fê2ʘ©Ë)c¦~K3ueÌÔïBtmãëw/ÝÛ~™Ø”²¼Ï©nþYrމ®7s= ›ó>¶ l¿ä¼ç¶~É:[2;[1[3'ÛP^Û–¹ÙŽ÷³=ó„誤ë]ÑÜðpÚÿ†åcíá«B$Î<Ôc5o†¸“BBqªÇÖ·¬'[?É),Ë©,Ç$ÊR=ÖxþÐc-S]ÿÈõ§ø1e«ë\¿c=ÍZ¾ê19ƒ•8“Ïp+s6ŸåV ñYv…ØÖ¯¹›ßp—p/—r—q?—ógºÉB¬S5N¤,böÖ\þK|ˆLÌâk&ñ>ÚÿÏšÓI°Îjý1³q³s:spsr&sqss¶?o¾ÿ%f}¿õæá\æå'ÌÇOC|úÊ!¶ÞtµDˆÿj âÒšéçe⫉ÖËø0—»®_œغ¤õ·|„+XŠßñQ®di~ÏÇè~^}œîçÕ2t¯>A÷éê“tŸ®–å:¿yû|IërÖë­ÍÝç±.o½Oq#+ÐLrõiþÈŠÜÌJÜÂg¸••¹Ïr;Ý¿¯vð9êûW«ò'Vã.gݽ¸ú¼Ç»Cô›!6s'oñ§™åg¶õmë]LåîV©%õfZß±ÞûÜ¢Úslæ>F¸?DsÛ_{ž§ýµçÚ_{ªÓþÚSƒöמšœËZü„2NîOY‡óø"ç³.?£3”ûsÖç¦ý{Ù|¯%n[/´V‡3 aäÏ!’?[ˆ;^=$LIa ^bMþÃZü—µy™ux%D3ˈ›SFÜ|„2âæ£”7£Œ¸ù8eÄÍ'(#n>Iqóo”7Ÿ¢Œ¸ùwʈ›å˜Ì2âf9&³Œ¸ù4eÄÍ2ÌÖÕ!6ä-þÀ·¹†BÈÜÆãµ¿ÃuÈõÄ ÌÂM|—?r(7ó=ná0nåpʃ[eÁ­;¬ß÷3ÂL7è\ˆ/Û+„Š­CØãŒ :oÝ›óM^`ÏËê{fRNßãì ºèz_ëvÖ³­S¬ûY··žÃt]r½¿õËÖŸ°#?å+ÔGÒþwE{æ{Ý?^÷–u'ëϬÿµ~Ûú5ëÏ­/[ûnÒþwD{X_±~Ǻ‹õBë«ÖyƒxƒyƒC¼îu¯û‚]ù%»q‘çÿóü»ÖòО¯¬oZµîa½˜=™ìú-×ßãmsý ×Í]ƒdæ²2ó ™¹¬Ìmý¶uaëm,Âí,Ê,Æ,ΟX‚»øw3ÑÏÃïñcO­•3ý¢ù²„„ý+y¿wêúÑ'óeµ¶ ë•ù²y¼Úcý²°Y¸‘ŸÆ!nͳ!¡ÏV¡ì¯ŸD²ûÖ¾Ö˜öñµ&´¯5 ‘åf³njÏr³Y·Šü–þ®å+øLÙ墸 !ÔØÂ1=¸Æfðüwž¯Ì•|–ß³ Wñ9¯Ûéu÷X¯¶®ÊXÍu³Ã1½º†ùâØ½®¯qÝüWÃìp,÷0³ëk]ÁZ-;–Åzµ³^cŸõ}ÜϬ®¯w½†õÏÖök_˜Ýõ ®×´>`Ãz£u-ëƒÖökCÌåú&×k[ÿjÛúGë:Ü̹…jæÃúëÃzhÄL¸rÍ‚+—Ó,¸ò[šW® p¥×¾$^H¶6 ®4Û¾$^øÚÚL¸R~Iþ»ðµÙp¥¾1®Ôw"fÕúNÄl¸R߉˜ Wª¹³áJ}'b6\iÌÕÇcsáJ½'b\©÷D̃+埈yp¥ž1®Ôs"æÁ•[h\©çẼ+õ˜ˆyp¥sérHX8“W8‹W9›×8‡×9—7(Ÿ]úŸ†¸_ô¤1zÏ/zÒ÷íýê!’ç}Ö ~ÿ~MŽô¼^5f/õª1û˜ÈýԯƸoï×òºQÖ%­Ý¿÷k[`ýˆõ–âA>ÊC,Í_is˜æ±1Ghc«6$$Üzˆï2‘Cù0ßcIã#ÎR|Ÿ†¸á÷„„ŠK˜‘Ky/Ýëá™è^ÏL÷z¸žZѽ®§VüŽziE{c¸>ZQ–.STtO‡ËÝÓá2EE÷t¸LQÑ=.STtOZ§÷ûZ§÷ûÊéý¾†2Fz¿¯¡Œ‘Þïk(c¤÷ûÊéý¾†2Fz¿¯¡l‘Þïk([¤÷ûÊéý¾†2Ez¿¯¡,‘~Må*†°c@ˆôÏ‹Éç=äóbÓ]¯äú;Örz19½‡œ^Ì Wιß1•9ˆÏÒ¬ÔCþ-&¿÷ß‹Éï=ä÷bò{ù½˜üÞC~/ö óñSª«ÅÌpåªøó²CÖf¹ù™ëêÄŽw­°NûoCUµj­Æ[`­^ì0SõP¯‹™áz攋}I¹·˜í¨Yn²÷wÔ,7Ùï9jf›ìï=jV›ìï;j6›ìï9j6›<Œf²Éf²£f²Éf²£f²É#Bä˜2ÙÌ{Ìì5yÍ\“Í\ÇÌ\“G Ê}<6wM6w3wM–O;¿bÚc‡Òëüí±ÎÃhuÎR!S‹ŠÕ²6[?øhˆ´âs©smGQ}kûïãhªkmÇ0ÇR=k«÷æÒo˨U[¼§¶zp®œÔcsé»eê¸î=†ç]Óos©emõÛ\÷SÍ¥×–yÑk¼÷¶új.óI[}5—^[F}Ûb†l«¯æ2§´ÕWsp½žëã¬õ×\CÜ‚·BB;}z@|ˆd–Ǽm­?/ÀB|‡úò‚,âu ^'¯-d­?ˆYËm [³Ng]ÝÚymWÜ:½µZ>@Éìû d–á8ÇíJÐ9n÷ë]—é8Ïí 0ô‘Ì>ÿ€Lôø^3ûL|¯™e»Î{»‡é¼·+Bzûn€ï:³¼·ÀÙo÷G°GR-X0Š¥ù ¡à"G{ü8ǰŒk_y<Öã'<^ì'Ù¿`œkOr<ËҜҮåãvåCäW=g‚÷«^3ÁûnPÖ¼goýªçLÐs~Õs&ÔåVº Êy¾¯õ6ëúÜNY½Ay×ûYï°–ÓÃ!ºwMˆ2Gï]KsôÞu4Gï]OsôÞ T§:$‡ørz÷¡œž!+åô ²b9=ƒnÔV¶‡µ¼žAí#¯gÈ¢GO‡ØdYûèŸ\Á3üŽg)Óe>àñ_Ïs\Åó\Í¿ù/p /r-S¸Ž—¸žÿpÿåF^æ&^á¼JßõJýíÅ´¿çšõ^çVÞà6þÇí¼É!úïÎûrn¥Þñ£——ÒÇ×6‘Fzn–çzs6ß ÑsƒCìS3ù!tnÏéiŸ:·çô´OÛ&·Cì^ý:cªÇ©Î;Ô£géçýÿ×õá´ÇH“»®/ Ñ9CìíÝÌE÷$ùRˆï¤6%ÿC5(ù_ª5É—)›$_¡,’|•yÞsuùý¨üž¬Çwò$ëñôød=¾“=œ¬Çwâ2šW6™ÿ3šK6™ÿ3šK6éÍ%›ôÌÖæÙKÎoëqüÉusʦ:4ŸlÒ3âgxlFÙT—f’MúFF3È&³U®Û›?65 ycSÚLl]ÚemÎØd6Îh¾ØÔ˜jû&5.£Ú¾©)ÕôMfáŒjú&óF5}S þC^Ýhm¶º¤n´žH9£¿é%ªñ›ÌÀÕöM­KªÇêþ¦ö!n±ÙðUŸi±ÙðÕ†4¾ê³,6¾ê³,^LŸeq2}–Å_³YïèãYôñÅßXûL‹—ÐgzG?Ï¢Ÿ/^jí3,^FŸañršÛËÖ!<Íã·áwôþ¯d;~Ï´÷¶Š¼Öù\¼Úã—=Îáñwä¾¢:…ظ2!.UoýV2DŠÈ*©­õ³ñ¿Y?`=ɺ"'³§ðN¥œÛ̾8g5Ä)7sÏ©ïÍܧsîS3÷éœûÔÌ}:§¾7s?ιÍÜsîG3÷㜺rYÆþR–¾,c9“²õ—2óeÙúK™ù² ý¥Ì|Y†N;ŸÑËÑ_ÊÍ—åè/åæËrô—ó(G)/_–£¿üŒòó—ŸS~þrAˆ6û<Äd˜h³t~›-¤óÛì :¿Í¾¤óÛlÍü;bS.f3&³9¿¦ûW´—Çßxü—°%—²—±5—³ ¿e[® }uo¼ÇßyÜž+Ùßóe®bG®¦{Öì¾ê÷©AÍô¾Ì¨÷e~z_æÎÔû2w¡Þ—ùundÚ?›³‰Ýø#»s3{p {r+ßà6¦}žíLû=;¨Ö5S3÷ !Ù=©*ð'FL™)cIÊL¡ù9׿—òØÌžñQ®sí²Ç¥=–2>F™)ãã”™2–ᦗ,ÿ¼º›òÏ«{(ÿ¼ªÆ'Ë?¯ªé{x\Òãý|„?³ÕóäG)_ìbïÕáX¾Èq¬Ëñ¬Ç©G¥<6|ûxˆÔ²wL´VvL¢z°c2ÕƒS¨ì˜Ê¦^_ÆëíÛoŸ`o>I{vG’çÕûoeÎZÎÌ·2g-{wÇG®«;>f Êûï©;äý÷ÔŒòþ{jÆyÿ=õÞ>ŽÔ²×íãH­þ®Ëï©!;ä÷ÔshnØ1—í½®‚׽ŧù¶ëŸ¸®žìø”êÉŽyTOv̧z²ã3¾Jõð=µd‡zø^Ú÷¡¾§–ìPßs®w¨‡ï9×;ÔÃ÷œëêá{Îõõð=Ùq•:PO8#»ÌþÓZ®wÂZ†™}Æz®õIëÜÖg­Õìz¿YßoýóО_¥†×;e×Úù=“öî*5½ÞïÖù­ã3èŸ)HçøÌLûß›?HçøL!þËÂt~ÏážPïÔêýA=¡Þi.`Úûvî륽ß/˜ö>e´z2Ú*­^ÚûûŠÎÖªÅL{_ɼÀ¯™ö~Šú=W­ÍJõR¸„—¸”ÿpÕ—UËy™ß2í}­`ÚŸûŽ×¸’×ù=opÿãjÞä¼Å5¼ÍµLå:ÞázÞ冱ÅêT¯Wmbd”›Ï-LàVƸfŒUÛiž[µƒ¸“æ¸Uú}}sܪ]4Ç­ÚMsÜ*yµ¾b•ù¡¾ùa•ù¡¾ùa•ù¡¾ùa•>_ßü°ÊüP?;Í õÍ «Ì õsòsñWææaÞÏ#ÌãÌËcÌÇãÌÏ,@¦~AÊ.õà)>ÈßYˆÿcaþÁ"<Í¢ü“Åx†Åy–%øâ9&ò<æßLûwê]à#¼ÈRÔ“ê?J½¨¾^´ê>Æù8/³ ¯ð ^哼Ʋ¼Îr”mê§ý{ôþcÚ¿?ï&Óþ½y·(›­ºÍŠLe%Þá3¼K™lu >°:BõuŸc”UÏjLàó”Kë¿@9´~u¦g šáë×ä=¬ÅŒ4¬¾—u˜‰f€Õ™Y—YX÷ÑÆ[•êêêl”ýWgg#šKê7fN6a.ª§«sSÝ\}?›3å«Õyùó±%óS¶_]€êäê‚”ÝW?À¶|²ÕêBTW¦L¼ºåáÕEÙ‘Åø ‹S®Z]‚ø_c";óavaI¾ÎGØ•¥¨7®~”êàêÒ4¯~Œ=©ŸÔƒúD}}bµ>Q_ŸX­OÔ“úC}ýaµþP¿/Õûúêýjõ¾~ªçõÕóÕêyý·Y‘X‰æÓÕÏÐŒºº2Í|«Ÿå`Vá>ÇwY•CYïñyã Îê|Ÿ58‚59’µ8еùAy†…è5=#y õŒäA!îDz!áã,Ç! í"9[—·>iÝÓ:™oðë28ùíýüö}~{>¹×}H(í¾ä—Þ„„ò Ç/å—Œ§ òn¿bŒ~Ï»é˜Ìôüšø ïáfäRÞËeÌÄåÌÌo™…+x¿cVÊ8ïf£ŒónvÊ8ïæ ŒónNÊ8ïæâæ¦|óîý”o6¨±ÍâB|†b!¶!‹3=KÐyšÔ$Ä×RÇ&5¥:6©Õ±IÍ©ŽMjAulÒKTÇ&µ¤:6©Õ±I­©ŽMjCulR[ªc“ÚQ›ÔžêؤTÇ&½LulRGž ÑmuBÌw™iŽobÌ4Ç7±?fšá›Ø3ÍðMì™fø&jÂsf·ƒÎ÷Ls|µá93ÜAç|¦y¾‰ý2ÓßÄ~™iŽoR+ÄU/¥ý³F²à¥´¦H¼ô#åÀK›)^ÚBÂú^µ×ÿûÖ¾2ëV /m¥LxieÂKÛ)^ÚÁ'¸“Oò'–å.–£¬X¡<÷„è¨Hˆ=k¿}®W?-CŒŠ³þšQ~¢Ûe†we“í2û2É–epÏo¹LÏo¹Â%!|¢æ—K ÑX±Ì|•Yhn.v_cVvf6vav¾ÎìJõm¥™´§¼³ÒLÚóÓj:§Ç~ szLÿ^iFí)߬4£öœïºs{l-ÛcúùJ3kOyeå”WV>Hyee!Ê++ S^YY„òÊÊ¢”WV£ï`¥ ßsqˆVhþÑÛ‹¨÷Edü m­õøijK)Y±B;ëôlÏ !nh­ðÔ%Öæ?¬Cy~è‹”á‡Ö¥ìò¦ÏNySI'ƒ¼é=§“AÞ”AÒÝõºz^w•õy x yƒ(Û¼)«ˆqC[ßdÞbSÞf3¦²9ï°Óþþ—BB…´?×’¶b[3JŸ»B<}Þ ô9+ÄèsVHç<<bCd¹åîw-=~¹_ëa×K».kn{Œ²Ý¶Ç)kn3o‘éJÊ7ÍeóúBsYàüë!r­ˆO–³šËçõ‡æ2Áùn®¿åºÜÕ\68ßÝúmk½øÚêÅ×Þ¡^|m õâkƒèÞäÔ÷¯ öX?¾6„Îíµw©_JýøÚ{Ô¯ £ öšú}Ë9«Þ8ħʦ±{=VsR/RÍIM¡š“ê3¼¦ÆßÚb­ö¤ºÇÕÕžT÷¸ºÚ“êWW{R¯PíI•O_Ó n9£ÕÕ T÷²º”ê^VWƒRåÔ×ôˆ[Înuµ(õ?ªE©îeuµ(Õ½¬®¥º—ÕÕ¢T÷²ú+t/«¿J÷²z§oëÄUîeõÎt/«w¡{Yýu¦ý7ñº2!Dkí ±Èîç;ü™zS­_8ˆ8˜9„‡ø.åPæ{[²ôÙú”¥Ï6 ,}¶!eé³xÔŸ3‹œ‘K™EÎÈ(gí™9zÒYûeŽžtÖ~™£'µ_æèIgí“9zÒYûdŽžtÖ>™£'µOæèIgí“9zÒYûcŽžtÖþ˜£'µ?æèIgí‹9zÒYûbŽžtÖ¾˜ãܵ/æ8wgí‹9‡è,£iSÊM›Ñ\ÚTLûg÷ÅØè,óiSóó‘u!6éC®çnàDnä$nâdþÈ)ÜÌ©ÜÂ$nåGÜÆ¹Ó¸ƒÓ¹“3øgrgq7gsçp/ç†y§Çöä¤OhONú”öä¤y´''ͧ=9é3Ú““>§=9iíÉI iONú‚öä¤/iONZD{rÒW´''©çGN0™'©õú'ĽÇ^úY¢÷ØK?Kô{ég‰Þc¯«œËkôþz]§÷×뽿^ÿÑûëu“Þ_¯[ôþzݦ÷×+•Þ_¯;ôþzÝ¥÷7úÝ«ZŠC©¾·¯îýÏú=ëÒF3е«¢YbÚUÑ,±@íªh–X vU¬ãuýîq¾O3Rñc~äÊÿ„„vó_NãeNçÎàUÎä5ÎâuÎæ ÎáœË›ü„·ø)os^e©Ïç~Æ»ü<Ä-SÚ- LÚN&](“¶“IʤídÒ…2i;™t¡LÚN&](“¶“IʤídÒ…2i;™t¡LÚN&](“¶“IʤídÒ…2i;¿¡LÚnyˆôìâ‹›ùz¾Iµ¿gšùzö¥™¯g?šùzê3ÅÍ|=õ•âwCt\½{^^ð±ïòu}ëT6à6dÚë…˜HטúT¦ 7ñXo*‘Ócgnœó6®¹Ÿ®ËL/ÄûIð£/õßâK¿ÄŸÙ’¿°°5Òö´~wSëCÖmù+Ûñ0Ûó;ð(_æ1v Ñ1kB¬Úë\KõvŒó]Í|µ@F©(£ŒqΫu§s^­ój=éœW{ƒÎyµ^tΫõ¦s^íM:çÕúÐ9¯fÎZ`Žª¨oŒqÞ«õ£ó^­?÷joÑy¯–öûœ÷ji¯sÞ«é/cœ÷jC\öhˆß15„¶÷†ð¯9¸­¾ûǻžÄ~äzf×ÍÅme…Óþ;µ÷Ñ\Ü6+x]Ìëìíìæ„övvsÂŽéžÏæyór¼|›=ƒköyö{83D®Œñ_™¯|Hóñ• 4_™È|2ƒºe’Çfä+“iF¾2…=§\™êñëW’<~Ðc=áÊG ¡™l~^¹ò±µ¹ùÊ4š›¯L§¹ùÊ š›¯Ì¤¹ùÊ,š›¯Ì¦¹ùÊš›¯Ì¥¹ùÊ'47¿S!Ä—‘ ßyšêø;¹‘•hfzçþÈÊÜÌg¹…U¸•Ïq«r;«qŸçN¾ÀŸ¨Ç–ÙE=¶Ìnê­eôÜwôÖ2{©§–ÑkßÑKËì§Zægêe~¡ÞYæõÎ2zé;zgßé;zg™_Õ‹ßBÜ¢ü!áe³Í¢4Û,*H™kÑ”§=È­!¼ñbˆÄa]Ž q½Í‰æ7êYc}Žg~èy³eâ ë†Ö؈Ù˜“Sâkç;Þžìí³%šk{ûl‰æÚ|?yΙŸFg>^ îíó&šãòírÍùOûÿ÷~ÐO!×7øÙ¢'‡X’,v"™²Ø‰¯)‹ø†²Ø‰%”ÅN,¥,vbe±Ë9\O=íñ·¿Â÷öWÝ׬WXËe'¾£ ûH-Wz,Ÿ>RÛãï=þ€r[ÒhÊmIîÃ÷öeÝδ/ëvqý×ÇRÝIGu'ÉýxD?:¡ö$É'Ôœ¤ !î¾3!~ÛÛ<Ëü‹ïðÕ„ûÎsÿæ`^à^ä»LáP^â{ü‡Ãø/‡ó2ßçŽàUŽ q/ y6†×,örQ7¹ŸúØËÅ<¶÷^.N{ïå´÷^~ˆ2úË‰ÜæÏÉõ/?짤õv?iÿŒƒÚþeI¾ÄGØ’f•RoùQ÷þmeýhˆîb4ä86â)Êû~§,°ï”öýAY`ßiÊ*ûþ¤¬²ï e•}g)«ìû‹²Ê¾s4kï;Ï%!ºÚyóUÚ#ov a‰sñÂxk{åM÷{µ½òfgÚ+oºo«í•7õ‰ÕöÊ›úÄj{åM¹|µ}ò¦þ°ÚþxSXm¼©?¬¶7Þ|#ÄϦ8dzq5³ó:—SÖÐù›bÏwΦ¬£s6e=¯)è|MÙHçkŠóÜšâwv¦¸Ç™)îÁqgfŠ{pÜù˜b:®LÙNçbÊæNº·S~¢û:E­?îžNÙM÷tʺ§SöÒ=²îé”ý|˜?Ó=ò á–âÁ2ñøQ±4åc<ÌÇy$„3B¤™>œéµÛ¬6fêLµ1Sª™^§žö„Ìq>3eŽóúXGÿœÖ²Çùûh–=Ÿ•fÙóúVÇCžÏem¦=ŸfÚó9\W;oä¶6ÛžOûóæÚói¯3מO»n®=?͵çóÐ\{>/͵çóq8óó}àäH>ÀQT{žø€…8š…9†E8–E:Yð‰q£^z¾8õÒó%¨—žˆzéùDê£ç'ôÑó%©ž„zèùRêÜ´ððӜΊœÁJœÉg8‹•9›Ïr«p.Ÿã'¬ÊOYóø<çSP{£·š*/öþ̺ºõ›ÖrcïÏ­kpkr!kñ Öæ—¬ÃEt{ź\ÌzLf}~M9¤÷7lÈ%lÄ¥lÌelÂålÊoÙŒ+؜߱Wò%~Ï–\ÅV\ÍÖümB\^5t¿Ú™W ݯvæUC÷«yÕÐýzD çãŽúTÃù¸£§/•=^²Çë…({¼.“,•=^/B!]l-ƒ¼.›,•A^/æzOד­e‘׋[¿aýµµLòz ë^Öß°7—¸.£¼þõ›ÖK­?µN´îc½ÌzžõÃÖ²ãQ9}é|k™fég4¿/ýœêg~žÿÖzµY¨FëÖ ­ÍëK¿ 9}é—|œ‹hî^úŸàb>Éd–å×,Bâ‹!Zν¼Ø„îåŦ!|,•J°vO/ÊìåÜÓ‹r{9÷ô¢Ù8³™cóRš96/£™córš96K3ÇæÌÌ+y¿§Z¹yÕÊÍ«©Vnþjåæ5T+7¯ ÑýUCltúJÊ)%'ù™ìǬýŒ÷qÕûxÆÞºúí­«-C˜~_ˆ<šö¿»ÉÊ®ÛkW[Ñ^»ÚšöÚÕ6´×®¶¥½vµíµ«íi¯]í@{íêË´×®š¾3ÿö4¯~gþí©G}gþí©G}gþí©G}gþíùegòØ ÜSŸúÎ ÜSŸúÎ œö#ýÎ ÜSŸúÎ ÜSŸúÎ ÜSŸ:;'ÄæÚC?È8 fXϵ6gœý„öP˼!\´ÿÔ®5iÿ^C9ü¢ÏÚ2?ƒµlMÚ¿ç°€ukÊâÍI-åð‹m=¯Æ­Iû÷ÊâÛÉýöoKYüb{f¯QÿÖ¤ý»íû‹/[«ƒkÔÝupMÚ¿#Qm»Ø‘öÿÅWhß_|•öûÅN^§N®Iûw(Úç_³V/×äÑóêþ¼§©îÏ«Hu^%vå3ìÆÊìÎgÙƒUØ“Ïñ Ve/Vco>Ï7ùBˆÌíâ›_eO^ã¼Î^¼A3os3ï\3os3ï\3os3ï\3os3mÕ±!ÜIyù  ZU>;(ßÏÕ—š›…çêKÍåÛªº¾›róÁ=´Êûsõ©æw­í̓rÿ\ýªE ~Õ \Õ~=¸ŸròÁŸ)#ü…I<@sÜA=¯êÇ4ÌÕ×Z˜—«ÊÁÍSsõ·QksÛA3Õ\ý­E<õ· ®Ïp]¿­:“G]×ïZĬgY³Ö÷Z¤ý³Ó³­[ÛC-Òþê9Ö'8—'ù ã§<åuöT‹ Öó¬·¶‡Z¤ý3Öó­ÿgm¿´Hûg­?³þƒŸó4ðÏâîñ{¨EÚ?‡½Ðµ3ÖöR‹L´WZd¦=Ò"íŸÇþÂógéüüËu=¶EÚ?Ÿ½Èúœµ^ÛÂyž«×¶°«~åúy.æßLæ~Í‹T{¦p /ùszs {³êR브ÿr9/ÓÌtðŠ×éÛ-d‰ªf¤ƒWùÓö”>Þ"§µ™èàu~Ï\Å´½¥¿·ÈEý½Enêï-î÷¼éàMšƒ¦ý{”Ì?o{^ßo‘Çz­uÚÓÿ[˜±çêÿ-œíl_z<Õù¹E~?Îu6ßEUsÒÁ;!2g‰=÷—²—ñi.gE~ËJ\Ágø+s%Ÿå÷tÆæ7 ±ÖQ6f<›PÍŸß”16c:6gzÊõ­3P®o}åúÖ)Ï·¾—­©þÍoÃÌlË,lÇûØžYÙÙBtªœ^wZˆ».Ÿ&˧×åÓdùôº|šìŒ"…äÝërj²œz]NM–S¯Ë©Érêu95Ù™7Êëäáëòj²¼z]^M–W¯Ë«É)«&˪×eÕdYõº¬š,«^—U“eÙëex”OðŸäñ¿~°¿'Œ ‘¢;­S­õ€ø;ÔâïRp ~Ð"4§$ÄQýOˆRýOˆ§úŸ@{uÂ8ŸZ3aÏ«|×Xi®o°&ÿc-ÞdmÞbÞæ‹Le]Þ Ñ½fÄQòØŠwB¤¶³×¬8J[1ÐZžÙkfeÞ]1ÈZ®Ùkvõ¶ìbþÝk~%§îþ5$ŒÂ05î~óÀîÃÖf÷ÝGhvß}”f÷ÝÇhvß}œf÷Ý'hv_Õ=$ô6ë¬êA³Îªž4ë¬zƒfU½hÖYÕ›fUoR}ücˆdZ÷±6ó¬êK3Ϫ~4ó¬êO3Ϫ·hæYõ6Í<«Ð̳êšyV dQ¢ygÕ`šwV ¡\0x³ßoý®µ\0X¦Ìî° ÞJ=jð6êMƒ·3½× õ:¹xðë ÖïY›V £ùhÕpšV½OóѪ|4Äu|=$äóúLòíægCh­Ÿ¦ýûA2ɹ›ÍC™äÜͲė¿†ØËcBHþÛž/i}ØZÿO¾`ýˆõëq_FËëLpöÆ9sœ½qÎÜgoœlþþ ϧýygpœ³wÀçìpÇ9{œÁq%è Ž{ˆÎÞ8µå€³5ÎY:àL+Bý+É|ROnûB]­üÕÕÊOºn^©—ö¼y¥žþ–d^©§¿%™WêéoI·©¿%¥RKºCý-é.Í7"m¬žy¸ƒûÇ>è`~ÎctpÏóØÌÍyìƒæå<%h>Îct0çI¤y8ÏÃÔ“òx¯O<ÂVµõ ÷vë[®ëQy !´óXŸÊS*D¶$„øAúô–õ×-騿nIOýsKê›[¹Å=¤onqÏ9»[ܳASB\ê®ðm?îfîá[ÜË·¹B:DŠøþS÷[¿cý§µûú³õ@þÂA<ÀÁ<È!<Äw©ö;”jþ·j~ªšÿ­šŸªæ«æ§ªùߪù©jþ·#BôÊ´ûª'§ó ΠñÊLöæ,¾ÉÙìC3åW}i–üªÍ’_ù³ôÑ“öª{¾/"u½ö¤=ëÞFOÚ³îmô¤=ëÞFOÚ³îmôdiÞåc!æÞFO>N³ÍŒïC¤´³:cõΚùCÂÝÍ,À-,È­|€Ûø ·³w°0媚EøåÀ»òPM9ð®¼SS¼»‡òßݽ”ÿîÊ95å¿»û)ÿÝý™rßÝ_(÷Ý=@¹ï®1íwÊ~wQö»û+e¿»‡)ûÝ=¢•õÄkùé\^+@çòZA:—× syíA:× Ñy¼V˜Îãµ"t¯¥sx­ÃkÅé^+¢9¶‡„ŸÌð“ÕÇí­wX¿é½ùsìôØ÷Ÿã'ºW9콟ܫöÞOýCôŽ ²Âï¼#ƒ¬ð;ïÈ +Ô€Gúäg°Ÿ!~Þõ#G<ú^ˆ |"Ä?á~ |’«Y–?°×°<×ò)® ‘VíC|65§Uª-­^æIväo|…æÁV¯ÒØJ¾Ëfþk%¿eûƒò[6g¡•ü–Íh%¿e;Âcꪜi%Çe3Û=–j­÷µ’ç²ýem¦–#­äºlç¬ÍÐiù±•|—í<å»lút+ù.›þÜÊ<ŸM?nežÏ&/¶2Ïg“[™ç³É‹­ÌóÙäÅVæölòb+s{6u­•ù<›Ü÷±¼Ö Cˆf¶×àÖä\Öâ'¬ÍOY‡óø"ç³.?c½/Ç6ëÃòpl³>,Ç6ëÃòpl³~+Ç6ë·òplóø­Ò>$Ü03Ué@3S•—ifªÒ‘f¦*¯ÐÌTåUš™ªt¢™xú!òè6ަ3Så5×ÍPU:Ó U¥ ÍPUdŸÙÙ•9Ø9)ÞÈEÙðFnʆ7î§lx#eÃy)ÞÈGçà†sPÅ9¸áTqn8UœƒÎAçà†^ÿáó!¾úN¾ÀŸX»Xƒ»Y“{X‹{Y›ûX‡ûù"f]þBßiõ¬ÏƒlÀClH½öÃF<ÌÆ”i>lBYåæ<¢56:Ç]¹‰Ýø#»s3Õº[¨nÖØJu³Æ6ª›5œË»êf çñ®ºYÃY¼ÛG-ÓëKŸ±v&ï:“5œÉ»Îd gò®3YC?¸ûõƒ»²| ýàîêwõ"ë=Öî¤p7íÿî¬ÜL=à®óZdƒÇúÀ]ç¶ÈFõ‚»Îo‘Mëwߣ~pwõƒ»Ã©Ü}ŸúÁ]ý †àîHžä(þÆxŠ£ù;Ç„h}ÿÀÃÔ÷ȼdé²nYú€l[@–>ð(eé¥9’qç,ÃÑ|‚c(#˲Çr!L™"©§Æ[—ç‡|ŠXù4'±"'³§ðNee&ñY~Ä*ü˜²ûDý¯V¶ ‘JiÿþþÖœáº~X«f+Í•+ۇȋfËÓþ™)çt’ûuÄ9ä~qN'¹_GœÓIiÿ®N½áˆ³:é:«“ܯ#‹é~Iæàùtpˆoi^©v‡š3[ÈŽ¬&7z‰æ©C-™ŸÞÛ§Cü³M5¹ù¸ZA¶qý]×Óq(Óó=fà0ÞÃáÌÈ÷yoˆ[r5$t™Åkô™†?â+n‘?ÍÿY—[W±Þêñ·?ç±Yj´9¢ª9b´9¢j•ôª°¥µy¢ªyb´y¢ªybô¬Æ5|žkù×±:׳7°&7²7±vo ‘R‘-×,$\ Ê5 ű7¹gÝÂZ>øØœY*jý’uÚõ–L[·b¼h_—kí±ïxžÚ_^O›çý—××Ìó‘òCB´ïÙ+5™q Ïq*Ï3‰S(1÷GÊ¿k}Áúc^ä4¦p:/Ñ\TLžèûÇ3CäqŒŒø‹Œ8FFüEF##þ"#Ž‘‘ÇȈ¿ÈˆcdÄ_dÄ1S(×™J¹~Lï£÷Ü0Dªš?ÿ ÄÚ>B¦¤—á@ˆßðŠ™Ôú’ü˜á õ«Ö­X²îd]ÉZýhý åÇ ¿ºþZiÿÇ̼!òØK!Z§qˆÅÉgušP?iV{ÌÞ›iV{¬•ëM]×Wg°¶÷fšÕkãz3×õ×"¿ø‘ê4±¨üQ§ÝÇ:/Ñý©Ó’Q¿ÛþÙàLµ.ï½ô£ü}IÎ`m¨å=õØ^ÚP›öÒ†:^#›_’“3ØSôÍ]éBl¸ì·+=µ]¨íº‡²ß®Œ”ývÝKÙoW&Ê~»2SöÛ•…îÕ®û(ûíÊJÙoW6Ê~»²SöÛ•ƒ²ß®œôÙvåâAæ¦Ü·ë~Ê}»òPîÛ•—êÔ®|<¢#_ ±g³†PàPˆ3w'ÔíâÎüæL翜ÁËœÉ+t&Ï8›sf‡0Z¾)¨–Œ–k ¾ãº³:g¯s.oøùÏcÙbΧ!níúЯsCä­f¼µ¬»Pë÷ºëòW³ÝZ½¬_Wêeýº¹.å0+®ÕÓúu§žÖ¯õ´~=©§õ{#ĵ•“sn¡œœs+å䜾ûWͪÓlP@öyÕlP ¦{%®ÿ1„\>{ùpýfʇëýäÃõþŽ ¸Os»×þêqEw°ÝÃ¤Íæ=96i õ̤­Ô3“¶Q NÚN58iÕà¤Ô3“~¢ú›´‹êoÒnª¿I{¨_&í¥´ÎvÒ~åÏÔ#“~¡™t€jIÒAê‘I‡¨G&ýJ=2é0õȤ#Ô#“ŽRL:F=2é8ÇòÇñ$ÇÛçæ²ô>ãºí|†>súÊÜIõxÝOT‡×í¢¼n7«r«q/å¥uû(/­ÛOyiÝÏ”—ÖýByiÝÊKëÌ,­Ó;G5¬å¦uîKz¹iï<½Ü´î0å¦uG(7­;J¹iÝ1ÊMëŽSnZw‚rÓº“”›ÖýF¹iÝ)ÊMë~g3þÍù[ð4_âŸlÉ3lųlÍ¿|7K|7æ˜$yºž<´Œ/s9;†Èµ!>ù>ŽdVŽb6ÊÌÉÙ)3'ç Ìœœ“2sr.ÊÌɹ9ž÷óCæáª×&RN{3Äž_È[ü‚·ùeˆö²çÍYŸÎ ‘r¿[Û{‰r]/{/ÑÞìeï%öõü|ÏÿÏÚL´G{Ùƒ‰æâO?sýk{1ñ-ëÏ­Osÿ¤\XÎ\óé<ëuöj¢½ÜË^M´—{Ù«‰ê÷§_zÞ|óé"žsÝÞM´·{Ù»‰öv/{7ÑÞîeï&ÚÛ½ìÝD{»—½›ho÷²wíí^ön¢½ÝËÞM´·{Ù»‰ï‡ÈþÉ!~´ìQo^¿›ÇöO±–AêÍ·6—íŸj­ìO¢>°ÿ#Ê õ>ó¼ymÿÇÖpåùýÓi6Ý?ƒ…9“fÌ´ÿ»Ðïæºý³¬‹r6‹¹¾ÀußG½…<ãú׋s.Kð>ÄO™Èy|˜óY’Ÿñ~ÎR\@ùódñKºÂ÷eB¤n/>A÷ó‘&?é±{y²„×\çC¼á¹¦!ÚaRˆå‘';L¦Z,>Äå8âR's£:™ã8ÕÉ'¨Næ8É^ü½yŠfò¶=Bøw±õïÖ}ø?öåìÇÓÔsüI½.Çêé9Îr@ˆLVCk›±'«¡µÍØ“ÕÐÚfì!ÎBùÌ!Tü:„=fØ!ÎDù,t&Ê;+Cœ‰òÎÊg¢¼³2Ä™(ŸÝë¿ñz³îg£¼33ÄÙ(ïÌ q6Ê;3Cœòf»OôÆä)ý²¶§¹Ï¸©÷ëÉ3nù¹íñÓ~|Oµ[y>ž­™À6Œ±-Ó±Õ "zríö›]kw ÙµöËÌè9}ºvGͯµõÏ8ókíWýtòóšµ§ÇÝçµ»CÿqˆVËn ˦XO³VÓným=•˜äútׇp^zë¢k2ÕxsEaõîVŠõǼÄiÔ£—éÑ·ôèezô-=z™—;ĝׯÝOgä¥oC¸pÅ:µ3òÒ ë«Öy­? цX}Yè£F”…>’±êËBÉXõeÕdªú¾¯d¨ú¾¯d§ú±W=âSýÞêqô{«G9+„×ÔŽ[ßQö¾µÒõx×g3²Aõçz^n¸õ½µ šú eÐTﻺ š:2hê|Ê ©ÎîkjË­UÖ²hª³ùÚ@ëÕÖ2iêʤ© )“¦~áyYúÖÖ²iê—ÌÊE®ËÖ·ÖXg³þŠÙiÏWÏÁdÏ›Oo­µÎim¿¾fF½µÎ:—µýøš9õÖúòœsÍwºÄµ÷\Û`í;O]Jßuª9%–Ñcßsêræã·ÌÏ,ÀïXißÓLû>dÚç,Ä´ÏW˜?˜÷ÔšgЇèÔµ!V·»õYëü‹ñyžóo–ä>Bçî™Rtžžy”—hÞºÎßçÜ/üÇÚÜ;u½uOë­çe–áš§nðüÖW­ÍÁ›Ÿ±ø$/²,SBtÒ!V[¦[øŽ9u•õë®ôþkw ÑדÂ÷±3³² ³ñufgWæ`7ædwæbê“«õãÞúØù} ù1Ñœ<°1ÍÅ›pÕÉ¿|ÎO&Òçûd}ŽOÌUmÆ„XNŸ£ÍXšçÛŒc9ާ9~sÜÖý~H_ ‹·Ý@õ¦íFÊâm7Qoû#eñ¶›)‹·ÝBY¼­`,ÞV] ‹·5,ÅÛšÈâmwš“Ìk äñ¶?ù=2þ‚ü«1 Ð,PüFH8ñ e韆ôXˆ<ÜÓú¦õ<Þâ|Þ¦³Rø{S=þœw¸€wé|”—«.Ê?å媋òOy¹ê¢üS^®º(ÿ”—«.Ê?å媋òOy¹ê¢üS^®Jûoî¾¢OܰÇËËWòòUÚ{÷•>®/³–³Òþ¼¯È7ìûòòÖÅ ”·.^¤¼u1…òÖÅK”·.þCy+í¿ÅûŠyë†sR^îJûoò¾"›Üp^Ê»ßÕ±òmxÕuuæ†:óŠ:sc%Õ“ßS¸áü”oëuúé+êÄ ç¨|;ëëÖê u¡|{kóIùüÏuuᆺPþeë›ÖêÀ u |Gë[|…·]Wn¨å_µNe'Þák¼ËÎ!>%° #|qìJ³eùnÔ£Ëwg{P=-ß“éøÓ³3°7ïá›TO äïÃE(.Jùûp1Ê߇‹Sþ>lš 6 M¿›…&˜ó›™~yƒf¦_zq;{sÝÛ)„ÈCöjþÖrcþŸh¦É¿‹òbþÝ4ÓäßC3Mþ½”ó?݃)£ý=özþŸ­å¿ü¿PþË€ò_þƒ”ÿò¢ü7M~nø ¿¥^:mõÓißñ5®dg~Ï.\Å×¹š]CdíâßONZ›Ì²üšåø Ës ŸâRVà2Êk—Ó»ö[šc×®à3üŽ•¹’φPK¾8¸‘׿w½ Wñ9×7¹g½Úºªµ¹òDÔúëjÖ›­ã­×X?o½Å:Áz­õ Ö[­cÖ묫[o³NG3ç y¤Öf zqâª'd‘Z»x¯?·ÞŸ«a-oœÈd½Áº¦õëÌÖ­kqk»¾×uÌŒ߯7óE×÷¹.·ÔÚϬü™Ùø Í/fïø~u¹•õ¸õ¹ ¸ƒ ¹“ü¹þœì¶ö'ëÆÖf¼2ÜÚ]ÖM¸›M¹‡Í¸—͹-¸Ÿ/ñgªA^[Y6„Gõr³{¤©Üd·•²gÝV–!¹GˆT]¬~ ±veøŸp½§ëÉÖìÕüÃi¯|ÿ_ˆïõ.or(oñ=Þæ0¦r8ïÐ òý]Ž‘UFä^#) õEY¨—ó³Ê{ê5ZXì±üÓk åŸ^c)ÿôG¹§×xÊ=½>¤ÜÓkåž^)÷ôšDy§×dÊ9½¦PÎé%36z?$ÜS„#X”#YŒ£Xœ°Gó!Ža"ÇòaŽcIŽç#üòAßmªZÞ¥Õð.¾ÏTÙ¿ÑÏË ]ž²64šh]š“ø'S^È[Óã)—áT>Á$>ÉX–³\ˆûlAHhS )„¾½?D2ÛsoÿL{îí_hxûsxÝ^×Àú uNb.׿t½!±¿bc.f&³iéŸòøk›ñ6ç¶àR¾¢Ýä¢r@7y ¨úqÙܶèQšÛ•¦¹m‘þ{Ùܶèq.¤™íò´ÇšÉÜçÌ¥—¿´V./¢=vù+¦ý}êÔ"õè²:µH=º¬N-R.«S‹Ô£ËêÔ"õè˜þ2Y†;¦¿L–áŽé/“e¸cúËdî˜þ2Y†;¦¿LÖ?ÓëSëôÓôúÔº´µ?¿î_úóë.ÓŸ_§¦÷ç×Éÿéýùu×B\O¿ûŒòéwŸS>ýNžòéw>[¼<õÃ;”§~âÆŸ ÕÇòOŽãŽçY~È¿8ç8‘fžê“hÖ©>™fêSh¾©>5„~æ¿{ê[›oª'Ñ|Sý#šoªìysá= ¬Í9ÕÍ=ãÍ9ÕÍ=ã¯Ðü1þ*Íã¯q¯Ó¼1^fªnÞ/3UŸKY©º9c¼¬TÝœ1^VªnÎ/'U7gŒ—“ªæl«_½Ô¯ïÕ¯^êWMÍü¸ûÿ½úÕ«1Õ­^êÖ÷êV/¹òÙ•!áz~Ï—¹ŠCtüÆ«®ÏŽßD}vü4Ïg’mÇoöØymëŸ!tÂÍ!îY9ãz¦~wm¬kúM§qÔoò˜Û:÷X6íé|”“{ÊË%ääžòrÚ¿r…y²‡yz…y²‡yz…y²Gzš'{è_™.{l¦ìaž^a¦ì¡‡}ã|¿ƒÎõ ²þ 3f³õŠ4[¯x‰™i¶ï‘…føf‡føf‡zB³Ã } ‡ïw…>ÐÃßWòW?‡C¤Ÿúýèð*øv¶VÇUÇû©ãªãýÓþó¡#5÷›ö½çV~@Ï­â"ž[9†jüJßÇ÷μù'zRöOú²’9ä¤ìŸôeÿ¤Ó”ý“þ¤ìŸ$G­ªùNû. ‘ ÎåØJÖò÷Øgø‡ëË]wNÇV¶v_Æ>K9|l¦ýùç(‡­Ê¿Xò÷Øçyž/ðoV§¼=¶åí±5)o­Eõalmªcë0í}¼È´ß[—êÃØzTÆÖ§ú0¶¯³!åå±øÓ÷5¶ åã±My›Í(ßr.—9‡·œËeÎá-çr™sx˹\æÞr.—™eÆÏ ‘ÂG­ÏeÎã-çsÙ|×g¹~ÌÚ9]f¦¹Ç>¿å¬.S£n9«ËÔ¨[fšef±ç?·®dý޵š¾Æ÷SÓ×ø~bjúßOLM_ãû‰¤ï'ö}?±)«Ü9âW¼Ì_Ù‘‡ù ðUe'ãk<ÎÎ<Á.öZˆ­­Â®i2ßà×ìÅoØ›zg¬³×É·Þ´–õc]¬½— }¬—±/—³eþØëž÷7ô·–ýc]­½× oY›bݬÕ×Xwª¯±”A6¼íy³A¬§uCëÖf‚ØÖúƆw¬Í±^Örï†Ö«9ˆf‚Xo×ÕÞØ›”M6 vÝlëcÝÌzˆµÙ Ö׺¹µ|ÚÔlëgmvŽõ§Ù9öåâØÛ43ǰuýk„HƬI{8IH²/ëÉkõ&‡N-ç3ú.Ä]“’[RJnåºÏVh¥õ2ëÖ\Î6ü–m=ï³ÒK®­°ngí³2s_ûκ=õÄäÔ“_¦ž˜Ü‘«ù à«\ÃN\Ë׏޹ž]ü½¾³B¾³q¾³B?ÐwTh }7…Ìæ×6xÝëÜÈ®ÜÄnü‘ݹ™=¸…=iöM~ƒfßä^4û&÷¦Ù7ùMšy“ûÐ̛ܗfÞdÙ÷š™7Ù¹¼fæM~+Ä=,kR –µN©…ËZ§Ô‡e­S·BxY¿ôwÄ=,sR–¹N¥º®wú;ã–½NÝ¡ìvê.»†x·#îánŒ°;ãÌ+›W̺ŸÙsm ½ÖæA×KºnöýÌ^kSÈúë®ÖöZ›Â´·Ú¡½Õ¦¨çKy¾›µ½Õ¦Xˆ¼61Ä?p?'1'3/§0§2?“X€± ?æ!Ü·Ûãi?Èé,Ä,ì¹=Ïô¸g±(g³˜çöz<ÇãâœËü„ñS&rÍ''ÜÓ$÷ô„{šÔ-„QÙB$¿Œ½MroO¸·Iîí ÷6ɽ=áÞ&¹·'ÜÛ$÷ö„{›äÞžpo“ÜÛBuCü¯§è,ÿ*r–Õ ÉH¿ÊC…d¤_õÝBòѯún!ùè×3!úCrˆõéįù¿¡=ú¶ó˜^ô¶ó˜Zû¶ó˜Zû¶ó˜Zû¶óØ—!2³wˆoüåªÆ7Ù‡·Ø—·Ù©ìÏ;!ÄïÜΧ(æ¨À|šöqŽŠÜBÔß7Öô¼ý6Öô¼}5Öô¼|<Ö¬ð¼ùh¬9èyóÑXóÏó²ÒXóÏóeB¨|"„Ÿí¥±æ çŸ 9èy3x-Ù6’öÏ]‘ÇÌêµd܈,\KÆÈµd\-ZkeáZ{) _“/“)_:'Ñkò¥s½&[:Ñ^™Bì¡•ÌÌï™…öbiÿÎ¥ûÓÎñ@ŸéGçx Ïô£s<ÐgúÑùXŠzÂÀG© ,M½` ï¼Û°_ôgF¾O½¸ÛêÅÝF2seÿ a‡Y½ìeº7e¯Ðœ~B&Iª@¹$éiêIi¶OªDs}Ò34×'U¦¹>éYšë“ªÐ\Ÿô§±*§³ZªÉ'fxüžmßþiÏöþ¹ÐÏ~ìßÙû)ãç‰Ýfß½+Ë-Ò³:êa‹ô¬ŽzØ"=«£¶HÏꨇ-Ò“:vÑKîÙÂêtÏÖ {¶°&ݳ…µèž-”SÖü" Yëã ëP_ø"õñ…uùëyÝÿ¼Nm¿4к>±³!‡°ßec¥Â±æN/¸ôžµyõÒ0ÊkN»^Ôz¸µ|±Æ÷ܨ˜õûÖ-8‚/q$[r[ñ¶æh¶ñçÎøsÅ­å¶…mi.\(Ç]2.lOsáBóñ¥i>¾4æãKù 'ñUÏY{¹æ/: —&»ÞÉúœµ3qiŠõkÖç­KS­Ó¾ç$ê‘—>¢žxécê…—¦QÏ»4Ý9ƒ=8“=9‹æ¸K³i>¿4‡½9—fóKŸÐl~éSöõ{ÿö{ÅKó¬Õ¥Kó©.]úŒêҥϩ.]Z@3ú¥…4£_ú‚)Ï.Dyvá`~Å!\Lµ:ÞûùaHY®zì=ýð®Ì'Ã5â’dž„NÎgò8>Éñ,KsD§rtn;•§sÛé):·œãdç¶“sœìÜvª¢­®…Xö9¼Î¹¼ÁOø?åMÎã-Îçm~ÆTª›­îPÍlu—꣘Ë®¶µŽPkÇEŒò+Æs1˜Ì¿f:~Ãô\ \¢%2†„Ëy/¿e&®`f~Ç,TÓKÜG5½DV®b6®fvªå%rP-/‘“k™‹êx‰ÜTÇKÜOu¼Dªã%òR/‘êx‰üTÇK :^¢ ·ÊÖmeë*lÇçØžUÙÕø2ŸgG¾ÀWX¯Ò½ožªÞžæ©êhžªnÞožªnÞožªnÞožªnÞožªnÞÿÍ[ãOѼ5þwš·Æÿ¯óvåivãŸìÎ3ìÁ³47ÿ‹æ¦ñçhnžæ¦ñÓ¼4þÍIã/Òž¨…ãS<6+¿Dûý‹B!Öþgæ/,Â,ʃ,ÆC,Î_Y‚‡ù0‘Gù0Óþ;'é<.éñqÓ{üˆÇ'BtÞÖkå\ÍÛFçjÞvp&Ôú¦ÞSºó!¶nÿæn^à^ä^¦p/q?ÿáÏü—¿ð2ð ò*½ï¡Îkur¨óZAüÌwPá õ„ g]w~+¨—ŸÉvþ²vŽ+¨—Cã êåPy±‚z9T^¬ ^•+¨—C—°Mˆ\­â¿ÚÇšÜBNõÿj-fmþÂ:<à¹ÿùQ¿¯¾h}Ðü g_“qÍ¿™?Í¿ýB½güTá÷~ÌJ{3ø¹'Äœàg¢þ¨ýO]ŸÑŒêúŒæ!z»yˆ-—!n·  qû%êË|G][ÒwÔµ}G][ÓwÔÕû_vˆmù+ÛÑžîªÎïUF9K{Õ†QÎÒ>µa”³´Omå,íSF9KûÔ†Q[©6Œ’‡ö© £ä¡}jèTFí¤Ú0ê§ýû¹›ŸU™ƒÕ˜“Ï3W?¤„HCŸãï¬s[_²öyþ®n}¿õ?ÖYװΣ¾êéÔô 2Rµ|ƒŒ”A-ß #ePË7ÈHÔò £B܇íCBtìÀ´ÿæ²ë¡ç¬XN=gÅ·ÔsV¬ ž³â;ê9+VRÏYñ=õœ?~±™Ëø?ªoüAõíÓTß* Wä»JÃ)ßUzŸ>S¥”M6%‡øwÊòk–ã7,Ï%|ŠKY!„Ú[B8iØ´Ìúi.gE~ËJ\Ágø+s%Ÿå÷¬ÂU|Ž«Y•?P~«-Þ4SlZcý¼õ6k³À¦µÖ/p«»¾Ýu³Æ¦õÖêݦ ¬éºœ{ÒìQ{'åÓM]—íjÿd‘f‹“rê¦M®ËDµw[gâfvýG×ëp3_äÖ¥šüN=nc}ngƒ7qdH¨õ(G±4?àcÍÇ9†e¨¯ÖÒW'ꫵôÕ‰új-}u¢¾ZK_¨¯ÖÒW'ꫵôÕ‰új-}u¢¾ZK_¨¯Ö’'Êõäã‰òp­gBtöÑk6†Ç8–Ç9Ž'8ž'ýüæ±LÔlBˆÌvš¹?³ÝŸfîÏl÷§™û3ÛýiölU탃èñÁÁ®»_ÍܯÙîW3÷k¶ûÕÌýšýƒ÷¨™^ÔLÖ~¯YH¨Êæ¼Ã¼k7öx&Äs>‡éýõöazE½}˜Þ_Qo¦÷WÔÛ‡éýõöaÎwE½}˜ó]Qoî|WÔÛ‡;ßõöáÎwE½}¸ó]QoïÇÙ®¨îUÔÛ[9kÙåÚVÎZv¹¶•³–½µìòl+¹)»<ÛJnÊ.Ïž=bseƒ³¾§¹Kcý°Lrö”µ³tÖ™š»<Ä«>ù‡µø/kó2ëð _äUÖå5ÖãõFo‘â­ë[«¥çð?6äM6â-6æm6¡ïò\Sú.Ïùn?¹Kßí§¾ÛO#þÞ-þÞë—¬ãØ’Q×·º³neö{[3íum˜v½-Õšs혞jϧêx²=ßÉžO¶ç;ÙóÉö|'{>ÙžïT?„ê íÑû¬íýN ¸ƒ ¹“<¯ÇÍÊŸ™¿0»çò|cꡚPíÔ”zh§fÔC;5§Ú©õÐN/QèÔÒv?’õˆNzD²ÑIÌ®e:„¢Ùýäð“Ó]T].ªÍâ^»'$¤ý7k{þJL ¡‡<}Øú_ëÉ!ä[çñe§xN掖´¾b=Õú‚õ#ÖW­“¬/Z—¢uÞ{^sý#^çÇ®ëQç¿ç ëiüÓy“3ü®õ^£?DÕ†ž·\›ÉÛœåú¿®«=S­góçð.熸7?a„Ÿ†¸z;CBÌXï'šëíbgîfî¡^qÀ\6Î<÷ÝÇ!Rç§QN:`>ç~–Üç±mœ³pÀl6ÎY8 ws/g‹dež Ñfzvf{mvÄºŠµÞ9Ž-e+¦ýwïZÓ{\V={8„Ž3C¸~ÔZf={„êÄÙ´µÌzöeÖ³Ç)³ž=AYÅ9Œ{\Vqã—Sœ¿¸Çåç/îq9åìÿ(Ÿœýƒuyšõø'ëó ð,ò/6â96æy6áß¾Ðq7õø›ñ"›3…-x)D·ªKCdÿ­êÒU!.Ýì¿ÎIgþ_go¤3ÿ¯+Eóÿ:{"ù=Îü¿î±rüåç\ˆ>X>$úOñ+ð÷¦¨‰OY?mý?Vä¬ÄÓ!Ú·gˆ•ʼ!RÞ|:ï!¾æú®çc/æÑ¿r«Oòá_÷Óïû+Ï3/ÿÑ;B¬±<û•~^¥¯õNkó⌟(Ç}¥¿WéB&3õŒ]®™gì¦ÙqÆšgìå»ÜÇ¡ÜÏ÷ø3‡ñç¾ÏƒÁCÉ_9Їùp4õ¯Æú× ý«±þ5Cÿj¬Íпë_3ÔæÆRmn¬í3|Пÿð-þË·y™>㽄P|žŸù~>ó£ßl”•˜¿7ÊJÌße¥æï«hþÞ¸šæï?Ð÷³q ÍÝ×Ò²qÍ×Ó|°q„¸öê|î¿©Îç¶Ú«ï¹/†ÐMN ýYoi^{NÍÏ⚬Þ¦¬Òþ= ÷%ê¹õ–öz@n½¥½[oi¯äÖ[Úë¹õ–öz@n½¥½[o馗‡w¬õ€ÜzK{= ·ÞÒ^íÏ­·´Wûsë-íÕþÜzK{µ?·ÞÒ^íÏ­·,î^Mûï‹vgŽÙ¿8Ä~’ràh9p¿8Ú¾Ù/޶OöË£}¾ýràh5¸Þ怳ÖràhŸm¿˜ö¿ÕÚ/gŒ®dùöË£eý²ÆhYc¿¬1:íºl1Z¶Ø/[Œ–-öË£e‹ý²àèj”/F?OÙoô !úá´«QƒÓY“3˜öïŸO ‘J~W ïgÁå¢gz.íßI×Z¦Y¨žURÏ>œåz{ýþ—Ñ̲©'²0'±'³(§°§²8“X"„øé!äògüÈú!o†ÐzXiÿ­œŒ»–h-´¤ý7s2N³Ös2NgI×ßwýGëÖjHÆ™ÔWZp}3GR¶n=Š[=?ËóúîaFõg“yãÂë!öY%v¥Ïz¡+³;}Æ =¨V_P?>{.„5zoÃIÖêÆgU©n|V½)c¯Ñ“N¶~ÓÚ÷|¡«³/}ßúÑ÷}¡?kñ-ÖæÛô]®ÑËN±`-w]x‡r×…”». ¢Üua0õš CØ0Äenâ7«»™ÛPÝÍÜ–ÎBævt2·§³¹…Ì/óŠïæ\ÿ$Z›M7;™Í¦›‰Ì¯ò:;ñ†×÷:ß}æ×¬Ý¯Ì™v¯ÔÿÔñÌ]¬}¯™_§³‘¹+ÌÝèldîN¹+sï–„xÙs»Yvhnê‹Cï§~84õáy©U›·ë‡CÕæímX€mY0Ä}lNh G|lNh Gôï"¿±6/40s÷ïm½ÄÚÜРŒõ›ÖK­Í Ì›˜>6?40?|l~h`~øØüР¼×÷ñúeÖæˆæˆÍ Ì›#˜#>6G4¨èu}½n9ûñ[×Í œ¡þjkÆÖæ‹Ïð#VæÇ|–ÓX…Óùg°*g²gÑ<ðñl¾À9¬Î¹¬â&ëmµõñÉÏPŸ\™úøägùgˆL|,Ä×üŽfçš+Y†ßó ®â“\Ͳ4ƒL,Ç5,ϵ|ŠëXëù47°"7²7ÑLRóGV¦|>ñYÊÓ«P~ž(ÇÔÜFù¥ævÊ/5wP~©¹“òKÍŸ(¿ÔÜEù¥ænÊ/5÷P~©¹—òKÍ}”_jî§üRógÊ/5¡üRó@ÙÌ ÙÌŸ嘚)ÇÔ·v¯z,`M.¤:sŸz|ᱺšÏëñ¥Çu¸ˆ/ºfFêñ•Çu¹˜Îþ½ÕC¦Öà¥&ú΋Ë÷š¥6ýcí»/Oß}ñ×ÍV›þµvŠÇèOçºYkÓešµ6] ‘õ#Bü[™8’™ÍïrÒ 3ÃúQÖYø}þõ£é³¯ÃlK3ÉúqÔïÖgN~È\ÔÞÊM=á­û©'¼•‡zÂ[yCÜø5!¡ú+\ËW¹Ž²øøõ”ÅÇo ,>~#»„°ödˆ4.¢W3„ØW2àÕ{xÊu÷¡ñ֭݃ÆçCBÆBÈÛ.„.f‚ÔcÂS»ÖÞó{~4/p /R^zÝ,[XM}Ý,[X~ý 6â—lÌEl¯ؔ‹ÙŒÉlίقßð¥>"e7Z›¥ ·äR¶â2¶ær¶á·”__Áv”± ·§ŒU¸e¬Â/SÆ*Ü‘2VáW(c~•2VáN”± Ë´¯ËX…;SÆ*Ü…2Va3ÌëÙ•›˜ö¿åù‘ݹ™=B܃‡ø_ßååE¾'zMWù½ˆü×U~/²ÀgûÜg;Íü“ yÆów¯ó3Þ Ï7þ?.àM.ä-~âúd %¿¤9¸¤9¸OF~Å{¹8„^µC$áëLÖÉÖu¬GóEÚc}2»þ5³Pêsõ¦>Y©'õÉFu Ov:û}rP/Iø,į1Ï&|Î2\@½+a!õ®„/¨w%|I½+aËó+êY5N„ø»oñ$ßæo”•kœ¢¬[ãwäÿ8ˆp0Osÿ¤=Qã í‰gùÿâ0žãpžçû´‡îŽ =tw$í¡»£˜BßO 3Ç]g¯†™ã®ï¥†™ãîXš9îš#k\áx^å‡¼Æ ¼Î‰¼ÁIü“y“Sx‹Sy›ILåG¼C3C»œ¢OÈæçs±eéö]Ã%!,:mn+J}³J1žaqÊãUäÔLêÂt{³áRÙØ¾õxã©÷—ƒJ\°N°þ–1®`:~Br£Iûw/§ýóŸbmeÊ‹O†Øçêò¹¥á7Öe­Õç‹å˜žå™ÁórŒ÷½ø”õ=¬ÀŒ|š÷²"3±3ófaeÞçÏË=Þwôâ³ÖY­åš´÷~±Šu6>Çì¬Êž—g|¦èÅjÖ9ù<}g_ ïìbuÊkkP^»X“zÆùÇgkäž´Ï~±–ëòÛÅÚÌB–ç=®ã±sÝA­Íã;í ÖæQko:¿K·Ñù]ºÎíÒ!º¥Iˆ Îʦô^·4£÷ºEvœƒ²ã`ïq‹ì8Ø{Ü";ö·ÈŽƒ½Ç-²ã`ïq‹ì8X¦Ü";öž¶´£L¹¥=½Ÿ-(S.¾lv›Î+œÁ«œBú®_óx¯s6opÿã\Þä'¼ÅOy›ó˜Êù¼ÃÏx—jͼ¼!Ör'óñ'æç.ànä>À½|ûBx¹fל­Dóá©Z4žªM³á)"ÑlxêEš OɉfÃSõü9¹ãšYèe™ãšþø²yãš³˜hf«g&ÿýuæeñ¸«×˜ÿF\¶6—ÿ®Ù×3ÿÞÝuóàÙsypÄU¦£Ç==¾æñ+¿áñuö¢ù3Ç«~Ò>koëÿÔÕâêêA5Wž^ÂãCËÄ%þ±~ÈúWµÛg­âó bÆó? áë±!R-í'ý£kÇ]›ÀœÈ“œä5ã¼FíKþÍz2Oq çTþIüƒñ4?æŸÔÏïÈÚ+FRÆ^1Š2öŠ(c¯M{ÅÊØ+dü;2öŠq”±Wx¯wdìRÆ^áýÝ‘±Wxwdì“(c¯ð¾îÈØ+¼¯;2ö ï뎌½Âûº#c¯ð¾îÈØ+¼¯;2öŠi!¬"MÖZËÚ+¦SÖ^1ƒ²ö ýdý»ž_g½ÅZ޽³•rìm”cïlç\î üzg'å×;?qž=àÞßÙå± {g7eØ;{¨¯ÜÙKöÎ>ʰwöó þLYûÎ/”µïàW<ÈÅ<ÄdþʯC(å>—rs›ÿwÿDóÿî]4ÿïÞMóÿî=4ÿïÞKóÿî}4ÿïÞOóÿîŸiþßý Íÿ»Ðü¿û Íÿ»Ñü¿ûWšÿwÑû̃ÛÌ1÷™·™cî3n3ÇÜgÜf޹Ï<¸­k“F˜g7[o²6Ït7³'º;Å|çÝb¾óîÎF1ßy±·1P~}BÈo~´/$”íïñd?SüLõcn´ßuûdª:R×ì=U©köžªŽÔ5{OUGêš½;ç ±œïιèžfq¶¸7Y܃-îMßý÷&‹ïx‹{“Åw¼å<}Ç[þ¦ïx‹ï>‹ïx‹ï>‹ïx‹ï>‹ïx‹ï>‹ïv‹ï>‹ïv‹ï>‹ïvËeún·øÎ³øn·øÎ³øn·è™Îhp>ã²øŽ·øî³øŽ·øîgšG›'gš?›KÌѱvêœù8ÖN[ Þ¶S稷íÔ¹êm;unzÛN+×6$\4“”kG3I¹öÌÀ4‹”{™òÓ{xQÚcÓ^”ößÓ´‡¡ÙªÎýGgãÜM×íéEiÿ]M{zÑQÚÓ‹Üäf?xþ–µ½½Hj¶Æú6×25„x¹ïŠý¾è}׋NÒw½è7¯Yç5òâßù"¹éŠï|‘ÜtÅw¾Hnºâ;_$7]ñ›óB³õ^—Bp\"W܃´¹ïŠ{6÷]qÒæ¾+îÁ"¹éŠ{–%®¸‹ä¦+îÁ"¹éŠ{°È>+q"$œÔƒJœ¤Tâ7êA%NQ*ñ;ͺ¯™Psj˜ñõ•h 3¾¾f˜ïJ›ïjä´öyg˜×J›3g˜ÓJ›Ójär]¯¨‘›iÿžÖû™öïbÍôk^¦ý;XóQ¯­‘ŸêbÜ‚Ô/j<@Y¡ÆƒÜâZd Y‡ð¢ìöÛÂÙ*#‘‘·ÊÈCdä­2òy«Œ<Ä=Þ*#‘‘·ÊÈC2Q>"o•‡d¡\K3ÒÐ*4 }ŽfŸ¡UiöZfŸ¡f‚ífŸ¡/ÐÌ3´:Íÿ6gþIŸy›³þ¤ÏºM¶üã­0Ógþ ~ˆO½´À‡®¿íza ïà3X ÖïXû>hd=Ñz µÏüAckÙòƒ&Tß?hJ5þƒfœêuƒ¼®8³‡ÐìôAsÏë¼kÈ¡4Û|ÐÂõ¬ß³.Éa|„ÃYпЙæŠgyl¦˜Yšf‰™f‰?Ì3͘%f–ñšÙ›'f>¢}Ìý%Ï>æþ’[C¸WNícö/錫ŽéYÅjðkÒlS¬ÿ Ñj¯„„[™ø*3³³ð5ÞÇÎÌÊ.4·fToª½îqvvevcNvg.ö`nöäý|ƒyØ‹²Ãt³yéJÖ½­óñMæg‘õ™B|{x}fNe&…ýgïóø#fåÇÌF9¹Ö­N8·ë³[OgÎ`NÚ3Ùñ8—dz˜›³y?eäÒ‡X½ï˜+Í~_„ðCÍi Ÿ¹bsv1•»y‡{x—{å¸À}Œp?ãøsˆVi®ë Ó‡…È£C(ò¾kÍC‚4ág¤ŸQ~>‘#êä$uòˆ:9I<¢NNR'¨““î5¯®óX­œ”Éãõ«—“2{¼Ác5s’ºtDÍœt_ ì÷?vÑÜôÇn×ÕÐIjè5t’zD ¤†QC'©¡GÔÐIjè5tR®öHQG'©£GÔÑIêhï¿ÁŸš™c“ŸC(í½”¶_þib_<ƶ´?_Ñ ò%ó>~ͬü†Ù¸„zV¾¥Ô³ÒþÿU¯èUù–‡èîBlD¦n‘‡ãC´¨™÷ØÓÖ[¬¬Í¾Ç̾E'ÓÞ):…Ïp*+3‰Ïò#šäë5si¾Z#×béáp–âû|”#Xš#ésÔÅÇéý¤+ÃÑtÆêá“˲ÇrÏòüOqe¨™ûCäqç¦þDë§9‰Þ}50~2Ó^~<›µZ˜N›i>îLÕWÓU¶>`ílÕWÓù\õ?b׺î¬ÕÿØú9NcUNg5ÎàóœÉ¼^–zÜ™¬?˺:g³ç°&ç²?am~Ê:œÇ9ŸuùëñsÖç6àB6älB/Ÿ;–5ÄuR f¦ZP0 Õ‚‚÷Q-(˜5„îEC$¢Þw/F½¥“ÚPP}é^ÜúUkµ¡`vëÖø_s]­(˜ƒjEÁœ®'ºÞ™SîïÔ×uû8ö­Çý<Î-óé¹Õí¶zà¿zDÞ;~—÷†„¼=)Ãç}ƒ2{Þ^ü™½ù ßäöáAöå!öã¯ìÏÃ|‹GøvÆ¢¸—z<€Çøs e¼¼ƒ(ãåL/ïÊxyß Ñ9ýC¬y ¾Å‡ø69€ó–ä@ÚÏsÑ~ž3˜öóœ!´Ÿç¼KûyÎPÚÏsÞ£ý<Ç9hn?ÏqšÛÏsœƒæòÑ‚b!¾íW,ÎÅ,Ád>į™Èoø0—°$—ò:ÇYÌZ[äë6öþ?¾‹,ݬï°;ÕÁ6Îò?o[÷ñZTt‡Ùkèš½†Þ¥Ùë½´ëf¯÷"4{½G³×{Qš½Þ‹—^õØüõžšpÓÙZj®¿él-5×ßt¶–šëo:SK»ÒYZjž¿é -íNghiÝ™bÃÒüš=ù ßàö¢™mXošÙ†½I3Û°>4³ sÿÿŠ…„¹j[QŸñX„>ã±8úlÇ¢æÚæÚÖÖ=­ãù\/èzë^Ö1öf:¾ÉôžÀómù Û¹ÞÇõ ìË{ØÙŸ÷ò-fâÛtÖŠ Þ=ÝLÙPnŸn¦l(LÏM¹}úý” ¦çávæåÊ wR~høe‡†zÞô‚Ôó¦?@=oúƒÔ󦢞7½0õ¼éE¨çM/Ê_B´Öã!ް ò ã“<β.—¡ºù|›ª‡ø»Xƒúõ¦šÜÃZÜËÚÜÇ:T[7½H½c“9y€ž±Éœ<@¯ØdN 7l2Pó7™‹ü*ª¥úñH1{Wùd4Í’Ÿ˜%ÿúÇòŽãiŽçŸ”™ÿ:Cù¯³”ÿú‹“xŽ“yžSø7eâ¿.Pöýë"eÝ¿Rø1/Ñ<󗹿óÌ_æšOÌ3™k>1Ïüe®ùDîýË\ó‰<Ÿþ¡7¯QHhi滈dZaÝØú&›ðí…–·i/´´'æÙ -í‰yöBK{bž½ÐÊž˜g/´²'æÙ ­ì‰yöB+{bž½ÐÊž˜g/´²'æÙ ­ì‰$Ÿ¡žÏ”ä3Ôó™’|†z>S’ÏPÏgJòêùLI>C=Ÿ©áÚ¡×ѹo¸žÎyà lËtžnb{þÈÜÌ—Cô§3!6|Ïr!ÿâ<Ç/yž‹ø7¿â.¦31<™)üš—ø ÿáþË¥¼LóÿOW(kýt•߆ð­ýS[æøéšõ ^§³öÓ ®äüž7¹Š·¸š2ñpsÀO2ñð5”‰‡¯¥L<|]ˆŠŸ±áë)ß@™xøFF¹‰ñü1DËf¯ª³‹×S]¼êìâìËMìÇÙŸ›ù·ðmnånã;ÜÎÜÁAÜI=¶ :{Ðý-¨ÎŒ…ÐîtWŠZ«¯ý‚êëAg¿ úzÐÙ/¨¾”Ã?Úâë›Ù>ÚÏ—B¨r1„¥˜BsZ•K,Íø˜×ýìu-­ÿµ~œ—YÆõ_\·«\±~Âú€ukë«ÖOòË*G=wÐsmxˆmù+Û…È{2ùÓ²L%õpïkÙüiÙ¼’̵w"s’ë“\ÏÃÉÌË)ÌÇ©ÌÏ$êO•šxýdë¬ ÊorC:y£¾Ü.QnTs7ÿÕ—ÒÉõå‡t%]_¨fŸ Ñzjz‚š^OMOPÓë©é 'B´´9óOßËGB¤¤½SÚ¼ù§y³´yóOóféÚô½|ôŽçí©Òu¬¯ðE^ q÷Uvòiþ$7 ”V[W´¶±Ú(¬ÿüÀÁ\ãz%×w[±^kýŒõVæ^>Ë}2 }=?[ˆµ2¿d2ÏÏî±=8?7‡°øDˆTõ½,>IßÇ|=´•Þ9_m¥wÎ×C[éóõÐVzç|=´•Þ9_m¥wÎ×C[éóõÐVzç|=´•Þy[.Ó³Âúê!ÒÄ xÛ÷¬wEoûžõ®0òŸÉo¾?¡ß$é3#ÿµ¶wF^¦9ä>Á«´WF^cY¯×—’ô¡úQ’ pB?J’Nè?IúÍ }'I¿9¡ï$é7'ô¤lÔw’²Óìž$GŸ0»'夼ž”‹òz’}6ïÝ)ï,÷—7K·jíL÷—;K—°~ÏÚÙî/–¶oúûœ¥åÔþ>_iû¥¿ÏWZNíoÿ”–SûÛ?¥åÔþògi9µ¿üYZNí/––Sû›ÃJË©ýÍa¥åÔþæ°ÒrjsXi9µ¿9¬´¹«¿9¬´¹«¿9¬´¼ÐßVÚÜÕßVºÍa¥Í[ýÍa¥Í[ýeÄ´ÿ[C±´>ÝE¾Jû÷”wiÇÙ!®±ÞqÏê÷ØõŽ{œÇ.f…T³B—œË—ù Í,©ŸòÎ㫜O3JÚ¿§¼Ëküœf’ÔìÂ…|_°+¿¤°’öï#Õô¸»Ç_±{úÖ=שoÝsÃõž®'ó ~Í^ü†½¹„or)ûpûr9ûQïÒŸ+ø¿£%u%ð{¿G_¼GŸíòŽõ*:s©«é¬¥ý»Ç»8k©k茥®å»\Ç¡\OÁ=u‡q#‡Ó9ëò>ä:c]Fr Gq«ß«ߣŸ7Ö‡ïÑÏë•õà{nûI ÑÃClâçFýñðqê‡OÐ óÖ¦ÿXíž®Ânûö­­ëX?oí=?mNÞí=?]ï{~³ç_´®a=Âz‹u]ne=n£¼•ñûÛ4ƒ«83DöÉ^£d¯}²×¨_C¨çsþ¾Õº‘õa6¦Ì»¯ Õú}MyŒÍx<Ä]*¨Y—â>&rcœùùK[ÿÌ’~ñØ|ºà@ˆþ¬ÑֿǬ ‘ëC|ñÜÀšÜÈZô=¯MŸ¿xúœÅ_¤ÏWÜçëáó÷ùzø|Åës;pr'ñ'6æ.6án6å6ã^6§þY\ÿ졉úcñ–Ô‹·¢>X¼5õ¼âmBiï]ß+®ïõÐ÷Šë{=³=°òecGç+<ÁW©~÷øÍÏ)?¿ûùŸëü¼æ§³Ÿ.~̈õ2èW²Q½{(ÕËHÙ¨Þ½ü–™(ÕËL½£^ÊDõV/+õ¯zzJ‚LTO?I‰êé' 2Q=ý#ÁYy±J¿ ‘-åBü 5,ϵ|Š>ïýnÐzêwƒ6PŸ´‘úÚ MÔÏýHýlÐfêgƒ¶° í­-Ïq«r;«qŸçN¾ÀŸhδ+Ľ–'$\żÔW_ËǘŸúék¨¾Vëø×óAª÷³Z…XÓŒlÍ{Ù†™Ø–™ÙŽfÐÝ-ClD~zýˆôúCd®ÏÝÜçžës7÷¹çúÜÍ}î¹>wsŸ{®ÏÝ\í¨ª¦TSª:ŸÓ®ûšûæúš«%U׃¾Ÿ¹¾æjJ¶yûNšûNæúNšûNæúNšûNæúNšïðšù!>‹>°UîË2™r_–)T' Ê3Ô]1*”g¨½#!úÐ3!á䟬L¹ç¡gy–UøŸã9VåyVãß|žBôàÿBl¼ýuðÚ_OÓþ:ø'í¯ƒ²ÿx5ùÍ¿C$½s=Lÿ®¨ŸÓ¿+êçÃôïŠúù0ý»â}!ˆÊ2±ùÌlãÍV›¡=”™?s&Û8“Ÿ9“mœÉÏœÉ6Îd߯C|©rü†å¹„Oq)+pŸá©!üäï}*'eħrÑßÓw¹ç+ZË?5£ìù“üòT:ã}¿õ|%®à3üŽ•¹’Ïz]^¯“¡ŸÊGù©ü”‰Ÿ’¹~’…Ÿ*H¹·ï÷^_…«øœë¸®ô]m]•?PêA×õð§ Q}è»Æõç¹–êùS…]×»ƒüÔwkjûSE\S;úª¥ÔǾêc)ý÷©¢®«%}ÕÉRµ¬‹Y«)}ÕËRêe_õ²”zÙW½,¥^öU/K©—}ÕËRêe_õ²”zùzË_èTe[„°ý#ëVÖjÐë­ù?¶álËÓlÇ?Ùžgü9ßÏö­;XŸåËü‹yޝð<_åß^ï{Ü>ÍZ}+tj\¡‹Tç ¥P­+t‰¯SÎ|½+åË×»Q¾|½;Í$AÎ)ë^lŸîZ×dÍ×{Rßyý ^÷¼{´}Õéí3)GmŸåù^ž¿a¿~kÄ/Ù˜‹Ø„_±)Sî­T?$\öúJ ø_ˆ»üFHX”‡½˜—½™o2?û°û² ûñöçƒ|‹…ø6Ý󱿓}—c¿àY׸^„ïÐÌwy Ýß{jy<ÈcÙvì—^ûñ¿âyÏö| áC|—‰ʇùÙËÃø‡³ßç£ÁÒIÿò(>ÎX†£ùÇðIŽ¥Œû rH ™üvˆÕ)Á|(„rb‰Ö2yY{²,^GÖÔ1Äʪ½ƒ^¡Ú;èUªóÍ÷Ì÷ƒ:YgåkÌ"]ôÒBzi½´óÐE/-dÿwÑK Ù÷]ôÒB¯†hr ó³|öⵯ¾t–oë/^·žÄœìº\x[¯‹ùì/þçÚ×dÄÛ2b^ßý‹7]›Ê[L¢|ÿSù±×Ê‘·õ˜ïXO Ñær^×f›Ëô²–÷²¼Gy/‹~0Û ]¦·µÜ—e8å¾,f«ær_Ysö“ž—‰g—¥L<[Ý+#ÏV÷ʨõ³Õ½2ý½^>Ì"“ÎVÿÊÈÆ³ŸæÛ®Ÿt}ã!Ü{ǧ<¢ ¾ ±v¸„/s);r_árúî|ËN\Á×ø;s%»Pvl'‡,Ûuåjvãìâúä %õ…^êLÂXëÜÖ2{/õ&a\ùRü˜³óýãÇ\ÕŸVéOQýi•þÕŸVéOQýi•þÕŸVéOQ{k•½ÕŸVéOÑx‘Õ™BóûªK4·¯2·GÍí«þ q?>ÞùxŠOówVäÿX‰„¸ÄGBüoúöˆpÍçH,e½‘rKóG>ÆÍ|œ[X†f‚Ä'¸Or{¥Í3¥õžŒrØÆ´–LŸ:¦fwpn¯¾jí¹cjv3éU3Xç䪬C";{^_:&ûwxØÚ,Ö¡$ÓþÙ0}êXêSÇdý¸n6ëPŠf³ÞÿUç­CišË:Äû!(_´¸Â¿»Å]êéwb®Od:NbzNf:ûÚX¸ð¬õ=ÖS­#ÖzúŒÖIÖqÖÏYßk­OÞÉD}ïNfêgw²P/ºsg0+ÍWw²QϹ“³™ƒz×K2ÑÙàNNk³úKñÖÕ¬sYÂÜ4³¿”ຌpç~kyñNÎg^~Æ|üœù¹€¨ŸÜ)H³{¼ÌpçÍï_¿"ÕÔž¯ÔâW앯«[›w¿öšj#\W›_)ÍA|Œƒù8‡°Lˆö6g$š+z›3ͽíïÄïCøtYˆ”sž{›7ͽ͉æ‹ÞæD³ø§Ë=™ßòŠëæDóFoóG¢°·ù#q͉뙋r{ïÜ4›ß«Žö¾ßãMÌÙ—›™[˜Ÿ[Côí'C챓,ËßXާXž¿‡èÄ5!VË™Yhîª4ßz­µ6q»s=õ«‰Ø3D¶ù^‡øÞ·ù^‡øÞ·ù^‡øÞ·ùN‡øÞ·=Hßû¶Bô½o+L}|[êÑÛŠr‘™ÊYúÍ÷´­˜µ^½­8³ÍûÛâ×!D3xœèçak¹wÈ’9#“Í–ÁÎÈd³e°32ÙlìŒL6û e²Ù²×™l¶ìuF›-{‘ÅfŸ¡ÑÁÎä´–ÉfËìgd²Ù²×™l¶ìuF›-{‘ÅfË^gd±Ù²×Ylö¿þü!>—µL6[;#“Í–ÁýêznkÙl¶üuF6›-‘Çf_§<6ûå±Ùÿùlßy,{;ÉÞ¼âvî Ãúð'öå.öãnöçª3;÷òmîãîç;ü™ù Õ—8˜©®ì<Äwù+‡ò0Õ“G8ŒG9cíûÊ}–ï„øLÎÁf5$ÓSTC2U ’éiÚë™*Ò^ÏT‰öz¦gh¯gªLóKÚ¯#Ó³˯ËÖ„„®úÙ²µìÄu|ë©-ÛÀ.ÜHýkÙ&våìÆÍÔo—maneOnãÜNýjàáÉz¿õk}k™=ÓU¯ZfÏtµw–Ù3]íeöLW{g™=ÓÕÞYfÏtµw–Ù3]íeöLWßÅ2{¦«½³Ìžéjï,³gºÚ;Ëì™®ƒC䲬¹H¦¼,k.R'.Ëš‹:QÖ\ôeÍEy’]ø_ç)våïÔû9×÷\q9Í\»^¢™kWKng+î`kîdšwµ¥yxW;š‡wµ§yxWîåËÜÇŽÜÏWø3݇œ¿Ð}Èy€îC΃tr¢ûóWº9Ó}Èésîrrúœ»Ü‡œ>ç.÷!§Ï¹Ë}Èésîrrúœ»zÑçÜåûÏésîzÓ>H¶œƒL_Ó9È$gnv2É™›ƒŒ_†Ø¦±\Äq!Z´eH8e+¦ýóR­™öÏIµaŒm™Ží˜ží™(Ï}™Ù‘÷òfâ«4KíD³DÑ×x;Ó Q´ ³ñuš-Švev£³ÝUîºë{j©Fd³ZªÙ쟖jD6û§¥‘MÆ^a&é‘f’ùÙ™BøæHˆ¼Çº‹uA¾ÎØ•² ±; ³‹°'‹ò :»î ÷Ç<\ɼüžù¸Šù¹šø ÒlÓá®åƒ\ÇB4›t(Ì ,Â!ògŸ?+5Äå*Äÿ¼3„v C¸lîl''\6wæ¯àúOÖ²Â忬Ÿ¶ÞÅŠÜÍJÜÃg¸7DÖß ñoÑ9þ-3Im™ï„ÌW[î:1Ðõˆë£ÇåhÊjo¡¬öÖXÊfoÙ›‹†ØÀ,F=|sqêá›KPßüõð͉üæ,ÉÓ|„²ÍõÓ…Xì¦çfàÒ2zMý{<^ÆŒ\NÙ&ö-e›ØŠfn‘ÇíÁÿ±/e‘/p#/Rù7…rÈ¿—(‡üûåÿ¥òïenãnqýˆ„G±ey¦åÑ#4£õÝŽ ¨ïvlH}·c#ê»Í‹ôÝŽM¨ïvtOé»嶸—<Ö{;Ú'û2…„Q+˜™ß…A–Ü—Åcõzß}T¯÷e¥z½/Õë}Ù©^ïËAõz_N® aøø¹Í­÷«¯ûr¹®~ïËMsPù~!!E)ߟúHù·¨”›úHù,ÂÇö])µ¢ü;ÖúIù,ÆA,ÎÁ,Á!|(DŸø4$œ¯ãÏÉ,|a=ÏúEÎg]~Æz!<¬Nny%Äû[^¥Üù³L8Úüó³L8Úüó³ùg´ùçgóÏhóÏÏæŸÑúIy3îÎ!í?“_r$õ‚’£\7ëîzBI=¡žPROè£'”T·Êâõ¿Ñ,¼ó”ëæ÷’¾·>æ÷’¾·>æ÷’hn/i¾ïc^/i¾ïcN/9ÙŸ›çÏýnm^/)¿÷1¯—”Ãû˜×KÊÛÁüÔÇÌ^Ræîcf/)c÷1³—4Ó÷1³—4Ó÷1³—œ¢Oß‹ïëÉ¿d1ʯÏÅL`2cüšé¨=™žúГ¨}-[V›OÙ²Úg”-«}NÙ²Ú‚]<"Ä^­`-cVÓ«¿v¿ªùn¿–1«¥ÍóÝè÷/éuOs+òVâh>Ã1¬¢gôSsYôŒ~j.‹žÑOÍeѲMCÂßwØŒwC(bï”m.Ùʶ`„/1Ž2Ü®¬ wA†++Ã]Hðgì³²rÜ…Xˆ»p-$|¦?„ÇCl¥ûÊÐý O0cˆKî:å á2!’E®LîkmFzç kù2Ù¾ïT€ö}§‚´ï;=@û¾Óƒ´ï;Ù“-ÕĬæÛÙ‹B¤Ì9š«Ë¨‘-ÕȬê`K52«1Ûœ]æoÊãeÒÖ_ó"¿aJEçy­:š5íšy»Ì%ëêÖž›½Ôú¯™ïZ ×Òž«ÉX‹ÿ²¶Ÿ:ëùYÍÅkÍwZ‡è?íCì‹'¬ÍyÚ„Pª½k\³‘Juðórˆ6˜béÝã¢YBÈìÌe®¢?_>äANIþ±tòQýÓ/›8?§ýóOZ{]ý3œàúo®«õÏZOä_œÄsœÌóœâuÎÑãêI}Ù&ÝTÊ6é’(Û¤ûˆ²Mº)Û¤›FÙ&ÝtÊ6霃ú>gº™”mÒÍâUÎæ5Î ÑÊ5BÂÕK!LO ‘G;[×´ö}U®EßWåÚ¼ìù‡=ßÅºŽµïmzIë×­_´¾jýˆuWëºÖ×Xöoåú´+7 ý[¹!o²o…ÿSt'`6–ÿÇï3gæ0¶dßʾï)QʆdI„±¯É¾†l£P²GÙR¢}Í–ÈÖ´YZ”¥’öúEEBã÷:×õ®÷ó}žsΜ羿Ëçóÿi&¡??Z‚êÏ–àŸúó£%ø§þüh þ©??Z‚êÏ–àŸúó£%ø§þüh þ©??Z‚êÏ–à úó£%ø§þüh þ©?ZâÉbÇó¢%x¨þ¼h ª?/ÿ}RýyÑw}»ã.”Ï]wcÏݨwõ­zS_½i£ÞÔWoÚ¨7õÕ›6êM}õ¦zS_½i£gì[=[_:p²=©Í£N¶'µ­ïd{RÛúN¶'µ­ïd{RÛúN¶'µ­ïd{RÛúN¶µõÉö£öðŠð5“íImƒhø‡!’Yÿ™loj !“šþ‘kÙðcÌŽŸ`äo2«Éá'0§÷ØÇÚ¼ádûX{´2SªëA-¯Ëy3féwâxy»–7\×Û—~/6“[Þ¯Âÿð‘’v¼‰·puHÐv“v¬A³eÇZ4[v¼…fËŽuh¶ìXfËŽ !Ì."%{cYìƒåPÎÞ2sâ¿¿`¶Ú+)wo™=;hä¬é<8-õ¤¥³~ˆfTN¯?jFåôº£›B˜×#Dʼ&6«ŽšU9ͪ£[0 òK9³" ˜3Ò~9é¡£;:ºi¡£o#-ttÒBGw‡Pü?çôÐÑ=HÝëš™““&:ºi¢£ï tt?Ò@Gi œ<ñQþ+'O|”ÿÊÉ}/„,4qN¾ø(–“/>ÿ]|ñQ¬·þu‡þÕ[ÿºCÿê­Ý¡Õ¿’þÕëëß@{³X¯¯ïSz|ý©þM×ÍáÅ[Åâ6üËõÿ\íÙ¿ær}{öïêm`Ïþµg+}^*}’™?Zé3R_GïIõ3îœìÜûRW¡÷¥šïcÞ ‘ì·B‚•”*VÙóT9°Êž§ú¼Uöq†–™gÏÐ1d`Â:f¾µ9CÇÌ·&gè˜ùQ¤cæ'"3ŸŽ™Æã¶Óx›ÂÖâ M3Ÿ¦9Ó3¹>ÚõøZ›3]]ÏŒÝ'š6Æuk5m,ògº»ž{ Þs¦'fÃ^˜=DÎ] ‰ è¹sß#=wîˆ?â ü ãÏ8Á¡ø+Ãßp8þŽ#ðèÎýžáÜ%ôÏ]FßùÜŸè;žû }Çsã8¼‚OãUÿ༆ñ_œ„×q2ÞÀ4¼‰Sð?|3ðY¼…SCä<ý¿€þ?Oÿ/˜Žtÿºÿ<Ý¿€î?O÷/ ûÏÓý èþótÿ‚™Hç/ óÏÓù èüótä:ÿ<¹€Î?Oç/ óÏÓù æ#}¿€¾?Oß/07ÏÓ÷ ÌËó´ýsñ\†ù‘¦Y[9ĺƒUnmVW5«G›ÕUÍêÑfuÕº¸ ëán¬{°îņÈãVåqGó¸UyÜÑaŒš;¨¶Æd Úÿ\µ5Ö˜ôsˆä-'VccÕÚA56V­Tcc£îÿâ~yü+¸®æÆ&ŠW«µ±jpÒïâJø?¬Œ`¼„U½N-މ/‹«‰ÕàXµ9éOqu±Z«&ª½±j²8ÏYœ,¾"$ ²¥/¡5(}=é?Ñ3—þ =sé¿Ñ3—¾‚ž¹ôUôÌ¥ÿ ‘Åò¶µ¼],o[ËÛÅò¶µ¼],o[ËÛÅò¶µ¼],o[ËÛÅò¶µ¼],o[ËÛÅò¶µ¼],o[ËÛÅò¶µ¼],o[ËÛÅò¶µ¼],o[ËÛÅò¶µ¼],o[ËÛÅò¶µ¼],o[ËÛÅò¶µ¼],o[ËÛÅò¶õ+X—cA| ákXW`|ïÀ•È×·æëóõ­Íº‘·B¬2;*þOdxÌQäq¯Ñú›>DZÓG!TÉæüçó9æfúþïÎ!¶î.±ùÙÆüü»‹˜ª¼Üa/*Û‹Êæå;ÛÝÿÛý®îÇ=UÙ̬l0V6'+¿Âm÷­Ì÷Æ¿O‰ïCÒW³ðä}JüˆØ¾–yѱ $´¾’’ãü"=’üÒÉ/#íÿo³h‡äÅH7$/Aº!yiHhC/$/Cz!ù¤’—#½l]c œÓ ɯ!Í,ßÛÐ ÉôHš!y%Ò É´È ûåóY¬ƒçð<â×X¿Ázø-ÖGšwëœød~œ‹pÄùX=ë“…qÁ…Èo} ùà­/cQ\„Åp1 ßzÆE4ÐϸˆºàÑ@<ã"è‚g\D]ð|‹h  žo<>¿ƒ>¿à9mDϹhzÎE›Ý?éþíx s¹N-¢.ÐD‹h éŸºž?Ãù>fÆtÔsŸü³ Ïèž.t`^ëØ…®Ïk»ÐõywºÏz¨ }Ÿ—nz’ ÙÅt~^ú© Ÿ—¾ìRÄAßçµ.yy‡;o8̤ûj…ÄË'±6žÂûðÓz/ áßÓ¸¿tý~×?/…Kñ .Cup_÷?Çð ×_q]]Ü÷ ø4ÖÅøçÔï°>žÁCŒ¿¾ª£ûBut_cüÆçé}ÿC½Õé¿_£ø¯úº¯‰ûê뾦xSð;l†±9~ãØÔKêÇzn鯜—rþ‰ó3ÎK;?Žeð–Å“XOyÍYçåÄŸ:äýÏ'Bâkñ$vÂS˜B”ŸøùSç´xÊ®¡ÕSäg¤-Ú‡Èc(/#íP^FÚ£|Œ<B?¹p³‰X^F:èMw8—›‘Ž(7#ô~ŠœŒÐû)r2‹÷“77›Šåf„îOáý#t ï醼¤;òþ‘ÈûGz"_ÿ} )|A„'î'ïn¦ˆyƒHä ⿇!…7ˆðÄ)¼|ü÷.¤ðò‘þxyˆ”“ÈC¤œBµ‘ò)ÂÏp0~ŽCð Чq~‰Ãñ+gpdˆ>X&$]±/‹Kñ‘=±4ör½¬ëöèÁrh,'Ýç髨ñ+ˆOaEü+ágX?Ç*øVÅÓX ¿Äê(N¬±çâÿÖô»»í¼ˆ3ñ{¤ó²euþƒsó³ý8'„Wî‘»ÆŠÏ ±§Bâ;I8ùŸÑÖ¦ªgûAý.{Õﲨn—Dõºì½0F?¬¶ õ•jê}Œ¾RM½ÑWªé›cô•júæ}¥šú£/TSßc|nµ=ès«íEŸ[m_ˆ6§»íy¬B¦ÞÎg8¿ _À8ïÆYxÎÆš8ïŹX çamœ÷…èiù3ûÊé=-gæDBØÉ{<\Q,gæ$ˆy‡+…èm¼ËÑ(ò.G‘W9š„<ÊQs¯ø•Ýõuˆ } ¿Á—ñ[\„p1ª¿¡KPý ]Šêoè2T{CyË]joèrTsC_ÅŸñ5üWà¯ø:þ†+CtÆ$ÞXiðÅð#,Žc ü͆úË s¡þ2ÃLh Nf˜ ÔÄ 3¡¾2ÃLh ¯Ì(úÊŒ k1ÃóÏà{|á8íøÒ¡¯ô™bwÚ—lÍ?çü.|kà ¼_À{P¿‰ÿ>Ü>zLüw߯ïmŸyŽùŽ  Ö/þ;mã¿Ï¶5ëc½úX«>Ö©5êc}úX›>Ö¥5éóºÏ¯é¸×QËQÛqŸã~GÇŽuõõ  9;š8š:RÍ͇è?íBl#Ϲ_M>ÿ]9C¬â”ó÷b.Ô—FäÆw0îǼønˆÖ¸’~ÿ®ýËH{¼¬7TÚ$þSìÙ¾°æ³®¡5Ÿõ/šÃ³®cE¼•ð&ZÿYÿ¡þ7+#DíOÒõ‰jodˆ½ÛGáã8;àSØÇ Þ•NÈGÛv}éž»†…pd³¸¥øsl…tNü¿98²EÜZ|Ûà—ø(ê©9ù¡®më§ñÿ.áÍÿïŽÐ„9g8gðq]ó} k;T÷]}Ç|꼫ï˜O}wõó}ƒ¾c¾o±ò]Sñ;ìŒQŸÎ÷=êÓù~áq>ð·ïQÏúMœž½y<$n£WnÒ-Û<ëMºe[*Ò-Û:#Ͳ­ ~†]½çaçŸ;ï†_`w×Z8?í¼Gˆö¶fw”À±XÇa)|Kãx,ƒ°,NÄr8 i©Þ“Q,­·•®*NW ‰õ¼ë@ïþ¢o–«ë]Q]ïzÕõ®C!zÝð˹r¯\%¦~yÏâ³x§âyŒÿÿÒìéºí¼½\`/ÏÛË_ =\`ÏÛÃöð¼=\ðÚ¿gÐ-°GçíÑ{tÞ-°GçíÑ‚¯Í~ý$Çû¨ŸäHWç±ÿJˆ5Wó—c |Á×°%®ÀV¨.›·Æ•ØWá£ø¶ aµYUÇϘÿ¦ø1±™U‡.^mfÕùÖõÕ®›ëó× >-Ò‘«Í²:ÄætóhN7ïˆætóNhF7OE3ºyg4£›wÁÍØ·`·½·}HúCß¿÷qŒ`L@}þ}þ^}þ}þ^}þ}þ^}þº'Ó¸:ÞÄçð?|3pÞÂB¹›¸&rIûyÈÌ È?fŽâLDº*sÎÃÎÇLø"fƘŒ 1 ¾„Yñĕ‹0;ê+©<Ø¥Fbúbÿ¤/ö/Eúbÿ2¤/ö¿‚ôÅþåH_ìç=';§1ö¿†4ÆþHcìiŒý+‘ÆØ¿ iŒýo ±ÿÍ9òoHœ0 ¯ãd´6ÒÐÚL˜‚ÖfÂ3hm&<‹ÖfÂÔ9êÇN·G­Í„éhm&<‡Öf‚þb¾&N˜"iò·¶üM“¿µi»:-C8>K,kËã4y\[§ÉãÚò8M×–Çiò¸¶Q‰8“P”¾¨ß%„Ïè¾%“Äüu}}ì3ž´~7¤Ý–Lv]Òå²®KÒœ'ãä}rYã%Ï8ÏŠÏb6œŠÙqæÀéx>‡9ñy¼g`.Ÿa–¼à<·s{´„F~4ÒÈæÅÙ˜éãGó{Àÿ9§‘¥Á—ÌÂÞgO_àk~‚|mÃãÈ×6<|mÓÈ×6<…æUCóê½­¡Þö‚ÞÖÐ~¼ ·5ÔÛ^ åÆ r£¡Þö‚œh('^ ùÞ KC¬~´a¶ a£¼lx@¬õÑ—6è_}ô¥ úW}iƒþÕ§-ê_}Cý«þ³AÿêÃÇ.Ë’ÚnÅìÈÏ,“Kmù™er©-?3=1$Õ} “pÆp=f ˜7b2nÂ,¸³âôùu}þtŸ_×çO÷ùu}þtŸ_7þùrµ.¿4]®Öå—¦ËÕºüÒt¹Z—_šÎGÕÝ"}·†Ä¢÷á6äáúnÇ:!¡bïxáz;̼f˱;êÁý—‡Ä|fÿW±,¾†åp–Ç×±®ÄЏ +áXßÄ*¸i÷ ÷_ã¼®ÅêøÞ…ë°®GÚ­Š5æ›Þ4÷ëGÄ1i¤ÙQÜŒ‰¸“Þx“>¨S"„²~Þ›4B3zvÌ=äMZ¡N)üK#WǬžÉýíÞSÍ5~¯Ž¹=;³k;0õ…ÙYP_˜wymuçÙœë ³³£Þ0;ê eiÝÙ·9§ýfÓ„i¿Ù4acÚo6MØø]?çg?§š÷uè‚Ù4bc98›Fl|iÄÆïa><ä3k8îvÐ˳ó»v à×j:/èü(®6ßQcSBøßtl†Ïas|FZ¬c |Á™¨þßï¨þgñ;¶F³(¦Æß)€êûuÚ±ëqϯÆß)¤Y¡ädL­¿Ã×ÅÔú;|ã”øßSçïðk1uþNQï×àþÇw4çÿ7Í÷ÿ™i±ùîñ¸Ï”ß±ÎKàB,‰/a)|í_>¹[伌ó¹[,.‹K°.Åò¸ +„„Mé!©}›Ù\Þôóá!a½]Ã÷š£ãþFstÜ4GÇ]ÅÅøšŸã®¡ù9î_4?Ç]GósÜ T?EF8¿éüUüÍÏ—W„¤V)ø:6ÕØWáÃø¶À7ñ\-q ¶ÂµØßÂ6¸ÅõØ7àc¸Ûá&Ô›^ÞŒãì€[±#nÃN¸SqvÆHýC#m¤#7ÒR}i£‘ÃB¬ò8ïÄXyŒÊÅBx]?¸·ê÷>á:ÏQYÝŽä9*ÓË#yŽÊjq$ý\¹Tˆœý9$¾8$„Örâ{úûì/bþçì¯8 Ãáø;ŽÀÿáHüGá%¢‹î±V|í"~·_»ˆßmÅ×.¢O[ñµ‹èÓV'BxËü¨w»˜ïmÅß.â{[rÝ<©—KÌÿ¶âsñ¿­øÜEüo+>wÿÛê äÅZñx‹x±V_"/ÖŠÏ]Ä‹µ2Sñb­Î"/Öêòb­ÎcU¤eUC:cQu¤aÝ…´ê¢øÞñüùÖV? ïÚêGä_[ý„õ>¥cˆÝO‹fS#S:9§?W™Ç÷éSRÅÉè³î§AW™Ë÷ñÐSºˆåÆ”®˜ »avìŽ9°Úû)=1'öBû>¥7ªá)}Ð^Oé‹özJ?´×Sž@{=¥?æÇ'±À‚8 á ôÌSc‚zÞ”¡¨çMÑï×ó¦è÷C=ð~=nŠxü™õ¼ûãϧçÝ=ïþÒ¨çÝOgL‹´Å”qXŸÆò!”|%Déפöœ~Mº1)„%t~Õ†âÓâÉø%Ò©ç‰ â8ÂÁ¨Ÿ.‚úèB}ô¼>ºP=¯.ÔGÏë£ õÑóúèB}ô¼>ºP=¯.—Q^œÿåüù¿p,þãð >Wq<þƒðND~o!¿wžß[Èïç÷Æ¿/¿·ß;Ïï-ä÷Îó{ ù½óüÞB~ïkb!_ò5¿·ùšß[ÈO|Íï-ä%¾æ÷ò_ó _@^xáLä…ò{_ó g#/¼0þÿ¬¿‡^8ùá…ó^8?D“̼}j1ÉÌÛ'‡ûe„X±7ñ®Ñ'hÎbkÖ,&ߟ 5‹½…´f±uHk[´f1Ú´üK!Ì["eôç\yCÒût^®|¸ßõ5®ë×¹ò‹ßÅHß jb¥õéA QŸÔÿ‡9;ÿm¦K<‰5jH÷™Á‘†´Þ}¤O_±µjHóm´V ™åÖªá1÷õ—>æïFÏßð}±>ÓÇm´v ÓÅ;Åýñm|wáÜq½8÷á|‡†&ݰßù°­¢~¯Vy={•ºø“^ù^ùŒ¸žØŒªRͨ* ð×&ʳÜ4Û¾â!iÄûXÓ]—w¹ù—}%Å„è'-Blš:/¤oÔ· é['ùµBúÕÉVH¤O_l"åôÀB4ÒI~­t’_+D#ä× ÑH'ùµB4ÒÉv^ïû•Ó+_lŒúc!šéd{qñTlŠÓ\§¡N>.NOÓR'õøB´ÔI=¾-u²“ûÍÜNLSÔ# ɯ“ò«ü:É“gÕƒ ÑU'õûBtÕÉnø6v ¥åùYZ³´-§É”OËiäaSBbóòÞz!|`Þß[õÜaϸžŸÅl8³ã4ÌÓñ6|s"Xáväí*ÐK÷6ð9ôŽ 1 á|ÕËÆ®zˆµÞ|ìÍ›mì&^.6'{óÚåÕÆz³²·Ù·Þ¬ìmö­7+{›}ëÍÊÞüYyu³Þ¼ì]Ö¹Ú)ÿßò­S¤Iý’B¸égö‹¡ŸÙn¸ÙØ}ë‰ÿoüÖ-ÿßè­W„wJ±^Þ)ÅzEx§ëáR¬W„wJ±^Þ)EíEè›Gžáž9nöL×W›=ÓÕû#ô×~ýºëÂ>´¦Þ ‘ø¯Ó>Ml_Ø/6›¦óÒX£ ïŠÕîtžúkuá€X Oç­±f¢5»ðžëjz:¯ýȳâCbµ=Ý ;¡¶§Ëáj{ºÜ=a†M—»'̰ér÷„ù5}nˆ>ôIHúï)<ŽcðŽÅ“8.$´^’’kã2¼/„'*‡ðŸ¼jýŠø~\ŽuðU|_ÑM®‹¼hr=äE“ë£~›ÜõÛ䆨ß&7Bý6Ù¾’õ ëÖ¯Õ×þp\ŸÅOqœkzÊŠ?Ë;þrüí¸â¸ê:­ÖJîÜñsz­•üée¾\[€êýšÞPÓ^þÎ÷×´—¿¯¡àC!áÕ³!éñ)xŸÁóø,~Sñœ†ßât¼€Ïáwø<^Äø=¾€?àLügáO8;„øÿ^þêÏÎçà/8ÅyøÒBkùÎîføZ¾³»>ƒhØõ¾†}QïkØõ¾†tÄ=ì±'Cb”Ýs{HØX5$õù«ái¬Ž_â]øÖÀ3x7žÅ{ðÖÄóx/~²ÜÁZxkã1¼i„,÷c:ÖÁðüİ.~Œõð9ao“ã¹gO“é—ž¯…Xáf¸›‡ðj«¹›íùºøa\‰-p>â~k÷éÈWÛ ìù†ë´GÏ7Q/yõQ×ç‰W‹[#T˜öè¹iž’qõŒ#hÏ2ŽâŸä³õŒcâ¡ø>ÃtŽàüGz}Ìëõ§Ù™P_šÍ•ÙÉh~d|äu£ðc¢ïË…É=PLî‰r`r/”“{£=Ÿ¬Þ·ç“ÕÂûöz²Zxß^O~íõdÏÖpIH¼q.Åš¸ ïUëŸ;Åy-ç_8N‡èÇ?‡ØT^âã_p]; „H³öâ_Å<ÅÇ¿áü7âÿpòS7ã%Ü‚tàÔ­HNÿ]):pêv¤§î@:pêÎr<휜ú6Ò‚Sw!8u7ÒS÷ 8u/ÒS÷!8•‡ù˜œºù£©¼ËÇüÑTÞåþh*ð 4õ=ä¦Bþh*ò 4õòGSb iÖO2!ÍúIf¤Y?IÆBD3&X+(©ô÷bÚ1AOá…’Jÿ ¦!ãÿŽk ™ ·ðGI¥Ó’ñÃ5ˆ–LÐc5qÿDS&Äÿ2]Xúg¤ÿJÿ‚ô_iþ#ÿ7Ê4 ÿ•0ˆä¿"ïõ‰c/£Þ6öO€á@üáŒWqÒÀï Åk8 ÿÅáxGà ‰7qþ‡£1ŸÂ[8&$5‘÷Æ¢{oª±÷žF5öÞxTcïM@õðÞD”çïMByþÞd”ç率<6—iÁq´à{´à¸lòàvZ¿æ_†P‘¶¯ø™ãó¹ìóÖxÿeŸ·Æû/û¼5´e»¢!üBk^ö¹k|ÎeŸ»ÆçDsî³×Е—}öºò2¹†®¼Lg®¡+/Ó™kèÊËtæš\!ºwFˆhˆ/ }·™g}H^ì)V¯9òºÆ¿>$GöÎrMíÞ>9Dæõ‰)~Þ¼>hæõÅÿa?üŸÀKhïRìÝ<{—bïæÙ»{7Ïޥػyö.ÅÞͳw)önž½Kù'„\…Û¿û7Ïþ¥üëZçö0Åγ‡)7Btã£!Ö7†m1Sˆv}.Äòß…Ïc–¿"5ø¦®ž3ÿÝbž¨Æ§bÏ›ÿôœùk¢gË/ÎÆZ8k‡è‹üÄÃ<ø‹üÄÃñß}:>$tæóìGÞ8Ï»Èç¡i:—ƒñt^Úù{XaY<ŒåÐ,í\ÍÒÎÐ,í\ÍÒffrÄÌlf&GÌÌffrÄÌlf&GŽ£™Lü&4«…'±6žÂûðS¼?Ã:¨n›=€êõQú+«~þ(Ý•U?”îʪŸ?jg‚fqÖ¡¾;ÍW.5$~M_õ¸-„«4_¹Îâ?C(ð¦cµ¸‹˜W¬W”Ñïëeô»ÁYP¿œõ»ÁÙP¿œwbÔë߆zÝàœ¨× ¾õºÁ¹P¯œ÷…Äìzýa¿êÎõûÃ|þÏ'Bìµ×ñ$®ÄS¸ ?Å7ð3|3D§ësuõäéú\]ßqº>Wwko¬‘û~ëwu}×éž¡®ï:Ý3Ôõ]§{†º¾ëtÏP×wîêú®Ó=C]ßuºg¨ë»N÷ u}×éž¡®¾<Ý3ÔÕ—§{†ºúòtÏPW_žžõåéyQ_Þ3:ĆW ³!qêü Çâß8¯àÓxé××ù’ÚâÄ4l‹âûÄ<ðT^¨ÅMñýøÖqý_×y¢âð>È߬‹¬çu×½N›+‰Sirs%q*ím®$N}ù°©|˜¹’8uj‚h/¢UœóZSõ ³%qªÞ`¶$N}>D6m‰ý|‡M;ð܉âÛXw¡Ÿ½i7ÖÇ=H§lo")“C4]¥MÀý8ßÅIxã÷b¾‡|Üö†ÞÇßåèç¼‘óøµ‡ð¯9ä5qÆgñNÅ£è9¶7öºøõcby•þ>ò‹Û›¸ÎwnoŠÓ\Owýyügà‡ø‚û)îÇß÷‘x¦¸™8þþæýÇ®ÏÂO–M?ŽsPþ¦Ñ¬éò7FM—¿ióC¸«[G–‡Hy‘﹫»øU±üÈ'?ºÈ|ò£‹üÈ'?ºÈ|ãQ^䛀ò!ßD´ÿù&¡ýÍg»Øß|Öè®>ï5±}ÎgŸ»Øç|ö¹‹}ÎgŸ»Øç|žû®ž^Ç ÝÕ _ÇÞ¸2DºÚÿ|ÓÐÞç³÷]í}>{ßÕÞç‹ÿ›B>:_üßÒ£GVI¶ç}¿áOï…ÍÕ%$¥ëѹºbfì†Éس`ÌŠ=1öÂìØs`¼ ûbN쇷ãh–åê¹ñĨ0/Ä|8óã`,€C° ÅB8 ‡è¶´`&l›‚f¶gÐLØö,š Û¦â}!:ïókf 7Ð½é‡ ôCoúaýÐ[Ýå¾ÇQÓAoæöþ¶ÝB,›çmÛ=oÛèyÛöDÏÛ¶zÞ¶½Ñó¶íƒž·-}Û¶Ÿs½&Ûí!”çÓï¥oÍÉíÅä[W1Ï7ùZˆ~1Ä–m‘ÞùBb‘e!Ü]$„cðLÅ;±3ÒǺ`1´¹wG9xw ”{w—D9sw)”w—F9qw”w—E{}w9ìëçå÷ó^—«Ç»+ OzwEìï~÷—‹+‰y»+㬂æêÝUqVÃÁ^_Ðë_W¿&¾KlNÝm¶†fú±áîv_ÞÞmÍ@ë~Œï¸ÛÚ…tþ±ÑXŸÂûPÿí]Äû^Ç;p¥ëzé±±X‰¿»õÐcO£zL?ñÏÐG©¹Þwz\¿›÷:¦özË÷ÞÅðM,Ž«±® Ñ›O…ض–!¡Ú·!ñ§1xý¬‚YCèùbÿœržÍõï\÷³ fw~ÑùÓø½ãÇŽŸ\£=¢;¢Rï'Ôñsêø„:~N¿>©^ŸS¯'Õësêõ¤z}î¹íS2ÄîøKáGX?Æ2ø –Åã<ô·!rO1q9ñ ,'±ÒS}*"Õ§~†•ñs¬‚_`Uä©úTÃ/±:ò¯^ð¹ÅÅw‰Ï` <‹wã9¼ÏcMüåù<Áû´Ö¤Öšô!ÒZ“è¤÷é¬ItÒûtÖ¤øßܪÒE9ë#]”³ÒE9"]”³~nqÞ¡³9y™ŽËùk<`çÉâwQ¿¼|Í“Ëô\çgð=|¡>yù0š#—àt¤år6ö9§± Òò̓ËÇðy|õÇËéh~\æ­:›—=KΦ^ÿ¦à×g¹ÿ;c³1þwÅæ`üÙš¹Ï;ålŽç\Ÿëzüï‹=,>-ðk×ç¹~Í•Ëöl_ÿ©ž7¿"3c:êCûžt½ÀÒ8Õ÷æÜןö —ÅÁX‡`yŠpVÄᨮ7è}úÙ¾âÊ8ÕwŽ;r^韑jüqýá·'Bä:¿°™/¸Î/læ ®ó ›ÿ¶?úÁãzÇozÇuÞa3pwØÌ#\ç6ÿ~§iW=…4í*õô;M»j,Ò´«Æ!M»Jíüþ)Òí¿†ðsœˆ_à$<“CBíu!ñr#\¼Ooûû/­^{ƒ¸1nÄ&¸ ›ºoßÿµïµ7‹Sp 6íØ·áÃ^'þ¥ñkÓG—[ }t™®®M]ÖjÓG—[!}t¹5ÒG—ÛxŸ¼ù—'¨M']~÷b[¤/?†ï`;¯“Wÿ¦‹÷‹Û‡è4ž¦®ù4§©{?ò4uë„„¾Cf\Ñ\ŽÜ!òÍ‘ør <Šà1l‰ïc+LÇÖø¶ÁñQüÛâÇø~‚íð8¶Çøx­7‡ð=øÍIq<…ñS섟a*~Žñ äk¿9]ñKì†_aw<ƒ=ð,öÄsØ+$¼´/$µŒóìû±¾‹}ñöÃø¾‡ýñ>F- IUîÇÅhF-Áp)>ˆË°.¾‚õp9ÖÇW‘~º5D’þ¿&n(Þ&þK¼B,ŸF½Žòi¨¹œô·x¥X>Z…òiÔ(ŸŠ”pþ¦s¹4j5Ê¥QkP.Z‹rièŸqEü–X.Z‡riÔz”K£6 \µ[{ýN¯¿*Þ$nƒ›Q.Ú‚riÔV|ÌÏ.é|›sù4ômï¡-†îÂkîÑCw;ÿ×k¶{M{ñ1o2t/ò$C÷!/2ôäE†îGdè»H ="1ãsèAäA†¾‡ >o‡Ï“+C‰£xñ&¹¿Óý!d*àümçqvÂݘŠ{°3îÅ.!ac«Ôç¶Fßyc¼Žâ l‹7ñ1üÛa¶Ç[øxH"]6vÀvDßuc'Œb*&bgô7Òµ}=\ÑÒÎiÛ¾™¶í›iÛ¾ÉHÛöÍ‚´m߬HÛö5ë7Ò¶}Íù´mßHÛö½ iÛ¾9‘¶íKóÕ—‹–Ó¸}sÑ ´Î?߆„êSCâÏ4]OZýŸ HÃüóëÓ\/ŠÓ±>‡Åñy”gÕg =¯þ–™èûWŸ…~VNz°ªùXÕL¬Ês}ûtˆ-jãñœ€-Ct‹™Ðß Ùb&ô§7•‘FÝÅfCŸ³©¤¸‡ØŒèo–l1ú›%ç6„Ø~öí‹!Ò¢¤x£˜Ÿ}û{±Ï;·IÌûÛŒ¼ß¹-h.¿ýƒûfÕ¹­â)¸ ù¼sÛ‘Ÿ;·ù¼s;‘;÷6òiçv!ýsn7ògçö ?wn/ò&Å/…¤/áe\Œâü —â߸ ¯à+x—ã?ø*^Ã×ð_\×ñõð‚\j(ÿGªýdµÿ‚œj$·^SäÖ rªQBˆþò`ˆ­ài~©‹<Í/õ§ù¥>ò4¿4@ž¦Ü=!éëó!,Ô+øåjŠé¤r÷â7X ¿ÅÚx!$t’ã¹ô¢Nr<—ŸßIŽçÒ?:ù^¹ô…N¾O.³´“ï“KÍtò}r©™Nr<—šé$Çs©™Nr<—šé$¿s©™Nò;—šé$¿s©™Nò;·çê$¿s{®Nò;·šé$¿sGCt*ÿò`ÞÞ07î›/~BÌ“M¥MäɦÒ"òdSi‘y²©´Èƒ<ÙTäAžl* ò`”oÞòíAºbª<{°(ʯéÕ©òëAy>ÔŒ/?ÍøòO…Èl³¸Éýh7©ƒfp“Ð nBÛ×åYN½‰<Ë)š}¶™Ü¤.šÉMꡙܤ¾ûýÝ_#6“›èýuy™Sk‘—9õ–ëft“†hF7i„ft½¿.sjØŒnÒXÌëœZ/~WÜ$0Î87êv/§à{Ø as<Œ£ùÝÄüžm~71¿§Ð÷B:ð¾Oñü ["Í[‡:¾ ù¡ãÛ‘—9nžLiåþØiöV‡Xæv@¹Ùª#FCd}ÝØK_^Oc÷:Š4v¯cHc÷¢-×ÓØ½hËõ4v/r=]Ý‹&\O÷úéâ^#½Ûë¤w{Gº¶× ¤k{DÏыǨF¿ñ>Ñjô¿­F¿ñ<á%ŸU)ú¬Jür5{ÍE«Ùk^(Zžûirˆ,˜ßõµXß‚¸ áz,Œ°nÄ;pÞ‰›±(nÁbhŸ‚óök!áÁŽ!ñŠ^þ`'¼Búíú‹âT±žþ`gÔÓì‚×B´¼ðMšßÜB3àÛ€fÀ·ê¼¼ð­:/o|«W—7¾MD3àÛ$4¾¡ðm&4¾•WåÍ€o“Í¢çÍ"þ¶Ä‡¾µÄÇî™ ßfqo†{ö¦¼ùðmVñ bÞ7þïC+|èºyñm64/¾UËåÍ‹os =ôímH}K½e{ðÒcÕu}lÊ¡±Sð ûö¾‡ï0ö1¯>öYäÕÇNE^}ì4äåÞ’=xð±ÓÅGñ9Œ®gÈÁk½UÊý°4òæo•ÁB´DzHújxñß•ÿ›F%>Àq$~„£ðc¼éWO!oúÕäM¿‹¼éWãPoûŠ7-Ô3$ž°g…z¡=+Ôiîür±€|+`–êãÚ¿ÎBdí°Øý_Ž×qÞÀ‘xGá8éïFSC8íùñ²§õîµO¹~ Ç„ÄÆÎÚ±Áqÿü§Q¯_;q&áDŒá$Ì„“13¦a2NÁ,ø Úç›Cô ócvy4?fWÀNXS±R;y‡æ¼ÃNÞ¡9ï°“whÎ;ìäšûî;y‡æòµéÅ 3ñ{œÂ’ÏC¤Z^ñâÙø#ÎÁŸp.þŒó¼ÎL«Fc4ýEÔg;¼ã~N÷[âíØ sak÷õßûCôí·BlH7\‡4ûÛëtùŽžr”ŸþŠŠÿ¾Èøßõ*ÁWE'Åodüï{•௿zùë¯ú#ý•ÙT‚¿þjò×_ ÄÃ8à`<ŠCð ÝÕxÁXHîûW؉¾…·Ñ÷¬° ͇ »Ñ|¨°͇ žw¸ùPÁó7*¼ƒæC…ýh>Tx͇ P蘒G ×#*¼‡z@…C¨Ö+Fµ^Ao®Ö+Ųx Ë¡ž0¼<¦cÔ†WD½ax%ü+ãÇX?ÁªH×ÌQ›MÔæµÙDmÎQ›MÔæµÙ$Õbµ8G-’}‘9j±©Zœ£›ªÅ9j±©Zœ£›ªÅ9j±©Zœ£›šùuЉtÞ5ÙTMÎQ“MÕä5ÙTMÎQ“Mõຠ½Žœ£6›ªÍ/2çYçüç<¦-3†iFËÌ£ašÑ2óh˜f´Ì<¦-3NiFËÌ£SšÑ2óè”fw…0jUˆd¹(¦WšÕ@z¥ÙÝH¯4»é”f5qÞ‹s±ÎÃÚ8ïÃñ~\€up!>€/¡™<ïe4{ç-Âz¸ÍØyK°.ņ¸ …h‡ÄË)Ÿ;$áŒáFÌ„›03êQ’‘êÍØY‘ê i¡Ù‘êi¡·!-Ô!'ÒBnGZ¨C.¤…:äFZ¨C¤…:äEµÓ!ª™ùÑüèP`AŒÿ»ý¢!ÖûdÙ½fC1ç§Ô¹Ù1ì)4;†A³cØX4;†£­ûnÚx˜9²›66iÀaò$ûâ;üt—…H»³â%âñ¼üΗ:§£§g ‘"ÍCèüGÚë\tÅû¿ÑÕåC¤b¿­¼"$}ß_LJ]¯àºz¯ü£X¿­üê·•Æyø òv•Åñ7\¢/¿b­â´7//ćð%lŒ/c\„MC4­sˆÝ—Þ’&ÁxGE;éüN…Eq4çï{ –À±X2$”RKgé‡Rjéìí¨–ÎæBkt67ª¥³yBBeèâÈ]ü ÛàÏ!ôL áŸøß«yTü ¶Å_ñ1ü ÛáïØÿ‡ãØ/¡5½xiµ‹"v‘¯L£]¤á*ÓhùñÊ]‘¨ÜÍÑÝù?³ê«4Ü_™‹×pþ‹fÚבö{à.À›¸ÿ×BH:í<ÃùËx Ñ…c—`.Å(.ÃD|“p9ÆðUÌ„qý™éæ“ñuÌ‚ôòƒY‘^~0¾Ù‘§Î7 ÑQzKµúƒb½àB]Ô .Ôß±>ê p¡!ê¡pá!Ô.4F=uú>¯Œ¸‰ø’ø'qYqS±žp!ÿtýg×ùÑ ÍÄzÃ…æ¨7\xõ† -ðjïZï¶íÑz·}‰•‘V¼ÙÍçÞ+®"ˆUqVÃÁXiƛݽ®–ø.ñP¬Dó»w#öî=ȗݤa·Õ×Ä{qÖÂÑXŸÂûp Þc±òg7{zÿ}âÄO‹{‰ï?(6Gß­‹\ïízìƒ`_Ô`ß­çþD¬“\ïçz]|ëa¬Ob€ ½¾×OƆ˜æú@×ÍÌ›ƒÐ̼9ÍÌ›CPÝŠÄ㻼~Šx˜8Eü˜~QÝ>¬n_T·«ÛÕíÃòèEuû°,^|åÊ‹ P®¼¸åÊ‹/¡yñe”#/.B9òâb”#/.AóöŒš™§fΨ™yj挚™§fΨ™yj挚™§fΨ™yj挚™§fΨ™yj挚™gnžQ+óÌÍ3jdÞ妙…·àÜ꺚™gŽžQ+óÔʵ2O­œQ+óÔʵ2Ï=óþ"ûÌégÑœ¡ß'rnV8fõˆ¯Côõ!ÖI®fÎùNç´ÏŸ›Blí³¸§†è_÷‡Ø[9±ÞŽ ~ù÷θ®~펆ð+ü÷Ûb{ø÷.´‡ïÆFîs?¾úöß{\Hœ.6Ú}€ñÛû!êß›Qëã>l‚ï }n÷‘ûúúßûÅ)ø.6ÃØâÃøê«WäÃzùðŽÙñheñp±>|eêÃWF¢>|eÆ_?õá+O¡>|e ¶Â±Ø:D®›7[üüëæÍsåºy³Å\¹nÞl¹Æ0ë®Èû½z]ë²!úëé{}­Xk­',6WÚ˜+‹Í•6æÊbùÙF~.–ŸmäçbùÙF~.–ŸmäçbùÙF~.–Ÿmäço‡BâÊ!<º2„¿?‚G°%ÅV!a‚|ºGžMO÷üB‘ ÎåÔ=rm‚ºG®MC÷ȵ rè¹6ÂÏËü8úy™õÓ*ÿ:®;h«Ä!¶—÷žº<$=ØØk†zͦ2MpíUךàkØTîÝ IóW‡„³ä×ü5r—/,˜ö žs=âº5™¶\|_ůñ5üW ¹u6ÁëÞ¿.6¿ÎFÅëÄ+Åß!ïUØ;›èúzñâ*lžM[jòl’ûžÿl 7b&Ü„™q3&ã–°ÄšµQ“K¬Yë´Äzµ±NK¬Wë´Äzµ±Nw&yn5¸Äºµ‰SíµùËu~‰úk£—¨¿6êqIKTKZá?ØéÚ%mð_|¯c[¼áMl‡ÿ…è“?„XI^ãÉ‘×xò'ä5¶ ±G|ø¿@>/l/Ž…èÚ#!Öc űx õóµï£>¾6Ç㨯ý'†„Õ|m7¾v5_Ûí.äg»ñ³«ùÙnüìj~¶?»šŸíÆÏ®æg»ñ³«ùÙnüìj~¶?»šŸíÆÏ®æg»ñ³«ùÙnüìj~¶?»šŸíÆÏ®æg»ñ³«ùÙnüìj~¶?»šŸíÆÏ®æg»ñ«ùÙnð|å_·Æ(çº5á›9—wÝäÝj~­[ òkÝâ×Wbs\…ãØßÄGp5¶Ä5¨fV¯ÅÖ!ÚÛßa­{ÿŒÖº÷/È×õþùºÞ¿!_×ûw\ˆÿ×B4ÕÚçŒÖ>Yjíó EkŸgZû<ÃÑÚçc…Bl¿+ŒüJ¬ò*±;W‰Ýbïð*1Þø^%ƿëĊ#¯S“ïð*±’È«d–¯í¢ý ±â?b]ü ëáÏXÁø+mÙÛyCçñ¨~6Ûâ|| _ÄvHƒ?»ÍëèÇLcowžŠ;°3îÄ.ø6vÅ]ÈÇ>»»ãì{±'îÃ^!ZŠ—?{'òòg‹†PBO/±JÌÓŸåé— IåÅÁ˜‡`~ŠpÄáXG`aô¹AŸûØèó»ŸÂ¢8ãŸ?‹ã8¤a–=%q<– È,›ˆeB´_ñ‹þÿ7Q•äB þâ—o‘¿øE¾"^§o_¯‹ÇüÆ:}z¦=+®>¯ðëôë+|Ç:}z¦=,n6Ï´wÅ›¡¹Z\½^áGÖéß3Í×âêö mµîG±9[\ý^¡±ÖÑXWh¬u?»ÎÏWÏWh­u¿„EþÌä튫í+t×:ºë ݵÎ<¼Bw­3gò|ÅÕüúk^Eï_§×_Ñû×éõWôþu<ʽEï_Go]Ñó×éïWôüuúûý~þÞþ·tÛóø;Æÿ¼žLom7SSÌÔífjJ×Õôäó¨¦'Ó^éjzò7¨¦'óÕÛÍøù¸Mé亟Ì_o§ESR‘Mé캚Ÿü–‹X¿Ç2ø–Åø¿“.‡z@zyÔÒ+ ^ÅJøVÆß± þ«â!úæ£!Ö5Ûb>†æ\¾j!ñ£ƒXß !ÿ.ÇnÇÇ^×ïrýPH(6&$žÎŽc1ŽC:©ØÓ˜Çãí8sáDÌ|þé<ÈçŸVÅè®Ój ÝuZ £»N«bt×é‚!0Šñú§ÕA1^ÿ´:(ÆëŸVÅxýÓê ¯ZãõO«ƒb¼þiuPŒ&;­ŠÑd§ÕA1šì´:(F“.¢—õõ5zÖe=qÍâ*?é\_\³õÅ5KQ_\£ï\Ö×è;—õÅ5ñ¿ÿ{/C¤ë!©–þ3éÒ7ækb·Üègw£Í×ÄnyCÈœûùÝhB36±MhÆ&v+@»7uNv“Sælb79eÎ&v“3ælb79cÎ&v“+ælb7¹bÎ&vã[ÌÙÄn|‹9›Øo1g»ñ¶ælb7ÞÖœMìÆÓš³‰ÝxZs6±OkÎ&v£c ˜©Çéäfêq:¹€™zœN.`¦§“ ˜©Çéäfêq3´€™z¼ š©ÇÅ·Ð\)°ÃõØ.„ù¿…H¹Šø;Vr}ƒëíq#òø6¡º) oïˆúöquQ@ß>ÎÇЗ«‡zòñ.¨'çß³æp®/çáçÓþåhÿúóñî¨?çå èÏÇ{¢þ|\?. ?7 èÏÇû„„#úÐøïQÿ¯Ýé\ï¯}Û¹þ3þ§¦ðAùÍÏ)ö3›~:$¥ñ°Sìk~³m Ÿ¿­ë_ºž†_á×íq~³kŠ=Îo-¦ÐýùÛ‡¬þ§ØãüúÆ{œßó·ëb9b!¼’"wñÍíºˆ3aWÌŒÝ0»#õJÔëøêv=ÄYʼnbþúsö.s¶Ÿ#òõ9²»nÞÞeÞ¾bÞÞÅ_·ãësXÃv|}ŽÛ¯ÏÁÿµããsðíøø¹Ïá¹O ‰ÓÿÂø7Â+8¯âäGO Åk8 ÿÅáxé¡é7p$ÞÄQøŽÆ | o¡~òœ9¡Ÿ<Aýä9krB?yÎ3ŸÐOžó¬'ô“ç<ë ýä9ÏvB?yŽÿÌ3ƹžò=Ñ·IH¼óclŠŸ` ánÇû·á 4Gú6sÝyN5ç‡âæâ“ø0žÂø)>‚Ÿ…èn½u¨Þ¼[oz1„ÍÕBä¡ÁX‡à]HîÖs‡šƒ›kˆéÃÝzïP½{·Þ;TŽm¾Ûuzqw5±¾»:šwh…Í÷¸7µ»\ÓÏw×@šnsM×GŠïëë»ïAó®B1ç5ÿÏyqG ñ½b=~w-¼¢yߥM‘÷]J[]ä}—ÒTyߥ¼òÅq¨\|õ€‹ãñÚ‹OäYñ±^pq"ê'¡^pq2êi½¥zÁEo©^p‘v[*ÿ¥_x³gˆÜ¿{áët×!’¬ßOÿ0$ÕŽáüGâ'8 ãhn8ÿ¶—οíåã†óÇ+…Hî'±2p¯Î3O¬"Ö÷÷òwÃoˆ«Š‰ù¼áüÝ^>oø®Ë܃ÅüÞð l·ðñ4ºL”3¹‡ˆ;ˆ#Ø\—C¹‡Š;‰£b9”{˜8U̧ïíŒs:Ý3ù#Ìæ:-8ž7?LŽçÍÓ€ãyóÃ4àxÞü0 8ž7?LŽï…4àx¹ø¤ïǾø.öÃ(Äþø>‰‡Ð8|úùò!ÿsøˆxX^äãƒëû‡¡þ~ø}Ôϧã0¯“ùø¤ÃˆÍ¿Ãæàxóï°98Þü;lŽ×;›ƒãÍ¿Ãæàø§B4¦Oïûõé}æPñ}³®ø~×ôì}7PÏÞw3„9‡B¤´Ù1ç°ãˆsº©4ÓË÷ý‡úø¾ ÔÇ÷éãY|VŸ•%þYú¸ÓhLï~Gᄅ§nÓSoê©ÛôÔ›zjü_Ë2Á1Q¬‡Äÿw³Y<â,qÖ^ýŸþ+Aû•0Gnê-Ûô”›zË6=å¦Þ²MO¹©·lÓsoê-Ûô’›zÊ6yvSOÙ¦—ÜÔS¶é!7õ”mjà¦Zئnª…mjà¦Zئnª…mjà¦Zئnª…øÿž4€O/y4„×6„È=üïþ¼ä1äÏK¾Ï ÔIŸÐW ¿\ !ÒU¡×óIŸðË#-U  ^â9.òzI¦â˘‚ºþ½ëzKfâ¿°9þæï'W0î­ÌÞO®:þáchô:æÝß´~óîoZ¿Žy÷7­_Ǽû; öÀ¬Øã¯ï…Ù±7Òð.…XŸ×ñ2®Ä?qþ…oàßø&^ÁÕ!zmAˆm€ q ¾„ƒðeŒ‹p.Æ¡!T‘3×–8§a¯-EšõÚ2$`ªÄBtȈ+gF ‰úïQ¨ÿv§7 ÆIo¤I—Óýwß/¦; êÇÝé΂ְ;ÝYКu§; êÇÝé΂úqwz³ ~ÜÞ,¨w§7 êÇÝéÍ‚Þ,X1D{· ±"ò¾÷£xÛ¢üîýÊïÞíð¶ÿY?|#Øi­lMB(Í?öî(Žb'LÄTä1æ?›ÅvxÛãy|¿ÆøM¹hÅù‹ð¦¢YP÷ÿ´­¸³XîÌï‚re~Wü»!OP/Ÿ×Ñ̹*;Ïï¼{ÝÝãCëóõ ¢ÞY¯vÀÂØÑëz8zzíÏŽ_\/âz'C÷`ˆæÒGÓ;‡0Oß,ÿúi:?K?57Ã<}´lüwè£æg4—>j~Fs飿gB6>ëPNä³ÝŽ<Ö¡\˜†¹q æÁg㦮 áÒ¯âgÅt~¶©˜§aœŽž#ÑüËöœóBøT _ÄÒ¸ËàB,‹/a¹* ËË…¤vŸ„èáBìékø £®ózÙüK!±ùh¼ŒOáŸHûÎÿ iÞùã8¼‚üÈü«8ÿÁ x 'â¿8 ¯ãd¼ix§àø fà³x §†È‹–¬ù4ŒàôÍ‘„“!a ¾,‡êË¥«„„úmCâµÿ¡Ü½öÊÝk—Pî^»Œr÷ÚŸ(w¯ý…òöÚß(o¯ñ õåíµ«!ôù8„æ[}y{M¿êó‰Ø|«/¯ñ õåï5>©O}ƒ§îÃGßȉ'ñv<…ò¤¾ü¾f^õùT,_êËék|SŸÏÄyðsÌëz×ùúòø¿Ñç ×åOý^bž£~oäŸê÷ ‰~lˆÿ÷¦õû:7£ê÷Cþ¢þÈ_ÔïüEý'‘¿¨?c!B‹'ÖVtxbmyO‡'Ö6ÇéðÄÚæ7žXÛ|N£ëjÓËiÍñ$>Œ§°~Šàg!á„Ôy Fq-&â[˜„ë0†ë1ÊÙ|9CäêÿBâùsõ”?WåÕùsU^m?WåÕùsU^m?WåÕùsU^m ¤s8—[äÐU¹µA]•[äÐU¹µaŠŸcýóå˱ Ï„„ë}ø5šãz_TË×û¡Z¾þÚ£ëýÑÞ\Õ2O‘´ÅžðI[ìÁõA¨†¯F5|}Ä¡¨~¯ÃÂ8Õíõ¨n¯Du{}ÅѨ^¯?…êµñ+!1ƒ&h¼i‚Ư"ŸÑ—o¿ñ‘ø51¯Òw¶øcñ qñ±|ì;å_ßyxÂý×Ý@<_¬6¯ó#}ÏSâUbZ¢ñXÏõ®Ë˾ Q>ö} ?wÿM÷iŒÆ«‘Æh¼ù“¾/»ÿ…x­¸‘x‘ø4.Æ/q ~…Kñ .óø žó¾·¼ì»\|^¼NÜXüªøëb9œ¿æÜL黿õšõ^CÃ7Þ€4|㘂›vo¼i÷Æ[ïûº÷]À•hþô]…Ýßê~ ñb^¤ñ61mß÷Mñ¸Í¡Å3C¤Ê‡!Z®»Vé·k÷"ýv¯¬G¿]ã+ëÑo×îCúíšÙ^~»Vé·k ývM­G¿]«‹ôÛµzúÙ`3J©WÌŒêÿ%tÎi„O»a ìŽ%±–žX{yïïÕ‹ê•÷_Ãa¨)Ô+ëzÔÓ?íëúp×ã½{ÞÀ‘H‹Ì…ÿáhäiç?…tp½òÞ×O¡GÓüO"Í?ðŽ ¡ðÂ}azˆ5âÅé—7®£>yƒ~n¤/ÞÐé‹7þCýð†~ØH?¼á;÷7„ \½8Dê|¢óŸ ±æwá³XÃõ%®ËÉÕKñŒëS]¿§á=èç6§ßW/sÿ¬ø9±ýžÿ<Úïù3Ð~çï¾l‹üÝ—!÷e;äï¾lüÝ—#÷e‡ÝKƒ U÷Ò`#hÕ«ÃBlC ÇfæØ{!ñáfôŽ\¡%’YÛ¹zqï¡)’UëÉe¼—¶H:D§ÑI‡ªàT¬ŠÓ°NÇê^¯w—á»éФCÖ€®H:d æêåe̦¹zy™Û]73Yú"é5 /’Éuú"éн^§×—É…z}™Ü®ËýCÖ‚ÎH:d-茤CúÔÜÏÜÏ#V‡Ô½‘tHšû¹ëyÅjáPüùÔÂ!µ@w$ªëþîÓ{sOc~×ÕÆ¡zÈÛªïú—®ó8‡ s¨!ò8‡!sˆÇÉÆïÒ?²œ 3J†¤éX ?ÀÒø!–A½tFYÔCgÐ9 >Áòx+ Þ9£"ê™3*¡^9£2~ŠUЬ›QÍêL¯8¯æ\ÜÅÛ 1‡wµ@Úa3ä*¶ÄgB+ìâY‡ü‹|ê¹½‹O"·wñ£Cäö.~tˆÜÞőۻxÐ!fý.” IØÕÍù]ÑœßÕ Íù]©˜Bf½·lüïÕ ±Ö#ð0Ž Ñ3…Bl=ü¶~˜ÿ9SXü«X ?¼ŸÄµ®q÷;Ã3ÎãýÎðŠóx¿3¼â<ÞïL1¼„Å‘†ºïBHüóéz›A×i¢û¾Ç‹8¿Ç‰!:áZˆÕäË&Ð5ù² ב/›pù² 7Ñ÷šð®Á ô}z¯á?ÚàZ|ßBµ×{ª½ÞëQíõÞ€j¯÷FT{½7¡Úë½;âì„[1·!/£…›ó© æBs>5Á=p‘–O¡å§‹éÔß‹õ„KωéÕ¾Ozõ€ï“…^=àûd¡Wø>YèÕ¾Ozõ€ï“…N=ð›÷kÜ—žÓ©~›‰—f Ùwé×éÖÿ›}—fbKœåº¾{À÷΢ï —³è».»ßÊ}ú#Ÿ¼Imí|Ž{zñ:‹^|€†Î¢PYhÓW¼®×Ñ&©â<×éÔê" z@]d¡S\ó™Ö/ ­zÀìJmëµtK*x‰^Im‡ ܧa¨™,4ìº9•¼´PÈuµ”Åœ= –²˜™ÔR³ò ZÊbVTKYÌÆƒj)‹ÙxP-e1ÒÌYÌÆƒ4s³ñ` ÍÆƒ™ÐLñ ý™e¶ƒ7‹Mp*6Åi˜‚ê¡›™S ŠØ¬ Ïas|Fù< ¾€ <Ðåq73ª@Uq+±¼ÐéåmPNxåd73¬@5q[±¼ðÊ»íPÞu3Ó TG3­À]®·w]Þu3Ó Ô@3­ÀÝh¦ [º™aj¢ì¦æ Üë í+&‡Ä ôoºöê7â,bú·}{õ[¤W¯ê ³ºþ*fÃ×0;zM:öª~Q1‡øu¼ WbN\…·#MۃνªŸôp~U?«˜Ëõ717®Æ<È«UÌ‹¼ZÅ|øVÒæå™y´!ܹÌy²óM˜7cVÜ‚òû ¹ýFñVÇ6Çö}(Hºù.ÀXb!| ã!,‚‡ñ<‚wâQ,ŠÇB´Å‰K‹'qžÂ§ñSŸá„­sýßá xgâ÷8 @¹_¦HH<çû—¹}ÿ>,¢Sø°ˆLáÃ"j0eŒc¬cœ8·#ƒ~©ó»Ï¡Mëü_ ÑÃæØøhŽß‰æØø·Cä»z!qñû!´áÕ~àe¿«/¶®mh¡Æ!OöOû]×?À†ÿ=ÿŽ/_Lû}Ç—/¦ù¾ãËÓrßñå‹i·ïøòÅ´Ûw|ùbÚì;¾|1m¶ô£ØV߬"„Ïy륋åñÒOPÿ¬ÒõÛÅÇÅòwé |O¢~Yÿ”û|òÒSâŽø)vÂÏ0?ÇÎøvÁÓȳÔç?Ï-þRÜ ¿Âîx{àYì‰çoYzù•¥_cüù“¥ß"¿±”žhK£,¥#ÚÒ&K鈶O†èª3!ÖÙþ®:‹öwÕ9´¿“k…X­‹X¿ÇûþY¸3Äéƒoc_Ü…ýp7>{°?îEŸ¿p!;ß¶ðçCÈq9D¿qÿe?ï÷ãÿú®a!Òb3Ç-8·âH܆£P|ã3^ÖsvïÀ§p'ŽÁ·Qn´Ø…ãpwˆfù8$ŸàSxÇ ŸtPdᓪƒ,|ÒAuåSTY>Cuås¤³²|“ð4NÑ¡åC¬Ü§XùúB¤æ>qEñçX ¿¡_ÖnÆÿ¦ËòÝ í—ML?ôËŽñ¿í’á:Ï_ÈœL¹å\_/dV’(I‘ÅÁ%˜€<?þýf qT¬4KDz¹Y.ÇêqÍ2¡×Lω¬ѦC,”ÃIX'cLÊ8ù¡%‡C¤Z¢˜Ç üPS/ðCMyºÀ5åé?Ô”§ Õ‘— |PS^.ÔÑ—ÔmK:ó%uÛ’Î|‰þlùÒŸ-×!ýÙr=Þ !¼õbˆÔ=¢– Ör#FpSˆ,0w[¨›æn u°ÀÜm‘ÍÝyq6æC³·E~œ‹pÄùX_ĸ‹àB¼_Â;ñe,Š‹°.Æâ¸KàR,‰ËÐ<YŸn©Ï½œ ·bv܆úuËíxîÀœ¸oÇ·1îB½¯ånÔÿZîÁ¼¸7„Ñj3«òr>ñ¾Ð‰>È]éƒÜtB'ú 7Љ>ÈM't¢ rÛ¿ãüÆ´sÈ_L;üÅ´¯‘¿˜ö òÓ¾EþbÚä/¦}‡%P}/‰êûx)TßÇKãX²H Ÿ~0$ͦ‘O×Eùt=Œ_¯4òéH#Ÿnˆ4çéFHg~iöÓMMÅ8.9.‡È;×Câ¨ÉxÓð&NÁÿðÌÀgñÒ0)?…p¾lˆìbZ&ågq9äÁΗw=âút1-}žŽJ¡×Ïóý)túùJî'¸Oë¤Ðçç+‹£bš'åqq¢x&á Ù˜ gafÔr›)—¼§ªkôǨ9HwŒš¢#ClOP…vzWÿj«½«ÅÿÎèmfuÆ(÷y…*4U½¯ŠÏ«B?U¡ªÌs´û¼Cš© ½Tec¡Cÿ¨òrˆ^y!ÄÖ÷Ä™Ø gaoœzó•9¨7_™‹zó•y¨7_™zó•Qo¾²àBˆ/á |ã"⻫¿¶¼âÍXˆm='V‡mùŽwÕa|6¾«ÍÄèÍLîËÁ›™QÞLF9x3 ÊÁ›YQÞ̆ßy–>ßófv1]uÛfç9·‰¿wüs¼bGh¨œ«6Ïv™ÏªÍ³]æ³jók—ïD~í2ŸU›_»\,„‚]ól—‹#Ïv¹š—y°ÚfÇe=»¶Ùq™«mv\ÖSk›—õÔoRCÒË|è7‘ý¦ ò¡ßtEßå›nȇ~ÓùÐoz úMO¤Ó¿é…´ú7½‘ý¦ÞÂtš¤ˆÞÿM_1-üM?¼=„d}ñù÷M±y`Dß²~=G¡õëI§¼uåÊ[GNyë(òÃ™ë†Ø»ÅCôOõ°6þ» ï I_«¡…´a…åâûÅúy¹:È›|ÀN©‚ü甪ÈN©†æÊ”ê!Ly Dò?-6_¦˜ß?´±W¬o~ëû ¿›ßú~bnµW厢½*w íU¹÷‘¾.—Žôu9z{(}]ŽÞJ_—£·‡Ò×åèí¡ôu9z{(}]ŽÞJ_—£·‡Ò×åhçÛõŽ¡;§“ý=´…sº{è#ø¶Äϱ~­ñ4¶Á/ñQü Ûâ™6óÀM ÑëôÊ–Î!!¢Öw©‰ÁcBbY?¢æ¼ÒýüÁÖ´lD¬Ç¦û¹ƒÇ‰ðiŒº®ï¦óƒÇ‹Åzpºï5x‚8 'b 'a&œŒ™½NŸN÷½§‰“Q>—Í‚ò¹,-XSO÷<ƒåuYZ°&á“N'Ö¤ûÒ=×`y^6;Ú‡²9Ð>”½ åxYþc°/Ëo –ãeé£Ár¼¬þÅ×ÊüM?lÅ5ÍÞô#hÖ¦ËÁ{ý×b³5ýš©éüZͨ‡Ý_Û^ó êåe¾ÅNxS‘ÿÄï–i‹{ЗÈkú ÇáTëƒÎâx<‡æÜ óޝ߈':&9&‡„¹/‡¤”º¸ëáb¬K°.ņ¸ á+ø.G:oî«HëÍ} ›â LÁבš»›ã*äæ¾<ÍÜ7ñ\-q ¶ÂµØ:„Lœ¿å¼ ®ÃGq=Ê™¹PÎÌ݈rfî&”3s7£œ™»åÌ\9–"gæÊ±93WŽ¥È™¹r,EÎÌ•c)rf®K‘3såXŠœ™+ÇRäÌ\9–"gæÊ±93WŽ¥È™¹r,¥wwltl˵úæžö~a®œKé뜧½ƒ_˜+÷RäÒ\¹—b&Ì•{)|ù ~}ë“ȯo€üúÖȯo„ßã`¤¶ÒfËÃßV‹›é7~B3ûÆÏÈKßøyé´ÍVZôm³•½AÛlå¡oÐ6[Í«´ÌVú³•‡¾AÇlå¡oÐ1[ŸF:fëxü'Ð<µœ_q>¯â$üiù×–¿ñ/Òò7hü­tÊ ž±ŒY3ˆg,Ã+¾÷Oˆ£AÞ»†›Cä¸Ù0Mo>n6LÓ“› Óôàãf´OéërÜ\˜¦¿7¦é£ÇÍ…iæÂqsaÚéy<„ /‰Í‡iæÃqóašùpÜ|˜v&$ñºSÑýSæd÷Oý€îŸâoŠèƒ§ø›"úà)þ¦ˆ>xŠ¿)¢¿âoŠèa§xФœ!ú};ëKÔSgÑYõÔƒÖ5«žzкf¥kòUíÿPµY~Œ~‘î\}–Â!’¨Þ†ªÓòãÄ Åtß3,‘Î+ü{j·¼Úªv˫ݡj·¼ÚziÔ¡_ã$½è¦su\>þyßbZˆŽ¾=Īð–ñƒò…ØNß)äGßéÝ4»} Äö<D{ ¡=|åο¼îm¯³¯¿Üiï¹Ó¾þrgüýüåÎø}þrç5zþ ç<æÎ½w—÷Ư½é|·sùøÎò!ð;y¾Àwî¼éþ÷ã×ͯ¼_0¿vf¸¾×õøë̱<`0ÇÞ–~¡<òz¡òt¡"òrItҾ⼄ÏJªç¼„½ZBüoÀ=Ð4D¶ ±øßw*ÿïà[9¿…­C,þ7žÊÎ í+„¤ǰ"š_ýׄÁsö_‹ò¡}%×íaûÊhÚWÁ±*~„Õðc¬ŽŸà]xkà ¼Oâ=Hóôçm2äWûšb9ÞXžµ¿WüY…ìuûZÎ?ÇÚøÒ~9N#Í—ãK{¯µ§ûr|… ‚ÕÐ:î«"ëK„Ä^k°$®ÅRø–FÏÒø©¾’këˈ×cYÜ€åP¯l¬&¾’cëË‹7aÔ öG·Åñ1üÛáql¼ßèÇ‘÷Ýy¿Ñ‘÷Ý y¿Ñ©Èûßè.HŽîÊ»ËÏózØ~p4 ½_ýŽîŽg°G ´ë~~j4í¸ŸŸÝ y©Ñ¼Ô~^jtüû¢ž=ºŸÏ¼î3k‹õîøÿ?g¿Þ=ZO߯wÖ»öëÝ£õôýz÷h=}Ÿ6BÛ§‡Åÿ›¥}zÓpŸÞ4BïÚ§7лöéM#hÛËBôÓGÖþuûBÁ8(ÄJáµ_C¤fñ`qüú,„C±0Ã"8ïÀx'ŽÄ¢8 ‹áhä3>…%g-]Çb©^¤5˵Á<øhˆÔ×Nð­/æ·Ez¾Üc®ëq'ô²ó‹ã›¾Æÿ}A|Ü}=ï^P;a6Œá«Ç_¬ž ùÅꙑ_¬žŒübõ,!zëI} !ÀF8Bë°³1zþMÐóïŒÿ·/±4y#fBs9=3nÆdÔ—Ó³àVÌŠÛBHû/ªBÑÏ\ËæÚvÌŽt^z”Ë¿Óô«²!M¿ŠVÿ–_E«ÿN»¯¢Õ§ÝWå áÑCø)«˜†_Åÿ=ú‘˜æôcŒ¿¦_•Kü‰8ÇøûiüU¹Å'ÄñÏá“~Š¿_¿ø‰æÿö_•G¬_üd?~çVåë?ůŽöãwž`•ýøï]e~ç{WÙ‡ßç`A½…W~ø»”¨Ç<|Í“‡¿ÇIøš%ÿˆiøN mÊ…¤ä#X¢~™¬_¶Ñ/“ßGý1Yl£?&ëmôÇdý±þ˜¬?¶Ñ“õÇ6úc²þØFLÖÛèÉúcý1Yl£?&ŸB}1ùSÔ“íI½0Y/l£&ë…môÂd½°^˜ü%êƒÉú`}0Yl£&ëƒmôÁd}°>˜¬¶Ñ“õÁ6ú`ò7!„¼I›ÆH7´i‚tC›¦H7´IÁCôÈõ›°oàÛxw¡þ:a7ê¯ö þ:aoˆÕ¶'ðaG#ȇMÀýÅw1„P1ê<ÉùÁQ;Ä*òø#îÃïCäíŒ8„?kº,„³¼ÛÛæã©!²Ë|2 ÍÇ!üYî%ÎÍÈ!Ï¡9äyLĘ„/øŒW|Æ9\Ž|_ÓWñk÷cîÏÄL8Ëõ×\·^MW ·+³ë³Å¯‹y¹]Éâ9˜纾ÒõïÄYÅó0òÜMW¹~Qœ]Ìk7}Cì™vå/ÀÛp!æDzn×íø2æÂE˜cŒ?_^\ŠùpæÇW°.Ñg§†Ø4ç³Óðn¤E¸iÑjâóx/ÎÀZøÖ¦]^‘+fÉz3£½ýµ…ØLYof\1SÖ›WÌ”õ=Ð,Yo^\1KÖ›WÌ’õæÅsd½yqÅYo^\1GâÿÙÛ»„¤÷õºÛ»¢^w{7ÔënïŽYBÂþqßw„œÀ÷á'ð}GøÇ |ßþqßw„œÀ÷á'ð}GøÇ |ß¾qí¸ã·4èEüàÿp!þ/á%|/ã"üã_¸$„ñÇC$×mâ¿ÅKñ .ëø þƒòf<íž+§øšøUü_Ãë¸oàëxåÅx?—¾6žÆÏ¥Žÿõ½ñô}.}l¼Ù˜K_o6æÊ‡fc®üh6æ2󯛹ô±ñg°ª\…ññsþósäYæ÷œg8oá›!a'Y8huH?:$ÝãµãŸÂ;p Þ‰c±hHȰÆ;¬q†5Þa3¬ñkœawXã k¼Ãgðæ;èó Þ|‡~šÁ›ï˜Âì,!R’÷ÍàÑwè«æå}5Ã|Ü¡¯f˜ƒ;ôÕ spÇ3HçïxéüS‘Îß1 éüÓ‘ÆßñœÏ5WJòÒ´þŽçñÎpÝ\*É[gèë;Ôõls¦$¡¿ï˜‰úûu<Û¼*ÙÍ›’ÄïìœØoGž;Cÿß1õÿsPÿß¡žg›?%ãßýgñ<üÕóls¨$]0›.(ù(š?%éÙæOÉÇÐü)IÌ6Jҳ递¼ÚìBØ cG,‚ðŒÿ½÷_}¾ÜÍÃ;än†Þ!w3äð¹›!‡w¼B–Îåñù›!wè oðåÖücg¹õïØYn½Awu–[oÐ]¿Ñçx£zïñI|Q¶Kb©Þ!¤±êFzê9¾¨ÞÇÑmw6Är<‹çp*žÇiø5NÇoð9üŸ!ŸýNð3w™K ~æ.s)ÖÛe.%Ðz»Ì¥Zo—¹”@ëíú:DûùEÍ~¾CQs [{çã1Yd<ò˜E&à5œˆ¼d‘IÈ癌ήÿž$Î$¦“³ëC‡éöy™ÅM?.ÓTɽìzÓaÚ}žÞU&õš2ÍPo)c¿çé)eö:½ë0 Ÿ]ï:LÃg×»«‹ìz×au‘]ï:¬.²Ç?Sß:<Ýa·ÑØ)4ö¶ß±RˆãI&UçI{†¤Û"Ø °7F±&b_LÂ~È+<Ê·gá¹–™¹Õé‘efnõ×]oãú ±Ù[}¥øQñMl‹ÿ¹nW_%~LœB)óþÑvÎo9¯í¼}ˆ)°LmUç}\Á˜€1ª&„°ªLˆÔî¢ù‘{ͤUeÅ}Ä|ɽúÆD¾ä^>lö‡!ÖÄÜ(:*$~‘B·Z!üm†-V·Ýh¿yån÷¡}ïv?Æ_ÿ”û¾Lüßéu«ãš½]ê4:„—~ ‘JeB´úÓ!éçÒ8ãñ,‹±NÂò8yÄêihýKš½%ÍÝ—~ò9eçvoŠ{•œçqþŒóÊÎÍà’ùBB­±!ñR.‡¹ñĩã1/NÀøë&¢9ÝÛ³üëYz{–=K­I®ÀÉhn÷ö<ÿŽÃÐ ­•æz!ä¯.FþêR÷tßl­Åg]2£kñY—ÌèZ|Ö%3ºu©òS—Š#ÿt‰·©Å']â]¼b¥Ôà€tÔ·^;Æ+Ó]>ëW¯½/¦¿Ø£R£ð#T‹>F{òZºûöìµð‰ëcð8ªÉ'о 8‰Oã)T‹>Å Þ÷¡÷ÙÃ×>Âl®æúDüÕäk»ž]ü…x2žÆ4ü§¸ÿ‰ûzêktXÍÛ\ÿÊuõ6à ª·æQ)õ6À<*¥Þ˜G¥Ì¡æQ)sh€yTêy4JÍÀ ø~‡3ñ"ÎÂïq6þ€zÙ€ÑÌãçæ ÿVÍIkâ¼7$œ~,$ÍÎÀvx+D?»3Ä^ø‹â/X Åâø–ÀßCÈ¡F?+éüX ÿÑúá¯úáËæR¥ubýðW{PC?üU?¬¡þjÍñGãø§CüÑ8þéo4Ž:CþéP&47eFs³‚ú=”ìü ó7ýl}ëP±y_aµó¬ÎÍúCÙЬ?”`4ë݆ÇBt…½êhmWØ£ŽæÆú­!RÿO܆ávüwà4Ûê_Eó¤þ?¸ ¯y¿½í¨®ß-þ7$LÌ’jîÁ¼¸óá>Ìï„0¼mˆdš/. Þñ],„°0Ä"虊¶Ãóšiâ®Â;ñ0EÞ}b1äÝ'GÞ}b äÝ'–ÄtŸñ¶óRÎù÷‰¥‘ŸXù÷‰e‘ŸXù÷‰å‘ŸXù÷‰ñd™q^É9?±2~¢ÃÕKEu2\½TT'ÃÕKEu2\½T4³†«—Šêb¸ú¨8 ­yEõ0ÜšWTí]Eóf¸º¨H+Ïn’_ÅVhGÑ YÚˆ[‹¯a´Æ³ÅëØo ¼m|åmãÿ°=ÊãÙã-쒌ĄÙÑ<šÝ Í£Ù©hÍîŒæÑlþ­IRˆŽ•ƒÕ7¡¬¾å`õ-(«oEžn¬œ«¾Í!O• ‰¥×‡P³Qé´Ê ²â XÎQÞùF‡Ï»þTˆmi‰c°ŽÅÖ8=g¡á!ñd G`&‰™ÑŒ9™ŒfËI>²r2+ŽÁl¨ŸÌŽúøI}%þß‚6Ø¢«Õk×bz«[­n»žDuÛÕ>ß’¦ÓäÇ·agÜîØáØé3Çw9v;äóq¹|\Ç!oËÙãòõøAïµnÓyÞéüît^wz‡Ù?ÝÜŸnæO7ï§›õÓÍùéO8ú;ž !™^y†Ö+à³îz,$þ¬—$ñwµsþ?làãx ;àeìˆb'ü SñoìŒWBBášÖAþ¾Ó±~BW³â¯­hFüµÍõÚ®«…Â÷¡Z(|?~BäµCB”®ÝÃûEiÚ=´Wä÷‰iÛ=ñÿ»WHlö+öFh~ô õîáÓT¼;»Þ×õÿa?üŸÀKØ/㓨÷Ô+êõ]ÄÄá@üá•ÝP?Äzÿ POš}'Oeß2øûK¿ßÁÏgðõ;øù ¾~?ŸÁ×ïXŽ|ýŽWCb´qˆí)*7’—fÙ Æh– j‚f× ¦hF JA³bP3<ÍQ/»ä:m™NwâÉJódƒx²ÒŸºN_Ö¤-ÓãÿŽà9×y´Ò<Ú ~©46ˆ_*Íÿjíhãà“JŸv|éø*D+êeÞG½ì‚ÞµÐ÷¨(§úÍÊŠzÛ…øßLó}*æëq>DýíÂG¨¿]øõ· ŸxÝI¯»]¬Ï]8.ö]+æëwN ~wAMTÔï.œBýî‚ÞVQ¯»ðêu>Ç*È[V¬Š§CBÛL!)ë*ÌŒo`2¾‰Yp5fÅ5˜ ׆„cCÒà!Œÿ7DrÕ—_˵4ßàRHó .íú ×é­ñ7‘ÞÿÖqŸ\iÁÁ4Þø ×Ó„ƒË!M8¸¼ë·\ÿ^¥€u1‚õܧW@ºppE¤ WÂg±2NÅ*8 «z_‚÷ÕG¾&Wä_r5tŸö\M̯äÒ÷&ð%¹B~$Wc÷ŸsŸØù<Þå:_’«‰x†¸¾€w»Î§äj*ž)¾GÌ£äJÏÓ&;i”Á´ÉNep|Ýæb|½æ¡ZÜ9ï Eö‡ÄOõÐ"ïâ£!¡N‰ø—žU§$î£9ÿáºçªSJläÚ%×þ×{Xã¿7_¯imöÑÌ#y‡Ür5EΟ;êý<Ò:í£ŸGZŸ}ôóHë³^™Éëè…s4ë>ºydfñóbšu½<Òz죗GZ‡}ôòH^m<’WÛG'äÍSfx= »^™éå‘·!½<2'ÒË#oGzyd.|ÍÒ}31μ8óá¤ïs««Ü:ô‚}s]ãrë‡ GÄóÄq>±0.@šþõ«!RËþ½þÖ Ñ1´luv -[ÎCËV·>¯_sÿ^1M[–CÓV§eÇдÕiÙ14muÞüè¯!qâ0ü ‡ãï8ÿ‡ú÷ÃCBøf£ø1ß~ôŽÆËøêÝÇ Þ=q,êÙÇá4^EZeà/!VúEÞ‡ø«ó!¬ð|5;ˆ/{ΚÅ¿‹_ ‘½+C∊¸ +áXßÄ*¸«â¬†k±:¾…wá:¬ëñnÜ€÷ 0¢&nÂ{q3ÖÂ-X·â}¸ ïÇíXwà¸Ä·±.îÂz¸ëãl€{±!îÃFø>„jhDcTC#šàlŠ1ßÃfx›ãa|`‹ý“[»çõ Vˆ—³O3í“Y°Š§H݆ŽQÞ„j³¢gº×žé‚gªè™.œ5ï?5ïs‹=ÛÏVѳ]ˆÿÍpš¤b±g¼à+zÆ ß¸N£TÌ‹4JÅ|®{æ ž¹¢g¾p!„¬-Ý;í^~×<ÿÏ_Ñó_ðü=ÿÏ_Ñó_ðü=ÿÏ_Ñó_ðü=ÿÏ_Ñó_à§+zö ž½¢g¿àÙ+zö ôczåô“!6ç~€æþÕu!iÃc¸ÛálñqÜ„B˜©çYÓy†É4C:Ï0™FHç&ÓéäïfæGof¤‡fDzhf!¤‡fFzhf¤‡fÞ‡ðN<ŒEñHˆ•¿Ë¡üXÞì|Óìäu®Æ6¸ŵØ6„×èàšµ‘î­)g^£{kÒ½¯Éášu¼î-¯{ ×a;ÔJëõƒÒúÁ@ý t|fë¥ã³z3vÂ-Èãþ I¯Z—ŸíÅ«Öþg{ñªµÿÙ^¼jí¶¯naÚ!RØë¿R«sFµ:÷T«såYy¾_˜ïúJÝÎU·Óª†Øƒúç´j¨ÇL«ŽrmÚ](צÕ@¹–û+½l žÁgð,>‹çVÊ}§é‹7íœ^šÇ/–­‚übYZu¿X–îž÷'V÷ºo¼ŽŽÊý-ÒQ¹/ }8,{—ø;ñ b>²l ñEñLñ1ý=n+K·Åÿ>TÙšHŸ•¥Ïrïu³ÄüJÙZâijñGœƒ?á\üÍÓÜ¿à|ü_ÄßpþŽ ñøþ/ã%\„—q1ò°, Ñ-ÓB¬¿¾·e:Ú÷-Ïáø<>ˆ3ŸÙd62˶¼ ®‡3±>ÎÂ8âäO6™—ˆçŠÂyØØuz­Ñ@ñ|q1ÝÖhøE1»‰~k4X¼@œ‚fmþ¶üa÷hºFC\3oû7Óv†"m×h˜ëæoÿ‡ÑüíOm1û?‚K°%.ÅV¸ [{-Øh¸ø±Ù²ÕÈ–WQl¢ÑU[^«…-+P-lyÕ–•¨¶¬B³ ¼:Üò†sõ°EýõW[Ô_ÿTTý;Ó<=ÝYÉÇwâWòñÌÌ•|{'3r%ßÞÉL\É·w2W¶Fóoeüù÷N_a[<ƒáYl‡ç°=žÇÇñkì€ß`GÔwöá‹5âNâ ˜Šß¹þ¤ëkÅű ~]ñì†ôàÊîH®ìzðOzòr=ü'=y¹Þv,fô£‹Ñ–ýNáÓø)Ž ÇÔͤçQÝLšêe’zIK ‘|úÝ1õ2I½¤MÄgPß;¦>&©´gÅúß1õ1i6ªIsBd>Ùl}õ²„ð)í<ŸŸl¦¿ø¿Hƒº!JÆRå}K•ôa,UnЇ±T¹AÆRå}KÕ7éÃXªœ c©r‚>Œ¥¶E{ž*hÃXª\  c©r6Œ¥Ê…•ö;U_\i¿SåÁJý6U¬ÔOSåÁJý4µ3ê§©]P?MíŠúij7ÔOS»£~šÚ#DFЕèô@%z`=P‰AT¢FЕèô@%z`=P‰waöW2ûG˜ý•Ìþf%³„Ù_ÉìaöW2ûG˜ý•Ìþf¥Ü!„ß›ÿ•ò„pïG!|ÿ¬Y R^ö’~ûˆþú’~û­öñЛª×}< ïÆáxŽ@Þô㑨Ç}< k…°ƒÞi¦W|> °?6¤Y¾snÎîn„æìî‡p 6ÆAÈà K] ¡f¡Òõ„š…±£ëC\×óE=à0Œÿ’Äí·;7Ž@óxàH¤ájòùéÄ´e©ÿÄwˆSÅ4f)s Yê–ëwº®· ¤5KË÷´féøoTÔõ.!ä¼¢½ÿ ±;ôûÞáRü—á|¯"Øûä{_Ã×ð_\×ñu¼+CxõxˆÜs›ø¦xþ‡o`¾‰·7êpMˆÞ­~›…êö7s­¥=ÏTíy¦!,ýÄá3«ËÕê>·åX×Kâ8,…OciepòqÛiÔ4êvù9FÝN£¤Q·Ó¨iÔí4ê@uœyVCNŽ3ÏjÈÉqæX 99ΫaÞŽ3ÇjÈÅqæX ¹XüpHúÒ\*~Í£âGÑì)~ ‡âûhæOÇá§'ïË$Vƒû2ãlLF=o_œ‹YqfÃùÞ7ÀûÞg¿ˆ9pÞ† 1'¾„·ã˘ an\Œyp ª÷KCBÏÉ!©p1LÃâ! 8"Ò+ ð,NzNq½>ƒ%C(œäüYç¥p*–ÆiX§cY¯‰9Î9ͺÀŒoñP«Í£äÄó½Ec4Ï[4Aó¼ES4Ï[Ð ôòÍP/oÑõòzû½¼…Þ¾@/oñˆÏûÎç•ëé-øÈÕæÚrjÞÞB¯_ ··Ðëèí-ôúz{ ½~ÞÞ¢mH¨Q4$þBÓ×(†4}âHÓ×(4}’HÓ×(…{Cèy<„k·‰K‹iûfÒ/´} ³èÚ¾F9¤ík”G³®F4ã’¬qŠÎ͹•Ð|«QéûUðVÅ£X au|ïÂt¬ þöˇ!Ú`xHº®,>"U3‰GˆïÀ‘x'ŽÂ¢8‹áShíŒAkÖ`,Z«ã°”ÏyßçdÆtÔ‹<íºfÿ]1UÍÜøïŠ©ª'7ïzñGb½¹Á±ýŽÿÙÅÅåÄŸˆsˆ'‰Ë‹Õ~Uuß@®]¯€rízE×O¸žS,Ç®WB9v½2ʯëUP~]¯Šòëz5”_×éôrë:=ÞYÎkfuÖŸóæayù©ÑObk;†ðN³ió\HØ?;$¾ç`-œ‹|`r¶&ñbyx±ýó\ã 'ñ]yø®ýóÅæò¤¢bódR1ìŠÅ±›û/ºo¾N*!î.^ ~ „¢#/tþ ¾„|Ĥ’^Ó#„—Ú†HEþ¥J—ôC&ñcb>¦JW±™_¥ʳ*ÝÑ̯ÒÃÑÓ9OþC¶Péåx±2.Â*¸«â¬†K±:.ûð¬Öêã=¡>Þc0êã=† >Þc(~€ÃðCŽáü=ÏÚOpTwÚ£µÇÆøžÄ1x Çâ§8?çñs¤×~ð4NÄ/q’ý{Ì9ÏÚc2ò¬=Ògí1yÖÏ ÏÚãYäW{LE~´Ç4¾›¾.=?Éø9NÂ/p2žÆ´VÐ^5i™4Vü?_A[ÖÔ{WЖ5ù³´eM¾lmÿßWЖñÿqmYSÏø¥Ï™"¦ kò`+hÌš£¹]Sïø•ûψiÍšôõÀ3âgÅ4gM:{àY1ï=ðÆ¿÷yä»WТ5õä_‹ÍÉ4iMmEnlƒy0þÿ¿øÆýçÅf~Mz|à·bþ{…Ù_ó14ûk¶ !ÛçæÍöXãÿ?‹ ^û~‡3ñ"Ò$¿GšdàÈküyí?9~vλ––«¼IlÒJôúI«BB:ùVY¤An•CäVy¤AnU@äVE¤AnUÂù(g›¼ˆr¶É”³M¢œmòÊÙ&rû–œm"·oÉÙ&rûÖÝ(·o݃rûVM”Û·Ôr¹}K-7Y޵ñU¼_ÃûqÖÁ×ñ\‰j²É*¬‹o Oÿmô¬yúmôìÃ!ažÚÝ÷\£§v÷=×è©Ý}Ï5Ï£ï¹fúžk^@ßsÍLô=×ÌÂ{äsKçúMwßu~ÓÝw]£ßt÷]×è1Ý}×5zKwßuÒÝw]£wt÷]×èÝ}×5úFwßõ¿Ë!iûbü—à_hnþ÷7.Ã+ø ^Ååø¾Š×ð5üWàu|=„Y¿…HI{óß ñJ¼‰öô¿ÿð ÌÀ7ñ® Zîö5Áµ˜€oa×a"®Ç$d:›˜‰gÔM“¬¨÷n’ýäæ&9ÑÏÜi¢ßžQ?Mø–3».Gúç·ÀÛð×åL¿B(gú™G·> ±ô÷m8ÿÈ9í}ëc¤½o}‚´÷­ãH{¯¢Á;o Ñ7hðΛ1‚[0·†HÚÖxŸ>ñsÒ¶9¿·c¥§cy4z:6£§cBµ06Û>i³í/"m¶}Òf×i«-O!mµeLˆ\§M7Óž×iÓÍ´çušt3íy&ÝL{^§I7Óž×iÒÍ´çušt3íy&ݼiÒÍË&Ýü Ò¤›—c>|óãkÄvE眯À‚hóÝå¼ó•XWa|ïÀ7ñN\´ÞfÚûbjH\ò=vÆôŽzÇÿBt˜µ+oö®Ø$þ7ã%Ü‚—Ý·¦åíÿš!©­·¦ Òzk !­·¦0Ä"ø^c›†HŽiâ;ÄôÞš;‘Þ[S¨΋9§ùÖÇcÞ“â=ÓÅ%Ä´ßš’˜îºüÊ¡gÞé}c›;Þ½RîуkJã‡X?²ø1–ÃO°<Ç H·¬©ˆtËšJxÊguЛk*‹é—5ñ~PÕ¹™Öíó-Û,$ÿ ›ãß!,¼7D*˜ káh×vý ¶@>´ì#øûµÝ—'e[Нa+ü[ãulƒ7ðQ¼‰mñ?| 3°ÞÂö!éë€#S’µ¾óΰ#F±&b*&agŒ!íñ5m\–æøšæ(Ks|Ms”¥9¾¦9Êö@š¶,Ýñ5Í1v_Hº‹¾ûÒ0Ãö„Hì:îŸoº¿ßýžø.örý×ù÷aûQ#ö.Þrÿ€û½ñ 2ÊÃø*R( ã«2ñUcßs½oEú„ÈZõÒ]­U/ÝÕÑZõÒ]­U/ÝÕÑZõÒ]­U/݇hâƒ!iÏXͱÄzø3ÖÇ_°þŠ ñ7l„¿ãC(ßãØ/aS”ç‰)ø'Ú÷=ö=ѾïùíóûœhŸ÷ØçDû¼ç´¿{ìo¢ýÝcíïû›h÷ØßDû»Çþ&Úß=ö7Ñþ‰öwýM´¿¬U4Ñþî ½Ýkoíí^{›ho÷ÚÛD{»×Þ&ÚÛ½ö6ÑÞîµ·‰öv/ß2gPˆ”Z/¶Ç{íq¢=Þkíñ^{œh÷êÉs{Ýq/1¿’Øù”Ä>ÈŸ$öE~$±ÞŽO`.ì¹ñĨ0¯>ØM¼»c-ìµ±'Þ¢ùüÜù¤|~ÞÇ~^>?ïc?/ŸŸ÷±Ÿ—ÏÏûØÏËçç}ìçåóó>öóþ’n¼Œ—pQˆÖ =‡´ç¯O‡ð²ç­äykР¿ŽGõú+}Xƒý•æ¼üfHZÓ W#õBã)F§½Ð§¢þTLº¼Æ}úë½§˜Þsy­øQ| yäËën½¼ÛálñqÜ„p3vÄ-Ø ·"¯qyòÍø¾„ÂÈ÷%A~/áä÷îD~/¡(ò{ Å6I(B¿\!Ül-¦QJ ’Pi”„RH£$”F%¡ Ò( 4[3%fkFŸ$ðŸýrûœ6b:%vkF§$ÐÍè”Ú­’@»5£SôÀftJMÔŒNI ‰šÑ) 4Q³—‘&j¶i¢f‹‘&ªô>ÿÑÓ‘wêq9„â>å1UéCÔ[*}„zK?Ýû—ÅzI¥OP/éñ—ëw¡^ûO ¼‚ñÏ?î¾^Réê%=®ºN+V:)î‹§°~ŠO¸¯ÿS¯!]Vé3×û‹ÿÓg•>?‰_à<ñKäŸ*}…ƒ‰"Þ©ÒçqžÅ¡!2ƒÆiH{Ï iÒÞ3h˜†4Ì ¦aa¤{Aº·!Ï9ƒîmÈkΠ{ò˜3èÞ†<æ º·!9ƒîmÈ[Π{ò3èÞ†¥îmXéÞ†eîmXéÞ†åîmÈïÏ {VáÁõ!œ¤ûfп é…ôoÃJôÏ|ç4pCûûÄòT¼¾Šõñ5l€+°!¾Žp%>„«°1¾MP]ÅÿÞúêªx ªŸâÍPÝÄÿ>çê&þwÕŸP7ñ¿§þ„º‰ÿýô'ÔMüo¦?¡nâý uS\^¯£zAZ '-°Žèi¯£zÒëh€ž4À?87ó{šùëÌüžfþ:3¿§™¿ÎÌïiæ¯3ó{šùëÌüžfþ:3¿§™¿ÎÌïiæ¯3ó{žB³¾ç§´Ä‘‰ÿ÷B몈?Cs¿ççX ¿ÀêxïB~x] ü ïÆ3xžÅšxïÅóX ¿Ñ¡•C¬Üi¬‚_bUü «áx- üsˆl+ŸÜ$~Kü Òag~u½‚ëtضŠH‡m«„tí¶Ê¸Íëì÷û½­Šx;VÅX wbu|ïÂ]XwãÝh¶o»Íöm5Ñlßv/šåÛj¡Y¾­6¾¢œ ±7éð?N!þ/þ&þ/þ&þ/þæšM‘{8Ðú”²Ž­O©/\ÎuúnÐóø>ÎÀt÷­[)ë;к•²¾­[)ë;°6Zß÷¡õx?ZßuÐú|¿F Ô7H”úi€R(õÒ¥." Pê{¤JÉ#:?©ÔH”ú i€R?# Pê¤JýŠ4@©ß(õ;Ò¥þ‡4@©?(u i€R—‘(õ'Ò¥þB Ôß!rYoYÓõ–5=PoYÓõ•5½P_YÓÏ!-tù<öů±~ƒOà·Ø?$t¤ nÿi‚Û¯#Mpû ¤ n§Ï:Ò·ÿ‡´ÀíH ÜNu¤Œ“„Žfr.ú«£™œ+Íä\Q4“s%¢™œK]t4“sÅÐLΕ i€\™‘È•Œ4@®,8³â ¤#;Æì8sàP¼ ‡aΞäo™¡‡‹o¡ŸÙq„s_îIñÖã®ñœGºfnņ;å<û…Ü7o;Žçõ:ž¤ãSÎó9çK mtÄÿÛˆé¸>©‹ù°æÇúX`Alˆ…°æ;_qþó"ØïÀ&x'6Å¢˜‚ŰÇæÿ;¸cIl¥ð,-± ¶Â²ØË…h;~6ÐŽŸÍ1OàXTo9Æ…Þk§ær<NYËÑZÎ(„Ör=qÊΠ'NY¿w„ðlÞ)H·œ²v3èŠSÖm]qÊzÍ +NY«Åq Ò§Æ"=qjÒ§žFzâÔx¤'NM@zâÔD¤'NMÂòHÏÌ #NÑ33èˆSôÌ :â=3Ü9EÏÌ #NÑ33èˆSôÌŒj!$¿BÊÝ!œŽ÷à4§Ï ‘=»Bâðzâ{Åpíš9×neCß—àûˆ·‰Ÿã÷lÄí|ž;ؘz M¨êÑ”zŸͨ÷éÑœzŸ/8€rïZ}O}å9§³²DÎé,‡,‘s:ëú×R›’ÅrOg¹d‰ÜÓùåžÎ×)÷t¾A¹§sÚbÎö¾bãÌÙÞWlœºê}…Úé÷íé8õÕû ½*žAù¨ð箫·ÞoøH^*OÝé±3›º‹îï£úáÔÝ÷⺷#÷…H¾<§GNÝëZþȾÜÇ$îg?êý'ö§Þ¢³ªçŸ8€zþ‰©çŸ¨çOý™É!ÔÏBªû¸â­×ÅZÖ¿_ì~®è"¾Ê®”—W¼ÍëìFýd}óQjCqw±5Mœ¢4ä|Ž³Ùˆ_òyÎac~Å&œË¦œÇfœÏæ\À¸-¸ˆiÿ 7í¹Å·ä¾"Kô±‰­©Mlb‡ÑêÅ9%8ˆ%™Ì'B(ò‰Çƒ=.Å!,œ²!RåñPqã“β!¶¦{{3íïWsooº·5ÝÛ›îmM÷öæÔOÝÜGýÔÍýÔOÝ<@ýÔ̓ÔOÝü‰ú©›‡¨Ÿºy˜ú¨›?SuSßSSuSßSSuSßSSuó8õQ7S©O¸ù õ 7OÈuŸÊuµ8™µ9…u8•u9Os:Ÿág¬'Ÿv”Oý öÔ fÊ[ÄÕØ™Îüöù­DBÌÐ[!¾êÌzæ ‘´ÿ?bèmñ,þÇ/x‡³Cx8Îkry™oè]×¾ä=Î 1ÃŒU¿ò5rXÄ㹌á<Ær>㨮 ‹§Z6,JµjX:.æ}T«¾–Gžþ0Ä®}_™óÙ׎¦Ï¾öúìk?¤Ï¾v }öµc™öçXµ ÑUåø2Ÿâ+,bǨ!O¢òt2Õ§‡È/¯‡¸‰ñ ^曼Bgdâßt6&:£ä¥š-h«ù"Í]5[ÒÜUÓþeÞªÙŠöiÍÖ!ö´7YM<­ÆMVO«q“ÕÄÓjÜd5ñt3ª‰§›SM<ýÕÄÓ-¨&ž~‘jâé–TO¿ÄblEûþtkÚ÷§}ÞÉöýiŸwòôy'Ûó§Û²4ÛÑ^?ý*íõÓíiŽ,©žž~Íckuº­Õiûe²µ:mŸL®@ûdrEÚ#“+ñuVæ¬bó«]‡ýìüfðÃ~v~3øaç(¿ü°Ÿ›ß ~ØÏÍo?ìçæ7ƒÖS§¢^!˃ôØÚ§EkŸÎýÞ`íӹ߬}:÷{C×ûõ{!ú†ßõµsÿ†ßõµsÿ†ßõµsÿ†ßõµsÿ†ßõµ3ÿ†þ=ã‘Ýúm¥Ý—ŒG=V3ã:¿·ë}ý"'Í)EBh:0„szý“fÉ”¢âAâï(ožÓóŸ4[¦˜-Oš-SÌ–'Í–)Åi¦L1Sž4S¦”¤y2å ~ÅRœËÒœÇ2œÏ'¹€òÑÉ…,b>“SZ¨ŸÉ)-ÌhYÍ;Ô¥WÌBW~§èŠ<«d‡ºôŠYèÊEšu®èųšIv˜³V¡0kUÊa W†hGs¿:©ó«:†PìyÕè:cBìÀ !ZaãÄ馯.šBP/eqm³r=³ñ;fç†Òþ|´ÊrvÚŸV¹%Íý•õ©_šû+·òº½Î¬4(71'7ËϾ§ˆ×ñÚ"i¯Ëåú– –÷ì§ÜãšöÓ?öêsQ©bûê÷º¦}õ^iʇ®«É5í¯ʇÈAk¯ÇŠ´öz¬ÈAk¯ÇŠ´öz¬ÈAkÿµ?hí?°ö­ý师Oq1íÓOí“&`sˆÔŒˆ‹½¯/7†è+êÇ—›ønˆù]Ÿ?3õù3sRŸ?3õù3sSo:S/=ÙnšŽÎpÓûè 7M/ÿþâ2 Ñmñê¾~ì¡oCÌq3Ç„ÌbýØCk©¿zÈž9ëõöÆqóÈ=ÂÈA®}'6—LÈBsÉ„¬4—LÈFsÉ„ì4—LxÞïï÷¸÷;Áû=îýNð~{¿¼ßãÞïsÆÈd?wƒXO=AO}\O=AO}\O=AO}\O=áaê¥'è¥ë¥'è¥ë¥'è¥ë¥'è¥ë¥'è¥ë¥'è¥ë¥'è¥ë¥'è¥ë¥'è¥ë¥'è¥ïégVégîégVégîégVégîégVégîégVégîégVéïá`åãPç0¦r8áˆs9GˆÿÊz]ÎIŸïr.ndnnbºç?qÚÏ?}Lûù§ 4 å¶îûÔÑÜÖ{ŸyíþL[ó}YiÍ÷e£5ß—Ö|߃´æûÌ[¹­ù>³X¾5¾ÜçAz ‡=^b÷ŸÑ÷ÕÖ•ÓB¤>`ÿI±ºZãþw#ÍŒT_kdâW!vFž}ñæ¥s1ã!:3òQÿ2ãa:ûuÌñ·þrNôr¥ÓÎË ÚßuÌõ·.S}ë õØ·Òæó³!þ1ëÔõGò=Y¯V©”x”x;ßç×õl•Ô³~jOYëÚïMZ×~oÑÛ¯ ͱýºÒÛïm:{ýºÑ½ë×ñšaû½K3l¿4ÃöëÉG¼÷E÷òXÍî×›jv¿>T³ûõ¥šÝ/‰jv?ëQVÍîg=ÊZ—~Ö£¬uéç³—U³ûùìe­A?Ÿ½¬5èç³—µý|æ²jv?Ÿµ¬™0)oˆ/c_&=Dû2)7†ð®Ù#:Sl†)c&™aÊl¦¦Ìš]Êl¥Y¥Ì6¯ïàõz¶$³J™ï©Ÿ-³úÙ2;¨Ÿ-óõ³eÔw;z½Þ.I_[FíHRƒÊ¨IjP™=Ô×–ÙK}mµ)I_[FþIÒ×–Ñÿ®¹¢ïX¯57¸˜7¹„ÿp)ÿå×jÔþþv^^9À¬T{ÿ–Ÿ²® q?<ËÕlb‹ÝâO-gF®`&®df® ±«õ!ÝÝ»ÕúîîÝj{¡»{·Ú^è®×Zm/twßVÛ ÝÝ·ÕöBw÷mµ½ÐÝ}[m/twßVÛ ÝåŸ#öý8ûþˆÙrœYòˆ™rœYòˆ™rÜu¹Ö9=b®gž{'D#sx—Îî³÷87ÄjA¢‘yŒPŸjî*£¶5ˆ«õSÙ2ú™±â…Œ£µnOkÝ JkÝ ­uƒûø5Ós3ðÞOkÚ #W„ȆÆ!®÷a6áÏlÊ#lÆ£lÎc|ÇÙ‚©|‘¿°%Oð%ž áÙ+!œP[7´ŸbkžfžáËü•¯ð,ÛòÛñ<_å¶ço~ž¹ô„½á5ñïìÀ?ؑىÿcgþÉD^¢>¾·>>­—ì­Oë%{ëãÓzÉÞúø´^²·>^/×ÛZo0ãö¶Æ̸½åÅ fÛÞ7ùÿá»ü—=x‹=y›½ø{óûð.ûò^ˆ´9â²· áÉ'CØÖ]|FÜŽ¿òUže{ž£óÝæ<Û6è<¶ùø;;ó&ò"_çÿ¨Ÿ{R_´í±"û›¼Ä·\/çú»â¿Ä]x™]y…oóovãU¦½¿kLû9Ö¢Í }îì=Bäæ!nñ*–âj–¦Ú•Ó|x³ŒÇßòIêQræò•ÛWž3»Nˆ÷žcf×åE>MýélµÈ{™­öx¯1³Õï1f¶3è=ÆÌv½Ç˜ÙΠ÷3Ûôcf;ÞcÌlçÏ{Œ™íüyŸ1³¿6Îãlç¯ó8Ûùkóo‘wB¨¾/„ú£êòÎ,!¢OŠ«Ë?äŸêòÏl®'»žŽƒy‡0=‡2Cˆ‹7£­W7K?ì±9m½¹"Þœ¶¾‚kù=6«­×§Ç›ÕÖëËãõyë+‡˜SBüâ:œÊºœÆ§9Ïð3Öã Öçç”oÌdÎbC~Áç8›ø%õícz‡Hâ9âÆüŠM8—M9Í8ŸÍý!£omðßåNöaZF9¦!3ñ9ff#Ïïò|Oîf/îaoîeþȾÜÇ$š­cÌ“ ÌÖ1ýi¶Žy?q@ˆ=,ŽÕ–Çî¥8öÇû³8våÀ±êÉMsè’*!l˜"ÍQ?Ô\?tÓ\º¤*Í¥KªÑ\º$íŸ_ ±ï4Ñǯ³!oð9Þd#þCsøãÿÒþø-šÃ¿b“§Sÿ£<*O?Ö‚wù"ï…ØáúòjöÑû½J‹»B­îj&^¡éj&^1ŒfâÃi&^a¦íj&^ažíê½®0Ïv­fÎ:ãë×r¼"†…¸ÖúÂpf±-¶‡h¦î!L—wÓz–îS&ûwºü«w Óåß´Þ¥…û–é]±<œÖôpÿ2õ û”É}já>eêåyù9­·iá~er¿Z¸_™ú¸._ëuÂô“T/Í™ÑLîŸ93šÉýkáþerÿZ¸™Ü¿î_¦÷BhÂÕÚ!&Oƒ·ï6ä ×ã\·¿ó<'>ÉF<åº9æj]:kWŸf:>ÃûXfž«õ™Ïò~Úïyž÷ý§©6í;CµiŸ5k—ÑóÎA5jßYq&±óG­ÚwNlNºê\äQ³ö;óWŸ«]û.PíÚ÷Õ®}¿SíÚ'7åQ»öÉMyÔ¬}rS5kŸÜ”GÍÚ'7åQ³öÉŸ™~5›mãY~ÏsÜÎóÜAsó¶hnÞ¶“¿sÿàn^äþ{ù'ä%îã_ÜÏË<À+<È¿ù¯ò¯ñ0õ[Û~¦~kÛê·¶¥~kÛ1ê·¶ç-¦ò6á…ÍÙ髇¸úêWB|®_Bè<%„[GCLͪ!îæ!ñTñ1q5±™°ó4ñq±ï»)Ivž.Någtk&¸~„5xÔõ®;—?§óX³¦ëògç™âSâZâãâYb÷»fmqÚÏûB,?u6{ÞúÕõ:®§½¿/ÅÎ[ç9tÎ:Eç«ó\:W5ëz]Úï›'Ö³uÖ¿Þr¾j>ízÚï†i¿·Ó~_}:×5ŸeÚï‘OnêOq)_³—±$¿¡Þ#ey±ã<Ö¤è[Oé?RVRï‘¢/9¥÷HÑ—œ*Ë5,G=É©§¸–juÊ:VàzªÓ)ß™I–›IÞà ¾É•|‹«Ø…«Ù•kø6¿e7®¥\9Þãu«§kÖS=]óÕÓ¯íë§Û‹7ˆåå5©~®ÙDùxÍfªŸk¶Pþ]³•òïšm”×|OùwºðŽüûœ½vÊ~}®8ß‘m“CÜçå¹b=ß¶)bçå9óô©·ÄSÅÅæéSz¿mÓÄÎÖ¶ét¦¶}ÆÇÕ•¥©'Ü6ÃuggÛçtv¶Í¤3³m™m_ЙÙ6›Î̶/éÌl›CgfÛW,¥®«±cÕ—Övñ‡´¶‹Ç„Ø«ÖrÁXZËãBøî‹ivFlM|Dë¹`<­ç‚Õõ×=¶¦ &ÐZ.˜Hk¹`­å‚Oh-¤ÐZ.ø”ÖrÁdZËÎ×i׬炩´ž ¦Q}]0êé‚ϨŽ.˜AutÁçTG̤ú¹ÀYyÝÙ»ãü6~;ħKÏnÌ@ù2Ú•·´ÇrfºŒ”3Óe¢³Ÿ.3ýtPnLgö}ýˆŸ•K,'¦ËJ¹/¸±œ—.;åºtú™e<–ïÒÉå»tiÏŸY¡˜ûùŽY¡˜^þ³B1÷í³B1½ü;f…bzùwÌ Åôò™Þ1+ÓË¿cF(Ö“f„b½¨¶ÓC¾c6(f?Æ ñë‡ð‡ò8õVñ©b.ysäÝKòîy÷’¼;§å×9E)OÎyœòãœb”çÈ‹—äÅ9òâ%yq޼xiŸàp–âZÃK#és_Å'ù>Ër4Ëñ>ÅYžcXcY‘ãX)„ôÈ£—>ëÃ/g~̪œÀjœÈêœÄ~ÂLaM~ÊZœLýÏ%ýüýÎ%ýüýü%ýüýü%ýüýÍúÔGäëKúú9úúKúú9úœ¦»ž*ÖßÏÑß_ÒßÏÑï\ÒßÏÑ×\ÒßÏÑÏ\ÒßÏÑÇ\ÒßÏÑ¿\Ò×ÏÑ×_Ò×ÏÑ×_Ò×ÏÑ×_Ò×ÏÑ×_Ò×ÏiÎ| Ù‚‹ø"³%—ð%.e«ûK«$§,1Ö±ßõÑNi±9´Ž}¿¨X®Yb­cÿSË—˜Ië|á¹¾ž+Á$–d?>Áþtö½Gù¤˜Ù·˜Z_ìU׸VÆãö¾^›‹‹uð¥^/2Ç×ö3g'†èËæÇEæùÚ~öì×Åyøóºn¾¯íwÍ–¯g¿åÚC¾ò…˜*êÅ•­T/®l£Zqå{ªW¶S­¸²ƒjÅ•¨V\ÙIµâÊ.ªWÔå*jÅ•=T+®ì¥ZqåÇ>vVЍC;+EV°W²/W1‰«Clû}‡uû¸ŸØŒüq~ëºý¿C®þø=ñZ±s°ÃçËâìðyÞꢅ¡ûPH^Ÿ91DÊ›MÓ#=¦Ž¼å~*@k_¨ ­}¡Bò£:vG.]!gÞ‘CW|L9t…|yG]!_Þ‘?WÈ—wäÏòåùs…|yGþ\!7Þ‘?WÈ—wäÏS(¦ý÷5ãˇøúöìø ÔkŒ¯È¬Ä“!ô"¬ñøÊb5~|žv}”ëÖ||U±Z?¾ÕúñÕy–zŸúçXƒçY“z‰ñµ¨G_›zˆñu¨G_—Cxx¡ÇO{¬Oÿ í‘Ùú¤6[¨?j³•ú¡6Û¨jó}ÙÒþœ =P›íÔû´ÙA=O›Ì6¹B4ãFææ¦ ¿äq73/·Ðþʸ•ù¸ó{æçv>Â|”i?³w² wÑì˜q·Ÿí̵(ìñ³×Âyò¢ø1±¸E_E}=.6e4‹eÜb.¨-3ôâÔ•zñ êÊ ½øue†^|´zž_¯|A}™a¦{t‘ÇjÌŒü!îïc{,½íqô>¶ÇÓ{Øn&+}+Dú¨ ¥Õ†>jCiµ¡ÚPZmè£6”¶ßû¨ ¥í÷>jCiû½ÏÚï}þfRÿësÕc{½Ï5Úë}®Óïsƒx“ù…PÅ®ò/ïo+_f‰½m<ÿ¯ç“y‹ƒy›Cø‡òÕ¡%æÓÄá4Ÿ&Ž ù4q$â(âû!d²öK{<š?óaÚÿß©7.¦.6˵£®éK–£¾dÉqŽc*õ#K~¡³µä­%'él-9ʼn!æ!3ÔÁwi†:؃§Ù“gØ‹¿²7ϲÕïƒ}©~L¢ú}°Õïƒý©~|ê÷Át¤{tpÝ£ƒÉt¦{tpÝ£ƒCCÌâûC|§eÌÈo˜‰Ë™™+øW2 W1+W3×0;¿åƒ\ËÔ;ï3CŽR Ìþq£Ô³ܨNôùGu¦Ï?*‘>ÿ(=[zõlÓs!Œ÷=©ã}ÏcjGzõmS#ªo›ž§ú¶©1Õ·MM¨¾mjJõmS³{®YˆN/Äæ,Ìø[й9÷"s-ù8_b1ªoÓ‹³5Õ•sm(ßž{™òmž!ZB¾í!ï–x”òn ùµ‡<[B~í!Ï–ð{{ȳ%ôË·Õ…e¨.,ÛHuaÙ¦é¡î7§ôPwŠ/§ºSÜŒÒCÝ)nFé¡î7£ôPwŠ›Qz¨;ÅÍ(=ÔâÖùñ˜w2…ÎêÉO鬞œ"ƒ¶„¸Š ¸• ¹Ïñ{6âv>ÏlÌØ„;Ù”»ØŒ»ÙÜA­êñ_à^¶à|‘ûØ’ûù°²5¢3:è_æa¾ÂŸÙ–GØ.Ä4’¯ãÔ‡FòuœÙ¯‘\§.4’«ãÌ~êQ¯?¡mˆ6Lûsš„øÿeSÞb3Þfsþ”ïC¤´«ö â;lÁ»|‘÷Ø2Äßòц½âªþ–<Á—x’­xŠ­yšmx†/óW¾B³ç°¶<Çv<ÏWyíù_ãïìÀ?ؑىú–a© K¤þdØëü‹oð2ßä¾Å¿Cì‡cB´nUŽeµ¾rnªš¯¿zæë¯ÌwUçz~œç«ó#&pÂjkÒèa=ßz¾6bkÓÈlöˇâ—ÅÖ¨‘³ð‹÷5IŸ·ÚZ5r&~ñþ&µ¥÷1©]ˆ-½#Ä«E±¥à»!ÜßÙã›wS>‘ê^iy·ôn×Ô$µ(²BÞꪶ¬·ºª-+ä­®i×å­®jË y«kŸê«©öØ 5¦k_±z–j¯­Pkºê­V¨3]û…]ýY¡ÖtUkV¨5]ÕšjM×!v|LˆÖ_bâíóõ­hŸ¯oMû|}Úçë_¦}¾þÚçëÛÒ>_oÿÆÛçë_¥}¾¾=íóõêklï·6&„V‡pÉLÛG˾ŒcãC̈Í!>ázª_÷m !üí¿Eß«·¬R•úʾ“¼.?áÃLa~~ÊG8™r ÕïÏÏ„èKú´Ï¥>íó³4}~Žf ÏÏósd—©µ@|Aœ"î*^(þMü©ømñ"ñïb³ÑçÐlôùENåÿ8r:/ñ3þżL}f¦÷<¾â±™úó¿©çüü*õBŸ_ãìÛÒ ‘Ù ±tˆ¾ß8Äň×è—cÌkôÅ1zù5úâ½ü}qŒ^~¾8F/¿F_cŽXs—ExECôÛ >>«Nª7µð*òšºê\–Ž?'¾ÎF¼áºsZ:Nü¼ø&óï/Þû[Ì(—0—ò>~bSʇèógC˜w#DÊ‹+ˆÏ‰oŠÝ÷yÿÐ}Ÿ÷/Ýïyf÷{ÞmV 1Ùäëòo6ùz§ü›M¾Þ)ÿf“¯w:m פüw-ƲvˆéÙ&Ä—ø/ó_á]¶å=¶ ñ%_e„íÃ×(÷ì@ù»gGÊß=;1ÊÎLÇDÞÇ×™žo0ßäý|‹Ù…™BxG½Š77÷ì*Î,Ö#¥ý¹N=ß?ÀnÌBs]ɬ4וÌFù¼§™®¤Þ»äƒÖ]͸ՅjÄ­®T#n½M5âV7ª·ºS¸¥×V#n½K5âVª·zR¸Õ‹jÄ­ÞîïQ÷7·X­¸åÌM1—Î#V3nõ¥šq+‰jÆ­~T3nõ§šqË>®­fÜRgk«·Ì$}õw¥!íÏ-zÀŒµ]îxÀŒµ]îxÀ\µ}moË1“BL—…!¾ðób}fÌ'âEby¨ËbÊC]–Pê²”òP—¯)uYFy¨Ë7”‡º,ç‹\Á–\É—ü\}kŒ>ºË*±Úße5Í–oëccôÕ]Öˆõ]¾¥ ËZêuÞÖ߯L¯ëº¬g»¢G=þÎcû±Ë¶‘ÑúÌZúÌÑúÌZ'BHhÂéôúŸñUÎð¼þ³ÖIq{±`Ëäò³<¯/­¥ç­/­¥×º9-Ä-)Âé,BK9þâlñgâÇÅrýE¹¾¥\qŽë3\/ÆÏYÜu¹ÿâWâ™âb5àâ\ñ,qI~Á'8›¥ø%KsËð+>ɹ,Ëy,Çù|Š Xžê×’ \ÄŠ\Lçù¾Ä³¨¿9±`ýœñ*‰ß;ëTæ@>溳ÿ€\ßï?Êõýî°šçy¾ˆø®¸º8YlM¹ß—³¶h°Xí^4„żîž×%xÎù{Ä™{ä_YBì…)!:ã-Ne—x0ÄT⮡ӵ±€x”Ø{îô«8M9ìV!×ßwÝ{ï$‡Ýòž«Ž§ù½÷x½AÕ=ö>;÷šÇÄcÄE9–Þ_Uuòª94ÿ̸g±!ÍŇŸ 1ÏŒqw¥÷t×{iþxˆOûgiÍ‹q;‹sKð–äÎò:ÍŸðxKQ¿Ñ¼4÷° ÷òIþȲÜÇrÜϧx€å©j^?±"±ÛûÏx\ÙãŸCì£ !þç !Lt‹ÉÙÝ·bîÛD÷­˜æÑžÿ5ù;kñÖæÅSWÝþ¯ ͺjöæàÿʆçLˆËÔ.D·é3½J}_¦öÔïezú½LøtˆÙq/Ä'Ï iÿYl|²>kÈû!’ÓÚüÏ{rˆ$§5ò!­Ï1ž_ #¶N?ÄŠ2Žú°⹘QêÉÒ¿¢›ô³é[Q?›¾5íÉfêAu¢™zAh¦dP'š©Ô‰fêAu¢™zAh¦dP'š©Ô‰fò{·™üŸ!åÿ ™)ÿgPv ñÜ™ÝÑYÙ=žêâîY•è}ìžHgb÷$&ðÖ` kòSÖâdÖa¨>+× ñqqñJš¡r­r}ªëu9æÄ¡æ¬\«©ïʵÆõé®?#6kåÒP 5kåZëúg®×ã ÖççÔÏî¶×‡ég‡ðºub{~˜žv·=?Ìžß=›zÑÝ_R/º{Õ€Ý_Q Ø=—jÀîylBúNÏ÷¸yˆ¼¯O­•@}j­TkjÕ¤ZSKOà¼g SžMpN虜Ñòi‚r ³×ëgkY›yõ€|š ‡0w¿¯¿­U‡ëY×uyõ€9üýïÄOsŸáFÖã&Öçfú융¼ÎXg-¯3ÖÁYËëŒupÖò:cœµ¼ÎXg-ïa:kyA]‹„¿ÅÎ[Þ#¬Â£®/wý*WPϦÎEÂu®â ¯«êuÇXÇCxHýR\]œJç6ï/t>óªUéÔÄH¸éš³šW}R#á±3›÷”ø[ñ¿bg7ïiñZñ-qñÖå¯T÷óÊ•jf$Ü?#>Çz<Ïú¼@ýgÞߨÿÌû;õŸyÿ ¾3¯ÜÐAß™÷Ôoæý“úͼ—Ø„±)/‡˜óÖrú/!¤¹óÖsú ZÏé'i=§Ÿ¢õœ~šÖqº÷zÞ:N÷^Ï[§égi¦{ç­Ït9ûýÔÉÿØ:M÷^Ï[§éÞëyk3Ý{=oM¦{¯ç­Åtïõ¼5˜þ¿ZéwZýáëb—ì¡KöÏ¥â!&Fßýí!Fk÷퇌p c8–±Ç8~ÄxŽg”3'ð>N !§¹8§™8çû®¥wM›z§Øû)ŸÆf¤Þ&6õ0ë ‡øž»CHû;x²¯?&VÖ¡º°¾(Õ…õjMOua½ZÓÓž]¯Öô´g׫5=ú~ç?»ó¿^Íéiï®WozÚ»ëÕ›žöîzõ¦çÏTozñzù!û·bu§§¾i½³Ðó˜ëòEvùb½3ÑÓŒ»Þ}ìio®w{Ú›ëÝÞöæ ù"û:äz×ÝÓžîíz÷´§{»Þ=íéÞ®wO{º·ëÝÓžîíz9q½|¸Þ=ìyÖ×9_îmïHˆd0/ôŽ¡|8Fütq¬ØÜ0F?ü´™´wœ¸ŽX?üt/ꃟîM}ðÓ}¨~º/õÁO'Qüt?ꃟÖ?{2D#£xŠïó4GÓ ù€fЈ½°Áúõ¶~¬_oë·Áúõvö“CˆLýÈ…üÔ\x„fÔD³ì#æàD³ì#æàD³ì#æàD³ì#zá™úËòf–Äëbópâ š‡oòsþC³pâ¿4 'Þ¢Y8ñ6g‡ðU¶©Ú4ÄŽ6·×Os{móühs{móühózmóühszmóühóyíOh>¯íLü«V­¦þ«V%„±yC¤ yà_5ûk3׿jö×ÙB(PÖcuûëì—óXíþZø¯ÚýuŽ¡GNÐ;Ð#'èGè‘|¶zä½ó=r‚Þy„9Aïbë_Ñ0™ö\°çêÛsajÃ> ‘ÜòØ~{y”½¼ß^µÙõñ®ïãÇ”×öÛÛ£¶ˆ'ˆp"Õäýöú({}¿½>j›ë“\—çöÛó£¾">Ä:¯ûQÎÀ~g`”¾sÿ£Ô“ï/@³Àþ‚ÜeîPK‡y\Õsà ÑsÃääªzÑarqU=è0¹¸ªœL.®*'“ƒ«zÏÃäªÞã09¤ª\2L©ê½ “7ªÊÅ™Ÿë›‹?2?×7d~®ÿRˆéw<Ä—Dy¡l2á`žàžäPžâ0žæpžáþÊ‘”_ËŽ¢[VMêwž£yúî…îqGçe¡{ÜÑ=_èwtϺÇK‡P÷VGíó…îuG÷~¡{Ýñɲ›WëÞöœ½¿Ð}ïh6¨ûŸØLX÷«ñ.…ÎVGûc¡³Õñ)ß›öûœ¯ŽÎ×Bç«£óµÐùêXÑ÷Üó=ÎËB笣s¶Ð9ë˜öû³Ži¿Ë9ëèœ-tÎ::g ³Ži¿Ã9ë˜ö}ÎYG¹¹“šŸögPwú“%CLµÍuf†j9¸ÄõK®?!Î)^Ê\üš¹¹Œyø ór9¢ž¼Z>®äÃ\b_;¢yó(‡ð‡ò8‡1•ÃCøÜ™jøñ±³ÿT²ø„x$Õ¤¼ú†<öLÒ!î–½X§ w†¸õè[ù!FnýVÍ™-Äí™bW Ñ·Sù8õYK¯‡ÈÓÖwé –w½˜ëêôÒ›â âââ“,ÁS,ÉÓ|‚gXŠòHŸCä~}K餱9%Å\ÒØœ’bi¬.§˜?«i)æÆjYÊt_Ÿù2W4–¿Ë]Í¢Çíé røq{zBk.c›FŽ ‘‡œ¡ã߈_ær¾ÂlË•lÇU|•«Ùžkø¿e®eG®£™ãøzvæwLä¾Î|ƒ›ø&7ó-naneWnãÛüžÝBl·ò!ZÄzu«@ëÕ­"­W·J<Â,û±B’¸²ØºÍ²/+ôWë³SïºUõøœÇj^·jŸgu^`óÜ'¾RÄ5ÄúÔÇ> ±/Þ ÑÌsx—_ñç†Ø–Æ…Ìó¡:íïloãñÆr!ã¸(ÄþòQˆNz•ãÙžó5N`NdGN¢Ykµ:Ò¨€øqg¦0‘ŸòuNæœÂ79•oq»p:õ¿|Æ·9ƒÖñ—ÏÙ3ùgñ]¿ïW¿¯ ø ±>/ó g{Ü“_²çÐgüå+öá\öåÁõâĹ8ž¹]7îpÿ;,Îà ÔÛvžÈ‡8‰ùø á¿C\Ü+!º®Û²fˆM˜âo4ä|.„ûå…„Ù7 aŠÚXª/å¢RI”ƒJ™u¶˜ÁûýËfTÃ× ‘ú‚-ÍÅfÿ-/І\ßu}–â;|‘wÙ’÷øRˆïoÞÙ¨þ÷Uÿ7ªÿ}õ~Õü¾z¿j{_µ}£ÚÞWß¼Q]ï«®oT×ûªëÕõ¾úæêy_õ|£zÞ×{Þ¨ž÷õž7ªç}½çêy_õ|£zÞW=ߨž÷UÏ7ªç}õÍõÍ}­Åäž!Ú´0{ñ±2Y—ɽ=.BÛ/Cø[Þm;‡çBL®r!n¯Y(×SÔæ*O}`® T_sU¤^¯Ž3vë±[Ñ»u™ÎØ­+tÆné¥WÑîe9å8ˆrÍêd–13G†øV¥Bèë{º“œ–ONë$§å“Ó:Éiùä´NrZ>9­“œ–ONë$§å“Ó:Éiùä´NÖ;ŸœÖÉzç“Ó:Yï|rZ'ëONëd½ó 1Un‡¸¿õ!Uþã'¼C³b•»ü4„ÞëC$Ã!fBúß@7!¿‘ó÷…¸éfŠóéi¦8ŸÎg³™!œ—#Ïß/6SœÏH3ÄùL4‹ЫÖWУþ’z³ÑsBL¯K!þ‰øÇó2?æNàߜȫœÂ;cC$Þ¬ÐëšØûîuÞw¯ü”79™ÿp ÿåTÞâ4Þ¦žª×ÔWõºÃ¼ËÏy>K¾œ!¦wðx#4¾£·Š×[õŽÏf,‹|¹<±÷s3RïÝ;õÞùòø³Z¼y¨wf×Ü»ÞPÿÝ; õß½³RÿÝ;õß½³SÿÝûAê¿{çà*æäjæâš-Ÿø6Äô±¶¥­ek[ÚZö±¶¥­ek[ÚZö±¶¥?á]³HTïcKϤ5.m=ûXãÒ_„©5¾ôl¯3EÕù¾Ö¹ô—´¾¥­a_ë[ú+Ï›™¢ê_k[ÚZöµ¶¥­å»ææ¨~ ¯5.=ŸÖ¸ôZÛÒÖ¨¯5,½ÈëäÖh7Ê­Ñî®[ÃÒÖ¬¯5,½„Ö°´uêk K[§¾Ö­´uêkÝJ[§¾Ö­´uêkÝJ[§¾Ö­´uêkÝJ[§¾Ö­´uêkÝJ[§¾Ö­´uêkÝJ¯¥u+½ŽfòÒfŒ¾fðÒßÑÌ]zÍÜ¥7†˜EêDGgn‘:ÑQ½X¤NtT/©Õ‹E­B¼V2fQkꣵa _f,_aÛ2ží á>ýû¢W=NÇö¼¯1=;0;ò~vbÚÿ§Ø™™˜ÈÌ!öÞº]¥ç¾·žúí{ßѹ¾·úë{©·¾·‰“¹™S¸…S¹•öLDÞY£VFä5jcDÞYc†ŽÈ;kÌБ{4CÇ~À?d Ç0–cÇqŒ§ü¥ü“ŽòGŒ<µFþˆ‘§ÖÈ1òÔù.F~Z#oÄÈOkäùi|×jiªO1™ÅòGÌ”?b²PþˆÉJï?Æ|¸fº7÷¢ïùÚ÷\æ2^á7ü›ËyÕk³{­sc>^ã\Ę×È11æâ53C\ìÏ!ºvM›ìË݆ŸCLõã!îz¯:×6Cf_u=âk¨çS=ß›¿°O°/O2‰§¨G©~šýy†ïñWàY 1»ÌCÍ™»ÌCÍ™»ÌCëÒÜ9ôiNgÚÿÏU'DrùÝž‹äBz³ã®Ï»™ã­gC¸ç<·ySlæx«Ø¹nó–X¾iÓ…òM›®”oÚ¼Mù¦M7Ê7mº33ß¡bŠÙª©ÙjŠÙª©ÙjŠÙª©™?bŽšb¾jz>„ZúµC=YæÚ»ÇCtå2ê9V~C=ÇÊåÔs¬\Á“\ÉS\ÅÓ\Í3\Ã_ù-Ïr-ÏqÏs=/ð;þÆ´¿¯;íïÜNûû¶/ŠåÁ•ràÊÍ!vkRˆ¾§§\¾ Dê{~k?±Þvkêm·¾Gï½øBõ¿ï™¥·êß3KoÕÿ¾g–çgֳߺ?âŠ.d.bQ.æã\Âb\ÊâÔ§u/Áe,Éoøå¥ ߆°Ó~í^J¼‚¥¹Òõµ®Û¿ÝˈWñI®v}ë·ÅeÅk¨ï/ú-õýE×Rß_tõýEõŒÝõýE¿c%n`endnbUnf5naune·…ØÜƒCü¾âÂÊ’Æ'8œ¥8‚¥i.ØW†æ€}OÒ°Ï‘[¿¿ÏZçÖ×ï³Ö¹õñûÊS¿Ï:çÖÇï³Î¹õñû¬sn}ü¾ÊÔÇï«Â}éá÷UõU-„ö{B¸aŸ¹âNØïEþ¡zTä_ªGEnÑœìûbЍq'Ô¤"jÜ 5©ˆw"íºwBM*¢Æ0»¶ßëgÚóE•“jSQµî„ÚTT­;¡6UëN¨MÞGLQõTT½;¡.UïN¨KEÕ»êRQõî„^¬¨zwâ³»×>áœïµG8ç{ÕãÎù^õx„s¾W~áœï•_F8çf¹èçÜ,ñ~+Íé šÐœÞ ©ëòÍçÞláÜ›í¢#> !³“¡NˆÛt€u©wÍð4¢Ùg“>4ƒÙgÓaš}6©qÌ>›ŽÐì³é(Í>›ŽÑì³é8Í>›RiöÙô Í>›N„˜¦îMz3_S3Vz3_S÷'}N¤¯é$–å'4³5M¡™­é§4³5UóÒ›ÙšªyéÍlMÕ¼ôææ‹¹Cܬ™ÌÃY!4ïÂ…Yâ¼â/øg3¿äÜÃüüŠp.å<à|¤³±ÍòÈ;Û7QÞÙ¾™òÎö-”w¶o ¡Œ³û€Ü³}›ÇöþÆ"!Ú礆Ïü·QýÐW‡B8ñ¬XÑW‡÷‹åØ©æ6ÈÄç<¯®è·CƒÌâF|€Ï»®Îè¿Cƒ,âÆbõ¦oÚ?ƒèLjëY]o"î/Ö„5È&nJóljf|Í=ÿžçc9€qÈx¢ž³A¯{9Ù‚f¤z¦¹Ù’æ”/…˜åC|q{£GÚ=*ÒÞèQ‰öFÊ´7zT¡½ÑÃy,noô¨F{£GuÚ=h®íQƒ§X“§Y‹gX›¿²ϲ.Õ‘îæÉ8ód§Åçù /°c}þÎgùð"ò|޲/Q?Ó£±ÇæÙâ—Cìú±!Ú«DZ>?â³Ïü˜ 9Ïq"qŸç'lÌ6á§t×Of3NasNå !æg³ÇX3ÅÏf±fŠŸÍc7Ñì1v3Íc·Ðì1v+Ící·UC$¯¾ñç‡Åß‹«‰íŸó‹·‹«‹õ‘??"ÞÁGù p' r qwˆ]Ñ;D»Êã+ú°„¾Dͪû?q_±|¾Bmìú„ëjXÝ?ÅjcWy}…ÚØµ´ëjZÝKb5²«ü¾B}ìꌿ¬ç|°º¾â}ÅNÊA÷üÞ—õ &Pú` êA¬I½gÚ¿+ðÖ¯Û-Ö{¦ý;ýñš.!äì§¿Ö«ÝÒ«uÖ«ÝšJ½Ù­i!äùØã¶Ë« ÎßèÜÝÈBçëFV:O7œ‘Îí¼N¯Ÿà<ÝpV:¿*žágÈÝ ÎÖéLÝÈAgçFN:;7rÑÙ¹a¶Opvnäa2ór0âæãP>bw=¢CÎQ~r>ÄÞï lNÓØ|ÎÀæßè lÖ›Üï lÖÜï lÖ+ï›âFâtæg|Œ3XDóYÞãÏ=.JsʨÇCäf›·øõc‹ÏS?¶øõc‹õæqz¬[¬7o·(ÄåzŠ‹égµ[ \ÊŠüšòn»e¬ÌoX…Ëi¶[Aû¯ÝJÚwíV1«YƒkX“ß²ײ6×ѼÒn=Í+í¾£¤Ýš=Úmd=ÊÁ¹êSÎ%—¶“ƒs5àV6ä6>bÂØ·Úýã˜7Äþ¢ƒkr0kqks(ëpë†Ø¶B4‡½9Ãg.§m[P¼‹…¸ÛukP®·¸°xÝÏ{é~æø1Ä^=¢ –P»`)õ± ¾¦>vYó;5¨ÙY±~vþöªº²@{U]Y ¿½ª®,Ðß^UWèo¯ª) ô·Wõ³ ô·Wõ³ ô·Wõ³ ô·Wõ³ ô·Wõ³ ô·W§þöêÔß^Õƒ.ØÈÿqÿ¤þöê%ná_ÜÊËÔÃ]½Âïù7·ó*wðÓþ½ÝŸBüýïò{ð0{ògöâšq›¥·ù1šq›§·y*åªæ¿PŽj~‚rSó“4ã6?E3nóÓÄ3Læ¯̳Âs4S7?Osjó 4Ÿ6ÿ#ø;G†˜²Î•è,üQ™³X%„f÷›ÿˆ¿WålVã—”£:èµoþ+ž#Në±oÞ¢žúæm׿r]®*;—rUÙy¬Åù”£Ê. Ù¼¬Þá³yYçê³yYçêgè\ýa/ë\ýa/ë\ýaþÊ^³u½ªb9¸žûx׺ޚ?± ñeæ+ü™mCä˜Ï7ÞçkbX>›ößÖù|ã}¾c>ßxŸï˜Ï7ÞÞ¯¯ž÷bê!RÆ<:u'ÓsõRSwS5u3z½ºÜ«©{Åz©©?2³ëêp¨Au8ÈõÕá ®LÝçùÄêq¨-Þ/Î"V—ƒœP_]rBýi|šÓù ?£¾ þ ê êN}Aý™ÔÔŸE}Aý/¨/¨?›ú‚ú_òùš¹7çÕȳöд2´‡¦=I{hš{–£¬ÇöÑ4÷þ¬}4M>>kM“ÏÚGÓܧiÏÙKÓ䣳öÒ49ù¬½4MN>k/M““ÏÊÑÓÜ£föÀyóåY¹zš{ÕÌ^8ÿ5{МyVîžf›ÙçÍ›gåðiröY9|šœ}VŸ&gŸ•çÉÙgåðiröY9|Z5çË“¼9ÄWzƒ[ø&·ò-nc~Ï®Üη¹ƒÝø»s'ßá.Ê/É»)¿$ï¡ü’¼—òKò”_’÷ÑÞÌgvIÞﱓ|€rLòAÊ1ÉrU%9&Y®ª$Ç$ËU•ä˜d¹ª’“,WU’c’åªJrL²\Ui°ŸiJ–¯*É3ÉòU¥¡®™‰’å¬Jæ°Öú½lÖñ3³tÙÅöi¶ê´ÿ²%Ð~Ëf¿µ¶ß²Ùo­í·ljNkû,›šÓÚþÊfµ¶¿²Ù_­í¯löWkû+›ýÕÚþÊfµ¶¿²Ù_­í¯lö׸f!Z/„ðÕ©f×\á Œ 1e:„¸ i9Êý½ùµ¸£X®*Ó‰æî÷ÍeâÎbóG÷ûæ7âD±y£ƒ³ӹ̓.„øQ®¿îú=¾â´ ¡ƒœps­ûÍ•®¿éz„oѼÑAޏ¹JÜEË®ŒãÛŒg7FÙéøïã»L"ç ÛOzÍsQoy®“sEiÿž{œ_³íÛsf®iöë¹\Î’”GÎÉ/ÓVÚÏïÙÏkÅòË4ùòœü2m5å—ikø$åùf¼n¸¬8íõå˜?Åõ,ÏïXX‘Y‰›X™›Y…úóÂSB\ª·ðTšq ëÙRõ¿…õl©fÜÂz¶T3na=[ª·°•jÆ-¬F¥šq «Q©rpÚŸÓwZo<ùYê'7 ÞxrCê'ësNë‰'7â—4¿œžÃÆüŠM8—M9Í8ŸÍ¹€fŽO…øòf´f¹òf´f¹ò©!.cùÝš‹hÆÎX‘f쌕h¶ÎX™fëŒUh¶ÎX•fëŒÕh¶ÎXfëŒ 4[g¬A³uÆš4[g¬E}ì'êîó%¨î>_’êíóOPn|¾åÆçKSn|^®üD^|^®üD^|^®4nÄÎò³Z]amþÍ:¼ÊºTCÍ‘Z'ÄO‹¯óÞ`=Þd}þÃgé<ÏjÀ[lÈÛ|Žÿ±ïðyÞec:¯÷ñêñ[^ ñ|Hóãcx™cy…ãø7?âUŽç5šS¢¯{|ÝcóF˜țœbk&‡øŠq0‹‡°¡@ˆ47Ÿl(Èö!<¡§»~7Dòx³ëÖ´ùk4¤ý³'¶xl>hÞÑc3ãjÿöרöoï@µ|{ÇóBýÒÖÞ˜Â3ø EÅÛø8¿g1ngqš!_(Aýà %i†|á šå^(E³Ú ¥i6¡ ÷òIþȲÜÇrÜOûï~9üûï~y÷ÅûC|¦yÌÈù!¼ùXw½¿3‰03ò.ò¼™çn'qñbqQqg>ÎD׳º¾„Ù¸”Ù)7¾ø õãoó:ëÿb±\ø¢<ÓršÁ3ÉuÑ–›Ã3Éw/šÃ3Éo/šÃ3­¦9<ÓšÃ3}Ków¦µ4wgZGóv¦õ4ogúŽæíLæûÍÛ™Ì÷/š·3™ï_,Ló}u÷⺹¶sMóç êQn©KÕõU×å‚êúªëjgu}Õuµ³º¾êºÚY]_u]í¬~„jgõ£T;«cÏ;P½©ðL³ï„Heukö]ªWÕŸ Êì{buk :TA½¨UPoªC„ðeð¼z6P=ªÐP«kÕ¥ ú›úž ú›úž ú›/c<¯Þ ÔÿTh,Ž«{õAšˆãÄêß@ýP…¦œÃfüŠÍ=ïyuqà\ñ œÇœÏ¹€-¹/…˜¬uBÜûÿ•oB¸ò7Õ°+Wéþ]¹b™:M¥Ù¨Ó4š:M§Ù¨Óg!öýb!Zó0‹óçæ‘ªfÆ÷Kˆ°$†˜nC|ÑCäôó!îÓÃlL¯oú—ú!Wn">"¾,–˜š^azOçå¬ÓM=Tì½×ãn&>&–£ÎëÑ›^§^ïts×½‡Ó/0Õõ®ëýN·ÿÂy‚-y’/ñTˆ=Z&DǡGŸd$„,…BÜ}ÖxãHZã£h7¾Ok»q4­íÆhm7~Hk»q ­íF3ô}‹h†¾o1?âŽçR~̯9Ë8‘ßPÞÊ"lÿ™òÀvk˜EØ~”òÀöc”¶§<°=•òÀö_Bø¸Cˆ™%–¶Ÿw!V—¶ŸdEžr½“ë³Å•ħY™gX…¿z¾³ç¿WŸ'Šçˆ«‰Ï±:Ï3Xƒ¿±&g-þÁÚ¼bë ñ÷Šr§¼|O^®'/ß+Î!,Á¡,Éa|‚ÃYŠ#Xš#Y†£ø$ßgYަ=ÐÙ¼B}bö<ÿíq’Çy=¾êq?^£Yrþu¾b«±cèýwŽ ±ÝF‡hѧøõÀó†h{glñ©í>Í$¶®ó’©?X¬Ÿ¬ý?ê'kÿéú`×­ób}eíKâ!b?oÞPšƒë3kÿ%&®Àá¬È4ß?"ÄVXâ/½ÊÕlÏ5|ß²ײ#×±׳³÷\(D‹ìaaîåcü‘E|õxŸ/3èhýz­ÿQŸ^ëOêÏk]¢~¼Ö_Ô׺Lýw­+Ô×’cC80G¬ÿ®u•úïZrKÂë®%և׺N}x-9%òÇzñZ7©¯õOß¾"ÏÏã[œ"£ôÌ5Ìä£ôÌ5ôУôÌ5ôУôÊ5Ö„Pý¶ŸmÖ¥g®¡—®nÎ8PU¬w®±VlÎ8 æT7_0cV¿G³å(=u =ö(=u =ö(=u =ö(=u =ö(=u =ö(=u =ö¨ªÔcªÆ-¬Î­L >å\³?ͬs®9ÿã ¼ÃÔ«ÍÛèþõà&ª‰ó6Ó¼³ØÏ¨âÒëO7éOÓëO7éOÓë)7ÉŸéõ”›Ì%éõ”›Ì%éõ”›Ì%éõ’›Ì%éõ’›Ì%éõ’›Ì%éõ’›Ì%éõ’›Ì%éõ’›Ì%éõ’›Ì%éõ’›Ì#éõ’›Ôˆ,iߣŸÜd}ÓÛ뛬oz{}“õMï¬n²®éÕMÖ3½³ºÉº¥wV7Y·ôÎê&ë–ÞYÝT)ÄhâŽ\ áÕOB¸vHÜFü_æe¾Â+lKûev‹©41Äö?¢å†ò(Í·ýq8Ó~ïŸÊ‘ü…£x‚ïó$Gó?ðó^ôóäþþ§Åò ǸÞÒõOÄ¿ŠÇò,ǹþ’ë)lÅOÙš“Ù†S¼îœ×}$~Y<•¯PýîÞu…nv[ñt¶ãg|•3<ÁóúêÙíÅŸ‹Õÿrį‰õ·³Õ˜J³¨¶Tú‚jI¥ÙT3*©ýõ åÒÖEŸP.íóèÊYÓÙjH¥9|_¹.ç–K¡œ[îSʹåÒÞÿžŸ+–{Ë¥}ŽËÔô¿ÂižwÆ*Íÿ-öþ3®ôøªÇz‘þטö®ós³þ0½È–;&CˆÖ]Íû¹†ù-3QÞ“™òþ˜(ïÉByLVn`6ndvnòs‡û¹[ÅŠ73Í _p}›8§8íù\L‹só{æávæå>Ę;ù0wÉ';B\íÆüM¸“M¹‹úžŒÞ×9?£÷µEÎÏè}m‘ó3z?[nÐûÙb6‹W׫ñêãúrü€òuü‡”ÿãÇPžŽKy:~+ñ#VæxVáÇ¬Ê ¬b—ܧžX·%éiÝ–XßÎzõêuË’T¯[>Aõºe)ª×-Íô3¼Ÿ–fúÞOK3ý ï§¥™~†÷ÓÒL?Ãûii¦Ÿáý´4ÓÏð~Zšégx?-+Òûié¬Îð~ZV¦÷Ó² '²*'±?au¦0Ÿ²'³&§°§²6§QO}c]ˆ.žb«è“®è «è®œ‘ÿ qu{ò{ñ/ö¦º\W]þP]®Û—jr]59á\ͺGuÕåÝ£ºêò‡îQÝ÷èÕÀ›È8ˆÿ2™·8˜·9„ÿq(ïP޹àLͰîßÈio¥£œöÖ}!ûÁ—}ô~ÿyí-÷ç­ !d:"'õןüL}ô'Gh}r”úåOŽQ¿ü‰¾ù¤>ù=å¹øóü¹øóü¹ø•Û!²Y®MRË6˵IjÙf¹6i åÚ¤o)×&­¥\›¤Fm–k“Ô¨Írm’µ¹’/õ)iƒ/sÜÙ_Ô˜<Á‘<ÉQ<Å÷yš£y†jnû¯B\óBû¹,Íy,Ãù4'´_@½K¹*!lw/ÊUe¿ ±{n¡çô/åÔÔíý©¦n ÀH3äv3d93äödÖæ`Ö¡ûÑ~‘Ÿó”¸®x(Ÿæ0š·§¹pûÖçH>K¹í'!ÚÃŒWÜž­2-ÄýmoW™N{»Êg´·«Ì`å:Í áß ÔOüû›ëŸ»žö}3i¯W™E{½Êô9:™÷ÿý ø‡ë³]·÷«|I{¿Êš;³/ ñ»Zñk¶ÖÛÛE ðWt}™ëmÄgÅ…Ä߈_Ÿæy>æúr×_á ¶åJ¶£þn׫^wÁëôfÙõy»ôyÙõy»^sý7×ÍÙõ{»:ˆ?B{-»ÞoWG×þp­/Ò|]/¸K/˜]/¸«sˆÑ+Æ]jƵlÎu|ëÙ‚ßñEÚc—Zr#ͺ6±7³5·° ·òenã+üžm¹í(ëYc*ÈÇzÖ˜ ò±ž5¦‚|¬g©°›Þwžç=Þãq'îeÚ{ý‘‰ÜÇ×¹ŸoðßäA¾bk¼âoš j¼E3A.4ÔèJ3A·i&¨Ñ¹CÈõ„=»½™Çrlfçâ{91³sñ½½ŸK”KoŸëI_æåTs÷„C4wO0§ÊäƒTù`‚|*LH›¯ÍNçÌNMÍNçžs]~˜ ?¤ÊŽ»žÙõFbybB*ÍÓÌÕ©æé æêTóôsuj+ž¢¾j‚šªŸš`¯¥ê§&˜1›>àç8 M³P­KÕ_M°çRõWìµÔv´×R_¥½”Úžiÿ.¬|›úšÇöMjÚ+©y1„UzÜçÌî%Ó©+Ctë§\ÅÉ\Í)\é!æ÷½!~fþȾÜGùbô²ɯÏû}¿¸°?ò=þD¹bô7^÷·øx sf2p0rq(sS9œòßLùïwùo¦ü÷»ü7S®X(wwãßã5ÌÔg•7³¿!×?z‡ú×GõæoÈóš fê¿Êë¿Þ0s:Îa¦~«¼™ý ³gÍžbBL{50Y¬‹úÖ‰ÕÂ<öM{µ0}ÓE= 멅洞 žW#óÈ;í§SÞiÿÕØö3(Ï´ÿœòLû™”?»¨_A~o?K¬Ö¶ÿ‚jmûÙ¬Ã/Y—s(v‘WÃ&ñWâg8—õ8òhõ/lÏ?ËlÀ…lÈE4ë·_ÌF\Bç±½|—§1å»íÏþJ¿˜ö|ú%Ô3Lv6ž°VUz„ø¿ó±'f/ægo>"¯¬ q9Ìí¯¬f ®¡3*{¬–å¨Eµ,Gmªe9êP-ËQ—jYާCì:ç¾gÆ[J¾:ß7„ó\ ó\)yë|å«óý(_ïOùêü{”¯Î Roê©7©7õÔ›Ô›zGBlTþûΜ•ÿ¾3'Gå¿ïÌÉQùï;ù/ªÿûîý>ú7Ds.¢úÀïÌËQ}àwæån¹nF‰þ*þPÿ`ßEÏzlfþHŸú˜¹%zNlfŽžç8^ ™¸€½ýÍcsp½^ÿŸ×›o¢¿»föýèŽØœýClˆ^¤™6ú?Nòü]ÏWÿ)v梗è,Eÿ¢3½Lg#z…öyôoša£WéžE¯q:¯ÓܽAsk¿Â!úä|ŒûX„ûCèý`ˆdÐçŒ{-Ä×KBºo<îàq†Ûraˆ>Ð"„ƒ<^äñ‹\Ì–\—<—b“G„h%³`òHš“GQûåè©lM~_l¿©Ç®ìL&› “?`E×?tÝMþP¬~|9Fì¬&ëW¿+NûûÇŠ­}ò8ZÓäh-“ÇÓš%ÌN` N¤¾4ykQ\©6Sh&Kþ”u9™ÎAò>é¬Çi¬Ïé|–Ÿ±g°!?çsœÉFœÅçùÕ…š9CÜÍ¥Ááð8—Ç_37—1­uͼ\·¸‚ù¸’sós5á>ÊoY€kYòLÍB4'×,ÌïøÕÖšE¨VÖ,J5°æãTëjãçV–à6–ä÷|‚ÛYŠ;Xš?ÐŒvs'Íh7wÑŒvs7Íh7÷ÐŒvs/Íh7åÕÿøÍšÕ¾ñ>ª'†¸ë¾N=Cõ7Ë7Ç·Ï.Œ²+ÓñmÞÇnLÏîÌÀwx?ßeFö`&ödföâìMý`gûòVÚ·äßê}\Ï*® î%î+ÎÆ$fg?>èyûôVÚ#Ö_œClŸÞJûoÅÞçÛ§·Òþ›±â\býέ´ÿvl XOÝYο•öß ça2ór0âæãP>ÌaÌÏá|„#ø¨9@W}¤Ç±¯úûâhš§òÈy³‡†èËOq}æE—C¤viñp±38ÛÙ}¹"Ý—åÂÙÎîËrßlgöegm¶³ú²³6ÛY}ÙY›íŒ¾ì¬Ív6_vÖrt ñ{ô󪘧ô¸ªR­ÈÑÉõÌìLýø„j®«“ªSíÈ‘èºû1Aí*ª†äx]ì>LPÊš“'Ô¤9y‚úUÔœ˜k­½é±a®á²a®á²aî°;Jï^3žz÷šQ¶f:¶á}!ÌY"Uþ¿,NÏW¨&ŒjËûÙŽz†Q¯2ÛÓ:Žz°³°#³²ݯQ™=DÖˇ=õ»ëåÞúÚõòaÏÏ)öœBÌåÄžÖx½œØó ʉ=g뵺êµŠåÆž_Rnì9‡rcϯ(7öÔ‹åÑìÂDëóx+±~`¿~ ~`¿³‘G?°”ç­Ûã­Åú‚ýïS?°_?PHŸ}\=+ä^w† ¹—ÇËÓ½<._Lú4DŠý,vO;C…ÜÓãÎP!÷ô¸û×xgˆOg^o¼‹æõÆ»i^o¼‡¯‡Ø¤ßÕ`µ?éNâEªùIÿcJ_è5Ô»ð…"­Þ%ýéº éõIQt™z€¤+Ô$ýM=@ÒUÚÃI×h'ÙÓO~B÷/ɾ~Ò>N²¯ŸœåwèKÒji’ýýä´¿Ÿ4&Ý¢Ù/I_û¤™/I_ûäW~†{ŸtÇcg­ˆûŸt×ãy!¶]–ÍiFh—•f„vÙ¨n—ëB˜a6Hûgóí¯gšf˜Ê}J½Ú?«Ÿ¡/7…/sª>C¯ß.§×ê‰ÛåâF×vx^¯ZÎgn—ÛµMâ¶âélGŸ½]×7‹_Ï`{:ÇíòºnÖ˜ñšØ:´{HlÖ˜ÑAl=2s-Ÿkz¿vó{Ïuôœµi—_œö~¡Ù£Ý£Ôç´+@ýM»‚ÔÏ´+D}LƒJrÅiVæVᯬʳ¬Æs¬ÎóLàÖào¬ÉßY‹°6/²ÿǺü“O󟡳۠/³>¯ðYþͼʆ¼Æçxr`äFˆM¬¢ùO²"O™÷×òÍÄ>GþÓb=cùæbŸ'¿Ï“èóä÷y}žü>O¢Ï“ßçIôyòû<‰>Oþ Ö´‰Ç>S~Ÿ)ÑgÊï3%úLù}¦DŸ)¿Ï”è3å÷™}¦ü>S¢Ï”ÿRˆ¹"¿Ï{]˜ƒ]™“o3—¹É °Ñ{^úKˆ¾>ž'¨ß.fv\zÒc½öÒSœb&½âé)&µ§žb’Þ·‘žb’¾·‘žb’šÖHO1I k¤§˜¤†5ÒSLR³é)&©UÔ´>Öåþfbµ¨QªE²Ò{m¤‡˜ä½6ÊîuÖëþæÌÁ\÷Þé)úäë¯ûäâ‹®û,|¶IÝè³MêNŸmÒ;ÌÍw©w˜d&l¤w˜d&l¤w˜d&l¤w˜d&l¤w˜Ô‡z‡I}©w˜”ÄGÙú†B8agwOtôXnݤŽ%•tí7¹÷¤ë\—ktæ—Lä¾Nç¿y÷„³ßàMÎ q1ÝBôÛúìÎgùð]6 aãi¡Œé!~Ž=iž‹éEó\Lo¦ý}è^Æô¥y.&‰ÍØÍÙŸ/ð=¶1·Ì=˦Ñܳl:Í=Ë>£¹gÙ Þäçü‡3ù/gñ¿àmÎæü’w8‡wi–½ufÙÛÚøefÙÛÎg Ͱ·ci†½G3ìíxšao›…—™ao›…—-¥Yx™þÿ¶YxÙ²ÆÊƒSÄfáeæ€Ûfáeæ€Ûfáeæ€Ûfáeæ€Ûfáeæ€Ûfáeæ€ÛY¸Æ÷Ë—?g›ngãZ×åÏ‚“ÅÙÅæ‚ÛÒ\p;Í·srƒ×ɯå×±òkÁ©®çr]~;7åѱòjAëz;ؼp;/Í ·¢yáv>šn?LóÂíü4/Ü~„æ…ÛÒ¼p»Í · r—Ÿ+?tŸn›næ×åë‚îÛíÇÄæ‡ÛEø£ëòvAy;C׊º¶s?‹ñ€×ÈéÕµ±ryA½ÃX9¼ ý=V¾.èß.îuÅÄöôØÎ´§Ç&Òžû:íé±oОû&Óîu ß÷“ø-ñ|vávåB¾Í´{^Òëñ f)þÌÒ<Â2<Ê'yŒeyÜ÷wóý‹Ùi{¥œë©!²åpˆëoý·üLëµå­Ï–£´[ŽÑgÞrœ>ó–TúÌ[~¡Ï¼å}Ö-'é³n9E}GµÎ!îšã]Í vÍ VÍ vÍ VÍ vÍ VÍ vÍ VÍ vÍ VÍ v-jã»ÕÌa×äÌjæ°krf5sØ59³š9ìšœYÍvMάf»&gV3‡]“3«™Ã®É™ÕÌa×ÌaÕÌa×ôýyÜÏjf¯kòe53×5ù²š™ëš™«š™ëš\ß¶aˆÏñŸcÚ*¯–ð³{È«%üìòh ?»‡¼YB>~È=è!w–‹{È%Ìݧ„H\Úó*‡–Èæ5iÿ]¬?糜ÉöökÏòXž,ð˜¯"¾Š†ÈI3JŠå¤%%3Íz)М—’…æ¼”¬ü€Ùø!Õ¤“c|õøA_9Bl†Ö!~s,Û0Ž/3Þï=àñ+ëÿ3´¥þ?C;ÞG5r³¾?ƒ¹Yßï=ÆovG· ñµC½…HúÅ~víˆøyñ6æX×ý®Ú1æsX¯&®sÍï­mŸö;kÛg£ýÎÚöÙh¿³¶Y´ßY;ïééË,>Úï®}_ˆœö¹'û¼§}îÉ>ïiŸ{²Ï{Úçžì>vkâ‹ØÝì—"ÿ£ýRäO6¢Þ¡Ûó´þÝó2›ð ›òo6ãU6ç5¾ÀëlÁ|‘f©n-ù_â¿´En…ØíÓBtùbût¶aù…y¶ˆø3qê½·ë9·Ï›§™¥µµ¯ç„øœöMÛ¯øLˆ¬u>ßý“Îç»—è|¾ûÏwÍíkÏw¯Ðù|÷o:Ÿï^¥³ùî5:›ï^wÀ¿õØù|WÍ]ë|¾{“Îç»ÿÐù|÷_:ŸïÞ¢óù®9c­óùî!ö'½à‡9C¨ï¬¤6ÕóÊ#åÌíŠéeí—vÅy%(7Î_ʙڕâ<ÌR4µ+Í#!öìÈöGÑZ}Ÿf®³£iŽY»»Òš}ü¶Ù]ÿ}l†ÇÝø9»Óú}ügñ]~ÁœM{¦dqgTÏQb?òõ%R¯Qâ'ê5J¢^£Äaê5JüBÅ•!ìº.Ös”8"^%¶~=õ%ŽRïQâõ%޳åêž/ò¶ä ã¢Ç/y|’­¨®¸ÚÏrz¶ŸfžáËüÕóêù®ø-ÿ¥:¾ëÍK»Ü›ž¯xÝYñz±Y°g[ñ9±¹iתç»îÒL´ëžçÛyþ<_¥½Ø³=ãküø;2íývâÿhÿ•°ÿzÚ%̧̂ŸškN™?5ל2 ~º+ÄT¶ß®Èñú‚.5B|¡Ó¬É3!DÕ½.µ<þ•µy–uxŽuyžOóŸáo¬ÇßYŸò}—gé3ßGúÍs }Ž‰æ¹†æ³‰æ¸†æ³‰æ¸†{hŽk¸—渆?Ò×P¿±B>é¢pÞ§ÿZ!§t‘VÈ)]ä†rJ¹a…œÒEnXÑÔ—|ÒEŸÙEnØðFˆö)È7Y(„eÖm™šº,]ˆŠ;ôÚ}œ“ÔOCtâëœÌ78…or*ߢü4± ±‰¾õ¼yÎ –ê¬M|›ÎÙD?/Õ9›èœß¢ŸMå.š­Ïïætî¡™úü^Êi礼v~ÍÐç÷sМ|þ åŽó?QŽ8ˆú­²x|Øã¯ø3çòçñ(Ílçqs!S¹ˆæ»ÏÓ|÷Ùší>[J³Ýg_ó4—ñ ¿á¯\bÇ=¢Ïœ 1Säò¦w(—7½K¹¼é=ÊåͤÎ)êY3½Ñõ«™ÞhŠšÕLÍš¢f5S³¦¨YÍÔ¬)jV35kŠšÕL_4E­j¦/š¢N6ÓM1K6ÓM1K6S7§˜%›é]¦˜%›é]¦˜%›é]¦˜%›é‹¦˜!›é[¦˜!›é‰¦èušé‰¦èuš©qSô:ÍôDSô:Ír„N=›¢×ifNœ¢×ifNœ¢ÇifNœ¢¿i–'Äž.켚ëO?F{u°£Ò2š1*™9›1*™9›1*™9›1*™9›1*™9›-*ÙóƒÍ•ÖÐLQɬ1ØLQimˆ©!—Þp~kÈ¥7~—Ny,ŸÞø#„Îï…p+í5òé‹âbù¬ó@šGjÈ«7þ'$–Ç:'sƒëòì µ»†<{CïÔy°ëæ’òí Ÿ¹†|{C ¯!ßÞPÃkȵ7Ôðrí 5¼†{C-œ[)ĵÛÀÊÜÈ*4×ÄÔ ¡®™üˆ›]Wïw¤¹çªzn3«q «s«ç­ó‘Ä âm¬ÁïY“ÛY‹;X›?°w².wñiîæ3ÜÃzÜKsr»iNn·jV;5k®šÕNÍš«fµ3¯ÔU‡´«]íÔÚº¹Ä/Š­{;5l®uo§†Íµæíô°s­u»#´¶íÔ¬¹Ö²š5×Z¶;b_]¢¹ÛR>ÍÝNíöžžÊHïé©LôžžÊìyy6÷«”gs·§<›û5~Ë\ËŽ!v±úÐÙ]¬>tvF«ÑÅ·éŒ.þÎèâ;tFߥ3ºøÑ%ÊEggtI„Îè’®`,W†ØÍ„h?ydóEÊ#›ÿGydóŸœÃK”C6ÿE9dóeÊ!›¯Ð¼¶ÜœVßûÚü·ØûÜ|•æ¶åæ¶úÞçækâ4¯ÓûÝ|ƒÞïæ›ô~7û|ý¼ßÍ>_?ïw³|¾Ùgë÷/çf‹3ÜßÜ‘¾˜ÇÎqymôˆ­]ŽúÚOQ¿S»<õ;µ+P¿S»"?`%~ÈÊÃ*˪!ÑKÜ×*Ä,_:È/ ä—òËù¥ƒü²@~é ¿,_:È/ ä—òËù¥ƒü¢÷ˆ/q‹òY‰Û!¦H÷‹³]¤ í"…èl)Ì5!rôFˆ?€7éŒ6éÂÙâÄÎh“>b=R“¾Ô5I¢¾¦I?¦}ÿ¿^ç 7é/Ö½%ÌÛâº|pv­ø?ñP±|pV>hâwÕ×Äš½ÞñÜ0ÞåpÞãˆ98’Žb ßg,GûÞßÙ´¿C8Nüãù!£Ô/T?â¯åq aŠÙ¡TSqªx8ážàHžä¨[Y?rY?QY?rùï&— ‘'ÔÉÊú’ËWiÞ¸¬/˜ü¤ëÝY–úÓÊú…ËúðÉåÄúÔÊz†Ë7¨g¸|“z†Ëú½ÉOyÞ|4¹<õ¯“+°—çõ—õ“+Š{‹Í)—í½ÊúŠË·iN¹ü_…êxlV¹|‡f•Ëw©¾]ÖÞ+âV~Í¢ÔÝ{œß°—³8W„ÓùÞê\¾·šÎå{kBì6çò½oé\¾·6Ķš¢Yø k0…5©ïÈZ‹úެµ©ïÈê=µÒwd­K}GÖ§©ïȪÇi¥ß07ǶÒod­OýFÖgCäœdÚšA¦écsÔô¸·Ç>ǹ>!nz`_F˜Äöc,û3Žï1žå@ê±Î ¢s³/&Ä\°†!’Ûžö? 96·9v_¬çå†aæØÜæØaæØÜcivÍ=ŽMù›q¼×Çyý"Æs±ëêHÚŸS·/*–؆©iÆÜ¾tâ¥by<÷DÊß¹'±%?ñü}žÿšé©6ïË@÷Éý›;„ÎÑÜ¡tŽæ:î{ÜÜá!¼`ÏÿfÏ»÷qs÷>nîH×ÁßÔ={ n®³rÅÙ™ë¬\qv掦³3×¹âìÌuF®83sÇЙ™«§®$Ï\Î`ïe°÷žåýlÀŒlhÏ•óõ”¯´Çÿó¿Þk>Z"…õéñ3Å 8‹ ùŸãl6â—|žæÞõiî]ß„sé<ÆÏc3Îgó á¶9¹Njˆ»Ý›¿°O°/ORÊ#Aä9.>%îbª•qW·±$Í,­2t†o=éú®og)î`iþÀ2ÜÉ'iΩV–»YŽ{ø÷ú9Wýœ²âòâÅrÀ­râ â}bgÿ–5êtƒå]¯èú~ñMq±ÞäêêM®¤ÞäêOÔ‡\=äuríŠbýÈÕÃb¹àV%š oUv]rÕœUM_rõõ%WR_rõõ%W­G5}ÉÕTêK®þB}ÉÕÔ—\Õ WÓ—\=b§ÿ¢-’¨ïoÑúþý©ïoñ^ˆ¹þuˆ_ÔšËØ&„1O„H.,EóĘÒ|Ûóßxþe.ç+\Á¶ž—7 t£{¢£õÍ׆Ö7Ÿ{ßÑúåsï;Z¿|ÎnGë—¯­_>÷°£õËמÖ/ŸžrÛ° ¦lN5e›þi€š²Mÿ4@MÙ¦ ¦lÓ? PS¶éŸ¨) £!ÚÁL¢ÎÄí8L{z‡3¡ÎÄíp&Ô™¸G-²YC­‰Û!Gäjì˨9q;Ž{lúW ñe‘þ•éŒô¯Bg¤U:#ý«Ñ\Ó¿:O3gXƒ¿²&ϲϱ6ϳ/°.ÍHýŸ¦)]%ŸñøÖãEê3ÊþúŒ²fŸþú‹²fŸwõøéÌ|ýõeÍ>ýÝßþz‰²—}éKÌIÑÅ[©^,ßµwÆûLGíñîíQ{f¼{{Ô^ïÞµWÆ»·Gí•ñîíQ{e¼{{Ô^ïÞµWÆ·ÒÏnöØ~ïþµ_Æ;ó#þ ‘‡¼÷£öÍx÷ù¨}3Þ}>jߌwŸÚ7ãÝç£öÍx÷ù¨}3Þ}>jߌw>µ'Ú;ãÍ£öÎxgó¨½3¾Sˆõ¾¢ãßã"àbä ±GÌüjLì3ÿG‹CLõi!òcõÏY…3Y•³X-Ä–qVëÊm¾œÓßÌÒ¿9«Ùô;õÎÙô;ÍA¯¨—ë)všÑ³é)všÑ³é)všÑ³é)všÑ³%ÓŒžm0ÍèÙ†ÐýÊ6”98ŒæólÃé gÁÜ~¾:ô·:”m¤8=ºÃ55åo5%Û(×òŠÕ”¿ÕÚWÔ’¿Õ’WÔ’¿ËS Iûo{²½ïuq4óñ>Ì™ŸcøHˆI¶+Ú§ÉöoEû4Ùþ­hŸ&Û¿íÓdû·¢}šlÿV´O“íߊ¿Óþ­h&Û¿íÑdû·¢=šlïV´G“íÝŠ—hïV´7“íÝŠæòd{·¢¹<Ùž­h.OÖ W4—'Û·¯Q\ñ:õÀ}¦töa²~·âMês+þC}nũϭh†IÖãV4Ã$ëq+þG=nÅ;lÉ»|‰÷hæQ&c’Í<•"lþÌX¾Â8¶e<Û1J3V%3V²Þ§’^1ÙŒU)}ˆí÷}ˆ–ÕÏ÷ÛN}|¿ìAõ²¬ú4;{ˆTÒ¯ôS7ËêÛû©›eÕ¥ÙºÞ\¬~–íÃ=ì˽TgûýHu¶ß>ª³ýöÓþïw€æ¢Ù9|ÿ âƒbç ßOtúb2s0æ¡ù¦ßQšofçôý-˜‹/27[zþ˜çõ޳óˆ_›{ú¥ÒÜÓÏ9+kîé眕}Ÿ'9š§øOóCž¡9£Y¹ß¯ëûå8žãG!¦„ùãÌÚrëŸJ˜Aά£äŒ|\ ræ;šAÎl ~íÌFê×Îl¢þìŒTBvf‹Ÿ±Ç×^±>íÌVêÓÎÈw%ôig¾§>íÌv¯Ñ‹åÞ'Ö¯q¦ÒþnÆz¶3?„¸tχèß—®1}_º&,B–¬!6¥nˆ>ïüÍû/DªŠŸ;óÌ$ òFÊ3bç0“(¥žÇöí¼»ž«.®/6Ó¥<ËØ€ÿ²!Íl)Ïñ¶×›eÒ¾¿‘ø?z?Ïß a¾Ù&¡Í6 5i¶I¨E³MBmšmêÐl“P—f›„§i¶Ix†÷±ÓS¿0_ßž O˜¯oOзÏ×·'èÛçgâsÌÌF|€Ï3 ÕÅùYÙ„fㄦ´·šÑ^NЋϷ'^ ½•`oÍ··ì­ùöVBKÚS /1/Õù±5óQý˜ÿ0_f~¾ÂG¨7œÿ(õ~ó ðU¤o~!ªó ³cGa'¥~nþãLd1¾Îâ|ƒ%ø&Kò-êYô¬óõ¬ zÖùzÖ„·©7MЛÎ×›&èMçëMô¦óõ¦ ïROš '¯'MpæçëIzQšà¬Ï×w&ô¡¾2A_9__™ ¯œ¯¯LÐWÎ×W&ôgu¾Ç:ãókp ͺ f¹ùµhv›_›ƒY‡CX—Cù4íùÏО_#XŸæ¾ùæè„QlÀ÷iÎM0çÎ7ç&˜sç›s>¤ù6ÁÙo¾M0ßÎ7ß&˜oç›oÌ·óÍ· ãižMø˜æØ„ 4¿&˜_ç›_̯óͯ ŸØÇÎÓóföù/‰SØŠŸ²5'³ §ðeNå+œÆ¶4ØÏoÇÏø*g°=?çkœÉœÅŽü‚8›ù%9‡¯ó+¾Á¹|“óø²ù]hþŸß•æüùos»Ñü>¿;Ííóß¡y}þ»üš=¸Œ=ù {q9{sûp%ûr“¸šý¸†ýù-ߣ|8×q ×s¿c27p07Ò쟰‰fÿ„Í4û'È…ó‡s+Íü Û8’fÜùfý9p¾Y?Aî›oÖOøfý„4ë'ì¢Y?a7ÇR^?ŽfÚùQþœ?žfØùÓÌ:p"râ'4«ÎO¡uþ§ü™“y„S¨ÿž?•zïùÓ¨çž?©üŒ¿pOðsžäLžâ,ž±'Õ¢uæ¤Z”²”jQÊ×T‹R–Q-Jù†êPÊrªC)+¨¥¬äy®â®æo\Ãßù-ÿàZ^ä:þë©·NùŽzë” ü‹y™›x…›Cì¾µ!:Êù-av,’âNè‹è'Oè‹è'Oè‹è#Oè‹è#Oè‹è#Oè‹è#Oè‹è#Oè‹è#Oè‹è#Oè‹è#O˜õŠè#Oä¡>òD^ê#O<B{ûîº^ªˆ>ò„°ˆÞñ„°ˆÞð„°ˆÞð„°ˆÞðÄ£Ôž(@½á‰‚ËBÇÂ~žý{]mkoÿ^×ùÈõÇ8žE\·Ÿ¯ëÏŠ|,.*¶¯¯ÿKûúú-Ú××ÓþYóÏ?.¶¿¯ë׊Lã$ç',áyûþºØÞ¾¿®+’âzI±ýý^ñê[{gÀ[Š)ò©çžàd–â–æTêÕ‹˜ Nè©‹˜ N裋˜ N”£™àÄS4œ(O3Á‰ ~®3u#BgêF ©zÄ"f…fŠ"_P3ùö!«'|û^ˆ÷3bãJ…øµ?³4° íóä£Â_ŠŸcYg9¦ò)ÚïÉW…çˆË‹O°O²"O…Øg‹…h8Àâ<Èü‰%yˆOð0KÑû(q3Äÿê}•ø‡3ù/gñ¿àmÎæôþJÜ¡ß_â.¿¢ÏõëÜkÙãÇç3† Ë…Œ£¬d<3Jç²d::—%ï£sY2=Ë’è\–¼ŸÎeÉŒt.Kf¢sY23Ë’0íÿW׫wµþ+ôê]õè+ôê]õè+ôê]õè+ôê]õè+ôê]Ýzõ®é©Wïšxäå¬+ÄÅC¸ÏY_R+D;ëç–È1u¬õ’Úâë¬ÃÔÿuÖÃÝÓ‡¯²÷ô᫬Á=ý÷*kpOÿ½ÊÜÓ¯²÷ôß«¬Á=ý÷*kpOÿ½ÊÜÓ¯²÷ôÙ«¬Á=ýõ*kpO½ÊÜÓ_¯²÷ä´UÎn)÷éž¼¶Ê:Ü“×VÉOwæ…è =þùÔãßY@=þ3ò =þ3òŠa4#¯N3ò =ü¥ÔÃßùšzø;˨‡¿ó õð‰÷…h~õLI”×oÎÔo–×oÎÔo–¯åùôžWçfê;Ëë;gê;Ë×q=ƒë>Câýô3ÒgHÌD÷113½ÿÄèý'f¡5OÌJùa¦¾µ|]q6±<›˜òl⃔gsPÈØÈãœ˵‰¹(ÌÔë–Zœ[,ç&桜{ÙYøê¥>¬?"Íò‹‰¹–¦3½þ”ëˆËˆcù$ãX–ñ,Ç(Ÿb:–ç}¬@óßåŠÌÀJ¼Ÿ•™‘U˜‰U™™Õø«3 h®¸\ƒÙX“ÙiÎ}ößÜ´ÿææ¤ý77ÍssÓ¼1W¾¯s:ÄÝÖ;Få¿:g<~¿rÏÒlØB¾È(_´/2Ê-䋌òE k”Q¾ha2Ê-¬MFù¢…µÉ(oµ°&Òšd”¯ZX“ŒêóôÅ!òäŸbk“QÞjam2þBk“Q¾jam2:C-¬MFuzú¯¿$¶FÕëÖ(ã×—ºþ—ØZeü•Ö*ãÙ3P>(oæÓƒå[$–Ê/£¼PþÊ å—S^(ïÌ•ÌJûìoûxž¼ú·ý:ÏûûÛþœ'¯6z"„ÓúûF¥¨ÇÛÕ$Ä Ñ4*-Öç7*C½Þ®¦®a3ÊÛžt]ï·«¹XŸÒÈLxZ¸ë±õhTNlhôÍÊS/¸«…çõ1Ô’ÓæF)÷ìzÑõ´÷£vœ64ªL½á®–®ŸàKÔçÄš›vµòØÝÕš§CÌ¿„øY#x‚#y’zú jõ§<~Ÿ§9šgøå‡<Ë1<DZ<Ïq¼@óø¿q<çÇüƒúúÑ„È#jóÅúûÑÅÅù?–pý®OâŸüÄõ?]W,F_¢5ýÕãïׇøù¹¯s#ßà&¾ÉÍ|‹[Ø…[Ù•Ûè> ¾"9­ùàë´æéëxî{Ïuãvvç¾ÃèÞ ¾áµjû÷;Å=Bì–õ!Ú¿7¿cn`_nd7±Ÿ×_óúé¼ÎÏxƒ3¨¦üœjê@55íï{»}ßÛ~îÊÍôsWn¡Ÿ»r+ýÜ•ÛØß³?·ó=îàþ@gvåNâ.Êõ+wS®?¤nŒQ©cÌ,«ôÌ íõCêÇuèú1F:¤~ŒQ‡©cÔ¡CjÇuèžxŒ:tHOîz;×ËðU:{kì¿ç‹‰Û‹Ëò5–c>ÅŽ,ÏN¬ÀÎÔŸ-Õg$~M}F¢ü±T^I”?–Ê'‰òÇRù$QþX*Ÿ$ÊKå“ÄU”OõKå“Ä5ÌÆo™kù ×1×3'¿c.n`nndnb^næCÔKÞ7Èã|oåÃÜÆüüžp;å ­ÿ–É¢^õßJ=ÐÒ‚®›ÙúoÇñ{Æs;õBK yÞ,ׇ8õ¨YôDK »¾›q‹p/‹òG>N³s³´˜ÇûYœX‚Y’?ñ ¢~7ñ0õ»‰òiÿ~—¾k©¾7ñõ»‰G©ßM”?ûïò|î¦~¬ÿêÃäˆÐ¯Ç™¼VOœxœzâÄT:»KõÁ‰ò_¢³ZOÐm'õÝvQ?Ðm7õÝöPÐm/óòG>Ä}!&ñéŸÿ<Ÿá…º6‘ˆœ™XOüëów>Ë?<ßÐóribñE6äÿøÿd#^âóü‹y™MxÅ÷?çûåàĦâ¿ÙŒW]o亜œØ\¬ïìú¼x SnN|Áus[b Þà‹4o%¶ä?ê½}—ø’Çÿ²o±5o‡0ÐgÊö>½÷l£é=dóVâ»×ûÝÙüîÕ3ÅÏŠýîl~÷@¿;ÛX6á86åGlÆñlNuaõ,ß×@ü‚X}Ø‚êÂÀ©¬þÂó Å-ÅêÁÀ—˜âþ¶õ¸•ÇŸzÍl¯yεvéq#_õÕÞkZ{Íd¶á¾Ì©Î½¸zŽ×>ïÚ+®M%n̹lÂylÊùlÆlÎ…|Á÷µõ}ÓÙŽŸñUÊç«y¾óE.aK.åKüš­¸Œ­ù Ûp9_æ ¾Â•lËUlb;ëó¾@}ÞÿQŸ÷ðï!|~NßZX¬ß{Ø>˦§ë¦ÿ*¢ïê¦ÿ*¢ïê¦ÿ*¢ïê¦ÿ*"ÇwÓ‘g»é»Šè·ºé»Šœq÷½¢ð 6 ±OÉWõÑOÉWõÑOÉWõÑOÉW¿£|uÑ<}¿zô”œuq#嬋úçÂÖ/µY“ä‹âúÜÂÖ1µ9­cê ´Ž©-h½R_¤õJmIë•ú’ïsö‹§§3^\_\Øú¥¶;ëÅõIÎzqýqaë™ÚšÖ3µ ­gêË´ž©¯Ðz¦¶¥õLmçûä…âúéÂÖ5Õ>™ô£83÷Q_]xµëí¹†¯ñ[vàZv 1Ë÷…ø.}Í~…Í~ø;²;y~¿ç“ÄEÅù8õ(˸ÞO\L¬WY~P¬ßP\¬gYþ“XϽü¸^Âu=ÌòÃâü™òýò#LæQæ1áqe*‡Q~ë2œú».ú¼åú».ú¼åz»´¿öôØìÌÈâŽ,æC\Â|\ʇ©æÈO5¯À#Tó <Êå!¼ê|_“÷ ¯0Ðëë ôXý+Pˆê_ÂTÿ zb„Kü3pµ?i¶­f¶㺾zb,õÕ㨯žO}õÄ(õÕÓQ_=ÑŒÚP_=ÑŒÚP_=ÑŒÚP_=ñ~®ñsÍÆÕþâ×¼ìzF׿e&Êí3SnŸø­óÄ,”Û'fåf£¼>1;åõ‰r3õM ¹vo†h.ëÒî->È.ÌÁ®Ì û´œ÷Õîmq.vcn×íÛr«iß–Kû3º»žGÜ_œög9¼#Î+~O,WÌÀ´?Óa Óþ,‡w=ÿx8íÏtHfÚŸ×ÐÃõ|âÁâ´?«a(Óþl†aLû³†3íÏ`Á´?w¡§ï{˜½˜ßõ‘®§ý9 £¸ï3íÏ€M}tFóI»Þ^ûˆk¸–ög1ô?ʾ,À$ôü‡ž×CÏô¿?p,÷põ–íúy]!öga×?rýGŽç>×ßsý1ñÇâýœÀ´ÿ>n€ëæ¡vY”ƒhîi—Ì´?Sb0ÓÞçš£Ú eI£ù©ÝpšŸÚ`iŽô5ÊcýB®'CìIŸ#åYú) è}¦è NzŸ)ÏÑûJiDï#åyz)é}¤4¡÷‘Ò”ÞGJ3z)z€“ÞGŠà¤÷‘¢8é}¤èNz)z€“#ù½—”V|Ÿz¥ùæ‡öz·ùæ‡öæˆùæ‡öCè×!D2ÏbG~ÁNœB~óGþ´×›/ÚÿƒöÝsúÍSîå÷ãBÜÀœüˆ¹<—Ǽ7ͼוÓùvM^ áìÌ9º Ä/Ë…," ²…¸×&3;§ðANeš£ä¤Þ°„Ùdùùyö±ó¦}ú=Ñþ¯Ä¥8—¥9e8ŸOÒÚ¼omö[›÷­ÍþE|Š‹YžKXKY‘_³—±2¿a¿ïc¿OÝÞ¿\\•+X+Y=ÄÎrÞ[¤óÝÚY™å¼¶Ö÷¾W9DËežcUª»éÔ— öü,y¤uóÇð?Ë\˜áQGx\š#Y†£ø$ßgYŽf9~À§ø!ÍŒaŽeEŽc%~ÄÊO÷öY•X-„Ñ>×#YÄÅÕ9‰î韰SX“Ÿ²'³¶ï;àû²Š§ˆëp*ëº~Ðõlü‰Ùyˆz~šçŸçàÏÌéútןç&®'>*Î-ž!®Osݬgiž›Õ€z‡Y i›õõ ³ÌW£ù¾Â|”?°Õ × r q7 S­™™öÿÃÔ4+ªŸå¹þ˜ëjÏëEø#‹R­yýqîg1ª1¯çA–àO,ÉC|‚‡iÖ|ägš51sÞÞ§_ûŠû©/º}€óÜóW=>è±ÞèöOÔÝ>D½ÑíÃÔÝþ™z£ÛG¸„G©zK]H½yë ª7oͦzóÖ—ToÞšCõæ­¯Ø4„ǬícÄsÅÍBd§\7ÄÜ)× ‘ëvÊuCäºrÝ'(Ç ‘ãvÊqCä¸rÜ9n§7DŽÛ)Ç ‘ãvÊqCä¸rÜ9n§7DŽÛ)Ç ‘ãvÊqC*†Ð(&„ÓµÄrÝJb ÷éÚb9oˆœ·SÎ"ç5Ò;ŸÖ›7Ò'Ÿ®ëºÜ7DîÛ)÷ ‘7©§ŸËCªs¸š5¸†îéÎo™öûÖ2í÷¬cÚÏU_N?#^/–7©+§ûFÎäéú®çº|ÑH:ý,ÍÕ§ÕÇFÙÐó<ŸöýY›˜ö}›™öúL^÷œx‹8íûÌѧ‰·ŠÓ¾ß’ö¼36Ä}§Þ×+Kõ¾žüšÓ̹gÍœ{Ì 9Íœ{Ì 9Íœ{Ì 9Íœ{Ì 9Íœ{Ì 9Íš{Ì 9Í™{–Óœ¹gÍ™{V†ÐY}»dˆ©ýKˆKûókŸ þsêÄ×ü!Nb>~‡™B½^ä/?õøNæ£!Ôj¡ÏÅSÄÄzCz©SÅ9…¨þ6W§ª¿ÍÕß©êosõwªúÛ¼(ÕÝæêîTu·¹¹•žU­h%WgU+ZÉÍYÕŠVrrVõ¿•\œUh%gU#ZÉÅYÕˆVrqÖš!¼y7„{iÏËÉYÕŠVrrÖÚ”‹³ª­äâ¬u)g}šrqÖg8õ8Ÿr}«”ë[-¤\ßjåúV‹)×·ZÂF\J9¾Õ×”ã[-£ßê6år6ã 6çJ¾ÀUlÁÕ|‘kØ’ßò%®e+®£Þ®Õz¶áw|™ø 7²mˆýI¾ùÀìý“|óùû'ù惩Æ|p+ÄlSƒ¨ÅÛÔà•C¼.DrÜæzþ纚<À™üøŽXm ï¼A,/oS›8sƒÍÉ9äçÁæä´š0Øœ¬.„Á[è\ÞJçy°Ù7§ó;Øœ›ÓùlÎÍé¼ÞÁt~ž?À}Ú¦ÆHpý×ï 1Ý÷‡øÇßåš¡»=`·¾ÝŠ{*VW=þÉã^<ÄÞâþͼʆ¼ÆçxxƒÏÓZlLk]° ­uÁ¦4³lF3{Áæ4³|fö‚-hf/ø"ï±eˆ?øÕ¶à<¯šOçyÕ‚Zé%þüÏsŒëÎ÷ª…âÆâ±T—ÿçºó¾j‘XnÿS?۪ǻîü¯’7‚ó¿JÞQÞEøµ×5÷ºÅEÅòGxœß¸þ‚ëÄÅÄòH(ή·pÝ€ÞêEN !Î>%<·’%¹ŠOÐÜÚª¥×|".%6g·zIœ".-þVÜJü©¸Œx-Ÿä:–åz–ãw|ŠXžYæìµC´ÇügóO~"çO†¸Ï^ç)¾ÁÓ|3ļ´7Ägé"?•Ì9oZø{z´—~t½«ø¸8¯xŸømÚ‡YºÑ>ÌÒö_–whïe±?_²÷²ô ½—%m_¦}ý—ž|ÉþËb_Þ5“¬ÔŸÞ5“¬ÌF3ÉÊì|‹úÑ»]˜ƒ]©½û6ÍZcÍ6…œ»ÝÄúÏ»Ýé½Þ}‡ÞãÝwù{0{òaöb~öæ#ìCýüݾÔãßMbÁóná_l[Ý_ ‘¸ilËé®?溙¾{;ñg|•3ØžŸó5Τy2Î<ÙÝ<gžìnžŒ3OvïÌ/™È9tâ¾¢û7—oržßSÄïÙ΢ÜÁÇù‹q'ͱÅvÑ[l7ͱÅöМZl/KñG–æ>–¡žì =lëeŒá7ŒårÆqã¹’Q®b:®æ}\Ãôü–¨Gþâ~ê‘¿ÈH=ò™¨Gþ"37ðndÚ“_dåffãfçV>ÈmÌA=êqçí!,"uö†É½Xò‘ÇæÐ{êé*uòž:ºJ¼§Ž®2§¶’³ÿT«ï©§«ÔË{êé*sê=õt•ÞížzºJïvO=]¥w»§ž®Ò»ÝÓÛ­Ò»ÝÓÛ­*íçÈñ&‰õx«ôp÷ôx«ôp÷ôx«ôp÷ôx«ôp÷ôx«ôp÷ôx«ôp÷ôx«ôp÷ôx«Ì©÷ôx«Ô“n÷…ø"îi·ô”»ºe ÜýÝãû=^ÈŒÔÇtËDù¨[fÊGr{|ù¨[êcºe¥<Ô-õ1ݲSþéö Ý¿¥B4ñVäEVâÿhÆMü“fÜÄK!dIû;åÌO›ZÒü´é%šŸ6µ ±5N‡ø›£y†ðW~ȳÃsËóÇ ”S§ô ‘Ri?Ão¾~÷å}Ô¸è9õô¦ÚyS½¼)7Þ¿4Df q£S˜•Ÿ†°PnY˜"µòúz(Ä~ÖÍW÷}ÑŒòâ£!ö1û7õ(Ÿä1–åq–c*Ÿâ/,ϬÀ“¬ÈS¬D3ãc•y†Uø+«ÒìÿX5šý«ÎóÞ£û7¥{ˆkzSߦ?Ô[lþjúÍ_Mÿ¥¹«é-š»šÞ¦¹«é4w5½CsWSyjJ_ÞcRˆSv"SúÑœ8¥?Íiƒs…øJß…ÐããI·_œ[,ŸÎîOpý€8¯x“x¢ø 'ñ'×r}3óq‹ëŸ¸~ˆÖ7Ýa~ÊŸ=ÿ°ç·†N¯48¿ÇÎTÉž;"~D,¯õ˜"–ÿ{L¥üßcݛәÊÏø gðõ·éÌä=ôµéNù9ú9ÎmYâÓü‚g\/àºAZФû•êPº³œÃsüŠÖ½Ç\^à<þæû ú¾ÄóÅ¿sÿàB^ô|!Ïï/ÿ‹©‡ï±„öy{-Ý_üš—¹ŒWø ÿær^å ^ãJ^÷såÿJ»Ä«Ä7¸šöB5ü‡ßò_¯S*í¯ß !_ÚZÊÝ•ÌË=ôén‡˜Õz¦n~ç@9$›:¹ZïÔíoêºéÕVëº]£Þ©›ß½ZïÔíõNÝnRïÔíêºù«õNÝô««õNÝÒ~¾Þ©›þtµÞ©›¾tµÞ©›~tµÞ©Û=êºëCÊ]ÙÔçÕ­ÄúÑrX6uzuk±}¸º cù2ãø ãÙ–Q¶£yp œ—Mß9PÎËÖÓõW]7Þ§­nïqz¾Æ ìÀûCd¯¾j¸{¶W_5ܽګŸî^íÕO w¯ö꣆»W{õQÃÝ«½òÓpuêðšû>¿¥œtx-å¤Ãë('^O9éðw”“o œ4õåmž‘¯0Û23Ûñ¾Ê,lϬrzR³£ø5q6v`vväƒìÄìÌœLd.¾ÎÜ|ƒyø&óò-ÊcS»0»òa¾MóâBu«f'q7ñ#”ëÌŒ±Sßa¾Ë‚^gþ«ÙYÜC\ˆ=Y˜r·Y1vªÜmVŒ*w›C¦Ö÷õøq&±û±8û³ßcIà!öí]!Z¤w³w³Ô¼ òïÛ{Ä}¸—}ù#“Bì##CüÏe8ŠOò}šÉÍrü€OñC–çVàXVä8V aâ©)æ³?bîúÙ<»Å>ëoŸm±Ïú›¶ØWýí«ô{l_õ·¯¶ØWýí«-öUÿûّى™Bxdº¯ÏÄÅ™CäŸ÷CÜÒìÍCh©×º(Ï´Ôk]¼àú®çÏÿ&þPlhk9_ü»xŒX¿ÙR½¾(ï´4[\¼èúX×ssóð#ª]ÿŒçCü˜ù¼ÞÌqQ^j¹˜òRË%¼äù ž˜™?Ä>‘âÏÕ䧬ÅɬÍ)¬"}/…¸2êkß¿èEâ=¾ìq^¡¾§ïßÔ·ô½Ê~¼Æþ¼Î÷xƒB¨R?„½#Å7ÅÅÏŠG‰ÿâ¿Læ-æmñº^÷¾ø?ñPqCñhññ0ÞåpÞãˆI2þ”ñ{’"ôó“bèû“béû’âøãù!£Ãt4»UyÎÏO{þ>±>0)=õ€I8ž÷SÍLÊH52)ÕÆ¤ÌT“ Z˜¤×(£&é5ʨ…IÙ8ÙÏ7;îMû½ÙÅSÄfȽi¿ÿA±ú—”ƒzÿ*fɽcÅ9Åê`R.ªƒI¹©÷¯bÆÜ›öþòˆÕä¼T“¢:˜”ê`ÒÃTÿ’òSýK2Ë–Qÿ’̲eÔ¿$³kõ/ɬZFýÛïùQžßïùQžßïùQžßïùQiÏ›]G©‹ûÍ®£ÔÅýrì(½dÁ×CœY:¦àT ¾Iu à[!NI)Ø…fé‚])ï|›ò~Án”÷ ê{ŽÉûõ;ǜǂúcÎcAýαû¨ß9æ,Ôïs êwŽ9‹õ;ǜłúc™¨ß9–™úcP¿s,íÏœª¢µô†£¨G]ƒzÔÑ5©G]‹j·£¾R§¾Š ‘ª5|ÕôålŒ®íù¿X‡—Clùf|“C¾ÙS>„ õB¤è±¼³§B‹¸Vßµ‘|–£Ø€ï{NΜÐÐãÑz¾Ø;áûmØ“Ûé¼%íqO6ç¾À½lÁiƯò¡{¿K¼Olž¯2F¬¨bÿîÝãú~×_â¶âA¶æOlÃC|™‡iÖLú™mClDß¿ÚÜÑ÷¯^Â8ç±Ð:…ô„ã†Ð<1¬þVÄ#ÌGóÄõy¸Z¸G}®îQŸ‡—¢º<¼4ÕåájÝuy¸Z·G]®ÖíQ‡«u{ÔãáöÞõx¸ÏµG=®ÖíQ‡«uW'†è‚78‰o†ð@ç6é[œq鯄èg.ÝX:séÆñJ·óõªø#±³—n<½t³§ï—cZè¹7É1-N¹>Áõ^b¹¦…ž{“\ÓâŒë~÷µb“œÓâW±÷°ÁM÷ ûº.µ8+N;«é>¥³šn2ÕtSøž÷ÒÞ¼(¦›*ÀiÈébéÍ*êQéÍ*&RoVñuêÍ*úìƒôf}ö÷¿‘üñ!,6#×Nû;ÓÍXµ½¿Å•¨Ïøò·}E^^\Yìý-®BEdqUö 1> q›‹r2õ¦°Xˆùý›?óåFë+Óþ}Øß—‹_ë/Óþ½ØßWˆÛ†˜E檎ÎP¿k!ò@9±ùªãFš«:š«‘™¥:𥙥::Gý®{íSb³SÇ­47uÜFóRÇïiÞéhÞyäÿœÝ\•õÿÿÿ#‚*AQV¦YÙ4gÓ4ÓÔ2ËQZ©™[3÷Þ{¤-²m˲­•¥íe{×ÿá÷<íóâý»®þ?·Ûýöâ:à8×õ|¾°rÝÄŽ3ðy&;Ë@v–F\S7±Ÿ <ÀdŸø"“}a =y;ÂÀ—™)ÌWò·ƒŒ>Bž!ËŽÐ f“'³É’“ÿÞËÎÅtÁ œ‹š194gr.à\ÝÀ¹8€suçâÎÕ œ‹8W7p.à\ÝÀ¹8€suçâÎÕ œ‡8W7l`r®nØÈ<ùß%lbÒï7lfÒï7laòóÚ°•ÉÏkÃ6&?¯ Û™üœ6ì`òsÚ°“ÉÏiÃ.f.s7³s3ù0“kø†½L®ãö1¹–ßÊu¶Í°@ i4o?ÏÛÙ/0¹ßz€I/þ6ñä<æwÌùÌL^'3è<É{8þžã̘1d.dþÄ\Äü™¹˜ù s óWæRæoÌeÌß™Ëù|t§d®¹Ñp¼‚c:T2×Þt¨ä}Üþ'·¯dþÅ\Åü›¹šùs ó_æÚ@ùŠæ:f9&ßçJ[‘OÑ+mcÒû*mgòó­´ƒ9‡¹“9—¹‹9¹›Ék½Òæƒ0®ûá‡/b3/f>É${ú‘?p¼ŸãK˜O1/åö0nïÌ,Ï,äö§¹ý2æ3Ì˹=œÛ‹8~–ã+˜Ï1¯d>ÏìÍ|Éù’x€Ù‡ù"³/ǹûsŽÉÄÃ\úEr|O¶·‘‡ûsûáÏgrLNÀ$'d’‡¯f’‡‡¯a’‡‡¯e’‡‡¯c’‡‡¯g’‡‡o`’‡‡ÂVD".ßĬÀÜÌŒbnaF3·2+2·1+1·3é+è+è+ÈÐ˹6\Îõàr®—ï„EÝ/®(ûd âÀ ÌýÌA̧˜72Ÿff>ÃÂ|–É.û“ݽ;u8»{7vêpv÷nìÒáìîÝØ¡Ãêq}êÆÎþÞ=:ü×@àºÀ_™3™¯q;{uøoÜ—kX7vžpvúnì<ápŸYÜçuŽÙ}Âÿäx6LJ8fÿ gÇïÆþN·ëÆþþïŸÃûß`Îe¾ÉíìCáÿ‘i¼ÍNÄ,¬»P×¶n×2ymlü.P®3·xu ²W/ææ%̵ÌK™ë˜—1×3Ù'o`^ÁÜȼ’¹‰Éõuã >¹x3Çt–Å[˜}˜¼Þ{ñziÖ’}”óy1¯û^ý˜¼î{ñiFÎ.æµßk“×~¯ÜÖi ksôb7^ÌyЋ\YÌyÐëZÞGþ.~˜·É–Å{™¼^†³'¥vd²'¥æñ‡yû!ÞÎe.dvb.bæCéîáG˜t÷ð÷¹}1·ç3—09†/erÞTàu„ãesþ _Îä|¾‚ÉëøJæÌUL^ëÙì~ßó³Ìf÷ûž};ý¦@Äu˜C™u™73ë1‡1ã™Ã™õ™·00G0ÙÓG2Ù‡ÓG1˜·23oc6aŽf&’Ÿí ”ûŠshœџ=Â1çÒ ºäWœK+è’_q.­¸Š÷³ó}ö(ÇœS+ú0é˜+ú2ßaöc¾ËìÏ|9€y˜9y„É9ûù눥·31Ç0ß`ÞÁ|“y'ó-æXæÛÌqÌw˜ã™ï2'0ßcÞÅ<̼›y„9‘ù>sóæ=Ì™÷22ïc~ÄœÌü˜9…yŒ9•yœy?ó&={+»Oö‰"»²·§ðœñ7oo`þÃÜÈü—¹)PžS0²+»øC åÒzÊwˆø«6s3ŽÉÏî¯:°TvÙc³˜ì²ÇfÂx)‡›Ãd—=6—É.{l“]öØ|&»ì1®Õ-Ùe±Kö§güÂîÕ’öØCLvÚc ™ì²Ç1Ùe-f²Ë[Âd—=¶”É.{l“]öØr&»ì±Lö§–ì±ÇÈùcô¶«Â$3éê š2é èWÓЮ¦4àµø+½t {ôþír½¾„ǰ3=ËžÓ…É^´·ÿÀñ§0Ïd6cžÅlÎ<›Ù‚Ù•™Ê<‡Ù’y.³óHæüOæ¼ôǘï2ïb¾Ç¼›y˜9‘y„9‰ç\Ïä\_ƹžù>·¿Ïí÷0?`²ÿ-£ƒg~Àñ‡ßÇ<ÊœÌüˆ9…ù1s*óó~æqæ4vNî_È퓹!»Þšêì¤=8æã O¾Ÿ+|€ÉÇNgçåuò.¯“&¼NÞ¥»ÔâšôòL®I/ŸÉäôòYìžá¼Íuèå³™\‡^îÊäúóò9ì§=ØOùœµ¸½|.“ëÐËüLg]ÀíÓ9æzôr7Ž{rLÖ4i~öµ¸>½|>s5³;ïgM™ÉñŽy̵Ö2/`ÒUj­çK­ÜÖâ"\¯ÈŽ´ÿ|&;ÒþîLv¤ý=˜ìHû/`²#íïÉdGÚ!“iÿELv¤ýìʿǷ. .y;øº6Ç58æçó{M&?ŸßÙ-¶òóø½6“Ýæ÷8&½ì^¾ç3˜Ÿ0yÜ­:"Žœü·cRyÜ­ò8þŒã÷dÖd^ȬżˆÉ×J½˜ûås¿Ï9Žã˜ÞT‰,kUÀm_0;3¹v´*d~Å}êp²°UÇ_éìÄϧéìϘìØÏÒ»ÒÙ ž%KÓŸfÒ³ÒŸaÒ«Ò¹Ó³„n:;Á³äH€®Ý;-^s7·=Ïma£§"2Ú0ïg¦ÃøD’G£§qœÁ1ß‹È8~€cö”ÑÓ™ìÏÃøÞD~Èñ Ž39fÿ‹<ÊñLŽÛ3g1éb£g3³˜s˜Ù̹̎“Í3ž}&›=f<ûLöHæ‹LöÝñ/1ÙsûrÎþt0Ö˜ëâ;ì”Û2Ÿc¶c²O6Îd¾Àõx üxóf4s³"s$³“Ýþ8ý·å­L:pKvúãôà–ìôÇOæ;ýñjÌ1ÌêLvùã±Lvùã5˜c™5™ã˜µ˜ã™µ™˜qÌ»˜dcK:ôñºÌ‰ÌzÌIÌxæ=L^#-ïeÒkŽ"gÇ2ÉœÙ5˜dÎìšL²fv­@ùxúé¡^—t¥x:ꡪL:ê¡jÌë˜ôôøë™|Žø˜|ŽøAL>GüÌ“Ÿƒü>D~Ǔ߇ÈïxòûÐÉÏG÷:D÷Ч{¢{ÅÓ½ѽâé^‡è^ñt¯C<Æxº×!ºW<ÝëÝ+žîuˆîO÷:D÷Ч{¢{ÅÓ½%2og&1Ç0“™œ‡š29/¥095crjNiø(V‹ŸÛËÌ[ÀÏìe:ÁËå>»,¾øã@ ç›ô3®]Ÿ]Îñ±@¹·ù>>Ãäûø@Uæ}ÌjÌÉÌê@y:øÄæÈÜ·xÍáí¼ý63•ù³%óÝ@`5×»Žôû‰­8~ÙšI¦NLca¶a’Ó™\&f0¹LlËä0‘kE.×€‰\#r?frÈ=l!GЏo¢K ÜÁñEÏâ¸Ç;9æš_4›ã0Žw1Ë3w3Ù{x/ÞÏãÞÁ1ûö¦H&{ö–K¸=fË¥LöýM¸½{Sóf4óQfEæcÌJÌÇ™•™O0«0‹™1Ì'å§óøÏâšÒ‘Ýû‡–LvïZ1Ù½hÍd÷þ=©#»÷É¿?µ#»÷É¿ç´#»÷ɿ۴ãƒL:Jç`>=ëW®¥ùô¬_Ù7òéY¿æ0éY¿²kä¯`²käÓÏ~Íc®b²[ä¯fuétùkx»3s-“½"“½"=“½"“}º.½/#o³[äobž«z"þÜ„@ ÷À÷8¦Ë=G§®Jw{înnÌí9þ‘cºuUº×stëª?3éÖUaÒ{zá~ìÓUåø¾@ •,8ùï@¥~ˆ£àZœÊk2•N;ŽÞÕI_È:?>&P®Â#Ì;˜2ïd>ÆË<ùß/ŒcÒ{‡gžüï&0Oþ÷ w1÷óyèYôáws|ò¿S˜È|šÛ×q{Ž'qü Çë9¾€¹Ù“I'ɺ¹‰ys3óbî÷çz9n Çäúð{9>ùßÜÇäg6n+·_ÂñdŽOþ7S˜¸}·_ÊÜμŒ¹ƒy9s'ó æ.æ•ÌÝÌÞÌ=LöÛnt̺f7:f]³2b“NA·ìF7Œà{¼d] \ÛÏåû DÆ‘9}^c’'}^g’}1ɇ>o0ï`Ò}ãîdÒ}ãèÀ}è¼qã˜tݸñLºn·]7ŽÎÛ‡ÇÇãèÃãˆãqôáqÄñ8úð8âNþÿ¯xq<ŽÊ'ÿÿYôÔ8úmúiý¶ý4Ž~Û‡~GíCÇŠ»?µ YÌùäÞ@¹‹ ª5ᶇ¸ŒˆZȼ“÷±s^ü;Ç‹8Ë1;çÅp¼˜c2#j “̈ZÊ$3¢–1ÉŒ¨åL2#j“Ç»¿N ò¶×˜u™¯3ë1é&ûã™o0ë3ßd6`¾ÅlÈäú¶¿“ëÛþæ»ÌÆL®kû›0¹®íOdr]ÛŸÄ亶?™ÉumS&¯ïåÎæç±?…c®oû›1¹¾íçZz×·ý\GoãúàµÜž×ãå†pþ5¥{µ¿€ãéoæ˜îÕž¾y`Ç[8nÏ1½óÀLŽ·rÜcúçYoã8‹c^¯f3y˜ÃíÛ¹=›c^Ÿær¼ƒcßÌn¿”Ûç1/cÎçö]ÜžËÜÍìÄÜÃÌãý—óþ™W0Ù;Û_É|ˆÙ›IçnÏþ`³s1³/s ³“Î6äa>O>Çý9^ÆÀ\ÎȤ“ ÙËû ˜û˜™0 ™2‹˜1»pÿ«¹ÿJŽç˜kXaQ ðçÿb®?½¸n,æúÓ‹ëÆb®;½¸n,þÉuc1¯§^\7ó:êÅucñŸÌ“÷“ëÆâ¿™\/³÷âz±˜}¼× žBx/Îÿ%ìã½8ï—°gõâ¼_žՋó} ûx/Î÷%ì㽦2ÉÜ^¼ÎÃØ[÷%1Ù[÷±‡±·îkÊdOÝÇþÆžºý7Œ=uûo{ê>öß°žÌÔ@Øzmýs ½¶ˆþ9…^[Ô‚IŸ-:ù~úkY3…þZDÖL¡¿‘5Sè¯EdÍúkY3…þZDÖL¡¿‘5SØ ŠèúSØ ŠÚ1ÙŠx¸|ÿ¢9÷¢ávv‚"ºþv‚"ºþv"ºþv€"òi ;@]¿Â Þf("£¦°åÊ·Ž D|²…Y¹•ÅÜÆŒfngVD%TFnãºø ×ÄO¸~²;öfx b*Ùñfs3“Ï7u “Ï7u+“Ï7u“Ï7u;³"s³s'³2s“Ï=õäç‹aîaVe>̬ÆÜˬÎÜÇŒe’ûïs½œ³‚ÉõrÎJ&×Ë9«˜\/ç¬fr½œ³†ÉõrÎZ&×Ë9ì´ïs½œÃ^û>×Ë9ì¶ïs½œ³‘ÉõrÎ&&×Ë9›™\/çð}yŸkå¾/ïs­œÃ÷å}®•sø¾9‹¾J·kz÷žÌ•Ì ™«˜1W3Ù½ç­aÒAç­e²WÏ[ÇdžysóræF&×° \#òéxó6qLÏ·™Ù›¹…IÏÛÊìÃÜÆìËÜÎìÇÜÁì(?“Ú•ŸåLºgW~–3éž]ùYΤ{våg9“ÎÙu“ÎÙu'“ŽÙ•Ž:“ŽÙ•Ž:“ŽÙu“ŽÙ•n:“ŽÙ•nZ…ŸÁLzfWúèLzfW¾73é™] ”›Àµ&›kÍ®5Ù\k&p­É¾ŸY9Å$K&D3É ™dÇ„JL2cBe&Y1¡ s63†IFL¨Ê$&TcÎcVg’b™2k0¹æç’?Gp\“㇘µ˜ ™µ™‹˜qL®ý¹äÒÁ‘×á˜×É„ºL^'ê1y}LˆgríÏ%¯Žâ¸>Ç+8&§ÞÊq޹ÆOhÈ\ÅlÄ\ÍL`®a6f®åþ\ÞÆ1"›.4!‘¹žÉu7{“ënöFîGÎÍ1×ßìML®¿Ù›¹=—Ûoç˜ëp6ûü®ÃÙìå¸g³ƒOHenç~¸¯Ó -9fŸÐŠÉþ‘K.äu4¡5Ç»˜iÌÝÌ6Lö\òî 4!㇙ìÝÙüŒsééɤ ìßÙû8îÌñ8f!s<“L;H/w÷a7Ϧ ç’}É© ìèÙtâ\²ï y5¡=ÇtãÜ39&·&tàøqf“Žœ{·ObžÍ$Ç&ds{1³#“ΜەÛép¹ç0ɵ 9ܾŸ™Ë|ŠÙ‰ù43ù 3Ÿù,³€IÎ=—›Ì<9…É9}ðäk³3ïžcúüÁ“¯ÑBŽ_`10»0_d¯¤#n|™=Šºñ&=tã«LzèFzí@zèFzí@zèFzí@zÝF®Ó项N¤‡nä:=ð^&×étÐ\§ÒA7rxòósHÝÈuzàýL®Ó§1¹N|€Éuzàt&×é3ááœë²»…s®?ÊÉÉî¾›ÉÉîþ0ss/ó!æ>æBæ#ÌEòîD^0Œùsx üOqÈ 'ÿýVúé†o¨åz~Å1=u÷óíyòýôÕ ßU¯”ßõc r0™³ë'&™³ëg&™³ë&™³ëW&™³ë7&™³ëw&™³ë&ש]2¹Níú‹Éuj×ßL®S»þarÚõ/“ëÔnvíÁ\§vs}Ìuj7×·Á\§vs}ü0×§ïy›kÜà½L®qƒ¹Níæ7˜ëÔn®qƒ¹¦îæ7˜½y7׸ÁìÍ»¹Æ æµØœçÖü;Ž¹Ö fok~"Pn:׳èù¼†ñú˜Îµä,zd>¯¥C¼N¦sM9k1“kÉY\K¦s-9‹kÉt®%gq-ÙHïX‘IïX)èòC ðn:Ç9®Ìñgp<‰ã*ÿÄ1»v—Ÿ™í¸ýnaÞˬʼY9™Y9…˜ʬÁ¤Û ¬ÉœÆ¬(Ÿøv â0¯ÝÄw˜¼vßerîÎá17g7H|c^ɇ™¼†0'•2›Ï”cŸ »…¾“ºŠIßI]ͤ冷áý]yÿ½Ó{RùÙÿ0+¹þ:^Ýx}LežÏäõüÃlnç5òÃæ ÜÞÛy}ÿ0—ãAÌy̙󙃙2‡0ÙÅÖßÄdÿZ?”IFŸü{ÞŸº$>úæ¥Ì™—12/g~ļ‚ù1óJæ1foæqæUÌO˜}˜Ÿ2û2?cöc~ÎìÏü‚9€ùe |Òcˆ#×0g^Ë|‚y³˜ÉóIz’ys?“ç‘ô“ç‘ô4sp ЄïÉ^{my=áµ×–kõÊå²6039ÆðZl»ƒã!obÞÄä¼Ãk³-×ð•C9ÞÂäygq~ŒáµÚvÇÃ8>ùyy­¶å<C&Ÿü»aÆÉmÉë1dòÉ¿ fLU&çÀ˜jLÎ1Õ™œcb™œcj0Ùóöò³êÆÏêéÈyìúó2ç¿ËlË|/ÅÏ´ÒTŽÛq|˜cî_é~Ž39>Â1?ÓJÓ8nÏñûÌ̘YÌ™Ụ̘̀̎9Ì™¹ÌcòË_žÃ\Îäš]ix ìò¯±“™ß0¹Nf4 D|ñ<3ù³1ó@ 0Ÿó %],£ Ç/2™/ÊÿzU r »CÕ»'Ê]È®üknkÏìËìÀìÇÌbög²7<ÏóËã~žç1–Çý<ÏcìÑ@`Â¥rµÙC£Ïá6žÓXžÃó<§±ó¾Ëxß|Žync1ync3ync?avb~ÊÌc~ÆÌg~Î,`~ÁìÌü2PnòÒ@xaJ pòß©x}'ÇË8nÆ\ÎlÎ\ÁlÁûGò~ò|òJŽS9Å1Æ“ÿŽÅë{¸}··d®f¶b®a¶f®e¦1×1Û0×3¹MÞÀä4y#³-“]¿]¿úkx=Vý³@ø ·1?gŽf~Á¼ù%sL üÕÇ‘ xí\ý “óúêO™K_ ”Ëäš¶ôUf ·Æíô¾9ï»õcföga`¾ÏÈü€y5óCæ5Ì£Ìk™1¯c~̼>(˜¼qãcßÀ<ÎÄü„Éy6çS&çÙ·!Ü&÷cžG7γ9¸Ï€ LÞ?€÷oàýN¾ÿæÄ@ØÌkçÄ0¯cVe^ϬŒ¤»Väu:óŽ«31c™72k03k2‡0k1obÖfeÆ1ofÖacÖegÖcÞÂŒgŽ`ÖgŽd6ÂÃðo àkÊÂÑÌŠûÝÒ¯õ5Ãú ¾š£‚÷úqCú]sã@r°| ŽNþ%k¼Ž&%éípG* Z*dn ²QÅQUª±F £V@¹‰Ô+ƒx©/|? ¥£‰#Q¸š¡98ï-¥•#íÿþ|õÿ•.dy #ÓÑÞèà!ËÈ6r=°Øì .¥8#„³… @ÿœë Ëzà"¹—‚ý9Ð}ʨŸþ! À@×ø¸Vnð0Ø1ĸ 7Ã0\ÈÀ(¹ÕÃm2\wwz+ã0Aî2&Ê=Ž{û“C˜bL•iàZ˜%s1Oæ{xP …ý>°Ä±4ðÿ€B€>°JVËc­‡uŽõØ ìîMe°Yèq­¶Û za`§±ÛÇò×xÄ`°ƒŸü}~ OH±ƒ½;°ßxÊñ´<ãxÖÃsŽ º[àEyÅx‡Êà ãM¼…·ñÞ >8b| â(>’OÏðy|¯„]:ð­°7Nß{`7 °~6~Åoø]þÄ_ÆßÆ?òïÿ”+çä=ù™þŸp‰H© QY[ŽL-#Uê>jµ|Ć:¨ïƒ¬-×ÈGc£‰¹åèå’fÒ¢ Z­Ê µ‘fÙåÚI¦Ñ^Èãr=ä ×ÑÉÈC> }×åÈärg8Î á,Ñåºç8Î5ι]®{õÀÉ¿,àBy_îb¹ä~¹Ëp…\)½å*£ôE?é_Š®–k×ÊuÆõÈþrƒäÆ2,CÊh˜cxÜâa„ŒtŒrÜ*tŽr£q»‡1B)Gÿ(7Î Ž»Œ»A)7Éý>è#'ÿÿèåØOËM—2Sæód¾ãAy K±H;–„°ÌXîX!+UÆj¡¿”['ëŒM=¥Ü–Rluì’ÝŽ‡ûŒGå1¡”+6ž îQ޾QîYƒnQîy¼`p¼ úE¹WƒŽ×äuÇò–ñ¶ñŽñ®¼ç8âxßÇƇ>>2ŽËçŽ/BøÒøÚñÐSÊ}'ß;è&å~òð³ñ ~5è*åþ2þ.ݥܿÿFO ££„…)t”0ºIX´QQ* %ŒÝ?,Fè+aÕ¤¦£–£vu…½?¬¾Ñ@ >M<ÐQÂ’$YšJ3ƒ>–*-V]#¬ Ú¢]u0²…ÞF×Ëst–Bgg]å9Wè aÝ„Nvèayè…KŒKËŒË+<ÐÂèaW9útˆ°~>ú‡0P®v\#× =!ìäƒn6X†Cq³a¹vK#Œ‘ÆÉ,#ÇÃÆ ™F‡Ýƒ{÷“Sd*Èè°i¥xÀ˜.33evsd®õaÊ EB¶‡-1–Ëe…Af‡‘×akŒu2;l#6y ³ÃÈå°­ŽmØnì”]²;„=²×Av‡=&ûA‡=mËaÏÏÏ û~ØKxE^õA‡½.‡Œwåä_âA^†}`aÉÇŽcøÄ`‡û\¾”¯Êˆœ ûÆøV¾“yöƒü(?•âgƒ ûÍ™ö—ãoùGþõwò×éžÈÚòᎉ”Š!³åÉÙò1ªy¨nÄú¨2¹|œ:R7„zúÒ@ KY\>ÙGS)šƒÌ.ßÊH72pòÏCÈàòí ò·|ŽÁåÙóËçI¾xèlJ‘œaœ)ìùåÏ‘só¤›ÑÝÑÃÃŽžr¡‹äbƒœ/‰ãR¹ÌAÆ—¿Âè#äwyò¸üÕ>®1®2¹ü ŽAÈåòCKq³‡[dDô0Jn5n“ÑŽ“çÆB†—'ãeB)îvóò“÷ä~y²¾<9_ž /Of—ŸQŠY§yÄñ¨ã1ag/ÿ¤‡ýB7(ÿ´<ã ”ÎA7(ÿ‚q@^”—…ÎPž~Pž}½ü!ÇÆÛ!¼çá°Á~^þLJrT>®Qž¼ü'ò™ñ…|)t‰òߢü Ç÷~0~tüäágã¿ ¢üßþ1þý…—óf”úDx„H;}8;}x´úFx%©,1RÕ¨æ O„×tÔ•z]!¼¾Ñ@è ጣ±4ööð$G²#EšK IõÐRØáÃÙáÃÓŒèá™Âžåƒ^ÞÑÈ‘\é$ô‹ð£³A§§O„wúDø™ÆYÆÙÒÕqއs}œgtóÑøP.òq±ôò@׿TèáWúè-W¡úGx?éo p\-×8®$üz$7Ãd¸Ü"t‡ð‘2ª èá·9èácp‡ãNŒºD8Ý œ>~ƒ^~Ÿc²LuÜiý!œŽÎŽ>˘-sd®‡ù>ò@g¯?ù÷Üÿ²üäßUÿÖ†@ž‡“çáìíᛄ,ßêa[m—Èðð]²Û±§co)ö9‘G…Npò`ú?ÅBßï „?c¼ d|øËŽWä ¼&ä{ø›ò–¼íxÇxÏ8,G„,ÿÈ8n|âá3ŸË—òµñ‡ïpB¾7~(Åò³AvŸü{´<ýaëá9þöAžŸüK³þO¤eD•¤²QdpDu‰5ÈÞˆšeT µ:>âˈ »#•yA†G$J’²;¢™ƒŒŽhå¡u¤…@æGdxh+턌Ȓl#×G'yÈýˆ!ë# …¼ ë#È÷ˆ®Fwxè)äoÄÅBÖF\ê¸Ì¸ÜAG\)½W…@Gôuô3Èåˆ ‡#ÈÞˆkå:9qù¸ÑŒ!rn–aÆ-Ž‘>FÉmû}ÄätÄXÇ8Çã.aטä Ë#ÈîˆÉr¿JAžGÌ”Ù2ǘçÜŽ`Ÿ §#ÈéˆÅvóˆ¥Â~±Â±FÖ9ÖË›d‹áÛŒí>vY±ÇAÆFìóñˆ³ 9AÆF<)ûKñ”ƒì`çŽx¡ä%yÙ ›#^5ätÄ!yCÞ2Þ6Þññ®ò:â}!·#ص#ص#ŽûøÔøÌñ¥|å Ÿ#¾óA^G|/?ÈOeð³ñ‹°kGü.ÈŸÆ_Èæöo¢8¨œByáé`ߎŒrñ‘=T’*BÞGV ì¬B-ƒ¬ŒC£®£¾Ñ  $ÉÑTRdx$»x${xdª´t¤92äqd¦´¬Ž$§#³OCGƒ¬Ž$›#ó¥ÀANGEÒÅ8Ó8KØË#»ìà‘ìÛ‘ìÓ‘Ý vêÈ |ô4.t°OG^â¸ÔÙI¶G’둽äwd_£Ÿô—>z¸ÚÇ5>ÈüH2?òÙ9¤7Ëp%·z Ï#G{¸ÝûwäXãã}÷‘w9îö1Ñ  DÞ+÷ÉdÇ÷Ó„?r†1óÿ‡YæÈ\Ì“ùŽ=,ðð±0ºIäÇRý$r9V:VÉj¬)#:LäzÙúJäfÐW"é(‘;e·=>6öÊc¥xÜ ¿D>éᩞƳòœqà4½$t•È׌×qHè,‘o‚¾IO‰|'„wïžù‡å¨|,ÇCøô˜HºKäçøR¾r|oŒo…îIo‰üÁ ›Dþ,¿”‚¾ù›ƒîù‡üéƒÎùÏÿP/‚Ê9 zI…ˆàßAýÿ¨hT2*t Õ8£ŽÔC¼‡ÒÈ‘àhb$I’Œ¦>èZxH•VŽ4GÛØû+dú gTÈ2èèèèè è Š 2¿Â9èÎC7ç;º;.ò¿ÂE>z9.“ËOÓFo¹*„> CTè/ô„ åj×ÊuBöWdÐ*õØï+õ†d~…[d„Œ4èÈþ d…Ñ_aŒ°ÇW¸Ó+ã=LpÜuÈú ÷“)!L•û…½¿Ù^a¦c–c6æÊÈïè3}ãÑgKW!ãÙÓ£»ç{èn\ ÊE9Ý˸ÄÇeÆåFoG£¯ôs ÆÕÆ5ò?š|$7ìáÑCìäÑÃ=ãÑ#d¤1JØË£É÷èÑŽÛeŒƒÜŽžPFwÉDÙ}ŸL–)2Uîò;zº²èék £bm‰:EÅzŽxý¢bC£‘4!Q’C [TLA3¡[T¤;Tléƒ.Q±µ‘桇t¡_T¤_Tl'$ËÈ–Ž!ä€NQ1Ï ?T,p°ûW,òÐEè ÏrœíèÂ9£âyÒÍA¿¨ØÝC¹ÀÑÓA©x±Ð9*Ò/*^*—9.7®+=ô6®2ú‡0@ Ý£â5Žk}\'×cA'©8Ø"7C#d¤c”ãÖ2¸ÍÃhƒSñNÇ8¡§T¼Û1ѸGî—ieð@t–Š3 :KÅ92× ¯T¤§T|PÈC²ÐXÂbôœŠK…žS‘nS‘nSq¥¬6è/é,׌MÆVÇ6c»±Sè÷c¯±Ïñ¸F_£ŸAVWà(Wל¦k×É Ë+Ýèâ¸ÉǰÀÉ¿ïþÿu Fy^éVcäÇXÇ„2ºÛY^iî1îsL6î7ÈôJdw¥é>fY^‰ì®DvWzÐñc¡ƒ¬®´ØÃRc™Õ•VÈ*Yk¬“ ÆflÁVÇvy\éa{eŸ<æá £ØÃ“!Õ•ÈêJär¥gç@6WzÑ ‹+½"äm¥Cò޼kµ•Žà}ã:ÈÚJ…ð±7ÈÓJäi¥/_ßdg¥ïä„ñ½‡ìÞ•~2~vü^8þ,£¿ŒKþõ!•²¹r¤QQÙ\™l®\Ù¨bÄUÕÕ%Ö —+“É•kK]õÑÀhh4r$xh,MŒÄ2hê!ÅAfWfç¯LfWNu´4ÒŒ6F†ÑVÈðÊduå,É6:JŽAWîdä=:ŠŒ3|°×Wf_¯|®qžtóp¾Á~^ùBãbG¯R\R 2¾òeŽËWHoaO¯ÜÇC_éç Tè ÿ+_ã¸V®võÊ7dzåÁr½òMÆÍ¹^y¸á•Gz¸Õq›ÜnŒ)ÅeÀÞ^y¬cœŒ7îòp·L”{ä>™bÜoL3é2ØeÌû|幯<ót…Ê <,”E²ÔÇ2Y.t„Ê+…žPyõÿkŒµ²® 6xØ$t‘Ê[e‡ìtì)ƒ‡eŸŒ#!¼o| t”ÊÇ=|"ô’ÊŸ_ÈWÆ×B©L©ü½ü`ü$¿„ðk¿ÉŸÆ_Æ?Æ¿ú§nØõ«°×W —G¤£‚í£’ÐªTwÔðAW¨硎ЪÔ3âú}¡ ý Jcûy•fB¶Wiá Ï«°{Wi-ieÀn^¥­Ñî4°ÃWa¯ÒÁ‘et4rB +TaG¯Ò¹…Ž¢ºà ¡#T¡T¡T!û«ôðpÑ3„ ‹{èe\Rô†*—ù 3T¹Â¸½¥ÐªÐ ª ð0P®–kå:ãzû•= zB•›d¨q³1Ü1ÂÃHÇ(¹Õq[£1FèUÆ:Æt‚*än™ò¿Ê½`߯B¾Wy ò¾Ê ™-sŒ¹¥ ë«Ì—ÆB!Ó«°ïWYRFKeY)–Ë c¥cµAÆWYolð°Q6Éfc‹±U¶|¯²Sva·ãaǾR<‚GÇäqã ãIÇ~yÊxZžq<+Ï9žÇ Žå%ôˆ*¯¯¯¯ã yÓxËAo¨òÞuÐ!ª¼/G||,ÇpÜøD¾ÄWò­ï'??…ð³ñ«Ao¨ò§üeü-ÿÅÐbÂØçc¦÷˲èU;£Èèâá 9Ó8Ëq¶tuÐ9ªžkœç£›t/zJÕ ô•ª{¸D.]¥êŽÞr•ô—èãjƒR•ÞQõzã7Ê`¹I†:nö1 #0ÊíÆmB©:Æ+t‰ªô‡ªww÷ø¸Wî“Ée4Åq¿L“dºc–ÙŽy²ÀxÈXˆEzEÕ²RV9èU×d³‡­}¢ê¡STÝ-{@O¨º×Ã#Bg¨Ê¾^õqãIÇ~yÖñœñ¼ã€z@Õ—„ܯúмêã ×OÃ!¡+T}ÓxKè Uß1Þ; ô„ªGå#a¯zLŽ—¡*½ êç>èU¿r|-t€ªt€ª?zøÙñ‹ñ«ñ›ãw{UúBµr>Ê{ˆ0" R¹ bÕ 2½ZM‰3ê ®£žÄ;ê;HÃ2jähl41‘,)r¿Z ­Bh-i§©‘¶Úô„jí…žP-Ë T£T#ÿ«‘ÿÕ „P­PèÕº8ÈõjççÊyÆùŽž>.*ÅÅÒËAfW#³«‘ÓÕz}äuµrkq\oÜè —« ‘¡r³¿Õn‘‘BöV»ÕÃíŽ1ÆBWï —«±×W»GÈÛjdmµÉ2E¦ú W«M“Ó}Ì0fb–Ì–9ŽyÂŽ_í!c¡,ò°X–û}µ•²ÚÃZcƒ ®¶ÑØâØêØ.;Œ>Øõ«íö±Göûð¨V;ꃬ¬ö±“ã!“Õ>vájßßÉ ?àÇØŸ«ý,¿ÙXí7ãwdb52‘*‰Ü«ùW½‚å`7®În\}¸:ùWÌ«^ÕQMªû¨!5…=·zm©SŠº>âFF‚ò¯:™W½©#Åhf47Ⱦê©ÒRȼêä]ur«zºƒÌªNVUo/ÙùT=ÇÈut2òŒ|B®U/2ºÈ™Ž³äç:ÎvÑê=}\è¡—°“V¿Ôq™q¹\éè-W}ý<ô2²:;lõ«åǵŽëŒë…]¶úägõ›„ ­~³c8nqŒrµú­Â[}´q»A–V¿wÊXƒ,­>Áq·²¶ú$ã^cŠcªƒì¬NfVŸ-ÊCŽ…BV_lƒÕ—zXîXe¬‘uÆzÙèØò¯ú6ƒ¬¾Cv»}<,{…¼«þˆñ˜AÎUÂQ,û§åYyÞñ‚q@^ñpÐYXý‡7ìšÕ—ÁûÆòaG r´ú1ãùÔñ™ãKã[Ç÷BnVÿQÈÈê?Ë/BþUÿ«ÿÅ vÆØ0”w„{ˆÈÓeDUŒ!Sc«9b…­uju쟱ñêK!WcÉÐØÆöÈØ$4•fFs£…¤JË2h%dl,{blº­±íŒF–±±¹BvÆæKÁNKVÆ’“±gœ†³äìºâäjìùº;ÈÜØ ¤g\h\lôr\b\ê ‡c/÷ÁN{¥ôöÐÇÑäplÿÓ4@ÈìXò:öZ¹{½qƒ1È co2†ú¸Ù.·ds,;o,Ù;Úq»A6ÇÞQcìıŒ»@Nǒͱ÷ÉdcŠãÓ…¼Žåa¶1GæÉ|!ÛcÈC²ÐXäŒ]UeÄî»ÆÃZë 6ʦ6;¶8¶ô‡Ø¾»ËÃnÇãa"vŸñˆ6ŽÇ…>û¹‡/ðe)¾Â×ò|ë`ýÞ"–.û›:E,;uìŸeô—üó?Du F˜ƒNQƒQƒþPƒ}»F”DKEaß®QÙQ%„©*t†ÕX<È5t…qÂ^£žzBF’`4–Ä’J‘,MCHºFæ=£FªA‡¨A‡¨‘f´ NQ£ƒdI¶Ð+jäxèB¾ƒîQƒîQƒ½Ý£]¢ÆÙŽ®Žsç…Ð Ý „nPã"\lÐ jÐj\VŠË…PãJé-W9Èÿ}K1ÐÃ5BÆ×¸ÁÃMÆP!·k òºÆˆF Y^c´ÜnŒñq‡°s×`Ï®1Á¹]ƒÜ®11„Iî ¼¯AÆ×˜ê˜æc†c¦Ì’Ù2¿Æ<¹_ãAY`<$ä~E{}%ÆRY!d|Õ²ÆXëaƒ¬®±ÙÃc«lòºÆ;e·rºÆ>dsGåq!›kØÝk¶ò@×L“ £díÑ¡ärÍlGG#Gò$ß ƒk’¿5Ùÿk’Á5Ï0ÎÄYr¶Ñõ4œã8Oºy8_ºËr¡ãbG/ãRã2!£k’Ç5Éãš}¥Ÿc€c`)®v\ë¸NØÍkÞ` 2{⃌¯IÆ×.#äyÍQr«Ü&£Kq§‡ Æ]ÆÝŽIY]ó^“)Èòš÷cš°·×œ.äwÍYBV×$«kÎõ0OæËƒBV×$«k’É5—úX†²JV‡@&×\ïƒÝ»æF!·kn6Èäš;„ ®¹ËØ-ìÆ5Ùkî3q<*;Š…,®¹_ž’§åyVž“ÈÚš/Ë+òªƒòZdpÍ7Œ7å-¹\óÇ»Æ{Èßšï{ø@>2>ö@F×üÔA6×ü {k’½5OÈ÷Æò“ãgãWƒ½ºæï!ü! Y\óoü#äq­rÊ;"¤‚AF׊6رkU.£*b ™^ë&*Ã< 7nqûµF:ÈÿZ·ú  Ô-c vúZc1^&y_‹\¯uŸ1Ù »kMs<`L—ÆL¹^k¶1GæÊB‹ŒÅB¾×Z.+±Ê`Ï®µÖXçc½A~×Ú$dw­-{v­m¥Øác§ƒì¯µ[öù_kŸGÊà1Ðj=áxÒØ/O9赞úA­ç„>P‹>PëeyÅA¨u° ^7èµÞr½9^ë°1>0>4ÈòZ˱2bÿ®õ™|;x-²¾ÖwÆ ƒÌ¯õƒ°W×úÙÇoÆïò‡üiü-ÿœ†ƒj—“0)/áBÞ׎–ŠePIªz¨fT—>j:ÈóÚµ8£žƒ=¾v}ƒ|¯ÝÈC‚ƒ¬¯ÝÄ‘è#É ÿk§_»¹°Ç×N2¾vëØçk§K†´2½69^»C)²}°Ç×Îuträ‡P`õµ =]Œ3gú8ËCWœã8Ï= 6= vwGƒ^P»§qIÿµ{ƒP»Ÿc€1ÐÃ5ÆuÆ ™^{ˆq“ 5ØÛk“[<ãµÉîÚdwíÛJ1Ú »k“ݵÙ×k•q2Þ¸KîvLÄ$ǽÆä¦„p¿ºAíÓ3 º@mò¿öt-ÅG>ŽŸàSÇç>¾öðƒ.Qû{ÇŽß|üáá/ücüû?ÄìÿÐâÂ|”7"ŒH#Ê-J*U$U…^WÝ+5„.G—ˆ£CÄñdâêx¨ëˆ/E##AK¡'Ä%KSÐ âR}´”VB?ˆK3Úm¥ƒÎG'ˆËvÐâr¹BˆË²>ެ#ÛãÈç8ò8îl!—ãΕnr¾ÑC.0z:.B/ã²®ò8®¯ÑOú ¹w­ã:×{$C„,Žêãfc˜ —[„lŽ#›ãF·–â6ctc rDZÇM‘©>¦dnÜôØÅãf;ØÅãæÊ|y÷³q‹ 27n‰ƒì[n¬0VÉj!;ãÈ͸Æf[d›l?M;;CØ-{„ìÛ+doY÷„­qdkÜ~OänÜ3BÎÆ‘­qäj{vÜ+B>ƽ&‡<¼QŠ7ñއwdjÜaƒ<{_>0>”£òÑi`ûD>u|a°ƒÇ}r3îßâ;Ç ùÁÃò³ãùÝøÓøËøÛ _ãÈUâ&P'LØ·ëD9Y§‚ANÖ!ëƒuÈ¿:d_êŽX£†ÔôPÛC]#ިsuKI4ȼ:ä]”šIs£…uZ…f¤ûhçÈrdC 'ë‘u:Iž°×!#ë°ëÖ9ÃAnÖ!7ëtuœSdk ¤§q¡ã"¹XÈÚ:—:®p³uzËUFékôw «=° ×!“ë¿u®wÜàavæ:ƒ7ÉPÃd„2¹Î­!ŒqµuÆÊ8Ç¹Ë wëL’{÷y`?®3Řꃽ¸Î4!›ëÁuf;p²·¹[gžãÁ2X`Ïu†@^×Yb,5–«ìÀuÖÉ&c³l‘­ØæØ!;eñ°ƒl­³Oñð¨<æáq¹\§¸ Èè:OÏxxÖÙ]çyã9àxQ^–W¯†@¨C¨sHÞ7oÉÛòŽ2¾ÎrT>öAv×ùÄø´Ÿdz2½ÎWޝß»pä'ãg¿xøìÄuÈð: ¹]çãß "³¤rŽ0)/ä|ÝH©PQ¢=T,ƒÊ¥¨â!ÆQMb¥†£¦Ô6⤎QWêI¼Ôw4:GÝÆF“’Œ¦>èuéuéu[ìàuéuÙ»ë¦9Ú”Aº´5ØÇë¶wt,#ÛGGédÐ?êæÒY ¥g8è&ué&uÏvtõp®œç`ׯÛC.ð@©{¡\䏨Ã%>.5.3.]¥.=¥îU¥.ݤn?éRw ƒžR÷Z¡§Ô¥›Ô½Á1Hn47ÉP7ƒNRw8FÈHŒ2èuo“Ñr{c„~R÷N¡£Ô'|ÐQêÒQêNrÜcÐCêÒ7êN3èugÈLǬRÌ.ƒ9B‡©;Ϙ/ô”ºt“º e±,ñ°T–ÉrÇJý¤.ý¤îzcƒl46 }¥îVc»ì”]ò°ã¡Ô}Lèu÷Ë3ƳBG¨û¼¼ /•Ñ«!’7Œ7=Ð êÒê¾c¼k¼'‡åýè u:>–cr<:D]zBÝÏð¹AW¨KW¨û•ñµ|ãã[ùޢ„þP÷Wã7ù:èuÿ6þñðïÿ«^˜nD } ^%GUG5ƒÌ®Wèé¨å¡¶Ä•A=#^Èñz Œ†> hì Ûë% Ù^/M%ÅhB I5Z†ÐJèõÈòz™B†×ë`ßõr¥“‘gHg)2ºà ã,9[ºz —ë‘ÅõÈâz=Œ Œžò¸y[¯.“ËC¸Â¸ÒCoé#}dp½þBæÖh·õ®q»õÈÙzäj½!r“1ÔYZïŒp«õF9nó1ÚÃãë _ëÇ!Së‘©õÈÑz÷8î{~½ÉŽ)ØóëM“é¥ ‡ëÍrÌ–¹!Ìó±ÀXâ Kë-3Väg½µ>ÖùXo±õ6›e‹­™[oÈÜz»ÊàaÇ^yÄxTw<áxû§åyÖx.„ç=ñõøxÑ ã뽌WäUƒ½¿ÞëÆÈözo;ÞñÁÞ_ï}‚,¯÷>.űŽ;>uûõ>7¾2¾öAÖ×û'ðƒñ£ã'!ßëýbüæøÝñ§ü-ÿÿSNÂŒò—DI´JÂÎÏŽcññÕ+55¥–Ä9ØÍãë†@®ÇóDâÉôøBvÇ7’ÆÒÄ‘$dv|Siæ —ãÉãø6!¤ûÈ(£¶ŽvFfí…¬Ïrd{È1èñtøBƒ¼'çãÏ”³„\?Ç8×qžtóp¾ÑÝèaô4.t\䃮Ï.Ϲ£·q•ô‘¾Bˆ`ýñׇÀ~OþdzOÇñ@ˆgŽgŽnÜbŒpŒ4FÉ­r›Œ–Û1ùÏnOÞÇ“õñw1IîqÜëã>c²1Eèñ÷{˜VŠŒÆ,Çl ~žÌw<( ‹ úAüRËBX.«t†øu²ÞØ ìàñtƒø­²ÍØ.;}ìò°[–½²O8èñûåéž‘çJAöÇ“íñ/¯å5y]ooïï:Þsò=þ!çã:>²=þ˜q\ØÙã?2;ž==ž¼ŽÿÚñ°“Ç'ßdv<9OFÇ“Ëñ¿zø]Èãø¿äoãÇ¿ÿC´ê“Éõ#ŒH@V×–Š]¿²TqÄø¨fãõc¥¶ƒ¬®OׯgÄ{¨o4ðÐPÈèúI’¥©‘"ͤ¹ßõS öçúìÎõ[KÚÒN2¥½£ƒ‘%ÙFŽ#WÈÜúy¥È—ìéõ‹ä gÊ9r®qžÑ].2¸>ùZÿb£—\ê`O¯OÞÖ¿B®”Þò·~_aç®?@:ؽë_ã¸Vn(Å!ƒë“ÁõÉÞúdnýÆ(ÇmB¾Ö¿Ý㜭§ÁŽ]¼L»än™XŠ{÷“}ÁõÉàúdnýi²µ>»w}rµþL³ŒÙ2Gæ:æÉ|yP‹‹…Ü­¿Ô±L–+BXi¬r¸þ!ë¯ó°Þ —ëoqÍõ·ÉvÙ!dq}²·>y[Ÿ¬­ÿˆã1³õÉÖúÅŽ'ýÆSxºŒÈØúÏ—Á r@^t¼äxYØÃë“Ëõ_÷qHÞ(Å›Æ[ÆÛò®¼çã°q¼o|™^ÿcÇqƒ\¯ÿ©A¾×ÿÂøÒñµ|Ù_ÿ{??ÊOÆ/B¨ÿ›ß€žPÿ/5 47"…ЀÐ ZÈþ•ŒÊr¾A5©.d|öóµ<÷ âu¥ž‡x£¾Ñ „i,M$É‘,ô€)š } } A+!û´q¤F;#SÈþY’mtD®A¦7Èw”Qg£ÐÁ¾Þà ãL»{ƒ®ÒÍ8ß ûù .²¿ÁeùÝ€ünÀîÜ€ünЯäzƒk×:®3®÷pCƒ öñƒ!ÆM†âf¡4!ìß FÉ­úAƒÛcŒ;c1Î/Œ»äîÓ4Qè è ¦8¦ Ý } Átƒìo0[æä|ƒùùÞ€ºÁC ß,2ËË|¬pç VÉê2ZãXg¬—ͲU¶ ùÞ`‡‡Æ.Ç<Â^aoð¨öp\>q|êøL>7Èç_ ÝàÛR|çãÈè??dt2·ÁÉ\ý÷ÿÕ°\)¤üi ÷aDJ”‡h!ã’í +{¨âˆ‘j™ß¼oXËQÛgÔA¼‡ÒÐC#$¥Iä|ÃdG3IõÐÒhBkƒ>а´-E;ƒ.Ð0Gr˨SåùFÑY } }¡áÎ’³å9Oè Ï—îF£§Ð!^$K/\b\ŠËWž†Þr•ô5ú{àa ‡«=\cÐWÒO’C 4¼ÉÃ0ô‘†#„>Òp”Üê¸Cè Ç„^Ñp¢LrÐÞë¸S|Üï˜&8è g`¦ÌrÌ‘¹2ÏXd,ºDÃå +4\íXÂ: áFaïo¸ÝAhHÖ7Üícñ°ƒìo¸ÏxTóð8Šñ¤<%Ot€†Ï yßðyã…;׌—CxEè é _—CÆ›ò–¼-ït‡†ïG„^ÐNÐð¨Á¾ÞÐð¸ƒÐðS!÷’÷ ¿”¯Œ¯}|+'ß;Èý†?z`?oø³Ahø«ñ›Á^ÞðOƒ=¼á߯?ø·¤FåŒ0 ÷)„\oD¦7"ÓUrçªJ5£ºƒý½Q ©UqF£žƒ|oÄîÞˆ|oDž7j$ ÒXÈíFIŽdiê`Oo”*­ŒÖB67J¡­A7Ê’l#GrNBŽ6êìƒ mD~6êâ8SÎ’³¥«ã\㣧‹—8.5ØÑ]n\áèíÌlÔÏè/< 4ÈÃFä`£ë„,l4(„Ár“ õÀ.ÞˆÌk4RF·£…ý»{w£;Œ±B6š`…&z˜dÈÀF“©²¯Ñ48¦{˜)ä`£ÙÆÇ<™ïáAa'o´P–ÈrÇ ÇJY%dh£59Ùh½ƒ¼l´Õ±M¶Ëc§rµÑ!/íõ°ÏÃ#ŽG…mDŽ6zBŠ 2µÑ~yNÈÆF r¯Ñ+Â~܈ÜktHÞ(ƒ7åãÝÈÃF‡C8"dd£cÆ'ò©ÈÇF_8ÈÊFdd£¯å[ùN~(ƒŸ_ 2°Ù×èO9È¿FdH“ò².!¢ ÈÀ20!Ú™˜PÉQÙCU©æˆuÔDm#NꢞÄK =ðHhb$‚ Lh*d^B³R4—FªÑRZy 7Ò$C2Ë ƒ™ %ÇCž²2¡‹ãL9Kº:Îqœëã<£›£»ÑC.žÆ…>z9.1.7®0ØGúø`M WÈÑ„«×ø¸Nn{d††p³ +ƒá2BF:n“Û…üM wî¹›0NƃÜM¸dkûf½ÆäØ7ÈÙr5ácºƒ=3yÄ 4~ÜxBö;蟖gäYyNØÕ}¼$ôƯ¯ã¼aÐÓ¿k¼çÐøˆñ¾Aö7þÐqTØÕ+»{cºAczAã/Œ/¯å¡#4þÎøÁÇ~–_¿ÊoÆï»|c:Fã¿JñohMÊaÂîß$ w4‰vT4*Iå2¨‚©j°ï7‰ºG“š'tŠ&ìïMèMè Mè MšxH4è MèMR„nФ…Á^Þ¤•£µ°‹7iã#ÝAhÒÖG¦ÑÁGG9Ž\Gž‘/ÒYŠ|t‘3p¦q¶t5ÎqçMÎóÐÍ8ßÑÝqô4Èø&Ë%Æ¥!\fÝMz{¸ ì÷MÈë&W;®qßMÈé&×Ë ƒ!ÆPƒo2̸#<ŒrÜ*·ù-·;Øû›Œ²¼ÉxÊà.ãne’Üëã>¡4¡4¡4™æ 4¡4™%³=Ì‘ùÈû&ä}“‡„Ý¿Ébƒœo²ÌAæ7YáX)ä“Õe°ÖÃ:Yol”MŽÍ>èM¶úØ&Û±Ãý  } ÉÃŽ½ò¨Ç¥OÊ~¡4¡4yÆÇ³Æs>žwÐ'šÐ%šÐš¼l¼âáUã5y]Þ4ÞÂ;}¢Éã}ƒÞÐäCt‚&ŸŸŸã ¡4ùJ¾–oB 74¡/4ùÞøÑñ“ü,t‚&¿yøÝñ—ü#ÿ–D$Ã|„ yŸ)•Œ!«cFMqRǨ‹zF}iäH0š<‘Ä$Ir>‘ŒOl&ìû‰ä{bkiãÜNl+í™ÂåÈ.£Ž™ØÉ‘ï£PÈêÄ.>Îðp¦ã,ƒ\O$ÏÉðÄsççKwãBã"¹Ä¸´—ɸRz »ub_G?ýe€vîÄkdw"ÙHn'Þ ƒä&ˉär"yœ8ÜÇ-ÆiŒòq«ã6ǃ=<‘ŒN/än"y›x·²6q’ã÷ ¹›8ÙA'’É÷;¦ ;zâôÓ0Óž8Û˜cÌ•ù²@*ƒEB¦'.‘e–Ë Yi퉫…½>‘ÌN$¯7dsâfÙ"Û ²7‘¬MÜéavdo"¹›È>žø˜ñ„ 9›HÎ&>-äjâóBV&p°o'¾$…\L|Ý8$ìÚ‰o9Ø»ßr2‘=;‘=;ñ}!?4ŽÊGÆÇrŸŸzøÌñ¹|áøÒÃ7ÈÒD²4‘=;ñGƒìL$71~uüVŠßåƒý;‘|MüÛAÖ&’¯ÄQ ‰=:)Ì(/á騀Š;rRƒÌM"s“ªIudqœDæ&Õv¿Iu% Œ†§©‘#Á`'OJô$ÉFSIqÝIÍ-$Õ Ó“Èí$2:©½t0²„NêèèdädoRg)4Èá¤.r¦‡³¤«A–&‘I8zÊ….òÀ>œÔ« .‘K—;ÈÞ¤«¤¹Iý 25i qµ«I××ÉõŽAÆà2"7ÉPÃd„AÞ&ÝûqÒ>îôÀΜD'‘ÃIwäoy›D¶&‘«I÷É”2˜*dlÒ4ã2˜nÌð0KfsóO»tÒ!s“‚ÌM"s“ÈÛ¤ee´ÂXéƒ NZ#kK±^6„°ÑØ,dwÒVc›±CÈí¤]!<ìc¯ìs<"ìÓId{Ò“ŽýeDHzÚý éY9àáE¡$½b¼ê 3$2è IìÒIôƒ$ºAÒãCã¨|äøØq¼ >•Ï ºA} éKìÛI_ ] é»R°g'ý(ôƒ¤Ÿåãwƒ¼O"ï“þ2þvüã@¼’ä¼#ˆ”(•B¨,UB¨*Õ„Þë C$Ó’ëx¨k°·'ÇKýô‡ä&F¢$ùHv45è ÉtƒäŽTI“6’öýd:C2û}2½!9Ë‘ã $çy '$øè,ô†ä"ƒî|¶£«ãœÎuœçèfœïèºGrÏR\èãbée\ê`¿O¦_$³ã'Ó1’{ËUÒÏAÏHP×}#™®‘ÌŸ|# ½!ù&¡#$ßl 3†‡@H¦G$ßæa´q»cŒqGôŠä±ŽqB×H¦_$Ó%’éÉt„dºA2ÙŸ<]Èùä™2˘-s|Ì a¾‡},‡ŒE–Ê2!÷“W«k„lOÞ`lô°ÉÇfÇVƒ|OÞ!;=ìvì1öÊ>Ç#Æ£ŽÇ r?ù )6ž4È÷ägäYã99àáEyIÈódöþä׌×å ;2™žÌžŸ|ØÇ€œOþHŽÌNþÔÃgBv'“ÝÉduòWBV'“ÕÉß {{òÏvóäßäwùËñ·ƒÜMþ·$""дœQ^Â%Ò¨`D=µM+Kƒ=½iUG5Õ¥†QSjqŽ:>êñBî6%k›6r$8M 2¹i’»M›:R¤™‡æF #UZ!MÈå¦é2|ÝMÛyè Y>:¹ŽNŽ|GƒloZh]ä 9SÎ’®r¼)ÙÝ´›A^7½ÀÇ…Ž‹¤—q‰q™A67%››’ÍMÉã¦}¤¿µMÙõ›^c\k\'ƒŒ…nz“¡†Ë-YÛ”Œmz»A®6½CîtŒuŒ7&8îrÜ]Љ˜$÷x¸/„ÉÆ™êá~dS²¿éô2¢4%³9Æ\!÷›’óMÉô¦ Œ…Â~ß”ý¾éRYVËe¥c•r¿éÇZë„}¿) éÆRlö°E¶Û±CvÊ.Ù-{ìùM÷ûŒGäqyBÈú¦O ;|Ó§åYãy/€|oú²AÆ7}µ :èM_w°ß7}ÃÛò–ƒ¾Ðô‡GBx?„ôŒ¦É1ŸŸÊgeð¹ñ…ã˾ñq Ë4ýÁøQ~ò@Çiú«ñ[ý^‚~Ôôß ”0”wÐ}Rè<) ºNJ´úNJe}'%ƨ*Õôœ”XÔpÔô@ÇI©ë¡žoÔî“BßII0; zNJŠ£™£…¤JK£5è2)t—” ikÐQR2,ÉFŽäù¥è\ zIJ‘A'I9CÎFWãœkÐGRÎ7º=ʈ®’ÒӸиH.F/¹Äq©ÐYR®”Þú‚î’2ÀÃÀRÐoRè5)×û¸7ÊÜ$ô—”a.#0Jn=&…î’2ÎA/I™ tzFÊ$ƒ^‘r¯Ð#R&;¦8¦Êýò€1ô‚”9Æ\cžÐRÉbƒìO!ÛS– {|ÊJƒOY-kk=¬“ B^§Ï)ds {zÊ!ƒSvû ‡S28…ìMyÄ`ÿNyL—'¤Xž4ö ÙœB.§°ƒ§¿)ìÔ)/{xE^u¼æx]ÈÙ”7Œ7…LM!SSÈДw vò”ÃŽ#Æû!›)z KSÈє嘲3…lL!S¾,Å׎oqÂøÞ S~4~2~1~5ȯ”?N9—ò·ÿ§Y˜Aö5‹0"$J¢ vÿf•U$ƨꡚ‡X5¤¦£–ÔFœƒŒl/õ¥¡‡F> r±û³DG2šzH‘æÒÂû~³ÖÒ ò²¹Ø¬=Øã›uô‘+y>ÈÆf…!…ÍÎ0ØÍ›-da³sB8ßèîá=9.ò°Øì2¹ÜÁߌìkv•°Ã7ëç Wä]3ò®{{32­Ù`âá&c¨ãf “án‘2£ 2²Ùl´Ü!ìôÍÆÉx™ ìãÍ&9î5&{˜ZF÷;¦yx@¦ ÙÚŒ}»Ùls„¬m6¿ Èáfa‘ÅÆc©,“åBF7[í ‡›­3Ö ²¹Ù&ÙâØ.;ŒÝŽ=BF7Ûç §›=îá ƒLnö”<íáÏÊsÆ Žx1r¾Ù+ùÞŒ=ºÙkŽ7Œ7…2¼Ùçò…/_ùøÆøVNß 9ÞŒ=¶Ù/Ư~7þððgÉ?Æ¿%5/ç#LØw›“ùÍ# F´£¢T2*U òº9Yݼ¦Ô6ÈåæärózùÜœlnÞÐh$ r¸y!›' 9ÜœÜmžb°›6'g›§JK£•´²¶y;™²Œlé(9F®|£KQè`gm~†q¦‡³äxsr¼ù¹Â.Û¼›‡ó¥»qôôq¡ÕÍ{…p‰q©ƒÞÃaGo>Q&ìçͧÈT¡;4Ÿæ˜.3e–AOhN?h>ÏxPÈCe°H–ÈRt‚æ«dµÁ¾Þ|­±NÖûØ`lôÀNß|‹‡­Æ6c»c‡ìÄ.Ð'šïó@hþ˜ñÄi`÷o¾_èÍéÍŸõðœn”Á2D†–ÑÍŽaÆðÈöd{ r¼Å­nÃ!Ÿ[Ü%w;&““å~!‹[<à˜áa¦òºÅlcŽcžƒ\nÁ®Þb‰‡¥;{‹²ÒÇjÇdw ò¹Ü‚¼mAζ _[l—²Ûñ°ì•}Æ£!¹-÷ð„Ë“ò¶;| 2·Åsžw8 äm‹—åUÇërHÞ”·ämï™Üâ=Ça9"dr 2¹¹Ûâcã¸ñ‰³->“ÏCøÂøRØÑ[|-ߔѷò|oüPŠå'ãgùU~süíøGÈõÔrFdë©äxjÅ2¨ä¨lÄžë¨á¡¦Ôr°Ó§6Ùžšàhìh"I’,)>š9Zdu*{|jkGštG†´•vBN§¶²95G:ù{|*ù›ÚÅ8CÎôp¶œcË©ìà©ç;z€ý;µ§\ä¡Wäpêå®0z ¹œÚWÈáÔyšz\ë¸A9ÈÏT²3õ&*Ãd_ê(ƒý4õvŒñq‡Üéë¬Lï˜`ÜeŸ©{Œ{ öÜTvÜÔ©>ÈÖÔiÆtƒâÌM}ì4o¼ /Ë+Æ«>:^+2<õMyËÇÛòN¼9ŸJƧ2>õãCùØ`ÏN%ëS?1>5>ò=•\O%ÓS¿2ÈõÔoŒo ²;õ„ñƒãGÇOÂÞú«üfüîøÃøÓ`?OýÛñüÄ hYÎG!£[’Ë-+;Ø¿[’Í-«;Èá–dpËZRGêJ¼Ôw4†’àhl$J²4“T-C Ÿ[¶–4an™nd„@·ÌòÑÑ Ÿ[æzÈ“|F¡t1Èð–g:Î’³]Ëè\ÇyŽn e¹ÀGOÇ…Ž‹=ô áƒþÐ’=¾åÆ•Fï®òAÏhÙW8:®zGËkå:a§oyƒÐ7ZÞhÐ=ZqÐAZÞl “án{wËÛŒ1Æ2ÖÇ8t–ww ]£å$ã^tŽ–“O¤å4ãÇt33Y=¥å\t—–ó ºJË:KËŲD– ¥åJY%«5ÆZcè-7c‹l5¶9¶; úIKúHKzH˽²Ïñ˜ãqÇŽ'e¿ñ”<-ôˆ–Ï/Èyìñ-_‘Wå ñº‡CŽ7oÉ{B®·<"ï ™ÞòCGñQ{ ÷[’÷-?“/}|åáùÖ8!ìì-pñ-–_…ã<*Éãò„QŒ§ :E«gñœñ<^08^4è­^•ƒòº‡CÆÆ›ÆÛxÇñnïÇp<:E«/||éøJè­¾sœð@Çhõ£ã§Rü,¿àWùÍ ´úCþ”¿ÿ‡úÑ1ZÓ/ZÓ/ZG8" BÏhMÇh]ÑC%Geô‹ÖU¥šÔúBëÚgÔqÔE=G¼Qßhàƒ^К^КÐ:ÉhŠi&-|¤¢¥õ­ù¦¶Nr¾u†ß­;H¶ttÙ­s}Û­óäsëé,…FQ]g”âLÇÙFWÇ9r~=„,oÝS.ôp.öp©\f\!W:zäzëþÆ@ã\‹AÆCŒ›B*7c„Œ,Å(ãV£CS ºAë±Æ8Üe܉2IÈûÖ÷b²ó­§:îÇ!û­Ùÿ[Ï–9Æ\™çc¾,0è­úXúAë%X*+eµ‡5BhMþ·Þ(ä}ëÍ²ÅØêc›‡íÆ!ë[ï’Ý>ö ¹Ýú1yÜ «[;žtì—§…,oý‚¼dÑ­_ò¹õk>ÈéÖ‡ ò¹õ›Ž·Œ·wBxGäCöÿÖ{8æã¸ãùT>+ÅçYßúKã+ãkùÆñ}ýP?ÊÏŽßäwùÃAö·þË8™ÿÿþO¹ŸVÞC„Aî§E…í¨è ¤U2?­ºÄ:jÙŸV» êHÝê ] ­¾40J‚zA½ -Ñ ¤%{h*ô„´ŽT£•ƒ®–&é’a´öü´BOH£'¤Ñ Òèiù:@Z‘tqãigÊY!t•sóÊ ºKƒŒO#ßÓ.,E/ÇeB¦§]éã*é#ä{;{ٞƾž60vù´k=\çcPÜXFƒe¨‡›e˜Ü"t†4zA} ½?œO»]Æ8îpŒr>Ý>m‚Üí çÓîñp¯°ç§M1Èü´ûÓ0]f”b¦c¶Ìú@ÙŸFî§=( Œ‡ ²>ŒO[æX^ŠB/H[%ô€´uÆ¡¤m2èi[„œOÛîØáa—±§Ë^cŸã!íqt´ýòŒ5>ó@OHûBèi_É7òq¢ èi?ÈBæ§ýâá7¿ô4ú@Ú_Ž¿…>І>Ц¼„{ ´¡´©`D Yߦ’ómb vü6ì÷mª±BÞ·©…¸2¨#dz›xä{›†ØñÛçm—Ab)’)F3£¹´”V!ÐÚ¤I¤K†ÑÖh'™hod![:JŽÐÚÐ ÚHç2*tt1Îöÿ6]}œcœktóq>ºKÇŽžúC›‹£—ã¹Ìq…+½AÏhCÏhCÏh3À S´¹Fèm®Ç rãi,ÃÃq‹ŒpÐ ÚÜŠÛC#wÈXï~ÐænÇ$Ý Í}Æd™bÜ/Ó<< Ó zA›™2·ìümK…ŒoC¾·Y)«dµ±ÆX‹ ²ÑÃ&Ùìc‹c«‡m²]vìým–½Èü6âqyÂ(™ßf¿‡§ç<<ïxÁñ"^’—…>Ðæ5ƒÜoó†¼ 2¿ yßæäv›Ã™Ý†œnó‡qdx›å¸ƒÜnó™Ém¾r|-ßzøÎ¹Ü†\nóC)~”Ÿ@f·ùMþôðWý-ÿDC =Ìá#RÈèôŠR)öôô*ù^ÍQÝYž^èéˆ3Èðôºyž/õ¥ÑÈC‚£‰‘d°›§§H3ät:{zz+£µÉémäqz[!ƒÓÛ$[rŒ\™›^(EÆ>Èßô³äläpú¹BƦŸ/=djzOƒ299ýKÙ›þ·éäm:YšNަÿbü 25Ý6ýO{ø'(£œÁ¾›î#ˆôP!„(ÑFEƒüͨ,1ŽªRͨ.±Ù›QËCm‰28ƒìͨgÄdpF£‘öå ò6#ÑHr¿)ÒÌÑÜG aoÎ ‹3Z;ÚHºÇdq;qF¦ƒLÎ 3: 9œÑ ù²7ƒÌÍ`¯Í8CÈÖ 23ãö䌅=9ãgŸñ«üæøCÈøŒ¿ƒ¸ü—Dv·%³Û’Ñm+„åˆvT²¹-¹Ü¶Šƒn[ÝyÜ–yD²½íãÆ!;žú@Û§=<ƒgåyãaoû²tómÉù¶ä|Û7Bxó4½%oï} -»zÛÃBhKhû¡5>6ŽÉqǧ>èmémém¿r| r¿í·Æw¥øÞÃ!üXFô†¶?û ?´¥;´ýÍøÝ ;´ýËñw鈥@»r(:F;:F» F´ÐÚU2èíªHLìøíèíèíb}Ô0jìùíjKœQÇG]G¼£¾4úG»&’èH’¦F3£¹ƒ.Ñ.Õ +´c×o—æhBºƒNÑ®míléhÐ)Úu’<¡G´£G´+rœaœeœmt•sAhw¾r£§q¡\ìá—z¸Âq%zK}¤]?£¿‡¤ý¢ÝuÆõB·h7CŒ›1LnÁiŒ*Å­¥¸ £=Ü.c„>Òn¬ŒÃxaßow·L”{Œ{K1Yèí¦–‚®Ñî™î˜!3 ºG;zG»9Bçh÷ ,ô±X–xXZŠe²«e±ÎÇFÙ„-²ÕÃ6c»ì]Ø=²·ûŒGÇOH±ì—§ä9t„v/¡Ý‹ÆK /´{å44èíèíÉB?h÷–A7h÷Žã]ƒŽÐ‡Boh÷‘|,ô†vt…vŸý ÝŽ/ô„v_Ë7BOhGhwä;r¾Ýò“ü"äv;òº;~»¿Œ¿åŸ’2ÉäÌ0‘B.g’É™äp&9œYÅÙ›YÝAÖf’±™5¥–¯™qŽ:êJ=ñ¹šÉ.ŸÙD%I’¦Ž!c3›;R¥¥ÑÊGkƒlÍ$/33…¼ÌÌ2ÈÉÌNBFfæ;ÈÌL23³HØÁ3ÉÉÌ3…œÌì*çø8Wؽ3»Kƒ|ÌìéáBÉÅÒË 3/Ãå¸Â¸Ò9™ÉÞžÙWÈÀÌr0ójƒÌ$3•Á`cˆã& ²3s˜ár‹ò5“\Í%·:n“ÑÆí!Œ‘;J1Ö W3'áy™9Ù˜"S}LÙ˜9Ó1ËÇy™9ßù™¹Ð±H{Xb“™Ëd…¬r›™äeæÚÖd£l’-¶ šI~fîò3sw)öÉ£ÆcŽÇ'Å{wæ~ãéž1ØÅ3Ÿ7ÈØÌr6ó%!;3ÉÌÌׄÜ̾q|kœ0¾7~…¬ÌdÇÍüE~5Øm3ÿ’¿ŒöåBˆpD:*H”­í+–AeaÇm_ÃQÓ¨-qFG¼ÑPIcI”$ÉFS!GÛ7s£íS=´.#vØöí„mO~¶ÏvÎö¹yÚ>¯ùBƶ'cÛälû3ä,ì¤í» Ûþ\9OØQ۟£‡\ :.á—9ÈãöWW½å*Gégô—Ž«k<°Ç¶¿ÎYÞ~Ü(ƒ ²ºýMÆP!³Û“áÆÇÈ2%£·—Ñ!›Û“ !Üåa¢1ɹÞþÞRÜ'd}û©Â.ÜþRLwÌpÌ’Ù2×1Ï ÷Û?h,8Ma¡,6–Ë}¬•²JVËZÇzÙP›d³úBû­!Ð!Úo—ÆNìzCû‡ìßí÷9ñð¨:F{ºD{:Dûý»x{ºBûg„=¼=ý =} ý‹ÆK>^v¼"¯â ¼VŠ×CÞ7å-ãmaGoØ8RŠô‘ötöÉÇ}¤ý'}¤ýg!|.ô•öìíí¿òÁßž~Òþ;ã{ƒnÒž^Òž.Òþ·Rüî`Çoÿ§Aoiÿ·A_iÿïÿt`×ïPNÂå%í£¢Jè,ª”"æ4Ð:T÷ ºP‡šjt£t¢ñŽÒHŒÆÒÄH,E’Б:Ð:4w´–he´!Íhƒtd ­‡v’‰F–A‡êãÈúT‡|¡/uèlЗ:t‘3äLœ-]sçz ?u ?u8_èHzÊEè…ËŒËåJGoƒNÓ¡ÑýeW;® áZ¹ÎA¯é0H{ Ãt¸Ù »taŒzI‡[·9n7Æø¸CîÄ8 =¤ÃDƒÎÑÎÑá^ý¢Ã™*÷ËÆ c¦c¶1Ç1×¢½ ÃBYäX,K@è°JÈükuBæwØ(›e‹c›lòºÃNƒÌîð°A6wxÔñ¸ã äs‡'ät²¹;|‡ç<<ïxA^t¼l”×B ;r·Ã[òžqDÈÐäf‡…œì@vøÂ ó:y¾‘o…ÜëÀnÞáGã'aï@þuø-„ß r¯Ã?eDîe•swYä\V¤£‚QQ*dUVµ2ˆuAYµ¤¶‡8a7Ϫr(«¡ÑÈGcIò,äKV+ƒÉJ3Ú9’EVdµ÷ÐA²ŒŽ’ë 7²òRè£]g¹’u–q¶ãœRœç g²Î÷ÀžEÞd‘7YäMÖ¥r…²&«·ã*!k²úËÇÀ2¸Ú¸Æ¸Ö¸Îq ;sY“Åžœ5Üq F:È›¬[Ûd´q»A¶d‘+YäJÖX'ã=Lðq·1IÈš¬ûŒû=LY“5]ØQ³fËÇÞ3;È¿,öÇ,ò/‹ìËúTس>7¾ð𥃌Ì"³¾sœ(ƒ…ÜÌ"7³~ññ»öĬ¿äù7(›ý0»œ£¼„ì†Ùäev#Jس+ û_6¹™ã¨ê£šêŽXaßË®)ähvG]Ô“xi ˈœÍNôd$;š:R¤¹Áî—j´”V>Èíì4äwvºÁþ—ÝNÚ ™Í8»£‘+|ääwv¡Q$du69Í®—}®œçèæƒÜÍî!=åBã"ÇÅÒ˸ÄÃåŽ+äJ£·‡>vÆì~ … ξN®áÇ ãFƒCp“‡¡Æpã# ò>{”Ü*·£=÷Ùw”âNƒMîgO»„œÏfÇÌžä˜,SB¸_¦;Ø3³Ù-³Ù³Éøìùò çÙ‹ ò;{‰c©c¹±BVÉjY½VÖËFƒ¼ÎÞll‘m²ÃØéØåØc<ìØëáyTÃ>ž”ý!ÝÙdu6Yý¼ñ‚0^2ÈåìW öÑl2:ûuãñ†¼íáäv6ùœ}$„÷åLJrT>’Çäã Ç—òµñõÙßÉ ã!ϳÉóì_ñ›AVgÿ%d6—ï@ÇrF˜£¼#\"%Ú¨hÙ+K£ºë ‡;’¿ëz¨o4ðAÎvlì£  r´c3!G;¦:Z ™Ù±µ¤m$ÃÑVÚI¦£½£ƒt:M>:K¡gìÃÏòAöv<Ï c;ž/ÝqÑÓ [;’{ËUF_ƒ,ìØß1ÀA>v¼Z®17ƒ!r“q3Øe;wÜY×q¤QBÞu$ß:²Óv$·:ŽsŒ7îrLôpvÚŽì²'SSqÓÓe†Ì4؉;Î1æ‡ð cƒ=¹#yÚq‘,–%Bvvdî¸Ü±BØ;®’Õ²&„u O;²ÿv$K;n–-²U¶Éc§‡=ÆÃ²Ï¹ÙñQyÜÃÆ“ŽýÆÓž1ÈÒŽÏ YÚñƒíø²2µã«Žƒ§üíHÖv|C؉;¾eµß‘÷ŒÃyÚ‘ íø¡A†vüHŽ9ŽãÓ2ø<„/å+!c;’¯O8ÈÔŽ?ìÉõð›ãwäpGö䜀AÖæ„ìÆ9‘Â^œå os*Ie©"1FUG5‰27§æiªm°ç°ç4pÅ9$äoNb$ùhêH1š »p™ÓÊ ·sÚHºd8Ú•Q¦ÑÁ`'ÎÉ–aÎédtöAFç9º9sfg;º†pŽã\9Ï çsÈøœîŸC¶ç\(d|ÎÅÆ¥!\&——Ñ>سsè9WìÕ9t‰œ~¥èÂ@¡cä\#×:®óp½öòzHý#gˆã&ƒ];çfƒN’CÉÂHe°s猺Gι#„;± ŸäŒwLIB÷È¡{äÐ7r¦ÈÔ2¸ßxÀ1Ó1Ë käÌ =gžÌ÷@çÈ¡cä,,Ý#g‰ƒî‘³ÌÃJÇjìî9tzFÎFÙ,Û>v:ØÕsvË¡käìºEΣÂNžS“Æ~¡Cä‘óbìê9¯:ØÍso8ÞúBλòžã°qDè9:è9ô†öíœcBgÈùÄçò>vðºAÎWè 9ßß9NøøÞÃŽå'¡käüâøµ ~süaÐ;rþñA!²‚Ê>’[ÞÝ$7¢ "=T0¢Ë¨’ƒž“cTõAÇÉ­ŽX¡çäÖôPˈC©[ŠzF¼ÔwÐrIcMôœÜ¦úM.Ý&·9RVzNnšºOnº´5Úy Ûä¶½&7Ëèè ãäæ$ÏC¾€¾“ÛÅ8Ë Ãäž'ÝJAOÉí.ô“Ü‹}ôòq‰‡K=\f\á¸RzKék k„N‘{\ïáƒB¸ÑÃ`ã&Ce˜ 7n1F #÷V£…’;ƸøÓ[ŠqƹKîÆD¡ŸäÒOrïu܇É2õ4Ló1ÝAOÉ¥§äÎ)ż2 ³ä>èX€‡d¡,2Ëc©‡e!,—B¯É]ía è6¹|ltlò@ÊÝbì:NînÙãáaÈ£>èB¹ã ŲßxÚÃ3ò¬ã9}'÷”×åÐorß”·åï9è:¹GŒ÷}|€äcã˜AÊýÄøTè<¹__ÊWòµ|#ß ½&÷{?xøÑøI~vÐ]rºJîŸÆ_Ž¿=üÔ)Ì.ôNQ-Q© è ª”‚nÒ©ªÔÚeTGêõ ¤¡ƒ®Ñ)…^Ñ)ÑG’‡äšÍ=´TGK´zJ':I§6B'é”vzH§öF6èr|t2èèè:K¡QdÐA:3³Œ³åççI7ÇùBWéÔC.½¥ÓEr±ôòAét™\n\áƒ>Ò©ô“ޏZ®úI§ë<\/ƒäFÇ 5èèF8èF·ÊmúC§;Œ;=Ð:“ BGè4ÑÇ}úA§i2Ýà ™‰Y2Û˜cÌ•yÆ|ã!ÇBYl,‘¥Æ2ƒ¼î´BVÉY‡6Éfƒ î´Ûf‡0×Ã|ƒ=;oca)ätùœG.ç‘Ëy+BXéa•¬ö@žç±sç‘éyëìÜyes[<ïy;d}9Ÿ÷°ìùž÷ˆAÆç=&û ïóöËSÈý<öé¼çŒ<¼äãå^‘WAwÈcÿÎ;äÎ÷¦¼…·…®÷žã°ãˆ|h5>:BÞ':BÞg #ä}%ôƒ¼oìÕy'|Ðòèy?yøY~•ß<ü.„ð§Ðòþ‘ƒˆ‹ÿ!óóÃŒƒ=;¿‚DI´T”Jz@~‰1ªyˆuÔtÐ òëõ¤¾ÑP„lÏO”$I1ZHK!·óÙaóÛ8Òdy>YžßÎÑÞè äw>™Ÿëè$äv~¾Ñ9„B!Óó»8ØuóÉøüsç:Î3ºù8_º=„.±‡^²>ÿr!ÇóÉí|v×|29ŸìͿڸF®uܲ6ŸŒÍb±ùÃC!# r3´™ùcäNc¬Œ“ñÆ]ÆÝr3ÿ—ùäcþdÇcªÜïaZ«ùddþL³„œÌ'óçÊCÙ—¿X– ¹—Oîå¯t¬6ÖY–¿ÎØ(› 2+‹ck‘kùäXþ.ìÁ^äXþ£ò,ŸìÊÂQ,û§BxVž3ž7^0ûoþ+òªvß|2,ŸÌÊCÞ á]ƒ]7Ÿý6Ÿ|Ê'—ò?vØücŽO ò)ÿ ãk!—òÙSó¿s|/?È~2)ÿ7ãRüåáo!‹ B°w°s7ÑFE!_ *{¨bÄUQ]bË ÈöÒ‚ÚF¼7 Œ†ÒAæ$ƒ}± ™4w´ò@´1Ò 2¦ äJA–AÆt”ÜÈ›‚<ƒ,)(2ºgx8ÓÇÙ>Αsçyèæ *èîè!ì¥ì¢ì ‡p™ƒ<* È£‚ÞvÇò©àšR\+× 9U0¨ƒ!rSì’7Ã0ÜÁ^Y0Âq›1Zn÷@öÜò®€¬+/wwËD!ó îr®€|+ Ç ¦…ð€1£ f³K1GæÊÇC>:Éb! ÈÄv¾ò¯€¬+`g+ ë 6•Ñfƒl+Øfl;[ÁNÙ%ìoä^û[Á^ûdaùWð˜ñ¸: ¹Ý™Üîœ'¤Î¥È ³;Ÿ…®¥8WÈÜÎÝJAþvînôpÁ/4ÈâÎdngö¿Î——Wx¸R®’¾ú9úc€c`)®–k=\çãzÇ Â^Úy¨q³ “áÆ-ŽÆH%·z¸ÍÃÇ!ŒuŒ÷AÞw&ç;ß-÷÷ÊdÇ´2xÀ Ó;³«v&Ï;Ï–9Æ|ǃ¥Xàƒ\ï¼PûX‚eùÞy¥¬5Ö96ÈF›d³±ÅØ*ä~g2¿óNÙ-{|<ìØkïŸðÁ¾ÛùI°ëv&ó;?gäY!û;—äeûÉýÎä~çCò†ñ&ØY;Ó:¿ãÐù°ãˆíÉôÎd{ç|óÉ'øÔ Ó;áøÒ ³;-ßÊwÆ ùAÈêÎ?Éoò»ñ‡üiüåãïÐ ËI˜”÷.eD Y_È~\XÙAæÆx × kµ<Ôö'u<Ô3ê K‘àL/l‚DƒL/$Ë Ù± ÉóÂæF‹Rë…­ 2½»,/l+ìÚ…í$˹]Ø1„#W:…@Ö’ó…ä{!ù^x†ƒÝ»°«Á®]H¶žçƒL/<ßy^xžr‘ñ…½„|/d¯.¼Ü¸Â¸RzŸ†>޾>úôÂe4Pè…×8®5®“ëe°°Ç²¯uÐ é…Ãå)·· »záíò»Ì.'ã}Lðp·1Q&÷d{!{|á™êƒý¾pš<à Û gú˜eÌvÌ1æ†0ÏÇ|ǃ„ðA_(\d,v,‘¥²Ì±Ü±BV:VÉjYkÐ1 786›„nQH§(Ü*;<Ð- wÉãa=¢pŸ<‚Gå1OO—Á3è!…ÏÉ >ô“BºIáËò ^5^ÛB/)¤ƒ¾ëxÏÃaãˆå¸ãt’B:GáׯwÆ÷ò£üìø¿‚ÞQø‡?“=âŸ@€ÈøzCQ”A?(ª$•%FªÕŒFMGm#.z@Q¼‡úFƒ.PDö‘ýEM<$I²ÐŠš…@î¥JKG+Gš‡6]¡¨tpd9:J®°ÇåŽBEÒEÎ5È÷¢nr~u7z= öú¢‹|\,½äãR¹Üè-dw™]Df (r¹ˆ»hãFc°A&ÝäáfÇpãc„c¤Œ2»è6í#wb¬ƒü.š`Ü%w ù\D.Ý#äq;vy\DîM ü-šnÌt»EäkÑ\dhÑ|!+‹ÈÄ"²°h‘‡ÅŽ%ÆRÇòR‹E«Ê` ÈÅ"r±h=ÈâMÆfc‹c«l7ÈÅ¢vï¢=²WÈÁ¢G}ž6žu‡E/ÈÇKÆËòŠEå5ãuyKÞ–wBx×ñž2±ˆ½ˆÝ¼ˆ\,:ûyÑeDn}#dcÑOÆÏB>ýVFäcÑßò‡.«%•ó@žv wD¢‚2·K´£¢QYª8ªJ5©î<îBwaGïRûÿ§¸Øã»Ô5ê9J‚Ѥìî]’$ÙÑÔCа×wi!©FKi%ìó]Ò<´‘ aÇïB~wiïÈ2» yÝ¥“‘ç ¿»°£w)4ŠŒ3|œ…³¥«œ+Ý rºKÇŽžr‘ƒlîB.w¹ÄA.w¹Ìq¹\iô6®B!¿»ôsô7Ø­»\-×ìÔ]®vé.7xbÙ]†ÊÍ>†9†û Ç»á]Fäx—Ûd´Û…Lïr‡Ü)ãNÃã.c¢Aöw¹GîuL6¦8ØË»ÐºLsL/Å ™-syÆ|¡tyÈ;s—ÅAvˆIœ×ÁÿÏ®_rÎjœ½Æýß,¸ëìàñÊ?‚søÐ€ý_ñ¶™šU‚sã-ÁÙ9øñÅÛ‡ç&Ý]ap.¯œsßÑ|4øõ.*Öç[\òë¬Ë-q\£Û×,Ö\œ ºý¾â’÷w0xûêðà¼'øþ‚iÁ(تßÛ)8wíÐ㟤Çó¬æH}½ÍzÁym‰/÷ÿEÉÿÍ»Úß?«fÉ糦¦>ßP÷ ÎEÓƒw>nêÃ%?ïMã‚s™>ÏæÁ9ZÏo„ÞÿàEºßu%¿î,Ýoš~Î+¶çÄÁûïè Ù1xûÝoÆ•Á9ò`ÉÇ3ikp®ÒçðÒ’_¯™æÕ%çFðñoïœãÖoŸ|=Ì ¾.Š—Î-1ÿûü›ô87êçºá½à\Ý%8‡èã¦ç’„’§æÕôuŸ/[œ3ûêýCƒóú£Áû-+/Ô\¼}å¥zQÁ©ïWñÈ¡%g=®‹K<œ@A=žE-ƒsvð~3ç†àë±`kÏYþ╃ó®àëº`¤žßÈâàœ¾Qóxð~Û/Ζœ#ª•xsô<7éûv︒óŽÁy}Às,>Žâmcƒsq’ŸæÁ9[¯Ñ}5{hêãoZòãFè~sn,q{ñ}Ÿgèu6)øº/¾ezɹò¯à\üþÜü:[ôu·'hêzºBוí‰Á9|\‰ùß××õ¶xnðú^põÑàñìσsÖÒà£çuKqp^¼_ÁÌ¡ÎÔÇ/oœ‹õúÚZ©ä×§Ÿë¼­Á9ggpŽÔã¼I_w[žÏóú<Ý‚óîù%çF½îFN/ùuv§ç½'JÜ^0²Mp.]œët}Û¼^¯}=xûÄz>º¾êœ#ô|Wêö­uƒsÃìà\÷°žÉë}ÁÝGƒsŠžÏnåê]§ÆëùOÖçŸT<<ž|ÜÅSôùèý“ô}Þu¸äó_©Ç±°]pΟ_bÜÑCÏ»p®¿&8%ÙOÃ÷çu=Ï-Á9]Ÿ™>~_õ༵ZpÞpT³oÉϳ0˜CÅʉ]W –¯?ÅÛ_+ùø7„•˜ÿݾ¥ap.^'ŠÏ/ñî@Á¬„àí+t^:$x{á¸à¶48W+÷&¿Sòã§ëñïy_óvÍÑš£‚s§Ž·?§ç[üø«KÎâ-ÕJ~þ­ÁëHñ.½…®Ó–¼ßÁ+Þñvpn:G÷ ¾¿ø–£%ï?wkðöaÅÁy·žÿz¾ý‚³x•ÎÏå»5¯ Î¥û‚sñ˜àTÿ+Þ¤×õ*=ßùº^Í;¯Ä×/Þñžïf}ÜoÁ¯›®÷?¤ëþõȵÿçÂ’Ï£x>~޾O[ûçꟂs¥^Ç×ÕãÖç›ZPòûÑEk }\^É÷Ðǯœwÿ¦ã¡Á¹FוeÊÛ~ú|WÔã×ucÍ[z¼ÁïGÁµºßº^%çüã%Ÿç®¾ÁûO:œË‚¯Ã‚YYÁ9lzp.ÒóÒ¦äãWœ,Ñ÷õ¡àó/u¢äýFéöeúþÍ»®ä¼WÏû¿žr°äÇÏ Þ¯`®ru§¾ŸÛ‚_§xõÔà¼G¯·mÁëMÁB}Æéëk(ÞS÷Óã™­Ï7Mßç{‡–üú§òs}°§̨<^þzÉû­ßœ+ÕÏvÜœ¯ Î5:ïÆ¿NÁu ú|[KÌâ…ʱS=år}ýéΞ6ÿHp. ¾þ –fï7ëÞ’sZq‰YpEAðx­^·£J|Zö´'ƒs…®W †?îêàã-ž©×Ï©×íŠÕÁã zlÑ·EùðÀ }?t=Üú}pnÓ×Y©×í ]æê|Ÿ×#xûl=þÙêU”œèyéõ[¼Tß÷»uý|üÅ‹êxÏy·”xþ·ÕãM,9§ëëOÑãÒ78¯_ü¸;NÍàÇ, ^ç Vè¼Ýrwðþ§zý®Ëôýœkß(1 îÒu~~°7Ü==øþë–¼þWÐ7!8o§×ó_ªS‡o_¥ß{¬Òž¼J}òT.ß|j.-ùñêë§æýú޾Á¹4KïÓàt®ÏÅÛ‚ûVöô‚¥Ú×î ~âS=â}½³KÎâMú>nÐïqVë¼^¦¼y´ä×[­×íÖSýûk̓úºúynP¿Z<ß ªïQòómÔ÷iù/Á¹HýB×—Sÿ+¸¾ xûšàù\°üòàñʾÁy]qðvßÛçoß›œ»·jêçºõÏà\1¤äœ8½äã[®}eßä’seðyŸüvýß쨩ßKý÷ýÝ«þ½'ø ¢âMWéñ¿¿×,ÕíÅ%çÔjÁ9e~ÉïéëòJý¾aµ>ÏÖW4-ùøw¨/oÕuou»Óý_ñýkK¯ö‹‚ÅCƒÇ»õ}ß©ëäFåÕ®ªÁû]¡»g\p*Ÿ‹WŸÚ/Ô;æêómÖën¹^Wêq.Ð^´@çÅVåÀV[”#ë‹5ÎuÊý»zç©Þ»Q¹¿±¦ö·Õzýß Ç;´ øxçÁ¹]{Ü&ýþùÔÏC¿/)~@ý@{÷ûÍÍEú¼§Îý¾±`ŒÞ¿úò’_[9=.=þÙêÛ³•NÎÙÁY°*øu V«÷«VrîÐù´]ß§Åm‚s¾zÞ<ýÜÝëöVç÷Aw;¿§]¦óa™³/QßÞ œZ½¿äû/-Þþ°~/±E½§_Aðx¦ï®VÁÛïÐó\~ªèz½BÏ{kàýÑž³óÔïùr4•üúWéë/Ôy³íåà\ìÅÓ~+ù<ÎI=ô|ÕOWŸgÁKƒstðqß|¢äÇïÔ~¸U¿wÜ:+8ç Îñz—é÷è“tûDçûó@ðëÌ,ÐÔÇ­ ¾¾ŠŸÊqíõ‹ô{Ò¹ú¹ŸzlÒýׯ,ùù7—8.˜©ïr¢`z÷®àã,¸;x{ñN}6êú±Nçá8]7n/.9Gn ~üxõœÅõK~Ý{Ô£–(/Öèû6W¿§|fAɯ»FùuûtÿSr.}©äó\®ß·MÞ¿`šòà]÷6éû5ÿhðýóõsŸ¯ßÃì>þâS¿ïßtª‡éϧÖ('—ë÷9Ë ‚ó¾’ñßó§ó¢qp>zGp®Öë}¾n_¢ý|¬>ß<ý|ÇëqN Îâzü Þ(9û÷Õ÷#øç7köëqëºzªÏO××Û6C·ë÷'«Kþyà…~ϰR>4[ç÷8çÏ5V¼§Ç©óa¾o»2JÞï]ßöé÷Y»‚s«Î¯å?èy\Tòq\Ó·äñƒ§zÓ‰à\¢Ÿãlí«³œû/Óõr§zÒz]§g?þÔŸ/œú_þ =Þ5:ŸV¶(ù#Ø î8<žåü¼¶i?54x¿¡'‚óÔ¿°IxêÏ™æê÷kÔŸÕëxGð÷Å{çªË|<ÿýÞfĉ’cý—Á¹P}e~/´^~±Êùó‹…Ú߆ëqëùÍÔëó®S¯Ûàï} ¶¾ïÌ/‚÷[ ×ë<]—Ðçy,øìÅë^)ñy f´ ιºÿŽgJ<®‚iKƒ÷WïýonëYòñêQbþwûòàë¢`´ž×]O¶éº¹m˜ž¯¾Îä‡KÌÿÇУzžÝƒï?õ{Íݯ”œ;ªçVý¹ÈZí}Ë”¯KõóQü|+ƒ½§`•~?²MçÓzí“kÕ‹œ?¿-ž¡¿MןºþÜ|þŠ™‚Á߬½ªÄ,žªëͨƒÁ9íI;õ{ÈåzÞúó¶ÿÝ?Øg Ný~}wð÷fÅ[”|>·ŸÞoÞ¸’êüY­ÿžd½öéºn'JÌÿ>ß¼àÇÏzIÏ'øû’‚S}™¾ßK‚_¯àÔg4_×9õšÿ>ßÒSýúÔo¢ç;±YÉ9ì`pê÷ñ#õñ+uÿS¾ugßàÔï?ÿ{¾§zÌŒ‚’·ŸúsÑ¥ÿ?Âþ2‘Ügk%Dzü=ÞÒ¾BZ~~q€üÐbŽöá÷Û‹>-ô÷fÙÍPù“i_#}V™uá<öééñS²eäæmÞ{‰rÛ™=÷v‘WkÈùöË߯z²O-Ñg3Dþž^xÀû@¿v¨r‘öûñ}Hï¸Äu‹Ùþý¤ÉŸhèí ³cŽ[þ¾íÑ Gì~¶êû5[Ù§×ÐÛ/üJŠãæÿKÉuÖü>ÇEÞÿ_8•âv£àÇ{ÿÎqð7iïÿ’¶GöÌ?s*ÅTýw¦hGI~Œ÷iúÁÖ?àÖñÎÏy»ƒü®±Žô˜×zô3éÿ¦é7OÐŽ6ëÑz¦Úÿ1Ç®ïM~ƒƒ›~üìIŠË™ž¬òUqÏ>,Ì™ãõ»)²nô~(-GöpÉ«>/Z½À€ýýEôâ_r…TÄÞ5ÊE±1Ã>ÿ5Þƒæ;ùÅ}œç–ЭñÓÔ/àv®0ÎV‘§ŽÓvH¯ÜBN•ãV7-¯ö;®ßuÜCŸƒŸðzšGFo"ç•ÙÈn5Ÿ®û¶/}ãZvÙ¿_ðú„'½þ6ż8Ãz¾Á¾¯Ïûî3¯,Sÿiìpk[ †ÚxÚNík×Ñg¬áÏÈûµÏz½lÝç ëÈñï9vØGv/ð/–_¯½D»–ù.}äþvŽ3cŽçŠI½ {|ØÃ¿t…ù¶Ã¼PdÜñÝlá·ŽÒÏÝ*QÆYåjú¼³ÔWû»ôË/3^6‘¦™žœHîûë)6°ÏtÐ3VX/KÔí®ãóãi{«<·A¹ÛØÙVhöüp®àxv<­ãѤ/>BïxD¿Ú.:ÊþwIzÎØßC¨±þ® Gõ° ½XJžgò·®#WöñS)áo°@¿è1?o3OÈo­üOÓú?`?×þùržï7Ïó䟈?v¬×ü˜ã2ý`Ã÷5¦ï8” ë`“ù|4)æ^ùÌ;•qÇä ú÷´«]ÿ_~ CÙBZžê=ë·~ŠûGk|¿ô»éõVK÷ú„.ûÒæ‰ããés^rìpý&~k^ÏèzînZ>úQ+¡?©2Þb¾û÷wÑËn²~~íK…oáv Mæ»éÔ)Ö¯{ÉñõcǽÿÑqH½»nÏ Gô‡òyÁ±é•gÐûhØ½áØ“^=@•ñ)?ßϧå`ײ³ÈËW_N®‹úEùKT¾'ýÚçK[¤-ª_ã‡53Nû¾›veû(Ù'¾ïTz¾èõ6É·S™\×Çþ^ÿdzß ýQz‰)ÿ.vù®ã/7lw©gɱ‰<Ó`ü ~ýλÞ±_î°îõÿ™ãfº¬á ÇÛì—òõ¶8é8Í|);È­"XH¯_aÞ¾<êØA>Øä»Ÿ=á¹Ù}ç»)ÖX¶°Ô™_ñ?ˆ÷=•3Í|×bk _”ñsXþhÒÎð…ìþæ/ü§mýLõå烣ü/¯Žñ\ÎÏûù ÿé]üª¶ðç­²O+3®ËßG½Š^ÎûwöÖ'þê¹r‰þüþ¤Ú÷Æ'ûß.ÏÉí÷™ç‰ëÚüfúÞÎïõôÏw½·]£]’Ÿ.gòýâ¨c‹÷=Ïü|&ÛWoùuÑ®û^ê¹Á:vð“Žý/€Èwý'ÒúÊ^'ü+…´ÝÈYûØï+ò›ÿΟ§>ò9=îõ¼ŽœRr»’a® S̯ÛÈuê5Íõk¬Æaý_•u~€k—ãr@yf—yýû°äJùëÉヌ~³{Çq•ïú9óûžëúq_ûbìj•óé{ê)Î9hžñw‹÷ró®#~Aa•u´ŠœTfÿL<“®‹å¿|ìõÑwnúz«x%ýLåõxŽôüògÅÉ6ð»œB.–]q½ëòœ>혡¾ÈE-î«ó¾äoSã;V§ò¯F~Œräës÷„zþoŽŠÃ)3_–yÞRÚÎGéƒ.êÁ¾£‚´üjzß û¹»Ž;Ø¡Úè“gÌñÚhr_h3–¨×4ûôCaŠy¯^ 1/ì ǽzìø4Ï}iÄñì(õAß8ÇúOüN`YŽXF8{÷¡hWyÿmô3ø†%æìfa}ÜñÆd‚±½ÌVG®ì°î–X®Zr½-Ðäo¶Ãº£8×Ö¯iä‡å1?î³.·ßÚÇnb7ÞD¾h¢×.ó~Ÿ/9~òØËÓøêÿw)n`ÿ›Ò>sÄÏïýy.zŠ׺ø}δUÖÇqa5ä˜è᧡ɼ¶>|8_d÷Mñ­oðÜ2ó¡üB.{ÒÏ–™×Ú¼¿³ÈI5ô9x¿ Z·Çý|¿ŽÛ%GÙÁä1×JžzÔ§Ã÷8O¿Ðƒuò-ŒGØ¿ó~ûJ×ñ' œgì ïkýjCw 5敚?Òúh>ïL€Kqj2½^vÜ«ã~|€ÿBÏãCMzÏ+¬óò/ÿ÷×ióXýÝIùáÌ7Ócâ¢%û/Ó:ÒKêù ^ñvÚó};Uöô§—Óö½ìåXË×ë¡¯í¹¾# ~4ÅëBõ;´¥ÚÉ:$y{Vó(òç'Å ±æí‹úØ¿|*EÅù/”’z‡Òr†7Aúj/›çû XºøÊžUb}šÊæ-Ù™ä‰Þܪ؋gãÔ£Îókèß*ϤõÞ`^Þþœya{Üë…ôú7ÝŸ; ߔٿËOXþâk<·Éx'>|œöÌœÐ~úsÉõ§†ß¸æùP¯¤Ï'þ$tÙol"ïm±¯kâW’ë_k™ýxÀ: ýÎEæ™æd†ÌkeôkòçâϰÚÅàÇKÌÓGÌ3ØOõ³gïÒg k¼ÿôI ê³ÂüºB{ûÈ'[è7Kôã’ÏKvÙå9›OÞÃz‡ú»ÓÇþÿˆã”ßgò³Ã>ò°äÈ ê·.;KZ~8Ï÷[¦Ïý…pêa¿ÐÀ?¯íßÏϵ«ùžy¤LìusÔã?»ò¤ãLÁQ~¸Ÿ*9î0¯óÿ¾#þvøÝmãG/ Åa)>j•~^¤ß^¥¼_ðò£ŸÁ’üŒÒö‡/­§8òÇëþbaŸþŠŸJÔË&ýx‰ñ¼Ä¾•ø {ÕÛ߯z¾Ô=õïÿ¢=õ¦%ç­Ì>£œÍÃÓøßHÞa%þüBÄ$þ²ø¼#Ö›Þ‡2w¼H?< î­éß)ê¿òyYöæg&ýÿ9æWøþ´¡…Ü[¡?-p¿Ö¡7JŽ%üaK¾.[“u½›Ù+w°«(Þy%t´ÎðÝ"¯Á݇×ÿýãâ±ÿ¿M;WÆ7;½þìí+8¾eÔ‡ï°À<»Ð~–cùs¼tœ¶?Õ°ùz†O¯ë!¯L±¾Nz=ì<혛ѓT¼›ô.eä¸Câ|¥ÿìWå_3Ëþü§içíï[‹ù._.ƒ¼­×]ÖŸö•í”w$¢'•¾þ/û‚QÏÀ}ØáÚÈãUü”Kô»µ´¿Û¦¸"øÂB—uâ6ûÙzâÁCï íD~¨á7[c¹‘Îç¡÷û(ýDÅŸùÑ^)9Š÷êiÚ?†â.ƒâ„[¼/âCŸòºÿ¥ã.ûþ-Æ=ö¢ØnñÅñyÇ.Òþ‹¬ÃúO »ƒô[Ÿ)ð<æÉžüæÓuÍ®:Î¥öÿ°Eù-â9¿C¼L=p½~K±\ødŒqjÒÃÿ‘Ñ£ö؈ìël98VÆh¯âyÙÏ ØG_x_ú|xïlºä¸Ê¼.¾+Ù5°CâD£>¾šØÿ‡ØÇñÛ ìÏŽ'Ï ëþž¢Ÿ1ñ=ìÅ6ð¸K#¾ô>b¯í¿"?^ùÝ(~ü1/1~lýÉ‹^ÙSb½O„½ÌˆûQ|fØD>U¿e6\~´ ÈÕo±ïZàùð4…ê¿ÊþžËç æ×:í‚×F?»¥}#ïíµ.×s¾Ç¼,ž²Uù³\Oq:ëÏïIŸ_åûí³?„2¬§ú£°1N=™Ï^ñã!å­²nÍdzIøæìfÁ±B<‘ì¿Ñì¼¢6ÀOq÷ÛCžØa¾"þ&–? %¿_û`æ!ýŒý¸ô¡ùíi9U¾/< VB-ù¾Ð>ÌyÉ#SÈ?Ä-r½5}·ò`‡87øŒ8rÛCÿ;8ä|?Áh—|= qQ±ü+ÞN{Êüñ±ê¹ð&ų4ˆ{Úñÿ¥÷6ô ¡†=Óo»· Ž/Òç¾ßŸg_˜ðÿ+¼_ù£Àë.¥úP“üÖ×uz/µËè%óy·úzzÜþÁôýk€—''dç'Òzäë´ø@&h׊¯÷V›N0l!aå¡×Ô:iè/¢ý¯‡Þe—õú•‘ô~ììñø¹»~ÝÓ“~|ºèȾ,4èÇ[èwº^^˜à¹Ö­mö5¿?,O8NòœEì¶~¿IÿØÿÏ¡?¬¥ö”PC¯¥ýúáßN±ÏüØþhгŒÏE× ˜ìˆØÕm“ú˯|•vi]Áo-ÆMО;ø!ÝF¿zØsTœý ýâ,å!gv=à& & é´sï|796ü°Cƒú×Ù6ñÿZÇþ§¸dñ$}ØŸ+~k[,ùy­ ì7å—ÿB)ÛwÓÏ »€y~…¡Èx–?ÿdHï'¾0òP|fÂÏïý%Çý§é󯡗ŒåH¯wí$Åñôy±Š3[œH˹èõ´ ñ™äí)æIéÍØG„ ñôâ#ºNÿºÆ:ÿ¶ü“ÂYæÁ×Í5~Pk=ËúáyÚ+?Ž-â‹§Ù¯ýxÁQvµýéR1m¯â³Îƒ´ÿÑQ/Oz°WO[È-÷¯²Ï•üú÷mÑŽúÙ9=_´G²ïS\Ø~“žäoÆ…â s?»ÈƒÖMÚcYíæ½‹n‰õ…öY÷vŠòO$^Öd·¯¢oo£h±žîã_¶Ÿ óqxÃßSx*8Þq$ÎÌu,§<_¡\¯~z†÷×C.“ŸõóöljŸS|_ÔËíð]Vs_K®·å¯'õ.Bäk[æý). 9Š8‹øü6ë³ølå&y­ÊÿÌC1>ø*z ì&ýžò#àWxï+ØW¤æÇ«Œ¯-ôŒ‹[ Æzœ¡Ÿ­ÞuT¼¢ì Mø.øqÛüx;Míþ/Ðý#Ðäáî?O0ÖGyîð‰ÿè£OÆŸ"^/y¢÷=)ʾy¼èÏ?ãí0åËx‰û‡Ì=øÕ¶YWŸ/pžõ¥ó»RlÐofèS>^mÞË7øš„a9C¼Ù4ž,ìNøõ7gCø~†¼ïóx 9aùíjÉñz¾ì}ø-¦$;v±3tü}„:ï^…XŸæËòÅ9G¶RÊyKúÆ[^Îãþ`IºoηçÇEÊ)²ß)pþñ¬]×O³ýf(ó^–R½n؇^qè_oVö"ôÈâk|ã5ä”ÙÙ´]· ¬óèÝìY®+uá¹ Ý¿î9föý ^?a›}s{w 9¸Ä>ã:úÑ犎ؽ#b³Ï‹ìÓߤ]ô¥´}êÄ{Y}ÌQüxèú“üWào<`](ßMÛSè:Šwz ¯íþ¹ÈQO–ú=0ÏHßÀüõzÁ±Oýà‹×ïоäå·êâ_¿É`Æ¿Y~|ò? KÈÕ¸Ñùkiû{ÌcÊ« ÜEŸ#Þ×ú|ZG,­r¦g¬øìÐGo²Ä¸ª³ÿ"W6ºŽkÈ-ø‰‡~F ÈÙçǼÜOxù¡É¼°Àû~Óÿ„Cñ𽶘?ÑÓk?Û–uâ‘´=¯¥í‹y¶÷ólÈž|7½¿Šœ¿vØ`}‹ø¸7Ыw]oe玧ÙgÁ§qn,AÉãa-ÓŸ>ÊsÈ£ñ;¶ølðk²+Ù¸†'úñµ…>0Û@‘Üz·ó5qóVaÞÇÿNûÀ&òÝ%Ö‹£i;ˆ‡‹üò—x}xEäwÖÀ}’Ð"¯ï‰k¼í;Î`¿Áî}ŸO~‘mÊ‘>>±Ð,9²×/TðÿOÎ/-x»é¯š·_÷ç…"zýËã~ý_¨c;§ý ú)͇{øÿlO8–éïø™ñÕþÇÄ·‡ùw¤/Hh`Çd?õ—Ò³¯dýCóŒâÿ…E¾+¼p&¾kùÏ”K´—ö\dþ¯·xªì÷"/Û‰#~ê†WX§Ý £Iýì¼Æ v¸ä€õ‚_¯þ}öTzŸøn…´½Z^¦ž/ûóîÏË~½Õ¨w}cõYÎ×2l$VR91¼µGñâ\ñãUäOôÃâ y/¯–Òû«ÄUw?Ÿ!ýVü’·™Ä«Tæ}­"ï¬Ü=õ°_\7ž3Gí믴Œ}ìèÛ~¿â/y}¥··¾ŸôzCüY:Ú·z}Âç‚_§¼;ÛÞþ° v±Nöñ“é0Ÿ}ÎR<üΤ^ÒwG½7rLXÍìš?N;Ê|—¹tÿùlÖÐðžâýe×Ú&òµâöÈ¿æÉ#ùxѧDÏ­êñ®·AäÝÕL/ÀÿF¾-Å [ƒïÞB/'9Yz\å¹TÜéáW•…÷ž§<â1ìÜD‚ú…œ/ƒ<_~XðêZ»È>ûÝ}ì£;|gô´ò« Uæ›*þì›Ù÷irßúð=âÑÉ3`æë¼%kìkvз´è™ ŠÐû6þ§=%ÖQüÉCÇçaÙeMëù+­)ÿôÉìWÕ_>õ°_¸È~¤ÿ…ò¹å¼ì{ÃUä!Å¿tÑg"ßÇëWØß¬uýÿÜÎY乫¼¯ðÏ¿õÀpÿ… òðyÞ‹âÖö‰´Ƽkð/Š4¶ók¼Wì&Þ/Ù-æ±wÃo) ϦϹªýzø2ãÿï.8’g+êû¬ÇŠØÎÖmâ_b}ÑûÙ£Ç).°þ _ m§¶îr–U0Åãÿ"åÊ~$ÞTÐä¯óC‡X’ßúüäÔ¶xÃçh?¼½6;é独3ÏrŒ]E?ƒOÑ ì£×?Ësáˆ×Ï󾔟¢¥x?±OÚ]Ç6åY§ŠÜw=“Wúð0À£®ü`úÿ€vÂ'Î0Ú'Žò—V<0¼6áïõÆ7޲«Šßðmöq‘Ï_ùq/–<ñp¨1å—D=ÃîdÒ÷ܤ>?žo=ywzŒÿ–‘7ÎÄÿWÆNXäûˆ‡ºÊ~‡¸±XNýؾOèv–yL~žmöK%¾‹ü»á—y>nÿBR®ø„ÂpñÉx/ðzØ3‹é}-æÕzæ÷eÈ>eg”ëÑÿŠÇý2ßYüZ›ÄAm¦ÏÙÎäµï]ñÃWÇ Ìƒâ,¤ú¯è¿½IÜC›~¥ý2v&ƒ?ÇšŒ·mžSñóäç6éµ»/}ÎS´wy^ñ4Kô·ö¡Êÿ†=9¶Ov0Æ_}mñ[_ÁJüiŒCmSœO×)›¢¿”Òñã_ñ+ [òßövüÌâõø¥ó¬=áÊìk¦èïò3+£ßÙ žòSS^Øü‰èϥ̟øÊ‰ã4ó…ø]6©û˧ö »ô3õ»Yôƒ³<çñQGíõ}à7²ûÔ6íØÆ/Aû­Ýùôy5ÖZ6^ºN0ù Öè_ì·„†Ý8÷|€<¿sì¨õ2oË̃佒¥~öxÉ‘¼>6pAÖ;N˹턭¡ïúDSœ‚øwÌcøƒ‡MôUËi{íó¨øi‰ÿ±r%y~l²ë¨8½&ûñ‹K®½8æÿ¯å{¡úý%ö­å?Ÿ"á’ö³ÎãŠ9$ls Ÿ–±/´ #Ž7·?Và=”RTž†˜G;Bù>ºèÎ~M?{ç‰oóCþxñ$Eòêöÿ#êÍ>f“ýcyp:û.ï¡ýEúÿS§Òÿß~„çWYò<Ü&ÅG¤¸'Æm@ŽŠ×çû7ò(ÊÏ8œu„—<^÷iÿßÈ íçЄË#Ž «é}â‹®0Ž÷ðË‚&ì1¯w‘{ìSzðÜu±—`W²Ÿ3ÐË û¬³;ÄéVYÏÏ}4ųô›ò×’ú…ìEâŸì¤þ1¹ýÆÐ„!ßMqSŠŸD¯ía3”sä÷üïvõHühë£~ž@#ÓV˜7å÷(þý¶¿‡hï<Ïþ„õÝÚ¿šâ6vE­×BÉµðæŠŸIy—Ck˜¾rvcDNÊòe‡Úóé±öƒðq†ö-_â~ ¢øB굃ß”¡ìqø!|ù‡ ßÂÛÈ•âëݦÿ/k~óö†//¾¼˜OJ¼}•É´}3ø}°Ï/¦(^_ö#V?öóy~ ù5U½Aùˆµ—]ûå1Çrn#Ó“ìýã´\å)sþbÖÆ®£¼*ÄuEþ x´ìûdüV¬ô·ÒçÝwF|UöØUãu›è—˜ðÏÿ+Né~‹Mæ±%ô¿Š¿”Hûôm¯gh1ÿˆgá ßYþùg³ýìñô¸G¾`ò <@šbÅæ[ò¢E~‡Ï“ú¢0Ç~ùª·×ŠE?†§#üT!ÅøÀ»ÄsµÐÿ¨ÉŸ@H<–ݸË}w’v™ü¿úè+¶üû™ôï ìK2¿­ÐóDõa…þw…瓇0ìñ½7Ñ¿7µ¿A/Ë8?U,wøó\O?›—^–ýy#®øq {•øÒØ'äqŸØE ž®x^(«±Ÿ~‹ø¼=ìÕýÔO@y¶íš9ÊïLüK\·èï꣗³UÙÅПýÃw)G~§§ïò^@øqìÊ"å|GZ?Åù‹w¸Š¼.?Ÿ>ñ?Øï¢ŸyRÂ}~ŸïØûá%gÊ1_ßö/»Áq€Ü3€x›~ ù\ÛŸÊŸüÇac2ý¿‡^„~6؇lÐÿ^öv‡Oš£ø˜7c<¡òiî£O;ø³ /¸Qï¢uYz!ŹˆÇç‚?/ò]àõR¾â6•w,°Ð/Àãyi."oLÐNÊíþHÜÈíįÔðƒŽû-­·ù÷¼€œ{p’âÀñF}t>îÅSpÝëe¸ÕZïVŠäÿ²~rð*„&ò»üPšèãÈÇ”ÿbüß«þܘ‡¯…Ýv÷w%v™7R7‘ûûŽýËmWôË•?­|öò+4åeè¢o: ¯c[ý‚öÊnóð˜£xs—x¿Ä?šâï”ç²Çuð …75Ï)4ýå¾Î2ã ?HñDÔü ÞÐ_âaÏ_|/Õ'’cŇCö1äOT¼¯Aÿ“ß4ûíhOÉãäï÷ÙBú¼ÅB†Œƒmñ £O›NõÜaŠñ3Å{S^µšË9áÿ+/îïÛy¶‘Ϥ߯ °ß¶¢cä™YÌÖ¿®9â?c{ôù‰ÇÖÙ÷NfõùtpT~•«ÇŽÄßÈEüMAòK™~½I¿—?¹lŽ?žòuÇ󮆽÷=±OJN‘ÿ qæŠÓŠ÷u‘° Éo$‹Žü â/Ù¤ÞÊŸrnÒÿ—ñ™ Ê9q$yX¤ÿ0O„ç¹^c9ºÏoÆxSÞË]î»ëx›ñó´£/ÛBÞ}¿9)çižÇ¼j—©æqxªl™÷U–½÷W“÷Úø‡Í¢Gž*:â>PHžýEÎøù5¿O~ÎÆþ7æU¹^Où­šÈÙo“zñ9Êÿãsý%y¢c| q9±é!ð' èoÃêo§×‰÷êt Þ^ŽÕÑ'6ø_ü¡âAËžÔÑZ¿ð8çÆx‰ÿçñ—Øgc½{Ä­)îKØw¬3^«òÛ¤¿j0p;¬üß㸂Ï-ìËÁøØf?SeÿOÏ& kÌk»ß—b%ÓÇÜÆ¿ï÷óe‹þAÜm8Ïõèíeô£é±žKï ¼Ãq¿^rDŸ¦‹~ݧŽý¸Ãõ1Ï ýJýë,òšò{nÓÎ)öìÏÂÁ?r—Þ‡ßQyû¤M§¿ûùëöñSÛcßßa—o¦¸Ž}Sþ‘ʧ·–̓O˜#zX{‰çïœ8nŽ;6?™âßKy¨Öè÷+È“gžHQy^…ðMþ©â‡Åï%GùQ†+PÃ!ó×>ãˆ?Ëù{@}»¬šw™õ ûè_ìW^ )öxØûÈ×nÊXòvY鯧±õþÊ¡¾=ž#ý®âÖKÄÙ/z¯dÈó4~s>ò £ñêÇ:bâ[.¬'ÓèÿÐÇìIú…)æéÿZö}ˆò†/²oÙ ½«E?NÃEï}¾gü¨Ê×õ Ï—ßñÅ÷¥í’ÿ'~j¶Áx[FΆG)æÍ‘ÎÜo¥¨|‹ÊOŸ@¬_ƒöˆ/Mü âÏW}dw*Ïl ýÈ¥¯'åŠï&Ž;ÙÅýn7­Çz¦›ïHqý¾ò 7ñªÐÈói3ÔWûêãJ|÷{²/VÓçvŽAö}ʯ-~Õ.yµ–hÇÅSéýâßé³n"?GìÝ1?Âç éýâç9`ßaÿT÷ùÜðgŽüز/uÿLRN´md~:}ßÀ…]ôáš·ó}¥ò /öÝÿÀÈÛc}ü·åWJ>O[ÀÎ-?éó^nŒoPÜv®ðsYû;ì;òÓÁn¡8ßÑî9ô¶KØ“–üù1¾@ñ`õÇRÉþáØNø ¹Õˆ ]öÅUÞ×WǾõà@`ô <<c{dgVÞ›=Ö=åç¼L¿<ÍýG“ úŽCôN]ôµ›ø‰ÏÄ›‡ìq~¿iÝ®ñŽAöSÈgø™D‹ÌïÄÖ°ïWù_¼|ŠÓjð´.’O,Þ_ÂKü-ôN.FÝÇ7Ù7ÃG¶ÙWn"—á¼{vi⡨_8$¯óʨcž'`–þ¿•Úß þ[›;öÿ¥ßù’;"…}ì¬Ê·‹ßY|®ønˆ¿Œçá;ŠÏ©Qoñþ^žt„×KúnÙýüŸš¿úØ7»ðT=oŽâPÞñ5Þ›üÝf}\4žA¼MŠ+ÔzÍøõ}iÜÏßäºÛØ+ªØf™Oor‰ùM¼åBɯø»ähÊ“ƒþÖšìŸÿó¤>ÌW]ì¼3©?Œ•(ÏÒî‹éÿÊÃx“v¿Tôó5Ö›y¾ç*ûeñ ¡ï¶æ3)¶X”¿¡h´ßËù_…ì $Ÿ”~#ÅÙw>¼½4Ã6á?e÷ï'×E9Pûgñ5¼DýÏŒøù!< ñäyñËϿ†œ_b}»D9¯•_i=Vh¼’“å?ômŸçÖ¼\{üØ;Œ‡öåkþÿ¼ì”§u[þ{äý°ö/ÒבFþ-†žÊä_±lÄMÆ}v¬ƒ‹ÚÏÜMÚa%x4Ïfú;Å(ÏíòW”#ð/Žö-ä¶ûPŠS~ðPB~P>µµl¯ 'ð¿Ûû›¯7ñda¿pòýQõð¿7Ř_¹€8tûxÁq}³ô¥7Ry$b–_Ô²|;o·Û,ße»y"£½³šùÃ)ïýE¾q£ñÿ-æë]GÅI£— ï§ü÷û}‘·ÞÛ-û0ÿ¨oÃ<Êÿ¿G¼ùÎÇÕ&n~¾˜n…õ´ÏþàcüÿJðû•_õ'¼þÊßó¸•xKÈu Y}¥Ô¸‘·ûÐÁßr}\ôÿ`?Õr¹ÀV5>9?ÝóõÅßX¼í†ýÐÄoÖBÎ ^Âæ‘OæŠ~,{üÖÙç(wPIÛ3ý»Êw•|)¿XÅsì¡¿ßfqPç<Ô+¬‡ðIùOB÷õqðº…sã~^ùa*¼å–¶æúûQ¿?òtíð2=zhù{ˆ|z·‰ã곞wø~]ü+6ÿmŠŠ+«cÏ$ŸTXE/ÿlpœ¦>ä°]ÆòŽ]e’|8äzÅ*îJØÂòú¦íiÞÃ7“óªGÌG“çÛÐ>¯mŽ—íÅ¢ïw¢8¦ ægñDþr¾ïâ¸ã³^^Œ[Pÿmô-mÖù:z:xÃs£ŽÊ÷¼‰§ïD½߃åûÃ[f×9_ö¡Ð¡œõZD®zšú—XGØ·ëgç}ìQñBˆÿEy–¾È¼®|Óü·oä/ŒòÜ"xìçµ?{H¿¿ ùÖyGú$ý¾âZ±ƒí /”CŸB^´øÜæÇRÜc¿¥¸tøWÂòÜ.~?«')ÂËË•=þýp„ŹtºÍ•okžùMþ&x-Zâo }²;¼>êøŠ£]ñ÷ãî„ ѯXñCØe”×ÿËýâw‘KÈ/yñò¼[ø{]ÌÚ[ò÷å¥rpÜñ‰.\à:Ú#ˆ3\G^ýŒ<ÔA~I:Oþb¡ø)4ߘò%ì!7ÈoÛ¡¿îá'¶‡Ÿæ½§ô¸â œ¡œ)ú£üº¬àÈúÞb¿ÏVÑQ¼g²/Ð;2þ‡Ø"Ï‹þ%^è•®oÓ/Zþð ‡wSù¯¢/ˆó"y§LqfŠoŸÈy¿_¿0$ncð‡Óóâ¿ÈyMúÈ =w€ü¡__Ç3þ?ò¡­Ðþšxhè_ܯ_Ìó#”\QcÞÐz^Ïð“µ%ÚM\¥Í1Ï1¯ÊŸw€?Óã{½Ýd]ï£ø‰È—©8éÁÃ!ëY;~iú…v×Ff.aW©0¿Çů¨<µŠ›¸ÆºÎ8ÿ†mM¤(^òþÖvvò|6Å.ryEØÏ¡“Íä¯x7âðBÿ¶äiñ§^ôúE¹ 6æ¨<àäoë]ÇëVù‡ÓzÈÏ¬á ‹ÝqÜ`…'׺^“}ªœ ¸ñ…—ø~è'û ŒgÉ{âÇÁ_:ò³ WÛ¥I?>¸C½‘ÃÖJIýþ/Öùëb'QüZ†ñ~áWÞû­Š„•_Oþ<µK´GúÍÈÙòÿ%#–+¾{øÿf;OŸC¾lë±ÏÄ3–'¾äUÖqxOl'ýžAþNâ"ž,>Gˆ=ÝÈhÊ7­|}ûÈqûðt÷ákò½ÉsŸ{È÷ÁþÞbœã»Þ&N@<ž=úI7˜aù;ê}io¹W|¹1ßKë¸?ü«‚?ÿ÷øñ¼+GÌKäÑ ÇŽŠ·½I9‹²ó˜‹_K(¿Þ„£òÞn¢×Ó~Nüü»¼—ï?¶ÂüzcŒúÿJŠEöOQ/ù'n§¹o18¾v—»”“úí„öo¥x~Ü1決 Ž:™/·Ø?m=š–7Ë:¹‰\¨¸Ó*ûš*ñ˜e¾¿öiʵÁ|£ïUbE~Ïxö'Eä• ^Ïä1ño]0GÜ$Lü,ì£âõŸäÛ6åÜ&Þy;¡äTõË*ö7Å·o!/=’"þí±ò·Xåûj~ÝJý=ïç½@¿´‚>õú¤/ޤ×o!o”~9ÁøÜKŒwùii_¾I{Å/7_ôãΘ#üföl×^eë²îyîu¾q±ñ¹Zgá?°EÖÕï¯îó’Ýϼqý,ý ød⣬wâ×õÑ{l²®OO&Ï MÊyAõ1?ÆoÀÄ3ŽzDüÉ<æÖý`Š=Ï{a}Ê-±?Ÿgý“]Vz†·ã™V|ÿµ1ÿÿ6~Ñ ÞŽ0#ûvHÛµ‡ÝÑÐŧ{âØaÜñäW¥|³¿àåEþÆ.õ¯¡GV^å{j#OˆÏ©Kü¤üêàÓŽíb ÊǸIùŒË0d\ÉŽw­èÇ»”¿M¿Ö~¯:Fy¬k;È÷â "o»P¿˜—ò5Ú+ÿ:ü~ï_÷¯R\7¿Oúå³ßL0”Ø—Ïù|eÌ 6ø‘´Ü=Ö)å‹“¥š¾¯Pd^ßÔ:ö÷íÞûw óÀ~´’ÏÉÛó±Î¡Zfý[á=x»Ãü–}ô·mæÝ¹IÇûÛ:õ•ÞDykÙF”½EüäŠÇü¹¤™÷Æ?(iå'%.ü ÷íÿÇÝ.õä=j¾ëðþ7ÑïÕ‘û¯ñ}àÙ7ø\í ÁÏËÿqðú{2Åo^áþ™l^ýdÁÏËÏ?¿Ðä{ü¬?Ç®qÝ ëÌënyµD?”½`–zOûŹÃ;‘cÜï÷Sþ”Ð…d‹ñ\ÇïMyJΘ£âûd¿Ý”]Ÿ}µâ¿¶Ðw x~ »úUö#â‰Û$>§Å8–>S<ªÏûõŠ[…·(êû¾H~ñ·©Ü&v¶&ý É÷åR—ú²›` ϦïEyMf˜óùó5KŽÅ›lʆ}ضyO»Ìûo"牟Yñ½S_OqÛû—‰Oè#ÁQ¼Q³¼OåÏë0NÖÙ×cDzó>¿‹ß×ÊŒoòÆZïßPú‹Aü.ø±ø«n³^­§òv¸3šb¿¢-ú“ò*ÊÞÜfOMP.ö)Éû{¼ŸáÿϱŽÞ4Ù¯"*N|“qw³.¦Xc¯!”xosî/#^ñÈ‹æî÷æ ?oçù¾—‹Ž×˜ç—‘¿·ðg:d±ƒ>údý†G¿$ÙqÅ{QÎü.ïП÷ñ×r¼Å>ª…<…Ÿp”yÿ¡T¤Ý|?܃Bx­ô³'-Eñ@N5Áx½ôSå!ý7òá#ÇMpß«Ô ?£@žrñ'„>ñ¦]ìCò|X{ø{Ü£ýwÓz=ü|›y´Í>Cü)‹ÈKìûìÌfÈ8ƒGØ®0ÿeù¢\Ixå8Aýb|íz’ 'i9uÊ9äº^ÊwÖWŠkŒ åü$åœeŸÃþÍÚc J.ûô»òºò\.PœwbŽïDÜv@î‰ùyÄ y½rÉÛ':åÕ~(Æ—¾‰]óyh@µó™ÞH<‹âlñ<ÙIÖe/£âZÌì6[âó`|2ÞÅß®xÛÐaÿåäö{ëX7Aí_bùˬgCâîäÇ4ü£ŽâÍÑ<¤x0–3‡|þyo·Á+$ ¯Œ¥õºâh›èõ÷YW•W ¾?å‡| ¾@Ï5Ê#®ß´_àÞñz…3ôWåׄÎÒÖd·Tÿ`~žJëºAÙ-ÚÑDÛDŸ¼ø¡ôþ%úâ.ÔÏÐS+ß­~&}O»¸øÓÏyƒÃ&úƒvÍc)Mç)O|p±>½ß“âÒ]Pr|Åð¼#Ç‹"ø刾X÷[s9ÁÈw{c4­ÿgJÜüå·TÜÆÿ5ñžµyOë\ßcXe?-ÿØŸ)x9ÅGÅݾI¼Æray^êX/Ù'OS?éËcœ/r qˆúÅ8®'(’h‡”Ÿ;~—òwüËÄšäiùá‹~ùöÙQÇ}øúÈ›Zé|yÉŽ‡Ë÷„/1Ɵש‡øwä—v›|%»¬ûØ#cùø•ÅöË~p}Ù㾿pŽóðåÅrˆ+7'A毛ÞN›çþ-¾7¼™QoÎ>:æA×~ù—S”¿üÔñùÚß4<8æ©Þýö•‡u†~sÚëk ÌûØI›ò›šðÿ¯?¾:æx…ö±S¬ŸP.r3r¯Ít9Ïû€')Ö[ü·±gß2Ç/ãpç÷9î·|½µ ó±ìvÊÓø†%å‡múÝ&ÏY§?1/ñ˜dóH¼_öúõT^{0O úJù‰µÝÎlÒßJï³Í¾M~Ùuôò%ô/ò #_y¸ø[ésÄ?ª¼t[ϤÿkÝXúÞCîÐf]‡§*žWÜ9~þ1ŸËóÙô„âm¨#7WÙÏ/&å…]ögÍ?’>ç†?×Êè;÷áíèÓŸ”ð1Êï:Šq“õi“÷€œdçY¿ß™`ŒŸ£ßþõ O¬×Ì«)ÖYÇjÙu³£éñ´ô¬ØÅ—‹Ž]ìoâÛìãÇ÷Æ}~ Eåõ"ŸœI1úÍ4ýÃÛûnåÃS\c y±ÁþªÏxÙ$®óñéV‰7¶ zD}wå…¸Æ}CäΪâß|ý7ùéŠÇ^0Qù¿A¿’½ª‰^Kyƒ:iÊ“!)ñ#g­8Qor¹my?²>q ‹]ÇiÆ…üΧß=hÿ’óZñ^Žw™wÄ;,ÿfòXË/+òÓ~oZÞ€çÿ@rúßãñýéyôM¡À~Z¼ ¬;š‡ðs‹Ïi¦ZùgEÑóE/_ù݉?9`žÃþÖÙ-Ó¯dgDùN¬Â:tŽ÷¸Ä¾k y²Æúûùc?¿Á÷Üa~Ù£ìFÈ{òï]ÿÍ´=]ôà-üh°ÆÿñS´k<÷óÜry,Ã>rq`‘?±˜×åt—vOÐN?6å$hxÙÿ+ô…ZZ¯ÕqÇ ÁñlÉËg8Çxß§Œú"'äò1yJB)5Ȉ—S?“œümµŽwÿÓ ÙÏÔùžò;/þ†á?ÍÒŸHŸ{»?û*«ãOöÚXZŸ‹?_ÎÞ“ò¼–é·e¾3þ³â눼ØéÂg,ÁXÞ@~uì;š©^Ó>yì¨x/ÅÈÞ£}ãFqÅÑ/yùÛ3dÜvO•¿uŽ÷K¬_ïO:nãOÙâ~í{ˆ‡µiìŠgÂï]ÿ§)Š«Ëú[æ<ßÝšì wGèÿ¢_Ó‡¹_y׫øKoÒod§ßHçÈ?üŠ×ÏàŒÿ—XgJè‘dÇÀß´Žß!ï€yŽù1æ×ÞCž(ñ¾KØ‹$çcOehŽóx¿âÿÛTå9²ÒõÇŽE\¬ xô×·ÍKVòõÐà–2Æ#³—œ¥¾·&S$n5\÷úÄyƒ8Õø¼ÛÈ¿UúÍc”+? üô³ÎxÐð õ¿šâë[ú¹OÙ»x~õØ¿›ÈOöÆ]Ç!ã@zUÉõ/Ñž·{}Ê…',(>Fqûì'ʯÏë«äoäÜX_å1V¼Ñ5sœ£ßôÑK‘¿Gò@˜ê:*.¸;Âÿ”{†r:Èm¬ÇÑéEn¸ ¿?ñY¦|âùžS)ŽRþë“~¼Ù— áaèaÀoÃÈWúÌçôuòó#/‡ð¹uýÐì±ãö(ˆ?a{V ½•⯞¢Þ}þïÿ]ÍæôÈaŸòÈÓóQ\?N‘x‹p­ëxž÷þÚ."7O³'Î9\£>Ê#OK¸ƒü¹N=¥b=o"?k]­<›!ö¢ ë|ŒÃ i;¥§Ñøh0î+ô£ Öƒ[ô[åUÅ×ͽMŒ×ÜFOÛf>cõçä}õÿ#Ï#¯Ù%êßä{V±£/gö¿yöaÃ=?&¼½äå†õ*òžnñåSžú͉ãï]è³>¿4–âmüQkÉß8òNh¾.ùBiíLîbÇm ÷ÿ6¾é=å¸NÂ_ÄôÝ©çó,zµûÏÉâÇ{|ïmöëÊw€d¼Oy*©¤¼ÚaÎ ã6Ç>Qù'"~=Eñm|e¹ð-¬£¯%†-H_UrT<Ö ë©ô„#ÔOz!qfažþú´_¦2¬O:> Ïí:j=ÎäÂØþuúÿ‹—9Ì¥zeS¾ëíú¥Ž·û«ÿÄQú^%½|ô67åÏË.ÎøT~Яý/o@ÜzUóëÒbÁ»klo?cÅ 3EºkÐ8Íø›Êôö?šWåç}k$­ÇÍQy(vÑ»(Ÿnƒï#¿ ÖÝ'×QO†W8•þB•}Y…û×±k]r]e'Å2¨ùbùO|ƒø;XÑåG“_¢üVÙ‡Çz'ùpÑC†ãt“÷…Øö} „múµ¾SDôqú^Š'¿ÓŽÞë§c`‰úßMêeŠç­ñæÓyÞ'ûG—ýO×w‡2ýzçžgÿu‹y_òÈÏ¢_¸ ¶xß7Ñ—~¢àÇØ ÅS"?ß £Žçøþ«àÂ8÷ñ\x~ ¾6­â«XDÏÜó8 ë£WÒþMþ›â…–?s}=}®xAáÓ Äm {è:ûWâMvÊ:ñW’OWyþê·§¨õ(Cý$ߨû ų6~-yžÁ×k=æ×!~P=ô™ö/¥-Ý}_fÛ¼ç/ý‚?¹eÀº»û;Òç·íþÆ÷Qc|'ûرáˈå)ÿ¹p‘þ ¾7ñÈãߤ8¸øœ;Ì·ŠË•>O¼Tâ!ì]Hq—þ03âÇL¬ü=Ò]I嬰…žý…Þw©èx™þ,½~ÕõívfÜÐÀ ó6˜Ï{?–<ノ×H<†Ëߟ!úBéó/ò——=j‡z’7ÚçWû/¤í:Çø'ž6žß#¾á’¥˜ºOßk~Ó™è<ãƒ}M,w–ù¹ÝBöÙ¯2¬Ð@oÖ`¾©#OÌÓîKìÿÏüXvÅÝé=iž¦ž¶Â8ÞºÃ:Ú`ÀïL¼9öˆwñ«mƒìÇëìO$'.²..€ø‘ÉÏ(ÐMú%~ Ñî(Þßùìý®góÈÇéqk1EüŒc=ƹŽ|ïÄáÞDøúxZ¾æ¿5öq…äï{ëÉßÿü$è5#Šü«sÚ.1žÞËsoøyûõë~ä?Œ;|¿¾çv&ç½zœ¢øù–Rû©òò„ þ¡ÊW3?üï¬ýk}~äóx;dý$n%â€|kŠƒ€8Ƚ4‘ÖSùôæÆ¸îròTiz ÙƒöÑ/ÔØÿÖ|cdâa­£Ä/ß>Oyð¡G}ú„ø¼ƒAŠðD(/•ô?ñúCä³-æ9åƒiŒ;VÑ;³ß|€×ë‘ìùU®ÃßX?Ëøb~½2öŒýöP 5æ+ò•Çû%o‹_­üÞ@®¾MüA½VŸõQ|=OަõîâÓe~W«ä÷™>ŸxÃoÅ”‡ïK²`}5òT¼ÿ± GåiP~àYì ¬Ûø·™ìÊ;ØÊðTžIëz̧5ÖIx{ãsÅ»½äÇðèØ¶—oЧ½ìç£}IyÖyßÚÿˆo“xŸXÏû”×/4°·¬Ð®*~3E®S¼2ùcöežÿ®«b§«!7‘3¶O<ÕâÇkŸ€Øõ¦>šÖ³‡¾¨‡~Cþˆ/¨œŸÊÐ7šÑ®ÿz×?Ô°÷ëGôyáýŠõ2|¡ä÷“×SvÊx¬|9xŽäÍóXƒõl‹qrQû1ÖÙžç0ñ´ë=Ê/†žWO’rÿåÈŽ×Ón!åz{­“ðÙÄóâ3Ÿm‰óþ<«`$Î,>_ñ`Ïâ%©a‡Zû;é}â¯Ya½êПg39Zy­ïLPs|Ì+>EyÊZb}=@_¬|£½ßJËÝÉì4èÿm‘ùL~:Ûøû)¿­ì€oç—J~ïx¼G3ñå~v½ôJ3ôû_(x=ð+°—&‹ÌKg9?ß_™y‚¼­áʸŸï°?kÊÏ,m¯èG„a‰}aÁÛi·èŸ‡N”†Ž=¾óýFú½2ûû'JÔï]"lßMßC9L<Šâ¹Žyç_»Qø¾ÅwÙGžï1~Ñ»‰g& ésà³{@ï«|Á×xñsñéQ°[>—@úó¾äå_O±Â~&ãÛøÙÆrdçé2N;èÙˆ ŸµôzéçºØV™§.Ž?¼Ÿ/ðÞòÖâ7ÞÏuKÌ›]ŸÃ~$Ò{)¿v{åy6ùuì×¶‹¹õË)¢§6òˆZý’xfê̬£¡†ž>¿¸Ÿ/ÓÎýó`XFN—ß/þå¦ýò'—™×ðç¶]xž”ÇPûÍ5—׌ùIûu›9I0ˆ‡l.ÓçˆAr‰òôÑk·©y³ƒòpö¾;Åï÷âˆã3Á‘¼Òë†)ÆõÏÏA/¤~ÞÀ/ByÞñë¼Þ~í·ü¨Fÿ ûìs§©çCÒ^SÜûÉíc>œöãNׯW¾AxÆì:í»Æ¼tø)Vñã¸tâ×oðKÔ·ÇûÏËËci=”—¶,=4óŠòi¾tìÿË?¢M\ù“¢ý·ø;¬€~Sûå2ýfž÷‘Ç+y1­×õ»}@óÁ¦â¯ê¿Ïz»ì‘¤˜Sv{œò°äóÖß]ô”»þŒW«g·€ÿÜ'õg†#þÿeo—ô ÿaÌÛùv(çùBRÿØ~ùýNz9A~U¿>ò€<í÷…Ïrò¾åy•Ï}=EüPlæ= */rˆ<©¼7Åá>íõ?A½‰#Uôä¥c/;¢x‹ þÊPóõ@¼Uo‹¾ÿ*õÿ>óªüe/dz—iôÃÓ]ÇKœßd?PÊä -Úõ¹¿?ý‡õX|Éây¿Ñ衎àÃ/"W:ÁPè£×ì°olûûµ㿆¿G+”üøô¨£òNžá¹ãÔc6©§Õé§—¥õöñ|V¥þÒ¿Ð_"?†ò/Îd~GÊ·¼Áþe1µØxvºâÖ*è%àc åÑôzÙõ§Xï~Æ«ìû¤ç”Ÿô&·ƒ¤×§Øeßµ^¤žn§°šï ¬Îó7Ý>+y;ÖK~ÉŠè’7My4§¨ç2ã]öŘÏè®ã³w“rêäÉ Gøâs›Ì£ø­Ú å¬ð¼†ü‘Ÿù>aš}_ï³øƒés‡ãŽò÷n¢GWžÒ+O¤×ïrq2Ø)ÃKi}ÃŽË÷F><+¹½Äb^î›a?ô@\ë$ÿSþ§á½ä*òß÷c? ôh¬kaš~²My=Öâ‰Â:ë×ó{?¿柙ßLÛýIž£|QkŒ—%ê÷É`Ô×’GN?{ÌË1ü& ãZñ‡ä± }äÊ&ö¦r'ÿü›~ ߉‘À†ðc½t*½¯Ä:;@îìg~A7Cz½ú¯xËRwÉûyX´Óºt¶ë(}%ãÎð·‹%?¿Í8o!w–³¸VÉY~#ƒ?Åjèä7A¾?û¹‚c•ñø æÇØEb~î6òƒâ ¾#}¾òKwˆŸ“ý?^GžŠ°ÿ©ôürI‹y~½Rýäwgå´³õ§A?ë¢÷˜ÎöC™>Jyoí:ýªË¼Ø+úý«ô_âW|жÜ5ƒÞaFò;ßåˆ÷PÂßd9!Ê÷²ç,&ùć úz[GþÓþq‹ïq†ö¬†ô}ô™/[¾°eÖ…eïVc 8YñDÁwmð­ZßçEÛc¿V|*}N-ð…~Ó}Å ú„yyȦ¸ó‹þüpä|‹aȺ¿€q‰÷´ïÍãsÈ<6D¯"?Ó¦Ëv¡ÔÏð§4ñŒžõç+ŽWùCõ¡Šü [Xb?$~=éçÉÏŸ£ø|ñ´4™W+¥ñë0èeB“xÚ5üFÄÏx‹}.zM»Å8©`7ø@òø˜Ï·v›}âÀ@xú·¿‹ü¹Îó£ã~@ú/µ7×?À›X'[Ø)à+õû@†×4?/RNõØCÃÊo§ÿ7ðïið>vØ'ˆÇ$Gå/ªþý¯Ç¼Ý9Ÿ@h¦Ïµ:ý¬Ž*?°Eú{‹~º6î×í ¿ÂÞù§²|¿Q? üŸ-ö•-Þëêq†Ô[<à§9¯xÅ]öø1ÄöÀ[ûÿ4óÕ öüKLñQ²ïŠ/ï$­·òA—൒ß!q-e‡?hŸvîy¢šÈŸ)|eÂQýOyx5Gò]ÅzhÞÆ/2ú¹</ɾ^rMqœöŽì{¯ŽøõuúM ­ëÔkCúyꥸìÇyy”ß ö¯/"§ w]òN7ˆ QÞqáë¸Ú'ÞK¡ž{:øqæ7‘·ñ7¦ qP¿ú6X釳¬ŸÄË…5äå#oEÔ;Òþ}ôÙèbžOñM)_ ø…ÅS¨8äú3üS¡Ë:ƒÜeЈ?¥L}eŸPÞä7y·ÑcÎd8騸ï:óÊEÚ÷4íVþ\­£¯¯'¶™ÿ‘cb|ý,xš§ø Câ»sÔ_öRúË*ßQüÑÊÑFN܃'¸%ýñ€ôSxíãóä7xŽñ ?Vxÿ¢÷« ûÈ!{äSëHÏúbúÝVØ÷+¾Vq'}æï†÷G+c/U¾'—¹¿o|,¿ó+Œ'×c>>û€—cÊã±Ä÷¸æíS<—~¦¼QøqÙòkGrõ\`~x‰z^Êöß{Š«Än¸É{k#7*ßêû˜iÖUøŠ¢¿µò5ÏÀͯ[î‚ÈÇUÅÉQÞžßàP|€øTÃí¯œøyñ$‚zOFÿê'½¬=A}‰ÏŒ¼Î—’ËïóžâO¦x¾x*Î2nOGù·î gí ÿÏ *k]¦Ó|ÉñÄçÚó³ø4÷™7ûèśݴž]ö?â#†Ç2þ¿¢u…vhœ Ï ìkf˜ßñÛ‰<ü²‹*N¬ýM»÷6û·#އÿsZr2ö(+2?1OË“ü âÙŽ÷ãuýÿÈ“rÄ÷²Ú ¿ŠŸ7S>£Oú1~!1Nm“ùpÓ;tXe~Gïfðdžæõ?ù‹—ùiÊU¾%¯¦~ÚG/¨<Ž1N û—âB·Ñÿ"çyælz)Þà}Êç>ô³ãxd¯˜Pv¶òo¤¨ú&ÞRså)Œþ”ôƒÎ]Gù×·Rž£Ðç¹ð^„5ΓÏQq9·™‡Ä(>價>âxu4yN”¿±sÆçe·þ“).Óþ<÷“oÁ”ßfênŠ?Ÿ{¯ýŒÇþjSœ—}ZqºØÕâ}UæÛ7¼¾¦|^è÷Â~;åsìòwϧÏQ^Ür™uW|Zg²ù{¯òν|’Þ_ÂÞ×d”÷AÖ3ùûl²/™â2M{w˜á#7ò FÞbø¨#_’ø<å'ÔD!æ?G=èÍäo¥<ÆÄ×Å÷¡}< †?’UÇòÛô7Ì<¾:é(Ch›bÉ&Or|žöÁÖó6õb߯[2?_GNÏÔ”ï¶Ìwnág¨uðÉ#N¼yĆüBü>[f½–Ñ:ß>Õpø¿ÌïCúÓïkšþ·öÚÍwœúPÚñ«‰‡H¸år“õÒ÷†é{ÛìOш>óù&z‡ÉqǸߡGاúâ©`>ƒ'ÚÈûlð ˜ìשà×õyôú‡Æ¤£øñcŒõ¾MþêÛŒñ’Üf~Þ¤^MÙ¡ùÒW—S9*òÚÇó´‹<-²+Ϙ•ÐÛ‘/'Žmæ;ÅY=×Òçjÿ´~oy¿-~ ùù`'½»L½†:Û–iß!ëÈð‹ŽäŸ‹Ïݦ?´Ø/ϲoa½ 쌸îxŸü´¶ÙÿáÿïSÏ>ßåß·ï ÃÈ“)¹em5Åþ'þ> ÉS¿-¿Nù1föŽ®¿7[G~'Ÿ²æÛp¹â#Ém÷Æ#úd­¿ðÅm=bþ¿ò4\?qÏç,óùò(õÀþÔåûíÿß©/~6 ú=ý Ê?ÅóFhy·Äûi3’oR?ƨŸ>bŸ#?ZöOñ:Íßò«‚Û®g³&ëWÌŸJïˆ^,¼z&ÿÂó{5øyìƒò;Ò/ì~<-gù]~BñÀwcòGê:ÊïVú«ÔÿM›q”¿jíR,#ŸIo"þªîßsÔ~óåâvÞä:üvc;~”ÿ•‡z=:z/ñ‘„ù¯§8—ÍC¸ ùÊÅËlóÞ~àÇ1À>Lüº‰ªäïà ôËiö ƒ@ý|ŽzÀ Ìí4Nʰ3‡}ô+Or?ù&ï#ëk÷ïgø•ôé.õC/‡Ÿ\\×µŸ¼Ä¼1DΗ4ÿ½‹½JùèÅ_ ¸™ÆÅÿ0*ŠæcÚ¥_(±¾©—ôÄWKéugÇýù³i?Pþ:ýb=ÑÏļœ;ïþ‘âŽå§Î§ç‰û­‚ȧҗåþXŠçiqý»ÓÿáÇ [´_ëæþo¤×)¾2†¢]I|A¦ñ(ÿº­4)ì ·öá ü«ªð-Ä>§ñË’óâª?î°þâ_¯ÿ»Pþ÷·˜ç»¬Kuì èÂçFÓzîó>»ÄÑïp~û„zÞMŸK? û6Xwy¯Šÿ_­öÇÊoÎû²YÆ1<&9ý¦üÞCvzOnóú‡-·™ô;ò|eÒñ6õÙ+8°³üñ´¼ÐA>‘ŸÈz*ŸÆë¦xî Ž/]œL0ì¦õU§;ØëȉmúÇc”{›¸šåÔÿÕ¶ŽÉ‹.;¸- /ÀG¯Ÿb}é‰ÿ yÿÚ]Ç·ûðžö™ßzo9ƒn»b-ÊÎÌ:Xríìô¡„~hÉëà Ø•âúÜëY ŸÂ{±A;g½?ô<Ñg¸Îw½ >ž{ïýÿŽmÞ»ì4„´²_ˆ×¹9ÊuäùO§÷­°î\£}Ûâ¢ýȉ⠘Cß#>“áxÄsÍ¿«øœkÔ{ ¹“ïÛw½‡‘<àg¡ç…iŽ¥ŸïO8jýj¥qüa õÿ(䆈äÇ3éAØw´ï¸Å÷ø¤Ø˜?ÛЃÛ̯ùù óÆÅ1êwÞ·VLçº`¶ß¬j\)>'ÓO¬Ž¥Ç_ûÕ‚_Ïþ`ðËâ9`ýÉy=„Z·ž2Ç ¾ŽÛ ~Þà-¶Â¤ÿŸÛaç¿Êó¡¼äåý‘Ê ý­Às;¼Çòøüa7ЃeqSñ¹älåcÜÎä"Ň֨âærÞöÇ ŽçF¹ïó ßµŽþ³Î¼\¿ë¨ü‚yýbœßð¿LQþ!Bí×ÞíÏÍ×…h÷zÚ–¯¶Œ×ÃëñËí’£üÚᓌ×)ï~ÉñüîxzÜelgúÓ…êÛMÏ—îz=×G¬‡‘ŸŒý8öç°û·Œå\örc q•ýsX—=þ$;[?”:ò£üp„ÚÏwˆ;ü¸B}äÜàyóÒ£#×*ŸVž÷¼Ç~r“xxÑbþxnvéW /&÷Û…1?_ï&r‡ø²7Qqd¿›£õ‰CܘÙ}0dhiý‘ÛC‡ë°+õR{¥‰×±‹½{Z~i|÷ç Æûγ‘?ÙæÕ‹Ø.;Â7 ø¦hÏ}œzŸA^E¯ë/Þ—)®#ÿS|¾ôPÚµòC]£]W@ÅÙÈ?$ã\£ÿ­dûLí#zè^)9¾déýâ-Ã>ÚÛOwÊb6~+¾>ùÔyèŸàÿ>ëwÆgðo$’ÍS¯ö>ñûÛøÕ·Gåg¦øuöåðåÅ3 z“¯ºêí ³~>°Ÿ´"ïsŸ~/?ó}æÓMæû9¾óS¥´}5äDñob'“ýa y^ëò臲»'ü|y3Eò!ÅyDú¹¹¿“âmxaòõ’|Yù/ú¥—Y[øG*äó“Éõ¶Vpì¸ùn.]»üOû÷°'ˆO2"ûvòoÇòß›bÌt“u?šXÿW Åüggü¾pÄw\À_3ߟˡÃ|ÚF²®ïüÇ)ŠoåœÑ®dˆ~lNzKŸ·ìò˜Iï'?_ùOÂsÛ19á¨üg5æµy¾_}y½¤_;.§˜xå·+¶¨g™q¥ý‚âpÑ[E~öüÿ £o¤(¹ùJRíSö*8Ï~{•ßd›ØÚô ò,Çûñ·SþÞPÏþ_¥þ5Ú_Åï ²•^'~Ûro'· 7y>þÿAòàËÅô:ñü·ˆÀ/D¯k0žæxîé‚ãužóÔ ÞÑpþñ¦(/ßëéóMñoøyùÇÿÇý>ò4Èn­¼±~Š Ú )vÙ¿–ñwb±×FÑk‡)ì€SÌÏQâ¸?Ý<úXÍSŠW>òÉçëœò.T¨ÿ íÊò@Úš÷?ºc\X>Ÿ–³A¿`7’Ý«û{hóë@¼½X¨<š¢x>yŸöˆ¥õ‘¾¨êü`ÖAë²îÃ3¾lñð†7Ñ?£ Ø]ïça}"­'|ñù/Ÿ?¢>P¼ØCL<5/'g0Ô¾‘Þ¿‡ŸË.ßqHÔ€~B\¹ò'Äûˆ£ ¯ûóÐE»í¤wç¾YäŒó¬ßÄ¡Åroó|ñUˆ·Qˆ^<Ì£Ÿ’^w4)æÞ÷¤^QŸN¿Où¹ Ú‹}½M¹ 曕Ç/ð<®ÿÑB‚vþ˜ö_M±„½¿Ž\¤üÃëÈ'YÞ[›¥==ä”ú§Þ³ü*ç‘Óúðr¡ÿ¼EÙºd’Kàw‹8]¨„žcËÛgÐO–}_n›è»ÿ7/_ñÃòï‡Ê&'ý¸ŒÞ¶Î¸ÜÂ^wzܯöº·Kyãej8ÀžyÀþQþ¦Šû-û~&ò8Ê¿óÿ‡þç@ô2Ò?\Aï$9™øWS^´mÞÇÎÿ’â«c †óÌë²{Ìò>ZôŸ’ëÝô‹rCïøž‚#ö÷x}Mû·®#ëfüÿÅnz¼IÜüåÖüƒéÿSÌWÄÇëgUì% ²ÿ±þ_˜G%w±Ïéx"-Oq·² o¢ß)²/üÌqZ/òÙU…ðæÙµ?Þª¥÷ þ¹£ò®Y—Ä«©ü[Ïs=û>CodÊxðß86yŽx©o°Ÿü¤ùñûØö«G)_ù„ È{âo?dýß)POæËÈy¹\/«]ìþGø·2^WÃŽ‹þ0Æan2ï´yø-ĸBô³6‹ü¢|L%äµ+¬W%æ«Û÷±“+/BÆ¿f ”Çú'>Þl_y£Å_±Ïøn2¾¯ó¾á“ UöÓŠ3`¾Žvìþo§í~‹y¢ûÿrÜ*9v;Ë/ùõŒ:®àGtç»8óF^·ÉSÛ9EÿùÒ¯¾…ô@[|wâðÂ2õ˜Õ~b4-çõÚ‰}hç7 ·ÉëÔÉÆy‡õîêxzÍüöe÷ ý=çï éñ_¶¿Dýˆ»1òNǼuö[GÈÊÛSç;Wßâºú)róß ÿóˆ ÿP¢žú±´=âW¾"å_}vÒ1·îÉgn—´ñ=»ò׃¶‰>Pò¢âGW‘gv¯z\·Ã¾>‚øœÃ®£ärì sû¢é¾oKÏO¡çÙà9Ì‘ßCztò¸Çû>XpD¾ ]âMµžƒñz†¹ÕÐól2ÉNžù‰„ã~]aÄQùÇàmŠùÈÛï{ºHùŒ_x•Cx…K¬GðÑDžMé_àéç(ï©QêǼ±Š¾U¼Ãð»Åç÷|ßl³¬ẆúÝׇPOò¡…ÖO¤×‰GdŽþ¬ü•SÎk®øfaëk§ö“eDñ²J?ú$ϗݵD?®Ð/´ßîÃר¾úð眽ëXK÷[VGþ/óxÌO5™–yœ¯Œ:žãú¨‡§ýÊ/Þ(:ævÉðÝÄóÚÇj^é ·43Þ‘>ýmýmÖ[éÅûéy»Èx”?qcÌÏ“ßîvýüó8y›âýè/-ò³Þ‰' ^¬p€ÞVümŸõÿ{¿š`¬/ü†ñ9•oB¼'Bñ\÷àÓßýéÌù{éþ÷ ñØÄgä?ËçQùÿn¦¸å÷‹¾(–SüP†Ç)ö'MôZ1OûÊúÈwÊù™Çṋþ$Æs_½Kyȧ%xMÄO¡ü–³ì+ÊŸO‘}¦òt‰_ÎðÇ=Æ]‡rà-ˆã_qOO>c;jè÷~ˆcÚo§]žpÔºYBNÛøµÝÑ?œ/8j¾ÌP?ƒÆ_öŸXŸjp¬à‡¬øxñù*¸âÝॠ[Èäç¯H,÷SÇ”Ëz4Mÿ)¾+EòŽ<°^^𽾡Ïú¨<7Ò;tÑ/—g]ÅÁó}bžàlý–½Xñ¶ØmÃrûΈ£òAuè7ĵÇr®¢/¸ÜeZ'öØ_Çü”Ì ¬K Ï&í~ ý’Ï;jžBã߯€=â–ÄŸ!{xÃëa†ûá z.ÍÛâ §™a¡›ÖëF:?† ýžä°„¼¶Æ>FqÕyûn —Øb??cü68–±Á e5_GŒ¸Ðd^ Þ9òno¦õüŠ ¸a‡y§‚$·s|Ú޲ëËn>Ì"çâ§lSê=êçá'”¢üôb½^÷rµþ›üKÑÛÄë¿Ó±?ü2íÏøèõŸT,‡qT|8|ëa} <§÷ÛI}xèãÿ¾œÞ{ß[GÍû_u$oŽ~¡Ë¾92žï3ß5gŠ“¢þèµmiđϭâzÛå;÷X'wáß­°Ÿé°ÏØà;odv—Mæ÷%ž«uì5Úý ÁQqCw—ŽÏÀÓr‡È=üÏÑ{Äü”ðLJWŠŽZ¯¡— Ä«Çò^2Ç6ý ž¯ÜNc/úq÷í*œzØÏ*¯§X£_ùÇ ú‘/ÿg¯?óìõ×GŸ÷ûîû7ƒ¬waðŽ´^‡Ôk{]úÚî½7üIÄÛº\ä<<;}ìæ»|§òªxWöÐOÖÙ_‰¿£ /D‹ú+?òÐ¥Ûê{ãŽy„|„ò—·2û×ú Å[à´ƒ|\(£ÿ“½½?ÅA×ñ2r`æge7˜W•wQü{ðżQ}ͳô‹ó¬â s9;¨ø ">;Î1r§øÆgÑkt=?¦)¯q™õhâØqýî @}©ÿc…g'Óú̳Îõð§|ıåÕºUàù|ÉK¯¨;¢>{‡yQ¼@eÞ³â¾ÀsuìɾÆõðÖ÷8Náû1ísd—ÜÅÒÊ×#Êh‘y¾„ˆE<æ¹Ü/>ƒþ—žuÙÛgÅ®¿@ê÷É‚ÿÿñ¥ÿÖϰ[‰WÜ*“޵» † óÕuúøÍ®å·d ãXëý/Ê-š¿'©÷0ãwFä»aœ6}~²+´û€}ÅôE;)’ÿC¿PQ?U|1ãà‰ôùèO"kOz#ôd²§Á˯¾˜ 5ÙOåý¡ýsØ!ѣݷk°Ù <ñI Æúm2ï3O4hG1Û'\‹¬ʳ‘óK_K öœh·Ÿ÷zÄ<Ò¯PŸ¿¢öàÿÖ*úuʇ ¾ÞOѾUæÁxrå'Ý¢u—ûÐ[ý\pÄîˆÓïeþŒ®ô¡Jÿ¯DïÏ%ç£ɦìßHÿߦ^Š"_íÛê ôÄ#PD^c”G‡ù<òÚðÖü ]_yVÖУàmÅ_ËqY¶åOtcÅGb÷«È‘Ëã~žùÚ6°{—|žŽùZsDNÒ/ô7|òðè'¾CŸóˆ·Z~pägö¼/¤Ï‘},TÙÿ‘oÝÎ!WN±/Þ-QÅeÐ߉õÞc¼’§+>§AÜhß÷·ŠsÝdŸPf¾šOïŒö®Qù[à¿a4+¬£[ç9ð#ãÀ6ñûØdÜö)¯Î8‚/ήMø1v›¡]%Æ ½l‹qÙû_YßÂ|Áq–úH¾ð›i»*Œ å#Än:Ä·‹’|ÔváÄè#ëøõ_ãû]å»ï²N(Ž]ñ¯rýXRÐu~¨°¯BøŸ¾Õ€°Ä<} =ר'óIØFoÆ:Û¥~Õæ{Î?•"qýò³‰ùÁ'9~nÜÿŒ¨wŸ’= ñ”ñ¹šï¯Aä%åeÅNhÒ;.£‡ï–â-šâƒðëÃê‰ßwí †óòE¿ üOô“ŸZXb+nnqÙg\ö±ìÐ_Ð{šò@*Q»üÜñ9è% ôë×á§¥Ÿ-"OÖ‘ׯ§x9½^ý6ßþgiyøãÅ|Åׂ_Gœb¼xßpùc‡÷ mp?ß=0¿ìþzú<å”y;Lûԥߕ^OÜW”³ÁÈ/Râ}íà±ï@ÿOsžñt„ŸyÏŸó5Éèå?WLÛÝ ŽYyKÈgŠŒŸ—iö3âÇÒ{ìÁû¸™Å)i_tÖŸoçßG9|÷ ë4ŠO7îy³Å§üO%ü¸oL:Šç‹ü#¡Šà%Ú{[ñ¥ŒÓOSï.~ öwÒà 7é¿ãMÞ‹ü$wƒeÊSr{i? o©~a9ùàÇ=å÷û—´‡ùHvFÙE–s9ä=à óŸøNå@‚â}BŸç*¿¨æï›ôWxšƒäÑ ví*vIÉ93¥‡#~oO¤­°\ËæÅYÆò2“¯ ”}>¶§½œ0Äî/ÿ§Ãÿc·›âî/&¨¸|ñ@[¥˜¶Gï½GµâûźÂ{Èß?¼,ú…®Ç¡Æx(ö›†s¼®=–ÿ[î'Ïoz½Æs7iïÑã\Ϻ¦þ{ó·Òz)[kÜqö䡟_">ù"–sUû…È~V¼ÊK£Ž ”ó&z.ÅoK^{¿q?z«µß¢žôÓ!þ„›ÔOý¯Áw$.?Ö÷µ‚ã«<¿æû¸'Ñsl§XG?Vã> ¸IÅ ?3ÞŠÐa~¼r99oŠOípÝ<ía¯¿};[¹H½Ð#·Xß÷±;nÑεì;˯c@þŒWyn÷_ŸzØ/’_„<ù>Û}cMêÓeÝ%/×å)O˜ò¬/.ÇMìRŠûÜÌôÑG²û;Ÿ‰xiÂïWý¾í xÅ?Kß*¹¤É<§¸³|¼^P¿cž)ôá×MϦ¨øˆúÍ5æô5ñ¾õ’ŸWþÉä+è;à uÖ¿rÕÀ×›)8ÎÑí'ÉóŸC•p€|¨ü-²ÃßäþsYÿD>·…aŠÊŸZc~F?úÇÉý¡ÏºÔ•Çûÿ”QôJ=ÆÓVæ¯@\¢íñ<æÆ£ÕØçÖ}¿e æù¡É°€<ŒÕˆ°½?ìxÀ¾çöB½àQŸê|fo!^ÊÐ[„xW”GDë»xˆØM{ø_A¸ˆþIüƇðh(Ïãýˆø|c}7ñj!ׄºiýzð,ð^ ã~¼‚ÿüÊàßÒÏØŸç¿ûò%å7Ÿ‡>3Lß}øýð_Û9Æ“x)‘ùeön³&_ŠôrQþXä½U˜ëèÇ#”‡ÞîžwøE ?Což™HñiÚ±Íód•°Ï¾Tö0¶¹*æ×•Þs=O»Þ²ä†½äþ°¼ì¢VwTÞ«š9Þf<ÑŸä×Z‘Gê¿ËÇo+À3yß…K”›ù[†cÇ;ðõrݹ¾‡Ü£8IôonèP¯:òruäù­þ«¥'¼zâØ(pý›)nxûÂø_ùB#N:¢× ÊÃ^¡~ÁNÓÚ'?dâ˜ô³×ýy¶Æú6À¯Þ—ÓÈ_ª_hšãõq¿oº–þ?M½ÎcèÝ|8~XícžîAì5—E¯_øÚÅ»Œñ¥Ö™ÿ•_å•Gì(1Ά|Ðá«î@Ê^^Ì~Fò7ë8ë‚~‘÷yKÿ_=8*.¼ãÆ~Ì^öó¡ŠÝðÿ?\IÊ uô¸çý9<^ñyÐ.òΈÌ.ñ¼UÆûË]ÇUÖañ«ñ=•GÆ6¿Ž^Qüàê“­c‘‡LiûîëJÅÓÚ‹ãŽôïÈó¤|-ÃT~‹q–Wì¡vÙÔþ©ã:ë³ì§ÏrÝvMùm”Y7ñ—0øa¥/ ä_ ÔWùâb»Ä#ùcKçéÅO9òîo' }ìïâ/Ôü±œéK”?@y䇯ýÆÙI¿Nñ´9’o/¼…|´ÇúŽ¿Jþ ƒô;È®ëÃ85ñ|"8ÆøiÖûÂ7^¾öMóÈ]{ôûÝ@û\¯aŠ{k§åØG¶¡¶Šþüyaÿ§×ã‡ãÀj¬ÓeìÚeÕ'³wa/ˆå<éÇá\×ñýÔú»ÒëÐ'†!ó|dÑ_vÅë?âí Ä!)¯±xš”×eÿÙÏ&ÅÜ÷/ûò|«À°Ïx ô«â)X™LïW|°ì.Ø5­ñkÉuâ“÷q~€}‡ü>ñzâ[XÏðáÃdO{ýMq#}üÄ¥‹õQo‡MGé­Ô{ÆÛ.È.ˆ<ýzÁQyAÄ“#¼‚¼½"¹9D¼ñÛ²/ìgÈ~½Ê|§|Øø+å?Å¿Äã!r®âykÈðëÄë6™Ï•§øˆyóxžáåü£ô¾EÚ!Þx˜$‡.÷ÕRT^Çi¿é@¾äh'üYû¶‰ ”?iÿ÷9viçòÞïKþÁõtŸã·ñï¶çN_q\eGܨyÖë)^¶°?¼â¬Kè©ðƒäa‹ywðrÉßü 6ƒ}AþŒŸìä}ø–¤¯®göÚÕ_Ë0ß<+Ñÿô"vkñ4ØWWy~•úóþ»¿^ò>É+{Ÿw2DZc½VRû†g=AŽ2íO¯Üu¤_Äù>3¿VñmÄ…öÃõ¡Å÷»ð÷çù—Ÿw¬1?/£/šÿ•ô:øÙÂÆEUòü÷$¯‡Çâ>ƒŒÃ÷Ãs.{;äŸÛ#?*ð~;Ñ/Kÿ—åQ´òÍåÇ\óÄ„#~~ñ¼â‰è‡Aöœg ŽâÎyC[“~~À<,>û}ô½5ö¿ZÇå?Õ!Î!—‡.øyø´ô ¯ê‡>`ƒõb9_<ÏCøă´Ii»œjÊ3À¾÷>J¯¥ù ÷%Ú­uŒõ"?u ÏeÄÓwS¼ó©ÿ,»‰â5_~fLw_¿/TÜÁ5ÊQ|ê'½žÖaýg$ôÐ^¡=Ä ÙÚ¨cù=Kxf$y¾e\C®«â¿;9šÖS¼ÞâyÛHûix‹|¹ø)òÁåÏ ¿_¨·Rôy<ìQo峨åúBZ~Î˳LñR}ì ’·¦Rý~Øe¯QïºE¿-M:âwó^6Y·Ègñªäóryõ)Ì¢oPþú#øV·ÙolÇúÇê]Gñ`2_Ã;>Où}Æü-²ÅvîÉžC??C»ÎP_ìXñú2ûDù{H_¼:ê(?Äϥϑ½Ò”¾DœÝ:zñMš_/BxÃˉyŒÑg˜âÕªŒ£eôÆŠ«>¶ÇûÛEî”?Ì ý8ÒXOæaáúFå#ižOQÛ/>,x;#s™ë›ïN¯ß&ny‰ùüsQ.m²îÞ÷cù?Ξ»Ëõø¥ñF\[¨0^<æ~oŸerQÌ P§_Ê~A^IñÎÅç.ø¸ +¤å0¯Ú2zÄzË äiæß¨·‡\z—8þÅDZ‹^«ÂºÖ@oÍü÷Å“äñ‰ßsü9¯§Éž|¹²Œœ4Wòÿ•÷eëÑùí“Ïè'Vz5Á8/Á‹ÈåÒKÕ>ŸâOÒúÊoòŒ=Å÷«ß_8á¾—Àª«Ãë#ÿÑ9ä1ùŠ'¿‰^»K=£½‰ñŒ^'Ö{Hˆß‹Ù໬°¾ ‡ùÅm•õx€>>ÛÈS|>“»é¿.| ·iÇ~ˆÊï‘}wûd_+¿7-Où ÷—‡ì/Ö¨·øàI‹÷iÞg=³5o¿ÕÄÓ„¼…¨¹yñÞzUr<{âÿ+?T…÷|‹ÿ ìdOêáo³Ë¼¿ËøWþÁ7Ž‘wÂT¦'ø„9NOq†}±ìCʸHû[|‡|qâé¿DýÅ¿f,EÄ“ÈÓ'ûGƒ~±„œ%{¢üãž=Nê­ùĘ÷ìÂq‚¡‰¼ˆß ×n;Œ‡-ú×þ?¢þ^NØ@.?^+ÿâÿèpý4ó»ìOŒ#›GrŸÁóŸHÏ+îL¼áGÿ»ãÀ¨'ûfñ~,¹ýÞ:É:¤þPò÷ik\ॡ‡]¶êý$棼ð‘à˜Š÷ÞãW¼Ïuäô-öý³Ì MôW& E?Ïö;æ©*2O iç0?ð†#ö}ôÍè/e÷U¾§PbßC^ýìªôgÞ.[õ÷oËÌ_šwVýyòg6üLþ—Ä9ÄrÕò†~ â«Ya^ÿtrÛ½ù½ä6ýEy—Åw^füj$_´•ðKiqý›Ã•ßSØ`Þg²Ö¹Eäù+ïü±žâZ\MÏã§'½üñ‚£Ö é·äÓì›åǾB½:ôßò³Iùöó”«xýYÊ=à{‹o´ó)ŠWŒõ¿“üÜžžðrñ3x{¢¹Å¼»ŽÜ¤|5“…´žlï"¿¶ôÂçèGW¸o?5ñ´^ëúÿŠwQ~mñg)^â+ìWW¸Nò%yˆ {]b>ßíxʆü¬Xvð3V'åÕ +ô?ò ­Iû”7Zù¾.h]Šå,¶’c«ûúoЇýRz=~¾ñx;r@ÎÛaäµ ã}¶øçÂ¥äò{Ïcéº"6,øý‘OòXþålTÜè2íüEžßy•þÜ ŠØá{2oØyêÍua‹ýd–MüĶñí¢ÿÝÀEœ´ÉCþíÊË×ûcŽâEn2heLþ0}Öù©²~…ë~¯a =~º±¾ïööÆüÚâmÃ&óÿÿÑ:ò¶â'J¼ñÂÊ¿·ü ƸÈÏоÈÓŒÜ0ki½Ð“Æ|eý'©úˆåÞdœ1^õ ]òß¶ozž™ûþ7éÿŒ¿Þ#éùqvéGײçm’o¿ñÚò õßõåÄ'ÁŸbð£KŸçÉ[’_þr†Š dž‹v·™<³D¹5òðtÅS-¿ Æ™òjo2ž+c~=ú™pˆ^føÝé{Xù­ }“MŸJ±÷7ir+ùËm‹~Þ÷òmˆ?õë¾ä*ñ$6Xs{Áyæ·ûZñ2¬¦ëU ~Pqªâ â½Ø ákòû“œG¿ße,W¼™UúÛ<úø#äÖþÿÿtz_¹á2ãPúÞÂIÚ>Ù«/Œ§ç/0þׂãÿ ìAÑn®¼7Ê7Ú#c=7þŒ±\â"ìüÏá½O3¯¼<æÇäÙoŒ:¾?®xtëè{¶Ù‡ÔÓëª:ÅMüfГ…[^Ÿp]ýŽþœËÙb}„ï*Æq”^w|Œv²O5âÒmŽ÷w¿±}x8·ˆsRüÛOØÕcÇæÆ£üe»ìçØ‡F?Àôâ%+¶O| âúç®y‘¸ í_­ÆxÞÂ/l}zÉX.z9Ûr ûøeOÓÄGº÷Hÿ"ÿô‘ƒ7ѽ gÐ~¶ˆ¾¼°L;S;r\AÅÅÿUn¹²Êüðʨ#|Ø6ÅûXeP?½çûÔiÖSò …‹ŒüÄ#?²ò&^äù«™_zå0u7=ßÇôÖIÚŽeöó;¬7ʇp„œù…àˆÉ”Çb›}Òõ›C‘ÝT<ÞäÈõ1ÿ¤âІùëi½÷Ùïäß³RbÝ!¯dl×yæañ˜õ˜/ó¼qøˆÏ0Ü¡==üî—†/ï_v–ï!=m =B ^ŒË´w“~½M¹Š›Ìò`[ƒç° äÿ—ÎË1>Xùf±…Ûè‰û¾o Ú­|_ú©x–&ñ‡ ó™žPrq\1?DŸz9û>úÍÐ?6é7{ôóþÌÙÛ:Opÿ»ŒñÆØ[ÂÔ„ÿÿì˜/!—.±/9~Œ±}ÏŒÓ>æmâЬÊþEüÍŠÍþ¤c“÷zv,mÙûmÌ£Ž_sôGHÕ÷äKúQÿ³é9Äõ‡Mô7K¬GGôk틱s¯Ón­'âmÖ>Wïge‚û‘ûا%ß4™¯ªìŸÎQoéíÛ´Ÿù)¶ƒø§ÈŸEÄ-ùÓ/sÞ)å•].8βnˆ§%›¿b^‰O@žÃºv¼ZúåaÂ7ó¸.r¿òŸÃ`Ì[áï)uò²Øê÷?¤ñfœúK¿Kܪ¡_3ù¥öøžCö‘[¬7Ò; FüºO{ýB ¹ˆyÝàIíÖ|N¾Ò |ø?Äë.INt"„ÈKÖ'.|›ù©­ø‘gÒûáM¶5ö©¥Q®§_ÜÈäCñ«U5nY—Ä_/¾Wü¸lñÅ—º)nágZç¹wÉw¿y9=_AnW^æÜoþ´??ò °?¶=üÉ/aÓÆõoƒø™‡ÚµœÍû §Òcñ»Þä;À·yž·Ñ¯^gœjKï,žÚÍt¾‹òšüJW¼]ŠkâÁ%¤õ¹0æçÛÔ£”„ÛøÇõ]Áçí*ãk ;v?*顺œ¯ð>+ÌoúÉç’ÇÄøp»àõ ¬#ú~ÒIo¤xGÙOoò\ô¡¡O\ig”òX°çåÚèÁ—¹…~ ‡^¹ÏúÑüŽ ñfÕÏ ÈÍÊxƒ÷¿…|;‹>u†ï›çëãûi2.Å#ûòyq*ÇŽÊ'9œ~–q$ÿ<Ù ÄOئþ-çC¯‹¦<âT~¬ÏŽË±1n^¿ÈïW!¾ºèó¼‰/sõèrÈð0EÉ‘ø_êgðÑFÔþE~ï]ò‚Þfÿxˆ]vóñ•ð Åöœaÿ)}c}Ú…ìùâ%?¬xpn¥ë]X¡ÿ*‡ö?[ðrÈï"ÿLåû³›´+æõ¤}û²ëñ¿òõ^¤¼8ý®£ü3ÅÆú¼™ÊÉvÅÛváÝ_/ùOä‡ý‘úè_/Q/äÎý=ù¥…^¡¥ûþŽEÊónyŽ÷Áºâ<ÏþOëâçx²cåØJ‰¸bÜ·â?àgµ)äÆ>óã®·;”N’û =[b}ç?TÑ+*¿û÷ÈÃ19ž–#ÿ¬2vä³´§þçÓúŠ¿…8|{)P__'Mú­þßãyéý‹È™ Œ»2ã¾M¼â"ûäŸázâ|ãý cŽ›è_5+ŸÇg©Ï4ïe.“óÈÏf/Ÿø}Š_èà÷¥8Öüðñë¼ãmù³Í¸,w_(8²/§'iã3kWÿ‚!Ö[ò@ yÿéûÿ?¿+=Î/¦ÿ+>Nòy•ï¤ý|߉µ‚âíÚÒç·°C½yoVGžÈõ¸ò‡])Q.åÃ?Ëmã·Å~Eõ¢?:hÓž1êͼW‡Wrj<}®üçov€_ߥ¯§xáÉ}Šo°__£=£†¾nGz–BzßzÌ]úí%äÈ‹¥ôºMì4âC„o L¿/­?y­Š|o{P¾™Ïûñ6ë#ù²"V°í#ÉXzº#'0 ‡Ô{~‹Ý'Öw—8>æÿx^qû3EGì§±þ¼·-ä)ì_ñÿýBù½•Çæ6~Ùû]Ú—öÛÐÃ_o›v–™×¶yïæÏúÏe÷¡·ðþ/y{r>{óĉÅóoÒcåm­]|8–±“Ë?^zöùÉW&c~»ëÒK|%mG ù¿w‘¶}½Œú 0LÞMﯢÏh£÷Ç!¶‹xcS\ü‘ìçì?ŒóRö~Ñwãߢ¼{1¯<ü³vùý4í–Ÿß¶ñì*øõÛ"rE…ùI|mÓß•âåt›ü<•?‡ýcè!—TÑÿ¬òžX_áGW¸½[lg×ãü£<'ÿ–呇#õxÆßO®¿ ŸMŸCÿùGà 4ù1õÝ^óUœ•z)^~}‚ç3¾zøå4é§äѾËúÈâ3ÐûÇž”cèãŸÀø‹õG_aOz}í9o§¡—6ôˆò‡R¾cýìÚõ‚Ÿ7òáH®ˆy×ÔßV˜Ï·žHë¡ýÞÒOÏoš£âNopœ¯ó¿„Þ‰x.ñŸÇ¸Žû†Ý¿ŸÞ·Çþq›þVËÚG]»Êw9ûDZn)Û—¯3òñ­¸Mô5Ay»>K=°·nûù°Æ| ?ŸMñÝá-<†KèYÈ_cEôK¼gìä±~»ø‹<Ï1<™÷õQ â\³Áú?›éÍñ·‹¼íÀÿ^þ“ßo€G0ž—=rÝõFi'×MqÜGNîðºäo†WÒJ¬o%ÖÁÝ—Óçß. {Î[ó`Á¿.´©ïHî»è³J©\Þ„þàGSì;ŠOkÆûò±Ú<óÜ>ùh•÷t…q,}àG¹^þÛȯÑn2‘¶ó#F¹Ì+ƒ¿J}F9þ iýòÛ?¨&{6å|0¤×wY/v~"EåŸP>yÅß¿ÿ]@¾D®ª³ï«£¬s^ù¡¯ùˆ·;æÁý‹Yù˜!ÂÞ·¥Ø'¿ÀÙVz½â{õÜ™ÌÞTÏü廸ª_)ÎA|âŠ{Qž*øàÂÜHZN3€^¾½^r”ÃÅTOg=ÏóbCæ}ò'}ÞÒr±¿Yñë †)úa½O=,ÛH;‡^Kv²v¾× ÿ+¿ŽòÐ ÷ríÄ1óÏ4⎭Â<ßÃþø–x&—~=Eå?Ïõ°èÉî—ÏzÐÊöW×yÿ•l¿ Ÿ±=åõ¶sìSŠÒ“§ó~Ø`¹”•Ó*ùyüJ£¿òž—/Ù°ƒœCþÙÑ û“¿?œ-:JÙcýßsœF?·xc=çùÎä©õ|Šz^b—èPörô«›“Žk…é—â- Ÿòv(¿z|y–§zwÅ¿pçtl²ÓüVägPpÍ_ }ÄáÅö¾…>ò-üxnã¿2`<‹·ÞþÏúvXúýi{fFü|Þÿ´Pž¸YÖ¡²ü…Ù?Èßm°“b‰ýkžrþÎ4^òçZ}u•vÅ|£'Žcâ{{m„ò¨ÿÖO%hø{ɯWò°~á"ýrøoÒó{ì»™ÿ°öAÚçO±ã'¯kâïrùéÚ±Ÿo¿#¹ÎjØ#f™”·{Šù¶Éþq}P“ýHóÍìcð›‰þŸq?,Þ öã%ôgFeŸ‡â]Ä÷,=dÆÿÙ{1=/Þ¼2ú¬Ò¯¤í.!Oö¾œ"ù âu’/_-:^aþjüp†Ø”Eù8ˆ÷y•ׯ¾Y¼œäAˆíP>壞ìK·(§6Æuìû6xþ-¯¯xm£ÿ^ÿò|®o0–²÷§ÿ+è[¦2}›ÖQñ½ÎÉ¿ŽxæÛ«ŒüHñ¾swýÿäxüâÿă†çÒûb½Z®o6x„a½Í¶øÜˆãéR?éK´ËôŽŠ· üê¾òÓß:†øGôüþ|= w<Ð$ ¼ö¨exìˆ;™ü}âsŽöêõEÿÛfÿ¥ü®â+T<%üæ‘'ˆ~óŸï±Ÿ†ßò8 '©Ï!×)/^= ¼náPò<þgSè%ŽxŸƒ‹I¹aÛÛ+^°ÂøÓ<-žé?„môÏøe†ÁûRÜežªò>´O;ãó§ÉÏ®Ì{+ûz` ޝM8Š·àæ¤—&Òú—«Ÿ­h‡_•øÊ”Çk‹÷…üy Ä3•ñ3D¾É²g;_¤ô{Uê=Òà1ægñQ’ÊÖ˜wð7Îö1?8_Žâ¿›ìÚ´§KðÚ‰ãû"ó¬Öù''ú<ñü™øùd¿œºž`¼¾‹^v›uù/ÌÈogÔË›âû÷Ø×‰a 9íl&7*iÈ:5„¯yHï®ùßôÞXÐÇÙyöÁâßXb>»(= ïGòÑ!óõþ÷¤ØUœ#ãû±à÷‹÷®\¬}|ùOzïöˆ]â¿Mò Ùg(¯†~vu4EñƒÃËhê1Iý™Ç‡êÁþ©v×?KýB˜mö™üo±n1¾•O^•0`>ü)žWËú5~êa•yIùx§¹‡žW|ÈŒ§p[zMæÅ­Êoe~„>4ò©_ôrí*ëüųùÚfŽýü\¦ƒ×OóxÿY¯§Éßd}ˆâ rÞBñéÎ8Î¿Ž¼<¡²•"ÿ+~źøS]a¼j¿!{{ÞÞïµßÃî¶è/m¾ yHòôÅo1_pŸö·;ìSç²}:óªµðWêÁ‡·Ì>HñÍŠ—½è:ó󨸥öq æ÷ó3üòv†ybõ{“÷ëSC¯®¼­;ȵìëCWórºO–^ÒR³Ù)û¸—ó! ?ú¢ˆèËÅ3ðóåËÿµˆþëR×qŸùŽüסÀyíÿÎ8ž¥ÝÄéry¸Æx¼žGñ(›©ßvè±ѼôQÊyÝ1Æ‹ß=3™~Kü…ŠÃÐ:ôâXz™yâà$Ï}_<þ}MüEüþúÿıëú#NÖØ~…>v4ùùvñgR¾ö)1žáMä òGÄv —´µŸJQvÔ=âmž-:"„÷Òv*¿j ½ üD«è•_±ëüh†»‡-¦ï5ÌNøyüÂÇ+ì«–8OÜE”±ßÛöºëu­‰žTöôµa“ïZaýV¾Ø_d>8“â.zî%õ~œŠcfÏñ>ÄG¸Ì¼®q^ÆþFo˜e?Sï}ˆômäç4ñOw#;Kêí4ò×Ä?ÐÿEòQ”Ù¬±~÷Ö ƒ°"ö€æÁUÆ_ýûSTÿVž)ò™âƒe7Á-OQù‡Îdzó÷RïÉ1ÿ¿ŠhƒûÜ«;*Ÿ+ïÇŠ'~~–ygï%î›t„ç2ÆO*O£ü£É¦²ýÏóðùýLy•ç ~ç0=ž^·D;öñ÷(î“ùD|-[|gÙ‹±´òEÇú]?v„g%,¢_Z¼ Ž8F½5òv¦6ãµÒr×ù~¯úóB®w–¿tÙÛc»ÈÓû\ß¿Âs2¿™ºÛ©B‰ù{.•¯í"rqÚÇÇûÅÃWLíœñþYúÉÇìCÂ=«ò64Ñ×­£$?—0ôàym3þd`Þˆõ¹†|TÏ ;–É(žPÙñJØmn2®Pî×i×mæÓ£ Ç.ëy‡uNû‰·óS¨¢G†¿)æ‡ÿK^¯°C»w¨¯üÉÈ{y »ìûäלó¿—oÚñˆ]c^ƒ—*°,‡7™O•×ýÞþ&[ì/™ƒ?‡<“ʃ†Üßbž¿Èsð ØÅÃ}B̧ N3žhïÒw¥í‚§Á^wD‰(Û Æ›øŸ)&å„!õ©,§åÓÝãw'ÏGø¹Bz?¼âa…õ<ˆÊ+š/§xqÒQ¼"Šï:Ç÷Püî¹w¦Ï‰ü2©ÿ½Ny]—Kìy?6ü‘Ã\jW³GŽ ]ô§]ôÊŠ¿œ.<í} v3Å=™â˲SÃ3ÖAŽÌå´y®—¬PqŸ3èÎø±ÉhŸ~Õaüuw›ì{7i÷óÉãîÍ¿c^NõéùíÆC1þ?¸å(~Eå…Û8¡¾èyä'­¸:ròBÁQöÝÃ?–âþ±cŸxSù Áûm7Oý¿íH¼Fä“=Stüœùõ“!Aýäïí Êû~™yJ<:ð“hÝ5x3Lü¬Ë¬ƒ=üƒzä V¾jÅÃVØU˜W/°N‰‡j}s‘÷vó0©¯ö)á|È Ê[Aÿ°.Ÿß‘¶³ç ðÐäx…u´ƒœÒ¢ü<_€â$µŸÜžpdËÿ‚9>_ðÿÅÃþ6òjo§òIÌK4ú§yžûXòa(/{(kÞeý2ôåÿ/=¶îs|“õóˆrøe äßÊ÷’ŸP/³¿(niÈ: ¯Îü:Ã4AªáOmSÞOl=ëʈã~ÕñÐý¥GŒßžŠX~',^±u׫XÃ׉Zb¼Ü>qìÂ/.}h“ýV‰v=åç|‡ö×I¾Ñºø8çgxÞ4ûÅw.!·(½âÑAûž³ú¾þëíó<§‰>d ÿÓ ?¢ïëò7y~?îãLýìà´£üð¯gr|}è’Ó÷úï7ÓëÄS/~Ò[þý­2鍸Ü<ïtÁ߃]g~dþMôùð_ê½Åû”7³‡½u"Ìdõl™£òÇ*¾j}–ÆÃcÛd~ëÈþÈú·0‘\/^ÿèϪ8óÎã7*~ˆ0{ב|Kñ¹Êÿ½‹¼¯ççMþ qÿÅú.Þ5柕lÞѺ6Ë>]|%äý Ûø·\¹Ëý>Ÿì÷BýB~$=“ò<Â[hú±x•ýV¬q`á}ÑýëE䙼È÷×ú¤xžî¿slà?6w²ïT^;í¿ži»5ï sÞÀªø ±3ôÅ÷Í|+;ïð×Sü5êÇ|"~ôúÔϘ_CÆÏ#2¯u¾#EâÃb½þJÁï+=Ÿ`ô£f~7ø®LÏ#ÿ Á'ùÖ¯ÑÏ´?)±Þ3?Çø„äí zå÷-/0ïýõðþñËŒ§zð?ò¸ôþ¡ìØb\À«åÓ&óË…®ã>ßÿÚužu¬O\[‹ù9ˆxèð×ð‹:¤Ýò?ï´ü¢/?â â<|ƒvÔ=}’{vÄ«±•ü¯õ'^_MãÔÅ˧|_¹=>` «èÞ0Ç—iæãþ}ÊoË~Û* ëÓíç)w“çÁûcâ)0~#÷ÛÁ~x™ç^MžžØ.ö96Ç<¦¼H»ì³»â³Éä¾/âG¶ÿß¿ ÞMq/6òxÀîž ŽÊ Ócýa|…-Öéý•g¾}[bþ+cW Ÿ{hÐ_‰«°)ôhø +ÿHÌûðÇ£ öñ¨‡¨!KïõɉäX¿ðBZ^ %÷ï:ö°_â§ö±ãvù®Ò/ð½ùª£½§†žWãÞ)ùQØã~]/¿çòûùp@¼vk#Ou°ŸLÛeªwž–>õ“ýâB6oŠ÷­íïѦ±ï*O%þê±ü6r›ü›”Uùd—S<Ëv6·˜Ç÷ ÙG‡¾â6|¡›Ì3 ù Lús_+8ŸzäŸ"?}xº”¢ôä_8vD¯볋ýwÇÂúqüËãu˜WÙÇóÍÈ÷Ùü½)*>½Çz¨øåwRÎ÷€ô»LÿÆ6¬®&ÏUþ]“½˜ø6ñJDÇOò\éßׯ)/›/Xz\÷c{uÌq¿¿×'sýŽðÙIÇÓ<y?–»‹~q‡}a[¼+èéàό픚âÐ[gyò”/$ÞÇúiðÛ~c{̧³ÔóÕ“ô>ñÌdrã<Æ/ ˆ¯&_F8`>…÷,(Ϧòc_µÇŽÑ»Gß½ü@fxÞûÍ[È—o”7¼žâŸ4ñúƒ‘·µ‘ù­ì1no³Ëù~(Ê·>@žTžø}äßòƒâÚá)‹¼F;ì§àéŒÏ|èìö|ßi+\/Þ}ìhëìkÖyĹÙõTÞŠªëQñ€\Y¥¾[Ì«òcvMýä/LJŒßüw›ì'¤×«`_Ze]¯’ôIy}¾úøÃÏ·éÿg³ámÆ|eŠ;ÔzUå{VS‡Bcš »èÌõ Çóê ûè?oÓ%Ç*ç·PLíõa?“|cèŸd¯¯¦¨|Ìâ‹ÅoÛdÞD¿´Ë÷º5îÇóo¦ÏèÊHvžù‰'“ÿÄÏÓÃßQüÂ6ý¡Aº”­Ûçyy¸#ê ûÇò(¼ÞáUs|©è׿iMÍÇÔOùÅØ`þœn¥Ï'oŸ0¶¹ táõ›§¼bVÿyæ“ý/Ë犭?\HŸCoØf?|+8þþÕ|Ӷþi‹q·XrüÌ(õõëÂã«oŽðQ˜ò+åy€ŸMë%{èYþ?;îçÉÿg-úW9Ý…CösØíÅKn×Neˆ*þ‡ÏKÌŸŠ—Vlä`«âWÙƒ§Nü÷Už_%»ú)Fý(x€<)>Ã]ö#⟕¼‘ãc<8ÈРåy3•áãÞ®ÈWß²±Ÿ ëÇ”Ï{PÞ å—î·P§ÿÍð]oŽ&ϳšøUÓù:Ô¼]Vf¿Ùaœ¿tœb¾nÌsþ€çïÁÏÔ#_Ëmô òËg½Úx*-§•é…ÿí¢=¥Ìü¤ùù*öü›Bm"Å;›c_«|-ì;òÛ”žHØø¾ôyò#/ÀíÆßÄJìWWéðL…}ârÃTŠ=âúºØqÄÿ‡Ÿ Ç+èáª<›õi”Г^Ó8Åï<Ö[ñNÊÃ~e”÷qç ‡—_ö {ŵ?Ž~Hgi¯ä}íûÈÛó¸ÝìRoú«ä ÚýtŸ§œG¼^ÊlÚiràŠž°G=6Ð÷®óŸ+Ònž¯¸ùð׿u"á¿–®›¡-½?å)/¡âßð7PÜû“@Úˆû¼Ôؤߥý›¬KŠ_šãþ]ÆÇ6ûÝBðz3ÿFœf¿EKÛâ{µ°+5ÓöìcwéyýC¼ùEÌð¼³:öúF^úõq¿?® 8GñÂey죿ÈZÑq¹‡üòËŠòámù·¾zêa?ñ=…Ï…´}mêÕbßRÍæ“=ä—ë`yºÂ¼-}MÆSÊ©_þ26{âÿoÑÎeÚ§||3™&½¼xA®pŸüvΰÎãW(žƒï+4ð;Áþë§üÆMâ-3»cäÿÞuì!'Ë>{iÜ‘8Z»RÜà=iÜJ®ÂÀäϼ…œ½…<³a9Poä2åíØMî7ùsôÓ±K|cñ®xwx×ы½…|Öfjkœ¡—¾qâÇ ž[äû+ŽôɯzØ/òZÊ¿Y<ï³ ×Ïä÷_ÉìÄÄm†*ñ¯mú}ùËÉu1ïf×'+Løq‹þ„ý^z‹z2ô<õ,®«Óéߨ¡ÂUÎ×vé?Ê7#m¿Çüü ㎷Y·™_„vkÒq¾àçåçC=É›ó§ß,¤ØÆ~'¾‚Yêw:8îqÿZZ?Í/ñXy„àщùH¤ÿTÜ–üêºEÿ_qÆÒû‰wu2}žü²Âílo¤üVO¦õ±«^€ÖÕ@žWŸ‰ò½Â»*®´Uä”5Ö ùåæ¸È¸SžEÅKÂåòZůûâ õµ>džÄ?-¥í™âý™Ï†|¯>÷í —ï¤zŒ8ß§Ÿµ¯òãï"ïàßL©8/‹GíÿÛÞÃÃJ¼¯î›”‡ÿH =ŸÖå«ßLÛ¥¼%øŽÈ«óÍְϼdé}ÒÏÈ)ë WßäûHRÆÎ½ñδÉGŠƒ7-Èž }¤âdgé?WeáÞa»<â¨õUünk._ùLãbZ¿Mìó³¬g’s¿‚ßt`Ý;B?7p¿z#¯Tô·ýZvrâǽ<;Oý°×ô‘of‡uQñâo’\ šò­àgÑÅÏùÝà} _Ånq?ÁïCþÉ{ȿυ•/©†}­’驱3Ø÷SŽüì”gõ†êÙu\£^øÅËKvÁX.n81߯øžÏëÛd#›‰ïg…ûZcŽØ mfŒzM&å„û‡6ïu‰~Ê:dÕÚ‰<^`þ˜ãþýcuèÂ)Š—I¼‰sà¼Ï»òëŠqâäU ëÈçýØž¤ù7/úì—vЧ¶ðƒ®0˯íJ:?>x ½Ü‡Í?›C²‚C<[ó¼—iÚ©<ÃWŠ~ß%棥1Ç’âîù^äQ .î<° ûÈ÷òêâ¿üÛI½mÁëk]úûmúã…å _ßÚ8ÛÐÊöÿÌ;v¹j”ó²Û‰÷îí’¿¢üìr^æ~ÅSËoåR1½Nq\ëŒ÷ÕŸuõµ´\{‰z,rý2ßýÇõ¿—f“Ûîõ_Ö»Mú¹âå×ÀN©yµw9½_v äŠ\ï&GÅ?ªüV’wkè5µn¾ÑuÄÏDr¬±ļ+ò/—ÞX< Y¾ÎXúëú]Ç&ÉãiÈ?‘_¸<æÿçl-ô*ÚYOý|ãsˆ#±š'›â;ödÊì…ðŠÚ5Ö‹¡+@C1ÓÓe|¼¦ñؘtœÍì$ä+ùïH~¡ŸÙ"ýH¼¤Âž?'tÙo ‰SÅ_.¼IœÖ!~=Ö‘?Ísëç1®Égaâ /¡™ööÊÏß6°“VºŽ¾WŸùïEÚ«¼¦ò­û±Á¡ï^¼ëØDÿ4Ë~sæ‰ä=™öY=÷g·Á¨_W£_ÁƒVù>Ú_¿ƒržqÏ@-õ# ç‚#~’F [Kõ›aŸþ¢ü¼uüT羫ŴþtEê©øÙÓ]Çj¶_}áTz,Þd0–拏p”½JöàUæ™}ä¤ÂCËÿ`è“?yå Í“ôzÌ(V;Ì}\‰ý^nOÙáö?aõÅôÿÙÇs©þDv¦°‡}µ‘ê¥Â7 „Câßú¬»ô“èÏ jŸ‰?XôS€H¼$v†ç6©·øËgØ—,rÿ'ü>Å Gýêk”Kþlñ•ÝDZõ“ÝÜ(×d¿!/°ÆµÉR…·$Ëobâ{…·2ôd7aöÊ„#|â4ñg²~àwm?A;õ^Ÿ[çzxæ:È ðqÆú\ã~í/%ì²O»óß9Jn{b4Å=òÉc¿1ù›±OµuéƒØgu*éóá2ü]´¯ûûRÆû¾tÌsé7ì‰òw¨dþ ¥SéqŸ}]‘÷'{€ò"ŠW»Iäݘ•ž èÿßIË Îã†ìoÄ¿Ûv£̯1GìxÊ«." Ö¤ÃDpü‘´}6N}§©ï4û}ñ§=æÿçñ+Ò{Äz*¯Ú÷‘)>GüX—xŽxÂгD¾µs^ðã`šý~ 6Æyæk8»žý;¼ea€ý »¹äßh?$®:´è÷%ù¯„‡è?“ÇÝÏg$”Ý[z®—&ŸŸp¿~6±œüû7˜·Ø÷˜ì0ðÒY {ðþô»ø]ìú÷ˆñ²ÊÛy‡þ¤ø,ôŠñyÕ‘!zòçâTÂsÔGñ¶§Ç÷™OöYºÿµã¦â˜³ö ˜'.r|¡•ü/èÐwÄ_&Þß#N~+ûþôëð Ž6ëåØ9ÊCËÙƒocƒq&;KÄóiùʳ‡œå=å}iÒV‘³¾ä„ ¡FÿzÎ8j…ý€xšÎð¿ìwÊ§Š¼>K»Ä×I\…ø&mÃ1ì#®}Zñ£ÏR®ò³~ÆøL!ycb•Zö¾e‡Œ9VY˜¾C½’ôÆ9b?§ï>8X?RÃ×KkaçR¾Sí“äG:$^¬MÿßM‘øÝ¨Ï\—_û<ñhŸõdp„G-°îí9‘)î³Å~]r‡°N»êÈW¸^~n§'Nýû¿€üQrÿ ýè ýNù@Ó>MùÀ~Œò¾ßÀëÄ.íØ ~Ê F>8“ßÍtÜYï«|zÊpEò<õ½ìç­ÉüÝDÿ ¿qØ@¿Áþ9¶û?‡ò¯<¯¡?ÿ€¥õúíùʤã~;ÅUÙ-ЛI/&»¹Púµki½¢qû«i}Õnâ— c޹þL¼so¦HÜ|DɳŸÌÚwó$Å[´wm”ú3ÞËô'x+¤ÿ—_¦áÇi™}Û^ñëÉß÷@?üœbþ®NƸKÿœñqeÝß²ndñk&y±Ð#žAígþ寢Gé§Ñ÷›ìC¡Ç<Š>'Þ7@NëÿKGå­'g¼îJ¦w]F_XEµð»Óÿ«ßH0ÜÆÏýE˜a=Qž˜ÐNèm”WÆ:¿‘`€ŸÞfÐß6|œØ ?ŠÙYá †;þ›a~þê?,| |½¶OûýQ__"eÎËеà×k³¾g¼&a_üT|GÍ«yÎb»]Æ{ã®#üKv÷w$™êóÑlñÜ/“Ÿèõ»í~ ¡NýV—²3_F/^u¿MkâwÖaŸRV\ýYד4\b<Þ/$ßËœ_/þ‡èU¦žèí"í_eí¹{-û¦PF/^ÁÞPþW)*nMy›:|ÏZ¶ÞÜfÝUÿKÕº§¬6êØÄlz½É|.Øä“ÈWæR‘g?ChUöw×Füø ¨|ä£i±¿idzéO¨þòÇdÞß¼»’>÷xžïO™•wŸl‰u£Îw$/¬áÏjçxÿÓþœðQü”¡Êû¸Æ>Lù‘.¤r{8džKÓ¿Æü<±ýðÙ«%Gåšy“úÈü×bU|$þ`vEý‰qKü…eúVƒ?ßÇk¬_äïÃí¤þUúåÓŽÄñ~[ÖþÕÃõšÓºä÷…r¬ò*åÿ‰â¬…~=€½<™Ô'l¢WÓº%9¸ÙÏÃò‹IûC›ï'¾¯y¾ë?‘òHz}}~þ6w9Cä¾Cñ¥ÿJúœ æñ•í_‰ èݥϹÃú5ü\z}•þ± ¢?P!‡>yßûÈ|ý¿äåÃÛ©|Û&¾–¾7| veœëyû|—ä0é…6Xg4ÿ ˜?àÇÐzõ›Ï9¾˜bl~ÑÎÒF®ž,8’?0Ú§µíú85ä kbŸÇoE?S|šâTω>)^G|q”¯¶7ÚŸÀC%¾ÚˆÊ½RoõÿÑ®úY‰ýäÍÜÎÑ!ž¹TLë÷'ÀÅQ¿î6vàÛÜw¸DýÑ#)Ë9Ú%^Ðäç#^Lá¢Ë1V†iû÷^‘í&ï—]âûÎ¥í~Y§\rl±ïçÚv¿WøžÊóòÒ(íåþ+Ìóè7cœÚ×Ý¡>|¹í¨¼ÉKµ´Þ›ïMÅ·¼-ô1ÇÒ§¨|ÓôϘW ÿÇÈgy­~+ÅUôÒâë©Â×3@/×&ýIqÛ“ãŽeä ñp.à‡ o{˜Ç“óBð5oôKâÇö³sÜϼßÏð?J¼x3á¶YWLØí“ßß žÿ^8`ßÓûi=§°K‰oŒÿÿxÁQzeù[')ÿ¼6þ€í"õDny÷1Nî#ûóòH »2yÃÃ.<žåÿ,}Câ/fYjÄ wÅ?ÍÙ Úƒ<+Oå·ÿÝ”×gžÙþµô9Šƒuûï&ÿÛ_¦¼6ý¼`ß]äc^Níš§ }…5ˆóëþ™‡b°P|o%}šoâ±ô˜òm³Í3™ßÈ“öØGwS;nŒs«Ž;*¯S‰÷½ÖJŸ;‡¼ÝûY}𨰞ý"qÊ/Bü»ìÑÊ»`3̯‹¬¯w>”â^þ!ük‡ÄµÀ“¨¼‚›Ìè¿îóÉh¸E?¨!?–%w/¦íaÝ6üïMùÓªè×ËÌkÐåþÊ«g7‹ ™¾ëZv¼<µÉzvy9ߪn_·=ü¹zß–â¬ùÿØ·rŒvãë¬ËƒÛ)î2?ï¢Ùbþ[g]–~ >¼Xoâã”§#Üöú†fªHµeôXÚ—wžJ0òÜÕ˜÷Ä7–~áþ}ó蟫âÿGèCÉãí(ѯ ìÒsvyÏs\¯øPñ¾Ãe…Å«ì•Çäû8ùÍÅøÑ?ÿʈcœ-©·±±%äqìdVfRþì>ûÐýž¸‘Ø~鬫+´k"½nžyëº×+æÂO"|9Tñ*²óÉ>»Â¼£¸0ôJ±|ùiþ/Sóé8 Û¾ÿogØe_¯|8¯»ð¶ñ+'¿XÔ ç…MÆ5ñ á€|€Êë[ù¾%¯*ž¾®ñr1©g´ß²ÿU^GÅg…³^Ïàn:÷Þk DnÍã™Kì×׳y§D;jϘx¦É3Ïk]‡ç1æ‡âyáÓÇÔ¿ xiد²¿³×‚ÿßçyuÆù¯âõ/§x 9>CùOÇüÝïL‘ï‘ÿd×4ñ",°?Co}?^åÄñ|V¯Š×'¬L¦È¾7té¿ø×Ùå%½òƱãëSñ®ã4óÖ!ûô޲KF¦}âW‡Ž[¼ÉÍ5æsíwàÕ±'(‡~ƺ󃓧ÚzÌäé =ÊÝůgû»R|#8âiʇ)}þâ²ÇËïYüá íGŸl«¾OÐÏð× Gð‰Ë/(êÛ©ß<ý =@¼_ýTr³x‡¦²}úÌ0•=¿‚ÿÙ ô²cÜH÷‹ö¹QGâ û¯äðÐѺüSae´3~ŸäÄÐHõ±ž‡Á±‡_×™´¿Çy zè1”'AúùÅßNî7â\#ow½ùx¹yðÿ¦\é²õô‰‚#ñI¡‚\+ù¶DýfÇÓú/aÏß룎†reǯ0âÀ+n·èw²›‘Ï*Æû _'D_ÈSf‘¯Ä_‹~6ÌóÿMê§þ[e\ÁÛÓD¿szב3ó<ƒ’kvî&çíÑcGí/•Ï}sø¬×ϤZfžV¾¢*zÞ«Ø'dØA¿Öá¹’;ˆ[Ä„7FÒz¶ŠŽu_gìÂÝï(^OíÇ‹é¸2å»Q¾øì]¯p¼Þ}K|~¹¾x;ëå„’Ë“6…þe¹Ëuì¥gåý)¿ »D½?L¾g›ä:Å/(þ‰<{ù/l3ÃËö°ßu9î¤ú×píS|¤üoeú·øúÙOüâuâ7§ßÆòчò½âyåiz }ô´âIø9Šw Ìõ¤‘ï®Þ¿µðKnØv"xB…ùrcÜQ|8Íà¨y§Ž<[Á¾rÄü·Ï<¶8‘ÖCü¿›ÿ6mg¹¬Ìx}ÅÛÚèU‰#_dø&þNûÒw{ùâ5мßvþ±Ùó‰ßq˜ÆéÓ¼íÇo,æõ¼µÛ„°Uy•7g…ç FŒ\Nïpžï;ËÏJøÕÍYz^ã/"v€*ý\ýçÜx‚¡>lûQÿƒÿòáXc?KÜŠôV¹ëÇôbÄuE9¾=éqî·‡÷¾Tt¼ÂxQüåûjægå·Þ?O0Ún•üüÙ®ãUæ;ù¥ÕY–&Sl¾'Åã¾Ì€~ðîxoÿ4âDzï­ã/µÆ~ Åwna–òµcÇ6üWâ¡/wÄz@œ­ö…‘¿ûaÔùaüy"_ üçaë—Óë¤?{eœú1ßÌ '?F¿RÙMàA–œ*Ô/Ü—˜<¦Ï’í"_b“ü‘ï³Ïœ8NyýB•zP¿°ÄyòuÉŽ%^ñ0Dﯖ}vÞðã08öcâc~aô#ý“‚#|±~‘× ûñz’mÞÓ6rÙVÖϵn®£ï™ã~ò·ËîŸs‹}Û•ãôü§¨ÿ£”{ÁÒç(´üÄc»:ሟŠìUZ—m–q"}.<—1oÍʨã2ý)5KÝçëŽÈ{P\“!½ž¸ê_GÞ #ÏFèþkÇ6zäƒé±Sû)ŽM?ÛìfˆÞ(ßwþ@zÜöë#o1Ýÿù¡"ÿÄ!ß_ùîñûˆó?ûÁÐÓzŸù«â×d×y¯}Öá ŽÒË^•Ü3戟5^Y”wœy&Ì2Í¢ÏÀ¯;êUVñK(›c‰ú+Ï“x±ä¦q+¾ZéßÐd]‡w$ò-“¯Ëà/3âm}[]öÞïœö! rÑ4ãGv›§ø¿I?Ïɰ¯…!ñ_äÙ‹|-ÄAÛõî!_‹O“~¨Ÿ½ÛëV¨× åÏfz† ÖñŸKï/Óòn°ÞŠ·cKÈõ×Y÷”ƒ|`±¼ãš|†¡öݧö ä¿Ï­³Uœ:~ß¹„‘̈ϋ~ÞèUB =‰âL6™/ê®ø7ñD*O?­_ O}˜{gгÒÞå<óæô;³ö³Fy†ê¬3Ø/cþyùíì»Â3t©¿â/›cÑ1¬eþ=þ_K÷Ó¡C¿mòÜÜi38æyŒúø{Ë~/jòV†•ôúÈÇÚ%OƒâïËÍÞ¬ÿ¿¾(4'y.rs¥¢Á¯;õ{܉·î¢w‡‡@ycLò’æ-ÅkbWj#WˆOžxŠ€c8/=ý=ý,÷Æs*?øsì Á±‰>]ëW}ñ6ûÏmöýðËŸ,úÛbÜþ™_eì!/î°ÚBÿU¥?Â÷q½¹äÕ\Ÿü¥Ç]ä¤]ìÛÈéeæýïåzòàjýˆëH–g×”oO¼cøw‡ü<òc8ÂN6tÓ|$¾òo= w¬0ÎðO6òœÙJjo±3Ì{ö%¿H}”—fÈ>Rþü ÔkŠ~Ýæ½×é73ìGçßÄaëó 5ÿÏÕ}ßþÆ:ëð|féâÞplýFú?ro8DßxÀx‰ù9XÇÈӪęi¾¯Âëq)øÿä§Œå÷ñ£i ?*îà{N¥×ÉÏZüÅ‚£xò´®¼›óeö!Œ›P!nE~Ñ`ä·À®Λÿ/?ââ¢=ƒ¼Þ¡B\Î-¾#|{F éñ&Š—Ö/Æa?f»2éÇo=›¢ò)nL¸Í¼ ýÖ§BŠâóðÇÜ{.Ïk ŸC=Ö˜v±óoãçÎzý‰>ïõÔÏä=øSéyârÂ\ÑQóëõ^öï,¾*«Ñ/{®²>ëüüX†ì÷Ä‹ ÿe€.ò˜‹·óeî«Ho¢80æmñôìЖ%Ç!g½<ž´+tÑS‘$÷ÿÏýÊiÿÁÿÎsØ7µùþ¬ ÚwżnÇ[£~~ö› Æògü›§>æ3øÿ#.eÇ/Ç4çÅS$Þ™\ÏØE'3éËàBžºJ¹ÏY‚v¼Á÷™§<§‰?[ËË {Ø6™×jš§á_9“¾°šÊ±Ñõü‰ÿß§~]öåòc½ÕJË©òŸ£øe„6qjèÇ r¬üèÉsŸ¿…=¡‰Ÿ|{vç‰ô:åÝí‘g¤Š|YBï\\Më§üÇä/¾_o¾¿æIüÃä_/¾Y;Ís/eöå+ÑûgœÄñ5ü*òµòaßÉÑ$Ó›‡>rD—x ÅI×ÿçôº¹Åô¸ÆþqˆßgŸýÆ2õ¼9éíÝ!|ääï§–=Gñœåì¼ìwðRùKl½àÿ«ßÊž¬ýpçn³o®Ï&åÚvòRG0á6ûTñOñ<ôiቒß/½ëì÷gH}ëì›òü‹y>PùMËÞ'”Ÿì:óÕ*ó¤ô² 7ahŽ9füÜ‘ï^ú¹ z°¶_oÄ‹Ø5æÝšü%èÿò·ŸKÊ GŒ'Ùkêô£<߃ރâ‡vþEŠÊGÏþ+b¹qÀ¾ ¾þÈ/N~š°†>Mú+ÍÛø‡‡›#^žäòûÆ|@7?.'?ƒ|‹žOöðK‘þ§Œüõò÷1>åw’ÅíÚú×õí#óBƒu‘ÿ¶à×wñ—YÐûa>VÞÃ&q²¥óã²þÃ~68fùvù44(Wq³ÃGñ]ú°º7¯ð}àãCÙ]2žò9þzÖ@o8@Øc=Ñ~±A;j¬ðÅF¯ö í’¿}™ýÔgýÿð.Ú¥¼áȶ„þœ¼ÈVÁ¿Aù+×Ù‡Õ™ozä]yc4C꣼µÂÏ–hýIñUŠ“€7P?S< ò¤]üh†“ŽÈ3&¾ÿ9äȯàß?$¿˜ö/ò¯œbÜO}WЧ©Î7öÉ¥¯Ô/4ñ#&Ž6ž‡WЖ+7é¯ðÙÞ$ÄOn“ïÍ ûéñڛɱüB¿döQvƒu1ã¥Šå †T\>eŸ¥<ñ°vÙ_Iþ_Û>ûåÓ¸ÆyñVÀ_¦}åòë€ýÄúåÉ]ày’³/Ÿ8â·Þ?k3 ÎdÈz?¨ ᛯðÚ ˆ\{q¤;Ÿhˆ^n¯è˜çw'N/¬½˜œú-åoAœ }ôNÖòˆÅþw†õ_¼ ›©Ý%ú¹ìá×Û£ÿ¯ÑNôßq_K\P¸É{G¶— Ó^鑸^䩉þœÄ…Ø4ý`­ø}´ãXùåáiíß8òyèc_Qæ%êYœàzô;Ò#‘AqV¡ÚODd~¿E}‰‡ˆõ8%W“¯ËêØe[èo¥§W“~r‡usH>É–ø>ü„*öüCõ Uìäɵím¢è²î^Íô³+Ùñm7ü…yÝÄSHþ‡˜ïüýGå{/2Î{Èý?š–;Dn~Éû‘~±ŸÎ²¯êyÁQ7Ëó$Ç7Fh7ú½ EÚƒü:ŸÚ‘ß”ÿ"ËÓvÑÏŠ··…¾¬bŽð‰JßiøiZ“}å rÌu¾§ò×+HÌK,ùñ¦Ï_ÕTÉoÃ;Í|å3ùÑ–Ñë‘Ð^•—Yvix{Åkj”§4>Ÿ8_ƒGÞZô³é‘ä:ƒ×ÖJÌMô“ù¾ÿ‚p}GýÖÖé}ìNâáíÈyhQò ß…8Ù(wÈÿæyi•~~ý„ìð䕵ó¼/ò¼Å|oÃÿÆqƒ÷°—ÆKxUÂMÞÿÏûè…áq×3šxO<§Þ¬È{¹Aý‰#ÔÏÆ@úµò«6ÿiŠÕÇÒû–¿7Á°uב|‡a†uÞ‘p‡çïa—é!O`ÕõûÝiû§‹~Rü¶Rðãöq„¯ë‡ò÷).”¸ñÈ·£| }öèA{ì¯z#ŽÊŸª}(ò^|?ŠÿʯNy€å?‘Û®ò=êciyÊC±ËxÀÊÄg\®¿3EñaöÙáßjØ!fe¿áüc£¼žSAoŒ\Ê|wüüÄ»©ý^è"7IÞF{ô‰£æsÅ)õÿ“è…”w>EÉ—¶Ì¼\‰ÑϺŸâ=ŒS?æó%Þ¼åúøÁþœ¶<áã‚X÷ìãd‡}7÷÷'|ÂËü8zþS±~? r:ê•å¹ï-8Š×ôóÖýˆ¼VZó_hSßÖO§Ï-2þðïý­·¯Û|gÙ52›gžU]þ$?ÉàÈþ.ÞwÕû½)Ž}]ï‡çH@¾Ñ0C;gÇgxï/9Š÷ûgý>ƒ÷ÀÈùìàQˆy~”—^ãAþ‚ðü›ü¡WhŸö íÔ¡Ç´Þ‹w»‹xâbÞ¨ú–ãþÓºùAü*ØYí5ê¹ÿû’ç…ó"y4B÷$=ò^(!kžYàýÅüêwÉ{~Þ›ßHÛ‡~'ÆI̧ò¦‘Ç;|,Å þ#Ïž­#VðnÒÞóòk£Žwà ¾žêK­†¾ãàÛAÏç.9 lÒ¯º¢õŽ÷ ^þ .F^ᨗ¢ýýGøÂeúìø[Çzæ>æÃ þÚ2úNåI9Ç÷Ù¦½Ê³Žß”òs…­ïJËœ¢Þâ_ï±ÝAέfûDâ’Lö°ñåmúy‘q^˜tü"| µaŠŸšpÄûßò» ²cžë÷‘OÄ‹¬}~ngYE_ ÿ^ÔÓ —‹Ÿ×/¢x±3EGôoV†…|…Ö6Êÿ]Åøü_"/…â^¿?ã÷ü®á…Qþç;®2iŸ²ŸÇ^Ÿð´%ÏQü¼a¯Ò>À#m¹­KñαžKȽzßK/f8áÿï`oDž{‰¯Ý+¤¨|¿Û!Eò·Çv(>Þ« Ï® ç»Ì¾&­þ½}öÐ z„ûZÅͽ~â({5냽jެ£6ðqöF¹þD^yŠó½¿“!þk')fqh‘Ï@Ï=ϸ›¦Ý¸gÅ}œütî /©ûý1î?”°M<êæ½sÙ¾³…ä"ý~HœÑ ý«Ì<[‚³t’Ö¿~å{ø-ÇòûìojøÝð=âÿâÛB ºäCX§>Äç¿Èk«|×'ßÒú)oÜλÓûçøÎ]÷·ëYÏûqäï[G^¸H;ÑFþV0lò~êY|ñ)ò·³ÔΧ¼9açϧXE?»(ýЉ__Åo»Á<ˆ\h âx·¨ïTò˜ûy ò¼Ç¬ßÑ_z~˜=äñS(üÈü&Ž}ôSÒ;V‘ãÉ#Ÿk)j>õUþ !¼¿6+û8r)<ö¹ Çgýÿ\/†ŸyèdûÙ ýv—}Ü6q‹ò÷DŽ uî_a]†G!æ'ï­u•ÞñúÝ,9§ëõÇAwòöZ›y§¿à÷ía7¯QÞF*†7gx.ïáQÎ÷Ð×ÈýhŒà½•éáÚÇà¸ã2rÍ #iýŸ¤¾ì›§'œIåwñ‡F‚Ûì;s=Ï+%GìeáK}ëFù3Çëαˆ¨Å¸%?O|î òŽx?ïÿÛ§'É,þñYƒñø¦ôæ¬{âÛTÿF^PÞüΔO- _ }üšzô<¾ìˆ|lŠ +¥Ûýú]žÏ¾~“ýêf*¿*^?Æ ¯1ŸH_]C®þÕðß¿‰>c›þ> ¿l)~}ºä9xâsϼ#­ï ßeø?V^êuäHâµí®<ÅÐAOÔà=Ëÿâ…Gå'^Éä,òÓÅz(Ÿ"ví‡Ã™LŽ}18ÊŽü®SœÔÙ´}¡‚ÜŽ=2œMË“½vOã÷.åñ^.§z.Ó>Mr|?í#ô˜Ú/+þBþŸO˜£òà–Æ@üØÇz/²?›ÉôùGôë½gRl࠼ϟJï#î2L¡÷]AXÅOe•ýÒ<õTžÙ‹ÉÓËë£Ï{v’ú§ó”}*8*Ô>óÔN¶_>^BrsWþFè‡^ãùý´AapñF¹ò_˜c¾Ö>u~”v ç¼©òÈ+¸ÅøüPHË_äû‹¯‘|ráÏ%—Ý{òÙJñ)¿ÏnÒ¾ëqf‘÷\qøUÖøJijv+á-·öïèm"ïxΧBÞeØ'³öá¯rï7Šñ¾ú¹xïoÜõãîÿÉØŸÀë¤gaè·ž# LtÙâ€s#À€Cœ Œ f/¼16äÝØc[³zÆϨ—ñLÏôÌœÞ÷î£}—ξé;›¤V÷Øå ŒÙ®/ñeÕçÆqHPr‰/Üê©ç©~ê9õ©}~¿¿^}ÿ¥Öw¯·ÞB|Û(3ÆñÄ ØÌã¹<0ˆý|«Ð‡¹.Åóœ1{Ð_¶¿ºnÏ6ü)Ûðï!otDÜLÉ_ÊüK°‡NÝGù„gÔ;V˜ÿÎüé ·«à¿ˆË-ÏéïyãB¿øbÌð|÷:ìË/þÃÞ‚Þ¿»ù@¨gÅ»XÁ9ç¥Þo$~1û‡§ò}ÆŸóü(‡Ü‡„ø þÅ-ä7F~@ÆÛ–¼·[ÿ$ÿ^ƒ]€üâa~QƱ>~Ì`®ûš"ý˜€¥þyðƒy”G~…}Ìãèß!0Ï—Y‚f\!ò ”xÂmÔÿX§†Ì×\âËŽ×~]þ¬ë‡§fòó]ø?é?Zš{¹‚å{äW£Ÿ#à<5ÏÅ?î£ £ŒŸaëëëòÇ^ùµ ÆgfêrV)·ÑþG"Úz†=™¯á ÷óïð­åŒ§~«°¹pñÛëö\CvàÏÛA\Í õùãž‚|bžØÌ“B{¯´ÿgã{´“yѯÜËùÍÆîçMÖï1®‡çû®ŸÈûµHçÈÆsF÷•»øáÎâþ¹E®ÐoÈ¿püx¾>ž„ÞÃsây¾ÎMÚ‡Yöy†Ý»tå ×!o,ÿ·'Þ†Ÿæ'ì>×s¨‡3ããO|ä¹X¿„øŸë™þ‹ýåúñaû‰.çrJ>ÙØÛ?˜áê›6?6ó5®‚O®¯Ásì§ç|W®¯BO‡œÂ9_á£÷jøØL†àÏ¿‚užc¹ƒ8#ä7Š#àÏ2ü1sð{Ì >Ú«Ì3ƒ÷áï ˆó*çSš³x¯MÐ ãû¦qÿUÓßæÞ[CÄ%†“ð×Ý<‚ïÐÄ–ïiÇaÿL¸»æ6ôÚ„ )w‘ ¾6ªË9‘ïæå#ÿ¾>…ïG4ƒõWž?v¸Žù™Þ|xqzÔÓ†;ÿöϳ¹Ÿaø¹9‚|*%¯ дäs\½ŸŸ¯ƒ˜7õYèmÌïBþ¹Œq¹Œï.›¼ý‹—ïexõq¬äíËý.v,õÛ%ôþ¨}|êòåA_DÞpübæj¸’å[xþÚmè)Œ¯¿õÏêògA?È{Ë|’åùèßÖÿ–áØñ'F,ñk?zŸ‡ ÀÛk÷3DÞÄp zÕì®y賘ç²ßˆùg1~³ KžcÆsNæÀ7žÊíŠ#øç– ï—·‰ç?šŸ„a5Û áF­ož‡¹‘û× _›Êpû™ñ*ý ïm×óÄ1´ëh†ÌG}ÆìÌŸÙ­á­.C/^F\ý¯ˆ3z'ÿ~]ãüOÚºñ"úóúc5Ü‚_ã…€öb¾¸/žòåý6 ®öd˜ù=d8û Œ'?R·‹q'XŸdžçø#Sõ{Œ3Ù]}íe~6ðq¸¼^~á|»À|åþÄu… âQ¶çxž|X=#Ÿsøô{çÚ¹ðqqöØß˜ŸqW´ÿ¹Žu~“çr…%0âãÞ¯gˆsiì‹_á~¨sˆ¼–ùU`ÜÇ*øÿ ÚÃs(Opë,<ù±ð›qás¹]e¿ýz?~ó‡m#NvdùnöÔ¿WÀ/Xâ¿®z-û=”{œrt¹ùóüÆ  ž{ò ¾gþHæ)ºùõ:üèWà7#¿çùˆ/¿xxóY”‡ó=J¿îÂß¿…< ›à‹+ˆÃYæzÚL†ˆ ÐßâøÂ ônžç ý/€ÍÒŸp®^8Æ üB['2¼€ú‡Çó›Ê9N[\?qñ*Œ'âþSžÏ}÷Wñû‰šŸÅMè/Oݯ ÿ~‡Ó¹üðLîwÉÓø,ôž;zükëN -_C©ë‡å7ô<îg3¾ÓO¡Çmaœûíü‚¸‡sœÏý*Ú‡ü”Wâ7ô.úQv0N8÷3”üHÀë׎£Üÿ2C;?$no¶±>s |Íó=ûkvò üÏÜwó9õ|ý÷wcN|%äß/¢ÿOß©Ûs÷çtãu óq~þ/¬‹–ï_{¾‚”/å9ó œ´v^…ÞÇ}à³à‹¯œ¬ýbñuØ[O¿…÷aÿ¬ÑΆÿçÓuÂè¯@ßúú3múã«3ÄÃÓjˆs,÷í¢ý+Ðc.Å yîò ”v`}>`ß[¹Oþc0΢ãü <÷‚öà¬o3ù#€È·˜×lü|{åáü€}öÑÞQþýÙ5þ–sã|_å_G=ÈãO‚n>4Uõ+@~—ü£§éÏõ„YØakÇ¡—œ]àœŸRÞO¢}Waw2¿Ôóæï:v3o>áâ<æ §fá—{õ~þŽû0§!‡¨OÎ!¾ùࣨç.ðfýó=û*ÊC¿oÎÔùSãâÞÎÌýã¹ þFœï`÷†g€çgC=<7uþÿeÈÕQ^xŠŒ§G2ó†!ÿs)g„õ¤œc½jõ`û¦òiı‡Œß%ôû©šn¸¾Ròþÿ@¨ åcyÿ§!/—0OóØ/}|ƒç]F|ƒë¡Ø[òÄ3Oü`ñâ¿®ësz]ž|çK—ŸEÈÍuÔÿécn#.üÜT†g?VÁ’Ò`)~=Ê»—k=áêt†waõ|`&˰iÿc a@>×0•Û]ÎeÞ„]}úû)ø‹§¶@׿ÓÚÅõð+¿Zßgí:æ÷^Ã:àÚ :ÐŽ÷NåßKà·óÐ'°ß-2NŒGôß±œ“Ê}Œ<az âÌâ"ì˜Eä×™ëårOŽÐø¯ç¡7qü7aÇ­¿?{¿n÷*ìsò7Ю;˜Ç=È—›ÀÏìûäúâÙK9ÏôCó\½Û¶Ïùdã6ôÅöë½úV]ÞéÜÞp ~¾ë˜Ú7j?S9·›ûh°¯¹ìÛ¡ýÅ8í^è Èûou ‹_ñE.Ÿ®`\¸~Îu¸gŽgXòa½ù ˜G:>+Xö”¸tø«W€3àë<'|æ=5DœÂ1_¥}ÐÃS°ÇynÔ<èõ‰{r÷§"ŸL¼;î~ãüNîWæ_Ü€ž„ü»ñ¾»ò±‡ 3¨ôyvÛËxA®goÃï´hëìsX·å>äËŠo`Üï`ÿ‹—3Þž3=ù}ñH ý\ÒŒóV­×”çÌ?°ÿ÷›/À_Kþ{z„zã}ÐÑ è“ù€¦ðñ\ç”pvv*·ë¤[Xoâþä Ìkˆ}Q~‡ŸËŽ·xëï<¿ê<ðnñs°S×脜<;•Ÿ/œCùÓ"ïU¸6½~é]ì+Þ…wÄü)Yoã_üÆ© –¼×gîÔp zäA¼‹sÇxîëüÛxÎõ¡—þ]U_@¾…²>;‡ßÜG÷ýË𗽆ö1~ëe”¿¹¹üÆ>òȼ†ÌË7ƒùá¹"ðøE¼¾Í|Ôw7`¬cæÖÎÐ/:“ᬿªîg9¿ øTäú‹ý~qŽë17sð+ÓÿŽüqéË Dþ™…ãèô©SÇrý—П™h÷awäÇ¥^(Oî/w‘_þ"úÃsé÷€o—`/À~徉2؆w0ÞŒw‡¾Zò±âüÊø æâ=2¾ëRïÀ3U;"×_<‘á™é gž®á&æÿæç–þP}ípþÍ|B¨/ÞŠÞ¤]ÿu;fP.ó*]Î|2Œ²< Ûˆgþ“g¡?ü©ª˜Ä1?ÛûR‡#ׯ±ï‡yÞÃ)Ø•—ŽdÈ}3{G3¤\þ=u=ס`Ÿ2ã\Ë:üÓà[›ðòœëÒï×€K„nŸÆº^®»]¸—ŸÿP@û _åß·0^89â<íRïò°íÑÿ5U½å½3à3X¯å8êø…\^ÉGøçÑ>ìS)~xÏoý×U`Ï.Q¬Û=‚þ ç8=âüú²þõA¼Ç¼€äË<÷ˆë‘Ì7Š|K¥>úå7Ááäyï8/90ì¿8‹þc_X â”­o]8‘ﯮïó|¢ÇNÔ÷OA¯X…¿íý¤ ˜‡püâ•{€Ç2dž)žó‚<&üÛwNÃòœÓA?è'fêö=A¿6ðãg×Tî'ì;¬[„=œûÀxî«ÜšB»ÐîÇ%Þ#^«´ ç´•ß̼õw3œ§Ÿò™ëo@ž0ÏÏžûå2î†ëÆÐ³ü=eŸ&ð°´ÃÖE¨OGì ä9¬tvà§ÙÆ:öèD†3ùûpñÁ0.g½ l@ÿÀ¹íáêÝøð\» ±¼QÎ3~ý»ç%\|ãvçv ™ßç¬ÄuÈMÆ{î@OÝ¿Y·¸,òuÆIÞ~ íÅ:.ÏÙ{ øÄ¸æAÞF<üiø}—0žKÐ/Ëýø<•þÆg·á4Úõ²¸Šx‰EÄOL¡¯Ñ/1ê´þö­KM›|[‚?df&Ãsð"î=þä½ qÎ])wòÿ.ð{ôóBíä¾–0›õ·p‘úÊ]¨÷7„l×ÏÖpëÇE€~ƒs~ÉgäI|ú;òµ2¾0žÂ<| ¿aos¿lXÄúä.âÃvÁO¾#TíÜ·^Æóàw_†#ÀWjÈ|íðÏ–rW ÷Î[\ÐOã¼¼UèïŒ~ þÙ§rûâmœ;µ}íȉêãÜ=À·2œÁºöÇÆ³ÇkèëxÌ£é~Ä[Fž¯Í|Hgà÷‡¥ôc í`~`ì§ /Í¿7ÀÏdžÍïÚÃ×1¯B½³¿¿Óú+ûao^Ï~É0Ç84î¿…ÿlîWɧǼh„ßëòw?Wÿ^‡„s¦÷ÓBÿôGî"¿ú ôuî+» »jñÁÿNE@Èÿ-ä[ _ðü ÛÈ7öÓ/së{븿„õ x vÍ:äùǧòï|"äûÇÑßMô—ç`=w¢ ù^E=ðÛ•û<~ãH†¶þYò€žøGЧ€wåþ-øCVf+«ëž£xqB<_n-ãKx&?/ùC™õi”‹õȰ»lxOÿÉ*Ê_ÍïÅ;XoÙ…þÂ|xÈŸîã{È9®óÜ2„Å×P.óÒs=qI¥[á{¼OòÕœ_gŸÌo‰øÕ° îÓ»¹>‹ý¯áñÃù÷›À«r=%o:×qÞo)g´šá:ø+÷¥3¿Ø¨Þ°% _P@þª€¼Œá<âx–2…uŒ ÷›¼ùx oAnž¡á×Ûý½Z·ñÞqy¹®ÀcõûŸ"<ŒòNd8{¡Óú+q’Ì|rõ&ÖUÖa‡­#Ÿ‡íŸ.~–àí#1ÃïžÊðÛ3 Œs@žµðù=Îg¸ ~„¼+aë/#œ§»9„¼_ï@øƒnb=f òlõ!ÿX@žµÈsHq.FéââmØ‹{ÕÏ·¡lž >+ÐÄóÔ™oç¡X—³û3Ä~¹¸>€ó7"÷ïð¼wèYÜŸpÎJXD¼ñ ðŠy…]^~ßa?Ú8· Wž‡ö¨çÌ‘ ç–#Ú‡ï>“ë‹ôcãÜôxñ+jˆó”Ê8lBîbiïËg¿¼¾Ï¸Ùë°_vNdø"ê£? çΖ゚ïïï]‡sõâã}ëk{Ø_¸=pô°8“áÉL¿ádnO¼qª®y§Ïð«Ä1^Oê÷g`'®½•óÜDžcüöñiÈ•ŸËùž ?BþÖp þø]ø!Gö@G7@'7€çÌÇ€sÐÖ Dýl‰ù òÆ5èãôÛ¾ú‹ ?6…ñ€¿‰û7®ÃŽœD\zÁ?<º—áò‘ —0~g!?ÎÁÎ`<Ϧþýßûàô¯ÏÌäßóàÇ×Gˆø [ðÏŒ ¿Þü¥ú9ð0žE?¸B¹Çóݱž]Î!àúÇ…ùéWo€¯ÎfùRô³ËÐÇ™/wyœ¦0®× ¿îažpž÷¯…ÈÕ'Àw…çì”}„gA—s¿­êĺ_œÂü[È_Þòï71ȳS¾ç¾Ó©éê~8 ûžçí!/cÉÇ÷&ìnžîpÏáÏ,õ1OÀ…Q†ÈÓžz õ‚nCŸ½…öÐŽù6½jíÂzld>,ÆÙ=…q}óË|?€áóGëþó|KêÙ#@òÍå_ªëÇ9.äá$qþ9ž»gûRâsŸî´þâß\œÊýGþ0äˆçö}-Úù$ÊýœµÿLÖÏÂøöÏÅ׳^®C¹ ¯Màùuà5Ï#tø-Su;ÏŒ2¼“ã.Š_öÖ?6A_סÇÜ~lÁú‘#ÒÏ…ü¤áùãùþ +€ìg~>.Þ3`]1À Ðï=¬»aÿJ9·l qsè÷uØgç¾¢]>ô òëG ç—ž·ö«¾/ù`™‡v zßÖ!ç2^‡à×è~ãÁu-Ø[ád¾O{$П¾YÇ3…WÞSÁÈx¼Sà‡Ó¦í¡ÿ8§¶ä“cœ+ÏŸšÆ¼ð<åO¢]¯äßaýºûôtËýÒˆ£ §‡vòx¾^*íº‰qæ9œî÷þûºŒß¡~s17,Þàþ=ä3 ß ëY¥žS/Ì6ÿd _°vÁŽs×êûß›ë-q½wsž¸…ó¦W·|Ü ü½ÔS‘ÊãW¹YΙõ0è%Ø9Odº 8‡µÄ+##œ<œs_å"ðüŠ~_¬#„UÐåèåÆùàãÃoå÷.‚¯Ý‚ßyqùWÎ-| vå&â -O5ù[À›i´ëy@žk0“õ¦0‡uDê§ÐNÄ…÷äñXgáy’ñÇBÝÎYð‹[àgë_mrq í-z;á(ÇrÿynwÉo7cqj”G¶o#¼pE?á,ì³­ª+ç°†sÏ+à¯<ßçw1o:üeá:åZîh˜Íü-l#žù J=ÌÛ‚øö0‡8²¹Ú_>3Èx ù-Kþiè//„ ÉG>y´®çÌž»Ÿá"è}çÛ bßìUèÔ_ „>:¯a\_³z‘o)®3¿ÕFýü¯ž®Ç%¾ùýCñæï¬`ÉsµùÛF|Êæ¿«ËŸ¯×³Â³Àÿ—B~ŸöÜ1<ç|Ã^£¢ý £Ko¡Ÿ1C䎫 ÿønƒ¿Ò¿³ »lùw×ý¼ ~³ ¾¼ ÈV8æå*pçR~%Êa¼ÚÞ߯ËGœnÉ+…ó£âÚ57]½ÀWÂyô‹û7¡wŸ©û]¾ûC¨¯äË0ÿúËêví [°—–!¹Þ ¹UÞ§~Ä8¯ðÆ2ï ÷¥ÂÅs K9°£Ã)ø‹v˜W«®/Ü„_r; ¼ˆßqã¼Íø8Ìó(ÑÂxNæù|=çë ˆûÈ[. ]Ïâ7óá³x| y ã5ô ëUñê¯Ôíf<Úù?|10>þ†þÁ¿²‹rù5”?UûkÊûÛ¹½q1óëp2·7Ì ïÔ,ôŸ§ ·¾¾±óena}ô&ð~ ë‡ŒÇæz5ílœ§Ãsã.ʜ߂ü^?Dð“Su;‘$¾ŒçÏ™<àylOf½%|îD†ˆ3 Kø}úå÷àýÛØ÷±ŠøŠÕz6÷ÑožþD¬Þ£~_~À¯Ì}bç_¯!ó­­@?>™Û»oß:ýåÅoŽñ¼Žö¼‰ù›<âºôþˆ}ªá)ôgõ1Oßsoe¸uÈUÐß,èögiÏGÀ)@”ËuÞ]ð5Êï— _3¿ØËà_8‡7^Æz.òtìŸ7>XÃà7ão/ lÞ­ ÷aǹ…8'®óž¬ýÙ‘ó\‡½wÂå:Þ–ëœa~‹/Â/r ü‹ûAa·ûþMìO+å~—ÁE¬oBžñœì¹¹ú»³ðsóüÎ?þìä [”ˆÛ§óPÊ!¢_qŒñ啞OOeˆý„Å>™Ë|8œ‡¼a¼áöRUodÞ§“àï¹—¿?v1'ÛOü„Ÿ”vHÀ:Ñ;ã|¢îßiÈËóYOX¿/äïÂèeúØMø‘7?}¯.ïÙÌ·ϯ—ÇyÉJiÏŸ=:½‡ça½t4?ÿ¾ßC¼:ý’[ë5d>,~OûwtÈøKîOežqìç+íºüÚB»¨§/ÝCýÏ×ýí[¬åUÙßý­ä™þ"âO¸†xŸ’_hæF§õWòÔý úÌièµ8¡ä'!~ã–éC+¿ZCÆm½2|~(¬Ûíó@>œž†_ê™c5|éD#ί(íX¿¢Ü\£Þ¼žÂ<í!ïÎ6Îyã¾'œ«··o|ÿÔ 2Ž/.3ßâ÷ÖíØB>î¿yîopŸu­'2N+ž…|yò#MXòØò´]èOßTWΣ+å#/m@^ƒ0y²|i%úÊ¿‘ùzÉ×h| 2Þ•yÖþNÝžÓˆ'\Ä:åò„]àïèX†?q/ÃMøƒ.‘?Ãþôõþ—è×útã6ô’çñœy²ç¦ìg¾|åþœÏÂÿâÅóXþO¸ Á2üŒŸ`~¶kz/ùw^z+ÃõûrŸâ_Jy~ºësp7‡ÙÅÜDãüb×?‡ú>eõ|;Úwòãuìgy=¿oŽ˜'ùÆËyád<õMØ»<ë`qÞâ=pNA\ùÎ. |ì? Àó¸sE7¡¿mBî11ÎQãº@øà‘ _ÂIȧ­LWüûâjMhE>_FyÛÓù½;çØi7·úH¬áÔñüüÜ?ûí_ÈðÚÿ·°.zã1x.ÊÃÇš0|t*ÿf~þ-øO7±î ¿g8}ð<èå<å:èñY~<þ…yôùMJû_ß\ªãâìÜ%´“ëuܯ=Êó®„>À<ézû¿Ëp|wí¡^¹;ëdÈå<9•á ìÁ“øz‹ë/%ïä&üpgQÞëÐc7á'º€þC_sˆƒãúómø¶±^v| çœð/p_â¹,W¸Ï3®€_^y¹†{u¢ƒ²žÅ}v<÷ ùÏ_ײ†u}ú+— §va·O¿§.õný›üÎQ  Í£Ÿ8Gª|·ÿ ó—3þ‘ñìÜoõÉ#x~Xœ{àç+åÝÝì^º—ß{ð)ú¿¡†7þ^ ™ÿù™Kù[È«‹s@м[„?çÚs_Ò;r‰ñ«°+/VʇNçö2ná<„úýÅ|ƒçªÅ ØSŸeÈóÂVÀ—±>ô<–ëÃ>²ððÀ£¾”Ë Üç0B;aWákÿ‹{ˆCDÞ}þ…3°C_«ñ',?ßÌû%B9ÿúÝÊá wb]ó/߬ã•K~Äiœsf2Ÿ`>-žïR¾c¾ÑÐ óoð<øåãTnÏ-çƒ~ê-´xˆ¼È¥½ÈR âÿ $â> ä7Žvjˆ8¹wü@€À>ê~}x&Ã)´“þñKµã*Þ½œá7W·Ó| õü(ÿæ9VO˜¿•ç©Á¯où‹<€[w!ž«CøhÝîx›ô:Õãç°ÿŸçm ¿fÀy]çëqò-óo0/ûÇoîåùÆ„ˆg+ç `ݦô—qÈORÊã´‹x¥UÐóx^=ãœÀxxÍõÆÙŒ¿a úìÊ(ß¿‹¼†ÔÓ·þf]ï:üžw‘Oã¯M¡ÿл™ädŽKŒÉð6ö 1/Ûà3Ï}]òœ–èƒ<|æJÝ®çÎÀ¾ÙEÿ}Ýáå{ùþì•È™iÐ!åú.ã ±nêçÐÍsùÈ·à/ˆsð1à'Öíåþ[èóüg)ËáøB~?|ßTþ}ñç߬ûs ãúÙºŸåù2øä±Ÿ¤èiÐO¯¡¿3XoBüÀ¾x°ôçÅ\OÜB¼Ô ´ïÚ(à ùyÀ9åûrÿóû/AOýÑ¿#Ÿc¾´7‘ßÿ ¼¿ ÿÒåzÃçPÿÓÇëúF¹?q›Œg%þ1ÞuzõôÉmÄS­CÿAžÄ¸ýð&Æ{z5õJœKÌ¿ð$ì3®sÜA¼!ÏŸçy”ŽŸÐ7ÃÞçø^DyÈ3Z¾›½ðÜ×ôïƱœÓ xq 3Ð/΃Ï3þb6E;OTõŹíÞ„ž5s9<ñd.'¬ÃNYE;¯Öö<ãÄâ-ð'ÆE/ÀOtïíA®#|ùßK9Ñoì‡áyÏq|û<æåÔT†X.pöÎ7‹§§êòO‚o#þ€yüy~dyyäfÀ‡è§Ø…k©^G)ç-š|;͸iÐó`¡]%÷·‹2>i7ŸWÎÕðûò{eßüöÅ·«Û‰|Ý%/©ŸkÏó‡™ÏtüþÙòÞ,ðo‘qqˆÛD\ ÿæ>•ë‹{WÜÃóçNOgˆóÓ¸/—ë£ùbwÿUÝäñáyá|¦ó€sT¶á§ßúëì,æ_š±}g¡wnaŸÝãGí9ì9ž м€û üÑq‚ayü#uyÌëúJ¨û÷:øÿøÂsÏnŸ71o;ˆƒÛÈý'áï¢xübxt ív:Ã'rÿ˜?ÔóˆÆÍÃ^½=ŸçÅ, ]Œ“Ø~±ý©ÐËâôPØyçY¿cUo@âw ìeÄÿÆÅLWaóȸVÆï¬Öý¸\ó¯¸ ½œv2×Áyž1üO¥=k؈üye½ÿýÇÑ®cù;ÚgkŒ¯Êz(ã™"À¿6îg¸ yÍ<@ôs<+XÚü÷.ö,B]„~Ã}ÜŸE»LOäÇ€%/#òTÅ3ÐOÿFØñ‹Wóß„/} Œ›ˆ¯©Ý"ðhΟ߉v¼qxøÝ¸ït:·'\ÿZĺ5Î…g\^¸‚ñ¹{îô)Ä_†Íãn#®mgýÆ~~öú ½ñ ä4ÖéÖ×"–‰xyiÇß›!öASÏŽ€'s?Ê9…»ˆ ^©õÌ8‡õcž‡J!Ïÿ<öà\žøáX—Ãó<?.C¯½ }ç2Ê;Š÷ÏËð5诂.¾ß gŸ¯Ê³¹ü€}ìa7ça ŸE?±Ÿ¹ØÅwòAž‘ëÌ ›ðlÈð4ê¡_ë2áætßÙ×:Äyeñæë­ÌµOÿÇùœeýä*üU¯Ä WÏý<ó[‹îa^·àÇùDÌð;s?Öéi1?qÉ߸ ½‡ö!𪜃sâ&×°Ïp çž.¢? اû§øé¯¯ðÜ¡çrûâÃ3ù9Ï•\ÿ–®¼·Óú ŒÛEyŒÃ[Ã|¬ ¼%Økӯ̓5¿'òá…ÜËðQ´ç+…³ «»¿·ªŸñÙñ&èr\¼Ù<ì©7¡†·~¼nçÃSò<œ ®ßÕýsÀ'æƒÞ…Þ¿z¿ ÿß‹àKßŸË Ì;ø:æï"øòÎ;ÿ,΢ÿÈWÌ}¿ñ}!Ã:Lõór‡*¾><ÂúÖ øyΡ^®€•}'ˆ»»ž¿/þÚ…cÒþ½Pûáâ ô*æ‡á¼¼ ?Îmøoöÿ¿;…r¡O~ÊúC}šçµp½œþºÿ4Ã9è…ȧxóŽŸ ¤ßöä\¶Ã<Ö×Äý[Ù‘ÏØz×öOÔíþhD{€G±^xv$òX½óýŸËð2Úuùx§õÇs¾Ê~kž7¶»vc&Cæá_ªË‰×Oà;à'×C/º¯¾§Fõoĵ¿øÉcº]·œùzXÍöq¸x¿†+ðßÏB¾,Cÿ>3•3/1÷Û^­é= ~ ä!åygñÞÔ_€ï»Áâ3¿X·÷ŒÇm诌c: ûài¼‡óKßÉ ;ü:ìuø "ó6_™©ëƒ¾Я/BÞùO2܆~»ûYò)–|“gC]î¹Ü¯ðÌ´üi~Çy|? ¹Ã<(ôóÜ®¯À§À¿nlTõÅ/¢sXoà¾Xä7)þ¹é'åzá+üùÝÊúã[.Á¾¢¿‘ñœÈ«^ÎÁ„_¦¬¿ø¯Âwè'óJ®cÜ_<^ÁÒ¿W 1&ë}ã|~0ä#Øw ¯Ð߀|˜ü §²?Œëfñ§°ç ¼áOYF;x~ Îà>ŒøÈ± ÁVÂñ#ù÷SÓ€ï12·/Ÿù6æá'x>—FÐ7˜‡y´J~Ù¿ˆýû¯c½fã{=ì|6ÃÝ?œïs¼Fõº0ÿâc‡óûÔW2žaë±Ý«¿åH~o üœøF|A¿ Ïܯ!â¾ÂF~ÏýF Ÿøµº¾Ë˜/î—Z…½>ƒ÷·H{†ñßЩ`Áì*åÓDÈ}T3ðŸ3ƒÏëûò8”}‹ù>ö/†™zü ^óü [˜wîX‡¾·nvãÙnAïXžâ|Ør¾òº†9<çxb¾â Çjˆx”Àu2ê¡<Ÿlí¢ÿð»b†OÕpütãp ¿¹/•ç_¶~]‡=zöìk÷ßÊð4æç—‡ÇÑNœßf¡×ÏAßX„ݵ ó.üä8G.ØùPÌ¿É|p1ÞúR‡â]økoÿ‚|±¨'^F?Oƒñü—E¬+]9’á ô³Ñ#¨ÿ­ºÿX #èIsß_Ãíœß<Ü‚<}6OÙ_ŽõŽxw”á6ôE¼O?3`é7óÆ#Î32Ïäõ`å\C¿yn&ò“~=·”ÿ¹{ù>÷¿†Nex½†q û–‘߸¬#Ž—ö6à*ìÛi‹;b$ýë8—ª´gr ç43^*ž~aV)ov óŽ3ï/óøÞÂúñÚCÿ£CžSA=õcl/ösí¼˜ó–øÂ.ô×YŒû"Ö»^GÿnAO½ ¾Ë|Jôï8ŸúÜqƒ1Cì—)q\W¸„uª‡ñÞ‹h÷<Ækö?\«ëã>æ |vãmÈ¥[ ·­¿zÿN gñöI—ri7qôu¬1þ{³ÎK¦f2dþhäW)ùNÂÁ¿8ïö —ìAß"=|þD =¯ÑÖõo`½„yV–Á÷—Ðî»'|4×åz/a<–ê¸áÒ?ìw‹ÌƒpÆì뙬†Yê«X?ažyN(ü|%ßé%ÓK—þçr¿ÉPÏ+hïlVìiïEœcÉóJy/M5a€_2à|q²ßò ¨gšþCÐÃuÐÉ3(ç~†Wa?3¿3ä:ãxÃ:â?˜ê"üõÌÓbû€Jûý|=æñÆ>Â8³VCœëT¾§Ü`^“Ëðç\‚¼b+ãƒé§¼¾Ïs~ÏÓÏx88Êð<úÏøµØç1ïÜ'ÿli×È3às§TÏóéÞ€Ÿ”|i¡Ö×ϯá>°EŽs­Å9êq°û(‡°^¾€ò°¯%ðü5î×B^©—ç†__»{wr~5®•ü6¯Ü¯`\ÅûØ_;‘á#±n?óŸ*ûJᇠgáçš>’!ó&N™?wÞÆñÙŒwatzöòõðß-øE>žËMçßÌêq³·á¯ã>–Ýœ7‹yNâèkõD†Xç+ç¿Óîo¨ŸÜ­`é×O—ßÂwð'ñ\ì)à/ã.Ö·º=Sÿæx_ƒ¼{x5Âø,a¿óî"«´û§ËoÄ«Ç9¬óÌ@o™~ õ!.ñ<õJøÕ§M_e>äÌ7÷ÓÃÒNæyKð_–rp.5ý%q ë>#žÓ„8sæÕºøV§õÊþ£ûÕýxóþꙟßƺÖ1Ã*ü`ÈÃO¯}ËT†·òyò•ç›@n‡-ÄÜ_ß‚ÜÂ~·×±.€|çů€¼ïáàËÉÚç _x®îóG2üë°z=µïã,åÔDZ¿ó>ÖÃ*㎾íËå‡ëð;_â<ï’7ÿ |ÿÔ‰üzo©÷"ühÈWRôÜ=è#;ÐÇÌOžƒö<Þ[ü©2ßÐIÌ×+Ö/Ú­ñ·Öøµ‚yYþž‡ž KÑoß›Çùžâ ÄE•ó>§Ñ?“ÏÌc} qç·Nbýat8¿þBX¾gÜè-nÁ¾ü´güiòë-Sè7ý??êr§Áp~Q9ŸtíšËíŠç0î+ô‡Ü­Ê‰? þôâ6öîçòÇ7N–°Çø»ÇÐ/Æ}àÜÉðYŒÃ:æë—ñÚóu{–¦ê߈k,ñ4ë!CÄuÅ;XOäzåÎv 7é¯ u¹'Á7¡rÜ× Ÿr½ ç–¥¿~ òtþògÆË?w/ÃÏÍ |”óÈáªüÀ}|Ô[ߟc>TÆ7cÏ× œšEûa—r¹^ʸ?—[°O#òÄ= úNyïâ§+XîŸ|¨o'|¼ú±Ÿ¾¬?"÷Q„ÇgPÎ1ÀÃ.`ÝåÇŽdø<üå~„Kèÿçòûáæ•çäL1¿ó­31òƹü8Â~¦uãg8gŠûVãR–OqAñá½€~ÓŸ‰<üá%üÞ€»u ø›Ë~“]øÇÖ-oƾ?‹v0ïÅ €ÌËqóa<¦óï uÜRÉ€s¦¹¿$ð|ìcOË÷g¹ŒßØçFàÛÈ/A»î"NëáD’¯yãµ=ˆçœ\ z¤nïeØ1OÓoëç ¾üßú/:­¿Àýzß6•áí¿áèoex úíÍÔß?žáÙ|?\>–á ô·›GÑ¿QýÝÇkˆóíÂ%èÕØëïâÍæ'>Ïzß_ÁÂ-\ sùqU¥<œ«Gý!îÁŽYÂú2ý”w°~ÍüÕkÓu{±O³üž‡} »&ré&ìí5¬ÿ^ÕíÁ¹É„Ü_Sž3¾™vð ”óÖ‰wŒ[ƒ çÐñ\õ¸€ò˜Ï“þè“àc3¿³†Œü ôã4Þ{ÿLþþÙÜžpr<ཻo¡ßˆ{¼`~yÄs]ƒ<™ù© 2Ok/Uã“1CèÍáUØß‹XY†â¹lˆ'áó°Äm”üÌ;bzGĺ`Ä:EÉÏz ?’ßgþÐðÃxoóþW§êú×°Þ†óÃÃ+ðß0Ïõ ì_Œ«^Ézóú¾ªpðì[,ýXµõNìðûmþž®3oó«ÁͼºÌÿK{t ã³+nÿµŽþ Þÿ¸9þc÷jˆý!û²_™ªÛM¿â9J¿¿ðy艴W?x¼æMvÿ6×ç—àßã¾øMã âwèÇß‚ßp„sõ6?æÇŠÏäöÇ%øpŽXy¾Œr—áGyåNý|ºöÇÆ]Èáè•ÌÉxêçjz ðKó\“b7!Ïaxú~†/äçñáãþå\nàyoå¼ øC¹xþB?^§‘õptK¿ã<ìõYðœëÃõÒÏ“ß^÷ëaþ”¢_gÁ¯žÿòú}ü Èo°^^Â80ÿ&ò#–}ëó÷Ñ.‹£‚Ÿƒç}ˆý&a”×[Â6⪘_»nVÂ_Ôüïk·j¸=žym¸ohrÛ÷Ýž>‘!Ï7¥_òYðžgÆ<•/ÉÏŸ8\Á¹YÊeÞø ãMðŸГ>=•ߣŸg úÜôÐñtq ô?v¼¿ê­«΀>ÎܯÛs(ÂK(§ìï~„}3ñâ±üÎKŽ»µ_´”G¿4ÏiyÌú }-,üËú>öuú×Kâ©l×Å'i÷æýÈÌs!?a×0ûdÖ·ÃyØO8‡-<ŠþLc¡ÿG„ÇÆeØ1ç~gÝÞ‹Œ÷…9u"ÃÓèÿmèÛÀÃõ_¯áÏýù/u8®2¾å^þþ:ôÅÄórß3ãûGˆïÁ¸2î¹ÀÇŽdˆ¼IažqÌÈÛ·`qx£œï‡ë‡áUÐíÿùi|¼š ÀÓÏ©Çcòìg¾ý‚Áþÿøâ² ï®ë2/ï|ÄûÇÏÁžyíXÝÞ×ðü:‘~ô‡§ëöe ë$ËÈ÷ôÑáiØ?<§ƒyB^Ìõ…Y¬W<÷!7pþrxöóJá|Ëð8ê_ÊåÛ×NÍpz ò!„Yê+À¿ÏÞ«!÷gáœ8|:UûkãîF ÏɼӅŸsùÄò#yÀù$á!Ô·~¶ýpüê>Ú7ªû¹ üØ[‡ýºsBG9Y`¬yèKÌkWΑA<ÌöÔ;è&דßcý#>A•sÓynëO°<ðÄ¿ÅS¹?ÌWšÎ|6þÛ©üô³kàc7fjH?#Ï‹çúÏ)ùz”ÿ“S^„Ÿ ù§Ã_Ä}æÉb^ã‹ ?øwã7ä÷âmØ— '/`îâu¿ï¯Ðþ«×GâÖ·_Xà)Œ ò ¾É¼E<_õE”‹ó*ù 72^)>q ô³½†þŠó¸oþ®ÈôøÒž3¹À|èÐï÷é•È¿F;¿Øߊ߈{9ެœð´þë]Ìû6ô·íÿõƒŸÿìO©à’÷btý„ ¹^üÉŸÌ.qO¨ÛM;r$ÞE<Ïmœ_¿ ù¸ ¹¾†vr}þ*ê¹:áË7 W·²½æWÜf~I“kG¿¾³¾¿ü¯›yÂÏ£bÜ÷•}ß#ïÏE,å®aýy²Ê}ž‹üÚT†ÈãÈü{qù«kˆ|_<·<`_\؅ݾPÃ/æý¬ñMÄW¾ ü¼ ùM¬ßÍ¢Ìçò=0·?rŸ&öCÄÎT%^âB~Ÿùõãìo¢žÍõì3)ó‡õ|þÑÿÂ<eñûyNJ\x¸†óÇ2ä¹Ì?Ïsœ?;Êp rjñ ;àŸ[ÈkÌó¹opÏ™7öHi?ã_DýÔ«Ü_Ë8†Û™/†çðÏ }*—ÿ:~6_Æ|?ÃÚs„‘§*n!?íô¢(—~ôç×FÄÑ0vD¼Dñ«¬b]e•ß÷êþ@¯ˆ8%ž½ÜÆ:÷ ¿ô×-€¿1nî:ømv³tÂç~ÿßv<ößó|,žC\ó`ý3l¯Ý>žŸ×êOjG½.×ÑOÆS΃ï¾föÉîïA_džFÄqĽo¬á6ü„+ð+]ÎüƒùÂà ´ç~±îß3GàO›A|üóè'íÒ×ÿn†Ü§|÷¹?û€JûqŒú>}ûí>þ`þÎã7÷/Îå•ó3qžBüÌT]ã˜Gȇµ4ž}ûù>KY ;°_Þ¬ã»ãù§«~•ûÈÛQÊáù&Œ¼p?CœóÀóùŠ~ÖwøÓ½ y¾ò „³ —×aßñÜ«!?<×Ð<Æ—‡ù =æƒ1Cڹ܇sW¹þ?>UÁÒß èkÐ{ Ü?ã~d¤÷âybñ3¹_û»ËùžˆSe½xô|#÷+.Zž­OÖ0ο•á9Ø;ÏÏdøX÷2úÍó† „Ý̼3 wæÚ‚]7‚_uõ.@ÿE?fŽfý9<,ÿ¾»ŠùWÎÝ¡'žcõ‰ºýÜÆ|Óó«'¿»†ßÛ©¿{”ý~1êö·×p%÷?üäá ç`2n÷<ã¥Aç£|è‘ç* T˜Ïz@XÀw«o¡\Øk‡ªvÆ«‡Ñï#ù=â Î7 Èã[úµ¼^^vúêÎ?ßAü)öy1ýØý åx©â_ÇùÏ‘qÀ—óýxéXÝ~ú/¸oñqvã‡è»™ûWöú¹M%¾kT×sõx†àËå>óÚ2®hô½ú¶à7= :¿’Eàù^·àwº ù³¾@ùïñ^̳¸üßÔ÷yÞ#×!.Cφ¾Æ¿âG{¡qÏú»;íüа£ÃÇBþÍ8§» Ÿ]´{{g9f¸†¸lúp.@Àyá,üòN ^Ì7ò-–v_¿[³8ñsO×~ãŒ÷2Æyàÿ ô[nÃßïç?]Éíåù‡%ÿóüŸÎ¿9ßwñþž#~ƒñ6ô€Í,÷ãiàËë¡<ßû°Ãôgêh¾ó#Ã:üS[ÿ,Ã×7̃|3ïœ+{?Cìã.íÙB½+ðÇâœI?Ç'{¤.ïæ}¼—é+\Àx­ÀïzúXþM? å"ã2Þw¯*ùËÃè³”Ë+£‹È³‹rxn0ã*˜ÿf räÑQ†Ø·è¿nO6Žg¸¿×û¶wËð{ÍAfœòv”ØW]ú³y®‚qêXþÍøûEôÓóCmeÇó”¿+õ¬²ÿ~ÄǯëgÜÀÙ_Ôwq¦~ozÅí#è'øÍ,ö/s}ô:ìrÒ íçO¾•áùÇ–À—0N·pÎÙÚ=ú²º~ìÏ)ñœ[°_GQÞ£¿è$žã\Äp÷Gy¡/>?B9ˆßÕøÅ‹'2äùë‚Os}ŸöÏùD ú{$÷“ò/̃ŸÞļÓï…ó~Ê>'ÂOÉüf~7ȃÀsyVfòož;6Oýöìüß«Û? ùr~¡MÐ3÷nÂOÀüI7ê³ÈÓ[Ε܄yŠö0ØÿÀ¿¸ 9CûhµÖJ¼ÓøóØí!ï*öËai8톙ûŽwrÞ׸ ~Ì8už {ò­ª¥þ÷‚.Î=+ðÉÜŸÀóÙÎÐïU³÷¶èo…u¹ž‡¸6UCøÛK{‡.<›ç1Ð|ùŠæ@ï'ßSǸyúý/6ý›ç†!oB˜_…ŸtãÈül‹ð¿ÎÂî`<ñò»ªê]d¹àÏ ßƒþm1~rç¯OUß•x¬“7· G‹ïª`¼{}Óðx t¶ÿ Ïã[‡€8¥Ò^Æ#Ö;ñǘWä; ïAý³Ç2dòÐÆ£Îÿà –z¾cªnçL.'âœãø‰Ný|v÷±]Cœ3ó mã¼Êýâ'yþó¾3ÎqÇÈË·qÿ,ôÚ­Ø—YÚ±<ö€m0.ú×QGþWžórá«jøÌ¯Tåž[Èöïó|ÎòþâD6 §ÏÁNûÁ©ªžðèåâˆoÀo||ø,èˆ~kä…Ìßzî_Wý 8~Œ¸‚ñ9u¤n?Î*pý¹{ç!–ó蘟‹ùÇBØ+×ózÀùŠe\°©äÿ-òú¹_¬!â8J»éÿ&üÚõ1ÀQÞ§3¼½ëôî›3b:_Mý*Ž@‡ŸºW·{åq_ Î[‹3à[×ðýµ,/Ã9ø+Ïå÷ãKuyÏ„üçë…ì£f¾,žË<¸'ÍŽÙ1ÿdÜ‚<Ú„?`ø|œ…Àò䨆g1O×¾.ï2ì ÚÅ<ÇÙìû¸õ· è×Ë¿X?ÿ ½¿˜Ç; ަìOeüüüs?[·}~ãÍ™ áG Èç¦sy~…²?›y3ïBØÙn‚ß0ßÏ5›ËåÇÕ£¹¼—rÿ«h÷ggªvìKòsµi7…sÀ›e¬s,¡=³˜'ÆW®àþy|O¿ ü¥>ú›¹?büð¢Ù»· ç løÂý çáçÜÁz÷!®™<[C{vrÀ`‰[<7Ëy: =ðoе¿:ι)í†{ëü=Çð>ʽ’ç+\?!ïÖƒ =û¹Y¯büž?š!âÐJ½ØçSòíoA?@^°°ˆý2;ÿê…J6ãhg0BœZ‰³Çºú7¡ÈŸQÚ·€uœæÛ8¯aþ’yèþ_ã*`Ùï9½Bz·y_ÈýН€¾l?n|þYäI/çVέÔqÜÇÉxzÄ·¬×Å9Ø3Ì EÈsŠ'_Õí ÿ™ñü — ÇFˆŸYÆ:°ÑC|"—[Ω$Ÿ¸ ù‡<ë%®|tÁx~Ƈ݀\Ø|+Cä玷ÿ Þ‡´{ˆñ*ôoCïï­š—ä¢ñmì»eÜn †|Ôû¹þ?u¿†ïðShäã¸o!®s~Åuè£ë1Ãëµ%|v:ßGÞSBþÅsè'ÏÁ^Wžó¼ÂÅ:^8s8ß¿†þà\ãò| rykÂ%àó³!Ÿ`|x¹oß<øó3ù>ãJJ»pî@yÿ3£ é‡ÿÞ»9Ã<[à;X_+呟sßÎ*ì˜WOdøÄWuZñä‰ †ïšª`9§Ü÷a¼v<ß¿¹µù½hëØår`úÒÆyúÌ ¼÷a¼·õ½È8oÆ}3^aãL÷õo¹Î›¦áoå¹E‹ð«_;’áYôkû,ßq¼õmøuxŽ8¾Ÿ æáG;]ÏC8ývqžÌG¹yzóJ?Íó1C®OÒŸvå¬Ãß¶þý:øùîïËp'¯_”|€§ÁÇpÎZüUóJ|v< Òäô/üŽ©/ÁøÇkxóD¸Šý\À¾º0ùøêAÞÅ´ÛЗ™/ú*~sŸß¿f~í§á÷¸ùÆõlèN§ü‹³¶Î°ˆvîÌÏ_€Üzv(Ðq°áûÑ®5ÄÓ|M]~¸˜Û湃õéuðoŒøD KÜüôŽEð¡â·>¿öåUÿ˜?¸Ô?‡8±yè/x0|m¥ú>žýX 'Tž¯ƒ/¾2|þp†ÏO"n«¬kÞ¤Ÿýaþ-î‹`ÞŸçB]ÏîÅú7ÏWÅ9A´¯‹ßúøáeðÕMÆ5€oÐÏyóDUnÀyóz÷ ²ƒ60ö·…Kð#܀ЏñrîÁiÀ7rü ãxÂ:Ö—þQݯLž„ÞÍóÀxÎêSfç<™ûQâ¾/Â/»ÊüfSù7öÄ]œ{€sâøÇuŒç±ü~ɧH8…òO¾·|Áqq.ðÛ”û/Ël9Ò?ÊsC¡Ç¸}¼ºš½†~}¬†k°÷×ß¾ {Ðì¾p |)î|©cqãs6#òšï;Ÿo힃><9Ìžÿ³õïS ‹ê'¿ROásµÿ»Ä5¯åö—ý®+\7€ã úøŒð¡˜¯â»9ÆQcÜÿÊÙ®ˆÂûf2„?3.˜ÿ|ÚüÝ»Ðg§ŽT°<ë¸ðÅ ø!7àY§]úˆ8×w\ûS¿RÁRÞ ðô6Þa= ø´6B}¨gãJ?ê«Gr}§ð=÷µÓ/¼òÏëúx®ö¡Ò9òð/ðœVyEÞAžÿÎÝË¿ÿSo ,õ#n±ü¾ö,OäòçNgøùãè'äÏ¥#½€u‘óSuùç°nÁ¸{ê3HÓÂ<qí7P>ÊyýzÁøåç Êc>¶Ë¹^žLXÚ³;aõ ®¿À£^äi+ß=QË™’÷s ú#Ï‘ZCIø üñ#ÒÏŠ8ÿX/c$ºÇ>áà,ñÛÆûí ĉ3^í¦íÛß½9ÿòvØÔ¿«Þç9¤aúX~~¿Ÿ9š!÷™\úúú;ìÓä>Ì÷ôsˆ3ú¹Ë2oø{\G?;üø½üÛ÷Po8>üy´ïó!Ãã»g™¿#óç•óðöDÆ%ó\'Ä ‡yàõM;žëµ‡v/!~ó¡Ãu¿ág‹›+;«îåìœpt6¼`¾äĽrßâ ÈõE[7ßÇïáÙÆ9„eß–}Ç<O]¨Ûuó½µÀ¹š Ï{xi:ÿ†~wòï’†y‚˜wpë[\OX¿{a”;~¯a¾f³vþsÀÿÝ øÃ-Ľìa}~ ú*ò‰–þï✕mÈ<ýÆûwrB¸Y¯;_ï;ž!Ιó —]ä‰E¼[ù~òæð¿Gí9󘜇¼ŽömAÏÁ¯¹ }œù;©ÏpŽçí]?c¼9ÏÅ^À:ÒÖßWQ.Ö âûQ.ã^W±þÂs~濲êG9o}v&ö{œ'.¿œïß‚ŸàÊÛþÖn!n í=}ˆúÎ5ß·Ÿ˜ñÒ[Ç2¼ ÿÀ¥{u;¹Ž‰s_«øÍü‘ Ðß2ìœ/o@Ž"?.ã"òžG¬ÇsŒáCùwÀ}î› ´ÿà,ï¯@¯Ú@žºog{màÅ/G9Óžþ>cûàW _.a~.a~¸ŽBÈ8%æc ýqßXü9žÃ ýë"øÔIàâÃKÞæ¾ÄݫۅshJÿà·‹È{ò';õû3Л^Çykgíùü‹°£Èçp®z@ž§xr ù Ký°J^°[ðnc¿8óMп˼snçRo{‚í‚>Ês²gà7|çÂß@»¿¿Óú —¡çœ‚ÿ}‰y ïo¯–PÎIØywK†{ÈÃs©aÄ´ó³'òï/þg^ ~æ~ݬïÆ3y¾ÃÃùy\aìhžoò™ãh7øÏ·\Æxl@owÃ+¹}ñÙ˜!ümâœrŽ&ì´ðlþ]öí^¼Œx¯ÍÔõ ïD\BœÀ"øñUàÎÓ Ì[ÆxqœŸ.ÂGûmvðdëÉëðsìpÄö_Þ‚ÞÊó½y>ó2Îá{§òïM¬ûÐøyØ7±î>}÷‰ãu¿™G™þÄѯeØ7?ÿ¦r»‘gr|}|þ”€õ}æ—*ýÂ~¯xâ~]ÿ±€ç°›ï@ïÝÁù‡7ñý:ž¯ ? Ðë~<Öõ|çf ðX†´ç ޹.`Æ×s X\„½ó$ðåÙ·êòGX'Û@<öäò›Å›°Ÿž;Z÷“~ßs÷«v‡‹¨ù¬ ¼†þ¾xùè;‚v€n_70ï<×i/€>pÞKi?Ω÷}qúÐè~U›ðñ[9 ­¬3|æDþþ ‡¡œ¼"Ì`¼¶×õ!_Ni×!Nå÷Ö/ÎG#Œ/ã{Äöÿ"ü óWð~nwXb¾ 䥎hoœ‡Þ [!oÐ÷Gu;7Á¿áW‹§P×å_a}h÷§bþ}¤e_éÏä€Ú¸õ'ÂUø5±¥Ä#ÌÑ_|¤†£ïÄ9Lž³ÀSó;êõ'ÐÿK¡zoß°»á¯Nâ9^SÇñ^ ˆ?}ýç¡7¾Žv0¾|ù—kȼ:ïE?ÿÀó"˜?öh˜Íï…äu E:{ãñ©º?3È“p z-ÇqúÄ<ÖQ~§ égD\S\ÍvYÉc sÉ ³ ¾wíÁ:M¼”õ³ð…ܯxýãz ð3l@žßü5@èŒg߀Ì?C=¨ÜÿKú7ã•‘71Ìݪ`\GÜÍ“µýw°®tüpåa!ýµaý8Ú¹¾:Ÿ¾—á‹ÏwZá¥Ãù9â™ãÏýúÔ—àmäsÞƒþ‡|.ñôÜÁ÷_Yø‡ö2þzÒà[W1Ô³¶Oe„ú±ï>®â»ð‘s6.#œÿÂózV"úùžú=ÆbŸa¼ýëäLþ}zªî£g^£…Ì¢?ä“×jý4®Ã?ðÙcò¼Xæ;¹Nÿ'ÊAúR/óèìü)´r½Ä³|y]ßf¦îë À£ÝÌ÷Ï×X:’¨!ãÔ^†žø2ÚiùÒ™ÿ5®A¿Y=0žqþ-æ[æD†”8Ç¢”· >³ýÉÖ©â-ðç-ðÙ5¬G0oƒÅqèñaë&`./ìΠ<øÇÖῘÉò#œÊür“ëÃáSÓ2Ÿ4ò:ðüèþoAÎ\†ž8¼"?¡Ÿ‰yÑ~4æ÷w¡_0f„sqŽs< ¾ü,êá¹ÍÈx>ÃmìwcþåËõºA\Áü/C9ù°}Ê·¡ÇÜþ2´ãp†\gz¹¦#ÿ §¡çãüÒR/÷c½6 ˜9‘Ÿ¿p?CàqY7y$Öõ|WÈëçû‚ÂÅ_„âÎú‡8 ¤",íÁ>À¹åþÏÿ›/zþã'añ[´;°Ÿ#Ì@Ï™žñ¡ÜÞø>´y`gÌó%Jy+à›ëد‚åíÉÎ"¾õ,ê]€¿dq¶ôã<‚0úaÜvY‚ݵ^ó±rüBÖ˺ ο OÕþ¨À¼/ôSŸÄ:õbÆ[<_€»ä…Üßç¾Ú ìW\ƒ^‹ý³ñY¼ÿ“„SU{âMæëxå!>çHƽ̷Âûrû×Ù?œÛ‘¾Øá™é´þâ…[ýÈ#Ö³ÿ-0>vr‡üñÖV†Ô_¿¼õ¯jˆ}¥¾]ì§ÙÆ8Óîa>é—òó™õü‚OA¿ÅÁ–á ñÖük'ú•åVØÆ¾ÓŒÏNíg W!ž{\É)¬“Nc~0æï`'•|V󈇜ûÕúûUÐÅ•·2¼ð«5|¨îw ßü6Î-až€UÈï}ñ½Sâ|Æbß­â>ò —ö<_ÏuÛâßc¾êG˜—}ðñ#u9?å7ââ÷ù×>8U·Ÿñª<×ì6ü+Ìç½¹2û/ëï^Æ|lÀÎZù¥ªžòãwpnO±gêu¶’/jý­ †Óà[È£.!.ù°ÃƉü>ÏU$\†\žØž\„ÜÞ€ßÿSU3öŸÇ¸¾´ˆñÁ>xú]˜ï8î O1ìÛxå^~ŽuŽ€ýýñÎbž$Æ—Óÿ[‡U§úwÎ} <•q&g0X K¹]ñu¬ïàDàø0ÚÍxYîç¬Ó•%º‡¿ë¡qzäAyo§ö“‡óˆ?9½ë±©ú9̉±ñLؘ_•ûôâũܯãù7õ… èkX·Xü2^‚ñÆëÀÓçOdøxÈùG^6ùDyFyüþü~˜Êý‰<§ù,òÛ¾·9»û»?øRþþòt]ýÈŸf@/Ü'Áîãù=3GÐoÈ»åß]ÃYì×:ý•5$^ÔÛ2Êß;ñ(ð_ ooXä¾´“ñØÔ×¶°¿úZ‰×äþ¤Khï¨NH©1ï'òk¹ùTm3Þû|·ŸÜ¿ô Ú÷Sõw8ï \Ä:5÷¹Îb¾l_H¼iët°s)¿Âyü¾ë ¯À?1{ïoæ p<÷/@~…'À'žÀ}à_9ŸŽtr|ŸùY–&j¸ýpòäñ˜#¿@D|niÿìä«(ço#ßøÖ­ûû0öiya!/yNÐ&ÖCæïexýË«v”ò¶pŽ ù"ö ”ö­¡ëÈWtt¸ãhâäßÌûO{ŠyëŸÏÏ Æ9Òïôø:¼Á¹Lñ|Ì÷±þ?ßÜ'yëágàw» ½y_J;'®ø>‚þ3o¤­ƒ¿}ÉŸ?êÂÑ g0oˈkæ~æ;ðs2¯=–3Ãk¿VCìŸf¼à;ë¾Ð[yžâSèßwâýWŽçû»Xï]„]8[çÙŒ§ —œ|o]ãv–Ñ~œ[[úͼ~ôÇ\Dû¡ß¾?õñR7GN×x©‡#¯^8¾sî7êúÀ·Âk S„}‡ÛX݃ÞÈ}M.ßÝß° ¹ŒøÖ’/r“þø7σ¿l‚O­a¿üè[×0л⹘áw„üâÌãò?®á¥_­`i×5àÏ¥Ãõ}äÏ)ù*ç°ŽÇ}ÎG:õû/¢3ð'ò†;ð?®0?ÊM|· >6k~Ãùèˆçu^ûÅNë/<“û#ôÂmÔÏó=™ç&…Ó(Ÿû ®Ü1Xã!ó³Å¿6•á)ó§â¼èrÞ߯m”ð’óW‘_bøûã!Ã?‡ò®¡½ÌûXâ:®‚ï]? x?CÈ…0¹Ìxº—A爋7€wȇÿìÈø S¹°ÇyÎú%øi‘ëýv”˹…SÇò}ìw  ë›Ð¯o>\ÃS(‡y!¦ÿm çk½5î"^a±VèóÛqï4ôþ?ç˜É¿¹ßúMÈ­»Ðcö°¾»ULÅuâr-¯W…ò) ×]ûÊ2ß*Îa+ßgnGx9Ë™ðê—×°œ#‡x² Ð×YÓs>ËØ/L¿`¯¸‹uªøu‰_ú`Unä~ZîÇy5·7⼜’Wð4ôæ“Ðgž8Q·oz!ü¶a~&Cä3 ·°.ÇsThÌ}/ÞË ]yÞÂè‚OrÝk ñÊŒC¦¿d„}Ìô§01Î?‹Ì¯È¼XO ȯ]àëЧ‘W-<{/CÄ­†uèñ;­îÿGC†ˆg»ˆï…<½ý4[ØG»{ü½”C¿ÞFÎNá>ýÚà;W@·8¯µ¼O}øtí§á_Üž]æ¼BþsßÀuàÃYø—L~xûÜ1Ô_óIæˆ'Œ_8ž!Î¥,å`<ã¹aþçäárÈ÷?kø,ðdrãE蹦ÐÍ|›àŒk!Ä:Xü,¾ÃþÖð|®?ng: ×ÑoÄ{·ÿt oÁÿqõ«ëvLC¯a^!ËßÎó ¹—álþ]ö‡0o!óÏ#E<‰r›É~”yðeäG*ëJ<÷öÑÃU?Â÷äòË>Dî·Ã¾†xýBþÿÀ}™¾ß™ë¾óˆ+åy‹Œ£ðóM 宓>m]çtíß#¬Ëñ<Ú™Ÿ5ˆùûdnwøÌ[â܈ð(gï"ÎvãX§õï"þq¨åŸSè×ë{Ø'Ÿ>R·Ÿöæ,æƒy™糇ë÷ÏævÇK°{gàß9 ù³Š¸Á3Ó¾üV qNcD~Ûðòý Æù:ÿiü›˜ïÄ{â¼ Êý8‹÷hs_×ËŸÂ|ãÖ€xkžwZúµ½çʆׯ|Éâ*/…ýaøuç²ÿ™ñ5ç̰{»þómÂ)Œ?ýb¶>_ò#=6Êyw‘WŠû‚Ͻ•áü¯×õl!_â"æïè'ÎçwçìðfûÕßÓžyªÖÃ4ü8ç·Í¼çgT°¼øyvÄkxy^gt´®ÿjî|6÷¿ìÆy—?}åÏä÷Âr¶ ι/çE^;S·‡û…¾p/?ßC<êMø1÷gùK#Îë(pþ-ž“ÅsèÆƒ…xÝpøŠóË~Púݰ®O}4Îc]í"æãÕÚogÈüË\ݘÎðùûR®® îò,Æá ì/ž»Æ¼Âë'»_‡ï×õ2n™û‰¶˜Gv<ÏqX€¾I9Ës¹iÇ3ý»PÕÏšýC»ÿ6ü,[Ÿ©á&ôTž/ úÈ/B/} úÂeŒ?×Ê0|á­ ?xµŽw(íÜúÖÌWÖð:øÚ{í}ž{| ó tqyD·¾úæR=.ü{Çç?ì¡¿OØ{XO'1Ý78]Câ1òú”vÓŸþÌ‘ºü‹ ú97Ofñx§À/OÁæ¹ÝØwñî£ümÈ9ú霎6~e „þ†¸Õˆýµ¥Ý«Ô?NdÈuEî—,ö²Ùù?v7…øõˆ¼3Ü¿gáßã¹6XŠ×b†<ÉûÅü ›/?Wž3ßD¹¼¢·lƒ­ƒá<¥ø©ÜßðÝ!CœÓG«èæiyg.cüÎÔþãð¹#5ĺ× øWО“ÃüzÓ™oòœæpŽëü‡ósÆ““?'êeäYÈîG÷ñƒ½Vòòl2ÜÌ÷˹œŸÃïó˜Ï=ÄGí`?'ó-óÜIžóÂøÒ?YÃ0›Ûn ¿´g÷ràc¼q£‚áGÐ_äk…ß„åÜžû‹8éòùã±XCÚ·v\8M}{*ÿF>ßo_oNg'¿ôA¼ »…ùª™ÿfó‚}¥œg0¿¯æv„YØ3БµÐÛJÆ¿°†8Þ5Ìó6æ™çUù9Ö¿üa¿yÎÅÉO£ßߎò~ øÃ&ô–+ÿ®†×ï¡\Œû«£¶ê^ÂÛ·ò}ÆçŽ gMÃ?ÏuÜé¯5ˆöLOç÷×Ð?öw |r~°½ëùý'±ª?®Â¯pæX†/ÍðC˜»y¶ã¬Ç®¢_«¦§yü?ÖaËyšÑoä ,ß½Ÿá ¼÷Ùx"Ã7@×·o»÷pÝŸ=èã ˆ#À>Âøæ?®ámèS+5|èx ·‘}zÆiÈYÐEøË¹ý\‰#Ø3kXçƒ]PÚ÷£è× ~¿¾9õV†KÈ#Dyà|éEÈ'¬ßÄmøå¹ïžçl ¿w|í#ír`ïqQœ¾1Þc'PÅ-žÿzc>ž¯ÉuÕgÁ'·0¾ôór”ûq`<é=`úìí¸y¶…u…Ö‘–à?¹Û¯0.ïƒ|ÂÄ›’wúµ€~!îvû”}çàoX¨ ¦ðù¼wÎ9>š!â‰Ê{³ÐÃ/ÏÏÏ Çs¿µ~Ÿù°n±ß6¾v¯‚ü‹;°Ë˜¯›ö!õà÷NU0~ù„wÿb ™×ñ<øíÓhï›9P6"¹ÄÉ_€Þpzí•Üÿ°€y„'n`Ò©£hâAaWÄO ]?}zøˆužp Ï×Á‡^ø•ªÿþðâ7B~°|¥ÿôðæÖåFù»¸>Às6¨‡b]½ä±Ç¾oþ1ciö¿Pß ËØgqÁÖ.Fÿ çxëã¹AEþ¶NýÝmø·žA}ôßì<…ð0úA»þŠ€õ¸’Gló±Xküd¨`¸œé)Ü„†¸ŽòþNÞxUÎ%Ю¼Eø±{èâêx.D=¼ï”»ú˜‡núð h?óUî ç‰ÅQ†Ì§Ëy½~Ã|ØïZêãz ã[‰Õó@û–v;ó‘><þåßåü¡“ОÁøc?/é"®ÕÈÏRÚC»î~Ã~*Ϲ¯á“ú¾ù™¯'œ©ñ6~ íßÈõ=köHýÞÆíäüqñÁ<7ቘá-Ð3â%‹]ûítŒßü XO…¿¸ÔËxûE¹ÜèòŠqÌŸËó/©ä…]ÈvmØEÞƒÝù.aËøí„SÖíbÞÄ—î×÷Ä<óñ¥ßãùð8Ϭœo³ô|Ýè¿aüxøÎü%gkyQη~uº¾üëEÞ2žœð›«Ï’>}/ßáýUìDe~Ò[Ó_¬Ÿß†‰óm"òÄÄ-Í|¼†ï;’á/@/ºõömŒßú÷’É æÇy᱘3¯:ò0N6î!®–v$ü€%yAb&Ãõ35DüQ`ÞâÇQþmÄ9Ü„>ÁóxŽøZü"â)ÞœÎù—–à˜? ÿtîOÀù’û”ÂBwÉó tÿÎóà¹%N Ë©áýèÿ*ómAï³¼ëaí~㟠߰¿v¾®†\·_ƒž6x¢K oð#îó/í\½®Èë23¸Oÿãm´sëh†7ê—ýÈÌøÞ8‚\ºLýéx~Žõ0û†ûÄOBŸÆ¹¸<樂GöܧàÚÇ<’¾Ÿhï0Þ‡=ùâ±êyÉËõ1”Gy¼¼àþØ7àg&]]ºvçúÂúÜGyÈ7Zò»¬¼UÃ=øÉ·±®µÿ4÷Í–sÐYÄ›”ó;¬ŸëØ×‡xß8~|þ^äÕçrûöɾ¡G¯o¨QÿÁ˜á÷2þ-èçôã>u¢jW‰ƒÇüä‰Wì½Óà_ÜßÀý«„ßËòà?8Ÿé>\žÉϱ>qx6‚|d”!Ï!å ì››Gæ;[Àü#ÏGœgÜô0ä5-ñµŒ_dœåöÍ1ÿâä¢ï›äº=×§ý•g8¶®†¸ÍÈ8²³XŸ„ŸÄÿâ<Úó˜o¢Äß½Xû]J~UÔÏýÊñƒáÆãõûSæ·™ßxíH†°ïÊûÇý÷Å i0ï¸ïSå¹Z~®ëóîÁ^Z^qýaöÑ4øE’ævïõc^»r`×Ï€?ð×çú ˆ¼ñ è)#ÈwžçÅóQˆ×Ì«Jût=žá3!CĉÇgfH¿öí„gb†ÈæÇ8‡;<„vÝ_ŸGô¢]Ä'«°`ç„…ÜžxñkÇ@øå°ß8^þŪ¿¥_Ü·þJnwö>¸ ¿ê6Æçè½ääéãh×Ö×è/f¾tèÕ~·-ì§zí}þ˜×óBn¼ï·à‡Üļ=t"CäC-ã‚|xŒo)÷GлH·ÌcþÌý ŸŽ(÷>ÚýžÜoÉ•ï#?#óž£~~‰­YòÇ.ÏB»°$ÌBŸxf:CıÆ3xçBm#Õ,ô;Æc\߸6…ßðKœÃ8nå¸õxãzæ_Ü„^öDíß(û'{~ #<‡|.û/³Gð>ð ë¿áìÀ]ð ¬sº >Íý ÌÛIˆ8ép2¢_!Cä? Œˆ·/çÉ OwÜýqþmäáÚ¹~Áu.îó\? rêÍ{:LIÞÕöqùžùV)7–×Ä}§gøÚ…º<æsyf*ÃØã»9ÿzÜøåúý%ø=æ0¾³Ooäý™áùQþ½ ÿÓü‚/ä~GÆÓ>ù‘Ò?ˆ¼}Ì0îœî +íâ~tÀr„ùÞ†ýÊüé\ßüÂt†×!xŽíú½SuyÔÃæ0®ç!çæàï@¾õ’‚ó ;¡œOÎsT®€N˜/„ûm¯@Î>}ô…ýÆqòaï/ƒï θì³ßxOÝþ9ØÃ<‡Œû²¼w“þ2ø#‘Ÿ4ž¯ýöó[ðü‡™'ëò°NÀý‹çê,çúyÎlx~Yìó  ïÕ¯1ˆuÕŸû¯k¸ƒüe¯¢\øU™÷«Ä BÜÆ:Öèogˆ<·%nó5¼‡<ó¥ß8/:LÿY´ãÄ|&¢>ú7W~¾ÚçìÔ÷gá_ùôñú~Ï+¿Q·ñcartykfÁŸ×¾|õåÈõ îÃeÞpúy˜7í"~ÿL.(®¢]KÀwæ¢]úÉûþD¬ÛIÿó{1žÅýqÈý‘ÔG/wõ}Dž‚èy­®¯FðÏ"_̾úy>åòÞ€_f rñ Æé ø}§þ Ó3rßÊðÝöËÝ<šá5ðQÆ- n½@æ8k(ùyþ2ú‰|”qù[ˆWàyYЋÃk¯«Ú¹¯ß[?ò¨íƒÜç°Q3æAã~X®ÿòð°ºþ[¿>•û þ¶¶]·‡çîò\ ç7{ˆëÛÄ:öäˆó°·^É߇+ùû’'kó ô6æeá¹Ü<×–Ðõ…ÓùûWÀºÏ78G¼À è“Ì;÷ÔQÀÃî ^z óò_‡_kòÛøÏoå¹Haö8óð®b½sýä9FÌÇA¿þÃùý’wûÞÂ%”ûy¼ïç30?âoùÎ!.û…Âìç ØÇ^ò:žG?çNdˆøÌrîÅ¢å%¡½~žë.èÏ&ðë)á«ðþÖî´þâÎu@ð±›ðGmƒoqîÕ€öAOÎý  §‘šëLç0•zà'.¿gᇛÿ™_åøÔEÔƒx²¸ýçj…³è7ô…8Â:÷wQ/Ä2rÜ…¿šyäg$.üF ™iã¡jwày‰»à[ï›Ê÷‘®Ø7çÁG·°~Ç|\‹Çós¬§ÈÏpí±xа˜ç%Œ°Oþ&ò ï÷KÆà;ãÂf¡oBeÜÉ&ä#ù)ùò±žÛyþÌ]ø!nLW튷`@m-yî@Çå\Æ]ŒËmø%O?3“!ü|±v뼓ãòýü=óÔ3®q ñôóÙÚþ °ó äÌç§êç ¾Šò·#ìâ|+湟2ýôlî_ÜÎŽˆø†rÞúYèOg-~a­–»¥¼§à_ây¦3ß^Áø¤Ùó·‘õ6ö•ùùËXG¢ýÌ|²”ÏŸz+ÃqûXæ€'[—Ü÷±ý}òv+oØ*û³¸omôzzò Èæõ^‚|¡ß•ëÞ„ wÿA w`ïžår¨73_,ít®§îa^¶¾P÷ y.J^þ—€‡<7wñk\÷ÝÄzæ&ðŒñ)ßZ[âùw°>·ösßú"×g ç® \ÆçOÝ«ËAÊ ¸"×m¹|ãÅ"å[|óA=t“ñ¹ˆ£>¼¿xì»(ù!g ÏèçfüïÇQâÝȇgÿaÝnÆÁò/<2DÞ—’ÿeq5'M_‡[òÍbSÜÁú7â^ Äy¥æ }2Êù^xÏY)íßÎeãD ”÷΀®/ þy´÷­‡^A½5ûJýÎå…«uüQyþ“ÇëßOáýïŠhÿ ´ç—]Êï‡=Ä­^…þ‹óJü‹óúqNc ÿ8œŸ?aúí;ä¹,íÛúSm¸ ÿÀ5è<÷ù™'+`]¼ÀOex~ë+GPô0ž{ĸ^Äõ‡'ÑŸ»?á.äáô×Fhú»‚z^û•º?;ˆóbžçgç÷•çÈø³Øõ/áý³Xg½‚ú΀ÿc=:œÆ÷Ø_±O~îðÞ[ƒrtËý΄sÀ·ÐGnæ¸.ò2ð|]ØyÈ×oB.ÌGôów ås½ ëç<ç*n€ÿo!ïè¾è}Œg8er—y‹6ñýIØÏ›ßõ2Æã‡r»Šm¾ð§3]‡ ÚäK Kˆ[…†øõx¿/Øú*袜‡‚ó2éß 3ùûÀ󿿙׿hÝoÄE0>:^ƒ~ö«jxó÷Ðt§õÎb¼æPÎS ›×/dÿ@9wfå¾J¿ô¾©c5äzÙÍ üšÇóó€¼6ã`üI”Çóˆ79\Êý È ^ãìŠmè¥ËÓèöý°þëàÌGóIãç9áœÕð<äïÊa”ó»kÈøbêg€/Ü×¶ ¿óÍ_^0ŽãÄ Ô ºÆº[xãL¾õ®À¼ »÷ðñÎü‹sЧ±þE?,ö]äÏ §¡-à½Û8Ïì6ö·,!>ãzÈð’ù=‰/\·Â≯?ã(˜ïûÓãÞd wA¯ë˜?ê].g¸uú×c§¡_îá¼ì¯/TŸ¿3^+°c§ÿiýy6x>Z©ûäJ¾æÏårÂÖï>ð|$î“àù±yNÑØ?u*· û‡ñú<×õÉlDœs[Ú»Š8Óëo¡Þ™ú9ól£¿ŒÛAœiÜCùwáOÙÅþíwMÿExñ~ã*âþ¸.ù Øo´û^ƒàÿ»Ð³Ö¡ožÏãÏAŒ±3øž„žtôN9M?+â(yŽã€Âéé Wçò¯€¯\©í®ðôÐU¬£¬À¾™Åzâ |õ8êÉxN¡>ØÅûFK\Òö•Žòýwä>ô®Ÿ¾Ë×s=ñ»bÕÎøöµÝ‚œ§ßó®ÀŽC\Q9×™qƒS÷ëòº{m*·+¬aýtñ +Ø—¹óeH; r…~¥R.è£üÞ{ õaÝoq4Ìwx%—åß;ˆßFoÑï¸OùPKùÓægÛCÞÚuèu§Á¦ký,ð\«»ðÎNæ‡ó#¨Ÿû,¡ç„ ùw¸v<ß¿s¡†?5~`|ÏÃÏ0Ξ~~OøC"Î5Š‹  ØO°¯J~Æ> >|ϱ¼”ÏógáÁ9´å]·ë3G3D¾ÂxrâöWÖp ü†û™‘_;2>ˆq_„?2ü!ÔG’?Lò íXƼ#_\xþ¡³ðCÏ îþ×x ý¸¼Z½[áüQ¦þž—~öX†‡ y¾û-ø3n"Ô:æñ%ÞqÃ̳L¿;ü‚ñ§jˆý!å|Çkäá §9nÀÃÏLUíæ¹ áìÇêþ íºp´~¿Ä-Îû ĹØaù6–Ñ?ÄE„¿Žö1~o•ø„üoî÷ƒœ.y¡yn ü=ñö•Ð^ß|arô‰óÉ˹è°ã-äÅ}ß? >Åx³UŽ+¾ß€¿ôä(Cækb>íg1Þ°gùWòK0þk~¹è!'—\ç‚ýgðÖùÃð„zÆú3ÿüÚåëòo<…öc€y5·á·âyŒá~á§¡_Ÿa}ÆéÓσ8Rßò|”MÄ- ^Æ[">0nßónㄪ<æå¦¾Ü<÷3®ÿŠAس£ Šuû~yGwŸôìGjøAëÏí{rá.üÉOã½%èq+Gñåûy-µ{µä=‹vÞ[YfÞ2îg¼šÛÇsòÅW0/8?8Òß¼s(hgÌCNÎb½kyà¾õŽðóý¼xÏuï[ —]À›hß:ü'm]çÊÐÎ/÷qM@^©ðèäöß®Çc%ë¡%oêÖaïþ_uyŸ õoœ?Z·ºƒv¾xü’ñI×"×oÁo08§yøG˜_ù×¾q*?=“yW>^ŸäÓ=@|ÿ“Sõsî_}üô£Gªçqë`†ˆo ç¹Íýe°û=O4έŠkäC ó«µÿ(ÎÂ/vñLÛ;·—ù4ã_ÁoæÍÀ¹âq~›KÐoo`½ ç:za>Fäg|Y€ü ˆŽ·q¾:ó´qÿí¢­û<~㻞y5©Òß…0„’?kô|±ö#Ç=àË ùã±ü=ÜìÜ·æ0®ÌKɼ<—˜ëÖØwSÊ_Fÿ±ÎÆ¿ð|îÜE<+÷-1ÚuðWä‘)åÝ\Kðà|¡Àýö¯R߆¾„8ç¸:Ã:a|ýÊq„ÛßZÃ9´‹yi?\à4ñ4û‡h‡æ'Å>­8{8ÃËûømyzâðå à)ý+л 'y¾ë#¨çäãË_öåòärÜÿ=õUU}áÏrÿÛàã f¡GÏþ;>ý$Ú?=àô“ç6ÎÁ_öÊT†87¢œoˆ?ÃËÐC®¢wáŸâz8`xš~¸éz>öåvÆ]æñ€þqópõã‡ãìo«ïC?/å] ùþ-œ+p öÀò \»—á6Î_zõÏÂÏŠsâíÁ¾Ð€ó9"÷ç‘> zøŽP·ƒç«¬Ãß¶ ýq£qòçö°Ó8ûx]ΑNýñ q ö6Ö×ãið¿Bÿ ¿¹o çvñ/Nc]„ù·àÇ\†]xø|>·'`¿ õÓ@ºåþ—eèéO°¹áqþ…Õý8y?ß¿iñX8/(2þô‰·ì»¯¨ßßû¡ú9ü0<ç#^™Épò|ý\Äø0Þrú0Ú‹xä Œçr?Â4ðïbæ‹áÜT†3ð/l¢œSð÷{þ@°…OøÂ÷'2„¾QòÓ.`^Þ€½8Â>‡›ŒÏß*yiæïÿD§†?4…þg<óø„WÁ7w`r_ﵩº´ÿ¯cýúE¼ÇsΡ~÷Ópß(ÏW_@|#ó/ßò/nÂOr ópå0/ìè²ßùÌË÷Œ‡¿Œù@Ø]ÎB¿_DþqæÅ[Å|Ñ.™¢ÞòPÕþ°†]îÞž? çwÅ=ä™Þ…?j7¢¼| O9/ç½ ™ç‚û‡à_/~vî¿ÜɆoä9YÛ±†[×µQ5Ü¿·±¿büyEσOÓŸýòá O!¾9B¿[Ðc—0ns5P/Ž[ôïtjø îãÜ´¹/ìΕ½IÿŒåm¾–ú.Å|¯Ž×À'ŸªýÜ÷¾ ¿4s·þþ%ÐËÓ'2Äþ³R÷7"N#¬cTè©a'V¼û#€à‡³Xߘƒ‡8öxãͼ¡ßÌû\Îç„n|â)Üg>¬–~EìÏŒÀÇÛð—íaýz~œÿ˜1/4ö9†Ïc}øúÃæWeaœÇWÖa¯"ŽqŽy  ç!î¿ä™`~®7c½<>þ®Àos¦Æûr®%ã).}Sýüæw ú7õÀÅêCùÈÿ¯`ÞpžäØõ|ø½ Ĺvqdó±„öáœÀÈsŸ™…ðM¬¯}Mýý­?Rÿþ( Ï¥Á¹³ñšÅ!Òàz ôZž—Øéô¿¬ÓyömçÐÛ÷·Öojõpñ÷Ïø=aÏ&NÊ»å÷ÛÏá÷!{oRÊ=$å¾Ý†.îçåýIù­÷ØÆƒ(g²S·÷€µM¿ïZ»ý}àïA£œ ÔyО³ï]¼3lôAdz×x>‰ï‡òÞ÷øûÖ“zºøÍgÚg×ÖX´ûƒÒÎÓ@Úד²9,³/sÊ>è+~8~±¬¡=ÛÀ±ÐñdÛGtluL&;õüv­¿“o½K=>ÆþÿÁþ¯ø3oµ¿|÷Иz[m&^ô:ûÇÄûA<"¶Ä§-ÿ}û›~§Æ Ååí³ŽCýcÙ¢uâ‘ã×PþßêK WZ¼‰¼@y-ÛÀ>j›9nŠwŽcÞ_Å1íç8~Âÿ³^×°S÷™uõ¤ìn§¦M—>nJ§>6¤©2N=û¾EC->ª<ÃñÍñb¢³_ZüúÔùv~Þ‰֘ :ûÇHqRÇVçÌñ_Ë!NÈý^§–­Ä®•ɹ=Ô©å‡öí€ôýP§'ç7l÷;5ßR\ä{J{¬oBê%Q¼ã»ÚÎGË«×ùªó'ÒÐpLÒ¿9Щùˆ~£<Úe¼âÉNÝo'¥oÇk+}îôîòfn;.o«ÎÒ{@ÙÚ—KN7ŠSÎWˆsÚ&ÖÝâS®Ã¨î4ìÔý"žµpWËÑ~éÜë<œ¾?©‹(Lt¼ÔñkÉ{~K~ 8ì<Ôù€Î‰×«xÜš'm¿¿ÏqÔ1=dõé|h”_’Fœ^[ü€º´Î»Û+­1hé8Ê»øþPÊVýÝù·~×’ýü¿Ñ.—¯Î£ØŽƒz^ÆÉ"Oeñ!û^¿qû¦…›cÞSZké-Üä“/jÔA3ìÔüÃu5ýNåŸã–×ÑÒ›øLí\Ç©n£LŇÞq^‰?ÚOÇ Ÿãq2ÇeŠÓ·Ó£¶[ÇÌé@û¥íméS.Ü.×1Uy:®OÊ»]æú˜¶ô˜Ö8hì‹öm£ÒçzµO]{We¦Úe-:~½lÔÉñ¡îíºµÒ§âe Ú­ylÙe­ÿ«ÎÇ>ª]Þ“:¯UGö~´wX–ëHnãkŸ‡rÿí÷úwx±Ë0Ž ç}›´Ëù°ëÀª_éüø|óåGl‹ò/•AnO´l-—Ñ*‡Z¼Bçˆô§òOû£÷‡ý¸ïåº-¯tLž¡¾3êÈþíƒÆtͨnÏúH›]N°ŒïR¯ÒÞA)¯kßiÿ¿½ìoPIJôÿ,ËËvÛVǜԎ!ÿné"-ž k×n›´ÆQå5ËP¿¿a[Ý©}o}㲸EoZ^Ë—¯t×Â'­Cõ_sv?Æ QÎ8ýÀù‘óXŸ·YÇѾòÜ–Ìw<&ë¼ù˜:.[ àÿûVNK‡ç-yÔj—ûØuÞyó(Õ§hËLtê9ñqV|Hyj» ­<í—ûy¨G8-¹­2N·ñþø;Š‹“cþïþÇÓ‰Îþñtž ¼ÁqØõ?ïs G[¾ÕI\× Tœjù‚ˆ-½Ëe„ú5Ô6P?K¯Sϳ?ÛäëX.£'ßû¨¾¦: y«ÛpÄç‰>Ç:Oî`ßâô¦sïëOŽ/„-š'ƒTîy9œƒqÏ_X—Óv‹7«Ží4Ó¢åoºöìü²å[i•7èìŸ/÷S©DñÒe“òsÇoµÍ׸]§~Âî¶æLe„ês-ž0®Ÿ\KWþIœTû†²†2Uý‘º>¤´¨zé»eÓMÚ}Ò´êÓnG¸cØÒ‹Üׯ¶€Û"jçô;u C¯S¯êÚîGpºÓñoÑ,ç›ã¯k-|'?jñw¯“ýSœäo þnÉ"Ž•Î9ç¨gu»LlÉKÅ9µßü;Ö3Žg»oFuçù¤{öUçÝù˜~ãÏ9Cûír³E¯êSÔñhéä§-ÝOqœÏT'×þ³l•3ndz?ê#'s]/Uݬõ¾êC{¯%”/:êÿ]_m•åºÏ©·Ãí_ϧ+ªNãö*ù§Ë÷Çh;Õ~U½oÜ†ïø¢ß¸ÄrµÄ-µGu¬|ì•'«¬¼²EJó®7¨¥¾÷•iY¤åsê#PêujÿÈË9&Ê÷ÜÇ£uOZ¬Wù»ÎƒÒ’Ž—ï<ÕõÅCå±Ê.õ´ü‰[¢xçzŸ»\à{ì³ÚiÔ¯µ^-O×âô—ú-ësšsÀåŠã qFéŸe*í©?E×ôõ¥åãÞ×ýžÎyKÆ:Ó÷U·Öõ3S//—|]Ëâ·^¯÷Mu9ç§Š>ÿ,GÇ\y¥ëj8-;/ó6¨Ž©¼UqÍ×¼Þs9ívú[úPË~õï9¾~ç<´åƒÐ±b[|þÝO«<ÄqŒå‘>”¿«.DÑïÔøw°³_–éØÓë´¯­uS–­º3û¯´ì8GºÖ5–ýîcÊ>èz‰âDk oœ-3´²u½iÒÊnñc¥c–Ý•ú©ÿ©_¥åCS»‹mc{ˆ*K';ûçÕíRÎ_Êh­Q+ÝMÚ=½Ôfàó¸ŽÅ1u=·5*•8mã;®¿x]-—ó©ß).¨þÜZó˜èìÇ?õ×:>+æûî;ä¥6ºësЇãî«_ÏÇ›ãák©ìúÇ•)}ôì™Ó„êaŠ ,CýÚÞ–ll­Iꚬۺ楼eœ-Â:WÜ~g³ª]NjÍ‹wí·}δß})Ï÷´ü¬Ï×ðœn'ÿW™¦k “ö­±ÿœ¯b²Së(þÌçÑËs=Áu9Å+×?ùÎ…êL>W^—=)ߨüw«tÒ¢Q—%ŽŸ¾†¥ºiLuÖ©±VêcSŸBOÊT{Cù|küý]¥]çU>Ît,[tã:ˆò—>ž”/ãø‚Î»ó@νãv«/Ä×®Õ°S˧eŸwÖë¼Þ¿‡{Z^מ©ËñCy»ÛòŽ;:oê;PÝJײ&å]¥EÕu&í]ŽçN³-zàœjÿ”öZc¥ë½œ#•—ŽN>-œT}Œ—ÚUÚÇ«–LÐyP{ÈqâAíjé¹߯}UÝ[u±ïRŸ®ò•áʼÍ:Ͼ«¼\/ýVËÓµ÷±°¿Ê7Z¹-]Äõ˜ƒö|œ\÷µÅ?Ž#×»ÜÅwT6¹|oÉ¥k·U¾¶ðe­9Ït©Õ.]7jùd[ã弩UÇ¡Æ÷.ÓUGS¿ ñWmhÅWmu¥Öú—óׯQ[Èù–ÊQw¯CöŽËz_Wz7ÝWßuü´r]>hÏ“òx¾ÃqsŽ}T•Ž©û­Z¶C«œW—'>î|Wñ¬%o}.GZ<@çVÛï|Wýú^·ëë:NÊCZö¾_ª£9^k]«–lñ _ëbU¯R›u²SËåñêwpàóCÿšê‡ãðÞù¸ë½ÎóÜÿ©ó¦´áß‘NÙ¾OþãþN-CmØag¿Íà󦺑òt/q=ÝÇ“ôÑÒœ•¹.𠛆Ï\ïq>ç:WKïuLúKßu=]ý)Î[ºüÒyÕ¸];k•£ã?èìç5>V.vö¯û¿IîO娷lŸ{§a_ƒÖ5[=ðqgߺ~¤qDú¾¯ïúšŒúXü;}Oué?á8¹]¯ë—ªK¨Œ›ìÔ|Dc~”çûz²ò’·ßéË;Þ^Þó5_kV~¯tKÝXûª~dõq¶Öp´ÿ.©;{[T¶ê{®Ãj}»6)ß«œÐu•óÎgœO8ýŒ³ ^>ßí¹ÛöJ»Z—Ëyçï,CÛßj£ãSkîܤãì¾?7Õ#•飯þEÇ•ÊX§Ë õß©NæcÖ¢§Ö<¹ÄiCiwœ¯üRÇÌå“ó:ýFÇxî´ì>‡q|Yñ@Ç«eõ¤~·9ÿüÿ¬ëA±V¼×Ú«â~GÕ…Y¿ëzªóªÿËqMéÁel‹Öô¾Ž«Ò—³â›Êd§Öz¥êÞª#µð–sÓò_:MxϪ¶£ÒŽâµêfгêŸSþõ 1õöö¤Þç<²Cy÷tŽ|Ø hñ6-£¥Ã¨®á:y«?:-\p>ékü­v¿qyÙŠAg¶ä”û¾Ô§èü`ܼ:ïV>Óz·µnãíSÝû}˾j¼†ó(Åa¥'ç—®ãPöu+_Ouœj­3´ìD·¡\§øÍø½ßÍneÿ\’žÔ‡?ÚO·%7Z80÷tNH礱'ÊÇuŒœÿ1®¹å7:$ϼµû¼ßjG)Ýë»\Vtj¼ãøçºV¯Ç]L4žñ›ÕÕâoÞÆCö¾ú³½,—Ûãx¸Ûý­û:nþŒt¢2Pi2Çc×hÛ)3ZòIõÕ)[kZ­„Cýsîv¡Ïƒë¨:VÄym—Ιґû!¯¼¿­yT9ã1Z¦–á>¢ö¸êúÛÂ-¹Ðº?nŽÇÉ÷û³ŸìûC\gPûBi_iBëü)²2Z6pËÏêã |¼%Û”žÔ^V{Üù:ßá7æ<ß×ßU?t>ÞÒï½ÿêónéÇ“ý}rÛCm õ?(? Ï”~Tžöì{m³Ëå®}ï²Âûí¸ª6MKmÙš:NJ—ª´h‡}p›©e£(oó5£ñ}·%Õ.à\´lp¾£ºý„\ãÚ¦|Ôéý }ßÒgœi]·Ø>ÿVëwAÇÝiÐy«¶ñ ¼çº°ò3/SŸ;}²N]+ôõX·IÙg{~ë²Ðû2èìŸO÷AM6êôñU£ú¦ó åíÎ{´MÔ/•Ž[ú‘Ês­GýIŠê‡Z*[[¶€·WñFËg[Ý_ÚÂc£V›½_ú^Kfh;[ú­Úä”!­~zÎY×—Ùý–½èr 'u+f›‰CªÿjÙ*ŸøŽÚ€º.ä}r™­mw>¡þ)õ%ê\h›ZsM\rÞ丠¼Ûm]£mñ7¥ c–­ëä3 ò`Rž)m£cm‡ó*õ:}«Î6ŽOŒó“j[Õî NºB;Så‘Ò—ê):N§ŽÇÄO_gÔÿ»?øÎûî—sù¢¾Ÿ÷­oò}Õo?]ÇpÞá:œÃ–¯ßu°ÉÎ~¦ü—tűÑyt~¦úgËå> _·â¥u)ôX@åW:N-Ú™l\¬_徎ƒÒ!ã©]ƹ¾¤sêzÕÁN½Wœ¼ÛiD}ô-Û·µ—ÄyzKµt¿qú“ú±WÝFrÝ E›j#í¾ë®x›Õ­öŠÒ¿sqœmp}Lñ@}f*/\7ÐùÐ÷T6«]Õâ Z¦Ž iSu¡=+)Ÿðqg7º/Ûíê–n×Ò\×TzsÜiq½ÕΉú#†V6qPù›þ_q«e;+½+$Oò6:ŒóPv;^ŽÓ9[s ßº‡íÓõ«Éw©Cõªž½×j«™—£|_ÇÄím“?Sy¤ïÓeµ.½ï>M§ÏÖ7ʃǕ×òÛ£¾ïãäã츯²²kuqÌô¾Ú­öµì$¯“º y¬ê:-^FºgOj½ê'qÞö›Åy=«¬å sÜwë'¤ngû'äÒ>j™ªw¹®Öõ½i-¾z©¡þןTiy¾^Õ’ÊÏ=6¢¥k9OœhÔíç7::nssìtLëò59Ÿs~£´¦rZéTõ¹Ðu íw·ÓÖécéôØÒiœç:ûq×íC¥A퇮Û´{Ä%Îñ‚|U} J?VWËÄ1nù’øõ…)>)?š°wZøéz©êòn£:/v>ÙÒ¯ÆéµÚÆ–~¡ú—ê"N›N.‡/X¶ûÕ§º„—=ÙÙ?l£úQO4¾u¿‹÷µÛÙ?~-^ײ‡œ)Q¼RýEå–§ývËmt{å7>“v_Ûì´è|]õ6åíW­ï¶Æ¸5®;¹>Øzæ µOô·?÷:Ö‰³¤<;·9XÇTóB{;õ]¥]õÑjܘË(•3®SOZ¹,Ïù‹âu–ÛòÝñ–£sèôê´¢ãämuÚ÷ùw¼ëI=j{)ÿÖµ[–EáP§^ËT›mœ/mÜšÝAû¦Å‹üÿœ Ÿ·–®¤¸¬sæ~IåSŠ7}{oÐÙ?Ÿ-zóñvŸ‚ëšj‹ú{N{r=ˆ¯ò¥9ŽÇû¾%'Z¼mu™¨<²åÓqW»ÃéÍm¥1¥}'çŸ./'ú¸:/mÙDÊ8§-_“ÏÑä˜ßºnÃ6ãÉ|×å¤òZÞoÅJøû­ßŠJWê·Ÿ´g®cºOÙu·é´íþNK¢÷Ú^Õ¿X–ú®|¿‚ÊoïÉFYÞÊ[Ëp^èc¢xå¸Ûš?c÷}+^8O¢^éò¨…7®{÷7u<Õ‡æ:³Î…Çä#T8.ŽÄûîüÓçóÊöðÿå}§[¸ŸÒ¡ú«u¼gµpÌù¿Ëößu6¿ïmjù ´\ÕÏĿ݆tŸ‚ê–-<Ór¼_ZžË§e•ýívšr>ÐûV;•‡sî\×vŸËDg¿^㾟S·³]N°]êÏw_²â?Û¡<ì Üóñöµ¾q6¯ŽÛNÊ'؇Ö|+nªý¯ãéö¡ŽÍ8žéõð·êüÞcE&¬|·u¾õ™ú«|ÎUW^Êqáøµô…–©ýèÔz çAùvOÞQ:R|Ñ1ñ±ã8£%—§¼§6$ëÐò[>)í³úîY?õ˜ÖúrklÆéêãÞwyÊÿ+ïѹVIkýMùŒÇå¸ï¼k÷‡ò¾ú4œ§·hGí~çÝÞÇ–'îªNÝZ¿×±rúhéÃ’I¬WýkîËñX‡Öúi¡5¶¾nÍBõ :M;.£}Î{“¤>BÇCVï8] E?-Yãúâd§Öi¼\ÕoÉ‹]ÒõJŽ­®×)ç{®oºüV:VgK¯f5žù˜´âCœ79ý±mãð¹å?pÝFyEkÞH®“z»ô¯î¾S>àz³¶Íû©ø£¼AÇdЩu·›)×T_ðuµ‡g<æDiÑ÷ÇѤvŽ–¯¾%å%ãèÙqàAòŠï뜴üa}yïArOçN×­ºã©·‘íŒyGiWÇ’òÅ×!zV¦óñ–Ÿ›ãï|ªå3QýÀùºîWiùl´\-_幯õÏØýCrrÌ¥rYéÃǬ5_œS§ÙõÉi_õgçî?Ñ9Wž§mÖõÒûø[þÒÚ1Ê“•?NØ÷êOíÊ;jw9Óyu½¦e§ëü«Üq¼óµ#çÎÔ—Ò³òZ¼UñÌíýqòü”ÓÂ#×[tÐjâîd£ÜA£<•ïÚ/}OýN:Ž­>jÝÝN=§:ºº'娫x6ŽW+ÏmÙ’-9äc«¾/µáõ}ÒŸóðñ(þ_},./•7èø¶bs\kéî;siï)n¸MÕòéܶÖÞuþÕ¥åu­n÷µx¿÷µ‰Æ·nƒ8Ït[Aù®û»´l—3ä­²5vÚõ1¥‘É×SœG(î=H>;÷>«œuSË_Ô²¥|ÎX~K¶jÝê£q~¤þÚ±ÎÃÚ÷jozÿ¿©7©í¢¾nÇ[ç>–.ï´Ú7_Ã;Ø©ißùúĘ:[ýŸ:T¯å³Þ6.hû'8r½œíÖnÎ3¼l~ãüšuµÆò ”éôBÜð¾¹Þû›á£ãÖ|܉s-|ѱÒ1æx(]»­ün6¯ÊcçƒÊ|ŒÜ—é´íãว2µÅ÷œ;N·x†Ÿò ÷W*Oðyqž¤rÌiÄyXËwá|Ömñ–ήw9Í©n1”oÕè¶­ãl‹‡éz®±(Ýùxèxi¹îsW›Tý”n¹¼nù?µ~Å­~§=wã~{Yì7íjÅQ—!ŠŸ|漆<ÜñÁÇÈõ$Ÿýt^é¼…e;͸ÿ\ÛëüÃçØy¡~㲨'ß´d„Ýw=©5ãøŠË—ý-]zÒ¾%.¶Ö—½­-¹¡øçcäsïrÔy“ëªk~ש”)-kûP躙Ê_µUžtÝ Õ‡–~®ó1°òô;Ÿkå‘ôcRö«Î®<×itܼMØwlŸó6]÷QÝCûÏ2<þF×â8ÎZŽÖëü¥åkSyëk*.kX¶ŽqÆíS_»jå8{Õׯ=îIÇÒm–N«zŽÏ½Ó®òBÅÅ']¯Q½Jßg?ÜÆqÝ\uò®¼wÀÞsßÓBK&©~ÐZÃÔvkY—EúP:V›Ø} ÚÆ–¯~æ¡”©úŠó I{ÇçÃe˜ë’ÄkoöQû­4ÉzÈËõ=žùÊÿk»•¸oŽ4ã>Ÿ—=.›ÝÏâó©å¨íÙòù©= ñ:–}y_ùÛ@Ý—8Ïò[>YoÃDg?½©.¡4©:ˆÊ¥kÍÙãßðý¾°Ýª¯9>»ý9Nÿàÿ{ö>ùYKGǹ¿gekûŸi†Ri¹‡íz“Ò–ûGö•¦]–ëx)N´ä»Ó¶Ïy„êª y-ãôØ|çk¨®Û©ÿÀ×ÂuœWûºªÛµ¬÷uÞ[¼\éNë&^²÷tÜ]–)¯jé ]yî<Àõ”ÎùÜé{ä{®gúxNÚo•Þ^Çeçú[ÇÓõBõS+÷µD×W&;ûÛÍör·UñËÛ«ëÊN—^NËoæ:‹·Ûù‹³¾C»ÜéÊu~•¯®Ï+¾»nA]¶5§Ž³-¾Ky;°ú}­©ÅëUïuö%û¥z[kWuU–×ò¹(Ϋn¦ó­>)}_ç×ñ½å#õö+OUþÉòÔCÚwüRh=Óö´pýÝlË?rüt¿#» êŽòG¥{ÇÍž»ÜðñoÉ!Þ;8æ=÷‰èضúÜâœ;•Q'Èr»Vßušu¡}rÿµó$Ž‘ú=œ.\÷S‘ËoϰSã™ûéZr¨Û(K¿q¾«Ù©û8ÎÝâÓ-ÚT Ìp›˜õ‘/9^ë9ýóWì´ç^ûF:÷yÖyp~ØŠ9pþß’±®ø<;>(ý¹ÏÈý“¤åy*3t,½=º¾£ëM¬›càöû¸ñq}¥%œ®[º€–ÙÒ±œ¿û3âï«w`÷µMªçè¥ëyü­6÷ã­¼sœìUÞâúºÎ…ó/_?jùQ”¯i9>-¯8éþX_[~¬×òÇ­iè³–N4®ï-ùª8¸®¥ïéš0ÇÉi^ÛÏvj{gµjºþN­õ]Å;Añï•6Õ­üØqÞùªúužÜFðþSV´t*/£Å£Z¼YíYÅ+öx¨ò¤5>.‡½}Î_½M.›u½\}Uœ7ýÞ×79'î;s½ÍéÅyËé–¾âôáú¿sù¯¾M;o“޹Ëüƒý¸é²@ñÉ}GúÿÖN®£¨ iÕÇò&Îzzþ8þÄÕ“Þ~—1djSPÐ~ºîL¿3ûþnëê{LN‹/ºÌp×}-ÎÇéßõº,Ñþ;.”ç:–´!|ÎISŠGãddkîyOeçó€Õ¥câzQ‹^O¨Ûìì§SÒF˦oѼËz^.'9žÚßž•©>(ÕY[cÉ~ë3Ú&C¾§13ŠoÞ&õ-ºÏÛqÎLjóïcªóÒZKöþ¨\Q?Ënñ*¯Çy··Ue‹ë´*gÕ.hÑyK·Ñwt>')³YŸóUå·ì‹®e:~*_×VÅ¡–>£|ÇñÈm$§/§ƒwÓI½LoC«œqö÷™Ït,½ÝÊëTÏx7ëó«´®¾_×ù¢Î±Î¿ûÂôÙ8½@ý:.Š“º·«e—*͸L˜ìÔrÀç^åú8¢åsóø çq }.ÆñE§á–ldŸÔ0ßÇÔO\v;VçXõö–üó¶º/}ÒÊ×–q8©s¦xé4ÓÂýíøÆþ©?Dýgê™l\­9sž¬Ï»(ÇñÐq‡¾+-lé²®»ëø“—«îéõ¸¬T<ÑuóñèCcþïÐõˆž´p¥eµÖÿtݵÕïñÁ}]­¶ ;ûÛéóß’îyP݇Áw‰n;«= 4@¾é>Xމû'[ü8ë6‰âžò§Mó`9­þµt:¶Óuüq|ehß9?UŸ‰Îûè¸Ôâ¿­ÿë{:Çì³¶Ù¿WŸó Õ%Ý :i /=ö¨¥÷¸.Ýê¿úP´¼7Jûéþ&õ èø8ßõ±Vÿ™ûѵÌV{4n”ãªöxK&誢ÏÝ—§1Úg—µnW;HY¤Eö£ãsÐþ¯xÂß-»‰ß´pKy•–ÙZƒvÞ¤¼ƒsÐò—ê|»OËq¡Åg‡roÐÙOW-vœ–ÝÒ=œnÕwá>|Å7ç#ÚÇçÅŠÊÿ5î‘Þþ¶ßiã•ë>÷¿ûqœÍì}×w‰k:?|®>­ömKoõ8ååº÷Ru!å Š§ª¶t·u>üËS>ïþ¨Nµä€ãuËWNzä<¸¯™÷]_QºìÙ;μ^ý­1ÝÎ;~6õ(®Ò'â´¡í \W¡±c.SÈGÞ†œoS? ΩEÿëd£LÇoç Ê—´}jc‘¿8ý« ¤x©¾ÿVl˜Ï‹Û*;T¾êXj;4Æ¡…O.§œ¿«ìk­GMŽ©w¾ÕqT^Ó²99®­ýk-{UÛëëˆÚîisû¼å·àÿõ¬9çµ*'H_òŽÆQ ¥^§]?Tþïcò ½CÿïrSç‹cëv¤óËÖܼ›¬kÝ·FDÚÐùÊûäëº^æö[ ”©^xÈîMÈ}ãPÀ¹eYª·)Ow>¦tÞZ[÷yvœoÑ®ëX-¹ÞÒ­t.ˆwÊûÝnW¾Ø’±¬»e繞֒^N«oÄÅ òB×…Z|§e÷.Zü’Pã¯7ØÇÁV,ˆ÷M¿s_‡ò_÷vö‘#¿!nº|sޥ닭yÓï[:Jëÿ®“¶ìôoã\ºÌQ©ß»ÿGÇÄçE×o½JŽNG¾.@ýƒù(ÖïÝ&Vàå~_ç->–Îw¨“i¬Š¯8£ã1.fÈu•§-{•upZã8ÑÙ?/ªÛs¬•7úüëý–né¼Hå€Çgøº”×§2﹯dÜÿU÷Ö9U_Žã¢Çíø8è¯ëü¹Þ©|ýAû]t~uÞˆK£Ú¢Ç–å8è´Áÿ·Ö¤&:5¾8ŸgÜÞâ¡ãÖn<æKïµæÉy¹Î•ûáZô<°oZôìs®2¥åÛñ¹'?'«|,zV†ËØ–=¢x¥<Üe»¯ç´èÿ |¯6¹¾¯4ë|¤…ÓÊçø÷o)Ï?$WËvZý*s\ö9Ž´ðZÇŒx¤ñF>VJãîsÐ1f[Ý^r\š´ºÕömÉøƒö{œ@ùŒ¶I}2äÊó´_ƒÎ~pûÙÛ ýóqv|vDËRŸƒâšúp|,]×h­¹«ßÚËQt{^ûä6…⬎¥ú$Ôîqzá˜ëw>~ª“i->οC{IñViMçFy®Ž‹ê -ùã4«±-îWàø+½R–jLç’tæôТÖé>%Ç7³ä˜*(Þy¿;$eé:´ûõÇ[|Êuùí´ž«Ž®÷tF‹Ï·Öd´NÇÖ¡ëîÚW-ÃuçOkÕûßZz§ók¶_ã©´Ÿ:Î+”/º¬pÚgYŽ‹ÊC§oø´x§Ò™Î‰ó4¥S¾K=Œ´Ý’ý-Ÿ‡êÞÃÅvº¤0ΦP cà㫼ÊuLŸÅIå9lÓ8ž®xémp¾î8Ͷ«Äù¹ó –¿ÍßïY]j÷©Èçe©Ý¬ë ª+ª­ás®¸ã±@Þ/µQÈ=Õ©YßN=–ªóµx(ëQYÀ=šj“êX(?óþè˜(oo»âV×ÊW_ >øº¾­ñ=Ôƒ[þ?÷y­uy•1Δ7: o©-Í~úú”ú§|Ìu>9wêGR¿…ËÅ{çq-ž;Îgí}SÝÙËöòÝfVžçþ0Ö£úÒ«ÊŸ'å :¾ÞÅ×í[:òw_OléÚç¾Õ=Žg¨îæú/_ópyãã¡s­ü£e´ìü–×ZŸw9ÐÒÇ[ïMZ™:¾-™ÒÒ3È‹”zRæ°QžÚò-àøäü^ËŒ)Gy/e‹â±êð>®^ëQÞ¢òQßWúr|Õt+ÅÇg¥·͇ëÎcÿw¥ õͨN¥åùuå[¥5·]Y¶Û{ÞV×˼OZ÷{Ïí=Ç÷ÿg¼¶³keûx;?q~è±g¾nå~Ü®Üs^ÓÒ—Z듺?CcPØ/⢮oøŒ¯héŠ-YÇ29ÏZ×ÀÊÕ{î|7~ÕÂA•M.7Ï»ìSOý -Ù 8ä>Ç… «koñ>¶x¡Ç£h­oÆéYãÊwY@\ñuƒÉN͇ù^KÖ9-xìÒ‚·]Ûäº0q_y—ÛlJjÓMØ}××Üæp«UW‹Ð#mŽãï>ŽƒjÓ©Ü¢ æ8«nÛ¢e¥y—?¿ 4æøJü"ïiñííLZ½ãx›ÓµþžúHÃî›T_’~Ó²KTGT¼R:s™À{Jßn¿«ýÅúÆ•Ûô-ýÔ¿Ñ9pœöïZ:!íIS§Ý¡Àqv¾¯k“:ç=ù^uk•sjs9q~ üÍu—vŸåúZSËg«~`Î%ïk|ƒÇt:Ý :µ×~)W›EׇÇÅ,¨íÒ¢ —ñê?lÑ-ÇQyŒë˜®«µhžíôºX®úéÔPýÝùz‹«íÉy!M°>=K@¿U¾ä¾J×AZ2Dý¼ïq@-½Hùǃd›)çP}M¾~èãí2_¡®¸üt£oIy´Ïâ—òŠ–áü@c \7ö9WùÓâ›Ê—X·Ú|:Îίˆ;ŽWì»®‘û|éü*M³ÍÚö–/Éù¶ÚdŠÓ>.ÏÝgæv5uœ¡•DZs:vºwÝUiÁõЖ¾¨x£¶ ¿Ó8w÷[:mÉEâ—ïwbŸ]çP~ð Þm í+q‘¼Lû«|Põ:-×u ×ù}ô™ÚÀ“ò¾ÆôzŒ€BïOëÿ*}íDÇUÇÇíï³ÞwY£´ÎçÔ•¶p¢Åo[ï8âø«Ütý»å“9(e©^ ï+^p­Ýñ«%/[ôÝòy¨¼Çgu­ÃׄuŸ ûgø~KgW[Öù+û¤´àmövºŒiõÂÊó5þÉÆ·>ÊÃZ´è<ÑËlµýçxµbr\æ8°^}®4ÑÂé–ÜP^9°{„îãlÙs“òN«½^ö„ÝS¼?håëXø|êX܇¡vLk\q:¢þy@êᘩ¬u¡2ÓeN˾qÝFÛÅrÜoÄy;ô.e:/£Üt}µ…÷îW÷XŸcå­uùÖú¿¯~-SëèìoG«]:ÏÊ—[ô¡sO©¼¯eëk¹:÷-ºsúRº}Ðx¸á´¡¸ªkÄ^Æ¡Î~ÚoéÄã|n_µä*ÛÖ³òuý–|ÄuN·‡´ý^¿S±¥¹.ÝÂ5Íw@wÿ:ës}‘}slÙQãðÔåŽÒŠó\×ÏT6¹LÕqsÞ¡c¥ôÙj“¯uºîêóÜâ¯-WŸ°—©sEþ§t©6¹Ò¹~Óš+×{Ùn· ÞMfyûÖ{êçòyW¹Þ²[Ù}·Z6Ó©êënoP—q¼kñm¥wÅCçM:~ê—d™lOËvtšhµÕ×wtÌÕNÒ¶ó™ËÅqv€ŽËjÉT¥Cõ%¨¤EÏþÅçÝ:¦ŠœÅÅ¡î;Oœ´úÝÎóvª¬oѺ—¡öI /Z² wàuq4æå |ëüC׳{òŽâŒÎ­ÚJ;Þ&å¥ÎT§çœøÚ;ëP›MÇLçÒýøÚבT§÷1ïÙ·-»¥ƒ´üäOÒ‡ÚÝŠ;-üW:·gÂqƒ4¨s­8ázžê/:6®c(¥üpžä¶ƒ¯ƒèxµÖïÔæá:1ëÒ5(Õ…•§Ltj~Ó¢öUפµ|-S}Óœ?Þ_Trön~S—Ã.+uŽß:®ò•/ªSŒ³mœ:]ûwª9εÊÑ>éw“ö®ã¢ñ¸¸Žï9hïñû¯pÝy|ÿÊû®ºßõó@É]¦«¿ÓçMÇÉÇVñµ%S´ÚÖagßœ§y;I¯ôSùZ¿Ñ˜  µâ>Zmp|!麓ú¶+¯iá®w»®ª²Ðc •G)¯TߟÆkxÿ•'LÈÿ[¾vÒöÓ}‡Êk{2Õ'1Î^kñ”~§æ½®Ûê˜ê<’9†¤ƒqãÑòQi{·Z8É1qÿ?N_s^£ýt»M}É”c“öq_é÷<&Äe³ë:>.#´ž «C×;Õ/®6Q‹Ÿª.К o›ËC]‡%¾;®)½Óù]fê|¹‘cã:aËgÛ'ïé8;pÿOËGÁv·ä¶ãªê6­ywZtöÏ_Ëò²Ø7å[ÖO”ÏÜäígßµè½'åhL½â]‹^Õ¦Q›@m!ýÎý%ìïó™Çj(Þ¸|Ó~hl³ò÷­:þh]Ê;|ž}þœ'ë7ö®ãñv õ¹Ž:nMG}9Äçyš‡ºí¦~I«_ËÑu Ò’®»nìôÒÒñôÿZŽÓþÖXVýFí—V¿ÜŸ ¸¯õz›]GhÑ‘ò¦–ÍèóÔú¾åós\P{\õ —CŠó.?tîݧ4éãÎ1Ö¾øø¶ü>F>¾îp96Ù¨Kù›âƒÒ⡯/·Æxn¶x-ù%ñMÛ¢¾Õ3´íÎSÆáz«/Ú÷–ÿª5ÞÎ3&:õ8kYî?VH}@.W‡T¦©®¦úNË×Ó²Þþ¿î9Ð6´ì2çyŽŸÞ?ÊSÅUÕÍés]FéÎ}‹ç´«ÏÙŸsŸ/÷«ª½§úžÎ§ò„®½×²5ÜgïüŒJ“®Oûü©ýé¼ÉÇQßmͳËÝÿMð¸ ÇŸ3õãêÜúú©Ó"çÈå¹ÇÙ´p£¥‡jzßy¸úQ”þÔîvŸ‰Ž­âÇÎ×EÉ—\çÔ¾¨ÌðuÖáU‹¿´úèº¾Ò–Ž»Ú:êûWžì±’J'-ûMû͹>Ô©i˜ÏÕ·¤óâc¦ã¢|Àý!.wWøX:P}Be‘ÒçOq¼å+ñòW&:µÜoÙãôm¯ëòîïjé„:ç¬~-ÛçHûÓòµ)oëuöÏ¡Ë<Χ–Ûíì§õñ´üJ>vª¨ÌV]sÐÙ?ÎW':ûÛáº7ÇVigœ¨ˆ¯´d"Ë÷³}ÔVÐ1{ëxQ7cY´‡ùeÖÁÎ~™×ò½ëØ9û\»lñyô±nÝ÷ù=$°å¿w>§:µê^JCêT­¾ÎkKèØ9ßVÛ€¶ŽómÓNk½Ëã½ï>®º>¯Ðí$;×¹Z¸¦ü@q¬¥›²ýš_ v|yjù6ý·ÓÞ8þ7ŽžZtïeèÿ=Άï+.öì¿r^ç2@yªÒ¹û 9ãì!åÙÚ^m§÷}œÀñp¼jѽò%Õ‰Z~wå¯NãxoK®;ož´ºZö0å­ú=Tå©ÚLÊûò­Ž«óÕ)4ÃeÞ¤•§2~œoÑyyšÊ ®²Ü¾|£6„Úº¢Kí§âƒò·ß”ÿê¼ëÜ+jù@YŽÚ ŽNÛªï+®©KÇ´µn¥k!ãäyËV™Ø³gª«®÷8ŽãÖ”Çõ87Îgªñ,¤ê2z\g(­8ÐõI唹ºÇ׈Oêsx¯™°gŠ£ªÓyûÔ§ëú²ë[nq>zöŽÖã~µa£ ŸKÅIEÐu½Iû¿¶Áõq²ÏõnÅÇ–ïFq—íão‡˜g-Ÿ¨ó(Ïag¿Nà´©óãc¦}PÞ®8ãxì4ô ?¯®•§së²¹Û¨¯5ÏÞ6·»¿úÜ8_Sßăìþ–Üæü´w|í¿%|>ÜU?Ö¤½£sëëynç´ø‚±û“Z:ö„}«óè|Éåž®£)þ(V¥k“-Ù1aujô¾Ó§Êk—c.Ó<®´E—ä_n—éúêUJë¾®ªüprL™-?VkíŸe©ÍqAiÓýÄm_3Uˆó2õ{(½*®´pkÒ¾UÝJçÒ×°ÆéÎCêœÎïÇéƒ-ÝHûN¼tß·Ëòfo;ëQ»žïìÔüoœl"}s\gt>~@Þ›”ú8_nÏëž÷C𥳖|P'ûà>–Źð¸“¾ºßDûÇzçúø×}Ÿ³Ë-—Ã.+G\OQzSží²Àu\åp\Óö(-øÚT ´rT¶°îÖøNZÊó[ò€÷u^t®œú:šŽkkÌ·¼<Õqœ'“ºVv oܬ´3.&ÀÇð`g?ïÈ}ŸŽâûMºt]…ø s8N§çÃhýœ¬óò8ª×rÜÔO𠛯U¦ûÞµmjèz“ŽËÕòXǸE/-=MqŒ´©òpÜØ)owšqºöc¥øîóáþ5…­yUúhÙÈ®“«ÜÑXlÊ×Ç| AÏ#éZùj£(­*^‹v¾¡:tWÊ×¾ú\;ßWýGËWùåëÕêûV]—íÐñ:Ô©y¡òŽåzË߬>_çrž­}ÓùQZÇØ/§–½åöŽÚÌÞ×µ7ù DZgå9m±þIû?ëqºP<ó±'Užµäc‹o8ÿRš×:ºöŒrÎ}&ªï*ohñÉÎ~ù¤2Lusõy;OQ}Rù®ëMò_¸^Íú|uZòXi[}ÿoá±Ô[”ÿ(Ϊ>£8z°ñLå‹âµêCÚW_×r[¾¥«µúªþÕÝÆÅ¿ø¼“.Uך°:œø8iN§Z§Óu‹Ö[´ãö’ãø„Ôã´Èv¸ÜÒ\_äØ:"N©\; uŒ³©ÔÎQ^ÙÒ-[þ í7uÒ Ž³â©Òûƒò–¸l×r]^8?!þ©ÿ¬¥‹*?nÅ`hój?õ{m—Óµúw݇àë¾Þâ4È{.«Z²Féå뺣Ë–¬ñy?h÷”Ç(¿v©'õ:ÔuR—EÞÕ«h¹®¬s§8ÔÂÉ )¯5–Îkœ|½Hû<® þV}‹íb~ó͇ëþÿ‰Î~ÿËñyS™¬e©ß¦ÅWR>w>çëzÎOU†ŽósîúúUv[ÛtškÉ ]÷ú[rß×7ØÎngß[ôëø§:£~C¾¥íóö´ä ùºëZÚÕñ‡UŽézÚ8üs]¬Å”Î|mŽ~ÅÖ¼hÄ/Å ÷û)Ÿp=ÃýI-ŸÙÐÊ×ÿ÷¥<ç;þ®Ó¨ÛÀl{‹§óqkz_í,çq.GUNP¯Ð÷½/ŠþLËáx;ÿòñP×d§ž'·ÕÕöÔ÷ØîCö¾Ž­Ò“ã•–¥º’ÚüŠ-Œÿ÷5:ç!ªï’ºµ<Ça÷«õì}]ÏpüP[Áõ_“–,'Gulէв£—M4~·x™âgËîv9:ÙÙ?ÿjCë:S×¾;Ô(SçÚí#¥“^gŸZz˜·óÝó~¶ì8}Çí]åe-Yå4Êw4ViheêX;®ªèï«®í´àk}lKKNêX;ÿrzv ¼”í°ò(£HWƒN=Êûu¼YéË醗ößqÎéBûâø¯íQýFûû9×ìG+^UñË×}ÝÞp~¯8­ü§Eï¾~Ò’óãøò1×kZc:aï¸ tÝÖíÍòw”7¨ßDí,÷ñŒ£m/×ûä~QÑw&;ûdž´¡~[gçOÞ_åº~£:‚óõ½*Îu¥L–£:|KGq¾¦öœê–´7´ýŠ-žé}wÛÞñÙm?-ë€}£ò]e·žâ´ÂñZ¹JG:¾Ê ©?Ððu ê÷N¿.W–ÕæÖút®Uî*Þ¶l>þÿP§M_J³Z¯úžZëÊ‹y£3PœnáµÒ›âTKÞ*­zËÂ~x[µnΡÚ*Îëü}¶YשZ¾H[¥G^º–ÈrHwîiÅùø;ïÖ5%oÇI]Ðò¶Çt¬×°M-Ÿü¤½«ë êV:Ÿ´2}þU/õ¹¢~æò£EëÄC¶C};Ú7ö¡¥'ºžæã«|Âyšë§-Ÿ²Ë#§qâŠ~«úœ¶™ø¡ëûnë:‚ÛGîw×~h”Åþ9¯lň(®)ý«,òº·9·æNcŸXv¿Sã¨Ö£v™·÷ •§2¯©Ÿ+íµô=Ÿkå×n3«å}P_¾Ž»ö§Å{}ýÑùˆ®³yܳÚEŽ“ªS8m:ͶlTå¹î/QyÏyvšÒö±}ù¿ÚajËh9æ¾6§mÖ{ŠC~¾(Ëjñ]Oõ);O˜´ûÚs}ßÛ­ü€e©ßZçIã\¯Óv©mH=ú³ë;ÊÿÆù¾vƱ¯ýºN¨ýSà¶AËÖá}·ï]Æéø¸ŸŽ2Þ×=ØVΕâûI´Ÿ-žámÔ1sýfœ®Ï9ÓuQ—.ïü™ëØãì'Ò ó2Õ?ݦf?È÷j{露Œ–^¬|Òý ÎÙ~â”Óû©2Æ}à>OŠcãÖ ÜÏ©ã¤þM¥!íƒÎ{Ë'¤üð ÕÉvx¼–ë=>çŽ÷N«*k|.¼>—AªÓªÝZoð9'¿æ|‹‡hµÉå¸ë¼ï1ÊîßmáÂÛ2aÐ([Ûå¾uŸ_õøZ‰ëêÄ7•eÚ¶ƒö­?S=QÛö žÚ’q¾®Ýz¯…CNãÖ­B­¥'ª|öúùî8åç)ßÖ:Ig­þ¨ §úƒã¬òåÓŽ¿Þ__»wÒò¿õì¾?ÓºÝG1!ß»LrýIm'—ùÎç[õu¥Î–ŽÈvû˜:Þµä¦ò(÷!9λ.§:0ç\õŽ»[K¿tÚp=°ÅÏ\7Sqý©E®ç8î¸OáíïúöN‹ÿù9(Íê¸ë“ù>ZÕœ.ÔO£cçë¢ÃÎþ¹tž¡¼…òÔ嬿ê]ÚgåIüÖ×ÐtýÅeKK'SÜv„c@™{ÀÞmùgöµ}öG|¾[v5u¼–8nM@ñYmâ€úvOç½Í>&ì£Î—óÉqs¡8íkJn‹ª.¬ß¨ÜwÙ¥cв!oô[—-Þ¢ü…㪱:ïêwpšx§tÍo_}>´­­5³–Ψ:Ë8}Ñ}8Î;\G×÷Z´Óâkú¾¾£ú£ê]îëVè|Hû£|Ëu']Ïæ\©luzsæ¼D×$¼¾ )›ø®1$N—-ºQ\ÔùmÑn‹÷o]ö·x〷ÿ€ÕÓÒY¾ÇâS‡jÅYµdô8Üó>ëéû¾Ná4§òNå‹Ò±¯?ªÕ×sô;õ³»N6iï¶lY]ƒQ¹¨6È8ß›÷õ•«tá8ÛÒ¹\Ž´teêŒKU{ÖéÈ×<œ(~ :5r;ÖÇ@Ëⳡթýr½JûËûºn«k.óÔo©s¥8ÝmÔ­xè¶ŽÓWËÏвÙ^åUî3×qR¼QÜS¼U{û7ƒ;Z·þßãt>§¨²,å›ÎoØnòáÖz3é¼ÅSTOP^GG×¶œ·²ß:-þ§v”ûÓ]§·FEÝLû×Òá[¼Aeœò2ÕÕ¿Á1×yÖ8öQ×Ý8¦-;[Û¦¾LŸ‹q>ò—?J7S÷I;}¨ÑmÀ–Ÿße²öOåC‹>Ý7¢ºŽâå´Ó ùªßw9È~:8rûIñcªô¨4Èo‡V¾Ç´tíŸûMÏÕx7[ehåëÿu®T×Sy¬ööÝu¦VÙÎãœÏ·ˆ£*¿Tîg¦ׯù‘Ôþ:hÏUÏ!·f­t óÄv ;ûÛ{H¾åûz.›ò—'“Rw«ï-¿ªãy_kn—ÜF&í©lWç> ×!‰­¶±Ÿ*O|?†Ëm£Óe &;ûéXùŠ®ï·|@^~kmLq‡mV<ëÙû¯CVŸÖO¼hé ã쟖ÔêOK—Ñyw{Uû¥ßµt¯ßåƒâ‰™ò^­§ÛÙßvÅí«Ë$ç=-=Bõ k-çÝøÛ5ÙVµcZ~/¥;·ÍÇù”•ÖTÏwÞ¨ÿ÷9wòñU™®tâº_ 7T·òñíuög«>&®¯qÆõ—þ”–ïDÇ UŽËŒqã©ôÍ>ÒÆ!^¸,URuwÕ‰\ú<9ßç7rDuSPß~§cÉ2Y¹ü¿^Þw~§xD½MëhуâS‹·8-µü >>'{¿Å¿Üwâz¼úÜxyåýIûM9Öú–ú¡Êw­ËõSí³ûÂT¶ùºžó–V,Χû3ýÿ¤ ×÷œµ¶¥¥k¹üÆù¼Ó^kN7Zcªz!ei ·´úÛeŸâªóFgå—þmË×ïö»ûß[:Ó„•¯¸FÞ ö¢ë¥ÄUÕ‡U®:Ny{YŽËQ÷·xu=Æcþ”‡ºãl«ÖXµüX*•Öô¹ê8Þn§÷MŽãÞ?Ê6]j}çþ¿ƒºZ1*[ø¾®õ´x¥úXçqœ> ã϶´ÖËÜ·åü…s®¿]¶x€ûä&ìŸ[Êkõ)/b™ºÎ2°ú[òÈyòdã]Ç'_‡¥•í>®Z†ëˆÎë\®’¾=þ¢ÅÝæjá¡âò •ßœÕ7T/T;Þùkÿ=ÖUÇPõh⯮©®:ÿÀÅ÷ÜŽq^§c¯eøz‡Óã]‹¹­xécît®> {—qŠ7¼§>ìq4¤u¶ø´â™úÉÉ•‡zZλµKå£ûíuÌÔÇAæô¦ã£óÛŠv_u¨–æõ8Ï"®¨ž úR˯ü ÈeKë;êüãø®ê‚ºfèô:Ѩw½°<Ú:ÎŽçœs­ßËUŸ…—Ñ'•™ê—§øØ9½²}-ž ï«£øâãêc¡úͤÕÑ·û->Û·ƒZk˜ŠºîE|q߉ޓã†ú>Uæ¸þÕZ{;(õ´ú3°rÔÏèr°…·jû¶p·¥_?ˆÞtíQyŽúTÙF×£çvj¼vÜ'þèÜ©\S¼S<Ô¶ö¬LÕ¡Z²\ÇPýkê·"ä;¬Sñ½guúœ·ø çAý1úÝÛå«N¥ýq¼âo¶§es(/Wû«å[кœž&­¬q¸H<äÜWéxêØñ¾â qÍ}JCã¸ë4¢ükhõè‡òµ“uüß|£eË*›´ïTf»þÓ¢Ò¬ÆY¹ÝÈïßx†ž¯Û÷HÏ-98ÎÇDºòqR_¬ÚJk÷Õ*ýª­¥c­ãØò9rü•[rqÒÊPZe™ÊE·çÇñL]3V¶ÚÎÚ—–\Ñ>)޶Úâs­üZy˜âóQûƒö¾?'îøø+ï™èÔ´ÚÒ‹]VMÚ»î·Ñ~¹ lÑ+îÆyçHiËå“Ó"÷¶ÊvúÓ2UÇSÞCž¤íU9Ó¢K­ßée“þX¯}Ë&Wš%9n¸ýäz“ú_É«ØGKâ¶óoõ=»>.ç]¦*nµæ]ñHËtžËqhñ§/ògÍS¬:í»Ÿ–çtäöúÉÔÆuþâ{qÔ_ìvµÚJwöŸð}Õˆ“|ßùM+æFqPçÊíO—?Þn¥÷I+ËéRÛB¾GÝÈãP&ä¹ëOÝÎ~ür|qkœÎî:ÃA{®úŸê{üíß+®kü„óvåÇVwËnÒòµ<å÷®cj9-ˆ¿Ïr\ïtºo}ç2Éù¼û T××ûJ{*wÕ6r¹ïãã¾$×SÆÉUÇ –Ýš?¥QuýN}wŠ;¾ïJëxûõE¥mçO:Fj‹¨ïÝñIç‹rAyËn­Î­Ë}÷ã®Ý7C~HêòØ–Ç1QWÛÑòÑøÿd'»wV§Ž ç¡U¦Þ?Ø(w}ªÏƒsÞâ•Z§êßãìW•îÓòv9 ;oÇ£”ï8¨ýàz¬¯[ø{êÑ6û˜OJ=º¾ÑÒý[|óí÷ÜO­mÑ2Zã缕ïz¬šãL‹÷´÷Z8£ãîcØ’›N·W©Ý¨ã¬ã8ßZ4ÏËãDôr?†Ú4®*?v~8îÛ.S†¨=©|¼…G.[<€íÈ·-ñPŸ¼ÎÇø¨ìóÕâ¡-}À×DÆéÚw]j=oñP× X¾Žskì´|·ñZ~…‰N-µ,sÜÚ”ãmŸÖÚÒQ«ÝÎϧ¶è\c=ÝçQõYçÍ­ùðñvÛ›øÕ²ñÕÿÍoÝϦ4Â>¨¿–òvœ,¢M«º…Ë>»V,†ËÕ9ùœãåòÓy¿ãƒÚ >6Š®Çµäˆã½ö£ås9§ü¡eÇ)ž;_Q¿QËŽRþàýñßêÏrüÓùpÛE}V¾&¤òßãŸjŒ—¯_?(¾ÀùIKïwy¦ý÷±$hù÷'Çñç/Þvþßc./Z:‡ãø¸çJ×ìgK—¢\ÐßZŽÎÇ[ã%<ÞF}JßÚW_­Ûe°¾;î¾ò¥ _CkÙll§ËUOå¸ò5÷‡¸¯ñAóÚ’ Ê‹Ù&]'néòãô—–ÄiÜùø8…Ê çùʫԇ¥ï(¯s9¢º­â·ëo-]å ÕѺ§ý N§ƒn´ÚÃ2¤?é÷îh­G9¯W\lµE僮Ï*&¸™å‘ ;õØ;¿˜48aå:Ÿó¹WÓùV<ð²Ôo¨óB¾×òKéºçd§Ý×ʼn»ÞþqsÒâoìÃÛ×¾Üð2[s¬ÿï t|vœf9êûjé«n_¹nç{H[>;oçÍy"çÉõ?mkk<\wS=Kq¥åsõ>úÜ;¿t~¦ÏZ:ê1}+Gu­V½-y¢}u¨%9åwËíöÍ8üQ<ÕÿsîÉãºVg‹G*.¨Ã1qýPŸ©¯›÷[|TßW]Gí<ý^ëjù=çùŽöÛe•ÏkëÇHûÓ²GÚsöEýiœo•ÅÊçÝÖ²±”ÔöqÉïµ|ù}ÈêÕñdÛ=æmjá¦Úf:,ß×bu¼ÈÓ[íÖs?ÔïÝâ!NGªwh¼ââƒúäÿ÷XŽûẓ¶§¥k´Æ—Ït­FqÖq¹£Í¶v;ûû§m·Îp Sã=Ûå>KÕ[u/œ¶Imo÷mº\UZQýBÛÖíìŸ/×ñ[ôN=F×èØn•îoP?¿Ó„Ž9ÇÁÇTï·pjœŒSïþÅÿ^§æM.ÿÔf˜°ï¨{¸ÝÞ GÑ6¶ô†A£îCòÜý Úîag¿龸ÉNwÙ6Æ¢¸Œö9S–÷Mõ$]wtݘú­–­c«ýSÿŸÛ²-þ ú¤þ_ÇJuiõjŸôÿäY‡:uŽ5ç)NK®gªÎ3N_SzêY¹Ä“Öº¡óè–oì¼×“gn+ÏVÙäòÜû¬ëÒãøí„•Õâo>6¬³å‡Sà1®÷r.½¬ +Kq]ËÔùs=ÑÛîmc¤U¥…MsŒzýüð<óx$Η÷MéÎÛì¼Â×UöNX¹-=ËqÚõk?ŽOk Tçpªø«ï´Ú­6D‹Ç;þkyŽ­oT/UÔ68¿Òr[¼BËnÙ»ê#ìZ]®ë·joè\ºÞã4â}b{'Æù|Ü•·*¾+.ëúE«<Õ…Zô8nLµ/-ÛUi¨åÃv~«¶ ËÔú(»œf&:õÜ:R}Ùu~µi½Oãø y²ö‰}uÿq«ÿMÑǰeh™ê»ö8ÿž‘¯)Íx{\Ž´øŸézÛéã­c漼巧Wê|¶üe Òo¼¯zµólÇ÷K©¢ô¬v,õY§÷™z™-ÈyöÓ}'-zuÞéóësÚúŽcCüêÚ3µEùŽÓy«¯ÚPÝüA¶–ú¯ÕÒñQ>ÙÒ‡ÔSÎù$Ûä±Äiå-_ßié'Ú÷ù»Ê[8>Îï\¿ô¹v{Aë§·+íì´ùóLŸ7Ça·Y”~Ù÷‹·úäqÔS}MJ}­xõM¿¯néD.?ZòPéHù€ë¤¥ö\ýH´¡Zz‘âû»ñ×c'¥.Õ[úñüøAþ Õ'œ':oõñq~ì8¤¶®ú“oªï×õç«J:§-Þí¾WµTþh½Îë]ïwîkÏÎ;Z¼Uõy¯ÛyJ‹î?'ß* ©Lw?‹ó!ç5ºæªë‘>þúÓå8Ðë;Щy¾úŸ/•á.‹:Ý7ÀvúYÝÊó[~!×Qt½ Îßu|Ýoæ8Óâžf1ó¾÷Ýר9,£×¨Oñ©%·ç‡ýcï4Øú¿¾§Põ&¶Uç[íA[¥£CVe&qV}BãldµÑZ}çøé¼§œ?±,µ¿t.|Î&å}­öŠËÀ®ùÚ¦öchuÓZúã8ÚUÞÁ>kž(—ù}¿S÷{Ü:ëTêþ÷ïPý¯ÅŸTFÑØíŒ§g]š0èt¡2±¥G*®°œ–Œôv·èßËWÛsœGmÚ–lç»*ï´~÷9:ïà3—õ¾árÚñ %S¼Ê«[üÉuÅ~ç<'-]ÁqŸ2ËϧUßå‹ËGåg>>­öÖ<°MêcR9ߨë-~©ë>ŽÛ­9qÛÄõ¥Á–¿Õùë8½ÖçžýUS<À÷ƒÌƒ¹Ü}è'?ô±GÒÿ©Ö|wð¾ôýøÿäû>þ£ô£|?ÛÞ÷ð?ú¾yßÃè‘Gq÷@ºõþ=ú¡GðûË>ò¡÷=üè‘¿ï£ûäÃÂÍþGý8þû[?øØ#ûè‰~ðC?ñÑ÷á^ï¯|+þ7üøû>ü±²…<úð'~üC¹Ýƒÿˆ––öø}xô§ÿý‡üFoôYìGYÒàƒï{Œ ¦nüÑüIÿíO¾¬Óyö+;ï »wd¸¿5¿×ùméúOPÍïH×ïL×ïJ×ïNך®/O×–®ß“®ß›®ÿ<]ÿ÷týé:’®ß—®ßŸ®?®·ëüƒéúÃéúªtý‘týWéúêtý×éúoÒõGÓu4],]_“®?ž®¯M××¥ëO¤ëO¦ëëÓõ§Òõ§ÓõgÒõgÓõçÒõçÓõÒÒõÓõ éúÆt}Sº¾9]ß’®÷¤ë[ÓõméúËéúötý•týÕtýµt}Gº¾3]ß•®ïN×÷¤ë{Óõýéúëéútý`ºÞ›®J×§ëxºÞ—®÷§ëéú`ºÒ$v>œ®M×GÒõÑtýXº~<]?‘®§ëDºJ×ÛSú6Z~2]?™®O¥ëÓéz,]ŸI×gÓõxº>—®Ï§ë éšJדéz*]O§ë™t=—®çÓõBº^L×Kéz9]¯¤ëÕt½–®étLשtN×™tM×¹tO×…t]L×¥t]Nוt]M×õtͤk6]séšO×BºÓµ”®åt­¤k-]ëéÚH×fºn¤ëfº¶Òµ®tí¦k/]·Òu;]wÒõzºî¦ëÍt}1]?•®ŸNWL×ϤëgÓõséúùtýBºþFº~1]+]¿”®¿®¿“®¿—®¿Ÿ®·ÒõÒõÓõÿH×/§ëÿ™®”®ÿ6]¿’®œ®’®š®–®ž®{éú§ë_¦ë_¥ëWÓõß§ë×Òõ?¤ë×Óõ¯Óõ?¥ëN׿I×ýtý/éú_Óõ¿¥ëߦëO×ÿ7]ÿGºþ]ºþ}ºþÏtý_éútýÿ:_"ã/é¤éŸn¢Ån¢Ån¢ÃnbfÝD‹ÝD‹ÝDÀÝDÝß’®D“ÝDÝDÝÃéú¿¥ë·§+Ñe7Ñe7Ñe7Ñe7Ñe7Ñe7Ñe7Ñe7Ñe÷+Ò•h³›h³›h³{$]‰6»‰6»‰6»‰6»(]‰6»‰6»ÿeº}v}v}v}v}v¦+Ñf7Ñf7Ñf7Ñf7Ñf7Ñe7Ñe7Ñe7Ñe7Ñe7Ñe7Ñd7Ñd7¤+Ñd7Ñd7Ñd7Ñd7Ñc÷/¥+Ñd7Ñd7Ñd7Ñd7Ñd7Ñd7Ñd7Ñd÷Xº]v]v]v]v]v]v¿/]‰.»‰.»‰.»‰.»‰.»‰.»?’®ãéJ´ÙMtÙMtÙMtÙMtÙMtÙMtÙMtÙMtÙMtÙýXºmvmv?‘®éJôÙMôÙMôÙM<´›h´›h´›è³›è³›è³›h³›h³›h³›h³;•®'ҕ賛賛賛h³›h³›h²›h²›h²›h²›h°›h°›è¯›è¯›è¯›è¯›è¯›è¯›è¯›è¯{-]‰»‰»‰»‰»‰»‰»‰»‰þº«éJô×Mô×Mô×Mô×Mô×¥+Ñ_7Ñ_7Ñ_7Ñ_7Ñ_7Ñ_7Ñ_7Ñ_7Ñ_7Ñ_÷t%ì&ì&ì&ì&ì&úë&úë&úë&úë&úëþÍt%ì&ì&ì&ì&ìþÝt%:ì&:ì&:ì&:ì&:ì&:ì&:ì&:ì&:ì&:ì&:ìþ¿Ò•h±›h±›h±›h±û/Ò•h±›h±›h±›è°ûÿIW¢Ån¢Ãn¢Ãîÿ˜®D‹ÝD‹ÝD‹ÝD‹ÝD‹ÝD‹ÝD‹ÝD‡ÝD‡ÝD‡ÝD‡ÝDƒÝDƒÝDƒÝDƒÝDƒÝÿÅ`/Ñ`ïm‘šh°—äa/Ña/Ña/Ña/Ña/Ñ`/Ñ_/ÉÄ^¢Á^¢Á^¢Á^¢Á^¢Á^¢Á^¢Á^¢Á^¢Á^¢Á^¢Á^¢Á^¢Á^¢Á^¢Á^¢¿^¢¿^¢¿^¢¿^¢¿^¢¿^¢¿^’½Dƒ½Dƒ½Dƒ½Dƒ½Dƒ½Dƒ½Dƒ½Dƒ½Dƒ½$#{‰{‰{‰{‰{‰{‰{IFö-ö-ö-ö-ö-ö-ö’Œì%zì%zì%zì%zì%zì%zì%zì%zì%zì%zì%zì%zì%zì}ûÛ Kº=ö=ö=ö=ö=ö=ö=ö=ö=ö=ö’¬ì%šì%šì%zì%zì%zì%zì%zì%zì%YÙK4ÙK4ÙK4ÙK4ÙûÑ·5˜t%zì%zì%zì%Zì%Zì%Zì%Zì%Zì%Zì%Zì%Zì%YÙK´ØK´ØK´ØK²²—è±—è±—è±—è±—h±—h±—h±—h±—deïÙt%šì%šì%yÙKò²—h³—h³—h³—h³—äeo:]I^ö’¼ì%Zí%Zí%yÙKôÚKôÚKôÚKôÚKôÚKôÚK´ÚK´ÚK´ÚK´ÚK´ÚK´ÚK´ÚK´ÚK´ÚKò²—èµ—äe/Ñl/Ñl/Ñl/Ñl/Ñl/Ñl/ÉÌ^¢Û^¢Û^¢Û^¢Û^¢Û^¢Û^¢Û^¢Û^¢Û^¢Û^¢Ù^¢Ù^¢Ù^¢Ù^¢Ù^¢Ù^’›½D·½D·½D³½D³½D³½D³½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½D¯½$;{‰^{‰^{‰^{IvöÍöþ»t%ºí%ºí%ÚK´ÛK´ÛK´ÛK´ÛK´ÛK´ÛK´ÛK´ÛKtÛK2´—h·—h·—h·—h·—h·—h·—h·—h·—h·÷6í&}¶Ÿh·ÿ¶n›h·Ÿh·Ÿh·Ÿh·Ÿh·Ÿh·Ÿdh?Ño?ÉÐ~¢á~¢á~¢á~¢á~¢á~¢á~¢á~¢á~¢á~¢á~¢á~¢á~¢á~¢á~¢á~¢á~¢á~’£ýDÇýDÇýDÇýDÇýDÇýDÇýDÇýDÇýDÇýDÃýDÃýDÃýDÃýDÃýDÃýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD¿ýD»ýD»ýD»ý¤ßöýöýöýöíöÍöÍö½ö½ö½ö½ö½ö½ö½ö½ö½ö½ö½ö“ í'zí'Zí'Zí'Zí'í'í'íÿèÛ¶Mºöööö“Üì'Zí'Zí'Zí'Zí'Zí'Zí'Zí'Zí'¹ÙOôÚOôÚOôÚOôÚO´ÚO´ÚO´ÚO´ÚO²³ŸèµŸèµŸèµŸèµŸèµŸèµŸèµŸhµŸhµŸhµŸhµŸhµŸhµŸè´Ÿè´Ÿh´Ÿh´Ÿh´Ÿh´Ÿh´Ÿè³Ÿè³Ÿè³Ÿäi?Ñh?Ñh?Ñh?Ñh?Ñh?Ñh?Ñh?Ñg?Ñg?Ñg?Ñg?Ñg?Ñg?Ñf?Ñf?Ñf?Ñf?Ñf?Ñf?Ñf?Ñf?Ñf?Ñf?Ñf?Ñf?Ñf?Ñf?ÉÔ~¢Ï~¢Ï~¢Ï~¢Ï~¢Ï~¢Ï~¢Ï~¢Í~¢Í~¢Í~¢Í~¢Í~’§ýDŸýDŸýDŸýDŸýDŸýDŸýDŸýDŸýD—ýD—ýD—ýD“ýD“ýD“ýD“ýD“ýD“ýD“ý$Gû‰&û‰&û‰&û‰&û‰û‰û‰û‰û‰û‰û‰û‰û‰û‰û‰ûI–öMöMöMöMöMö“NÛO4ÙO4ÙO4ÙO4ÙO4ÙO4ù¶ù%Ÿh¢ÁA¢ÁA¢¿A¢¿A¢¿A¢¿A¢¿A¢¿A¢·A¢·A¢·A¢·A¢·A¢·A¢·A¢·A¢·A¢·A¢·A¢·A¢·A¢·A¢·A¢µA¢µA¢µA’—ƒDkƒDkƒDkƒDgƒDgƒ$+‰Ö‰Ö‰Ö‰Î‰Î‰Î‰Î‰Î‰Æ‰Æ‰Æ‰Æ‰¾‰¾‰¾I>  } } } } ’|$$ù8Hòqhmhmäã ÑÛ ÑÛ ÑÛ ÑÛ ÑÛ ÑÛ ÑÛ ÑÛ ÑÛ ÑÛ ÑÛ ÑÛ ÉÈA¢¹A’‘ƒDwƒão{%Ò•dä ÉÈÁÛD{ƒD{ƒD{ƒD{ƒD{ƒD{ƒD{ƒDwƒDwƒDwƒDwƒDwƒDwƒ·mþDwƒDwƒDsƒDsƒDsƒ$#‰æ‰æ‰æ‰æ‰æ‰æ‰æ‰æ‰æ‰æ‰æIFÝ Ý Í Í Í ’|$º$º$ù8H´7H´7H´7H´7H´7Hòqèoèoèoèoèoèoèoèoèoèoèodä Ñà Ñà Ñà ÉÅA¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A¢»A’‹ƒD{ƒ¤Ïý ý ý í í Ý Ý Ý Ý Ý Ý ’L$Ú$Ú$Ú$™8Hô7H´7Ht7H´6H´6H´6H´6Hòoèmèmèmèmèmèmèmèmèmèmèmèmèmèmèmèmèmèmèmèmèmèmèmðà›N2p˜äß0ÑÜ0ɼa¢¹a¢¹a¢¹a¢¹a¢¹a¢¹a’yÃ$ó†Iæ “Ì&&&&&&ú&ú&ú&ú&Ú&Ú&Ú&Ú&Y7L´7L´7Lrn˜èo˜èo˜èo˜èo˜dÝ0Ñà0Ñà0Ñà0ÑÝ0ÑÝ0ÑÝ0ÑÝ0ÑÝ0É·a¢½a¢½a¢½a¢½a’oÃD{ÃD{ÃDwÃDwÃ$Û†‰ö†‰î†‰î†‰î†‰î†‰î†‰î†‰î†‰æ†‰æ†‰æ†‰æ†‰æ†‰æ†‰æ†‰æ†‰æ†‰æ†‰æ†‰Þ†‰Ö†‰Ö†‰Ö†‰Ö†‰Ö†‰Ö†‰Ö†|Û_–®DoÃDoÃDoÃDoÃDoÃDoÃDoßxÛm—®DsÃDsÃDoÃDoÃDoÃDoÃDoÃ$熉憉憉憉æ†IÖ Ý Ý Í ½ ½ ½ ½ ½ ½ ½ ½ ½ “œ&š&š&š&š&š&š&š&š&z&z&z&z&z&z&z&z&z&z&z&z&z&z&z&z&Z&Z&y7Lòn˜äÝ0ÑÝ0ɼa¢½a¢µa¢³a¢³a¢³ÿ?KÒ”Úº€k›«³(”JJD¤®A¤P@ð?|‘ÙÊ^þÿ8;¯û4ì¬åÆŒ÷ò~†Sñ_Îþåì_Îþåì_Îþåì_Æþeì_¶þeë_¶þåê_®þÕµÙú—­uí_¾þåë_¾þeë_¶þµ9ÿåë_¾þåë_¾þåë_¾þÕ·ûWßþåì_}ûWßþÕ·íιû—»¹û—»¹û—»¹û—»¹û—»¹û—»™û—¹™û—¹™û—¹™û—¹™û×îü—»¹û—»™û—¹ÿkî?ÿ÷kðvg€»€à@ øÍ 0`0À`€¿þüø ðà/À_€¿þü40À`€Áƒà0Àa€Ã‡8 pà0Àa€Ã‡8 è`@:°9Lx ðà1Àc€Ç<x èa€É“= pà2Àe€Ë€&Ø pà2Àe€Ë—= °`3Àf€Í›6lØ °à2 …6Zà2Àe€Ë—.\þ?ÿý¸7.\¸ pøÿþ÷kûÞ¸ ðÐÀÀÿï¿_M÷Æd€Ç,X °`1Àb@<40Àd€É“&L˜ 0`2Àc€Ç<x ð`1 <x ð`1Àb€Å‹,X °`1Àb€Å€öx ðà1Àc€Ç<´0 … °ÐÁŸ>lØ °`3Àf€Í€ø ðÐÀ€8 pп§Nœ8 pà4Ài€Ó§ °`5Àj€Õ«V¬X °`5Àj€Õ«Nœ8 pà4Ài€Ó§Nœ8 pà4Ài€Ó€>X °à2Àe€Ë—.\ô0Àf€Í›6ƒzd3ÈfÍ —A.ƒ\¹ rÔÆ ›A6ƒlÙ rä2ÈeË —A.ƒ\¹ 2d2ÈdÉ “A&ƒL™ 2´Mƒ\¹ rä2ÈeË —A.ƒ\¹ êcÍ ›A6ƒlÙ êeÏ ŸA>ƒ|ù ²d3ÈfÍ ›A6ƒlÙ ²ä2ÈeP/ƒ\¹ rä2ÈeË —A.ƒ\¹ rä2ÈeË —A.ƒ\¹ rÔÍ nù þ?ÿý×2o|ù òä3ÈgÏ ŸA>ƒ|ù òä3¨›AFƒŒ 2d4¨›ANƒœu3ÈjÕ §ANƒœ9 rä4ÈiÓ §ANƒœ9 rä4¨AVƒ¬Y ²d5ÈjÕ «AVƒ¬Y ²d5¨A^ƒ¼y òä5ÈkÕ «AVƒ¬Y ²d5ÈjÕ «AVƒ¬Y ²d5h·y òä5Èk× ž™ 2d6Èk× ¯A^ƒ¼y ²d5¨©A^ƒ¼y òä5Èk× ¯A^ƒ¼Y ²d5ÈjÕ «AVƒ¬Y ²d5ÈjÕ ®y ²ä4ÈiÓ §ANƒœ9 rä4ÈiÓ §ANƒœ55¨©AM jjPSƒìÙ ²d7ÈnÛ ·AnƒÜÿó¿7šÝ·!nCšâ6䄸 qâ6ÄmˆÙ³!= qâ6ÄmˆÛ·!nC܆¸ éiˆÝ»!vCì†Ø 1b6ÄlˆÙ³!fC¼†x ñâ5Äkˆ×¯!VC¬†X ±b5ÄiˆÓ§! 1b4ÄhˆÑ£!>C|†´3ÄhˆÑv†8 1b4ÄhˆÑ£!FCŒ† 1b4ÄhˆÑ£!FCvmˆÓ£!FCŒ† 1b4Ähèÿýß´öÆfˆÍ›!.C\†¸ qâ2d젯 ±b3ÄfˆÍ›!6Cl†Ø ±b3¤£!>Cl†Ø ±b3ÄfˆÍ›!6Cl†Ø ±b3ÄfˆË—!.C\†¸ q²iCl†Ø ±b3ÄeˆË—!.C\†˜ 1b2ÄdˆÉ“!&CL†˜ ñâ1ÄcˆÇ!C<†x ñâ1ÄcˆÇ!C<†x ñÒГ!&CL†˜ 1b2ÄdˆÉ“!&CL†˜ 1â1ÄcˆÇ!Cúb2ÄdˆÉ“!&CL†˜ 1b2ÄdˆÇ!C<†ô3ÄdH?C\†¸ qâ2ÄeˆË—!.C\†¸ qb2ÄdˆÉ“!&CL†˜ 1b2ÄdˆÉ“!= qâ2ÄeˆËÐþ÷½a.Úf3Ìf˜Í°®†ù óöNa>Ã|†ù ëj˜Ñ0£a>Ã|†ù óæ3Ìg˜Ï0Ÿa>Ã|†ù óf3¬«a] 3f4Ìh˜Ñ0£aFúæ4Ìi˜Ó0§aFÃŒ†55Ìi˜Ó0§aN܆55Ìj˜Õ0«aM óÖÕ0³afÃ̆™ 3ÖÕ0·anÃ܆¹ sæ6ÌmX_Ãì†Ù ³f7Ìn˜Ý0»avÃ܆¹ sæ6Ìm˜Û0·a} sæ6Ìm˜Û0·anÃÚf7Ìn˜Ý0»avúæ7Ìo˜ß0¿a~Ãü†ù ³f7Ìm˜Û0·anÃ܆¹ sæ6¬«anÃ܆¹ sæ6Ìm˜Û0·anÃ܆¹ sÖÔ0»avÃì†Ù ³f7Ìn˜Ý0»avÃì†u5Ìo˜ß0¿avÚæ7ÌoØ3f8Ìp˜á0Ãa†Ã ‡u5Ìq˜ã0ÇaŽÃ‡3f8Ìp˜á0Ãa†Ã ‡óæ7Ìo˜ß0¿a~Ãü†ù ÛÀa†Ã ‡3f8Ìp˜á°®†9sæ8Ìq˜á0Ãa†Ã ‡3f8Ìp˜á0Ãa†Ãºæ8Ìq˜ã0ÇaŽÃ‡3f8Ìp˜ß0¿a~Ãì†Ù kj˜ß0¿a~Ãü†ù ³f7Ìn˜Ý0»avÃì†Ù ³f7Ìnø?ÿ÷ûÙ°a7Ân„Û·n#ÜF¼S„Û·n#ÜF¸hk„Ý»v#ìFذa7Ân„Ý»v#ìF´5Ân„Û·n#ÜF¸pá6Âm„Ûˆ®F˜0a6Âl„Ù³f#ÌF˜ðá5Âk„ׯ^#¼Fx0a4Âh„ÏŸ>#|FøŒðá3Âg„ÏŸ>#|F´5Âh„Ñ£F#|FøŒðÑÖŸ>#|FøŒðá3Âg„ψía4Âh„ÑŸ>#|FøŒðá3ÂgD_#ŒFèk„Ó§N#œF8pá4Âi„ÓˆÆFX°a5Âj„Õ«V#¬FXpá4Âi„Ó§N#œF8pa4Âh„Ñ£F#ŒF0ÑØ§N#œF8pá4Âi„Ó§N#ŒF0a4Âh„Ñ£­pá4Âi„Ñ£F#ŒF°a3Âf„Í›6#lFØŒ°a3Âf„Í—.#\F¸Œpá2¢¯6#lFØŒ°a3Âf„Í›6#lFØŒ°a3Âf„Í›6#lF46Âg„ÏŸ>#á2Âe„Ë—&#LF˜Œ0a2Âd„É“&#LF˜Œ0a2Âd„IÔþ‰2e2Êd”ɨžF¹Œrå2Êe”˨wŽ2å1Êc”Ç(Q£ð÷Àßü=ð÷Àßü=ð÷  >0ø >pøà<0øÀàü=hム>0øÀàƒÚøÀá‡>èâ‹,>°øÀâ‹,>ؤ<>ðøÀã<>ðøÀã<>ðøÀã<>ðøÀã<>ðøÀã<>ðøÀã‹,>°øÀâ‹úøÀãúø L>0ùÀä“L>0ùÀä“L>0ù \>pùÀå“L>0ùÀä“L>0ùÀä“L>ðøÀã<>ðøÀã<>ðøÀã<>ðøÀã<>ðøÀã<>ðøÀã<>ðøÀã:ùÀäƒíú`»>°ù ›|>°ùÀ曚ùÀç<>0øÀàƒ >0øÀàƒ&>pøÀრ>0øÀàƒ >0øÀàü=èრ>ð÷Àß:øÀßü=ð÷Àßü=ð÷ ü=ð÷  >ð÷Àßü=hàƒ >0øÀàƒ >èà‡ >0øÀßü=è߃ >è߇>pø >pøÀá‡øÀáü=ð÷  >0øÀàƒ >0øÀà{ì=°÷ÀÞ#sÌ=2÷ÈÜ#sÌ=2÷ÈÜ#sÌ=2÷ÈÜ#sÌ=2÷¨}Ü=r÷ÈÝ#wÌ=2÷ÈÜ#sÌ=2÷ÈÜ#sÌ=2÷ÈÜ#sŒ=rõÈÕ#W\=rõÈÕ#W\=rõÈÕ#W\=rõÈÕ#W\=rõÈÕ#W\=2õÈÔ#SL=2õÈÔ#SL=êÜ#SL=2õÈÔ#SL=2õÈÔ#SL=2õÈÔ#SL=jÝ#W\=rõÈÕ#WL=jÛ#G=rôÈÑ#G=rôÈÑ#G=rôÈÐ#C =2ôÈÐ#C =2ôÈÐ#C =2ôÈÐ#C =2ôÈÏ#?ü<òó¨o =2ôÈÐ#C =Ú:÷¨s:÷¨s\=rõ¨s:÷hs>2öÈØ#cŒ=2öÈØ#_|=êÜ#cŒ=2öÈ×#_l=êÛ#_|=òõÈÖ£¾=òõÈÖ£ùÈ×£Æ=òõÈ×#_|=òõÈ×#_úöÈØ#_|=òõÈ×#_l=²õÈÖ#[\=rõÈÕ#W\=êÛ#[l=êÛ#_|=òõÈ×#_|=²õÈÖ#[l=êÜ#W\=2õ¨mÚöÈÖ#[l=²õÈÖ#[l=²õÈÖ#[l=êÛ£¾=2öÈØ#_xü“жg ÎŒ%øJð•à+ÁW‚¯_ ¾|%øJð•à+á$øJØ– ÆŒ%´-ÁY‚³g ÆŒ%K0–pÏ—`,ÁX‚±„®%t-¡k ]KhZBÓš–`/Á^‚½{ öì%ØK°—`/Á^Â}_‚¿ þü%øKð—à/Á_‚¿ ;3¡m &8Lp˜à0Áa‚Ç mK°˜`1Áb‚Å‹ &8Lp˜`0Á`‚Áƒ  &L0˜`0Á`BÛ&´-¡m mKh[‚É“ &<&xLð˜à1Ác‚Ç ]K0™`2Ád‚É <&xLð˜à1Áb‚Å‹ z–à1Ác‚Ç <&XL°˜`1Áb‚Å‹ ,&XL°˜`1ÁbÂæLð˜à1Ác‚Ç <&4/Ád‚É“ &L&˜Lè^‚É„æ%¸Lp™à2Áe‚Ë„î%ØL°™`3¡} >|&øLð™ÐÀ£ FŒ&M0š`4Áh‚Ñ£ Lpšà4ÁiÂM°š`5¡… ^¼&xMðšÐ³ fÌ&˜M0›`6Ál‚Ù³ fÌ&˜M0›`6Ál‚Ù³ fÌ&˜MhbBì&ØMئ ]L0œà7Áo‚ß¿ ~ü&øMð›à7Áo‚ß» vì&ØMècâ?ÿ{ù$¿I~“ü&ùMjd’á$ÃI†“ 'ùMò›ä7Éo’ß$¿In“Ü&¹Mr›ä6Ém’Û¤>&ÙM²›d7Én’ݤF&ùMò›ä7Éo’ß$¿I~“š™d8Ép’á$ÃI†“ 'N2œd8Éo’ß$¿I~“ü&ùMò›ä7Éo’ß$¿I~“ü&ùMò›ä7Éo’ß$¿I~“ü&ùMò›ä7Én’Ý$»Iv“ì&u4Éo’ß$¿I~“:šd8Ép’á$¿I~“ü&ùMò›ä7Éo’ß$¿I~“ü&55Ép’á$ÃI†“ºšä8Éq’ã$ÃI~“ü&ùMò›ä7ÉoRS“ü&¹Mr›ÔÑ$»Iv“ì&ÙM²›d7Én’Ý$»Iv“ì&µ4Éo’ß$¿I~“ü&ùMò›ä7Éo’ß$¿I~“ü&ùMò›ä7Éo’ß$¿I~“ü&ùMò›ä7Én’ݤž&ÙM²›d7Én’Û$³If“Ì&™M2›d6Él’Ù$³If“¼&yMòšä5Ék’Õ$«IV“¬&YM²šd5Éj’Õ$«IV“¬&YMršä4Éi’Ó$§IF“Œ&M2šd4Éh’Ñ$£IF“Œ&íÖ$§IN“œ&9Mršd4Éh’Ñ$£I>“›d4Éh’Ñ$£IF“Œ&ÙL²™d3©­I>“|&ùLò™ä3ùŸÿ½4NŠÏŸ)>SvlŠÑ£)FSŒ¦M1šÒÙ§)NSœ¦8Mqšâ4å¥8Mqšâ4ÅiŠÓ§)FSŒ¦Mñ™â3ÅgŠÏŸ)>S|¦øL±™b3ÅfŠÍ›)6S\¦¸Lq™â2ÅeŠË—).S\¦¸Lq™â2ÅeŠË—).S\¦¸Lq™â2ÅeŠË—).S\¦¸Lq™ÒÕ›)6Sl¦¸Lñ˜b1ÅbŠÅ‹)Szšâ1ÅcŠÇ)S<¦8Lq˜â0ÅaŠÃ‡)S¦L1˜Òу)Mq˜â0ÅaŠÃ‡)S¦´4¥£)S,¦XL±˜b1ÅbŠÃ‡)S¦8Lq˜â0ÅaŠÃ‡)S¦8Lq˜â0ÅaŠÃ‡)S¦8Lq˜â0ÅaŠÃ‡)S¦8Lq˜b0¥¡)S¦44ÅaŠÃ‡)Sšb1¥¡)S<¦xLñ˜â1ÅcŠÅ‹)Sú™â1ÅbŠÅ‹)íLñ˜â1ÅcŠÇ)S<¦xLñ˜â1ÅcŠÇ)S<¦xLñ˜ÒÌ)S<¦xLñ˜â1ÅcŠÇ)S<¦LédŠÁƒ)S ¦L1˜b0Å_Š¿)þR™Òȇ)S¦8Lñ—â/Å_ê?ÿ{Yª4iþÒü¥ùKó—f/Í^š»4wiîÒÜ¥¹Ks—æ.Í]Ú¾M‹lš¿´–æ/Í_š¿4iþÒ:™f0Í`šÁ´N¦L3˜f0Í`šÁ4ƒiÓ™æ0ÍašÃ4‡iÓ¦52ÍbšÅ´›f1ÍbšÅ4‹iÓ,¦YL³˜f0Í`šÁ4ƒiÓ ¦Ló—æ/Í_š¿4iþÒü¥ùKó—æ/­iÓÚ˜ÖÆ4‹imLó˜æ1ÍcšÇ4iÓ<¦YL³˜f1ÍbZÓÚ˜f2ÍdšÉ4“i&ÓL¦™L3™ÖÆ4—i.ÓÚ˜f3ÍfšÍ4›i6Ól¦ÙL³™f3ÍeZ#Ól¦ÙL³™f3ÍfšÍ4›iLó™æ3ÍgšÏ4Ÿi>Ó|¦ùLó™æ3ÍgšÍ4›i6Ól¦ÙL³™f3ÍfšË4—i&Ó<¦YL³˜f1ÍbšÅ4‹iML³˜f1ÍbšÅ4‹iÓ,¦YL³˜f1ÍašÃ´.¦YL³˜f1ÍbšÅ´6¦YL³˜f1ÍašÃ4‡iÓ¦9Ls˜f0Í`šÁ4ƒiÓ ¦L3˜ÖÄ4‡iÓ¦9Ls˜æ0ÍašÃ4‡iÓ ¦51­‰iMLó˜ÖÄ4“iÓ<¦yLÛ­i&ÓL¦™L3™f2ÍdšÉ4“i&Ó<¦yLó˜ÖÅ´.¦¹Ls™æ2ýŸÿ½T\†Ë “&3Lf41Ãe†Ë —.3\f¸Ìp™á2Ãe†Ë —.3\f¸Ìø€.3\f˜Ì0™a2Ãd†ÇŒ.f˜Ì0™a2Ãd†É “&3Lf˜Ì0™a2Ãd†É 33lfØÌ°™a3Ãf†ÍŒVfØÌ°™ÑÉ Ÿ63lf¸Ìp™ÑÇ ›.3î)3\f¸Ì0™a2Ãd†É “&3Lf˜Ì0™a2Ãd†ÉŒ6f˜Ì0™a2Ãd†É “Ìp™á2Ãe†Ë —.3\fìÕ ›.3\f¸Ìp™ÑÊ ›63lfØÌ°™a3Ãf†ÍÌþ÷ŽOl>iæŸO|>±ùÄæ›Ol>±ùÄæ›Ol>±ùÄæ›Ol>qùÄå—OL>iå—O\>qùÄå“V>±ùÄæ›Ol>±ùÄæ—OL>1ùÄä“OL>iä“OL>ñø¤‘OL>ñøÄãO<>ñøÄãO<>ñøÄã‹O,>qøÄá‡O>qøÄá‡O>qøÄàƒO >1øÄàƒO >1øÄàƒO >éã“>>±øÄá‡O>qøÄá‡O>qøÄàƒO >ñ÷ÄßOü=ñ÷ÄßOü=±÷ÄÞ{Oì=±÷¤‰Oü=ñ÷¤‹Oü=±÷ÄÞ{OšøÄß“&>1øÄàƒO >1øÄàƒO >1øÄàOÜ=q÷¤ƒOì=±÷ÄÞ{Oì=q÷ÄÝ“>q÷ÄÝwOÜ=q÷¤‰Oì=q÷ÄÝwO¼=ñöÄÛoO¼=ñöÄÛoO¼=ñöÄÛoO¼=ñöÄÚ“>ñöÄÛoOZøÄÛoOZøÄÜsOÌ=1÷¤‡OÜ=q÷ÄÝwOÜ=q÷ÄÝwOÜ=q÷ÄÝwOÜ=q÷ÄÜsOZøÄÝwOÜ=q÷ÄÝwOÜ=q÷ÄÝwOÜ=q÷ÄÝwOÜ=q÷¤‰Oì=±÷ÄÞ{Oì=±÷ÄÞ{Oì=±÷ÄÞ{Oÿç/›šå.Ë]–»,wY]̲—e/Ë^Ö½b–¿,Yþ²üeùËò—å/Ë_–¿¬6fÌ2˜e0 u–Á,ƒY³ fÌ2˜e0Ë`–Á,ƒY³ fõ1ËaV³,fY̲˜e1ËbV³³|fù̲™e3Ëf–Í,›Y6³¶j–Ï,ŸY>³öj–Ñ,£YF³ŒfÍ2še4Ëh–Ñ,£YmÌršå4Ëi–Ó,§YN³œf9Íršå4Ëi–Ï,ŸY>³|fùÌò™å3Ëg–Ï,ŸY>³|fùÌò™å3Ëg–Ï,ŸY>³ÿùßKçøÌñ™ã3ÇfŽÍ›96slæØÌ±™c3ÇfŽÍ›96slæØÌ±™c3ÇfŽÍ›9øs ÇgŽÏŸ9>slæ¸Ìq™ã2ÇeŽË—9.s\æ˜Ì1™c2ÇdŽÉ“9&sLæ˜Ì1™c2ÇdŽÉ{9ærÌå˜Ë1—ÓÃw9îrÜå¸Ëq—ÓÃ{9»4§‰9MÌibNsš˜ÓÄœ&æØÌ±™ÓÄŸ9>s|æøÌñ™ã3ÇgŽÍ›96slæØÌ±™c3ÇfŽË—9M̱™c3ÇfŽÍ›96slæ¸Ìq™ã2ÇeŽË—9.s\æ¸Ìq™ÓÆ›96slæØÌq™ã2ÇdŽÉ“9&sLæ41g“æ¸ÌÙ¤9.s\æ¸Ìq™ã2ÇdŽÉ“9&sLæ˜Ì1™c2ÇdŽÉ“9&sLæ˜Ìñ˜ã1ÇcŽÇ9s:™c2ÇdŽÉ“9s<æx̱˜c1ÇbŽÅ‹9s,æX̱˜c1ÇbŽÅ‹9s,æ´2ÇcŽÇ9s<æxÌñ˜ã1ÇcŽÇ9s<æx̱˜c1ÇbŽÅ‡9sæ8Ì1˜c0Ç`ŽÁƒ9s æÌieN+s,æX̱˜c1ÇbŽÅ‡9s æÌ1˜ã/Ç_Ž¿9þrÿç/'žç/Ï_ž¿<yþòüåùËó—ç/Ï_ž¿<yþòüåÙ˳—g/Ï^ž½<{yöòìåÙË{€<{yöòìåµ1Ï_^ó æÌ3˜g0Ï`žÁ<ƒyóÚ˜ç0ÏažÃ<‡yó æÌ3˜ç/Ï_ž¿¼&æ51¯‰y;5¯‰yMÌs™×ļ&æùÌó™ç3ÏgžÍ<—y.ó\æ¹Ìs™ç2ÏežË<—y.ó\æ¹Ìs™ç2ÏežË<—y.ó\æ¹Ìs™ç2¯™y.ó\æ¹Ìs™·UólæÙ̳™g3¯›y>ó|æùÌó™ç3ÏgžË<—yÍ̳™g3ÏfžË<—y.ó\æ¹Ìs™ç2ÏežË<—y.óš™g3Ïf^3ó|æùÌó™ç3Ïf^3ó|æùÌó™ç3ÏgžÏ<Ÿy>óº™g4ÏgžÍ<›y6ólæÙ̳™g3ÏfžÍ<›y½Ìó™ç3ÏgžÏ<Ÿy6ólæÙ̳™g3¯—y6ó:™g3ÏfžÍ<›y6ólæÙ̳™g3ÏežË<—y.ó\æ™Ì3™g2ÏdžÉ<“y&óLæ™Ì3™g2ÏdžÉ<“y&óLæ™Ì3™g2ÏcžÇ¼.æ™Ì3™g2ÏdžÉ<“y&óLæ™Ì3™ç1ÏbžÅ<‹y]Ìó˜×Å<“y&óLæ™ÌëbžË<—y.óLæÿkò?ÿ{‰ÿ—. \ìÖ›6 lØ,°Y`³ÀfË—. ºX`³ÀfÍ›6 lØ,°Y`³ÀfÁØ,pYà²ÀeË ,0X`°À`Á‚8,pXà° … ,X,°X`±ÀbÁ>-ðXà±ÀcÇ <x,ðXà± —& zYà²ÀdÉ“& L˜,0Y`²ÀdÉ“& L˜,0Y`²ÀdÉ“& ZYà²ÀdÉ“& L˜,0Y`°À`Áƒ,hdŇ ô±ÀaÇ 8,pXà°ÀaÇ ,0X`°À`A ,0X`°`»8,pXà°ÀaÇ 8,èdÅ‹ ,X,°X`±ÀbÅ‹ ,X,°X`±ÀbA+ <x,ðXà±ÀcÇ‚^˜,èeË—. \¸,pY`²ÀdÉ‚^¸,pYà²ÀeË‚^Ø,°Y`³ÀfÍ›6 lØ,°Yà²ÀeÉ“& LlÖ—­,°Y`³ÀfÍ›6 lØ,°Y`³ÀeË‚VØ,heÏŸ6 lØ,°Y`³ÀfÍ›. \ô²ÀfÍ›¸üSd³Èf‘Í"—E.‹\¹,rYä²ÈeQ3‹lÙ,²Yd³Èf‘Í"›E6‹lÙ,²Yd³Èdуõ²Èd‘É"“E­,je‘Í"›E­,jeQ+‹œ9-rZä´Èi‘Ó"§EF‹Œ-2Zd´Èh‘Ñ"£EF‹Œ-2Zd´Èh‘Ñ"ŸE>‹|ù,òYä³Èg‘Ï¢n-2Zd´Èh‘Ñ"£EF‹|ù,òYd³Èc‘Ç"E‹<y,êd‘É"“E&‹L™,2Yd²¨“E,jd‘Ï"ŸE>‹|ù,²YÔÉ"ŸE>‹:Yä³Èg‘Ï"ŸE>‹|ù,òYä³Èg‘Í"›E6‹Yd³ÈeQ‹lÙ,²Yd³Èe‘Ë"“E&‹Ly,òX´]‹L™,2Yd²Èd‘Ç"E‹<y,rXä°Èa‘Ã"‡E‹9,rXä°È`‘Á"ƒE‹ ,òWä¯È_Q‹ ,2Xd°È_‘¿"EöŠìÙ+²Wd¯È^‘½"{EöŠìÙ+êb‘¿"E÷E‹ ù+òWä¯È_‘¿"EþŠüù+òWä¯È_‘¿"Em,2Xd°È`‘Á"EþŠúXd°È`‘Á"ƒE‹ ,jc‘Á"ƒE‹ ,þç¿þ¦Ä`‰Áƒ%},qXâ°Äa‰Áƒ%K –,1Xb°Ä`‰Á%þJü•ø+ñW⯤%m,qXò@%m,qXâ°Äa‰Ã‡%K–ø+ñWâ¯Ä_‰¿%þJü•t²Ä`‰Áƒ%K –,1Xb°Ä_‰¿{%îJÚXb¯Ä^‰¹s%æJÌ•˜+1Wb®Ä\‰¹s%æJÌ•t±Ä]‰»w%],ibIKšXb°Ä`‰Áƒ%K –,1Xâ¯Ä_‰¿{%öJì•lÔ%þJü•ø+ñW⯤%K –,1Xb°¤“%K–8,qXâ°Äa‰Ã‡%KYâ°Äa‰Ãƒ%},qXâ°Äa‰Ã‡%},qXâ°¤%K,–X,éc‰Ç%K<–X,±Xb±¤%K<–x,ñXⱤ%},qYâ²Äe‰Ë—%.K\–¸,qYⲤ%6Kl–Ø,±Yb³ÄfIK|–ø,ñYâ³Äg‰Í›%},ñYⳤ%>K|–ø,ñYâ³Äg‰ÏŸ%>K|–Ø,±Yb³d³–ø,ñYⳤ‘%FKŒ–-1Zb´Äh‰Ñ£%6Kl–Ø,±Yb³Äf‰Í›%6KúXâ³Äg‰ÏŸ%>K|–ø,ñYâ³ÄgI#KŒ–-1Zb´Äh‰Ñ£Ï|>óùÌç3ŸÏ|>óùÌç³N>3úÌè3£ÏŒ>3úÌè3£ÏŒ>3ú¬“Ïœ>3úÌè3£Ï|>³ù¬‘Ï|>óùÌç3ŸÏ|>óùÌç3ŸÏ|>ëä³N>súÌé3§Ïœ>súÌé3§Ïœ>súÌé3ŸÏL>3ùÌä3“ÏzøÌå3—Ï\>sù¬‰ÏšøÌç3ŸÏ|>óùÌç3ŸÏ|>óùÌç3ŸÏl>³ùÌå3—Ï\>kâ3›Ïl>³ùÌæ3›Ï\>sùÌå3—ϺøÌå³>3ùÌä3“ÏL>3ùÌà3ƒÏü=ó÷Ìß3Ïü=ó÷Ìß3Ïü=ó÷Ìß3Ïü=ó÷¬ƒÏ >3øÌà3ƒÏZøl«>søÌá3‡Ï>søÌá³>³øÌâ3‹Ï,>søÌá3‡Ï>søÌá3‡ÏºøÌá3‡Ï>søÌá3‡Ï>søÌá3‡Ï>søÌá3‡Ï >ó÷Ìß3Ïü=ó÷ÌÞ3{Ïì=³÷ÌÞ3{Ïì=³÷ÌÞ3{ÏÚøÌß3{Ïì=³÷¬Ïü=ó÷ÌÞ3{Ïì=³÷ÌÞ3{Ïì=³÷¬Ïü=ó÷Ìß3Ïü=ó÷Ìß3{Ïì=³÷ÌÞ3{Ïì=³÷ÌÞ³>>ó÷Ìß3Ïü=ó÷Ìß3Ïü=ó÷Ìß3{Ïì=s÷ÌÝ3wÏÜ=s÷ÌÝ3wÏÜ=s÷ÌÝ3wÏÜ=ÿŸÿý:¸2weîÊÜ•¹+sWæ®Ì]™»2weîÊÜ•¹+sWæ®Ì]™»2weîÊÜ•õ±Ì^™½2we],³Wf¯Ì^™½²-³Wf¯Ì^™½2{eöÊ앹+sWæ®Ì\™¹2seæÊÌ•5±Ì\YËzXf¯l“–ù+óW¶IË –,óWæ¯Ì_™¿2eþÊü•ù+óWæ¯Ì_™¿2eþÊü•õ±Ì`™Á²>–9,sXæ°Ìa™Ã2‡eË–9,kd™Å2‡em,sXæ°¬e},óXæ±Ìc™Ç2eËYÖȲF–5²Ìg™Ï²F–-3Zf´Ìh™Ñ2£eFËŒ–-3Zf´Ìh™Ñ2£eFËŒ–-3Zf´ÌgY+ËŒ–-3Zf´Ìh™Ñ2£eFËŒ–-3ZÖË2§eNËœ–9-sZæ´Ìi™Ó²f–Y-³ZfµÌj™Õ2«eVˬ–Y-3Zf´ÌhY+Ëœ–µ²Ìj™Õ2«eVˬ–µ²Ìk™×2¯e^˼–y-óZæµÌk™×2¯e^ËzYf¶Ìl™Ù2³e^ËzYf¶Ìk™×2§eNËŒ–-3Zf´Ìg™Ï²>–-3Zf´Ìh™Ñ2£eFËŒ–-Û°eNËœ–9-sZæ´Ìi™Ñ2Ÿe},3Zf´¬eNËœ–9-sZæ´Ìi™Ó2§eNËœ–9-sZþÏÿ~eã §/œ¾púÂé §/œ¾púÂé §/œ¾púÂé §/œ¾púÂé §/œ¾0úÂè £/úøbþ°úÂê «/¬¾°úÂê «/ü…ÕV_X}aõ…ÕV_tò…×V_4ò…×^_X}aõE_ìØf_˜}áõ…×^_x}áõ…×^_x}ÑÌf_˜}aö…Ùf_˜}aö…×^_x}aó…Í6_Ø|aó…Í6_Ø|aó…Í6_Ø|aó…Í|áóE'_}aô…ÑF_}aô…ÑF_ø|áó…Ï>_ø|áó…Ï>_ø|áó…Ï>_ø|áó…Ï>_Ø|áò…Ë._¸|áñ…Ç_4ó…É&_˜|aò…É&_˜|aò…É&_˜|aò…É_x|áñ…Ç_x|áñ…Ç_x|áñ…Ç_X|aðE/_ôò…Å_8|áð…Ã_|að…Á_|að…Á_|að…ÁÞ^x{áí…·Þ^4ò…¹æ^4ò…¹æ^4òE#_Ø{ÑÇö^Ø{aï…½}|áï…¿ö^Ø{aï…½ö^Ø{aï…½ö^Ø{áî…»î^˜{ÑÆî^´ñ…½ö^Ø{aï…½ö^Ø{aï…½î^¸{aî…¹æ^˜{ù?ÿû©æ*ÌUx«ðVá­Â[…· oÞ*¼Ux«ðVá­ÂZ…µ kM¬ðVá­Â[…· oÞ*¼Ux«°Vá¬ÂYŃV«0Vá«ÂW…« W ¬pUáªÂU…« W®*î+zXá«ÂW…¯ _¾*|UøªðUá«ÂW…¯ _¾*|UøªðUÑÄ cÆ*ŒU4±¢‰M¬hbE+ÜU¸«pWá®Â]…· oÞ*¼Ux«ðVá­Â[…· oÞ*¼Ux«ðVá­Â[…· oÞ*œU8«pVá¬ÂY…³ gÎ*œU8«pVá¬ÂYE+¬Ut°Â[…· oÞ*:XÑÁ wî*ÜU¸«0Wa®Â\…¹ sæ*ÌU˜«0Wá­Â[E+ÌU˜«0Wa®Â\…¹ sæ*ÌU˜«0Wa®¢æ*úWÑ¿ wî*ÜU¸«h`…½ {ö*Xá¯Â_…¿ ö*ìUØ«°Wa¯Â^Eû*ºWѽŠîU8¬pXá°Âa…Á ƒ+ºWá°Âa…à ‡+V4°Âa…à ‡+V8¬pXÑÁ ‹+V8¬pXá°Âa…à ‡ ¬°Xa±ÂbE+«lVÙ¬²Ye³Êf•Í*›U6«lVÙ¬²Ye³Êf•Í*›U6«lVÙ¬²Ye³Êf•ͪ&V5±Êh•Ñ*£UF«ŒV­2Ze´Êh•Ñ*£UF«ŒV­2Ze´Êh•ѪÝZå´ª‹U]¬òZåµÊk•×*¯U^«¼Vy­òZåµÊk•×*«UV«¬VY­²ZeµÊj•Õ*«UV«¬VY­²ZÕÈ*¯U^«¼Vy­òZåµÊk•×*¯U^«¼Vy­òZåµÊk•×*¯U^«¬VY­²ZeµÊj•ÕªFVy­òZ嵪•Uf«ÌV™­2[e¶Êl•Ù*³U^«¼Vy­òZÕË*³Uf«ÌV™­2[e¶ÊlÕ^­r[å¶Êm•Û*·Un«ÚYå¶Êm•Û*·Un«ÜV¹­r[å¶Êm•Û*·Un«ÜV™­òZåµÊkU7«¼VY­²ZeµÊi•Ó*§UN«œV9­jf•Óª^V9­rZå´Êi•Ó*§UN«œV9­rZå´Êi•Ñ*£UF«ŒVÿó¿_)þÊè+£¯|¾òùÊç+Ÿ¯|¾êæ+£¯Œ¾2úª›¯œ¾rúÊé+§¯œ¾rúª¯¬¾²úÊê+«¯¬¾²úÊê+«¯Œ¾2úÊç«åó•ÏW>_ù|åó•ÏW6_Ù|µO_ù|åó•ÏW>_ù|ÕÒWF_}eô•ÏW}ÕÑWN_9}åôUG_Y}eõ•ÕWV_Y}åô•ÓWN_9}åô•ÓWN_9}åô•ÓWN_}eô•ÑWF_}åò•ÁW_ù{åï•¿Wþ^ù{åï•¿Wþ^ù{åï•¿Wþ^ù{åï•¿Wö^Ù{eWö^Ù{eïU+_ù{åï•¿Wþ^ù{åï•¿Wþ^ù{åï•¿Wþ^ù{åï•¿Wþ^Ù{eWö^Ù{eïÕ>}åï•¿Wþ^ù{åï•¿Wþ^ù{ÕÊWþ^ù{åï•¿Wþ^ù{eï•»Wî^¹{åî•»Wî^™{eW|åî•»Wæ^™{eWæ^™{eWõ•»Wî^¹{åWÞ^uò•¹Wæ^™{åí•·WÞ^y{åíÕN}å앱Wm|åìU_Y{e핵Wm|åíU_y{åí•·WÞ^y{åí•·WÞ^y{ÕÅWæ^™{ÕÆWî^¹{åî•»Wæ^™{å핱WÆ^{åë•/ÇûŸ_5¾jXc¬ÆX±c5ÆjŒÕ«1Vc¬ÆX­[5¶jlÕØª±Uc«ÆV­[5¶jlÕØªé`MkŒÕ«é`³g5O¤ÆX±c5ÆjXã¬ÆY³g5ÎjœÕ8«qVã¬ÆY±c5ÆjŒÕت±Uc«ÆV«W5 ¬±Uc«ÆV­[5¶jlÕØª±Uc«ÆVMk|ÕøªñUã«ÆWMÿjúW㬦5ý«é_MÿjúWc¯Æ^MÿjüÕø«ñWã¯Æ_¿5þjüÕø«ñWc¯Æ^½šöÕØ«±Wc¯Æ^½{5îjÜÕ¸«qWã®Æ]»w5îjÜÕ¸«qWã®Æ]¹šæÕ¸«1Wc®Æ\¹s5æjÌÕ˜«1Wc®Æ\¹šÞÕ˜«1Wc®Æ[·o5½«1WÓ»w5îjÜÕ¸«qW㮦w5öjìÕØ«±W㮦w5öjìÕØ«±Wc¯Æ^»w5îjÜÕ˜«i]»šÖÕØ«±Wc¯Æ^½šÞÕø«ñWã¯Æ_MëjZWÓº‡5kzWc±ÆbÅ‹5k,ÖX¬±Xc±Æ_Í6­1Xc°Æ`Áƒ5k Ö¬1Xc°Æ`Áƒ5kÚWã°ÆaÚîÕt¯¦{5&köiË—5í«±YcSvþycóÍ76ߨ|cóÍ76ߨ|cóÍ76ߨ|cóMÿÞôïÑ7Fß}côÑ7Fß}ãóÏ7>ßø|còÉ7ß<ð‡o¾qøÆá‡o¾qøÆá‡o¾qøÆá‡o¾éÝ‹o6éo<¾ñø¦yoš÷Æå—o\¾éÝoü½±÷ÆÞ{oì½±÷ÆÞ{oì½±÷ÆÞ{oöçoü½ñ÷Æßoü½ñ÷ÆÞ{oì½±÷ÆÞ{oì½±÷ÆÞ{oì½±÷ÆÞ{oÚ÷ÆÞ{oì½±÷ÆÞ{oì½±÷ÆÞ›î½ñ÷Æß{oì½±÷ÆÞwoܽq÷ÆÝwoܽq÷ÆÝwoz÷ÆÞ{oì½±÷ÆÞ{oì½±÷ÆÝso:÷ÆÝwoܽq÷¦uoì½±÷ÆÞ{o̽1÷ÆÛko¬½±öÆÚko¬½éÜoo¬½±öÆÚgoœ½iÜko¬½qöÆÙgoœ½qöÆÙgoœ½qöÆÕWoL½ñôÆÑGo½qôÆÑGo½qôf?¾iÚ›¦½iÚSoL½ñôÆÓOo<½ñôÆÓKo½qôÆÑGo¼¼ñòÆÊ+o¬¼±òÆŠtüSg¥ÎJ•:+uVê¬ÔY©sRç¤ÎH‘:#uFêlÔÙ¨³Qg£ÎF]¿ê|Ôù¨³Q×®ºvÕµ«ÎI“ºvÕµ«®]ufêÌÔ=‰:7unêÜÔ¹©sSç¦ÎM™:3ufê¼Ôy©óRç¥ÎK•:+uVê¬ÔY©³Rg¥®au^ê:V×±ºŽÕu¬®cu†êúUg¨ÎP¡:Cu†ê Õ¹©sSç¦ÎM›:7unêÜÔ¹©sS×­:;uvêìÔÙ©³Sg§ÎN:;uvêìÔÙ©³Sg§ÎN]»êüÔù©óS·ë Õª3Tg¨ÎOŸ:?u~êüÔù©óSç§®]u†ê Õª3Tg¨n/Öª³Sg§ÎN:;uvêìÔÙ©³S×­:?uݪ3Tg¨ÎP¡:Cu†êüÔù©óSç§®]uíªsT種]u–êÚUç©ÎS§:Oužê<ÕYªkW§:OužêÚUgªÎT©:Suíª3U·ë\Õ¹ªsUçªÎU«:Wu®êúUׯº~Õõ«ÎXÝv¬ëWµº~Õy«3Vg¬ÎW¯ºNÕ«3Vg¬ÎX±ºfÕ«óUç«ÎW¯º^Õ«ëU³:cuÆêZUתºVÕݧÕõª®Wu½ª³Wת:uþêüÕù«óçØÿóÎß;ïü½ó÷Îß;ï:õÎß;ï:õÎà;ƒï ¾3ø®Sï:õÎâ;‡ï¾søÎá;‡ï¾søÎá;‡ï¾søÎá;‡ï¾3øÎà;ƒïžÌ;ƒï ¾ó÷Îß;ïºõÎà;ƒï ¾ëÖ;‡ï ¾3øÎà»f½søÎá;‡ï¾søÎá;‡ï ¾3øÎà;ƒï ¾3ønK¾ëØ;ƒï ¾3øÎà;ƒï ¾ëØ»Ž½ëØ;ï<¾óøÎã;ï¾søÎá;‡ï¾søÎá;‡ï¾søÎá;‡ï¾søÎá;‡ï¾søÎá;‡ï¾søÎá;‡ï¾søÎỎ½søÎÞ;sï̽3÷ÎÜ;kkÕ»V½³öÎÔ;SïL½3õÎÔ;SïL½3õÎÔ;SïºôÎÔ;SïL½3õÎÔ;SïL½3õÎÔ;Oï<½óôÎÓ;Oï<½ëÓ;SïL½3õÎÔ;Sï<½óôÎÓ»>½óôÎÓ;Oï,½³ôÎÒ;Kï,½³ôÎÒ;Kï,½³ôÎÒ»f½óôÎÓ;Kï,½³ôn ¾Û‚ïö®aïöÎ×»~½óõÎ×;_ïl½³õÎÖ;[ïúõÎ×;_ïöÎØ;_ï|½óõÎ×;_ï|½ëØ;c3öÎØ;c3öÎØ;cï÷ÎÙ;gsöÎØ;cŽô? ÆŒ5k0Ö`¬ÁXCãl5˜j0Õ`ªÁTƒ©†¾5¸jpÕàªÁUƒ«W û¯ÁVƒ­[ ®\5˜jh[ƒ«W ®\5<‰W mk°Õ`«ÁVƒ­[ ¶l5Øj°Õ`«ÁVƒ­[ ¶l5Øj°Õ`«ÁVƒ­†Æ5Øj°Õ`«ÁVƒ­[ kðÕйc ÆŒ5k0Ö`¬ÁXƒ±c ¾|5øjðÕл†Þ58kpÖà¬ÁYƒ³g Μ58kpÖà¬ÁYƒ³g Μ58kpÖà¬ÁYƒ³g Μ58kpÖкg Îz×л†Þ5ܯ5¸kh^Cóü5økð×௡y ÍkØŒ Ík°Ø`±ÁbCû<6´¯¡} íkh_CûÚ×à´ÁiƒÓ§ Nœ68mpÚà´ÁiƒÓ†þ5Xm°Ú`µÁjƒÓ§ Nœ6´¯ÁjƒÕ« Nœ68mpÚà´ÁhƒÑ†î58mpÚà´¡{ V¬6Xm°Úо« V¬6Xm°Ú`µÁjƒÕ« Vœ68mè^ƒÕ« Nœ68mpÚà´¡ Nœ68mpÚÐÁ« V¬6Xm°Ú`µÁjƒÓ†6Xm°Ú`µÁjƒÕ« V¬6Xm°Ú`µÁjƒÕ« V¬6Xm°Ú`µÁjƒÕ†&6xmðŠÉ?M^›¬6Ym²ÚÔ¦6µ°ÉkS ›ZØä¶Ém“Ù&³M^›¼6ymòÚäµÉk“×&¯M^›¼6µ°Él“Ù¦6¹mrÛä¶Ém“Û&³MO¦Él“Ù&³Mf›Ì6™m2ÛäµÉkÓ&m2Ûd¶Él“Ù&¯M^›¼6ymòÚäµÉkS›Ì6™m2Ûd¶Él“Ù&³Mf›Ì6™m2Ûd¶Él“Ù&³Mf›Ì6™mêb“Û&·Mn›Ü6¹mrÛä¶Ém“Û&·Mn›Ü6¹mrÛä¶Ém“Û&·Mn›Ü6¹m2ÛäµÉk“×&¯M^›¼6ymòÚÔÅ&³Mf›Ì6™m2ÛäµÉk“×&¯M^›¬6Ym²Údµ©™M^›¼6ymòÚäµÉk“×&¯M^›¼6ymòÚäµÉk“×&¯MV›¬6Ym²ÚdµÉj“Õ&«MV›¬6Ym²ÚÔÕ&¯M^›¬6Ym²ÚdµÉjSW›¼6ymòÚ䵩©M^›¼6ymòÚdµÉj“Õ&«MV›¬6Ymjk“×&¯M^›¼6ymòÚäµÉk“×&¯Mmm2Ûd¶Él“Ù&³Mf›Ì6™m2Ûd¶©­Mn›Ü6¹mrÛd¶Él“Ù&³Mf›¼6ymjk“Ù&³Mf›Ì6™mòÚäµÉk“×&¯M^›¼6ymòÚäµÉk“×&¯M^›¼6ymòÚäµÉk“×–®¶Xm±Úbµ¥«-F[Œ¶m1Úb´¥­-N[œ¶´µÅj‹Õ«-V[¬¶Xm±Úâ´Åi‹Ñ£-F[Œ¶m1Úâ³¥«-F[Œ¶m1Úb´Åh‹Ñ£-F[ºÚâ´Åi‹Ó§-N[œ¶8mik‹Ó§-N[Œ¶mñÙâ³Åg‹ÏŸ->[|¶ølñÙâ³Åg‹ÏŸ->[|¶ølñÙâ³Åg‹ÏŸ->[|¶ølñÙâ³Åg‹ÏŸ->[|¶ølñÙb³Åf‹Í›-6[zÚb³¥§->[l¶Øl±Ùb³Åf‹Í›-6[l¶Øl±Ùb³¥§->[|¶ølñÙâ³¥§-F[Œ¶m1Úb´Åh‹Ñ£-F[Œ¶mñÙâ³Åg‹ÏŸ->[|¶Ølii‹ÏŸ-6[l¶Øl±Ùb³Åf‹Í›-6[l¶Øl±ÙÒÒŸ->[|¶ølñÙâ³Åe‹Ë–޶Øl±Ùb³ÅeKG[l¶Øl±Ùb³Åe‹Ë—-.[\¶¸lqÙâ²Åe‹Ë—-.[\¶¸lqÙâ²Åe‹Ë–ÍÛâ²Åe‹Ë—-.[\¶¸lqÙâ²Åe‹Ë—-.[\¶¸lii‹Í›-6[l¶Øl±Ùb³ÅfKO[|¶ølñÙâ³Åg‹ÏŸ->[|¶ølñÙâ³Åg‹Ï›-6[l¶ØÄáŸ¶Ž¶ùlóÙæ³ÍgÛæmëi[OÛzÚfµÍj›Õ6«mNÛŒ¶m3Úf´Íh›Ñ6£m>ÛZÚf´Íh[KÛ|¶Ùl³ÙÖÏ6Ÿm>Û|¶ùlóÙö„Ú|¶ùlóÙæ³Íg›Ï6Ÿm>Û|¶ùlóÙæ³Íg›Ï¶–¶m3Úf´­¥mNÛœ¶µ´Íi›Ñ6£mFÛŒ¶m3Úf´Íh›Ñ6£mFÛ|¶ùlóÙæ³Íf›Í6›m6Ûl¶Ùl³Ùf³Íf›Ë6—m.ÛºÙf³Íf›Í6›m6ÛºÙæ³Íg›Ï6Ÿmýl3Úf´Íh›Ñ6£mFÛŒ¶m3Úæ³Íg›Í6›m6Ûl¶¹lsÙæ²Íe›Ë6—m.Û\¶¹lsÙf²Íd›É6“m&ÛL¶™l3ÙÖÌ6—m.Û\¶¹lëf›Í6—m.Û\¶¹lsÙæ²Íe›Ë6—m.Û\¶¹lóØæ±Íc[/ÛzÙæ²Íd›É6“m&ÛzÙæ²Íe›Ë6—m.Û\¶5³Íf›Í6›m6Ûl¶Ùl³Ùf³Íe›É6“m&ÛL¶™l3Ùf²­•m.ÛL¶™l3Ùf²Íd›É6mÛöm›É6“m&ÛL¶™l3Ùf²Íd›É6“m&ÛL¶ylóØæ±Íc›Ç6mÛ,¶Yl³Øf±Íb›Å6‹mÛ¶9lÿסF:öÿtXìpØá°ÃaG';,vXìpØá°Ã`‡ÁŽ^v8ìèe‡Å‹;,vXì°Øa±£—;»|vùìòÙå³Ëg—Ï.Ÿ]>»|vùìòÙå³Ëg—Í.›]6»lvÙì²Ùe³Ëe—Ë.—]½ìrÙå²Ëe—Ë.—].»\v¹ìrÙå²Ëe—Ë.—].»\v¹ìrÙå²Ëe—Ë®fvÙì²Ùe³Ëf—Í.›]ÝìòÙ峫›]F»|vùìòÙå³Ëg—Ï®nvu³Ëi—Ó.§]N»œv9írÚå³Ëg—Ï.Ÿ]>»|vùìje—Í.›]6»lvÙìrÙå²Ëd—É®VvyìòØå±Ëc—Å.‹]»,vYì²Øe±ËbW'»»|vùìòÙå³Ëg—Ï.Ÿ]>»|vùìjg—Ñ.£]F»ŒvùìòÙå³Ëf—Í.›]6»lvÝcvùìòÙå³Ë§#ÿOÍ›=6{löØìégÏŸ=>{|öøìñÙc³ÇfÍž†öøìñÙã³ÇgÏŸ=.{ÚÙc³ÇfÍ›=6{löØì±Ùc³ÇfÍ›=6{löØì±Ùó ¤ÇeË—=.{\ö¸ìifÍž=Ûã³ÇgÏžvöí1Úc´ÇhÑ£=F{ŒöíÙµ=N{œöí1Úc´ÇhÑ£=F{Œöí1Úc´ÇhÑ£=F{Œöí1Úc´ÇhÑ£=F{Œöí1Úc´ÇhÑ£=F{|öøìñÙÓÑžŽö8íqÚã´ÇiÓ§=N{:Úcµ§¥=^{¬öXí±ÚÓѯ=^{:Úc¶ÇlÙž–ö´´ÇnÝ»=v{ZÚc·Çnݳ=f{¼öô³ÇlÙ³=f{Úã¶ÇmÛ·=n{Üö¸í1ÛÓз=n{Üö¸íqÛã¶ÇlÙ³=f{Ìö˜í1Ûc¶ÇlÙ«=V{¬ö8íqÚã´ÇiÓ§=N{œö8íqÚã´ÇiO?{¬öXí±ÚcµÇjÕ«=V{¬öXí±ÚcµÇjÕ«=V{¬öXí±Úã´ÇiÓ§=N{œö8í1Úc´ÇhÑ£=>{|öøìñÙÓУ=F{Œö4´ÇiÓ§=N{œö8íqÚã´Çiï¿Nuú¬ö9ísÚç´ÏiŸÓ>§}Nû|öõ³ÏhŸÑ>£}Fû|öùìóÙç³Ïg_?ûŒöí3Úg´ÏhŸÑ>£}FûŒöí3Úg´ÏhŸÑ>£}FûŒöí3Ú÷ɤïIö9ísÚç´ÏiŸÑ>£}FûŒöùìóÙç³ÏgŸÏ>Ÿ}>û|öùìóÙç³ÏgŸÍ¾†öùìóÙç³ÏgŸÏ>Ÿ}>û|öùìóÙç³ÏgŸÏ>Ÿ}>û|öùìóÙç³ÏgßÎí3Úg´ÏhŸÑ>£}FûŒöí3Úg´Ïh_Gûœö9ísÚç´ÏiŸÓ>§}Nûœö9ísÚç´ÏhŸÑ>£}MísÚç´ÏiŸÓ>§}FûŒöí3Úg´ÏhŸÑ>£}FûŒöíklŸÓ>§}NûúÚgµÏj__û¼öyíóÚçµÏkŸ×>¯}^û¼öyíóÚgµÏjŸÕ>«}Vû¬öYísÚç´¯¯}Vû¬öYí³ÚgµÏjŸÕ>«}Vû¬öõµ¯¯}fûÌö™í3ÛçµÏkŸ×>¯}Vûœö9í3Úg´ÏhŸÑ>£}FûŒöí3Úg´ÏhŸÑ>£}FûŒöùìóÙç³Ïg_KûŒöí3Úg´ÏhŸÑ>£}-ísÚç´ÏiŸÓ>§}-ísÚç´ÏiŸÓ>§}Nûœö9ísÚç´ÏiŸÑ>£}FûŒöíóéØÿ3às ¥FŒ0:`tÀè€Ñ–´tÀê€Õ«V¬Xèé€×¯V¬Xغ^¼xð:àuÀç€ÏŸ>|øð9àsÀçÀ¾0:`tÀèÀ“0:`tÀè@KŒ0:ÐÑ£FŒøð9àsÀç€ÏŸ>ú9`tÀè€Ñ£FŒøð9àsÀç€Í›6\¸p9àrÀå€Ë“&Lxð8àqÀã€Ç<xð8`qÀâ€Å‹,8p8ÐË‹,X°8`qÀâ€Ã^X°8`qÀá€Ã‡808`pÀà€Á;àpÀá€Ã‡8p8àpÀá€Ã‡8èæ€Å‹{wÀã€Ç<´sÀã€Ç<xð8àqÀâ€Å‹8p8°s,ôsÀã€Çú9`r Ÿ.\ôsÀæ€Í›6lذ9`sÀæ€Í›6\¸hç€Í›6lذ9`sÀæ€Í›6l¸p9àrÀå€Ë— °9àrÀå€Ë—.L˜09`rÀä@+ë†9r8äpÈáÁ!ƒC‡ 28dpÈàÁ!ƒC‡ 28ÔÌ!‡C‡9r8äoÈßP/‡z9ÔË¡^yò8äqÈãÇ!C‡<yò8äqÈãÇ!CO|ÈãÇ!CÝ29äqÈãP7‡L™29ÔÍ!—C.‡\¹r9ärÈäÉ!“C&‡L™29ÔÍ!—C.‡\¹êæÍ!›C6‡lÙ²9dsÈæÍ!›C6‡lõrÈæÍ!›C6‡lÙ²9dsÈæP+‡|ùò9äsÈçÏ¡V2:dtÈèÑ!£CF‡Œ2:ÔË!§CN‡œ9r:ÔÌ!«CV‡œ9r:ÔË!«CV‡¬Y²:duÈêÕ!«CV‡¬9r:ätÈéÓ!§CN‡Œ2:dtÈçÏ!ŸC>‡|5sÈèÏ!ŸC>‡|ùò9ÔË!£C6‡:9äsÈçÏ!ŸC>‡|ùò9äsÈæÍ!›C6‡lÙ²9dsÈæË!“C&‡L™29drÈäÉ!C‡,Y²8dqÈâÅ!‹C‡,urÈãÇ!C‡<yò8äq¨•C&‡L™29drÈäÉ¡-;drÈäP'‡:9ÔÉá}j¥cþψÑ£#FGŒŽtrÄèˆÑ£#>G|Žøñ9âsÄæˆÍ›#6GlŽØ±9bsÄåHGlŽØ±9bsÄæˆÍ›#6GlŽØ±9brÄäˆÉ“#&GLŽ˜19òdGLŽ˜19br¤“#.G\ޏ19brÄäˆÉ“#&GLŽ˜19brÄäˆÉ“#&GLŽxñ8âqÄãˆÇ#G<ŽxÙ±#&GLŽxñ8âqdÃŽ˜19brÄäH3G\ޏq9brÄäˆÉ#G<Žxñ8âqÄâˆÅ‹#G Ž18bpÄàˆÁƒ#G Ž18bpÄàˆÁƒ#½q8âpÄáˆÃ‡#GŽ8q8âpÄáˆÃ‡#GŽ4sÄâˆÅ‹#G,ŽX±8ÒÌ#G<ŽxiæˆÉ“#&GLŽ˜19br¤›#.GLŽxñ8bq¤—#½19brÄäˆÇ#G<Žxñ8âq¤—#&GLŽ˜19brÄäˆÉ“#&Gz9ârÄåˆË—#.G\ޏÙ±#6GlŽôrÄçˆÏ‘^ŽØ±9bsÄåˆË—#.G\ޏq9ârÄäˆÉ“#&GLŽ˜19brÄäÈ~q9ârÄåˆË—#.G\ޏq9âÒ1ÿgÌå˜É1“cÝs9ærÌå˜Ë±vŽÙ³9fsÌæ˜Í1›c6ÇlŽÙ³9fsÌæX3ÇlŽÙÛ®c>Ç|Žùó9æsÌç˜Ï1Ÿc>Ç|ŽùkçX;ÇœŽ9s:ætÌé˜Ó1§cNÇœŽ]À˜Ó1§cNÇœŽ9s:ÖÎ1§cNÇŒŽ3:ftÌè˜Ñ±=;ætÌé˜Ó1§cNÇœŽµsÌê˜Õ1«cVǬŽY³:fuÌê˜Õ1«cVÇú9æuÌë˜×1¯c^ǼŽyó:fuÌêX?ǬŽY³:ÖÏ1¯c^ǼŽyó:æuÌë˜×1¯cÝ3;fvÌì˜Ù1³cfÇÌŽ™ó:æuÌë˜×1¯cVÇœŽ9ó9æsÌç˜Ï1Ÿc>Ç|Žùó9æsÌç˜Ï1Ÿc6Ç\޹s9ærÌå˜Ë1—c.Ç\Ž™39frÌä˜É1“c&Ç:9fr¬“c.Ç\ŽurÌæ˜Í1›c6Çl޵rÌæ˜Í1›c6Ç\޹s9ærÌå˜Ë1—c.Ç\޹39æoÌߘ¿1cþÆüù³7fo¬c}38fpÌàXÇŽ9s8æpÌá˜Ã1‡cms8æpÌá˜Ã1‡cÇŽ9s8æpÌá˜Ã1‡cÇŽ9s8æpÌá˜CGøŸ ‡}œ°8aqÂâ„à ‡'N8œp8ápÂáÄ~p8ápÂá„Á ƒ'ú8ápÂá„à ‡'N8œp8ápÂá„à ‡'N8œ08apÂà„Á ƒ' Nœ08apÂàÄLø›°7ao¢‘þ&üMø›èä„Á ƒ'ìMØ›°7aoÂÞ„½ {ö&ìMØ›°7aoÂÞ„½ {ö&ìMØ›°7aoÂÞ„½ {ö&ìMØ›°7ánÂÝD''ìMØ›èä„¿ {î&¼Mx›°6±U'¼Mx›ð6±U'ÌM˜›07anÂÜ„¹ sæ&ÌM˜›07ámÂÛ„·‰6N˜›07ÑÆ‰6NØ›°7aoÂÞ„½ {ö&ìMØ›°7aoÂÞ„½ {]œð7áoÂß„¿ þ&üMø›ð7ÑÅ ƒ' Nœð7áo¢‰' Nœ08apÂà„Á ƒ' Nœèã„à ‡'N8œhä„Å ‹',NXœ°8ápÂàD'N´q¢÷’}œèãD'|Nøœð9ásÂç„Ï Ÿ}œð9ásÂç„Ï Ÿ6'lN¸œp9árÂäD'\N¸œp9árÂå„Ë —.'\N¸œp9árÂåĽä„Í ›6'lNØœ°9as¦´ü3esÊæ”Ë©>N™œ29erÊä”É)“S&§Ú8årÊå”É©6N¹œr9årÊå”Ë)—S.§\N¹œr9årÊå”Ë)—S.§\N¹œr9årªS6§lNÙœ²9årÊå”Ë)—S.§\N¹œº€)›Smœ²9esÊæ”Í)›S6§lNÙœ²9ÕÇ©>N2:etÊè”Ñ)£SF§ŒN2:etÊè”Ñ)£SF§ŒNò9åsÊç”Ï)ŸS>§|Nùœò9ÕÆ)£SF§ŒN2:etÊèT#§œN5rÊêT#§9evÊìT#§¬Nùœ²9esÊå”Ë)—SûuÊæ”Í©Nùœò9µ_§ŒNùœò9åsÊç”Ï)ŸS>§|Nùœò9åsÊç”Ï)ŸS>§|NùœÚ®S>§|NÙœ²9esÊæ”Í)—S.§\N™œ29ÕÅ)—S.§\Nyœò8åqÊã”Ç)S§ç|Îùœó9çs®“sFçŒÎkåœÓ9§sNçœÎ9s:×Ê9«sVç¬ÎY³:gu®•s^ç¼~²úÉê'«Ÿ¬~²úÉê'«Ÿ¬~òùÉç'ŸŸ|~òùÉç'›Ÿl~²ùÉæ'›Ÿl~²ùÉæ'›Ÿl~²ùÉæ§F~jä§F~rúÉé'§ŸŒ~2úÉè'£Ÿ|~òùÉç'ŸŸL~òøéË'“ŸL~2ùÉä'“ŸL~2ùÉã'Ÿ<~òøÉã'‹Ÿ,~²øÉâ'‹Ÿ,~êâ'Ÿ<~òøÉã'ŸšøÉã'Ÿ<~òøÉã'Ÿ<~òøÉã'Ÿ<~òøÉã'Ÿ<~òøé^ð“ÉO&?mÕO.?¹üäò“ËO}üäò“ÉO&?™üdò“ÇO?Yüdñ“ÅO?Yüdñ“ÅO?Yüdñ“ÅO?Yüdñ“ÅO?YüÔÈO?yüäñ“ÇO?yüÔÈO?yüdñ“ÃO?üÔÅO?üdð“¿O=üdð“ÁO?ùûäï“¿Oþ>ùûäï“¿Oþ>ùûäï“¿Oþ>ùûÔÂO?üdð“ÁO?üdð“ÁO?üdð“ÁO?üäï“¿Oþ>ÙûdOÆ>ûdìS ?9ûä쓳OÎ>9ûä쓳OÎ>µð“µOÖ>Yûd퓳OÆ>ûd쓱OÆ>ûd쓱OÆ>ûd쓱OÆ>ûd쓱OÆ>ûd쓱OÆ>ùúäë“/ÇõŸc ¾|-ØZ°µ`kaƒ.´p¡… ÎŒ-[0¶`l¡ Μ-[0¶`lÁØ‚±c ÆŒ-[0¶`lÁØ‚±c ÆZ¸àlÁÙ‚³g -\°¶`mÁÚ‚µ….tpÁÜBî ¶é‚¿ þ.hÁß‚¿ þü-ø[ð·àoÁß‚¿….\0¸`pÁà‚Áƒ  .\0¸`pÁàB.8\p¸àpÁá‚Ç .8\p¸àpÁá‚Áƒ  .\0¸àoÁß‚¿ ]\0¸`p¡  .\èâ‚Ç ]\°¸`qÁâ‚Å‹ ,.X\°¸`qÁâ‚Å‹ .8\p¸àpÁá‚Ç .tqÁâ‚Å‹ m\ð¸ÐÆ“ &6ë‚Ë— .ú¸`sÁæBl.¸\p¹ÐÆ› 6l.Ø\°¹`sÁæ‚Ë“ &L.˜\0¹`rÁä‚É“ <.x\ð¸àqÁã‚Ç M\0¹`rÁäB\.¸\èáB Z¸`t¡… Nœ.8]pºàtÁé‚Ó§ Nœ.8]0º`tÁè‚Ñ£ =\pºÐë V¬.X]°º`uÁê‚Ó§ Nœ.8]pºàtÁé‚Ó§ Nœ.8]há‚Õ« V—œ.µpÉêR—¬.Y]²ºduÉê’եݺÔÄ%¯K^—¼.y]òºäu©‰K^—¼.y]òºäuÉë’×%«KV—¬.Y]²ºduÉê’Õ%«KV—¬.Y]rºätÉé’ӥͺduÉé’Ó%§KN—œ.9]rºätÉè’Ñ%£KF—vë’Ó%§KN—œ.9]rºätÉé’Ó%£KF—Œ.ù\ò¹äsÉç’Í%›K6—l.Ù\²¹dsÉæ’Í%›K.—\.õqÉæ’Í%—K.—\.¹\r¹ärÉä’É%“K&—Ú¸drÉä’É%“K&—<.y\ò¸äqÉã’Ç%K—<.y\ò¸äqÉã’Ç¥6.™\2¹drÉä’É%“K&—L.™\2¹äqÉã’Ç%K—,.Y\ÚªK—<.y\²¸dqÉâR+—<.µrÉä’É%“K&—L.™\2¹drÉä’É¥^.¹\êå’Í%›K6—l.Ù\²¹dsÉæ’Í¥^.ù\ò¹äsÉç’Ï%ŸK>—|.ù\ò¹äsÉç’Ï%›K{uÉçÒ^]ò¹äsÉç’Ï%›K6—l.Ù\²¹dsÉæ’Í%›K ]ò¹äsÉç’Ï%ŸK>—|.ù\ò¹äsÉç’Ï%ŸK>—|.µtÉè’Ñ%£KF—Œ.ù\ò¹äsÉç’Ï%ŸK>—|.ù\ò¹äÓqþgÅèŠÑ•–®]1ºbtÅçŠÏŸ+>WzºbtÅèŠÏ›+6WZºâsÅçŠÏŸ+>W|®ø\iéŠÏ›+6Wl®Ø\±¹bsÅæŠÍ›+6Wl®Ø\±¹bsÅæŠÍ•Ž®ø\ñ¹âsÅçŠÏŸ+>WºrA+>W|®ø\ñ¹âsÅçŠÏŸ+>W|®Ø\±¹ÒЛ+6Wú¹âsÅçŠÏŸ+ý\ñ¹âsÅçŠÏŸ+>W|®ø\ñ¹ÒΣ+FWŒ®]1ºÒϧ+NWöëŠÓ§+í\qºâtÅéŠÓ§+ý\±ºbuÅêŠÕ«+ý\ñºâuÅëŠ×¯+^W¬®X]±ºbuÅêŠÕ«+VW¬®X]±ºbuÅêŠÕ§+NWœ®´sÅêŠÕ«+VWÚ¹âuÅëŠ×¯+^W¬®´sÅëŠ×¯+^W¼®x]ñºâuÅëŠ×¯+^W¼®x]ñºâuÅëŠ×¯+^W¼®x]ñºâuÅëŠ×¯+^Wl®Ø\±¹bsÅæŠÍ›+6Wl®´sÅçŠÍ›+ý\ñ¹âsÅçŠÏ•~®]1ºbtÅèŠÑ£+FWŒ®]ñ¹âsÅçŠÏŸ+>W|®ø\ñ¹âsÅçŠÏŸ+>W|®ø\ñ¹âsÅçŠÏŸ+ ]ñ¹âsÅçŠÏŸ+>W|®ø\ñ¹âÓQþgÍçšÏµ†®]3ºftÍèZGל®9]3ºftÍèšÑµŽ®9]sºætÍéšÓ5§kNל®9]sºæt­£kV×:ºfuÍêšÕ5«kV׬®Y]³ºfuÍêÚæ]óºæuÍëšÕ5«kV׬®Y]³ºfuÍéšÓµŽ®Y]³ºvkV׬®Y]³ºfuÍêšÕ5«kV×ZºæuÍëš×µž®™]3»fvÍìšÙ5³kf×Ì®uuÍíšÛ5·kn×Ü®¹]s»ævÍíšÛ5·kn×Ì®™]3ºft­¥kNל®9]sºætÍéšÓ5§kNל®9]sºftÍèšÑ5£kF׌®5uÍéšÓ5§kNל®9]sºætÍéšÓ5§kNל®9]kêšÕ5«kV׬®9]sºætÍéšÓ5§kNל®9]ëêšÕ5«kV׬®Y]³ºfuÍêšÕ5«kV׬®Y]³ºætÍéšÓ5§kNל®9]sºætÍéšÓ5§kNל®9]ëêZW׺ºÖÕµ®®Ù]³»fwÍîšÝ5»kv×ì®Ù]³»fw­­k~×ì®Ù]³»fwÍîšÝ5»kv×ì®Ù]³»fwÍîšÝ5»k}]ó»æwÍïšß5¿k~×ü®ù]ó»æwÍïšß5¿k~×ü®ù]ó»æwÍïšß5¿k~×»fxÍðšá5Ãk†× ¯^3¼fxͰãýφá Æ7 oÞ0¼axÃð†á Æ7 oÞ0¼axÃðÆÞp¼áxÃñ†ã ÇŽ7oÞð»áw£µ~7ünØÝ°»awÃî†Û ·n7Ün¸Ýp»ÑÙ »n7Ün¸Ýp»áv£±v7ìnØÝ°»awãÂ6Ün¸Ýp»ávÃí†Û ·n7Ün¸Ýp»ávÃí†Ù ³f7Ìn˜Ý0»avÃì†Ù ³f7Ìn˜Ý0»avÃë†× ¯^7:»avÃìFg7:»ÑÙ=¼ÑÚ ÇŽ7o8Þp¼áxÃð†á Æ7 oÞð»Ñ٠Æ7ünøÝð»áwÃï†Ý »n7Ün¸Ýp»ávÃí†Ù ³f7Ìn˜Ý0»av£¯n7Ün¸Ýp»ávÃí†Û ·n7Ün¸Ýp»ávÃí†Û ·n7Ìn˜Ý0»avÃì†Ù¾n¸Ý0»avÃë†× ¯^7¼nxÝðºauÃê†Õ «V7¬nXݰºauÃê†Õ «V7¬nXÝpºátÃé†Ó §N7œn8Ý0ºatÃè†Ñ £F7ŒnÝ0ºatÃè†Ñ £F7ŒnÝ0ºatÃè†Ñ Ÿ67lnØÜ°¹asÃâ†Å ‡7n8Üp¸ápÃá†Ã ‡Žê?[·n9Ür¸epËà–Á-ƒ[·öî–Ã-‡[·n9Ü2¸epËà–Á-ƒ[·ümutËàVG· nÜêè–Ã-‡[ݲ¸eqËâ–Å-s[æ¶Ìm™Û2·enËÜ–¹-s[æ¶Ìm™Û2·ÕË-w[³ånËÝ–»-w[î¶Üm¹Ûr·ånËÝ–»-w[î¶Üm¹Ûr·ånËÝ–¹-s[æ¶Ìm™Û2·enËÜV'·Üm¹Ûr·ånËÜ–¹-s[æ¶Ìm™Û2·enËÜ–¹-s[æ¶ÌmµsËÝ–»-w[î¶Üm¹Ûjç–½-{[ö¶ìmõsËß–¿-[þ¶ümõsËàV;· nÜ2¸epËà–Á­vn9Ür¸åpËá–Ã-‡[·n9Ür¸epËß–¿-[þ¶ümùÛ²·eoËÞ–½-{[ÍÜò·åoËß–¿-[þ¶ümùÛêæ–Á-ƒ[ÝÜr¸åpËá–Ã-‡[·n9Ür¸åpËá–Ã-‡[· nÜ2¸epËà–Á-ƒ[½Ür¸åpËàÖÖÝr¸åpËá–í^nYܲ¸eqËâ–Å-‹[·,nYܲ¸eqËâ–Å-‹[·,nYܲ¸eqËâV/·¿Øübó‹Í/6¿Øü²k¿øüâó‹Ï/>¿øüâó‹Ï/>¿Øüâò‹É/&¿˜übò‹É/&¿˜ür_L~1ùÅä“_L~1ùÅä“_<~ñøÅã_<~ñøÅã_<~ië“_L~1ùÅä_<~ñøÅã_<~ñøÅã_<~ñøÅã_<~ñøÅã_,~±øÅâ—¦~ñøÅã_šúÅä_<~ñøÅã_<~ñø¥§_L~1ùÅä“_L~1ùÅä“_L~1ùÅä“_L~1ùÅä“_L~1ù¥©_\~qùÅå—¦~±ùÅæ›_\~qøÅá‡_~qøÅàƒ_ ~1øÅß_ì}±÷¥›_ì}±÷ÅÞ—n~éæƒ_ºùå~ó‹Å/¿´ó‹Ç/¿xüâñ‹Ç/¿xüâñ‹Ç/¿xüâñ‹Ç/¿xüâñ‹Å/¿´ó‹Å/¿Xübñ‹Ã/¿übð‹Á/¿4ó‹Ã/¿8üÒË/¿8üâð‹Ã/¿8üâðK/¿Xüâî‹»/ûâî‹»/澘ûb/澘sÿÙó¶çmÏÛž·=o{Þö¼íyÛëâž¹=s{æöÌí™Ûëâž»=w{îöÜíµqÏÝ^÷ìíÙÛ³·goÏÞž½={{ööÜí™Û3·×Ä=w{îöÜí¹Ûs·çnÏÝ޽䞻=w{îöÜí¹Ûs·×Å={{]Üó·×Å=ƒ{÷ îÜ3¸gpÏàžÁ½ ß3¸gpÏàžÁ=ƒ{÷ îuqÏážÃ=‡{÷î9Üs¸çpÏážÃ=‡{÷î9ÜkãžÅ=‹{÷,îYÜ3¸gpÏàÞ¾Ýs¸çpÏážÃ=‡{÷îuqÏážÃ=‡{÷î9Üs¸çp¯{÷,îYܳ¸çpÏážÃ=‡{÷î9Üs¸çpÏážÃ=‡{÷î9Üs¸gpÏàžÁ={þöüíùÛó·çoÏßž¿½6îÜkã^÷¶í^÷ú¸grÏäžÉ=“{mÜs¹çrÏå^÷\î¹ÜëâžÍ=›{]Üó¹çsÏçžÏ=Ÿ{>÷|îùܳ¹gsÏæžÍ=›{6÷lî¹Üs¹çrÏåžÉ=“{&÷Lî™Ü3¹×È=—{.÷¹gsÏæžÍ=›{6÷:¹çs¯‘{>÷|î¹ÜkâžÇ={÷<îyܳ¸gqÏâžÅ½.îuq¯‹{]ÜëâžÏ=Ÿ{>÷lîÙÜkâžÍ=›{6÷lîÿkSlØ<°y`óÀæÍ›6l¸2|døÈð‘ß#¿G~ìÙ=r{äöÈì‘Ù#³G^¼y=òzäõÈë‘×#¯G^¼Y=²zÔÈ#¯G^¼y=òzäõÈë‘Õ#«GV¬Y=²zdõÈê‘Õ£ {äõÈë‘×#¯GV¬Y=²zdõÈê‘Õ#«GV¬Y=²zäôÈé‘Ó#§GÝ<êæ‘×#¯G^¼y=òzäõÈ«ãúÏ7¯ß¬~³úÍê7«ß¬~³ú­ß¼~óúÍë·~~ëç7·ßÜ~sûÍí7·ßÌ~óúÍë7¯ß¼~óúÍê7«ß¬~súÍé7§ßœ~súÍé·n~³úÍê7«ßœ~súÍé7§ßœ~súÍé7§ß6í7«ßœ~súÍé7§ßœ~súÍé7§ßœ~súÍé7§ßŒ~»èoF¿ùüæó›Ïo>¿ùüæó›Ïo>¿ùüæó›Ïo6¿Ùüfó[G¿Ùüfó›Ío&¿™üfò›Éo&¿™üfò›Éo&¿™üfò›Éo&¿™üfò[S¿¹üæò›Ëo.¿¹üÖÔo6¿Ùüæò›Ëo.¿™üfò›Éo&¿™üfò›Éo&¿™üÖÓo.¿™üfò›Éo&¿™üfò›Éo&¿™üfò›Ço¿yüæñ›Ço¿Yüfñ›Åo¿Yüfñ›ÅoÛõ›Ço¿yüæñ›Ço¿yüæñ›Åo¿Yüfñ›Åo¿õô›Ço¿µô›Ço¿µô›Éo&¿µô›Ëo.¿™üfò›Éo¿yüæñ›Ço¿yüÖÏo&¿™üfò›Ão¿üfð›Áo¿üæï›¿oþ¾ùûæï›½oö¾ÙûÖÊoþ¾ùûæï›¿oþ¾ùûæï›½oö¾ÙûÖÈoö¾Ùûfoö¾Ùûfoî¾¹ûæî›»oî¿~¸ûÑÉö~Øûaö~Øûaö~Øûaö~Øûaö~4ó‡¿Íüað‡Áþ~øûÑËüað‡Áüað‡¿þ~ØûaïG'Øûaö~Øûaö~ØûÑÉþ~øûáö~Øûaö~ØûaïG#øûáïÇ_ÀFþ0øÃàƒ? þ0øÃàƒ? þ0øÃàƒ?ùÃá‡?þhä‹?,þ°øÃâNþèä“?Lþ0ùÃä“?LþðøÃã?<þðøÃã?<þðøÃà?üýð÷ÃÛk?¬ý°öÃÚk?¬ýpö£?¬ý°öÃÚk?¬ý°öÃÚk?¬ý°ö£?¼ýðöÃÚk?¬ýhßo?¼ýðöÃÚk?¬ý°öÃÚg?œý0öÃØc?š÷ÃØc?Œý0öÃ×_?|ýèÝc?|ýðõÃ×_?|ýðõÃ×îýت?œýpöÃÙöý°öÃÚg?œý0öÃØc?ŒýèÞîýèÞo?º÷ÃÜs?vêw?Üýp÷ÃÝöý°÷ÃÞ{?š÷ÃÝw?Üýp÷ÃÝw?Üýp÷ÃÝw?Ìý0÷ÃÜÞýp÷ÃÝw?Üýp÷ÃÝw?Üýp÷£y?Ìý0÷Üãöω¹s'æN̘;1wbîÄ܉¹s'æN̘;1wbîÄ܉¹s'æN̘;1wbîÄÜI÷Nܸ;1wbîÄÜÉF=qwâîÄ݉»“öØ;±wÒ¾'þNüôïÄà‰Áƒ'O ž<1xbðÄà‰Áƒ'OüôïÄà‰Áƒ'þNüØ;±wbïÄÛ‰·o'ÞN¼x;ñvâíÄÛ‰·o'ÞN¼x;ñvâíÄÛ‰·o'ÞN¼X;±vbíÄÚ‰µ“þx;±vbíÄÚ‰µk'ÖN¬´ï¤}'í;qwbîÄÜÉ=éÞI÷Nºw²GOÚwâðÄá‰Ã‡'Ož4ïÄâ‰Å‹'O,žX<±xbñÄà‰Áƒ'O ž4ïÄá‰Ã‡'OžÜCž8<éމŋ'Ož4ïÄâ‰Å“æx<±xbñ¤y'O<žx<ñxÒ¼“'&OLž˜<1yÒ½—'.O\ž¸ž™<3yfòÌä™É3“g&Ï<žy<óxæñÌã™Ç3gÏ<žy<óxæñ¬“gÏ<ž5òÌä™É3“g<3yæñ¬g&ÏLžõñÌå™Ë³>ž¹/|^ø¼ðyáó¢‘F/Œ^ø¼ðyáóÂç…Ï Ÿ>/|^ø¼°yaóÂæ…Í ›6/l^ؼèã…Ï Ÿ>/|^ø¼ðyáó¢>/|^ø¼ðyáóÂæ…Í ›6/úxáóÂä…É‹¿„ “&/L^x¼ðxáñ¢&/L^˜¼0yaòÂã…Ç /<^tñÂä…É “&/L^˜¼ðx±C/L^x¼ðxáñÂâ…Å ‹/,^X¼°xañ¢‹/<^x¼èâE/\^˜¼0yaòÂä…É /<^x¼ðxáñÂã…Ç ‹ûôÂã…Ç /<^x¼°xañÂâ…Å ‹/,^X¼°xÑÆ /<^x¼ðxáñÂâ…Å ‹/,^X¼°xañ¢/^¼0xaðÂà…Á ƒ/ ^¼èâ…Á ƒ/ ^¼0xÑÆ ‡m¼pxaðÂà…¿ m¼0xáïÂß…¿ þ.ì]Ø»°waïÂÞ…½ {ö.ºxáïÂß…¿ þ.ì]Ø»°waïÂÞ…½‹&^ø»ðwáïÂß…¿‹&^ø»ðwáïÂß…¿ —ÿúÓFGïŸ_üeð—Á_üeð—Á_ùûåï—½_ö~¹ûåî—»_î~¹ûåî—»_î~¹ûåî—»_î~™ûåí—·_Þ~õð—¹_æ~™ûeî—·_Þ~yûeí—µ_Ö~Yûeí—µ_Ö~Yûeí—µ_Î~9ûÕÁ_Î~9ûåì—³_Î~uð×ýÕÂ_-üåî—»_î~]ü¯þ2÷ËÜ/s¿Ìý2÷ËÜ/o¿¼ýjà/s¿Ìý2÷ËÜ/s¿Ìý2÷ËÜ/s¿Ìý2÷«¿Ìý2÷ËÜ/s¿Ìý2÷k‹þêà/{¿Üýr÷ËÝ/w¿Üýr÷ËÝ/w¿Üýr÷ËÝ/w¿Üýêá/{¿ìýr÷Ëݯþ²÷ËÞ/w¿Ìý2÷Ëܯþr÷ËÝ/w¿Üýr÷ËÝ/w¿Üýêà/{¿ìý²÷ËÞ/{¿ìý²÷ËÞ/w¿Üýr÷ËÝ/w¿Üýr÷«ƒ¿ìý²÷ËÞ/{¿ìý²÷ËÞ/{¿:øË߯þ2øËà¯þrøËá/‡¿þrøËá/ƒ¿ þ2ø«…¿þrøËá/ƒ¿ þ2øë~ñ—Ã_5ñ—Å_MüåñWyüåñ—Å_Yüeñ—Å_µð—Ç_yüåñ—Ç_yüåñ—Ç_yüeñ—Å_-üåñ—Ç_YüeñWó~¹ûåî—»_î~¹ûåî—»_î~¹»2weîÊÜ•¹+sWæ®Ì]™»2wÕ½+wWweïÊÞU÷®ü]ù»òwåïÊß•¿+Wþ®ü]mÓ+ƒW¯ºweðª{W¯^9¼2xeðÊà•Á«î]9¼rxåðÊá•Ã+‡W¯^9¼rxåðj—^Y¼²xÕ½+W¯<^µïÊä•É+“W&¯<^y¼òxåñÊã•Ç+W¯:xeòÊä•É+“W&¯<^5ðÊâ•Å+‹W¯,^Y¼²xeñÊâ•Ã+‡Wí»rxåðÊáÕ½²xeñÊá•Ã+‡W ¼²xeñÊâ•Å+‹W¯,^Y¼²xeñÊâ•Å+‹W¯,^Y¼êà•Ç+W¯<^y¼já•É«^¹¼2yeòÊä•É+“W&¯L^™¼òxåñÊã•Ç+W¯<^õïÊà•½+{Wö®ì]Ù»²weïÊÞ•½+{Wö®ì]Ù»²weïÊÞ•½+{Wö®ì]¹»rwåîªWî®Ü]¹»rwåîÊÝUÿ®ì]Ù»²weïÊÞ•½+{Wö®ì]Ù»já•¿+Wþ®zxµG¯ ^¼2xeðÊà•Á+ƒW¯ ^¼2xeðÊà•Á+ƒW¯ ^5ñÊá•Ã+‡W¯^uñÊâ•Å+‹W]¼êâU¯ºxÕÅ«.^½2zeôÊè•Ñ+£WF¯Œ^½2jŽýsãôÆéÓ§7NoœÞ8½qzãôÆéÓ§7NoœÞ8½qzãôÆéÓ£7FoŒÞ½1zcôÆèÑŸ7>o|Þø¼ñyÓÉ£7FoŒÞø¼ñyãóÆçÍ.½ñyãóÆçÏŸ7>o|Þø¼ñyãóÆçÍ›76olÞ¸¼qyãòÆåË—7.o\Þ¸¼qyãòæ/䯿Í—7.oZycó¦•7­¼ñyãóÆçÏŸ7>o|Þø¼ñyÓÊ£7FoŒÞôòÆéÓ£7FoŒÞôòÆéÑ£7FoŒÞ½1zcôÆçÏŸ7>olÞØ¼±ycóÆæÍ›76olÞØ¼±ycóÆæM+o\Þ¸¼qyãòÆåË—7¼qyãòÆåË—7.o\Þtò¦“7¼1zcô¦“7NoœÞ8½qzãôÆéÓ§7NoœÞ8½qzãôÆéÓ£7FoŒÞ½éãÓ§7NoœÞ4òÆêÕ«7NoœÞ8½qzãôÆéÓ§7NoœÞ8½qzãôÆéÓ§7NoœÞ´òÆêÕ«7Vo¬ÞX½±zãôÆéÓ§7FoŒÞ½ñyãóÆçÏŸ7>o|Þø¼ñyãóÆçÏŸ7>o|Þø¼ñyãóÆçÏ›76olÞØ¼±ycÓ1üçÍ?.ÿ¸üãòË?.ÿ˜ücòÉ?&ÿ˜ücòÉ?&ÿ˜ücòÉ?íüãòË?ÿxüãñÇ?ÍücòÇ?ÿxüãñÇ?ÿôòÅ?ÿXücñO/ÿxüãðÁ?ÿüãï¿?}ücðÁ?ÿüÓÇ?ÿ8ü³YÿXücñÃ?ÿ8üãðÃ?ÿ\üƒ þ1øÇàƒúøÇá‡þqøÇá‡þ1øÇàƒüýñ÷Çß{ìýiäwÜýiãwÜýq÷ÇÝwÜýq÷§ìý±÷ÇÞ{ìý±÷ÇÞwÜýq÷ÇÝwÜýq÷ÇÝw𸧉üýñ÷Çßüýñ÷ÇߺøÇà{ìý±÷ÇÝwÜýq÷gŸþq÷÷ÿ§¸¾R]4Œž nrT$'É*’‰Š½ï¡öú/˜ÀWµxÞâîŸ}ú½ìýãîoÿxûÇÚ?Öþ±öµ¬ýcíŸ&þcíkÿXûÇÚ?Öþqö³œýãìgÿ8û§‰ÿxúÇÓ?žþñô§<ýãéOÿxúÇÓ?žþñô§,ýcéGÿ8ú§yÿXúÇÒ?–þ±ôOóþñô§<ýÓ¼LýcêSÿ˜úÇÓ?žþñô§<ýãéOÿxúÇÑ?Žþqô£ýãèGÿ8úÇÑ?Žþqäýà( q–,8 pзK–,X °à(ÀQ€£GŽ h[@Û,X °`)à à)ÀS@ãL˜ 0`*ÀT@ã\¸ è\€­[¶lØ °к€Ö h]€³gÎZ`-ÀZ€³gΜ8 pà,ÀY€³gÍ °`-ÀY€³€Þ8 ø@;4ÀZ€µkÖ¬X °à,ÀY€³g½ °`-ÀZ@ï¼x ðлsæÌ4/ yöì4/À_€¿þüø ðà/À_€½{övi€¿Ý ð`/À^€½{öìØ °`/À]€¹sæÌ˜ 0`. {îܸ h^€½{öì4/À_€¿{öìt/À_@÷ºà0Àa@÷,X °`1Àb€Å‹í °`1Àb€Å€îx ðà1Àc€Å‹Ý è^@÷ºн€ît/Ài€Ó§Nœ8 pà4Ài€Ó§Nœt/Àj€Õ€îx ðà5Àk€Õ«V¬X °à4Ài€Ó§í °`5Àj€Õ«Nœt/ {^¬X °°I¬X °`Õü/ÈiÓ §ANƒšd5ÈjÕ §ANƒœ9 j^Õ «AVƒ¬Y ²Ô¼ ¯A^ƒ¼y ²d5ÈjÕ «AVƒ¬Y ²d5ÈjÕ «AVƒ¬Y ²d5ÈjÕ «AVƒ¬9 rä4ÈiÓ  2d4ÈhÏ ›A6ƒl¹ rÔÀ ›A6ƒlu0ÈgÏ ä3ÈgÏ ŸA>ƒ|ù òä3ÈgÏ ŸA>ƒ|ù ²d3ÈfÍ ›A6ƒlÙ ²d3ÈfÍ —A.ƒ\¹ rä2ÈeË .Ù ²d3ÈfÍ ›Am òä3¨AFƒŒ¹ rä2ÈePƒl51ÈgÏ ŸA>ƒlÙ ²´Iƒ|ù òä3ÈgÏ ›A.ƒ\u1ÈfÍ ›A6ƒ\¹ rä2ÈeË —A.ƒL™ 2d2¨‘A.ƒ\¹ rä2ÈeË —A.ƒ:d3ÈfÍ ›A.ƒ\¹ rä2ÈeË —A&ƒL™ 2d2ÈdÉ “Aƒ<y òä1ÈbP;ƒ<y òd1ÈbP7ƒ<y òä1ÈcÇ Aƒ<y jgÉ “A&ƒLõ3ÈdÉ “A&ƒä2ÈeË ~ºvÿ…˜ 1â1ÄcˆÅn†x ñâ1ÄcˆÇ!C<†X ±b1ÄbˆÅ‹!CÚâ1ÄcˆÇ!C<†x ±b1ÄbˆÅ‹!C,†X ±b1ÄbˆÅ‹!C,†t3ÄcˆÅ‹!CšÒÌ“!C<†x ifˆÉf†¸ qÒË—!.C\†¸ qb2ÄdˆÉ“!'ÄdˆÉ“!&C<†lÓ“!&CL†˜ 1â1ÄcˆÇ!C<†x ñb1ÄaHC † 1b0Ä_ˆ¿!þBü…ø ñâ/Ä_ˆ¿{!öBì…Ø icHCÚb0Ä`ˆÁƒ!C † 1b/¤!þBü…ø ñâ/Ä_ˆ¿!þBü…ô1Ä`ˆÁƒ!C † 1b0¤!C † 1b0Ä`ˆÁ6†8 qb0Ä`ˆÁ!þBü…ø ñâ/Ä_ˆ¿!þBü…ø icˆÁƒ!C †ø ñâ/¤‹!C † ñâ/Ä_ˆ¿!þBü…ø ñÒÃ!C † 1Òć!C†8 qâ0ÄaˆÃƒ!C † 1b0Ä`ˆÁƒ!] qâ0ÄaˆÃ‡!C † 1èŠýÖÆ0‡aÃÚæ0¬‹aÃ,†Y ³æ0Ìa˜Ã0‡aúf1Ìb˜Ã0‡aÆ 3f0Ì`˜Á0ƒaÚæ0Ìa˜Ã0‡aÃì…Ù ³f/Ì^˜½0{aöÂì…µ0Ì_˜¿0aþÂì…õ0Ì^˜½0{aöÂì…Ù ³ÖÄ0aþÂü…ù óæ/¬‹aà † 3f0ì… 3f0¬‹aÆ9 3f0Ì`XÆ9 Û­aÃ,†Y ³f1ÌbXÃ<†µ1ÌdXÃÚf3Ìf˜Í0—am ³æ2Ìe˜Ë0“a&ÃL†™ kb˜Ë0—a.Ã\†51Ìf˜Í0›a6Ãl†Ù ³f3Ìf˜Í0›a} ëc˜Ñ0£aFÃŒ† 3f4Ìg˜Ï0Ÿa>Ã|†ù Û¯aFÃŒ† 3f4Ìh˜Ñ0£a­ sæ4Ìi˜Ó0£aFÃ|†ù ëd˜Ñ0£aFÃ:æ4Ìi˜Ó0§aN܆9 sæ4Ìi˜Ñ0£aFÃŒ† 3ÖÉ0§aN܆ 3f4¬“aN܆9 s¶]ì†Y ³f5Ìj˜Õ0«aVì†Y ³f5Ìj˜Õ0«aV܆9 sÖË0«aVì†Y ³f5Ìj˜Õ0«aVì†Y ³f5ÌjX3ü†y óæÕUü/Âk„׫݌ðá5Âk„ׯ^#Úa6Âl„Ù³f#ÌF˜0ÑÏ·n#ÜF¸èg„Ý»v#ìFذa7Ân„Ý·n#ÜFô3¢ŸýŒ0a8Âp„áÆ# Gøðá7Âo„ß¿ýŒ0a8¢¡Ž#G8Žpá8Âq„áÆ# GŽ0a8Âp„áÆ# GŽ0ñá" GŽ0a8Âp„ሖF8Žpá8Âq„ãÇŽ#G8Žpá8Âq„ãÇŽ#G8Žpá8Âq„ãǰa9ÂrDg#Æ1c4ÆhŒÑ£1FcŒÆ1c4¦“1NcœÆ8qã4ÆiŒÓ§1NcœÆ8qã4ÆiŒÓ§1­Œ±c5ÆjŒÓ˜VÆX±³qc¼Æxñã5ÆkL/cÌÆxñã5ÆjŒÕ«1Vc¬ÆX±c5ÆjŒÕ«1Vc¬ÆX±c5ÆiŒÓ§1NcœÆìÛ«1Vc¬ÆX±c5ÆhŒÑ£1FcŒÆ1c4ÆhŒÑ£1Fcÿ3ª®ÛqNãœÆ52Îj\#ã¼Æyóç5®“qfãÌÆ™3g6ÎlœÙ8³qfã:ç6ÎmœÛ8·qnãÜÆ¹sç6ÎmœÛ8·q­Œs×É8»qvãìÆÙsç6ÎmœÛ8·qnãÜÆ¹sç6ÎmœÛ8·qfãÌÆyóç5Îkœ×8¯qŒ3g6ÎlœÙ8³qfãÌÆ™3ç5Îkœ×8¯q^ã¼ÆY³÷ñâ¬ÆY³g5ÎiœÓ8§q}Œ³g5ÎjœÕ¸>ÆY³g5ÎjœÕ8«qVã¬ÆYsç4ÎiœÓ8§qNãœÆ9ëdœÕ8«qVã¬ÆY³ç3ÎgœÏ8Ÿq>ãlÆÙŒ³g3ÎfœÍ8›q}Œó·]ã|ÆùŒó·]ãŒÆ3g4ÎhœÑ8£qFãŒÆ3g4ÎhœÑ8£qFãŒÆ3g4ÎhœÑ8£qFãŒÆ3g4ÎhœÑ8£qFãŒÆ3g4ÎhœÑ8£qFãzç4ÎiœÓ8§qïÑ8«qNãœÆ9sç4Îi\[ã¬ÆY³×Ö8¯q^ã¼Æy³g5ÎjœÕ8§qNãœÆ9sç4®©qVãœÆ3g4Îhܦsg4Îh\Oãzç4ÎiœÑ8£q;6ÎiœÓ8§qNãœÆ9sêŠý—`4Áh‚ÏŸ >|&øLð™à3Ág‚Ï› 6l&ØL°™`3Áf‚Í› 6l&ØL°™`3Áe‚Ë— .\&45Áf‚Í› 6l&ØL°™`3Áe‚Ë— .\&¸Lp™à2Áe‚Ë„ž&ØL°™ÐÓŸ >|&ØL°™`3Áf‚Í› 6l&ØL°™`3ÁfBOl&ØL°™`3ÁfBK|&øLp™à2ÁeBCl&¸Lp™à2Áe‚É“ M0™`1Áa‚Ç ÍL°˜`1Áb‚Å‹ ,&XL°˜`1Áb‚Å‹ ,&t3¡› ÝLp™à2Áe‚Ë— ÝL°™`3Áf‚Ë— .\&¸Lèf‚Ë— &8L0˜`0Á`‚Áƒ  &L0˜`0Á`‚Áƒ  &L0˜`0Á`‚¿ þü%øKð—à/Á_‚¿ þü%øKð—à/Á_‚¿ þü%øKhe‚Áƒ ü%øKð—à/Á^‚½{ öì%ØKhe‚¿ þ:™à/Á_‚¿ þü%øKð—ÐÊ„N&L0˜`0Á`‚¿„N&L0˜`0Á`B/&´2Áa‚Ç &8Lp˜`0ñ?ƒZ™d0É`R'“&9Lr˜ä0É`’¿$Iþ’Ü%¹Kr—ä.É]’»$wIî’Ü%¹Kr—ÔÄ${Iö’ì%ÙK²—ä.É]’»$wIî’Ü%íÙ${Iö’ì%ÙK²—d/É]’»$wIî’Ü%¹Kr—ä.É]’»$wIî’º˜ä.É]’»$wIî’Ü%¹Kr—ä.É]’¹¤&&¹Kr—ä.É]’»$wIî’Ü%u1éO+É_’¿$Iþ’ü%µ1É`’Á$ƒI“ &L2˜ÔÆ$‡ImLjc’Ǥ6&™L2™ä1Éc’Ç$I“<&yLò˜ä1Éc’Ç$I“<&yLò˜ä1Éc’Ç$I“ &ÙKêb’¿$Iö’ì%ÙKêb’¿$I]LêbR“š˜d1ÉbR“<&yLò˜ä1Éc’Ç$‹I“,&YL²˜d1Éb’Å$‹I“,&YLêa’Ç$I“<&YL²˜d1Éb’Å$‹I“,&YLr˜ä0Éa’Ã$‡I“&9Lr˜ä0©…I“,&YL²˜d1Éb’Å$‹I“,&9Lr˜ä0©ƒI“&9Lr˜ä0Éa’Ã$‡I“Z˜d1Éb’Å$‹I“z˜ä1Éc’Ã$‡I“&õ0Éb’Å$‹I“,&YL²˜d1©‰I“<&ytµþKñ˜â1ÅcŠÇ)Sº˜b2¥‹).S6kŠË”.¦t1ÅgŠÏŸ)>S|¦øLñ™â3ÅgŠÏŸ)>S|¦øLñ™â3ÅgJSŒ¦M1šb4ÅhŠÑ£)FSŒ¦l×§)NSœ¦8MidŠÓ§)NSœ¦8Mñ™ÒÂ)S¦8Lq˜â0ÅaJÿR,¦XL±˜b1ÅbŠÅ‹)S,¦XL±˜b1ÅbÊK±˜b1ÅbŠÅƒ)SöiŠÃ‡)S ¦L1˜b0Å`ŠÁƒ)]Lq˜â0ÅaŠÃ‡)S ¦L1˜b0Å`ŠÁ)þRü¥øKñ—â/Å_JSZ˜â0¥…)-Lñ˜b1ÅbJ S<¦xLñ˜b1ÅbŠÅ‹)MLñ˜â1ÅcŠÅ‡)S¦8Lq˜ÒÅ‹)S¦8Lq˜â0ÅaŠÃ‡)S¦8Lq˜â0ÅaŠÃ”.¦XL±˜b1ÅbŠÅ‹)S,¦XLébŠÇ)S<¦xLñ˜â1ÅbŠÅ‹)S,¦XL±˜²KS<¦xLñ˜â1ÅcJS<¦xLñ˜â1ÅcŠÇ)S<¦xLñ˜â1ÅcŠÅ‹)S,¦XL±˜b1ÅbJSÚ˜b2ÅdŠÉ“)&SL¦˜L1™b2ÅdŠÉ“)S<¦xLñèjý—ÖÈ4“i&ÓL¦™L3™f2ÍdšÉ4“i&ÓZ™æ2ÍešË4—i.Ó\¦¹Ls™æ2ÍešË4—i.Ó\¦¹Ls™æ2ÍešË4—i.Ó\¦¹Ls™f2ÍdšÉ4“i&ÓL¦™L3™f2ÍdšÉ4“iýLs™æ2ÍešË´v¦µ3­›iÝLëfZ7Óœ¦9MëfZ7Ó¼¦yMóšæ5Íkš×4¯i^Ó¼¦yMóšæ5Íkš×4¯i^Ó¼¦yMóšæ5ÍkÚGMóšæ5­›iÝL3›f6ÍlšÙ4³iíLs›æ6ÍmšÛ4·inÓܦ¹Ms›æ6ÍmšÛ4·inÓܦõ3ÍnšÝ4»ivÓì¦ÙMëgšß4¿i~Óì¦ÙMÛ°inÓܦ¹Ms›æ6­£ivÓì¦ÙM³›f7ÍnšÝ4»ivÓì¦ÙM³›f7ÍnZKÓü¦ùMó›æ7ÍnšÝ´†¦ÙM³›f7ÍnšÝ4»ivÓì¦ÙM³›f7ÍnšÝ4»ivÓì¦ÙM³›f7ÍnšÝ4»ivÓì¦ÙM³›f7ÍnšÝ4»ivÓì¦ÙMkišß4¿i~Óü¦ùMó›æ7Íošß4¿i~Óü¦ùMëišá4Ãi†Ó §NÛ·iŽÓ§9N3œf8Ípšá4ÃiMM3œf8Ípšá4Ãi~Óü¦ùM³›f7ÍmšÛ4·inÓܦ¹Ms›æ6­¥ivÓì¦ÙM³ëŠý—a7Ãn†Û ·n3Üf¸Í0›a6Ãl†× ¯^3¼fxÍðšá5Ãk†× ¯^3¼fxÍðšá5Ãk†× «V3¬fXͰšÑÐ ¯^3¼fxÍðšá5Ãi†Ó §N3œfÍ0ša4£N3œf44Ãj†Ó §N36n†Õ «V3¬fXͰša5Ãj†Õ «V3¬fXͰša5Ãj†Õ «V3¬fXͰša5Ãj†ÕŒ™a5£­V3¬fXͰša5Ãj†Ó £F3ŒfÍ0ša4Ãh†Ñ £F3ŒfÍ0ša4Ãh†Ñ £F3|føÌð™á3ÃgF_3ŒfÍèkF_3œf8Ípšá4Ãi†Ó §N3œfÍ0š±w3œf8Í0ša4Ãh†Ñ £F3ŒfìÝ §N3›á4£¯N3œf8Ípšá4Ãi†Ó §N3œf8Ípšá4Ãi†Ó §N3œf8Í0šá3Ãg†Ï Ÿ>3|føÌð™á3Ãg†Ï Ÿ>3|f¸Ìp™á2Ãe†Ë —.3\f¸Ìp™á2Ãe†É “&3ó|æµ-ÏhžÑ<£yFó|æ™Ì3™·ó\æ™Ì3™g2ÏdžÉ<“yËs™ç2ÏežË<—y.óLæ™Ì3™g2ÏdžÉ<“y&óLæµ.ÏežË<—y­Ë³™g3¯uy>ólæÙÌÛy>ó|æùÌó™g3¯qy>ó|æÙ̳™g3ÏfžÍ<›y6ólæÙ̳™çÒuùï‰Ë'.Ÿ¸|âò‰É'&Ÿ˜|bò‰Ç'Ÿôí‰Ç'Ÿx|Ò·'&Ÿ˜|bò‰É'&Ÿ˜|bò‰É'&Ÿ˜|bò‰Ç'Ÿx|âñ‰Ç'Ÿx|Ò¾'&Ÿ˜|bò‰É'&Ÿ˜|bò‰É'&Ÿ˜|bò‰Ç'Ÿx|âñ‰Å'ŸX|bñ‰Å'ŸX|bñ‰Å'ŸX|bñ‰Å'ŸX|bñ‰Å'ŸX|bñIûžx|²/Ÿ˜|bò‰É'&Ÿ˜|bò‰É'Ÿx|ÒÃ'&Ÿ˜|bò‰É'Ÿ|à'Ÿx|âñ‰Ç'Ÿx|âñÉÞ|bò‰É'&Ÿ˜|bò‰É'&Ÿ˜|bòI+Ÿ´ò‰Í'6ŸØ|bó‰Ë'.Ÿ´ò‰Í'6ŸØ|bó‰Í'6ŸØ|âò‰É'&Ÿ˜|bò‰É'&Ÿ˜|âñ‰Ç'|bò‰É'&Ÿ˜|bò‰É'&Ÿ˜|bò‰É'½|bò‰É'­|bò‰É'&Ÿ˜|bò‰É'&Ÿ˜|âñ‰Ç'Ÿx|âñ‰Ç'Ÿx|bñ‰Å'ŸX|bñ‰Å'½|ÒÊ'­|bò‰É'Ÿx|âñ‰Ç'Ÿx|bð‰Á'Ÿ|bðIŸ|bð‰Á'Ÿ|bð‰Á'þžø{â'-|â퉷'»ò‰·'Þžx{âíIŸ˜{b'æž4ñ‰»'{b'枘{bîI Ÿ˜sþ+0W`®À\¹‚˜+0W`® ƒî Ìt°À]»wî ܘ+Ø•æ ¼x+ðVà­`_˜+è`»wî ܸ+pWà®À]»wî ܸ+0W`®À\¹s,pWà®À]»‚Ø+°W`¯À^½{ö ìØ+pWà®À]»wî ܸ+pWà®À]»wî ܸ+pWà®À]»‚Ø+°W`¯À^½w-,°W`¯àcØ+°W`¯À^½{ö ìØ+°W`¯À^½{ö ì¸+pWà®À]»‚&Ø+°W`¯À^½{ö ìØ+°WÐÅ],0X`°À`Áƒ ,0X`°À`Áþ üø+ðWà¯À_¿‚.,0X`°  8,pXà°ÀaÇm,°X`±ÀbÅ‹ ,Ø+°W°K ¼x+h`¹sæ ̘+0WÐÀ‚4°À_¿{î úW`¯À^½{ö ìØ+è_¿{í+h_Aû ÚWо ,´¯ÀcÇ <x,ðXà±ÀcÇ <x,ðX`°ÀŸëð_‘¿"EþŠüù+ê^‘Á"ƒE‹ ,j_‘Ã"‡E‹9,rXä°¨E‹úWä±ÈcQ‹L™,2Yd²Èb‘Å"‹E‹,Y,²Xd±Èb‘Å"‹E‹,Y,j`‘Ç"E‹<9,rXä°Èa‘Ã"ƒE‹ ,2Xd°È`‘Á¢þ9,rXä°È`‘Á"ƒE‹ ù+²Wd¯È]‘»"wEîŠÜ¹+rWä®È]‘»"wEÍ+²Wd¯È^‘½¢]ä®È]‘»"wEîŠÜ¹+rWd®È\‘·"oEÞŠZWd®È\‘·"oEÖŠ¬Y+²Vä¬ÈY‘±"_E¾Š|ù*òUä«ÈW‘¯"_E›³ÈW‘¯"_E¾Š|5®ÈX‘±"cEÆŠŒ+2Vd¬ÈW‘¯"_E¾Š|ù*òUä«ÈW‘¯"_E¾Š|ù*òUä«ÈW‘¯"_E¾ŠZW´=‹zWÔ»¢Þ™+2WÔ»¢íYÔ»¢Þ,2Xd°È`ÑÛ°È`‘Á"ƒE‹ ,òW䯨}EþŠÚWd°È`‘Á"ƒE‹ ,2Xd°È`‘Á¢9,rXä°Èa‘Ã"‡E‹ºXd±Èb‘Å"‹E‹,Y,²Xd±Èa‘Ã"‡E‹9,Ú£E‹,µ±¨Em,rYÔÆ"›®Ë%6Kl–Ø,±Yb³Äf‰Í›%6Kl–Ø,±Yb³Äf‰Í›%6K\–¸,qYâ²Äe‰Ë—%.K\–¸,qYÒÊ’V–ø,±Yb³Äf‰Í›%.K\–¸,1Yb²Äd‰É“%&KL–4²¤‘%.K\–¸,qYÒÇ›%6Kl–Ø,±Yb³Äf‰Í›%6Kl–Ø,id‰ÏŸ%>K|–ø,id‰Ñ’F–-éc‰Ñ£%FKŒ–-1Zb´Äh‰Ñ£%FKŒ–-1Zb´ÄhÉG/1Zb´Äh‰Ñ£%>KºXb´ÄhIKœ–8-qZâ´ÄiIKŒ–4±Äi‰Ó§%NKšXbµÄjIK¼–4±Äl‰Ù³%fKÌ–˜-ñZⵤ‡%fKÌ–˜-1[b¶Äl‰Ù³%fKÌ–˜-1[b¶Äl‰Ù’.–¸-q[â¶Äm‰Û·%nKÜ–¸-1[b¶Äl‰Ù¯%^K¼–x-ñZâµÄk‰×¯%^K¼–x-ñZ²OKÌ–˜-1[b¶Äk‰×’f–˜-1[b¶Äl‰Ù³%fKºYâ¶ÄmI7Kì–Ø-±[b·Än‰Ý»%vKì–Ø-q[â¶Äm‰Û·%nKÜ–¸-q[â¶Äm‰Û·%nKÜ–¸-q[â¶Äl‰Ù’~–¸-q[â¶Äm‰Û·%nKÜ–¸-q[â¶Äm‰Û’wd‰Ý»®ÐenËÜ–¹-s[æ¶Ìm™Û2·enËÜ–¹-s[æ¶Ìm™Û2·eM-³[f·Ìn™Ý2»evËì–Ù-³[f·Ìn™Û2·e]-³[f·Ìn™Ý2»e]-ó[æ·ÌoYWË —.3\f¸Ìp™á2¿e~ËÚZf¸Ìp™á2Ãe†Ë —.3\f¸Ìp™á2Ãe†Ë —.3\f¸Ìo™ß2¿e~Ëü–ù-ó[æ·¬³e†Ë:[f¸Ìp™á2Ãe†Ëì–Ù-³[f·Ìn™Ý2»ev˶m™ß2¿e¿Ìo™ß2¿e~Ë[f¸Ìo™ß2¿evËì–Ù-³[ÖØ²Æ–ù-ó[æ·Ìo™ß2¿e~Ëü–ù-ó[æ·Ìo™ß2¿e~Ëü–ù-³[f·Ìn™Ý2»evËì–Ù-³[f·Ìn™Ý2»evËì–Ù-³[f·Ìn™Ý2»evËì–Ù-³[f·Ìn™Ý2»evËÜ–µ¶Ìn™Ý2»evËì–Ù-³[f·Ìn™Û2·enËÜ–¹-s[æ¶Ìm™Û2·efËÌ–™-3[f¶Ìl™Ù2³e^˼–y-óZæµÌeYSË\–¹,sYæ²Ìe™Ë2—e.Ë\–¹,sYæ²Ìe™Ë2—e&ËZZæ²Ìe™Ë2“e&ËL–™,3Yf²Ìd™É2“e&ËL–™,3Yf²Ì¤+ñ_EO+\V¸¬0Ya²Âd…É “&+«|Vù¬òYe³Êe•Ë*—UM¬²Y岪‡U6«lVÙ¬²Ye³Êf•Ë*—U.«\V¹¬rYÕÅ*›U6«lVÙ¬²Ye³Êf•Í*—U.«\V5±Êf•Í*›U6«lVÙ¬rYå²Êe•Ë*“U&«LV™¬2Ye²Êd•É*“UM¬2Ye²ÊdU«LVµ°Êe•Ë*—U.«\V¹¬2Ye²Êd•É*“U&«LVõ°Êe•Ë*—U.«\V¹¬2Ye²ª‡U.«\V¹¬rYå²Êe•ɪ&V¹¬rYå²Êe•Ë*“UM¬rYe²Êd•É*U«Ö˜¬ñXc±ÆbÅ‹5m¬ñXã±ÆcÇ5k<Öx¬ñXÓÇ“5&kLÖ˜¬1YÓÈ—5.k\Ö˜¬1Yc²ÆdÉ“5&kLÖx¬±Xc±ÆbÇ5kÖø«ñWã¯Æ_¿5þjüÕ4±Æ`Áƒ5M¬1Xc°Æ_¿5þjìÕØ«±Wc¯Æ^½šFÖø«ñWã¯Æ_¿5öjìÕØ«éc¿5þjüÕô±Æ`MkÖ8¬qXã°æc×4²ÆbÅ‹5k,ÖX¬±Xc±¦“5k<ÖX¬±Xc±ÆbÅ‹5k,ÖX¬±Xc±ÆbM'k<Öx¬ñXã±ÆbÅ‹5k,Öt²ÆcÚ>Ö8¬qXã°ÆaÇ5kÖ8¬écÅ‹5k,Ö4²ÆcÇ5k<Öx¬ñX㱦“5&kLÖ˜¬1Yc²ÆdÉ“5&k<Öx¬±XÓÈ5k<Öx¬ñXã±ÆcÇ5¬1Yc²ÆdÉ“5&kLÖ´²ÆeË—5½¬±Yc³ÆfM/k|Öø¬ñYã³ÆgÏŸ5>klÖØ¬±Yc³ÆfÍšVÖø¬ñY³akŒÖ­1Zc´ÆhÑ£5FkŒÖ­1Zc´¦™5NkœÖ8­qZã´ÆiÓ§5Nkœº6ÿÕõ³Îj]Cë¬Öµ³Îk×:¯u^ë¼Öy­óZçµÎk×:¯u^ë¼Öy­óZçµÎk×:¯u^ë¬ÖY­³Z×Ð:¯u^ë¼Öy­óZçµÎk׺†Ö™­khÛ:·unëZg·ÎnÛº~ÖÙ­³[g·ÎnÝ:»uvëìÖÙ­³[g·În]?ëìÖÙ­ëgß:¿u~ëüÖõ³Îpá:Ãu†ë ×®3\g¸Îpá:Ãu~ëúYg¸Îpá:Ãu†ë ×®3\g¸Îpá:Ãu†ë ×®3\wu†ë ×®ó[ç·Îoß:¿u~ëüÖõ´Îoß:¿u~ëüÖù­ó[ç·ÎnÝ:»uvëìÖÙ­³[×Ò:»uvëìÖÙ­³[g·®£u~ëüÖµ´Îpá:¿u~ëüÖù­ó[ç·Îoß:¿u~ëüÖù­ó[ç·Îoß:¿u~ëüÖù­ó[ç·Îoß:¿u~ëüÖù­ó[ç·®©u†ë ×5µÎqã:ÇuŽë×9®s\ç¸Îqã:ÇuŽë×9®s\ç¸ÎqÝ:»ufëÌÖ™­3[g¶Îk×:¯u^ë¼Öy­ëiÙ:³ufëÌÖy­óZçµÎk×:¯u^ë¼Öy­óZçµÎk×:¯uVëœÖ9­sZç´ÎiË:— &L6˜lhhîm°Ù`³ÁeƒË— .\6¸lpÙà²ÁeƒË— .\6˜lðØà±ÁcƒÇ <6xl°Ø`±ÁbƒÅ‹ ,68lpØà°ÁaƒÃ‡ Ú`±ÁbÖm°Ø`±ÁbƒÅ‹ ,6Xl°Ø`±ÁbCG<6xlðØà±ÁcƒÇ‡ 68lpØà°Á`ƒÁƒ  6t´ÁaƒÃ‡ 68lpØà°ÁaƒÃ‡ 68lpØà°ÁaƒÃ‡ 68lhiƒÅ‹ ,6Xl°Ø`±ÁbCO<6xlðØà±ÁcƒÇ zÚà±ÁcƒÇ <6xlðØà±ÁbƒÅ‹ »¶ÁcƒÇ <6ô´ÁcƒÅ‹ ,6Xl°Ø`±ÁbƒÅ‹ ,6Xl°Ø`±ÁbƒÁƒ  6lð×à¯Á_ƒ¿ þü5¸k0×`®Á\ƒ¹s æÌ5˜kðÖà­Á[ƒ·o Ýlèfƒ»w Ílhfƒ½{ öì5ô²Á_ƒ¿ þü5økð×à¯Á_ƒ¿ Íl0Ø`°Á`ƒÁƒ  6l0Ø`°Á`ƒÁƒ šÙà°¡™ ,68lpØÐˆ^6ô²¡— .]‡ÿš\6™l2Ùd²Éd“ɦ^6¹lrÙä²Ée“Ë&“M&›L6™l2Ùd²ÉdS+›\6µ²Éf“˦]Ûd³Éf“Í&›M6›ZÙä³Ég“Ï&ŸM>›|6ùlje“Ñ&£MF›Œ6ùl²Ùd³Éf“ͦV6Ùl²Ùd³Éf“Í&›M6›l6Ùl²Ùä²Ée“Ë&—M.›\6u²©“M>›|6ùlòÙä³ÉgS'›Œ6m2Úd´Éh“Ñ&£MF›Œ6m2Úd´Éh“Ñ&£MF›Œ6m2Úd´Éh“Ï&ŸM>›|6H“Ï&ŸM>›|6ùlòÙä³Ég“Ï&ŸM>›|6ùlòÙä³Ég“Ï&ŸM>›|65³Éh“Ñ&£MF›Œ6ùlÚ»MF›Œ65³Éi“Ó&§MN›Œ6m2Úd´©™MN›œ6u³Éj“Õ&£M›<6ylòØä±ÉcS›ÚØä²Ée“É&“M]lrÙä²Ée“É&“M&›šØÔÄ&›MMlòÙä³Éf“Í&›M6›l6õ°Ég“Ï&ŸM>›|6ùlòÙ´k›Œ6m2Úd´©‘MN›œ69mrÚä´Éh“Ñ&ŸM>›|6ùlòÙä³Ég“Ï&ŸM>›|6ùlòÙä³Ég“Ï&ŸM>›\6¹lrÙä²Ée“Ë&—Ml²Ùd³Éf“Í&›M6›ÿ³©™®Â->[ºÙb´Åg‹ÏŸ->[|¶ølñÙâ³ÅgK7[Œ¶m1Úb´Åh‹Ñ£->[|¶ØlqÙâ²Åe‹Ë—-&[L¶˜l1Ùb²Åd‹É“-&[L¶˜l1ÙÒÍ—-.[\¶¸l1ÙÒÌ—-.[\¶¸lqÙâ²Åe‹Ë—-.[šÙb³Åf‹Í›-6[l¶ØlqÙâ²Åe‹Ë—-.[L¶˜l1Ùb²Åd‹É“-&[L¶˜l1Ùb²Åd‹É-[<¶xlñØâ±¥™-&[L¶˜l1Ùb²å ZL¶˜l1Ùb²Åc‹Ç-[<¶xlñØâ±Åc‹Ç-[<¶xlñØâ±Åc‹Å‹-½lñØâ±Åc‹Ç‹-[,¶Xlif‹Ç-[<¶xlñØâ±Åb‹Å–n¶t³ÅdK7[ºÙÒÍ–n¶t³Åi‹Ó§-N[œ¶m1Úb´ÅhK;[œ¶8mqÚâ´Åi‹Ó–~¶Xm±Úâ´Åi‹Ó§-F[Úâ´Åi‹Ó§-N[œ¶ølñÙâ³Åg‹ÏŸ->[|¶ølñÙâ³Åg‹ÏŸ->[|¶¸l1Ùb±Åb‹Å‹-[,¶Xl±Øb±Åb‹Å‹-[:Ùâ±Åc‹Ç-[,¶Xl±Øb±Åb‹Å‹-[,:úÿž9|æð™Ãg­|fñ™ÅgŸY|fñ™ÅgŸY|fñ™ÅgŸY|fñ™ÃgŸ9|ÖÊgŸY|ÖÊg;ö™Ég½|fò™Ég&Ÿ™|ÖÊg.Ÿ¹|æò™Ëg.Ÿ¹|fò™ÉgŸy|æñ™Çg;ö™Ég&Ÿ™|ÖÊg.Ÿ¹|fò™Ég&Ÿ™|fò™Ég&Ÿ™|fò™Ég&Ÿ™|fò™Ég&Ÿ™|ÖÊg&Ÿ™|fò™Ég&Ÿ™|ÖÊg&Ÿ™|fò™ÇgŸy|æñ™ÇgŸy|æñ™Çg|fò™Ég&Ÿ™|fò™ÅgŸY|fñ™¿gþžù{ÖÄgŸ|fð™ÁgŸ|æï™¿gþžù{æï™¿gþžù{fgöžÙ{fgöžuð™½göžÙ{fgîž™{fgæž5ð™»gîž¹{æî™»gîž¹{æî™»gîž¹{æî™»gîž¹{ÖÇgöžÙ{fgöž¹{fgæž™{æíYŸ™{fgæžµñ™»gîž¹{æî™»gîž¹{æîYŸõñ™¿gþžÙ{fï™»gîž¹{æî™»gæžy{æíÙn}ÖÄgM|ÖÃgöžõð™¿gþžù{æï™¿gþžù{fgöžÙ{fïÙN}æï™¿gþžÙ{fïY Ÿù{fgöž¹{æîùî4Бÿ×f¯Í^›»6wmîÚܵ¹ks׿®Í]›»6wmîÚ̵™kë_›»6wmîÚܵ¹ks׿®Í]›¹¶¶¹ks׿®Í]›»6wmîÚ̵™k3×ÖÂ6wmîÚZØf¯Í^›»6wmîÚܵ¹k3×f®­…mîÚܵ¹ks׿®Í]›»6wmîÚܵ¹ks׿®Í]›»6wm-l³×f¯Í^›»6wmîÚZØæ®Í]›»¶¶Ùk³×f¯Í]›»6wmîÚܵ¹ks׿®Í]›»¶¶u°Í^›½6{möÚ:ØÖÁ¶?öCi3Øf°Í`›Á6ƒmÛ ¶lë`›Á6ƒmÛ ¶l3Øf°­mÛ¶9lsØæ°Ía›Ã¶¶Yl³Øf±Íb›Å6‹mlóØÖÁ6“m&ÛL¶™l3Ùf²Íd›É6“m&ÛL¶ylóØæ±Íc›Å6‡mÛ¶9lsØæ°Ía[Û,¶5°Íc›Ç6mÛØf²Íd›É6“m&ÛL¶™l3Ùf²Íd›É6“m&ÛL¶™l3Ùæ±Íc[ÛL¶™lëa›Ë6—m.Û\¶¹lëa[ Û\¶¹l3Ùö–lkb›Í6›m.Û\¶¹l3Ùæ±­‡m&ÛL¶™l3Ùf²Íc›Ç6m=l3Ùf²Íc[ÛL¶™l3ÙÖÃ6—m.Û\¶¹ì0Ùa²£‡.;\v¸ìpÙá²Ãe‡Ë—.;\v¸ìèa‡Í›6;lvØì°Ùa³Ãf‡Í—=ì°Ùá²Ãe‡Ë—.;\v¸ìèa‡Í›6;lvØì°Ùa³Ãf‡ÍŽ.vøìðÙá³Ãg‡ÏŽ.vøì°Ùa³Ãf‡Í—.;\v¸ìpÙá²Ãe‡Ë“&;Lv˜ì0Ùa²£‡.;\v´°Ãe‡Ë—.;\v¸ìpÙá²£‰6;lvØì°Ùa³Ãf‡Ë—.;zØa³Ãf‡Í›6;lvØì°Ùá²£6;lv¸ìpÙá²Ãe‡Ë—}ì°Ùa³Ãf‡Ë—.;\v¸ìx+vØìpÙá²Ãe‡Ë“&;Lv˜ì0Ùa²Ãd‡É“&;Lv˜ìðØa±Ãb‡Å‹;úØá±Ãc‡Ç}ì0ÙÑÇ—.;\v¸ìpÙá²Ãe‡Ë—.;\v¸ìpÙá²Ãe‡Ë—.;Lv˜ì0Ùa²Ãd‡É“&;Lv˜ì0Ùa²£“.;Lv˜ì0Ùá±Ãc‡Ç‹;:Ùá±£•&;Lv´²Ãe‡Ë—.;zÙñ~ì°Ùa³ÃfG3;|v4³Ãh‡Ñ£F;|vøìhf‡Ñ£F;Œví0ÚÑͧN;œv8ípÚá´Ãi‡Ó§N]…ÿº¬vYí²ÚeµËj—Õ.«]V»œv9írÚå´Ëi—Ó.§]F»Œví2Úe´Ëh—Ñ®~v9írÚå´«¡]V»¬vYí²ÚeµËj—Õ.«]V»œv9írÚå´Ëi—Ó.§]N»œv9írÚå´Ëi—Ó.§]í²ÚeµËiWC»œv9írÚå´Ëi—Ó.§]ýì²ÚeµËj—Õ.«]V»¬vYí²ÚÕÐ.¯]^»¬v9írÚå´Ëi—Ó.§]N»œv9írÚå´«¡]V»¬vYírÚå´Ëi—Ó.§]N»œv9íjh—Õ.«]N»ÚeµËi—Ó.§]N»Œví2ÚÕÏ.§]N»œv9í2Úe´«Ÿ]N»œv9írÚÕÏ.«]V»œv9írÚå´Ëi—Ó.£]F»ºÙå´«›]V»¬v9írÚå´Ëi—Ó.§]N»œv9írÚå´Ëi—Ó.§]N»œví2Úe´Ëh—Ñ.£]F»Œví2Úe´«]N»œv9írÚå´Ëi—Ó.§]N»œv9írÚå´ËiW?»¬vYí²ÚÕÏ.¯]^»¼vyíòÚåµËk—×.£]F»Œvíjg—Ó.§]N»œv9írÚå´Ëi—Ó.§]N»œv9írÚå´Ëi—Ó.§]N»œvùìòÙå³Ëg—Ï.Ÿ]>»|vùìòéøÿëñÙã³ÇgÏŸ=>{|öøìiiÑ£=F{Œöí1Úc´§¥=N{œö8íqÚã´ÇiÓ§=N{Œöí1Úc´ÇhÑ£=F{Œöí1Úc´ÇhÑ£=F{Œöí1Úc´ÇgÏŸ=>{¶nÑ£=F{ZÚc´§¥=F{Œöí1Úc´ÇhÑŸ=>{|öøìñÙã³ÇgÏŸ=>{|öøìéiÑžžöí1Úc´ÇhÏŸ=>{löØì±Ùc³§¡=6{löØì±Ùc³ÇfÍ›=6{löØìùóì9 Ÿ=>{ZÚc´ÇhÑ£=-íqÚã´ÇiÓ§=N{œö8íéiÓ§=F{Œöí1Úc´ÇhOO{œö8íqÚc´ÇhOK{œö8íqÚã´ÇiÓ§=Mí±ÚcµÇiÓ§=N{œö8íqÚc´ÇhÑ£=F{ZÚã´ÇiÓ§=N{œö8íqÚã´ÇiÓ§=N{œö8íqÚc´ÇhÑ£=>{löØì±Ùc³ÇfÍ›=6{löØìÙ¶=>{|öøìñÙã³§¥=-íqÚã´ÇiÓ§=N{œö8íqÚã´ÇiÓ§=N{œö8íqÚ³y{¬öXí±ÚcµÇjÕ«=V{šÚÓÔ³=f{ÌöxíñÚcµÇjU×à¿>«}Vû¬öYí³ÚgµÏjŸÕ>«}Vû¬öYí³ÚgµÏjŸÕ>«}Vûœö9ísÚç´Ïi_GûŒöí3Úg´ÏhŸÏ>Ÿ}>û|öùìÛ»}Fû|öùìóÙç³ÏgŸÏ>Ÿ} í3Úg´ÏhŸÑ>£}FûŒöíëhŸÓ¾Žö9ísÚç´ÏiŸÓ>§}Nû:Úç´ÏhŸÏ>Ÿ}>û|öùìóÙg³ÏfŸË¾~öÙì³Ùg³Ïf_?û|öùìóÙ×Ï>£}FûŒöíëgŸÓ>£}FûŒöí3Úg´ÏhŸÑ>£}FûŒöí;œ>£}FûŒöí3Úg´ÏgŸÏ>Ÿ}>û|öùìóÙç³Ïg_KûŒöíkiŸÓ>§}FûŒöí3Úg´ÏhŸÑ¾–ö9ísÚç´ÏiŸÑ>£}FûŒöí3Úg´Ïh_Oûœö9ísÚç´ÏiŸÓ>§}=í³ÚgµÏjŸÕ>«}Nûœö9ísÚç´ÏiŸÓ>§}Nûœö9ísÚg´ÏhŸÑ¾–ö9í3Úg´¯£}Nûœö9ísÚç´ÏiŸÓ>§}NûŒöí3Úg´ÏhŸÑ>£}›·ÏiŸÓ>§}Nûœö9ísÚç´ÏiŸÓ>£}FûŒöí3Úg´ÏhŸÑ>£}FûŒöí3Úg´ÏhŸÑ>£}>û|öùìóÙ×Ô>£}FûšÚçÓñÿ7àsÀç€Í›6l¸p9àrÀå€Ë—.\¸p9ÐЛ.\¸èç@?|ذ9`sÀæ@?|øð9`sÀæ€Í~øð9àsÀç€ÏŸ>|øð9àsÀç€ÏŸ>|øð9ÐÑ£FŒøð9àsÀç@GŒhé€Ó–X°:`uÀê€ÑŸ>|øð9`sÀæ€Í›6lØp9àrÀå@?lذ9`sÀæ€Í›6lذ9`sÀæÀá Ø°9`sÀæ€Í~øð9`sÀæ€Í—.\¸p9àrÀå€Ë~ذ9àrÀå€Ë—.\¸p9àr Ÿ6lذ9`sÀæ€Í—.\¸p9àrÀå€Ë—.\¸p9àr ¡6lذ9`sÀå€Ë—.\´sÀå€Ë—.Ú9àrÀå€Ë—ûvÀå€Ë—.\¸p9ÐÏ›6lØp9àrÀå€Ë—.\¸p9àrÀå€Ë—ý°9`sÀæ€Ë—.\¸p9àrÀå€Ë—.\¸hç€Í›6lذ9`s Ÿýðéøÿò9äs¨ŸCF‡Œ2:ÔÏ!§CN‡œ9r:ätÈéÓ!§CN‡œ9jèÓ!§CN‡œ9êèÕ!§CN‡œ9r:ät¨£CV‡¬Y²:ätÈéÓ!§CN‡œ9r:ätÈéÓ!§CN‡œ2:dtÈèÑ!£Cr:ätÈèÑ!£CF‡Œò9äsÈçÏ¡–µthëYêéÐÖ2;dvÈìÙ!³CMr;ävÈíÛ!·Cf‡z:ävÈíÛ!·Cn‡Ü¹r;dvÈìÙ!³Cf‡Ì™2;dvèІÌ™ò:äuÈêÕ!§C ²:duÈêÕ!«CV‡¬Yr:ät¨¡CV‡¬Y²:duÈêÕ!«CV‡Œ2:äsÈçP;‡Œ2:dtÈèÑ!£CF‡Œ2:dtÈèÑ!£CF‡|ùò9ÔÎ!£CF‡ŒêæÑ!ŸC>‡|usÈèÑ!£C&‡L™29drÈáÃ!‡C²8dqÈâÅ!‹C‡9r8äpÈáÃ!‡C‡9jäÅ!‹C‡9r8äpÈáÃ!‡C‡ 28dpÈàÁ!ƒC‡ú8äpÈáCÇùß ‡/¾0øÂà ƒ/ ¾0øÂà /̽0÷ÂÜ s/¼½èâ o/¼½ðöÂÛ o/¬½èâ o/¼½ðöÂÛ o/¼½ðöÂÛ o/¼½ðöÂÛ o/¼½ðöÂÛ o/¼½ðöÂÙ g/œ½pö¢‡/¬½°öÂÚ k/¬½°öÂÚ k/¬½hâ o/¼½ðöÂÛ o/¼½hâ s/̽0÷ÂÜ s/̽0÷ÂÜ s/̽0÷ÂÜ o/¼½ðöÂÛ o/¬½°ö¢‘/¼½ðöÂÛ o/¼½ðöÂÚ k/¬½hä o/¼½ðöÂÛ o/¼½ðöÂÛ o/¼½8 Þ^4ò…¹æ^x{ÑÆæ^˜{aî…¹æ^x{áí…·Þ^´ñ…¹æ^˜{aî…¹æ^x{áí…·Þ^x{ÑÆm|áî…»î^´ñ…½ö^Ø{aï…½ö^Ø{aï…½ö^Ø{aï…½ö^Ø{aï…½ö^Ø{ÑÇþ^X{ÑÂÖ^X{ÑÃÖ^X{aí…µÖ^X{ÑÃ=|ÑÃ=|aï…½ö^Ø{aïE_ôðE_|að…Á_|að…Á_|ÑÃþ^Ø{aï…½ö^Ø{aï…½ö^Ø{ÑÁþ^ø{áï…¿þ^ø{áï…¿þ^Ø{áî…»î^¸{áî…»î^¸{áΑþ÷ÊÜ«ö½r÷ÊÝ+w¯Ü½r÷ÊÝ«ö½²÷ª}¯Ú÷ª}¯¾røÊá+‡¯Ú÷Êâ«ö½òøÊã+¯<¾òøÊã«þ½2ùÊä+“¯L¾2ùÊä+¯<¾òøÊã+¯<¾Úª¯<¾²øÊâ+‹¯¾êÞ«î½òøÊã+¯<¾òøÊã+‹¯,¾²øÊâ+‹¯,¾²øÊâ+‡¯¾røÊà+ƒ¯ ¾2øÊà+ƒ¯ ¾ò÷Ê۫ƽòöÊÛ+o¯¼½êÛ+s¯Ì½òöÊÛ+o¯¼½òöÊÛ«¾½2÷ÊÜ+s¯Ì½2÷ÊÜ+s¯Ì½2÷ÊÜ+s¯Ì½2÷ÊÜ« úªk¯Þˆ¯¬½²öÊÚ+k¯¬½²öÊÚ«¾½òöÊÛ+o¯¼½òöÊÛ+g¯œ½röªm¯¬½²öÊÚ+k¯¬½²öÊÚ+c¯Œ½2öÊØ+c¯Œ½2öÊ×+_¯|½òõÊ×+_¯|½òõÊ×+_¯|½òõÊÖ+[¯Úöªm¯ºöªk¯¬½êÚ+o¯¼½òöÊÛ«¾½2÷ÊØ+c¯Œ½2öê=øÊÙ+g¯œ½röÊÙ+g¯œ½röÊÙ«Þ½²öÊÚ+k¯¬½²öÊÚ+k¯¬½²öÊÚ«æ½jÞ+s¯š÷ÊÝ+w¯Ü½r÷ÊÝ+w¯Ü½r÷ÊÝ+w¯Ì½2÷ÊÜ+s¯Ì½2÷ÊÜ«íùÊÝ+w¯š÷ÊÞ+{¯ì½²÷ÊÝ+w¯Ü½rçoô¿7½{cï½7öÞØ{cï½7öÞØ{cï½7öÞØ{cï½7îÞ¸{ãî»7îÞ¸{ãî¹7æÞ˜{cî¹7æÞx{ãíMÿÞX{cíµ7ÖÞX{cíMÿÞx{Ó¿7ÖÞtïµ7ÖÞX{ãì¯7½{cì±7ÆÞ{cì±7¾Þ´î±7ÆÞ{Óº7ÎÞ8{cì±7ÆÞ{Ó¹7ÎÞtîMçÞtîMçÞ¸{ãîMëÞØ{cï½7öÞØ{cï½7½{ãï¿7þÞø{cï½7îÞ¸{ãî»7îÞ¸{ãî»7îÞ¸{ãî»7îÞ´îÍã›CzÓº7­{cñÅ7ß|cðÁ7ß|cðÁ7ß|cðÁ7ß4ïMóÞX|cñÅ7ßX|ãðÃ7ß8|ãðMïÞX|cñÅ7ß8|ãðMëÞX|ãðÃ7ß8|ãðÁ7ß|cðMãÞ8|ãðÃ7ßlÌ7ßX|cñÅ7ßX|cñÅ7ßX|Ó¿7ý{Ó¿7&ߘ|còÉ7&ߘ|ãñÅ7ßX|cñÅ7ßX|cñÅ7ß8|ãðÃ7ß8|ãðÃ7ß8|cðÁ7ßø{ãï¿7þÞtïÁ7ß|cðÁ7þÞø{ãïÍî|cðÁ7ßq6blÄØˆ±_#¾F|ر5bkÄÖˆ­‘®øñ5âkÄ׈¯_#¾Fº6âkÄ׈¯_#¾Fš6blÄØHÓFœtmÄÚˆµk#ÖF¬X±6bmÄÚHßFú6bnÄÜHãFܸq7Ò¸{#i܈Áƒ#G Ž18âo¤q#G Žñ7âoÄ߈¿‘Î18bpÄàˆÁƒ#G Ž18bpÄàˆ¿#þFüøñ7âoÄ߈¿#þFüôoÄàˆÁ‘þ8q8âpÄáˆÃ‡#G Ž18bpÄ߈¿#þFüøñ7âo¤…#-q8âpÄáˆÃ‡#GŽ8q8bpÄàˆÁƒ#G Žñ7Òƒ#G Ž18bpÄàˆÁƒ#=q8âpÄáˆÃ‡#M±8bqÄâˆÅ‹#Mñ8âqÄãˆÇ#G,ŽX±8âpÄáˆÁƒ#G Ž18bpÄàˆÁ‘6Ž818bpÄàˆÁ‘.Ž8éâˆÅ‹#GŽ8q8âpÄáHG,ŽX±8bqÄâˆÁƒ#GZ8âo¤#G Ž18bpÄàˆÁƒ#G ŽtpÄáˆÃ‡#GŽ8q8úŸC ià;ï<¾óøÎã»æ½3ùÎä;“ïš÷Îå;—ï\¾sùÎå;—ï\¾sùÎå;—ï\¾sùÎå;—ïÚ÷Îæ;›ïl¾³ùÎæ;›ïl¾sùÎå;—ïL¾3ùÎä;“ïL¾3ùÎä;“ïL¾3ùÎä;“ïL¾3ùÎä;“ïL¾3ùÎä;ï<¾óøÎã;ï<¾kâ;“ïL¾3ùÎã»&¾3ùÎä;“ïL¾3ùÎã;ï<¾³øÎâ;‹ï,¾³øÎâ;‹ï,¾³øÎâ;‹ï¾3øÎà;ƒï ¾3øÎà;ƒïü½ó÷Îß;ïü½³÷®ïü½ó÷Îß;ïú÷Îß;ïü½ó÷Îß;ïü½ó÷Îß;ïì½³÷ÎÝ;wïܽs÷ÎÝ»þ½³÷ÎÞ;{ïz÷ÎÛ;oï¼½óöÎÛ;oï¼½{ç½3÷ÎÜ;sï¼½³öÎÚ;k﬽³öÎÚ;k﬽³öÎÚ;k﬽³öÎÚ;gïº÷ÎÚ;gkÞ;k﬽kÞ;oï¼½óöÎÛ;o﬽³öÎÚ»÷Þ;oï¼½óöÎÛ;oï¼½óöÎÛ;oï¼½óö®{ï¼½³öÎÚ;gsöÎÙ;gkÞ»æ½óöÎÛ;oï¼½ëÞ»î½s÷ÎÜ;sï̽3÷ÎÜ;o﬽³öÎÚ;k3öÎØ;cۚïÞy﬽ÿÏš½éèþó6æmÌÛ˜µ1kcÖÆ¬Y³6fmÌÚ˜µ1kcÎÆœ9s6ælÌÙ˜³1ccÆÆŒó5æk¬}cÆÆŒkߘ³1gcÎÆœ9s6ælÌÙ˜³1gcÆÆŒ36fkÌÖXïÆ|ùó5ækÌט¯1_c¾Æ|ùkÞ˜¯1_c¾Æ|ùó5Ö¼1cc¾Æz7flÌØ˜±1ccÆÆŒ¹s5Ö¸1[c³5fkÌÖ˜­1[cm³5fkÌÖ˜­1[cmó5ækÌט¯1_c¾Æú6flÌØ˜±1ccÆÆŒÔ˜±1ccÆÆŒ5nÌÙ˜³±ÆY³6fmÌÚ˜µ1kcÖÆ¬YëÜXçÆ7ænÌݘ»1cc¾Æ|5mÌØXÓÆœ9s6ælÌÙ˜±1ccÆÆŒ36flÌØXÏÆœ9s6Ö´1kcÖÆœ9s6ælÌÙ˜³1gcÎÆº6fmÌÚ˜µ1kcÖÆ¬mÌ1ocÞÆ¬Y³6fmÌÚ˜µ±¶yó6Ö·1scæÆú6ænÌݘ»1wcîÆÜ¹s7ænÌݘ»1wcîÆÜ¹ëݘ½1{cöÆÜµnÌÞXëÆüùó7æo¬scÇ Ž38fpìÍ7æpÌá˜Ãñÿ zó9Úÿ&Ú7ñæ›ð8áqÂãDÿ&LN˜œ09arÂä„É “&'LN˜œèß„Ë “&'LN˜œ09Ѿ —.'\N¸œhß„Í ›6'lNØœ°9árÂå„Ë —&'LN˜œ09ar¢}.'LN˜œèÞD÷&\N¸œp9árÂä„É “&'LNxœð8Ѽ “&'LN˜œ09arÂä„ɉîM¸œp9árÂå„Ë —.'\N´oâ-8Ñ¿‰þM8p:átÂèD'œN0:at¢N'œN8p:átÂè„Ï Ÿ>'|Nøœð9asÂæ„Ë —.'oÂå„Ë —&'LN˜œ09arÂä„Ç 'œÙ®3Ûuf»Î8q:ãtÆéŒÓ§3NgœÎ1:ctÆèŒÑ™fÎ8q:ãtÆéL7gº9ãuÆëŒ×¯3^g¼ÎxiçŒÙ³3fgÚ9ãv¦3vgº9cwÆîŒÛ·3ngÜθq;ãvÆíŒÛ™vÎØ±;cwÆîŒÝ»3vgìÎØ±;cwÆîŒÝ»3vgÜθq;Óλ3vgìÎØ±;cwÆîŒÛ·3ngÜθq;ãvÆ­cþoÎîœÝ9»sýœó;çwÎïœß9¿s~çú9gxÎðœß¹vΞ3ç|Îùœó9çsÎçœÏ9Ÿs>ç|ÎùœëèœÑ9£sFçŒÎ3:gtÎèœÑ9£sFçŒÎ3:gtÎçœÏ9Ÿs>ç|Îùœó9gsÎæœÍ¹®Îùœó9çs®­sFçŒÎ3:çsÎçœÏ9Ÿs>ç|Îùœó9çsÎçœÏ9Ÿs>ç|Îùœ³9gsÎæœÍ¹®Îùœó9gsÎæœÍ9›s6çlÎÙœ³9×Õ9Ÿs>ç|Îùœó9çsÎçœOGúß›l~°ùÁæ›l~°ùÁæ›\~pùÁå“~pø¡¥ZúÁã‡n~°÷¡™ì}°÷ÁÞ‡f~hæƒ ~0øÁàƒü}ð÷Áß{ZùÁßì}°÷ÁÞ{ì}°÷ÁÞ{ì}°÷ÁÝwÜ}hå{Ü}p÷Á݇V~°÷ÁÞwÜ}p÷ÁÝwÜ}p÷ÁÝwÜ}p÷ÁÝwÜ}p÷ÁÝwÜ}p÷ÁÝwZùÁÞ{ì}°÷ÁÞ{ì}håü}°÷ÁÞ{ì}ðöÁÚk¬}°öÁÚ‡ƒù`탵Ö>Xû`탵Ö>ûÐÄMüÐÄ;õƒ¹]üàîC?¸ûàî>¸ûàî>¸ûàî>¸ûàî>¸ûàî>¸ûàæ>˜û`Þ>xûà탵Ö>Xû`탵Ö>Xû`탵Ö>Xû`íC?xûà탷Þ>xûà탷=ü`æ>˜û`Þ>xûà탵=üà탷Þ>xûà탷Þ>xû`탵Ö>Xû`탵-ü`탵Ö>Xû`탵-üà탵Ö>Xû`탵Ö>Xû`탵Ö>Xû`탵Ö>Xsœÿ-´pÁÛ‚·o Þ¼-x[ð¶àmÁÛB Ì-˜[س îz¸`o¡‡ =\èá‚Ç .8\èâBº¸ÐÅ…..Ø\°¹ÐÅŸ >|.ø\ð¹àsÁç‚ÏŸ >|.4rÁè‚Ñ£ \pºàtÁéB#œ.8]pº`tÁè‚Ñ£ FŒ.ôqÁé‚Ó§ FŒ.]0ºàsÁçBŒ.]0º`tÁè‚Í› 6l.lÙŸ 6l.Ø\°¹`sÁæ‚Í› 6l.Ø\°¹`sÁæ‚Í› 6l.Ø\hã‚ÏŸ >|.´q¡ m\°ºÐƯ ^¼.x]ðºàuာ.X]°º`uÁêBº¸`vÁì‚ׯ ^¼.x]èä‚Ù¯ ^¼.x]ðºàuÁë‚ׯ ^¼.x]ðºàuÁê‚Õ« Fº¸`tÁè‚Ñ£ ]\pºàtÁéB¬.X]°º`uÁê‚Õ« V¬.X]°º`uÁê‚Õ§ Nœ.8]pºàtÁé‚Ó§ Nœ.´qÁé‚Ó§ ]\°º`tÁè‚Ñ£ F|.ôpÁè‚ÏŸ >|.ø\èá‚Ñ£ FŒ.]0º`tÁèBœ.8]pºàtÁé‚Ó§ Nœ.8]pº`tÁè‚Q·ÿ-]2ºdtÉè’Ñ%—K&—L.™\2¹äpÉá’Ã%ƒK— .\2¸dpÉà’Á%ƒKÛtÉá’Ã%ƒK— .ù[ò·äoÉß’¿%Kþ–ü-ù[²·doÉÞ’½%{K\ò·äoÉß’¿¥N.\2¸dpÉà’Á%Kþ–ü-ù[êä’Á¥ºäpÉá’Ã¥V.Y\²¸dqÉâ’Å%‹K—,.õr©—K&—L.y\ò¸äq©—K&—L.™\2¹drÉä’É%“K&—L.™\2¹drÉä’É%“K&—L.™\2¹drÉã’Ç%K—<.y\ò¸äqÉã’Ç%K—<.y\:Ð%“K&—L.y\²¸dqÉâR?—<.y\ò¸äqÉã’Ç%K ]2¹äqÉã’Å%‹K—,.Y\²¸doÉÞR'—:¹dp©“K—.9\r¸äpÉá’Á%Kö–Ü-¹[r·änÉÝ’»%wKî–Ü-¹[r·ÔÈ%{Kö–Ü-y[ò¶ämÉÛ’µ¥..y[ò¶ämÉÛ’·¥6.µqÉÝ’»%wKî–Ü-µqÉÞ’½%{K}\²·doÉÞ’½%{Kö–ì-¹[r·änÉÝ’»%wKî–Ü-¹[r·änÉÝ’»%wKî–Ü-¹[êã’½%{KöÓŸì}²÷ÉÞ'{Ÿì}jã§6~2ø©Ÿ~rø©…Ÿì}²÷ÉÞ'{Ÿì}²÷ÉÞ'{Ÿì}²÷ÉÞ'{Ÿì}jà'Ÿì}êß'Ÿü}ò÷Éß'Ÿü}ò÷ÉÞ§ö}ò÷Éß'Ÿü}ò÷Éß'Ÿì}²÷ÉÞ'{Ÿì}²÷ÉÝ'sŸŒ}òõÉ×'_Ÿ|}òõÉ×'[Ÿ\}rõÉÕ'WŸ\}êÜ'WŸ\}rõÉÔ'SŸL}2õÉÔ'SŸL}2õÉÔ'SŸL}òôÉÓ'OŸ<}òôÉÓ'OŸ<}òô©qŸ<}òôÉÓ'OŸ<}òôÉÒ'KŸ,}²ôÉÒ'KŸ,}:¤O–>YúÔ·Ož>Yúdé“£OŽ>9úäè“£OŽ>9úäè“£Omûdé“¥Omûäé“¥O–>YúdéS×>uíS×>íÐOmûdë“­O¶>¹úäê“«O®>¹úäê“«O}ûÔ¶O¶>ÙúÔµO¾>ùúä듯O¾>ùúä듯O¾>Ùúäê“«OMûdëSÓ>5퓱O¶>µì“¯O¾>ùúäë“­O¶>Ùúdë“­O¶>Ùúäê“«O®>¹úäê“«O]ûdë“­O¶>Ùúdë“­O¶>u퓯O¶>Ùúdë“­O¶>Ùúdë“­O¶>Ùúdë“­O¶>Ùúdë“­O¶>ÙúdË‘ý·bkÅÖŠ­[+¶V¶çН_+¾V|­øZñµÒ¹•έlÏk+½[éÝŠ¹•ݹânÅÝŠ»w+îVÜ­˜[1·bnÅÜŠ¹s+æVš·ânÅÝŠ¹s+æVÌ­˜[1·Ò¼w+îVÜ­¸[q·bnÅÜŠ¹•æ­¸[q·ânÅÝŠ»w+Í[Ùœ+Í[ñ·Ò¼•æ­ônÅâJïV<®8\q·ânÅÝŠ»•ž­Ø[±·boÅÞJÓVü­ø[ñ·âoÅÞŠ½{+öVì­´lÅÞŠ½{+îVÜ­¸[q·ânÅÝJËVì­Ø[±·boÅÞŠ½•–­ø[ñ·âoÅߊ¿+þVü­抿•Ž­Ø[±·boÅÞŠ½{+îVÜ­¸[q·ânÅÝŠ»w+îV:¶boÅÞŠ½{+öVì­Ø[±·bo¥m+þVü­ø[iÛŠÁƒ+W ®\1¸bpÅàJßV®8\Ù˜+W,®X\±¸bqÅâŠÅ‹+W,®X\iÝŠÇ+W<®x\ñ¸bq¥w+½[1¹brÅäŠÉ+½[1¹brÅäŠÉ“+&WL®˜\1¹brÅäŠÉ+W<®x\ñ¸âqÅãŠÇ+W<®x\ñ¸âqÅâŠÅ‹+W,®X\±¸bqÅâŠÅ‡+W:¶ÿÖ®9\s¸æpÍášÁ5ƒk× ®\3¸fpÍàšÁµ÷ßšÃ5‡k×®9\s¸æpÍášÃ5‡k×ú·fqÍâšÃ5‡k×®9\s¸æp­k×,®9\s¸æpÍášÃ5‡k×®9\ëßšÃ5‡k×®9\s¸æpÍàšÁµþ­\3¸fpÍàÚî\s¸æpÍášÃµ.®uqÍãZ׺¸¶;×Ú¸¶;×ú¸ætÍéšÓ5§kNל®9]sºætÍéšÓ5§kNל®urÍêšÕ5«kV׬®urÍëš×5¯k^×Z¹fvÍìšÙ5³kf×Ì®™]3»fvÍìšÙ5³kf×Ì®™]3»fvÍìšÙ5³kf×Ì®™];üµf®5síM¸æwÍïšßµºfxÍðšá5Ãký\s¼æxÍðšá5Ãk†×ü®ù]ó»æwÍïšß5¿k~×ü®ù]ó»æwÍïšß5¿k~×ü®ù]ó»æwÍïšß5¿k~×ü®ù]ó»fwÍèšÏ5Ÿk>×|®mÑ5£kF׌®]ëåšÑ5£kF׌®]3ºÖÌ5£kF׌®]3ºftÍèšÏµ=ºftÍèšÑ5£kF׺¹ætÍèšÑ5£kF׌®]3ºftÍèšÑ5£kFך¹ætÍéšÓ5§kNל®9]sºætÍéZ3׬®Y]³ê¨þÛ°ºátÃé†Ó^nXݰºauÃê†Õ «V7¬nXݰºauÃê†Õ «V7¬nXݰºauÃê†Õ «V7š¹auÃê†Õ «N7œn8ÝpºátÃé†Ó §N7œn8ÝpºátÃé†ÓfnXݰºauÃê†Õ «V7š¹áuÃë†×nnxÝðºáuÃë†× ¯^7¼nxÝðºáuÃë†× ¯^7¼nXݰºauÃê†Ó §N7œn8ÝpºátÃé†Ó £F7ŒnÝ0ºásÃç†Ï Ÿ>7|nøÜð¹ásÃç†Ï Ÿ>7|nØÜ°¹asÃæ†Í ›67lnØÜp¹árÃäÆAo˜Ü0¹arÃä†É “&7Ln˜Ü0¹arÃä†É¶n¸Üp¹árÃåF[7lnØÜ°¹asÃæ†Í ›67lnØÜ°¹árÃå†Ë —.7\n¸Üp¹árÃä†É “&7Ln4uÃåFS7šºÑÔ¦n4u£©^7šºáuÃë†Õ «V7¬nXÝèé†× ¯^7œn8Ýhé†Õ «V7¬nXݰºauÃêFO7¼nxÝðºauÃê†Ó §=ݰºauÃê†Õ «V7¬n¼7¬nXÝpºátÃè†Ñ £F7ŒnÝ0ºatÃè†Ï Ÿ>Ù[>·ZºetËè–Ñ-£[F·ŒnÝò¹åsËç–Ï-Ÿ[>·|nùÜò¹åsËç–Ï-Ÿ[>·|nùÜò¹åsËç–Ï-Ÿ[>·|nutËç–Ï-Ÿ[>·|nmÚ-£[F·ŒnÝ2ºetËè–Ñ-£[F·ŒnÝ2ºetËç–Ï-Ÿ[>·|nùÜò¹ås«©[F·ŒnÝ2ºetËç–Ï-Ÿ[>·|nùÜò¹åsËç–Ï-Ÿ[>·|nùÜjé–Ñ-£[F·ŒnÝ2ºetËè–Ñ­–n9ÝrºetËèVG·œn9Ý2ºetËè–Ñ-£[F·ŒnÝò¹ås«Ÿ[F·ŒnÝ2ºetËç–Í­nnùÜò¹ÕÍ-£[F·|Ëè–Ñ-£[F·ŒnÝ2ºetËè–Ñ-£[F·ŒnÝ2ºetËè–Ñ-£[F·ŒnÝ2ºetËè–Ñ-£[F·ŒnõsËé–Ó-§[N·œn9Ý2ºetËè–Ï-Ÿ[6·lnÙܲ¹årËå–Ë-—[.·ZºesËæVK·|nùÜò¹åsËç–Ï-Ÿ[>·|nõt«§[N·œn9ÝrºetËè–Ñ-£[F·ŒnÝ2ºetËèVS·œn9Ýjê–Õ-«[V·¬nYݲºeuËé–Ó­¦nYݲºeu««[^·¼nuuËì–Ù-³[f·Ìn™Ý2»ev«©;>w|îøÜñ¹ãsÇçŽÏŸ;>w|îøÜñ¹ãsÇçŽÏŸ;>w|îøÜñ¹ãsÇçŽÏ›;6w6îŽÍ›;6wlîØÜ±¹csÇæŽÍ›;6wlîØÜ±¹csÇåŽË—;.wLî˜Ü1¹cr§›;.w\î¸Üq¹ãrÇåŽÉ“;&wLî˜Ü1¹cr§›;.w\î¸Üq¹ãrÇåŽË—;.w\îìÜ›;6wlîØÜ±¹csÇæŽÍ›;6wlî¸Üq¹ãrÇåŽË~îØÜ±¹csÇæŽÍ†îøÜñ¹ãsÇãN3wLî˜Ü1¹crÇäŽÉ“;&wº¹ãr§›;.w\î¸Üq¹ãrÇåŽË—;.wLî˜Ü1¹crÇãŽÇ;w<îxÜñ¸ãqÇãŽÇ;w<îxܱ¸cqÇâŽÅ‹;w,îXܱ¸cqÇâŽÅ‹;ÍÜñ¸ãqgËî˜ÜéæŽËfî˜Üñ¸ÓÊ“;&wLî˜Ü1¹crÇäŽÉ“;&wLî˜Ü1¹crÇãŽÇ;wî8Üq¸ÓË‹;w,îXܱ¸cqÇâŽÅ‹;wî8Üq¸ãpÇáŽÁ;þvZ¹cpÇàŽÁƒ;þvüíøÛñ·ãoÇߎ¿{;övìí¸Ûiåîöôr§—;½t<ÿíõrÏãžÇ={÷<îYܳ¸gqÏâžÅ=‹{÷,îYÜ3¸gpÏàž¿={}Ü3¸gp¯{÷î9Üs¸çpoÃîYÜs¸çpÏážÁ=ƒ{÷üíµqÏàžÁ=ƒ{÷Ú¸çpÏážÃ=‡{÷ îÜ3¸gpÏà^÷î9Üs¸çpÏážÃ=ƒ{÷ îÜ3¸gpÏàžÁ=ƒ{÷ îùÛó·çoÏßž¿={þöüíùÛó·ço¯{÷ îÜ3¸gpÏßž¿={þöüíùÛó·go¯{mÜkã^÷,îYÜs¸çpÏážÃ=‡{÷î9Üs¸çp¯‘{÷î9Üs¸çpÏážÃ½ƒÞëãžÅ=‡{÷Ú¸gqÏâžÅ=‹{÷î9Üs¸çpÏážÃ=‡{÷º¸gqÏážÃ=‡{÷î9Ü3¸gpÏàžÁ=ƒ{÷ îÜó·ço¯‹{÷Ú¸çp¯{÷,îYܳ¸gqÏâžÅ=‹{÷,îYܳ¸gqÏâžÅ½6îYܳ¸gqÏâ^÷<îyÜó¸çqÏãžÇ={÷<îyÜó¸çqÏãžÇ={÷<îyÜó¸×Å=“{]Üs¹çrÏåžÉ=“{&÷º¸çrÏåžË=—{÷<îyÜó¸×Â=“{&÷Lî™Ü3¹gÒ1ý÷Åä“_L~1ùÅä“_ùÅå—_Þ™_l~qùÅå—_L~éã—>~±ùÅæ—6~±ùÅæ›_l~±ùÅæ—_\~qùÅä“_úøÅå—_\~éã›_l~qùÅå“_L~1ùÅä“_L~1ùÅä“_ÚøÅå—_\~qùÅå—_L~ñøÅã_ºøÅä“_L~1ùÅä“_L~ñøÅã_šøÅä“_L~1ùÅä“_L~1ùÅä“_L~1ùÅä“_L~1ùÅä—.~qùÅå—_\~qùÅå—_ºøÅæ—_\~qùÅå“_L~1ùÅã_<~ñøÅã_<~ñø¥_L~1ùÅä“_L~1ùÅä—ÃþbòK¿¸üâð‹Ã/¿4ñ‹Å/¿Xübñ‹Å/¿Xübñ‹Å/¿Xüâð‹Ã/¿8üÒÃ/¿Xübñ‹Å/¿8üâðK ¿8üb/Þ¾xûâí‹·/Þ¾xûâí‹·/Þ¾xûâíK÷¾xûâ틵/ƾûb싱/ƾûb싱/ƾûb싯/¾¾lÏ/¾¾øúâ닯/¾¾øúâ닯/¾¾4/¾¾øúâ닯/¾¾øúÒ¼/ÍûbìËæüâ싳/ξ8ûâ싳/ξ8ûâì‹3Ÿý¿oξ9ûæì›³oƾûfì›±oƾûÖ¿oξûÖ¾oξ9ûæì›³oξ5ð›µoξ9ûfì›±oýûæì›³oξõï›­o®¾¹úæé[ç¾™úfꛩo¦¾™úfꛩo¦¾™úfꛩo¦¾™úfꛩo¦¾µî›«o®¾¹úæê›«o®¾¹úfꛩož¾5o¦¾™úfꛩo¦¾™úfꛩo¦¾yúæé›§ož¾yúæé›§ož¾yúæé›§ož¾yúæé›§ož¾yúæé›§ož¾µî›©o¦¾™úfê[ë¾íÎo¶¾Ùúfë›­o¶¾Ùúfë›­o¶¾Ùúfë›­o¶¾Ùúfë›­o¶¾Ùúfë›­o®¾µî[ë¾µî[ë¾ùúæë›¯o¦¾yúæé›¥o–¾YúÖµož¾Yúf雥o–¾Yúf雥o–¾uí›§ož¾yúÖ¶o¦¾µí[Û¾µí›¯omûÖ¶oξµí›µoÖ¾Yûf훵oÖ¾Yûf훵oÖ¾YûÖ¶oÞ¾yûæí[ß¾™ûööûÖ¸oûæï›¿oÞ¾yûæí›µo=ûæí›·oÞ¾5훹oæ¾™ûfoæ¾™ûfoMûæî›»oî¾¹ûæî›»oî¾5í›·oÞ¾yûæí›·oÞ¾Yûf훵oÖ¾Ys ÿX;°v`íÀÚAÓ¼x;ðvàíÀÛ·oÞºv`îÀܹsæÌ˜;0w`î oîÜôíÀÞ»wîܸ;hÜAãwи‡;°x`ñ qûóà xк›.\¸OlžØ<±ybó¤‰'>O|žø<ñyÒÅ£'FOŒž=iã‰Ó“.ž8=qzÒÅ«'VO¬žX=±zbõÄê‰Õ«'VO¬žX=±zbõÄê‰Õ«'VO¬žX=±zbõÄê‰Õ§'NOœž8=qzâôÄé‰Ó§'NOœž8=qzâôÄé‰Ó§'NOœž8=qzbôÄè‰Ñ£'FOŒž=1zÒÊ£'FOŒž=1zÒ˧'Í<±zbõÄê‰Õ«'NOœž8=qzâôÄé‰Ó§'NOœž\ˆŸ'>OlžØ<±y²UO|žø<ñyâóÄæ‰Í›'6Olž˜<1ybòÄä‰É“'&O<žx<ñxâñÄã‰Ç“Nž˜<1ybòÄä‰É“'&OLž˜<1ybòÄä‰É“Vž¸Ï|žù<óyæóÌç™Ï3Ÿg>Ï|ž5ôÌç™Ï3Ÿg>Ï|žù<óyæóÌç™Ï3Ÿg6Ï:zæóÌç™Ï3Ÿg>Ï|žù<³yfóÌæÙ…8kè™Ñ3£g =szæôÌé™Ó3§gNÏúyfôÌç™Ï3ŸgíÏ|žù<óyæóÌç™Ï3Ÿg>Ï|žù<óyæóÌç™Ï³vž=3zfô¬gNÏŒž=3zfôÌæ™Í3›g6ÏlžÙ<³yfóÌæ™Í3›g6ÏlžÙ<³yfó¬›g>Ï|žù<óyæóÌæ™Í3›g6ÏzæóÌç™Ï3›g6ÏlžÙ<³yfó¬g6Ã6/l^ؼ°yaóÂæ…Í ›6/ºyáóÂç…Ï Ÿ>/|^ø¼ðyáóÂç…Ï Ÿ>/|^ìÜ £F/Œ^½0zaôÂè…Ñ £F/Œ^½0zaôÂèEO/Œ^½°yaóÂæ…Í ›6/l^ؼ°yaóÂæEC/|^ø¼ðyáóÂç…Ï Ÿ ½ðyáóÂç…Ï Ÿ6/l^ؼ°yaóÂæ…Í ›6/l^ؼ°yaóÂæ…Í ›6/l^ؼ°yaóÂæ…Í › ½hè…Ñ £F/Œ^½Ø¸>/|^ø¼°yaóÂæ…Í ›ý¼ðyáóÂç…Ï Ÿ>/l^ؼ°yaó¢>/|^ؼ°yaóÂæ…Í ›í¼ðyáóÂç…Ï‹‹qáóÂç…Ï Ÿ>/|^ø¼ðyáó¢£½pzÑÑ §N/œ^8½pzÑÓ «V/¬^8½pz±o/¬^X½°zaõÂê…Õ §N/ZzaõÂê…Õ «V/œ^8½0zaôÂè…Ñ £>/|^ø¼ðyáóÂç…Ï Ÿ>/:zaôÂè…Ï‹†^4ôÂé…Ó §F/Œ^½0zaôÂè…Ñ £F/Œ^½0zaôÂè…Ñ £F/Œ^4ôÂé…Ó §N/œ^½0zÑÐ §N/œ^8½pzáô¢¡V/¬:Žÿ®vî•×+¯W^¯¼^y½òzåõÊë•×+¯W^¯¼^y½òzåõÊë•×+¯W^¯¼^y½òzåõÊë•×+¯W^¯¼^y½òzeõÊê•Õ+«WV¯¬^Y½²zeõÊêUS¯¼^y½jêUS¯Ü^¹½r{åöÊí•Ù+³Wf¯Ì^™½2{åõÊë•Õ+«W½²zeõÊê•Õ+«WV¯ZzåõÊë•×+¯WV¯¬^9½rzåôÊè•Ñ+£WF¯Œ^ù¼òyåóÊç•Ï+›W6¯l^Ù¼²yeóÊæU?¯úyeôÊç•Ï+ŸW>¯|^ù¼òyåóÊç•Ï+›W6¯l^Ù¼²yeóÊæ•Í+›W6¯ÚyåóÊæ•Í+›W6¯\^¹¼ryåòÊåÕE¸ryåòÊå•Ë+—W.¯\^¹¼ryåòÊåU?¯l^Ù¼²yeóÊæ•Í+›W6¯l^Ù¼êè•Ï+›W6¯l^Ù¼²yeóÊæUG¯|^ù¼²yeóÊæ•Í+›W6¯l^5ôÊç•Ï+ŸW>¯|^5ôÊè•Ñ+£WF¯|^ù¼òyåóÊæ•Í«~^ù¼òyåóÊç•Ï+ŸW½2zeôÊæ•Í+›W6¯l^Ù¼²yeóÊæ•Í+›W6¯l^Ù¼²yeóÊå•Ë+—Wý¼²yeóÊæ•Í+›W6¯l^Ù¼²yeóÊ¥£øïÆåË—7.o\Þ¸¼qyãòÆåË“7&oLÞ˜¼1ycòÆäÉ“7o<Þx¼±xcñÆâÇ7ݼ±xcñÆâÅ‹7o,ÞX¼±xcñÆâÅ‹7oÞ8¼qxãðÆáM?o,Þ8¼qxãðæ zÓ·7oÞ4óÆâÅ‹7o,ÞX¼±xcñÆâÅ‹7oÚyãñÆãM;oLÞ˜¼1yÓΗ7.o\Þ¸¼qyãòÆåË—7.oºycóÆæÍ›76olÞØ¼±ycóÆåË—7.o\Þ¸¼qyãòÆåË›nÞ¸¼qy³iolÞØ¼±ycóÆæË—7.oºycóÆæÍ›7ݼñyãóÆçÍ›7âÆæÍ›76olÞØ¼qyãòÆåË—7.o\Þ¸¼1ycòÆäÉ“7&oLÞ4óÆåË—7.oLÞ˜¼1ycòÆäM3o\Þ¸¼ñx³koLÞ˜¼1ycòÆäÉ7o<ÞX¼±xÓË7o<Þ´òÆãÅ‹7o,ÞX¼qxãðÆáÛVÞ´òÆãÇ7oÞ8¼qxãðÆáÇ7oÞ8¼iäÅ‹7o,Þ8¼qxãðÆáÇ7o Þô¹ÿûcð¿?þþØûcï½?öþØûÓÄ?öþØûcï½?öþØûcï½?=üãï¿?-üãï¿?þþ´ðÁ?ÿüãï¿?þþøûãï¿?þþøûãï¿?þþtð½?öþØûcï»?îþ4ð½?öþØûcïOÿøûÓÂ?ÿl×?ÿ8üãð¿?þþøûãï¿?þþøûãï¿?þþøûãï¿?þþøûcï½?öþØûcï½?öþìÖ?þþøûãï¿?þþøûãï¿?þþøûãï½?öþØûÓÅ?þþøûó®ücðÁ?ÿücðÁ?ÿücðOÿ8üãð¿?öþØûÓÅ?þþøûãï¿?þþøûãï¿?þþøûãï¿?}üãï¿?â¿?þþøûãïOÿøûcï½?öþØûcï½?Müãï¿?þþøûãï¿¿ÿ¯¸N¢ Ž`O F9-Ýt1N¥_¸ÆåÃ$ðéâ1ü¿ñ7þÆßø›.ŽÁ18Çàãoº8]‡ãp ŽÁ18Çàƒcpš8Çá8‡ãpNÇâX‹cq,ŽÅ±8]ãq<ŽÇñ7þÆßø{coÜ»q7îÆÝ¸wãnÜMÇÞØ{coì½iàøãÏ©Oúñ—þÅ` Æ` Æ` ¦q‡q‡q‡q‡q‡q˜Æb,Æb,Æb,Æb,¦‡ñ±‹±‹±‹±‹ia<¦‡1“1“éa\Æe\ÆdLÆdLÆdLÆdLÆdLÆdÚ˜6ÆflÆflÆflÆflÆflÆflÆfl¦‹±›±—q—q—q—q—q“ñéaLÆdLÆdþ“q—q—q—q“1“1“1“icÚ›ic|ÆflÆflÆflÆflÆflÆflÆfl¦ñŸñ›±™.Æfl¦ñŸñŸñŸñŸñŸñŸñŸñŸñŸñŸ±›q™6ÆflÆf\Æeú›±—qyÙóeÛÇ>Ïã\džÏóëþ¹_ïïûãêç÷ÿýž$•fõsurvival/data/uspop2.rda0000644000176200001440000003354013537676563015010 0ustar liggesusers‹]¼pÛç­ýH²lË"3Iú‘ÂT'8IÃÌi¨aff††¹afffffnÒpfl8ßöoõuîtT¿±e­ôîž=Ï™fZ©hõlaÕÃ3f·<,r 2Ë¿La“¯Á]:µo×>›<Á áãñ}­…ïì>|+»â»:eÐ ”7ŸP«~@ ÍŽ6ê#zÎ6è¿¢ €úé ê Y¨ktÔÙ™PëMF=ÑõÌ3´˜V¨Ç£´›†oh5¼—5¼­Àûb>Þ2ð~(„Ro3ZÚºèQ½P;ïCÙñåøÔƒ Ñ?lÄhèÆ¨Vcä*Œ‹?ð/6a”¹ˆQ¸%úÐJhKä}m½‰úÓ~”"|u_ã­™‚·u<µ·ãé7OþãÄvYNL䢿›‰±¿$*ï"–_&"xáÕûã¾T·é6®Y›põè³sœy›àt{q|:†ãÊÅÜ8}à!Âþ~KØä^ØÞ¾Å–ë¡'Îê:MHνÿRëÌ%=^NPÙ?°´`ù©æÕy1g Átà ¦¦Ë0E¿?âaî9èÚªÖ‚¼!ýð<€èbnÞ©]ñö†·úG¼#ÓàóÜÅ×Ó‡ïza”ß ºÏ£.”û;› åí/(&¡XÓ£Ä$ã{™ ߍиîB‰²nJS?>g[¼¹'àY˜O½Jxž5À3l)Þ_«à;‰ºù,Z…â(OV¡ÔîŠ2õê$ÐwŸÃ” cÚ\ŒóGñ—í‹ÿúŒ“—åϺô¥z—÷è@3¾£Vx(õŠáë´_×§xïÅ»ú ÞŽkˆ›Q™Ø¿[ö:±}­DoÈITúÍD©KĵÎD4oIøÚÔ„wGx»Ç¸{´ÂÝi5îF&Ü#à^twÒ/¸SÄu»®Ò»~p¾:‡3Ç'Ï¢pd_½^?Â*ÎÄÖm.¡ë–òý2!Íž×ë_¬îü5÷bÙЋ+ 󬢔C˜&ŒÇ”ü ¶„å5¤GסZ{XxÕ—E|˜ï\kÊ¡¬>Ä×Eí9-K´z½(ô¹ëÐ6¿FË”ˆºuê½ã¨çK Žïˆúqê -¹ êƒO¢·-øuÆûåÞIíñ© Þ?ãû)Ez°­žŽ^üêü™(w¢<þõF= Û(ŒvË0ê®ÆÓH´bÆ?7£ÈŒ\лÏG›¼má"Ô„Ã(ñ‰Ã›/3Þ²[ðäù§¦h&¶±[ýtÑç¯}=Qö™Dô\MøÅ™„û»ãžéÃuè!®:+peÏŠ3Ó3ϧàØþÇìÑ8:Á~½ö1}±;ÏÖga1³±µë%÷?ÐEéß”àK°ž¨Œ5á3A­³`¹8KÅ—˜•Á\ö¦?옺×Á”ú.Ü|-=8 ½—BMY\CÆ.à[Q]E'ðí½Ž÷Ðf¼KàíWïú·òWâ›+sl],¾€šbC=Yõý}é•ì·é¢™,åQ ÎBñÎÆ·³¾¿«£”8ƒò¬ÊœSø ÖÄÛaž;µñÌ+Š7[f-ñ¢*+Q ÎÝœ%q·Üm1”4GPÎBÍûX1âøé~Âwà ¾·ñ¾®…÷äx}Á{UôÓìˆül#Jª¯('¶£ÖI‹úrZ|ÔŸ›È@©Ö ¥U¡?yŒ±¼ƶaOÇ_ïþ§óE'ÆU/F±ùâ+Ñë4÷³[fêJ%ùuÎÈÄ·Ù>ñÆX¼¥6×õ1±q«F[ªÑ}zùæ ‘¥·1õ"Ô%„7(N¸>pWmÜgqË?®{;q}‰[v©khE\­Ê㊋s_œã&âxwGæ§ØÏœÃîºBXØ| ¡ù4BÚ7$xó*‚cc­R… Y—°ü©`)yÑBÌžN˜VnÃT²¼¿‚¡ßG¨1–¹P9(wR µ~S”&=då9†R^f÷ãÔ&P~BëwÝž }çD Ë}t%mB4ïX´¢ÐÒ¿D="¾";èú}Ù+¿ˆ?WŽoß |©¶á=z_Íòx÷¥àk;åB2ÚØZèmê¡î¹ƒò¡¤èE¼êFú!õÄ[J5Ã脱!+þ—0«ˆŽÚ¢û†V_ö_óy(×à{°R¼ëž·íð|+/9Jâj$n,FÌÇ¿ˆ_€èÑD·¯LäœDÈý‡7ŒÀ½"nï|\…ã<Ÿ€sfoãJ s5Å<ûŸ±Ï_FØÍ„-(LX\2¶¾e±…m$´žøÉÌ5„øÌ×u‚ö'Ȇ¥oUÌïWaþm.f›ì©ES¥?÷ӰGüdTh&ú(%”œí  vdÅ÷ê0¾'6á(¹·Ø¼ïäîÎ,Ãg Á7Þ"l%3ÿ‹pÕǨÃÒ¢%4B+\µ¹ åE:”ÁâÑ3+£ô’]%?SªÔGY¾µìB”•ð-Û…÷Þm¼5záõ­Xˆ·Øoøl¢©Ž•ÑJÝC;³µ†üy»ÌÅÃ7¨\Aÿ(¬µéÆþ.oRáo\ÿó¾W¾b\ž†Qp?zÛÃèU\hÎ#¨ÙÅãŠÃW¾)¾2-ðVÉ‚·ó¼Ilj«/lLFb-׈̓è:݉~žàð‡XÛ´¡#AA)XÊ}üG|?k#L›»cª*<üã>ìh,»¬Ô¾kÆ ®Ÿì0µn#Ô×QFöCi>Züº/J7™}ÿ@Ôq2»E[ï@/øý]ŒŸG¯*s~$­|=´v©Ðòü…zjZÔ#4Û\´ºÝÑÔPñ¦Úø~ü¯a|AóðÛ"Y%5¾9Ë¥oâÕ›w ÿ.5þì‚êt£Z¢>•Œb›ŒÑ¤FéŠíE/+jào}P¾ÿý­è6³ðW±lÒמ(Ûd¦LL´ÏÉûxÎÏ"qû"OO ±_ bŽýNtƒzDç­CtvaâFç ?ßKø+=¢“Ï'q~޳Tgù2bÖû?öÎG±goBبG„¥ïmZnB¿Y¸…‹m ¿Iðè#X/ÜÁê´TÌŠe±xJøpÌcûcöïÀ´å*¦ºfLŽT Ù†)¢™Ö[ ¼è&g9HõâGƒM‘»_Š‹â¸’ç¾ü…[óãýÜ_–¡øvÿâ“ùÿ-5µÜ×ñò¢O¤óQ§ŒF¿ÙÚFüCòÉ ñ—²ÂÁ#CPîÔ@:5Ÿ!:ì‚/M ¼3zà­%³ûPòP¯6øRΣÌx‡ÖæÚ‹g’!—¡œûŒòõ°ðÃ=ŒÝû>I>‘ÌòIÃ/{Êÿâ‹h¥˜ä•wy–£7ý½Ôb4“äØ4EQrˆNòÝ×Î7¿d•ÚãñÆ4'®d1÷óÀNlÈm¢óD¹ªß…‹;?T’pS2î­Ò£iÝpM¹(Y2®Š3pÕüŽ«ênœG~Á9õ0Îä“8NuÃ1¼ö›%±ÛÇIžü„í˜Ð»Í9ïß?LpêXÛ$èôï%¬ÂÒéæ²ÏJÞÂt¼¤ôè.&û08˜(»¬"4¨[–çHö>)s9N«¿ðî2ñ”ÛQÆ—ÝòÊBñô_Ô}ËÐ2¾@{†Þ+ ÆOƒ1ºBŽöù"ZïŸ$ç‹g—È€zKvRÖPÉ*„n£•Ö…Š üÔ[4²_Vñ˜¯¤÷1’7%Ï(eù$ÿl–^´As+¼˜*Þaˆ¯Hn,t£qMŒÕðW/$:)+Ü<=¼µ°Bq´4Q&ÉÎÕMrã1< ü’YÇ’8BÓ®‘Xì1“Åã3=%Zúõî,‘©Ê>!÷íE¸Sé¸~ǹúÎìÂ_oâ±ßŸ,Ù¤5ö¢¹±‡É½ï_+~rÛê¬ØÄOzFòe!¥¼é‚ðº‰çÃ}â2§–¶„˜CMˆ¹›šè¨†D®OÄ… "âò>~îÍq÷ñ⮞‚«Ê\?•FH—éη¹qÖ݆3Í6ÛZà(‡ýóeì%?9íU+a¯‰„æHEHºÁ—>Žu@‚èÄMP¶mX†ŽÃüì>æ*©0ÝlŒ©ÝhLQ£@4ÇÑJÓµ°÷ZÌ.É%OHVÙ”uiÔ ¢‘[â-»Ÿ£Ì&|´u`Wñ”/hM¾¡§éˆ¾Uö{Ë«’íZ£ïoÉXmºèdÊ ´ê P¿ö@«=­ñU´ÝV´þ ¨9þFizßá¢ø‹¯<ï*½/(»M˜ ¿xГ›è›¡~vK-ú‰•lÿ¾ øGwŒ:¢™¼¿aÔX‰1ª6þ¢’é¯@ß½íÍp´ ·ÿËIJû!øºÀ;x2žnðt®Eâ¯Hl0€ÄÐVÄÔ»-éLÔAD­N„0zx…û¸§'àº&ž^à Î:_qܪˆCteŠ=KA®?%lÆmÂÊNÃ6{¶Ÿ‚$5ε:EØMؽd|e;{ð”슧`µC$¦êBÂáŠÄ¤úHÔ–ÉDõ÷Õì6Ó\„‡ŽÆ]þ®‘‹p>»€3´?ŽÁ­p䜉=CnÂŽ®'¬CzÂÒÂv¾ 6}3¡+5Bà ÒòÁ÷" ΂µã‚ž„ôó7,£sc¾ƒ¹A6L¿a:\²ümxvÖkð›dùZ’U ˆ—d8‚ ($yPE9¿å ì•-ÝQFD.Ÿk÷d|G¢ñ­h‚od¾ýr—•FY“Nv½ä“MÅÏÏ¢ÝÌŠî”ܘ² u÷¹WÙQ­Ö£–ˆFyZõ'ÉéãJ¡/û,°YI|÷žá«pŸI|¥×7¼?ä¼:^ü¨"Úáhô¼KQ·ÉÌ»æ f¶ˆ«.Zhq½'†ðƒ?è øÊ4ü¤WÇe‡îNÂPKHŽ\®çB½4V4ÚIø»>s$Þ7ýñ¼ ÅkI‹gmb_œ'fhbzüF̈WDm!2}E"Ú$|UÂ5w¥h\¿â:Rçžš8GeÂY~Î|›pzÚãè9 G–³ØeÎìYÚvd,aÁõ±¥:Jèøµ„l¯Bð…aX/–ÁjZ'||ËÜ X¢$Ëÿ¶3û1 OÀôS:¸•V<ÿ(t—¡M›‰Ö13ZµŸÑŠ‹¤¼G %ûFf5‹dñü6Ô2y°xh!á¯âA–¢ýõ}a,FR(ÆŸ+ñÇH¾‹ˆC¯.³¾Ñ„¶ý ÚŒòºòÚ»ª¢ŸžvÚó{¨óꢜî&¾_2þk”‚‹ðM”{L7µýRôˆÙè—$wD“](^§ ­ÜÂ`#F¹Æ©|ÂÁ.ŒFŸðG†£/JAï7muFÔ?£®—=«¸„넹ӷÄsOÈyî×&áî_$ô½Fôý¢DumATžjD%#¢ì#Ü;;âú~W®‡8'•ý´GÚÂØEa‡Í„Õ•÷ÒÉ‘5ñÜ|gèfb×%¦þebÊõ%¦ú2¢†œ$âÝ'"r-&¼ƒì±[Sq»JâZ3W7?ÎÖïpfËãÙCç«àXt»dûÒØõ0Â&µ%ÌøŠ­Ö.B» "䦛ë‚ É’™«ÔH2äº|Xb6`?³k&¦Y=e— ‡'õa©|í² î®’=/Y|[Z´ñwÑzÖ”,(Þݤ$ZN™»¤BhõÓJÎoóvR!É3¿Éóó´”ì-;&uFôÛŒæ÷ñ»ãO…‘®z»¯hW‚Ñ^6B»(Y~Ì`´[ÑC\èEKéz¢^Ë/y½,JmaïÕQše÷©?J‘‚¨CÖÿÏëõ{YÐdÞÕŸ7 ?ØQßöAÿ”Q²ÊQaäj©…ûÊ¿+‰>Xæ¢vÚ°ú¨E_CD'¯úà}™_8ØLâÍW$ž°¨: 3­$d=MôÜD%Ý#òe‘G¯þe6îVYq-k‚ó–Ž3%GÅžØNÁÞ"auJ ïÇ6j-¶œ.BÏM&Ô»’™5 þÜ€à_Öc=èÁ+:i˜ËX Î’Œ’sÂ"L+›c*— ×%'Vƒ1ë ™h¤„<’ÄS´£/j7ñ†Š¯P“äÞ½o„?Å"‚QMBy"Lë߀’”%ö&¾÷¢ ²w¶§Fo„Ú»§ä5ñ•mrß¿ØÑûˆn·EËTuä¿K¢“­oQ‹?¬‘=Ýí <§ÏtaÝâOÂEKã«]ß)?¾+ð=»‰š{/Úß±’ѧIþl-ïM¸¸¼Cv©ì«<Ã1ÜÇø+¿¥þÆùðÿéÇØ– cÉyaé{º4hß…ÖJV=±ßÙÃxOÁ+=÷¬i‡gó9<5;ï%19Éñ>!FŸCT…`"v|#üó“æ §Åu¨®úàÒkàŒ¾%©#ÞŸGýÑ8Ò7ÄÞK¸Ë“B؈’Ø„ElÝÅ÷WÆrø$!iJŸÚ`í¼š ‘é°œŒÇ’º æI{1+?aZVS‰âðj0¬k ½;‹A’µ ôБhW¢mn] ž:s%ÚDÉàÍD+êËYîi™Ü넽ÂÁ e/ôAë;DîízÃA‰á³jâ—üë¯Z £hú„3’­’ej¢;D3Çš£'ŸF/<}Ömôú…ó®Š_t¦8/ü%»fØ%|çf Ô”Œ2½z6É‘Ï ÈÞîË?KöØ:ÉQÂZ/Rcd“=ÆA Wia±.’)ýò^£çü ­ÞGÔµP…ý}{†àÝ‘ŒgwMì!qxê§!¡Â âoýJtu•È߉œ“‡È _x wôp\åÏáì¿ ÇûóÍØë ìKsÑI2¶>«°E—"tó~BË$d’Jˆû,Á­c±Ž5‡ä“‘‹±ˆÇXê~Ç|23æ¿aÚ[S½ ˜ ßS„¿Z w•] ɇÀh )/QH®˜ùµóHÙO-QKÊ|/ZXΞÏr’ÕkUDi^S²ü”Œa(õ ¼ñI¦ÿØ¢Ê~[ˆön7ú°“è›>¢]?ŠVw“øòc4w6ñ˜J¨‹Ì¨¯¤ïÕ4ô ¼ŽzÙ#}¬%YN²Í¾'2—eîWcTøãÀhüå‹ào'yÉä¿¢g=‚^Q|'·øÊ§Í’käÏ󣟱Hmá¼|²›êI^])<žÜenU|ý‰Òr‚ôñzŠxËsMßšGúœpõžìµ{0|¢EÉ|ú›²îN«/ ÿ¼EØ\´•]2V^ñ ÿ‰ÿeRï€õx$’Øè‰…Ç3øoˆÚ’è°%DN­Nd©ƒDFýMxÉŸqmóeœêzŠb’LØëÔ„ û‚­ï-l!a„N…Ð仄ìïAHX/‚û§`½„5g,AKe_YC±4˜‰ùaÌõ®bº½S{“'äÄP˜•ÒCŵk$¤š ?ŸG‹îz.L¿wêŒs¨/£öHÚ}‹x|¦J²·jEd‘ûš+s-þÒpÊ4a«Ì’+o&Þ+\4Sz“é¹d8ñæ'ÃeÆ%7ŽÎô­´Kî¨3ê_7вJ™4 =¿|ÿùSa´6(k‰6Žà[ÒÅ=J4ÓÅèƒÚ\îXíŒ>\öåwaÒ QÍ—>ÞÃ(,=y4ãv]ŒÏuegÇXÁ˜—cdNô¿£[¦cöÏ…2y'¾I ðŽš‹·åbÉè-ä53Ês§,úŠþcú®Âywħ^‰[QÊ|BÙ+<±¥›xªªèy ?Mæ{‚š½j¸ÌÁ¥zèÇËaE?uTê÷= “ “Ý-žxG4n‰jkˆòì%¾_Šá-¶O¡8•e$|0ˆ?4„øÅ‰Oÿ™¨­ˆ,šˆ͈X[÷ý׸~]‡s¤xúVÉ*Á]°'\&ì·„E†b³u%tÔBã BV $Ç[‚û¬Åúz3Öò} Z¾“ õ>–0Ë4w»éëTL#»aJ_n ÿ.\ ÝšCÕéGD—¶6ŠGküNæNf7ü9ê£dÔ£GQ7J_)ž¾Z¸gMEÔÑ’/&B=}åªðë®k(³Ž¡\ —Ì®¢žÌ)Ü< íRyÙM«ïÇb$|A/ ñ¨pB3ÉŒCO¢uö §uBëPXö£Gv˜Ì„*œ·MüýêB”Ì™ñ‘ ™é¾YQr?Cíó3z’dÈ)â%a²;«Vš2…c" ÖO2ë.Œ7¯ð—I‡[Œñ/dÚ¡Ÿ“ÏõüƒäWù,MB¤Ç%ðu’<ß´3Þü—ñd>ƒÇ¸Eâ¦ñÄ:~=íÑm}D‹†"‡Õ!üõ Âý/p—ß$|< ç±ï8+ÁñešxÉì£/bO»Š°»Ç ¾ÛÑØJ|#tN6BÞ'¤n9‚ǺnVׂʖÆ2FöØ%æ‚›1J#ž¿“»9 l<SüzŒL„_ÑÏ^AŸ/œßC˜©ºìûBë$ ßæ CÏ!üž=æoôÊ·än3ÈlKž©ú«dÉÝŠ¢/¯øücÌTŒ­ñwj„ÆSŒ¹ Ÿ~F*Þ°J^gÆôº:ú1y­+²{2·@0m„äÐy§QþÊ- ±åPsË(”ß„Õ×I¦É-¯ñà8ZÜjɹÂÙAùPîEßè6“÷¶æ#úú.èG¥~½ É]—ÑÖOE½ ™çÂm”uƒñEUÅk9@âçã$\t°0ñíÓ_j q‡‡UïO~"bÔu"Š÷ÀÝ·Î×Oq9q”=}òT–î$Ìm²dñ^B] ™¸‡ÿU‚—èX_^ÅÚp Aûd|Ä2³![Éò»0GˆN˜ zà™VÏ€>Òêï!9H?Š}B[)s4"­A ZÊA´ù¼ŸÅO/=-Ú)‚ú´&êq¹ƒ3wÄÛM¨Ñâ-Ÿ§£\o‹*}R—'Ê÷Ÿ£µ¸.ûMz8m'F*¹›²éÑ»4=Xm¡xÎ?l°ñéçm´U½$CÊÎ\2 ½œä£{SQ¾‹^Ê÷Ã÷ $JÉ,ø6·D©0 uŒxy·è E‹1Âduå½t8„V¬¶øÊBÉõó1.%c<~¿ÀTüËb tc4›Ž¾C|íÒ ´Y§P‹ CT©¯lc¼yoàu%‘øñ-‰>‘Ø©)1çê]kÑé>>„È<÷_0÷¹*¸>zq w:[ŠNžÊ.mÂÞ}öè „-Ú@XUE8y,¶ô/ۈׯÅO¤O?°^>¶V!¨©äøÕ7±0sõ£˜.~ÅÔ"¦Èp&&žÀ”îFÉYe„)õHô¢“Sóeæ“ÐG ‹uë(™\ry‡ŠèÒ‰FlèurgÉÚýZîU43E¼út8z×§²+ŠK¾Þ.Ú8ß´ÿ„5ø÷åÇ8*žœMØkKô[²ïÿyþXñ“¯9Äb1~À° [I†RwŒ@ù$úèø]æ{ ŠSrêàî¨ëC„ñÄ7nÝ/“jYPÞç OL¿,¯ù}ŒxÛ©3o)F²d¢Ââ¿I¦ŸÕM˜äJ‡2xÏvÀ³³ ‰«/’0ð3 eS›¸·ˆ«ƒ(Sc"†""u2áW̸#æàòdž+Øÿœ‰]ßGX¶ØÆµÀ—›Ð¨BFm#Äå&xÊ‚ã|¢É'— $3n™û3u(æÉ 1˼›6I*ÿ%ü»¶ª0¸,ÔYïA&ñ“Ò¢‘—²ëÏÉ{_%Ùax^´¦×ÐJ 'Õþ|…¦\8–^2^ˆì,ûR™Oùœ•ª › —zEWÕÄSIÎ,²mþ É…™d‡´Â¨&ù±iôÕâZ¢ý•"ù47šäm¾d˜û’WóJ¹,üÚ]´dOÖ¤mf¢˜¢4(.ùތҨ2êÜ1¢'Ék„ Tñ”&„]D{Å{K^yŽqý:Æ)/Æ­‘ø³ÍÆ?]²~‡Ì•„Û4@Û&5ûHæ2 ‰oåǧ§àutÅóG%w$qQ13V fl.¢ãŽuã,Q»Äïv"¼BÜÝ÷àšQçÓJ8ƒrãè{O2ÊV즅„M|E˜·'¶½°ýb#tH´øÉ:B #x\Ö·°föª× ËáöX¼Y1÷y‹éqgL]‡`JlçNÀô±˜R:b¬kŒ1¶Fë¬ÅOa2gßeönäFߟ }]ú ÑÇÚg2ç3ÅÄ——ʼ>‘=Úíõv´+Mу…{f?>Jƒ‘Zt±á,~}þ­“ð?Šñn&†°ºþxF„ä=SuôƒVŒŒ1’Öaôn€‘AØüÀ`ÔsåQ¥Qˆ/ß8€5eè¨k§IÞ‰–ŠY$¯FE¹·L¾>zß?¤_‹ÐÛˆ¶%ƒa‘y1 ­”äú†×Qjé’y_àúO»º$Ö)FB–&Ä¿ÜMÜÆ¥ÄõÉJ쓱DάO„á[žÞà9®9ÅpÆÎÂQPÃÞ¤¦xJ8¶­±E ÷N8JÈø6„„l xÐS‚ÚašLÐeÑJ™œX6Ãâÿ€yùÌ™ScÚÖS£dL®¯âë’OFÝ…F¡hWÈRA²JmÉ„ÓÈìþ‰v¹&ÚñîéÑúI¶hi—<Þ­ÎñÑ@ó$´¢ÂÅ¥$C–?ájïF¨u„Ó&A3^ õ>º,9®ýhtɈƈ÷Ûƒ¥WµäÞ΢§6+õz²¼þŸ…Ð$C¶’Y0‹ÍöÎ$²àa”CP¼½Pº·ÁwgJ—â€ÐkÈo³ ¥é…Úâ°ä(a¹bW1òVO; G™cdÖÿ9Ëlg)'ž“Í!\&^‘åúÖWâI)åná/Þÿ­i¤ŠÚ…ß/w?AÞsÅæÊï /¿+#~b‘='s=S~öÏß׺:GòeTÏv”ÑQÂb2ß±_E+„ÑeωêÇΣ¾;‰Ê ”3y%ßÌC¯/ì÷»0Z)ñ¾B’ËdË*|X Íí”Lß%®¾Û‡ñ枇Ç;‚Ä` ñÊ/Y2®œBœÃ ¶C."“ŠN–^̆ûÁ%\iUs÷c?¢ö$аô °åIKè¸1„::ˆŸÔ$ø·LX?×ÁÚû#A÷T®–C±äœyMkÌùÏc:5S³*’åwK–ÏSw@‹uPÊ€¤Ï’UF 7^‹þ‹=E>ƒ"»Ý:í™pýyÉ’3µ%ÂH³E;sÊ¡ _hKhÿÙ ò8šõ²äšÝ»Qg˽œ­ŽV» ÚÚcèAºóúcdqÊì6ÄøÐKv“dŽÂÝÍäÞ†Jm-;'\´SZòÿÔLéÇ˾lVö‚°•ì®E~”ì²£Wã{7÷çRÝ•½ÑŸò:¢©Œ#P[?­si‚‘CØëäEŒ­¢›Ã½ñËnñwn'}þ€¡ÜAoîBë&ZOºŒrz¾³‹ñî‹gV <µSbHt·!ah&¢¿üNT_;Q9ÒeYCDæ ¸'Áµ1-ÎÓ>œQ©†`'ü_ Û`lýžúÁJè`5o%$¹•ø~5¬wÿĚ܅ )·°Ü¾€%Ë9ÌKbö…cš'™$¹Ü‘þÌ÷bªº^4žØAŒ×é0®ˆ>ödÀX´c¸ìüÖ¢Ÿ_FÈ^#;¶hG<¡ðkŒŠò¼”ñroíe’Ù\.ûG<&w5™Ñ|2Ã1\G1ªK~ûûþ6•H¶‹T…—â¯*÷sÄ%¯«aôx‚ÑD^O“z}…¿º—ÄØr£V[™‹¢ƒÔ´Ò¹ åál”xaðÁÃQWA÷Dß^BzÊs'ÊÖ2¨Íî£l‚ÞRò’.œ#}ðÈû›ÞÍÓUX>;ÊÍõ óñéç~3Ü#a™›øŽ:ñFwbo–"vB-b^å!bO‹Gâ>™w“®8—Yq¤îˆ½ä[ÂZ¼Ã¶x¡[:j_MHÿú]…õïôXÛÍ!èÕ‚ÚÇrT2JñÓ˜÷6Á\d?¦ë¯0u¯I]7Wƒä:Þ‚r+!{¨%{hºøøðN’#„‰È–o…žGØ2µä:W#´Oå%‰÷ÞŸ¸-_H–yøíð´3²§MÐ%¿ü8†zu¨°“0òØ´›Û%k®F¿4 £iŒGðçn]XöŸÔY${oßɩۄÓ w {ïŽ.·ý^)ñ²¨=Z¡ìÚŠRZ˜x^Šõ¡ôGüÿ¨øU«}ŠY$µýµ›pU>’AÿùïŽÂ÷+E£[ ág1þ:‰Â’ë¬A/*šª Œhi‚2+¾éðþ–€§ö7•,Y³!·sRm¬ôéÖÇÅ±æŠ h”†å}),¥Óc^2F<¿(¦õÂ]%ûJ† ËÒŠÿ‹NjÅ_x%þLyñÇ]Äo­Žñ¦¾°å Œƒå0–—Å'¹£_g™ka¤þ’e&üŒ1ïÆÙ7#Ä;vŠ/“ý'L¨W>€.ïI¿.ž›E´Ð[îD¹†êhRå>@ªÎ{ð—=óeü¾¼Ö ñ• !%WI®ö›(¯wZ|º­ÜÝ×sÒëu¨Y$ŸN‡òh·øÊBÉö[%sD »…$“©g¦ \Þƒ2§=jU4t½ˆ°öß27eW=¸‡^WxäúÔnékj|}îã“]噋Ä&-H(v“x™§¸µG‰mv˜ØÈGÄ4/H„dW÷鞸ËÙqݘ‡3uö…’QíÄv߆M•Œ’4Ÿ&‚ßvÅúC¸·ÍŸ=€ f±<ø§1Ÿ)„¹ÒGLw®b<Sæ³p·¬=%ÇWÝäút‘Œ(ž¹GòØ*ÑÆìèãdç.ê¼½áÑÍ#ôŸ—ˆgCOuÝ=•®¥ðZ)ÑÈ.a6ùyÅKâ#¢¼“Ñ¢š¢åû"™Ò,w&L×b†ó0Æü}’±ÁßMvàꯅÄsn/EÿxX´´@r©øñ¼ƒè÷ÿÂh'saÚŒ6Dîx|W”‹ePênBY/÷3X4“„z>¯üNÉAQâ³PÛ¼–¼’€–§‘°¸dÐ-å1fËc‘ðÄ“2w?Éû("³"YÉ„æÏ"þ'Ù´i|uþÄ›¿ žØ®$ 'aÊvêŒ&^ü9º\u"O$Ùá+‘™7þë\»îâ¼X Çý‰8TöôI„É{µ}‘=v§6¡•R²ý'BRº¼,?Öëϱæ/MÐØ XžÁRûÌ{º‰Nz`Ú+{¬Z[øVÖGbêÔÿèÍø»ËׯñWοØ]ü¹+àÏP |2~ó;Œ§1.KÆ8&lyt,Æù÷`¼¶:ý»dµ8ñ ¹Ï7ÒÃ5½…äÜZúøE|¨Ò?lþÒ™ð¹AªÖ™Hµ´$þÝðgæÚ*=»*þ¿cF+ÑÊN©±â4ÆÝaâ1“%õ”¬Z5YC™.lü°9JäY”â5cï£}oŒ>~%êÖo(»G¢ šš©,ÚG™µÄjhÇ‹ mœ¶Zr¬Òuª0]þ7(EjáK‹÷ZO<#Hd8ñv$nzâr%óx11#[}µ*áÇஸבþ¸*4Ç1#vå2aùÆ`«5W2Ê@BÝ'ø}C‚mÃÚu A÷GT÷-–»°4IÁ|aæú1½,…i„74—¬÷c†Ü¥Ìé½YèW„ýÏÈã¨ÌÒž†èJ¢/”l7A²ØñœŽÂJÍ…ƒ›Ê¹íÏèVÈ®’¬XSvõá%ÙOÚ?ÙºÄp´V;Ñ^´"œ5ï Fé_åž§âï/9{ûYŒ—Ñ} aÄK†É4#H8v†p×ùYhsŒß[aø¦ï]G]ÖQöÖ3”YPö‹VüQV\ÿê#>( ~L´™$šj µƒœ³ËÎLÎXöcô+Ù½“0Î,9Iüsã´W©Q_Kæ™r%Ý-|žÂÆÇŠ“Ø® ?¯#þÓ@âk\"ê™Èfmˆ´v%b‹÷É)%Þà¬ÑGӡا»›[Û‡ÌØî%´Ô;B6¦#$ÎGð˜6X¿ŽÇšý1AS{by} KµM˜ÏÆ\؆i_}L M˜BûÁUöÚIü{;á_Ù ÿtñÑkäÎd÷÷œ‰¿cVüMŸã¯"ÚI‘™¾ƒß(…?Q´$líO³ùžíÏ“dmü¡’×õ¶²„»ö 't“œ8ò>†zM|H´r&=þ‡ðÞCª¹ÙIuc6þwDŸM1ŠFÍ/0nÉy¸xÔ%c¯üΛCâWÂÍáÂöÛ¨9ò L“¿'ÞâȉÒVf~@*´'½Ð{nDÛeam”fâCvÉ»g¡=Ÿ!³ò­Ï´öòøCzW~¦°Z|Ïjã=)Z麌ăµI˜X˜øåˆ3Ö»é1Gýõ5Ñ… ¥à:Ù WÞ©8·_•¼¸‚° °­]Kè©­„Zfï$¸é%¬êôb?AõæaùSòIÃó˜ŸvÆÜÄ‚éKeL“þÆ”¯üí…-?`Pe¨÷ -€¡Â¸õ0R­ÇˆwÞÀ°‰Ÿ‡ˆÉ þ¿ü :yÒýÚÑO9ô-¿Š÷T–Ç*ôÍßÐw,v‹DŸ%>z67Ú¹‹åˆ^ £Í”¬iHVï%¿sSøk„dÈÔuðj‰ÿË0üK`lök‰Ôî‰ñÓ-É'=ÿ÷߯ŒtÂËÅ[råAÛ’N2P”/QúKOÎÞBÉ"µQo%HÿÿѶxZÉ‘-rˆ^¤™dÇÊ*0¦wÄè)»°‡ÌÇÆ{Âa7„×d'K¶KrÕ¶!¨Õ⻇÷Ü=?iŠùd)Ìa:HXëwLßàÈ L³ôÿçÿ2aiÜ¢|qþs”G“ÿý) æÿyZ¨<­mƒ6M:É9êÿ>7üÏÿ??7%ý{Èúï!Û¿‡äÙÿ=äø÷óßC®)ÿrÿ߃9kRà”5pÊ8%NÙ§SÎÀ)Wà”8jd ÔȨ‘-P#[ F¶@lÙ5²jd ÔȨ‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘=P#{ Fö@ìÙ5²jdÔȨ‘=P#{ FŽ@95rjäÔȨ‘#P#G FŽ@95rjä ÔȨ‘3P#g FÎ@œ95rjä ÔȨ‘+P#W F®@\¹5rjä ÔȨ‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘;P#w Fî@ܹ5rjäÔȨ‘;P#÷¿5,Y“’þ¯àÍÿ÷[Am´þWüÁM›üïOÿç1ÿ>#[RRÒÎYÿsÎöŸsòÎÙÿsÎñŸsÎÿœsýçœòŸsîÿÿœõ?u³þ§nÖÿÔÍúŸºYÿS7ëêfýOݬÿ©›õ?u³þ§n¶néû?ÿÍú`ÛßGsurvival/data/solder.rda0000644000176200001440000000656413537676563015056 0ustar liggesusers‹íÝÍÅÇñ±Í«¥D+Å8XE!äy^k’bH  €D®+0 „Q¢Ü8ðç/ YØ®úî<»ÍìZI†°ÝRQÕ=Õýë®îùL÷î¬ùÓ½?ËÍ?ß\­V×W7ž<þïãæ×ÿsmõÄêÙãú©GŸ?øèþ—«Õ_|7w\ÿì¸|ó}ý”ë{*7öT–q^Æyçeœ—q^Æyçeœ—q^Æyçeœdã¼ýÔøàþßî?xtÜ:øþÕ“¥×Þîwzã½²â“>8zÔ×[ûøèï>ÿò¸õíjÿÏŸW­ìë:¾jeßçùª”}Ÿç«Rö}ž¯JÙ÷y¾*eßçùª”}Ÿç«Rö}ž¯JÙ÷y¾"å»ÇÈëÿZ<9^ï“ïÿõ“?fž8žyxÒñF︵¯¿®£½õÆXöF¬.óôùì©rú.þô;ìô§åé½=ý©òÔ©òô©róTyæTYr—Ü%wÉ]r—Ü%wÉ]r—Ü%wÉ]r÷š»õôy³?SÞ³ÑOœ÷²·Þ¯¾=^}›WÛhmz냱Æ›K=­öß/ÝXÚK{i/í¥½´—öÒ^ÚK{i/í¥}•Ú[O«ã@×½!½¡yÈ\ý|uò¹L§¦×þyþòï_v»}þ¢Û»lîÜöw-?<˜êg¶ë]ûQ·{¸:¿¾ðúç÷›ë?W×Ü]ãqÑzný>®~¸ß®q¨ëש¾¾«ÿÜú—½ÞçŽs×8쟹©®?®ÏçJ}{ªŸŸj-ó½¾[Öë×y_ÿVY~«Ô¿œêËþôõï”åç÷ÇWóëzÛÝÿk^<îôŸÎçù™ì6¦3çé’9—]~8Óo×ëu:œ©/º~Ü}ÿι2ÆoÇzõ¼ôëó²çÿL~É;3_ß;¶{Qgçöãq§]nÏ_¿nŸÛ~}Ô/nÏ÷©Ž½êyêã77Ùþ­ííÍ®Wßý<Ý=?,¥Ìg™ïý»·wÊò¦úùòú‹3ëÕý¸Uúß)ǵ*óýü¼´½ý«6ùœªãRÏGÿö©Ž©.×õèßÏkÏéÛ¹Ì×óÛ׫çÿùíåõ}7æûvûqõ¼z}O¯÷iì½?(ýkÿºÞíR”ºß²¿uœê}È”3{VrÆò²ÞXÞsÊöG]>·ëýTÎ|¾”û­3ùÕ¹’¿š™¯Ó™ë·ç¾Pê~½¶©î×y¿žeªïlïß™ñéyõ|õíiéw§Ô½}Í<ŸýèëUo_/µMõï¾>©ïMó›©~cZ~øõöö~3Õ¯Îäõñéã××cš¯ÇŸeý¾_ý<Ì|®ñXo÷¯Ó®Ï³3×áÜëÏœ_?îýÆÜ}ØãN—}ÞÚµÿu;½ž{^ô~ù¢çcöþ©çÖÏõúÜWß×Ý÷~ÝÕí”ûÍQ×çÎ^×íÞ)Û©ïÛ^—ã9s}•χU鸽øìójßNÏ¿½½|ççBõ¼æÌ,ŸûyRÝÿË>Ïž¹O+ÎY~p~Þáv÷ÏKsïϺÞeŸCGþ´ŸÃç_Ou÷µûÙÝ”åÝñ)x8Ø·Óýì®öû”êoß^w¸û+e½¾¼ï_ßïzÝõãê÷e/—þÕï‡þW?Ϙ›.úsË‹®w8Wß*ýªgÅÃU™?8¿êýèÜûóLÿîZÍY?éׯÃzÞ§_—ýúê×÷o§º_¿/•º_¯õùàöL?-˽Ì÷õëû£GuµO½.χãøÊòžs»ôëãSï/êóÉí™×ûö_(¯ïúyæt>f¯×zœ}?êÏ/ž/Ëû8¿\^ïÇÛÇaî8ësÔAéWŸ kÝû÷ý®Ç]ªï¿¾^ßïßOõ¦ú­¯Oê~ßüÖÌò{Sýæôz÷º÷ï×{¿~ºïÝÙ~¿üæ´×¿Þ>ŽWKÿ>®¯Mõ¯Êö½ôëÛ)÷÷«òOÉ><úìþ£ÕɯŸš>ýÇ/î?üäá_úoß;ù¿›LÊùÎÑ£þ=ýîÑGïÿã‹û}cï=¼ÿ Ï<úô“/•¸g¿üüï¯œŠ¼ñÍýÒsjô/Û^ëAz­M÷Zÿ–îµþ%Ýkã;ºë»£µ-­ñ÷¦ëñ]Þõø Õõøðz|x=¾¼22ddÈÈ‘!#CF†Œ 22ddèÈБ¡#CG†Ž :2tdèÈБa#ÃF† 62ldØÈ°‘a#ÃF† >2|døÈð‘á#ÃG† 12bdÄȈ‘##FFŒŒ12bdäÈÈ‘‘##GFŽŒ92rdäÈÈ‘ÑFFmd´‘ÑFFmd´‘ÑFF›‘±›‘±›‘±›‘±›‘±é7ÖwïÒ\ÓšJÓh:Í ™4MÒÖ¤­I[“¶&mMÚš´5ikÒÖ¤­IÒ„4!MHÒ„4!MHÒ„4%MISÒ”4%MISÒ”4%MI3ÒŒ4#ÍH3ÒŒ4#ÍH3ÒŒ4'ÍIsÒœ4'ÍIsÒœ4'ÍI Ò‚´ -H Ò‚´ -H Ò‚´$-IKÒ’´$-IKÒ’´$-Ik¤5Òi´FZ#­‘ÖHk¤5Ò6¤mHÛ¶!mCÚ†´ iÒ6¤a‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰`‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰b‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰a‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰c‰cI`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`I`IbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIbIÃ’†% K–4,iXÒ°¤aIÃ’†% K–4,iXÒ°¤aIÃ’†% K–4,iXÒ°¤aIÃ’†% K–4,iXÒ°¤aIÃ’†% K–4,iXÒ°¤aIÃ’†% K–4,iXÒ°¤aIÃ’†% K–4,iXÒ°¤aIÃ’†% K–4,iXÒ°¤aIÃ’†% K–4,iXÒ°¤aIÃ’†% K–4,iXÒ°¤aIÃ’†% K–4,iXÒ°¤aIÃ’†% K–4,iXÒ°¤aIÃ’†% K–lŽ-9ÿ_ƸùÑÑWG¯|üåÑg÷W'ÿ:Æ·ÿzÚúoÇ‹survival/data/myeloid.rda0000644000176200001440000001603513570767322015211 0ustar liggesusers‹Å] xÇUÖ™¤iÚ" ”¥ˆ ”Ü4IÓ4ólâ$Š?â8ŽdK~˾–dÙ–eûZ–_y8r,ɶÖ•(P €)¥@(” €€R0PJ€¶é/ÏöfÏݽ»÷áä~ßï£Ç9gÎ?3»;»^|ûò«/]~iCCƒk¸xþß‹ðÏÅÿŽßùúŽ]í›·nhkh¸è›pøàÍÈwè|–ùb81_xpÉ|æ›/>_õ×oòåÞ|=Ð|ðÀ|½o¾xð-ÀeÀ·ß|;ðvà;€wß 4ß\|7pð=À÷ß¼ø~à]ÀW?\ü°x7p5ðààZà:à½ÀõÀû€€÷777·p+°¸ ¸¸¸¸ ¸øpp/°¸¸xhK€¥À2`9ð°xX <¬Z€V`5°@ÿ4´kuÀz`°Øl:€-ÀV l:. Øô;€À. Ø ô{€½À> ìúÀp˜‹ÃÀà(ðð$ðð4p xŽÏ'€!`N§€ÓÀ(0ŒÀ`(SÀ4ðÃÀ~ø1àCÀ?ü$ðaà§€Ÿ~8 ü,ðàç€?üð‹ÀsÀ/¿ ü ð1àW_~˜~ø8ð›À'€ß~øàyàwO¿| ø}à€?f?þøàÓÀŸŸþ xøsà/€¿> üð×ÀßsÀßü=ð9à€Ïÿ¼üðÏÀ¿_þø7àßsÀÿ üðEà¿/ÿ¼ü/ðÀÿ_¾|xÙS_ð€ÿþ ø/à¿€ÿþ ø/à¿€ÿþ ø/à¿€ÿþK#þ ø/à¿€ÿþ ø/à¿€ÿþ ø/à¿€ÿþ ø/à¿4à¿€ÿþ ø/à¿€ÿþ ø/à¿€ÿþ ø/à¿€ÿþËüð_Àÿüð_Àÿüð_Àÿüð_À ð_Àÿüð_Àÿüð_Àÿüð_Àÿ¥ÿüð_Àÿüð_Àÿüð_Àÿüð_Zð_Àÿüð_Àÿüð_Àÿüð_Àÿ%€ÿþ ø/à¿€ÿþ ø/à¿€ÿþ ø/à¿€ÿþ ø/yüð_Àÿüð_Àÿüð_Àÿüð_ÀÀÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿüð_Àÿåe?í;ðß9¿fpà¿ÿøïÀþ;ðßÿüwà¿›_7€ÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðßÿüwà¿ÿøïÀþ;ðÿüº°ñ¼ôËG üãÖ’?&ÿQ&sé©,d)^š§" +j´ºzʨ‘EùzyþU(^‘¥¯‰bÕéS¯¨ÈöW!lê$5þQQ/׋qnhªNÕêÔ¨‘M5í«0P×½5z¾:}ê>EÖØn©û„XwR× ukdê>)Ôkú{mW޹uï¸)\ãŒ_¯âuŸ­^… ­®æº›S¯0®û:¡^^­×ØráüzMµ5ÚU¯­1H.ܦ^=X/ÅêeEî­1ü^“Y¸"åë5ùÖk ¨1ÔëNÏׄÔõŠº×ÄöºÏ ¯æz£îm½&cf½þ¨×tüŠ< ÙÝ b—–tÞe,“–ßÅ@RþÎÒF\}ÕØ¤_R]Iz¤ÙQ®î¸óiv¦éžÔfšÒl+çÓrí§åOj«œ YüŸ%.Ó|E¿´8LócÖþËÂç´x(×vþTCYú! çâlJ²½’XË—,:f-—æÏ4$ÙVÎ?I}žÆŸ´x«¦˵]®Òú½RݲÄs–þ/7”‹Ñ,ýY ÇÊé“% Iñ[.®+×,<‹Ó?)ö*‰¡r6§éž6®$Åxš?²ò¬LùÈæØK6·÷´ožß?Ùxþ,—‘kõ“ÿuk6·viö°’µ­kº·v6øÍuód- ó¿`Ûœ—g¾ìeá#^vóüäç¼| ïånæí£|«—ÍCÌO¿M¾èeþz–úžgýǘïí^®¥žg)ç¼|í›`=2ßcLßBÿLQÏ<û{ì/÷SÏ»˜¿ð/wõrð^v6³Ú¡ñšc¾åõØc9JíïOy9PÏR¶ó$óü´—}³^vSÏ¡{9@?oaúÔK”<^Çz®¦]§öò<¾Šòý”ûÏyùãóý0Æ~ß0C{½|ˆúßÃò#¬ý2ü /;x~EÞË´§•Ç“ì‡ úAûs’qÒË|…wx9Jÿ>ÍrcŒû“›Ù>õ뢓7z¹‹õ ßî¥òQýp’ñØA»F™/¿ÀË£Ì7~½—ϼœfúèJêCý&æxþf/oa¾½Í^îæñÈŔ̯ýÕ7Õ{„vŒ°­ZþSôò†~ý¢—›‚¨N0þGh×IöÓêqzÆËS÷0ŸÆÍêÓßâå“´'`úÊýlg3íx†r˜ñ´ŸÇŒ›y¥q¾ïœ—lWDZ½”Slô,ëã8yŠñûD#9î½åòŒë‘»éê1Îü§G=´cˆå¦yy’ãQ. K½¼†ùr³Ô—²z±Üq¶³†å°¿Î0ÿiÆáÔg¨Ç‹Fµ›q9Ìô|“—Ïìôr¬ÛËljå3ÌÏycÛöŽ zs^ªß5ÎvPÏ~òì}lœí·Ð®~ê}°ÀòƒLgI{u\Ôñó0õ*|ÜËv¶7ÎqAǃ3ÔWùz+óína;ÔûIæŸ`­f;'u|aÜŒS?¯G¾@ûÈ+¯‡Ø‹ÔäŸòVý8ÐäeÇ˯¢¼ÜKotÜì¢_ÆhçzÖ3õÖËüëYï×!ÊßÚÙOÿsÜâ<|†þ(ŒÐ?^œe}g˜Ÿý¢óþ)ê5ÁxØ5èåj꽆z¯ê×ÂóœÇÎQæ¢<Èùgœó@á“^¦½¥~½<Æúu¼XMýÖ2ÿelwŒúN²s,×G?ì§^=<žn¦~^îdþgx¹ƒõr¥þ:äx~e3õêaù…Ôk”×ã”ç¼ì:G{¹½–ù÷5ÒÞzy9Ó{©ßäY/÷ÐŽ1¶{†zm§ÜÃrc×Gõš¢ß7«¾”Üo7òø)Æýy³‚õéúÿãNãJçîY/û™>©öÐÎIÿé‡|3%Ç•÷²žQ¶[`ùí̧ý:ÕëåqÚ7ÆùšüP¿é:ø>úå(ùQ >µæŸäñÁ™hù´—þÙÞâå)ês§ÚÏô©^ÞÈt]/ zy€üéb>oOÏRÒOù9/Û¨ÏʾÛc}“Œã㌛Q–%¿u9ÅòêŸg8_ïiôr(Çrœ'ÇÙ/'8¿æø7ÎuÆ—®ã–±þSÔÿúS?ç‘^Ú}†éK–»8j§®ßuý§ã÷0ë×ë—AƯ^ÿfýº¾ØÇã 깋zSŽr¾<Â|O°ž©Q¶G?RÕy/wŸ£}Ô÷0ë;ÉëæýÔ_¯SÆè×®Aó:TÇ­1Ö{'åjê?ÉxÝxyœåöxžzœd?é:¶Rï/L}ÉË!úYçcí§½¬ç0ûuúóÔ‹ú¶³ý!úq%Ëéubeе{˜ë»U<}<Öy_Çÿm ¼<Ê|:þêü9Æô»ißÐ@ÔŽûK¯7´xy‚ë‚Ý´cœå&èÿíÒõRýŠ<Ñyw„ëòqŽ7clw”íg?è}„+xþ(ÇU½“g}«hÇÔ%^öR?Ô®§š½ÜËv¶5Ò.ÊÛ™o÷Y/wœc»Ô¿çտʃ#”Ã\iíÈÑÞ/µ?—Q¿3ä¡Þ×Ês|ÝJ{Âõ(×…‡™>Äy¤À8^Àz§¸îꞣ'§y_g˜í PŸí˜f?ëõªÆYë©1žfÿëõöÓž§^ã§4®vñ¼Î[y¬ó¶®ß;˜>Í8Öûbk™ÎëÞ7¼åœ?Pi6=-Ò/©œMOÓ#-­õg-—fµ~˪oÖvký](UÕÆIÚ¯RýêUO¥öÖ÷•ögÖ_¥zem¿^ñ|¡Æ‰jÛËZ¾Ú¸¨4~+­'©¾zû-k{ÕÎ#Õ¶_«_ê5þUjg­¨5.ë5ŽTÚ_i¿zû%k{•ös½üQí¸Wí8Qo;’òW;>Õk¼­Tÿ¤_­óR­¿zÃõ_­¸­v|ªv>Hk'­½´üuÏß7Üwþqæë§ƒ >1<Öýbz_þ‘|ôü†Bôx…9Ïç™z¦ë>Œõþ|ø\bM“)ß_þ‘ÀçÏyƒ‚Ç‚ø|©÷Ö¨¡=Ü÷dËí£ž­ÔïQ¶û0Ë/‹¶«ÏJêia=ýƒ´“õ,1å×™c– õ9ßÖ÷X>z~K¼ÂóºP÷yЮ’|K™oM‚=mùøô%Fß´S÷+êó Öøò%õíj‰oçQ¯W°IëÍGÚ óés }~Õîë Ÿ7lÑtúcós?_I»ËØns´Ý×´ºàå#Q¿éó…D;‰¶î7zúµDýÜcìÔþ\I»’x£qKý‚Öòz•ÆëØ´ßnôÓ~_C¿¨¿WÏ1=Ún8ÿã¬gÕLyûŸhŽèl1å©Wo´å‰ƒžA/9+L¾ÇÊꓨçÚx¿%æ_õWÉ| vmš+ï®3‚ƒª¬}w6Z¿±>êô-ˆ­Wû¿XŸ÷[ÐÅr—‚<ò/mΫióYqÞž‰O_iô8D¿¬óéÁc åXŸ®G‚aî»Ps_XI9}cITÿpÿË_.è.DÏw°œî/9𜗳½ÃïŒæ7üÍÇ:.­¦]xœ°.)ŽûM>Ÿÿ¤õ€ñkЭ?|φûݓƿb;sñéºþÓ}é>_°˜vé~´m³ñåuÝÅõUq^š‰Ï(WÞOùAú3oüdüqÄÛ©ûiÂôæ˜ûÑJÚ¹ÞøM÷‰ï?ë¥î[K˜·Jê;ò\|;ì÷ðx=ýÕÓìe‡¯?mÝ,‹?ŽÇv²©àÓ7þØiŽ[Ìñã3_꺱8ß³ý–B4]÷Ém™ó2Ç|z=©ï0zwDë/o¾=g}=ºßÐŒ³ÅrÔ‡¼Ò}’áùý;YÞØ{Œùó<¯õx5‹û¦u}ß-_죷–÷Û™_qµ?xõò=7Ë»bÜ7±>Ê-ƾΦx½t¢]ë:_߯{4[>yõƒ®;Ã÷!uš^ïØë c_j{ú¥î×Òù›÷Šó™9^Ê|ÑôÔö6DýîëÓý­+L;&në}|&¾ÞöB4ÝÚ¥ë}^ÿéõOb;v^ßÜâËéþk³®I²?x1Zî‹Óqaw#õoòR÷!ê{§£v•´Ãûºn.òõ‘/á>{]g[?®™‹ï8=Öyl€úr<µõã;êŸp]£ëÒp½o·„ÚOËÔOÔÛŒ¯Åñc.’?L7× úž2÷©‡ùn£>ú~Ô¢èù0Ÿ¾oscüù’üúþC@¹Ø´{‹9¯ïßÝN¹Ð¤«ÔyóQp›9¿(Z>lï&s|+óiÞËc½/pKT†ån`:ë õ¼òÑ/oæ±¹U{Ãc}o@íÖýµË£ùJü«÷™´-×lô×zÏDµœúï}F/-oûÍê¯þ¸ƒõèM·v-Š'ó#ªWÉù{ãë ÷w«Ýê®ËÛS?Øq"ôe`ìT¿¿$¶£~W=m}7¥”_L=4ž”ʯû£z„ã‡íÛ_:Î=µ¿ÄN{?_Ë…|1õjÜj<èýRÕ[ýªú©î¥Ôûš qÚw¯m·!>¿¿ÃõGUê}³¾M_õ‹¾¿jy¤ãJW” £é6ÞÃüúüæ®x;Kã×è£í'ÌWa¹û)íuª~OAûM¯{•wÚ±ÛÆÝ]ÆÎÛ¢ÇÖŸá±¾O ëbõ·ŸÔͯï*î`º¾'cüaçÙ¬ó}x?WçËâíý¤ó•ö³õó &]y§z*oìóå~Rÿ­mˆúc!Ó«¾ Ô>Û?Z¿®7s~q´ž0]Ç/‡Íø_œçh‡'Uomߌÿ!ßÞoÊ_gëc=ú¾Y¸þ¢´÷[TÕÏê¯ýeíÔ~Óq\¯¯´]»žSûóXyjÆQ;Εø[y`ï›i=‹¢õ©¾Åõ>¾œá‡½¶ãuI¿˜q±Ä¿úÜWõÒõ^¿Úq^ý¬<°ëV3¿¨ß“Öú¾lx|wôØ®GJÒuÞQ{65y©ë;«ÆòÐc‡õƒö»–³÷aõºFý¢×›IÏ5Ì:ºtýž/gÖQ zßÐÜ/)gö!†é|.›T®$ø™»tݸgÖKËK^¿¾]ݯXRÏ:Ö£÷¡×2_´]û|&Lï<ŸÎ÷ûÃãÑ\y¿u/ˆæï-x=ö%†ù¶1ŸÆÍog°w¦l¹Tÿë{ðú}É6?sYy}ÌõXæöÚ£vÛ£~ ö%ø¹;ïõò¯ó‡ßiKl§ÇøY¿Fžë¾ÔT}õ»5mQ{Kžûð¹`Iù ~¯ŽßÑ(Žã¹líëwiøœ¿”ù²õØýƒÚ¿•Ža>>_,I7ÏQ3ǃîãÚd*>_Õ}ªf³•ëmôù+o§>÷*M÷åtD©_òþ¼~+a_‰Ý眸¾"¿é÷Ï÷ŸÍæç¢zìjŠ-§ý~kK|¾Ôö’æ­®hzp4W™?rÙìÝï· ïˇ×+Ûüpðîlíè>ß í8ô|Ôf_ŸîçÑq,=Nš}þõÔgíÓï íˆú-üÞÉÎx?…ùø¦ŠûŸßñ-I×õ”ÙÿîgÜã¶%¶ž¢~)ú/f½ö}ƒ®òv»óåÏsL®"ÿÛâë ÷¿íÉUåïŠûçÙ7?7ùöuýÙ§t“ö>CæöÚ›àGÊû¿¯%“ú=ìÒôx;‚>úß½¬Ü®Y_^÷IòûJŸ‰×§4n£úÙý[‰ãöÓë«Ò;¬'a_rø<³ÿ¤âú÷ž-oÇÖlþI,¯û/ú_ŠúOßÏÑï=sž<ž¦è©ûâõ»Ýåõ÷[êzaõÐ}€Ü¿•jßž±ù‚ƒ§¢öê~³~ùàg}¾”Ì;ï·ð»²f\/fýùž„óú¹îèùàxP¾ý݃Ñüvÿ¶Ù/¦ï¯lœ.åýyâŠÚêa¿û)êoýÿÂc½ÿdæ {}Q¬Ÿ~5û“Þÿ_}®¸×ø—߯«y¼OØYl§!ö|ÐÛRUûáw¹Í~òÄü«âÛOæs¡¼=¼_0ý°©|¹ÄúÚ²é ò;|OWhOÊþ’Šõí._Ÿ½þÓ÷oŠñBÿqÿ¤¾?ž0jŸ~o²Øÿ¹êüÜ7­'a_}q¼Œ=~§¿;á|>>=<¿´¼ÿ*¶KÇýîò~I|_Àܯ²ÿÊ–ÖŽvýoTÞÀD·¡]ÔÝÙ­vµï ÿ›•íÝ:ÚµŠ¶öÖîõzª{ç+N]²¦ó•G›ÏE5xcçÖW©ožo}Þà—_þJ¯ÏxÑË ÑÿäåÒ¶ÖîÖ«Öv¶ÎWuþ?zùê×5eñ|‘survival/data/ovarian.rda0000644000176200001440000000340213537676563015211 0ustar liggesusersRDX2 X  ovarian@M€@\À@c€@zP@zð@|@}@}°@}Ð@˜@ƒð@‡@@ˆ@ˆ@‰@Џ@@@‘H@‘¤@’Ø@“,@pÀ@t@v@vÐ@w?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð@R7KƧð@RŸ–»˜È@PϪ͞„@J®¤¨ÁTÊ@I+{J#9Á@L7 „M;@Lwï²-@MíjOv@P 8}¿H@K–Ëûµt@L`Ë)^ž@I_oÒ @MЧæšÔ@L†«6z‘@C¢¶®}Vm@EÈK]Ìd@CrT`ªdÃ@FLÌÌÌÌÍ@Jô¼£@FMÒñ©ü@MËdZ¬@R C,¥zx@E‘‰7Kƨ@Oœ¾ß¤@@P.Hè§@M' ù kº@@@@@?ð@@@?ð?ð?ð@@?ð?ð@?ð?ð@?ð@@?ð@?ð?ð?ð?ð@?ð?ð@@?ð@?ð@@@?ð?ð?ð?ð@@@?ð?ð@@@?ð?ð@?ð?ð@@@?ð@@?ð@?ð?ð@@?ð?ð?ð@@?ð@?ð?ð names futime fustat age resid.ds rx ecog.ps class data.frame row.names 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26þþsurvival/data/leukemia.rda0000644000176200001440000000056313537676563015353 0ustar liggesusers‹í“MKÃ@†7›Tm RPèµx¥ÙôK[AÅ‹<õº´[(&)4©zìOöT7ÍÌØ$ToB³ï³ÃìÌfwçån(ì¡Í㌌›-®ƒ±jY«)}O'1j;ÖVœ±õ7¸È¨í‚^ƒöAoA–‰>Â|\Oô”¥µžÑsÐf¦Îè èòß/SõpÿýÏd‚Šß_ýÛâ¶iÑøŸuf%Þ?[_ÏÎÆ‹Yêú<õ¦¼PS"b¯ý$§A¤MÁSyžþ†3•¤4òdˆ9(óDŽ¢Ù\Ó*H_a¸ N+šú —†‘Œ!ÌŒÌúò|öÞØÌQƒM‚@pZm„B¡‡p À&‘C$ˆ\¢Q›¨CÔ%êQ A5ÕTC¸Éß›_™óµÇ2’É\ÆÇ–;ã#O-^•?•ûÞþÝ¿-îÿö6Ç—R¬›s,×ÀFìÞ³%\²oÑøÙêžðâf‘survival/data/mgus.rda0000644000176200001440000006367113537676563014543 0ustar liggesusers‹í½]g™ç}ll0Ð;ã]z°qR+Oò±ÉÁÐ’ ˜hµ²lÉÊÁ¹•³ÔIìDf†0Âöbl´m°MÍÌŽ ¨Úa—ÚR­§\hÖµ%.{КOÒùÿž«ó?ýö¹­’½¾UÒÓozòó¼áÜûžo¹¾åå׿¼V«®;º6zÌÑ?ÂZmTmlíìc…% V¯¬ÕÆüþÑ¿Ï9úïUGÿýúªÃµãŸ¬&x–`“โ¯|`³àϼ@ð"ÁK/¼BpœàxÁÁ ‚' Nœ"8UpšàŸþ©àŸ þ¹à_^%˜ÛsxµÊW«|Êרüf•߬ò[T~‹ÊoUù­*¿Må·©üv•ß®ò;T~‡ÊïTù*¿Kåw©ün•ß­ò{T~Êת|­ÊïUù½*¿Oå÷©Üªrk&H}o§«}ºÚ§«}ºÚg¨}†Úg¨}†Úgª}¦Úgª}¦Ú¯Sûuj¿Níשýýj¿Ú߯ö÷«ýjÿ€Ú? ö¨ýƒjÿ Ú?¨öªýzµ_¯öëÕ~½Ú?¤ö©ýCjÿÚ?¬ö«ýÃjÿ°Ú?¢ö¨ý#jÿˆÚ?ªöªý£jÿ¨Ú?¦ö©ýcjÿ˜Ú?®ö«ýãjÿ¸ÚoPû j¿Aí7¨}–Úg5 ªß¬Y‚ê?k¿ ãæ°MãÛ4¾MãÛ4¾MãÛ4¾MãÛ4~¶ÆÏÖøÙ?[ãgkülŸ­ñ³5~ŽÆÏÑø9?GãçhüŸ£ñs4~®ÆÏÕø¹?Wãçjü\Ÿ«ñs5~žÆÏÓøy?Oãçiü<Ÿ§ñó4~¾ÆÏ×øù?_ãçkü|Ÿ¯ñó5~Æ/Ðø¿@ãhü_ ñ 4~¡Æ/Ôø…¿PãjüB_¨ñ 5~‘Æ/ÒøE¿Hãiü"_¤ñ‹4þF¿QãoÔø5þF¿QãoÔø5þ&¿IãoÒø›4þ&¿IãoÒø›4~±Æ/ÖøÅ¿Xãküb_¬ñ‹5~‰Æ/Ñø%¿Dã—hü_¢ñK4þf¿9tÚ>>Gž$¯’ïÈ3É›äá™ôSýµV^ò+ùž<Ì<Â<ãyžy…2ó óy~:|õöÝþ™˜Ï÷½Ö9ZíÅqàaÀG?äcG1ï"ñ ×õ¬˜ïXLÏú¦Ãü ¿ï´qè›õCi¼ð²~˜|Ö=¾Ó`Øú6žõtc"ˆÝ€È]ü=²^ÖiØ?e|¯ŸµWȽ°£ñ…ýX¯¡Gô€ßLÏŠýÐõøö Q;ö#Ž[kÅqäô ~ú£ôÂzyX'½¸?á?3¬?ë×’?‹~íëQè°Î ¹€çëLÖᬳ±ù¹ÐCăõó|ÿð ÞÏÊàaxð3ì†<ìð{ä¿Fýúy‡õ‡|D~ô|_Èû^ë=‰ô }ô¼à™Ù[”+Öó&¯çøEoô? Gø û-ÆA{Fž7¾ÃníÅþ´û~޼*}ÙÞùŒÅm³ç[24Pùª«ßþÖæ«¯kžÛ¶jÞ KMèÏÝ^¿ò(üõñ^ù¿Ñú7êèmþoTýûÂáøúê×;ÆôE?5¦¾ûÂ5ºñ}•«øNÉÐU´úÓs#íàë÷¾þ5"c>—jïÏGÑõ@ëOÆ~ýÅ@•>â¯'à(¤€3Ï[3oñÊZžFS;Þ’¶ÅóâˆíØß–:æ,n[ɰ@6¿mΪ¥+ò®£g­cfÎ[W;žMòCºHr­í9¤<=³²CÚ5ޤï‹÷VïŸõM/‡ /“Hª=ÅG©^d‹pÑŸáò©Ÿ/òJô­½ÕúÁw«—‘ÇøŽñcqžà/ä«õ=Þñ¼ÏÊn×kmœë±„?ë¿_«××ú†®‡Ö y\^9οûãÅœñã›Å’Ÿ%äMéÅE~¨êv:*㿎×åˆ8LÕ³¢Ü¥8LÆýM.ðy<…¾L¾’>{­ÞùmOÀZ±ìý£ÜÛwy 0™G&ùȃÉCù!†Éüí°ª}°Ðñ׉/!—ëµµfýå—¬îU} ô_-_]ŒÕßc)S×ϸc}Æœ8ÖÛSå*ÜÈãcRãR¸ûù{T_ãûàyt}ò¤ú1'ü=ÚÛúWý«i•Ø@¿ï}ñÚè¿~äìÓδÕNÐC o#|Õú°Q­¨¿±µý¥}ÚÀñg_ãkuŒ‚n¾ôÃÒ{¬–Þ£¯¾–¿ÞÓÊ_×^]›ëKöXÐ[µçGùw>Fèe_ÈzÖ'Iy¸avßÿ>N/ûÆèÝì¾7åõܚïÿ4‡{Å øËî¾/Çs_þ,>Û|°Hw÷ãýâÏêî¿ýK«úlÏÌߎ?ûÑŸ¶÷Iç3çäí.½ì«¿×7ß?¸¡ïúO~­ïúo§ïúý}ë%Ú¿ù™B{ö…s+úÿtPúÌ>³-×Ó7hO¶æñ¼ÿ=+òù7ùwI²zúç÷À&—ð“ïüÙ ä*á»g\Îßç[‡oö•ÞÆôõÈåC*GÃüuõœÎ¹¿gû/ë·öÈOÛOlϾՕû^þžì+.ŒÏú¿íýá+ápíñþÙƒ·‰¾²‡Xä÷ó‰¸þâ³}×ø¯¹\?¸¥ïö{ó<–}ù¿ ¿I9>ñÑáÏöLÈùoÃÊgÝïÎê›þW¾›ëë‹wÚ³¯¾±Xþ¦žñ÷}ÈöG­+–.X1oåÊEKon^µ´ùí+–®^Ö<±ù¢¹m·¬¼¸vÂDžm•| OÜÙòÖ~&Whö¥üËiÙú¿Ìaç÷sø¹ö~á©~÷9ütž˜ã˜€c„ó/5d½r¼!ûá¯óò½KsøŸ›rxÿ«Å&òo2‡w¯Q¿oiœøþÎâ#Øœ}ï÷5~¡Ú¿¤þ(>ÿ ‡Ÿúšê_–Ã/^¯zÉ÷èe9Ÿ56/?ô`^æ;v½÷J÷ÕüK}ÙOäð[àÿf—«þóù—›²’ë^Ñë}sŽÿ®qâ;_8d<‘×)Ÿ(³·äpÍ~ÑË‚f_ÿ¹ô”ZvO[׿Fô´@úIþåìSù—³oæQ¶o®øX‘·?4!/[‰ï‡Û…çÒÇOrxßÓ9ü~þÐ){ —ý@zûÛÿ’ÃOiâûÊìò˻ޛÕÿ¡>,9îû]Û¥ÏGógöåçsø ø|ð¯r¾ÿ~o{ÿAúËSöÅÿÃ/<"ýHk›sxÿÿÉá_ËŸ¿ª {Ý'¸i–ÆoÝïçô–Þ³_ræ›Ý+¿ýÚ¿äPyö ôùiÅÕßÝ&:’ï-!y[óú‡/—•É¿œ=¼,oÏÃù¨ß©¾}\^›÷{ð‘~{žäýÇ>ªxß'¾¿öCéE~s·ð}Zz{´5‡_’ž¿¡¸~ìõ9þÇÎÉá×gnÉËØéÞ7äðòƒ¬¦~ù!ûžâòGï—þvåðï®ÑøUý‡E÷Õù¸û”'zäåûß'¾eŸûþ(‡Û”G?!}ßýé~Eùñ»Wçð;ÒÇ¿úñ™Ÿ»gÍÊá·^ŸC桇ò…[öŸ¤§G”7{•—îÍ¿L}4ïçðoçðÇgçð‹Êgh{TúüKÉžn’\ò«{¥§¿ÿ·¼]yömå¡ûo¯åŸ>'òW½méâÅK×^þþeÍ×-ZrÌEâÁÙU9ƒµ—`òy±ñ1Ôø^èúx±@>§šî©âã…®Çá–‡ÏKz쟿Fùö~UãªÛµ“>sþñÏ]ÇënÑG}òØçSÔǯÏ^6áø'ÊgýñÏ?fg«ÿ9ª¥Ê5µŸ¡2ý÷ ÃçíàƒçÇùx¥ñῚ{¹ÉéåW ?|Oý¢}¬èQ<Çô1Öä/úu~KøTÿïLONÏéš\Iù4ÎõÒxì¶ñÿê"¾$<ËàXÉS3þ]_ôýàçÕÆÛ‰ñÁŸù1ü»†š?F?âçL£ãþB=ð k‡Ÿ±E;”ìuNÂðã~ _cŒ>v0;¤¿ø¹êyõÃ>è1á'u:†¹¯¨OÆ]uÄüp¬ùƒû |¾Ìôz–á¾é)Æ¥üÌãÒÛŽû‹çE ç±”ǘ\ÎwjöęšÅqŒ?WãÈOŒƒÆ•ø0y¡oö :èÕç‡W™#O*¿Ä|T´[Œ÷ø~…åèw©vk«þM6ÞåCÒSb'ýÊ™óV¬^Ò|õâÙ«—,Ò÷Ùó‰ûªß ^õëÑUO+€©ü”•‡s€ÁX­X_”ÿkÃ/~¢ý™\àh‡žóåü9Þ'‹ŠK•éï‰2‰×ø*éÑõû„äû­ÉyÈÚs¦ç”ÞÑå§MOÏíãr=µGâNɉž\ô²Â^Ï_f÷’¾‘¼&ôGŸ ¹\_Ñîò™Ý_öZ““þ®/§ëøç×õêýJzÿ}ËWgñRÂç~–ˆ÷’þž"Ášߨëé"ß>ˆÆ™ýª /PKyʦ¯°³çC÷3·oª=‘7¯Çû£Å{ÒÌÏ*ýÓäcaý=¯˜ÿ”ì›Ê/Oš}Ï~ ÷s>S|»ü®OÏOøaJŸÈáñ÷´‡oêwS>q¿yż¶U‹n^t³Áµé¾Ð|ù-:® ÏT¿ìRÁ+/R¬^®~oÊyË.ž‹U¾Ë§ö Ô¼—Ñ<ô7<à¿úêÚÁs©ê/Tä¹”ñÐANk‡>ð|Ñ£ý’ĸ7™üèébã>ÑÇù‚è|è)ô ª¿ÂúÃô€Ô_ªñ—‘ÓìÞ+áÃÊãÚó20ìntÑöïó /þ]Ð õ—šüÁ·Ë¥úCõ—Y¿Ð'zÄžèWå+U¾ÀäOè=[\`ÏG?Õñ®HºXxÐãÑÇe&G³É‰^è þex.6zçaì€~ðoô‚£‹3ô8¹/zðër¡· °'eô~üyчåâ'äWýy‚»@ôìq‡Üáø­Å|G< ¾Þø†ÎeÈÁ•YЉx‡.ùÄýE{ ·ÈËæç‘Ìo/6='èÃãó2Óñt¡ÅþÊüqmq÷GæßW`äEŸÈ¦wø"?Œ³x÷Ú"~äENê#ÿ#þbö"~àKôs÷Ëß1oÉÒ‹—Î.YÍWaÅJስS¯•I±è$V,Œ{ÞðÄQœúyè°2wh|Æ‘ØÆÇã'µ2¥ßsÅ2GÁ¿èÃ7tc¼óéúsz†/ÆÁ/ü˜~8RcãÁÿ\‘ï8úeò9ÿn—Cê/}—ôšÐ[ð‹|cŠú>(× ùcðã~Äxá¯û¡éSz º¶£s½„Ý~[Äër…þ‘ÏÛSq?ñÈ@ðŒÿŒª¨—’ÿ¸þ ÿ³"žè/þÝ_‚îsE~Â_|œ÷ÇôOÅ=2‰|‚>]~Ú?ªH?vŠÈù²"ž8QB/ØŸüq”k~ZŠ·w*x»éÍåp}–vl–Gb¼Ù+ú§ò‰ã?Œ],_yÞµ|PŠÏg >[ä'ôú.ŽúÏXÙìæÐó@àóøE/ðûtßv)åEü+e?çýÀÿo¬ÿ;n•_{ùÌe‹nÒv»xíÃÍmKæqíÃ9ü~lÑ\®xh[À¥cVÎ[Çýs×ݲ‚¿—Í™Ký™Ëæ¬:öÕ6~k¶ú„ÒsnúÚųãÞ‰c§Ô/\@ý™KVæ,Ø={ÅÒµWœÈò¯Õ0j<´ðÇþ˜È“øc2Lá©ü1 Œ¿Z⯠ñ×ÄøkRü59þšM¿‚FKÐh -A£%h´– Ñ4Z‚FKÐh ‚Æ„ 1!hL‚Æ„ 1!hL‚Æ„ 11hL ƒÆÄ 11hL ƒÆÄ 11hL “‚Ƥ 1)hL “‚Ƥ 1)hL “‚Ƥ 19hL“ƒÆä 19hL“ƒÆä 19hLS‚Æ” 1%hL S‚Æ” 1%hL S‚Æ” 15hL SƒÆÔ 15hL SƒÆÔ 15hL Ó‚Æ´ 1-hL Ó‚Æ´ 1-hL Ó‚Æ4hŒ?n\ýÏñõ?[êN¨ÿ9±þç¤úŸ“ëN©ÿ9µþgÚø:µñujãëÔÆ×©¯S_§6¾Nm|Úø:µñuj-uj-uj-uj-uj-uj-uj-uj-uj-uj-ujêÔ&Ô©M¨S›P§6¡NmBÚ„:µ ujêÔ&Ô©M¬S›X§6±NmbÚÄ:µ‰ujëÔ&Ö©M¬S›X§6©NmRÚ¤:µIuj“êÔ&Õ©MªS›T§6©NmRÚä:µÉuj“ëÔ&שM®S›\§6¹NmrÚä:µÉujSêÔ¦Ô©M©S›R§6¥NmJÚ”:µ)ujSêÔ¦Ô©M­S›Z§6µNmjÚÔ:µ©ujSëÔ¦Ö©M­S›Z§6­NmZÚ´:µiujÓêÔ¦Õ©M«S›V§6­N­žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤¥žKZ깤åh.)®_6éŠ%m«Ž®Gÿþñêëò*Á㟾ÚT«_‹vÆÕ‹­‰[ÑÞ2¯mnŽÿŒßYÇ3×´-^}tÑ©Òñk-AŸ·þ±¬ÎW»Ñ¡tÃËç¶­j»bþж%}®Ê½ᨬÇ_‚ðªüߨñ±·ªé—!Çlœ`p¢ÁI'ìËü% ¥—)ÛsxuÍ ê¯Qù•ã2N ê“/YªÞ_¶0ä/]¶aò% Àö"ðK€´÷æ°êž¿é½E8Cý¸OoF»Aõ›©~33ƒê7SýJ/oª—Œ7ú2‡¡z©Céå@õ¯|ɰݠúÇK€™Aõÿ°ú—^T?^QùR ú ÙË!€™AõôË"€sØ&<É—F…oÄ_ž9“z‰Dée@áM¾T(¼ñr àÁ"Œ—M…?^:†_>l6(|ƒ~Pxâ¥@áó—ST¾¤8Ë ð–^ZõRŽª—sT½¤˜zYGÕK;€U/ï¨z‰0ü> ‚÷d_êá/÷èK>€o7HüùK?úÔË@€©—‚‡úå @—¡zYÈ@_DÞyÐè%_"ÌŠÐ÷Eì?ÙW¦^.â/zœD\·á@_>â/!ê—‘ý¥$U/'©zI ÐïÝM½´ÄóôH½ÄØJ½Æ“w¨OåÃÔKMFúå&U/9iMô÷ó ó•ùyíø}Ç£ŽB:áßèZá- }¶ù¿Q}ôë«nt¢O_ýOfLžòÜŸÌ}ñÖ(þFpöWר΂¿?Þ½2õ§Ó”ÎRºêKîTŸFlPÕ¯‘úÈ5'cÇØ²Ñö*ßëK†”>Rvlä_#±rB{á¾çÊ÷·ôóö©ÓkÇ?é÷fdVvH;ãUèûYJt×Û÷8Ÿ§}ž/½?ÁÇ%ø.Õô}ïÇs†ÁKã|ÝÒè{_*ßÿLÔ»¼Ç ‹sÿ„%=%ú§èø{bJÏ Ä¯Û¹„Ï`ò½ Yßã*ñÕú‡¡×ÌÆÓ/Å—àɾg§WõÞ?OI½‡&âÄùIÉeü¥â~JÏ™à»×ÊYqÜ@ßWãï­Iõsÿk5~\¾Ê¸fõF§ÕÊ%=Ó/+ÂRÜRïü·WÀZ±ìã\ÞTž-å£!‚Uñwª`%ÙÉÁÊç¥#“ó¨CŸê7ÔÐéÕ‰¯× á¯òËÖš3hqÇ>U¥ãë½cô_­¾¦Œw™ð··Ø§|ñNý+áí«uÐ=Q©ñýá©¢Ù@ù¸®R8rVÚ­Š÷ÚŽëÛêJø§Ï'â¨úW+îmF5пOYSr5ú/5¾ÖÞj}Ø¥Öû£Û(ÿ}Ñ<¡ÍíÐ'îÒ4úIÛ¦è xjE†¬µÈÃ÷^"íZÏÌ Sºe¤/côKS—3ú%©ËòòÆä冉ö¸Ì«Ñ˽äñÓ·_ö8Ô—>úåUüœmòä¥^™¼$òl“»ÑË"V]™ºD²ÁË$‡ìRI¿\r —Lúe“©K'Ï4~½„2ueƒ—Rùå”cüa÷Á^V9ÐK+Oñ啾ÄÒ/³lôRËŠË-Sü¤/½&òû­ûá²Ë0S—bV]ŽYuI¦_–Ù襙#|‰æI_¦Yu©æH_®Yqɦ_¶™ºt3uùfýNýúà7E:§ìŽM`ê®BñYº{øL.é.N ü¹.Oêδ'ûÖoò®I«¯¼³3Eßù7ý¦îÞò»ÞéWݘ;T7èúMº©u´ßt |®X_ºa·Ñ›v©wÝNƒ½y7¡ÿÔM¼×õô\QÞª›y«nè :‡4¾t3§éËí`ö(ÝhÚà ¾É›|Ÿ+ò•¼Ñwˆnö-Ýð;À›~ýFÏäÍ¿vpÃ7§ò@ÕÍÀÀ¡¾!Øo êƒ=~}¼ßtËøStƒð@o.ÝLÛèÍ©†=o¥òAÊSy1u±Ûaˆo$NÝL\ò'Ï»ÀÔMÅÀÃj?Œ?H>¿¹8qƒñpßd<Ø“yp„o8®¼é8åßvóqêäÒùØÖY¹={Öåðü¡lyk?“_c”})¿v,[ÿ—9ìü~?מÃ/<•Ãï¾"‡ŸþLãWBò›óëQ²Þ?9ÞÝ÷¿óòÃoŒÎá½KsøŸ›rx_¾1Ìîµø¼%ÿÀ­yùë?Íá·?™Ã¿ÍºÙÝk„ç[Â+y¿s‡øÎ¯‡È¾÷û»Pí_Òøû4îÅÇ4Éù9Ü|0‡Ÿúšú½,‡»Ïá¯W»ôõèe9ß•;@öP·àƒy=·°õÞ›ÃÏiü—Våð«ùõpÙOäð[¢{`¾è3‡ËÕþù«]z¹W|ô¾9§w×8É+>y¢½@ïKßÉáþ4¯ÿqK^^³_|\×&Ð’}ýç¢w©ô÷ßrxO[׿Fí²çOòëf²O]$ùò/ÌdßìÉá¾¹âwEÞïòχ&äðÛêÿÃí9ü$úx§úý$‡÷=­þ’çûoÎáùÏϳÈû%÷ßþ—~*¿þ/ûÊìr[à7åßw?*zù58ÙÎÕø‡rø°ä¿ïw9lß”¿>ª¸ûòó9|Pr=øW¹¼¿7‡½ÿ×?rK¿ørø™m¢ûˆð>Ã{¤ßµÍ9¼ÿÿäð¯§_Õ¸5ç?¹çcâWåM³rø7ÒÃ=›¤7ÙçÁïçü=¬xºg¿ôõFéEýïU~í_„o¥ ôý ì÷iå—ïä×fw›ø‘žîQ<~^åÞ¯åôlÝü:Äì»Ërøh~böuÉyÏ8ÁÂÓ*}H/sj9|ìËÒ—âí[jo^’ÓÝ¡|±_ñ÷•^ñ½6‡?’üÜ.ùÈêþðY•/½ÿžÃíïÍ9ü öžý]9üžâüž_æðû.‘ücrøÐÃ9ŸÛ¾›—ïÿŸ’GñÐ-¼ÝòçïÌa‡âxýrëØÝŠ·{>+~.ŸÊá'¯÷ÿ“äz,§ÿÈOÿG÷Joß’<>!¹d¯GZó~_ɯçË–žþZóÐCÿWø.Pû²¼œ§µ£ñ¡úöqâ[ø\›÷{èµ9|PóǃäåoÏ“þþ1‡*_ì“ü_ûaï“¿Þ-üŸ–þaŽçÑÖ¼ü%ÙïóÒÛ77½>ï÷Ø99ü¢üáëÊ#nÉëñ‡ÿ5‡÷¾!‡?Pøü1«iœèß+üžòЗ•‡~”_ƒ”}uWÿîáýWÕKß½:ÇsŸòg|ÿû$¯üã¾?Êá6ÍSŸÐzá²ïÝŸÎáW4ï|÷ê~§7‡_ÜwPô¿"9òŸ{fÍÊáÿ-‡ßz}YW<$ÿûO­9|DóQ¯òÕ½ùµ§GçÝþÍáþøláUÞ@ë’Geîü‹Ù_JNìõp“äQ<Ý'ÿâÝ¢'½þý¿åý¿úÇ’KùðÛäéüZ·ìþÛkún¯} Ž äsªù8]øiz§äsªùx±B>§š*~N7>_¬ú?] N5?/»¥øNÕW|¼Ü–vl#5ºVÿÕ÷@ÿî‡×õÕ§Q|}á=öoT?8½®º£4«øOñ1Ør²ŸX7ªúFyoÔ~òÔ¨žê}õ;O•‚·J£jýëªÊfÚ¥½Ÿx«X#¸«hö§ÇFdé¯ï¨ :'Ê‘ò‘„î ¿BïÉçÌ»yåRÞP8fÙœ%öZ–Fƒ^³ÏFúó„(ëYB¹ß›Še=Kˆ²ž%DYÏûáYBiŲž%”ÆéYB%~=K¨ì§³ýd»ž% ÕÇéñ,!Ù_Ïêü\zrtõ,!Ù®g Év=KH¶ëYB²}ÿzŽ~z–Pª×³„êñ?­îÔ=K¨ã}``ãõ,!Êz–Pê§g QÖ³„Jüz–PÆ·²ÿqz–0Ôž%DYφ ¿ž%4Ü_ÏNÕ‡g ÷¿»ŸcÞšy73þŒ£M+(Œwóê%9ã/;Êøéý¾è3uxeM—¯þîwÏÿÓÉ¿Gº¥–¿Gú¹g,tkŽøû£u®Zz_ôDA/ô`ß]zÿs{¯Vùj•¯Qù•߬2ß¼ã}S¥÷<«ìïw²÷:«œ|³Ê~o3õ½9œ®öéjŸ®öéjŸ¡öjŸ¡öjŸ©ö™jŸ©ö™jçý_©÷0W½y°ï]ð{–Õ^z¯²Ú+ߣ¬öÊ÷&«}ÈÞ—¬ö!{?òÁ¶i|ò½È?âïCÖø9Ÿzò\¯|ï±Æû{Ž“ï5Öø†ßg¬ñCöþb¯z_qò=ÅŸ|/±Æû{ˆ5¾á÷k|é½Ã?ìïÖøÒ{†5Þß+\zŸ°Æß¬ñ7küͳÆß¬ñK5~©Æ/Õø¥¿Tã—jüR_ªñË4~Y“ ð,'(|ËZ…wÙ2Aá_Ö!(:ˊ޲ǡ{8‡ËE¹è/ý墿\ôù…ÖrÑ_.úËE¹è/}~´\ô—‹þrÑ_.ú+D…è¯ý¢¿BôWˆþ Ñ_!ú+D…è¯ý¢¿BôWˆþ Ñ_!úz˜“­ý•¢¿RôWŠþJÑ_)ú+E¥è¯ý•¢¿RôWŠþJÑ_)ú+E_í²U¢¿JôW‰þ*Ñ_%ú«D•è¯ýU¢¿JôW‰þ*Ñ_%ú«D•è¯ýÕ¢¿ZôW‹þjÑ_-ú«Eµè¯ýÕ¢¿ZôW‹þjÑ_-ú«Eµè¯ý5¢¿Fô׈þÑ_#úkDè¯ý5¢Ï/ÅÖˆþÑç—GkDè¯ýµ¢Ï/˜ÖŠþZÑ_+úkE­èë¡L¶Vô׊þZÑ_+úkE­è¯}}y!['úëDè¯ýu¢¿Nô׉þ:Ñ_'úëDè¯ýu¢¿Nô׉¾Æd·ˆþ-¢‹èß"ú·ˆþ-¢‹èëË Ù-¢‹èß"ú·ˆþ-¢‹èß"úzˆ•Ý*ú·Šþ­¢«èß*ú·Šþ­¢«èß*ú·Šþ­¢«èß*ú·Šþ­¢›èß&ú·‰þm¢›èß&ú·‰þm¢›èß&ú·‰þm¢›èß&ú·‰þm¢¯dd·‹þí¢»èß.ú·‹þí¢»èß.ú·‹þí¢»èß.ú·‹þí¢»èß!úwˆþ¢‡èß!úwˆþ¢‡èß!úwˆþ¢‡èß!úwˆþ¢‡èß)úwŠþ¢§èß)úwŠþ¢§èß)úwŠþ¢§èß)úwŠþ¢§èß%úw‰þ]¢Ï/Uïý»Dÿ.Ñ¿Kôïý»Dÿ.Ñ¿Kôïý»Dÿ.Ñ¿KôÛE¿]¿jíúåj»øi×/Vù…Y»~yØ.þÚõË­vñÙ®_Hµ‹ßvýBª]|·ëíâ¿]¿Ðl—üò°]òðKÒvÉÕ®_$µK¾öÇ%gû? JÞö_ "·~¶^ò¯—üë%?¿Ü]/ù×Kþõ’½ä_/ù×Kþõ’½ä_/ù×Kþõ’½ä_/ù×Kþõ’Ÿ_ž¯—üë%?¿P\/ù×Kþõ’½ä_/ù×Kþõ’½ä_/ù7Hþ ’ƒäß ù7Hþ ’ƒäß ù7Hþ ’ƒäß ù7Hþ ’ƒäß ù7Hþ ’ƒäß ù7Hþ ’ƒäß ù7Hþ ’ƒäß ù7Hþ ’ƒäß ù7Jþ’£äß(ù7Jþ’£äß(ù7Jþ’£äß(ù7Jþ’£äß(ù7Jþ’£äß(ù7Jþ’£äß(ù7Jþ’£äß(ù7Jþ’£äß(ùõ%–l“äß$ù7IþM’“äß$ù7IþM’“äß$ù7I~~Q½Iòo’ü›$ÿ&É¿Iòo’ü›$ÿ&É¿Iòo’ü›$ÿ&É¿Iòo’ü›$ÿ&É¿Iòo’ü›$ÿfÉ¿Yòo–ü›%ÿfÉ¿Yòo–ü›%ÿfÉ¿Yòo–ü›%ÿfÉ¿Yòo–ü›%ÿfÉ¿Yòo–ü›%ÿfÉ¿Yòo–ü›%ÿfÉ¿Yòo–ü›%?76l–ü›%ÿfÉ¿Eòo‘ü[$ÿÉ¿Eòo‘ü[$ÿÉ¿Eòo‘ü[$ÿÉ¿Eòo‘ü[$ÿÉ¿Eòo‘ü[$ÿÉ¿Eòo‘ü[$ÿÉ¿Eòo‘ü[$ÿÉ¿Eòo‘ü[$ÿÉ¿Uòo•ü[%ÿVÉ¿Uòo•ü[%ÿVÉ¿Uòo•ü[%ÿVÉÏ#[%ÿVÉ¿Uòo•ü[%ÿVÉ¿Uòo•ü[%ÿVÉ¿Uòo•ü[%ÿVÉ¿Uòo•ü[%ÿVÉ¿Uòo“üÛ$ÿ6É¿Mòo“üÛ$ÿ6É¿Mòo“üÛ$ÿ6ÉÏ/¤·Iþm’›äß&ù·Iþm’›äß&ù·Iþm’›äçþÛ$ÿ6É¿Mòo“üÛ$ÿ6É¿Mòo“üÛ%ÿvÉ¿]òo—üÛ%ÿvÉ¿]òo—üÛ%?¿\ß.ù·Kþí’»äß.ù·Kþí’»äß.ù·Kþí’»äß.ù·Kþí’»äß.ù·Kþí’»äß.ù·Kþ’‡äß!ùwHþ’‡äß!ùwHþ’‡äß!ùwHþ’Ÿ›#vHþ’‡äß!ùwHþ’‡äß!ùwHþ’‡äß!ùwHþ’‡äß!ùwHþ’§äß)ùwJþ’§äß)ùwJþ’§äß)ùwJþ’§äß)ùwJþ’§äß)ùwJþ’§äß)ùwJþ’§äß)ùwJþ’§äß)ùwJþ’—äß%ùwIþ]’—äß%ùwIþ]’—äß%ùwIþ]’—äß%ùwIþ]’—äß%ùwIþ]’—äß%ùwIþ]’—äß%ùwIþ]’—äß%ùwIþ]’·äß-ùwKþÝ’·äß-ùwKþÝ’·äß-ùwKþÝ’·äß-ùwKþÝ’·äß-ùwKþÝ’·äß-ùwKþÝ’·äß-ù¹‰i·äß-ùwKþÝ’·äß#ù÷Hþ=’äß#ù÷Hþ=’äß#ù÷Hþ=’äß#ù÷Hþ=’äß#ù÷Hþ=’äß#ù÷Hþ=’äß#ù÷Hþ=’äß#ù÷Hþ=’äß+ù÷Jþ½’¯äß+ù÷Jþ½’¯äß+ù÷Jþ½’¯äß+ù¹f¯äß+ù÷Jþ½’¯äß+ù÷Jþ½’¯äß+ù÷Jþ½’¯äß+ù÷Jþ½’¯äß+ù;$‡né:tÃU‡ôÑ¡›ž:¤—Ž× J?º¤CzêÐ $ãu³P‡ôÖ¡:2Á·Jº¥£Uð:AéµC7¯tÌÔÍ$Òs‡néX&¨›—:¤÷ŽÛÛu3P‡ìС›M::u“M‡ìÒ¡„:ö êµÙ©ã‚uÃY‡ìÖ¡b:z$(;v謎Çu3K‡ìÚ¡x: ꦩÙ¹C7ñtÔ HØýH;k‚²§ìß)ûw6 Êþ²§ìßÙ,(ûwÊþ²ç8AÙ¿Söï”ý;3AÙ¿Söï”ý;[eÿNÙ¿Söïœ%(ûwÊþ²ç2AÙ¿Söï”ý;ÛeÿNÙ¿Söïì”ý;eÿNÙ¿s¿ ìß)ûwÊþeÿNÙŸ;{eÿNÙ¿Söï|\Pöï”ý;eÿ΃‚²§ìß)ûw”ý;eÿNÙ_?"ɺdÿ.Ù¿Köïj”ý»dÿ.Ù¿«YPöï’ý»dÿ®q‚²—ìß%ûwe‚²—ìß%ûwµ Êþ]²—ìß5KPöï’ý»dÿ®e‚²—ìß%ûwµ Êþ]²—ìßÕ!(ûwÉþ]²×~AÙ¿Köï’ý»Êþ]²—ìßÕ+(ûwÉþ]²×ゲ—ìß%ûw”ý»dÿ.Ù¿ë° ìß%ûwÉþúeÖ-ûsT·ìßÝ$(ûwËþݲw³ ìß-ûwËþÝãeÿnÙ¿[öïÎeÿnÙ¿[öïn”ý»eÿnÙ¿{– ìß-ûwËþÝËeÿnÙ¿[öïnäf8Ù¿[öïî”ý»enëÞ/(ûwËþݲ÷AÙ¿[öï–ý»{eÿnÙ¿[öï~\Pöï–ý»eÿ²·ìß-ûwä<Ù¿[ö׳ٿGöï‘ý{šeÿÙ¿Göïi”ý{dÿÙ¿gœ ìß#û÷Èþ=™ ìß#û÷Èþ=­‚²ìß#û÷Ì”ý{dÿÙ¿g™ ìÏͯ=²O» ìß#û÷Èþ=‚²ìß#û÷ì”ý{dÿٿ瀠ìß#û÷Èþ=½‚²ìß#û÷<.(û÷Èþ=²ÏAAÙ¿Göï‘ý{ Êþ=²쿯&(ûï“ý÷Éþûšeÿ}²ÿ>Ù_³ ì¿Oöß'ûï'(ûï“ý÷Éþû2AÙŸì¿Oöß×*(ûï“ý÷Éþûf Êþûdÿ}²ÿ¾e‚²ÿ>ٟ쿯]Pöß'ûï“ý÷uÊþûdÿ}²ÿ¾ýµü3úø÷hãûˆ|Ï‘ïò=Êø~"Pòó}F¾ß8ÓÊÞïMò½HðAq|ŸÒ¿ŸÉ÷1ù~$ßÓä{’ðxl<üð=QäŽïq‚¾ _Èc||Ðúó=P§¿3B~4½MÏŠõèÇ¿— >ôÌ÷^Cïµ"àEÆÇ÷d{‹ýÁr« »¿èézÃÇ÷^þ]ßÈO}È­2ßv<ែ×Yÿø^®êù^qàgòX{èYõ¡7«ç{Î1./âPõÄ!öÁoùÞ3úENêÑKø¯Õ‡þ?•ñoä¡|¼ß¡úñýnìÆ÷¶Kß§6yf´½&‡Ñç{âàEOî'þ=kÆ¡ìG^à{éñ=o詞ï³Ãô[m\|\õè'òZVÄ ÿàõï­CüooV¤‡ü|?Æ«?ßçŸaã€È‡ÝñOèÀW”[ /0è›\´£wÆÏ´qÄq™â;ü HË~ô5ÎõCžˆ¸R™¸ãwØÏùD3ÔßWøüùHõÄøøý†çù˜7Ú‹|¢7âþà…ìÝZ+ŽCÔ‡½kE~=O`7÷÷Ò¼˜ùùÇø8h/ʃœ3ÁË8•‰còß «Ÿ™èóK­ÈôÞký‚®ú‘_b]”E/~¯‚<êÇï`ÜoÐ'ù1ü­V”gº TýÌÞ"ŸŒ|Øk|»<ð]“:üÞ½QæwG)?s9œÿrR&/züźJõ®g§C}Ä¥ñùÅø…?ç+~¯¤²ÏG1OöñƒÏׇàNÌ£.ÊW±ŽÈŠr9ðOž ?ÊŠxb~,­SÁkò€Ÿ<ùÀÆÅzº&q ]ì¿‘¿‘Kxˆ§ÖD?±“ç»È'Ïïãb~±~±~Qù]@ÕÇ> >z‹x]î°¿úÇ>‰q´ Ïðÿ–Z‘ž¯§|îû›˜ïU;f6^{Ä<¡òŸÛ8ç'ðj\ØCõÄu̇½Eˆ¼±N­ñ`ôq­2ò×ÿîþðáëêà·½H'ð#ooQ.úC××!±n3:>ÿø¼ôxÇÿcb|cgÿÝ&ôø]i䓃~¾ÎDŸàó<áûüXOª=0žúÈËYNŒü«þÄ“Ïè‰8Œõ¸ÚÉC±Þµ£ðÌh·öZqœï·ÐK” ‚×÷¥ô÷uˆ¯Oà'æýöb?Ú=¾=ßxÙ×áðùÎT?èª>ìltSçÎ?ía“×õH½ÿ~9üÖøG.üþìÀßàõó æ‡#+ò }êchô¡‡^cR?æg_²/r½—ö•&ñû\÷ó-ÚÁËü‡<‘'UŽùº†/⫽HÏÏiâôGO‘ÏÕë\«÷užÛÍó zÆ>1¿¨ÌúÌÏGÂTçÚ´k|¬g—ro‘_Gá̫ӡ\YQΘŸU_á?Ø)¹_Q;ñt{‹íÈ‹]â<€2ü^ü2ÖKêïçB¬³±.h/Ò-ËööÍOèEý®µñäë8ßüû9"¯Hžð¿Þ¢œî?­µâ¸Ò9²úãß·Ö^:gd?ïû¯8om/Žgx|ýíçuáOjÇŸÉ+®7wµÚã¼Ëúź«·}V:¯eœèü…ÕÃ/÷»¸>f´åõu…¯wZm<ýÈ[î~Žì÷©gð‰¿ùúÿóþö"¿ÓE×óµç ünªás?õ6üˆô€]9—˜©v?OÁîðÝÐϬH7åwØ•s&ò[)_µLJ'+òñ.ûݬ(ô}D^ð–ü[0æóùÙã!òr©¿ß×ùWó¾™ÂùZã°gœ/µËè—<óíFÏÏSRyr†µÇþA0k/–çëð¤ö“Ä zº¦½ˆßã.öa‚ï±zô‰|è#ðÔúÆÄ×uVöý,ž3ÀŸÉþ%üÄ ~?äEÏ¿±oľ±^o­È?„/ìÀ<û'ä1>fZÙŸ¿yþlUý{þä³àS9ÎK ÒÏç;_ÇÆóëqdòÆóÌðPΊ|¹¿û9a¬ z‹e?×ðù3ö%ð/È|àçRñ|ÛäŽyþOô¤òzœ— úŽó8|q^á|dœ/#ö‚¾î/éA0ò—ÊqÏõ‚äÍ8ÉŠxc½çòªzð{ìÂÚ‹ýSÏü{þ|Ìã ¾Þ¬r¬/Á•ñ‹ðÿ¬Hy¯Q™x V;ñ ½V“7ÖuðCYãÂoÚ‹ü€ï]Ö¿tî–ñP>|=Ÿš'|îçAÈåñç0ÖîëÚ8¯^?‡c|ðA½ó'èç8~®éçB¾N€åð—ßqþÒ[„3‘£Vä—|ÇxâÊçaæIìÏAT?º*sÞ–šâ¹£Êøç[­Ìs¯87u|íE>ÜÞ¾ ;õöÇ¿?éyοÀ¾!èÔŠ|ÆþZí~Áw[òBĽÆÅþ|†7ž'gE~ñ»ø¾ò0Nýf ú~…z?—½.Õ®ñqÎÒ^¬zÈW+ÊCÿ*;ø~=ô#¹ÂÏTžžYAÛGä—ÕŽö+m_uõÛßÚ|õuÍÇáøÕgÏ׎¿³ðŒ…µâ{ÏFŸð÷(ûçm£ûÛ׸¾ÚSý«pôUßW{JŽïΓÿëO¦Ft“ªëOf¯OÙ§?>ûÒyêïþdîÏvŽéOßýÙ9¥‡þtÞÈØ¾tÑ}álDGøxø‰“Fý%E§ß®ÒGʶ¥SE£ÊžÆD¾”ªü¨Ñx­òç“屪UÜTùg•ßõ§çþâ(…çdâ+…¿¿¼På¯U¼§lÙÏ)yû³i•OTé±?ÛćS:jDŽ”O6b³*ý¬®ª|¼?Yû‹¹Fây qÑH,õç3UþÔŸ¥djÔ&ýá­Â—Òÿ@Êúa~ӈ݉ÛFh4jÏþ|¹Që—þr@_8«ü¢¿q)= ÄýùUñV3Uñ˜ÒUN«Â5PÛ5¢ÃÈÝßßUöíÏ?«b£¿n$æÑu¯ÄÜ@ÚªtÔ¨_ô%cúé/¿Tåþhöç×ýùgü •ïögƒ*ýUÅX#q0PÞ⇥™²uUý@ôÚo‰õÔ¸*ˆ¼ÄTº?™˜®ÒU#>Ùˆ½û‹•FuÜŸ6ª·*Lé J¶FmŸò›þtÔŸõe‡þâ­Ê'ô?v¢;Æß†6êmüqmâ5fgÎo›³jéŠÄ‰ð˜™óÖÙ›ÍΜ¿tÅ’¶UŽæü¹ó޽nîø‘qþ²³ì³º ã³½‚‡u‰ÆguÙÆçtÙÅgÿ¹?§K.Ïã‚GŠx?§K5>û”•ituÙÇçÎ1:ºtãsgY¿±ÅñÁ'xŸµúÃÅú(3þuÖþ#“ëÙb¿àSò®ÙôÔ[ä×ùAäyÐçcÆå_Y?ñ÷¹šáU½Ç¸19Î*ö‹ñ^ò‹Ð3|Rì‡|¡Oã'ìÕTÔKà¥ßXëO;xŸ*–CÞï_è=ô}âê`QOᇋýÃÞÏZ}­Ø?ðP~¼(Wä#ä8×ðÀï³VÿKÃÃøf£‹ßº¿x\‘/¡‡ýkÆ×YÅqžOKyUüÄüâùúé" {¸;-ÖßO¡ç¥ˆ£šÕ[?pÿÂï~•ÿ#œçMÅúðï×X?Ëcág͆Çç_÷ê=Ÿ=neó×ëH±x _ð‹~À]Ì_]o¾(Åõ½ÆŸó=¶ØqX+¶‡¿¡‡&ë‡^O”Π›Ú¿,ò~ìö´uLào2þ~iý_“€ðÕ\,ûºµ´îñüà~îûÕóõŒGŸû{~ŒyÉýàH±Ÿïs#º|žŸ ëøÎ5ˆ^ÐC“ÉÙ\ÄôªÖƒÎxl=âç­¥ý¾ñ~~XÐ×îMÅþQö81¹Jûæâ8÷¿°·Ïkn_×ÀW³ÑOœ”ò¸Ù7eoßo¤Îý<ÐÏ'JqÄÿÏ _bÿå×YðáçÈu¸Ø¯4yœÓÏìU’Ãè–òíÍ6¾©¨¯Ò>äk6ÎãûÚùAèÏõ‚_Ûw»û‡¯‡Kû÷_‰¸õs‡8Çòy~š¬ì|ôåxöu-ú÷uñîûùf“ß÷GfO_•öÅÔÛ¾½?*Öû9iÝçû±ÃE¾Kñ|ÐÆÛúªä¯+öóõV¬‘—x÷u@j~m2úf÷ÔúןoݱvçSz(?4:> Oi½á|A;Ú~§ô¼Õé6_è¯ÉêñwÏGžÇÝÿÐÓ?$ð@矋åð;Ûוìõ¸éÇæ»Òs\âÕçÇZQ?‘ÇlššJùÆÖç¥}ò¢'Ÿ7ϲñ>ïøù…¯Ok6žzé­´¿±¸/=ïl6¾~Uìüü¼Ky?´ùÏÏKóƒçã£÷ðm祼 Øcl±œÜßø>ÑË>þé¾ëKëȦ¢¥ï4[½ãw=5Çûs˜ÒsCêmßZ7…~@â]t“çB–wJÏ1èw$1Þæß¨ÿU±\‡>˜—íÜ¢”/m]àë÷Ò¹Ö¿X?Æ7÷Ýž‚¥u-þ‹¾|ÿáë‡àÁ~‡M~¯*<>oyžv½X–ž›ÖõÒ[éœÓíâ~ìëGøl*–“ßã±ù½ô\º¹ïrðqnO’î³Å~%{ûz |î·‡OÇ—Ö©þ&é\olßýRÏ'KÏ<׊øüܽ4oœoÐö ¥ï¿¥ï;¤æ%æ__ï$ê«`é\0“ãkV®êoëµÒúØleßG6 «ÆM@Ë?É~©q©vÛÿøz¦t.fë²’}|=åþ’²¯ûujýãõð×dÐòl²_ª¾9ÑȺÐ÷íçV@ßwžŸ¨wØ\Ñîë{Ïÿ^‘Õ§ ÷s=¸>Re¯o Öøí%޲ óÊìM‚WÌ?þÉÞ$xñ?ûüc´_ôÉcŸOe—«üFµ_¨ú €KÔÿ2•/Pyœàåô¼Xõ—ße*_ªö7 ^!úçƒWåËE¾ùÀw1eõC¾+(«¹‚?ðÁè"×yê)ü«ß¼}Юñô»P½€÷|ðªÞõñ&ì#þ.7¾±Ëmü¸÷Ho*Ÿ‡^Ä׸vÙKõ—ŠŸ7¨?úêÿ}€OùþP|]©òEfð_†þÍžð ÿ¡?ÁKñìöcœùë•Öï|âÃüçJá ?…úƯU¾Ðâ‰þØ ¢}gø5ñŠÜÐGW˜<à¿þÌï±'zöx zñOúç"ó7ôüǪgr¢Oû‹-.°7ù‚þÔcGäÂÿ±z¼Òð4[œ‡¾sx×ácÿ¿ì áÇ—˜¯0?À¿¡s©ð6›^šñ/¿yÑ“âñècœé#êM-*7}a¯óÑé)ôe~ʸóLŽ+-Ï\fúÇÈßâ§Š«Ð3x‹8#.ÑSÄ·åÃ×Ù|]òþt ~> Ïxó'÷Câ$ôN?Ó~†žÂß­ÿ…Ö~¾é…vâ+æ#üÐòòà·—Ÿo$þßSÌÓè3ì@þ°¼AœÄÄŽèÁý”rØÓìLþEöcçÁŸúa¯ð‹ÿ M¾ÈÄùëü2âü&_i¿‚ß“W,¾ßdüá_ì³hº {Ç> 9Óýúøqªzðboü0æEâ8R?ò þþ#èëSü'Ö+ØQíȽÑ'þÒlþ>èŒ{m1Îà›õû>ôB^Ào" Ï_è >,~|…‘‡-¾øEÄ~‚þ…¿Gî˜ÿ‘ßü“|ý ­y„¼ß&ò 'þCÞý‡êÉ3è‘úXߢgü9_øÈ«Ì î×¾AßáoÆÏEÆOø9üÇÌéqkzÏ)3~ñCø³ø}vµ|ó ~‰¿šÿaOâ€vü"Ö‘èÏ䦞ù\òźìJÃë:ƽGöD³ÇEVÆïÙ/z¾öå|)æuú©z Ÿ–oü<Ã××è/ÎkÀƒžèßX|‰£ ß…F½‡ß‘WñO‹ÇÈÓðƒÜ¯ÌÔ#'þ?1Oš¾Ñþz™ñ^ˆgÏ7Èç爱D_ð‹ÿ§´?™—›Ÿ83?{ªýõ–¿®4¹/´räüþ,®"^-.ãÁôç‘ð^ìlö¾ØðŒm1ÞÀq‰Þð óðÓô™'пŸÃ†}=_€ŸÂìâç~”#.ðCÕ‡œÄ¿ñC¿Xï¿…®ñë~øDžé‹ø‹ùÁßÐ;v°üÏ~ñu–_bß„<W@Æáwã OÌGôöP?äŽ}~bzˆüŽŸZ\QæyJ¬->bÿ£öØ¿YÄ9qF>–¾ñµGœÄó ä±ù™ø&~bÿ=³/|{»Øä¹ÔâÕÏ=â\½âOÐ…?ìžÈ3q™°ñÇùY<ߥÖãÐ ü¸ž‘¾É—¢?þÉá×qÎLÃîØ›áŸþÂÏÉLÿ—›¼è¼òáŸØÿö¼eò§Èó©õ»Ôè\f|úùFÌkæÇÌsþ<õ"óüΟÓyÞŠõþaãâyPýÈ~¾Ì9ƒ¯ ¹ã¼?‘Çb¾3õï·øsuÿ^X¬¯ñ;ôFücü;3ÞäÅ^ñ|Íê/2<>.üÝôéç÷Ìkñ} ììq®?£Ï á{¡/•ÿ~Ì~¾nŒ<ˆÿ“¼úwúð‡¼øƒè#Œ³xE¿1?7Æ?ö%G5}öª§s~®úM^UþµþZ”åt®:¬ú§¬?å_[¿§õ”Oº‡þÓ*?™Ëü@×ùw9|:1|ô;Rì—½ÌðÃ÷¡"ÌF‹Oןëé¹õÞšÚ)ŸeãRr¸ÞŸP?§ëý\ß)ûŠn6ÖÆßfÏ# 9]ŸÏˆ>|¸=‘3%oJ.õ¿µþ´»~À‹ýà èñár:~µGþ–¾²QF?ø?þ{³ ôá+âGã›v—ï)ëçqêúyÞôˆ½ž±ú”ݺ8}è¦âÚã >4.üÓãÑåp¿ìSŠÏŸ×Ïù`^.µ{>sÿIù¹ùþTŠ/ןë¾±ûóE}–ü†òãïÙ}ìcþzöøq¾<Îðkóãìlջߧò‡—~Uœ{|¬ðÓC†ßýÅòCè LÄ ë›àzÏY?ôC~ø­;dr¿瑔¿?iöóø>bösý»º^Íÿ³WZ¿ ûÄ|âøó#Ï@ñ‘+|gZ>÷¸·¸ ;»Ÿ:=äLå%Ãú|Âýèõßþ¿6¿¡´^v½¦Ê‰ù.+H~ðq/©<ïñáü¹ß1ŽùùP^â«fþ€ŸÂŸ¯¯<þÔž½\ý}¼é§$Ï[®ï_:ÞTž¢zž7Ýo=®ù»T¦vx.ÁÏA“‡8ù}³üZ¿Ò~â·¦¯T¼ÀŸú3ŸDœwo°þ¾ûƒ„žªö÷Oš¼ìãRùíˆéÅç}·ƒû‡é)¹ÿ«Ê)Hù·ÛÑÇ=o|¦æ•”Ÿ‚ÏçEìJ>'ïU»Àt¡ƒ~œ®Çï¡"¿Ù&—ëÕóg•^Se׃·{ü¸}ªüþÝOˆÃàAÿί`iéþæùÑê³ÉæÇŸÕú4~¢ŸûQê <©ý›÷/퇭ìzqzÔ?aeó·Rü9>õ+í'=_ªž'&æ-øàyn _Õó èRç@Ï$øIôwÿOæÏF×&7ôKx]ŽT>uy\ÞÔ¹xÈKÏ™ü®çT½ûöû=›‡R똧Šreµ¾ã)yÞŸ’ÿ £“Z'9ÿø#þÝT¾ú¹ˆÇ_âù_üîë,ówÏË~NAÑnè©”¯û¥Ò~¼%øw{*Ž+ÍCfפýSÏ÷ØßœmýLÞdJWT=oÁÇŸŽß÷ñ®/âÉ×O©ï‹Ý¿RùÛý-å—©|áçY‡ i?gzK=ǯâÛùòq©ñ)<èõù¢¿…»ÞŸ1¿¤lç°ÉýÒ!«ÆôšŠwüí ë—ØWÄ>Êõ”Š ·‹å“R=ü¼Öäs? ?»ßÓ~Ž{¢(Grþq~èççQôOÅ“û±sz~~þFÓ_*îžS½çÏÔ¹djò”õ÷yïé‹qä¥çŒ¿*<.xRyÅõ^·£û}ê|~ŽÇíï~œ:wƒoá‹ùü®—‹ñGúó¼Éxú»$â&¹>Hù½ûmÊÏÜn©sÞ8'-ê«´ŽUÿR§â:‰üYòϪý·ÉÍ9]êùv<KÙ9u>,X«Î¿G{0o§_¬{]îƒ&¿äc~á¹^é{¤©óaða®C;ú¢L»ùOéûàC>çËýìi£ƒ¾Ðÿy¿ˆ3ìl|…Ÿ¹_ØsÑÒ9Ñ/Dx|Å~!§Íó1î7Æ—?Ç£þˆÉëú@¾ÔzÕó‰ëzOX»í£jµbÿð#×à ¾í\¥ô<Ï¿ßçãŒïð“gŒÇçϹáyØm”ÙÓ÷]5à „ïÔ÷Üç°á…¯Ÿ™¿Ý~î/Ï™=?;Ýßå-­CÙ—0ÎÇû÷A^ú=iô]?3¹].Çëíðý$öWû3Vv=ÿÆâÚýþ}þ€ñÏež3;¸_¸==¾Ý~Ðq¿Må·«¯;éçþáøKÏC<ß“¿<_¸Ÿú÷¹Ýþæ¿5³øÃŸ0ùÜORß C×7õî§ŽÏ֥熿)òû8ÇS…?aRÄž>¯ùsŸ_SÏ+þ}lì›òw×|6˜ò÷CƇ?Ÿòƒ=àoO厸ebåùȾG_âüÈåëPø3¾ýw6%¹~UÚ—¸ßúúy™'}>„¿Ôüïó.üº==ãJy¼OšÜðíë]Ë‹5}"~]ÏsOßèÅóŒÁØ'QoñUÊ{©uIŠ^Å÷`’ëMÓOämÚÑ›Ç7|¦ÖÁ¾nðyµªŸóéq—êçqÿÛ„_»ü¾~p»À7óÖSE}•ž9YÍøôyû¦ö‡Oøó<ëßòxw;0O°nÇOéÝŸYÙõÆ{\ûº |Ͻªó%ÑçSš·ý|úè»j}{°ˆ?ò„ä º6>êŸ3û¹<î'î¿î·þÜõ–—Ûxæoò¦Í |¢Æý"Á<>ÿAߟƒ¥Öç>Îåw¾ž0¼©~©ç‘רÅý½»ý¼ßá"Ò¾ExJÏwœOô‰_Ø~"üÉ×M©sºÈO–×ÝŸü¼‡yýš=#ÏÁob^~©v2ú7ò£ÉßG¬¿ùSÈi|'ÏO|þ²¸ 9Èž?-ï–öØüæ¡ïŸŸîwfßÌõ›z>^øNáuxØð¢_è&ΕKç@Æ_é܈_¸Jð‰<îÏî—n§çŒ¿Ã†Ïéøþô³çsö þiw}ÇΕ£¿Ë'>ü9CI.—Çó#þêë=Ï—O™>÷Gø@_OóŸÒúÃãï õs~‚®ù“ûy _êyyJΔ8~ô }Ë%úÏõäô/ô†œàqþ=îß_Xü;ŸWðáþF?ñûqËÓ%;›œÉû1Ì/JùÞçÑ+}Ê×K® ÛÿI³ÿsÅù ~'ë~–ºGÄ×Iž)'òAé|ÃÇ9~³O _ê¼Âè¡— K¿CF7¿O©sÇ÷3Ó“Ï+æ/á—àÇÏRç‰GŒO‡®ø#ß-Ò/‡¾ðÏ𠔟Ҏ>~cúq¾Ÿ7zÞîëÏK¾îôõŒûIÕ¹ºûú$Î|Þ vJìã“ç6às»§üÓõäçF®ÊOYÙÇÒs×£Ï;UyËñµþðŸŠþ·Œ«Ê?ø¡¿(õý%‡Øóñåþìþkûò }I/þ»–ä÷Yí{¯Éï]‡û«Í?ÉsÀÔ½H–“ϳœ{^\šÏÜÝ.Ôc¿Ô¼æß‹p¿t¿8”àèþïõ.ס„üè[~PZ¿¤Î/ð7øW{ÄOÅï‚KóôÜÿáóæÇ>ïÃøyN{¦åw×÷“Ïãþ°Aoÿ…Åýð®îç>©õ¾ó Þ'Šr–ÖWÿî·àõï£@×ϧ<ÏA¿QwûÓÎxôÀxð{^ƒÿçz9hÐùrüø}êžE/?wsˆ©Ì'yNS³ñ®gŸw‘{Q–kŽÏóñaÓ’‡óZâ&¡·Ò÷ªSzAÏ|OŽxßÔù®û%Ð÷Íž€¾|¾o=•öu)½±8R}Èq°Vø”ÆÿÆäñ¼ƒŸ9ßÐCïF?yþdr—ätÿòýŒ?¯s¼ØqŒù™Ëí0u’:Ïs½šËÏCÆŽ®ÕFÿîhSÓÑ£jckg…çÎ|kkóÌÖw¾û­ÍW_×¼dÁê•7¬\v´þùšî¯ÍþBø¦ ¾]ðƒ‚Í‚M‚³sÆ2øxO{ÛjÅúúû~yÕ[5îj•[{s8Nå÷ ÎÊÈ>f|~@ð£7CðÝíÅ~‹TÏ{G>Ö^äóOçªþCyKö§ª¯ÉuCV”ãúö"œ©ökT~¿Êèg¡ê¹_hÎAAñùµ·ÍÊa“úqOØÕþç*¿_pUÞ1›­qÜ¿=Sð"Á6_f||T|ÎVùjoVy*òŠÏwþVõG~ô~Ý»’eªŸ®2~Ѫq‹Á#ˆÝÁܲsœƒÍį59®ƒ_ѹq‘?Æ}TýñGÞÃðQÁõúý«5®Mxñoì¿H»\§2úƒ_øyà܃9Dœ$Hœ½Kôxò¾K8%ÞßküG‰/ü…ø/ôÐÇ[„7S¹Y=-Í+B¿Ó³"üj‰ð,üxVÄC>¿ñc숞ßÜÞw;ÎQýªŸ­òÁEâwè`ø |9Œ?CNAì‚€à'Þˆî;ÔŽÜtP|ªÿX.øÁw Ï<ñAMßäµeÂsƒÚ¯5yæ¨}èÇÈq#ü©üAC/Qy†ú‘w›§«ßÇ‘[üaOøÄuòšµ‰Ÿ9’ï¦æ¢|‚Gãð÷¨ýýj¿NåeÂ{³è¢·9j'ΈOø#?a¯e­9œw°Øÿz«ú-5~ñ«›™÷nÊñG|®ÞkT~¿úG\ŠŸe9l‚_øÄÎ1üø=ò'ïÏ!óÏ¢ƒEüo$ž±ï‡UŸÕjEú UƉò\¬C$ç,Ñ%þñOì8Kõožeÿ6Á÷©ÇÌ'”™ß˜ñ£yíE>ÉãÈ…~È×Êß¡_òÃ<áŸ/<‹›sˆ‘ÿ`~gý@‡Õ¢GÞ¹ApÖþ"ó…wŽð¶ ’_X×°îP¼ÿ›À_+ò©ù$ú­T™õÎ,áGè ?X$º¬ˆë«à_eì3]øæ6çp¶èÌS=ù=ÌQ™y€¼õîZQNÚ[áï`‘ó¢çã¹â¿'ÿÍ¿ø~K|­3þXWÍѸåçÿDß7^/<äÉÌäø€ú‘ÿð/Ö[7ª^q[ú=Û"ñGÜ0Á‡ôý‰7ÖAÌkð?¬ûÑïÕaÝD™|AùHíä5ìöW=yšü_á— w°ˆŸøgb¿Á~»³Ï˜-y±öŸ3+‡¬+É'sz‹üÕT¿Püäü‹õ2ý™7ÙÿÀeòò’õö'1ƒû7b=¦~¬ ‘‹¼C¾bÿÄ~…}üÌÞæZ±}i{ï<ÕãÌwäòøVÈ!óþ,Aòys‰êÑë–¹ûÕ¾@eò"óëBì mÂÃ:cuVìÏú‚yn•Êè‰yñoœ!È<Æþ€¼«êY7ÒÞ$ˆ½Ÿ“[Õ¯Y÷à gòýÀ»Xxçæ|××+Æ?ëöç¬#™ÿÔ þȺ ?G^âý“G°/ù?V þæKÖÑø5ñËxðc/ßW°~cÿÄ!óUMeòIì»…‡xZÖT”—õÑÍ*“¯ØoZþ ùˆ“YêǺmvoqübÉǺÑóz¦ÿÊý9d>ú˜è“×®Q?ìJ¼°_ÄŸ>¬q³Tž/¼òÿ»ÀO[s ’ð{æä =³Îf=B^o‚/AæyæeÖÅðKÜÌ>ì½%yÇˆÛØ?©žù“¸"ÏBg¡Êä¡å‹ýñ;öCä7æ#åãÐãbAö‡5kŸ"Hže^ ²^DÿïŸä%n˜g—©^'–1ÿ3Ï’/9wº9ÇåsÆ“ÙWiüs.‰°þß±¾à< ºÄc“ ûò%ñÞßmò°þb}Á:—s$ö¥Ê“‘'ˆæMò¥æ›¼Ì“ì÷Ñq¹ºµÈ?ç&ä ü“ó¨åê‡ÿ5COõùjÑÅï‰â:ÖŒ^ò1óû Ö3ä÷ˆW•Ù×±¾%ŸzÄ/ë&ì‰}™wØWsnѤ2y?g?Æ~=°.ñõ.~ŸòÃhÇ®Ä×MÆv$?‘צ _ØKãÈìWÈ£5µ7 rNH1>ÉWè“ýÅy*q¾¢)‡¬c8×AŸìgñ7æGè°c äEÖÏÈ¡y+ô_5ƒÌ[ø?çð ıÎU‚Ö£øç¬Þâ8ü¼Fܳd½Âúw¾úÈÇ:¾•~¢ËsæQ⢹V”gùá2?7ä{ú³&Ž<j*sn‹ü<Ï !‡ü/ì@| QÈ}ð¡ö»7 ?úž®2Ïe˜çØß-ì-ò©¸ úäoòÕùÖ~A晵­9¼YeôÝYŸs?öùsz‹eôƒ˜Ÿ˜xÎÁ¹ y’óΘ/Ù‡°¾¬©žüNüp>ËþÐýÿ°óús*Ña>?âƒøÆo9G`=‡^9‡"OξØ/‰OíÏÃ>ÈÁºòsü6žgP/zä-Î5à‹y¡YðFñ³þ%O៬ u>ü¶ ÆþN<†ÉgÄ5ë^æ_Ç|\ô°þ=5oK…—¸bŸH\±î!O‰ŸÒyëÍÏQÞiŸ-ؤö6“ﵯ˜•Cô0Ný—ˆ?Ö»ÌmÆO¬„—sæCìO^ð}~Ìù5ëìŒ_±n‹}»ú±öyyY.HìXO±ž`=HÄs•W<žCÖÓÍjgÌ›Ö ø%zGŸØø'nXï,W=烬ïÙ?ãµZ±óÎ'°/ýÈ_øþC\ë¼2ü“¼Ê>€y½cgìʹ väû Ä7ó%ö‹ï4ç8Zz0‡>OÌœ‹0÷Q/<¬c°/~Á|ƒg¨=Ö“‚äìÈóÇf'n9ãùú!ÏÍžšêÛ„¯©VÄÏùöá9kØGøÐ3å·Ù8Ö¿¬ÛfªþÄºÆ ²nÅn:G«ÏÛjÇÎäIΰ xÉ_Ä+ëwž§²^„÷kâÈ÷¥Ê§Ñþã{DíE>9¯òùƒ2~Áú—õùŸu#ãb®þœ7²O@Øølb¼ÚÉÏšßêçb‚Ì“ÐGä}ÎÉð ö ø)ç#|_-Î;Äç7s¾/‹¼É¹6y›|Ìú–zôJœ7q^ƒÞˆöÄñÊ~—¸Ç¯ð³Œqâ–Ê<Çkßèúä7âÜ×;ðƒ=™§›<Š¿0ÿ]ctâIxgBGýÈ·Ì«ðùëcôÁºùˆKâˆsOö_ìwÉ+Øþ™o‰üsF{/öc}Æ:¨¦2þ†pþ^ð¼Ãú1¯€=Ëkúmí¥Ï òã÷ؼP?¥ûx÷ÕëÅó)ùRtNwýžjþªüñTÛïdû7Šo¸ä{±øã©Öã@?§ ~†ÚïOï@ñ ßÃõjú#'G:O 7Ý‘ú¼Pø,ŸÃå/ý ösªå/6yøœj¹^(û­ª¼pº¯KOoJîÓ]ÞúçT×çÅrÞrª?ÿ¯Ë?ÔŸÁ®÷^hö8Õñ6Òú:]ö//4?ñÏpÇÉ©^× ž‹‡ªÿé¶ž=Ýñ ÞS/”¸î8~¡ž¾ôÉ?C½žxI¿ýNµ~^Ê›/ÎOz}é>ÚZí…{-ß×~¡ßGËï±øÛ’fáQ¿Û}´È;ì÷Ѫì÷Ñâϧí}´û%gVÄ3R÷Ñr¿c|Ľ”Èa| Õ}´ü>¤Ñûhù]È`ï£å^·¡¾–ßeú}´äçÓõ>Z~—å÷æTÝG÷? 喙{¼Pî£Åÿ½–u@Õ}´ÓEw°÷ÑÞ,º~­ÿž®ò>ZÁSu-~:T÷ѾÏú­<Ãáºv†ðõ}´ä»Vø;(|ê?½tm‡ë>Ú¸/@í½v¦è§¹ïj°÷Ñ2þE­Ê§ê>Z~ÿ<Ò÷Ñ2ú>Zá]“û¿Xï£Õº³¾^1þ¯îûh±Óéz-yx¸ï£%/ö>Zò5°ÑûhYVÞG+|/ÔûhÉwøãér휼=ôø‚¹6gèEs-ë³Û}´Ä婺–uD£÷Ñ.½‘¾¹ˆ¿÷Žùd°÷Ñ’o›¡+8ØûhÙŸì}´ÌçqeVäãdï£%~^º¶Øý6z-ù#u­Æ‡Fú>Úw}ò7ûʆï£Õ¸ÿWï£õûO_ºVíÂ;ÐûhÉ´ô>Ú8¿<Ýï£Ó[”ﵧߡº–¼=R÷Ñ.W}Õ}´Ó…ç¥ûhs˜º–÷Lô>ZöI©ûhÙô}´Äß`2ú|é>Ú†_©ÕŸì}´œ§î£eß8\÷Ñç§ý}´¢½‡ú>Z·û>Zž«ö>ZòöK÷Ñæ°Ñûh™Ïªî£ïS¨ý¥ûhsȺ)Öâk¤ï£ežÏ'þg©Ìz¦Mý†ú>ZôýÒ}´9ªûh±“ÝG›ºO£QÈg°x†‹Î@Ç,ÁÊuªè޽ÓMžö¡Ú}¸ðWáõÏPñYõ(ÔøFñ ·>GЧÓ(?CÍŸ†Ë¯ý Ô߇J_CE¨óä@ÇuÞKoßP÷êø(ÝFûûg¸üt¨òÊpÉ9Üþšê_U?X¿j}T}†Ê?Šo¸ðøg°x«Æ¥ÚZ?Ôã+gUy¤ò\U¹ª~¨è 4¾†Ë^)|åw¸ãf¸ýõdóbª_ O£øJ¿ÑþŽóúâi{ wûpÅMêÓhžªê?Üñ4XúC¥Ï¡â³QzUøÅ_õèø¡ö¯¡ÎU|T}†;OuhžhÿPË}²|T~IÑM•‹w¤ç…‘Î÷CÅG£x¼} øëçƒÍãÕO ßpå•Áò7Túj;5JÏÛSå*zÃJçdñŒ”OVÿUô‡Š¯Ó-6Ú?5n°ú*©ê7Øú‘ÎS#åg#E¯Ññ'K§jœ·§>Cmï¡Æ3Xªâk°økŸÁò3Ø<Ù(½FÇ5Šo¸ô\ÅW£í'K¿Q|©rU¿‘ÊéÏpÇÍHÁF?ÃGƒõÓ“Í·-´¾ŠŸáÎKÖ•ÿWá(¾æ¥*¼¥;Üy  O¹‹þ—Þ4¸kØàë_«–“x´‘{¿_ÃÉ›ìß²Èù1Ðlpï<âÅîÆ÷_"î 5 þÊlxºn#'ûm‘¼À9G¾G¼C‡ Êú‘õYÄî΃?Eþ•[‰¾g‘Ûý¾Á—ˆ÷pÿôà{"gðà~³ÂCÈË>*çÑÀBæOáoÑàÛ'*ŒÀ'ûõô¼jðùùÄÿ#ƒƒÈRg9eŸ‘óz q÷í#þ!ƒÒç}Øë#ÿÏ£gòû˜ßÿ+ÔïçÄ)}#çœÜä\ëwþÅàè·¨¯ÔKÖµì7²ÏýŒ>z‘~ÄÿÁcÈÁ'çÝΜÁgLc‡%ò½‹uwà7øa íÀäå¼ØŠŸÛñ§h6’pÜc@¸—º¼L‚GO”}IîU½¬§^걺D~èËÝôßôÿ‚þ9‚ý_Ò’7ÍC3ñRÏ™ù¢ÁW‰[Ö¯ø%ëIî'r•ûÄ®§‰ûrŽÈy,öå^¹zÛq1~à]ƒo¬ªÖ#ç±øõp—É“îSrNÈýh| â§ôŸø!û°œ§rÙM¾eŸ`ŸöØÇÅž`½g:þzôtzêñÏt|:¾ÙÆY/îÙò5šÏFÇkŸFçgÛÚ½Qù¨G_oõ»Ññ™òÕ{®7Ž™Æw£ó5Ó:ÏÖ¯Få§³7SùÙæï:â3÷q¹ŸÞQƒr/“ó$^ƒ‰:˜¬ƒ©”ó'[ƒwÖà]3Ä»kpq Þ3 Ê=;¬‡¥j”ïkS°ô¿Qî…â’™b©1”{qÃXšÊ÷¹†±43”{ó,Íå{Ãuc鯠Üo8–þ¿¨÷ñ™biv(¿“ÌK¡|¯©‹¥j”ßjQ~Ǔ߅¸ß{r¿¸püw{;¾|~¼iqïÇ\ùú•׃–½³à™–ë¼¹Ö{Á§=•'øÄŒ+ÿXëèsßn ¾,‹-{GÆk18Wfký,8Qa[ ã_TÈe/šç±óyGÅPðaex‡ò_1|SôŸ®8¢~ÊùuªÌÝûfðqÙüèsÁU?‚3b¯’†¦à{+†Cù±?•Ÿ?×Lb‚÷ˆ÷8üce/N§™—|\MTž` ?Nšx¤Á1â¿Z?õoü`ù9¤ß×<ã_ð7£_ù/¢ç¬É›Žÿ“<žÇÑ÷…øiô 8—:H^FÉ×ûðÖôK­½òñwä&ˆã ú„¾lò`ëbô“¯SäçôòRßKÌŸGßôeú÷*qŸ®Ž/ø#ñ_©Éß±êüiÿ >é Û×Õý©ãÔéLuÜSøþZ ÿ[š¯Ïè·ÓÔAòv–~û„yé¿ äíqÿ}¿e=HýþÅú“>{ä7ôà?‰ü è ð±~Ûɷè;gòiëOŸü=RÇ‘š¼A¿Ä)ûƒÔóøyÖ¬ 'NAÑs =ãØ½(ve}2‰}í²Ñ7¥_Jže]Ò²žÉs8ÏÔE÷ é_Y·çÊfǯ~±n‚“ŒZÝ’×ÐCo¤&>‘G®æ¡7=•²»ò¥üëVùŸ åAk·¹Å­Ovó~s1_ü~?Ôœü™ð‹©Ú¯ömß¹ÈÕ<,R±D‹¾¦ìk6¦¯1õ3IŒGe°Å E³úšQ¡dš²òé¨eÍXÞ´}µ£õÓv>eÄ’jÖr¦lT:µ®fãöÕz•N(« µhÐé¬Úqb¶á¥lúâbÞÏØ8¢Ö§XFÕ«ËZ?aÕGu:æÔÁɘ£SÌûY;¯…ðÓª>î¤Îr¦ŠØ4'Ui¦)éĬ9É8-×AÓ)­ã^Ü–!m_ã6‘¨Ê´c\K“µùVYÛÂq[˜ŒÍWÚ:ìÔSsï·8U°6£šÐ˜º”M§Øê[ÊšLÚ(œÄÛÚ$4q1›÷¸6¥Ó?¶»­tÆ©•]“N‚Õ¤Sõ¨]òšÍ¸¶_‹ZL9Ío_“o±£âÎÚˆj…â¶ãth@Îv‘²:“NÇÛ>SCI§¹Å»ˆqLÚÎÖp“Ö¢¶»o“•²ÙPa] ¾®JßÏ)„¦%¢.è~ë;›°³:­‹Yë}sZÙÌvªÓMv_ÌÚeµ=ä¤Ô&R§míœ^v÷b1±»¦–¦Åî@:–°l:;¥]ÄNácvEé›6ƒ¯§ˆŸ²)p›A95ĈX‰èˆmr[BÛãi»·¨¨=´¬º©úº½ùå^¬>ò»¶åûå`ŽÀÖTÈó‹zúò•ãþZùó_kŽF%survival/data/logan.rda0000644000176200001440000000357713537676563014667 0ustar liggesusers‹ÕZKrÛF€¤-‚?ðsx‘3¤r€¬¼EhÒ¥ EªHÙÙæ\9[Ê !M›fUb()^@æó¾ýú LÿöËÇŸ‹E!ùpÿ·µlçû?Ùþêî¯Îjó¹Z‡ÐšÖ3ûû`ýúøZt¯7uh Ï(,Æx¾MÏ9a_›î¼eå´—×ò<ïƒNµ½Cú!33öa ûŸ‡c;[¢WÇ8.­àíÌúÝ<ûíæœœŽÈÄÝÅQsÔ&=º&MŸØo!ç[ãàrŽõj»Æ}Ð8;¿2’Ÿòqƾ*{º^ã¦cŠ5—‡…fÜ=…QW?¼GcʹÌEÇ/—u.¾—j‹bÙåÞáUå+/©ÿ.._Zû_mšWûµ¦óšëSøj¹Î&WSm‘qªŽ²Ðäv¶55–êj+ëW9®žSœÃÝ‘w­GÍ-dgÁÛ©õÃz°Oy# M¸*g¼ÇáÇÅBm<ÅS¼¹U¬¦úcBëÓáŸó‘âÏS=Jí×^ 9v|íjŠ{×´«)í¹Ê.Ÿ®ŽÜ]ç7jwê| ¾2?Ÿâx'õ]ó£œîp¥uãpëxÉqî).T¬*¶RgΔ}.|†tøLÅCû³Ú”ª7åÍÚš…t˜³oî\âòÀã*×å§Ò1sœÒùZk§øãìxCõqüµSçÎQ´«ññônµøºXíöOe\Y¶—Õö&>›ÛŶº»þºØÅ‘î|[-ïv7‹uèìªÕ÷Ùþív³\ìv×›uµÒOµùªÚAÙw–Õün³Ý?} ‡7¤;ÈqP¸É§ ReŽóJ.®8ùÒå¦çÀÆk¸2ׯ鈋·ŽýrD 1PáÆâd+9¸bq„* W€©ââF¯…’‰,.xý`ËBÓÇT#g½zæ¦[Köi“tM†cíÆ5—úè°Íþ0ѸC±æ:£gÅH‡ö3öS¹`Ÿ»*ÛnËèr˜ÖfØ1òacCs®Ø×ÆÂ°Z›\Ë®éñ;ts•Çœý®¹il´Æ`“65®_WðƒqÐ’}êW‹ô)X77rõ‰ýuºÙ/—g•ÅyMÙâêTu+ß886Ž ›©œ»ƒÛÇÏl/ó—æ@9š©ºNq¶âEëYë‘9XëO9Lñ¥¼ë8)Õ?SxPnRÝ©ÞÀþé‡Wª—ikL5®ì¿Öó ¯ÑØ+‡;žt|â8?Õ³Ø&ÇåÊ×î]sêùÚóàó¢ñäyƽbÖõ±«3Õ‘â,Í÷$^ç8šíÖúvg ­Uí]Ê+z†Ôxi¼Õg=c¤rë0”²ß}ð(÷¤þ±Žc¤=P㣭6º:ÖúRŒqÜv¡7“5©ZÊ?§òûð¢Ÿk-È·_h_hÃÇ燕e|¯¯~|Çû(^W4?¡=“(§ýƒøŒ«ž{çút†rºQW÷OÉ–¾Ù×7ãÐw¶cuðš2úÖ7rG´¶`¾ˆvñb[ ‰k=Ö£8Á.õúƲ‡ç‘§zÝŒæ5æ=ÊÏ4Ê„%ÉÑØŽ£Ü.éd«÷¯aô­ß»2õ3N Ÿs2¤wÈ™„fÞPšøÄñ^hê‘ØÞ£u“x)V`gu ÌšahÆwÄ{šØÑ½X_ÊØ$chmžÑÜ@ä–¡Y§œWÄkL²c`}Rß±w˜ËkÊÐôcµÍ:sµ»$3£pÈ;Æg¤{®hí˜äŽÃ¡F4^À?b‚ø°Ÿ¼XGL ŸqÜ£9웒Ͱx-C³±o÷Mh]ÇKZ‡Ø#° ïÀ¿^\#ŠwŒ—t‡~^«½Eó<ˆû»4†ù‚ä ÏÃpÌ…}ÒÁc\ÏŠ#Èà}н#Ñ;‹Ð´sš¶"wÐ5%ùˆI=ÞD¾ÃÐ? ÇüÅx»Šr˜/ÏÎw®w`k¾ž'{• ˜³¯p^¸.êuÀ'âÒ Mžƒc’Éú˜/º¡‰‘1ÉèÉ:¶±`,M(æÀôHd!3‘3uàð›ãä‰{NIôÍÂ1·º8óžú\ÓècSÚÇõ~¯Ÿ·‚Ö'èň‰;ÿqìù\S„ãOÂ1ÆPû]/hAü!· õì;ê€ùq,k ‰Å0÷28„Ïoze¿XFç棇/йÖ4ž5^Š•’d¬_ÏVlëÄèAoí…ÆY's¿ž/¹v¸ÏMH÷hæ/ÖÅû•õrç®=pP<¿~ÿ+{æ•?c]nÖ»±Kè{íë)?^Óî§t¹ùsr ÷·òíúOåï9ñ<×–su_ ®.Ïõñ¹5ýR>½å•â»ý:‡[žZû_ðtI{Þ"^§Ö]‚W^ÓÞ—Ü÷£]oáç%zȹç˜ÿS^_ÒÆsùæµúø%ì|É\¾§±_gú×ø ¿Ùt×›õO¿¯ªùq _žþ=ªù ×ÕÍÃO[õòvÀObóù—Ûêîzƒ_ÀÚËýT/>}™7&·Õ|!r»ÛÍŸ »þèËÿÚÿ¹¿ÿçŧê®ú°Üî·<š¾ý ¥dŽÊ6survival/data/colon.rda0000644000176200001440000004366013537676563014676 0ustar liggesusers‹íˆÇ•ïÛ‰“(a_ö…E,&\B"/„éßÝÙ¼ìMâdµYg3±¬òs¯Ë–Ç˲-ÿnËúùGF²c+¶dÝ™‘eY–aY–åò‹XÂ"ùÄå1„ð†GXÄòží{êžs¾IÝžî¾·Gêç3=·»NUuÕ§ª«ï(7^¿Ã{׎w9Žóç-o½æõÿ^ÿñÚ·¼þ?×8ÎÌ;_çÛ¾qÏ]÷Üí8oý¯¯̼þß»çŸøÓ5çÍdØu€[€3À÷·¯v€ï¾øà6à~8 tÐÀc`Lþ ð£ÀÿüðO]d¦ùq˜i~ÂfšŸt€™æõ0Óü”Ì4?í3Í?s€™æv˜iþ¹Ì4?ã3Í¿p€™æ 0Óü¬Ì4ÿÒfšŸs€™æœì3à@óó° Ì€Í`˜š79À.04ov€]`h~Ávp ùEØfÀæ_9À.04w8À.04¿ä»À 8Ðü²ì3à@ó+° Ì€ͯ:À.04¿æ»À 8Ðüºì3à@ó¯`˜š=Øv=`ìÀUÍ[`Øö€°W5ou€`ØfÀ>p\Õü†ì»À0öàªæm°ì{À Ø€«š;`Øö€°W5ow€`ØfÀ>p\Õ¼Ãv€]`˜ûÀpUs—ì»À0öàªæ°ì{À Ø€«šßt€`ØfÀ>p\Õü–ì»À0öàªæ]°ì{À Ø€«šßv€`ØfÀ>p\Õ¼Ûv€]`˜ûÀpUóØv=`ìÀUÍy8ìg]à°œfÀ`¸/Wkš÷:À`8 ìç€=à<0.ûÀàx¸ \ÓÜíg€à,° œö€óÀ ¸ìW€àEà*pMó>8ìg]à°œfÀ`¸/Wkš{à °œvsÀp˜€}à p¼\®iÞïg€à,° œö€óÀ ¸ìW€àEà*pMó8ìg]à°œfÀ`¸/Wkš:À`8 ìç€=à<0.ûÀàx¸ \ÓÜëg€à,° œö€óÀ ¸ìW€àEà*pMó!8ìg]à°œfÀ`¸/Wkš;À`8 ìç€=à<0.ûÀàx¸ \Ó|ÄÎ;ÀY`8ìçpØ®À‹ÀUàšæ£pØÎ»À9`8Ì€ À>p8^®×4s€3ÀpØÎ{Ày`\ö+Àð"p¸¦ù¸œv€³À.pØÎ3à°\€«À5Í'à °œvsÀp˜€}à p¼\®ifp p¸ØnÎ`¸8Üìwç{ð0pxØž®ÏÀ À‹À×€«ÀKÀ5àeÍ'àà p+°Üœ&À.p;p¸ØîÎ÷3àaàð8°<\ž€€¯W—€kÀËšûàà p+°Üœ&À.p;p¸ØîÎ÷3àaàð8°<\ž€€¯W—€kÀËšO9À-ÀàV`¸ 8 L€]àvàp°ÜœîfÀÃÀàq`x¸<//_®/×€—5÷;À-ÀàV`¸ 8 L€]àvàp°ÜœîfÀÃÀàq`x¸<//_®/×€—58À-ÀàV`¸ 8 L€]àvàp°ÜœîfÀÃÀàq`x¸<//_®/×€—5:À-ÀàV`¸ 8 L€]àvàp°ÜœîfÀÃÀàq`x¸<//_®/×€—59À-ÀàV`¸ 8 L€]àvàp°ÜœîfÀÃÀàq`x¸<//_®/×€—5‡ÕÜœnv€Û€³ÀØnÎw{À]Àyà^`< \öç€+ÀóÀðð"ð5à*ðp xYó;p p¸ØnÎ`¸8Üìwç{ð0pxØž®ÏÀ À‹À×€«ÀKÀ5àeÍ#p p¸ØnÎ`¸8Üìwç{ð0pxØž®ÏÀ À‹À×€«ÀKÀ5àeͧàà p+°Üœ&À.p;p¸ØîÎ÷3àaàð8°<\ž€€¯W—€kÀËšÏ8À-ÀàV`¸ 8 L€]àvàp°ÜœîfÀÃÀàq`x¸<//_®/×€—5Ÿu€[uþ.´eË–-[¶lÙ²eË–-[¶lÙ²eË–-[¶lÙ²eË–-[¶lÙ²eË–-[¶lÙ²eË–-[¶lÙ²eË–-[¶lÙ²e³è8oý/oü]è?À×Ðë¿…þ3¿7Çø9^×áï×ËÇvÆY/޸כïzõ\/Þzí¸^}×k¿q¿^y×k[½×;ÏvŸmýcÜû¼^=6Ú_ÆÍ§hÿ±ÕwÜ8¶þRôóõî§íþn´½Ç-ßzÿÙúízõ,:‹þÞvÞ¸\oõšm\Ù|5Õg£ýs£ýg½ÿÆ­÷zíi+OQ/Ø~?®ÆígãÎ#ëÕÓ6OØüÒã¹lyª.ï¤}дëënÏ¢å©:^Ñë›æï¢©êñt¥µoÓý:éùyÚóÙ•~¿‹¦ª}`Ë¿îù¹hyЦº}Wwý&=_V]¾²çÛ®ŸözbÚóeÑÏËÆ«Úe¯Ÿôü9íùzÚý·h~¶ó‹¦¦ùzÒý£èçuçg»~Òí_¶«¾¾iõ+›_Ñx“ïeËWw{Mu÷Ÿº}X6~ÝíYöúI÷¿¢å+ûù´çƒ²å/š¦=Ô=›>¾'íëºË_´©;UÝßêŽW4ÿI§iÏ¿eËS´¼ESÕã»iëIׯlùŠÆ/Z¾¦Íÿ¶Ïëý]h÷SÙ›#~øùæ\¦ùù®æ ™æM]Í¿p4ÿ øyàŸešŸq4瀹ë-ùxÓ@óãŽæŸ1þ À¿Ì4ñúÏgš7v5ñs,?Æ»ˆåëfšÛØÞ˜ÿ@l/Œ‡õÿ¬£yã@ó“™&ö?¼þz ößÏä_:šØÞx?nr4?ibýñüÏdšXþ¹®&Ž/¼ßØ>˜?Ò6¾±äÚ'ÓÄûñ™&ö'ôÆË•˜Ï™&Ž7¼?Xßœ/ ~˜?æ‡åG¿`Ãû‡ã˃ã ãÄÑÄúaûaÿº1Ó´¿Üøb{àýÀñ÷û›­¼¶ùýf¯8^°<È?Ï4såæÊ õÃþ‡ã ïÏÇM ÄúaÿÀû¾ÇòàøÀÏ?åh¢°}ðúÔÑÄþ÷QGûŸ­àüˆ¾þ$ÛçÇœOºš¸þÂësëGëƒçãøÇñ†ñq~Áñ•ó䟛Ÿºš8þÑÛ8>±=±½°¿`y¯Ï4±ÿåÖw]Ml$Ž—Üúi io¹õ”ëíg[ŸcûbÇñ•›Oºš¯ëhb{ ¿°}lë=\/¢_p|bG_ãóŠ­ÿ ïlÄú`þ6Ÿbù°>7±~¶ñ‹>Äûí‰ýͶžÆûƒŸÛÖ¹ç%(úûsn}‘iâù¹õj¦‰åÏù;ÓÌ=oñz¯Øß±ü˜îùˆùãxÎïòû„£‰ýû®ÿmã#ç#øÜö|‚í[ŸA~XÞÜýÊ4së™®&Žçœ¡¼¶ù0·ib~Øp>E¿äž“Í\ù-åù´£™k¯f®?±ÿcþ¸>BÚž_lã#·>âýÎÍÿŽf®=!¿œŸ3 £™Ûoó±¾¹õijíXÇ‹¥þ¶ýü<·þ.ÈÜü´=£¿ðyÞæß!ìŸøüšÛ¯íjæžš8ŸåÖƒ@¬_n½íhææÇLû^÷û×ï8žpýãý‚Ϲñiæö7 ¾ŸâxÈ=/Àõ¶ùë—[‡:šø¼›+WïWn~q4±½róï'ŽwÛó2Ö'÷ü Äñ‹ó‡íyûg®ÿfš¶õ#ŽOÜoAFަíyͶÞÂõΟ¶õrnÿXt}œÛÿ„ú`þØÿ°¼¶ý}œOrëQ í}’u½ Äû‡ý×g¹ýGÓ¶¿e+/ö×®£ió5¶Oîy>Gÿ\Ÿiâü†ýý€ùÛöÇló•mçïÜód¦‰÷ǧíý–ß¶ŸõAÿæÖ?]MÛz;·ž‡òáþ4úζ^˽_bûáõØ>¸?™[Ï€™fî}8œãÇ“íy?÷üïh¢ÿlý˶`{ßcóŽ¿ÜûDG37>è;<û_îý)0·¾âþ"Îß¶÷û¶ýÛzÓö~:׿ |6Ûž÷sûP>œ/°ýmï÷±|7sïßMôžŸûþ@WÓö>Ÿo°?ß<ÐüBWËc[ßZß§:š] íýBn~ïjæÞŸñó?bþ9¿@ùmÏ‹Øßrã(ÓÄxX~üþÎèô+Þ¬oî~;š¹þÄxxpýŸ{_õÁùÕælOôgÑï[ayºŽ&ö¼8>°½¯Ï4?Äûe{¿ž{>õ1Öãå¾O–iæÆ\Ÿ[8š¶ç¿\{ñþâç¶õm?}‡õÍ}OÉÑ´?Œw}¦‰õ˵Wõ˽ÏÊ4mïËÑ8?`<|·ùÇ^÷ý`û¾^np?8· ̽bÿÄÏmï›së[`îûa@›°=q½…ó-~Ž÷Ëöý1l?Üϵ}¿37¾¶ïg[÷?€¹ï“:šØþ»£‰åÉùò³=ï`yrõu4±|xÿlû‰¹òt5mßËíßu5ñ~cþ¹ý°L3÷}ð&®—mß?FæÞïsß×Í4Ñ]G˃ëuÛül;}fó«Í·Ø_sëûLÓ¶þ¶ÍÏX^ôiîyo ‰¾GàýÁüq¼Øæ“Üû•®¦í}Lnÿ°«iûû\?åê“iâ÷eq}oû~°m½‚í{ß ŸãýÄòÛÞOÚÞ'âøÅû¼>ÓÄúáóNη@lߢë±ÜüÕÕ̽7hæö— ?ì?Ðö>7·?çhÚÖgxlßGÀýÛ|Š÷/÷}K ÖÏöýp¼ÿ¹ç¨/–ßæËœÏ2MÛ÷±}pÁöý¬on?` ™{ ´} ûÎ÷èoÛz.·^t4m†ñlß÷ÍÍï@Ìßö÷¶÷s¹ý°®fî}"¿¿ñm߇̭ïàsë~)ÄϽ?澯):ôw¡NÁ4í¿w·¥ºÿ=‹²ñªN›íß+°¥ºÿ¾»éõ·¥+½þÓþûýIç7éüÛôûS ÿþB£Ò¤ý1é¤ljZý®´¿¥ìùEÓf¯U§i¯W7[jÚ¿oTwü¢ç_mýgÿ^ÓDÓf{ž¨{<4½=&Óû/¦IÇi·OÓüS÷þÍfO›­þM[Ï·©YéJ÷ífëÏUï´é÷§¦·WÕëÙ¦ïÇM:5­|Ó~þ™vª»¿7-5­|W»êN›½þM+ÓÊs¥§Iï¯Õý|Ò´ù¢ê÷ U§i·Ï´Ó•¾ßÜ´û»ÙÊSõóÖf߱şöøiýY.möö«z}q¥ßߺÛcÚë›I§iÏÿM÷ç•Ö꾓NM›ÏËæW´>›­N»~ußßIÏOEÓf듾~³å?íû¹ÙÊ[uªÛ¿eçëºýù;òÛÐß…¶©MMNWš·léj«o›ÚÔ¦65%MÛ¿ÓŽ_6möò·éêNÓî¿W{üºÓ•^¿6µ©ÎÔŽŸ6µéêMíø¿²S{ÛÔ¦6µis¦ÖßmjÓÕ“ÚñÞ¦6µ©M›#µ¾nS›&—šþ½ö6•KWû÷àÛtu¥iÿ\Ýå™tþmšnjïo›Útõ¤v¼×›®öö½Úëÿ;ÒX:íuÜ´ãOº<ÓŽgKM+O›ÚôûÒÕÖ_ëþ÷ ¦í¿²¾žô|Óö¿Í•¦]þiÇ/š¦íƒI§iÇ·¥ªÿý™¦×wÚiÒócÝ÷¯êùv³§v|4;]ií¥Í§íøiVšöóÍ´ß+_iãëJO›í~M{¿d³§¶½êMÓžï§_Õù_mÏKU×oÚûUûºé÷³ióSÝûmº²Óf¿ß›­üíóü••®´ûµÙç‹Í6?O:^ÓÚçjOÓ^?OûþO;~Ñ´ÙÊ»ÙÒ´Û·]ŸéÔôý£ªÓ´Ë3íøESÓÊ;íõMÝû1e÷ûÊ–oÚí[6m¶ò¶é÷§Íö¾¤M:M»½ë~Swjº¯§¿ît¥ù§iûuïÔ0žßü»Ðî{††˜O÷:àV`|Ж¿£i«·íüîàŒfî|¨OÑul.¿™ßOÛù¹Ï?¨Y¶ü¹öq€ð¹5?_Óv¿rý >/ZÞÂý˃ýúkîü‚íWøsŒå+Ú¿>¬Yt|åâ¿Xôþ@yl¾Èõ¬·å~Ù|Vz¼t4­íi¹9~ˆŸCû=qùÿ}Ç’¡µ<&žùa} ‹¯ríý óÃxx}Q?ÚÊo›Ï,Ÿ—žßŠ–ÛúSíå+ZÞ¯·ŒßÂã¡àýÂòþæsLx}Ž–þ]´|ÖñhûÜV>Ëz,w½ísmóaÉëËúݺ^´ÜÏn7SÌùÎ/½~-™ŸmüYÇ¿mþ‡òYçSÛùð¹mýËÏ6>;@ŒùÛ|i«_Éù¨¬«>?G‹oJ?OØÖØþ¸žÅõ›­|˜¿¥|e×/¹þh+®ß ÖÇÚ¾6b}ŠúÚVÞmÀ¢÷«è|i©O®?áùÍÒã¹h{B|,_áûm›mþµ)ÛŸ ®7Ë®ÿ¬ý«´ío mûíE}‹ñló³ ´µŸíý±e¿ôú¨àþ@QßâçÖýf[ù-ûõx>¦¢Ï…×£E燂ím[?½_…}„ãÉöþ Yp?ÞÚÞHÛ~"ö¼_¶çaËý´ïÂë1¬m¾²Ô'÷¼kiÂ÷Êc½Þ2¿žÏ ~ž«?îo¼ß…}Vt~ÁòÙêŸöoÁýb«/ <Öó±>ð}šÂï÷lϧÏöü\v=–£Í_Ø>ø³–Ïò<‹o+_Ñ÷ ¿/*Ýÿló½caÑö)º¿Zp~.ëßÂ>.º¿m›¿lϧx¾-^É÷Y¶ü­íWðûeË_xÚêo{ÿ´–ßöü]t½Ðíßû[ÑõyáïZêc}ŸŒù•í?–ça ûû‡íyжþ²<ï^oØî^,Ú_Jï'ھߌë=Û|Rt?Âæ{Ûú¸àúÈ–îó°è÷;‹úÆÖ_mÏëe}\tÿÛ·`|ë÷ËáüÜý·íÏCÿ-ºž±ŽoôOÑýXÌÛÓöýþ¢ãË–Ò¶TЗ…×GX~lÛz½¨Ÿ‹ŽW¨_ÑïsÞÏœ|²þý’ÍÇ%÷ƒJ?ÏdÑùÞ¶ÿPô}dîsKÿ(ºÞÍ=_½?¶þ‡ç[ò·Íg¹÷gEŸGŠîWÙæ³‚ã뛣åþí/ý]èïø½JE½jcÕi£ñª*?þ¾lý'ÝÞUÕ¿ªxeó/›êîÏë]_u~U}^6¿²÷»ªò—?n¾¶Twûßo£åÙhùëòñzŸO»ý›:ËÖ»jõå´Û¯h¼ºÚ»êò?nþESY”MUçWuüºÆuUñ«>Ü4)_”M“öÍzç›OÑÏ‹&[œ¢ùÔݪöSÙùoÚýi£ùMúº¶OÙù²êö«úó¢å÷¼ªÚ{ÜÏ«^ÔÝžãÆŸôú¦i뇪óŸT¬ª¼Eó+›ªö]Õ÷«ìõuû¸ìõuÏ×eÛkÒã·êTwù7Zž¢çOªÿØæÙõò+¯lùªöëFËc˯®ûSu»›6Z¾º|<íñ]·Wëî?EïWÝó¬íóI—³nÿŽûù´ÆsÙülçmôóõâ•?¶üÇý¼®ûU4þ¸×5e¾¨Û3EË[ôóÆ©zž¯ª_l4ÎFË[õùøûºSÕñ˶OÝí[Õù“ßo½ßWUÿ–k£íS¶½«îo“îOuù»)ãwÒã£ióí¸ç½~Rã¡êT·&íïªê3-ý¼ª4nþõޤ绪η]_UžÔ|U÷ø*{?Ê–·îùpÒ>/;ïMuùÌv\wüõRÕõ›ôý({~Ñëëêÿ“ö׸ŸOºÿU_Ýý§èüV6¿ö'[~륢õ7^]~²]·ÞyU—oÜüŠö×¢ã¾jÍÒþ¶¥ ä7üÿ ¥ƒMÊÿ¾{ÓÓö÷ÎuÇ«¸<ØKŸ_ôï±kn¿¢õ+Úž¹ü-ÿþÍ´Ûcêñ,ñ­ÿ %Ë‹í_øÿß¡i,{ÿšv}ÓûÝçÛ®Ÿöxµ”¯êù¡°¿ –·èõe瓉û¦ì¿ï3a–.OÕëK~Ó¾Ÿe×Eÿ}¾ªÇkéõ™íü¢,ºÞ®:þ„Ù´ñ,ûïg"+_7¼?Ô>¿ô…•—¯dù'¯h}ÿüRóþEÙù~Òý«l¼Âû –ë‹–¿hy7ŸŒWõüÓxV}¿*n¯Òó·Å7S_5m¹aœúzÁ¯îøM[OÙæ“i·OÝ×Wý<ÑôõHåþ-ÏÆ ¯/ _ß4¿7ìù·òõªm?vÒëi÷ºã•}Þô~}YNy<×þ¾¤j?4m~´°èzgÒå˱dûÛÞ/Ô^~[y&¿tnúóÖ„ýe{>(ü}²ówÅ×>ßrý¦ó²êõUÝû%%ýXv~³ÝϪÏ/û¾º,›Öþ•ï§4}>²°ô~WQT¼Ðø÷wE9aÿV}}ÙçÑÒë…ŠŸw­ë÷ŠŸïê~žŸ´¯šæÿ¦³è~ÚÄßÇ[Xx¼L;?<¯iãkÚëqø¼è|[x}Qq}kþœ4k~^˜x~UÇ«øüÂ~rÿtù¬ù×|ÿów¡eŸC®t:À¦ågaéuø´é7[ýK–¿éñ¦Þ¾eÛYöüißÿ íó¢çOº>mÿ-FXwÿ,{}{¿[þ>:ÀšûCé}û+l¼4Î7Çsíã½ìüh›'ݿʖ§èõ¶ò–­OÝ÷oÒ¬º¿Ly|6ÎO›½?a<[üºûSÝ÷ÏöyÓh)oåïM‹öOÛõeûOÑü§íæûæJ£œvÿ°•?Ÿt´•¯e9:ÀI·ÕùO{}r¥÷ç¢ã¿iÏeãm6ÿU]^ȯòý¤²×_ét,œvy¦}?«ŽWwù‹¾Ÿjøýú~ÈÕF8éøu?O»ÿÛæ»ißÿÍÞ¿jÎÿª»_uߟiÇI÷§¦?ON»}lùU¯hyl,zÿKÖÓù¨ì÷©¦]þ’lÜýr€e¯¯{¦ly›Ö¾e×»¶ü'íÃiûdÚã¡iý«îöjšïàf»¾lÿ/¿ðßÉ5müN»ÿ\iå­:ÿ¢ùáùU—§lùjÞ¯ªýû-ËÓ¸þT3 ·Ó|Öôû‰×ÛØ°öuèïB‚Éö=zÛùEó/›_Ýùm¦¥¢ÿ^FÕõ+¯êþUöüªã­ÿ´ûߤã7­þÓNuûsÒiÒãµiåizÿ.Ûߦ]Ÿ¦Ï/W{ûØ®ßló£-Mº¼“ÎÒëË¢å)›ß¤SÓÆgÑü¦Ý~¶4iŸOºý«NWÛ|9íñ5éxM›OëžOÊæ7íûÝ´ø›}½Võz¦iýi³Ÿªçßiÿ¦­š6>§]ž¦Õ¿é©éëßi÷§²i³Ï'Ó¾ÿu—§lüI×§éãaÒýwÒ××®ôúM:M{|5Íÿ¶x›­ÿm6Öý¼]õóRÙ4íõôŸW‹¦I×oÒíS6ÿºÓ´ãÛÒf¿“Þߘ´ïšVžIǯ;¿ª}|µû®êõÁ´ûwÕi³ÝÏ¢iÚ듺ÇÓ¤ó›ty§Ý¿¦½þÞì××=ÿ4m¾›öø˜ôú³îÔ´þP÷õ›-5­¿ØÒ•v7[ÿžöóiÑó›¶>kZÿ+šÆ(ÿ›Zµ÷¯6OÕ®öu{Ý©iýµîufÓÊSÖÓîÓžg'ý\Ö´ûµÙã•MÓîÿESÝíÛôöhššÖŸ¯öT·ï'ʎǦկîú4mýצbiÚý·îù¯iýi³Í§Uç7íû1éçŸI?¯”-oÕç—MMŸ¯´xM¿¿UÇÛìã­é¾µ¥²í=éûg‹_ôóªÏ¯º=6[ÿ){ý´ïWÑ´Ù®Ÿ¶ï›–_ÓSÝëÙªËWöóiÏ'“NMóQÕi³¯ÇëŽß´ö™¶/ª.OYŸ4m=;é4íòÔý|5m_”=ÚëçºÓ•¶>¨»?7-¿ºã7ý~O:m¶ùiÚ÷ïJ«OÕiÒ¾ª:5ýþ6mýR÷zâJ_O—}¾(úyÑòÔÿ¤ûcÕí]6Mz}Ô´ñT÷ú¼lûÖ}ý¤ûã¤};éñ^õùu§ºç˲©îööz¦iý¡hš´ßÊÆ/š_ÓúߤýØ´õŠ-ÿÍ¿ í¾ôã7ºÏu‡<÷^Íç¶™ 3êîžòîþûÓç;†|åÄÏP~ï¢óÏ­ÿUó‡¯iž=¯ùßiö?3äÑstÞ? ¹x÷gökþðº!_øÛ!ê 9ß¡zPýöŸ¦¸ûV‡ü›·hžùWÍC¦½öypÛ÷†ü§yö˜æ++ÄG©Î_ïiîÓn*ï·èøý!{ÄÏÑu?¼Aó/j¾rý^rùŸé÷7ù=j§}‡éº¾æ“tݧ2j‡ßjžýÍ'·ëöx†ŽŸX¥|ÿVóÀ®!_ |wiž=«yúͳ³šg~ü‘æ‘áÿ¡n÷j¿èþ=Eåý>õ‹ç©Ýμ ܼUó•ûG_wO—ÊyPóô¯4ÏþLó±lÈÛM~ç4빓xævÍèþÝHןþ‘æ™4S;>B<÷š}ºÏÏS;õ_ò•KC>Dqöt躟k>Oýnµßó”ïÓäƒÓü•ã ê?¸Hãì$yéÔ‡†|©KŸ_§yô†<@~:>«yî5Q}æ‰èƒþ§æƒÔÞ= ó¶k~—ê}Ø´åÚí "ö¿³ßþDs9Ð|”|så·t擆üVoÈþG†|‘¼ÿ<•ë~*çN:ïVâÁ.Å¡óž¢vœ§ßŸþ_VwÈÏ/Q½G¢rÝ™ÑçtßoÕŒͳÿ©yˆÊý$勾:tA·Ç šOž¢þ°ôõ!Ÿ¡òœYÐüÁ»5ÏnÑ|ò3>=ýKÍ»¨]Ìx>û?€_Õ|´§yænÍ—?:äwW©ÜD3¤rd—é˜úßü°CwŸ£rL†ÜÓÓ<ó^ÍÝ3C~ÚçìßkÞ9òfªßé=š÷RÜAן¡òŸ¢rž}Ï_¢v:{Aó ê_wSœü&ζèx?˜×\$ï¼D×?@ívÇê}ê÷{¨œ¾VóÌÍšß¡öy„êyŒÚõp‡ŽOù }þéLóôû4R=Ÿ¤þ¿¼ò1ýjEÇÿQêûi^ÚGåx|îwóô@Óø7£öZ~»æ‹fCå?Hqvö)Ÿàsš/mÑKÞ| ÒÌCŸw¨žwk.ÿF³ÿé!_ý5ÕãÍ£´.z–úãã÷öUÊçEMã—ºCž$¯Ýoú[Ws™îï]¦½nÖ\ú²æÙ ¹@ýýÌ1͇¨}î¥ö=ÓÕ\~\óQª‡f¼.ý¥æég4—?¢‰í·|µÕߌGSßct¾K÷qùGšgÍ穼æùë‘Sù—~¥¹ï¼æ™÷yÐxä?†|•ò=Cýaîãó4‡Íõúç_ò­?–þPsy—&>¯ùŒæ 4ÌSù—_Ð<ãß­ù<õŸ*ßé9Í¥žæ™¿r?­Ï–ߣù]÷ ÊïeZ?§ûøýë€TÎï/ŽÒ¸ÝoúßÍo †ÜEõ=Cqn¡ò-¯hî£õÍ·úCÞOùšñ÷4•÷ ÊçÛÄ›º”Œ÷3Öü*w•k?só<ºô3Íå—5—vi>Oqh¾|vNÇëͧ¨^мaÖˬ¹xQó>ºn7Í[ÏѺâáÞæùïIúý>³^¥Ï—¦ùíæâ’æòÍÔ^G)ÿ§é~}ÇÌß—€ÿ¬¹øwš©þf½z:Ñ\þ÷!ûÆ¿Ñ|êeúñÒ6MœNÖ<³Jå!.ÏŸÓ4Ï Ó8ÜOíýÕã3>i¼ ›‘ùl6äZïáóñ“´ïr/•çô¿ ¹òßOí2òýj.ÿTsñ‹šË4/î¦ržù æ‘.•Ï´Ë?j.oÕ\ú{ÍŇ5Ïþ‹æ2ùvݯ£T/³„ÏëgŽkâ|ŠëÓEZçFû–Cå ûiöÁÍ3@óÜüQ:ÇÏ)òïQZ'™çèo®ù4Í«;Cšõú~Óï¡yˆâÞB×/ÿ¦y.þr—ÊùiÍÃtý}ôùÒ‡4Ò<|ÄÌËæy£Oqþ·æ³½!¤z-gš8~—nÕ\œBÿ¿ƒêy;ÅyxNsi泃!o¥ú=C÷sžÎ?AÏ)Pùp=ò˜Cq©¾æ¹É”㎮æòÏ5ͺòkTŽÇéø>ÊçAÊÇÜïïRÿ9HÏÃËsš¸>X¾Ksåÿ Sè§¿©¹ü~ÍÃ3º|Ë{4Í>Tf>Ÿæâh>OûÈ7©ÿ<™Ñu‰¦y~~ê×ë iæýá2Ìén§ëûçqÊ×ìo>A~ßßßÕáâ4ÒsÁSt½y®»žò.£ö¡vÚOŸ?E÷ÍÌ3/Ñzά«ï¡ë̾‹¹úCš}Ôþo€à{4—iÞìÓx[ú©æiÚ×3ïמîkš÷ºwöuyöÑ|°ŸîË£Ä#TŸïPý#Íþ%ÍçÉGfýëû#Ô§q¶i.®hÞJõø\Fçý§æAòªÙ¿^¦ñ5zE¿’Ê·ˆ<®¹tQsù?4ÍZ|;ð5qýÒ\óÔ‚æ1šÇï[Ðå^ ~»xYÓܧƒ4O¢qlöño£zšý£¥ß§iö ¿©ù2­Û2Ê÷$í>köh?ãyòÙÞf~y„êõEºþZ˜õââaÍþ¯5O&šý÷kž:¯yOÈ»¨§~£ù }þ µÏ©_jöü²æ½w:FïQú”Ÿo'ÉOæ{'¦.½KÓÜ÷ÝÙOR»oã|uÒÑ|1Ð|t0¤yŸÐ'/=KýǼϻ•êÿqÊç}ÄÅ÷ߣy̼‡¦ýЧ(Ÿ'©¿/þ“æ­ Ì}1^7ûüý÷išqfž×–¨öQ;-Íhž<¯yb‡&Ž¿¥@shö³ŸO^ÖÄþ×_Ñ\ü¹æ>ªÏ=«ôûyÍš·Í~¡Ygì¤ë¦zšõâÉk>Mõ4} ã?Ô‡(ÎcÆÓÄ}4¯<ÚÒ|ÿż7\ü±æ“´NÙÝÒô“ïÒV͔ϮU:ŸžGÌsâÃ!Íó¡yŸox„î«ùž úyñCš}Êßì—à|Ýÿ'ÍÅŸhš÷ÊC=¼þûަù>нÙÇ(ÞŠwô'š¦^_¡zšõÒˆ°?ÑO€ç€Û5¤v2ãÖì¿çæÏš‹ïÖìß®iÞš÷~;¨>ý4Í~¬Y_?G÷ùKÙï®_âhšï)™÷çÏPÿzˆÖÓ‹Ô¯¾O÷ï1çfÿÐÌw÷¨ž@óþñ;Ôñy€îû«ä™Çé¼Ó¯i.¾„ùséa <_~­æÒYÍÅ4_]Ó4Ïñ÷R¿\ uÍTß“´oó¢Ùêi¾×eÆótŒ÷çÔiÍþ»5¿GþËV)xŸ€¾[üªfŸöÅ^¤ò.þVÓxñNâ!Š“Q¿8d¾§GíñWÝ!?éPýa>•Êaž£püßJq>›Ñu¿ÐÄý ó}ÆOh¾úQMÓOŽÿ>6ÄõÞS}M\¿Ÿ¸KÓÍjâüx‚ú­Ù9qøÍyê—£ï7þ»&î?àûÕ—¨Ÿ˜uè}T¿‘ßiíEòÁAªï^jŸÅë4Í8|„ʃëó~Ç|_g??Dõ¾…âšï׺^Ó|_ݬQ=Íû“SæÉŽæÒ/5 9Oý{é9̓4®Íó¾ŸÃõÒ!ÊÇÌßP;í¡z¾B¿'??àú{žÆÓWèü§h·‡ÚçýþAŠsýþ+Ý!O,hâþ…÷_¦ë¿¬ùÕß3ßÿ1ë*óœßÿ™æ³TŽC¦}è{;C¼~lÖ ´`öí Í÷…?N×?e¾Ÿ¶Jå¤ynž_½A3£õè^sÿNkžÚª¹ÚɬOÌûƒÇ©=ðyÜ|¿¥gêOûRS}‘Þ»ìÿMÓß Mÿ6ìߪyƒ£¹æuó¼ùÄêRypýõ÷-:Ï|_ØðTGóžOíÔÿæ1êwæï,ðý î/ÜKùî ù•~ÿ=G¢uå«ÍCtÿzT®Cô{ãû“ïÑGó9šÏÑŽp´€£-àhG 8ZÀÑŽp´£…-äh!G 9ZÈÑBŽr´£…-âhG‹8ZÄÑ"Žq´ˆ£E-âhG‹9ZÌÑbŽs´˜£Å-æh1G‹9ZÌÑŽ–p´„£%-áh GK8ZÂÑŽ–p´”£¥-åh)GK9ZÊÑRŽ–r´”£±K»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’Ž\r­;;’É?»âgOü싟ñs(~ŽÄϱø9?‹¸®ˆëЏ®ˆëЏ®ˆëЏ®ˆëЏ®ˆëЏžˆë‰¸žˆë‰¸žˆë‰¸žˆë‰¸žˆë‰¸¾ˆë‹¸¾ˆë‹¸¾ˆë‹¸¾ˆë‹¸¾ˆë‹¸ˆˆ¸ˆˆ¸ˆˆ¸ˆˆ¸ˆˆ¸¡ˆЏ¡ˆЏ¡ˆЏ¡ˆЏ¡ˆЏ‘ˆ‰¸‘ˆ‰¸‘ˆ‰¸‘ˆ‰¸‘ˆ‰¸±ˆ‹¸±ˆ‹¸±ˆ‹¸±ˆ‹¸±ˆ‹¸‰ˆ›ˆ¸‰ˆ›ˆ¸‰ˆ›ˆ¸‰ˆ›ˆ¸‰ˆ›ˆ¸©ˆ›Š¸©ˆ›Š¸©ˆ›Š¸©ˆ›Š¸©ˆ+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU | _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂWo~¥üåò­ÿÏþë×Ðgïºí–=·|øöÝ·¼ùbþöÿþ?¢*n©Ùsurvival/data/rats.rda0000644000176200001440000000330113537676563014521 0ustar liggesusers‹í›[OTWÇ\ -ÖK/jë¥ï+½Ø‹-£R+P…¤-h&J`LLÍć&$¼øÒøâO¾_Læ™ÑÒ/PèÙ°þÖgÏÙ¥9'ùyöeíµÖ^û¬=gO_G¦­9Óìy^W[ãÿ[ëëü‚·Ã«óšLe:[˜ñ¼Ú½~¹Þ§Åï:³Ò¿F QKÔõDÑH¼B4ÍÄ«ÄkD ±“xØEì&ö{‰7ˆ7‰·ˆ·‰}Ä~âññ.q8D&ŽïïG‰cÄqâq’8Eœ&έÄYâcâÑF|B|J|F|Nœ'¾ ¾$¾"¾&.ßßíD‚¸H\".ÄwÄâ{â*ÑItÝÄÄ5â:ÑCôI¢è'RDš ‰ 1DÜ †‰‰ŸˆŸ‰â"K䈛Ä(±Óì[íÿxWÜ·Çíq{Ü·Çíq{ܾ¾vOÞ³C‰•Jâjqõ~cµ31°XY*V¯‡Éë{Fú{¤ÞŸ¨¼gP_¬Ôqý°›¨nGÛ@]÷Ë=©ì¡v•_åñðÏbÿº²Ÿ=)¥ò=ÅÊ:â™Tízœ–G|0Ÿ5>…ùy•r°ƒögô‹ÞË"wEîJ®«XéÏô+¿zÕ<Ð>¨Ú1>­æÑ‡v‘ï³ù»¯ã=¸X½^¶[ n‡þ”ò?©ê˜Ö¡WÙIBNîxŽSô½¼þ‰êr˜Bêj^°×¡Æ•óQîiG¿Âö­ùçšïп¬ñY öëÖ 9Õßù+ëe?•ÿÐQÙïó_êˆGŸ´Ÿ·È#?úÄÿ´’+ïoÅÊqz?€½N%‡þòóŸPã+å±/ô/ÏS￈ŸîG^¤Cä¬ú•}ì_ZêÏÄ_îúyB¼u|ðü`¼Î'<اôþ}È/Ôu¼{¥Ÿ+xž°/ëýzt<õs»ÚžÎO<÷ºóÇçìâ=Ï >¿ô:èϯ°ý z‡~ѯ×=™¨ÔõÓùª?Wz-öaÇgOÞ³P©ò>ö¿º0O×ùj¹°q›Ǩú·ÚŸŸí~EçV_/›?›u¹î›½ŸD½´?aö6{?yÙö«õÚÙªç!ª|Ôýv»åï‹þ<}Ÿg»VÞ³VÏBì·&í…xT<*ŠGÅ£âQñ¨xTVÜl!èxq‹Û1c}Ôì¶°'€°#È>м/„ý9àˆíh³ƒªÂáŽT!è¨t‚ŽUÀ±Ž[8‘“9åÈéˆT; ~Ö³çÜÙñ_Ûé Ê}|þ£ìÚ†w¼4ÈÛdÃl„ÉB&hŒ‹-e~aþâý'¬ïEx÷q•‡œ‹McÔè 3Êú»ÎïwQž‹ ]}žÇú¬w=£êu‰בûü3,ó3«)?û=Ÿ?¥œ£;úÍ!óó ¼ÈÎùO)Në)‘•˜Ýß“ޜ؜›s¤zMLŸHº!;/zÿŒÌ%‰+Ö 1J‹؀ΤÄàÑ» ú;d|Næ.ˆ>ÌóÏÑ|à'|—5À:\£yB~®×å­­uA€ŽG4ÞÄä.Í?#õ{j-ÛE'~rÇë5A¾ÂŸ¤ÈäÅöŠ7ž5^'ä‰ñwV|€_I?YLIó"G˜Szñœ›%ò sÊÐSRFî—äZ‰ô 6÷½µ|ÏQ¿-ïYGRîAy_òÖò¾$±f_8ïKbçÉŒ«:ç}É Î{è™òÖò^û;"e[Þ#fì¯-ï'×¼‡Þ°¼GLŸH9,ïŒÎ{Ä((ï ^³ÕoËû’èÃÜ£æ=üzªt¹æ=ÆsÞÃ÷X?×¼G\\óžóÄøkË{ÄÓ5ïKÞÚsŽ˜q¾qÞãYF™ßù=¯òoWݶž¿]tE±$k«»êq™ƒ­Ï5N®ö6âŸË˜(1Úè¼\cenQtE™kT7K~½z]æªêæK€šeoõÿÃðýD~ßB¦ (ÞÊỉzó­Å9®´©ï0VôÖB¯õ»Š:#A_M,›¿B– ÿú@TEsurvival/data/kidney.rda0000644000176200001440000001177713537676563015053 0ustar liggesusersRDX2 X  kidneyL?ð?ð@@@@@@@@@@@@@ @ @"@"@$@$@&@&@(@(@*@*@,@,@.@.@0@0@1@1@2@2@3@3@4@4@5@5@6@6@7@7@8@8@9@9@:@:@;@;@<@<@=@=@>@>@?@?@@@@@@€@@€@A@A@A€@A€@B@B@B€@B€@C@CL@ @0@7@*@6@<@{ð@sà@>@(@8@n @@"@ð@>@J€@h€@.@c@@@tÐ@a @ @X@C@b @Q€@€À@9@1@@g @f @r@@\€@6@cà@.@[@c@@y @8@*@P€@C€@G@(@D@\@@i @`€@c€@A@>@@9@`@@:@;@M@@E€@c@>@gÀ@@]À@ @K@0@@S€@O€@ L?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ðL@<@<@H@H@@@@@?@@@$@$@0@1@I€@I€@K€@L@Q@@Q@@I€@J@F@F@A@A@A€@A€@E@E@1@1@N@N@N@N@E€@F@J€@J€@F@F@G@G€@>@>@O@O€@E@E€@E€@E€@L€@M@$@$@J@J@J€@J€@K@K@L@L@I@I€@L€@L€@F@F€@6@6@E@E@J@J@N@NL?ð?ð@@?ð?ð@@?ð?ð@@?ð?ð@@@@?ð?ð@@@@@@@@@@?ð?ð@@@@@@@@?ð?ð@@@@@@?ð?ð@@@@@@?ð?ð@@@@@@@@@@@@@@@@?ð?ð L levels Other GN AN PKD class factorþL@ffffff@ffffff?þffffff?þffffff?ó333333?ó333333?à?à?ø?ø?ñ™™™™™š?ñ™™™™™š@@?à?à?æffffff?æffffff?Ù™™™™™š?Ù™™™™™š?ã333333?ã333333?ó333333?ó333333?öffffff?öffffff?Ù™™™™™š?Ù™™™™™š?Ù™™™™™š?Ù™™™™™š?ñ™™™™™š?ñ™™™™™š?é™™™™™š?é™™™™™š?é™™™™™š?é™™™™™š?à?à?ôÌÌÌÌÌÍ?ôÌÌÌÌÌÍ?É™™™™™š?É™™™™™š?ã333333?ã333333?û333333?û333333?ð?ð?æffffff?æffffff?à?à?ñ™™™™™š?ñ™™™™™š?üÌÌÌÌÌÍ?üÌÌÌÌÌÍ?ø?ø?ø?ø?û333333?û333333?ôÌÌÌÌÌÍ?ôÌÌÌÌÌÍ@333333@333333?æffffff?æffffff@™™™™™š@™™™™™š?æffffff?æffffff@ÌÌÌÌÌÍ@ÌÌÌÌÌÍ?ó333333?ó333333 names id time status age sex disease frailÿ data.frame row.namesL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76þþsurvival/data/reliability.rda0000644000176200001440000000272713537676563016074 0ustar liggesusers‹í˜mˆTUÇÏÎì®»£Æ¤kFÐ:Eä!“¥H`s2Ó "6ÅÚb‰¹îÎèàîÎ4sg}[iö:b„Ñ«HN%iB²å7!4ÂûAÒ A,¢âq;ç>ÿ³»÷îܹחØÀ<ó›sî9ÏÛ=çÞgfõŠÖEÖcÌÇüÕ>æó‹¯‚ŒU±jV/Xß®¥´ö„žL3æŸ-jÄÔ9q&Û”1ž›ZÞçñíƒu™ä•™.Ufv¸2ÿ·?¥öE“ž÷³ˆFça[ÊìðÝœ¸'® ö wlóꈙ+•¾Eb*deóŒ(ñÃÄÂAo72«þ^èߺCÖëz‰¸©d½®¸-lÕ£âtd]eª8¨ât¢ŠÓ‰*N'ª8¨ât h3e—É—èÔÊ7K!QÓ­uÅ2âKPv08]u¥biMϦcšÖ“ìÔµõª[×껞èRãµ]¬ÊØ«•trÓBeHÞ_N|ŒŽŽ–ìÞ´wjå thº¶0žëEï–mIm{ZkߘA$¯Èã^Ç×s3XnŒw‡‰…óÄÿ$~’'ö? «ÈՃ쫿ò¦óʧƵ׃ò§¸dGý5¾âR¼ò»ä·ò®:±ëAýçŽUÿw€ìh*ßÅÊ“âÖºÔuù/ûÊ»êNõ¨×%Ê—üRÞìíUýkAv—üVÊÀž÷ ul×êZñ«ŽÔn1h]+oʃک¾µkÜ Í—ú騾nïZª½–²ó§x”'å§ÔxŒÑ­jLÇtLÇtLÇ4…ÆGrãb(<6O ùÛ»{ôˆÒ×»íÁÓ0O ‡Tq0ŸãùîXßS]O§vûÑÚi?¾úÑLãe:i>GëG¶ùi^Gšï‘úéwÜ‘ÎG¶~Ö/¿~߬ö™úvù]¿™ÚeëçHídë¦þÙÚó«™ìgϯßéÆ×ýBŒñǺø#n‘EÐI~Õ¥vÏ9»^{l:ÿ{ü²ûx_Èv‘3ôU[±“üWlõ/²Æö>êÙc88Cý–MõµÛÈV±ç»÷u_ÐIöÓ{ìC>zÆ 8©s°t¼e_p’}J•oï±GoÿbO»Bë¼7¯…– ïë0Íg±“<òÍk§Øc_yð^ó¾ZKõÖÎ_‘eßë¿w,ï9Û®ü·çÒ{^ß½5^”bo½ØuoÏMª<äX–Ý¢¶ìµìÁ®ïºIWë^?¼çä«r`×qª¹²×eКïúóÖ¢7ÖT1:©÷3{½fºnï}ã¡5e¯#{oóÎeºý2Õ¸ö¾á­ÙUœöü{×QaŠ1¼¹µ÷ÛTãÞ¿_¸sv9\›ÐˆëÄ?n¨õtìó–™àþE—_Oè/Ä?_“†Þ^1øqÛÍõhû‰Î‹ûos[hßñSc¯œ~«*÷Ï=ÑùWièJ\.î—ºm˧ܿح|ÉhS8æÕ®o¹«brä¬ÛÀx·a/ü¦i'½û'Î7¾2Å 7™ãèÁØÑçÝ*úÝ*ÿñ£þæ|öÛfšëÒÖšó Í3þH£ç/Æ mHh»±ú#ã-x6Þ-ú÷ãWô9“W©âœöÊ`·í¡ÁöîÚ«qƒn;y¬{`0¯¡Ëƒá4¹Ó±·îuãÇtâªùsOüãÖ~ÃĽ„óî%ãόӃã†>a¼•Ž™ŸÆ~s=4Ïô“êúÝÄÓùª±'­=M'Mý4-4ãO»hò»ž¼¡¡ë=æz3ñ—NÖuä]Z‹>– ·q“±_ý£xØŸKäÍe&’Jìtî1yŠ2¿ ]jê }bâJèµN3‘/»kÇ;ÒVêJZJ~¥5Mÿê&¿!ŽʼHØù•Κkü«ÆßjæSÚJþVÖ™<´oó™skÑG J<åôkÃNôYoÓ¹¾¾ÂÔ]ýrÈ{뢊øjY_Òü”6â´Œº©`¾"Åì+høŠ±/‹ŸU¬›kª ò={QêuíKÐö=ÆŽ´¿¥aö—Å»Mœ-ø!mû¦™‡ùV]j^íöÍkLž¤ä/¡¬i˜õ-m`Ÿ•Fž!Oh=õ]Ç|×ãO5õ¨x¤Ú¥³Ù/¢ÇL½Uš¼&´ì¯Ôº„®RW ¿3çÝ_Çåф֧ô.òÜñ2qš¼$ö¿–i-q¯çþѨ}÷±Wfö­O·õR²jß“º3“u©»Ð…ƒí6S73¸ßÔþݬÓÈ»f¼°æIŠ_+¨¯öåDÞ­öO™:©Ã_ÍS‡©ßÐǬoí_Üo+ˆó~-,3ó¡®Vê>Ë>(mþŠ™©ìÍÀß…äÅ¡n–³Fð·n¯‰GZN]H[^NֶϘ©ú¤{×– ©ÆH5f6ï‡k“.¦tùî]d:¿Sïçýt¦9Éägªq²©—lkÂÝt×üäÌIÑ>Óšð›??sî§oº¹M×?›g»N†?•íT:Üw?>¤ók¸þ~æ!]­¤û ßp燳=\ÎýÖ`:[Ãø•ü?xwt=Ò­ÿÁàdnïV]ÞÞÕßÝÇA^×¶n}í~<ñu OkÏïëíXßzQ“Âþ®ÝýÖÐãûvîYªáãÿÕ0÷ÉØ?7n\,Í_ëƒ[»º–öôź8æ/ö×ÿ Þ¥Fì[9survival/data/bladder.rda0000644000176200001440000000664513537676563015163 0ustar liggesusers‹í]ùzÇo´º0²¸Å!Y—-¬lŒY‚Øñ…1NÈEZb%)«…8ù+”¿ü8yŠ<¤ Uik«ï™Y %Óß÷SïLwWWWW׌¦zjîüp~ôá¨R*SÙPŸÊúõÏLÿéSj|DçÃÖ««ÍÖœRýGôñƒºxf»Ž‚º¯iÔ4CÐVc1Ê4Þ`8È0&ð¦À8Ã!È#ˆ£ˆcÇ5NhL N œrà´ÀI)·Óg-8çÀy ˆ·3¸„¸¬qqñŽïjÌFâšïE@넚×X@,j,1,k\׸xñÆM5n!>Ò¸­Q·àŽ?Ѹ5>Ñøi~¦ñ)â3†ŸGàsÄ_2|¯5îi|£q_ã[ßiüBã—ˆ‡üJã×ˆß ~Ëð;ßküAã GˆÄ*CSã± à{5?kü…a]ã‰O56›Õhil ´5ž!žksÄíS…ÿ_dJG…¢èº¿\o>o®ƒÇpvhs½±Ò|´‡£›o­­nü°ö´‰g†Û߯m´›› A®¶²ÞØ"j;}‡# åËg¬\òì’§òðSdœ*±®MgcäÁÇ’ÚV&—œ|²°­o9”B÷²mÊuƒ ëS’´cÆäã]ÖóÙ'Hƒâ˜ú‚'ñãì<<©“õ9Î~ƒ®Ãã!¬ËË©ñ‰Æ{ÒÂÓVžêg´€ßaäïãú˜°Ðšd¿G=ª |‚§àÖ=Çê“<Ùñ ê¬ ÈÁ{qy™Âó‡ó˜b4€WxÚ¾Àêel SÈ<퇧úðd}ëÁüŒ!Ïà¸ÌÚ“\b0'g±=OÜŽgÊ´ë–z”jâêÀ|ƒLO±s#8àó¤¨?¤:úågp¼mºß#}‚9:õ.²z£˜CÝ£ø{û?ŒçŽ#°.a+ŒxJ®±¶cØÚ€^€ÉË“øZ¤ë­ J¤;>â c£¹¥cÞdžÕ'oÈkÏÁ¼r9˜Èiéð5Cc8ÍŽ¡Ï£ŒÎŒ(“ii_cç¨ ·OtEr¢¹‡¹€y¬aNºsy Û¿É6Ño²M'T·mšPµHÞ¿>Ì3Ìá©:ò—¶é’²Û&òüAW±Ï«ªÛ6½£ì¶é]”é1èËö»¤LÛçnª8ÛtKÙmS]…mÔQªc‹øÿ×|í ãyúßåöG:[Cþ¦‘¶´Mç”Ý6‘÷5d›¸÷5d›® ¼G1'Û4«Â¶iÛÃ<-«ŽmZVaÛVðª‚7•ß'‘×ý ŽsLÙmyÑ)ÏPd›È“Î=çÜ6ÂãÓØvRulÓ£´M•ß6A9·M´.«Žm"ï·Í6‘\É5îØ~ƒã Ðwñ#û‘©l>c墛گ”Lyù(KeÑ+«™BëÖÕ>¤g¡ú®y Ù‹²Ç¿_è†ô ¬~c×S¯õR¦T}IåK^]ò¨;躮2•m7cé—5_±×;J!;’Ê«ì/–~½qü¿î;ûfS~ÌEÔ™wŸYp·Zv×¹áþ1gü¸án~~,gL:6vÎ,Ežz5gœ7ΘS°ñÃ31Sé»Y´ÓÅ’» sšæŒæž)0Ϙ],•cdhNAL_ž"óÌŽ²™saŽÝêÉá¢QÙóæ©uKFe?ËFss86bº0‹’è$™¯¤ÊžÙ1•g–=+׬cÏ"òÏ‹´ócÉÝé‚QÇs 0Eç)2;]6Θ–$iåšt<Ê6ïîtÉ(òÈ9Ÿ¥1zæ6WeÒ%;ßÒótá¹™gL6bVŠ©Æž;˜ë©ç¦Â³<=ž$UAÏmOA£—ÄXWQoï.Í‹¹Gº1b޹ª›ëÞ39I槬‹UÒL¤\p“Zå»àç{ÌÄÌÇFéŒÅÐ1±ÇÆì‚ú%‰.Ÿ>ÇÜþĘ”² mYÆØSÙs;_ÖÚ)K%òõ•´ êXYÆ3¦‹|ÿ¬—¥užkÜ.ØÕ‚Â,ëÚÔ»UYPb1?òÝ廿–5MÊc:ŸI~Ö«ÒÊéØéSr”Çž¯+å?vü±rˆå»Ž;½êiôRç/Ô^>SåZ¶|ÊâCÊ!•¯:îö¬OcŽ;0ëòÑ+«ÿ¢z’ªÿeÙ—^ëi¯äY]¢—×^¦ö+ûÛ­~‹æ’ïX¾ŠÚTþBv¯¬ëkÑõ"ç+ïõ¨(ß±ó”Wî.zòÕó§'MzõüžÌÖVñ×H»Õl´Ÿ4Ÿ¶é­ô§Ïž°¬âøTà3ådõ¹À_*0«¯î |#p_à[ß À¿êʺ%ªò*¯ò*¯ò×+¯«*¯ò*¯òý™«øÿÿC!Ml¡ÆŠ %<–­~ˆ W˜¼H•G*¿²¾DH~¡ç7Eû/{¾‹–ï¶>ÈþBarB뫨>å?U1aúŠ„× …ñ+ªo¾V1ö…ìjÑqözµ³!½ ÉUÖ•‡ô ´nŠ^'RÇ›Z¿×zm ˜ÂoHRõ)U~!»’*Ty–m—˶Eõ9D/b6u<¡û$IÏu¿ {&ýIƒâXú‹¤ÿ§&Žy¨ ÷ÃÁCÿÈð?©!€lþ >qœ‰c äò…@á„@üb®°B¶pBç¤ÿhRùýI#¬ÿ e† ’þ#àû‹Å1ñtma‰(Aú‡ÀÆýAÀ÷ÿÐüÍb¹ôßdª;t‘ QD÷\äÛ ­#i—BþTé/¥Ð;Z{‚G®é#ÍT·ôê„å±ùC¥¿3W(ôÏõ—‡ö¡ð>2Ô óã ëãBŸê„û±ù'?þGú+¡\ú,9BþI[¸ Žq,õq íêž&z®ºWôåóݼô]í]Ï‘‹–‡òØTT>½ž¿Pê•üË’oÑT´¿¢þŽ¢ü¥êWÞùÉ›zŪüz•M¯Ëú•¿.úûº¥ØõjK?5íýïÕøbÛïUêõýEDâÿÿÓó¨ê¸:®Ž«ãê8ï1¼&0@/ oEd­|¯C/=ÔšÏ;oP°jÐá_*Ï{ ôµçyµý"Ã0RýÑ2PþBñ@>s½\òbŒ@¾@À_à_{ÎûÿÊ3mìŸ8«ÌÍüç•ýëΡ ûüá—o3~ž øô ‹•Ù·a^nŽ—â}_h¾£º7¶ßUæ——S7°Ëê®é|ú=åÞ`Î7“ƒný¸×«¼Êÿ—òºªò*ÏŸ+ó>ƒœo.¶tfûÊ82Y?´ËÇKˆ6¯ÃùÒÉîÛ !ûðõ%eà’‰ë\ÌØ¤¬¨Ü·¯È&¢Ú4WÖ÷l]ºfÛ ÁeCúìÓMÛÜÄÌEl]>OÄ'ñ8ÀÊ‹lò²ÍOÌJyÇÎ?£o³•ÔWÛü»dgãÏ·f|¼Æêyì|ÇÈ4TOê­­·sP‡ôÙ–öë7‰ÇÔo *Õ½Q†R?æ1ß„ûÝ@J™à•on¡rÚÜâKÄ'×QJÔÆŽ{ñ:H|s¤<ߣãçdâ›7(±ïÐíÜoÐÆ¶ýþ º¼ßžãºL›¾€vÊ÷æR¾3Wd£Vì·Ívû›f±H—]ß/+ðÝ2§}ÞI!G‘,9¤\å©ÿ?æmçj¢J»Íwˆ¼üå•W¨ŸT>\ü§ö[–ÜËâ;TÞ«yˆM½îw¯äŸ—Y/”JЋ¤çÍõ@¿²œŽ«˜¢åòÝ«¢©ýIú®ã¢ã.»ß½ž—²ô&¯¬6qÙü CL$¦—bZa(@©ñ§ Ó~=<8Öé}~Üó0rùÕ›‘‹0ŠL<¼“F0¦Ü{6™¦Æ-ä>l²ÀD0§àW¢T˜œvžÖP¤…és0{ÚYfYBÎúk×Âßy]³»®°@ø¹ èñ,,òÍÝ39ô–Θ&…¹ËÕ—ÜÔ.EÀªE!ב/¬ÈN=õ«6†É¾½Ó­¡ìëOâma‡lœ=à)ìÙÓ1*<ãE‚Y±x6ZU$Ò<Ýóç±g–hQß¶ER}5·»áx€0uÖ9¿É;~n9¶"e]«ÓC" ¤{û.p.rÉ_ÉÉâGºß\"ÌH¿hýÛgÕן ’³ Ó—‰SïÏ "‹8ƒ˜*.²V…dŸ>À‚ìO«XÏŒ"çufë[§ø‘;BiÖ2! yÆ~kÒ½`E>åí›Ì“¶ÈÿI@êTç#T|½nJZŒB«•—¿ 9 ÈÄqåÎêm?XCn’³Œ’—œªoä|DirêßÝ5PæïZF)n”»j[üçK*0§¾¼õÕtØÏµÅk¢Rvqÿù㨜¿‘6ø‚U'¹Xç"7%æ×*PݪQ¶ë«jÄÞÒ NšGÍu©¢‹ÏMQËÙ剶5j7¼åîúýu4²|KP¯© Ê‡ý¸ —Y—½DÃÅ+–j‚?ÑøY®™ù/4•6`”½Ô‚fçjp±Bsõìë½* hÁ‘yÀ" -¶,ìšÙΣå0o´`ëZµ%\7Gë.¶Å’_Îh³`ayÒ‰íx<Ro¡½'ó»ÎN)t¨>ôo×àGç‹ÔmtÎ’Ïüòýº²¾$ýÛÝt÷œYñÐ¥àP³o—aVȤh(\ziò%˜^…–½è s}hd ªŒ·M€šˆ¸…8n¨HÚmaU¤€Òï³§=i†âÑz›@}(òãºrä·©jGxñÆÿçqq´9ùÞÞåÿ¼¿b¬k*íß,ÔÔߺm)ê ¿¾–±¦Wä-Ík¯Ë(B«¯ç›â hko¥˜?cðþÿ—Ç.)ö9•ÏKеmo!GÝÉ|Eù±_ çÆi[Ö`è=-¼±'}Oû_ÌÉíA¤À ›¾ tŸò­¼¶ôŸ}eÈäß⥗'`˜ûÌßhbb¡°ÛkøD#«–¥>¥¿at·ËÃò$Œ³J¶<–˜0føg“/j$ñÌ!˜&Öú+ 3/Þ?Ò¯„¿ŽªjÕ`î‡ë+ñ§wa!RR*”‡¥Ùf×`Y$ÖâZ¬Ü÷{?rYVwèšä?sÃú3Ös.÷‰`SóLó Øæf” ¾#;Üݽ¾°gþa'ïÀt…»—Ò "‘¨})Í¥-$~xCTEI¹^}½iuɪ~hÐÉ !ytÒ—ðÔH#f+M½ƒÔÑüù/Iñ È5ÿ¿×$‘nÐý]ÊMd0}¦ä·°ƒŒSÄgbF9íÝ<ÉdÍ|2Ä)ȾQFHpɹî?~yÍ·y쟳’"Ÿf¢ö£Û(@:Ë[£‚‚Û¼mdŸQ„ŸÃYèÜ9»ù»«8þJR¯‡®ÜÄí[16ãŒ(3}/}9ëÊج:¢‚îÓô®P>Thì\€G7»?¹Ëƒ*Ž 6sùÔ¨–Bªµ”݉(pûà¡—¨Þ÷6¨‰5•xÄ[tðøÇÒà7¡çQ›K:b+¬u>$»‹w¢ž|”„ø½XÔoüRÕgÝ‚†WT¤ ilј%¾Nz•M )d ï¡Ù‘·V2=hNõ˜¯„Ÿ͇¹_ú4¾D‹ìµ«¿¢åKÊ„Qj´ò¹uýn§ Z»Þ;}%mÅ^ŽCÛK¤OœÞ ]üÝñ {´ß)©6*DÇ`FÖß–Mè¬wÜSo£«³æÓõ³ÈeñO÷õ-˜£]ì,!wÄG|Çû  #™÷bU:4õlÞ§(Ò††]J÷e¨MјhJª„jйæ+ÿ*ý©)ˆØj¡Â%Ø=ÑÉ*ÄBsžCÅg‘G½I)PEpŽp™Šj‰ƒNýÖ…úyɱ¼«óЪ{×¼ZRùNèÍB[¦_ÇšÍg舾Y™Í|º†˜œ÷↞ûFœ§“¡O"E4ö'ô¿‘H»[~ª¿2}„AÊ?ùÂw`P­û¿îA¼•eWø×ûž¬ˆN Â'ÿ|À£F&Zå¥ê¤ƒáìÆüÕV0xꨰž9Œú–ÛÔÜi€±àÃäso a<ó;w؉S0ɰãÇqn ¦žŸL½:Ã3JI_¥“Wá/mï“-Ñ0ÏÓiyŒµ ~\xôÝý",.ë¼ÓþVË6¶—!Vú£ºÆåMa-œŒ2RÛ6ΕÆL©TÀ–çø¶á'ø÷ì_ é1~Ø0 ¦²A‚”CN†DHDü|•&ê _ãJH&hFRŠ˜ò‡¦THV¬e—sÛÉß²m¤@ʰÞêH85ñ–¢iÅs¿® Ýž3»ŒHßràƒ{2òu;.S#Ó£M« ’ËÈBa®(û3Y¿’6.¹#»GÍCç ÈiT›ìDèŽÜ':BÞ= AžÔWÃå›9ÈÇúQÌõ5%òªimÙDÁƒdw”‰?¢PEíºÓ8ФÝl¸9Eƒb-‚ŒŸ ÃQRL9ÏçõK<ü›á{»‡8ÊäGÐGKK¢Ü±»Ê¶Œr(ßuœ‹Côy±8¢ÿ¶•ÎÓišä@å3ñ’Wª$Q5d7èlu k-M»æ†êü­ o墯ç÷¡Sˆše: bi¹¨%‘îÛ1ŠÚ1Ó:æñd¨Ëi0•¨Ã€zñQobX˜Ð@žö‹/ aõbªÅqB4¾XuÕ€M9®²qø ÙéWù¯³ÐüxèxvYZQ:9¤BKêtmªBR´Ü‘[q»‹V›§„£ IC¦Fi,Úò‡æ•9N£ ƒç‰´ÿyZ‡ÿ :’d¿Tv§D§ >>[è¼2º±ä]‚®n,‰>N•èvþÕ}¥@UäÖÕ ÚY€éE§×Ž@÷-U/»=há pd §‡ú ÇîÞªT¨¶nçêN†òx…`ï§qPRé'Fs¤Љþ -BaúÆB{ä_(ôçwâû…)¬Â%½öPTüñ{Å%S(ÉlôïPÞ„ò‚O‹nZBµ·ž]wÖ(Ô‹0®ç°A㯈»wšc¡™Ho ASZΆ\ª¼¼­™–ÚGBÛä§Nç†Qhß IRS¡„Ž>/Ùå¢ÐߘP%# ]Æi︓¡›‘ëvoA;to,åÎhnA/K­¶ËéYèãúµùZú­ƒBø2«aà§“¥Œ÷ е™Ó!…! º#7_Óðâ»ñj'áy7*¢ £òÆ:”0¦BT2«ã¦ÙþÀD*WZR˜L’ èK£†éoîíçk`örƒ'ü[‚¿õMoç4ÁÂÑ‹æî' añ$›Ù®[,}bðù ÍË[_è];UaÕ+X±pÌÖVíNиÀÆûå{ÍÆ¿`늈øÈLøç¹ý¨>¬vÃçÛb‚À祶ÜöæF |ü•ÄåÈÒ2ÙC ¤_Ø9,,4ŠŒw‚‰ël!349– « ÑЊÔwd÷ùòTÛ9×¢ö¸„à¡âÇâ}uwQçoÏ¢ ò§ðÛWo¡à;âŽ÷cPø÷t8É«i;pÖÔj%%ž Â󯀇õöLZ^¡Lì:Qõ,Ê)i Ïõ—fWÉ"SŽª¢I±ñ¶8³šiËòdÈ 9ßÊç³´bhAE÷Ü-¦Z‚ùý es®Ši;ZÅœMŒ$Fëì¶_î¹hSxò{Œ»ÚöÞÁ‘FhÏ|fÆÀÿ:x³üÚxŽÿ*b8¢s6Ù%RÊgèšœüC/Áù†©Jü‡`Vg¾„å!ô3†œNÕ€6ŽÀ޼bÐÄž~Áé‹?Ô'Æ[]øÅ57¾ A•@u”¨¸¬f6¨<åîw†N3C¹Ü9S6¯:(OÞ ¢›€J |ÈÂô ªÌÿ´ò„ºYÉÛr-h"b­x–-B…ö×üv¡W¯ð²37´¯‡Zg߀ÎÖºc~Ä™Ð7ݧtö ôZE½æW†¾ÔO¸íçCÓ×>Kûž£V+ݹ­.µkÄ G` ¾³Tð† â ë{ÿ/0XÊ"V CÖÔU›…`˜˜jƒì»2 —e˜K$ÚÀÈÏÔãÓ‹µ0š/vaSù.Œ!˵bV˜P!\Ž+…É´`Ÿ;×ÿÁ´]Íä8Ó!˜=|¥üc@7Ì©yˆx±§Á‚ÚôsêOÇañα'ÛüL°4¬ö‰æ6¬œ»9sJ Ö¸,NU´îÀúràËšn=Ø\`º5ë¶ÿ˜¦Ÿo#ìz„2„†v‰òÄú‰É“JKi¡™'ÃŽ‹Ú!ëƒëª}û<¡›ÆÇ+ ÈÉ÷€X%6¹å® \uGžŸû·N¸!ïªAûWí<äw³v m{¾¢Ð›¦Û¤$WPäV¦ß^‹¼uè_™,JŒ°¤^ô~ˆ‡O³ îeB™°C¶B²j(Gžøcùv(ÊG·}ÌüÒ‡GŒB:ò"|P‰ËyVäÔ"*Ó&Ú¢ªÄ@aNÂ'EÒaŸT½…‚‘¤Á¹¿ÆPàµÇ©­ µYŸˆv prÍâùÀa(.Èx&<É»ü¥ Çí?ûçc”?¡ïµ‘=pB»¾Õ,2°@Íö\W4;'i×K%CË«®wä­ûžóÑ“ ¶ì¯l‘IÐþ¬Ð7¹: ô¿©Ö‡Žùã>7Ø~Bç·æ„ëß ëIþÝ·SÐý>{£þm7ôÄŠ<é3…ÞÆÄè«¡_øù_ìæ‡›w®wÍ›ï{.ë–³ ì¯+-Í‚aýQê¯!õ0¢ûŒw÷hŒ:u¦‡$‹ÃØÓ"É@^q¯¿¨Ìœ “Ê?šü¦aªLô«™É_˜ b%‹•J„Ù¹Šæ˜øôWü<5,Œ†Ð±½%ÞÛÝóã§aùJǽ^uCXéÛ‹6ª‡5ç7Ž^ÿõ½;¡/Ýa³LU¤=E¶3j O¨ÁN«ŠØœ< Œý0ÞŽ„fÍ÷•·¯#Ñ÷á83ïD²™ŒÿA>’ÖßÐ*J¼‰"þ¬¼ž‹]©âtóÏÔ Íß+oý""¢ý¹NdHî%ØæP‹Œ,Ôq»Á,ÈT=™ð–æ ²äù×Ép!ÛÂcÖk5.ÈyöûÔ=އ$‚É?½4AÞ¸±Wy߆I`i#UƼBaã?å#EçQ4œ£tB' %¨ÌþŠØC©<35%”±¼`žï~eǪ׆òž£|QüPð!IÿņDë çgH«ä±dwýÌ.’?/ë·sɹ-Ñúú %sÅŽù½T¤–¾S©Î‚´žì·vß"³óîê_&¤<ïKíÈ0·žW¹LzÜ ÄaÈ\Ñ`vhë%²ºÏÇ&ì?Ïζ²3囄kªìªýÈMÄR*awyt,åkH·yéþÒÊe䇋>BV¼(P0J½w…η“ü\ÞA½ù­2!9³o·¬jD‰è垦~x˜™‡IôÂʸN‘7DÙ–&áЩY”wó”°áÁ#øjeŸÒ bÝ·ð¯CUx4k•ç¥r ªÔnÓ&ã1:W¥ëˆ·þø¹ç£ù!×DÔt÷7ŽÛ~…Ç+…¯û¿$Dm•ǯ5üšQ'ÛùÒ£ñ¨§e <ð$ê÷œ}Ýú o-»}çËT‰fžA“…b.êK™hæ"¢+EyÍõÕŠ}zÐB9M„íxZÊúrß9¨ŒVò&þ×>¢µúà¯é}¿9Ãc#¼hûˆ2<Äñ;Ú•ÔŸÑé;‰LëÛ¼¿õÐñ†çí4áSè´ð~Vùß:º\Ô½L`Š®#o8v¾ä¡[ZQƒàãýë\rûLü"LxÖ^É×€Ž%3'îYvh2©ØÉaŒ‡šâ‹Ô»×¡¢[3Qæl5”†Å-K*×BÑNH [H :–¾pòÒ„|דƒ2É…7•Í룫ùjì…ÆzPxPoÝÆ”Š*£ÞûEêA©·Ê^jÀ>‡¹ý4S]½PCTؽŸ3/“Ü^„Fö”‘ôzh2¯ál™v€f_‹Ï ]o åÁñ_BC«oå#ÍehÆlDh[,þñ[Ò ÚÃZ;Ú2¡C+¸þŒô=è<ôX«äVt‰I†úJèæsÏ•?=†Õ?ZnBﻢG¦ê‘Ð7S|¼Ã" üŠܶ‡Á|ÖŒ0ä#)S2kÃçÇWîI8ÀÈ”!ø`49*uÆí ŒÍÜ¡„ «æ‘2Õ ˜ìŸ¿©Ðt¦ß¹|ÚqqYZòR˜ òR §¿ §¦‹øÏÁbôŒÄü‚¥©Kv‰Ž°br°ç´¬–u[çguÊ£Ød7Ü)ëm‚·Ciòq°Ã¤NV™{Ö2l|‘`Œv¸Qã(©1ü¬ÛÕCâŒß$5({J<Î]3ú É7Z.UðØ"·\¾y Ò˜]LÊÊǃÅß”G=¢^¾óAh:2$¿P;Ü-‹L6{‹—^ ²¨/Œ$È=A¶ âÓýO"GoÙGéä~ùpü¼#3òš<8B^:|»¢BO…P »2ÏóÖsy¼]<;‹¢\µ*þQ¿Qüñ­w§‹PJ–ügí„>Êzÿñ×,ʾ4+ïø;‚òêÇÞz<ˆÆ#´~ u‚¨D˜Ð°§Ú„Ê"Œu¹¨jóì£"×m<–E¬.^„ê¼fS;s;¨qýÛ¯TÔ3 :À{µ®½0 KæY£”ÅÐL·«Û:Ä -˳/N£†¶ï—²óž@‡·5ç™)è’a¿t±º¼|„Ì| §¿Ï8Bï{%ÆAèݬ±q¾Y}¢;‡™kx¡Ï7qêlÖoè§ Ëã‘;ýS¼'"{îÀÀÒuÕoüz0ø*ð|æ5Ò}ÏYÝWôt‡a±‡ÄÚJaDœ÷­ÿŒjž$×¹w{?7ö²'PÜ€ñ­¦Q/Óaò­§Åð˜öŠV+¯µ‚YßÛ uÜOaîGÝ‘HËXx-áušö,nÑQ}; Ët«e}°*3Ã.¾" ë$»/Øõac÷Ò}cžÇ°-€9ñ×üaç*-ýôÃMØ›øwØ‚( uh•¸"Q–hýã`-$1ð9µüç’ïÆ´æ1ãþ…zfѯHÑy1XÝf©–:jU‘V’.æìù H‡· ®tå#ýun—©»ÈPXö.}™D¥®»"óZgæ8bdÅÓ3ôÇ‘m)äô ä¨^J]ïâF®¦Lwo8ˆ<ô²¥Óò‰È›úVVí£òs=zò§9¢,XÖvtQèX÷—‘a ;{\ Ÿ¥$Õ_B ›ÆÈgPªTH×üòÊÈ+ +qDÙØÍIk}”ØJ›OpG…¢ìÂÏPñö¦²¤Ë{<êûFèÊwT¹ÄÕ%ÕR$i77¥ÙKD4Ö†P½m·@áÓaÔ”¿éÈKˆÇ#]7«ˆÃP›¼» Û] u‚O§]ËÜA=fJ6j*ÔÿñbÅî*Ú^­x³ˆÆôu—[GèФgš‡€ÃÍì¬F¢¹£Œ…G Zh‘Qû¾dAËãíY™-heâ\r’X­OÅF¼ãÞ÷Û£âœ%w´ÍÖý7ãøí¶’OgÍ: ƒITÙsÂ/èø —çBèÑYbQ«p]’6 šË_¡Ãwq>áhtk·]}˜†ìõ÷êÙW¯ÀXk|Á:¿´G´_ð;’g%¨­ÎïçGߟÙz¡<úúß®ïvPò¨-18ì$±1^Ž•¶øZ!·‡kàêyÈõð>d¡o¹É´Ï{_‡Cþy¥£ª·º °éfz¹Ö%(1&;@² åWÎÙA•ßÙG¨•bnš©…zƒRöž.hÔžYìúBMVÍÒ:I.ÐlÁ(°<Ö -²«å¦ÓÐ2wz‡‡IZߨfƒ69‘#á9ÐÖk’gl ý§ ùwÊБñÊõÑ/èLPйwºÊgK¤¼­ ‡n…Ïeÿü½Ž¤´­¿ú¡oC-Áw¿ÏU)yW÷Â`¬U¿É( …©W’"„áø!’¬0R{ùˆÕ £¢×ž¥¶‡ñˬٟ`b#Ӕ݊¦RŽ;…2ÁŒTäíýrøûâȽÍß«0_óeé ÝuXd·ýòÌš–ÜŽžh£;Ëùsg<îÂêaN£Ñä«°–y™’/6¼Nò ö]„-£sÏ?‘Á?›fEØ}"ß¿ç ü 5O­#aµf©ÃË5$>F{¢ò—3’´hëyó´ Ùãm3/$¿Yg*ä‹”~KÃùª/:ýüŸ½_ZxícL##?Òµ3È—¾E†ãÌ®’ÆÈ8ª¦Í| ™KÏŒÞQØBÖIS©y‘³ÈaÚx€í7ríÜ/•ãëEž-íŸà|ùÔD„¬TQàÆ·ss[A(äï(ÏvE¾ÜJ¥šÎDqŠ$Û²@”üLsR?Ü¥¯``êBYÍöÈúCGQnòú‹©{¨jY_?¢ƒŠ1š+7NàÑ”_n7¯£Ê(—Qx&ƒnFêÈŗ ËÊ´Qã¨ïðáOf¨ù¹fH"áj‰²,Ÿ)Bíüo´â‹‘¨ëÙfíÖOƒúB!o«ù;Ð`ySئ±Ú¯Z8¢I‡)ÓUv4;i^.2hî¡ ãЬ„âG*ºÐòÆIŬ ´zÞ¸z±B­wŽñ4ð£MeÍºå» ´] _ˆØôE{ÁYû©ãèp‘kC#¸[ú É ³Ã˜”fX%ºR™Þ7>Ÿ‹nÞÊ7òºb‘çö9R Ÿ›º·§¾]öÿŠ« ™ƒl«Q ê>›%e†êÄsRê{!P1N=y? ÊZm¶®Š·C©uè9(9w&O'â(”mQ9Ž=’Af‹ÀãP&PH{G¦*žeÈ)-×@õˆ¤‘p¡ÔO(ï¼ MA1H)-Îùþý—ïCyù¿ìÕh/~Cùªb¿Çy•)=¹òºl‡¿<|ÝkØ©òí¡'¡ÿD”à{èY£¹I ½´Ì<"‘ЫO÷Úvzë²IhÍW /šq¤–Çú#¿„-À@^€!×ï6 ý­Zy†<.RéëÁ°çvŽC0ry•PjHF|¾V0~h­ð3(LäJ'Rè¿…©g²×:}Âa&œêãÏ ø[]¥iÕµŸø]8üƒÅ‡[öxÖi¶ë¶Ö2a%GÉÛé~%¬=Ëõ÷Ϊ†‡1¤;·;`+ÉFPòH$üÛ0~E"{çÇ=»oª!!¹´ƒ}S]”§,DÊœy¶à$- §”»™ˆÞ?gæìéGŠw̌Ғ‡*S„uÍÏ iLZuÒñE¿ú[î‰ôö zå‰yÈðÙ#Â?v™È5ß©Fæ ãsÔǯ"+W¿Ò͸çÈV{ÈÏ÷v'rÄ%h÷sB®Ö»9ãx¨—Îã}´ò>×è2oG¾­÷ÍÌePàraìà¶( ` jaBá“Â4î6(:¬AØB‹tßCœØ¡”·Ä>(CR(R¨teÏñ3V& ÜÄ3•§Bñ¨pÓüû-uT”ÑH鹆G)õ2¿v¢ ýýK?Uþ šáFE®9¯šN¡÷$¨þqàPáðmÔØùöEë"?õ&€Í›µ:Ä'e £QÇöÒê™GF¨;¶Ý­Až†ú÷ó ÙåÇÐPfY0)W–š²V ³Ð¤‚o¹tͬ³O¼»¥·Ÿ#§b¥^¢…‰ýbóèe´´Q\]r¹€Vg½häž—£u°Ó»J³}¿¥'UªÆ£íÌÃ3ÆŽ—Ñ^öñiñm tVÝ6"EÇÖ³â3ùè|FããÞƒt™H"â~Ú‹nòÏÊKüíÑmsŽ3'°ÙÔ¹kuaTýZÁÍ #h;ât³þŽ4àQÏßÏM¯É«ïçÆò P|‡Êyt| åbäúü!ÏÓ®éüYAȱiëÏH€?CR\2††ÃE¼¹1Ô¹¿{ïU;¿†‚Œ¢çc’P,ÜDkï?edÞÅûüʲÞç…j¯?%v‰P{B\iÁ ê}ØCó+.C£‚yVt€4ñ ‡hÞ€¦¹§ô“CsìõNé:hQÏÈú,š--k¦…ûýn•{1NÚ´øjße}„v¸ÏÈ£ø:Ä¥hn7„B§&m{Pš$t ç\¤¹ ÝÕº]Íì‚ûœžøºS}¦¤ž3á0ðâúââ‰AÌxûî]" •9Üž¥áYÝì¼!;Qk{$Æžx&—ÂÃ-¾öO0Yöw(§ ¦6ø³Âì»Zw—s0WwãÄ㻰𪔦—Ú ;<[̯À²´Gíêx'¬D:i)ÖÃ'?S…çiX/ºÆc¸J›Q*ª¯ÚOÃvÔ¡ JËå°S¤ô¹Ï¤ h}øW›‰„vWÛ'$>"Q™ä κïHbTmØsÉÈ,/DçjãÁ·âH1\ž/äƒÔ,ž5ZZÕH{1š0§0éüòȇ7ï!}×[ŸÐÛžÈxéð#Ž7qȬÛ?f§ä‰¬§d³ÅÛ.!{ñÐÎyÂËÈuúÞ‡ÉÈc¸q^–ùLÌDóïýCŽçl¾×nïs(áqïø,ŠÈI ŪýB±àöA-”dg`*?vEÝìÍëB™E§Ó¥&ÏP.,=ÄëV*XÈÔlz¢âÑöYKxôx³j|§ª\‰P:I>‡je©‹ArƒˆZø=49 Õ7Ô-æ£ÂQó´ño3‰<>Ãtm1æj?œÎ>Kuãæ|ÅPo«ø © ´&޲Å¡QùiùDm64©q9O£šf âï¡y@lA¾>Z<ÿ’pçaZ&Ep¾RXB«ºÀÞý¾h½Æ}X÷iÚ ¢1WA;k#²qIq´?Mcs‹ †ˆÿEŒ£“Þ‰S)fÔèÜð&í³ºÞdxL§Xƒn_ÊrþdÃCô}…'º‡aLx₉)t”;ˆ-®A{ßOOÿ=¨åS0» U–D¼r^)Pž¾÷±"{J³{8e=¿îûlç²]¾!{¹¾<Ì;ÅÖ­qWOTCñ\c™Ä×Z(•|õ"^EÊÃÞ;KÏBÕ ¤Pc$Ô z·6nñAã?5E9ÃãÐ\vÂÎo ZOv…ü‘zíô½›ï]¸¡#ñ¤õ+èÜÐ4û“Ý4Ç–RnÚBwòI³Í#®Ð=a?‘`ÝËR§EPC—?mÊ:BO¸»ÁΕ»ÐkzÀƒðäYèSi9Q’ý¦‹ùµ÷ÞÃÀç©sf0øÁvÃ3;†"YvþXÀp\гúŒôsÊÚyËÀØqÎ?SÏÃxŸÙDAj L&—§Ms5ÂtJÔu)¾30;VfÊè*ó.r1ÖÂa‘~xÑ[ß –Þ´>! ƒíûuÏÝ`åÆe;CØ ®þÞ/[²žþZ΀·ŸÑkž†ÝùÆ'V« ÊÖ;yà/퉨z¦ŠÄ5ÄþÇlÏ"éC!¿055ׯä<:Ç¿ØÖ[FWAG-OK~t³ºxÒ£–ݹhôÞ'DÖ[»^·ß^ád£Âi hi~&\Yuªã#Îß6 ÂnÄ Íø”òŽùK*øA‘Ÿ£Æ±0Èk¥¸>¹û"²°¼"Eâ°êÿ=ûÁXg~ÂåM£“¾TÃV×þöb ÿÖU/äzÃÞñ`baÁi$Ÿò.6C"cƒ‚‹c;HÜIg$øZIïõ¼$åÆV·‚]e"…I¬fþAÛ}>=z‚[ͦô¥Ç—‹JHÇ&¹~x?^æ¡+h¼ ÛÚM Ü ÈTc=.«Ü,ƒLZ§ïû"û‘åëõÓâÈÙpçNÁsx(££H ‘w픸í\äÿs¹l{Å?m¿u»ä…¹ƒïdžg 9ñ—àûd(ñŒ¥\sò.6¸Ïñåô¾ßâ†ÿÜF¹£swo°¢ü M]ÅÁ<ÒW×ï£Rç—†ò¾ ¨¼ÇBèGÕŒ5(Î#”Ó¾µèAõ,Ê’Ô§m¨)ÜðÌççu<žrj¾EµÅO%“¯ .±÷ôMjmÔkغ¯b¿ì>ô¦Ý@£L¦å`S4©‹DFz ÍnHÝîÖêAóp ¥„$s´ø)–Äy<-»K®ŒÔ¡5µW KÚ?ÆsÉà)ÚÞº,` S€v‚¸º  ýÞ@aIæ~o³œ!?ˆNy¿Ìó'ÐEËä(¹ôqtm k!ìF·žÆ ÿàäúljRx2 F\Ælbœu ]îw8SE=4²gx4ú@uô×Õ5c¨ØyË(ÐÓ e÷–Nl,CIœ«êBÂM(Ö’ÊRð€¢Ë¶ç™S>AÑ~î ¤€¢§JmtdPräìR™P­=ÑöGjÆ?D†);@Ý5¢Æõ¨¯}ø¾&v‹Â^Ö CchBQ„à?hbeM7©ª†¦/î^7i; ùl¶•÷òuh±pñß‹½ ­r2Ùçÿ@ÛQ‹eé~h¿üdþi÷‰ý¼Zw©v º¸ˆ«îª„î§,¥ WåM Ã_èÛŠ~È>3ƒTd'ƒÏoÁÄZñ~ò…áÓ¤]RÁ:0R̘þÒT Æt(+Ê{ª`|áÖ¡|J0ù¿_ëøÓ?Ÿ»Ë|Û粉G³ÉÕ æ¹•3–VÇa¡¬*Ã@ï,ÑYEÑy ˧û« ƒ`¥SÙEc5ÖÎÆ±¿† é®WþþR°Å‘uöÐü“Bù¨-!ؽ@Pl‘z |šÿØí a›çߢ]c$vð­Û±hG’“9^kHVé66¡Ô€ä¼—ò6U²÷ÄLÝÉv¤áxZÁYŒ½•gËß#=ÙÇäþ8dxäÌUöa™Lj'(ÕtÅq­!^6Ù¾’¬È5"çÑ[ÎA~²û=d'¨´Óyc¯K,ôÝD~KïÀ+QP¥¦ßΡ°n8]ñ`:Š>’±áª@ BÎká(•î•uõ`7ʘx’¥þPBÙ!±ë¾~¯PþÕtÝq¡oxä2ëI-E&Tòºurzø *?ª ]uBÕ—”*»º}„QýZ›Â•{¬¨1a~ò’¿B7G¾†ÚLçξü„:%G(>º£Þg¹õ€Ü·hIî÷ьנ&MÆãw(Ñìá;G¹J4OôÎ1Š´G‹–oß¡åÒ˜Ix"ZŒ¥>„hæL÷š\m;Š•µ´Ñž§Pþñ‹Wèàeï#³p Ë›I¾îGgyr5 ©tÉ&Ê;·{Ý×Vû¢;WL‡Íþõ+ìãž½ºß_FÔgÏ_€Ö8¦-¥7fP/ÏrLθªØ¸+£Ù=¡ÅÃK% ™²(SóîZ,Q.ÊÉi5¹ôDùdöpß3TxDKºEÑü*‘hÝ9gaG×E%Ô7¢ªËñv8 ›n|wÕiî󈹈gÖ•tf fƒöYQ jirº¿¡¬CíÒ'ùŠGQ×.È g7 õ 45‡Ñ ÏGõ/«,½êagŸŽ&ÁÅëK{ÐLŸéI‘˜šÛ^˜¨ ëD /ëÓmû9ò™ýŸ8k´úóvúÃþ>c½™a:µï7Åæ i´ <–àíȈöí‚§î‰*¡ãÎùã¼èô>¦r± ]Øå~i\@ט¼Êt‹”ŽNºòÝO¥>?tß™¥¨Gð* ø{“ýT.4±Ï}ïp솪Ï~¢ñ?Ø¡ôÌ~ÒÀ PôÙ‚ävNäWÙm/·ùï÷2ŸÕ³™Áu%Ìö²@f5A¯ÿÙ]È´rd®67…Ìó£ªÆ…¹ð;¦ÖÅï_3dOsQl±Bžç)½ï zP¸Òjš¬¿Ÿ7ƒÞy@™ô×—aqG÷¹v —ŠSƒJÉþˆ!ùýÏñþ«j÷Ô0|ÈåOm…Z­×/Ú ÎÕ“í)Ô_ħL: WÌÙíib¡Qõ•†N24þ{Èæ¶Ÿ›z¤.5Ÿ‡æL¹PþìhI÷¥ ¿˜ ­cù!ÑêíÐÎF§R­¹­ì5tF¡s|ð’žq&t‡ŠU‡¦ Bïq3Iž&€~Ǭ/t¶ƒ0hX¯³_ Cl]£~¾„ᾓÁLì0êÚôö›‹#Œ“–æv™ÿ…‰ougjPÁT®Í·(óJ˜i^L[i †9†{a§‚ږ`yj,Þ­Ù‰ù2 K <ÒçÚ†aE±ŒhOí¬æ¥³©fÁzÀWÍóa°éD”r/ãlŸÔÜòkh‡—þ÷î¨N 11íÓù$$t~ÄÅÌD½=¦í´÷äúÌpÛ^=’©i¿ô?ßsÖÏáFJtýG¿ìˆÔ—JÝ®2BÚLö®!™‹H#ªÏëó}μ–FÆæã#ð ™;ºúî"˥Ȝ}.?¨«m ÷%•ºÅd"äÕy*õ˜j?on)ò‘ÏFÆh’CåQ¨ùxµ\Š’9“d«‡ ¸/¯˜|B).;µ¬n”Þìùn\À޲!§.mz3¢¼REmj-¡Jföù„JD´èÌÁù*áüKTu8òtiðXU²÷ßWQ])¯j|iQÎËmÂã $ò³†Z=_s¤x-Q'–áÎk•›¨wãüùÌù4ðËâ>ñrŸ»HŽÇ´yhÒ,ž¿•Šf/(”ž>Dóü~X tG‹5©Ÿ‡ÐJ•¿ZBã>Z‡¼ÖR:í€6}·óËÖÐNŽÉT½¬ílé÷– Cw‹H¬¸ :)gS<^REçDG‘Ìè8t•ú­YWW€ng¤$ wÐ]ËÓêˆÒ#d¯•;à«1Å6~Ë‚ÐBuõ„ùýûZ®$éÄV>TD¼x§1Ö eU›dY‡ „»cÈÑ)ŠÎ¹u‰Ÿ åžë.óEAþìsÙª—|?Xùûü¯ƒPÈIÌ-Ò{ŠtY8©lAÉ›SýT2¦PÞ!‘FÕe »î2PÿGNéfë4‘’q–?vƒf_z™?mв—X^È7mvÇ~lß ‚voÂèT2è°¾™i¹K\\g¢¡£æGQ?tÄûþÑzs:"êD¶QBÇ Ou£0tžšü ­]"§ú׎ A÷köž"èQ®&ˆ[ƒÞ$‰;ÏyNAÿe‹GG†aPBm´Æ†l7[Gé aøGHc‡ýŒªg$ #ŒSâa†IXÉ9 ÓŠÙ¾& 0ûùŸÆpî~^<¯ìÃ}á,,s)>øç,zöò‹ÃJj†Õ®b¬Å[Òåÿ£„òå–‡©`›Þ0Ìx‡vB-þðFꆂÊ"$ôŸÈIdúŽÄTݬߊۤ| çëu$ûB,«˜˜äŸÀôÝHYrJÏbx ©÷ƘˆžãA+ùG–ø‘n0rAU)Dª ò18¸¹Úð,2ëÇŒ·I#KxÎYQ£\d“»ræÙ‹#Ⱦôè¤ÙŒ r´zwçhá¡'o@?ò’ F|§ŽG>oRÂCsäo¾‘¼”‚‚¶‹’/Ž£0µþ͘®÷(òwö¢óXŠmðY¿Æ…’ÒZº‡øááWÝ•wÌP&²dNåâ>_«v»üI(úgДë'TX½åŸUߊŠÉ7¶?À£oÈí6’:P¥D"©ü¦$š{—¡Š˜Y¤<ò;5éNµó¢fÌ»6²¨Ewþ1ݪjG¼"® B]1WŽÑmsÔk½0Ϲôt?G®¼!>rü†»ü•ÑÄ;MªøÒM4Óê{sýD'š;·Nà|ƒ×¾>ÒjE˸? ÿZѪ-Iár5Ú°ZåÞâÚ÷Û‰‡Ýr€vtm«è@CtrYI/æf§úÞA§_àò»Š.V÷¿œC×îKTzŸWÐí7²Q©)ºëdàýëÈDªìôêÅô ¼”¬„¿©›®û¹ïX¶LÏÕ‹ÄD7îçÄ`‘=~Èý]z:90²•ƒoøRž‚̪ÃA§á—vvOŽØeÈhdfL´4ƒŒž®„sTäðkúJ"ioØ~Ÿýjã9œ[¶6ó,P ‡ýŸì{Óäè½”\6yÈHͥũšt%PÎÌ‹³ÉãPq*.gâ¦T¦¨¿‘=ÇUy”j)ÀÕ…´qþjP“'ûŠH3j3®Ö2=ú u?ßÝ Þ!†C²¢œ¢ ñ´òà ™=4©(x…æÃ¯f¾?‡‡Eo_ô õ‘%iE@Ûܧ)¢‹{Сqúر‹ säCé5•ý>GÜ"”ù z?œzt°£ú; #ËÊ/Ã`|â8ñ¾w‡628:×`Ä?Ê+tpÆ8©~„ñG~^E'˜¬8´º·q ¦[KØ þÒΘHµ¼§µx¬/,,?)>© KJn¢Ôn˯̾äÞgUú ÆIKCX«¸>ï̹1&¥o ÀÖ"«ÏÁð/wIý[ÅiØã?­)O‚cŸ <Ï"‘«zSJµ$¯øPÂù$My¿®E…Ây,òê"Þ™Ú&p©Êo½8ç·ßã66+ð­ÒÉ'™•·#}Ü“´ËI®Èhýg2WC™-sÆÙŸ!k¨ÈôÖ';ä ôgg".@®Úë̇îÄ#OŸº‹Î•Mä{ËVzÞN_8º³8‡BN+Û~¢ÈÃtó8›ìΚÊDɇš+Ü÷ýf3a¬ÂS‚²²qûw8Êu}ªU5ŸC…/¦ÉãéGPñµèS¹¿\xôK¬kîP-ª QŸ¿xœ ¸ýÖÏCœk•o9ŠžÖ‡5o£æÚnÅ´Ï%ÔŠŸ:í•LŒ:çÝ«›¢PÏôãÀ’ØžézHFAG²ÚÌWФõb÷ 4‹¾Æ8R߃æmzÅQÏ¢%ÛŒ¹›óhuÞâÇW´®Ôë˜z.ˆ¶âÑKã÷¿¡ÝÓÓjtfh?­àvxõŒz¨NŽ Sò{š>£×èÂÂxŠ*]ãÏWÊDÿC·¸P‹g? ûõ ʈƒDÈæúq³s—è?sš®5TßR³j¹+¬_¾BùAR¯‰4U(ÙqŸÙÖ‚¢™ê÷OÃÛ¡Ðt&ö°ë ä[Þâ‰xr—n DýxöŸõŸÿß÷ýï\…²V‰§ânP•›EÔ9uŸ/ u#4^ì$Q넦F¼š\h1™ýUuZÃ{êYïh@Û»Y*¹Ph?Çn¯ìcíÅ×(o]wüïúèY»ñêð_ÿLt:{>ý?s:j^Ê5“½Î75Ïž$ÖCWá9¹ïæ„Ð÷g_Gì ½½Ñ~†ÐŸ“ãqç Þ}ã–§ó†ZR^ŽLtÁˆ{ÛøcO“àŒ“É+ƒ ޚʿbœ0eþ+Æ·fò¦Œ·aî>姇”V°P¥t‡iz–.þR´2/嫆ƒí&°&v7â’£-l—î…­×On üÛóö —öÞÍÿ\’£CBCº¯E‘¨–ïCã $yä-z@å ’y¾¿~Ìq É=­«ºl2(ýåÙ]N¤.éuù»áˆÙ®J«ñCºb½n6ÇÈ@ÑÕp$=ßG<ŠLÃÁI}þ±ÈrYîWÄÑÈFM&ÐòªÙ+àtð+äüáCÏÿ¹›Ï†È| Dž2º{ý¾"Ÿù!vÕª.äOšÒ¹ºŠ‚b«éî6 PÇ}õ4ù©íŸ1-Šb?wõŽYÒ D¿Á Ý`W<|t‘¬ûþ%”qŸ=ÕÞ凲Ùgß~˜Ey>ýg»c¨Pëjø ­__}ZüªLEõ£ŠÛÆÉàe¨V´nôúo¢Å½ œ¨A"ö2oëjžÏ&üü~ ÷ç¤D¡ö‰X-–¨6ÔÙRš¡YßD½Ä¨?½ñŠhpÙgݲ l'øÞ2“ ‰K·L&7š©'|‘ŽVCsgö’û û§ß¹ðÙO -Ó8#>]D«…ìÛêz±h£ÊPšdºï·çj±©Æh7ž äÐŽÇOzè£c¢óî‚>tf1J·ëâA—ЖK^vÑ*L¸*“Ý:ÚæY©Ñý[o·Ûý÷Èлž¬;z:kÜ8¼²Ÿ#³WcöMÿ‡³ÿCò¿üüInònßßíÝuÑ€_ündbu¿!½èj÷¿ÉH7l ²¶øÏš¡Ä²ø2×2i’LõÒ2 «!Ìcïï(äÞl=xìí}(df¾gón ŠR—}_]ŸÿÏ<”ÿå»L ¶>‚{ÊõüÔÎAÅ}öŒu›ÿÌ%ª¢ˆY€ºÿÌ%ª9PõúÂýž§¬~ùµ×æ5ܼà[ýmå?sþ—ëÿÌK±]½^òšó?\w5pØT3‡ÎÖß7$ÞõB÷Ý™ƒ¶ÙÐDz¥kúŸ¹Eÿ;Ÿh8ÂUÝçä]•±Ü|ncÓ“½>)0Ñ4¡~&6 ¦Ú##TSôaö@)GF ÌÙdRÝ!| î*³D_ÂbÜÞïÓoai¹×È¿ªVuªs þegmÍmIÁžkÙ'çSHÈÃtꥮ]öÉF’3äß/V(#®ÓOþXAò#â´7ÜÒà¦Øß÷KHhúdEö9ÒvL-„Ù Ýg» •ß~aS@“š-Ù&¥UCöùi:¨Ά,®DúÔ‘uwF'e®Ùs×>º]áE΄ެ]7ä®<þêÎ~Ïá)üÜøæòéFl‹n=FþXêäëó(Èör˜#›… ¹¤/k×¢H„ƒ¬Š=K8·†é„¶ÌÖ·ñ0Y`ãÃS¼(£c9ýÝ®ecÍ%.½WDyJÔ`t; Q?S?ßôCE‹ÂFB<ª.©ùüýiT9¹ìõª3Õ~/eÿfOEÔêÎîþƉêÿë|ø•šÏ)êþíîû­„¼W˵/옊®¾E݃­Uí»¨WQRWô ^÷ùÌ¢ÑÉ/¶?ìÐä±d㋳hf¿¹5á‚æçI«UVÑâ™<íªh"ZþùeÍÀ~­Ö…ˆ6m@Ø÷оßvR΄ ÝØêß”,tÐô1Ÿ'mCÇ„ÁÏftf½‘-¸´ï7Å7¤3û¼Ý㹦RðüÖGrþ32ÄXœI|‘ Ý^Ð*@ÍN´Î;Îl( ˜Â`g(bÝL’9çy)¥_óþ†?4ÇJÿÝú™C—…mE ãý¦…ò„<¤«Ó…Êü„´üË(:HKÑ¿äñÒÃψ¹=w€_žÒ»Åhíýó}ä|¥YJþ} ö›R†/I?0Nyp ŠMÛ–œT?CÉ©3´û!§ôv_vY×”½±ÕX¥†òÛ}¯[Eí÷:k'×A¥þ|:]uTIß<öøOT3S±ôå|†šË63²vSPGðqöüÌ(ÔGv¿äÛå‚FÅ¿3CÚw Éöjÿœ4_Û}cØÌ-?îht@í«C‚2û<³Ny׿ÏgŒÙt+t£ˆ©Êú×}.5dÛãîA™£²Š— þÔñ–v €a1µ— áI0’_CÊø¡ Æ.ߎ)¨¡€ cžÕúþh˜Ò^3û¦w fÎëV‡‹Àߟ&ç 3ç`š’¤øá5XÔ«éø`K1Ùšñ±°Bû‚¹¦·Vé›ÍÓŠÀºïÕ¯!$j°i«ÁÕÑÁÛN»ëƒLI°óYÖ(°; ØorRƒ„Á,U÷Ýž!1cö¿ñÓHRÖø…êÇm$‹Ö¸×8€ä13f™ó‹H™2¡lTçÔUŸ7¾ãAÎ÷óGx·‘njdCèï~î UbèOD¦›¤ê ?"˧¼oCËg‘’[bqìrþœXMÏõÅC ±iç¯#ï|ÅÁ…;ÈŸÑ÷¶§_ÈëÚ®¢p î¡ÚMÝÔyøÊ%B'™Jyáa+·Ô£L (“úu³TKå*!1„Di¾Ql‘£"Ý‡Ä ®›x”Ñ0žK¦Uì×ݳ4£ZûÊñË=î}Wˆ F âˆàiÔ ™QlÍC­#B[¦²¤ ú2¥È¼{ƒ``–¯mì7/ ³,é0» ùé,—.oÂè ž½’Sæ0~r…ïÝÄL>Y” W8ÓóG\(PÀßÏדó_„³•ï‹`q†“¨ÞÀ–¿ÎYªn”Àjh0ÃÙ—*°þ½dåС!ØÜ±ÎªWüÿ¼7<íÙìaOà]de¤oÎÝ“YG¢W5È6ì‹$:±rí–“HÆjüí%ñ’îZò>~‚”´ZWŽW#µzqÖÖ¹B¤}í^|¥Né‚Ï(˜éCúÎCß3†Í‘ñØkšÊ3=È”Çîý=)YLß™ìµ ëbãÙǺ­Èž–òô…ý7äŒÕvûø÷3rçs¨WòEž\Uù“¹±È},jÈÿB†áö< P «\4F¡Ä_F±(⻿]OG±³&+fPâQ–ü Jµ2½•ÑjFñœË÷;•PöþQ?­Ø{(·|„¬Êó-*<ŽÒ8ø]ÍNÑž=i‰Gµ/.6gÏ£Êé¹kñF¨ö}N¸];QIþF6ÿ¾ßV¦7^îFMדôköLû~«v•þjŠÚלT-\PWèJbl+ êÏ &gFƒíåÂó)h”zUŠY?M~Ý1¿Bþ ÍNÄ•ËÝCóëóÏéÂÐ"Êó§VZ–˜²Ò?C«5e_ÑFCyçµ`Ú†ž÷‘ØçMÞM˜y4ÈÕ¯—=DÇÏ'Ÿ§Ú¡3‰&ûårtyþ¦8öÖ«}Þ®² œø?~k?™h™„ Îß(`:ÎÜùò×çÔhh.Û‡@éd½¹f·HpB%åÞ“\jÈö1ÌŠ¨y™VZƇh ƒ'<Ö€ eßk_.ó]¿ i²·†x» }ýžo.¤ýýí.鿥º®,{zðÛ–ãÞIKøÓ¦ÛÎÙz}¿•æÜ¼…)ÌB¡PTyŸÅ}•Šk.ȦÙïqÝ\Ÿ6^­ìžÆÇË¿CYå•mÕŸÝPžÈ\Ñ{“*åTÊÚ C噓ÿ´½½ J—ö” å;¨ŽöyµÄáµ¼©J'Õ î§^š¿ÙqhÖVß>&ýEwׯ@Óæ÷æ·? EŸ¹Aq6Zï,óïcûüNÜ>Ñ÷Ù‡•k¡ë5(~ýz~<*eZOƒ~ò¢7‘̓&Á‘óì0TÀ>u¡¨FŒ5éBÃÌatÉ•JæŒWÚ}S<“¿lh9†ïÀt}Í~<| ©ÆkØ.èÂü…´{oJÁÂRÚ5B»°¤Ó%Lp–ër›¤Ãª­ièá X§6¸î*: J?oÉ-ÃVkøüDûeØ¡Š–Íà„½ÇgrxÏ ááGxGõ8ý¾V)´:³ŸC#M£˜ZLå9ÁúÛ$W¼ù ¹.)5ìn÷;‹Ô¶—¥­Ž›"m|'3Ò% .“&§!ƒ¶šv¸>2‰^8¸!<Š,º‹öEÈö¾Ä‚àrªp„r %â!ž¶³~Èû9üc-}<ò;ÍÛ½U@A•ü8¦.Ö;ÖÕõn E_ñ´½G Á‰âZ3B”Z©÷Öß÷­Ì#ÿ—¸N£œ íÏ7_7QFú‘!YÕ–UÒ‰G¥E?Šû¨bDåÿ„í:ª Æ*»© ¦ܳ@S)TT­xœžãƃ=3Ôê‹QÑi:„:vbY÷õªŸ ½^XDƒi‰ÎÓ?ÐXp‚eEkM/­Y¾t$E³‰ÛŸžª¢¯”«]é2Zž’zwE…­²õ1Ï‹¡ ëÓ©'~Ñh{«0~dìéy3ÐÉM)EÇTîÿxЙó´H8óety!øn.Êüÿå-¹€‹³mY½ÔÕ–7 kp)áDZ#4ÊÒYXmØ¿Ýò]z‡¡ôñçƒm~Pü8uj6 jŸ ¦Ë7•ä!ÿüäÒh'`³±dpƒö/;ì¿ßA‡ŸôQ®CâÐù„Ãfñ´tuo^_,‡ž+ÑÏ]¦¡OÉçÛ63 ¸¿qã4b†Á%aGs’>Ç—âX £|ñ2Ô¿£`œ4ØxY÷ LФlH†éGÝÿxüÃà¯bÊRUÊMX`¼ô×#Q¿OQé|‡å’6S!»°ªù¤i<5Ö‹Ûó³ŽÁfª*ÒËËðï°R[‰âCظ"_鎓í61;Htã=M9’ËgŒDÒ¹OÚhG‰ê›_— þFŠf«•ñx¤Ú;2Nðqimº^š›° Ýy?w¯´H_ uT$ë=2Š2Ë»¿”D¦$÷NæjdAÓw™uô×S÷ÈžxÚ·XS9_¥ŸŠ˜Aîôõ®½‹Èó»ñé¡7ȧp§€Øñ/ò?°¼þ`î, ¬¶à5±'(ôÂälí0ŠØZqFl ˜ÖZ2rJ8]¢KÏE© '{„î£ÌAþ5Û×(ëÉSÄ]ƒr½âµw.W¢ÂÍÛMþý4¨h\íd›þüüÀÒrUÎNÝûvÕ>NE¬^IF{ªúú;ßþ&•ÜÏöG9ýÛ÷[Ó¯û´â¨}/ÇÃø‡êªÒ>:£IúdìË/L ÁxÊÕˆõ4êýÖ ª*ÃÕÓz†ö}mìCÔµ5™ñç¡>>%I~Þ OÓ¹/ýƒ¦âö'µ ¹èóÖå×&в<¡uÀÐÚ|3ÛÙÖ¡ƒÀs*/¸:ç­y•C÷v½¥é(ô‰l.+IÁ@Ç+_çï/aÈjýØäÂ. ÷dsQÝ®ƒÑ€$^›W0~ü…[ŒËe˜üUóøæ;˜–3åû)·³§ïˆñ½‡¹"³Í”Û°­Ê/A›‹ ¶á­V6°ìºÃ£U+›¤M+aí#¿îã`Ø8sX‡ÿy#l OÌGW°,p~‚Ý¡îúÙÓŸ‘ uýWó9‰ðxȇ$Ž‚7D‘´³û.ÓÓN<Ð@“5÷)ZªŠTx."Õ˜ê…'–Vœ«âíÞa¤;íñwì| Òokx¿Ø÷"ckó€~ô dž*Wœ,dC6¥³‘¼œw£ØXôÁónä~Cå(ôÅy]”¾ë!?f‹Ýk5ø5ìp…¦ _5kFQYö¡H_/ÔêÑ¿ú¥^©):cG}iý•(Çn-ø¸zå—ÌS(Ÿá‘®Éì/—+P©á}ø÷a-TžN÷¡Ú´ž´™L+bëËÙÚSܨøfî™T"WûFÑ"6ŒÚ¬¶&Ü­¨Kû-C5ìêsŸN454<~$ÐÌ•oj·¹p¡ináÔRš“iw~UG •sçǶäÑòú·§£Ù_Ъ܋0å5Úð´‹Þ·YBÛ»Å&¿ãÿË›nZÛ¿+†èø]?£Sâ:³[§7JA—0ÅsÎ"Æÿ/oɱU?S‘•ËÇÒÂxºDìoˆÀÛý¼eøÃ•~*ê ¯B)…ô[ Å(>È1E…ZRT|^;—RýõÚ«9ÈyâØ7gŸŸ»9¤ÌûyÓ*ý5' üÑã£Q|ç¹%·Ö&BaŸH>X‡R-’Š=ºPéø2Æh-jµŽYÚFs@C sÁqhrp}´$ÿvÿþ ô-®€Vn:»²r6h;ö]3N\j?çu\ƒvõ¾¯â×жu¸vïÖSh ebà6¥úï‚ h;U0Ú>t™6-±@»Nu.Á¢t0ms~x {YÎ^Ðåµ~ßü;B÷F]Æ*=BoV®y ògèï ›6¢„Á„¥êlf ÓÑ~ùFªÝl(ûaì × ƒ„v˜(—aYZ‡iÞ»oþ°ÂlÅØï'*!0ÿ=UÐÆŸ ÏÜmÐÓ܆eŽs¯9ÂÊjè‹“uܰNS”íjþ6Oòº¿_’€íÉkÇ¥¬~Âî7݀ح›HP—–ÿ§º‰\}zÝ壑„´êØg/m$-ÛêŸNfÆïzÏä Å«¶éë!þH•÷•‘¬OiYÌOËÔ¯!ÉÃçéÔ‘>álñÛçóÈÈa·Ux ™^'©Ýê BiâÉsOÞ#kÇÛê›=È{ÈeY¼9Ÿ±¤ ©È ÷צ?ç+<‘'Ýc´›è%ò‰¯¾_x‹ü×üúÿMÛçéêE!÷jòŸÚ–áBe»*Ž¡olEP*JÈ ý½ÛƒR—ŽJ‘) ôÓ†û÷9”5>@5÷ŽåÊxÃ\_C…‹¨h(“¤C¼ŽGMWÌþ Ê…Ñ'¹ç›QíÍ!SL"çè??º}¿%;Mˆ ¦% ¿.=ìû­‹ªÝ› µŸr\v£šD]³o§¥S¢¾6Ùuùe4¤eYK™¥y&®øŒ üRž}Ûkß é\eŠçäàgN/©9üd•LÍq3‚ÔIžEñH¡}ßÙ6–’Ü„ô£Ç {àWÿ§èò,uȖʉޢ½¹7‡ƒªŠ(¡ÀÆëÛ²qà~_ìsñ:óŠÞøù\1…â°·.4KPò¨ÈD÷ì”:¾í-¾àeÒ~žuÆ¡œØréêÅ5(ï÷ÿ3&ߘvSƒ råÇŒwŒT»Ç+Õ›OC͸à¼ÈJ8Ôå±1^øðºóƒ~ñÚAã¿£Kƒ]Ь¢(”¤I -§Ãl6l¡uàá×ú? ý”IvTG.tê^8×qºõ˜&_$2CoèsÓý}b€=·o¿W N·†{ðŠíçN‘G^ú0JˆC¶9`,¿š…$Ö&^2o±dÂÔ«æúÄûV0SÄúøgû&Ì1Ï_)9ª Ú%uVe>°ø¦m/FJ–ÉÓ å‚aåáņËQ°¦¼ÅBuU Öç»+¦“a³äÏÀºý6lw^ù'œ+»ÊFlùö.Hà)á·‚„»Ë.Ÿ™ìøßûÔ[HzMxOöv+8û—28)N«’ÊT^E*o²$ÊÀ—HóÓ!½nNé&ËÄÛþ§Î‡Ð“ÈxO9åÃ1d~jpó‚ð%d­?X£¤x9 îÍnP#7ƒFŠ«öU䥫 T™C¾¼·’­,[(ð¬½öGO =)3¯RÎG‘:&_ß×$(îøa¹ü•(Jùºy¡ÉeްUS׿¢ìÆ»×3#(ßá­DÀЀGòŸj²¾E¥ï5”k9$¨"#ÿUjª Õ–—„°Ç qíãÓ(IÔxÿ0ú é-<î©ú†ÏʵÍéO œ{ŒºÖ{Sú—ñÑ“ 4ŒÆ•¶~hÜò)¢b%ÍH¢;yÊ ¹(5 u¹ZX}¹î-탖ÏÄnÛ)ë£Ukް.²£(Ï™%}´½_êž’õ_Þ´­6Ê· c’ïc‡DtfÕV[¹?‹.¡zGk2 þ_Þ’o_Ó)»€,5‰gS?ŒB§W¡ñLõ)¨OñûµqT*ŽXwª~#ß¿ÏÿÑ¿Ž¢ˆ°c£7  ã‰á3ýç»ôèA¾áeø3DúâJ3dkk\ÄuÈzYíùknÿ±ù»÷S{úAâ—SPèålzÚJ¶Yýû¡’ذÈ÷¶ ÔÌ,Äf.;AÃÍKRZ-zФ6wãÎ4Ǫ¯¾h-{1Wlë¡M˜;ì†Ù´­èhá…vÞko¾¶ C[%W^Ün'´Y˜| Ùº­3jDVû+¸\¸tyßsoõÍšj¡m,ÊÅèÛ"´§—2@Gî{•Ïmè"X}–Ö‘Ýwv{ž(ýƒ^âu Oè7 ö òÝ…AÇšÇZ^7`¨t·_&Á F.'„Ź˜^jB<™Lœ4ȱ·Ð„©la%’X˜µçºiT ó w½†>ôÁ¢Pú¯‡¨K͉.ZÉWa%1Âlp*Öò ßíM¯Á& i&¥é8lÇg¦¾¾Ú »—¸/RJ¾F‚´PáŽ×)H¤¥ÿÔI‰Ç\J¨7—‘4Æüz$/ð ࣲ§E ûØ;ÿ$Íê&—: ‹Ò´U¥3mG:Ù—9 ·® ý³Pc@†úÛ³õÈô`éýØ ²Ê:Â넬Õwš¹,=¢]OÑ9ܱôEî¸oåBO OÊö±WBÏ‘ï|`_žòŸ{«6»-ôÑ-o)PèÄÝOb·Q„Ó¹·Ç$Eÿé̽nyƒ¤½ÕF![(¥Vµ.3>ŽÒ?FIh“ ¬ìœMÉ7”Ka±¹'ˆ n†K&ø õ"7¬ ð¨µâ^Y0ª\xU¥‰j¡ƒå«iåY=â@õ~Z™xÔ4¿äeµï·Ábû92Ò?àªg2êžÖÓÚ8Ä„úZ—Ù]ÙN á‘;—UÞ@ã#šù&l‰hªt(äbš½z©-Ê8‰æñ©ÇFŸ¹¡ÅŠ(ù¥´ìãr>ø·­i>Òä£OóÖ©«hNvÈ÷Ú Ïü~zø=:¨•R³„£ãûÙØWœtèL÷:JÅJ]ž– §Bø>oÚDRÆzÿÇoµ?_RýAúØdj C_ä‰Ëa$¨-þ¯›ïÿüßšóýû\ûêœMm‚ÉM›€¸–,˜áü1}û©ü=÷lªc‰æû£þmØÀâq« §Éh`éçYѼOû|3¸ôÂV›F‡"›aýç%/`ØT5éØã,‚mèrvÊ„°¼aFlHÀ×ùájÍI$Œÿ)6úñ9MèÓjFRfïÛ&—ñ Ÿðiv$ßHÖ¹â‡TMñŠHs4ê=AŸ;,k¨Ðo©Eú3† Ï vQêý­ÙGSÈ|¸¾hþi9²žÊ$01¿ìÍiŽÖî€\O®F\FžgÓùâD‘Ïk1úE› (¹åL‰BR!4EäßPäìAé²×(¶¶G}üwJ¶³æÞöx‚2T“§>£lÇ0¥u'Êç¾¢³àdÀ#¥«•1 Ò“ÕûQŠ*üº…{Pm'šS:ˆ Õ©íY䘺P#ÿŠþ‹+x<¢VôÒ¨ý¸æšÄouÔ±¨Òø¶Ÿ+KØŽüîlDÃU}ouÓn4‘ ¶­½fâ„U¡¹s«úˆ!Z\}HpêZ~ør©&k­F( &èÐFÆ3Á›õ=Ú•k:Öÿ—7Í'Ì×ÐñËâ¿è̬Pñ9G]ž;PÑÖýyKvì=&Š,7zïÒ®@G†_ªÍa¨kýûÂ% Ê£Í<Ä8¡„L+•}ã'±îM 6ÎBþ`îÝŽßü«¨åFJ°dB?¯xMBV‘hŽSüþ¥ÎiV¿Ÿ;½IlàO›éæƒø›û¹TØ/?ÔJ=äØüösÑX,騉ø8Íb G*ß‘†&ž[^4å!Ð|cƳFwZ†Åc¹¦îCí³~ëkéÐÖ›ÿúN*´ЛŽMdB[$eŠú]!hcò•ûçž­±_ãÃÆø¡5|dÍiþ$´Ž9j6ü „¶§ ¢NGC»EøprDtXW ˆ‚Έå(&"è> CÄç’=9†Ña‘%ÐW´·›K¹ ƒt±|ù|õ0tÕË3‹ FØD 'žƒÑi­æMt˜ ðŒx÷óL™×´.ÃÌ´¥­ÅG˜Ë1û}¡:FÆß«FÂÒãq÷¥cßaÅñ5 !¬yÜ~ÿÀ6*g(½¿€m§µC„/ÈaWnÙÍ×% ^Ÿ¾r*‰Äù}P‚Ä¥+z>AÔ'‘AÃJ1õHYVA î3ÌwD‘J%Ô‹Ñô Ò¼Ò ˜oütL'‹§?"½OFÇ]Õ§È0úIŠ™®ª’šP í…{íG. kÞ©•õo#Èò\Öj»9&ö‚þ ÷«‡-¶ŽÈ“i¦‚|¬C§ªç‘ß9/)rV ŠRkî5ë¡!{‘m­9 ïœÈ»ùªE;æöñ¢xwÄ[”¢t,ì©xÒ×Óæ|»Œ²,m¢^'¡Ükjî!–¨`!˜uù*jïèðŠÆ£þ)#¼ô¨rµ;®]ÀÕöôX¬~F$ˆ¼-·»ï·v¯B&gÔÔù-÷ºêì¾ß&²n©å¡öûΠeWP7`L ð);êŸ|'©ý¯ &æißEc÷`-ª´hz¢*||lÍÂ^/»R¢yê; ¾m´(C•ûŸiÑr,“çà‰´fô:Ýxá$Ú_ºÜ@ºï·J’†½Œ}ÞÄĉŸJ£ƒªíV\©&:Æ]ú8(e‚ν]ß¾gÚ÷›ðY‚òñ}ÞŽlu7Íü¿Uù)- ½+Ý“å1h­øG|ÎÇ*Mû"-ÍÊ¡8ÚÉö[ä¾~.Ѫ® ¸ˆ¹ÁoºûA‹DsÁórò±mÂÿü­þñéHͦ{{îuüØüMð­æü¸V´éuR6Ô_Bšì½ÛéQ— ãôá,qîKð;Húd§ÞIø“z¤_ Ïì'µm€Õ~»d´˜1…gîæ¼é±‚"]6ó’‡ P,œ¦bH£Ås%ùúÂÃP’ÙA‘ÿ, JoÏr¥?¢‚2]¢u›áÿñÜ›c:W¡ÂhF}•× *ã <ÔßB5'¡D{Ô0Ô,Nõ“Î@ÝúµU|4ì2è¹AM67¹_B³áðÍÞW¡%]À\Ù?Ú$9ìM}“¡}ýM'3«tÆÓÐÚùC‹#'¹Çô=â7ìå¹ ƒ,¡ªÎ·oÁУCpÇ@F¨ÏŸ:ZÖ£¿Tï¶: ãWÛˆ» faÒ©[ôµ 7Lûéj|ƒÙI÷Ùoõ0/›¤kæQ ³Í]‡û§`ÉGê‹,uLS†Õ3_Óç\‡µ=†xØHn$ë{[ŸuË#vþMN>Ͱ~¸ÏH u.® Ê•!Ñ\òbU’0’¤ìœ?Q‹dQEÖšÇ?"ùîg‡8n åóÁ¢N¤.h*¿¿ïÔ4Ï£0ŸGzn³§ã ÈÐ}ÀøØÎ+dj²JÔCi@NÏ$”ÙÎõzµ‚rw Gl_ÜC-vFþ*¨xüäKº•9<êšë"¢üU|Û¾ïq¡Z@‡ÞU¾Kû{€ï¾ßêë¯l°½EMõ§*…B·÷ý6OÛø! µ¿)½xͯˆº/‰‚·xP?°%‡4Ðð™×°ˆ-?««ª26CÓç\ZÎ2höûét~’šç‘_ÉŒD‹FŸÞÛ´œ3¢íEkvEšn´1‹¦šPŽBÛˆñ´:}c*”g¦Äî/¢cÌÒW |ŠÎ´¦Â[3“èò$$ü½Ê>oÂËÁ6ÏþßÊUzzJ‘žçjÍìhååäÐÏÐ‚ŠˆØÿ<Š)ÔÅŒ\) ¯Ü‚€Oåd7{ý°(ý™×^Ü6«„ôð³ÝmžÂϨoï²CªRÒè¿G2àѨcN )*Ù²5Ï‚ÿÇs &«?Ÿ6’½Íφô¯Ëe=d™vVW×òÿÌŠ ˆ¬B®qsnHø1È×­z¹#1T¹gcR 0ÞVmMcŠüÄSúÛ ø¨4õA(Þzä ÄÀ%¹Y²­ŒÌûž›þ5s°`¿Ï¿ÿÊÊýÉg~ 5BEñûû2¿¡êÈ%© ¨¡¶2eÉâ€:²× ‚§¡`Ý>oŽ6Âh$˜–,yDýD1©ìcÇþ £$˲æ‡g»(í}P!)Ée#/.˜š¡|PgñšD$¹à×ãÉî„JzÞMÚZ¨Bvi!^ Ñ- í9Šê‡ÏüÚYÿ„[zŸ^eláñ鿺T­’¨½‹q¥fßPOb³_·ì-xV•ð{ŸB£/ΧdÔãѤ«°ô¦š] u~/jŒæÁb'¾rÛ ÅG—XŽ%´¬þh‘–%ƒV{Ÿ_Ò+ ú¶à‰N´}Zµ·¹·ý_ÞŽ´6 8‹Ž6“'ýЙž±\ìË~ž¼õ‰õ¤ÆÿË[2÷Ý’qÈÜ¥•\Óíê+UÊ^ÅPË»^UòMÊÎiß!Ô€bbûrñ?PÈ; ÚEQyʇf.„ëß¼|–ðó«ÕðªùÏi¦ÿÉ™‘W"càךģWAÏ!S­t«ú§dMð¨E¥@¾êŽæ.Ó?(Nï'°N€ò­+RóL÷ z„ònë¦ Ô'ø=¢ü£ï,Äì¯C³‚º)o%´|Ññ¡ž‡Ö‹7¨Êö=õ=Ê#³³ Ú ´r]¨[¡Mv<ô^`´F›É8A+éÊüýÞ'-|l^ZEûŽÔ]žƒÖbBméž%h ÿúûéEhô hBª¡#{>¹Ý–º˜ÃM“å ;¯{"vyz“çEú %èÃI¦)¬3ø¼Ø“Ãg¤øl×`TÊK"Q0 ÆU>iñ^æ‡Éû¬t"m 0C]Xýâ\>ü­\4¸ÏuÜŒ<Õä`qûÄYc7~X.Š µƒQX­Ë;>ô› 6ÿJ×9Ë [M>mun°ó'NÛ°x Ü]¥vO#áR%ËbÛ4?à±<·‹¤ÖÚ¯ÿi YýúÜšH8’ÚPÄÔ”¿}+xІIæ{Jó5<øëÁÃõÇTH¯¹7ë1)Ž ¹Oæ]¯#“QMý¡c—ùo§Æ€2²~”VIqžFvŸ]âÌÚYä<—m*Ò¢Ü÷”g&LçCŽnùó;ÈGR'úÙô$òk‘øÅO·¡@ì¼h¿f qngx¡pÑ…Û‚(ŠgþX¢øB·_‹v(ùùŽ•lð&JSš‹0'.¢Ìà'%Í—€ržë_iÞü@…#{Ÿ6“¢¢zÕО¶:=µGsÞ’U®7¦Ïw Ú•æ_/Œ? ŒéîÍÏîû­BZ §¥5UÜ5'ïEìûmÍC̵EF½½º_ ™{ ¢þ‡E ƲT4ü–5»…Ñø£iÐÄ'4;˜þ¡õ&šU† Y5EóÚ˳ eТ'éŽ%1Z®M}¤5ZEëC»ÖuŸÑÆòG¢ó'I´}iØôPeí?Ñ.é¡ÃÑ;éÇߣc´oŠŸy:ÓˆÏ9*å ËãÙ\Ù™Ð}ÞXgôHÿ¿ïÝ)©BººGÆ&îÐr]EVtEÊ;ħÎÖzìûD`ë/%äQR_eyßÙRqºn”ð«?î"OìH'=¦xÔú*üd?ôæå¾Ç»2I‚ïeLqƒíá;ùЇ˜ïK" ë:þÆR'=¿7F i³ZžîsÙÿQ<3ÐnŸ×·”ãÇ!Ç`åBÎWá}žúÈßÚAþy¸éP°-if¾Ý …e…MR¯Aѽٸ†!(¥¤‘·ö=÷@g%Žg¿Ï5û|®Œ†Ro~ùªQg(û,é÷ÑʇWuþIëýO/õ|xLª…ó²LÏ@-ó‘+BÊPOœ%¶í\~Ía³›Ð$«_ ýšƒ 7>ý -Ëc›dŒï íKEâ[èð—–}BÞ ]1"=EÒMÐóO¼»‡…úDT~ËŽ‡ÁOÔÖ×DT`˜5r¼!,F¾%Ï|ˆ%‚1ó—·³îðÄÀPàÃÒ1˜’ð§Mv†ϳ,<ð·£vy]=°!­0ì,~{¢¸´% Ë&¦Ë]°òÊÞüI ¬ÑîI9;‚õxÊBwؼÊý‚Ìaû5½:™ 6ìŠ[‘Õþ>€ϦŸ|4—C"¹£šÃ>H¼`·ýY§I«FòüwãTfª H‘$w ©ê-N½IúŽ´ªÖ‰Á& Hâhÿ˜ë2ȵΠNÎ!‹c¸A-²ˆ&ÆEÄ{#Ûy‘çÑmȱα­w¹SôqR"ïíõ™ºȯp@dl°Z5}¯ °ÚžË¯7ê(ZÅbÃã‹¿ÝIÓ÷óŸ4oÊ9‡z”õýuRýR&ʟߊ֓ïÄ#æ';ßC%aŸYŽC¤¨¼ñ€Üû©+ãxóo÷a3ªã%Ò‘) ÔdS°`mo@-–[íö»ù¨£´™AãŽzÞÆžÕÍhÒQø Î8%*“¡©,ϳKVôh3¨P½B‡æ‰òb}*Žh‘÷.)‘äZði +5£5ÍrÖ×þ ´Ñ×:éõ mCkN5Óÿ—7•_žc è'hÀÏšƒÎ‰Ïd»íçÉЫ—ŽýÿámG*ú“#2_/[¬ƒ¶GŽÑ;›O¡F—¿Ñ©)J›Ô©Vu­öïïQsyÎ(0ˆ©I2º ¹f¼™{½ð‡ðÆbŸdñ°MqŸøÿ}Ù(ýübù öŠï"üRþ»&Ù¿¨íØ"Ê!ÏÉó+wG!›¶šÿZ(µ`}·ÕójÌNC½{ë¨nE14Vˆkýæ_€fºébÃÐwÐÒLÆû Z+ú+Æg¶ -’\Wçá h‹í¿ú–ç$´îµÞå'¡„V‡É!Ë×ÉÐ’µX¡ótÿ¸Öü×T¡¥:VÚÈlÿx·ú‰€ÈXh;¼öìùðÿGÜ_FUÕ½oü(%"ÝÝ-‚ -qßtw· ˆJØ¢ ˜˜€Š… ˆ¤„t‡t‡t‡H·pöóç÷<ÿ1Î9¯Ï«9c³Ç^{¬k_×g­9¯ ü±#Ðiò;[)ô5t½)»4ÒòzPð‘(¯~ z½u©i~·MvA0˜«þë·? Ó¦X–'©ÃH#±ýîÍ]ë,å>Úè“\ùÉeœy0ýv-Üjõ'ü6/yF«K ó¼Áf2!°绹àKß›µ;ÛÂJP¾è ‹“°6½7¥²6dzáÌCø{ý’RÖ )éUý4EâÎ7cQ;בôXfW’d2’m& h[˜ ytÜ«’¤8YÜA™ý )/M.‹l "uë—àÇÖöHwõý Œçidñï* @ÆÏ”Ìë1ÌȬÂ,{Çv YúîXËäC¶çÌ®÷²æÃûûìÄ÷ËÈuT`u2à>ò\fZ[I1@¾·q¡iÈ¿¥Mù$„•Ä~}™æE¡Gí^%C²1öá¬8ýpÏK÷ž¸¼W %rÔo^FÉ <¿N%áÁV~ÙÒÏi(SñàÛ“{(kùûtÙ»~”—[#iFE‘þõ•½5óS|QåêÏ‚í¬¨v¢A05 ¡3®¸áÁߊÂÛ‹O¢–¼¢1}_Áßþæ]ö±@Ý¢•Ïy½E¨ŸŸWÌÑ!†%Üž›‰ühÜ*àsåÑtÜ¡]'tÍGK´w«Ñ¢ûv„­Æy´ìqnÙø‰Vãƒçó¯£õîÍã4¥äh+\åÌ~]íìÊtÚh‹Ð>Š&{ +†BO}ìE'%¦JuR t~½žQâIŽ®Ôäßón>&ø›ùXmÐAo£#GZþz+*Jj@ú8q­ä­Xhir4 ç„JÎæ'+”òP<²·îQæ«*G©÷ BNØV¸êÖø®›ì‘5{Ò¯0¸ÒÙ8BjTYú zøvªpY«_¾&–¹ê²’:)Î48Ã×îæÆë꾪íÇzŠÊäëPA¾SöÑŠÄZCö¨þÌoßHøaÀÊý»˜ò%®‹0ÓÐ|Ž_¯Ý'çëy²/ò, ׋ìPü3”þ)|&üLl‰sŽxÎ…倔Îýs €²O"¡ôrÖ„ß M%ÏêîûPVÅÇA•·ñ_„$W£)&Æ?…ZmÊÆÏ8î^™Ô-h” ÙŠ’ö&p\ß÷Ô²WÐ<^çøRZíV}JÐuÄ‹µÐQq©¬Æƒº«ñ<+„^ÅA§HèK5;÷‘m eoº/±dÁÐ[É/œ+C0":öŽ¢oF‹—ÕÄ9Æï—b1‚É; §Ò<²`º`o­D·ü–è72úF ZÞ cË,Øhª¦ørÃb…ÙÊ¥_-üEHeaQ÷ªi²;côëì‘Ýï†e[!Àjž¬ÛkdÊèü+*Œ,Efm‰g‘méZñ9ržµ4 v>…Ê|ñ7NÇEº69ö¼jDqÏ §•µöáû†êò¬³x°Á46‹Jÿyq("å,¹/½VãB…‚Y¿Ï¨DëytµO¿ä×Y!GuaíÅ9Ô°ð·­é9ƒZŠ|»¯Ö?¢Žíñ/û-Qï\FµË4üˆ[2AcÚ«h6ÐÔñœ-ÿ¡ShvݸûÀo´(?DµRÔ‚–Õj öhÕÙ•­p8­—b^e_B[nÍ>­;ÐÎòÑ{«—[hÿ¤¾°ñ£ØzSV}¶Dt…'-ˆ_èíô¶¸èýR˜ ·wË¡*ÿ_ôö«W–› Y”¾v‡éVA[}éÙÒÛvPëgÚ±²Ö åÊ*/G¾€¢Ó¿T¯íþÛ§jGìwru•êù:ÖÿëUx¹‡L¬Éãßþ„{ÖWê–üÛŸðý'ÿ×ð=) \­(n ý×wð;JÁßJZ}ˆÿ”q‚¶Ts–RÆh¿~E¼ãÐâ¿ãÿ}î6º³;[ÿ¾¾õP ÿï¾¹WeiøïëÛs݉Æ^lCÇÀLÉ˯ŒÐ%´ü&`ãë½&/úÅž¸UA_UÓ®á¸ Š‹µWí" eºA³sFÎFݲ9 c–?̣̉ÆnîZ0-}ІùFÌvDö½ò«…?¹ž§|ßÀ‚OÿÙ/7^À’X<­Õå*X‘ÊÛ'8UkÏB\8„Á¦îRkâ¾ø«e,!(Æ‹D}Ò'^* qþ¹L1$Õ6rcÌuF²’+síÿë1‘¼çóØéRÊ»HÊÛ"õS~K¿6%¤Ó,Q9ÍÈÀ`Llü¬#ÃT"k#³˜Ëó¹ÓÇ¥^=3ùÞd Û9N·ˆî~ì1$Èåx?&¯y|çÈt.k"ß˱ µ¶‹È¿3œZ‰‚ÆZߦN Ð5©;*Ú(üûº"YŠÞö× NïCq½ðg‹6"(!u†ÓòÁs”Ôx?q×ÈFÿ3ñçQ&ñ|ÝlD+ʪŒÈ$R£KwäPåzeõ¾'^¨æZÞøé-BÍFèׂ¿eÏßý`D‹Z©¬.Dí= µMP·Ö&½Aùê·8Ä ëH£á þå¡Çáh¼yoÚå§š1Æ8“p› žéƒ÷Ñb:t„ÿÁ3´œÔËѽè…V‹,e¥§7І‚GŒF‰ m%"ˆ{N cÇQ€ÁßcTüÕ zã]"ñF'…Ï™•¥»èüêj.µ¿ºRq5E·{tÇè•Ðr£/bôâÿCoùaUO[‘ÞýÆí—>h¿â6q‘*Ü®¨…ýÛóóúÊÕ –yž ™_ólÍTl!mzìæ¸5B*³ËNmÝCHöZºwÂo’"Î#ËÐ-Hü$ª9WñïqŠúeµ¸cRvIkn~âçÿ‡ÿO¿y\]~|Á5¿Wâ!•U!œûË=Ó…5âÂ?_ü·ï¤¸â¥q\¬á¿ý*¥¢ï¹Tìþ÷ŸÜÊý$7ÕÎ÷‹þÕyÝ>g†ÂoÿéõNõ{ûxhvr‹£]k†–¼´—ùiþí7é`È·Û›‹ÿê³çœÜ©êÿö ýÛk"XzÊËY †ßóÚåéøÿì5L¨¹ÎFÓ ñZødfƒþÄÅp]†?"¯Ø?ÞJƒùí5 Ÿ~rXö¯^·ËYúóú`7±NGg@‰/•=ÝÂ@$•\Ø(@²-r‘´ÜŸHÞ6üf½ðRTÔrJix 寵ݰA¤‘w|¶×(é¦úÐ~lD†ïïßlÓC&gOž‡W‘Åve_I×id»šâtäŒ rLÝ}—³q¹?÷ß6ô{‡|E¦Ïq>E»|¶!#ž(dçœû’ÉE..·Ú¾vC±Ý¦;ß=ߠĺڃ£wØ”óŽM%øÿÈTwL1˽<,½Äî¤Ý QDR©tîR¥@$+ã80BƒäÇöšÿéEŠƒU}dÙ‘R•½²sâR¿âëer(F:m͆WcƒÈ@wXFÕÞ=ó;j™Be¾Ù‡,U½[þl·ö­ûª‡!‡›mwÖiärü*áà„<ç9¬n”‘#ß;qr'[3ä_m#–nˆDAé7¦ù{¿ Pèøê_^^®Ë=áE#TŽÏÿiBq»àdÚ•(¡ÃvJŸ÷Jº¹âÁœ™¹ŠÇP&ó¾½Þf;ʪieì¦2 <Í¢ åü&*òKø2øGY÷\k²v ª˜Ð°qr]E5 ?­cŠw"³Y šP#º˜"Wµè]·$eP;'ïJ ê>íJlOEý{Š_B\Ñ0Œ¹×€mG ¾î‘rBÓxÉÓ-}Ñ<¶ù+ÙÂ$Z¤³¼Þw„-¿¼ºŸ&`ŒV_}êzÏ¡u†æß³ü/ѦªO=¬Ðv‚MᯠÚÓ7ï—ðGÝ·:§N¢ãísM/Vìd¤=¬‚R)È<7uöé‚dÛ³ÈÕŬAnå'AÉÉS?½‘¦Â-FÈŸíÞ} PPiTΗvŠèJŸ‡r¯A±lH–ï£PÜ'pÊ×,Jî–y÷Í@©¬×ç—¡¥}T²y‡B l-øŠÿ8T°u—w‚Ê+˾tP­³'Yz¦j9Ç ÏÉGÀϵt¯¼rih ;Éém”þŸ¿¹Z؇g„–’(¥ùöÐæþS5¡# :øýï;C—lJðùè ¤t·«1øÏß‚IÜ raHÀè„1 xÑÍqFå‹Û",^ÂØ;Ú²#ó01,ôqƒH¦© ª;aÖ/•‹ÁNþP½„ùékv¹‚ °hõúFOóXJ©£©™ƒ:÷Hýh=X½Ã0,¬늴±–V·`󰃦7ß{ØNäÊØ˜´†ÝkI9_ÍØŠñU5­;’üM^K­âG²R²ˆÛ ÄHþü¹v0RÜ–ø½ßÆ)_¯-¼léBêyñ±ï\H÷îÕ;®¦+ÈpTëÚp 2¸q¤”è²ð´¶4&­ ›ª†tcÍäxÇžmyz¹ÏËÖ+]C>_¢íY3p‰²TY[@! …Ç£ˆöùÆçzq(Vª~ÿ3ß”øþÌ^¼25ì{Êî†2‹2¥ LQv’i©‹aåËP{mj âýÙ7Û7ñ°¯Ò¾FfT‹79/6ò5軚T‰QsÞ0¾7„µ—4sp£§ý¹Rþ'hàš¯á7%õOÿõ}&¿oý™0CsšŒ¬7£Ð"ÈŸŒEg-/9S0ÝfC+±¿þYre¦ÛÑ&JJà}}Úf>:$Švý wÉÑéNmq1:ZǺúEtŠév¦ëŒFç•«¿FMyÐÕþT´”¥º•§ÐSDwÞF¥ËŒÑ}ˆu_É'zdVýN„Š Z38®ÞTƒ®3GÖ5¡¬ôþkŸ_lP|¿ŒÕ„å ¼Pñ?F3yd–¢Äü? g‚ýÃîâ^B\=¡Ú³ß)»ï†oƒŒÀþ‘BöÇqÌAÌ×Q ²Ô~ô$Yì‡|EU[¥¨]œ «‹¶…*†íç·(áç5žkN{>Cc™`mÀóJhŽ2JW/¡€–Ñ•§:H íÔW¶mh/²øy%Ø:^°û\âýwlNð3ˆzíÌWÍÜK…6=+Ó¸û7 õ÷šÏÛoáÐÆ&“o %ЖxÖŒ‡á´_y¥gúæ5txªØ/~‡ÎûµÅ™áÐÕÐ%.Ç*=ÇOÏú‘KÂ/µ©/ŒÂAоv_ Ù Þ ß{Gÿ 3ÄRz!ßê(Ù£ù¸a¬*t*_ùL¬ò¯|„iOû©BAøMQ/f*]fâ%Ü9¯À ‹÷ ` ­Ï;Ìr¡*mÏþ§N°öà Ë99Øt&޲'äÁÝk ‘¬‘°»ÅL€Ä÷£¿5t;#);Gï¹ï¯,SÆj@’»žйY‡öìK@JÍvß›Ñ÷:–Ï3§ÏétJÖ>üƒ 4bGpÌ#ã=µO†.ÈÌõ©ÖÛ<YJøŸ»ra0çÙ ><Èá¢Þç1Þƒ\.йIcÈsY'®„¶ù¼™.wˆ!ÿÖ–Y”ÿíP#2…BwãNÓn ð6—ZÁDоÞy0(YŠâ^g*$Ò¼P©(G--%Ü_ú¢€Û5TÚ Lỡwž(«þ^îvÊ“°-e~s@E²B'}eTæ:¢z‚˜U8¬½$>F êýòjÕyÇK2×ßÝFà¤ÀÓ‚‹©ø  ö“óu‰Âv¨ëêò¾A¦õ5˜Óù} ¡ô0|‹½ŠÆ‡”ŒíÃ#ÑôðbèÑ\:üf2>Z$X,ÊÞCË“³®Ü 2hu$‰©S­Ý¼Z[)9Ðæ¸D€â©çh{Ñþ~ÊÏ0´{ЬÚŸŠö_¹¢^5y¡C»êìÉ=oÐi¯N¸Ý7tÖºsûõËSèrgsèÉJ:º¶ål½“Ç#’{‚+¯Ì£»^ÐÒûãÂH§õH«Ïßšrkb€ò÷Wyy_AÑ› Í oøQÛoFFÙôÁnŽ “bßgÕˆÃÓ¾w0}R|o›_ý_‹M/´îBbn ù3@ÂQ¶¯ð#H"5q™¡XZoâo§ï@ÚG‹Ö‡o"þáÀ?OEÝ û»üë)ôðÀñòá·I®Øä܆üŃɓO¡PØïàe(²s¥p}øWÎ8s÷Bñrâ]¥2(yåm_KöJá€+Kµ8”ÿ~Á7˜ e oÉ̸ ‚š9·œ(*ý¤å á´ÃÍŠî¬gîçe™"SAîZ¿h©Ðí"‘êͪÏÖ ìnz´ôâÂõý[ÎÆC s”Yñþ£?Z¢MwÈÉÙGwf÷1d Es¼2†Ìríep—þj©Lô+¥bÏà{ÿ[;© Ï8·.ÿä:”Ú~×÷}UþT¢ŸvŒ Žé[|<4?¾éH×-TLg~p„V÷O¥ \9iõBƒª:ôšã­¿ç@§h*½"kæ¿c‡÷̃·©Ð!˸cN mƃTJQÐf¢°êJ‹Ðæûê§î2´íöÈè/ B{Y“¸:tä~¾yÍŠ:wÚä4@·°áÝÇ#Г½`h2X ¿ÂÏœ´ÚëýÕz·ŸéÂ`šVÜqŸFÛ†'î~Û(?Z ¶có-£ú0É©ö Äú L_ŸTq®„ßÓubô•0Orì¶ïß °ð´nu‹:–Œ%„]$ÁŠfNé×IaX»»Q©•6鿼¿Cð·~–S`·¾¸5§ˆ‰Ï¥~å ER’Ð×rÙHöI"Üܾm¥š­)ä´ï©"¥ÁFis!¤þÄ;çæÑ‚tzZ«[r»È@Åò˜ó×-d¼ÍÚóI² ™Yj=Å5ì%®ä~ ²JL¾LG'‘!òºÈåú°J²æ,ò\;3·ë‰|i_ù£ì‰Q€˜R"‚RUàX‡Î~zäØu#¿EHO3;*¢è§Ò´ÆSßQÜÿHŸÞà^”8wr¯¬Î%”Œ*:CÞ)ˆ&ß™Øé¢Lu®ÏVCÊ"qU>7Ê­ª?póÉB…)+ƒk…C¨´`ò¿Ð¿ú®*õ UË2?ßwpAÛ;q[5Ž…-µ¾°GÍvRcFáyÔöÝŸÈÑàƒº¢ƒ¯¤ö¡Þêb^QH.t¦¼g[D£ºG[m ÕhRoðü¢Û"š™:ÛšG …¦úÞ^r2´ÜÒaWYÑŠõRÞP¦;Zï{¨°ô mH.gŽ’ÿF[âG/~@;òn‘'ShÏøjÜ_é8:ˆS(ÇO£#ˆo^­=‹Nn÷º·gÑùvLmâäYtÉäŠ¹à„®Ól§~ĸà±+¾è×H{Ób\=ì4}Ô_ÅöÊuH_ûí…"®û:´bðúCð¢¹dÅ¿­ÿ=ßS›dU%!Måüƒ–áâ|kýüª3|5‰O ÜK ‰þ¢úp¢%ÏBb~®Oû›oðmuÄSá¢,¤åuVôø/BæÄãÓOœC“ ñµ"qøQ\§OeLà¶ÎÃglF àä1»¥ëPx#ÂJD-à·k*{ÿB±Ÿ=¿«« ”PË}"Mö€’$cæPj8Ïø”ŽJ'·n…ÏAÙ̈V š§¸œçƒJS[¤¾3PÍüg‘Vdjf©%ÍŽÀÏ6÷7t‡ ~­7IªÃî?;&Wy Ÿ@K½‹¿ÃÏyh;ï_âo[êÓËž…. ÝcW”¡çAŽ©…Öñÿü-€{ÎKü( ñÚ<%è Ãñ÷èvaTýõýÐÌ0¶.sÁÆ?ÇØœçZŽÃÔîœÓù˜5=D·ö3æÚëÆ+×Ã|ś։Ï`q¿ŒÜÙ}C°tÏÊX#–ç Éï|‚Õ3ý4N.Àº°®ëzlò pOûö¿˜Û¥K»üqqz瑘2õ“Ç×H+²d½;‰dÄ^R«§‘œão¤n¢RÎ>¸Š”lÆN?½ª‘úD•ÖÉû.HG§H£(Vƒ t7<â½AÆŸ…£:“žÈœé9cM‚¬?q±ÒÃ_¹j¯Á÷àÉ£  ïÏûèCá-P@Lý¡ ªz8²ª¦¡®¢fˆÿÁß¾?xwÉÆZB~I)F%@ë/Ûƪ.h÷Ú`ðÚŽ«Ðƒ³ÔЙÉNA”côïØ±qªáSÃ?ýu† ÌÇ¡_÷ü¥Ñ¯] åö#褔Ä|ÀT ÚmuÏ·0A‡ÐY®®Œè¤cN!; ] r“ÔЗ1+ûz)/ÄKæÙï¡ñÈiyà)cVŠ…ÁþÕÃ:áI0ìGý¤0ä&ŒŠ]ÿ:àT ãœBý­ZaRMzõáFL¿ µÐÛðߪçˆ*`žvi%áw",¼ã` ߀%{¢Ž#'m`Åàh’ŒÚX»‘Ý0›Ý ;¥Ò!Ÿþ–ÿm?9ìÆù}rž Cb‡Š„câ‘dvÊ¡)­Éž»àŠ•Fr+ÕZã¤T¤P 'ΩGJs³ì^’Bä½B:îŒtúeôÒ"Ã>ÒÊXvd Y 'Z·Ffº¹¿ã2‘å;ÑÙ`¥Nd»¤êZi@È…4£IÒiÈå6Üöx yB£ÕÕã ù0wN*½³ÈEPCl1üôÈQozÊd¨ëý E(s´½k3Q4õNgaü¿c¾rŒö J„ÑÛ‰uz£d:¯Þ/rZ”¦d‹WD™–¦U;å”Õð,D¹écBû™Q¡~\1Ýå*U©Pö\ÂÃdÆY?P5ÂÁ‰gJÕ'ç,NΣ†¾—ßaò3¨™m»´‡—µuïÞ»‚:óžOö+¢^rS…Û³ 4Ús5õ$ýje½‹&|mhfN%û÷º'ZP4–u£ÅÔâe±-´¬×86Ë߉V™©!/û8Ñ:¶|>ò£.Ú<î’gá)DÛЖù}A´ `W²Š9†ö›„÷(£Ã%šãqã„\(ñ˜Ãƒàs·´2J{¥Ðùéu5aâtù²ßú[Y5º–^ÏßôEšræ{o_ïBÓái·|3n(û•›·" …¯¹ôbbf wjÑëõëÈRËW¿a)Çì7ÄÇy!u÷ÝãËŒQð-ÕâÝ ï*Hš{Ģ ‰ì4™É”1 Ùðû¹“Í?~X,ãß\*ó ­Õ-GÜÒæŸ}~GFøAι 'm5!Ïè·€ w>ÛBƒî-hBA_ÇžŠë'¡p0ƒCœÄŠF"gYƒB ø~©í‘·õP"”_ÚèR%ù9àfEKÈ©™Õô¶›P:—~d EçÑÅý‘¾Ê—ï\¹•¶K ¢=¡êïqæ í}PÓ¦±¯W~–fgå¶¥Cý,Ë…ð7bÿù›—HPÛ×VhiÕ`yØ–mWMn¹D¹@‡É§ý7ü ËmPÜy-zž…k×í,ýçoþF“}Y0Äý«Â›.†¿ã¦: £Z{Š[ÃØöÛO©f™01©t*/¦6É~ôþ³j ÷}È%`.O.¤å¢ ÌgP½Š›+ƒEæ«T?âÉ`ÉŸåÔjú{X,ÐUz«ž%¬#t°Îåî½ñs 6™nßOôp‡m)¹ Õ ØYŒffº‰Dã»I¯2 É™¡‘7ÆHƺÛLBù÷ô¦)ï[ÿƒ{ËL½x"â¾öKtž©ÅH-ôüZØò_¤­$ÓÖ¶>ôã‚Ö;[žÈÝ'zÇÅ™/•Ú½‡¬‹©ü]4È^õs³ñ!r–Ruˆ¢AÞóI&¡ÈÿkMç”Â+ü4ÿêÜ«þ6[î`ì‰bûn=¿fÉŒûsÃ’»Ë4Q²÷\ü+ij”‘:³bKm‡‡þ>Ž D¹²½­çÞ¢ÂM›¾¹XTæê 2CUº“´{vâ”…G1УFé3Ž4ÔºµßñaD%êœ`>DÝ7„zç˜>ºÌîAƒÁ^ãž¡QÌ»Ž¶xI4y¡t.’d Í|?Ö_G îkAÙŽsK8žq-§ªè:Ñ£U;YÈFbZ—§ò—¤G›œË5Ïs mj¡¹Ãn1Ú%ß±¿sbí¿-jrlÅ¢ÃwýmõJ t,~™Щiƒ>¸PÇÛrx)YЕD—ãHÚcd,)9úNŽŒÀMÜ×#‰X¡šÔ¼ug}ÊIÞäðÇ@QæžšÅiBÎë¸r³ç5ü ë'JN„Ç©q Î7ep¤e2•ØM¾ªQ@ºûý†mÁ?.’».]îGÐÕÑ3êçÙ!¯Î>ýgŸœ¬¯_˜ Äõ¦ÆîC½wÓÍ'¡™/¬(òe#´¬~œNßÝ„6r¾1h‹}ðhé4tÚ¶ºP ºC—fðîOÇÁÇΤ“ ɳÐq7&X¨»Ú!Ù`d´SdPõÖÇA;›ÇG'hOL^~›® WzïÄ`(tz†ö<¸R ]Ø#®•Aw£T@uqôº¬’RGÍBŸ|àds= \ÀWÒ×aˆ:¡E(£†_—ÙM¿#ƒQ[å5â+q0®}±Û­Š&Ý„<bë`:“•Îú=ü¶eéi)‡y®[ÇÇû†`á›Ï–,“%,í ;úñ ¬˜S?͈ük×u“Þ½ù ³+•þ&‹Ö›Ì*„Ý œþ»¼tHŒ=ñÉ£?‘¤Ó’-DzÉî^b‹ïGr“÷1ø)”Š^ôG¸!¥•ë,¤Nã%NðE:C>—<È@¾0³éñ¯ýÔu)kDfJ¦> Ë·¾ "ÛYã®°¥~ä°]™4oãA.wåai•;Ès§òÁÕEnä+•QirÈD* ëyÝ|Ô ˜IB¡—u?(Øï¡#ye‰š,ŠæýMyâÏ5h‚Õ P"&ç·;J6ñ¦Éo¡ôÃüÅQæ×dHêû_(«YœÎV-†rýa?ÒÆÏ£Bz ðĦ*½;ÿì° µvÁ&TuÙ¦N <„ê©ß²rMâQã€öxÌ¥»¨ùêËëu6zÔæ{á¹!øur'ï7ˆE=Ïo ˜Ñ@Ìèä°r?‘ªº4f)¢ñ²g!Ë`šö×P~JVFó¸êGÇ%´Hm;Ò6ˆ–·¨¨V™£Õ‘v»­Êh´Vg”DÍ7hÃÍVUÙƒ6Û­¾[.h;ðâæÞ]~ÑT6—5 ç­—ŠaÞÿüí‚ÒgŸ§T0ÄuÌÅ{; †‚ÆõÉ+`Tï¢ÆùŠ'0NLÙ¹k° “TŒ£c`j™×» î%ÌJ¦“õktÂ\ÜkξyY˜‹H™“]„…ÝŠÑ=Z¢v…¥WÃró¡«%İêø)®U0 Ö¯~ûK ›äSëÞ—`[KŽbd?ì”ß4¼;ø ‰ÊÌR· W‘DãíÜšò7$íÛQíàíÁ=o=ûôÃpïo‡9>¾À}OcÊþnæ ÕÀñ¬„#1H{­%À"˜ éóKõ\+ £ÏÖɪ&dV7[#ߤGÖÃ7oGÊj!{°+M†.+rñOþr›D^¾‰ùrjÈŸî§!d$Š‚íÍ'¶Q8È»øåZ<Šþ\x}šZ÷ŸêÍrzç…’¬zæÌ£t§q™Jñ¾{×€åüùðßb@…—cÐÚ•’âü;Ÿe¡ÊÝÊ{ÃQ=êŒÑ‡?Þ¨á¡ù¨›5µöý\LçÛEíö¿•"Uñ¨[×ë·;óõ;(O¥M¢awR€P…WÐRyÞ(EÓ'èšl­ÑÜÚáñ‹ðl´¸sv¸áÖs´ô˜Øe:Ú€Vø.®Ä0­ù¼Î¾sF´!hó«G›1QQÅ]V´ýyHÑRí2ÍGx\VÑ>vÈ…\‡ k×ÚÙ* cð㪄|y1òêAbftö]ç²n£@FíŠëÔQ‰ÐTÍù;xTÝÍŠ“Ûà…ÒN‰·×”ü ×{'sÏÈçý.4ÊÛMÈ—ó•DwÍ!G¢Ç²X\²h’ÓÛl!cþÆcwËH'9]MßLiy=O¹žô@f¹Î*{K!ä%ì:p?J‹bçL¾ZAõ{ÅNªîýÐ@ç¯;^Bð·{·û’û ¡Õ×ï‹´·1´µf™ ‘¤@‡§ÞžÌ „Î>Å1‡ èj˜X‹ÚºôßH}ÙË&‹ :Im¾+Ær@û¦ò ch&pßÂóh) h÷m9åü:ˆØ:ªŸ\&p Þ±ŸBÿ¬{#g¢ƒ®Á»¿é+îAp,~2g„Þ”+GfÏÞ€¾»D )Ó0PÏ›¢eC*®>$Ã0\ÈÅZr Fo,i =¿ ã¾­ÓÆS0ÂZ'¬ÇÓ ‰ îòßá·ŸöÌŒR˜gîj`‡…¼¼ Óç °tú›ÊñÁhX±Íº¦8~ÖZÃìBƒa£w¿«ÏR.l |9½rvu« Þ›>GbÑ?ÖÕ瑤$§Cú3’]yH&ËýÉõ÷]°j}†‡ÿÆå˜GJ—jRÙS‹HÍóÀìÏi¤3*Ïx´_È9§…¯| Ì 7Ff2åCG ‘åËPÃI: dóq±ˆ¸€Ö}3ËWî!—Çã?©‘çÁB÷õ!ä«=¯ÿ»û1 Ð;ŸŒ;vÝú3‹B1w$j+=Q„ÃÖˆ-9 E+é„Þò?Bñx‘hŸ)”øî¾Ìø×%§{Wï›Diýa²ýä(3ADEE݇²Úü‡Þ6H¢\Ë7+çÍ¨ð‚–‰çÅ*]`î1]ÍÁÃf¾ï}«ÇPul‘.ª_ñ},(ã‚tq¨yuKk†^µ6Ì´NÖ%¡ÎMß Qëa×›-Ôod«3(±AØ'4¦ì¾h|w±yüÝ 4=}gØô šKÏ; šD o¥øŸ¡h©ÒžI´Q…V”›Rn©ÜhÕsäÄlÿZ'8ôžYA›Ëm¯éS¢ÐV¹›Ê÷Ú1{:'ÞoG»áÕÞ7hŸÖðüå?óOBïß^,N@G+íkŸxêÑIØTìm:­?I¥ GjÝè&×¢÷Ðp[¯ÀÔß Êö?^wüY/Ô‹ûA.«ÄÜÄ!ø~rƒ;é ÷?÷CŒYÕH õÞîÓ¢ó¼Ìµdaóϼ’ö‡qŠàÜ{æJ¬$|9ûV¨8‚ûŸçp/£ì; œgþ ö¶2A¾oÊÉ9þ™ß<¾¹RéŠdÎA¾iÕÏÓó?n+Úÿ k”¾Pôfý³Ô£8(V>vb"SûŸùeEž¼…PbÕ°ã•%ƒä‹±× Ôä(Gê tó²xúÛ'PÖÃ$¿INå}D"•úP œ-ëöPÕ`îètj>I•¯0ÃÏØã³4ß¡¾í™µXíþæK1›}×ZöZ/Û@ÛÃuÊýÌ×þÙÏñ)^¸ ]×lçLVË¡'^]¦ò ýþvV—tÎÀ†8¦–|¦^ÀpâÚ©ó$â0j4Äås´ Æ÷\¡4ÓV†‰©[sGåÁÔœâùŽŽ0˜å>lyõÌÝ!Êœòå€ùÇ,•ª—`a†>߼ߖ̣?Ÿý Ë%Ÿ²Ž…U³{ÞáGõa}ßóÅ¢ó`cÓÌKâ‘l‹+÷¬Ž…çS·’ã‘(ömV5û/$apœ­ngDÒÛñ‰rô¸çûí'Ïùq¯5KÎ{ÜgY}å…NREËÏ×Ô"ÒÊÅ¥¸&–#ýÓ£Êù—Q#iŸŽ)2ï‘*f®,ÌÎÄý‘]qNÈøG,r6Ûv‹9Re‰û9ö?DI*y:ýÉ6”¶¡yþë‚'òмÀråØœIÆo£|ëk·ˆ½Z¨¤ê=õ“œUˆDø_Ó_AµÅÜÔÑúrÄÍ]:™õo¨~úAgŠ2jëL8Cš/êŠPz?c…úüQ4ËÔÑù;×ùQg4Zý¤LÈ&9—,s«ÅÑÌ/ô \ZPÞäV²ÍB‹í²!Ÿ‡h™Åa“¯Ð*»88ì4ZþÐé™GŽG™w|ÑfêÒ—q•´ÍM¾Í_h‚v÷óJ*ÑÞyÓŽÿ¹:¼šw0§IÌ@};“xôWo CEÍ«ËëÐ4!Ûðï6TQóøžÜ°#p–UŒ†™Ù?×½ÙŒä?mÔ9ƹ¾¹/CöVmŒB!gvyG3 í2Nˆ¡½T-ùàÑè° ÍY:ŸBé.ûí* ‹ÎåÐëØ[Э°fø±¦zö„ö™Â/âÍü:cvèë¾sÊòI Òq[®œì€¡“ ¤C[axUf@k˜Ào©Ét3Í`ü9kÃ¥¦J˜|O©øgÖ¦§ð‘o‹ü¾ãqäñ³˜—ÿ¤ç^h 5”»§8I`)ðÖì)îBXqq÷ü¡jk—<ŽSyYÁF˲Çk‚¿9\9)êwvÙ/rêñ"1-Ù;­,Hò•ÿÙ€¤’z?_àl…äšgõ;NÜA 5Õ„—x)ÝúÒÏó© x˜—/¬!‰®~A“*24v·"ãÅàTf§JdÚqùÉO2,ï[‚\—‘ÍË·ú…9rXVüyŽ‚\GGÿJz‹<‘#_K¦-•ÓI`ñ²µBAó”R(ô£]DáÿPšOE›Z º† x¿zöëû(Q·O›"Â¥öª48?!èÉó~àùç”(³ÀuÜeu‚Ó„ÚdQ®²uz‡4*\}Ol­p• I´öf ãa®ô… ËMTYÕ>×õ†Õ5$Ž?`f@û›Þòù,jº™N÷ï“E­Ö=|]þŨc2ØÀ“‡º-ÞêÍgQßL:Ű OÔ~@c®±ì£h²£“»J9„fEl•ÛŸûÑBâ~€ÒÁD´Xˆs¡ò´Ìâ#-yõ­.ýðúš1Z+¾’•â GëÅöÓ™ÇÐæëÓý­nhëyðòUI!´ãøñ™^% íêã^w>ÞDûƒg(3¼ÐáP<÷XÒ: ax OŽOJÿÞDª;G.4/Aý£Ý¥G(ýy’íK6°4˜Y„œ¯úr4×NAæ.ÛC|K龦©Ç—!ÕüàócïY!ù9ñjJHlÓPzÒª_þ–šôŸ:_oA{$¼÷û<ß^VÏYÞ…tŽ¥p†Á«ÿÓi¸ômÈ}Ðüæ×î}ÈoTà¿jI÷·vW:rlÇ;>q(Úâ:-c­ÅΩqíÈ x„tÙ눔x;pËzwBÉB2»Z¥,”L†I|‡2"ÇGl&5PÖ&S"B”åͪ· •¡RÖ–]´ ª²Ê¯Ö¾¶„šGï>¿Ý‚Ÿ ȳÇ¡¾º´.ó÷›ÿüíôæGñågÐ2:½$þ‡Ú¢êëél¨¡ãJk5/ct= oÖõ7€žf1mù˜ÿüÍÏÊýìßLb?{ß·#†¿ž}ó÷Œš›®zÑÂø¾1µ·ê01½SÓãß S“fóÔW`–Zv£<ëÌùœ0[ž$‚ù«¯…åYÀB‡ó³×>°¤æV)t–Ó9ÈZ`UÛOÞøÝ¬¥+¾×5…ßé­Óø`›2|Ùaç¤û™À$º:›ÿl¢‰‡Y¦_ŸóGRŸ-†ëúz¸‡¿NÒn4÷Ÿ`¨KÆ}t‹R2ÊžLbZ~i¦Oywø!½7É.‡ÈH­ôÛ(G™ê©ï ¾ãE–œO2çÆ“m.XyTF9oLj,tp(8º#ù]•^\ÐDA8M›ÂbæôÊå´Ø¢?ß[Þ8ƒâµ¡U.®éxà‹v¬n.lúè»W„‡˜XšÝFèQ¶äÖë ƒM”¿ZÀ;˜§„Š?\ /ßÅÃWn&Œr¸£š›ÈW^D¹«$)e¨É üΡVFÓ¼}ô!Ô¹åC¬;½z>|CGÚ"ÑÀ¼° ”ôñç!Õ G4îw}úAeMï&Ô7¶\Cs‰$ S‚î¬bÃR.¡%sï Å]‚ϵµÒ»~A«'—¦¹fr(¹Òºø·möúY>*F›"*1a¾h{‰™ëáwÏnêÐt§<Úõ©ÓßQ¤Eû*bÓ?Ìè åƧƾ úõ™#N+ÐtŒÏ:þÚ£ üÿ91‘ÛPF®æú0³j¼­×Ì‹OA££`b2ß{hq á÷R…6û]!q˜…öŸ¬_SÔoC§Ç“M’†!èšµ®p†î©ì‰ðî¿QÀíh!/vn–¸ìo€Ž¶ùü/סCèôWŽÙ4è`ûä¿tj:g¢y­~AgOåÜðI‚_Ö¸ ÊB÷¯xårèi¼ñÓÍçü² âø*’ ý’Ôû#/½ƒÁÃ=ÏžÊÜ„¡¨ò7%üì0"4ñá ßúO´Ÿhñ¢5Ķa²ìﻼ'90CÚfpf~Ç“¼T óš Yo¿Ý!èÆ)ôÖ['Xºããë0+Ç(MÕ#8aíìÍbcØÈŽx`¯Ið7%±¾Ñiؙ៙üú ‰V8bΫ"Éó0ëlj–Hæ”ÛgðšÉU;¹·.#¤_bcFJoM³{Í¢H]Æój=éL+zç.#Qþ•š„ÈxÖq쬨2­‡zö-=G–7e’ã Èæ¤s-9Ì“—ÔKÜ‘ËS•2}Tyžø+¶û"_ÏêQñ^-àŒ|BË‚6­Ñl½~(”°Am!È"b‹åÉ(ÚûâÌÕ×P¼’Þ¶µæJ §Eî!J ½Š—))AéPÙù|‘-”Ù’æ+BYÝ™„%”û±šÂûÜþ„µÊ¢’sá¨<¹¡ñ¨—UJ'„}%çQ}ï¤ÚÒZbrΧ·· ü¦÷¤™D µ¾æý5àoGÖ‹ç8&P÷žÁLÏX êó¦?eiÑ@ƒv<­ÿ«Rh7„œÑä1IdÌáïhf†ò f­hÞþã…n6Z|ñ!ciÉBKíᛚ E™¡ÁÁ‰LP,Ëùêáy(¾þ·»|%”Ù26JB‡ïpÊC)© ÕÙ)(½U³ç\ AϪ W·‰ ¬ÁÌÔ|ËÊ+ü¯Ú%Ð@¥hø€«­!TÅŽ9œ} jüYÍBhGàç5fél¨ÏߎbÍðûÏßÎÍ:¿öh‡–é†'.k¿¡-æCøÊÓ·Ðq÷ÑövÚèzõ3S}¥z²gxŠ$ÿó7ï#ùKû`ˆuMÀ¯, †“§ÏT­ÏÁ¨õf—·¦0NkuzV)&f¯|²=² SÃ^7÷i‚™­¥‹Jó}0gQ?EtlæOñ-¶ï†ÀBI¼ïë#XÚ/0ÚǦËïøèj «Ê;{‡B`m­>ð6ûiØbÓLÌÝ[Ë:a‰¶÷aGÅ>xD¿‰TK=²¾ qzó¤/M7’Ên\³rB²áàV.9B.-nJ§ÌFŠ®¡š®wHÅØzœ26iÞ©s]!aAz÷<‚îøe'ýPR™žÍXÉ\üˆ,W÷ k "[<½ÙµOiÈ)uáDþ䥘¦úrùeå,ï6 ÀÊícþc(49úÝiÛE™”ãµÕ¡x`[cŸjPY½¼úþ-4UÕ¦màB™ò£Ô(ëóMö@Òi”8tæ*:í6¦MþAåùa¹ƒ‚†¨šläuÿ2‚ÏêêÁpmÔxQ(XŸˆZ‚?nŸ½µŠÚƒ²µ“Óq¨û=ñ;çØê߯vg¼†f‘]$ÂhL¦Ûþ0¹MÞµøù,õ£™ˆ9/ß)4Z}½¹É€ÁDì¢Áh)}Ï]u¸-{ù–·CÑê†kbÓ_6´ñÜÔ£!Bëò“5b!›hs$ùê‘u´Y;á÷]mìïËpA;žªr×qF´KfQõGúšæ&³‚hhLŠܳV •Ì3d-åP*ú>¶úêôµ–Q[Çÿo]Ù̳Ö½]'bFÈ~›ôŒÞâ|w•m1¡sƒ îëkOľƙaÖ{R¯«ëßáû‡ëî'.'C × Þ¸eûïGIæ2@MÃÑ»ç2÷Aãßõ>z³wÐR¤L’øÚê«?&¨A‡^eïs§ùæ7^Ü_šÝ:ªü·¾AÏe¾þ•A¥Çî¤æ!ž†ãÐåÙþôÇiŠ˜=Ð#ä¾ÐdÅn“£ÐáG«‘sN:‰lƒ åè ³áÞ¡ÌÓ”ÐõC1,¡R º;HêZt Wx9R…pÞ¿âwýiAÿõÈ©f‡k0èù²Sf]†Ê®(ÄéÈÁˆẻh!2£ä»÷gÆ'sÊö܀ɱ껇÷ ï)ª;4àwΛ-»B˜7­í‰)€…‘DÒ8þ Xz"kq&j¬œÊT(ƒ5ß ÞKÒë°ñ©\Ðd’ào, Q.a§ ¾àÁ/)$úu0ºÓÐIBæAü,’7Õ´v"¹¢ú|_ø)¤ÐÈγœû„”gÿ.+Ü*Fênq Ú‡tæzgùx~'ñs®Ï2úÊsþ\(@¦ÅO;Ñ£êÈò<£W×Ê Ù\å|J”GÓ¨ÕáãuÈu<’]ž;y¢/”_E¾å3z.\(À÷5>5„ã…7¾¡PJzcã2ŠHk´q‘H¢è¸s”wçqï òû³ö%6—²äQ ׯï™OFé·½'ö|ŸÅC{ô9†QVR¥ÕQ.…áwtjú ÏþBÅå>†«7Q9 Ãc<…Q%ü~ÇnA/ª5Æ3»ô^C¼táåÉcM¨)¸¤R¶e…ZwÎ÷d×ΠöÀºw+3êjˆ®lÔ¡^eðê5§l48ûœ·ÐHë-á¼MxŠO鼇¦}^ïcWjÐÜÎ]‡~-Ž(|å'|ZKê“©w}cÐ2]Ÿs%k­,9zŸøè¡Õd'ÛV&Z„ÿŒ{ç„6¤¥)ܧ yòîÍ §óÕh»GçƒÚùkª¼FÛyW¯jD;·c® ]µn«ÆÍ[H¹wüGÐêsø{®€ºà ”ÒqÚé=úùŒóÖgWR »+8ωq2Øøœ Ô…´ªèŠMµnHÉàPr ½_»ëæ¤R‡ ‘z+öðø¢±7áï.|¶³º¸;X ,ú¶LDðíT^Æ‘çé†Ä’£4 Ë èä£WÏà‡½÷#¾<(h¡«º°@à¶¶Ú]¶ÿ=o[ã þ‡Û®sþцâ÷ÆŒéžaPÂÓãæ=¸ÿëjjž@)óæN3S,”F<´¾‘sʨym“” ¬Ú§;peÊsÓÎþá<•œµñïo–BÕÝoÅ_ÚB¡ÆíþŠkt-üôöQ£šW†ú4E×+ðŸ¿]ìg¢jd…–ùôC‘D¹Ðö9Àª·U :žêµø ]_î¼P¼d=Å¥ÌjÉyÿùÛ ?ÿ“®0Ä”s:µ†SŽ-..[¨ƒØW[•‡0ÎXôNõÐ6Lü^ i2¤‡©_×^q„™™Œ¹¤÷aNQþ&Õ@=ÌÛ}Ú'¤ _t¥ÓSa‰eŒôyª ,?%ñÒχU)ùªrnX››,N™\j¹Àà²(UöZE3#›ë;O.Uä§‹™¹cÜ-ƒ6W%ŸBWšê3 Ôx§iÞ G¡ì£iÑ_¾¢H;AÝëI(~@¬Ëc%Z:¿šîÞ@©š±-”ñ/áR¼Î‡²,5=4Ã(WG{Cˆ¦kµ>99 ò)ü+¡*åË‘Ï'›Qýãù©d§Ç¨Áogoà2Œš‘9ïÎCmÕÍg¦õP—H!¬}Mõ*ZHÜ5ߣÁµ“çÓCçÑHâ ›?ÿ4ÎÛ¢¡`Ñ@S© #OÄÑìÎ7áTѼM‹î¢Å}Lå¤ÛFK¡šÝZ×eU„~ÛöE+m—÷+«hUSé#1lÖFz½â*ëh]Á³ì(6*Ey 2‰h“të®_#Ú²• »Î#½qûÌ~MhˆøÍ^¸ò*^Y6ïÝØú·gäÿú ~ÄK7—n…œÆˆã»¿Gÿë-t'ß_Ÿ é¢d>§@꽯ÇîEüÛ³aÜÈpÇÖêßž„2“®ºº‹û š,OÜÍ-lú·o¤];"F€ét”^¦ ºâ ]nsY7¡{Ëþ½•, ô’Ýí(­ÿwìQÔ=âÞqº¥…fÞ„Îo¼ƒ+Küÿö’üßûtڹȤù_O ݇ÌCޝþýÿÞ@/{¶0"øµÚêÓÓýÍl‰ ªö0nÏÑPÔC ‚OšÁH°í*í[0vø×©¯4­0Á¸¯ýȘÚ;zÙjÀf”ÿÖ>I2€ßÍ?̸• `ÞÉîÛãeX˜ß¸÷‘ –bö‘œo‡•³n¼:‡Saí$å–óOØxº–«žKȃZŸMÚ\a'"0\š*‰Ê´_ ¼¿$>öM¿ãÑLm"ëÛE$—ùXáAà ­•òƒ•JHyùÇ«!e'¤näJ#~‚tUdæ§~ûeGÂÁpdFækg rmÞ¥TF.¯ ‘ï¶€¡Eö£;Óv|hiþÌîƒ%Zö;Éè2{ Õ±ÎÙØ@´¤å¢p@k뇵¿éiѺðÄdðãN´`ý• m®qJX=ˆE›Æú¿ŸíŽ£-÷³ÆÍÑöØ^à²iÇ}‰®ýPûE"M"JR—.E]ùó_oÉÿ[W%ç{¶'Gþíù¿>’¯WÓ_Š˜BBî’ë'_?ø<â?FW­ñë‡#˜·’àKCfÆçÂ7+–ñèiHw;¾uæ=dÝ4ŸxØðæ_ÿ_QQf0ëþèKÿö§ß/zcÅü__‰ªîS?þ÷ÿ~Î{KÞXRìîž…2F¢ºN§¡¬ôÞñOó/¡öÑE*xŠ´S;- ÄŸO¬ì©äÇ 5+Œü3oyádˆû?}““Ýü «P¤ïK d¥x‘§üß|I¾*BÎäý`i¼¾ %;qòŸçãÖ/éáÇk?o¡˜ÀîON^eÿ 5ÕÁ¿I.Ý‚&ÊÒÃ;ÙsÐÒ-š[wä´Ù^ºš :NH<¡yÛ]¤Ãe¡û-cÄYâVè‰×x«ýz¾ 7ßò†îÙ˜#GK·¡«@tƒç5tF$l\/–ƒŽ<[Ø-É]ÅWæ ¡SÖ+þ>“1tÎl¯ÑM‚®b·'bO@wãþ´Å]è%ŽVh›í€_gö4Üát†~¥ž®@TöŒ®d¦…¡‡óärF¨íÎf–®ÁhÖÛFñ#ïa<ôª¥p§Lž™úrWˆ¦ŸÇyX¬ ¿ùÃèXæàϼì÷àë4°pËþÙìC&Xã5…åe¦ £ÞXP{ûô$lÐ6F‰±Ã–§_já¶<ü]<n/~‰|4S9¾DŠŽ/á¦ùHÚÈúËl÷d}®\{ø½B¹jÜ7Ø\Ð/©h=¹{Žißù}ø™V¿DQ¡w¦Œ1ï_žÚЏ ˆ¢o+®zÞäAñ»Š 86Ž¿ AÉÑçñ¹úQúpIÛƒs(S—äp<Æe÷4‹Ÿä,D9óhº‡(?yü½f¤2*>xHú7T•uU/š~Eî*ðçåD5K3ßó+Ü3ãõŸiQ£½™Ïè¨ júòÎ…µÏÝe`hD‚u5’>]Ô“mÝBýæÛ7¶ÙÕÐ0úd~äuq4>ŸzÒ±³ Må®ð{5£Ù{+úÂh¾Õ>u²-Þõ’죥š%ƒÛZÖßølÄñ ­l²-ïG«Ö߯“} µá7“c3Ñ:ë‡Yq¦ Úp…¬º¿G›+WÝš¡MEçmÞ»‹à¼Ã僶žî¼ìAŠ#†Ô>µg fíõë÷`% ^†cŠ6ð£ ß\Ü’ «×½=H× ò†ãð›R—ú‡¾Ô‰üJéçÑ&$}Þ쾘¬_ÆÕ5¬(^Âg1ý[çÆ Þ:ÂR4·¾HPœ3‡ää°ËÞ¹KN+ófhO?dqœóLº ?„+„t/0CÁ·rºüÙPDW^J··ж¸éôßC±²'Ë­Å(à¶•PUâ¹åOÆÁPâö,úD©”4¸?\zÄ¥ Ec$˜¥É›Ü¾ _ Ìª ‘ç”+«›¿Ñx¡?J• ²Y£—ßߪ#»ÈÊi¡öÖ°ÔåàŸP÷ƒ(à»q=4JPÏEí@ÓôíIk­%hq??r%Û ÚhÝ5Û{W¡}Ùæ¨ý  t.nÊ&äÜ“&üÂoàå¯ñß{æ¡ÿ¾¯L¾n ƾì3µºòª—ra¤í`ý±‡0vçcÖíðp˜pò™nÕ§ƒ) ºÑåçs0£íu1~· ~=?«(솎žßzh Ðô}Î0?îq4×Õ‡e~ûL­˜nXÉ-X/£‚5Ù·GcaÃâÙ=K’UØÒUõ°V±„¿O¾mþâ€ÝøÓÙÖf•H̺þvÇè’Ü`j<þÉHMÇ8]pϼű1î-•`i@JîÇéå7#:üé­òV¤3®¤´XCIç #¹d¬~±'n ™_ªoOµ"k¢™íO‘LäàT(-0‹A®©þ‹‡çâx èÃiPà5SlQC!zŽ}Ö¼×P„-ÃCkÖŬ…ÚyÛq©&ÛJ&ý}B2‰ÒɃsä–xÈ»H¯ñ1Êqñê÷Dì¢çÛr9!TòÿÚ{ððü¤“uª9GtŸù‚PæzF*&5rOÎ^×C-“3”Ö¨½µùœãÍ%ÔýÖ¨o¼Þ‚úv³|-÷ŒÐàï}¶CÕht{÷À‰çÁhÁ@é¨j`S0 ‰gÑMRÈÀð+ûïïµ¼aTîˆüÇ´³06?;zÈÜ&:çºó¼ª`jY›ùN»Ìž±m¢ûâä¨5ö‚¶ïy.rÁbú”¦½ÏX¾\ÓfôV½¼›÷ÀúÓ±‰Â˰ÙöòÇ!a*øks4ßv¿Â ɽ]sÛ–×ÕZù†¾§<>¡æ ¹œ.‰dÙA%åîƒ|j(ô¡ô[¾¸ŠìÜGi¡¨ŽúI¯hKƹetJBñ{“¾>(¡V(Q¡šø_îý9Ð%ƒûžéÎA©áÒõgaÃP:¼0¥Kà¸ÇÊ©+g¡|9ò6U‹Tʺ¶ŠoCU?SÃ_¨I#!;¼¯~6DÔG8܇1ªù—×R ÉU|¿a4ך¯Jÿ§7öœßÔ'ih׎w]iZ&äÓk§_A·”Ò£;ýóÐ{85C=* úR]g‚ýŽÀà)Ÿ{ÃP†-Q}HŒ˜šü1‡ÑUîW!‹ƒ0^áà켓 ÷“ƒŸÀt’Cˆô+s˜ˆ,³™Ý…?*g?³R´ÂüØq³£:¦°¨{4ÂL“– ”«ÞÕßËcG6~»Á¹ÇaòG°Þm°rY€6kEÃCž„íÑ:‰=Ø=°¿%e9‰º?Ûÿ6gGmÕsõe‘ôßUQO9ÜW’ûg£÷†ÓÙQá¾oIÕŸ¸!5½é )DÚ¼jzü^ô¿D8o[-"£¿a‘(2ÖÔèwEVô>4ù㲿©>LeJ‡\6{ÿþ[E^[›˜’2䯛ÍP(nDÁ×–ž5“”(ü†ùˆ=ŠÖÖÕ¸eá~CÓwÞ­Î(É@å:ük¥)Ÿ9W%Ùá!– Šìƒ•([Ê&=l4‰ò?â[êÝî 5*–u†âá€ßÞ…Œ¨Ú#ÛÒ‘{A¥úoðq Ô8¯#Ëû‘ µˆ·C%rQ;Y¾ñ½Œ 꺔NMFL£>é+9>ú4Hük"ÈF =‰«.hÛö㛎šü Íoz1fÒo}³ï桹ÛÍWt+âh¡¾£†;-ÊÆŠåæÎ¡¥&W6Ÿ¶$Z~o«7—îE+Ay:åz]´º¾r¯&­F,ju§î µrÛîmÓ>´¾{Ã>èõR÷’N1¨sn>³ÿ”‹¾ÞO¹Å÷«=s ì*¸í©‘ï¤& Ód>…úb8t †ù&½ó‡î©t—ª}„çVEw1º-ŽxEÿ.kŽ&[‚.:m‹%"œœ #q¼‘JN:n½‘<Ó# 3ß峘Ž@ç5š¯*ò Pk;@ ÝD‹ölkÐCO¶džuzhʼr‡¾= &&0À¼‹§® Á`ùU™70,ê°^ò FRù_ "Œ¹»]V¯º¸Lù'1¦,ÇrC¦Ù`¦P(rŸû˜;¡^Îv0ŸÄ”aæ"‹êŽî59/ai+8Å/VÆ^ÿ¸ñÖv¯l«Øv¦NYÙãaØÎ² ÿì±»þWó™N"±v›}Ë$YzÂÞQ0d¥J‹\HžàªíN;…D{º${r$ºÎ|i´~ŒÞ¿réØ"þtç ƒ.™žWŽ62˜Œ&fô ³•]Iã+ dÝc ‰bÈÖÛ¿PMl…νå4‘È5k}so=òŠ5ꪫy ?ÚNow„¢Àµõá:(Ø®ó]Ñà …-Ú´CÏ›¡ÈýV€{<ŠÕ”<%:?ûN4­ŒÄ+,úËÌ'ð ²z[ëK”Ñ×Ó?§Š‡B”8ênæ lŸÈßی(ïuÉì×óhT¤¡ãxœDŠJÕñ»´OñðÛõ/ªù¥¨Z!äWï>`hoõøó&jøO¼<¼¨YÂv/Jµ‰ßø½²WBãþïW¡nQwµÄ€!ê»dMŸ!BC‘‘%U4úËœ-ãP&%&Õkh¦ìðÅœˆÍ£Ž0<$A ÿK»ä$hÉRRzÑ-“Z£l„›ÑJÙÿQï]´Êûú‚VÞ­Ì-߇£õç#\Z»ÇцÞX.ûËÚœS¯ªr±C›Úë4¾ÕüíNjÙ¾h{âÛúq$xçÔ]ÓëPý<Ðvýøƒñâ­4~Èe•Õôç8™KÎáùç×þÙÇt»tÅR†¥Úÿ¾^Í™>­ö ‰¸q(ÂghÞ“¤1GðµÉ’ !øD©Þj¤0 ñƒYámo4á«§´ÊùUrH;JùUÖæŸ}>3·„\?U{6^@þqË?!öPPiÁÑ=x Ó>eÛ3C‘˜Åæ×_ ¨Ø )p\Šm›n²¼S&øpǵí1(áé+ý(ûJBÇXúOIBÉØì`>?7”^•£î„2“ŠD„òöo‡¥¡âiàÏCÁß¡J(ÕüÅf T÷ ôl>ýµ#>Çõ ^˜Š_ë!çÆŽêïÄ9B³¼Å )´ÔÞxõ÷ô h{²îø´$ :Îòý Lº]GÈ~¿Ò†ž“·‚‹¨À¯óx­(ð»¹Èp¹†ä#*E v`¸â£cÝU=þìÚ5»C0.ã³wälL2‘„yT‚i&£9²½0«ùˆõÂ÷O0÷ôz¯Ìm7˜°1Þ”°0^TeªÖ KN½DÛò°êãYï$‘*rop`t"Ò¨eëù€ôæL‹ÏÛ #Ÿäö•$d꡼Ü2‰,mwhÉÍŸ";ŸSŠ£q0rÊðÜaÙAž÷Úe.#<Èï™Ç.Ÿr…ïk¤½DaÖ媫®™(ªu© &òŠç¼$®Üü]¢ä²™ñà ýš{ .(S¬òËìÑÊž¢g›&kAy§”¡Ÿ yó]¸´N‚&Y¼*aEŽªmõ_IõP=]þAó³¨q€ï‚KMjfsÛchº˜3â3!‡æâÇcÓ#ÐB´ìx×.Z¤j.ï=Qƒ–2»¾½+¤h™ %uäÓ2Z±÷m¸t>B«¿ä„!q´Tþ,xׄào1=û(ËÐúþÞùTq~¤z# G¡î?c¯˜Ø„ÏCYÒÞè¤3¦PÌÂ]pòY?ü0àØc¦ìïj–çÏ“¸-ýÜJ*d~-»Ü«æéáoo?;@©ÌÇù‹ê@RÄË!‰Ô‰c¿#¤±I¦æ¹›ô+é!½ùJeO©Þ‘ÜÕ÷¿ú™ °AƒßÇwÑz¡¹éÀh[Ú8´Ö~ت : í¶ºâ…´†Ð±÷Çx@× m§šsúÐýÀ»G5¬šÀm[%mgµ¡›.áÈɰSÐÅˤº`”ÊÆÚb§ÿá¶ë‡Ü-¡ãÌßa Fè¨v¹ZÇt :uXÉß&@gs0 åÙfèzÕ‘@x¿‡[h¸ §1²¨­k~ù ûî±ý'8µt`Ð]ÃÒâ #!:a¦9ŒHí¾µ¥…ÑÆ&J# €ñÏjBsÊ0™æ¸»f¨¬H9há÷û2ã³1B>W¬# U5!j{ `)Xá¾[É Xñ¬ý¸N§kW>2>ü­™sõ,ra›Ý(¼ñz)ìT^ž&=o‡DCÖÒµµäví¨õÊ1$Óo£(zèŒäüíìg¯ 7Ûþöý{³åO™!õS[1ûŽ! í¯FRM¤%úÝLµ€Œ‚;œ;RÈ4©Öf7ì‰,ÏBZ*æõÍÃæU˜u*rXt±_ˆs@.÷ØS<EÈ©Ñw;í6ò}7¦¶FC-¨ÝQðþõ¯$a(L¦ñäйù•w³ÑÅ|öjn?<Žû ,½‚l^~¦OB©ì«Í]  Ù“re§oxHÝ›ñzŽ<ÊFsðïAõuº(’‹PCÿ|;ÙWrÔ|ÈHÇpµj>sõ± cób±±êÞÎÐÒêû‹ú‚æ1âAlh0#ð¸fŸ•êõG¿2@“0E U)J4#½¨ÁöËÍ}Lô>½B ÷²kžëÐ’äîáËÁähùz›ÚQ­$ˆÞ ˜+¢UÊCxy­%›ª¯Ó¡ulZè-á)´¡L§a7ÙA¿˜míw„ãêÜã¼þþº5R„¶§®¸‹|œÁ=DØYèÈ¡jlZîC@.Ýzô¥r´üTÞüõ„L¾hï«Â÷ ía#ÙÆËö/½·xŽ «€€ôwHlóÕ•&pç¤}|\Ìu_<] ?{æ¼´ ñjÔäÚ§!©èFô3Aû5#«# ³·n|VKrân³«uC^ñË‹‹YP UQdò ©§ö7@ᨣA_Zÿñ¹‘Ǽ¼P¼ÏFÜ´ŽŠO\¡î€âŠ7®×>P"TÂ)þЇàsãZ#ÙvPJêtùÖõx(픡ì9B e=kÄ ·-n&&?¦J®§Å]„¼û´’A)Z‡l¥+B{rÑõ§“nÐÑAocýœ WãþÌèÝÖôØS@ ý·’iê†Ô`ð{݃ _VßY1!oƒ‘vê#—soÀX´÷sŸÛY0qíjŸE/L]U{¡Qwf>„zrÝ~Ï>¢3&ž†yÙÇÁF‡«`!Œ{ÇDù,®nιK ÃrÈ·ƒÉ`U´ð¬«™7¬M§Õ—¹jÂFëöL¯ælÍD7Þ¯…ù¸}§4¼èÙÏŸöáH\iFˆ¤Vöí_ÖFpñW÷t’·&§d0ÜFŠ–1”NÙD*†’kÕ{Y‘&ºŽ›n7éU³C¶"³¡š4EV&™ç› «Î#Ë©wÓB£7íÝo‘φóÈ)î NGFŽÜd'Öi‘oƒqó„ê4 |+åʾ*ŠBÏ£_ôû¬ÄMž d¦Þ^þn:Tóçi|]„úA'rå*h¾ÜepCð´úžl•î쇶õT3¹rèxn)}ïí,t íLh²C·”P4§Ñ]è6z™ÿÊgº*IŽx_†Î)êÏdŒ “³ÃùÝr(tÜ},eÿÈãŸþƒ—^•DÐñ‰´t˜éX]h¸"w£#`+Â×¢ïÀëE¶¥ $ºÞ²—eú ’°“¦4K i}l÷ Ñ׸ç¥ÉïiJÜ{û i‹ˆ î‹îga8XˆT£Âi¯"­ ¹ø7ÉZ¤¿ñ7JõH,2,n°=0 èåºàxÿ+È"”{ÕDÑ YÇk5 âi‘ý§­/r6Å^ÏáHCîÍôK ¢‰ÈgRXÌ»]Šüc›·_Ü BAlWø…BÙ_‡Îy¡ˆ…ËÕÇ bÔ&óëŸFP|©CÍ:îØótʉúJ)æ6D¿+Bé›EMVa(³ù–Jf6eék¶'_¢Üè­­ËÑ;¨ðø‰4_[ *™ÐïÜk ÄÃ|ŒÄ¼~F¬®Õã«:ý5MPƒm‡á%ÇÔ´§ò[ŒZ‘iµü=wQ»»B:‘ó<ê?Ìwú•Žz“–CËThzDBfØ î“w—¢‰9¿»T$/š6„w挣¹*ßÁÃ)âhaL¿QöN-þh/JÞË@ËûÂ7ݤ+ÑŠë~féZ}ðyzzû*Z Ê[¡#ß^’NTF›=ìãW¸ÑÆ›H¦hâ*ÚT.Ã62ü-How­m}˜¿|QžG²Ü²Ê÷M¡JÁ‰ÁìÑ=(||LÑÀ¾²O‘+ò€ ã^ÝÃ\ºϤ÷·’½u¤Ï‡ÄO*kWÂG®áÂzqøôÂó'Y€|T¼·;Ã~>ÏØú¥3þ~ô¨ÒôHâlÿ{U–RË›¯\v«ƒÌs³¢å||ÃÇé] y\§SAþµÞss¡à¤ô‘^aPÐ×]k6µCø\«ï숡( %šê÷(!ïrȦN:C±ŸÓºM?ÁçÞòžOI$ðÜÀ'*³(yú8o[p?”z„,ýaê'pÜÈçRq(·ÍÌ YMUÝ"œ·GXÐf¨¡Ö¬¸^ ?y÷?—)‡zïü"»uдwâ þédh¾óqQ„¨Z½±h|ßm3n»É"šÐQúÉ2fš {Ivi[Ð+(ÇU=: }ÑûÃŒâ`P‰Â¢­»†²#~>y#:·´.p·Â¹·ðÒë—0>¶r ëpLŽ|_s|föÜÌOÓ›‡ßºÑÚǯûßt=ék§ü¶?PÁXÞ Ÿþ".rŒ€evë¨T XÉúM5´èk¼O]u‚ ‡INŠWe°uzYúGyüÍu®×C"ŒÛ?œ"ñ‚³¼HJs‘dZ󒥇Õ5Œh"ù¥¿ƒ?J‘â8 û—Âj¤|r5åü ¤¡jX6CºNâ“~G!ÃÙ™ïÈÄÕÉñ7o™w *5Î#›ppôŠ;r< qy±H‹Üj‚ÔO[ ŸxJùqzPÞ¼|P'…X¥2¶QäPU<¯©8н,}º§%4vIÛ}4PŠÿÛ'jC/”aɺdreOl\ù„r¯KvÞ¨¤ B4¿žÉTfÞ~CLúUìØË잣Ú;ª/s4'ͤKd£¦€uσiÔ*¹¦:ˈ:^o› eQo_œÙç0ÔÏ©‘æœGC]?ÑK,ËhT$]/ôkš%µä7 é•?MmñÂhVàµS$åŽæóѺ ªh¶éüÍé ZÒWvÙ:¤ exßï'^#?Tÿ‘ð½Z]ÜÏ3MïV=ݓ §¿õ­Ã™„X´^ã>^ç¿Vªuÿì³;ÎçÊ¥Ã!÷¯A¡õƒÉÊ!'‡‰ØîË~ÈR+ `âû·ÍGrtØ)O‘tÒôÔt ?Cò Òúç?¹áKC;ÙÑçðål¢hç&¤ld%ýŒ„&;ge¥y(ùtèüðȨʪe— ¬‡zk:ïÿ5óÝú*ýT Zi¥_ÉÚB[ÌW¥~G èP%>S- ¹J{è§ «á—óµt-*d»¸]לøz8Cg&9Ó~–nèøëqQ¢ät\úôãt蕘Uý ¡IûÖ™®AG›hÞæ™ÏÐ)ë[á¿í ?cÍêú@×§áwÇH¡ûÇ«¬}öSÐ{8±øî% 裲0V8OÒQ"çÃÿÙÇÛ¥ÆAC†E=k£Ö“`ä[†Ì1é»0v…4æá¥˜ð®ÿrF|¦¶®ÞËYŽ'·r˜«u.)¿ó¿Šøã(`ñÎ; ß=Z°|L"`€:V½7Q–kÖ£t6ʼ`ó—l_Ž!üõ:«;¶DÜýÙ‘o8Qíª™§3’Zû$ž.îÁ=t契öÑH>§{®QÀ )ÖÉV2b¤Jþ[yŤyÿ÷â#;k¤ØTû”aŠ e¶ž´ 3ÅÆñ‹9}Q¨åÚmdõÅ)Šu_d×mŠl©ENØgVï? ·§0-ktòfT+úøù__½6@þ Vx®½ÐC!éȳK(ü—Dõå×eM~»LȃâwëÏ“ˢģVš}r(ù}ígâ„5Üqb—wA™ì&Ò)”e#?åÖƒr6W𦢂¹uîä©8T¢©ô1—þÊ¥•£Ũ²8ü§$ÕmC8¦i–›ߨӥ¢¦àg’$ÔrÌ¿âùFµãr|ŸN .ƒ—âù^/ÔKÝí½‹—ÞT¼Ì³G#“$©óœêhÂJy–oåš¾J:“e攋,õÅyh¡àvYÐp-~%=sGË“Íc šhEürTñZ½0fˆu¿Öì¶­Y ~‹°3#?³„Ö»ÁEÝQ*hãåq\MŠm*¤Ù{öÊüíÊÞÓkh뛺 Q·Š¤MG/É…ÂÁ¬±kÚo œy1üØ·|î©gŠOæ·Lýóüp¯ìX çʈ.T|%ä׿>Òêd(-JȰa†²¬æ cš¨ ò Y®‚JÐ#(Kà8þîíAPËE‘¢Áv ê,Ä·HªÉ¡a$,tõ0)4fñ*×2BKÈœ‰ßÓËÐ&¾RyTÚ—/>¨è\Þ nÛ=©sàWú®®v&9 œ “tÔ‰€¡ƒ™’ƼŽ0œ±-r:DFÏʸšã槃"E`Ò˜ÿ›åîu˜>L×D÷fc.oÃÜîwO·[0_Ûék$# ‹2,¼aê°”²¾ý›< Vô¹>{=׃ÕmÎxºW`½¯Õ@a!6M§ 7à/°j>…Ýêò`«bZ$Ö¯H]«/C’Ꙟ Ù1þ ²Þ"$g7¦=¶‹{×x꣒IáòѾ9¤¾Ú$6h(ŒtŠOFâV#ù“Ê2æUK½ƒÌO»ß¡=ЬŸµõš}ûË5þA6äºÇpè §7ò:˜<>ºªˆüe²-ŸhµP0ªc°io, 'œ}í&±Šbä—WJôp¼…ª¨®Je¬oõAéÉoûíÍðëf±l8Ê©ü¤Q¼Åˆ ÁìU¼¨CüÕ×e·ý(<0øÕØ/+V^O@H:zú ¿jtœ­ÊøjZçy¾—o säE§cÔÍ2 ±”fG}÷7"§£ÁŠÁ'åKÍhtÑL<îØäöP=ÊCS5*ý{{Þ ÙÝôŸfÓ5h^*rƒU®-.Ù…‡¶6¡%QâcFÊÛhySÑ4’B -·{³«W½Ðê4y¥8Áç:æÕsÜcÑZiûÔ3Í‹hù2_¿±÷8¬©’@·{YÙ(U6_ŠßkLÈsòñ\’Õ=OwƒrQ ¾‡ÜN»vì+ÛŒ7çˆ?Bz´#ßÑuH}÷à“Ðü&|%çz‰ò|ö?úøu|³’zåbôÏý•&=KZÈŽœqP³{%nQ#‘ªLº~G$@]Eyãauhª:D×G:-)‹7HÖA›ö‘¢Ó×ó¡} -•¼ŠÀe'.Šþ€®³QÜ { ëUKºÐ1ne9mÚ×w¯—o€ŽÙ‡¿@‡§ÂƒŽ“"sMë…7+KZ¦;ÐñFš5¼+:†GÞ&k©@§çÍwG–Õ K²ë´®a7tË𤠽ð…ž8¿¹ùëðËÕÇ\˜ÓúOðyõJ×Á “­nÑgú *Ãh#¼Âeg>?‚ÑAŠÆâÜ£0^}Öô”zLn8=›×¢†[ë!ÂIø½À6(´ó'8úŸü–‚EJ{®óŸe`iØÉÓê;¬ŒŠØÞʰõ=g¦|fÔaD#ôÛ©a;Ë÷Bë3sؽë›~.‰Õ.éýŒîD’n¥«zΜHvWíÅ»ŠHnïUÇs)ltØÑ¼AÊÛ¶ž]ùGzj¹Ø7øÒ…þ®æ§YCñOF>}ÂȘð‡j¶à=2kIÔ9”~D–…ï5FµÈVlÒpÃ! 9Rc~ˆB®ú¨ø#ô‹ÈËÙœ¨cŠüfÛEof¡@âñ"êq&â½}]ól0A?Ÿ·>på ¨Y—Ù|× Šs•Ns½‡¬Œ÷‹÷\AI…ê’ãxðʲ;ëAJ”¹D²e›ˆ‡Ú¶÷Jµó ÜÑg_ßy =‹NêN0*6^íbŽð@å8ç«•›Ì¨òµþì åW¨N¦ìâÚóñü~– ™¨1»k|­²µªD¿¸v¢ö‰¤„ \ ÔéÄÔû=œ¨w#×fh Tz<ˆ~eÄÐgÓ甃ƿ–CuÐÔ³jïùsÕhÖSþףŠ-ø’–Cï¢EuÁ±ç±4hyòÒ¹“*ùh¹+p#Q­H„7–ßCkÚ˶Rô~ û’©u­7Æ_©vD›£¥¯rÎÇ¡MÙ©ÅìF;‚¿]èS#|O¶§M'»o#ɱP¡u T´®ûø}?äǼ{×Ô¾WñŠ2$8CÚG§ÍìÃ)µ_¬ŸS$uÒÍ›DrcžXHF5ħ}=q¬>üYpM‹†÷…ÔùÄÁûË/;#|4£•V^ƒ„ækÅ7OK@*¿À¸Ö-Ȉ‘ˆ¿Ðõ²¹uiï’¿…Ü¿«òï'çUs&ròys÷\Ú„ügG_-øZCË)*(Ô/”ž}e÷Ïm'®Æx.Õ…rËŠ÷ÙŠ‘¯ŠC±mË)§ R(ÎXÓ™9%%þ‚•ìA× TöLḠ?”±Í%Y?¹å† Px âÑ;E¢|eÇ=ÛùRjØ÷öOíˆÁO…(ÅoíõÙZŸ]Ÿ}…&­*#“§ÆÐܤa@u‹Z½bˆbÉ¡]T»-ìF$t µ¦6k€îÓ¬‘æòáÐ[+î¾Ëã ýçw³)Ú}að3mUm" ]¤85r F~Ò"-w±œ‰F#ʘÈ`ÌíyE S5GçºÔ`f-;éõå‡0gò2ÒÄzæ}å?˜†…úñ ¬XÒñÜ_·ËFZ3*ò°z«‘Q!û!¬-ô?fx 6/}œçÌ…íÒfç`YrØ5X’©¾Ä“u)'äæWWßvo$cÊ9˜Ó¦†{~¼¹ªF£†{ï©þ|ýëî{úçbª¡RÍ´HUûm"ísQÇH_z·Ê­˜]?$^ýg?3ñ•ë×>X"ëþa‘ºšÈîÕÐÀ‡œD¶5á7‘ç{« ò›úäêlBA–ËOg5´QX€ãq E9Š^*¹ép­÷S½;™Ïô°„„»žÅƒž¶,…xˆl)‡b6e{Ú¸šê/¡üj#ƒþ<*‰‘çw~oÃÃÖ.¹Ä·Q5|¸‚]—‡}>±¤5<ê6¬ËB-!û?¦Lƒ¨]z›uíÞ1Ô=ºùômÖÔ§¥ØÏ•} > mµC£ý¾·¸gúÑ8ºjÈÉø šìŠªgF3Ëý_¡ùÓ”ÂQÙËhá‘^fKàN‹ùÇÚ ùÎhéÿ8ùÝu´\ºýî7Ñ7´:1úX+Ъµ‹óÙŽÁß*uØvœÐú¯m +’Ç=Ï|£rª¿‘OKÈCI~—Ùhä_ë˼'õ²Å©IŠÔt!³Ü 98S™ÀmmA3ç¥ mzz^‘3„ÀgYûþÒ¿„ÄOêŽÖ†iO³7™½å$|êÛ”¿dý’+˜c;îC6}ˆ­Æ%+(aÛHÄ×? rx¢Œ’õÔ)Ê•Ñ]¦Ó}î_ŒËlGŸ ÇM2éí|T‚ö[óºÎëйOšI#õ!t1šöe…—A—景“n¹Ð9Es䬊t®O»®ü³Þ퓚stXÝS©eŽ€ž[?Åj Ceã¥0áØS霈&Áßž:] £ ðÞ‰¥Eÿј’|K!pÜ»¯êsг÷cØcèM¹cÍXZ}1 _´¿Á@Ca¼×uy⛈züƆ=·»Æ÷ F h‰–ÿr¸(ãâ1«J˜4·Út‡éˆî“é|4ð›­uçvõKø3´Myñ,<¦^ 0ä…%ûf•û2aÅÕ§Ó(Ö.½^ìgb†8Έ3 M°M~ò]Yì{Øùö–k¥h‰¾1´Z!ÉRž'$ÝÉôM—ÍÇ=Årk8RqoªUÖzîkß&›5uCj™YjãO¤-š`]þNา«Ç~‰]FFlç½Hž…LÍÇ.P”!ËåÊ÷ÞŠ#›J Õ¡™sÈÁ[t7ó.r)í…ÏwX‘'´—ÏnÙùIƒ|Nµ À‘oÄ7îj¢`óBÝÂY*¶3ÍK¾„"ó<gÝP,%¯Ï]u÷ÇXö^ ÎÇ™*j΢ÔÒãÏëDPFVaEÿ¾(z²ð©ÒØåÞ\wfBù¦ŽÆ€§n¨yH§{¾ •Ý—ejN¡ŠWö‚ô雨–>ÓüY‘ ¬²Aì ÕÕäQÔœjn›å»ŽÚcÆO„Ù Î[‰÷] ¨§œîGë0ŽDlÛ'ýN¡a'Ý5ƒh94þÐAV`¦ÒñªfÊh–øbted-ömœˆ&èé{ ·qBZÚ¿ôÓPBËùý¦xÑ*˜’–H<­É^v|˜¥Gë-ΰÛh½lzþuße´9"Ô Ÿ#‹6%ë¢^\!øÛqgWi´=3uCz…‰ÿƶ˜°ˆ@…PB¢yõ:ä%0ˈV+Bæ’#Ÿò#HmzÝ~iº¾¥Úys2tÕ¦»ÏÅ>\ͪ°|FÐÕrBÖq†xí¥i%¼'ÞúÕ΂ð®åÏË÷³Öð!Á“§nP$›÷>”‡”èg*ZÛÿ[o`ü½À‰=î' û!W*3Vß~<þzÉfGòþöòÿÍ„¼?Ÿ‰K“¯xîœtÏßD(øVèò‡ U7 Ìe©ȼ¸z(²;j÷^–0޼xA&Å:î£ÎøgÞuŠ”¬1”|R¨½"Ë ¥T\ØT ìih`i4”ç–P—êA¥áÿ‹®¿Œªêý¾¸aBº»S$¥q-BDBºDìVTPTDlQl¤¤$¥‘–în–îãoÜ_ÿc<÷x^­±Žs^xæžsî}]Ÿk±<=jªØ(èߌvzñU‡aO¨{ºUW>o ?tRgŠsÉ¡Iàµ^œG4Gíó]뙂V{¶_Z£}¹-¸äo)M˜NA÷…wÞÃÐwí†NÎéƒ0(pî„‘r? ½þùóÔJ18Ûø¬ `Lø˜ÉÒe˜àÙUqBñ=LI_˦ †Ÿæ™Ëœ0û±¤t¯áM˜§{Õ}P<ÎßÕì „Å½ÚÓo,`ùŒgÿ•~aX¥»DZ-~OÄEDØÃúÚs£ KØ2x~½§c¶[îž¡oüƒD5Ô¯hªž& è"i¹Ù@R]’9ͰžËöB ûh–Ÿ HÅçö'³i[•R_7"ÝJNp#ÿd¼à|“Sß™¶Ÿ,æ} B–oLAj:È–¨²= —†kùŠâÈ-üëæÉ¼äýúPØ9ÕR XDu Qè§¥ç8î,õí¢c4#ùjZ(áº÷}Ý¥UªæÌ'®£¬ôÀÖÃVY”O˜ gŒ9ŽŠ7û¤.°wâÞçTU%9¨’JS¯G_…jMÛíÖ¨IajužÆ ÷½øá.NgÚÚñÓ³<¨ÓúZ¢íËwÔsõÌ}+t õ¾ÄLƒ*Èwïb&«ÇƒÖ;‘EÊÏѰÿéÀG÷4¶k›Œ£Œ@“Rݽ åÏÑ”×èäåSÑì”úfº;š›Òÿ–¨ôAóA·õg—ÑâÜ]Úò5´˜–{ÎD½Š–Ç¿&»‹hÙXôÛ-D†àoüÁùÚhõþó\â´9’ËdÔQw…ï 1&?* DGªówÉ2ä¿zXú[öd»PÞwhõ÷ùÆÂý]„Þv„hr8Ò4<Lš) :´®NG€¸ý · *Qâ÷gjKˆz©ia4 ‰ñeWn9Q@öK6Ëýo 9¯éHÅìê¨ô\ ôuÚ¹ÀCÄÐÈþ¤CuÌš–¼åÛtr¡åyeËêth“d–¿?ÿÚ㧉}Žü}úÎÂ÷ïÛ’l¡#ìôÑ«bUÐÁºh³Ué÷w?ha…Äh×îš× ‡vÊqWëOÙÐÎ> Áí2X› ízM¦\õíÐþÞ䀟þthêJ³<€NÑ/öìnÐuiÙ¸ôµ2ôGØ_‡Þv¥©Ä+Ð?Y"¯s›Cb7©ç8`èÅÔãA0’Ê¢(©Ý c÷³>9“ïWÙGÒ3aªÎyžä®Ì@ïD`Ìý^ÖøE? L¥MwÒÀâ`žºúcKXn¿å+9Ì «c[æ?a„> þ-lÚžü‘¿¦‚jÕé÷#‘Ëx_%uþà]y„¤×etJÃMLòi_%[7RÐz}š¹‰Tb‘Q;ýNHscÄ^ªyéþ žªvJAFg‹Û&n5ÈÔ–/¿iVƒ,.!|§LGu+|Ðð×CdÏÒ7º£†œamÂû¼;ܳýצòN޾=¢W¶*Îoö¢ëªÞš„+ ?p扸òEH–n}]×AÑW'§hzQ\/ƒ…[%Å^Ɉn¡´RZigî¹,ñ««¥åú›z–n룂ùÄ~ç’Ϩ8eSŽ{_:èJìCËñ´0‹ƒ¨&ô|ìyà7ÔŒt뺄ZÇb‡ôÝç2m)j?‹¢¶ï’Œë;"ÔIë½/7$†º+¯w[Ø…áþã‹Qy¾¨¿m,øýG7TØ|h<àŽ†!:Ÿ3z’Ðø|UØo¡óh²±­ºK*Mož¯{²âŽf“þýÞ^£y¤JQæY´8Pyôª~Z ex•½Š@Ë«SÏåŸ@Ë<{îïŸó:äS=èƒVs™Æ›÷Þ£µã’Ô?h]4ã~4˜àoçݽZÑÆíAMúr$fŸ®ö$(wçz´Ñ[yië•zÄ)ð–ó¨› !/f¹œS«„¤÷»|Byÿö°¹ý$³¦u€ê×1ˆ¦Öš¡œ¥†ÈƒÏm²§ B¿îVý·~ˆ=p83þ,|Þ•G¾ýÈbï¾ÿ,~$¯ŽÆò\q‡ôšsb»_çÿÝ—nà/97_jný»¯UHã|(äµé&¯?¸ ùF?Ͻ™‹…)/Ý9e(d«+¯ß_…4ß,ó¾ƒoœñß/°€oAÜGU¼Œþž[çhe;E±EÁY.— øiy Î7!Çn¶SërBI·DðÉà9(ícʶ]‡²±Á‘ûNPá|ŸÓ?-¾3“þڧPMt)™üW:Ô:g/ʘAýŸ–ý“Æsï(œ: MC}»˜9k¡åɰÍo5h»wËÐí>'tän·ùiA×ÚÍÀkó{¡÷Æ\Ý™ß"0 ÷èÏ›ûÚ0Dr¢Á%ž†ÓÏe™‚ÑgÝWó{™aÜwµñg0Lú»QÉœ{Óq­,?\£`f|z‰–áב~áf`ÂÅL‹õ,^ŸRü|8 –~ñZöe‚•÷ªÓ÷–¾Áï‹o› ×÷º·Mêͤ»°YgðZív%lÛ÷vÏty ѳ=.ׯ¦"ñúè×_ç¸Ôc" ²Bwíh&}8šäI×î<_ßAÊw'® * um»zàפ³1&9pDY•ešjî!S˜«Æú Qd±Ú£òµ^Ùd«¯íÑFMÁîüx9äºÒº3–<Â3Nþ±È_öµ†¹­‹ Óœ ‘´§¸›ñ ¾ò£(jm»Ÿo)ÅÛõ†8[Qê·³Û-ÜsÏñsÖë0”·{Ìéb‚ŠÜãêd.š¸Wè ‰á› ¨¢ÎØ—|&ÕÌÓ¾‰ ÆÜ¡ü¦aÜGô`å³ýâÏ—k3<$¨ó î¸³f2êñ_t’Ï}ƒû ¬óT**ñÀÙ'”ÖxpWï;BÎ|§É¶ùYF~ý®dE“GbDÈðÐø{ùíÝÄh¦R®æ#—‰æ¤¶°ÍmR R¢Å¼Tzþ%Z v]WfC´t Û>…-ë¿´šª/üí𺀧Z}”|4pã9înº0®ö¾+reþ¶ýÇ-øsH¶K¼ñØ?IÚôØýq+üÇ)I:½ôäÌ¥‘…ÏÆFº{t5ÿÍ„€«È6ä÷—gvp¿ÿðß –ot«}i~x_¼V“° Mït(!DþϤµ¾Ôµô-´›Dýò6—ýÇ!鈋¼j³üïú¯ä‘û¡•á¿çþ~d¿œ mËÅÌY¢þÿÎÿþÝ?ÎÉÿû¹­_oJ÷B·UÃ<Ëkè¥û&ÍÆpúIÊòxoíÀ ×y—G8C½¼ß1DÀ'ç‰#~Ï`tÈ^ËÎ;ÆÇÊ:ú.Pý×䔉¦áÙ\˜£mõj‰Ó€ùwž‰Ÿ¯ÃâÑéÝIä¿`Ù,&ÐÛË VmÈJ—ÂÚI’€bi;؈qùó9û ü ¼éí ;ãhùÐï-Ÿš­—ìF’Ù(öº>Üõ:’¸Œ™ Éφ{îsœBʆú,W‘ú[wÕÖu¤ÓìÊ ÝEƒ ‹f{¼<ÕéB„žoà2ÿj­øùŽY}ÙSëŒ"»\‰ß+Æmä$ ›.¨¼€ÜTÓWÔ\‘×lŽÊ{¿ òwng¬¯²¡` <¼TŠÂj5ç-®ìÆÝ)5KÏ’£¨bœã˜¨ŠuÄ,\{ÉÞûQ*ýWÑÄŸ”™,SÍÉE¹Ãªõv〠ô½Ã¿UÇQ1,QjSò:îµ<4Ë;í͇:^ î‘ ¨[ðÀESl÷KÔñ7·« ~ÙHë½ hðô’š€7s¯à•@c…ô”©·Ñ¤’«¡ž‚ MöeòS£Y¡D—zg+š¿XòÏ*bC å¹öÆ2hѲ/z”Ì-OWS»Ì‡¢å|O׫τþæ6ACN†VS<¢N¢™hm7®ºGÏ­¿qûXˆüíÔ·@ã3hã.Ì¢ÌG‹DR}rg•ÿñ>róî*¬û§¯ÿ¸#ÿqJþã‘ÄÐnµ™úËB”ÊYÇk$áÑ®vâ!/„?ùÄ]yöö¿éÂ0//{÷Ÿÿ9&ÿéùë¨î]ù÷™«¯Z/оyò|›éÄÿéþ?žJw+þ ûP°x{ 0ÅÿϨ°¯ùLMQÕ?Ê·j ‘¨/PÌÆvÏ6xêŸÎÿãŸüÇ=ùwRîÎrñì7×ÿ㜌uM¥oÍüãÕå®|bè›þ¿û‚€÷i›dhÎO ,H{ö|“ÿW÷ÿñˆþãõ îÛû:¨ÝzÒœèÎÂ0ß™ÙRRY±*÷(ÿ cÓ“½§’ÿqM¦I† ¦få`f/«È®½W`.<0à9xÂ|”Îñ`ÝeX¤ñqPà7,=jgóÝþÛX¦X]ð!úiÁk;ÉŒñ_aÓ‚$éÝî˜ÿ㙘˜Í[[#qј|ú’ŠÞÕùP˜…»"ž¨ \ú?ž ;ßÅÀgŸZ³}z½‘6³ïlA92Üä(b;‡LÚ¶÷Õ|SyÒ¹í¸ ²¦9þ¼¥ýÙ£nìTE΂ú²`ÆÈÃ^”íp¾ù:%î]AÁ·‡“´§eQø1ë…#‘{P¤,<Ê'EÅ5ßqžKJFÉy¹ê–M”iï0µ`@¹¥‚Aí½P!ï—AX\(*eÛ¨9%€Ê¥ls\Å)¨úC7îŪ¯ŠºÒ¡ÖU-O¨Ëˆ65¼œŽ ¨£J<þãêÖÝ®·HÀýçˆëï²ÅìÆjÛ‘ÇÐ 3;\åüþþõýÏhôcá÷ûÐä —°ÃýÛx(uèÿà94£4½f*k‰æbßäÊ¡y±ú©]Mýhaþ¡¾y0-:î»x„–6·³Ÿ>ÌCËš—iR¹ÛÝòY™­‚S„˜wU#i˜0ùyU5¨LúõE~Öðï~C) º¼’,êîOj¼uó_êl׿ûi„jÊžA*«óáú×aøFSûWçÏ¿ü»Jµ1ˆœU2J{Vÿo&p7oÿ`YßYgéþþÇ·«k _þØ 5oÒÂìÂá‡•ŠµWÌù¿º['ÒAóúãÞcª¿ õžâkú×ÐöóÚÛZAhÿ™ãÉ_Ú’o©ùì;¡ýω`‹^mB3Ò"-$ø`Œñ»WU{[g‰¢1´Múˆ¤êC;)‰Å}Æxhç{À%xÈ Ú56’3¤$¡ýé}‰«–üÐ!óÐå9}t’ûÝk÷¥‚®C劘\ »îç)è½]tþ'§&ôã"©ý] ƒZµ9Ï®åÀЩ¹ƒËå0¬¨ãR£çŠ¿ÂxsƒW–'LVxªh¬òñ0›Øt+ר朘y Á"Z•îm‚¥%yÿ/Ug`e:LöŒ¨üþ•ÿô4c&lH ÜWÛ[[Ÿ¿š†LÃŽuEË$æÝ;áØ‰$Ánõ§e#qÜzqÅÉY´½5¿!¥€¿Â™kyH}Ô·÷VXÒ6} eŽ@ÏŠ¶KŸIBF냋2Çœ™‰+à@VÅîO¤6‡­KšúžìrDFÚÞç}Œ\QÑŸNîFž‘!öë™9ÈZ?D@ƒ_ìñÊvù‰B›4g¤[Îân×Y¶ý™Qd±;ã†ò={×8êLÉŠçjïQܦ@©sÛ»˜ÃQ&ÄÌáµ%ÊQ{Ì“rº£ü„µÒź^Tô¤imíYĽ’ã¾l–¡ò$—ÂO}}TM)Ða Ù@õÏ1‹sµ¨ÙÉÐzzO‚@"E&j«¤´;{j¢ÎYú—Ô7õQ7íÑ)Ù½¸_TŒòfµ êWxF>9aÏ'2§ÈŸ£¡K± ‡!ïQ¸œúúšTï=G鲦VÂú–Ь1Ê´«Ñ<ü¬Oüs´°˜2ç E‹­úЫKåh!—ÿ°b­ð}ïQí_hÕé¦ôøM"Z_äýUîÆ…Ö›Or¶åÑæ‘ñ¾ hËøŠõܧÏhhûzò©9ìÜÞµ«Îñ1”Ù‡µ†5oü='·ËÌóABo#±±ˆ¾ äÏ·nÿåK¾v#eèGªÒzÁçâIK\B_Óß/QJ áz´ÖuQSÿf¤Â.«gþöÀ9W~I ’zßN rHAºèW]FAȲ¸¢ß36õ—ÛåÕ9Ûá!¯„An¿Ìî6Ÿ‡w4mýá4¡ÇM±¨hÅîrƒ‚„1­²¿û ^JÏ/FúœúY+u‚¯ÑŽ, ¨È÷–¿= E›\a2¢ùÌnï_ÿ?“ñ3úÙÿÊø*^DN´@¹çÊÏfu¨¤î°.#ô¸V…ÖñãePCµïäîO…Pw—“Jû&ü"š÷èã†ÆY×¢å|gh¾Ýw¢m'Z]꓉óØ ýNþñó{: 3,³ãy˜ù?Q_è[›¤nT UwˆP¡Nþ¯K‰¬0ÝÈôÐ ÆÞ·w;ß…‰÷#‘5SIû'lKbàçÐq8{¶æõå«•¦Ã¼×ÉkÏ4`aÈã÷ãÛ:°äèÞ¶|f/,¯xyŸ?š«µyÒ¾•°ÖË}’Ù·6¥\õÜÏŸ”kÜfœH$ßT¶ys‰?h7c ’RØ^¹¦»üx¨øtÅ‘\pSí™Ä¤X¾q¶ý'R³¥í—÷Hûä;{NØ d0º/¨À…Lb¥V¹ÞÚCþ7²¾Õ={Q¥ Ùï/PóË ç»› sdÈ=q;ÕG/40~Þ"ÝN~è3…ÂÎ {ÅN¢È«'÷mG£ØÎŸÆÇP2þqÉB×W”yo£_£\ж–ù†5*<=¢Áì¿•| &^Ø¢òó Pt¹ Uƒ‡8õ£ú÷O>ã ïQËèüÐÞûˆ{3ÿ<®èC‰IÊW‡¨P·H? Røîw*I,ùôÐr4ÒÌØ Aú±{ç»hhfôÞd7 –^}yõšœzúãÏ8Üe”w(ÍÌ=gÔ ÐÜáPüG¯X´ °jLö@‹”k¯#ÈæÐÒ²­“ôøZ.^ßn<‡V/²År8ÑZÒŽýÖl3Z—ÁÐÄæM$å¹>§\ •bï÷&ŽhAQ£ÿ™c‘ÿx%™·SUžStÃ]æ6[:É[”¢Ô)û¼é¯¨:þÝg³æ©·1ÕrÜÞq ò%¯•r›Ë¿­”•rH²|î\jÑøÇ'¯(ˆh%¾ç5º§Ïä[üý+I„@“õ­¹§W¦¡¹äÃñÏ>iк72Ã!<ÚžHQ8@èg÷Òª¯ºúÖ·*Ç¿|:йh øZlöåz>hgúVÜ·' Ú†?q^X‡¶Þ±&“ Âß ¼³é=í@)Íü#Ó¿üeUvídhkûÚ ìïßeES@§÷ÑcÉüÐUi?fùpzôOµu¿Ÿ‡ÞÙâø¡]Ð_tÙø–» ºìa|™ð†^öÝêš„ZÇ,23ú %R ã~Ç*Øv&aò>½µZ¥L—‹Rü´Y“†Û¡3'`^¯?¾` 5oïwO‡¥÷y¾-ΰr÷ÍD9ü¾åáG³Ê ë ý”uڰŸ,اÛejù‘HTßÐsÍ¿ I ñþºÙi$¶áái¤D²ÂA ŤøÞÄ—ï͉ÔDÒ¬³zÒH{*úN¨*Òïh–ì½BŠŒ£_•Å»Ùi“å̈4²Œ„¦mÍF6ß·n&¿‘cT©áÕhäB—ÚWTSÈs£u·›¨ò-=÷Û‡-y/n¯©¡P¡ÉIrÕDÜ­¨=÷˜E2hi¨ôãPÌê÷ÝmŽ`”©| ¼S‹RBt®‚â3ë¹}öÊæ§3'Å¢|Qíýácͨh~áNò‹Ë¸—èëe}s¨œÿ^ß­³Uo[N$Fõ‹ÅKVù_Q3ìÛ Ü7õóŵàÔ¸ú²ÙÃul•g", P7&$ü¥òÜ/twQ¸à)ê§s}u· ^j©|œ &øí óy4–HÝs#,MêÌHõòzÐÔi8`!sÍFʽ~Ä£yZŸ{Ø™ghqi¤:wŒ-ÅŽ| VEËž÷ƒÅ z²éÿÖ¨ëC.d‰Ö¿øód n£M˜Üéý¹”hk~kCëZÚí*8¯ñkí Ÿ1ÿ~ ÛQ‡â«Æ@é\¶ÞÇ,GÈq»ÖtQ×çç¯ü@Hìúñ¶ … ©~·$Á—Ì‹æ‘G/A´PÉ”À³røll|ÝÿÏ„OdšÍþ™†°µß|Ñ¥‰ÿf$ñÚZf8ÁßÄø[ò“AÒéå®× mzœ_d2”W»½Ütƒ¯vlJU­““Cu‘äò8ä>k,ï\ƒ<."ÿ~¢ÿñÔ‰ó ÿ×g1æËÎPpÊäc‡ãt¯:”¯_†BBèIß„ÂJ£ržñí¿=.wÕ-žpÿ ÔL`†bwuâ.ÿçoЧ?øvü嫟 º¦ åw:/hfšC%©¶vI›|/}RÌU ÕƒT©oš¡n¿Æ57vhèxwA€¡1ÿäÆ7!hÖ¦’ýu¨Z™Lè»LÈ«ÏH5SB S®bcbŒâ‡¨÷§)gñ/´ñM?OC¯Û|mDaÄñwOòAiÓ-vÔ¶3‡ p˜=nSv_–½ç‡Ÿ/Ríë>éÀì¦ðØØŸ0oúxŸM‹,d:ÚÈw?…%9¦÷WbÏÁry¤LR¬F/Ûrk¾†µœ‡_oÙMÒ¾.Se)øã“2>V DlV"^ ±—O‘©2’L)XÈÔá®Óñµ×n9 9ÉI.Fƒb¤hjWÖ@ª_Oª6GS‘Ö9µ<3²¸‹ÞI–V#l¨¥ˆ82§m{VÞ…¬7$ÆŽÈì ûñ\…QBÈyYü­n’rçhÆ;±®!ß)ÊÖA“(hê&PÇÂ{͕ƣÈÑ«ÇyL¹Q¬üÔ‘‹Sl(yr(áë/”QîiÞ`G9] \õ~ª«…æþ-«'4ÑÂô²–í ZÒ[Ù]‘VBË ³¤-´zéÄáÎMð5+¹|áÀhÃóô°uL ÚL7D.J#ɇ2Í«{ "L«T¢‹Ãf|ßt—þÇ+ɘðÃ>+Ò¾‡þ*(±„ÔÓ9GÞDí†dKÍsz†žÿ³&•(yb´h”•¸Eù‘Ì1ñߌ—{ëºE² Yê“O^œ¸ýï|©Š7®ôç8¡&cG^€~Õ0uÛ@Ó^®c©‡+¡ùIôäXõUh™dnIÖ6IŽ—4%» #>ÎC˜ÚÏv¹;G|-‘…ŸQÈwõEB[{‡ŠHõh+°²gϽmóâLS¡]ðú—)ê¯Ð~e{»¸DÚ«ŽyÙ)B‡Ž„çtEÓÆi:C碆vh·t£dÐØÖièù¦ñƬ3 úŽ”L¬‡¾²·R¿t`ðþ‹³o†œ`(¿)µˆFÈOýq¨×…Q½ò7žÝ0n•šŸnd“ÚŸur{aÚ-‰kBæ3ÌÌÔÞõóÿ ¿ªô¿2gÃÂÝ©Œ™€·°¤±ÿÆöikXaÙ¼›¯¿)öÜNë¹ë²!/Ž)ÀæËòK|¾°­åÖ®@DwÏ6µ ño:ç®ÒHú^öK•5’õñS ¥E W6jßHÞrÈyü!Òl<;*WôÒi˜¦Ï"c„®lñ/[dfy¡!F­,oW®x ›ô6û±óËÈ>þE–¡ª9»yÖ m“‘‡æ»ü…wãÈçÓrñ\)? ²Ó¸¼ôC¡»þ.ƒÁó(¼ô¶ÊðÐqßw<ئŘùyBÅ…P| äÉIß(ÙÉ{PK+ eHÏ„cì ”½øKù°w/Êê¶Ú­V£¢D­ÄcíiTêWöbDå—,ökíQÕhê…©Z5ª+w/å$žEÍ3—”‹)÷eJ³©JíBmJeî×Qgÿ#5I%Ô ŽÕÎÕªÂý|]=5)™¨_ CŽ¡Á«€£Ö4iB!5Ź“2ï ðnÚ{ûõð3Ö/̶ŠBV;¥HŒ øŒÇ«Gg5þÏßÔnù‹sB™²™ª3I”ûåMGËé@ÅŸ#ñ²ã‘ð=u(áìU¨Înû£÷dꨜ†"ÒoCÃɱj<O+?zX Í${7(ƒg ¥¤¦ÿe%AçQt Ç¡£¨ƒ_Oªð‡¨7Xס§• œ£^§¼Š„¡CÏM"·U`„Áp˜j Fç¹cÌa|¬yOêÆ ˜"¡“?ÿ~jn»Ë7ÅÃlìYÆWµ¢0¿;!>ƒ§é¤w©¶ÂIŠíôT(,G¾ù>·yV}d}ÒR›aííõ°ºlô_‘*œ?ÓéK’n°³ßþ5À‰‹¥m‘¤–ú0ÿ¨î2Ôð¯Ï|d#uëïΨ#EÚ~ªK‘ªú¸îÙZ¤U ºšÃô?Y|”¬=‘q)(¡y™?\P_UFV†ã¦»•‘]GGò¦rhõ~˹¯G9MÓ!Ÿ´çvãn^”öîbJvAaêó©×d›Qd£ö$¡O‰=®¿;÷° %4Ò÷¼CéI:#Ó(;å³|õ¡8*Hªó¯Y¿B%®ã:Bƒå¨,Ä6HMÐ…ª²-q:ªŸ÷|¿-ƒšß3œuKŸŸû¸‰:´ñC㋨͘ùµÜ÷ï×¹ûþ þïÔm1@ƒ¤¯ŸoËÏ£¡“[ä§>4&9qNÈ<MÂB?ä-æ¡)c‘°G³]>& h^â +³ˆïÇ‘F å%Þ}æžhexó»ÝÔ{´–16˜8Q‰6w‹ù=ÛÑ–®0dÏQg´cv>ñf²IXYÚVBLjYÔÝðvþ¾¿_Æ?^IÆ Ç³çHh!í€úK/Róeu^¢Ÿ 7Ê9ßC<'ó™'ܤùwfSOËúš; gýþ͸Ü™ƒ9ß!sÉ2dc©øßùÀçAƒÇü+Ô„ýXóÍ"ä´7óßÕBKvk»Þgh¶È¼"Á¼Z‚}WóÇ õûäåqÍUhKú\ÊßmËV:üǦ¹éOUMhË=•°NÚ‚%\<åmï©>”Üæ…¶ qˇRß³µðRúÞGÍ…€ßÐÁÀlÐ{é+t„Ül°u:ÏgÿÚ” ]gÙIÉB÷× s/·ièUe0¯à6…¾ú2©KŠïaÀ›³·û Æü*ä…¡ Ô;%#Dw{Ý…Q7­…­ºÞI7}û&¶Õø“œaZГ¾òÒÌ<¯ºw^î9ü²¤½ÇúF”a”øÛ5Xìk¸$™e ˱q±6+aõõø »âzXKsdYIUƒMÊ—*Ž4ÀŸpE±ù¢!$R ©æ[hDâ¨î€y$Õ¥Üëñ‚ÉX«R]B NûÕÛJçÖƒÆ'ƒHóÒí`(œ@zZ ë_§ê‘ñH½x[v32Õ¹Œ*X#‹¾XÏÜËÇÈÚv&Äâñ<²?ŽûØÎßœâSŸ=;,oßiò;ÈGÏmý’\2–¿ŠD!†#ùDÊ(œ9QD†"J—óöœú¢û¿‚J,Šø¿!³DÉ—Ò‚öa(½TÆnÕ†²ü2ö»R˜PÞ5O¤þY*K5[:J)¬¿ï~ÍFåãïì £*§ÏÞÙ–4TÛ^^æûĉšr<ãWnà¾;çƒ×rœ‡æÉ<ºÄPGÑïË¢xÔ ÈÙÏŒû¹•*®Fö£~*mDÎ$¼SßÌÏCCçÊD4HJ Ë­G“f?ռ˟ÐôÊ£KÇóМì™]ïˆ6š·~?ü„‘-¢; ¶îÒ£¥×íÇEhe~¢aM?­¥¿Vq¿@Ú1.b‚oÛ¬›þ±:€¶ãžïœdóÐn¸ÏC¼ì-Úϲ°õ½µCŠef’fØZ\-ë†Rî!ÿ›ü×' ]ý® i×^²òD’Ä—ÕàÜ%]c.:[‚dÊÝÜ3âe våt ÕgMËë3cHKé'˜w éóÏ\З@ÆnòÜ ¡Èì}=PWü5²j­ ×Ed˜RWI¥EN{'§ cûð×Ð#EÂÈ»0%QLÓ‚‚”_Ûéó Ð࣫âT¸{s¿@Ö,)ŠRŽtñF‰®7ñÆGP:ÐãbÉg^” (5¿oBÐåÚ¦ jª¨8:GŠT›¸÷çùT/UT%.áÝù„êZdW®y¢fó*¯»°"BÓµˆî]Ô¨½ýÜ4 â ê~X=úN ÷«y¿PFýÙÛï”jÑ áxÔË 4<¾…Æ,J£çñ3š$°Ê_Ú¦—.(â»/hÎb¬3"Í‚æËƒþ«ùLhÑû™%ŽU-ëè‡h®¢Uy=’È, uµ†§cÒ5´éùQÁ}XmwæÈ9EÐ^}NäÜ€?œt½©à åOú+Ø¡pËð÷šÿx%éí Ä^¦×!µ¼UöYÆ$PÌ¥ºNÐMÿÏKÿ[7Éô€¢…Ê·m‡Ž‹¥éìÿfÜ~›‰w—!3± õŒ)AÛ Ô÷m¨Ð¡½$¡f 5—LýŠÇOCCò‘ÊÚиdm°µÇš¹JWÎ;¬@‹éT?ÖÓ¹¦ÅٓЦÒ]}O Úü÷ÅVŸdo.¢Ê8{ÿå¨VE¿ìë_…«5¸†SqßÁxá¼9ˆ×<šŽ£Ž`"Ù©NAÔ}PtÎØ ÷³û§p¿§DýÚÚËhð^=?1² ,fÒÖ£1̹ºÊ!4i mZ©ºƒ¦ž]½rê]12'®¢ù¸–ÉíQ-´(iQùTG–Ÿé|’“^£ÕÓ~îe´¾é;ñ.çÚ¸gŸºSCð5O®S¡ h÷”Ofbê5Ú'Ò+ðЇ‡àBòøktÜ#ñ*·TH %”¤®yùý‰ë Pû&"dºê-{ø"R¡QT'ÛRš>ÐT“…á*"»ëк¾>–ºwÚÖO®gKÿãõ|˜÷8¶!ýŽºéqƒÝ0Xº>dinÃ×f·ýüíaôÀýWuJa|oq®‘Ô#˜´ýqŠšÅ¦ß}Y×ð†Y’ÅSÓ-ð+xŒºÇ> öÐ_–\< ‹qÓC)aÙ,™Åýƒ ¬îl ¶„µCµii¿¼a#@,hä‡+l-»Ó“ÖÀ΃tQO©:$Ô~è}+I^œm°ºŒ»è˜ïˆ­ YLh^XŒ R\¦ôˆß%ŠT·Y9öºî Mߥ†ØÄN¤–o{àF'2_­\{ï€ÌÇî­²ŸCV^'y†HdÛ~upI…9ÖdG/rK] t~«†¼9‡-S–Ÿ¢@­Äõ¯É(”¥Ô­ª»«e¶ïkÝ@1¦Oå ¥r(ñf&òœå[”>Ø“¥ö;eÕHß2m |i?O?*¦zU8))âÞ¬â{¶â¨Òà’[øç1ªÓÝ.7˜)GÍ‘‰#R]î]æFíùKùšº=¨û´§3î4î—.‘Ì뿈ú#F2:¬bhGIz ÏùÇG_&ô7‘]G3dãѤëk@ôÄs4 ñ¿{‘ä7š«²ê¥ËÓ£…Äé®â[OÑrwá]K‘´’š‰î &AkmìDWc´9-ûã·Ú† Ô°«¿E»E¡þÆi<|ìö¶ÓfQoËÓA9•üù|*B>kôÊøRöW’nHô$hRõ.×/í±„¤ öË÷¦éÿÇÃ+ºÛ±®íçY êmØÛ‹$Á^|íÀfì¿Û9,r2O‹•µ²€oƒ\$G}±;\Y`j ÿ¨?1℆âI£O³¡±y!_˜ã4 5ÝJüœ -$'ÔžvìV²§²Á ]ÐÚõnÉCþ´‰I0zœ1#ø]`eL5ÁïÄ„Ãy”SðÝæ§ýÐfxƒc—¡ïŠ·]„v“hI_â꿜å…Ë„ÞvÃ>2¨:­Vö•@´Ð·n»@·UM­³;ôÄç‡;-@ŸDNmʧDèOªˆçÚ/ƒ¼Ç¾ò¦éÂàlºk¸o3 µGŠÕ]¾ÃËìÙÖaT]ÎäÇ5F+ùöH2&¼ŽÓïz{ ¦îЭùÍ?‡Ÿu¥”¯fÂÜ© 6N³˜›Ú/í‹"Ãv>Vª°ÔL¶ºðVâíÏ~ö~gw ð')ÀúÆÇ‰sýg`ë¶ô+ѾG°#qéÒó„HLtÝY¿Ù I>æª7aÀ]g]”e‘üìàšwoÒ·v5£ñ=Rçîcu|t\¬“ñNÈT©´ý,™T ’]îÞA昲Áld•ЈU(ŸB¶ºd·ãµœÈÈOWk¹¾‡Û9L$!¯D¬H× ä/KõÐoGÁJs»+UßPX5ÀºQ‰ wg4³xxEM^ÍݱÉDqÆôwóÔ(ñç`cÀ­O(ÍOKY÷øÄ|rd¹…òB±9Y‰¨6-Æf•Ž\õÉSÞ…ÊTOß<'è_%#ÉwÕ=T{%± îÍZ!UËÜÏ<XúDõë]bÓ–Ñ ðž#Oº þ††äÛshÌž ñ¦eM:s/*;£©¯ŒÑGÆ·hÎE^ïÝŸ€æ¿ÓðjÎu´è«OE."Bnüäµ/„­*ôæÕ¹qßô [´é~”¶e7‹¶›¢#õÓŒh¿§¤Ü=ê¾s,L>èÐv®ÄG­,0Kü ›:ºß” Ä€aç AV¤›—ñ¤>%1l-ã$ô¶]¯Ï¶9ClX¯Ïò—!úná™ÆVøllÂXòxžà_äK k4¸MÖCŸÊ]g;bþÍýZªB¿;<Ö×^íGЩ]ÑÝ‹ÿŒxq£ûdÌû¾p± è;/dÝ ¾~JŒûZò÷Üðƒã%Ç!g;â äNÍW=2ƒ¼6«v6È7š¦·Î¼ùÅoØÙX# @EëüŸÇ¡ aœŽ>^ ÏJŒ‘s@CiRL])ï×¹zçØÿù›á<ùK7”Ùʼ_åïŸ g‚ŠŸYã×y¨àû­©‹G× ZScxéân¨µ/SzÄõþ6ß›ÛáÇø…ÚïW"¡é`Ž£õCShn9ð·@k`õÃ{ÙiÐîJýØzsø‡¨‡Ýàž(Ý~èëzUú…ò ÞNMˆ[? Ã’ÚÔBfÌ0²xžSã Œõªî°—~„IbÅ]×'¶`Zo²ôÈå1˜IU ø`× ¿H½›’ƒùåÚf³4X¼ý8Ð)i,‹iª+ÉÃ*}‘'ãX“R#㪉†soå‹ía«"˜ƒÇuvL³ê:=É‘˜ÄÇýÙç$q}çC½Ž¤óS­í.’Hö˜"X¤")LÎÇÝ4sG*Û™ž….¤I·óŽJUAz'sªÇÈÓßúà ;2ðwX{j„¬$¥]BdÈÖ§nŸ’¿Š=ʯƙkSéõÑs‡÷NµwXŸ. <Ц*A¡çÅ+Ïóoàîl}æÏ~¢h;Ù„ûÑa”0Õz$_‡RëºRMvãž}ʨŽ”ÿà»j¾ã‡ŠÞd¼œÎá^¶¦Í6oT &²}¿yÕúWÚO2 æ}˹!„—Æ'ó:%Q{ØL|¬Ø uo—œTÙÆý÷(×e£P¿‹½ÌÔ™ brb2/¡¡+Orœ ¡¿ímíÞâKE“Õr:žc«hZ›Rèúw]IŸþ=eJ´pœ}ªE‚–ç;¦7•O¢Õ“šó_Š¢uþUYÛŒh´%åìگ݂v'¯ü`æZFûQ»“_Ÿ¤¢Ãº¶º_Hô„,ÚW6Êq¦nAþemÊ\“¼’´ü^¥&âÇÜuÈKÅÕÄr¦Zë›Wsð%dê…°#DQÜ §í€ðœ¸ÛµúšÿfìagÙnuÈèÐŽzß|,Eµò¡|.¶E—â Ôˆ%ÌY$Õ@ƒãÂó7d 1ý¥ìAb hŠ$ž›ñ„欖Ãí£MÐåH-±Z¯¼¤å<­EÌžç÷BëÏ}$~¯U µ÷÷Cµ:žº´í–±-ù>m¬Nô9”Ö™=t°.ÖÇ^‡ŽÉ!²´Й|ÕïcL6tÅŸy› ÝÕÑßäž>†^á‹nJÍÐáÿDdÀø*§~™,À ñsG+Â0ÄÄR•C“V>Vax®þš¬ ŒòIÜT«†±€™÷»=Ø`BeuëÆ£˜’éœ=©Ð ?/=âa5„Ù_.ܲ»aÞ»“K2qÍ…Ë›ôº •˜â™çih±^%9xj -W÷¸Õ=½‰V;†ÏUx£ ÇÚ¬ü² ÚêØo{½A»;âÉ*ÊhßtÚqçè~t€+ ”t¬~ÇañŒÜxõŠk6ÎNæ;ïƒâ>±Ë·„ô K}ö£÷‹ýÊê"ñ܇âdššZúàË&‘$=E(D-~¥ø¸GöïÝâ) ºÚÑ”¦µ¾atEl–½ðIÕìØ(ÿä¿Á^ä¿SHð7óú´ßË' »e(g#RËÏ?ÿÀq3¬g8!ku÷o}×s×™x©MçÀ×yЩ齥×›¤¹¿rƒÜÏöÉD.Ë÷"v@̇ôïz“ ԉﵱŠçÒßu'2oý]w2`ìH…{¬Rt*òkš‘hÞ4«oºð ìÿüͬùè(;yüq+¡•‡ìŸ4æ!þ»ŽÚlDƾŸ×±ç®h„jf ¹ûÇÕ –oüõÉÝÚP¯y«ñ*éüðµÖqÐ$…&êQ±K­—¡ù~Þ‡VÕâVjסˆ'!Uçã?Q÷ÛPÿIAè³lŽ’g‚Aµ3׉#½`¨÷5Û7Æ: u䥓0v?eÿˆCL$¼ýÕ£üéùɲ)T4xeøþA8î5º q?U΄-]YwBµÔKck=¨éxÏ.­Øá²Êi]5Ôn•°¯u]c¶‚)†p?‹ö¤ê^‚GcÐ êėʶf4¼—ž¸CèoúѶú´_ñKã“‚îL7š¹ÊûÞ£ùs ´xéîfµu-Óm£ô7Ðj2VîÚ˜?Ú¨”Çý&"ô6Jªœ§¾h/QÔJ·a‰‡ÛŸ~ Ð%è.õÓéŸeáHDf«M¾GJ7n?x3Oø=§^éªiýÇ+I“M«‹Wʆä{¹üp ŠüÆYöA\îšÜ™(ˆ©VÐ¯Ü ŸoÚå•Òþû^à¡Ù‹úóˈ'×­jÈèܘNÚ[ßD.=¾Áå7ÈM)B ©Ãgn&ohPÌ¿ {7_ËD\úÉMns”Õ¡ùœÞ-áEhÑ“ž3/$ô¸Ç"Õ/·¡Õnk æ'´¾‚ãŽÊ„9ðvA 5ÕÂçi#´n ¿¿Hè?mï)%¬×R ý<×݉Ív蹂¦a#è”ì=wö{ tQU°¬<næ…¼Ei:èAŸOo²?Aoð>±ïkÐÏ}ü@5 øWIVØäÁàÍìº=$0´÷š`ìÜuÚ £Þ«VÓV¶Üa”XèK$ŸŒ¹h>/úæãËϦ§o‚ÉžÏÃzîð“¶à QVÌz‰ÇñÒºÃ<õ›(Ûk›°paU§}A7M^¯†å’š#¿luaµÀFÊ ^Öf‚ŽÑ;ïÀ¦ƒÈ¦Ã¦,ü™k;ØçîDNLµYIxáò1jf$- ”ÏžG²Ü³_2"Í‘¢œ÷Ìc¤¡ì õÌCZ1bïSVÇ‘>l‘Ó"î92F]Úì­ÿ‚Ì”ªrÍ}2Èr‹.“™hÙ3þºaìeƒAíOó×C7³ª^äÑS^a—E¾–‹:§(©PШÙBä• å©Q´ÖíÂÝ{÷r^‹y‹"U¢ßŸöp×ÄCHüž¶ù%ÿføD&³Îêm‚/f=äÐûßúåôk3údç@„Udœ°cªòƒ¬‹W/ïÿ]gr0^%ùo{:+9nn«“ שø=‘Fäd<0µy…9Uo\Ú _é˜{¡°Æßu'響ÿ»î$í1M+,ÞñúÙx¾¥…GÅ1C±L豓þ¢ÿço6™9áNNPæ*~D¡â ”GŠŸÉ|·ó¹æûÖà»ýG=Sé/P5ÙâÍbo5#”Ûo‹Ü nŠÑ˜WY~ðkeÏ’Ÿ„Æz†…GÂ/¡y¯^GÑ¡»ÐÒ~¶J$O Úd~Ðúæ¢næ• ¥ËÐÛ.7a—ãZ>éXaèå¨CóC1:Ð%³Ƥަ,„Ío=ó€Ÿ0ê÷[´ã+ÌP—ŒÍ»€¹ Ü`j˜.y´›ZEʹ¬ä¾ÀR‹_žÏ¬”YØÄl²ÀïÆ„)Âõï'¯sÙ°u–1EÅØ¶ y>2ßD¢ïD‡â–vd¯ÍMF$ͦ:ü°9ÉŒºœäv"• ÷8#RQ‡žºøÇiœ¤:C:¦ÛúÊqBfݳ…Qú#3c_ò,)²T½l!YÔG¶ 'ž߇ÃW™\Ý÷6r…¤<<Æryiâï&§!ÿúå¹m濼eÏ…²1Ü­8ôSªEÛe®¢xéï§¥³(åÀô"tE÷ìù^\y"åUœ{T*Q‘…&#¹÷²»(£Ê^ 8øÛÕî­6YÆ ¦RJqeØ Â!!ñàDÔ®d&ÖÈWCÝÏ_¼é¬ÀýD߯ý`Eýò”…³‹¤hIÛ…4hx[5;õ{4Û^kòßü†‡äûÈÉm«ÑLrùô‚Ñ8šG^1€?hQº^ÈW°„–ë´¥‡lÐÚàÁò~êf´IçàKÐp@;­ß2­òh?ËÐEÕŽU…Óg7÷¡Sçñ’< Ø!=”ÅjwJÝEXCF 7EðüL¯Ó?^IjÄ£Sy>Btç¶½•b$Äõ>kƒØ†¯O5³% zÅó’‚ôßýnm^…ƒÿ[§ü%õÛ¿ùåRgk•~7d¼>¹ÍUÁð¿õÄi7ùM_ݱ½éïz`»ák{ êáÂMht«a}ÓºMêèÝooB3oFÈ"NhÚjŠL–à{û<ð=´ÌO\»²­nj‹zœ!08i—Cëµs+Í®+ÐÚØÎa& mOµ%Þ½³€vÏ–îµ^è8s1%’W:]_,Ôö›A×)ŽÏ—^C÷mb&¢’Гåèý{8úXéz ½¡ÿê.†ã¹0ð§ú\°ó}ŒŠÚ==CvížI"a˜&ûÖ$ß +Ø8§ÂÈw›>ŒÉ=½ïD¹ ãé‚]G.OÀäÓË™×a:1÷é¸ÝU˜%™sç›.ƒ_w›b; ò`ÁG•D›ÝýÕ`ùÐ}»wšá°Š,)½Ѱv*èÓ`˜1lTE¤^{J ,©TtCäs4_U‰DA:–CÛ+ÏQèÖ³!;N?^>åJ‘]€"ÈJœý¢˜ÎçÈ[ov£„ð5ûÑ<‚¿©¥º$ª£Ì[g2§x.”³å»¬8Å‹ šT»#¯´ âðvëù߸׸A`è5ªðº]§éVCÕ™ë«ìæOPƒíÁáú¯PË-v_±Âú3½­tSÔî2¼U¢¼…º‡çˆ³Îútµb“w<õ›˜k £AسRW¤$ø›(ÅÆ¼S‰ŸœÜT@“a*yb4 Ýý®ý#š«àŸ™Ž:´aä´PGK…B>á)´2÷ï¥Õÿíˆ[䄘´Øà‘¬møÜyùþæØDL»'ß"oúß{7ès‡OK·öGëzB­áÆ 3<'ö½ŸÁßÞ~rÐ0†x¹7Oö@ª™¬p6#=dð–Xy¿‡¬³« }ÉŸþ®3áäñ†¯ÆÒ <>#Õ­‚¡Ë.q‡ˆ!øÆÊ¦Uÿßõ&¢éÙÛ7SùJ’ò»]ü@.ùÜ÷Ë "¡àkÜþ·Ygá›ï‹û»?h@±`ב·þÏß?0¹…@Ù­…—–¿¡<–j‚Ÿq*ºé… Í®À÷ ²÷^Ý…ª¢°ªÏ¦Ç &Vú|…c$Ô½ª¨œEþŒ‡ÇN_zŒB Qyq7Q£WÎMCÝ ¦kjPü¶¹ï`íU”¢öì`7LB™6*ÞÉp”'««‹¿ ý±õô¨4ÀV630Œ*D{„VQÍÊ™"®z5iú%{îžF¡¥¢e·Eí¯K—ÆÔ’P×öªàó¸XÔÛ(ŽÉ0Fý<ïÇ×5×:Ìû«‡†÷+ò2DÑøÌ“öé ‚o§í'ËgBǼ…=:™¤xd§`òC üÙœ›æµþ %?kŸ¿n‡œ§vfGÿñRY¶kêžÿã)Äå.‰¾xé!Z¨83?Dé7!L«Z6UoäߌYS`ÝLø÷yÿñþãTäÐÆw@ý ™D¸‡?4Zœy”û­šHhÞfU@SãîÂ|ºhö©O&ã‹øÇ5iyÒ”"xuZ†%³ùf¡e'äÉw C‚ßù^à¦íùÇ7h»ã)Ñ®°økòOòUç¦ìr+tŸWL² †î Æ3 v¹Ð+­âäDÿúž÷¿šSÜZš¿¨³0¨2f“ƒ]´oÅ–ÁÐ-ÕÆ4î\„á>ëë³0RÍJâQa£Û]^kV'`üJÖ÷Æãç`R]½Žx¥¦M²Ÿ×®“ÃÌó¬}Õ,07íMEüù6ÌgPËìyÉDȇßB6ka©KËBSð¬”4+»~‚ßýAÝé`C•ÿTg+leí‘Õ¼;WÜD8ØPÈçN;’2†ïñOG2ªyÇ:¤ »ØyÓ™©h[cBß#⣠Ѥ{Í·õý.22½5<ÌÓˆLçŠWn#sý`Ñ¢V²Zçzï~†ìlZK®¬ÈÉqñÙþxä>RVq9t/òŽHÐ?:¥…¡±ïÒ3ÂQHk ¯ëÔ.Î|ÿýcåŠèË8m¿i@ѭИx¶qïòS úŒ’3Zoùí|PF?X‚¢×å(høY¨Pål½·°*æíy#'Š{íî Å\ãEåiJÞ„k‚¨š°zKGÕûöRßô«F-͉r_z/„ZÆìÑø'¨ýݵ˞ÎuM×#®4àþ]fxܦõ[2›OÒ£AÄà~!1N4tp YýywÅìN¥ÔG“±ÝmüO†ÑôËõ]ښ⟜‚¶{h±ïͪãhyèëûr“a´ºÚçèeÓ†Öɵ+=ú†h»Kråc} Ú]«Y|ñS졻‰֑/Ð)ˆxh*Éc88+î}C÷yR»þý?AËõ¦€ÿtñè?½üÇ+ùô¯ä?]}:}ØI.ᅵþFõÄýßücòçä?½þ§ãôvéwò_R KØ…\²þ+dß7›xÞÙk+uË/þqMþ»üÇWùÿðMx:/ Ü­þÿpNþã™üÇ1ùçoǼÎëDõAÙ£4²™A'(Oš9ýèY3T´J?—r™øÇOªz‘Miÿ5¨¹t¨}åw ÔíW×výp lé"™?‰ýßýá?Î+%Õ÷ÂÊÿã™ü¿¢<“æ’à˜èoâˆgÒ´ƒÁÕÇjom6`8’ßÖ•¯Fo²± Áx|¯”z7L® IÏi?ùÇšýe`î#}æ_躗wÂBíNa:,ù\iDÞbX¹Qß6ö~OYæªÃú£ÇŠ·4`‹ú¡…èؾZ~þpâ/$zæ#^µ_‰¯ìšGÒ[ýªû#]ŸºÞ3$¯XòÎ÷NBÊofs“d¾HC¶½÷maÒ}rž½nn€ŒÚ/©sâÉ©;oð”Y²¼pªíOG6»®-µÈ¡ô¢}ˆ¹@úæñÂä |*rÔGù/}jYÚAÁ1¥-Û:+nȵP]ˆ"1n^í©(®ws;.%óüCåQÆÛÈsâ×”‹¿æ£Î« ñ{_Îë£RÜÖ×/v¡rýê%^TiçôÕÙ‡£´¯ç;¨W§½}N¡v\k÷Ël!Ô5´KpóêÍùš|¾\v»ü š÷±?ËÐó†æéÆ{Â&¢Ð¢ai±O7 ZîÐ+˜ô@Ëñ§TùÐ’*tü`É ´²ê™*(Bkc±ò> h«åúå’¶ í^F—õácPÿ í•KÐ9ò ÂÊ/º)öžÿè9x\‘Ûr zãI/LU…~1UÒWÅ0àßÂvŠ~]ÏOz¬üw¤°Þ¦ †jzäÎe†Áð{[Úoê0òVÕá¡Øf®<ª<¨qaŽ]¾!qܾlømÈp÷ûN|ÓÜä/®á‚ô/‚B:Ò?þq€b.°S˜S݇è³Ö$f¾× ò›„ôu’[¾£¡WºuæÏ%9{ƒÿ÷ZXI¹L•WK探ìÛ»aE§Pfx}~;-­œº©ëÏÚË-.æÁf•OÞcµTØVœþ-?ˆDdâW?„!q»ó§ $µŸd/»ÍŽ»& R¹.Û#yÈÄzÐî@¤|½vîrÀ^¤n’nEº3'šC×Qø¾Ï))dÊO’-£„,W]#ôì‘M— rH+=3þŒ\ºÏ%7¢T'¶²¨Æ‰ù('öEÁE¾Èãµ(Ü“™ÀÁæŒ"+\ü.— P\¿ZaÞA%k6x}y›Pæ%ñvmãʸ2¥mîE…Ô®ï ¢RÒæ9N•vTnÚ3ÓÀšjâóÌ:’ƨ14m4±¡‡ûvÞÐ¼Ú‡Ú /ªPWgôúŒÐkÔû|éùÔÏP±;5ì‹1†~Õõhøéç…ˆâ 4Ö;g¾±‰‡"¯Ù™©_C³6#£ß2;"v”Õ1«Éóh?¸x'¥5 &[‡t‹ñˆh—•Ás/<™]¡róliüèd>÷‰'ûƒ|µã¾wŠÒ¹~ß³¿VIËBù§ýþ·nyAšb™ oG•tȹ›˜Ç £+ãA½'þÇy­” &äJÇò¡3Öÿftò³Ú6HW¸=$Øýò;·Ü]€2û¨·¦žÖPå|úãF Ô96_8üg~ð8*FMø[\\™~M Òâ?NCÓúÑsÇÎÙBs”X¢hÁçš—˜½ …k1ñ^·´ÐË>5;-¢Å‡o\߆OÕ‡áæк›RçóŒ3´ÑÇPº_&ƒ¶ƒ‹ç•A•!ûíirè$`Xϱƒ.qûS—ʪ ûÔ ŠÎ‚Ðó]Bìhôi×í©„þ¤ž{öÙ×a¢úñåýe0øíeü”ÅKò4uS=­ Ãf¯,+ÈÀˆ¹„)k«Œ¾¹ZÀ1ãô6Y~Ga¢£é÷q§V˜s–è‘$†.ßC d}0w4È£a) 昿›iÜ _­´zï4Ã’±jò( ¬0%ŸÒ=y~3hk«~þë†ë‚]{`3›këS l;˘¾0A¢tÃêpIN6L^¿ë‰»´NÔ=Cr2®Õ=HÉ~•QÚ;©e ¿¤]øƒ´·^2¦¼‚ôkŸO—S^FÆê¬©ÛMÈ,¬·QÖvYÂ;®iXs#›ý§‚ŸÛ­ÈaúJ§DÛ ¹|(¨8Ågö+GE:ò¿ùýáþXLk#§¢!EaÉ¢3i?pwá{ƒ…(z=ûꃰF· uSÜÍ’çÕ¾LqBéRVªƒ[({ãu3×þ”/µÊbX@ÅcÕ|Gnã^¢áü¥TTÝ(ËêCUwAµ±TÿØóž,15WOpùä øñ?n­âAíÏ.¦PY¢®$(ÛÛBÔëz¹œBòõ£cø¾I£Á-‘†ÛCh¨}׸ÃàooN«¢ÉöѺã,ëh:QÙ\φæ×©zoÏôõ4í»àöQ´ÌP ÐºcŠV î%^ûÖÑÆ€“h‹ë4Úf[i]ÏC{_öšºxø§{È‹AtüêÎøS©Ä™Ùå=$Ç£qNÌzxŒrü–JÍXÍðé(ƒBuáÊTÒ“Nâ&¿EbòÝ·xç‡#D•%È™ß(€HrÖo¥ùÿ{ï&|5>•»Iß»fÁs$fI•TÄñ6VI>‚®Å5I4ï° !Í”)Eø|Ó¶œúê=ˆýSʰ'f¤\|`vçÞ/H÷d¨]gñø»Ï›òНë_.ìÔ‹“Ï =Îü^‹Q|Eÿ>?MBεzHy¨çï¾8e1ñiÈu*IÈ~¹Íç®\â=y™|ŒxÏüÝÞoº‹òãhîÕ‘æCáY©Ó'¤öC‘ø¡´€F(Nf¢5Y»%­z¬ìú¯¡tÃs0þâ"”«iÖ'–S@Ž* 3×3P¹q¹\ô>T¹óÄp…øCM©óœ‹Ô™íè·wW@ƒ—K}Ž 4^%ƒ¦o^rWZôD 6z  µëéÝuYhoÝ}%þ1t‘v÷T×kCϧ²óAåеòînG€Á¬Ä‹ºß‹aØòîc­&*e«ñswqÑå#±î0i[zªv¦“Õ¨xµ-`VÆÔô:Û$üê ªî˜ö……KGuªËÁ’௹°B“™âÝ!IÎ ÍÁVï®ëCsV‡xFÓh~wãé‹€%ÂßšÇÈ0@s¯tÃ3h¹fnJ]ýZ-…Jq@›gÐi‘uhW4>Ièq’wÂfH ÓÀûdÈz#tùæö½ï1îÑCƒ«üÐëàÿ(á÷5è«™5q¦…07ÿ!ú]4ÉÁhIG SÖyÜ6i‚–t÷Ñžp=úü߆ŒõE':;ÊÁÄ~:æ€#0•–¶:\¼?&ÛÈ£taŽ[2>+¸æÝkê\óaÁç“¿B± ,íR>’sÕ–sCnKëŽÀê—׋da­åô;Ù°©òøl•÷üi{·oÿá3HtºO†Ýë’ÐUÒ­9"iÛ§«Ñì7,¡I#“µ)‚µË~ýFªÄhw¯­1¤™7ʦœ@ú.uómÈ蕦ྥLu×e":åÀ„ÀÇ‹ÇuÃÌ{òÀ^dŸÞ²óìr1?úÒnÃ<îgVf‘Ÿ>Œó‰o" ^4Kï'E¡Q«Fvq}ÜíU«u¾©E•JíÝOV 8›ô+£º6””2lSønB8+‰Ã½É?ð‰R_ršž‚Ú«/Öþ„Žç>Üu>N>qȹþìï>ïo%×Lá3/¾ZІذ¸3 etB~íêª#¤O1´…Ìw{Ÿ¼vªƒ¬æÎó/åüíq½º±Ù=«ô\ýæ6|ÍRf§½Ý9·U_’;­CÎb±DçÈ=ûܘ㠷_–jà|6äYµ {˜„|×dQ³…‚Å{TeÞYð-z€Š$㟹^U0ê%þ_¦ˆÞÍBiFo•Ò>(ûsâºC…ýûëÇÖÄ¡²øã‘jb¨:æ~ùyÕG¨1ÜŠœ~{êl†>Ùrƒ†gÔì´)Ðx;ÀûæX84µ° Üø¬-™ïßž§€Ö9 eÖÉqhï]/N+ ƒÎ?«WÞS°BÏ}àz›ýzŸ¦/(Àà;xÈMô†¥R…vKEÂÈH´ZWpŒŸ!ô¶I²»ˆW 0m™4O–È35Mõn4{à×õÅs lOêtaq^¡¡²x–ÛåÿÇÃê•Æ7"%XßõKë¥Y>lê\ 2TÙµÔÊHêAšØ!ñÿ9YŠH$e=ý¨gÖwù´u•-!¹Qã’ÛE¤Ô2t¾ý©=Ÿú.RŠ!íæågZŽÈPסP’=ŽL·_ÕÞçB@#"ã½ÈÆý"¹¸ürp߈æB.ãCO¤ÜŽ"O5®†³L æ)çTJ¢™Ÿóº‘‡Â+ æê‰‘(ʰí¹'ÈÅS†µäFÉŸ²ì¸YP&ÓúÍ›g(7xjïç\qTø¶;æÜÃ6TúÊ˼ûñ-Tî|®èa7ƒj²"dßÖO£F_t^‡7µìKŸAí—S±Úœ¨«øg'÷Jê5i•¼PDý\ÆïRÁ)hÃ4ÿZã2VpWx¼ŠFã¡„Œ}hÊäAIÃ&æªÙW$B>£Å]¿4÷uw´Úïç‚Ö'ÄR_¿àBÛ]|0Y-vU£Ý£OÓðp–Œþhr:ÖßÏ u9ô¸"j»ÐŤâÎI†-ب–K\ôh…¢OT^<ÍÛÕR™£ ©“ RïE ¹òÉM¥yˆm( /– ô6îI»>.ˆZÌuY¼\ ‘/8oò¾pé'NRÙürΑùiù¿uêí[Ç¥HãIÍw1!ä>®9V:(傽Šj„Üv§ø ïg¨é°Ifydõ “;?¤Ã4yÞnh|­èóö#4¹-ˆfÑ@3{ ‰Ì Zh6nU}“ÎÍù‘cß; ™·øiãæ=hfÜ6h„fmßw^HAó÷@·˜hy÷M#p\ZOLêg6Góôºuh7é˜= gÂOÔÉuBgØX†€'t»­÷>¿=9Õ¹,"Ð;;sX›,ú/Ñ””üxâá.lÙ»Ü\íC¥ï•ßòÁp‡ÖÇÌz•r¿p·÷Œ%®|V³¯„‰ëç…KËÆ`êYù´ýüŒ1sÚÖý³­9ƒ!zý0Oñ~'‘É 'úwÂb¡íófX>öô«¬âXtÁ™ XsjéÝýî!ld¯¶nN Óméõ7¾HÄãÆ°”™ŽÄÙ…òEn€¤—;8 _è#™Ú'G·­kH!Èà•s©¤üQ׿iN‰äWEº~¶.-d”Lô²_ÿŒL׿(¿»,Ì3«Õk~±ÈB¬5êÿÙd­íkFÎ(þƒŸ_s ÷ZsS¬˜ò=9ðñÖ÷T«±PK#A¡ÐI ÉÇÝ*D /Æ]Pd¾ŽIæ¡XKNÚ‰ëoPbê3)1…:JÃóŸlcñ¸g’ëëõç(ï¦}föÏ[T¤:ùåYù*Å«žhºº•­fÏW9DUù”›=4;¨n{_( õ>j¦ö_¸³øaŸŒCùX2jß %"'S@]RÁXãÜDÔKnŒÛL‘GýóÏqDSN²[mqh(æ§¡Ì•ào¾³µuxˆ#¸,:”Í$8"×­ y";îÊB‹Ž~ßÍ%'´âŒ¿‘™’‹Ö®Ôâ^b|h3p’–wö>!?z߈ÇÃtª†Ÿ©Ï¢Ã r~tJµ£ÔQÎ9!õÏœ³Ñåê§)Oâ±PåË£‡`åñ¥+GA¾ÒUö×Ö 5—ÅÜ-ÅàˆÐÛ.+Ñú×á'–Ç !‚½dÂ\O´êjK¿@ˆ —„eL)¡¯%èI7ÕC`¼vê"øÜÙуܓ*üX§…øüß皇s]‰þò™‹³f!9Õ<âÌùïεLRrWýï~Tê,U‰¿ç ü|¹q›ÐãTÒÉc ù¶KSË­¾Ú±Ç0&5zœõäøkÊ¿çé´óÊ@Îögºk”óëaôÆ#—ì/‡ýtPPÀßóu–½¬À»#i÷1ø&âêâñ¨Š{È4A‰máôøA(½¤fý1”•>ÛÛ´µ*äN–{܀ʢ·—ßÓA•Y­ÊÎr4Ô€ÊøxÕ¨s¬0ÞÇÏ !¯©[¡ñùÁÆOÐ4‘.®ln-Wõ\÷¬}‡6’ŠiùaÐ>öãÏ¥Þlè\c&=®==gsš¿¼ˆ†~ÖkÖÊ·D`У1lAý! “ æQùiÁHÚÝ_Te0!£.ºB ™®Œ}vÇ`ê÷îö_S0sÎÆä"‘üb£¯2¶†úoS†­`±˜owh¤,‡}ΠV%‚™ôד†µ’[žÉ:š°Iâʺǭþ¸1{T…DÔŠ{ï½Ê@⫬9š×dQ´ø¬¨îòà;›;WŒäB®*œvHɸÐE"© O,ž¾n†´‘Ïh‘! (àÑ9dröã>ˆ,ü‰üÎå™ÈF.xLðÜr0Ky=ijE.³dµR»eäéò~Mý«ùkÿ¨ÉÜE!Îî·Èq7ILdÍšŠò¹‰²*P£¸«„mÅ…)”Ü<Èr40e¾KÜðB¹Å£•¼B¨P^•4I™‚Jù‰§ãLQ¹WÓÆÀë!ª)ìÛ¹=ä=÷¯6Ô=Ä}}g®Å–•£ö#ýYMÎ"Ô•~Z.ÈzÃ3"޳¥¨Ÿÿg‡vM ŠWp.~CÃÎô«GÖ7ÑdWµÉ¨ó4=¸ärŽ”Í‘eG`Ž/%Ÿ„¢• Ë©kÁhèN÷B[m3Iþ rE{‰EÏ×è `(y—g´â}ÔRÐùåï­†ŸOÐåéÍ罎ÀúÖݾ/[ƒðíÅéG¼w,!Kø\¼çùNH5Û+Éãð¿sK%‚bàËÈ‹_2Ê!úÃÉÚ]^û!JåÉÎOÎã1}=í\AA A¦V!(êkŒ4ïíósñO›Ké¬útçãÏÔëÃîéÌ%©Ûæâ RPi8É'é-Ô°q˜¹oA]‡—mZ¿ 4l³ig@£n¶‚ÑÂ4Éj\臦FÉ=rŤдeÝ•z¯šfÃù9¾ù@SÕ3–Ó|ø Iß+®Yåf“È ™kðt§4wY%Dj@Kà×iç]–Ðêgí³|¸Ú®,9ÎXÙCû£òã›§¡£é ˉhèâßÒ)ÜÝ/Fi*e[¡—n¹B)Iú‚k3<€±Ñ›OîÀ O¬Jø-º¥ûu¶ç< UùM{ÃÈÊቡoñ0æ­Älë úÙjW_‚)£Ã¯æ7àçŬѕ!Z˜}yÝ÷ç*üÊõ8Çq"X÷ôê9ÁâuùücV`™Ê3ñ#¬tªÙß©†ßã:êU°¡zJGÎʶÊÏp'ׇÀN8ÕDÄÁߎfZL !)%ã·vrVÜUqÎ[n”É£úeï´'!eì5þL¤îÊI.yÒtj=Qý%Ÿ‘!ÃÌ÷Ö72 v6okÜEæ7äv!óȺ/}k°uÙ…Zy !§ræ”ëFä¾³Ï×Õö8ò‘Îq_¦ÍDÒ'³”»Pè°·Ï9f^TKßÜ…"IÝ"¦sÉ(öZ¿É[Ð%b·Bs3ÄQj«Ú±ë,1î wZ}Ípåf›>õ8… }Š#§ÍPéΘŸ“ T–=ýÍ,p Unð,n§¡úÞö Û³WQó/Ȱ#peè,ß@íKq†i÷Qg^êÜxê}tÛIöõ]Þ(ÒWØ¡áîÕ|ïr½½±?÷¯¿mZ á!õ"ƒÜhvP›2\TÍ¿ó2 ø¢Å¶ÇàÔ¥n´2>#7_u­Sl¼¸eÑVú)S’Ýk´+y%|cY»30Hº £ÎO—’<"/tÝ^² jë=v¯¥G—<_ßðØdïÄ€›,/³òúì‚<ùßn§èA*ëI™åÿ8@Q*Fµ´G!²-5ÛÊ.Ÿ„5~$½ ¡o‡ï%ˆrã¬X>Þ„¹w ¦;’áÃË#·ol8x©£HÿïFýþo?AÀ\ñÿöçxm5@²¥Š‘ã€âÿ8Ë¢Y¼©Êñ¬“ɲŽ(] ¨¸ö·Ç½:Dèqw¦ñ¬d¯­©°ö5À׸«º•ßÙ!G€sŠîèä¼-êõÜQƒ\ê3|ÔÖ=ÓÇuBÞ礈ˆP@!kî'ô ?wl€¢L¿ûêžg¡„Èíu›Êßsr¢b+‹š¡ìQúäÉ@{¨ Wb~Dñ*#Åõ¬«  „wÜSÿž“#5¼UuÇbÍcÍ_¾=å`64 ÄX·ôozyñ´¬Ìa|Vñû°?†µ;™õŠù°Q|þÑI¿fø£tÿq‹v ì´^9ZÃ‡ÄæÁ¾†n‘äÇèÚò‘Üu(w3ˆËÉÖrgY‹t‘b,ÈêqÞRsï;Ö=ꉴ/o2êu"ƒõ—_&Ÿ=‘ ¯ŸÕ‰`@’¢ÅBØ‹¬ é,> ÞÈAÕt\i;¹¬é'à òLåî¹V[‚ü#ïýÌQH´\#àm<îfˆXqÒEQ©‘¦ï(~ç ÝW^O”¢9ÎhÍaƒ2]ƒì޶*(O²Gº&ÿ*Ô^Ê:ýô)*kåËv ¢òÀ´'w° ªíµ[תöE®cR•gq_3i {kj߉T[8º"ræ Íê!KÔÿöSå—u/TwW‡%0 áŒ‘€Áqs4_™c»›ƒ¦>Ws*ç»ÑÜï{NÛgu´QÓãªF«#ïãb2œÑz¥èü“E[´M&c»öOˆè›O»£Ã“Ót\ÿre~ÈÑmçö„PmÙ9_Ϙul{·Ÿ‰äCýàÑkÌ'ŸÃq÷r’èkÐ8í;ÈMTMOîÚ+ñn@SbÛ­z‹XµßGÃ,Ih’¶|fÓ [Z*ŠÆzÐDIyÖ©vš.J¸ã1B¿k¿øÍÙšë½>Lè“-Iöf<­ õ }ÍëG$Ðöeò¸Tð´wïsnúÒ šùI-¹]q ‡ZŒîCÏž? âÖµÐ[ó˜1fýô?½ó-Ýg eyf½0 #ÅÚ'õÂg`Ìø]ÀŒÕ L°‘˜î–Z)ö$—õÇkðS‰÷âìÝ«0kØarî-=ü:‘×ÜUó½Þwü`QNö¼r9/,¥.ë×g4:Ò!ðûJò‡KVƒ°þµ%éø·«°¥ÙHu’â+ìP)¤8Ù#1e‚å‰]Hatrîö0î²T™­MArÉÄ}#J¤sjoI AjS7µïF„|øù#ýD<52°`ÖŸœAÆZj×3ä-ȬÎΟ¥Š,' úx­­ ;9ïâr|7~ ´TÈM«¤FȼwÞ»X|EÕ»jɤ(ÄÊØùúÑN>ÏÓÁ‡"çÇ©µ2>£˜yóÂÛ”8k«qõ(Jå“Õ…LÛãûp{†ØC(/(£,öSÒˆòbPÉêMÔø|*S2µ·Ø¢ÊR/œ@u©$ž-Ô¼pøÛŸSʸoUC&‹Tµ3ß!f@¾½Ò÷úƒQÏéèAÇ^Ô7|›yõ4ˆ(K†´ÁWòRþFáḟٕä;ò¦$ÄÐììÙ+ã·MÐ|XX„ˆ× -Ei }ò0ZÝÙ=)3$ŠÖsáþ^ôÚh{#•c_IÚsGWPWááÎï[íÑ1“Iâ÷mG<’”:ë}«~ŸÖsR=…ÇHN/Ø’Åàq%¿c·Éaùˆm®B87äî)9}qò$œhȹÿô9î¤ã Ó¿ïÝ(F¬MÚ!lmÓ½ì‘Á·œÖµ?@PK‰èîNEüc­×Ä&½Þå„@ñßgNDBH¼œÁ*×gˆ$^ÿuöÒßsrŽ^®dHZæY2· …´üNõ'ÓÛIIE»ñsèï:ÊÙW—þ×ãJŸCÖªÈGÝ£ÿö¸J.ºjøŠ/Cb¶Dÿ>¯üs÷s äHõ&x¯Ü…œðû1a6Ÿÿžï37¡ yÄ7OO¶KAþ+¿¥QJ(zÃ`/WEâf[\æû 8·ýLÑÃ?P2Hù^ô!”™tÿÞ{Êûˆ]>¾<•~y\äA‰P%sóû¸IÁ_îÃåù%¨;óÌüó±ëÐPLþ”|NãrÝ´h¯@3ãtvj¼´DÛ}Œý ´É[Ÿ)b„ößÞ×ÇéG sÆPj#óô(%k$ù>‚¾lIƒ`TZn K8C:?ÛU/ÃÈ!eÇó¬G`Œ÷$ëçæ(˜`æ¸o=\SÚ Q%¿|ágŒ“ѱéM˜³­¶ÊIƒùTþ€êqwX<ºTozŠ–•^9Z «Â’Â¥Õܰ¦ñf~FD6îœÜþÐ [Kq¥üå`ç ûµ×6$–6±ãE’¤(ŸwɸKÜöÅÍýHö#ùÜÒi¤ÈÓm`ÐODªŸìMf–‘H{øîíp‰ËÈÀ`ÊÌUJÈŸg³ÃG"óxËwž¯YÈÚ§W1EŽÄžFýÒÆÈeåâ(?ò¬¯T ~IFþM™©Ë×´QH1i0d·0îæýd0ûò!ŠªÙÞrVCñçgÊcë)QŠÇ›îà»U”™ù‚ªÏQžFÊã‘45*43ŒÑžB¥òz†LßETù4[jªn‹›i/Q£†¿‘Á}•aù0æŽÚ×¶¯ÔУ.o”ÉìÉ ÔëZ HFý’ÎËMiWÑ ¹HEì„ î ÕÉ×D£‰±ðËá“húu‘I¤?ÍÌ$Šù¡%%»TÜ2ZsÍvÔô¢ Ò|u íHÖv´6Ñ~Š.¶ÚÚ–|ç3VYðˆ¨Ý |dŠGï+“”šÄcd£±L&°vBYh× ÀMð3_ë&dÄ-Uô4’C²F®B­ÿc‚î¢9Nœe†:R‰ë¹þðù×ZÀ‘´`ˆü&½¯÷B8„GˆŽÜêO”i7ÍŠ 9ÒHË çþÍȯd ãS,èáë<ƒ/õ¢*¿éI[Må“-߯ü¸UA¯%Û¡Ör>æäm¨—+î }|~ܽrFcj «Ä‚¡I·í¾Š×"4±å›ò€&Ñs¬·š¡1=øY ¦ 4ºõì9Fd ¶Âk§  ñ›ëݸM.Ç4q;C3‰†ÍH4·;ñé™í‚–l)uµ¼dh­¢=v¸é´ý>·÷åÏmè°|ôÃ,:Ë4^žV„nS²OÜ[.г®oþñÝè«oœ&äÒ¯|7 ^ÂàlΦóyê¡Y·‡‘gbƒÑ÷eaŒ{ìQ¥Ås5=Ñâ|&GˆåˆW`zÝwyŒ¯fwö5׃_ôÄZïÆÆa>º²áaåqX˜”á¢ÞK‡­{ µ`…²ï©ÿ'X]çYaV¢…u5]®÷’A°™¡¶Æ¥Ó ÛWß`¯3C¢´ÈO2=H¢áGC¾’ФÄ… &H–|+¦ðRDí ÑöCª2ÉÒzêïHKoë9ÿÚ éݵ"FŠñšÝqd­f«¿ƒ,÷ؽ»Nd ›ý%ªµ ä°–¦1$A®'Ì£DÙíãµ|Ÿü‰~DÖ$(Ø-Ÿÿ‡…χ1nŠ˜¢ˆøÂ¼”g Š1¸0%¹×£„xJ»4 )Jyéîs¹˜‚{GrýudQî×~Õ‡å ¨àW¿Ú´w •$t*ÜR…pïÈáSÎt™¨ROî,<ÊŠj w®˜¡æÁg Bm¹±„-‰™ µ ‹ú(ïì N;YÞfÔ»œ–;—®€úŠ<ЀA§ýn—-܉<+}…ào“\ÂXðоkÙOgÐìq@‡LÛ 4ÿ#¡<Ë‹–Æ!åÇ;Ñ*u0üìzÚìùYìEb‰¶eí¼ Ò)hïžwæÓ'ft€ïlgÌÑILuÏ µ t–Ö>^ÿ ]Ä«î [ôã1#c_IÍïxüŽt÷ÆÓXú^ë| XžàSôNBôžvgÿ©;ÿ8@Ÿyµ›ÓÞBÄó£Œ6º|Úÿõ€ ÅòÿÞgïøYBÇ»ÝÏ]§ ~&‘zvä*¼?_èl™ 2)|~Sý]wRK]ô—³œ‡3ð÷œœZ•„ï!Ù_E iÏk¬çÿò^ðUîƒÌ‰—_;žúÛã Þ¬Ï5õmi [+ß–o_9d·%®>RØ _­˜&\ákñúMŸŸ•£.¿÷ó"ä$(ÑyŸƒÜïå©+!Ÿ§çÃþJ¯¿ë¤O×ÖÁ· u &(v×ÔŠë°‡’ïû™œ…2f³'þPžñ#9‘C*ϘÌÁ`Tq7ö¬‚î±ôžS»¡îÒe+ÛûÂÐДJ¾k“ ç·Ò¦rjh}¸}Ùî´äüÚÚˆ¦„6í0ªûŽUÐAd™)¾ã'¿U·.‰¹TïÐ÷póMcü6 ²<œ½>*CÏ®ú¼¢„F¦ ­O0ÚMDr¼Ä Æ‹jÄúÂäèƒg ަðsÿ@µÓ ÂìjþuùÞ—0ïÓpòÉ/YBþ;p–þrRCº•'÷Û¢šÆ³™¼ŸP£7(+´÷åköS­£ö%‡|ÍÈlÔeS`²¦ÉE½n­iÚ«¨_^“IO‰=Ÿ#“xRшÅË‹[qM.›Éß(å@Ó_nç|랣yS‰o\Zè÷gÖ@«ÎOŠ”ÃŽhóØ^äží´³›™^&äÌÆ<ºÅº{ÑñHX«é I<òaÉG@6n°ÇØâ1½Y+Ywá÷{×+UïvAþñÛiü>f>›Óâïû ’(‡">%-Â[ûUŸ†ï-TñÐYëêß>æN}¨’7{ÛØ/7ÖÜÔÇ ºÚµñPïÿž—x4Åü›Í¿#g¬ ©‚5l°ýé_^:I‘–>SÙÓìÄA¹š¾Ç—3ð½ÁIéa5Ô$šîK+‡º»Âjˉû !Ö÷a¯D54ž` ¾nrÐϤ“ÕÛ§ ‰®½˜|AK½Lмê£Ïº£óàGò¡Àùø6”~EsžÓñDBãç¹Ð‘vWhR¶h±‡¦£?ÏW‡Bs—þ—þ9{h™”wyB± m¬ï¨M奠ý:Ù±š±?ÐÑwªiöÞt]¦§¢ÿ¼ =$Ïü IÖ]øJ 0“®±|‡Á˜e>ö4S;%¿BT#¶tG(N]Ñiå;áf»a<#Èëþkr˜L±þC™³ÓESÞ½Z0óm%Gea.Ç ÆFœæ¯0ñ÷RŒÁB„ä÷þhqX"Ö]þÜ Ëò®¿þæûÄò+³:¬å¤>¨~[›Rã ·fàOÏ=‚÷B"‡%Ö5HÜR˜&pé’^¨ï?4dJF&ÍòßBXæòɦ‹H¥:lÒ\‹HãÅ2¼~³éZ”ºú_#£À¥µ°[Èô@ÙÝc¬Y„«´ÚXuiç”*©4²O{Öv>Ø@.úÛo«&XÇ}ôÓþž"ä:÷CnƒŸ¨?»ú…ÅZÉÔq÷èŸvÎ}þ(Z?«PÉ÷ Å'¨ÜF²QJõNòî_ä(S-ÎCÝÍ€r¡ò»ŠÒÒPÁ>8ÒÁ ·~m]¹€{ ›sÆ2£JBýŽF{%ªýhVû"²5EÛ˜ouxྃíhÁÔV­ËØšC¯É9¤OQï°%ë;ÊG¨Ïs÷ÝNÝ}<°aVÙþ@ãÿáí/À²ÚºþQ˜n¤S:éa:én$”A»0Q Di ¥Cº¤¤”îüp7¾ûyÎù¿çœëú¸¶{ŒUó7׺×X#æ˜c‚öL‚ãÛˆ-ýFä9¼õ½8r˜&E(E â¿ SÂ1`Ä(¢U 9 Æ~²+Ÿ;ÍÁ¤ÿ¥eõC0;!3°àk\öO¾‚eU-‰ØÉ°ŽN6¹¡¶Ïí$xæÂÁ>¾¶£„==#~>½ENĨ×NŽÂÑòFÓ[ ùhVBצGsK(3tm¸P¢^2[6u¦PÌVß^(j8CÉ\Ö½,>Å8tëô?qɯ¾ÃòI8牣ѳkë‚ü£¦èÉÇGnŸø ¶ü¸a’‰¶òNô™Ä;þÔ¡¼Îà±ñgîRo”$;¬!¯è>Ûåú›ý©ÓE¡ŽÒs&óÙÿñã¢|‚OþYÿtQ[¯¥wEqžÈGžß ¹©¡Œ^_>—ƒâÆåt®õ‘£ÌªÜ/3*êVž•,û¼å~n; N(û­„BãÊeKÿz¨¥}%úݺ9ˆò…¢¨ÂøSPqo?u**lÄeñŠÿ³ŽÀÚ×WèT§»è,ßiTN,hYÛ„¾S°/´„› ªSFæÄ±5¨¦ßê .1 º2AÚcçcQƒ·¦ÞqÔXü#L²5›)~}µtµ˜²W¡B­=—ŒFíobRý£N‹† «ìiÔ=$±/Rõ:¿a‹F}#ceß]~¢gSœŸ”ÐÏ×ù*o94rkÕ/¬Œõ;k[4_C¿Ÿ&=OØò¦Œ‚åtGÑôæwÿ þæ-{årºˆæcÑñý$h15Ñ]P-¯Xõ磵S RéUçÐ&Uù•3_Õë—h߃"ÀqçŠ ÇÜöi áó€ôÌùS6:?.b±¡â»ŸäDæ€ôwˆ¥eI=ì‹r"}I` ”}GLu`vˆÂµêÞ}#ÄÀÙO´ªvä)pÇçà\޻猺Êt€ÿ­3yäјÏa>iB—=.Üò›Ñ#ûë—^›‚¸û¥Í‹ QÿŠà¦H:H=×#óºrdBžDWœ¹¼^YBp—:÷e(Ý©~) ʼ?|ÎuJ¬‘¯ =¨©Íø²ÿ xdq¡ 9h—),ÎÚƒŸ¬XB½·ôÛ1ïËxpÄüsRÍYm0(ïûr½Œ$¥¬¢¿e€ñóË×M[òeMÙ{P̯ðŒùƒ…-ÿÄfXñö'i†Éíoq*`GrU&ç“8ð9žÌÇd’¯2àÔNû¦6žœiÎÕОD3‘iñ'±lQ¯œ½B˜ú€k„D¿ùíÕÂ^.8 Ž¢ÔÈ=,„> È÷"ãD³èElºR]zþZ‰Ã.Æ =-¯34)ÂfŽÙ/¡§á¥aô†ÙÿÌÌ[ügýӉѯè­'Ý…_}”ØV5!ü©}ùx'ãî[”z®ó¡ó¹”vrÔ÷ñ´ù–wo¥ë§3JÛ¤{««öèŸõˆy_æ¢ ìá÷ZÆ(ãì=…Þ³ò+oµš¡Ì£mjÊQfëÅkêe”UTýèë©õÖÀ÷´A9/µè’>|GySܲZ¾ oUÄUkS̨€LÊ^¥uFe$¢b'¯Ãõ|ïP©ßód/ T¶x…êzþÔíSh¬¾Šª¥,sKÏ¡šyœ lúBT×Üçº.‰Pƒþ·{£Ÿ}¶ìRòOÂ…·Q³{û©ì' ¨…jS˜Ùšµ¶G 9%Bílæ¾–¨óÀûã}ßQwœ¹êá¿Pï¡ÆŒÛê‡P_FIÐÊ=4`&ÛÙóš ±=J&’œ@#Â'­‚%†ÐØå¡2ãïåè·ÌëN%'4Å%BF‚‹¦kÓ+Ë¢ÙÐ@%ÝÈf4ïªCRö-úÊÅi/å¢å,SSåº9´&Åâmè…6ê9o5¸¬Ö÷Œ÷—ÔŸŽfo/"Ü4!-æâBÀ7½ÓóÀúÊ)*Å æ±ÝöÄ—¬@šù $ö ìsÑñ8záPAô×ã@ý˜B]–gË{½ôs#.èGNàýü|˜\Cß~iý ,‚"8v•¹ÓB}ŽÀiåÑðµæ6p«=€h?àuüxý ç*ðg”Žue îw<>ª6æù*<ÖqÄø¸ôs/ƒøv£cèH6“ky€ôÄ;Ücœ! §ü­GÎ= êZIb›£@)ö4wà (ÛÒ¨‡šâ*ÁáœV¥ Öä÷Þ¡24¾GÑ”IƒÖo¯óÙwà°B|ÃoÜ· —ï׎çö¾Ì(ÀˆmLOô“ ¿¿s®×ú ˜š¼Éö¤²sæ©®€ì:°ÄnÊ_þô¬‰eü?².€­x[ÄU%s°:èܤŽgòe,Õ×Àéný×[*h~²^2Ž}Ñ­fÿ±„>ŸQ˜®Dïã$.«L”`ê“ü»ŽÂn„Ý: á_‚LÓ §doYãæ0t÷¼ý€®÷ÚŸ8?Êël8öý[ù–w ÆüŠÎûÍ_™ÛUq¿œBÕ¨’u`íÇìªöÕIOdEµ™zIqbææ¿à)?lÅÐÚa2nöTóð7ã×ùDTçËÛ”¨Z4%Lâ~æúÝúµ*w]»:íÕA`¿pý ÙGÔp À~ø4jÔÿ•þ=ëê^=ª\sÂ/€Z>²õÌÏr ¶ëA”'ݯ¡Žg]üìËPgYݦÎ,êaòp¼ C¨×+ðŠ-»p¼Ý¬R` Üjö2=lŒ†Œ%bû—éшÖZ8ÃÈÄ^)Z<)4AÖؘ €¦°ã¾Ýù…¦ixyoÞG3Fì<·-7Ðl}óé¯Ñü—}XuÐâ—{öbžTh…éT±ÜZKª«Ñ•G›V”4R÷8›@lÝÐŽp®»±zðžâp†Ãi `]ߟU"NÇ.=Q Ñ¿ŸIªûÈsh’…}ÃÑU´¾š@YoZ.Io Ônskäö ÏþÔðS@Oþ–Üoó02/XiÝfwÉ×®eÀJjêú@cØ×Šý|³7óµÒÔ±£‡€Û.z¶ì,ðêž\ $ÞêñSýÞ)¿‡ÙÜZq·Sñȹ»ÅzÌ Ðc躢“ JÇÍêž WP¦éÍ&Yª•Pñ‰ &ò¨¢7]Ôû]Õå‹Í:ÏwW;qA»5ÓèÑÍ-ýF¬Ï2rŽ8$ø*š€Á( Ùfç2é+x^ѽ Æß\2î6˜€©}«Ú˜W[tÝ‹xmá‹î`¼d`Î|l|Íû˃݅„CÆž-àðfâ;yQ8Ϊ> ž; G9—¥bº‚³=—Öñsh†PàÈ ?LýÝú"»röï:%»uIvåëY?[é!*Œ|…É(¶UßÀlïž·+w»uPvë}ÚŒzÇ\x S7%M–~:,Wÿg¦¯`†¡»ýÛ•× ò÷Ú)iÿYïÄ;bó’ý–g5ª‡Ž©w²[ß$w&¨ûyò=L½–ü’çºQ¯u0õLŠåž÷<†J)ðO §Beƒm£)k¿PÅbXpv*ªºÈ`ã3²%·‰›<¨nàE棱6ÔàlÓüÎÞS·h·NQ s³ûSµ6ež;ñµW„“|ñÐA?—/7z¶·¢n—sg–YSP/-žÏË&Ôw-JJ0Ý P7V¾¾÷ V»W[ŽEÃõÃÊÇ^¥ 1Í#ùäè×ÐÎðßÑä`η0ê¯húu4GÒØ 4kãûÍò³šç3I:Õ´‚…Š{mùoþúegû×Ðêœê;½&;´ñðÜQÒ4ÀJP:}oÙpx¢i>ûÜ{åm+“ÿà%;oì@H6%àëÄ"p’jéå'’TÎ’°ï€xÿÌ0PÆŠO±Îê³ÜŒO^fíöº"@ßCóûF—,0¹Ï˜}; , #2wŽ»ÕÝ# ùÀéfðݸ CI|%^oN‰óY€¿x(Êç6Ú `3?<²gRkr@L”ýYÀȈÿzÛÞMS ’-ûœ*ùAzÆœOAäÔÚÚJA¡&½0ò$(…SjzheŸÛŠB‰ ²Ñb «Ôêï…®äê{ú6Ü• µ`8¢¢‡õ•/þð\½–fZRÞ80x2éù”Œ4ü¦ $“Áø§ÓtùX˜†òmDhs¥C§½&ÁÒ¼üÃÚ °vW§Œ#mÛˆ…‹¬ï½À~²Ìì+Ï=pLa~7ÑÔNkYÝ1Ó1hþ@ŒÊþ+(›üйÃÓé賦´¨5-J¨|Ge*âJ=r,Öë1õ·¢6åŸP‰¢×/º?­÷_GXÅ›µñè™ÙÔ€¿Ø #¯6LGO.Þ€æ,&ôºbl¡¸M£/Óê (mVPçýÓa¥¨0$aâWrÆûí„ò5TÁZ¹Yr•Uúê³S¢ê¦[ÓåÄ.¨ŽòÍÇF¶ü6Óу6¨®µqƒSaÕ]=õ‚õ×<ªÃw©ÕªFµÒ%›öþc¨&>ð‹weªùhÛ÷ˆÕ lF¤‹ Ú"îve1T§5÷+— ÕÓ¤çªë½þ3^­A6ë„ø?d‰šI#Ì$  ©¹bß2P«ïÝ5›$Ô®(°’…~²œS9BÐŽº¨.¯Þ·§ßŒ&¿›}úЉ…+¯½@ÞÚ¤1]?ЦKt¥U QHMì%1Dcàåí¿%—¿`PÓT”M(=3áñŒFSBWÝsæªÐ´‘² î‘h&¤î§YÝq4;X·¢ÏÐüÉ6ùõC×ТR­û“Óhùðƒ¯5§dÑêÓBVj‚)´Áà~ŠxÒ°ÜL]#9Æ{Bol YpÓÏLþ} 1‡ Áq—{ Ä1>¯¤ žéP½¥ ûäÏPEßÊ‹ÃËcSšùùm*ÙG@ÓsU/Ìf èŠÍû“¼†Vä©"Z`–{2"*,CǯÖßùìÙú6%aÀùP'X¢Z ¸ Š €Wᾑé”ð›ž'ËŽ%èÚc1Ä Ä·)|»DF± (¢U@l!à2S HD`8dgRÇoX$èûØÙï¦ûAîòËø×@¡ùö“«« d§·ñÆ(ï;©/õTî’E¢P8mÎ(eê# ïÜ l@³2&7è@»)ʵ ÚtñOç0k¹ÃÇ$؆ †âB”*Ñ»qrÿº-ýƪ)y7LÍF;’²ÀœŒÔŽj±,†É´˜ÛeÁjŒÇ¦"l­Ue€ý™xûdüãàxeÎgDù38 ¥<~ÎÇMÙžœW’«Ë}¡¤h:)iØÕX¥7´DÑt/¢÷ã%Ýs„P,Û¦Öþé-¿ŒÞÆŒ½âº>]þ“E8v9M‹ÂmŽ=ÓüPŠ‘³'þÄ/PEaaFN<Éè çIÊtÏ{èyõ‚ߊ¢Å*©ZÁèÍÌ zÓ è“[ÚíÚ•¯(%Âjvç J­–9åh¶¥ßš+K$ýñ瘪UÏý©obP……ÒOé§ÀYÚòã†B™žL¢Œ·JÝÒé(óœCs¸Ác”åš$~×J}¹DúòÖ½ú]«nî¡¿QÞ©_²WÄf÷ôÛD9Äâ4* Äi5~"ŠOˆM²•¡ÒàüƒwýQyŒxÄ/§(ô}¢úå=î#¨Úå£týŒ1F¾ëÝxÏ_%,C mÜè3cP“1Õ»d#6Ôü£‰xòØaÔâÏf<ó µÉõµ$_E‚?<«Ç£NÇø™¯‹<¨»åde¤ÔMÔ«þ~¡,õåˆQS|\DzÖÉ/VŒÐà*wÏþú—h¸Mûj.!5]¤699®‰~ùÆJ¤÷C“ZO{ˇ¸Ñ´d±Ð-¼Ãïöõ&>4÷ªm#[«-Dáê~hê@Kã ó*õhÕñÙ•¡2´>EN4ÕÃX†%)Ÿœù»¨ï·ÅàJ¹ä’» xÝ|1$¡@Padt¾ˆæøê[±Ô¼OàÂ\ ì£Jª+cÊ8ãR5Y ¾Q¾¡ý”hßÛf6(quÈi;__`Jàΰ¤–[iÄcµÀžµ¨0zL8£V}%1î§^o¡)‘LcPÌ%ÔÁ™ÊC .üô˜¡ðˆ]ZÝY) ݬ3ÔC: ¥L¬ýdün¸SÞr-ŽõÖuÔp( yÿé[m€lüÕ®¥vrá‰)­ÃÝ Ä)r'HÔ/}X7M—ÏwŠ:@;ñþÇ|z)ÐeþÎKò¢Žä–ÍGõ&€áá§è¾<u—`qÖ-€I¸PÒ¬Ž:˜˜+{Æ šíœ†TÀª9¥Çíd6Øš|N¶S6ŠC“ÖŸ¹Á‰ã«~Ê8ú!渥­¸¤=¾ÇÂps¸Y¶ìœÝzsŸžîû.Žâoq‰^âû€âH¾Ìõࡦàªòq(j8µg|? F¿EêÑ·ê^ ÀØ•aE6¿Çü==ô©ˆž„ûO½ Gˆ“Ñûܬv¦üC(­X5.­= åÑ}œ%¿Ž ÞÕ{hr•ª­µÓòz¡ŠCò›}¬¨ò^nŸlµð^]JòσÍT¨.å¾\E¢ª+ø]øÁÕyÙ™^F¨¶¦-âÅê9T3ªøX‚©ã¯ÕØL•T‹¢šIöü':Þ¨öà ¹Õ’aT§šl˜Îí‚êÉ,—ŸI¢úïÊ*iô—QÃï|;bkLËæÔ ØÇ'äQ‹¯ªµWöaÔæÛiþ-u¼y—úäVꜦ œ{z2ßܹ…zý+¯*ÍŠüYO@ó× 4p½Ÿgá.Ò±ä\sQ@#‚g‰b¦Þ¡1n{mmÜßè—@ÞA¦Äy4Tá'}XДb)¶žmš>Y^к„f¾>ÿÂtÍ ;Gz·¢ùÜ7bGT£Å+™_JhÐò%‹Yÿ´*/òÐ!uV¬ï–¹ÝÃ×À®¾?Jå ¸AÅx%䀄 ÷øq vjÉêb^n¡}·µTÉãbzd"ßèär—9 ”¬ßgN'URfˆ{Þy 9ÁüæÐéÞ¥Õ±r‹áÞòÀ”XÊq÷²°˜“–J<ö#q‹C=—ó0í¹(Ó-ýF~.0Ð/xÖRjÛj?Û9Íø“Aàtvq¹á³%f„2€HSÏZø™r›+ %J‰Xw¯7·HAê»áoî s)w=ƒväÒ¤œSeÄàsÖl÷ó÷ ”%õõ•(kë7ù¶†ƒJÙ³öÉ vÙû”,¡h¿Z=XZ:u/’Ä;@Ç]¼IÆÞtSºÈÚÙ‚þ•n‡þ—`èVªxÊÈŒê•~©¾01­žª¨úfX¬cí7À¼ª5ýµÓu°, ´$/9Ö=|æšeûÁN¸L,§ ’¦°Ó WÀIâ\J]ÓÙ-9+ :_À.®E‡ËHÀ ‡cÐMRÍPèN„I¬côJ‚M»–S¾ØŸúÉØ¸Í†èÕ¥Hº,ayžs(ô„õæÓ@ÙKweޤ¡Ü(ŽG~´èë}ãçÁZæ(?òøÓ…’BT°~2ÂNj Õè–E%ånÎoý§1þÛwƒn?ßù»¨š HˆýS-&NS¶ö{¢9jØôÔDjb¨éÁhïÓãè‡4m|ýjY,6ê“Dmý%^7QÇ2«–þ—K¨‹ËÀù™êÛüýDõZéÝ$“C}a­…²ûQÿ¼IñéâL4x÷<ÏU'c4ìÔåh‹Fã:uÙ‹?aâ,“D$AVÇ. i|&·4æý¬1å*šSøîQ“ºPÉæ  ÷þ¼MiЛüáØ ƒ½Tf÷¡(?†ŒÄmè•Q(ÛÀÝTSñ=+P=ãºÁG¼§ß;Î~¸q'Áè·û0×U7'jFÒ®LŠv ¢’ÜhŤž“¨¼Òeó•„3ªT‘ »I6Žª3™|N$¿Aµë³!ÔÁŸPÝÛ²»ç#ΠºgEÒçí¨ÎN„õ— ª}ý­¤‹€yÏo£8NãÏÜŽj8©NQ6 š’ÑÕ|T³yÈ'Õi? 7«âGõ,! úôXºnmÔ^½^¡q 5vË6Ë|ïAÍJ‰Y:ìÐéçr_£ÚPë<{Qš-êËáz²€:/Ó^·NÁGÝ£œ•÷RQ¯ƒrü=mÔWcÓð¢ \™è³\=ƒ†ÎùTK£{\­K®hÌ”1š\ýr¶lxíwMÜ ¼î;›†¦|ˆÊ~ý¾¦ÓÌV×-Ð,!ãÅn)4çäq ª$ ÍW,Þ¹ø" -êösúo¢¥åo…”i¥he,ʯ+:­Ë5 +œC›^Ä΀}?9/õ•<àš…hé| ø2M³Ñ<@H<¼Èx¨ˆú¤ô¾>’ŸûB¼"l€K¾ô“þ ¸ÑyàÁ/ ’wè%2bêî5ÝÏI+@ð¯tèc¢íçVçq¦ádo2ìà°ÂLðج6öãëG+ÎŒ‰ p=Æ™§îû <çÔty{s/´â݇@y8Ð¥ê.ņ]ü¦‚8@DàTé|á  ?˶ïûEPs¸x1 ¤èÞœˆ£(šG¼DTô §\Íè¯ QKG »AIŽøä ‘*PÆÇo;½þTî=iWÄ5Ù± W*Ð ´!ð4WìãÔƒ!ÕùQFе×4âçí€# âEß=Ž¡Â)Ú·`+Üþ.ØLø/-›5€iƒj¤{ä"˜¿Æ![ÇËÇOdÅR×Á:õ„WÄ–Þ²ÃÑ–‹§‡kÒy¢„qàÄVÇ'˜–Gú°K³ÀEZÈï49¸Îù4½4}MƒæiX(JÅ—Ïûp0}x·ôÎêÓOKh%zGc7¾$Rãî÷æBá#·d-H¶ìÇk«¯Ï?lÃÄEvã$u »¨s^£0WÍ–Óñôè¹ ß{7ÓrLÜ$v&-?«¥ã'~²ž ^,@)_c¯‡í Þ‹OnÒ®I­T¢ô仧܉£Œ³w9ßΣLÊ `9ŒËL—¤ˆWÕÁ|/²‚¤6Æ” ÑáäÁ›ç1u˜s¼¥‰HõQîЗ¤O:èk\‡Ô›£!(ÿé kŽKò¨ U½b½V()+C%÷î~R|­€Ê>õÞ¨;ú}ç(¿x¸û ªêÔú±ÄŽjËnÈFõÎ’Å65?QÃÀØ8Il5j °¾vƒLýà>~~ú%j™k2QBm3—ªÞ¤ˆ¢Ÿ$•ùõùͨK¡XÒ²õ u†F²â½q„Œ¢ë—~V¢³cþÎ÷Ð`ÙÅ[ýöh8¼^àÝIZ4ëlleȇÆ+•f²£‰£·Žt™ESOgyTRÑŒP¯q†h>š]¹1p¡¦™U¯‡ïÑÒùìh…D ´2I3óñ.Z×s“diG›‰ÚÙGOY6Çs¼z‡AÀ9­ùå{B*à·UùRþ º$å«P " ]n´3çk&=s@θì'G—”\I\ó*jÙçòŒõÐRtøò¥è}•„¾–ÎÓ7†0Øßí¼A°™ ìäSib¬µÀ©ûÚ"×w¸U/\Ò›^ß"u›àÿ)Ø ©ƒ@0¤3„ó_ÍaÆ=Ž bnseãΑ !÷6˜§/¤1ÏÉÝÙòßú?Ÿb¹lF›KpèIx‡ÃÅ2@!u_ö¯þåYîîy.PM”Ï Š¹ê¯ø8–@3/½Aø,è·/”÷ŒƒnhpÁ’¹*èëÞ´t£ÃÃ×6=ÿÔãR7ÖþzL)î<%ÿx Ì ;cF´åÀR<ƒ/­Á¬CgD¤Rj·ìÊQsVpÄÏ=°ÄNÏoÝúhòœû¹ N†€«ÜG§à/h>Dûu\÷1”iAköj2%Í1WŠw_ÂÔ1Âî´lžDÑwm ‹Ó1vákÏ&o=Ï˘øä®>û·¼½,ö‰ª¼‡„ªK.=ÁØ­9“1ZBÙ¨ ;Aš)•œÄžª–øS.DÏn}¯¼À§†U3ò™OOß7Ó?Ó—«Wþ§NNá÷uÌö®}Wk¿vÜú åŸ|+7ñÚHT“¦LÆÈ?jê“{¯¸2¢Zj¿6üûQíƒÄ/§1ú±®7è×\Tߺ´,wOoÏ>´˜(z¶5/*Ê´Ž¢–vý~luVÔ6š°”Êä…~¶™çãÞG]j½ –y¨çXW!;3êj{pÃØõ¿.ûªýð1¼ ì;iÛ†½(]ð3<Ñèy2uf %4ž øFäúqô{‰§µöø4¥šœòš3MGÙ{S™¦£™ ÙÒ«B÷ќ餚<òû©b%ZæèQ¢ˆCKÎêõ¤ZÑ ws»  Z;b,nª‚6†Þ²>Ÿ.¬5¾ò†ï'ù‡ô2gàærÄ\ûË1[J \ 4µ8ÂÄmÞÇûÎik@6ì“3m®)JNÝ{Ô€ûË«y> É(Iøõ–è^ÑÓ®¶VC]Í1÷3Àlðóá1 `å4S&Ë––ÓLO{쀳Lâmõ¤pGvU¿ ¯ÞèÛ·~0½þ¶Œ3ïCè@PgS5$¸„ÓÜ×ÚAtx]ásó'ø° ÅD$Má.%ƒ´šµ‘¹-È:>TvxíòɵöŠçÏ¢ÔR°Ï›-ùš“üÔ‚Ó ÊKµÖË|) ú¼g†mÔmÛYˆ@S#òáëòTÐ66ƒ|R8üÈÇ$çÂmÐ[9×%} B™%𳮑ŒÃû†40N¶³¨Ó#…Ÿ‡f3Àœ[ê<‘XbϨZpXï'_S*|¶ÎÌ×ÙªÁ¾K¬ñv’88–;oN%}€£ð3©B0œ[yÚ>Ë×0–â·žjh:DôdÔg Œ>Ù“ìÆG^u¥deñ‡¢ˆ¯óß–×…÷â’ivO5ÑÞ¸ÛN\òqKí­Œ]‰‰OZ‡æÏ™bÆYŸ—Õbì×T‹G1’ês(-(1¯ðúi̸&.iä]>ì¡‹Òß”ç¸~æBLÞû”TëPÆ‹–3ñ3[ú î~l ê‘ö\ùzµ^6¥5à¡>ïË©££'Qž–éDG>TQl¸gö ãÜ>ŃÐ(öÚW·+9h\<Âcáé;ôû‘Y­+šb.½"f)†¦Ÿ+²žÓo@³‡½dŸN@ó‡#X/Õ¢Å.sló´Üoh£‘V…Ö¤èI<-”ÑÆíJ>ïz2Àº—Ãùv€q¼"!àžÈ§ªM:ø ¤ßún¡Ö`¿ë ~’î{$Èdõ”ç»tBõòÕ»?ÊI³:ŒÍhrn:?¤ºØaQÿ¬``d±Sš+y Ìíg…‡œ€u(Sà’À–<ÆV—ÿÄú\7ÈR¾yO$ë×÷¤kÀ÷ËËa:4 .Ô3]ã¹B&ãQîêŸ@4àÒ3üX&Ä#|ý³$]Lý’ÌNô•S!ÇßÐl˘7ƒy(¸?CFJ·AIñsĈ( n¶ß?}T:«±ŠON€Ú?íÜ ‘ßzãõÐZèk½Ú‡í/ȱmnÉß•õxëx0¨NÎýÒy Œ Òh.‚‰¸¯C+˜Ñšá(òëƒ_²¦Ø]R°:!@uý)Øüê­œ±–ûßî>×Ç–NC+pôâšû7%ÁÅ0y¥ásš¯qÇÉwÝz?Ùé:‚[ѧ/d ¯FN w+ë±ûDћЎn¥çgQtα€);-ŒÜ¼œ=WVˆ‰‡ìÆIBO¿î.H÷B~Í,MB‘mrdvÖ±(>S$â»MÍŸ¼-Ëöü‡˜÷¿À¸&Í€–wb½²õGåd CÒ2{ñ÷! õh¼+=T¯û–š~á-ªà 2 Bõ^Dc®½×0qFÌøÜ®þÛÍG¹m>ކ=öŽo2 p!TÿÈàÈf›ëÞ:<^â"\6¿PãØ+5¨‰wCéíŸuR)ˆóP˽̫ñ¨m(3Å÷ú鯷´Éûu-ºé(¡žŽMª™†Ôgé¬è¿÷HXWÓ)qEÃþ®Âo‡¡QÅg³äÑxt;ÛË;ÓhbŸ~îØá4eO”¬»Ð‹¦+H¬® l¢Y ì,qêçhîÚôKÓÇ=ÿÊF£ÕN-]8zïäs´ÂGáwŒy­É’^Æ~ƒ6¾˜]±XÝ|œßk¯ν§/:ÏážVÆ#§æ›;‘Ы»ÀÓ}ˆ‰í¢kdµWÈ5–§nÒ?Š5ZöÄ`!  ;¿â8ÆÈ™3íQÐ Ÿ.Õĺ ’ß—kb2œ‘ FÝ®Ñnk~oìdI©èžVýš~B+)Å ²ž\N+l Àp³”–”تžYŸòeÑì9qÆHP™cX¿ë j67äµ@c¼·ÜóŠ7h³_ùVufŸ=sdñÍè͘ÒGO¿ƒ{Ã4ûpÁˆ;áPHðß»èúúF4˜âÁ_ë³*}S³n°8ÎIø;Ö¬t ?©)3¶ÛiÁî¶w±ªw&8ŒSØÛõ÷€—|¹%g1ýÀ…ûòû€þ,p- ÀÙÿMg+s:n²£Ô×\8Ç1ëLíŽk¿|âra¾SE¾Züõµ½hüÚÌzá4 ²Íó\¾Œ±#wõÙãýëî‹á »ò©GŽg„3¦7 N–×›Q‚º)þ‡’Xôñyy{#/&,¥w’Ÿ¥øµ¯ôcâ•éwUŽ$ŸþS—’ªÔ eT EpMÔ£Ìø¤¬\{ão„÷™§ÎYaÆ7vÇñs^jœ¼}_å=“7‘¸¾å«åŒEܹ™µ¦¨PÂ-ê-'*ò'λ5«‰Šë¹™Ã€Jæ\oP,`ÖÉÙãÔ¨»ÈKc£ºäÈ{žó·Pƒí·D6Ôø{úP‚£ j.gÆÙŒóD-•a á¨mþM¢‘?ú)EæԺÞ3 %¢ÇƒÆ o­PïÝQ Ù9CÔל㓳ʅ”ïåáásîùon W}Ð(ûU‡‰ÐØ$ßùôëWö›ÇæzhR¿½ß©MïK¿WåɆfÊe¢ÖéÑÜO]^Ÿ@ ´(‘¢¨•Œ–_Ä '>£A«}§hF÷¢ ºß¯šøêJ6ØÉä4Šy€ktÒ_µ»ðE:ž‹¾“BÍc~ÓõD@üÜlÆCî.qÔQ´„Á¾Õ[ʶ/9ŠîU/n >PWŒ•/J,í­©K¿>T4ª»‚ ˜<ÊÊ `ÿÀ] í>À®Ð"É0œ.Ÿj>±nƒÀП&–À{§§¢$ách­9>$³èM˜1‘ïTæk² nͰÿk]HÞ¼çK°ågIO-Õ¯ÆÜK¡DDy Ý+Í­îTv$0¡‘Tø\ÎI\Ø’?JMåD)KÐàœÊKê?Z6çT½‡)A'WïÅù¾4ÐSÝdk<¦ú¿Ï%Ÿxø š=÷LÇãSyJ$fÞ`zàEÉ!¯`0Çï¶¼W–ZO/Þ•kí‘SkŠ`›)=Ý´NAjýàÄ5òöùt8Íz}…iˆ\NuŒ´3Aó:õ!Ì-;í£±4ÝPÄzǯQ6Mx“W‚É›ÜO‡ø–©^ÆØ‘÷Š9"çYÐ}.©EËèùkEU›4[ô¶BØÞ…èJIéÙø=C²ï¿Ë¹BeŽo.¾–=ô,¼•u/J\’”B•XþöÎc{ë>h†]“ôýSWõQÞ jßÞ%Ô@D»qÇá*ªO¬éHþ‰‰_ÔsyËö•¡z’žw¯|ôP=ý;oÉŽ¨^ŠÑKì ªwT%wÛg¹ç¯±|6ôvNÛ‹Oúá#CMŽ•’Í2‰¨ùý[Üh%YÔâ82sµ]xk´º!„:Êð<¤>u¢.ÙúØ ý¨Ç_«ÒF¼õÎÄi<¿}õ?¸ï#P„™3’7 £¡Õ¡ü}GÊÑȘݘŠÌ>4ÎxIŽFõ,úR3,—zM±\÷;3±eçÿÊ{Á>fVU¥æŒ¥ÑœMðኈh>©±€…B-âá»zQÌ£¥3ûZnpØ¡•}&³ãhuúp¦/N0Úf‹kñŽ,Ã}û¹²ëVp鳫€%OKEøª›\c5@Ь*~!oˆ®]`Á’‹Oå£;€,KIÀ{þ Pð3X ‹ÊùFüº×Ç€Ú¿ðÑ“où@Ë®ôÛ¦è©(8ó8£‰7qú`.¹ íÁ ¬Îy?'í>©ûû kÀYr¦™™*¸_œlŽ×¢ÞtËvj’y8ÀGXyåù7lX½¦ ‰9c×ôtAÌHýÇpõ P¨"2{R¶±xø­² “þjBžõ Èë8)gr€â~ª‘'„n<3ÐU¼ëéNP£øþæ¡>h`•ÐÝ–[-:‚>`Ê=ŽM^ÐÃ?¿`e últÓ´Œm`h}>øšÎ¥ZUxåƒ Ã®¾<˜¾o»ºO-ÌÍbì¤Ä}À’«õ(} XÓ©žKÃ'[Ñž‘&°?3=ŒíŽgΛäyª€S…­=k—8˽[ð 5—’0Õ9âx4í‘#]ÒØ¤~æ>ƒÞcÝ@·/­¡h;Ãó:%{qÿÿíùºÑÐÛÛCèiy]ÉЖ?±y„ýu†–;=¼íe*ëw=Ìòy Xs|÷ú˜ßI©gQüëx—î~sL|æ³ÈGSQdúg½œ@r•§(5a<ñ†ãñ=ý¶§Üõ×vâ;™SvX®§PVXn­=ó:úb¸ZH{†eó]”êàG9x†Z5œÞ(—-¥Ñ Tå]üä—¸yd/¿äKcÕdÓ^|RÚ€ÿóèŸõNœl÷ü7›‡!ù5 è{?aÅ3¯dT]÷cê ª;YñÁžÎ#÷Åó™ã¨ù]^Á'.ÔòA(_‰‹µÕòÞ4}¯‰:Ö(>ŸE]"Ë˔㼨Gr&jÞö8êuzšê‡úÞZl ÍW˜Ï®TW±ÿ©| àé+'÷÷~Í'DZÕAõuc¹Ë6y™ë+X£i­ßS Í:z†¤åïTßß ²e/\D#xAáYêñ¾T ”ôúÆ™‡ |ƒ™=àk:¨ÚЯ‡Ú‚ºùƒûÕå7A3 :j•N´ ά)® ®èK™{8Rà|¶áº-*4¾ù] ŒŠˆßÒ½æ“ãõVçUÀL:«ZsÉ ,„(¬\ZÀʤÀFùåa°IeŒ“{öÈíYH˜8Þ8|dcŽîûä&/ëÎ9î OÌ y]Ëøü™ZL¼ŸìIõ?Ë'€‘húoG”ò.ïå•ìøe»úëñ9j35|t¿Ëî뫟´èÁRC™=Fÿaô›¶keº5úrZ+î±Ó}Ì:ˆEê·Ó°PiÒ/J¥ÇsÖõf2ZöCÕ&xk,…˜8d½÷J çÕJŒ¿…ñãdI8 'Õ ßuóÄvûSÇGVý×1TÕ¯¾ˆ…êÒ/X¶~Ü‹Cîê»Ûç8¼Žñ£ú®ŸgE”GQù1檉¨QÊëà+ùÔÄm–¨‹š ,/¿/ü§>ùGã<ÔšÏHõíä#ÔÞ%ô·ê¿Œ}ù{ênºÈ}Ûõ:GØK¢¾•ð¸9)e4ðâ6ÍÓ—½hèH‰3–¥%oußÿTÙœËÌ-óF¿ª‹sФÙ=¶M4Íž‘¢›¶—?9¯XvÏÍ[ó?¸#‰š­ ë±o¡%?†¦ó+×ÑŠP®R±œ8ZÛ·"ï•Å‚6ØÃÚɲK:Vú v`ŸÝ§£õœf*žaÑtÀÓ›0¹˜g ø#›NÍ+«@Xè))ãÿˆ‡5LQ)ÞqoÓ—‚}ŸÅï>ΗØËÛ"åU(γš8|Ç- »ÆûdåÁ<0¼Ç5WþÌÔAGâñ®˃ʼn«¤ÑÀ¾eÑM¼NñÏûe›8Uÿ.ð²1¥†qãÿEnúÐ×v HëóUË„*ª:ƒ<ò@ô;µÿÀ:=H0ž0Q·h)£×È@Æû,~mÄÈ êÇ,|„C1‰f4ó€ž}Д¬å!sSb=PNgHTMõàûVž)Ì Dûks„´#ç«Ç. ÃáÎS¶†Üሒ y‘Ü8d‹”*c‚Ñ…sk¡+`|éØàK|0Åã¹ê¦f¯.`Ià «æûàï`%—Š526J¿2æÏT‚׋øŠ`p(ÛxùœºiyÏÕÁÑÛmÛ…7À…€À—õ š~Lw;éJ³vj’¤:‰â‰ÝO`ŸC1âx–Ÿ/}ÁÄû#Ä›ŠŽ7Òaäëix)ƒ =#&.ù(oä¶!&^Úöø>©zbxþmöèuL~ F¿íà$µ]p¾y} >t¸P9}^ˆ_÷YrB)Ëþ.öPQ@¿E-JáNÿŒûeˆÍß÷o»¶7—¿0v”5noÜmg^Q6ãæ;Þ+{y%„‚wI¿¢<[ç¢ ÑŸèE!SŽ+ÊËš„ë r³h?Ýz„ŠÈØLyHíQqÀüݧ{ó¦_[©0Rÿ©Óekö¬ U¥Q‡öñ¢ZÿÛÀùæFÞ1ù`ÝÞ $¥‰èÇŠ·ÿS;jã—>—äŒ:¬Ö'v¢ÎçñÑ/FèQ÷$!—Ç’2ê•X^¼wÑõÝÙü¤ǃú×R #Ñ`P6w2×~4LŸk,€FÞ÷ß±ÿ&Æ\ë:ÂÚ£_†<݉oKÑĵk“®žMhênxß¡“bh†¤c–ÌÍæ×½èTAó1Y ÷‡Ñb,å–Ö˜@Ë9ê­Ý¤vhuùôÝYƒy´&neü±°ê4[3Q.àœ~‹[‘xB\ÍK€P.Kœyˆ(¹ê­´Çä˜êeõ×3@ÎÝæó–I(Y˜qÅ2îUkk"QJÉ–<.ÒE´H]D«ÐÙ `è1 _'j榾G€õ ‹¡×03pœ-K]%Ñ.Í%O&Và¹Zy½ãÂiàkãRêä‰Ç,´Noô@XÄ…¯ñuˆù¼ä&½ÖAŒûH@ªø™mßý «S`ùð( (PvàF¸‚kæòéœÏ ,_Ò†_K ª$wý_\·ujŠ÷ É‘"¸©ý´Ýd ˜9Ááúô6w¼58ât‰À ‰ãªÍ Ñ#Š¡}§ÁD¶†eÂ"Ìð¬mäÀ|=ªèÉåj°â ¸@âK6—É×ÝuÁžî.+8žz§Eóºœ6BºßÔô‚óÇÓ¿Îæè¢¹ìUNë1ñÉî9‰Þ¸è]ä€÷ãÓ÷0y]»yÿ÷ÞÍÛz8|iTdè' i ~פyÝÕ­=Iù¦“ïµ›§üi¶S©He¾ü`{ å5ìã;õ¦âšLæ}d@%ܯj³.¢ruüУ? Q凃ÉxI?ÿÌq‘EuQ²A6Ô{ñÈß>ÅɹPÝË™{Ú^k¨Î —’²¸ÕA^âÇM Lž$&N™ø¾Òïa®«·34.‹ØË/Ù‰{4ŒÕܾbŽËâ›f½ªÿ¬/%%ôÉý §÷þ„Zš<"fGQÛç}?oší­ìÕ]™ÖŽz¾^UÏåD}>«’ÊÁ›{ãדæ$M³³h¸ÿåÅÄ•14Æp_5Mv³ž÷¤”ãéÁÓçÑÔ ŽŒŠÀM4s”K‚0¡ÙÊ1u•$@ópq™L-TOu:º;¢¥Kcã×ÏR£ƒç÷ì…ÑšÁ>]m)´¡žy /°”êpÊÃÛ¯¢rP¶ p iÁÖ“ ðÄ­9ðî·~…öÏKé@ø’⢈)§\OöU; ¤Ë-7Ž›À>—W¢‡k2øÕ§oQ@Õ/Õ‘ìî4Á~~xt^?ϽŸT†gå¥ÎÀ4õxyÀÛXš5%ø]Ô$Š,8 8ù6ÙJhk}¥àdºð–~ë…µ€KÀ4ܵ|±*ŽÐÉ¡kwê#Ý@ôËhÆÅ©ï >‘“<RÄþ½G¾­‚Œõ,ÄIV‚ÜгøEáÐ'?.y‘@ÙõRû8>ƒ ž&NÙĨV¿ÂÅj êÙw3¨¥/€æ÷´ëYu, ½Þ†˜tMØÍJ®Ã‘òÖsÒ `(rl-É–ÿvƒŽ%˜ ŒGSl•î=Óó꯺M‚9o¶ ÝR7X̸åíÿõ¬.û{tÈ€Í&í¬»0ØkxaküG»[‹ [röyjœ"bËãÂöë£ò—äåγ hZòC¢àŸúXd·™cìÈÝø?F¾vìBŒß¶«×îwqðQp`äm×ŽÄøo;y'/ÎÄÏò'‹bâ.»y”ïí__\Õy‡>’FÛܯ¸‡>ùr‰FŸïV4Ú_Â䤮©ÿŒú¾§çvÇß~‹oZLŸÚÓs‰ê1Ãó{y“gÙãÓq¡œëy‡PóÞøÛ•ûºaDA(_îhLÊ̸Äîü ¢îù7«ýS¨ÄCÉ‚Í# •©ìócô@ç—&F=°Qǰj¹öCT³2Ärí˜3ª§,&¹!m‡º 'e†¢¦qénÆYeÔÂÐo\‘«…Ú?<ôòÓAÔqI—ñGsê,î:»ÊUz(ÄíÍãI1_®÷IF<7é¾E.¢ÁçÚ%E)yh˜Xdò ¿&¹v…Öðm£§U=™}÷Úöñ=Þ·7_ÕÚüÃý94=fôšÿÓšM® To˜Dó/cc±¿A‹¯¸<Ϊ± åûZƒ¾V´:rô×Ã+¾{ëz§jÑ©¿ Ã;žÙV²€G”ó¢¢E ðÇ‚Î(é áÒâì*W,wš/ùýÈeÂ#ó=.¥õfxU3PµU” 4±ê¸Ï¤9.Áïu|*30ÌšÜs¼J ̱Gòn¼ÖOƒ5Gzéãòr=^IpñÚú­ωC”BáÀ·îÿãˆÓAh<­&Â*9ž¥€ØÒw®ç$âš=i¬K•jW€ìË#ô¦ñ×AáâL\—’ (%úã­h®ƒòcnÏ +÷@5€¬îx…>¨_oºîþV 4s‹Üª¯‚˱ ÒêLÐ}sÝÛ3ã;èr.JÎÎთoï{}cAê™0é—× ®î³Rùb¡jz°h!ËÎFË`ÍLJxÔnØ>^ÜOAplœâˆ'ŽÅØÔ÷àhþâ£Ã“/Àå–wæ±;jhŽëRªOä:fžK’Á ܲ ê_•þ|’Ýù»ãÞO:#ÎëJ¨£Ð7ïåXÙ0ñÉ]¹{N½¿Ÿ4òŠu %Nq0DÉ©Œ·ok`â¡9ü‘—¦Î¶ |§GZóæGQ‘^kUUžáÞ|›_ØÏ¢ª÷`a…TLÞHm{í°ö½%1 x Õºt¿ À¯Aµ&Ò›Ú‘2{û—(Ú =}÷èà³µÔ^ür7ï˜æ'aĖݵ;¿£ßV>v¬ìå!—$ÿN=.Úî›ÔŦP`æ tq‹ôé— ž«wÙÏ ©æò¬¢ChF“`zíG+šMÏX;sëšZ¿ø-x-XNèYEK—íîEŠ ÙÆ÷ÄYh]Ÿî¥Èo´At‘ã `Ðì;Ó¡ ج¯Üó%mÉÑXª=}(à&ù­8H¼|%ÂÛË€üÍHÒ1G f¹m`dÙ¤.¡âúA@þ¼+Ä+–(C›d*½£¼þÊž@]ÝïÃí ´7±&4y€þipÖ²?0v^s¥øªû•Cpž½¬“™s‚Äo€ãöQ÷ià2Ï²× µ‘α)àóýúä”.(±Öò!o†ƒçüs§ŸÑÈEùo}¢q ®0ñ½?'$nË©I6>s¹Q-‚ì ]ŸvN ( ^2ôîD+¿î÷eŒ~‹d%­fû¹W/a×oÛKîúmOBÎßÓÄÄ'wý¸Ýq¹±©}Ï~ú h üL-wÜø£áÖ{žpÊ1$&@ãÇ%÷ñ¥6Íbæ ¤8Þr]õ‰ÁŒÇíÎÀøq;qž,}Þcê¾úèËñ«õ•˜Qö•þÏYUd˜q7Œ^;4w_—„}[e:©såϽ7k$°B‹´nÞEE ýg“Q±ÍíÀÐITÒ=•!ΊÊÂͳ‹KPEœPÆk«BTEÇ©ùqbòÅêšû •ÏíC ¯ <£ƒ5½÷”§YÂÁÄWÚÈ>_Pî Dà?%5K€:ÔÓ=Àý€zH玢^÷Qì·$PߘcÁÓL4p&^üáÕ}hpIÌCÛ ;KŸl ÐC#•váubИfM°EJ=_ ˜EãÞ~¬{ù`»ùΆ×5?.¡yñ è»Žh¡;ˉ<‡-Õg^¾3ÊŽVf*nK› ¢uÏnßå€|Àâö>½Dû °?¿ûzrààZðsš·>‡¡q¾e"ò†§\+â«Îz­û}€Œq:h·(ÈNÌ$T•ó°{ƒ&POg¦w^ù´_Žçœœš #·™9`ú„ÓÅ8,¯>õ{R³{ê2™a67pޙ᠋RîØìöœ«ÀGóØ }‘”úœµ6¤!>ÉšgA4q1%âA¼ê–>×}\¶ ïö_'Ë}† O8EªU© ‡¦/¿ÃÎXàäågüb*zmí}‚ &]¦ü4dnúD?W-—˲w&@'‹t"( ôD¤‘²ÜýŠžK,¦æ`Ø­Oû„ºŒý/®Ú—=S)ºýÊ‘·À|ÿ‡ÁUU°WàÞ4ë@:1_û×`»¸²z“R÷½v¼N–Ôe4¹ptåî¢a4š•’Ÿb÷:Ò¢?ªq¤¢¤§Xá‚ÑÛÏï´:>RbòIvçå`æìäsíÚ‹»ú,äŒÇµÉ£¼ènBÊw¢˜ypo$‹Ý”ÔtÐGnþßþ¡å(-+x­ö"&nÿ-í"½@ÄTXr9>™}ë=ÏøšPR?‚ÊGRš¡ÊéZ›Û&£˜|ÿZ6yùg7“÷æsïØu˜¼Éypµ‡ÄËßbæÇaüºçò~ º¨nÖ„;·Õë?+K9A…곞4¨†~C ºÕ‘=gP#½ÌñŠ9Ô¸œU¬—ú5%8–œ¢D? ž.oIjù2ìZ~îîÞx\s¾»¸®êúÙ·oþ6ê¦Õçžyƒú6 ` , ´ëâ¿Ø‡†šö9‘ôK¢‘5:B"Á/hÜð5ÙÏÐô»dÄrŸª š:X*õ“šMßyOEü Í’T¶>:‡æ>ø\?ó‚-œ!›.yÅ–ìÌ›ùße¢}?Q%´&iIÂ?i†6ö]œåéaD›K7_ž¦l‚‡¢Ä¤œ€#8÷Î!Vp/¼ÕSº³øsõ§®JÁlëgM'€h0´À8¦H-NÆ_½ä¶ç2¹"E­=aŠÔ+ :ƒ?”Ö Ô¬:ë=u@ë{9buˆè=®´ÜQ]ÆO'ù|Ã~ŽÃDÇ£95µ„ÏõZ*p¸µ‡~ .֓⮿k‡üé{ÉÚàŠóæwóàÀ =gÜ EÏÑ´}‰Ö¿›;AœFë× H²å¸ÍßçiÇרüíŒ9þÎû(<÷3ç&¥°ò¢ÂÙPöHUÖЦU“qE!P§Ç¢kÃÕM®ýæ¡ J ml=°åŸ~K@¢™ Gö?s«3ÔƒOóµ®ë€‘xLCý—`ü,„!P@L…jN޲Þ³ŽCÆ`‘tã';…>X½ýøE7ùØTL¶Õa €=s•ëAMpÔ¿•ÌÑq œÞ{{SJ,€3·ññ}trà’óZpNç;š\š)>fÜŠ‡Ž-ŠoèÅmÇÄý1ãm;zíq+¿^s"&þ¸«Ï¼¸ñê_FîvõÝ®ܵ?wÛÝ•¿·/8%ºèuPÂÈæ ~"JâpX7=¬„>qpX×|Š>—Eì#:€ÉÛͧÄÌÛÍ3 ¾¶?jq/N¹;¿û…g)e7&?3¿[’‚Í”Qso~@œH+þczTX¯éE… 1uLJj´3±ëQ™?Á£¹$}T!ú\eYU’)ÊHgyîåSïä?×ݺh“ögok¬%Ô|&Fúbkõ^½¡Ý<0ýÇAmr ¨kοäpêU‹6Ÿx‡úšÄ$ÓЕµØW½4¡(J¦ô S>˜ú†?¾ç¿‘Ë©þ>êŽÆëYÃ÷•̣߽«$¦MhJàþÓ›‡0ãå³dšêËmÑÜ»\ÜsbhÁmE˜&V-YòE=E+÷c-"ê•Ѻ>;öSÀb9¸P¯²¥ß´/;´àšz)Þ°|*Mö`, $"ÜLæb]íG/´:Z«Ôö½¯-»aÈ”ãí“èˆ:U‡-eªhß »D¹oÙ›É\ÓD)Äà¨KT°8 ó0uFû•¨0.-Eà¼Ið&äf=pßߤó}¼³d.ÇVzá@·E¢{4‰7ay…“èw!ƒÜâƒß ÎMÝ)v+û³ óTÂ0ú€*Èëß)ã¼£ ŠzÊžb‘Fº#?øß•G±ïmAíÊ×ðF=~Ðx¡Q]Vò´Ú„é¦bá0JÇ#Zð½ [?Z0ðof&>­F*ïf®=rãÁ.‡qÀôs¬á{×ß`ž`–Ÿë –uãt#z`#4#i(ôì ÙÀG]G•/CïÀ©eMªÄ> œCŽ$Ÿ}å…f¦¬©ÈÊ1óÒvçãìÆ3¢êD„©†Ž ×äy3W20õ‚vÇvë&ìÊßE¿ƒ—ûcâ'»óqvó0“’nrÛLz`ê%|±ý–Yó| }Ã]/¦Ë ÇÄ+Jâègí·ä§|"=Iã÷ù=ý¶_ĘèZ/ªe4'f¥™Ãè·Z² †=C¨«B—Òx}ïøî<š'üW˜ ºÓ9ÆIT÷P]ÃTL¨È:ªçË2š$@õìÏ<8Žê<üó÷  †ÛoÈô‚õQ£iKëÕç¨Ió0akV=j¶ñÒ’ªB?›“ç‡Þ@-Ó=óÕ7PÛ –ÆWqÇQGûkÁGŸP×åË ûS}PÏáNõ˨ïmH×/ß7h øòjïáA4ôP(‚ÎÔ t¼HÑM»‚ÆÍÈõ(æõÑïÉ;Š’[úMeæ‚·šŽÞŸsY~ Í2¶&P¡¹O¯ÈÌæÎ OϾ;uµhI5~ß©|hå òÝd´F‘%«µÎ‰Ö7|b¿ËŠ6ÛmÜt,k¦¿œgpH¤ÕlO÷®? Å,à¥ÖÆÞåñר}lD€ÈºWLá=5ÜãH|çdí6û={ö…Š]/ã% \ÿRç Ô×Ïrñ4ÚC¸ÃŽLÉ@Ï–ú„{ÙuæSf€ù‘عÜ,`ån «Ì{ $ÝlNÖsÀY¦k'*•Ü5û_>Ÿ>â¯eÇ‹pàäëÅOE¬bò@D†”AèˆU>¨"á‰æ¬ýÌAì Í`Æ’=ê²aߘÃ'åúRW@Éà=ݯϠ|wl¥4T)m«ˆcoÚê“ë÷:M@“ ÷ž³Qh«Üp}Ï~G(‘ô]# ™êÏoi‚AZ~7gœ/ɦßÁåã‡D"0U¢}×fÓ÷(¿3­‚E%¶r›;XUÙ&ž\Z›¥5-õ÷¡`oz=¬?IOú;‹XoÉY“RRߥ*p6ï9#. øÁ6Šúh²Põm‹C3&›ÈÕ¥¡F€©7‚É+Ù‘›Ýùn»ãÛ»q’‡-*Ÿ`qüÇx÷®·kîÚ¥oð²RÖý/bìÖ÷ZLÂú±}(Émöö±ý{ú-Ö0»+~¥²äÿ¸Í(ù.`ꘘ*7=U‹F™’å?ŸL’£,Á¶¼èüý{~ÜîøÛ®ÿöëÌþgÝ÷ÆÝÂ=±~"T<(U]«€Š,_FO÷ âcú~²/BQIáÕÚ¥"Tf¾¹¡vU¨°TwJŽ¢J—[ l(Qõ¥õf=TÇâAzVZ Õ¿YþhÁ5žgt¿#Ó…šŸ¯éÇäQ¶S¼;g„~>ѧ=¶ŒºÍòt¿›²¢^6sa—wü¨/!h²è0Q8ÑRü f}uRÄ­BÃ"´û„^¡‘¤Ûƒó©hL­ýlJ_ö^œ…óšð/©c{rº3®:³r­.¹eÍ}UìxŠ -Я=+ÉÅC‹“oÍ“3ìÕÓË<‹Fy(ÐfAóeñv€}Å]vQÁ py/ª<ËK¼6†%Â% ÈËm¾·q ˆ†ë(’e€ô([ÔçÚÛ°O"µð¸ßu L¹ð^,ݨO'§_3Z¿…¯‘r™@_üØž»˜ÜEÝŸ%ÜWsKkm`:ºÂÓ­œ~s•îHâ©qà]Ð8åé)š™=XˆËAˆcòþmKV-ï_Øøâ¿ò[Ö AJ¬äyдȤÉDOF€üù€Õ¦ä» EÐ0¨žq9²TÊÄoMž*µbæy.&Ð}X"ÿhËf ۿȆÃI·e³oˆÁk«„ö`ˆ§õN‡Œžøew¿a s˜\3¶„Œ¢Îi°àu~ˆ“Vv£J=¹`Sµ(ØþìÏVÏý:Ž)Ô¯ö%¥ÁQ=^s¯àBþðpVEšÉœ²<3“„ïþЂárVŠ ‹—’6ÂäOîæuíÆõ1óÝvò&wíÊÝøäîöî¼Ô˜¯üâ5•Q¢4»¼‰&J¥\×Éô|вhŒV)sPÞÇ‚c¡QÁàÈ‘Lí§¨Ëà5ïd*—°³ö0³G•Ôì\©ªŸ0u%k ƒ³§ï¡šlnlñĽú$»þÚ}z†C‹¨¯¯´ä¦ÞdÝ›æÞþoý¨nYæjˆaûžß–ÐÉëÀû5ÐW·Î˜F ‰KOkUŠ0õºšÜ’ Z}»1öá8·/“©¨e=þeX&ýž~ ]>šÍÃ:7ëE&lé·Ó5'T?@}DEº©GÄP)Ç`M4Xßø°þùÊ^žIy÷{1Bôûäg¹:4E%8X7}M_àjqÜ<ƒfqâ¹ u.£¹÷)x‰bÐÂiãâJ´d’Æu=V­ ÛÌ"ßÑÚÁ_$òA¯Ð‡ñ -`1_=ÔÖº Øò½£œêe€sìÕ³¬àÆ)·×1¤ÞòN¾8 ðʹ³QuˆÈÜ$ï‡ñHÉuÙA> Ã}ò¿ öÙæzY~ù”a<†€Zì´9Ð,7Þ[Kºî—¼ôÇ:€¡bŠß) ˜I)hc€%ªÒ¬cnØc7Ò»có13–ÅOà¾rþÎ}fàœ½ƒ·\üƒÁß*ì¾€àSR•üÅ üEZ?þÐ,ˆÝ÷ŽÖщSØ"zl’ •|ÏÅndåOR+h‚üZs‡ÛA,PÂ?ûæ»Ü(4µÐ-R•åÛç¸ó @mB–B 4‰kKSôs@[Á•¡c §ÿû V8¢^Xöt &JãóUƒ‘]møHñs0®•Y©Ó‹Ÿ'ßsùMâ⻦`ÉuÈ/í1XKÙ¾œö³ÛS+•²¶ü·u±â ÓàXRç8ÑÙGe „Þì(8—ê™Y'k@âUÎ’4©É²c “¿w±5YU3€©3¹[ïn§¾$Ƴ>ºÏæiF¯Ý¿¤c1t›³w¾À®~Û£ÂýáŒ?Šû8^²ð 35ñ±ü¾úÕ›(ùûkÙ`ÄŒ>_&p,vØÓo;óã0óàRÚ—qöÆßf~ŠÛÅ¢lEÝ›R¥õ{óH4²÷}F_?¿¾Ú¥ž†ò‘úb_*`m—Ä>¥†o/\9ËC9ŽŠ…μõø¹ˆ±kËŒ3MࢠÑÓ®´ÉQ¥è½Òªk˜|³Ú<Ñ‘û*Õùm$•x–x¨™ö¤ä»ÏP ¹w=†µÝqzx”ýdºùƒjDu ~ù™àž‹zÆòé—_ìÍÛÇs)évàÖ“f˜šów0B#¥“íIÖÝh,üâå7Úè×}Q·‘©4ñörñ µßhêäz’_Á(š~«Ý>gƒffÙFR”£ü±g. ,Bì[h±ýÀ#†ßôhy¦_ê…m(Z³’0—¥ñC›¸¯5n”¶Ö£qmûÀ¹Bv!ñ à o^˜32‚>í?êèšýÉ×Ü€tßJ§Vt.ǽ)»é”>¿Ùknoùoâø<ýéY@«B¹¿µ?èoùݺ/ L”ŸÆÖÝ…ÇæåOK`7?ÇYÀ6 œžo° Ûy¢<÷ôià-îÌ×"€÷î/èÇ”ÃÁŽHùÓ =3H/ãây\2 ¹‚ýKúB Èœ¡96o¦ò’ä8Þƒq (»ÊnñàæíÛš—b·ü7Û¸‹ØÚ v«Šròx h¼û¤xÊÜ´&FlL„á°Ý;ÅZ¥ 7c+õ[N Þ?)[ ££ÚõOEÀ„¼åæí·3`Úw§Þ°Ì¸0Í]+ž›ƒ_ŸÍ%¥Dw:°ç‰2ÿŽ×6­b¿­ÂÑýºW°-¸À¹5êîϤh¦ˆh5ëJ×øÀ@Q³‰ÞßK˜)ÇÄ3vë`ò–wóºvíËÿí‘X…I²÷½ñ€yÜ­Ûµ[ÿd·ýÏ9-qþœõ{0§ÊlØÉâ*ÀòþyèÂ&&^Qvóclǯô=&" ƒUEÞ8ëY¥ªË sÏK¢t™߆Õ:+=ÁF5-É­f·ü¹#Æ•&óÒ{uOvêxíÖg­·ðMвFõ97àA äKW>i¢·#/_õï¿]ý½ÌJ¯ŒšœóXíj§û~ýÈ}4"“Z%’Ý?˜câ ½!øgý]P—r‚Ñ[ÕXÔssI‘byõÑнÐJð@ýÕ—J8R„Ñ`›ÔÁá‰{ú-Ç?§I/ýÖ+ˆãÁâA“Ã2œÑfhÚšýAwŸ%š) y…æ^? Îyƒüo‰þú‘¿Ÿ44§®uLEkÚ<ŒïÏ¡#ѱÎ$úÞlßûþ]Xçý¦êŽç€;bøÙù£à 牒v‚¬Ž\§Œ€ˆHgR¬ˆËZ+÷IiW³+“ ì3Éö¿3î”®Sz§}êƒvoG€fDe‰6mè*Çô&mÆ€¡5d²×´˜æ³ÒØLË\)7æe`ΡdÍÛÒoÃÖd‘‘ÀívZú”gðÞ÷àH|~ øW"†–j·ô›ïCÖѯ |Ç hb @ìŠËÒlÒ=H9ñUã¡(HM] 1£Y÷RŠîPàÂm9N J,Uí³ â ,r—¿2º Tf²h…5€ZÇËóLÞ 1†m;/(Ú¬Žw‡HÃá3äü×HAo2†šã8„L„fÙS‚¡ûk\M0¾óeÅË5 Ly‡œ<MYÛÜ).‡F°Héî8ZHV©¥~‚Œ¡`ÓC|¥q¾ ì™\¾ìŽ.µLü7hÀ©,2S µ³¶»0ûçpÍ‹8àŽ&¦\ m†%Ðg÷‹Aý¤'1u'wõÐÌØÑo³™ŠöÆÝvòIBéïÈ~êŽ9¾;uwž÷n»»ã{»þâîüÖã­¶c(yŸû¼EÁ#ôÙhéëvŒý™vÛ÷hÚý=ý¶;_`7>¹›_2:îFŽrŽúN>'UA¹ªÔš/kÑ׊<±ïN£|³êÎÊ¢¨@‹„›ñÚTˆæÊ`£"ãY¡q9T©> t 0uhËÆs£µ#ãQEyP6v1-ªÌm ›˜FÕí^ä8Õn¨ŽÝ&é`“?ª¿;÷Tòjdé¼N~) 5m6^{sÛøÏ:9}¾J¨MåË­â¨È½qƒoÇCl[þ3>¹;? š§,È k v›å4£Qb{×*þÀ½ùoÓRŸèÑ$ñµºun 4>B{äÃu4]w§¡Yla˶)b4wœæúd˜ZÀY¿ó,¿-vvr×’ å…çg³ñùКÁ]™ÏIšhcÀóqY¡ `uxë6Š Ž×™$UÝ-ý¦üÑxØ’fÅQ¢Óº…-–×C*,ïg\¶l¿”GÕ¹݀štH ÷b0Ðì×~©Ë ôöX )ß®HõR«°`E3[K»tÛ Ñâ,pêõ½‘.nG¾‚C·Ä:qD÷-ˆŒ4Çs4‚ƒïŽa¦>¢ZÔ¿#d˜A<¡-§ªR$ÇoڌŃŒWÛ¼>Ë—ȩ׉þŠ*Ú\ÌU™‘ºwxC®‚Ê›ã9÷û€ZôíìÎxYШ >ÊÖ" ÚLje\gàðc:[ßîpDbMÇÍi ¦F€ÑƒïÉJ©`¢æq²ïÝ)0ãTÆ— á£'q_/€•—¾LfÐ]°é›d öû§ïWR(7Á±4£ìbûM8êÖž7¬.¢Fâ3ý…hFV‘vK¥0Íz']Ñ@ !CµÞxÒ˜º%˜y§;r²ë¿aÆßvƳÿ-»vänXLsþÈë ôA§›âŽ~JáÍ×®ÅÄósU6Õ6ݪQ • &_¸,£Xá×±'è{ŒVË SYTU’ó±áúuT½þ5ë A5Oë”Íï»cò+k}ßuÜtÆÔc­sd/zÔ—†êj7æilèP½Fá»Ó§*÷ÆÙvÖ hxâ!ëè±ß©kšˆš¼µGÇDÍzn7_$½E?”~ÀÃB-µD¨õñ°°ùºjgK%9+yuLi’ ê2¢.ÖÃïN_ÈD=Ö=ÌKPo…­ó…gÔ"Æw¦ záW0%ÜAÃ¥Œ§LÖ8И5V*ö¥ôkæKøks4vRþ—­š–cI¾ñ­Í4„ÎdžGsÏ'°ü„XÑÂEÏø9¸º7?àdÆg1"´`?WÉ-‚6îo D>ÀòpaŠì·ÁÑT´l€3$žåô ðXÃë—°GßX'³¾ê1<¿.¬§„ Ùx¢ã€øyz¸1>©½”|‰ö‘üúì½”çÔ÷cÒ5ãÛ™n éXÉd(ºLêXìŸÀðQ¬ñm¡30UßL¹vXKH%§›»¬xÙÌ‘À)Ïêáéñ¸YgFj°RWYúfÛ+/àx±ó=×sägÙ?¢†@Xfû²q=ˆ)_§^ †‡¹Ôö åát!›Ðdº®\Ò^ìùGWÄCu@1„è„è“d€rVaz /p³gžÔBŽ…ŸVè†ãÇA«%)‚™9KÒÒðz½½” Añ¥``’jÝÞ,FÄ£b©`|64(+DLé'ErÃJÀ¬žàkXµX|fÛäü8VÙ¼ïƒÍÔû—LW‚½Å57sžp Œ<òÛ^œÕÏ<ç=Fl>ÞàÊä¶öäšxªx…’“gµ[—k7o³>Àθõn|äÿè¿íÄ+wã“»ñ•Ýy<Ñoz3e’ïaêÉî·K$ ¶hš Cɦë}as*ý–ò;å]?N!&®ƒYG`G^wçuïŽ/dçeŽÙ›®¡\Aÿ%¦µÈ½yÝü‡K#…Qþ)¹yi«MTàr&ÿÇ™½ødám׸©ç¨D…ôR† +*ý“ßÏ,ƒÊ[ïþ˜¾—„£S.¹ßØ»oi|î:Zø5+dg¸â¡\õŒ¥‹{y&wi_Ås¿Þ7è ðoŒ¤E}AÊŸã_©¢Æl9–¡V4XD}ÔAv ߈6ÉïF£' £×Û:Ñxàò…R‚pôûîpdÐ=4Yñö¦½:BSk‹Êž]h†­ñ×+ö4k%wñ¹šûr‰õsÁ´ >¼dLω–p„pÊûÐòTÂÛk'2Ðy°RÇP(Úp>hÈ^ XW? %VýÇî€[å@ÚbÕ øƒo2£­]Hå,e½e:”Zœ×Š|ä×gò쯥’0®Úç‹@õÓ«ó˜:>Ðä—S„[óÝoå‰`¼žÀ~BéìuÆçùËsÀÖÿ;L´Ú8•T½ÍŠ [T÷è‰AIà½*¡»! @ÌöÇéY8H7Óô!ˆD6ç=oqMƒg iô yöñyºîq*b`þ™rÏ̘›ïÀ¡‡¯" ú_jDkœÓ¿AE<ÏF×ý ¨qÖœ^1 …«=¦¢š u¾?ûW”>è ê˶e‚Þ­kÕ³¯Á@à6[°7±'[8ŠÏqÅ Ö1âý`™].æéæ/÷exœËÚ´ç7>¹¬O–Ë}`×™8NÏýŠ¿10§å¨c7¾ã‚sÖ¼ £ XXx8XXXØXxXÄ[×ÅýÄ!ÿÃnýóÞú÷ç°î¿N#Ú:ÍÛé„ë©­Ã4;çRþsþöql±]F|—‘Øe$w©]Fz—‘Ùedw¹]F~‡ÁÃpâNÃIb8) 'ád0œ,†“Ãp †Cƒ!ÁÀ`H`0$0 †Cƒ!‰ÁÄ`Hb0$1’ I †$Cƒ!‰ÁÂ`Ha0¤0R ) †C ƒ!…ÁÂ`Ha0¤1Ò i †4Cƒ!ÁÆ`Hc0¤1Ò  † Cƒ!ƒÁÁ`È`0d02  † Cƒ!‹ÁÅ`Èb0d1² Y †,Cƒ!‹ÁÃ`Èa0ä0r 9 †Cƒ!‡ÁÃ`Èa0ä1ò y †<Cƒ!ÁÇ`Èc0ä1ò»¸âbb{¬ø+±ÇJî±R{¬ô+³ÇÊî±r{¬üÎ7ggÞ '/מÀÍõŸ­í3twÏ—Ǽñxñ¿x‰¿xÉ¿x©¿xé¿x™¿xÙ¿x¹¿xù=^ú/\é¿p¥ÿ•þ Wú/\é¿p¥ÿ•þ Wú/\é¿peþ•ù Wæ/\™¿peþ•ù Wæ/\™¿peþ•ù Wö/\Ù¿peÿ•ý Wö/\Ù¿peÿ•ý Wö/\Ù¿påþ•û Wî/\¹¿påþ•û Wî/\¹¿påþ•û Wþ/\ù¿påÿ•ÿ Wþ/\ù¿påÿ•ÿ Wþ/\ŒœáIˆaí/þ/ñ/ù/õ/ý/ó/û/÷ÿ®ø_¸âáŠÿ…+þî–¶ýŸþŽyð€âîJµÓ±] Æ=å°{y «“ßÝøWx§}ÿˆø¾?§+cmÿÁÔ6U¦ÜÙñ?¯!v>sÚ×ÇÝûôè]ËäOÞ»§+û7mÓ;4”}›>ÝÙŽ¼½M£wö¿Y¾ô}»s<áãövâÎyÉÎÛÛŸwÎO¹ûO_•Sw®KwËÿ‡fì\Ÿ¥²}üËN;9û·çî´—·°}üÛN»ùÇÿ¡;í4GýC wpŠT{¶é^ñ'ŽhÉn)ëöõ¥;øe!Û×—ïô£|qûúŠþ|wݾ¾r§_• Û×Wíô¯¶¯¯ÞégMâöõµ;ý­#§Ü¦;ý®+úô­ßéý9Ãmºs bSÛtç~†þCwî«ñ•Ø6ݹ¿&ÓºmºsŸÍ¤¾Ûtç~› ·ñìÜ÷€mü;÷ß"ºß²óZ·ñ[wžGkä6~ëÎsi3ÙÆoÛy>íÄÛøí;Ï©=¿cçyuœÝÆïØyn?…·ñî<¿ŸÛø;ϱóÅ6~çÎóì2ÚÆïÚy®ÝDÛøÝ;Ï·ûë6~ÏÎsîQÈÚ¦;Ï»ç)Ñ6Ýyî=Ó–ÿÐÞçß«¿Mw~‡ÞwKÛtç÷èÃÕÞ¦;¿KŸýómºóûô}Ù¦;¿S?Ü6Ýù½ú}oamÿm 4îÙÓÍ/9öÏŽüâOÛtç]Í/RÛÞ.¼»½]мC·ûšŸ|{û›ËövÞÂ6Ý‘•ü–mú%y›f©lÓYËOßÁM]Ù¦)w·éެæ'ï´›²M>nÓYϳs]4Ç6ܾµüoE~èÎþ­ÛÔ¿ëï?åmå;tçü½oÍv{ÊÑlÛtï¯oÍ6MÜ9o§¿}k¶iêò6ݹ߿¾5ÛôËN;;Ïë¯oÍ6ýæ¼Mwž÷_ßšííœßë¯oÍöv‰Ûöv)ëÅ|k¶·ËwúQ¾´M÷¾5ÛÛ•û··+¶éÞ·f{»z§Ÿ5IÛtç[óoãìåtjWç`´ˆºÓé?(ÿÖ.„§Îœ8áä¸eLâþëÁ)?g?W·­·÷LôϬmõ‚µ­QvéÎþ5ìçìæþqŠ·ÝI¬™müëÿ¯ÿóF¼Ü½1Ê“dg'Ýi·3ÞŠÂ[Äù´»÷cŽó;E8¶þ8”8œ¸ùøp:}ÀÏ猷Ëî[§Ù‰Û ˆJÊH‹HH qˆ ý}Õößÿ¼Ê)àÿæ*þ½«¶žáŸ%씔ĄþÞ”Ø9]ùŸ®IlõÍé”ÈŸã€ón·$í¶.ÚÛâ·6|üܹ{+qý±0EÅÄ·þãÚmçПv|Nm5ÀÅÁ±eIpø9ys=Åáæçs‚Kˆ#ÀFÜNˆƒë´Ï?¼ÄþaqÊÖ›k·çâ{=çâøã@(üs®äŸs9¶]Ší=Röüu¡Âߺl݇‡«÷i¿@ ºÄßðÛø[-ìö—ƒ#h‡ÅúïoÀÿåÛ@ôçmúcNýëÍþ_´ó¿jŸÜÍ=ÀÕEßõìî[G²ófcÿÏ 7±þ§GFºó¦;ûøþçËÿï«þCº0ZÿW‡°·þ·º}‡`û ñæŽüàýK,éþ¢tmco_G²uéæÿ¦+˜VÿtGzùwxþýxÿ¯[ÅÿëŸò¿(þÿëV vZøÃ+ìð ;û‰þŸ¶úï³1g‘ž=îãåjòß¾Šþv¿†XXÿñUü߃ÿóóœßyÞïTÚÙ‰ÙðßÎrþ/; ¶?oÿåþ?_¼ÿÖŽèÙ‰»õáúoçÚlï¤ØÜ9¸ºCÿX?Ø».Ë_÷‰9¶ëü{ÿÿÅ5[ t›{<ý_<Ã_ü_ýuúë1mþÿ¯›{]ØR ÿe7Ž’Öÿ²cÊXÿä¾ÿ¯gÁòÿÿç_ûÿþ·Ó.õn{˜» ø/÷L¸£÷ÑþÕ9Æÿ}G‰þ¯nœùÿKÿÖ ÛÊë -ÉžjþOü=±úGQïøûrªÿPÝÿÙcšÝÿ·Ÿùß âœöù?µð_~Ø¿[ øÇL ùoG¶„ÿcûDÿ·ííšÿÇv(ÿoÛÁþo]¤ù/æÈâ°þ~¢¬ÿOžè?=ýo–&Lã·ÕéÓNG½þ›eNzꌟ¿k€¯È™S~Ûä¥àL ùî¦*~3WªaÊQï.[ÿD…EŠ¡ÚL½¤81s̲êß%N2<~—€)ZæËÝÏ0ŽF-“ÖaJ[4Geï7dˆ1çï¦Áï–•ÚMƒÀ”u³ªsD?ºÇ ž'R£Vûî ÃŒ«¨-föYßa:ÔžÈYðõÕ;Ôa;¾t‚u¤›“º“IbÒ~”±µÝW†~þ$fŽô×Eeu›:C²¨«žá=Õ! Ì4ÿžœ‡yÅ4Qïó´'ëšV¨ï±ƒòiçK¨ÿC˜­Nì[4Ðk©hq! ©ä\ÏJÀ,ë>Œ%¦_u»êÒ9þý¾Ùîw6Å{oywÍ!EÒ9}4“•”eN<ƒæ,ÈÝÎ\|‰h´#õ[ %Üøú7XÐ 5ñ>£÷{˾¤¿úðûW`%Î ,-Àa:K壨¸ï~úˆ-¾¥Ê±£K\@(r)ºeˆù±[å~R•‘$}_ ¿hû2@Â(:Šñ|¼8JÔ-øµÍ  ¾!'Á{ihãýáÐ]¾H¦8‚ £ äqùÃûË•®ÀXYîÆ×«ö`|Êþ÷ªÀIñäönຊI=‡í÷»l¼c”N‰TûH«Íph2&Kù’BWT…Ò©q@”—©×H´ ıd5éã°@"¤|ôüY’X=ÛÐu¤W.Èl‚ìå‘õ/÷A~!É,çÆGP É£8 èqàý)/GP~xLˣ$ž5‹¶)/Pÿq×ÊÇ4]|ž±€6θln&1è|LÞÔ¹<ºÇtUuòÀ!ô‚Š~ôWM>Ò¼ÀC÷7ÇÙ|î‚‘ÕݯY&X`¬'ð¥ÂaL”ØœS3A?9v0;ØÖÿ)þ2˜³/ áü° Ò·\ªé‹ZÑ+`9t]]c(¬Êì¯ýlë×b’%³x`ãedQlÀ¶BµÏ¹ZfÁ¶›^*)öØ}íëŸ'y û¿`yRrÁLÜ-·Ôp©ú#>k4ªöÕIOdE𛑇|Æ”-,ºùÿW-*ø4{æIÀ$Ê)è4¦Å”9ÅÐý»çí¦9ì¶³[¾~·¼oÕ\¾ág’½ešvʛ֧¤X™ÿÆ”Ñh¼]ŸÌá׋Yw·lTsÄ/R‰Ü臓•üi}ÔböÍá4 jUñ8”Õ鹿ö“’îídÙ¨ãYÿ#û-ù\¾ÜèÙÞŠºlÄœÃq îÅn>ÁæÃ¨ç»¾ý’Pê-ž"ˆÒÂC}ß"_ «¢þ¡Çµ^j*hðàþ×by%h(b¥÷ê~̲º£slzEWÑø˜ü‹—]hb+ƒMÚÞ²ºWÈÅ9r¥ÑLçûOÆ7â0r9?ÿë¥u8ZLá1Y1}Ž–#Žb/rf¢Õ¬‹‚øh×–UQi°´ŸŸOl›줇½ûWŽ£ÅfðFœ¼°óAÉì…œ I@T}¢ÌtHÉÏ{4ïò«,]ÉW^%ƒ¬Yúc# z,F_Ã4òžX1ïòŽªÉ½A ø45ââiéÂjfÚ‹D`a1“²góv’®Žwçïç˜KßÈײé#2màYc&cn8 üâåÜ^Qþ ðRã öþ6BoñÚ-ƒ(#MØj›ˆÓM,8^‰oš#Sr uçBÖhf Èñ"S²k ÷œÒ½é•$(tÆù¿z8 Jú#ÑÇí[F3BŠW€Šy…ÈU2P­¬Ù¤6uS•;2v1 1©ÂUò4´"+?,ï—[ˆ`m#Ð~WÉ:G(/¥šø‚.+;{Z<^XLÐࣻýƒ&v`ürγôx˜dU+êÍÓæ³‰ÚÆÁlUàÃÞ8°à‹}_r,-­}]«{^%žué‚ËçÇ¡`‹»&ŽvjîGâöý5ÂíÃZàP¢Àö¯$ó&7ˆÔ.«0þÂA«õ.í®<¹ëšMÜÿø)jmÊ‘o®‚XvØ;Úë< >ô ¦áp9H²É=“`)»gš¼+@úµ y¡„ ÈtÇÛⱂÜþa;‰h·”ïû¤í ‘TyfÇ£àÐÞÝ ŸP2›úXÚ稽wÙ¨”UjhÚAå ¥7¿ÝsP–4s5ÝÒ8…A=D,ÿ6hü®øÖ&v´ÎøOÚÍ€ŽÌu†“  ËwÙø y1 ÈW$)ƒ¯•‘ÍéÁ`t¨ÙôW™0޺άûL«]ÀmóãKbTÁòùCŽ»`Cóp”pC솯û¼éãÇÇç—»ÔIáèé÷{¾ŽË»DªpÀ÷ÇC<Ü´0} k܈ º±ãZÊŽ£ŸW_»Øø  V‚‹”§üQ+…oÉÆ*f9÷*uyeßg'Py½V©ö×=ûqwYèxÁÜEÁs¨ŽþFyŒÅ[ŒþÙµÿzß"ÆÅAƒöû¿}½€F\¯¯uAc…­sw˜·ìÛ¡á'¾£‰¨çï¢4ÅPŸŸJŒ¦*d/ÒŽ-¡i;ÚTgßD4'mLhfßýðöE4ã.cjT„f~ùïIÀE³Oc>>Zž@soŸ_<‰‘˼€ì¤µ[h‘ðË'—ô*´ÄydÒ*ãZv¤Ôxáà‰VÞ:®¿ÉÐFk¸ÌGÝÜѺwK MôÚè'96Ÿ X2¸V·ö96yÔÀ‰3b€½é‘9ùñàR÷D ßK<ƒ鞆9ÀÿHÍÎùc•|gVv¯‹K²2€ŒÏ‡.–9ÈGŽ–ÉçмôO„_³€²ö”&þd *$ÿÂïÔårŠª/¦ê#‹“Á$ÐÖ¾:ivè.ÐU+¥%ÝÆú‚F:ͯÀðκh °¯z x“íkÓûKY:/;gÔ öÓ¶¨ùÒÁþõ¢‹‚ôeÎÁ†|ÈX—²:òM0ú‹ƒÞí¹¡p|Rñp½œµX× s´÷ÉàØEÀÝt~¨#fxú Œ´d÷%ÿRjÇð›ÒÇgKƒñ#kÇÚ@¨§9¯í-<ɃÏ¿¡ÁÒK–cX âñ+ãnˆáy0ˆ,±>oßWkv Þ¨HÔ­e…6Mù ¹`ûíÒÅ+ -rkáN“È\PÅ_Ù•Ãçb|A>ì1™«œ2wªó R%5\<Š4ö!ÅWÏò×U³xPeº~¹Æ_ Ôν I­õµ[–kŽ‚fÌ'Aë5Ðö¹é™> ‡]]9¡à z÷yâL@D»èæeõ¾áÆ|¿9¼“Taiÿg<`æv‡Û`p,4½gŠRÏ•¥¡ÕÛa°y3D¡ÒyìÅCŸ]xkœ¤­š”6yhÌ7û’P<êÄ¿œ›Ÿ’ŒšºoPô2£ºŽF>Þ…¨æX5«ˆª´OSj—˜_°á¢ú¬_J¹ÃP£þ ¯!Mj´XF¬Eè‡åiíu:ÔR™ò.û j#øñBZ_µckÅÜ=̆ÚßXê­¾Fí“ ŸãÓQ‹¦É¯-yÖ>*Ál<‹:ÆXo ¡ŸßO]JÍ@…Dyö£¨kñö•“r+¨‡ï[›I .êY_Þ<°åÇÍI„gV¢~|žc½ h@^­ÆŸÿ'|r‚Ù5Û s XÝ:q Tú?cX·Dc)©òcÞ _ÍbéçWѤøu¤LlŒ¦~᪻(¢;ìQÁ2e4»Ìòf}šO»³ÇÍ„£x©uu£ådÿ´œó~hutÂñí7´¡ï‹•µ%—Xg›oåý~ØýBU6®¯«„ÓÊàs2Vy†¨ÁÂÐÅÎd š4=XD]¤Ä¥Ÿ,¹¦ ÇÊ ˆž üIû¨¨.•½’ÿÔn…™Ž·€¦Ù•i6èNqºOah¬üó4`¬m+ÌÅ¥ûïÈ6Ë(ß»éÔE`×è°%;)S×®w\É.‡'ê$À½0m4"¡¼ÙæuÀŸü-×ã-+´çsÙÓ/€Ð!9bþc ÒÄtÏ‚©Äêן9œ óW‰ éÞ ¹Ø`Ú);¿4hÎúUÄ)_ŠÌtA•á/NàícAÕ™²#'¸ñPíç;‰é2¨®šsòo ªOÌØ§ŽnTÞ7ÍNG"±QŸè¿£Æ—dšIÈPÓeƒ°ãì¨Yç‰hÝ52ôCÀ§ÃpµÐÑ>±:ÔJ}¢óPj.j“a¸Õxµ›·ìc-´D)÷îs>ªA¤¶Ãfšk¨ëµ d~‚ êa^­/SnA½Ôo˨Qií“Ëï¿¡~ÑJí#—kЀO§ÀI¶h°3/ãpmvÓR{Ô†F\¼7'ƒÆc°ÛYÑoÅø#™'³ÑdèÛ÷î>OÐ4Á‡’ÏÐŒ­Ñ«‘1o4[U’ÊõÍ;ÎIÛáŸG‹49//ÝGKsÙµæl³h•—€„]­k\ÀR¥áE›%Õa²×?¶²UwK5 àŸ£µ¼£ëÉןÚU¾„¬@¤á;Coª$Žïhó¬ÿpŸ¾íP\üRÜ—ªTâiÔÕ4@]¥z?Y hÃO(¥ÞúØÉ¾›jOq6p’2¨öß–×~è8 l'âf~?x“‘o~×+J0[<<ÏMpÏâ¾¢Ô-þ<àžO¿¼ ¼×"7gÆ]÷ƒXùùuö1ð¬šVÇ3)ñn|Fa©’·U=rbËŒû¼|ÅÖ¸YÖÏ./f?P¡Ééç!»ª7dÕ—°¿ÐF«Â²ßäØ~ 5û¥â}"hýc¨Riu2Úܯ“ÿ\à`¼¼Jž÷°Y˜K~ËÖЯèÊjÀY­ã¨ÓÏϹÐM³ï/ç‘Øïk’tf¢XNÝâ‰ÂÖ`±‘g¢%À~€Q'ÞØKÞe§ÓÇ•w©û/O§ð}ZaÜ'À9ðMËôypÅã¿•WîÀ„[7¾ûû>—}^û7½‹'sïJkO »ð7Š\š’Þ¦Åx©r1p ïæUê»q°‚ßD†ü؃ZA솯ɱúg^À}hMYö†_C@ЏRá~$H«}´*ר’»KÇcÉû@6›ƒSe¥äæÉgã:6Aá{Zôø98ô”Q êm>(QQPË<(íæM¿¯ã ¬êì\*=*ªA$9‡AÕ‹}ÿûP{œYQ~ÃÔÇmßÞŒ+M÷¨ˆA›J¤†á[0è ÞÕM¯ÏÝ1Á˜èÛü Ï§j•Þ½ ††ÓÕÃá©`ô¹³$ˆò"˜È“˜À%/0—ªØ÷-Ì«ÛDÊÒÀrôâšþº9ØhW)œ¶Ÿ»¥ižÆ—ìàx}À¥0RŽêª-» .6Ç2ÓŸð¥ŠD{4_ô“ëÃjþ°fô5u<¢TI¥ÒÚÒ Dô¦¼¨Ñ´‡©à>ªã²˜K_A•¢‘%FÌ/PY2’-D¥rê"Ç~W¢Ò’£G?:¡ ½éü ¨æDÁñM5Ô˜‹ïôÙ#µÓ³yø}F=ÖgEõãÑU’Cƒu!š=k¯)ŸFÅ ÇyÅ \ñ’‚~u=Ž~Û´„&ì —ò®£ÉLŽ^å$^4å™BóAñ šªºi§ñEM³›È².ò¡éKãÁñùhz}Ðì Q5š‰5ñ dÏG³–¬U¦‘ßЧdzUma4µª«æÐˆæ×/áŸáG‹T5¿é¢ªÑ’Nµœ,±Z¾óÀðºLZé[~«ýå8Z;ÜýËX[ ­g;ºê_ÏC›ÊVëòý€u†Å{ðG`;û÷œúe8§˜>wêîûjI2E'ÀÇ ÎJ‚ Úá@D.Ö\)µ2@e<Áû *¨Ê~xž·s¿ñB& µMíÚ:œ£®ýg€ÞØÝ½~Þ.ÉŒ,>1_ŒNãŠNùÕ,3`j]¹n<ó˜óN½”ºû?¬Ë[]N–·]W¿¬ëÇ__Ýf[ñ1q›ËfÀ>z'¬ 8\$;F œ2 9¯7Esê‚ê*þ4på Ù[ñðwùuúàù²?ðÙàíMLä‰þÿ]oåöaÓÝÝÒçIIww("‚JˆØ ˆ¨ˆŠØb¡Xˆ‚„"ÝÝ ÒÝ /χçÿ¼3?®¹¯™=wvç>®ßñÛ™Ý'³äðÇ!Æ+eçãQ¢.Öÿƒß"JÉ.*;ñ£ô³*Å~ï&”å6ÌZXA¹Ì‚Î[(Ÿm<æF¸‹ ¯/†›s^AÅ” À?ýѨ”-cûI¦•(]•·÷¹´½]0ÿÆÕ&Ô87›áÁÏÖÇŠ_† ækÚøàžrÔ®Ò§)‰Fú§#G¡®cý¹ÎA-ÔûÝžPÿ~ º‚·eã¡Ù«…ZÏÐèGêœÛçÏhòö¤±yš\œy»J…–$ÒâÑZë’µ¶Ú$¤h=ð¿‚¶ÛZ! W¾£ý5–Qt”U: LÞü?;¿œ[ቮ$»]Œ²èßsƼÐódzv‰¯Pà¨hñÏ3z0Ù}{R…ýö>g.>N™Ð:©ÎÚRÿ}Ÿ¯£4!PÏaq+Ç¥jÀ®žb%ªX)Õ†ŽC…Ïõ;Ó¬P~µ¯s“ Ê…¿s-µòBy€Õ׌¸¨ ¶ú“ÿÚªNK¯[|,‡ÚK"7\»¡‘)Få&—#4ÿfyÛ*-Ý2öAï íø§GŸÚ§ ½éoc^tª»„ïþn®€¼gq¶ÝŽ'¯¹¬%A÷Tñ¦`¼:ôH>t¶Pƒc¦ÈË·CÏÑò®‡г9Áúô*ôÖ³.¾¿ª }ß·š>? þî<®µ7DðGxàÉN$ Aÿ­Ê0ä@º¼ãÏ ÃžA³±üF0rWÎ;©• F'Ž3Õç³ÁxÐPè-+˜ä˜ý7$«Ó\j}·aV(v3ã`Ì_¶ÌŸÙƒÅ»æù°Lèȹ}VžJý)‡5‡Fëç>Ø€4²Q¦×°e>ªkª;±ñ‰IíÚðoB×!Êq ô~Lj÷t!áçaV–-$VŸ[»÷ï2’L-*„ñE²BsßWH‘ó.Ò¼äR5¿=LÜž‚´´o/ã2Òû -ÿÖ@†•§ ÏÙ{ÉÈBÛH‡™³nß !bEVícªÉ;õÈ6"õþ;—r¤å|,šÝÏŇ4’ÜsÈó£è=òÓ~{¯¢.‡ͧ›N…›£Ö½XŽ1=®ç1¢†¢ñÏi¨ï¨¢øyµ”h?i”xÖÌt* QjUfìq¾6Ê^ã<èA<òoJ'Ót=QQ(ì´ð‚*åg•'PD•Ó*Î}Fr¨fþBWxá&4—lŽfFÍðúLvÔn 0½a?:2oFkä¨Q÷:OÞeío¨·,ûà~¬,œÌyÀ)›ƒ‡6L3#uÐ(!Šýïm4Q½:v¿dM§5ûDÏ¡yú?«íshyµàØL”Z+Þ›?"†6b)–¡‚Jh+P,@uíøŒÂ ídОï·[n-:1o¥8v:©¨º ãô¤n±yÊÐÑSsGëà~_’u$¶ü5Y\7vÆ)¡’̺@þÌ+((ßÉs¹ÅU |Åc¡HúSøÁw•P q¯®~ûkgëý…ßÖÙÙüTÜÿí Lôx|Ò‚â£.¨^øßœ Ÿ˜çÖ  êØyµ×D\û<{·åÊ@ôÈ ÃÁwÐ@ÿvzð>@c£0õºÆ,4ýºÙrô04_+?yƒ(Z„*: r¡¥¸&á®@'´úeò>¿Ã mŒdÇîWCÛ?ÿ¸„Ð>Y°\­ =fÝ9й½ó~v\ºYW?ˆNAOàcãNÓrèýu#ñfôžÑu¼ì¶7¤?2Á ·ÓKR#r&ºsJ †Ï˹ÁHÖ‹Ìo‘Á0Æåý= Í~%M…&ÝËž~-‚i#ꜣí!0ëñ#Âéz!Ì(¶Õ#†Å›&½F4[°Ô³y;ÒRVô.ï5¾< «uÁ“áëglÇŸ>‹†MKæg?xä`ÛAðÖo–xø{ýéˆÑ¤;ìn(°:…#A«pJZ'Y·ï]ùXˆÄ+¡wTg©´˜©é¡Çm$Ï ?jw)G ¶Ï½BýscsjžH×L2àŠ³ÈФ}÷š3'2y‰ù]È®D¦·¤d~éÿ‡9ŽoŠð^F®u^÷’7§‘·é$•Ò›\ˆÔ’½ !‚Bzµ³)÷_£ˆòÍíÆ7m(æR,ø•|Lî9låŒRÊ/çÐÌe6ZtÆËQþ"E ñkTä°ÝzØt•ºtm ß¾G•üÓʾ玠ZõP…1˜¡¡õ#2mÔ:|Ä ånÂ<™E°uê4mq>Ø@=”øþÚ¨_V4!Ö͇<ÞoæÄ ՙ޴¥ h\WZ2hú²ÐŸþ9šßº’®ƒ–·?tj—„îûb¥©¤/Úii[e#GÛèr5mB»—ÝÝ º\h_Ça=§‚»ÓŠ]E]è¤vÑ_E`Ô٨tÍÑ%³çËR^t]?ìû~Tݵ‚Öäî¿DØà¿NÝD϶w¢N6ŒèÍü¥9P‡½ œ\Ì·UPÚÂj—'6-ž§ùf€ñAÕ#ù»¬ÐW“Â}(:¥_™ ´†Ö•Yµ£ÜYÐ|‚'Žáu&4—ŸW!„z¹¦¢—wÕ îtpöX?Ôk>`Žü—N}•æWÂý[ô-Ðv1Tp8ô:tùn}ev¿ }[µDSžoapnè¸ÈžŒDݼIÌã&ßûw¹`êbì@Ëm˜ý8tˆ‰v¾Y߯c%Îë”N°L¬óÂï',§¼‰s„\þ+¿º+uIF< «—Êe+šÑÇñÏÁŰÎzÿ9Ì(¬/»G-QÊÁÆ%OÓkØÞ1ÝkO‡­ÝC<=4°#ñ×¹Áõü=}-5*s þuxßÞL„='}è:l‚a¶ÿ¢Â‘Ð.¬g’V‰Œ­/ÜR$öä—¨F’ÇÇ·ŒD2â¿GI-^ y’1w“&Rê-hýbGj†Ú¦Ïo®"ÍÊE–fÁx¤›MÔý¸”† 祗<&N ãµÕÜ\dºÿº‰"ë32§ýüd6,Å¥‰ó-ÎÈÚ¿ÝäD°ÏÃöK‘»CÈÁòåÑoÚNä—½•½çŠ\Š\´7æ[£ðš¢ agÝí(òºtÝQ”#B¾‹Ëd·ÿ‹§Ë  œýVrzaß…é4¹ ` Ym6 =÷úeH:ŽÂ§²wŽ.£ˆ Ímxb‚¢JzÖQ(˜¡÷|xųÌê·úPBªõ[Y-J6 ÓÜT“Aéçqˆ&Q6QúG³³4ÊÛšíýâûŒ Çß™(· âMuÑ oé}O$ûø2=•' SœMPUÀ7t“ýª9;ÙØ'£úÝa’§A÷ñ`̧ùSv¨ R•Üýù¨U'sæ#&B‚ ëýï-ûýmÃ_Æiu]¦ÞÕqüE½[u3yƒ¨ßÛî™pû"2ûL¹{ ÇΞ¹vû>¿&ª#H…¦I÷-+*¡ù—Öåb’›h¹C½"÷C­K.×û:¿G[ñqUZ—f´ûzKÐ÷:¸_²|uñ5:)þ”^MÒB Û%§tÑ-‚üæ`azR¹÷;³£÷9óÆw«gð°‘jF€úÒ G¬¯L Ø-)bûÜç°š¬npâ]"ŒþÞ»S¤ÂZ »,_ŒŽ|!…½<¹åüàr$¨¼F±)Ƀ„­¶¥·)M‘˜ŒA^-µI\úÜmµÎ!iÝý©Ê#2Hnÿð®{ÒK¤˜Ñæ =ŠT÷šßŽç"ÞV©M¤#ÕЯï0FúŽÅ¢™ Èп¡íR‚Œ½NÁILÈ4¨öK8æ'2+¯ç A–ÉJ>íqdÞ]䨤B¶ÆÑ“³Ç‘ýOÏÍ¡KÈñpÕì¾ýr^R³šúK€\~ßÔ8ÜAnWÕáXRäqñøìG‡¼G^1¨· ßå…ëô×yÿ8-½¸# œÊãîÿYϤáy!¬ï½þ„…žºFç{1¢pÌKJ“*~I8óZuè6Šf*„¼<€bójG†BxñÀÁ´A.Z”H”ÚIZ=ˆ’³ù’ÊùoPÚ®z̧ó%ÊÔ¾ü¤ÐdžržN¶¨l£|¼°+;y *„|=÷CýØYŒ¡Ò™cí}‚¨üõÆï]TT°ª“…jmbæ¶bx°Œ¶”"5çò ‚Ô ,®±žÁ Ô Zö½bˆºÊëÏšQÿ°èÓºîxˆžÖ ¥üѰE W埿µëަÝvòu.ïЂõt_ß—t´ºè8th¡mHþ¤ŒN^C[¯˜Gƒ¦7ЮþfñÝõrt°#Z jGǵ^‰¯èü;|ùK·.º~û"Bi/îÝU2s§Ñëàûû’FÿÒø…jÞ[0¡Ú0M =ü ¤ <Ùв8Í]vešçKÇs¡¶ªþ¯Îÿü-ï2iûyŽ}¿t0ÎÛ5rßsôgÏÖAY|ž­t>”©ÛÍ®|M„²è–ít›ý'wÎÞù&TÞûøÙj^{ÄFêlBƒôB[4uý ºõZŽøG»×FCëÜž:g´›Ä8Ö„qCG*›¦Cñèlxö¢×Ѻ>Ý÷E ÝòRïU9š û¨Ú.ßÜOè>½™û^ö.tGåõ'÷šC¹#_:ô4æw´Ì†Þ7Ó#Û†{Ð÷k2ó-%ôoks6Þ„?w)ß.äêÁàns˜ö†¡œþ¬·îaxŠk93ÂF¥Vù]c7k¨yaÂïˆïG/˜²¸º÷•-f‚ú5ë.³À\5‡æÃõ󰨪íÀ¢ÊK©MÛt`E[“ÇÿÌXÝ`úd“ðÖûÄ_E…Íi›ú±FBØ+º÷àü»ÂôÑü–0Ð&ý®DÂð‡ÉÑÓHLž[FÀ‚$ß+“/¥Ç"ÙõïšSœ H¹ÙÒº€T£˜¿rª!MÛiñ½Š¤—µõýq´Ú¸<]'A&ñÎ’.þ,d¾ÿãïüIdåv3+#ÍD¶‚òO’O?!Ç탗3‘븭úgGJä‰r}§h~ùÚ¯/{쉡À÷#Ü„ÇQˆSëÿëó(üÖ© 5IE]G|4- P\ïkÔ 1 ”ð&ŠhŽC©/Â%4Œn(«È1vxžåÏÄ\¢O@…yS y Tºß;p—Uä4dÒQu¯X#‡êª¯OÝ ­@M® Y™×‡Q;d8Í¡Zq3Úo%ÿ-ê:ìÛ\¬ê:/Š~¥CƒƒŠó´„x¨ÈÍá´-#Ù[\ÿdÝ„ÆÛ]¹#^hú)±o¤úš»,hÊFKƒ•²Îð0´f§ús^mh$[Q˜£-5u­™WÚÑÄY¢=ÓR˜;-1:ð*$DG‰u]µ;®û>ù¸nPô :øl]¦wDËÑÅCMèꤞævñ º¹+¨ Û5£»‡æda¦"z¸\õ—" BOëÙ® cQèu"áh09r܈š××;£i?3D4 =ñÊ= "hÿmOÒÕÎ$ù‰  |lËJЇJ%Þé½–A(šüûIªš Ú鿨/úAþgRqR‚|r#²ãDø5ò÷NçŠÎûßÊ8¯ÅU@±p«u_Ësʘbž6Ž@¥Ä·ù÷æMP5"®P…û\&, ¼0º“Ô‹áÐ@B¤þBò 4&é¿ÀîMW Í›ºC3ÛuŸä{hþÂ2n¡öZÌÙÞµÒ³C+Å­¾Ý7±ÐÚÔ4ÇT' mùÇ-Í:ŸAûk ³? £ðOźm+t¶Uõ*߸Ý"©Ä·‰~í÷¸óõM©Ð;Wd9kã ý羜ªi ‡?îlÝA 0øVåê …\*ÑР߄á-oí¥Áý÷ÏGÿQ·ÿ8ŒõOäìÔ†‰»º;ú¢`êLXyuS9ÌD”¤o§$o:5DÁ‰ë§äQ¸©lY’æŠNܼóWÕ(`ì½)v”üúÂ{±xeŽ}{¤~òÊË< ¦z‘ eÝ„3Ͼ¡RÄ›çg¸YPÅKîDº-ª® ‹¢să÷Ö;XŠ&QsV ùú'„`YÙ 9ÔIPß¡ç?‰º;äM¥öô¨™à?[bé=’qu ‹Mg ú^ q )ÃÓl4u5S6ñ#DsÓr{Cò4´´]T2¯vDkµ»\ÏIÑÆÊÔ¼,”mOùÒ½ÕìG»dÖ7ÙÁUh_éÿod¡#AMx¤|:áxÓEËBtŽŠ~ýu4]*9,%Oy¡‡ï›ý×íšÞ³€ïW6BíLÐóïZ€g[8zK«*ìüœEï>i?ݳ(¥@ßœUëKÄ5r±06­uæõèͽÍñ”Ï:œ“UÄ”)¡UÛ[L.¼šÊlö~>5†ƒÛ§*|Ó Ž2jœúZ7Ôé娼8µÿJ¯Õ¼? ÜÇ\×¾±îç׿«qh½×õ‹õZ&tZ êÜ~Z½?²Ù(Ë`PA—лç ¿áϾœc¦ '|…IÛå/wl¦aÆÉUÏlræ•M_I.âɪ%%,‰Ó_§:s –ªlõ€eëpË5¿Xnÿ ;¸Â+—?6©{«0’îpõ¬‘< 狆µnÉáéÐϘúPßtäO?»—c'~5×¹£ G‚Ës>l¼f­×ª‚B÷~mŒµÜ@á#RcAš¦(¢ÿñï«6Õ,yýØÅ쯿-y‚âüß|B ¢ÏÃ(ù”ìnìJ;ÇGú ø¡¬†ÜÖ5Å«(Ï'þ™.0¤žùq£¢nÎla*V>DÖ ‡Ê·ì—Ú]P¥¨ä²¹`ª®ßýàîˆê²Ù¬w‰ÅñàyÍ7K2¨1޾,9¨uݬ›ûޱ–7Yï~¢ŽþÍIçwQ7ÄQŸ/ü+êå?Îu’âEáåû¤7xèKÖ·[N:häciíœÏ‹&@yÉ?*ÍôŸX]º÷-B.ë F. Ucû­ñþh£LY7ÄþmŸÏ¿{þFíÅhnLU¢C}i›²Z:=|*%èPŽ.7½øUþÈ [¦^¿…@(zrWÝQb¦Gï€7Í?¢ÏfÕ#,Æ#%ÈU5Pôq»Ö?fXñOò“±±‚á¯åóµоô÷°=´+r ¶ÇGCsÙÕÀܯ«PÿÍŸô Ò#¨&;ÒÈ$°å=RÇĦ«¡ 4œê{²÷=rp²„Ñ*’½ý>5 aÃÐìñÖoØå$ttf*ÄÏÐOf›~¬v†bÍ&6î[Â(½ÏB:W§¦Íeý¹  5uòcWaÊõFiá&Lÿ&â~¿³ÑïO¹%ÀcwÚ™4˜ëpÌN]4ƒù«¹#JfT°`ú•øÝ—Ó°(P*SXu ³Æ…¥ã4Ê$#®°,vŒëUV,oœ8%æ+S4_“ÉÀêrÓäí3ä°ÎkÄìA3ëÆjç`óu®,­×yØ&ZÔhLú;…ÜÜ©ÕðwŠàîí3`7Nœü‹ÒHÝQ¸t¬ •n¶kU²!‘Ìz-$þZvp¦ºI¹Ÿß.d/F²§»æ«Pˆ’O3„m²šh6ŽöRyµø !í¿·3†ny(–Gý2'pÐf[FFß ªù:d:þ7>úe 2‡\Q_¡E–ð›¿;9"ëé—}\MÈæ+¡Wžšƒì5Lž!1È¡ò¢áõR(rò‡q]%u@.z‹ÖðÇÈMüy.Þy¨ûÚ™„!/·ýµ¼H&äS;ÛWzk¿gnc¿ÛdP`U7i`… ?a,‹¬ …Ç}â¼ÂžŠ\Wz¾¢È‘Æšôì:ΖeË–B±_FÅaÕÍx€ˆbøòÏ»(aלpåê5”ü'Àä!ŒÒTµÇ-ƒPæâvêÕªƒ(G™DÿGå=þ5´Òê ‚ÎHp¹u/*JL,P£’JÃy‚ø`T¦¼nhŒ* mÓFô¨VÌ¢b&Gˆ{kù.ŸB­ƒ¾»'ì RK)Ÿøjê4=4¡F=§gaÞkGÑ€ìLZõ<Ô­§-¡ŠFua·=¾C“ÞVÒk4§;Èéø)-O6°³Eës55n—Ц^oÁ‡ëÚÉ®IIßGû—½LÌ'ºÐQh®u6ä:ý¾¦ð×ì6ºœÛ^~=+‚nžn74* G˜™È›µ8ôúýý.áQ1ä“»ÊkcŸœ~¼˜s‚®Ïcmò yë™`¶27Ô{1íeÝZ…šó–Õ×d ò_"¼Ú-€òW.<Ü ìXиi”ÞP—¦ ¥ækk·H 4ÅñÐgÎ,(s{9{˜.*2'ÛÉ¿ BuUòÕyqv¨7r=ü€išŽÖVÔ†æ¹7™#â>ÐjÛyÝPÚJhû{iø ƒ±eïs¹t*F¾’uõƒ.‚<ƒ5ó«ÐþÀÑô½?t¥t½uKÐÚ_–šî¯c™üç ›µ\À¸(º[\‡IyT '©wÃhíô¾à0Û=Ë}MO “CaÀ-éì,/ ²}N:ñ†Í.•<ž€a]²è‰+0rÓ‡øyá5£í};Ý= ã™Ýµ§I`òÉ”®˜µ÷þ9 1Yô æX†~êÏÑÀBvÖÏ®GT°d²{1mO–ÿ˜ºÐUZÁê#GÒ÷e>°~þ½–È…°y½ÐõÂf5l–,&:„#{lņ°—1gy1  u,8~=D¢ê½‹kDŸäâ‹÷HfÍÁ9ߨÆfbÞÂHåãUîêÞ€4O/|в¸ˆt«W{„èì‘!§ñõ“6Yd¢8l쿷§ËY¶¬¼—èŸ Û¯ô7¼bÈáTú‰€îri>2ÒEËÕTÛG'ï¹§vl/ Ü·=šä†‚kãMb^ßPø"ÕšÉ!>•’ȤµAqñ£9ã&(!°¼|G¶¥ü8_DøG™!Ž»þ]¬(od}ó`ÿoTø)@¨uÄ• ÚÞCå]•HVoTý>ªl*zÕ_¥Y¸¸œC†2P›ÑLH; ñA1‰·ê [Ä]m˜G½[×Ls:Ѐd¸©dÆ ÝÜ8vĸ86R£™Ð¸À®v€xMOŒÇΜ¬Es…|Ò7GVÐ’BB°4à1ZmLY½¹ŽÖ+ߤüÐfÍI,üÚîä&^ÿ„ö䢷öì¶ÑÃ’>è3:ʘ=L”¸‡N/dô¢ÐÙíÞÄi.~t ùQ=(‡®×¥)c¾« ÛS…„9¾"tÿÏÉ©Ž¿ó¿\cÖGÏ:e_×´Óèõ—ôù Öed?ŸdoñFô‚IŠO@›íE—+U†Ð Äû—hïÃ>_ojôø×¡¬üÕ hI"”(ÆÞ¸I0 E”jÉlßà·uÅܯ¿”bžÏîßÏ?ßY{<¶…ŸgõŽ'öùþ·ÿ[07Âì3èšw]ÿoN™tŠCÁ (Ÿ™Nýü0*¯Ï½åµ†jÓÛn3PSÛyLÍ"êÔ‡ŽrîîçkÛáаê4"â MÔÔº¡ÊÉÐôÈ (-OA³ÂyŠ;ÌÐÚ£‡êÞv÷jàß‘7M;4°·t "áñÛ[7h÷Ú÷C¹‹H’¯(rN"ÙëÂHb[E¤È£‹çç8ŒÔÄms’³‚H{ú)£‰‹2ÐZ', Ó côPmy2ËÕèt Yfó¤Ù¸Ýqõˆ¸:r6ŽÅˆ¸ˆ<vÔ k‡‘ÿÓ§Ü€ú(xKßH±ö/ Ÿø7}FEÏŸõìø}Ås&K£:QRòiÛkõ(Ý™8ÿj•åŠô…„ò¢Bˆú£’(éÔ›»WPy§X2lTUw2…~ ƃ"ù/ï^¼šgú'µÊÊP{Ù‘‡ö꘽N’6‚º?‚ÙÒþ ¡¾ŠŽ>»ý4¨£køp‘ Ï :W£±¶Á°µ<š2w\;ðÍ))3 %‡ê·&M´æóý8Cÿm4ŠË’”ÑÖó†Á¼ô4ÚÝ´9åþò,Ú—ä®ÝíÛ@G¢?E_R¡“±­zñ¥HtNl—s¸þ]zæÛ:_£›hƒï å6tr”Bô¨>%¡NŽ^¢_ýœzÑÛ àÞ-•:ôÞ&<­²f„Ù=G,èa-éøÌúò_ma•5Jƒžw7ïqm˜íß—7ùDüJ¡%¶e«¹šx®Ÿõ½ßõ§Þ%YA͈ uxø¨áfÉùôj g®6 @ÝOÕZÉï»ÐÄP´Uþ ´|D{ã¤?СiÜBÞ3=!¯¤W³F``JWéàINªÕø–·i£fÇ…þ¨‚ IÏKælù0MÜŠ1¥ 0›£®Kó«%ŸÏ¢é@\x´ ,ý®üœ³ KÞ[¯òºöse €íšÀrDb(E8¬¨òœÙ½§ ++ÏuesD`µpKo¤OÖž*½';% ë÷^~f~6^zuñ·ìûcAÂðr/lýóÛ¾b;Ÿ^žO¶¿•v¶òž°kÛ·â2¼Ÿ žšâoG‚![âH8­ÝÿU‰9`]é2’„¥|——CÒuGão—Ï!y²Ó§e…&¤tÔÌ5vkFjiŸµ§g?#-wßêþ!Žôpî3Œž {3ÿTÆãBèhýaâQtÛú£s09+ø…°{¦EUãcKaFŽå8© ̬ngeʉÃì=Þô­ã0Ä­²ãvæ}}•Y¬`áI­“P,†\;ÖOö–Œ¹­ÎÈÃÒzÔ?âßay •ä]¸¬ŒØŒ›x‰À9 -Ù<¬kr™HäôÃFÔÃ…ïWas`ó0Ælë͇©4ÂÎo»ÞmSøçÄÇó|CöøU³Í´‘à~Ùølô0æ'K&œûˆÄ¤ŸÙcœX$à½Bv’Ž¥¸99€äÇ·õ*ÓµbOYY‹ ©žyf»=¬Aó‚Îûs]HG÷§ûlÌC¤Ÿdê?gˆ óáo'n^GÆ•b—±_1Èô·öâeBGd!±LX®DV½*žû=nóû//d?kª@xÙ[Ml¾'"GIÆÝGäÌ yø¹²?úå$ä#wÛ¿Õ÷ÈÓçw¸Üy—ÏÞûˆüüW…ˆÓ…P@F­I'ð' ´Ò^8I‰‚q¯Ä_– Ùd7Gµ °j™T΢ÈA‰±[Ô(ê¨1}kwÅâœù)„bQ¼Æ¿»Ç%ØÏ ž «GI{Ö…oPª¸Þ4 QFÚ>¥9Ëe³"¾èÇ…¢¼B—þ¦!T``?E8‡ +~þ¨¸–B#¥^´Ïe|Œü kT)8¹z1ÕÒ‰ø <úðàJÜùŽ®¨Ã¸b‚èL,ÖóÁuåSüRšP¯‹xY4r >–ÿ¨ÕVAÃ7g…«ÅIÐ8ÿäjšÎOÝ]x•úü„ƒÿ|ѪôH¡¹ÀÚ(ˆ,r íƒwÐoþí mmÂéž¡C˜äá¤át\îÊ’ ]"Ê‚™­¶ÐÕöÏ5s* ºcꩼ儞+F£QCœÐûn;šgdúÅøM'#7a`~ïßÍþi È3ìT‡¡GËl‹mÙ0Üïþ—´XFÝ» ¨Ó~Â8¡µ¢VÑ$LLZG=7…iª%¤$²0ëýI}aä%,Ìׯ•ŽÁâ¼íçËù`ùªËƒœZ°zð±×¿maXgë(û2 ›¢Ò BwaÛÝK -þ~ûa7¸{†é´ù"!Ñ“ÛTHt/ÅHõÄ ÜûvK’q\ÞX¾… ÏÏOµ2 •„öYÒ—~Hs8Jޤ ‘îç7«„ìAdx<5óø»32NÎÖo "³-ÙŸ)Q{déÔç㼂lg¶¾s¿x…r&ŸøS´‹vÀ¡>Ly¸Þ†Ž&!ßQ帯·YP L7CÜfŸ³–Ä5žI¶)*XgB‘`ê'u^(ÖžbÜüÎŒ§ÜâB)~ú ‹¿’Q&‘CûTÉ”çdë‹ú4‹ 1kUÆÏÍQ‰«5¿ ò{#á¦KçPÕ\¦_'ÕÍQë4H¢†Ïw×ô]ÔÊh=2ÿí'¢â¿WßÏ— ÎÒÑEö[¨çò%Õ”  õ›ÎzX„‡l/=v GÃ?£ÇRrìÑ8J«XÄMeµäW×Ðl…Ûûú†Ïùç6CÓ ³ŽnÝÐÕºµط¡ç× ra€¾{ã4’aà¼j¯`ˆ/ Új¹DCQ#¶¡¯`x´ú¢?Œ:Ä)gp¿‚±mÿ{L<0Ñb8|·òLõ3¨U7ÁÌ2£Ég3˜W4ùAHƒ°è8ç¢w>–Þ¼ëh¾ +t‚ÎnßH`õ GÉí8?Xwå#ia…M¼,оj Û;·\ü‰àï#òôºNØc',PݶA‚µ©úˆ—óHM£_Ïï‹$‹|dŒ]ŽØÖæ*R¯Ø,•é#•/ÑbuÅ5¤)—,ëCz§,nsK*dd/Œ„zdÊ1½üCý'²¤$;Ò~{†lõ¡uW¨\‘S«ú±KÀ.ro–X“þÙD~¢C~¢[»((¿»zÉ_…)UúQ”úˆÌ7ƒ‡ÄUžd”H}ll÷Õ¥‚Q_(B9QwYyM2Tàcº¯Â„еþ*-䳨üÔ_ô2—ü¾G>mZK?…êÙQtª€{O. è vØå¥YÔ¡ÈfÚVtFÝ .÷„÷™¨7¹DÏ ®é|&ކ²klßÇÐh-:‹äÃ&šÔ®ËŸ9Žf•–7ÿIžC‹þK3hMªäô+ÊmÄj•4E[Ëô‹ê¼›hwåöA¢&Q´/ 4•×@G’øuôoÑÉú÷+ò€Î)¢¿v$ÑeîþH1tÓŽö}ì!‚îw¹È¾¿ƒÓ;4ƒ<èeqõd¯Î¾W®ðd|FöŽ+’¡Mx ’oÜaÌVÕšh ØBad‚n|6º“⩟4©C[Ær¡Ç—¡¹É˜¸Lº ¦Îðr îçï©ØÒu¨ÎŸ:γŸ[ã¹ñ¡:Šé·úz+ÔºizeCÃ]»+W ¹8uîâ;h >ÅÅÝ2·t·½‰¡?˜àÈ7‘0\¸§ÿ;tFÌ ÙPõîçHEoLf˜k¾˜†ƒýfNt0çðtNš¡æûݘËEÓ`aÝöÑá”'û¾xi5Âä,N´ìŠ~: K‘áÌÏ ìaYÆAûýë%X~ͬjU+ï*_÷ªƒÕóUµ&`- ìúôõaX9©Rr$6n}˜CØ,qíËö»ÛÌu:AGa'ÒmŠžÝþnmX¼ˆv‡Ýdm³3¯ï#Lóiwn$”7$ïYE"gÁW¹n/‘øó’sÉýM$÷ð2QbG²"ê‘s'e‘âÜÊg6µm¤2n÷#x]€4J×,nøÝB:…û5ÁvÛÈ Ñ¶²ï*cá‘ÉÖvMN,™/{–œŒ,_€c± YÇCÔ]î!;ŸÂ¨‘ÎMä°X,ýúëržyCuP²¹ž“óÎ@ò‘ÌHä™m¼F,|Â#QO–‘ßWTÅìè=pl\¼¬ºŒ‚Ä Gþª¾CÁŸF. ´ (t9,D4°…ÍÓõÇ6Qä@ìø¹ŒIå:âšÔbbªÇidBQÜ鵓±øF”»%‚’rVO#fQª!¡•äÁa”IP½2>!‰r””ó(Ÿn¬Wõî*¤ç\¨=´ÏÛÏ;ç[i'Q©mçÆàÝs¨BqwUyU•ˆ"}:PÍßSí’¤%ªç8Ým]D U¿ʨtÔü—²û…›·p=!~¿¿ež9\À†º/å.–*2£>’ͽOÐ K–gðõÓäߥ(Bcç¿dÄœòh0*™w(Í_¥ÙéÛ¥¡åfãx.Zçgy5< D[vÁÚžÑhwcïzJÕ~Þ1Þl³FÇ Û?.û燳‡ø…®t•=žbtçÍ»":´Šž²u/n½­bìþ± Ï;ÍïǦwðˆ¤#{Vúþ!‘aQYK´æÒß5ÀààŸAµnÉ}?kÍaLn‡V+iǧÃФ,ôûkÓS¨å$ ñÚ÷JÉ®Vqk(ä¸Ì"ß %òW•*_‚aÊûûj(Ïq*ƒ+§î=ÝÏ¡Ø.±Ä@h}lø&˜æ=tµ/ž Þ¾ýkmƒfÔك_û0<Ö{§òâ  3dQ±†±ŽÈqFÙM˜àÖ…“ëã0i2yòå&L™[I$u~…iæß‹NÃtY­³äû*˜¹ÝßšÒf¯ëÑ| Ÿ…¹léáS,0¿²¦`7 ‹RGž ÆÂâ éíG³ÿ`©í±Kö¸,·¶Œ’šèÂÊb1чŒ&X0~F­®ë‡Ã´ÆÃÆ/‚æC °ÅÍÛ4YÞÛwß‹‘ž„¿b¬ ?Ýáß„)eE!ìMì,©Ç¸#!{·xÞ0;¹Ý_ã=ŒÄyíéW¦T²¶LøÞ.’}pn¬G •£k2ä²Ú=v´>©ƒ¯ †o½DZÉé––T¤Û¥l+IC†sdÈ0®‡Œ—c% ;)Ž­€l¹ ™ï±rY¨!KÒhßÕ¿Èzëûì7d‹‰"¾ûÙƒWÚJ$‘ãèÜׯÈ齬l“û ¹|G®ÞgGîà^±Ól乞oBCˆ¼ã⤅ _Ÿ¬ôå¥8 9ã÷ý¤ |ë>Å;þýˆªeQHztcœ¾…鵿÷šP„.šû…)ŠŠ¾'6úŠbþ—ž^Ô@ñ{Uͪ;ð@/O–Ó36” ®!ŒRçþ.hÑ£t_úÁ—‘(ëuÜü¯B:Ê“~Ï5ãˆBù?f§Š ?é î¡â ‡ TZ¢šì¾çŒ*·yX_qT¢Ú“Erí[Ù¨A}¨]I'µšòC¬kûõån{ò nâÚÄ÷Í$Ôw š¦JÀCV¬%5§ÖÑèäg*:‘4ù|Ì-²#͉øVN å9’é@+=´¾-Ó¥;g‰6 ‰‘œB™hçI™àI‹ö-ê_Šß¡£ÑùL6ç]t*)½7öE]Ì[5Ëë"ÑòmÆYtÏɵ{ΫŒžFúI¿¡÷áQC§gÈ”ã]žý†/ ^£(ÝïKå9+Y¿Š ‰š@æñ“h¨9ïvÖZ  ²ÇÊ´÷óc(ϯËФ¢‚Òžƒçí'¡ä¤W’¬À<§ZûÅáoLCq›{ïû#P’¹´E~‘ÊVßfgü…*VŠsµ+ŽP{IîN õ+hdºM€Bû}‘‹iá/´\Øf;œ ­™|3µD mÆ<ε.Ú·¥¶N„ŽO¤d‰o‚ “Ø?ëtÙèdå\lkÔŽO¾"LTÐÑ£íÙü¾:ßóÍCggJëáeè /à±}݇Ï^&7„žË.ê|¡wñ#ïèH+ôg¼Ë`Ž„?q–œ» 0¸Øÿ>r†åœWO–,ÁȧöNé³q0fYñ˜t©&TrÊXÊ”aÊiTÐèÌ|ËyÚ£ ófúÔŠ`ñÞ»~ÛóÕ°,ìßâ(+=}?íåÆ`-ë]ˆïÐØ(yr:Õܶ6w¬ov*Ã_ÓØ´OR °Ûwªî"ÿ´æòxÕ-ïóÊHäDÞ…$´åɾÓH:8Ò¾}°É»êO_@Ê%î#»H#qãûu7b¤»2X¶ãu.‘(?J¼†ŒÕgíâ ‘YAÎÆ/ÖY~¨Ý4öC6›û?’xƒ¬ñÊ"ç ˆ¯'±;rOxs_þòÉPµvÙS¡€ƒüöOƒç(øU“K©‡…„V~OŠ"µÙÞ57O¢X »ÔŒß1<ÊÒòuêJv‘:aÈBdŸ û¬…rí?Ý’W÷¹±©½cß©ŠM\8­ÿ•X0 Ž$¢*§¤x°[4ªmˆVÐëG R»” Ô²6+þ%º‡Ð¤Œ]6¨Sáë-…zb{}ßPÿ͉÷xˆû¶¦UÌ4LýÚùx: E¿Ø÷Y“…»=ÛÙüh–uá׉øSh‘p¿÷©íZŬu“ uQÙɱßЦz®¯ÞëÚvK|¢Ï@»…Û‡†&Ñ.NôÒ×tTZ7Ðõ$F'1ÊK¶è|cµÔKîºä<£î›G× ¦Ú~7tçTÔº’•‚–bç± g¬’º’ü4z•”^Rt@ïÛf—¦³Õ•4$ÜWÏô|ù[òš;‚'Cíí¡¦öÙžO?”ÉPŹ CIô 7ý(20bwOÓƒü¤Ä—íGrà§±ê É<äêÅÞ4âÈ=BMïb9Ïx‰Ò¿ü·ÿ“ð•Q:ü¦Ò¸2ró¿9Źë$n¶PìΜ#½eÍNGÿ ƒ ⻿tÊCeåHT½N)x°ÅÕ³Æ×cÏ݃š—¶,ýÏP;žâ¢•8uý½D›TP¿=ÁÇ–Å×S# ÉløÂ·.hVó÷hn€æ­R›ò»ÐJwK„éÑ ´1f&tdÉ@»U•Rºä 踤y(E:G^ýRÝîü©f¯¡WÖ"õEÂwèg|Vy`Óþh›;à ƒ•oû2‰Ê`XìÖ‰¯–0r×9øûïV“=šr0N&¾.®•”ÀäдNçŸv˜¡’Zº´— sš±^âİðéÀo?3`‰ÓKñÚÐ,Ÿ?ñŠÛmVv2¨¤=`-3¼EQ6n?}7õ¶¹ƒ¼´ÂN]ßÛ[/^îÖí®w$ˆ:”ßjlD”Iíö1HœcsΊßIo¾¸þʺ ɺ8Ë‚E²L~ÕÿåÒ°)¨‡^Eº¤JŽÜοÈðñ¹¢d[;2AÕÕV.rdáÃå ^dÓ_"¾|¹ù% ¹Ýn3[¥E>ç?ÌCbwP ýç« GJ ê:hxEž[þ½Y'ˆbåoŠd; „@r>©JåX==C€²ñg4´óZP¾&k‚pŸ¿š(‚TÖ¤ˆ±@U™èH¹ˆ ¨nl¬¿87œo¾Ûø…Zë©-•5oNiÿ9û u%u^‡ÙÄ ^ja y)hœyûô$ࡱiŠ”hô¥,&OxMbç­§ó¢YÌ}ñ®_Ðâu©ÑùR´ê"¡dŸjAÆŒ,•Xo´…ÖoQô¤hw¦š8m¯íó\ž¨^»ŒŽdº¡‘Úèä"Aiѹ‹Î_Â_60¢+A³¼ÄÇèæ á›sÝ¿ØæHgüAOšˆ‡ £ÑëÌÈÁ3žïÐûL£Ý©[è£òé6ߢó~Þ‹¬ºü–{UåbNÂðÔÉŠ”»šÐÃõA ZûÂêÔ ™ó×rÂõQ¨Èøpõ¯‹!tNu" †Þõ¤½M0È<Õ^4—ÃüÇJB`´[•³ü¥L¸—Ü:?S¿ÍNòÂLö™”Ï :0'²Åö\Ÿæ%$^6,$Ä„›ÀÂPcm"½*,^qû¡~E –DH­3?ÃRó»1íÉ#°|;™¨ã«#¬8{-R€U=£gê¥&°¦wá¾ïê(¬;’”mÜ´„ë¡æ¿a³yvð¨2l«ù Öîž†Ç LÒ;៦Ë"Q[Ø]}sëi„„ÛÅ·+A‡?H.\+A¢1½='‚b$qö=38™¤SE\»iñHþôSÊ(‹R5î8Z߈ÔfïZo_CZÃ÷쟯¸"½‹Ë§c/ï#C‘diwN12rif¥ 3­ñÚêö'd1ªÊ%ÑÙïoñ>&¡g­Ž"ÿï~N‘Æv¥’#§jSfÕTë¾/žêþ-½ï/l§”x OÕY‰R+ÈGvÏC.’ùÍÊî/ie €Y÷^û[EØ¢;»H°Ÿc<Ò$¡PhÓ—rõPÖ ®ùe"ܤ$ª¹§Q”<¸4Óã9ŠÑÓÖÊ/® ¸z™-+ˆcò£f‰F‰­0 Ž(u#ñokð ʨ,{T‰rÄg3¼ Gù Ö[³œ¨pTMwj<ý~³”ÉG¥ó–íãoãPùUß3cÈE•f͵„_PTÑ8ä÷0ª;½!pþ'¸ åœ÷5sßk.£öj©%{Tê2:_=(„º9Ï8X¾9Ÿ|`;ü5ûöî#6«—0û\Aã¶–Á.£ŸhFhsuè½ZXuËA«üóJ°Ìƒ6âœÒ7cÈÐ6îK­“ý9´' ß´ŒäB‡÷]¶®7£“àßÙ@-t®Ñ÷O¼Ð5B¦5QaÝmW›ïée£§5uz‰þzëÎ_Tw0AŸK[±VEððcÊÊœ" •´N­ €…B›ä7Üðg¹ûûáÂ×û^ft\]Z<~(±‹Ü…†ÎñzÇâ>¨n»$;Ç åU ™# d„ž‚ªµФŒ°B±ðÄD³è(‰!»u*=Ê¿¤¼;µ/Eû"•¡y›Á-ä´tü.´¶×h #/'À߯Ç™ôta7íË#‚U$8Í#2fƒ„ß.¶ä†d 1ÅÏóïT.#I¨bä/m>$Ìñ§ŸfBòÀäÒ„ÆH±îêtŠøR%麒Gþ+²ü™HÇ¢v0Š–tkèüEFrÓÍ÷KVÈÄ|˜ qT™ù»+öÞ¿GÑØ—®¯U`£ø]ó dcoÎë|Žìt/œš+ùƒRò‚¡ rR–ùFtg!3oÙÃPävµbó¬@íE©6MÈëËÐÿç…:ò=êUÝTžGþÎ£ÛÆýP 1Õõ·÷ êûäM‡¢3ŸÉ~´còFá‘6ÕxÙ28r>1Å„ÎõȶΣ¸ÛªûÏxðÀ‹#} o”™%üoPJ®éëéïPú6ERÈ­×(Ke7›Õ3…r™\®tZ‡P>=Òÿ¢ð*\ùñ+ŒÒÏè(^yà…JßnšGåz¡Š[á'‹laT»Þ¿¨úë.jËßI @miÿt ÔQÐ}&@yu—Ìý‹š\P¿«e.ýZ9ÚXý2Õí„^¡é3ï’Ä·ÓhÁÊöÑöZ}žnY{%ˆ6êšúkÐöc_·N¬Ú‹èoÿ¦‰oø©¨[2Љ«šøa##:ßK=l&®,uÒ¾íçݧØå(‘FôðõËmðVA/ƒ 2Ú ô~;U®Ï¸\F¶ÎœSé08Nvüw:´ÙÞyd¶X â¾ÇØžC5Yd&ͨˆoüé[leϦÈïd@ImL¼^H;²¦¿…¢t)Ͷ‹ (¾WyGЊæÅRO_„âA®HWu(c%zÃ÷=*5uÃ4ºÏ@Mò1òUhPlþñ÷j-4ÝrÐ ×Ø†æ=‹M§>B«ÔûÓ4mâÐæLiþ­‰Ú=¤‰û½…É OË1è0i9g§V?2•üÏ÷bŸ[d*AûÆqå;3»Ð¡Ë$rcóÆþ¹¡gÎǾ*(î÷8ƒ÷¬7H@·]ÎlgÄôüR^2J‡¾P‹Ã'X`@Sâ£Æ› 4®Ö”•¡«ö³íeïax»eÑÂÐ FŸií5î÷Íñkü¤7wù`2UÕXû¦1Lo‚ªQS%Ì=8<;Åý UwèÄÕ8`©ü=áoVX¹$Àòñè>¿¶b4¤¬Á°áMA .[^¹ñð;ìŒ8ý;ãý vCån^ØŽE‚ç'_(ÞIA"áÇåqTAHÜ!*ùbƒI?˜dî-@òWzÿ”2w³Ç]üR/ÞU¥ªD:# òmdðä»üðÔdüHØÍý‚™œJF&.#Ë}©—çd,MF&æÕCdpøäYTœßBçïCי—†‘wuˆŸ›TY¨+ àÍ1Ôxè„B{">:m¢ÈÓ¿?¶M/ ˜ÿzR±pêÆ@ƒÑçýúÉ}hxÑ(‰· ©èR-Žº IÆD ‘« šéa³áýŒ6Õê×(ÐʦõovZ¿·øQòö;ÚdTÛÌšFÛÊau÷f´)î˜:ð(SåÃÈ,ÐQÍìÉãMMt øÀÄòX_‰~sи€.=ô’Ÿ{-ÐL†ÄaÝï›F& Ç‹°t#¦è9}êòM,@o~Òh:•7èݶЖf½€,¦òË׃a€_€TùÆ4= ü:ÃåÕ¸òïÞ”Î,}üÞžOï³þØ„‚'–ùñýð³ýdÞ‡ÝaÈ-_HS¬€ìrÂUŇ}í„Oç(d+0¯ÿzØòß~nȃÏomþÂ/3¶°K=:ÿÍ)ê?T!®%ŠI5ùgßAi¸N¯ºV,”×Ú»žÔ åã‚yG ¢3bF{ò1TQ&©è¿…ª)‹û<­öPÝ0Ræÿ¶ j².Å_} µ¥&mù衞fóÔ²mh@Ñݳ1—¡‰š)ÿ¨¨24§¼[¨‚æÖ`}ÒÐÒôùÌaöh£h?2üÚ¥ý+Y‡ŽøÙýWסs—“T?Œ º« qBô~$Ê”t†þyM‰e5¤ñó[9ò†ü­<ÖŸšÂpýÏ?¼IaôpEûà®+ŒËqì¹°Á$ÑFÈÙµ˜2|l‘-³¥”_ª`>-üÄ@”.,Þa”_v¥Ñœ©^²*Xñ0rm²ƒ5šÆ”D:wXïý)«9Ð ›-š¶G™‚a‡ð¼n@ðIøwøÀï ý€îÕgñ…<$¼Ãë×;kŠÄÊCBÚôHJ@G½¸ß‹È¶ò‡ò"¥ˆç&ùE#¤>vÉãëžÒ6÷°‰úÌ#ƒö…1¶>gd¬0ŒYܱCægSwš&Sõg¦ZÓKä`»[ü{‘ ¹ ¬#îQ!ï×sÅÏìPàB¸ýËk(¤›Öxÿ«6ŠÈiÔúÙù£˜Ù°šƒõ¾g>M’Ë~–ŽRâ²KqÌ(³`h¦þåׄ5êO£"‡tƒìj*õdsߎ¥G•Š“2Ç-cQ­‡Ž€üÓÔ`fíwgTE­sõY¼ÉüjâãPg4mÒeÇ õ<ö,h‹Pé}’Ÿz–¢ë}CüHœN>oC G僛ÑL¿³4ËÂ-ü)ßÄN£Uê«Ã¹,hýï€4ép8ÚÊnNÔ0¡] Iƒ•\Úg}˜ë(BG ³ŽùtòI I"-@ç_í†!zûyF×ÔÆˆn'}ï|©@÷ê›Ç>mÊ¡§,‘Ÿz½PŒ¸4LÞ NYÚïN Ý•'Ì'‡PÌCfM“µ –"žÙ˜{xÂÐ̯gURè ŽÝ}Å ­Ç»ùv— éˆÜóð"Ô™Zå—íÈCõý/§Œ„Ae°ÙÅKo¨HŽÏ#<›•d>ëï Õ÷{]*wunÔ?<¢\ÒƒãXšX - cÆŽÔÃ'H³õ¡çrDÙËûÒ0Õ×CÛñÊßÉa$ãÕdÔQ§5%ûa˜Ô‘Ì]»& ÓìV¶Òô©0sâ!çïp˜u'ø¶;s¢äÊt.G`neëI[å=X Šúòáœ,rWÔm•ƒÅ¢O9‡®ÃR˜ïá&Ž?°¬ºòÈ·'V¸¸2bw÷ý‘ùúy,¬ ’ vÆÁº9~–U\DÚ+nD˰¹pÂ5n,¶]»dW»magð IBü»ýVñ’ì+á~5_ÆÇ´>"oRêÌÉx$¾xëÜ $e³™D²‚#÷¿-š"ÅÕ|ÚÍA¤:ÜDÀ›uiÜ~úN~þ…t'ä¹r ƒ™yQýæud<9¥{ ™^JZ©F"ó°–ÂBâ~“µ¹÷9™ÙÎÿ ÜÌIGöß<“ ¡È±±ëáœÖ„\²=_9Óû˜[ÌY-äyË×tPJy§tÕJûU_éÈòCæFÐ¥—e<ó 7GšdQ0•ú0¿Ñ$ ùKO%eEaUùHLCÚk‚«…»(²N B#vE7Æd²ÂPœsXªyx 1ó¼E‰ÒG©á|%(ep_ìµ¹'JkS˜>mEÙ§Ò?s´vQ^ÁsJJá*pçPRÄ9 "ÓtzŠÅTâ}-8›ó•õ4Þ=3¾„*Aay/XPõ5™Ë1›pT[;}åÄß$<{»ûýâ[Ô<]î7T3ˆÚ þ}êá.ûý­7BHu)²ŽÍEý‹uÓ ÒÌxÈà¸á‰oˆFо•~ê ‰õ‡__ ÐìaA7EZìe;Q±¼BkFݯªEhs÷ò–qÐk´Ý>XÓÆ|íÃüªN #ë¾ütº74).„.RüÂmn“èÚÈ{”øu/ºÇÉ í¾9‡ž>g,í. ·²ã8Ï—ˆ}Îr\Õ’UððÝúJRÑ(Ø!üâÒM˜ó¥ìñÚ|Â+oêæ¡}òGHQ÷3h>ê_t Þ(Žßb8 ªâ»´Z¿ŠCYæÒp’Ìg('½OÞ E¦bgÅCqÒÄ•N>(–hïþbp J—6ÏzþÜÏ!ݲḓ¡Éµ‡9´û5´¥&È^`®?Œ‹Ñ Зxx.Èþ\µmX>ÛCœÅ^©10lNaè¶ #ç¯øÊ·Áè}s¥êÜÃ0[ö1‹œÆ­ÇÓ{fòa‚¼¿^ˆ$&ú¼ê¶Žî÷ºº¿[î°ÀÔì·|RO˜am!«€Yï"ìçñ…¹.VëÇD`áŠ9ù×ÛÆ°˜Õöç2ïÅý§11Br–§SuÒÁªŠvò§'°vš¡³Fæ;¬×^Šý16›?•|‡­2b·`"Ø9ùžëwüóTÛ¸t öžEBò#6»»HäTÆû|š‰ókÚNh#éÖí,ò]${UEMkëƒÂÎâcöýô‡6£Rîi½q¢i%MŽË9 =›éx¥ÚId¸K_EI£‚Œ/¾èsµ§#Ó—a¹DÈœ}à–’²üÐJ~?‹¬KißÞ!Ûgãž¡#_ýó1ƒ~ÉÈñ=9éÓvr;%±>m@®öî³%¡Ƚ*Bçùˆyy+ݳ‡|qº¡çì‘ÿÁ¸ô` …¹÷Œ¢ @aÄ-Ñ5ø“‚BE¼œP|®e~À­“Ñ¢(çÚ¨ktå/gÍ)LD#ßM&.TTa(ÿ¤ÿ•B©3¤üPEòˆÎ¶]$ª…ÕvËMŸ@ ¢›³ þ¨íÏ<~ŒºuN½<¤õl^O5¤ñ¡‹Fàiþl4|ø£¯ª%MˆX; ¡Ù-W‰W§Ñò€Œêµä:´žô(ܺ‚6£¢Õçß-£Ÿ„Ò±©i´Ÿo’±9ŽŽa¤~ŽYyè4ÏaÏyH]?¶˜’A×>áC·ZÉÐýÕòYµïèÉÈÊ»÷F½þ\J¾ÄÚƒÞã ²×9ckÎêO6 <ïx9¦Ð-ŽiˆV@zUè6aTÞ3?3åšÖs$Pz‰R°ÕŠó›Ÿ¼MHƒ¢ÓVºÿ´\¡ðý‰¾d(„mÚ­×PDy$äÓè“~ž8¥*Þ÷.fq@…Ï… …IPý$ÿ‰!ÔÛ±æ ŽC[bÈßä.h¾öÊÄš¡å­Ü6ï Ih-«`¤h-‚¶êr¡ÝÁºJjÛÚµ˜ž Õ@{¼›¶%ƒ´[í8kïí,¨,å%÷¯¯Š®Q‹@{ßhY‘­t8¿4ˆøZbé üòÐ%ÉöJ¹Î ºc Kû?ÅA¯Ò*«ÀÌGè›'Õ8Ëg t?yüù ¶ZiWx°Iå)VQ™Êô{dwÆšbˆÕÉabùÖM—†6˜6 ÏZ©tƒÙ?Ïþ=6: Ù/.oLÖÁÒ±ëfiôD°Â{$ˆài¬.¤¾K5Q‚õgn5¦L–¢RÆugyع$a‹Úa—|ÑôB;; µ5GÂY¡¸…Ú;(fQä„>µ$eŠ)’-óGã ÕïMoÖPÒd‰Áèç"J?g×½råÊñ´¾ü)½‚òSgyOš)¢¢K£ŒÑQSTêuž/ûVŒ*‘Á\Éw¯ šùƒ i=_k ·‚ÚѤD3н5^..ß;NgOŒød ¢s®cŠÙ!tùÛgÑýÝ ·do]A÷‡ŠÓ,¦—Ñc¾¤çðWkô²üP2by½Ý?˜wp£O’ÔXŽ$2k¸Ÿ~tazmãÓƒBCVÝ|eQ)Tú¾|ºSÆ%‰Ù¦ ÷ ÈÀ@„Á=ò?Ó›º§(C›iKÄÈÁw‹æÞ/à‡Íõs¯ á‡Ð™ÜßsUæÒveý¿ýì¡xÆÑÆwsÙŸMÈï¿9…1©ÒIܪP´Zµ¸Ä J¸Éõf'CÉüä5Û3Pf å5Z’å4žìc]BP!6¸9J—#º61‡w 2ç€\Rî+¨ºÉxpÅî T'0|øÍG5µ‹Ü#£aP;~üA9Ôÿ¾ ×±¤LÛw¹Ýï©ö‡EC­¡ùNªÛÜEKh)þóóÉMhíKºzñÀ>ÇŠj÷ºÏ$BGÊéé¡gÐu”§Ë?azôüSÔɬ¡Ï;Ez6È^[ ‹€ÁLVÚÃ0L±9™K¤#ÐÄ…ƒ1(Úßy0!Bòšƒz¦4|tùN܇‹½ÌÓ»·`.µÌ”Ú¤Ikˆ~Ã’5±â“oa¹`àEd˜ ¬ú8±@ýÖ%º²æÛ¸`“ÅM%`â=l«²ë©ÃßëùÚ>Ö%~´óÖy´æ%ö_·¡W’©¤ª =ƒÐéø^wR:×°û̲„¡«¸yHÄ¥/èýÎ7¾ƒÝÇÊ8¤0=­b¾Ô WÅÕÒè£Áèýn¥AÐ}BÞ“Ï è•K_Òy`Qˆè4ó•6œ§<ÇÐÓž1ç¸Ü EÙ³„Wá#4º½4¼¸5Û??sÌ:CÕ±3§Ämg¡Âäß+!](pÏ;y²Ê«nÜ÷<9 •*a7w¦@õ Î ÝÈh Ï •È‚æ‰ öÅΗÐîcq•Úç0t“h¯q˜ÆA_žÂÊò0hÙþù]Ì3Ž£ÍAI"ý‘£|RnÆK…ÅjkÀä9 ’ÏôT0•¥Âcq¹¦:3#dã`ƶû¡Ö%˜%àŒœ‡9‹Å¡…˜Ý“8ôQ¼|˜ž(‚E7Å’ê(Xb›ìþ KKseíl°<úÀò#»¬ÌRìЗÀ£"ó4§¬[Ê X7·ÀÆû°û‡êâ`‹Ú8å%qlÇ$qK6À_±·]”K°KÒ/ø8 €­·z· ÆÍ#{l‘ègè»$Ñ>OÍo€¤CÜ×#ëB‘ü…\޼ðR^w9ÖŒÔÁõßEºy6бêó3¤ÿÜ1:ô2ì¤UežC&%ê´stmÈ|éë§žÁndiÑíÏ2@6ñl¹æÓˆìaß·ÓÎö#Gž4Ùä±zäÜ2Œy.ŒÜ? :\¸'²"¼M2yk™œ5Ÿ›ØFkzTæùb#²P`”.¥óÙ >9é—|”…Li9Üü˺¹+3è®ÅŸ—ÈçüòTìrtZ"°BžNÁF*IÅlö×Oä·w·g@Km¥¿ö](°+þ¥•) ‚é‹âPè1Mp’ÚN¸÷€tˆEžYôù ®¢hþã1N(63™cÞ/ŒÄhOr鯢„×µ9¿È7(ù¼åÒË”šË¿Áè;‰2ÞÒb2>(G-½k[…òæ‡WÝèHé.q  ÂêsûÒ.*)Þbn'9…Ê[dï{PÍ'¯D‚Ó5l/OŸ;†Ú™…/·Fì«o[ PïÛV@_ät¿šRûhŠFZ¤SU$ªûÜ™æ÷óš_²Kü®[ŠVšú%Y“—ІÚÍ–T(mï¼*a½V†ö‚gnß±ˆE‡¥K ¬ÑÉ`¦äUr):{ûä—º*F+¸]—E·7µ¦Á«£è!”°|Â4=—^“WGom‘óçé6ÑçÀj)ç߃û=:ΰĪzƒ^ž²"ù?Ÿ ]p­Séˆ~¨¨’ÌËþ¥3MçB‰Û{×—OþBQ:ï'²ýÞS0› P$¿#«|ÿÏï™û—u ŒêÏëQÚC‘zàͽçw Ä¡àj×wP~=3#5ªjƒìd CÝi7Á³:DШûPŸt,šÉWW? l@ OîUYhUˆj÷êô‡6ÑùÏõ§ê ícxÚVj ´u¤ > me;#ñ•ÐvÑ“þåZ4´) Ò„9B›Ç¢¸7o!´ý¹®ÄÿÚMî:ÕyZB%™aÒ uè$8ãp³ º¬M“{è@÷Ú“Ê÷‹½/k2-Cÿ’NA'± Šš÷§V±ÀУz¡„‘UQ“¨÷‰> c¼sqB–`‡™|`êN³RÊïy˜•è¤39m ó{†^9K”Éq–Þóû~ø®Ú±YVo‹êº´ëOF8}«3`³¡q0†#vX¶ßSÖl¿çß(/|MCù®W],[H˜õÉlšþ9k]Íà¶DR Ö`j—2$W¯b¸o‹”ÆYÚßÓË:â¥6Ý‚5Ò¶‰êº0#ƒý)Bd dÕöPG¦†´ÔïÅŠ¹¦E— YG} ÿ½M@öÛ>Ÿž[!§ãz"}ÆWä¶X¹Ê*¼Ñ·ئÍ#ÿ¿¬qÈBÁCo3V Ð盤òQD놷KÕ݉hWwÅgŒ^¾’ŒÏþd Eis¶¹Ø€p”-òÖ7«¶Eùæ£çc$Q‘ïÛµuTzèÙÏÆÑ*Š÷Y$>G¢êÆa¢—«¨¾¨ÎU¥¾Ÿ_Y½Qûùõ~‘]nåêHT&Ðj¡n‚ý½·v¨·Û06£—á…‚RyzxhƒI<.ÚîÞ|øÎM”îu3¾~†¦›ê¸ ÄмKiÙKn?ÏF¾Ç½çdDë0ïC—BÇÐ&®qÞÊ+mSíl;+™Ñ®N’B.»í÷þÎ<ŒŽÚëFfÒŸÐ)Z>+½•¯ßÖµ¦EWþ·Fó]4è>»à\Ê„îJ:¬'Щ²/:¢×÷1 M?ô~bA¿ž„>¾êׄy"“äõÕ±*гæôñ¾ Ô©—\Î3o†òo„ú[k’P¬raz)£lŸŸî6Òøù»±KÖðä8‰ÏØ©¨Â_ž‹‹ áÙM¾`éf™Å‘ô:´é”òQ&€ë¿ý6áÊÙÉS×àö5àös~[Ôu×GBá)š.!(*¬ÿøb= Š}“È58 äµÃ þJ(ÕÕ6¸]ùi¿ÏÉ(Ü뮲~ú¹å×PžrâIQ]Tø¤N^i‚JçÎü¼{P?QÍD¼Õ·'^^¢…Z߆ñ‘G„P÷úG›ÓËëÐð3„È£€š,_è„æ 3Gm£ åV1©ÚÉÐÚõ2Èä´ë44E–5ìóR‡ ºznâmSèY¡ãKŸ €~©–õÉ}þÓùñ*•ÿ: T‹ü|{†koèËM?„Ñ›3<‚Y0~ˆ±%Wp&m/N.À´“–Ç+k˜}Ã$®Îxæ×ØÄôañ—åEW÷Û°,pf¢‰a¥ðª†%E;¬ÝÐ|UíŽ9‚ó`+àûE1bØùb•_àzv-3Y__&C‚'²7¦óä‘Hž œcñOα$X iclˆÖé $ý¹wHž ©¨˜S8BÆœ€a÷L+ÒUœxÐßQ€ íz Ò¿g‘é‰Vuÿkdyøa!yÙ]¦…ÎÐ!çµ/|òæÈãþ™—é³ò_ïµ;ô-/p_y‚ÂvLǹ}6PÔEéNöµ$¿{‡3ž%Éæ^|{à‡ÒyEž~ªj(—²}¬¬6 |—ün½@%.ÆçKó¨¼ 7ú柣ê¿Çfð Xâ• iÔ¼Ì^íG€Ú;Þ1/3xåmú•òã Êj:tŠ„êàÊÛ;í ©•îC [=´ñª'3ÒDAgü?ÑDÂè%bOþ9 )>/ä¿ûÂ×ù˜ù69,¯ðžªÆ ¹“R¾Ãx7QŽ4Ý)˜Øiå}ª“Åéù×=¥aêK¤2LsXôT7ƒ2Ne®cO`–%8÷aí¾7jdð†ùh¢C1c°0©úl¡«‹º…Ï\‚¥¯?›§ÅÀr5[Ьtˆ\LÝó‚5Ë"×ßaÝëRQæ=Øø•Ç`&k[’Ÿ¿ÿr ¶ S#´{àoâ¦xâÖ7Øý<àruÓ ÔVXŒ¸‘pæ|^å=$öë+¾ëú I‰[/Z¤=A²ŸoÄX!Å=žï߉Ž!UÌàžé%¤I>Ù1X/ˆt¥‚gN¬ #Ã`zeS_d,Ÿ#Ì{4‰Ìì¢ò=È®(*ÐrYÛo­|”mFvišä¸à’qN¬9K¿»9·¼@n:Òcâ[ÈãvŠ7H" yÓ_ÌÎ>>‡üD¯¿—Т€ä¦ÌÀÌ t'dÖÏAÁ;´Qz(d;väí 7æÿþWLÓ…—#=‚™P¤•oôwÎ"ŠVß_JÑ G±>>þ·+x€V÷$Ö¾C §¡¯'Ó“Qòçà :Ä®(­ª'ÝúÊÔ<=AL‹rþ3üÜ篡|\öÃCµQ!ðÐHàmTô3ÎÛìÏF¥¨õ_îd¨üi\7¿ª UzÓ/Úž{jJw‚ȈŒP½ã‹¡çSÔ˜&’)›ÌGí«™›< Žqìž¡!êþš£IëCý^¿hÊÏ x¨ímÐfa­æ·< ,DSc§§Vg4/{|ݵv­<Ê\›ÚŸ  ñÏ» ßEÐÖÏè^‰A7ÚõÛT×ßµG‡Ã‚&{nŒè8ÇQv\´Ï¯½}±ˆ.«C2[èü÷útôwt_~WÞ點і 6aЛSüטÇ$ú*‘ë¡Ï–ú·4 äïL•8ü &¿\ð9üæ!ôÄŠÇiN\‡6Ò‡ÒÁ<‡¡‘éeÜ·ËÚP#VSª%Üå‰Î/gç¡$>wÖA™ ;ÇlúÏAþ˃ï÷ô¦àWL}QäONÚíçÕio±Öa:(‹!š6» 5ê½d3šÐtFjþšÓGh­²"h8?øäGt«ÎG8l–AoÄyÛÂýÐÿ¬Ë~ƒqþ|¤Ðj†Á¾¯[~µ0T¬!Õªêà ²׎‡Áˆé¢§ŒŠª+¼.6‡1¦¼Sé´a\ø{ªý³÷0¡–Þ!uÊ &òI¬ý†©þ”¾UK˜q:ê¶dQsR_~L‡¹ãOÔ3ÞÁ≻»`ih¥ÜÍæ#¬H Š]P„Õ‹½Z×Hç`mxÕ2Nt6|–bl*E`‹<ÃD*« ¶§Ê"²OçÃ?ÊõFú'°çç×I¥¤ˆkGoÛD"c¿ïQš—ø]+ÿ_ý6$¥“|bµzÉ.ÛUS¦:!ù^¼ ñb¤|ÒyA‡l©OVݘ•EZ­V'^;!½‰b}òµ=dø¡_%›{«Å›do"Sç _ÑÑûÈÜ_¡sý_,² uûX4g#ëÄó!‚g5ȶ<ØC­í€$kdZMÈÉ[Kþám ritVs=YEnï›­ßD'ñÃÀÎ×ÛÈÛ0ìè·'€üLWVÇ7Q@†RàiC- ôÞ°òzWˆ‚Ÿß Ý E¡WkMPøÈìïËÙÆ(r²åQ_@6ŠÞø°<9@ƒbYÆé.¿Cñ©LÒfm”àµ1FIûöJBvK”zÁvÍdže¨™k:ž£ìǃlážT(ÏÃí-¿>ƒòmŸs „_¡BÖ·Y‚—–¨¸Bs6B2•+?ž°KPE5Ë÷Ÿ„Œ…P#@SïíàQÔÞ t=RÑŒ:[‚¤9>¡>“ÕÌ´Ó{<äJé÷Wù :¬Wªl irä!´8a¾QÊ ‡Öâ2â§yÙÐ&µÁÐÔÌ í4y~ó~ˆö}ÅÙß„Ð12¹ÎÔ¨Y[øfÏÕ¡KRö‚)º1t‰Ê£{ài+¶ô`Zöñ¸€^!“‡%¢w|üû,f"ô ØÖ# qC6/a`‹ª‚.ÝÍÜþh\–¡æ Un‰ñE  ìˬßõ›-Pò̆bo/Š5Ý?)ð ¡5¼9±ò—/ÿyôõ6üº{Õ‘ðdðkþ¥6zí'×  ú€ÈÛ÷aP΢’£ü߼ʱî©ïg¡ö~J§r /48Ò¾fz.M·Œ“8òAó] x&ûGôãì^h½ÑüU tZ÷žÝ¨´1ÙÏGúàòÝÿ®[ß×$†VËÙ5¹× õ„×ZyWh–ÈæS„6¨@.š^h›Qùñ¢ím” ÇL¡“«ýxÇi€®Ý ²«mÐc—ïºÈ|ú^±°¸$ÂÀüÝÏÜ÷“ap¢Fóë÷Ž~©,ùà Fí«—>õÂøíƒŒ÷æa²÷Éw³¬(˜ cäÛJ‘…y£]Ó2Xü”Z¶ú½–½¦…¿-ÀªäÛÞ±ŒSÑ~I·lø‡B×@‹: EhܸþEËÖsmý^£øç{Kž×QâW_µôQ)”Úa{|Ë>eÌŽõÍ@ù«BŸb Qa$šëmì?T²ó­=¹„ÊcÙ´ù•—Qõµ@Që{T¿ß}³Ö25dÔg7˜QûtÖÛ[ˆ …3ü¤&¨ëv5@¤^õj|¯ ’¡6–òלÁCùý£rRÐÈ¡:"¿¢ W'¯qV iÞ¦Øn§/š?=ne&|-?¿¦›©‘AkשÛ..»hsšÛäBV%Ú&QrýUF»"O–¥h¿ýׯ•ruÍž¿©A§ÄÕ˜…%tϽ¨æÚ®z§:ît¢Û»A먭Tô`Uzø~Ð =ïxiR¹£7u¢Xu6/zw.¶/°Ó Ï§¾ïk/‘‘+óÌÏ»qОçM0öð/TççÒ|ìú¥ÿ|f6Å  0+’MâéÈ'—¼Em[¹‰G÷æFáÇ#Rñ&ÈRc[JÊ·„ïÞqGw‚^ÿ·~›»6n‡ÿ]g‡öülÚVÆß³þ›ó‹»ë$dõÜþ/Ÿÿû¼Å§ú4/íýÇk‰ÏùÝ·ýPÒy Á1ÊJ¯#t‡2uG#éÇöýöEÃ}Þ ¨0ù®#•*&œYŽPM#ü|ê¡F1„ýþûPgpP'øáIhà–µ¥ˆ‚&¥ ¾ªsЬ5·òý4´\©O'å}õ¯íOg©ïCçiå³F,Ðs™!äx4ôþp¤>N£nòG€Á+½>…¡½éóÞÙ0òÓ^2&ƒ Æüø‰Õf`" 9±°ûLyŸ'/zÉ3/½I|»VanðJM°5,Š=.ã"‚¥(Z|Xáè!ÿBÆ«¬%ö)°þèÉNø=VØL±â k€í–-oÅXøw,`Õ¬¶ øs¸Cùß á—D²!:$öpÔoI‹¤éùß#¹ÁÑ(Õ ¤tóøÈ–ʆÔ7˜éöÊ‘vV|çÇX92¸Ý3MQG&Žq¿3¿„‘…wjÈì%²yhïÚçÜCŽñÔ2_äÎ7ó Ó}k‡‘j¢°r';Øwü3m+Œë‡þËýã«1剷›a"Ž[äQLJž¥x½ø¦ÈGÏÚþq„i¢a£©99˜ásÍ}P³6)¤ç>nÂ\ê1æØÛž° /Þ3âS‹±” ýwŸ/?eñ{+5AÞZA÷a=†¤ðÉsX?!qeݹ6«ž(˛–ó;¾¥°ÃË,) ÿ¤IùÉŒ“aï6³’ͱ*$ä¹Ò„… H”˜¸Åþ`IÄnqG— i'ÛÃí ÌHþ¡”ú¯„ç¾?®š?WèGêÕcž±ï¶ûhÙtd`Wsøqß\w„þ!Ó·ä”oWöû—Ð)×Å_ÈzíHNÔôadùÃoiš…š×]ÉǪ3OUŽ ¹†èÏñt"kÕQä½kQyeã òMëÑÅ=–F"m5Uh¤«,T½ˆ‚1 AÑ)A(d¬ûÒ `…YÂ$Ÿ0¤£ðè¿‹²û¾'Rœ~ˆíJŠ~´+ÝÝ@±ßZÌ,Q|Ô†ËÆ“ %„È”‡_EÉ3ßÒ t¡Ô a«·d3ʶ-ûDùeg Ë#H^ <ªzúžÔDöÓ—›¿P "Õ3ÒÝÅ T¶/t´•MùIë„’På\Ô-cETmyîg#ˆêUß>Ï¥ uykÏéû§ÿË“ÿÍ‘ÿå¯KxõÙù­ÏÐÃÑpV¡¶@Š•>ˆJò\܃?ùS]åÏhaðsË¢4k:qþÒúW0lòöÈF!Œ¨<4J¬o†Qdá˜ÜïsÆÏµ{³–a<èGeÓáã0±ÿ)½e2&Y˜¡ùúÍ'ç ÌD†’øÃ‚²wØXØEX,n¥Ô~› Ë䱡°bOõðøƒXÍ1zômž Öå'ŸèÅ;ýU_³.ØÃN‘µ’èðØeR½§mÑ€C”1äõHx§þçØS$WøþÒ§I ܆–}FÒ6ïõê ¹°ù½qåH‘Ý^ÿÔn©NDnª©ÞA«´k…NuHçžÂ9¯tîPå~$EFÇÙËCŒÇ‘ÉŸÎZü÷Ad¥f½œÝŠ,b ø kŒ±/ÃAdKæ}ûÚð#²¡UòèFŽ:’âÓiƒÈ9ç¸Tñ•¹Ù ³]ÇTQùë{ä½yÇ{H/ö¿ü n§Õ4.DÜéÅYn «ÍéPuC!SùûDî/Qø áØÚÍë(‚N¶™çPÔñ§õ%Õ"»”öŽŒOò?ß<ÐËÝ-Xô%©;ÏÇ$ð¡”eðåoÚ²(ýc7ðad7ÊÚÌíÍ7G¹Ž?{EPþ©½O´ôQT‹Š”²|ŽŠ™·zÅ­/£r²%Ô=TÓ|Äþ5®n¾ 4öE0cg9,b‡ºšÅ_bN3¡~è»›r'ðPOðhQái4Ž~G\q,ͼ³nãìAKwCÏÖ§h‘{òfù<ÚêèjÜ ³D»ñÇ™ÚÇÑáîËot2Úæ®8¿ò¼ù“zþÞÝZ\íKÐC‰Ûþ úKô|œ¼ììñÿËÉRTÐßpèL~l-ýæ42]zÏÁ•UÁ½ó¡LÑ÷ð¹&(‘ŽÍ§l¢fÏÝ9¯  Á!õ·t ä[T0?Œ<?‡È…ò-ÂÏßùVlNî÷¸Ø’O†µûÌ Ép]]6?’5Ѧ ©ð"E?Ásê1O¤¦)ï¼WA´>¾]G¾cêlÛÃDdT]Ä9Ê*dzfrÛóԾƿ¹E{Y¿K´ê4ð#»sÉ3ää{JÕ…Ü úŸóEön¥ÓCþ”—!>k~(ȺÜñkâ! …1¦^r«Aá-â–UIýd×Ö8ZŽâ·£y$Q"ùÕÉ•4C”jüû454e•ÒJ½ÑåI{ø?­ÿéçÚUÆ·¥>ç@û½¿U2tÔ/\RµG§»Áí*GÊÑylm.=÷(ºêŠç=°¿€n©7Âó,уEê¢ß§3è™Ð@|>!uŸ·«üg5 ÿ_ý­;…$0š Ï{øÚ¹¼È& šÌÈ…³TJƒ¥Šm’@!}Y =y#ü:|ú47䪦L眃B>>:ܵù#cÂÆ÷Ü~_X”+„o­Þ±ý¥ðíøUÁšÒ›ðíðWê*©C+zGþü¸y³Ö§æ¿9?>|=) ùG-¾&ë’B¼âÝ$ÙÈÿž·(9îÖ—Öd(¦QI.Qf†â™z'ÁÛ4û=î’@þ”’¡êTÊ(ÍK;Ò]eÉ~æi¡8Ä·õv4íïÓ 1‰HPCmššˆŸ*^g‡Ú_Ô¿@ë ßGNéw ×ÂýØ£³Ð1óK÷Íô[èÚäl¬¨€^~Ö.V+èÏãKã¸r¥ôˆÅfa(uoæä«qŠk¹7cnzŸ¸La|;¼‘Nã2LÎ G<ü3"î­Öþ'aΛØ'¥ù,ÔÊÎå%¨Õÿ—–Ëu_÷z¬®ÂêIK“39Q°.‘ëÑ« ›Â)üZE‡aÛiö$ ü­úö¼©õ/ìÝ_r,Œ×GB»C-aºëH´—"Nú¯I:sóóý‘¬×3èÎ3W¤˜=mòÅðR³“§½@ÚÓSºn½'‡Dåúp26Þ¹X`˜ŽÌ5¤dRíu7¦èê®rœ¯Ê½"یܪZ.œ\ìȧ_8ÜIuªÙÛ+PèÞê%/…w(r½"”—žœê”}ÓƒLgÒh}@©<ÃX]Â(ûpÌóHåW”|ëd¼ŒŠeRïÓ“¢rÛP³¹ª†èåÔ04¡úMç«T¡ÆìbËÿCÜ_FeÕ½ûû0)ÝÝÝ]ŠçIw§‚  6‚¢`€Ø‰(Ѝ ˆ`ÒÝ% ÝÝÝ ÂŸ{?ÏöÞcìý}ý{µ ¯9¯óXŸÏ±Ö¼®õN 5üˆª®/j újÝ\¹„ZQ§C¾×ñ£Žfç^ÝVÔ]ûÛº‡õ›W8.ñ¡ažuÈ×ÓµhÜ,\}Áú2šQyÏ䯡…Ý=ÆK×Ѳ[íÈÞ´f‹§?âmœ¿Ä?2~‡¶?kƒ¤ÑžåNÉZ·2:\$!»0ù/o&.gc_¡SÒéÌ"C}tæÖ/szG….Ï¿É?þØõ¿y‹ëõ¼ï¢Š‚¡¡Aܤ$0Á¤:k ÝR_ÊSƼö½&¶ PGÿõN›š?üúlM|ýÁ ”'™ykj ¥g´¿tâ_.‹Çß 4¦ƒ¢üOrõ³PÜ»Þïqg Êø“¥¼}Y¡2'O܇ŽjŽ+Mîd@ƒÃ;¡¾sÐ|åƒëõAh‹Èvù¨ì£þvŽŽ%ÐûöÝŸYè—ÔÌü%-e¿kì?CÙŸªXa¸@Úg&$F<ê’ï¿}#Ûã¡[_a4R‹»IóŒ]Sär{ ÆÏ—>cW‚‰û.­ÍÉþ0™4§¿ËÃ4y¯ß§·0ó!ól-1ÌÉ–‹æeÝ„y‘uC‹XP-\ME7É £/Œ`é[Iðé‹Ì°BÐÒÌõÀVO¿Î¬£ÜkkÖÙ·‰¨`#?ÖÖë‰l•óü¹à´›OÌÕ–¯5j ¾™6Y¿‰”s$^#qæ]iÅõHêl´/#œÉ$Ú…ŒC G~ë~¤’áú%‰Hã@W5Ã0…t1z{ʪèöå†2+2ºTßn;ÞŽL¹«,¨,üŒÍAÍÈê×òØf²ÕWÑéœØí‰"·Å÷½FÎkµO˜äe«qc!™žyT49iÒÊ7¬áb‘ òòfrDþ¬Ý/GMQÀ/HgÔ[õGˆýšPˆ­íä"aš°ã¨);Â7”¶èíQ$s¶›ã°.Štlò‰B±î–èäÔT” .aÏ8M’Æ ªµbÄ(õa˜[R² eè=CW×Qö}t§ªñS”x4H0ô([ÜΆo¡"Ý/º{-çPIÙï½¶Z*;-¾HË,F•‡î‰ýƒ{‡¤'±ÍUßÍ›o£Úo‹Û;¨Çi$e†šu¾HFm‹w%ŸùÝP×–Ú5ùÚÔ÷!è,zb„†ÙÝB¡h¢hvöz‰/šÕ|Xýƒ–{C*æ?m UÐ^ƒ/^h=[¯©ù:mÝ[ˆDÞæ¡Ý°À…(Ct8Ñwoeô_ÞìEúB?-£Sn_×#"?tÞ̦~y]^Ý ÿyã)R Ö[PŸò¡3= .¼(: ¹/ÄJžÒCærÚ½ å‡ñ*¿ëÔN d.á~`à 9‡žæß39 …îþ‹5¿Þ@éð€áyéøeƘcyê-C?9•BC—¼ëA—yhšWs/ ÝÍ‘Ÿv„¶úY±QW)èÈ`¯ë¢H…®p‡ÁzÐc”Nüç,ôv|X«È8 }_ÿ9³„Aÿ- ªûö©0p6áû©* ^üÊj¼3C7¹„ö§PÀð7®>tu€‘?7¤#Bv¹4uÉè‘„ U™J{˜â{šÃô®fÔÍÌÖÊé`N½?£ØÞ毚ÚÓ *„K| ½Ù'aùµï…Ä‹°*ÿqIàm¬mìakV…M¹·ƒGÔà ˃M"ع)0_u 6‚3ê¿8#‘ž Iæq$W¹f†¤{³.(˜ãžÛ6A[îŠHÎ&]äÀƒ¿ÄÓÆå}*¶XËõ·Ò|»S³È'‹tE_¿«ËÇ!ý ókq=ÈHÐÉÝÀŒLT ôy+ËÈÌæ¨1ûæ9²ˆÕôçÇEV5%md³KYêqÙ=yÈGc«‘㮩¡ë™ä zÁcßwä*±Içà|€ÜÛ;lc«ãÈk¼™öôím䋊~¤æ‘„ü%ºB»QÀ2ÌÇø~= J‘DºœdG!V £ã×çQ˜~äÒ&÷a[ž–‡¢²yg4výÍ¡oReàŠI‘íw=Ž Ã}¥ŒPJ™èšJgI'™æ«£ì™ØWB=¬(·Êy5±cå¿ÖYrû]@…h6Gªì@T"Ñè87*¤W«ýo·á¾ò{WH?³4³¨DdÒ+ø¼€Z ×>~ Bå–ü|hÔ?w¶2%w„N«ÿ¾vMIg¿²ÞØDóÑQ¦êh9qiE²¥­Ïµª¾'«@Û=;O££Ýw/Þ÷¼Õè`Qô¥Iö_Þܶê²mÑ©ú/AöMt–cùÌÀ‰.¡âÌDÿ#o,ßòË*}…w×w…ûÇÓk»U­MÃå*–ÑŸ÷AqZe“Æñ(ÌÉñâ+R†‚“WN{˜Gü——}©(쯴¯-œ!KþÉìeyÈ_5´P9Y1û}Ù™ gáÁÝÀŸ  ñW¿õc(þã•êëåîG6´½à—Ä÷†ª!r¨¥;u;#’ê<Û$‡*:¡þúOÛsKþÐðäÕPRå)h¼3½ñÏóÔþú•»ðú\)4V½SxùÕÍg2s¤¡¡—âJ•ÈÔh65ôO?á×€Æw·4xn5@“5K®TD 4ï« èz -gx+?öeAëÌROrÏCh¿ññ¤‹È/èüúFTÍp º'ðPohBŸ£i»÷p ôOš ùà‡Á2Içô‡0Ü¥øÐöÅ%ãMñÓßÍʼnïú6#†0}ñ;xîòZœúì>̇ӰŽ!,þhÞôûu–³|n¹7ƒÕE÷u=w°aàÛÓ¸š[=MΜ³°gzv+* Y›Fo 1! uÌ $)æ5q"•Æ=Ÿ”¿‰¶"ùW/ã̶£HÙ88óŠ• i$¤XÊJ ‘.z nqW!ƒ ²Rµ"ãã"âóâüÈLKs’½ŽY¢©|÷"›é‡˜ÏB$ÈÁ4£ªÓ<„\¤+t¬ È£ðŽ½Ø%ù‚ÜCÓKfP€’pG‚@݇i§M QhxßœíP"ŠC›Úô‡WÔÏ¡ÉM­‹=|h¯¯¬[ÊS¶ëoÓž­a»¼)eYBGì{Öð¢Cﬡ3“Ðßà]Sÿ5Ö<³Ë›7»p¾Ûÿð·–c_l¾!ýƒv?æ9ÿì÷¥ž¨" ‹–ÏãÝ h`é¾]e ä¥<·tIâŸë Ñ ¤W ýïóL4—›wðä^ø©lÜMKý ’|ô†f» I_5¶€í$ŽqçÿPj…$ç¼5îÇœ{^àÊMHY´­0§ïû;Náµù¬b.Ènã¹ñ²!rߨoßI}üwÞé( ~I(ˆ2Ï1O\€B_]Bõ]û}Ñ}5ŠîÖœq‰†b‰àô!RN(¡©Êm…R¶þ¡¨-k(]½Ó±WOo·S$”F[@E7Û5oÓ0¨úõðVT?ž<¤ßZ µ¬¤gœˆ¡îGü§l¨'ç¡{V"®=÷š‚¦ð„ø÷‘UÐâ®MMPHmgÒžq+\އÍÑé¼g¡›zêÍv8ô~7×Aëý¦,ÎăZ0°TÈËnñ†ÂÞÜú³ÛwG;Ð~c—M–Ï hÁÄ—CQVG`ª÷ÞÚïÃs0k$^ïês›ì;B¤aáæ½5²ÐyXb¾_÷:ñ,—¹ùè Ÿ€ÕØYQŸ°eXÏÔ~u9 ¶$Ö ìº$`{ì’oX³&¬mÞíêA¢ÈþTÙøx$ñÙ£y:ñî¹ÐØu@Öɯ?×cFʨ$Q+_¤Þüö€°ž éÒž%=6íG†ûªÏ÷4¨!“/¿Ôp]8²DÔÜþ¡»…ìÔ“qï94‘3SqÔÝÉyÒdØš%{߯sñª¿ jNT\£Ea¹Ä/û¹ãQÔÜJè…!Š'ð:n³è¢”ÍÏ(Z33”Ý[¢ë$e‡ò©Ë¼ÂûÛQñR"ÜX‘Ae‡=í¯q¯(=«>%ªž8¦pýô8ªu¼7cÓ A›b«ž‹¨©@Y±²ÄZyÌMžíf¨s†`pZ•õä»jõ Ï£û_lWÑ=põáL@©hÂwŸ¼Ðì…H©Û~´xÂùè /ZnŒ„5új£µÜük‘—hsþ­t]ËW´-Øá.5úö<\û‡ýKÑáæØUûÖy3\ºI¼³Û' éˆO7¡3çA¦ “kè\¯þ¿y‹Ëçæj^BAï©§Ÿ¥NÀ¸mçäŒ3ty“ç:ÕA£Ž<¡ÿJø-É<*“º»>Ÿ|+ƒ²«Ö*× ¤ôÆ`­¥î_.‹ˆ-ë÷'B‘â¹­‚ǡشÏþ¼ÑC(½UwX ü,TRË^]µƒš>ç?¨oaœT P…¦ÞEïк4r+*#:eúÊ?:­CO©GLûÝÐ/žågxö$ ´Ù’Æ‚!õ}fïî‚aõÑÊ^ï2æŠðÿ¬#>é´W"a”J48F§^½;#ºëq=qFÊ:{a|ÞÈvá·2L øw2EõÁ”‡Ã`At3L¯oeD›Âl|ÎnßÇ0Wiaà5˜ó-—–‚üSaa}8ën*, 7“ÉcX¹+¡™Ú«Äîíg‡ÄaíÍŽõ°§ l¸ð³{ ¶Üövvy>‡í÷÷Îu25 Á 3áZ+$lu¤?c‚ĦþãF†ýH2è×ê[${¾Îª½%;‚ä¡®Íì™Hùõ¦õ¾š6¤nʽŸ ‰t¼\n‚çü¾¤C«šÈÝ®èæ³€¼&Ç&»&ƒ‘¯Ä÷ÌJòÇ\-|þ˜.Œ³ë¢ Þ“¢'ßQˆK=úøÅ0šËðHÓFáß–‚ý+(Rxé„gæ -¹N_µ‚b­‡å˜iŽ£øê­?dN¡(ÉWTä%‹RNwÜ—$[Q:ïñ9Ý K”53˜[¾ŽòÄÝ'?85 üö~ÒàyTdÞà ÎaB%½(ï)º2T>WÁi¹€*÷å…Ju*qïrÎy©›¨šÉÞLîâ‡jë—(8mQ£y;~•äj†Ï–[u2¢ö£±I5Ô}?ìûðê×`r™UñÇ H^KD“kP¢¹æþ‹ÚEÁhy¢tð‘ôZ¥tÛy{}CÚÂ?»}òZí‚A´[àO%’F‡sŸe¯¿Ôÿ—7ëGQ-±§Ð)³9"…î: ²¸4»ê¢ËKë?‰»ÿ‘7žgýÔç’`XV:qß/h½¨ŸÞ êG ÏðV)ï— ½W˜wû¥Í²þX¿ôo– …‚Çe)æùÂsÜj4ïð!ÈÔÓØŸ–­éC“Éâ)ñˆ MýÖ È6^¾5ýp7Ÿ–on…’z{Žô„ʾ}×N³BíìIËJ™]þöQ¿¨K„ƺŒ‹6eÕÐü3¿ÿP?9´ÒµEÝ9ín}?¯Açþ‰\Z[èj¹+§¢&=N¯#žð+@ïobuã}ÂЗÑü“D ?²ŒÞFý# |¶{0˜þ–üÍOºµ–pTFöµ‡î»L£I1éGžÚÀø±ïýK‡aR}ÿZª’ÂÒæç¨-Ï`åùUs:bEX³9Ã‘Í {é>vîÀ–ÁÒ}ë/{aÛ÷V™Õ=Q$8nKüè,?F_²o8åDë§®&Ì"‰[Ñ+«NHÚïøˆñe'’]¾“ÎØb†õ>ï$#åN÷‰þ:R¯™ÈÝ}t$*Zd4æHÿ”‘ÙÐÞÆŽûßAÆÏo© ö±"SŠÌ@^;2WÙñb:,Ãl%Àˆ¬ÛnD×z‘^ÅÒ)&9¸´Â·DÖSÔY:€ä!rÏþÛ7²ÛÛ³v.ÞyJ¢óu O&|uÛ`ùNU´­  €ôiżV}¤jû‘u!©âšÏ;¡Ð€Ï«O÷"Q¸]áÑÐÈék’O<¼ëoD§u®DqTS±"C‰·§‹OT\B)ŽW—uÛFwyt\%ÜŽ@Ù;®â‡¬ûPžê·Ž¡1Êg˜BJÕuThŒSž¿‚J¶3í)ÇQåÒç×k¼¨j{Ú·•T´Š½uEì¼tv^ì9j °d7Q îU2Æû_»Ð€àD—œ+hT$íÓDˆ¦ß%+JGxÐâ⃊R*´V¨ÍEëwçö~y§ƒ¶bîÏêÈ,Ð.ï÷¦£x':8ªtÇú—7çE§v&ct*Û0‰ûY‹ÎRt+B¯Ðåõi—'³ÿ‘7˧T‚³ Т¹z•Y¡Æ†«›ˆé>”EÉ'~Ü͉âªìÖ¿ ÐtAPîSäo }iýure‰_¹çC6‰½_ŸdÞdÌQd0‡LVE-_Ž“™5%q? rÈö)ßPʆcšõ}ü{¡ø3AõÙoP.ô‰è± T-%Õ½Þsj¦X©>ñBÝQ¾c×L¨¿0uíÞÇOÐp'ÿ±œæ+h¼¹ÅNÏú_#zzƒiü+4&rÞ»Úì‚E+ æSÐËÖq2ÅB¾|d! MÅ:û‹ Ñ” †OÝšHïÅ)¯ðCÓ˜QJÙIha(¾zŸí*´>® ^jt…v–çBdÇvs¶¥¼F3ºO?k¾}LOÅmoXCøg.ám"¼ÂË”ëÃw~è¤&¦ÃhÖ‘â‰0¡ß7íG±››ä}ËÛ3Q0Gê¶ò§ æ®þj…EoÏ@ý¶o°ì÷`–S« VÓ]ÏÅ\i€ fSK›Å›°•r/ö,ì< °ä–ABýG‡=‘h\þ$_Ô’|òª" PÃ=~i…Šì/ܧ{íä¯cHùŽˆ4äĤž›·±µFº‹d¤2Q¤È@4%ù) ¯ª]½¶·™¶ƒ%?¿H@–×÷ZxM‘MóJ4ûÆrP²|œCÎͯ%Ô Gxoô¨Ýòù‰мòEþm±×ìÕ(h—qÅE#…ê=h²^îE‘+´4UýT(fÖLåòÆ %L%ÓoËú¡ÔÕŠˆÖ¤(ÓÈp|áÊ+a!‡µ**¼©~ÒEƒJŒ“†{eQ9W…û°É]ÜFpÀ_ U£Ò âr$ÒÖqp¾Ž$Œ6%¬ë,¸‡ÜÈp¤@ÉiÃvO‰jå/õ…Qãž™ðQ¥rÔÄKùbÔj/`RðC—G⣥¬QïTöRŠÿnž9oíÕãC££92š¿ž¢Ém¡½¥K'Ð,9âp ëc´Œš#8R€Vì/Âo¥íAký\UµùhsçQ»[ÚÖ*ì?µÇí…“¸ÐáöŒh~VÉ¿¼é?yÐâØÝuÝЙýôÑ|åty6L•ùîó^™d–ˆ‚fšÁ²V0öÚOJ'¡:3N.€ýöæB(±Ôêfš~h·/ ÄçIv ´GŒÖóŽ”ù3¹'®åÊU»¶]ŒQGùù÷R·‡Q‘SBðed*ÙW… • ò÷qc¨´göNï+ÜGf²ÌðU[4G ‹¦ñ€Püqï³_˜¬´¢»ËP³êݰÁ+oÔ.Ù{@Áv·GçÝ©xí‹"ªØÎ£Ñ}ÒQ»J4¥ üÆgŽæÉ ¹QABhùzy›?µ­ºîS÷z…6²\„Åî h\v±Kú;ÚíÐ÷–'1 ƒ÷7¹Ïÿòf>}œù[':¥V¹õrïEg>9¢p92tyÁEÔñ?òÆãb[ÚCï%RßäŠ@K½‘›G/Ô[…s[žªÒ¸Ï©SuPv·|Ø2+ Š÷èQߥóƒ®æNÈþÊ›! ¯Š§{oÎCºÒïM«çžªa1Ÿ]Yê‡uí)_C~Áñ™ã]rPœS9yÉš*.<Í¢5’2çI×A]Fz¶4$î½µ^óšü>ß©lJƒ]ùGΟ#¡º–ûô¶´7ÀåÖèô ƒâñ&X˜»~®öÐ ,¹’ˆþÞúË V±[1°¥[ËIëçgNº,†M·Æ›ÎvgàGÄ2NÁÎGÙ÷·J8äËäÙj$²™©Î Fâ¼M†ÄîSHªézW¼ø.îiíø^û&É^S6ÖFJ‡µœ˜¼gH­Ïø\l|iõ ZêÇg‘^"z6~°/¥‰ö«##%Óº¬ŠLV„ž«"³G[7ïMd Н·Û_†¬±ÔçÇC¶d³7¿?Böä½Ë¯û½‘#AjôYýqäÌx=94…\Ã=÷ÖÜ~ ˜•¯¯¹!oÆÛEBlÈ/›òÛvÈ÷Í)‰å ÀT\«? þž¡×s+E¡’“™T;'ún£È‹ñR?I›—7¾…bóFÇNE£ÄQÅ1‡ã(¹#z‰6¦¥‹©§ʾçÌyZþå¹É7„„P¾¬BÆŒã*kÑU‡œ@¥ÏmÇÛPe°ÞÕGáªö5žR®VAõ[9)Ã.¯PÓª>°Ë6µ_1·’ÜEÝ­}ÇÍF™Ðà¥ëË÷Yh|t6¡?"Í,ù˜Zìˆ_ÏÝÔA+ç²SkÑh]I¬œ*›‡¶•Û Úh× ßÆ®8GlŠÆõ>ýËÛÁñ‘•J-t*4¾z0ŽÅ(õßÒ Ë«†W±{2þ#oÌ+‡-üOß„æ×¢AVîCõų—Wén@}®¦_)åÇj-b%t‹5ãÝUȳhYW…ÿ.Å›™u$üÇËYiÈøúpj!2´Ï©½ÿã¾ûsx×’Ids y§7B~5£Gg›võ ]€²ÊúÑ"¨ÊO¯u_€šŠâc.Ÿ¹ Îêdá7PBäãÓJh¸6!—^”ú Wþý¼ÛzF»ÌÀSh yÛ~”ÐVÞt|éƒ/ÑóÎåÐ`•æZ‘P¶ëqǸ7l  aë&ÿJ%4f,¿Ó³ÐZ¦CkUÍ™§$ΚïƒVÑ/:{+@Û÷»«UI #™õôQÕ£Ð5:´}tz߆Ïx($B¿ÕcMÁ0 òï Uïr+%µÃZ»£®µºš“g`|ÀïAŒŒL…ßïoÙw3Smî0Ñjåfå3XT!ãbÞ€eõ°Ã¿“ÌaÕÏy€,Öû gMaëñÞùìѰsÌ?øSH *[†ì+@¢úÃS.Hr§Ð0zÓ÷XšeQš"¹¶i KÞq¤tãç~F„ÔéÁ½‘N‹åW‡"ýZW‘Ñùd<™<{Wï2Í2Î(Úi Ëâe»Ü)ÛD>iXBöíˆúѳsþpEuò°6(P™B¾SS£ÇŽí ÿ¿%±Â Ôìÿ-û…r?Jñk墈ËYIÃ#²(&³ý°ÍŽ%Dg]xRæ ‘s5²(Õå4V­ˆòFÞË2“¨p=‰¬Ã,ÿPlg}}ƒÊ?R~TwáÞ7ƽyᮨû-óiòITku„åÎPÔàë¢t£FLõþÄŒZ.•^[ÚFíDÑoÚ-a»þøjñ¢êl±Œx™¡ÁWû{´âùhäõõõ,½*šXÎi™™\E3mû}<7ÐBîê¯Î´|uèÇW²sh¹îó«V ­3¿z:¯Œ£M7ý;ÚÑ’(%[¡½ ÷äÈ¥¯»þ6\ÔŸ¯ƒô˜ëÐQÃÚísm :EÞíË\3Ag&ÑOÔ%»þÆy¸Üýæ.o¶7*bþ‡¿ýžšJAºñ‚n›>hÔ8Ì>»EµËÁ2œ¸5…øžÓƒ\Ò|Ó®]Ï2ÏaÍP„´³µWúTUàg¡ï•‡Û”¬Pñàð*$>&2ª=ωRcãwóàGUìÊœx$:.?Öø< IÙ]¤úäÜð³mGËÆ‹úï8£<¾ö{< +7—ïé²×?×;ÛÜŠ#ÿΛ—ô]"!ò?Ñþ¶; +y õÞízœ/ûÅsLPxk¼²·kŠ8GZ†œª¡h&§l,ÄЇ‡lH›@If^XúK¥Ý<›ÿŽ¢Êäv[Î?†JëÖbI:¨ÚørôždÔ°kÔTE²ÂoÆÀO=”¤P—ô­ñ,4P± ÉB,4F^°Ü“rší,>f+…V‹9š²uh?l¤òŸ ³aÜçõ&3ôØþõõY!ô…jjʯ†9Y†o³Z0ø›žàSáIþÆöhÝù+Œ>åd‰ò„ñDM&Ö6˜ì “õn‚=^ ÑŸÍ0çCêÿÊSæÇÆÜ¤êaÑmµ§-J––$f™ÒÒa%ñ™ò¨%¬EDn½Ì©{aG¦nÁŸç×ҬΪ!î‰ñ÷H8r¢þ&)ÿˆ4(Ñz†¤áy©/¬…,"Eü‚#Rä˜Ï÷Gj*F³W¤ý7œ¬‘~ñqö›qKd¬µ÷½)¦„ÌÎd 'MIáUã ?räóot÷"÷;²[õ»½Ž¯¨Âí#¯? ¼o5zGÙƒB7î1r“£H0KΡ ö*è§½‚’ƒÚ¿ ¿A™K·é"QþèëGO¹bQQ.õü¡’ë¨Ì=ÜK°t÷²N$$ *÷•à¾R¨–º¨M§ÿ5{[Y%¼CMs¥ÖÙ3¨µ|Öjiò+êää]vâ F½ï¸„T ÑàµwI|%Í­Sû{¢I[ÔÙ9=4ߣò²©ª-YºeKD«½%·ü ­^‹¼yy m^_“:2S‚¶Çì)‹YÐ^ÚX(/{ î}üü7é_ÞtÌ”3Ðé«W潸9tf½?OظëoD×J7ÿ7oq—õK=PPìÕóô+’0ÚÆyæ-íWèØ.ûyÐLºßôÊ쇚¡1âF²PÉN¸sò8”¾uã,5€b¿C)3f¹,Xú9ê̾…ìDû\ƒ"ÑxÍËM‘P¢K{ó ”§ã^°mj] O‹Mb¨k$’2q¬ÆxÍ;½R¿¡%B½<¶ÐÚ³¾ÆI»¸A7m´Vd;ôiÿ*ÿ1·ýß_‡†Ax¡ðx»†öº\(”‚¡æ¤«§r’`ø˜õÚ©‰—0Bq蔼ŒÔëæß:÷F³|ÞŒ•óZÈ‚ñyÇÄ„°J˜T2ü¹‘c Sñž¼A# 0cξáxõÌÑ?wΧÚó ¤™L-° q˜¹zã,ºßQ:±u–òzê‡ae!û§Ð=°ÚzðVœþ ¬Ç«þù 6CO…&¿z¾¯~qÏï„ÁO¯˜²výM@#›Þ ‘·ç±Ë4H<ÛϺH Húë´Ê°+’½¼L½‚_öæ3°P!UmwúH ÒÒT°·§Ø"½|!çêÉcÈpÂSÚŒ¹¿^!Ô•,B¦~¹„W[È¢“SMh›¬¯^È.OH ÛdBãåejä08@8tF9¿} øZú¹Ø~.#OܽJ%ä3s (ü…üׇ²u磀ËÇBº ÔnÔL8ˆB‚¤¼ò-÷QhÃiù[È w-Äå+£HÝõ«—¤QôW¦ø#Ÿp«:©Ó’S‚âÕJ?kþ@‰ÊÉUª»(Ù’¿òP²¥9‹Xz~Q£LÂSî“܇Qî9yÜ«&”Ú¡ß©ùJs>pE¥“sü˜Y„ÊÏ/ì÷½a‰*/»³µýŽâ>öÎkdõ=¨ºxjÍOì(0ë²ïÌÙF°üÔlN„š+†Äf ¨½}Ç÷ò¹.Ô“}óª1Ú ®ç­é&A£I÷)Uù4õÿVyžZ-D<ȉÒв\”=*ÑšD꯴1ûÕÜh“—î+€öÔä¯;ެ ÃåUÕ$ÿòfb%f`ŽNIù¢”ÌèÌmsbëºOdû)üGÞx¤+. oÂ¥h¶øöMh‘3%•š€ºìkU>-‘P¹úíû×'PÚt ÙñI ]¥Ñi;àùÐ?óû©$dMÕŸLZ›€ô!ã(rýH»sR÷š¤õ_Yþ™2Å{òÎHCž:×|Õv"}ÑÈYqÿ å{®:~ц_î‹ÏÜ\‚߯–Ñ: õÏR‚#šB£N èþŠcÐôÇJ½¼ ZÒÅ‹ä×®CÛ†üÉ_ }Ž÷^tÛ^èt~0Í8[]¥L7ÎXìKZ’œdÐG³ÔÎòÝúNnVêç€è«F›$KÁÖ\×`Ò–©]1¯¦s=ýÒ³ÞäJaž$}Õw>X88”ÒÚ( ‹enßvËaÙF’p¼…V––yîÁÚ÷šZ®æ‡°q=ùÚ)¢pØ:¦u5t#¶}Ræû ‘À-m“ÄK |¸ˆØ˜Ké½’/’Dœº‹2¸GUáãムH6*¸°Ã+މL׌öŠ ÕËö…" G¤y`êñ¾ì9Ò=öºùtÛéiÝ®×~‰ íbD·Ó!ãt³´ó~*d¦sq¬™¾ˆ,*¨\CV‹´^¿7#Èf{¼W'ú²I›*¼ŸB•¨ÈpmäTÌ;c>ä:d®AÀΈÜé+u?bë‘Wçeó½mcäÛ¬Ñ <Þ„üC{âc¯(¢@ÍÍjïû7P0®îbª Ý{Ù¸äP…ÂN_ŠÍ^{¢ˆîN¶cØ®¿9\]">W‹bŸ>¿©ó}·wnÑU¡äPÆù¶KQº,ý¶Çõã(›ÒdY¢îƒòÒúì¶P¾Y—køT**6OÄÙ ÒŠe›f‘)îµþ#5ÿð+î?§qèÅKÔ¶9©p|5SÇú XN¢ÎþåÔ»q2ƒEØ E_ Î¼ŽÆ;É£ɦh¶I.œ|-õÜß:9ä¡Õ›oÁäOÐzå­ba‘*Úž’ó°®WA»áç)-êëèp’Ûb©§û_Þlú¼™oìC§ì°X’ht"ySNû]^¨*¼õyc~/ù²yPš&í"7sjà×ËlÆ)ª+Pê7WÙw’ŠtYÖj¥Ë àœóC‹‡ Ïæ‘m‹Ø^È®vq=û>2³F_ä3C¯]lã¤{~Q*îwÝåÏ*Øuu²ä_¿:q`òIÈcK/³CÑRèÖ†½”EI0qD]ªÇ¹ÕÒ&§ æóùƤXv¨ÓþÄòÒê]ÊRÖf¡Á›¹YRv ýØÏ.ׇÿëosƒJÿësoú2'¡¡Ê#Ÿÿ’4ìSþàGƾÛ©åÉiBƒÞ¼o’G54Äí\LÒ…Fã ¢Ò ÉH»Þžú 4»R·[Þ]†–¢[ËWrY MË÷±–tìµ§\”g†®ûõ/3ôR <‘sÏ‚~RJß;0P{æûJJjø’uyZF‰Äóö Ãx«@½å,L)KW[P¬ ÛÝøT:˜W•šTÉÚ «ߺaéO\Õ=þbXEGûSƒÚ°¿ªd3É[GÆÔ©NîÀ2G­Òy"¡ [:¡ e>âÌ|×$îŒåF+¶¸GìH‡Ö’ÓfÛ'DJ P %ýƒÔ7¯×ž¿„ttÂ/îÇ]Eú!©ÐS Èh/uü©­*2õ†$å³U#˵ƳžW‘M\6‚àÛ²/®…gî£DÎQº.21Gä¡8—+§›†|öI´™J‘DîÊycÜwÄD“/…¾6Þ›ÓÝå©B¿´ÛÅhÅ÷X3¦¢a !}JJ ½Š¦˜<ˆ2Þ¡ûÏ~n@¹í£(¦¨à®®#–£Mž]"@å(e¿ æÊ¸÷UÈIÿ‚`T‹ Ù <ŠjíŸo^aÎD †7Ãã"Sˆ1½V<º¨¥tá½eÀ~´ŒJÍP_¨D«ø$‚>æ×h]L_?“úm†4>ÍqžC;Æ2‰°÷gÐÞì9^æçD‡—nŒ\Jlxp`2ý‰ìGtT§ÒûnšŠNeIÊӗЙžŠÒµµ]ž<Ùû½j—7="3ÃÿáoÕI¯¨²ÎAdϾ£ÌÐîÄ»BeÒw7{ˆCáËsH 9þ¢3÷BÆï7σ!µ¡ûO¨qü4ihŽ4ºI‰ìyº¤‚È|´¨X^~hÜf®iƒ„ò^ÅL _øñS æýIHRóµh³˜Ø}]Óõ^Á¿ãdšÉøô…å¿ö;?¹?ºËña=k㸿óæv÷¼Ÿq†¼JåCc¼PÀÂC)SõÇÙˆ-Ýõ¸Ë]ï ðåó÷¢PäzW÷Ï¢›?Þ§õJ8;7ÖÔ$ÿéÁ¤9/ ¬›¶@—*^ß8Övî&T)Þ¶Ýí¹VI%üP«š^áôÓt—ûÜo{¶ý¡>ÄRRH Q°!ò@n)4Õ´œeÓÙåóI ·ó h+c¡ŒÛŸò­Y¬W- ûÛå§*–îÐvIe± Ð_íx ©að´)®|*ƒáý«y0ÊñðÐÄ Œ+[ÒnÇXÁ¤ MžóŸ2˜.fÿzÌ™ 抟]püóïÉúžùhÃ"¥üñõwô°Hó}c§V”{Õù%a±>îcXl˜Uë -%ÀÖðŸé´½°Ó´_Õ&P ~=ò%—‰Mg~]xL‰¤*Ê‚CôH&_YAVý)Œx&òM êÅŒÃb29Ò*ŠÜ]DúoJu}—ºñÚ…w5ÖבùNtå>.d-³}8یڬ/ôù›æRÚï'´È'nùÑ7ÉŒkž’Øè£˜—q W*ŠÈ¯‘çÊû¢Ø-ö‹ Œ()¸±ì«ƒ2LGW´ìõQ^eu¨Ÿ¢"*…þ÷hTÚi~˜}kUÖêØ7†3pßêMSTûžh ÏÞèHœGÍÃGN3¢6kpúR êŒðh12Ô¢^Û5­ç‹)h0ÆûÞ†•‰EJÚdÌÑTN ’óµ=šúUÕuC-U{Í.‹ÜB+›‰Ï=*Áh}%_l¯Ú|=ó-öZÚŽ…xÇßÈ@{¥þÐïN×Ðá¡°åíðyÓJÿYCÁN1å´eµè̸)X[€.OùÆ&ÿ7oq.Â]â(H8öR3üÉîÿæ×ÏKС'z¸—ûÔ×)£÷±Ü]‡Ž÷>?›€ Pÿ”B¦%c-×7µg ¨uß«/V¹,8w4ùùË]ª³G²Hv×ÿËT¿0(þ,9#—}Ê6nx^ð`‡_¾†ÒÌË ÎêꯃwB¡‘Yà™¹74/œø¦í„´¼ÞG^C—aoÔr¢?ôF|é,?yú=Þš¡p†üüO·³að'Gi2Å ™mp©8CüÓ‡žÀ°ÿésoojˆÎûú †s0*îd"T¢ cŠäÕÆ"N0~Èè?k.L¼.äf« ƒ)²W²Ât¸ÒºŸÌžr¯¯Ñ˜ƒ¹·iÍ{OÀ|!›Ö<Ðn.åÓ7ÍÀ’Í‘D-OX®û­Š–`õ2)ÝOIX7Z£*(†M¥[—ybÃ¥ÄÒ¯!}°cnJ¿VE€¥§&ï}ÉC"Ò“üA³tHìË”–$k„¤’ 7ïÚº!ó á—E¤{¾|=#©Ì2÷[ÞBš{á—T ‘®Æ/djn˜¢é.®· £™Ùñí«ºÈôâ·YæOÈÜ™²O–MY%›†Îj#ÛÆ-ú˜‡ÈÞ—pãúä4xoW…\¥îš?}‘Ç™5½ó¤(òQ Ø•F!ÿé0U3²`°Ý ñÎ¥GA­ëwòeQHä´ëƒ-ÚùùÊè^ ;0oB‘6""Ïúk(úûà¹Òª+žªUe¾ˆâéÙ_—”ÔP"‚ ð—AJ¾rAkÉ>”ªèžÊ>ƒ2GÜLQÎîÇÄð³(ßæºÔx¢…¨Dž#G¥«¬+ãO Pù“^™+ë T Ky@È&…û$Ïl/‹Ðâ~úç”Ê xà •¡­ BÐÊi‚`D-%%2EÔQ­KÊ}ˆz—ÏîI4hÞÚWŠÆ–ÅóHµ¦•cµehJjí&h„–«öJåh-ÕPçu m<Ü‹õ•ôÑ6'møE~(Ús˜MÓv ƒ*»û)·y3HN*@§øŸã**óèÌáf,Wõ ]ž¥Uzó“ýGÞ¸7Õ¥?ÎòÃà¡‚,ì€æ óØI‰ÏP'âp-òpTJ|Irk1úç{]KÝ]’¡p²ÙOú¤ön¯|¢0öšs7—ž‹}/W„t¥z{j§ÝÜêãúdi4iwË+íöL‰JÑÊ"ÈI¯_–PÜå0éé•ËZ»y¦ïɹ;~DfB ;Ô<|Í}פê¼#ô:ywûàùН9 Иva¢q‚u·÷Ý9¹ºP­ÔŸµŽœn€6ÿÉÄ®XMhï¹ù²Å!:5¹>n8®B×?[ÆF ç!ûµéžÿ¡·µ°èâý.ŒI‰'aàeŠÖ¦3= ŽŒuì0ȰCj¡MxŒŒˆŠ{ýö†±Þ®†‰ÃÉú Î0e­:²_fîd^×Lƒ¹ónnsgv94Ùì7= ‹R…r²†ƒ°”BäÔŠOaÅàÓk> X‰Wn·6ƒõÐç—¼4Àæ¡HõÔ+ðÇä@¹ë‰jع“¦6´„ä›§õM‘è²µ×£»H¼íuÍN°IC†èsô"™Þ¯¤$vZ¤ —Ý7Ÿƒ”ý‘¶‡Sòº¢èä'%¤- (R9Žôî´~Ÿ&Á{úOñª2>þR/íÙƒLIƒmׯ!s÷1ÝË ²È²æjNsYWDÓ?]C¶>¨êƒ'=·ÒùçY^äˆk/ÈûaœÕ¹Kd5¾È­Ñ~ÜAyjŸêµ _¸ Ç.äÏo>ËUñl;jƒWQðQr«ˆÁ[r\|_ЃÂÜCG gQx•åæÌ]#"25˜ÿˆbv'óß CñéREÕˆe”¬2>¥}¥«†+r*P¶&hh= Q^ýnÖ¶f”, ¼ž‰ŠngJƒ¼´PÙ€°õoî-_9×;‹û×cçQ£e‚ãú9Ôâ$Ø÷©eê\eûAsüê…Rv¹ÞAÃLç»é;hîË¿X2‡æa]bMì·Ð2Py±5©­êO²Çr^Ba9ùZ»d´}øªãÕ^q´[[xþÊ€<‡º ®°ÿË›yËEYtJhJ|Ÿ…μÛcßî¢ËóÏ]Æÿ‘7f­µ6¹ÃФy7Íë3T¥PÆ÷“yïæX]ËMk[(¬¸ûã+G äoŠúæ=óÜ9’ÍvJÍÕì ú2YåØž?ÝÚõ¶hA·TH ”ž(u´ußÑŠ©§¯{¨€òì]`ô‚¢÷v\ &·¡ÌÕƒËÕYªìŠ+WÏuCÍm^]’¯,ÿ|/ÝA?i[¨73Uý™NãµØvh¼"ú<‹­ø_£ rýçºÊÑÐ[Ò‡Îíöa­O¡dÒP¿£½C’xêK\· ÎmBýâºS÷­¡Á9 _øl4ò5_µ\'„Æõü#Ê© ™<é‘JöOhqqŠÍJš…ÖÖS7ՌڳBâî‹UBçPÐölùKè ˆ–XxS }߈øô¿Á€_³·Jm? ]ñi§º#Ñc4îwÃ8GböÖ%˜¬lø–¼£3yš–žÏ³`îiïÄ·XÈRUûBKyùªjÁª°Jl_UÅ~Ö¯UG7Ž Á–ÊÛûN¯a‡3.Õø-Òõ´ý¨º‡D‘©—î‡Ú!‰®»Þ̼+’þQ>Q9]„d’„¢O#ÅÜaã·vkHm¨KµfB‚´ÝJ‡”~"ýïkž(c‘Q÷Sg¨Û$2Õ±û˜tF–sô‚{YŸ!7ÅûK·‡‘}Üêl +rv‘ÜÞ=oQÙ¨3"Ÿ®Ï^:bzäï€Ýna((®˜’DŽB¯ÉO†W¡ˆ”È1§‹(:cuçWÝAïºò¹uµ%×®ÅQÜBm[Ö™Q®*3þPÕGT0.ðQàEÅú®Pw8ƒÊ¯R$7?Á½Ï{gÕòQ5é¥åy÷ƒ¨Ö9W¸aÖdú³åã¿CMv¸'•QKÊó¢(ùj"˽«àŽºã×» ÚPo‹ÊŽÝD yÈ÷¶§¢Q<%ûÒš¼÷0¿tïš…TÇ qÞF‹çúr†î eCA]Zež \r\Dëê+*7.é¢Í䇢Ì"´c{({ÿÚ[’¾$ûõd×ßz\mc&wy“$~"‡Žj%â‰U%èÞ*Þ|9éˆfø£ÖÑ%puúó"Ó.o*õ“ÿÃß*}÷-æ#m‰ ÕsÃÝuê(¼,Ë¥¾L­ºö§¡ #›¾ ²Ûx‹C†d_÷™iHÝ?}ÛÒÙ’[ä3_õB’lr A¼é®·\öê ‡!Eû5Á_Êêyk‚ªæÞ–úg_eØ™7œ÷5ë`êßqÒ«ó7æò óÓáüÇìG [éD²V}úßys)þ4R0Aîò‰Ï„†]ÿ\%’ZÚõ8îÜ[W àÆ©v§½PH­¾<”| ›LŠ™¬È èçHá©!(ö[wRíÜ=4×÷²†2EwM¹×~PÞ!Frÿ×]¨çë „Â`,ô{B¥ &ºƒí‚f´“ÑÇ=V0ÛM¬ûþ©Ì[t·åä%ÃBÒ©iΗ‹°$0jÀˆ –3åt‘êÂê}ÂÃñþ,°þƒqúôVl©Ý\!'T†¾è²¦;H(99]ï1…Dê¼ w‘ä××§ã>Û¸§°÷d¸'’7O ¾_jG*ÎÞÆ&"MbܯK§Kþh׈ÁId}RÈy½™…§ÝÔ!ë¡ËשŠv½”†ÿùÑcÈu£²&îòµõ˜éžGþµâ†sïPð÷¡›Ý\n(\ßaÇߎbÜ…¢%dñ(‘{ŠAçúJ'c—jæÊSí[ZýムYQJ/ªQi TÑ—î<ªtü¼`À9û‚foÝ>‡jÏ÷‘Ô¡Æ«œïÊѺ¨yöðHíD&jKþ¾¶M‚ºtþ”•¤T¨OèÁ4”‘/íøˆÆ¶ŽÁŸzdÑôÞÇÝQs4w#RòCËÃ'T?Z£Õ…×_ŸøØ¢õsâ¸É*}´Éq’˜ÝÓ‡¶ËåÏ,ÕÐþÀUš7›ÔèHú‰}äñ¿¼¡9çq×kèÍëN6GÎŒ mßÅ£K†QOæÿæ-N£áBÊ t©¿ª,™…§ƒã:µ»çõÀ{/(ûø¡Þ6PV+÷ü2ã>.Ø åî—M cI¡DÕ¸¿±à5)^úýî‰ý_.ó«97ëçNíæ ¬Fk;\“¼q$ Š÷ñöRü×ýæ¹;¡ê‹æÄ‹¨Ç»ëy å×Á2hð# «Þí‹F/iâ*Ç ÍÀ;8ãht^JŒüšÏ=™Yâ²Ó¬Ð·øsUìº hN³\»|åš9¢F a°ÌÀƶI†,g {îÂТҭª:)N] M¥‚‘ך&³z0ú~Ñè¤6ŒªÞ7z‘ãûï*7Á¤ÛsÍc‡`jÆç\¨Ìüˆã>~æÌX‡¾­ÀüÁ/l‡…@"ã¬øã°8¶ÿj³×,ŸùàÐi2«¬I‰ù¼amê ëBÍ lÔ†Ù=Ìz[Ù§fÎÃvÆRPw;?œ~ÅMÄ8„„¡Gº£ëùhKßÞËÚI¾¼i(vÃ=/3ŸèŽx#yÌ´ÔÄa ¤üuìÕ8ŸRÿ¹ô;xSéö_Zžd’Fú‚ö…°žfd˜¬Ê(/E&¹€³%gŒ‘ùâ÷(Çöd)d{ë1åˆlœ—…¿$Eök2›œÁÝÈ1t©sýå*rÚL«ñŽBšØ˜{Á‘·ÆÑtOå5ä·³HÝ«pLžn~V…‚šB$yu¤($^ófk¿7 “R)Žù¡ðÄËžË=Q¤÷~`‰l9Š6¬þ$â×G±\ïƒo=Q<êêS‘R”¸ÄÂÿøY;JZm=ä–@)ßõ¼+ßËQ†®É ó‹:ÊqÚ/ñz¡ü¯’ös‹PQ" Å­Pé±FÍËcy¨œÊicŸ€*‘ÖùÉ+¸ïÀÆ+¸_&“kzND©íO8òá—áVÂiÔ2ûˆâÏQç"Ï4qä]Ô+0J/ØåNömó))4N\ÑeB³ƒãä ÏÑ’ÔÂüèŠ'Z‰Ý7µü‚Ö6WŸ„yY¡Mà£h²0/´møÁëIA‹ö"k$;¹ùèp+ëÄa’ÂyÓeÿ^›ª„N_¿ÄÕ®EgV¿éµPtyz»Õ‹»û?òÆ]ùc€—SFøËLn)CÓ¤•ñ·“§à7ï)»·e„á”yÉrôsȵÿºïv¨RO‰·TKíæ×"ÙÓNøLâànn=X ÑIÞÍ#‘#º¡D:[…3Ès7gnÔ ÙfÃ/ÿOÞër¡öƒ«Skq%Ô5ÚŸåø‘ ^/Þ=£¶†&ªš¼ibhþ¢ZÔ¨øZ)2º˜}¡íÈUµ·ù¶Ðž-TôøÄtÊžŠL/…®%Då«Ð³,Ô¤69}!Áát?n@-§ã§mÐÑ=«CÏè96Ì7`„!Zÿ¹?ž02y ¸ÆM:6“†ö¦ùï=`úa^9Í5˜ÍâbY9{æ%~jO”ÆÁÂs¾ŸÎž;°ÄÜ‘Zò•–ì7¬ãaUàɻ׿aíçyÏëÎd°aI(Ýwa‹¿èpÝ”lk-‚Çd»•þøÖ%$lŒ~TÛû‰}}ÎZßD’µÞÇ„ô¸'úÒùc ËH~Ôpù©ˆ5RÊJ]åBjÊc¡Š7š‘f-«hÙÃéÖÓTM)o"uÊ:é¾È(æï³„L¶§í¥Ëo"ó=mréd‰¤Ê‰H™BÖÐמRQ'í2ëúI¦>d× e/Ý·‰¢›:âÌ÷SSæ;Ýíväún8Àµ'y=üI“’„|šóîÝÃÈÿ.Z<˜ƒž‰K¾óBÁ!j!jÄ»|&3éI, PßVš¾ •Ò'i“B‘¸ÇÑO|. ™ïô{r(žòÔABƒ%tñ wDéßÌ4-[R(;bpUN”åM‹ÞÎüL@ù…ë¬{âQñùÎÇs]r¨ü&¹¥ÆO÷)ØLìSAµû êæçnÝüUy©µØ‚¼Ùƒ:“Eþâ!+¨¯ÂùSx6™Zk_I»…¦ûmµ¾F M6ƒ;QhYOjnKµ‚ÖTB‘úRNhcU*Û1.ƒ¶_6 ›ßq¡=µ§µ+:øÆŸ¡f°ù—7£š‡“"è”x€èp:s®ïZ÷C—`Ú½«þ>ùÿçi´œûaË#h ùY5hä•Mކ-Äg¡Ä.q_ãš.ž¸»§ò¹žwõX«BÎ÷Y‚¦;òuÖ-_»é+d\¸lì2iy³<¯/Cj9¯(ÃW§®—¬jX^ƒŒCËKfºœ{qÙ™;¾ Štö‹kVAÿ¡¯lƒPÅ_Y^l½Ûã~¥8|g„:ê+U„zízÆ!«Ðpô ¿.4ú(§8ÿëo½ûFýj4 QŸ­™ñÞEhðf}H÷v êË­Ž>=” õ×Ó«ï×¼†úHZI¾ˆVh Ù6U‡†F½SŽ¦ÐøíÀôð­ïДh¿ŸsÁš7TmÅTBë9Çûl¡šÍ9ø®C§Û@ú©kcÐ=/ZžZU}ëO`@BSu²)†¢Ô$Š`DÿÒ|FÓK5± ¥€É#Wž¿ýqf,NsËyž€¹ÂÞ¦ˆw÷aÁ¿®ê"Í,ݨÿ<»“+å6(e–ëQ¬6‰°Ee\÷½ ¶WtËÉàÏç ×cHô¨¿ÖæU=’§–¼œòDÒFòE«^$‹ ýÁ÷æ,R¤_s û¼„Ôô”FwãBö»6_oÚ4ÒgUê~nýˆŒJÜVQ> SÁ;Õ¶÷“Èr òbnèí˜c7²÷|S=\#ˆœ >K„]+È=Ý|YÉ ù÷;»7¼EþZ³JãÝu.ȱ‡W0…n«ß±2³D†Û7 Ú_£h­¡^Ð&ЧkG¨¢dÍÑ/êbßP†‘néÂ!f”{]ÃÀp›¬3‹¢jQ1Gox?y*?Pê¸o9„{ŸIú®“L£jÚƒwý–¨Ö£NìÕ·–×câ¿#>ʈç~~µ„Îm¾hAí÷W „{*wý-ÔÛZ‘ õ÷¼XJÚOcF¿åÑèWÖñß'ÍФHÒŽ\ð!šå?1à A‹t×G‹c£h™®Ò½òZ•ò³‘GZ¢usï[zÅy´YxCrˆ í¸9RοG{ë«#¡¾ÛèðÊ1ñ)gì?ñþÚx:î¿N•f؈Nnšî3Dgšú^O¦];‘Æ¢öÏóDÚý+Sëì,AZ… ô“Wü¡þè!ÉÕr6(Éÿ$ôSó;ð’ãÀý|ªÒëù¤ß—èãÓ5†”ÈȽ ùhà³ú>#HŒ7ýškç ÖN:Ú ñä¡>Wdö͸*âãŸVõ|°†Ä}߆¶zü³ßr¥Óßüï8éø\&OB&«ô³_Û +ìŸÂÁ¢¿óæìÕsIOÓ†\Ð9Ní°î·WnÙìz\?£šínÏŒSN‚»c¤îÝmPhÀ¤%žÐ Eœ£kaœ¡PÔÍš}õ!Çn6lëd†ÒéÂÇ¡œ§ö³ŠÄC¨ˆÒ™t‹¥…ª÷W¯9Q*Bõ=zÒ.¨Í:`Ùe| ê¾–'ï̓‘ÏuИ7¸S77ͱe&å"NÐúöÕ§ “hŸJÑañÙÍUÛ—L¦õß —…PbÄFú÷ÔߨÓ JòÞŸÚí»‡2t‡n6ȼ“Aˆ»Œ©Å5—êÀ„3ãT.Ów˜Ê§ïúñ fíoœ±?)óÄ?ë&Èaá`ä¥OZa1£Y¤ò…<,kÜ0~ÞÛ+ë ÔYÎñ°Nèõ,éØ|FÂ2h*Ûgé‰(hë FÖoƒ;‰$#eÔùAüà€4rÊ 3s[HÏvoóBà24ÄŽœüʈLeÊfÏcî!ËTرx/d7$N芌AÎ þ_ÕȳèÊ-Ôzùc²X[†XQð²Nú.zöΉ¼ë[Š¢§ÛSï „C³ }J[ñÉó¼@¹B»C]™¨P¡q€ÿê*•¦tÉ¿A•œ×•/-¥p_|hÑ稰œtÇðj¼íoåcGÍ«óžºcGQÛð-)¢®jGÓ5#Ô7T}êu& ½µg½FùÑøó³Ã^ÏhÑ´‹ŸÊKU-ÖT'G«ÑòÆ´à — Z=ÓŽWKeGë¯†Š‘/¢Ío“¯{_Ì Ñú÷…µm´×¡¿}7ì:eô_þ—7õ¡›2;Ñ)Ò'Óˆ! éBîŸ C—'Ž¥œ“ÿ›·8ž›dÒ(üÚzÒ †ß¯‰¿•%‡¶ú¡ò½Ñ¤P×Ö¿~‘ôTÙõè~äq‡²ÇI‹¿õ›¡øA¾^%S>ítüËe^î¥ο¿A^_1ñ(þs?.⎈>a(–¶:°QÜ€âAû¼_°[¡„‘DªQ JÒ…ÕH£”Ë‹Ò÷"(]pÙ9df·7öüùãp4 åóÅòÈŒÓQQvØð‡ª*½sÖPÍAå²™¾½ºÝ¨òÅ7À¼÷™=&ÿýË÷÷ËÄÚ¦ãêÓRl‰ÉßÖÎ@­«¦Î¼WçQ'þ¬¸Q¶êS–/Õ’¢áý«Ãí2ùhÂukÓ´HÍÊÉÅÜlfÐÞ-wf •CÚ©€öP´öãs÷:€6ßîV¾EÛ±X#ë»h¯8›Ãè÷óSl"ùÿåMÓß“:#>ð ´ˆCg¦ç…'ØÐ%È|؃#å?òÆ*ôæÞY°åùÕUô šŒl¦O–†šÔ¹†ÇPK—_ÅEo>_!ª‚‚úããMùäãß—Áùy22èc#ŽCjCOÞí7¥raN•o™RNÈ¥•E‡CáªÙêÃÈü¡±¹qBòšÝÖU (¿K¨œ€ÊXô¦oǺ@åùÄJOƨ>ì|U¨Þ~ï½ÂŤßõâ?MeŸ@CšêÏ{£úФS­«¿%ͯêÙBKß…~g1nhÛ+5ÄéÝí"çóïGCçQ_jïO†ÐíbVôŒKzÃxöt:KC?ùMïvÇ)pú,[c ƒeg¼?îð†àA:jiùõB¬[\ÆÎv¸{¤Ý… ¸ø½j'¦LÂè;f^\8)ºBs/8-Á̯ì{‹>?é’}w%rR}+‡=ˆlMZaµÖâÔCʰ®ïºç®)l¬.h^h?*á î°ãOOõÁC åºÉdU‘(çúù[·%äÐÞ€Ü÷š¸‡˜GŽ…ªÉ2Žý”?†×åÙžßx€T&³2_ÞÍ£>wñOjH'eQÿ±Fécü–ô/ç!C‰%gUÇ]d\™iìR¾Ì2ìéoÅ_#‹Qš”BñydUKHˆ´F6ZjKÂߎÈVs¢±•¤ Ù#¹KŸ_Í@ŽŸÜØTÕ‘Kx~¢.¹‡îÔ?BÞAýJ«·3ÈÙ{„äôKðÚZ½ÿyu.‡“JŸCÁ -Åé—d(áôöL¸< ;iQZÝõ7Æ­ºuͼÏU.2â~þ&(âyR¥g/J7jÛ<9ðewiÜÃQÞ™àê¡§P }4Á. _ù™q£òر¦Ö/¸ïãÍÀO¯áF?™ïc7¥ÙXüÅQk@vð¬C 꺜3Ò)»€äk‰g:Ш×LÌ#•M;·^’N¨¡Å°õIÅ¡´bmþRw‚­uû$†ÕµÑ憓ô¨ÿ´­<’ÎF@‹ö|)&ôN"èà³Êö-è_ÞtK˜ÎEr¡Ó·@yò ƒè̺øø‚ç2º<½|Žñj×ä)(äè€å>h˜èu ‹‚Š¥¯ƒU;î»|ψìòåÆã²˜yþho3oýs¾¥1I2³†fdÏGÿs=ÿÆ3Ùê]_û‘Ýv¹Rñ©„TÁÓß¾mAºççhÍ Å]ï›L¯0âþ¯ï#ǽŒPÚ» 5×ð*'—%—CÍ«Âßâ顎õþ¬¾ Ôï£TÝüã ¯J£^‡Foíníhºý­ÅM+¤L¥Þˆ¯%]…½IÒqPÿìH;1õîëiÂÊd Þüý–ÌÝÍ»þS¬/î§:ûü3üeÔM Éacœ@B~—_:jx­Ä¦O¾¾ mÅ̳ql Ðѿϫ_Vº}=~åO'ôñ9ÌŸ¯ö‚þ–o;‘A0XÉ;õΆÇ[ö ZÁ˜åðœuök˜Xæ½róÈg˜î{>:gÂs÷3+mŸÈžv®°¤9ÄôÙKV-~>¹=ëÌ—4öøÃfßçæ4l×wµÏû›#Áä9®~g$ò¦çn†$¤d:ª£þHú¥ûF{ý>$»Dv¸æ±'R„^y·<‹T­uhE‘öªåÈuñ]þØ9K¢ÃQàUyÜMKdJâÙ:~ä²Xyhý:‘ƒlÄùo+6#{1©l¨rVˆïìì+Fî~M×w’ÕÈÇ÷çnV”òžOù)Ú¼Xx‚Bžç?¦m¶¢ðjï{pÈDÑ„è€|“(þ‚pöD!JFé³ÓkDéþ_õKŠ)(çÖw©rÿT`ë^¦g@ŘŠ4¨|õçcú†¸÷É¥ít1nTÍöµf5Dµ¾ºÛ<¨¾ð™øÞ…@D?'î}­¨ÅuŠ¿ž»µCÆêJŸÈîú›Á‰rn Ôgà|e,º‰[ƒGC£‰3ßJÚ¿¢Éè˜Ó»ü§h6®Ã–í>Ztû}Ÿ6AËšÊúµ”.´ªkâGë^ý­óáh³^œríÚ P3:¦¢½íŒš„ ×®¿µì”?}…û¢i LÑQUe&»¬ÞKœŸ[™Ggê…Ôðý2èò¸9àî­žÀ6¥Ò)÷?ü­hçFq%Ò„¿aÕ»›u…å7ŽrA …âyAÉ)È;ø­ûÔÈzçc»­ iýÞS‚<±BNXpû>$MŒNMHý„D©‘ˆ«>Bü‰5'í~ø>󢃛{¾çßaú®qßJïd\𚃤h[%)÷¿ã¤%»ÝxD·ŽÜ;` Y„~Oø{kÿΛív%ÿý±ócö뀒ºäžRˆºU¼ëq÷KùdBÞš×çä­îÇKT1ºAAfG>P§ÿó¹8¹_¨¡”¹²äèw{pv¿^S”tS~¢=pÊ\}õ<òA/ºÛPYä(£¿¾««4ý†š¦w:¡N™ |rêcV^u´@ã¾3U2åúÐÌyŒŠû‘Ý.Ÿ¶ç#í¡Ý8êÁ«%èüú±¹í…)ô¸JÓ06A_4ÙZ¬ ¨ü™5„ÁñÐ;ŠýC0œ]’w&ºF ôý ms`¼+äÎTø˜Ò Ìq°f~oÓkòÂ\ú£J6«0¿Ó¾yø^,Zd $v„¥ÂßVUY°âq4§õ`íÂGÍK4а1ø@%ï üIó;1X÷ ¼.P V?A"áVû«Ç® ñÚ«Sšo;tˆ2æW’Í>n>¨ÿ)%Ň_l#u|öÁÓWTÀ%ÙMd(¦Ji:ŒL'ýéò¦ÕåFîq7=ÈVµ¡!60†œî9v•Óˆ<Çmœ9Žü¶‰NšÒ(È'3-Ç™ƒÂLáÓcS(jËø$– Å´ {X¥Qjöϱ[ª(w6¹ 8o7Ç>ç7Ѹr£Ò—è{“’Ψ~M ÷ÞqÜ÷ð“ù§?PÍ#RjÇp5"ÈHÙÞN¡æÃ{ËY#d¨íÎnFHuÝö‡ï|€ú7ÙRzDÖÑ0ÝŽ}Ûâ#¯”ˆÀ4SŒÐ|ûÐÂö©×â{n´üt‰ækÈ"ZÅÍ$Ž-u£uá“ î´PàÝD;z©ŠÔH´7Ž]½ &‡Ág>~Mpÿ—7µk£¯5Ð)¼†ö±’8:Óæd¨ä§<• iŽ†ÂŠ{75~œùg¿ŠÛLRTR+žh6f„š·…ö;› PoX’”î‹ã6I þÐÒtÀG÷˜´W[G0t€®é®‚?kû¡pÜ0ãøQè×1X?=»Û%L ïFòÂ@Z·Œæä‹]{\-Þà ƒ}åßdÎÁPØg²[†0ìMiƤg #Þ:‘~·aô9«ÓÐã0+”´õœÜl)nªg{aòi}_˘)欔‹0ËÀkÉWæV:ßÓ‡ù¤[n´.Ö°ÈðJ¯†–Â÷¿aÜ)„{ÊÞýkD°¦â^0&$ÕŒ.}·a³ª‹ç Û üyª÷ võìkZ_®uE‚<+‡†@"òï!“a§‘øÛÅ2¯Hw$}né_cŽdŸ?…:e¦œjZྡ6Ò2œLuxô\zc_výMµæ•Œ{2žêŠíÀ7Èô)ìJŠK2O œyŒ¬FèÓ‘µlñüK–鑃÷¹Ù gbŸÓÈÜr{VÞiÈA^«jõ§õ’È/õƒü ¨Ò3¾SÔðUŸOF!¹× åï]P˜.뼨 ¯©ähÿIB‘™gážã®(Ú±WãZÕ Š%^?w˜ëŠ_^¶ï§ìB ^0¦à—C‰šý‰’c(Ù¨p’ñÉm”¾ÀyÑR™ e?}Þl¡€òÉ£"Õ¿£¢2³õ^ž-TŠ ¼6J“…ÊmÅçø»¨Qå‡ê„úDî;”Ëû÷Ÿ¢À£™x`%”û‘5¢ÞŒ0%×2jE¯ù1+Y¡ÎhƱgÍR¨oµÙ¶Ó9ކ=9]‹6hr³ŸÀ惚«ˆéÿd½–—ÇB ÑêÁÈV·hUþEÖKm*?>UŒ¶ÛÁÂï6ÐG/Šp=B‡ÀR"ÿò¦Þ'oœÃN‘/Ó?Bgú*•:Ðå çâiÖÇÿ‘7îoÌØÏÿs¢Þ“xcíƒÅf¡º´“Õ g Êò£ŠF” ˜‘*äVS èÊ ˆOLBöóÇ›Jñ“¾Ywò­"Õn<îýÝù*ü,¼bpšg~¾ð°ôëiÚí—.ôGÆîB†äâΑ‡)ÇIúÇE ­ÿ0^ôƒKjêþ "(wÏãX±…*®C¯½z ºLçÈ¢¬2ü.ŽÝ Œ| õG_2í ½GJ³J­ IÈFñ.³ 4»žyÈÿtZ’”I¿TAu£f·Ýí]^£›UY¡³ürâ ñaè¡`¯ãä}Ú#†‡: ?d§ì» ü)ùeðÆN}ôêùöp·j¸ä?„Ñ‹å7)Øa\ù9e‹[ LÊ?÷qŒ%‚é3å7Cav™8ró¼;Ì;uegg–ÀÓ~°„IE"¼>°üÆä4CÅ;X—u{‘îkê}bÃU°þë÷ƒ«Ž°™wå~Ý:+l+piöD‚',wƒãˆëîÙ7I Hœtñªó$u-.'-D2ú€ó»=Œ¼jõªÔÐ$R]+®ØÏŽÔ'÷:u#íáñ3ËÏ:^S{öAz2¸ å‡ÑDÆ·—¬#ƒ©iñ‚¤°12/}[\¿€,]e˜>²~&Œyÿ¸ ÙìTžŽÕ§";lôL ‡ ïtr†‡-Þ?þ ¹½®‡œeCÞ{%‘`·‚ü6ZŸ®dQ €e=é@¢ ò;úð¶¢à¯:ë-.:úf/ï 7 ÓØ×ý`Ýõ7Âwv,×™QôlˆQOÙO׿¤¼ì‹’~Çvâ˜Pºõü[­kó(Ç–FŽòçà`É飨@§Ô¢]ŠŠóö²i”¨²Ÿ¹ÙQy·wÒÅÙ àða>Š/[ä]暴M†Åªæq¨`^Èßt†b¹ó[G™% À®®i_.ä>õ•§µ²Ilãz%!“ò$'u8¤‹“ý ÚNTg•‡/QA ß+ö#ì e· ûWJH»cg«ljÙƒŒ‡¼¡ðå#{)G(PQV 2‡Ê´æâƒÍPÃ.úêϨ#«Íú¾2 õR:G˜¾îòež–Ÿê=4zYï™Pþ×ßjž¼û‘¿Xý{ºo@Gåv¾Ô;x EÆ9CÝܱӤOª¡nK²;¨aê=ÿpK¼S„5}Í~h¤R¡¼´2¹;^Dèð‘hVË»¼›¯oáEïñ—Ðf`ûi‡¡ãÈñCý/ «EšX]~z?;7(ñ~‚þ»,e}î0xþ]ìÖ‰Ý}ô4ëçy*ºùøz¯L<.9r’®¦/dýLË…9“—yþ-°@D8A!K„+·{ÞŠ…©Øt?¬õ›®ÛtÂfZüqSŽ3°iJwy Ú•5®‰& ‘£Ú­é  $>XØ=ðI’©]‹æ‘LÓ—Òïúnê¥=û 7‰T¯K>x¥!­Á‘xÕB7¤~bnðÂ+d¤§ÑH{F„L‘ó)‘E'Ìê5m#²®†½ª£¬AöJ§‚cêÈ™ÛEµõ"¹;§ó%¦0ŽþÂ7äOóàŽ;qóăwPÈ1:ûÛnîõ¨gd7w¡èÓš­ýš(îQöJ¦%/KÇyÛBé¤?.SÛ¢œìbÛ͹ß(¿}ZÞù¾,*>gøƒÊJûßټĽòïû£jÁyÅ¢Y-Th¸sP}Ì–Æ]å,¢Ç ® Ôbr_‰ÉFíg‡O쉺ê+Nê{£>W”Ò ó2”U/Š 1çl–é4¥‰q“;üÍ·Ÿ±’£%a5_ÒZ+Zv‰t<ù¨ŠV]Ïdd)Ðz,á¨B¢)ÚÌ]T{S„v"µµºµhïà”YÓ‡!6„D§ñ`oÿ­ÓÑè¸w¦¾PwÂ^m§…¡3ÕÄ[gÃ]ÓÕ_¬øçùäCƒGþoù%Bßk‘†*—+"xêön­óB±uaÎsYÈ£žÔ;@M ™ã jgÂ!M={Mx•~zqÓ_ á‚$]c¢Ë¼ðÃŽPòœÉkˆóK5“v5†oM:\}%ið-'G +°¾ÇnÎò7†CÂé¼%í}Hb“ðêë¸öwœ4¥Âٌݜ¬–»]]™§î­ÓŸhÿ;ï®Çñߢ‡ì«î›îeÿv­ »'sFN„r—]¯G(èBÞ”¿aÕiÖÿzހ͙àݾ;qbkñ&FXùm´ïö`ÙñÄ!P¢èÜt=hJ?óŒ<†rF‚…ë+P±©m©Uõ§­ž…ê™M³ooæà·ÿe[ïÝÞ+î0B7È ?æ_=þMOvª.L[@Ë9f CYhû\Íì}:¶BÝ­g¡;Þ~šAŸx¿ 8ý Ú2Ú0xõJá-í6UÁaÕÕ1ŽRñÃì\ÜÁ0™M,iOD 3F—S«8˜aîì‘BÝwD0Ëxûz@8,Œ¼¾Kú|‡ˆ_íÀro°G7¬6ŒŒ¯³ UJ»·’ð‡päWÞ‹óHÀð3ÔÄÿ0 wˆ~_@âgMSRåHêïïfýÉüÕªÌCФEÏÀ‡Ÿ‘ZZ;|pçÒQ$š’ê3 ƒdáN,2‘×O)Í" cß¡#·Í‘Ílî×EaIäh•x\AÜyÞÔý9ŠüD1_/ @9»ÐAÎ3(”rKÍ$— Ef³1ôº?Š?ùáþÝÍ ¥žv=åêA9V[i™v¨pGÛcÃP•_É}NoB•›Îפ²"pß±øm’Wu¨æhãgäÑÒŠÌ…¨ù†óºüàÔ¾QX„º¡'§{JP?}¥Ó´ÿnÔ~’Á&kK{æjÑì¯Oq‡ Z|ŽÙ´ô@˲µãôÅhU–òF9 ­Û뺴m–¥cK¿S ó°ª·.Ú[£‡s{:¼äáóf´ü—7UsÙ3áèô^øØ/Û4t¦®—› òÙå-$Ò„¸íÿà­«S‘› Ϊ¾=®ÊCü{cu¦Ã¡Õå“ÂS©ÚÝÇÇ÷]ê0Tœt#ûÖ%­b:÷/A‘èçýOv{¥ôMŸ«Çþr™óQ,ßç©,ä|Ÿz¶JîyO˜XŽæ@¡Ä§Äi‚|(QÕL9WÉ %¼ò¡ª_'¾á4{u?>çJûA£³oŠ}´pFŒ>v?mkBJ') ‹l†æøõ_ÐËH6H˜\}%>g]ãä ?†ŒÅ'@äÄ9÷®Ã@êÁBöjOtxžç’?CÔ8²#F`¨wÖ,ã¼% w'ä…ªÁÈ:©~òž§0&•¸²ãÞz‹B4‚0ÑKÀés˦è\‚SWS.s˜ã'^¹ûæu ¦3öVÀBŒ–¯îæKXR%KKhO„ååtßîÆ°Úd»¬ëCs•»œoZ‡¨åL/ÂÖÚ IО؎“rœ‰ŠG+cæñËfHø´GåkÞ%$–|ÔG¿ëoôÜÒì9H&¼ý[Þ€)tÝb“;‘Ê}µÿÓðE¤¹îÊ2|µé‚WUù¸b¾+jmô§12’–Kj Óçƒý¦È|§7“Ïë²ô} ¿èq ÙôÃÎOVõ#{¶ðÉy£[ÈiÛp1Q¹ù½ïRÍ /3©rC3!ò³Ÿ—šOhDÙ³#Ûdk(¨Î”¶Eô…7ÌãÍšP˜…‘¶T…wö|²B‘f±ý(ÚÝ|;_ž­æ^T@q·ŸäþœBñE랊SŽ(ñ¸Õíšä$JÞ2;pÄ¿¥rQ^£DÙS¦t••(ÿyúÁÙ¨¸_Ç)—8 •r“­‚2PyâÍÕŨ’F—ºyÿî;ÿ•ñÛ…_¸ÿž‚'Ï{Tç/§™°‰E¼£™ž¾¬€ZuÑo)¦’PW4¼yfõÚ&(Ç«Ñhïê˾Œ4Ñ$u¼âŒæŸôO·³¢e’ŠÆ\Œ1Ze°~ˆŸôEë*ÏÔ5/:´[Ó7ù=vÌo*v†/ ½i¯ä¾ªsè\e©ÝÞó/oûuæ?A§÷—ûOŸDgšŠvÂð]ÞF O0¹þGÞ¸U¨ˆBÞ¥B¿<[ËŽž.4’RãO†_o_ù†Ož€Òù9_Õ ÈõƽÀ˜AÈ?7•¸!ó²bTÀ4µ Ò1Xì%-¤\˜m’…Ÿ öÉú%œ÷eBƒ~•4Tr@ZÌ7¢’ï{!ëáWÂ;®_­N„U®Pô¸AZË4Jþòuho€ò»ŸÙSžPeOÝÈ 5*ãN7GH Žrz‡©³ê¯-È>õ‡†D~çìÁSÐ8pLvp%š¥ÕÅÔgC‹?ɳMaWhSmü°zs:ä##ö]} ]W˜ßÛz =o <“‚¡¯Îú‘Ë£30 Â'4sä2 ¾â}`8 Ã$c‘üöS0â—ÂúÒ)Æ$N÷—ÎÂs»eôÅR˜Òá¥xH% 3¥ ò´n“0Wx'úm`aß±â'»yµøÂUTŒä,5Hþþ­wVHhpÿ«Jü™¿>>‡µH{>ÿØðÏ–"Ú©‚­ ÝH„º÷ÄíÅ‘ðZà‰ø~?$æ:¥Â‰$žqWv¾àžSoe}ž° 9{^G™±RüÞsè%KR…KÅ@û ™ük%³ù¶‘ù¹]Ÿ/²ôê>ˆ@Ö+öé›#k7‰ÑFø d 9Rå®Ëƒìaþu¢Ÿˆ“]gKy¹6.ïÒ7F^qí«R ÛÈ/Gtš2>3CV üQwfÐBÁG¼á¸< 444š“£P¾Çk)ŽŠw$AQžèË+'}Pœ|¼t“9%¾8Zyu¥;Ã{V²v{§ü%•ßwO¡üuU9Ýý¨Àó£¤g±•øóèWQåQiÓÇàg¨ÐÆDcªKYПôFMͨ ö¥WQû›ó3ÅvÔÓ)¼&v éÙ­Û»¡ ©ö¼m2šsÜ!e§»‡–o†l Ûî U”¯s%§1Zg: äˆ6$>½G;JÉ—o+—Ð^ߗ䉗:<%cí&ú—7µ$‰¯4äè!xôú2:ÓŽI«C—@£vC%ÏÿÈc»ÂxˆÎK¨Ñ"‡÷òP®bÄ‘²jEï­ÈwvÎC~Ê V‰w>»=®‰N#ìdÉ?¸Ý@#‡ÆMI¿¼Ýõ3‹Ñ'µï!%.ÛÎ\Í~šüf¸ogý÷˜JJ"Vç Ù\mçønTBá½—çø£ ÔåŠúMC¨¼ÕY(´š ÕKM¤–I”ð{A†ZˆïÔóùß“²K€½ ú·+ Ñãˆø/yÇý­$m¹2}VBêJ)îAýtˆŠ¯µôß×Õ}Íܧ;uòïñ¿ÿßÿ®!;)4')cu «^ÇASMÑù¢{öÐ"'ÿ–Õ3Z½RlØóÚ»ûú^B—aÂÇcóÐKMUx7úô+Ü ¢QƒAvöcÎwaXŠ+B>·Fr %J„ þ3úf40M4xÛäÌÑŸKÎ;ó%aW›T:a±˜|–ÞœV˜ ß›O;ÀZ‚à™ÆfØ|âòã½^)l?¢ÞõzŠe›GçHûDgÖc]$.ý¦y»û5’ÚÞO‰C2ê¡ ‰óÞHAÝ2‚T'‰$ê –Åóâ°þ{¤÷O-'‚ dؾ÷³àC*2½º0ôYT*\¦#ë¤Ï RdÏK o5DÎŸÏØÖ§]»ìòÕAŽûÈ»y¯ñ„–"òóÓ~^JŒ“7/5]C!ý¶ÎÛ‡P¸ämó~›õ\½š\6ˆâªË$ûPÒ”1áÁm”¾¥ód}xe7ÉÔU¿(£üÐÒÙo«=¨èwëWú)zTvIišÄ½(i•Î^EÕR÷¥Šý¨6ÌSA¬xÕ{ˆÙ´×M·Ó¹îú¡•k­¿|j?¬Ú3²¶ëoŸ-çJQ_T¢ÑŸ¨ E¿Ñ><ðÅ~)ÿÈsCS%÷SEë¡h®žùê'óc´dn¯¡Ù¤@ˉ[ƒü¯ÐjL?CïÒ ´^`).ò\G[r1š}lh'LØ);Šö‡Zú¯ZïúÛïp5_]Þxû‰Î £JlJYÑ:½õˤöÕEgÊë\¿ÝÐåÑOºcôûð(åzwðÐ¥ÿÁ[ÎÃò—H}eý;üÞwuGXï/g9 ×{CA¦Þ¾¾–µ¿Ü$·H…ÈÇþ€Ä±œE!ÁZ…eäÝ|öF–þ»ð5sÑù³Ç¹¿ÇoŸoiÍ”Bü‰ÅG'Ï Bâ£í¸c‚ÿŽóßã¦{¾Û¹é¢¿ƒïLý73«÷ÖñÜêÝ<•«?.×ÙÏoÙž;ÿ—ÿÿ~Ÿ¹Ý '«ò+ }ëƒCÅd¸ì‘%($ðì:࿳ۃ#¸Ôì¡øAéTßa(+} ©ó ÊŒz}5…Î@ªèäE ¨\}PGøª)œLò 6xš=o9î/· âW\F/íùË}sKÅìIchÛsƒþåœ/tØä8Î1½€®õ[g;Ú 7g¼­ô= ô{\õ¡‹„AŠƒ;¿£ a¨áM‹ÈŒThr„^L€±Î°d“”Û0©ú§êÅwC˜.Zì¼³@s|*™†¼aÞÜ„"üò-X¸~óðs_a±Ê먺×KX¶.àî'òUe™—<°þ$ÈÇGF ¶Ì¬åßÚjÁÎÉ)Ó±ƒHxÄÛ¹qɉEnh½ÉMEÒ=*ÃkK4HF!^ΪŽûSRL‘ê[å°Ëý¤½LäûÚYé[Öí-$ç‘ñÕ+ŽkÑÈClæç‘‡¬u£‡òŽŸC£×ùe²”È-´Þìˆ|®û+D®}@/¢C·8ÙPÈîØýGÕP$ðØÂ£ Vã¾y%Á¥d²/±ÞEÙ‚å7on ¡ÂÑRÒQ9Tò¼Ó~TÏUÜ4.϶ã>Ȉ¿6jkü«ÆT¨ñÕÊeãYj~þAÓoÚï<«f£nʪBtê϶f¿o@#­«\üÑä­L~Cdšõ~ø6#%ƒ›Y=Ä$¹ÿÏxÐ{6ã²Û§\›GÞš‚–ÏD'2gBí¯ê4šì@(?/4È6ÿŠÿ¸N®‰êB¡/÷•tå¿ëú¿×ûsðßÇÜSb¸'›¡àqaÿ{kæ¿ëü¿Çûõ2¢U9‚çŸý$Q1ÐŽoÓ:é¡Ù•äPÝñ÷Ð&´ôþêzt ìª!v†~ åa¥Ð§Õ}è”7ô >á¤ý±Édˆ‰`@Z4¼ì$ Ô:5ÓµÃà ;©r»0dÖdîüΆ ?ht¦,ÀÈÑ%…·oÿÍ¡±êÖ»4 ÇaBNÖ–ùvLVÿÐ:DìÓ:¼/'{¬W€IÈ ˜k#¸êF‡° 6SuF’ë›[ŒFÀrˆ;-AÝ XõíJ~Ft ÖÕþüVÙs6:̯ÁÖ±×·¼YÂáÏÒ­ìQß Ø©¸Mœ‰„,ôÍ'n Ñ·ˆeêÇ‘äéhZJŠ$î‰v$}?…äE4Ä&ÁHÙU«¾ó°©Ç}ß­!í¤Û¶Çp4Òß¼âEX QjƒsÌCÈØøÈ‚fð72s z:Îe#˲rjžUdícš¾ß³ÙR¼~+ÿ9ÖJ ¼¬‘ë÷¤«¬ ?ò´€ k[;ò“ˆ|éh‹Fáòì£É(¨–iÍt…öº¾Ø1FaÎÓñîÊm(BÚFË=‡"B“8>m¡hÿ¥òEŸ×(öéámÞª>7»À0»ˆâ'/>H¼‡†>ßu%gPRî4]Ü9@©†£á%ù(+½ÈA$}åßZžmæ…Šà}\gÜ•jÛÅÕÒÓPyËãþ åTɹ•%(Œûn«¾yS²û£¹5Þ¦Euãå›è-Ä‚—&Çk=QkË2m'†u[wp“7 þ`ü&Ëj"=Û{f(àššDPºÚø¢Ãñ{¶ï¾ý?ã›8 ƒ±¬ú™»‚ï‡CÃ1§æX_¨:gÖ²¼Ú¥Báµ/yV¡0qÑ'äÊ,äÙ\狺çö7wþ»Oþ,ôîØ„ä£ozEAÒÄðü7ÇIÿÛCÿ›Ó‚ÒP“FPlÚV]k ¥o­êÉÖ7¡|¸}ʸ¥•“WÿæÎ@þûˆë£Ú0$ð²»pƆï|œI@åÿU1-ÁcëR3š`’ë’cFH L¿þ˜'`wæDß–p’yÁ|¨:Ï5óX¦,>¡K4”{Ÿ‰À2ï”ý†VX‘¸ùÒËÉáq¹ùN¥oìâ¿ý±ý…k ƒ0];px®·IøØÎJ®?EÒ‚ŸSìÄß‘ìÄ}õ£?~"ýóYç…ÃHÙlePd°†ÔÜ"X”‘v4²šù¼>Ò‡ý¢PõÛF†ž¦~aÈ$üeÈ”+™uR}GgÖ‘…5p3œY¦l+Õ½‘”ú¬²ÑÝ2­ùj‰ì4SdGŽçÓ$ó%žÈuÏÛ“Gà:òTX±Õ’!?e/¯«ã 0^ +5GÞ »Ý÷'è9ó|¤Vi½|^D¡ ·Ùîú›}iøÝ ùý3†–|ŠýNž˜LªFI}aç—Õ(Ý[#ü}=åŒdªHÖQ>(‹-Œ¤¥~^ÖîF%KªÙgèÒáÛ82MŒª3įLQ==“°T#5C¦«ü+¥Q‡öÒ0k˜.ê¥K qDþ¼ C“PÃÄ@4ÏÐAÉÿg¼1žÙVÈ|ðϾ`{]†[CPöËÉ7XÙŠN¶êòäÜͱ¦Ú6Èáý™tWý"dŽÏ.'úB«b~0¤^?ôö¤œY þ´’§Þ'˜<´Ë™ô0Bêþ1]Èšªpæ{x &‰•û@ib÷ÙRWm¨¢ÐŒñ 4„šÏ¾Úñ¬RPç¨)Ù*sꯧ¥ÙÒ|††Hå¯O8¢ ±*\ÎÔ2š'>·u„&~’·KޱÐh>[R_ šrìãPBì¼ï¯P7ôžé¬]:Ôu–ÅÞ¹«õæ¡1¶æôÐÀZ{©I ¡=¾Œìê=ÿûuï84͈« R>€ÓÏú÷Bë8Å,ë/yhßtX?sät³äÏ0†^é+ ÷ÊI _+Ãñ“i 5O~P†a¢Ã'_ÿëo<¾ú¾«%0µ}iV{—»9Ú½\UqF0_0:7¾)‹™gì¤=Å`yÇxŸ˜+¬Ý¿ªÝå›ÎŸD##*`ÛB0•åP|éç?;ȈDâNCW8výí'eä… $5Yøm$¨‡d4º–w‰‘‚ñ|üôÇ<¤òØt¯.ø‚´¬Ocì¯#ý5]áPQdX¯ãLþÚ‚Lc‰MÏž ‹Ü£q˹CÈ:Ê^Z“V½ëo‚Áљș^¨–;‘ŽÜ¿}$ìòíiÓÖ?WŽü‰juÒ'P`¶ÇâI -r°å=Dáòt×HžQ½ôiÙ[I Å­zöz äáãÃÉQ:¤OLD(åèd\'MCù‰n²Ï,T¼zï ·ì*[‘Ë—¸)àÞ³Yê£ßPõ#gUºª¥LlM¾Cõ¸dÛ 5ÓˆbF‚ÏtçPsNï€À”j{Õm¯C]ŠÓëTQo±ÆøÏ VÛž©§F£vfVoIQ4érÛœÍÖy­ˆ4ТáYµ¹òS´,Ú0œ £G«¼ûªwìž u‰¹âWò|´iŠ®ûº} mgo{7ïþì™›]X%FÑAׯUùϼACÄ©µ‚‡JÜcNEl s(s€Vöš9`&†Î-&ÌŽ¬}xÄ ×Û ¤ºi*µEWQû²Z¤jµ"•öö‡Zx8çÂWEFóöÙžºóð­×o7Èåà;ç5©zß …ŽšCò;GãÔ<}H,ù½Ò­uâ—¸ÔÔ‡Áw£^suøzñh%ëF|uêH;ýÈ ¾¹Däçåƒx‹s”e#‘yïFãü¤ÿóÑ¿”RW„’:ö‡ô!'zó]oÛ/nñq2p‡gŠtBãó/5µö¤ÏË¡²«íAN¼r¾­$@®ÀÓ‘›†GÈg‘Ôôòí« ܆»š6¾’Ý\Þc%Pp±è_»Uû¶ŽžJ‰7Þ„ýëoœ çÞ2þg‹û6Èkj f??„¿†&rïúó=ÐÜû]“ë´QsM:àö _Õâü¡kçDÕ6ôV¤#Ûˆï µXñkÁHeæ@Äk‹éV¥b†IÙXÇÖ§£0"~ÑmæØê+_>Ú†yãÐØTA X¸éSçÖG‹–³/wy=ʬu[€V!HôÃG^Xdø]òyl©>Î2Ë€µ÷½êñ H¨Þkþò8­±=ßw¸Iêdgº†âžj‡áA$_ie-cC*W¯œ2¹‡H+Ã1}é¿ ‰=DFŸÛtÉwvù4…B§b²>îá½öÙ7VöÅ!W­«MÔ‘w»|êÏœ_@M‰GÂQHøiÓÀNŠØFN?ñB±¡‡¿èíWP²=€¹{Ï ÊÚœ˜ÿÿèúë ®Þ¨¥»[Bº»ÓµèîVDQA [@,0°EE%D¤[JºA.é8øœ÷õwæ<óüµ˜ùÂ0{íësíû¾×Ê^Ayž˾lª¨È‹÷]µo 2µÝªŒžOѺ1‰ê·Ú RTq?ÃÝúÔ¶?uà›$)êªi}òmzúšQ¤öç4ÐÐÍsž^/ ßÊ]Ε@Ó‰ßö–Lh!øPøH.Z©.$ª}çAë°£^¥hsë†y«Ø(Ú†™—ºwíž›õ9Å¢}ª—ý)é6th“¾˜û¡ˆÜ=¼‡Îš/ë¾å¹áþk_o} Ç µ<Þ͹xPœe!ɦ]ÃfD¦ËñÐ]ÁËÞmtÛâK5:ŠG5dê"_oÍ:‰s0”oÐÂkÊ{Y§ECƒþ‰¦rÑe¨²ÍþHtpʧò¢iO>þßþÖ³|÷Ü"ä›N¡+ä3°n‹­ŠAÁ×ÏK“P†<–z~P~NÔëÝ#TeS²~uÖd*›¯ þ[;{T˜xò(tœÐEáÃEÐ}\«!W¯z3HߘŠ6Á³€ñUm<­÷üÞ™1rN5dÚ¡¶°iöW•0¬-\ç/`¸>£«dŸŒxm$P‡8¨ڃ‘ÍWl0¦QÙÊl ãîY›S»ÀÄ-õ§²¾[0Yÿû|Õë˜ÒH™Ž´?Ó#œ_»Kàw²8_§ÌÙ¼f Ü‚ùK?ör¼õƒ…¾653XºÐâõÉ2VT´=à-‚5æÃçÖS„a½»µßãÙ"lÞ=C¤D[\"ç—»‹a»ˆJð”«XK^e×@›¿u@f‰™:¼[YD’™¬)íII$[M+:{³ )iB-8u 5ÿÑ¥‡Ü}H+I¶¥|3é¥*k,«Ÿ"ÃÛB²Vd,½5x8e™öŠõ\Bµc6 "ë³°?ÇîÑ";ÁÝ‘ˆz~äÒbœßbDNnêU‰ñCÈÕÓ(kŽ<“›ûPF ùÈ$ž›Dþ½ ~Í( ·zËY0¥jÇu²QH@îàt% ó}ÖÙñ»Ž"Ò‘U…Ê\(*šß¦ðcEÿzCº¡€b‹ Ëu(®ê.Q%‡â7W’Îu¡Dõg*D)Í›õA?CP&6X+mQ®ð½KÔÛ4T0j¢»yK~5”T£ÒH Ô]âRTN¸v!zP U=öYîËðCuÿ=ÍÔºI¨EÑðmÄ!ÑAš×ó NB˜ýR!êÛmnn¢¡Iìɵt 4®žõ8ŠfG”÷.«^B‹-_vÚ,E´6gN›.¿…6j"³›5Êh+s5X~Žíd­]¥äÐ^£±"çÌt°9ø8…|}sGíC§˜õ÷ÏǕѹ+ÒŽl` pWßôÎàA¯n?vNþJX¡˜Zäùì «×—þõ½,#B½A°é¹íÕ_1ÛjýlÓà­Kb¾Í.‡ä¢r8É?!q¥Àù¡CËHz‹È¯ÜE²EÓ§qãHñ˜4yá< R™y±¾ü°iij"Ž^3F:]¯ ¹¯Ø‘A‡¿P ‰ñò™´»Ç-‘)?ÐŒKû2÷Üßæ8}YJÆÝjBÝ‘õFW³ƒ>² ¿Ù.«B¶þ‡Ÿ#³~ ûøqáÂéLÜã}b€2Ú¹s9LP!Oìdüä]|¢TAÚ†üd0iëR‰ümT§3þúÛs÷ÝŸ ü—?E½‚7•î±3œD¡SBÞÖÊ p·¿ˆéN'Š~û£z9%öš…œy·ëoÏ<Ç·© ÌHm ¿ü+”s¬“—Õ—B¹õO‡]¾W¢"™“˰T*Ÿ/9öÛsÕŽÊ6蓱 æ†ê%ãðjÔæÈ‹!Ý9„ºg;OÌɽEýÅø;éZ1hôaõ⃭l4õëá\4ÉA‹ƒÁeShÍwF–µFm¨»«Ï%‹¢-a´"Ã{´#!½¥€ö4#o’Ι£ƒ á×-:tÔ¸04‰NçÔè£s‚ˆî”ª;OôðÛF­Þù³ç¸ðà‹s”3\èºÓm÷ºé7>ouxÀã*ºx.0š#ãŸÚ€¾:hÊ?}mäÄK¨<âÝzÚ'ÊNDåôV@Qă¥£¹_òÄ®ö§;äÆ:Ÿ ¿Uù7ÿí ¸tz·Þ'Ã݇LÞ‡Zix =âùFÐ 7Hw»Û°Üˆùã{0ç×W˜cÁûHý/‹Ž1‚JbÝWT7 öáÇ{¹{û Á‘ã:eÅîßqª1ú;94ÿ˜¿ü-Zþ\Ó L½ mb}Êõç~C[¶ZédÈih ²…½[îÐg’ÓkË-¯ˆå~‚椗2íjhæ½:û¨x÷shÛØË¸v}0³êŠán}j“gÊ/XC+…NY£ëIhYàtvºpRâˆèðܳ¸¼Bð÷ýþg—ˆjèáhd"’HÞ[1;º4±Ðo>&:ùmæÄÔ2À°lšq@V/ŒªLôøÏß8o¾• „é ²ÃÌ׆`Žz;¸cŠæ •O씜„Å”ïùÆáÚ°Ü­¬è`F":ëåø]{{šèVè>$Õ;LÑ·ëo±‘HÉA“¥õùRû¾¬:›J‰tìÉ]UISÈp©å¦ m2.sÞøµŠÌ!_~Jh\GVq3ñdÊ_wºÛ‚…o^Ò“@ÎüE× ÈÝåÛUõfy™$ÒD¢\‘/«S‘îI ò/ÉH£ ­ã!IªmûM1Þˆ"Ö>ò1ž(vP!iöä[”ðÊåþyž¥/—Z9‡²‚¥îj(7÷-Öfô)*\ºc~}¹ •ô\ýÎ^BkÏÓ¯&ªQíBñ×#ŸdP#8G¾ùP'jyôö}ÂÜ“pbRÔn‹«Š×D]ëìÞ›uñ¨·ì¬#<…¥çJ߫ӢÑÛßQhr÷àšÒÓ_hbv"¥éZÜQ‹û=;VA§·¯Ÿ§DëW¾ÉÙñ÷Ñ&ò[N©J:Ú> }ñ>íÞI~KAûÌ ÃsrèÐØÚ3Ø„Ž‹b ²!ÏÑyï&ƒÝ[¸ßŽÿÕåe<‘yvŽv—omNµ3è*0¼Ç†' Ü÷.©ÁÃÝ‚WSÇUÑíí<‰ß3S¤V.š(Ø›Ye8«9a>ù=¹h{uïœænÝ!Ðhë…Ô;;†1%ªðåá¡Ç&ð™ØüàÅ2$H5(…Ýa†ø­2zéOÒÈA³ùÆÂ¾¨ŽÝ9|RsiìÌ£Oý]ÿ\=t²íußs röOe)—€Ü¼Á_1vƒ»ÞFxÎöBä]âW,|Òð7¯Î\k†rI‘ƒ#–sl¿MÍe(´Ž™91(EB^ª/&ŸA±÷Ⱥ\º ”¸¤21Šo@)â ÏÐÿü-hZ:K ¢àzæÔÛÿüe6Ó0¼ýÿö·”èðÕ$UhѤ°«†6F£éÊÇç¡}âºÈÃFIèb2JoÕ†žýoWC N@©YÙC¼ ým×4¼k¢`0Hu„ùcÃßõq¿²¨Vùylu–3ƾ+~þTy&Ú3(„ŽÄÁ”õ·o(Ì|‹çD;‘À'±%²h¯büiUª,ƒ©ÄšϬîoêB§,}й¦Ê¶™h/ á¸Ñ(-ƒ.FF'µÚôðàýÚ_5Vè:!^Ä8Ï‚‡ •¸-N¡›ã׎™4ä»@vIzå ±dÞ[×€öorùã烡¾hÊ?Òíï~éêƒPÞÃl.8ð¿ý­Ü[ÙDå9䓨ˆòåA^xâ'ëëý»u!»V7ºÅÑé§R Üùu«ÓžJ¨Úò¸-— õ4^ÏÊž{ÿ;ÿÖ¦œj½šÞ×…÷Bϧ‚µpø©O=Te® ƒRöÂÐۋ»\ Š®-ƒÂ7ÍDJw`Ä^hècv ŒÔSÿœó|£ÞŠXU‰Â˜ QÐ˨.—ššªõù ög9"•`òª3iÖ°üj$u¿qÿLʇ°÷ÃÌf(§g*5̶]jä †¹© BkeX`Ï*k”ÿ‹×ssCÉa™½‘˜pò*¬tr§ì93 k)C²Ç\Æ`Ã?aö…è)ø#ALô ¶Z²=^ÀÎíÇw§ô*‘ €en³ ç¾a ÚåÕe¡lÕ3בÔ<˜·~¯4’›Q^ÒåœAJÇgKÑH}|5‰/õÒzeß>uéÏHDÊ}E†Rŧ‹!ã@ÝÏFÓdfÈ JíØƒ,ŽŸ”\;ï"k•|Áš ²óþxQ@oÎ<0­9œh;ãpø4r¦ïæÊMäÙʱ8që9òQÈDÛI!?G{ÝÓ ˆ*-+Σ 9•f° ‰¯Ò\Ô«@aÍ«“sM (âúð§[¥îZꀯ®&Š9(åΈ£8§_¥W¼5Šç¬ÛÖ÷õ¢Ä±‡º,Ùe(ydFéäá]ûðáÂÊrîqwÓC¹Á%37¾T°‘έç AÅô? ;ºQ©îv ÏÖT~ÆqâÚ[}T5Õ%~·€ê=¨GlŠš•q÷/’A˜¬\y5¾²¡­\Ì}VFÑ:Œ\4}/ ÚxŽë¿ó1A[Ç[OXùMÑÎŒþöÓd ´7Òg~ö ¬Û:ºµÙX~ßA§ ëó†Ûõèü–Õ¬av÷74eŠnAò˜È¯Ê÷ñ éëE=Sèú|Óî·ÞQ<4ûý@©Žrž ¿v¬J ~þn\®æô¯ÕOçZ¡Æˆ\¤H*(¥k »ã ”Àçqí:(¤¢Ú¹W@99Ôþ‘û¸ ë¹·šÕÈ Õ4¾¹Òò»Z+£÷@škÁTVÎó<Ì\´9éëÞ9>>{InéþãR)ûZðY=”g»\è·›3uT;[¾Cµšv²», ÔS°u¸êAýËD1™^hâö¤%lúÏßlÒT[³ÿ7ñéµþnÞTdKyKåRæì%}7ˆqñP>ÿUäR«r O~ŽCÞæ“Rߊ‘oƒ$•raò×/Ÿ¼éþ×ßõ?ÍD…âES_"|<–×V÷….Ÿ%¥ÿ€ÂÃZŸn¯^Bу0~#Dñß/&›»þfAñY>9 e®ŸÈÞçIŠr¼?M+N \?µ¶}2*¸|î¨y‚Ê´”ËËu¨Úá’–t©5µ²¦¿÷÷ ªÒï=͇:Íê¿j*ÿ ¾ÜðÑF~4üz\×åD+š8ø~=4‚æ„w&Ü“Ð2)s…ö$ZËzu½Ÿ@F÷‡Ú Ñf3qxÝT mgÕ5¯¤¥¡Ý´TxÄv-Ú/\4»ç<…ŽD±>÷¢÷‡fúÏUè¬ûªäÒWܦóx9Cˆ“&¹$\ƒ.“EÓ{ºÑU¥yèÍ WÈÎ컋ŒáÏʈNA“åõü¯–ðmõºœar"”nù?5;Ev×Mº+] ÿ¨ï ãu;È=Xò똾&œ#P<ÔY-]ž²!ѵ)Çz‘Òå/ŸYa?i¿&¾|¹¯ ™W’+X$:w¹¿÷å<”> ³`å„J‡¸Z«'%ðƒÊ‡x·nÉò œfî'ŽžŒÝÍm’¯DB«SÍSFÐv›[Ëò‘´3†ömÄìú\GÌÉ۽к›4¾â-#ó. Ç yñŠm¶#48ò=Gl÷Šƒa™»^×4ñ Ú¡å”öbDÙQh•¹Óٕḛ Mˆe}A»Ìb£Ë$tÜw<7º—O¼µ? =*†/—Cï;Ždw·-è÷¶³£Ñ„Á£¢Ë {~Á°æ•|ò†`ÕjìèUýÏßØÃ kNÈÃôòó†‘}10GY93,þæsoö³†$Ãâ'iþcÉΰÜiáÕöÖÌ-ŸñMŒÀ&K’]lý° —qA¯¤Xž$\2X^TÝåáƒïî·z!©Æw-ò-?$§#¾¡Y-„”<ñ÷²Ï"µ¿šÓ®GÑq4R« 0!ÃE·þòeSdœ;6ñ¬Œ™¯§¾6zYiÖåÝÕ‘íça©ÁC]ÈQ°}Á¤>9K„¯Œz"÷à¹0õÁäå¹ÂGV¹€|ù!’æ›»ü[»K²e‚Ö¢‘ºwP¨~!ð\ÚW¹ögzž:Ån¶Z(ý(¿ `6ù™Mš{éé GâGÅ»ïùv]“óº¤ Í*žò…T+™gG‘n×ËÆoNœXƒÄ‚ÜÓíÑÉ?¦³Áîñ1 'æËi!¡9P­n—{_øÜhCº¸!µé‰H©p;d„¾ûʲ3 ÙéGh‘4rŸï¨4x‹º8¤ˆ§šE çàƒÆŸ6ÐG-—'à3ý&S:n0xó9{ËÜ( óú+h±iÁȈÙë^–0V÷å—Ù˜h)VdÈÑ€©=AG…aæÙ;![ý¯»uJ9ÙÑÎózŠÃC—¦a!Ô-G¼¢G™›z¬`9°ànÅ!oXµ37ïýhëaœÁîOáÝf}ösaØîß&u E‚Õ\-Åfg$zm,ç5$Çxkh%#™m¶À‹êY¤ð¡7tHBª†üÓOoX íÍ£ :}d°¸ø²ë02Ñœ%y–‰Ì³,QÅBȺý-ÿçÇÇÈáš}Ï|¹嬞osã^ë#šdãÑÈ7äOÅ·Ë»²QSxŠBã<Ãnä èá#n·†òÄŽž·~ ô6ÒO|Ñ(÷œ·íöp=*\Ï^pRùJ®¾V·5PEa2=Ѫ Õ_¡Q@j1„]Gt/ #¾ü u|º™JE=ãþ¤Œ¤D4ЉlÌ~ˆF®o^/ë ¡IØÙ«ŸºÑìóENã¶´H=ªûÁé'Z…™SdCëÜ•‹¿íz\¿9AÅg´ÍJ0™%ÉG»¡õÉ/h_Ýóæùf6:ü¸ÛWEÐq)âj„„):3wòwðÁýêcra±xàx@_½c&º¼ Oþø6ëß%•ÄCŒ®ö!äRxØÙóçš6òQë·Ø}ÞžN µ„v£±«Ê^P¯ü†L† ªØ{Å:‹ ¼úôÕ™ÿíoŸGø¹!¯0—Ž`à òhÑÒŸj×ç3V> 3B±ékñcæ¾P®Ã¢A£rªõÉ»÷ѽúê–•;Ožþë?ÙΧù†ŒºÎQ6Ú“ÀñzEÕ. èogÕ?— C$ß ûÿÀpvõlPŒT„–Þ Q™Ì¬ézs=)¸¶$³ £uî£|/aÌØ 6’b Æé™T£¢`‚—Y·´‰&-rŒòЯ??-»0ÕÄm§ôfl2xž¬ºÃ,Ó|èb¨#Ì]q‡¼éq˜qžöDXøúðDHÙ(, ÆÈ3/%ÀrÞ÷—®Ág`õÒÚÎÇ"VX7?6ÓH›ì×vj¾þ„?ÍÝQÄ,Ò°}×Ðyë(ˆ=Pyʆ„¢Û—èPǯª8$g«£CÒ϶öûídüÍ9– &¤|ç?ðõSR'ÞwOÓïBÚd7ênk%¤O ?Ì~ 5EÇ!k/ŒþDfY£Þ›VûåÂûaÓdm½w‚õ¸²ëø·¼K\AŽÒw±OÛ‘óèËákþÈ5÷¬îÁíS¸—ñ¢kD× òQ)²1ÈÍ!?SoûÇà9¿ñX_Ù˜DT>@!ùÂü­ïê(ìhûhH<EÜ_&qÚ¢™&ÓiñP,™ª½Í¹ů¯¿¾¶[Oººç–ÂPbáõƒË’PrSÖ°ÒY¥i«$~qE£ìä0­ e”'3Ô~;… îcÌŒEÅt\uc§Q)ó饴•s¨|3íÀÑÃö¨*c˜çáTŒúX>šÁ×íH¿² \u«º@Ò:$O¨v³¢î–#f—[ k¸~‘¨™òo}Q‘G“ûGŒ¹wЬýžÆµ }´Ü{&†Ê£­RŠšF?¢uœ5)ÂÚ\É®ÙÃæŽ¶.V¦¾3uh§}bÙ_Xí¥Iç5eøSHSkÑq¯wÄmîLt<Ê*'Õ€ÎrU'éˆïâ~çGŒUðÀ±Ez]ot¹O!ºbIŽó—®°<„{>>s§­:}Õ|'u=éwsØñ2Z B¨Înhëô‚ò eãVÕkP/÷î8“&·™½îtrTÞ]¼\Yîrt Ç{ÍÞ°ÒNÝ JR°‡4v±˜×§uÿñ0óGížgÉ#sE™œxîÙ?.•ꈽ{åSùmYõvP©¦6…Å P}äC¾±(|'ð+ÿ¶õi*ÏO‹¾…&^—E‘ÑÿüÍøÇÄä´žòÎ`ym¯ÒÕ•¨)¡CÜ’C°Ö :çwC{ô0ý¾Äšz]Lè0ÁÏÙy{?~ø*IzÕÁ†èRîiß·€á+ƒ4O%4adãœ%wõq{{úì×-˜ðÏÖ£K(‡_w ZPãL÷Þxßúò̺Ög×ßg‡¹µûÞïÖ%$•>ßY†Eï}ÒoÆÝ`éy ƒÎ'X®*K4‹ƒUq¦YXÑ£# ó‡Mªˆ`ùíØz¬ÌÔµ†Ò¿µšÇðõþ3^N–HÌ¢b#^†$œŽŒù˜"M«¡ö k$œ‘Ẃ”ªïÒŒV#ÕŸqßI»sH³FXI<—‡ô\oLéï²#CŽE`­Z&2NòpäÞUEf -š€cÉÈBPEuÜqYúÓ¾<ý³YãTFÎùø#Ûµ”S sÈåx´Õ÷¹>S7çF.&ŸÚª‹‚Èã¨5]¾>м)û„*?~F¾™Z¿Ò°,ä¯ÈyÉœ¸ëoô¥.ëûP¾È’ì¢DÁØ¿‡ ¡P„uÈG.ž!©˜eGÑôðŽÆ5oxÙ.ì°ëoÄŸÎ\¸£„2Ü$IûߟAÙæê î"”‹|õU¨ï9*øÞ¬õðD¥Ov¡[©¨jzû)ËäGÔ¸¦tÔJnA+þ¡\gê(D{ǺîG½3{5§ÉØÑ ¦•^¬y•˜>_fDÓOÒ æ$gЂãA8AØ´ü¸Ó®gÖ| Œ_(yÑzÙ§ì¬]Ú4?è²\dÛåÓq…ÒP´{[- X«‹ö‘ÇSÆ×Ðá¡àa%>ItŒT}ÀéïƒNo›{ØÒÂÑ9kr‡Pî1îoýüt`lHTtšâAñˆ;F9—‘‘ÏJÄ> Ë%gY‰í g=Èe·4Ý8_ÏDÍîû{žf*bã d<>ÞàÔ7i­nÃç¾xCÚEÃûÇM$!“÷1 í;È;üBš÷}Âß}Ï“.ù3PO³™´ ßcÎ:ZRBã׃e¡ùJá12mhyqܤAù´f°\pú) m£.ºi7¡Ý«mƒ:÷´ËÏ„^Ðí6§­·‹Qï¡Uõ8×–ÿ®÷‰)ì—†æ§úq?}‚fŸßkhöšÌP6ªªBËã@…™Ç Õ¾yzˆÒÚ”b¦6óßA»Õþ—úQœÐñ‘زýŠ5téœåX…»B=ù?è-zäœåýJBîÈt ïár÷ë0ld*ýt\Fu³#iÈÿó7–(Ã…7ã0=/™›aŽ<Âqöd<Ìg59Jš.Ábtøíë >°\nEžR`k’é"f%`£ùܽ´/°õνë>G X>>æW°ëo=Û©•»þ$Y,3Ф ª¾'NÓíú›ûžçYH)¨_ÞSj„ÔW:îg…Gº=³û™Õ‘ÁwvßþÞŸÈ8•bÖ †ÌjjíO +wà þèdë!r;­Ð¿ëo^ÜδÈYáK9TŽÜ¿Î¨& @^±Æð±Å0ä+U¼w4ùÿ ïÏŠDA;æÎY_jf ë Úå]HÂÉÔKó(v®‡o²ž%¾§|Œ¥Z³–?õN¡¬Y¬ºéÞ}(÷çYÏZ«*œXozë-*‰Q¿¥"F•=µ5$ì¨&Ä9,€B¶¯bîY£G õ¶YÂ-±c¿BmPûÍì fÞÔåˆmÛNwF½dåœfF48ø5¥ú¬1q)Š0=²Eãéßù¹Þ¾hÚ©à—ˆæí_ó%¾;¡e½ÐÑ‘9´6w4ÿŒ6:ú¹ZkÛh«±zí`3ÚihÖ_·7F{Øÿ­"- šÚ4? £õõ›B‘sèt¨Sª’ Ͻ ²T™Âý!3"­±+x †Iácå%t)`D‰<ØÇù<7'·¹õÖK™˜É_GÊ…¨´Š…xø>¶×.ˆÉJm[p&¯òM§’—e†ák]!›£FdZƬ±1°BÚ¯±ÓD”Êâ:&T8 IÝõqà‰~"%rÿãmÔ§?æB¼ÎÃ’¬þH¸;~q#I ¾Pt‡Z÷@êÄž åÈ(=_v„Ǿ2\Ë›÷z ¹šžS"ç!ï“âYÈý»¿ù;sS0ä+c=Õù³h46þ=÷¶’ã" …êì)Ç×ü 0¹tS•)ŠN“‘Ÿ`>ÅÑ+A­¯¡äÄ…Å%B(e_]°r¦ýÏßΉ:ÄAE³f ø“/ÿù¥„λD—ÿÛß²®%z‘C‹Y}ZÉ^}hX´ú¶û{Ú7¤ôTi k/ƒ%75ô‰ä¼¤}Œ¬i™öAÿ4K4ëª ÞY1{¬¹ Ã"3Y>ÂÈ/½z1kÝ—µÇ &¿»nÑÕÁýêOêÏëd½‚9Âëk±07n¬ äÁÂG)ZUMXœY6£Ø†å0†”ãWXaÕõsÿÑ.X}ó3ƒÖ67”œNUÂvzò3õÏ:HÐ."·}ΉÎ\gSßFö‘Du$cÕá¼ÕŽ2Ò×*__Bª#º[²H+ÿp¨àÍ{dà!Mý–ŽŒ£7¯¼¥GætΟ!†Èš“wò‘ƒž-àIÒcä¬^ÿ¸þ ò,Ÿ9bK=|1&ïýåQà1Cñ•Ÿ(”êò3’DE¹ë;­ýQ¼÷Ûª¼®J3òµ8œE9»‰ ¦Ú¨ ïûÑ^A•Èn6sAåî™GTQí¦ÈÍÏ|Ô ³¤3¶>ŽP*—§Í ˆ:tŸ4”{ôQ·ñæuwÓ!ÔO/¦R;ˆ†ÉO,?¡q—s€Ý>4=Ypô9šOGÑõì´¬ ð_íÖòT— ¢Y`€ç &Úêwh˜¡.¡9³DÚëÉ+’‹J¡ƒñÞ˜§’ÐцÊéü6:¹ŽÍýÐÑBç3Y¦F8pÿ­$;×n!<Ýê{óºä.%Ú£ƒ{Cï|ø‰‡ˆ=LMžìE^‚O?¸³a êiäÕÔ»9ÌȲêuÉê|ÃÞJP¹qæWi ”gW$YÈ^þßþyðîzá;ȻķBÐF ¹÷ZWb"-wëFuéò€¥}|[-« åâwß–ÚÉCõÝIïhQw´Ž(üoþÛPMåËèØœ²>qÖã—ìa ƒFy 6† Iò z`¤W¸’ÿ¦.ŒnøöŽjØKmT§Œ]¤×ûÛ<ÊúÛ1Wžâë2­…ñµ¼øö¨ƒ0ɨñ2WÆ~Y'¥}ƒ© ‘ceåc0ݬ¨»ì™ ¿]•²™«Ç`ŽU& HÆæî>5®ƒ^•Ÿ1g`Ñé4–=7,UÇ¿ê‚×jÙ\ÞC°ÆÑn­@«ëãIêYž°™íH¿il[é©ÄÁ;:f7D‘àMÒj˜ >§_µnF¢ºÐàRJ$±H¸tÔ5ɨøÂFÃd‘|>gbÜL)§$B÷ïEêY~.®¤£y"©²€ôs âK>'‘‘ð÷”rà2ñêN¾Þ‹Ì½ÙvÕG‘剸†[Ñ~d] ‰ön±Fö#³5‰/c¤õÖŸ£ªÈ2ÐhŒ\›¯ˆÞwâ^aïä£Q¨‹ÍD~šáŸ'ÌdQ€9]EÖþ Ò¦„P¬£zðéPÛöQo½%‹"…w¨ã&üQtãáÚ<]?Š“ Ì燉¢øøeïn_P"áž µ"J^OìÕ}†R‘>û…lvýÍorÿ; Q”#Žéˆ7eFy‰Sü¨à>IçhQŠŠÏyËl—·P):–Ç`¶•ÏšZì=†ªLf¾²W¡Úº Wzp(jêîßóìD%ÓÆ+ÿÒÔNÛ¾l?PŠºaNGžú¡~Эô·ƒÝhvîÖÜÞ=hünõ`êp š–>¯S'¬GóÁÇZï;bÑÒ*Bf_„ZUùÜ#W@ë“;<Ô—Ñæt­µô´UùÔ›1ŠvT4cl€vCw’ žF¢}éé*Wèð)ùç£SŸÐñqÑJOt ¹ÏI}`¯K xþÆý×Y6·“ð@O좋!rüxc˜]õ zßù¾ÿÓš‰˜óƒoÉA5_‰_M] ”ý.¨œxê%V³);Q‰_ò¢ÿÂB6|ÍR=[Vp 2“І›.Aº q67CÉßþ[:ªBjS¤]Ïï<̬ЭÍ[_„œ°µ9b×_ÿ¸Têé\dtÆ*øÒ¥’E·¡Ò[îMÜç¨ÝºŒ;Ï|D¾óŒžËzHõÕådqŸø¡IÀÂÆýôÆþ¦ME@g¼››:nÆþ€¶ò„ã»õßAÀ¸5_ع¿>7KŸ„î:µËÞ œÐK¸¥™åó~á_¬s…Àü0¿Òß0ØšÕÝQn³›­¹å&úa¤.ËûePŒ]|§R±ãËgê:à—ó½¥>w`úÍ%ýcâa–Žë³Ûu˜«S=¨Ïì ä*â'Òú`Qu­ÝêÍXò´¿fó–ãd˜Ä^•Â*½ð?‚jX«: °tèlô8Óÿàš‚-cÇ臸`gò,µ®ÚåÔ<½&€DùzáâH"2¬Ø>%ޤ/Ÿ¿x‚äln3)ËûâKÁ5Þ\Z¤ò¸~,©0ilëÎ$pÝCº“fi³ |Èà¨Õï)°[Ÿ×~_ K¡C¦æ' ƒÚÈü6»_Í‘%ü _§U.²ž$ê~TÝŒlVEU“?‚ý|#¡WÂ;äØéò±"DÎin$ÐLEY‹[®=Èû€‰»jùò >ÜÀ+ü¥u)å»þæý-¨ËU‰|.Ñ# fšqZð¢Ð{Ò¸¨G(¼ò-Žpì+ŠÆw ;ö¦£ø§’-‚”:”ÌÓ—ÿêžÒ_ß½¿ØÓ…²ÇH6û<æQî(›;¥Ç5T;fVD¬ƒJøšƒdä)ªeø_qñFõÒôΖ[¸OWW]OoµŸlÏ]^ÌBÝÏûY)~µ¢~¯ö-4bJžXd41m¼•òQÍ‚=„§ˆÐ|Fx~$»-Ý®¡ÕOÚ¼R´ÎºÈ§ˆ6Woj¶뢭çZ¯æK´ýÉÓŒöÄïfœ#ÃÑ~üûÕ èÐRgéik„ŽŸÖïi@§Â»<ŒÛè\ø"hœ>÷WL»ô<9ƒ é²¶¦/Ö aÒÑ#OÞ¾ ~˜ÜúŸ>‘–bePxR²ôØ]^)h¼©P‚œÆG¥âÊ™ðU±¦>Núd¹*z=üv2Ìš¼¢ kw½ÍÀiJï¤î|8ÍC&°›/ê“36Až\ïg7(m8|µóhÉ.7}ź+µ N¤MóE÷hR܉¦wp†æŸc…3±½Ð²¸2sÚèÓ^¤„v½(ëæ:h¯dãn}í4%ÞŒ>ƒ¶T§Èø­wºYcÔ~BËõVžïÎAs“h0ÉÆ 4Çþ9ye¸àï>l‰5Ù(hÉÏð5; ­Aœ„S‡wýo¥­šä'´Ÿ-v?Îk e—þh¯Aסñ¾pèñQr©¹wz{©h>Q¦@²tö]›óßï?\§‚a;¶·‚;ÏÛèvýçoŒŸŒ¸:ÞÀôt^rHî˜#u*ÞŒ;óé<õ: °øxv&ú÷]XN±~{ŽÖ¨ÙÒ·—ÏÁÆû,¢¯ä-°u" ‚’h äü…SX‘°DŽüŒÃ®¿¼/|K IÅcã+»âvý­,má‹!RŠ |¯ãEê[f¯J!ý9.C7d8w%j¶ÂÇÖ³{ö#³ï–‡äîýÀÊö’±c²µ|²L6†ù=N¿‡®"gõoõÜȽxz|ï ^äUâߪâãA¾ÊA®šš ÔËóîAAǃôÞl(Ô&ýDÛ Eî9ŒœQF± éž±@‰×éen½á(5aѲ‡kÕƒŠQžèš_©*øD>H1 F%NW+xnŠÊÛ«9ŠQu³úÈynT_âm }w5ÇÏšHóù!˜û62¬Dí[-39?"PçO”ÖG9Ô»û²uÏÅh á"òã®v9œ^)Bã7ª¯ƒºUÐôºð3³ š­êWçR¡¥ÁSv™Ëh-ôc€½m؃Õ{„ЖVö·ÞÙn´#+¿ÄõË/bs•b¦½è@Ðh£?­Ž;Rù¼Ü¯Ñqû›ÆŽ¶:í8{Í1á~BÊ›gÝñÉ^> }-t¡ø,¦"ÒXög¾BWv2é?cxˆÿZІâ RÚP<]­¦ÙåÈFMm”ø>H yƒäu–9ðõÌ›“±­IñÇ0‹ñ-¤¥²òÕr¼…” ÎÓ ”ñ=ÒÀeŸÜI¬Ø ñûÙüú”h nØOÀŸHзÏû Ióv ú5/þö=©OTKÞý<ƒú/ÿ>?7oØà[×uÈçê•÷ê…|ǔѽG< ÿÑ­bû¿ën„ÜÏW àkÂÏ1¶èÝç€Øósô PØ×J´÷óu( ·µ3ÿÛßH«ø˜5”x;î'RžÕ6˦ÿüÍSò`CT|w^ÏøÏ߈¬Ôöþßþ–ãóøÖ÷ßÐbKægÜm’5„ ƒ˜Èææ¯­¿ý>‰xÌAÏÑKCÇvó0ÛF‚aÇ3è_í7ÿE; ƒ®ÙÜf‚aÕYZ:™ã˜Ì¦ôƒ±Æwdºéû:„M?S¤¯¦xŽÁLK¢¼ÈU˜] fQÒ>óš|ôõa°pß,f.!W:¾ðûýíçÐFöªVORŸçJ< ë!‚êD!~°9ê5È{æ$l‡{°³‰éO„kèM‘H׿1«›‰×Žå³W i7Ëáh(@ò)³ôÏ£ºH¥EÎy¬•i”®TÊ ýðÃa&ç dŒuÙfKðDæ‹|åÌN"«oŠí›&d/ñ;IN£„œ—vÌD¿Fž¨ Û¯å ‘/¸2$±1ŽhѦ]¹ŒB/»Ÿ…6¡Húò™µ5 {¾FP‚R%?¸«‹r i¯ÓÜQ~HÆÙFú *¦<±¸¬s•¯Îæà©B5†ôø½qÔ$ Õà*‰BØûÑãrìuÔþ|?Lu…í™&9Q_ (ٵы¦Xþ€‹ÎÅÝy‡¦Šèeç|Ñ\¬ùýÈ´Ø©ù¨©”…VÀ¼\†Öƒ­ŸÚ¶êЦ,;äA+ÚVõ½y'~í oWùÙ¾GûÌôÃS]eèð%DÎ9JãVŠÜêÐéqò"†£ó»ŸÕ¿]žâþw1ÇT-áØÀ²@i't‰K©XÒ}ˆ“¼ð—þƒ{ÏÞâÌŒ‡~Òk«KÐvÑOós.üãNeaRÕM(ÿÈsð¨Oíÿö·ËmÊ-„"ùõ“àK"äR|Sµ— r—óìûÔ ˆ#™CŠq Ê™ÉýÎŽAu³é‡ºwШ“Í~oZYø#(|¡#cÚVM z®«·ÃOO×çÙ^Wa0(™÷`= o®NŒV^· ˆq¹Cë 4»<¸VºÝã„ñºÂøwæùë •0!øð ÷ýh˜¾€ç£öÂ/â#s©÷K`J{7ÈÃôÙ '%E˜i1UHÙ_ ³'³-ŸDyÂÜÛ9¢—~0›6Cÿ! rYêÛ¢aqÕ uaÔ–OyòÉ6SÀ*AE%Kž¬å¦½-:è!žžŽJÁ)>©®ZØæ¿WI¼d ;ë@òK Xr‚.#áNïEºd$ÖpŸ{îæ…$Ù§;WÛ%ìäïBŸB9¤0`x—;|©TN_p vCŬ–¯V¤“Ïå¼Â“Š {$6NKH!£€yxÔ~5d‚¸Î½\=ÈìåóPXç6²¤î;*_Šl š+ÑÙoz”d„Õâ Ò™—È™ ÚØVõ¹ÉºT¤{Õf¯ ÜÊD>:-Ê;lþÈOök\lÜ(ç|êŽÕ¡ ñ­j5³ã(¤cÆE×#ŒÂ÷Ö+z‹Qd&DÀ,à9Šiw‘Ê]T@ñÃ_iß @ ‹íf­^”äoãÿÊÿ¥èr„,®£´tÆé›¦:(=@æìœŽr0yJå-q¦¾Aoܨ±Ÿ¨xGþd7i8*§–uOò¢²Ë°¶hßTY±k÷ö@µF®;¿ „vëN~@”Ã÷ÅEž½ru·îŸšI”=ƒºÌηÎãÔ à»íŽ•ÅTŠd„hôõ~Uš|ùàºÀåˆf²z4 o¢ù¬ÕëDµ´Ô֣‰V/4 ë™`† ‡øàO7¡ò½˜-ý "¨Îèi?hß5íy>Šû@ý€ÕÅ¡÷Ð$ ‹OÒèÿó7Uy36 -hÕV\Ÿ‹…6”ÚWçÔ¡½£}¸8í(tÞX84<ºCnÞ¨ˆO‡Ÿb¥"ÞK@ßóŠ¾Æ/sê³27aðE˜×† 3KÖÅÝ‚‘7ØdÅ`Ì´ýgä¯ÝúÝ×0û ~‰6_Ò‹„i7¯Ñe®ø]¤týŽÒ̽T‘\ ƒùÆâGªî•°H”y…À! –öÉÜ#8 Ë¡/}:¦zaeYUQ¶ä(¬%ú¨Ž(]„D¾WÁjðgMœ„ž`çák¹ HHÅ!Tôi‰ŽZ>+^zˆÄ%gI¿§@R—Õëa¹Hö¼í‹þÅe¤ì4_eµEʦ=ŽçD_ õ—çì–†‘6s}OÃ31¤ŸpcáPEF¶â1§ÖdRžâìqmAfíO™„¢QȲïn$G¬2²Š54dð‰#oƒHê²[ÅüÙ7·ë÷væ'7Çó[e†:Ñ>䡈ØQ)m@^Ïq–ƒ›È×îH"—õùó¿:WžÿëoA*ö%}(Heªöû Vl™ÒD¡,æ„r!¸+ ?Q4†ÿü|Üi¿:!ÔK¹ëoç—6@¥íàÅcf”Y—%OB9ÙGt3³'QþçÉWio9P±k,æh ª(ô»ŒÖ« :‰¼…C+jýrHµ@üU6ö…Eu&žünŒ@½ßÉñåŸÄÐ`ÞLúu²'Íú´3̡ɶ_­A3%s&M g4¿vzàq%Z4oogס•ÔÁ¡©b´6úÂäo¸ƒÖ[ÞÁIshóõ—´öÈg´½Ät…bí4ŸmA{’ʲÂE´ou_b5B‡¸³YæIÐñ™ì¤1:¹™ÈxŸÙÍ÷z›Qgúè¯ÿ<üg7gå~5ì:¾ ¥‡"‹$ž{AÁÂ+wæu Ϙ±wÔCèïù%rbÈ^[É<ÂÊð·ÐÌ£‡Þ÷+Sõ¦$ÿ}_Rw¼;h·ÞˆLÚÊ9 ÃÝ9˜ Äòýiy39 tê;‹åc¨2ïtÞÛôï=hÓ}ë¼ÂۓТÍp4C'Zí»“x?@Û©„OÊÔÃÐþ®Ûªy :}¤gR¡}"¬¡&ÌÚ)ÒîP ËCk¯½Á+h©ºJ1ǶµëkTn’Ç ¡¹ƒ²« èåß¹æü¢ ed:-Aá%´¾;ʶ”ÅmA…‘–\ÐþPX:äCtôO'd‘¼ƒ®ËŽÑgÞ COøç Gz×oæW¢€þ†¨ñ{èaðqã¡p‹—0|h˜)ã*ŒZÓ½MøÏßèÒ è`zÂ|¯£_Ìó‰“íƒùäÓúŽí7`ñŽ].],,¿²Ýç&Ø«¿K½7³`ãüz@Á‘6Ø’Ž0™E&×q±÷lHøI˜Arĉ¦Cƒ;ï#)?}¿ˆ¡6’Ó ˜Zòv"¥ÌåÿŽU¤¾Ãl³é}é¸eßßC†3Ôk!IdÈ8¤Ïã5¸ËÁ²'×Ç,‘•Áæýdk6®ºÚ3½ëoÆ&¥^³ÈY—?ñ¨ï"rÿ9õìaB'òâ¯8ótä«‹`¡wDÒÈ©§"|(¸ßÏ‚(/…:ÍxãéÏ È#"7Yë ¹9"ï‹ɤë÷¨PêϬø–óq”=?¯ÚÒ­ƒò'™bJIPáì KƨD“þ¬Oè!*KŠx Ÿ@ÕV?ñ£ì¨^>Cêýµ5³÷†º,s °j¶k¢öÉ쇞;¢ÎÀÃúÀ¨ç±5sä¡ ê¯n¿þýñ>½”ÖY ‰ÆVׯþ:šŠï9~çj:š ¨4x|*B˽½U&^«hµï[Å:ZÏ”çæä›¡MÿIW Ê´m5ãË@»jˆËõ-Gûüú†è†ÝÙµ´çƒ):¾É0Q»–‰NᬇÍ ¡óeᾯM¸ÿ”­gpГ–V“Díd2ÒÔûxP2NÈq¿º²e¬&¨x#EŠ_ ÄësPëЩ­Ni%ÉL?޽8y—žÅž ÿ·>–‘0㻫”vQ¯ÃJVRöPÛ]ƒ$ž—³¿”È!a’àÅS§Nˆgº5dYvâBûždˆß*s¢ê‡¤îºGtwëQôÝÞ2Î].²w­;sþ[ßË“»Ç÷öîý]_ ^üÉûòK"³¿¦šü]w{áÍPyHò=oÝný_­bn¡†Âçê×EÏBÍ%™¾¥Åt*ïS„â:ò­ßË$Pr^m½£ˆJ ®ì7ˆüÏߎ½‚ÛaPñÍïüÍÜþVµu¬áÏ·ÿÛßòÝÁU²Z\ý]¤Î»C›Ò›ôo,UÐAÝu¸õÍoèïZÕKk‡žãžr) ÐÇÝÿ¶›bÛ¶û™öïò33ƒ¡E†•Ÿ‹óƒ‘åˆXârkæl,÷℉šáŒöüyøµ±*%GH 3ž–Þ|ÏÂìhÒ¥{—`^»HÄß "t˜Û¸‰aq'Gû¬,¿ÏY‹Ëó€UßÓdšRÛ°~+î‰ÍV(l6}ôlí¡„mgú¼!û,$xHÀù$Y‰Xyü‘¸Œb$(ÄI£õ®ò¬¿GòøS£¤ir!i¾.hi»8‹#ýíá¼rad<Ó’þ ™ÕDâòï"«ÔžíѯÈîÓáxº9[ItX ½î‚ŽÝ¶Ìö¯ˆÑ©„®þ$CçO'u64¯ãþûOËt¼ñ€oז䀺ì?8ö©ºyÞ->`þ ~.ýêz—m¤_Fã—©³Ÿ•úÑôD÷¥Öl74‹` eºŠæ¹,÷‹¦ZÐbìm‡ÉÔ!´âàaÝ­EÖ)?6Ë u…–¾æ Í1¤‘8,¶äŠžF~§Ðö‹±Ý°3Ú9&Ù¨¦¡=±ÌáëÊhŸ±à.¿€'e>Ðy¯ #ßÙá‹lÈn”LGQµ=öììî•CÐds6ù<ë¨Ü¨ÌøJ¥mfåÌ6ä»õõ#ê”Ý.÷DЉ»Avº»Ç¼fd”úùG؃´ûu‚Ÿ?¤@ªo@ÊÁerHÕ;oËð3Ÿ*I?d‚œ·×ˈԞüãRiAÎjT{;TÜ}Óû¦Ï*;ùH/{Bujùwøî\VYÖõ«?Fùb ILîiùŠÐþ&ãòGÊCîï\ažC‰ç¡Í\払@3´yYóàÃtšlh,ÎfB7ÔÝææ5ƒf&<§Z²¡ï6éZÕ.zÃO¼b…AײKÄòûa¨GFó¤‡(Œø`Òã¡»0ÆGÍæòxÆ×ÌÈ2mÁä*»É·~/˜8z;¤O~Ÿ91z‚Òæ<”6ãw98ÿÂxœ5êÏ ¥ÑDÃÅSŸ °ìAÒ¢¹ +?LÌ'¯mÂÚƒ0ó6ªó°0)*í0â6O?Ð= ;$‘²¼ÂVHPréÚxC-Qî¹´‰÷otfþœ@’ >k¾ë3H¶ÇØ«kå ’¿\àlðy”êéÆŠ¾ 5Å‘âEi¤%üt#™[é…Tmì¦Þ ×G"kùÈXWöžªÇ™ž…5Ò#óô%òý+iÈ2UÞvé²Îö…\Zz„ì"%p¯#»Aôzk-rÆøˆúT×"÷`nØ9árä5. ©}zùj¸j'̹‘?ë}|Ÿà_“›kzŠ‚LMT¼(Øžð½ð U-“& _A*˸ ö}êYvßWÅèÍ¿ºGIÑk9û8ÒPê÷ðd³D” ³8*¿é„²ì?̽CùH¯©Z¿QÑWNƒyà*ÇQ£%l£šaJY·jZ\¼w’; áËíi7íÔn¨ÒÍ4C=Bî‹ P¿qÜרè9F²ˆø¥£ñAv‡âõ_hä«ðèõ4}ã_,kx;ÝÏ?Hæóì®!gî %J‹ ³Z9Ý0? Ö&I§g>‡ õ¯ÊwWÑ&|ñˆXà´U)Ue|’‡¶C|¿c¬§Ñ%å:Ú럞º~í7?˜Ø"ýçˆo"ztP¯üÙ‘´¡Âª&6#–JÅß’““±AÁåNõ³öûüš¿&EÁ9ºG?&ÙAv‘à+Î?9~æ±ËqH/ú˜ÀËñRsé´ÎÞ„T7±û×éþz]ùúZ ä¶œØâ-h‚2J•„†ÔãP£uÛ}-ïß9„¦‘wݧó¡å¹?+´f0÷»žƒ¶Š%|_ŽvLnÐqµØÉK¡C¯ÃwI’ÚP_a»ím2¥CÕÎÐJ'¶¤yÿ.´ÌhÙÔ?ƒ vãMæKÐrJÇÛ”ïÐîÏ…çɉ>CkU¢ä65´½ùðÉí¹3´§Þ]ý$ž[Gœ„ªM ëes†G!ô$ Ü_ç€>¶Mωô#Ð?KÁqÿÙgŒ%—ÌÜ͇ž)!Úò"0jïù=½2à?£.2:cH ÓÃ}á¢JO`Ž`â1‹0Ì'æä{EUÁâµôÜv™X¾m×¥æôVk~6ön†Á¾¹Òüø³øáQçiØ™¸mC,!ƒ„÷99&Ïïú›žùxˆä’r\f ÉèÚõ·C O"¥GwÕ`#R‡§e¾98ƒthQ•³ôÙ­>¿trœßå±úJ´Ú¤½­cˆõ@Û˜–ZÇD)´{ Ï‘ÑzíýêL{-Ž¢ÃÁiÉUt„wN>Å:èÄÝb­X߇N«ºêâdZèÜ ¼QU¸ÿÝ!hÛÍ‘— %wó…‹¶1mq6)¤ž8ï¬6‚´#‡\}Û æAFö ’f(qÉç#È£ªÀðcÿΧe8EÊRÿ€4 ß{mu\Õ™Øu¡>_gÑȆ„÷ÞqצBÜ÷y‹ëtˆ5üN¤ñ_e¥C4Ô!©Ì™8ŸÒd’/<1 …LŸÉƒ‹7þ¯Ëû¤°¤õ È¥³¥[z @" ÌzG ,¾ù¼”h‚±|$£ïP(m—¢ó  +MOÃ4i.ÓÏô±BQÛt1·-'?,Þ’%\ŠÕ‚T»Ï7e?µœÿó·C×e4 ¢øÉœsDñþ¶z“5Ñ.öÿö·"û_*÷Š ÅÃ"eèõ´í»pL?ë t°$Ÿ²ý ]²…Ænò çäÁ«:›Ð'Pñâ´¦1 ç9™ðÂà[æ±&„a­U>â~ÙSŽØf€±–ȵOoÀDåìÏ2¦`ø5÷¶àÂÈ{˜q “c 0„ÙŽ%û¼Ž‡0¯äypŸ 0,™ Ö "a¦Ù•ÍTªoÏ ™ÊFUéZ&W:DõÙ{ÊÞ¡VwxÑr­b-ï«ùªvÔq÷Üô¾‡zÄH¥IP¿+pÀÛG «|ZTœO¡q>’°Óˆ é;óA>‡Ðü’Ù¶­=ZZ”>4­*FkºP•´^8&ÈÍ6…6­Ïô E mºÒœ}ÂÃÝúëx©èŠöCT|è Åæú+æ:Ò½½”µâŽ?õ2éÝüÐé³hð·OjÁýÿíoå÷n†ÉþíÛ•Là¶9äfÙä/BNdùo’N·Ý:)&[ì¼eC3m ÖPsèÿ™» ÉUE£¥ŒÚ ûŸ²’„.Gù“-h ½÷³bµÀ€Ÿß6çõS0Ló4:úÂèrš­^옰 _úúô LF«*y “Ã4&ÏåÀdŸ­ }1LÖ”o Z܃Éí/>2üÊ÷Jyù¦ÆSßĘøÃŒ%»¶ü>>§æÈÒ³mþL‚ª 0WÜ[\ó&æs¬¢ï-……Z‚WÇÁâtÓç@Ø€e• ·]®®¤(Ó›}ñ€5ÃÂ…ïsR°¾é©Ó±Q›EgÇòS`ëq—vÄz6ìøì[ i;™zŒ¡êzH˜ÿÆXãÈ0u¾‡swO" ÛÞj½uy$½=÷R ÂÉEî‰ÜUDŠ©æÃÌqHõýùÂÙ!¤)è×YŒl@º,&q¾)id8þÍ‚–ÝÉÛ±Ö"Óõæ-›NdNx¥W­ØŒ,3³±Ç9"›ÅC­K{#{¹}ò77¸ÇÒs…¬Ê9g³ Ä¿& 7·Ù‘e>Üëv꼌/ò1éoþ!D¾µµ$ÞûÈ¿â5I⊳R†MûPȺ+w’…KßÉÇEô£¨Å«Ç¯ÚQ¬Þƒ'E§%Ý |ظQ’‹d¼hY¥˜<¶¬TPZ¢%/‹ʸ©>­]K·­|ZrY—à R·Qþùƒ Íwn¨pˆVh'*zÛg ¥£’}áTVfžqù»kÿ3~SWT ŒöØ_y5‚†½~¢VS5{èâ…o^ÞGñU²ùs¨ûÅý £?êëdËioFƒ¡Ü(¯ˆ+hRxã˜åI4‘ØbõA4•iº|ë>7šÉѾþ-ˆæÊäº6íÐB-úsc×'´ÔÚòc)þ„VºÑÅõÑWÑZxOÞ ÞZ'òQÜŽ´F¹§Y|rh“k¶ùf×çtÏ Q>@Û£k#Ðî ¦?›4ÚM¿d,º±lW²æÓª [ú”M…¦84.hZµúAå Ç3ñIêPjĬ#–ÜEáû¿¾91µ› ½Sl+² [nýhXÐaÈ0kÑ<θË=™ÔçÏ|‚T>þ1Ý{º²žüÓÿôð?f^Iú)úƒr’ô?~ÿÇ¥ÒÑIý;ÏwyóTé¹!TѰçôŸk2(®¤KðÝOþRðA h ?iïÊ M’ªKšêÿù›pèÝÇÂÐʶ¡]÷¥Úä¿$j?íÁ®)./.@'QˆõèZc»þé0ôÌÎÒéëBßžÕMÅLè¿Û#PBoƒÕß^žt…¡Ø×f$BßaD/¸Žþéônk[̬wÀxýš˜¬tå6fs…©gq¶7à÷ÞW¦ú}¹0§¨øÝÅ£ æÝZÜ:ªžÁ ɺ#å©°843wã,œ“W¼Ï+¥.± kçbŽ”øÂ†IZz‡ïüqªo¥>ÛEJi?6!_dž•7H˜z,^¦ø-†&|p®F‰/ @Ò¨)ïKHÎ@3ñq7×PÄš©¯l–"•»Ôɯ¶‘ÆÒnòÁ{ ¤scã|RLŠ úG3VxïÖi”¸¦ã22]u^SFæWî¯Le%Ñ#g¹¡Y‹§GÙ Ôú¸< Çc¢ŸS3€ëUb„rç 3&ÜÉA^‘G$ßG÷#_Áࣘ¡HäOy°¶Øºëo^cŸ-Â,PpÏfAÚ9Q;’p' }7wv„${.¢ ³hNý3½—É(ªõÅeU.<.üŽ?y‚®-Ê¡Ô]ÿàÚ`”áôyzÐà.Ê>¥©?Cä‹ò¦>š/º¿¡"uÀw®Cº¨Ì¥*Z‰ªwdÔ^T@ ;z¥À;l¸ïœù³÷Ôv§|{ø%9ê2ßÕ=xõ’oe/ T Zö¥žÛ¾»Ü›I¼H…Fe/l'¡qaÈëï_¬Ð$—Ó?|IM³Jž‹ÎÛ¡Y&éµ ¿Ñ´ÈîsP)BËMÙ{ÃÑêÝG’•´>™ÿù¸’/ZÏõMŠ»d£MÆX(!Ú’>ŸÉBÛçD­O„ ®QÌáÌ÷h¨si¯ÿü$ÊG{ ÂT dé³Õð…’Ý|'µlŸ¹÷šù}Iàëæ÷=åãï!û–õ¶á¡¿ëسODAº?ƒÑ‘— õÀB– éHÙw™.,êï9TâE/Ã]þ9Íð~ ÛÍuïÑÔI ªæße'0®ýëÖ¬µ°¶g†Z‰Ü“àr:´1ZÒù°ž„v>èbR‡œ¶)$BG­§5 tıﭯ…öÜã>’%ÐvC™(ø!´Ú·öß&‖ëMþ*£Ð¢!”«þÙZ^¸†Ÿç(VÕÃrÇZ ÿöÔ!wÛ†¶ÒÍ©gÐÞ4WZ™Üœ$‘÷æ¡ë«.Ëš¤=ôÔ¼üøpšú”.pR‘åÿ͇*{ca0Ös9saØ/hµÁ¤FØ„MN›þçoµFϯ”Átÿ™­Õk˜Ý:²¢]õæãÈnºÑ¢ ï¼e,Ÿw8ÏpÏVtšShÃÛÍU¬Ýð'7/ýZi*ì$Ù¶f1È!¡/=Ñ®¿É}1¹®„¤ôf£ü>»þ6DJ²öwžÔ Ût«9¢ƒšvWr߸â¾x[¦Ü0ÔV¸¢˜H7Œ:ñW¾­\ÉA=ÞJþùoQÿ‰Á}–EhH_°/zœÒ™t˹o IÁ1?‡|4;“5øþ¦Zœ{*ùeò7Z¼+0¿=‰ÖQºyJWž£Í­nÕ}Rhëuàü¢OÚÙ ÞIV¢A{ùÚª¸­Ut –÷ ËˆE‡ŸÇ·ëÑñs„N{b:ùŠŒjN@gE ÙÂûèüû¼*—ÁeÜÿAç‚M¼7°ŸXgzŠ.„ܳäšÜËV÷¡±*T{(µJ` %”v~?ü˜vëcÿU›dõý!3H5¦I¬ª!uçÎþƒîl«bêê Ÿx¨=côøŸyž×Œ!.äP®|?)|ª‘¬´;ñç¢=3N=¤ÄâHwÅfH3T6&o[øŸ:}ôxò_Ë|®ž‡ß¡àr‡ÿ•®¿ëmûYÒCÁç1Óo¬­P¨Îa’}¶ööMž5þ…Ë.VᎧþž{ck¿¸Ëß5õ8â„P¼¹çº%Ûi(¹ºåF¥²7(ܹþó7ç×É\§¡"7Í›i¸ò?›9è4èñû[©á3ú©OÐrVäEõÍÝlÊZá0<Á—/’5B—ò»—WÞBÏiËzýžQèKˆØò~´1)»FüwngÄIGÖwüñj÷ÿ4JX÷ãòš+ŒµÑi.š€‰ò?”ɧØàט©ynµ̘—.ìHÀlµÔ…mþx˜—ûºaW¿ O%7_ÔÁcrû}X.<¢3¹š «·%¤„aýzªÑÜÌGØŒc»ª•f[[çúïnK i‰Ø´ æéEf!±Ãúð7$x—Ïö ’ |2s)x”‡×Þ¾ªÏAêi^Ë¡n¤kºã)T2†Œ¤Åç¿"S‘¹€× ÈòöAf1C ²µ=S<"É…{.)»Ju¹ï¼ß¸úÚyçüÏßNzü …kæ.(ØnWû†ÎE˜®¶+/¢Ø½¦@s-6”Tºð0_«%U ªΟFõ¦…ÏUPK•ø´‚k"q¾]àKÔþEÛÈ_^Žº®\vnG}UùyêËIhÈ®p‚¤vä¯Þ"D“¾LS-B³ ZI’€X´VÉõ+D+“¢C"Ÿ6ÑúÆãî.—Ðf¿ï33 ´•º\ÞN†¶ÞogÑ®l9Ÿ¬Œ íCE¤f‹ÐAïw/»Í :üñGÇ”õ­K/ÐéÐ÷Ê¡SQèL)éýŠë:§ØÝ"Þ~Š\ÛìÝ—¯AïÄàªõCÐ*œŸv{õ_ßãÊàÜ…ÓæqÿÓÿÿ½Zæÿö7M•ß3ÿöízF _CEžïË—†¯#FS½mvý®êªSž.”}?¦ù´’ j>Êœœüô·²g¶¶ ´õ_õZô½ Ý¢vK¼ ïñb°¿J* ²s±k_…ávŽ¢Ìþ06ÿ«G·Í&}ã“'£™áW‹ õ±=0Å s£f/üªã=yùöüªá&a ü ¿¦o°NÚ2ÀTì;b‹—Çaº»sùY\ü–þ":\c ³Gèâ{C¸`γêúï'·`Þàõ}ÊÛ° OjÛØ3‹®¢ á9G`)49Êê‚8,w´Ç°½X‡U[ÎÐîWOam2ïŽè=n؈6|ìn2,|9éÛòÉÖ¥w¥€æ^0Ñ{]$d ¦ªæ²G"¾£A›lH¬wÏâ·±’Üú£Äi‰¤séë9š­H²ß…í R"{üç:¤fí´)DZÂóëÁbß‘n¥(Õ·y‚´ ·Ÿ!ã­ãþÕKÌÈ}³Ñkº™«åx^&-#+|¨Ç½5dóbôi M@öáïîàŸ×>‡Ÿ#ÓŸt{Ùlä¥lëdǽD’÷ßjF>¿¢3ßo™€Ð;? ù§? Å>ý„£¡ÊLñ(ä#.…{/t¿˜<ƒ¢W¹› “çÞD露Ј2ëõP–Ë—åJ¦=ÊÍUò5^YAùüþ_„üWPáÎá¯'ÓÕPñ°ÇÁÓJú¨¤Õñ´]•ù“9š8?¢ÊûCæUjݨf}°íQèj¨(vK¤wHok´Øþ=ïöHSí5¤¼ŠÔ°Öý)^¡†FÍšÿx˜é!a."99‘„Ìšÿ¸TF¿Gî÷¾ýP±tï~Äã/P¥Cïeäª5²þœÿv¾?y+t~9D–Ê_¾‚&æ¡ë–ÿùwÚ!ç¢=»9Ôõ˜F´±K e‡A» ÿSñ{[»ù“²–-ºÒÜ}§ ‚žÈÈ½Š Ð›4¹õyhô3nŠ¥NøÃÀx#‹lŒ yÓˆ>#¬5S÷M,a´öbÈu·:Ÿ\4»_&Ÿ¾ÿ]ka SŸ,jã÷ÃLCCŠ@:?Ì(¼¢í\†yq—êOWaáèø¦ÀrXÌ*H<ùÈ–…~<ì•‚•8ïëw¤aÍ.Û/#ûlì „kCð‡ü­Æ°xØæÍµý#b‹Ò**{}‘Ðélê˜P=` zÒ‡Äu „n>ŽHÊ-;M¸¶ÉBE³¯H ͈dÞñv¤,\eÜWÙ„Ô¯m¼ÅôöÕÒpëc/¤Ï>©|7¸6|RO·†"ŸŸ‚çÀMd6µšé}ˆ,§’ÙE5âí'dëN JÜèEïò¾Ô[‘Èi[I?ì0ŒÜ‘4QC3_—äøŸzeäKsv  Aþ„ª[ »þ}¼fš ùÛ®>îAÁUæn#&šÉ!MMõDžÎ¸åo*(zcëpùs'w>þëo‘ùPVŸ‚R"¬cWP:éiuhDÊÊ «²è¡<ÁÅ{÷ý¢QáCùA^QTŠp'ãG•ïI_ú+õPÝ9¾ïþr j)2®VF™!j‡-¬m† Žð½äÈUÔ}À»ù:`õúœk@L «C"ç$вè< aïãË'Y˜Ð()^9ˆÜO5Õ^àFC©Ò½hÊP÷éá/4í9Òî{ÍbÕÌÚê´ÐÜKåvÎ?Z({¡O¢Zì(WyÔýAËZím& ´zöæyÿÐC´V8üIxGiJF¿ÚKÂ÷›6‡¡<è·«'Ïn®,Î~Q<ì ùn¦ip‹îÖYjy®Ù|ÍR¼ÿ^`áæ¾…7ûû^ÿÜ“yGH—ýåò÷=‰ÝgUÞݼ©ú}uqÒMˆô¦ûË ÷‚Qoƒ6”éÓ¶}Û¦‚j}²Ñß’*ÿæð4?Õg«æ}­îlH8-¡íl¾¬? íAw|šÎAGÁ3wÛ%èTv =¢9 »1Ôä\t0—n"‡¶Öø?"N­Ðúêjm˥ВŸ¾ôæ­2´x)ˆûë)@KU@J4£ ´º½8[ö¾ÚX4²g mÔöÒºxëß¾v÷Æ•è SÍ4Äê%tµ}mÖšþ;§±H,{úl¦k$]X`€}~Ÿ‘÷< –ûUYÞ0á›Æžú蛚!?çþFÚaT’åÓ?¼«Siavm¡z¿ÌÇÚ%¼¶‡E¯‹¡´gf`ù°íD1¬†}šÎ§ …õñÊŸug{áϵ¦“>/Áι½Ž+òHèL"qìÑ®¿í¥Mi»¤äö7õ#(‘œA‡ÙíÒ].ZO_½ŽÔ/Œh¦ ïCõ¦mdðøÊht´Ûmõ¨z‘ù×q1dÙz&Ö’ßl G¹#÷1¯:rvÛZ÷µß@ö£Æ} ÷Èé\£–óÈ×÷âOù‰k(À£$l¹„‚G¿‘–M}@¡ØŠ~oyOÞêýTÅ>\.ûQÍ€?wbèŠ.£´FÅÚ5Æ7(›ê¡3_òœücœÂÏQáTl„®3*§{çÔEåGšéwb\QõÀÕ›²d¨®hÿA`ã j Hí›ðÝÁ}>ÑW¥£Q›Ýí­Um"êÜ¿ «tî!êþ‘ÐRïŸE}·IbÑ•^4¨ûyëÚåshäî"f€&‚‹ÃÓ¥ÚhƲ|ZûlZìñqóD+ÚÀßa\ƒh}ï¡B´qdLèëXD[µ!ž‡jßÐŽu#>2í¦kôÏ'ßCûܾJMkt¸zåü@G sÅK·[Ñq&pŽæ5+:½°h¬i‹ÎšÔZLæÂèÜA-yéƒ+î?ugàñY!Ü¿b㙽¯ ÉjKDÊy^AÕ–W¬Ãf{ß‘®©ƒ\õ b tÿæ³¥§ÆïôgýÏÜ·Ÿ¾ð¥7rrèœÒÿÌ ˜&`ƒV£oÌuB±ÞÎðé4ëå»ç,!^‚2nðÅ4$=Qg-KŠøÛw™ëò¡Ã9þ`£/Õúß|¹¿u-÷6 ®iÔ«u@Á¶žä­è(¤"œ'hƒÂ{Kž×@áû­k¯IöÿçxBQ;O!]"s…†ÿ šØõO¾¢Ö( îKœa„Rew‹ ñŸÿù›m¾Úäƒ7P‘Ñ0Y¯Z÷Ÿ¿MÄ’žÿ¿ý­BMgÒ,Z.­í·\d‚6+Þ*½•Pè9p÷[^1ti†üzõ8zÎèpEœo‚>™ðÛ1›0ÀBÁ£t “[,-3¼`Ø,û9ËFŒ’gÜ8µcía]Ö0QJ¡U¿~,ön€™}›Y¿ÑÁlî±§:^%0/MúÂÓ¿ ^ðŸ½z^–8¦†¥TÂrm–Ç=¶C°úèNñËÌX¿¦ô^ûxl>¶"Ÿçž­&~Ÿ~ÛQ$3\[¼'‹„÷{è” 1ï‚{Aý<’Œ6uÇJ8 YÅU/¤d{ãOì…ÔQe“Óç‘îB¯N{¸!24+O6´#Ó 5ûn÷9d9pó:¯ðd Yáo»[ˆ{ø_ëùwÇ ·L*_Mé+ä}\9õÂå#ò¿ž4¼¶iŠ‚o}{ûp…§xë£6PLõ ÓÆ”Xv,w}€2ä‰Ã_ò¢ÜG!NT°k7¹–µJ\f‹¹»yÒt0h¼ë9ªõSNžºá‰š‘þìgæVö9Q¿½vµÏ¥¾o>²‰:£L§“kPïé$aB˜ x,ü¡L“C#=ÁµmÑ^4Ù“F=¶Í‹¦¿œ¢GÐ<ïóЗùhéw.gc×W­J#Òߣu¿åD·°Ú|Ú£HpmO1|°†v¼çžLÒ ]“òæR?%ÚìÓöÿr8ãcäŽ;¡CfÙƒf!t4«>p%Ûì?¶ä:¢ÓËf…—ç‘KúÈÒøA{×%ï£,´dµŒ‘• ü›;ZyÂ<Ó!‡âï:1÷× ¢ÿío{ÓéÕ!—Mì* ÂW’|<®?_¿Of6‡A~fãrþk2(Ëèyo:”5SßnÇAóžè¨—EºÐîÿúÈ•§ÃнæwÍËe~¾”?U/׃_‹åö×>‘ׯ÷|L‡ñßBGuIåà× “S\ïoÃ4½·^3LïScö:2S{¯~'€©ê T:ñÖ0Õ#òDúÉL‡x9õRf¾ï˜‡“É쨾aª­ ÌɰÝO Ì„¹)Ûµï÷haþû!g“sZ°Ð˜OÉbH‹sV&¹,†°ÌwÿŽP‚¬ø¥êÕKÈÁêÒÎö‰;°~ÿ+ï-ØÜ'04û’ þ¬^"ñþ‘ R>>B¢·€ÔnÖ¯"ÚŽ#­!EKA Ò«V­ÈID†W eæè1¶œ[ºå 2å¯ëÝ}Î2U¬žáDV‰ó§NìF¶»ãD‹‘ƒD7ºSÿ<î‰lœÎqãG.½ø«qeÈ-?k.¹‰{oÝè–C>6‹¹ÀÁ;È7KN%ëôù‡&Ý´?΢@OÛ·;,(äv¼[nõ ¯߸«»¢_.^î.bFñýK*2tA(QN/” äUxÒ—g(M´: wù>ÊÎØü~+޲ó37dôQ68RO©¥å¥è3ö›Î¢ü€|wå»(Tx\xä‹™#*ÚøÍëµ£’Ðø~ñ†+¨LgDÞ…*¡îÄÞ¢¨&£[cô ÕW#7NýÐEÍõÍâ‡>¥²Ç·Û´P]©¦ÕtQ'À²‹.ô>ê¯ ÂÇ·¨O;Zét \;>tÜ@Ã4}ëפÐèŒËÁ~'4¼Cï²PŽÆÍmœGVÐ$àÕWýN)4åbÑü´¡†¦Ù£2ZWÑÌâÜ.4ë_¸KÿVÍϸFÍ*–£ùº@ÐHg*Z\ÏnÈ?w-I‡ÏzN£eX¢¶WZQvd ªF#Ëä·\âêëÐ1@["˜½û<_TN’ƒo:ôEŸÅ@‰Ôû}vž¡PÚaâÎ'È ÛŒÐÜ< Y2Âû³7’ÿÎ(ex\ ©¾þÕÄDO!ye$žëìyHîwMfWyü‡™–o´Ïù ä”×]!¸þð—ÊÔL,žÏsÁ7ñ#·gœ¡Êœ7ÅäÔ8Çúþó |O£kv †¸¡Ð±÷#4É“^¶ÿæþŸ¿1÷ÒŸÙå@ËLÉíøLGhý“8ã©íò£«×nCÇ{ÆGñÌbÐ噸\à ô¨kÌ®s^ì%¬¸º[ßÜ2ïJßÀ@RûÑoÇ`H%ÈSó= OÐSSüI…јÄB¦ª2¿4àcuY&M”škÃÔI=/5~)˜¹FÄBzf£Ž¶_¬só£r~’° ËU.ß ‹aÏ2ÞéÂ2‰áÜC)CXyp-Š­¨ ÖTêïÅÞ? 듺µbI°ùÕ÷=ùç:Øúb6òëS+ìTI TÞ¿‡Û¹¯ïJ"‘È‹[æ¡H¼ßûÁ©»Hò:öó3ÿ$ý£lzÉý®ð\iœDJŽÒÜ¡ùwH5žœkžlŽ4­_˜·"Ý5±XÃudxd¢mÍŒ%äjÕMÈ´®u„g^Y$·cÕ®ÜCV7êwõœòÈ–!Á©!‰&SíâœR点¹Ï!··Š·Í;Ü;¤±Ô²[§¼yééo!ì±—üŠýÍ–ÏЪÅ¿h_ÐRA!òJJ’+&x’¾<€"¢Ñb (êo˜|°ÅÅúƒ+L|výÍl?i¼ J–¦û-£4än¦vÏ£Líê”Ëøqù<*ÍŒÄT"Ÿ¼é„*t’‚îìö¨vH74æÈOÔXîØ ¨"Á}yÛ*¶P[íøuË(Ô9] mÌ̃º769ßU/¡^Ì;žk§MQßzäIäÚQÔߌq! ìDƒ·Ê '8w뙩¼VÆÐ°+µ‡,¶¼}íÍG^¢ÑÖ˜ÕßU>É“E‚&̇<½ÖŸ¢ÉË#bSµhÊR8ަohdþ(¡OÀΈÝA4{å?ï“i‹´lû/îôæý›K_ÎDgpà ”Ü-Œ¶e|®.oÞk5ÓøðøÎÌ.·Î¼Ú¹~HçïÜ7+ãôLÈTe›,°„´_£·ÆìRö]Òzë. _<ïœðþ÷ý\ÕzÞŽ5(;à©ó¡ªŸy±*ê_„†ïuÙ´ù÷ y橲Ÿ­´Vd/×|‚¶ú²se!ŽÐÞÑF9{Â:9ÛOuœè|˜ðÞ×a×ãŠ_`Öù;¯m¿úKhá^®æ}­CâÙ<3»¾¶ò´ée´¼Á—Ù?þ}Ýz§9…ÏwÚ4nžæ¤ùí nßÎ3ìz`#y.þûÜ®é72oÁ’Û%7ê¡ïìqóom¯ÚAlMŽï†áp–Þ_A|0êÁKì¬:õŸ¿ MÎÈÂtÇ£¾—Þµ0»t+ʧ¬æcÞñ}ù‹G;¦Å#È`ÙÌ9¾d¡VORmJ°|‡õ\j‡æšŸðÇ`Œ7à™ì(Nvsô*"á¾uE¾]£>C*öI¶Krbÿ¼ßõ··Ÿóq"¥þôl‘3RÇÜï½-É€t|©^6†ÂÈpÌàLŸ©26zç*³m!³]§qçcndYuJ-[6A¶âö§Ÿ$Évý€‘úY&röŸ×Òƒ<|nöû3s׫HLt‡ù† — †P€mu•€\÷ë9Û¡Ðp©‘*ŠÄeZIÞF±ä¦Ë]ú(1kÛ¡¡²†ÒVG'Z¹ lÅ¥+S”磺1½[7'â¬â¤VQ±ƒ<Ëi<*_œÜ÷“U¤¢÷ì%@ubþn*†\Ô˜ûÄnô÷iŒM¾£dD\ Û3E3ˆ:ç<‹|ÝO¢nW¸ã›¨/s?P“q îÔeìC#–dFK”h\7îî.U¦ùJK?]ï¡y™ÅC&Q´,:·W­­ KóRqmÄL9*Îå¢-é©*iF´í¥8ý~ÙíâªJñ0ÚŸ¼ÓE\¶…{Oßä¹2†5”Â{Ž5 ãÉçfWOÞDÇ­ýeK¹ìèt;V‡Ò¶ÉÛ†^¿µDç«5›ß3Ñy*d츶’‰ËP-/ìü;µ'sÕŠjÄ„>Ä]øW_Y/HID›Žìr,ìøæÙ÷zg;ÉýÎÃõ”øQá†ÎïoßÙ†ŸráÓšúC–ÍÏð‰æO»åˆö¥¯6„¤ ôçÂvQ÷÷Üø÷¿çTÉÄë¿þ«Ãr‰ûÔ¶EPxRt‹{ªý_ûZNÔWÿ»Ù]á}rôßßûÿæÛVÖޝ&ÿ=/J5 žxó½ÿÏßÌ»êê ­¡âË´Çí{-ÿùÛh÷dúŸéÿÛߪÄgÊ>ûAËõúdRžwÐæ´ì_þœ :då^²I….OÍœ>OèñQ<ÕC“}Jç¯ñ·ØÃÀO·Û8ƒÙò7i·oýí/dîÇ £´Q¢ŽÓ«0ÖI¸8Àø&ŠXßfÓ„_ͯ½õ"®ÁŒ¬²ÿÏ 0›üµæÅíTn>„…WlÃGFŸÂ’ Hj¶€å.Ê{RÊd°újÒ6WÕ Ö¯äü‰èû›Wn?ú[ï[Hãb€4c¦HB ûº¶.y!Ñä¯á+š—‘$~gMhTÉ¢‡ÒDÌU‘¢^ßê4ïe¤6ñ^!èFº=²{B]â!:é$s—2郺º²°\2»¦¹ÙTŒ~FŽ:’ÒóñÈÕZhÄ2:‡¼Ê¬î TéÈïÍ™µË»%±ÌwPø“çq½ vÈïÎÙD‰;GÒx»¡ô ­²x,”sèêÔeõFù?£ÕןìEÅ2²¢Ä·¯Q¹Û[î˾rTs¬aÕšƒóÓ埃pŸßBù¥ˆ¿?Íx ŽCœ ê.½e2z’‚úÙ]#Ñð6ÛyŸ¬l4v˜è⮸†¦Áʶºh6ÏOýš(-b™÷ìC+¸·YËÖÇ%5O‰¢ ¿Ú—÷’‹hÓú”ÿµ¦!ÚMy5)¢§Aíúö ´K¾÷¡‡¢íÕ~°”ŒW£}î½\Ê/©è OXÓò¨b®ü¤r"GGRSÞ#J6Èéò£É9ɺK<¾ØB‹Á/†×7«¡æÆRÁÕô÷ãÿ{Ÿþ/ûêäÿ­Ïì[Vã÷¢ÿ]ÿ_>–EÛPì윃Zö'q Ð|©±öŠ–ã?®ôÔ¼¤Êõ4þ˜³VË0äìnp6þ7&~¹þÒQ¡ƒ©Â_‚ñ›ß'Ü û3žkŽaz‰çé;˜®ªcðiÏøw `‘»ób~‰Ä†{ðw~az‘÷U˜ûü±b)ýÌŸþy.þæsX°áºã¼ ‹.çŠÓ`é–ßÛás’°œçyiýg(¬²Ý¸•Öž^\¾´²Y?K6a³oG1h¶ž¬ ä–.ÁÎÙ>BŸÙ‘ óX1“=VEm™õ_üïþærõš,ßAÒÃ_©+îG²2Õ¼a‰ßH¡»\!S©Š”£Uû:zÙ‘:±fôPè'¤½ûúäGëJ¤d/f‹9… .Æ ÞFÆ ¾âÇ©‘éK­¹@3²îoÖŠAd5Î2?å[…l ̽×ÝÚ‘C(÷É€¢+îÉ!:É(u ¹öß}“ÀÛˆÜZÍ>¥F§pï«· ‰2ÈÇaë©jo|“tLs‹¿¿[ôU_¶ 4%ô=¿ŽB'¥Âr¯ý]¯æŠGÑ>Ÿ'W¬Pü­¦®÷…z”ä})ò ¥,¼ó ¥ƒ´Çž¨¡LÛÆkÇ1f”cÝNb~²3Ù>Sóž(b¿Á0û*ܪ¹Ïÿ¢¹¨çG. ¢Þ„KvÏ}/mVµ¡ÒFÿöÓßPÅóD3k3ªnö¥R¨£z–wÉÆ½eÔ úä©Ì#ÜBfœà‰Y°?rºµûõ æuØPgÛ(áÆƒ0Ô êÓ¼Žú&Ã*¯ˆÐà‰ßÊ !cmMØ2Fx¨±ÌŒF|¡§"ÅÑ(ŠKkÇñSñ¾9Ç~}(7Ò\CãF»pê‘4þ^ÑK‰&V¥Ó¾\@“BïùÐd;Öžþišj<ød˜?¦çÊ'\åÙÐô½Ø³²ðÖG'U§@{®Áèó?û„ˆ½½ðàßóÿÿ§/ý¾¨[ðuD÷šÜ³Ì¿ûC,5þåÅT–ƒÛµu÷!ÙV™uìÕ¯×ÿ—‡ÿoîüëòÿåÒÿ›/¿ò׺nLU‰Û­ì*”ÿêý{Õ«vb'¡Á‘ö=ÓkhR\ÝBåÿŸ¿Q“•„°AK·àg¶¯ïÿåÉ9ñÿÉ›]‚KÑëIÐÝ70Ð9?Zˆ^}†Ÿ|û”G}ƒŸiiOÂàί€N·lγ—Ie‚Ñ ýKer`Ü‚I0%Æ&•dž4äËÔ„:mõPàRr»0z!æòμ0賄ùµCåç'¦þ«ßátk¸|VÎ?Êhºêk{FÞ>9êý/?nž0  i˜…-Ÿ~Ý¢öÿr$ÁÇ2ûÙÇHX"Áë[éDcòéo# /ûi‰õp$õuµ•ú‚dlô:ê[HqþþÑ0n_¤R:È/¥ä€4Ìé~vêHÇø¥©ŠCÄøŠêê‘ÑÍ¡—,m/2Å‹µÖÌÓµ/ö· #«A¤H²ÝŸS+ø¯^9É8×쇶Ûðð‡¬g¸·„~º±ù^(ŒV~ÜDþ×V“ªÃý¼§,ÃåC‰ÞïC!µ²äû(ÌDš¥éˆ"ònñg3ýPôLÄŸÕ×T(öõó´Ð÷]#\ùf|ó JºZà•¶F©¦Ÿ2?„„Pæøt[ê(Êy]•<Ÿº›G;¯ÊwΡ⥼º92^T¶Nx1vÒUÝ{eÓtQ='šXj±µ”/8y…_DxgóÀç j›:/$™¢ŽÈk/ÒSÙ¨KujÌu_PeLE=Î$õ·ƒ¯PïIyŠôÔ'.ЧHEýÓd·ÍÅP¿–ƒðu•ð{Öë<èB…`×uhjÁ·I‰[Ž %ÒZh¨!ž¾Æ‡†>‡—´ÑðƒÃ‰‰ q4lQxöÜS©—ˆoûEA-çä½Ð²V(û²Áí5%œbçsBÞáWŒY±£ÃË1±uȲk&õü”Y!ëäZ§l×6d<>!î~Ò4.4H5o—Þ(‡úë¤,ØÀ¹ûïüþÚò{óÃÁËû}”I·wÛHAµCò&n-hð~5ç@» ÍY­^‘–Bkè ÝkŸ›Ðö¢¤4¼`Ú?UÖÓ…ŽßŸ&´ :½­ó¹½ÿ­“u8{«Ô~f†vAI‚ :kh™7‰y­Ô yýœ+Ð’òëæ4U#´ü ¸”émòw.£Mm•äßyRËúŹÐÖñüf¡½~§ùÆçpè$6:"{é-t=\K +VƒžGï)'´£¡wd‚ü6Q>ôÇÛÚ&…Á ×¶ª÷J0¼'ú!¿NŒLTtM?ƒ±íÉ=/þ$Àä©doÁ´È û¢ñ/˜•æZÐ |óòajo ¬aaÆäRãwXjºû(€‹VÆ×püª¬ËBáXl~W¹Þ×Ûa—[º½A‚¾þ”aH£ád÷IBHßO©#ÙíËŸ/‘â ™ÒCY7¤Úp>ušÖ iÏnÅGkDr’òÌed<ÃKòa¼™~?n^í¸,„9מ#›åri7¡r€ô”›J(r:9ïëÿÚ…Ü_ßåtáÞö‰ÂsA<È÷Ü®EU#ùë>Uß@Až¦Y\9BQo£.ÜÛD§{]‚þ(f{TñH® J_¿AÿüJuɼ{"eõªÞønF¡\ï7m¯‹¨ ¨¸F3L€Š½;›^ ²L’tËÇߨ29ÐDö0Õr»réµuPãcK#*jM šéÐð#F=[‘döAõõœÜšÔ}õNÝ"E½ßR†×ª7ÑÀX))ó'76_Ì T¯Gã°õ*^£é…,ùö»khîwÄS½-}EÄåï1£5¯}Ü{C_´Þ9~:ö—Úô¼»*ò1mS8n›¼ A;ÿZQ“]´W}%ÒAÞŒöS/òÄÃÐ!ò||HÞ<:*ØG¹“¡ã·!û"t²t<½á(‡NõbWœiÌÑYWÝL‡þ:'»‰1%GRG¹F}9¨Œ§uäP½E4c3yo ‡ü1·Š d6Qipðþ;‡#´¯üê.Çí¯IO4µg»¦ a’0YDïÄmìèd„ŽÁ'-ªÄ“×®ÁGëÏ?Ænõò¥ñðù÷ýa ﹿçßšyþÜü;/ÇOX"ë¿õ·×†wËpîÿ^»–f=ÊbûßuÙå;QÍ[(:¬{óë„é./ů ØMBqôšé}O5(CK=?(&e­NùðwþˆÏ€`2”õÑÆNÔ?† )ÿY#ø–]6~tiª WMÞïú›é×e§ÃðÝ‚ø¤uî ¨¯®}ZìV Mtx__€Rqÿ]•åmÿÃtw ÒÒHw¬Ew· Š ¢*J‰ (ˆŠ *"H "%Ý­H·"ÒÒ]‚üùžñÏ‹gü^­qà ×àföœs\×^+2go_hŽa幤 ]±+ 0=I64T6CÐ÷Us–Úí8|®y£¤?=ƒÍmJÃ/½<Öä’Mî—¿B—Û£Q /»¤À¸Ã‡Öº~;˜ÔÌuVzSf5Ç_E~„™7›þfa0Ïti^¢»ún®ÙŽ„À’A‹ÏÕaXn ,ŠÝ?«W:¥\Sma]±Ð$û l²„>ÒøX4}ÏçÁŽÆêR)ØM>ð‹]Ë %Ç>]^C¢Uô<€$§3FÊÏ3#™UKÈÅ 8¤ð½-|±á9RýȶKœ¤DÚØ,©æíFd°—¨²u@ÆUÆcC7‘¹¤õÝÍ»ÈÚþ‡¹Â 9l/ÖW.¤"—OJ~y&ò„>žO6èE~bëuÆÃi(0d }0…(½Ç©T~¢ˆÃ²fµa[ò l˜ÖGÉÅ'Øf#Qz{SÝ*s eßr²=RÔ@ùãʤ»Û¨èûÙ‰åÜTmš#æùˆjé<­E‡Pc–«dBå¢kÔBVÅqÔ¦Š9¯,k:ïyz'j¢ž;S|ëý£h ½*sÉèþ1×dpùŽÆß8sÈóÑôñ<ùÔí 478óOR0ZŒ>w~‹V*çO?A«Õ#¥Ñ:e÷Õõœ+hc¡UI°Ž6K|A¤´ïÑövçÖôg´cÆÉØGh÷D®o9 íiGÏ1¾ú„öÁï)}NGûÑ;ÌqŸ;…øƒ èz<Ÿ)³§34Å­ a®pZfmjÓþ^qÙÖƒª6ãÓãfUP±õàé½»ê{ëÜÀbÔDŠåÝ·2£þñ™WÏ~ÄD» òÚû3ÈÊ&¡Èˆy‘_i ªè÷‡ö˜­@ã‘ÇIB1Ð:Т¸uõti–™žÊ€¾ÒvUßRt9ôÀŒŽ~ÅV»&†0Ãèí°DŸ[‘0ñc.Fôw L=r'e,¡€j"qŘ1&®ade…é•ê§ ‹7azÔÿ]ÄP Lo3lj߂™OU1u|é0;sÙˆÏ8æu-y³;aAU4Œ%Ý–r“ê³J`±…þéû¹ÿ»ÿ6ëÜGwí¬r¹9%9#¬ù°ˆ;¥õÁúˆ–½éWØ<ÇSÃÞ{þ0É{íÔÛå“2|CçáoLеæÈb$Ð'_:щ„ŽgöѼ G"ÿD{>S$N?²¾¿I¹Ô©ŠÔ‘Ìn§¡%šÉ»vÖZ:l‘òrNÎ?¤VØØTH“CZú†ïWé¶ûz~º³!Ã5^%ŽC$ÈxK¯nó÷KdŠ«¸ïóø2פš»\ˆ@Vâ‡v—&Íuéoï³;ÈÞAÄ/DûÜ4ÊŽ_xŠœÛínÓŸ"×¼ûÑ07=äQ>«œ|° y%höE¾œcgžEþxIæ\xFí:¹·Ï üÝð€…*W¿ G‘0“øŸ(¦Y}ų÷ <`F‰Ñý‚½&Žxa ›©A¥N?;p’¥k µ-©Pº\¯ín ¬¾˜ÑÝÏ(»Fìpqã<Ê¥pœŠNÖCù3š.FÃ=¨`¸ÐÁ]E‡ŠÕ„Ô<¨”\>~PE^|í:ûªNˆ|Š›Fõâ«·).Õ£f¦V »,bþÜ©ð Ôšñ²òEÁ=ßø>Ž€“u•ZnWÙË ÞÉò³*y¨ÿR¢Q™f T§ý‰Ž¼Gƒo<¡ü=BhèøXé,w v—­R>¢B#ÓF.ç~ 4ú|ªgˆZ9yÂEsör[F/yé×'Pº  ³÷ïhâÄöàÍÕ\4yú÷H¥;𴬧å¿7GSâÑóê¶È&pHªGºˆÚï(?˜†¯#Êç{B _î«ÏyPfvÿ ‹<§Ò.}ø|íîcÇ|3†\ j~þ|WøäZFhãŸò_¿®¥ȸ¤“¨@õ¯fññû>Xw‚œ×ân[5 ÿ¸,ÍlTÊØ…ÊtötEëI¨¹Y#ó u…%eeGª áf«³xßh*>ËýLšÅ~IºFƒéÕŸT¡5–Z4 i¡í4ÿÕ7GG ]Y=0€®:´4›„2ý¡Ó­[³*‚ºrî2FÐ=€ûVr“–ŸÐû‡ãÒ¾èïõ1úúü$ü ¶¨¼öª ~¦»‰´çÄÂ/«(ÿ·É}0¼^£3 vFß…?U…ñ3ç½²´raR·ÄèO L‰ùï8½­„þ}ÈîPÂWo{¼.,ˆ}ôµ,(‚Åãî[\¯¦`©BU§rV´‰"ÿN{Âê—× O¹ƒaÝûƒð-Goؤ MO÷s‚­¼S¯L|Ãv؆QúÞçý×÷ï­åH 5¥äçî…„NakÇd¸(ØIÊ‹¨‰ó(³ÚG#)éÓúHvîgàei$ßÑboº€”yù2ä+«HI5Ö³†´7¹Ú¼z·‘>ÿ»êG}6d¤Ê¡»Ç‹L†û{(Ç™C"Ùøß1!ËçÅàÓªÈF­üÙùÛ2²Ç©Å¸?æÇ}Wbî‘o² ×Ƕ¸Ð˜GÈÛ>–#i„|ºSßã/‹"¿aé]ºˆ‹(ÀÁvz¶Š~æ¾îWéFÁÖË–!Cx Îùx5© M×h›&l ˆ2ßE©B}ñòWÃu'›ð ¿ö%—O6?ŃtÙ|ö‡Þ¡T¢žÚµ”¹öâôÆÝk(û£DÌýK Ê_{^x*µ<ÒWÚRQÙä¥üI¡k¨ú8çíÈ47j7ž1»áh(ñCŠ4ÔR(`õyóµ÷kjÕÙ¡­¥~Uê$¶ï¸ºr…Åsö³¨›? G%'QOö±«Ô.Ô{'ÃÑPBŽú4Œ¦…"¨ï]t×ëU"ê×Ú8Æ:'£ÛtÒõ½ýÒà˜¿[R*$Ý~Å$t F~w0¨[£áþ—?"ùÑÐJÙ©ŽÓ©:N>¤gð‡ÆÈg6—ƒPe¼|-æÎ0”;¸Æô"¾sÍ7m „ÏgßžÙú¶ùBJ·½©CnáQ¶]#Èžý|LÒͲ"H8.Z}†¥g·^¹B:±S3=dMî/ÿ(ß.RŸ-€Êõhíó;ÐÀ²(¼°B ßèψǹyC[pÞéòB{è0¦þtAbtž(gr^‰®kþ7'xÕ »êêÉ*è1^ï¨sÿwN­Û ’ÅåWtñ©RÜa€ŽÍ‚Ô[ÐÁÛ’¸)yÚ+Ÿxó«Eþ÷<3Ï»6ZèðÕY¹Ìuyï}…!ç|ŸAgâÝý’ß +B×ìÏ«AèÎj9>õz¥«»4Î@?O‰&ýîøîìõ´Ò~Øm6ÒíÂ/R{–ôÃQ0œt@׉â:Œžñúøæ­6Œ_þLwgí-L¶Ì +ö%²ºf°æ9v3q’6’|…–n·ÁÖIó;B·açñ1J$ê*YXp@"y²„ó×I¨MâÞöµ"é.õß_HÁÊëæði¤²\³˜4å&£#7®"½Ý]E;BFšV+–‚`dºkáÂÁ¹, y¾ÆuuŽºç"²W»Ôæv;â¾6I î¸näÚ¥›çè^Gd¶)X—C>S·ÞïEÿ†˜ÃÃú誊‰½¬CFÞM¢0¹Cà ýS(²ºü{ê*ŠïË”ÝàGÉcÝ^×iPªšˆ‚0y e^„ü¶HGÙÁŠxßT(oÒ±e<ô &¼<}zQéíâbjT9ÿà˹FTs~¥q« 5žýð‹~O¿4’ÚÏp¢6ñBFÔ9J!lM}u3¾2Õ„ì >Ù©hò44ˆ2ôúòôÜ• û¡‰”âÙ¯'ÑLšP®Šæ3Z =×ûa–ó-b¢/ ѪûzÙ÷ÑúcŸ"ŸÉ0Ú„‰&,˜æ¡­ñ×H»;ËhGöárŠYÚÔ.É5Š£ýÑA‰%F´ßf’Ïw@‡ÈlÂÜjEtd¥|:}è:> â`ºj‚Nd†_oÙîÕ j§‹oÔ!É ùÇ|| Ž³íQà•(µJÊo}Þ Ÿññ{•kí{:Fžâü%ød ’\Á~èΑžSvôò°«ºË*Ù:@õ‚’EŒ?Šx2CRÈ@M ±-$ÆÄ¤?‚÷/ØSAú1Oi›üÇ{üqæ˜2ªþׯkœïvÎÿ“?~×ÿ Àÿûü´êî©ÿ«ÏÔüNÐþÜËq‡‡¾ˆñïépÈyvb(§¯}t&î ”Ädœþ5ÏÀ{¨ôr^L¢%ƒ*@’PNz%Ô½jß;…×Ú˯L*CF³ÐðÔo‘3ƒš¢Óo>È ƒf‚¦ò/#ÐÒŸGÈ3mwoÖ³A‡®Ü'kGè¢(´¡ßÛ(U¿»48@ŸˆÑy\*¨çJÛÿ’ã„úžnÌÀP‡JªvàY>fµ|Fé×v79ÃX·cFFÂ"L”ÚÙÍ*ÀïúiÇõ{?a†¡Ô¿ØŒæÌEÛW“`án~¾ð»³°¸t{ýAD>,_(4Þ:y VÙ_·=à~k-wuÒa#ÝDáTì#ØJ[6fqøÛÝ$̹£°«ók<[R ¶1®­‡ QÐíFÂGÍH"îÒrhk ÉHJÌ+2‘‚½q'èBR]ø{À¶EiydõX_M#múþâAȘ4zw¶ï'2{ˆý¹ÛS€¬gãÙU摽øƒÊEäüpÊé…rc L ÛE¾ãy†WD¿†âð°c¥tQ¸±¸²¢¤Å\NÙ\ÒCI55âðK(m¡ÕÀ-Ï´ç7-Üßõ8£<‘§YÏQT¤! |˃ʾ_ëM+PuE†j­Ù5Nèå;ÉŽVÔyƒ#ÄhÕØÂ1mé…Ö×¼ö¹K¤ ˜˧–´iüsaÚº}{ÈõíÚÎ&^|néŠvçû¶~>A»©z«ÔX´wIU9Áa‰öÕõ·jºÃ[¡gûâè%(ýð‘HڄΞþÌ; .ÏY5×  –†ûê•.n¨²/"Ûý®!DÅ¿\t 4¤Px}§¢£oN%PýÇgÕ`yî/Èðð½þQ /Y^˜‡ÊЉ­Ì—W !"_nã]´â··Wr– ót…VYâ~èýô@°0P~°ë¶\^d‚¡Ÿ‚Z¢‚a$e\?¬KÆÛB€á•?ü>ùc¼«…¦z)¶d†óaZ¤ðÁép˜Z=ýüª×ÞkB¥wÓq0-ã"ý(Ħ§Îo¥øÀ,gõL±”ÏžÎTUE|€ùH‡k§ ßÂDÿøà/X4Û}º2øçß‘Qõþ2¬9¨ZumÀjõ+ïƒ/M`]*V.762ï¶[Í[À–g|©¦;ü™îÕ¼ýß\àÂ×÷ýλÁnºÃ“»²÷`B]¡ùÄS$¢t­''åBbõ#_W#IXˆ—ÅS$¨î.^åGòÓdbç‡Î"%i¼˜ÌTR•‹ÒR5—"MÌŠ•™vÒ…Ä.¤ˆÖ ¾X‹n EF£Sߎ <@¦#ÞHN#óÆÝnd)ó9|— Ù˜Úùe¾©#{¨IæéQ:ÜGq…%'? 9ã9¥~A®·ëæºþ|ÈÝ¡Ÿxy}Òmú¶ÇGpn*g'ò{Ê2g?DWŸüåÔ˜0éyý…öþ+wÒ¯£ˆˆ`ƳûÂ(Úý37“‰Å,¸×#&QÂ?m,’j %ßûÅÀŽ4ü« øj\¥Gs‰ûµ¡ô­:c&ºp”Ø4•q0BÙ‰°—1”Ëe­•öbEùG‹´œ¾†¨6“\b„Š×Þ_OüŠJCk‹> Š×Uõ]‘*Tãø• i=„ê“.EQ³'§Jšûøòx9Qk3ÚyYSuö‘F]{ÿuM•Ÿý‰z7b“~µ¼DýòùD•Db4ð¨QWpDƒÝa_ŠBe4Œš÷M¶D#æãÌÍïÐ(Ò÷¹~\'í4/RŽ¡±ûï ½Ö24®~ð;äM)špšý*óÐF“ÓW¾ú8?G“Ow¿H»|@“åsÏ)êzÐTZ‡ëšz¼ùuÂ>™F¯°fõC§™>ýÝÛ}ðeœ7ŸÃ} ªuI<‡ÒS² ûŸ=…¢.Ãn®Î«ÃÞv“trN8ϬÊíùÈÖ§×Êâ™ ÓFuâ#³"|H«>wì«Ä¿úÑûÎ…«M9¤š­nÍÿqYãe¼?7*VòfDÿ®ìé ƒ`é w¨mHó¸õ·k–e÷t±1ÉÐu’Œ¾ìäæ§ÇBóúNXÁYhY²Ž®|f­õ2…©5ÐöÄÖô‡Ç6´¿¶;ôæ4»ÅØò@¥†‹sÒk¡LtnJðñO(;Êßù¬ü6Ê{3¸‡5u£¢ 9±Ú *Ë:)s¡êÙ/Z/‡¯¡z;ÏÝzÓ21缘7¨ÅËž4ùh µ°ŸXFº&Wþ7‚¨óéE¸’)ÿõ Þ¨ÛOÐ|FRõŽzù™? G½CiúŸQß‚êIçs¨_@¥ÿ8ãìóoeCƒ‹V;CBdhP—uï+2ŒÝyb3ƒ†öÛ’zÇÐ0fÈV6ø4~Óà\iúŒ”Ÿfyž¦9A#§hÒò-¨›*áÛe~]Þ:K&P0Áçük†òËÄæ60ò®ßørl¸ryŸŒÿzÙÆäÏ7ä.ÀÇáÚ‹¯Ç!sèŽHÑeHm»é2Y' \' Byt:¥Ús¨¬ŠÍ Hm‚úNù-_š ù“šûHöwhÓ¯½1ê=ÔJôz£YÐ)UzBDRºlÌtŽÿ‘ƒî§Æcä]‘Ð#üz漫ۿ>‘ÝŠ,‹³qÐÅmÈ:4Ý ¤×χuïÌš=ÐÞ¡eïàeZµÚ ãdà3ÞsåÐÑgOùRètú^ÝüY’]·.GKý×'Åý½ÖQèùµù´3úÒ»Ï+—©Á@ˬПTtrŒ{†0ôZÔîÛo–I_‹j‘‘9†ðjûY› '¾ºð&•.ðqäŠÃT}Èý÷»0ûÚìíø”,Ø;œº)Q KDRQ ìö°Ü?wü÷™{°:ÑÞxÜú+lp%E7ÁVðo÷>R°#ûŽ£ðôE$دGØët ëÚçÊým»Jköö »ðeqͳÍh/aôñˆ§ Ú×¶$·;Ñ¢ƒý ?Kƒ: ”T~?¼‚ŽŽ-Ù_GѱÉÁüË3VtR`I?™t ‰³”‡Ò¡6òÉ·ÁÏÿõéwx ò¯<1°«7‚-–¤ŠkUÈÐpFqOÇÔOë_…´é¦,‚Ì?r>ž|nNÞÛÆì5Ô†Äê?éo‹À»Þ OËj iÕôr®¤ujzí*AÖÛ[O® -ü7ÜkôÓÿõŸl¼vG†Óþÿݲúœà¾R÷µTuµ ”Þ»ƒ§×¡ôG×Ã~n( {ÔoÒBå&¯ÄÜÍ|¡Bî&gHs*TÒ(_8½v*w®ØðͱAµØÃÝ¿ÖrP}·1åY+ÔQJ¹ùÍÍBýؤ¸Q4vÚÆûè _UÂT(íB Áà6@ííë!h/h3 —ƒ¼Ïýt€nþš_¡7Ìfù,y6 0œ+ñ—~´~óP „¡c%ª£ðkÒ§‚^NF ÉV¥1¢ˆ˜3Q0¡±b¯w~ë2™[GÐÁthh€XM"Ì `¹ ª“—7O¸Ââk­Ð÷®†°Ì±Öw(‹V>Ÿ¾TñpÖNRKäH† ¦V»-ØÒN=𥌶ϽâlU¿ _Ϙs¨ AýWo J$ÒïV¯.óCâiÊ¢•ð*$-HÝOûã$’—Òt†s¶!™ñ Qþ)¤‰Ï>äŠtHßnöE²2:|Î6’­CfÚ¶„V‘•JŸ3kWÙ[w¹®œ¿Îl]”Dn·äïÊ…‘OúkñסÈÿ·ËÚðX0 |öÃN0…5æjrá#ŠÖœyÇûŠ%ž¼[þ£‰RoîØýþ,…2¿Ã²óü¯¢\³dzeE¨dú~¸ý+*|{óàjª^¶ÎŒ»°ê}>k—ÔlÐiF­Kg_&Y%£åþ“¢bv¨[ÖZñ{ õC³Óü}ÆÑЀl=â ³2fú¾F“¾{á‰Ð,’ÚÓ®t-¤Ègƒ£e骇âÍ´zÍiñà—0ZÛv>1|ׇֻõ“ ¯‡Ñæm× —D%Úª.k|º‚¶ ”‚$Ä¢hgÊUÏríêS äÝB{Õ²±W—Ñþ™ÚNvd¿tÌå›Ã<ôðMœþØ_­OdžêÎ]„ú?4Y}5>þ3Ö ²_»2Av6b{\'–à{ƒÉ<÷iجxÉkK¿¾20ù¼ƒW¨­¢„Þ#á v•/¿§èËÑ m W$ayñÈ—I8«#Ù6ÝaÆÙ¤xrÿõ%¤2väZ4FNÞÞ"9¤#:By~ÖY>SþEFªû] .7‘‰ƒ!ë²"2ëé¿`ãGc÷{—…‘µþ“î]’9d—~¬žYâ‰YŸÎü)ENÝccJ„Ë.Bäá6rŸ£¤|+i‡<[ÊW‡åψbÿ)cä—Rl É*CÁVú¿ÙPðIMúx& ñ§jÓËm¡ð—í¢Ä´xõ•ýæÖ„bƒanGÿÚ¢½j²ö— ”Ô`ô;#'޵VžTB©•>}æ×ÏPÚÖB!‰› e Í»W¯¢lÑyݤ”«`æÿ&9†òE‰e3„ŸQ¡t2ðG~*VÜ%]oEe®Ô/‘~ûPåmmè5å[¨fûh0·5XÁgžP ¯øÞq/Ä?6cÇ ÔQ›,ßã’ºê»_ß‘—B]W¿ñµ;P/þʈßã¨?–¢¦ÎŽ_w]¢¢@CÙ÷ÇçcѰNïé™_hdEæÁC©‰F-ûYeŽ¡±žH Ås4þ˜{ñ˜Aš0]ØZ}†&ÞëÅ5•¢hRž˜¯h¦T;d刦–CÑ¿¿£iÔQéÓÑEhZïbsϱ™ ¾´Ë­œß[÷ŸŸ„4@ÓoòíNWF¨&Ó§¹I%ACŸ«8· ˆ0´0bñ"äµ–¹j^‚ì²´‚†Ì³¥{v[¼.2Nn~/nÕƒôª8^wÓ5óyóN[Ò7Èö¶ÆºnÅ\P»8³BØÜŸ¾ Um‡Ùë°BMÊSš,¨‹(¼¯— Ñ̳/mCSÛ­eŸnøZA*ä¾v¾eÞo•ʺ­B“ËIк|f¿V©8´m{,)Ê’C£ôzÉçqè48&¡Ë]…·¾ÏéAâmãÁ~èIï’ ô†þ_Þ}‚jŸ²ÉÇdáçȇ%oo-øå›xñÖ~?!hY¾ªC £)’Ÿn܆ñã=9ö݆0)òçûU> ˜"ùUì0¬ÓSQ®Y0Çpܬî'?,(]ð ‹w›ŒûŠM`éÏ;ÊF_X ,ôâwɇ5&u9om/XO;ëx¤Å6­?Öt¤)Áf‰‹ÙØ^ýøPPþΟÔôSF‚» ‰@Ž„éIB;ú4H44§Á#ðI*k²^BÒ¾6S²œ!9¨\ø,Rx™—û)!UHqMƒÙ9¤9µÞžíü én2~ê{‰ G}ÜÎ!2†“|?*æ‡LILŒŸð2׿c9§€¬Çrƒ„F‘ížÆ›äp¾uVH 9Ãòúl"pÿàH<ò*åŤˆ#_Üó†â^2ä?/G÷§7 h0öŒœ$GA˹Óx@rÏß½pA!·{‰Cþ pƒ¶›– Šº^m¦ë±Bq††Äp¿(Ñ£~Râ Œp&6®I@i~AAnšÓ(“Ð2A¤>†²S·CšrlQþ¤ºŒÙAYTäýÑΘ(Êljß:ÖQÕxø§uß ªÇ_LXI;ŽšË žÏ•Q‹òŠÒ‰[¨M4+òu|³vCP§Ìmv ¨ uwVÜ…hÔÝá=|E"õ"µx'. >ó õÊ_ž¨Müsþ71;–”ª¡Ïÿ$®hÐ’ï€E¤h(VApA1 ƒt/q\·AúB#s_4¢jèê§D#3­‚H}ñž 4\ZW¼÷*CÇuF>;@é3ýÍEû=¿7¼{•A òi³/¬fQ@î@½ca4䌞3€O‰Ž­5$A{>Sß™ µë¹)orãäÒêàcSòÚ‚è |~•iâHv*#“9âöAýc?•Ìw¡Ù–ò©ÙžOëzMÉw Ú›Ý|8^BÇfqÎò‰vèæÙì‡n/®>ñ;ÐCl@Êy´ïßœ¶nÁS-×,Ý ‹Óžïq4t2o6UA‡1¥ÿAKCh†{/©¡ƒî€wØó'ÐᜫÚXC  kzm SëTÏcñûÐEÔ¤; ÝÔ?OK,‡gîW?í¡OeáÝÑ`JÐ?—§¸?²œˆxC`HéOŒo›ü*‘O­}2#çó]&¨žÃØ ›SSa"n©}íL±«'è7…™îÑÍ‚·K0ÿ-`&lï¿åä}É Ën|¦o7ÁªgoñXػƬ_›cSOs»aû–ÒÁ¹ÙAؽâr½ ߨ9w¼CböÎëoòwdöŠ y ’Ùóç %U1[®$R»Ž¹^®øŠ´C·ïÏþŽE¹ñ•C;ÈXVëãôn™-î …"˶ƒÁ…CÈÖü9àërÔtĽ8ÙŽœ?Jïöl*#7ã©`ãùÃÈ{r¥#s«ùæóï8 €~ÒÒÚX –Ãåíˆj:¹©Ýw×E4Ùþ¬V¢˜eèƒB”¸ø”S<«Vú ðD  Ójào‚Q”µï[Òý(W§8QÁi–9z'•vÎ|›dCå;‡x¾õ¡jÍ‘5±-T_î=ÏÏj…p½:bZ„µž¾O~°]„Úc¡k|û£P÷ uºùê…µ:dèô¡ùT #õ>4,þEC{_ß*N3k¡iln×…ì»hiïw&´-m8¿/äj ÕÍÏî:GÐÚÙèó“´5ê×L`E›é¶C§³kÑ6±…Ù¬ÛílùޱœC»µ¹¦R´É5góx¨´.5Û¢C¹™f7tä4¿meˆŽQî- ýCè¸67ËX¯D?T÷KM @-3µöú÷ mGHBÞǧãèË!ûê¾ß w Kbò÷ÍrÆ=Ûªawy iLžw9‰!9÷œB‡®3$… FЋœ…DòàÍT[ðn¿®$©ÿ$Yµª>Ëh4C®ú†}ÿõƒ½’¤– ¹”uìÚÿoþÛÑ—·&Èoÿ¿ç¿yXÐ(0Îý_í_o|zJùÆ-¦5Cé)‰XšWÊPºê& Nè eŸ’⤡<÷¶j~¡Td2/JýÌßãýƒ˜Æ_'¨JṨ™ Õ;>j_NA­—ÉÚ˜½ü¦x脇“;4²ÿ)¥Ms€/çOÐT$pÁ7ÚÃAãCÐúH}HÄÚ¥ÎMIS?†Ža-×È‘ÐÕFô7Gz~¸ú½qq†þCÕ]ìÇÆà©ß¯/5ü ‰ÿ½¿ÎEŒ>8? #L¶=­É¥0ڕᨠã%1&¶¶50Y¦ª“~`jI?๦ÌïÄñË_€ùN…3Ï žÃ¢ñ&u©t/,U(œ*ØŒ‚Gö%2X#“{EwÖ{¼µ…ÍÞ£7„$`›RIàP•ü pYœ$‘A‚'X·oëÑÈ ŸâAâôÏï0¼@Rï'S.´_ü¸ezdõR¾|RýéÕ3¤”?›8$ƒt;¶ ,›ÑÈHÑŸp÷2å}O¹$‡,IS(§o§Ý÷7a‡×=ûýì  €E_¥ŠàŸ9|ªÂb…!§2`çÒƒæ=žê‚…߃ Ïk3®Š× nø…ë;øFÿraÔ‘ Ú+k$.Gm@÷‹pÂûÐÿ€Ã²ñ³ ~©W0uN‚_Ó·3|}a´ þáÉ(Lз¥¹®„I_6/Ј†É1!tw‡Éµ¼½ Å¿ÕÂw†ÃïçS9b0åÒ\øy ¦¯S\Ø0‡™´dI µ½W}Ì÷·Ø˜§;aâç FC<Ñåÿ7ÿM‚<ôAj1,ƒöVróiX9ÿq¾Ç_ Vk­æ/ÕÛÃúÁ£sÕÜñ°‘ÙJû÷ÑuØÒ-prPƒmâáäÅØ™Y§sH@6àm1ñ E[Ó¢¿"‘‹ÛA"^$N2lè6FRZË¥˜r;${À•½õ)„üY"6#eÇ-…Ï,HýÆTyY.iÃùT³y‘>œgžøÚ:2|Íú!㌿ªÛÛÆ ‘™èYåçIdQò~úÅYƒ¢=~©¿E¶ Ë1Èá4]é ÕŠûÆS“s_Î"9·hmZrSuû¾–xŠ8=óƃ">Í£ãÚ()pv»Î¥y»ùT$âQfð…UpL Ê6…îHÅ¡ÜW†kÞóy(?ìt¾ô¡*lŒZiî频7Å™¬Tv(os›¾…*}Lu;†&¨dã:ûWÔÐá?vÜð ‚Ø‚²$9jÑUÝÝIùˆÚÌßÏ­ª£Ž|õÅÀò"Ô=ßô4:Q¯ÔŽUD ¨¯8«·K AéÕ~¢á /Ûî`4ÜyeXt î§q‹êu£1Cí#.!4ޏ-ÅLnŠÆ[!^Á%íhrÌŽæÜ‰ {¹-áÉn:4eý)¾ËÀˆ¦îçu,ùãÐôƒõݦ¶4}´XMºˆfblÕ9‡Æ1•/*˜ÚŠó¼’Ó ºÑöPåO«Û«~dOo4{¾>…‹ã¶èÎBžÀ)ÑÊË”½oëfœ¸|ôŽZ>Ø× Û"m!غáû¶÷¿šQË!ê Ÿ:Ü?Jöþã²èèŸ˜Êø=~G¿óe³@åz ÕÖT-T­…æôÎ@md¦^;õAŒšA#½Ð˜äòŽ0À—;4 §g Ù«>¶1ZÈF´¿Ò@«uØL"‹#´9i,Y@ûéÃ…ßz¡ãA¯Zàkèœ>nXjãÝ6eUn)ÝÐóÛ”ë¨÷<ô}½qJç}|'r¾"¼ ƒ7W–¶nÁP˽'³0,}Ùè´‘?ŒÔÝÃì‹0æëq*ì§Lˆh|%ÿ³Çym[½9LµkÏÈœ‹…™¹Q‚þ'0¯5¯!äß sš™·aÉiÙPKå ,wÔ½ßj‡U¢‚£J§amk4C%°6Þt8=7J€-ý2¾þo°-£ù¶Pmþ K å…O"d ¤ê|y[7.„D~C¡5áÏ‘¸¢K‰þ ’òª—5KÕ ÙKáN¤P­9«Ô”›, z){þrÀ£ÃËi§>ø,Fʦûöíå7ÁŸ”_˜I¹ó?í+d¶ éT•ù„,·ÖrhÚ\‘¨ôÉb¶7²%ÔåWwÄ}3"^¤²·p?„´ºÊ~Ež(¡0—ÚãÈgHvêѵVä߯Ã~vŽyS­KžÛñ(Ð=+¾º<ˆ‚ƒþ3'\QˆsžúçÙ ŽnëΩGQô¬Ê– BqÖB==ßË(±ûÓ£ŸÉ 6\©Þ@飢lµP&wZè6ë>”]˜ßIæEy7mÖ÷Q‘þÅ­/*ýí„ò¨z`ëE¢úÙ†J2Ô,¥ÛûÍ q"#²dYµvöWõ—F&.’>ÇÔù"ê*~u†uº³¡Ÿæô ñ:Ô+æH¹—ãŒú¦šá;ê·íˆS?C‹ÔÒ±f24¨üÔ¦úP %¹2ßX’ a䈕ÃðN¼=›Q€Fjü’î7Ð(ü (¥¢Q“þ $?»¥š4Èõc£µµT ’ûgµE4”|οýFØ >ŸMJ¤Sp€ Ãˇå¨Êua´ŸoÖiô>L’Fª´ÃïS<„ÎyÞ0Clq¨æ–ŒeZ3ma‘9éÕþŸ°4f£p¨„V&2l~ À:ÍÁÄ2Ø4Ÿ~ôj;þô7êð5†¿ùÚìVƒH0wæ–å_{$z½Ï÷uR ’¸øó2ë ’™Ÿ1Ü C [q[O/"U†Ü‹²Ÿ~H+|« ¨¬éÛÜìñÐõµ«“¦È4ê Hú Yîùù&:³!›Í˜]vÞWä€ä“=¦­ÈiÎÒ£á€û3=:syZè¢öµó"_ÒE™S¯çÙëÁˆIôã.û™…BlM×n¦«¡ðP*íÍÜxíS–ôØ÷Å·ßiP5²àA­OzúQúÛ¥–\”e<ùâ]±0ÊËKÿŒ ŒnBµ1¨ØðéM‰s*Çäª þ=Žªþ8˜1ê ,m•níž?¡–›âÛžt¨R6HžÄ„:3éW%¡ž6‰=ê×”„êZý@Ã+oüT¡±s¾P¶V&šÚнo ÷Esmú±k;hI¬•ßYéŒV.íŸù[êÑZúº3­ú~´þã´:j®‡6%å— 3ÑöâÐq^.>´ã3iSĈvUÜùÊÌ×ÐþI4•9+Ú+íl?ާÙËN Ã°ß¤v‰>:Ú\´ràIGÇÂF©’ߤHD¥>,Ä5y “T ˜k˜‰)¬r'žßŠtR‚OY¼Œ}nà£fË7¡Þ=+â™öÉT=g^Æpjx¿Ç>?¿‰D×oÇÂ;SKæü¨oàÆR™£(º÷uá¨ÂdYH-\cŽúŸósí–Göüæ%%¦×öx~}ê]Ç(\͵R¸wýï²QÞß¡Øáãϱ“{úz£\Û®õæ†Xœ¼ú5¨ûêþ—{ûBú’éD(Y Mär³ÞËq½(åÛ¡Œ#“C’qÊIÈÀ§Ç*,Î/7Òíí'¿ѽ„*át† qn¨ö²JŸS+‡š/'?&ªÍAÝͦ¸ˆLhpy×g–¤M)Zw+i• Ù\½¤¨é;´²=ó΢AhK¤»uwòtX’X¤‡Ô@—¢¹•hô¨xn¶~$‚¾wìS1µMð]÷Ú‰ÌXܹÕÀíó†ÖR(é?&Àðã0Ýy¶³0jï¤wl»Æ5ôÉN䪛 é­³0u‚2,¯f>uu5Ø8À¼Â³iÍ:?XXýô¤so¿Zò¼°Á¡Ë Ëk‹Âa5nSü)‰¬ŸK¤8X`›çX¾«Ý·? -b#F_á/ÇzØ‚(Ïá“Ú„½ùXëØÛã‘Xì$å +H$'öÔ‡ )¥~=v»YÔI¹7fBmî¬C´éwd(8B´ýë12Q"~QuY´ð¿ý\l¤‡þÐCŽÅDiNA®œ(Þxe_ä)x@ÈÐP€ütR‡>¹Œ›U¯éΣ ]S¬N0Š<õÕó³èAq˼Ñ6Š9<¸'aå'QFvÚ¢·4e‡78ƒ¯¢|ÏÏÕOJ"¨´¿Ýš«} U®Ä¬NÓ¡ZmyBb† jî“Ú=Sa‡Xò0Bøçj{ï[>ÉŽºû¢†ô ï£^Çù×FƒèÁÖÁB 4:Ìt)õÇ-4áÞä{yM;Þgt¡ù•+7ÚÚ"Ð’šŠDˆ(­ ² ûH^£ÕßÔHº5´Î ¾©ñ m¬ïiÉG›¹åkWTÐ6¨=tÀ«íˆ[\_fz£]è9Úf´[ÂI5u´?vãíÅKd½Yt—{ºŽ©|º7ß~Ÿ,f烺¹Çî+BP-øåhTŒPšEÜÛ[Ç޵ YPô‹ñ£´t>|µÈ¹ÉÝúÏìnEU-:#Èa$­š»¾ò7‰E™K <7¦é4 ÔÑsgàÖ‚¯=/ê¿åCÛl_‰'tE^7V¹}¦D–_j›ۇßúÀ/ZFѪJù «^_ðÆFMï P¨Ár èý¾ÕýK›×:abÝåÕ­n˜t”žŸ§ €ÉfÙAÝàNø$T€¹0•ô±ÿÞ€éfNît&E˜<9+Æ sû9Wî´¿…ùÈøÂÙÒ#°?*CôÂc¦ ‹ x`éò€­±,׫Ê~8« éͱR°æÝ´½­Ðë#$zo4éöÖwŠG©óqø#F’wà vèÅ“›k†`÷ #¯mDì·Ï¹‹„Ón?(X)}ƒS¬IâÙBœE2žJ;ò*$ÏóˆP!XBJ×<£H7¤>à—^—~iɇՉü¾"=˹Ÿ%dˆê}Ú|ß‹YvøŠL•šÝEÈ.„IPPfàF už~ mr¡Á_Úþ®…)4Y±x­ýú_Eˆ-)†Ç¡¹š#›‘î´U  ë¡€Ö‚(N½œh«¼û)¬ Úû —¾^y´ç35³£DS¡ëÜšZÍÁvèž›:}Äz?ǬJ¥&B±†&[üÖX|r§~P穇_G8_9[LÁðèï[Ùu.0ºÌýqÒÆ…ƒ‹Ÿ½€‰ÉÔ‰d wø]XdB,å¾Ç³GîœY+̱üI½4Ò ¶.VýÞ™°˜¯N Ë#^ÌÃÊç&°Ùû<×L]ˆ™Du`}vmæðl¾;ú`©>þœ³yüËæìÞ Ý8÷v/~MTÌØó“}KÜÑ·‰hÚë½&_"±ÝEi ¥D$ùH*ž%±†dèF¢Â¼‘¼˜çŒßºRúz¿«$žDjóŽŽÍïòHkm(NºÂƒô§,/œ×A†ª™_¹Þ™ÈØôŒVk`ÛžC”¥…ôÞ§WAÝÈOý˜d]3 «Óú,î³qH–! ¹^s5jÝÙ@î±'çéO” ïð$C»©ò5X½±]„üÏÏ1ÌpuÏ÷_¯?xeêÞÅØ•<‚ŠÂ>r¹±F(îa5×ò†üìSF‰N¾û¡úÊÂC.Èytæ™®§ dˆ^Ëy~²œ7´\Rböx »ÁùÌbÏ_w|d,÷¬BÏU £–ílèÝ}Oî,½V†JÁÒù–̨gücâmË _Ÿ¦0¦„ÖW«í6·S Ý:O´‚ñ2t<(°¿×AÍ5ݸörZ™›ªòè.‰Q:ëþº“ˆ-º‚­ ›€!"¾d ºX.(n0@§høDá=èðÕ5?æ+Ú «›w cßtÑ17èÐ áñ~ WER8:¾=Ú"3Î@kµÏýÐurþt¯O0t§-x¤¯”A¯­eæÖ{è—¹Ô‘öá»Ûѧê20ئ'zéÞ uè2È jÁ°…ÔÅ9µš6¼ ã§w7 ÷üaznô}˜6bM=ÌxæØØÝrû*`áí-YÎ7‰°äu“›qÔV<_>{¹çÃ×®añgØÈ›IMÒ;¤;ZË…Uî·Ü|óH¦Ü®/FŽDޏ¿Š‘@âᤃI,Hšwó~/Ã=$¯°¼Z„”Û!Ýäy‘Æ;|ôv ÒÓ‹ÿI^ÛB†’EÈ PÖA¹Y8Ÿ¾î‘1CÖ^firûWÈ^(Ë*ó ÷•xxÆå‡\#¥ÉýáÈ£,jt3Õù\î³æ"Þ]“: ”Ü¡pTx…êb‹¥›%Pø¦Z íÅ=ëÞ£p Åó\§~ù dùt¦Æ!1”æèZl>©‚2_—u(/H£œ‚÷M©y;”oòùPy ¯{t¤6ó£²é™}b§PUНÜ#VÕ­¬åqGÍš_ºg´QK¬&ާñjŸùS;ð ê|0ÕíÙÓÝ]n›GÔ’¿üô-Ê»/@c¥ã©g¹Ð”âÔU~'4[i²{$¬Œ¹'£ ¾]A+¹9*Bc´&)`$ Gëo§#6.¡Md·ÐµïÏÑVg1kñè Úδ»ÍA»È;ªïN¿E{A aÃhŸyzîC‡ä¦°mQ]td m‹=AïΟ¢ªEBeHürܪdžoR\5…¢£ñ¢w!—÷¥pj|dM0lÌŠ…LA9‡GÍÑÿé˜yH+¤œÛýby+Ú¨ØÙ÷ð®÷¢ûÚD$<à“¢bJ€·ïÆÝ\ ‘3„-z¿‚Â{í7í~Mïé©ü9(„¢™/ÌáL7ÿ;7ÎzºŠS©Oþ«%î·¯¥ û±o0QôÎx0‰eÂÀÙªäi 䌜·šŠ€¡àÚƒæa˜%+‹6œFºˆùj=`¬¸ }ïÂDîíƒGo¾†ßÍ—¥ìaf_&ý¹ 0óÇkÄÀnS/Þ©ÎMX¢ûxûÊýdX~ÚxÄn®V•¢¶ˆaÌ;‘“ý l’6}^\ö‡?§d½[ÎÁΧ®îï¼H # ±ó ßVÆPiŸCâƒÌÁ5ÂÆHÒyîÖêÙ'Hö¡ëÐ6a¤¨>x‚þÌ:R‹*¾P¸„´?­©©_‹"ÃiY GUd"{àò†!™(q²Ð#ëÆë cÇçÈq„4zˆÀ¹hÒ__|±§”µ_Í¢‘ïIÿ¯éPàr¯•.q'xz»9ªÆ…w/?áO.A± áø %ùc©{¥? jgyÊÞ=-ó½å/ˆssxv¡bZ§Ø01*o俈<úÕÔ'ãX¨^¢ÆvbÎëÖˆÂgrcvõQ›ûyEÙêÔÍ.ø9¢^ůPav4PÒUl·JGÃÝÇÔ"¶Ð¸reõ,¯šú-õ/AóýÒÛñdhñ)Æ6®ò*Zqþ™~êŒV,K4gÐúF¢ûeêj´óXÔpšB›Z»Óoœ9ÐÖQYÖç6Úþô»v3ðÚ±N5ë3@»ŽÝY–—?Ñ^«Êþþîwd¹?>¡G¡îñÙî ¹aN¹3örCé…åsPý"hBåTxžÜ÷Jù_'\0(ƒ"›·µ³ïñr—¿Åÿí?>³÷mÜ =ÙnÑwN? ùBšábM³PöR¢„ý-5Ôªk®Š‡/ož¿î3°Ù[· l’þ]{×´/|E½d3­ÜÁf0Ðgxsý¹ I]jì¥Ï‡á7•c½-a´ ÖgœËÆiûMŸžñ„貜z0¾AøFÉ2&.þ¸AÁ~& ý}:Ú“÷rœøÝ•z¿½õû7D¸J ¦æ#éͧhazÓÛó4u8ÌŠÕ©—š†¹»¡Jã‡X¥üˤ¬aáoËâX],,þ[3ËÜUCaå0Ù…sd°úA‰ZÑtÖÙUqâlÄ>¿xàê lYWïÛZ„m™ NLmà¯Ùºa|ÏG$0Òâ|î„„Ç"éÌŠ¨Aäi2’È}§ó¹{gOŸ„—WY~ ¹¾õî…5RLŒ>á2ƒT© ¼/_!MD¢íõ¤»G¹0vx¬6¦ÿ’@F.G–úçȪT¸IŒÌ©?‚2®„#˸EÚÃTrdSó Ö¿€ì©n>Më¸ï ª¤šS rzë’~Âý:ôž‹s"wu“À ®Fäµ 1Ôf‰|7t7ùÓõßo‹·ù Tnaþþ È*9%4z PÑí__ÉhQDOô…´Y=оåyáôÅZÆfÜhåQ|{xÿ|7JZ%Ÿ”?„Ks«ZX§Pª`lýˆQ1ʼTµoê GÙŒP¶?ât(7J­œvÙdË;ݲÈQñìÀÆN’ *Ý’£u(@å¯Ó?È»¡ªa†õŸ“¨ö³Ñ½êÇgÔˆ02êèAòò±ÕB-™•‚gÚ­¨-%zs]ñêX„:]ííDÝgVkº^£Þ:ÍÍ[*hà°Ë€6{¾Pbˆç'Ö-)&j_G#o‹÷7›_¢1éb¤F ÇpÜ[H¾‚&ìLŠ$ÙhÍꔟ2&»ÒGE„ÐÔ}ø§ó;šVÜ®½‹fì…g'î¡™‡|àýï h–¾åwyášÍD¾'>"€ >Mä…|²ÐæK/Ùæùê+Ú(ôc òÈ«ìë… °hv#;I>ß’>Ñktâîcß•‡¬Ö—ûunA†òÂäàų–¤Z÷ˆæÛg(Qrý9R*ôpIECªˆ}‰êÇÏ͵  Öf€›±2ê͉~vÂ-häØO[ÞsšF êò6'| ±ÐOx߸<8»ÂO@+[‚”Ù¥ï{çGål—B»ÀçtnÆè°ÜÇ}äïwèŒ<˜#’Ý ]+w“+-× 'á}ç^í{øÐñã#¨¿¹(Î΃ö¿ýisaè~ù’©½3 6çxÖÂÈÃëíß]aL¨,]䈌÷Gî´œ„É·rÉ]³’0•>qšˆ8f~S°Õ˜ùó†)yU°Èü¸ª’mß¿ø|U©a…êa>Ÿ'¬Æ¶9Mw–Àºçuþð Ø˜ö?V“{¶2=oQzÉÀöãŠ5õC&ð7ñš S¨\àxá,ºÇmB--£é+$šd%dÑ@øöô±˜’fT=]“ñBr«6ìH1]ˬy4©*´;_½"DšÏ¿Æ¹Þ !])eãÇ—ºÈplhô( 2ººG‘º…LGå€:/™oòeI‰Z ËbùÓ­ ËÈ–¹rê¶çMä(§6:<‚œ;Ÿ«‡ ·&©k5ò*W[…<¯G¾KGk©!¿Á«Œ bm( $’Hÿô6 ê}V _wÃò5Ÿ™^Gaþ¥ê»äÂ(J¬Ÿ±1Ü…â¼/oTyBIkå›k(¥ÛÕSàÁ‡Òß]8?4‹2}ü Ñõ×Qv§ ôDT>ÊÛ?N±ÓE…y&jŸë¨ôÕJº/UÄŠý*QÚw.¨Î5­*ƒ¶{J´¤TÜB­ÉÃgõŸx£ë™bPgô³ÈWÊ稛¶cx!6õNRÆŠB}¶ºþÆVÔ/Þ]P~q ìçËt¨ÊÑ`ÌXIyæž^¼òŽj GÇñ'D#±Í4*sUJ ¸Æ<Lq§ÑøòšXÕü×Y ~¼Wˆ¤’ävyŒ=P÷åøñQ»i¨°o?íL EÏþ8_¼5ñYµ (ÈÙ6Ýš#L„ìÙ‚U O÷[É^–ÂGïè‹U€4é·ìÉ1uôÌ{æ»T'$Qé{™røÂ‡*ó4“¦÷ïF.ªåÅs.ž.äPצÙa*>_U®Xl¿‚Ö“¤3WÔ5 ùç­Ç_h Ã9ÿ½U&t¾}¦bs†ºÆ ¾!6‡îê–žzÐ};ê­Ga t͹Ÿ’]΄.Æ­ï[¡SáuÙ‘¬yè¸5¤xãŹmKBÌð¿~&Ǭª‡¡CùCÅ$t8VËé-Ì@GšÊùŒKbЩ“ïzÈ{/^9ó¸m/'ßÍÞõ…ž!Ôè.¼ }IëÇG×"a à¸¦c M¥h$ÃБ¦êÓ¿à×Fò èK©/éQé †±Ö›Ó„¥0IQâGwæL]Ï$<Øh³ªcÑ/H%aAb£ä¹ÀiXœÏ'm¢¹Ë·¿;nøÃêÊE)½ãŸ`ƒ{¶âý¯°ucÞçA /ìÈo‰O/  šm!¦½sˆ «Bb[‹Š‘”ûU[Žf ’sqçW¹"¥i3“õþF¤Îg°;mŽtf‘n?@†¨ ŠÂ âÈD?¯-Aãµ§‡ù_¨Èn ««6¥ËêYd—³øcËú÷IT_Xûð¹Ì&5O¼Dî7:Dó×Ó1±öš˜òû¬et‰¢ÀÈwë›w#ð€Ÿ÷zÿü~ùðTîÈGÂè(Pœ®4¤i³%Q˜ý ©?J=2=û…ã<ÊÜ ™:'¢‚²síïSäPþÆÁMKûS¨¨ÂIþ “Q™ˆSÊÕUFã¹mKPíoäBžë¨yr7]­ qVÿsnNe<ü¿ùÅ›õÏã¡d¼œl¹'JßíÙ&æP.b3ôG9*À$ó¡4T Öð/S@•{”üL¨Ž|ý·íÖ^~Ì ë:tê†W›bYþ{ŽòFåÈYøòây°Ò£nø¯¨ÃÎoCëÓrL˜…vÑû2|rб]1»Ìœ¸Ç0¼ƒ ô*V°>ˆ|ýïÎ?)†ÊOØnz^†!’a†ƒ4ðëÉÏýËí0b—ñW:ŠÆÔ/©y‡NÄt¦@aØ7ø­÷0päý8L‡Þ2f‹€ÙÕ#Swêä`Á\ 09ófÙº»`Y)†ðÖ Xi}Áy{þ+¬½RÔ"óc†¸ëSãa«›PeÍvÌ4°Ãîù”¸¿Gð ÙW$š­<}ä’Ü9l¯óz Él8d’Ëu‘ÂÑ_®ÌV©Òò3«Ÿ"­•eù­…KÈÀIbûé¡2fNæ$™Bæ«}¢Î;"ëuÚÙgoŽ!{ÓÉ¥Ð~aä4»§÷±¹oFÜn=|Ü·=¯4ú ÿâì—‰M<@YÔf`ŠÂ§®Ž5Ä£EŽP&Ûk”}‡«þ J­$wmÿBYA§,C %”§º¤ò"lÇn¢”ƒ,¨ìß«)O"ŒªÙŒOnxö¢úÚ.Y£–B´þObžg¨ÕÂ~=e¡u.™íî&  žÐÁ×7 ÚQ ùeí$¾c~›dtÝ«‹éÑ”S[’lnÍ*&8EΆ¡…Ï;–ëvh9e¢g%ŽV©×nvÝŒCkg]þB´!ÔJ0ôÜ@›×—Vhl ­lìPv» Ús¿9kd…vê ÷ÆdÐ.›õ¥ÖŸhÏGH ë<Èü„ù ët¼rÍÑ$¯)¾ÑsÖÎP87qm©* ®3†òž~™]›!(¿9»ªyõ£v W!_£:š³Ë÷ŸŸ\k„‹V¢àS—ù°[6äYûSJ„qCiHUFÔx_¿¼ š<Ÿ]î(ƒVý&êÛózÐqÙï¸jÒ%è®êa0ts†~7ò óÏ`ðMVWÉ'øõØæÁ3>R‰DË4);íd£ëc¡>9¹0¶‘?ÖðÆ£ï±ñ œ€ ÅŠw‘=}!퓵TßDæ‚•É<0ÅD@°P¹·ŽY.üJÙ†勤÷”`6üXÎà*/Ì3-ÞZ¾å §rÅ:Çañ˜`\šV ,]2Ís0¼ËÉÇ"btaeúí¾³'öÚ©÷§¡G°^çú½gΰyѨµêÇøc]@iÕV;ÞÏB\Za÷ãænÙ–%R×d9q‰]rxûë.×&ì?4÷I¤…Ÿòo"Y\~DŸ…¾ÌçUC® •TócŸ86¤¡=éC Št´»ºMÇ‘yÿ²:!£pý>%wdÒº¥ÄrÔ™Ý o4'!KìÁ¯¿!ëdÞù*î&d·~YcÂ@…­×ç‚•u‘“§k‰bÕ ¹!ã‰Øaä>lå,+µ<Ãiû7T‘ÏÄ(Ç1õòkº$ÞˆÁj23®(ø‹ZÌj…ŽºÍõ¸Â?Ú-c/ ¨²­áWó¸”ÉÒ\‹â‚v÷“q Ä˜žœåIwËŽF(s•Ò邯2ʾ!x7BPr 1Æ*¨pèâ-9¼‚Š©=Í®o¼P©•þ«Î ªP˜~CÕk[Ïüž¡:ã {w­ ÔhhR/á¤CHz“F»ñµth[F鎡¶ºÅƒ«òçQÇeÈdÝÃmÏ/Ö&™·@}æÉi[V4ªšÖzv µI£ݾ áF¾ð=ÁGhô.Ùá®ãA4Öy¢o°þ»ª(¼øÐÄ5馱šôYvð,¢©ù–VÅ.š~~'8(S…f*}ñúhv¾qåoÓ 4«L¼ä3Ì‚æÔR*-OÐܘ]ÂM éã5ïø¹Þ‡ÖâÐ\Á£aP·’Ê^£Ym¿;Ë)  å“èÝ=:mhèqrI<ç¸ Kâ÷$Û먽|öv$¿BR 7³æjB 厈%kMó¿šn<*­ÈB Y¯wŽl”ÿãò3ÃD£.(j|y¬»Â ʺؿd4¦C%“Œ^ª-;T=½·`'è5 Eó]Æêøº½x¥* ~H0ëN³84¾ñoaµ€/ê7(ÙÂמ˜â8ù2øöÛûfŠ·>´^9ó‰ù#´y‹œðùÀí×WîHwÑíùG‰{Êй%:»¤íÝ‘ôdŸAï!»:_£ÃÐêëBY’3|omL- I€Ÿ~MQW??_üïYr)¥aø-ÝÊ-w=°ûò3÷)ûê˼þôLÜI'MI_ß§¹Y‹®Át)ËMæÏM0§Úû1_C΄†ßÅ9Wå^QXv=d¢ÂzVf 3kC•`-˜Ç§`Cþ±üÓ·^°9tU6´þ4ݼ¦³;]Ò»óvÙH@¬‚¾H¨òÙæsæ$ üÈ·¹Ø‰Äßžù BRe?×ÁÓHVÚ~Wêêg¤ðà+,>†Tr»´][†'(AÖ4ékøW-ô s‚òã¿ û)Z¯Š!ãµïʆ(2åe–uÔ#Ëi­g×Ú>#ŸÏµàXä V¾ó-9]m‹É•­pÌeS¿x_ä¹ÿ:ZrÜùø|j8)oå«ñj…òÕ Åy~Gõ§Y+ã“}ÝÕQhê†êÚó.Sx§Aˆâî †ž4EIÿ/îã ‰R¡©r/ãQ†Öíüæa”™ÖøÅŸ‹r$<’OÃÂPÞbüè…üר0øÇÔX •rèŒãe&P%_Ûùàçã¨Ö×@žv`59c¥ßǰ"zL-¼N–B­Ûº[KT¨ÃÎBà=³€:‹×¢/ø+¡n5Uc9}7êÝ}ñlOƒÓÎài߃mLÆ+Í2Y“–JÐ5y+£ˆJz|û{Uú¸ü—xûa€Á}ô’Öuø¡ðP”øòaøÙ™8«} áW yîåz0_EÛý`L™òGñn3L¢Î:eð~8톲ŒkNE°Ì ˜÷0q…ÅKsa 5°ìy™ŸõøXõzÿÔ®2 ÖÃçzr:.ÂfoXXÍî]ØöíÎ-ªd€]ÛøÎ#Û=H(3i{Á ‰šÌ7l£˜$ü3[”W’]þ­û^Ó)b9-^ªû"ÕÆM ~¸ƒ´wÄùû[¨òløz-ª}h\{Ëÿ5)þþ™ÞûÀÑ¿–ßE’µ–.?)ƒXÔ‘ˆøîÖDŽºoF6.v¡ÞÙgýbhÖŸûy:n+}Ö°Š&—÷s¶þ=ˆf‡Q® éZ°eë]ŸÌFË*ã£×¯’¡ÕG‘k[h}é®Q¯E'ÚH÷/Æy¡Í/‹'¿ãÐöv—ŽoÚÚpÕ bD»ü°™#ñhE¥+¿¢Ñ¾TãùCŸè w¡à:¼~Ý)4EƒŽDŽËez°+pǹ¥ð‚*‹h*¯ûqɯš í<~¥­$S./¯SAÛ+’/èpK)Ó»Ë ]Æ·o¸§nBO‹Í¢ôõî”q7ïvqšŸGÝà'ûßY¾žPøÅN{Çäø ît`sx£Å,мÍa<­‹ƒùúLæÙÙðúÁÔï#a¥)`Ö¾ÊKÊ€æóOɬ(¢«ø{%ÞJXê>’ø¹ç ¬xfº>öÖäw–:·ötRéœ[el{©ò=¶[QØæÒÃîSÎÄ{ú¨pÄ?êyež³ÛTß@ cÁ-G‘tÝ…<ëÔQ$Ÿ®%òQs@ªƒÊÕÕîHSiq‰H§éŸdn°·G"££uj†2³\“¤úúYɃ–Ç&Ä‘]©ÁN0g÷½ ¬~9=Žû5w-uít×ijŸ¼®ùÏÞŸ‹CÁ ÙŽË ²(Ô¤tõP8ŠzÈÖí凊s,“¦Å(¥ÉàËeÄ2ÕwÖ]cŸ Ü»²3ã_dP¡®gଳ*mmõ¦|BUQµ¨¥ZvT÷˜ ºJ`‚š[|”4£Öõ§†ÆŨÃÿþ{Çê~£q¹ezõC©w CÜÑÐ FE`gÉ£ç(EÛѤ4ê•| šy¼³Ñø‹æS–î£ ZÞ>y1­®ý&(ØnFk™a‡ÔhÝÇeks… m®<³ÿÅÛ‹¶4Ñ<·ö£íÓš 'V´ã`[nZäB»h CŸÃ"h·‹% snÈô ç&nB{eg.ëSør{mŠ|î ÔL63Þ["J›žž)%(*>#w¡ŠåÏ(7D @Ž—²§KäÚù{RVçŸYoコê™Y»ï™[ý…ÜàÜȃªPâqèÍ¥¨~.òŒ¥Ÿš}SŒ€o#Ï ëÝ¡ýô…³…“Ðu­Òê‚î)è¯ïz×µ߇¯rZ¡[#ª×:Š`øX¡ìYm7y/kâ´`£G·D¾€ÑMó„'Ú?`,C%Uí Œ{QÜ_ 2‡ ¸mãÓ½“2± ‡ïÓÁoߥÇ/Ê`JúŠËäì%˜Öç“׸3¡:2=Ñ»0ûç§W5Ì'ÉÔ\©‹…ª}Áö%f°ØÔ¹.¡´KK%§VØ>ÊHr€>¬†ÄO†jÂÚòÕÈ¥¼nØxî5x¦B¶|ÿ19)Áö}åüw?ào‹÷ˆQõÄŸå °@©Þð±Ò3HìtJÜÀ¶I”)K³ ™‡ø4²Ó#ù¶ÎMúwÄH™³I®ÍÔÑ¢á‡kº6ze©^méÓBWŸ/Ä"äï€cª 2îveË˾DfÞ'÷kk‘ÅŠf^‡ÍYŸîü%[@¶Í.ÎX{n䏨UÁF…ûÚNýl¢ÓG®¶G¢¯pÿJ÷ß:RÈsÅ:KWùÍ}"“_#?qq³âÏTPf(ûg£—~ìuB!Õ?㺄(ÐL}nŠEšoðÂ3(ú‡ø\c”#Š‹²ÿ2RgA ÿ¡¿¾ãçQrÎí­‡JY¯~»éÑ2ö}.Œž(}]¦©'å¶I&¶ÖP!TD…øÛ*Žv¼-}‘ˆÊ”LÚ Ã¨¢Ë>™Y©Žªù†ß7o¹ º®¦é»w¨±š!-í¦‡ð­_(óujÙ OÈô/¡¶Ñ¥›²A¨s5//΢nÙ>»MŠ¿¨/S³Üës nÕéH ¡÷Oh¥ 4`÷%MD£²È¡r4QÙ±–×Dö3áu’ h’H²æHĦBéó1Ð4î»ÅTšQ™ïŒÞOE³³“DhÖ¤)•ˆæ<¬>wÐÜëØÑþ¯hžErÇöø¤sŸ (ØÛ¯WÔ/;ž‡Úõ‡G®+Î@…ž¿èÔ4|5ÜIŸ¼ÁwâùaNíÙnc{>Ò]ôìT”„tb›Á´,{~²0éOh$çž ì8<û¯¦ù‰GÎïéäO÷¾¢ê\æ­Éäßø …‡»GÊ8ÏB)ÿÇìi.j¨à›“± l…Ê×ïº2@µXâöû7†P³’ºâųu)¶ÖU“Ðà’Gk%u× ‰2›XàËãšÃLJ9 9)æÃç¹vh‰á{xØ^Zóžq•ØA[vË2Aº6´×ǽ›+©ŽÝA¹mèºÚ»” =|;÷îÿ>*–[ùx0Mí?¾þ~t²ª8×øÁ‰KnÚsø•§©Lì #´" ¾gÂh™ƒ8ou ŒŸ<èU“§¦ÚÄ.ØÁÔC¾Åü 0K|:?ö>ÌÇ ºñ›åÿ¼Ø¹¢KY|­T°¢QFòæ`¬öKN«r€õÀ ÒSQư)ùÐëЋ›ð‡Ð¦®R2vHe|å‚]øÂßßņßRŸaL@"zó}K-{Ü9vö`’TŠíÔÞ?…d(ùœJÕÉ//)±s#ew×OR‡³1XwGÚ“×Ô‰ô‘vœzGŠ aƒ·ž8"ãÙÑäAµ÷Èj’a¢…ÌC•ωeõáDäìãOÈþp^87ã î+™Ï™Š D®é1UqhFî_þ-ýòsÈû|#EÉú(ò%l8!ÿ“ãÜbª2(vyNðž; >g)z…r˜³ÜÅo¢H½à |rÅÅ«µŽk¢dÂ9÷˜õ(U\ô¡•e$cDÅ>›£ÌŽïKÿI”£ºÑÓègòƌꛨð-BöPv0*½øjnwçªKŠ’¶Ì2e=hÐ7lsõËNfFÐ( “,ÍÍ=>_}bàNØEcžófŸ¿Eã'ûhSNX¢ ‘×Fg@šœ e¥NG“*§š5$úÍr®Fÿ)Ôf ‡¿†r®[‡9(T½Zæµ§OYJ'kê!;Ö•`r8>%Úž80 Yº>l§©ÍàC_[Ë5MoHöÔª| ]9¼J§I á}ÒrVþ¤•”ð¿×y÷uN~'슛CrOs’ Î²jŒ¢ÿ| b­zðö´Ì˜i‡ê}¶ç :ê í 9† þ3Ði¬‘c"H ]‘r^/%¡Ûæîuooeè6K2¸%ç]_híŽ)Cu¬ÓM+è4;8föæ3tdqR|šÚ_ŸÜ©ù/·}”¾çõß}8OîÓAÐÁ¶eðÒ!: 8$Y,'öÞÏ•a TÐyîö9ª—qÐuÛº­’å;to]|'¬Ì ½ÑÛ¡‡^‰Bÿ)Ï{Ñ •ðý¤rrÓ NçÚfν¡åˆ`8Ï©’ãëY}Õê§Ãã©ÎSUü³0¹8˜Õ¦2ø_Ÿ»…c‡Ia.´8Yxïº [ûzÔ\‰aiâ¸Gû—XêûëÁ—k³ósÅ\œ°yõÙÖøó)î>䇿ªÞÆ6êHðù ÚË£óH¤}ãíxØC$žmu9ý,I[s[#x ù”gĈó~¤‚žsÌ5HSoSa0€ôw—WXQýŽþ32Õ¯ žË^@ϸ2RE&dZ{ðígrPùÒä}ëBN^MÏ\—Üîò•ZiäùóÁ„·ãòý8bÌ{¬_Žü”÷@Ánú ²r;(tv~"9‹EÎöÅÉ¢_Oõ=ñ=Ÿ¨ùrjòÈ><®tª.èJïÊù]~‚²'^O¿,C¹•ÌGWÇÔP!9ìœïlT:÷ P¥$ U̪ݯùj.dNÚÞ F:m¯„á""Íëï ÔÊËNªçAíiñ”¤PJÔUí¨7ÕbA½bÏY48ù‚gøÆI4Òú¼/jíšH\žmcC3úÍ·_÷O y}/ûj+Zž¿NŠ^½huó¨ârkZ¾p¿¶E‚6?_ÇÚ¡M–ЫSRçÑÖž( Øê%ÚÎ×WOzS£Ýu-·åhO6þÃnü Úߘ¯»€h¿^k+á èp<ÃþÌÁt¨•S<}žv‚"G¼å¡ ¤UåTê @ü‡’—ÇcøTÿ†ìo#dðyv(jŸ‡´N]®¡šü=û¡ž/ I«Wwäe% ‘<Õh– ÞºÚdØÜ±‚xçÇÁ$¯yàõ`¾L§î0$ì Ѿ_ÉáGu·s( c…«–Vï2d's¯0%îéœà§~åóP`!|Ý?5 õUE-㇡ðãþ×…B{9ŽÀùaJ3E¥¼ø\ðú_-&±&™ŽbÖ‹Ös;PÌÕ×àà]ø?sÂw¼¡8·eµøÕ^ŽÓ!²6±ô†ÒÌš!ºï? ¬ôTá£7z{:úCnz` *¹Ïû_ƒ*Ëó¿íóP]õ ”¤ j½ôLŒ¢'¡þv~pUa4Ž­jf;·ÂW+jÍÄÆø¶Ê8?Ud mD,Ìo¡½&:êÉßhèL|Dödç-t7œÒаw>šÊ—âûaàÂ;÷écf0(¬ªÄo7CÏÕWNµ)À°ñç^ UË•nÏ‚q¡mZŸƒ0)¼/¨â9LY+•¸7ÏÁL¾ÐïŽÚ9˜7 :òÂIN)>9mK~b†¿M÷ü-‰*•ÿÀQXmª»òS~ÖgL9Dça‹RÞˆò„l‡ÓÒÎϔ,!ÃI8ì|˜±ª9…D縵×µ ñ‚ââ÷Ý${5XÈ„ä×Ú÷ó‡#åÇ‚>jÒ¤‘3 ~BƒtëöF_Ü‘a7öDædÊ”¾!:,QÓ[ R+ÈöN,¯629ÆîX¾¥A.¯æ¿½œÈs¨bŒw« ù¦8ªeG Q`¯û´  ©…ÜÌ>"•Y'ï°@ñÛŠos[zö¸ô§ƒû‡PæD!\ÜZA9MŠÇæÛ?PÁ®/Wá¶*qݼf®*¯OÜ9.`j-t¨ybKþ§«:jɱÒþ¶{…Ú-Ô¼ED…¨ë7ÍqgÐõ…Ï»g°U¢ÁË·ø4J;2åñMܾӹ‘íùC‡¬`ê4O’×!þK‹–ÒÅ|ÝÏ8ÑÊÎ6(îÒ_´&¿>dx5­³ÖH\o1£UÁW"¢´÷ÀÕq´õ=óK{XmW6_Pî¢ÝY­•%_ÐnðÚù„±dLòö-ü@m¿~õäΉA“g .ÿ½¨±OW¾h9k×Õª ôw\’Gt iX‡]’›‚ÏÇаªCîïO‘LÿøüØô^ôL^dYÊôvk›@Nê£ÔÂ5(6Yx(èËUå)Lý,ÓP¿þD°!CšÕcg‚sµ ÍÕ;P5ÿ0tª¥GÇ ûAÏíÍ•o0 „ÎÒë*0¸2Q×L7¿”ä™åì¼aø¢ ÑÑWr0Ùü¿&ÃÈær¢^1Œ6Žkت˜ÁØk«ý7ÛöôåŠb~Ú‘R˜82å½~þ/L:Œ*]x ¿M‚ºE½aÊæë«0Ý&˜Èh•‚™QÎŒ_}0wuS¡yä0,Ò!T!…Eþ#ªÂ'a Ø m§¢aÙëŠâÐÃs°’ÓÅË?ak¼§buÚÂzéý–„AØŒÑ÷êL†?é=sB3÷³®=ò>HœxÅ÷ ƒ4òÄ^X Ñ´”Š\A'’œÅ{½2HºÊî6ÃsÉo]x6V…”ªY")‘šiêµÐÝ0¤ežºX 6€ôRM$žÇÑ!ç•ÿ¾md,’²!G¦þ 1-þ£ÈB2ÃøÒœYõ î™~ D¶úó3/e‘ƒá"ÑJ;î»ñ§ùžr±ö…<ù‰û#7FÚ»!õƱ3´È›•hyÛ4ùšx„µ&3‘aeI›:µªÏ+méÌËÇQ˜W/Z¥ENϵgw£hô#ÙkS(Vš]}é<JÐ7==ˆ’·¢µ""5QŠ'¸ˆý’;Êȧº–e=CÙÐÝÒìL5”§ 6¿UZ )ý¿»Ž8¢o‹÷ãAT6`ùl1†*×Î…)¥¢êì«OùPýÒºR2ÙsÔˆHxˆ°ÁòÖR µÜñopò Ô¶™ }uü^K¯\óGÝ6’ǨoþV"ôv4˜¼Õ­BÃçS4Ñè0P8Mä£1“Sþ#/4.þžçr¶M±eÍ_@“)÷S§¾ éy? ¡&CÓé²u_sÐìðFÏÔä4«ùõìŒ}š fyóD_Dó€['¥g¶Ð¼ñIi˜Z0–oº#­XtÀµgÃð-®9<êuÔlù'iHq@¹ÏLÖÖÁ8Èßø£úNÚ ò¨~Ð ½±…OYìùËQË´xPR÷y‡äÿX ˆƒ÷Cy)Ñ«tÿjjÂ9Ãñ/â‘q¯À…â—¹m ÃNðyÙ#éÒ-(>køRÔÛÊŽ:)Ï3BEÜecã%PÅJ9sNª‚¯åÑ+Aíy¹5΂¨g_0+5Ì…†œ9ß×h²\Þ‹ö…¯ÇJ:ë/¸Á7½S‡ÂÐò—6…»RZGÓ]ÛB/BÛhç~í è õ °;'Dó" kò½U²ÿô¤žŸ¨œ„¾ºjÚ© ø.{tX£ÍKjõ½ž“ÀP…Ø’;ÍE õïŽ]ƒ‘,5-Ã…rsŒ­´» †Þᚢ’ðÛãà‘ì{u0ýu«ôóëE˜s¤Ø ©†…ûÝÕlÇ`‰hÒ{×–#œ¯öKÀªp¸ú9·jX«®ëQ 3ï‡~’‚-®$l‡a[é±KÊŸpøëñï,»1¸Ç’\JD„i¦é b$šï×à+A“ŸªDÒŠ[ïÇ67ÜñÛ±lß~¤d¿×}ç§RMgs~'Œ4Å*í×ó .Ø¿·t\Xß’¸±ÜB†µÒïõÁ‚ȸû3}H¼™tžß~ÈJ|Œ/>µÙþcº÷í¿÷¡y,¹tí…üEn%{úÛ¡aȳÈZwÿl&òY‹…ýE~½ÝCùT7QÀÕÞTÖ~Ïw–ý¢`'A¡ÀDá¶IeŠžsFq)ïã»G¤Qò ³»nVJíX!}ƒ2¦õ?‡ Q–þâ^[.”cø¶íµåuÕ×IíQ¡Ì@ïW*]°¦øé†*ÞçŸÅ¾D5?_5’a ÔÈ´xœQ…HZ.âRj5ªÏ{¤¢§{ʤTÔ¥¦=Vâtu—…¾ÚðG½–îüreÔ7þs ܃3¬o£!×@\Œd Ö«xåì'@£“V‹ÚÚ!h´Åv*XyÃÿìØÛ§Lü6%¢óÐäRð™…{¼ÖEd‘6¡©–«—z\Ö¿Ü1ýyj_{̽e¶Á¼ áÇ¡àÐo3Ò”SéÛ¿=9Ÿ¦ÆnŒÛ"díÆ'sVÝšW4âO„ôh_dýuÞÓlwYDJÁÛKÝ*'níÿWS —]“¼} OÀL¬ù3TXN¿–:ºuô¤>Ùêð…{t»{yZ‚¼/7¥¯@›ó‘xºõ6h/þô¼äÓ½ÿú‘œ¯ýûºŽ‘jõˆƒni™lg³þÕ®B7‚±gÛÐE‘êV{‘:W¯V?ゎšüÕÆÏÓÿõ+Ék*¸²<óRÿõ1¡¬/­ƒöµ'­µ”áÿ^wxý"ãü×Þ¿ÚÀ Ý·#»ÍW‡¡—,„áñ‚ôUxÉeXÂÀ³A‘GGêa¨ºhà. ]áVj Ã’Âùuž0JÂ\-só2Œm¦ qíФøŠ„…d˜J²âÓ¿í ³OãËøí/ÀBˆiùR¸,yZ¦E+ÀŠ#íÉË!¯`Í~‘´êxl„¦dÈP…­… NÇä`'¡D>ù húJ¾°¸…„…¦þWØþw¼^M’J\w=KØäª¹õ’WëòfØã¢É]¤!ÉsÚBº2{#… edh³kg³C&GvË„»ÂÈ<ÓôüPç²¾ir¦©©CvÿFgÖ£«¸ïŽçövOrõ<“! @Ï©Ÿï"ßË-÷š»(@pæŽ †e|·›C!¦Ð×2g·Q¸š+ìÁvŠ¦ŽŽÑù†â%]vW¨N£äßô±é}(ígZ¯õ(eyHé˜wêP.ãìOÚŒ¨pTéÝÑgʨ$lðBs† Uuô‚CPR§ð—ÈGÔ0ߟ{Æ"!žêjíiÔº:ïiùµÓš.M©P£ÎyÚk[Ô»Ô¹ ŸÐ@Àñ.-¢á–²Ã-ÁV4þÕRzýÝ.šVç2ü<ÇæWw6Œ‰fÑ’'?í¯k:Zz:3ë'‚Öœ©×…’кígiªŒ&Ú„(ͨ]ÔC[éìÛkh[,ghW%…vÆ;OeSЮ…i;w:íMæ.^z‹ö¥³c½è \Üu!îÐ\ayX º{SdšAeÖòå'WçáóÙØÝëG´ÿqõ¿<ý/7É#~cô Ä_‘['ïLMtê¨CüÝWœu§‚áF£T–î¼:yè°t‘Á?îÞo¨F³üI‡Œ“Ëw=}ö\ Û?ç ï9)‰Hë1ø<ª"ó4 Z¢=vgG÷rœr3o÷ý õ(ý E2·ÃÚiEþ¯¾—nóîøÖb®^ÞF(~ê@èsJ–‚>ÿ ¥?Ú=›Ê :üÚ¢[ "¢òWœ Ë¿¿¿š‰ Hßù,ÔdÌœ¼}¯êÊoU¨„FÁW Ð _œªòV ¡yÈR4þR$´ží%ÑŠî…vÑ«G&.‘AÇnÜÝzkãÿú9"ôj{©üð‚þ¨´û<ƒÊðCáb» íór»ãð«#3fd¢FŠìÄó˜`ì­ Q}°+L<ý,Íð ~Ò­QÏt ÛÝÓþú_a.þyô}¸ éI5+ٰĺ<ÍYA˯)‰|ÛDaõØæ/êaÝ-A¸%š 6¾Z>ú½ Û|MÌwïíÂß/µdäÏ‘ îÏQ¦F$’þ")eŒÄ‰â2bHª=”WYôÉY¿ýB‘‡”rªs6ïwúé÷ '¤súó"TN’WŠsÉ´AîO¸4²°¹„ù•"ý=vOÏcÈ!G6ðÌ]9Ÿ®ô¹,#÷é} *RUÈwR ºû ,ù½Ö÷y‹¢•XéFȬ4Z ò檾Dë;­y§žð£X¿ŽÀØs´©hœ[ý„¶ÌDEжí;S, ™ÃÛ:îshWZzÀîû(2d<_»÷àþ^î§ŽÉ«+FƒÝ8uÑOP]u×#iá9T°²†:Äþþ·^ÿ—ƒü–÷¿ÅýÓ¿ÿå3ÓF‘uæöœ#&†á­I+ Z02þ¸Å[WFÛŸ}`Z±£œãã!0©ÊøÈ~&üºúŒÏ¤G˜Õ©wøíæO^ÏSþÄâ {þï£ö!âË0kV™t€àÌSPò ‚…+]¬½°x×W(§ì,¥ëíKyË“”öU»aÕÔ)¥b©Ö†37KÃÃ`#ï>×}°õåªÐûÉ=]¢³I;ì(»~ /Í-k6~Ôç² ¯ðrÏ! ¡a™¿±’†w¿jFr†øôâ)N¤(³œ›$ Cª'òç,dæéÏ•TŽ.¤ËabVì<‡ gšŽ¾Œh@Æk—ÒÎwË"Óó¸þVd.ü"¿t£Y–pD¿ïD6ãzÍŸzÈ^䤨ßñ÷)E›á6r~z?y_„÷ ªŸzŒÜño˜r¼×‘2ª— ç/úzˆébò§µÛZqQ£ÀÂ+’ <`>ÃF²ŠBŸ.gÝ>‹Â› ²êÂÚ(*Ì·,O„b¶æIñIÔ(þŽóiáøm”äéóº˜GŒ§I“ÒÂQ†ÑßÍòe/†˜¼¼¹Œò,iBן¡BkTìûÙzTrþbÅÊ‘eì’¿Q¥PwÅþªö\OEõ÷ŸDŒNG¡¦åE6Ö™Oˆü–ûçç ÖåC¬M—XPûxE柃OQçÆŽÀ޼¥;Z‘{PÃõ½‚Oˆ¿ÝDƒ9º ýà hXóèá¯A4Š"ÜÄÆ46þtòéòo\÷ñH;&/ËBb³9ÑT¦ºÿêî54-ÖV e@3µøË‰fß}ZÔóCs.Vƒ\™4LμxÍ»×2,ù …hcÈ@­*Z\ ôzw2©çT—Ãòè Y:;F.*ªwŽMoëýó•ù´i–FÙ¹«Ì¶Sbñ«ÙÏ„Ì!å[n'¾/ü§_ÿë+ÿ·þï÷ÿ÷ýÿûóÿËéÿrû¿:VÔI¯ùòÆ?ý©$8û]=hªâ¬)vwÏCŠÚó‘LO¨í”¸/î6õçGØ_üŸþüÿüéוNR«OTð-z–£lõ´²ÝjHp|ÿo_i§&«g#úç7;³,Y«˜J¡Û,q>ÈJêÿO—¾o†vœéï…ŸoÎY ˆ¯Â/ªÓ']4`8Çáeø·y؉õ`$<»«û í?š#¡Ò]êшØÜw>t™ôø§SdmÂmRßž"ÅÝÍÉx¤²1ëöµ˜Dúeñ:/C¤->6È,vé­êI,÷üõgŒYåñÿÇoKõ êE"d¹ÔŸc[>ˆlî¤4gÎ!GHÒ'ä|YËò0ðî¿'c©ÐŠ<Ær£Ã÷¶‘÷o’SœB¾•¸§:}(À ‚¼ž(è¯÷–œô é)¼Bó¹Gxó–á-—w%*sæGÉåÏ'–¼PZ]èÕ[u”ñúóìåß(Ë—(i‰rì–RÒ®c(¯y²ªùG*d9ú…£’§‘]©RªÞQ²yuÕôêmå´†P㪨þ§CM£¢¶×]DP«l –‹| uöÓl„‘¢.{gÓ±zÔ£–·Jöþ‚zK«ú_„CQÿ› Pö£AÜ{%±Qe4tíÿIFLw„¿K|A£¢ó5—ÿ:£±C`Å÷¯Ûh<þYº`9ÿ?ÂÞ:(ë®{㥥»¤Aºc-º»ED  DEEÅ. ,@éNi%¤A¤S鎃ïÌû<¿9gÞ9ía¸‰öµ¯õùZ‡SйÐô÷Ó>êG£hæDM`ïqÍŠ=¤NšABsPª9 •¢6®Ñ‚¢‡d%cûý· ¸yB¦6ðSÙtH÷º!PSñÒ®iÎÄ$™íú˜JíÁ:$´jϾmO€˜W‡©P_‚(i}±rbˆ2¨éº²Éñ®9^÷- «‘lm/­”RØ25å쇯9¥²ïìCMISϹ h å¹¾ML¹ét;•Ðì~Úæ™h ´$hXOUŠBk÷­=,ñæÐõ³›‹¹Ú’FÎI¤C›áݲÌmКà“ùûX´2˜´Œ_#–ᛢߜÿ½Sq#©.¿þw.Üóþé]¾“»’ÁEyZŽW‹**²qŒV£ÒÊωÓ!*¨òCucéÉeTküÆ.)šLSçÕçN#œ¤­|:ã‰Ú‡SHæJ Îëà”gÆ^¨;ù˜˜MH õ}›Íß¶£!_¢ÌÌ>'4ZSœï…&݉{u¿B³‚l®Þ§"h᯲àh׋Va´ ‡[ÑÚm隊?ڈĿ|—ÍŽ6£^_àÕA´:SzæÚÙ_ËÌáA{Bå“ÌßÑ>.ù©‚¦>:§þоu†»¬›õÑñ*Õ'îì(tbäsq>ÿb¬¦[ŽÁúZ…Y Å(3¢vH "ÿÛ×GÏ_‰åïœ6kÚçï!a²jøœö&ijwþV"‚8ø¡.Wö>=7¼íïÑmÉ™n6ù©Gm_÷iÞ§Æí€þ xG®çê)Cûîb#¢†•¦!iÎ.á*dp,L¾»µ² Ëöº[Bî³1i…Ç!ïªR<ñÄ,äÍwwüÁÎ^1ß+µ·-èäÿYJ3ö‡»VÍ㣉ÿ{mÓ¾å•Ë_“¥så 07^?ì¾4Üþê¨I %¢¦­At PzmËïÅ~(û`~¶¯ÊŸOüf2€Êk?­üô¡êÚÏŸ‡vlá{f×™_$yP³˜qm¿küðõoº|‚¥Y®:õl@SÇÆ9ž{ ÐòÉ!5(wσ„}—?OÁϦ«‡Ÿ~õ„NÞÜ…&5è.»Ç®Y( }…Ì,G`à™s+Ñ‘:»ó½ýŒXµê‚ŒÉü23xã'[‚iïÁdUmuždÌXô|Q-Ï€Ù jV&µI˜›l Ž“ƒÿ–Lk/*XÒ2ñ 玆­&¥pBX ĤýÛgacžš_¶Û¶Ÿ/jýòÑD‚Ïü§†‘ˆÁTbu/;ß^ã“–DR³¤/!’ÍŽ:L7Š!å%¸ïHu±g霊ÒJtÌgÈAúÕ­Õ×ȨÀõé*)%2mÞè?ŒvÝ“j¦hƒöwk÷ÛÔ ƒ¬ˆœÁZtø© „ô~Á߉º?AcGë穾»ûªW¤nF*ÜnmµÜ„’ÓcûO¤þϽ±„ÉÅÿägÏØ3<ž2A¦SØ[ŠrH{@°ç $[ùš=nõôï¹™!ãéË©G½¡PpÊuEOqÊ]Ãoæ ˜Á·zêz#— ®6½î¦0%4QÎìÝ9~Zò¶MFß×@ûgB^2šeè$Q%¯çg‚žc/.µæ@¿nÆ;cV]ð¾B*šâƒh;ÄÂq†è0î) M/´|¬¿í ö\ßÕ`$W?ûvƒ(üþx€$-0Fßc±)³Œ½Ê*:!ãQgÓ(D`â›Ùˆ(“ L‰4è:çÀtºöเ?ç–/îù ³Éƒ4Å50W ×v&æ›~2$‡=ƒE’Q¿¹'“°tÀ=õìXþ}?ÎÂj|¹›%?¬§<”g?1›Ôù É¢°£qðÈä»N$óg÷}ÂŒDVç´¯Dâï©Ö*ÛÅHª/QÚÒãŽdÕ%Ä÷f‘ܯÔìT>Rêq~s¼ŽÔzž ísýÊý»ü¦M™=B‡ v••6)ÉÈèý~d`& ™ÂxŸS][F溦gj©dÈ*pTNŸ(ÙB~ìßc‡ôbTýsÜÈú}Kïè r3œ«”ú–‰Ýþo ªãëß±|M¨î~¡˜,e 5ßпS¨fC$8/lèMˆÚ•¶†¦P—‹AݤÌõ[´ÜÉÜQ_xèþ Ý?h p›û¾€6ÒN(.q£áâ^÷aýX4jì¾nºƒÆ±Zã\{ÑäüÁJÍ o4ÕŒ’;1ш¦;T1׆w9íÁ×$&4¿Ü×ǃJ‰ã´vãÖ9¢óófþHý0™/Û*æbļoAaÅyæ“ë>3pÞM‹Y2Šã|‚ mŒ»$Uá'¤®ex–â‚äc«®âï¿A;]ôÞÚFˆ(ç{X ‘£YVÓ[ÅZríùYfø¼UN·/vd]Mžâ¶l†’Û~ŒWà«ÛåÛÅ>¨9üPbhá"Ô¿Í­$°[€Æôå {r¡™Tœòè»Ò]î:.ÇtßZ ³\¦6 ù:ßrh—kø­-©7o'C«¹âž=.'ÿÃatžSÐrì*Ñíö¯ÿÖ¿iédžÑ-öM|ëÜ~Ðâ}8Ìj×O3éEü˜]¡U¬Gé‡ï ´NjZ{ÚBÛ¢Õã¾=ZðÓjP”ø9 tI¦TµØAçþê*mè¦)}/ºzµrî7½ ýçë/Å[¸ÃÀ cl6› }þÄó]7F‚2¢}¹6aôå“ÑpŒ¯p”¯ž„©â9Iø3V{œôj(ÌeZŽ?ò‚wøÈúˆ`É÷fÝZ`¬<03á½kÃÚîb,+°DÆúúìh3 kÚ¾FBÆYuâ}H”x—\¨I®N±|«@²»'ÜêÉÿöµ#ˆòÒhA* …bzR{¤©RíûràÒ~W 6;€ Å_²Çü‘ÉðñÅ-÷÷È<Æ “¥‹¬é—sܧ¼‘=íp@)ñ䜓¬ ”uBžsYwOý¸€ü,ªÁÅQ ø¤où„) YÜš@¡{©Ô{ÿ¢ˆâ3P‚bLOpJ¥¡Ï‹ØyšC(å”ô‹,¥k¼|D¬»Pö» Û ©d”w¾/¾æˆŠä+ÏYU]P©ÚKã¢'ª¼þ‘ûá<ª½Vô¶’ÎFÎBEÊçû¹¯Å±BmSïOŽrçP猩:W¡n£kˆ¦(êþÙåáro·7à4Z g:ÄAŒ&?ïÜ'ù]Šfé9"=©’hqÎoæÈ§z´:ãwâè&Z{ÚÓÝð§Cùød–Ê ´Ù\ÈkÙ¾Š¶ŸïMx›¢ÝYæôho¤^xãøt =hÒhØåæïê¸hÐñ:S¦:in»Ø…‘¡ÓÖÍ^‚‹áè\þBì 9¬s/HÚy†Ai°Ò·»ü#¬|×›jÒôN­Ëú;·í~cäyøìûÞYdëå.‡í}j÷…ò?y“:Ö ÚAèéaeø°ºÂSžïï4ÔðÃÛ„}.¯?¶ý£»XMŠÌL_iHº’YštÒ[ùáKoÈZ°½Æ;«¹ø¸G9Xò$:§öŒnA^äQ1¢ Èg—9ýxò6Vv,Œ@þGçOnUAa@ÜÉ·þ÷úäsxæÌþ¿y•{NÍÿ}îÿÄ£Š^© äÙÿõOyé'w ôœá÷({SdmøÊŠsÝ©ã†J«¯Æl޹P\™›¿á»k˜NYÍG¨ ‰ŽÙ,Ë„ï/Û»>‡†Î˜©^G hºí®Ý;Kh1¡m»$Qmz¯I¦_‡ÃÏÃ!w%‚_)_]o=ÏnË·éN±{ Ïˆ¢í©Á6 X3ñ÷ÅÀÿZÕæ8 oÆî°Àï•›JÇ/ÇÂ8÷kF†MM˜¼H+¾Âð¦7GF 'aÖaê¸\éÌ•%H+$xP5PÙ΄„óÕâe‹÷‘øxõ}¯÷!)!±ƒ×ÁQ$ûq–’þÕ$ܼ2û9©Ì}i¦ï:!ÍfŽ™ùœ!Ò„+Å=FFÎ3,ÛÁÃÈÔÿ%±Xà²4Zº{… نÞá;äT)îæµÛBîwIÑý§‘Ÿ§‰…*æ RMð7‹G!kÑK—Ÿ¢Hô“Fѱ87æç?Ñò ¥Ä޼rµ G‹‡#ZùPîLDÌÉVwT8Wq˜_ç*=<ÁqÒÎUâº"â¨Q­¯g€n§5ý5dX„w¯hËrH £ŽK§ÅªêîxÌqüBý¤GœFGÓÑÐ7iÔ's7ŽÔð{LèzMv^h4ÞB³|;bãúháE'©A ƒVÌA›÷)UÐú`íxäw^´‘±M{¨wmv˜”5â6ÑöÇÐ+¶– ´{kåLÓ€ö§*|O4\F­‚óo~BG¦¥ÒŠÙ$tœMÐã˃ôJ¾á—Å ¡1õ]á¡×Bð¿0Ý-³Ê×/G:äügnaš8|yv§üËÇò™ÍiÊ ûõžÓªV÷!c:ëMœD$¤1:ž}è:$™'ÞÛWÉ*Sö1­aB¤7Îr beOeˆ„òÚžC©¥ðýÚü¥ÊXy¨'®(kHX…¦Êó¥ô­WŽUP*ÒÁO×–BrcèŒôº “˜=s¿¨o @ÿå<ƒð¯Ô0ð:×jœñ1 Öêx"3C{Gli&zahÉîg×þ$n{°)xòŒÇX å6Àïük+õ}`´B$¶ O ƪGåú `|ÐÛÙÎP&Yž¸}p¦‚þè)$¯À K)_EÚ~øÓ7è·¨f‡º£ÁÜ$Ë‹sü0¿VÛ§sí>, |}Âÿˆ–NŸÈ±;½ËlÁ‰ån°ú®eITE ÖŸ½‡ûã`3³êûñ^ØÞ™ßwr *ÌÌÏÅ®"ÿ⹇éáHÂ:°œ%ƒ¤Ä6‰´Ï‘ìfKŸh’ Ë~jšCŠÅ½×"Ýê‘ê =ý"Ò’¶íþ‰}žÙŒZæÞdgî•¿+†Œz³Òã4Èäí·(t™™c™)sU‘e5è©ð4²×¥ñÖ Eöñ²¢5‘óÜ$Ãú§ÈµEr—W¤y†¼SZ!E>ÕûUÇ:ÿ~ŽC9ŸQp&Ù*â±Ñ.¿XMw}Cál‘¥÷6Š(Jb›Â`aŒbª¤Ç¨ø¶Qü¤ÇJߨJQ•‘³4£”ºinUJ“+ “x¢,¿Žµ`,ÊÝØ'p¡”¸=ü¿9µ¡bý…¢ *›ÇéšõТÊùèzj6>T Ët¥QEµùÒððÚXÔ8[š5VçŠZ’ÆÅÌ«¿ùž>'8܂ڡ.cIQ'ú”ð¡QÔí4:õ¸õå 8 ‚ Ñ T×ãËÈ»Ý8Ѥõ:]= ¥¹„²CãüKºï¢IÚÑè“Ô“húä-Ó3«X4;Þ¡ÄsÍaén¯Æ>´`¢í¢iD‹‘| ú‹ h™wœ·ææ Z=ºË\Ë–…ÖriR2íhýáâ`èá´¡wlD›ÛOÖ½æŠó‚ɧÙ~¨{ÐWÁÛÑâO`kàÀê¢O\} Ù6¾vÍWwyëhj “¤Ýß1üPª‰%×ÛŸœ=ŸuBöÄ““ü}þè©l¹1)ã<3%9®¾¦Âc×ßî#ž‡Ä™GÎg§!-êvkR dq|éV³´ë§ò²™WË ß@õø)6(äÍTf´YƒâþtI#Š“P:6ÒcÙÙå!¬b øþå·¾Ù|k­UøveÜÐtÇªÙÆUäO?ÿ‡ß~D ë•A}íb»ãõÐèdöØ&ašŽ‰ªÛžN‡æ;™“+ úÐÒ~ô舧#´©ÔΙ3þ„öz]ð–â…ŽÄËŸÞè€Î¶#x÷ñ+è¬ì–ëáý—ߘI<šHœ`ðFrHî*1 SÏhÏíúÓÈ/eÕ'‰q0ZGBóÃÆw–e/”z”SXr'Ý1˜™¾a?ó÷ùKçÎÊu9˜wb}lcF Cq#Œ°äï"øh’VX#ä_Wý€Õ_²£þÖ°þ=”~+ê9lþQclç)åöÛj…HаlÁ‘ ‰ØL%Þpïêöâw——‘dž›)JÉÉàCb$׿"?vm)i—ýȼ{‘ª]oxË#iÂ"­ †ŠN¿<Œ¥4éoJÈ“ê ÃCÝpÞœadl£JÞw~ ™C‡Óæ%dÕ4¦œ WGvÕ‰Ÿ£o²Soš¨órKñÎx½‰–§îP¼ªµ-[e_É”rÈ_ÊA ±›ÎÄ9 ¨—ê9Å%:w¼Zé )~¸B©š+ÃÔ-¯AKKÐáHÙDh½+â!tXZ£b®IEgA«ûO=kµ;Ð2½æ"fÉ-·æ(™µîrŸ;ùÐoùûOê {ðy BË¥D&³*h‰3:ÿú.´=WüZ»û}¹5-Ÿ©B›­½ËË-hw=ñkâ 3üÌ¢¶r;²~±ßØê×/‡ÎXÝK͹ÓÐmœ^¯øðôºÊI¯¤B¿Ï8Ÿu9 tßû@…0tyÊŒY Fô•8%Ïè7{„[1ŒGßH);éÓM|äðçàˆË‹\v˜sYçÎ^ \+VO²`q«6íŬо}ÅRyÖÜØ“èf]`c&’¯¦«¶£ã©tö¹!A)n„‰9:JÔ!‰¨ÀBD>’IëJ¼ohGrü¬}T) çç‚«o ©D⵺t¤'¼1›42€ gÍ—¼æAÆŸÑ‘@d~´âÝ-E€¬vžw2â]ßM9*ü&r^]g40@îµËƲȗ°?¬½Ït=Bßs¢à—jBÛ(¤÷µ‚'õ Om…ôö¢èwÏn¿¨(ÿ±Ô(ó¤¥HÔCŽœ½ÒçtÂeQö5·J¥ÊK“Óªòù¢BOµß½)TŠXTׂ*žgœÒΠڡdƒ;òª¨õp¡Sŵ¶%T‹µ]P[AR¯ ú êœ[èóBÝæWYöŒ¨ï¾xíÄ>4ä´½šö7ßxÁd®6ì-š4žùFÎfŸsåºäÐÂ7qÜw©­DÍZßFk¯ŒÈZb´øŠÇ»q·-ãÕ¯£ïÑvdÀI÷D=Úåsç0ž[Gûǰ–¿…GhHNÛ¢£Æ¸SF!:q˜³<”E§Í9ú¾'Ñyì÷áÏ—Ÿãþ¾_7"aM{/åjIÎ.ÇKÿ5ȺU{x°Rk>êMù…A|´¯Ì¾)ˆ«]h;^% 1K—†/d†— ‚%ò!jâü‹Rß,øpªíY†Æmx÷âh¤‹A1¼5gÛÿƒýÝ?º‹é™ûz3Á’Ș¦>›Aú£šåøfÈŠ\Óà ƒœi…Gj—·!·#H†j„òo=Ü¢û0äUÔ“ùùSB¾Ú…£ÝÇ ÿ@i—w ä§ò0žvrùŸk1}ê¶p ô ‰d@¡.í}Í3Ptn*è´bÄ®îÕžöÐx@éñóÏîžP‡²+Ûû’] <¿È\4x*ùÓóú4ÅáëÖ¡ð¬sðØŒ)!ä ÔH…þˆM…ºª½ÒVìаŸ¿zö4©¾¹Ÿ¾ÍÓß6lÙž@k÷ín÷{†Ð>÷1YëÅ~øÍJ– «+ÝôìÓèm:ÔÏÔɶèú[ͬö:ÀprùE•’Yø×úìVj2ŒÕˆd!þ“¢Ö”VNÁôçôÏj…aV’.ÏÚ˜ æ^ݶ*Ù~ b^,T¯aq±˜EQÖ –Weì$‡šaMFäè˜èØx¢výªl‹ÒÈiÜDï¤<ÕÌHØj,öðë:›ÄôȘK#Iÿó-™'H¿Y¬pˆÉ¿,/‰?€TD"Ç:"M}Ø'ùÆ6¤wŸô}æx  Ëï‘” Ó×)B×å dIË<Å<…lE¿ôŸì³ANò½=ÖDÈwËøýL9ò-˜³i£@¿úÍ[T×QhOà½{2(âYœU²çŠíÌ…Ë@ɶO;hÞ¢ôìñ;=C](§ _ãÌPASÅL¼•l¯†Òó¡ŠïÝ{×Õ¿£Zòœq2&¢¦©Ï«€õ£hV|Áˆƒp-.æ®rF5£•ü묢 J´¾Ø<(§ômœ¦¤³Ê\ÐV]Ñ?Fî$Úñ鄚1¢=%#uø×2´_w÷Ð'tXˆz¼ä*:®|µÖí4EgJþÖâü|¤›ÏkœŽßõ•cŠAðíñÙKžPþòœVr¸#-!ë‹ú´»o©-®šCî»Ô‰AqaÈ<"KKO·Ú®lš]‡T­«!¤®Ëhò;§Ýÿ$)‰ô~<D§ß˜;ÿgß € #:P†j·¨|ƒcРіË#ûš¯nx·mZ šRÕöÐAwŽæ,QtiF d«èBï•Uýû ?£hzò\ T.D$øWÀà-±ú=†Ž0¤úPŒ³j mfv3ÂðO’OâÔ0RE:Qé¿¢&¦j¤atŒæ©d ŒmrD¿ ÿ{¼ 7…É#=û‡>Ÿ‡©.:}bU˜¹Œ™îƒYáQ¥d˜ãø©hBŸó\£¶Í¼° PšÔæuác‚Õ}fXºæ[Äø–§kkûkaõÙÊÀ,¿ ¬ŸO7Ý8é›w‚:ŒöóÁvå1uR$xÏä_Ò„óçèlœAb§kç²½¢¤<à…‰ù=$ÓØÈð­z‹{:¢ôTÅâ£Ûà¥ã¥‹ß"#»ÿå·ø…ÍãÁQp:û…»á.¿EyßOCá\ÂôÊl(Jqk*нÅ´W>\ÓFñ Ó‘;÷¢D ‰£Ì¾”2&v{eUŒÒ¬µÄŠ"ïQV4æÒ¡G¬(w„zèàKTà;È®wa—ß˜ë œ>¡²Á P ¹*'Xįäi jÐ$•LQ5ªýJÍ8Ù{5œ¿_ÉÛ*G-…PækÓˆ¼© ÷Þ £vdW3OøÔ)׎Q¿D‡z¤Þ—òtPßùCÝ„˜:Ä ß=ƒ†+ǃތÝõ=Ôp‘MDã©´siG£ÉPI©]øi4ýÿ;NPÍîßh‘Có*Z·_¤hQ¼”Bp¥-¿¼[sµC«Âïm*‚ìhíñakÒ ­'q¿sÂ(Ú\º°ÉæÈ„¶´¶wÎ\Ÿ@ÛÄ‹o×Ýô2-t1‡¶êTý]žoýò’O'‚ŠÇvý€Ì£öR d-Ø9²MzüÍë¢õ ƒ4+é—H ‰‡ù뿞†¸õ­¨ƒyñ{ŠÅÒp5 b®wÌ’~¸ 1U'kïõîòÝÓ_Çhˆ 1nMÕ^ ÒΜº`[™ŠÆçé¾ìü­ïv0l³‡|JÏÎÓ…ðåOtu`r6§G’Þøš ¥=;îçAùƒøùu¶‹ÿòÛH‹ÕT|»Q»2|Gªyêˆ[‚Wÿå7²«²Ò4ÜP?®¹ú.²/&ÿ‰·‚¦×J4üeR»qêƒé’¿¡•S h¾@Ú®<8ÄÀ8?éèG†9Y £ÿfoj+=t®–„kŒAÊ1÷ç½:ÿòuÌ¡;ÎÃ0èwa_× -tÙtÞU‘ŒNÕ}ÏÖaô…ƒšŒg%³ð†Éõ{µ$úA0$9Ù£» ³ï>“*[ÙÃq¢{üxÖ/©>Ïð6Ã÷2•^ï‡íŸ“ï¹·‘àmÒjÑ—B$ZâþÅõ‰gÝLN#IZyÈ|'’«¶ÉFr/ýU>bÚ ¬¯t"U¾·.{ï(Ò\/¹Û§=€tPêP¬‡ô÷-sÎ~fD†gñ!â¦æ‚ò:2»ûNtr~CV1¢Çò|ÈÎfîGT+ŒœìAk;T‡‘kgsÃïêä©Ò :Ñ2ƒ|wæöŽO#©0ñ×9hê$9q÷ªQô×w»¢ÐJÆÞP=y0~{æŠ'Úr$ú× ”‰Kyw1;J? «õ¨àDYÁ´z­²l”¯±§»rÛeÞQAåÔ3ië(TÌ6:Ü‘‡Ê—:ÝmÌQõ|‘…Ð)TÕ–ú`5ûÌUã2Õ¨¾7?ÎBí†Q†Š7k¨ËÁ‘ӭ͆zª{Ü"D}W½ Å?*hpíS )k †ðÛét ÑGžœý¤·Ñ8g2Ñ»ªM~Ä­µ é˜JEMy(š“O1Þ¹ˆr‡*®½ÈEË#Ëwc‹þ ÕÇ›J½· õ¥ "—¬ÑFRà¡?ì®æ²6ìê,ñ¦Aíßþ[ g.Aö‰ßó׿Bú—nRCrîÝø2nyV¬’÷>xÔ"òŸ¹Tî»|–L*—ß”ïlÎ>pH—Ðãò 2ïsåW7ª¿ÏSJ³û¦!³c£™¶aŠOQŽ_ÄÇdˆ:‡3]ï\º‰ºU<Ô7Om¢¾‹½½ÿI}4d‹zväÍ®7ªÒ*ïêEËþ¾xš}ÈÓìú£Œ§G†¯¦¢•„˜J³ZŸag¹°‚6¦ñ¤Ãåh+¶'s»®íÈ9…#ŽÚ Ýä©\í]µoÑ“K¡~¥…%”ØÑ1û ™z£SfðÅ™ôCè\8TUfÑ€û[MF¬¯† ËOç¥×–°zÄvâ=g'”R8.­½°ù[wM甩´>/ZYJàóVeëÃCž'jbûùI ÄX7ª½Jn€èi¥ ßH~CÔù²¹ 9xß›EZœåïÈõ}Ç ›Âý„þ£»˜ë¿~Ú §ïêômœT¿E¦? gÃX€4;ÕG˜ø:q¾Ç ¦’5ÀêÌ(Pø4pÁÜiw?óy°@¨ðu\6NÈÃr›Ûá%zX#/OÕ膣͆"?¾ÁÖ,Çg»h$° õô/Üå·ìo¢¯N!±d ¦,’” /1*!Ù»gE‚<¬„âI‚(R.=‡AQ¤‰ôÝbOóDz­¤.ÒKÈ0βFŽL‰ÜŽkuœÈòŒU.îÉWd{Åwü!rtÜë»i¾¹¯Æc fC¾„Ñö ¡ã(u÷èÓZ{ÜÛrÙ‡k¼EDfÂEÄP,·‚ÑÚî-JÞ ¶¯{Òaziü ¯QŽ|0„ÿ²*$*4¼B%Ž0Ê´¬QTQëR:RŒj$i¦×/¡&oÔNwƒ¢Œs.Ÿqê¨Ö’·¢nï&Õùò4Ô¬wr†Ç í*½Š·® ±xŽ‚[ð 4YçH˜¤1C³ŠWÆ=CÑâŽ{åún|keæ=¿¿­Ÿýê,ûH‹6A·“zÑm/8äÒüD;¿©)êr ´¿ØZ&œç‡÷ÏõÆüùŽñ¯ü6Щëy_YÅ8îßûÊsØé.‡4Ýýe†)¼CÕú¥ª›°åò§ºHŠÔø¾áÔ†Ù§1}lÊKóC€þ}ÈJ*žj¼Ël¼Ý ÅVÓúÃê4$ L])y ‰ò‡½ «wý±c>ê–Æß{gû—IP‘H&®^—5`½Z% j íJ®'¡EåÆjãáDh'Pɶr ‡Ž )RÑÍ)èꨳ+ÿ}dꯟ®@ÿDÅK-Á÷00'3rªsc˜*‚|ÛõÙmѨÀ¿uÕý¦¾l0ÜqÍ\&•F~»íqŸ~TöRÎÎÀõâÅ·ç`\ÚœÉIþ Lxú<2u&3D˜uÈ`ZIÆ€ÖùÌôGq³®=òɲ¬0gÕôíLþ®ÿ˜ç“Êßr…“ìË^ö—aÑõFÕµ;â°ô4 bdœ–ç‚èÂwÔ`õW}>… ¬;U:yORÃæ~õÑ©\°}Ÿ«´ê,e]ê(CŠÅÈU$æýMzžIn|¸LÂ…¤Kœ”DGÏâžG w¿?„¶†¶g¼‘Êȃé"Ò8‡©“œFºK¯üîSßAú–l†EU>d˜-]1A&>ö,GßÃÈìüzCñÛ[d‰Í=ãèýÙ˜%GB£o"ûÛ…­$W‘SYFÃKP¹ZEhFÇÿ¦hÞ &ä“?ú½ÓKêÿð[|ß[œ* PÐßå·{÷»TÂQ8¯ûô#Îu¥Í–=o…b&ãC²7PüF€)ŸxJ´oN:ð ”C!©EGJ {zìù‰²272–n£Ü“ÎUë ATªÔó’aFÅ:N]žFe¸¥Î)E‚*®wƒ'÷;¢ª`Q€ ª•¾¯Õ˜;Ш{_Fµöðc&%Däi¤¢ÿµˆÚ©¾<‰iAA–«PUÔ“}ö²‘>õ¯ãõ–:i4(Øãa!®ƒ†ë·¥òÊ7И¨ž[ÐôšPã\ÛC4eãèÕžE3¡ÜüÂÅn4W¾ [o-,D•ôü»ÑòdwЂP&Z…4 â ´vaÐÔ‡ÖÛ›~¾;hó©þö/á´µ;ÏòÖô ÚQ›Ÿ38D‚vMîxwêR¦}ø&•µ¿©ç©öRA¹CA(ñÛsðåÙýKÒ¾@Ö eçÛ†ïµO™Û4惿…ŠF ‘Ø‚e½$â²Ni0zYþÍQuŠ6Þõ¿ºÕikë¿÷pß ×^ÂgÆ[·¿Ëpþå=Ž"ÚÇóVˆ`_d’ªÛ”&“Cö7æKR¿!¯á™…¯çaøRz`”Šo>é+¼I ¥Mz=T£ <øÛK‹ó ÿòÛdöo. øv7%þõTïMi<ÿÖõ_~£v‡‹í¡,izô×,4¾¦·%Øæ…¦ݾ?̱ÐBt˜íä½»Ðz°—•€^ÚJŒëÚçá§Ußãä4ð‹å! ‘ˆtqsÍÏj®@ùžá•>ÏùÔð€FòY<¬Y³Ó, Cß=*nÃÈ£k*uæ0êV¯t*F ƽÜß*ÈžƒÉwWǤ/½Æö›µý0ënÍ8}úÌ5Þö çÕ`S†9a¶ºŽfUJ!בwdg‘0-’ŽK‰9ÕŠ$ÑN~AiH¦ç¬ÿóêIܳ½ùäÓÁ"¤¨¤ŠxІToŸPtåAšS½¥ïI‘NµX ëËÒ?ÐÍ4D†×ôwë^½FÆN»2ËÕdÞ½u@Y™ŠèÛ¿‘ ÛR %Ïú ä˜fžÛ’ˆ\M/Èz "OÄ{·‰É ä;DöõÁ*òÇ^µ÷²D²óo‚zpïÞÈe†Kæ(Ô+gíüŽEIi©d¯\@ñ«kVmÉ(EÿL¥-ø+J[nÞ¶˜õAYÊWýç‰FPvHá™bö(Ê-+GùA¥Ó’–þ󨘛YØ»ø•ƒ2è¸È¡ê­š•ÈØ´F½µ9êmz&ÖMuÐΓìæ=üs–У :Ýwß’%üj~Ë$úºðªÝdœt?×2³û ½/…šƒÔ¡ÿ/•Óˆ;ÿ47¤†øcû~Ãp-ºù˜ßùö¢mŒÍ5ÒìôÀä•Gƒ³ëå0cÌ¡“#!³ŸYO4ˆ%Á¼Éxfÿ ;,²¼X·w–ÙvC(,Xµ©Öë‹á…õÚVy™øC°u¼ý§éàpuisFÂÄ!öCƒH|éqòÙX$½²T®}H÷DeÏäÑ#Å Ÿ³MRÛÒê‘&ÝFÚ鉲M¥f¤ï”Íj^9ŒrßÎf¨"S[©W ²Ü&)mF^dóvÊðüjŒ¯^¦ûœDnRÿV⽱ț ñùòÛ¶Û_T¢câØðĽù r 2Y(ìŠrPTžîÿÃ[(.#˜ð¬%ê;˜ â¾ï/Ʈ͈ ¬ÑMáO ä(÷‹½ÃþT4*Ü}½%&A‡JÀ##Å?Êó›=QuæýÊ¢ †Œä¹KWyQ+Ô i*ÔµI>ß¼,ƒ:V§_ì»ßºùÑž·~£¾]–Dð~/4d^«={!fS>Ýk@“ïìf¦ýhö2ߨ‹N-Nñõ=|‰VûHÞì9ëÖçÏTº0…6Žñ³WcÑVëYús…^´“°]˜?ÜŠö<y>ßêÑÃÈ[ÿ<:òz_Š;–…N2{é|¹ÐÙ¢°Ó"è îl\•TD—’ä«Añ§‡‚írçfÞ…-(¾$aÕVÈRáµ³ñÜÕF¿äOÀçý—ÆŠ»!öæû†q'{ø”$ò$?N¢Ýc)ú!rG#@ði*¼· ½T»OÞ^Ù«ão¸ožN:+Iý£»¿ù̼ ÈÙ*Ýòàox4‘pã[ÈÜ4Ìfˆ$‚ãkx"rj²™ú!7ÞVQ¿òøØ².*BÞóâ¸!Kâ¿>X&®”ù”GÇÎ~£üßkAwès¹ÝóãÀ³hEøRçØqíOí³ÓÞ'ÅÕbfêTìû¥_ò߆2çt±±Ë+P~m$ùÄr4T”?ˆ8³‡¾^5iñzßl r¹=¡Úó÷ï…x¨Mg9?¨Ìõެ'…©¡ñÍžŠ¥. hVQ7"ž£‡VÚà GB;CõêäQKèp›ˆ=KŸ<‡ž‘ýç­Ï˜Bÿ=ÂÆ@;gTŸ·oó•‚aª›œût>ÃoòK&……0&7RÈÅäwÛL3+$`šhþèDËkø“”Í™äsz¡Í¿aþ×¶Õ÷—°˜$_Ú OË}‹«¬`u†ÏßÚ6T˜mëyÕa+_D@”¼ d„RYð•¡߉n$¦±}#Ÿ%$rõ‡›»‘ì£HÀô’{ó[L˜G椒Ծ¬¥ÃöÓE¤—{:.”åƒ ^'o‘œG¦ó¤WQ~Èâ°ªòú=²ù}pü r|žP4¦FnÝê[O8¼‘ÏãARvê¸×jüö¡8îý`—*à‹Âã¼W§õÇQìÌó‡úLwPRVärÓÃH”VæûåIl²mwn_±àGù||Î/½Q±ÿó-»‘TT!–4öÐF5Sv¶ÑCÔ˜o;¡ýI‘Âs=Ú©uDÖÝÅP·þûë?l\¨õ“Î%Z44°–ŒCcþŽ;9„ÐdåEvyb š}ϯÏÿ¦†/(žýaG+Ÿï¢„ihØßbKmâù$÷É¢mšÿJ€¾>ÚU̽¼«æ‰ö#¯.¤'ò£#»9Kåõt:t÷k š:—xžÑN¾‡.Z4K¤æóHGt‚«TVWzmu ê¸³ 3É(«÷ 8xH {²C» ?ˆ™Í7rn9ØÓšÙÕ%gv~ÈÌúãÅ>Ö‚äc ê/†!^ÿ  ¹?$ȼYMÞIƒô ú&[¼ë>«÷´´A%gÕ1W~¨å%P5sÆ¶ÍÆn^wh™#ÁJéíå‘Ò~ ½ðËx³g ûüVÁ[K_è ©ZÎzé‚Õð¤é òxËîCY¬ÚÎ[;§ C‡Û[ëv÷ë¹á0ükeQÙÆFZ¿ñúUÁïÑ&q¶”ÝýÛåNƒÅ0î~-˜±Ö &böÛÈ LøÔGj½‚é§VÉðGOëg¦êg˜}Ö"“l%s·ë\^z<‡ù«Š_Â_‚ÑžƒÅ€CƒÉ·–"ƒjRE²`yIÑ'V/ã—óëê?ôžª€MÉÅåaRvضH{àÙ.‡v5cs1Høâ|nÊSN$úmñJ¾5I´«¼Š¿¤ iŠêáç$ƸoL‘¼D ¶É‹…H¹póÄí½HC¸Á¬A¿Ëo‚ì¼¼”úHO*ÙFÿª‡)¶wã7ÆUoæ3§‚‘Y®ë\OC=²\mþuàé$²ND6Å´k"»ÿcK…ìwÈÉfcÍïþ¹JræõåçÔúÔZ'òÉØÕ0Ëþ~;T~‘Ÿ'¿†Ž’éîòۙئ‘›(\+~s§E™~{ÙÞmA1ÛnF+ÕrL´5a(1´tõ@J9ŸDr8¥ÖtžŽ3 ¬òédnK(÷"}¨øu *ˆ-‰pf¢b!÷{eTVñS&´»†*–ký.ë~¨êêr¦ŒwÕâÓ˜¢†PÅ~÷Ô\¢PgzÈ‚È=kÎJ‚ÚE=Ÿv2ôP—pÒÄ3Ñõ\s2Gm™Q?¦O¾ÈW ~Œ²Ô2¢áVtGÛÛghÌx`s⨚H6œÙˆASÓs›"çÐìÌ×GÍßüÑüG¼D‹Vmªeæ,´b­°ùñ­däFžM¢õ`•¹¬.Ú¼q^Î7D[·ƒû£ÈÑnßYˆE{JCw.àEûãA–Ë£HÑ]oÚaújÃ>Þ¿aü·ŸOã—;—v `€úé3¿æ]]q¸D3HBÆ×:§’SšÉyªþÒåÝxR!;í71ÄîhýƱ±Ô[‚'Ìþüõ1Â6Bvˆyåö•”9m7ž¼(/a#¿ëkÍëG¾÷üå¿ð=äíR2~ïþöçz:8`׿ŠJÏÑ’ýí§5ksTòoÿ”ü°…Ò¯¯Ý&GüõµÈf‘ùmîõU Šgðíñ3W¶°&¨öŽ%³ä_~cÔ3/ûÐ BÜCòL„Иw6Ë9®š6­3ŠNðC‹¶JòÞ±Ýx2‡æ3´ïQø?CR[–Iá—i˜™}ÀµÝø1ÀüÓóÏÐãïåÒï~ëßuž#"€A’{K a¨,û\â›V9&¨rÊí=ŒŠ)XU1Â8/K3ÃØe˜Ô>G꜒ Ó178 ®&¬à*ÿ§‡‹0÷XÕ¹Áï-,P ­Ì.ŽÀâKzç©9°¬zâÞu½BXYýx¨ð•"¬uÞ~+wðlL­°¼Ðß ÛµûÌï{"2§Žå]Q$¼jFèÀD“.l\áHrù¿ïé4$ãŽ*‹çÇ=ÝZš7-x‘"~±c8¼©®nZý´E§­5† q¤“ÿ2¾{¨"}ȹú…é dxñúÞ»óÈØ½R{¨`™mÛèzýµ&Ë:ĉšžÀH/øhfN_vo>Dôo“vÑü½‡£\6%úÛÇü,p¤üœGhCEÖŸJIêvãµ­£Ûâ—ÅàûØÏ;[ó÷ ®ÇÒýÔÇYh𜠖°"Æ×lÓ¹þâÐäÍšžòžš 6½Îl@s·¤¼].´0sÑmß]É-otÑCs‹‰ÝCqhNýó&Žà 4'Ppm3@óð$<Œ ‚ûF¾!hi?bîö« ZÖØ«é@ëÿ¡Š²;Ðõ˪ižÚ゙;*ýWwYÅÔí¯¡£ÿÁwŸFO蔞” §®Gœ¥«¼¿ {íöùöÜUèÍ|ÿ±yô2ôTM¼á2&îÑä[Àà\eóJñ& ?©xǾ¿ ~Ÿ){V× c9¾Eûa’®'h,¦‹” $ìå§']%90×?"þ®bb]§ÃÒ›  C°RõôÛõ»~é£áAÏ›5§‹¬ŠÒ`ç)Ñ9åz$t,ë »6…Ä‚DìÞ"©`ÑÑ]Ü,ü:p).È>b%GªvÚjî3H{ÄMÞâdÒ?!zÑÇ‚ ëL*ú,ÈtYèzb˜²ð÷ø¬’îG6{_CW äòÜf¦G®‡ºýÚîÈ+Á$?¬ôùMWeRÔP`.}QÄj÷^ £üó …Yû>ì+Ï@‘ßÃ-çQ¬ÕlŒÉ %)ª5ˆ²çpßÙO_æ~h£,÷ ×(—¥åñì *¸táÖå(T¢K rýʆÊßøßž:„ª9lM’šå¨¾´¡`ÂO‰ZìŽÙÕQg½^Ä,êh‰Ö·Fh¡n²hÑù7¨oÁLjü -ÎÚÝmD£©ˆO Iù"?·š=.°í”ÑF‹û;_… •Lÿ¶¦ÿ´¾To¡m<È–I ­WªxÄ6Ú™?,7usB{kŠü·s¹èpÈ,¶3½¹õý¬ÑésIßú¥t]ÒL²*FÍjòptM¤ŸŠ¼uªÄ>’â ƒåøŒø±&~(>ÅàídD ™¡§^éW…ä—¤jÝXÿιá3䵇˜žE ¾qø´'p¨+2 ¢šÿ´›çã.Ÿ½·û°ÞUúNÿŒ¥ƒ73DŒ$FáðF®Íé¤ÿâ?ºûT¿>»_i×­ÆÅ_íê˜æî·a"ÈŒŸ>K#3ówc¸î!cÈ8³ÊÖ-¹N¬\ª. [Wøðª´ äé1þ]æy÷Ö÷øÿíë`wáÚàÿ\óÏÏw×^‚Ù{' û–v}ó¦Ö¥j(¢$ §‹?Åé>Ý_„R}Q³×C™¥ùׯP~øR/Eê%¨»H¥<_5$E|õ…¡jýì}ÏA+¨&8¢ÿ`,ÔêhñŠ„­Ï²_—ØB£ÙƒÉ?ýÐÔµàÝÝÓ -qVùN–»:îá-·0†Ÿ3ëë„™ÐyóK……ôœ9·Ò|ú ’è"f $Ø_¾†¡‚ÓŸ‰‚a$¯6¦Ã²F‡Ly¹¨`B•-a>ž¦ÒTB^95Ãû'§˜ã`Í:ªÅóÕ¢ŸÜ/ÁâÝiÖ·?Æ`ùiáõ{*O`õKP –çØ w–‰:¬k¾ÜDÝâ"^§î þéõ/Ï[;ÐP¹kŠÎ¨ÙÖ}IÎB“%†ÒSF4ûÑÍø@¼->f¸åß)@«G}=®ñÁhýu´vðêÚ4åÅËip¢íäk•hϲ¬C˜öì\$´Þ5¢cœù½:³ø÷ßñ§Âý¶K^‰ «cðm±—Oö§ªA#e9U¦ú|mUa‡²“Y²u™àKé*F*Èkx}ŸÈŒjWb䟮ØBf™ÀSOH7TåÞHᆤ+ùMmòÝðYçµS•Í!ˆ—jNË{éÒ©Qûçþ³ß6žAåƒÓÏÆ_@íVêÅoñLÐt–´ö怴&<•sÍ䀟·Éãžßß»ë'ïÃæB ‡AF”®sôÓÄ',[ƒ—úßýAr0hòùòÌÇc086žrö~ ù&è8sÁ0cËXþ[0Üå÷VsáŒt‹DºøÀ(#e¥øÀ˜c¹ñ5Ê70š¶Xï©¿m×BoÀ”eî½í{b0=~ÆpœhþıӗÃì·j©d]˜ûR5]DuæSœŸi……ð,Ï$¼añ…Övw,¥ßk ð4†åÕ±ˆ{š,°êsä³i—¬óLøZM]†íT2yWfØf4°'2BéHî ÊûHxl÷×è˜E¢äl±¹ûËH¼3m·vNI;æ äA²ùy»÷'ë‘<–$ˆ )?|ì%T@êĚܧ‘¶æuM&9!Ò_s0ÈgE†(%;Ò»ËÈØTrþÞ±8d¦â™ºósYìgô<2µ‘µŒ¥(ŸbÙ­EÞ?V„«ç<~øŒ\‰F¡Cmçð¹ *~ä“Ò©µX«ý?üÆsmz'~Ä;üÒÙå7ÇŠïaÞ(\øläÒp Šr°Å½qB1×z³/:Ä(þúñ[·S)(1;Ãòé¼Jùí³-˜¸ŒÒº!îE5f(«ÕºÿûQ”{{¯AJY ö‰ÐS‘Ù¢bíÂeA¨,{HnìòªèzkÔ¼y„ªÆ¡‚ WPíIàf/›$jPö5Š?[FÍÁEZ&ñ]~£¿)°ËiÚunO|‹3QW ôÍ¥Ê{¨w§«q;ì*ê×]‰cfCƒºÃ½ÞÃhDP<ï/ŠÆ“=×/¢‰™ÛŒ š^­ç¤‡e4+h94Á€$Ö÷/£¥«óàçŒGhUž Òá­ß-q!¡FÏåM¸Þƒ¶*ÙÎç˜ÑŽmª·“›í÷øÇÊÏ¢¹¶ù*:òȤPCг“Kã'nïž×êü+§õ ìÆï §‡ÿ¹ß^<=™›F…è!ÄXÒìÑOHÕºDewQ Œ8ŽS?Ù' }®Ô„ÿÍÿ§Xz Ÿæ³) ÓûÿæQ–UÈÔîúãÉÞGçL!¡»(oíƒÔšÈC¾®AF/àSNÈ>±\AÐMyû'.ä&Á¿[_JC±÷s¹õPšßÒwáåY(¿DÔ½(sí_~[¹Âôf•¾…§N猇j™ó^9µ{ÿå7vW*/ihÐyÔhÎm¬i6û¡YÚíöÃ/o å­nN5´Ž8Vq~Ù‚vïŸÝ™¨ágS`·ÙÐüºþæFlM6ty´Æ:O9CÏÓé¢ÄùmùžC¬ãcÔ®#5J:CŸ£ƒŸ‹ÂV©PêÏÂï¹×'ù;a¬¹vÏlä ˜:!xs¨¦U%Óâ¹áO­ö\ûû0g2cdÙRóeŸLæÛaÑÌ‚åñœ6,Í8­û—çÀJrõÝV®6X{(Å7mØ /X¯ÇêÃVAÁâ°å$ jy9Õƒ„&K a»º-²rÚšÿˆ$¶¡ î’\Hºé»ØÚ†{ò¯N¸k!Å=“XéϵHå1²ÿ”ÝÝ]¿â‘Kt¶@:©ü´¨\^¤Næªr >õú_0Cƾ7m¾óÈl¾GÐýB²Lʳ~Yl@¶ ?Mûý‘ã¥fŸ÷@®óÕq)RÕÈ£gÏõ‡«ùèäÉë#‘ÿúéÌÊ4rˆ`¡ªN…‚« ü/3eQ(Q&~Dÿ#Š”3[Þ~qÅ÷ɾ;‹’ï·¾1òíúÚèš ÊdÕQ”Q>@ÙJ2ªÀõL”IØowE ä|=©EÅÂGg¤¼QùñqwâS¨5ål”h‹ê=­Rm´¨ea[²øø•ê vÿ¼›·, 겊øån‹¡ÞþÚ@'­ÔO´)÷û„†”ö–H¶…F¶?Ý/ýDãøÊ÷DZДžÈW‚ ÍîU ˆëF –í ¾;Õhù倧ðõ´Éh®u´‘¦f±rD[YuCg-V´3ò<&Xví/2üù!ø6ékª=^@éb6ÕÉ~Èë:àÎGµË[ÖTߢD!M%ax³ï.$•[$˜ÖÄBÂä•z‹¿s©¾ˆe~‡ØSU/B º-%"\>Д°„ØvC¤äÚ’í¿z¬%R~³ ëÏ^Ba…_¢Ù%o¨ˆá/í㺠ß$¼'9ku§Ïï¹sq꾕–r›€F͖؇Súи¦û¬íÈ>h*»Âš^ÐlS᣼6ÍO_¦~̓æþ†÷éÇ¡ùmlw 4{é-×^„æËS‚öŽìr¶ƒãIshqÉâ®É9-Ëß~PpAkhï:ýChÓþäÃîÝíìŽvŒîÐ>“Ú-q8~®ÔS²›úÀ/ý¬Ùê— óv—º!e tuäI“¼¼ =ŠþIÜ’ÐÛÄ~ÁÏ2úìTVÜÌ`à¬{Бj¬¤!Ð{ÏöF]å^¶ð[xuß°a7Œé½m mƒ‰“ÎôíWaZÞB¬ý"ü™8êÕ˜|æ.vyŸµ¸ òha‰o ~¾„V .u¥î†µxrýçþ}°¹ä£ýkØ7`W.Ÿ@BÂGdï–‘¨víØŸœP$©Žß?0ó Éú4*ÞQ#Åž?%NJHµ®óÑ£ýHÓÑýþÃ0Òë´úÿv,B†ØÅ8ÖÝ}ÇÄ{¯Ër™ sxxjŸ#ësiÑ9dOW0-x½\ éE¹'~£Hk‹ùÕõ8)û”P žMþÓaÜ+Ëÿ$u…‚,ßIE‘7 Ž¢ØSÿ ÂÏ«P"Ç’÷±@ îãÎ|ê™´e†N¸ éõ£\°x´on뮎öO÷ÖÊ£â6=ôÒGåÐlG®ET½’à¡m€ê…5 ìå˨%rX€sØ1Éìæë:bÔ‘$¿’ðu#“Y¦3 Pßð\{¤J&ÒEq(†¡ÑÍ©«×ˆÐ¤¨ávÃã(4 þrð—•Z k‹U B+ù¢Ã~—¿¡õu©‘… ­hã“ÀãÃ|mOÄ$•ñ¢OeH´K'Úßt.¨åŠB‡«?’ãèø«vfàÊ: H»Ãp÷ßÜ÷Šw]6¿ŒÙÆ/Ïûß¹‰nö#¤•a©nðþ)}(z¥'ußA2¦óºÔ€’~5>|H¤ qt啯ÖAŒšIÍɱ«ðÑ£Eu+|¢ ~= ó†Hf"—à”x§bux˜w Þ¸÷†«BDK‰ãûÉÂt÷éh(uIØß{‚ç¾Ûßû íì%¯•ãéô\†¼¤ ²?Ö8RAÎS ®_šKòELÓ÷;ä^>ìqƒÕ rg÷ŒO(–ïrœGìH’äM)P.øŸkþ¾t Q¢2È_ÊÒÝâÉù{}>z ç/¿N‡â6²WäPªêÑtêv”)ñýhüÊõiiNXC…ç‘+ÛMóP¹~†˜†7ª¢%\->«Ã÷·vÞûJ>BM“gÕKQøaG÷mÿ+hXåꨤ ‡¦ ¤ÐìšçТ­¥.e¸mr³úáJzðó:ùáóÐIOœÒ«bÝkOî5)B?±£e¾™ D½Úq-"†!/"Á wñâ%\¼U £/|:K`|Ì…JîÉL ü¢×M 3;jkÏ¿¿„Ù™¹¶¹8m˜Öqcõ,‰ó>éTËÞ“Ol>×Áêó…_$— aý×koî^ØÚµ¬íô°3v׆XB ]ô÷fR• QãÎ~ene$qû5üÈ_ɸEŸþBrîÁž¤;HyÎôž ›Ò°R쩱bDz"ÅÃyŒ.ÈðÞâ‰82¹$;µ˜ó!‹<ÜvJ²B6Á¹ÆÃÂÈa’;üZ›¹~Ð_ÕgCÞ¦Æý|F=( çC›CÙ‚{UÎó¶…¤¡ðékF\7O¢hŸÊUÉ0”xðùx-Å'Üw¥CrBðÊúÔûÊÎ/¡¼ÙÂ5!fTôi9±+7åíš ÷sQõ7Œ Âj¼ÑT#·xƒPtõÆç q¨CÆ0Â:Öˆº)‡3‡JæQßÍñȘl4ŠOVñÞAc:© ]=4™\ë7æfÍÛŽ.î¢E†«d¸ØA´JXybã„Ö}3•g'/ Íº­¨K>)Ú‰ä˜9ñ£ýñõÉ@Ñt(ãî­ B'¥Í`ÂHSt®=º’1Œ.w‰Ÿ@P%8³ÁbÖ/‰´Œl‡ß9ž„† V¤7²…¯:,ÇTžÆC™C&Ð|!q>ü#˜òø¸×Æ—vã¿õ"õ—9iÖ¬q”¡ Òº·¬ë×!1$ ôLC ÄAËãSÆðY‚>Óï¤q®æˆý½oNŸØk¹»Ï6PB][®±W-4ÓÒV‰²„6O–Q®ÐaäÇŸË{:{§L&¡'Ù=ìÖÑ÷Ðoû§3Ôæ- „¶>•—^‡Á Ã_Óö¼ƒ!ÊÖ“‘\0ôP0ÈRá$ s*LÍ1äÁp÷¤¾Þ‹vºç€z¬0*¶/÷èQi»/;Óã•CGïo‘¤¨yTÙHL½#Ð;Ð\3zOÚµ`–ŒW\ü¼Ìn•ˆ'?v†¹¹² ¡¬Ë0ß'-ÕôŠʆ„Y’¢jèH¦®Vµi‹Nzœ¢²¯"Eäú¨™iÌ;zÊØ¶h)±A~c¡“×6d^î;$¥¼éË ÐER¾ýLè8ÿâÇ –x8 ¶?‹\ö üÍ—\¾ÿAëïsH¦Oñs¶ø†éÄÝv{0óÂ'}I׺ ©Þ·Ë]ñ‡Œº‰– ½­6:ú\áý®žYcÛÀ…Ãl"ÜQP´äêã3 ¥)t‡v \ üÑ£öùmë`‚ôïhøîXluª•œ”ïüËo¼^ò÷¡ÁmóGÕí½»q©Ê¥=ë+ÐìîíìBÇ -_†;^¾? mâL¼b £Ðþ ˜U˜‰:ÍnU4-Á¯¬¹kÜSÐuGŽ€FŸzîOå¬ÿ—ßþˆÛº&r lXô©ðs0ôôé‹À4_á8©/© ¿ ¶‚/eÂØÝ ­ç{0qç &³ïúSM»Ñ«)Õ+Àü¥½>ѳß`‘à~³¥|5,}2òöÑIƒ?©“‘aM£ùc¼ì®nµkÙN’ƒ-ׄÂ@¦Øù@ÇT#Œ„¬‘#MHô¤Òa¸:I$Ò®YÝAÒŽ-×—pÏËâ× 9€ÇÞŸ È­B*Cšœ; EH#«yR?ÛéDrH² ‘þÕëÑ öÈhpºéD 2bß øƒÌjŠƒa[ÈÒ>žò0 ÙBšÛÎÜEŽ“íÏøï!—áåÓ …ÈÖ²î§Ð¼£F §¿Ù#ÿ©‘!»£(pç(·{õ Súe-€BÏRÚ_û Hä+_YA/[šQÕœw@ÉcŠ/K:êpß»žLº/” ŽÞ÷he³ÎGñp \§Ò¯ 6Tñ[KBÅâÕïÓÆv¨V60|¾UÓ¶Èßìû€dPµ¼o&èzŽ"&hÐM4q¢öïÈVǪ̂Ë"‘F¨u õ<«ÿ8ê£~Iï[£ïh¨:,´EXˆFaa+tn  !ãaÝ»ºhz‹rSqšs(ç*¢EÃdùï³Ýhu£5ý]Z×\}8m~'­§¸¶ë ¿åÑ^9K Nú;:„x03LÁúö—KÊ>YPêš§´J. yLÎó•ûCvõÀò|Èq~WñZ&@bIðo¦D­]‘V hü'oò«Íó]ÖZ<ÈùO_¼Ð»wà}л}œ5 ðau9ÚòÔ"ÄVKﭲ󌧯Þ-4 A¡2¼ Q† ó®[Ï ëà»ÔÕlÊyz¨Ý O‰2ûõ¦–ÖÒ>»~Ë[\ZYw|ü6ÅöC“æZÅú-hª<™®IÍTŒ›–Ð,ø~“a94³¶¬ý ßå6Á×6óõ‡ Ù¬A¬@ÁšË^x ¨?†÷WµîçA+›”Ç3U_hýQÙua—ßBÄO³sA»›ÓVù]ns¨ªúóÜ:ÜF÷À¯Ï}B>O¡s@îþ¡+Ð-ìð†VzΚ:½3¡FtÙ«Ðosºòôádpj( 4€Á—ûž^‡a–:Nï€é–QP.‚Ñ©[ÊfÖ0¡ÊYéSqǹµÀ•Ùã]/`޶Տ`KæKUß×rÀâ'îñ­,X.±}¥hklÑU=`ãé›ûûÏiÀ¶ÞÝ«=Ht·Šw}RF/Ÿã’øÞÎÈ1B²k—kÎ+Z yDÊ|Ý{¤ìеÚÔCKÆ?­SH7ižÚ¿ëC ví¬cÄÈX>­Ü3™ŸÔê=k@V1‹)Š;³È„¯Ü“§ó•Ä¥vä6zUé|³þëø=PàäJ¬ö¡à¤ŠÃ¶ï^ºÇ¿MC’„"ÖOD&Q ÛßaÕA "¶ÇOPªªÜãçó(ó8âø³³ßPnÆžk=3¨@¦~L«3š¿Ðø¢²›)ÝRT5 ¸®÷ÕoEdŒBÍYŸ.y]Ä«ßË'·¡û[]Á‚5Ô}.ïs¬6õ±%)Eä'R/–²$ Ñh±Éøê4ÉK˜|–JˆfW Otœ1C ™üÐJ)¼2öÚ,Z?¼¨uá;Ú\NPø-dƒ¶×dì½íB¶ÜÖÜÐ>+îËšÁCt˜´çÞãDˆN*Wâ¯Ý¹‡ÎoÖn0Ä‹£ ÷1B¯t-Lùð¶ÂÞø¹0{ÿ*:+£Õû¾g½îÿÛçuêË‘ãaBÆ'ÃÜIÇ•j—ÀzBg@%]l1›=ŒÒÌ‚$Û–lzY$Ô¨ ì‘E¢Œ¶<•F$SŠîFÍHºš¡; o†{–ô…j’mÒ¨;²ö¸-RþvO“ŽBº6Mâ›ï‘áΑ’=Á$È„=É~‘…1Êl4G Y7U®5ýBNîߦšœÈ*ßµøËy±g&AÒ‚¹òšxÜK|–äÄwk–I‘̈’DÑWäË|v(¡2îfô=÷ñf9ì“¿²g>üÚ‡ò"—{B&ÆPQilZ+€ •‰-óœCÕ,[Ë’k)¨qæL”· =«û_%ƒß ö’xçYs!Ô}/­ãÆ|õ-3¨5y£!ǂϡP)4&à ööf4™¥h7¹Ó‰fü¤Ñ¢Œx5 †­ªé,*×$Ðzm©ˆØym'c‚•gÑîpg^Vÿc´Ïßy±ü¾¥ûÂnÉ¢Seë~Ùó¸ÿ†kÄŸbt=ÙÂStò¼ïsFü;Ò„ÿ!y8 ¾Ÿ°@eòÂlµƒ:”F[ZÝ3 Æ,y÷6“!×'Ê[øZduýðkÌà„Œö}ÛêͶŸ{ôÄüù 1*v”Þ5«I[A?$ q¢fos$Žþgî£[ÕßzOW3JøzR'}œ,~Ñ,WKCs[iãq}hçyë5Jr~Qü ÿ•™ ]¡tC;¿¡×äÙÎòœ2ô¿V¦”¶o‚šN•[=0-@ïwª†¤JÂ=sÁЇ´ù0,6'öv†{=§LU¹`dbìO¯dŒ‚u­‡30Âq(ÒÆWXÚ ^4Ãä CS*Õ˜š4ÞúÂc3ïR+’¯Á¬êÁoMî0§-’œäó¢…Ì”½ang8ÝØÆï¥å„Åúuõ˰Ôòº²ÏVl„ýfaÕ1ñFw²=¬ Óß—Ÿ…O{…öPÃÖŸQ,= ;ß_PPD#!ÅâF“÷[$Ò 6÷Yü…Ä×4Ä|½äWØ ãþj$ÛßÂ×¥¢‰ätwÛrBâ‘beX^Í©¶ù¯€â.¿qEìí!Dz±¥K#hÁêçÓWCd >¦Xp`™Š¢{:ÆŽ ±0›ÏÚ8²žÞyÑçw Ù‰÷ãÜ÷mä(È}bÈ#\7½Ø«‡ ùQÍ¢ÒÈ'Âó£ìÁÉÿÃo7N=¹„‚c=í ×a—ß„¶²ÿ —<žrE÷^ +wC±ÓÅa6wP<5zæ]òJRöáüÇ,”zô>RtÓ¥àxTŒ²æá Þè£\‚rì?TPºÛÔó «/É’3¡² †xNõT·žï©@Õ½„wÞȾCµ®ÒAšÓ¨Þþç`õb%jWç0òØ rZ¯ÉÕ(¡ö¸ûaÛŸ¡¨{ø~\þ…z="TûX­Ð€£Øì²ëR<;|&í‘môH‰Û£±ÅÝ,4ypu›¹M‡o: 9m ¹õ2f4B‹fÉAÂCÉhåõ „fF­küv–D›s7ªtÇ,ÑÖË9#‘ í|}ðîï ´H¥ÒŨ†_¼¯¤qÝB'E‘·]ÞèìET],܃äDÍ©>9AÍÛãVC¹Wvy‰I•Žñ#ä5¼h.8Æ ™Üå‡ýL~Aú'›qÑ4H±U6=xöÄ?}Þ²ÿãæÞŒHý½oë0ù;7‡û“ßß:¸/xtâmU¬w¿o‚Ç[§•J{² Bv~×G ¿ûíƒlÊ_Ô¢e!wXã å2|!±N 8EU¦ÆqçþêÞ´ÿÞ¢”Ÿ†½Òÿð[±¶vY›|û vfx7Þ¬ÖP'Z]›ø—ßöN]|¿1üwNq}±"4q„wúôšC/KŠy„@ËÚ« jhónðW:Þô·ïä­ &Qè°ã”Ô(™‚_ã‰3fg„ +þñþ²7yÐóþñò­¡¹ùm´ÆŠ~ç3 ò»âÓ;÷ÿÞ·ÇU/†áZec†ð;Øã}›ý#ÓT:—Bâ¶~Z’ÀÔÁ Þ;)0ÓÖö£f+\„,^ËÁ¼ltüÆL,dW=¥=oK.ʽGK`…¥ƒX˜V§.‰å¸ëÙìö'ïÂæfD0Ó/JØQ <`å‚CftìoÈ]Í®62Iˆê÷aÌ<’fßÏ ’BÜsnÇ›K)ô´Ë«Ê‘J\™)Úli¸]£{_ 6ÏpAú7’ç²Û…!=騘ó2‡L!3œ2òÌ0C–ò8î(Ápd;£èó Ï9ÐóGvL3r±m~•\NEî)ŠŽ³ŸÈ[rМ¶˜ùÝÿ,W ÀÙl©•A[ü±eÆ5Í„BÒÄ~Sj(róYgª'Š}6ª(¹ïUއ˸ϣÅ{=¦eìOØFЙ¡ì§ŽÛ_ñ:ʵñ2 ^G…}çÂèP±ì¨ ‘§:*Gpùzµ UKiòfR§PCP=¾-µžž"¬lUD¬º36°ˆÚSVšrc\¨Ë,=c؇zg¾{ؼ@ýþl6ž)4<~n£`ó µºLDç§7G3Ðt™áÝV`(š§ÉñéÅ>BËûåÉn3h­×ý¾çÚ8Žîy牶AeËæYbhWùfá©:ˆ÷\x+ŠŽñª&°6•$N©Ÿ%·ý¿V›¶C®™ýi±ç¬þ¥‹g‡ºR¼Šu{ !¡°P ûa|þ k‹¥»ªiHñç0|šÏ l½Þ QçR®5Á»…+ú1ºð!¢oìºÓÔß>B|-!C B¦ÓáK<ÕŽæ(_|ihêÆ ßê­ëüÚ`7æq(äû³ë{ge¯eCõKY¯´9hdаœ¾ y~XõšTµ 5 éÎSãý”_ )õëwáÀhÊ 7Ÿ!‚¦®©dölchæÎa×-æÔ‰›S” ÐrìÊeþƒЪ2p¼ ÚÈ kA[_Òƒ²Š£Ð^øòˆƒí"ü,ìIÏúFUÑ2ò\ÐIC¡s]ëtiÞí˜v†n¿ržÛ_¡'a?WÀpôQS³§ð¨@¿Ù=ë¡£ô0 eîG/_ ƒ'Þ¹tІ¡_ÖûYïéÀHè1Õûêû½^'®ƒñ:“²*0Å}ƒn…^f‚ßSÄÃlÌaâ¤A˜·¸A¦î,‹bÁ'4Á²šÄ¹ë´Ÿaõަãšþ!XŸ—?ãfI[ïjçv !Ó¾…Ånj$â=Ê3ð:’°˜»uuÉxò›Ìæ"ù>§Hy¸í,“÷>¤®È»¥C±ˆt¶³~ ÞìÈ@{'¿:Û„^^?‡L‹Ç/y9S!K¡iü$w ²Õ4 “•w!'ÐÓ‹/Ÿ!w|]ÓÜÃäó>öåæMxefqc-©WeQH»,90æ3ŠzÖ\;d„¢³Êß"_¢ÓHÔÚ”òmR6=ùeTê|·£RQNFÝû1É”ïâì}á퀊Áç&Òß¡²xoõµ]R¥¾y ÑÈ ÕMOžÍ#o@Í‚À&ÊZˆV†O?£™ã•êZGÔ½›[Õ7ôõÕn²l¢!¥ñ±åbv49#æxN M2ïØØ5z ÙÙ¢s?ŸZ£…ûžÚÒ.´RõíºÅŽÖ÷'Èï^(D›; ¦nŠŠh–7Þxí2•÷ÙÚ  ýïå"Ñ3ÐQÎÙñ]ü[tz!éÉõL÷³¼´y§ý ]rÞù^dŽ£Z"¿¡Ûi‹¯ »Q~­ëìn¼Ï¤kÜ1ø¾ü‰Mšö{½ëcvG„&³ ñðqÓpˆ©ò¦sÓüÿ,VN]Š…hŽëC: Ròîq£¯ÿ©{ûñÆÞòP›lÑG@„áû[)&ç!‚-ÌaO›Ù?ºûï!ë¶g âõí3%öøþÍ3‘; éŸwú²!k‡%ÖL/²'•ím±‡wR]ý·_ §-‘þÞï»»ç€äWäf+<Šœ‡ÜÒ•çWc½þçšyC鋟Íæîx…«üíÇç}ÒQ #ùÓ3xµ øiÙ"Ù(åÿ5wðù](cdÉsc•ƒr å3“¿v ‚Lóà“·?¡2`¹Ð°¥¾Î…ïð)Ò÷V…/ç¾…ê¹,vSi¨³&z$ôDê ÄÄߺ¾†ÆÞÞãŸX¡ù,û8£ˆ´Ú²†‘ªBû‡½rž»¾ÿKBj€™rºi*ÞÙl¤@ï–CøÔí~ ׊¤è„Áo„îìl0\]^ 5Ý ¿WWEåE`ܸ·6Õ%&óöп¾3v߀v¸f#>sP^‰€y-qu-1Xäâf'=Ë¢&‰ÃM`Õ¨344ZÖ¹oŸr'‚Íg’óaÇ—×ñزòè ¦D!Ñó$6µ`5$áÙ V丌¤mš+$TŸçGÌ©ðn¤äöÉ7ÈÝå·üŠü—´rH“žõ²ÿ2œÎ•½OÜ‹L´ĴËõȼ@Âx±”YÛ®±^)y‚ì7F7UùËÉaÍÛ§yuXIïõK!çžÖ†×P°áÌøÆÎ ÍõÒ›”L¢¨eç&&‘°¯¼Re!×|u Q–œÕå÷ë”›™ùö1½6·ö®Ge±«/:ÓePõæÑœŨ¡÷‘¢a…Áï%yJØÔÖiø‘€º×ë;NT£>Òd=SBCªë2wsÑhëp‹Ñ)4™¾= ¬…f=º=6mhÑôÕùÔG´%]‹ÜB¦Íì°ª]ÿ2»½79«íÞn¬ñz­£5‰¶ët|m4p¡í’æ¡ô=º¨èËÅH½Æ–ÑÉšöDè=¦zÎiªâ.?¨^õ'G&öB%góWÎZ(Ãé‰&ÈØB§ÁrvƒÏ\öȲŒ9öã:d¸ß/£ýiäEôŸƒ,3ÅP”ÿ½_Í‘â€X¡;byCææ2çó" uv"êÎ~ƒ¯ôÏ™Ÿ/AýÛ"e“IMh1äÿrQBÚî%“JÖ‚_uºŒ›ÆóÐmð½+»ÿôŽTxŸ üý=j5Î{`¨¯¯íÑc¬?è*ßH C– Ozê¶`(ËGêø9 ‹-,¹‹í…á¾ÞçÖî02¿™3…Qûsï¢2R`ìëEÂÆSr»ñ±¡t$LÆã¼ýÃ\˜V{–Çq¼fVLÒ‰J`öä»c—ÌïÜWâÞäÚ`˜?˜'Gæ ÚMoCÖÀ"ÃÕkæ“°8Ùaçuñ, GŽ´ò éÉéWn°jÚàóò¬}Ûûâ“Ï;ØðïQä9H[îÄi½´÷`çú1&œB‚® Œwsüˆx²w_‚)ky0Ƈo"IhzIçõHF£w{íÝyÜS\¡öôõ*R|"É_½p©ân£ö)¤©älöqIÈ(Ž9’s ÒmÖŒE–¸!¹ûùø ¯"ÄKÕ+Þ’†X»§áÝ÷ÿòZMÂü#øtô™ð¹Jõ]ÝænÝà€8Qƒ¡Œ_a@p'p;ƒRÒ¬Æìûüo«ä¡ Y]5²ƒåæÑÕ¬·ç’j­·²ÿgŽÍ Ì=(}yç0ãG)(?îZ5ctû_~£üi_‘ ßb¸®¦ÊAµwCƒÅ¿ü&Þp{ì«64„w繬@“Ú¦V®¥4WÞÝZΡÜ+CI(œ’¡-ía½nQüd$˜KeR„ް±æÌäaèäÍzWæ ]uã™N@O¦Ìåß#Ìÿò[ÿ)³*{e¤ìÎ< C½r-¾ÒÀp]†Òï•Qømñ-_¦tWç³ñ¾¿Ú.ÞâƒÉYÉ çHaÆU6•ˆò$ÌÑ3Ö­{ÀܘÀˆýT<,œ"6«Ïî†%zëƒË?4 8ã `õ_¢Q;¬?ÿÀuñ°ùîYâ{]ØnÿÔ¯±‰©Ë5l³H$—b“q±‰;'»eŽDÒPV–“N‹¸ÇÖ)?!Å^cZê¶"¤¢vó-ú.†4ä—».žÉG:ÎL²šÔU¤_´³°ˆ yL®›8#ãèÝ…èò dVy·ÿwãkdI9ü!,ÿ:²Y¼Ü3ú9˜V+;%¹‘sü¥ÝD×Gä.õ̽p¤y_NÍ*D~ývÝÛü(pˆTëÉz æ=ww{@‚BnɲªÚÄ(rð]æmMw{£it; %£‚Ò‰â>Ñj‘‘”R¾Hö, e_è”A¹ºŸ3#÷wõ)yaßå`T¬hº$€Ê‘þ#±wQµ×KW^ 5´Æ™ø„Q+Ãn¿‘ÞMÄÁæLÿù¨=·•È\)€ºL Ra…ê¨w¹ªÍfuõ7ŽZ[-Ò£áKâæ€ 4f<Þ†&iÔ9¹ÆhæÅ¡8ª~-ô~ƒõ‹a´ÒûZ~ÞŒ­s~» Oå¢Íó…ài´“àþ]ëV‡öO2ýÊTO #‹]8Åmtª :Î «o;z9cÿÖwòEßöøg~ýçÚ'[¸üôЮ-Œñ> qCþ#tß !–z³Íò±4|R¾-íz¢Î·«¹Ã ïŽí? S`4«¥Óô†þy]úÄÈ­ßv_¸:Nó]¯þÛwŽ|gÇ÷Ÿy÷ÿèD&ã¹ü“7PïHÍøNäo¾±gØÑÃШ°Â{›2ãóUô§Žÿ3÷¾IsúÞBÆ9hrq‹¤]i‚¦:äðVš¦_(ùÛJAó{ Ï颇ïCbµ².Ðê´PñŠ ÚôBÞ 0=†vÙpVŸ4øÉÙæÕ~ cïâÛKkIðkÇŒzÌŒ¿ÓêÊš‡Q°ÚÈ+4†q÷K{J#™aòÙâ»&ßaº©À’[¥f5«Í<‡¹Îêñ¶XHjËë¸B K™D%ÇÆ©`e±Ý]2‘Öí«Žˆ}ƒÍU²€ã:H@¸7¹ÁŠ„ß"¶Ìú. q±r‘½A’®vÞÀ=¥ûöçˆ"ÅÈ7­ön6¤V“\…-¤-x®HV{é“_/?|ú©²gXÎÊ!Sˆ¶èS^Cd±6:^—‘ƒlNïe“~V#ÇGºmûLsäÏ>`f§‡¼cŽ;ªÃ¶È?¬àÕ…‚‡=+æfOãÞ5S†1(\ ÎÝÖªŠ¢‘/g{9Tv}¯»Zê¨$JqöS™Ä ôÀöåS/Qޤ¼é?ʧn8ÎŽ¢¢ÃÂWN‡TZ:wKFÔUZ6”÷˜îúƒºüÝÄ/¨üÀÊý*",ø]FíEúlß®,Ô½¢Åç¼q õåÜkHÐpÏ[šŸ²h4ÄOV>]&)‡sYæÊwõS|­=Õ-êTÕKÙ¢•†íCú»:hýÔ8¼éBÚ„&¸·ë³£m¼^Ìu•ëh׿³‘`í‰Åá‡Ðñâg ›Êè4ßÅ›÷¦÷?U븇®ÖíU¢ñ æsjÊkRxÈùý†öÓóèÞîºòý,(Ÿ»¦•òþ«³„ù:3_!F 4ëË[øhfª»OWã]ýWOÿÕ×›§Å÷ÏAxþU{MS¦Öÿ¾î¿_ÿ¹>«có!Uë¢fä‘}»qé½£g¢!+鋃¥ºÃßzoÑÆÃC“`eœ‘õþsV—êŸôA®Ï› 7ÿß5oÿ¸9éçpÈ7PùÁ×¾ ±2MGeZþΣӊ¸õÏùRÊÂrÃñÍ8”øtkî@ÙdMä£Ðv(ÿ)VïxÓäß|–p›¦=kÿœÕ7ºÊö®d@mýÕkvb' žKÚ– ¸€ ”Ñ”·ò‘‰œ“ê„‘¹åد=ÕÈšR©¬‡ì¿ÇS…‹ûë0 ò¬æu%Ù!Š}n·© ¾9ÝðTå eÑ,ö÷&¡(YâY Їž2Ó1LD)Oï¸L["”‰?yó§Êåz¤ç„ B%Sï­_/Qi®I·DU­/ñ¬m› [ûY…Ú*³hs¹è›¨Ý²ÿ«8cê^ývÀ¶Hõe¼ êí Áåljw0-‹\ØåG“IÂÉÕŠ(4<*P›ˆ½¡ª4†hMôá›Ð ´‘&NRèFÛó¼Q?å¿¢]ÚÝ…èàF>1ùX(=7OŸAçÁÛâ­¿¡Ë´‚yª×Y<(Vó‹V$*tûš]D€ÔñïM½„Ö¡¾¶.‡æËC¨¸›N:ÕJ²®³Š¿¹y !Gw¦‡ÿÙÿ™eg;7džþñ«ÿêæ¿:ú¯ßýW§i̶kêý³Ï«Lúüµ÷žüûœþBMââ?ûñgH|ôY‡Eè|’ðˆ·Wº×n´œê쀾‹½äžÿß\YTÔ†!ßÁŽC>0TÍLtþ« ËÚ­½ÊÜÃΚN10²– ̵E£'_†”üò±‰ƒ:Ê´0áz9·ð›LN¨E¼ë­†é»g/føÀ›?¦ï `öm©€êK˜ûÅŸ<óaéêN©6»géG{ß„o°¨vÖ¬¿Ý–Èsμ> KKŸ§Þ¹„ÃÊžü4Ïì:X…WŸëG`-A9šå=l˜¼Ò;•I[B¯/xÿï~OZ#$¬µ;3u¨‰6ïmÛ„ ‰Y#›7ï$-Íœb'NÄ=§·ßˆ2B kaÄ9?¤²fÑ6ßå7ï7WɶW.NÒåìK ¤ß¾|Qè2ªP/NÙ)!“¯hƒÄê7dNw¼¢Ьœã>¤ýÈ–óp€K#p#7+" ¹ö?xÏ×€<*Žß´ù4‘o­Q‰‹â_~‹›–{/̃‚¿gˆ„5PÈ|Aå£= Wl¶9˜¡è¾î(¯ñ£(vý•Ü)r¯ÊÓîžåBI¡Æ“ÚÍ;(õ™nú-/JNõ\°’CY×Ùq>{wõ38˜t´Æã-³Pñ»Ål¨e,*3³ ÜfAz¥øû|k¨²å;)õ¬Õ$ÔÜ=RQ=z{ò¤Ó3ÔŒøàÆ ~ ‘ý™¯®®êy(*ΞEÝ(–¡zq ÔWð5p @ƒc[éÇÐPÎñ0Á¢Ѩ(íBcwQ÷æ±{hRýöw®èM43S~–ãGˆæ£”I8|-#÷¨GÔîr›F/oþó%´QÌ·yÌŒ¶&´â’u!hwºÀ‹­ØíãEEÂ\¬Ða[<¤›ÜΜH) aÅýbÆá‘è’ÕJûK÷î©õˆÞ×/Õ+ϯ5fþ£³ÿúÄýçÿ_þW_ÿÿ«¯ÿ·ÞbWÕB˜7ÿ‰GSl•X~¿™øG¯ÿõµÿþ¼ÿúPÑ Ñ-îÉ6(}P6ðÖ–ùoÝõÿC×[FUhQ£tw·€H£´äZ4H7’¢b‹Š &"*  "!%" ÒÝÝÝÝí‡÷½ëã}ãýšãÀâpì¹çœ{¯½ÖYÍÏÝÿËoô¤î£©ªPúe§‘]‘Êõþ„ªŠ~û¿|iíãÄhiÛ~³a%°®˜Òš®.H7…æ%asæÏÐj“wä*³&´5ý¸%ñ¡ :¬ræ˜ß@眭¸t—Öý94rðù­Æàv\!ôÿ™¸Ùꚃ:¶eŠfŽ0c«àÓ£ #ì’Ï%F£?õž»ãÕÞId*Ã䃚ãþŽ0Ýw¯â’>õÿüãÿËëE~ ¿Õ“°TÂZ`û V•Ýïk&%û»¦Dažq‰í¯€-¸Å¬}ü윳ö ?…w"r^°ë!ñ^³`Ój$N£|±‡¿ I/D^¶~äûïE´n"%ah§íP&RÍ>®n×qFš¥†ªn¤gI©‘J B†Hs߃ÜÅȘ{˪E9™&$¶Ó"‹tíùÓ3#ÈÂ#øx×W±K¬†ÿfWFŽ1ߟ;)'‘ëçøü ä È \½]ƒ|Ÿ¾2O¸„ü2¦—¹Õ‘©03- FI\‹^A!]I§·5(¬Æß| Ü EÝÍÄévPügëòÉ&”œÊí«'8û—H>\a¡AiŸÚGF(Sôºòœ_ʉy–Ñ;5¡|‰zÓf(*ÆÔŸzòÊ•zp¦?FUûwÞ^/¥P½Y5¥<µñŸ:q,j¬~å\ E-¦ƒg»6QÛ§ØÀü "ê²±>«G½¢·ñŠóh`3ÖÆSä†äÏú=âüѨ‹¿²ní2š´~pvöQC³íÔÕƒÌh!¶Î,¾–ËoËÖ UãõVCÊ‹hs¸³Ù¯ÿïýî(ë2ÏA<Üey¯›ŸÖ¤ÿfw9¿¼Ó[ƒŸMÀ÷ž0â›§ !ÅKm&ú«|u;p:éŒĨkXR¼‡XýGÃ}ÚšÈìÁ5ˆzÝ-§,½ÿïÞ©Žƒ«ÿ™‡weö$„ >6%éøW÷íÌ}ŠÂ}Î%ñõ§KP ù8‡¾¯JF ZjC…צK2T…>ÿžªýÒV™0|àÙ¾±Ôc0ºÇò§Ñ$Œ+}Œ%yl“GNtåõ܆é7 ŠnOÃS 15#ÌGðϰÃâ±^ïžÇª°lïjwžV_g¥h7ÁúPï73רòî¯òRÕ‡?w=ö"á ¦‚K=KHìòκ¼µ IÍ_K/[¿DrãÂiHyNË äƒRg¨Õ½Ü†tû*yŽO!ÃÑÕ<…î³È˜íMK£¸ˆÌ*Ù•'èÎ"ËÊÁs‘d[éëiA΃ʲ¢^1Èýmß«eñWÈçví>cø]äÛØ÷I? ¹¯ý\ ÐÄ½éÆ ¡A\¸ïštÛãÃ(âä¨"~(vƒXïS J4oÙJüÝ÷îT݆€JwÌtý’:ˆ²’%:˜§š]¹**Ôœ×hã|S.0“Ò òÔµàd Ts‘;Ò¹0°!m*¤~ 5ú=(¸CäPët§Ü‚à(êðm6ÚÓ°¡îâÑá„f[Ô¯?þ ’ðÐç_ nv4hä¾ÕOL+Ž&䟟:îˆfG~ÔÜ`÷DóDÇQV´øe}븑ZöKGot 57«skXÚœßy“ª‚¶íF*7ä ðð±îéÌ_‹è@Sgyð*:vJríf‡Î Èyà….Y qäA<*ÆeÎqñ,½gx- ÙÌóŠÿéÏ d€øúÛíÂ~¹ûE†v<]!2WT“è6„ÿQÑ.Ø:õŸ¾dŽ®ÿ雜ÉýOß$Ÿ3K:«Sû‡ÿ­‹œ–3üö¢âž º/Ù¹@ÒÊà›[bqHìôg—îg«SÀ÷«ÙDƦGvyÿáMFÚÈP˪úF1F—ݾÂ/ƒ˜ó|ÿCÍ¡§âÿ‡¢¤OY–´!“Ùò%Ód¾œ…ì#ïY×O@ŽøõH•ðWK¸§#ðœ2ä ¾æÎ<~þïÕ©\9Cø=·8¶CþÖ½‡ÃÈñɨ»20ácŠÜ ˜¤C_ ¦ã;í”~êÀœ~O©¶kÌOùêémVÁb™ÊeOú7°\ã´Õ¦ «£/žð‚ ¶ûT$–°åñ}ßËýc°ógÿƒ¢ÏH0Ðw–‰ˆ ‰ìïÔ‡3!qW©È—Lo$õË~ÆÇ»ëcïÓ>©ãƒ”¥^çí³‘ÆÁï©Ú!=Pæ®-Ò"ãÁ´¯]e9È4kpåWë ²ä9S÷{Õ"[ÌG9¿$#äÈcãâ«Fn‰ÜËN¦ÓÈGWDuBçòg»8úÚ¶¢`ìExò…~ÎÏW KÊÛÔò ‹4ïá9›‡’ž¶Czk$x ++:¼ er^YÍí@¹’Êþ3¹·Qaqhæ‹õ^T²Œ°îgFUÖè~AþûÅŠ‡e£F¥Œú©;¦¨u¸]&í$êH¹?3>«‰z„眳·ÖPÿÏÏ3ä‚hHħR\€ÆT/Ž<•PGS¿¡¾p4—ºwãxSZœÐùÆ?­†–™D9&.£µ˜LTolÚäÝ϶_E»«e|ýü'Ðþ°Ùða.zt<ŸŸhס‰ÎYFÃ%WÐuïsÒdHÃøóšŒT¨½×®ÚõmÅϨ¿ì‚Üs ¶ ðcH2ÂO¾+OV<ðùiŒ¶o •à›ÅƘ?Ëì®? ƒ*ÌËôWîÀà«ÈDsQ’ÿ° †Å ›%Ô—aÄ+Š.ëÜ*Œ6¾øÉã*v£;d0ñÍ]<Ö¶¦”:Þ8ÚÀô¤úÕ‘ëQ0›Õº™ï`®±Aà9 Â|þ¥¡œ°ð1ðÉ¥*?X<§®ÎZKšì¾ë1ʰ,·o_È×lX1¢I6Xª‡ÕgAÏçœ>ÀÚ–hÔ·.؈ ø”µ½ [ãûdŒÃΛîï;óŽH`_²bqW ¯hÚÿºü ‰Âê;§e"ñØÅ¯½¿ö!©MÙ¨¦Š;’­>õdRÔË혻!U…éoÙM¤é[#˜}Á±ëG\³W‘!9âôaÏdìÕpÒ¶îBfz‚f.qdÑ_†ÕÓ d–myo@Å?.W~PØãÁ4ßNTV¡•ùh*9Õ۲ΣZúÌ*Õ#D1y‹÷}P“4÷—C;jÑãŸ1~Ôá/}±¬ukV† B=9n¥Ÿ®¨ÏO^ô²M naxú MÛwÇT®†í/Z8„&tþõ khÚv¬Û¸QÍ__ ¨C '‚=ùÏÐòÂ7?¯høx]$K­œ ­”<ÐV¤ÐôRŒڽ߇gˆo¡½°—„" :´¤ˆFzé#¹Î±Í—䯠œ‰á§ÃoÕ<ˈù$ºé» ß]wzAŠÃbC„ç |5Ž›”n±4Óüó‹Ÿïr˜$¨ýí#ù)à}þŸ.Æœc#7§|øŸ¾‘ϧ ±˜.nöá øöþå\éHw8æ¥3¬ÿO¯²ÕŒÃÏsAÎŽ¶ÄÃÐÈ7¤Rº \=(±¬…ÃíçÏ{jCq4§°Ä1C(=pæüA!z(Kë®šÑ‚Š›ÓµÄ|Puå°Þû½QP3xLvÛ³êú“rµ#˜ á¼RÒ¬þ*4ÈÊß°0€fG± CZ»|Yç÷ÎÚtÜüÅíÜ ½ÄÖßb2:OT«ôÓnmÅó›_¡Wì…S*ôÅÌrUCKd³²Ý, žgýLJ CO[¸jòax+L4Á¨ï3Á¡õç0n»·ãÇÏ‚¿×',¾Àt6»¿9Ì JDÏ}«„ù;dKog`a)ôëk XògåŽl€­ï÷,Ba,6ú3¥6¬Ï¥ é}ͧ¶P"Øá‰¡.Ô$°"#¦Í©CÂz31ʯ‘øîûöI…xβɛ!Y‡e²ÏRDÿš¥ÌAªWçƒðÙO¤y»ý¸øÓÒ¥›=½cÇ„ —^RqŒ’"£oz­2eÖݬbíAæ?3rƒõôkƒñúȶž—N¢Q‰?DŸJ–"rù}üÒ·Ö‚<gV\R‘ÏþÛƒ&3cäßþÚ¾~Dsº¡çÂÃ(øÕy¾EÉ…LÓ--CmÂ3s¸duF>åÁ… Î×pǶ¼ ê¢ÚWÒ}]¡îãÚω5w¨ûþ4”ýŽàn®;ÿ±½óÔ?ü4Ý lÊ“È œÛ&WŸ’CãâØ§›î±ÐÔøÓþf&74«Ùøè®@KÓAŽ \RÐ:ÎÝWM?íR’J”êRÐqâÖSc"ZèŒnUª €®ÅXê¸ßUÐs”LJ%ä-ôNqô…¯‚¾¡¶ï§`€¢H¢Úà Ý£ÄÃéwóÛ5Úåä%°¹ÕËÙ ã zçC`RJúûÚ•ý0m™Â—ŸÏ³õ,&W®ðÂü©ëëËZ`‘c\oèµ;,ý™¸©?K«ÂËÌò]Ïaýê ­j°l‘g¼yDo;«Òשr9‘Pôù“Àž«H´³:…gædHìY™À’µm½»s¿¬\¼‘ZÎ$ñ)ÒF¼<&³uØlŸôI ãI¢ÍïÈ4¬pQeç%²„ŠT5†"[ÐfÌðrT;±uèr+~"ì@Þ¾¢ §8ä·Ïh™BæÇiÛJl¸÷¢B‘ñ°?î“1³Sº‰"{^…) íÊXáëü(ñš#2øÃ Üo\/òÔc¥¿qöJ›¢¬ÍqÍ“k(·µ–¨öbÝvîSãAß S¾“ßfÕ4÷…H2–Ü‚ŸçMš ^N…E÷¯Yý7i–XB !ìqrÒ_àý'u~ÇŠ¢øßºÈWBúÉ}IÂøóïsp—ªœá{²o‹Pzøßý§ßZܯC†µÑŠÊͿώ®º¹ù?,-äÁð?ì¿Èÿ\~TýüLs×23)Ï]lN‡—=ð³[á`LüJ*|jÁy¡«ò…¯ÈþîáÙÖ€ß}¤;Ž"šP0“z*ÂaŠŸ:SAq“D»kè^(Í(úÂïçåM:ú…¹P%™D¦²þ j|DŠY^:ïò¿å§÷<4ÈcŽjíì.¯›i¾€öð[1ÚyÐvÇÖŒRõ*tJUä¼(µ‚î•­;NíËÐwa’ð§÷ p]¤Ï'ƒ!rê·×ü$a„—«¨žâ)ŒÙçÐ_~ Ùdc-*ª0mW³ïá˜Û£b5ÛÙ ó…BWÂbpØuN±zX~ìŠQÚ¬&þ<çÃb ë½Q´KÖ:iuƒU3ìT\‘|+ÆŠ%Ò™n"‘Úõ}UäãHœCpÛħIÏ%žb=-ŒäNAÇ;ö"åÇ-²Åó6H#v{»ÊéI™—ÆF##—ÓdÚ¡Zeš®0ä/9õGí¸ ¦]Jô®¹ˆBÕ˳D?­PDð;ºä[¢Xªâ¥U¿”|ªÉßF†Êw¾ä&£ÌïŸ+ÂFB(WþpÈ,Êu×w®…w@%ëòÊ…=¨Ê|Íœáš:‚¿W¾jR|®C­K¶ ñÁ¨#áñ=Ãÿ!ê‘VV”ðžGª…„÷:ahÈ©â£V:ˆÆ²ß>êDüAS‡2*Æ´M4?|ôuŠÏ´õIçùˆ–[˜äɇַôè:V¡-çÇ3á_h×+¡iݦ‚ö5\–ƒ‡ÑqÊ”ŽÀˆ]4öùÕ[é¡ëé¡8Öã¾H}³Í€^} ª ¾ÞºÙõ ˆ2^{å¿"Wë¹ cí‡öþˆ]>Héæþ©®/D^þ»l¢Ü‰'×ÅÂJ!ÖÇ5&r™¢nÙQ]¾ÿ·¯«–Á-’îëIô« @¶_ª³*±/eå9:I Bõºüðסá¢Ê o§;4Ï<ûlm}á™Ë6 Ó™FM”iº·Öþp:šBßú‡'‹ ßë Ûí3Õ0 ¦MòMDnwÑõ®9Á@ó蘙?útj ¯üPÚ|>CöÝ>*^]0ü&Ù7uçŒt’R ׂ1N4øã7³Sjª`b¼#VaêÑ‹OûßéÃŒòòœ:!ÌQ ž”‚¹ii‚Ƨ}0_þ$ûÒŒÍnŽ£Øoø›oÞøâÐZ K—"\ÞítÀ²ß‘$)¹XiRξ¬Ük¦\Ÿg:Ü`}ûõ…ÁlüÔd”‡íùú7Ãd‘€ì}¡Û®"ä> íç³›ß4¹²ÅXû؇^ËʱI&ºÎz@2C™õ“«Ha©•½l‡TÚYîûvóõ£6ve¤{sÙ´w\Ëìý&¦‘ñÉ•ÂÛGÈ”ØÞùZõ%2÷érù:Œ«Sóiç¤~a™–üL¿M²åž'‚9ò׆äÄ0ï 8­ª® eëæÌê°ä@}mà ¬S´yPÂjÞ3žsÂ.°Ù-ëîò6ÃðãRø(lW/‹³ÞÞÕ)±³‡üÙ#á§ÛD73løàÕY-@’ö £­CË»|öx¸ˆ‡z ®ïÏGª–.ѵH#çº~ëòÒYÍhU¼D(²‘ª‡Œ•ÓoÝzéÉÕ塘fd®¥Ùø¬Ó‹¬É.‡K [é“Rý³NÈáSdíÐÃ\Ǩ¯pȰ!)Sâ²f òiwxÚ-Š"¿ÄóÒ>„(`]vkF%¿û_ 6”@¡ÃjúŸ¢°gÊŽ?Šž}qùÊðO¬ôš‰’ïN͇âþ?QÇcäQ:¸y®YÔel¥X.¢œ™hÐ!õk(?Ë4µgú*V5P÷£Ò²et±hª:U;Ä ªW}ù1Á!„“¶£{Q“jÍžE‘µäï­=eoCí/‡ïl‹íA]µ§;ôƨ7õþ€^ç74xaÔ¬ò Y\}%ÌÑXB³ÑÖMeÍ̤O¡¹Œv ÙoI´p=ÈK'‡–q”¥ôК†0ã…&ÚøEÉêŠC;yÂ:K{´'xq”0£Vê^?îÚõYBúOÞlBz ŠªeH$­Llzþ ‡/.±"j® õ¤ 34ö{½x/|ÞCädáN‘/Õ–bç!x¢!ŸPoÙÇìúLRËgKÿÕ¥œÌt~ûy/dQÛ­'~/ˆ „ⲋ¬Ÿº@¹¦¨½ÿ>w¨ôTYûò&ªòúÉUïµAõüŽ"KH1Ԛض·…Q@Ïy¦¢ýóPgq6MÄh7ÏÙ™K¬ÛB—·­ý„:ݯ'‰§¸¡Î£Í’:\ êVìXŸ†úøù‚Ûz— á6áÁj‚»Ðh̾/$š„ ²œê ™ëb¥S²´H¶=-î­ú<l:ÐöBôó)h¯2ÈŒkL†Î=|O5ŠC×­æS;»ú;Úp#:zC\ Ò€¾âÁe¾8èŸM»îûm©®ÒWfÂжë Q¢6ŒôV¹¼««cc#þ–Ý0±±ùJ†¼¦™%È™IŒaöNÛå¾:˜—ª%"™……šEÚ‰Ð0XŠq±UºL+ù$ç³®!¬“Òœ©·‚ÍW/?´†KUTŸ È8»{‰>~˜¾ÅŠ$̺ׄ!Ù ½ ¦p¤ðTräLCª—ç–•r]?`éÏF°,˜ #£ázþudz•ÂÌ0ó Y´ØÿØ1–#›Âé£{§fãÈ‹à:V{äÊ']5hF^§ÔG…ÈÏråÞþ·WQàÕ»¯D¸W|ÏõmRšä{7ŒÂƒ=;:ª(:g®QtA %ŒågÉ‹tq?‘Š[A0J?Ñ[$”;‰²¢ìŠ‘¬ßP®î¶xC /*ÜsÎۑÃgŽvˆß|ŠÊ‘S§vî{¡£Ï½F.„Dªó>ÍN¨‘#“èÁ.ƒZ:ìÎBE¨½ZUvóêVLZõF¢~⤸â–;z}U–PàyÞŒv,kB.Æàú h÷ÀFÿ`/šßO¾ïÛƒ–Lq‰wí?¢•AÈâ}´Ž9&(«úmY.I ΢ÝGÑ—Ñ]h¯5ø"‹È)¨–MÐi¶¥@í! ºlÊÝŒ¾Ž®!e! !x´æA¦¤Ì÷ öýØó2߯ E;îæªÃqâtOgkRvýáaÝGâY5¸Cþ`ó?ó&ïmÃG ]± :*ø ÓR~¾r‚Ï|4 у÷L¼dç^ðüÃÿÖEÊ:fó-@ìÆv„sf<$É©Äðm%^Ï"’ Òµ::Þh]€ïû÷î:Â÷{^œo¾î渗A›jCA8ƻʠÿ7Çu,HW}i ÈI¶I î[ S–S|ïì;dywÈ#`, Ù‚ÌD²S‘£ôêm’SÈmxHÌx(ùT:N¥_-BþÈ©‹}(˜w™çg/ uŒO1ÇÇ¢ˆtÖ$UÆ Šð7¤Ž dˆ„ór<СܼeJÆÞ»È_@¹*ÕQ…§º¨°F£wïòT²ÿ݇ªŒ:¹;åkÔTÑfĨ‘Ý'5dfZgî4Ì~ªD±kü%¨G%y°^½ ØÄfÄN.¡¡´m}O ;´vrä£i0¡îÎ4¨õe[á-Z4–üà:²Væò¡ö•h]épãýÚ^_N¶[|„‡ù/ó§Gíag“¯áèt®óBÜÏt)ùs°Ë…]“Ð05† ©ú—õ ]¡Š›Ç)yZ~k*³+tîêlsÏä4dÐf¬ Õ@Ú› ù+»þ2…Ûäͤðïû6øÞ¾ÞΜ¸ 1}¯šB5wý$úõÏküä¤RV‰‰¾Úä´1õ.â‘r&Î'›LÈí*Ê#ÔÛ¡þ{ásÞ†çÐÌ{‘–Ôè´Q~ðò'èð«¿ôxÿ*t«Üf:HR}4Š nŸAÿžÞîèûПÿ.>ü; z[ =h„æÚ0Õ`½ÿ¬rF~˜¼¡…Ág« ‡òŠ`(&‡êëkÊÝã7·&i¶ FÖ˜ î=;cØd˜­Wã! ‚!a’·½Ü3c¦²™UôÏÃÌÓz>1Ãç¬ãµ8˜[¾9íÁÀ ó5{¼3œ`á[{i¥ ,&ñ¾ 4ß„¥úÔDÆË]°Â×5¾ÄN«á41ŽfS°n÷ê°íÛqØÔ¬J :ç ÛæÅ+¹àÏÉfþ¹™£HPÈ+uä}._yƒ‰’ZK6#‰÷B÷ÛØ$c˜ÝÒ,¯EòF‹ë!î†HùKˆ“Ã>©Ë¿QäG9 íÜ£u’d`œ5,>‰ŒbÅçK “qj‘Ó2_$sÌÞÕ«¢(îý¼»~Р›Çû95²o&V¸¼îEÎ’B®ùZÈr|ïçËŸ‘÷þtzeâsÜóäéá‚”Yäï È_±1@AÖ ó;?ãÞKE~Á”’(Ôëó·SPØ$à]xÐ)IÝ”™yAb~Ÿæ÷x¢x ù/çW”TÔa)œâÅý\ÇïY”5‰µ¡C™k¹JN(;2jÚå;†òG?ßÿþã$*ühb“ZODÅî ¦vT"TªS"XEeû s¦$T™;Ï_Ð#ˆjã~¢ÛÊrˆ†·Xté†P“äzmÌÝ£¨upíøIÔÞ¼#ö^TuU*äºQO1³9îP9êëÆ t× ARÍÅÅ’h¸*ŠìC<•ºŸî_jC“[lö+ô3hvˆK0eðš‡LTMø EDöT蟫h™µf7<ð­†ù9õ“¥ÑF¨,£a)mo­”0¡Ýx˜k)‘&Ú_!6™»0„Ž\§ä—‘Lñx’‘­#”êSÊ_Ò0üdzïlÑ·ç'®þ½.RyN’öÊ[9çÉÃÖ8uM]ˆ± àù ¯ùÏ/FÉ•z?¿s"_ñ6%à?]Œ6¯Y.Ù'qöì.’,NðõËïZBKGHYì©xnçißSêdU%ÿéUÖéÇàÁ9»æÁü$ä½V¨Ò‰¶ß/cÇ §¡P“Ù‹tŠê5‚R ÎB‰„]'àÒ—TçnºAù{µyÞP±•pÜ$ªU_ª'O@mßÇeûQa¨·ó:§]Ô ?‹Ï ¾P…&Ñ)OuË»ÐüV<µðS´îÍÍ©¹m Ï7YC¹ Ã¼3ÈôÝ t©ù;‡¿‡õÂëõ g O+=ïÂeèÄüb[ï( ô¥x_ò€!“æáªä:.½×Èr’Fã['ÃøÞ…£µ0)®#óD¦Ýu¹ç‹w`¶}ºçræU˜?x¼ñþH ,|´Y Š…%!2³øsа\è$í³Voœ}+«} ÖmÈá•çYØ4N"ù 3¹URÖ*‰Ð°x"uCÑùº[H»è»Íù…hÉH»î>FFÑ¥l+ÈdËé±}°™Ã$~ÿžíDVÒÛÉetÈhÖñüí®¿´våº4‡\ 7UÍÎØ"xŽò’ÐMäÛO|¦ó ò‹ÆÝV-DûŒ–¦(˜[0¡áX‚BG‹ÔVUž °ßpØ=Ýûˆ£.ÅcеP d÷Ä¢ñéåÒ¼‚Û(5yFiÃe敜'ÄJQîáÝ“R%¨@|÷z*›*ö\xbØO…ÊCçº*PÕå´ò¤ª—S½e؇Ä\Drœ•¨Év#ò>jéFç9G¯£vN$»U$ êšd}kE}‚˦u¾h½maç hxÎ>œó| [6ØI½«@Ó#ñœ-nhnx“ä¶Õ6Zܶ:Á~-‹nóœ€Ö¢z‘ÞUâhÿx0ÖA팾íÿ¦Á‚öL±õ,Dš°²Ï÷f¡Ø{øIâøÇëÝCH›{j‡ò qiïsßFaˆw${ètbÎqÙusÂç…,×… »|²fyìЮÏÖl8š a÷"Jñ-CpÖ½y ¿i,¢ÑÏýW—\»2'Ú™öóFwÜ ¿[¤­B±ªÜ1æFP ÕÕ}ï b™KdüT)Ýi »~ª ŽBͬÐñË•ÙPÛñùG·üÔ±=?µZÕ uT%n×Nš@má¾ä— LP›~¤/SjGžÒÜ*Oº3”BmPÏ\mDmRõ]¤‚ûn,BÃgðúÒßÐxC³›Ðš.FiÊs$Có£›ÇT’ %š·ñÈÍhßG¦äírlã¤Ñ–Ð¥¬ÿ)ºˆˆ‹LTZ û}Úž®”è5ž"{¶’þ÷>øÞ÷ßþÞ¯½ ƒàñËûÉ2î¡ÿ’#¤×OÂØoêGuÊü0QVrúLhL5FÏž0¸ ³¢¡ïM¥˜`nI˜Š%¼m5ÍÅÖÁ’qƒœèÒ6¬Ø3—í¬ ³PÞ‡MvW¾W?`{âT˜úc2$xv‹±·û a·¸Ÿ ’P;¨ºçÔ"éüçO72‚|3íôpÛ(RI]VTÜÿÚ4ñÂãë·3",Q#þ ws jÉ|÷ø,‹ÚC ÚdüK¨›‘æ.2T†ú¡ûûÒMðГÚ³Çãht+“ü©p<šDÐ4ËQ\G³ªÑ÷Ie,hA‘ƒÚh©nYJåZŽVO'´¸t&ÑzŠâÑ‘çÂh{Zt3x«íþ°+êôœFûÔ‡,¡—èèÛEg­‚η$Ù´½GñÈ[ °TtÐ3;~Ô ØØSPEÃüEʲ V/øQUrWØé$Q‰Þ7…X[»¾¦ ñïg_+%¶ß£æÚ*ðI­ª² ×B9E-c äZ‚¶D}5¼ÿoœZûáÝ£­©ÛFWÿáë"fÜàô#ˆM?§ÊtÆtW/EÈï†Ã·F—‘ Îï!}?ÙŽ®|§jÛÊ*³ÿ{Ι ã|?½z‡ŸÆr7Çù)­Ž°À÷•}BßÿaÆ>¹·Oöý­µ2Á|¹ÅlÉ™âTÃdõ¢n0ÃW ~Ês”IM…_TÔxr!¾ðdûÈß9`F|z¶bð»IÓIìgâßù%SrÞPäÕöºùá׿Ï#ôg!”nŸð“Є á¯xîUT=ïñ¬dÚ=(ñ¶C][SÖÂE*hp¾ñcáY4‘Þs—¢‡'EŽhÓ<·wð tþ°ð9Ð Ý×LûüúuYÔ¦A]€ï- bˆX÷„áW7ɯ·*Âh¶í ?LÐý:Ný ¦µþaÙ³:^GÂü%»ÊdaXT;y9,KKŒŸ» «*¢£)c°î1vùÊŸ)ØlŒåsú˜;®[÷h¯­"Á+0`{2„DDçšZß!ñ­+‚où? é¾·{‰·¹‘œIüÖÒ£Hi¸ª&\oÔ¥¶ã¼òCký/™«zïNB¢_ù-á  cSø, Ù Ãö_a0»ìiÌÞ70T'I´m÷8n™½ñ»¼FÉÉ; skącL] ƈ,æ¶øÁ¤ŠLËA¿˜ê«0Pp†™—Î~aE=0'pžßCfæ ÂÒ2`~Be˜We&ƒëÞDqÃ+iÂò·~X>sóÚ’¬ÌïÄ–_…µo¾éŸ{ú`#¼‡õPql%g“n€ü?ÙÇ,‘à5»tÂn~óùzݽC‰rMÝU‚‘„•¼-§'ICKžKÆ"¹µ«ÙoÃmÍ!]äÄŸæ‹FÌÈÍó®x°yVÇâžQ!ߪ*aÃRä_õá ! ÔYå…¿§Á½"G?ö¡ÐÛ}ÇöÝ©Ga¢úñÔ:f¹P*˥킢=÷ò" ø‰Û­'¿FI›ë¢}¥(µþ‚Vðe7J³ë­½¦#G™#橌‰([>ò˜ºiåñ<ùù1¨ÌÌtR'«Ú4~_G%¢Û#· ò™çwŽ˜Ø£*•ªì ªmT'îþ½ò¶Ñ‘gùƒ j7®²#C­«›ÖûˆP{¬ùÚW»Ô•¤ãºzJ,ú¶QÿðÍˤ•Ñ œlO¼Å144ÿÖ_YpæšIç<ùÑ$ žòA³û׊M:¡yvð·øW´(zoE}k-{?äÔ¡5ÍT¼ÝQ´1Ùyý¦¡m?û?Ùg™æ= £Ñ>ØøT#µ9:ªé\Û‘ FÒd7ò/wCÉQŸKêÿñ,Ý4.ÚSR$ÆÆå1îò¦ãË9‘IˆÛ®L}ôä'D{÷<§¹ðÏ/F¾ÚÃq‹ç-Dn½ö?]ü\˜àN(G ±ƒ7Ò’ŒmÿÎm>F¥Ü)OžK²‚´ãvë¢#|ÿô*s'ŠöÅüÌÈø‘rhWJn.š»Áo}š_#P0ó}”¬ºŠNY›®\¾ Å9ñƒföBÉÆÍ’° eÏÓóH§@r.È‚ªS‘…d†»ú2…ÊqPW-pè±14ˆ¾" U€ÆWÕ#™¸¡ik}oÏÞhy{®AøÙ6´ñ퓾~UÚKŽ‘:)Bç÷ÓçÜäi¡»´×çè½aècx÷:Ï• ú*G¨‡À@NÂö´ð^’¶©T·ƒá¯ ¢Z7m`TSgÚÂÍƩڣKa’æÛ#þö ˜Öëì/ Ù€ÙÏY"? Â<Ë笲Wc°à‘ú>ø3,Ί]2;Ë“Ÿ&)êŒ1åºk ¬“Ë~ó3„RÑèkØ–~{2k¦þ|=‘(áÐŽ„ª ßx»ègï´îñt$Ñynᨧ‰¤Ý†šŠbHþF`ß»eHy‘wöò.©/‹ô q’#í[‰§­|>ÇüÎk_dXå}bîO‰LB¿fXËŠÙÝðioH+²4Îå0Í. Ûqöéê_ÞÈ!¸9õƒº¹(F‰G!ù‰âEr'äãt>¢Ò‡üûJ¼t«|PÀE56ãØy,]>yÍÝ…ÎËò£°9“oÕpŠž’ üõs Å?åQ(u\Dɶ‹³LÏñµ–D»Å2J'ô‡VFY.¿<Š=(wµÃí!*°ë@*έ©½Ø’EeO™¥Ð>Tu%V¨þnêEœyTwýQƒÄ@‹Þø2jòé¼—®ÜA-ÛŠÇrò\¨]3ùí 7%êÛºrÃú8계~·->ùIµ¬ß¼ÐÐ7¬7&‰oëXTGÓ—ÄšÄz¥h~£èÿõF@¯à' ·“ÍjgÀP¥R OÜ^‰rÎz³Æ‚¥…Xö‡‰ ×š‘20ÀßúÃ7fš\ý|N sÙw™„Ì2`A•ìÃJ!,.ê1p^_‡å…½{ b¾ÀÚ>eÍØø$?øÂ¶ÝˆeZÆ·‘@y¾•¤k û8SÃù]8l!@ã¹*’z]wx‰ä÷÷_‰Ï…”_îéÜÈBê-b‘ËÅHwr¸0W¬®E==´ŒCÑ95kÈürÍÍy³Y¯ÌJònR û“Âë_i³fÄ%ôÉ/䱞}zõµ(îanÿ~;׈³Béö¾EÁO ½Îs(t”š›Ó´…ÎßÍuCÑÓUÅÊ¡xû“!6R”r§•;>‡ÒrŸ(u•P¦Ú[€Ã|å®ßã4yG€ ²foÔàAAóÍT¶?®h’€ªE­š)G†žº FЂeIÀÔÚcõØ6?µë>þ CÝÈ›:›ã3¨ÿüò»d’xÈKbÿÇ)Y4òZ9“þÈ M¾ýy_…÷ÐlÞ¸‹í°Zì‹ýµ2‡–§¶úÞZF«üÆqM =´‘Iñm BÛŸý“¬ŸñðQÒÞglKè 8.–¥—NĺTOÒ„Ñ…äþYÃ;èÊr-¦¿· *7‰¤ã±«ÌßìÆ©anû@J7õeÈX'"eί·]ܧá1"”²è"!Ò•)†²— Ÿ}ª &¾a÷„ÿÓ—üoíòÊ;g¢5 Þ 2?ñH¸A«] /¨«þáë"®¶ž/HeƒX÷¶¦RÎ¥ÿÌùê×Q‡o),_p²BÚ–®ÜYý&H}¹Ñ£wx×Ǻ†_øqÕé̇ïÎòVk?ûáû{rwˆzó?lh¿ñü¥Á?Ì MørÊØ2ÖVEÙrîþÛÜakYYºÊ¢†ƒ:ÝO:³?3r~|)9J¹åbÞÃŒMÿ¼`9ÍUø]s„š‘t ™ª_ª‚"ÿ{ Œk;P"yyxø• ”ñoJ¼ùu÷¼Ðç²}­ª²VØÒr Vˆw>&„ ê­F]FÞAÃeV…ê‘h¢³eø°Mö÷9rãb[hÛ»ìgí~‰¡„C»|½Á?t zW‡_(Ïò@ÿkûiÃVAt¸k¦t€† âD+ÁFÏ~vûñç ŒgñM‹]õ‚){FÙÉ®;0k¼8¼ózÓ©«3°H[áCtã,­hR(é€U‚#Ñ%ü°®J5ákU›a«%aGRS¬"ô4\q~ÃAÙ†„Ã'¥öá$¶ÿê©0½Ž¤D 6õ‘lZî¼Ó¤¸Ú’ÿ°©ƒt\Š}R‘ΩL®ø<2صíë*C¦‡—úˆÈ•å¢B«e$²=&äI=‹µ ýÊÈ}º±Oý–>òœ+&ަCþ‰GÆOÇP°õêÆé”_(´T?¢ðØEŒ µŽ}E±þQ±§›t(ùëOK ?5Ø¨Îæ¸Ž2õš]5äD(WŸ0MhÉ€ [ra¶¯‰PÉQëçyuT¥ í¼rÕ¼gá|j|yÅwTе—«}¥QgŸ—Ê2±!ê1M3Žz•¡äû+F ‘hèòêœ`'ÙÞ"ÓF3Ö+¿ÚöS¡y;IwPZjübnÈE«2Í=åBhãþÐnC;¹±®å—ŒhÏg—ü'ÜjÖFit>»r`ýã<Ò”úláJUZz5-Á‡”©tž7Ý=~¶xè”!ïfƒ®DÆîñic“(ðÒ ‰Òÿ‚oó?ÎÔÿ„3EÑÚ—»| _¹pð|‰V¡X½±WÿŽ;8úŸ=9þ3ùedäùêµ(|%ãð°LIÞÕ5œPpô•™ú{(Ï•î?ÃuZM¼ùÅÐx[''¸Z__{(Æm ŽíZ§hv}œ·Òe»$è‰&³. „¾ã2çÖ“½¡oV“©êmôÓ÷$¾û };Ìy·$v_wß½\xúÍtÓæÃ-¡B<ð´æ[¨i&û”Á ƒå_#3ÂÐ÷ªxbªÓ0\£z¶Z±F¶:Ç{'aÌÜ“lEƳÍÊå[4aòä¡å}±05ÒeÃvfBrbb-aNö áxÌ †y bl”¯–Õ`ñðá/ís#°”¾×`µþ¬hÏÅË«lÁõs†E±VXÿ3{{›Ÿ¶èÅÞénÀ h#Ó:!anŠ,Û2¨F"‡¢¤ƒ#Hü…§q„ÕIEUý^ÝC²æ sC¬ÒH‘¼~iûÇ,R¥žexý3iªØØ8M‘nì–ƒ›_2Ü£]ÿäx Ÿ»ÍˆÊ@¦Hó‚ù£—¹ïª²Á²²Ú0ë°—²mÔJîSL@Ž,ý»>ÍCÈõ„zÔzy܇#}Üž#ŸçK|6Žü6$×:+²Qàyâþ¢«ù(ؽQöF6…ôf}ìï.à¾LzÕbÊ\+«»™†¢Ÿ/÷Z§¢¸BLjò¢'JLœlÙìRm©Á´ÝOQšLãP¥'Êê/ŽžØAٯÿTyÖQžWî¥`ì*ܲ¤ {õsC/Ä·¢q.sÀr*ßt)¼ð”U…¨t¬¶¡:Ÿ”ÃìŒâ¹¼–ùw:»ùMºA:µÎ,¥” ®¡vËþßùO¾¢.¯¥|õa3ÔS1«ao“Aýs†„R¥:h0¨^ë2ù /_ç÷ç@c.µÈÕÓhÒÅ·—KrͲêO³,^@óƒ *h1z-ëæÊ´"Ezuh-Ÿ¥|*šm®ËŸ·LYCÛqBÞ<¬Êþ`!ÚçÞÿ›ƒŽ.ü¯JÝ]vÿnG)£…¡øa¢Ožý?ž¥=N¨ÓŸ‚dõ,5ûÚ Áÿ>á ÿÈÝv?§²F>]}HþáŸ_Œ˜ðüv&'aWÇÚf”ã™þéâgÅ'CjC»ºÖA)ýÈ|÷}®.3 XîòöÀgRHcø#¸ç5Ã?½Ê ÈëºñG ~Ú&ó= ¹~v"›Wà7Ç›fÅH(µÎ~˜…Û§ÉUŸB±&s]F—”œ:lÁBòJ‡Ç¾%c”ߟeØý7T¾Í4pñ_ƒêíž ’¾â»ü.y¯™ õ‡?™•d[éú,h:Y°[µë#9Æöéú@«Þ‰vã«Ð®:>ŸÃ:¥kôΖ>€n‹Í7ó¶G¡7g©ŒÿCôË<Òú-ß!¿:›`ˆ©9%Æ¿†ß¿{É7FE÷KWt«ÁØ|þØhùLÌŠc‚iþ˱/®ÀìÅG$´»ü§WVƒ=zµ9;°øc‹ø \(,ëõÕÚ~ƒ• ©{ùwS`-ËѶ1F6G§wîRÃVÿ€èøc¿_E:z )wü*,‘ȋէfé"oâYAÒ§[ñ´ßÛ‘\QKIäcRÒÿhû$ƒÔŒ/,ÞO1!­l…GÆ6Ò[îkˆÒ"C±žõ}ŸqñØÙýö?‘YíŒÙ¶n²DžðdoF6é>B†QFdŸ—9,‰œ]Ö•¿Ú[{ˆÞb~BùˆlÌzr_pè¾ù%8¶ \ž:(X/2ðÅk…®6‰„þ!FaºtÉ=ñ$öX¬ Š¿Ï¬êòiAÉF'ÙÈé x€‘ñÕBÿ%”Îds sBYº­¼·#ž(÷$Í(œî*HZúµœòŃÄ÷ç«ÙP™ƒ|ÆvU†í=êí€êyõZ!)¨AêyÒ› 5E&~ä±-¢Ö©YŠ5ÔîW0&x»ƒºžŠû©WfQ_4lÍ%{—‡®ÆS¹h˜8´GnöG,ºäMAÓlgå©âh~gÐÃíæ'´øp _œ-·æµœ…6ÐÚµÎÛÔd mzMµŽÙ¸¢Ýmú¼Uîçh¯Ø÷M)˜–*I ¾1A–SåÅóáo!5VèÇÉuH˜ ˆË¼% ±¶ÅŒV©ð¹0)ñë%ˆºå6X@‘2äƒÖÆ-îhô² Byh\E­w}%Ëϲu2xÿIÓóXy¿ºÄb¶ ÷'èv}Þöl•z*äm {澺Eü?^ï‚R·s‡l'wu¯ÐY0¨*ÅÒÏ»¹=‡ªÈKäubP#›ç+µ|ê]V Vóm”̧N¨<ñùü½+Pch?ª»hÕSž¼¹A³‹ŠÝš]NPÚ-ø#ñ2ÔÖRdÚfQA]ÍJË™^¨·~).Ð ­ºêe.©‚žÄ<ÉkÏ>BßÒ{ßX ÿóý+œÝµ0H¯aîòg7¿¥ %‰E¿…‘G®7%šV`Ìúð0i L¸9quo”õ‡|ʺN˜¹'4(:Js÷š¸ävÂ`~žáØV®,,gMSn,Ãò Ù›úxV¿›Ý™ºÙ "”_>9 [ÝaÅ—L–àOS£’Uæ Þ»eÈšú‰eŸO3ÛÅ")•«–ýÎ#$'‹÷r·3EJ‘×WbJú¢wîS/¤­²a*~€ Bçc{èrñÕž7y<È,7Ô© Y™e_ bAvr£ë'‘ÓÖöÞJä®§£21±B¾gV ÔTœÈÿ«"€¹ô :t½¥Û{…xÓ6P˜\ºšï"¢¨Pa¦Óõ(~÷Y“% £” çýßé¡(MYÉrJ-eÂ娬.ÜF9#"ÿT¨@­¿,ỖŠ;e^&qZ¨,öñš&ª†ÝKÕm>† l¡ ¨ñÈ2ÚÃ2 µhæCfÇèQû™’ÐþnÔõCžÚYfÔ¿‘a’@Mƒ‡®>þ:eqÊWö X¡IÁ‚Ó ÏçhNÕNŸ»„h¡],óy—?ob6„.  ÕÚ/ÿS•‘»úec-B†vô!!jû½ñpÁÒÓj³ûèðfr-ëô:ÝP&dbB¿–\‹›Ñõˆ‘ÔÕ“Gñè3ÍL.bÓpôb—ÀwˆNšðÿ˜ô"f[Œ³>­m^)|r>žtZ×x—!¿÷ím“…÷ÛÖŠñÝþðNxìÎco:›“Rµïþ·.‚-ÿšÞfÄŠè]¸] ‰A„ø“ª¾ùVÇ6íêiÛÆ‘ÃÇ^¤µNTd 鋃]™×!½³RïLÂß=:Ö_'Áwåñ ·oÿ‡÷¼}ƒ’ÿ‡¥¬²›&Ÿ7°æîù»7.¾4ì7dîDœïUq€l¿øû¹åsÂä¾Õ˜;ä>xõ~NÝò¯(£QAü.»“µfÎ…¼Å!i¸ (RÄÏô‚Ùß9~Œ}—¡L‡LI¦Œ *n²x½rlªqz6ªÐ“PkÏ• f õ´,•.BÐðø[Z¼v4±Kä˜Ví@óØ=õâéh#ó^ûU–öQ#^ïÏC×b„Ná›ÇЛ A[ Ђu©cŸcã`ó¬Á…‘Ñç°½êÓø¤  ìîtq¾¨BÂ2×GÓ±:H¬4\ÞöÓIzoô,¼¡G²25é0¤X]ðpPtBê2Mî­‡NèÅ{¢[$ÈM0°&PL§om23S"‹£$• ù;d»ÛÁº•v9šˆh,šû§ê÷b^仳¹˜ .ü+~/·ÝQpÐóŒë–$î#,Ô»‰"¥3t!E(6_•ã¶G%k'˜ÅiQšôÙ‘RQ¦å‚7éœÊ5ŸU\F…}CÍpeTr>{"ËŒU©Ò¨ËËĨ®”sl>BÈ“AŸ^´¢–ì!ßÇPgïƒSGÄ|QÝÄká“*¬ýÞU½††×~ÕDãFÃÅ»$hfõu½˜Ð -ˆ‡WõrÑòæ³|_>´¦¹_zô^=Úä¾û$ùí^\)²oCû§?*÷þx‰ŽÑº¯â&:O<ô¤3BW©N¯¼CxÔËLö¹{Rrk;^,†ò³ç‰-ù à×ò ÚŽ ø±9 vÒŒºŸ”§ðÀ7v9Ù¨Ï9»þòɽ£EðõKeÞïìBˆÏÚx¯ÆºŸ2쮀HÂõÙÓîÞ9-Oœµ|d]žÞx ¿{ü_XWhƒßÁÞû´š¡,(ØÖØ1j™²sT/–@Ãùëï5©¡ù‘ï¥í°{Ð&$@þ : ü ÷B÷¤Õ…âã ÐGÒ!··$úHЊCß›3{• ï"s*K‡<ô—”9纋ï¯ÉjÇ^ƒ~.ÝënCÿ@ÿ£`ƒÏ0P¸''>âÛuŒa(ðÂFKR# 'vÊT?ƒ‘ñ"3Ö&SqÏ‘åý ãßüŒO/À¤†#wÐõ-˜Zˆ ˜èƒ™²S#ê’M0ç°½§7Œ æO¾Ñz©ï âsLÂâNÉ›Iß`9pàKxЬžxâ®yµÖ ¤Ür…M÷²»Ž‚°}%oöD—<ü¹VÝå Ÿv W_¾h Bb”©¥7VB’´~G®…ÃHf{7ñé¸ Rˆ¹ñÌ¢D*á’€[ú¹H£ÜI~åÒ–©Õ_—GQM×gAdS_rþ͉LJcjòuÈ|Á©Ìöè5déÜo78Ö†l·ŽtSŽY\EÁ€Àa¿R}Ü»‘÷Ò›÷¹¿lÕ>ƒÂ#Gd=Ò)Pô¬ÛRÓ:'­¹îê€E7T*¸QêG‡Ðº”,˜¸¢HýseäúU‚‹ÌQöÕÐÒÙ„(·±ÉÔÎ/Œ ޝ©Z:®¡b‚øÉÐ7Q‰”à»ö%iT~&Gu· UÕÛm¹ÝÒP]éÎâ¸Á4âc™úWQ“èå9*sÔr™¡Y‹œEí§´M?Ž¢.]ë6ê©qš}:ú^\þ6…$h°}͛ŧ ÔŽØÒס±ög Ú»¾‘Vü«ª+š-HQ•lÞCóõÕÛ¬hIeµgÌ£ ­ÄZëFk'Ÿòëáìh~VŸéÚ®Ùý,ÇÃÇ›˜šΣýpχ÷:¢èè½ï/„$nÙ§«|¡(èîƒWÿ?ž¥æ&­÷Œƒ¤½²¶oªýዾÈaŸõÃS~°”™%¢Ú®¸­Œ–ý󋺻ŽÎ©ÂG3nýI»óO£âݯ›æ@ÌšªKjŽ!$›>塨†äõA§?wOŒ›Ñ?½ÊïJ¸³ì ÙS•Ì>L —f´Ù<æägµœÊ{¼ ‡ý8œ_AáÛÛywÞCQ±×™–ŠPܤØ]Á¥š<‘±f PVP@SyÕÕ­^PMãõ%°'j/ÕPû¸B=‘  É1Qhpö/m uAdÌ£Ð|¹xGˆZ‰í?¨ E@Û7=—‡Š ã«¼€‡Ãtu±‡ß—è†ÞÃÙç ®?‡~ µ°½’40p£å}ÙëÇ0¸lÄ|ÿ$ _ojûÔ£ôìWulEa¬-NòJµ;LÔÂ?^r0µAé~EgfU̲ü†¹ZáÇ6þ°Àu®/Ìpï¯tí°×À2‰­ÒL±¬DÑ­> ©„µs>Ç–s©aù"ÍŽ»¶ÞÊD¹» HWJæþ A›øi7$Ò0â;ì#ŽÄÉ^=±¾H*ŸÌ0¬Y‡dÇ Ô#EÒø=z…T)3E&»¾‘¦áŒ$i̤›õüCœë‡ o/ Ðþ”GƲ½‰Td¦~ÊÎ5W‡,—:)Ú1YwâX¬¢=_·Yù6r&¼]fbEîüÌî¹j!äòÒ9ùàòó=rd¡BSIM^ϹQ°ÃÁ¥×?…¼œxfû5QØúô‡+«(z¼3‹üŠ¿N}}OF%k <åÌ)ñ[ßÍ¥ ”.hp»tey{æNÕ \ˆ¯lÎN&*hüâ:í¯Ù¨céd¢òÞà\!FZT=®Ì°|è8ªÿ|Z">0dŸ—~+@MÿV“£c¨u“…¹Çܵ½FìhP÷ÙűOÁ·Q_-Bõdò4Xa¬x#²ƒ†µb.¿¥wyXþpàùAA4ý!Û"ò̓8bÛi.¡EUšÂ'9[´â”´±TD뻬îßýFÐfCf>¯aíÞäQ„PꢽÁ¶€á,ñæË^XªÌgÄ"Ç£y •èr) |™¬>Xc’1VAŸ›YCÔìš¿ó·™+¡Þu."|0Øhñ§sá­ÂçáƒL»ùz"1­öDÐî†w>RÏ#ÿÕ}-0ùbX¤ÁÙò¸_wõX*íòÆ›Ðl‹JŠˆ?abƒr±^Ÿ¦ïAE¤¹R©#7TÉ®±4‚ꦗšÖ P“Ou¡3k j*i"§vs›%“”ƒ+T¿\"XÙåÕuîsv;P5K§}"ªhí™ùJ5‘y垥…P»#Pà\ôê¾E¶˜ŽAýE6Ùh¸¨™m]¾Ý¦æç.BSž*G6´s©z+šBë©û·x¸T¡mYÆØ¹ýt¼ókמsƒ®ó¬õÐã"šwΊú ’áÆKèq©hjmVcƒk~îæ·`† Å(b9q\)øŒºyìÃä8LÈ /1;$Á+[œ+ÌHŒSéÁœ¾„ vâc˜å'*wƒE ©ò» °,¤ÙPÙÆ«º'ÚÚRia=©çR„ÜyزS±§ü6 >þ@BþŽþ:qHT²Wwd’å2WDÞB2_¡g2lâsÄÎ…—§‘j`Ëæã*!Ò*¹Žœ:ŠHsîe|Ì2*‡DžNFdjo+w@–Ôk«”üÈ–"}fV>rt—Ï)Z#·‰¤¯0¥òîT ±iBþ뾜çÔPµD/÷r'îmY3 IãÂ}Ë<^wQ¤oBá•PŠ+ÅðçŸ*FÉÖÞ6sR<7ƒLÞ>(sy”ÚÏ—åø|ÈËî üFjuéTìÔ ²?v•é;HBÛPõ†XÁï3,L¹ñ‡HåQÃ#u‡Q 57^%?£¿‹ÚñRÓP÷ÉRÔ’2êŸÜ ¡ŸÂCg$T2JÐèÉ•ý´¢hÒ8¼g'ñ-šóR»œcG««ÎÛ^FË_Ìß-¿pöÿá=¯Ÿþ7Ì ã\ù=Þ×?ìXo*MdþcòíÊkÈV3a-j†¦95½ÈU]þ¶y†òSÌjnRÂï‚Ó½!¦P(öüd×ÓP”VKó|0JNÏ€Ìc(;eû!ƒíïùÀ L@³ ª9Dìw|¡ÖÝ-5ò Ô‹ZjlN†¦2Â󠉟ð4aè24weîÙvZÇ©Ž‹O‘@‡Pˆô¦q*t¥Vxvk$@¯KˆÿI¿gЯ0VúZF¯T¹…œ„¡Ÿdç.ÓªÁH%¨Á8m{H†L¦|å/v瀙8 áÐÇâ0·ÄwÆü˜7,¤¼ñ3H¤…¥çâùÍ;Ѱâ[-0ïe kÕf9›aS!˜]’æ:lTÜÕ7BÕPanÚßH˜àЕAÏÄ{xo?Í@’œs9ã]Ï‘,J×Ü®D)j.Q/Žõ µüC6Ñ>¤B±úý¡Èð$~ºâd52™ø° ñµ#‹¾ ÚfŽ/²]Kc`J¿…m2jÏ#÷—wûé—ï-¹ e³ ½—ù1‚³×Ûìõ?à>º¬>»cË(rº*8ûµ+Цš¡¶Jö7™åtÑ£4m€ø^:”éü  Þˆr­Ü ÕܨHà°"™ìJGÞ„ÚË4 *Ń[™<#¨þ'( ŸÛ£FÐu/Û£–é…’s7QGàñÛr³ÔãNœÜÎKFm²5÷9S4ô-#9Ùð7/Õ/,– Ùë…oMyh±¿”áÀªZ¦TÒêz£µù“(¥»hKÿU`º¯íf»¨Þ ‡¡ý"×ô»‹ÇЉ›ÁD©þ7ºœe˜7ôæBWÙTÿý3øâòùS˜U&|ÿéÂ/ÿ\òë/r0Bé%£Û?LwuéSå’ª Ô·óÏ]S¦Ä'ço0@«ÍˆæÎ'è~è’øå=tË„?-’‡^Ò¥?'¡wÂãÙãèã 9£ø5zóEaHƒÞ åŠÒ è-s~Ètù É~‘|àŒqΙœøªãÁíL¾0ièsypÿ˜–Ø.‹e³Â9·î2‡¹Ït·Ÿß…ùž¸È s°xèLìæ‹qXmúJ+L +yÊ_åÃZ.Ó¡ãM °Q0xü’!lUæÛ²vŠããõËï!Áù'Ì6qH %xM‰šô*”l >ÙwÜFI[}ÏJýbEòÈš²A6!¤ü°—ãXc/RÇÆJ-¿Š´‰l{àÈ ¤÷ùõÊØ6üî c­·÷ idÚÒµ;^í‡,GK¡¸Œ¬ës/';o û×#-_&}óJÙ’øÁÈmßíÜ/÷Äa sÜ2fóàž=òÿq¥¥Ù/Š‚F2D/7qoÒÃÊß÷qŸà³Þñ»¬()!ûñ¼ ŠJÛñe¤Í XóÖ­j@‰°gav¹Å(õŽ0eèN7(;ÑvïÅ Êðö%¿ü²—‡$‚©P®­àý«÷'QA­Žœ~ß1T ±’®¸„JdÚ¶óïQ9˜ÜÂwû0ªÚÅ|í‡ê–U¾Q÷_’‡íùŒš„ãKêƒË¨e5zFüè0j§ôÛ²¡ÎŸŽ3'PO}¤äÉÉ`Ô÷ŸÜsw÷óbOÜ_ÁO††„aÜŠOÑØº›{} MaßêDsVÛœûåhÁs¤ûíZJI?¶6D+sŸÉ§_&Ðú‘¥ý“ôhS.ÐஆvÎySößð°¯Ôƒ?uè@#òýV_:F´ÚM × æÒÅ(LÙþ§ÿñìÛJª@OôqH¤xowMâ¶«“ߣ‡è¤ézG^ˆ"ùÕp¶tåŸ_ Ø7h°Õ áäÅ¿FþébFCªSÄ<M—_Ò/ž¢ÜBsçÀní9¡ ©çM®ÒŒ,ýÓ«ùë·îM–@öƒÍÉÂøõâÆƒ?¯!ÿŠªZ|ëaø½úæhľs»úóêúïqPthœh%SŠ5YO|%¡æo?¹hB¥ÊÕõˆ:(Ÿ´¢ç#…*n¾‘?2’PãÄ\Ú~Wê.L6eý„ú¢ËŠBæKШâv]*…š®°æA˵źЭh^3‹§‘à­ë3 ë¤\#¡=ô,Ýct³R€¾ž¥uŸ½»üµQÔW‚ÁÖæÛ÷T! šP;ЬU—DÞ©È#»_­…¦¹5r>”v’4´AîÇÎ̦#oKìÁ á+ÈÏËÿäÄ*8úìÀÇEôíd‰”F¡'CLZ…Þ(|„¼åÁOF=v âëÝw(þü«íÞ®Ï(Y.ŸU˜xR ¸¡t•¦a™Ö1”•ü- %Œr‰'8Ûg)PÁF$z#s Š:™™|EåT+…PÕ­qçóyTÿ¡qè'kj7F EMUŕί=¨õ\©#­Ç uHËî%úŒ¢nh|”œ9ê›Gy]ˆÚÀC …æÇ ç.„™^–Fãy–“V¿ÑŒ•Q"ïÝš'›ô˜|ÒB‹ÑUgµOh¥pê´ÅžËhìàÄS[‹¶¬¬¼æÑîË µU´wä|í|`/ÝáŠSz?¾«ô:ĆoÎù%óÁ?NZ2$  Ñæ ?®ìòFë •IÉß~ä®fVü{]DÝö „ >ÿò&´p×7¾•I… š¸ÇÇõvýeî`˜Ñûu yF˜Ôáû{ªK)w v}ܶÖË’iõÓµmC‰ðû°¢j ( ºΫ#\S¤â_¡²àçXPØy¨ötxÖùÀj޶J¿&†[&Ï+Ñ[Pý ¼g䡪Þo{é>TIæ&뜅Êùá$ŠYr¨:Ë»ï‹ßîÏ{vµÜÙÍbïè¾BÉ\ÔƒÛKP÷Û1$*Àq—w¯sù¡ahÇ×ðv24ñ d>2I…æ£l‘A5O¡¥ÆìËÉnh;û}û„tðýR’ƒ.ò>›ó]ãÐC÷Æò(ôIpwWÒ“AÿeW¶|æ5裄ëßaÈ{ËK;ü*ŒèX³”õ10ÂÞIÿ3_m4{&›_û'Ù«Àtkâ~âðm˜£} nåtæ÷ÎS4ÂÂHDÌ$Á ,ý²4¿T+Íwä‹&Ô`]1M1–ü2lÖ5OE±öÃNPªñhFüV½IÐR…Dö?Ã2¼d/÷°ªž’1~z»Ôœ©g®R"•í©´W>HÁwýçÖ&ÒoW¾“¾‡ C¬zðéøn¦*ÛsC‹,§@)dÓ±]¤ãBŽŠë!´áÈUnD»«ÍÈ{U·X,âòËL=ÚCÏ€uÉ Ìqï뙑Î*¸Ï+ë\Ï‹)ùÈú»ÁÅ Ü÷ûG£äËCû{l–ðÀy=[Ÿ4”Ñý@PŸˆ² äÞ¤óV(ÿKù’gÖTüñ#èO.*M²ž+ò¿€ª j[%¨>%‘y³^5Ž0–Ô~EÍ1©"AÅIÔl•ÒR+EÝU×× ¾zvK:ªÿŒ‡^|óWþ¸&C­ƒï†BwÏ"`%üè Zx÷5ÆR´ åè¦ܽ…Ö§ý{¾[F[¢HZ–ÂQ´ûA£Ôã*öë;mòCÐñò|PV¢:ßá \¬Ä#Q÷O¹b‰®K+*ÁWná1Quá[Cxü¼i¶þ#5˜5Ójèƒô»é/¥”M!^²)ƒû®/|&¿«qræånîú¢Øàþ>]áyzõ?ý¹—FÿÎ+X¦Œ€w¶ÅEÆ­!0éÍÉa34¿ó(Û¸ùþ·.ÜáÍc3¿jˆ ˆ–ÜÕÍöÉ ï™á›žÂÉ~£—öÆ-3Élj÷s|]6Ê·ÜÍmòg3³Aºé'†4C H?)üySÝ`÷ûI)ÕbÿÃÎJÿx¯ø]yLgdì“ýÊ¿ùé?s›¿(&A¦‡Ç ùØÈŸ‹ÝWÑ?ó߬*§sïeÇJ²€È×qµ8` ¿s2ÙK†A¡‚™Üý¡ïPTìù¼ôð<”<ÊZ8û ÊžÇüQq›€ŠÊ;¿ÒD Z?.¸ÿ„ÚB>¥˜:¨×ª¿øÙD’'’l‡&ÑVæôóSÐ\7·Ç¦`Z+ªßÓ[Cû¬ÿíkÐå±·2S ½ŒËL[=ýª«>3ê08KµQG CW|‹¯¾…‘Û¾YÛmï`,SqþNÒo˜tºù.Uá$ÌØæáò ˜«È(º¦ ÷WÞL–šÀ’õžB®°bEÜG.ÅkA—-›ÍÜ`“`<ÏCælûÑ‹Ñç ÁžŸ—x^}GB?y/Ï$Z=ìÁgË‚$Á.!ý"$»zhªeãØ…Ÿ§c^~pEjbš¼Ü[ב6máç§Ayd8k¹šP‡L²¯dÄ¿ ‹ÇÅfûÈæîK%úýrt¹ºËQI!wPÔBŒCòÅ3™o¸{£]D³SÒ5ܼ©oñ–÷q'vŸ¶8„"žõº'Ÿl£8ã»®S‡Pr1××üJ³Ö¸eq$¢L_iᵂ^”ko\N#ÈCE¢ ‘ì¹ñ¨t4»a%UÉ,Æc<"P})ëãIΨñ†õ Kjé'h^(E=Ïóå<QŸÎž¢o/˜‚ʦh4Œ² hŠC“½ïè“Ï>A³º=aqœha'v'Ö-ǨK(wzÑ: ²qhNm]ó}uVñ°IsÄÑÅèàìÅ@-rü;)å>P¡Ëx˜ÅÂ캦*xVÁƒÇ(I®-$#ùÄcM§éPúɨ4› {jàô¥tø~†’õØe*øvÍø-Í\;$õž·ÜèõŸ~f³Qø¢/`yú÷#ˆ¼Qlð÷º?oUŸÐ®¬ôa?»ów>ݯlˆ>‘Q´OÒ‹Lôå ò)P¥˜˜BÉ¡íAM‚]=ê–T5V…z Ú3f¯NCc˃S Ï´¡åI‚§ÓO h¿@êQiM]×§# r ÇßîÁìÄ1è=ë¥YG ½ªGœV.AO¤Èþ€ó[ÐcóV6K.fãœkÏ]Ûõ}³F’ÐGµqÏ×=ú2¨VnõB¿¥›rI•, ìmákAúN€2"âq íµá†a•øHɯ÷`ä¥ïìc]<ç'Áã‘gÚ=6`òÕÛF"5˜~çõ]‡Èf YÏзªÁ¼ EìãÄX i½{†–”Ko~„Îûz¨rvýàÞöý+°!ñ4ÿÏeØ!ß›VÇ;¬>wÆgï#]íüê±:$”®*¤d^A¢3ŽÅG³r¸Rr6!“InxMä<ÊW›‹)é½C\ šõbÖà/O¤¥w#LÐïGºyó#ùýÈprŽ ˆ¸O²u×wú#Ós©åXduó¾#Jƒ¬7ïC­T²ï›"V÷´EŽ ÁÓFq–ÈUÛþ„{•yºY‚ÓSÿöÿ¦:µ\‰üYYw¤©ºQ°jÏ“¹dÜ{Ìdfù¾ µ–Êlf䣰óªl¹PЬ‚Óœ´(#¢ã«²%n| ÈI»„RžbjµUOñ@Ìá[ËŽM(CÞ't—ç²6ƒÇÊ–™P.ã9ŸC *ðÑë_2CÅg·7ÖŽ­ ¹ÏZø TŽë|ªD„ª×o&äžAuwž};̈ãn-oÜÍozwÿ A-ƒ¾b'þNÔS‰Þf«Dy¾‡i¯PSµò¤jP?êgRtöc<$3Ôã­††­%]}Îhtå–ømDÓ‹buu‡mÑ\æ²(«O#Z(Ûè¿­DKsÚ©âÓyhå)fîá´ŠÖ_ùÆß‘£ÍBóÖ#g´3\½{o57‘—ù#²—jï caz÷^þ$~{Â]„û0Tzß·=÷?žíÿndß´fÞtððì@lúU²ðŠøÕñv—OØ'øÏ/~ZÛXóPO!ƒbìþŸþébä+ÞCÓgÏC ÍåIØõ©„IR­…”bÑ<ÀT ©œK‰_üÓ«vl‡ ÐB6'á%Ë«¹ð‹ŠR:q+ò%ÃDRáw´Œ‚Ø´>äEI“Êþ€Â«P¶5(J\œ+·QâÕGÞ¹{@©qŸÈÅ6(g_k;åæ •by{O?LÚÕ#ûGRÂPûãlO¯’"ÔKXÅð1¼†Ï²cò|ÐdÉ/.pƒšÇüHwš¶ 5ÔûVŸ»´Gþiõº?sf?Ã[šwy¯›A¶¿ú¾'ZryÁ€¡\ÔÖ fÛ¸N»ÃZ?îl”œ‡‘®ñ̓„0ã™ö¢É &‚|7{ëa*QqoffjGŒ{hÂ`îYœå ÂA˜/Ü'u2Y§ü_ôÉÁÒ£­q©HXa©fm&‚ÕÚöÛÊÓ•°þË(ìÀærmQ ?ìyÒ¯ñD ®>àæššD¢ ³s1áHÌuYúE’ø2÷Øç"™`ôÅ6šv$ŸùÎH}Ñ)g¿Çÿ8!ƒ4Œ1á‘ëW‘NôôÊóÉWÈp ?»bĘõÜ ‰@¦øâh[½2d¡-¶ùôÊYC”T:Ž— »ó9Þ‹§$‘Ó6Lèøƒ@ä¾E½<ófyóë$Ü+ÌŸ ž_rôCAB½o•(8•gw(­…^Ÿ'ŒÎAa7³D(êú°Ëât=Š?Œá*}J…’EüÛÖ¬x@Ð;_õ t‹m¡$Ë ”U²dºï…rù@°Òk gÞÈøöÇáAÕ=Œþ§›PYå—¡• ªž¼0ÅÓ} ÕSW« ,Pƒ’Pó;jêt³YmD­ÎÏÎB&nâ.ÔMt.éyƒúnÑ¿=ß·à!‰«%tawш1­»3ÍM8>OðS ™Ö9¡x K4/{ÈR ËŒ–DóšÜº£heyÛˆ' ­¿2|ĉ¶ÖÍoÕp¢]opïÐO´wW$¼xÛ •ˆúïèCFÿåwI’’E7Ð#'q#`³¾”ÿ÷ºã±½]ÞøÚdŒÏïêWÕíêÜצ=k'™¡í*é¦ÌÜð~ÛªC2ã \>øþ䮟¼¢Fóê_Ý—œ®Í>êÿM04~9Žçm͇‚›dùÕß' øI23ÑÓ³PFlô;$dÊß>©i •–ýí줻ù‹C”ùZÊA¨!Žzësšªû,úXâiv¿.>L§ U¬¢*í˼PiB¦ÍËÞK¿ØÎßpÞ}MÃåÏ U†R“à Pý@æ\^Ì}¨ÉV6p¶$†:æðfe¨çüìwFä4¨ï©Ðy1·¿U?øMyÌ”I'C‹oGó¯{ÐÚ§’tþK´GO¾;ãQ ‘u£kл9l;¼}4"4vÑ÷ ßÞìôÛ40Pæ)™$—C'ÇNš‚‘Ó?†ÃèzAÄÞÌ‹0^óè LÑÜ$øx¦zX]Ú^…ÙØT·¶˜g–ʤë-……—¬;NÂ’­«O3¥7¬œx³û‡< k¹O¶¾vÞ„MC{j7[a{5¢Uæ{/ eð<=„ÓV«/òÆ‘8ùfFÂÄ)$}Ç–0äa…™n_²|ùa¹(ÒPvQ2¼ÏDº£þ”²‰‘ÁïÕË«ÇÈ´/kÿ¹ÚYdžÛ*`bWAÖ¶u%íW}*VJ{h¹tϼj½ß„<ãy{2§ qOëÆÚ¡e(ð"8ic î5¾ÇÃîˆûTîþ„-±?x`éž Š%õd…fù ¤VªÏù˜Ox€#ì\È‹”á0]!)ÕEÙâg+ÚnE($»ÏWT 8 x©e •J̦¤HQUâö`¦ÿuT/~_úå#?j_ùèá'šÍ•m?]PûÆÖkÿD] ÿÏF;>¨¯}ßcg² i½oF¯fNl6 ÉrE¬ w šk^Zê0öC‹‹ý?UÑŠ)Z¯òQ Z‡ßòébMC[ƒ‹ZL‡ñ0U1Å›th?–ÿ(x]–NdÕú¡ózV‘ûþ6te›t–SbÇ£Xù[bƒ ]Ïn~§iˆÇóh™Þ‹€™s~‘%!-~Žqÿœ×ß½{9ÔB!J®ä½‘ßc—xrŠU¿B¿ìŸ¼A±!Ÿ¿«ßu¾ûŸýΑöTV52« §‹Ö'  ÐélíþøßºOk«¼±)¹cõJ5¸ë|-ÐÓ4pIo‚“d;äÔv‘s˜Ëò¤;]¼æÿÏ>Ÿ‡!‚b¹ÓÒ™«ò¶˜ÙþÎ9yÝÒIö?|æAó&uä¸hQ•õÙêïþ¸6¡“÷ pp?ˆ†Lñ•P ƒ¬w*‚uSðó‚BªdðüJú=Ɲº«Ÿa—‡ÃàwFsIÒþ,(Ôd!± ‚¢V>Jâm(‰^ jL„²ÄÕc¹iÖ»|NéÖ¥ƒjO»þÛ“P»ÆÐš›@õÎæŠÊ¡¡è‰”ªÃWh’ùšwJmš‹Ex¯BkÒ%RÙÏОý¸xé;@— O'Cèô›¾•Z¾Ž'æ:Fú0põì¡×¤ß`HÊ-‰£sF$:$ò*ƒaìX€6û˜¤Ð§ ÛN‡RO{ÓËv0a¶'®ƒ¬ÞùõûÂËÍ+Ü»>V%Œ§sÖŽTLGiÁF•Ê© [Kض·ªËS”BâŽl>Æ/Hèaæ«×SŽD-¯‹~b$ž7Ú<¼‘ÌÞNÞrþRÜ>§)b2€Tõ '«èövŒÉ…wUÈ`¼E|a®™Øƒõo!˺ÈdaOd;q‚2ž#Gß«QŸg;zÜ”/:ùòx½#I?£WÂMšì ÜK~+ãPÏ-Ü'ÑqCQäQó<“WРܽºü ¥HãʆD™PšwnÔ€Îe†—N$~C¹®kï‡?£"ÉS¢ê>T:>Hù~õª’(qFõñ®'¾q$¨ñlêC™jiŒæ‹¹m ¯ßÔÇP+ÔºPÂBð ì¯Ýõ—ßBß¿´”£‰Ñ/“sý‡Ðœ\Ò¶øW6Z$pµ¼_ñ¬ÆÜ9:ó¦¦G9{¢H²ÉvžXþÝsj63ž  Ó Ê“÷Cºz|å7¤U«]Y‡Ü7îD³@ñÞä’—r‘P‘5㦪â uŠëŠï áÏÝãçw>CsÖ¥/Ù­ŠÐ–ðäÑØöCèÌUÉù­ÝñŒ:mÐ,î»У=êýPº‰0——ëA7‹tÈwè#w¸r3ºm Ÿ»AÐnÓxAïÂ,%‹Ð'£y–‚¦ú&)¿,²µA~çëg3`à{R©È®Ì. [œ‚¡‰tóÙ:1n½HEòF7LaðûS_{ykj¦(4æÈN„À ÐvRݾs'>ǜڄùž²?z‡añEfÒ#/,_ñ~ i“«wØ*žiÂúó;„„Àæ½/¿:*ÈaûÄQs_Öðç˜L„ܳY$¨>øNj,î\Ê>çĶ YK\}HÒ?xÝmÉ?ó—]=Œ»øå¦ê¡’nýÀq¤ñø6Ä!­„tš?¤VФ‘´œluŸ2l%©ñ$Í"Û5¯è|dv÷~k ,댳©÷tíÓu„"Èáz»Ëóê®n5ß]kðEëw´Æ„È÷¢4Ïäœ:ò_eš´}™§ÔùǽlLbn ÐK’G´sçQ˜³Pv©›ErT]8½$PÌÓrOs,JX~=.Ç…R6æe?yäðÀ##Þ³%(=ß|Í\e•‚×Ô¹Q.À"jëéÊÿ1ùãýSo|.6²A%вÓÞÓ¨œ™Ü›p9U_轸2©ƒêOÎå6ŽEL2r2Œ#FM‚(²gïµÔ;^öÖ£ö‹· Œz÷QgàXêiÞÍ]Y&Bý _õê =ß)‡À3Û}ÆÔP mÖs°Ü‚aQÑÑöo0RØ)ù30öÒy•½ &n·W_ÛS«s— ‡`&ä[ðZ˜;9®,ÖóæßݯŠ^ú ½£g-‹NÂ’®¹¦ Ã+X®NsìZà…ÕÄOœH`Ýý ±ëê0lÆòíØÐ¯ÁùÝe$ÐJ\zÁŸŒ„'G—:"Qí”èÞ,/$9Xbpn8IKJœ–éFr¿vôX¤|ÅÉs^I ©¿é:ÌGÎ"mQÿ‚éz¤ßl¤·\BF©%ÿï‘éÆÐù+óÅÈÜ¥r‡èÇqd=M`ÊûÒÙ%ÉÆ?z‘"§8õTHv3rÛ~¿?}­y¿¬óÍ_@~v§—·þ˜£ÀµÎw_Š#Qpy¾Ñ«Ø …B·Æžl ð‚T‹Cº(êÒ:½bMƒâw>õž“ó@ÉTXÓ*G­¯N»lüFqÇï×ëP·—Ãá>ê߈#ñz™Š‡ô„µ«Ú¡‘ì:ïé¥94ÑPpi¹…f‹yßÜøŽæý™FŠEChÉÇ ×n&VîÝ~ºœh]?¤4i¶†]ÚŒЮ½jàAƒ'Ú{[zÜ/ɆÖÅI®ü]é§ýbfš),N;U¾;è9L_¦QF†ZRZªqµEéøcö‘«äô]ø¤V¾?E{>¼šÈ¥|vÞ 2ò•¨2B€¢šy{õãøßºø¬Eçèóî~m> Çrî4Ñ«‡<„ß“á¾oZ h¬ø‰†v”^Ú;È> å4{?ÎA5T ’—¿;Ÿ UYËé»' :úÒ¾d€ê³¯}ÿÊ UÞìŽÇ„¡òpí÷å,¨p7iY^m„òÕ¯:Â4¨õ`•¼C[-‹3P¥£¬qéû¿Ÿ¯©¬Ê ýùê.´‘hø·A} &„îò¯}oÛHh⥿T¼³ ͦ¨e_í…V›¼#W™5¡]ŠsF%z:ÑsN~‘ º/ž¸aœì½n×Ê®/@¿dŸ4䇔nOÞÙÝüfÒdêüÁF(Î]¿áÏ£õ£§ÂRaüÃï_¥0iûä¨e0LP¸Ñã°³ò®W‡¯Þ†¹òƒÞ,k° ÷̵Šlg/öÚGÊÃòrÜÔG‡`XÓs*HMö†"ZææîØ>üúèíô$ ÜŠÜdCÂ{Sæ./mXµõ)Ÿ ’òÆß±æCrî¦À#šÆH©~™«'ß©/‡œ¿Š´y‚ú—µŸ ƒ2ÕË ï/ÈXï:«³ŒÌþ"¯øôõüW’ÏÕÈ~•Ýu:ç rþ~ʘ¢þyŽ(Ý2P&Å=Æe¨}!NÐÕ0uÕmïð' ¾L±È¾xÈd)fßHì·~c‹¦d¿ÎVX&£¹UTKZä 𸇣•º™ëá »þÑMЍm_ÎÔ_t-ÃÃ.w[ï½GÃd©™4t²\•Ïšÿ.×mF^¡«¹bÆ#<ú—šC‘7¡¹×Q\æ8y]ò%”bKz}÷¤…™Ï´O¢Ì¤ùpà”ëÕÞôªx†ŠdëÓݨt’ZC©CU çJrs zÏ4ÅÔ¸_t=X¦µT„Ô)%Q‡û-'yA ê‰ÖÊí F·¯ùv–hØÀ3aÜ6&W_ˆ¦Bsaƒ¥‘Sh‘|։­l_V{„£ Oaßé#ÑŽhÜuiÛí)Ëjþø. £¬ŽõBP?:ß¹t_L*Œe1k×?Æ£ª7Ï4Íâ±·Y9®ÿD²ì|ˆˆü»OÐWÜuôßqù_þ%«_W ?. þ—‘µÿÑ?ú¯þý—?ÿåçõï¿zøßºÿ¾_ÎÂÝÞ÷É/¡pûèäš°”ëý UýöOgDo¸Œ^%ƒ¦I…^ŽE h§|O³$OZòïWC7Ûÿ¡ë­ƒ¢þ»þaº»A@JºSê}èénDìTJEPT%A餻;¥»yüθË3÷5¿¿vvUtÆ=Ÿ¯ÚNˆÕ=‰ú«›ô'P¿éìe’XÔçÉ¿yp,õ¶4àŧŽþû<­™CpPož¹7… ö×1¿€KUöY\%ôð½¶Å‘†.õf9PžFÃÆ»K¢Ý¿ïæLfá×ÙÐXª•ÜÃE4a&<ºÅ„¦¬Š/Œu¦ü7 ×Ô” ÙïD'¡Óƒ768hIÈ\ÞŸ7-÷§eš¥ Õú;¾oÓÐz¯ÎÝ»£¡hsú¢/ã—2´Ýclƒ[¾‰vóTùÄ•Ñ~j¹ÓMcœ3äs‹¦Ö€õ°0W@ðFn>P¹›vùoÙÏ5ÕïBÞ+@¼y<™ý¦.á4—›yëAÕC–p |Ʊ›\íÔúZlaú@¥çphSBi»n%î=ƒÃͤ·1-iÀÄJààöd˜;ÚM¿ÖÂæ«íŸ)àÈoÖû·Ç»“@áªôЗÿòínTh÷<[6fàù5"ç|ê\ÂÌp¬=B†+Æ ÄîÖŽêƒÎ£ô³ "ú³2èUˆÉÞ´Hõ 7Õâ|ì¤òŠé#ÃÍyAæ2«P.?È…îä ƒ¼W}„…L'#WÞ³mÅšüÖ œÂøZ…å(¨&Z7ä(Í«¾•µƒƒˆ/Ç@Cºõnñ›jм9‡Ž]—­ÖÔü_AGS_Yü‡<èþrø½–M úžª3óÁðˆ©Ý™´/`4­‘«{·Œ›¥^®^3ïúÚê°q0½™CEuÌbj¾'9§yéE6RZ°ØÉ'ýöd¬´Õ³éˆÁúðfšŒ7ØUYFìí€>>O^8Ÿ£É‹U¼‡žGÇÏð¡Rœó}Êwþ§Î0õ•Â]’[øJæê Ó·^{Ú:Hè`_1Ÿcêóç?4ä¶Aêw”á¹òÈëÜ(ʺ¦1¿8Y‡íW˜~„éC?ˆ…CÉÍŠP1j½ÞÙˆýwbæÐ²NÁ«}TœE8;ä€*2f=ƒŸ´`ŸØùô_]cûÒ¿y²qYŒ‚÷h<¶/µJùZq.ˆ£¶ú²‹e­PGpXljµÔõ².ìɇ†ÃºÿWïCîœäé$‹hxI¤Áï´1õ³©Ö|€Æ)ã¬f7ÐDÚaÅ4uU[é]oš±÷ýö£ú<šuñxP;„æOݼàz-j ½<€–|.~x–?Žh±~ˆE«„ï^žõ#FkAÑ-ÉÔÇц¬XÔ=Ž'h‹Ã²æûóWhÇæ<û{ýF´÷eÇÃphºëw,®®>÷ý{5L˜ÿ_À½™©y)ÏLFoZ ±øýÄÎmB ¿ÁM®ä&cŒjF>@éj7OÇ Ô±|ix™f7¶ã£xÐéáË<}U ôi_’N þ+åj\]¾NÓvR^]ô°ìÝÊm^a„#2Δ³6ÙÀÃCwޏ|#¾£nßqªn_à9à;™Óq|É·—•Ïþs{\Ç#AÐQä t@øÚËdª.ý¾õàjÏ ç|pùs+HÎøç¬äŸi[¯œHdÆ%‹·Aî™—^– (¸Hß¡K8ЦC[^ ì\­u)TÓ<Û|2²AܱôøWP·² +Ÿï%dCF@K%ådæb%hwXµÌó¦nhšnP@è»t–>aØC ä°.o'¼*—2]æàäë£L·§YÀd{Î?Ý:Ì%Œ^ØÜóÇ,‰ÀÌóBfσթ’/r¿X/Ý9V"¶OÏGÓñ¡¥áKÕÒ2Uè›5ƒå›…[(óòé DôA="61™â¿œRÒlgôö@ñùIZ‰Ãú"Ñä=σ^>¾|U¾~ Åp_¢Éó CÏp‹–xï¡(_:KM¡lý}dÔ ÊøOw£é4S‚ sëÓfÎÔ¢Òñ.Â(&T‰s2áØÂªŽºJBµÅ‡~ÝÞœŸ>ƒ‹êÎøˆzY£z]Ô%üE5Ø/VÖK”¡†+wm¢ïE ú†”ŽE}ô{Txx'û8úÍ_«~ŽkÕ¥‹|!ÈèCuYT) ckØÏ±{à¥àl5ÔˆóËÆl5]-4Ë  CÍõRoÚ¯£V}Râ€ç¨­û±¬h¦ê¸]™¸ò\u‰Ö1üzº—ïÿ~—-z« ÎÈfö£þŠ;<Íh·mV»]â°OþZÐP÷BcçõÈ“:ЄxÍgÕâ%4…Ë“=ôÄ MwAs¼î]×î;£E&k£/Yvh)ËåÂ5Æ›hÅÛ/[ûDZ;¥Ñ}ú:Úø|¡)Ï1m³^©8¾Èƒv#¾¯)¥FG{‚î|^œÅ„Ñ4YWÀ³í¾Ì-£ø£w?¨ÈáÊ¥eœ¹- á]¢ :Bd!Ë›7PªßjMN¥'—iüý޹b;a=TNÈú¿¦øú^®¾ À*-®*îÕ ìt›—ž3}†£:B­ –îÀ}Fbù–,ðº'›ˆqÚ±èÒ»Íe ˆ/puéãgÎãà¸AbYg£Ã¥X@Ò/á”|H›Cù³÷µ k]?Yq7äŸ~»(§ZŠ„•åá<ì œ¿±ßß (óiG•¨mQöv¨-¦¾àWÓYÔy‹%+ÒFõè®H´¡>_ïîqx¶êÌ­¨/ƘáFôê3L¤6êB}ì¾ê'þÖYŸâò ±ã¨/™ÌZá:êg áÜ0CýññüxDhPèáŒÑƒëhˆšeûõÍ%4LËdÅ÷HF ¨…¢Q_„N³h¬øŒ´Ú‡hB}ÃME‚MÎ-ßwq EÓ™2G´ß=Fân¼ºMæ&Ç(Ô~Z£E—½H+—´LSËÝ ˆVÖìðÞ¬@k|¬‹Ý!h“Øñ­ÑM´Mîp6#0í¡U¹ï„S•e½cÙ’éÏï‡K”¬Raeµ¦(žûíµ²•·ŸŽc-ÐÈݼbxý6ÐZ÷ŸÕþøèÒ‹¨±_nt·Ø€±’¥õy%0ß¡ «YV+k½{àˆã¼oS-p<¿%6§¢G7¤5ă.·úNXrØ-ày·”$I´ |\·ÉÅáØ×¯ïœ ôAÀËë4]« P¤Œ_¢ýàõ@#Uú)»’„³Ã9Ê Y4ó[1çHmtË6#n4FÍ£S7{Eòò½ß6‚A¡¥µê—R+(>~=VCñ”ÃÀCMP5_´$t 8Owí¤:¨5n>e¢ý;7î}|þzN4‘ñâlBÐzÖj˜u.´wy¨º{Ÿ‚îm®ã2 OóÓ_ç'üàËÚò£@צ¾ßî`ì&Ò¬®’&Òeëóô`ª¥àF­Ü f^¹ºbÒ`þÆ{Ÿxú4XL¿&Šx‘ VïuZÎü˶®ªÄ ‚­{t:U(ØäÄŽ¤Ø€Cõ]:–™ÀÃn{›UˆJšêúüFÿãëKØ1 OÝ¿ýxüPò]¦­Œñÿr¥,÷3¼ðP"Sñ ÕŸþغÂÌ•˜þ÷ZÁÝ•ûŸý-™ó@çÈzÿjì|ÔÕ0”^ìG+xbeŠŒæ.‰¡ì¢ä‡ÑT÷Pž£ôíwþ o‹DŽ8§® ‚Ÿßfœ,vÑϤ=Á†×Ѝ„«{Æ'0•ª ôÒž¥Ge'[ìˬQyXÔU!Þ=T±}Ž%ÖÐU“pfªÛ¤*5…IÑ/uöú~™iT[üÕjG^ý~ÜêfÝÔ(1Roã<š&C=}p=QË{†½Ú÷[¨íƒŠ&ÿfÔ¡Ÿ=¾õmuÝr¸×¶ŽziLU(®{ þÝwKg‚ÐP„5kCq?á=Ñ¡`²€FÓØj¤ãüÐ8»Ý€÷×84¦HûÌrMQÛSø( éŸwÆŠ¶ãПwÇø¬Ð\å” •†0Z¤ÎôËw=Ž–l’÷Oï£åœûlÊ­2}T5©[CkÃD½‚hƒB$åÙz>Úlûüz †mOyæ¼Õy‹öÄ÷ÜܼÑA»ÌÚßýgéçÕW#€'t#Ь ð^‘)9!I g n4ý62ܲ6’ªie®—çl,‰z) (ÆØÒ5Åä€ÏÀ?ú÷  I¥·ÔM/Ú™ŸMOû"þäQcõc)À0¦rwçE0X&¥HK“Ç[_n8r$//] 8b£íÜÅï'“V`Vp‡yD>ÿ¼ì÷:¥­€¯œ#GMø“+ðòo€à»¬)áüg Ü@åM«}Ä8¶®ÆðƒDös=‡ÝR:šIˆÓÒù¤.ogøAÖRÙý•ÁÈÓ/d|P…u;=æ!P<™4°jÉj™>£E@aÜ ¤|@-ôMH_^ ¨ÏÔ²º‚¦ÛTÿ[_ÐZ¿x•ø9)è¤6³/„ƒÞµà‰£÷èÁÀƒÄX¸yŒü¤2‹k7Á¸,LniL^®åñKƒéŸ[3G²ÙÀܺn·êì}°¦˜–_¾VB¦‰3éÁƼ`¶Æ#ì4LL ŠÊÁÁFtd'ãZ¾­§Wp3 å­ó´~Y&øÏg\ÅùÇ.¶%µgN%|Åö«Ÿ¶óF>þèuŒÇµ~#ÇŬ,Žbü‚ =Ÿ=}—vœC…;WbêðÄ2|g@9c?SoÄ\C?Ô4<ëQ[¿ö‘`FTùÒ´™xkÕWc&88ŽÛê†ø}¤tqQ}Bk¸9jxBºôX=õpûwÿ}KÖêà×Tw‡ðY‚&ªíç’dGµÛQW¨ìj°ûÜïçï.Q"TU5X28ùØÏ\XGM*¿IzLÆP³Ê\ÈJöÔbý-ŸñjM6ó)Õ–DíúWÃÿó£N£ij]µ‹¨û©-Ëà£Ã{¾jK¼¦&òYWÊ?k‹†F–sm^@£"ZWôî•£±‚=èþòMœ¶Ø¹¤³ˆ¦„o$-¾GÓtæ—þè ?-/¾ÞrGsuÍf'ÆãÑÂÚÞ^Z†>Z’ØN .AËû^©»Ñh•³ÞQœ“­Óy"™Š6:®âÆ)s¡­U§©É²(´«@]J Žöó_X»1uÎïŠW’+€weòB¹*¨„S>= D,eQ— •Vßñ6 Hj¶&»—GÔž}jA…â'¯©€öÅ$ÝÕ š+;y¾³wiˆÚSÑHÛtÕ)`¥þézÚ,Ž|}08Ý᜙Ó1긜Àu0|¯³§ xªð–éÒŸ_D’øY1àú¤æòá;!¯Á@“:é²ô8Râ9Ësü÷ÏäŸ×Û# » ,§Êþã#È I6—†ü‹™³½“ïàx%—`a>(›izݼ£²4®ØÔnÕz:RSƒ]ÃÅ©ƒQÐl40Œ§Óí¬'ÌR«O@·p¬ôý× Ð_üÌ˘ž Ff¼oh%Áx$Ü]Zè)˜´:5¢h03:ÁÔšx ̇){ªð­Áò­"wò£°5·×IÛˆ$ŠÛÌÓ`_ËuûùÄ[p’·Ï,àð—³C—½ÌÁµg¨âÜë«àîíþÜö)œb{{[{Š<—’×.=ü‰æîí1=þÀ‡²YWÎghÿçï/`X»…­¯87D¿«}°u…ÙÛ^<ØI¸ÙbúãoJk¡hb©z á<ô,|€‹Ÿš EÙóÞxù½àŸ â'E qƒ™{£QÊç±¼Êõbô)J‘ªy'øð>Y/ÅÅÒø?ÿɔܞ ,Ž–ëyìúë 'þãU¶ÉÐ^B¹Æo¤ÃÅO¾tÑí®f8öÏå‰óæeá¿>Ü㲉z¶ðþûûô9öì÷6úi’ðø^*îü­ì½J€J_žQÁéC¨üŒÖØ£\TétSå¾öŽS‹o'3¤`­ÛFåRÕ·RQÓ–|àc“žÿrßtŒ*ŒQkÓ½+/ïŸGíîëä ´¨“ë{ìƒ+T¨¿§=öC2êŹ;í5‹úÉ%³q®­¢A ír~4TéwLR6ÙeŠA£á„ÊqÑøYÂ_¬Ÿ É7(ƒéö8šøm¸MEŒfçe[¿ö?h…ÁûS{Z]»^;ûVmðòÊzËÏ ­›!ªz¬,hgt´:íÚ¿L¤Eúãà$ý‰ê|÷ðX™ëoe~ípH¢m ~+.qh{ÄMš¿]™Ê‹¾/ñ§€b±GZ8¸h¨Å©„vzwÆé[)07ĬÝV¦sªßi•èLu‰)ùóúåØl åsYRs¸EÜ,B€×ÞO·=Ž=ËÃÃÙA’÷)šA¸¼ÏêÇ4ˆÕ‰†‹‘É(áýñ>_ ¥i²w¯ං|©—wðz'(jˆ4>r"†ž+lŠaU/»@]2¯ßåM;hÈf$mü®²$ºc +¸IWv ô£’iË&‘Ðø-ïûÆ`¼yÒK´ï˜âtóq„½³ì4¢T»Ç`z¿þi1XEŸ~‘ç6M‚ϸÅgÀ^ë:¥Ðrp\Ÿ&6âÑ—ë­OC¯~7æü¶Áúpî¹)N৺Cú‘¶È-ývTžÂ!¹®÷ }Ë“¡þ ¡²ßsÜ¢TŽ2^Zw@i*#½ EÿË»§N¦’@)ý‹eW Σw]ç‹?AIR6Y÷¿£ÄB¯›‹Žºè]Édò>3ú8u°LBø ûó ²VúýðßbïùU9 9±ŸQÝF¶53ûSÔ”)’õî Ôê}îdBê*êÐlh}D«ˆºöÖ½®…x ^²³ð]]PŸÔ9«×sؽ¬o²e§±&õkJ¬ …ÞBý7UöVãQÿ³ò—®^‰¨?Ã@ën“ãákGXj¡S3´OŠÐÓþƒ†èÈ?†t£a‘¸1â'4ry^ú8çk4Zñ^íƒÙ,gØöÿXgÅß&#×ΘFSÍÚZGŽà cÉÈ÷ñhÖ@EÿZR#šßË–©¥†–DžŸ@+dT ayîhõ€é%·þÚ`¬GËOÑ–ê±ÓE´seD‚u® íõß‘6µ: 8 ƒ”ÎcÁ€{çZüòŽàåÍÏ%©þö2sÍ9 ti¿7&FDû¹RZc@ÒÈ3 •È*ºØ•¢ñö§Ài  Ú&.•¾¹ 4ÉÏ.÷imãëÅU©x Û4#N÷ôžÖó‰ïQŸI&›½˜ÅñˆœŸ¦ž7±ŽìÀ†ÿv®íÛ:°«ËgÓ¿žÎÏ¤Š áŽÀ•ÀåÉ7~¸^pufnïoW‹.Â12®n_|Ràÿú9õï÷Uð¡ôÍ¢Ün¾hßÀ¢÷<޵ño+ÙÚç A2´ykNþ5Hµñ©×lfŒÌù{I@ö“zî K WêüªŸ ‹Ëc® XbDzf:”3 oׂjÓ¢ú›€Í“cr×A]øTdâÊ#Ð8[Á+x 4+T~ÐVßm©ùßj¶t¾1\+f= º«6Ä`@_G¸†½!§¥mÍáDu-­°× œlòòÂ~¦¸–~júOÁLÔÚ¿“MÌ}FinGE©«žtPX‰[Ч3ô€u®õ l+ØZ;3ÁTötQ?¾ÜS‡ù8ÙTSpúcV9Ô´ ølæðÝÓý¬Ò¡Ý@Yƒ<ä<è}Ýâ"•p,^Ù¿0õôV“‚ÉÞ’ »Ça^6×!Q>%Šk~ãÒEIsÒ½97PÊi³Ï&ŒÐ‡‰ûüé蓇(×½3ÊôÌ}Ô¸]„½O晞¯™(Qxž¹*:>,grúdúbíj¨½ÍØ›R= Ö#ÏN€f@¢Ó›ŽÐæ 6S͸:ídá×®€Þ'Å™ëd`Lÿ8FÒŒ~Í“*K„“¬"ÙkïëÀ¤nö ]_˜ñ [¸\©ó—…6_rÁR”dÃE{¬º·ø5›À&7t™4u ì¾Ìë¾!U‡6ü.+ñN´l¡ÜfVú_þ‘Pý7ôÙLŽq"~}&õ>‡ë‹’nÄÁÛ&ô6ÿƒo¹J ü¹,ðõûÇïÂìo˜y3_bö<ìþöï¾_èvq!–\•ÞÞÿ‘7ÈŸLa?Z2\Ž~e.» :Ù£º¯K¯U÷T÷·¤ç‘Ÿïh£†çMjVáÞ¨¾l0É›×{ÿ¨ó_ßòlÈÃò.ë(Täåò}P]ÃÝ{æ‚§Ñïfÿ2®üT?!­•H€C¤Ç´o… &;•=½¨Y»ìýÕ+u¨Å4Khúäj}ö^=ö=#jÅÉ5ðGÕþ ™oQ·A¤òëLÔûˆGeú61¶_ %Šw iÙuÈÐmi;3ËzV¡û~nºIhÿÈ€\ò© À‰å-|à xæcKÎ_΀JWÚ ÜLWwWðâ†â w ÿim'¾Åsy _Ú Œªk#Ru7:€&ƒäQ eÐn^a¢— ²Mž?À„÷avÝX /7’ÛtH‡ŸËptV]ä0:\….Ü=;çÇ÷c€OfÐTwÇøM/²(=Á”²1Ù Á "OuWçĉkúI$×@2òò´&Öì°T(YnÿA¾ì+ /F¢:]dÇÏÈ<h›¥~jEFC)P}ôÃlôÞ¨)™•åz3OQC[>h>yÏtÃè2hŸ·Û •Ýk»+º ÿa¨™Ái ŒHËl8žE‚q¥¨pê0ùŒk=ùô˜ v ¿WM`^ä+b®Û–~8·SéÁÚÝàØ^NO¼ÖøwËU[µ0pâ2k.uH÷OF¡Â%àÚN ÛKî^8ÕbŽÀ)vSáÅ&oðÜäÑÑfŽæ^wåú3¡,ñÏÈËÿÀào˜ûH\kQ;Ç«(–îÈ(ù«‡¼IÌÞ&ùËüËù'(ròþ´øDzÚ’NnÝïÞð<\ªé£AÉåZ†ñ{Pºë©+â_­QfS‘#ïÊ‘Õ]¾Ó&‡ÅÓ°{ÜŠéÉò·8ؾ—ª~âË91”÷%ôŠ7évOË›qf&¯êF_%ׯw?8ÜÛ|Û_žŒBùÑ?ØöÐ÷‘[ß§ý§#!c1þOÿæEý4òp»¨ÄÏbxù°_bž̽å÷ȨЯ—^”3•äè÷É⪨‘îr7aÐÔ4w¡âKj± º7ý…µv[Ðïáj£ökIr~]û£²ÊUþ }ÔÍmJÿÜñHž÷k<7Òú_Þˆ|YëPJó¯ëðU“P>“ (r>)ÎÞ´å¶Šçºö€fÜWˆ†A'\kµL46EvmÏ^­í›S„ž +úH¡¹õè? ‰~¤ ŒDog‘u„“8>)‹äÁ”„Ãâæ9&0ûÙù†TÅ,âû¾_A`õ1ਪ¥Øü zNp©콸‡Çàhr[¿{Áô¿Ä–9Ù²A,^—Ud†Dû}/ žö¥U]¡­Òô´ÂöÌ\×j:v|èê`~ë:¶uuåžÔ£JB=©ªGéìQo¾ÞEjf Ôwôì§ï¹|¨Ïâ¦ý-Óc¨ïͱ < †¨¯4àJõCÔ×*úúHÙ^]ÿûùðù*4˜÷CæÚ6c€u2aç×`?*=:R8ý^¥¬¬×ýïY¦dÀÝ™Ûã½yxµ¿ÐVúyßo÷+*?€ÿ‚ýëÏÂj Èc8ëÖBkDÑŽ} 2ýJÎ›Ø Äñ<³âæA’kö^?)K†ö±Õ‡ @ýökOÈâ˜}¿^Ur¾ÂŸº¸Ì@JTäF¬+ÿ9ùÙ.n”ÏôIÙ¨ÊõþEí@*/÷8€š­%ÞÛPÄy¾mÅÅNüGÈA‹æjeÖ¥ã }öõVÆ è,…»¤“X€^`ÿ‘hêv0[²ñJhÃÅoóp5àÄï­´*…08ÙÀ¹ÄåòL6â+«Û™ÁŒÍK_ÌMÒ\4è¾ü­ÃJAÕT°Ü—Èàtëk?âq¾|[ↈý€û`—[wqׇîÝVu’p·WÞüÞMD… Iºý¢(÷€aWv»eÜó¥ ¼öËãÂàp˜úÂòNÒD7f‹Êñ·ßê²[¸è­Hй¤_°u‡¹«`pLý~Z2ÛÝ‹±A™}Vç*C‹4½¦hÈŠš¬ Zô ‰PËÑwôe—èP•åvïÞCÔÁðÙ¾ÿ…ê:!=©ÒÙ­÷~Ö¹#¾‚\hðù ‡æ†Sh˜ñî·Ê4âŸ!=xæã óKcAã³nÏoŽ¢Éž2'ƒŠpí´ô?æ÷·BûÜÊ|gDZz*îeà6§¾ééÄ|·åî#F ØÖU®¿|DÔÓ Z€„LPÅ—õoßz~ƒëŠ”ó´~yÐ ”ø[ÙÞ¸@m8Ω{=h¶Ë:_‰ÝÙŠ*z®Z` ´mVI`l)ìè'JæÍKøQ'ZÓñù0°û·°Ý僣ì¼Þ®H¸¶Èj4ŸVÏãDñU9à“ĸà'º#a‰‚ø—ÇrŽ€°h!›–ˆ>ìèÜy¿tO©µÅâAòϞ飽 í“8¬} dÉw„nêW‚\Ãòsé]Pø:7ÆÇ² ŠUö§U¥A'{hõ¢0 ÓÄçûåAÍïûƒ ûM >¶Íùähž²$/M°m<ã©< /Ðùy¿ö¦ŽèÅ^3&î Ñ%敟þö½œÒM“a8Éõ*ñ)˜Ô·èeÆ‚™SägA'0Oþª¹8 –*û¿^Ðò‚Õú9çË`Óšƒ7Úµvù‰¬^?Á‘ð]’c;ZšêØþô¢û¿ßdæÂX†7™Äz/BC1{ÁÔÙÿìoÿø“Xüíß?SqÐø{×Ì!Tü™.ò[G¥BoŠšÖÌQÅs7høŒªÍ¾Þz6~]”1|5‚­ ¬^ ƒ¿åªQ°Ì£þÕgüAܨþ÷ÌÑ•—èwd‰mÔyì½³îG[ôüʪëѼ$AHpÈ£Lò¾'¦”ƒêÛB–jH=PÃÂÑ’ýó‡:¸ǨåˆÓ¨eØ ãÛSÔvÓîA…1ê0{„ÏD2…ºìçJwU«QÏyu¶Ì»×Q_¬ZpÛÙ4°íÀRlû uSèÝþPŽF\Uòƒ4Frÿé}Ýj4^ÊZýn M&ä–E\CÓq”ÁÉMП<Ê;6«Ñ<¹|ûŠZÔí“´Ò BK¡^–Ù”Ðråþ½ ½;he·Œé!‘Y‰zyV_™³Âìñ) `ýþ]L”^؃vBM}àh’qð¥Ê.à¾W°òjã!ðÚÔ(ÿ$‡cî^?Ɔ@àÝ÷h9yæø“G“ñ D»TXšÉ@¢Ë<±âyH=ÓÏäî×Jï\«(sRˆÊúé O.r綃âÜÅåt£7 r¦Ë'ë:€K!× ®ö4æ&)Ö3NƒVù.—Êf;蔉 zÖ€ÞÌDøìˆ8ª=ºœ|䜨¼2;§þLT×M}9‡Á4‡:Uà Ì5qÛèûŒÁb/ÂŽµz¬úØ:’ŒÍÁf\K_@>ìÙ;õÙý¤Á1hmÕo»\hÌTºxÀ5 A°MÇÜi[z‡_ƒGETriÆx¾¡ÀonÙEsBFïGãQ{IÇ#9”¢¨“EɳŠÞ2àTþº»â‹ÖŠ·öÄPìE©«÷ùç5M•|Å|Žì#,Õøïoÿ껿ý«SÌsŸüü-ÿÞg£ß9Ÿ5¹rñ6ž§Ÿ ºunü £wÃð'ÿíw_U¾Ÿ,ìÉAߨՕ|ìäP¾üë·t÷6Ñ÷Q‘ø¿­P!ð¥Ìï ŸWf$WPñ¹±¡{˨”BÆC‚}•=¨~šÞµ‹*]®iª:YF×°þÕ'\¹ËéƒêœRôއ£ú½¢üûè1j2õ þ^Ô„š+ª®¶¡Ö³Î‚u’v¨]3ò 7}ê4«× YÊDÝWc´.Ø Þ@U_œVÔï¶ê¶@€ÕÙÆÓ“Ž¡¡Wñ·{,¡á*oߦm:4*%œÔ×§ŠÆæDɸÑÄ ù¶ K=š1› |©€þ„‰æ;><ì“Ϧ,® eµî©T´ NÌ?ûÐú]éZÒ“1h³ñžhsb#Ú¡Ë”üEnŠÑ§¢ƒºDúoÀUÏ2¸*äxMJ´×ÏRÁëKdœ›@”fÎÁ÷wï!Y'<÷‘y uÞ©}  Š÷y[F´dy‚[U}@Oø?8«õx—¢wJ¹„ì§He°Ý§ˆ YŽˆÊ´Ý·DÀuçȆ3¹Àã*£¾r\øîÄÅ¿þÖ®–·RçÏsoAß~•†¥$»`¿¯ÙǾþ1šlDŸ8b«ʧ±8ÀâoùÙ{×ýP¯™õŠnï2X,~•½ê>Náh—Œ’åŠÛ_ÃC™šg΋ÉÏ ïŠWºs4þË5̳ª!BÕD2Õ±%±÷‡¦Žˆ–³*¨%¯~ï—vj<ÏLVõ uâ˜%ÚeT¢®,G¦#IŒfÙ3 õ„§…r( ^ÉBž˜Ç먷+»qÓOõ™>œ¼óíWYøú@¯Jõuð‰ˆÊÏ¢~ZÆÞŠahÀÌ&Köá(°4Tod«Aƒ~x²þÑûhèF©Phà 4lî­@jljíS£oŒ…7…-Ð8©Ø±€14q;p胠š:’k¼Ý €f¸ûoÅ£9¼Q¿Ë§Ñ¢Œ°îoºd´LþrèèZÙú­^½ñ­_`½˜Ë„6¥m›òŸØ¡m?š”Õ§õhtÀ¬‹BT4\)\e§ŸC—*ï¾$Ñ™[Àÿ^¤&ªÜ„„Ì ,èFxÂRv3žž1Y½¤¥wâýß¾òw†}›“6@Y ^´²ðhðtvxG€V–mÒ»Eè\¯™níu}PëG½'Àð1žáXú0’§nfCfc&}}`ÙWypÂû>°­Ö2¼¬&r-ÏgšpôԻͳÅRÀµO±ã¾Î<>É­}YÀ»&§ÌKÇž,úÞ©­½e½}¢GcÂñi B@ØÄ“@b¬O°„ÕôƒJS]¤þHÆ ÒB,'£ÝMAæñÎŒÞ}#Ò?ÿµüÈ¿ »ù…ù?yK'·‹ ”¸~º‘Ž×‚ lò½~s@Çbð§b @MüžHÁ,¨;ì„û2¦F™µs k ¹þƒƒ0üh»ï6µ€Î”ÀìJdè=P¸ºïŠf¯Ïûyƒ‰É§ŽŸWáIJöo+0Á}tim2LÙš3’²€™îé%¶`’ät‚ ,§)æÒ®•q‰‘<#XwT)ÞJÊÛ[yÎwß{EÏ4òè pdn½Ý¸}Mt¼Ï)QQ@¸a4É]”½u]ÚÃI;W¾§.NWMøõ¿w’{ÙÛ&q1Ú‰X=æ=÷vk:ú~IË+ÁÜ?1ü,þ–=´?·LòȺ>úT½DßÎÇÜwRGß§næyR¢Ñ§=êP1þ^ãÏ—¨äƒmÝ×ÿòlÊ9h„†çýŒå{4š,{³¡h ›-‘; Ä£I¶±H¥àN4µËHL"üÍl¯¯à½÷CslAɪBñhÁ®Þ™ûå)´8¥Ešx¡e…­³®½MhåqÝoîG–hµ‡îå“‚Z´.)|P:(‹6Ržx]íÒF[E WÐÙ¸’ ÚÙû®<„Π೉mÎ!3;àyú³üö<ÔÁyHvG1$Ñ”ÑT -Ü>ÕS’ZdtÆzÆÄ@>ÿrõtPq_ /n|4½aR’Z@û=ú÷­†ç@¯=XÚ<) Œ¤\vLº›ÀŒÿs9ô!°J½bÚò„#QQú¥ùÀyä…Ñk‚ à:ÿÓ” Á ¸´}o¼Ïpö~›MÃ1Ûn¼¯¹Å  Ÿ}ý+û$¢èÇe‘/ÖÏ .jû*~Æ $/( {‚Ô¤vH…áÈÜÓ‹|¯^r ÚW&î<††Ëß«e@‘õ–ÙÁWUPÖݧP7ªï¤z8 …@i7’j# Ô¯}<ÝyÂ4øƒ&éÕ@ë!Å–/©èŸ³²Ú–= ›s”¢ `€3•NÎF¼ ÝÔlŽ`| GñÎW{0¹ÁQ2[¦5ûMšçÀ\ëÜ=§ç`ѹí`%¡V¡F$HÀÆÃè^#ý}°sËgÌÚ‡'ªhó¢%Z>þµ¼Yf«óÄð‡1w{,Òîiɪ%1ö®õ-É%r|®ƒ°ú›ðÇ¢7} (òÑY …ËX>Ø{íê%b?”}“Ú[my}_˹yƒa •<L™÷ Gåã],x¦)¨jd´G©w ý .Š*uZ9Ô½48Å‚å9bôjM2œÉnb륡3ŠÒve5hy(Êšá¢Ò«¥p 5ˆvfÿ!ÇîXÝY‰¶j2¾6òè5-º^e§®DÍû9ËB-‰R§žl…¡6ZÝ^Ü3¨ƒ¼Ë`1àêò¨Ð Gd¨gXäû¥+عpßX£q¾ » ø¦Œ ‘®ÏwþÎËc®¸^ôihïAHDá14Y+»²\M×|ª»uÍâ[æë_þ;ÞÌŽgG?Ðâ£äµ¬ÐD´ÔÙ–"l­0 Ò¼-@«zÐèI&…Öî]Èæ¤Bë]''ÊÐæ•(ËÉ´}Û^.wínÖÑ—·¢ƒ*=çÆ€û‘Uötà;uïo¾u‚ Ã% ºý±(qõ*°½<¥@÷øo½}f0- ÷‡•1Ó,@Í‘³M)è ´\ÓGB;Ï]'gÉÇŸ|Àðyâ-0å^MÜÕ—–­>'ÖøSp$/[ ý9p²L=ßOÍ®ÛÁû÷"˜€çØu«š’¿s#ÓŒf]¸&ðŸDrì X–5›DöD<ƒ¼˜i@\? /Ò$K¸ºÎgƒt.ž‰|âÝŽÌ|H3 w·[?²Û‚’†å±OÕ jH›,U@j'ÊdmoƒÆÒ])ТÒÞP~¼:Õ— ·AÏË>²#A ~óld­Â ‹Ìngáä>QQغµWN\³ÖòÍŠ#`q2ìÆSq"°ÜŸTýù¦¬«–7òÜïmÎ<û8°¯é°u³'’ɘ§xà¢Üdq±f\C=.ßÜÏ·M¥í¥ÕnððÄδÒžÂYµð¾ÍÓð–q—AY¡¿Z&ïcõ3Ü sÁÔMlƒ.Ýúå]ôÂrqìºä Š1¹Z0ý[oO™ž7xî}Åèâ^q׳ÍôaûÝÇ+.“n £/TÞk֥ϰxAÍžþ7Ÿç(çãŸOA.§÷µ÷Œ~ ï]Má©,žÿ7þök"žg¾}+YŸqãHAß¹ÿ,ü ÁÞi~4JI²ýDÅU¯D[Qɽ½3ï4_bõ¯e#sѤƒP…«ÏZŽÚ2ª²LþRòꪩ PtP&Fua?FêÅPƒkëôÌÇK¨éõr˜ÞÙ]Ôr,(nÓµ¶^4$öµ'—Ñ'¢ÎÐg9ŽºÓkGSPo¡RÛD¦6V§:8¤_›Wu 3œ¼ðº 8—÷}„F[½ŽºFV ñ+ž¾·/£Ie{Cýr4}4ðLd$ ú#&&]þùÖ‡fQ4лpõ7ZꡈÕ{‡VÇS[ Ðú1ªM&ÿJ´yç¦[Ø¥X´ý5û÷ü´;ª™êÛæŠ 3­œ—uâLç(àÜ~Ö ñ+5(Èr«ß~áRâãE¢ay@þ¬É‚Wq¨.ªõ+ÚáMS´XT>Ðùû?½$¶ J®…-²À¤¾¼nòñ °ä¹Ó½x‹ G"'hqÃs6²cå"p«g‘ŸP^1 ãFpÌûò1/L§çËŸRírÁï# >-KxV-¤.ö»¹´ç‚Ljýâ Ü(?BiÐôù5o¡ÉÍåÆÍ9ÎÈZ–§54,AÝúúÁtá-Ð4ø˜ø=¤´=ƒtÆz‰A7ˆ:C» ˜/“‡Dߣ4Ãö·çìफD_/˜²_gÓ8žf…؆UƒÁâf„Íwº}°ržöÕ¼ 6—-§vÞ6‚Ý·#~øî[à(Uew5ÁyÒª|}§\Ï'á?~ôÜ)Ê£®ºfóG–8pGwf2j •:EéÒÔš£¼«ßG©ñ6±s†×õQ´¾ò~ÔãÃùã¯ð‚ÁÝâñ~Õæß’Áêº1¿/‹gf²ts8¿ˆÝÛ Eeú‹xŽ~J¨Ú¨õ7±ÚiôûŠ©ÙrXj*Õ‰~ sµªªghãí¡ö %aù®éCü­ËâëÍmcÔGVWÒ\ÒŽú|k¨fümQ_"ó(ƒm$êØyöf1õm¡oyç…úýÚe¢¼òöÛhà±mØo¡ 4HµïdN߇†s+Ebº‘ùnôÖÇ£û¹S¤k«v¸¿ùNÝ V·CcÉŽRëŽhBꇈyš,ú&²“MW·WìD³Wb¦ö}@ y¬5ïE ¥ÈΣüshÅvmFÄàZSÛ¡ò`RG^ÕGïC[¾¥94CÑ΄àöJà1´W8xT«pB_'¿v,Üz‰4¡7v€¯ÒY0²:%–¦Ê@˜ªÀÀ‹Tø£ÛÆùë@’ÃR’ͯd·Yq×[ÏEØPg`O!P 'L ÒˆÍÛ£36GìÍÃ4 {G{>¹Ú èï{ð³ý{«øê߀1¯´X³úŽÐã`S`Õ™MíÞ€#÷V¿ëZÇO»O]ºÀEøåèZš p;\Èè@À3× ”ûñ4ðÙ«v˜¿ÔzEFAš-_¹:¸ÂæÃË/ºC@4bWK‡úH°±«²€S­Xé N0éÑø6²JDOéèAnÅ7à"‹,(Ô =ÍÁ59ô/™¶”5n$t/îž“¨éå?[ØÜõˆæQwgSИq«W´ -›x”É™Ú=¯'žoðƒîE}\‰uÐguœBvÀ ý”ãøß=Óè]3a^tæ]77d%Ò°Y705 b™'´3¯VCí¨u0%ÿ£ýH,z§–¬Ì,ÁJö Ѱ~÷­öã‚ Ø _»ï' vµ§‡†*ŒÀá¡âÐ7G|prHbyɸ¿/‰zDD`Ÿ÷Ÿyæ®?­ÁòÓ; ïøç÷bï–ïd*M¬c\wj6L¥cZOEÍÄóëW‹I±wÍ&ù©ÒJkuÔØÐ·ã‹åG6¾ì  ŒCm?º¨ó¾ &ú¶Ôx%Žcv 5U Í•¥_GÍvNo©6šQ 9QÉC&<Ô²˜-ÎtâÙ¾äßžÙ£öñpÆÜ¡*Ô¹ýõFRŽêv ïÍgØþ:¨,—’fZ‹†I©. ?E#(¾¶ÿþƒÆX ޳Ot¡ñ¬†_írh20#%¶M Mß_eŸ¨òB¾ßntÇ9‚æEú¨¹¸ТÛM\~ï\´ôÍ`ÜàíY´‚;ó3¼ÿ&ZÕlXÎìþ†Ö=¡á§O@ëÓ¶mÇÖçÐæµß±§ ZжYDÎPé]´Õ^cØj –¹[‹ï®ø÷‚#›²€×ØSê´¥ ^õÔýÖ@¸×¢ÄÉ!‚C,@štáQ ÷rû²s¨´™Oíü¸4¶iDQ@{p½ç|»Ч<÷ì¶SÆhÕ»•kòÀÜ~©þçC`3òy’WÈì3Êã×.ÏÃцÞm²peà~FD…§Ø¼gÈ .~ô…cA ªÂ½wf„?ùÓÆï.€X¨Ü Ï%EÔ ñ½_Ò2rC?˃¬ãIu¢`q/q¸ Š.T>‘Á‚ #šª«cn4”µ.ú©®?‚v ‰Ž¼ö¦Ÿm¥Ìgòqï@×þ1õ追¹KwWŒˆ7uŸ¤ÜãH#“SK/Á$þ†Þº.0Ý5Óyý"ÌOÿ·-ZK»4뾃UA¨â²‘+ØD±Y9 æ‚Ý3ÒS%Á¡à†u­//8S—Íð\O—Úškã¬íà&0µ¾üÁÜ=ä¼3æà”bð׸¦q4ÛÂk¦,Œ²[fÉÄP*_À0ylÀ!þö¯~iïõB'½êpoûÇOÆøap·° ®WkìBØzÃÔa\rÎÈ‹¾ Øûˇ½RýÚ(Zô9óä-½ ~lfÏe¿Å+;ÜßþáoX|­ÐDTª]}Õ»K[u2}-âiz%ÿ}34ñï¸q}뺗ÄoòïÊîϨ™ ïb_ƃ©oú–¼º¿x£ýH+þ®S„ŠRzeß¹=F%'ÿ¼w^E¥Áåß~¢²~rÉý§¼‡ûbC»ÿË‹$ ëFuaUË´ñ·K¿Ò­P Ãþç@ÔZý¡målý¡¾à¥ßÁ¦B ê~‹k¥50‚zSã˜éêÏ‘0‘ù<Šû­¹øÍLÐ0{_…šc?¹°#£vïþÁy1CŸÆCo󺚡IÃX³+½Áhš=âñï¨*ô‡ú]ËÍmhNÏχN-lÜtÙ ‘BKñR¦Î‘Äh%–ãIÙ±Ëh­‹ô‰¨ÚP®ó“a@Û^tœóñh÷„™äK õ¿óëÔçEnÀy¶pV’sðØ/IGþxî‰Á(.|ý¡û{Hä߆X[Ç`}(c N ;›,SlÁßù”¾‰ ¶7è[l>sîðcmµ›bÓQ`á¹ÔI; l=ð„ÄM€cÃõ©›)p}{º{"x>Ü]|ù‘øjð錴A@$7_œç Ó/)Ú9€Ø¯­)ßoÙ Ùøê‰L{4H/©è“9ÓkUc °ÌºWr”:9 SîkÎZ©K’F©$h¤Öµ(M‘‚VnD Ùì'ЙQ"ps}}#†ÌW³`Ø2vAbŒoF­ðTˆƒIÒñ#“$çÁLéŠ<íà]0_ìŠkÇ ˦sO¨ädÁºŸ&¬/H ìØöŽ·gÿ‡ð¶yªQ%pVýpÖó»¸2ùóL媀[Ö-ÁD½Rð¸BÉ<+Š€`>ÿ¨0Ã]Tö±j{dû=ÎÊd¨Nûƒ>&c¬°5Âúâ}°eü力€R})ÔD§ýÔa,î†Ñucðn ÎýÙ_CËš{ß/«ó ¯Þ@5Z„OÝúÊP½Çg¹æe3ÔL°§}'ÈµŠ‡Üoæ1FíaÒÌ/Ÿl¢."?š¨Å먇¥á†(ZD½WýŸs^ G}²”Iœªƒ¨¯âš«?/ê·+_6ÇúÕ ÐÞ¿ú§ž è„_, ¤GZœ×‚ÑÀûVWÛý&4Øy©îÕßçÍà7‚{Ïþîs'Wì,ÑÐÀRo½l$~ráMÃâÖ¿gô25CJì&ËyôoÿŸ Õ*6;Š&_6 ½¿Ä€¦o²ØèŸf@Jì ç–ÐüéK—<¸Ðâ‹L©í0´Lm8-½‡Vj/¸¨\ˆBkCâKNç«Ñ¦íMò ´ƒÃÇüñ9Úk7ÙµV\c‘ô`Ú(À Úô¥ö¼¬ì÷ª¿›tƒË÷'²Ü~RF’DÇznãÎòýÏJ_l ÞrK·wmL @üZR½“ ¨N`¢ÛZÒ ß;¯€ŽXÒª$ù<Э0¦êõ‚X;ÖE`4YêÔ LCôsA À’™„SuÑؾ¾’qÐ:ìÅëýÂó Xý(×h™ü‹°ÛÀ££V_‰¼}íWVežþícgl÷öA€ÿ £‡Ð±çò:‹€È]Õ÷µO¹Aœ_ U¨Ô$ôïó¸4}OU‡]ȼ]·9Æ÷ À8iÀÆvq^âjÔ22¥“Å›aPUµÌõO¼ðô»ðµÙP'üöêîñ аL­ñsÍüÁµÓÉ| -•AŒ”@çû7ñ'–/AϚÔ‹õ=_6¦ü;·ÖŠ×uœ‡o%—怓ï;>&u7pÜÁt¤/ñJ{˜S8= }i+kém°Œ{­ïù$¬qWãÑ…ƒÍýä"~ú'`Ç"­Jf> öµJ/å2.‚cìu-QAÀýP@™EŒ~Š™å%G¢oßã­> ¡Ô¬÷º½Ÿi°w| nýv2gèÏöC>×Tˆ‚55V÷¹_b|¼0|J̾‡Á>\ŒßI—l?ÔÁÙ- ßÛ(=ÔÁÝ¿ûb÷ŽÊÿ¤•4¹f}èCI]Æzï*)þJÁÔkˆJÓiù_q]GeI2^¿É"PùÔ•E,TѬ|-¸U.ÅÞ”KóGÕžç™ý#QÍç~EuTëB¿¹†å5Dα­}BM÷ý—:ߣæZ5õ\&Ôª&ø.£vÂogC’µP§ÄUš82[Ô2Þ¥nˆÕ½4£µ8JtÈãºa—u*'©Æù[%N¢‰#qdïÁMὊ¤zÛŽ¦—“múÑŸ9±®1K4·O9d¸¼Žæ-›@K'ÂJ“¯é¢åðÀ Sks´Ò‰¿™4Ÿ…ÖøÍ3®´m£õ“BÄj>h÷BJ%?B[ÏîÐæÑö c²©¹²shÏ(S̃ñ:ø¢þ^vÐ p•BÞ‹ý¼Â\žìd Y[‹,¨Âç¡Gp÷Ñö¦~âÛw@´k°9ô È´Wh'ŽÝ ­Zî6OyÏ=_Ï×m‹Ú~a+Ðkî¾T¡ò†9•Ô²0`ÊÛ"  –ôlºÀ¶Jô#Pl8nëßÃÛ´. Ó~öÀÃø`íc}<ðIÇût‹¿õ‰ò¶² Ýoðý /Ê\”¼b÷ HI¾tÁÍGñ õ^ؤ¿ dô«Öò_H•êkÏk~ ¿îý;…i  x2wZç@Y‘¾Œí!€êóÂ͆ӠF­*™y#ÔO8Ÿ. ã·ó×AËI]0xž´·£æ(o4n†–¨ž4+è_›V£™°Ãsq¹WxáÄÃöV ±I8YMp“å]2˜²ñ¾520;}w}jÌ›\IžÞ¾–æ%$™‚Õj®AL ØäÝöˆs»Øgg?ô£¥_d¶Æ°>éúƒÔOŒG°÷Œn3_bê‹¿ýóUÀîožz?Äî¡ðûúÖ}Ï1wÊÌ)Öv)¶ôíéäƒ#o7ÐÏ*þ+ïºP5ËË÷¸š¨RYpm:k Õ¸^1 >kŒêjâÞz<Œ¶'Øx¹£¦%Õc?]PÓXÜ·g3ÝX=Aüüôù@»Ÿ5šËè½’GBñyD¨Ñ–Uæ­¨jL:¾S9‰šˆ’ò[°|IÌ]´ÙøEuö9ZÔ¼å 9«ŠZ:¤zc.q ÖÝ´Ô%-~Ô~;H´_õÆaŽ€7Õ(-ê}›gbpz HÍÛ‰¢¡àMê­ýCü£«Ñøêïc&IÅ® è i 3MR›ôG_%åfçߺ+zÈ}Á®- 6»v+Ù£¥›]lÐry•ƒ™ï+´Jó3h©Ê­?v"z­ÏQ1t±A›ÑóÞy'%Ðö¥¯Y’$âh7XÁ©ÂRí÷2Ý=ç8_æC—Ιœ¦ÃÕ!À¿{ ß3+¹œNúÑBEbr¦²þ‘s(Gù ~„ÍqßãO¯õmÌk9A)| ¸ô©å;0’W]¦¹º ÌÒ{,þM+ÀúrV‘ii ØÙ'—¶³‘ðÎ$Á7àZŸµŒàÈž¿?´ÑjÀ·*]ÝÚ\ÐFaKí)2u²€hþöOq)u¨(‰ý@ RÃ?=SÊX±zy«/GÕiSàøÔ-íÂq ü]|två= ºEÆÑb^P§MÌy}34†’¨†¯¾­ÖÈ›«[úçÇ`ÞDÐ?ÆòÛë¾ ˜}î[àcœ+b¥Šµ`büòåûOË`šVÜΠ~ Ìéz县‹4§«%°²3^¿ü¥lÄ ß.’ƒ_Ÿ‹:+8èß\髧ؼµ§KàÊnTª®ã[dÙ¦_ÁÝ®ø•Ë%ðXüö¹€9 Í©-¬ Ãâ^~#F_Š©Œ¯+67àŸ¯dt´©+ßä§Cþ¤•ýó›Ø×¨.£ÑöOØy»¿ý»fTR~a9GˆÍȶ¨¿ß÷å>ðàRùsè3‰ÁßþéÞ¾Z¨µ=×ü»¿ Ÿ—¾ÿËËGɧ7Ý¡ùÛ×òóIÂÚ¹¡ïWuS¢\ñ8Æï'cí­ʇ‡|•¸;¶_N5nÜàÈF–©{­øéØ;g [‹OŸ#ª}Ðí,÷Õs’žÒé`F³úõÅ Qs¨OS‘ jµ.Sù˜ÜwÈŸTçzÏÄñuk¥WHVs¡^ æ{ñÙX߇Áâ>™‡·Ñ0·ÞÁFŠ/¹«–õáÆáþæ‘bvl³M¬>¬Œ kFS¯ã<žùeú©¨òÊìv@ ZIÒgõÿöG#ž$Þdhy¤ËuüÌo´Zi5kh½ÔfIphçGIðâ-þÏr´÷:Áöò§"À±Ê§)°Ü= áÙ'??‡ôÉQ® |¬RÌáêÄQ¶Ì}W)€t2UXói-P¼CmÆç4ê –ÏLTÛ@û.ÔRtõП TNM(FgŸÞi-g`NÚ͵6» <ñ 8î¼ ãR5.WÆPNË%à9NpsBm ø.’?ù‘ü ZF- zŸlçÓ9£–ýu½Ô$½[ƒJÓA:0÷…`¦4Èv†r,€Â%ŠZ·P:qŸêRA!¨^‘O<ññ-¨]î?£|áh˜yéÛ0€–cHÞ‡"èD ð•ꉀÞ»Ý07f0<¿f., ÆLâK¯8­Áä¢ïù”Ë`FâÀà¶vÌ‹úšÃˆ{À2 Ç®F ¬?Õij¯ã€íìÝ·þ/Ï‚ƒÛˆœäy}pfä·'®~¿2jjÀ-ÉôšzUxx]&Îê‚]¾ߊg±wuÌ÷£?M»~¬Mú3=zoeF¸É¬‹­G ¯ ã+ôRÔá§Ï–?Š2$ +LÀâÜ?<̼Xþ¾0€Ö »/V'(ž­?qÈŸt§õþÎê‚ZâO4Ð+²¢v.EÒÄÍ6ÔYö³î¼‡(êîj‰žÄú˜ôú¤]gœC½A½ÎíX]\ïÀ‹7G¢¶Qkpí” ê;KÞ¯G‡ÕÅõ³¾{õ ]‰Œfw@®ŒABÀŠ-ÖZp !Å.’AÕ hh¬óbzò34üU*€r?JÒQÞ@£+="Dɰ|­‰¾i¶Üo3hê£÷;ŽË h¦èL‹â1 4Çü éâí¡…€Ü‰V51´D¹i€ÿì"Z~Ca|­>æ¢;«è‹ÖùáôÅ -õ4ªOáÑN³ëóÇ|Ðþ%=Ž*IÀyö´ÔZôP_#ÿ¶’èyä8õeш¤yþôì©qZ€©'§г·„âÙPh¡“DP4Û?ÝÏIª n34ø hî³áûA´\ŽI²®]ÌÝበ /ñrT"HFj§B±!k` ¥e7rnýÕñìe`ã"šöú»¿Qá±í'q¯É…›NçD®Ë²b#À]éÈÙÍýx%ªÏ'âH_ãX’W1ðצP%Ü(ÁŽèëdF@¸3ÂA›~ÄÈÿ@x>H¸¾+Z?Q RDŠå>¹ HáA"粎CüÎŽ» Þ7íä+Àqm³_îAô t剘5¥/¨Ô1¨‰ôKœðš[~j{£r´ì@Ã'zêeœ>h.ò’K­lƒö“ï­Ü± ‹47ØÆo‚>ñå5&0˜h´{ICF½·¾Pá€ñØ…°ƒógÁä>ßÒÛªª¿ýNH,Ý÷+˜™ Š†î‚…¬±ý£Ë `Ÿ8Ýâ4Xù³_=6_§ü F(Áîüeu½z:pÐzH\]Î NÊ0z®è ¸_iH0B€«›üe“IJêTÇ‘þ—3ZÙ#ëœÇ-=À¤íK\soŒUçOó´¨ÁÞ-1÷Ìþ†ñUÆèz0õŠñ7Çêß0oøC4½«Žûs”Õ®Œ´žÕÚæAóPÓ¨"+¹óÔ¿ã\=ZZšz1wx•º@ké7¢)•Ü/ipAï)1·É0R[[×£ìáw7v¿ÂIÂrù\`R>õ^iÕÌŽ F½Îóç÷G;ŽKQ…À•úX°)½ºôDl~T½"z™ v? åý—×1±õVd5-yÜŠˆY¹¾úÔ8Åzþ—ó‹×"V‡RâúÄêÞ0{¦Î0{[ÔGöÆ<,o2dM =‰xÃñä z®œYÎDÆ‹õaþ’Ãò¨õ‘6Öï²°äiM97Öÿ§|píÝÎè"ªšÿ(ÐÐÈŒjµXs¬T†Qýū޻'2QcBqågÃàhXœíŸÿ†o‰yÅøL6FmYÎLýïþÖ¸¿FoÏø_°UbuBìŽ4õõmhø—ƒûw4z·7î%«WìóþDÙŠ&™W¯;›¢iAg ©¨èÏyÁ²ÂgwÐÜ„w]6>1ZT6Œ¹ê¼‰–‚7ÂôÑrëI [5´Ê/K6ýÍ­…ížz9Œ6Ž„ÅÐÇ ÍVêW‚GÑváØQM´Û2ÿii‰°ó†3;œšNMø»¿±Øj'>çüûÎÃ$T@H1+Ù#øˆ:pí^´’‘h-œQ ?ÖòVñ˜

uœó8Å4LLùf@{Oëæ1Ãq ç2mT·F&§?8´À¬k{€õíÆ/aAr`?êÞU#mœ-Ìô3Ž9Àµ}çÝR[ ð4EªHXëßšDÍwQPӿ뮫 B™„ø/¸@ôlÔM?H|À»îR£šÇ£wA–ô¹˜BÈ{kÄwÐÔ"©}Ø/JP Ka¿ @H ¾#|ÔåÃPªF€&Õâý{SÏ@›Bî®Ý(èŠû}ˆfíýkÚš½ñ#`8èv@0™Æ>8ÏßUþ“Ç5>†ìµ`:7U{1½Ìfû XìN?Kf᫼²™£qûسåü³/Áîù’ u8T^ÕÙv!gîÚÜž™péìiò”7Å”ø%BzpÏ¿>7õ÷9wÊ*KŸÏOÍ6Н5hcq¯ä^ñ_Äáqí{foÃèÞ0{&Ÿ³¯ap7Lýað̼‰Ñ‹cx&iº¬bÆÉ#(c•­Njð>Ê<)V·â*Žå›d«ªNôî_:̇û§ƒûŸ¼€¡Ü©+X]x>q8Û¢¯-ÊoŒ–Ï¥jä¼”CˆòWoèåPkùù3ü÷Ш 3s{—ZÓ[OAWö‹»‹fè§½`+é#}»ªC8I÷9‰=Lv.GãƒYJÐÇŠZ5°¸< V§|;ß³eƒÍ“çÝùµÀn·_Éø8ÞV0=ã.ŸKyÜüÖh*3û˜Õ^¸¢ZF¼*'zö)óo=H¨z<«ßA+Äíc›L¾hMÖc°í×5´ñä±·4!ÚZI¤*¨y€v.v £y¾Ë_Ÿg.©ð“ª§î€÷NlºëÃXíûïÛÂes×·àõõ!yMfwõ·+Nú!wŠÈÏÒž oJ…ï‰WÒÚîq?÷ƒR -o}üØè”h†ëW<þ££Êón`d%¤¾[+LA’wRôßófŠVÉ`u¡p9hê¶ù/¶Õ•)À¾BF®E GÕ×Ool7ù#¯®“\À“[cɶŒ|î„âÛººÀoÌ!ÙL ‚„cDŠ‚ðg‰2cŒ^N½J ’⦙ÍA*²"ÑP>d¨è³òš%Ñu“?K” ¢Ý#’E=È?­ïÄmP»øá|®¨g7ûŸ°ðMâdîx3~к`öTõƒhOZEIÄ€î Cß¼Ïï@ŸY[Ï”J ~]:ÿ.—ŒÂ„']øÁØ5“~ø)N“ˆ~0Eå¼ôÏ×ÁÌqÙÖ¬é+˜G4Q.ÑE{”ýö{G°’ Ž·xÖI”Y}w­Èk_–×ò`×P­^-2ar.cËÙ€óâ”g¹Ë]ìós×Àô›wìèIçÁ%¬o FGŠÁÙ0ù8˜¾‡y»g:‘úhË[Æèå0<1Œ>“—™¡×>ù§ðû‡O`sþñú>¹úùµ©Ç¡%†×/áOh4âåQbøý˜ù´’‚!Ã;oUÝë$ ½Žjø_Œ8Fö£Z®?ƒÁk¨®ÍåFDr$ªÿ±ò}ýãa¿b}Ée1b†ZbðiZPÛm£ ¾#l¨ãdz)ɤ’Ã\á :‚çÝ>‡õ¹r<Úr|q_ÔÀ;Ì£’òúüŒM±”<õ>xsè“ì:þái%𝠔¼ò-¾:ZÓ`–šg8…C¸ÐòŽ†ìª™Zå&,ß͉CkÖRavh=Ã&OŒ m l«˜P¢­îO¶¾Bhç×ZçEç8´Oz‚éÖD!àè)Z…Þ}¸ogØòBoÇ¿ßÈ,ï·±µaå…ìd6{¥0³R±©È€WT§óÊ„=X J¶ÆÒ1 Î¾xk:.hiÙ:,8µîÉÑ£\ À ®v7ÛW˜ÃéZÔiE)šåG7°Y3/Þö^÷š88Úr´Í6¿¸õ’Œ†ž¾ž¹8ÞéÒl×DÊ‚ÃÕ$Ž ú>KjÍ<Ô„Ó¸¾ò€úË—Ò“[í É}´}^r´JƒPPíèø8Q.ñžÑúbÑÓN0P0Ë×qñ#kº _¨'À8Þ+£¸UL‚̲·Á´ûáúþà+0×%£%Ç‹æÚƒ³ÀêÎÑ› ST`£Îã~ì›…Ïj ‚ƒYÏøCÑp´˜ÀP Ñ›€rEÌÍÔ¤3PZÈÞ1@)&¿?O{«a}]1uƒÑå`ö7ŒŸfžÄìm^¦þ0:pŒFgƒ¹×cîeHÄä‡<.ªäø¡¬†ÍÀò§þù”`|~0¯õ³Œ®¾Ø<8Œ/%FOÚp.NÆø¤ÇÃîÿp»¦Oi#†Íh^?s½„j µô1úþºU…ZG9‚7ï£v…š¢2‡ýöŽe®züßþé7¿ù”õ­Gئ«kêk­‹ßû)…Fù;›^‘ ±:¯¾;hâ}’‹èS4UÀž¦ïŠþhMK¥+£¹âgG£h´(3yWðƒZztùXNÑi´Ü½Q©ÜÖƒVÅm䩟|Ak/Û/ž]mCÂO†xNs¡Í^»·×ýZÐvÓÎŽwh7:ªaYTí¿yÓkôp¼.õR”êîË[eüroéÇ›åÕ: ¸ýðIDs8éž.4óásâñà“@ö0šµÃèP4~3z ÔwÕã‚€fQ\1>æ ÐÝòTM9 ÇòmÇ,Éh‰êOô>°Ä\Ü´u5¶Õ—(L–8â5b49ñ€Ë=&Zªæ3ðHýño÷€§¿PÏCø­w7LFzAðç zÉsv¹|^§eïˆû¹ŠìZ‚«M¯!È9¼šŽã¹‹+=»¯€Â*¹Ì?D ôUÅøa~-¨ì–ÿ³µ€§>2AÃ0à÷ 5h)ÒwEÛYŽað“õ7# ð¥,šõôÇÞ¶ ƒv•o wªàäÆìï4®p0µ¥V9UyÌÊú]I;ÀÂaò«¨c2XÑØÈè6tƒõ” ›B˜ØNºÊ•f¹­±Þ¢Ð$8yß¿ã¢ð \nÍ$4žÕ×dÁ=üÜmpDSæîÇZŠ™IúãYeúFªëwªB2on'Þ&òü:~ŽíS˜,Þö߯ð&1ûïÆÌ“˜ ~‡á§`û\ó­÷´ŠØ>÷eëÓ‹«¿±¸xV«S¯96wãß…ñ¥üŠ;ñ”5fá}JLvÊ®±cý™ _k_z®Ž~’iPe¡¢_‚|ÉﯢËúw5 TªKÆËò •iQ~´¿z•{¸Ý|cЈ**¯ŸßõHÃò¨kNÖQñ&£Úç”Zò¨žNSwîV,j 4ãžÏBÍo˜Žóæk£Öˆ¼SÓeY‡ú·ï“§j|C÷·-]ãï÷±~Cç§Öº’’ÑpG¢Ÿ±§05PÙwë~ƒÆò˜>|òC$>7nF2 Iû6K‡ä4U®Ï÷šÍ8OUÎÓ£Yw›–„Ë—Ðüسryy=´8s»þÛE´jø\<¬­êíégâ~DëœÏœ®æ£Mêçò5æÐ¶DNÞ@ÉÚMžw­ï7:xÌv2\ýàškž½‘x[t¾bA@ð“;Iìe•ÞŒ>“~H¹R¤W«€¼Hk½Wõ:På›G¥Ð’Y´.:R]Ù¢…Dh0dßóݦüΗü€õUµ{PŸ°‡»äÊÂÑÄY…aê“À°uƒ“’x_¦sÕò¯?M(žjÒEl=·‘ R ¢ò~ß &ƒDÃ]îkš,¸yª9d¹–„_2€ü‹STA)] xR\£èÆ'P1Ró‘|e ðŒÒ`Bæ'¨?-61Î~šþ¦Ç/2çƒv¬’ÜPB,èv\©Ãõe¥Ù„q0ª¤:›RX '/}¦0xÿîïùDŠùÌ 0Þ6Û3H‹ M§â£û`•,‘¸pŒljÇ^Úûc³h:·  ùòmpÑy¿Sœ®-²ßĽ÷$~±jÃ@`¢OJKûý,x˜ÊDF‚õIÅä¾aî\“—˜T$ õYG Ë;ÁÔwÃøuað9ÌÏÃÜA‹â˜&Äi{Q9‘òü©0@UÍÊSeÊŽX_d ¤E¯·#5¡¶Uòo"VÚ¨“aIy>duIñþ|Ò u]ñ&ë'C]çâˆî ®'4onß.ÁêåºI‹µüu‡\01Ùø»ÏÑM½÷5E=ÑâãoİùÞ½¿Ö›˜SQߣz+#&¨ÿìåõz)‰C½Üê¬/ÕktȫܠM¿Ùtª»gäá ±|ÒUZ4a•0ù^§MÑu3_nP@Ó³?ÜÞÙD¡?5j3öFh®ŽìÁ›ßhQï¥ á&6nUAqHÅ€­?¢øeuhsâ–ö¤<Ú9·ÍÙþíó‘&àGNá˜Ðˆ<à ÚVP^Øü ×è7Ö@ø¬™—…Ùˆ©ýG<¿ÇÉiË_ÝV²@Z{CÅÔõ=;ÜwÓémJæ[W•¢o5)EírZÐÄN§'lkm­@Ê%ëó@¤ö>m{80\^/zuü0ödºÑÕžfó·ãËaÀRÈü¿MØtÌÀÂNØ)zuÅÈeÓèêÖÀõËÀuÞ®CÛ[ ¸ÏëÕXoŒ§vÿ6_3‰PêayåbE2Ú¿wT> DͰ™„ƒ˜WüëYÊd§×m{õ¤b?Êü!±†ƒWæAvµ¾DdäK™MŸu¤Áñâ¯^±¥ÑÀ-¼Õ7 *î«hQhÙ}7¨Ô9럅Ó^2_¹æDÐÜ~Ç~Ï ´CªºÖzõ@WÔþ‰¬O9èóáPÏ»‚AvºÝàÁ0ŠÖ®¡u2ã…͇aoÀÄzûšµ*˜úö¼N«³¬åı{`¾ŸþKyàXºßN«AÎG‹¸`s]”uþñ6Ø qFÔƒýŸzß­pœãæ[ËJÿÄx ô£ü{¬‘+Ê|´ÿÉýQ$ÖçÓï’"Ž„uÿ~…Õ}cø\˜»#‡Ãò'ÿù1cð·ÄwÃßä¿„aï,˜8ÌüúÙ»ðÓùV|”eºù†ùMÖ¯ Sÿ˜ýòÇ[®g—úQѦⅫ„wQ‰×U³õû¢—}¥Ôç‡Ø|¬ŸÉUkÎ3¹¨ê¹kðë¡ï¨z#€öÕÙÓè×|Š´®AT§lž¼}ÈÁäÞ´,&=ßC- Rr6xݨµÃM&Í&µÿ0Ù— @uÑÒ-D/±<ê¾V©œ¢+bhpc_¸Ý g~åíÆÇæ6Žs´=îyû·.w&J¨NÔ iF±~ÆÕqôǽååC47t¿ö¢.9Öghér…Ç:ZN­©‹ÑD+]÷L•> 5ŽKÚ#:ÇѺrÈÉ©U´‰÷‡ÅhÍm½‡ãahçê[ž¬Á0´wGN_Û’ss¾ˆ¸ÔØ÷Ï@!#é4à?;˜ç\$‚­Éª±öS@: $ž7Ṧ Žh ¸Æû´Ö¥¨&†#Økò¦õùKÝ   1éo#úB—2]`¼Ú86B<Ì—Ë%÷¢ÒÕpðlû‰8âùUwby8•’T&¶½«jp—wex.{÷èr\á‹ëÏk7´*ªÁöMá#÷"Y°ÿFÞÁ̓%nªæKÛbqæt|ùáElar80wŒ.ƒ«ý_ß’Ç­÷Þ·éaup?bsÜêCp²W*˜ßc½pîË»Cÿ’‡üµù×þ8\9=oš$jRì9¥Àr«ŸkÆ#Ϋúšãùîš<ž@-ž'^¿!E­Æ³yµù¨Í±Ûàu§jŸ%—ŽàE{.¡ä‰ç±ý´—ØWâ—pV—0Tkì´)š‚F^g5´ŠßEc—sç'–ÊЄ³ï…ßäÐÔÙÑŠ“—O¡™×sKºué‡ùR¶æD<…ÌhqíÙ‡§ÇѲ5é|jøZiDÏŸ<Ön°GàY£ > ¿êh‹ÔÔšñ†ÚÀŸüøaíæíˆ‘%¢ýËbÎÕ¯‡ºÓÛÖ žŠm€÷›;±é©1ö¾I$Øà?V$JŽ:sj@vÞ™ö%›0P|¾;Þm¿ ÔìQQU>›@3êXȰ t.¹†½aÀÀñˆÇ™7˜Xc†­·ÊTiÀÖôcí÷CBàðð¤!.uûCåÇÀ½÷!z¹¤x—=eðǫ́žÇ#Á4fÝëU bÓ­Ypë$EDDÞtáÈp”LƒÜ9WkâØ/ °Ã„óå (ÕŠ©÷—Õþp×P{Õh’÷4.èÒîy‚Öé'9'‰²@'øfÎdágÐû-Çv¼ï4Êý,êI$ƒe®>U^"`¢ÐXÍw"L_sÆpYÚ‚9µðÐ7Ëï`‘ã‘Â)îV—Þ?œoªË{Õ™×rÀÎáÉøP+8ÄuЦ6­€3þ½“o‚àÒD¦˜nJ·#»îì€{ùeKÜB§ÎÝ (·AŽ\µË©ÀêÏ0sâëŠ o›o…¡ç½7Òƒ”±>%˜}ìéÕ„ÁÒ¼³(Rĺ.‡ ËOÆào›ñÌÕN<ØzÄô? ?£Çà iÏúDkkï•ÿ|‹² ;S®s7âoÿ|)ÿ¯Ï$–G‰Éë¾t‰¹+,}¿Oþú N*øu{_B ›óˆÉíÆä”ŒâGQ2E¥KŸV*>üDår'Ù¦QEƬgð“–C~JÃíL ô+úIتK8Uf5Þ‚ê—6ïÖv$ ¦Ÿ¶Åp¢‹¤Åok/sR#Ý^¦¬¢®ÏgÆ´µQÏìãþ<Ôïòa¹hƒïÐgèz] êŠ8YQÜýèþ¹¯¾÷6Fã?E~Åÿ&ölßDSþáz«F±hFHç„—è4+šu©ðE?šO¢ëwfoC‹çcµûѲV¨º72ZoÚVh-íè”w5ÚxÃsæ†&;ÚjWÔ-9Oˆv¯óM¼È`Cw lœ?1æ¯ZööóAk…ù5k Jð{/n$3TÎì@~ÑNg9T¨Nn},ךªß§ºfj.:4¤ö{ 0„/ÕãùåSÏj×$ëý)j[`wÞ•;™&G¯[ëlù÷ÃÛÉç^oìiåºþÀOT-{½÷#tÌæÊAôxÍÈzþ[}· ŽÔ^^EúÕÕbúêEòu5‚±$ ø|ò§Pˆ+¨¤Ù³ ~,5‚‘Üë‘wA½dwãK5hö¾ÂQ2ÕŽïµö gie®gI  'Z…ÜBàÄ9Óåk—À„¹·³ùÞ*˜¦-öÆë‘¹C‡Ìñ~°A‹:m²|# lQ§Ç­©å0&lŽT—×׫7Œ Q÷‘³1# [¨û[ÔéxWl.xϯ—dßÏè£^cé²tUS,?«o1ͳ¨” |h¦x†uqø¯˜à¢!wNòt’E4¬)õôü-j4bÛWmÿ£ VÇ=w4ÇX: <Ú@“¹n†N.húÆ)éÀ44««»¿¶†¨Ïs=´{–$¿-FãÑ¡fge½íD´ÆT}§5ªmÑ<–þ.‚¶nÔúúÚ={$Íì5:`Z”õ¼õpUî8fsÏ>éSÏ÷ûµ@ð›ÜFÞó9…Æ™PËquª´Œ*]Ÿë㲎‹-Æis@ñÀ¿U¤R¨ÌâŽwüIy}ü»@«qÜT°ÃèÞàá±úù@.’sÀh5i²LV§›Òï˽ éwU:ßXw3©Øùég© úóæÚ¢ëÆærÒU.à!ͽø¹x…œÂGáóº)þŠ1ðç?òäQbÁí/—mêAä–h†ì÷ VñœjÈÈ $í•©™ñ@ª‰Ç0ÅT dÜ.|[49úo¶”‘'@~üë_ú§áxwIDö©APZò»‚txþîoj³ÔiOõ.O¿uÊ"!üsžsõƒ“å ÙvfÚãG”ÎÖb4¶ô}±Ø‰^UÇòJ08æîˆÍ%Åܺ·dw£¤µ1tùñáñŸQ¹Îº[£Ë$v>­ô°ûõz!UeÌÒ¨F­¢ÄÓ†‡j›¯Um=;Ìõþ·¿5S¶Øl½A-76MoS};ôÝR*øz ‹Ãaî4˜ºíx:/}€†¬Í2 cÐðDwD™ Ð3>O_ŒÆŠÂ-ÏV¢Égvdw˜Ñ U¶F\ÄšýÊåʈܤ8žþ)FK¸žÍ<ÊÓhY×?©,|­D¨8ǰp¡Õ¥r r/hýZmdËÆM´Iìx‰Öè&Úzckþ¦ù ÚYŽ‹“¸hw<îâ7£ýé7d“·'˜L>ýcàןѹøÇüÔ_üÌ‚2Û¦h–< Šññ|›j$”®ly[âJµLNÿªÏ‹ºj3Æÿ—N7m··¥\š$П×zÌ‘ì «\nZý)ÀTØC<ýŸNµÀ¢·”¯ŽÐÐ µ…ÌGf`YõÌ*pŸ÷åãoé1žö×çË¡ Õ' p¬ä–¦×ûk H¯™Á]~„W¶ì‹€8ŽÔÓdzò ù@ý€ªéH‹œï¹QÎ2“¤»Ó 7KedáWÇI÷j9¾~%ó…”ÝÉRP©«.Ð帢GÒÿµÔùqZm,—@#ýAþäÐ2-»„[ :ø*ú¶õc Û~ _ÚôK~óÿÙÿ»¿œ7¹pÆBÅÜ?q€‰‰£P~-˜¦$hvõ9Sí+»(X¤räà:•í2mǰ2SÅ¿v<%«í»rà }§©èõ]´0`ÝþÛ‚›…Á¡SÈ”¾¯æüóÂâoÿ|K0øÀSí˜Ç·Ãt°s%Ãð˜1÷Œ? Fÿóm§V9&Ë›ë‹ñ3ÀøýT‡=µÒ"¹€j½Î¬éµ6c}¼0|JL.Üÿìoÿð7Œ%Æo²±ç-ä#.6ï «{ûçÔ|7G9ëgë¡I“±ª€j-¶½4ŠÚj›î»ð£|<åRÂ!l?íZ;ZžëÀ‡zé5cz­”Qk<çÕ| 4aÍÚPÜFLñÛädÐ?NÖhîc4!Ò.õÄ- M9Ç•©TU£™¼ðH9#4ǹ¦:­´Ž^œZ©ŸAKL¾)jBhùVýS.=´²K¨‰kÖÞú;0ð  WçösAhKÊΉ•VmxŠT½#G»ÕTD^!sh?n¨F{ptLš¢çÄ1‘(À‹ŒÜbŽÙyük@Xt}°…¦ˆ\\’9o¤+ –=@¡jhø`èë-ô/ޚ̇ٳ>@‡ªÉξyô ³â÷ˆq¨„ÑR IÜûóÝ•Àæè&6­?ìË©ñ— àèFe=• pÿ"¢íÀ[ÂÊQO_ ü”ñ\Ý x3À2óq ˆ(ç~¨a qÓ¹ƒyo#ü5m/jçÒÃRŽYƒœLC1á³=P¨x-¢x¦”bé}ülA5kÁÖ–ê¨=þò†œþ8h¸]Vý|´\)^d‚NPíàçi=Ðkµ+ e÷Cíd¦{–¸p¢wBe;e LôË&XL‹À47âA²«(˜‹j;³~‹ÎÔxÄV¯¿níÿ6}®BjZñŠàõk0 ÷ ˆ¬èñ¢[g½rº‡$³'h™[È(Þ[=L*jJ¦¿s#Í+#î¾z ³ës7kêêk¡¸æÀ”÷âÏ-Q`uú¦ûTñ.°;<9g,GãšýO7«wô…Àà}ëH4%™ ü³ŒÔót ¸b‰÷ó¶0ˆ xÌYÍüÝßh ™Ù7@š„vÂɈdÄnä €ürr(6™à§øø‚Ê–ó«‹ïAíx‡iYhpÒÜJ-±sV¥sT ã¥×,\IzuF‘6£Í`hã6éØ× Æ>‹ʾ‚Ée~¶Y0£ûJÃ‰ï æ­¾»ôs`Y´M£4@Ö=„…¿Ø [МÞ÷‡ÿ-Üà|ûåJÿjpÕ²ó9òÝÜK·x¹®€GÕç{ާOVã‚çkô£gíN˜ÏI”§8yj/m}Ž­8Úz ;çar¤0~­=*ÆO{¯Ää›þÃá0øæîŸÛûkKêÄúq§Z5.•ŽOø¦÷UŽ·¶_ãCµú»Ï²EžaójšwOlFiê¡6ëµ›å/Žêaþáp®ÁõÔI¨óÎÿGÜ{@Uñ,ý¢äŒ’sÎ HŽJ9çœTPŠfQ 1!æ’‘¬’D$‰É9)Qxø‡½õ;çÜû}ïݵîc±WÕÌîé_Ïì©®®îê*ºÚ%ý[Ж&Ð;=%m ‡g÷ʹ˾㤨¼í6â,÷’úÿ¬Ûˆ÷ÐìZ¶çŒ-Õ¤…ε3Òw¤A— ÃÕf{èÞ¦ráËxõŸ¸¬J›Êùô·þ‘x¹ÝLú]¶™ñO„TƉ#gôá£%…Jg «ཟw Fµ2ídûà³çûŸ½þ•0.D;rã‘LTªŸdý ß*Ô¢R8àûÇÑtoa†.Ã>¾d?Ìš6|íš`„ùô_}: °h–ø`€&In4Œsë‹#OÄûU÷>Ã5œi­?ß–âÚÏÏ»eT©Ï¶&•m-²P­ù¶VfY7%̽?ZŽlAN›(=Ãkg˜iþ4r‘–æKóç!÷Ks^ÛƒÈwŽõò!aä/R+ZC‚Ÿ(gÕn¡°^ÑÌùþk(âìÖ”‡¢­õ;Ž@ñ|ŸÉoWQ²ÌÛ`ŒS¥§GR—¯“5È÷òBù”§Ñ÷PRž[G$£RéïK"Pe»MT²„0ªI5žî. C †ë÷Ã^Õ +͹¶ ú¸Q;J~Ðá•cɯrQçÔø‡î©PÔ­/ õ²KC}åè™,K4xú,õ1Ÿ)©Ñkóž©_?—ÉYÍ¡é…Ç=ëuÑÜÚ.7¡D -¥NXì¨4Fkùò2¡áhó”~höÒ!´­£¡Û(Áö4¢N15èàTx]AV_9U…êN£³V0c/ÓatiìÉ[‡nçí;/Ë£ëkEScXøÙYŸ¼lÑ¡ÚÖFôŸ$¬kò<á(´Ô.8Eœ·üW¿.‚ÿ$a›°@È«CˆwBX‡#ŒW#½{œ 娳;"â–ÿžOÀ0™smíÒŸ8É«qÐó“h¯´iöózãl™Ñn÷0n%æ).™;$Æ4}Þ$Ò~ôòòøã?¹¯¡J"ÙÃñN1ßcÍiþGÂW×@ÝÁ‹(s–·¡QÑ2¹²xšnÝã?Bó Z8·Iu“µçoˆ~]„}9¶_hîJþñû/^¸h£ Û¬|}µl¿)Ogòïaùº¦Î0âÛY‹rëásêÓ©Í0öëæccyâzÍä>+9íÏ.ðím~¶|߸Cq·Õy˜®ë¬]sfü‚9νɀٵ˜úÙjÌ=ÏWäK< ¿ü¾Ž Ì…Eë®ÛÅ®H"#0" ®†¤¼JG.¿C²‡GO5ˆ^EŠõ¯ÍÓ¹®#mËŽã¶H½Øbvç8Òšð ý¸æÔé¬5ȸx)gBI™˜ô#>’]Af« ™kÒRÈRyI½9™ Ù2hiûê9‘ãvOͦrIä:Òó¤èP=ò’*\øyÍùë¾t|ŽB»¤ò®Eg%<(:\ë-Ôq%H‡y¬v¢THø‚?)®#Ó¹"„r¯}ú n4£Â¦BÑÚµó¨¸Y|¬W •ß-mÛ¢Œª,­EÕËz<îÓoE-*ïû›¬qc¹Â¥š£ˆL§ŒÆäQgOfv?»F¶íOÞásÅ› oÁ‰ús+&Xüõõ®ð:w$ Wäâ DÒ¼6 í\F$ûÉÌ#Àz)ì$¸ÿÖ‹µ"&!´îH¨i?c…´¶',¯V#½ß†Ð'Ÿ!cy©¾}êòxÑôMÜÑé=È<ºiÓþ:qd}}¦_è²?½u¼«o9cmæ… U‘»ŽñÍ&’RäÛÎÃÎÐ{ýé;£+dPxWwÉ›P4À«¦ö!Šß<^gnM’ý“ò]2§PæqgXx ÊÕüd1ý ‘£FtôN¨´¿b‡Rò/Ty{…þ«à T÷XÇísê j©óÛÅÑ ¶»ë¹vL¨³]åzû²üè뮜Gë ÊZƒhtê†í¡tv4é6»Ú¾IÍ7_å}Q”ˆVT‡ª;ÔÑfÇåÔ´ßq€ÞïÜÖq©í·\ öгAG.±l'2Wtúo©'ˆ.#µ*×ãÂÐUDÒ½+7ùº“ÄȆ[f¾*IG/OIÏ ÜÚ·øöÜ z‡n=vCán·”á]CÜ÷OØJÈcJXç&è'‚¾ú×<?I‚ß$Á~#œ'Œ/ ó&ýH˜?!Ä»$ÄÝ#ìÛI?K¯,VFŒƒþìÚmÿ‡*“ð¼}Žáâ'bV‚ý–#EIÏ?(¹®#”‰÷ /7ôä-%Ègbsc£¯'æ×ymœÛzsi­U¶ô´ý³îF°ßö€ÐÙÓœü' zQÉ‘ºOn”/xW¹Ý{ UänʽêÄü„õtBü"â:†é†¯g…)¡u³­ìƒ˜CÐ~ýû¹é›ÐEz+xÄ÷ ¼OðѼ ЫöÑ!÷yü¹äxÜ>«þ/Y¯eVãƒ!ªÉü{l20üÀœ„æË&±—?°5R >+>ØõãvŒi†:.E÷ûLŒš=‘‚oJÕ´/¸4`*jñõŒøG˜6ô³Þr) fdßôùŽn„Y—x1[¥0ß(xÝN^ /]´²}g‚$ùìù"—‘LàGšt’Ê`ãó¤GÊN–¬xa6¤Q'QñS Fº¶äo¬þÈxX³.¾E&—Z†çŽ"‹Ø-…JZrdƒbÓ4\Èq572›¿¡{Ѭù|.(lGAßÉ8æ§š(|¼†[nëO=êX,óÂÅ?Yùö˜÷¡TÑ—M×'ຠ•ˆäÍ(ãf—Åè'Tl >j¨"cZFjéü¹Ýctè?IÈ LˆKB¢\®Ž' ó+;/ÙË'p}¶3ÑÏøÕþµB³ øsUTXx+”Í[3G*UîqÊœÒw‰ó„<5„ùAâ<<åwHçÏÐj}{Va—*´úJZ–¿¼­÷´d¢gè¡õcݧ‹£}ÐæëGIU¯í,Æ)oýc¯yhÇ_t×…Žo!Õ1Ïä¡óBÙ¨€õnè’«xÛ&ÝÔNEäW‰yƒ?Xozúzî]"{¹$½!÷< Œ@Ÿí×*ß©HâüãÀeáÜì)ð‘éÊ ÏÂK0ô±´íýnZøôžíQg.3|f¹35åÄcµeõäšb0qSgÖ|«|;fbòòp4|?°ÝÂÏõ$ü8–s™$ö.üÌpϸ# 󒕇 ßÃÂà:Ã=H²·÷küæëHºpuõ¸’ß.þzdRª¯ñ꼂T›"ªßˆ#Í“¡Õ{k‘îRCª@e2lÿèè,±׈L4ÒÞµ ‘|NZ~ÈTû,y¨5™»k¬*¬•Ûéâ¼Èmd ̵¿løÙ‡û½i=‘óaîÍÇcÈísãü,D^•,ª-÷Sßaã‡ÖÛ(xgB5Žå0 ³U²JÌΣȭ½âIñ(¶^4`J0½¦f˜FÉï5®“Ø  §%_ÆÖ”-ÄGå‘(oœ2ÀŸË óü Ñ? Ò¹Ä2¦Š:TQìøÖ¼y=ª._×¾fªË(ÅÄ¢Y¤ j.Ûoî›[²K"ó-‹îˆ¡Î­—mÏp¢îן¶ŒAE¨¿%gwÊ€- NE·1^F£“©Åüh"Ÿ®}{G+š~ÚTñÑÍk~>ºh‚–/óëTjŠÑºc­Íyq´¥¸"~± í´»vЦ£ý9©B–"Rtøx)%s/ Ó¦¨Åu/ÑyB’¡ìØ4º>žýÊ÷™Ýý8Î-ÀM®&‡xá×Çà*×è’[dÒEô·"¬ D)u¥>?DÜ/@ÈsCð!è=ÂüÑ_yÕž#È!!Ï7ÁŒ¥>â*Y‡ˆ „yÉg üGuoóáä êT¸ý^’:¼ˆ)ÿ¢æéè®*(ÐääEuOxÝ›QqJç,íqÊg¹¾ÿýv=Ìâºý!(Ô*^_^oò2wþ²—ý—r—®òcÆ,¨Ôå«y¯<ò'¯÷jþªúðuCÛÜT ‘iÔaÊ šümɤ4 ùGÃ>}ub~oÂŽ¡KèÏ˾R®›ƒÑg§xr`(5cí5ÿóði²ðboåaøldr¼š²Æb¾´¹òºÀÄ5î†L ˜Ü|Ípw |+?¢Ã©ÝßÍÃÎÉ0ݳßCéÒ+˜9fÕô.­fÙ×SÊÞùc¿Ê6»Q‚E—2³LׇH")^ÿý†’®ó¸ oˆdúÚGû¸<„$t/!Å”bx¹1Mœ~‘ÒË“H÷Á2:@Q/œPyÔ…LR6bÔ…È<ÈzgŒYz6ˆ^Ô@¶í¼³7ªƒb“¿Üør‘3Ú4&„<iÛ6®áB¾„¡¦{ž õýÕžZ¾}upÁØE5¿ß:ky Åå%U† £dÀl~¤ÿ'”¹à}ðÉ!ÊÙ|ã°·f _ôGÅ÷O$k5¹P9c¨‡"O USKM_Ê=@õÖûi&~PK®žœ¹ù$nÌ:°»e­ ¢ÿ)½™dfÔ]_JÎzõŠ‚BïÒ×¢Áá€ôSh¤òK0ÅØM8nî× C3v¾+•ÐÂÂ7¤#¶­’ß½Z–c›È5{í4£yÝ\sá²Üíz‘«ˆŽÒ7Ø7»¡Óתc}¥Ð¥›o ;ºM¦½Ó8ü7©2s¹0Á›à³;ωû<‡6¬Á<6ˆö\;¡°þ$ÑÿŠ(g„}¦«v!ž9aý°îF°ëqö¡~¼ȋ‹û¶ë_…¼Ëu·÷JBᑤírEÄý¢o…R5%Ÿ³@%ƒè£ ¨!îƒ#øQV·yW{H-B —„ÓŽ¬,¨9®uþ™ÅŸ}oiýáTäò)F}ÿòŠêó·m¤¿Û ‚ÇC×9.Ûo{碅ϼƒ†×GÌgÚ³¡qÝ.QÒqÐXã±Wël 4=U“ ô¹ ÍÅsû\7óÀµ]*óaz~:tó.¼‰z]ÏÞÄÊÛŒÒÜxÿ<²‰GëbséŽ&v¢ß$aÝíFã‹›WéÿÄM¸îñµ€$¢½Fð§$”#¬‡䔯ñÉh )y‹ÍŸyJÝkwŸÄ2@ráIf)Ëa¢ŸKæ¦WŒ÷5×Ç_ìá®Ñ;JŒ¿œíIqw]¦<ä(WtßúÊøgÿ›GaNíÝ_ð² gt³Ã¯?q½‚>\€Â볤j è½°eÌ%(®ÝBìß ¤MªÖé´éŸø^‘*[Iûe Ü.ûHø89Trލð^ûUã5®ˆZBõ÷fJ›Lº?û Æüߤ߯££<ÕãÉÐl!׿EC­Ú£ÅŸ…öÍ=ã6Ùgˆyµˆö›Õ1’· Û¡¯NOuѰ¬’i¾.Ûo wDÉaÈó»âÉÓ§áíÂÀ®5É0Òqérð±IøüömM©!ÂXÙ'—5z2ðµåÈ£l˜$|_¼›uÙ~[ó,1>“˜'uZ¬ýÁó·²0Ã?“i*³¸/æõ>'˜ÏZŸ`¬Â‹[÷È´›k!I´œvÌqM$S-Ï ñþÞd= ¤ëg®ïAÆðVž"“å¹™*«Nd^ÌO*_‹l¤[…ÛÓ>!‡—&åóÝéȽÖ}F¿Iùèí¹–í7õ¦CòïPØQ&ënP Šx[)åŠâý®WŒØjPª\°›;í$®Ë“±'OGù}ÆYãF¨øN?õêò8Y…OºAk¢|Ù~«°{ÿu j^úªÛ7>#³0b1@¶ã‡X-”Qw6pŒäõ4 Y0•8¾ ôCÏLºN Ibíð|áš«'NQð£å¸HLi Úx‡g…’ £5×+mm´¯"7½ôsY.~o@çvÛò ã&è&[`OuÖ =ò÷oÏÜ‚[.q>«PE/ëcãïejpÉWôî*xä‘2„¤ž 5"qgˆyŸ½Ž Xs‚8OIŒ;¹š8&É«Ø%´…ŸœwŠ0BX'P¾BÞo¾‚ã˜XÔß9lÌ•ß<{6»õAÿ4QZv5ý[Ü…|ƹ_@˸· 'ó²·‹ÛU3ÈŠ˜ç›£]w׆Ü÷» }È;;~ÿt„3íßy:…ã¶/´@gÎçµõöQÐåLÛýá'Ñnë- º{‰˜7®GÕf»¿ûèÝXU°c^zG ¨9fïC_Z£¾¯ËèŠmª‰w†V7KŽ9ø¸m݆`ØX¦Ç1¿Fv:”Òž{ Ÿ ½ñ°ówʦ?IzëýÆvDçƒãU˜º™ò½ê‰!L+TkjÁŒÊg\·<>Ÿ-žôNÉ8¿ª¨Öw«¯CJ~3›$}yë䥆CH~ "î#äÍYÝÿFØÿMX÷&Æ1YµórGÌGð£\Å!Ø‹iôOܯV^ÌzãÃïàùÄ)ÝuÛʉyDó¿‘Wjø“ÆÿÄÙ Ô˜Vu]ú÷¼Þ²âwuÏüñŸÌËtúx*„²$>ZCe¤i?ëNx·9ÎD£ï*Ôìºaš•Âÿ'މ:ö>ûã7²š_˜¸{×fa‹;бƒê¡[Äqâ>Öî Ûî‘IAïí¬ÙÙ{|Ð/äÖ—KÄx±CìÏ9žÉ_‚O»wöмÑzQÏbîEÓ`ÉÒ_¾ß¯9£tŠfÄøBßî~¨,aS…ïIÚ6ï¦a:.ídðs„sñ ƒ¹<˜¥[+üÆ„æ>úÓ%d<‡_ß:Ÿv›ºÂ’˜õ3ÕwH’x’ÿŒi9’>{6k²¬¿ ^–¹p Éß÷}վϊ”ò÷/²XoCª7Í%¶[8‘æ©`›}ÒUµÜoü†ŒJÜaªö»qm‰z5åFJdVÛDC{#Yž>ô=´6Ùœ¯LÒ÷#ûäîëyÈYÈ—ó0y˜]â¦ä¥/÷ÔyÚÝ(8óãg¾å7þ¤^4Ð E¯}¸o±KѶP±¤FÉâ$_Þ!v”9ï»±}tåŒNÞó•EÑì¬ÝjÁ¨X~º%°o*_ŸÞz×UO_e¬6û‰ê¯‘Š“« æ°RyßܸyokE’3"•ýÓu’¨3±> 3†õ&6ˆmAÎ<ï 4lìÜ:V†Æ‰‚QÛönBÓ;j3“Éh^µíÿg´¢ëÉãöæDƒ[Iµ¡í£o]MåhÏÆõܸÌ’L­c7h “'§{›ÍtÙ`Q  ‚nÚã‰Êåòè±[Ïq8*ÆGÓ’Æã$ìi—4¯ú÷€°_” /Dûm5ž9!.Áoëi¿­®s']ªÛK¡JŒ_N˜yyH01‹ü I¼¼$f¥ò~¯³~–Á[Óžƒ:¢»ˆã¸wªû²ŠÚc¡ú윧ÞHÔ¨ÞŠ}¨sŸç‡?±ŽáZ’MïÔ m¿Vè;õ»‡69œâx¯a'§RWž4tæò$s@£ÞO³·º¼Ð˜òóvn)4iY·)øã–ü& ûL[kÑv§‹>´ó ˆ¦|>Aœ'é:ºÝ™ó ¼¿›øäþ'èeŒŒ±øE }»IÖX4BÿFDÀà÷Ð&ùÍ0lCùv~ŒŒTøvÞ(…/ŒŠ\KMá«$ë^­f˜˜©òã‡oÁ!'÷$ÁwÉ´yúŒ(˜þúJÓ`}̼•ð’Ï‚ÙøS‡ÕÏÆÃü¾ØÆùX8-Ù ªK±{Þ–²#ÉüŽíUÑH&¿{¨À7É}Æ’¶:AŠè¤›“FòóÆ“œœ=H½Ù*iB-iØ CzÆc»šwô cÈñŒ2gdÒ¼?ày™?tùÇ ÿ±ßB9¿¸–¦#çI³7ïµÈ;îe@-ˆ ŸÔµNj›!ba—¹,ïUPTt½o×y·á–­é7GÉ鉹+y(c4^c[T„r;ï‹oužEÏ™GåG|PINßâþéfT9,§0¹%ÕÉínÎY¢fCµú5¦­¸q„böCK4êHPÆ—JžBÝÅWIoœD’Y¯¶wh$ýa]™Í>49®TJ&^f?hFöɼDË[×$mÑF–AhÄvݲ±÷ |Zƒö¼Ù—w΢C=graB4:EŠß/ò]îÙä½/ÍE·×Òc‹âûqKû’Ĥ3nypQ‹ýz­÷:|öînMÍ{å)€ÞVÇLRã{q;ë5…~yëòæÍh51Ž?ÁŸ„°Ï†à÷H\ß&ä›Z!Øo„õ·°¤gU4׈ñ‚åó˜„yÂx” ? ñöþÌDûSò8äzâ|å Öjöá3޵ãÇúaÒ-Äüo„}«„8Ìù6ƵÂ{á•ëùð¹P½ UûHóO¾‚Šôã×õÓöP"ñ䯖”Z´WWØüÙ÷¶*ïl_3åßN@åLĉzÒçðn²Îý¢ýÈŸyLg³FSJª?ë³ï]ä^Bsê&I;ÃËÐꥯ~¸±Úí9AŠüqKÜG`»'—ª.äÿäê~ðÁŸßê'a(¡bZÊ¿>ҤРý £û$)ä?ד;+÷*9Ãøm#§™aÂQ†©c¡&wÆß¤2/‚o73µœÓmajؼïCTLïÛ,` ™3jÛo§8¼YÕšõu©­0ïS)&1±ª}3~úf#‰®ô½¦Î£HúîYZnÅY$¿Ãõ•‰U)³u_l|‹4Ü<¯j#]âá®dÜÍ»#i×)dRM¼v>>™Û9«bßP!kîári_Èþñ½·˜t"r^z?ûyS|† iN  ÙžŽ³é(l³ß1öݵ8¬±¾÷Šg×Ežm@©C*— ƒpÝú“§[qýë«Où¹XPÑûMÙÆ>TŽàPߌjÒ"N?t6 Æäý"f=qÜHázëJôDûðÖç|¨{¹/û°óÔ¿ºxòž¥ ¾ Ou¿^&l—ÞÉL¢ÙmŠs1‹wÑE×*>EªØl— ´}r\­]Ú{\æ ŽeGG}ÎMwÑÙÕ÷æ¦Ûè+³å³=zHsb”©ÂÍ_D>ö¬GϹû•÷éóqkœñ4ÆîAï#m;rÞ ©»Ûüö¢ixÅ2žn–ù”¸O€à×EÌ—³Ç„·d5ßé¿úôaßaš|=Ùû΋íâù[B>Š=íŸ'¾ïeªF»OÖÍAå=_ÆÑ2zb¼-‚ßGãpwþÇLh62£nÏ]¶ßøY;Ä ¡åñZ vnâ|a륓½ÎAÐF+Õ¿o\Ú®äœI,¦‚vvÍfÞÎhâzsû±øÑlèxñDË%Ó‘?ùᆡG:,†²˜¾îù‡‹^5jþòŒÅ÷YWÌ„‘W)TL¶º‘ ž‚)oÛ’ÓÃašQò¾iŸ8Ì0ŒX=è6Ù‹·¥N„_A‰ï7…¥»?ª 3I}¨bh&!ùÚs‰;ÚÜ‘¢zW‹m REA¥ÐËl¤Éà¸ÖʇtÃI¯Ž"#ɽ7w©ÓqMÅaØïÄGÜÿÆôñÀúqd.‹>Ô´ý6²”'lA6Ƥ…»[yý®oïˆÓäÔ?Ù"·ø^—Ñ=È+þ¤2I³ù=5ITÞAÁ¼üÞG¢ÐôÑà+¼|(¢´ÐÏÒ~EcÅkËdtP\`Nñ†Í”䙲ºpa¥õpB©H×m»ìàcƒr£¹ÓçUv ‚O\åö FT,¾ÙhnÙŒÊg”é“ n¡ªÓ‡·<Ê•¨n£`°±U 5÷Ó<Üv7äˤþbDP0MÉÜ÷uv4­Š_ƒºõûo”¡¾UoÂÚœ}h08øŽí65…[ód¥|C§Åô1ôh¦tð•ñ ZˆþJW/G+™Û5-ÑF¹G¦ð ?ÚnÛD/±y;Ú%­}¢Ö†T·ßŸ=ŽŽÁ™‚Ú­íè̤½wdvºi÷¥?±A·k2ÔK7ÐãÔV#SmÜ|Ƕö¹m,¬­-ã „ìÊ¡"ã Iïͬ^0øoñðv!ßÛ¿æÇ!ìƒ#œ'î[Õg„ë ëä„ýÝDûÍ½ÓØ«HÒìTÙ‡ŒÂ32¿C…ÔÄõqBþªÓ_«ýÑr5Qݯ: —ý§è8^94þKöQÀ>7t- µ yÁ€î}Íz.Òá$$d$$dK$$$ŒËŠåÏÞåÙêÇ|å{òåïÉXW¿gú§  í2%U 0ŠF‰À(£J`ÔŒ:Ñ 0š« ™¢‘S$rJDN™È©9U"§FäÔ‰œ‘#b(1”ˆJD %"†C‰ˆ¡DÄP"b(1”ˆÊD e"†2C™ˆ¡LÄP&b(1”‰ÊD e"† C…ˆ¡BÄP!b¨1Tˆ*D "† C…ˆ¡JÄP%b¨1T‰ªD U"†*C•ˆ¡JÄP%b¨1ÔˆjD 5"†Cˆ¡FÄP#b¨1ÔˆêD u"†:Cˆ¡NÄP'b¨1Ô‰êD u"†Cƒˆ¡AÄÐ bh14ˆD "†Cƒˆ¡IÄÐ$bh14‰šD M"†&C“ˆ¡IÄÐ$`+*(üaÿ°JXå?¬ÊVõ«ö‡UÿÃjüa5Wû²ÕS{¼ü|Vyªí>ÿý×”‡vì "¡Üêçµm÷j sBŠšD™øÍ+þÅ+ýÅ+ÿÅ«üÅ«þÅ«ýÅ«ÿÅküÅkþáUÿÂUý Wõ/\Õ¿pUÿÂUý Wõ/\Õ¿pUÿÂUý Wí/\µ¿pÕþÂUû Wí/\µ¿pÕþÂUû Wí/\µ¿pÕÿÂUÿ Wý/\õ¿pÕÿÂUÿ Wý/\õ¿pÕÿÂUÿ Wã/\¿p5þÂÕø Wã/\¿p5þÂÕø Wã/\¿p5ÿÂÕü Wó/\Í¿p5ÿÂÕü Wó/\Í¿p5ÿÂ%J"…’QóŠñJñÊñ*ñªñjñêññá*þ…«ø®â_¸Šá.ëãÆ K«2IAu/_‚Ì’ú&\àµpšâˆWÀ2]\©òw k~Ÿ×!YùÉÿJu˜V¿ø§<Õïò„QÊïëö¾Õ9ؼBÏ­Ò‚+ôöêñË+ôÉêù˜Ùhüê÷Ii+Ç)«åÒ·­g®–öOuž¯^—µ½èš½z}®îÊ÷y«õäó®|ÿjµ¾‚+ß®Ö[´ÃóZ¼ZqKÔ?´d§T¯w…®â½Éú‡–­â¾å_¹þí*~ù¥•ë+VÛQ1³r}åj{ª|V®·Ú®w+×W¯¶¯W®¯YmgmÊÊõu«í­gdZ¡«í®/Íø‡6¬¶¿á¨Í ]½F…‰ºz?Ã×ÿ¡M«÷ÕôXa…®Þ_³Cý ]½Ïú}+tõ~[JVð[Wï»õð ~ëêý·É¯à·­>‡¶+øí«Ï£ýá ~ûêsé°_ÁïX}>´+ø«Ï©³h¿kõyuZÁïZ}nÝr+øÝ«Ï¯{pÿýês|ÿýêóü`»‚ÿaõ¹öЬà÷¬>ßž×+ø½«Ï¹W+w…®>ïÞÛ4+tõ¹÷NºüCûVŸŸEâ ]ýú~®ÐÕߣŸÜd…®þ.ý›ï®ÐÕß§?ïÓ ]ýØ5Vèêï5°ïÉÊßâʇü·ü™•ùþs²èMÆ ]}_‹JõWŽKÂVŽ‹[VéJ{‹Šv¬z¯üX¡«òR”Ï·BóÒWh®î ]•·¢¬UÜçs+ôYØ ]•×¢ôÕzS.­Ð¤´º*ïE1«×=Z¡Wn¯hµ¿(º±zþ\û =XOò÷ŸÎê±Î¹UºZþO³RŸÎºŠ÷W³BSVË­¶÷¯þf…>Ÿ]¡«÷ûW³BóVëY}^õ7+´pÛ ]}Þõ7+Ç%«8«¿×_ýÍÊqÙö•ã·ü«”Øß¬W¬¶£âç ýÓ߬¿ã]9~׸Bÿô7+Ç5«í¬M]¡«ýÍJOMÐ0¤ýaàô»âUýA³ü=ù O»Ì“ÿ¶piþ)OB"¼ü¡_þ¯òä«çéWÊÓý®›b‹äÛJÿè~â;þ÷ç÷5 ÿÒÒ_^AARúÞ·þ@`€¬dà={¼ŽHJ m”Ú~`ï¶ þ{¥ì¤…ŽÑ -ÿÒÚ&µÝ?`WT€ÿ½ÞR{v.ï.«¸IZ^YMu½’ª¬¢´´ì?ÅWþþkq¯ÃÿMñå&ü.¡´I[[QZöïC¥ÿTNù¿–Sþ§œôJk•–›ë¸þ÷s—ÚFh©Ê¦åÒ«ÍXæ—üvúîÜ«-ò{´(¯ ¸ü/²RÁ>¯Àå+E„„–ÇB^{}}…¶øï‘:쮸IVH$Èÿ^é7ÿ{xè±WäïFŠý6´þ)¤ü»ÐŠÉ°rFå÷™»Â{¹¹BþÛ…|ö!â)ý ¨´‚øo—þcy¬Ô­þÚ?ÖÇÊ Õ+~ßZ0Ý~Oþõaü×w˜ä¿¿îR/Q66}`À¶í;ý|¶ùï;²zŠzõÔ¸ŠÐªå">Ûÿªa¥äÚß%çWΑQý‘1Âøë¿ÈšÜ_Tî¯cÒ?²&²ô?i±ÖßsS”«É¿èêùÿµR­Öô›ê¬ò:«ÇTÿŸk¥^­é÷¡¸Ê+®ž§û[ë¿–fú×~í÷¡_#!ùýÚÿ é÷‡yiõ™.ß=Ë*Ïú×9¶¿xö¿xŽ¿xοx®¿xîU~-áÜü*ý=r %ŒðÿzóˆßFóÿzþqÍÿ°m<ÿ?µ÷/\¾ÿqtHþK}ÿ×qþåüÿ9Íÿ¥ûù_àü‡ûù<ÂûÏÿ–ÀÿBþçïù ö_ñþçïã¨cµ§üW §û£ÿQˆPûßW0ÿ›nþ÷f»„ÿô“ýk…dAþÿ] ÿòcük TÿŒèþÓ7+ƒÿ¶þ þ®…†0„øoëaúßÖCúŸšÈúFÿŽÃÿüDùÿß<ÑÿØRêÕÁÎûøþ·uS¯‘þÛj„þû&þ§¡mÀòs òÚú÷xæÏ{O„ïÙ»b›Š×#C´À˜·#?q…µô|&å—^(*»ki /ãå|䛈ºÙ?§«¿_í!F dP#xöVŠ åçó Õk[=–*nû±+€ÚwÕÙŒù—¡Qêðæá *hÖ:½›‡¡ ZòÞùmŽ…[‚Xu¡Ãìú†Gë cÞ9ÚN‰ Ú¿É]9õâ Ñ#ŸY¿>Ì$‚ûŽ1ó<ᾈ™è©RŽ,‰3f3­Õ‹ä3¾‚FÃQ¦G§+ ñÇ­ú2ÚPb{Z™_9Qç!´ß{wårb-tÝù ¾¹>ŒßHá½y›!kÀÀ©BÍÚ>†{}÷x“Ÿ45«I§ß#¶kJ…4Žþ‰ô½eT4•ê+|…ušÜ`z\—á3'ÀOòĆ˜d>bæù…§ðËæ9 É“Z–ð+$‹ žjmGŠ”—aw¨*‘ýyx¤&Òœ>9ŸX±éì,Z¬>!ƒÌú}ꚸ²y§Âã‘ÉeqÝ Á>dna3æÝʬT½/”•‘ýzì%Í×,Èù¬0œ½drwšÝ2¦£EÞÁq†#Èß.uŠdÇ4 æ]Ê!Ox‡BŸ8Ã,¶Š ˆz㯇gsQôÛ­‰,]”`Ô|ã÷ ¥|IÅí"ìP¦:9ÊV„å´¹CN |Œÿ~;Ÿ.T\ã~£uü1*™+þ˜üUSo w£jˆážðT¿ûW°jîà>ž÷Ô7<ØõMÁRÿ‡j£NDcwÈpꑜ;Cò@ õ}P₪tH~t|¬ŠFÇe z:¢ >¡Pû…fœõ»XL½Ñ¼»Xµìx Zú]eÚÿð5ZµQö~ßõm8Hd’ãÐ&çʹQ'A´µŽpŠq°EÛn †l^h·­íKdÈQ´ë]ÃLã‚ööaUcLkÐþµï§“WÛÐA˜#áÖ«³èpœGÆîr$:ÔÕ,$8ù #_Do¬5:n£^‡¤(åzNcdCôØ+²þüxý–ïÄÌ™£Ï Ù#QnÒµmŒÚ&GŒd•”7µ)Îoq§ Á1V-t½û2ˆgøÕbue=Ñ“ŠPA^ ò\°Crïs ¼¶ŒÝ ï}« +ˆë^QË„ÑÛ½†|Þö=‚'+ÿÐÕ?Är«”X!Ãڥ⾇vlPœ1uàÖá¯ÿæ¡Xv϶zvž¨üéb§-T-=Ü • ïøµNCM¯µTTТ¼"²6½Éž®Ìùü§Ÿ¡½Kÿ:í_¹M°†C÷쩦ÝíÐÓé} âÐ7èó;rüÖÚ'Ðÿ¹Óñô7¼Ðâç`fC*é‰ÕÏKàï «¹ZuÚedYÄ_üeÛÖªÂWº`Wßã01¾ž}k”Ãb‚¼¶Ó^–U¥‚™§ùVIí0›GïØPù~Ñ3¶O€Å‹ ‹wý¯"IøW?…ߑ䩺Fòùnÿ‰„°k8â§SR§žÜÁPŸŽtû`Ýý¡4d|"¨WÌÝ…LçøL©¶° ‹£Jy&U²y'íyeˆio4§ê#·=Ï·ƒêVȧÎþ†Njí«à®‡ ûš;©;”ÿÙáyÝ Æ0ã,J1 zºeZoŒÞÍ~ŠrõLywBÇPáÈ-º½×¢’l‚5m ª¸^ÉyZfƒjŸ“ÖÄmGÍð_4 ŸáFÓœ=»4Τݾä:‚bŸEN¢žúÀäˆÈmÔÿÙl}Óë6VJ}HQ*Bã›6*ª£© ‡ë–›'ЬU4%V--Tï’g©ø¢å!Ÿ4e~:´JÚ~Òª¢ ­+?/MuA¿ º',hóYÎ%l¾m½ÌãzBжNŒq½~Ú©ôjMä¾@»ðæPÓûÊh7rŠ),uí5uÍ‚›™Ñþô!q®]Hà;YÍyxg7Zûdý”r~¼™=ªE¾µkõÕá%£ö›_Á©“ —]q²MB ÖÇB–m€®ßÒ1Bëššˆ‡^û I¤xrcVÚýæVËþ;r‰ÒüìoþxWƒ¨mÈØëÀUõj#ó÷,BýX½zŽ¾Ù¬¹¾¦Žméüå Oi9¸ƒ]¡é“ÈA?€–ÔgO A;»NvòÃèæ‹«r–…Ì7ïAGôÑ^Úâlýéì&ãvÀà°c§| ^—L3‹‡Q ¥ýx{Û ™6çu&TŠr¿#LvJ%ˆ1‡©'ÜV¥u÷azÿäò 0ZîLOJ ³‹Â‚‘Ja´Wî"I7’h t™”½B2ÞÖÈHÁnýH´; ©HŽ| ÒÚŒÔ-\’9¶H?¢÷#ÂéÏ^º–Í Œ'–Jhô‘‰öÐ]|À‡ÌgoߨóY‘y‡ó†HdWyºy#ãä´\2¦{ˆÜ~ù÷JO"ï~©@qUä÷RÏÔ9ž‚J¯5ï1 PùÐã (}‰ÚŸ)RÙ Îf¯$­&Ô}S%ÓS™†úâm†Á;fÑàîó“Béh´‘‰©ª=MH’ƒe Ñ´c›÷G}4t`äÛ÷-• y“4 U´ðác1´žoº6²ã=Ú<é¢0Y,BÛ¶k]6/¢mÍé3în´sÜÊUø]íšÆî§úmA{Ó4‹mŸ¯¢}öK«¢èÀòÃ3Û\Û ˆµ4m¡ç—õÛužs¼»ÑÑ;æÜ£OHþktZîá”$òrm+JÂ=ãô‰\S#Es&+m2ê2mß™œRnÊ§Í -Ã&Ph’ÇôöL@’ÃsÉXßß;B—Þj|„؈Gƒ‹=!&ik¾ðI?ˆ;Ù‘Äø*ž6ëLM(BFú-ß-Îõ#“t‚ôgáAdþ¤ºÆ÷|²~²p.@AUN²§È•~sœtªy_D)ѧøÔYè£ÐdãeÃPéÖôÉ;s Å)ØÃ:9Qò åã]ëQf&_Ì~)”cmcté8 ¬K_³žEÅÂÎG [Qy`gm7 ªùÖØø0û¡&饒¬nv–º¥Ú#æœK×PÇêçä–ôJÔý,BBš±ˆúOoQ¸ð+¡áa!“{oÑXGqêE8š,œ¦uì«@³Ð¥u¾·O¢ùhöÅWöËr˜uª3­üNý —ÒCëõêõ"´qÔ”¦á÷B›¶‹ažxÐÖVƒtë '´-9¾òŠÑnÝ%q¶’_höL{gf'Ú íÛi^¸¬ßèÅI¯Ï ýÙ_¯Íδ’K-Tª¼z4¼Ý¾,w<Â!ß©¡ˆÖA~~Xò‚Ìso¾;¿l·Íkú~ÚYwéö…Ö´”oXJ³×O3©ÏÿŽü½uWÓq]H.¼pF©ª’ÉXj!ã)»­1äêy怒h…â+ ɽʳ+nMH@ÍiIÖwâo Áá Õ˯Ðdʺ>Í-š_ /0×±A«E¦¬X‘*´ QÄWÖB{Åy=%Óòx½å:ï]hy~ªnÉ*|ÙÞº#›ö¬ã~»÷t’%ïTGïÒŸö< 5çžœûµ_lMbÔ„º…™ƒë¡þÑ碌^@ƒ¸÷bŽõ 4’,£¼_ç è‘­=C <¼‘cfsíj‘kél×—ãÓȳ°µYÛ?ùFúB®û¡@mg™ÿ%K œÐ™H“Aá‚Ô­–ZQÔ»Ä}Ÿ³6Š{ŽK·oß‹’·'æ7“ ôû>ç_gPVÕWˆ7<×ß|M™Ä¹ÎV€`i*~Þáuj£**Ÿc öè@U-™¸âØ Tû~gMÓÁ8ÔÈ)gôhïF­¿¶{ŽÊ¨}¡LwàÊVÔ‘œ8ðý™)ê^dl|ýSõ†ü½¦¡ r7ÆH£áüô¶¬¶×h\œõƒîÝ4½ÿcKμ(š{ zB‹¹­ NÞƒhµG›éœè-´~(øè>´ “:•à…¶ÒŒŒ;“ÑöU²€µ Ú}1èõmG»ò®÷õÛÑëj:Ë—í·t†,ÒŽ^t`ts¦(F‡ î›æoСZ?sëÐÓeývÙ'6|YÏmÇ:¡ã½H®V n7u JÈ7m›{C¯7RtNí_„ìݵ´Ê s}zÍ‘ó‘ÇXv¯ÒD¥“žøPC²—¯¼]öMH¬Í¦Iêö‚øJyžãI¡K}Œ]×& bøtŒ‡/¶@ì·ìãÕ_žr­}WO”¿]µô¿l@îbÂW¾V…e;ìÒ\í±1xáÃ#±^ùØ¿öp…ü#¿8‹“ ßlÔ‚N!^^M¼÷|ÜõWÒº$ùÊ>ÖØxò)œ›ÀmY²èNÝW¥‡Ëgß4/ÛqêjRI–ÇÉÁÓ]uPÜl™qá ”²¬ i”„7´*•~_ÎC™üþÆ…[ðÄ[£é¡üã`™ÂTVœïùηwy|êñEgQê\%\q¹hØø}ÜŒ q´µ¾9Xš›ÒOŸ&O…ÖÏ…gσ‰²ç¥_ +ßâ0Íœ+|8\Ø;vv-ô¦ô2qî€~¡_Küa 9Î÷AømøhXPzñS; ³³{né„ê¥î0ÙãðÙ¬9„µè(Œµ•^‘ … Û‹l1‡®Ãd랃§]º`jÔ}:cÓb’ÙwÔàGëTw“n/ü¬Ù}Q¾]æ)hs©sTaÁ­‚óC6$!kë¸á\Œ¤AÞ·ÄŽ!9•£kTRÔÇu)ÙD ÕOé "íùwó/w4"踶©Q\{ß›=²Ò™©: Ðð «çÃ;2SªÈ~-n4Ë…¹F®d O ýA±äOÛ+9÷ wý"¯¦"î–÷s”?£Ø¡¤ÍäÉ(ÑÍYx‘~¥OöZ¥­‹GYçG^ŸM†ŽÐ{ÑZÆ3Ðí|'0Ôç ôœ‡è„¾Ðg;vØž†ÚgÃ(káã§=TßwçýéŸ\Ë÷Ágô 7µ€q»ÊïFz0Q—Æ™CßÖÝjªàïGìŒCv¿„—(¼:Rªáç§Ÿß~„$Á|¦ÈµÙ‡œ°XÒ±S\IùsUìýlèèz;ߤÈÔ³Sß—ˆTGMN6{W!ï’àz¤ÓÔ«}ötY¿¹n/ß<Œkš›4E%i@I58ô8²Ü’8ôÈâ0²ϦÒI¾‚gO¤^|@‚\áÂK¨¶y.>Ru¬®F¾@'æ¢X)p=]wì iv?Ðk–Gáû·Äo (ûõšþ|§«ð0FÉõÃêJÚPzûqå¸Ö!\÷¬O4øA1®§ÿhݼOp1Â`=*Æ *ZSìBeM/'NgTNkùœÆ‚j×z”!jlyÔ’¶µ®±ÑÝ:—ŠÚ¡ÃÅ*ûC7É“£®¥íÑÇ¥¨—@}Æ·~pV½`AÃüÎì¨Ö:4>]´÷Ç®V4õ¸èv©™ ÍÅŽäW¹Ò£E±…ŽIÅ Zi¸$Z“P¡õƒ#[˜ÃÈÐæà%*2´e¯ ) rEÛä¦[b h§qp?I×y´ËO¹³FeÚ«NZÛF_Cû„-¼zK>èÀd®œ“؃ûµËË=œÐ¡êÄe´êeýv.£”6}»9c˜†lßµ#‡Í$ xsdúòmP@ÇûÞ-ÛWéa…=×!£þý°dÈp›RÈÍ1ÔÛd½Â§–í1Ýc»–Ô Ñ•s³,›Äo¤WU惘£.†geò úsjB¬ÏM›0Þ·äþÁþiÑ Qþ^èõŒ: uA®ÌÀÂϤÍËzjã‘ýYÈÑÁéÍÛ¿¬Ÿ˜režÀËŸ×éζl„—_ªdi#ŸÃK¦ôEñ'¨Â¥”™ÃËú.õ«ÎxøòyÎx&#xYyÞ{óȲ]Wô„;Öþ,Ä0MX*úAaè¹]ì<' ˜‹FdŸJ”3L°ƒR] ÃHŸxãëYÈ£vÊÎç9¸0@¹ª³íðe¨äï°=‘ï^ Ô2ë“Cíí¾S‘N Pßò…rKãh zíÚSÍžmú6šç uÏÚ€™WО|ižý!tñ)V9_â†÷åc·Cè ×’e¯åsè{™QqzM* h3ú Z. ÖÔ:³ †n”°ø5Á§cU É[_ÀhnRž7Œa;« -L«EèÈÁäéAò3µ0ÅQ(]à{–âù +ø±‡ItxÑ~:?ˆþÐsæBÞíÛºô ~õ3™ª+9ÃÒ»Bg>Y"é:©1ú.$+ Ôñ)Μ]´¶ÜƒTNìTñïEZÖð*éA¤ïésÞæ9‰kúŽ´í´fBæ5ªš/” KùÚ«©ÈNÂQjŸz9w„~äÞC<Ôç¬æEÞ#_W‘åö8¢êS_'IŠÂ^u/MPôs–"¯ „n_ïÍoQªù|Hî(®{°íEWH$®¿‘ÄôRqY.‡t¯øl©C¥á΢#¨êÉÞ4h~Õ{ï‰RîE-ó£û6ÁÏ^XŒL#ú‘³>žD]ÛÇ|J5u¨¿†cO_Än4h]Ë4”ˆF÷ù-&›¢‰‹ëN½hú1[jÜI ͦ8dªeÑ"ùÚAÇmhù-w`÷°2ZKÕùD>»Ž6¥>­¼Kh“¡ûÚ·m–üº¦ÉÑ6INnKÜw´ãz?ëÑvíBö¤&õI¡]¯F‚Èy‹eýö¸“–®í/QOdH !õd >MÖv¨8±tDiz3WœÑf§Î„×÷…¤Ò6“.Û]¾‘%¾ZËv£D•”¼Pdãdœ„ç|UœÃ÷ Óöµ? ©¾ä5~Â{!I¶kâÄì]HŒ|ñPéé[H×>qh›î9ÈÁk>)½€¢ï©ÞÞtGám›8G*?TkœÚáÚò{r%íêî"htŽù¦—xš^Ì•´èGÿlÙ# ­“é5éû¡ív¼e»´ö,ò?> Í¿FʤZ¡ñ±nLxªŠÜÔznj ÃW÷ú ¶-¨îÍ}U\0f¼Wõl€L˜ *^¸ ¾ñ<ÍsãS dï5áƒÈ°.Y&üÜìÝ-™ó4¥ÅŠ#Y°°(²«ù ’<ý0g‚dÖkޤú#müynú¤¬îMî×CêØ×ÎxßGÚ›ÇfÕ>çI²ÜN\£Zþê6÷Cd ¿qvê† ²è(,é8 "›P~§Þ\6r¾örPB.±B‘_û‡½íö^Näýå£G’3€üƒ2M]~µ(¸tã³ô÷í(¬¾|a EZÇ߮۫‰b/¢#=…PâmW¬dJ}å\ëWЊëÜ%zbÛQî,ý¥JR”ÿ±³¹Aá*z´’òUG¢Ò—Œ«‡ZPå–2{Ž ªŸÏ|êÿ5¨ƒ“P» –J¾ö\IÜøÆèÊã® ˆùêg .ó-‘`G+\~M£7Qp¡~›“•u"?+¢½ÜÒ‹ÆúUÃýth*Àç¸)¥͆n [®G‹ j6äèЊõÊU Ey}óRU…ß®tä’¼˜r»a0ÓGµd"ë }6SýGÌ5H¥éæˆÞÞ OyËÏw@ÂÀáçiN—6l=r©¢ÇT”S A4é¼Wàã$ˆiß'fnnµ,©”ŠÙüDù{ž4Y‘>ã,ÄÐ|< ò^Žý a „—-–l±1[—õYƒoæÏQxyHŒfòSݲþzÊ@»&^’~kâ1B¤y/åÖCÞÈkzt·!ïr{ûŽ~Ååã_çª`/¼,¨ÜmÕ¯¯Ž&-fµ/Û§L#¹Á› È½$ÂÖã<Tº÷šë8”á,nèa…ÒHëdõ;àMƒEûÐFx{¶rÚŽRÒ럕F=A™š‡Í (÷öÄZW5T8r€Rþø9T YdÛȦˆ*ÝZì1ŸN¢ºÕÒ6Þ2Ô|v)ÍÃ7rïÙ1¼E ¡‰>­æuêRt˘{h ^a›H¼ „RÛzhŒYæÕOÄ¢ e·Fu<šÞº‘™Í‰ætÌû¸ÑÂ÷Ñ»½,­h™Õì&d”ŒVS¼Jòþ?Ñfí…³Ú¼Vhóð±dgŸ0Ú ˆÜï@Û‡¡Wöñ­A»µçBúZÐOåÏ:´{/tfIœuY¿íxVž„öaW.ögmBª2—ý5‡¡üJ&õ¶°.(vÉ©êa>ï»iãº!'éÀM׬eù¾ÍÌD žŸKòéI͆gžá´‹*Mq‰ÆF9OR¨DM­²—å/4Aœ™ö ö~&ƒì×’[ÜLc (QA眅·¾öÎôGö»›iQ¾†¢opÑX)?Iíœ=›Œ4넞¤Ð Ý‹­/n AFÿ8·_n.Ȥ¢&­{‰™‡yçß–=FÖÞŸA×]LCøP·Âr…'™hG^5o®Ÿ%M( Þs߈i…Ú/if’¢H“㵤og<(’ðx3J· Öº ¢ŒÈ„ÇfÉb”·gü¹a*0$Ÿ½·•è:×yúŽ¢ŠËfçm¡¡¨öšDŽõòrßÿ®k‡N¼ç?Õì Åf"ùÁury4¶F¡Þþ;m»écÑ@ya†V ¿Ó$´]Bãç •ò<hj¸Gâûw4+”¯í¦D ÑäÆWõ&hyøk}s¼Zl_,”óD뉆&ªÐæÂœ{šÛa´ezÛîè’Ž¶×Þ…„/ÛkTŠ5±_Ð.Hš”é ÚuÒxv•t,ë7¥kLg¯¢ý5VQv½ûHyOçÇKðöáÖ[b.Pôé‹K¯ß™ôË…¦3ç&ÉÆÿ±ÛdwÀ³VåœDË£ëúKä4¤?ˆÝÒ <ð4N¯LÑÌ âïËoz'µâ7²‹ß5Õ€ÔísoDçN@öÆ‚ôjÏðåqÜsþ W læÔ£{ j¼«ÎpNê\RJë´ a»JVë?h,Ž›Þ¥mÍZeçx ¥ oç.°A«·åÛwÉËv]ëOÊH14Ù\&çFÃ/<ÎþÑo{ ÝÁK*G”z®ò1«$ØAßun¶|£¯0p¿ÑO±ÀÇòÏæfùà“áµ[…/OÁg…ì\’šO0~´d?E­4Lrx‘ì~Õ SÛN³©Á4Ó–okÓŽÃŒéÆôÙ0›K%}v~¹û\I¹ü–ÔgH}¸H‘TH‹†K#É^îèÖãBŠf R%¤²œñºü5iLœåäî¨ ]g@•ƒ2̤úÛP]µýQÆ…¶…È|ÛhÍ9ŸWȺ£ü´ñ=dwÒ®X¼ƒœ¦³;Õ·Ö"÷z —ǃéÈ»æLtHòÍí7¶¶AAN}‡€°ƒ(T¹U.-~Š˜ò* …ª¡3›žk#Šÿ¨e±˜ô@)‹·s—³Qfµ\Lʹ¯w:ëôå¶vÖ¢B­~Tî&T²·Z5jDå‰ ÛwVBÕû‡NíGug‘õ1ªÍ¨Bs‰—7,•w¸I§"¸;1X~Þ‹ç7hL퀾IÃÍ2¢0àÛ1KaO ©ÛÎÈÐ¶u´´”î0B&í}E”>RM©n½ ã '$Ì,aâ‚ñÓ òßèt¸uøa*ÜÕóû˜–÷ž•Pþ ?~¬ûúyš~Î0Ý ê´…ù ¬7[¦…a¡ÌvGBx ’X˜ðÈz€¤}lEî&HþPÄ7^)¯ïòXËŒÔÙÃf÷p#@Œe"52dçó•õ,àÚ«~=ìȼÓ( ΋YmwZ®OMGöà‰¶WÑ/‘³íGǾVäٖͰoù-Æ´¿-˧ó㽩ӛQÄXüõDÒO ÔÑϬ“A‰Æ`ŽöG(½=;Cð˜Ê*H1ÜÑ9…ò˜3r~÷GTŒÈÖ;›Êͧ\F59’sÔI–®÷sF­A‹F>Ók¨ý„¯ïÔ" êìv1:~„õD]ÂäËuP¿ÚMûþ54ŒZtÌwCcχGÄwj¢É´IœÆ4 ²’ŠÚ6‰æ=yôWòÑr#½ñEʇhuþÙ;«ÑJ´.?Í¡Ü6œ®jªG[’§WYèBÑöŒšå =´ýÕ•Sñc;Úí¥j¥“ZÖs­Ú¹ž‘h¯þkg„nÚ߸ûʸ®)ü¾Ñ_¶7Ê’ÙDßä7CÑ¡¡@qExåcßR¤Ù‡n½`S±l·%Ò½¿@ ÏÄ_ÓîÈø$x»J$ÛûAïG†¯2ç ¿á¶e®ñwLš;Gû†£J‡•²aTÜmæ«`Ìý¸Û E§òxàÛÖÑoŠYð=üÄ¡C^ðãuâ½8¾R˜]›àÐÙxæ/Q r¹ÜƒEµÚ‹±IyHr¡Î&ý K“xÁ{m$“¤°æÒS¤Œ¾YˤҋÔÑÏ-’‡T¶ÑÎénå2¸D™¤,àZÝÍCÉ;Y׿¶ô^)de¨q2ý¤ˆl“ÁÇkó+‘£ûvØ%>äzy./Gwyî„7Mq ßY‘‘`(ÃGËÑ~…¬=Ï“²¡™âv¦(úLѪ»5ů–]vRFÉ ÃÑÅñ(X©HYċ뾜>|ªi3®wMïHNÏG…ssûΉk£ÕcuQRT~Txûfã=TÕŸˆûò± Õþø^šâ­ç,"pã 'Õë‹äƒ>˺T¡ÎfOžÞ1ÔMò]Ú©Žúì³üôò—Ñ ™E+µ‹þ‰&[[ [ÕCÐl}·„ôm4ïþÂâj€–ÞåÔû+ЪóÍ‚W£Ú&ùvm* ¶ÝŽdDÛöïÐz…¶‹‘§Ÿê£Ýe™kuo.¢ýšCŽrLËöÛ…ÄÆ·¡ýìÐ=-MWtØZr/7 Jw~Ë©sZÖoï7±¢ã^KÍTÏ_°˜žIÁkªwló»’â!Wïà°Ÿ¼ <{ò¸Yç¤e؇æ?;©eÌùçô.ýö+y):’‰‘O“«…K þôÃ*ß ~û•D1t?'†5T×núA”[uYÁD+RE^èøñ»¹¹ßÞºN”¿ÌÉm›}àEW³¦ïNÈž%;@ç-¹jI Û5û—õSBä¶RÈýÖK¡)zaYŸ™¦P»ÇBž\&­$Y1‘æº~9ÈBÑ9óõþ†›ã!Ç™ÏßÔù;䘻3lÜ 9YzžVW —í¹Cm¬Ëzíå–ŒÑq ðÊr i$¡^sÕ†X‘ÿ„"¡/j;͆ Ø˜Ïÿª•”¤QoÒU`†7Â)Cäð6P³€4*ú—íœÌáÝ•ZQ¾)o¨ ¼^âaØõUAþ» ¡ñÖA£‹L#Ðêê’[ ­¦êþª…öÈrÖ•<ÐEëW%âï¼Ê>ïø zEk³ßa<ôNu¯)×þ /ª­c×aðìúî[±0d6Ý,µ!>ù/>J>£=,*Y;y`ìf‡øeQ˜Py­~1¶ &3ŠvßÝÀ SŠÛÓ™ÂÒá{Ù)­‰@øâA{ÿ—ü l´­傹4¶”¬ËÞ° ªÙJóî’PiUϾEÒ;oní¥ArkÒK¥:MH©Ô¸ëõ½ƒH­—v–vý:¤½0ȃ} Ò/Ô¸æó׼سgG)2}Þ7ræ×Ud)î¯!ç@¶ÎM&[,“ÿ³ažfä¾ACûEù¼~½Umú†‚©>ÆÎæPøåô¸zÓeí óÎ_ú’b&õ¼(õ4˜¼·v×y/ЫÞÃõÛ:xãìPQ Ü5i­*ÛÄwö†£êCÒbŠœ×¨>œï{ùŽj™¾:—ýºµiÄv󧣎Àm‡[ÔûQ·…[çûé÷¨ãË›uëºÑÐò;ÙÔÏl4^C#Í›sMâÄDç[ÒÐLÚï,ßçhþ ¼ÏÍ|=Z,I¼ÖöaC+ÛÅ;ÑúfúëA¥Chãõ¬ÔÑR m&®ê×¾rGÛƒWSŸœð@Û©Ð'c$ihç;xUËЮ©'bqû²~{kÀ¹è†öŽG7±"¹NùÝTö4x“W–9moE´ŽAÚòTË㮵/yƒ÷AևȽ‚Ÿ,ÛmФW¾CæwÍ+ä±n¤w7ßIHyúîCa‹>$ œzõ#ÐhYîN¿ãt6„˜öi ÃO!ùú!¦Áç KsÔ&ãê>( ÝŸêšPÆùK¢zTƩɑ{LÃ_»Þ~‡ú ²#» Œ¡áïäí ÍФx.\­œšïÖm)áÈÅi)Ó ¹¦65ߦš®å«Ø¼ß c·o¸=éü£ßÚ"¨ŸkíšW Vgò«–í¸wâ;°þ·=Ç_Á±LëN0L%BÍi‰]Ž_ ÖÌöŒ‹ìK¨óagyüêÃåçw$ŠCCü„øõôïu8é±OÐ| ¨õ²É~henä¶þíTOØUß0Ag°LЦíŸà½ÖíÂK¡Ð«ER¥ÀO ýô_’¼¶Â 鎓Ì<š0dšùmÍÓQá^Ò –N†/Û^ø´í.L°pËrƒoôoìkcTà;ÛÃ_ÜŒà‡ Û›Ò*øékrŽUHær3Ί-ËK<óà†}°Ô_©tå|:’îVw‹<¼É9u=øÙ„‘bFA+â¨R-¬õ“QUBZ…+Z¾xéónŠÐNÂ5Qü¡wBÆ‘é‹;õÁdÉh’±PwC¶°…(òyäðWNïny‰\FŨ_Whämƒï\hOŸXƒ6˜Š³jDí’ð³Q¢QG$¦xní!ÔÝE" ØøõZÎæ˜>£DƒcŽŽêbhdüýÝõóºh"¶C'‰i šN:Oóç¡ẏëÎh)ß¹ÁJ­žÞœèEÚÙý=–å)ë(ŸyR>Ú:?ú´GGm'¤-cø¿¡ÝIº5$R×ÑžânkÌ&´™ç¹ðòÚ· ¸ÿþ:l­UÉUB‡âØê[w/ë7)÷Mòèè?rZ~šD/øüð[îï[íi3< ‡éJv΄gd1®.‹ú¿÷}{Áïu·púCþñóÝuYÎÎ îòx†EÚY€˜£Î/K-u *÷©Zãž»y@šóz$<‰4¡Ýó{}îå¥l¢üeiêqʕà &ýJCÈf|>5 «¶¬Ÿøi㋽~ë+ß{Jô»?ˆ,^wÙ®“£ªZ¶Ï†¹÷kÑiΠÁ§MËLŽ3÷Z££O!ûþû'Ò½½»éÐ È~¶+s–ï÷~>ÛëoÊ—õ$‡Ö'#šnxÙâ’“3ï½>÷ÐÚGsþ™"ÚX­™‘z‚6½ûg/ïUBÛÃŒ™ß í¨|3Ý´ó*12söC»ú™ýe—õÛuù:h;fHVÚòX)ª}y\ùD£ƒº¢_Ëž*Ø›ÑñqSÙð4NUÝpí$¼È y"·^9´ý¿ ¼Idp ÕÞ•$ÛÜû¹Ã ú½M,è5@ÝOÞì]­» Á°âkʵQhLY:|? šÉîÅ\XÖs4¾%Ðlª×PrÖšTüýŸW…@CñîêêHJ¢~«c¸®&j=ü;@½‘ãïýpêW§@t=Óü«ëP=>å÷zÏ0TÈ·lí‘…šÈð7{û¡¶ˆþù•…Po£SÀ; Áï]}]¡1ìî›]iâÐ41²”¼q;´x1ݹÄãmÒ1d®t‚Ðq¼ˆÍú”6t35ÙÞMŽ„þÓ&!è3Ò§dšÌƒIò‡2åðѼTHMT>­‰9–ï|>»h†v®·‚¯‚ƒ­ÔÛT`òZЫd¶g0u;ÿ´a†,L'…øýÚU3¯GrÌ÷TÂì°™î×oÖðK%ø¾h4,>Ÿ*}Å2ˆ$¥®b=d;;.¬{t)Ì«¸ s‘Êy÷åijJHsµB@5KéyBç·Œ!ãb·Ø™»çéŽOœÿIRdqh_´:wÙ$ î·CÒú&ùk ÈÙ8lø× äNÊTÖå CÞ{3#¢,Èÿ²&`˾ë(Ä"ýV={…ƒ6Õ/If (åÇ7Ìõ›Pìõ‹ U‚}(qŸßÍZ'¥b Ô+MP¦»¡ýìÊ]TÒv½òõBú»­PqÏÆ„ˆƒ–¨ô³üÇðà{T¹ÝgRÚC‰jVñçïÌ_E}KO¤ŸG­Úª)¨í˜!À:–ŠXSÛôì89êÊÜÕ–¤z‚z·˜l/¨œDƒ Z‰" ªhD³dp\â"œßplÑôùhy3sšïªˆœÞ…s‹ê2‰hutWõÅé@´þtåÃñóáh­ÖBòbÚ½Ý`˜‰¶}Ï”Þx‚v#a awÐnî¥ Où²ž;bRÙ‚öã/ÌçOÝF÷P²Œ…2t(ì‰Üò`Y¿í <ÒlŽŽûC«ž]¤‚ùÛs 1ñOá6ªžÃ¶<~Œ=GÖg¶¬4>ì7†TõO––(!Å"aÇõ”sðÔ˜GRìs$„nÑÿõœâîlÙ¢é­ ÑcÊ-G z!jÝy_vã2xòX/&.žpSkLÿ³O ùd7Qþ2RÍ…ö-ÈÀs gÁ‡A%âÿ]ï÷ü Õ°IäàuÉ›$3ACÊj–¶lÏÑúQi>‚ܨSªùûm‰4gï#·$úóËzÌ+Ýøvúrû7}˜YaFJýÓ +ý&yLrd¿^gvÐ|rªË|Gv¿‚<š{¹àeÛó³×£¡@øñ¦‡G¡pÏ÷kן‡bÝõžRY¡”…ª%Á¡Œ¿x®SFÊ2r}ëù U´]Åw ºm€Ìí]P×öøûjhH/«?~šh-šß3€w© ž©ÒÐæu#wý§Ð½Ôöu}tó]ˆ öÑùî=FÐì̾ö,ô“ú ‰ÄÃ@ð¿îSø¨ty×öDR6OZûIvyšöÎàÜUQøâvMŒ¡¡¾ò:Åp 1ÁÄB1“Áè"|ó?e~¼¦&ój½wƒéˆWgébafcɹñ0Áñ!(g~±Óe¼Óf€ÅáÐawŠ HJ)†áëÚìEaý‚Ö9¤>¾ûLš.R¹mtʰFšM>! _ù‘îò¯­"ûF‘dïuî­¸¶çrÚéí¿9:¿6õ#²Þt¯ÚÒ¾Ù}½ßsÔ!çç乞cë‘'Œû›øíäOÊæµbø„BÑ·-ÞJ eÖ%•h“·¤@éÚš ëJ”}ö%×€k*(™Ÿ\¶t•L¾nöš}Œ*Gɦ¯¡ZV×é˜/j²=øú9I 7´ª¥^ß´‘N¬/Ìä,êjÜ<Çz_»îRYBƒ„žMû#ýÐhGÏEN4¡è>}k'šÞLÚÀ>Ÿƒæ¬_gÞ²¡Eè¦äx1J´º­°(JŠÖjo4Bä_ Ön™_؆6õŽé&B4h» ÷”캆¶½UÙíÜ#wù³¢]MB³•æÔ²~s<,ö÷¤Ï÷ C’OûKO63Øâ¼T8º‘Q^¤ä;Zi9ã 2Éâ“â)3"®f PÂ÷„8'„úßhhÝHó… ÷ë—Šj“ šÖÝ‚ùuÚŸø"åÒc%ɉqMšü¶H½Spƒ¦¥‡ËmM‰ñ ;D“9r¢¡á–. àçt“¬ââçÏ)ÂW'u*3L |qJdnƒŽKŸÎäûÂ,ûç&÷B˜WvÙ¶¹BFs! ïÒ›­i)Hújÿ -If$ÚÉúˆR)3Ë“%š‘zŒœŒB¦éŽn.íõFÆM÷Ký3ø‘IoŸËù=ÈüóC£MK ²–n¼«±Ù#öü8mœ[Tß“¸¾Gn¥¢m§Ö› ¯Ï’ ›=òÅK’¿º‹‚Oå¾ ‰ÞGa¹ *çëQ$½p1ÅR ÅœR(ŸÍE ‘\5É(%¬¾a]×f”qøéLþþ%ʾšþpnýY”ߪ]øa>….÷Ô(,ËS¼…$óتè¸Þ—wCÕÁÖ#áÕ¨Áï´µVí«/û‰?ÕäœÏDtrÝ×Á…:Ÿ<ø´œPÏáÁç·Ù³¨?/8ÏXo„†U´¾ehœpUͪDMG®£\DsÅgé#¡Áhñ–»¶†š­Ì´_PS¡uT‡f{3Ú\º’UÈŽ¶ªã­‡ÌeѶI;nÒí¶WÒyNCmwõiQñ¼ÝLŒgB¸ž ·ÏÄGcÈÌ*›žHn,_›Ë>ß"C¶±~ív¶ääZ˜r•6Dî'Røû _‡PÓ=OPˆcûqFC¡ÛQÞîŠbâÜ=äK(q nI¬òJ“§fuèÃuö í¶wQþ°%ȲS£bk”ðíXT¡[8Šj|_„ ¸üPã(}ì9wÜ F£Ç_#ì‹Z(ðqDQ÷-zYÏPïqéTÏ4ph¡Ë(G#sÅh/4~‘e8m„¦&å·ÃÏÄ YÝäŒÑ™óharDÄíL0Zfô-\é݉Ö4V¬ÖÛ¡Dù準phàH¸[7ìZ¢Ü¹s•ÐtXâ‘ýÁ}Ðü\—RO@ZuºÛÏ7ž€v—_¬jƒNЙ"*Àûv¼pk}ýz͘õí:( oþ”FD ’=¾ë²'†ÿP!u‘âÙÏyÛ`Ì“…\Ì &~ Þp¾]ç}ùÒ"¾_¨ðoàß?Ž ÖT–ÔÂÏ£>k‚”·Ãܽ‘¤P™qø5~q¬cïVXzb4Jã¤{e䬲‘ÜìËýHr¤´5 @êæ\“ ¤]4{p׿2Ô¹+Ns¸áÚ! ÙŠÈYÙ¢3L‚¬ž®áö}›ŽU£rL︛”¹jvz~¾9‡üUˆvŠž”Îr܉‘)œ'!žaé²ìÙe½u~P©äÕ?ó:yà±ÈùVðð˜¨nà×íÅF¸ñè]ˆ)úd”I²µ…¶Z~–á¼By3<ãžúüè 5<ÿe¨¼3³úwfßF³÷)½1¯:ó1äðéžöM‚œùwÜEüáèõA¹ë?!;þÁð´w d•³mÍÒ›ÃWæÞgØÀ‹ý#û Ÿi–ar±¨§d‹+¥ð+ üc÷E^—!Æ1Êgb_”š‘‚‚À1›¢¸_Päžq‚ç«>”(ù®­Ê–‡7úK¿˜‹ÂÛK*’ ’d ùù ²ð.ûÛäÀáÛP›xìà¡Æ†åñ'ÃÄñ© ИþÅåò> h>fÍ}ZXZ}eµBûUªWRBç×/ìRZðÞרQôÌ Þ-Ù“}¶ßtÈ'b¡ÿí¢•ú®&<$N5 C¡vwxàS×£=EkÝáó!Zí7a\rïI’@˜©+»í “ßS*BîÂÔ±¥£ƒ™Ý0-,öMÚç.ü˜V9äàG³Lù;}Y`þÔ¼µÕb!,j›ShËžD’è«;}.Ž#™ÙŽí§üLJîí?Ú‘òÕ¢ÀD]0R'\8l§zi Qa¡Éx'ÍN¤ášÎkY¥"3­JP¦â.déjˆýœ†lµÂ;U¸Çc\jšåSrï~Ù¢ìØ|;uc7Õ àÆ‡f@áþª€w.t(úsñ°Bò:”0Œ’øL%ˆRu‘O~áº'÷&¾xV£¼Fk]ÞÍjTŒ:%ß«z•‹ª¿ç¨:ç| âé‚8ŒÉè’n!˜Žß÷>y uÚÔG¯8 £^X¹è b¿ß/­‹F œõô_Ñø™×—Í'ÑÔÚñþm Q4ë- ¸p-|B×- ¡e/…ÙKË<´¶î=üEÃmÜ,ŸÞ;’ˆ¶Ôöõ©ýAh›~ ü å8ÚÙµ´“oíC»o~C‹õ;ÑþjO¶D.:H;skD‡Rèž? KÕÏhBE 8Nm±Îë!äŦŸX:9Õï˜7't³±|w‰k'ˆñIRËØ›EoôB²×nãi)Hd9/²[ 1íþC÷»·A”ÛÍã tïˆô·Ÿr ¥ör=9^²ž>ðêøû¢s:P*}=g’Ê-:åºl) j¼ùWxÔT¼»ˆ£2PÏ”dÿÂQ¬¢è‹.Ûq˜åƒvˆ-Ó¢é¤.ÛSÅQïMŠCÃp~7ÿÞ¨¯aÓ;tì Ô•ò›KLHB­R±ZäÙ8¨1Ö+ÞöhY5œ©öN„êÛ±j “¡Úz)H¡ãòojØÚY5¢_âæà2Ôz5»Ê»ž€zËûµ·œ aþÃQh4¯i¾t* šÎŒ3w½Z'f+}/‘N„VU¶â›5Ю +Ç ûU[¤T à=ß`šòù³ÐËzQüÓî=Ð÷Šo„lÛiÈÙÑoS0¤›Ìª #êÚ¦§ŽÂ—Ø #Šr0!Q”0Qߨ7í)¿iSßb/ÌI}‚éžÏ×V©Â̇¦a Ñ0GrB!þÇürž>W©°DwÕÜÜ®I>D tG²ï§˜ïjô"ÅD¥MÂÎçHÍ*´÷Šj4ÒžâÛêW¬„ º¼QGßŵÆ×âUN3!³Ñ‹v…ŸöȲpðÊc.d+~y‰×c r\~à².Q¹v°lvœMFžÊ‡9Öç"ßC‡3‚øPÁœe°¶…z®¾-›¸"CµÅO èÜØîÈPDñ‚ðbƒ¤2”|6ÂEµw=JЙ\¾re­Éó×0 <é~É3·¢Â¬ÍõêM¡¨teÁ8 UÄ;+Þ†r¡j‡§UÀkTŸX×÷ýýÔ2Ë>Û¸U7¾ttÛ$‹¨h×î£NÏ:¾”‰qÔ³VþIÂ܉ú³ü]ª&,hø¶÷ðé§h6z)m šîV¯’5ÛŽæRr‡"ãТښ\ÿeZyô_Ÿ|ыփ‚oŽÔ=E›Ì÷‘¾—ÑvÏ@eÞG~´“Øt‡´_íºnû¥<\–'ÛÙuè€z!TÂvèðUà¥ì«`tŒ”ßnGƒN6Çæ6HBgŠW»´¾ö sÁe–3ðóP.­÷‚<"ž«Ö¿Ç}³Ñû@úÿ*í5þËzm]âdQ$¹÷©7VZCB¨ÖE¾Ëv[Ù9ƒ‰4ˆ1·fM1øí/ùæ Ñ=ø\V®IäŠ[¶çÞÝñáöY.g~ðÊÂÒo¿¡ê×Ö³…éÝkÙ´e?ÞöƒçÅ Áü·ýµgô'dýÍlÝs²+‡+Ïîg‚œG)ÃGÃ/ÿ¡çÄ£8C¶ƒÙ­#râ p“Öo{íëð‘e{ór›Áâ:ewB`bòdß—z3jÙîû©¶æb1ŽÑË«OãmBz–ÇÓ4šÙaòP$És/,JȲìËOö/—_*¶Â[Ǹ¤Q¿P‘÷zW“e¼ó¾t'KéÔš™Lœò€úrY* hÜ©×kÛzš¥ºJt x¡•þ÷£R;h—îNðƒÎÓ#×]¨{ {öò©‹›öCϩЬAËãNîqÛ‹b\Ðsë£O|`Ðxbüü' ²Só|ÆŸ¢n®eZ\ Ÿ¤\´"8a¬3мo:&6Yýü:R “ïÊ3ú4ajŸT¯öK˜Ýtåiž+ÌØ¾í¼³<›»²ÎÀüIòýçaQü|TïF’‹&¯%še‘ŒïSöò¸Œ¼ê‹Åp-RÞœ%M’»‹Ôçw½Þ¿fi“ý`m%20žtÙ›„kºBÒ–ö"ÓÒFÍ—[. Ky·àf=7dKóŒ¸.È€¥ö?ª=‘[ÍRÄTÙùdbKå¢`dl™ò©IΗåÅŸ¢ÕÌ›œŠQ‚}ŸU¦ÞS”zPjIíȉëvöj‘ì#Åõ³ž^Æ,7PñØxáãf?T¾{«ŠâäªVm¾ºž)5¤÷´T÷: ÖW«™V?Ñêô÷ZPç Û¶ï×Qïh¾aó™oh ––¡Ø“F¤ƒ¾ÜjfhœÁ½«<Mßg[¶ß&ÃÇÚ½n¡Åép^ÃÃ6hµVâÎP> Zß 8~Io#Ú\iú±MKm­öntš¢G»5öÎþë”Ñ®VÊ:5~#Ú_óà äYÖköòù"w¡#ï%W‡ø»è8Z]ðm,V_9Õ Å ÀIß`/iÚ³ñ4dßÿÒ;­ÏÖlØÌò’•Ÿ$å¦~᮫†ðts‚äFÏ*H€ÊdqˆQ.?yéø1ˆ¼?7ïiüO·ƒg¦Ôw*í‡üW½_¤CIô†ro…@x[vbiG¸"TyÝP~ðËj¤»˜z-ù nW#£›ý"Ô÷=ï_œ ³»”*)h¡1@¬:´ë4ê°¿?ÍX þÔߣª@ýŽ…ž›Ÿ« Žk›GTÔ$»GÆEAõ{‹Yf{¨>»À˜î±gÙn ³¿ñ ª5CnØiCµc¿ÉÅ_ûÇïúaMiµ¡’%¥5¿ãSŠËqñ@ö<¡ø½|Óák4VÐt-ëœ7ÙhÎÔS€Vi‹§Ûø¡Å¤Aø@tª™„©Ä t—ï MtY=/ɘæçS ïxî=ÿ™»0à§,kÅ¢[íE8C×Á§”„n->øüi©8¸á«ß\ƒLžˆjî‚)hÑÿ‡¬·Œªªm¿xéN‘)¤Aêºè–îPDlTATìE$Aº :î¥A@º[8<ÿqžçãœOר°öÚØsÍùã^kÞÒ®°¢¡jÑòÖÔ­ž$ì‡óûòªÃVééCytë°ãÞñÙïD 43³0E Qäk†àÖoHâ¯wø|ö’%Šñµ2 %ñìU‰÷HÙK·;܉tÉãJŠŸa&êeî |¡ß¼Œû­ÛÆÿ@žFæR#Md#*´+9eìÔß³ßN"‡öÑ ÑÙ~ä*¶‰ÓæóDîü›oŒ‘Wê¶õÓ·±x¸Ž+šôòûýšœAÁ;edîyïðÈG&U£³¦(ÂF•bJtµPý²iGñß™ô—†PÒkõ‚“ =J³…;î;к§§º;Ãy(×;.ñë*Hök?‹J Õ|êi™ˆ\- ‘›6¨Ò#ä½b €j÷w8¾ë¡ú:G.ñ:jVèw2p¨£vø+äø½Üx6hàótêó›†ÏhÐt1âŸça ÏIïÚù6 ÑZ¸Â:f4þaz.H±M^ö«ÛI² ©ÑÌÿæOhÆü—³Õõ2šõÑ mz§¢y"SýãÔ ´¸Îý$˜|-ÕÚþ6»¡ÕÏy’‘hµ>^B£v­‡¿9wÁZªVÈCN(M?ÏêY¤ _ÿšR©SˆÖiX Åý‚DŸ'$«†fK(Ë@âe.¡Íåø=nó}h?%±Ž,ê<ô }ÔçÖiRcŸ%5}ù¬ Ââó¨·m!Ò$HÇD9 b;RÃ’Ôîîåϧ’;ÎAªBFØy~ýú-W‡RZ!ëYLÓ‡Ú=þò»ê¿®9i¯ßm)BîÍשÏn{AúåÈ?ýßäP¯½{:r '8×´!G~â¥ß™»ÿðÚ¨¦ÇÃx0é`­é3;zC‘ýä\X—Q^å…ÜÇfŒw³þ×cô• ½¨B (ú0ïçëgàûÖÁ«âfjPÚ®fÛÛÝ?~÷tšòJîÔ‡÷nAµ;gë!G^¨ÛÇ«ülú4L¸vQlš_és£Zyß_`S&„¶Î — ­w #ýmŒèD#tUH‹„ŸÌãÔÏ;ô¡÷ñg¶ºñ a»é|Û‡&ÏÐYùÂð©ªÈâ®ueû¦O1Ãc\góul`âì‹ôÓÓ?`òöõ ÊD˜yÝ(¨1Ù óòåìÊr°P2yò½j,9›jÖ„À ÿ»#"´`úª«¼®8lðx¶Ú [ÞÔA oa‡öÇ¨Š‹5¸ï›àºˆ„«c‡HÊË‘8r£ø‚»<’^Z=í›äçO¼™pDÊ÷ú<¯J‘†l%[24骻ÇÒ!ÊúÎ× ¸/k žõ=)î÷‹ú>Í'‚,¡÷ÖŸŸÅ×N1ÔâÁiòa® >öªrͺªš Bµ¥—>±:*o¿lËÌfF•ôBÞÀ]T»v¾¼“5Ã-¾“A͵ô€Ú_òâîŠÏ£®½[lDê¹Ècü ¢"C¾.~ECÐùÍ$dF$„ $иÔVMd3M‚_$Ç é ec/4Ó½]eõçš‹èkŸ©D Öû%\^hI[üAôÔI´ÚwòLàD/ü­zÝ·ï^$”¸kŠéìùTh=ÚÝz9颦Ô^CƱBÇѤÿúI>vû˜á“²—/GÈÛ»ìé}ªïľ9Äv›#"Ä<åZùo&Ò’ÐgFÒBF¼Us9‰7|M„k\PÆ>Ö9jW•p¸y¥í$Ô´Ÿè?a@ þöqÒ¶è˜ ÁCýWd H¤óž>Ð%IÄjW…¤‘L^ù‹Ê]¤xö}ž9–©ù>Ü}ªË„tT°¨¾¢… A>ýŒì[¸O.ýÑÆ›fdš#ç̾v™ó Ú,W/ k„³pHÕ_ Õåă‹DŠ»ÑÈuõ‚TÊmfä~›ò\ìòRÑÖ5ü­ÄÃQÇZ¢ŸV"¿õwfÔ["ØÁ#n LÊâxtˆ1$x鋎#$!…â­Ìªu>€’{Ú¼×.¡4µÝšCª/Ê)ôg™¦£\M†ùÕž&TàŠ mÛñA¥7®K¢Dòˆ4Æv©¶å¨ÒÆß§œô ÕtëIä] Q}í`¡ý÷~Ôü‘'áwµC|#+âQ÷ÔŠ¨_#êúò‰´  ZŸÈ}½†×ž_©púŠÆ¤¾V½#*hÜ^eó’Mº‹¶ïÓ¡é­»/}?„fÆg×5ÓÐühÕh5»ZÐü>@¨…+¼†Í´ÐrÌ+ØþØW´î»!ø#­g˜˜û‚¬Ð–|yQëAXm›#¦†üè¬Ü!{ÈôÚ±š _(†³(¿A²kü×Rûc$h,þ&ã $w±ºÔçîñ˜‰÷ßs£ïz¨¬Dö®¿ï€°¶rJAíoð¾àÁ‚Š_%Dœ³ßP>ݼ烌ßJžmíñŸã¨y=|yGÂGdNZ²Þ‹å K¿i}"@g¿Š”²Iýö|hÍ››Ærù¥_<„Ü!×GsÞ÷þ73O/'è1ïù ßñµ±úVL?l.•üÃkÝÖìÿð`™£QÒ3Û0j…aïxªŸÖñKûezÚûõ=F¾m«QA†P$ Ô±Öïàû‡õ$Ñ×ÑPš NpvR~äV|¢NP†Š©<ÆìÓP-rWþòõ¨ý^0bh ¯'.õ»C³ÉeA¶œ hù57×÷Ú¯0•,B‡…¦Ð7:]è: s1Ìz’GŸåÅæA/m}:Ýunè'y.çA ¦ŒÝôÙ…amB:ùã›ôr‘ ~OÎ^Óé€ á{&™¿nÂdì¹×‚÷¥aFe[/iæYìßhøÇÁBÅÊÃØÛ°d}ç“ …¬6–qü k,¾.Ÿò*aC4á{HO)lÝbÎ}þ®˜«Ñh eñù” IHØb&jºô‰ÝÉEÿH\BRÕÙªš\[L/µ´)WZK]¼‹ÔÛ7ÿДŠÝ÷γ\޳È0¥ÿ£¾ðî‹ñjžËÀýWû§tŽ Ë•”MÁ;ÈVçVtcV~¹LÈÐj„‡öyœ±FžËsî)xøÆgõÜ/³ÈŸÃ©\ø …¤©¶, QxÓ¥^hO/Çn»?qb8ˆ’5ûdPJGÐã Ñ)”¹Ù¼EÑrÝÍäL±'P!æ¤ÔeqvTîèrµi´@•ˆ†WW¤®¢šeÜË!nÔ`{a‘e†š3wƒ¥j%Qû“Sü›0!ÔuÚMŒIˆG}&©ÑK‡EŸö‹_9Œ†W.Kbp3髎eBãåÁ׫…ŒhÒÇ”²_Më醨=ŠÑ¬¼‰DмFÁËî‹Züjª`·‘EËÝù26>´–Ÿå»8ð¶+Ž_¹cß³CßPžƒ¼QGrÝÜw{ß[ñóoÆ!ÝHñ̽Òý$Å¢‚ןÓB² ×ïZkzHq®#¹¥1“ž‹>íéëdUe\ü3§ZIfÒÒw“)Þt¾€‚¯³cG^AiàÛ1ççP‘[ûxÿ+¨Ñ¦òŠmf…º©Mn&"høÛÜ£œ´ç_ä¿ÞP<á„"ùëŠíÐrQØÐöøhQÚm0Õú Íw£ù“~þç¹O©÷!4ÐP6w?(ê?ø»edù@=åé .êz{çó·hYß{mÿ©ÕûŸuê÷¦ê±P:ùÄ<ÖþsÿÉ»õ€zh¬k8ó'ô4;rËOrÆî}kÊñKJÐú ‘d—¹Ú’4®ÝØ»Ž´§ø¡f@õϾ9Þ9¿Š «.ø ùè)¹²yâôr<’~»áýCᦚÆ0øwnSÿP9 wT•¨çÃoÚt†£OþÂx¹óÛ¯0é6n5ž3/ÌÙ“yŽÃüÞgsçÁ¢øñvý°Lëî44x Vit7;I,a]Z±’ÆŽ6ƒŽ›¥½‚¿ZÎ×ö«3 ä#Â=$\L {Kv ‰›ô«'ô=´Þà­mÅ$RP¾ÍÜw©ÞÙOS¥#íåw¡ú©CÈ è1D(bˆŒí w“ ?#ÓÓ/çlEfC)ÿé_d=Nk,\‚Œ»E_tãÁ?iõœëg9uS6r_Ê?S_„<ƒ1Èrq»=‰!£D~þŸTW”PÖ}ÄPï9Î/ÙÅL‹G?²=í}€Ç\Amó^Š»¦ÏŽ’¶ÅRPR;~)êš(óå£ÚÙ²(—{ƒöS71*P„ƶק¢Ò­e,æ%Š ¡JÃaågD­¨¦ÍFeÉ.‚ê«ìŸ\fïÛ£oP;Ðg}Ô¿um¨R%ˆPÿ ÈÅúÊ!4èˆlY©¾·=½bò{º¢×Ý÷ypÇ” îŽ*¡Ii›lD=9šÆÑ>Hý€f>µ¸Ø—Ñüö£ñàü+háž{ö^힯yñ8ù ­|8EÆÿ õg: ÎK>h3—SÇÐNTèm.ž‚Õƒ§µžlÆB~Ó[}aȘœœç.çßÓ×ÁWÉÏAÒ•!õ”#c{¹üó,?Á·ù“öÇWïùëÍWƒ’ý2>–Þ¾O_N»ÄG¨ö|íÑ÷ ŠlmÔë|òc >ÜáÿxäÙžo ÷Ô݆Äu%-×|ø¼`ù%âQÙÿí'Àßü²vŠŸWîñ×$U×¾ŸÃ{ú´Æ¯Èiíñòy­³Ç[¦Æ) 7ÿ7up5HÞ€i³õ¡|1ýüâx­á‹BÖ?<Øß¾ý¿¹­•ÃM´w\ñ·“…JQmçIü_QÕ…È*.2(¬·^…ZøƒÂU;PêÉ™0»å?žg*dŸœß»>”ˆ'XëAÕïÞè¼§lP{Å䥰£,4ˆå]°}µ Í,>~1«Ð¬u3rÚ$=ðÿíëé†RåÐù÷òÍõУ8L8îÊ ¿Bf´·oB?·%Ùs6t~Æöí: ­ûÏihrÂÈWª5Jø§çÕscÆçÜ—ˆk…aÒîiRÄrL/ _¥ê8s¿+³ûª¹`áµà«KÄaÉ !`ÈV„Ée‡ÃOòE.{ØÓ•H.J„-O¦^'øÛ¯T®þY ”o]ÊEÂO%Š1‡É‘X{äŹp$eû“Òª=…䂌þ áRHym鬦–R/lrŽM@ºÜ¶.KÆTd2{Ññg÷ùŽóûh9à~#.–øc.È¢Ö¾µ1N‰lïH(}êòñàÕFn¢Ow«n«»y4L¸ü®6àaÿÞ›§Èÿd°’x]…ŽÉ¬X\Dá²,f¥ˆH<¦ð—yÎo%èä®þÌ8€R‡æõÕCQÆÐGÒêÉ2Ê¥?<”G¬‡ ·ÏÎúÚ/ r?-ÁD0ªø|dÍkíE5O ·åPƒÒCè±0jŽè‰¨î@íÚ„XâÓ¨{ñõÇ„«{üÆGr*ëØG4èÉóO…†^ßw!ZCc¹ýê™âth"t®§äŽš.¾oÊ׈fÂÓ =áDh®r(÷³«>Zœ;’ܴƇ–чjYäƒÐj‘§¿ymNßý[e#^ìðíQâ÷G*ÿü_r©In)²HMÝìSÔφT÷ØÿúI’ÿ6<ÄÇndi[Áh– ñ?R¿d0»BŒf£žýø`ÀAã(dþߌ—}u¡@¶Òm×Uì’ƒötÙ'0² ¥4J+£™÷¡BìÊ ‹¨.¨:( ¿u'(“J=–¡AÛÅL I¦¿vŠî#4?óPªì*€æÑ/ôçb¡¹ðF…™°=n›á>h¼åq¥Õ³ØdÞÒ¹ÿ…zfáŸy?D .êrô¦Š½y¡%…¦ê~j¼o¿^ u M ™EÿwŸ‰qÜiOhxÄ9~Âæ4ÎqŸ¿K´÷97 Ëu¢ÏíqcÖSŸ9h ðúÞü!Ú²¨G¶Û{¡½t3³Ìê>t’.Ÿ-=I]ÉŠ³„Æ"ÐóôA†Íl%üª¢¡!«=ý×[ï^âÁo¾ó³~°O¼”„Ñ”“ÏežŒÁ8^ÙôIø“ëüйù.L‡Ï} ô­¹êj÷ ;/XÛ?iE K×)tÇ[aÅõ‡Ì¬W¬…5Ÿ8&( ã&ßï‚í´OÍVʰ[å:÷óH?~È õ‹¶Bâ«õáÉïr‘ô”v”¾5’¿:s÷Û£¤¢à´õgöCšúY0»àôå¥UÃw4ÑmÒË‚ö2q˜eœx4€ûGÏ>ÒHE–Ö\³]7d[r¾DræÔÎP´æáCÎæ§æWùÍ[½\;ôòuäÉ“Î<ÙI‹‡Õ]åbž ß’vWLª3 t´6¡Ðî±£aÓ“xÔýÐ ÎŽL<†]«õu (þ±g±6w%õ£S2½¹Qj¾¹ke¢$²IÆ¡\œlåD§Ê/ú}îkE%§2ÿÝ$-„ñ7¾G•*îˆÆ“œ{ºrf¸^õÕW„?‘KA͒׳ù×sPûѳAÔ5ÿÌ}¬MõY> ¶­ Aw‹ïI4|$¢÷ž!5x÷Bãµ ¼žï‰&} éx€`/7FÜRþ@†fêóÇ÷r£òäK´øù'ð£}¿ÖÿñÚiNƒÿãÁ?¶Æÿ›)3×iÅf÷8.úÑgÒžž‰«½vë¿£üµf“¾A¡“{Ÿß|Ì: Dä¥ÚÔú^4uðÃ:²Ö-*ÖPß–„ª(% â ¨eÿsl› ê[ž9·)úBSžÙ´åU=h1ü°{Ùõ.´ÐUI„öÈÏrý6*Ðù^#¡ï5@wãÀ]Ve?øÅKÛø¬ú>žÓ´zíƒòý! c0T¾òüN:Œø 8úníÂïlj.QóÃxöÅ óü~˜Ü_¶ÿ’1L'Y¿½R{æ"Ûõ%¯®Â‚»ÖaÓ3E°¤Òè±sE VDp+ÂÖD*Îú-†Êt\A”l¹óil}Ò‡¿•·¤5 ¸€O’ñè_^$|&ª;gz‰òÒM~©G’¹ÑW>‰äHN¶Ô9}ãRÚs_·â]EêqoÓR–P¤ûÒ¢ûºì2tÙ`ÝÅ}7'[Õ#(q¿˜ƒ”/²°îþÍJ A6Çw–Ñ)âxP\–Ÿ$!×SóSg5¾#GfÍ}é{x˜ÃÓ”ùÍÓgj¥ÛP°Þ¤{Îâ ûlœ4þÜŠ¢[Ï’îÒÆ£øŸø÷FQr­€[âI+Êð«_d ¤G¹’ÇmµQÁìJʧ—Õ¨üâzJ2QªÜ|Gt]Õ$}‚ë Q}óô–tAÔõŸûJú4ÊP ‰Ý ¿š^êšÜ’qF³—µ—’Jtмðú1ˬ´$fëÑPiC+çkMû,£õ¨•sÞËt´}I›È\?›%¯#ö´ÅÆÙs[‡Ú!Çäyˆ€øgÈhs_ù&_¸=ÛžU×þ×O’T·åòì~'$𽋷62‡¸¹u‡ŒpˆŽáÑÙþá=Æ_ˆÿ›qúÆÁJ5!ÍÅÞpöøÐHð|ä%(y2AêÜ× åÉû4#ÞAµÈã┸_P›z@ìt÷Ôû7%po–B£=ÙÍ æÐLÕ¨rÐ=r«ÄšõB³üŸbÞrÐÄæúÅÞ­ 2t’©-ŸBý•;±/Ì¡îu…zqk#ÔÉxtUÙ«Béð¾míÇP÷I$3˜‰aÏçÔ3™dÈöŽ¿jfù˜÷Ÿýtäb¹  iŸûe†+ÐüÒÊ0é°0´e¸|Š…ÖøÃ·cÛBÛ·6ë§ì Ð^>«æ´›"†õƒvÐõdØ`5tzô/œsÐ_nÁ#wÂ*¡Ÿ´”?Ùo ï Ú hÏÃ0Ú›ËÛ=„QMš|Ò cýx´ßÀÄæ¯ónz0•æ«poÕfóô2M¤ÃñY•Ó[X쌽2'ËJndÓ°FèÜn´$çé_7æ…m¶%‰°ã¯`÷H߯’[BH¨ULóJA‰éN\½0´†$‹ÿŽ4W"9½ŒFÀ’4RÞê«a¾S4Ç4GíxY‘~_HCYÄ42Ò“»ÕŸÅ}™[ì4A¸ÿö{Ö©d¹rÊäâ*/²Ï'ÞŸÏFöÅÏIŒ!çÃÀÑæÛ‹ÈÍÑ’Ô@%„<¯«ù“Ô$ð0³ÿd,™?ò•äpŸ{…Qü%B}r(T)Çw²¼* 8®Åcôn££xˆ’¾Þ ”Tz²¿î ÔHD±ŠK>Êø¿¤¬ý€ro6ð·_BùÞ'¹ÖPÉàò©‰z„özÒ^oT)åÜa)¸ˆjªé,o#¾,‚–ªÖ;·~¢Õ=ÁTY™hÝrÎn÷”ÚµO{þhWÌjâK…7ß¾å<0Ë/è> ùnnïÝ‹( ½9$èÆ–&|$xý{”(.ØZxUXB\·gÂ'šzˆ%".3ŸÞ㶸+E2{ÜvŽpˬÂ<2¨5´=!ä)(O,¼[ë¡=&ðÏ: a£+Dï*¥1÷„„¾%JkJø”´UÒ6¨é×oÑ^\;™á¶ßÎ_/ÿ¿õ2NQWÈ–9êw;rŽñ«ùE³þs_È4ׯKÿ›7ŠÜ9‰%þyŽõåæyoÈ>äߥÿòÿÖñöïþþ‡÷‹ÄÿoZ‰Q|ÿYóµï?8²ÇqßîË_˜ÿ¯Ç(Ÿüí‹„|]÷«|B-±—¯ýMù• ¡”u}‹~ñµ%mµ„ ƒ–úhv¨²¿fô‘jª´7´ïéÖÝâ´þ$ 4©^˜û-äKÏ%:·¡õU8ínõ hW?õýê½"è”ály– ݧ{×µ©6áççcŒÐ'ý@:9°  ¦æ·¡·¶X›©#vKÅ´«ðÛ˜Èw3æ"Œß:%“~ôú ôôí³ìæïa0g54ôœ¹lœ¿*”;À’ôÚ¯‹´°rÌ+DžÖ䆈‰_À†ž?sí£k°å*âÉ%- Ssⵦ©€júìŒö)$t ³V~¨‡Dsb÷/_þ‹$•×ÔIx‘l¬““Ú )uNÜ¿°›‰Ô½;ÏÃU‚.¾±°Â] Îì›ÐâÄ}gfïm/åà~úWìBæáÝ+çøí¨P\î³$d_rshE.(Ñ\ÈqGî•ý7®mŠ!ï¼-½Rz&òó=döws@ÁP;,¢PØ “œ‹ÈP´ˆAžêÕE¯Øçg5;„’MWŠ*©Qzk;ªú®0Ê1þ[¡Ž "Îu¹Q¨|ºDˈ“UœÏ;ÁøÕ¸ïÏ=ã:‹êS† +®\¨Ù8bk—LÚñg’*;ZQ×3%óóî¿i&XjÒäá ¦æ—þ{º3Ül=PÞ÷ï%j+¡Éw7³íÛhš±h¯¹‰fÉb¿_£…ly"ÁÁ·QPæûM å@}â¡ëuµð‹ãÐ×ùË.К>Ù–Uƒøƒ:°— †–"¥E[`d°ÐC÷I>ü^m¹³5 hzâ^, Lþ¨½ä8 3 M*Ç<þÀü•†CóWÀ¢¢ä¾¬ÕhX–Ïù|è4%¬žß°sû®ëÍw8Ns»ÀÖ#…€>)=Øy¥W•X} æk¨_¶ïC¢/ªGDåä©W¶¥’SŸ?ŽS‘raÔHý&ÂÇéW&Ò9^i‹- D†Ï|WÒ}UqŸn´ÆØ;ÜÏPWó%` Y(( ÛíÚ‘í¸÷ðÖÝqd8rC-9%c=$›ýñÐÔ7b“bäq¶ Kµ@ÞñŒˆØgmÈçÇëÔ,žçwRß D¡ÐkNÞ x”TÔ8!ŸE¨OºKEñÇ‘q5#()zþþAJuž4Exe®_¹»/弋äZ#Q¾òvI—ÜAT’ݬÕÀ ¡L/pª÷ª-<ù¡’¡ù¹0,}§J…ÂÖ˲ô(þá8Aÿ”{ÿ¬Çô;ýoRýŒÐ˜òÿ‡Ûâ·”u «{sò‹tý?¼ö©zøî?<(vÝyã¿™Eª0MbT Yçhè‡?íqâÛd§sÿõå=Q.…¯~)i·ÎÂ7¾+¾¼7@ÉÄØ;±kP¶yóOê+*¨`ý™ç¨AUŒ›áE>PãÉv;êõ,Ô3ó9”‡ÆBc]‹Ï7h.Õ£[W¾­ ‚¹ß/CÛ“ÖN¼t4¯›<„®åŸîžÝç৬-[¸7ô~ ;¼v¿xg¼‡!‡o´0"RzÀt~sœ ö•ûã`Þ¹úN þ<^#´¸Ó´ÙÝRÙõ0Ç0wóWQ,àc“Ã|aéJÇ“IXÏÌLëƒ5µÝ“×Á†¹Ôó_gÍaëŠt’J1'ü}·¸_Çw vGNx8–GBEòs¾é.HôCinZXI"~šl9’U柼†”Ò·_ÝԭŠ<.ù#]x½èßÃsÈðãR× Üg´x4WÏ™æ~…æ+×!s™%¡ &²®|¯wæBöÌ5ïnÙä\¹' €Ü ž‡¿ o9$_´×E¾eeË/ã(èüžkÄ¢…>÷ªS@Qï÷µ¡ÔÇP<úËëJ”LÒ«Ó!×@é֜Κ('t1F@HïšñDeEÚáU9 T1Á‚Œ#¨FwƒÑÓÕÕ{£sBQ³· 7†Æ±×tÁ_4)Û(æ,ZBÓ š²–þh®ýtYƒª-2Y9?)Ø¢•Òš‚H»8ZÏÐ÷PþÌDÛêâÉ [Êhß-*XúÕÖ ‡«?]5ûg ãéþÛù-Mèc ¤\£ö ƒ”XÏ9wŽÿúI.X©ï÷Š„xC:§1­PˆÕye‘ûg"Ó> ßfÙÓÙO‘\§ÿæ?½æêÌ𹧥鞲 äÒ¦þaÒoÓÞ:µYàÇ{»‰üª{ßß¿Dé7#¡Æõ8ÄFÖCÝáF7C^¨O¶h¹Å³¾çc¯_Z6Ccê¥xÒáh¼’dóûú04ÈÄÐ_”…zî9Ž»Ì¡Ž¼Â›¥jïm2×,2Bíim^ãP[Ð[LuÛ£,fñ{w´¶]à2Ôß’¶.ª¼ ÕeÝú_ ÉæÀu9ÕhÎô;ã,” -…Ï ¢g(¡µÊk^S|Ú:Tƒ“8 ½¶ù¡Ú­AèþÀ=2º ] F5$|ºÛó;ï+ÀÏÊ”€³JLÐw4:m§; NºrÀPòü„7Œx_œ6{ ¿]ö÷méÀøã)_ŸaøÓYfkQç ÓA¦‰ºÄ¼0—fz]rI¢*×6vÈa)òظ\‡&¬4¾ô5…uù±£ù\Øœz¸Ì}ŒþÎæe½f-B‚°ªçWæè„Ó//$a{~ÉåW4’íïnUl'B ‡“‰Ü:ZH5¿"~)øÒ¦ª÷<Q@]Õ 'õ8‘qPË/ëÐ62%îïÖ‹â]Ä®ä(d®Ë˜Ó:ò°uI©ûŒü½ì‰ÞÑØM/ãÈËFBæ7z^#Qˆž£ËÄI$¹Ñ!Ubƒd‰a)º=HÉôþU0RW-ù"]@M´t{:2\ÿ°kûWº¯ÅÐ S3{ù~µIdyH4ø‘µä„ò°j0²ß° ¯e8‚œ¡LTï~"wBW­ÉSä =¬úŽ|ùÊyÎrL^GAñ¢Ò>‹N<2R/ÿêç5U>lÏÿr ÅïÌ|éùˆ’÷™¢Ûtî¡tÊ5ZyG”£×|¤ñ\ åûŸü¢a8ÊûíîG˜£ ph ‡¢êö©se¨Þ äîÙ·5¿z¿ðT\Gí¨‚”©duÔ}\ñ5ÛŸõÏktNVà‰Ýi‘D#–lÎ|4®<®7«¾Ž&«(Æïº ™Š èêyA4O)~™ñ¿>…{JþíQHñüM_­õ_o¿½qúzj¢jŠÿõ”üÛŸ2ÂÈU©Èøßü·Oáß>†ûþí-ø±à«¦íU¨|R 5ôª[´+Õ ¿Aí•+kmP×x÷ž™ÐhË ’ô ‡†WþŸÈð¿>’ÿ·¤ÎºÌ2g¥à¿÷Õ¬Ýk&Ìúoþw>ÎÑíÎ¥Y¨ Œê’Žâü¯Ç¤aÐH(úÆkhòvñ¨ý´ü_JKóáâÂ=®ü·'¥møH.çŒä= í”sçõ ‹½ãb§;@÷ûº×¾ÉðÓMêâOš¯{9ÑßãÈß‹0ðp¹»ŸÂy/'Jiu…6¶3O|atÈZÉÊ;ƪU„º§ÂĤäª,L=ê¤9ão³©âŸR™Ã‰]Ÿ éUX"Jæ5Ö}+2¼s¬NÁZœ©!”¦yÅ¡*økÂå~ž 4†(Ÿ’7 átÓXÊ$þôŽ;ã4’†||Ï qÉ›íOH}‚T¦× 'fûÀÀÒa¤¯/ªdc\BFÏéîû)éȤ,¡Ñ=$Ìʶº)‚rÈz7Øn1Ô,Ñ.ù;‹ GÐ÷àµ;xÈhÉ¿£>yÝð,y}—ˆãžÿóœ÷öÌN òo¤ûº\C¡ƒ¦t Q8DQT4ìŠÞƒJB·?c^Ãp%éYr>õE©ÂLJ…£Œs—ôÐâs”³TýÔÛDŠòaçÚ»ÛœQ‰òl}ü‚#B„v:U„&ª¤±pÍÕ@5ù ¡ßwO¢ú³]› êž®g PûþóÂÛ§œP¸=%ìÉPŸ$ñp:…&ü>ÜÁõr “TSæ±ðÉÿúIþí%ùW7ÿê*üÍä7Ê—îÿéêM"g +É*÷4<ûoþûû{Mþ¿=&iÊ7•¢ÏˆBÆäïÇc{ø»Ç_ŒÏ,L÷üçúÏ퉑ÿzMþ¿}$ÿþüßãþ}_fçÑ`ñ¤´ÿzQþóÿýý¿Çÿ{ž{Mþ½î_üË1Õñ¿“&»»®PþeúÜsßÖÿßõá_½ÿ«Ûf©5®§T^ÿõµIܶäš;)Žî ÿé³GÏ_1"ý(üjm$ Oþ¬ˆÂ³÷ÏÃàê‹ãA›0Üh×êOߣ9,ÉŸeþ§Ë ž£³*/aê#×FÔ±ÿé’ºäÞÒÂã êÏþ§Ky+[#}Ø8ûòߣ\°u^“òiãü=iY¿®vïÉV;ˆ!ÁÜÐc!º4$ºlÕ<“øIô›Y]¸<ì™÷ÜùŸjHIÓž<†ÔÅOŽ|{Žt/«ö¹2¥Û̹êP!³Ëg’°ødõðY?Dƒì2Å_ ÿX çeâò×È}OÞCM_y]È–ey"_à«mØtî²XÀ#Ÿ÷=Šþ‡"?ÏdQ䣸•r`JZözž|™‡Ò„Ôî ìØjØø„<Êç½z'¢Ì‡J3)—;PEx½YdžU'í-¬öDõoÌZr¯P3]÷Ðã§Ó¨áüq‡Ñu}̾å[ïñ›Kõ¡žz…’ò¡ fˆ¶©~2nu>±ï®ÍHCv‰OQ;¹«tuSÛCY€–û_³_<­¯’y“[B[D 5Éah=(õ:2ÜXL×” ‹ÄŠ'¨€ºßrÆ¡Òøy=ùµ§[ôþ˜ûÄøWžÞÒ 7Žƒ!»ÙÔº‘{0Âd%Z©£½dUG²aìG¬Ü“B ˜øÍ¬_t ¦5ï‹\NQq>Bî å+Y'wWàxšùà <\¬mwHžùŸŽWŠ&¡`ØnO±j “̽̋Œ"mJwîýD±ùÕ¢Êîj”ˆ x+ŸP nnÏ·ì ô€hEù /”ýÑ£Ÿ ÇWFŸI}rGE“ µåOTnÉÜ—W¬±—{†´T jÑ0ÕvTwv.Ðu5CM.–ëF£V§R>¿êø&yy* žöíÏb™ïÑ€s‡„Ü—Oü:ñ‰nLR޽éÌ@ãÓª4÷ãhÒ·ÿq¦Žšn?“oíöCs `èt.A‹»¾ÖûΡåÈè4£a ZŸ7‰n:‰¶Ô6”j^×Ю/o…F *‡øÝ LðÔŸÓÍ 5:°P¶42íôr»§ØOFÐÂô:ÓÑ¢‰&rcKâÊK\¯H(Ñ:9 o>‡ˆ£•i¿9!üÜåËîgU!døòçŠ b^äåVA¤žüô¬)8u›Gê„3„ܺC9º ‘UWsw— ž¤@‡`ñ'¤¼˜t¾,þRw>±d^­€Œj/&¬^C· ó½ÍOÎ|œ}d³8Œk>Tì ³ºß?jAvxÕX’ÓoÈ’ñ ²Ø;>EšLNN ²s–ÓÆÙ!ósªÖ‹!Sñ—€aX dª¿¾W­  ’Q5‡á—Óeý‡ˆaô"¯ “Ög»Q¿PÖ±ÑGD^ЬÂS"×à@ Ìî»2uâ°ÌW“½ç¼È‹%ŒÂ‰îl°Ü%þTÊWV—dQ½l6B8/ÂÙݺàBø»¯-Ê—Óv à]'?tâô»Y¦&Ñ2Œ ‰¬_t‚ÿO$s‰¨¡RBŠi áéHÊ=¡'ÂtgnÔ}#ˆG†¨}+o>Òá>Ž5þ¥zdúòv6"º™Ý*ܪ¬È‘5ðÔ™®?LÈ.ï8rN, 9ôhœµ ûús&òN䵡M­C¾›«¶¿ø£@G«H™Ý%ÿXÕá๞µIÔ<´{ZzÒµvßY;fR Îe^YnêU [Ý5FƒŒ‰Ðü™4¬Üï{(/ §TœMC“Â^®Ø<4£oŸW´VGóG’«¿sŽ¡%+û ÉA´j£·\2×B›BRÚ\R´ëRdïô“bÆ?dFÀj¾–PÔP0¼|6ú ÒO¼¹{ >>ÇïnmH|BÞªÿâͤ1AÜgL%Ua„Øé5Gû+#}˜Ç_¿"XG]‰¬v ¤v}ŽbeB"½8N°Aô‘¥9 -Nø˜ðêdÏú^><™ã~O¥Šâútô—Êdyû÷fA…'¹äbT¥˜YŸú5² ¶ÝÑPûþÀÅ韡ž|‰Vš\êýd+S<û Þ&•ºXêLY×ÄÓ ö¦•äGƒŸPóž­»Aæ"ÔpMç0|Ùó7ZC·jÂPs^!Ótjví-¾¿ƒZ/{:áݨ;UœÂ§¡ õ9¿ß]? zt.rûÚ Y@GAé´ˆ™|ô-†V‘0…É`h³ÞÞ d†v'÷õÈ‚èxEÇ›û\ :gº{LwÖ ûŵüÅf!øyƒ3c_g<ôÖnl/ÂÀ‹¿_­CG`È–÷è•å×0B÷ޏ‚F;sLváŒ}'±p#: Óîwø‹aêb°Õóõ³0k"OžÚ%ó]-¢Ï¹a±˜wãB-%,·YÍ2]þk<â7Àƙ㲰}ïî|ÚUØõa[ꬒBB›#‘HLæoûSBIúUÆ“Üü‘lãÔ“_ìRHiÝqUlÞ©â2½z¹×íÆäN"OÉ=;2ù3ƒ1ý(Èþ%¾Y¶\SM}…"B âã›Pìˆ@Ó–J·Ö¬Õ¢d)ƒç·[¬(móÄ2‰ë"ÊJ¸N½²x‹ÇMœäü?B…÷e6¾¨LÆááܧ¡¨-±UÑ‚:Rx Õº²Y¾œE‡ X}¿¢–ÈBöËÉ¿¨ÝéÝýÝÿÊ^~4’N³ŸA}ËnÉùW¦x‚žß¤Ï‘ û(ì‰Ñø,÷¶>:4qqsV¿Š¦ÏÄØDì´Ñ,+ýhË94_.¬¶"DK“íeqºB´ªòT{ÎŽ6¶sçéÑŽNÛà2=Ú’ädÅ“SAþ > 6?êj¹ §!0çUÜyø,R˜QAö >Ê*·87ALÒ‹§­ÂEMÞÈÙùÌ>,H_¥_p¥i¶>U:ªT(Ÿ^à®HÞ¡cØž¶¡qº£ó^5ìù}÷á~?!Òt?ž$†¸Ö™Ó‰®b5tY|å¤~ïŸ/¿máQ¯'íz!s…òÀÍhbȺ‘,§ Y+ñ½«ZíMìríÓîEàëÙÌvgë!ËEÂíé#È"þÐÕã5 ™Å×U “Ut,¦â d „<°’‡Lã§D(™½zçæ ëúÕ›úWýÆ/Ó†«ruž¨­qÀWaš°É¼((n¼"v,ó<”dß *©þeqÇ…¾Ë/AùÃÏ)ü‹%P)¬Ê¼ªÕÇÚæ¿¾< µn–Úf,¡¾ãU>õQhºÀ`2¥-BN’Ù‘O¡õWLZãChÏ{Zj{· :s_©¥Î½ƒî*H­S‡_GlÂV‡¾?§ìBà `ðag§H kÞÍ9v F9En9 c<653ÇU`B[B”ï€Lf)rUsŸ…™˜If%U˜b¥5µ‹WSu£u}aùDg|›‡Õ×R‚¢²oaý}v>dÃfBîë„$eØþ¦¤W{uvVOg×9r AQ¤å7þA$R#½+rGIxN VA2Óoñó 2HQW4’§ÎŽÔ׋>^zŸtʼOéït#ƒß§—'á>ÆåÊ#‘écÍLíF2{ö÷/Sª!kø€R^ÖAdW&¡aðØDNÿCOG‘û\{zÃíuäÕbºö……ùì¶„ÚøQ õÇòÇa<¢n=‘ÒõEœ¥HYÍ„P¬÷¹œ+ÛQ”hz·oñý Juç—žXŸCÙ½´¼x<·-í] *~Ž¢*?ƒÐê3’ʃª”ç¦n.L¢Ú7žçÞö:¨ñ&'vÌ0µNW“þ0 Fã6é ûÛPo¿òXÿƒÔ_ÿ%ùàMÏï_ÑFcs²†G—ÑäDæ¡Wä¾hzA«ëx-šíò]›b&@‹§·ˆÏIf¢•˜î¾•]´!TŒ:Іv„&o‡ÐAμ/°ø¬ÊÅ¾îŠ ‚ü¡X½Ø!Íýþ»gg½ å5ÙÐn|¢÷5@Üø‡ ×›{z9Ï1ó“ÿ=Ä¿(»õçÄ0Õ¼H-†ó)S‰?!äÛt—°Ùñ¹ mÉQËizñ'|?pµˆ$²¶……n»AÙpþ+?/(­–šÛv±€òÙ/­lÓPÅlÃs••ªÃÒÿë’CÍÎùSÙ:PwƒI7û‡/Ô…±2îûu-J.Kwe ¶G‰øë]c¨%‹‰Ž÷º5ÇvlòÛ¥¡:3´Y‚8ªC^Ö t‡êQ n[šßPãÊFĦ9¹Çs_$Š[@m3CÓÎus¨?´F5]° éç¯h©AÓ§Ô’…,Ah^æ&‚–¥ Æ:hÛîƒÌ92h©/zÕ6ç>‰±³ò@g—í[Fvè¾_Ú˜x¦~z´§)¾‡ÞÆT–¡í\xõè(ó/ Y[$3†Ãe{;½n)Œ¶œém;Ô c_Ϲ;èÂÄϬ|6Î ˜²_þË.rfË«GÂ|©oG±ö:,†9:¯PÀrìõt5vX$bK1å‡ ›ËÂÊS°Í,üþÕIØ¥ÒpV>L€„ ¬¯ÜñG¢lÚ›³ï/!ÉÃWtK‡‘Ìï~ÑJ35RôøJWJŠÔ&T«ykvbÚv¢ï2\ÞÖ~JYƒûöñï ¯ Ód¦‘ ý82ov&¼:Þ†lŠ‹.#=ËÈž\$þ“ 9ed¶¾Ûá¡¡sA’‡î!m9Y^Àòþî•qÔ<Ž|‘ñÑn,,(fwmd/‡ Z«ÕåáÑ»rcÆ«¿ñØiËq(žŸ@îœ>‰’êÉó¯¸ÅQªíçøËl[”‰¢ðufëB¹ÏìÞ¢üЂXm *)<ëfü«ŽPTV7fv UÊd¼7Ö š>ñ Y"/Tÿ]ÿú³Ôj>NÌ`L¯EmÞOTdcP§áp±¹*ê½É<Ýóú%¨m¯úÉ€†Ô~ÍEÇèÐh¡÷!Éë4Þjtðƒl4¥ïZ}ÚO€f²¼Zõq©hîjÈ5%û· ;ÑJ0¬%ºÐ:Å©ó‘n:Úê\r¦®™B{ ¨º‰3Uƪ¡ž0?˜•4@ÙeJÆ_SJàÓÝlÅ~H –J{ï1úÍqB?!êu•†¹1V´ õÎäR©ÍÑ»çoÜÕåš\Ìί6ãþ4Üú4+¥c'Á»DÅ„·Ç¿ADoAUÄå½<ÃsGö%¤t»­ CêÃ}µO—!Ã};`ÚQ2k9]5í!ËÐfÑÜå>dµOµ&QÞã¬ÉX!Ⱦ5Di“M ÙTן¾ ,¯\ûOm­9ð¸˜jÛl²RŽÓEAÆâƒÄåùI’®VG ™:OSÓíÇHÐÄOYÏΓïq² k !ïHyk$µ|='øEú%|#|S-œ%5'˜Ìˆ7¡,ñS~d—4”_~Uë! IÝ?AU_éê Q¨ù;¢æô‡êÞ¯ê¼ <öv7¡ya±j.*ZÓsìõB¡Ýoi!X:ŸœO;(ZÝOƒ'œ+ág{ÔùÃ?Cß•£™Bõ0¨}Íÿ& ÒÅÝV¶†‘ùÃCÔað»a,–5ì%ŒÏÊ‹~'m‚IÓf®´Ó0#!íÕg!ó* ®Wka‘SÿBØ¡X>hP$¶X«‚âô,¥a]²¥ÿÔƒØÔ˜3Ê t†í‹ñ«”%î°“ySxwrÄn—¼”¸…D¢öfú¿}„†:‹Í#ÉŽÜϾt )>I©¿ÏAêÖ.¾äZHÇÒ Žk´ÈpOƒ#ÉqÙâ¹”ÊedJ&œ^7½„ÌwÖ ¸ ½‘5þsÈ]^dWI’þZd€œÆ; ÈmÇk¸¯y¥(ðjß@>Ü]­;œ‡ÏsŠBÏÙâºíƒ©†(ÂêÉPãåˆbîׂƒ¬3QÂwqH)f¥žìnm§ L–a%NØàqÙ›JÙP‘†ˆdßG†®§gn£Jè´ì GTÁd®’$Tß½<’µ5ldñ/ñ öû”®ë“¨ëdâ©ÜnƒúØP¯#‘'Të"k}A£K›UŸÀ^l¸œDSî­÷ÆhæÍ<1£Í—ºî½¿ü-}5¦‰æ¡µ6á]þ)1´=zÁõć´GëµÄjWXÉÝY¢·6…üsfÉÔ>ªßÚ¾/ä*$40uùªA_h%wãÄÝ#ýü} âx6EÓ¨¹!ÖOG-Ð3 ¢—\©Š#àC͵Çí+¹’9ø]?}Bl^?Å QAÁÏ‚´oCÊ×Ä{‘ êN5ØšM…'„„² ÔV“p”c ÊÏ›—d<(„ʇ''½Ý_@Õ®@ŸUÁ¨9“cñìu ÔJ=“¹ÿ ê<ÿž÷Jýu:µlÊPë¨4w·fj‚§é"ã6¡º|ägüõ]¨ÖÒ˜2±ÉêÃÎ%„P}ZÐO€i ªÛRŸ¨q`Óäq,†Z•3«ÝÑÎPçóÄÒîN 4°¦;ÅÝÊ„&ªÚË‚ Ðìw?ÄþÎ5hI’yyŠó9´65ƒòñ5h[ãp{–:Tuï&í‡Î’^&Ÿtè¾É4j³ö~Þ$_×öƒÞvZƒší;0àOÞvä4 Y¾äËdIR¦x=ß{0Z¿ï|ÁŒåT¿Õ}Ë ··s˜]`ÊØ<ö³ãU˜=tþRw< ÌÒº;NÑ‹7#šêùòÛëën÷·`5rÜžWT6Hc8ì4Ö`ëS—êäÔØñ¹Öw¯ *ŸTpžy„D§}‚‰ _ _—,Dæ"Ùᨆ§ÃHqê$éÌÛ¤ú!J‹".H«8ÔÃÃŒ L„.ÏÚ½‘1õf€b¢2ÝjJüBÁ‹Ì·¦/|¿j¬)“-_!;Iaà{ÃÈñ0ƽ‰Aq÷º†4« ÷ eæ…iFä½-û Nù„W¶+} Q€Ra•Ç… i¢,Ê> p«LxÁÒ}ÿlõ,Á׺©æ}‰ %*U/ÙT颔¡„—‹ž>ÊÐDUìåD9 ‡0 ©h”>”0Rš‹ŠW¾sª¡r¯žq Ò*ªh2ÏZv‡¢ê7Ó–Ïú>¨®›®Ò+ˆ?í¾¼÷ E­«=Š'ÊÛQ‡~]35#u«_ù—ù•¢¾g{Ôm³¿xBY³Õ¦ÜÜè:íÆ¾Gõ¼å7ÑäýƒöÇ4Í:]õƒÍþ¤=\<ŽÇDI®øÍ£åóïVÑjý|1¯¤ Ú?þ4B²rG§&ÒÀGrµqnbo/9õºa¢çÞØ€(êÕ]møàM÷ñóÙxû3ãž¾þBïXþˆü Á±ï„8ÎËB ûá˜ÔÕ}H-€õáR”`ûpDœ?e4íuâ®Y-¸œ†ä•&¯¢{'!UM+~â­/dØ„Ì:{Af¤:Ï…ÉÈÜ6r u€¬lÉj«ffÈÖ?#È´y²/Ì„eöCÖÖ[Ú@}Èr¼ù|Œ—2 /EŠ|¸™â²¶o~…AFCÛyƒg!cúC )´@¦ÊÃÈGžCæ0_j¼d½Ÿ#~¯^ Ùd ï´*÷Æ¡øú^>ûZ†;|“Î<­âµ%ý‡£”}<¤sï†'”[¸L•Û¤BESõ³4#z¨zåxP’á/Ôø¨û/Œ.A]m­öý˜h¼ y®ÞËš ;Gÿ‚Ö§5”÷˜ ¡ýœÏÜ‹Hè4U?øüò,t«Ïð¬WÅÃÏû¿¥Œkàï÷V]î{¤ÝGÌFì CEQÕ`ä©F¬ö,#ü¾í~[u»ƃUÙ,*ÁŸÅ³\ïbÂaº$ä{ÂÕc0·‘Ñ$5¢ uÏW]a©Ø¶+Uà!¬”ЬpvÁZÝÉ]Øb¬¸ï»—?ictwaçê«éHðÒNØ\™‰Ø²Ž\6êCâÕZ%“ j$;D`ë&„> ÜMóFH-¸|ìÓ_H;w-óº*2\éM—’íBÆ­yra dJŸæÿ$Ì N\ÉEÖÏý³7µ…‘]CÏá,Q$rêphÔ“("·ÑµiëéÈË}ˆ$Ä«ùøHÊðF£€cÒ“Ç—ÛPèg”afÅYÆÈgH Ì"ýñ7†à,ƒıˆÙü¡…ØÞ®+ç“!öyÙâ|ˆnc¹ovã|ˆ•¡ý¦!‰íIWèÌ!D.p6âDIOÛvò³CЦ”߃ƒ‹%/â= _ëgÞÓ–ÍBÉ´%S]CüØzî?á3ÎY>M›Pu&‚kþH;T×ë›ë‡Z³²\%¨rÌÜ»¾×–؈qdiA͸ò/U–¨á—õmòjÛ;ÆZ¨êY sKË…ª/¿O*ê@U?çÖ"û"T›¼±õ€ê&OÇoù &=3³ñÔ®0ÆÔ*‡Bý½‡=_x¡ñâ”Íhøž^€åuyg/´Ø~%X#€V_ùAMê h+½§q‘Â:þÖ’#ƒÎ' ^7¿‚î«g7i}ÁO¯»'HCoË£Œm„@_·h2/Š1̇ÓOa´²dñöÐ<Œe§Ét_…‰f5USZ ˜R៙ w˜%»÷áŠÏm˜&`¨ù‹æ¿”h}ÚaY%Y:Ú‡Vê£Â)”a=£‹î€ l©=ž|Q ;Táš”?C‘À{aû«¾Ñ“g²^LBâj^=$Í/=ªøɇcMê® •ôBw®,Ò$ž¾PãÜô7h3‚2êÕðí}_˜(¦ÿÎ8àþ ¢£‹q]ÈÊ*sÁµ8~ $üñ6ÒL¿>-\ަ!÷£“욀¼tnô1&¶x8OÛæàÎ3äŸGFɆ‚…%[õñ(,(eÂ;7„"-y”ïóýP,9`KHËlOO=£‚WP²ú¥á Jß–«cŠrFÙ3¿ô£¨ÓñøuC)zTˆ³‹pQVC¥­–?Ä7ÓßϬGU‰X1Þ ¨öåQrÇ““¨!Áð‘Gé,j’» P ¶i}ã1» Ô%<÷ýÓ› ÔûøYK§a .„xꂆªL×?Êð 1û ¹K2*hrøHÖñ‘ëhªHæ]6üÍÎ0ü¦ãkGóš4¯Œ¨öt6²{ Õ­´]âÊØѺ(÷y<ÚêQZs{F Ý¢H³ÎùX˜ç’z|Æî2d~zýœ%×’—Ÿ†$>€¸ 5¢'P|N“Ÿ"}Ä4úÎÛÂÕ;;úþw ¬ä*{»„ tŒ–­ÕCð‹}Â_‰¿A šƒÇ¨Š4”¸9½7Øó½6¢l¯^À‡E’nŧÒ§ü2õÝäqH.¯¼ÿHí'¤ß¾·q2ør?Ì_¨„Ìëƒü§ýé ‹0ò³_¹dÞúFLÙR´Ÿ^¢‚l«MRÈšN øêY:dz¸]Ý 3Ää¡å1È$+ O†ŒÁp-KÈhŠªÊü™ÇïOÇW@æè®Žßa#Èúr“€s× rö«™ÝÏô‚¼ÐâkæR}ðµ¹YUò˜=|;ß¾©k¯%‹»Ò7oBÙ—€î“ŒyPŽ'h™^óAEì+¤v‡*Eñ+í PÃ7ð`° ê4/ÒË]aƒ† u7eFh~Ê´x6– Zm{s-zû¡]¹ÙTŽ:¹¹ž/}d‡n" »7¯÷òçQáÝ{L/ ÷+aÝo³0paÊ­ï. y‰?a±û #òÆÜ©Í/à· ©Ë)vWÒ=¶ÜŸ ÞnrÝ–…i£-²+Ïù`î:?›X‡…ÛO_×ÀÒ© K"¶z°bw¤ÿÏÛÛ°v–F8†>6;¶u\΄­Oƒg|aG8–õÂß$¸VtHç#‘Pîú|•@⡾¶®HFÊ#£TË‹— ½Ö¤&z3_7슴µG3ˆg<ÁÁCý;ƒ+2ÎÏ$}4á@¦X·)3âd~vTàö¡ydÍ9YeÅ(ìÚ3Ïèu摬ޫŸGnõb.µWÈKË×Dó‘ ù(( y^¢€ü{ƒ«n(”¨ö0OÉÞÝ-kÆc1*&½=¥(Aòùns&Jö½½kMÂÒcÒÇo²£œÌ7‹Ü4”¯£ŸÜu•^»VÄk3ïMï£*Hý9óò ªõwŸß¼Ó‰/h§¤PKÙ)|ZŒ µw¼‚¶ï8¡nCæn—Gê?ÊôØ­ÆMÑŠujhL,ÕÔ.KŠ&’¼zÚ£©ÇúÏ-iO4kº±Û'€ê«Z—Ʌвõµ…"”ã®÷ñX¹œ›U~Š×]wXa¾ƒ’jýaž"(5ÞtiÊé#Ê|·ÞÞùŽr_½Fù®J‚{þvÐÆf†!øKì!šK¨¿ð*´/Õr/‰£úóŠÄ"IÔ$—‰øµ¡„ZÁ1–©dJ¨£ 2ôVuûϰjw¡~¯ØNÆAå¯ß$s—È:I©@F´,¯FQ=$ Uÿyø«âèÄÞëɱ@´ì­ –Ã{ˆMá¨=óô | ûc2Yh aïfŸ¤kîù›øõ2ão|ÅOÔ*ZCôøXA€Gšäb}>_<'b/ë²Ç}}4 Žº¸Zé$?Ó!·‚/å©64É…þ—)fñ 3djß=b+s2©R~š?Y×K² lÖ!›=~µg ²µÉŠÏŠæBV_ãÁ³ÈÛè·ýV ™îÇï—CFŸb1zøCƯñY7mÈÈLÜô¸°Çu÷*oAæøªË•ØkU²³ûurTîI dC^³|qš'RœkXþ¤ßÂÖMñ”’wkRæ BYÙåÔu(?"zÌ©$*<ŒÖ®vAåŸi͔ШŽ#9Fßûv/ç’wο Ìï|IÙfÃøçÑqâÐ*6F4‘Ú™áÑ“À³Ð1³±|jBºJƒÌ¡§Óµî“½'ôš‡ï´JÀ€ø—æ=v…!©ÒΗº`xÆ.Š9‹FÛ^ ¿+=c#&boê˜áÄ®³¼­05pò„L4;ÌNÖÊõÌ~‚…#¼Ïã,a‰ð&ÝG?&X^¨l#å‚Õ#Æ¥°Áû>ø·ÕOغܿV•à Çò^G<_AKÖ¿“æjH8çØñ‘ï)×k–×w"é”ÁæA¤Ð}í0ñ©úŽfN“!m\Ï%‹ )Èp‚¶Ko’Oé¿C¦¨”Éö5È쫘ØzY‹û£eGv}ÿÔ‚7êÈ)›|éÜ£@ä>N-8òó<òl ¿øËOÓ9fq_G}¾ûm<ËQÈíwva–6•@© JÄHÉvçZ¼®RŸéôL™¾†t <ªÆ*N,䊢¿ÆŸ ·¢¸!UWYQJËÝOÉRç©~ðÏ£ {gªya#Ê}¢hí[Cyq§Ê»ª¨¨0Øÿ~£•ï>éúJ†*l*“ô%¨êqüÇN{ý^~¼'^M€fgš3]CÍnÑtÔv?Èy7à"êî³ ü]ZŽzÉ û{kÑÀ_ÏÙ¨÷6^ÂûÊ* eï\›šAœÌ,àñAS‹¶OJ©ÔhæåÁQÓhž,*ò–³-~{ºNK¡•øJ‘¼¦=ZûF¸yQÿ@›Õc#Ùf˜ ILTNKô þâë? ±‰FΑbϋΠ]N†¨ìËkjÉñì­Þ߸^o™ðrL®\»3ûŠ Bú} JSÒ!ØŒJlE©[¸ ÛoC€ð ±Á;Ú­I4†äF=QæÛ³04ô{’²_ÓÖµÁ—§ÃR\Ù¦Þᚸìv29ØEM~‡Ìì‘s57 Ë”<å×$d&¹ ; Ù²L†ß,µ «q:öí d±RÓ2@¦Ñ!í“:ÈÈúv5DÍ2NÕ%«~8ÁŸ™ ¤!SÈûÅÄ“EÈœœñ?Áó²ÚŸmz~€—¯û5öÏA>y. •½â_ÛãRë€f6Ž_ñvÐJJÂ@zÚ¦?g6±UCGa‡c½€tÝ[l,>Ðó07¤;Á~Íýpa;µý…‹9+>ã08gêœy›†cÎszß„ÑìD¥‡?ظpÞ#˜háã28s¦®–þ-`„Ù3–."Ë0ßõ}ôá­XŒ{*,Tú –ßN-ò*…Õ-ÏáHaX/mµZÑ „-Ví8r²8øÛ@ÜÊ8…JžçsNýBŸyŸjüº‘8´k•´Åi²Bx?R!ô¾±Ì‰TyU4ÅáH{÷ùáÄ‘>dPJ¼Ôù#NL|ü¥ŽL†þ|É Bfÿ“mOÎ"kåÉ[, *Èn$Õu¦#9EgïJ•~Cn는ëêÈ3.~f¦73ûtÈù§¼{5¼•PHùÅx‰° >ÂZUmb¤ã·mFñ»çØË4QR–g3›Ú¥ø˜£üeeH¯ñ¨“ãqÒâðJT¤¢¢a5FåT¢Š YTádSnTý¦1å ñÕ J.¤{˜¡ÆÔ?‚)-Ô ‹Ê*佄:v¡Rç úQO^¾’çðHk¦MóÉ á‰ï2»Vh¬®³6~M®ýj ]>€¦_L.Ÿ3¬F³í‹ßߣÅI¶K‹GhÙöã Òs´>uñÔâ2+,e»>ŸÕ €<ÆþImHùr¨Vý”ħŒû¿ZØã¶³_“$:žBL/µeÄ^½&JƒÓ¢¥¶ñ‰¢¯Sö±DpÁ‘§ŸnKBÈ£ôS-éð®9í8×c1ˆdžï /Þ„¤ÑŸß2™r ï„™@þÊß?Mo#á»æ¾@ÒïDP¦;×+vhÊ%<ér~›@…ÿîHÁ ¨\Ÿ)XüÕþÙ^ÇÝ8 FÇ'…•KjILmŸœ„jo•HŸíPÕÆ\ùÜTª8nõ›Î…Ê «ÖŒ<¨4ôÖK'Ü;¡¦¥8 TÆ•9Š5úA•€¯=T¦¨ZÇBtÁ–Ç$P›¹lä­í õϵÐxí%4¾ÏÚjU‡fíóI] ¥Ø³ÒþI´q¿ð—²öOEW¨Çú ó܈`u,/t›Û+ iÉÀOïÞgÅÒNÐûLJïâÖ+ˆd;Y­w†Œ¬Xl‡ax‘î·\€ŒæÖ¬>傱8ŠÍTo˜( ¥Z®…)ζã+âa¦°\BD¹æM%¸üh¤aa:ð^¦~,}Y¿#š +aÞ—Hߟ†µ\¯³ÓB°IörÔéÚøtGã2û†lU4i’¡3[LBÓ±×|o¬ÑœÂä‡AÇ´¾cÓÞŽ–—Ù4â£Õçó÷wZ¢õzƒiä9˜©ÐòØÙiLtª!¡Èè©£Ö ˆ)Ñ&‹–‡È­Ñ×®ð"HÊ iKƒ üí#Œ„¦>Äúü„ôýö+%ŠƒàãÏ$z, jñ W¼nK¨¿AïDÅG|döÞ·â&ôÙb“ù·žŸ)d‰OmþFðE›…Vüû$¤iø´ê‘óyúØ Óïé1ínÈ’0Œbé…¬Iªõž‚>Èæ?4Èz¯s¿¨¼}¦™»ÞÒMvŽy”L¸u$2|TÍÑ?… E® AUBá•!BOG™Ü·»¨Î¸@æÌh¶HtdMЭ|–”‡œÐ•åD­£’¶g]#¡ðfàø­vøN¨TáLÆ¥>玉܂²¼™çÛîÀí7BÁ—PÁÞuA¸(*µ½\y¸• ª°¼N´ýÔähž;ÙDõ<ýý~}¦¾Î¢úÔÐò“µ¨ï¸´•³ˆŽ—é Ç# KYÂl€zD¶IgMà—O¼’ÄL-ôkË…ËþƒG,^…a‹ëá#7gaT$ñçÔÓ“8-^7 ®\Rñ0¹Ã÷³¢•f~ Gßߤ‡ùgÄwŒ•`Q3P3q%–p¿K˜v†Uñ3ÄgoÀúijvRñ=}–¥jYƒ¿'‡o“…!o{˃ËîHXI÷pbC‰cÊOËeÄ iÞ㊗¶tHAáN¨—TgäDŠ#­•tïú©}È ;NÇ‘±iìåQn+d ;0ñ‹nO—Á7¯ÈF!kc¿Éê5md7í" ;8ŽœüÒþ„“ÈÍxæÕ!äi—=æx8›u;ŽKù˯Ƌ=ÜË›”"ìå1B(R¡¯!y EÏn¸è†[¡¸|ÙDj­ J _’w¢×C©ÌWgZP&;y«ó51ÊýyЩ~t,¿T—Ø¢R­]“%¢÷«wÁ.Û¨*º%J—¼…j©‹,L̨¡vù9µ®=jNd©³{Ì¢v¬OÃ1»qÔ½Él´š3úçB/n;¤â ·ËÇ«wÐ($ÿÃöZ?O7hQ›M¡éÁ´±÷Ïߣ™uÜm’4ëosreE‹¿=ëj€Vç¯Ü&Ý%€%©ú‚È-zd{{:’Ÿº“7½U†¸´T±¯zÙ“K|È“UbÜÍ?þ‰‡˜j—®g•KúƒéøAˆ6I7ù¼» HõeÎ< †ÏxíÅ'|ð.ÕiK÷•$Däjê ƒ¤kç)ôöô”1x¿í7äÛÛ2ío¥s;¸µ ´ì]Ýó øq§«\µÊW<ùM¦®BåIEÞgõPµÝž] êÕE3÷¾ Cud@ÖµCç šXÕÇP—ªœ¥Þ­‡ÊÌS§àÕ*T Å\_"χŠ ‚E¨hYËâ•£‚Êý÷hÂþ ïåÀÙÆ—¦åPu¸àà³L¨ŽÒjzªÑµ*ô2oBݘ³oíåа>ÚXÿ’š…êä?ŒA‹×àg«Th2çqÛíÏln]ól†Ncçgã;ЭŸjü«g~Þ3ùhóÞ zgÿØšl™À@̇¦§‘0tÂ'°÷ò Ϝȹ¾§ÏÑŒ;œµçDa,2K`l¥& O™ULÇ£dÿsçg0ûË©”O æ§*óha¡¦y|G`é.“²}æwX±9ýåÞ+°æ”ÚÁxA6"d_˜ÐÁ6µ.Yœn-ì|9‘k×éåÛ©xÈÂp3ÿM’ЪҾcbCÒ¹¬‡Ú €äÛ¤dö¡HÅ£ÿÄçÒ|–Õ?¸Œô^\¿gå"£¦“íÂî[±9þýÖ îo(<åSñYšsýãÞy"Ûîצgñcxðä‘oAÈ9_à»ÙžžN…•¾<¯jÝšœñpèUIó© ä¿p•|¹ï Tuã‘Ì›–.¡æ(ÂÊ×6FoŒÇo¾+b~âÃ=r»()þNïúgo”jie¤º<2ä+×µxQ΃Tˆ»XåoÍ/ÕO¢b⼞.³ *ÿý®»æV‹*J³Bü ¨ê;úAÅ, Õ¦J$2´;Qã$×¼(éqÔmºcÔÚ·©†åD¡.oÎUiAÔxh±ò¸ ÒÖ:542Ñ00ÌF¹÷#k4N¤9z¡‰Î;·Ërjhjž JnäŽfE^øðhÉ„s ­$ ª{ ŒÝµ³L=uÏßT8Jì‚!˜‹HFÜ£îkT\(·Áâv L HÄ?KPšÂ9Â6nÜ€XO[f‘¡H&ˆ {o^_(tÇÕêBú3áôõÛQa.£Áï ™„xˆÝs!‹!8¨.¹²Z²gô4Bö~7פs•q$ýí¡ç9®ìH™’™d3´Ûváø£E«÷d°¸ /€ »\–‡uÉv‹_Dõ7dÎÿê¦9ÔY[ïÅg:!§B¢ƒâæ9È÷LM.yÒ…iÂ7”x‰á»ô©“.ÎC©ÖÏ’óPVxšu/!±†c;(Ÿ ç~J«ðÔ~”ªtø5mCØè1–0 ¨›x¶{ã 4Y~ö‹;qZÒŽ^Ì!t¶ð—L·ý¡Ãê•||l tnŨNÆoAw·š¸”Â/þ§4úwB ¯ÕûÁ­ã&0xa¨% SÞc׳= #=RYÌ¿»/J8úÛÁƒ!ûh¿z4éÆG†¤ñÑ'|(|üOÁëS¤rÙÙ8Z´âÃïtj!ÃÁ®·³ž-ÈX>zäÓÙËÈb2Aq^™Ãü‰LüDÖ®“ÂòFÈny[(ßI99nÇ6ª0#÷þeBé˜Mä)U\ºæ¶§GŽÚpNQäpta~ Û›NÔ°±¡°>…åªUŠlÕ^ù5€bÓxe!þ'Jøez10‘ ”þ.ÇÜDÊH¼ðíÜE9­†ÇŽæ(ÿ,ÎÈóƒ3*N³.tÌ¿Cðíú)“*WKhPñð\Tõs’;jÊV¶ÞªqG­?wÏ­üGìùžzíÔ â£ Bƒ`–:¦€x4LГΟDã‹ß¾3d£‰Ýéú’ËhšÝ'3ü• ÍþÄg\õùŒ‚ó®YÛ3hyÍ-èå$,f1u(’‚Üóvo¨@’C¥¦Ý)ˆÍ¹Ñ8/1dú!_­; †*b—Å#bùüÙÅb®W¨‹THC´„e¥ºÓ„÷3|7h€K¡âLC¡ðîË·Á²aùàÐ-HÜXî›´< ÆÔBÍ´^WDQk\¹Š_[þŒè ¥ŠÊgæ‚àåÃèÖHY(·™>7i×?^²™%˜AÕ…åù?EP-a¢;fÉÕ,<û½ U>jžŒÁ¹P¹ð1öNŠ=Têh -…Š¢~L{þæ,«œLІ³Ü³ÀOå ÈHe¡’Ú`’ä±T[¬d—B5e;û2ÙÇ=x§9‘jušºÕÒ¡Áz_a®BS~ô——oÐ"­Gå"­9 lô¾ZÐî¸ú´¬ :åÇB4EA·:Á¹7WÞÀÏû• +;л¬ã/¿Å  <*j?û`HÿÃ=ï]žxõ4•y F?IŽÔV‚±0f6e1˜Èu½S$O„úÂÌËÅ Kª˜çO¼:ôz ’è,jëaÉ@t×·h VØ´æ×ŒnÁÝheÓ5Ø‘‰”< [¾7nR&„À»pâi$¸~Kýîu$\ã%FâØÓšéÕóHz}­AÀcɯԴRžS@ÊdÔ·ójzS%øð[¤K/£‰ F†öû™’=qß«[‹iN¸_ѾÏDí ²ˆäøÓPK!›€ŽÆJ²GD…m,×ìåE+7^2-<4^ëô|À ynô T©ÀÃlÿžlC¾A­Ú·;(Ð,Ø+Öo‰B“IcŒ5ñ¨dóCý”ìcuæ;Š‹ï+l˜G‰HÑI½ke(%jTvV} ¥É^.Ý<޲)×|ú¿¿éû>gˆ–õ¡ÒèI’QâYDÕÀž[aC¨2ü>´úÀT“›uZw¢Bõè%¯Ïi¯P“3åãñw ¨õeø…‰Ø+Ô1Q"±:Õ‰zäÕV÷P¿1#[ðDâ4óü0ù="7ßíCãÒµöGwúѤ¬XF€þ5šV‡Í—kl£YëS¾¡Df48 v§çÑbf+äÎeo´ü+ìos%¦¹Ÿ1»òý†¿387>Ÿ¸w<{æÑ×…–P:@„OG~¶Ü)ø@Èg.ú÷ëžOEFŸ?—ï瞈ò†Þ°ß³ŸC0ñ=¹Æ}Î`x/l6sÞê%Þ°®ƒÀ²e™K};–¤ò°²ò Äjøk=u ’šÞÇœ: Ÿkî–šw€ô“Ïs6ïBÆûy¥ÚÈT­½Ç ™s½>ÞW¾CVÁÉ¡¢÷ß!›Xž¨¦i²buäüó+!³qÇW}m2†ÛÈC†œÖ£È”;¾ðã"'d@¡CàJd2Üt7ä> ™K­[S‘sMÏ5›“â9 Wr.%ÇB~ªðÚÁ÷\P8VJ°9ßÏ?\ó¨O‡R;¥ç¦qû ì[{RÑáøÑü%+Êï&”—œìžp? $a¡I½PÙþô‚~]T|´Òx6ê.„&¸ÒÚC㟆‚F¹ÐòY^Õ¾¶ëkê©ÉKÐÁ>‘ap: Öï<¼ÔÝŸo;>…Ÿ%g{ÏRž>‡Ò³…ôd0ÈK*ó!é ¿ ÍPê…‘§%¾*zÏá÷}7‰-ïjOá"âG˜ä˜º`I¼ Óõ[”¤î0WuìQߦ:,¼LóŽs%ös^maÅ)âÆ2¬EyGòSxÂæ‡ñå[Z°ÝE{îZZ#ìÖ%ÕEÂEÇÚø¦ªûÇw.Hú¸âãWB$¯rè>°6TÚa…WÉl‘–Êß(Üâ62P»òß6¾ˆŒCµG?ÞG¦ —ã2ß—9꣎Mø~dè'Î%¶Dv[N§äWÈÉT’~_¹)U#7å;‘'Uõ‡et%öæ ä`A~OSiÒW‰(}ýAÃJ<²£ï”ìýEk…8Ρ˜óÕÓb”PØÌýÆò %»uÒ*o¢tÖ<³*÷Ê&{–ÿP Çãås |^WP‘š÷ùjC'*{'àÚñ@ÚóénnßQÕݵÛrÕæÝnq“ú Æ“Ÿ§{8ÖPKÜ• 8jµëÏÄü¤FÝ:å~ŽæÔÏ/ žµ×Ç_I×\n­¡Qƒ£«ˆ ¯»ôîn(¡)#ËBIbš‰]zs;AÍMÉ^Ëû€7=REö·Ãâk.­3O«!ψ•þ%$3±å™ €x›Œ iwUˆ%3J ïûÑB½-´‹ða}ôš-ïq³$¬kw? ¡£ ¥_‡ù!´m¶…°×Âl9ï\=¸"El¹ª!f"Dácy$VÄÔKZAªôGM}¯c-°"$T _Uï0tŽ;C‰ÃÞí„aøq*¶S‹*Æ&q[î=TU5‹·ó@õ”¤ÙãPc$ä“"5 ¿e&¡:(OÚ`˪æj 3; Ê²î°ë¿ûõgBeÞeÙÞ9~¨¬{\òb¿-Tq2ÞoJUŸK|4K ú:Š/—›AÍu¦3JÁPû9Ÿ³:0êùbÞ¬¬@CŸ±È’¹4õèʹh§C í—°¯i' Õì.qAƒ&´•ìS3ú±:,’¤VäŸ@Kâóì}ÐCÿì47ù^>4Ÿ§‚>¯ ±~‹x$ì;“øå, »A1¨?¸Çq÷Ÿ”Gß…Ñ°Ž˜ô|»^|Lãêm˜¸µ5Zq¡&sÆ8¾*†ÂŒˆ«g“7̪׳¯ÃÂõ‹Ç1–*þ$iT„å|ÑO«"ƒ[[`Cž”RV¶ræ7E”`Ç3á»Ì!A)?wn] ¹:±íÒK!ɉ³ñÍÅ>Hf¿{Dá%RÄßåÚOb‹ÔG ²-‘vI(“Äì"2<^2¡WÃ}r£‰Ë¸ÿ@Å=!Ud9&¡é&‹l·í\‹™Çƒ$ç-ÆÔg‘³Up&ëÐr{X^ë—XC^኶¨aä£õ}æ¼txÇøì0£Ð•&-ÉS(¼ÒÀ N4(Z"[w´Å/¶ NÆÿBɃ‰Gk~íåŠߺ7¶î(KÞçȉÇõÁ-YIªišUëQùYÈÙÚûᨢ)š6à‰ª3^ŠõÇQý{Ž„JÊ:j~O'ߟÍÚ .|Û,G=¿>™´h°ý>¨9, ì£VÐ䉔u‡X<šÞ}ò2-xø¦*ø ÐJ5ó òÑæ_‰¡Ú %Om0±âIßÇ:ŸœÐ±€>ÒiÓ †O¡3Ñ×3Ò+x¶ß˜'Ý“Ï TÞ€éré|7ù_{üó­Wnî#$¤ô‹ºäoB¬öCõ¯ïŠ!Ò(M©r÷(„Éi¼R‘½!Ç¥‡ÎCP}ÏßCš(±´_+ê.Ürý{' Fµrè‡BÐì9d!µßÇf*ÊJŸ&ˆ%tóÛ7õOq‹ñµ3ÃdžuãF2Huo¨âå‡tµôÙòþM÷ù޵6¤÷ WÔ®@zG­9ëEHozñ›ºÇÒ ÿ<¿u 2h8L,è%!ÃFjõDšdÔß°‡ÌóÎŽøä*dIÑt–'Cö1I‰Tùtȱ•‘ôð>í“úðX„žô{d¯ ¡vêG\áýΙ”η¡â~u‡b| W€D5öSû†æà‹ûvbæ¬d}èîºÚ/¸£:à{ï;º#× l\PH: *\Ҿ˒A•m´­5TûngþΆêéw·…ŸBu—êæ!%¨¶–!{0ªòí RxÚ ŠG »Få"T¦Ç¨Qì}¿*½ ,:%CåË&3®YÒ½Üþ¯! ª¬ýOøø@5sJ©pTÔÐÐÍˬ„ZåLë—’ÕP÷¥ÇÅÅ‹oh—V^€&«?šÝT»Ð\ç wêÍ¿1Pœx8~ÚîÔ¹'†±CCšÂVèl>àÝß2ßV8ŽÁÏ^^!æ{Ð'1ýù+ d±&H€!…æÇ•`¸øª±|Þ$Œ:Î,É?†1Eý_³0!9|.̇&ê¼löGÁtíMÕ¦ß`Ε\JÍï,,ˆ ÙœþÖ‹Õ·N“†òŸŒ¥‹f¬>Ú¹±šëŸ&ž^bú[tï &”îÃß ÉÇGö#Á‰{›OžÿFÂ?Yžuå HœñæÀ͉U$Méšd²Fò®^1£}¦H¥ú°ßµEif¬bë÷"ýpÒÂGr~d ªâÌÌüLgŸ«ÕÐ(#ó…Àü!d3ÑÎð5@öƒï©Y“[‘£ë—cÓ8¹u v‘çÃGÕ4ñðÍk_›dÌ‘ÿIHôûĬÑöQ"1Ea}>îÏ\T(Ê`éå-§ÿ¹£ý%JN°µ8—¢TDIL9Ê|f³R0/@¹ùÜ6%· TpÍ=GC¾€Ê¿¸“¸ÄQ…SNWÒ·U«c\™‡¡zd“xYúsÔŒû©.{µ]¹{6Ôõô• ï¡Áª2çVÍ4¹õLÏŒM^Ë:ªf;Iµ†²h!7ÿ1S ­Œ­fÆêwÐæý|PF®Ú³å5™´Ã“ͳ³º’Üè8òFƒ+ÑéMÏetVyàÕ+yÏ ÆÖµ%â…ã–Î%Ç`­Åܯ’AFð…n¶KÞ¿ÃŘS 1Í7¤¾„ˆ êúvubx_lSYûxÞýz«ÿ~öù¸Ï$ß’…€?T"²J]p4âÏ€ÇyðcíaùŠqp®º÷ÿׯÌó< )JåxOçûÿýþÃ9×uŽ«Ïõ~¯½×Z¯µ×ÚkßëîŽ+øË/ô|¿ŸAš/Ã&W÷a˜ðÇwÛ‹/CäÓ2Iƒêcðªˆî²‘¥(¼¡Ý•ùr4’žrw¾¹a)Ùwy˜C!ÕrWZTÆH üÒ $À©Ïôs¦ 5®C-ù¥¤–ôÞ²¥KƒÔF»q^zH;ØûÁ* ÒŠ´Þ3m‚ôÓûH2v ¸ŸÛ•™ö¿ Ç !KK;d¿Égj¿H¹2§ªw| „¼™‹•Ýš¥ßÿ$Wò”¼#sf9üŠÄ¸n¸ Bñ Z*µï_áÄR‘YQ=”Þ²ž–š~ „}_ .Å>€ áBÙ“¤PuLÿ=Y…Ô¼ Õ„ºÃ'i;¼€†Ío­GJ¡1‡dò·+4»?Ë&Ÿ†VרÖäÕü¶=¡‰óªNt±Û»5p|…ž¢Ë»âƒÐotçr¸¹ Ì…’PW‰ÀÐ;þctóö0’^ïû¶ÆÚƒ0d‡5LHÆÝfÒàs¥_=Cìmø!`MiyfΛï¦ç†ïl}æú T0»p^© æi1 ÀO½‹{‹šE`©}ÙÆð¼(ü]Åš4ˆDmíããÜiHâ(i|GɬžÜ¡¯å~” /Ñq¶N¿“È7Xhè´ßø¶Z>aÙ;_¦ÐWCa§§¾vœÀ=q³lÜP<>ž÷­yJ7~h6ÿ„2;Ãæ~P ÜXx»¥ÓmÜËhùcL!-ÎÒãò"îwðµ¶ïEÕ&³3nÅxзíåÂ3jäͺª}ð˜á=åmˆZïvP¸?@]î àÝFOP¿¹®kâc}m92wOÝS´MUESµûÛòãùÑÜ/Ñиß-e¨JsW$ÐFJ€§ê±Ú…äÊ©ÍMá—oG¡"tš( T„ÂcïÏ»![ä£ñŽ-ÂðzÓÒyÂDŸºïȩǑ$!ZÄ{êᥩFX‡0<×{¥SÈ!ô4>JÕ¹ÔméĨ AãOK…/AˆëHß6Ë2Ö1^$‡HñD ‹X¥ÕýÕ®¸ûµ $f™[›-?€ –þ¯á± Ûà<%ª# ï~7H¥Ã‡RnOÑ<(]h¹¯rí7¦vÿ*YÍÓö_ûý*RäS21*ÚVèÞ@¯Á!G'(÷Ð?ö^Œ³5;iÅpïÛÏ•Øf uß>!™½Óoù‚[d×(å,{}? ¯æ‡Êu.d—¡"Óù¡ˆÉTö¨ Šm†êW½¾Å©CÍÌ-kî±0¨Šnµ÷t…úgœÃ‘¢ÉÐи‰ì«Æ+hÚgõ~¸Ìšëé^ǵªCë32¾Y_nhw={¡’*:ƒÔ,œA÷pŹ…è³~´Èrà- 0_Ë£ÍÍ€Ar2yF–>|.ŽÂÈï‹?«í‚±YÎ.àY˜Ø\îi˜q>;ßŸÍøt ¾RÑrhÃô4¥ãnøvkf˵›ü0+scèÁ7˜ãXèzôD°ÑÔ‚ wºÁòâ­MCz´°Rr@óîñ.$¶ÓªÐ/»€¤ÛîIf̬ ÙÊì‘7©‘’õ+)Ï…b¤>kZËÿlig¦¾î$Dú ª‹žKÈ8OVV\ŽÌÙ¯»ßüDÖ8!NÍ$Ido`._IÙ„›åÎðR¹dàÖRs—¸­yÂXÏyÚJwZ ß —ÖÞ ?lçfé!ÜɯìÞë&ˆ»Â¥&t*q÷iãÖ<™“(f¯àSô%Ì{ÄÝ9£|½t Pæ[åïx”óU‹RïL@E–Á¯n£¸¯­I|ÀXqø&£é¦}¸?ÂvRð®?ª^š¥Q¢Á÷Üwij¡zQ— Ý}W<,; ®áóN¼¯“OFͤåÝF¨í=ºÐŸ©€ºFIov¶¡þ/®‘4<¿[ãü¡Q½{¿1Æ‚¯ü‹¸Ì1Sðkµ¾ýhñ ¶ëm¥æƒçƒX³!ró`Ž“ùfxµ£ë›ž—Äk”XÓÕCbNyÂù®%Hž”šiÙV©›ŽÅÙû­Æ3­&ÒAªÝ—‘BÎÕxw7cûÏêÂÕ8 ®S:œ6¼`ÜiûÊ”ÄÊ -›ß-ö@¤HJ«'¨B_ˆÕÝÓ7 “{üâX0-d©·©ªú?숒¶°WF»+­ÉúÒCÈÞž3mìù “ÑÕDEPøCÉúÃWn(º®—òŠ]–^½ƒÃBÂsl ôê·¦}Ô@K®n ýüc#mMPu ièô×|¨ .güdu ŒŸK›_AÝ£7‹ÎЭœ@ç ͯî3+MB«Þ»ò¾)Nh¿JÑzÛ; :›ÌHm…ô Çž— œýü´ïnGyÂ@våhßÔ$ 9½m],-†£P:ÅÁd»à\Ðxì.Œ¿ÍIïˆ÷Z=¯D¾9FH‚¯dÚÇý‚ʪšô[’ð-ó‹àË0ûô®È[…0ç«1ÊWR)n TÂ’Æã…AøM~û¼È&$ºGýæ†A?’ìŽkE2ÒÝ4îïZ‘‚6è%÷ö0¤:â~žwÙi*ÚûFVধAÚ4§óQÓ(ëDÈ/d&gg»mß…,S!yÔŒÈÎ0¬v?9)÷ݫƭ;´'‹æ p›Ðµc¦ï‘§‚ö…=ûäËTêâçGþ‘ÇŠá¯p§ÑËW¿?’¢°À'²X‰­¸Çy;Îò øGm‚w ¤·"gö.~”ž.¯‚s(÷Æ'x3/'*VÏŽ¨ÒU"XØW¾jJÁý*)ß¾~`CÕHMËGYñà +±ƒm;PãÊ{™Ž¦xŒæÓ¥sÌ=¨å“è•ás uÆ[wf÷Ñ¡~°Ã@ÅbÅHT!fÁS»^äÅÜCSVa Ï®sh~’ô=ez.Z|‹<—­Ö#zÏTÊ"Ð|F º«ñ-5R †£Sâ饩ûa0skßnª ÈŠPKåûM ±^×wŸÕØQ×rÈæ!â¿MiÒ>xá|½ñSÀ „z²ûÞ i‡`'Ç£#[œ Èäçh»«1]Øý‚Y‚çÚ’tVãÛ+Ÿ+ä ÑÆ§!!ůö›-x)@ÂÂÛ¬biEH2àÝö½r·$ûÎôu»íT‹Œ× øGª3góêûìö„}‡éj<º•Ór7ò-”×ÊPvî<f›ä¤Ò ÂpÛOUÛT(ÿ2ÈÖÍ å§Ÿ/¹­æ?„º8‡SÏ'47ïaç®åÎÕ²ð‘$;ûÕ¸g•Ë¥ZvÉ[l÷ì€ò›ý²øV÷Ë9›o*S}Pùø*áaV¨šx³’º 5Ï\ërŒ@­«‡VÆr?Ô#ÞËúB8üT'[ ‰Ø99\ü<4ûéó‡–^ƒV­×7Î è@û^ËÍ{ù7C§þ=9£ 2莘íl2Ô†>^æ÷TÜ4Ð?uåù™$ žc÷žl‚aêÛ&]ã0R·EôKI Œ½‹=õ–ó5Œw«Z05ÏÁçÝ×kêWG_2púî„邉 Ñ#ðM9òjEÈIø>˜â‰3ð#ÿÒ çÀO˜Ûª¹ ?§è‰²a÷M*—8X!îþL³û7ýT°ôî^=/Ïõ¼7¿d͹›î"…9‡z¥Ÿ;R¦†zŸAZj½>‰¹ÜTh¥9Ä¿}c™E` Ó$²|9ÃI=‹ì´âæ‡4‘óL§»Ò¶`ܲ s¡Gù»«{*¦ç‘«uæ#-äÓÝFÞ2ðù5ow£GAw·³Ž ÐÂËÛt(’&ìÂÖˆ¢Yåºd&ûP‚’÷Pús”ð9ij ¥¿t¦¼½å¤9<{IP!;'Û0â>î»ÑL¬ŸpñéçW¿Î”âþ+tlòŽ×QUTù„'0s÷‰h”Eõ–ñJs[<Ìód©Ðv‹Ê^™ÌCÍîè‘I EÔö')— B]sÇ–C€ú&¼*Óhø°ëV°OžM˜Zè.ÅS7?;ægt$šæØ}ÑLZé·× #šQ$¿L¯A‹\•;=&]h•ý•öÂäÚ *ô߸“cãÃnZxœQÄ!¢³?Ü18×÷Âð2„‰\=}‰‚kç õ­¦!PÖc%g˜ü~¾<ÀÌ}| Ežù÷‚Ï™”·½Nà3ôI“Bšüœk;Þƒ@)?[×!tÔ…º?Á"⚘‡û¥!æqHáN¦4ˆ{ÂF‘—+ c!FF2¼ÃSåD¤œfâÈTÚ´¾Š„«*Ï(T7 ©&ûEÆßþ†T/úŽ=dzÚ(–:î± Òľ„õV¸BZSk¢¤kêêßM%ƒ ®žG*ÉQݼ¹å2d)·>J ˜…ì`«w 7CîöÒÞŸŽB^{îÇê<È/sáSüd…Ÿî¨nŠ ‚">÷ó'-®B±ãVñ„ñ&øÐÏ~,Œž J]úwß“‚ >Èçf„ >³çïßUAÕþa e¥}P<Ð1êS u»—Ïóð¶C‰LÔIËÐèûÝ“9Fš¹†_¹­’§½˲A»†ù‰ ‡2è IéæéîùÓ)GnBßè˜yÇ>p¥ªý6 C»>46wT鸕¯Ã=£µÏý ã YI`2ŸKͤ!¾œ–òøåÓ4¬OoúÁ¼,<0ËWë¯L’ sÛõ­W6Á‚–é®+XÌëÔ~(~YwÖfžB¢=KÁº®CH\¿iR§ò4’¾ŒzxƵÉ_¾cމ BÊ–¥Ùî²:¤9œ¢BÙ˜‚›È¼î½Q GF óž–£‘)û É£™½È2›˜¬…lÙv·;t‘“UïË“’iÜRð%09>¹ß{|[y<Õ) )Ƒυ‹¯Î~ò¿Ø—::ÿw2¹zK¬wµÞÊÖ0]ÂÝ+cÛ£ÍÙQü˜ùæd”<å¼o{83JçŸ;R¢€rvÔ¶^ Š÷™¢X­Ž«â~6“‚3µ·Põ|æóÓwzðà6]-I>[Ôj­\zG žˆç]ÑA-‹ãËaŸ¿¢N–°ørC4êŸÜ¡t²Ìê¬eÞÏàÉV±aÙx†Ðþ‘rõüÈGœJn*)ßÂcÜÑ:HŸoR\Ï ™¨Ç¼¿Nï‹ëêÐÉ·r×ê¹ofÛm³„ÝÅ™Ãq¶l b™öÄHÓ²B”-íÄœ+=Dлôƒ0¥¯w «!¤&érH£>unÊ:rç&ùmùÝA´åÃCËËìÁ;´ižÇýÚ)EB·Ÿ0oÛ 1¥!’×A¼1òœzéäºo£k®@ŽåþóZÉÔP¨"­ó$Šoœ½c™m¥”—‰NøÚAÎüÝÒ(w¸¹ë¹¯T°Xâ¹÷*¶¸/éêþ†ò¢›¦Ä£‹P®øø]” ?Ò9^ËÕßÂ<%Ç×·€@{;Låûj?4í7U*—€°ÿ|KeR’…vqùzC¹¶K’eù–ÕüPro^@-TªEØ›À¨ sjcû45 ]cOˆØ vû¶ƒ/:¼ ~'ŸåÄ×$h°¤Þüj«Fí+ÞƒfãÇ/õ÷€V¶¾¡ïNG¡íw‡ŸÐtrœ\8ßÝfg[,‡´ ·ŸüÙÈÃè¯!§¿ó&±öa]ðózÃñì=U°ôÑY*åüoø}2³þÒé`$ ´¾ô^ÛIø¯’@/%’v'憻 y©jì7«›H9 úñÉî3H£(Ê,,téZ§$É…S¡HP÷Ž” 2Ý^ÒNC-öè*d3¬UhÕú…ÏÛ¯§É²à–åè<½‘kŽ[æ¬XòÐ3=“kùмuºq··᎒îÅû‘P`FVäKâ#2¹ttD×EÐøöûƒ(ºé“SÜìЧfŸ¨mËFÉGª_  J˜–ÏKAÙNØiÒ9… &wý÷râ>âú]ˆòúÚspÿñ‘IŸ·t¨*Z“ÇÖ\…”…÷¼;ÜŽêcHÌ8ìð0Íþmª-xôã…Éœ÷½¨ÙF7rr[jffßÕ%A]»x{ÙÜTÔw ë5Øq #kòÈ‹’јvûè¬ 9žJ~üЭ;Ïx,3Æñ¡ÙÉ8w—h<Ë’L%­Ð‚ß/Ƽ›ðD«ßœ^‘ 6h+ûc_œÑ%˜h¿¼]õx ¤Hëð·9Bô–fAÏÍÒqC3¾¤ËžßøÊx+‚]œ5¢£!`xÀÓ­¶üÒ¼[­*€/CvhˆF øà]ÖŽcoúM+Àõ`…•§?Œ2Yr,¨B¨úã˹3G!B!!C'áDÏž‘ýz¬ ^7°½%vÝ \”ß"Å!éLÙ3 H.y}Bl[¤<;á}/ÜRÉ9n«ÝãXsoD”R/–°|¥†Ô¢L& nHãWJ7ñ„´W*OÌîð@ºFCžcz0dprv HÚC&‹ø7§‰Wµ×F‰\Œ²}’²ÆÜ —Ã×å~I$äÕí^|å/ùù‡ÃíƒÂ^š˜¹Ô7PÄÝsd1CŠíÝî¼.•…=5bo9oB©ó§÷bOW㛦N\lõj|«›wP¹½ß‚oü>×5{x³Š Nàí‚S‘Ô/–ŸÛy÷:4ºÏúè@³Üh…çîeheueIM7„öí3 yL"Ðyz¾£Áöt·¦·*…¾§Õ9eúW`@õz{… ŽÖYft†á ÏÝÂ50šä©Éò+>uÌló‡I¥%íK 0ÕÇ«09àÓæÚ rnÎ0³88$ò|¾ž=sø'üHöŸê#­„ù¦{‘§-Ã¢Ä Ã¡àX®¿Êý¡)V²yÔ$7ó!±‹›Ý‹œ$ÝGóâÜꉇ\*s÷©Ó¯‘Ò|Ëàgæ)¤þ°{ë ¤»ÙÌ¥àÑŒ ®sY/¦"“­â&‡ñïÈr0Î6"›‰ÛßáÈ‘ùÁ†kW n1ð"9~¹ Élw»ˆ<:Ör.ïA>™Vy¿]ä?Á)¼i˜˲Ù˜Nᮕi^Ã˸;^qä’Ò%ß¶ión£Y”º}ÈÑÿJßR:Bi‹r"º×ˆJQQ)¦´‘“ •J÷ß“ZAå±ß%¦:¾¨ªÈô¤ÌóRˤP¾‰‡¾®Lf¹¼À£ÚÔiCQKŽÞ2{Sê¸ÅOl1/BýmìT¬e¤h´%å@˜‹%ž¼'=X BÀ3–Ÿ•”öS¡ÙøY±’ Ñâ|I}ØNQ´ÖX)ì*Áss’g…UÑA¶+‘Ua5¿Ÿ]¥® ÓMû~ŠÆC¦ÿCÝj'àU à¶O&vùÝDŽV8Â¥K,_ÑÀóì«bò]ãÂbDóËí)©LèêAày¶yv>Œ:6fñC‚·Òß³PLúPMìæ”xÉ*Þ›eáÒ*Q=¬PNïK&8å„ã7O%¬æ]}­ äç¡<À]&;-Ê·>cm»a „çLE®ÛvA2‹õŽD”-ä6< ¤‡²âÒ³•@LeÉÝ„§µÛCË¡\èú[ŸCP¾´„Bgõ ’f†«ç=TŸÏYm‚ê¯KnG¥<àãÇ>Sßú¨›Û¦èH 2ïuÇßäCcpüÂP-4 Ä-2öJBKo†òNÂh+«&ýyçttO±´V)C· ½Îá°{УšôˆÚú“I¾5öŒÂà®­qaÒ<0D`8y„ö%Œ<ÌÑëûvÆœ³iNý€q÷ä7ÕoKa²bpl¹h|——)‚òaÚå¾U¡Ö}˜?öjÏ×ø~“gë‹owà‡ô‰»Wt `žå —ß)bø¹°_mû#X:uæQ¹àVøÕ¨ÛÌïŒDª=+“áaHüA÷fÕr’Ún›äÚé‹äJ—*†òÀQΤ‡Gú¡•ÃÙX¤£½yê6ÒwÞ×Ý7>ˆŒ+#N{"s±oã5Èú–^Ä'ó;²™ ÛªÛŽ›­i‰5x‘K˜ÂúŽjnW>BCÚ#¼'|–&Λᎃ6 )‹s(`¯Iæ+‰;®9Ñf¢ðÜg)Ö¸Çå~S7L ¸9y !åJÊ¿ô\rߎҪö‹‡ë‹Qöa± q*ОeyÍ%€{›C”m?ýF˜ÜbÛê€ûwU _NBU:û{&Õmx€÷¹=®¨~>ìpÙhjÌñ/ŠàÌš;YQ÷Zn·E @ã-#c=7m´xùðÖeÓg…¿v˧ĚàgÛ;à©Ú>,×?ôu‚÷Ïçwµ‚Ò®Çýà›ùE(`à8Þï”…šùWr>Â!ü¬=¢ÍŽï‰|" ¯·jŒ¿ó9oôF·¹¹Bbø¯½—“' ™«ÔUKuR¨#›ØyG %–W²f¡ RY¾êýµRO~l}öMRSæ2‚´ÍŲŸØCÚ˲êUEH?G\t2Øhå²!“q{l\ìÈ’{Zh³Û²Ÿúp‘Û“A.õ¹Æ¤QÈ+7©£ ¹ ùéÍø&¼¡°%ÌĽÊж3ÕåäAñ995¹¬«ñmÓ½ãΫù[ÙzÛ«@óœËz÷*:O“¿ÛUjv<ÇŠAM¦OÛ+¨ãز¿êü:ÃS`76Û'®‚梷óÞ eq…“ªÂ Ú–Ò¼ÚN@çžÎ ¡;ðñŽš'g o¯%û£í0À$«È¡@ ƒñš)•?faضp;ué5ˆÿ¥Ÿœ³v2½¥…‰Êí9÷saêD·]Á® ˜f'x: ÌÁÌ«j¶“ðý4÷¾Ö³]ðCÍàÌÍ:ïÕsçsú[‰Öð3%þj@­%,+Dw]XáôQœ6DâíÇG¬¢K¤—Â¥3ÐÉ>ºT¶ç "Åw%§ñ³éH­ŸS朽„´ËÞ3–L6H?ÝuG5‹™¶ÝŽè}ð™ç.ÿ£–D6J NàÈaä¯þ”%7Ïgù¡G\C‚µ¯O† Ïæ›RoÑ#ïBdkë»KÈϱ#ò Þr¶>ÉM‡»ž®üVÆÝúK~G^ X¿êòÔæD”˜cˆäôEéƒîJrÔ¢ì”%·³©8*,š¸ŽJ—ŤyÕQ9¿â̯MB¨J™µH„â_üºqc%å<½ôùåmxWÕ‰Z4¥1<ùÔ9¦ÔlopõaéÎk&4lþœcÊWŽ'%Êzª“âв† EW4K+½œe„»ó\Ζ Õ¯Iï;+/ñœ8“4¶'àù:RñJ½Rtü>~I,6¦Ÿ<–Ï9V™¬Y{b–‡á÷™œpWˆts¹åЮ/õÔ÷:sAèPwÁdŠ›~ü4rî-¾­×¿{)“ŸÏÒ…À}z`¿e˜êg4AhâÙz™ßžü–>†èFý€%OˆoIùjØæ©+ûŸDªÈB6ÉÙ2ý,È÷rv3•ºEOJgò@ [N³©z”‰=U¨Šñ[Í·šïsl …òëJæ6¯æ]¯^“ÔÌ\Íë2™,¡œøfÈÈÙ @x¬þyçØ9 ìÜ|øšm/”}1ñ}ßeŸØ¶.mÁHùÛE \Þ,3;kå4±—´ ÞAyë‘ææMo¡¢‡ä»TñK:t©ê´”Ëwµ_ÃLJÕä9=­P÷Ìn@ÑhÏU ºC£¥ãhú±‰ÂD6Zž~r¨„6ï7,)Ä Ðû°j¬&º¾ªýz°‰ zÏ{×þü#ôûYvÍðà ƒØ„؉0”HÒ´²€‡éûF 0føI9øÇŒÛ âÏï40™&šA_¸BʘbÎÁ´i}!Ý~ ˜©“Q·_Í/¿Ÿ¼»y¦ÃªZν+’0×¥Â9>À ma±™Ò °Dªrý)Õøe¡ß÷‘ʼnˆÆÙ =Ø©eþçå$¥v=ù@Jeu?Q…ìmõAŠö·¿×*!Õô¥7f,G‘öôg–]3™HÏ^ÛþšÍ}äãäóù`Íó°köÈ*¹˜à“ƒì'ìtw¼÷BÎ’˜­¦M£¸õêõACýAÜæv…Ì\Ýy¾Ý¶R{‰|íGOµžëBþyÝpî¼>Ü©ÿùít-#îZ¢ÝYAuwÑ<ç£ŹhvD*¢Äô;ÃúóŸPjQ¹[fl e¨)ùä/”/sqMÀ½OÏT³­¤N{Ø^ÃýTy!‹W–QejI„Í"PÜùh0Êê†ðéü~KÔñ:)]D„Gs”ÒÒÌ~¢f£_‚Zƒj‡ï¦Ò âE]·©Éžó?Qß×­ªžš ÛwpµùM£±%U_÷G4aÞC­G싦T§ììµÑ,¡“àãöÏ^~ÆLP¢GK»ŒG%ÐÚ+—UÃ>m‡öðíõ€ ²ûWN$î„ÞÉ%9ãcàÀ ádz‹~ B¨È{N'› t9³”xÞT]I–XìÁ/êøþð8ð¹CîÂâÞÉcrû‡]Á{Ò@ð<§5øŒÛ%x €ÿrñ8B“L(½F¼,§:\~¢ã‡TµÍñaY±1;’xã(¤1^Nö¥èƒ´ÐPQ’W®Ê¨c¯g,wöEªí‚Lz¿k¬Ÿk!KF1­xsd?"ò}ð réÛÞ>†¼b!ƒÓ¯!?á1‹¸t0Ö.$¼Ÿó"Žæ‘·Y Ø–AÆnN`5¾E Q•-”^•ŠÌŒ×ÂÞ$vJ«r¨ò 0ùU‹ §M¨ æyºFî<-ÔñsôÌR_ƒúïaÝ”žÉÐè"(8Üýš7Ÿ¸uZZFÒØ=¯e@[÷ù½Iª½ÐIòº#WœºMLˆªfÄ¡÷‹½Ë vèºÌ÷nñ :Ÿ¦l¦‚aÁ°iF)黲KáG^úb0L˜Ðw¿ÊƒÏ½ Îç}õákQй§/aÆ5Yæš|'o0Z馇ÙÊ­t6q07Í~‚~Ê^‘ø(7KùKîïà·{žÄ³J$ªñwöF’ò æHv~àÝb R<¹›K2&ŒT#שÈKÒ‘öÞ‹«Š‘ÞÁÖÛ?¹ ÛM?YÑ\Eæ„ÝLêØ‘5Ûæ¥«Ö8r}Ä©Œ›«>K<¾Š\·­»ÚjHp{yý×¥ —Èûîç“Zá#¸£}þØä.Ü»÷ÈÜ‹ß(4Qk•öw“—Ÿy:!Šb̮ٞbG ¡¶ëT×Pš)ÑëJ¦2ʦ{â1S¨mš|HÖ•DŠ…~Þ™Ge^-: Ti»>u—o \<2ð$._œj½¨ƒGÚ·¦8s¢f™~ýjþ¶õvk*êÅíï+k4ô‘ ³âCãÁÐxúÍÒs÷ÊÑÌõ)Ç¡%)<;…þA*h•ñòsßót´íàçÿú\ÏÛš·w]@ÇÜg—L¾NÀôr³Ê #(6ü¦·ÄÄV¦¤6˜C$ãA‘ï»ûá…«äýß=KÊ9ûœ­+‚2_пM‰‚@IÓ³Â,xzzßI>'èøÌøKä7ˆ‘™…P©†k¼;­!œ~‹^GLDŸvøE:µâ…„†È_BªÛÊ>{³>È2˜}fRF oó)MŸB{ä@ÿ¬>|§P7¥ÅFÅ¢­Wæ™åâ[~Ž+B¹ÓóáFP~8tWFÅ4>G:†©ávoó5žÕ}À7¡»í”}>!ôäš”ø~{ÍDíº½Â@°%üà| „ù” rÝÕ8—ßaO¾×*Þz{t’ÒBåχ½1+ÕP}«õ„ÖQcøx´wÛ-q¨³Ìud»Ç õ£{ÒK5~C£Š¤jÜ6Qhª˜óM: -7Òu ¾BÛ™œaÜÏ ÃÙôºç+è*¤Kß* ½û:úboÐB¿ë˜JXÄø¹™5µÔ†‚U"%Í.ÂÈÉ"»=Òã0væûf÷;0~"[“›w &Cœ¢zôà ŕŧ÷aZOäGô„ ̼Kí£S]='§Y,‚Ù‰[ºbzá0—kãÀV Q‡S•”`ñ]f±ûføµéó°ÛŽtX l™û¢ò‰Å_Ëž%F’|‘”‚Ä $säE†Z¤Ðw†îã¼Hå4PO>Š4]ý «´p“gÖ’¿ 2JE«ï1æF¦ž•vt!d)LÜòšý*²µeü)Þƒœ²eæ§‹'qKï,qqñ{äîÜ’lÌ'Š<ÁC½ßȲ‘ïêÁàruAä÷¡}TnEƒ‚ã‘OF q×#®üé¸ûŠêµñßWQ¬ Œˆÿn9J¤)É阣TÞÃx{c”YÎ?Èñó<Ê» ÿëW¸÷賜.ËV=6î-¨á‹yxU0¼ë†|Ä5¿ë²…„Ýen.fØ~…±©ž ’Éw\Ÿ9 ÉCnþ\Š¡=yí¸¤îQkô †TßPOáÒxH£:º÷j¤¤ OLCúþ÷F•ûDWã›ÉÒ EÒj|»&^zê2dIŸÏ{Ùòúar©<îŸçô…¼‹‚XäÇrÙÉCaåÉñ§b«ûgÿ¡›PlÓéÙFšúŽVïjñ†R×/“7¹°ß„Ý[ü0THžòwf§*íŽ'¦‡Z¡&j¸bN8ê„Òî>apXoZJ=¾B£c®¨¨F 43( ¤½¡¥™Qy·êqh+öíæ¢Ý Ýù»u¶6C·° ±ƒ9ô¦*Rhû[@ÿ[Ʈփ10×ý`ëçÜ:V#uN]€±wf§XnÂøÒ.ËdÃ}ðÙ íõµá+o„[´kÌÐ?Ï÷ ‚o™—3÷ΉÁìƒÏ÷º(Raî ó«Û”=°@ùÆý=–p`ˆ%v/üúM¯£Ü•†D÷½‰ÛîœE*‘=ÑŽHÆvU•kX)D¸Ž”#ÕÍÙo­äHËrˆyÌW 7ý­Ò³ïAÆ û5í_ÙÒf" LYígÑX:!{ÚKî÷c)¸YùÅãd¾_ÈÅ7%sK ·[œ½(¼.Š ™°áŽp™Ç$¬‡P`¹àìÃ’J,cyÝd"ùÕDÏ® ˜¼®‹©¾.J„Ä`ßë (Õ/ Š#PÖÕˆðíîT¸jdºD{÷ø3?™DeÛ`b[wT‰ÿƸƒ(e<|,‚‡$d¿mÃ#>Ñ›c„FQÓºÜæ¼jO¦o’0 G=G‹ŽøÉ/h¨Ùl¿ó?]y2§µ æªÑìàHõÅ4Z<›rOƒå(ZÙ©<êw•DÛû¦åôÛXð<…(ÿÀû·èxËgï›–0M,w•æŒdp?‹ˆœÏ‚I=òî6ˆˆÊ®oa…°xf sCkÑ—+cc„ úƒ¿Þ C@ò®7¤y?!€çwÒÕD¸nÈäQäŸí3%â@È{ÞÑú.xyQRÝÝá"DMu2î˜Q‚¸Û~-™ß“!•BïaÝ–2ÈLÕsòxyS{•¿G°ÃûC?Þ¿&„çmÇÄR¡TÿYŸaà”Í~Jô}^„O-}Ò¬ÄPŽÞV?Ÿ¹C¹HYœVU,z\vOèï žYWuw NaaÝ eßâžy7.@ÙäñýBÚÀ_qÚÕÖ¶Þo|T€ð•ÒBÓK ÊæØiCETý¥ËUîPÙáÙEn Õ·jîÿ†\[è/†ÖAÝn¯ä4‰%¨/sm t„FnfÏ‘cÐQTä²l -ÚÖŸ·îÖ6IÖo7Þ@Ç[‡«–ŽÐåÅúÒ"ªz4ÓgR4¡ßÊ•zÓvy8{éÒ+z0|ÂÙÒFŽf vm†1…=¤å«ßƒñã_h…ÉgTù£¬c0µ¼À+v,¦iŠ5yˆÀLOlŸ|—r„ff˜mù¥0LöæžU¹ÂÂõs32lt°ø¨¸¿ÚÕ –+ÞÎJÖƒåÇn2 ’H´tÄÅ®#ÉuMÚ4–$ã»´Õæ€,’ÿŒ´z³LƒT CõFH£íd¢Þ‰tC\s ‹qÈ@€Ão× Ó½Û±¼³/‘ňÀ›v"Ùl±„»(9ò¿û´ W࣬ÖtÈ}h¯º{?"Ïaöò§ËZÈ·#"àÈáXä—=¾Àö¥^KÙ猻vÌî5›ÇÝ›ôŒO§ŸD±ã»·’W£ÄUß»I•(u;aë^§d”ù`t v«=Ê,¼m’O‰{Y¼[®T9"ˆsˆœaFåFžSQ§£JK/·<ªuéÊ:‡ê2§÷{‘\GÚŸ¤®Áx4¹˜¬ý©?jvÙ}ó GíämퟅªQ7Ì£Ç$ö.êJÚ*~ÛƒF¬)¾›˜LÑøõWãa4¹±‹Ð‚šI¢ð<®„f+I3rðlRµáV´üdÇ~<Ömøë®=:€çî²[¹ÚÀ¸òí·NjCRâþêÔº3Ñy:Â?^äÅgL*J@ðxMöý½vò]‘“Gü_1t™÷€o Ñ1 {ðþ!¸ý§y%xs{Î^ÞGNÇÔm¾>á—u|㾃ÿVå­gBШO‡×;x!ð¦Žö’ D$”xUÕÁ+Ö—Ž Ž‹fÌàÍ5Žðïv¸W¤JÈh’œHº«ØÉ÷Ëßß–æ…“Ú‰†”OÊ!³×,⤺sû)6+A1·Š¹Ü5HóíIzí%¸ß^ž+¿[¬×fï\~™ ¯¸íÈHVã[i^§õj|£&>— —Bí±äÌ äåŽÞŒjüÈŸO,Ú=  ø<¿¿ŠØ¤y·­æo.º ŸÚàÃÀ˜Ý~óÛPêV<°/ò Þ²Ë*öòu³18CÕÉp¶RZJ¨I´dyQR uâl'´¢: ~6#CV{ô®©×\ƒf*ú³Íî—¡¥Ìê„ÇEh{£>xn{tä3i|šª®åHK²¼.èu¶–óúBýþ íæû¢`0ØË´C©1aWB£aÄ•Qzh0 Æ.•ËÛ»ò¬žWHn>Ÿš…Ïä«evÀ—7Õ¼ËìaºúŽ’ÿ#Wøf»ýß™˜•,›xRÁs{î|ö7ƒ…Ó¿sD=€Å·%¸—á—›-iáûãH„o•t½x¼½ûì]$- %a»M@òÆØÎý ·…ÿ÷û¢H“àLÙ¾š—mr'K—|Œ'mU ôFfþ6¿aQ dTnù<ˆìÖ‡~5ŸtCÎé®&Ê·pëG<žu|·Si§$N#¯aŸK—(î°MëýÔŠª>=˜ÐC¡ó5éÔ3(r…áøËTvýoüîÆÇËxä¸áûÄ“#¨¹ÝÃׯù#jVëÊù´£žâËÓ,w9ÐñÝ kæm4>2-ø3ÓM~˜@3–êãæ±÷ñì¥[OïüD+þ:®Í¯ÇÐVâ½Ä{×´uê깘èx`‚=¸%¾º¶¾‰ N„ôØÓWŽ\ÙÑE—vÿP…¹ì7uÝÙð¼Çþƒ––6³G~—çµx & !`OÙ RðϽÁÉr¸UÁª=™N—܈…c—n*6ËË_!Êí ð}6wxÝæt! R¶غIÄý¯sÞfßB' Bâ3³ïl(µf Aq^UmÄï(ù|Ç>‡”=ÿ’•-a„˜´°²ó«y“ÎÇg«úœ\±4Mi4@¸Õ$ÚTÜñîJÀ UÆ»PŒCÙOcyG pÍiVޝÆ9rs±wVãÛÃÓÎ(¥]x7Ò*ü5Zré¡òÃ+ÍM£òP-;úu9;j¾‡±·X܆Ú%ú-_í·A}œòèӔаLÊF|Zš\cn7@‹Ð±æBch£Øó]‚h :8d´T: ËTIÏsw1ô 6 _€~íèQƒX!h̉š^"‡¡Ë~¹lÇUa…®¾z c¢ç´iN)ÁøÁ}Î%Ö0éq3Âûs)LÍÍ]xýk5ÓH,]¸I3)/zƘ}à»è³[`¶<ø'§rÌÝn¯ÐV…“'Ò~ÙŒÃâ™}õYlaÙǬ¶æÎoø½à¡Ñ‹Dµ²¸°¢$*?·éGAÒ¾7EÁû¦‘üä!%Ý(¤Œ7¯¾‡Ô#üKZŬHg÷Aé´'2ÈGôM() “T¢¿L2¯x8Î÷; …Ìý/O¿ ÇñÚK¼·qóó.?">ä*'(_ÎER÷q³ZÈÛöj…{qLjî˜ô3”§6UA¡ŠGäÆßP$é|b‘‘ ŠNd<•ÛÓˆ(橽ýQê]T!}ÊxÊtœ9ï†òL.ª.Q±ï=ÉTú}žÊƒÍ•ß.ËÅ’÷ Êë¬ÒàhiT«2jûx#Õ…ŽÞ×ɹ‚åN‘Ò«ñMä˜Ö© ¨9dó´7è*jçd͵M n"ý ~«­¨ß¬rù¡ÛE4’N_|ð=ÝÞq¢šdH’^4(@S‡S&vÑ\¸ÀèqM?Z0 Î*2¡•†Wë}´qb•’§ÈÁsÓ+ûèdàÓZMƒ$.øž«Y²†}K}ޝ26å¼M ?K¿ÙÑE1ÀMÑü wÝò; ¾ZuµššÇÁ;õQ2›E<‹^.|p ž-6µ&ŸŸƒ˜ÚC~Ií‡ü¨æ!È`ûù*^;}ã*Ñ» ˆ”+¯G”ƒ§ÍWòc¦àµn^Ræ/ˆ¯*œU3ƒ„È=v2¬NDÝ^Þ¯ð ’wÆ —iÝ®àÒÔP!H%®Ú¡Õ ©WµÃã;O@êb– ÍëEHóO%ý©é*ž2fí öÀ=ì…‹ÉÔñEúfdÉîwùì¶ßTΟþ ¹äùd)­—ýðãX6䇓VŸg΃’¤³W²NAë,_ªù&(>שÁgÿ>ŒØÚºû4”>ˆ ð§z­ˆ0õáPqÀ±NèNTYË/”QjBM.ë+b¯ïP§Èâëv_êç£í/™@ãùò€N/h&qŸŸn냖<½ >~h d²\\o/è3]8‹ «‰wß-òèUJuŸ¾•ýNé7a`8$Äo4†n¨.ú)ÔÀȾ×?ßå»Á˜°ç;ñ?²Û˜á‰ LÆì‹S¥h†/ûøú…`Ú“âˆKî2|ã[N¯<߇/QësÀV§Þ•˜ÿýrï)2X<{ìÙ¥ øEû\/ÿéXY¹÷Q4®‰£W|%FôŠÏþäq$wãSiB¤,åR?]ǃ4G¶Æü>-›¶Q IÜPGÆqʯž7?-ä¦Ú Ë(™ÞûÕhÉÎgVè¢Wœ±SóiA»qëÍ^a…)Ü–>7ý€myw=Uˆ;äé.D楡€'Q’ËEc’:ìó†9E䶇msý‚¢±Iw%óøQBCþÀ¯[õ(õ ¦H¯Oe9T)Ë“GQòR—ÿa*Üg©¿rJå*óhlYä»*úW~9ßDµî#ú~›•P½Høú;©<²iÞiìý!<Þ¬pÖõjû¼Ò2Û\zeBL¶&hÐT1ÚF’‚Æd²zþ‡Ñ$fÊ9T¾Myƒ£Cñ¬ëIï/)hÙ/ÈZôhm¶Ç, ýÁjï«#èHÿðsmÝ=ø² u0²ä¤KÒõ?¼ò¢5g-·ƒîbÌ 2NÞåwµ‘EæäLŽb-rdM4HksEöÉÛïÎPÁÍÎ[ù>¹†\šD‡ÈOráö׊Ýw ¯/Óé׫çÆÐL·£…1(0ô次åEr>y-‡?EôfÄíôDQ/—j^[Q‚ítVÌž·(µåx ò8Êœœ½rˆÎåú?$ª@Å”|oý¨Tó“ ½*¿Jˆú,yUüËÄmÞ¢ÚÛ„ ¤$q¨Î5¶©ü"7j{tº÷½Á£);»d†¢æç)­jÍ6Ô.Ö¼V™ †ºzMþd¨ÿ™]›Z¢ôïzÖ{¡ñ¯)FÛ—h2ÉZ³£M}¤µÑÜÀNÍ-+-Ô#nk½G+ÛM@ã^Œ6ïjO¸š Ý±£a•]îðÉã‘Í]í(HÔÐVzÊxÂãʹè @˜¼ô ³hÊŽRtQ: ¥¦©u àO£È»%É|é®ížO4oûáž¡Ì÷ðŒ«TŽ>Žž™e}”ùàý¥¨ØâÍgðSÉš‰“N†ÀŠåʲxvþ­þ°Dd‡oë©[‚èF=½Ì›÷ ê‡Äóh,]1Õ‚çÜ®XH|æ¥öhL ’jHH_Ï÷@r÷µo²²!¥#ƒêyn¤ÚÓ( %e@êìÀé{³§ íÙsÙ²®:×Y[þ26»üJo‡LÖî‡5±›!KÞãÇ…WÉýÐxJŠZrÉš}NˆA^‡[‘%ä¿Ø¬x÷·=~0–'M`\ÍßNP~ß¡ Åö¿8+ÌZáÃx­­—5”zú 2YÁxˤ³üE¨ÐÞ]š~ãT9ßßû)àÔ”•$ßU€ºƒvÒYŸ² ~éûÛ‚SoWó·¶(#hú=pfdâ!´¤\¿üc{)´Ýwéçº w¹®6È]„®¤½Ñ¿Žm^Z™ÏË]«çOZ©TÍ(нÐ<¹ †Ž¨%v®~GH„ã\È>ÂèH»w¨|Zº/ÿôn LêdÉiЂ©f)šIY˜ÖÑ ,Ë3\•5)‡á{èh²Ï@,ü¸ŸÕåËÎ ó1»¾û¼‡Ÿ+~þ"öܰü’–Ø~AV>ÊÿÑâ‹Äæ÷>\ •FRñc!ÝF*H.Y7KCW”ŽWJž¢‘zº—Ì÷Y"Ò XKë CoüáÄ)uòÇtò}d‰,šò‘A¶A/†­½Èiöö΋Wgq«”×á’gt¸íì&b†ãoçw{¢ÞøÜAýÀÎï…4 {ÓÜ÷Ä˦_1; ð]éü&Jµ kð¹ƒüQ1§S«Pê4)6ÊŒ;}6TõAù&ÿ¢ƒ)Ü'¼ç]ârœbBÍ.TUyœDVjÉÕᬥì¨þDà¤Áes<\·ÀQ¯ÌÇŸ<¬>qÿ j[M›–=ŽºÍ÷&Õ?¢ApŸy|žxç|ï^šèd JT³¢iZZ5³v-ž%¢‰ÕÍCË4¢:S«çH_,dÏ'C» ¹2ÞíoñBªWJCá|¹ÒÓâ@iE¾2Œ4Í5(nL¢Ý/5ð Ô°©Ç™‚Ä¢«_UÈ@€BÇ´ MøË‰‘h•<¿/]ÊŸÝÁßö %•T/4‡jÍr“C°Ó×&“–e¯Q'‘I|’YBlÄ¥ëMäe¤¿åØóžxHo?›jüƒr^¹ºØ…‚‚swz5¡¨Ïa[À»$(áõȸò&J§_?Œª½„—o™O©¡pç›í l@sz²|üj&ã;R¾Ïó9m`°KD™9¢ñ£}´m@¢ñØfuê`_‘j <“οÕåd…ã‰ö× »ìÔã²J¤¾ü^0yóÐSõ¢·0õåq¹¯gL8ly¹rÌÄ59nÑäƒï¼ó·ïˆ¿Ùôè™» "0wúéðÓа LíªÜãbšj?‚j‰rgmQ9M˱í9j~„@ MS£$ÑÉFÍyÏc³å¨]ÝRAbŠºEn5¹£ÙŸús£htùG ©ík<)Ì0¢s¬O凞Ô!A"Và-¬,·H¤^¾ûV¤>Wµ9)ºÞÁsûø?8‚oGS\—W-"o¯WQ„ö]$¶x ;OžûÝÑò¸ÔÔž ± ³ÖS‚!îºàˆ¢j5¼¹<#[óî$r˜e\HrJ¢:ó’_(}I‡”T¯´€TÓmÚSáÂúÕ©<]æ:¤y½#U*‡ôˆ/ú‰!ƒ«%õš>dr:Ý[Ñ…¬½ŽýÑ û{|‰ïjþ­›“¬ /óÒfÑpÈþó‹¥*âšL{ EìûflMÚ¡øBZf Å|øÒ)êw´JšiÝ‹‚…›xgT˜üš3ø–U÷ØrFFý¡¦yz ¼ NÏÍ/ôH4«óšÌÅA£kÆ´d4-?™¹` -¯¼8ÏVB›sÞ¢¥à tØžgH €®G_Ô^ BOWeã`®ôKÞüùâ™1 îu¥-ƒ!®&¥7C0\õø`Å£ ¹È’ߟRâ8\…‰™üÂï_É1°åD²qÙPÛ·'’§Sû¼n R‡.ø—ºY"©µv2ÕIdpU«¦D&×g“#>Èâåçr’Ùb®îÉØy9·7ž ¯ÐÅ-ŸK:ˆ*pûè9Ažiäi©Y®·NB¾žb<à€Âöƒ ËÞ¸³ü˯[ïÕQ¸8üe¨8?Š G bÿo÷áJÉö¿ˆÙ†2…ç=vEùÈX6ºî¸w†WÇî±2b>÷yT¡Ò2aÐÊEµ») gTePÝ0n³ÍY <ì÷ÆÉÒëå,¨HDm¥C´ÇŸ¡nô“;DÐàtŽfì·N½®do§­ ˜òbÇìà/Û3|§U"Õõñ¢ ÄRÓz¼0q€Äë|ß’¹@º#ñ§ÈžÊv$è„ü/Šé•§Ó Èå«€â3øðžÂ‰æý~(}at«WB ʆ;+󙀰ëI†í 4÷*Ç&½XoÞ½SÌ[€!©Aõ˜ç÷tÙœY½~ø¢§ó¬Ô UûC>ÁìJRä…Z ¼:V,¤Äå¬ÃÔþçh¡< ¾)ì…Š§<Ù‡¸ 2¢¸8ª~Ò<¯1©†šàÑÃó/¡önˆ<Bý©¹`¥CÎÐÙÆØ˜ûš˜Ë-úwIBsþ“lFh} f˜ÊU íÞ.:Ñ™ÐÙòY‚„zŒ£¢(o@?Iì–»0”-ºE~†Tæó¯ÉÁ«t27= ŒÑÅsÝ«ë†ñ=útŠê0yyÚ,Ì•¦Æû¸îýº Óª,LVyK0ó*õ‚ä|çºÇóµê ÌÆ«9ífY€9Í`Å{jç`¥¢UZI~.ÖñÍŽî‡eëäñ‘,ø­±'óu9/9íÄ"î„ÄyS<ï@Rý¬Œx+$º|XÅò(R¼ç숥Fªæc÷d{"íîis2qSÃw©;Ç"£Í¢ò J1dæ2ˆ¼[0Ž¬Ô–C“ È.§~›Qz/r&ýth%¡Å­—ø&Ívá¶Ð˜éBŽÈËÜ—µºw03K1I¹ €v•fw³6îìˆuYá8„ÂéÌ#|Â=ÃFF’Å'P¼ÐèäÍ[²(Y$|%Ü+eˆ*Žkx|C9÷ñV–$T4-d4B%׸‡[|QùÖÕE>–4T¹¨üi§?)ª½ôÜ_òÓ Õ©±Êi*5rK?¦F>Á£™Ü1V¼—P‹ØeX;ûj·¾Û\‡º½ç.~òAî3O7ó$£Qðä-¿7ªxÒ Fݨ:O›ÈÑ­4™£iÇ…Z–ZhžâÆèq«-2SŸ…)\C«)ñ†§úOÑÖäv D;ÚÓ8št©|…±vWÐ { oæ­«Om¯ƒNOe4 ´ª¤èÒ¡]賘/»š·Í¸h!~—®š·ÛƒÏƒÇQ+° ž5¨8Ýg/¦3üµòà%×"íùá+x«u‘x=À÷Ò®­5‡æ ÷îËû_F!t§ËuG b¿e9/™QQ+{l†Wv|N[yMàu»ŠÝ®Ã?êCÏÅÕ ‘ûDXªAç#"…íé|:[°üísHy8zN»Á Rõlnt¸*@ê„â‡Tî®ÕøÆƒÇ+ ýС Õ{_ ƒ' Î`×Èä:±ïC &dA ¡µA²Ÿìy¦§wr)¨ÙL†ï¯Æ·ÝÜ˧®®Æ·C4á+Þ«ñmj.ô•?qœ ›Tâ…â‹éœç¦ÊàìÒ=fùùÕýæ”n”#.œcT/‡ ;K ©0¨ò=¾É¦$j†ûïæ¹‡@ÝÙË‹ûžèB%—ÖŽ]Û¡ñÒXiX„4-‘†0·BK8Žv¾Ú,¿)½»p:´KÃÆ£¼¡Ë†ø­Ñþ|èI¦¬9BúYg^° " 8Iþqò, ~V¡:Ãþ/“Å`Ô’ºIéåoødÅÍIWæ/쌞vl…)&éÐÇÛmák…kI•ÌX>+0š„ïŒK¥áž±|fïoT(Þgsïà‘”bL+}ö)e|íRNùΣ¼cýè{Ü›§{Nµ ñz=‰Î7Ü?Äk°U`Õ í³wéò£ºÀvÇæv&õª‹ÿc$þ1’ÿ©Œô?Fæ#û‘ûÇÈÿcÖ ‰„ø†“Øp’NjÃIo8™ '»áä6œü†Û`Hn0$7’ É †äCrƒ!¹ÁÜ`Hn0$7R © †ÔCjƒ!µÁÚ`Hm0¤6R © †ôCzƒ!½ÁÞ`Ho0¤7Ò é †ôCzƒ!³ÁÙ`Èl0d62 ™ †ÌCfƒ!³ÁÙ`Èn0d7² Ù †ìCvƒ!»ÁÝ`Èn0d7r ¹ †ÜCnƒ!·ÁÛ`Èm0ä6r ¹ †üC~ƒ!¿Áß`Èo0ä7ò ù †üC~ƒ¡°ÁPØ`(l06  … †ÂCaƒ¡°ÁPø‡A*!.þ¯•ø×Jþk¥þµÒÿZ™­ì¿Vî_+ÿ¯UXÿ¦¬_";ofo¹î)¬,ÿ.­ÕØýO …UüËKüá%ÿðRxé?¼Ì^ö/÷‡—ÿÃ+üëåÿàÊÿÁ•ÿƒ+ÿWþ®ü\ù?¸òpåÿàÊÿÁUøƒ«ðWá®Â\…?¸ pþà*üÁUøƒ»±þd’â/À_^â/ù‡—úÃKÿáeþð²x¹?¼üþ®Ä\‰?¸pWcÀßщleýý ýç¥2³þç"½dyõŸ×,Í.®êïµVäµ¢ÿ«Š2ÑÚN¯©2ãú…¿ëQüUïŸØ÷W}‡î*_n^Óëê³}M×ËaÖ4rýzôO·¿5vý~|òZ9q½^ÊÙµrÚzýô§M9c½]–UÑßš½Þ>wÿÚý¼õ~ò·®Ý/Xï¯pníþûõ~‹lLÿÖâõþ‹["þÖ뜕þ5]畦òü­eë\÷Z{Â:¿üñZûŠõqT̯µ¯\O•åZûêõqU7®µ¯YßG\kÿq}œµ‰kíëÖÇ[¿‰qM×Ç]_’ú·6¬¿áºÖš®?G£øôš®?Oã˜÷ßÚ´þ\M/Å×týùšõê×tý9[h×týy[>¬ñ[ן»õê¿uýùÛÄÖømëóÐ6²Æo_Ÿö°5~ûú¼tè®ñ;Öç§“zß¹>OEkü®õù꺲ÆïZŸ·î=küîõùë^ã÷¬ÏcOè¿g}>{µ×ø½ëóÚGµÆï[Ÿß¾wküþõyîWÌ]Óõùî¤ZÓõyïŸ1ú[ÖçàhÜš®¯ÃÀë…5]_AÒCkº¾.ƒ§ƒ×t}}ó>­éú: ±É¯éúz 9z­ý­îYÒ¿öÞîõòêÞ«_Óëêó¦{o­©rä¶5^\Ó÷Þš&®×K±XÓ÷Þšfü\Ó,ë5ýwï­iÞz?ù\kúïÞ[Ó÷g×´ÈÆíoýwï­•?¬sJT×ucﭕˬÖÊîuÝØ{kåŠõqT,¬é¿{o­\½u­\ݸ¦ÿî½µòÇõqÖ&­ýýõÍ£üç‹JüÏ·SÍÌù¯׿T«÷)H×<õª'ý+o ú»>Ñßõÿþôþ¡ë×ÿªO³ZŸvå¿áP\ºxö¢¥Õéï߯µš Õ\Z»FBñ/ùï/3ÙŒ€íeû£Lü:‚^ÿÊ…È×HD;×ýÎõëdÿ{%ÿã§üJþÿ¸WŠõþòŠë^qý:Õÿi¯ÿY›ñ?W›èU&ú»ÚL+ësº:VæuÏòÇ5Ö?<ÛžýÏñ‡çüÃo^÷ ÿ\[Z׿¾+ÄÿÄþ?Þ¼{ÿÄùÿ¼þß´ùßÛ–ÿŸÆ¶õ.×ÿö”‰þoýýÎùëþþã}áþƒµí¿ywþ÷ß eªÿîùþ÷×ï¿èc}gmÿÏAóWf#&.±úï$òüÓûŸ-˜xxVO»<ͬ-/ñX]¼pþÖÆú¯–ì?;$q¾ð¿êá¿X¤?{ øë }‰æ¿ºÃóW6§ø¿ìŸêÚ?ÏZVø¿î‡ñÚñ5D‹ÕPÇsÁŠÇÒÁùâµÿfF¹ÿ_Ï(÷ÿÉŒþ=Ò?Þ›ÿáKJ}quÐÎfæö–ÿTü¿›±Zb ƒsurvival/data/rhDNase.rda0000644000176200001440000001547213537676563015110 0ustar liggesusers‹½] ˜^Uy¾ß ²‰dU" ‘C‚ Šz1a²‡¬3“ PH¡Ø*¿Z—ÖµnU@q߃ˆÚL­­Öjw[­¶ÅÚjÛÚÝ.‚ïðï¿ÿÞ2Ç—7çÞ³|ç;ßyÏrpÍ𦥇n:´(ŠTÌKó ü¯(Hø‡‡€ºáYëÆnÜUóŽDò`àQÈýÀƒY¦ŠáÅTàÀSE<ßTñCtÖ-_<Ú18x 0ÕÆQÀÑŽc€cãfà±3ð8àx`ðxààD`8 X<888Õqp:pp&p°8X <Xœ,–çOÎΞ \<x*p!ð4àéÀ3€¸¸¸žéX\ ¬..®˜•À•Àª¸ Vk€µÀ:`½c°Ø\íØ l¶Ûf`;°Æ€q`'0`¬‹k?< ¸x6ðà¹Àó€ë€ëç;^ÜÜì~¸ ¸ø9àà…ÀÏ¿¼x1pë t/©ÁK—¿¼xÅ ¼xðKÀ/;^íx ðZÇë€×;Þü ðFàMŽ7oÞêøUàmÀÛÛ€Û;€wï~ͱxp'ðnà=À{÷ïw|`>|ø°ã#ÀG9>ìî>|ø”ãÓÀg€»{€Ï÷:>|øðëÀ>`ø à‹Ào_~ ømàËŽ¯¿ãø*𻂯_~ø}à€?þøcàO€o üðMà[ÀŸß¾üð—À_÷ßþøð7Àßß~üð÷À?ÿüø'àŸ~ü+ðoÀ¿;þøOà¿€ÿ~ìøÇÿÿü?ðà~ஜþaÐ4ƒ¦4Í iM3hšAÓ šfÐ3ƒ–´Ì ev¸Zfóh™AË ZfÐ2ƒŽtÌ cý2è–A· ºeÐ-ƒntËNt '9ÎtÌ c3h˜&€žôÌ g=³E3]³Å3}³%33èœ-›sÐ<ƒæ4Ï yÍ3hžAó šgÐ<ƒæ4ÏJšgÐ<ƒæ4Ï w½3è­p@ó šgÐ:ƒÖ´Î qv•cÄ­3hAë ZgÐ9ƒÎtΠs3hœAã gÐ6ƒ¶´ÍFh›AÛ ÚfÐ6ƒ¶ôÌ g=3è™=[m3h›=Ï}3è›=€¶´Í m¶Û}3è›Ý,€ÖÙ-èžA÷ ºgÐ=ƒîôÎ:´Í mm3h›AÛ šfÐ4ƒ¦4Í g-3h™AÇìu3-³7Ð2ƒ–tÌ c3h˜Aà fÐ0ƒ†Ùíè˜AÇ :fÐ0Û@à fÐ0ƒ†Ù{ïs@Çìh˜Aà úeÐ/ƒ~´Ë ]í2h—A» ÚeŸšè—A¿ úeÐ/ƒ~´Ë ]í2h—A» ÚeÐ.ƒvÙÐ/ûÒ @Ç :fÐ0ûÊ @Çì«è—A¿ úeÐ/ƒ~ôË _ý2è—A¿ìh˜AÃì›è˜AÇ :fßq@Ë ZfÐ2ƒ–ÙwÐ5ƒ®tÍ kö}ÇfgÐ8ƒÆ4Πq3hœAã gÐ8ƒÆôÍ o}3è›Aß ÚfÐ5ƒ®tÍ k]³ût·i Ú–ð—©=^‚¶%h[‚¶%h[‚¶%h[‚¶%h[‚¶¥©}t-A×t-A×t-A×t-=зtì @çt.AçÒñh]‚Ö%h]:Ñ­Kй}Kз}Kз}KдMKдMKд-Kв´ØKKа KЮÝJЭÝJЭÝJЭÝJЭÝJЭÝJЭÝJ9 ] Ú• ] Ú• ] Ú• [ º• [ º• [ º• [ š• W z• W z• W z• W z• W z•6; Y š• Y š• Y š• Y š• Y š• Y š• Y š• Y :• S :• Q •®ŸhU‚V%hU‚V%èT‚N%èT‚6%hS‚%èQ‚%èQ‚%èQ‚%èQ‚%èQ‚%èQ‚%èQšÚcÍ<ôCÚÌëƒZâ 8p8hqð~à‡‡î'9G8lŽñ¨‡‡Ï=KÌŸ±ŸxÌ~âÈqÔÈ£[☖8v@7‡xìàq-qü€X0¿Ÿ8áaĉbhœ4X¸xÂá䇧 ˆSç§ ˆÓpÆàÌýÄYbÑâ쇋çOœ–ì'Ι%–6`Yô PÔ°þ½¨y>ó¼Ð¯Ž¨ž~uÕ•oS¯Ö§u·­«®|»šì‹Ú®³/ò‰ÖÓ¯OmúÜÏ—müÕ4†ÑŸ¶~ï÷,ƒ¹ð}]MíDãÖ¯þAÞÕµÕæï³mSÿ4ùª_ÜF±TWoSÝZ^óÚFSþ~s=ÊÛÔf]mêŒòFíÕµÙÖß‘½ê¶ó%*3Û±ï7‡ëìÑöûk“푯ڶýéWnPŸjÑÜm÷AæsêljŠá~m6Ùݦ¾è}›¹ßÏî6ó¿M|6Å^TVÛ$Ö£yÕ¶¯‘½MþnŠ¡ºtdg¿wƒ´åiÓß~¶ô‹«A㽩œ§çM}z Ü÷‰Så¾Ïß#éÏ ßë|‡ó{„ß!|§ó»…µÜ?ð]’üaç½½Ÿ ê#ÔùãÒΧ?%þàsÚÍúï‘4ùóLÊ‘÷Êû»„uܘf{wK;¯r~µ¤õùk_ãüzá7:¿]ø6gŽ7ãb³Ž×^a?Úÿ¹ŽüÚÄïVû4®è×OÌxÐqŒXããc¬÷ã`@þpÀ¬í5ÙI~«3ÇÿvaÎ÷w‰?uüé·»%}ï€ü¶–ü² =[ÖúUWøü¦–|sÀMùõù‹œomHëóˆ¿à¬z@V½'«¾G¬qÍ3ÆŸêa[ViËwü>ç÷JšL}‰æûÅõåî€ù>Z?õy³œÆkÓ8ÜâüBg#>“óK„;ò¾#ü ç×J¾·8ëx2t¼ô¹êÚ½Áû[²ÎO>¿EXóÑ?ê—W:Gëòë~³óçh|u½lZW›Ö[]šÖ[Õk}›ð»ä¦õO×é¶éûÍצõ“~xsÀŒ÷h}˜þPÒùϸ ½Ñ|Ó}Þk¿t?³7`Ýgëþ/âHï”ztÇýNdO´$$`ö3Ú¯é>+â´äHo"~¹3õ•ã¬óŽã9Þ’_Ð2ßgÆß]’æ<ÕñÒ8b¹½ÎŒ=5ÅÎßH·¢x'ï¯.)GçÓh?¯ñ¬çS²öKωê—H—›ø²Î[wÕí¦óW[nŠH·#Žâ§íyP׋¶ù9þ‘þh>ͯóêÓ’¾GžG¬û²&ÿFùñ¥ÎºÞqê~UÇ%º?Ñø‰Öù¶çb]•÷ GvÝ-ùTç4Ÿ¶¯Ïéê-Ï%‘Þ0N¢ýOÿÏÖu‹û`]Ÿ:ÎѾ˜üa®cºOÙãL~N`™çfµëÅÎ<«¯Öý¹Þ—é:»×YãpÐýÇ^)ÿÉ€£õQ÷åL뺭Szo«ù¢õŽó©éÜÞ´oŠî¯ÚÎ×è|q“6£]_¢{lÕqrÿûHùW…±ó¹c7Ní(çÏxxÀðØî©¡ôþü±`òìn%“Oì8{z ¹S}Ï4ß/ôô©ÂO(ª| ßÂRî ~¾ó*/*ªùΨæÛwŸ§Ï øô€Yï|ç³ÅŸîùοé·eE•—J»Ù¯ì§óYª=/2Ûñ÷û¾!Ï—y¹Ç;çÏíTùxçL{¾ÇÊûœ‡œOò| ó¸ûûSÄOäEÂ=q&~R>·á}wªé<þþ¼'žœéÚ§þ×ù£ãÈ~(Ÿ#i¶CÎþ‘÷L«?›øÌ¢žYãKíæÑ‰Î'y>ŽûgÎw²ÌÓžø%çùB.–|´§‰ñüŒß£œ-ªie–ã|9FúOV½b»ób>¼Så#gË'œÿçœuÞ3­ú±ÆeÖ».ïû¡?güEóó¦ižªÎ,èÔ¿'ŸpÏzæÜÿ䢚ÎóÏ9ëŒ0óEë§¶§•£¿iW0û¾íé#È^þ(O)ÏGÕ|GÉ{3]˜ó¨gýëTYu8ÔeyO~T!Ü©òaâ‡GÏÕO™Å_œwÇ)U?p¾=®Seê×ÙÎŒ³%žæú×vÒ|,?Ÿ~c½*S§ÏíTy©¤™oa§Ê´?b‡ª»:ßtÿ´ØÓ=ã%¬ë£êF/˜:F=Uæ~û«ˆ s¾Ó/‘pÿC;u¾åöÕyÎv¹s_v¹ÓŽ{t·èÏMzÇ~é~.¯ŸÙ©-ÇÃó´>vªiÕsݿ麭S‡5q§Êó•‹zæþ…Ìñ] Ìq>°%ÓŽXõ‰ýå:ÄxŒÎ{=þsV}gFót©äoÒ¿üý€UT§t~Zð<ŸCÈE•£ý»ž¢ýËRa=d–|:ßy93­?þžû¾“‹j¹hÿ”ý%ýÖóíÓ}‘êr[îé·ðyEÕOÙ_zÎçQñ_”Ÿí°^®GQ;ÑóF]õrzÞŽ˜þQ¿7ùÓóïûր唣óÞ‰þžç6ÆãOãFÇYõ8Û-~ê¹t}”×|\u?ÂçÑø.–|ÚÆÇÒN}=|®ëtï¡õ‡óGê?Dø‘ž/¯WžÖu+:wó<Àý°î¹/Öû(êuæPO÷ìï¹×ý÷çz~9ZìÒs ¹gçé…Îzþcrœõõ¬€uþöè¤Ô¿¤Êû¾ìi½7 ×)/÷½¢’׳¨Ú×3ýÑçû¾[TÒ=z«¬õæ?¢})Ë©ùœëvdÇ ïÉôkÓ~º~ýé~,xð_ž_Ô~(ºß.üÚÔŸ¯—#ÝR刧W _ðö©?·•ëKÏÏ4ë!oõ÷äÕžo“§—_óàŸüœ|Ųÿ”kü=óoöô:±“|‰—–´2ß+³ýiíoðôˆ¤/ûiÏZoý¿Èß“Wøsú‹þe¿¯ö4ŸÓŽí:Ožs\XÛ»Lú·Êß3Ÿúi×Ç÷ìŸsÜÇ$.8>_æßâõ’iÛ£hתÀ.ò2gŽCÄôÛ£_—I}ô£ÆíPÿ±dúé ©OÇÌü¬oXüÍñÌãáù8î´'b¶¿VìÑx]-vÑ÷Hýôëz)ÇþÓN¾çsÖÃñÙ(q¡ó=òŸÎæoâub'ýN;"Ò¾í^ãHãEíüH©n²=Λåh?ý¨zM{i'û­öp|r|û{mOõ“öÓoL3~Yã¬ó†¬º¯å§Q\²æãxëüÕrë%­ã·^ê'Ó¹ÿ2~›<=ê~áxÐþa©_ÇIÛÛ,ý#küF¬úM¿pâ8³aéãSuŽïWJ~ê Û¡l«Œ#í`ÿYîBÉ—ãTtv±ü¨—c{¬‡ó¥”òô?Çöè¼Ò8ešö”Â:^ì×:éÛúEÿ1žTouµVüMûùžvh²=]÷içÑu>§_é7>§l—ý\¥þ“y§ãCf~ÖýýÈ÷Z2í^'ãÏþ1Ε/¿*ÓŽh}c<êþV™ñž÷Å·9Çßù<é'ûÃxÐõBãvÑ?ÜçÒÏL³}úƒ\Ê{Õ³ml÷Š >ÖÃþDû¶K0^—‰?u=g=íëWºHý*vsœ¹¯ˆâÌñ£ßUçéÕÚ¹JÚQ¿R—éGÕ?åñWĺް~ÚM?lçê?–£ÿèoÖÏzèç|Ž“4ëæ/™íÒ.ÚOÿÓ¯|Îzu]gþmÒÏ<žÁ¼ÐyÍ~é9Sum…ØÕ´O%_-þÔv׉ŒÚËçœÏú\Yç-ýÎq_.ýÑù¨óùɺ&3¿ê™ýV?„ç‘ÀϪ'Ô3¶³LüÃ|L¯—ñØ ¬ç{í‡îë¢}$ãgXÊ5ùéB±—ãÇ4ß«_¢ùÆñQÕ÷Q½Œ{¦i×J‰#ÖG¿êþ6ǟ̇ËÄOœë¤ÿ\9ÏYžó-ë„ÄÉV±_÷É,·Už/—ò[¤Ÿä•kü+³ŸºÔñ,¥=o’£{ ½/£^è¾›ã¦z£û¾gœuÞ‘õ¾ª ìÐç‡ëÿèº8,ã£ùéw=§/—zô\ ÷}:ßi/óÓÿ̧ëvt«óm£øC÷Ѻ¢zÇòÔË•ÒÛÑ8[)ïéW½ÿaZ×wöWYÇe‰Ì÷|•úÙ?úy­´K;9ŸÙ߬+ý—H=:¯˜ßë/üþÿÖO½=èNr9Ò5PŸ÷äÛЩä+‡¼«:>~ŒûI·§¨æßäÏ/òü«'kë Û?—í9¯¯Ú]žI?xýÞÞÅžö~–O_]µ£§ÝåÒï+;}óç|x;ã{jó—£õõ”cõùÃv×ûMý–ßå~Ø.ý\Ý®Ÿa½§£íìxšç§ßÖNzyg«œ‹Û½ÍßÍÎÞòÞÞŽnùòRñÃÿtçõõí”›ýý9Î#Σ÷I}nw÷g5qQ}žç ýs…ó·Wâ+ûíbÏ·Òó–Õ|=ßioçßîïÇ«ö?ÔLÿ—kÜO[=½ÚÓ÷£¼Ë×»½;<=1ÚÊîgüÈó¯ñò2^=öQçvîéòùžv=›^Gœ·••ú²ö·¯\XTû{y§ZÏûrkÙ¿Ñí0ŸÇu¹³eþK½ýEÕ®ËÙ?÷GYµ³¯ö›éì×µÕþL>ÉŸ¯tëï·\ïÏO?].v®ìï·mÞ×ãÙêËt}Eßòå%ng^t*ÏËq÷ãRÏï:Ÿ×Ý`½‰ô*§·JzxÿúÛÚ/[g×NS¹òBéÏæj~ú»§Ü ÷'uDöå:÷?ç9u–zº¢ÛŽêjã:Éq¼¸?ÊgJÿF‡úûcGÙ¿¿£Rç±ø­Ñ.úe{}ÿËgz½K¤=ž/¼_å÷'×úÙ÷%\?óº=á<⼦Þî¼n\âù²nOþ©Ö“÷™Üwˆ^æþ1NvÞ×åµ^Žë…ëu²§ÝaÏçûܬ“ô¯ë@8#EÕ®unרP¥|¹³ZO´.5ßóz©»›Êª¿6‰¿ÖW휎#ÚçvWTìßoÝá|s½ä>•v6–gþ â?ñ§ê©®å"·ƒqíþ)G÷Ô׳ƒ~ÌåH·_y_*ó“ëxyª3ã˜ëöD·=êjÞŸðü·Áëß9Ù×®rsÿ÷a¹!±wâ¾júÉEßzÕ_yÆý¥Ä}´ê™ï[ëO^··HÆëÛk]/÷Íce—¹«Ú—ãÌ÷¯­ë_Tµwò‚¢¶|¹±[ÿ$×Á5ôïP}þáúzÝpÿžíãú ó“qKÝïÚŸÏùxu}Êç!ÕKΓ–ç¼þvý•÷c+ÄÞ†øÌzâûàãÌÛm¸çèíoPßÎ{y϶–v;ó|Üÿ5Çßd_ÿæô“úÛ7[.¢ûY7Cûõ¾à<÷ïG׸Ÿxn^-ù¹Nø{ÝÿœÙ¿ßù¾‰ç(9¯åï \§¨[Üç3~yNá}_Óý™è*çg£¿8¯Â}d}»´»u\-­÷[ëï:»ÜoòÝç×YëÏá²Oóûw–¼/÷õ&ãÆªó÷2ÿnù³±]Æïùüœ4÷Ýtֱ螀÷…ܬõrz?Ï8,;õõè~÷¿¼àþÊ÷/ùüÈuyÄy¼¨æ£ß®®Ú‘çóNr}*.W¹]¼÷ðûóìOêËSœ¹¯p=Éûä‰vvO¯ÿÞÎxÿrÙŽ]£]¾Xíõ4¿Óè¹Ò×ÏÆu(ðz5.y>Ù^ö¯GÆ7ÌÇýà®þvM“·¯çÞgŽ».wæ~Òï¦uПó¼ çµ^÷­-íã¸æïvRoÓ÷?¯æ{žYêKëöè'=_ºîeòûõEΫ»ùsÜù=h£=ú½WÏS×ýýulÙ·œÚ¯ûKýÎ;½nMvýÈxí¹'«>ÏqË{UþÎ@¾§ÄzâõpÞ\Ú²œÞK¿'˜^Wêý•ãG×>ßÑΞéq)*þëyÏué)ÕzóºHÝäzÌ}7Ï¥¼Ox2ó ùóQÏïÏ×Õû#ßkø¾.ëö–À?ò{¬»>ŸU/ó<Þäùü^(_¥þó¾u<°“~Úìå|•uibOm9]?¦ãÖûéßó³îêþ!²G¾c÷¼ç¸øú™uw‹§y_ ûþèÞ‹åØoîï¼· íå>Šß¸ÏÜ1Ùª~ú¿çû ¬o=ë¥Ì§ü»& ¾ïäïÀ-÷Õ¹¿Gñ\«vpŸÉ{Ó|¯ãÌß 1~ó9ÙŸçýÃh_»¢s~£ýr..wUûÏýyX^â&ï¹–u3Ú?öÌ—íõùB;|ßß³þN”³ò‹êT¾Ïæxè÷ þž`Ðs¦ëmN\Ô–Ïç%þ®Ê÷ŸÑïj¸Î̺ßcÝò=ûFÞ³ëüdÜR÷¹ŸzšôzC?r=R½gµôgþþ«û“à^4ÿÎË¿_é÷¦ì߆ßÙås•ŸzÞsÂõ‹çqîg¨O¼?‘ûϬŸü^BæºÀïü®œ3¢ï̺¿Ñûw¯MßGÃv$¢xm{iÇòû¼i½h×Nô{Í|~ôïÎùw\gä^6ïý¾ «~·¦Îäû©‡ãÎïfÜÿDãÞòÜÙ«ëCíüÃxÔóï›6×û/¯ÉYÙ›Ëó÷'ú=‚ëiôû™õ³k7ÿ…ßcø;ÞÔ×K]ʺ¾²ê'ýUOyþ»AÃõÁÇ«í¾lº\П†u6Ÿ è'ú:+÷­í‰~ç¢÷oËûûs¶¬ÿg×=oÿÏö‡éÚ þgƒ®½îÆÝþ÷y»oà_ÞuÝînY<Áô»®›˜NÍ»f×Mþ׃®½éÆÝc¹ÜSÉëŸ/6rÃõ7/¦SÿÕ®4åŠø‰ÿ1£C'Æv-¾æ)ºÿI£û N~Ábsurvival/data/pbc.rda0000644000176200001440000014010313537676563014316 0ustar liggesusers‹ì}˜Eó÷ÎæÝ‹$£¢`BQèãrâ’Q$šÓ© ‚‚Q@ (*** ³‚ sEŒ¼`Vüª¦«öv{wvfv÷îðûÓÏ󻺙鮮®Ô=qûä èt8N‡Ó§9œ.ø×í„?šÃ‘ê?l8ümÿ6dÀ‘»äaVÓë</Àð°)²M¤ËvŽL@ ÐÐÀ|÷4ìh 8p à @3@sÀÁ€€–€V€C­mmíí‡è 8p$   +à(ÀÑ€cÇŽt8Ðp"à$@@O€äzry€|@ P(”Je€r@o@ Pèè èè8p `àTÀi€€A€Óg†††À6Ž€‘€Q€3gFΜ 800000 0pà|À€ .\¸pàrÀ€jÀ•€«W¦¦®\ ¸0 0p=àÀ ÀLÀ€Y€Ù€9€¹€›ó7nÌ,,Ü X¸ p;àÀ€ÅôûK÷îÜX ¸ðàAÀ2ÀC€‡–<XX XxðàIÀS€§ÏVž¬<X XXxðàEÀK€—¯^¼x°°ðàMÀ[€·ï6Þ¼xðàCÀG€Ÿ>|øð`3` àKÀW€­€¯Ûß¾lì|øðàGÀO€Ÿ;ÿììüøðàwÀ€?þüØøW†¾4ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø×0o@ükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿZKÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯Aükñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÚÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÕˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ}¢ùy6>.ðeÈâ @,úÀp<:Ã\Ÿù˜´ø·{œ’2Aß.tjK6Èî{e€>œØørÄL6øó ØÑ ¾Öà6é™ Ǥƒ-²ÀFiP/ó §éwüÐOб|£بä‚ °Wä?ä ÄBð'ä øoŒ'~á‚öÀø=à+>ðÉtÈ À–~È]  N6è âÇþᜒ:ËßB^É‚q»A·`Ÿlè+Æ— ¾ãƒXqc~,”¾êþ™`_Ø99"â? úÉ‚ü–±æ½Hæ´èÕ ù+ˆ6ß íþíÄ|}dAœ;Á3AO™ÀÇ :Ï€|‘ŽzŸK%§CŒ§ƒ}3 –‚ãÈ‘~ˆ±@g©käÀ ˆ¥ 3tóCžÂõˆo§Ì»éó\OÓ€wlá‚8M‡|í}¤Ã¸<`wè. ü3r¤ƒ­Ò!æÒ!¤Aî÷@ÎñCL§AÎKƒÜ»¸P‡0'¤>ƒ ç4˜<à“NÈ}i`—4È nà—†ëðã Ä” b5 òVàA¹ä ‚ìÁä|á§üç†|ÿñ‚‚àËn˜C‚ · èÂò!~ƒ÷AÈ%lù(: ÂX‚0æäÜä^?ø¨ æø“ôê„y ù00_êçŠÄ˜ òcb*c €î¯ ƒtÀ>Á¶~ˆ ?̃~È‹~ÈŸ~ð?Ú|Þ¿Tú–Æî‡ñúÁ®^ÐÚû!¸ 7ûÁOüGÜ0gù!÷;ûËœæƒñù`îñÁø]0ÿø‘9Ës§âÞ1ëÝyÁž>Èi¾ÉDÁVN˜s}³]?}h‹»¤_za®ñ@ì;aîóB ya^òœæyÛ ¶óÂ|çð‚¯{aî÷‚^˜ÿ½_½ ¯úõÂ<0¯xÁHîeœï1î9<¯RìÌ›×70Ÿx`\nà弿Øð€žÜ/n˜c\-$Oæ°¥låž.ЗÚ:AØ×“!טÝ0&7Ìán°¯{-ò¬âÌû]à_.ˆU´Ë‚¹?ÆŸ¶÷Cü¤ÁZÁ;KÊ.ãÝk… Xd€Ü Q÷àWÙÓý0gy@Ï^\o@|¹ <»lg€þ‚àç~Øvß ˆ« Ì0O¤ƒÝœ0O¤£¿Cü;!‚à—i`§4°™âÙ ë• äç èÄ2`NöV’ƒ¼ð æ˜ü ŸÿU9GaŽÆ5†×x ?7ø¥ó´ñCžôC,ú f<<ƒ|0.÷,és^X‹ùΑk"ø‰øyA^«r‰Ö^˜ï=XzÈõšç² êæäK7ä 7èÀuŸÌnhï†ùÜ srŽäv÷6vC7¶Ü炾°Ætƒ¿¹ÁöNð+×[5ó‘~nä J§SQûÂá0ù_mo[mcT×aP×HF#™cµ1’ÇaP?Þ¸âñ¶Ò_,>ª=ÊþxýÇjkÄÏlüê¶Ú¯ÊGåo$ƒÊϨM¬ïX,?ŽÕ6XýÙ˨ž‘>Ìä1“+\—*O-l¬ïXxp>±d¶ÂϪTZŒývlK†x±fÔ.^Nql‡S-6áûU¨Ô(cù8+>K&+Çi~½.êcíS÷«m5“¶f¼ÂyÆâ¥òÕ&Þ>µ­QŸjµžQ«uôdt܈g,9­ök¤×x|âÙЊÞãùY¼qÝÌ­êÓŠ¿Ù‰+r&3;þaÅ/âŧ•þŒâÆJ,Yµ™Õ¸Ñÿ¯vÈ‹Òû°wá_pÓîåCwùçýsƒ(;¾Åé#Ö>'ª¦,Yuí†CDé¯ßúâ¦ËEnÆe·m»LTΚùWÞ§¯ˆÒÆÜÝ{Ù‹¢äÚüYÇä]-òs´ÆvÜ"ªî~¯Ç7K¾%Ÿ ùzkåBQ>{Q‹éâQðáñ5n7C”5¶©êâKDeÇÓNêûãÅ"¯Û‹÷ÞµûWQ²ÿÅï>Ùÿ*Qò[vécGME/¯ýîŠÕOˆò?ƒŸµºà!Q™¾«æ¿Ne­GxÞ¨¢ô¯×ÏÝ1q¾(è5züVLüáÚ´ãD‰«ý˜·:eŠÒn=Wç‹‚‹P°N¢âç¾øéðÕ"ïѾÝÓ_»Qä½´âåN=]”ü{ÑØÏz÷ÅK:ÿrÿøE‰oÕÊû®î!Š*Ž:e¿oeGÏÞoÆ™3Eo”¢tªèU).Xr¡!¯ÞYä…ýÉâíãºü|Âf!>ü~Û-kEã&¸ŸiÝMôzmæâ™þ-ò¾ž¾àÃQýDÁ¶¾ÿl…¯{ý•ÅG‹¢Ùãò@¢÷Üi7¬l¹S”¬k:°ù¢M¢$íXÔ˜(Î?öò«ž(•·ƒ–ƒDw»íì#*†t…•cO^}äé¢bòaíw +yüø®û›EáñÿÞ[ÜãhÐÇ—Ã÷Ÿ(Dï+¶Ï©˜!Š<£iç^'в£:pM·1¢hLñ-;þ8T]Í DnÏœK:ÿ*Šy¿,mGÈ_ßç´ç·5Å¿/qXt½(Úþ\§v­…¿ÿóä§ûŠÂ^Y ›ÑÆÕwÝí?Q±øé_}~„¨Üôaúm+rD™¶vö+~'Jwä?›}ÏhQˆ^ØÿSQ2´ásV7½î^:üš5{DÞcC÷9|»(!?«¿zÍŸuŽ(ØøxæùAÑ÷ptì=¢WÞÉÇÜ~<èõ—Ч¶w[ » Ct£êN7øg7q¢>ìBQÔý‡F“Z¸Eñjו­gÿ ~´ðÉGºíe¤ß"ô‚£>ùWùx÷ãï9žÆ«Šª–·Œ8Ó÷•¨èµþŠcÛlŇ?sÿkC_ Ôè ¯È<õóU÷ydïÒ§Ý !!ŠoÛÜ,Ðl–(ýÞüÛG=,òu3_!zOó¶ÚÓó\QÖÙ³ ­(B³ š"J[¾Ðóå^9sGgˆJŠ“Ò'Þø9Ó=SlO{öìA‡Š’ _»}«V‰Â[Ž»þÞ¿—‰’ Kw4ݲ\dT‡WDÞSJö¼äoÜ| ˆ, š7ï5LŽÃ0‚E^ÁkGïØP!*ú\{GÁoÙ"­èºRä_²åÓ…__qØTõ‰OTœ{j@ßñ爹_åŠÂ¡º£ŠÒÀÝ­Þ‘! 9Ÿ|º{QÙÈÅ¢0£MþðS·Š’6¯ÿré¼Q¼àÁé»nì Ä÷u¼¶é*Ñgíš%ߊw½·íœüż DÎåý?ùæBŸ(: uÚð•¢êÒî¨Q´qÐ)‹.ÊU¸{ÅB‘Ñå+Ë7\šù¤(b¿!-Ør²ý‡?ˆ²GæÜŸûæÝ"p[a¡(?ëÖù¿7/J°öØå"•†!JP¬•‡.ò”ÿgÑûâûp$¢póyÏ}>äZƒ  »(ê÷Æó]ï^*Jú£cœ Š~:í–àòÑ£`üå׊Rú'.JéŠyod½Ø2ûQ ^9ÿõ^¢ ¥ð¾È§¸É/zâ®ÆµÅuÙ…ß”ºx¨ÈkUòöŽ;&‹^äçE{¡ÇŠ*Ôò)¿Šœ¯O_sAõxQQ¡3Å}pÀ‰ÒÜó¾j5ä½÷ßvÍÈBQ2¨dÈszZvŠ‚®o] ©]œ4óÀ¿~/)eS-|à²7E彜m “‹<0ÎÉ7ö¢ù«¸ÿv‘w½¸¢7H5é ¢Í %_vЧ9¢ÿv~Uôg;õñõ¢O—ÑKŸ=éJÑûžõËL}L”Tl{aÁåËEÑ–Gž›²äqQr^:f8QHy¡øÀƒ¹ñ+Q…aüÎë"Óþ7÷ˆòyÍs›ó»èì¸b÷~O‹œ2L¿ˆ| ÏÏ–ŠŠ·–ß±qÚQ¢¬ra׿MrD!zcU+Ñûdø†È…dxþF—ÈvïùÌk.ÊNuõ+ê’-Ê/zù¦ìƒ?½pon3QqÌþ÷-? »È)ÿã”q·måÅûãŽÛEþ)¯ö[üÍ;"çH}"ÓÀ—³D.åßò-Wmm½æmQ¹ðŒß/h÷”(Äi¬ýBQFrç=òýÏ­cDel”¨ü¢ûÚn zº¾@|©'6!(åaù¦‰ÒU§ý¼nbCQøÏ Žc§ˆ¼‘…•/g\.Ê.]ßöŠáQÕ|Ñ;¿=ÿ”è‹Óp«{Dî/m¾ëÖž"G3êJÑs“î}ó-QNz)F¯i3Q”ãlßc¨è³XwQÒùÖÿ=üʼn"„˜"gÜo7öî×¢ Á1¢ÆYÖ^dQõt“F<ÚæÉ'¬h´QL×'\qBaëï–Ío*ŠOœtϼ·¹]ÿÈ»Nâ´{Ò'¡qäv¸h÷¸ QœñÁcÛvž'r®/Ïßþ½WÝ e?…6¼÷âE¯ˆÊ gÜ4ú½BüþÖg—tÊGEE]²vþ5QöðÔ){ƈܱ7¿yþ¢œâ¡è}b•[¨Üõí¢òŠ@ñ9YóEÞ¤Ò/2·~ Šq9´f‰([Ð9‹ÞÒP"gÙNȘ¹¢'ç9HÒÇyöƒxú4õˆÈÅôÛi(‡E„Ž(X¨/D/šÿ{÷Cß,rh•Ý7~2c(ëª'`ÑcÎû-Žœ6Dô&?*o7øÁ­T‰ œ¦Ž{JôúwxJ3!hé-s¢²çnX @ž¡üÝg­¾åó|Ìjÿ' i»€ÚÉi>STÒvÑ ªŸCõKhÕç~¸o3ÿªWF혖R}–—÷Ò~O‰ÒO1Ñ":Þ‹å!ZE틉²¼¥J»J>NüY?å´?—å#ý•ÓqÖO¡²G|X/¬WæÇúQõÌõó•ñ±ü½ùÔqq?‚ê±Þ¸?ÞÏò©|Y¾RÅ~,ûë¡JoÙå)£ýl—bEO!?TüOåÃöáþy?ë½TÑG¾b·bÅ~9Ê6×cyË#ýÕáp…ß72ºvï¼ÝÊ1;<A¼ë?VþOVN«í¬èËÊõ»üã]‡³Ã+Qß0ºžb&s]øN*‘ Yëj¼Vc·>tï:c}Ú.U2Ôµ~­Æ•ëèµ<ÖˆGÀ½cFž?r >)œ-ê{ñ‘BùÏ(¥¾gø˜¡“¸zˆÉ¨¡Ã'ÃGŽñ1ÒðÛRfE­“h›DÚ%RÌx$ÒGªå²#c2}Çj›Š±ü×K¢:H•îŒøÔ¶m’w}ÅMÂ¥zþpD?&áû?–ïåGµÊK­k[í'£þcmÇjkL±Æf6ÆXrÉOæxzÅÏʱx|¬Ú;O3ûõm$«™Œfs©™¾Œlh$«U1âi&£Q;ñdäofv6:¯ßx±Ï_ÔbÕtc§†6ªÞ‡ÿñç£ðb%gYõ©x±mÄ/|Ûj ˜åúx¼ÌòŽ>Vò¨]Ä:f%_õoÄÇn1›“¬ð·ãñljuŸÕ¹ÇŠN¬ú•U~\Ï̇­øx¬ãVcÙlΌקY±šKÌx˜ÕÇ÷Hë=×ùHl¯çÏŽˆÒss$µZT>‰7ë×”Ïfkõ¬–Dù¤ª3~©¶SÒü7Ǧ©îϨž™ýüÝjIµ] ûÙl±ž:ž:’/Ù¢ŽÏÈ_ìêÁ®= ù¥ˆO]•ÿмõ-gmç¿ÚæSßÅêü\WzKx~Þ\»üëºØÍ›‰ÎÏv娫ò}–ý9Éã‰ö›êR‹ýÉ×™§~v.À²°ç¯£ôÒóï X6Š´£ôÒs;ç¼·Iî¹_t¤zÔ^¤Ëö=·?nÏ”ö µoY_4¦v_Q?$‡èBÇj}’÷â×…äáã$hHíh|Qrí¢v<¾fÔ>Hòðxv¿ƒ¨ËCz Õgù›Ðq²gÏ=Š^vFÊ!šÊzÂMív+rs?NE.æ÷=Õ£þCò[-ù²¼<^¶;ËÁz;šäe>\ŸÇÁõZÿ.H¹:Ðþ‰éG¢Õ?ŒíBüxœQ=’S4Vü”õJÎÜóªÏõx<ý|œhz¤BÛ»#ûUã&t\±›8’¶y\W^jÏþù{¤CãRüV4'~Š^Búc}ûHξ,ß.Ž;’˯؇åeûðx\Ôžõp|u¤¾8°ýx?ñ éŸã¾ñÍ&ÊñËãa=è7äw,?ïgÿ(úa{±ÿqžb?þ*’¿h§ðc:LÑëîH}‰nÕ‘zlKrE†2p¿ì—E>E®¨¼ è;¤÷¬H¾!=é“åÝ?2®Bó×ã<É—ó‹8Œøþ)gˆŸ’OCí(Ÿ‡æÃûq?ˆïï‘ò„ÆÏqÃù­ms~hIýe)úb½7%ù˜Ïn;p\òüå§z<Þ‘z Õ§z¢Id\„ò×ãxâ<Äú å{ª—ÿêy“ÐH¶o+õYž(;wÙáç¡qñ¶,W+’“â;´náñ¶Rò˥ؑý”õBÇy=ågêø}‘vVý#Dÿb?ˆGˆ/Çë6…ªë-žÕü¥Ì«j> ù3WûAÈh=È~Ã~¨ús(ßIüøø~¤ÏCh?ÇW;¶‹÷JžÅ%Û•ã§sdýÐø™*~Êßê:‘åæù¼«"‡GÉŠžÅ¡‘ñÏãÍ£JÞ QöƒÖJü°<œ§Ø¯¸þaÊ8X•þؾ¬¶?ûwDÆQ(ïmŽ—h™§D¶§4_ˆ†‘ñZ²Ÿòú„ågÿd½©q·K˧㣿³¬øY`ôüäòn‡þy_ü¼°þé\X;Ñâ¯8ôÏãgеªe—øcüÔ(JŒŸiþΡž?E¬B?+‹í`¦pãç®ñ³ÎŸ;ä'maôú'€ñÛœï8äçoñSÞËò¼ø Û±†C~.÷PúÿK‡ü䯋¶5‡þ‰bç(Ún ¸ð?Ù~F?÷ëÄÏt(ÇëZâŸÔÅú:ôO-âç§7§CÿŒ0~:Û õ¨«é¤£•ý³Ãø)fm-?ý§C~ZÆä…vúçqŒó¡-~>??þ†Cÿ,°ãÕ°qøÉgül+ê?“«ÞyµC~ ù-Ò7~‚?íŸþÝ<ñÍiRçú'ž±îk0®Çúg~—RŸø¹ÞNÄã/ÒÚ>½¦ïO¤# ~ê¶Ÿ~À!?™ YJÿä1Ú« êág›©Ñ¹ õ¡Ñ6ŒÇ‰/éág²ñsߟ:äçñÑëúçšñ˜ö+Ùh;Éø‚ÃáA¿¹ìŠŸ¾†Žá'º¿'þ±ˆâ'ŒñóÛ¿SÝWÉføÿ ?9ÿ lŸ%ã'$ñ³Òºà§©ñ3îèWA’?‘ŽŸåÆÏsã'½ñóçøimüÄú{5}êþ~õù­´~.Ùý·ÜçBÇ> =â§Ÿ'“®¡øùBÚEÿ´øsÒ?^i_§SÚß¼ÿö=-ã?™­÷‡öÿÐ??Ÿí¾l ñŒŸ½Ö튟ØÇÏãçÃwÑÿëò3×È ?Û¼ñÃÏK£ý±ý‡ü´5~VcwùÊžCú*¢q¢üŸH»âg³ñ³Äºÿá§fñsÞø‰èÖ4†c)öŽ¥8ÅÏ‚÷8 ®—ŸVv^C>‡ŸÇÏoŸL:ÇÏVWHêýá'ä’ãv/i˜ÀÛìÃÞ_§£ë@"ûÆA~Y£Hû xÒø»?îªï¦üd‘Ž[Á“DíÏÖ« ¿úñèø%ƒի¾Ù´®Wë(2‰¿“·‘tøUd>Üøâ-E" ¬çÒ/ÞG.éõD&ñËл vóÝÔPÿÙÔ.Cs‚RûÉ›IòóxÒ¨}ðI}‡Ð6Ÿ†ÖéiúîÂOr°øú ·òqâŸAíÒI®,’ËKõ3h¼Ü_&é=¸EWHèz"çu/Ÿe‘¼™|^Aü³Ù^$ŸZßËö"ýs=µ¿,² Û9ía}€¢!əΔû£öYd7ë‰ì–Füüdÿl¶?’_žéƒûc¹2I¯ì’ƒ×µÙÔO¨=é/øÈ_2ˆ¯ŸŽ{È><^¶_&ɤñøýd±¼ÄíœÍÇY¶?·g»’¾²Ù˜é­·ç~H~–›×߬çl²3û=ËÃqÄvg?ñ‘œiäG™j?¤'–—íÏz éG‰?¶'ë•íÈõCz'}d‘÷ìßiJ¿¬G5ß³ÿd“}J~I£~\ÔŽçŸe;³r ù)õü—ó Ó¯øÏì·>…/Ï_œÿØ}´íeTäç8òòüJzb=? ÉO~‘Éy•õÇó5QžYŽtžyäy™âŸóI¨Úï$ùx¾á<òÚö±Ÿ’½üÔ>SY7pœ„æKö/’—¯¿p¼g)ãá8`ýpì/\ŸÇÅó)Ç™ó,ËGãc¿c¿TýWã8¥vœGƒ4~ŽG¶ç™ÐúGÑ#Û3@þÊ‹ä~ž_x\4NçêõžÉò³ÿsþc=r~`}’߇ô¥¬K8ϰü^ÒGϤ—lÖσ$/óç¼Çó`ÇEüyÅzQÎćý–×W¼Ndy™?o³?sœp¾gI£qó¼ÉëV'õËúOWìÅväùŠùxIÏ¡ù‚ã—ösÞäñó:íÁúæñsñð:ýƒìëf9”õ!ûƒ‹çW%n9îÕu:矿¡¼Í~Çù—ÇÍëeýÍúáù!´.%}{8.Ù/yýÄë|%?±Þy=Ärrü†æe¶—Ô—£æ=#ü‰5üù;¼N%ògÚðÚÜÑüÙ:¼×òðgèðzž÷ãϪáÏóáO…àGµÚS=üù­·äµ-ýçã°>þÄþŒþôޙǟeÃïAàOס,ø~ø³ixÍ nõ?e7Ä!Ž®Cþäþlàb‡þÓ{øSaúOõJc¸]ʨ_ÿß0ŸÿÀë‰ø“|]¨¯fÔf0õQBýô£ýø3siÜø äµ ýçÛð'ôðgÞJIø“.xmʯ@7'¥„¶¤KÔÛ¹4”¯#àOÎáݼ‚?ˆ?…‡?ׂôs<ÉÑŽx`FÍ$]–Pü©@üÙ?üù‘*Ú2âO^ ò­¦þš“nQ_¥ÕÒðËx· Zq#µ=QŽKÿiEüù¿ƒ¤t}ÞA²t'¹ð' ç“}pÌ-òºå!$;b—´“þ“u¸ý é ë~D}á5ºÄíZI¶ÀŸ8:ŒÆÒ’ô‚׆Ð×zRßådW´S{ªß“ø&¯ êcÄãøsvÉæhÏí’7^ Óõ[Fò@ãÄzøs‰øþt%^ÛÂkØø“Šéd wéþ ú?@cœAcÊ!ýç’®Šˆ×%´o ɾŒä{…äů¨!¯oé?YHõG“ý¾‘ãÀkº-ðçÑç$œJ|[“܇x}ðRª×šê¶!£žÐ_®$™§í‹Hx¯F`~@½¢OãÝôóëȹdƒ«H‡x¯MŸIu‘7~Œ ÞÊޱéíþ‚CÆ-ö±1Â!}sÙêPÒ[:Ö"Ì®iÜØ÷Ó¨«}Øûáàët ?Ô7Äê/å¼XÝRn?±]nO‘7ªÄ ÙJL[+écòÆ›XüŠÜ¾a¹¤³…¤W](éœÉ’^CíÖÍ×ï\‰©gÉí[vK:S.Äm#ˆþ-éô’ΣþŸX.åzü¹=e©¤÷w“tãöOåöã¯ÒøÆJúü(¹Näíù›%]Dò½¼S®C®/·Ÿi$Ç9·ˆä_%¿8·Lïgɹ®­¤«Ž•õg5&¾×IúÒ,I¾%é ½%Ÿ©òFª˜Er,ÿ^ÒŸÊãOu“üV“ôùuEˆ×I®—š ç §l÷ìKrü×!;}nÙ@ò‘\7’\×ÜIú~WÒ[©ÿ)Ù¤×'i›ä^,o‹¹c$½˜ô4“ôç‰DÉ.‹¨Þb‡¤ n’ô¦Aćì>Ÿý‡äç–ôò%dŸÛH®Y-‰’¼·Qý»IŽä_wÌ‘7XÅ•ä—sI¾¥äß·õ#=‘œ×ÊïZŠ…äSÈNs·ÒøˆÏ’{ùÁAÛó%Ær’žî¢ñ]Kþ0“êÍ¢vóiœóIßwÝ éõÔžãðZÏì!´Mr\Gt*ù뜒Þ<…¶)žQÿìwÊÄÕìÔßUdŸym$NãY@í¤í»Hž¹Ôÿtü:Ýù·^&þÓéøMd×ëÈß"»,t>ˆ^CòrÞ¹”øÍ"þ hûnÿm4ž›¹=¿h³¤3IþidÏ«I®›™ñ½ýNÒÉ7ŽÏ[Fã"¿¾ŽêÏjFÇ9ž¨Ý5ÄÿVûãÏDPÞ¼’ú™JúḸ‹òölÒ÷ ²ó½oS¨ŸEÔžíýÅÇÔµ’.&¾3IŽ»I/Ó¨ÝÒßBâ7òȼÕ4j7‹ê_Åñà ½ÐöÊ•4þo%½™ô4‡¶g“ü7‘¿Í"=Ì&½ÝFÇç¿L_©Ç¨Ý !é=4Î¥¯w¥“–j7‹¶¯¿SÒ¤ß)ÔߤICH_dçÉ¿–\Jú£ñ›ÚÏÏ“ôÊ7siœ? äƒÍbÙz:Nùj>éýž»$Ú’ôArÏ$ýÍ&}]FǧÑþ 8P^˜Í”Æ3ì°„ô2ó%åÕÔÿÕ¤¯«IOÓi|G³I3ÈoÙŸÒ¸îüˆ»É_dºªÉ3w>Nã"["Œ×>Ü7¿YäWSisÉη’WÓñ™ÔÏ5ÔÏ<¿~8/,]Dãb}’½fÓx&R»4ò¼{Ç#å­9”ï9¬ÔßZªO㹎ä›C~¼ðªGóÚ×èô ݾ»öÑ}tMž:ø¼hh¹þ4T^? /PŠÞ•òzá byqŠÀ†Ñûx¹}"Õæ–ëða¯}Ÿ—ëõ~Ód½“å¢j­<>øyݳϱrÿé“dý ×I>ÜÏ‹äve¬wõ;†ú=gµ¼þxÚjYoÄ3’Ï©Ëë°gÞ-·û •×qÏ ñŒ¦ë¢ýè:æ9U’ïHÊß}äpQµI¶5WRÖ?­…¤Ãþ–üÊH®ÊåõÕÓß§qŸ¡ûËëÈgNý9]^o0Znó8¼'Û³œÌ—ÇÑw¼ž{ÊgR§Mû¹Þà…’/÷ËöÊ_!·Ï%½{äZ,úTîŸLvãögÿ(ÇQÚ’ìBüØ>E$çÉEò>DÖg½ªtùËÇ~Òé›ù²?±½úµ“Ç^-ë³Î}CîïOãKóÕðÝò8ÛeÉÝ—äd; ¤qŽ¢uÏê·Â!·¹ýƤGê÷Ô_#íÍzaù˜ïÈ+%¿³n•û™O¨Þ6ɇýõÅú`9‡P\R¼pœŒ"}•-‹ŒKŽÖËÄÇd}®ÇLJ¦ËíÁ/EŽ“·ûÐý§ÓY¯¤¿aϧPÜIr Nãü$’žEúÉûžÆIr±<|üÔ¹‘íú“>Q=Õ/‡w–rŒ¦õ<Û—åe½õ!»q;_åýäÇR¿´})­‡û‘¼l‡¡doÎs¬Ÿ“?Œ ΋ìCiÝÌqÉíx¼c—Èö,ç §Êã<Þ$·«"~<~WÈ_hìÅÔÏŠ#¶Ó9+‰/Ù“åáž·¹þÀj¹¿„hÊgü³5¨Ý`÷ªw2mŸLÇÏ$z µ;ƒhÕ§'‹E?¢gåù Ñrjן¶‡8"ùk)ç™´]Fü†R»óZFòg9û‹Èúg0%~§Óñþ´Ÿí=úNIŸR0qVËÈýCi»m öÃx<›é8ñçŸJÛD'Ò~º{&†ˆÈq°^G‰”{¨lWßëÈ}týÿ‰:jž_À žÇð">.ñþç{€gé޳ĕ!Þó¿ªÚ¡—!yÿ7ñâÞ¼Зx=Øè¸×!ß5yÞ!ïµâs#‰N‡þ>ŒÎßUÂì8®Úq ïÇv¥ÿïqÈû¹Ñv1Éx:m_æï à8Î ž—’¼x¡'­©ô?^Ðyð”C>£ñ$ñÀ'µnò}'Ê÷ãñ^;.. äÿø††“"^èÃì‡ò&=¢.†9ä½ÚnÔ/4å‡k ée¼˜t…<ðþ->«@ïNé÷‡q?^Û]xOû4êÿ_DïÀàû0§;äó!øL Þß§ì¯ß/žF2 ¦}xaj( ßîÏsà}k¼<ð1/PÍ¡q OœIz;›øL¤ç<ÆÓ6êàrê«”t‰ÏI¼AcÅ!VÒøó¨ÝL² Þ)8—ä=šŽ!?zßı”èT¦i3–g6õöïA|ÐKäq|Fï÷6ÓiToý¿žtˆ÷äÑ÷ðù‹ˆ7ËŠÏÓ Oñ{F¨;ôýÍÈ—ö½Cgø 4.Œ“[©üu¾ZBº9Œd8…€÷øñ¹”³I7UÔ×õò ÝFøü>Óð¾C>€Ûh¯BêûBâ‰ý¤~ÆPãH·Õ$+>g„þv•<®¿†mVlç‘LÈw2µ™HüPÎu¤SÔÿ×€ûiìÿ•Ô7ÆûÿègèÛ Ò—§’þS¿èÏWP?g’¾Pfô+¼Ð+ò¹ìŸQ˜@Õï2ïÃÞGÍ|´Æ!ŸuCÿx@wàôwZÑïþ’ïáá{ ºoã eÌ}øÌÊK=ö4|–èmz_ý ŸµÃ¸(ïÞi8à~|'óÎ ÏË÷ 1éïêáûqèc˜v@þ?Šž‡úR¾oçxÝ¡?˦}L>¶Ë!é<Φ}ø»M0Ÿâï>9>”ãÑßÓÛ ØäÐßÕç4|Ïó&Ì¥øþ¯ÞÇWð€q»…þoH§6xgåû°w¯¤gž0G¬’mjÏÉwõw†«¨ŸÙô<¾Ó:[¾¨¿Kˆ±‹ë|ç°L¹X;]¾wˆ¹T¿ß Æg»fÝäПcÒßÓÙ4Ô×ãòH|öOëJzC= 0†ñ&Ð}ÎÓ^Äq“nÐ."ùaŒú{À¸yƒxàÍù™4÷VJ{ã{’øþ!¾Çˆïêý`>½AÚD;\¾Ë¨ásgcȶø.äLíx)£î;ø Ûdkìë]ÉËñ#É~¦¿‹s$¾'ûƒä…ïBâܫˑ/m¤Ï§ “ó )¿†ï‘®% ý–H] Žõ÷yÈ9\÷Y|Ž ýýU؆õŒþÎe™ô|÷T×>k‡yûg‡||‘\«à»Ýz>þ‚üoZ蹎i÷9ä{å[i¼x³ÿÙVÎu2ü çÌÃkÈ÷šQ\¡¯ô'ßj/×ZÆ×RºÎñÚ;®?`m¥ás­“(ÎŽú‡C¾k kÍ/e×炯ȧ0Àjß{ÕçµßÉÞøîöþ’¾Ö¹…Æsί9ä{¼ÇH¹õqà;¾M¥ìúï ßKcE_BÝ;I7äOøn,>ãk2|OW÷ß¶Òæú:ð=òÇödK\Yã{®h hË–$ûòM´;òÃyëKò§ÄçØ/ÉŽ¨sœ{wÈ:Ž_‘RýIÒ¿ôuÒD¹Ïù¶Ÿ¾¦ÀXü„ìŠÿcNÛM|°æ‹;iû9i}ý~3Å ú®Ÿqý„ë;ÈYø ín‡žø]‚å²¾.Ãfégº?"o|—¼ZúŠ®ô›†äSm2>·Èvzœ’uôµÛ.)£¾ÆÙ_׋Cæ:Ì…+ÉÐþ¸f”÷ø;bm’×—äe/‡hC×#ÛÒu,ú’hMõy›i{¢Üž¾sâ«ÖoËü¹ÒO'®OûÛŸöÔk®O|x»ƒÒ^í?4.e¼m•úêñvüÚ+úh«ÈÉúëÈrSÿQúPú5Ò›ZŸõ¦¶ãq²:Qÿí¾m¾mLø·7h§ú÷ÓAÛåaýÑñŽêq–‡å ý!»(~Óžý@áÛžôÁýµávDÛð~…?×kÃzS¨êOü}>u¿*?Ë’ûWü9döÅ>lWæò{â²ËKÛüý ŽgÖ3óc?åq3ÿPP+vWý(j<ŠýQôÓZÑ×Õc~Äÿ0¶‹2žP?¬_EÞÖì§¼M|;±}XæGÛ‡(üáã<^nÇT©¢Šÿ…ÆËTՃŸÇÑQw;e<Ì¿³j_Ö¿ßí9YOªœªŸ©ý±üíý„ê+vŠ¯ÚŸ¿¡þ9C~Çñl0©íx?o‡æögŽ7Å!¿£úQü•zQ~¢øykE.Uoj|q<¨|Bý©úUÇ¡úóSìÊ·*_Ö3ëMµ7ëUoµEϪ~ÔvU9>!}øITœ*ãë è#j]Ä|YŸ´j§Ú‰©:?p{–[õoå8ïg=wPÆ’K3æË|”m5vUü&¤Õ/é8¯ûÚ+ããí¨üGüUês?X?U;ºÂŽ…#ü¸3F[—R/\VÍ€o,]ÇÓQx}•§jµuŒªŸ©öq*mÔ}Zœú±úԱǪú¾j§ðþüÓ(&cÅG,QõËT>jì¨ÇÔÿÃûåñb*ÞXÔ‹BµC/!h›÷»Â÷)ò„û¹3ƒ¶F9-V<©q®ê)–^â_SøÇówXÿFüT™ÂsTøxÌü/^\„ýï&?ÌÆëžs‡Ž‰™ñ†|cÚé=‚þsO=o¹âÿÞI“‡N>om¹&OœL•\CÏä:®I#/¤}C' =y$×÷ž5rüÐÉãøà¤ñ£GŒœÈ=#GŒ;”6ÜÃFÍÿ?kܘÃ1ÃÎ;ú\f8|Üøñ#'Ò–è˜s:?k\H¼¡“&3ÉGŸÉÕÆ:y䘑|Ì7~⸰!z`ˆ8–&Ž» 3« ¯ë>ýï¿{Î]ÿ’ú¸ApÄÐÉC;š8Tç»Gaç?lø¤‘ ^÷n$yú8j.ÂÆX¿3šËx à‹¿ q€ß“H³‰tB†MdÆA– d'€ahH6NìgM°?¡i8À&4Þgn†æqpZØDË$ÑÊ"I­´±¶„vÑÞ’@G’Ä¡Ià08Ü:›àˆ88Òº(èjGYÄÑpLŽã ÐÍÇÛÀ I¢{œ˜NJ=,¢g„r Ð+äZD^‚ÈWP m ÈÅI DAi àýörBo6P© Ê"úXDß$Ð/ ýmŸõåg/(8UÁi00 ø¼ÃéIàŒ0às9CÄPÃÄð0BÁH›eų̈Œ¶ˆ³càc‚±qnŒ3Áx˜m`’ML¶óbàü8¸€p¡ ðÄ‹-â>Oy™\WØ@u \iWàjS 0Õ®±‰k-â: ˜fÓ p½n°‰a˜i7†a–‚Ù æÄÁܸÉóÂp³ÜbóðÀ"ð¹ç[ðHÁm6p»Ü¡àN,¶»w‡a‰C>ߨâ^Üg€¥q àïµó»Ö"Ö)XÏ;ä7GãáE xÉ/‡áxÕ"^#¼nL°1Þ0Á›qðVÞ&¼c›Lð®Þ#¼¯àÆÁG >¶ˆO ði |f‚Ïà³ê›M°Å¾´€¯lUðu¶)øFÁ· ðùø„ïß~ ü†ŸÂð³ v*øŸ vv+ø…ð«~Sð» þß~‡ƒñ ö(ø76Bï¨ÐÂà4+ÜùÛŽ±à ƒ/ü  ‚q&ßSÑ‘™aÈ2A¶„¡a 4RИ°_ 4‰ýã iàï'…ã Íâ ¹Cþ!¢…‚–„V ‰ƒÖ1Ð& m íâ =¡C:†¡Sð=¦Ã‡‡¡s ¡ß‡ê] GÅÀÑ1pL Ç)è ¾×¬ÿ¶# qs¸vGÂ7Õž-±xÙ/ÆÁ]&b ¼ï‘ù˜=èödßbîuƈwZEööáÒj€×µMž²HdÛƒsq 8ßfýd WÛƒgIlàuzgÛ4zÇð=cFæ¿öи(9¤³†&†´‘È~Ê:ôu }™5øÿˆÆÙ‰ÃS‰ÆÎ$1:qdŒ°Ž†'›ÃÿV|¤?dŒFßšÃùB$‚íÌ‘•a >æÀßÄexÆ@eløŽ‹ôw¬£±?9ø—£Ñ à¤ÄÞÐ\kày36îˆìÁö|ÛŽH î9‘Èn4ëhø‹þJ¾Ö‘pß ¼Ï­à]‰M­Ãuq$ß[CƯÖÐp\8½[‡ï1Ñ5®tw$¼#¼Òøûî!À¶Á7‰Ãùc ðþHƒ¥‰Á9& nHÓìÃÙ!Ù í!ói{Àû®é™ÑØ"nŽFÖÇÖÜ?>ÒGZƒïoc:ÇGÆyÖáz"¹Ö‘õ—Mðº|ÖåÖàz]"«'èv‰9\Ý¢‘ÕÏ:ÜÑÈʳÏÕ±áê‰Ìæ±üÞ™;lâ;‹xÂJíÁÓ 6ÇÄFæ,›¸¶Iæp5 ã‘È<)ñrZƱÑðÌ çŸ5ÈøÖ6Y‡»º¬ïÑg¬®«$2–[GàAs¨¯*dL0ÁtëÀû‡~_ ðúªûèhdôˆïM±‘ÑÍÜ«£‘Ñ |åAkH[hŒô=°Ó">³Ï»±‘þàQ<†;-b`~4üëâÃõF4ÒzEÃÛ!ÎÏ",ôcb@Y/à=ÀôÖàj‰ôÎÑHƒ<ø+>Ò>¶€·MðH&ÛÀ\‹¸ŒPb'´ŠFÚ45†ëº¤Ê-¢‹ šÇ††„÷ÏH¸»E"ÐÒ®&‘HÛß"‚±áÞàñáì ü>bðX\m§˜ÃõM$‚e‘Àï62‚"áž‰à‰ :‚ŽgHø÷HHøn%ô©óñ^ˆW~$ü•ñáºKB½Ž¸UÂcײHn6ÁMaØŸëøÀµa¸*>œ["i€^±áÿ®Üøð /¬‡Å†ï„xö†× ÷‰‘ðÿd |¦Š¯ýøÎŽƒkà_c‚9±áPÏ}Ñðm„8áøhø6DÃlÄȽ |gÌ;-þ#´ÈaþæÞìH¸•pµˆ„ïgc¸¦FÃûG |/VÃuŽ„ï¥8÷«ïÑ0àó„ôüRÄþ›¢á=)>ìãô880ކ÷Š(Іg«‚G£z¯ÙI°Rœ6`ôÀ‰QýTõ›JØ-õÕo¬¾“)õ¥ï½EÿõeÃDÆ’*þµ![]è*ÕzO¥,ÉŽyoñ±ÿQ›º«ËR:Ùí°7ø@²¥.åßÛ㩮䬫1Õ–Ÿ×e©ë¾íØÆðv‡ùùF*eJŸDư7ú¼YIT&+úID†úò»%YÛÕ·ÝS]ìúImô•¨Mþ 1›h~3âaWÆDâ2•%UzOÖ^ÿõ8UK}瞺šgSQ’ñ«õjÛV×hÉæh£R×¶«Ï8Mf\©öƒTåʺ*fýZ=f&³êëÉÜ oŸlþ2â—ŠXM4¾ë"?Ä+ñôo'¯ÙÕŸU›¥B7µaçTÈ¥Ž/•öOdýh¶V°Ó¯_µ$š7÷Æ¢~C;ը˲·È¯Ô¥îêÛv±xíí>ô_-õac»úÜÛý6¥>ÆóYçvåLåXëÛßSa‡T/ÙöñøÖ·Ýê£Ô¦ž’‘!•cHŸTÙ®®mŸÊ8©ëøJt|vJªÆ—L_µQêÛævÆYºOEItL‰ò®+ýÛ-{ƒ]Ô¾‘¡6dO•=êÃîñÚ§RWuÁ+ßDôeG'Éö_›¶®íM%ïúÔSªJ"vI•ÿØéËn©K;ØÑG"rÛé/™±Y­ou*s@mÙñ¿«\R!W²>™J¿K¤Ôf‰Ä@*|Æn»xû­òUÇn©­ñqÉÄ{Í¢|è.ÿ¼nѲã[œ>bísIÓª)KV]»áCZzÆë·¾¸érÛ47㲿۶]f™VΚùWÞ§¯X¦¥/Œ¹»÷²mÓ’kóg“wuÂ4?GûalÇ-¶iÕÝïõøfÉ—¢ä“!_o­\Xk´|ö¢ÓÅ!!Zðáñ5n7£ÖhY³a›ª.¾Ä6­ìxÚI}¼8å4¯Û‹÷Þµû×Z§%û_üî“ý¯Š¦¿e—>vÔQôòÚï®XýDÓò?ƒŸµºà!CZ™¾«æ¿N¯5ZÖzäçêEKÿzýÜç‡hA¯yßÖ>6øÃµiÇÕ-qµóV§LË´´[ÏÆÕ¹Å¢à"L ¢hÅÏ'|ñÓá«SFóíÛ=ýµ£éK+^>áÔÓk–ü{ÑØÏz÷­7Z¼¤ó/÷0e´Ä·jå}W÷¨3ZTqÔ)û}s°!-;zö~3Μ™rÚ³DéÔíU).XraÊ($Ç«w¹¦…ýLspSñöq]~>a³1ýðûm·¬9¸ÞhѸ îgZw«sÚëµ™‹gøwÊiÞ×Ó|8ª_Ò´`[ßÀ¶%L _÷ú+‹¶M‹f˃%IÒ´÷Üi7¬l¹Ó–¬k:°ù¢MÉÓ´cqE—2ZœìåW=Q”4­ü¸XbPÍ]Põn—ç›ÒÊñ|±¾Ï@ËT¼ÙlûÈɇY¦%¯¶éšï>J9-(ÚzÙys]õF󺞿Ñyç'¶iù‘_5Yxý»µNóõÓ`­ÎhïÓÎ>¢bH×”ÑÂʱ'¯>òô(Z1ù°ö»†•[¦yüø®û›-ÓÂãÿ½·¸ÇѵN‹—|9üpÿ‰)£¢÷ÛçT̨3ZôàM;÷:Ñ–Õé„kº©uZ4¦ø–šr*ôÓ–inÏœK:ÿZç´ø—÷ËÒvÒüõ}N{~[SZüûçE׋¢íÏuúa×ê-üýŸ'?mÜטöÊjðØŒî)§•÷]wûÂV,~ú×AŸ‘2Z¹éÃôÛV䤌–ikg¿òçwuNKwä?›}Ïè(ZˆWûšrZ2´ásV7½î^:üš5{B4ï±!ƒû¾Ý–ðu"*Võš?뜤iÁÆÇ3ÏÈFѾ‡ã…b7ïäcn?~SÓ’_*žÚÞmA-ì‚&:×Z^3¢UtºéÄ?»Òõi¦°ÎhQ÷Mjá®uZ¼ÚueëÙ¿Ò‚‹>ùH·]µFËh=Y[´¯*õ¹È¿êÈÇ»oÊhާñG?K­jyˈ3}_™ÒŠ^ë¯8¶Í†”Óâß¹ÿµ¡/%L ÙŒ®ð¦ŒæNžúùªÎûÙ¦ytÞ›(-}zѽ͆mJ9-¾ms³@³Y¦´dô{óoõpÊi¾~º{E­ÑÞÓ¼­öô<7å´ÎJö,hkNñôhÐÛ´´å =_þáåÍ™;èѾÝ3¦•t¥ô‰7~ÎtÏL-ØžöìÙƒ Ñ’ _»}«V‰Â[Ž»þÞ¿—%MK6,ÝÑtËrSZQšz%å4ï)%{^r˜ÒŠ7n>RV­Ñ‚æMÄ{ Ó-Ó ÇaxgÕæ¼vôŽ –iEŸkï(ø-;išg/®+k^²åÓ…__Ÿ2ZúWSmÔ'¾¤iŹÇáŒZk´øŽ?GÌý*×2-ª_h´LKw·z{DF­ÑBznC¥¥Ÿî^T6rqÒ´0£MþðS·FÑ’6¯ÿré¼CZ¼àÁé»nì`HÅ÷u¼¶é*Û´ÏÚ5K¾4¥=è~–UÚ{ÛÎÉ_Ì» Šæ\Þÿ“o.ô%MK§h6|eÊiÕ¥Ýq¦Š¢E²è¢œ”Ñ*ìnÅB‘w{Ó‚Q´|eù†K3Ÿ4¤Et^jÚ‹®W%K ¶œì_ÿᆴì‘9÷ç¾ywÂ4p[Èä…)§ågÝ:ÿ÷æãE jcìò(š¿JÃ+´¢Ãg廦4ï¡ ‡<åÿ9aÚûâû0sX¦…›Ï{îó¤Œæ¬Á´ÝMiQ¿7žïz÷RQÒOOH-úé´[‚Ë lÓã/ïè¸6iZúÊâ£GœpxÊhI#}âKÍ{#ëÅ–ÙïX¦¥Omï6ÿõ^¢ £tÀû–i>]ÿ¢EOÜÕø¡)£|ÿ¬ìÂoJ]<Ô”æµ*y{Ç“¦½èzŸ-êÜ ¯™Ò*\-œò«!Íùúô5T7¤º¦Å}0Á~dJKsÏûþ©Õ§Ò’÷ßvÍÈBQ2¨Óº¦N-Ó_tÒ‚®o]ý˜»MéI3üë÷’RQ6õÐÂ.{3aZ@ÏÕ$Ks¶58–Ø ÓÍI˜áßίšÒÞpò|êãë¦}ºŒ^úìIWÚ¦½ïY¿¬ÁÔÇ¢hIŶ\¾fÞ~a-£¸H”æ=òýÏ­c iet´Q‰Ó/º¯íÖðø-кÀ˜~©ßø QA÷Ù¬Ò<¼Šã›fHKWöóº‰ ¦…ÿÜàX1vJÍYXùrÆå!Zvéú¶W wˆªæ‹Þùíù§¢h_|}¥Õ= ÓÜ^Ú|×­= izý¨+-Óžžìpï›oY¦å”‡TZŒ«ä6¦åø¶T¡¦´Ïb})J:ßú¿‡¿8Ñ2Í¡_0‹¢9ã~»ù³w¿6¥ ¾À+†´âÚˆ–µ×/Ú¦UO7iôÇ£íDéc3NXÑhcˆL×_H°MO(lýݲùM£hñ‰“î™÷Ö£ ÓÜ®ÿ nÛç:Ë´_8é“hjg*ÍípÑîq<†´8ãƒÇ¶í'k¾mš7©ô‹Ì­˜Òb|=tÍ’(Z¶  j0D{ˉÐ6ÍY¶ó›OÉ ÑžtD¥¥{z‚Eö‹¢%ƒ>‡ŒõHÍÅÛ§Ö‰òý¾9NmC´`¡þB@íEÏù›ÑÞýðÄa³!Í¡÷Kó¯»âÆOf¬3¥e]õŒ!ÚcÎû-Žœ6Ä”ö¦u’-o7øÁ­T™Ò |ü鸧Li¯7ÁŠ¥™!ô|… u8\êï4Ûý6¼f³íÿÄ{§¼¾e«­qYk"ß'¨ïqïÃ>üWQßñ•ŠþkSîd¿Rúª¯¹·Êµ‰Û°¾å©ïñÿW|6U2&›ïöVýìCjm_ß²&*"<ë{\ÿeýíã©o¹êK{ïºÖ]Û>Ûç§û°ÿ·ñ_^wý_Á>[Ô¿Î÷6ì 2ìCíÚ7ÙóGµ­Ý<¿7ù{- pþ ÿgËíìŽy,ÿ3JÖpq xG >yÜDøo£æ·ž±¬%ú¸dãÂÊPÇ¦ÃØäp¤õr8ÒRåPg tû m¯†íɰýôºÍáð_K:ö2»øî8öˆÜ­] õ·À¾°ï]ècí¿ö·üÇ`ž·A†÷‰×Óp|*ð:Ž=òí/å÷?@ÇŸ„㣡-Èë†x@&ÿ6GMÁ±]ÇwÀñpüU)§Æ< Æø(Œñ‡#ó\ª¿’èSÐî*è·=´ƒþ½ Ÿo.´íwa\™À;{.Õ êgGôáN0¯èذï,dõAÿþÁ ƒçA†Rà÷6Õ}ê^uÿ‚ºK¡_èß7êÁ¡ ðHƒ±e}_ãpd‘Žt»,ózØwìÛ<އþží ¿9ÀäO;Æ m3‹` ?; PÛUж7´´ ¶Ó&¯Wì?ðe¯+×?Àk<ðúdz*Ì^gÕè^/`síàñ#ð<À?| —6ŒÉ <†ð‡Ì g}˜Mýû ÍÐækhSmî§1€ï¤¿mŽ «þõÜà·ö[,+àØôÿ£Ò.äÙô; ø¿È•‘ºø!¬Í¡ôÿ¤ãÏw.´[m`·ÿ2h÷=ÈöIÿdñ†ùÖÿêƒm=ÐÞw0Ô¿êï†ú0îôO ~ï2‡£ÈÛð>‡£qË0`ûÍÐ62žíÁg@_0®´ÕTï¨7ê½Mq>àƒ8ñßõšA=°Qú¯ÐÄsô×`t˜\ËN¿ làéý=|@ÐSl—ží'SÝYäsàΙÐ/ŒËõ¼ÀËþÛ§AÝôiT|Oƒq:?ƒº0&ĉâßÿr˜®Àß\`G7èÀ‹ùé8¾xu—ñ™þ– 9"ë;ÃÉ +²ÚÇãt_AÛ#¡ÈNèà ¶ô€ }‡¯‹`,Ð&-ŸôÑx=¼Ú: G5ÚS#«³!ð„ØñÀ¦r¢t8dñ¦Clg€ßeaf=7€8j”Am×J¿×Ç qç…øñ͇¶‰ƒã oÈ?'‡ÅÃXÊÿ^»¿ÔÿMç|‚qzr¾uŽ•þì;ê]NÇ1.ÏY€ã[žÐ—Ž=ÇÀ7oÀ1°§ç!ò?ô×÷ÂülîdùÁ?´i”w /y ßÑ2gµ0["¿> ä>üü&í8ß«TüPƒ|â{ºÁv°‹wðj u˨äF×´šÿ5Ð¥ø¸GÒ¾¥R>——ü¦ íǼ öv<ƒ ÿÎaú‚8t‚_¹¤ù¨ô ¶ ¼¹$ý-ªû$ésEÔ…¾|­¡.øsê¤Á¾tÈÙè÷ Ù “†CÀÖy] Ôõþm¤cWµ»àX)ébÖ¼‚W_à•9'dÉ‚9¡A_jó:´u~Osø‡Æí_íÀÇÓÀ2šÊœŸÝÚm “ç>ÈßnÈã^hãƒy>~}¥³ÝpN¹2,QOÿ“ºö\f³‹É'{ʧÈÙÚ=0ˆ#÷½ÐèÝrøÁσ¯Ó W¥ƒOe‚œÙý©Íó”—0_Cùo?š3€_ðͰz¿o˜‡ÝЇbϺñƒlAÈÏiçʹEŸ†qçÈfÚùÀ{´90Ì/Ñß 7èÛùÍzöC, /Á¦é0Î ðÝÌaaºƒ}NÈî~Ð7ŒÃ_õ!.Ò ïdC¼4Ü+ WçWPdñ<¦KŒy°¹ûnZ›ÀšÁë‰ äš4˜«ÒÁ2[‚üGÙ0Ï4<‡ÚbŽIæëЮ“9ã=TV‡ÉãvÍ—›N\éN< /¬O|ÿ0OÁWÓ!î2o†>ÿ¢¶ëeÌ8y<ŸRþÇ\}zþ„ö0¯ù!†À3°…êÝKóЫdÇ;¡^ÍÁ‹Óx>:ÌáÎíP|ËkÌG~Ì‹Ò. ÓÃå´Þ8;Ì“jÆŠëFç6š7!F|Ýe MÄ{ú¢0Ý<ÖæçÈ'ž¿A/×ÒöÃ4~È“î>p æŒÕ¼‚¬ÿ§dL‡óÖJȧ x`Nõ‚?ûO‘k¶ øBø`F×r¥Ý཰¶W„ñz–òæG2oz 6¼ßÑzƘÖÆ:Í€™97û>j‡9ÖÎv´ý"ÙÆæ†µt냸óÃ\„ù# ü9ý')OÖr®ÔË:ʯè¿EÐîYZÏ€v3Ò f€L™W²yü Éì¤mÈ]ÚxZGÓšòhâ¹ü/dË¢u¬–€þ\'@ýÛ¡>ÔóÂzÅ8Œô„µ~:ä© Ža,ÏS^ÞFëЗâÈ>l'׉zy•ì‰óððÀzÊw*Ô½›@=Š bÕ ùÅ 6KŸæoPß zr_N¹¶·\ÿ_:ø[ƽ5~¤ÇÉ4fð#äFÿr:þ„Ì¿úãêù ù7RüWP=ŒÝKin=ô:ö­ ³ÍE‹8æUd›™a:A;À9‡ûynäƒ9Ôë¢`%ôreô¢º8gÂÜíÄó%Îë›\à§nˆ/ØÌ<°n ‚Ìià‡=¨î 2ϹšÈ9× rø@GþO(׃~3Ürþ ÕKçy“eÌùÀGüׂÕPrEæpª‹ñó†K@]ž³WКí Z¯ÁýÕtlчhŽ›¸¡oÏh97ú>óŒÈ.r™m~ ~ 6帾5¬ Ê3ø®¢9ã]Z@œzRwéüÍEó»>p~z’Ú4€6Ci#Ó!ö3;QûµPòŒõ¿)LV˜œ½WÓ\scÐ6çñzûòAœ¯!¦<¬^ï|Æw­!ð“Ö:Úõ°mú­U@>?¬c0??¦¶«¤mœà‹îv2Ï{£u3è3 l”cÍä\ù£òzò’Ö2~ÈA°w:¯–Ñ:ôgƒ^Ÿú @®Lû*Lî´¦{‡ö-“vÇ÷?Üà#ž(WþKÇA×N˜‡\p.à)’×BöÂkc0»AF/øoƒÌ9A¨›žIõ ~5˜o\ÇÊ\*óeÜãµ:}N‚üæƒüæ‡|»§ÝCõž%ß…9Ý ¾êv>>o@˜+ϡܨ«&tM ×­©ÎÓòZ–ëIºNkøFæ—àiÐÏFª‡kÄSéúÛÑtÞÕl y0¯K­¡5®`Þòð5H,+åÚB—gðûÀaí‡×Ì÷zûk÷Ëk¡rX^,^|°Öñϧkf,Ï:Š…ÃdFþà?Þ—Âø-–ó¨û²7ŒË9>À×aî¢5ÕP|Õ³êÀ|6OàúÖ Nð ×/Pr¾ï ¹Î阯»A¼j°Öv‚O¹aìôˆu?äªÀÛòzAÚ˜0¾ƒè<ªˆÖŠÐ§ÿ º¾Fç®èÏzYOsßf:wÃkF`?äþ`.ÕYNþ†ýw§yæ,ÿ!tüVZ® [ÀÜ×Tœ?Ð5jœ×`må¿™Ž¯ ¼¶Öq0?ù)®àû®5>’¯áÀ|æ†|ëüãÅ5Ω÷´£h\ œÓÝ0NäZ_yŽ<˜øðù ò˜ððzí¢Ñ91¯ÖÈ~]ÇÓö*Ò×gtþ³<ÌõŸ»à|™Czi)sµòžææøPZCª÷>åi°“¯SþÔºÈë>.Œs¾¦ý0ÕÅsötþþà5ÎJ’¯Ÿ£¦÷@NðÂzÍ: pþÀë*x-¦]ëxÖç0ž ]{ÑçgàáâÜHñìb_{\ú‰^6Ñ9Ðï´½‘òLsÚÞEsÂÅaãXQc½?¾Âãx6lý¶w>Jÿc¼¥uN/:÷®’÷-ôö¢æ|ŒûÑ}×ýéšß€kô©·»’Î}ž¡mÖÎõ#.˜sÝ…5×Ï5˜h´qÐæª‡¹ªZ®i\·ÑºÿWy.²­ 4¾†Äºâ9s^kÜBç`ŸÒµýÏÂtë4']kÖýw²¼žäi"×ÜzyQž¹²iíÃvZ*s^`ÎÒÊé\üÚ¾æk/¯ …ô±7ö?&/ä8çtÊsä5k½€>µçèÿ5Ò\EòW/oÑ:4üZã…aÛëäZÂ5]®C¼Gþâ°~—„é|Ú‰sÍotbãÈÇóâÓ´¶ÂyæaÏK4ÿ²îÑ|€çÈ#@ûaÌÚô?øv»<Çôô¡>2ŸyxÍ×ì>–:×ׄÃd…üçtËs%½,¦5Ù‡t_âßËk£ûI¦ÏîGpF›@çúyÖ·´cÅ)ÏU«ä\ Çõ¡´ž kϱ¦¯ÁÏ\nÚæö—ô{Kœ_ѧ§Òü“K>Ò’ŽÍ$;`lð9érí¦—HfE¾® yŽŠvõÍ :»ˆ.—sº^ðK;c3âaÅÆVc0V{+1‡Yôh$SÿjûýÅ“ßJ¬õm(c<9-ÈÏÇ­œO˜ùa_¼­»±«½‘m#ö)ý™ÙÌ–?Tˆägö|ƒ]Dð6ág”s“ñýXã°RÇNüŪ«¿DtſښìñúTå²R±{¬>ŒbÒR')W¬úá|ì+¹%UyÃp<ÕÑuÕÿ­öcÖŸ¹¬ÆˆV;LK¢1o%ìøšN«mðŠQ7Þ=¸([TÇ®g4¾DŠ™¼fqoÌ É`W¾jÅài´ÏޝXÑ#Æv,™ã1™ÉWW%}é9œ·ú¿™é׌W¼beÜVÚÅ:·mÞf}Æú?ÑbfÏdøµ í¯6¡:²^<>vóU"ö2âÅ7¬ÿTÄp¼xŠ%‹•‰×VíÃ,έŽÑJl™Å’ýZ‘ÓÌÌÆl¦s«y$žü±øÉiXª£yñN„LTGóIE1Ê V’¾Ñã·®K•,qõ_¿¯Dr¤]Ù¬Ž1Öµ[²ÇàmUßFñ«½¿x:%_\Y]ðU‹]¶#¿Ýq8âÔ·*“™œf|íôo_<þ*5ÒÝ¢òL¤½{#›Ã²=bðÉ£:²ŸX60å¡Ôµâ#j_¶}´Ú¤²#ù{Ív|?îX-ÈjVâéÆLwvå·ßÕñåŒåo‰–xñaæo1Ku$S›W×Ku‰5Ö¨myìð¶ó±dØÛ‹Õ¸1ʦz­6îÓJcì¶³ÏvŠ¥ñTÇ>Kþx|­ÊjIoŠLñÚÚáofŸð¾cé!ª­R7–N­æ¨dKmòNi©–Äj¬§ª?³Ïç˜ÚÉvŠÙ}•º*¡~«k¶W»y-îñjÇ^óŽQ.1Ú§î·âgLr¯Q^²S ùg¬Õ6™$Ó—Ißµ/fö´âÏñø¤ê\#»šÍo1ëWÇï3‚G¬ºÕ6d k‹Æmk¡žÙbÅ]Ü}qxXñ“¸¥ÚšÌá}ªýGµ·Úw þ±äHÆCÿW' ÐÞVªë¿_£ø¶ój}u_T½êHÞv棾ãÅ–•¶vó\"¼Už©ì/–¢b¹:Aæíb§¶ôo.M6OÙ•ÇáH¬+s’]~Q6¨6®g¨§mìʬþãéÕ0?T''g¼¸4…;SQŒî)¦’w<žñbÒ¡üo&ŸáÜÀ´:Nc™’)vb"fŠSßjÿ  }ÛgãÅ„!9¬äk+1fUGvüÁH®Xu,å‹uÍúL¦˜õçpÄîÏʱx}m[õ9³bU×j}+|U™“-FzO™,Õ6ŠÑOܹÏ&»º³3ñÚ&Ú·^ª£yªü3ñ^sÏŸåN¦f¥çæÈú†t³A;3jÂײ<›cÕÞûŠ]9Æ›*9Ìô^WzUíhd_•¦¬ßë7UrüWü:Ùbæµf¥¾õoµä¿VíQÛŨËóK’4Õ%årÚ̵=®Ð¶E´*ÕqYGR]Œä3Œ#9S-O²û몘ù±åu£R¯¶Šÿú^O$Z ×ñfë»çf4A½Ùåcêw©^o›Pµ¾m~ÿ1¿««y7Ôß^¦—„ç{‹çkµgÿ•Rgë9³ùÈâ|•òu¡MûšÊ¯ôóÿK±¼­åu›Õ’²ë› hªóLªh¢ëDe;U%Ùu‘íuz-Íïfç/vùXåoõxTýzŽ»½=ÿÕÕùÝuk¢ýÔvIÖŸRv>´—\ÏÙ[ŠY4k—¬]Ôþì^M•}Swêë|±®Öã¡í$¯ÿ%6ÐZÒwªìiÕ?RíG–çƒ~Må4 fý[õ[»çIµ½Ž³:î}¥nK¢vø¯Ú-Uç}vûIu}»eoãk¸þ¨§ëÆV×C‰žî-~`µßÿJþ6×6[«·¯Ø+ÿÿ0+ ç¯Íñ©ÕvõU’•£®®ë$Û~oõ˺’ÃöyE-Ï¿É^©­²·ø…ÕRÛÏ£¦ª$z]*eýZ¼/bø\T=ÿjõ¼£®žÏµk·”÷[ÛùÇ"­«þMÛýþ|—„Ï›ëë¼qsríR}¾™h1»¯Uslj»_›íS]¯®‹ÝëL{Û8j=ï3Mô>‰Åúµ=¯%+w²Ï9™Í£‰úáÞºÎ4*ÿ9ÊeÞ·;Õ×ùoÔñ$óLÒó^ŠžkJ¶Ôöº»®Jm¯ëcðÑßg‡Ë qLÙ({î\€eaÏíDÙÏöŒÒ‹poÐë‰t¢ÙÊvCY¯ç¯D™ßïÄçoY/Dÿ ã¥Û"ƒh6É·O“´F:Þ„úoLô(êo»2žï©ßm$ßWÄ·y¼»h¿ªÞϔǹ‰¶YÏÌ)÷»;rüb?'»‡õz(mw z$éápªßQ‘ƒå"} ê‘Ñ…ƒø¦)úVìÒkªÇÇÛ(ãcý±ž¸Ö×NEï¼Ívçí=ŠüÛ•ã¼­Ú‹ë3®÷‘ÒNµµ é#¨Œ»)é«â/l_UÞVõ¡Ê­ÊÃrê¿!õ(Éi$‡JÙyüFõTj'´-“~:Óv;’K(úP)Ûç¯H*\DYïjÜóþTý•íÅí»P½£ª#ü;”˜OÕϤíPþ"=7â|Cû9Ÿ´¡ú­‰iâjü«vP· Ú…òØ´½?ÉÏ~yˆ’Ž!ù»Ðvg:Îy]õµ_U%ïqá<Ò_gÚîEõÒ~_d\ ?Q¶3û9óåù€íæ%Êã¥ü§Ö åΫjdª^wTõÁTÖ‹š_Ô¼ÄqÂþÇò¨ý«òªý©~¥öËüŒÆ¹IÙf9Õù‹ç‡t¢ä÷Qó˜ê'fùë1öçfDy>ã¸d?*ödÊr²¿ð|߀ü¼‰b¿ ôÈòý¬´oKÇU{±=Ù_QýÆÔ¾%у•üМó7‹çí&|œøt¥ýÑ6ç5îçHe¿š÷xÛŸ!}6 í¦Jþ8„öFû;°]h?éCt"½Í¿Fó±ºm4ß1ßÝÊ6Ѩ¼Íãfûó:”òL¨>o³i½"NRä3¢ì/ªß(ãͬ_ž·Øl®×šè‘Õ‘üúQ³Þ”uR(òüÊël£|ÈÛjÞâõ†?¶=¢ò33[Ñ;ÛkÅOÙ«5õÛž¶Ùï>@Ö;‚ê)„æî—ý‚çÃŽTŸíÎ~}$mw'¾ì?l'^G³Þ8ïp=^tUôAõCóçÓ–T¿Kd…ƽŸ"7¯§ò¤§/&çS5ã!Êöäó‹# âT_ÔõŸJy1š—XŠCù\­Ïòóº‹ó%ÏÇ®ˆ”“©šOŒæQ£¨¶SÇ­Rõö‘ߌGù¯ÓsñÂõ±YÁžè‰Ëv“Ÿ€àèVêÉˈŸ8^¨~ñ=@¯ç}~¾E¼©ÁÓøð1êçè:x:O=òê{Aoˆ‹±»GÂ/§'/–Ÿ)r½)ô+?ÎGûvëJu8¯ÇqâqÔ»›U)ëyÄdpXÏáñïàóNâÛÌšuD½¥¿+ø ìv[ô¯_/Š~à7¨ã¡{è˜<`éûB]ŸÖ7}Ãü+xÎàféxõ{|&ßîí§þ€,ø±½õÜÞºo¯Ãòñ^ZÇžš‡|lkÖ¥ãÝ‚~Ôáèºp=âþDõºp\ì üÀªn5`Ç5ñ÷0_´ŸX—ˆzK\qc"ýWî ãDÿŽ^á¿ÉLjÿgôë뀿ŽòˆÇu|ˆç/ò—û9®©gøïà—X×ýaÞõu{É}[Gÿ‰ëç†ñèCUð¼ÁOÍGßÕï>#GÆ/êôcëêèèß á~zÎ×ùƒxßæ>OO|ý%ñ(~x´_Î…ïÈÿ=·íªçv>=?¡ëÄQèE‰o5xJ½™8—z ÷¯1?uè#?zŠzæCЫ˜¯c·±‡/зw÷Dõ’ºü+æ;¡~ZâqêàL´ãº¼ŠõjùÃò~€z8ï xïɺ©ß”¸]|ÞRÇÔϨCkýüÃÆ÷w¼7¡±ç6ùxG‡¾Fÿá |÷y•÷6[„ñ£ÿF?8Žù ü!>Xø<¢˜Sc·Üñ0Äoů”õ"â-òÞ]éÃ|ÑOÄ>ú‰wÖø¢g CÄY{‹Þ.rÑó䇻öÛm¬×Ôñ£ÿÆo“ϡ—3ÿÞAâzëâuú˜‚;èÍ#jôº.›È¯¬ ô1o¬'G?ãž‹qx]Üì«6OvHÝ|8¾‹øµ_°‡ˆ«1_‹ù|™ÈŸ×ñ1Þ7‘ÝÄ8*Ú?¸HœÎw ØË“ÔǺ=z¹zÞƒï†=þÓ߸剼*ñÁÌ Q?B øzìª訓c]|ùýMœ?æïô!/D®%¾ñBñ+ñ}süN ò¯®nãø¿‡ˆÏG«‹¿¢$nDOb<ÔEŸ´žX¯¨«?DùßøqµÔ5/v€ÿ'¯#ÏÜVý'Ï_ uÂǺ:ÕD8¾O)r/À ò"Õ+J¾Âw‰Ô}w ü‡/¡îPüÇ¥×yê“ʃ¾{;0ØAÝû¼ØGý¬ûÞ&ÖóšýôäÏ{]ܯÇqÞ]uïUãû?êõ¼·ÞIççûA¿ /è8>·„ïN¾³ ß×Lø,¾vùsm}Gþż*¾ßïïŠ_C_ü.âÏýç×G¢~¯ ôj"ºÃwq…ÿðo¢ïKâyú‰â–‰òê³tLœÂº‹Ü?Qƒ/uôoìú6²ŽT¾#!î¢îí¾ÄøøÞ~¹ü§ÎßkÆ8ä®ÀGâ ¾–œc|5Äãu5ëÀ¾ÂzÆ*O\…y’æç;ÅÁµïÙîÂ~Ôó>Šï׈Wɯè÷?,Ó3‘¾ÞÖWWÇâú?±N‹c÷è%õ,¾'$îÜ6èƒð¦à@ø. ¾Fü*þ§äMþNÞó5­£øUƧðï3ƒý® ãÔõŒB?÷ÕÕ'àG]ý>æ èþ8Ö¿ŽÑ+Ö»¥ÖÉû9ì&~ÿy3ï—U'(úƒÿ`½¬+ö¢‹ï‰gŠüáúG\çï"ßð'\¿AÇ׆ã8ÇêËz‰ø®MuÂBq;ï ˆÏàù'ßaσº8<¯øNuÛ`Ÿ7;â'óc䕼OOø’:æVÁî6öû¬ºø"æ‡uù|®ñ7â¿{ÁO’ó=Ç,ø©cÖË8虾©Åõºúb\ë—…õÑ£o±.'ÊóXúH|ßg>²Ÿÿž)¾GW¤?µÿ>èÞþu”À Þ‡òó'?E?Ñ×ÙÁþêüpÔ;ô=ØFóá7Ñâuê»å××uõÜ“‚þFùÐÇïWâ{äùwQßêôPú²þûÝ~¹—üþáw±Þ«<×óð¹Å< Úqø^¹è úUÞ¨ÇÞ„õnêw}‹ïS 7¼G@®ïx®î|\w¬ÛÔ}—Áõð½ÈX%~¯oøTü ö+¾Q.ßé„~aÐ3øð‹@G¨=O‰Oñ;Ä•äÄAØ/ß3|/Ý?©RÖIÝ„zó`Ô¹êò}øòûº8«ŒË{øÝ>Ó/ßýž˜óuõ~òü¯ô¼Ø9öÒôUÁ°šuûÆîÁ‡øtÅïûb½?Úcü÷~áßýnâ„ýæû â–]ËÏëý‘]šâÿž¹ª‹Ó½§Ù·÷üýGkw[û¤Žmí ~¾ÿ™Æ]­ý½UÏó_±öMk'Y»?<3Yý=´õ¦5£±ažµ±uï3=Ïîa혪jê-vs÷ªêÌî¹þ>ûß5Ö·Ÿ­néùû¿¬Ýeí:¾KÏo³9×X³u4^#ÚÆ¬b~Ú»Þž¿¿¦þŽ ¯¡zPý•ÖnÖß×õ\ÿaÏßß¶ö#k·úyk¶¹§Z³u7,£hŒæsÕ§­ýFÏ|·fÞÿ´vµµk«,›ïYûŸ|¾ñüpïC5cüºÔ¿L<š¶þžÆkÔ_³¡1úÇKò|µµ=íà%Ö/ç^ב†µÇºò¹öië¯7_hç]Ÿ¨úäÝ8w::ö¿{Wçæoý“ìk­Ýlw'¾¿úI•åx‡µïWY&ß­’ÎV×÷Ü÷ðœëÁÿhÎUê—X;>Ðs²µ¥£Oµv‚5ˈ[{JÏ}ÓìÛ}׊¾ßå5¥µ™4×s/Õ}Ͻ×Ú‡{Æ”Îÿm<Û2}gY{«µ[ûù÷îÓó÷­YTÐx¼µ'õbžcC¿éíÃx@ó[ûA•uò_3uïwÂóŽECUÒãæŠ Œïüš^³–Y8wyÏßó±Aëï鿯ý=ooxìêFõµvþ¾gC÷ö<ó§lÏ­Ý— kf»ŒÕܳ{Nî¡û™ÖžÖsüè*ãö#2¯’¼¼º³Êöù»]Æø¯p¬/ª×¯¹úy%ß&ØÉ}óµ5´îÆÀbûï6ÝÛœ`î¿äç«ëCkî{Å8c\`íåÖÞ¨Þb†ê’õ×›AvÍ÷m`=æsœeÿ»î›¥ã½­Íszlævë¸ý«*Ç6îgîë¹ÇŽk{æh‡9çôüýãúûR,âsr£ó†­ÕzŽ¿níkWUÂo=û½ü|c¨gŽ «yþÆÚ­ùïî˜û4݇ÞÍPÿvÝÿo¹o¾Yç›ûÖªÜÚéü‹­Ô3ÑÖX¬kçôcmÓ¢ïfÛέ³¾«sn‹¿õy­i'®Õ8W‡õ¼£÷Xçžî~\>üX§CmkWèž‹5Þïâó=ã42¾4ºÂ™_»MÛN×uã<çqöS5Ÿû]s_}:Ü÷úž¿÷íáÕmU–Ëß Ñ®{…)ÆúŽYí|=ùá×÷ïW_¶~—Aúª‡ìü·óZ’¯><±þª0‡ÙYÃe·¨~½Ù„s®Ã7fžU·T9Žöœç¥5c|ÕÚ:kôœ{“5Ë©ª×Y»ÔÚÖ>(ºn#ùi[K³Î'¶ÔOÒø7þÃÚG­½·ç™ç«ŸÇ Ï^gí‹UÎ;Þá§uïøŸôÂ}÷QÖ^`íè*ç@~üí Œý³*ËØóÇŸ›óß­Ïm`ìK³×ëYë›ØæAxÎw¬ú°žy[µ\ÁÎ=ÊÚ<µ…UO _%lÏ6/Òù›ªó4©kSzÆ›«¾ðVÇK­ýÊ}žµ¯¸[ûµËzÆ…Öó°é0Æjk+Õ?W¾ùpkO3œûî >µ qÐzL×±ÇL-k‡VÂÿ*ë‹ë¦Åo•Å™Õëóùæ i­µWÊž<^¶<1Å¥ÿÓ‹Ù=ôxàÏÙ–Ó¼šûþV¥º2M±Õë¼ϫRNÝx‚µÖ¶w;Ñ5i>ÇÔµgª\•c7‹­ÜÏ4¶ÛðýÕUÊ}f.Ì4¥ØêÄž1W…9,¯lhüjöèÃaêÍÏ5c¾ðÄ Í½~þ„¿ÈxÙ˜žµ9Z÷õŸËqubõ ðÂóˆK]Ç«³à¿»¼Ê~fa³ñÙãžæ!=4ÞžÙ2ó6aüñЫܶö“žûV„çŽß•m¸±¸Ê:ãy©çRîG¿ÞoËl¡íÿ¢è÷FÛ§íø°ªÇÿÔÐé>Ícf¯àº¾…µi>ºy‹ôéã¹v”dú–*û¨_‡ñ¯ä_çšžëÏ8ÖyLãy†çÉ=¾!ñù©ú»Ñóœã°ÛÛ—åOîëÒñÕb=³‹ëÇðÒ|{Êϼ÷xïæü¼ç-¹ö£ë{}ÌÚû­ý[¥k³ö¥*c¯ñ"ù¶7~:oF$#·Ë¶Î;¶>Z;¿·‘>X®Þ`|¯+ý8Œçx¹Ž±ÃµaÙ¯Ç1¯í9ß[Ãy‰pré÷ήãUªq ä'gÜV)&ëáçAý÷åøÛzÇüvï8÷flÉñ§Î™¬[óûÇ©¾¤Þë4®^sþ»¿5ŸÝèÉ3V…õÛ¹öÎçžsgIþO’ æªß1äv.£žø=Õ5Ýyíõç=çÝï@_­gG{Æ1Þ'?î¼sûq_²{¯W9f¾ÂÚ«uü2k¯ê»çÞùZë™UÖ3¯åx½‹8º„ÏéõÈ»«µ«RM¹†_÷Øì-:÷NkïñµXóz¯×š?)ž?ÜÃÏÙ½~ñÉš^¢þt­ÍßÂü@çÜ=ÿs{ôüÖí+Ô»·SÞ{]^Sãµ=ë o=QývÒ×…®Ky u ž¹Qóy}êž*Û%5Ì_©w;½½Çþä¿ä7o¶v‘éžk®4¯“-ÏF¾ÞîY¤gÃ/î¹÷÷ÒÇ£µVǯ“Ͱ¿¤ç¶Êôºïô¼3ûgëÏîáõi¢çrûÛýþ‹uþ8õkÔŸ¤~m%ßi½ÍÙ4ýiz}Éc+Ë—Üo準õ{I¾¨ßÓÚ“«ä«ªŸi-wdù§u< æTŠÕ:§uyÍ«ú–µ¯ö¬cg]»5ó’ü¯õc¯ûT%VwôgݧäØÊü…¾†MþÁyûEÝ»µz¯ •ø¡Z/óßKV+Mÿý^âW÷_°~‰Ž “›î+&ó̓t^u°_y cúÚ¼­ZŸ3¿¼‡÷—U©&ZÞtõÞ§íë;|½¾&ÜÕ¿Øk¼4Ïë~<Ç¥UÎíýË’­üY÷znzïú{’rœtóº…Ûÿ/tïctïQC=vý¼µØõçè¾F¥ºv•ß ÀS·¯wëo¯Åy%¬ÖÛ%u`-ÚzÎë þ¶Ùk4ŸVÝ러]¥šy¥ëgãŸíú˜Ž “›æ‡›îçóÞÙeÂW>îª#~óʱé¯;yþŸ¾þºòmÐd½cŸ–NŸ<6ªëC:îühtßÕïÿÑúoðu~’ÎÚ »êȱÉzn4/`¬­óCé¶ÑõßæéùöUéúýþúŒÏ|á­Ï›œnßwl”^÷ Ó§ÇŒU:ž&:¦éù©·¦?Æ&Ûÿ쯱©¢£|C¤ù§ûé#î›ôu'ücÓC?YãÓóM ãOðoŠø;ìT¯¾bl(‘ÎXKãq~Jºíñ囤®3ÿÏcCO ‰®–ÖÓÑñtž×}ôÓ5뙬ûï$ø¯ómÑ_þ-BbÓ‹Æ&k=|k3U×§rÌ}âÇ$ø§õL‚ÿâÇ$ñyD×'ëù¢§©ùÚ’SGßR´õ|Sç[zž~ªø§#'ôYóLï:?¬ñÐKäÂ73SDWò,òŸYß=¿§é~ìqŠiþ=Ç7Ç-=‡}@ù7Ššw†ôœ›…½NÁu?tñ\‘¾IÁ¾ÐŸ²÷‡èCnÃâ3ü™Šþ¡gè—øÈ·U#:Æî;ôzþ7+üGO¥MìBüi…oÆv7UÏméµÎÉš™$þŒÀÇ<ÿ~÷k^þmè4ÝÇ·~ða²ì¨Ø…úÍ;IóÂ÷Q‹¢OݰNìR|Úï!]e|É{XrG§ê˜o¨é‘ý¨øÎO ób¿5=÷3þ Éq Í?¼Ò8ÓćiàžÆ…oÅßè:x?=ÆŽ;Ïë¹²' xÄ:YrzÊùHÇúøƒžë‡ñâr¦‡¾Ò³¬?,}(xË8q}z?½é:~ƒõ‹SÐoÆ?ñ›ØÉ4=Ïü#]é{ÑSßn€¯-Ù18ÓÑýð•q°Cô¿->àâùåßz³nä'}Â. _rB¯Ñ+ô¨Ø ò/5¸PäÉ<è©èÏ;àžžÿFÅžGŸˆ«À¥é—¦ƒCÐ¥~”õè9p?Ÿ‡‰·$_pþ7Ñüƒž‡üz¾\ʼn^pq}A/ƒ|ð«Å¿ŠØ#ßÒC×®—8”8)ÓYô¤ÈSò› ž`×|SŠ¿ÑºÀiäÙE_ˆgÀø ]Ä-ÄsÁ#ßâ/Cœ€=¡'å7eˆkÕOÇNÑâœà?§ã§d·ÇÄì ù`ØøVöÚww¤/èëšðzºøŠaïôà:ú_Î#Oè€?ÄGè1ø'úñàãhÀ'øÞÑ}Ý ü1qQ[ë!kd~”o®ñ%Ïá= ö=½C¿5_ñkè¯æ†þs¹i=eoäg·#wøXâ ô:u} è"®Ð¸%ÿ’žáG ^£çÐî“ë~Æ™ÞbGàó‚+Ò;æ‰yë/‘'þ»à)q¤®GüDÿñCmG\îÆ½{¡§ä«º|+yr ôN×üÓ‚ .1r@Îø/ì;Ôx%%Óyðü$Ÿ蜌ëÅo¼d>ü6þ Æ+à=t‘ÿÍýècÈKþ¾yƒïØöa'q½È‘ûgäñÖï9Œ¾#gÆçðCš‡úõ ü!õô }&~CŸ5±çáÀÅ0?öRâ$p\@'ñ)ñ,ñ)ë þÖ}Ô›è›Á~J¾òã_'á߉_‚Ç=ôás©·„úÇØtÿ ™|¸ŒŸ+çÑ'ø£ñˆÛà¼ø«¸~¿¿…|‡¸8„øjDëæßº< þªà%ù$øJ@÷7ˆ¯¨?R'·È7à/ñuE­¯b^êcÄY俇øyFô·è5v«q˜—ø<+~ ~S÷@Žâ÷£çmêOŸ¸œ(ù¸Cüð¼ä7áù²Çnèc\Î|¥.&¾Ä8 ¿DÜ^âÊPCï £ÄcàëDñÛÈÿÊúˆ3àkˆcñÓØíhðƒàwÉÈ'µNþ-e±#âü ùT¨£ƒŸÅ¯PO>p‹øœ‹ô²^ðšz+ó‰~ð³Ä¡/u‘à#>!—R—ÃÞ±KÙK ûÆß·àgÉ«°p\'îò*u<êä×øSð“uhœiOKÞÂüäGä­â/úH?P/Oøì.øóâ¡Üàyâpú3¸Aê_èë§®Îá[à~ ?…ÞB?ügò‡ÜÑäBœÔ…¨S7Ägüê-û=Ï—=¦„8½(uœ GØ=vãúXç*õ'âô–<»!‘œŠŸGžøeÞC§âð»á½ç‰ßYoùÍêåàv¨Ëb¥NJ~D\(~à‡Á/ì]|FÿÀ—X¿Ö8Ø3ù}©»„ºpÁYÞwé>ê¢mè#ß$ÿ¤þÆ8á=ú€‰yg¬«u^L~¤à ñBŒu½ð‡ø“÷Ô%ÄOâzü_© R@¯Ñ—àï°ó’O£·Øµô´Ô]¡G×±¯¨ŸÌOž a_ä»àç'},;…<€ûο%/y5ë’û+ñ×Ã{×ò}ö$:ˆÓJŒü?€Þ£·Äw!~+ß[…x{ÄŸ”÷8z{Ákô*äÃå; ê&ÄíÄGÄ'Ä‘:_Þ—kÜòý‹ø@—ú8¿«$®Šß‡ÀøJÞïɉzo‹8ÿ†½á?±/üõòQÞgïQ÷ îòÀRç x_¾ƒâ»0õ%Þ8Pò+âsÆßC]1Ö×‹ß þ²Ô¿;þŽx/ÔÂou¬¯+~•º8që_ {%Ð}å{[Þ{W„87úô àdxï^ðž<ûæ}|ß±ëPÿ(tÿÿ#?Ñ×7‰kèyŸN=ºyO¬ç›¼'çEöîO ü+ïAÐ˧Mý”u“§âu½|÷€|ˆëˆçćò^ ?¤õÐ3qõ«â÷Âûžò~¼ ú…ÿ+ö C¨Ôˆ‹É#CÜUê6zŽ|§ì勼°ü)þ•ºù!Ï!Gâp˜õÕÄ]àiÉ‹t?ù_ñ¡NSäJÜ ó¼çàûì‚ÃŒƒÝeþì÷0ùvÎûɧè#v„¾ƒ³!_,t‚Søiô<‚oèGˆCcùþ.Ô)Jþ@œ:"ó€ÇÈ ;'nçñ[Zƒº‰Æß‡Cù"~ »ÆOSwåýpy¯C_Ïó]-ôÓ%¯%Î õâò]©øEÜBüKÞŠÜá;q/8){á»rôÜ*õfèÅo1ü¸_êð‰<ÿô´ì Ÿ±øâOpœŸñÔ%Ë÷?á=lñã¬ý Ž†oòþ.à@yû¤nð¥Ä1Ä™Ì#þ`÷ÄŸøŽá3qBù>2ä3“‚¾ :°gð®ø5ðýÆÎ‰?ñ7!N‹ßíGþ•ïB©|÷ŸÁQÍןˆCx?V꟬‡÷âGù^óbñ»hâðò]$ß àONàG"ŽGÿOþQø ΡgÈ‹óäġثô¡üû+ÞÀwèB¿Á[É“ñË{êà[ø®ªÈ?H\n‹=¹?<ô±¼/¤ŽÅ|!~,q±Ž«€'%~ Î N"þÅ.°â êè |C¡û ïQc\ ü,ñ0uqÍ•÷+áýVù4øžÇßï`Ôí nƒ!^*ßé>âÔXÇ-8ƒÝwb7:¦¾…¿*ü žê³å}¸ƒ}%î/q£Æá;Ž¢g:n¨NúÖò6ð ¼Ocˆã°‡‚ÏÒ#ì­Ô#ÐcpŠx'Ĺ¥þÊsw £ï!.*ù5zÆû —ï•cÞê°å;vî#ÏõŽòïáˆW©à?ÉKC¿Ô›³üª²wv÷sÖ«ªÇü¢ª†÷¶¿?QUcªª}lUµn³f÷¶&UUó_õï¦}¯#ß;ë«UµÕvßÛ¬½ÒÚ;¬í`Íï=ÛÚ{¬}Jû3,´æû]hcù¿§~®µmíïiÖëßy·öÊû8´v²þ'Ö>kí©y€-|Ü™¾Ï¡Ñ¶½õFc÷UF¿ÕþŒÑmÏMÙ§ªF®«ª-w¬ªi»Úñ£í¼Óz«Ýóë_aý“Gë!›k몚ü.“½3ÉÖ9ò>£J¦gê9FÏçm.[sû×F˵֛®´÷Ìs¶Ïzáã·çn™î=æLdž29͵g»GX3:Ú´v£µ/Û3·çÖ:Ãú«µ·×/ò³ÃƇ½ÁÚ Ä“gäÖ1ë­í»­5­Ù[—XoHÜZb÷˜= Ͱ{L÷‡í¾Ñ'رédÇ×r½ôÑìpÈt½s…=ç×l­í+}B뇬›õ=¡¬™n·)›4Þíb4޾×xf<u{ÛÙ6½I{¹ùÞ¦KÛø>æF_ÓxÜô}2L/šTÕ£·4ú®Íz3d²sKvaôt޶ó7Xû¶ËWºo¼éšu s:¦'íÑÜwOÍï`v9jºœí´åûø®O7¬ií#ìð}—lÌÎÌŒßiÌ~cKÓ©IËL¿ {§˜½ŒØ8#ÆãŽéaçqYÇ·±gº‡ä¹acwMƽ]ã}ÛNÏ3ÜèÞd÷›v S;wæ{÷œ[U[Û³[Fmm2Ÿ¡ý£vÜKr6žh÷M:gãv|L;n6ß»U3ÓÚþ¾]– ™<ÛŽ¯³k†K-³ÓÖËlßÏúŸö#ú¡5ÓñÇ~+Ûርq’áÏÉbH{¦}yÍvZ³|/Åìך&Ó¦ÍÓôýÅ cšÏ³ößÖ^,ûZå=+®Ö·2Vuµß̰ÝÛq<›cc»1> ÛsCfCGeœh›íu„!ÝåvlqEëíY_›¾þc¤†KÍY;#ÿb–Ù×ÜžÚî®Éú?d6ÚþCn-Ó…Ö÷}|Íák5,k»Žú¾°¿ÉúÚ8Cûùø>lF_ÛcÇÚ5£)ýþÅ¶Ùø^fio ßsÓäÚð}“nÍ1WÒÓÙŽcètkˆC†«SM¿¦x çvo:büòíl½y¬ï4w\ÏÍv›Ží/ÊqƒË¨y§â0íØõ|Áì¡kzÓ1^·=ž·¸ªe4´ž$Ì1^5mÍ7Vy¿(û;ígíûú…¦'¾Ç`ÚëÊ÷-ó½ö~™çk[l1lúÝUë<ÙèõøøÙO¶ ‹ºæëºïé7CFn“Ü,¦2þ™¯1»éÞ#2y¶ìZÓc5ýŽ‹cƒó¦µ4ó9ù­Ù9¾uLõ½¯ZnC¦Ãmçã‰â¥ñ*í¹º¯ö®2ÚZÛk¿.ßkÍÇåÄo7Ì6/ʲh~1ëJk…õ‡äøÝõ´µ<ÇìîCF ûF=§1{2}ìZ|Ýy«èõ}Ì §›[gY:ö6}oQßÍ÷Á÷ßµ¸J¾Ç0§eç[Æ“¶~g ==ç m“CÊöκ’äí±«ÇŒ#’ñ®ù~÷Am÷í®Ë“ï›L[Èt·,_jš}w-&i]ã÷äç~™±¸iëKùâÃÖ;.ÖM2Ýìö­ßLj™ÞvŒm‹›Ú†Q-Ç÷{rã¹b×±ýoÙ·¸îuŽÌñ_ò'§k}ÇgZ ž±0ÑøP–²¯›»µ5·_-ÿð•Ì›„̱kû†;M®Ÿou_“‡Ì.;Gã¹aãóËÖ|ëÐÙÿ¦ØÃ÷¸4þµÝ×_R®m:Òzš5ŸßmjØüÑd“ËdgªÉfä'Ò‹96iyñYÇ:Ë9²ûÏ”ó½M¾àe¹µœ7O”µ±›ÚS­s°r ‹A»Æ®á\ÛsÌ»òz;¯&ïFgf\HûåÛ:Ó~¾‡­ë½ÅÚ-Ã…¦û‹aºîÇOκãkmýDqÏqЇlž)F爯ÓñÕô´ë¼6n9.¹oøYŽÅš÷åxlÄômÄh1üöo²ö~K´^žu©õ«g Y,0l¹GÇböŽÇ±®ÇJG–c¹„?WfºZ;flnÞ¤ÜÖó³õ¡ÙÙoz  k˜Ðq¼Òomu,nšjø2lX2Íâ«ßÍ0üØÚcgÇ·µ—Èçš^7?—cäÔ/Ó\.kÓÿT'Y'iyöT£wŠorâò7>N1Û÷-;‡µo§ç_Ž][w÷«ÊÅ,?è|Nvô›¼¶¶×/Üoyüíñ¢ß=!ÓÒºIúwa®§ ±·¡ïoë¾Ãƪl}þûéo³ëêò¼G^ÃdÓ6ÿÜ5^v ó;&—³«á§å|Îç²u /Î5™aÓí®­±ÓÞLÍ4{=§cúí?¡6j6?dqø–1ùZ<:Åx7b<Ý+ëiÓÆhÚµæâ̧äK¼îâ¿å¿]áûX7÷¾÷»Ç #†½#fw#·d›5ìëX¼9Åæšb>m’áǰóËäÝôXN{¨vL‡FŒ“Œ¶Q³á®bÜ!Ï!Wþc1QëË;†·ó†ù­û„iv­í¾qažûßßÒhhzìe¶Òv?dëi}(ëEÓòóÎ[ÜW¤\ßó˜_f›bÌ#ìo‹['U©îæ5¥–ùÖöÂ{ÿDz¾»Ž¥šÚG³ïè¼(cF×øÓzIŽ<ÿë\”ñÉ}_Ó±ã{Ùf“oŸ¥ÜÈ}çUŠvÌ÷4?£Xæ"Å€æƒRîãûEþ6û¨®ñ¹¹CŽç:–[y,z\Žš†çÍ×eŸÑôøÃÁd3lö1ls-RøÝ\ðØ8å†GmóϱZÛýÀBŨ^ÿ80Çâî£=Îì¾(Ç ][c×óc›{Ô®M»(ÇSÓmþQÿŽl»íXþÖ\»éLÎøä>ÐkVŽ­[û¤=3MÛ„ËŽ‰¾ÿªÑ”öÊö_âôØåf¾kÈãUÇCÃ¥–É£õ‰ì'+»FsÛä?õ]Š£Lšî[]gÈzïþÖk—ž·~güyUŽI‡æg¾´¾Ÿq²å²º;Ç#–‡¥ÞUÒ¿ƒ³z®×Ô>¢m¯Õ®Ë˜×²ø¬õ#;·[μÞäùP×èòZF×b³ŽëÍ[².uî“þœ—s%•“ÿ»"×ÁÚfŸmËÛ#9çðØ·ù'ŸW汽ד ïÚ¿È1Á­môòŒ·Í÷‹ï3sÌæ~#a÷{W¾Ty˜ïa}vÎż6’tÔ}¸­«ý õM£Gûu{œßÞ&Ç»»¬gšÌ|ïÐæ¨ÆÙ1ã[ú«ù™—iÿRüFá ïÕêyƒÑÚÑ>«mùþ;Ç{©víq¸b'ÏéWj£qKÆÂTGtLxD–yúFß›ÖÖëy^ã§Âêg)®4¶Ï’þ¢ØÃeí±›­cò§ ×´wjªQyÌiºÚ¶\µ3Ãù`ü¸>Û¥çÎî;¼>›tçTÙâvŠáì~ßS¾i|Nñ²Ù\ª í ÜÚ%ãPÓ°xÔtdÄâüaãmW{aO¶ã©¦£f£Çæ<`Øó_³Ÿa³£[ï°éæÐ§„­ r\æyoªù™l†\ïŒf¯ÿ·ódŸß²ØËó–Ö-òc^ÿø–ã­µ5™?­ä/lþ»—Iÿý÷=O Úþ[ú-ÀRÛðöqÅ é‚c‰×^‘ñÅ}ÙˆaרÙÁ$Ï»~mÍß7˜½u ×G½†ã5H“ù³ëG™þ·ÜvmM­'d™´²f>Ëëwÿwø]DóáÍC³>4;'gzRÍaµtöMUª·¯Íu‹Ë›<×õ:ñ-™§#ŸO7þó}^¿öš¦Ç5ÃS¼3¬øá‹9Çndº½f6Õ|ì´ϱ֨Çß´-‡i?Z±§cË{Ÿ’óqïÒ2žŒÚõa£±éõÏI͹cÂǵ…C.ß§ÙëbÛçxØkämeÞ”íÚýLú½*~ÇÇqÊòNçÑt]°x®ó•ù»¦$¯§äø'Å<çz8Åô—fÿœÞu™~uíZÇë‡^ÏX”u¦}zÎ_’Ž›n7-mjýÌèï¸R<åy±ïü‚œ™ßštu~6åÙ§çøÔýcÂrß#úÛª¥ø¾ð^g\•u£y¡âŽéYfC;YÛ'ó$åGîë¶Îât¥:épz§ñâ*åN-¯…í“}aÓ1Í÷òö½Ãß•u«{Y–•·¡ï˜œÍŽš-ÌXbò~wޝ§šþN1_5ÉhM{ƒ_“ýÔë•ÉrôµÙŸ›=vnÊ>xØøØ}µüÏG2]îCž;Z~êû¹ßG^ßÙ¼=×m_Ÿglóü£óŒ÷´-þèxþoôzÐ}ZÂlÓïögó}΋T£÷˜Þß šޏ_¶<`øûY¹&à5ÖQµ-ÞéXÙ:F6}æUwmŽƒÛ.ïy9^šb¶1Ýhža¸7ÝðuÚÓs<—j —ûÌ.'¾O1žwMvSÌ&†,Ñï:¶,ÎéXŒÞ>"ëU˰¹ýüwäz™Ç“3w=_p¼ry».zÂb檜ãz¬åüý˜tÐcOKo KgZÌ7ÙâŽÉ¦ÿ[˜-Mò|Öcæ;³Ÿé•õÇó™–ã¹ÇŸþ.fr^GÛyîï ý=ÛY—Ü~ºŸ²füšžãvÙ=Ît{1›ÙBôÛ³Ý;r]Æõ_{g/KœÛZïºO^”¯Îý’ü§J¿èÂü›~Éžùüs׿û­r¼î?â¼üü°ÏäþØmòs‡–ç[>+ß¿ìËùxÙ]¹_ù¦|ÿ²úç;YÏð@>~®Æ_þrõZv¨;NÇÏyz¦ç÷œåq½¥ç~­çY÷_¶ŽŸ£ãCÕï£olž{Sþ-¾AtåÆVîªõjÏ{²ø(~þZñåö|¼ZtŸ½4³æK¹?ãs’ËÊüüQßÔüâÇ1â÷¢Gæó'k½‹®u|¼ä~¼Ö{"½Öù<ñãhÑÅsÈñÍ‹\Ð'äƒüÐùãªþ¾ž ëGêøÑq”Ž…åúþá>úSÄWÖÏú þлNÏiGÏÕz4ý‘’Ó‘ú†~­ùN”^¡o̧_‘;Lô):OÖñ‰ºÿy:†®•:¿øòÜŸsiÿøÏPÿ,ÝÿL­ýeý‡JÝúE‡±gj¾ÃXü}QÿŸ':–Ê.c}!/ŽÑ ä°Dt,Ñ}KÆúùpÂÚ@üÿŸ»ežqV-Ê×±§3„#§–ÊîÎÆNd§àÌi¢oeÞ´dì´YùþÕznµèZ%>`'k$—ƒ¾E9sT¾~”è}:|‡_¬[=xxÚ»rºô úÎ}ô'h§¾_¸)ºÀÏ#5/vÉu켆/']’‘Ûs£<´ž•âç¹ßѱî?Kò:ã¨~þž5’ÏŸþ{ñSü¢?Kë=Sóœ&~Ÿ.úþ èܲŸîcµ~ä‚]û×uέûŽü§—ôëcúeò²žStù Îâׄ÷§¬è?ΣžûN¿ÐãÅ’#vÝ#p±àŽèZ„œÔü&Ë¡ûéý~ãù«§‰îý¥ޛσ#ø})Pô¾¢^˱²3øý8ñŸèá)’ËQêñ'ô¬ë8é|‡ÐæY!?¶zç|ýÄYâ«îƒÿøeìyAz€þ‚×úõ©‚kG!oÝ_ðï¡Lô|S\uØŠ~~`ŸÌ‹ÿ‡®âß9’#牳ÎÔs§Š¾3éÅ×Õ:>C÷?Gr>I~½ÁïG1yÃý³ñKAOð×ëW~Š>±Nô==ãö~{*8°Jz}qÿzW^ÜߣßП°‡ðù›ýë+ç%?ýZèØbñyõÌ|ß©?”ž·±'ä»â༞Պ¿NÕuâVì~©ðø}'>;U¸½â'šW㬾±nΣ'Ä¡Kˆ÷Võ÷EOÔƒ£ø-ì~EÞ„¾Áwè=Ir?Nýñº¾dVîÉïÎZ”ûSuLÜ œùÁ<ÏréÁ¡Ò7ò9ø }Äa\Ç_R—xVè‰×¯íïÑ×· /W¿A8):Ñòý¢çØ¢uº®ñ–è˜øôÂ[ò:È[/xgÍ9ù?Î:Ö<ð½+ù­øÀýÄ¡úÕ»xóé:¦>sP8FñóøGzô¹¬_8Lþ¿–J¾ÑÒR¿¡ç:y)ô€ç¥#ùáÿ‰óõ§Äõè!ñþŸzñz„>ÓS×a~ú¥ßÈãp8ž8{§ÐÓ¥ÏÌ‹]q~/Í¿z쑼|$Ù_ãï­qÆËÇúåȱ1£¯7˸û‡óàõüi¬ó ðƒøÜ.y³ø‰Áÿc'è7y!ò×ÉOÖ}àõ:âò—ÃÂ}ÔsÐê«ôÈüÄñçu¥7WöëñõÃXxÎXÿùg©GŸ(9¬Þ' ôâq õ7ü-8s´Ž‰ë+ñ5ö@_üÅ•ýþ£Ô×õˇ88‰u'1?׉—°üþÿ1¦ûöUÿTõOSÿ Ý÷4õà|¡¼è‰‹‰«ˆÉ[ÀíÓÄÏs.Ï=öIÿ'<穲Káu…sE×9²Ó3tL^ëÒGᓎ‰›‘S‰»ý¸ƒÿ!Ï!ž9umÿúðÇø9ÆÇo#äž·€gäãÜ{îÇN=ïcÐè@ÿ˜·¼÷]¢gäáà |Ï몋GJžô%¾TütAvlëã…8®ø¸\ü^¢qN_ÛߣÈyqž>Æ÷%Ž@žŠwˆ ‰xÿ°$ôè5~cÞ—àÿÉSx˜8ù¤pL¼ó§RWzz¿^}ÒsÄ{Ø/çÑwüvEÞN~DßÇ¿RW*vªñ©g,½èq)yOy¿!» ç‰ –KÞôÄ;¬»¡ÇΈŸˆ¿¨£a‡„ó¬ºx ]œ'.Xªu‚ëøí3EgÌŸˆ‡x®¼—ÑüôÄ ÜOœ_8A|Y<+ߊøq²ž§Þý<Í{²ŽÏÕ¸çeG=vøC]ˆ|ƒuóþ¹þêÿ‘GW¨ÿ¿YzwºŽyßëAÔ»ð£ä¯¥®Œ}ÝÔëØ?øv¬Ö ½ÕºˆKÊû'ñóÔu¹§NMϼ‘òôžúä1?Nž‚½c_ËtŒŸ×á?ñü“dð¿Ì1q;þ›8&Ö©˜\"^Šy2ñÝÒEýë…_àãóÞ¨Ô­·êD=Œºñ8uÊÕšœ¢'^×KIãAx¾³ì »#î…>âYÖ úÔç!Wäý%ß uèézyŸ¡qx?²tVÏ8gK¿Ñ?Þ¢×øßóUO(y¦zòDìÿ b—ØúÉw#+D'x~.è>zè[­x|`™îÇ.Ÿ犟PÏúÁbÇŸ¼†¸ë$è^×O?zK<Ã:Ë÷3ò§ñýzÃw<à.ñQ©€êÁKòpì;EŸž¢žóÄÙä/hâê"Ða7à%zÎÂüþ?Fû\õ<ÏûX¾÷ßÐ[æ¯Áû³u:ãâÛioåå:Öyâp¥ÄïZ7öë%Ä?Ô+àãÞêñCð¯¼Wå;£Yâ«è–q^t>O=8‰¼‰Ç°7æç}*ñ6ïC–Jã·/zs¾Ÿ÷1ÏeGàâÙšÿœu¹?St'–÷’²ä{üöL€¿(yµî'‰£È¯éÁ×R7ïj½¢…èÇoààõ*p„x‚}ŒyõNòâ'ðS¢—úutÖSêï:NÇïÞˆ¯ñøùR÷>ÀOìŽùxOJ¼FœBþ~¢î#¿'oÃÞñ3å=¤ž/y?té¹àçñ|ŸRâsùa¾¯"!?DN±ÞŒ}–zu.È•ü?…>À¯ò}‹ø^ž :~càuð? .Óƒ_Ôo÷øð¯Ô;ôx‰ýS_-ß©AŸÖ~•ï2tq~½'N§™Ÿ¸ª¼‡Ñ1ïÑSêÄ àè+^œÇç»â/üLÉË%7ü8ß…–÷—’c©S®í_oyÏvqè%GÖ‡Üxž÷œØ/õBê$cŒG>ƒ‰ïùð»Ô!OU¿@ý”¸ })ßµŠžò^N=8ļø»Øcø{울~…îî®úùÂ÷WEß„CÑï”÷[z>æ™è úÍ}±îŒýSw¡‡âzÞÏ–ï­DÏR=G\ŽüÔ:¨O ÇÄmØ!=vG<Êó¼¿Ó}ä×û†çÁƒR'S^"Ÿ’‹à[±ó v_ñså{]Ç®ÐKüï©Ñ¾Ûäyü ú_òFõÔ­Ê÷TAOÀKò7ò?êùç¿,¯ó¼?f>¬Ô¸à}Á)=ßøÕR–½»¬¿|/¯c¾ÈÇ‘{éuI‚¡ÞJ]„ïùÞ“x”8±à2ô]ÜßãwÊw{zžïÂòˆùtùŽ˜ïëužý!Î[¦qÏÊ=ß«®}«4ëZ¬câBÆa=äeå»Ý_ä¥cò´Çiþø¾ü#nDÞÔ-ˆçJPãœ{qO¡¼Sß“o@7þ‡ø{ÄnÐgp©¼‡Ôóà:t—¼ìòÜSß)ßwê>òÃ5ªk> /x¿’/œ"úˆËsêËû&Ýn¡çè?øx`8.ù´è]¡óçÈþˆ·ˆ“©«/_ÔOõiÎÓS—@ÿÎî.ž¥ñÖöß_B¾Ä‹ËÄgìˆ÷?ÄñÄGè1t'€[àïOc~EÜDÞQþ½zôëµzOŒþó½Ü"­;&-8½¶ŸNÞw`'Љ<À â ô ûâ}z‚>âO°còâÑ1£/å»3è σÔOáù?þy–úÆÚþõáÁIø„]üYÛ¿žêù÷TGÇúÇÁ¯àWÁUâÞ¢êÑ“¢O:'ùw§éyìžï'ð àòÄ^À¾» _D‹4>öHÜõD]§î\ø¥ž|ïR©Kœ®ñÊ¿ËÐ:¨¥}G¯ÁQòP¾£âû*âÑë˜: ù[ÉuŒÝâ—Ñä–…~‘®¯ÐøÄÍð•¸yïcà'rÁÎc] Ô'Ô£§§2žî§nÊøü»œø'v|JÝ@Çà zÿýùó=Òóçk^ä½Äçøô9aè;ëEË¿»»8Ð¥óøwÖ‰<Ð+ôžüe‰è'Îà½ÙR‡å»±*ôœ×}àt`ŸÐ‹¼©s‚èï2ÝOž„ÿg}‹uÿ²Eý=ræßñý$óá/±+zÆ/õLõE^ºNž¡—å}øÅýÏ—øOë/y >€‹ø±už8‰ú"òdýø™òMÇÔ›øþ>Ÿ¡óÔ•ù÷ ‡†çÈC±+Öµr‘ÖÝkû×½¢ßØ|‚Ѿ‰ëˆ+þ—ï¦ãò^Wã•8c]îÑãò]‘®/¿\ë¨øO{gW_±öyk?­ò¾HïµöBkÿlͽ¨kÒ9úûmUÚ/©ò¯iÎÔs0þÅÚO´gÑ5Öü_í¼ÊšKÁ3dG¿¶<¯®± ïC’šö±¬®«òMÞ_Qå½g.ÌcøÞÉi”s´g…G¿¬Ò~uÕoóü [OõµíoÒ¿‘×ÒØ¹Êû;ú¾v¾ Á­}ÉÚ;µFø\îMlüÊÑo‰îýS•÷¾©Êû û¾¶¾ŸÔ-UÚC¼úƒµï[ó@ë]Ö.µö"k‹¬½²gÍóª´×Xcræµï£“xÿYkWYóc®è´ú¦]ߺJ{²¤=w¶µæÿ[»^kwÚîµvs•öD¬ÖYûqæïe™îýQ•÷úªhý¬îû–µTy¬OkMŸÏÞ§1|´E»Yaã™âõÿä½e’xó[\G^`MÖ‘dw©Æÿ¡äòt—u•÷5/Û8&¯)­íÉÒ…'Ù}÷Hì™Æ’Û°ÖéúùV­Í?¸üˆµ³$+ßcæÚGËe~šóXô8м^2÷=ŸyœhÚNÏL—ŒýÞ÷[»HçÖˆ7Wç=sûh?Ge]vY¤½B}½/³vA^gõ3éÇ­UÒËÄ¿Oª­ïýš¼GköþƒUÖAßwéoUÒµFK÷º½ÅÚ§tŸï)2Cºàò½&ÏÙØ*ëPû{ú{è0ùúÙ ß·ã3Ö|Oì›2ï“Î9wÚß|_õkóÅG·k³óÊ«»çê¾ÝµÇß“c­ÅuîÊü\Ó÷Õ»9ïÔô½õœÆ;µWÊŽy?´žsóšªWƒÜ~wgž&ù}´Ê¸ã¶æ6øssù~œÇkÝìØ÷–\žçö>aÕõ¼ï¡³“õw[ï›» ½ÝÚw$û7K¿LWª7XûP•uÜt¢ru\;Jºå¶áã·²î4ükŽ/Iž/µv™µ—ëíåÚp;Ú;óª±Èú»¤/?Ë48ÿ}ÿ¤4—c©óõh]÷hØ÷v[&ÛÙCÏ»M|E²øaÞ7¦±P{Èt²Žû~¾iï°ökÉõê½ó ½‡gLþÚi÷¡K³Ü’?p ºKº ýÐɶÖäøæq‹Ç n·þA­aCåúîò‡6nŠ…|­/Ët¥øæ âók¤Ž}ïÖŽéž5ýFüuÿç_…»šî&›s¾z%ãé‚ãÔ¡¢ÇõcLÇ~~±úc²ÜÒß®WhÝ·fÿšâÿ³$¬|»äéÕŠsósþ.•Ç“_”/ó8àmÒ%çÝ+µ£/ùy)<ö˜/ì|Š|ÃMÒÿ§e:¿“^l¡æ÷Y\Õ8\´8ö9fÝ":<¸7Óš°ÿËâËåvÍÇ:RòwÿT gJ7 Õ83Ô»qŸæë×…ŸN“û÷wÇK‡Ü˜oh(LϹoþ7éÇ+ô·ë€cè¥Z“ËøMzÆã7߇ÍãVÿ÷‘ŽóSeËî<ýS–wŠ·Wo–l}ŽnÓªã=$^âïTógã.-¯žû—P÷ø^ú¾Çþ?K/œmÕ㚆p9a×ûôÌ«õ˜vQîŽ|Hkó_{:Mc¿Cç&K¦n+—ˆ°Ô›=¡ AÂj‹‹“„®+ß®2>8ï?/ù~)é¿eã¿§”|üs²¤ç·/wËúäìºä˜î6ó]­ÍeôañåÅâó¹™>-“îŸm2¹Jzèr¿Mcü ÛTÑ;Ï!\ÝG¸ÿÿOÙÁçÅ÷‹ŸÓ=./· Ç}3“®´ö3íxè1˜ãÔYâ‘·cÖ[÷õ kܶ¾’u"Ù‘Ç鎱/ߣ]—…G wý7'ž°Þž:†Ü¯u¸Ow|p,¼®*~´ñáø¸Jzá:ï8ê9ãDׇ¤ŽƒŸ’ÜÝ_–ù‘|Õwó8Iw}¿fêI»ŠÏ^§:^úêºqŒôswñhšìÝíÐs`ãgÃ0$å ^“ðµÌ’=šßL¾ÈsÏ)<~öºÍÁj{‰îkEÏ—Å×k%?ã[Ê;Ý~_,[qÝ}f•ÅãÀw‹?w¨dxX¦/ᆯßc—Ÿd9¦¸Ãý*ÞÉ_9Ÿÿ%ó#徯—Þ¹s|ôߊhêþVësÇ}r÷ÝÈϧxÁmË}¿ÙfòCžoë7õR¬áõ%¯g{Làyžç®ÃŽqŽ-ž‹z¾~W~>Éý}™¿äm©ê¾ÁcB½QHrÛE|˜“iHvã8æñ¶ã¨Ç†_«Ö×¾ÜW{þæøéù‘ûgyÔýÿ©õºZ[åϲ<‡Ó—lÀíÖíÍíÃc‘›DãÅÇzϙݧ»o{ƒhÜ]4º¯ñ½™?¥±½6âùõç…/nƒŽËÎéÒw——ãòó%K?öøZoZ’=ß'}p\D¯®©Ê{„TǺJô^Ÿy˜â!¯]ÿîÖØ^»kg>6fU9÷÷xÂcÏ©n”>¸¾C|ñqÌòK±Åtñßó>5ÝÏ>Zs»þ8Vz|àXå6¼¨Ê~àÉÅc(Ï Ü‡ºþ¹?>_´ø<ïIÿȶš0úñ²eãåþë2Ù³ÛŽÇÛ.{Õ‚>=Q8|0ÁñÉ#bIÆ‹d§ÞnÈ8šjÑÝlŸ)÷r_O â>Êsš©Yw’>9zŒîù–Ç_–<Þ›ùœðmìÝÇôüÏëzž'ï#½q›?SkuŸåöòNÝ»‹ðÇ}ã¾Â9¯—zÀñá9âç)â§óeŸLwò¡_mn[WK6{º?tût{º3ó:ù÷Éž_yìÿ+éô4éÞúw¡Æ¼'ë]е šÏÈ¿»à~ ùÝäµ&=ëf^¥uÝ!Z~‘ïK1äc2MiOÍz•êEN¿×Üý.ëKªÏß(¾ù;Ïqv”>:ïÜOzåm’cÐ-ÒëK²ž•£Ç…ÛVëã´yy]Iç?‘å—0Õùç¶³šcη«õu†5²ÃÐô{$·J÷Þ,»–dôOºÏ}‘ûý•’ç$·¹3sŸÖæµ—óX·M¦Íù•|Â/uÞc·o÷óO•îVâáº*ÕvR¬áuÉË$“­Eûãuïýëçó÷<•Þý%~Ýe°òOÿô;D ïÿÜÞ*¼pòøØãóë)Þž)Ý}a¶™TsüH–gòa‹ªõyõîZëÙäÏ¥#^‹}{–]’õÝÒa×mÇáyz~jUr¤73ÅÃûEŸÛÓ3¿RmÞ1öÙÞÒX¿ÈºÓЛòû9Æûó³dËÛ ƒ¦Kǽ¾õé5¤¯mÙ–ç;Ž]¶¯±%y!@'ã2z´}xŽq9Fà™_×çÓ×èóÀ:užùgëüìp‘[àá'ëÔýðanàö[ÖÁº‚•ñÿÐwô |@Ïv€.Æ ÏÓóÍ#ë-|G.Ág#'øøˆ~D{-t‹z¶@ývŒä0;Ðqûçºæzá_Áך>âzáK°ãÙ5ô²Þ¨‡ðùE¾ÌøùSì4èË‚@'v2o¢u„ã2´÷ˆ¬›õb‡Aß ^a_ÌíO|‰tÌ ô| üˆ÷E9¾Ö¥çY?z¼ à×üp¼CXϼpŒýG{Œúù97Ðϸ1~°·Ð} ú¼}ìëü=üeþ>Äñ#¿ Ÿƒ>•øGÇ»nðû ö†Ç;ÆîtùE})| ü„Ž…n”õFûúYæ~(êyÀÙ?qgÔ—HöäÀú‡¸q Ÿ@ú‹^@_ïСû÷ôǸ…uD{Û!:'Ð]W*zƘ/¬s >ø2°î~=ˆï›âÆàgˆ£K~Áú‘+üe¼h^ü7òŽu»˜ÔÕgãºËøèY7Æ1îðw~¯N?‘/ëŠ8ßÎt ¬~{/ñ0öH¯ëO¼]zõ ýC¯Vôß7;Ì_ôzÂqmÆaÏXè#Þå}uÑ/è‚_oñýâ@/Ü?'Œ;‘c}µ~<èõ@ü­câp.êçž@GÔûh?A~Ñolôxà}[ 3Æ‹1^ˆïsòð¨Á>Þó`A?JÝ$êOÀ!ôfÇ`WE¿ƒÄ:÷@¾ü^Œ¯â ô)àð@ÜϸÈ]ÇÐë„gê A_"Ÿc~_êЂ<çz¢¾;|‹zùñù .‡õPO‹ïùäÆÖÇ+¸QƒÅ^Á%äøõ*Öûâ{†8^çc\É{ÿ¹á¾¢aÞØ|‡×úX·ˆó‚ß)õú 1މß#ÁÏœá~øAÏG;ä8Ìñ¾ïp«äq¬+ò3è;úU÷ž~a7ò<Ù9èO´ÏÔ½‹yT]}mäWÖô+Æ[ñ}ãüð|ÄÁo×Áýq½ȵøøÇsA~1ß*ò€Ï:Þ.ð3Æ×uß Ç‚§Wÿâwï/jôi€øè)þD×ç‡ñô)G|g=ägßWÿ‚Ü:£¿¨û^¨ä š7â0yc¬ àz”Kà9®‘K‰okøí½®û~¥ÔÃàgèâŒ|Bà÷Ü@o|ï6ðYàÛܰþøÞ¿àr w®¹>PÏ þ¤®Þë%×yô™z]©ÛÕØaÌ?bœF_Ëwšgç`?ØgÝ÷Hñ»Ö¹Ðõ-úÉÀ¯è×â÷U8¯Gýã|ÆzüÂpßÀw›oXgÌû ¿¿ë‹qÜ@>Ç|Á ŽÄñ88ýwüþ:Þ7¯G~G=ˆüÁ£\jôv@.‘oÐÖóšíã}ÁÞYÇn¬/öçbþÉ}ñ;ËR7«Ñóˆ3u8V÷~$ú©ºïÑ¿ºïžËwœA©;ļ¦Ô/Ñ‹(Ç@oŒËbü¿ˆÇ‘kÀ—ºzz¿_‹uœ¨G±zë¡<ëõ¢0_”[ùþ«Æ.p ~Ezu~~ä_è£}Æx7~÷×±ôÖÉ 9£Ïè7ã‰õça½1ßÞ•ãšuÄ8»/~0ȵî=ÑÀ÷¹a½Œ[÷=s´‡hGø]3×wŒtÕô‘¿Ñ Ô[£Ý„uÕéÏ@ÜÍ1ó×è}¬—ÐSƒ‡Å`7Aþ±Î鈸óÈ"ϰžø}Düž±¶ŽäQ÷~/Æ=EÑ×€³Ñîãû¾(‡ûŒ~ øÙøÞ}àß;ÐC_œúkì!~—9pÀ‹X'­ý”ýˆrVOÞ_òË€EþÐîßÍLdÿçÁOpNçùî4ÎO_ë·‚cþóµ¼q> Ø{Î{ŠòŒz^ô‹ù¸?ÒøX÷Ý[ÔLjû1ÿŠùlô?ëŽzäÌsȱVïYg?ÒSû½ü 8¿?«•3øô¦ÎoÔjäß› ÔEƒ¼èãûîX§Wk¿ªñåý¹úX'øw=a¼HÝw€ÑŸCßNqÖp:Öƒâ|ußS–øˆyâ}èü x=Pg8°Sã@ÞŸ ü‹8=÷¡Oÿñ½ú}ÐçÃþÑݯx§Z¿wv[­µ­½ ­îÎ7Õ6eþ:«wÜæ8÷ÿ½køß+ò¨¹‰ÏÇÏôº6¶õ®¥Z­½÷÷žëí7‡Ç¢%êãx:iÙ¹þ=ò›HGz×e=‘=mˆ×ÿW¶òÙ6ÄÏVÕ¯'ñ ê÷xóDý‹:6_7æZŽlÌ:ƳÉ::#þý¨[¾oʽ|ß½O6‡å׆ZÄ«‘á¦È4ò¤ŸÿÑó§§Ér<½ìõ›b÷aåDrÛÔ16•—:¿©zû÷èùæÐþ÷ÚÒæÒV‡yãamäk/ØÔõ§›*û éZ¯ªÃ…h1îÚ~Ot†ç6êü†p!ÞWómH>uq@]ìº1¾1òðæ6×¾ÆãÛ?ÒvÇ“ãæèÛ?s'²çMñ-›KëæbÅx÷Ö]ÛØØpC÷oŠ}7ÖÿO6GGÿÜß/‰6UG˦Æÿ´ˆg;öÆðk¼¸4âàxó·¶M¹ws1tcó–8ÞÆŒ¹©ºùÈÃ6UŽuò†‰äýÂÖ8ÿDþ`slx"û¨cÎmêú7W+ÿMÉ£6EŸÇ³ÍñhÜ]ØTÛ¯MDÆhç6E§7ÅŸn¬­×éâÆÈace1^ ÛO·6'>Ú OîÒÿñtzsðuc×Q§Ñ¦¢~m*îo,½utl¬MnÞý½ú°©v±¼÷ ucmêœÙ䯬mcíh<[ßX{ÞT9nªOÙXlÞ{ïùñÞaLDÏæèçÆÞ¿1ãwïÆÐ;ÆmŠ¿ÜÐù É­.vï9ß¶¾íûÖûžÜ[Zç¿/Ð\¹ÌþïuWœ¿få™Ë9:oÍâ5矧£Öšs×èÖâS¹§uÞò øsÙâ õçÐâó–®\³œG»§-_½xÍÙ\#äf!¿*äׄ¬b ¹Eȯ ¹UÈmB>+ä7„Ü.ä!Ÿòy!¿)äN!¿%ä B¾(ä.!w ¹GȽB¾$ä>!_òÛB6ù!_r¿„<(äw…üžBÄž›„Ô©R'd³-B¶ ©òU! i²MH£&!ÍB¶ i’’Ò*d‡6!;…<,ä! yLÈׄ<.d—v!»…}ÌÒìn}Üú:ÍïÅåÕg–ƒ8wóÝm nþ9Ù³µ9­Ã+~ÙÖé6¿WL½ìNkȶ·nþá º7£Ú‹35òEóå5# æËW¯Ðô°JÃõÀ[€&ð‹Àû€w¿¼_Ã8p°FíÀ‡mÀ]À¯¶kvj? üðEàŸ_Òð/4}ø=à€ ü+àßiø3 ÿøð߀ïÿÃßþ7ðߺàÿIì>ü&ð»@äõÀß§¿¾ü)ð_Èãägz>p-u$|INCÔ‰4êG׺ØiçM'7ÿˆ¼HÃÏôO4ýMüHâàà"à2 êâ ömðN êÖ`£!Û=휚†x"s%”Žjœ}[<™YÕǪ}¯}dÏ}§Öÿf̱·¦œçøº7ßàqÍÞáí×ÙŸþ爃–ÛüT„q1èVÜðXA×%‹pQæ/s©áXwm/ÖÜnòý¾€ó#†áÇpã5Ÿ_»¿ß~Aûx½ˆ zڃ¬Ï«M÷Ák>Ãpö%¯_ŸFÛFîÖKeý‡á‘cý9è¿ØY »>ñ½ÿãÌñ·ëßÁøÿ¸YR7ÈþæÅ§ùg^þ¬Ûî9ó¢Ý4ÀG¼Ô_÷‹ü%¿ÞÕÆ‘Žqf‘=.j¼¾¾ÐNñ[ƒvŠW ÆSÿ·ìºòŸÆ_ ý -þz–bÚGB¬—âKó›7bòó›¥öø˜×Ûãh^ ¿Ùã®ÇÁ,ÖâtÎΣâz–ÔâO~ÌRü^ƒ˵ø“?ȳõkû?ÍùðóÚ8-?̹öüVñ¡yBO›‡ø´øªué~Ò>]eŸÏ\ì2/õ'»–Gj¿4ÿuTëyË/µÚ>¨¸¯ÐòŒê­“âHë£8¼­ùóš–'ÃZ¿íë2K¯Uèº10v=®ÿÈ>žò`L]$~Z?ù…qê*ÕGò‹ê•¹ŒöÇ/u¢.¨ë û`.®F¿…ÔÆ-¥ñà¿ ú*Œ[} ìKÁ»œæCû<ôÇõ¤ü%>ê)µ£ß2ͯº.5~BO~®Ä<´þ…Ð)‹µõPüÖjþâN~-&>{}3/'ö®è×Z¼.ÓÖA|ÚWZ/ñ¯ÑøW/­ãWéq.×ü£ñË´~Wbü%èGó‘Æ­ÐÚ)ÈòWííÅÖMñVvÚèeÚþ¬ÑúQþÓúUþP~Á®Ö~ZïJm?×B§} øSÞÒõCë\­Å‰Ú©ÿJmÿJµùÈÏÅÚ>RÞ,Õì„«ôýÖöAßgš®;•Ç4ŽúËö]#u¬äYå'Ýé׋Gòw¥¶¾%šŸt}Òõ¯òD«j=öøÓs-ò3šg±¯+}¯MÓð;žvß¼x®5Þy …ô\+k?<×ò=/žkY/>Ùqf¼01[Ýe¼°Ñíõåxq²ëî˜þg=û›gÞ 4ߨñÃãŸ{œŸ?Ó—ÜòÆsÖù9Ûó]ý9ƒÛó]ëËxïOJüfšéy‰ãT}Î`ù7¾çÆô=‚û9TÝ>‘q Zwͳ¯Šƒßû]ú~dÖùÆ[w‡®žÐøZ¼þÖç?Ÿo´ÍGÏwÝênÞ×3œžÉFs¨´=—ušƒo^ñ™øýp~ß½p|¹ÝïšC§=Çe¯»ö/±7Æ·ÕÑ—Ø/AcQ}-Ί“-IœÎ«kL¶<¼®–ô’†x"i©sÉø–:bÛTßPóù-õ‰‡5M-dœW[On52¹ÓRnmniÚÒR—HXm vÄ[êkêF·Ä5õÉÑ-óëkêšGÍ:¿¶©uSCݨ†¶¦–D]c¦Á‚ù-Mmë( ™›È¢L€ÏŸ?ÿe—X.¨'ãë6·ˆ!NÍüÔU~ëªÄàߺâߺâߺrëë4¿—W·¯){ùå5W6ÿœìÙÚœÖá¿lët›ßÏ×®½ÖäÆãÃlsd‹¡·×~ð×ýƒõ ÚÇ+‚ž»éƨö ëójÓ}ðšÏ0œ}ÉÆë×§Ñ6þºÿfþº?Ý:Ýß¾>ZÏ[öxñ×ýÁOë'¿0Îà¯ûãkÄš_üuÙÎ_÷Gý";ítþº¿ÝÎ_÷égE²®ž<%í½CO¦$¶6CÇÏëuaž“»~Ԕ؟<ñºÄüÖl ?w¸<'^°c'xvOȉ͘¿ûU´—KìÃo¬v CÇo϶•¡üOâg÷à·ˆ;ð3œÇÁs¼¸ˆuõ…^eo?¾¸ýˆïçð#%q7~Ûµ þõýNCǺûáGÿFø =…8¶bü>Ø{JÑß”¸å”Ävðö#ÎG(îWc~ ¹x{;üÇoǶb¾]åwÐ|·ÿ.‰ Øa}M˜gó9ÌC?Šß†í”…Îì{]É{ÉÿÕJÜnÀð÷@ïþôa½ø Ø^Ä-…¸¤¨}XCüvl'ö¹që}NbÖ×û4xä…iîXÇøß‰ü<ˆŸcÜŽy<€þð«óFQ~&D~ÞÒ½ ˆ¸vƒ·ú!ä_®›C˜çöûüÙ¼>ˆßâ=ˆýê ë ûÕmÀ¾:üè¶óô Žtbÿw >)ôÛ[ öê@ óuà&spÖûÄ9‰ûq=?“’øÔv½­Yâê‡<}Øuìƒ]&tðP<»±ÝØŸ®—à™íMƒâÚúÌãæE†|Tð¢fž'ÌôÅRô)é'í³*è$D'a:‰ÐI”NbtRI'UtRMïU”«³ uRgauQgQuSg•ê¬J)Žâ)Žâ)Žâ)Žâ)Žâ)ްâ+ްâ+ްâ+ްâ+ްâ+Žˆâˆ(Žˆâˆ(Žˆâˆ(Žˆâˆ(Žˆâˆ(ލâˆ*ލâˆ*ލâˆ*ލâˆ*ލâˆ*Ž˜âˆ)Ž˜âˆ)Ž˜âˆ)Ž˜âˆ)Ž˜âˆ)ŽJÅQ©8*G¥â¨T•Š£RqT*ŽJÅQ©8ªG•â¨RUŠ£JqT)Ž*ÅQ¥8ªG•â¨VÕŠ£ZqT+ŽjÅQ­8ªGµâ¨VÕÄQ\Q^nVX§!ë4lF¬Ó¨u³N+­Ó*ëÔb«°Ø*,¶ ‹­Âb«°Ø*,¶ ‹­Âb«°Ø*,¶Å²ØB[Èb Yl!‹-d±…,¶Å²ØÂ[Øb [la‹-l±…-¶°Å¶ØÂ[Øb‹Xl‹-b±E,¶ˆÅ±Ø"[Äb‹Xl‹-j±E-¶¨ÅµØ¢[Ôb‹ZlQ‹-j±E-¶˜Å³Øb[Ìb‹Yl1‹-f±Å,¶˜Å³ØD¹y‡]¾1pÐ÷C·ûÕut›7Ûølãüb¶#h¿lþû7¨ÿ~ãt~¿ëw;r]·ßö\ý/oÐýÈW>øm:O®GÐuftœ_=[¿ ý³ñXGæUÆÜÌç›´W%™6~¥að+ yƯ4ø•†:åW¿Ò˜©¯42ýŠé¿%t©8} Úÿ'žçnnMÖoSš—lMHªÙDÅ`ù¬Á`åÿ¥SþkðØó6ׯӄ ùušyFQæ•ꜻ ùÊ”¿NÃ_§™ê_§á<å<å<å<å<å<-78O9O9O9O9O9O9OOœ§œ§œ§œ§œ§›§ö稆áï§œ~þ@×ú:ÍïÅåÕg–ƒ8wóÝm nþ9Ù³µ9­Ã+~ÙÖé6¿WL½ìNkȶ·nþá º7^kó3Ÿ[·¾A¹¼úpž:Û9O9Oƒ¶9­ƒó”óÔi¼›ïœ§Îkà< ÎåÕ‡óÔÙÎyÊy´Íiœ§œ§NãÝ|眧Îö™§öç¨nëô›Ã~Ä0üñŒõÕ{>¿v7~¿ý‚öñÊ£ çnº1ª=Èú¼Út¼æ3 g_²ñúõ)לpò‡ó”óT÷…ó”ó”ó”ó”ót¬^ó†³/œ§œ§œ§œ§œ§c}ðšÏ0œ}á<å<å<å<å<ëƒ×|†áìKþó´(óè9wñ‹¥ùEþ’_ïjãHÇ8þo±´ÿƒÿ[,9ÿ·X©>Ð:)Ž´>ŠÃÛš?¯iy2¬õ›¢ÿ-×Sçë…ë©=O¸žjë×ê×SÄë©Ô¹žÚóŠüâzŠ|µÇ‡ë©=¿¹ž"î\O¥ÎõÔžWä×Sä«=>\OíùÍõqçz*u®§ö¼"¿¸ž"_íñázjÏo®§ˆ;×S©s=µçùÅõùj×S{~s=EܹžJë©=¯È/®§ÈW{|¸žÚó›ë)âÎõTê\OíyE~q=E¾ÚãÃõÔžß\O÷ ¼žÒçP©>’_T¯Ìe´?öx©ëuA]OØs p5ú-¤vè„4n)ÿeÐWaÜ èK`_ Þå4Úç¡?®'å/ñQÿK©ý–i~•Ðu©ñÒxòs%æ¡õ/„NqX¬­‡â·Vó‡ìwòk1ñÙë›y9é´t=@§¸®Ðâu™¶â£xоÒz‰Æ¿Šxi=¿¸H3p¹æ_¦õ»ã/A?šì4n…ÖNy@~¿zÓ|tÝ©<¦qÔ_¶ï©c%Ï*?éþK¿^ô8’¿+µõ-Ñü¤ë“®•'ZýSëÑâÏõÔî×S®§a®§\O¹žr=åzÊõ㹞ÚãHþr=µ¯›ë)×S®§\O¹ž:ï—º®¸žr=åzÊõ”ë©-\O¹žr=åzÊõ”ëéf®§\O¡s=µï?×S®§\O¹žr=µÇ›ë©}}y®§ês¨'OIûÉ.`Jbk3ô;%™="± ㎚h— 7O¼.±ãS×I<ôØ_Ð|w~€ß}[Ñ^ýfè+eðctøñ䡯–xüÇá×ñ ÆhX¥é4üCaö‚÷Øûû?’¸{'âƒñýß–Øq:ÖÝ?ú7kð§uØ®¹º)qË)‰í)´#ÎGn˜ºZbÏKˆôÛÛÑ_~0Þ|ú®r¬ ûЛÄ}wILÀ~ ëk¸Íç°>ø{úQøÛ‡¸ô½®á€†ðóâ°Ý€ÿàïÞ‡¸öa½˜¿÷¬qIQû°†o"NȇÄ­÷9‰]X_ïÓàAž=†uõÞ¬é°ïGžÁzöcž#Í@Xeǃ؇íåhþ#¯:1ÿaäå×aBäç-íÐË€¸^cþvè‡=' cžCØïCè¿ûçðï'@¬ë ®«ƒØ¯ƒX÷Á@¬³gØÎÓƒ:’Â>IZ¡Û×›B~¤PRX×ÙspÖKñÞëå™°Ë®ï= ý;>Mˆy÷ 1~xö6KìFº±?]ˆ‡ßzÚUO¡»ÖSº®s¬§)ºÎ|ÖÓãÔ>Eêi7Ö}¡ÕÓ>\·“]Oéïy¾êéÎÓhçz*qœõtÇôaûz¹ž¢=ÇzÚ ·ûÓîWÑ^.Ñ­žv;0ÕÓ=ØïB×Ó¾”Ä\ïO÷@§ë>ßõ´˜­žv ßùþøð:8ÿøð:¦ÚßS¿õt¢žÛM÷ç6nóåë}§\ùgêQ¨×|ävLt\§ÚþªþæzLµz:Qï›ûmÏ×óe>¼éö¾H®Çt¹^'<ŽEFéÈçPgó…6§¶.žÜÊ +¬°Â +¬°2•”É–xc¢¹!Þ˜änánánánáná–ز|k}"ÙÔд¥¾¦¬¹¥iKK]"QßÔÈV¶²•­le+[ÙÊV¶²•­le+[ÙÊV¶²ušYKvÄ[êkꬲÊ*«¬²Ê*«¬Îh5ž¨©O²Ê*«¬²Ê*«¬²:³Õ‹ëkêš·ÆššãÉ­s+·r+·r+·r+·r+·r+·r+·Nxë¥mM-‰ºÆúÆ-eM›ËokN6mK°‘ld#ÙÈF6²‘ld#ÙÈF6²‘l„±¶©uSl›êê[Z7Õ7²‘ld#ÙÈF6²‘ld#ÙÈF6²‘l4fFñyÑ¡TÈÎÈÿyVFþµÚsurvival/data/cancer.rda0000644000176200001440000000664013537676563015014 0ustar liggesusers‹å\Ml\Õ~ù)U¤f‘EVE(ª,Ï÷Þ¼ ¯ $ˆ ÐReplçÇvl’”1ù¡ ¶Ë”vÑ%Ëî:Ë.X°d™ ]°ÌªªÍû¾szÏøö>;–¨ÄHpîÏ9çûιçž7?¿|à¸{øøÃI’lM¶nÛ²òÏÊpûÖ•mI’­ÈÆ:3cãóI²íg+³UÍŸ®üóM¹#ùþ3 wUòÉï0rä>³ÏõÝ#¾^™ù~Ä.÷õe=3ö»Í|Øð¢Ü ¹ß—6ŽÞ#}òö×e—áµ×ðÙãK±cžÉ37ë´ÏŒÝî¾±àoü _{î̃õËüï7úÔKŒ›Çݾ¬Ûó²õ2bìs³oÏwŸÑ#¿½Fù°ù6yà¿?0§ý£ÆŽ<ÍyËþ^³oÏ×ò`>XÿŒóQãÇÞOê±É×Ô½œ‡Í»åmëÊî3ï6~›Ÿ}þºàZ^æ>œ/õËJ¾{oõß~.~—­KèË9Ø~cûƒ­OêYž‰‘¶¿Ù|ÙùžÀº‰s ÿù¶uÈoð\‰cû×­®›ó.Ë^%y^ÌSæïÜ7úßÖ×ÃËÜ›wámúLÂçdw¨Z¿4[ÉoWòLeX~ð'¬WŽËî‰Jž‡ÞYèìWró«ðwëG!—ÿ^É·ÀçÊ#Ы–Gz•|ûó_Uòü^Áþ…ê Ë¥;•ìa<ß„ÞøòÜ/ƒ7ϯ÷·J¾~‡`÷[È[ˆã#ð| 8׿®ä%Ø UòâNćù{ì 7~=¬_EÜ7¾…ß{•œ¼ãó™ýµ›•ÖÝ è][ªä"â¼»³w+9yv'OøþÎ`ýòòì§ ß‡^q².‰?…ýwÀÿzuaÊó_øú7QÌÏ)ø9 ž·pÎsØ¿ o÷!?Ž«ˆö¬£ðyzOæ¬ë˨7Öó2ü]Îy¬³^&°>Þ½›~œïÀß"Î÷~|æ—ÓðÓÞß3=}ëÌçEø9…x—‘¯ÃÐ[FýžÆþkXçù/£{¨»ùQè—ÀÁ9¿ þ³_øs¹‡—Pw‹;ý¸Þ†¿³ýJ¾üKàÞàñ<Ÿ„Þ"ö§ Ïºî‚Ïæ<‡ðày̓Ïûô–à–zÀé`þ6Îo¸§°¿;9Gè±_-Âþö/ÜÅ>ò6ü ÈIøeߘ¥?øaý/ÂÏ\âó] ù"Þ_Ãÿìf!ÙOOœ¨ä”Áå|ûs¨£9ÚÁÏ+À}83àÅú™†ý˜OaŸ÷súN%Ç!ÏÁÏYÌ'ÁƒuË{Á::…ùüûóëoB8“w}~ãð‹{ð9‰ ¥í/ý[~ÌõÈïå¾'yÒŽù ó-ñ™uò˜Àœùf}<9Ï•ßcm¾C>½g¤?ÆÍsâþ@Þ ynR—¥¯/ñÛ¸¡ÿ¢ÑcÄ!âðç8æ‹qñ臼%þ>íY/¬{9‡ÞÚvRo6>ÃuÆ8_>Ï“ñðŸc\ô<ž;óü6sž3õ—­[[7ôsŒ8Üïùñ²hOž¶®©gû ×¥ÎJ_y²ýð9HÖ!ãáÜæå'㑼™}æ‹xOÇàñ~=K»ÄÇ'ÿCfÿ¤­æßöåQcwÄØñœ©O¿œ3χÍ>ómû¦<JGú1äر®È{à9Ó÷õX÷Ì+ïó‹ü%xNnôyNy¿z›õ}¡.N]ÿ[¹^þuãØ(õ~_ÞhëòØìsÚ¬ün”]Þ›uþ›U?1{»^o½þî·Þî·N7»~6«Ô½_uùÝo¹ß>Xw}£uãY×Obž“öc××ËÃÎùÿÕ7Z‡!^¡õ߈ēuÏKðv!¾¡xí'´ãµÞ~íë?ÆÛîו!1üÔåóóS—Ÿ]§~HÆâ‰ám”W o½z÷{Ïí:ý×Å Ù×åµÑy]¼Ð'Öbø!ܺ}©î½ ñ á‡üÇørßâÔí#ÿƒOõß]_íUz!ù:üÈÏÉX·ÿ}“ò˜YÕè3’ûôĬS<¬ß_‹âCiã³s»nã°¼mžBq…â°û¯ôm^¬ÛîÛüX}úÙ…â ÙÇøÇ¤Ííc|í~쬾ÍO¨BõhùÔ={ßBçlõCx1üP¾êÞçй†Î9TçœÇc¸6®Ø} ñŒÕ‘õÊ£;doqêÞwgÝ{ŠÓú3¼å÷CqÇpc}&V_±ºœ{Âçdݸcç{NÆú°½ß1ÿ¡~gýÙç[(ïGŒ}è¹}ÀèÙþeóû^ª?Û÷cýn£y3ߤžCv±ûéûAÿ±{]÷9âeÏÑæ+ÔCù·ñÄú¡ýÞz„îCèùª‹Øý }_ £­[Þƒ¯ÐýˆÕ}Ý瘵ãúûÐ=­û\á×­»Ð=ŒÕE,_±çpèyZ÷ûJì¾Ù¼„úYèêÙs‘søÒÇ%/¾O3^ñ.«´$ågý|ðý á9yÏçA½aoë‚ç6×ó×ço®u0ëë]Y3Î;â°XOv¾løßÞ½6¾pm·ŸG¾GµxÇçI=æyeþl}Œº¾aâ…ž­'™woWvÇýü‰_ÆËóä¹3®S÷KüÜ,Ö´“ýØ90Þë}»Ë_Ïô-ÖÏ_öú’çIÞà+þÞ¿ s_è—üy¸§z?·{sñK>”̧±¸ïÔc±÷z¼Ç&ÿ›v¬O¬Û¾[~ú/ßߟG|¼+_{ù ÓÀ:ýò²þ|Ï…ýQê-€÷¹yÎHÿ¯ê<ÁsRôù^—y¯Ó~Þ×üäc-È]%$ŸãÀésŸïƒÂ¿ðj@oÈàí7¼ð~hŸïפ˜ïñçÿøÎì#Î>ã¶øc}'dáóx?ù1cü>íž0väOÿ?OÖüÈ{ÇÃÆ?óç|¿}¾ç;yÔ·ðO=Îw˜}œ§äï—fßþ½‚¦¿ß§óÆ<ì2ëC>ŽÔÙ/Ìœùâï«%†ëqÁ^Þ¿b>ÛÉš9òb\;^éûgÞÎÇþ ®Û¿+@¼ÔHæ‹udî'ýò#çß0~ì½±õ}Èè“'ï–ïa?Õóü0Þ¾9Ï>ïëÓCŸq%Fòœ3qqñCþÌoêëÑØ3/C÷)3'æ“ïË›:”ä<Ù¿GÀùH½ØóA>™Wê±Î­žÄ=äãÙ{0ð¼@\äC¾â?/ãÛå¯Ûÿÿ'8¸—÷„}‹~[‡ïÑ2¯èw}ÎyÎæïl”kÓ=©×]kó6­ç'3éñîÊ`5«¬guqûé™îÇ §§Ç1~ »ÐYXìb¶­3ÉmÝñ% œ=5<>vnÓ+Ó³ù™s˜?4ÛYðvLw¦†Ç:S´¿°09ò£Ûå8U)Ûå²ùÇ‘UåØN”ØV¤TQ•J"J¬X¥ŠdW¹ˆâäŸ` ‹² ù!òõÌïÛíéž™½[„캩úÝoºû믿~L÷l_Ó³³CS“"&jbô·†nkéFX¢V4×$Sôw>ÝÎ!Ì&\t’Kˆ…ÀÑI¨SPO˜4iÊL` ˼̀Û5Hç*˜Hû ‹‹ KKe„÷–îÞÜ© Nøáƒ„»+¬$¬"ÜMøáà Vî!¬Öš{ ëëlZ5lòÁfÂ}ÀÂý l%l#<|DÁv h#´;; v» {€Â^Â>Â~B'áá ÐEè&ôz }„C„ÃÀ Ÿp”ð0pŒpœp‚p’ða€ œÒ$¤›& †£„ÇÄÂ(%ŒNr„<¡@'œ!<®ááOOþ„ð4ð Â'OÑðçg&ì9ñC­‚jC0™2jâ³}Шä«ÌRШéSÓê}`ªëL-¯ŠZƒ.–bc,@Ÿšg¦uÞjò©Ï¬;9ÏLä“¶4(ñMJ^›úKµ©N‘Wïë5ÝMšž:¥›´~j€}<[šž N±AEbšŒ2&=KPý°}Æ–Oå!G›;O"w&‘KÅ;íT&™Ž÷&‡4·7™ËŒåã£ùB¦0^°‘д#;f%íQ^ÞtìÁí‚ýÍmÍñC™áTν;ß“ÍqZg¶P0¤Í>4š9ÓϦ㇠6a~1òH"?”,d¹ÈyŤÎÌè¨ÏH¹½˜òðx.S¬ÎÂ>ûl"o(½±m$_°s©ÄKwšã½™ÑD¦Ø2; 9­Ië’É<·h±Ó‰d!+gÀw¨aäêz±õ…ç…¼ªÏÿþøuÿ8„‘fàÿ©ÿ/"_6ðÏ5þ%ø7þüb¬B®ׂ&ÉM¾<ÇÀ §È‹À‹#òðÒ yy•ùðŽWÈwxED^©ñÝ!¼¼ ¼5"o׸Uãï2ðnð^p§TÈ5î÷iÜ>¦ñqð©N‚S§ œ? ÖxDã‚ÆƒÏø ?¦ñS!üñ)ò'ÀŸôew9ª¹!¼+PíÎDA¾¹¿cxk¶Bà'‹xV†þÖ$çgÉ®ÉèÓíˆò–T¿²¢´síQúÌdCX\XÕהϯO¢´_?ÝGéç¨ã[Ë#Ÿ©?S1§`ßô/óü”„Ï»ÌéÃn9\_°»;$/w}qw“Dï¾05îA?·Aß^Ì/:ïšpÓ;ßpÃÌëÑÿ}×Ì-_tæû5nÇ<¼åGåVØeâ.ŒûÖçüùnèaî€=˜˜;þ×åðnÈ}ùîÓx%ž§Õ¯E=7 Ìü!Ä37¿ìöƒÎ]è§=hÏíÐ߉p;æïA9Ýà>¶s¿«w7ÚGç­hŸàn<ÿÌíÐsýϼóYÒ4pÏ„—ÛPÿnØmb½MÜõM׎mÈǼÜÕ 9¹àÕÇãøA´s §kÜŒy¹ ù™{¿òÌmèWîçõoÜßÌ[!ÏrÌ÷@ïFÔs3ä·ÀÞV´óôkÏú¼é› oÆßfÄ?ˆ|»Qþ:¤3wkÌí¶òíoƒ¾Œ›NؽñÀþ6ÜÎàî^7½å¶#ßv´{Ï_¹á£hç«ÜðúýÁõ`Þ»b\„}ÌP^×%؇0óŒëM°—yµÛ“<,RɾÅdöQ¢ì™öEª½wu'Êž[¥ûšQôURFØ6rÐörµÚ1ªíQl¨tÏ-¬¾&9-ïž[CÿÚáÌècvŠÏI$Æ Ù|v$1iëÍyÍÓ×ô5}MùÚ~5˜Mò·ê ³oúš¾¦x®/aÏKµøÝ.ošý™¯›o²å„̓ÕÖW©þÉæ¯´œ©®c7{ü˜ÊŸž¼ÌWµûù½ÂSô9™ÌÏÿ Ÿ´Q¶,*Ý^ˆÝ×@Õ§§U²­âçËPS%;£ØÅà‘ëõ© ЫúŒX>ºj•¼ºlX¨ò~÷ª½~zô²‚ʈâßT¡O”g¡–wõ>Pri P¶0dçžóÐx.;f? û`ÌB¼+[ÉQyý„„Æq/gÈ#_$ü‚ð6¥µð×âõ+ÂïJAk…r¿J‘›¸q%îU SÛXd•EvXØ«[Ñu€C`ž¿Dø__(²fâæßÁßÈ/ýï®ú'YT¾•Ñ"_Pîë}lyy×)ñrS¼payTý:á×$·\)¯QÉ#‡K?@Ÿwx ÿŒr|.ÏáþMp›"×PžW\Vîè“®^‹CÒOƒ“Züm!ùä%Ÿ•¯^S➉¯¯G”“cAñyV‹ÿ†>«ÜU_dž³Ô{öicBöaÓçò°íݘ!N/C÷+ÇTF%[¥~¶Õ+,-Ȧ ÛÕzêíaÒ­·_ýôòÂÚ,J›Všî×Aù‚ú>,_¥²¦v ²™ïù™Ác}U®1Ö÷L~ÍXc¬†…³Æ8ü˜pÖëAúÊ5& ýO#¯Ï#ó©kŒ•%Œˆâ#Ë•kŒõ(tÑa=E ¹À¢9ÀÚ@éç…3¯[Û€­[8kŒ”‘kŒ%çj¬1V‚@ó½µ›ÐA>ç¼ÆüF8s·\]EqqìêrÛD®1VŠ ýØé¹·ÖöÖˆâ#ï=[Üú¨kŒ%ç_m‘6Z+Ñ>÷ºí¡®1ÖH_ %¤o;ÖK|Óí7Yެ—ÓÎÔ·Öû¹ù‚˸'È5ƹ_…r—"þ†›_®1Ò^ \}â—Äu¨ÇiÈ'ÝþpÚK®KR~°yQÎB_¬1Nýäý úâ Ë£¿%Þ{dX¾+=ïæqÖ˜¡}â¨ïl´›Ä¿ ïóO„qëí¬1/þ™pM¸kÌE„åØùo@ÿæ…y>ÕK »×ãütû•¥§û•¡ÛeŠÓË1å¯$-Ȧ ÛƒÚܤÛd›_½¢¶Y”6­4=¨Ay'“¯RÙ ñl +÷^góÑĈÍÎæsËðfë“öh¡ø“ª>—Meù‡T]!g' 쫟·Ïòmb°èP1dg‡X¦þq54#3J?À2l¿Ò²™TžÃcô+íÜp"ÉâCÙ|s²X^}!_Hä8TkŽ—Ìʲì_OR…ñ¼VéÆ\öñf®¸ã¬0Anܸ±Éð{°)•($šÓ9Ê"œyΣ®69˜Z‡ïð,€Æ ´yÐû.›‚¿#ÁßÒQ¿•#DZ^¿oãèßÅáïáÄEùwpü¾£~÷†¿y£~ïF®ãüõ;6ü ý»5ü­šVQúFþ}þ6<gú.M—0“FÿMØwhøÛ3Q¿;å›3ríçį̈ߘáïË|J”ÆÁË®g.âŠTÙ+Ú½ç½G|?td¯¹÷Öþœ´+ZÜ5š-rm÷È^Qd¿U*ËOŸó^ ËßS^¦®WÊ8؇2¤îëÞxUNo']æ}K‘QﯕìpðV©}ø·•´ë(ÿ-—‹6ìAÚuèFyâ§^F¼RƵã%;×Ð+êoéÕùuzÍ>_§?]Ÿ^rñg;…õÙ¯¸øû¹”°þüia}ëó\Ößö 빟•ðwß,á»TÖ÷j…õýëþxþ8áB ¯}”p©„ÿœ¥`LX¯o¾RÂ/¹øñàóÂúI —† ¯Ðt¢„Õ?wqO·‹5OºXû¬‹fjÇ{iÎYg+øëi[Oã¸å.Ò{h׸è¦ù«÷³úÕGsÉ¡;J8LsÑῦ©exÃÅ™¿§Çý¿èõó¡Îvñ„P¹]ë'iŽzò]xÖ!‚ßu‚dDD™°|jÞ°wgS¹&=º]~q¦²ƒl{4݇½«›l0ÙT¾ç—ŸÇAØ~I¥0íT±ýa{sQêó)§ÒºÜ¬zO¦,½zûIð8`×aÕ=˜Ý‚Ù%˜ÝU7`ÕÍW†Ùµ×Ï­W¦«.½–0»ðÆD¹ë®ê²ËîºsEÉUWuÏU]pÙý6.¼.·ìf«º×ꮵR˜KmL˜Ýiu7Ú0Úy¢2—Ù(‹¬êË®±ì;QækrgÕÝWu·UÝ]Õäžjr/åtÝ4ªû(ç7¹rz¥n¡QÝ@MnŸeîž(Wwó4¹sšÜ2uwÌ0·KݽÒäNÉýer£ÔÝ''ë69YwÉ0÷È©ºEêîÕv{¬–»£É­ÑäΨ»1zÝ'ÊÜMn‡º›¡î^Ø‚tݰÏ¥îØ…~ÕÝþtw¿¨n~aî}º;_T÷½¨îz&÷¼vȇ¹ãõ \ÝíÎä>§»Í…¹Çénp]H×ÝÞÂÜÝt7·Éº·MÖ­-Ìmªîkº›ZµÝÓªå–fr?3¹éîfE73ÏïÚAï¦~ïŸSy—6½×›þ'ìgsÔߦwgÓï…©ü>ú½Réï€0]am¢þ>ÐÛá ~ã§’<è¸Yû“AL6…ÉEÑ )#h^z7Û.HwMA0Íú³¥Ì09üÎí‹ÕuG9“¤ÏïL­ž'ìmÌ çgOйY¿ùKSþïùMBâ¼2â2ø‡º=ŠÌ‴ӄ¤¾Í$‹ôZð3ArŠü×#ÈÌTî¿¡ÜŸy>ÿŸ^¦Èý.¼ yîOäpŸ‹b»¿1sÕG.Rß•û6Âu-ýœOž²¸jCÎÑeÅת_¾XQθÿb…u”óZwµm¯BÝåIœ_kqoµ]ì~í&è|6¢œ:~QYÖìjÛ]-È5øVÛðûáoW–×j¹ÕöOãfŒ«ýVÛ3÷Ä88y«í™Æ­òìr-Ÿp^ð{tä;=^ÈŒ˱e`½'´Ájñ„6zB›<¡ÍžÐ}QK‰:)¡—$ì¿óÿÃ\j§»usurvival/data/veteran.rda0000644000176200001440000000314513537676563015222 0ustar liggesusers‹íšßnGÆ7qB¤V–ÊE/zaUE¨Š²³­¶°@øIh(-Í6q¢'Û¸¨äöŽ›öx„>B…Gà²W´vö|ß°‡lm¢Vj,9ß™™3çwÎìx½ëÍâ̲9¹|ÒqœQg´4Ò}wͱÑîŸÇ©Ltõ£Ýz»ÞL·§ôi·Yî¾?é¾_œí쿎õXÿIçXµX»ç•»^8û§œ¡ß£ÿÒ»4À{ìïìÉQ®Ó uÁÚ侚N4ê»õF«kUÄ£×[n=~’níÓDòÀ¾Ø•þŸ§%ßj~>öËÑDz_§œ|äã}„|iã¸ã¸Å¢ËâWUí[*_%ic|£âaÿ,‰ÿyåWûn1Éó/Š^Sù¦2oCüïH¿'z¥“Ïñ×:y¿ÒÆ:^–ö‰»ò2S9ž<ÞO¥ÿZæï|àkj¼†ï7oØùÇz°âuØù‡ó_«ëÿ–׬/»>¹•5’…N¦hë~œÏgDy^.˜¿sÊ¿ˆ£ãê~í¯ã¢}]ùaqü‚y‹{ç‡qO¯¸Ð¥¾ò×õêõÔù÷[~w•ù!^‘Ÿ®óô¾ÑqP—^Í)ª~?§ü|Õ_´/u~˜þäàºôqG<}Ü¡¸ÎÑû§HuݸÎQýEë¥ùº>½.EûŸ‹¢õ‘yÎ'¸~:%Šëë/DϨqÔ…ë:\Ï}&ZSmOså_Q~à©üËʲ  ÿ)ÕÖu£×µçáäkѪêÇ:žÉÏK"Q\_bý°^:Šjëú¦Õ¸®gRé)Õv”VUÞ§T?î0y—ó~ï¬ÆÕqp=Vcõºj?ÝÆ}nEõCÁÓû±ZgAÖëŠâ~ªªüõqÔû9ì3ŽxEŸ ½?NôC§T[ï¬ÇiU'Æš/ç“…¬òd^Æ/‰âw€y—û$ú/ˆî·xÞJòó¡¸Ã} îGñ{Ëåß=f‘ÇÞÁy]?Üå‡8à¡^Ä’'Šó2øàÜVýø õ-¨qÔ‹x˜õÆ÷ ëSù_@<ÅǺ^íäçƒûèUæ³¾N>ÔyQtVù£Nðõ÷5×'ÉtN÷«zçT?âê}Aê_88_,ì\'~A=¨ûÇë‡ùˆÇë¤N¾¿çñx«¼nÊø%Ô#ãX/ý9âþÅçŠëˆq•'ö7¸ðÃ>@]ȃûAëðÎçí½|¿ìGÎ'hà|¤ÛEýý^ƒÆë7oÐñ~ýƒæ=hïgØu{ßñ"¿aëï—?ΰëxT¼a÷C¿×ûîËAÇË/òöóRÌÉ?ÚN·êxÔ»„éu–ÚͶ˜åÞÃ¥öóGuiµ7·`ŸhµÓ6ŸE?L›|ôT^ÛL7Þr-¥0Ç57{šzi”þrò¢N®¥ítj½™néçVͧSo'ûB¦Œ¸0 †#€ˆ`Ä0jbŒºÓ´\Z†–G˧Ð iE´bZd2 † C†!ÃaÈ0d2 >>>>>>>>>>!!!!!!!!!!111111111152jdÔȨ‘Q#£FFŒ52j`”ÜéikºÖ4Öô¬é[3°fhÍÈš±5-͵4×Ò\Ks-͵4×Ò\Ks-͵4×ÒŒ¥K3–f,ÍXš±4ciÆÒŒ¥Kó,ͳ4ÏÒ21, NA, indx2) ifelse(is.na(indx1), indx2, # none after, take before ifelse(is.na(indx2), indx1, #none before ifelse(abs(data2$lab.dt[indx2]- data1$entry.dt) < abs(data2$lab.dt[indx1]- data1$entry.dt), indx2, indx1))) } \seealso{\code{\link{match}}, \code{\link{findInterval}}} \keyword{ manip } \keyword{ utilities } survival/man/coxph.object.Rd0000644000176200001440000000566413555601015015571 0ustar liggesusers\name{coxph.object} \alias{coxph.object} \alias{extractAIC.coxph.penal} \alias{print.coxph} \title{ Proportional Hazards Regression Object } \description{ This class of objects is returned by the \code{coxph} class of functions to represent a fitted proportional hazards model. Objects of this class have methods for the functions \code{print}, \code{summary}, \code{residuals}, \code{predict} and \code{survfit}. } \section{Components}{ The following components must be included in a legitimate \code{coxph} object. } \arguments{ \item{coefficients}{ the vector of coefficients. If the model is over-determined there will be missing values in the vector corresponding to the redundant columns in the model matrix. } \item{var}{ the variance matrix of the coefficients. Rows and columns corresponding to any missing coefficients are set to zero. } \item{naive.var}{ this component will be present only if the \code{robust} option was true. If so, the \code{var} component will contain the robust estimate of variance, and this component will contain the ordinary estimate. } \item{loglik}{ a vector of length 2 containing the log-likelihood with the initial values and with the final values of the coefficients. } \item{score}{ value of the efficient score test, at the initial value of the coefficients. } \item{rscore}{ the robust log-rank statistic, if a robust variance was requested. } \item{wald.test}{ the Wald test of whether the final coefficients differ from the initial values. } \item{iter}{ number of iterations used. } \item{linear.predictors}{ the vector of linear predictors, one per subject. Note that this vector has been centered, see \code{predict.coxph} for more details. } \item{residuals}{ the martingale residuals. } \item{means}{ vector of column means of the X matrix. Subsequent survival curves are adjusted to this value. } \item{n}{ the number of observations used in the fit. } \item{nevent}{ the number of events (usually deaths) used in the fit. } \item{concordance}{a vector of length 6, containing the number of pairs that are concordant, discordant, tied on x, tied on y, and tied on both, followed by the standard error of the concordance statistic.} \item{first}{the first derivative vector at the solution.} \item{weights}{ the vector of case weights, if one was used. } \item{method}{ the method used for handling tied survival times. } \item{na.action}{ the na.action attribute, if any, that was returned by the \code{na.action} routine. } \item{timefix}{the value of the timefix option used in the fit The object will also contain the following, for documentation see the \code{lm} object: \code{terms}, \code{assign}, \code{formula}, \code{call}, and, optionally, \code{x}, \code{y}, and/or \code{frame}. } } \seealso{ \code{\link{coxph}}, \code{\link{coxph.detail}}, \code{\link{cox.zph}}, \code{\link{residuals.coxph}}, \code{\link{survfit}}, \code{\link{survreg}}. } \keyword{survival} survival/man/survfit.coxph.Rd0000644000176200001440000002013213537676563016034 0ustar liggesusers\name{survfit.coxph} \alias{survfit.coxph} \title{ Compute a Survival Curve from a Cox model } \description{ Computes the predicted survivor function for a Cox proportional hazards model. } \usage{ \method{survfit}{coxph}(formula, newdata, se.fit=TRUE, conf.int=.95, individual=FALSE, stype=2, ctype, conf.type=c("log","log-log","plain","none", "logit", "arcsin"), censor=TRUE, start.time, id, influence=FALSE, na.action=na.pass, type, ...) } \arguments{ \item{formula}{ A \code{coxph} object. } \item{newdata}{ a data frame with the same variable names as those that appear in the \code{coxph} formula. It is also valid to use a vector, if the data frame would consist of a single row. The curve(s) produced will be representative of a cohort whose covariates correspond to the values in \code{newdata}. Default is the mean of the covariates used in the \code{coxph} fit. } \item{se.fit}{ a logical value indicating whether standard errors should be computed. Default is \code{TRUE}. } \item{conf.int}{ the level for a two-sided confidence interval on the survival curve(s). Default is 0.95. } \item{individual}{depricated argument, replaced by the general \code{id}} \item{stype}{computation of the survival curve, 1=direct, 2= exponenial of the cumulative hazard.} \item{ctype}{whether the cumulative hazard computation should have a correction for ties, 1=no, 2=yes.} \item{conf.type}{ One of \code{"none"}, \code{"plain"}, \code{"log"} (the default), \code{"log-log"} or \code{"logit"}. Only enough of the string to uniquely identify it is necessary. The first option causes confidence intervals not to be generated. The second causes the standard intervals \code{curve +- k *se(curve)}, where k is determined from \code{conf.int}. The log option calculates intervals based on the cumulative hazard or log(survival). The log-log option uses the log hazard or log(-log(survival)), and the logit log(survival/(1-survival)). } \item{censor}{if FALSE time points at which there are no events (only censoring) are not included in the result.} \item{id}{optional variable name of subject identifiers. If this is present, it will be search for in the \code{newdata} data frame. Each group of rows in \code{newdata} with the same subject id represents the covariate path through time of a single subject, and the result will contain one curve per subject. If the \code{coxph} fit had strata then that must also be specified in \code{newdata}. If \code{newid} is not present, then each individual row of \code{newdata} is presumed to represent a distinct subject.} \item{start.time}{optional starting time, a single numeric value. If present the returned curve contains survival after \code{start.time} conditional on surviving to \code{start.time}. } \item{influence}{option to return the influence values} \item{na.action}{the na.action to be used on the newdata argument} \item{type}{older argument that encompassed \code{stype} and \code{ctype}, now depricated} \item{\dots}{for future methods} } \value{ an object of class \code{"survfit"}. See \code{survfit.object} for details. Methods defined for survfit objects are \code{print}, \code{plot}, \code{lines}, and \code{points}. } \details{ This routine produces survival curves based on a \code{coxph} model fit. The \code{ctype} option found in \code{survfit.formula} is not present, it instead follows from the choice of the \code{ties} option in the \code{coxph} call. Likewise the choice between a model based and robust variance estimate for the curve will mirror the choice made in the \code{coxph} call. The \code{cluster} and \code{influence} options are only relevant for the robust variance. A \code{id} statment in the original call causes subjects that have multiple lines in the original data to be correctly identified. (This calculation needs both the original data and the new data.) If the \code{newdata} argument is missing, then a curve is produced for a single "pseudo" subject with covariate values equal to the means of the data set. The resulting curve(s) almost never make sense, but The default remains due to an unwarranted attachment to the option shown by some users and by other packages. Two particularly egregious examples are factor variables and interactions. Suppose one were studying interspecies transmission of a virus, and the data set has a factor variable with levels ("pig", "chicken") and about equal numbers of observations for each. The ``mean'' covariate level will be 0.5 -- is this a flying pig? As to interactions assume data with sex coded as 0/1, ages ranging from 50 to 80, and a model with age*sex. The ``mean'' value for the age:sex interaction term will be about 30, a value that does not occur in the data. Users are strongly advised to use the newdata argument. When the original model contains time-dependent covariates, then the path of that covariate through time needs to be specified in order to obtain a predicted curve. This requires \code{newdata} to contain multiple lines for each hypothetical subject which gives the covariate values, time interval, and strata for each line (a subject can change strata), along with an \code{id} variable which demarks which rows belong to each subject. The time interval must have the same (start, stop, status) variables as the original model: although the status variable is not used and thus can be set to a dummy value of 0 or 1, it is necessary for the response to be recognized as a \code{Surv} object. Last, although predictions with a time-dependent covariate path can be useful, it is very easy to create a prediction that is senseless. Users are encouraged to seek out a text that discusses the issue in detail. When a model contains strata but no time-dependent covariates the user of this routine has a choice. If newdata argument does not contain strata variables then the returned object will be a matrix of survival curves with one row for each strata in the model and one column for each row in newdata. (This is the historical behavior of the routine.) If newdata does contain strata variables, then the result will contain one curve per row of newdata, based on the indicated stratum of the original model. In the rare case of a model with strata by covariate interactions the strata variable must be included in newdata, the routine does not allow it to be omitted (predictions become too confusing). (Note that the model Surv(time, status) ~ age*strata(sex) expands internally to strata(sex) + age:sex; the sex variable is needed for the second term of the model.) See \code{\link{survfit}} for more details about the counts (number of events, number at risk, etc.) } \section{Notes}{ If the following pair of lines is used inside of another function then the \code{model=TRUE} argument must be added to the coxph call: \code{fit <- coxph(...); survfit(fit)}. This is a consequence of the non-standard evaluation process used by the \code{model.frame} function when a formula is involved. } \section{References}{ Fleming, T. H. and Harrington, D. P. (1984). Nonparametric estimation of the survival distribution in censored data. \emph{Comm. in Statistics} \bold{13}, 2469-86. Kalbfleisch, J. D. and Prentice, R. L. (1980). \emph{The Statistical Analysis of Failure Time Data.} New York:Wiley. Link, C. L. (1984). Confidence intervals for the survival function using Cox's proportional hazards model with covariates. \emph{Biometrics} \bold{40}, 601-610. Therneau T and Grambsch P (2000), Modeling Survival Data: Extending the Cox Model, Springer-Verlag. Tsiatis, A. (1981). A large sample study of the estimate for the integrated hazard function in Cox's regression model for survival data. \emph{Annals of Statistics} \bold{9}, 93-108. } \seealso{ \code{\link{print.survfit}}, \code{\link{plot.survfit}}, \code{\link{lines.survfit}}, \code{\link{coxph}}, \code{\link{Surv}}, \code{\link{strata}}. } \keyword{survival} survival/man/basehaz.Rd0000644000176200001440000000257413537676563014641 0ustar liggesusers\name{basehaz} \alias{basehaz} \title{Alias for the survfit function} \description{ Compute the predicted survival curve for a Cox model. } \usage{ basehaz(fit, centered=TRUE) } \arguments{ \item{fit}{a coxph fit} \item{centered}{if TRUE return data from a predicted survival curve at the mean values of the covariates \code{fit$mean}, if FALSE return a prediction for all covariates equal to zero.} } \details{ This function is simply an alias for \code{survfit}, which does the actual work and has a richer set of options. The alias exists only because some users look for predicted survival estimates under this name. The function returns a data frame containing the \code{time}, \code{cumhaz} and optionally the strata (if the fitted Cox model used a strata statement), which are copied the \code{survfit} result. If there are factor variables in the model, then the default predictions at the "mean" are meaningless since they do not correspond to any possible subject; correct results require use of the \code{newdata} argument of survfit. Results for all covariates =0 are normally only of use as a building block for further calculations. } \value{ a data frame with variable names of \code{hazard}, \code{time} and optionally \code{strata}. The first is actually the cumulative hazard. } \seealso{\code{\link{survfit.coxph}}} \keyword{survival } survival/man/frailty.Rd0000644000176200001440000001174613537676563014677 0ustar liggesusers\name{frailty} \alias{frailty} \alias{frailty.gamma} \alias{frailty.gaussian} \alias{frailty.t} \title{ Random effects terms } \description{ The frailty function allows one to add a simple random effects term to a Cox or survreg model. } \usage{ frailty(x, distribution="gamma", ...) frailty.gamma(x, sparse = (nclass > 5), theta, df, eps = 1e-05, method = c("em","aic", "df", "fixed"), ...) frailty.gaussian(x, sparse = (nclass > 5), theta, df, method =c("reml","aic", "df", "fixed"), ...) frailty.t(x, sparse = (nclass > 5), theta, df, eps = 1e-05, tdf = 5, method = c("aic", "df", "fixed"), ...) } \arguments{ \item{x}{ the variable to be entered as a random effect. It is always treated as a factor. } \item{distribution}{ either the \code{gamma}, \code{gaussian} or \code{t} distribution may be specified. The routines \code{frailty.gamma}, \code{frailty.gaussian} and \code{frailty.t} do the actual work. } \item{\dots}{Arguments for specific distribution, including (but not limited to) } \item{sparse}{ cutoff for using a sparse coding of the data matrix. If the total number of levels of \code{x} is larger than this value, then a sparse matrix approximation is used. The correct cutoff is still a matter of exploration: if the number of levels is very large (thousands) then the non-sparse calculation may not be feasible in terms of both memory and compute time. Likewise, the accuracy of the sparse approximation appears to be related to the maximum proportion of subjects in any one class, being best when no one class has a large membership. } \item{theta}{ if specified, this fixes the variance of the random effect. If not, the variance is a parameter, and a best solution is sought. Specifying this implies \code{method='fixed'}. } \item{df}{ if specified, this fixes the degrees of freedom for the random effect. Specifying this implies \code{method='df'}. Only one of \code{theta} or \code{df} should be specified. } \item{method}{ the method used to select a solution for theta, the variance of the random effect. The \code{fixed} corresponds to a user-specified value, and no iteration is done. The \code{df} selects the variance such that the degrees of freedom for the random effect matches a user specified value. The \code{aic} method seeks to maximize Akaike's information criteria 2*(partial likelihood - df). The \code{em} and \code{reml} methods are specific to Cox models with gamma and gaussian random effects, respectively. Please see further discussion below. } \item{tdf}{ the degrees of freedom for the t-distribution. } \item{eps}{ convergence criteria for the iteration on theta. } } \value{ this function is used in the model statement of either \code{coxph} or \code{survreg}. It's results are used internally. } \details{ The \code{frailty} plugs into the general penalized modeling framework provided by the \code{coxph} and \code{survreg} routines. This framework deals with likelihood, penalties, and degrees of freedom; these aspects work well with either parent routine. Therneau, Grambsch, and Pankratz show how maximum likelihood estimation for the Cox model with a gamma frailty can be accomplished using a general penalized routine, and Ripatti and Palmgren work through a similar argument for the Cox model with a gaussian frailty. Both of these are specific to the Cox model. Use of gamma/ml or gaussian/reml with \code{survreg} does not lead to valid results. The extensible structure of the penalized methods is such that the penalty function, such as \code{frailty} or \code{pspine}, is completely separate from the modeling routine. The strength of this is that a user can plug in any penalization routine they choose. A weakness is that it is very difficult for the modeling routine to know whether a sensible penalty routine has been supplied. Note that use of a frailty term implies a mixed effects model and use of a cluster term implies a GEE approach; these cannot be mixed. The \code{coxme} package has superseded this method. It is faster, more stable, and more flexible. } \section{References}{ S Ripatti and J Palmgren, Estimation of multivariate frailty models using penalized partial likelihood, Biometrics, 56:1016-1022, 2000. T Therneau, P Grambsch and VS Pankratz, Penalized survival models and frailty, J Computational and Graphical Statistics, 12:156-175, 2003. } \seealso{ \link{coxph}, \link{survreg} } \examples{ # Random institutional effect coxph(Surv(time, status) ~ age + frailty(inst, df=4), lung) # Litter effects for the rats data rfit2a <- survreg(Surv(time, status) ~ rx + frailty.gaussian(litter, df=13, sparse=FALSE), rats, subset= (sex=='f')) rfit2b <- survreg(Surv(time, status) ~ rx + frailty.gaussian(litter, df=13, sparse=TRUE), rats, subset= (sex=='f')) } \keyword{survival} survival/man/retinopathy.Rd0000644000176200001440000000414713537676563015570 0ustar liggesusers\name{retinopathy} \alias{retinopathy} \docType{data} \title{Diabetic Retinopathy} \description{A trial of laser coagulation as a treatment to delay diabetic retinopathy. } \usage{data("retinopathy")} \format{ A data frame with 394 observations on the following 9 variables. \describe{ \item{\code{id}}{numeric subject id} \item{\code{laser}}{type of laser used: \code{xenon} \code{argon}} \item{\code{eye}}{which eye was treated: \code{right} \code{left}} \item{\code{age}}{age at diagnosis of diabetes} \item{\code{type}}{type of diabetes: \code{juvenile} \code{adult}, (diagnosis before age 20)} \item{\code{trt}}{0 = control eye, 1 = treated eye} \item{\code{futime}}{time to loss of vision or last follow-up} \item{\code{status}}{0 = censored, 1 = loss of vision in this eye} \item{\code{risk}}{a risk score for the eye. This high risk subset is defined as a score of 6 or greater in at least one eye.} } } \details{ The 197 patients in this dataset were a 50\% random sample of the patients with "high-risk" diabetic retinopathy as defined by the Diabetic Retinopathy Study (DRS). Each patient had one eye randomized to laser treatment and the other eye received no treatment, and has two observations in the data set. For each eye, the event of interest was the time from initiation of treatment to the time when visual acuity dropped below 5/200 two visits in a row. Thus there is a built-in lag time of approximately 6 months (visits were every 3 months). Survival times in this dataset are the actual time to vision loss in months, minus the minimum possible time to event (6.5 months). Censoring was caused by death, dropout, or end of the study. } \references{ W. J. Huster, R. Brookmeyer and S. G. Self (1989). Modelling paired survival data with covariates, Biometrics 45:145-156. A. L. Blair, D. R. Hadden, J. A. Weaver, D. B. Archer, P. B. Johnston and C. J. Maguire (1976). The 5-year prognosis for vision in diabetes, American Journal of Ophthalmology, 81:383-396. } \examples{ coxph(Surv(futime, status) ~ type + trt + cluster(id), retinopathy) } \keyword{datasets} survival/man/quantile.survfit.Rd0000644000176200001440000000677713537676563016560 0ustar liggesusers\name{quantile.survfit} \alias{quantile.survfit} \alias{quantile.survfitms} \title{Quantiles from a survfit object} \description{Retrieve quantiles and confidence intervals for them from a survfit object. } \usage{ \method{quantile}{survfit}(x, probs = c(0.25, 0.5, 0.75), conf.int = TRUE, tolerance= sqrt(.Machine$double.eps), ...) \method{quantile}{survfitms}(x, probs = c(0.25, 0.5, 0.75), conf.int = TRUE, tolerance= sqrt(.Machine$double.eps), ...) } \arguments{ \item{x}{a result of the survfit function} \item{probs}{numeric vector of probabilities with values in [0,1]} \item{conf.int}{should lower and upper confidence limits be returned?} \item{tolerance}{tolerance for checking that the survival curve exactly equals one of the quantiles} \item{...}{optional arguments for other methods} } \details{ The kth quantile for a survival curve S(t) is the location at which a horizontal line at height p= 1-k intersects the plot of S(t). Since S(t) is a step function, it is possible for the curve to have a horizontal segment at exactly 1-k, in which case the midpoint of the horizontal segment is returned. This mirrors the standard behavior of the median when data is uncensored. If the survival curve does not fall to 1-k, then that quantile is undefined. In order to be consistent with other quantile functions, the argument \code{prob} of this function applies to the cumulative distribution function F(t) = 1-S(t). Confidence limits for the values are based on the intersection of the horizontal line at 1-k with the upper and lower limits for the survival curve. Hence confidence limits use the same p-value as was in effect when the curve was created, and will differ depending on the \code{conf.type} option of \code{survfit}. If the survival curves have no confidence bands, confidence limits for the quantiles are not available. When a horizontal segment of the survival curve exactly matches one of the requested quantiles the returned value will be the midpoint of the horizontal segment; this agrees with the usual definition of a median for uncensored data. Since the survival curve is computed as a series of products, however, there may be round off error. Assume for instance a sample of size 20 with no tied times and no censoring. The survival curve after the 10th death is (19/20)(18/19)(17/18) ... (10/11) = 10/20, but the computed result will not be exactly 0.5. Any horizontal segment whose absolute difference with a requested percentile is less than \code{tolerance} is considered to be an exact match. } \value{ The quantiles will be a vector if the \code{survfit} object contains only a single curve, otherwise it will be a matrix or array. In this case the last dimension will index the quantiles. If confidence limits are requested, then result will be a list with components \code{quantile}, \code{lower}, and \code{upper}, otherwise it is the vector or matrix of quantiles. } \author{Terry Therneau} \seealso{\code{\link{survfit}}, \code{\link{print.survfit}}, \code{\link{qsurvreg}} } \examples{ fit <- survfit(Surv(time, status) ~ ph.ecog, data=lung) quantile(fit) cfit <- coxph(Surv(time, status) ~ age + strata(ph.ecog), data=lung) csurv<- survfit(cfit, newdata=data.frame(age=c(40, 60, 80)), conf.type ="none") temp <- quantile(csurv, 1:5/10) temp[2,3,] # quantiles for second level of ph.ecog, age=80 quantile(csurv[2,3], 1:5/10) # quantiles of a single curve, same result } \keyword{ survival } survival/man/survConcordance-deprecated.Rd0000644000176200001440000000622713537676563020457 0ustar liggesusers\name{survConcordance} \alias{survConcordance} \alias{survConcordance.fit} \title{ Compute a concordance measure. } \description{ This function computes the concordance between a right-censored survival time and a single continuous covariate } \usage{ survConcordance(formula, data, weights, subset, na.action) survConcordance.fit(y, x, strata, weight) } \arguments{ \item{formula}{ a formula with a survival time on the left and a single covariate on the right, along with an optional \code{strata()} term. The left hand term can also be a numeric vector. } \item{data}{ a data frame } \item{weights,subset,na.action}{as for \code{coxph}} \item{x, y, strata, weight}{predictor, response, strata, and weight vectors for the direct call} } \value{ an object containing the concordance, followed by the number of pairs that agree, disagree, are tied, and are not comparable. } \details{ The \code{survConcordance.fit} function computes the result but does no data checking whatsoever. It is intended as a hook for other packages that wish to compute concordance, and the data has already been assembled and verified. Concordance is defined as Pr(agreement) for any two randomly chosen observations, where in this case agreement means that the observation with the shorter survival time of the two also has the larger risk score. The predictor (or risk score) will often be the result of a Cox model or other regression. For continuous covariates concordance is equivalent to Kendall's tau, and for logistic regression is is equivalent to the area under the ROC curve. A value of 1 signifies perfect agreement, .6-.7 is a common result for survival data, .5 is an agreement that is no better than chance, and .3-.4 is the performance of some stock market analysts. The computation involves all n(n-1)/2 pairs of data points in the sample. For survival data, however, some of the pairs are incomparable. For instance a pair of times (5+, 8), the first being a censored value. We do not know whether the first survival time is greater than or less than the second. Among observations that are comparable, pairs may also be tied on survival time (but only if both are uncensored) or on the predictor. The final concordance is (agree + tied/2)/(agree + disagree + tied). There is, unfortunately, one aspect of the formula above that is unclear. Should the count of ties include observations that are tied on survival time y, tied on the predictor x, or both? By default the concordance only counts ties in x, treating tied survival times as incomparable; this agrees with the AUC calculation used in logistic regression. The Goodman-Kruskal Gamma statistic is (agree-disagree)/(agree + disagree), ignoring ties. It ranges from -1 to +1 similar to a correlation coefficient. Kendall's tau uses ties of both types. All of the components are returned in the result, however, so people can compute other combinations if interested. (If two observations have the same survival and the same x, they are counted in the tied survival time category). The algorithm is based on a balanced binary tree, which allows the computation to be done in O(n log n) time. } \seealso{\code{\link{concordance}} } \keyword{survival} survival/man/mgus.Rd0000644000176200001440000000700413537676563014170 0ustar liggesusers\name{mgus} \alias{mgus} \alias{mgus1} \docType{data} \title{Monoclonal gammopathy data} \description{ Natural history of 241 subjects with monoclonal gammopathy of undetermined significance (MGUS). } \usage{ mgus mgus1 } \format{ mgus: A data frame with 241 observations on the following 12 variables. \tabular{ll}{ id:\tab subject id \cr age:\tab age in years at the detection of MGUS \cr sex:\tab \code{male} or \code{female} \cr dxyr:\tab year of diagnosis \cr pcdx:\tab for subjects who progress to a plasma cell malignancy \cr \tab the subtype of malignancy: multiple myeloma (MM) is the \cr \tab most common, followed by amyloidosis (AM), macroglobulinemia (MA),\cr \tab and other lymphprolifative disorders (LP) \cr pctime:\tab days from MGUS until diagnosis of a plasma cell malignancy \cr futime:\tab days from diagnosis to last follow-up \cr death:\tab 1= follow-up is until death \cr alb:\tab albumin level at MGUS diagnosis \cr creat:\tab creatinine at MGUS diagnosis \cr hgb:\tab hemoglobin at MGUS diagnosis \cr mspike:\tab size of the monoclonal protein spike at diagnosis \cr } mgus1: The same data set in start,stop format. Contains the id, age, sex, and laboratory variable described above along with \tabular{ll}{ start, stop:\tab sequential intervals of time for each subject \cr status:\tab =1 if the interval ends in an event \cr event:\tab a factor containing the event type: censor, death, or plasma cell malignancy \cr enum: \tab event number for each subject: 1 or 2 } } \details{ Plasma cells are responsible for manufacturing immunoglobulins, an important part of the immune defense. At any given time there are estimated to be about \eqn{10^6} different immunoglobulins in the circulation at any one time. When a patient has a plasma cell malignancy the distribution will become dominated by a single isotype, the product of the malignant clone, visible as a spike on a serum protein electrophoresis. Monoclonal gammopathy of undertermined significance (MGUS) is the presence of such a spike, but in a patient with no evidence of overt malignancy. This data set of 241 sequential subjects at Mayo Clinic was the groundbreaking study defining the natural history of such subjects. Due to the diligence of the principle investigator 0 subjects have been lost to follow-up. Three subjects had MGUS detected on the day of death. In data set \code{mgus1} these subjects have the time to MGUS coded as .5 day before the death in order to avoid tied times. These data sets were updated in Jan 2015 to correct some small errors. } \source{ Mayo Clinic data courtesy of Dr. Robert Kyle. } \examples{ # Create the competing risk curves for time to first of death or PCM sfit <- survfit(Surv(start, stop, event) ~ sex, mgus1, id=id, subset=(enum==1)) print(sfit) # the order of printout is the order in which they plot plot(sfit, xscale=365.25, lty=c(2,1,2,1), col=c(1,1,2,2), xlab="Years after MGUS detection", ylab="Proportion") legend(0, .8, c("Death/male", "Death/female", "PCM/male", "PCM/female"), lty=c(1,1,2,2), col=c(2,1,2,1), bty='n') title("Curves for the first of plasma cell malignancy or death") # The plot shows that males have a higher death rate than females (no # surprise) but their rates of conversion to PCM are essentially the same. } \references{ R Kyle, Benign monoclonal gammopathy -- after 20 to 35 years of follow-up, Mayo Clinic Proc 1993; 68:26-36. } \keyword{datasets} \keyword{survival} survival/man/summary.coxph.Rd0000644000176200001440000000404713537676563016036 0ustar liggesusers\name{summary.coxph} \alias{summary.coxph} \title{ Summary method for Cox models } \description{ Produces a summary of a fitted coxph model } \usage{ \method{summary}{coxph}(object, conf.int=0.95, scale=1,...) } \arguments{ \item{object}{ the result of a coxph fit } \item{conf.int}{ level for computation of the confidence intervals. If set to FALSE no confidence intervals are printed } \item{scale}{ vector of scale factors for the coefficients, defaults to 1. The printed coefficients, se, and confidence intervals will be associated with one scale unit. } \item{\dots}{for future methods} } \value{ An object of class \code{summary.coxph}, with components: \item{n, nevent}{number of observations and number of events, respectively, in the fit} \item{loglik}{the log partial likelihood at the initial and final values} \item{coefficients}{a matrix with one row for each coefficient, and columns containing the coefficient, the hazard ratio exp(coef), standard error, Wald statistic, and P value.} \item{conf.int}{a matrix with one row for each coefficient, containing the confidence limits for exp(coef)} \item{logtest, sctest, waldtest}{the overall likelihood ratio, score, and Wald test statistics for the model} \item{concordance}{the concordance statistic and its standard error} \item{used.robust}{whether an asymptotic or robust variance was used} \item{rsq}{an approximate R^2 based on Nagelkirke (Biometrika 1991).} \item{fail}{a message, if the underlying coxph call failed} \item{call}{a copy of the call} \item{na.action}{information on missing values} } \note{ The pseudo r-squared of Nagelkirke is attractive because it is simple, but further work has shown that it has poor properties and it is now depricated. The value is no longer printed by default, and will eventually be removed from the object. } \seealso{ \code{\link{coxph}}, \code{\link{print.coxph}} } \examples{ fit <- coxph(Surv(time, status) ~ age + sex, lung) summary(fit) } \keyword{survival} survival/man/cch.Rd0000644000176200001440000001206213537676563013752 0ustar liggesusers\alias{cch} \name{cch} \title{Fits proportional hazards regression model to case-cohort data} \description{ Returns estimates and standard errors from relative risk regression fit to data from case-cohort studies. A choice is available among the Prentice, Self-Prentice and Lin-Ying methods for unstratified data. For stratified data the choice is between Borgan I, a generalization of the Self-Prentice estimator for unstratified case-cohort data, and Borgan II, a generalization of the Lin-Ying estimator. } \usage{ cch(formula, data = sys.parent(), subcoh, id, stratum=NULL, cohort.size, method =c("Prentice","SelfPrentice","LinYing","I.Borgan","II.Borgan"), robust=FALSE) } \arguments{ \item{formula}{ A formula object that must have a \code{\link{Surv}} object as the response. The Surv object must be of type \code{"right"}, or of type \code{"counting"}. } \item{subcoh}{ Vector of indicators for subjects sampled as part of the sub-cohort. Code \code{1} or \code{TRUE} for members of the sub-cohort, \code{0} or \code{FALSE} for others. If \code{data} is a data frame then \code{subcoh} may be a one-sided formula. } \item{id}{ Vector of unique identifiers, or formula specifying such a vector. } \item{stratum}{A vector of stratum indicators or a formula specifying such a vector} \item{cohort.size}{ Vector with size of each stratum original cohort from which subcohort was sampled } \item{data}{ An optional data frame in which to interpret the variables occurring in the formula. } \item{method}{ Three procedures are available. The default method is "Prentice", with options for "SelfPrentice" or "LinYing". } \item{robust}{For \code{"LinYing"} only, if \code{robust=TRUE}, use design-based standard errors even for phase I} } \value{ An object of class "cch" incorporating a list of estimated regression coefficients and two estimates of their asymptotic variance-covariance matrix. \item{coef}{ regression coefficients. } \item{naive.var}{ Self-Prentice model based variance-covariance matrix. } \item{var}{ Lin-Ying empirical variance-covariance matrix. }} \details{ Implements methods for case-cohort data analysis described by Therneau and Li (1999). The three methods differ in the choice of "risk sets" used to compare the covariate values of the failure with those of others at risk at the time of failure. "Prentice" uses the sub-cohort members "at risk" plus the failure if that occurs outside the sub-cohort and is score unbiased. "SelfPren" (Self-Prentice) uses just the sub-cohort members "at risk". These two have the same asymptotic variance-covariance matrix. "LinYing" (Lin-Ying) uses the all members of the sub-cohort and all failures outside the sub-cohort who are "at risk". The methods also differ in the weights given to different score contributions. The \code{data} argument must not have missing values for any variables in the model. There must not be any censored observations outside the subcohort. } \author{Norman Breslow, modified by Thomas Lumley} \references{ Prentice, RL (1986). A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 73: 1--11. Self, S and Prentice, RL (1988). Asymptotic distribution theory and efficiency results for case-cohort studies. Annals of Statistics 16: 64--81. Lin, DY and Ying, Z (1993). Cox regression with incomplete covariate measurements. Journal of the American Statistical Association 88: 1341--1349. Barlow, WE (1994). Robust variance estimation for the case-cohort design. Biometrics 50: 1064--1072 Therneau, TM and Li, H (1999). Computing the Cox model for case-cohort designs. Lifetime Data Analysis 5: 99--112. Borgan, \eqn{O}{O}, Langholz, B, Samuelsen, SO, Goldstein, L and Pogoda, J (2000) Exposure stratified case-cohort designs. Lifetime Data Analysis 6, 39-58. } \seealso{ \code{twophase} and \code{svycoxph} in the "survey" package for more general two-phase designs. \url{http://faculty.washington.edu/tlumley/survey/} } \examples{ ## The complete Wilms Tumor Data ## (Breslow and Chatterjee, Applied Statistics, 1999) ## subcohort selected by simple random sampling. ## subcoh <- nwtco$in.subcohort selccoh <- with(nwtco, rel==1|subcoh==1) ccoh.data <- nwtco[selccoh,] ccoh.data$subcohort <- subcoh[selccoh] ## central-lab histology ccoh.data$histol <- factor(ccoh.data$histol,labels=c("FH","UH")) ## tumour stage ccoh.data$stage <- factor(ccoh.data$stage,labels=c("I","II","III","IV")) ccoh.data$age <- ccoh.data$age/12 # Age in years ## ## Standard case-cohort analysis: simple random subcohort ## fit.ccP <- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data, subcoh = ~subcohort, id=~seqno, cohort.size=4028) fit.ccP fit.ccSP <- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data, subcoh = ~subcohort, id=~seqno, cohort.size=4028, method="SelfPren") summary(fit.ccSP) ## ## (post-)stratified on instit ## stratsizes<-table(nwtco$instit) fit.BI<- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data, subcoh = ~subcohort, id=~seqno, stratum=~instit, cohort.size=stratsizes, method="I.Borgan") summary(fit.BI) } \keyword{survival} survival/man/survfit.matrix.Rd0000644000176200001440000000713413537676563016226 0ustar liggesusers\name{survfit.matrix} \alias{survfit.matrix} \title{Create Aalen-Johansen estimates of multi-state survival from a matrix of hazards.} \description{ This allows one to create the Aalen-Johansen estimate of P, a matrix with one column per state and one row per time, starting with the individual hazard estimates. Each row of P will sum to 1. Note that this routine has been superseded by the use of multi-state Cox models, and will eventually be removed. } \usage{ \method{survfit}{matrix}(formula, p0, method = c("discrete", "matexp"), start.time, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{formula}{a matrix of lists, each element of which is either NULL or a survival curve object. } \item{p0}{the initial state vector. The names of this vector are used as the names of the states in the output object. If there are multiple curves then \code{p0} can be a matrix with one row per curve. } \item{method}{ use a product of discrete hazards, or a product of matrix exponentials. See details below. } \item{start.time}{optional; start the calculations at a given starting point} \item{...}{further arguments used by other survfit methods} } \details{ On input the matrix should contain a set of predicted curves for each possible transition, and NULL in other positions. Each of the predictions will have been obtained from the relevant Cox model. This approach for multistate curves is easy to use but has some caveats. First, the input curves must be consistent. The routine checks as best it can, but can easy be fooled. For instance, if one were to fit two Cox models, obtain predictions for males and females from one, and for treatment A and B from the other, this routine will create two curves but they are not meaningful. A second issue is that standard errors are not produced. The names of the resulting states are taken from the names of the vector of initial state probabilities. If they are missing, then the dimnames of the input matrix are used, and lacking that the labels '1', '2', etc. are used. For the usual Aalen-Johansen estimator the multiplier at each event time is the matrix of hazards H (also written as I + dA). When using predicted survival curves from a Cox model, however, it is possible to get predicted hazards that are greater than 1, which leads to probabilities less than 0. If the \code{method} argument is not supplied and the input curves are derived from a Cox model this routine instead uses the approximation expm(H-I) as the multiplier, which always gives valid probabilities. (This is also the standard approach for ordinary survival curves from a Cox model.) } \value{a survfitms object} \author{Terry Therneau} \note{The R syntax for creating a matrix of lists is very fussy.} \seealso{\code{\link{survfit}}} \examples{ etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) event <- factor(event, 0:2, labels=c("censor", "pcm", "death")) cfit1 <- coxph(Surv(etime, event=="pcm") ~ age + sex, mgus2) cfit2 <- coxph(Surv(etime, event=="death") ~ age + sex, mgus2) # predicted competing risk curves for a 72 year old with mspike of 1.2 # (median values), male and female. # The survfit call is a bit faster without standard errors. newdata <- expand.grid(sex=c("F", "M"), age=72, mspike=1.2) AJmat <- matrix(list(), 3,3) AJmat[1,2] <- list(survfit(cfit1, newdata, std.err=FALSE)) AJmat[1,3] <- list(survfit(cfit2, newdata, std.err=FALSE)) csurv <- survfit(AJmat, p0 =c(entry=1, PCM=0, death=0)) } \keyword{survival } survival/man/survfit.formula.Rd0000644000176200001440000002635713540152227016353 0ustar liggesusers\name{survfit.formula} \alias{survfit.formula} \alias{[.survfit} \title{ Compute a Survival Curve for Censored Data } \description{ Computes an estimate of a survival curve for censored data using the Aalen-Johansen estimator. For ordinary (single event) survival this reduces to the Kaplan-Meier estimate. } \usage{ \method{survfit}{formula}(formula, data, weights, subset, na.action, stype=1, ctype=1, id, cluster, istate, timefix=TRUE, etype, error, ...) } \arguments{ \item{formula}{ a formula object, which must have a \code{Surv} object as the response on the left of the \code{~} operator and, if desired, terms separated by + operators on the right. One of the terms may be a \code{strata} object. For a single survival curve the right hand side should be \code{~ 1}. } \item{data}{ a data frame in which to interpret the variables named in the formula, \code{subset} and \code{weights} arguments. } \item{weights}{ The weights must be nonnegative and it is strongly recommended that they be strictly positive, since zero weights are ambiguous, compared to use of the \code{subset} argument. } \item{subset}{ expression saying that only a subset of the rows of the data should be used in the fit. } \item{na.action}{ a missing-data filter function, applied to the model frame, after any \code{subset} argument has been used. Default is \code{options()$na.action}. } \item{stype}{the method to be used estimation of the survival curve: 1 = direct, 2 = exp(cumulative hazard). } \item{ctype}{the method to be used for estimation of the cumulative hazard: 1 = Nelson-Aalen formula, 2 = Fleming-Harrington correction for tied events.} \item{id}{ identifies individual subjects, when a given person can have multiple lines of data. } \item{cluster}{used to group observations for the infinitesmal jackknife variance estimate, defaults to the value of id} \item{istate}{for multi-state models, identifies the initial state of each subject or observation} \item{timefix}{process times through the \code{aeqSurv} function to eliminate potential roundoff issues.} \item{etype}{ a variable giving the type of event. This has been superseded by multi-state Surv objects and is depricated; see example below. } \item{error}{this argument is no longer used} \item{\dots}{ The following additional arguments are passed to internal functions called by \code{survfit}. \describe{ \item{se.fit}{logical value, default is TRUE. If FALSE then standard error computations are omitted. } \item{conf.type}{ One of \code{"none"}, \code{"plain"}, \code{"log"} (the default), \code{"log-log"} or \code{"logit"}. Only enough of the string to uniquely identify it is necessary. The first option causes confidence intervals not to be generated. The second causes the standard intervals \code{curve +- k *se(curve)}, where k is determined from \code{conf.int}. The log option calculates intervals based on the cumulative hazard or log(survival). The log-log option bases the intervals on the log hazard or log(-log(survival)), and the logit option on log(survival/(1-survival)). } \item{conf.lower}{ a character string to specify modified lower limits to the curve, the upper limit remains unchanged. Possible values are \code{"usual"} (unmodified), \code{"peto"}, and \code{"modified"}. The modified lower limit is based on an "effective n" argument. The confidence bands will agree with the usual calculation at each death time, but unlike the usual bands the confidence interval becomes wider at each censored observation. The extra width is obtained by multiplying the usual variance by a factor m/n, where n is the number currently at risk and m is the number at risk at the last death time. (The bands thus agree with the un-modified bands at each death time.) This is especially useful for survival curves with a long flat tail. The Peto lower limit is based on the same "effective n" argument as the modified limit, but also replaces the usual Greenwood variance term with a simple approximation. It is known to be conservative. } \item{start.time}{ numeric value specifying a time to start calculating survival information. The resulting curve is the survival conditional on surviving to \code{start.time}. } \item{conf.int}{ the level for a two-sided confidence interval on the survival curve(s). Default is 0.95. } \item{se.fit}{ a logical value indicating whether standard errors should be computed. Default is \code{TRUE}. } \item{influence}{a logical value indicating whether to return the infinitesimal jackknife (influence) values for each subject. These contain the values of the derivative of each value with respect to the case weights of each subject i: \eqn{\partial p/\partial w_i}{dp/dw[i]}, evaluated at the vector of weights. The resulting object will contain \code{influence.surv} and \code{influence.chaz} components. Alternatively, options of \code{influence=1} or \code{influence=2} will return values for only the survival or hazard curves, respectively. } \item{p0}{this applies only to multi-state curves. An optional vector giving the initial probability across the states. If this is missing, then p0 is estimated using the frequency of the starting states of all observations at risk at \code{start.time}, or if that is not specified, at the time of the first event.} \item{type}{an older argument that combined \code{stype} and \code{ctype}, now depricated. Legal values were "kaplan-meier" which is equivalent to \code{stype=1, ctype=1}, "fleming-harrington" which is equivalent to \code{stype=2, ctype=1}, and "fh2" which is equivalent to \code{stype=2, ctype=2.} } } } } \value{ an object of class \code{"survfit"}. See \code{survfit.object} for details. Methods defined for survfit objects are \code{print}, \code{plot}, \code{lines}, and \code{points}. } \details{ If there is a \code{data} argument, then variables in the \code{formula}, code{weights}, \code{subset}, \code{id}, \code{cluster} and \code{istate} arguments will be searched for in that data set. The routine returns both an estimated probability in state and an estimated cumulative hazard estimate. The cumulative hazard estimate is the Nelson-Aalen (NA) estimate or the Fleming-Harrington (FH) estimate, the latter includes a correct for tied event times. The estimated probability in state can estimated either using the exponential of the cumulative hazard, or as a direct estimate using the Aalen-Johansen approach. For single state data the AJ estimate reduces to the Kaplan-Meier and the probability in state to the survival curve; for competing risks data the AJ reduces to the cumulative incidence (CI) estimator. For backward compatability the \code{type} argument can be used instead. When the data set includes left censored or interval censored data (or both), then the EM approach of Turnbull is used to compute the overall curve. Currently this algorithm is very slow, only a survival curve is produced, and it does not support a robust variance. If a \code{id} or \code{cluster} argument is present, or for multi-state curves, then the standard errors of the results will be based on an infinitesimal jackknife (IJ) estimate, otherwise the standard model based estimate will be used. With the IJ estimate, the leverage values themselves can be returned as arrays with dimensions: number of subjects, number of unique times, and for a multi-state model, the number of unique states. Be forwarned that these arrays can be huge. If there is a \code{cluster} argument this first dimension will be the number of clusters and the variance will be a grouped IJ estimate; this can be an important tool for reducing the size. A numeric value for the \code{influence} argument allows finer control: 0= return neither (same as FALSE), 1= return the influence array for probability in state, 2= return the influence array for the cumulative hazard, 3= both (same as TRUE). } \section{References}{ Dorey, F. J. and Korn, E. L. (1987). Effective sample sizes for confidence intervals for survival probabilities. \emph{Statistics in Medicine} \bold{6}, 679-87. Fleming, T. H. and Harrington, D. P. (1984). Nonparametric estimation of the survival distribution in censored data. \emph{Comm. in Statistics} \bold{13}, 2469-86. Kalbfleisch, J. D. and Prentice, R. L. (1980). \emph{The Statistical Analysis of Failure Time Data.} New York:Wiley. Kyle, R. A. (1997). Moncolonal gammopathy of undetermined significance and solitary plasmacytoma. Implications for progression to overt multiple myeloma\}, \emph{Hematology/Oncology Clinics N. Amer.} \bold{11}, 71-87. Link, C. L. (1984). Confidence intervals for the survival function using Cox's proportional hazards model with covariates. \emph{Biometrics} \bold{40}, 601-610. Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function with doubly censored data. \emph{J Am Stat Assoc}, \bold{69}, 169-173. } \seealso{ \code{\link{survfit.coxph}} for survival curves from Cox models, \code{\link{survfit.object}} for a description of the components of a survfit object, \code{\link{print.survfit}}, \code{\link{plot.survfit}}, \code{\link{lines.survfit}}, \code{\link{coxph}}, \code{\link{Surv}}. } \examples{ #fit a Kaplan-Meier and plot it fit <- survfit(Surv(time, status) ~ x, data = aml) plot(fit, lty = 2:3) legend(100, .8, c("Maintained", "Nonmaintained"), lty = 2:3) #fit a Cox proportional hazards model and plot the #predicted survival for a 60 year old fit <- coxph(Surv(futime, fustat) ~ age, data = ovarian) plot(survfit(fit, newdata=data.frame(age=60)), xscale=365.25, xlab = "Years", ylab="Survival") # Here is the data set from Turnbull # There are no interval censored subjects, only left-censored (status=3), # right-censored (status 0) and observed events (status 1) # # Time # 1 2 3 4 # Type of observation # death 12 6 2 3 # losses 3 2 0 3 # late entry 2 4 2 5 # tdata <- data.frame(time =c(1,1,1,2,2,2,3,3,3,4,4,4), status=rep(c(1,0,2),4), n =c(12,3,2,6,2,4,2,0,2,3,3,5)) fit <- survfit(Surv(time, time, status, type='interval') ~1, data=tdata, weight=n) # # Time to progression/death for patients with monoclonal gammopathy # Competing risk curves (cumulative incidence) # fitKM <- survfit(Surv(stop, event=='pcm') ~1, data=mgus1, subset=(start==0)) fitCI <- survfit(Surv(stop, event) ~1, data=mgus1, subset=(start==0)) \dontrun{ # CI curves show the probability in state plot(fitCI, xscale=365.25, xmax=7300, mark.time=FALSE, col=2:3, xlab="Years post diagnosis of MGUS", ylab="P(state)") lines(fitKM, fun='event', xmax=7300, mark.time=FALSE, conf.int=FALSE) text(3652, .4, "Competing risk: death", col=3) text(5840, .15,"Competing risk: progression", col=2) text(5480, .30,"KM:prog") } } \keyword{survival} survival/man/survregDtest.Rd0000644000176200001440000000301213537676563015711 0ustar liggesusers\name{survregDtest} \alias{survregDtest} \title{Verify a survreg distribution} \description{ This routine is called by \code{survreg} to verify that a distribution object is valid. } \usage{ survregDtest(dlist, verbose = F) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{dlist}{the list describing a survival distribution} \item{verbose}{return a simple TRUE/FALSE from the test for validity (the default), or a verbose description of any flaws.} } \details{ If the \code{survreg} function rejects your user-supplied distribution as invalid, this routine will tell you why it did so. } \value{ TRUE if the distribution object passes the tests, and either FALSE or a vector of character strings if not. } \author{Terry Therneau} \seealso{\code{\link{survreg.distributions}}, \code{\link{survreg}}} \examples{ # An invalid distribution (it should have "init =" on line 2) # surveg would give an error message mycauchy <- list(name='Cauchy', init<- function(x, weights, ...) c(median(x), mad(x)), density= function(x, parms) { temp <- 1/(1 + x^2) cbind(.5 + atan(temp)/pi, .5+ atan(-temp)/pi, temp/pi, -2 *x*temp, 2*temp^2*(4*x^2*temp -1)) }, quantile= function(p, parms) tan((p-.5)*pi), deviance= function(...) stop('deviance residuals not defined') ) survregDtest(mycauchy, TRUE) } \keyword{survival} survival/man/xtfrm.Surv.Rd0000644000176200001440000000227413537676563015317 0ustar liggesusers\name{xtfrm.Surv} \alias{xtfrm.Surv} \alias{sort.Surv} \alias{order.Surv} \title{Sorting order for Surv objects} \description{ Sort survival objects into a partial order, which is the same one used internally for many of the calculations. } \usage{ \method{xtfrm}{Surv}(x) } \arguments{ \item{x}{a \code{Surv} object} } \details{ This creates a partial ordering of survival objects. The result is sorted in time order, for tied pairs of times right censored events come after observed events (censor after death), and left censored events are sorted before observed events. For counting process data \code{(tstart, tstop, status)} the ordering is by stop time, status, and start time, again with censoring last. Interval censored data is sorted using the midpoint of each interval. The \code{xtfrm} routine is used internally by \code{order} and \code{sort}, so these results carry over to those routines. } \value{a vector of integers which will have the same sort order as \code{x}. } \author{Terry Therneau} \seealso{\code{\link{sort}}, \code{\link{order}}} \examples{ test <- c(Surv(c(10, 9,9, 8,8,8,7,5,5,4), rep(1:0, 5)), Surv(6.2, NA)) test sort(test) } \keyword{survival} survival/man/ratetableDate.Rd0000644000176200001440000000152013537676563015753 0ustar liggesusers\name{ratetableDate} \alias{ratetableDate} \title{Convert date objects to ratetable form} \description{ This method converts dates from various forms into the internal form used in \code{ratetable} objects. } \usage{ ratetableDate(x) } \arguments{ \item{x}{a date. The function currently has methods for Date, date, POSIXt, timeDate, and chron objects. } } \details{ This function is useful for those who create new ratetables, but is normally invisible to users. It is used internally by the \code{survexp} and \code{pyears} functions to map the various date formats; if a new method is added then those routines will automatically be adapted to the new date type. } \value{a numeric vector, the number of days since 1/1/1960.} \author{Terry Therneau} \seealso{\code{\link{pyears}}, \code{\link{survexp}}} \keyword{survival} survival/man/tobin.Rd0000644000176200001440000000134713537676563014334 0ustar liggesusers\name{tobin} \alias{tobin} \docType{data} \title{Tobin's Tobit data} \description{ Economists fit a parametric censored data model called the \sQuote{tobit}. These data are from Tobin's original paper. } \usage{tobin} \format{ A data frame with 20 observations on the following 3 variables. \describe{ \item{durable}{Durable goods purchase} \item{age}{Age in years} \item{quant}{Liquidity ratio (x 1000)} } } \source{ J Tobin (1958), Estimation of relationships for limited dependent variables. \emph{Econometrica} \bold{26}, 24--36. } \examples{ tfit <- survreg(Surv(durable, durable>0, type='left') ~age + quant, data=tobin, dist='gaussian') predict(tfit,type="response") } \keyword{datasets} survival/man/pyears.Rd0000644000176200001440000001715613537676563014531 0ustar liggesusers\name{pyears} \alias{pyears} \title{ Person Years } \description{ This function computes the person-years of follow-up time contributed by a cohort of subjects, stratified into subgroups. It also computes the number of subjects who contribute to each cell of the output table, and optionally the number of events and/or expected number of events in each cell. } \usage{ pyears(formula, data, weights, subset, na.action, rmap, ratetable, scale=365.25, expect=c('event', 'pyears'), model=FALSE, x=FALSE, y=FALSE, data.frame=FALSE) } \arguments{ \item{formula}{ a formula object. The response variable will be a vector of follow-up times for each subject, or a \code{Surv} object containing the survival time and an event indicator. The predictors consist of optional grouping variables separated by + operators (exactly as in \code{survfit}), time-dependent grouping variables such as age (specified with \code{tcut}), and optionally a \code{ratetable} term. This latter matches each subject to his/her expected cohort. } \item{data}{ a data frame in which to interpret the variables named in the \code{formula}, or in the \code{subset} and the \code{weights} argument. } \item{weights}{ case weights. } \item{subset}{ expression saying that only a subset of the rows of the data should be used in the fit. } \item{na.action}{ a missing-data filter function, applied to the model.frame, after any \code{subset} argument has been used. Default is \code{options()$na.action}. } \item{rmap}{ an optional list that maps data set names to the ratetable names. See the details section below. } \item{ratetable}{ a table of event rates, such as \code{survexp.uswhite}. } \item{scale}{ a scaling for the results. As most rate tables are in units/day, the default value of 365.25 causes the output to be reported in years. } \item{expect}{ should the output table include the expected number of events, or the expected number of person-years of observation. This is only valid with a rate table. } \item{data.frame}{ return a data frame rather than a set of arrays.} \item{model, x, y}{ If any of these is true, then the model frame, the model matrix, and/or the vector of response times will be returned as components of the final result. } } \value{ a list with components: \item{pyears}{ an array containing the person-years of exposure. (Or other units, depending on the rate table and the scale). The dimension and dimnames of the array correspond to the variables on the right hand side of the model equation. } \item{n}{ an array containing the number of subjects who contribute time to each cell of the \code{pyears} array. } \item{event}{ an array containing the observed number of events. This will be present only if the response variable is a \code{Surv} object. } \item{expected}{ an array containing the expected number of events (or person years if \code{expect ="pyears"}). This will be present only if there was a \code{ratetable} term. } \item{data}{ if the \code{data.frame} option was set, a data frame containing the variables \code{n}, \code{event}, \code{pyears} and \code{event} that supplants the four arrays listed above, along with variables corresponding to each dimension. There will be one row for each cell in the arrays.} \item{offtable}{ the number of person-years of exposure in the cohort that was not part of any cell in the \code{pyears} array. This is often useful as an error check; if there is a mismatch of units between two variables, nearly all the person years may be off table. } \item{tcut}{whether the call included any time-dependent cutpoints.} \item{summary}{ a summary of the rate-table matching. This is also useful as an error check. } \item{call}{ an image of the call to the function. } \item{observations}{the number of observations in the input data set, after any missings were removed.} \item{na.action}{ the \code{na.action} attribute contributed by an \code{na.action} routine, if any. } } \details{ Because \code{pyears} may have several time variables, it is necessary that all of them be in the same units. For instance, in the call \preformatted{ py <- pyears(futime ~ rx, rmap=list(age=age, sex=sex, year=entry.dt), ratetable=survexp.us) } the natural unit of the ratetable is hazard per day, it is important that \code{futime}, \code{age} and \code{entry.dt} all be in days. Given the wide range of possible inputs, it is difficult for the routine to do sanity checks of this aspect. The ratetable being used may have different variable names than the user's data set, this is dealt with by the \code{rmap} argument. The rate table for the above calculation was \code{survexp.us}, a call to \code{summary{survexp.us}} reveals that it expects to have variables \code{age} = age in days, \code{sex}, and \code{year} = the date of study entry, we create them in the \code{rmap} line. The sex variable is not mapped, therefore the code assumes that it exists in \code{mydata} in the correct format. (Note: for factors such as sex, the program will match on any unique abbreviation, ignoring case.) A special function \code{tcut} is needed to specify time-dependent cutpoints. For instance, assume that age is in years, and that the desired final arrays have as one of their margins the age groups 0-2, 2-10, 10-25, and 25+. A subject who enters the study at age 4 and remains under observation for 10 years will contribute follow-up time to both the 2-10 and 10-25 subsets. If \code{cut(age, c(0,2,10,25,100))} were used in the formula, the subject would be classified according to his starting age only. The \code{tcut} function has the same arguments as \code{cut}, but produces a different output object which allows the \code{pyears} function to correctly track the subject. The results of \code{pyears} are normally used as input to further calculations. The \code{print} routine, therefore, is designed to give only a summary of the table. } \seealso{ \code{\link{ratetable}}, \code{\link{survexp}}, \code{\link{Surv}}. } \examples{ # Look at progression rates jointly by calendar date and age # temp.yr <- tcut(mgus$dxyr, 55:92, labels=as.character(55:91)) temp.age <- tcut(mgus$age, 34:101, labels=as.character(34:100)) ptime <- ifelse(is.na(mgus$pctime), mgus$futime, mgus$pctime) pstat <- ifelse(is.na(mgus$pctime), 0, 1) pfit <- pyears(Surv(ptime/365.25, pstat) ~ temp.yr + temp.age + sex, mgus, data.frame=TRUE) # Turn the factor back into numerics for regression tdata <- pfit$data tdata$age <- as.numeric(as.character(tdata$temp.age)) tdata$year<- as.numeric(as.character(tdata$temp.yr)) fit1 <- glm(event ~ year + age+ sex +offset(log(pyears)), data=tdata, family=poisson) \dontrun{ # fit a gam model gfit.m <- gam(y ~ s(age) + s(year) + offset(log(time)), family = poisson, data = tdata) } # Example #2 Create the hearta data frame: hearta <- by(heart, heart$id, function(x)x[x$stop == max(x$stop),]) hearta <- do.call("rbind", hearta) # Produce pyears table of death rates on the surgical arm # The first is by age at randomization, the second by current age fit1 <- pyears(Surv(stop/365.25, event) ~ cut(age + 48, c(0,50,60,70,100)) + surgery, data = hearta, scale = 1) fit2 <- pyears(Surv(stop/365.25, event) ~ tcut(age + 48, c(0,50,60,70,100)) + surgery, data = hearta, scale = 1) fit1$event/fit1$pyears #death rates on the surgery and non-surg arm fit2$event/fit2$pyears #death rates on the surgery and non-surg arm } \keyword{survival} survival/man/tmerge.Rd0000644000176200001440000001473313537676563014507 0ustar liggesusers\name{tmerge} \alias{tmerge} \title{Time based merge for survival data} \description{ A common task in survival analysis is the creation of start,stop data sets which have multiple intervals for each subject, along with the covariate values that apply over that interval. This function aids in the creation of such data sets. } \usage{ tmerge(data1, data2, id,\dots, tstart, tstop, options) } \arguments{ \item{data1}{the primary data set, to which new variables and/or observation will be added} \item{data2}{second data set in which all the other arguments will be found} \item{id}{subject identifier} \item{\dots}{operations that add new variables or intervals, see below} \item{tstart}{optional variable to define the valid time range for each subject, only used on an initial call} \item{tstop}{optional variable to define the valid time range for each subject, only used on an initial call} \item{options}{a list of options. Valid ones are idname, tstartname, tstopname, delay, na.rm, and tdcstart. See the explanation below.} } \details{ The program is often run in multiple passes, the first of which defines the basic structure, and subsequent ones that add new variables to that structure. For a more complete explanation of how this routine works refer to the vignette on time-dependent variables. There are 4 types of operational arguments: a time dependent covariate (tdc), cumulative count (cumtdc), event (event) or cumulative event (cumevent). Time dependent covariates change their values before an event, events are outcomes. \itemize{ \item{newname = tdc(y, x)}{ A new time dependent covariate variable will created. The argument \code{y} is assumed to be on the scale of the start and end time, and each instance describes the occurrence of a "condition" at that time. The second argument \code{x} is optional. In the case where \code{x} is missing the count variable starts at 0 for each subject and becomes 1 at the time of the event. If \code{x} is present the value of the time dependent covariate is initialized to the \code{tdcstart} option and is reset to the value of \code{x} at each observation. If the option \code{na.rm=TRUE} missing values of \code{x} are first removed, i.e., the update will not create missing values. \item{newname = cumtdc(y,x)}{ Similar to tdc, except that the event count is accumulated over time for each subject.} \item{newname = event(y,x)}{ Mark an event at time y. In the usual case that \code{x} is missing the new 0/1 variable will be similar to the 0/1 status variable of a survival time. } \item{newname = cumevent(y,x)}{ Cumulative events}. } } The function adds three new variables to the output data set: \code{tstart}, \code{tstop}, and \code{id}. The \code{options} argument can be used to change these names. If \code{data1} contains the \code{tstart} variable then that is used as the starting point for the created time intervals, otherwise the initial interval for each id will begin at 0 by default. This will lead to an invalid interval and subsequent error if say a death time were <= 0. The \code{na.rm} option affects creation of time-dependent covariates. Should a data row in \code{data2} that has a missing value for the variable be ignored (na.rm=FALSE, default) or should it generate an observation with a value of NA? The default value leads to "last value carried forward" behavior. The \code{delay} option causes a time-dependent covariate's new value to be delayed, see the vignette for an example. } \value{a data frame with two extra attributes \code{tname} and \code{tcount}. The first contains the names of the key variables; it's persistence from call to call allows the user to avoid constantly reentering the \code{options} argument. The tcount variable contains counts of the match types. New time values that occur before the first interval for a subject are "early", those after the last interval for a subject are "late", and those that fall into a gap are of type "gap". All these are are considered to be outside the specified time frame for the given subject. An event of this type will be discarded. A time-dependent covariate value will be applied to later intervals but will not generate a new time point in the output. The most common type will usually be "within", for those new times that fall inside an existing interval and cause it to be split into two. Observations that fall exactly on the edge of an interval but within the (min, max] time for a subject are counted as being on a "leading" edge, "trailing" edge or "boundary". The first corresponds for instance to an occurrence at 17 for someone with an intervals of (0,15] and (17, 35]. A \code{tdc} at time 17 will affect this interval but an \code{event} at 17 would be ignored. An \code{event} occurrence at 15 would count in the (0,15] interval. The last case is where the main data set has touching intervals for a subject, e.g. (17, 28] and (28,35] and a new occurrence lands at the join. Events will go to the earlier interval and counts to the latter one. A last column shows the number of additions where the id and time point were identical. When this occurs, the \code{tdc} and \code{event} operators will use the final value in the data (last edit wins), but ignoring missing, while \code{cumtdc} and \code{cumevent} operators add up the values. These extra attributes are ephemeral and will be discarded if the dataframe is modified. This is intentional, since they will become invalid if for instance a subset were selected. } \author{Terry Therneau} \seealso{\code{\link{neardate}}} \examples{ # The pbc data set contains baseline data and follow-up status # for a set of subjects with primary biliary cirrhosis, while the # pbcseq data set contains repeated laboratory values for those # subjects. # The first data set contains data on 312 subjects in a clinical trial plus # 106 that agreed to be followed off protocol, the second data set has data # only on the trial subjects. temp <- subset(pbc, id <= 312, select=c(id:sex, stage)) # baseline data pbc2 <- tmerge(temp, temp, id=id, endpt = event(time, status)) pbc2 <- tmerge(pbc2, pbcseq, id=id, ascites = tdc(day, ascites), bili = tdc(day, bili), albumin = tdc(day, albumin), protime = tdc(day, protime), alk.phos = tdc(day, alk.phos)) fit <- coxph(Surv(tstart, tstop, endpt==2) ~ protime + log(bili), data=pbc2) } \keyword{ survival } survival/man/survreg.distributions.Rd0000644000176200001440000001032013537676563017606 0ustar liggesusers\name{survreg.distributions} \alias{survreg.distributions} \title{Parametric Survival Distributions} \usage{ survreg.distributions } \description{ List of distributions for accelerated failure models. These are location-scale families for some transformation of time. The entry describes the cdf \eqn{F} and density \eqn{f} of a canonical member of the family. } \format{ There are two basic formats, the first defines a distribution de novo, the second defines a new distribution in terms of an old one. \tabular{ll}{ name:\tab name of distribution\cr variance:\tab function(parms) returning the variance (currently unused)\cr init(x,weights,...):\tab Function returning an initial\cr \tab estimate of the mean and variance \cr \tab (used for initial values in the iteration)\cr density(x,parms):\tab Function returning a matrix with columns \eqn{F}, \eqn{1-F}, \eqn{f}, \eqn{f'/f}, and \eqn{f''/f}\cr quantile(p,parms):\tab Quantile function\cr scale:\tab Optional fixed value for the scale parameter\cr parms:\tab Vector of default values and names for any additional parameters\cr deviance(y,scale,parms):\tab Function returning the deviance for a\cr \tab saturated model; used only for deviance residuals. } and to define one distribution in terms of another \tabular{ll}{ name:\tab name of distribution\cr dist:\tab name of parent distribution\cr trans:\tab transformation (eg log)\cr dtrans:\tab derivative of transformation\cr itrans:\tab inverse of transformation\cr scale:\tab Optional fixed value for scale parameter\cr } } \details{ There are four basic distributions:\code{extreme}, \code{gaussian}, \code{logistic} and \code{t}. The last three are parametrised in the same way as the distributions already present in \R. The extreme value cdf is \deqn{F=1-e^{-e^t}.} When the logarithm of survival time has one of the first three distributions we obtain respectively \code{weibull}, \code{lognormal}, and \code{loglogistic}. The location-scale parameterization of a Weibull distribution found in \code{survreg} is not the same as the parameterization of \code{\link{rweibull}}. The other predefined distributions are defined in terms of these. The \code{exponential} and \code{rayleigh} distributions are Weibull distributions with fixed \code{scale} of 1 and 0.5 respectively, and \code{loggaussian} is a synonym for \code{lognormal}. For speed parts of the three most commonly used distributions are hardcoded in C; for this reason the elements of \code{survreg.distributions} with names of "Extreme value", "Logistic" and "Gaussian" should not be modified. (The order of these in the list is not important, recognition is by name.) As an alternative to modifying \code{survreg.distributions} a new distribution can be specified as a separate list. This is the preferred method of addition and is illustrated below. } \seealso{\code{\link{survreg}}, \code{\link{pweibull}}, \code{\link{pnorm}},\code{\link{plogis}}, \code{\link{pt}}, \code{\link{survregDtest}} } \examples{ # time transformation survreg(Surv(time, status) ~ ph.ecog + sex, dist='weibull', data=lung) # change the transformation to work in years # intercept changes by log(365), everything else stays the same my.weibull <- survreg.distributions$weibull my.weibull$trans <- function(y) log(y/365) my.weibull$itrans <- function(y) 365*exp(y) survreg(Surv(time, status) ~ ph.ecog + sex, lung, dist=my.weibull) # Weibull parametrisation y<-rweibull(1000, shape=2, scale=5) survreg(Surv(y)~1, dist="weibull") # survreg scale parameter maps to 1/shape, linear predictor to log(scale) # Cauchy fit mycauchy <- list(name='Cauchy', init= function(x, weights, ...) c(median(x), mad(x)), density= function(x, parms) { temp <- 1/(1 + x^2) cbind(.5 + atan(x)/pi, .5+ atan(-x)/pi, temp/pi, -2 *x*temp, 2*temp*(4*x^2*temp -1)) }, quantile= function(p, parms) tan((p-.5)*pi), deviance= function(...) stop('deviance residuals not defined') ) survreg(Surv(log(time), status) ~ ph.ecog + sex, lung, dist=mycauchy) } \keyword{survival} survival/man/stanford2.Rd0000644000176200001440000000132013537676563015112 0ustar liggesusers\name{stanford2} \alias{stanford2} \docType{data} \title{More Stanford Heart Transplant data} \description{ This contains the Stanford Heart Transplant data in a different format. The main data set is in \code{\link{heart}}. } \usage{stanford2} \format{ \tabular{ll}{ id: \tab ID number\cr time:\tab survival or censoring time\cr status:\tab censoring status\cr age: \tab in years\cr t5: \tab T5 mismatch score\cr } } \seealso{ \code{\link{predict.survreg}}, \code{\link{heart}} } \source{ LA Escobar and WQ Meeker Jr (1992), Assessing influence in regression analysis with censored data. \emph{Biometrics} \bold{48}, 507--528. Page 519. } \keyword{datasets} \keyword{survival} survival/man/mgus2.Rd0000644000176200001440000000312013537676563014245 0ustar liggesusers\name{mgus2} \alias{mgus2} \docType{data} \title{Monoclonal gammopathy data} \description{Natural history of 1341 sequential patients with monoclonal gammopathy of undetermined significance (MGUS). This is a superset of the \code{mgus} data, at a later point in the accrual process } \usage{mgus2} \format{ A data frame with 1384 observations on the following 10 variables. \describe{ \item{\code{id}}{subject identifier} \item{\code{age}}{age at diagnosis, in years} \item{\code{sex}}{a factor with levels \code{F} \code{M}} \item{\code{dxyr}}{year of diagnosis} \item{\code{hgb}}{hemoglobin} \item{\code{creat}}{creatinine} \item{\code{mspike}}{size of the monoclonal serum splike} \item{\code{ptime}}{time until progression to a plasma cell malignancy (PCM) or last contact, in months} \item{\code{pstat}}{occurrence of PCM: 0=no, 1=yes } \item{\code{futime}}{time until death or last contact, in months} \item{\code{death}}{occurrence of death: 0=no, 1=yes} } } \details{ This is an extension of the study found in the \code{mgus} data set, containing enrollment through 1994 and follow-up through 1999. } \source{Mayo Clinic data courtesy of Dr. Robert Kyle. All patient identifiers have been removed, age rounded to the nearest year, and follow-up times rounded to the nearest month.} \references{ R. Kyle, T. Therneau, V. Rajkumar, J. Offord, D. Larson, M. Plevak, and L. J. Melton III, A long-terms study of prognosis in monoclonal gammopathy of undertermined significance. New Engl J Med, 346:564-569 (2002). } \keyword{datasets} survival/man/untangle.specials.Rd0000644000176200001440000000230413537676563016632 0ustar liggesusers\name{untangle.specials} \alias{untangle.specials} \title{ Help Process the `specials' Argument of the `terms' Function. } \description{ Given a \code{terms} structure and a desired special name, this returns an index appropriate for subscripting the \code{terms} structure and another appropriate for the data frame. } \usage{ untangle.specials(tt, special, order=1) } \arguments{ \item{tt}{ a \code{terms} object. } \item{special}{ the name of a special function, presumably used in the terms object. } \item{order}{ the order of the desired terms. If set to 2, interactions with the special function will be included. }} \value{ a list with two components: \item{vars}{ a vector of variable names, as would be found in the data frame, of the specials. } \item{terms}{ a numeric vector, suitable for subscripting the terms structure, that indexes the terms in the expanded model formula which involve the special. }} \examples{ formula<-Surv(tt,ss)~x+z*strata(id) tms<-terms(formula,specials="strata") ## the specials attribute attr(tms,"specials") ## main effects untangle.specials(tms,"strata") ## and interactions untangle.specials(tms,"strata",order=1:2) } \keyword{survival} % Converted by Sd2Rd version 0.3-2. survival/man/cgd.Rd0000644000176200001440000000306113537676563013751 0ustar liggesusers\name{cgd} \docType{data} \alias{cgd} \alias{cgd.raw} \title{Chronic Granulotamous Disease data} \description{Data are from a placebo controlled trial of gamma interferon in chronic granulotomous disease (CGD). Contains the data on time to serious infections observed through end of study for each patient. } \usage{cgd} \format{ \describe{ \item{id}{subject identification number} \item{center}{enrolling center } \item{random}{date of randomization } \item{treatment}{placebo or gamma interferon } \item{sex}{sex} \item{age}{age in years, at study entry } \item{height}{height in cm at study entry} \item{weight}{weight in kg at study entry} \item{inherit}{pattern of inheritance } \item{steroids}{use of steroids at study entry,1=yes} \item{propylac}{use of prophylactic antibiotics at study entry} \item{hos.cat}{a categorization of the centers into 4 groups} \item{tstart, tstop}{start and end of each time interval } \item{status}{1=the interval ends with an infection } \item{enum}{observation number within subject} } } \details{ The \code{cgd0} data set is in the form found in the references, with one line per patient and no recoding of the variables. The \code{cgd} data set (this one) has been cast into (start, stop] format with one line per event, and covariates such as center recoded as factors to include meaningful labels. } \source{ Fleming and Harrington, Counting Processes and Survival Analysis, appendix D.2. } \seealso{\code{link{cgd0}}} \keyword{datasets} \keyword{survival} survival/man/kidney.Rd0000644000176200001440000000263513537676563014505 0ustar liggesusers\name{kidney} \alias{kidney} \title{Kidney catheter data} \format{ \tabular{ll}{ patient:\tab id\cr time:\tab time\cr status:\tab event status\cr age:\tab in years\cr sex:\tab 1=male, 2=female\cr disease:\tab disease type (0=GN, 1=AN, 2=PKD, 3=Other)\cr frail:\tab frailty estimate from original paper\cr }} \description{ Data on the recurrence times to infection, at the point of insertion of the catheter, for kidney patients using portable dialysis equipment. Catheters may be removed for reasons other than infection, in which case the observation is censored. Each patient has exactly 2 observations. This data has often been used to illustrate the use of random effects (frailty) in a survival model. However, one of the males (id 21) is a large outlier, with much longer survival than his peers. If this observation is removed no evidence remains for a random subject effect. } \section{Note}{ The original paper ignored the issue of tied times and so is not exactly reproduced by the survival package. } \examples{ kfit <- coxph(Surv(time, status)~ age + sex + disease + frailty(id), kidney) kfit0 <- coxph(Surv(time, status)~ age + sex + disease, kidney) kfitm1 <- coxph(Surv(time,status) ~ age + sex + disease + frailty(id, dist='gauss'), kidney) } \source{ CA McGilchrist, CW Aisbett (1991), Regression with frailty in survival analysis. \emph{Biometrics} \bold{47}, 461--66. } \keyword{survival} survival/man/logan.Rd0000644000176200001440000000164613537676563014323 0ustar liggesusers\name{logan} \docType{data} \alias{logan} \title{Data from the 1972-78 GSS data used by Logan} \usage{data(logan)} \description{ Intergenerational occupational mobility data with covariates. } \format{ A data frame with 838 observations on the following 4 variables. \describe{ \item{occupation}{subject's occupation, a factor with levels \code{farm}, \code{operatives}, \code{craftsmen}, \code{sales}, and \code{professional}} \item{focc}{father's occupation} \item{education}{total years of schooling, 0 to 20} \item{race}{levels of \code{non-black} and \code{black}} } } \source{ General Social Survey data, see the web site for detailed information on the variables. \url{http://www3.norc.org/GSS+Website}. } \references{ Logan, John A. (1983). A Multivariate Model for Mobility Tables. \cite{American Journal of Sociology} 89: 324-349.} \keyword{datasets} survival/man/cluster.Rd0000644000176200001440000000222713537676563014700 0ustar liggesusers\name{cluster} \alias{cluster} \title{ Identify clusters. } \description{ This is a special function used in the context of survival models. It identifies correlated groups of observations, and is used on the right hand side of a formula. Using \code{cluster()} in a formula implies that robust sandwich variance estimators are desired.} \usage{ cluster(x) } \arguments{ \item{x}{ A character, factor, or numeric variable. } } \value{ \code{x} } \details{ The function's only action is semantic, to mark a variable as the cluster indicator. The resulting variance is what is known as the ``working independence'' variance in a GEE model. Note that one cannot use both a frailty term and a cluster term in the same model, the first is a mixed-effects approach to correlation and the second a GEE approach, and these don't mix. } \seealso{ \code{\link{coxph}}, \code{\link{survreg}} } \examples{ marginal.model <- coxph(Surv(time, status) ~ rx + cluster(litter), rats, subset=(sex=='f')) frailty.model <- coxph(Surv(time, status) ~ rx + frailty(litter), rats, subset=(sex=='f')) } \keyword{survival} survival/man/survexp.Rd0000644000176200001440000002030713537676563014732 0ustar liggesusers\name{survexp} \alias{survexp} \alias{print.survexp} \title{ Compute Expected Survival } \description{ Returns either the expected survival of a cohort of subjects, or the individual expected survival for each subject. } \usage{ survexp(formula, data, weights, subset, na.action, rmap, times, method=c("ederer", "hakulinen", "conditional", "individual.h", "individual.s"), cohort=TRUE, conditional=FALSE, ratetable=survival::survexp.us, scale=1, se.fit, model=FALSE, x=FALSE, y=FALSE) } \arguments{ \item{formula}{ formula object. The response variable is a vector of follow-up times and is optional. The predictors consist of optional grouping variables separated by the \code{+} operator (as in \code{survfit}), and is often \code{~1}, i.e., expected survival for the entire group. } \item{data}{ data frame in which to interpret the variables named in the \code{formula}, \code{subset} and \code{weights} arguments. } \item{weights}{ case weights. This is most useful when conditional survival for a known population is desired, e.g., the data set would contain all unique age/sex combinations and the weights would be the proportion of each. } \item{subset}{ expression indicating a subset of the rows of \code{data} to be used in the fit. } \item{na.action}{ function to filter missing data. This is applied to the model frame after \code{subset} has been applied. Default is \code{options()$na.action}. } \item{rmap}{ an optional list that maps data set names to the ratetable names. See the details section below. } \item{times}{ vector of follow-up times at which the resulting survival curve is evaluated. If absent, the result will be reported for each unique value of the vector of times supplied in the response value of the \code{formula}. } \item{method}{computational method for the creating the survival curves. The \code{individual} option does not create a curve, rather it retrieves the predicted survival \code{individual.s} or cumulative hazard \code{individual.h} for each subject. The default is to use \code{method='ederer'} if the formula has no response, and \code{method='hakulinen'} otherwise.} \item{cohort}{logical value. This argument has been superseded by the \code{method} argument. To maintain backwards compatability, if is present and FALSE, it implies \code{method='individual.s'}.} \item{conditional}{logical value. This argument has been superseded by the \code{method} argument. To maintain backwards compatability, if it is present and TRUE it implies \code{method='conditional'}.} \item{ratetable}{ a table of event rates, such as \code{survexp.mn}, or a fitted Cox model. Note the \code{survival::} prefix in the default argument is present to avoid the (rare) case of a user who expects the default table but just happens to have an object named "survexp.us" in their own directory.} \item{scale}{ numeric value to scale the results. If \code{ratetable} is in units/day, \code{scale = 365.25} causes the output to be reported in years. } \item{se.fit}{ compute the standard error of the predicted survival. This argument is currently ignored. Standard errors are not a defined concept for population rate tables (they are treated as coming from a complete census), and for Cox models the calculation is hard. Despite good intentions standard errors for this latter case have not been coded and validated. } \item{model,x,y}{ flags to control what is returned. If any of these is true, then the model frame, the model matrix, and/or the vector of response times will be returned as components of the final result, with the same names as the flag arguments. }} \value{ if \code{cohort=TRUE} an object of class \code{survexp}, otherwise a vector of per-subject expected survival values. The former contains the number of subjects at risk and the expected survival for the cohort at each requested time. The cohort survival is the hypothetical survival for a cohort of subjects enrolled from the population at large, but matching the data set on the factors found in the rate table. } \details{ Individual expected survival is usually used in models or testing, to `correct' for the age and sex composition of a group of subjects. For instance, assume that birth date, entry date into the study, sex and actual survival time are all known for a group of subjects. The \code{survexp.us} population tables contain expected death rates based on calendar year, sex and age. Then \preformatted{ haz <- survexp(fu.time ~ 1, data=mydata, rmap = list(year=entry.dt, age=(birth.dt-entry.dt)), method='individual.h')) } gives for each subject the total hazard experienced up to their observed death time or last follow-up time (variable fu.time) This probability can be used as a rescaled time value in models: \preformatted{ glm(status ~ 1 + offset(log(haz)), family=poisson) glm(status ~ x + offset(log(haz)), family=poisson) } In the first model, a test for intercept=0 is the one sample log-rank test of whether the observed group of subjects has equivalent survival to the baseline population. The second model tests for an effect of variable \code{x} after adjustment for age and sex. The ratetable being used may have different variable names than the user's data set, this is dealt with by the \code{rmap} argument. The rate table for the above calculation was \code{survexp.us}, a call to \code{summary{survexp.us}} reveals that it expects to have variables \code{age} = age in days, \code{sex}, and \code{year} = the date of study entry, we create them in the \code{rmap} line. The sex variable was not mapped, therefore the function assumes that it exists in \code{mydata} in the correct format. (Note: for factors such as sex, the program will match on any unique abbreviation, ignoring case.) Cohort survival is used to produce an overall survival curve. This is then added to the Kaplan-Meier plot of the study group for visual comparison between these subjects and the population at large. There are three common methods of computing cohort survival. In the "exact method" of Ederer the cohort is not censored, for this case no response variable is required in the formula. Hakulinen recommends censoring the cohort at the anticipated censoring time of each patient, and Verheul recommends censoring the cohort at the actual observation time of each patient. The last of these is the conditional method. These are obtained by using the respective time values as the follow-up time or response in the formula. } \references{ Berry, G. (1983). The analysis of mortality by the subject-years method. \emph{Biometrics}, 39:173-84. Ederer, F., Axtell, L. and Cutler, S. (1961). The relative survival rate: a statistical methodology. \emph{Natl Cancer Inst Monogr}, 6:101-21. Hakulinen, T. (1982). Cancer survival corrected for heterogeneity in patient withdrawal. \emph{Biometrics}, 38:933-942. Therneau, T. and Grambsch, P. (2000). Modeling survival data: Extending the Cox model. Springer. Chapter 10. Verheul, H., Dekker, E., Bossuyt, P., Moulijn, A. and Dunning, A. (1993). Background mortality in clinical survival studies. \emph{Lancet}, 341: 872-875. } \seealso{ \code{\link{survfit}}, \code{\link{pyears}}, \code{\link{survexp.us}}, \code{\link{ratetable}}, \code{\link{survexp.fit}}. } \examples{ # # Stanford heart transplant data # We don't have sex in the data set, but know it to be nearly all males. # Estimate of conditional survival fit1 <- survexp(futime ~ 1, rmap=list(sex="male", year=accept.dt, age=(accept.dt-birth.dt)), method='conditional', data=jasa) summary(fit1, times=1:10*182.5, scale=365) #expected survival by 1/2 years # Estimate of expected survival stratified by prior surgery survexp(~ surgery, rmap= list(sex="male", year=accept.dt, age=(accept.dt-birth.dt)), method='ederer', data=jasa, times=1:10 * 182.5) ## Compare the survival curves for the Mayo PBC data to Cox model fit ## pfit <-coxph(Surv(time,status>0) ~ trt + log(bili) + log(protime) + age + platelet, data=pbc) plot(survfit(Surv(time, status>0) ~ trt, data=pbc), mark.time=FALSE) lines(survexp( ~ trt, ratetable=pfit, data=pbc), col='purple') } \keyword{survival} survival/man/nwtco.Rd0000644000176200001440000000225313537676563014350 0ustar liggesusers\name{nwtco} \alias{nwtco} \docType{data} \title{Data from the National Wilm's Tumor Study} \description{ Measurement error example. Tumor histology predicts survival, but prediction is stronger with central lab histology than with the local institution determination. } \usage{nwtco} \format{ A data frame with 4028 observations on the following 9 variables. \describe{ \item{\code{seqno}}{id number} \item{\code{instit}}{Histology from local institution} \item{\code{histol}}{Histology from central lab} \item{\code{stage}}{Disease stage} \item{\code{study}}{study} \item{\code{rel}}{indicator for relapse} \item{\code{edrel}}{time to relapse} \item{\code{age}}{age in months} \item{\code{in.subcohort}}{Included in the subcohort for the example in the paper} } } \references{ NE Breslow and N Chatterjee (1999), Design and analysis of two-phase studies with binary outcome applied to Wilms tumour prognosis. \emph{Applied Statistics} \bold{48}, 457--68. } \examples{ with(nwtco, table(instit,histol)) anova(coxph(Surv(edrel,rel)~histol+instit,data=nwtco)) anova(coxph(Surv(edrel,rel)~instit+histol,data=nwtco)) } \keyword{datasets} survival/man/residuals.survreg.Rd0000644000176200001440000000651413537676563016711 0ustar liggesusers\name{residuals.survreg} \alias{residuals.survreg} \alias{residuals.survreg.penal} \title{Compute Residuals for `survreg' Objects} \description{ This is a method for the function \code{\link{residuals}} for objects inheriting from class \code{survreg}. } \usage{ \method{residuals}{survreg}(object, type=c("response", "deviance","dfbeta","dfbetas", "working","ldcase","ldresp","ldshape", "matrix"), rsigma=TRUE, collapse=FALSE, weighted=FALSE, ...) } \arguments{ \item{object}{ an object inheriting from class \code{survreg}. } \item{type}{ type of residuals, with choices of \code{"response"}, \code{"deviance"}, \code{"dfbeta"}, \code{"dfbetas"}, \code{"working"}, \code{"ldcase"}, \code{"lsresp"}, \code{"ldshape"}, and \code{"matrix"}. } \item{rsigma}{ include the scale parameters in the variance matrix, when doing computations. (I can think of no good reason not to). } \item{collapse}{ optional vector of subject groups. If given, this must be of the same length as the residuals, and causes the result to be per group residuals. } \item{weighted}{ give weighted residuals? Normally residuals are unweighted. }\item{...}{other unused arguments}} \value{ A vector or matrix of residuals is returned. Response residuals are on the scale of the original data, working residuals are on the scale of the linear predictor, and deviance residuals are on log-likelihood scale. The dfbeta residuals are a matrix, where the ith row gives the approximate change in the coefficients due to the addition of subject i. The dfbetas matrix contains the dfbeta residuals, with each column scaled by the standard deviation of that coefficient. The matrix type produces a matrix based on derivatives of the log-likelihood function. Let \eqn{L} be the log-likelihood, \eqn{p} be the linear predictor \eqn{X\beta}{X \%*\% coef}, and \eqn{s} be \eqn{\log(\sigma)}. Then the 6 columns of the matrix are \eqn{L}, \eqn{dL/dp},\eqn{\partial^2L/\partial p^2}{ddL/(dp dp)}, \eqn{dL/ds}, \eqn{\partial^2L/\partial s^2}{ddL/(ds ds)} and \eqn{\partial^2L/\partial p\partial s}{ddL/(dp ds)}. Diagnostics based on these quantities are discussed in the book and article by Escobar and Meeker. The main ones are the likelihood displacement residuals for perturbation of a case weight (\code{ldcase}), the response value (\code{ldresp}), and the \code{shape}. For a transformed distribution such as the log-normal or Weibull, matrix residuals are based on the log-likelihood of the transformed data log(y). For a monotone function f the density of f(X) is the density of X divided by the derivative of f (the Jacobian), so subtract log(derivative) from each uncensored observation's loglik value in order to match the \code{loglik} component of the result. The other colums of the matrix residual are unchanged by the transformation. } \references{ Escobar, L. A. and Meeker, W. Q. (1992). Assessing influence in regression analysis with censored data. \emph{Biometrics} \bold{48}, 507-528. Escobar, L. A. and Meeker, W. Q. (1998). Statistical Methods for Reliablilty Data. Wiley. } \seealso{\code{\link{predict.survreg}}} \examples{ fit <- survreg(Surv(futime, death) ~ age + sex, mgus2) summary(fit) # age and sex are both important rr <- residuals(fit, type='matrix') sum(rr[,1]) - with(mgus2, sum(log(futime[death==1]))) # loglik plot(mgus2$age, rr[,2], col= (1+mgus2$death)) # ldresp } \keyword{survival} survival/man/survreg.control.Rd0000644000176200001440000000161713537676563016375 0ustar liggesusers\name{survreg.control} \alias{survreg.control} %- Also NEED an `\alias' for EACH other topic documented here. \title{Package options for survreg and coxph} \description{ This functions checks and packages the fitting options for \code{\link{survreg}} } \usage{ survreg.control(maxiter=30, rel.tolerance=1e-09, toler.chol=1e-10, iter.max, debug=0, outer.max=10) } %- maybe also `usage' for other objects documented here. \arguments{ \item{maxiter}{maximum number of iterations } \item{rel.tolerance}{relative tolerance to declare convergence } \item{toler.chol}{Tolerance to declare Cholesky decomposition singular} \item{iter.max}{same as \code{maxiter}} \item{debug}{print debugging information} \item{outer.max}{maximum number of outer iterations for choosing penalty parameters} } \value{ A list with the same elements as the input } \seealso{ \code{\link{survreg}}} \keyword{survival} survival/man/survobrien.Rd0000644000176200001440000000567213537676563015424 0ustar liggesusers\name{survobrien} \alias{survobrien} \title{ O'Brien's Test for Association of a Single Variable with Survival } \description{ Peter O'Brien's test for association of a single variable with survival This test is proposed in Biometrics, June 1978. } \usage{ survobrien(formula, data, subset, na.action, transform) } \arguments{ \item{formula}{ a valid formula for a cox model. } \item{data}{ a data.frame in which to interpret the variables named in the \code{formula}, or in the \code{subset} and the \code{weights} argument. } \item{subset}{ expression indicating which subset of the rows of data should be used in the fit. All observations are included by default. } \item{na.action}{ a missing-data filter function. This is applied to the model.frame after any subset argument has been used. Default is \code{options()\$na.action}. } \item{transform}{the transformation function to be applied at each time point. The default is O'Brien's suggestion logit(tr) where tr = (rank(x)- 1/2)/ length(x) is the rank shifted to the range 0-1 and logit(x) = log(x/(1-x)) is the logit transform. }} \value{ a new data frame. The response variables will be column names returned by the \code{Surv} function, i.e., "time" and "status" for simple survival data, or "start", "stop", "status" for counting process data. Each individual event time is identified by the value of the variable \code{.strata.}. Other variables retain their original names. If a predictor variable is a factor or is protected with \code{I()}, it is retained as is. Other predictor variables have been replaced with time-dependent logit scores. The new data frame will have many more rows that the original data, approximately the original number of rows * number of deaths/2. } \section{Method}{ A time-dependent cox model can now be fit to the new data. The univariate statistic, as originally proposed, is equivalent to single variable score tests from the time-dependent model. This equivalence is the rationale for using the time dependent model as a multivariate extension of the original paper. In O'Brien's method, the x variables are re-ranked at each death time. A simpler method, proposed by Prentice, ranks the data only once at the start. The results are usually similar. } \references{ O'Brien, Peter, "A Nonparametric Test for Association with Censored Data", \emph{Biometrics} 34: 243-250, 1978. } \note{ A prior version of the routine returned new time variables rather than a strata. Unfortunately, that strategy does not work if the original formula has a strata statement. This new data set will be the same size, but the \code{coxph} routine will process it slightly faster. } \seealso{ \code{\link{survdiff}} } \keyword{survival} \examples{ xx <- survobrien(Surv(futime, fustat) ~ age + factor(rx) + I(ecog.ps), data=ovarian) coxph(Surv(time, status) ~ age + strata(.strata.), data=xx) } survival/man/anova.coxph.Rd0000644000176200001440000000411213537676563015436 0ustar liggesusers\name{anova.coxph} \alias{anova.coxph} \alias{anova.coxphlist} \title{Analysis of Deviance for a Cox model.} \usage{ \method{anova}{coxph}(object, \dots, test = 'Chisq') } \description{ Compute an analysis of deviance table for one or more Cox model fits. } \arguments{ \item{object}{An object of class \code{coxph}} \item{\dots}{Further \code{coxph} objects} \item{test}{a character string. The appropriate test is a chisquare, all other choices result in no test being done.} } \details{ Specifying a single object gives a sequential analysis of deviance table for that fit. That is, the reductions in the model log-likelihood as each term of the formula is added in turn are given in as the rows of a table, plus the log-likelihoods themselves. A robust variance estimate is normally used in situations where the model may be mis-specified, e.g., multiple events per subject. In this case a comparison of partial-likelihood values does not make sense, and \code{anova} will refuse to print results. If more than one object is specified, the table has a row for the degrees of freedom and loglikelihood for each model. For all but the first model, the change in degrees of freedom and loglik is also given. (This only make statistical sense if the models are nested.) It is conventional to list the models from smallest to largest, but this is up to the user. The table will optionally contain test statistics (and P values) comparing the reduction in loglik for each row. } \value{ An object of class \code{"anova"} inheriting from class \code{"data.frame"}. } \section{Warning}{ The comparison between two or more models by \code{anova} or will only be valid if they are fitted to the same dataset. This may be a problem if there are missing values.} \seealso{ \code{\link{coxph}}, \code{\link{anova}}. } \examples{ fit <- coxph(Surv(futime, fustat) ~ resid.ds *rx + ecog.ps, data = ovarian) anova(fit) fit2 <- coxph(Surv(futime, fustat) ~ resid.ds +rx + ecog.ps, data=ovarian) anova(fit2,fit) } \keyword{models} \keyword{regression} \keyword{survival} survival/man/survfit.Rd0000644000176200001440000000452413537676563014723 0ustar liggesusers\name{survfit} \alias{survfit} \title{Create survival curves} \description{ This function creates survival curves from either a formula (e.g. the Kaplan-Meier), a previously fitted Cox model, or a previously fitted accelerated failure time model. } \usage{ survfit(formula, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{formula}{either a formula or a previously fitted model} \item{\dots}{other arguments to the specific method} } \details{ A survival curve is based on a tabulation of the number at risk and number of events at each unique death time. When time is a floating point number the definition of "unique" is subject to interpretation. The code uses factor() to define the set. For further details see the documentation for the appropriate method, i.e., \code{?survfit.formula} or \code{?survfit.coxph}. A survfit object may contain a single curve, a set of curves, or a matrix curves. Predicted curves from a \code{coxph} model have one row for each stratum in the Cox model fit and one column for each specified covariate set. Curves from a multi-state model have one row for each stratum and a column for each state, the strata correspond to predictors on the right hand side of the equation. The default printing and plotting order for curves is by column, as with other matrices. Curves can be subscripted using either a single or double subscript. If the set of curves is a matrix, as in the above, and one of the dimensions is 1 then the code allows a single subscript to be used. (That is, it is not quite as general as using a single subscript for a numeric matrix.) } \value{ An object of class \code{survfit} containing one or more survival curves. } \author{Terry Therneau} \note{Older releases of the code also allowed the specification for a single curve to omit the right hand of the formula, i.e., \code{survfit(Surv(time, status))}, in which case the formula argument is not actually a formula. Handling this case required some non-standard and fairly fragile manipulations, and this case is no longer supported. } \seealso{\code{\link{survfit.formula}}, \code{\link{survfit.coxph}}, \code{\link{survfit.object}}, \code{\link{print.survfit}}, \code{\link{plot.survfit}}, \code{\link{quantile.survfit}}, \code{\link{summary.survfit}}} \keyword{ survival} survival/man/survival-internal.Rd0000644000176200001440000000502613570767322016673 0ustar liggesusers\name{survival-internal} \alias{survival-internal} \alias{agexact.fit} \alias{as.matrix.ratetable} \alias{coxpenal.df} \alias{coxpenal.fit} \alias{is.na.coxph.penalty} \alias{match.ratetable} \alias{survfitCI} \alias{survfitKM} \alias{survreg.fit} \alias{survpenal.fit} \alias{survdiff.fit} \alias{[.coxph.penalty} \title{Internal survival functions} \description{Internal survival functions} \usage{ survreg.fit(x, y, weights, offset, init, controlvals, dist, scale = 0, nstrat = 1, strata, parms = NULL,assign) survpenal.fit(x, y, weights, offset, init, controlvals, dist, scale = 0, nstrat = 1, strata, pcols, pattr, assign, parms = NULL) survdiff.fit(y, x, strat, rho = 0) match.ratetable(R, ratetable) \method{as.matrix}{ratetable}(x, ...) \method{is.na}{coxph.penalty}(x) coxpenal.df(hmat, hinv, fdiag, assign.list, ptype, nvar, pen1, pen2, sparse) coxpenal.fit(x, y, strata, offset, init, control, weights, method, rownames, pcols, pattr, assign) coxph.wtest(var, b, toler.chol = 1e-09) agexact.fit(x, y, strata, offset, init, control, weights, method, rownames, resid=TRUE) survfitCI(X, Y, weights, id, istate, cluster, stype=1, ctype=1, se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none', 'logit', 'arcsin'), conf.lower=c('usual', 'peto', 'modified'), influence=FALSE, start.time, p0, type) survfitKM(x, y, weights=rep(1,length(x)), stype=1, ctype=1, se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none', 'logit', 'arcsin'), conf.lower=c('usual', 'peto', 'modified'), start.time, id, cluster, influence=FALSE, type) survfitTurnbull(x, y, weights, type=c('kaplan-meier', 'fleming-harrington', 'fh2'), error=c('greenwood', "tsiatis"), se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none', 'logit', 'arcsin'), conf.lower=c('usual', 'peto', 'modified'), start.time) } \details{The arguments to these routines are not guaranteed to stay the same from release to release -- call them at your own risk!} \keyword{survival} \keyword{internal} survival/man/coxph.Rd0000644000176200001440000003036013537676563014337 0ustar liggesusers\name{coxph} \alias{coxph} \alias{print.coxph.null} \alias{print.coxph.penal} \alias{coxph.penalty} \alias{coxph.getdata} \alias{summary.coxph.penal} \title{ Fit Proportional Hazards Regression Model } \description{ Fits a Cox proportional hazards regression model. Time dependent variables, time dependent strata, multiple events per subject, and other extensions are incorporated using the counting process formulation of Andersen and Gill. } \usage{ coxph(formula, data=, weights, subset, na.action, init, control, ties=c("efron","breslow","exact"), singular.ok=TRUE, robust, model=FALSE, x=FALSE, y=TRUE, tt, method=ties, id, cluster, istate, statedata, ...) } \arguments{ \item{formula}{ a formula object, with the response on the left of a \code{~} operator, and the terms on the right. The response must be a survival object as returned by the \code{Surv} function. } \item{data}{ a data.frame in which to interpret the variables named in the \code{formula}, or in the \code{subset} and the \code{weights} argument. } \item{weights}{ vector of case weights, see the note below. For a thorough discussion of these see the book by Therneau and Grambsch. } \item{subset}{ expression indicating which subset of the rows of data should be used in the fit. All observations are included by default. } \item{na.action}{ a missing-data filter function. This is applied to the model.frame after any subset argument has been used. Default is \code{options()\$na.action}. } \item{init}{ vector of initial values of the iteration. Default initial value is zero for all variables. } \item{control}{ Object of class \code{\link{coxph.control}} specifying iteration limit and other control options. Default is \code{coxph.control(...)}. } \item{ties}{ a character string specifying the method for tie handling. If there are no tied death times all the methods are equivalent. Nearly all Cox regression programs use the Breslow method by default, but not this one. The Efron approximation is used as the default here, it is more accurate when dealing with tied death times, and is as efficient computationally. The ``exact partial likelihood'' is equivalent to a conditional logistic model, and is appropriate when the times are a small set of discrete values. See further below. } \item{singular.ok}{ logical value indicating how to handle collinearity in the model matrix. If \code{TRUE}, the program will automatically skip over columns of the X matrix that are linear combinations of earlier columns. In this case the coefficients for such columns will be NA, and the variance matrix will contain zeros. For ancillary calculations, such as the linear predictor, the missing coefficients are treated as zeros. } \item{robust}{ this argument has been deprecated, use a cluster term in the model instead. (The two options accomplish the same goal -- creation of a robust variance -- but the second is more flexible). } \item{id}{optional variable name that identifies subjects. Only necessary when a subject can have multiple rows in the data, and there is more than one event type. This variable will normally be found in \code{data}.} \item{cluster}{optional variable which clusters the observations, for the purposes of a robust variance. If present, it implies \code{robust}. This variable will normally be found in \code{data}.} \item{istate}{optional variable giving the intial state for each subject. This variable will normally be found in \code{data}.} \item{statedata}{optional data set used to describe multistate models.} \item{model}{ logical value: if \code{TRUE}, the model frame is returned in component \code{model}. } \item{x}{ logical value: if \code{TRUE}, the x matrix is returned in component \code{x}. } \item{y}{ logical value: if \code{TRUE}, the response vector is returned in component \code{y}. } \item{tt}{optional list of time-transform functions.} \item{method}{alternate name for the \code{ties} argument.} \item{...}{Other arguments will be passed to \code{\link{coxph.control}} } } \value{ an object of class \code{coxph} representing the fit. See \code{coxph.object} for details. } \section{Side Effects}{ Depending on the call, the \code{predict}, \code{residuals}, and \code{survfit} routines may need to reconstruct the x matrix created by \code{coxph}. It is possible for this to fail, as in the example below in which the predict function is unable to find \code{tform}. \preformatted{ tfun <- function(tform) coxph(tform, data=lung) fit <- tfun(Surv(time, status) ~ age) predict(fit)} In such a case add the \code{model=TRUE} option to the \code{coxph} call to obviate the need for reconstruction, at the expense of a larger \code{fit} object. } \details{ The proportional hazards model is usually expressed in terms of a single survival time value for each person, with possible censoring. Andersen and Gill reformulated the same problem as a counting process; as time marches onward we observe the events for a subject, rather like watching a Geiger counter. The data for a subject is presented as multiple rows or "observations", each of which applies to an interval of observation (start, stop]. The routine internally scales and centers data to avoid overflow in the argument to the exponential function. These actions do not change the result, but lead to more numerical stability. However, arguments to offset are not scaled since there are situations where a large offset value is a purposefully used. In general, however, users should not avoid very large numeric values for an offset due to possible loss of precision in the estimates. } \section{Case weights}{ Case weights are treated as replication weights, i.e., a case weight of 2 is equivalent to having 2 copies of that subject's observation. When computers were much smaller grouping like subjects together was a common trick to used to conserve memory. Setting all weights to 2 for instance will give the same coefficient estimate but halve the variance. When the Efron approximation for ties (default) is employed replication of the data will not give exactly the same coefficients as the weights option, and in this case the weighted fit is arguably the correct one. When the model includes a \code{cluster} term or the \code{robust=TRUE} option the computed variance treats any weights as sampling weights; setting all weights to 2 will in this case give the same variance as weights of 1. } \section{Special terms}{ There are three special terms that may be used in the model equation. A \code{strata} term identifies a stratified Cox model; separate baseline hazard functions are fit for each strata. The \code{cluster} term is used to compute a robust variance for the model. The term \code{+ cluster(id)} where each value of \code{id} is unique is equivalent to specifying the \code{robust=TRUE} argument. If the \code{id} variable is not unique, it is assumed that it identifies clusters of correlated observations. The robust estimate arises from many different arguments and thus has had many labels. It is variously known as the Huber sandwich estimator, White's estimate (linear models/econometrics), the Horvitz-Thompson estimate (survey sampling), the working independence variance (generalized estimating equations), the infinitesimal jackknife, and the Wei, Lin, Weissfeld (WLW) estimate. A time-transform term allows variables to vary dynamically in time. In this case the \code{tt} argument will be a function or a list of functions (if there are more than one tt() term in the model) giving the appropriate transform. See the examples below. } \section{Convergence}{ In certain data cases the actual MLE estimate of a coefficient is infinity, e.g., a dichotomous variable where one of the groups has no events. When this happens the associated coefficient grows at a steady pace and a race condition will exist in the fitting routine: either the log likelihood converges, the information matrix becomes effectively singular, an argument to exp becomes too large for the computer hardware, or the maximum number of interactions is exceeded. (Nearly always the first occurs.) The routine attempts to detect when this has happened, not always successfully. The primary consequence for he user is that the Wald statistic = coefficient/se(coefficient) is not valid in this case and should be ignored; the likelihood ratio and score tests remain valid however. } \section{Ties}{ There are three possible choices for handling tied event times. The Breslow approximation is the easiest to program and hence became the first option coded for almost all computer routines. It then ended up as the default option when other options were added in order to "maintain backwards compatability". The Efron option is more accurate if there are a large number of ties, and it is the default option here. In practice the number of ties is usually small, in which case all the methods are statistically indistinguishable. Using the "exact partial likelihood" approach the Cox partial likelihood is equivalent to that for matched logistic regression. (The \code{clogit} function uses the \code{coxph} code to do the fit.) It is technically appropriate when the time scale is discrete and has only a few unique values, and some packages refer to this as the "discrete" option. There is also an "exact marginal likelihood" due to Prentice which is not implemented here. The calculation of the exact partial likelihood is numerically intense. Say for instance 180 subjects are at risk on day 7 of which 15 had an event; then the code needs to compute sums over all 180-choose-15 > 10^43 different possible subsets of size 15. There is an efficient recursive algorithm for this task, but even with this the computation can be insufferably long. With (start, stop) data it is much worse since the recursion needs to start anew for each unique start time. A second issue is that of artificial ties due to floating-point imprecision. See the vignette on this topic for a full explanation or the \code{timefix} option in \code{coxph.control}. Users may need to add \code{timefix=FALSE} for simulated data sets. } \section{Penalized regression}{ \code{coxph} can maximise a penalised partial likelihood with arbitrary user-defined penalty. Supplied penalty functions include ridge regression (\link{ridge}), smoothing splines (\link{pspline}), and frailty models (\link{frailty}). } \references{ Andersen, P. and Gill, R. (1982). Cox's regression model for counting processes, a large sample study. \emph{Annals of Statistics} \bold{10}, 1100-1120. Therneau, T., Grambsch, P., Modeling Survival Data: Extending the Cox Model. Springer-Verlag, 2000. } \seealso{ \code{\link{coxph.object}}, \code{\link{coxph.control}}, \code{\link{cluster}}, \code{\link{strata}}, \code{\link{Surv}}, \code{\link{survfit}}, \code{\link{pspline}}, \code{\link{ridge}}. } \examples{ # Create the simplest test data set test1 <- list(time=c(4,3,1,1,2,2,3), status=c(1,1,1,0,1,1,0), x=c(0,2,1,1,1,0,0), sex=c(0,0,0,0,1,1,1)) # Fit a stratified model coxph(Surv(time, status) ~ x + strata(sex), test1) # Create a simple data set for a time-dependent model test2 <- list(start=c(1,2,5,2,1,7,3,4,8,8), stop=c(2,3,6,7,8,9,9,9,14,17), event=c(1,1,1,1,1,1,1,0,0,0), x=c(1,0,0,1,0,1,1,1,0,0)) summary(coxph(Surv(start, stop, event) ~ x, test2)) # # Create a simple data set for a time-dependent model # test2 <- list(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) summary( coxph( Surv(start, stop, event) ~ x, test2)) # Fit a stratified model, clustered on patients bladder1 <- bladder[bladder$enum < 5, ] coxph(Surv(stop, event) ~ (rx + size + number) * strata(enum) + cluster(id), bladder1) # Fit a time transform model using current age coxph(Surv(time, status) ~ ph.ecog + tt(age), data=lung, tt=function(x,t,...) pspline(x + t/365.25)) } \keyword{survival} survival/man/summary.pyears.Rd0000644000176200001440000000664213537676563016223 0ustar liggesusers\name{summary.pyears} \alias{summary.pyears} \title{Summary function for pyears objecs} \description{Create a printable table of a person-years result.} \usage{ \method{summary}{pyears}(object, header = TRUE, call = header, n = TRUE, event = TRUE, pyears = TRUE, expected = TRUE, rate = FALSE, rr =expected, ci.r = FALSE, ci.rr = FALSE, totals=FALSE, legend = TRUE, vline = FALSE, vertical= TRUE, nastring=".", conf.level = 0.95, scale = 1, ...) } \arguments{ \item{object}{a pyears object} \item{header}{print out a header giving the total number of observations, events, person-years, and total time (if any) omitted from the table} \item{call}{print out a copy of the call} \item{n, event, pyears, expected}{logical arguments: should these elements be printed in the table?} \item{rate, ci.r}{logical arguments: should the incidence rate and/or its confidence interval be given in the table?} \item{rr, ci.rr}{logical arguments: should the hazard ratio and/or its confidence interval be given in the table?} \item{totals}{should row and column totals be added?} \item{legend}{should a legend be included in the printout?} \item{vline}{should vertical lines be included in the printed tables?} \item{vertical}{when there is only a single predictor, should the table be printed with the predictor on the left (vertical=TRUE) or across the top (vertical=FALSE)?} \item{nastring}{what to use for missing values in the table. Some of these are structural, e.g., risk ratios for a cell with no follow-up time.} \item{conf.level}{confidence level for any confidence intervals} \item{scale}{a scaling factor for printed rates} \item{\dots}{optional arguments which will be passed to the \code{format} function; common choices would be digits=2 or nsmall=1.} } \details{ The \code{pyears} function is often used to create initial descriptions of a survival or time-to-event variable; the type of material that is often found in ``table 1'' of a paper. The summary routine prints this information out using one of pandoc table styles. A primary reason for choosing this style is that Rstudio is then able to automatically render the results in multiple formats: html, rtf, latex, etc. If the \code{pyears} call has only a single covariate then the table will have that covariate as one margin and the statistics of interest as the other. If the \code{pyears} call has two predictors then those two predictors are used as margins of the table, while each cell of the table contains the statistics of interest as multiple rows within the cell. If there are more than two predictors then multiple tables are produced, in the same order as the standard R printout for an array. The "N" entry of a pyears object is the number of observations which contributed to a particular cell. When the original call includes \code{tcut} objects then a single observation may contribute to multiple cells. } \section{Notes}{ The pandoc system has four table types: with or without vertical bars, and with single or multiple rows of data in each cell. This routine produces all 4 styles depending on options, but currently not all of them are recognized by the Rstudio-pandoc pipeline. (And we don't yet see why.) } \value{a copy of the object} \author{Terry Therneau and Elizabeth Atkinson} \seealso{\code{\link{cipoisson}}, \code{\link{pyears}}, \code{\link{format}}} \keyword{ survival } survival/man/survreg.object.Rd0000644000176200001440000000445413537676563016165 0ustar liggesusers\name{survreg.object} \alias{survreg.object} \alias{print.survreg} \alias{summary.survreg} \title{ Parametric Survival Model Object } \description{ This class of objects is returned by the \code{survreg} function to represent a fitted parametric survival model. Objects of this class have methods for the functions \code{print}, \code{summary}, \code{predict}, and \code{residuals}. } \section{COMPONENTS}{ The following components must be included in a legitimate \code{survreg} object. \describe{ \item{coefficients}{ the coefficients of the \code{linear.predictors}, which multiply the columns of the model matrix. It does not include the estimate of error (sigma). The names of the coefficients are the names of the single-degree-of-freedom effects (the columns of the model matrix). If the model is over-determined there will be missing values in the coefficients corresponding to non-estimable coefficients. } \item{icoef}{ coefficients of the baseline model, which will contain the intercept and log(scale), or multiple scale factors for a stratified model. } \item{var}{ the variance-covariance matrix for the parameters, including the log(scale) parameter(s). } \item{loglik}{ a vector of length 2, containing the log-likelihood for the baseline and full models. } \item{iter}{ the number of iterations required } \item{linear.predictors}{ the linear predictor for each subject. } \item{df}{ the degrees of freedom for the final model. For a penalized model this will be a vector with one element per term. } \item{scale}{ the scale factor(s), with length equal to the number of strata. } \item{idf}{ degrees of freedom for the initial model. } \item{means}{ a vector of the column means of the coefficient matrix. } \item{dist}{ the distribution used in the fit.} \item{weights}{included for a weighted fit.} } The object will also have the following components found in other model results (some are optional): \code{linear predictors}, \code{weights}, \code{x}, \code{y}, \code{model}, \code{call}, \code{terms} and \code{formula}. See \code{lm}. } \seealso{ \code{\link{survreg}}, \code{\link{lm}} } \keyword{regression} \keyword{survival} % Converted by Sd2Rd version 0.3-2. survival/man/bladder.Rd0000644000176200001440000000646613537676563014625 0ustar liggesusers\name{bladder} \docType{data} \alias{bladder} \alias{bladder1} \alias{bladder2} \title{Bladder Cancer Recurrences} \usage{ bladder1 bladder bladder2 } \description{Data on recurrences of bladder cancer, used by many people to demonstrate methodology for recurrent event modelling. Bladder1 is the full data set from the study. It contains all three treatment arms and all recurrences for 118 subjects; the maximum observed number of recurrences is 9. Bladder is the data set that appears most commonly in the literature. It uses only the 85 subjects with nonzero follow-up who were assigned to either thiotepa or placebo, and only the first four recurrences for any patient. The status variable is 1 for recurrence and 0 for everything else (including death for any reason). The data set is laid out in the competing risks format of the paper by Wei, Lin, and Weissfeld. Bladder2 uses the same subset of subjects as bladder, but formatted in the (start, stop] or Anderson-Gill style. Note that in transforming from the WLW to the AG style data set there is a quite common programming mistake that leads to extra follow-up time for 12 subjects: all those with follow-up beyond their 4th recurrence. This "follow-up" is a side effect of throwing away all events after the fourth while retaining the last follow-up time variable from the original data. The bladder2 data set found here does not make this mistake, but some analyses in the literature have done so; it results in the addition of a small amount of immortal time bias and shrinks the fitted coefficients towards zero. } \format{ bladder1 \tabular{ll}{ id:\tab Patient id\cr treatment:\tab Placebo, pyridoxine (vitamin B6), or thiotepa\cr number:\tab Initial number of tumours (8=8 or more)\cr size:\tab Size (cm) of largest initial tumour\cr recur:\tab Number of recurrences \cr start,stop:\tab The start and end time of each time interval\cr status:\tab End of interval code, 0=censored, 1=recurrence, \cr \tab 2=death from bladder disease, 3=death other/unknown cause\cr rtumor:\tab Number of tumors found at the time of a recurrence\cr rsize:\tab Size of largest tumor at a recurrence\cr enum:\tab Event number (observation number within patient)\cr } bladder \tabular{ll}{ id:\tab Patient id\cr rx:\tab Treatment 1=placebo 2=thiotepa\cr number:\tab Initial number of tumours (8=8 or more)\cr size:\tab size (cm) of largest initial tumour\cr stop:\tab recurrence or censoring time\cr enum:\tab which recurrence (up to 4)\cr } bladder2 \tabular{ll}{ id:\tab Patient id\cr rx:\tab Treatment 1=placebo 2=thiotepa\cr number:\tab Initial number of tumours (8=8 or more)\cr size:\tab size (cm) of largest initial tumour\cr start:\tab start of interval (0 or previous recurrence time)\cr stop:\tab recurrence or censoring time\cr enum:\tab which recurrence (up to 4)\cr } } \source{ Andrews DF, Hertzberg AM (1985), DATA: A Collection of Problems from Many Fields for the Student and Research Worker, New York: Springer-Verlag. LJ Wei, DY Lin, L Weissfeld (1989), Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. \emph{Journal of the American Statistical Association}, \bold{84}. } \keyword{datasets} \keyword{survival} survival/man/pbc.Rd0000644000176200001440000000440513537676563013763 0ustar liggesusers\name{pbc} \alias{pbc} \docType{data} \title{Mayo Clinic Primary Biliary Cirrhosis Data} \description{D This data is from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between 1974 and 1984. A total of 424 PBC patients, referred to Mayo Clinic during that ten-year interval, met eligibility criteria for the randomized placebo controlled trial of the drug D-penicillamine. The first 312 cases in the data set participated in the randomized trial and contain largely complete data. The additional 112 cases did not participate in the clinical trial, but consented to have basic measurements recorded and to be followed for survival. Six of those cases were lost to follow-up shortly after diagnosis, so the data here are on an additional 106 cases as well as the 312 randomized participants. A nearly identical data set found in appendix D of Fleming and Harrington; this version has fewer missing values. } \usage{pbc} \format{ \tabular{ll}{ age:\tab in years\cr albumin:\tab serum albumin (g/dl)\cr alk.phos:\tab alkaline phosphotase (U/liter)\cr ascites:\tab presence of ascites \cr ast:\tab aspartate aminotransferase, once called SGOT (U/ml)\cr bili:\tab serum bilirunbin (mg/dl)\cr chol:\tab serum cholesterol (mg/dl)\cr copper:\tab urine copper (ug/day)\cr edema:\tab 0 no edema, 0.5 untreated or successfully treated\cr \tab 1 edema despite diuretic therapy\cr hepato:\tab presence of hepatomegaly or enlarged liver\cr id:\tab case number\cr platelet:\tab platelet count\cr protime:\tab standardised blood clotting time\cr sex:\tab m/f\cr spiders:\tab blood vessel malformations in the skin\cr stage:\tab histologic stage of disease (needs biopsy)\cr status:\tab status at endpoint, 0/1/2 for censored, transplant, dead\cr time: \tab number of days between registration and the earlier of death,\cr \tab transplantion, or study analysis in July, 1986\cr trt:\tab 1/2/NA for D-penicillmain, placebo, not randomised\cr trig:\tab triglycerides (mg/dl)\cr } } \source{ T Therneau and P Grambsch (2000), \emph{Modeling Survival Data: Extending the Cox Model}, Springer-Verlag, New York. ISBN: 0-387-98784-3. } \seealso{\code{\link{pbcseq}}} \keyword{datasets} survival/man/Survmethods.Rd0000644000176200001440000000767513537676563015556 0ustar liggesusers\name{Surv-methods} \alias{Math.Surv} \alias{Ops.Surv} \alias{Summary.Surv} \alias{anyDuplicated.Surv} \alias{as.character.Surv} \alias{as.data.frame.Surv} \alias{as.integer.Surv} \alias{as.matrix.Surv} \alias{as.numeric.Surv} \alias{c.Surv} \alias{duplicated.Surv} \alias{format.Surv} \alias{head.Surv} \alias{is.na.Surv} \alias{length.Surv} \alias{mean.Surv} \alias{median.Surv} \alias{names.Surv} \alias{names<-.Surv} \alias{quantile.Surv} \alias{plot.Surv} \alias{rep.Surv} \alias{rep.int.Surv} \alias{rep_len.Surv} \alias{rev.Surv} \alias{t.Surv} \alias{tail.Surv} \alias{unique.Surv} \title{Methods for Surv objects} \description{The list of methods that apply to \code{Surv} objects} \usage{ \method{anyDuplicated}{Surv}(x, ...) \method{as.character}{Surv}(x, ...) \method{as.data.frame}{Surv}(x, ...) \method{as.integer}{Surv}(x, ...) \method{as.matrix}{Surv}(x, ...) \method{as.numeric}{Surv}(x, ...) \method{c}{Surv}(...) \method{duplicated}{Surv}(x, ...) \method{format}{Surv}(x, ...) \method{head}{Surv}(x, ...) \method{is.na}{Surv}(x) \method{length}{Surv}(x) \method{mean}{Surv}(x, ...) \method{median}{Surv}(x, ...) \method{names}{Surv}(x) \method{names}{Surv}(x) <- value \method{quantile}{Surv}(x, probs, na.rm=FALSE, ...) \method{plot}{Surv}(x, ...) \method{rep}{Surv}(x, ...) \method{rep.int}{Surv}(x, ...) \method{rep_len}{Surv}(x, ...) \method{rev}{Surv}(x) \method{t}{Surv}(x) \method{tail}{Surv}(x, ...) \method{unique}{Surv}(x, ...) } \arguments{ \item{x}{a \code{Surv} object} \item{probs}{a vector of probabilities} \item{na.rm}{remove missing values from the calculation} \item{value}{a character vector of up to the same length as \code{x}, or \code{NULL}} \item{\ldots}{other arguments to the method} } \details{ These functions extend the standard methods to \code{Surv} objects. The arguments and results from these are mostly as expected, with the following further details: \itemize{ \item The \code{as.character} function uses "5+" for right censored at time 5, "5-" for left censored at time 5, "[2,7]" for an observation that was interval censored between 2 and 7, "(1,6]" for a counting process data denoting an observation which was at risk from time 1 to 6, with an event at time 6, and "(1,6+]" for an observation over the same interval but not ending with and event. For a multi-state survival object the type of event is appended to the event time using ":type". \item The \code{print} and \code{format} methods make use of \code{as.character}. \item The \code{as.numeric} and \code{as.integer} methods perform these actions on the survival times, but do not affect the censoring indicator. \item The \code{as.matrix} and \code{t} methods return a matrix \item The \code{length} of a \code{Surv} object is the number of survival times it contains, not the number of items required to encode it, e.g., \code{x <- Surv(1:4, 5:9, c(1,0,1,0)); length(x)} has a value of 4. Likewise \code{names(x)} will be NULL or a vector of length 4. (For technical reasons, any names are actually stored in the \code{rownames} attribute of the object.) \item For a multi-state survival object \code{levels} returns the names of the endpoints, otherwise it is NULL. \item The \code{median}, \code{quantile} and \code{plot} methods first construct a survival curve using \code{survfit}, then apply the appropriate method to that curve. \item The concatonation method \code{c()} is asymmetric, its first argument determines the exection path. For instance \code{c(Surv(1:4), Surv(5:6))} will concatonate the two objects, \code{c(Surv(1:4), 5:6)} will give an error, and \code{c(5:6, Surv(1:4))} is equivalent to \code{c(5:6, as.vector(Surv(1:4)))}. } } \seealso{ \code{\link{Surv}}} \keyword{survival} survival/man/is.ratetable.Rd0000644000176200001440000000210313537676563015565 0ustar liggesusers\name{is.ratetable} \alias{is.ratetable} \alias{Math.ratetable} \alias{Ops.ratetable} \title{ Verify that an object is of class ratetable. } \description{ The function verifies not only the \code{class} attribute, but the structure of the object. } \usage{ is.ratetable(x, verbose=FALSE) } \arguments{ \item{x}{ the object to be verified. } \item{verbose}{ if \code{TRUE} and the object is not a ratetable, then return a character string describing the way(s) in which \code{x} fails to be a proper ratetable object. } } \value{ returns \code{TRUE} if \code{x} is a ratetable, and \code{FALSE} or a description if it is not. } \details{ Rate tables are used by the \code{pyears} and \code{survexp} functions, and normally contain death rates for some population, categorized by age, sex, or other variables. They have a fairly rigid structure, and the \code{verbose} option can help in creating a new rate table. } \seealso{ \code{\link{pyears}}, \code{\link{survexp}}. } \examples{ is.ratetable(survexp.us) # True is.ratetable(cancer) # False } \keyword{survival} survival/man/colon.Rd0000644000176200001440000000510713537676563014331 0ustar liggesusers\name{colon} \alias{colon} \title{Chemotherapy for Stage B/C colon cancer} \usage{colon} \description{These are data from one of the first successful trials of adjuvant chemotherapy for colon cancer. Levamisole is a low-toxicity compound previously used to treat worm infestations in animals; 5-FU is a moderately toxic (as these things go) chemotherapy agent. There are two records per person, one for recurrence and one for death} \format{ \tabular{ll}{ id:\tab id\cr study:\tab 1 for all patients\cr rx:\tab Treatment - Obs(ervation), Lev(amisole), Lev(amisole)+5-FU\cr sex:\tab 1=male\cr age:\tab in years\cr obstruct:\tab obstruction of colon by tumour\cr perfor:\tab perforation of colon\cr adhere:\tab adherence to nearby organs\cr nodes:\tab number of lymph nodes with detectable cancer\cr time:\tab days until event or censoring\cr status:\tab censoring status\cr differ:\tab differentiation of tumour (1=well, 2=moderate, 3=poor)\cr extent:\tab Extent of local spread (1=submucosa, 2=muscle, 3=serosa, 4=contiguous structures)\cr surg:\tab time from surgery to registration (0=short, 1=long)\cr node4:\tab more than 4 positive lymph nodes\cr etype:\tab event type: 1=recurrence,2=death\cr }} \note{The study is originally described in Laurie (1989). The main report is found in Moertel (1990). This data set is closest to that of the final report in Moertel (1991). A version of the data with less follow-up time was used in the paper by Lin (1994). } \references{ JA Laurie, CG Moertel, TR Fleming, HS Wieand, JE Leigh, J Rubin, GW McCormack, JB Gerstner, JE Krook and J Malliard. Surgical adjuvant therapy of large-bowel carcinoma: An evaluation of levamisole and the combination of levamisole and fluorouracil: The North Central Cancer Treatment Group and the Mayo Clinic. J Clinical Oncology, 7:1447-1456, 1989. DY Lin. Cox regression analysis of multivariate failure time data: the marginal approach. Statistics in Medicine, 13:2233-2247, 1994. CG Moertel, TR Fleming, JS MacDonald, DG Haller, JA Laurie, PJ Goodman, JS Ungerleider, WA Emerson, DC Tormey, JH Glick, MH Veeder and JA Maillard. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. New England J of Medicine, 332:352-358, 1990. CG Moertel, TR Fleming, JS MacDonald, DG Haller, JA Laurie, CM Tangen, JS Ungerleider, WA Emerson, DC Tormey, JH Glick, MH Veeder and JA Maillard, Fluorouracil plus Levamisole as an effective adjuvant therapy after resection of stage II colon carcinoma: a final report. Annals of Internal Med, 122:321-326, 1991. } \keyword{survival} survival/man/survexp.fit.Rd0000644000176200001440000000420613537676563015513 0ustar liggesusers\name{survexp.fit} \alias{survexp.fit} \title{ Compute Expected Survival } \description{ Compute expected survival times. } \usage{ survexp.fit(group, x, y, times, death, ratetable) } \arguments{ \item{group}{if there are multiple survival curves this identifies the group, otherwise it is a constant. Must be an integer.} \item{x}{A matrix whose columns match the dimensions of the \code{ratetable}, in the correct order. } \item{y}{ the follow up time for each subject. } \item{times}{ the vector of times at which a result will be computed. } \item{death}{ a logical value, if \code{TRUE} the conditional survival is computed, if \code{FALSE} the cohort survival is computed. See \code{\link{survexp}} for more details. } \item{ratetable}{ a rate table, such as \code{survexp.uswhite}. } } \value{ A list containing the number of subjects and the expected survival(s) at each time point. If there are multiple groups, these will be matrices with one column per group. } \details{ For conditional survival \code{y} must be the time of last follow-up or death for each subject. For cohort survival it must be the potential censoring time for each subject, ignoring death. For an exact estimate \code{times} should be a superset of \code{y}, so that each subject at risk is at risk for the entire sub-interval of time. For a large data set, however, this can use an inordinate amount of storage and/or compute time. If the \code{times} spacing is more coarse than this, an actuarial approximation is used which should, however, be extremely accurate as long as all of the returned values are > .99. For a subgroup of size 1 and \code{times} > \code{y}, the conditional method reduces to exp(-h) where h is the expected cumulative hazard for the subject over his/her observation time. This is used to compute individual expected survival. } \section{Warning}{ Most users will call the higher level routine \code{survexp}. Consequently, this function has very few error checks on its input arguments. } \seealso{ \code{\link{survexp}}, \code{\link{survexp.us}}. } \keyword{survival } % docclass is function % Converted by Sd2Rd version 37351. survival/man/survfitcoxph.fit.Rd0000644000176200001440000000567313537676563016554 0ustar liggesusers\name{survfitcoxph.fit} \alias{survfitcoxph.fit} \title{ A direct interface to the `computational engine' of survfit.coxph } \description{ This program is mainly supplied to allow other packages to invoke the survfit.coxph function at a `data' level rather than a `user' level. It does no checks on the input data that is provided, which can lead to unexpected errors if that data is wrong. } \usage{ survfitcoxph.fit(y, x, wt, x2, risk, newrisk, strata, se.fit, survtype, vartype, varmat, id, y2, strata2, unlist=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{y}{the response variable used in the Cox model. (Missing values removed of course.) } \item{x}{covariate matrix used in the Cox model } \item{wt}{weight vector for the Cox model. If the model was unweighted use a vector of 1s. } \item{x2}{matrix describing the hypothetical subjects for which a curve is desired. Must have the same number of columns as \code{x}. } \item{risk}{the risk score exp(X beta) from the fitted Cox model. If the model had an offset, include it in the argument to exp. } \item{newrisk}{risk scores for the hypothetical subjects } \item{strata}{strata variable used in the Cox model. This will be a factor. } \item{se.fit}{if \code{TRUE} the standard errors of the curve(s) are returned } \item{survtype}{1=Kalbfleisch-Prentice, 2=Nelson-Aalen, 3=Efron. It is usual to match this to the approximation for ties used in the \code{coxph} model: KP for `exact', N-A for `breslow' and Efron for `efron'. } \item{vartype}{1=Greenwood, 2=Aalen, 3=Efron } \item{varmat}{the variance matrix of the coefficients } \item{id}{optional; if present and not NULL this should be a vector of identifiers of length \code{nrow(x2)}. A mon-null value signifies that \code{x2} contains time dependent covariates, in which case this identifies which rows of \code{x2} go with each subject. } \item{y2}{survival times, for time dependent prediction. It gives the time range (time1,time2] for each row of \code{x2}. Note: this must be a Surv object and thus contains a status indicator, which is never used in the routine, however. } \item{strata2}{vector of strata indicators for \code{x2}. This must be a factor. } \item{unlist}{if \code{FALSE} the result will be a list with one element for each strata. Otherwise the strata are ``unpacked'' into the form found in a \code{survfit} object.} } \value{a list containing nearly all the components of a \code{survfit} object. All that is missing is to add the confidence intervals, the type of the original model's response (as in a coxph object), and the class. } \note{The source code for for both this function and \code{survfit.coxph} is written using noweb. For complete documentation see the \code{inst/sourcecode.pdf} file. } \author{Terry Therneau} \seealso{\code{\link{survfit.coxph}} } \keyword{survival} survival/man/figures/0000755000176200001440000000000013537676563014371 5ustar liggesuserssurvival/man/figures/logo.png0000644000176200001440000012611613537676563016046 0ustar liggesusers‰PNG  IHDR%¡èµ Q pHYs.#.#x¥?v IDATxìÝ[l]Y~ç÷Uº«T’¨r]º«Ë}$WgÚ.;Õž»ã`JrÆ`d\Ôà fœPòC=d€HzLŠ@y!dŒ’ )cüB€)Ö@OÙHzÚ,ªaË.ÇmQÝíª®›t$•$êZÁ뿨ÍÃsÙ{Ÿ}Ykíï (QžCž³~{ýÿÿõœ £ÆÔÒ)cÌIcÌÙkïá~dA(¤Ö˜Z:lŒ™5ÆìýÛc̉kïmrÒ ”kL-I™6ÆŒôø7M '+ܳ€$%€¾SKCÆ)ÕšHqoMcf®½{´Å= è…Pè©1µt\wG†2ÜSHN_{÷è÷2 B  #í‘02œÃ=´¬á„~À„À:Ú7"eZÇ ¸gdÇd’~@¡‰õœÌXª•””t¥ß`J¶od¢mÄoÑVtׄ~¨9B ÔXcjiXûFWx/4µßd™ïE¨'B Ô–jMÔ7’Õœ†Jº f%P3©¥3%ôdõ›\{÷è¾/ >%P:âw¶ä¾‘¬Vt×d‘ïO¡§#~g+îÉJúMN0BÂF(€@ißÈ„ŽùõÝŒNê¢ßD(€5¦–Ni q±o$«–“?o> B DûFdªÖpÀë²ö›4¸-€J Ú7"ad¤F碆úMÀs„ð˜öØR­ºš”žúMÀ_„ðTcjé¸îŽ„Ô7’UKwMæü¼ùPo„ðŒöLx:â·hMm†§ß£÷ @^%@8E@H˜`P„ D±¾‘“¼xÏé‹7õØìóÛt([è7ÊE(JÂIÉê 1µ4¬áÄ÷~“ØA¿ PB P°À^ %Œ,:p[8®1µ4¢Ï}\ˆÐ¡(¥ ꎒUIJ€4¦–Îô"í7™æbPB œÅ6: j” å ”À94\À X„8#´­rF3Õñ·vòs¹¼0fؽD*±Qô”9#”À b ­ÑùèùbXwUjNùßÈÕâóò³»0fø¹E"Ú äP‚Ji­îlÛáËF¸ò DCÈ„á.bD“Š'HJ_æ3„a×È÷ü ^ÃP%B *¡W™fèii¡o(Øè|T63]Âý<£ádCYËè|ô¼%aèý…1ÃÏ="Úo2ÀnSà Á¥#” T±z܉îùÝö¦(Áè|tãBI÷µ,ÊŽ-Œ™µfàÑùèjø¥¶¿#¥_3 ê…×7`0„”†+I5:oÊ. ²#6˜hýÕ.OvMÎRú*€l%(5·ÒŠMÐêdH}e]à8aKµFçÍ—=þÞÚä=vN@Ï$¡…a: €~´yý°^´x«ÇߪEÁdt>*ëw¼¥ŸCêÀtI !B rÇw½h Ö[±0â‹:zøTÂÛÛÔ¾ž?jŽs¸€þ%È'ÞèDƒÈÛºsêóÅŠÅ”»¿ìš`McjiXÉïý&+ZA@¿ rC(A.´vv"'Z #, €iiÖqÝ5õýBÅ ¤Ïä´ß_òÒ˜Z*s`C‘šNè7ÁÀ%Hh[Ò×Þ=zÆÛxotÞ„2m/O‹ºkBÙ "©¥3”:OJY`O¦“4ïƒÓ©Y!ŒC-ʲŽfñ†ˆ…™àâêŽP‚ÔØvЉö”9ª×Wl@4êŽP‚Ä:Š= gZ®5ËýšØò˜9äÉmE‰ƒº"” /í™H1Óe“Œ2ò¥;$ïq·¦6·0Ö‰ÖŸàž™Ñ ¼î¢'B zâÐ'½ŒÎGçŒ\ d+³µÓâvBŒ:!” #­m `ûxYÃ}#@Fç£ç ßt«$‹µC c† &èJ_“§=;l´ù>?Ák2:!”`®ÊHct>z¾¡´³JÍ…1s¤¾_>’Ò~“Fm75œƱ†P‚õ«²_~1»’û–¾g4p2”q!ú<*B ¸ò PzvÉ~ ( .¾—¡ämeaÌëKJ/ö½2Üã5iEߌÞoµ|Îh"fKˬ å5G(©1jTTIwXdau0TêÜ0_»Ý !R.üvS¸—õ×µ,ô€"„’âôX®_Wf©o×dg¥6g—h =YRÿ¢,r/.Œ™ _+SKgô>õ=ØÏi 6U5C(©‘XßH(OZ§©CÂ¥eºfÓ½d—7‡ÍéNÇÄÎ/·ìô•¡¿óðkÇþ‹ãßíz’·þýªJ޼ºo³Ð×ù~f¢‹Žô›Ô ¡¤&8!€Oôü“÷xÎJkfaÌœvýFöŒ“Ýv$FçM•ç^µÆÌ¾ >o%SKÃúøøÞo²¢»&ô›Ô¡$p=1Iéz@tñ:]Ó‡Óù†÷ÑyÓ«LhC(qdÇ«–ÓÍSK#zßsAÎ#”Š-\¾ÑÅëlç$ ÊÉ2#ݽšíÓß³nñ¯é…Š{‚¼Ø}* ¥ÛðÅ&©ðh³ÛÕ‰<ù’Fvž€€°iãóUIĹmݽº” \¬5';HæêH„¼~ê@˜Cúºê3Y×\ÕuÃNI@ ÀW£óÑ╃Ÿ’…ô nH†Ò«# c¦éH ‰Î¿Ð×Ä^‡y.ëß½¨¡ªò(a]+LPÖ ×JÀJ|7:=‡ÕiÊV/²(>RõÈ,l(yÏó]/ *ç1‹¡N†k%Ó:Ñ ­õÝ$}#@}éXžËÆk8qkƒ…±j_ŸµäBÚ«ÜîÑùh¡Âë’5§ üÁ-zcý&ÜœAÍè¤.Öž"”xª1µTåhÅ<-êîW8DFç£+ìãuî/©2”d $꘎rQÔd½0f‚[ôjÅÅt?s- &3ܤD(ñŒÖ‚NpºñŠn·Ò7 + (oés^–Õ-ʬeFÍ®_Ð9[$ÊB¸”EÖ€Ä.Ö}¿XÖKKwM‚\ôÒ›Š*J<ÁU X;|¿.|;]œ±MË­ö±ºpf=Y4Ï´•@í+ú ý€¤nuüq¥BTc  „ÇQï ƒÓÿ|~ízRz$™ÈB÷˜‹gÊä¾U”Pâ0&cÀà™ìUØIï:dà*$“–“`Ë„˜ð‰²JÄ qȇÊx!»S¿¹>Ÿ:ržHÖd¢ÆÔÒˆ^(õ½ß¤©Uô›8†Pâ½1À=¹qVO€ÊhÊ¥@vr?T1€óD\|01O×*òÚ~2€Ÿ©9 'Tq8‚Pâ€XßH(?ä§©Ûà í—˜äÄøÜÞþ£ÍŸNüh˧ûWŸ{àÛ㶸0P˜Y`%m.’ïµ#u &æÙ`ž .°b„’’±å dÚ8m:lÄ)ûc¿ŽïrÈûkºXîTš”S™‘,2Îë¢>úÜÿÇÿòŸŽ|°õÇ'ÿbë´ùº7Ê §½ÎG„Æöb­èŽIm^)EÇ %%â0"!Ò Wokt±»¢Ï1ëv8rë+è¼-ƒºrn|ÿŸm]9ùçÛ®ÿ³­+>‘ïß#uû¢Úƒ¬%%п³lk.kaŒPsZtR'7ùÜfÊb »ã;ß=ùîö¿_ÙòñHkÓ9~ª\Í,Œ™ÓiÿÃÀÆ#{aÐ]-ŸéÚg:€]¹=kµOÁ%âÀ!¡Ñ…mUç(-¸À™ÓSÓ£pråÜøÐûÏ÷ð[~üö£çÜ{îK;(™RHôýâ˜/Vôû©ö¯›¤%кʉ@F-NÒ7 â0R¦¨–¼½`â÷÷ÿxóg#Ÿ{ôÖcóä° òl€J‚²­ÂI`~¿WoTÅúMBøœÑ?<Æ9#”äŒ+B¢eZ!Ô‡§•u-Œ™®µäröÉO=ÙsøóM·jP+{"ñh`} ¯“j­¥ #e{ ‚½JrBí$€ÐŒÎ›P.²dµ¢ Í Ï‡ºÐ‰Ý7o—üüŸ¸¯dt>ê# }‡Ë™ú}ê†^[tB(¦þi}qòYK·#g<ÿ:ä@É,÷edFûì$°!Ýy¨2¬I‰Ð¡~‰C+±¬Ò¨4胩¤ˆÛĽ‘ÔG6¦–Îè “ïD^pHÄp°Þ3²pº¤}5F¯îV}ÿ$Ý•™.øv`£á¶ït¡ëŽºñ™¬¯ÊºPûg;%pr)€Ðén@(;ò$;&gr>7%«#JˬÑùè±#”T+qïOÝ5¦–†õûÕ÷0·¢•'<î)JRÐȦϬh¡!@O5šº•FTž£÷I•%n]¼Ž”˜á)úLRhL-h8 áÂï$ý&ÉJàtRuG8Ù ¥Ád…Á¤ëb—ÀΑ:OÔýNHCKäO¬ç4œÐoÒ=%}èťɜöH¤"ãoµN¾¥oxºPº ¡d²¢û£c_‰î’œ,ÿæ ‡ãZò‡„t½r@×/>“õã%]O¢vJº`û@]鮈¼Ù38(êmN‡ž´ÆÌ¾ö²Kâ4J¹2 |¾%mh´P7ze}DÏÚð}š`UìÀRϪZÛø:>:õ’ø~A-d4¿gÄ ¡°J”Žp eÒŒ”Ì\{÷(eºªéií¡Y7‹óe¼qha̰ Í@×k§ê79Ízí)B ‡÷¨ÂHPä¾µRÑù¨²ÔÝd"‹Ðö@N¤ÇáÕá©u(ÑÅÙ¶—5ŒÐ7 'ú ‚›bžõ]¨ûâ‘æÂ˜9R÷;aPº–› ŒËåu^ËÕ2”hºž  o¤¥a„ÚT=éîÈ{\EN<”¸p cÑV´ª!”á §Ƽ?ÍÜ Úo2À÷FSÃIíª^jJbuˆ!\%œÑí>¶~ô¤WÐßcŠV¢«í:¬àFM¾f{ÞG Ï-í/¡ì:ôû­6ç”h‚¾@ iêy#4FèKŸ/H‚W§©iQ#ÿÂXt†Åí§ôÕ^ÝGd]$ë#=ßÄ÷2(Y¯^Õõk-¿SB­!€ºbS-Dg•Ô´Á}m´®îÉ÷û¸§÷ú)jȽÃ~ 6”0•@ÎGÏ}ïñMP ´ Ž6ôdhÿÔˆg…¦÷1eÕÁ…æW¨»Ñùh!FÉV}LÖ|¢Z×SÒcƒ¾¥ïóü™XÖ¡¼úØ-)®§!k³!ö›J8é@Ýé"ìS¶j¥E5û’œù¡]ÂÉÛ9üŒØ!yMôd·¤©¥a '¾O`]ÑJš`&°Jû“0âsÓ€ ÎGÏ…!LžÒHJâ4ÀÖ€r8ÃÍu!B§Ü Ú¿p€I\åhL-èÚ1„ Ù“!ô›xJØŠ€g8<5ÔÒ³Zõ¢¼ð"gÇ = 4k y×R4£1µ4ÈãåïKþ½ %}MÖñùš}¿ê´kjø¸¬}­¢{/b½(o÷˜ÓµÜJÿ}–‹¦+:ê%ÒáH¡\ä¾öîÑ3Ü–Ô¼ %l·ÀFzu¶ÎÍÎ(_Tr¬ ¡8»Ëð–¾îsѾÚàÑÒð±âB)S€2·0¶vc·›åXJ¸*¢#„'h¨†7¡DSldUké7J0Iª¥‹¦«4;£+z^H-.°ÅJ¼ägmqaÌ$H3:oÒŒ¤Ý0æåÒÁIÓ<§6õŒ;/B®ó¡DûF&iÜœ¤o@ÞØ%¤¯ÃË’‘²¤˜ÒÕwÅ‹1ÂsëŒVç8½þt:”pØ ô¦ ºœ·,ë® ãì{Ð]“é…ÑÀá0îò8J´¦oбz.XÖ0B߀BŒÎGÏ•¾7g",LêCÏKy¯Û:ga,¼Ã­}§kÓ´ýA.ZÑ’.çÖ¦N}Ó“F 9vIà0ú"úÐ^°÷:•sJÜEOq6¹p#¤nOGü^ È“ð €ÐGWÑ;Ù‡ö¨eZßè8H×wt½ç3Yo_•õ·öÏT®ò$΄H‰[pÔ²6½{5Š´jÊ0Ôe¢™Ï˜ ›¯ÊB µy]‚fY L²˜9K“{v±`" ÄCœUâz¡óQz(áÔL§·Ã­Xa=lщC#‘ž¶"œ `{N{£Ký>,-”Äæ=‡ò`æ¼UÐ…ËîüŽìiྗS¸nN›Ùybt½;ÊÅ÷2Ï×+%”4¦–Fôòýª^SÃÛÓ*Ó¡þ¼©¥°uï/‘Î#Øê~_eN{F¸’ôИZÖµ¯ïHVtפð~“BC äot> $³º@<¯¤îý%ò<}L}©âÛ¢¦îŒpQH óÉJغ€r0…+²¬ÓŠZ È]KÃ倌haH&÷PB“”gt>:|Í÷ó±®·!Åý±¬o×ô  é6‚UOßÒ]ÿ†¾¯Ã-Õ⢆=õ–[(a”kt>Z|¿WÓ»½ãüÑyóe—¿¿¢'_”2èB[ƒÊa½Z@‰FÝsNP ŽÅèlàPÂÁ1P>-ÛºTÓ±ÀM]4oØÉî“a}N—¿÷¾†Üv½c;'Cú¹Þ hÚSµ€’p€øz™C‰ÖÇMhœï&éà“Ñùè…,„çß4ZZN4SÖ'Bßa Ã\ÙìÅŽSîäbìcöªè2áL¬ßd"€»rF[2=/d %©%{çùžìuw„¾ÞÐ+õu›0UÚ|½ǵ7…*{³AÆ–ÅQòd •GÓô¶4˜¤¾x”*”PÕÎáð¥\¨5ମ¥ZyÓQË'ß )ƒíÝYä< :÷h' %¤7pƒgÍí¶¹Í»o·¢a„zTÀq±é'8¢©e@—µ´£Uç¦ØÑùhQ?íÀM馥;$^î”$>„@ñb‡Ï½¥c>×&Þi¹L^çÕ²¼CïßÜ”N¢±¿îݬõRîÒ¡ö Í‹ñçéyzèyÓ§P’ú¸zÅéröÚ"5ÅùýØÑuý&u)çÒÞ› Ü”¸¦†D§{€tbÙI‚ˆw$ œ—Ò.Z²Óc>¦=ylnqàFôÓó åÓ‡‰n Ã9£ŸcC?ÅèüÚ/Wôí¢—f`£E]ºhÔÒ0âôó1‡#zÏQ01:_ý€ÀWz!ÿ/¢»¾SÒ÷HzåÑ2˜ÙW]Žh™LÕãÅ—c³y=Ñ+ÁáƒeˆÎ’çc—ŸîÞÍr8b&]ÿþ\&#wµº!¯’ê¼9[¾%‹‰ôîH8ªéèó‰·§FÎGý$U^Ýòb1¨ù=vG‚¶¢SÞd¤ý&³.¾V»JV4ŒÐ78B¯>Op¸ª}q5¹7u'©ßauÞ”Íh ¹Àù#µÁ™&À€´ßdÖ¡ 9ÎŒ¶}#$€;tQ|!€@bôâËm~öEÞ͉ò\{¢Ï…¨ªN\Ï„@RKÓ5 LÖÛ²î–õ·+#„]%Ñ àµwrÕpH,„4¹(ê9ð(˜ä}ë˜NiÓ§0bÖ÷Hêç8Áœ®¿%œT¾¯2”4õðÃ4²Nz/àQª³:j×uy†’]Æ(K9²0½ùÖÇ×kèÂG0r ëðkï=­‡/VV±TÅHà-Õâp$ÀQzè¡O‡ªfq؃“¤9ý?'Úý›º˜?ëÃá‡èØ_¦lA‚‰œ[t¢ö÷0 kï•~Ã#©¥Jƪ—Ù蔼öîQ/_ºpô°¾AÙ³Lä ÷¦>Íy0Q*ççö@â=-ÛºJÙb‚û>ªÖ˜Z:Óv@r‘J;.ÛISŸm0è A¨ µ®wÖÅW¿hŽÝýU³²å'æßù'u¾+,)É\f\0ÙHhL-Íé®Iá;Óe…’³À}ÚîÛ9vÄíE !=×dí—hiŸHp ´Ñùèû³ß8ã íør›ù§wŽ˜¡'/DáDL"LŽpÀ"Y¿7¦–ΆJøÁÕ“^ãZº@_ZgËzÿ„zÅØ‡ïÑBý£»¿ë;÷ß4W·|lþbëCý’“ÖïÓ~Ü\q„ £Ó›V|¼Z¯Ã>ì’Ø±¾ûC>@MÏßHkYwH‚¼R¬»$!œ™“™Ÿ{øõ ÿ\‚Ê¿Ü}Ý´6}áÍ×RS£óæý.“æ8ŒPô ‹ õ*ÜP’’™£½TïË{O‰o;p’ÒÔÞÖ]ËCÓöLÌÕ`ÑInCe¤Të7ï}»ã§·%]ÿãîÿ­÷EÓ:Ú€G%@Ý18 !YÙ‘¥²x–zÌ™öp¢WÃ/ÙiP:¢µª¶ãU%0^7§k>y'ø@¢·j»KbCG/6´Ð_b†GçÍ©wR¹p¢;àšY]ìæ5ÝgHëœ/u(ùн—æÝ«£óQˆ)u²†#_§ 01¬“¤å[uØ!1Hj;qË6¶÷Ó­¼«†&Ê~0B °ÑÙ‚î)» WðìºÔ=ÛpRæUaßOÅžtà6ä-É‚ª.ÄÔ¹të×V‡ÍG_Iü÷Ûákj¨îSÚßJ€6zÂu‘¥@²¿²ß©ßÄ6s¿WÒÕ>߯=DÂÈ_O%Ðr]‰GCr÷Æ£¯¶Ž¬LõßÚR/y_s'Ù-üAO jM˩ڛ×e÷â¼~¼¨>‹ãÒ ¯‹Êå§vh}ô±‚G¼¦[õäÃöÑ §8µÜžIR‡é:{{üYtI‰·¥jã5úZãñ—³ŒA¶ý%ÿëóÿw¡7Ðqv·¤Ž-ïJP+:Më¤.‚»•,•u‚“‹ þž-ûʵ™[¯ žÒ…~W‡ôk“ÀÕÒÛÓí1ñrÌò€z•Ô«Ëqú3ëã†Aµô¼ýYŸ“=øFt~É¥míÔV2Ù-Ù0d€{%¨Ý™HqE¾,³zå¿[Îer &§ô>9©¥PUhß âlþ&kvC‰ÑÇyå¿97ØÙ-ùÉæëæ£Íדþ“V`Ø-×¥ÏÍgµ>ßð¡ÁÒæØ«^i8˜èΑKÃu+ÍJ¢SP¬Ë¤­¸ºí”,wxœ&oßýÎb°q³À „U*yš!€ (ßBtìîtÀî ¥\®4·ôÀȵ«ÿ±Þ’ÃÚìmçöãQ“wÁÿ.h/¡™¬Á×¼ŽžŸS'ò½}¢CÿÃÀ;ßxôšÑá”gÍèîBHe\OU0 B ‚£ãvëpULF /g\¨VZÊ&¥$Ϲ}îÃÍŸŸÖ&÷-Óé5€`ퟷ@›¡‡õí`—Å”,ì.ëUç¦g¯+ºP¬›ÐBÉr‚~ž/æð3;²0fŽÎ›LºÞý™<[âÐ2ì—[·`ø„P‚ Ô(]xËT®Ci&SéÕçJJ·dLé׿4÷öÝïLþîL]ŽN]N{R·\I^Ö¯c\Ë{’~=k¥@ètô󢓽&k:=(´~’ó=ÂÀ‰ rùþ¼rnüð›c監óÑŽÉ{]‚Žý\¾ï–tjØçÌÀaô” £óQ PÝê†åE6í‹¥×èÿ¿¶òk«Ã“ÿåí¸ïÿÝöWçwèü¬öûœJ¹PEÛÁÑùèß^ÒŸ5` k‰ßU=¤ÒÕAËyŽ‚öœïSÇ»||®ÏcœWh~ÛèNÈÂXL:}ÎýöïxÞ["Ï+´?g9vÆGJ½ÚR©AÃ)ûgJ¹ú¼ïÉîÖ7þôÜï|qôÈûÏþöÀÿµc¹ù»Cç„vxÀ Ò͈î:]p(œÓEl›Û­Ózj¿Üû<_T6»ìÈ-&8™?¯¯{Ý÷¶~ÞÉÆóI\ïéý+»ÉG8«p¡ÞÓ2ž›Ú“8®}I¶èÞùåö•½OvÍüÝçØÿüOnï›úg?:ñ¯_XZñ`,³uXÃIÚݧÜ-ŒE‹©¢Oòwš^Ñ?ÛEðy'ô|‡uš´µÁ›ïœÏk1=|åÜøºïk2ß1iÆþÌ÷Ý’aÆþ ” ïQ+™í·.`šQK4²°:ðoþ³ûþõ?¹sú¿þí¿Z4Ϧ ]òp¬ëH€MÖ¾ñ¼¿Á–nÙ÷+]&mu“WéÚ† ºcrH~†;ôµÌx>²[g­ûE+À 4º#.·Q¥!=!þXÛ÷B{H¯^ËÛŠ6Ý·tÖ¬;#Ý,RîŸË3møÝ¯ŒÿGž}%z[ºíÈéÏó¤þ<ûêÔè¼y¿Ç `§!°ÍŒ34Âj¤O×Á?÷~=¤lDwG| $ËzÊ1êÏÝ¡ßS>_|È£êZÿ‡Éòs©ås¾‡ô¾;ɪE(÷¤yT_4{5lÖÉtß"K’N莉¯åt+ú=ĉ{Þöø¶7sê Êëûrÿ•sãYÞéœ>Uöë Ž"” Ú+qÕãr¡<õzñ-*”œÖ…£Ï%6û5PÝ‘ÃÚì~¦†§Š;Evh îYä¹s—e·¤À‰è'Ù-ÜE(÷tð%šÝ×9©}트c‡†b¿~=².ÎGAe–€R Ÿ/4¬äuÆÌ›ïœÏ³45ëXðÓžb·p¡^Ó@âsfQ†Úw- :cE¡/ÖíÕúKz– á¤<>ŸêîjIi¦çí³òýÜœ“ÜJà-I_Ç»ì–äi w¨k8aÌh9|Ý)Ém—$&¯Ý’¬}%Ñù9=N¦oçâ®ÊPŠ3”ˆP/H‹ï–Ðo“/3z‰õÂùº+UÄ.I¥}%1'Þ–¤á¥l>N‚E(wô*$™2vKê,°@9W1<¾_›ì’ˆË9þ_™Ëâ´Œ+Éy+®Nìb§p¡^‰ʇäì䢽Üg…úLŠáë.TQ‹qWvJì4®™¥©áÅÅÛCü¼î!”À7®áÃ$ÛØÉ‹pq†8œ­>–Îät.I'yþ¿™ûJ¬…±(|u»Mïë{W´¥œp ¡Þ3#ZX7=:¬qH{pP¬avñjo¥àç…¼/‚ä±0ïÖ_bÃÈÅ>GŽÞ. ¶%ð‚–m¹p0Ÿ4nÑòŒ“•—Œ;pê`dtžsrä[Éá1-Y*Ä›ïœÏ{fàq˺+ÔÄZv·H§u¹ˆcÀ1„ø¢Êñ«öêç…±¨¹S<«w?¬ã{Q¼ ʸrãÓÂq²À²­¢äR´0õ–ÄÃG{q1˜ð|8†Pçé¡eOKYÑ&ÎC cQ9³0fVtÇÆ·@bñ"\Ž¡ŠC4Š³Ø¥TiQž#JºßóìѸ¯$æDìþy¿íÏÚïžÇláÒ–É‹âY-MHs%pY_<{\ñ<^ÃÑžŒb>¯ŠŽËúüïÑZöü”syŽx|qŸ1Á‹ô[è‡8Mw&Ò4i7uwãLÂËEí‘ÝCº#Ò«cNwQ€~\èBþ®ÅþÇVÑ}$äýü3p_I?zÿ¸Ú[Àì”ÀuI˶äEïD¦ÊÅØŽHªÅ„”pI€±¿×ÐkÄʆ{ìª4õ6_Ö+­öv éb–&Lÿ–ÒCvK‚3rqZŸÊt-çÏUÖhÜ÷9´@/„¸îí·oF›L{Œ-éZÌs¡ÿW.ÿŸŽí¦<,(ŸÓ€ôšÚ[&&ö{ØØÞIÔWòæ;ç WrÂýè<Ïoº#”Àu½®â­èîH·EŸÝ5iº~µzt>ª·æ,‘ð°[–há^ñIåÍJ‡K*K•]&FfèˆPgéÔ­næ´t¢ëîˆ^ÅtúJflš“`Âu’Ý’0TPªU–·Jêù8[r(±?wœÞx€Fw¸¬Ó6¿í9QrsiQ8?$Lñ²>êèÃàJ°,ây¯”E»†º2ïÇÃ:ít‡û-„× („¸¬½Ù[^DŽHmr(š~-§™èµïµúûu1dDðŸß“œê.†¯œ/«×£ýô÷¢MèᎇÚvƒBè‚B(/l î…D^0å€F}Ñ &p ÈžyàóÕÌY¬0ãÀmñ•Ka=ɈqŸ•2ñOû«Ê|\åÌ J°²0=§Ñ`Tv8С>6ÄÉ×'ei:rx²æå‡µÌãˆÇ»Hû9«d`—º-.õy[Â¥Jß-±¿P¤çQÑç8†P—-ê‹Wð$N¯èñ<œ4õ¶ŸÖ`;¡6×§„bD÷ö² Ÿœê3°½ÍžTx_-;ÖÃVÄóaá‡(ZZ¶ZæÅ†‘ÑyF®cúœåÃô¬"é"èÌè|ô>áÁÈ` ç`¹Ž.ÜëÂÈ.â£E„ÞÇF磆ñi̎ΛC f(•ý0ý§ñ­WÕ˾'µÄ± C:p‚òXÀa„Àq:±æÄè¼9¯‹rO{_ÑþñÑùèöÙs]aÖRŠž ? ;£óÑß9;QÛ¶Œ‹†÷ÁTù}ÿ~…Ÿ»4WÎ~óó¥° SähI×~½Ò:¢ ði=åÆè¼¹$‹ +‘€3@i[•»n§òøúk®´ò¢6-ûŠú^.û{ôl‰ŸkXÏ…à(vJÇh™Ê~};¨W÷{|žÉ°¾ÉÂ|Y"‹ƒ”3ÅJÛfRìœLj`ª*Lk_ ²©êqs±ŸéfAÿ¯¿2§ÅÍ”¼ë9Rò× vJ€ŠÉÕ»ÑùhÁ~atÞ|©; ³º€ ì€ÅaýÚ®ŽÎG¡b ÅˆÝ9Y3û´¾Wóì[úwªÚe:LÓû@ªú}p\©ßŸzq¡ÌÝ’ªvÛ$@(* ‹ñÑùh~þ%Y ëUô:-X‡4tI8É¥_jÔõ¼—#]úS†uxB•½ã~noU\vãâNIQÁzèʹñ²ïë™/Œ”ôyd@(J¤»"g4ˆÌ:Ú´^¦!Nõ^^ŸS{oŽhßɆÆVGz¢¢¯÷8£I½2P™aŠì z·„ÝJÀ]„ Ff5ŒLx49Ê[zÞKü0ʵÛ*&\­MI'ÐU¡S·Ú”^â¤Ã+ÊzŒë~!pî@ôª¸=c„ ²ÑІ…ÂJdtA{¦ÃÇç´ñ¾ì«·Mê _íDU‹ö³ZÆZ´ƒ}}ú`§(ÖqE éÌ.ú*¹¤Ç¤‚1Ëì”øÁÕÒ-Sð÷êð•sãUü<Εô3ÈX`ÀQ„ XœâÝÛ©Ø4®«zžIé‹-9TÖuí^p¶tëÍwÎ}æNé»%%ö–ð³8ŠPH{Ô´ $­ýR$œÌ–NÚzPŠ'Ôµ§Wöá—uþ™­jáÞë ‘*§æ(¡(@ìì;ò—’t¤ìíR^ã‚ÓèNºívMfû êÚÓ+s×ÑåÒ­2Trž‡Þç.ÈyD¹zÈ<ÀM„ GmS¶¦¹">;.¸Œæ× :Lïj_¤v[@%A]{zeî”ÔéÀÄNª|ÞêTÂew­:?”ÏË€ƒ%@ô0DFJ¿º¸Sz¶K%ì©ñNâWk‡4´d &Ôµ§w³ÄÏåCéV‘!MQ¬dᮜ¶‡ÛßSv €J€iÓ2a¤X£óÕ–Ài89Û9™Óg &ŸR®’÷³\á¹(i]^VånÂù¶ßÛǾî;X@Ð%À´çá#KQzó{'ZÖu&¾pÕ`’¶—P’NÞWÉ»õ(”~\WI_‰y6 Äþ|5cý=<6@À%@FHf¹ÿJ3äòý­¸GR\Á&”¤  ÓlfÜõ`§$=CIÚç#~ÖÇJ€.´,ÈÅãn»$²Ø:òSOöLû¾ùÎùö+ö':,Þò˜z”—9f5Ûu@ýd¹ú}“ï“ÔR?§” M¸œÓ’?#”Ýwð¾YérÈÛ¢žHÝʤ6\qŒrÝþÂïJ „<6ËÒ8NÓr}éNSÚÅ&‹Óô\ì+Iósߵ܀;%@w ý“¬“^ŠÐéÅuqaÌ“Åù•sãCÊ™:^qŒ­ñŸs¨ŒËË1ÍÈ]Úg(¡¤Ì¯c¿>·8#Åy#ì’ž ”ÝÉbç´1æ#÷ÑJ¬aYwGÛ¦9e)7ë2ôÅüˆÞg5¨¸2ÁfDÏAéÏDíΟèPrY4¯J¨–>‡ðÀ$ 3]όΛ Ž4S¯]îvBxƃÎ.÷úC½"¿*9éHiÛÞzJ0™tÑÜ¥üý ;tAÂjõ9ëg’òNÀì”=ŒÎG‡Ý¹p…p%ᤦÂk¿5¬¹2ÉÆ›ÝQ œAQ,ßNvo.ŒqÁð ¡èB§o¹Ò·´!K€Êr娕†÷aJ¸ NsI¡|:è³åáA°@íJ€î\ $Í$'—yÀ™–t¹²[âc­;r¦;xýšÞ)ÝÊnèʹq_Î:Ms;àB Ðî’¸28é.IÖ+™Y_¼]³éÓ\HËu8±8>ü¬Íq()à'B ÐÙIGî—É£/3Õ|gâ“ðÊt\¬uGu(Û)Žk¡¤½tSÎ.âñˆƒüÛ¢CÃå‚ÿå#”È¡¨ÆbŽc\.§(묈L§ÒÈ„³äŽPô·RÀâ:ÏÉTÎ.Æ¢û®¨Ý˜¦m^ÖÏ ƒìÎ@G4ºÅ›³gôÄõK9ÞO+vêÖ ®œ÷¡é´YÐnŽ4Ó)àÿÐÍîrÇN °Ñyí÷ñ¼2Bt$çéN“9þ_ƒ.ÊÙ[Ôy%ûGç©mGmU9qŽŸ;¹#”mdrÔ˜9ÛÍ8™ã}”gƒ»´ŒâÍwÎ>K'qU^Å[ÔU¥ßûWÎÓW W„ =”/Ï«‚s96¸åy±8B P ~öäŠPô6žóýs6çÿÏ—«•E•p¨Fƒû@ž%@o#9Þ?syN‰ò¤É=‰Ú@pØ)+B Ð…6QçYº•gƒ»ñpQÀn zJäŠPt—ç‹n³€³4|›€ST_ PG•ŸråÜ8S¸ä†Ptçò.‰x«€ÿ³0Ê&@>ª lJä†Pt—×¢9¯ÃÛ Z¾UÄmêçýœÿ?NrªC €ÜJ€|u÷›÷Ä-[6á•ҴòÞ)!”Õ©¼„ @8%@wYv"æÚ~Ÿ÷a‰–—“oôŒ–<ïB êŠò-A!”Ý¥~Ñ_3§ÛvKs>,Ñòyg{ W3c¸h0<ð… ÏŒB {G|' ÷Ò-åsÙDûNÉdÆþÎ=*æÓyIÜF(òcÉõ}S ,‚· Ý9²÷Ëœ¸–Ὼ˜àï(%\rA(ºK(.›§‹né+9bŒ9QÄ}{åÜøP IÝ19­¿ÏÞª˜TNŸ\ÁN €\lánºJÛ ²¶°.h°åý"`a, $ñ2®Ô}7ßÇ€Ë\z`€\°St—êê}‰‹äà®Lf¸ï8„pƒ£É8ˆPt—¦Ï¡Ì¦ëP¯L¦™¤•÷!Œ²áE¹ ”Ý¥¹z_f( µ†;i()êìÀNõ”éa®0B Ð…NÎJÚëezTV¡†’¤Ó´Š:ûð…k!€P``„ ·¤WäKé' üL€¤A£¨³_dC €J€ÞÎ'¼ʺrr(IRWäÙ/€/ö:v;]»=vº‚Û 9Nv0B ܉’ûGÚÕ!”\îð±³ úM€Zpø BÆ¡HHì;VáýÕ¨ácµ¼0fÎ8p;W¸J ` „ -㪪”¨Ž5Û•÷òH„ž!”)-Œ™c¢‰\eËûEßõEÄ$%¸úsË.!”,ŒEWðm0)|‘ “·òn$u±1Õ†ʶ€Ž\m('”Èî>  &£óæý„'‘ª¥ cÑ„³ç¸)€«œí-“&ü7ß9ÏP ™J€è"º Ôk0ŽïHì/é" €Q¾ø¡Ž“·ø….™J?²SråÜ8g ~qùg–P 3B à^츎]™J?J€šó`g“ç)™JǼaøÃÕqÀ–ë·€Ã%€ûŠ|¡'”þp} SdF(ÜÇ =CÏ€J÷,ðîåñ¼áüÎ&ýdE(ÜWdù»0€?øy,B à>®<5wåÜø'ä'™J‡éB¤HLËüàËbŸç™J·½áª&à_~VéS ¡pW&oq¡@&„Àm…¿À_97ÎY%€ûXì¡p[WG %€û|xAx ¡p¨¹+çÆ}ZèSr B à¶2B #‡·±û x„Àmì”8èÓ=àÙÎGJG•Ø€îÕ‚¨!ßù”pHm wଲB ˆÀ\97Þ­$oŠï«–1f¹ËŸ-¿ùÎùVÝïçQb x„À]e…JĦ¥0Cúf¯˜7bÛPWÒ¯œÿvYCŒýõMýuS߯¼ùÎù•roazL— Ç{H„P¸‹P¸+çÆm °ï÷¶ýÞñÛ_DOØ_hˆY‰½]‹ýš—î|ìÏ`÷@j„À]{˺e²8fQX½ÚmƒÆAýuKrº–ihišg¥ÉKä-nŽP¸«Ì+¤”[ä@K­†uáýVÊŽÂmÞôœÙ¾=ÙÓþÇÍÃGOʾ‰vYbaeYÊìªÔé{•~µ@(`(áJOw?ìÎÇp!rÇö-fÓ¦ç¢_ïÚ¹uíãÛ·mŽÇÚï·oY÷û¼Ý½÷pí|üäKsÿÁãµßßÑ?Ë9ÔŽ/Î5¨,ëÛe -o¾s¾[S¾·býD¾aw@j„À]eî”JzÐÅáá"ˆ ;$`lÞ´4¢%ÜÝ(Ëó±@$vïzöë—öíÜp+lˆ¹»ú(zoƒK<Üd°îqˆí¨\Ô°Ò  $‘]µA(ÜUæÒßOióùa½Ú;œçÂPÂÅÖ-›ÖÞË[Ñ».°!ƾ—h§åþ#³úà±yòäË(° °ËÒ¾£bwS.jHñ­?…µA(¤ ã2Õv§D©´!äp÷E<|<¿c‹“»®@&a¥S`‘ +Rä}†»›rÜ<}¬Wb»)>„vJÔ¯’€›ÊêãØÑLò !¶q\J®$tl×÷ÈG<¬X«÷E=,«º»’2¨ì×€bCʲ )o¾s~Ñ¥‡-6±ÍG„)©ñê À„|®@ž!DÈ@¢÷º‚rÉý.o{wo_û¼P¤_%z/å_ÉK¿ìNÊ©XOÊûŽ4ο]ñç€RJ7•^N%WfCµzåÜøH,„dÚ’ÀaÇ”`±â.T, %6 Ø°’ÐZOJ¬ÔëýŠvQØmP+¼Ênª¢ÇÃÛ¾Ý ±Ad$ËÿaÇ- ½ù›´&my–ßûâÐN‚ÐA{ÿÉõÖ½PÊ»:px„P “·ìy%±1¾'“”gÙ ¥kŒ™¤·@R„ BWÎ7ÆŒc'¹Rš5¤W/ Lv¤°ìÌJω„“}'òÜvüʹñEcÌÙ7ß9Ï ïz"”%»rn|ÈsJwF†’|v !FèP5Ù©•³N^Š5Å÷è;‘Ýß‘+çÆ—5œÌñè„P”DK´&ôEºo±%Dèà)•áò…“›«Q‰WÃÆ˜Ù+çÆå9ð¬1fîÍwηxPX„ `±0r¼ßg²A„ò,>‰Ÿw"áDšã»çÃiyN¼rn܆úNJ€¢$ #² 2´gGô‚ÎŽŸÙóN¤œKÆ ÷hŠÒçG 's4Å ”9KF¤iTÊØ¹À"MñÒ{rãæj¿ÃmS|Sà Mñ@ J€œ$ #Ñ©ÉûvÒ´ xÒw"‡1Ê›ìšô9ŒQ¦¦)¨'B 0 +çÆ‡u’aºHq#Mñ@ J€Œ®œ?¬;#=Ï!ŒÀ3v ‡„’Öíû½úNhŠj„P¤ gŒבž'¯F ;Û/‡1JY×wtë;¡)¨B Ї9[äm}ßa’³MñHR4ÅsR<B ÐÅ•sãÇ“£õÒrű¾^ʦx{R|SÃÉ"w9à7B £´lÓzßS×åETÂÈ‹C; #Û/áDúNz4ÅÛ‰]+ZÖÅÄ.ÀS„àYÓúɤ»"öŒ‘vm‹‚ )OŠ·»Îcf˜Øø…P‚ZK:AËhݳLŒ‘H %€r¤8)ÞžuR'vNO°²B-% #p‡mŠ—þ= &=šâ™Øx†Uj%i±ADÞÜ"áDâ÷íÝMìjÝZíÕo'vÍiSü2'àB jáʹñíéF˜ þH9±Ë†“¦îœ0Np¡Ä3©¥ý±Cûz-°WôM´®½{´–W†t¬ïD¯ƒåEM¦gI !Œ€ŸlS¼4ÃKS|‚‰]ŒB(qXcjiXŸ<c†õ-“ÆÔ’ýgNZúþfü÷×Þ=D3 vxÊ3ÞïÔuy{õ¥]LЀ@HÙ­¼I(ùôÆ=Æ ž ”8¢1µ4¤¡Cž$ßÒ_÷='#l6ì²hp±!Ež¤¯éÅw]6¸öîQ'¶À¯œŽ1ÒeZ6™ÖÕH>±ËŽ&œñ&”ÄÊ–†b ëƒm w»o_$Û]Óo]’x Ö[m¿¯ZêݘØ.L7½îs @—»üY·°³nWGK´Nö»í¶LK#Ù€zˆOìJN¦¥¬‹qÂ@¹žkL-]HrFÀŽôºšÞ%p¼¥ï‹Ú1ðÞÎm[Ìέ[;~·Vï›G»6ûyïÕÍwÌÈŽ¿4¿¾ãªÙõ\×ô"ò‚4´ga–‰]=Æ [- ­Ó%'\(ø®h–Jfb;ñÝ¢?o^ܵÓìÞ±ÍìÞ¹ÝìܺÅìÛµ3Õ—u[ÊÃÇOÌíÕæÑãÇÑû§¿ïzÅÈI¿¾ãoÌ?Ø~ÕüâÖûÞ<{꺔j—2œØqœu‚Ú)+””U¾uª¤Ïã½-›7E!D‚ÇžÛRNvïx¶(eÏ® 㑆ZÄ;÷Öþ¼ê]—ŸÙrÃüúö¿I´+b´_dh÷ö¨ž€Nì8aÙEÿâ΃^ã„íð”SÄX¬Xm{•̲–ns¿¬¬’\É"{ëæMfG[ù’,èe'Á.¬­øûzì×U‘Û¹Gƒ‚ýâ;!>y”`·åV´;Ó9ÔÜ{øÐ¬>x´áãÛ¿\5¿ðäfdÇQ(é‡-À œubN¤F‡µ|?é€i8íÝ£ #(Qhå[‰µާ ø§§jç±k·½üècó­;ß3oÜÿÀl²Ú÷¶rò: oN䬓Õû/šµ!œôÑ6]´1èJÂÉ麞ÁV¶ BI|g@~mˉž6j?Ý pԗ슼±úùÖÝï™—öï±»"v(R‚³N¬Eí9©õ)ñw?!=Ë“¡œ³æª BÉ·¼FèÀìŠ|"œ4uç$èpRÐîÇšøÅìCyd—ê„+g¦…(´Fw`Í›÷.›Ÿ¿wÙ¼þàZß;EvBäl #ôŠª`bLqJ|0á¤èÝî#%ûRE#åúò^BIܽ‡Ì‡7n›kŸ·:õ¨ÊíºÐ˜Zb×Äsì” {·ÌÏßû¾9t÷{‰vE˜ pU‚Sâ­ÜÂIìL·¼ µír4b‡:çöùìÙjûô˜ƒDÒpòÁGŸ™OnÝéö¯ZLf ¸Ÿj‹ò-AvC¤WDzFúaWà“¤áäÖ“íËÿÃo·þèþ×Ûÿ¨=AÂÆîÛ¢òâ®w?!¡äÏþö“^Ǭh8aJW%ð–4®K‰Ö·îüq´CÒ»"Ÿ% 'ßøªùý»ÿ¡ùþÃW‚x¼mñžî|lK½û‘• &=vMŒ '2ˆ€²®ìè)w$€|ç‹?LÔ¸îë-ùÃoE§ÿJˆzý+»ÙÕ€š“×±×^yÁ¼üâó=ÃÉ/nýØüâÞ½ 'Eï~¤%Ÿ{øë_‰Î¢“pr¯Ã™gZ~6kŒ™nL-É„´÷¯½{t±²‚–ëI8ÛM³›+ú&Aë².Ùô=x±S‚I‰–4®ËîH?²—] #>úëk7ÖªõêK»Ì‹{wðMXãÛΉ=#δÝ á#þ{—]ûü¦ùÁ'×{•tY-á|ѥݎ ÈÒÏ.™÷×Eùœ'aä;_\ì;EKv^ص-º‚ä⮈¢’¤|쯮^vI,ùš^ÚÇ÷6`£¤áä/ž|ÕüÑÎÿØüx[£çßc-Õ› ']¦tu³¢; vÇa¥¨Ccà öǦ™5À`NO¿ÏcÈ¡n’2­Ã·ÿ oóºY´K qµÄéÚ‡·ÖBÉŽí[Ì×÷öüûv':å×j¼¶‡^@OIÉ„’ï¾ðVßp‚Þ$|rûN´sÒ¥¬+©ø‚þbÊ{06:¹èC${ijÓæpB(s¤ýð­?è[¦%‹ô—÷ít~±.ý!W|sÝÇ’„ yQ‘N”¤A8)ŸôœümëvÔŸb÷ÄR:÷´Œn³ŽUÞF–°%‡JÊ[Âà•y"îpŠœ/"Mì½Øe‘îj‰Vž|í‡T+iC¼”Eÿãë¿…’枣æÓ-¯òÈe$Å£ ã_{:JXBÊõ;«ýN‰¯D|š™L2“ƒ%; Ø×ö{ )òµÉ“=¾®¨é¿1µ4áê¸dvJ$ßœ«ÖŸ6{kõÁ†+÷>4«Òõõ;÷Ö~ýêæ;æ_ìþCó3[nt½£|#~òÅÚ‹‚|òb@’îœ\ÙyÐ|÷…¿onm®ª(<²&’õÎíÕQP‘5Ñ€¥^©Ø“ìešY4JyçöhdPvgHJ‰Ç%S¾Usñ`ñðñ“è‡Æ’·Ú~Ÿ—_Üú‰ù{þÐìzîAÇÿ1”)ã2ÚS@Ù'î°k,["e¢óxÝ:, 8ÌÚȶè×e­‡åöÿð³VPú¬í4²³Ýü %êôÍ~Cw&ž†7¶¿³íÇQ éDï¯þÔóµhð–À"íò‚!£wïÚæÀ­„ˆp‚¼¥œH¶¢å|< JZ÷1Y„ýµ=Ξ5R$yaˆ“çwð#(‡¼ɨz %ŸÞ¸×1œÈTLN¤¤K ÐËkC»£·Mñ¥`…•PÞs®íØ7ŽmÑüiMcxv•£Š’·—þdÃÇêH„ì}vã^tŠ»ô”pP" lòÚÓØ¹µo8‘³Ä¾uç£p"}'@/v\òÏ~å¥èb{tÑýÖÊî3BIÒòÁGŸg*˲%SûtÎôž(|dßÅ(C§¦¹'O¾¬m(‘]" &T-N¤¬«½ÄXìyÜ2GoþÛèl±¥½¿ÅŒèKÖ¦v÷ÄŽJ.»"ÈJzûÁ'7¢š»$쉛vδ¯ý·6ïÝð±?»ÃÂGH8ùFc_Ô/ ñ݉=€‘Óá‘””WöìŠÞŒ6ÈK¥Ð}Vø}H(éBî|™RÐì‚Hðxe÷®®'núHvJä‰KN“µnßy`®}x+ &uÝ1À5r^˜¼õ 'ötøìø¦iîþ Æ#•ø+E#”t ÛUÝÉkûv›¯ ízÄqsÏQóÛŸ[÷1Ù*þÁµæ¥Ÿz+€$˜¼°k›¹qsÕ\o=íƒl÷ÆêÑgœÀU›‡þ“ÿü¸Žý*Ì×öí6;·ùÓ üÃÏoš›÷ÖÏ—m¬oí- $>}-YÜÝôBôdõû¬û×_~iÌ»£'=yºÛºu3;'8`ÓsÏEe]C{w˜M›žë:FX¦lþüê÷Í–/›O·¾j?Çõiô¶úðQ4F¸`+|'v çÄIyÖð׿âÖ,˜Ú!Íríä ŒlË›4‚Ë•ËùTK.Ê!ÇòÚÜíÆøa)ébR\À*²ƒöþ{{(}#Iɓԧ[¿bŽÞ|ß¼üðãŽÿjõþ£èÍè¡\¥‘·Û63>€Š$9€Q‰ÔÕÜóæÛ¿ÉÃ…ÊP¾ÕÁ“/¿\7§Y~ÿÙ÷ÌK»Ÿ_;À°.¤”ëûÏÿRTÎõÊ£Íö/W»~åRÞõàáã¨ÄK®ÌÈùrºüþÁÃ'ÑË—_~i¶l©×}@Uä‚áÐîíf×έQ#|§fxymÿæêŸ›Ÿ~p-z½§ßqe•oJ:ñ¾ŸÜºk»~·ã¤®_zôçæg7ÿfñ‹oš÷î}ÓÜùòÙHX{0ôîÛÌŽm[£q±r1·n%îÈßs©¥ ƘÃEÞ·ß>ðš—#tå4÷ö`ÒÉ‹zL¿žò¨à^dº”׬¬;ã$oJ¶kH‘ÐBX  $2QS⻑@ò¯î|Ëü»ÕŸéù9žžg±= +¾$õä¨ Y¬I(éãÞÃGæÏüItä~RötwùšífÝÈÈAÙMyåáÇQP‘-aù}Q+d#• Ý&uYóhŸùWw~É|ÿá+©>‡¬‰vï|º›"»*ÿJ#µtRºuïÁ£Ô7L¶:£ÊXX©+ +2íã§u7E‹Ñ–"VHFúí1ÚsrýÎjô`IyWšLù·òf̳iÒ›o«ãä§[^Þÿx[cÝÇe\¡œ•"aEJ¤l°"u´r%(~5¨=¨È9+ì¨êÆ6ÃË´Ìë­{›áÿ«çÿóÕ׿aV67¢õÌ­ÕÑûÕR•¼[r¡WÞâG2ØuÑÓ¾Ý즎P2[’Õø©½Ñ"ý'6 Ü¾÷@CGr×õ߯Ù™tQç-ÎûÏ툂J¯°2èÎJ§ ";(Pvé¡ì¦êBN†ß·w‡ùø³;ûM¾u÷{æÇCul­§_˜Û÷ž¾·Q§a×E×>¿ý«x|ݦŸÖ¡$GÒоsh·ymhwôŸÊ_|7%Ëä³c~ cÂÅ3E‡{b½}2–P²{×¶( È{B&r2ü‹{w˜>½½&Z½úAí…[£k"£omHɲ.²k"R$˜Ø€RÇ¡B¡á,„‡gWöEŸÈî¦ØÊ,[œòÜiWÅΗÏ÷ôׄ•naEí%°De`?NüÿJ}­Ìv—7!ÁDÞ^صR/@P¢3Å>6«G‡->°$ºx»u‹îr<[e *Rê%o|ôY€^Û·›€â1µ’ÙÝ”ø•ƒö-Î,AÅÄê1Ûÿ}|geËæÍÑÖ§ô­Ôñ‡¶[Xy]CJV´g%‰ÛwDo†€ð”.ß¿ÿhíPcÙ ±åÌý´¿–fÑ)¨Øu‘¬g’’óÁG÷£€p½g×Zå ü@(q@§-Nùá’¬[œqí;+?ˆý™|Þ­º£cwWêØ·bƒÊ¥ç9ú½m¤·B&ÙM‰iÚ½=*ó j2¢òà±yððq@îkÉêOõ53ov]dCE¼g7IH±;(ùÑg¦ñSCÑ »'îãr”ýŒ_9ˆ÷¨Ü{ø0ó„‹8Û¯Òéÿ‰–§»-Ûj³ÃrkóPôöƒíߌ~/e_o¬~ !åZßéA‘7 %R‹Kƒ< h²Ë!eVwWE¥VRvõPHÞ–öþV.;%I´÷ìڵЇ7n÷*$ë&9cNÞ$˜¼ñÊ‹„‡ñÈxd}Ê3raõÁÃ\ÊéXlÿŠ- “÷`BÝe‘²¯+;FoFÏSùÆêæûÙsE®L]ýQË|ýµ=Ñ$/ÑÞçqçÞ‡uÓŽhd¿\¬ûdë«Ñ;ùuUâÓOe $»"ýŠü¹¼NÜÅ#[Ù+¬l=Ýé´¶‘5ÏŸýø“è×wJjÊ€öÇlߊ\mˆvC´,¯k¼7w:ÿ¹=µUvU|k¾—©³ýÓ]¿lþñõß[w.ŠœŠK(ÄÉ€9œ0Ïò«§}‘{ͧ[¿…mkD¿¯²äªl¯iŠ\„ýÁ'7:†i„e÷.NŠw¡ë¬õ­t¹[n¬í€<+ {¨A&/ö‰C¶WÛùÒ|/᤹û7ÌÑ›ÿvícEÖûüóá'_t<)=‰xŸ‡íõ÷ò1<#ë…¿{`g´~ùË>_·^‘‹¤ŸÜ¾Ãn‰#%He_[¯H\·]yŸdÆxišï«îc‘+Tí¤F˜1Á€¤ÄÇ>ɺå;ßxÝüÑ_][·&Ék}‚ÁJ›~»,ÏzWž–4=ëkÉg—¥½ù>ÞÇRÅAJ2«Ýv&p@íÙ±ñÈ”ÇéÙYu*·*ƒ=.ŽÒ-w°BBiìŽÅ³]–gñÅN »µú`mÇ%Ïæ{{’4½ýüë¯Zî%gš¾õšÝå¬Nz€òÉÄ/ôpÛvm«ü¹øÓëw7|ìÒ®_Ž&:†ÐpîYO\ûü¦¹öùÆ ™RU7Jà„^“Âòl¾—óÝ¿þ‘ùö× )ë’‘À¿ÕšïxvÉË/>Ÿûçô÷Ão­M´’3£ªÑnGýÆ5÷üF4Áù°5¥ïU.Hv«ÈÁ:¡UB œ—¤ùÞŽ7¶Í÷½úXžŽü4 &ynÛJ ùíÏÿ§u·¬½»·Go€rIˆØ•_WÙß'»6í$ÙÄ«,ä}šóØäõ_*'àB ¼×m¼±ÑúÑOnݶlãORòñ|rÝ|ó«/åöåˤ­näµW^à *°©C©V§•¥}—„¾‘þâ‡AÛ¾AúQe‡¤èRn¤Ç£ É¶¬¼½²çyó'W?\L¤¾ôW^Ìe·DM|ýÁµu“šå¯¾ò‚Ù½kßdP0ÙýغusÔ¿'åZrqÈ6–ËyQ;: ‰NOø8HRdÏÉŽm›×ý^vÙñŒT?dÙùHBÖ—ö2ØQ„Ô‚<ýÂ×^1Ë?üɺ/7¯ùä/?üɆ}ýµ=_øù‘0qõG­µ²(Ù™n/—•½úÒÓÝôNC‹Œè5:”¤ñµ½ÂM^:íÒÈ…­º/òlÇãADò<>À’£äõ_**¤š‚·ñè 6ä Ižœâ[¾·ïÝ7&‡P²÷ñÍu¿—3 OE¼OC&[uêáëµûŸ†%!GþÏ—öm¼’‡N¯ JCa‡ÕHé•Û÷äzà²Ñþ=;¶›z^™LÔ’×{Æýú…UjEž¨Ö…’Õ¹|ù2SþWb¿—µÏnÜ+ìE ÐÙ“䮑 WñÞ’Ÿ~p-ˆŸîx<Š.øå]zeb‡$ËÎÇÓ_wžÚ ?JP+rÒ{쉻ñ«]rå­uk5ªqÞ¥S^ä…È–]· u »"×[÷ÖvKl™V2²Ý–oÉórÑÓ7oÞ´¡áÝ'ñà!ú:J8¨§ãz·™Û¶š=;¶±óQ„ÔŠÌ+“­Þ¼ÈHÇ_ùââºÿ-jœ|ô$jÀìÅŽ¦”C»µO€€þäyòÆ>sÿþ£ŽîIHÙ¾ms´ËRôó­„§øˆb£»í.²¥W·4|ÈayjlIذ½RÍ !„ÞzâQGm܈RZ_Çšç¡Ir¯LQi?É=‰xh¹}§wIY|¶¾Ý‘ÆI;ÑeS,Ø@HˆôÜ‘²ž7?ëpšû­ÍÕæh=ÝñxíxÑxnû>léÕnÝýÖ¾G¸'P2¸]§³M±´÷·¢™ó‡î~¯°ÆÅx€é·#/ÔÛõ…6¾ Cˆ€òIýõ›ë_¤ü·Ì³Jò>ó£)½Ú¡»”^!)V"¨Ù‚n/ÝzmßîB¶ˆeÇäOwý=óÆêÑT.Ù=±sèeìc™SV¤L Í.L<ĘØNŒÒ[Ò@9¤#ÃO>í°KòÝÞ*üž” "Ëë`Þçö<°hçcçÿßÞÄÆuäw¯Œ%[²A‰tw8$-MÛcÀ$ a—9Ìa lâÀ‹ÕÉ€r‰¯Ô%@r‘ƒÉ%1@ïeS—\Åëä$À—m ” `&@x¤eÄ‘Dr9M³m®,Y²g¿§*©Õj²ßëî÷^Uõ÷V&2ùºÙì®ÿ«ÿï_¯Ðz…¾ñÊÁHèvH'æåÛ?:fþ÷ñÿzàWåÿ=4üøÿ$VÁâF ÿñwÛO‹–ÎËÐYÄôÚ‰1.ûrôÙƒ ™~{½ dzý?»ß¼#}Nä=uK]ë[;†k½j/<˜z…a£(ÁHÐ6u;7J°,*Zž}þÔ^ÀèÏ“mÅŒÛ9awdÊàÂüNšBÆtdcT¬¼ÜVؼzìÙφb@ˆÔªÕÚÿöÀ÷ÄßýaÒò›§÷vÌæÞ~¦ïìzùéyÏQ^e !÷²>_Àsë•ÙCÿ~{‹˜v^ŽýáÛ§~ö¿ÛFÖMÚâ¥S{1óRG¦}b™¡Í @ÜN³ÚdÿïýGÏèØI;$×Oü\/n³µhAÒ~æ‡v@\+PŠŒíÚ)اÛïþüþÈŸþ9M[@{ÒÞJÖ¾Ó¾[S¶Îb¦WN¦ÝaM{øß0@Ú!VKÖ·¾7÷ù·ÎD9l'¤펨 )bÒÖ½Öþ v w9ûÆdîßèE F‚îiüoû.ýYý¶sSUîeÔ¾“6¤yÐŽŒIŠœÛOÿ\f>æ0CLÆ¢ÆØs~ÐÖNÖ™¥éVØÐ‚†Ø¹ÅÿÃGß'‡~ÿý’?;ý‡iÿ=üC—ƒ ‡IˆŠ‘›ÇÿK¡cß1mR­Y$ðE FÆÛ“/ŒV¿­þ·ö˜*’ÃwdþôÀïÙ¾+Óô79™Î¿ë£a,~:wlD…ÌKm…u·â†ð {ú]P1Òo¶ly!Æ"·ŽÍ&§´÷Êæ¥óÔõUŠ+ˆ€~Q”`d¨…Kc€5«½¶¸õÞù&Þ¤X)OçNLÚùÎö±ÎÝ™öV3ãIø?n;6ý.ì:wnLÇHgCƒ¸×ª+DÊ(@Š "DïS;G˜¼?¹#’Vg®ðE FŠvK¾ûþû®§»wJÂð¾£X TçÔ²´y§³HiÏΘ.»4¾¶¦Ûã~ŽçÕ˜.íi¦Ë„4C‘ö"䛇ßå¾#Q4÷~r÷å7Íüb~d*ë«÷ßi°Ëļ6ŠŒœÙéj’/QžDEGV½ŠVÔ\wÝ™Òî y•0=ßn–>;ãtîÔt¶ž™H §ó¼šAukSë.à´ŸkãÅÉß°‹M¦r¿w¿?:õt±ï €a9ÝÑæyçßí¼6Ì‹>{Ú V›òÌøX£ƒ¢#I;ÿíZò¦½óõ7É¿Uht;ù=­ƒŠcÇ0k+Z˜¿wjÒ·žµëÌÉtîØ˜ŽA&ðâÆéÖ¦fú.Ю[¡cº´¬É+Êét5£>&º=¢?R„êwC…ÇΑ>m*J¨…F:ô°³(Q«27Éà3ŠŒ´ääÚŽâàYòh(ÅŠq¡Ãû/þïí­`ú°8awY8=Nçªû‚êàANgqÓmç¦3gcÊÚ¤qP¡3hÖ¡Ûèçn­kæ€]ŸÚ×Üsá&aéüÇv n¿Ú3j}êÜ…Äðý¨:þB›òÎ>»%ð+ ƒ+TÔâÕ®½XyðXw »ïŠdÑkwE…Š®ÅeWhC¿º3ýNêV¨¤ÙÁ9è¿ ]îƒvuÌ;;YtŽÜ´èè䊵Eéß>¿cç>/Úo¨õÓ® ‰¢Hé bE‡›/ï?LBô*Z¾~øí Weå •Î1ƦK;ØÑ—~@Ø…év§»ß“¡Èé¶“ãã!ÃpЮŽÉ©EˆŸÆŽ¿ü\Q2èŽ?7Š`@º#Õm—Š’dwåñ“ݽûÌcû¿ ê v°'-`¯°Ã‚ ¤/rÒëvfM·BçIQ³ýÂßõýÌ›2ÝMŠ7“v¬ßÛLüsôÏ¿çz£ ÈE “#v÷âÙÆgÚ·;)Ú]q­`ÃØ]qg®˜CvX\ÁB†1ëVÔ ZètÛÑé–Í1]&«™À¸IX*8ôHx´kßnŒ³Jà9V"@ \¸¾[Ë•vTÜîʳâe°ìŠsXÁ¢k:š,/›#/½”Lo9èQtP@{ÐS»»íÊtöÙþ¿£°ÑN‡Ó>r÷ë—NRxD@Ÿ_wìÊë}ðE à™çwWžqí`_?|”üy˜í`¦­ßØ.·Úþmaì²ÃÓ}'þ±µÈϽÖþ ;ï“'^å‡×XMxÚötçâYéâÂöy,½ÚÂÜhc¾wYŠ(–>ní|ùÜ÷äl,„€ÕÃöÏ –ÎÀý°[ÂLÛhãná{sHÑâv^Cx/~üYÝØ~a—äíÉ×yvá=Š r/îŸ÷lWåÑÓ‘Æ ßs¦}¯¢¥³=ÌØ‰ ™èIEˆZ¶´CÒYè=•CŠ`ĹEçù+¦K[˜ÛeƤ°vÝÚÃnuüÎ >»-úõÝÛ[{єżô:KïgOý1¯¢À:ƒÅÙ³…„ûÐ}ö¯5Ìé âwóº½N `4èÆ‰ndèýaX£Õc¡÷½Ÿ¼5Ã{‚AQ o®Xé–e1-í_÷°¯ïv\\¾ÅMsÿ?™ü¦BäwÍ–ÙÙ¿?Ô6Ó˜è½L;$$ E €Üô*Zžµƒ=ß6ìLKç÷Lo1mÓe×ÅP¼¥ÐM[;{¹ÝÔˆÞ§j'C‚Q”(Ía‡Hš¶L‹ â›v[LGÆå°ïÓ­x1m!}F"ƒ ½q»³ù}ý'gFé}‡„ŒOKÞr™ó\¿ûn‹y삟&çÂÅR¼t†ôMÇÂÄaí­c0Àó6[ûfso?Õï±òdnqî~§za²à>íénË!Â.Ýv\òlë¼§×"Ëëb’båÙŸµèr… E bµiGÛöú½ÔŠäŸ±×h§"À'€èµ·4´ãÒ>"Ôe\Úw]Šœêóô\sxöÅi/b:'¹V2Csçlün·Õ³™™Krå@\ø€¶C&M¶Ž^ÅKQ;/íž+bÚÎz1´’™ŽBÆt<æö¶2î r¤K#zÍVôë5© #@¼øÍ€ Ò/¦­E¬½mLEËC[@”y¦Bg!“%ÓÜmù›Ž63Óe÷£Mˆ~7ÒŒôÕk§V7µÊIvù€ÈQ”@NÚ‹–n'æ·Ûo+PÚO€Þk+|™>Ôyv?×Õm"Q·"¯½ýÌaç&@±ÿàÛ¤(×k9ík…b=¼«€Úwž_œwð?_¬<+bÚ‹›2ZÉÒê,lÌÅÍAígÝ4zµ×NMçÎÎA_{Çû=vó\ £3èô;wÎáu`ôP”@€Ú —4£MÛ³0¦c1Ù¾4%·• ¢[¡ã´çlŠÐ~†Ow¼|àò"oŒ1¦a%0Ú³0&ã í»2íùÓ¥ 1µ™•©ý ¼È"ÚéÕÚ`4P”ÕYÀd]Dv¶u6¦cÀóϯ»úèÚ²Ô§×'膢«n ÐAîŽï°Ñž­i×­àyþ¿cG£_ÝÚÔÜ4¶'c§Ð’ Š@PZäæ¹ø=¨:ˆ¦Nù:d ÛD³ƒ0é @Qx§ ‡¬O÷™i€ƒ0o@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©(J”Š¢@©ŽðôbTyõˆ©?Úó‘Ýùú[óÍã?ðÀ¡NŸxżz´÷½ÜõÝ<‘@(JQz÷ô óÁ;=Ú?|¶ÉB=}x¶bÞ©ïù÷þê“[<™@hßP*Š¥¢(P*Š¥¢(P*Š¥¢(P*Š¥¢(P*Š¥:ÂÓˆÑî7Í»z>²oÿŸ?”Œ¢¥Ïîì'ÿüGû€RQ”(E €RQ”(E €RQ”(E €RqN P°Ó'^1¯ýy§züÀoüÍãïÍݯ%^OqøÂTyõˆ©?jN|Ù¼zô¥§A‡þq¾b¦÷@½Êaï…Æþ>ì~ó]ògÞxQ”9›ŸzÍÌVŽ›wªÇž~g¥§ï~ý­Yß}hV·î›;_[ÈÍ-š{Ñõ}*¶žÓ^tMƒyèÂ3‹dgEê•ãæƒw&’åÏïì›þmëéÄ<¼{úDòýzù‡Ï6 _ðþìÝ™žG —_~¶™ë÷ø«Onõü;úù½ÿãqóþ['‡òzh÷—g+©ž¿ø—»¥-àT ¤y>½Îo~y¼~õ»÷×?™Jýsüèý¶ð‚ÝÑûÏÂüdÏ¿§ëÓuÛ°ß}-WØ›d'å;óÉ_šÕíû¥=×GQ ‘î~0;‘yz²È=™ü£;êú@γ8AÿÜÂpØÅˆóé~•jái’Eú˜ùÕÍrŠ·€ìEE“ïw¾µøÕs™†wY­xi߇ôx†©¨÷AG¯~TüÓÍ&­@ ºC ç‡gªÉà¢>ˆ-Ž~þ§§S/’P-”þ&Ã]õ~dYP¦- òöõ‚R…`Ze>çi¿÷çCzÎË|tß_¿s÷îL®¿sòÁo-0 µ(èCX»eqÆiï˜#_úyüüÏNR(êîpÚ…¼î(÷›kD–ï;ì»öyÐNNÚÉa·.¥•öûêq £õR?_Ý)ó}ÐQAô3  8üÆpI ½n´¦0)—BE¿&²,äËØQK{Ç^#”6Då¹Ò*c·$Ës>(÷>¨âÓîš(L€pðÛ ôÉw}ûÐÓ¢S-(‡ÚµŠ.R³,æËX §-„BØ%q|o›Kû=³WÝø¼ø×µ}ðÎë\ €4(J€>å„Z(²ŒŠÅp¨,£—ÞdX$Ý•öûeiCóŠÀ/R¶=Ý•öûeiCëÆí ú¼Á{!¦o}ø`öõ¾v®‡{÷ÁwæÎWßš#,ël“¯˜Ó'^N¾G¿-jãúûO7øñD Ÿ2ûéµ Oûý‹œÂUdQÑôœ§-B‹œÂ•ö9ôz¹1£÷Á'“Ö=w8b;½÷U^=:ð{¡&­Æ¡‹€ï(J€Œ’q¼oe[|f=W¤}Öï¬}€kñÉxÌü¹Aer£tÓËz-ýêf³«MÛº5¬ PErçb¤ù½ô±(ä9×÷Ⱥ+èÞõ<¤û¼ûüÿéÞ ³æ¢tz?dl:à7Š £ŸžËThá²²ºÓ÷¡^úðÖ¯UµeéOW?5EIþôKó=*öqèû¬üûïs9¡ß}í´ øßR ƒ,»jWȋü3[9Æ8G‡íœi᤻Ä*N‹êgO»ØÔ"-ÏErÚ¯?è(d)ó\giÝôû¤¡÷À< G_;í뽬©xÒ£(28žaAqç«G¹>µŸ¬§Û-áøZ0]út£ð¬D–¬@žEIQ |àËAŠi[” ¸ë{¤)|ô,"ÃANˆE Fõ¦•çB“±m„Ö…b¹>ú¼CÍñ¡…«ˆ P¾pãm‡ù¼ô#Í×t¨À©“/§ú{Eå„ò~ŸPV*@NŠ˜§]\v/Ž ‘a 7èWÚ»Çyµp¥ýºƒN€òIÚç<¯®´çx Z,¼zô¥T¯Èái[Yø¢Èà›Çß§þËïTóÏrèFø¥ÈüÈA²ä4ò(Jb>0ñ YKÏyÚ©€ƒH›QãLYqN ÁÝ 9MeRkJžw‚x×?ðƒîØú²ÐÖâ3ÍYe%ƒN€ò{™Üìá}ˆ·mŒt‡W­:ýö1ë¿sÿ­¾Î¿oßOô´w…K?GïBëš²ä-¬ÒþN|vçë¾ÏÔÞ¤ÒŒáF WšŸ­{„NÏéüôkæÝScì:â·èÃÕÕ$+2è]ºöÅØÅí[ 9)ƒYß}èí3øy†‰PƒòmTY´+ñá™ÞE‰~.ƒ%±ÐÉñÇþ 9°öô‰—“÷IvE€¸Q”}ТJSµ†Ý>àŠµ&˜¶Þ{-ä¾h>d̦§¾hú»ËåNþïugyS¸Ò,‡îöÙçIQÒ;ëàZ¯ú-ÒŠœº•]ÿé“/›Ê«G“ÂC¯A&i£‹¢è“ „< “vZp¼ûªîr?¹Ó­6 w†[l¢|ͽþ)(ÃñÁ;=ÿÞ EIÚ“ÊcÜɵK¥|ÖoÑfLï>ÜÌP¢e]!’¦½ Àh¡( û_üúŽù›ŸLò!ëîf»Å޾¿ZEÜ(R”Ã÷ç^Ž´EI¿FuÔAô{™æ9¤…K‹üž×QÒPW„ÌÚÝ_Z¯ôBQ H Ò_üË]óÁìëæý·Núá«~õ®«UD >-nÌ+„bPטf8à -\©¦nEx6ÉA\Öëý ß.ý7in„9T ÙÙ=}‚ :€¾pë’OÖ¿4—>ÝH ƒ2îkQ¨V2íÚ° (ήç­[NÚ‚ ŸÝ’4­[±L€Ê"Ïsb|* ÷ä‘çÚ‘+òý‡ @~‹èCS˜úG–Z´Ù[­ï¡;—ú~+«;üˆñô5Ùk1ÛO S·ºswñ{-˜³¶p¥mÝʳtï1Ã%}='ÚÔ¨ôä ûoñ)¤(ÙØýÊ{ù¨9~”£GªZ¹E™Š“SvúLÞShÜ”ÂÆ.R‡}bšÖ-_&@•áŸÛJ58Ë®²‡ èç­VÑa½wéµñàñ’ó~¾yü}r˜¬®â(߃Çß%ëø"R%ì|}ß|yÿ©UÆM­rÒy‰( F—‚èíat}À?™TsÜÌVŽ™S'^ênŠ¡úpÅ;ÕEÐr"3× IDATÛP¸)m½îÜg¹û*à^Ò(è9OS”diáJSXæÙº©’~ ½þÜHsò €¿¾ûþI1²±ÛJþ\„¶.ô€ní|i6[_›·'_73ã½ßTQðMr‡ðI¡ò‰}¼nœæŸØ|È ÔóÍØà||ó]X#nõ:p‡s$K Wº©[ÅM€ò[„÷zžÒ¶p¥iÝÊs¨€^;Y[¶Üõ¨èb÷ðßfk?Y³?xTìš¡ð~*=ÀwwÌæÞ¾y{rÂL¼Æé­@§¤wÚîn´ŸMÒoÿ¶¾Æ…ùIóËÏ6£x®9ó j'êU”˜”-\iZ·¸n†zbš¯óyN»$*ˆtƒ# =vµŽÊù4@Èöî?0·vö’î¦2”öÉ®ü›ßnš÷v ÛBäÊÿø›mó÷ŸnôÝ–¡—X&ÔptÿÒæ;Ò,~gSìâÑ6ø¤•*Í¢<í¤®4ß/Y§l©Ñû à7­Ãµ׺¼¬‚ÄøpN‰vL~ýÅFR™8œ”ú WqòE‡$æ=)§(ÇÙ)HšE«Û¡; £€ÓKó<¸®ƒ¤iÝÊk¨€^i "GïSŒ$ü§õ·ÖáZ—Í‹Ov—7ù×/6’P<€Ãiá¡V,‰’ÅŸDR”œ>ÉNÉ Ò¶÷VtôZ@›œ'@…fÏyš"PíyyÈrCC?w ÀoZoÿk²)ð¥7K^ÝnTÞdõwÛæß~»iö†zi5œÆ©HÚž4¥ ýK„>l!Zö¨ÐhEšlÍaÏkš› yíLei™Ìz³@q4âWël­·‹²÷âeƒ¹úÙ>ÿ»Éø`Mêb„0|p:å¨Þõ>Úª¡Óãzz,ÕµÅ/ú”ü©`èu÷û°)\½þÛ<'@…J£‘?xgâЫ?h —~½^÷_¤,|ú¡3•Ò(c°ï@o®+©¨3GúáuêUOܽÖ~R˜¨@ÊôáÙJª?å=ŠüPÖâO‹‘Xò"½ŒÊãÌ›k­êU¨v+JÒ´nå5*dÜ«(1LáJ7z9¿ç<í.kÑçö0ôèMëiŸÚ´âýmS=ë[ͤïm¯Ä‰€NN£züháÏÕ¯Ë=À¯Èày–°-—¦pè6ö—Ö­þèfEšÝžß²‡ ¤ÝeÝ}Pì.IšñÖÀ¨ÒºYëg­£C˜tL/‡úÞ~ãzàsüu*e›Cî|•.ÛUTð\wçÙ)ž~§põúä5*ižóΨ4“ÐÒŽŽIšçEZ'k½¬u³o¹‘Ã×`žL X2B˜óMP¤/šévêbº“ÿ å"g~êÕܯEt$†'mÿûÂ/MëV^ bv7£ý9gôrwy¦ÊAª@›'¹‘½dâ4Û`›Õ—ÌUnÑ"€b4‘>„šEÚ¿Ÿf¡:(-Ì´_𢽅+MÑMÀý`î0Ô^ÚŸç† 5OÏ­œÀ3ZÿÚŽø •>e‚½¥•œ@yw'™ÔEÞyÓå´ö¿<[)ìç‘¥…!k_‹´-!:í9/*zØ%ÉEÖ;÷½^kyN€ŠE–ƒÓü~1T íû€nä}ƒBÏvI<Éh¬õpàD­l\:÷Ƙ¥‹i¢¾9‘OÞyJ»€+råùŸqÅiOŽ×]Ë-€ º^—ƒ>Ÿì’¤çv8-à‹zÎûù>:(òÝScÉû@Ö3=/z=þôôØÐnL¨Àë§…(›Ú³Ö·vÍ—áç§ocþvãÒ¹kÝþŸîeê?¨Õªd>2Æ\4ÆŒçz™9ùÒ€f&ÆÌÜTÕy‰»®ŒZpg½k§E½[Øk‘¯ÃuˆÆîj²Wû.†>„ÝbEçžèß;Õc}/`t½ƒ´x¨ ùÙ»Ùv{ôüè-f´¸ûÕ£ä\‘â£^Ô9'šÚ“¶ðùä‹þ ,L¯‘AŠŸ&@…B õÏô_”ô»ûÙ75,ëkD7RÜ®®{ßûæñ÷ÉûãތޥÓãóØ!uïÙîuúNõ¸©?bVVw†þ½€aÐnÈÚv3†6-í†\1Æ,·ïŒt:´ÁÒþ‡—kõ†z¾µ#›÷UçE?PÍl®UÆÍÛ“¡> xBwþ)Ú ”¼©øÕÍæ@ßEEE–Ý’viúiéñ|²þåÐZCð„;³¤ß¾û"&@Åæó¤(é?^t¨÷½A ×<Þ÷T,éºÒ>îfI;ŠøH¹‘ÝV éd¿Ýë/¦º¡/dó&CÞDGî‡x¨ ü¡ÂüͶ÷ýóZdþÃg›CùZj[+ûñºçùøìnÿ…S·²dw©Œ)½Ÿø´K©ç@ïo_4zp5ÀphÄï¿ÚóF/H’8ˆÍô,HLÖÃ7.»¾qéœ “ !VÞDÇïÿ›Žßg„0úäü¾&ºóýËÏï íúôõþiÀ—A¸g`äç³;_÷õµ‹š£~‹9$e¼÷h—2kè=îý@¯;^{ˆÖ£Z—jį֩S} BDAöL}5mn\:·bG/…ü¬)o¢£ø×·šŒF_ôaxéÓ ï>µhÈc¯T­í ä'ët9§¨ P1ê·¸(3¿£ÝÊ2õ½ñë;Ï]ƒ…Э?µÕz4‚ û’ñÛ×#}'Éìaw¾I×}(6v¿JŽæ×¿¬´ øÅ¿ÜMÚ|hoR~ä—9îà]˜t[€ ?ýܹ'à>˜¬yœ´^æÅÝ$(ºeïI~d/y¿í¼áBû BÑúóš;oä° {/Ÿ$dûÄþ¢Vo¼gŒ¹êaW©*?7]1¯BF<ÔÖ ö—Þy½ðQµú°þô·_™Oÿ³UHa¤À¯™ÏVr ì»Ç¤çÅqwîÓN?*rT¬ôû”ešŸE ^#º9¡kQÈ<ïƒ õ)Ð~ÐkÍ=‡Ã<¼È‹r#k[»¡ŸÄnìˆß YÛ´2´w{AoÕê줮 Gë¢~¾É¯™Ùéª9~”`‘ž>0õA­ìÅOíiëy~HjAàþ)z—&ɬ|¶ùôTùa'EXxñùÏrf »$ƒs¹ˆ´ï>í èç¯Ö)½ßý÷·Æ‡ZœèýTÃt³'Má«Ý›aÞ äE¹Ý`ØRËNÔZæý£a~1§VoŒÛÂä£<¾~‘Þž|ÝÔ*'9ß}Ó‡ô¬…Y}õHß‹w}(ï>xüô|-|Z´'§OO¿–é¼'Y”}õèi•†ž×^'4ëù¤í+ÍIügÌÄ Ísë´Ÿ=㛴ÇÇå9÷ùÀö÷¬çègðä,“ÉD­~w5.<ͬz¯Ñùù²©¼ú¬ØÓûj¨ï©Ófk߬Å1PéºmÕJ5Þ·¹%N­Þ8oŒù8Ô¼‰óúkÇ“ƒÉ›à ÊèÄ&j©ùÛKçrjUHQâÔê MëºjÞÄ™™KںțÀQnDmZœ8µg]±“v QhQbžåM´k²òÏJ-]µÊ8y$;#»­ZµVìîH¡‡P^”8µzcÞ'AçMŽ¿|ÄÌNU“i]-š¦µ¾Ý ý$vcs#KÃñ›UiE‰S«7줮àó&³Ó3vŒQ„±Ó1ë[»±äF–ú=‰}XJ/J̳–®bÉ›ÌMUiéˆÚ³Ö¶›ÑäF4æ·èV­n¼(J;Bx1–¼‰&u r#×ln$·¿YyU”8µzã=›7™÷ãŠú£¼ÉÙ7&! 0ø½qo'†ÜȪ-FJÉÆË¢Ä±y“CoéRÞäÌ©IFD#~oÞ݉!7Ò²ÅH©¹‘Ãx]”˜çó&‹\Î@4>Xç›7ð—Ú³Ô¦¥v­,ù’9Œ÷E‰có&WC!¬‚dnºjfÆÇ<¸´Ûl훵­f ¹µh]ð)7r˜`ŠÇæM®†>BX£ƒç¦+äM< ÜÈÚÖn2ê7p·m1â]nä0Á%N­Þp-]AçMtèâìt•¼ @ ”Yßj&‡ ®eÏYña[”˜gy“E›9 š²&Êœ7ȟڳ܈ß,Û‚ÄëÜÈa‚.JœZ½1o§t7Ña'äMò£ÜˆŠ‘Fü^·SµV=¸–DQ”8µzã¼-N‚Λh„°^$o0<ÊÜÚÙ‹aÄïm[Œ\óàZ†"ª¢Ä©Õ—1CÏ›ÌLŒ%;'äMú§V­µí¦ÙÜÛýYT{Ö•Kç.{p-CeQbžåM´k²àÁåôM“Ze<Ù9@6ÚÙØmÅ0âwÅæF‚ñ›U´E‰cG/Æ7™ª&Óºp8MÓZßnÆ’Y mÄoVÑ%N­ÞX°ÅIðy“ÙéJrÎ ž§sFÖ·vcɨYñàZr72E‰yÖÒåÎ7 šÆ+oÂa€'¹MÔÒ˜ß,iÌoÈ#~³©¢Ä©ÕoÚ¼Éy?®¨?*HÜù&£Ê7An䚪enä0#Y”86o¢âdÞ+êò&gߘd„0)ñ{ãÞN ¹‘U[ŒD9ÌH%ŽÍ›|úaåMΜšd„0ˆÚƒÇß™›wwbÈ´l12¹‘ÃP”X6o²h3'As-]äM@LÔžåZµ"°lƒì#“9 EI›7¹úa$sÓU33>æÁÕ f³µoÖ¶š1äFÔ¢uas#‡¡(9€Í›\ }„°FÏMWÈ›€ )7²¶µ›Œú Üm[ŒŒlnä0%=Ôê 7B8載]œ®’7APnd}«™‚¸–mÓZæ•w0Š’lÞDAøï/öjéªUÆÉ›o¹ÜÈÆn+†V­d'7ÒEIµzcÞ'AçM4BXaxò&À'Ê(ÄÁˆßë¶YõàZ‚@QÒ‡Z½qÞ'AçM4BøíÉ ò& TÊ‹¬oíÆ0â÷¶-F®yp-A¡(@­Þ¸lŒ¹zÞdfbÌÌMUié…R{ÖÚvÓlîí‡þÄ«=ëŠÆüÒªÕŠ’Ù‹±äM´s·[;{1åF–ñ;Š’!±#„cÈ›ÌNU“i]æiZëÛÍXr#KŒøŠ’!«Õ 6otK—ò&gNM2B …FüÞ¼»Cn¤es#+\K4(Jr`G»óMÂ~,•“ɤ.ò& jÏÒD-ùÀ¹‘|P”äÈæM´kr>äÇ¡‚D…‰ €´Tˆ¨ ‰ 7rÍîŽÉ EIlÞDÅÉ|ÈCy“³oL2BjïþsãÞN ¹‘U[ŒÉEIjõ†ké :o¢üìt•¼ xŽr#ë[Í$̸– ±/ó.EIÁlÞdÑfN‚æZºÈ›0ÚÔžåZµ"°l r#¢()‰Í›\ }„° ’¹éª™óàj@Ñ6[ûfm«CnD-ZÈ”ƒ¢¤d6o¢âäÍÇØ±WÌÜt…¼ #B¹€ÁˆßÛ¶!7R"ŠOÔêËÆ˜‹¡çMf&Æ’¶.ò&ÄI¹µimîí‡þøÔžueãÒ¹Ë\ËÈ£(ñˆÍ›hJ×BÈC-]µÊ8y"âr#»­ZµVìT-r#ž (ñP­Þ˜·ÅIÐyÖ® y¦iZëÛÍFü^·ÅȪׂ6%«ÕçmqtÞäõ׎›ÙéJ’;áØø­YßÚ%7¢‰Z+\ º (ñœméú(–¼ÉÜT•–.<§ö¬µíf4¹ù¥UËo%°#„cÉ›¼=9áÁÕ€Nš¨Qnd‰¿a ( Œ!¬–®ù‡ò&gߘd„0žÐˆß÷vbȬÚÜ#~BQ¨Z½±`‹“ [º”79sj’”D#~oÞ݉!7ҲŹ‘Q”¬-o²üc©œL&u‘7 jÏÒy#ó%r#a£(‰€Í›h×ä|ÈF‰ ( ?*DTD¹fwGÈŽ¢$"6or5ôÂ<7]!oÀ)7²¶µ›Œú œŠ äFâAQ¡Z½áZº‚ΛLžxÍÌNWÉ›0 åFÖ·šÉ!ˆkÙ‰Z˼&âBQ)›7Y´™“ ¹–.ò&d£ö,תe[‰EIälÞD-]ï…üHUÌMWÍÌø˜W€ÿ6[ûI1Áˆßë67²êÁµ '%#¢Voœ·aø ó&!¬ƒÉ›Ðr#:1‚¿·m1r̓kAÎ(JFL­Þ¸lŒ¹zÞdfb,ië"oÀÊhgdso?ôgDíYW6.»ìÁµ  %#ÈæM´k²ò£WKW­2NÞ0ò´3²±ÛŠaÄïŠÝ!72b(JFX­Þ˜·ÅIÐy“ã/1³SÕdZ£DÓ´Ö·›±äF–ñ;º(J âdÁNê >o2;]IÎ9 f:gd}k7–ÜˆŠ‘®%¢(A¶t}KÞdnªJK :jÏZÛnF“ј_Zµ`(JÐÉŽVK×ùŸ$î|bàΉ 7rÍæFn{p-ðE ºªÕïÙâd>ägHy“³oL2B,ø½qo'†ÜȪ-FÈà%8”Í›|zK—ò&gNM2B ø½yw'†ÜHË#äFp ŠôÔ–7Y ýÙR;—ںț|¥ö,µi©]+KäFE R³y“«¡VA27]53ãc\ Ïl¶öÍÚV3†ÜˆZ´.AZ%ÈÌæM®†>BX£ƒç¦+äM¥Sndmk7õ¸Û¶!7‚L(JзZ½áZº‚ΛèÐÅÙé*y@á”Yßj&‡ ®eÏYæU„~P”` 6o²h3'As#„É›ò¦ö,eF6v[1´j­Ø ;¹ô¢CQ«7æí”® ó&!¬â„¼ /Ê(ÈÁˆßë¶YõàZ8Š U­Þ8o‹“ ó&!üöäyÀÐ(7rkg/†¿·m1r̓kA$(J‹Z½qÙs1ô¼ÉÌĘ™›ªÒÒè›Ú³Ö¶›fso?ô'QíYW6.»ìÁµ 2%È!¬¼ÉBÈϲ ’Ze<Ù9 íŒD”YbÄ/òBQ‚ÜÙ‹1äMf§ªÉ´.£iZëÛÍXr#KŒøEÞ(JP˜Z½±`‹“àó&³Ó•äœÚ霑õ­ÝXr#*FV<¸ŒŠÊŽvç›Mãƒ5©‹¼ @íYš¨¥1¿X2Æ,3âE¢(A)lÞDSºÎ‡üPAâÎ7Œ&"*H"È\³SµÈ p%(•Í›¨8™ù'¡¼ÉÙ7&! #D#~oÜÛ‰!7²j‹r#( E ¼`ó&‡>BXy“3§&Íñ£G<¸@<þÎܼ»Cn¤e‹r#(E ¼aó&‹6s4×ÒEÞâ¡ö,תed'7/P”À;6or5ôÂ*H榫ff|̃« b³µoÖ¶š1äFÔ¢uÜ|CQoÙ¼ÉÕÐGktðÜt…¼ H¹‘µ­ÝdÔoànÛb„ܼDQïÕê 7B8載]œ®’7€(7¢6­Í½ýÐ\jϺ²qéÜe®8E ‚`ó& Â/„üSKW­2NÞ<år#»­ZµVlܼGQ‚ Ôêy[œ7Ña…áÉ›€?”ÑîH#~¯ÛbdÕƒkR¡(AjõÆy[œ7ÑáÙéJ’;”Cy‘õ­ÝFüÞ¶ÅÈ5®È„¢Á²-]Ê›\ =o231f榪´t@Ôžµ¶ÝŒ&7¢1¿´j!T%ž!¼KÞäíÉ ®âvkg/¦ÜÈ#~:ŠDÃŽ^Œ!o2;UM¦u†kçëûf}»Knd‰¿ˆE ¢S«7lÞ$è–.åMΜšd„0 FüÞ¼»Cn¤es#+\ 04%ˆR[Þd1ôǧñÁšÔEÞ²S{–&jiÌo–È V%ˆšÍ›h×ä|ÈS‰ (€tTˆ¨ ‰ 7rÍîŽA´(J0lÞDÅÉ|ÈWy“³oLš‰×Ž{p5à§½ûÌÚÖn2ê7p*B.Á( (ÁH©Õ®¥+載Bð³ÓUò&ÐF¹‘õ­ff\ˆؗùùbTP”`äØ¼É¢Íœ͵t‘70ÊÔžåZµ"°l r#)%Y6or5ôÂ*H榫ff|̃«€bm¶öÍÚV3†ÜÈuÛªEn#‰¢#ÏæMTœ¼òs1vì37]!o`$(7¢#ñ{ۆدyp-@i(J«Vo\6Æ\ =o231–´u‘7#åFÔ¦µ¹·ú£S{Ö•Kç.{p-@é(J€66o¢)] !?/jéªUÆÉ›ˆ†Ëlì¶bhÕZ±»#äF‹¢è¢VoÌÛâ$載FÏNU“i]*MÓZßnš¾ ýgxÝ#«\ àŠàµzcÁNê :oòúkÇÍìt%É@(tÎÈúÖn,¹MÔZñàZ/Q”=Ø–®bÉ›ÌMUiéà5µg­m7£ÉhÌ/­ZÀá(J€”ìáÅXò&oONxp5ðæÁÕðr#*F"ñ{ÝNÕZõàZ€hQ”©Õçm>載FëàEò&ºQnD F0â÷¶-F®yp-@ô(J€‚ÕêËÆ˜‹¡çMf&Æ’¶.ò&ŒÍhgdso?ôçCíYW6.»ìÁµ#ƒ¢(Í›h×d!äç_-]µÊx²s`tigdc·Èß»;Bn(E P";Bx1ô¼Éñ—˜Ù©j2­ ÀèÐ4­õíf,¹‘%Füå¡(½¥Ky“3§&! B#~oÞ݉!7ҲŹÀc%@Úò&‹¡ÿ¼ÔÎ¥¶.ò&€ŸÔžåZµ"°lƒìäFÏQ”±y“«¡VA27]53ãc\ g³µoÖ¶š1äFÔ¢uÜŠ @6or5ôÂ<7]!o”L¹‘µ­ÝdÔoànÛb„ÜŠ `µzõt7Ñ¡‹³ÓUò&@Á”Yßj&‡ ®eÛ´–y a¢(gó& Â/„üHÔÒU«Œ'™ò&@¾\ndc·C«ÖŠ ²“FQD¢VoÌÛâ$載F+OÞȇr# ±G0â÷º-FV=¸¢("S«7ÎÛâ$載F¿=9AÞåFníìÅ0â÷¶-F®yp-†„¢ˆT­Þ¸lŒ¹zÞdfbÌÌMUiéú¤ö¬µí¦ UgJ ÄIDATÙÜÛý)T{Ö•Kç.{p-†Œ¢ˆ˜!¼KÞD;'ÒÓÎHD¹‘%Füñ¢(F€!¼CÞdvªšLëp0MÓZßnÆ’YbÄ/?Š`„Ôê[œŸ7™®$çœxF#~oÞ݉!7Ò²¹‘®@(J€cG»óM‚¦ñÁšÔEÞ£NíYš¨¥1¿X2Æ,3â-%Àˆ²yMé:ò3 ‚D…‰ `©QAAnäšÝ!7Œ Š`ÄÙ¼‰Š“ùŸ åMξ1ÉaŒ ø½qo'†ÜȪ-FÈ#Œ¢@ÂæM>}„°ò&gNMšãGxp5Àð)7²¾ÕLÂìkÙû2/%ž²y“E›9 šké"o‚X¨=˵jE`Ù$äF$(J¼ÀæM®†>BXÉÜtÕÌŒyp5@ÿ6[ûfm«CnD-ZÈèDQà@6or5ôÂ<7]!o‚à(7²¶µkö~úï¶-FÈ芢@Oµzã²1æbèy“™‰±¤­‹¼ |§ÜˆÚ´6÷öCÿY©=ëÊÆ¥s—=¸£(ŠÍ›(¿ò3¦–®Zeœ¼ ¼är#»­ZµVìT-r#z¢(I­Þ˜·ÅIÐyÖ® yøB¹íŽD0â÷º-FV=¸ (ЗZ½qÞ'AçM4Bxvº’äN€2(/²¾µk¾¼ÿ ôçÿ¶-F®yp-CQ o¶¥ë£Xò&sSUZºPµg­m7£ÉhÌ/­ZúEQ``v„ðb,y“·''<¸ÄìÖÎ^L¹‘%FüE €¡±#„cÈ›ÌNUÍä‰×<¸ÄD#~oÜÛ‰!7²j[µñ `((J ]­ÞX°y“ [º”79sj’˜FüÞ¼»Cn¤e‹‘®@D(Jä¢-o²ú3¬ñÁšÔEÞY©=Kµ4æ7KäFä…¢@®lÞD»&çC~¦U¨0Q¤¡BDI¹‘kvw„Ü€ÜP”(„Í›¨8™ùWÞäì“fâµã\ |¤ÜÈÚÖn2ê7p*B.PŠ…ªÕ®¥+載Bð³ÓUò&xJ¹‘õ­¦Ùùú~èOJËNÔZöàZŒŠ…³y“E›9 šké"o2ºÔžåZµ"°l r# EQ 46or5ôÂ*H榫ff|̃«A‘6[ûfm«CnäºmÕ"7 %JW«7Îۼɛ!ÿ44BX/’7‰Ÿr#:1‚¿·mˆýš×`„Q”ðF­Þ¸lŒ¹zÞdfb,ië"oåFÔ¦µ¹·úcS{Ö•Kç.{p-@QÀ/6o¢]“…4jéªUÆÉ›DÂåF6v[1´j­ØÝr#¼AQÀKµzcÞ'AçM4BxvªšLëB˜4Mk}»i<ú.ôŸàu[Œ¬zp-ðŠ^«Õ vRWðy“ÙéŠ;öŠWƒ4tÎÈúÖn,¹MÔZñàZ +ŠÞ³-]Å’7™›ªÒÒå1µg­m7£ÉhÌ/­Z|GQ v„ðb,yMê‚_Üy#äF®ÙV-FüE €àÔê÷lÞd>䟞ò&gߘd„°4â÷ƽr#«¶¹îÁµ@j%‚eó&‡ÞÒ¥¼É™S“Œ.FüÞ¼»Cn¤e‹r#‚DQ hmy“ÅàKådr¾ y“ü©=KmZj׊À¹¡£(›7Ñ®Éù &*PÍÖ¾YÛjÆQ‹Ör#b@Q *6or5ôÂ<7]!o2Dʬmí&£~wÛ#äFDƒ¢@”jõ†ké :o¢Cg§«äM ÜÈúV391p-{ÞÈrè:Q”ˆ–Í›,ÚÌIÐ\Ky“ôÔžåFüF`Ù$äFD‰¢@ôjõƼ͛¼òcÕa'3ãc\ß”Q1ÁˆßëvªÖª×¹¡(02jõÆy[œ7Ña¼HÞäEÊÜÚÙ‹aÄïm[Œ\óàZ w%FN­Þ¸lŒ¹zÞdfb,Ù9!oò$7¢‘ͽ}®f jϺ²qéÜå€dFQ`$Ù¼‰vMB~üʘÔ*ãÉÎɨÒÎÈÆn+†¿+vw„Ü€‘CQ`¤Ù‹1äMf§ªÉ´®Q¡iZëÛÍXr#KŒø0Ê(JàIq²`‹“àó&³Ó•䜓X霑õ­ÝXr#*FV<¸(E X¶¥ë£Xò&sSÕ¨F«=K¹ùÀ’ÆüÒªOP”@‡Z½ñ¦Í›œù¹QAâÎ7 ;o$‚ÜÈ5›¹íÁµ€7(Jà6o¢âd>äçHy“³oL9BX#~oÜÛ‰!7²j‹r#ÐE ô`ó&‡ÞÒ¥¼É™S“AŒֈߛwwbÈ´l1BnAQ)ؼɢ͜͵tù˜7Q{–kÕŠÀ² ²“€(J ›7¹úa$sÓU33>æÁÕ<±ÙÚ7k[Ír#jѺ@nÒ£(€>ؼÉÕÐGktðÜt¥Ô¼‰r#k[»É¨ßÀݶŹȈ¢P«7>²m]AçMtèâìtµÐ¼‰r#ë[ÍäÄÀµl›ÖrèÊBQ²yáB~.ÕÒU«Œçž7q¹‘ÝV ­Z+6ÈNn@QCR«7æmqtÞD#„†Ï#o¢ÜˆBìŒø½n‹‘U®‚GQCV«7ÎÛâ$載F¿=91”¼‰ò"ë[»1Œø½m‹‘k\ Dƒ¢rR«7.c.†ž7™™3sSÕ¾ZºÔžµ¶Ý4›{û¹\[ÔžuEc~iÕ€á£(€Ù‹±äM´s’Ö­½˜r#KŒø€üP”@ìáÅò&³SÕdZ×A4Mk}»Knd‰¿?Š(P­ÞX°ÅIðy“ÙéJrΉ£¿7ïîÄiÙÜÈŠ×#¢ fG»óM‚¦ñÁ?ªŽ›ß5[ɘß,‘€âQ”@IlÞDSºÎó3(Ý5»;BnJ@Q%³y'óü, ·j‹r#P"ŠðD­Þp-]ADˆؗGý‰P”€GlÞdÑfNe[OP”€‡lÞäjè#„=£­ äFÀ?%à1›7¹úá’ݶŹðE  Vo\6Æ\$o’‰Ú³®l\:w9 k€‘DQ°yMéZàgÖÓŠªEn@Q©Õó¶8!oò¢ë¶Yõí£(€@Õêó¶8!oò$7¢‰Z+\ #Š˜méúh„ó&InDc~iÕ€pQ”@ìáÅË›¬ØÝFü@à(J "v„ðbäy“U›aÄ/D‚¢"T«7lÞ$¦–®–-FÈ@d(J Rmy“ÅṈE DÎæM´kr>ÀGzÍˆQ”Àˆ°y“«ŒVrÜŒŠ1µzõtù˜7iÙ‰ZË\   %0‚lÞdÑfN|±l r#0b(J`„Ù¼ÉÕ’G_·­ZäF`DQ”Tœœ·aø"ó&·mˆý?m%€§jõÆecÌÅœó&jϺ²qéÜežy€¡(t²yíš,äð䬨Ýr#€§(J]Õêy[œ #or݆Øñ xE àPµzcÁNêê'orÛ#+<Ë€ƒP”z²-]eÈ›$¹ù¥U Ð E 5;Bx±GÞäšÍ0â E ³Z½ñžÍ›Ì·ý·«¶!7È„¢з¶¼ ¹@Œ1ÿQ·ÿ¦yä°IEND®B`‚survival/man/cgd0.Rd0000644000176200001440000000274213537676563014036 0ustar liggesusers\name{cgd0} \docType{data} \alias{cgd0} \title{Chronic Granulotomous Disease data} \description{Data are from a placebo controlled trial of gamma interferon in chronic granulotomous disease (CGD). Contains the data on time to serious infections observed through end of study for each patient. } \usage{cgd0} \format{ \describe{ \item{id}{subject identification number} \item{center}{enrolling center } \item{random}{date of randomization } \item{treatment}{placebo or gamma interferon } \item{sex}{sex} \item{age}{age in years, at study entry } \item{height}{height in cm at study entry} \item{weight}{weight in kg at study entry} \item{inherit}{pattern of inheritance } \item{steroids}{use of steroids at study entry,1=yes} \item{propylac}{use of prophylactic antibiotics at study entry} \item{hos.cat}{a categorization of the centers into 4 groups} \item{futime}{days to last follow-up} \item{etime1-etime7}{up to 7 infection times for the subject} } } \details{ The \code{cgdraw} data set (this one) is in the form found in the references, with one line per patient and no recoding of the variables. The \code{cgd} data set has been further processed so as to have one line per event, with covariates such as center recoded as factors to include meaningful labels. } \source{ Fleming and Harrington, Counting Processes and Survival Analysis, appendix D.2. } \seealso{\code{\link{cgd}}} \keyword{datasets} \keyword{survival} survival/man/solder.Rd0000644000176200001440000000331213537676563014503 0ustar liggesusers\name{solder} \alias{solder} \docType{data} \title{Data from a soldering experiment} \description{ In 1988 an experiment was designed and implemented at one of AT&T's factories to investigate alternatives in the "wave soldering" procedure for mounting electronic componentes to printed circuit boards. The experiment varied a number of factors relevant to the process. The response, measured by eye, is the number of visible solder skips. } \usage{data("solder")} \format{ A data frame with 900 observations on the following 6 variables. \describe{ \item{\code{Opening}}{the amount of clearance around the mounting pad (3 levels)} \item{\code{Solder}}{the amount of solder (Thick or Thin)} \item{\code{Mask}}{type and thickness of the material used for the solder mask (A1.5, A3, A6, B3, B6)} \item{\code{PadType}}{the geometry and size of the mounting pad (10 levels)} \item{\code{Panel}}{each board was divided into 3 panels} \item{\code{skips}}{the number of skips} } } \details{ This data set is used as a detailed example in chapter 1 of Chambers and Hastie. Observations 1-360 and 541-900 form a balanced design of 3*2*10*3= 180 observations for four of the pad types (A1.5, A3, B3, B6), while rows 361-540 match 3 of the 6 Solder*Opening combinations with pad type A6 and the other 3 with pad type A3. } \references{ J Chambers and T Hastie, Statistical models in S. Chapman and Hall, 1993. } \examples{ data(solder) # The balanced subset used by Chambers and Hastie # contains the first 180 of each mask and deletes mask A6. index <- 1 + (1:nrow(solder)) - match(solder$Mask, solder$Mask) solder.balance <- droplevels(subset(solder, Mask != "A6" & index <= 180)) } \keyword{datasets} survival/man/print.summary.coxph.Rd0000644000176200001440000000103513537676563017163 0ustar liggesusers\name{print.summary.coxph} \alias{print.summary.coxph} \title{ Print method for summary.coxph objects } \description{ Produces a printed summary of a fitted coxph model } \usage{ \method{print}{summary.coxph}(x, digits=max(getOption("digits") - 3, 3), signif.stars = getOption("show.signif.stars"), ...) } \arguments{ \item{x}{ the result of a call to \code{summary.coxph} } \item{digits}{significant digits to print} \item{signif.stars}{ Show stars to highlight small p-values } \item{\dots}{For future methods} } survival/man/survexp.us.Rd0000644000176200001440000000337613537676563015367 0ustar liggesusers\name{ratetables} \alias{survexp.us} \alias{survexp.usr} \alias{survexp.mn} \title{ Census Data Sets for the Expected Survival and Person Years Functions } \description{ Census data sets for the expected survival and person years functions. } \details{ \describe{ \item{survexp.us}{ total United States population, by age and sex, 1940 to 2012. } \item{survexp.usr}{ United States population, by age, sex and race, 1940 to 2014. Race is white, nonwhite, or black. For 1960 and 1970 the black population values were not reported separately, so the nonwhite values were used. } \item{survexp.mn}{ total Minnesota population, by age and sex, 1970 to 2013. } } Each of these tables contains the daily hazard rate for a matched subject from the population, defined as \eqn{-\log(1-q)/365.25} where \eqn{q} is the 1 year probability of death as reported in the original tables from the US Census. For age 25 in 1970, for instance, \eqn{p = 1-q} is is the probability that a subject who becomes 25 years of age in 1970 will achieve his/her 26th birthday. The tables are recast in terms of hazard per day for computational convenience. Each table is stored as an array, with additional attributes, and can be subset and manipulated as standard R arrays. See the help page for \code{ratetable} for details. All numeric dimensions of a rate table must be in the same units. The \code{survexp.us} rate table contains daily hazard rates, the age cutpoints are in days, and the calendar year cutpoints are a Date. } \seealso{\code{\link{ratetable}}, \code{\link{survexp}}, \code{\link{pyears}} } \examples{ survexp.uswhite <- survexp.usr[,,"white",] } \keyword{survival} \keyword{datasets} survival/man/tcut.Rd0000644000176200001440000000225113537676563014173 0ustar liggesusers\name{tcut} \alias{tcut} \alias{[.tcut} \alias{levels.tcut} \title{Factors for person-year calculations} \description{ Attaches categories for person-year calculations to a variable without losing the underlying continuous representation } \usage{ tcut(x, breaks, labels, scale=1) \method{levels}{tcut}(x) } %- maybe also `usage' for other objects documented here. \arguments{ \item{x}{numeric/date variable } \item{breaks}{breaks between categories, which are right-continuous } \item{labels}{labels for categories } \item{scale}{Multiply \code{x} and \code{breaks} by this.} } \value{ An object of class \code{tcut} } \seealso{ \code{\link{cut}}, \code{\link{pyears}} } \examples{ mdy.date <- function(m,d,y) as.Date(paste(ifelse(y<100, y+1900, y), m, d, sep='/')) temp1 <- mdy.date(6,6,36) temp2 <- mdy.date(6,6,55)# Now compare the results from person-years # temp.age <- tcut(temp2-temp1, floor(c(-1, (18:31 * 365.24))), labels=c('0-18', paste(18:30, 19:31, sep='-'))) temp.yr <- tcut(temp2, mdy.date(1,1,1954:1965), labels=1954:1964) temp.time <- 3700 #total days of fu py1 <- pyears(temp.time ~ temp.age + temp.yr, scale=1) #output in days py1 } \keyword{survival} survival/man/print.aareg.Rd0000644000176200001440000000276213537676563015435 0ustar liggesusers\name{print.aareg} \alias{print.aareg} \title{ Print an aareg object } \description{ Print out a fit of Aalen's additive regression model } \usage{ \method{print}{aareg}(x, maxtime, test=c("aalen", "nrisk"),scale=1,...) } \arguments{ \item{x}{ the result of a call to the \code{aareg} function } \item{maxtime}{ the upper time point to be used in the test for non-zero slope } \item{test}{ the weighting to be used in the test for non-zero slope. The default weights are based on the variance of each coefficient, as a function of time. The alternative weight is proportional to the number of subjects still at risk at each time point. } \item{scale}{scales the coefficients. For some data sets, the coefficients of the Aalen model will be very small (10-4); this simply multiplies the printed values by a constant, say 1e6, to make the printout easier to read.} \item{\dots}{for future methods} } \value{ the calling argument is returned. } \section{Side Effects}{ the results of the fit are displayed. } \details{ The estimated increments in the coefficient estimates can become quite unstable near the end of follow-up, due to the small number of observations still at risk in a data set. Thus, the test for slope will sometimes be more powerful if this last `tail' is excluded. } \section{References}{ Aalen, O.O. (1989). A linear regression model for the analysis of life times. Statistics in Medicine, 8:907-925. } \seealso{ aareg } \keyword{survival} % docclass is function % Converted by Sd2Rd version 37351. survival/man/ovarian.Rd0000644000176200001440000000156113537676563014656 0ustar liggesusers\name{ovarian} \alias{ovarian} \docType{data} \title{Ovarian Cancer Survival Data} \usage{ovarian} \description{Survival in a randomised trial comparing two treatments for ovarian cancer} \format{ \tabular{ll}{ futime:\tab survival or censoring time\cr fustat:\tab censoring status\cr age: \tab in years\cr resid.ds:\tab residual disease present (1=no,2=yes)\cr rx:\tab treatment group\cr ecog.ps:\tab ECOG performance status (1 is better, see reference)\cr } } \source{Terry Therneau} \references{ Edmunson, J.H., Fleming, T.R., Decker, D.G., Malkasian, G.D., Jefferies, J.A., Webb, M.J., and Kvols, L.K., Different Chemotherapeutic Sensitivities and Host Factors Affecting Prognosis in Advanced Ovarian Carcinoma vs. Minimal Residual Disease. Cancer Treatment Reports, 63:241-47, 1979. } \keyword{datasets} \keyword{survival} survival/man/plot.survfit.Rd0000644000176200001440000002151413555573437015672 0ustar liggesusers\name{plot.survfit} \alias{plot.survfit} \title{ Plot method for \code{survfit} objects } \usage{ \method{plot}{survfit}(x, conf.int=, mark.time=FALSE, pch=3, col=1, lty=1, lwd=1, cex=1, log=FALSE, xscale=1, yscale=1, xlim, ylim, xmax, fun, xlab="", ylab="", xaxs="r", conf.times, conf.cap=.005, conf.offset=.012, conf.type = c("log", "log-log", "plain", "logit", "arcsin"), mark, noplot="(s0)", cumhaz=FALSE, firstx, ymin, \dots) } \arguments{ \item{x}{ an object of class \code{survfit}, usually returned by the \code{survfit} function. } \item{conf.int}{ determines whether pointwise confidence intervals will be plotted. The default is to do so if there is only 1 curve, i.e., no strata, using 95\% confidence intervals Alternatively, this can be a numeric value giving the desired confidence level. } \item{mark.time}{ controls the labeling of the curves. If set to \code{FALSE}, no labeling is done. If \code{TRUE}, then curves are marked at each censoring time. If \code{mark} is a numeric vector then curves are marked at the specified time points. } \item{pch}{ vector of characters which will be used to label the curves. The \code{points} help file contains examples of the possible marks. A single string such as "abcd" is treated as a vector \code{c("a", "b", "c", "d")}. The vector is reused cyclically if it is shorter than the number of curves. If it is present this implies \code{mark.time = TRUE}. } \item{col}{ a vector of integers specifying colors for each curve. The default value is 1. } \item{lty}{ a vector of integers specifying line types for each curve. The default value is 1. } \item{lwd}{ a vector of numeric values for line widths. The default value is 1. } \item{cex}{ a numeric value specifying the size of the marks. This is not treated as a vector; all marks have the same size. } \item{log}{ a logical value, if TRUE the y axis wll be on a log scale. Alternately, one of the standard character strings "x", "y", or "xy" can be given to specific logarithmic horizontal and/or vertical axes. } \item{xscale}{ a numeric value used like \code{yscale} for labels on the x axis. A value of 365.25 will give labels in years instead of the original days. } \item{yscale}{ a numeric value used to multiply the labels on the y axis. A value of 100, for instance, would be used to give a percent scale. Only the labels are changed, not the actual plot coordinates, so that adding a curve with "\code{lines(surv.exp(...))}", say, will perform as it did without the \code{yscale} argument. } \item{xlim,ylim}{optional limits for the plotting region. } \item{xmax}{ the maximum horizontal plot coordinate. This can be used to shrink the range of a plot. It shortens the curve before plotting it, so that unlike using the \code{xlim} graphical parameter, warning messages about out of bounds points are not generated. } \item{fun}{ an arbitrary function defining a transformation of the survival curve. For example \code{fun=log} is an alternative way to draw a log-survival curve (but with the axis labeled with log(S) values), and \code{fun=sqrt} would generate a curve on square root scale. Five often used transformations can be specified with a character argument instead: \code{"S"} gives the usual survival curve, \code{"log"} is the same as using the \code{log=T} option, \code{"event"} or \code{"F"} plots the empirical CDF \eqn{F(t)= 1-S(t)} (f(y) = 1-y), \code{"cumhaz"} plots the cumulative hazard function (see details), and \code{"cloglog"} creates a complimentary log-log survival plot (f(y) = log(-log(y)) along with log scale for the x-axis). The terms \code{"identity"} and \code{"surv"} are allowed as synonyms for \code{type="S"}. } \item{xlab}{ label given to the x-axis. } \item{ylab}{ label given to the y-axis. } \item{xaxs}{ either \code{"S"} for a survival curve or a standard x axis style as listed in \code{par}; "r" (regular) is the R default. Survival curves have historically been displayed with the curve touching the y-axis, but not touching the bounding box of the plot on the other 3 sides, Type \code{"S"} accomplishes this by manipulating the plot range and then using the \code{"i"} style internally. The "S" style is becoming increasingly less common, however. } \item{conf.times}{optional vector of times at which to place a confidence bar on the curve(s). If present, these will be used instead of confidence bands.} \item{conf.cap}{width of the horizontal cap on top of the confidence bars; only used if conf.times is used. A value of 1 is the width of the plot region.} \item{conf.offset}{the offset for confidence bars, when there are multiple curves on the plot. A value of 1 is the width of the plot region. If this is a single number then each curve's bars are offset by this amount from the prior curve's bars, if it is a vector the values are used directly.} \item{conf.type}{ One of \code{"plain"}, \code{"log"} (the default), \code{"log-log"} or \code{"logit"}. Only enough of the string to uniquely identify it is necessary. The first option causes confidence intervals not to be generated. The second causes the standard intervals \code{curve +- k *se(curve)}, where k is determined from \code{conf.int}. The log option calculates intervals based on the cumulative hazard or log(survival). The log-log option bases the intervals on the log hazard or log(-log(survival)), and the logit option on log(survival/(1-survival)). } \item{mark}{a historical alias for \code{pch}} \item{noplot}{for multi-state models, curves with this label will not be plotted. (Also see the \code{istate0} argument in \code{survcheck}.)} \item{cumhaz}{plot the cumulative hazard rather than the probability in state or survival} \item{ymin}{ this will normally be given as part of the \code{ylim} argument} \item{firstx}{this will normally be given as part of the \code{xlim} argument.} \item{\dots}{other arguments that will be passed forward to the underlying plot method, such as xlab or ylab.} } \value{ a list with components \code{x} and \code{y}, containing the coordinates of the last point on each of the curves (but not the confidence limits). This may be useful for labeling. } \description{ A plot of survival curves is produced, one curve for each strata. The \code{log=T} option does extra work to avoid log(0), and to try to create a pleasing result. If there are zeros, they are plotted by default at 0.8 times the smallest non-zero value on the curve(s). Curves are plotted in the same order as they are listed by \code{print} (which gives a 1 line summary of each). This will be the order in which \code{col}, \code{lty}, etc are used. } \details{ If the object contains a cumulative hazard curve, then \code{fun='cumhaz'} will plot that curve, otherwise it will plot -log(S) as an approximation. Theoretically, S = \eqn{log(-\Lambda)}{log(-H)} where S is the survival and \eqn{\Lambda}{H} is the cumulative hazard. The same relationship holds for estimates of S and \eqn{\Lambda}{H} only in special cases, but the approximation is often close. When the \code{survfit} function creates a multi-state survival curve the resulting object also has class `survfitms'. Competing risk curves are a common case. In this situation the \code{fun} argument is ignored. When the \code{conf.times} argument is used, the confidence bars are offset by \code{conf.offset} units to avoid overlap. The bar on each curve are the confidence interval for the time point at which the bar is drawn, i.e., different time points for each curve. If curves are steep at that point, the visual impact can sometimes substantially differ for positive and negative values of \code{conf.offset}. } \note{In prior versions the behavior of \code{xscale} and \code{yscale} differed: the first changed the scale both for the plot and for all subsequent actions such as adding a legend, whereas \code{yscale} affected only the axis label. This was normalized in version 2-36.4, and both parameters now only affect the labeling. } \seealso{ \code{\link{points.survfit}}, \code{\link{lines.survfit}}, \code{\link{par}}, \code{\link{survfit}} } \examples{ leukemia.surv <- survfit(Surv(time, status) ~ x, data = aml) plot(leukemia.surv, lty = 2:3) legend(100, .9, c("Maintenance", "No Maintenance"), lty = 2:3) title("Kaplan-Meier Curves\nfor AML Maintenance Study") lsurv2 <- survfit(Surv(time, status) ~ x, aml, type='fleming') plot(lsurv2, lty=2:3, fun="cumhaz", xlab="Months", ylab="Cumulative Hazard") } \keyword{survival} \keyword{hplot} survival/man/cipoisson.Rd0000644000176200001440000000407113537676563015224 0ustar liggesusers\name{cipoisson} \alias{cipoisson} \title{Confidence limits for the Poisson} \description{Confidence interval calculation for Poisson rates.} \usage{ cipoisson(k, time = 1, p = 0.95, method = c("exact", "anscombe")) } \arguments{ \item{k}{Number of successes} \item{time}{Total time on trial} \item{p}{Probability level for the (two-sided) interval} \item{method}{The method for computing the interval.} } \value{a vector, matrix, or array. If both \code{k} and \code{time} are single values the result is a vector of length 2 containing the lower an upper limits. If either or both are vectors the result is a matrix with two columns. If \code{k} is a matrix or array, the result will be an array with one more dimension; in this case the dimensions and dimnames (if any) of \code{k} are preserved. } \details{ The likelihood method is based on equation 10.10 of Feller, which relates poisson probabilities to tail area of the gamma distribution. The Anscombe approximation is based on the fact that sqrt(k + 3/8) is has a nearly constant variance of 1/4, along with a continuity correction. There are many other proposed intervals: Patil and Kulkarni list and evaluate 19 different suggestions from the literature!. The exact intervals can be overly broad for very small values of \code{k}, many of the other approaches try to shrink the lengths, with varying success. } \examples{ cipoisson(4) # 95\\\% confidence limit # lower upper # 1.089865 10.24153 ppois(4, 10.24153) #chance of seeing 4 or fewer events with large rate # [1] 0.02500096 1-ppois(3, 1.08986) #chance of seeing 4 or more, with a small rate # [1] 0.02499961 } \references{ F.J. Anscombe (1949). Transformations of Poisson, binomial and negative-binomial data. Biometrika, 35:246-254. W.F. Feller (1950). An Introduction to Probability Theory and its Applications, Volume 1, Chapter 6, Wiley. V. V. Patil and H.F. Kulkarni (2012). Comparison of confidence intervals for the poisson mean: some new aspects. Revstat 10:211-227. } \seealso{ \code{\link[stats]{ppois}}, \code{\link[stats]{qpois}} } survival/man/coxph.control.Rd0000644000176200001440000000771313537676563016024 0ustar liggesusers\name{coxph.control} \alias{coxph.control} \title{Ancillary arguments for controlling coxph fits} \description{ This is used to set various numeric parameters controlling a Cox model fit. Typically it would only be used in a call to \code{coxph}. } \usage{ coxph.control(eps = 1e-09, toler.chol = .Machine$double.eps^0.75, iter.max = 20, toler.inf = sqrt(eps), outer.max = 10, timefix=TRUE) } \arguments{ \item{eps}{Iteration continues until the relative change in the log partial likelihood is less than eps, or the absolute change is less than sqrt(eps). Must be positive.} \item{toler.chol}{Tolerance for detection of singularity during a Cholesky decomposition of the variance matrix, i.e., for detecting a redundant predictor variable.} \item{iter.max}{Maximum number of iterations to attempt for convergence.} \item{toler.inf}{Tolerance criteria for the warning message about a possible infinite coefficient value.} \item{outer.max}{For a penalized coxph model, e.g. with pspline terms, there is an outer loop of iteration to determine the penalty parameters; maximum number of iterations for this outer loop.} \item{timefix}{Resolve any near ties in the time variables.} } \value{ a list containing the values of each of the above constants } \details{ The convergence tolerances are a balance. Users think they want THE maximum point of the likelihood surface, and for well behaved data sets where this is quadratic near the max a high accuracy is fairly inexpensive: the number of correct digits approximately doubles with each iteration. Conversely, a drop of .0001 from the maximum in any given direction will be correspond to only about 1/20 of a standard error change in the coefficient. Statistically, more precision than this is straining at a gnat. Based on this the author originally had set the tolerance to 1e-5, but relented in the face of multiple "why is the answer different than package X" queries. Asking for results that are too close to machine precision (double.eps) is a fool's errand; a reasonable critera is often the square root of that precision. The Cholesky decompostion needs to be held to a higher standard than the overall convergence criterion, however. The \code{tolerance.inf} value controls a warning message; if it is too small incorrect warnings can appear, if too large some actual cases of an infinite coefficient will not be detected. The most difficult cases are data sets where the MLE coefficient is infinite; an example is a data set where at each death time, it was the subject with the largest covariate value who perished. In that situation the coefficient increases at each iteration while the log-likelihood asymptotes to a maximum. As iteration proceeds there is a race condition condition for three endpoint: exp(coef) overflows, the Hessian matrix become singular, or the change in loglik is small enough to satisfy the convergence criterion. The first two are difficult to anticipate and lead to numeric diffculties, which is another argument for moderation in the choice of \code{eps}. See the vignette "Roundoff error and tied times" for a more detailed explanation of the \code{timefix} option. In short, when time intervals are created via subtraction then two time intervals that are actually identical can appear to be different due to floating point round off error, which in turn can make \code{coxph} and \code{survfit} results dependent on things such as the order in which operations were done or the particular computer that they were run on. Such cases are unfortunatedly not rare in practice. The \code{timefix=TRUE} option adds logic similar to \code{all.equal} to ensure reliable results. In analysis of simulated data sets, however, where often by defintion there can be no duplicates, the option will often need to be set to \code{FALSE} to avoid spurious merging of close numeric values. } \seealso{\code{\link{coxph}} } \keyword{survival} survival/man/survreg.Rd0000644000176200001440000001125113537676563014711 0ustar liggesusers\name{survreg} \alias{survreg} \alias{model.frame.survreg} \alias{labels.survreg} \alias{print.survreg.penal} \alias{print.summary.survreg} \alias{survReg} \alias{anova.survreg} \alias{anova.survreglist} \title{ Regression for a Parametric Survival Model } \description{ Fit a parametric survival regression model. These are location-scale models for an arbitrary transform of the time variable; the most common cases use a log transformation, leading to accelerated failure time models. } \usage{ survreg(formula, data, weights, subset, na.action, dist="weibull", init=NULL, scale=0, control,parms=NULL,model=FALSE, x=FALSE, y=TRUE, robust=FALSE, score=FALSE, \dots) } \arguments{ \item{formula}{ a formula expression as for other regression models. The response is usually a survival object as returned by the \code{Surv} function. See the documentation for \code{Surv}, \code{lm} and \code{formula} for details. } \item{data}{ a data frame in which to interpret the variables named in the \code{formula}, \code{weights} or the \code{subset} arguments. } \item{weights}{optional vector of case weights} \item{subset}{ subset of the observations to be used in the fit } \item{na.action}{ a missing-data filter function, applied to the model.frame, after any \code{subset} argument has been used. Default is \code{options()\$na.action}. } \item{dist}{ assumed distribution for y variable. If the argument is a character string, then it is assumed to name an element from \code{\link{survreg.distributions}}. These include \code{"weibull"}, \code{"exponential"}, \code{"gaussian"}, \code{"logistic"},\code{"lognormal"} and \code{"loglogistic"}. Otherwise, it is assumed to be a user defined list conforming to the format described in \code{\link{survreg.distributions}}. } \item{parms}{ a list of fixed parameters. For the t-distribution for instance this is the degrees of freedom; most of the distributions have no parameters. } \item{init}{ optional vector of initial values for the parameters. } \item{scale}{ optional fixed value for the scale. If set to <=0 then the scale is estimated. } \item{control}{ a list of control values, in the format produced by \code{\link{survreg.control}}. The default value is \code{survreg.control()} } \item{model,x,y}{ flags to control what is returned. If any of these is true, then the model frame, the model matrix, and/or the vector of response times will be returned as components of the final result, with the same names as the flag arguments.} \item{score}{return the score vector. (This is expected to be zero upon successful convergence.) } \item{robust}{Use robust 'sandwich' standard errors, based on independence of individuals if there is no \code{cluster()} term in the formula, based on independence of clusters if there is.} \item{\dots}{ other arguments which will be passed to \code{survreg.control}. }} \value{ an object of class \code{survreg} is returned. } \details{ All the distributions are cast into a location-scale framework, based on chapter 2.2 of Kalbfleisch and Prentice. The resulting parameterization of the distributions is sometimes (e.g. gaussian) identical to the usual form found in statistics textbooks, but other times (e.g. Weibull) it is not. See the book for detailed formulas. } \seealso{ \code{\link{survreg.object}}, \code{\link{survreg.distributions}}, \code{\link{pspline}}, \code{\link{frailty}}, \code{\link{ridge}} } \examples{ # Fit an exponential model: the two fits are the same survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian, dist='weibull', scale=1) survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian, dist="exponential") # # A model with different baseline survival shapes for two groups, i.e., # two different scale parameters survreg(Surv(time, status) ~ ph.ecog + age + strata(sex), lung) # There are multiple ways to parameterize a Weibull distribution. The survreg # function embeds it in a general location-scale family, which is a # different parameterization than the rweibull function, and often leads # to confusion. # survreg's scale = 1/(rweibull shape) # survreg's intercept = log(rweibull scale) # For the log-likelihood all parameterizations lead to the same value. y <- rweibull(1000, shape=2, scale=5) survreg(Surv(y)~1, dist="weibull") # Economists fit a model called `tobit regression', which is a standard # linear regression with Gaussian errors, and left censored data. tobinfit <- survreg(Surv(durable, durable>0, type='left') ~ age + quant, data=tobin, dist='gaussian') } \references{ Kalbfleisch, J. D. and Prentice, R. L., The statistical analysis of failure time data, Wiley, 2002. } \keyword{survival} survival/man/summary.survexp.Rd0000644000176200001440000000266113537676563016431 0ustar liggesusers\name{summary.survexp} \alias{summary.survexp} \title{Summary function for a survexp object} \description{ Returns a list containing the values of the survival at specified times. } \usage{ \method{summary}{survexp}(object, times, scale = 1, ...) } \arguments{ \item{object}{ the result of a call to the \code{survexp} function } \item{times}{ vector of times; the returned matrix will contain 1 row for each time. Missing values are not allowed. } \item{scale}{ numeric value to rescale the survival time, e.g., if the input data to \code{survfit} were in days, \code{scale = 365.25} would scale the output to years. } \item{\dots}{For future methods} } \details{ A primary use of this function is to retrieve survival at fixed time points, which will be properly interpolated by the function. } \value{ a list with the following components: \item{surv}{ the estimate of survival at time t. } \item{time}{ the timepoints on the curve. } \item{n.risk}{ In expected survival each subject from the data set is matched to a hypothetical person from the parent population, matched on the characteristics of the parent population. The number at risk is the number of those hypothetical subject who are still part of the calculation. } } \author{Terry Therneau} \seealso{\code{\link{survexp}} } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ survival } survival/man/print.survfit.Rd0000644000176200001440000000724613537676563016062 0ustar liggesusers\name{print.survfit} \alias{print.survfit} \title{ Print a Short Summary of a Survival Curve } \description{ Print number of observations, number of events, the restricted mean survival and its standard error, and the median survival with confidence limits for the median. } \usage{ \method{print}{survfit}(x, scale=1, digits = max(options()$digits - 4,3), print.rmean=getOption("survfit.print.rmean"), rmean = getOption('survfit.rmean'),...) } \arguments{ \item{x}{ the result of a call to the \code{survfit} function. } \item{scale}{ a numeric value to rescale the survival time, e.g., if the input data to survfit were in days, \code{scale=365} would scale the printout to years. } \item{digits}{Number of digits to print} \item{print.rmean,rmean}{Options for computation and display of the restricted mean.} \item{\dots}{for future results} } \value{ x, with the invisible flag set to prevent printing. (The default for all print functions in R is to return the object passed to them; print.survfit complies with this pattern. If you want to capture these printed results for further processing, see the \code{table} component of \code{summary.survfit}.) } \section{Side Effects}{ The number of observations, the number of events, the median survival with its confidence interval, and optionally the restricted mean survival (\code{rmean}) and its standard error, are printed. If there are multiple curves, there is one line of output for each. } \details{ The mean and its variance are based on a truncated estimator. That is, if the last observation(s) is not a death, then the survival curve estimate does not go to zero and the mean is undefined. There are four possible approaches to resolve this, which are selected by the \code{rmean} option. The first is to set the upper limit to a constant, e.g.,\code{rmean=365}. In this case the reported mean would be the expected number of days, out of the first 365, that would be experienced by each group. This is useful if interest focuses on a fixed period. Other options are \code{"none"} (no estimate), \code{"common"} and \code{"individual"}. The \code{"common"} option uses the maximum time for all curves in the object as a common upper limit for the auc calculation. For the \code{"individual"}options the mean is computed as the area under each curve, over the range from 0 to the maximum observed time for that curve. Since the end point is random, values for different curves are not comparable and the printed standard errors are an underestimate as they do not take into account this random variation. This option is provided mainly for backwards compatability, as this estimate was the default (only) one in earlier releases of the code. Note that SAS (as of version 9.3) uses the integral up to the last \emph{event} time of each individual curve; we consider this the worst of the choices and do not provide an option for that calculation. The median and its confidence interval are defined by drawing a horizontal line at 0.5 on the plot of the survival curve and its confidence bands. The intersection of the line with the lower CI band defines the lower limit for the median's interval, and similarly for the upper band. If any of the intersections is not a point the we use the center of the intersection interval, e.g., if the survival curve were exactly equal to 0.5 over an interval. When data is uncensored this agrees with the usual definition of a median. } \section{References}{ Miller, Rupert G., Jr. (1981). \emph{Survival Analysis.} New York:Wiley, p 71. } \seealso{ \code{\link{summary.survfit}}, \code{\link{quantile.survfit}} } \keyword{survival} % docclass is function % Converted by Sd2Rd version 37351. survival/man/clogit.Rd0000644000176200001440000001076413537676563014505 0ustar liggesusers\name{clogit} \alias{clogit} \title{Conditional logistic regression } \description{ Estimates a logistic regression model by maximising the conditional likelihood. Uses a model formula of the form \code{case.status~exposure+strata(matched.set)}. The default is to use the exact conditional likelihood, a commonly used approximate conditional likelihood is provided for compatibility with older software. } \usage{ clogit(formula, data, weights, subset, na.action, method=c("exact", "approximate", "efron", "breslow"), \dots) } \arguments{ \item{formula}{Model formula} \item{data}{data frame } \item{weights}{optional, names the variable containing case weights} \item{subset}{optional, subset the data} \item{na.action}{optional na.action argument. By default the global option \code{na.action} is used.} \item{method}{use the correct (exact) calculation in the conditional likelihood or one of the approximations} \item{\dots}{optional arguments, which will be passed to \code{coxph.control}} } \value{ An object of class \code{"clogit"}, which is a wrapper for a \code{"coxph"} object. } \author{Thomas Lumley} \details{ It turns out that the loglikelihood for a conditional logistic regression model = loglik from a Cox model with a particular data structure. Proving this is a nice homework exercise for a PhD statistics class; not too hard, but the fact that it is true is surprising. When a well tested Cox model routine is available many packages use this `trick' rather than writing a new software routine from scratch, and this is what the clogit routine does. In detail, a stratified Cox model with each case/control group assigned to its own stratum, time set to a constant, status of 1=case 0=control, and using the exact partial likelihood has the same likelihood formula as a conditional logistic regression. The clogit routine creates the necessary dummy variable of times (all 1) and the strata, then calls coxph. The computation of the exact partial likelihood can be very slow, however. If a particular strata had say 10 events out of 20 subjects we have to add up a denominator that involves all possible ways of choosing 10 out of 20, which is 20!/(10! 10!) = 184756 terms. Gail et al describe a fast recursion method which partly ameliorates this; it was incorporated into version 2.36-11 of the survival package. The computation remains infeasible for very large groups of ties, say 100 ties out of 500 subjects, and may even lead to integer overflow for the subscripts -- in this latter case the routine will refuse to undertake the task. The Efron approximation is normally a sufficiently accurate substitute. Most of the time conditional logistic modeling is applied data with 1 case + k controls per set, in which case all of the approximations for ties lead to exactly the same result. The 'approximate' option maps to the Breslow approximation for the Cox model, for historical reasons. Case weights are not allowed when the exact option is used, as the likelihood is not defined for fractional weights. Even with integer case weights it is not clear how they should be handled. For instance if there are two deaths in a strata, one with weight=1 and one with weight=2, should the likelihood calculation consider all subsets of size 2 or all subsets of size 3? Consequently, case weights are ignored by the routine in this case. } \seealso{\code{\link{strata}},\code{\link{coxph}},\code{\link{glm}} } \examples{ \dontrun{clogit(case ~ spontaneous + induced + strata(stratum), data=infert)} # A multinomial response recoded to use clogit # The revised data set has one copy per possible outcome level, with new # variable tocc = target occupation for this copy, and case = whether # that is the actual outcome for each subject. # See the reference below for the data. resp <- levels(logan$occupation) n <- nrow(logan) indx <- rep(1:n, length(resp)) logan2 <- data.frame(logan[indx,], id = indx, tocc = factor(rep(resp, each=n))) logan2$case <- (logan2$occupation == logan2$tocc) clogit(case ~ tocc + tocc:education + strata(id), logan2) } \section{References}{ Michell H Gail, Jay H Lubin and Lawrence V Rubinstein. Likelihood calculations for matched case-control studies and survival studies with tied death times. Biometrika 68:703-707, 1980. John A. Logan. A multivariate model for mobility tables. Am J Sociology 89:324-349, 1983. } \keyword{survival} \keyword{models} survival/man/yates_setup.Rd0000644000176200001440000000214313537676563015561 0ustar liggesusers\name{yates_setup} \alias{yates_setup} \title{Method for adding new models to the \code{yates} function. } \description{This is a method which is called by the \code{yates} function, in order to setup the code to handle a particular model type. Methods for glm, coxph, and default are part of the survival package. } \usage{ yates_setup(fit, \ldots) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{fit}{a fitted model object} \item{\ldots}{optional arguments for some methods} } \details{ If the predicted value should be the linear predictor, the function should return NULL. The \code{yates} routine has particularly efficient code for this case. Otherwise it should return a prediction function or a list of two elements containing the prediction function and a summary function. The prediction function will be passed the linear predictor as a single argument and should return a vector of predicted values. } \author{Terry Therneau} \note{See the vignette on population prediction for more details.} \seealso{ \code{\link{yates}} } \keyword{ models } \keyword{ survival } survival/man/survSplit.Rd0000644000176200001440000000726713537676563015243 0ustar liggesusers\name{survSplit} \alias{survSplit} \title{Split a survival data set at specified times } \description{ Given a survival data set and a set of specified cut times, split each record into multiple subrecords at each cut time. The new data set will be in `counting process' format, with a start time, stop time, and event status for each record. } \usage{ survSplit(formula, data, subset, na.action=na.pass, cut, start="tstart", id, zero=0, episode, end="tstop", event="event") } %- maybe also `usage' for other objects documented here. \arguments{ \item{formula}{a model formula} \item{data}{a data frame} \item{subset, na.action}{rows of the data to be retained} \item{cut}{the vector of timepoints to cut at} \item{start}{character string with the name of a start time variable (will be created if needed) } \item{id}{character string with the name of new id variable to create (optional). This can be useful if the data set does not already contain an identifier.} \item{zero}{If \code{start} doesn't already exist, this is the time that the original records start.} \item{episode}{character string with the name of new episode variable (optional)} \item{end}{character string with the name of event time variable } \item{event}{character string with the name of censoring indicator } } \value{ New, longer, data frame. } \details{ Each interval in the original data is cut at the given points; if an original row were (15, 60] with a cut vector of (10,30, 40) the resulting data set would have intervals of (15,30], (30,40] and (40, 60]. Each row in the final data set will lie completely within one of the cut intervals. Which interval for each row of the output is shown by the \code{episode} variable, where 1= less than the first cutpoint, 2= between the first and the second, etc. For the example above the values would be 2, 3, and 4. The routine is called with a formula as the first argument. The right hand side of the formula can be used to delimit variables that should be retained; normally one will use \code{ ~ .} as a shorthand to retain them all. The routine will try to retain variable names, e.g. \code{Surv(adam, joe, fred)~.} will result in a data set with those same variable names for \code{tstart}, \code{end}, and \code{event} options rather than the defaults. Any user specified values for these options will be used if they are present, of course. However, the routine is not sophisticated; it only does this substitution for simple names. A call of \code{Surv(time, stat==2)} for instance will not retain "stat" as the name of the event variable. Rows of data with a missing time or status are copied across unchanged, unless the na.action argument is changed from its default value of \code{na.pass}. But in the latter case any row that is missing for any variable will be removed, which is rarely what is desired. } \seealso{\code{\link{Surv}}, \code{\link{cut}}, \code{\link{reshape}} } \examples{ fit1 <- coxph(Surv(time, status) ~ karno + age + trt, veteran) plot(cox.zph(fit1)[1]) # a cox.zph plot of the data suggests that the effect of Karnofsky score # begins to diminish by 60 days and has faded away by 120 days. # Fit a model with separate coefficients for the three intervals. # vet2 <- survSplit(Surv(time, status) ~., veteran, cut=c(60, 120), episode ="timegroup") fit2 <- coxph(Surv(tstart, time, status) ~ karno* strata(timegroup) + age + trt, data= vet2) c(overall= coef(fit1)[1], t0_60 = coef(fit2)[1], t60_120= sum(coef(fit2)[c(1,4)]), t120 = sum(coef(fit2)[c(1,5)])) } \keyword{survival } \keyword{utilities} survival/man/flchain.Rd0000644000176200001440000000715113537676563014624 0ustar liggesusers\name{flchain} \alias{flchain} \docType{data} \title{Assay of serum free light chain for 7874 subjects.} \description{ This is a stratified random sample containing 1/2 of the subjects from a study of the relationship between serum free light chain (FLC) and mortality. The original sample contains samples on approximately 2/3 of the residents of Olmsted County aged 50 or greater. } \usage{data(flchain)} \format{ A data frame with 7874 persons containing the following variables. \describe{ \item{\code{age }}{age in years} \item{\code{sex}}{F=female, M=male} \item{\code{sample.yr}}{the calendar year in which a blood sample was obtained} \item{\code{kappa}}{serum free light chain, kappa portion} \item{\code{lambda}}{serum free light chain, lambda portion} \item{\code{flc.grp}}{the FLC group for the subject, as used in the original analysis} \item{\code{creatinine}}{serum creatinine} \item{\code{mgus}}{1 if the subject had been diagnosed with monoclonal gammapothy (MGUS)} \item{\code{futime}}{days from enrollment until death. Note that there are 3 subjects whose sample was obtained on their death date.} \item{\code{death}}{0=alive at last contact date, 1=dead} \item{\code{chapter}}{for those who died, a grouping of their primary cause of death by chapter headings of the International Code of Diseases ICD-9} } } \details{In 1995 Dr. Robert Kyle embarked on a study to determine the prevalence of monoclonal gammopathy of undetermined significance (MGUS) in Olmsted County, Minnesota, a condition which is normally only found by chance from a test (serum electrophoresis) which is ordered for other causes. Later work suggested that one component of immunoglobulin production, the serum free light chain, might be a possible marker for immune disregulation. In 2010 Dr. Angela Dispenzieri and colleagues assayed FLC levels on those samples from the original study for which they had patient permission and from which sufficient material remained for further testing. They found that elevated FLC levels were indeed associated with higher death rates. Patients were recruited when they came to the clinic for other appointments, with a final random sample of those who had not yet had a visit since the study began. An interesting side question is whether there are differences between early, mid, and late recruits. This data set contains an age and sex stratified random sample that includes 7874 of the original 15759 subjects. The original subject identifiers and dates have been removed to protect patient identity. Subsampling was done to further protect this information. } \source{The primary investigator (A Dispenzieri) and statistician (T Therneau) for the study.} \references{ A Dispenzieri, J Katzmann, R Kyle, D Larson, T Therneau, C Colby, R Clark, G Mead, S Kumar, LJ Melton III and SV Rajkumar (2012). Use of monclonal serum immunoglobulin free light chains to predict overall survival in the general population, Mayo Clinic Proceedings 87:512-523. R Kyle, T Therneau, SV Rajkumar, D Larson, M Plevak, J Offord, A Dispenzieri, J Katzmann, and LJ Melton, III, 2006, Prevalence of monoclonal gammopathy of undetermined significance, New England J Medicine 354:1362-1369. } \examples{ data(flchain) age.grp <- cut(flchain$age, c(49,54, 59,64, 69,74,79, 89, 110), labels= paste(c(50,55,60,65,70,75,80,90), c(54,59,64,69,74,79,89,109), sep='-')) table(flchain$sex, age.grp) } \keyword{datasets} survival/man/udca.Rd0000644000176200001440000000423413537676563014133 0ustar liggesusers\name{udca} \alias{udca} \alias{udca1} \alias{udca2} \docType{data} \title{Data from a trial of usrodeoxycholic acid } \description{ Data from a trial of ursodeoxycholic acid (UDCA) in patients with primary biliary cirrohosis (PBC). } \usage{data("udca")} \format{ A data frame with 170 observations on the following 15 variables. \describe{ \item{\code{id}}{subject identifier} \item{\code{trt}}{treatment of 0=placebo, 1=UDCA} \item{\code{entry.dt}}{date of entry into the study} \item{\code{last.dt}}{date of last on-study visit} \item{\code{stage}}{stage of disease} \item{\code{bili}}{bilirubin value at entry} \item{\code{riskscore}}{the Mayo PBC risk score at entry} \item{\code{death.dt}}{date of death} \item{\code{tx.dt}}{date of liver transplant} \item{\code{hprogress.dt}}{date of histologic progression} \item{\code{varices.dt}}{appearance of esphogeal varices} \item{\code{ascites.dt}}{appearance of ascites} \item{\code{enceph.dt}}{appearance of encephalopathy} \item{\code{double.dt}}{doubling of initial bilirubin} \item{\code{worsen.dt}}{worsening of symptoms by two stages} } } \details{ This data set is used in the Therneau and Grambsh. The \code{udca1} data set contains the baseline variables along with the time until the first endpoint (any of death, transplant, \ldots, worsening). The \code{udca2} data set treats all of the endpoints as parallel events and has a stratum for each. } \references{ T. M. Therneau and P. M. Grambsch, Modeling survival data: extending the Cox model. Springer, 2000. K. D. Lindor, E. R. Dickson, W. P Baldus, R.A. Jorgensen, J. Ludwig, P. A. Murtaugh, J. M. Harrison, R. H. Weisner, M. L. Anderson, S. M. Lange, G. LeSage, S. S. Rossi and A. F. Hofman. Ursodeoxycholic acid in the treatment of primary biliary cirrhosis. Gastroenterology, 106:1284-1290, 1994. } \examples{ data(udca) # values found in table 8.3 of the book fit1 <- coxph(Surv(futime, status) ~ trt + log(bili) + stage + cluster(id), data=udca1) fit2 <- coxph(Surv(futime, status) ~ trt + log(bili) + stage + cluster(id) + strata(endpoint), data=udca2) } \keyword{datasets} survival/man/rhDNase.Rd0000644000176200001440000000756213537676563014552 0ustar liggesusers\name{rhDNase} \alias{rhDNase} \docType{data} \title{rhDNASE data set} \description{ Results of a randomized trial of rhDNase for the treatment of cystic fibrosis. } \format{ A data frame with 767 observations on the following 8 variables. \describe{ \item{\code{id}}{subject id} \item{\code{inst}}{enrolling institution} \item{\code{trt}}{treatment arm: 0=placebo, 1= rhDNase} \item{\code{entry.dt}}{date of entry into the study} \item{\code{end.dt}}{date of last follow-up} \item{\code{fev}}{forced expriatory volume at enrollment, a measure of lung capacity} \item{\code{ivstart}}{days from enrollment to the start of IV antibiotics} \item{\code{ivstop}}{days from enrollment to the cessation of IV antibiotics} } } \details{ In patients with cystic fibrosis, extracellular DNA is released by leukocytes that accumulate in the airways in response to chronic bacterial infection. This excess DNA thickens the mucus, which then cannot be cleared from the lung by the cilia. The accumulation leads to exacerbations of respiratory symptoms and progressive deterioration of lung function. At the time of this study more than 90\% of cystic fibrosis patients eventually died of lung disease. Deoxyribonuclease I (DNase I) is a human enzyme normally present in the mucus of human lungs that digests extracellular DNA. Genentech, Inc. cloned a highly purified recombinant DNase I (rhDNase or Pulmozyme) which when delivered to the lungs in an aerosolized form cuts extracellular DNA, reducing the viscoelasticity of airway secretions and improving clearance. In 1992 the company conducted a randomized double-blind trial comparing rhDNase to placebo. Patients were then monitored for pulmonary exacerbations, along with measures of lung volume and flow. The primary endpoint was the time until first pulmonary exacerbation; however, data on all exacerbations were collected for 169 days. The definition of an exacerbation was an infection that required the use of intravenous (IV) antibiotics. Subjects had 0--5 such episodes during the trial, those with more than one have multiple rows in the data set, those with none have NA for the IV start and end times. A few subjects were infected at the time of enrollment, subject 173 for instance has a first infection interval of -21 to 7. We do not count this first infection as an "event", and the subject first enters the risk set at day 7. Subjects who have an event are not considered to be at risk for another event during the course of antibiotics, nor for an additional 6 days after they end. (If the symptoms reappear immediately after cessation then from a medical standpoint this would not be a new infection.) This data set reproduces the data in Therneau and Grambsch, is does not exactly reproduce those in Therneau and Hamilton due to data set updates. } \references{ T. M. Therneau and P. M. Grambsch, Modeling Survival Data: Extending the Cox Model, Springer, 2000. T. M. Therneau and S.A. Mamilton, rhDNase as an example of recurrent event analysis, Statistics in Medicine, 16:2029-2047, 1997. } \examples{ # Build the start-stop data set for analysis, and # replicate line 2 of table 8.13 first <- subset(rhDNase, !duplicated(id)) #first row for each subject dnase <- tmerge(first, first, id=id, tstop=as.numeric(end.dt -entry.dt)) # Subjects whose fu ended during the 6 day window are the reason for # this next line temp.end <- with(rhDNase, pmin(ivstop+6, end.dt-entry.dt)) dnase <- tmerge(dnase, rhDNase, id=id, infect=event(ivstart), end= event(temp.end)) # toss out the non-at-risk intervals, and extra variables # 3 subjects had an event on their last day of fu, infect=1 and end=1 dnase <- subset(dnase, (infect==1 | end==0), c(id:trt, fev:infect)) agfit <- coxph(Surv(tstart, tstop, infect) ~ trt + fev + cluster(id), data=dnase) } \keyword{datasets} survival/man/aareg.Rd0000644000176200001440000001712713537676563014303 0ustar liggesusers\name{aareg} \alias{aareg} \title{ Aalen's additive regression model for censored data } \description{ Returns an object of class \code{"aareg"} that represents an Aalen model. } \usage{ aareg(formula, data, weights, subset, na.action, qrtol=1e-07, nmin, dfbeta=FALSE, taper=1, test = c('aalen', 'variance', 'nrisk'), model=FALSE, x=FALSE, y=FALSE) } \arguments{ \item{formula}{ a formula object, with the response on the left of a `~' operator and the terms, separated by \code{+} operators, on the right. The response must be a \code{Surv} object. Due to a particular computational approach that is used, the model MUST include an intercept term. If "-1" is used in the model formula the program will ignore it. } \item{data}{ data frame in which to interpret the variables named in the \code{formula}, \code{subset}, and \code{weights} arguments. This may also be a single number to handle some speci al cases -- see below for details. If \code{data} is missing, the variables in the model formula should be in the search path. } \item{weights}{ vector of observation weights. If supplied, the fitting algorithm minimizes the sum of the weights multiplied by the squared residuals (see below for additional technical details). The length of \code{weights} must be the same as the number of observations. The weights must be nonnegative and it i s recommended that they be strictly positive, since zero weights are ambiguous. To exclude particular observations from the model, use the \code{subset} argument instead of zero weights. } \item{subset}{ expression specifying which subset of observations should be used in the fit. Th is can be a logical vector (which is replicated to have length equal to the numb er of observations), a numeric vector indicating the observation numbers to be included, or a character vector of the observation names that should be included. All observations are included by default. } \item{na.action}{ a function to filter missing data. This is applied to the \code{model.fr ame} after any \code{subset} argument has be en applied. The default is \code{na.fail}, which returns a n error if any missing values are found. An alternative is \code{na.excl ude}, which deletes observations that contain one or more missing values. } \item{qrtol}{ tolerance for detection of singularity in the QR decomposition } \item{nmin}{ minimum number of observations for an estimate; defaults to 3 times the number of covariates. This essentially truncates the computations near the tail of the data set, when n is small and the calculations can become numerically unstable. } \item{dfbeta}{ should the array of dfbeta residuals be computed. This implies computation of the sandwich variance estimate. The residuals will always be computed if there is a \code{cluster} term in the model formula. } \item{taper}{ allows for a smoothed variance estimate. Var(x), where x is the set of covariates, is an important component of the calculations for the Aalen regression model. At any given time point t, it is computed over all subjects who are still at risk at time t. The tape argument allows smoothing these estimates, for example \code{taper=(1:4)/4} would cause the variance estimate used at any event time to be a weighted average of the estimated variance matrices at the last 4 death times, with a weight of 1 for the current death time and decreasing to 1/4 for prior event times. The default value gives the standard Aalen model. } \item{test}{ selects the weighting to be used, for computing an overall ``average'' coefficient vector over time and the subsequent test for equality to zero. } \item{model, x, y }{ should copies of the model frame, the x matrix of predictors, or the response vector y be included in the saved result. } } \value{ an object of class \code{"aareg"} representing the fit, with the following components: \item{n}{vector containing the number of observations in the data set, the number of event times, and the number of event times used in the computation} \item{times}{vector of sorted event times, which may contain duplicates} \item{nrisk}{vector containing the number of subjects at risk, of the same length as \code{times}} \item{coefficient}{matrix of coefficients, with one row per event and one column per covariate} \item{test.statistic}{the value of the test statistic, a vector with one element per covariate} \item{test.var}{variance-covariance matrix for the test} \item{test}{the type of test; a copy of the \code{test} argument above} \item{tweight}{matrix of weights used in the computation, one row per event} \item{call}{a copy of the call that produced this result} } \details{ The Aalen model assumes that the cumulative hazard H(t) for a subject can be expressed as a(t) + X B(t), where a(t) is a time-dependent intercept term, X is the vector of covariates for the subject (possibly time-dependent), and B(t) is a time-dependent matrix of coefficients. The estimates are inherently non-parametric; a fit of the model will normally be followed by one or more plots of the estimates. The estimates may become unstable near the tail of a data set, since the increment to B at time t is based on the subjects still at risk at time t. The tolerance and/or nmin parameters may act to truncate the estimate before the last death. The \code{taper} argument can also be used to smooth out the tail of the curve. In practice, the addition of a taper such as 1:10 appears to have little effect on death times when n is still reasonably large, but can considerably dampen wild occilations in the tail of the plot. } \section{References}{ Aalen, O.O. (1989). A linear regression model for the analysis of life times. Statistics in Medicine, 8:907-925. Aalen, O.O (1993). Further results on the non-parametric linear model in survival analysis. Statistics in Medicine. 12:1569-1588. } \seealso{ print.aareg, summary.aareg, plot.aareg } \examples{ # Fit a model to the lung cancer data set lfit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, data=lung, nmin=1) \dontrun{ lfit Call: aareg(formula = Surv(time, status) ~ age + sex + ph.ecog, data = lung, nmin = 1 ) n=227 (1 observations deleted due to missing values) 138 out of 138 unique event times used slope coef se(coef) z p Intercept 5.26e-03 5.99e-03 4.74e-03 1.26 0.207000 age 4.26e-05 7.02e-05 7.23e-05 0.97 0.332000 sex -3.29e-03 -4.02e-03 1.22e-03 -3.30 0.000976 ph.ecog 3.14e-03 3.80e-03 1.03e-03 3.70 0.000214 Chisq=26.73 on 3 df, p=6.7e-06; test weights=aalen plot(lfit[4], ylim=c(-4,4)) # Draw a plot of the function for ph.ecog } lfit2 <- aareg(Surv(time, status) ~ age + sex + ph.ecog, data=lung, nmin=1, taper=1:10) \dontrun{lines(lfit2[4], col=2) # Nearly the same, until the last point} # A fit to the mulitple-infection data set of children with # Chronic Granuomatous Disease. See section 8.5 of Therneau and Grambsch. fita2 <- aareg(Surv(tstart, tstop, status) ~ treat + age + inherit + steroids + cluster(id), data=cgd) \dontrun{ n= 203 69 out of 70 unique event times used slope coef se(coef) robust se z p Intercept 0.004670 0.017800 0.002780 0.003910 4.55 5.30e-06 treatrIFN-g -0.002520 -0.010100 0.002290 0.003020 -3.36 7.87e-04 age -0.000101 -0.000317 0.000115 0.000117 -2.70 6.84e-03 inheritautosomal 0.001330 0.003830 0.002800 0.002420 1.58 1.14e-01 steroids 0.004620 0.013200 0.010600 0.009700 1.36 1.73e-01 Chisq=16.74 on 4 df, p=0.0022; test weights=aalen } } \keyword{survival} % docclass is function survival/man/Surv.Rd0000644000176200001440000001453013537676563014156 0ustar liggesusers\name{Surv} \alias{Surv} \alias{is.Surv} \alias{[.Surv} \title{ Create a Survival Object } \description{ Create a survival object, usually used as a response variable in a model formula. Argument matching is special for this function, see Details below. } \usage{ Surv(time, time2, event, type=c('right', 'left', 'interval', 'counting', 'interval2', 'mstate'), origin=0) is.Surv(x) } \arguments{ \item{time}{ for right censored data, this is the follow up time. For interval data, the first argument is the starting time for the interval. } \item{event}{ The status indicator, normally 0=alive, 1=dead. Other choices are \code{TRUE}/\code{FALSE} (\code{TRUE} = death) or 1/2 (2=death). For interval censored data, the status indicator is 0=right censored, 1=event at \code{time}, 2=left censored, 3=interval censored. For multiple enpoint data the event variable will be a factor, whose first level is treated as censoring. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have an event. } \item{time2}{ ending time of the interval for interval censored or counting process data only. Intervals are assumed to be open on the left and closed on the right, \code{(start, end]}. For counting process data, \code{event} indicates whether an event occurred at the end of the interval. } \item{type}{ character string specifying the type of censoring. Possible values are \code{"right"}, \code{"left"}, \code{"counting"}, \code{"interval"}, \code{"interval2"} or \code{"mstate"}. } \item{origin}{ for counting process data, the hazard function origin. This option was intended to be used in conjunction with a model containing time dependent strata in order to align the subjects properly when they cross over from one strata to another, but it has rarely proven useful.} \item{x}{ any R object. } } \value{ An object of class \code{Surv}. There are methods for \code{print}, \code{is.na}, and subscripting survival objects. \code{Surv} objects are implemented as a matrix of 2 or 3 columns that has further attributes. These include the type (left censored, right censored, counting process, etc.) and labels for the states for multi-state objects. Any attributes of the input arguments are also preserved in \code{inputAttributes}. This may be useful for other packages that have attached further information to data items such as labels; none of the routines in the survival package make use of these values, however. In the case of \code{is.Surv}, a logical value \code{TRUE} if \code{x} inherits from class \code{"Surv"}, otherwise an \code{FALSE}. } \details{ When the \code{type} argument is missing the code assumes a type based on the following rules: \itemize{ \item If there are two unnamed arguments, they will match \code{time} and \code{event} in that order. If there are three unnamed arguments they match \code{time}, \code{time2} and \code{event}. \item If the event variable is a factor then type \code{mstate} is assumed. Otherwise type \code{right} if there is no \code{time2} argument, and type \code{counting} if there is. } As a consequence the \code{type} argument will normally be omitted. When the survival type is "mstate" then the status variable will be treated as a factor. The first level of the factor is taken to represent censoring and remaining ones a transition to the given state. (If the status variable is a factor then \code{mstate} is assumed.) Interval censored data can be represented in two ways. For the first use \code{type = "interval"} and the codes shown above. In that usage the value of the \code{time2} argument is ignored unless event=3. The second approach is to think of each observation as a time interval with (-infinity, t) for left censored, (t, infinity) for right censored, (t,t) for exact and (t1, t2) for an interval. This is the approach used for type = interval2. Infinite values can be represented either by actual infinity (Inf) or NA. The second form has proven to be the more useful one. Presently, the only methods allowing interval censored data are the parametric models computed by \code{survreg} and survival curves computed by \code{survfit}; for both of these, the distinction between open and closed intervals is unimportant. The distinction is important for counting process data and the Cox model. The function tries to distinguish between the use of 0/1 and 1/2 coding for censored data via the condition \code{if (max(status)==2)}. If 1/2 coding is used and all the subjects are censored, it will guess wrong. In any questionable case it is safer to use logical coding, e.g., \code{Surv(time, status==3)} would indicate that '3' is the code for an event. For multi-state survival the status variable will be a factor, whose first level is assumed to correspond to censoring. Surv objects can be subscripted either as a vector, e.g. \code{x[1:3]} using a single subscript, in which case the \code{drop} argument is ignored and the result will be a survival object; or as a matrix by using two subscripts. If the second subscript is missing and \code{drop=F} (the default), the result of the subscripting will be a Surv object, e.g., \code{x[1:3,,drop=F]}, otherwise the result will be a matrix (or vector), in accordance with the default behavior for subscripting matrices. } \note{ The use of 1/2 coding for status is an interesting historical artifact. For data contained on punch cards, IBM 360 Fortran treated blank as a zero, which led to a policy within the Mayo Clinic section of Biostatistics to never use "0" as a data value since one could not distinguish it from a missing value. Policy became habit, as is often the case, and the use of 1/2 coding for alive/dead endured long after the demise of the punch cards that had sired the practice. At the time \code{Surv} was written many Mayo data sets still used this convention, e.g., the 1994 \code{lung} data set found in the package. } \seealso{ \code{\link{coxph}}, \code{\link{survfit}}, \code{\link{survreg}}, \code{link{lung}}. } \examples{ with(aml, Surv(time, status)) survfit(Surv(time, status) ~ ph.ecog, data=lung) Surv(heart$start, heart$stop, heart$event) } \keyword{survival} survival/man/strata.Rd0000644000176200001440000000260013537676563014510 0ustar liggesusers\name{strata} \alias{strata} \title{ Identify Stratification Variables } \description{ This is a special function used in the context of the Cox survival model. It identifies stratification variables when they appear on the right hand side of a formula. } \usage{ strata(..., na.group=FALSE, shortlabel, sep=', ') } \arguments{ \item{\dots}{ any number of variables. All must be the same length. } \item{na.group}{ a logical variable, if \code{TRUE}, then missing values are treated as a distinct level of each variable. } \item{shortlabel}{if \code{TRUE} omit variable names from resulting factor labels. The default action is to omit the names if all of the arguments are factors, and none of them was named.} \item{sep}{ the character used to separate groups, in the created label } } \value{ a new factor, whose levels are all possible combinations of the factors supplied as arguments. } \details{ When used outside of a \code{coxph} formula the result of the function is essentially identical to the \code{interaction} function, though the labels from \code{strata} are often more verbose. } \seealso{ \code{\link{coxph}}, \code{\link{interaction}} } \examples{ a <- factor(rep(1:3,4), labels=c("low", "medium", "high")) b <- factor(rep(1:4,3)) levels(strata(b)) levels(strata(a,b,shortlabel=TRUE)) coxph(Surv(futime, fustat) ~ age + strata(rx), data=ovarian) } \keyword{survival} survival/man/dsurvreg.Rd0000644000176200001440000000630413537676563015060 0ustar liggesusers\name{dsurvreg} \alias{dsurvreg} \alias{psurvreg} \alias{qsurvreg} \alias{rsurvreg} \title{ Distributions available in survreg. } \description{ Density, cumulative distribution function, quantile function and random generation for the set of distributions supported by the \code{survreg} function. } \usage{ dsurvreg(x, mean, scale=1, distribution='weibull', parms) psurvreg(q, mean, scale=1, distribution='weibull', parms) qsurvreg(p, mean, scale=1, distribution='weibull', parms) rsurvreg(n, mean, scale=1, distribution='weibull', parms) } \arguments{ \item{x}{ vector of quantiles. Missing values (\code{NA}s) are allowed. } \item{q}{ vector of quantiles. Missing values (\code{NA}s) are allowed. } \item{p}{ vector of probabilities. Missing values (\code{NA}s) are allowed. } \item{n}{number of random deviates to produce} \item{mean}{vector of linear predictors for the model. This is replicated to be the same length as \code{p}, \code{q} or \code{n}. } \item{scale}{ vector of (positive) scale factors. This is replicated to be the same length as \code{p}, \code{q} or \code{n}. } \item{distribution}{ character string giving the name of the distribution. This must be one of the elements of \code{survreg.distributions} } \item{parms}{ optional parameters, if any, of the distribution. For the t-distribution this is the degrees of freedom. } } \value{ density (\code{dsurvreg}), probability (\code{psurvreg}), quantile (\code{qsurvreg}), or for the requested distribution with mean and scale parameters \code{mean} and \code{sd}. } \details{ Elements of \code{q} or \code{p} that are missing will cause the corresponding elements of the result to be missing. The \code{location} and \code{scale} values are as they would be for \code{survreg}. The label "mean" was an unfortunate choice (made in mimicry of qnorm); since almost none of these distributions are symmetric it will not actually be a mean, but corresponds instead to the linear predictor of a fitted model. Translation to the usual parameterization found in a textbook is not always obvious. For example, the Weibull distribution is fit using the Extreme value distribution along with a log transformation. Letting \eqn{F(t) = 1 - \exp[-(at)^p]}{F(t) = 1 - exp(-(at)^p)} be the cumulative distribution of the Weibull using a standard parameterization in terms of \eqn{a} and \eqn{p}, the survreg location corresponds to \eqn{-\log(a)}{-log(a)} and the scale to \eqn{1/p} (Kalbfleisch and Prentice, section 2.2.2). } \section{References}{ Kalbfleisch, J. D. and Prentice, R. L. (1970). \emph{The Statistical Analysis of Failure Time Data} Wiley, New York. } \seealso{ \code{\link{survreg}}, \code{\link{Normal}} } \examples{ # List of distributions available names(survreg.distributions) \dontrun{ [1] "extreme" "logistic" "gaussian" "weibull" "exponential" [6] "rayleigh" "loggaussian" "lognormal" "loglogistic" "t" } # Compare results all.equal(dsurvreg(1:10, 2, 5, dist='lognormal'), dlnorm(1:10, 2, 5)) # Hazard function for a Weibull distribution x <- seq(.1, 3, length=30) haz <- dsurvreg(x, 2, 3)/ (1-psurvreg(x, 2, 3)) \dontrun{ plot(x, haz, log='xy', ylab="Hazard") #line with slope (1/scale -1) } } \keyword{distribution} survival/man/survcheck.Rd0000644000176200001440000000616713537676563015223 0ustar liggesusers\name{survcheck} \alias{survcheck} \title{Checks of a survival data set} \description{ Perform a set of consistency checks on survival data } \usage{ survcheck(formula, data, id, istate, istate0="(s0)", timefix=TRUE,...) } \arguments{ \item{formula}{a model formula with a \code{Surv} object as the response} \item{data}{data frame in which to find the \code{id}, \code{istate} and formula variables} \item{id}{an identifier that labels unique subjects} \item{istate}{an optional vector giving the initial state for each observation, i.e., the state at the start of each interval} \item{istate0}{default label for the initial state when \code{istate} is missing} \item{timefix}{process times through the \code{aeqSurv} function to eliminate potential roundoff issues.} \item{\ldots}{other arguments, which are ignored (but won't give an error if someone added \code{weights} for instance)} } \details{ This routine will examine a multi-state data set for consistency of the data. The basic rules are that if a subject is at risk they have to be somewhere, can not be two states at once, and should make sensible transitions from state to state. It reports the number of instances of the following conditions: \describe{ \item{overlap}{two observations for the same subject that overlap in time, e.g. intervals of (0, 100) and (90, 120). If \code{y} is simple (time, status) survival observation intervals implicitly start at 0, so in that case any duplicate identifiers will generate an overlap.} \item{jump}{a hole in a subject's timeline, where they are in one state at the end of the prior interval, but a new state in the at the start subsequent interval.} \item{gap}{one or more gaps in a subject's timeline; they are presumably in the same state at their return as when they left.} \item{teleport}{two adjacent intervals for a subject, with the first interval ending in one state and the subsequent interval starting in another. They have instantaneously changed states with experiencing a transition.} } The total number of occurences of each is present in the \code{flags} vector. Optional components give the location and identifiers of the flagged observations. } \value{ a list with components \item{states}{the vector of possible states} \item{transitions}{a matrix giving the count of transitions from one state to another} \item{statecount}{table of the number of visits per state, e.g., 18 subjects had 2 visits to the "infection" state} \item{flags}{a vector giving the counts of each check} \item{istate}{a revised initial state vector} \item{overlap}{a list with the row number and id of overlaps (not present if there are no overlaps)} \item{gaps}{a list with the row number and id of gaps (not present if there are no gaps)} \item{teleport}{a list with the row number and id of inconsistent rows (not present if there are none)} \item{jumps}{a list with the row number and id of jumps (not present if there are no jumps} } \author{Terry Therneau and Beth Atkinson} \keyword{ survival } survival/man/uspop2.Rd0000644000176200001440000000205413537676563014445 0ustar liggesusers\name{uspop2} \alias{uspop2} \docType{data} \title{Projected US Population} \description{US population by age and sex, for 2000 through 2020} \usage{data(uspop2)} \format{ The data is a matrix with dimensions age, sex, and calendar year. Age goes from 0 through 100, where the value for age 100 is the total for all ages of 100 or greater. } \details{ This data is often used as a "standardized" population for epidemiology studies.} \source{ NP2008_D1: Projected Population by Single Year of Age, Sex, Race, and Hispanic Origin for the United States: July 1, 2000 to July 1, 2050, www.census.gov/population/projections. } \examples{ us50 <- uspop2[51:101,, "2000"] #US 2000 population, 50 and over age <- as.integer(dimnames(us50)[[1]]) smat <- model.matrix( ~ factor(floor(age/5)) -1) ustot <- t(smat) \%*\% us50 #totals by 5 year age groups temp <- c(50,55, 60, 65, 70, 75, 80, 85, 90, 95) dimnames(ustot) <- list(c(paste(temp, temp+4, sep="-"), "100+"), c("male", "female")) } \seealso{\code{\link{uspop}}} \keyword{datasets} survival/man/levels.Surv.Rd0000644000176200001440000000116213537676563015444 0ustar liggesusers\name{levels.Surv} \alias{levels.Surv} \title{Return the states of a multi-state Surv object } \description{ For a multi-state \code{Surv} object, this will return the names of the states. } \usage{ \method{levels}{Surv}(x) } \arguments{ \item{x}{a \code{Surv} object} } \value{ for a multi-state \code{Surv} object, the vector of state names (excluding censoring); or NULL for an ordinary \code{Surv} object } \examples{ y1 <- Surv(c(1,5, 9, 17,21, 30), factor(c(0, 1, 2,1,0,2), 0:2, c("censored", "progression", "death"))) levels(y1) y2 <- Surv(1:6, rep(0:1, 3)) y2 levels(y2) } \keyword{ survival } survival/man/vcov.coxph.Rd0000644000176200001440000000231113537676563015306 0ustar liggesusers\name{vcov.coxph} \alias{vcov.coxph} \alias{vcov.survreg} \title{Variance-covariance matrix} \description{Extract and return the variance-covariance matrix.} \usage{ \method{vcov}{coxph}(object, complete=TRUE, ...) \method{vcov}{survreg}(object, complete=TRUE, ...) } \arguments{ \item{object}{a fitted model object} \item{complete}{logical indicating if the full variance-covariance matrix should be returned. This has an effect only for an over-determined fit where some of the coefficients are undefined, and \code{coef(object)} contains corresponding NA values. If \code{complete=TRUE} the returned matrix will have row/column for each coefficient, if FALSE it will contain rows/columns corresponding to the non-missing coefficients. The coef() function has a simpilar \code{complete} argument. } \item{\ldots}{additional arguments for method functions} } \value{a matrix} \details{ For the \code{coxph} and \code{survreg} functions the returned matrix is a particular generalized inverse: the row and column corresponding to any NA coefficients will be zero. This is a side effect of the generalized cholesky decomposion used in the unerlying compuatation. } \keyword{survival} survival/man/yates.Rd0000644000176200001440000000500113537676563014335 0ustar liggesusers\name{yates} \alias{yates} \title{Population prediction} \description{Compute population marginal means (PMM) from a model fit, for a chosen population and statistic. } \usage{ yates(fit, term, population = c("data", "factorial", "sas"), levels, test = c("global", "trend", "pairwise"), predict = "linear", options, nsim = 200, method = c("direct", "sgtt")) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{fit}{a model fit. Examples using lm, glm, and coxph objects are given in the vignette. } \item{term}{the term from the model whic is to be evaluated. This can be written as a character string or as a formula. } \item{population}{the population to be used for the adjusting variables. User can supply their own data frame or select one of the built in choices. The argument also allows "empirical" and "yates" as aliases for data and factorial, respectively, and ignores case. } \item{levels}{optional, what values for \code{term} should be used. } \item{test}{the test for comparing the population predictions. } \item{predict}{what to predict. For a glm model this might be the 'link' or 'response'. For a coxph model it can be linear, risk, or survival. User written functions are allowed. } \item{options}{optional arguments for the prediction method. } \item{nsim}{number of simulations used to compute a variance for the predictions. This is not needed for the linear predictor. } \item{method}{the computational approach for testing equality of the population predictions. Either the direct approach or the algorithm used by the SAS glim procedure for "type 3" tests. } } \details{ The many options and details of this function are best described in a vignette on population prediction. } \value{an object of class \code{yates} with components of \item{estimate}{a data frame with one row for each level of the term, and columns containing the level, the mean population predicted value (mppv) and its standard deviation.} \item{tests}{a matrix giving the test statistics} \item{mvar}{the full variance-covariance matrix of the mppv values} \item{summary}{optional: any further summary if the values provided by the prediction method.} } \author{Terry Therneau} \examples{ fit1 <- lm(skips ~ Solder*Opening + Mask, data = solder) yates(fit1, ~Opening, population = "factorial") fit2 <- coxph(Surv(time, status) ~ factor(ph.ecog)*sex + age, lung) yates(fit2, ~ ph.ecog, predict="risk") # hazard ratio } \keyword{ models } \keyword{ survival } survival/man/attrassign.Rd0000644000176200001440000000333313537676563015375 0ustar liggesusers\name{attrassign} \alias{attrassign.default} \alias{attrassign} \alias{attrassign.lm} \title{Create new-style "assign" attribute} \description{ The \code{"assign"} attribute on model matrices describes which columns come from which terms in the model formula. It has two versions. R uses the original version, but the alternate version found in S-plus is sometimes useful. } \usage{ \method{attrassign}{default}(object, tt,...) \method{attrassign}{lm}(object,...) } %- maybe also `usage' for other objects documented here. \arguments{ \item{object}{model matrix or linear model object} \item{tt}{terms object} \item{...}{ignored} } \value{ A list with names corresponding to the term names and elements that are vectors indicating which columns come from which terms } \details{ For instance consider the following \preformatted{ survreg(Surv(time, status) ~ age + sex + factor(ph.ecog), lung) } R gives the compact for for assign, a vector (0, 1, 2, 3, 3, 3); which can be read as ``the first column of the X matrix (intercept) goes with none of the terms, the second column of X goes with term 1 of the model equation, the third column of X with term 2, and columns 4-6 with term 3''. The alternate (S-Plus default) form is a list \preformatted{ $(Intercept) 1 $age 2 $sex 3 $factor(ph.ecog) 4 5 6 } } \seealso{\code{\link{terms}},\code{\link{model.matrix}}} \examples{ formula <- Surv(time,status)~factor(ph.ecog) tt <- terms(formula) mf <- model.frame(tt,data=lung) mm <- model.matrix(tt,mf) ## a few rows of data mm[1:3,] ## old-style assign attribute attr(mm,"assign") ## alternate style assign attribute attrassign(mm,tt) } \keyword{models} survival/man/pspline.Rd0000644000176200001440000000745113537676563014675 0ustar liggesusers\name{pspline} \alias{pspline} \alias{psplineinverse} \title{Smoothing splines using a pspline basis} \usage{ pspline(x, df=4, theta, nterm=2.5 * df, degree=3, eps=0.1, method, Boundary.knots=range(x), intercept=FALSE, penalty=TRUE, combine, ...) psplineinverse(x)} \arguments{ \item{x}{for psline: a covariate vector. The function does not apply to factor variables. For psplineinverse x will be the result of a pspline call.} \item{df}{the desired degrees of freedom. One of the arguments \code{df} or \code{theta}' must be given, but not both. If \code{df=0}, then the AIC = (loglik -df) is used to choose an "optimal" degrees of freedom. If AIC is chosen, then an optional argument `caic=T' can be used to specify the corrected AIC of Hurvich et. al. } \item{theta}{roughness penalty for the fit. It is a monotone function of the degrees of freedom, with theta=1 corresponding to a linear fit and theta=0 to an unconstrained fit of nterm degrees of freedom. } \item{nterm}{ number of splines in the basis } \item{degree}{ degree of splines } \item{eps}{accuracy for \code{df} } \item{method}{the method for choosing the tuning parameter \code{theta}. If theta is given, then 'fixed' is assumed. If the degrees of freedom is given, then 'df' is assumed. If method='aic' then the degrees of freedom is chosen automatically using Akaike's information criterion.} \item{\dots}{optional arguments to the control function} \item{Boundary.knots}{the spline is linear beyond the boundary knots. These default to the range of the data.} \item{intercept}{if TRUE, the basis functions include the intercept.} \item{penalty}{if FALSE a large number of attributes having to do with penalized fits are excluded. This is useful to create a pspline basis matrix for other uses.} \item{combine}{an optional vector of increasing integers. If two adjacent values of \code{combine} are equal, then the corresponding coefficients of the fit are forced to be equal. This is useful for monotone fits, see the vignette for more details. } } \description{ Specifies a penalised spline basis for the predictor. This is done by fitting a comparatively small set of splines and penalising the integrated second derivative. Traditional smoothing splines use one basis per observation, but several authors have pointed out that the final results of the fit are indistinguishable for any number of basis functions greater than about 2-3 times the degrees of freedom. Eilers and Marx point out that if the basis functions are evenly spaced, this leads to significant computational simplification, they refer to the result as a p-spline. } \value{ Object of class \code{pspline, coxph.penalty} containing the spline basis, with the appropriate attributes to be recognized as a penalized term by the coxph or survreg functions. For psplineinverse the original x vector is reconstructed. } \seealso{\code{\link{coxph}},\code{\link{survreg}},\code{\link{ridge}}, \code{\link{frailty}} } \references{ Eilers, Paul H. and Marx, Brian D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89-121. Hurvich, C.M. and Simonoff, J.S. and Tsai, Chih-Ling (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion, JRSSB, volume 60, 271--293. } \examples{ lfit6 <- survreg(Surv(time, status)~pspline(age, df=2), cancer) plot(cancer$age, predict(lfit6), xlab='Age', ylab="Spline prediction") title("Cancer Data") fit0 <- coxph(Surv(time, status) ~ ph.ecog + age, cancer) fit1 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,3), cancer) fit3 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,8), cancer) fit0 fit1 fit3 } \keyword{ survival} survival/man/agreg.fit.Rd0000644000176200001440000000322213537676563015061 0ustar liggesusers\name{agreg.fit} \alias{agreg.fit} \alias{coxph.fit} \title{Cox model fitting functions} \description{ These are the the functions called by coxph that do the actual computation. In certain situations, e.g. a simulation, it may be advantageous to call these directly rather than the usual \code{coxph} call using a model formula. } \usage{ agreg.fit(x, y, strata, offset, init, control, weights, method, rownames, resid=TRUE) coxph.fit(x, y, strata, offset, init, control, weights, method, rownames, resid=TRUE) } \arguments{ \item{x}{Matix of predictors. This should \emph{not} include an intercept.} \item{y}{a \code{Surv} object containing either 2 columns (coxph.fit) or 3 columns (agreg.fit).} \item{strata}{a vector containing the stratification, or NULL} \item{offset}{optional offset vector} \item{init}{initial values for the coefficients} \item{control}{the result of a call to \code{coxph.control}} \item{weights}{optional vector of weights} \item{method}{method for hanling ties, one of "breslow" or "efron"} \item{rownames}{this is only needed for a NULL model, in which case it contains the rownames (if any) of the original data.} \item{resid}{compute and return residuals.} } \details{ This routine does no checking that arguments are the proper length or type. Only use it if you know what you are doing! The \code{resid} and \code{concordance} arguments will save some compute time for calling routines that only need the likelihood, the generation of a permutation distribution for instance. } \value{ a list containing results of the fit} \author{Terry Therneau} \seealso{\code{\link{coxph}}} \keyword{ survival } survival/man/survexp.object.Rd0000644000176200001440000000411313537676563016174 0ustar liggesusers\name{survexp.object} \alias{survexp.object} \title{ Expected Survival Curve Object } \description{ This class of objects is returned by the \code{survexp} class of functions to represent a fitted survival curve. Objects of this class have methods for \code{summary}, and inherit the \code{print}, \code{plot}, \code{points} and \code{lines} methods from \code{survfit}. } \section{Structure}{ The following components must be included in a legitimate \code{survfit} object. } \arguments{ \item{surv}{ the estimate of survival at time t+0. This may be a vector or a matrix. } \item{n.risk}{ the number of subjects who contribute at this time. } \item{time}{ the time points at which the curve has a step. } \item{std.err}{ the standard error of the cumulative hazard or -log(survival). } \item{strata}{ if there are multiple curves, this component gives the number of elements of the \code{time} etc. vectors corresponding to the first curve, the second curve, and so on. The names of the elements are labels for the curves. } \item{method}{the estimation method used. One of "Ederer", "Hakulinen", or "conditional".} \item{na.action}{ the returned value from the na.action function, if any. It will be used in the printout of the curve, e.g., the number of observations deleted due to missing values. } \item{call}{ an image of the call that produced the object. } } \section{Subscripts}{ Survexp objects that contain multiple survival curves can be subscripted. This is most often used to plot a subset of the curves. } \section{Details}{ In expected survival each subject from the data set is matched to a hypothetical person from the parent population, matched on the characteristics of the parent population. The number at risk printed here is the number of those hypothetical subject who are still part of the calculation. In particular, for the Ederer method all hypotheticals are retained for all time, so \code{n.risk} will be a constant. } \seealso{ \code{\link{plot.survfit}}, \code{\link{summary.survexp}}, \code{\link{print.survfit}}, \code{\link{survexp}}. } \keyword{survival} survival/man/myeloid.Rd0000644000176200001440000000237213537676563014662 0ustar liggesusers\name{myeloid} \alias{myeloid} \docType{data} \title{Acute myeloid leukemia} \description{ This simulated data set is based on a trial in acute myeloid leukemia. } \format{ A data frame with 646 observations on the following 9 variables. \describe{ \item{\code{id}}{subject identifier, 1-646} \item{\code{trt}}{treatment arm A or B} \item{\code{sex}}{f=female, m=male} \item{\code{futime}}{time to death or last follow-up} \item{\code{death}}{1 if \code{futime} is a death, 0 for censoring} \item{\code{txtime}}{time to hematropetic stem cell transplant} \item{\code{crtime}}{time to complete response} \item{\code{rltime}}{time to relapse of disease} } } \details{ This data set is used to illustrate multi-state survival curves. The correlation between within-subject event times strongly resembles that from an actual trial, but none of the actual data values are from that source. } \examples{ coxph(Surv(futime, death) ~ trt, data=myeloid) # See the mstate vignette for a more complete analysis } \keyword{datasets} \references{ Le-Rademacher JG, Peterson RA, Therneau TM, Sanford BL, Stone RM, Mandrekar SJ. Application of multi-state models in cancer clinical trials. Clin Trials. 2018 Oct; 15 (5):489-498 }survival/man/predict.coxph.Rd0000644000176200001440000001326513537676563015775 0ustar liggesusers\name{predict.coxph} \alias{predict.coxph} \alias{predict.coxph.penal} \title{ Predictions for a Cox model } \description{ Compute fitted values and regression terms for a model fitted by \code{\link{coxph}} } \usage{ \method{predict}{coxph}(object, newdata, type=c("lp", "risk", "expected", "terms", "survival"), se.fit=FALSE, na.action=na.pass, terms=names(object$assign), collapse, reference=c("strata", "sample"), ...) } \arguments{ \item{object}{ the results of a coxph fit. } \item{newdata}{ Optional new data at which to do predictions. If absent predictions are for the data frame used in the original fit. When coxph has been called with a formula argument created in another context, i.e., coxph has been called within another function and the formula was passed as an argument to that function, there can be problems finding the data set. See the note below. } \item{type}{ the type of predicted value. Choices are the linear predictor (\code{"lp"}), the risk score exp(lp) (\code{"risk"}), the expected number of events given the covariates and follow-up time (\code{"expected"}), and the terms of the linear predictor (\code{"terms"}). The survival probability for a subject is equal to exp(-expected). } \item{se.fit}{ if TRUE, pointwise standard errors are produced for the predictions. } \item{na.action}{ applies only when the \code{newdata} argument is present, and defines the missing value action for the new data. The default is to include all observations. When there is no newdata, then the behavior of missing is dictated by the na.action option of the original fit.} \item{terms}{ if type="terms", this argument can be used to specify which terms should be included; the default is all. } \item{collapse}{ optional vector of subject identifiers. If specified, the output will contain one entry per subject rather than one entry per observation. } \item{reference}{reference for centering predictions, see details below} \item{\dots}{For future methods} } \value{ a vector or matrix of predictions, or a list containing the predictions (element "fit") and their standard errors (element "se.fit") if the se.fit option is TRUE. } \details{ The Cox model is a \emph{relative} risk model; predictions of type "linear predictor", "risk", and "terms" are all relative to the sample from which they came. By default, the reference value for each of these is the mean covariate within strata. The primary underlying reason is statistical: a Cox model only predicts relative risks between pairs of subjects within the same strata, and hence the addition of a constant to any covariate, either overall or only within a particular stratum, has no effect on the fitted results. Using the \code{reference="strata"} option causes this to be true for predictions as well. (There have been occasional requests for reference="zero", i.e., a hypothetical subject with all covariates equal to zero, in order to match certain other packages' results. The issue is that the results are often silly, e.g., risk relative to a subject with height, weight, or blood pressure of zero.) When the results of \code{predict} are used in further calculations it may be desirable to use a fixed reference level. Use of \code{reference="sample"} will use the overall means, and agrees with the \code{linear.predictors} component of the coxph object (which uses the overall mean for backwards compatability with older code). Predictions of \code{type="terms"} are almost invariably passed forward to further calculation, so for these we default to using the sample as the reference. Predictions of type "expected" incorporate the baseline hazard and are thus absolute instead of relative; the \code{reference} option has no effect on these. These values depend on the follow-up time for the future subjects as well as covariates so the \code{newdata} argument needs to include both the right and \emph{left} hand side variables from the formula. (The status variable will not be used, but is required since the underlying code needs to reconstruct the entire formula.) Models that contain a \code{frailty} term are a special case: due to the technical difficulty, when there is a \code{newdata} argument the predictions will always be for a random effect of zero. } \note{ Some predictions can be obtained directly from the coxph object, and for others it is necessary for the routine to have the entirety of the original data set, e.g., for type = \code{terms} or if standard errors are requested. This extra information is saved in the coxph object if \code{model=TRUE}, if not the original data is reconstructed. If it is known that such residuals will be required overall execution will be slightly faster if the model information is saved. In some cases the reconstruction can fail. The most common is when coxph has been called inside another function and the formula was passed as one of the arguments to that enclosing function. Another is when the data set has changed between the original call and the time of the prediction call. In each of these the simple solution is to add \code{model=TRUE} to the original coxph call. } \seealso{ \code{\link{predict}},\code{\link{coxph}},\code{\link{termplot}} } \examples{ options(na.action=na.exclude) # retain NA in predictions fit <- coxph(Surv(time, status) ~ age + ph.ecog + strata(inst), lung) #lung data set has status coded as 1/2 mresid <- (lung$status-1) - predict(fit, type='expected') #Martingale resid predict(fit,type="lp") predict(fit,type="expected") predict(fit,type="risk",se.fit=TRUE) predict(fit,type="terms",se.fit=TRUE) # For someone who demands reference='zero' pzero <- function(fit) predict(fit, reference="sample") + sum(coef(fit) * fit$means, na.rm=TRUE) } \keyword{survival} survival/man/survdiff.Rd0000644000176200001440000000724113537676563015050 0ustar liggesusers\name{survdiff} \alias{survdiff} \alias{print.survdiff} \title{ Test Survival Curve Differences } \description{ Tests if there is a difference between two or more survival curves using the \eqn{G^\rho}{G-rho} family of tests, or for a single curve against a known alternative. } \usage{ survdiff(formula, data, subset, na.action, rho=0, timefix=TRUE) } \arguments{ \item{formula}{ a formula expression as for other survival models, of the form \code{Surv(time, status) ~ predictors}. For a one-sample test, the predictors must consist of a single \code{offset(sp)} term, where \code{sp} is a vector giving the survival probability of each subject. For a k-sample test, each unique combination of predictors defines a subgroup. A \code{strata} term may be used to produce a stratified test. To cause missing values in the predictors to be treated as a separate group, rather than being omitted, use the \code{strata} function with its \code{na.group=T} argument. } \item{data}{ an optional data frame in which to interpret the variables occurring in the formula. } \item{subset}{ expression indicating which subset of the rows of data should be used in the fit. This can be a logical vector (which is replicated to have length equal to the number of observations), a numeric vector indicating which observation numbers are to be included (or excluded if negative), or a character vector of row names to be included. All observations are included by default. } \item{na.action}{ a missing-data filter function. This is applied to the \code{model.frame} after any subset argument has been used. Default is \code{options()$na.action}. } \item{rho}{ a scalar parameter that controls the type of test. } \item{timefix}{process times through the \code{aeqSurv} function to eliminate potential roundoff issues.} } \value{ a list with components: \item{n}{ the number of subjects in each group. } \item{obs}{ the weighted observed number of events in each group. If there are strata, this will be a matrix with one column per stratum. } \item{exp}{ the weighted expected number of events in each group. If there are strata, this will be a matrix with one column per stratum. } \item{chisq}{ the chisquare statistic for a test of equality. } \item{var}{ the variance matrix of the test. } \item{strata}{ optionally, the number of subjects contained in each stratum. }} \section{METHOD}{ This function implements the G-rho family of Harrington and Fleming (1982), with weights on each death of \eqn{S(t)^\rho}{S(t)^rho}, where \eqn{S(t)}{S} is the Kaplan-Meier estimate of survival. With \code{rho = 0} this is the log-rank or Mantel-Haenszel test, and with \code{rho = 1} it is equivalent to the Peto & Peto modification of the Gehan-Wilcoxon test. If the right hand side of the formula consists only of an offset term, then a one sample test is done. To cause missing values in the predictors to be treated as a separate group, rather than being omitted, use the \code{factor} function with its \code{exclude} argument. } \references{ Harrington, D. P. and Fleming, T. R. (1982). A class of rank test procedures for censored survival data. \emph{Biometrika} \bold{69}, 553-566.} \examples{ ## Two-sample test survdiff(Surv(futime, fustat) ~ rx,data=ovarian) ## Stratified 7-sample test survdiff(Surv(time, status) ~ pat.karno + strata(inst), data=lung) ## Expected survival for heart transplant patients based on ## US mortality tables expect <- survexp(futime ~ 1, data=jasa, cohort=FALSE, rmap= list(age=(accept.dt - birth.dt), sex=1, year=accept.dt), ratetable=survexp.us) ## actual survival is much worse (no surprise) survdiff(Surv(jasa$futime, jasa$fustat) ~ offset(expect)) } \keyword{survival} survival/man/aeqSurv.Rd0000644000176200001440000000255613537676563014652 0ustar liggesusers\name{aeqSurv} \alias{aeqSurv} \title{Adjudicate near ties in a Surv object} \description{The check for tied survival times can fail due to floating point imprecision, which can make actual ties appear to be distinct values. Routines that depend on correct identification of ties pairs will then give incorrect results, e.g., a Cox model. This function rectifies these. } \usage{ aeqSurv(x, tolerance = sqrt(.Machine$double.eps)) } \arguments{ \item{x}{a Surv object} \item{tolerance}{the tolerance used to detect values that will be considered equal} } \details{ This routine is called by both \code{survfit} and \code{coxph} to deal with the issue of ties that get incorrectly broken due to floating point imprecision. See the short vignette on tied times for a simple example. Use the \code{timefix} argument of \code{survfit} or \code{coxph.control} to control the option if desired. The rule for `equality' is identical to that used by the \code{all.equal} routine. Pairs of values that are within round off error of each other are replaced by the smaller value. An error message is generated if this process causes a 0 length time interval to be created. } \value{a Surv object identical to the original, but with ties restored.} \author{Terry Therneau} \seealso{\code{\link{survfit}}, \code{\link{coxph.control}}} \keyword{ survival } survival/man/predict.survreg.Rd0000644000176200001440000000547713537676563016357 0ustar liggesusers\name{predict.survreg} \alias{predict.survreg} \alias{predict.survreg.penal} \title{ Predicted Values for a `survreg' Object } \description{ Predicted values for a \code{survreg} object } \usage{ \method{predict}{survreg}(object, newdata, type=c("response", "link", "lp", "linear", "terms", "quantile", "uquantile"), se.fit=FALSE, terms=NULL, p=c(0.1, 0.9), na.action=na.pass, ...) } \arguments{ \item{object}{ result of a model fit using the \code{survreg} function. } \item{newdata}{ data for prediction. If absent predictions are for the subjects used in the original fit. } \item{type}{ the type of predicted value. This can be on the original scale of the data (response), the linear predictor (\code{"linear"}, with \code{"lp"} as an allowed abbreviation), a predicted quantile on the original scale of the data (\code{"quantile"}), a quantile on the linear predictor scale (\code{"uquantile"}), or the matrix of terms for the linear predictor (\code{"terms"}). At this time \code{"link"} and linear predictor (\code{"lp"}) are identical. } \item{se.fit}{ if \code{TRUE}, include the standard errors of the prediction in the result. } \item{terms}{ subset of terms. The default for residual type \code{"terms"} is a matrix with one column for every term (excluding the intercept) in the model. } \item{p}{ vector of percentiles. This is used only for quantile predictions. } \item{na.action}{ applies only when the \code{newdata} argument is present, and defines the missing value action for the new data. The default is to include all observations.} \item{\dots}{for future methods} } \value{ a vector or matrix of predicted values. } \references{ Escobar and Meeker (1992). Assessing influence in regression analysis with censored data. \emph{Biometrics,} 48, 507-528. } \seealso{ \code{\link{survreg}}, \code{\link{residuals.survreg}} } \examples{ # Draw figure 1 from Escobar and Meeker, 1992. fit <- survreg(Surv(time,status) ~ age + I(age^2), data=stanford2, dist='lognormal') with(stanford2, plot(age, time, xlab='Age', ylab='Days', xlim=c(0,65), ylim=c(.1, 10^5), log='y', type='n')) with(stanford2, points(age, time, pch=c(2,4)[status+1], cex=.7)) pred <- predict(fit, newdata=list(age=1:65), type='quantile', p=c(.1, .5, .9)) matlines(1:65, pred, lty=c(2,1,2), col=1) # Predicted Weibull survival curve for a lung cancer subject with # ECOG score of 2 lfit <- survreg(Surv(time, status) ~ ph.ecog, data=lung) pct <- 1:98/100 # The 100th percentile of predicted survival is at +infinity ptime <- predict(lfit, newdata=data.frame(ph.ecog=2), type='quantile', p=pct, se=TRUE) matplot(cbind(ptime$fit, ptime$fit + 2*ptime$se.fit, ptime$fit - 2*ptime$se.fit)/30.5, 1-pct, xlab="Months", ylab="Survival", type='l', lty=c(1,2,2), col=1) } \keyword{survival} survival/man/veteran.Rd0000644000176200001440000000137713537676563014670 0ustar liggesusers\name{veteran} \alias{veteran} \docType{data} \title{Veterans' Administration Lung Cancer study} \description{Randomised trial of two treatment regimens for lung cancer. This is a standard survival analysis data set.} \usage{veteran} \format{ \tabular{ll}{ trt:\tab 1=standard 2=test\cr celltype:\tab 1=squamous, 2=smallcell, 3=adeno, 4=large\cr time:\tab survival time\cr status:\tab censoring status\cr karno:\tab Karnofsky performance score (100=good)\cr diagtime:\tab months from diagnosis to randomisation\cr age:\tab in years\cr prior:\tab prior therapy 0=no, 10=yes\cr } } \source{ D Kalbfleisch and RL Prentice (1980), \emph{The Statistical Analysis of Failure Time Data}. Wiley, New York. } \keyword{datasets} survival/man/aml.Rd0000644000176200001440000000116113537676563013764 0ustar liggesusers\name{aml} \docType{data} \alias{aml} \alias{leukemia} \title{Acute Myelogenous Leukemia survival data} \description{Survival in patients with Acute Myelogenous Leukemia. The question at the time was whether the standard course of chemotherapy should be extended ('maintainance') for additional cycles.} \usage{ aml leukemia } \format{ \tabular{ll}{ time:\tab survival or censoring time\cr status:\tab censoring status\cr x: \tab maintenance chemotherapy given? (factor)\cr } } \source{ Rupert G. Miller (1997), \emph{Survival Analysis}. John Wiley & Sons. ISBN: 0-471-25218-2. } \keyword{datasets} survival/man/plot.aareg.Rd0000644000176200001440000000155113537676563015252 0ustar liggesusers\name{plot.aareg} \alias{plot.aareg} \title{ Plot an aareg object. } \description{ Plot the estimated coefficient function(s) from a fit of Aalen's additive regression model. } \usage{ \method{plot}{aareg}(x, se=TRUE, maxtime, type='s', ...) } \arguments{ \item{x}{ the result of a call to the \code{aareg} function } \item{se}{ if TRUE, standard error bands are included on the plot } \item{maxtime}{ upper limit for the x-axis. } \item{type}{ graphical parameter for the type of line, default is "steps". } \item{\dots }{ other graphical parameters such as line type, color, or axis labels. } } \section{Side Effects}{ A plot is produced on the current graphical device. } \section{References}{ Aalen, O.O. (1989). A linear regression model for the analysis of life times. Statistics in Medicine, 8:907-925. } \seealso{ aareg } survival/man/coxph.wtest.Rd0000644000176200001440000000123013537676563015476 0ustar liggesusers\name{coxph.wtest} \alias{coxph.wtest} \title{Compute a quadratic form} \description{ This function is used internally by several survival routines. It computes a simple quadratic form, while properly dealing with missings. } \usage{ coxph.wtest(var, b, toler.chol = 1e-09) } \arguments{ \item{var}{variance matrix} \item{b}{vector} \item{toler.chol}{tolerance for the internal cholesky decomposition} } \details{ Compute b' V-inverse b. Equivalent to sum(b * solve(V,b)), except for the case of redundant covariates in the original model, which lead to NA values in V and b. } \value{a real number} \author{Terry Therneau} \keyword{ survival } survival/man/plot.cox.zph.Rd0000644000176200001440000000412113537676563015560 0ustar liggesusers\name{plot.cox.zph} \alias{plot.cox.zph} \title{ Graphical Test of Proportional Hazards } \description{ Displays a graph of the scaled Schoenfeld residuals, along with a smooth curve. } \usage{ \method{plot}{cox.zph}(x, resid=TRUE, se=TRUE, df=4, nsmo=40, var, xlab="Time", ylab, lty=1:2, col=1, lwd=1, ...) } \arguments{ \item{x}{ result of the \code{cox.zph} function. } \item{resid}{ a logical value, if \code{TRUE} the residuals are included on the plot, as well as the smooth fit. } \item{se}{ a logical value, if \code{TRUE}, confidence bands at two standard errors will be added. } \item{df}{ the degrees of freedom for the fitted natural spline, \code{df=2} leads to a linear fit. } \item{nsmo}{number of points to use for the lines} \item{var}{ the set of variables for which plots are desired. By default, plots are produced in turn for each variable of a model. Selection of a single variable allows other features to be added to the plot, e.g., a horizontal line at zero or a main title. This has been superseded by a subscripting method; see the example below. } \item{xlab}{label for the x-axis of the plot} \item{ylab}{optional label for the y-axis of the plot. If missing a default label is provided. This can be a vector of labels.} \item{lty, col, lwd}{line type, color, and line width for the overlaid curve. Each of these can be vector of length 2, in which case the second element is used for the confidence interval.} \item{\dots}{ additional graphical arguments passed to the \code{plot} function. } } \section{Side Effects}{ a plot is produced on the current graphics device. } \seealso{ \code{\link{coxph}}, \code{\link{cox.zph}}. } \examples{ vfit <- coxph(Surv(time,status) ~ trt + factor(celltype) + karno + age, data=veteran, x=TRUE) temp <- cox.zph(vfit) plot(temp, var=3) # Look at Karnofsy score, old way of doing plot plot(temp[3]) # New way with subscripting abline(0, 0, lty=3) # Add the linear fit as well abline(lm(temp$y[,3] ~ temp$x)$coefficients, lty=4, col=3) title(main="VA Lung Study") } \keyword{survival} survival/man/summary.aareg.Rd0000644000176200001440000000641313537676563015773 0ustar liggesusers\name{summary.aareg} \alias{summary.aareg} \title{ Summarize an aareg fit } \description{ Creates the overall test statistics for an Aalen additive regression model } \usage{ \method{summary}{aareg}(object, maxtime, test=c("aalen", "nrisk"), scale=1,...) } \arguments{ \item{object}{ the result of a call to the \code{aareg} function } \item{maxtime}{ truncate the input to the model at time "maxtime" } \item{test}{ the relative time weights that will be used to compute the test } \item{scale}{ scales the coefficients. For some data sets, the coefficients of the Aalen model will be very small (10-4); this simply multiplies the printed values by a constant, say 1e6, to make the printout easier to read. } \item{\dots}{for future methods} } \value{ a list is returned with the following components \item{ table }{ a matrix with rows for the intercept and each covariate, and columns giving a slope estimate, the test statistic, it's standard error, the z-score and a p-value } \item{ test }{ the time weighting used for computing the test statistics } \item{ test.statistic }{ the vector of test statistics } \item{ test.var }{ the model based variance matrix for the test statistic } \item{ test.var2 }{ optionally, a robust variance matrix for the test statistic } \item{ chisq }{ the overall test (ignoring the intercept term) for significance of any variable } \item{ n }{ a vector containing the number of observations, the number of unique death times used in the computation, and the total number of unique death times } } \details{ It is not uncommon for the very right-hand tail of the plot to have large outlying values, particularly for the standard error. The \code{maxtime} parameter can then be used to truncate the range so as to avoid these. This gives an updated value for the test statistics, without refitting the model. The slope is based on a weighted linear regression to the cumulative coefficient plot, and may be a useful measure of the overall size of the effect. For instance when two models include a common variable, "age" for instance, this may help to assess how much the fit changed due to the other variables, in leiu of overlaying the two plots. (Of course the plots are often highly non-linear, so it is only a rough substitute). The slope is not directly related to the test statistic, as the latter is invariant to any monotone transformation of time. } \seealso{ aareg, plot.aareg } \examples{ afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, data=lung, dfbeta=TRUE) summary(afit) \dontrun{ slope test se(test) robust se z p Intercept 5.05e-03 1.9 1.54 1.55 1.23 0.219000 age 4.01e-05 108.0 109.00 106.00 1.02 0.307000 sex -3.16e-03 -19.5 5.90 5.95 -3.28 0.001030 ph.ecog 3.01e-03 33.2 9.18 9.17 3.62 0.000299 Chisq=22.84 on 3 df, p=4.4e-05; test weights=aalen } summary(afit, maxtime=600) \dontrun{ slope test se(test) robust se z p Intercept 4.16e-03 2.13 1.48 1.47 1.450 0.146000 age 2.82e-05 85.80 106.00 100.00 0.857 0.392000 sex -2.54e-03 -20.60 5.61 5.63 -3.660 0.000256 ph.ecog 2.47e-03 31.60 8.91 8.67 3.640 0.000271 Chisq=27.08 on 3 df, p=5.7e-06; test weights=aalen }} \keyword{survival} survival/man/lung.Rd0000644000176200001440000000343713537676563014170 0ustar liggesusers\name{lung} \docType{data} \alias{cancer} \alias{lung} \title{NCCTG Lung Cancer Data} \description{ Survival in patients with advanced lung cancer from the North Central Cancer Treatment Group. Performance scores rate how well the patient can perform usual daily activities. } \usage{ lung cancer } \format{ \tabular{ll}{ inst:\tab Institution code\cr time:\tab Survival time in days\cr status:\tab censoring status 1=censored, 2=dead\cr age:\tab Age in years\cr sex:\tab Male=1 Female=2\cr ph.ecog:\tab ECOG performance score as rated by the physician. 0=asymptomatic, 1= symptomatic but completely ambulatory, 2= in bed <50\% of the day, 3= in bed > 50\% of the day but not bedbound, 4 = bedbound\cr ph.karno:\tab Karnofsky performance score (bad=0-good=100) rated by physician\cr pat.karno:\tab Karnofsky performance score as rated by patient\cr meal.cal:\tab Calories consumed at meals\cr wt.loss:\tab Weight loss in last six months\cr } } \note{ The use of 1/2 for alive/dead instead of the usual 0/1 is a historical footnote. For data contained on punch cards, IBM 360 Fortran treated blank as a zero, which led to a policy within the section of Biostatistics to never use "0" as a data value since one could not distinguish it from a missing value. The policy became a habit, as is often the case; and the 1/2 coding endured long beyond the demise of punch cards and Fortran. } \source{Terry Therneau} \references{ Loprinzi CL. Laurie JA. Wieand HS. Krook JE. Novotny PJ. Kugler JW. Bartel J. Law M. Bateman M. Klatt NE. et al. Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer Treatment Group. Journal of Clinical Oncology. 12(3):601-7, 1994. } \keyword{datasets} survival/man/rats2.Rd0000644000176200001440000000137413537676563014254 0ustar liggesusers\name{rats2} \alias{rats2} \docType{data} \title{Rat data from Gail et al.} \description{48 rats were injected with a carcinogen, and then randomized to either drug or placebo. The number of tumors ranges from 0 to 13; all rats were censored at 6 months after randomization. } \usage{rats2} \format{ \tabular{ll}{ rat:\tab id\cr trt:\tab treatment,(1=drug, 0=control) \cr observation:\tab within rat\cr start:\tab entry time\cr stop:\tab exit time\cr status:\tab event status, 1=tumor, 0=censored\cr } } \source{ MH Gail, TJ Santner, and CC Brown (1980), An analysis of comparative carcinogenesis experiments based on multiple times to tumor. \emph{Biometrics} \bold{36}, 255--266. } \keyword{survival} \keyword{datasets} survival/man/coxsurv.fit.Rd0000644000176200001440000000544313537676563015514 0ustar liggesusers\name{coxsurv.fit} \alias{coxsurv.fit} \title{ A direct interface to the `computational engine' of survfit.coxph } \description{ This program is mainly supplied to allow other packages to invoke the survfit.coxph function at a `data' level rather than a `user' level. It does no checks on the input data that is provided, which can lead to unexpected errors if that data is wrong. } \usage{ coxsurv.fit(ctype, stype, se.fit, varmat, cluster, y, x, wt, risk, position, strata, oldid, y2, x2, risk2, strata2, id2, unlist=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{stype}{survival curve computation: 1=direct, 2=exp(-cumulative hazard)} \item{ctype}{cumulative hazard computation: 1=Breslow, 2=Efron} \item{se.fit}{if TRUE, compute standard errors} \item{varmat}{the variance matrix of the coefficients } \item{cluster}{vector to control robust variance} \item{y}{the response variable used in the Cox model. (Missing values removed of course.) } \item{x}{covariate matrix used in the Cox model } \item{wt}{weight vector for the Cox model. If the model was unweighted use a vector of 1s. } \item{risk}{the risk score exp(X beta + offset) from the fitted Cox model.} \item{position}{optional argument controlling what is counted as 'censored'. Due to time dependent covariates, for instance, a subject might have start, stop times of (1,5)(5,30)(30,100). Times 5 and 30 are not 'real' censorings. Position is 1 for a real start, 2 for an actual end, 3 for both, 0 for neither.} \item{strata}{strata variable used in the Cox model. This will be a factor.} \item{oldid}{identifier for subjects with multiple rows in the original data.} \item{y2, x2, risk2, strata2}{variables for the hypothetical subjects, for which prediction is desired} \item{id2}{optional; if present and not NULL this should be a vector of identifiers of length \code{nrow(x2)}. A non-null value signifies that \code{x2} contains time dependent covariates, in which case this identifies which rows of \code{x2} go with each subject. } \item{unlist}{if \code{FALSE} the result will be a list with one element for each strata. Otherwise the strata are ``unpacked'' into the form found in a \code{survfit} object.} } \value{a list containing nearly all the components of a \code{survfit} object. All that is missing is to add the confidence intervals, the type of the original model's response (as in a coxph object), and the class. } \note{The source code for for both this function and \code{survfit.coxph} is written using noweb. For complete documentation see the \code{inst/sourcecode.pdf} file. } \author{Terry Therneau} \seealso{\code{\link{survfit.coxph}} } \keyword{survival} survival/man/nafld.Rd0000644000176200001440000000633413554060054014263 0ustar liggesusers\name{nafld} \alias{nafld1} \alias{nafld2} \alias{nafld3} \docType{data} \title{Non-alcohol fatty liver disease} \description{ Data sets containing the data from a population study of non-alcoholic fatty liver disease (NAFLD). Subjects with the condition and a set of matched control subjects were followed forward for metabolic conditions, cardiac endpoints, and death. } \usage{nafld1 nafld2 nafld3} \format{ \code{nafld1} is a data frame with 17549 observations on the following 10 variables. \describe{ \item{\code{id}}{subject identifier} \item{\code{age}}{age at entry to the study} \item{\code{male}}{0=female, 1=male} \item{\code{weight}}{weight in kg} \item{\code{height}}{height in cm} \item{\code{bmi}}{body mass index} \item{\code{case.id}}{the id of the NAFLD case to whom this subject is matched} \item{\code{futime}}{time to death or last follow-up} \item{\code{status}}{0= alive at last follow-up, 1=dead} } \code{nafld2} is a data frame with 400123 observations and 4 variables containing laboratory data \describe{ \item{\code{id}}{subject identifier} \item{\code{days}}{days since index date} \item{\code{test}}{the type of value recorded} \item{\code{value}}{the numeric value} } \code{nafld3} is a data frame with 34340 observations and 3 variables containing outcomes \describe{ \item{\code{id}}{subject identifier} \item{\code{days}}{days since index date} \item{\code{event}}{the endpoint that occurred} } } \details{ The primary reference for the NAFLD study is Allen (2018). The incidence of non-alcoholic fatty liver disease (NAFLD) has been rising rapidly in the last decade and it is now one of the main drivers of hepatology practice \cite{Tapper2018}. It is essentially the presence of excess fat in the liver, and parallels the ongoing obesity epidemic. Approximately 20-25\% of NAFLD patients will develop the inflammatory state of non-alcoholic steatohepatitis (NASH), leading to fibrosis and eventual end-stage liver disease. NAFLD can be accurately diagnosed by MRI methods, but NASH diagnosis currently requires a biopsy. The current study constructed a population cohort of all adult NAFLD subjects from 1997 to 2014 along with 4 potential controls for each case. To protect patient confidentiality all time intervals are in days since the index date; none of the dates from the original data were retained. Subject age is their integer age at the index date, and the subject identifier is an arbitrary integer. As a final protection, we include only a 90\% random sample of the data. As a consequence analyses results will not exactly match the original paper. There are 3 data sets: \code{nafld1} contains baseline data and has one observation per subject, \code{nafld2} has one observation for each (time dependent) continuous measurement, and \code{nafld3} has one observation for each yes/no outcome that occured. } \source{Data obtained from the author.} \references{ AM Allen, TM Therneau, JJ Larson, A Coward, VK Somers and PS Kamath, Nonalcoholic Fatty Liver Disease Incidence and Impact on Metabolic Burden and Death: A 20 Year Community Study, Hepatology 67:1726-1736, 2018. } \keyword{datasets} survival/man/print.summary.survfit.Rd0000644000176200001440000000144113537676563017545 0ustar liggesusers\name{print.summary.survfit} \alias{print.summary.survfit} \title{ Print Survfit Summary } \description{ Prints the result of \code{summary.survfit}. } \usage{ \method{print}{summary.survfit}(x, digits = max(options() $digits-4, 3), ...) } \arguments{ \item{x}{ an object of class \code{"summary.survfit"}, which is the result of the \code{summary.survfit} function. } \item{digits}{ the number of digits to use in printing the numbers. } \item{\dots}{for future methods} } \value{ \code{x}, with the invisible flag set to prevent printing. } \section{Side Effects}{ prints the summary created by \code{summary.survfit}. } \seealso{ \code{\link{options}}, \code{\link{print}}, \code{\link{summary.survfit}}. } \keyword{print} % docclass is function % Converted by Sd2Rd version 37351. survival/man/survfit0.Rd0000644000176200001440000000301113556561330014753 0ustar liggesusers\name{survfit0} \alias{survfit0} \title{ Convert the format of a survfit object. } \description{ Add the point for a starting time (time 0) to a survfit object's elements. This is useful for plotting. } \usage{ survfit0(x, start.time=0) } \arguments{ \item{x}{a survfit object} \item{start.time}{the desired starting time; see details below.} } \value{a reformulated version of the object with an initial data point at \code{start.time} added. The \code{time}, \code{surv}, \code{pstate}, \code{cumhaz}, \code{std.err}, and \code{std.cumhaz} components will all be aliged, so as to make plots and summaries easier to produce. } \details{ Survival curves are traditionally plotted forward from time 0, but since the true starting time is not known as a part of the data, the \code{survfit} routine does not include a time 0 value in the resulting object. Someone might look at cumulative mortgage defaults versus calendar year, for instance, with the `time' value a Date object. The plotted curve probably should not start at 0 = 1970/01/01. (One could certainly argue that this behavior is overly pedantic, but the decision was made over 20 years ago and it is far too late to change it now.) This is a utility function used by \code{plot.survfit} and \code{summary.survfit}. If the original \code{survfit} call included a \code{start.time} argument then that will be used as the starting point, otherwise the default is 0. It may be useful to others, so was exported. } \keyword{survival} survival/man/coxph.detail.Rd0000644000176200001440000000537113556063027015566 0ustar liggesusers\name{coxph.detail} \alias{coxph.detail} \title{ Details of a Cox Model Fit } \description{ Returns the individual contributions to the first and second derivative matrix, at each unique event time. } \usage{ coxph.detail(object, riskmat=FALSE) } \arguments{ \item{object}{ a Cox model object, i.e., the result of \code{coxph}. } \item{riskmat}{ include the at-risk indicator matrix in the output? } } \value{ a list with components \item{time}{ the vector of unique event times } \item{nevent}{ the number of events at each of these time points. } \item{means}{ a matrix with one row for each event time and one column for each variable in the Cox model, containing the weighted mean of the variable at that time, over all subjects still at risk at that time. The weights are the risk weights \code{exp(x \%*\% fit$coef)}. } \item{nrisk}{ number of subjects at risk. } \item{score}{ the contribution to the score vector (first derivative of the log partial likelihood) at each time point. } \item{imat}{ the contribution to the information matrix (second derivative of the log partial likelihood) at each time point. } \item{hazard}{ the hazard increment. Note that the hazard and variance of the hazard are always for some particular future subject. This routine uses \code{object$mean} as the future subject. } \item{varhaz}{ the variance of the hazard increment. } \item{x,y}{ copies of the input data. } \item{strata}{ only present for a stratified Cox model, this is a table giving the number of time points of component \code{time} that were contributed by each of the strata. } \item{riskmat}{ a matrix with one row for each time and one column for each observation containing a 0/1 value to indicate whether that observation was (1) or was not (0) at risk at the given time point. } } \details{ This function may be useful for those who wish to investigate new methods or extensions to the Cox model. The example below shows one way to calculate the Schoenfeld residuals. } \seealso{ \code{\link{coxph}}, \code{\link{residuals.coxph}} } \examples{ fit <- coxph(Surv(futime,fustat) ~ age + rx + ecog.ps, ovarian, x=TRUE) fitd <- coxph.detail(fit) # There is one Schoenfeld residual for each unique death. It is a # vector (covariates for the subject who died) - (weighted mean covariate # vector at that time). The weighted mean is defined over the subjects # still at risk, with exp(X beta) as the weight. events <- fit$y[,2]==1 etime <- fit$y[events,1] #the event times --- may have duplicates indx <- match(etime, fitd$time) schoen <- fit$x[events,] - fitd$means[indx,] } \keyword{survival} survival/man/rats.Rd0000644000176200001440000000221713537676563014167 0ustar liggesusers\name{rats} \alias{rats} \docType{data} \title{Rat treatment data from Mantel et al} \description{Rat treatment data from Mantel et al. Three rats were chosen from each of 100 litters, one of which was treated with a drug, and then all followed for tumor incidence. } \usage{rats} \format{ \tabular{ll}{ litter:\tab litter number from 1 to 100\cr rx:\tab treatment,(1=drug, 0=control) \cr time:\tab time to tumor or last follow-up\cr status:\tab event status, 1=tumor and 0=censored\cr sex:\tab male or female } } \source{ N. Mantel, N. R. Bohidar and J. L. Ciminera. Mantel-Haenszel analyses of litter-matched time to response data, with modifications for recovery of interlitter information. Cancer Research, 37:3863-3868, 1977. } \references{ E. W. Lee, L. J. Wei, and D. Amato, Cox-type regression analysis for large number of small groups of correlated failure time observations, in "Survival Analysis, State of the Art", Kluwer, 1992. } \note{Since only 2/150 of the male rats have a tumor, most analyses use only females (odd numbered litters), e.g. Lee et al.} \keyword{survival} \keyword{datasets} survival/man/pbcseq.Rd0000644000176200001440000000665113537676563014501 0ustar liggesusers\name{pbcseq} \alias{pbcseq} \docType{data} \title{Mayo Clinic Primary Biliary Cirrhosis, sequential data} \description{ This data is a continuation of the PBC data set, and contains the follow-up laboratory data for each study patient. An analysis based on the data can be found in Murtagh, et. al. The primary PBC data set contains only baseline measurements of the laboratory parameters. This data set contains multiple laboratory results, but only on the 312 randomized patients. Some baseline data values in this file differ from the original PBC file, for instance, the data errors in prothrombin time and age which were discovered after the original analysis (see Fleming and Harrington, figure 4.6.7). One "feature" of the data deserves special comment. The last observation before death or liver transplant often has many more missing covariates than other data rows. The original clinical protocol for these patients specified visits at 6 months, 1 year, and annually thereafter. At these protocol visits lab values were obtained for a large pre-specified battery of tests. "Extra" visits, often undertaken because of worsening medical condition, did not necessarily have all this lab work. The missing values are thus potentially informative. } \usage{pbc} \format{ \tabular{ll}{ id:\tab case number\cr age:\tab in years\cr sex:\tab m/f\cr trt:\tab 1/2/NA for D-penicillmain, placebo, not randomised\cr time:\tab number of days between registration and the earlier of death,\cr \tab transplantion, or study analysis in July, 1986\cr status:\tab status at endpoint, 0/1/2 for censored, transplant, dead\cr day:\tab number of days between enrollment and this visit date\cr \tab all measurements below refer to this date\cr albumin:\tab serum albumin (mg/dl)\cr alk.phos:\tab alkaline phosphotase (U/liter)\cr ascites:\tab presence of ascites \cr ast:\tab aspartate aminotransferase, once called SGOT (U/ml)\cr bili:\tab serum bilirunbin (mg/dl)\cr chol:\tab serum cholesterol (mg/dl)\cr copper:\tab urine copper (ug/day)\cr edema:\tab 0 no edema, 0.5 untreated or successfully treated\cr \tab 1 edema despite diuretic therapy\cr hepato:\tab presence of hepatomegaly or enlarged liver\cr platelet:\tab platelet count\cr protime:\tab standardised blood clotting time\cr spiders:\tab blood vessel malformations in the skin\cr stage:\tab histologic stage of disease (needs biopsy)\cr trig:\tab triglycerides (mg/dl)\cr } } \source{ T Therneau and P Grambsch, "Modeling Survival Data: Extending the Cox Model", Springer-Verlag, New York, 2000. ISBN: 0-387-98784-3. } \seealso{\code{\link{pbc}}} \examples{ # Create the start-stop-event triplet needed for coxph first <- with(pbcseq, c(TRUE, diff(id) !=0)) #first id for each subject last <- c(first[-1], TRUE) #last id time1 <- with(pbcseq, ifelse(first, 0, day)) time2 <- with(pbcseq, ifelse(last, futime, c(day[-1], 0))) event <- with(pbcseq, ifelse(last, status, 0)) fit1 <- coxph(Surv(time1, time2, event) ~ age + sex + log(bili), pbcseq) } \references{ Murtaugh PA. Dickson ER. Van Dam GM. Malinchoc M. Grambsch PM. Langworthy AL. Gips CH. "Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits." Hepatology. 20(1.1):126-34, 1994. Fleming T and Harrington D., "Counting Processes and Survival Analysis", Wiley, New York, 1991. } \keyword{datasets} survival/DESCRIPTION0000644000176200001440000000207113571515632013643 0ustar liggesusersTitle: Survival Analysis Maintainer: Terry M Therneau Priority: recommended Package: survival Version: 3.1-8 Date: 2019-11-18 Depends: R (>= 3.4.0) Imports: graphics, Matrix, methods, splines, stats, utils LazyData: Yes LazyLoad: Yes ByteCompile: Yes Authors@R: c(person(c("Terry", "M"), "Therneau", email="therneau.terry@mayo.edu", role=c("aut", "cre")), person("Thomas", "Lumley", role=c("ctb", "trl"), comment="original S->R port and R maintainer until 2009")) Description: Contains the core survival analysis routines, including definition of Surv objects, Kaplan-Meier and Aalen-Johansen (multi-state) curves, Cox models, and parametric accelerated failure time models. License: LGPL (>= 2) URL: https://github.com/therneau/survival NeedsCompilation: yes Packaged: 2019-12-01 17:42:21 UTC; therneau Author: Terry M Therneau [aut, cre], Thomas Lumley [ctb, trl] (original S->R port and R maintainer until 2009) Repository: CRAN Date/Publication: 2019-12-03 17:30:02 UTC survival/build/0000755000176200001440000000000013570775574013250 5ustar liggesuserssurvival/build/vignette.rds0000644000176200001440000000102613570775574015606 0ustar liggesusers‹½SËn1&i!¤²h…^±‚üC•ªTQµ)êÖ;©ÛÛ²=I»ã£Y®3~܉` ÛããûžsîGEQôŠßû°õO`;‚õÖð¡?){,³æ³¹ Ø”jmÔ³¨©Ãð¸TµæhZ*Y*è,1<¬›Ê (÷À Þh¥›Š:¡$Î`u%$·šX(N¬i…°c'8s¢îŽ=À¸Æ¾à&Xl¢Û÷é9{l¬ãŒÜ†dîÇ`ÃûÙyš+BÉ\=“+Åx >]ù¿XñIí,¡’‘vHÞÇûÃçyPzÄ.I‰‹˜~óc#k±’ܹ¿»NÃtÒj]|#·í?])‡¯IHÇ -½Cбx@Y5-Ÿè*VöáF5’©å’pc”Ù…ð#'»™£wÖ7¹ˆ\pÍ%ãÒÁ”ÖÔšk}oÿ¤þ+ó4[þ‰yNÌC–˜yÌC@˼ `æ¡ ‘yÊÌËbòÌC¾‰yëö=ÊŠ‹Q;z‹…'µE«ŽÖX쬫)©*V5•[HŠŠ^IOÑ+« n'»ŽÚΊxþ§<ƒl¡ÓCI=ÏÛÇ£.Er¸.]ú×—áó ÎêU«ˆ(‚×_ùË~ÝK44j3‹ÉŽaõ~À¶ÝnîWTVÔÆŠ"8‚ŸAgKþpûõ(,†ìïsurvival/tests/0000755000176200001440000000000013570775575013314 5ustar liggesuserssurvival/tests/book2.Rout.save0000644000176200001440000001662213537676603016142 0ustar liggesusers R Under development (unstable) (2016-01-29 r70039) -- "Unsuffered Consequences" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # > # Tests from the appendix of Therneau and Grambsch > # b. Data set 1 and Efron estimate > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > byhand <- function(beta, newx=0) { + r <- exp(beta) + loglik <- 2*beta - (log(3*r +3) + log((r+5)/2) + log(r+3)) + u <- (30 + 23*r - r^3)/ ((r+1)*(r+3)*(r+5)) + tfun <- function(x) x - x^2 + imat <- tfun(r/(r+1)) + tfun(r/(r+5)) + tfun(r/(r+3)) + + # The matrix of weights, one row per obs, one col per time + # Time of 1, 6, 6+0 (second death), and 9 + wtmat <- matrix(c(1,1,1,1,1,1, + 0,0,1,1,1,1, + 0,0,.5, .5, 1,1, + 0,0,0,0,0,1), ncol=4) + wtmat <- diag(c(r,r,r,1,1,1)) %*% wtmat + + x <- c(1,1,1,0,0,0) + status <- c(1,0,1,1,0,1) + xbar <- colSums(wtmat*x)/ colSums(wtmat) + haz <- 1/ colSums(wtmat) # one death at each of the times + + hazmat <- wtmat %*% diag(haz) #each subject's hazard over time + mart <- status - rowSums(hazmat) + + a <- r+1; b<- r+3; d<- r+5 # 'c' in the book, 'd' here + score <- c((2*r + 3)/ (3*a^2), + -r/ (3*a^2), + (675+ r*(1305 +r*(756 + r*(-4 +r*(-79 -13*r)))))/(3*(a*b*d)^2), + r*(1/(3*a^2) - a/(2*b^2) - b/(2*d^2)), + 2*r*(177 + r*(282 +r*(182 + r*(50 + 5*r)))) /(3*(a*b*d)^2), + 2*r*(177 + r*(282 +r*(182 + r*(50 + 5*r)))) /(3*(a*b*d)^2)) + + # Schoenfeld residual + d <- mean(xbar[2:3]) + scho <- c(1/(r+1), 1- d, 0- d , 0) + + surv <- exp(-cumsum(haz)* exp(beta*newx))[c(1,3,4)] + varhaz.g <- cumsum(haz^2) # since all numerators are 1 + + varhaz.d <- cumsum((newx-xbar) * haz) + + varhaz <- (varhaz.g + varhaz.d^2/ imat) * exp(2*beta*newx) + + list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=haz, + mart=mart, score=score, var.g=varhaz.g, var.d=varhaz.d, + scho=scho, surv=surv, var=varhaz[c(1,3,4)]) + } > > > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > fit0 <-coxph(Surv(time, status) ~x, test1, iter=0) > truth0 <- byhand(0,0) > aeq(truth0$loglik, fit0$loglik[1]) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid[c(2:6,1)]) [1] TRUE > aeq(resid(fit0), c(-3/4, NA, 5/6, -1/6, 5/12, 5/12, -3/4)) [1] TRUE > aeq(truth0$scho, resid(fit0, 'schoen')) [1] TRUE > aeq(truth0$score, resid(fit0, 'score')[c(3:7,1)]) [1] TRUE > sfit <- survfit(fit0, list(x=0), censor=FALSE) > aeq(sfit$std.err^2, truth0$var) [1] TRUE > aeq(sfit$surv, truth0$surv) [1] TRUE > > fit <- coxph(Surv(time, status) ~x, test1, eps=1e-8) > aeq(round(fit$coef,6), 1.676857) [1] TRUE > truebeta <- log(cos(acos((45/23)*sqrt(3/23))/3) * 2* sqrt(23/3)) > truth <- byhand(truebeta, 0) > aeq(truth$loglik, fit$loglik[2]) [1] TRUE > aeq(1/truth$imat, fit$var) [1] TRUE > aeq(truth$mart, fit$resid[c(2:6,1)]) [1] TRUE > aeq(truth$scho, resid(fit, 'schoen')) [1] TRUE > aeq(truth$score, resid(fit, 'score')[c(3:7,1)]) [1] TRUE > > # Per comments in the source code, the below is expected to fail for Efron > # at the tied death times. (When predicting for new data, predict > # treats a time in the new data set that exactly matches one in the original > # as being just after the original, i.e., experiences the full hazard > # jump there, in the same way that censors do.) > expect <- predict(fit, type='expected', newdata=test1) #force recalc > use <- !(test1$time==6 | is.na(test1$status)) > aeq(test1$status[use] - resid(fit)[use], expect[use]) [1] TRUE > > sfit <- survfit(fit, list(x=0), censor=FALSE) > aeq(sfit$surv, truth$surv) [1] TRUE > aeq(sfit$std.err^2, truth$var) [1] TRUE > > # > # Done with the formal test, now print out lots of bits > # > resid(fit) 1 2 3 4 5 6 7 -0.3655434 NA 0.7191707 -0.2808293 -0.4383414 0.7310869 -0.3655434 > resid(fit, 'scor') 1 2 3 4 5 6 7 0.2208584 NA 0.1132780 -0.0442340 -0.1029199 -0.4078409 0.2208584 > resid(fit, 'scho') 1 6 6 9 0.157512 0.421244 -0.578756 0.000000 > > predict(fit, type='lp') [1] -0.8384287 NA 0.8384287 0.8384287 0.8384287 -0.8384287 -0.8384287 > predict(fit, type='risk') [1] 0.4323894 NA 2.3127302 2.3127302 2.3127302 0.4323894 0.4323894 > predict(fit, type='expected') 1 2 3 4 5 6 7 1.3655434 NA 0.2808293 0.2808293 1.4383414 0.2689131 0.3655434 > predict(fit, type='terms') x 1 -0.8384287 2 NA 3 0.8384287 4 0.8384287 5 0.8384287 6 -0.8384287 7 -0.8384287 > predict(fit, type='lp', se.fit=T) $fit 1 2 3 4 5 6 7 -0.8384287 NA 0.8384287 0.8384287 0.8384287 -0.8384287 -0.8384287 $se.fit 1 2 3 4 5 6 7 0.6388078 NA 0.6388078 0.6388078 0.6388078 0.6388078 0.6388078 > predict(fit, type='risk', se.fit=T) $fit 1 2 3 4 5 6 7 0.4323894 NA 2.3127302 2.3127302 2.3127302 0.4323894 0.4323894 $se.fit 1 2 3 4 5 6 7 0.4200565 NA 0.9714774 0.9714774 0.9714774 0.4200565 0.4200565 > predict(fit, type='expected', se.fit=T) $fit 1 2 3 4 5 6 7 1.3655434 NA 0.2808293 0.2808293 1.4383414 0.2689131 0.3655434 $se.fit [1] 1.0649293 NA 0.2864593 0.2864593 1.5922983 0.3661617 0.3661617 > predict(fit, type='terms', se.fit=T) $fit x 1 -0.8384287 2 NA 3 0.8384287 4 0.8384287 5 0.8384287 6 -0.8384287 7 -0.8384287 $se.fit x 1 0.6388078 2 NA 3 0.6388078 4 0.6388078 5 0.6388078 6 0.6388078 7 0.6388078 > > summary(survfit(fit)) Call: survfit(formula = fit) time n.risk n.event survival std.err lower 95% CI upper 95% CI 1 6 1 0.8857 0.117 0.683036 1 6 4 2 0.4294 0.237 0.145743 1 9 1 1 0.0425 0.116 0.000198 1 > summary(survfit(fit, list(x=2))) Call: survfit(formula = fit, newdata = list(x = 2)) time n.risk n.event survival std.err lower 95% CI upper 95% CI 1 6 1 2.23e-01 5.97e-01 1.16e-03 1 6 4 2 2.87e-05 5.69e-04 3.96e-22 1 9 1 1 1.08e-17 1.04e-15 1.07e-99 1 > > proc.time() user system elapsed 0.232 0.012 0.238 survival/tests/zph.R0000644000176200001440000001416213556063773014236 0ustar liggesuserslibrary(survival) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) # Verify that cox.zph computes a score test # First for the Breslow estimate r <- (3 + sqrt(33))/2 # actual MLE for log(beta) U <- c(1/(r+1), 3/(r+3), -r/(r+3), 0) # score statistic imat <- c(r/(r+1)^2, 3*r/(r+3)^2, 3*r/(r+3)^2, 0) # information matrix g = c(1, 6, 6, 9) # death times u2 <- c(sum(U), sum(g*U)) # first derivative i2 <- matrix(c(sum(imat), sum(g*imat), sum(g*imat), sum(g^2*imat)), 2,2) # second derivative sctest <- solve(i2, u2) %*% u2 # Verify that centering makes no difference for the test (though i2 changes) g2 <- g - mean(g) u2b <- c(sum(U), sum(g2*U)) i2b <- matrix(c(sum(imat), sum(g2*imat), sum(g2*imat), sum(g2^2*imat)), 2,2) sctest2 <- solve(i2b, u2b) %*% u2b all.equal(sctest, sctest2) # Now check the program fit1 <- coxph(Surv(time, status) ~ x, test1, ties='breslow') aeq(fit1$coef, log(r)) zp1 <- cox.zph(fit1, transform='identity', global=FALSE) aeq(zp1$table[,1], sctest) aeq(zp1$y, resid(fit1, type="scaledsch")) dummy <- rep(0, nrow(test1)) fit1b <- coxph(Surv(dummy, time, status) ~ x, test1, ties='breslow') aeq(fit1b$coef, log(r)) zp1b <- cox.zph(fit1b, transform='identity', global=FALSE) aeq(zp1b$table[,1], sctest) # the pair of tied times gets reversed in the zph result # but since the 'y' values are only used to plot it doesn't matter aeq(zp1b$y[c(1,3,2,4)], resid(fit1b, type="scaledsch")) # log time check g3 <- log(g) - mean(log(g)) u3 <- c(sum(U), sum(g3*U)) # first derivative i3 <- matrix(c(sum(imat), sum(g3*imat), sum(g3*imat), sum(g3^2*imat)), 2,2) # second derivative sctest3 <- solve(i3, u3) %*% u3 zp3 <- cox.zph(fit1, transform='log', global=FALSE) aeq(zp3$table[,1], sctest3) # Efron approximation phi <- acos((45/23)*sqrt(3/23)) r <- 2*sqrt(23/3)* cos(phi/3) # actual MLE for log(beta) U <- c(1/(r+1), 3/(r+3), -r/(r+5), 0) # score statistic imat <- c(r/(r+1)^2, 3*r/(r+3)^2, 5*r/(r+5)^2, 0) # information matrix u4 <- c(sum(U), sum(g3*U)) # first derivative i4 <- matrix(c(sum(imat), sum(g3*imat), sum(g3*imat), sum(g3^2*imat)), 2,2) # second derivative sctest4 <- solve(i4, u4) %*% u4 fit4 <- coxph(Surv(time, status) ~ x, test1, ties='efron') aeq(fit4$coef, log(r)) zp4 <- cox.zph(fit4, transform='log', global=FALSE) aeq(zp4$table[,1], sctest4) aeq(zp4$y, resid(fit4, type="scaledsch")) fit5 <- coxph(Surv(dummy, time, status) ~ x, test1, ties="efron") aeq(fit5$coef, log(r)) zp5 <- cox.zph(fit5, transform="log", global=FALSE) aeq(zp5$table[,1], sctest4) # Artificial stratification test2 <- rbind(test1, test1) test2$group <- rep(letters[1:2], each=nrow(test1)) # U, imat, and sctest will all double dummy <- c(dummy, dummy) fit6 <- coxph(Surv(dummy, time, status) ~ x + strata(group), test2) aeq(fit6$coef, log(r)) zp6 <- cox.zph(fit6, transform="log", globa=FALSE) aeq(zp6$table[,1], 2*sctest4) # A multi-state check, 2 covariates # Verify that the multi-state result = the single state Cox models etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) event <- factor(event, 0:2, labels=c("censor", "pcm", "death")) table(event) ct1 <- coxph(Surv(etime, event) ~ sex + age, mgus2, id=id) ct2 <- coxph(Surv(etime, event=='pcm') ~ sex + age, mgus2) ct3 <- coxph(Surv(etime, event=='death') ~ sex + age, mgus2) zp1 <- cox.zph(ct1, transform='identity') zp2 <- cox.zph(ct2, transform='identity') zp3 <- cox.zph(ct3, transform='identity') aeq(zp1$table[1:2,], zp2$table[1:2,]) aeq(zp1$table[3:4,], zp3$table[1:2,]) # Now add a starting time of zero dummy <- rep(0, nrow(mgus2)) ct4 <- coxph(Surv(dummy, etime, event) ~ sex + age, mgus2, id=id) ct5 <- coxph(Surv(dummy, etime, event=='pcm') ~ sex + age, mgus2) ct6 <- coxph(Surv(dummy, etime, event=='death') ~ sex + age, mgus2) zp4 <- cox.zph(ct4, transform='identity') zp5 <- cox.zph(ct5, transform='identity') zp6 <- cox.zph(ct6, transform='identity') aeq(zp4$table[1:2,], zp5$table[1:2,]) aeq(zp4$table[3:4,], zp6$table[1:2,]) # Direct check of a multivariate model with start, stop data p1 <- pbcseq[!duplicated(pbcseq$id), 1:6] pdata <- tmerge(p1[, c("id", "trt", "age", "sex")], p1, id=id, death = event(futime, status==2)) pdata <- tmerge(pdata, pbcseq, id=id, bili=tdc(day, bili), edema = tdc(day, edema), albumin=tdc(day, albumin), protime = tdc(day, protime)) pfit <- coxph(Surv(tstart, tstop, death) ~ log(bili) + albumin + edema + age + log(protime), data = pdata, ties='efron') zp7 <- cox.zph(pfit, transform='log', global=FALSE) direct <- function(fit) { nvar <- length(fit$coef) dt <- coxph.detail(fit) gtime <- log(dt$time) - mean(log(dt$time)) # key idea: at any event time I have a first deriviative vector # c(dt$score[i,], gtime[i]* dt$score[i,]) # and second derivative matrix # dt$imat[,,i] gtime[i] * dt$imat[,,i] # gtime[i]*dt$imat[,,i] gtime[i]^2 * dt$imat[,,i] # for the expanded model, where imat[,,i] is symmetric, # and colSums(dt$score) =0 (since the model converged) # # Create score tests for adding one time-dependent variable # gtime * x[,j] at a time: first derivative of this test is # c(dt$score[i,], gtime[i]* dt$score[i,j]) # and etc. unew <- colSums(gtime * dt$score) temp1 <- apply(dt$imat, 1:2, sum) temp2 <- apply(dt$imat, 1:2, function(x) sum(x*gtime)) temp3 <- apply(dt$imat, 1:2, function(x) sum(x * gtime^2)) score <- double(nvar) smat <- matrix(0., nvar+1, nvar+1) # second deriv matrix for the test smat[1:nvar, 1:nvar] <- temp1 for (i in 1:nvar) { smat[nvar+1,] <- c(temp2[i,], temp3[i,i]) smat[,nvar+1] <- c(temp2[,i], temp3[i,i]) utemp <- c(rep(0,nvar), unew[i]) score[i] <- solve(smat, utemp) %*% utemp } list(sctest = score, u= c(colSums(dt$score), unew), imat=cbind(rbind(temp1, temp2), rbind(temp2, temp3))) } aeq(zp7$table[,1], direct(pfit)$sctest) survival/tests/coxsurv3.Rout.save0000644000176200001440000001124513537676603016716 0ustar liggesusers R version 2.11.0 (2010-04-22) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > # One more test on coxph survival curves, to test out the individual > # option. First fit a model with a time dependent covariate > # > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > # True hazard function, from the validation document > lambda <- function(beta, x=0, method='efron') { + r <- exp(beta) + lambda <- c(1/(r+1), 1/(r+2), 1/(3*r +2), 1/(3*r+1), + 1/(3*r+1), 1/(3*r+2) + 1/(2*r +2)) + if (method == 'breslow') lambda[9] <- 2/(3*r +2) + list(time=c(2,3,6,7,8,9), lambda=lambda) + } > > fit <- coxph(Surv(start, stop, event) ~x, test2) > # A curve for someone who never changes > surv1 <-survfit(fit, newdata=list(x=0), censor=FALSE) > > true <- lambda(fit$coef, 0) > > aeq(true$time, surv1$time) [1] TRUE > aeq(-log(surv1$surv), cumsum(true$lambda)) [1] TRUE > > # Reprise it with a time dependent subject who doesn't change > data2 <- data.frame(start=c(0, 4, 9, 11), stop=c(4, 9, 11, 17), + event=c(0,0,0,0), x=c(0,0,0,0)) > surv2 <- survfit(fit, newdata=data2, individual=TRUE, censor=FALSE) > aeq(surv2$surv, surv1$surv) [1] TRUE > > > # > # Now a more complex data set with multiple strata > # > test3 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17, + 1:11), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, + 0, 1, 1, 0, 0, 1, 1, 0, 1, 0,1), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0, + 1, 2, 3, 2, 1, 1, 1, 0, 2, 1,0), + grp = c(rep('a', 10), rep('b', 11))) > > fit2 <- coxph(Surv(start, stop, event) ~ x + strata(grp), test3) > > # The above tests show the program works for a simple case, use it to > # get a true baseline for strata 2 > fit2b <- coxph(Surv(start, stop, event) ~x, test3, + subset=(grp=='b'), init=fit2$coef, iter=0) > temp <- survfit(fit2b, newdata=list(x=0), censor=F) > true2 <- list(time=temp$time, lambda=diff(c(0, -log(temp$surv)))) > true1 <- lambda(fit2$coef, x=0) > > # Separate strata, one value > surv3 <- survfit(fit2, list(x=0), censor=FALSE) > aeq(true1$time, (surv3[1])$time) [1] TRUE > aeq(-log(surv3[1]$surv), cumsum(true1$lambda)) [1] TRUE > > data4 <- data.frame(start=c(0, 4, 9, 11), stop=c(4, 9, 11, 17), + event=c(0,0,0,0), x=c(0,0,0,0), grp=rep('a', 4)) > surv4a <- survfit(fit2, newdata=data4, individual=T, censor=FALSE) > aeq(-log(surv4a$surv), cumsum(true1$lambda)) [1] TRUE > > data4$grp <- rep('b',4) > surv4b <- survfit(fit2, newdata=data4, individual=T, censor=FALSE) > aeq(-log(surv4b$surv), cumsum(true2$lambda)) [1] TRUE > > > # Now for something more complex > # Subject 1 skips day 4. Since there were no events that day the survival > # will be the same, but the times will be different. > # Subject 2 spends some time in strata 1, some in strata 2, with > # moving covariates > # > data5 <- data.frame(start=c(0,5,9,11, + 0, 4, 3), + stop =c(4,9,11,17, 4,8,7), + event=rep(0,7), + x=c(1,1,1,1, 0,1,2), + grp=c('a', 'a', 'a', 'a', 'a', 'a', 'b'), + subject=c(1,1,1,1, 2,2,2)) > surv5 <- survfit(fit2, newdata=data5, censor=FALSE, id=subject) > > aeq(surv5[1]$time, c(2,3,5,6,7,8)) #surv1 has 2, 3, 6, 7, 8, 9 [1] TRUE > aeq(surv5[1]$surv, surv3[1]$surv ^ exp(fit2$coef)) [1] TRUE > > tlam <- c(true1$lambda[1:2]* exp(fit2$coef * data5$x[5]), + true1$lambda[3:5]* exp(fit2$coef * data5$x[6]), + true2$lambda[3:4]* exp(fit2$coef * data5$x[7])) > aeq(-log(surv5[2]$surv), cumsum(tlam)) [1] TRUE > > > > survival/tests/infcox.R0000644000176200001440000000232113537676563014723 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # A test to exercise the "infinity" check on 2 variables # test3 <- data.frame(futime=1:12, fustat=c(1,0,1,0,1,0,0,0,0,0,0,0), x1=rep(0:1,6), x2=c(rep(0,6), rep(1,6))) # This will produce a warning message, which is the point of the test. # The variance is close to singular and gives different answers # on different machines fit3 <- coxph(Surv(futime, fustat) ~ x1 + x2, test3, iter=25) all(fit3$coef < -22) all.equal(round(fit3$log, 4),c(-6.8669, -1.7918)) # # Actual solution # time 1, 12 at risk, 3 each of x1/x2 = 00, 01, 10, 11 # time 2, 10 at risk, 2, 3, 2 , 3 # time 5, 8 at risk, 1, 3, 1, 3 # Let r1 = exp(beta1), r2= exp(beta2) # loglik = -log(3 + 3r1 + 3r2 + 3 r1*r2) - log(2 + 2r1 + 3r2 + 3 r1*r2) - # log(1 + r1 + 3r2 + 3 r1*r2) true <- function(beta) { r1 <- exp(beta[1]) r2 <- exp(beta[2]) loglik <- -log(3*(1+ r1+ r2+ r1*r2)) - log(2+ 2*r1 + 3*r2 + 3*r1*r2) - log(1 + r1 + 3*r2 + 3*r1*r2) loglik } all.equal(fit3$loglik[2], true(fit3$coef), check.attributes=FALSE) survival/tests/book3.R0000644000176200001440000001174113537676603014453 0ustar liggesuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # # Tests from the appendix of Therneau and Grambsch # c. Data set 2 and Breslow estimate # test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) byhand <- function(beta, newx=0) { r <- exp(beta) loglik <- 4*beta - log(r+1) - log(r+2) - 3*log(3*r+2) - 2*log(3*r+1) u <- 1/(r+1) + 1/(3*r+1) + 4/(3*r+2) - ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) imat <- r/(r+1)^2 + 2*r/(r+2)^2 + 6*r/(3*r+2)^2 + 3*r/(3*r+1)^2 + 3*r/(3*r+1)^2 + 12*r/(3*r+2)^2 hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 2/(3*r+2) ) xbar <- c(r/(r+1), r/(r+2), 3*r/(3*r+2), 3*r/(3*r+1), 3*r/(3*r+1), 3*r/(3*r+2)) # The matrix of weights, one row per obs, one col per time # deaths at 2,3,6,7,8,9 wtmat <- matrix(c(1,0,0,0,1,0,0,0,0,0, 0,1,0,1,1,0,0,0,0,0, 0,0,1,1,1,0,1,1,0,0, 0,0,0,1,1,0,1,1,0,0, 0,0,0,0,1,1,1,1,0,0, 0,0,0,0,0,1,1,1,1,1), ncol=6) wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat x <- c(1,0,0,1,0,1,1,1,0,0) status <- c(1,1,1,1,1,1,1,0,0,0) xbar <- colSums(wtmat*x)/ colSums(wtmat) n <- length(x) # Table of sums for score and Schoenfeld resids hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time dM <- -hazmat #Expected part for (i in 1:6) dM[i,i] <- dM[i,i] +1 #observed dM[7,6] <- dM[7,6] +1 # observed mart <- rowSums(dM) # Table of sums for score and Schoenfeld resids # Looks like the last table of appendix E.2.1 of the book resid <- dM * outer(x, xbar, '-') score <- rowSums(resid) scho <- colSums(resid) # We need to split the two tied times up, to match coxph scho <- c(scho[1:5], scho[6]/2, scho[6]/2) var.g <- cumsum(hazard*hazard /c(1,1,1,1,1,2)) var.d <- cumsum( (xbar-newx)*hazard) surv <- exp(-cumsum(hazard) * exp(beta*newx)) varhaz <- (var.g + var.d^2/imat)* exp(2*beta*newx) list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard, mart=mart, score=score, rmat=resid, scho=scho, surv=surv, var=varhaz) } aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) fit0 <-coxph(Surv(start, stop, event) ~x, test2, iter=0, method='breslow') truth0 <- byhand(0,0) aeq(truth0$loglik, fit0$loglik[1]) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')) sfit <- survfit(fit0, list(x=0), censor=FALSE) aeq(sfit$std.err^2, truth0$var) aeq(sfit$surv, truth0$surv) aeq(fit0$score, truth0$u^2/truth0$imat) beta1 <- truth0$u/truth0$imat fit1 <- coxph(Surv(start, stop, event) ~x, test2, iter=1, ties="breslow") aeq(beta1, coef(fit1)) truth <- byhand(-0.084526081, 0) fit <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-8, method='breslow') aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')) expect <- predict(fit, type='expected', newdata=test2) #force recalc aeq(test2$event -fit$resid, expect) #tests the predict function sfit <- survfit(fit, list(x=0), censor=FALSE) aeq(sfit$std.err^2, truth$var) aeq(-log(sfit$surv), (cumsum(truth$haz))) # Reprise the test, with strata # offseting the times ensures that we will get the wrong risk sets # if strata were not kept separate test2b <- rbind(test2, test2, test2) test2b$group <- rep(1:3, each= nrow(test2)) test2b$start <- test2b$start + test2b$group test2b$stop <- test2b$stop + test2b$group fit0 <- coxph(Surv(start, stop, event) ~ x + strata(group), test2b, iter=0, method="breslow") aeq(3*truth0$loglik, fit0$loglik[1]) aeq(3*truth0$imat, 1/fit0$var) aeq(rep(truth0$mart,3), fit0$resid) aeq(rep(truth0$scho,3), resid(fit0, 'schoen')) aeq(rep(truth0$score,3), resid(fit0, 'score')) fit1 <- coxph(Surv(start, stop, event) ~ x + strata(group), test2b, iter=1, method="breslow") aeq(fit1$coef, beta1) fit3 <- coxph(Surv(start, stop, event) ~x + strata(group), test2b, eps=1e-8, method='breslow') aeq(3*truth$loglik, fit3$loglik[2]) aeq(3*truth$imat, 1/fit3$var) aeq(rep(truth$mart,3), fit3$resid) aeq(rep(truth$scho,3), resid(fit3, 'schoen')) aeq(rep(truth$score,3), resid(fit3, 'score')) # # Done with the formal test, now print out lots of bits # resid(fit) resid(fit, 'scor') resid(fit, 'scho') predict(fit, type='lp') predict(fit, type='risk') predict(fit, type='expected') predict(fit, type='terms') predict(fit, type='lp', se.fit=T) predict(fit, type='risk', se.fit=T) predict(fit, type='expected', se.fit=T) predict(fit, type='terms', se.fit=T) summary(survfit(fit)) summary(survfit(fit, list(x=2))) survival/tests/r_donnell.R0000644000176200001440000000336213537676563015417 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Good initial values are key to this data set # It killed v4 of survreg; # data courtesy of Deborah Donnell, Fred Hutchinson Cancer Center # donnell <- scan("data.donnell", what=list(time1=0, time2=0, status=0)) donnell <- data.frame(donnell) dfit <- survreg(Surv(time1, time2, status, type='interval') ~1, donnell) summary(dfit) # # Fit the Donnell data using Statsci's code - should get the same coefs # if (exists('censorReg')) { dfitc <- censorReg(censor(time1, time2, status, type='interval') ~1, donnell) summary(dfitc) } # # Do a contour plot of the donnell data # npt <- 20 beta0 <- seq(.4, 3.6, length=npt) logsig <- seq(-1.4, 0.41, length=npt) donlog <- matrix(0,npt, npt) for (i in 1:npt) { for (j in 1:npt) { fit <- survreg(Surv(time1, time2, status, type='interval') ~1, donnell, init=c(beta0[i],logsig[j]), maxiter=0) donlog[i,j] <- fit$log[1] } } clev <- -c(51, 51.5, 52:60, 65, 75, 85, 100, 150) #clev <- seq(-51, -50, length=10) contour(beta0, logsig, pmax(donlog, -200), levels=clev, xlab="Intercept", ylab="Log(sigma)") points(2.39, log(.7885), pch=1, col=2) title("Donnell data") # # Compute the path of the iteration # # All the intermediate stops produce an ignorable "did not converge" # warning options(warn=-1) #turn them off niter <- 14 donpath <- matrix(0,niter+1,2) for (i in 0:niter){ fit <- survreg(Surv(time1, time2, status, type='interval') ~1, donnell, maxiter=i) donpath[i+1,] <- c(fit$coef, log(fit$scale)) } points(donpath[,1], donpath[,2]) lines(donpath[,1], donpath[,2], col=4) options(warn=0) #reset survival/tests/nested.Rout.save0000644000176200001440000000227513537676563016414 0ustar liggesusers R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > # > # A test of nesting. It makes sure the model.frame is built correctly > # > tfun <- function(fit, mydata) { + survfit(fit, newdata=mydata) + } > > myfit <- coxph(Surv(time, status) ~ age + factor(sex), lung) > > temp1 <- tfun(myfit, lung[1:5,]) > temp2 <- survfit(myfit, lung[1:5,]) > indx <- match('call', names(temp1)) #the call components won't match > > all.equal(unclass(temp1)[-indx], unclass(temp2)[-indx]) [1] TRUE > > > proc.time() user system elapsed 0.196 0.032 0.225 survival/tests/coxsurv.Rout.save0000644000176200001440000000605213537676603016633 0ustar liggesusers R Under development (unstable) (2019-05-15 r76504) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Test out subscripting in the case of a coxph survival curve > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), + data=cancer) > surv1 <- survfit(fit) > temp <- surv1[2:3] > > which <- cumsum(surv1$strata) > zed <- (which[1]+1):(which[3]) > aeq(surv1$surv[zed], temp$surv) [1] TRUE > aeq(surv1$time[zed], temp$time) [1] TRUE > > # This call should not create a model frame in the code -- so same > # answer but a different path through the underlying code > fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), + x=T, data=cancer) > surv2 <- survfit(fit) > all.equal(surv1, surv2) [1] TRUE > > # > # Now a result with a matrix of survival curves > # > dummy <- data.frame(age=c(30,40,60), sex=c(1,2,2), meal.cal=c(500, 1000, 1500)) > surv2 <- survfit(fit, newdata=dummy) > > zed <- 1:which[1] > aeq(surv2$surv[zed,1], surv2[1,1]$surv) [1] TRUE > aeq(surv2$surv[zed,2], surv2[1,2]$surv) [1] TRUE > aeq(surv2$surv[zed,3], surv2[1,3]$surv) [1] TRUE > aeq(surv2$surv[zed, ], surv2[1,1:3]$surv) [1] TRUE > aeq(surv2$surv[zed], (surv2[1])$surv) [1] TRUE > aeq(surv2$surv[zed, ], surv2[1, ]$surv) [1] TRUE > > # And the depreciated form - call with a named vector as 'newdata' > # the resulting $call component won't match so delete it before comparing > surv3 <- survfit(fit, c(age=40, sex=2, meal.cal=1000)) > all.equal(unclass(surv2[,2])[-length(surv3)], unclass(surv3)[-length(surv3)]) [1] TRUE > > > # Test out offsets, which have recently become popular due to a Langholz paper > fit1 <- coxph(Surv(time, status) ~ age + ph.ecog, lung) > fit2 <- coxph(Surv(time, status) ~ age + offset(ph.ecog * fit1$coef[2]), lung) > > surv1 <- survfit(fit1, newdata=data.frame(age=50, ph.ecog=1)) > surv2 <- survfit(fit2, newdata=data.frame(age=50, ph.ecog=1)) > all.equal(surv1$surv, surv2$surv) [1] TRUE > > # > # Check out the start.time option > # > surv3 <- survfit(fit1, newdata=data.frame(age=50, ph.ecog=1), + start.time=100) > index <- match(surv3$time, surv1$time) > rescale <- summary(surv1, time=100)$surv > all.equal(surv3$surv, surv1$surv[index]/rescale) [1] TRUE > > > proc.time() user system elapsed 0.808 0.060 0.868 survival/tests/r_resid.Rout.save0000644000176200001440000003561213537676563016562 0ustar liggesusers R Under development (unstable) (2019-05-15 r76504) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > fit1 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian) > fit4 <- survreg(Surv(log(futime), fustat) ~age + ecog.ps, ovarian, + dist='extreme') > > print(fit1) Call: survreg(formula = Surv(futime, fustat) ~ age + ecog.ps, data = ovarian) Coefficients: (Intercept) age ecog.ps 12.28496723 -0.09702669 0.09977342 Scale= 0.6032744 Loglik(model)= -90 Loglik(intercept only)= -98 Chisq= 15.98 on 2 degrees of freedom, p= 0.000339 n= 26 > summary(fit4) Call: survreg(formula = Surv(log(futime), fustat) ~ age + ecog.ps, data = ovarian, dist = "extreme") Value Std. Error z p (Intercept) 12.2850 1.5015 8.18 2.8e-16 age -0.0970 0.0235 -4.13 3.7e-05 ecog.ps 0.0998 0.3657 0.27 0.785 Log(scale) -0.5054 0.2351 -2.15 0.032 Scale= 0.603 Extreme value distribution Loglik(model)= -21.8 Loglik(intercept only)= -29.8 Chisq= 15.98 on 2 degrees of freedom, p= 0.00034 Number of Newton-Raphson Iterations: 5 n= 26 > > > # Hypothesis (and I'm fairly sure): censorReg shares the fault of many > # iterative codes -- it returns the loglik and variance for iteration k > # but the coef vector of iteration k+1. Hence the "all.equal" tests > # below don't come out perfect. > # > if (exists('censorReg')) { #true for Splus, not R + fit2 <- censorReg(censor(futime, fustat) ~ age + ecog.ps, ovarian) + fit3 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, + iter=0, init=c(fit2$coef, log(fit2$scale))) + + aeq(resid(fit2, type='working')[,1], resid(fit3, type='working')) + aeq(resid(fit2, type='response')[,1], resid(fit3, type='response')) + + temp <- sign(resid(fit3, type='working')) + aeq(resid(fit2, type='deviance')[,1], + temp*abs(resid(fit3, type='deviance'))) + aeq(resid(fit2, type='deviance')[,1], resid(fit3, type='deviance')) + } > # > # Now check fit1 and fit4, which should follow identical iteration paths > # These tests should all be true > # > aeq(fit1$coef, fit4$coef) [1] TRUE > > resid(fit1, type='working') 1 2 3 4 5 6 -4.5081778 -0.5909810 -2.4878519 0.6032744 -5.8993431 0.6032744 7 8 9 10 11 12 -1.7462937 -0.8102883 0.6032744 -1.6593962 -0.8235265 0.6032744 13 14 15 16 17 18 0.6032744 0.6032744 0.6032744 0.6032744 0.6032744 0.6032744 19 20 21 22 23 24 0.6032744 0.6032744 0.6032744 0.2572623 -31.8006867 -0.7426277 25 26 -0.2857597 0.6032744 > resid(fit1, type='response') 1 2 3 4 5 6 -155.14523 -58.62744 -262.03173 -927.79842 -1377.84908 -658.86626 7 8 9 10 11 12 -589.74449 -318.93436 4.50671 -686.83338 -434.39281 -1105.68733 13 14 15 16 17 18 -42.43371 -173.09223 -4491.29974 -3170.49394 -5028.31053 -2050.91373 19 20 21 22 23 24 -150.65033 -2074.09345 412.32400 76.35826 -3309.40331 -219.81579 25 26 -96.19691 -457.76731 > resid(fit1, type='deviance') 1 2 3 4 5 6 7 -1.5842290 -0.6132746 -1.2876971 0.5387840 -1.7148539 0.6682580 -1.1102921 8 9 10 11 12 13 14 -0.7460191 1.4253843 -1.0849419 -0.7531720 0.6648130 1.3526380 1.1954382 15 16 17 18 19 20 21 0.2962391 0.3916044 0.3278067 0.5929057 1.2747643 0.6171130 1.9857606 22 23 24 25 26 0.6125492 -2.4504208 -0.7080652 -0.3642424 0.7317955 > resid(fit1, type='dfbeta') [,1] [,2] [,3] [,4] 1 0.43370970 -1.087867e-02 0.126322520 0.048379059 2 0.14426449 -5.144770e-03 0.088768478 -0.033939677 3 0.25768057 -3.066698e-03 -0.066578834 0.021817646 4 0.05772598 -5.068044e-04 -0.013121427 -0.007762466 5 -0.58773456 6.676156e-03 0.084189274 0.008064026 6 0.01499533 -7.881949e-04 0.026570173 -0.013513160 7 -0.17869321 4.126121e-03 -0.072760519 -0.015006956 8 -0.11851540 2.520303e-03 -0.045549628 -0.035686269 9 0.08327656 3.206404e-03 -0.141835350 0.024490806 10 -0.25083921 5.321702e-03 -0.073986269 -0.020648720 11 -0.21333934 4.155746e-03 -0.049832434 -0.040215681 12 0.13889770 -1.586136e-03 -0.019701151 -0.004686340 13 0.07892133 -2.706713e-03 0.085242459 0.007847879 14 0.29690157 -1.987141e-03 -0.085553120 0.017447343 15 0.04344618 -6.319243e-04 -0.001944285 -0.003533279 16 0.04866809 -1.068317e-03 0.012398602 -0.006340983 17 0.04368104 -9.248316e-04 0.009428718 -0.004869178 18 0.15684611 -2.081485e-03 -0.013068320 -0.003265399 19 0.48839511 -4.775829e-03 -0.093258090 0.032703354 20 0.17598922 -2.349254e-03 -0.014202966 -0.002486428 21 0.37869758 -8.442011e-03 0.163476417 0.100850775 22 -0.59761427 8.803638e-03 0.052784598 -0.053085234 23 -0.79017984 1.092304e-02 0.053690092 0.080780399 24 -0.02348526 8.331002e-04 -0.039028433 -0.032765737 25 -0.13948485 3.687927e-04 0.056781884 -0.055647859 26 0.05778937 3.766350e-06 -0.029232389 -0.008927920 > resid(fit1, type='dfbetas') [,1] [,2] [,3] [,4] 1 0.288846658 -0.4627232074 0.345395116 0.20574292 2 0.096078819 -0.2188323823 0.242713641 -0.14433617 3 0.171612884 -0.1304417700 -0.182041999 0.09278449 4 0.038444974 -0.0215568869 -0.035877029 -0.03301165 5 -0.391425795 0.2839697749 0.230193032 0.03429410 6 0.009986751 -0.0335258093 0.072649027 -0.05746778 7 -0.119008027 0.1755042532 -0.198944162 -0.06382048 8 -0.078930164 0.1072008799 -0.124543264 -0.15176395 9 0.055461420 0.1363841532 -0.387810796 0.10415271 10 -0.167056601 0.2263581990 -0.202295647 -0.08781336 11 -0.142082031 0.1767643342 -0.136253451 -0.17102630 12 0.092504589 -0.0674661531 -0.053867524 -0.01992972 13 0.052560878 -0.1151298322 0.233072686 0.03337488 14 0.197733705 -0.0845228882 -0.233922105 0.07419878 15 0.028934753 -0.0268788526 -0.005316126 -0.01502607 16 0.032412497 -0.0454407662 0.033900659 -0.02696647 17 0.029091172 -0.0393376416 0.025780305 -0.02070728 18 0.104458066 -0.0885357994 -0.035731824 -0.01388685 19 0.325266641 -0.2031395176 -0.254989284 0.13907843 20 0.117207199 -0.0999253459 -0.038834208 -0.01057410 21 0.252209096 -0.3590802699 0.446982501 0.42889079 22 -0.398005596 0.3744620571 0.144325354 -0.22575700 23 -0.526252483 0.4646108448 0.146801184 0.34353696 24 -0.015640965 0.0354358527 -0.106712804 -0.13934372 25 -0.092895624 0.0156865706 0.155254862 -0.23665514 26 0.038487186 0.0001602014 -0.079928144 -0.03796800 > resid(fit1, type='ldcase') 1 2 3 4 5 6 0.374432175 0.145690278 0.112678800 0.006399163 0.261176992 0.013280058 7 8 9 10 11 12 0.109842490 0.074103234 0.248285282 0.128482147 0.094038203 0.016111951 13 14 15 16 17 18 0.132812463 0.111857574 0.001698300 0.004730718 0.003131173 0.015840667 19 20 21 22 23 24 0.179925399 0.019071941 0.797119488 0.233096445 0.666613755 0.062959708 25 26 0.080117437 0.015922378 > resid(fit1, type='ldresp') 1 2 3 4 5 6 0.076910173 0.173810883 0.078356928 0.005310644 0.060742612 0.010002154 7 8 9 10 11 12 0.067356838 0.067065693 0.355103899 0.067043195 0.068142828 0.016740944 13 14 15 16 17 18 0.193444572 0.165021262 0.001494685 0.004083386 0.002767560 0.016400993 19 20 21 22 23 24 0.269571809 0.020129806 1.409736499 1.040266083 0.058637282 0.071819025 25 26 0.112702844 0.015105534 > resid(fit1, type='ldshape') 1 2 3 4 5 6 0.870628250 0.383362440 0.412503605 0.005534970 0.513991064 0.003310847 7 8 9 10 11 12 0.291860593 0.154910362 0.256160646 0.312329770 0.183191309 0.004184904 13 14 15 16 17 18 0.110215710 0.049299495 0.007678445 0.011633336 0.011588605 0.008641251 19 20 21 22 23 24 0.112967758 0.008271358 2.246729275 0.966929220 1.022043272 0.143857170 25 26 0.079754096 0.001606647 > resid(fit1, type='matrix') g dg ddg ds dds dsg 1 -1.74950763 -1.46198129 -0.32429540 0.88466493 -2.42358635 1.8800360 2 -0.68266980 -0.82027857 -1.38799493 -0.66206188 -0.57351872 1.3921043 3 -1.32369884 -1.33411374 -0.53625126 0.31503768 -1.83606321 1.8626973 4 -0.14514412 0.24059386 -0.39881329 -0.28013223 -0.26053084 0.2237590 5 -1.96497889 -1.50383619 -0.25491587 1.15700933 -2.68145423 1.8694717 6 -0.22328436 0.37012071 -0.61351964 -0.33477229 -0.16715487 0.1848047 7 -1.11099124 -1.23201028 -0.70550005 0.01052036 -1.48515401 1.8106760 8 -0.77288913 -0.95018808 -1.17265428 -0.51190170 -0.79753045 1.5525642 9 -1.01586016 1.68391053 -2.79128447 0.01598527 -0.01623681 -1.7104080 10 -1.08316634 -1.21566480 -0.73259465 -0.03052447 -1.43539383 1.7998987 11 -0.77825093 -0.95675178 -1.16177415 -0.50314979 -0.81016011 1.5600720 12 -0.22098818 0.36631452 -0.60721042 -0.33361394 -0.17002503 0.1866908 13 -0.91481479 1.51641567 -2.51364157 -0.08144930 0.07419757 -1.3814037 14 -0.71453621 1.18442981 -1.96333502 -0.24017106 0.15944438 -0.7863174 15 -0.04387880 0.07273440 -0.12056602 -0.13717935 -0.29168773 0.1546569 16 -0.07667699 0.12710134 -0.21068577 -0.19691828 -0.30879813 0.1993144 17 -0.05372862 0.08906165 -0.14763041 -0.15709224 -0.30221555 0.1713377 18 -0.17576861 0.29135764 -0.48296037 -0.30558900 -0.22570402 0.2151929 19 -0.81251205 1.34683655 -2.23254376 -0.16869744 0.13367171 -1.0672002 20 -0.19041424 0.31563454 -0.52320225 -0.31581218 -0.20797917 0.2078622 21 -1.97162252 3.26820173 -5.41743790 1.33844939 -2.24706488 -5.4868428 22 -0.68222519 1.23245193 -4.79064290 -0.58668577 -0.95209805 -2.8390386 23 -3.49689798 -1.62675999 -0.05115487 2.90949868 -4.20494743 1.7496975 24 -0.74529506 -0.91462436 -1.23160543 -0.55723389 -0.73139169 1.5108398 25 -0.56095318 -0.53280415 -1.86451840 -0.87536233 -0.22666819 0.9689667 26 -0.26776235 0.44384834 -0.73573207 -0.35281852 -0.11207472 0.1409908 > > aeq(resid(fit1, type='working'),resid(fit4, type='working')) [1] TRUE > #aeq(resid(fit1, type='response'), resid(fit4, type='response'))#should differ > aeq(resid(fit1, type='deviance'), resid(fit4, type='deviance')) [1] TRUE > aeq(resid(fit1, type='dfbeta'), resid(fit4, type='dfbeta')) [1] TRUE > aeq(resid(fit1, type='dfbetas'), resid(fit4, type='dfbetas')) [1] TRUE > aeq(resid(fit1, type='ldcase'), resid(fit4, type='ldcase')) [1] TRUE > aeq(resid(fit1, type='ldresp'), resid(fit4, type='ldresp')) [1] TRUE > aeq(resid(fit1, type='ldshape'), resid(fit4, type='ldshape')) [1] TRUE > aeq(resid(fit1, type='matrix'), resid(fit4, type='matrix')) [1] TRUE > # > # Some tests of the quantile residuals > # > # These should agree exactly with Ripley and Venables' book > fit1 <- survreg(Surv(time, status) ~ temp, data=imotor) > summary(fit1) Call: survreg(formula = Surv(time, status) ~ temp, data = imotor) Value Std. Error z p (Intercept) 16.31852 0.62296 26.2 < 2e-16 temp -0.04531 0.00319 -14.2 < 2e-16 Log(scale) -1.09564 0.21480 -5.1 3.4e-07 Scale= 0.334 Weibull distribution Loglik(model)= -147.4 Loglik(intercept only)= -169.5 Chisq= 44.32 on 1 degrees of freedom, p= 2.8e-11 Number of Newton-Raphson Iterations: 7 n= 40 > > # > # The first prediction has the SE that I think is correct > # The third is the se found in an early draft of Ripley; fit1 ignoring > # the variation in scale estimate, except via it's impact on the > # upper left corner of the inverse information matrix. > # Numbers 1 and 3 differ little for this dataset > # > predict(fit1, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) $fit [1] 10.306068 9.676248 $se.fit [1] 0.2135247 0.2202088 > > fit2 <- survreg(Surv(time, status) ~ temp, data=imotor, scale=fit1$scale) > predict(fit2, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) $fit [1] 10.306068 9.676248 $se.fit 1 1 0.2057964 0.2057964 > > fit3 <- fit2 > fit3$var <- fit1$var[1:2,1:2] > predict(fit3, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) $fit [1] 10.306068 9.676248 $se.fit 1 1 0.2219959 0.2219959 > > pp <- seq(.05, .7, length=40) > xx <- predict(fit1, data.frame(temp=130), type='uquantile', se=T, + p=pp) > #matplot(pp, cbind(xx$fit, xx$fit+2*xx$se, xx$fit - 2*xx$se), type='l') > > > # > # Now try out the various combinations of strata, #predicted, and > # number of quantiles desired > # > fit1 <- survreg(Surv(time, status) ~ inst + strata(inst) + age + sex, lung) > qq1 <- predict(fit1, type='quantile', p=.3, se=T) > qq2 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T) > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > aeq(qq1$fit, qq2$fit[,2]) [1] TRUE > aeq(qq1$se.fit, qq2$se.fit[,2]) [1] TRUE > > qq3 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, + newdata= lung[1:5,]) > aeq(qq3$fit, qq2$fit[1:5,]) [1] TRUE > > qq4 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung[7,]) > aeq(qq4$fit, qq2$fit[7,]) [1] TRUE > > qq5 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung) > aeq(qq2$fit, qq5$fit) [1] TRUE > aeq(qq2$se.fit, qq5$se.fit) [1] TRUE > > proc.time() user system elapsed 0.796 0.044 0.845 survival/tests/zph.Rout.save0000644000176200001440000001656113556066212015717 0ustar liggesusers R Under development (unstable) (2019-10-26 r77334) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > # Verify that cox.zph computes a score test > # First for the Breslow estimate > r <- (3 + sqrt(33))/2 # actual MLE for log(beta) > U <- c(1/(r+1), 3/(r+3), -r/(r+3), 0) # score statistic > imat <- c(r/(r+1)^2, 3*r/(r+3)^2, 3*r/(r+3)^2, 0) # information matrix > g = c(1, 6, 6, 9) # death times > > u2 <- c(sum(U), sum(g*U)) # first derivative > i2 <- matrix(c(sum(imat), sum(g*imat), sum(g*imat), sum(g^2*imat)), + 2,2) # second derivative > sctest <- solve(i2, u2) %*% u2 > > # Verify that centering makes no difference for the test (though i2 changes) > g2 <- g - mean(g) > u2b <- c(sum(U), sum(g2*U)) > i2b <- matrix(c(sum(imat), sum(g2*imat), sum(g2*imat), sum(g2^2*imat)), + 2,2) > sctest2 <- solve(i2b, u2b) %*% u2b > all.equal(sctest, sctest2) [1] TRUE > > # Now check the program > fit1 <- coxph(Surv(time, status) ~ x, test1, ties='breslow') > aeq(fit1$coef, log(r)) [1] TRUE > zp1 <- cox.zph(fit1, transform='identity', global=FALSE) > aeq(zp1$table[,1], sctest) [1] TRUE > aeq(zp1$y, resid(fit1, type="scaledsch")) [1] TRUE > > dummy <- rep(0, nrow(test1)) > fit1b <- coxph(Surv(dummy, time, status) ~ x, test1, ties='breslow') > aeq(fit1b$coef, log(r)) [1] TRUE > zp1b <- cox.zph(fit1b, transform='identity', global=FALSE) > aeq(zp1b$table[,1], sctest) [1] TRUE > # the pair of tied times gets reversed in the zph result > # but since the 'y' values are only used to plot it doesn't matter > aeq(zp1b$y[c(1,3,2,4)], resid(fit1b, type="scaledsch")) [1] TRUE > > # log time check > g3 <- log(g) - mean(log(g)) > u3 <- c(sum(U), sum(g3*U)) # first derivative > i3 <- matrix(c(sum(imat), sum(g3*imat), sum(g3*imat), sum(g3^2*imat)), + 2,2) # second derivative > sctest3 <- solve(i3, u3) %*% u3 > zp3 <- cox.zph(fit1, transform='log', global=FALSE) > aeq(zp3$table[,1], sctest3) [1] TRUE > > # Efron approximation > phi <- acos((45/23)*sqrt(3/23)) > r <- 2*sqrt(23/3)* cos(phi/3) # actual MLE for log(beta) > U <- c(1/(r+1), 3/(r+3), -r/(r+5), 0) # score statistic > imat <- c(r/(r+1)^2, 3*r/(r+3)^2, 5*r/(r+5)^2, 0) # information matrix > > u4 <- c(sum(U), sum(g3*U)) # first derivative > i4 <- matrix(c(sum(imat), sum(g3*imat), sum(g3*imat), sum(g3^2*imat)), + 2,2) # second derivative > sctest4 <- solve(i4, u4) %*% u4 > > fit4 <- coxph(Surv(time, status) ~ x, test1, ties='efron') > aeq(fit4$coef, log(r)) [1] TRUE > zp4 <- cox.zph(fit4, transform='log', global=FALSE) > aeq(zp4$table[,1], sctest4) [1] TRUE > aeq(zp4$y, resid(fit4, type="scaledsch")) [1] TRUE > > fit5 <- coxph(Surv(dummy, time, status) ~ x, test1, ties="efron") > aeq(fit5$coef, log(r)) [1] TRUE > zp5 <- cox.zph(fit5, transform="log", global=FALSE) > aeq(zp5$table[,1], sctest4) [1] TRUE > > # Artificial stratification > test2 <- rbind(test1, test1) > test2$group <- rep(letters[1:2], each=nrow(test1)) > # U, imat, and sctest will all double > dummy <- c(dummy, dummy) > fit6 <- coxph(Surv(dummy, time, status) ~ x + strata(group), test2) > aeq(fit6$coef, log(r)) [1] TRUE > zp6 <- cox.zph(fit6, transform="log", globa=FALSE) > aeq(zp6$table[,1], 2*sctest4) [1] TRUE > > # A multi-state check, 2 covariates > # Verify that the multi-state result = the single state Cox models > etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) > event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) > event <- factor(event, 0:2, labels=c("censor", "pcm", "death")) > table(event) event censor pcm death 409 115 860 > > ct1 <- coxph(Surv(etime, event) ~ sex + age, mgus2, id=id) > ct2 <- coxph(Surv(etime, event=='pcm') ~ sex + age, mgus2) > ct3 <- coxph(Surv(etime, event=='death') ~ sex + age, mgus2) > > zp1 <- cox.zph(ct1, transform='identity') > zp2 <- cox.zph(ct2, transform='identity') > zp3 <- cox.zph(ct3, transform='identity') > aeq(zp1$table[1:2,], zp2$table[1:2,]) [1] TRUE > aeq(zp1$table[3:4,], zp3$table[1:2,]) [1] TRUE > > # Now add a starting time of zero > dummy <- rep(0, nrow(mgus2)) > ct4 <- coxph(Surv(dummy, etime, event) ~ sex + age, mgus2, id=id) > ct5 <- coxph(Surv(dummy, etime, event=='pcm') ~ sex + age, mgus2) > ct6 <- coxph(Surv(dummy, etime, event=='death') ~ sex + age, mgus2) > zp4 <- cox.zph(ct4, transform='identity') > zp5 <- cox.zph(ct5, transform='identity') > zp6 <- cox.zph(ct6, transform='identity') > aeq(zp4$table[1:2,], zp5$table[1:2,]) [1] TRUE > aeq(zp4$table[3:4,], zp6$table[1:2,]) [1] TRUE > > > # Direct check of a multivariate model with start, stop data > p1 <- pbcseq[!duplicated(pbcseq$id), 1:6] > pdata <- tmerge(p1[, c("id", "trt", "age", "sex")], p1, id=id, + death = event(futime, status==2)) > pdata <- tmerge(pdata, pbcseq, id=id, bili=tdc(day, bili), + edema = tdc(day, edema), albumin=tdc(day, albumin), + protime = tdc(day, protime)) > pfit <- coxph(Surv(tstart, tstop, death) ~ log(bili) + albumin + edema + + age + log(protime), data = pdata, ties='efron') > zp7 <- cox.zph(pfit, transform='log', global=FALSE) > > direct <- function(fit) { + nvar <- length(fit$coef) + dt <- coxph.detail(fit) + gtime <- log(dt$time) - mean(log(dt$time)) + # key idea: at any event time I have a first deriviative vector + # c(dt$score[i,], gtime[i]* dt$score[i,]) + # and second derivative matrix + # dt$imat[,,i] gtime[i] * dt$imat[,,i] + # gtime[i]*dt$imat[,,i] gtime[i]^2 * dt$imat[,,i] + # for the expanded model, where imat[,,i] is symmetric, + # and colSums(dt$score) =0 (since the model converged) + # + # Create score tests for adding one time-dependent variable + # gtime * x[,j] at a time: first derivative of this test is + # c(dt$score[i,], gtime[i]* dt$score[i,j]) + # and etc. + unew <- colSums(gtime * dt$score) + temp1 <- apply(dt$imat, 1:2, sum) + temp2 <- apply(dt$imat, 1:2, function(x) sum(x*gtime)) + temp3 <- apply(dt$imat, 1:2, function(x) sum(x * gtime^2)) + + score <- double(nvar) + smat <- matrix(0., nvar+1, nvar+1) # second deriv matrix for the test + smat[1:nvar, 1:nvar] <- temp1 + for (i in 1:nvar) { + smat[nvar+1,] <- c(temp2[i,], temp3[i,i]) + smat[,nvar+1] <- c(temp2[,i], temp3[i,i]) + utemp <- c(rep(0,nvar), unew[i]) + score[i] <- solve(smat, utemp) %*% utemp + } + list(sctest = score, u= c(colSums(dt$score), unew), + imat=cbind(rbind(temp1, temp2), rbind(temp2, temp3))) + } > > aeq(zp7$table[,1], direct(pfit)$sctest) [1] TRUE > > > > proc.time() user system elapsed 1.054 0.073 1.119 survival/tests/frailty.Rout.save0000644000176200001440000000317613537676563016605 0ustar liggesusers R Under development (unstable) (2019-05-15 r76504) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > # > # The constuction of a survival curve with sparse frailties > # > # In this case the coefficient vector is kept in two parts, the > # fixed coefs and the (often very large) random effects coefficients > # The survfit function treats the second set of coefficients as fixed > # values, to avoid an unmanagable variance matrix, and behaves like > # the second fit below. > > fit1 <- coxph(Surv(time, status) ~ age + frailty(inst), lung) > sfit1 <- survfit(fit1) > > # A parallel model with the frailties treated as fixed offsets > offvar <- fit1$frail[as.numeric(factor(lung$inst))] > fit2 <- coxph(Surv(time, status) ~ age + offset(offvar),lung) > fit2$var <- fit1$var #force variances to match > > all.equal(fit1$coef, fit2$coef) [1] TRUE > sfit2 <- survfit(fit2, newdata=list(age=fit1$means, offvar=0)) > all.equal(sfit1$surv, sfit2$surv, tol=1e-7) [1] TRUE > all.equal(sfit1$var, sfit2$var) [1] TRUE > > proc.time() user system elapsed 0.768 0.040 0.807 survival/tests/model.matrix.R0000644000176200001440000000437313537676563016051 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test out the revised model.matrix code # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0), z= factor(c('a', 'a', 'b', 'b', 'c', 'c', 'a')), stringsAsFactors=FALSE) fit1 <- coxph(Surv(time, status) ~ z, test1, iter=1) fit2 <- coxph(Surv(time, status) ~z, test1, x=T, iter=1) all.equal(model.matrix(fit1), fit2$x) # This has no level 'b', make sure dummies recode properly test2 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0), z= factor(c('a', 'a', 'a', 'a', 'c', 'c', 'a')), stringsAsFactors=FALSE) ftest <- model.frame(fit1, data=test2) all.equal(levels(ftest$z), levels(test1$z)) # xtest will have one more row than the others, since it does not delete # the observation with a missing value for status xtest <- model.matrix(fit1, data=test2) dummy <- fit2$x dummy[,1] <- 0 all.equal(xtest[-2,], dummy, check.attributes=FALSE) # The case of a strata by factor interaction # Use iter=0 since there are too many covariates and it won't converge test1$x2 <- factor(rep(1:2, length=7)) fit3 <- coxph(Surv(time, status) ~ strata(x2)*z, test1, iter=0) xx <- model.matrix(fit3) all.equal(attr(xx, "assign"), c(2,2,3,3)) all.equal(colnames(xx), c("zb", "zc", "strata(x2)2:zb", "strata(x2)2:zc")) all.equal(attr(xx, "contrasts"), list("strata(x2)"= "contr.treatment", z="contr.treatment")) fit3b <- coxph(Surv(time, status) ~ strata(x2)*z, test1, iter=0, x=TRUE) all.equal(fit3b$x, xx) # A model with a tt term fit4 <- coxph(Surv(time, status) ~ tt(x) + x, test1, iter=0, tt = function(x, t, ...) x*t) ff <- model.frame(fit4) # There is 1 subject in the final risk set, 4 at risk at time 6, 6 at time 1 # The .strata. variable numbers from last time point to first all.equal(ff$.strata., rep(1:3, c(1, 4,6))) all.equal(ff[["tt(x)"]], ff$x* c(9,6,1)[ff$.strata.]) xx <- model.matrix(fit4) all.equal(xx[,1], ff[[2]], check.attributes=FALSE) survival/tests/tt.R0000644000176200001440000000606613537676563014076 0ustar liggesuserslibrary(survival) library(splines) aeq <- function(x, y) all.equal(as.vector(x), as.vector(y)) # A contrived example for the tt function # mkdata <- function(n, beta) { age <- runif(n, 20, 60) x <- rbinom(n, 1, .5) futime <- rep(40, n) # everyone has 40 years of follow-up status <- rep(0, n) dtime <- runif(n/2, 1, 40) # 1/2 of them die dtime <- sort(dtime) # The risk is set to beta[1]*x + beta[2]* f(current_age) # where f= 0 up to age 40, rises linear to age 70, flat after that for (i in 1:length(dtime)) { atrisk <- (futime >= dtime[i]) c.age <- age + dtime age2 <- pmin(30, pmax(0, c.age-40)) xbeta <- beta[1]*x + beta[2]*age2 # Select a death according to risk risk <- ifelse(atrisk, exp(xbeta), 0) dead <- sample(1:n, 1, prob=risk/sum(risk)) futime[dead] <- dtime[i] status[dead] <- 1 } data.frame(futime=round(futime,1), status=status, age=age, x=x, risk=risk, casewt = sample(1:5, n, replace=TRUE), grp = sample(1:15, n, replace=TRUE)) } set.seed(1953) # a good year # The functional form won't be well estimated with n=100, but a large # n makes the test slow, and as a validity test n=100 and n=1000 are equally # good. tdata <- mkdata(100, c(log(1.5), 2/30)) # data set has many ties dtime <- sort(unique(tdata$futime[tdata$status==1])) data2 <- survSplit(Surv(futime, status) ~., tdata, cut=dtime) data2$c.age <- data2$age + data2$futime # current age # fit1 uses data at the event times, fit2$c.age might have a # wider range due to censorings. To make the two fits agree # fix the knots. I know a priori that 20 to 101 will cover it. ns2 <- function(x) ns(x, Boundary.knots=c(20, 101), knots=c(45, 60, 75)) fit1 <- coxph(Surv(futime, status)~ x + tt(age), tdata, tt= function(x, t, ...) ns2(x+t)) fit2 <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age), data2) aeq(coef(fit1), coef(fit2)) aeq(vcov(fit1), vcov(fit2)) # # Check that cluster, weight, and offset were correctly expanded # fit3a <- coxph(Surv(futime, status)~ x + tt(age), tdata, weights=casewt, tt= function(x, t, ...) ns2(x+t)) fit3b <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age), data2, weights=casewt) aeq(coef(fit3a), coef(fit3b)) aeq(vcov(fit3a), vcov(fit3b)) fit4a <- coxph(Surv(futime, status)~ x + tt(age), tdata, tt= function(x, t, ...) ns2(x+t), cluster=grp) fit4b <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age), data2, cluster=grp) fit4c <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age) + cluster(grp), data2) aeq(coef(fit4a), coef(fit4b)) aeq(vcov(fit4a), vcov(fit4b)) aeq(coef(fit4a), coef(fit4c)) aeq(vcov(fit4a), vcov(fit4c)) fit5a <- coxph(Surv(futime, status)~ x + tt(age) + offset(grp/10), tdata, tt= function(x, t, ...) ns2(x+t),) fit5b <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age)+ offset(grp/10) , data=data2) aeq(coef(fit5a), coef(fit5b)) aeq(vcov(fit5a), vcov(fit5b)) survival/tests/update.R0000644000176200001440000000074713537676563014731 0ustar liggesuserslibrary(survival) # the way a +cluster() term is handled in coxph has implications for update. fit1 <- coxph(Surv(time, status) ~ age, cluster= inst, lung) fit2 <- coxph(Surv(time, status) ~ age + cluster(inst), lung) all.equal(fit1, fit2) fit3 <- coxph(Surv(time, status) ~ age + sex + cluster(inst), lung) test1 <- update(fit1, .~ .+ sex) all.equal(test1, fit3) # Gives a spurious warning message test2 <- update(fit1, . ~ age + sex + cluster(inst), lung) all.equal(test2, fit3) survival/tests/expected.Rout.save0000644000176200001440000002656313537676603016734 0ustar liggesusers R Under development (unstable) (2018-04-09 r74565) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # Tests of expected survival > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > # > # This makes several scripts easier > # > mdy.Date <- function(m, d, y) { + y <- ifelse(y<100, y+1900, y) + as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") + } > > # This function takes a single subject and walks down the rate table > # Input: the vector of starting points, futime, and a ratetable > # Output: the full history of walking through said table. Let n= #unique > # rates that were used > # cell = n by #dims of the table: index of the table cell > # days = time spent in cell > # hazard= accumulated hazard = days * rate > # This does not do date or factor conversions -- start has to be numeric > # > ratewalk <- function(start, futime, ratetable=survexp.us) { + if (!is.ratetable(ratetable)) stop("Bad rate table") + ratedim <- dim(ratetable) + nvar <- length(ratedim) + if (length(start) != nvar) stop("Wrong length for start") + if (futime <=0) stop("Invalid futime") + + attR <- attributes(ratetable) + discrete <- (attR$type ==1) #discrete categories + + maxn <- sum(!discrete)*prod(ratedim[!discrete]) #most cells you can hit + cell <- matrix(0, nrow=maxn, ncol=nvar) + days <- hazard <- double(maxn) + + eps <- 1e-8 #Avoid round off error + n <- 0 + while (futime >0) { + n <- n+1 + #what cell am I in? + # Note that at the edges of the rate table, we use the edge: if + # it only goes up the the year 2000, year 2000 is used for any + # dates beyond. This effectively eliminates one boundary + cell[n,discrete] <- start[discrete] + edge <- futime #time to nearest edge, or finish + for (j in which(!discrete)) { + indx <- sum(start[j] >= attR$cutpoints[[j]]-eps) + cell[n, j] <- max(1, indx) + if (indx < ratedim[j]) + edge <- min(edge, (attR$cutpoints[[j]])[indx+1] - start[j]) + } + days[n] <- edge #this many days in the cell + # using a matrix as a subscript is so handy sometimes + hazard[n] <- edge * (as.matrix(ratetable))[cell[n,,drop=F]] + futime <- futime - edge #amount of time yet to account for + start[!discrete] <- start[!discrete] + edge #walk forward in time + } + list(cell=cell[1:n,], days=days[1:n], hazard=hazard[1:n]) + } > > # Simple test of ratewalk: 20 years old, start on 7Sep 1960 > # 116 days at the 1960, 20 year old male rate, through the end of the day > # on 12/31/1960, then 84 days at the 1961 rate. > # The decennial q for 1960 males is .00169. > zz <- ratewalk(c(20.4*365.25, 1, as.Date("1960/09/07")), 200) > all.equal(zz$hazard[1], -(116/365.25)*log(1-.00169)) [1] TRUE > all.equal(zz$days, c(116,84)) [1] TRUE > > > # > # Simple case 1: a single male subject, born 1/1/36 and entered on study 1/2/55 > # > # Compute the 1, 5, 10 and 12 year expected survival > > temp1 <- mdy.Date(1,1,36) > temp2 <- mdy.Date(1,2,55) > exp1 <- survexp(~1, ratetable=survexp.usr,times=c(366, 1827, 3653, 4383), + rmap= list(year=temp2, age=(temp2-temp1), sex=1, race='white')) > #older style call > exp1b <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=1, race='white'), + ratetable=survexp.usr, times=c(366, 1827, 3653, 4383)) > > t12 <- as.numeric(temp2-temp1) # difftimes are a PITA > h1 <- ratewalk(c(t12, 1, 1, temp2), 366, survexp.usr) > h2 <- ratewalk(c(t12, 1, 1, temp2), 1827, survexp.usr) > h3 <- ratewalk(c(t12, 1, 1, temp2), 3653, survexp.usr) > h4 <- ratewalk(c(t12, 1, 1, temp2), 4383, survexp.usr) > > aeq(-log(exp1$surv), c(sum(h1$hazard), sum(h2$hazard), sum(h3$hazard), + sum(h4$hazard))) [1] TRUE > aeq(exp1$surv, exp1b$surv) [1] TRUE > > # pyears should give the same result > dummy <- data.frame(time = 4383, + year=temp2, sex = 1, age= temp2-temp1, race="white") > cuts <- tcut(0, c(0, 366, 1827, 3653, 4383)) > exp1c <- pyears(time ~ cuts, data=dummy, ratetable=survexp.usr) > aeq(exp1$surv, exp(-cumsum(exp1c$expected))) [1] TRUE > > > # Just a little harder: > # Born 3/1/25 and entered the study on 6/10/55. The code creates shifted > # dates to align with US rate tables - entry is 59 days earlier (days from > # 1/1/1925 to 3/1/1925). > # > temp1 <- mdy.Date(3,1,25) > temp2 <- mdy.Date(6,10,55) > exp1 <- survexp(~1, ratetable=survexp.usr,times=c(366, 1827, 3653, 4383), + rmap= list(year=temp2, age=(temp2-temp1), sex=2, race='black')) > > tyear <- temp2 - 59 > t12 <- as.numeric(temp2-temp1) > h1 <- ratewalk(c(t12, 2, 2, tyear), 366, survexp.usr) > h2 <- ratewalk(c(t12, 2, 2, tyear), 1827, survexp.usr) > h3 <- ratewalk(c(t12, 2, 2, tyear), 3653, survexp.usr) > h4 <- ratewalk(c(t12, 2, 2, tyear), 4383, survexp.usr) > > aeq(-log(exp1$surv), c(sum(h1$hazard), sum(h2$hazard), sum(h3$hazard), + sum(h4$hazard))) [1] TRUE > > # > # Simple case 2: make sure that the averages are correct, for Ederer method > # > # Compute the 1, 5, 10 and 12 year expected survival > > temp1 <- mdy.Date(1:6,6:11,1890:1895) > temp2 <- mdy.Date(6:1,11:6,c(55:50)) > temp3 <- c(1,2,1,2,1,2) > age <- temp2 - temp1 > > exp1 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3), + times=c(366, 1827, 3653, 4383)) > exp2 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3) + I(1:6), + times=c(366, 1827, 3653, 4383)) > exp3 <- exp2$surv > for (i in 1:length(temp1)){ + exp3[,i] <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3), + times=c(366, 1827, 3653, 4383), subset=i)$surv + } > > > print(aeq(exp2$surv, exp3)) [1] TRUE > print(all.equal(exp1$surv, apply(exp2$surv, 1, mean))) [1] TRUE > > # They agree, but are they right? > # > for (i in 1:length(temp1)) { + offset <- as.numeric(temp1[i] - mdy.Date(1,1, 1889+i)) + tyear = temp2[i] - offset + haz1 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 366) + haz2 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 1827) + haz3 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 3653) + haz4 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 4383) + print(aeq(-log(exp2$surv[,i]), c(sum(haz1$hazard), sum(haz2$hazard), + sum(haz3$hazard), sum(haz4$hazard)))) + } [1] TRUE [1] TRUE [1] TRUE [1] TRUE [1] TRUE [1] TRUE > > # > # Check that adding more time points doesn't change things > # > exp4 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3) + I(1:6), + times=sort(c(366, 1827, 3653, 4383, 30*(1:100)))) > aeq(exp4$surv[match(exp2$time, exp4$time),], exp2$surv) [1] TRUE > > exp4 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3), + times=sort(c(366, 1827, 3653, 4383, 30*(1:100)))) > aeq(exp1$surv, exp4$surv[match(exp1$time, exp4$time, nomatch=0)]) [1] TRUE > > > # > # Now test Hakulinen's method, assuming an analysis date of 3/1/57 > # > futime <- mdy.Date(3,1,57) - temp2 > xtime <- sort(c(futime, 30, 60, 185, 365)) > > exp1 <- survexp(futime ~ ratetable(year=temp2, age=(temp2-temp1), sex=1), + times=xtime, conditional=F) > exp2 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=1) + I(1:6), + times=futime) > > wt <- rep(1,6) > con <- double(6) > for (i in 1:6) { + con[i] <- sum(exp2$surv[i,i:6])/sum(wt[i:6]) + wt <- exp2$surv[i,] + } > > exp1$surv[match(futime, xtime)] [1] 0.9557362 0.9285840 0.9025661 0.8774220 0.8532489 0.8297416 > aeq(exp1$surv[match(futime, xtime)], cumprod(con)) [1] TRUE > > > # > # Now for the conditional method > # > exp1 <- survexp(futime ~ ratetable(year=temp2, age=(temp2-temp1), sex=1), + times=xtime, conditional=T) > > cond <- exp2$surv > for (i in 6:2) cond[i,] <- (cond[i,]/cond[i-1,]) #conditional survival > for (i in 1:6) con[i] <- exp(mean(log(cond[i, i:6]))) > > all.equal(exp1$surv[match(futime, xtime)], cumprod(con)) [1] TRUE > cumprod(con) [1] 0.9556656 0.9284398 0.9023612 0.8771798 0.8529944 0.8294940 > > # > # Test out expected survival, when the parent pop is another Cox model > # > test1 <- data.frame(time= c(4, 3,1,1,2,2,3), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > fit <- coxph(Surv(time, status) ~x, test1, method='breslow') > > dummy <- data.frame(time=c(.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5), + status=c(1,0,1,0,1,0,1,1,1), x=(-4:4)/2) > > efit <- survexp(time ~ ratetable(x=x), dummy, ratetable=fit, cohort=F) > > # > # Now, compare to the true answer, which is known to us > # > ss <- exp(fit$coef) > haz <- c( 1/(3*ss+3), 2/(ss+3), 1) #truth at time 0,1,2,4+ > chaz <- cumsum(c(0,haz)) > chaz2 <- chaz[c(1,2,2,3,3,3,3,4,4)] > > risk <- exp(fit$coef*dummy$x) > efit2 <- exp(-risk*chaz2) > > all.equal(as.vector(efit), as.vector(efit2)) #ignore mismatched name attrib [1] TRUE > > # > # Now test the direct-adjusted curve (Ederer) > # > efit <- survexp( ~ ratetable(x=x), dummy, ratetable=fit, se=F) > direct <- survfit(fit, newdata=dummy, censor=FALSE)$surv > > chaz <- chaz[-1] #drop time 0 > d2 <- exp(outer(-chaz, risk)) > all.equal(as.vector(direct), as.vector(d2)) #this tests survfit [1] TRUE > > all.equal(as.vector(efit$surv), as.vector(apply(direct,1,mean))) #direct [1] TRUE > > # Check out the "times" arg of survexp > efit2 <- survexp( ~ ratetable(x=x), dummy, ratetable=fit, se=F, + times=c(.5, 2, 3.5,6)) > aeq(efit2$surv, c(1, efit$surv[c(2,2,3)])) [1] TRUE > > # > # Now test out the Hakulinen method (Bonsel's method) > # By construction, we have a large correlation between x and censoring > # > # In theory, hak1 and hak2 would be the same. In practice, like a KM and > # F-H, they differ when n is small. > # > efit <- survexp( time ~ ratetable(x=x), dummy, ratetable=fit, se=F) > > surv <- wt <- rep(1,9) > tt <- c(1,2,4) > hak1 <- hak2 <- NULL > for (i in 1:3) { + wt[dummy$time < tt[i]] <- 0 + hak1 <- c(hak1, exp(-sum(haz[i]*risk*surv*wt)/sum(surv*wt))) + hak2 <- c(hak2, sum(exp(-haz[i]*risk)*surv*wt)/sum(surv*wt)) + surv <- surv * exp(-haz[i]*risk) + } > > all.equal(as.vector(efit$surv), as.vector(cumprod(hak1))) [1] TRUE > > # > # Now do the conditional estimate > # > efit <- survexp( time ~ ratetable(x=x), dummy, ratetable=fit, se=F, + conditional=T) > wt <- rep(1,9) > cond <- NULL > for (i in 1:3) { + wt[dummy$time < tt[i]] <- 0 + cond <- c(cond, exp(-sum(haz[i]*risk*wt)/sum(wt))) + } > > all.equal(as.vector(efit$surv), as.vector(cumprod(cond))) [1] TRUE > > proc.time() user system elapsed 0.884 0.036 0.918 survival/tests/mstate.R0000644000176200001440000002406613570767322014733 0ustar liggesusers# # A tiny multi-state example # library(survival) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) mtest <- data.frame(id= c(1, 1, 1, 2, 3, 4, 4, 4, 5, 5), t1= c(0, 4, 9, 0, 2, 0, 2, 8, 1, 3), t2= c(4, 9, 10, 5, 9, 2, 8, 9, 3, 11), st= c(1, 2, 1, 2, 3, 1, 3, 0, 2, 0)) mtest$state <- factor(mtest$st, 0:3, c("censor", "a", "b", "c")) if (FALSE) { # this graph is very useful when debugging temp <- survcheck(Surv(t1, t2, state) ~1, mtest, id=id) plot(c(0,11), c(1,5.1), type='n', xlab="Time", ylab= "Subject") with(mtest, segments(t1+.1, id, t2, id, col=as.numeric(temp$istate))) event <- subset(mtest, state!='censor') text(event$t2, event$id+.2, as.character(event$state)) } mtest <- mtest[c(1,3,2,4,5,7,6,10, 9, 8),] #not in time order mfit <- survfit(Surv(t1, t2, state) ~ 1, mtest, id=id) # True results # #time state probabilities # entry a b c entry a b c # #0 124 1 0 0 0 #1+ 1245 #2+ 1235 4 3/4 1/4 0 0 4 -> a, add 3 #3+ 123 4 5 9/16 1/4 3/16 0 5 -> b #4+ 23 14 5 6/16 7/16 3/16 0 1 -> a #5+ 3 14 5 3/16 7/16 6/16 0 2 -> b, exits #8+ 3 1 5 4 3/16 7/32 6/16 7/32 4 -> c #9+ 15 0 0 19/32 13/32 1->b, 3->c & exit # 10+ 1 5 19/64 19/64 13/32 1->a # In mfit, the "entry" state is first in the matrices, when this function was # first created it was the last. swap <- c(4,1,2,3) # at one time it was last all.equal(mfit$n.risk, matrix(c(0,1,1,2,2,1,0,0, 0,0,1,1,1,1,2,1, 0,0,0,0,0,1,0,0, 4,4,3,2,1,1,0,0), ncol=4)[,swap]) all.equal(mfit$pstate, matrix(c(8, 8, 14, 14, 7, 0, 9.5, 9.5, 0, 6, 6, 12, 12,19,9.5, 9.5, 0, 0, 0, 0, 7, 13, 13, 13, 24, 18, 12, 6, 6, 0, 0, 0)/32, ncol=4)[,swap]) all.equal(mfit$n.event, matrix(c(1,0,1,0,0,0,1,0, 0,1,0,1,0,1,0,0, 0,0,0,0,1,1,0,0, 0,0,0,0,0,0,0,0), ncol=4)[,swap]) all.equal(mfit$time, c(2, 3, 4, 5, 8, 9, 10, 11)) # Somewhat more complex. # Scramble the input data # Not everyone starts at the same time or in the same state # Case weights # tdata <- data.frame(id= c(1, 1, 1, 2, 3, 4, 4, 4, 5, 5), t1= c(0, 4, 9, 1, 2, 0, 2, 8, 1, 3), t2= c(4, 9, 10, 5, 9, 2, 8, 9, 3, 11), st= c(1, 2, 1, 2, 3, 1, 3, 0, 3, 0), i0= c(4, 1, 2, 1, 4, 4, 1, 3, 2, 3), wt= 1:10) tdata$st <- factor(tdata$st, c(0:3), labels=c("censor", "1", "2", "3")) tdata$i0 <- factor(tdata$i0, 1:4, labels=c("1", "2", "3", "entry")) tfun <- function(data=tdata) { reorder <- c(10, 9, 1, 2, 5, 4, 3, 7, 8, 6) new <- data[reorder,] new } # These weight vectors are in the order of tdata # w[9] is the weight for subject 5 at time 1.5, for instance p0 <- function(w) c(w[4], w[9], 0, w[1]+ w[6])/ (w[1]+ w[4] + w[6] + w[9]) # aj2 = Aalen-Johansen H matrix at time 2, etc. aj2 <- function(w) { rbind(c(1, 0, 0, 0), # state a (1) stays put c(0, 1, 0, 0), c(0, 0, 1, 0), c(w[6], 0, 0, w[1])/(w[1] + w[6])) #subject 4 moves to 'a' } aj3 <- function(w) rbind(c(1, 0, 0, 0), c(0, 0, 1, 0), # 5 moves from b to c c(0, 0, 1, 0), c(0, 0, 0, 1)) aj4 <- function(w) rbind(c(1, 0, 0, 0), c(0, 1, 0, 0), c(0, 0, 1, 0), c(w[1], 0, 0, w[5])/(w[1] + w[5])) #1 moves from 4 to a aj5 <- function(w) rbind(c(w[2]+w[7], w[4], 0, 0)/(w[2]+ w[4] + w[7]), #2 to b c(0, 1, 0, 0), c(0, 0, 1, 0), c(0, 0, 0, 1)) aj8 <- function(w) rbind(c(w[2], 0, w[7], 0)/(w[2]+ w[7]), # 4 to c c(0, 1, 0, 0), c(0, 0, 1, 0), c(0, 0, 0, 1)) aj9 <- function(w) rbind(c(0, 1, 0, 0), # 1 to b c(0, 1, 0, 0), c(0, 0, 1, 0), c(0, 0, 1 ,0)) # 3 to c aj10 <- function(w)rbind(c(1, 0, 0, 0), c(1, 0, 0, 0), #1 back to a c(0, 0, 1, 0), c(0, 0, 0, 1)) #time state # a b c entry # #1 2 5 14 initial distribution #2 24 5 1 4 -> a, add 3 #3 24 5 13 5 from b to c #4 124 5 3 1 -> a #5 14 5 3 2 -> b, exits #8 1 45 3 4 -> c #9 1 45 1->b, 3->c & exit #10 1 45 1->a # P is a product of matrices dopstate <- function(w) { p1 <- p0(w) p2 <- p1 %*% aj2(w) p3 <- p2 %*% aj3(w) p4 <- p3 %*% aj4(w) p5 <- p4 %*% aj5(w) p8 <- p5 %*% aj8(w) p9 <- p8 %*% aj9(w) p10<- p9 %*% aj10(w) rbind(p2, p3, p4, p5, p8, p9, p10, p10) } # Check the pstate estimate w1 <- rep(1,10) mtest2 <- tfun(tdata) # scrambled order mfit2 <- survfit(Surv(t1, t2, st) ~ 1, tdata, id=id, istate=i0) # ordered aeq(mfit2$pstate, dopstate(w1)[,swap]) aeq(mfit2$p0, p0(w1)[swap]) mfit2b <- survfit(Surv(t1, t2, st) ~ 1, mtest2, id=id, istate=i0)#scrambled aeq(mfit2b$pstate, dopstate(w1)[,swap]) aeq(mfit2b$p0, p0(w1)[swap]) mfit2b$call <- mfit2$call <- NULL all.equal(mfit2b, mfit2) aeq(mfit2$transitions, c(2,0,1,0, 0,2,0,0, 1,1,1,0, 0,0,0,2)) # Now the harder one, where subjects change weights mfit3 <- survfit(Surv(t1, t2, st) ~ 1, tdata, id=id, istate=i0, weights=wt, influence=TRUE) aeq(mfit3$p0, p0(1:10)[swap]) aeq(mfit3$pstate, dopstate(1:10)[,swap]) # The derivative of a matrix product AB is (dA)B + A(dB) where dA is the # elementwise derivative of A and etc for B. # dp0 creates the derivatives of p0 with respect to each subject, a 5 by 4 # matrix # All the functions below are hand coded for a weight vector that is in # exactly the same order as the rows of mtest. # Since p0 = (w[4], w[9], 0, w[1]+ w[6])/ (w[1]+ w[4] + w[6] + w[9]) # and subject id is 1,1,1, 2, 3, 4,4,4, 5,5 # we get the derivative below # dp0 <- function(w) { p <- p0(w) w0 <- w[c(1,4,6,9)] # the 4 obs at the start, subjects 1, 2, 4, 5 rbind(c(0, 0, 0, 1) - p, # subject 1 affects p[4] c(1, 0, 0, 0) - p, # subject 2 affects p[1] 0, # subject 3 affects none c(0, 0, 0, 1) - p, # subject 4 affect p[4] c(0, 1, 0, 0) - p)/ # subject 5 affects p[2] sum(w0) } dp2 <- function(w) { h2 <- aj2(w) # H matrix at time 2 part1 <- dp0(w) %*% h2 # 1 and 4 in state 4, obs 1 and 6, 4 moves to a mult <- p0(w)[4]/(w[1] + w[6]) #p(t-) / weights in state part2 <- rbind((c(0,0,0,1)- h2[4,]) * mult, 0, 0, (c(1,0,0,0) - h2[4,]) * mult, 0) part1 + part2 } dp3 <- function(w) { dp2(w) %*% aj3(w) } dp4 <- function(w) { h4 <- aj4(w) # H matrix at time 4 part1 <- dp3(w) %*% h4 # subjects 1 and 3 in state 4, obs 1 and 5, 1 moves to a mult <- dopstate(w)[2,4]/ (w[1] + w[5]) # p_4(time 4-0) / wt part2 <- rbind((c(1,0,0,0)- h4[4,]) * mult, 0, (c(0,0,0,1)- h4[4,]) * mult, 0, 0) part1 + part2 } dp5 <- function(w) { h5 <- aj5(w) # H matrix at time 5 part1 <- dp4(w) %*% h5 # subjects 124 in state 1, obs 2,4,7, 2 goes to 2 mult <- dopstate(w)[3,1]/ (denom <- w[2] + w[4] + w[7]) part2 <- rbind((c(1,0,0,0)- h5[1,]) * mult, (c(0,1,0,0)- h5[1,]) * mult, 0, (c(1,0,0,0)- h5[1,]) * mult, 0) part1 + part2 } dp8 <- function(w) { h8 <- aj8(w) # H matrix at time 8 part1 <- dp5(w) %*% h8 # subjects 14 in state 1, obs 2 &7, 4 goes to c mult <- dopstate(w)[4, 1]/ (w[2] + w[7]) part2 <- rbind((c(1,0,0,0)- h8[1,]) * mult, 0, 0, (c(0,0,1,0)- h8[1,]) * mult, 0) part1 + part2 } dp9 <- function(w) dp8(w) %*% aj9(w) dp10<- function(w) dp9(w) %*% aj10(w) w1 <- 1:10 aeq(mfit3$influence[,1,], dp0(w1)[,swap]) aeq(mfit3$influence[,2,], dp2(w1)[,swap]) aeq(mfit3$influence[,3,], dp3(w1)[,swap]) aeq(mfit3$influence[,4,], dp4(w1)[,swap]) aeq(mfit3$influence[,5,], dp5(w1)[,swap]) aeq(mfit3$influence[,6,], dp8(w1)[,swap]) aeq(mfit3$influence[,7,], dp9(w1)[,swap]) aeq(mfit3$influence[,8,], dp10(w1)[,swap]) aeq(mfit3$influence[,9,], dp10(w1)[,swap]) # no changes at time 11 # The cumulative hazard at each time point is remapped from a matrix # into a vector (in survfit) # First check out the names nstate <- length(mfit3$states) temp <- matrix(0, nstate, nstate) indx1 <- match(rownames(mfit3$transitions), mfit3$states) indx2 <- match(colnames(mfit3$transitions), mfit3$states, nomatch=0) temp[indx1, indx2] <- mfit3$transitions[, indx2>0] # temp is an nstate by nstate version of the transitions matrix from <- row(temp)[temp>0] to <- col(temp)[temp>0] all.equal(colnames(mfit3$cumhaz), paste(from, to, sep='.')) hazard <- function(fit, i, indx=which(temp>0)) { nstate <- length(fit$states) cmat <- matrix(0, nstate, nstate) if (i==1) cmat[indx] <- fit$cumhaz[i,] else cmat[indx] <- fit$cumhaz[i,] - fit$cumhaz[i-1,] diag(cmat) <- 1- rowSums(cmat) cmat } aeq(hazard(mfit3, 1), aj2(w1)[swap, swap]) aeq(hazard(mfit3, 2), aj3(w1)[swap, swap]) aeq(hazard(mfit3, 3), aj4(w1)[swap, swap]) aeq(hazard(mfit3, 4), aj5(w1)[swap, swap]) aeq(hazard(mfit3, 5), aj8(w1)[swap, swap]) aeq(hazard(mfit3, 6), aj9(w1)[swap, swap]) survival/tests/book4.Rout.save0000644000176200001440000002151413537676603016140 0ustar liggesusers R Under development (unstable) (2016-03-23 r70368) -- "Unsuffered Consequences" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Tests from the appendix of Therneau and Grambsch > # d. Data set 2 and Efron estimate > # > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > byhand <- function(beta, newx=0) { + r <- exp(beta) + loglik <- 4*beta - (log(r+1) + log(r+2) + 2*log(3*r+2) + 2*log(3*r+1) + + log(2*r +2)) + u <- 1/(r+1) + 1/(3*r+1) + 2*(1/(3*r+2) + 1/(2*r+2)) - + ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) + imat <- r*(1/(r+1)^2 + 2/(r+2)^2 + 6/(3*r+2)^2 + + 6/(3*r+1)^2 + 6/(3*r+2)^2 + 4/(2*r +2)^2) + + hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), + 1/(3*r+2), 1/(2*r +2) ) + + + # The matrix of weights, one row per obs, one col per time + # deaths at 2,3,6,7,8,9 + wtmat <- matrix(c(1,0,0,0,1, 0, 0,0,0,0, + 0,1,0,1,1, 0, 0,0,0,0, + 0,0,1,1,1, 0, 1,1,0,0, + 0,0,0,1,1, 0, 1,1,0,0, + 0,0,0,0,1, 1, 1,1,0,0, + 0,0,0,0,0, 1, 1,1,1,1, + 0,0,0,0,0,.5,.5,1,1,1), ncol=7) + wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat + + x <- c(1,0,0,1,0,1,1,1,0,0) + status <- c(1,1,1,1,1,1,1,0,0,0) + xbar <- colSums(wtmat*x)/ colSums(wtmat) + n <- length(x) + + # Table of sums for score and Schoenfeld resids + hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time + dM <- -hazmat #Expected part + for (i in 1:5) dM[i,i] <- dM[i,i] +1 #observed + dM[6:7,6:7] <- dM[6:7,6:7] +.5 # observed + mart <- rowSums(dM) + + # Table of sums for score and Schoenfeld resids + # Looks like the last table of appendix E.2.1 of the book + resid <- dM * outer(x, xbar, '-') + score <- rowSums(resid) + scho <- colSums(resid) + + # We need to add the ties back up (they are symmetric) + scho[6:7] <- rep(mean(scho[6:7]), 2) + + list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard, + mart=mart, score=score, rmat=resid, + scho=scho) + } > > > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > fit0 <-coxph(Surv(start, stop, event) ~x, test2, iter=0) > truth0 <- byhand(0,0) > aeq(truth0$loglik, fit0$loglik[1]) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid) [1] TRUE > aeq(truth0$scho, resid(fit0, 'schoen')) [1] TRUE > aeq(truth0$score, resid(fit0, 'score')) [1] TRUE > > > fit <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-8) > truth <- byhand(fit$coef, 0) > aeq(truth$loglik, fit$loglik[2]) [1] TRUE > aeq(1/truth$imat, fit$var) [1] TRUE > aeq(truth$mart, fit$resid) [1] TRUE > aeq(truth$scho, resid(fit, 'schoen')) [1] TRUE > aeq(truth$score, resid(fit, 'score')) [1] TRUE > > # Reprise the test, with strata > # offseting the times ensures that we will get the wrong risk sets > # if strata were not kept separate > test2b <- rbind(test2, test2, test2) > test2b$group <- rep(1:3, each= nrow(test2)) > test2b$start <- test2b$start + test2b$group > test2b$stop <- test2b$stop + test2b$group > fit0 <- coxph(Surv(start, stop, event) ~ x + strata(group), test2b, iter=0) > aeq(3*truth0$loglik, fit0$loglik[1]) [1] TRUE > aeq(3*truth0$imat, 1/fit0$var) [1] TRUE > aeq(rep(truth0$mart,3), fit0$resid) [1] TRUE > aeq(rep(truth0$scho,3), resid(fit0, 'schoen')) [1] TRUE > aeq(rep(truth0$score,3), resid(fit0, 'score')) [1] TRUE > > fit3 <- coxph(Surv(start, stop, event) ~x + strata(group), test2b, eps=1e-8) > aeq(3*truth$loglik, fit3$loglik[2]) [1] TRUE > aeq(3*truth$imat, 1/fit3$var) [1] TRUE > aeq(rep(truth$mart,3), fit3$resid) [1] TRUE > aeq(rep(truth$scho,3), resid(fit3, 'schoen')) [1] TRUE > aeq(rep(truth$score,3), resid(fit3, 'score')) [1] TRUE > > # > # Done with the formal test, now print out lots of bits > # > resid(fit) 1 2 3 4 5 6 0.50527611 0.66432995 0.79746211 0.22435805 -0.55144018 0.42933697 7 8 9 10 -0.01764508 -1.14132605 -0.45517594 -0.45517594 > resid(fit, 'scor') 1 2 3 4 5 6 7 0.2553039 -0.2183386 -0.4744295 -0.1101520 0.1137126 0.2491954 0.1057078 8 9 10 -0.4119611 0.2454808 0.2454808 > resid(fit, 'scho') 2 3 6 7 8 9 9 0.5052761 -0.3286599 -0.5949242 0.2539781 -0.7460219 0.4551759 0.4551759 > > predict(fit, type='lp') [1] -0.0105526 0.0105526 0.0105526 -0.0105526 0.0105526 -0.0105526 [7] -0.0105526 -0.0105526 0.0105526 0.0105526 > predict(fit, type='risk') [1] 0.9895029 1.0106085 1.0106085 0.9895029 1.0106085 0.9895029 0.9895029 [8] 0.9895029 1.0106085 1.0106085 > predict(fit, type='expected') 1 2 3 4 5 6 7 8 0.4947239 0.3356701 0.2025379 0.7756420 1.5514402 0.5706630 1.0176451 1.1413261 9 10 0.4551759 0.4551759 > predict(fit, type='terms') x 1 -0.0105526 2 0.0105526 3 0.0105526 4 -0.0105526 5 0.0105526 6 -0.0105526 7 -0.0105526 8 -0.0105526 9 0.0105526 10 0.0105526 attr(,"constant") [1] -0.0105526 > predict(fit, type='lp', se.fit=T) $fit 1 2 3 4 5 6 7 -0.0105526 0.0105526 0.0105526 -0.0105526 0.0105526 -0.0105526 -0.0105526 8 9 10 -0.0105526 0.0105526 0.0105526 $se.fit 1 2 3 4 5 6 7 8 0.3975884 0.3975884 0.3975884 0.3975884 0.3975884 0.3975884 0.3975884 0.3975884 9 10 0.3975884 0.3975884 > predict(fit, type='risk', se.fit=T) $fit 1 2 3 4 5 6 7 8 0.9895029 1.0106085 1.0106085 0.9895029 1.0106085 0.9895029 0.9895029 0.9895029 9 10 1.0106085 1.0106085 $se.fit 1 2 3 4 5 6 7 8 0.3954962 0.3996918 0.3996918 0.3954962 0.3996918 0.3954962 0.3954962 0.3954962 9 10 0.3996918 0.3996918 > predict(fit, type='expected', se.fit=T) $fit 1 2 3 4 5 6 7 8 0.4947239 0.3356701 0.2025379 0.7756420 1.5514402 0.5706630 1.0176451 1.1413261 9 10 0.4551759 0.4551759 $se.fit [1] 0.5331623 0.3940109 0.3241963 0.6388491 1.0026838 0.6453101 0.7848594 [8] 0.7848594 0.6401915 0.6401915 > predict(fit, type='terms', se.fit=T) $fit x 1 -0.0105526 2 0.0105526 3 0.0105526 4 -0.0105526 5 0.0105526 6 -0.0105526 7 -0.0105526 8 -0.0105526 9 0.0105526 10 0.0105526 attr(,"constant") [1] -0.0105526 $se.fit x 1 0.3975884 2 0.3975884 3 0.3975884 4 0.3975884 5 0.3975884 6 0.3975884 7 0.3975884 8 0.3975884 9 0.3975884 10 0.3975884 > > summary(survfit(fit)) Call: survfit(formula = fit) time n.risk n.event survival std.err lower 95% CI upper 95% CI 2 2 1 0.607 0.303 0.2277 1.000 3 3 1 0.435 0.262 0.1337 1.000 6 5 1 0.356 0.226 0.1029 1.000 7 4 1 0.277 0.189 0.0729 1.000 8 4 1 0.215 0.157 0.0516 0.899 9 5 2 0.137 0.109 0.0288 0.655 > summary(survfit(fit, list(x=2))) Call: survfit(formula = fit, newdata = list(x = 2)) time n.risk n.event survival std.err lower 95% CI upper 95% CI 2 2 1 0.616 0.465 0.14013 1 3 3 1 0.447 0.519 0.04568 1 6 5 1 0.368 0.504 0.02512 1 7 4 1 0.288 0.464 0.01232 1 8 4 1 0.226 0.418 0.00603 1 9 5 2 0.146 0.343 0.00147 1 > > proc.time() user system elapsed 0.244 0.020 0.259 survival/tests/yates2.R0000644000176200001440000000026113537676563014645 0ustar liggesuserslibrary(survival) # Tests for glm gfit1 <- glm(skips ~ Mask* Opening + Solder, data=solder, poisson) yg1 <- yates(gfit1, ~Mask) yg2 <- yates(gfit1, ~ Mask, predict='response') survival/tests/finegray.Rout.save0000644000176200001440000002103713537676563016733 0ustar liggesusers R Under development (unstable) (2019-05-15 r76504) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > # Test data set 1 for Fine-Gray regression > fdata <- data.frame(time =c(1,2,3,4,4,4,5,5,6,8,8, 9,10,12), + status=factor(c(1,2,0,1,0,0,2,1,0,0,2, 0,1 ,0), 0:2, + c("cen", "type1", "type2")), + x =c(5,4,3,1,2,1,1,2,2,4,6,1,2, 0), + id = 1:14) > test1 <- finegray(Surv(time, status) ~., fdata, count="fgcount") > test2 <- finegray(Surv(time, status) ~x, fdata, etype="type2") > > # When creating the censoring time distribution remember that > # censors happen after deaths, so the distribution does not drop until > # time 3+, 4+, 6+, 8+ and 9+ > csurv <- list(time=c(0, 3, 4, 6, 8, 9), + p = cumprod(c(1, 11/12, 8/10, 5/6, 3/4, 2/3))) > # > # For estimation of event type 1, the first subject of event type > # 2 will have weights of curve$p over (0,3], (3,4], (4,6], (6,8], (8,9] > # and (9,12]. All that really matters is the weight at times 1, 4, 5, > # and 10, however, which are the points at which events of type 1 happen > # > # The next subject of event type 2 occurs at time 5, and will have a > # weight of (9,12] /(4,5] = (5*4*2)/(7*5*3) = 8/21 at time 10. The last > # censor at time 6 has a weight of 2/3 at time 10. > > all.equal(test1$id, c(1, 2,2,2,2, 3:6, 7, 7, 8:11, 11, 12:14)) [1] TRUE > twt <- c(1, csurv$p[c(1,2,3,6)], 1,1,1, 1, 1, 5/12, 1,1,1, + 1, 1/2, 1,1,1) > all.equal(test1$fgwt, twt) [1] TRUE > #extra obs will end at times found in csurv$time, or max(time)=12 > all.equal(test1$fgstop[test1$fgcount>0], c(4,6,12, 12,12)) [1] TRUE > > # > # Verify the data reproduces a multi-state curve > # censoring times may be different in the two setups so only > # compare at the event times > sfit <- survfit(Surv(time, status) ~1, fdata) > sfit1<- survfit(Surv(fgstart, fgstop, fgstatus) ~1, test1, weight=fgwt) > sfita<- sfit[,"type1"] > i1 <- sfita$n.event > 0 > i2 <- sfit1$n.event > 0 > all.equal(sfita$pstate[i1], 1- sfit1$surv[i2]) [1] TRUE > > sfitb <- sfit[,"type2"] > sfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~1, test2, weight=fgwt) > i1 <- sfitb$n.event > 0 > i2 <- sfit2$n.event > 0 > all.equal(sfitb$pstate[i1], 1- sfit2$surv[i2]) [1] TRUE > > # Test strata. Make a single data set that has fdata for the first 19 > # rows, then fdata with outcomes switched for the second 19. It should > # reprise test1 and test2 in a single call. > fdata2 <- rbind(fdata, fdata) > fdata2$group <- rep(1:2, each=nrow(fdata)) > temp <- c(1,3,2)[as.numeric(fdata$status)] > fdata2$status[fdata2$group==2] <- factor(temp, 1:3, levels(fdata$status)) > test3 <- finegray(Surv(time, status) ~ .+ strata(group), fdata2) > vtemp <- c("fgstart", "fgstop", "fgstatus", "fgwt") > all.equal(test3[1:19, vtemp], test1[,vtemp]) [1] TRUE > all.equal(test3[20:38, vtemp], test2[,vtemp], check.attributes=FALSE) [1] TRUE > > # > # Test data set 2: use the larger MGUS data set > # Time is in months which leads to lots of ties > etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) > event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) > e2 <- factor(event, 0:2, c('censor', 'pcm', 'death')) > edata <- finegray(Surv(etime, e2) ~ sex + id, mgus2, etype="pcm") > > # Build G(t) = the KM of the censoring distribution > # An event at time x is not "at risk" for censoring at time x (Geskus 2011) > tt <- sort(unique(etime)) # all the times > ntime <- length(tt) > nrisk <- nevent <- double(ntime) > for (i in 1:ntime) { + nrisk[i] <- sum((etime > tt[i] & event >0) | (etime >= tt[i] & event==0)) + nevent[i] <- sum(etime == tt[i] & event==0) + } > G <- cumprod(1- nevent/nrisk) > > # The weight is defined as w(t)= G(t-)/G(s-) where s is the event time > # for a subject who experiences an endpoint other then the one of interest > type2 <- event[edata$id]==2 # the rows to be expanded > # These rows are copied over as is: endpoint 1 and censors > all(edata$fgstop[!type2] == etime[edata$id[!type2]]) [1] TRUE > all(edata$fgstart[!type2] ==0) [1] TRUE > all(edata$fgwt[!type2] ==1) [1] TRUE > > tdata <- edata[type2,] #expanded rows > first <- match(tdata$id, tdata$id) #points to the first row for each subject > Gwt <- c(1, G)[match(tdata$fgstop, tt)] # G(t-) > all.equal(tdata$fgwt, Gwt/Gwt[first]) [1] TRUE > > # Test data 3, left truncation. > # Ties are assumed to be ordered as event, censor, entry > # H(t) = truncation distribution, and is calculated on a reverse time scale > # Since there is only one row per subject every obs is a "start" event. > # Per equation 5 and 6 of Geskus both G and H are right continuous functions > # (the value at t- epsilon is different than the value at t). > fdata <- data.frame(time1 = c(0,0,0,3,2,0,0,1,0,7,5, 0, 0, 0), + time2 = c(1,2,3,4,4,4,5,5,6,8,8, 9,10,12), + status= c(1,2,0,1,0,0,2,1,0,0,2, 0, 1 ,0), + x = c(5,4,3,1,2,1,1,2,2,4,6, 1, 2, 0), + id = 1:14) > tt <- sort(unique(c(fdata$time1, fdata$time2))) > ntime <- length(tt) > Grisk <- Gevent <- double(ntime) > Hrisk <- Hevent <- double(ntime) > for (i in 1:ntime) { + Grisk[i] <- with(fdata, sum((time2 > tt[i] & status >0 & time1 < tt[i]) | + (time2 >= tt[i] & status ==0 & time1 < tt[i]))) + Gevent[i]<- with(fdata, sum(time2 == tt[i] & status==0)) + Hrisk[i] <- with(fdata, sum(time2 > tt[i] & time1 <= tt[i])) + Hevent[i]<- with(fdata, sum(time1 == tt[i])) + } > G <- cumprod(1- Gevent/pmax(1,Grisk)) > G2 <- survfit(Surv(time1, time2 - .1*(status !=0), status==0) ~1, fdata) > all.equal(G2$surv[G2$n.event>0], G[Gevent>0]) [1] TRUE > > H <- double(ntime) > # The loop below uses the definition of equation 6 in Geskus > for (i in 1:ntime) + H[i] <- prod((1- Hevent/pmax(1, Hrisk))[-(i:1)]) > H2 <- rev(cumprod(rev(1 - Hevent/pmax(1, Hrisk)))) #alternate form > H3 <- survfit(Surv(-time2, -time1, rep(1,14)) ~1, fdata) # alternate 3 > # c(0,H) = H(t-), H2 = H(t-) already due to the time reversal > i2 <- sort(match(unique(fdata$time1), tt)) #time points in H3 > all.equal(c(0, H), c(H2, 1)) [1] TRUE > all.equal(H2[i2], rev(H3$surv)) [1] TRUE > > fg <- finegray(Surv(time1, time2, factor(status, 0:2)) ~ x, id=id, fdata) > stat2 <- !is.na(match(fg$id, fdata$id[fdata$status==2])) #expanded ids > all(fg$fgwt[!stat2] ==1) #ordinary rows are left alone [1] TRUE > all(fg$fgstart[!stat2] == fdata$time1[fdata$status !=2]) [1] TRUE > all(fg$fgstop[!stat2] == fdata$time2[fdata$status !=2]) [1] TRUE > > tdata <- fg[stat2,] > index <- match(tdata$id, tdata$id) # points to the first row for each > Gwt <- c(1, G)[match(tdata$fgstop, tt)] # G(t-) > Hwt <- c(0, H)[match(tdata$fgstop, tt)] # H(t-) > all.equal(tdata$fgwt, Gwt*Hwt/(Gwt*Hwt)[index]) [1] TRUE > > # > # Test data 4: mgus2 data on age scale > # The answer is incorrect due to roundoff, but consistent > # > start <- mgus2$age # age in years > end <- start + etime/12 #etime in months > tt <- sort(unique(c(start, end))) # all the times > ntime <- length(tt) > Grisk <- Gevent <- double(ntime) > Hrisk <- Hevent <- double(ntime) > for (i in 1:ntime) { + Grisk[i] <- sum(((end > tt[i] & event >0) | (end >= tt[i] & event==0)) & + (tt[i] > start)) + Gevent[i] <- sum(end == tt[i] & event==0) + Hrisk[i] <- sum(start <= tt[i] & end > tt[i]) + Hevent[i] <- sum(start == tt[i]) + } > G <- cumprod(1 - Gevent/pmax(1, Grisk)) # pmax to avoid 0/0 > H <- rev(cumprod(rev(1-Hevent/pmax(1,Hrisk)))) > H <- c(H[-1], 1) #make it right continuous > > wdata <- finegray(Surv(start, end, e2) ~ ., id=id, mgus2, timefix=FALSE) > type2 <- event[wdata$id]==2 # the rows to be expanded > tdata <- wdata[type2,] > first <- match(tdata$id, tdata$id) > > Gwt <- c(1, G)[match(tdata$fgstop, tt)] # G(t-) > Hwt <- c(0, H)[match(tdata$fgstop, tt)] # H(t-) > all.equal(tdata$fgwt, (Gwt/Gwt[first]) * (Hwt / Hwt[first])) [1] TRUE > > > proc.time() user system elapsed 0.956 0.016 0.978 survival/tests/r_tdist.Rout.save0000644000176200001440000000536713537676563016607 0ustar liggesusers R Under development (unstable) (2019-01-23 r76006) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Test out the t-distribution > # > # First, a t-dist with 500 df should be nearly identical to the Gaussian > > fitig <- survreg(Surv(time, status)~voltage, + dist = "gaussian", data = capacitor) > fit1 <- survreg(Surv(time, status) ~ voltage, + dist='t', parms=500, capacitor) > fitig Call: survreg(formula = Surv(time, status) ~ voltage, data = capacitor, dist = "gaussian") Coefficients: (Intercept) voltage 1917.431558 -4.087366 Scale= 314.4748 Loglik(model)= -249.2 Loglik(intercept only)= -258.7 Chisq= 18.97 on 1 degrees of freedom, p= 1.32e-05 n= 64 > summary(fit1, corr=F) Call: survreg(formula = Surv(time, status) ~ voltage, data = capacitor, dist = "t", parms = 500) Value Std. Error z p (Intercept) 1918.329 219.536 8.74 < 2e-16 voltage -4.091 0.778 -5.26 1.5e-07 Log(scale) 5.749 0.133 43.12 < 2e-16 Scale= 314 Student-t distribution: parmameters= 500 Loglik(model)= -249.2 Loglik(intercept only)= -258.7 Chisq= 19.01 on 1 degrees of freedom, p= 1.3e-05 Number of Newton-Raphson Iterations: 5 n= 64 > > # A more realistic fit > fit2 <- survreg(Surv(time, status) ~ voltage, + dist='t', parms=5, capacitor) > print(fit2) Call: survreg(formula = Surv(time, status) ~ voltage, data = capacitor, dist = "t", parms = 5) Coefficients: (Intercept) voltage 1975.155951 -4.315492 Scale= 276.799 Loglik(model)= -250.2 Loglik(intercept only)= -261 Chisq= 21.65 on 1 degrees of freedom, p= 3.27e-06 n= 64 > > if (FALSE) { + resid(fit2, type='response') + resid(fit2, type='deviance') + resid(fit2, type='working') + resid(fit2, type='dfbeta') + resid(fit2, type='dfbetas') + resid(fit2, type='ldresp') + resid(fit2, type='ldshape') + resid(fit2, type='ldcase') + resid(fit2, type='matrix') + + predict(fit2, type='link') + predict(fit2, type='terms') + predict(fit2, type='quantile') + } > > proc.time() user system elapsed 0.752 0.028 0.782 survival/tests/cancer.R0000644000176200001440000000410613537676563014673 0ustar liggesuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) # # Test out all of the routines on a more complex data set # temp <- survfit(Surv(time, status) ~ ph.ecog, lung) summary(temp, times=c(30*1:11, 365*1:3)) print(temp[2:3]) temp <- survfit(Surv(time, status)~1, lung, type='fleming', conf.int=.9, conf.type='log-log', error='tsiatis') summary(temp, times=30 *1:5) temp <- survdiff(Surv(time, status) ~ inst, lung, rho=.5) print(temp, digits=6) # verify that the zph routine does the actual score test dtime <- lung$time[lung$status==2] lung2 <- survSplit(Surv(time, status) ~ ., lung, cut=dtime) cfit1 <-coxph(Surv(time, status) ~ ph.ecog + ph.karno + pat.karno + wt.loss + sex + age + strata(inst), lung) cfit2 <-coxph(Surv(tstart, time, status) ~ ph.ecog + ph.karno + pat.karno + wt.loss + sex + age + strata(inst), lung2) all.equal(cfit1$loglik, cfit2$loglik) all.equal(coef(cfit1), coef(cfit2)) # the above verifies that the data set is correct zp1 <- cox.zph(cfit1, transform="log") zp2 <- cox.zph(cfit2, transform="log") # everything should match but the call icall <- match("Call", names(zp1)) all.equal(unclass(zp2)[-icall], unclass(zp1)[-icall]) # now compute score tests one variable at a time ncoef <- length(coef(cfit2)) check <- double(ncoef) cname <- names(coef(cfit2)) for (i in 1:ncoef) { temp <- log(lung2$time) * lung2[[cname[i]]] # score test for this new variable tfit <- coxph(Surv(tstart, time, status) ~ ph.ecog + ph.karno + pat.karno + wt.loss + sex + age + strata(inst) + temp, lung2, init=c(cfit2$coef, 0), iter=0) check[i] <- tfit$score } aeq(check, zp1$table[1:ncoef,1]) # skip the 'global' test # # Tests of using "." # fit1 <- coxph(Surv(time, status) ~ . - meal.cal - wt.loss - inst, lung) fit2 <- update(fit1, .~. - ph.karno) fit3 <- coxph(Surv(time, status) ~ age + sex + ph.ecog + pat.karno, lung) all.equal(fit2, fit3) survival/tests/pyear.R0000644000176200001440000001643013537676563014563 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) {if (is.R()) mdy.date <- function(m, d, y) { y <- ifelse(y<100, y+1900, y) as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") } else mdy.date <- function(m,d,y) { y <- ifelse(y<100, y+1900, y) timeDate(paste(y, m, d, sep='/'), in.format="%Y/%m/%d") } } # # Simple case: a single male subject, born 6/6/36 and entered on study 6/6/55. # temp1 <- mdy.date(6,6,36) temp2 <- mdy.date(6,6,55)# Now compare the results from person-years # temp.age <- tcut(temp2-temp1, floor(c(-1, (18:31 * 365.24))), labels=c('0-18', paste(18:30, 19:31, sep='-'))) temp.yr <- tcut(temp2, mdy.date(1,1,1954:1965), labels=1954:1964) temp.time <- 3700 #total days of fu py1 <- pyears(temp.time ~ temp.age + temp.yr, scale=1) #output in days # The subject should appear in 20 cells # 6/6/55 - 12/31/55, 209 days, age 19-20, 1955 # 1/1/56 - 6/ 4/56, 156 days, age 19-20, 1956 # 6/5/56 - 12/31/56, 210 days, age 20-21, 1956 (a leap year, and his # birthday computes one day earlier) # 1/1/57 - 6/ 5/57, 156 days, age 20-21, 1957 # 6/6/57 - 12/31/57, 209 days, age 21-22, 1957 # and etc # with 203 days "off table", ie, beyond the last cell of the table # # It is a nuisance, but tcut follows 'cut' in that we give the ENDS of # the intervals, whereas the survival tables use the starts of intervals. # Thus this breakdown does not match that in doexpect.s # xx <- matrix(0, nrow=14, ncol=11) xx[cbind(3:11, 3:11)] <- 156 xx[cbind(3:12, 2:11)] <- c(209, 210, rep(c(209, 209, 209, 210),2)) dimnames(xx) <- list(temp.age= c('0-18', paste(18:30, 19:31, sep='-')), temp.yr = 1954:1964) all.equal(xx, py1$pyears) all.equal(203, py1$offtable) all.equal(1*(xx>0), py1$n) # # Now with expecteds # py2 <- pyears(temp.time ~ temp.age + temp.yr + ratetable(age=temp2-temp1, year=temp2, sex=1), scale=1, ratetable=survexp.us ) #output in days all.equal(xx, py2$pyears) all.equal(203, py2$offtable) all.equal(1*(xx>0), py2$n) py2b <- pyears(temp.time ~ temp.age + temp.yr, rmap = list(age=temp2-temp1, year=temp2, sex=1), scale=1, ratetable=survexp.us ) #output in days all.equal(xx, py2b$pyears) all.equal(203, py2b$offtable) all.equal(1*(xx>0), py2b$n) all.equal(py2$expected, py2b$expected) py3 <- pyears(temp.time ~ temp.age + temp.yr, rmap=list(age=temp2-temp1, year=temp2, sex=1), scale=1, ratetable=survexp.us , expect='pyears') all.equal(py2$n, py3$n) all.equal(py2$pyear, py3$pyear) all.equal(py3$n, 1*(py3$expect>0)) # Now, compute the py3 result "by hand". Since there is only one person # it can be derived from py2. # xx1 <- py2$expect[py2$n>0] # the hazard over each interval cumhaz <- cumsum(c(0, xx1[-length(xx1)])) # the cumulative hazard xx2 <- py3$expect[py3$n>0] # the expected number of person days xx3 <- py3$pyears[py3$n>0] # the potential number of person days # This is the integral of the curve "exp(-haz *t)" over the interval integral <- xx3 * exp(-cumhaz)* (1- exp(-xx1))/ xx1 # They might not be exactly equal, since the C code tracks changes in the # rate tables that occur -within- an interval. So try for 6 digits all.equal(round(integral,3), round(xx2,3)) # Cut off the bottom of the table, instead of the side temp.age <- tcut(temp2-temp1, floor(c(-1, (18:27 * 365.24))), labels=c('0-18', paste(18:26, 19:27, sep='-'))) py4 <- eval(py3$call) all.equal(py4$pyear, py3$pyear[1:10,]) all.equal(py4$expect, py3$expect[1:10,]) rm(temp.age, integral, xx1, xx2, xx3, cumhaz, py1, py2, py3, py4) rm(temp1, temp2, temp.yr, temp.time, xx) # # Simple case: a single male subject, born 6/6/36 and entered on study 6/6/55. # temp1 <- mdy.date(6,6,36) temp2 <- mdy.date(6,6,55)# Now compare the results from person-years # temp.age <- tcut(temp2-temp1, floor(c(-1, (18:31 * 365.24))), labels=c('0-18', paste(18:30, 19:31, sep='-'))) temp.yr <- tcut(temp2, mdy.date(1,1,1954:1965), labels=1954:1964) temp.time <- 3700 #total days of fu py1 <- pyears(temp.time ~ temp.age + temp.yr, scale=1) #output in days # The subject should appear in 20 cells # 6/6/55 - 12/31/55, 209 days, age 19-20, 1955 # 1/1/56 - 6/ 4/56, 156 days, age 19-20, 1956 # 6/5/56 - 12/31/56, 210 days, age 20-21, 1956 (a leap year, and his # birthday computes one day earlier) # 1/1/57 - 6/ 5/57, 156 days, age 20-21, 1957 # 6/6/57 - 12/31/57, 209 days, age 21-22, 1957 # and etc # with 203 days "off table", ie, beyond the last cell of the table # # It is a nuisance, but tcut follows 'cut' in that we give the ENDS of # the intervals, whereas the survival tables use the starts of intervals. # xx <- matrix(0, nrow=14, ncol=11) xx[cbind(3:11, 3:11)] <- 156 xx[cbind(3:12, 2:11)] <- c(209, 210, rep(c(209, 209, 209, 210),2)) dimnames(xx) <- list(temp.age= c('0-18', paste(18:30, 19:31, sep='-')), temp.yr = 1954:1964) all.equal(xx, py1$pyears) all.equal(203, py1$offtable) all.equal(1*(xx>0), py1$n) # # Now with expecteds # py2 <- pyears(temp.time ~ temp.age + temp.yr + ratetable(age=temp2-temp1, year=temp2, sex=1), scale=1, ratetable=survexp.us ) #output in days all.equal(xx, py2$pyears) all.equal(203, py2$offtable) all.equal(1*(xx>0), py2$n) py3 <- pyears(temp.time ~ temp.age + temp.yr + ratetable(age=temp2-temp1, year=temp2, sex=1), scale=1, ratetable=survexp.us , expect='pyears') all.equal(py2$n, py3$n) all.equal(py2$pyear, py3$pyear) all.equal(py3$n, 1*(py3$expect>0)) # Now, compute the py3 result "by hand". Since there is only one person # it can be derived from py2. # xx1 <- py2$expect[py2$n>0] # the hazard over each interval cumhaz <- cumsum(c(0, xx1[-length(xx1)])) # the cumulative hazard xx2 <- py3$expect[py3$n>0] # the expected number of person days xx3 <- py3$pyears[py3$n>0] # the potential number of person days # This is the integral of the curve "exp(-haz *t)" over the interval integral <- xx3 * exp(-cumhaz)* (1- exp(-xx1))/ xx1 # They might not be exactly equal, since the C code tracks changes in the # rate tables that occur -within- an interval. So try for 6 digits all.equal(round(integral,3), round(xx2,3)) # Cut off the bottom of the table, instead of the side temp.age <- tcut(temp2-temp1, floor(c(-1, (18:27 * 365.24))), labels=c('0-18', paste(18:26, 19:27, sep='-'))) py4 <- eval(py3$call) all.equal(py4$pyear, py3$pyear[1:10,]) all.equal(py4$expect, py3$expect[1:10,]) rm(temp.age, integral, xx1, xx2, xx3, cumhaz, py1, py2, py3, py4) rm(temp1, temp2, temp.yr, temp.time, xx) # # Create a "user defined" rate table, using the smoking data # temp <- scan("data.smoke")/100000 temp <- matrix(temp, ncol=8, byrow=T) smoke.rate <- c(rep(temp[,1],6), rep(temp[,2],6), temp[,3:8]) attributes(smoke.rate) <- list( dim=c(7,2,2,6,3), dimnames=list(c("45-49","50-54","55-59","60-64","65-69","70-74","75-79"), c("1-20", "21+"), c("Male","Female"), c("<1", "1-2", "3-5", "6-10", "11-15", ">=16"), c("Never", "Current", "Former")), dimid=c("age", "amount", "sex", "duration", "status"), factor=c(0,1,1,0,1), cutpoints=list(c(45,50,55,60,65,70,75),NULL, NULL, c(0,1,3,6,11,16),NULL), class='ratetable' ) rm(temp) is.ratetable(smoke.rate) summary(smoke.rate) print(smoke.rate) summary(smoke.rate[1:3,,1,,]) #test subscripting survival/tests/concordance3.R0000644000176200001440000000365113537676563016005 0ustar liggesuserslibrary(survival) options(na.action=na.exclude) aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y), ...) # Make sure strata is retained, and that the overall variance is correct fit1 <- coxph(Surv(time, status) ~ age + offset(ph.ecog*0) +strata(sex), lung) fit2 <- coxph(Surv(time, status) ~ age + ph.ecog +strata(sex), lung) test <- concordance(fit1, fit2, influence=1) ksex <- model.frame(fit1)[["strata(sex)"]] test1 <- concordance(fit1$y ~ fit1$linear.predictors + strata(ksex), reverse=TRUE, influence=1) test2 <- concordance(fit1$y ~ fit2$linear.predictors + strata(ksex), reverse=TRUE, influence=1) aeq(test$concordance, c(test1$concordance, test2$concordance)) aeq(diag(test$var), c(test1$var[1], test2$var[1])) aeq(test$dfbeta, cbind(test1$dfbeta, test2$dfbeta)) cvec <- c(-1, 1) aeq(cvec %*% test$var %*% cvec, sum((test1$dfbeta - test2$dfbeta)^2)) # Time weights # The mgus2 data set has very long follow-up and non-proportional hazards # mfit <- coxph(Surv(futime, death) ~ creat + hgb, mgus2) cm1 <- concordance(mfit, timewt='n', ranks=TRUE) cm2 <- concordance(mfit, timewt='S', ranks=TRUE) cm3 <- concordance(mfit, timewt='S/G', ranks=TRUE) sfit <- survfit(Surv(futime, death) ~ 1, mgus2, subset=!is.na(creat+hgb)) gfit <- survfit(Surv(futime, 1-death)~1, mgus2, subset=!is.na(creat+hgb)) rd1 <- cm1$ranks rd2 <- cm2$ranks rd3 <- cm3$ranks all.equal(rd1[c('time', 'rank', 'casewt')], rd2[c('time', 'rank', 'casewt')]) all.equal(rd1[c('time', 'rank', 'casewt')], rd3[c('time', 'rank', 'casewt')]) # n(t) is the number of comparable pairs, which does not count tied times indx <- match(rd1$time, sfit$time) nt <- sfit$n.risk[indx] - sfit$n.event[indx] all.equal(rd1$timewt, nt) # I need S(t) and G(t-), G has the exact same time points as S though gminus <- c(1, gfit$surv) all.equal(rd2$timewt, mfit$n* sfit$surv[indx]) all.equal(rd3$timewt, mfit$n* sfit$surv[indx] /gminus[indx]) survival/tests/testnull.Rout.save0000644000176200001440000000242713537676563017003 0ustar liggesusers R version 2.7.1 (2008-06-23) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # A test of NULL models > # > fit1 <- coxph(Surv(stop, event) ~ rx + strata(number), bladder, iter=0) > fit2 <- coxph(Surv(stop, event) ~ strata(number), bladder) > > all.equal(fit1$loglik[2], fit2$loglik) [1] TRUE > all.equal(fit1$resid, fit2$resid) [1] TRUE > > > fit1 <- coxph(Surv(start, stop, event) ~ rx + strata(number), bladder2, iter=0) > fit2 <- coxph(Surv(start, stop, event) ~ strata(number), bladder2) > > all.equal(fit1$loglik[2], fit2$loglik) [1] TRUE > all.equal(fit1$resid, fit2$resid) [1] TRUE > survival/tests/overlap.Rout.save0000644000176200001440000000425113537676603016571 0ustar liggesusers R Under development (unstable) (2019-08-23 r77061) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Make sure that useless intervals do not cause issues, i.e., any that do > # not overlap at least one event time > # > library(survival) > test2 <- data.frame(time1 =c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8, 3), + time2 =c(2, 3, 6, 7, 8, 9, 9, 9,14,17, 5), + event =c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 500) ) > > # The data set is the same as book3.R, except for the wild observation > # with x=500 whose time interval of (4,5) overlaps no events. > > fit1 <- coxph(Surv(time1, time2, event) ~ x, test2, subset=(x<100)) > fit2 <- coxph(Surv(time1, time2, event) ~ x, test2) > > ii <- match(c("coefficients", "var", "loglik", "score", "iter", + "wald.test", "concordance"), names(fit1)) > all.equal(fit1[ii], fit2[ii]) [1] TRUE > all.equal(c(fit1$residuals,0), fit2$residuals, check.attributes=FALSE) [1] TRUE > > # The mean differs condiderably, and so to the linear predictors > > # Now the same with a penalized model > fit3 <- coxph(Surv(time1, time2, event) ~ ridge(x, theta=.1), test2, + subset= (x< 100)) > fit4 <- coxph(Surv(time1, time2, event) ~ ridge(x, theta=.1), test2) > fit5 <- coxph(Surv(time1,time2, event) ~ x, test2, + iter=0, init=fit4$coef) > > all.equal(fit3[ii], fit4[ii]) [1] TRUE > all.equal(c(fit3$residuals,0), fit4$residuals, check.attributes=FALSE) [1] TRUE > all.equal(fit4$residuals, fit5$residuals) [1] TRUE > > proc.time() user system elapsed 0.997 0.056 1.336 survival/tests/ratetable.Rout.save0000644000176200001440000001130413537676563017066 0ustar liggesusers R Under development (unstable) (2018-04-09 r74565) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Generate each of the messages from is.ratetable > # > mdy.date <- function(m, d, y) { + y <- ifelse(y<100, y+1900, y) + as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") + } > temp <- runif(21*2*4) > > # Good > attributes(temp) <- list(dim=c(21,2,4), + dimnames=list(c(as.character(75:95)), c("male","female"), + c(as.character(2000:2003))), + dimid=c("age","sex","year"), + type=c(2,1,4), + cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(0:3)*366.25), + class='ratetable') > is.ratetable(temp) [1] TRUE > > # Factor problem + cutpoints length > attributes(temp) <- list(dim=c(21,2,4), + dimnames=list(c(as.character(75:95)), c("male","female"), + c(as.character(2000:2003))), + dimid=c("age","sex","year"), + type=c(1,1,2), + cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(0:4)*366.25), + class='ratetable') > is.ratetable(temp, verbose=T) [1] "type[3] is numeric or factor but the cutpoint is a date" [2] "attribute type[1] is continuous; cutpoint should be null" [3] "wrong length for cutpoints 3" > > > # missing dimid attribute + unsorted cutpoint > attributes(temp) <- list(dim=c(21,2,4), + dimnames=list(c(as.character(75:95)), c("male","female"), + c(as.character(2000:2003))), + type=c(2,1,3), + cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(4:1)*366.25), + class='ratetable') > is.ratetable(temp, verbose=T) [1] "wrong length for dimid, or dimnames do not have names" [2] "unsorted cutpoints for dimension 3" > > # wrong length for dimid and type, illegal type > attributes(temp) <- list(dim=c(21,2,4), + dimnames=list(c(as.character(75:95)), c("male","female"), + c(as.character(2000:2003))), + dimid=c("age","sex","year", "zed"), + type=c(2,1,3,6), + cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(0:3)*366.25), + class='ratetable') > is.ratetable(temp, verbose=T) [1] "wrong length for dimid, or dimnames do not have names" [2] "type attribute must be 1, 2, 3, or 4" [3] "wrong length for type attribute" > > > # Print and summary > print(survexp.us[1:20,,c('1953', '1985')] ) Rate table with dimension(s): age sex year , , year = 1953 sex age male female 0 8.936600e-05 6.911204e-05 1 6.169963e-06 5.423669e-06 2 3.860391e-06 3.161334e-06 3 2.909162e-06 2.424089e-06 4 2.448747e-06 1.950051e-06 5 2.210350e-06 1.692520e-06 6 1.988411e-06 1.481583e-06 7 1.813065e-06 1.298053e-06 8 1.684303e-06 1.169315e-06 9 1.593900e-06 1.087146e-06 10 1.569249e-06 1.051541e-06 11 1.626780e-06 1.043325e-06 12 1.771975e-06 1.089887e-06 13 2.062389e-06 1.199447e-06 14 2.462443e-06 1.347361e-06 15 2.944779e-06 1.550072e-06 16 3.410754e-06 1.752797e-06 17 3.819231e-06 1.928140e-06 18 4.164702e-06 2.056914e-06 19 4.504735e-06 2.169256e-06 , , year = 1985 sex age male female 0 3.350073e-05 2.680036e-05 1 2.451492e-06 2.108968e-06 2 1.739100e-06 1.341882e-06 3 1.369277e-06 1.013196e-06 4 1.122754e-06 7.940941e-07 5 9.995021e-07 7.530142e-07 6 9.173378e-07 6.571643e-07 7 8.488687e-07 5.887021e-07 8 7.530153e-07 5.339338e-07 9 6.297793e-07 4.791661e-07 10 5.202416e-07 4.517830e-07 11 5.202416e-07 4.517830e-07 12 7.530134e-07 5.202412e-07 13 1.232311e-06 6.571636e-07 14 1.862374e-06 8.351727e-07 15 2.533686e-06 1.026887e-06 16 3.150341e-06 1.204921e-06 17 3.657474e-06 1.341877e-06 18 4.041315e-06 1.424054e-06 19 4.315527e-06 1.465144e-06 > summary(survexp.usr) Rate table with 4 dimensions: age ranges from 0 to 39812.25; with 110 categories sex has levels of: male female race has levels of: white black year ranges from 1940-01-01 to 2014-01-01; with 75 categories > > proc.time() user system elapsed 0.704 0.012 0.714 survival/tests/r_peterson.Rout.save0000644000176200001440000001002413537676563017301 0ustar liggesusers R version 3.4.1 (2017-06-30) -- "Single Candle" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Data courtesy of Bercedis Peterson, Duke University. > # v4 of survreg fails due to 2 groups that have only 1 subject; the coef > # for them easily gets out of hand. In fact, this data set is my toughest > # test of the minimizer. > # > # A shrinkage model for this coefficient is therefore interesting > > > peterson <- data.frame( + scan('data.peterson', what=list(grp=0, time=0, status=0))) Read 19 records > > fitp <- survreg(Surv(time, status) ~ factor(grp), peterson) > summary(fitp) Call: survreg(formula = Surv(time, status) ~ factor(grp), data = peterson) Value Std. Error z p (Intercept) 2.291 0.115 19.92 < 2e-16 factor(grp)2 0.786 0.177 4.44 8.8e-06 factor(grp)3 0.728 0.183 3.97 7.1e-05 factor(grp)4 -1.598 0.218 -7.32 2.5e-13 factor(grp)5 -0.500 0.218 -2.29 0.0221 factor(grp)6 0.475 0.170 2.79 0.0052 Log(scale) -1.684 0.257 -6.54 6.1e-11 Scale= 0.186 Weibull distribution Loglik(model)= -26.7 Loglik(intercept only)= -40.7 Chisq= 28.18 on 5 degrees of freedom, p= 3.4e-05 Number of Newton-Raphson Iterations: 9 n= 19 > > # Now a shrinkage model. Give the group coefficients > # about 1/2 the scale parameter of the original model, i.e., .18. > # > ffit <- survreg(Surv(time, status) ~ frailty(grp, theta=.1), peterson) > ffit Call: survreg(formula = Surv(time, status) ~ frailty(grp, theta = 0.1), data = peterson) coef se(coef) se2 Chisq DF p (Intercept) 2.62 0.172 0.0874 232.0 1.00 2.2e-52 frailty(grp, theta = 0.1) 10.4 2.15 6.7e-03 Scale= 0.301 Iterations: 1 outer, 6 Newton-Raphson Variance of random effect= 0.1 I-likelihood = -11.8 Degrees of freedom for terms= 0.3 2.2 0.7 Likelihood ratio test=13.8 on 1.1 df, p=3e-04 n= 19 > > # > # Try 3 degrees of freedom, since there are 6 groups > # compare them to the unconstrained ones. The frailty coefs are > # on a "sum to constant" constraint rather than "first coef=0", so > # some conversion is neccessary > # > ffit3 <- survreg(Surv(time, status) ~ frailty(grp, df=3), peterson) > print(ffit3) Call: survreg(formula = Surv(time, status) ~ frailty(grp, df = 3), data = peterson) coef se(coef) se2 Chisq DF p (Intercept) 2.54 0.187 0.0685 184.1 1.00 6.1e-42 frailty(grp, df = 3) 16.7 3.06 8.8e-04 Scale= 0.227 Iterations: 6 outer, 32 Newton-Raphson Variance of random effect= 0.17 I-likelihood = -10.1 Degrees of freedom for terms= 0.1 3.1 0.3 Likelihood ratio test=22.9 on 1.5 df, p=5e-06 n= 19 > > temp <- mean(c(0, fitp$coef[-1])) - mean(ffit3$frail) > temp2 <- c(fitp$coef[1] + temp, c(0,fitp$coef[-1]) - temp) > xx <- rbind(c(nrow(peterson), table(peterson$grp)), + temp2, + c(ffit3$coef, ffit3$frail)) > dimnames(xx) <- list(c("N", "factor", "frailty"), + c("Intercept", paste("grp", 1:6))) > signif(xx,3) Intercept grp 1 grp 2 grp 3 grp 4 grp 5 grp 6 N 19.00 3.000 6.000 6.000 1.00 1.000 2.000 factor 2.43 -0.137 0.649 0.591 -1.74 -0.636 0.338 frailty 2.54 -0.255 0.474 0.438 -1.21 -0.554 0.180 > > rm(ffit, ffit3, temp, temp2, xx, fitp) > > proc.time() user system elapsed 1.873 0.088 2.116 survival/tests/survSplit.R0000644000176200001440000000424113543501102015420 0ustar liggesuserslibrary(survival) # Make sure that the old-style and new-style calls both work # new style vet2 <- survSplit(Surv(time, status) ~ ., data= veteran, cut=c(90, 180), episode= "tgroup", id="id") vet2[1:7, c("id", "tstart", "time", "status", "tgroup", "age", "karno")] # old style vet3 <- survSplit(veteran, end='time', event='status', cut=c(90,180), episode="tgroup", id="id") all.equal(vet2, vet3) all.equal(nrow(vet2), nrow(veteran) + sum(veteran$time >90) + sum(veteran$time > 180)) # Do a parallel computation using survSplit, and pyears/tcut. We should get # the same answer. # Break subjects up by year of entry and current time on study. Most of # the deaths are within 3 months # pyears complains (justifiably) about the obs with 0 days of fu, so we add 1 # data1 <- jasa data1$ayear <- as.numeric(substring(as.character(jasa$accept.dt), 1,4)) temp <- round(c(0, .25, 1,2,5)*365.25) # years ftime <- tcut(rep(0, nrow(jasa)), temp, labels=paste(c(0, .25, 1:2), c(.25, 1,2,5), sep='-')) pfit <- pyears(Surv(futime +1,fustat) ~ ayear + ftime, data1, scale=1) data2 <- survSplit(Surv(futime+1, fustat) ~ ., cut=temp, data=data1, episode = "tgroup") tab1 <- with(data2, tapply(fustat, list(ayear, tgroup), sum)) tab1 <- ifelse(is.na(tab1), 0, tab1) all.equal(as.vector(tab1), as.vector(pfit$event)) # ignore dimnames tab2 <- with(data2, tapply(tstop-tstart, list(ayear, tgroup), sum)) tab2 <- ifelse(is.na(tab2), 0, tab2) all.equal(as.vector(tab2), as.vector(pfit$pyears)) # double check that the "data" option gives the same values pfit2 <- pyears(Surv(futime +1,fustat) ~ ayear + ftime, data1, scale=1, data.frame=TRUE)$data all.equal(pfit2$pyears, pfit$pyears[pfit$pyears >0]) all.equal(pfit2$event, pfit$event[pfit$pyears >0]) # and that the rows of data2 have the right labels keep <- which(pfit$pyears >0) # these are not in the data rname <- rownames(pfit$pyears)[row(pfit$pyears)[keep]] all.equal(rname, as.character(pfit2$ayear)) cname <- colnames(pfit$pyears)[col(pfit$pyears)[keep]] all.equal(cname, as.character(pfit2$ftime)) survival/tests/r_scale.R0000644000176200001440000000325513537676563015054 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Verify that scale can be fixed at a value # coefs will differ slightly due to different iteration paths tol <- .001 # Intercept only models fit1 <- survreg(Surv(time,status) ~ 1, lung) fit2 <- survreg(Surv(time,status) ~ 1, lung, scale=fit1$scale) all.equal(fit1$coef, fit2$coef, tolerance= tol) all.equal(fit1$loglik, fit2$loglik, tolerance= tol) # The two robust variance matrices are not the same, since removing # an obs has a different effect on the two models. This just # checks for failure, not for correctness fit3 <- survreg(Surv(time,status) ~ 1, lung, robust=TRUE) fit4 <- survreg(Surv(time,status) ~ 1, lung, scale=fit1$scale, robust=TRUE) # multiple covariates fit1 <- survreg(Surv(time,status) ~ age + ph.karno, lung) fit2 <- survreg(Surv(time,status) ~ age + ph.karno, lung, scale=fit1$scale) all.equal(fit1$coef, fit2$coef, tolerance=tol) all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol) fit3 <- survreg(Surv(time,status) ~ age + ph.karno, lung, robust=TRUE) fit4 <- survreg(Surv(time,status) ~ age + ph.karno, lung, scale=fit1$scale, robust=TRUE) # penalized models fit1 <- survreg(Surv(time, status) ~ pspline(age), lung) fit2 <- survreg(Surv(time, status) ~ pspline(age), lung, scale=fit1$scale) all.equal(fit1$coef, fit2$coef, tolerance=tol) all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol) fit3 <- survreg(Surv(time,status) ~ pspline(age) + ph.karno, lung, robust=TRUE) fit4 <- survreg(Surv(time,status) ~ pspline(age) + ph.karno, lung, scale=fit1$scale, robust=TRUE) survival/tests/multistate.R0000644000176200001440000000550413547106114015613 0ustar liggesusers# # Tests for multi-state Cox models # library(survival) aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) # There are a few subjects with progression and death on the same day. In the # usual multi-state data set only one will count. data1 <- mgus2 data1$etime <- with(data1, ifelse(pstat==1, ptime, futime)) data1$event <- factor(ifelse(data1$pstat==1, 1, 2L*data1$death), 0:2, c("censor", "PCM", "death")) data2 <- mgus2[rep(1:nrow(mgus2) ,2), c("id", "age", "sex", "mspike")] data2$time <- rep(data1$etime, 2) data2$status <- 1* c(data1$event=="PCM", data1$event=="death") data2$type <- rep(c(2:3), each=nrow(mgus2)) fit1 <- coxph(Surv(etime, event) ~ age + sex + mspike, data1, id=id, x=TRUE, robust=FALSE) fit1a <- coxph(Surv(etime, event=="PCM") ~ age + sex + mspike, data1) fit1b <- coxph(Surv(etime, event=='death') ~ age + sex + mspike, data1) fit1c <- coxph(Surv(time, status) ~ strata(type)/(age + sex+ mspike), data2, x=TRUE) aeq(fit1$loglik, fit1a$loglik + fit1b$loglik) aeq(fit1$coef, c(fit1a$coef, fit1b$coef)) aeq(fit1$var[1:3, 1:3], fit1a$var) aeq(fit1$var[4:6, 4:6], fit1b$var) aeq(fit1$x[,c(1,4,2,5,3,6)], fit1c$x) aeq(fit1$coef[c(1,4,2,5,3,6)], fit1c$coef) # force a common age effect across all states fit2 <- coxph(list(Surv(etime, event) ~ sex, 1:0 ~ age / common), data1, id=id) data2 <- rbind(cbind(data1, status= (data1$event=="PCM"), etype=1), cbind(data1, status= (data1$event=='death'), etype=2)) fit2a <- coxph(Surv(etime, status) ~ age + strata(etype)/sex, data2) aeq(coef(fit2), coef(fit2a)[c(2,1,3)]) # not in the same order aeq(fit2$loglik, fit2a$loglik) #same fit in more complex ways data1$entry <- "Entry" fit2b <- coxph(list(Surv(etime, event) ~ sex, "Entry":"PCM" + "Entry":"death" ~ age / common), istate=entry, data1, id=id) fit2c <- coxph(list(Surv(etime, event) ~ sex, "Entry":state(c("PCM", "death")) ~ age / common), istate=entry, data1, id=id) aeq(fit2b$loglik, fit2$loglik) aeq(fit2c$coef, fit2$coef) # mspike size as a covariate for PCM only # first, 3 different ways to write the same fit3 <- coxph(list(Surv(etime, event) ~ age + sex, 1:state("PCM") ~ mspike), data1, id=id) fit3b <- coxph(list(Surv(etime, event) ~ age + sex, 1:"PCM" ~ mspike), data1, id=id) fit3c <- coxph(list(Surv(etime, event) ~ age + sex, 1:c("PCM") ~ mspike), data1, id=id) aeq(fit3b$coef, fit3$coef) aeq(fit3c$coef, fit3$coef) data3 <- data2 data3$mspike[data3$etype==2] <- 0 fit3a <- coxph(Surv(etime, status) ~ strata(etype)/(age + sex + mspike), data3) aeq(fit3$loglik, fit3a$loglik) aeq(fit3$coef, fit3a$coef[c(1,3,5,2,4)]) survival/tests/concordance2.R0000644000176200001440000002173113537676563016003 0ustar liggesuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # # Tests for the condordance function. # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) grank <- function(x, time, grp, wt) { if (all(wt==1)) unlist(tapply(x, grp, rank)) else unlist(tapply(1:length(x), grp, function(i) { xx <- x[i] # x and wts for this subset of the data ww <- wt[i] temp <- outer(xx, xx, function(a, b) sign(b-a)) colSums(ww*temp)/2 })) } # a Cox model using iter=0, ties='breslow' and the above function has a score # statistic which is U=(C-D)/2 and score test U^2/H, where H is the Cox model # information matrix, with fit$var=1/H. The concordance is U+ 1/2. # Pull out the Somers' d and its variance phget <- function(fit) { c(d = 2*sqrt(fit$score/fit$var), v= 4/fit$var) } fscale <- function(fit) { if (is.matrix(fit$count)) temp <- colSums(fit$count) else temp <- fit$count npair <- sum(temp[1:3]) c(d = abs(temp[1]-temp[2]), v=4*fit$cvar*npair^2) } # Concordance by brute force. O(n^2) algorithm, but ok for n<500 or so allpair <- function(time, status, x, wt, all=FALSE) { n <- length(time) if (missing(wt)) wt <- rep(1, length(x)) count <- sapply(which(status==1), function(i) { atrisk <- (time > time[i]) | (time==time[i] & status==0) temp <- tapply(wt[atrisk], factor(sign(x[i] -x[atrisk]), c(-1, 1, 0)), sum) tiedtime <- (time==time[i] & status ==1 & (1:n)>i) ties <- tapply(wt[tiedtime], factor(x[tiedtime]==x[i], c(FALSE, TRUE)),sum) wt[i]* c(ifelse(is.na(temp), 0, temp), ifelse(is.na(ties), 0, ties)) }) rownames(count) <- c("concordant", "discordant", "tied.x", "tied.y", "tied.xy") if (all) { colnames(count) <- time[status==1] t(count) } else rowSums(count) } # leverage by brute force leverage <- function(time, status, x, wt, eps=1e-5) { if (missing(wt)) wt <- rep(1, length(x)) toss <- is.na(time + status + x +wt) if (any(toss)) { time <- time[!toss] status <- status[!toss] x <- x[!toss] wt <- wt[!toss] } n <- length(time) influence <- matrix(0, n, 5) t2 <- time + eps*(status==0) for (i in 1:n) { if (status[i] ==0) comparable <- (time<=time[i] & status==1) else comparable <- ifelse(status==0, time >= time[i], time!=time[i]) temp <- sign((x[i]-x[comparable])*(t2[i] - t2[comparable])) influence[i,1:3] <-tapply(wt[comparable],factor(temp, c(1,-1,0)), sum) if (status[i]==1) { tied <- (time==time[i] & status==1 & (1:n)!= i) if (any(tied)) { itemp<- tapply(wt[tied], factor(x[tied]==x[i], c(FALSE, TRUE)), sum) influence[i,4:5] <- itemp } } } dimnames(influence) <- list(as.character(Surv(time, status)), c("concord", "discord", "tie.x", "tie.y", "tie.xy")) ifelse(is.na(influence), 0, influence) } tdata <- aml[aml$x=='Maintained', c("time", "status")] tdata$x <- c(1,6,2,7,3,7,3,8,4,4,5) tdata$wt <- c(1,2,3,2,1,2,3,4,3,2,1) fit <- concordance(Surv(time, status) ~x, tdata, influence=2) aeq(fit$count, with(tdata, allpair(time, status, x))) aeq(fit$influence, with(tdata, leverage(time, status, x))) cfit <- coxph(Surv(time, status) ~ tt(x), tdata, tt=grank, ties='breslow', iter=0, x=T) aeq(phget(cfit), fscale(fit)) # agree with Cox model # Test 2: Lots of ties tempy <- Surv(c(1,2,2,2,3,4,4,4,5,2), c(1,0,1,0,1,0,1,1,0,1)) tempx <- c(5,5,4,4,3,3,7,6,5,4) fit2 <- concordance(tempy ~ tempx, influence=2) aeq(fit2$count, allpair(tempy[,1], tempy[,2], tempx)) aeq(fit2$influence, leverage(tempy[,1], tempy[,2], tempx)) cfit2 <- coxph(tempy ~ tt(tempx), tt=grank, ties="breslow", iter=0) aeq(phget(cfit2), fscale(fit2)) # agree with Cox model # Bigger data cox3 <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung) fit3 <- concordance(Surv(time, status) ~ predict(cox3), lung, influence=2) aeq(fit3$count, allpair(lung$time, lung$status-1,predict(cox3))) aeq(fit3$influence, leverage(lung$time, lung$status-1,predict(cox3))) cfit3 <- coxph(Surv(time, status) ~ tt(predict(cox3)), tt=grank, ties="breslow", iter=0, data=lung) aeq(phget(cfit3), fscale(fit3)) # agree with Cox model # More ties fit4 <- concordance(Surv(time, status) ~ ph.ecog, lung, influence=2) fit4b <- concordance(Surv(time, status) ~ ph.ecog, lung, reverse=TRUE) aeq(fit4$count, allpair(lung$time, lung$status-1, lung$ph.ecog)) aeq(fit4b$count, c(8392, 4258, 7137, 21, 7)) cfit4 <- coxph(Surv(time, status) ~ tt(ph.ecog), lung, iter=0, method='breslow', tt=grank) aeq(phget(cfit4), fscale(fit4)) # agree with Cox model # Case weights fit5 <- concordance(Surv(time, status) ~ x, tdata, weight=wt, influence=2) fit6 <- concordance(Surv(time, status) ~x, tdata[rep(1:11,tdata$wt),]) aeq(fit5$count, with(tdata, allpair(time, status, x, wt))) aeq(fit5$count, c(91, 70, 7, 0, 0)) # checked by hand aeq(fit5$count[1:3], fit6$count[1:3]) #spurious "tied.xy" values, ignore aeq(fit5$var[2], fit6$var[2]) aeq(fit5$influence, with(tdata, leverage(time, status, x, wt))) cfit5 <- coxph(Surv(time, status) ~ tt(x), tdata, weight=wt, iter=0, method='breslow', tt=grank) aeq(phget(cfit5), fscale(fit5)) # agree with Cox model # Start, stop simplest cases fit6 <- concordance(Surv(rep(0,11), time, status) ~ x, tdata) aeq(fit6$count, fit$count) aeq(fit6$var, fit$var) fit7 <- concordance(Surv(rep(0,11), time, status) ~ x, tdata, weight=wt) aeq(fit7$count, fit5$count) aeq(fit7$var, fit5$var) # Multiple intervals for some, but same risk sets as tdata tdata2 <- data.frame(time1=c(0,3, 5, 6,7, 0, 4,17, 7, 0,16, 2, 0, 0,9, 5), time2=c(3,9, 13, 7,13, 18, 17,23, 28, 16,31, 34, 45, 9,48, 60), status=c(0,1, 1, 0,0, 1, 0,1, 0, 0,1, 1, 0, 0,1, 0), x = c(1,1, 6, 2,2, 7, 3,3, 7, 3,3, 8, 4, 4,4, 5), wt= c(1,1, 2, 3,3, 2, 1,1, 2, 3,3, 4, 3, 2,2, 1), id= c(1,1, 2, 3,3, 4, 5,5, 6, 7,7, 8, 9, 10,10, 11)) fit8 <- concordance(Surv(time1, time2, status) ~x, cluster=id, tdata2, weight=wt, influence=2) aeq(fit5$count, fit8$count) # influence has one row per obs, so the next line is false: mismatched lengths # aeq(fit5$influence, fit8$influence) aeq(fit5$var, fit8$var) cfit8 <- coxph(Surv(time1, time2, status) ~ tt(x), tdata2, weight=wt, iter=0, method='breslow', tt=grank) aeq(phget(cfit8), fscale(fit8)) # agree with Cox model # Stratified tdata3 <- data.frame(time1=c(tdata2$time1, rep(0, nrow(lung))), time2=c(tdata2$time2, lung$time), status = c(tdata2$status, lung$status -1), x = c(tdata2$x, lung$ph.ecog), wt= c(tdata2$wt, rep(1, nrow(lung))), grp=rep(1:2, c(nrow(tdata2), nrow(lung))), id = c(tdata2$id, 100+ 1:nrow(lung))) fit9 <- concordance(Surv(time1, time2, status) ~x + strata(grp), cluster=id, data=tdata3, weight=wt, influence=2) aeq(fit9$count, rbind(fit8$count, fit4$count)) # check out case weights, strata, and grouped jackknife; # force several ties in x, y, and xy (with missing values too for good measure). tdata <- subset(lung, select=-c(meal.cal, wt.loss, sex, age)) tdata$wt <- rep(1:25, length=nrow(tdata))/10 tdata$time <- ceiling(tdata$time/30) # force ties in y tfit <- coxph(Surv(time, status) ~ ph.ecog + pat.karno + strata(inst) + cluster(inst), tdata, weight=wt) tdata$tpred <- predict(tfit) cm4 <- concordance(tfit, influence=3, keepstrata=TRUE) cm5 <- concordance(Surv(time, status) ~ tpred + strata(inst) + cluster(inst), data=tdata, weight=wt, reverse=TRUE, influence=3, keepstrata=TRUE) all.equal(cm4[1:6], cm5[1:6]) # call and na.action won't match u.inst <- sort(unique(tdata$inst)) temp <- matrix(0, length(u.inst), 5) for (i in 1:length(u.inst)) { temp[i,] <- with(subset(tdata, inst==u.inst[i]), allpair(time, status-1, -tpred, wt)) } aeq(temp, cm4$count) eps <- 1e-6 keep <- (1:nrow(tdata))[-tfit$na.action] # the obs that are not tossed lmat <- matrix(0., length(keep), 5) for (i in 1:length(keep)) { wt2 <- tdata$wt wt2[keep[i]] <- wt2[keep[i]] + eps test <- concordance(Surv(time, status) ~ predict(tfit) + strata(inst), data=tdata, weight=wt2, group=group, reverse=TRUE, keepstrata=TRUE) lmat[i,] <- colSums(test$count - cm4$count)/eps } aeq(lmat, cm4$influence, tolerance=eps) # Check that keepstrata gives the correct sum cm4b <- concordance(tfit, keepstrata=FALSE) aeq(cm4b$count, colSums(cm4$count)) survival/tests/strata2.Rout.save0000644000176200001440000000272013537676563016505 0ustar liggesusers R Under development (unstable) (2018-04-09 r74565) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # New tests 4/2010 to validate strata by covariate interactions > # > library(survival) > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > tdata <- lung > tdata$sex <- lung$sex +3 > > # Both of these should produce warning messages about singular X, since there > # are ph.ecog=3 subjects in only 1 of the strata. > # Does not affect the test > fit1 <- coxph(Surv(time, status) ~ age + sex:strata(ph.ecog), lung) > fit2 <- coxph(Surv(time, status) ~ age + sex:strata(ph.ecog), tdata) > > aeq(fit1$coef, fit2$coef) [1] TRUE > aeq(fit1$var, fit2$var) [1] TRUE > aeq(predict(fit1), predict(fit2)) [1] TRUE > > proc.time() user system elapsed 0.692 0.036 0.727 survival/tests/tmerge3.R0000644000176200001440000000356713537676603015013 0ustar liggesusers# Understanding edge cases library(survival) # # this is from a user report of a problem with cumevents. When there is # a row merged in that is a censor, don't mark it as a cumevent. # base <- data.frame( id = 1:2, tstart = c(0, 0), tstop = c(10, 10), got_flue = c(0, 0), has_flue = factor(c("no", "no"), levels = c("no", "yes"))) base <- tmerge(base, base, id = id, got_flue = event(tstop, got_flue)) # add time-varying covariates vars <- data.frame(id = c(1, rep(2, 5)), time = c(0, (0:4) * 2), x = rnorm(6)) base <- tmerge(base, vars, id = id, x = tdc(time, x)) # add cumevents, using a covariate events <- data.frame( id = c(2, 2, 2), # notice the zero -- the second row should not add an event got_flue = c(1,0,2), has_flue = c("yes", "no", "yes"), time = c(3, 5, 8)) b2 <- tmerge(base, events, id = id, got_flue = cumevent(time, got_flue), has_flue = tdc(time, has_flue)) all.equal(b2$got_flue, c(0,0,1,0,0,0,3,0)) # Tied times in the merger data set # for all of them missings are essentially ignored # last obs wins for tdc and event tiedat <- data.frame(id=c(1, 1, 1, 2,2,2), time=c(3,4, 4, 3, 5, 5), x=c(1, NA,0, 2,3,4)) b3 <- tmerge(base, tiedat, id=id, x1= tdc(time, x), x2=cumtdc(time, x), x3= event(time, x), x4 = cumevent(time, x)) all.equal(b3$x1, c(NA, 1, 0, NA, NA, 2,2, 4,4,4)) all.equal(b3$x2, c(NA, 1, 1, NA, NA, 2,2, 9,9,9)) all.equal(b3$x3, c(1,0,0,0,2,0,4,0,0,0)) all.equal(b3$x4, c(1,0,0,0,2,0,9,0,0,0)) # Multiple overlapping time windows in the first step. # Should generate an error message test <- tryCatch( {tmerge(pbcseq[, c("id", "trt", "age", "sex")], pbcseq, id, death = event(futime, status==2))}, error= function(cond) { if (grepl("duplicate identifiers", cond)) cat("successful tmerge error test\n") } ) survival/tests/survfit1.Rout.save0000644000176200001440000003623313547130050016667 0ustar liggesusers R Under development (unstable) (2019-09-07 r77160) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Check out the survfit routine on the simple AML data set. > # The leverage validation makes use of the fact that when all > # weights are 1 and there is 1 obs per subject, the IJ variance is > # equal to the Greenwood. > # There are 8 choices in the C code: Nelson-Aalen or Fleming-Harrington > # estimate of cumulative hazard, KM or exp(cumhaz) estimate of survival, > # regular or robust variance. This tries to exercise them all. > > library(survival) > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) > > set.seed(1953) # used only to reorder the data > adata <- aml > adata$id <- sample(LETTERS, nrow(aml)) # labels are not in time or data order > adata <- adata[sample(1:nrow(aml), nrow(aml)),] # data is unordered > adata$wt <- sample((2:30)/10, nrow(aml)) # non-integer weights > > byhand <- function(time, status, weights, id) { + # for a single curve + utime <- sort(unique(time)) + ntime <- length(utime) + n <- length(time) + if (missing(weights)) weights <- rep(1.0, n) + if (missing(id)) id <- seq(along=time) + + uid <- sort(unique(id)) + nid <- length(uid) + id <- match(id, uid) # change it to 1:nid + + n.risk <- n.event <- surv <- cumhaz <- double(ntime) + KM <- 1; nelson <-0; + kvar <- 0; hvar<-0; + + U <- matrix(0, nid, 2) # the two robust influence estimates + V <- matrix(0, ntime, 4) # variances + usave <- array(0., dim=c(nid, 2, ntime)) + estimate <- matrix(0, ntime, 2) + + for (i in 1:ntime) { + atrisk <- (time >= utime[i]) + n.risk[i] <- sum(weights[atrisk]) + deaths <- (time==utime[i] & status==1) + n.event[i] <- sum(weights[deaths]) + + haz <- n.event[i]/n.risk[i] + dhaz <- (ifelse(deaths,1,0) - ifelse(atrisk, haz, 0))/n.risk[i] + U[,1] <- U[,1]*(1-haz) - KM*tapply(dhaz*weights, id, sum) + V[i,1] <- sum(U[,1]^2) + + U[,2] <- U[,2] + tapply(dhaz* weights, id, sum) #result in 'id' order + V[i,2] <- sum(U[,2]^2) + usave[,,i] <- U + + if (n.event[i] >0 ) { + KM <- KM*(1-haz) + nelson <- nelson + haz + kvar <- kvar + n.event[i]/(n.risk[i] * (n.risk[i] - n.event[i])) + hvar <- hvar + n.event[i]/(n.risk[i]^2) + } + + V[i,3] <- kvar # var of log(S) + V[i,4] <- hvar + estimate[i,] <- c(KM, nelson) + } + dimnames(usave) <- list(uid, c("KM", "chaz"), utime) + list(time=utime, n.risk=n.risk, n.event=n.event, estimate=estimate, + std = sqrt(V), influence=usave) + } > > # the byhand function can only handle one group at a time > true1a <- with(subset(adata, x=="Maintained"), byhand(time, status, id=id)) > true1b <- with(subset(adata, x!="Maintained"), byhand(time, status, id=id)) > > # The Greenwood and IJ estimates agree, except for a last point with > # variance of zero. These next few lines verify the byhand() function > aeq(true1a$std[,1], true1a$estimate[,1]*true1a$std[,3]) [1] TRUE > aeq(true1b$std[1:9,1], true1b$estimate[1:9,1]*true1b$std[1:9,3]) [1] TRUE > aeq(true1b$std[10,1], 0) # variance of zero for jackknife [1] TRUE > !is.finite(true1b$std[10,3]) # Inf for Greenwood [1] TRUE > temp <- with(subset(adata, x=="Maintained"), byhand(time, status, id=id, + weights=rep(3,11))) > aeq(temp$std[,1:2], true1a$std[,1:2]) # IJ estimates should be invariant [1] TRUE > > # fit1 uses the standard formulas: NA hazard, KM survival > fit1 <- survfit(Surv(time, status) ~ x, data=adata) > aeq(fit1$surv, c(true1a$estimate[,1], true1b$estimate[,1])) [1] TRUE > aeq(fit1$cumhaz, c(true1a$estimate[,2], true1b$estimate[,2])) [1] TRUE > aeq(fit1$std.err, c(true1a$std[,3], true1b$std[,3])) [1] TRUE > aeq(fit1$std.chaz, c(true1a$std[,4], true1b$std[,4])) [1] TRUE > aeq(fit1$n.risk, c(true1a$n.risk, true1b$n.risk)) [1] TRUE > aeq(fit1$n.event, c(true1a$n.event, true1b$n.event)) [1] TRUE > fit1$logse # logse should be TRUE [1] TRUE > > # fit2 will use the IJ method > fit2 <- survfit(Surv(time, status) ~ x, data=adata, id=id) > aeq(fit2$surv, c(true1a$estimate[,1], true1b$estimate[,1])) [1] TRUE > aeq(fit2$cumhaz, c(true1a$estimate[,2], true1b$estimate[,2])) [1] TRUE > aeq(fit2$std.err, c(true1a$std[,1], true1b$std[,1])) [1] TRUE > aeq(fit2$std.chaz, c(true1a$std[,2], true1b$std[,2])) [1] TRUE > aeq(fit2$n.risk, c(true1a$n.risk, true1b$n.risk)) [1] TRUE > aeq(fit2$n.event, c(true1a$n.event, true1b$n.event)) [1] TRUE > !fit2$logse # logse should be FALSE [1] TRUE > > # look at the leverage values > fit3 <- survfit(Surv(time, status) ~ x, data=adata, id=id, influence=3) > aeq(fit3$influence.surv[[1]], true1a$influence[,1,]) [1] TRUE > aeq(fit3$influence.surv[[2]], true1b$influence[,1,]) [1] TRUE > aeq(fit3$influence.chaz[[1]], true1a$influence[,2,]) [1] TRUE > aeq(fit3$influence.chaz[[2]], true1b$influence[,2,]) [1] TRUE > > # compute the influence by brute force > tdata <- subset(adata, x != "Maintained") > tdata <- tdata[order(tdata$id),] # easier to compare if it's in order > eps <- 1e-8 > imat1 <- imat2 <- matrix(0., 12, 10) > t1 <- survfit(Surv(time, status) ~x, data=tdata) > for (i in 1:12) { + wtemp <- rep(1.0, 12) + wtemp[i] <- 1 + eps + tfit <-survfit(Surv(time, status) ~x, data=tdata, weights=wtemp) + imat2[i,] <- (tfit$cumhaz - t1$cumhaz)/eps + imat1[i,] <- (tfit$surv - t1$surv)/eps + } > aeq(imat1, true1b$influence[,1,], tol= sqrt(eps)) [1] TRUE > aeq(imat2, true1b$influence[,2,], tol= sqrt(eps)) [1] TRUE > > # Repeat using the Nelson-Aalen hazard and exp(NA) for survival > fit1 <- survfit(Surv(time, status) ~ x, adata, stype=2) > aeq(fit1$surv, exp(-c(true1a$estimate[,2], true1b$estimate[,2]))) [1] TRUE > aeq(fit1$cumhaz, c(true1a$estimate[,2], true1b$estimate[,2])) [1] TRUE > aeq(fit1$std.err, c(true1a$std[,4], true1b$std[,4])) [1] TRUE > aeq(fit1$std.chaz, c(true1a$std[,4], true1b$std[,4])) [1] TRUE > aeq(fit1$n.risk, c(true1a$n.risk, true1b$n.risk)) [1] TRUE > > # Nelson-Aalen + exp() surv, along with IJ variance > fit2 <- survfit(Surv(time, status) ~ x, data=adata, id=id, stype=2, + influence=3) > aeq(fit2$surv, exp(-c(true1a$estimate[,2], true1b$estimate[,2]))) [1] TRUE > aeq(fit2$cumhaz, c(true1a$estimate[,2], true1b$estimate[,2])) [1] TRUE > aeq(fit2$std.err, c(true1a$std[,2], true1b$std[,2])) [1] TRUE > aeq(fit2$std.chaz, c(true1a$std[,2], true1b$std[,2])) [1] TRUE > aeq(fit2$n.risk, c(true1a$n.risk, true1b$n.risk)) [1] TRUE > aeq(fit2$influence.chaz[[1]], true1a$influence[,2,]) [1] TRUE > aeq(fit2$influence.chaz[[2]], true1b$influence[,2,]) [1] TRUE > aeq(fit2$influence.surv[[2]], -true1b$influence[,2,]%*% diag(fit2[2]$surv)) [1] TRUE > > # Cumulative hazard is the same for fit1 and fit2 > all.equal(fit2$influence.chaz, fit3$influence.chaz) [1] TRUE > > # Weighted fits > true2a <- with(subset(adata, x=="Maintained"), byhand(time, status, id=id, + weights= wt)) > true2b <- with(subset(adata, x!="Maintained"), byhand(time, status, id=id, + weights=wt)) > fit3 <- survfit(Surv(time, status) ~ x, data=adata, id=id, weights=wt, + influence=TRUE) > aeq(fit3$influence.surv[[1]], true2a$influence[,1,]) [1] TRUE > aeq(fit3$influence.surv[[2]], true2b$influence[,1,]) [1] TRUE > aeq(fit3$influence.chaz[[1]], true2a$influence[,2,]) [1] TRUE > aeq(fit3$influence.chaz[[2]], true2b$influence[,2,]) [1] TRUE > aeq(fit3$surv, c(true2a$estimate[,1], true2b$estimate[,1])) [1] TRUE > aeq(fit3$cumhaz, c(true2a$estimate[,2], true2b$estimate[,2])) [1] TRUE > aeq(fit3$std.err, c(true2a$std[,1], true2b$std[,1])) [1] TRUE > aeq(fit3$std.chaz, c(true2a$std[,2], true2b$std[,2])) [1] TRUE > aeq(fit3$n.risk, c(true2a$n.risk, true2b$n.risk)) [1] TRUE > aeq(fit3$n.event, c(true2a$n.event, true2b$n.event)) [1] TRUE > > # Different survival, same hazard > fit3b <- survfit(Surv(time, status) ~ x, data=adata, id=id, weights=wt, + influence=2, stype=2) > temp <- c("n", "time", "cumhaz", "std.chaz", "influence.chaz", "n.risk", + "n.event") > aeq(unclass(fit3b)[temp], unclass(fit3)[temp]) # unclass avoids [.survfit [1] TRUE > aeq(fit3b$surv, exp(-c(true2a$estimate[,2], true2b$estimate[,2]))) [1] TRUE > aeq(fit3b$std.err, fit3b$std.chaz) [1] TRUE > aeq(fit3b$logse, FALSE) [1] TRUE > aeq(fit3b$n.risk, c(true2a$n.risk, true2b$n.risk)) [1] TRUE > aeq(fit3b$n.event, c(true2a$n.event, true2b$n.event)) [1] TRUE > > # The grouped jackknife > group <- rep("", nrow(adata)) > temp <- table(adata$x) > group[adata$x == "Maintained"] <- rep(letters[1:4], length=temp[1]) > group[adata$x != "Maintained"] <- rep(letters[4:7], length=temp[2]) > adata$group <- group > fit4 <- survfit(Surv(time, status) ~ x, data=adata, id=id, weights=wt, + influence=TRUE, cluster=group) > g1 <- adata$group[match(rownames(true2a$influence[,1,]), adata$id)] > g2 <- adata$group[match(rownames(true2b$influence[,1,]), adata$id)] > aeq(fit4$influence.surv[[1]], rowsum(true2a$influence[,1,], g1)) [1] TRUE > aeq(fit4$influence.surv[[2]], rowsum(true2b$influence[,1,], g2)) [1] TRUE > aeq(fit4$influence.chaz[[1]], rowsum(true2a$influence[,2,], g1)) [1] TRUE > aeq(fit4$influence.chaz[[2]], rowsum(true2b$influence[,2,], g2)) [1] TRUE > > aeq(c(colSums(fit4$influence.surv[[1]]^2), colSums(fit4$influence.surv[[2]]^2)), + fit4$std.err^2) [1] TRUE > aeq(c(colSums(fit4$influence.chaz[[1]]^2), colSums(fit4$influence.chaz[[2]]^2)), + fit4$std.chaz^2) [1] TRUE > > # The Fleming-Harrington is a more complex formula. Start with weights of > # 1. > fit5 <- survfit(Surv(time, status) ~x, adata, ctype=2) > nrisk <- c(11,10,8,7, 5,4,2, 12, 11, 10, 9, 8, 6:1) > chaz <- c(cumsum(1/nrisk[1:7])[c(1:4,4, 5,6,6,7,7)], + cumsum(1/nrisk[8:18])[c(2,4,5,5,6:11)]) > aeq(fit5$cumhaz, chaz) [1] TRUE > aeq(fit5$std.chaz, sqrt(c(cumsum(1/nrisk[1:7]^2)[c(1:4,4, 5,6,6,7,7)], + cumsum(1/nrisk[8:18]^2)[c(2,4,5,5,6:11)]))) [1] TRUE > > # We can compute the FH using a fake data set where each tie is spread out > # over a set of fake times. > # > fh <- function(time, status, weights, id) { + counts <- table(time, status) + utime <- sort(unique(time)) + tied <- counts[,2] > 1 + + if (missing(weights)) weights <- rep(1.0, length(time)) + if (missing(id)) id <- 1:length(time) + + # build the expanded data set + delta <- min(diff(utime))/(2*max(counts[,2])) + efun <- function(x) { + who <- which(time==x & status==1) + ntie <- length(who) + data.frame(time = rep(x - (1:ntie -1)*delta, each=ntie), + id = rep(id[who], ntie), + status = rep(1, ntie^2), + weight = rep(weights[who]/ntie, ntie), + stringsAsFactors=FALSE + ) + } + + temp <- do.call(rbind, lapply(utime[tied], efun)) + notie <- (status==0 | !(time %in% utime[tied])) + + bfit <- byhand(time = c(time[notie], temp$time), + status = c(status[notie], temp$status), + id = c(id[notie], temp$id), + weights = c(weights[notie], temp$weight) + ) + keep <- match(utime, bfit$time) # the real time points + + list(time=bfit$time[keep], + n.risk=bfit$n.risk[keep - pmax(0, counts[,2]-1)], + n.event = bfit$n.event[keep]* counts[,2], + estimate=bfit$estimate[keep,], + std = bfit$std[keep,], influence=bfit$influence[,,keep]) + } > > # Case weights > true6a <- with(subset(adata, x=="Maintained"), fh(time, status, wt, id)) > true6b <- with(subset(adata, x!="Maintained"), fh(time, status, wt, id)) > > fit6 <- survfit(Surv(time, status) ~ x, weight=wt, data=adata, stype=2, ctype=2) > aeq(fit6$cumhaz, c(true6a$estimate[,2], true6b$estimate[,2])) [1] TRUE > aeq(fit6$surv, exp(-c(true6a$estimate[,2], true6b$estimate[,2]))) [1] TRUE > aeq(fit6$std.chaz, c(true6a$std[,4], true6b$std[,4])) [1] TRUE > aeq(fit6$n.risk, c(true6a$n.risk, true6b$n.risk)) [1] TRUE > aeq(fit6$n.event, c(true6a$n.event, true6b$n.event)) [1] TRUE > > # Robust variance > fit7 <- survfit(Surv(time, status) ~ x, weight=wt, data=adata, stype=2,ctype=2, + id=id, influence=2) > aeq(fit7$cumhaz, c(true6a$estimate[,2], true6b$estimate[,2])) [1] TRUE > aeq(fit7$surv, exp(-c(true6a$estimate[,2], true6b$estimate[,2]))) [1] TRUE > aeq(fit7$std.chaz, c(true6a$std[,2], true6b$std[,2])) [1] TRUE > aeq(fit7$n.risk, c(true6a$n.risk, true6b$n.risk)) [1] TRUE > aeq(fit7$n.event, c(true6a$n.event, true6b$n.event)) [1] TRUE > aeq(fit7$influence.chaz[[1]], true6a$influence[,2,]) [1] TRUE > aeq(fit7$influence.chaz[[2]], true6b$influence[,2,]) [1] TRUE > > # compute the influence by brute force > tdata <- subset(adata, x != "Maintained") > tdata <- tdata[order(tdata$id),] > eps <- 1e-8 > imat <- matrix(0., 12, 10) > t1 <- survfit(Surv(time, status) ~x, data=tdata, ctype=2, weights=wt) > for (i in 1:12) { + wtemp <- tdata$wt + wtemp[i] <- wtemp[i] + eps + tfit <-survfit(Surv(time, status) ~x, data=tdata, ctype=2, + weights=wtemp) + imat[i,] <- tdata$wt[i] * (tfit$cumhaz - t1$cumhaz)/eps + } > aeq(fit7$influence.chaz[[2]], imat, tol=sqrt(eps)) [1] TRUE > > # > # verify that the times and scale arguments work as expected. They > # are in the summary and print.survfit functions. > # > s1 <- summary(fit1, scale=1) > s2 <- summary(fit1, scale=2) > aeq(s1$time/2, s2$time) #times change [1] TRUE > aeq(s1$surv, s2$surv) [1] TRUE > tscale <- rep(c(1,1,1,1, 2,2,2,2,2), each=2) > aeq(s1$table, s2$table *tscale) [1] TRUE > > s3 <- summary(fit1, scale=1, times=c(9, 18, 23, 33, 34)) > s4 <- summary(fit1, scale=2, times=c(9, 18, 23, 33, 34)) > aeq(s3$time, s4$time*2) [1] TRUE > aeq(s3$surv, s4$surv) [1] TRUE > > print(fit1, rmean='common') Call: survfit(formula = Surv(time, status) ~ x, data = adata, stype = 2) n events *rmean *se(rmean) median 0.95LCL 0.95UCL x=Maintained 11 7 46.1 14.08 34 23 NA x=Nonmaintained 12 11 27.1 6.64 27 8 NA * restricted mean with upper limit = 103 > print(fit1, rmean='common', scale=2) Call: survfit(formula = Surv(time, status) ~ x, data = adata, stype = 2) n events *rmean *se(rmean) median 0.95LCL 0.95UCL x=Maintained 11 7 23.1 7.04 17.0 11.5 NA x=Nonmaintained 12 11 13.5 3.32 13.5 4.0 NA * restricted mean with upper limit = 51.5 > > proc.time() user system elapsed 0.870 0.059 0.923 survival/tests/yates1.R0000644000176200001440000000767013537676563014657 0ustar liggesuserslibrary(survival) aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) fit1 <- lm(skips ~ Opening + Solder + Mask + PadType + Panel, data=solder) y1 <- yates(fit1, "Opening") temp <- levels(solder$Opening) tpred <- matrix(0., nrow(solder), 3) for (i in 1:3) { tdata <- solder tdata$Opening <- temp[i] tpred[,i] <- predict(fit1, newdata=tdata) } all.equal(y1$estimate[,"pmm"], colMeans(tpred)) # This fit is deficient: there are no Opening=L and Mask=A6 obs # The MPV for Mask=A6 and Opening L will therefore be NA, as well # as for all levels of Solder, but we can compute the others. # Solder will be NA for all levels fit2 <- lm(skips ~ Opening*Mask + Solder, data=solder) y2a <- yates(fit2, "Mask", population="factorial") y2b <- yates(fit2, "Opening", population="factorial") y2c <- yates(fit2, "Solder", population="factorial") # The predict.lm function gives correct predictions for estimable # functions (all but L,A6) and nonsense for others. It knows that # some are not estimable due to the NA coefficients, but not which ones, # so always prints a warning. Hence the suppressWarnings call. tdata <- do.call(expand.grid, fit2$xlevels[1:3]) temp <- levels(solder$Mask) tpreda <- matrix(0., nrow(tdata), length(temp), dimnames=list(NULL, temp)) for (i in seq(along=temp)) { tdata$Mask <- temp[i] suppressWarnings(tpreda[,i] <- predict(fit2, newdata=tdata)) } tpreda[,"A6"] <- NA # the A6 estimate is deficient aeq(y2a$estimate[,"pmm"], colMeans(tpreda)) tdata <- do.call(expand.grid, fit2$xlevels[1:3]) temp <- levels(solder$Opening) tpredb <- matrix(0., nrow(tdata), length(temp), dimnames=list(NULL, temp)) for (i in seq(along=temp)) { tdata$Opening <- temp[i] suppressWarnings(tpredb[,i] <- predict(fit2, newdata=tdata)) } tpredb[,"L"] <- NA aeq(y2b$estimate[,"pmm"], colMeans(tpredb)) # Solder should be all NA all(is.na(y2c$estimate[,"pmm"])) # Tests for Solder are defined for a non-factorial population, however. # the [] below retains the factor structure of the variable, where the # runs above did not. R gets prediction correct both ways. y2d <- yates(fit2, ~Solder) temp <- levels(solder$Solder) tdata <- solder tpredd <- matrix(0, nrow(tdata), length(temp), dimnames=list(NULL, temp)) for (i in seq(along=temp)) { tdata$Solder[] <- temp[i] suppressWarnings(tpredd[,i] <- predict(fit2, newdata=tdata)) } aeq(y2d$estimate$pmm, colMeans(tpredd)) # # Verify that the result is unchanged by how dummies are coded # The coefs move all over the map, but predictions are unchanged fit3 <- lm(skips ~ C(Opening, contr.helmert)*Mask + C(Solder, contr.SAS), data=solder) y3a <- yates(fit3, ~Mask, population='yates') equal <- c("estimate", "test", "mvar") all.equal(y3a[equal], y2a[equal]) tdata <- do.call(expand.grid, fit2$xlevels[1:3]) # use orignal variable names temp <- levels(solder$Mask) cpred <- matrix(0., nrow(tdata), length(temp), dimnames=list(NULL, temp)) for (i in seq(along=temp)) { tdata$Mask <- temp[i] suppressWarnings(cpred[,i] <- predict(fit3, newdata=tdata)) } aeq(cpred[, temp!="A6"], tpreda[, temp!= "A6"]) # same predictions all.equal(y3a$estimate, y2a$estimate) y3b <- yates(fit3, ~Opening, population='yates') # column names will differ all.equal(y3b$estimate, y2b$estimate, check.attributes=FALSE) y3d <- yates(fit3, ~Solder) for (i in 1:3) { print(all.equal(y3d[[i]], y2d[[i]], check.attributes=FALSE)) } # Reprise this with a character variable in the model sdata <- solder sdata$Mask <- as.character(sdata$Mask) fit4 <- lm(skips ~ Opening*Mask + Solder, data=sdata) y4a <- yates(fit4, ~ Mask, population= "yates") y4b <- yates(fit4, ~ Opening, population= "yates") y4d <- yates(fit4, ~ Solder) equal <- c("estimate", "tests", "mvar", "cmat") all.equal(y2a[equal], y4a[equal]) # the "call" component differs all.equal(y2b[equal], y4b[equal]) all.equal(y2d[equal], y4d[equal]) survival/tests/doweight.R0000644000176200001440000001755513537676563015266 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # Tests of the weighted Cox model # # Similar data set to test1, but add weights, # a double-death/censor tied time # a censored last subject # The latter two are cases covered only feebly elsewhere. # # The data set testw2 has the same data, but done via replication # aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), status= c(1,0,1,1,1,0,0,1,0), x= c(2,0,1,1,0,1,0,1,0), wt = c(1,2,3,4,3,2,1,2,1)) xx <- c(1,2,3,4,3,2,1,2,1) testw2 <- data.frame(time= rep(c(1,1,2,2,2,2,3,4,5), xx), status= rep(c(1,0,1,1,1,0,0,1,0), xx), x= rep(c(2,0,1,1,0,1,0,1,0), xx), id= rep(1:9, xx)) indx <- match(1:9, testw2$id) testw2 <- data.frame(time= rep(c(1,1,2,2,2,2,3,4,5), xx), status= rep(c(1,0,1,1,1,0,0,1,0), xx), x= rep(c(2,0,1,1,0,1,0,1,0), xx), id= rep(1:9, xx)) indx <- match(1:9, testw2$id) fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow', iter=0) fit0b <- coxph(Surv(time, status) ~x, testw2, ties='breslow', iter=0) fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, ties='breslow') fitb <- coxph(Surv(time, status) ~x, testw2, ties='breslow') texp <- function(beta) { # expected, Breslow estimate r <- exp(beta) temp <- cumsum(c(1/(r^2 + 11*r +7), 10/(11*r +5), 2/(2*r+1))) c(r^2, 1,r,r,1,r,1,r,1)* temp[c(1,1,2,2,2,2,2,3,3)] } aeq(texp(0), c(1/19, 1/19, rep(103/152, 5), rep(613/456,2))) #verify texp() xbar <- function(beta) { # xbar, Breslow estimate r <- exp(beta) temp <- r* rep(c(2*r + 11, 11/10, 1), c(2, 5, 2)) temp * texp(beta) } fit0 summary(fit) aeq(resid(fit0), testw1$status - texp(0)) resid(fit0, type='score') resid(fit0, type='scho') aeq(resid(fit0, type='mart'), (resid(fit0b, type='mart'))[indx]) aeq(resid(fit0, type='scor'), (resid(fit0b, type='scor'))[indx]) aeq(unique(resid(fit0, type='scho')), unique(resid(fit0b, type='scho'))) aeq(resid(fit, type='mart'), testw1$status - texp(fit$coef)) resid(fit, type='score') resid(fit, type='scho') aeq(resid(fit, type='mart'), (resid(fitb, type='mart'))[indx]) aeq(resid(fit, type='scor'), (resid(fitb, type='scor'))[indx]) aeq(unique(resid(fit, type='scho')), unique(resid(fitb, type='scho'))) rr1 <- resid(fit, type='mart') rr2 <- resid(fit, type='mart', weighted=T) aeq(rr2/rr1, testw1$wt) rr1 <- resid(fit, type='score') rr2 <- resid(fit, type='score', weighted=T) aeq(rr2/rr1, testw1$wt) fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, ties='efron') fit resid(fit, type='mart') resid(fit, type='score') resid(fit, type='scho') # Tests of the weighted Cox model, AG form of the data # Same solution as doweight1.s # testw3 <- data.frame(id = c( 1, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 8, 8, 9), begin= c( 0, 5, 0, 0,10,15, 0, 0,14, 0, 0, 0,23, 0), time= c( 5,10,10,10,15,20,20,14,20,20,30,23,40,50), status= c( 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0), x= c( 2, 2, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0), wt = c( 1, 1, 2, 3, 3, 3, 4, 3, 3, 2, 1, 2, 2, 1)) fit0 <- coxph(Surv(begin,time, status) ~x, testw3, weights=wt, ties='breslow', iter=0) fit <- coxph(Surv(begin,time, status) ~x, testw3, weights=wt, ties='breslow') fit0 summary(fit) resid(fit0, type='mart', collapse=testw3$id) resid(fit0, type='score', collapse=testw3$id) resid(fit0, type='scho') resid(fit, type='mart', collapse=testw3$id) resid(fit, type='score', collapse=testw3$id) resid(fit, type='scho') fit0 <- coxph(Surv(begin, time, status) ~x,testw3, weights=wt, iter=0) resid(fit0, 'mart', collapse=testw3$id) resid(coxph(Surv(begin, time, status) ~1, testw3, weights=wt) , collapse=testw3$id) #Null model fit <- coxph(Surv(begin,time, status) ~x, testw3, weights=wt, ties='efron') fit resid(fit, type='mart', collapse=testw3$id) resid(fit, type='score', collapse=testw3$id) resid(fit, type='scho') # # Check out the impact of weights on the dfbetas # Am I computing them correctly? # wtemp <- rep(1,26) wtemp[c(5,10,15)] <- 2:4 fit <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp) rr <- resid(fit, 'dfbeta') fit1 <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp, subset=(-5)) fit2 <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp, subset=(-10)) fit3 <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp, subset=(-15)) # # Effect of case weights on expected survival curves post Cox model # fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, ties='breslow', iter=0) fit0b <- coxph(Surv(time, status) ~x, testw2, ties='breslow', iter=0) surv1 <- survfit(fit0, newdata=list(x=0)) surv2 <- survfit(fit0b, newdata=list(x=0)) aeq(surv1$surv, surv2$surv) # # Check out the Efron approx. # fit0 <- coxph(Surv(time, status) ~x,testw1, weights=wt, iter=0) fit <- coxph(Surv(time, status) ~x,testw1, weights=wt) resid(fit0, 'mart') resid(coxph(Surv(time, status) ~1, testw1, weights=wt)) #Null model # lfun is the known log-likelihood for this data set, worked out in the # appendix of Therneau and Grambsch # ufun is the score vector and ifun the information matrix lfun <- function(beta) { r <- exp(beta) a <- 7*r +3 b <- 4*r +2 11*beta - ( log(r^2 + 11*r +7) + (10/3)*(log(a+b) + log(2*a/3 +b) + log(a/3 +b)) + 2*log(2*r +1)) } aeq(fit0$log[1], lfun(0)) aeq(fit$log[2], lfun(fit$coef)) ufun <- function(beta, efron=T) { #score statistic r <- exp(beta) xbar1 <- (2*r^2+11*r)/(r^2+11*r +7) xbar2 <- 11*r/(11*r +5) xbar3 <- 2*r/(2*r +1) xbar2b<- 26*r/(26*r+12) xbar2c<- 19*r/(19*r + 9) temp <- 11 - (xbar1 + 2*xbar3) if (efron) temp - (10/3)*(xbar2 + xbar2b + xbar2c) else temp - 10*xbar2 } print(ufun(fit$coef) < 1e-4) # Should be true ifun <- function(beta, efron=T) { # information matrix r <- exp(beta) xbar1 <- (2*r^2+11*r)/(r^2+11*r +7) xbar2 <- 11*r/(11*r +5) xbar3 <- 2*r/(2*r +1) xbar2b<- 26*r/(26*r+12) xbar2c<- 19*r/(19*r + 9) temp <- ((4*r^2 + 11*r)/(r^2+11*r +7) - xbar1^2) + 2*(xbar3 - xbar3^2) if (efron) temp + (10/3)*((xbar2- xbar2^2) + (xbar2b - xbar2b^2) + (xbar2c -xbar2c^2)) else temp + 10 * (xbar2- xbar2^2) } aeq(fit0$var, 1/ifun(0)) aeq(fit$var, 1/ifun(fit$coef)) # Make sure that the weights pass through the residuals correctly rr1 <- resid(fit, type='mart') rr2 <- resid(fit, type='mart', weighted=T) aeq(rr2/rr1, testw1$wt) rr1 <- resid(fit, type='score') rr2 <- resid(fit, type='score', weighted=T) aeq(rr2/rr1, testw1$wt) # # Look at the individual components # dt0 <- coxph.detail(fit0) dt <- coxph.detail(fit) aeq(sum(dt$score), ufun(fit$coef)) #score statistic aeq(sum(dt0$score), ufun(0)) aeq(dt0$hazard, c(1/19, (10/3)*(1/16 + 1/(6+20/3) + 1/(6+10/3)), 2/3)) rm(fit, fit0, rr1, rr2, dt, dt0) # # Effect of weights on the robust variance # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0), wt= c(3,0,1,1,1,1,1), id= 1:7) testx <- data.frame(time= c(4,4,4,1,1,2,2,3), status=c(1,1,1,1,0,1,1,0), x= c(0,0,0,1,1,1,0,0), wt= c(1,1,1,1,1,1,1,1), id= 1:8) fit1 <- coxph(Surv(time, status) ~x, cluster=id, test1, ties='breslow', weights=wt) fit2 <- coxph(Surv(time, status) ~x, cluster=id, testx, ties='breslow') db1 <- resid(fit1, 'dfbeta', weighted=F) db1 <- db1[-2] #toss the missing db2 <- resid(fit2, 'dfbeta') aeq(db1, db2[3:8]) W <- c(3,1,1,1,1,1) #Weights, after removal of the missing value aeq(fit2$var, sum(db1*db1*W)) aeq(fit1$var, sum(db1*db1*W*W)) survival/tests/survfit2.R0000644000176200001440000000070613537676603015221 0ustar liggesuserslibrary(survival) # # Check out the Dory&Korn confidence interval option # tdata <- data.frame(time= 1:10, status=c(1,0,1,0,1,0,0,0,1,0)) fit1 <- survfit(Surv(time, status) ~1, tdata, conf.lower='modified') fit2 <- survfit(Surv(time, status) ~1, tdata) stdlow <- fit2$std.err * sqrt(c(1, 10/9, 1, 8/7, 1, 6/5, 6/4, 6/3, 1, 2/1)) lower <- exp(log(fit2$surv) - qnorm(.975)*stdlow) all.equal(fit1$lower, lower, check.attributes=FALSE) survival/tests/factor.R0000644000176200001440000000203313537676563014713 0ustar liggesusers# # Ensure that factors work in prediction # library(survival) options(na.action="na.exclude") # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) tfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog), lung) p1 <- predict(tfit, type='risk') # Testing NA handling is important too keep <- (is.na(lung$ph.ecog) | lung$ph.ecog !=1) lung2 <- lung[keep,] p2 <- predict(tfit, type='risk', newdata=lung[keep,]) aeq(p1[keep], p2) # Same, for survreg tfit <- survreg(Surv(time, status) ~ age + factor(ph.ecog), lung) p1 <- predict(tfit, type='response') p2 <- predict(tfit, type='response', newdata=lung2) aeq(p1[keep], p2) # Now repeat it tossing the missings options(na.action=na.omit) keep2 <- (lung$ph.ecog[!is.na(lung$ph.ecog)] !=1) tfit2 <- survreg(Surv(time, status) ~ age + factor(ph.ecog), lung) p3 <- predict(tfit2, type='response') p4 <- predict(tfit2, type='response', newdata=lung2, na.action=na.omit) aeq(p3[keep2] , p4) survival/tests/tmerge3.Rout.save0000644000176200001440000000540213537676603016466 0ustar liggesusers R Under development (unstable) (2019-08-23 r77061) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Understanding edge cases > library(survival) > > # > # this is from a user report of a problem with cumevents. When there is > # a row merged in that is a censor, don't mark it as a cumevent. > # > base <- data.frame( + id = 1:2, tstart = c(0, 0), tstop = c(10, 10), got_flue = c(0, 0), + has_flue = factor(c("no", "no"), levels = c("no", "yes"))) > base <- tmerge(base, base, id = id, got_flue = event(tstop, got_flue)) > > # add time-varying covariates > vars <- data.frame(id = c(1, rep(2, 5)), time = c(0, (0:4) * 2), x = rnorm(6)) > base <- tmerge(base, vars, id = id, x = tdc(time, x)) > > # add cumevents, using a covariate > events <- data.frame( + id = c(2, 2, 2), + # notice the zero -- the second row should not add an event + got_flue = c(1,0,2), + has_flue = c("yes", "no", "yes"), + time = c(3, 5, 8)) > b2 <- tmerge(base, events, id = id, got_flue = cumevent(time, got_flue), + has_flue = tdc(time, has_flue)) > > all.equal(b2$got_flue, c(0,0,1,0,0,0,3,0)) [1] TRUE > > > # Tied times in the merger data set > # for all of them missings are essentially ignored > # last obs wins for tdc and event > tiedat <- data.frame(id=c(1, 1, 1, 2,2,2), time=c(3,4, 4, 3, 5, 5), + x=c(1, NA,0, 2,3,4)) > b3 <- tmerge(base, tiedat, id=id, x1= tdc(time, x), x2=cumtdc(time, x), + x3= event(time, x), x4 = cumevent(time, x)) > all.equal(b3$x1, c(NA, 1, 0, NA, NA, 2,2, 4,4,4)) [1] TRUE > all.equal(b3$x2, c(NA, 1, 1, NA, NA, 2,2, 9,9,9)) [1] TRUE > all.equal(b3$x3, c(1,0,0,0,2,0,4,0,0,0)) [1] TRUE > all.equal(b3$x4, c(1,0,0,0,2,0,9,0,0,0)) [1] TRUE > > # Multiple overlapping time windows in the first step. > # Should generate an error message > test <- tryCatch( + {tmerge(pbcseq[, c("id", "trt", "age", "sex")], pbcseq, id, + death = event(futime, status==2))}, + error= function(cond) { + if (grepl("duplicate identifiers", cond)) + cat("successful tmerge error test\n") + } + ) successful tmerge error test > > > > proc.time() user system elapsed 0.702 0.051 0.747 survival/tests/ratetable.R0000644000176200001440000000350013537676563015400 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Generate each of the messages from is.ratetable # mdy.date <- function(m, d, y) { y <- ifelse(y<100, y+1900, y) as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") } temp <- runif(21*2*4) # Good attributes(temp) <- list(dim=c(21,2,4), dimnames=list(c(as.character(75:95)), c("male","female"), c(as.character(2000:2003))), dimid=c("age","sex","year"), type=c(2,1,4), cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(0:3)*366.25), class='ratetable') is.ratetable(temp) # Factor problem + cutpoints length attributes(temp) <- list(dim=c(21,2,4), dimnames=list(c(as.character(75:95)), c("male","female"), c(as.character(2000:2003))), dimid=c("age","sex","year"), type=c(1,1,2), cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(0:4)*366.25), class='ratetable') is.ratetable(temp, verbose=T) # missing dimid attribute + unsorted cutpoint attributes(temp) <- list(dim=c(21,2,4), dimnames=list(c(as.character(75:95)), c("male","female"), c(as.character(2000:2003))), type=c(2,1,3), cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(4:1)*366.25), class='ratetable') is.ratetable(temp, verbose=T) # wrong length for dimid and type, illegal type attributes(temp) <- list(dim=c(21,2,4), dimnames=list(c(as.character(75:95)), c("male","female"), c(as.character(2000:2003))), dimid=c("age","sex","year", "zed"), type=c(2,1,3,6), cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(0:3)*366.25), class='ratetable') is.ratetable(temp, verbose=T) # Print and summary print(survexp.us[1:20,,c('1953', '1985')] ) summary(survexp.usr) survival/tests/turnbull.Rout.save0000644000176200001440000001724313537676563017002 0ustar liggesusers R version 2.7.1 (2008-06-23) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # The test data set from Turnbull, JASA 1974, 169-73. > # > # status 0=right censored > # 1=exact > # 2=left censored > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > > turnbull <- data.frame( time =c( 1,1,1, 2,2,2, 3,3,3, 4,4,4), + status=c( 1,0,2, 1,0,2, 1,0,2, 1,0,2), + n =c(12,3,2, 6,2,4, 2,0,2, 3,3,5)) > # > # Compute the K-M for the Turnbull data > # via a slow EM calculation > # > > emsurv <- function(time, status, wt, verbose=T) { + left.cen <- (status==2) + if (!any(left.cen)) stop("No left censored data!") + if (!any(status==1))stop("Must have some exact death times") + + tempy <- Surv(time[!left.cen], status[!left.cen]) + ww <- wt[!left.cen] + tempx <- factor(rep(1, sum(!left.cen))) + tfit <- survfit(tempy~tempx, weight=ww) + if (verbose) + cat("Iteration 0, survival=", format(round(tfit$surv[tfit$n.event>0],3)), + "\n") + + stimes <- tfit$time[tfit$n.event>0] + ltime <- time[left.cen] + lwt <- wt[left.cen] + tempx <- factor(rep(1, length(stimes) + sum(!left.cen))) + tempy <- Surv(c(time[!left.cen], stimes), + c(status[!left.cen], rep(1, length(stimes)))) + for (iter in 1:4) { + wt2 <- stimes*0 + ssurv <- tfit$surv[tfit$n.event>0] + sjump <- diff(c(1, ssurv)) + for (j in 1:(length(ltime))) { + k <- sum(ltime[j]>=stimes) #index of the death time + if (k==0) + stop("Left censored observation before the first death") + wt2[1:k] <- wt2[1:k] + lwt[j]*sjump[1:k] /(ssurv[k]-1) + } + tfit <- survfit(tempy~tempx, weight=c(ww, wt2)) + if (verbose) { + cat("Iteration", iter, "survival=", + format(round(tfit$surv[tfit$n.event>0],3)), "\n") + cat(" weights=", format(round(wt2,3)), "\n") + } + } + survfit(tempy ~ tempx, weights=c(ww, wt2)) + } > > temp <-emsurv(turnbull$time, turnbull$status, turnbull$n) Iteration 0, survival= 0.613 0.383 0.287 0.144 Iteration 1 survival= 0.549 0.303 0.214 0.094 weights= 7.856 3.477 0.828 0.839 Iteration 2 survival= 0.540 0.296 0.210 0.095 weights= 8.228 3.394 0.714 0.664 Iteration 3 survival= 0.538 0.295 0.210 0.095 weights= 8.315 3.356 0.690 0.638 Iteration 4 survival= 0.538 0.295 0.210 0.095 weights= 8.338 3.342 0.685 0.635 > print(summary(temp)) Call: survfit(formula = tempy ~ tempx, weights = c(ww, wt2)) time n.risk n.event survival std.err lower 95% CI upper 95% CI 1 44.00 20.34 0.5378 0.0752 0.4089 0.707 2 20.66 9.34 0.2946 0.0719 0.1827 0.475 3 9.32 2.68 0.2098 0.0673 0.1119 0.393 4 6.64 3.64 0.0948 0.0507 0.0333 0.270 > # First check, use the data from Turnbull, JASA 1974, 169-173. > > tdata <- data.frame(time =c(1,1,1,2,2,2,3,3,3,4,4,4), + status=rep(c(1,0,2),4), + n =c(12,3,2,6,2,4,2,0,2,3,3,5)) > > tfit <- survfit(Surv(time, time, status, type='interval') ~1, tdata, weight=n) > all.equal(round(tfit$surv,3), c(.538, .295, .210, .095)) [1] TRUE > > > # Second check, compare to a reversed survival curve > # This is not as simple a test as one might think, because left and right > # censored observations are not treated symmetrically by the routine: > # time <= y for left and time> y for right (this is to make the routine > # correct for the common situation of panel data). > # To get equivalence, make the left censoreds happen just a little bit > # earlier. The left-continuous/right-continuous shift is also a bother. > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > fit1 <- survfit(Surv(time, status) ~1, test1) > temp <- ifelse(test1$status==0, 4.99,5) - test1$time > fit2 <- survfit(Surv(temp, status, type='left') ~1, test1) > > all.equal(round(fit1$surv[1:2],5), round(1-fit2$surv[3:2],5)) [1] TRUE > > rm(tdata, tfit, fit1, temp, fit2) > # > # Create a data set similar to the one provided by Al Zinsmeister > # It is a hard test case for survfit.turnbull > # > time1 <- c(rep(0,100), rep(1,200), 100, 200, 210, 220, + rep(365,100), rep(366,5), 731:741) > > time2 <- c((1:100)*3, 10+1:100, rep(365:366, c(60,40)), NA, 500, NA, 450, + rep(730,90), rep(NA,10), c(528,571,691,730,731), + NA, 1095:1099, NA, 1400, 1200, 772, 1461) > > zfit <- survfit(Surv(time1, time2, type='interval2') ~1) > > # > # There are 100 intervals of the form (0,x) where x is from 3 to 300, > # and 200 more of the form (1,x) where x is from 11 to 366. These > # lead to a mass point in the interval (1,3), which is placed at 2. > # The starting estimate has far too little mass placed here, and it takes > # the EM a long time to realize that most of the weight for the first 300 > # subjects goes here. With acceleration, it takes 16 iterations, without > # it takes >40. (On Al's orginal data, without accel still wasn't there after > # 165 iters!) > # > # The next 4 obs give rise to potential jumps at 100.5, 200.5, 211.5, and > # 221. However, the final estimate has no mass at all on any of these. > # Assume mass of a,b, and c at 2, 100.5 and 365.5, and consider the > # contributions: > # 123 obs that overlap a only > # 137 obs that overlap a and b > # 40 obs that overlap a, b, c > # 1 obs that overlap b, c > # 108 obs that overlap c (200, 210,200, 365, and 366 starting points) > # For some trial values of a,b,c, compare the loglik to that of (a+b),0,c > # First one: a^123 (a+b)^137 (a+b+c)^40 (b+c) c^108 > # Second: (a+b)^123 (a+b)^137 (a+b+c)^40 c c^108 > # Likelhood improves if (1 + b/a)^123 > 1+ b/c, which is true for almost > # all a and c. In particular, at the solution a and c are approx .7 and > # .18, respectively. > # > # The program can't see this coming, of course, and so iterates towards a > # KM with epsilon sized jumps at 100.5, 200.5, and 211.5. Whether these > # intervals should be removed during iteration, as detected, is an open > # question for me. > # > # > # True solution: mass points at 2, 365.5, 408, and 756.5, of sizes a, b, c, d > # Likelihood: a^260 (a+b)^40 (b+c)^92 (b+c+d)^12 c^5 d^11 > # Solution: a=0.6958, b=0.1674, c=0.1079, d=0.0289 > > tfun <- function(x) { + if (length(x) ==3) x <- c(x, .03) + x <- x/sum(x) #make probabilities sum to 1 + loglik <- 260*log(x[1]) + 40*log(x[1]+x[2]) + 92*log(x[2] + x[3]) + + 12*log(x[2]+x[3]+x[4]) + 5*log(x[3]) + 11*log(x[4]) + -loglik #find the max, not the min + } > > nfit <- nlminb(start=c(.7,.15, .1), tfun, lower=0, upper=1) > nparm <- c(nfit$par, .03) > nparm <- nparm / sum(nparm) > zparm <- -diff(c(1, zfit$surv[match(c(2, 365.5, 408, 756.5), zfit$time)])) > aeq(round(tfun(nparm),4), round(tfun(zparm),4)) [1] TRUE > # .0001 is the tolerance in survfit.turnbull > > rm(tfun, nfit, nparm, zparm, time1, time2, zfit) > survival/tests/doaml.Rout.save0000644000176200001440000001713513537676603016222 0ustar liggesusers R Under development (unstable) (2019-05-15 r76504) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > # > # These results can be found in Miller > # > fit <- coxph(Surv(aml$time, aml$status) ~ aml$x, method='breslow') > fit Call: coxph(formula = Surv(aml$time, aml$status) ~ aml$x, method = "breslow") coef exp(coef) se(coef) z p aml$xNonmaintained 0.9042 2.4700 0.5122 1.765 0.0775 Likelihood ratio test=3.3 on 1 df, p=0.06945 n= 23, number of events= 18 > resid(fit, type='mart') 1 2 3 4 5 6 0.86225539 0.79200985 -0.20799015 0.74818869 0.65652976 -0.39796610 7 8 9 10 11 12 0.45424957 0.25475051 -1.05400917 -0.55400917 -1.55400917 0.87844483 13 14 15 16 17 18 0.87844483 0.74006941 0.74006941 0.57677292 -0.51373647 0.15162716 19 20 21 22 23 0.01702219 -0.14897252 -0.56448258 -1.15185244 -1.60340676 > resid(fit, type='score') 1 2 3 4 5 6 -0.546856248 -0.492501830 0.141063944 -0.479907930 -0.447416819 0.268453990 7 8 9 10 11 12 -0.235908976 -0.072655945 0.640826596 0.640826596 0.640826596 0.237767767 13 14 15 16 17 18 0.237767767 0.232585063 0.232585063 0.203878910 -0.165307985 0.044923326 19 20 21 22 23 0.007079721 -0.039651990 -0.181184547 -0.395076175 -0.472116894 > resid(fit, type='scho') 5 5 8 8 9 12 13 0.2706690 0.2706690 0.3081229 0.3081229 -0.6423931 0.3360212 -0.6335658 18 23 23 27 30 31 33 -0.6494307 -0.6791937 0.3208063 0.3269751 0.3360212 -0.5970995 0.3505693 34 43 45 48 -0.5525731 0.3778334 0.5484457 0.0000000 > > # Test the drop of an itercept: should have no effect > fit2 <- coxph(Surv(time, status) ~ x -1, method='breslow', + data=aml) > aeq(fit$loglik, fit2$loglik) [1] TRUE > aeq(coef(fit), coef(fit2)) [1] TRUE > aeq(fit$var, fit2$var) [1] TRUE > > fit <- survfit(Surv(aml$time, aml$status) ~ aml$x) > fit Call: survfit(formula = Surv(aml$time, aml$status) ~ aml$x) n events median 0.95LCL 0.95UCL aml$x=Maintained 11 7 31 18 NA aml$x=Nonmaintained 12 11 23 8 NA > summary(fit) Call: survfit(formula = Surv(aml$time, aml$status) ~ aml$x) aml$x=Maintained time n.risk n.event survival std.err lower 95% CI upper 95% CI 9 11 1 0.909 0.0867 0.7541 1.000 13 10 1 0.818 0.1163 0.6192 1.000 18 8 1 0.716 0.1397 0.4884 1.000 23 7 1 0.614 0.1526 0.3769 0.999 31 5 1 0.491 0.1642 0.2549 0.946 34 4 1 0.368 0.1627 0.1549 0.875 48 2 1 0.184 0.1535 0.0359 0.944 aml$x=Nonmaintained time n.risk n.event survival std.err lower 95% CI upper 95% CI 5 12 2 0.8333 0.1076 0.6470 1.000 8 10 2 0.6667 0.1361 0.4468 0.995 12 8 1 0.5833 0.1423 0.3616 0.941 23 6 1 0.4861 0.1481 0.2675 0.883 27 5 1 0.3889 0.1470 0.1854 0.816 30 4 1 0.2917 0.1387 0.1148 0.741 33 3 1 0.1944 0.1219 0.0569 0.664 43 2 1 0.0972 0.0919 0.0153 0.620 45 1 1 0.0000 NaN NA NA > survdiff(Surv(aml$time, aml$status)~ aml$x) Call: survdiff(formula = Surv(aml$time, aml$status) ~ aml$x) N Observed Expected (O-E)^2/E (O-E)^2/V aml$x=Maintained 11 7 10.69 1.27 3.4 aml$x=Nonmaintained 12 11 7.31 1.86 3.4 Chisq= 3.4 on 1 degrees of freedom, p= 0.07 > > # > # Test out the weighted K-M > # > # First, equal case weights- shouldn't change the survival, but will > # halve the variance > temp2 <-survfit(Surv(aml$time, aml$status)~1, weight=rep(2,23)) > temp <-survfit(Surv(time, status)~1, aml) > aeq(temp$surv, temp2$surv) [1] TRUE > aeq(temp$std.err^2, 2*temp2$std.err^2) [1] TRUE > > # Risk weights-- use a null Cox model > tfit <- coxph(Surv(aml$time, aml$status) ~ offset(log(1:23))) > sfit <- survfit(tfit, stype=2, ctype=1, censor=FALSE) > > # Now compute it by hand. The survfit program will produce a curve > # corresponding to the mean offset. > # Ties are a nuisance, the line above forced the Nelson rather than Efron > # to make it easier > rscore <- exp(log(1:23) - mean(log(1:23)))[order(aml$time)] > atime <- sort(aml$time) > denom <- rev(cumsum(rev(rscore))) > denom <- denom[match(unique(atime), atime)] > deaths <- tapply(aml$status, aml$time, sum) > chaz <- cumsum(deaths/denom) > all.equal(sfit$surv, as.vector(exp(-chaz[deaths>0]))) [1] TRUE > > # And the Efron result > summary(survfit(tfit)) Call: survfit(formula = tfit) time n.risk n.event survival std.err lower 95% CI upper 95% CI 5 23 2 0.932 0.0461 0.8463 1.000 8 21 2 0.863 0.0637 0.7467 0.997 9 19 1 0.827 0.0704 0.6999 0.977 12 18 1 0.793 0.0755 0.6576 0.955 13 17 1 0.757 0.0801 0.6152 0.931 18 14 1 0.719 0.0846 0.5709 0.905 23 13 2 0.645 0.0907 0.4893 0.849 27 11 1 0.607 0.0929 0.4496 0.819 30 9 1 0.565 0.0955 0.4054 0.787 31 8 1 0.519 0.0982 0.3579 0.752 33 7 1 0.474 0.0994 0.3140 0.715 34 6 1 0.423 0.1009 0.2649 0.675 43 5 1 0.373 0.1006 0.2198 0.633 45 4 1 0.312 0.1009 0.1657 0.588 48 2 1 0.199 0.1102 0.0674 0.589 > > # Lots of ties, so its a good test case > x1 <- coxph(Surv(time, status)~x, aml, method='efron') > x1 Call: coxph(formula = Surv(time, status) ~ x, data = aml, method = "efron") coef exp(coef) se(coef) z p xNonmaintained 0.9155 2.4981 0.5119 1.788 0.0737 Likelihood ratio test=3.38 on 1 df, p=0.06581 n= 23, number of events= 18 > x2 <- coxph(Surv(rep(0,23),time, status) ~x, aml, method='efron') > aeq(x1$coef, x2$coef) [1] TRUE > > > proc.time() user system elapsed 0.820 0.028 0.848 survival/tests/r_sas.R0000644000176200001440000002270413537676603014546 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Reproduce example 1 in the SAS lifereg documentation # # this fit doesn't give the same log-lik that they claim fit1 <- survreg(Surv(time, status) ~ I(1000/(273.2+temp)), imotor, subset=(temp>150), dist='lognormal') summary(fit1) # This one, with the loglik on the transformed scale (the inappropriate # scale, Ripley & Venables would argue) does agree. # All coefs are of course identical. fit2 <- survreg(Surv(log(time), status) ~ I(1000/(273.2+temp)), imotor, subset=(temp>150), dist='gaussian') # Give the quantile estimates, which is the lower half of "output 48.1.5" # in the SAS 9.2 manual pp1 <- predict(fit1, newdata=list(temp=c(130,150)), p=c(.1, .5, .9), type='quantile', se=T) pp2 <- predict(fit1, newdata=list(temp=c(130,150)), p=c(.1, .5, .9), type='uquantile', se=T) pp1 temp130 <- matrix(0, nrow=3, ncol=6) temp130[,1] <- pp1$fit[1,] temp130[,2] <- pp1$se.fit[1,] temp130[,3] <- pp2$fit[1,] temp130[,4] <- pp2$se.fit[1,] temp130[,5] <- exp(pp2$fit[1,] - 1.64*pp2$se.fit[1,]) temp130[,6] <- exp(pp2$fit[1,] + 1.64*pp2$se.fit[1,]) dimnames(temp130) <- list(c("p=.1", "p=.2", "p=.3"), c("Time", "se(time)", "log(time)", "se[log(time)]", "lower 90", "upper 90")) print(temp130) # A set of examples, copied from the manual pages of SAS procedure # "reliability", which is part of their QC product. # color <- c("black", "red", "green", "blue", "magenta", "red4", "orange", "DarkGreen", "cyan2", "DarkViolet") palette(color) pdf(file='reliability.pdf') # # Insulating fluids example # # Adding a -1 to the fit just causes the each group to have it's own # intercept, rather than a global intercept + constrasts. The strata # statement allows each to have a separate scale ffit <- survreg(Surv(time) ~ factor(voltage) + strata(voltage) -1, ifluid) # Get predicted quantiles at each of the voltages # By default predict() would give a line of results for each observation, # I only want the unique set of x's, i.e., only 4 cases uvolt <- sort(unique(ifluid$voltage)) #the unique levels plist <- c(1, 2, 5, 1:9 *10, 95, 99)/100 pred <- predict(ffit, type='quantile', p=plist, newdata=data.frame(voltage=uvolt)) tfun <- function(x) log(-log(1-x)) matplot(t(pred), tfun(plist), type='l', log='x', lty=1, col=1:4, yaxt='n', xlab="Predicted", ylab="Quantile") axis(2, tfun(plist), format(100*plist), adj=1) kfit <- survfit(Surv(time) ~ voltage, ifluid, type='fleming') #KM fit for (i in 1:4) { temp <- kfit[i] points(temp$time, tfun(1-temp$surv), col=i, pch=i) } # Now a table temp <- array(0, dim=c(4,4,4)) #4 groups by 4 parameters by 4 stats temp[,1,1] <- ffit$coef # "EV Location" in SAS manual temp[,2,1] <- ffit$scale # "EV scale" temp[,3,1] <- exp(ffit$coef) # "Weibull Scale" temp[,4,1] <- 1/ffit$scale # "Weibull Shape" temp[,1,2] <- sqrt(diag(ffit$var))[1:4] #standard error temp[,2,2] <- sqrt(diag(ffit$var))[5:8] * ffit$scale temp[,3,2] <- temp[,1,2] * temp[,3,1] temp[,4,2] <- temp[,2,2] / (temp[,2,1])^2 temp[,1,3] <- temp[,1,1] - 1.96*temp[,1,2] #lower conf limits temp[,1,4] <- temp[,1,1] + 1.96*temp[,1,2] # upper # log(scale) is the natural parameter, in which the routine did its fitting # and on which the std errors were computed temp[,2, 3] <- exp(log(ffit$scale) - 1.96*sqrt(diag(ffit$var))[5:8]) temp[,2, 4] <- exp(log(ffit$scale) + 1.96*sqrt(diag(ffit$var))[5:8]) temp[,3, 3:4] <- exp(temp[,1,3:4]) temp[,4, 3:4] <- 1/temp[,2,4:3] dimnames(temp) <- list(uvolt, c("EV Location", "EV Scale", "Weibull scale", "Weibull shape"), c("Estimate", "SE", "lower 95% CI", "uppper 95% CI")) print(aperm(temp, c(2,3,1)), digits=5) rm(temp, uvolt, plist, pred, ffit, kfit) ##################################################################### # Turbine cracks data crack2 <- with(cracks, data.frame(day1=c(NA, days), day2=c(days, NA), n=c(fail, 167-sum(fail)))) cfit <- survreg(Surv(day1, day2, type='interval2') ~1, dist='weibull', data=crack2, weight=n) summary(cfit) #Their output also has Wiebull scale = exp(cfit$coef), shape = 1/(cfit$scale) # Draw the SAS plot # The "type=fleming" argument reflects that they estimate hazards rather than # survival, and forces a Nelson-Aalen hazard estimate # plist <- c(1, 2, 5, 1:8 *10)/100 plot(qsurvreg(plist, cfit$coef, cfit$scale), tfun(plist), log='x', yaxt='n', type='l', xlab="Weibull Plot for Time", ylab="Percent") axis(2, tfun(plist), format(100*plist), adj=1) kfit <- survfit(Surv(day1, day2, type='interval2') ~1, data=crack2, weight=n, type='fleming') # Only plot point where n.event > 0 # Why? I'm trying to match them. Personally, all should be plotted. who <- (kfit$n.event > 0) points(kfit$time[who], tfun(1-kfit$surv[who]), pch='+') points(kfit$time[who], tfun(1-kfit$upper[who]), pch='-') points(kfit$time[who], tfun(1-kfit$lower[who]), pch='-') text(rep(3,6), seq(.5, -1.0, length=6), c("Scale", "Shape", "Right Censored", "Left Censored", "Interval Censored", "Fit"), adj=0) text(rep(9,6), seq(.5, -1.0, length=6), c(format(round(exp(cfit$coef), 2)), format(round(1/cfit$scale, 2)), format(tapply(crack2$n, cfit$y[,3], sum)), "ML"), adj=1) # Now a portion of his percentiles table # I don't get the same SE as SAS, I haven't checked out why. The # estimates and se for the underlying Weibull model are the same. temp <- predict(cfit, type='quantile', p=plist, se=T) tempse <- sqrt(temp$se[1,]) mat <- cbind(temp$fit[1,], tempse, temp$fit[1,] -1.96*tempse, temp$fit[1,] + 1.96*tempse) dimnames(mat) <- list(plist*100, c("Estimate", "SE", "Lower .95", "Upper .95")) print(mat) # # The cracks data has a particularly easy estimate, so use # it to double check code time <- c(crack2$day2[1], (crack2$day1 + crack2$day2)[2:8]/2, crack2$day1[9]) cdf <- cumsum(crack2$n)/sum(crack2$n) all.equal(kfit$time, time) all.equal(kfit$surv, 1-cdf[c(1:8,8)]) rm(time, cdf, kfit) ####################################################### # # Replacement of valve seats in diesel engines # The input data has id, time, and an indicator of whether there was an # event at that time: 0=no, 1=yes. No one has an event at their last time. # The input data has two engines with dual failures: 328 loses 2 valves at # time 653, and number 402 loses 2 at time 139. For each, fudge the first # time to be .1 days earlier. # ties <- which(diff(valveSeat$time)==0 & diff(valveSeat$id)==0) temp <- valveSeat$time temp[ties] <- temp[ties] - .1 n <- length(temp) first <- !duplicated(valveSeat$id) vtemp <- with(valveSeat, data.frame(id =id, time1= ifelse(first, 0, c(0, temp[-n])), time2= temp, status=status)) kfit <- survfit(Surv(time1, time2, status) ~1, vtemp, id=id) plot(kfit, fun='cumhaz', ylab="Sample Mean Cumulative Failures", xlab='Time') title("Valve replacement data") # The summary.survfit function doesn't have an option for printing out # cumulative hazards instead of survival --- need to add that # so I just reprise the central code of print.summary.survfit xx <- summary(kfit) temp <- cbind(xx$time, xx$n.risk, xx$n.event, -log(xx$surv), xx$std.err/xx$surv, -log(xx$upper), -log(xx$lower)) dimnames(temp) <- list(rep("", nrow(temp)), c("time", "n.risk", "n.event", "Cum haz", "std.err", "lower 95%", "upper 95%")) print(temp, digits=2) # Note that I have the same estimates but different SE's. We are using a # different estimator. It's a statistical argument as to which is # better (one could defend both sides): do you favor JASA or Technometrics? rm(temp, kfit, xx) ###################################################### # Turbine data, lognormal fit turbine <- read.table('data.turbine', col.names=c("time1", "time2", "n")) tfit <- survreg(Surv(time1, time2, type='interval2') ~1, turbine, dist='lognormal', weights=n, subset=(n>0)) summary(tfit) # Now, do his plot, but put bootstrap confidence bands on it! # First, make a simple data set without weights tdata <- turbine[rep(1:nrow(turbine), turbine$n),] qstat <- function(data) { temp <- survreg(Surv(time1, time2, type='interval2') ~1, data=data, dist='lognormal') qsurvreg(plist, temp$coef, temp$scale, dist='lognormal') } {if (exists('bootstrap')) { set.seed(1953) # a good year :-) bfit <- bootstrap(tdata, qstat, B=1000) bci <- limits.bca(bfit, probs=c(.025, .975)) } else { values <- matrix(0, nrow=1000, ncol=length(plist)) n <- nrow(tdata) for (i in 1:1000) { subset <- sample(1:n, n, replace=T) values[i,] <- qstat(tdata[subset,]) } bci <- t(apply(values,2, quantile, c(.05, .95))) } } xmat <- cbind(qsurvreg(plist, tfit$coef, tfit$scale, dist='lognormal'), bci) matplot(xmat, qnorm(plist), type='l', lty=c(1,2,2), col=c(1,1,1), log='x', yaxt='n', ylab='Percent', xlab='Time of Cracking (Hours x 100)') axis(2, qnorm(plist), format(100*plist), adj=1) title("Turbine Data") kfit <- survfit(Surv(time1, time2, type='interval2') ~1, data=tdata) points(kfit$time, qnorm(1-kfit$surv), pch='+') dev.off() #close the plot file survival/tests/r_peterson.R0000644000176200001440000000270413537676563015622 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Data courtesy of Bercedis Peterson, Duke University. # v4 of survreg fails due to 2 groups that have only 1 subject; the coef # for them easily gets out of hand. In fact, this data set is my toughest # test of the minimizer. # # A shrinkage model for this coefficient is therefore interesting peterson <- data.frame( scan('data.peterson', what=list(grp=0, time=0, status=0))) fitp <- survreg(Surv(time, status) ~ factor(grp), peterson) summary(fitp) # Now a shrinkage model. Give the group coefficients # about 1/2 the scale parameter of the original model, i.e., .18. # ffit <- survreg(Surv(time, status) ~ frailty(grp, theta=.1), peterson) ffit # # Try 3 degrees of freedom, since there are 6 groups # compare them to the unconstrained ones. The frailty coefs are # on a "sum to constant" constraint rather than "first coef=0", so # some conversion is neccessary # ffit3 <- survreg(Surv(time, status) ~ frailty(grp, df=3), peterson) print(ffit3) temp <- mean(c(0, fitp$coef[-1])) - mean(ffit3$frail) temp2 <- c(fitp$coef[1] + temp, c(0,fitp$coef[-1]) - temp) xx <- rbind(c(nrow(peterson), table(peterson$grp)), temp2, c(ffit3$coef, ffit3$frail)) dimnames(xx) <- list(c("N", "factor", "frailty"), c("Intercept", paste("grp", 1:6))) signif(xx,3) rm(ffit, ffit3, temp, temp2, xx, fitp) survival/tests/testci.R0000644000176200001440000001076513537676603014736 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y),...) # # Test out the survfit.ci function, which does competing risk # estimates # Replaced by ordinary calls to survfit, with status a factor # # First trivial test tdata <- data.frame(time=c(1,2,2,3,3,3,5,6), status = c(0,1,0,1,0,1,0,1), event = c(1,1,2,2,1,2,3,2), grp = c(1,2,1,2,1,2,1,2)) fit <- survfit(Surv(time, status*event, type='mstate') ~1, tdata) byhand <- function() { #everyone starts in state 0 p1 <- c(1,0,0) p2 <- c(6/7, 1/7, 0) # 0-1 transition at time 2 u2 <- matrix(rep(c(1/49, -1/49, 0), each=8), ncol=3) #leverage matrix at time 2 u2[1,] <- 0 #subject 1 is not present u2[2,1:2] <- u2[2, 1:2] + c(-1/7, 1/7) p3 <- c((6/7)*(3/5), 1/7, 12/35) # 0-2 transition at time 3, 5 at risk h3 <- matrix(c(3/5, 0, 2/5, 0,1,0, 0,1,0), byrow=T, ncol=3) #hazard mat u3 <- u2 %*% h3 u3[4:8,1] <- u3[4:8,1] + p2[1]*2/25 u3[4:8,3] <- u3[4:8,3] -p2[1]*2/25 u3[4,] <- u3[4,] + c(-p2[1]/5, 0, p2[1]/5) u3[6,] <- u3[4,] p6 <- c(0, 1/7, 6/7) # 0-2 at time 6, 1 at risk h6 <- matrix(c(-1,0,1,0,1,0,0,1,0), byrow=T, ncol=3) u6 <- cbind(0, u3[,2], -u3[,2]) V <- rbind(0, colSums(u2^2), colSums(u3^2), colSums(u3^2), colSums(u6^2)) list(P=rbind(p1, p2, p3, p3, p6), u2=u2, u3=u3, u6=u6, V=V) } bfit <- byhand() aeq(fit$pstate, bfit$P) aeq(fit$n.risk[,1], c(8,7,5,2,1)) aeq(fit$n.event[,2:3], c(0,1,0,0,0, 0,0 ,2,0,1)) aeq(fit$std^2, bfit$V) # Times purposely has values that are before the start, exact, intermediate # and after the end of the observed times sfit <- summary(fit, times=c(0, 1, 3.5, 6, 7), extend=TRUE) aeq(sfit$pstate, rbind(c(1,0,0), bfit$P[c(1,3,5,5),])) aeq(sfit$n.risk[,1], c(8,8, 2, 1, 0)) aeq(sfit$n.event, matrix(c(0,0,0,0,0, 0,0,1,0,0, 0,0,2,1,0), ncol=3)) # # For this we need the competing risks MGUS data set, first # event # tdata <- mgus1[mgus1$enum==1,] # Ensure the old-style call using "etype" works (backwards compatability) fit1 <- survfit(Surv(stop, status) ~ 1, etype=event, tdata) fit1b <-survfit(Surv(stop, event) ~1, tdata) indx <- match("call", names(fit1)) all.equal(unclass(fit1)[-indx], unclass(fit1b)[-indx]) # Now get the overall survival, and the hazard for progression fit2 <- survfit(Surv(stop, status) ~1, tdata) #overall to "first bad thing" fit3 <- survfit(Surv(stop, status*(event=='pcm')) ~1, tdata, type='fleming') fit4 <- survfit(Surv(stop, status*(event=='death')) ~1, tdata, type='fleming') aeq(fit1$n.risk[,1], fit2$n.risk) aeq(rowSums(fit1$n.event), fit2$n.event) # Classic CI formula # integral [hazard(t) S(t-0) dt], where S= "survival to first event" haz1 <- diff(c(0, -log(fit3$surv))) #Aalen hazard estimate for progression haz2 <- diff(c(0, -log(fit4$surv))) #Aalen estimate for death tsurv <- c(1, fit2$surv[-length(fit2$surv)]) #lagged survival ci1 <- cumsum(haz1 *tsurv) ci2 <- cumsum(haz2 *tsurv) aeq(cbind(ci1, ci2), fit1$pstate[,2:3]) # # Now, make sure that it works for subgroups # fit1 <- survfit(Surv(stop, event) ~ sex, tdata) fit2 <- survfit(Surv(stop, event) ~ 1, tdata, subset=(sex=='female')) fit3 <- survfit(Surv(stop, event) ~ 1, tdata, subset=(sex=='male')) aeq(fit2$pstate, fit1$pstate[1:fit1$strata[1],]) aeq(fit2$std, fit1$std[1:fit1$strata[1],]) aeq(fit3$pstate, fit1$pstate[-(1:fit1$strata[1]),]) # A second test of cumulative incidence # compare results to Bob Gray's functions # The file gray1 is the result of # library(cmprsk) # tstat <- ifelse(tdata$status==0, 0, 1+ (tdata$event=='death')) # gray1 <- cuminc(tdata$stop, tstat) load("gray1.rda") fit2 <- survfit(Surv(stop, event) ~ 1, tdata) if (FALSE) { # lines of the two graphs should overlay plot(gray1[[1]]$time, gray1[[1]]$est, type='l', ylim=range(c(gray1[[1]]$est, gray1[[2]]$est)), xlab="Time") lines(gray1[[2]]$time, gray1[[2]]$est, lty=2) matlines(fit2$time, fit2$pstate, col=2, lty=1:2, type='s') } # To formally match these is a bit of a nuisance. # The cuminc function returns a full step function, and survfit only # the bottoms of the steps. temp1 <- tapply(gray1[[1]]$est, gray1[[1]]$time, max)[-1] #toss time 0 indx1 <- match(names(temp1), fit2$time) aeq(temp1, fit2$pstate[indx1,2]) survival/tests/r_stanford.R0000644000176200001440000000511613537676563015603 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # The Stanford data from 1980 is used in Escobar and Meeker, Biometrics 1992. # t5 = T5 mismatch score # Their case numbers correspond to a data set sorted by age # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) stanford2$t5 <- ifelse(stanford2$t5 <0, NA, stanford2$t5) stanford2 <- stanford2[order(stanford2$age, stanford2$time),] stanford2$time <- ifelse(stanford2$time==0, .5, stanford2$time) cage <- stanford2$age - mean(stanford2$age) fit1 <- survreg(Surv(time, status) ~ cage + I(cage^2), stanford2, dist='lognormal') fit1 ldcase <- resid(fit1, type='ldcase') ldresp <- resid(fit1, type='ldresp') # The ldcase and ldresp should be compared to table 1 in Escobar and # Meeker, Biometrics 1992, p519; the colums they label as (1/2) A_{ii} # They give data for selected cases, entered below as mdata mdata <- cbind(c(1,2,4,5,12,16,23,61,66,72,172,182,183,184), c(.035, .244, .141, .159, .194, .402, 0,0, .143, .403, .178, .033, .005, .015), c(.138, .145, .073, .076, .104, .159, 0,0, .109, .184, .116, .063, .103, .144)) dimnames(mdata) <- list(NULL, c("case#", "ldcase", "ldresp")) aeq(round(ldcase[mdata[,1]],3), mdata[,2]) aeq(round(ldresp[mdata[,1]],3), mdata[,3]) plot1 <- function() { # make their figure 1, 2, and 6 temp <- predict(fit1, type='quantile', p=c(.1, .5, .9)) plot(stanford2$age, stanford2$time, log='y', xlab="Age", ylab="Days", ylim=range(stanford2$time, temp)) matlines(stanford2$age, temp, lty=c(1,2,2), col=1) n <- length(ldcase) plot(1:n, ldcase, xlab="Case Number", ylab="(1/2) A", type='l') title (main="Case weight pertubations") plot(1:n, ldresp, xlab="Case Number", ylab="(1/2) A", ylim=c(0, .2), type='l') title(main="Response pertubations") indx <- which(ldresp > .07) text(indx, ldresp[indx]+ .005, indx%%10, cex=.6) } postscript('meekerplot.ps') plot1() dev.off() # # Stanford predictions in other ways # fit2 <- survreg(Surv(time, status) ~ poly(age,2), stanford2, dist='lognormal') p1 <- predict(fit1, type='response') p2 <- predict(fit2, type='response') aeq(p1, p2) p3 <- predict(fit2, type='terms', se=T) p4 <- predict(fit2, type='lp', se=T) p5 <- predict(fit1, type='lp', se=T) # aeq(p3$fit + attr(p3$fit, 'constant'), p4$fit) #R is missing the attribute aeq(p4$fit, p5$fit) aeq(p3$se.fit, p4$se.fit) #this one should be false aeq(p4$se.fit, p5$se.fit) #this one true survival/tests/fr_rat1.R0000644000176200001440000000115013555616577014771 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # Tests using the rats data # # (Female rats, from Mantel et al, Cancer Research 37, # 3863-3868, November 77) rfit <- coxph(Surv(time,status) ~ rx + frailty(litter), rats, method='breslow', subset= (sex=='f')) rfit rfit$iter rfit$df rfit$history[[1]] rfit1 <- coxph(Surv(time,status) ~ rx + frailty(litter, theta=1), rats, method='breslow', subset=(sex=="f")) rfit1 rfit2 <- coxph(Surv(time,status) ~ frailty(litter), rats, subset=(sex=='f')) rfit2 survival/tests/data.smoke0000644000176200001440000000304513537676563015267 0ustar liggesusers 186.0 439.2 234.4 365.8 159.6 216.9 167.4 159.5 255.6 702.7 544.7 431.0 454.8 349.7 214.0 250.4 448.9 1132.4 945.2 728.8 729.4 590.2 447.3 436.6 733.7 1981.1 1177.7 1589.2 1316.5 1266.9 875.6 703.0 1119.4 3003.0 2244.9 3380.3 2374.9 1820.2 1669.1 1159.2 2070.5 4697.5 4255.3 5083.0 4485.0 3888.7 3184.3 2194.9 3675.3 7340.6 5882.4 6597.2 7707.5 4945.1 5618.0 4128.9 186.0 610.0 497.5 251.7 417.5 122.6 198.3 193.4 255.6 915.6 482.8 500.7 488.9 402.9 393.9 354.3 448.9 1391.0 1757.1 953.5 1025.8 744.0 668.5 537.8 733.7 2393.4 1578.4 1847.2 1790.1 1220.7 1100.0 993.3 1119.4 3497.9 2301.8 3776.6 2081.0 2766.4 2268.1 1230.7 2070.5 5861.3 3174.6 2974.0 3712.9 3988.8 3268.6 2468.9 3675.3 6250.0 4000.0 4424.8 7329.8 6383.0 7666.1 5048.1 125.7 225.6 0 433.9 212.0 107.2 135.9 91.0 177.3 353.8 116.8 92.1 289.5 200.9 121.3 172.1 244.8 542.8 287.4 259.5 375.9 165.8 202.2 247.2 397.7 858.0 1016.3 365.0 650.9 470.8 570.6 319.7 692.1 1496.2 1108.0 1348.5 1263.2 864.8 586.6 618.0 1160.0 2084.8 645.2 1483.1 1250.0 1126.3 1070.5 1272.1 2070.8 3319.5 0 2580.6 2590.7 3960.4 1666.7 1861.5 125.7 277.9 266.7 102.7 178.6 224.7 142.1 138.8 177.3 517.9 138.7 466.8 270.1 190.2 116.8 83.0 244.8 823.5 473.6 602.0 361.0 454.5 412.2 182.1 397.7 1302.9 1114.8 862.1 699.6 541.7 373.1 356.4 692.1 1934.9 2319.6 1250.0 1688.0 828.7 797.9 581.5 1160.0 2827.0 4635.8 2517.2 1687.3 2848.7 1621.2 1363.4 2070.8 4273.1 2409.6 5769.2 3125.0 2978.7 2803.7 2195.4 survival/tests/strata2.R0000644000176200001440000000126613537676563015024 0ustar liggesusers# # New tests 4/2010 to validate strata by covariate interactions # library(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) tdata <- lung tdata$sex <- lung$sex +3 # Both of these should produce warning messages about singular X, since there # are ph.ecog=3 subjects in only 1 of the strata. # Does not affect the test fit1 <- coxph(Surv(time, status) ~ age + sex:strata(ph.ecog), lung) fit2 <- coxph(Surv(time, status) ~ age + sex:strata(ph.ecog), tdata) aeq(fit1$coef, fit2$coef) aeq(fit1$var, fit2$var) aeq(predict(fit1), predict(fit2)) survival/tests/turnbull.R0000644000176200001440000001367013537676603015310 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # The test data set from Turnbull, JASA 1974, 169-73. # # status 0=right censored # 1=exact # 2=left censored # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) turnbull <- data.frame( time =c( 1,1,1, 2,2,2, 3,3,3, 4,4,4), status=c( 1,0,2, 1,0,2, 1,0,2, 1,0,2), n =c(12,3,2, 6,2,4, 2,0,2, 3,3,5)) # # Compute the K-M for the Turnbull data # via a slow EM calculation # emsurv <- function(time, status, wt, verbose=T) { left.cen <- (status==2) if (!any(left.cen)) stop("No left censored data!") if (!any(status==1))stop("Must have some exact death times") tempy <- Surv(time[!left.cen], status[!left.cen]) ww <- wt[!left.cen] tempx <- factor(rep(1, sum(!left.cen))) tfit <- survfit(tempy~tempx, weight=ww) if (verbose) cat("Iteration 0, survival=", format(round(tfit$surv[tfit$n.event>0],3)), "\n") stimes <- tfit$time[tfit$n.event>0] ltime <- time[left.cen] lwt <- wt[left.cen] tempx <- factor(rep(1, length(stimes) + sum(!left.cen))) tempy <- Surv(c(time[!left.cen], stimes), c(status[!left.cen], rep(1, length(stimes)))) for (iter in 1:4) { wt2 <- stimes*0 ssurv <- tfit$surv[tfit$n.event>0] sjump <- diff(c(1, ssurv)) for (j in 1:(length(ltime))) { k <- sum(ltime[j]>=stimes) #index of the death time if (k==0) stop("Left censored observation before the first death") wt2[1:k] <- wt2[1:k] + lwt[j]*sjump[1:k] /(ssurv[k]-1) } tfit <- survfit(tempy~tempx, weight=c(ww, wt2)) if (verbose) { cat("Iteration", iter, "survival=", format(round(tfit$surv[tfit$n.event>0],3)), "\n") cat(" weights=", format(round(wt2,3)), "\n") } } survfit(tempy ~ tempx, weights=c(ww, wt2)) } temp <-emsurv(turnbull$time, turnbull$status, turnbull$n) print(summary(temp)) # First check, use the data from Turnbull, JASA 1974, 169-173. tdata <- data.frame(time =c(1,1,1,2,2,2,3,3,3,4,4,4), status=rep(c(1,0,2),4), n =c(12,3,2,6,2,4,2,0,2,3,3,5)) tfit <- survfit(Surv(time, time, status, type='interval') ~1, tdata, weight=n) all.equal(round(tfit$surv,3), c(.538, .295, .210, .095)) # Second check, compare to a reversed survival curve # This is not as simple a test as one might think, because left and right # censored observations are not treated symmetrically by the routine: # time <= y for left and time> y for right (this is to make the routine # correct for the common situation of panel data). # To get equivalence, make the left censoreds happen just a little bit # earlier. The left-continuous/right-continuous shift is also a bother. # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) fit1 <- survfit(Surv(time, status) ~1, test1) temp <- ifelse(test1$status==0, 4.99,5) - test1$time fit2 <- survfit(Surv(temp, status, type='left') ~1, test1) all.equal(round(fit1$surv[1:2],5), round(1-fit2$surv[3:2],5)) rm(tdata, tfit, fit1, temp, fit2) # # Create a data set similar to the one provided by Al Zinsmeister # It is a hard test case for survfit.turnbull # time1 <- c(rep(0,100), rep(1,200), 100, 200, 210, 220, rep(365,100), rep(366,5), 731:741) time2 <- c((1:100)*3, 10+1:100, rep(365:366, c(60,40)), NA, 500, NA, 450, rep(730,90), rep(NA,10), c(528,571,691,730,731), NA, 1095:1099, NA, 1400, 1200, 772, 1461) zfit <- survfit(Surv(time1, time2, type='interval2') ~1) # # There are 100 intervals of the form (0,x) where x is from 3 to 300, # and 200 more of the form (1,x) where x is from 11 to 366. These # lead to a mass point in the interval (1,3), which is placed at 2. # The starting estimate has far too little mass placed here, and it takes # the EM a long time to realize that most of the weight for the first 300 # subjects goes here. With acceleration, it takes 16 iterations, without # it takes >40. (On Al's orginal data, without accel still wasn't there after # 165 iters!) # # The next 4 obs give rise to potential jumps at 100.5, 200.5, 211.5, and # 221. However, the final estimate has no mass at all on any of these. # Assume mass of a,b, and c at 2, 100.5 and 365.5, and consider the # contributions: # 123 obs that overlap a only # 137 obs that overlap a and b # 40 obs that overlap a, b, c # 1 obs that overlap b, c # 108 obs that overlap c (200, 210,200, 365, and 366 starting points) # For some trial values of a,b,c, compare the loglik to that of (a+b),0,c # First one: a^123 (a+b)^137 (a+b+c)^40 (b+c) c^108 # Second: (a+b)^123 (a+b)^137 (a+b+c)^40 c c^108 # Likelhood improves if (1 + b/a)^123 > 1+ b/c, which is true for almost # all a and c. In particular, at the solution a and c are approx .7 and # .18, respectively. # # The program can't see this coming, of course, and so iterates towards a # KM with epsilon sized jumps at 100.5, 200.5, and 211.5. Whether these # intervals should be removed during iteration, as detected, is an open # question for me. # # # True solution: mass points at 2, 365.5, 408, and 756.5, of sizes a, b, c, d # Likelihood: a^260 (a+b)^40 (b+c)^92 (b+c+d)^12 c^5 d^11 # Solution: a=0.6958, b=0.1674, c=0.1079, d=0.0289 tfun <- function(x) { if (length(x) ==3) x <- c(x, .03) x <- x/sum(x) #make probabilities sum to 1 loglik <- 260*log(x[1]) + 40*log(x[1]+x[2]) + 92*log(x[2] + x[3]) + 12*log(x[2]+x[3]+x[4]) + 5*log(x[3]) + 11*log(x[4]) -loglik #find the max, not the min } nfit <- nlminb(start=c(.7,.15, .1), tfun, lower=0, upper=1) nparm <- c(nfit$par, .03) nparm <- nparm / sum(nparm) zparm <- -diff(c(1, zfit$surv[match(c(2, 365.5, 408, 756.5), zfit$time)])) aeq(round(tfun(nparm),4), round(tfun(zparm),4)) # .0001 is the tolerance in survfit.turnbull rm(tfun, nfit, nparm, zparm, time1, time2, zfit) survival/tests/coxsurv.R0000644000176200001440000000415113537676603015144 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test out subscripting in the case of a coxph survival curve # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), data=cancer) surv1 <- survfit(fit) temp <- surv1[2:3] which <- cumsum(surv1$strata) zed <- (which[1]+1):(which[3]) aeq(surv1$surv[zed], temp$surv) aeq(surv1$time[zed], temp$time) # This call should not create a model frame in the code -- so same # answer but a different path through the underlying code fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), x=T, data=cancer) surv2 <- survfit(fit) all.equal(surv1, surv2) # # Now a result with a matrix of survival curves # dummy <- data.frame(age=c(30,40,60), sex=c(1,2,2), meal.cal=c(500, 1000, 1500)) surv2 <- survfit(fit, newdata=dummy) zed <- 1:which[1] aeq(surv2$surv[zed,1], surv2[1,1]$surv) aeq(surv2$surv[zed,2], surv2[1,2]$surv) aeq(surv2$surv[zed,3], surv2[1,3]$surv) aeq(surv2$surv[zed, ], surv2[1,1:3]$surv) aeq(surv2$surv[zed], (surv2[1])$surv) aeq(surv2$surv[zed, ], surv2[1, ]$surv) # And the depreciated form - call with a named vector as 'newdata' # the resulting $call component won't match so delete it before comparing surv3 <- survfit(fit, c(age=40, sex=2, meal.cal=1000)) all.equal(unclass(surv2[,2])[-length(surv3)], unclass(surv3)[-length(surv3)]) # Test out offsets, which have recently become popular due to a Langholz paper fit1 <- coxph(Surv(time, status) ~ age + ph.ecog, lung) fit2 <- coxph(Surv(time, status) ~ age + offset(ph.ecog * fit1$coef[2]), lung) surv1 <- survfit(fit1, newdata=data.frame(age=50, ph.ecog=1)) surv2 <- survfit(fit2, newdata=data.frame(age=50, ph.ecog=1)) all.equal(surv1$surv, surv2$surv) # # Check out the start.time option # surv3 <- survfit(fit1, newdata=data.frame(age=50, ph.ecog=1), start.time=100) index <- match(surv3$time, surv1$time) rescale <- summary(surv1, time=100)$surv all.equal(surv3$surv, surv1$surv[index]/rescale) survival/tests/factor2.R0000644000176200001440000000163713537676563015006 0ustar liggesuserslibrary(survival) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) options(na.action=na.exclude) # # More tests of factors in prediction, using a new data set # fit <- coxph(Surv(time, status) ~ factor(ph.ecog), lung) tdata <- data.frame(ph.ecog = factor(0:3)) p1 <- predict(fit, newdata=tdata, type='lp') p2 <- predict(fit, type='lp') aeq(p1, p2[match(0:3, lung$ph.ecog)]) fit2 <- coxph(Surv(time, status) ~ factor(ph.ecog) + factor(sex), lung) tdata <- expand.grid(ph.ecog = factor(0:3), sex=factor(1:2)) p1 <- predict(fit2, newdata=tdata, type='risk') xdata <- expand.grid(ph.ecog=factor(1:3), sex=factor(1:2)) p2 <- predict(fit2, newdata=xdata, type='risk') all.equal(p2, p1[c(2:4, 6:8)], check.attributes=FALSE) fit3 <- survreg(Surv(time, status) ~ factor(ph.ecog) + age, lung) tdata <- data.frame(ph.ecog=factor(0:3), age=50) predict(fit, type='lp', newdata=tdata) predict(fit3, type='lp', newdata=tdata) survival/tests/quantile.R0000644000176200001440000000476113537676563015271 0ustar liggesusers# # Formal test of the quantile routine for survfit library(survival) aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) # There are 8 cases: strata Y/N, ncol(surv) >1, conf.int = T/F # Subcase: the quantile exactly agrees with a horizontal segment of # the curve or not. # First do the 4 cases where fit$surv is a vector # test1 <- data.frame(time= c(9, 3,1,1,6,6,8, 10), status=c(1,NA,1,0,1,1,0, 0), x= c(0, 2,1,1,1,0,0, 0)) # True survival = (6/7) * (3/5) * (1/2) for overall # The q's are chosen to include a point < first jump, mid, after last jump, # and exact intersections with the "flats" of the curve. # qq <- c(13/14, 6/7, 2/3, .5, 9/35, .1) # Nothing on the right hand side, simple survival (no strata) fit1 <- survfit(Surv(time, status) ~ 1, test1, conf.type='none') aeq(quantile(fit1, 1-qq), c(1, 3.5, 6, 9, 9.5, NA)) #without conf.int fit2 <- survfit(Surv(time, status) ~ 1, test1) #with conf.int aeq(quantile(fit2, 1-qq), list(quantile = c(1, 3.5, 6, 9, 9.5, NA), lower = c(1,1,1,6,6,9), upper = rep(as.numeric(NA), 6)), check.attributes=FALSE) aeq(quantile(fit2, 1-qq, FALSE), c(1, 3.5, 6, 9, 9.5, NA)) # Now a variable on the right (strata in the result) # curve 0: (t=6, S=3/4), (t=9, S=3/8) # curve 1: (t=1, S=2/3), (t=6, S= 0) fit1 <- survfit(Surv(time, status) ~ x, test1, conf.type='none') aeq(quantile(fit1, 1-qq), matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) fit2 <- survfit(Surv(time, status) ~ x, test1) aeq(quantile(fit2, 1-qq, FALSE), matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) temp <- quantile(fit2, 1-qq) aeq(temp$quantile, matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) aeq(temp$lower, matrix(c(6,6,6,6,9,9, 1,1,1,1, NA,NA), nrow=2, byrow=T)) aeq(temp$upper, rep(as.numeric(NA), 12)) # Second major case set -- a survfit object where fit$surv is a matrix # This arises from coxph models # There is only 1 subject with ph.ecog=3 which is a nice edge case cfit <- coxph(Surv(time, status) ~ age + strata(ph.ecog), lung) sfit <- survfit(cfit, newdata=data.frame(age=c(50, 70))) qtot <- quantile(sfit, qq) for (i in 1:4) { for (j in 1:2) { temp <- quantile(sfit[i,j], qq) print(c(aeq(qtot$quantile[i,j,], temp$quantile), aeq(qtot$upper[i,j,], temp$upper), aeq(qtot$lower[i,j,], temp$lower))) } } temp <- quantile(sfit, qq, conf.int=FALSE) all.equal(qtot$quantile, temp) survival/tests/clogit.Rout.save0000644000176200001440000000332513537676563016410 0ustar liggesusers R Under development (unstable) (2018-04-09 r74565) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > # > # Test of the clogit function, and indirectly of the exact option > # > # Data set logan has the occupation of fathers, we create a > # multinomial response > # > nresp <- length(levels(logan$occupation)) > n <- nrow(logan) > indx <- rep(1:n, nresp) > logan2 <- data.frame(logan[indx,], + id = indx, + occ2 = factor(rep(levels(logan$occupation), each=n))) > logan2$y <- (logan2$occupation == logan2$occ2) > > #We expect two NA coefficients, so ignore the warning > fit1 <- clogit(y ~ occ2 + occ2:education + occ2:race + strata(id), logan2) > > #since there is only one death per group, all methods are equal > dummy <- rep(1, nrow(logan2)) > fit2 <- coxph(Surv(dummy, y) ~ occ2 + occ2:education + occ2:race + strata(id), + logan2, method='breslow') > > all.equal(fit1$coef, fit2$coef) [1] TRUE > all.equal(fit1$loglik, fit2$loglik) [1] TRUE > all.equal(fit1$var, fit2$var) [1] TRUE > all.equal(fit1$resid, fit2$resid) [1] TRUE > > > proc.time() user system elapsed 0.868 0.024 0.890 survival/tests/multi2.R0000644000176200001440000001555413561277625014656 0ustar liggesuserslibrary(survival) aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) # Check that estimates from a multi-state model agree with single state models # Use a simplified version of the myeloid data set tdata <- tmerge(myeloid[,1:3], myeloid, id=id, death=event(futime,death), priortx = tdc(txtime), sct= event(txtime)) tdata$event <- factor(with(tdata, sct + 2*death), 0:2, c("censor", "sct", "death")) fit <- coxph(Surv(tstart, tstop, event) ~ trt + sex, tdata, id=id, iter=4, x=TRUE) fit12 <- coxph(Surv(tstart, tstop, event=='sct') ~ trt + sex, tdata, subset=(priortx==0), iter=4, x=TRUE) fit13 <- coxph(Surv(tstart, tstop, event=='death') ~ trt + sex, tdata, subset=(priortx==0), iter=4, x=TRUE) fit23 <- coxph(Surv(tstart, tstop, event=='death') ~ trt + sex, tdata, subset=(priortx==1), iter=4, x=TRUE) aeq(coef(fit), c(coef(fit12), coef(fit13), coef(fit23))) aeq(fit$loglik, fit12$loglik + fit13$loglik + fit23$loglik) temp <- matrix(0, 6,6) temp[1:2, 1:2] <- fit12$var temp[3:4, 3:4] <- fit13$var temp[5:6, 5:6] <- fit23$var aeq(fit$naive.var, temp) ii <- fit$strata==1 tfit <- coxph(fit$y[ii,] ~ fit$x[ii,]) aeq(tfit$loglik, fit12$loglik) # check that x, y, strata are correct ii <- fit$strata==2 tfit <- coxph(fit$y[ii,] ~ fit$x[ii,]) aeq(tfit$loglik, fit13$loglik) # check that x, y, strata are correct ii <- fit$strata==3 tfit <- coxph(fit$y[ii,] ~ fit$x[ii,]) aeq(tfit$loglik, fit23$loglik) # check that x, y, strata are correct # check out model.frame fita <- coxph(Surv(tstart, tstop, event) ~ trt, tdata, id=id) fitb <- coxph(Surv(tstart, tstop, event) ~ trt, tdata, id=id, model=TRUE) all.equal(model.frame(fita), fitb$model) #check residuals aeq(residuals(fit), c(residuals(fit12), residuals(fit13), residuals(fit23))) aeq(residuals(fit, type='deviance'), c(residuals(fit12, type='deviance'), residuals(fit13, type='deviance'), residuals(fit23, type='deviance'))) # score residuals indx1 <- 1:fit12$n indx2 <- 1:fit13$n + fit12$n indx3 <- 1:fit23$n + (fit12$n + fit13$n) temp <- residuals(fit, type='score') aeq(temp[indx1, 1:2], residuals(fit12, type='score')) aeq(temp[indx2, 3:4], residuals(fit13, type='score')) aeq(temp[indx3, 5:6], residuals(fit23, type='score')) all(temp[indx1, 3:6] ==0) all(temp[indx2, c(1,2,5,6)] ==0) all(temp[indx3, 1:4]==0) temp <- residuals(fit, type="dfbeta") all(temp[indx1, 3:6] ==0) all(temp[indx2, c(1,2,5,6)] ==0) all(temp[indx3, 1:4]==0) aeq(temp[indx1, 1:2], residuals(fit12, type='dfbeta')) aeq(temp[indx2, 3:4], residuals(fit13, type='dfbeta')) aeq(temp[indx3, 5:6], residuals(fit23, type='dfbeta')) temp <- residuals(fit, type="dfbetas") all(temp[indx1, 3:6] ==0) all(temp[indx2, c(1,2,5,6)] ==0) all(temp[indx3, 1:4]==0) aeq(temp[indx1, 1:2], residuals(fit12, type='dfbetas')) aeq(temp[indx2, 3:4], residuals(fit13, type='dfbetas')) aeq(temp[indx3, 5:6], residuals(fit23, type='dfbetas')) # Schoenfeld and scaled shoenfeld have one row per event ecount <- table(fit$strata[fit$y[,3]==1]) temp <- rep(1:3, ecount) sindx1 <- which(temp==1) sindx2 <- which(temp==2) sindx3 <- which(temp==3) temp <- residuals(fit, type="schoenfeld") all(temp[sindx1, 3:6] ==0) all(temp[sindx2, c(1,2,5,6)] ==0) all(temp[sindx3, 1:4]==0) aeq(temp[sindx1, 1:2], residuals(fit12, type='schoenfeld')) aeq(temp[sindx2, 3:4], residuals(fit13, type='schoenfeld')) aeq(temp[sindx3, 5:6], residuals(fit23, type='schoenfeld')) #The scaled Schoenfeld don't agree, due to the use of a robust # variance in fit, regular variance in fit12, fit13 and fit23 #Along with being scaled by different event counts xfit <- fit xfit$var <- xfit$naive.var if (FALSE) { xfit <- fit xfit$var <- xfit$naive.var # fixes the first issue temp <- residuals(xfit, type="scaledsch") aeq(d1* temp[sindx1, 1:2], residuals(fit12, type='scaledsch')) aeq(temp[sindx2, 3:4], residuals(fit13, type='scaledsch')) aeq(temp[sindx3, 5:6], residuals(fit23, type='scaledsch')) } # predicted values differ because of different centering c0 <- sum(fit$mean * coef(fit)) c12 <- sum(fit12$mean * coef(fit12)) c13 <- sum(fit13$mean* coef(fit13)) c23 <- sum(fit23$mean * coef(fit23)) aeq(predict(fit)+c0, c(predict(fit12)+c12, predict(fit13)+c13, predict(fit23)+c23)) aeq(exp(predict(fit)), predict(fit, type='risk')) # expected survival is independent of centering aeq(predict(fit, type="expected"), c(predict(fit12, type="expected"), predict(fit13, type="expected"), predict(fit23, type="expected"))) # predict(type='terms') is a matrix, centering changes as well temp <- predict(fit, type='terms') if (FALSE) { all(temp[indx1, 3:6] ==0) all(temp[indx2, c(1,2,5,6)] ==0) all(temp[indx3, 1:4]==0) aeq(temp[indx1, 1:2], predict(fit12, type='terms')) aeq(temp[indx2, 3:4], predict(fit13, type='terms')) aeq(temp[indx3, 5:6], predict(fit23, type='terms')) } # The global and per strata zph tests will differ for the KM or rank # transform, because the overall and subset will have a different list # of event times, which changes the transformed value for all of them. # But identity and log are testable. test_a <- cox.zph(fit, transform="log",global=FALSE) test_a12 <- cox.zph(fit12, transform="log",global=FALSE) test_a13 <- cox.zph(fit13, transform="log", global=FALSE) test_a23 <- cox.zph(fit23, transform="log", global=FALSE) aeq(test_a$y[test_a$strata==1, 1:2], test_a12$y) aeq(test_a$table[1:2,], test_a12$table) aeq(test_a$table[3:4,], test_a13$table) aeq(test_a$table[5:6,], test_a23$table) # check cox.zph fit - transform = 'identity' test_b <- cox.zph(fit, transform="identity",global=FALSE) test_b12 <- cox.zph(fit12, transform="identity",global=FALSE) test_b13 <- cox.zph(fit13, transform="identity", global=FALSE) test_b23 <- cox.zph(fit23, transform="identity", global=FALSE) aeq(test_b$table[1:2,], test_b12$table) aeq(test_b$table[3:4,], test_b13$table) aeq(test_b$table[5:6,], test_b23$table) # check out subscripting of a multi-state zph cname <- c("table", "x", "time", "y", "var") sapply(cname, function(x) aeq(test_b[1:2]$x, test_b12$x)) sapply(cname, function(x) aeq(test_b[3:4]$x, test_b13$x)) sapply(cname, function(x) aeq(test_b[5:6]$x, test_b23$x)) # check model.matrix mat1 <- model.matrix(fit) mat2 <- model.matrix(fit12) mat3 <- model.matrix(fit13) mat4 <- model.matrix(fit23) test.matrix1 <- matrix(0, nrow=dim(mat2),ncol=2,dimnames=c()) test.matrix2 <- matrix(0, nrow=dim(mat3),ncol=2,dimnames=c()) test.matrix3 <- matrix(0, nrow=dim(mat4),ncol=2,dimnames=c()) com1 <- cbind(mat2,test.matrix1, test.matrix1) com2 <- cbind(test.matrix2, mat3, test.matrix2) com3 <- cbind(test.matrix3, test.matrix3, mat4) combined.matrix <- do.call(rbind,list(com1,com2,com3)) #create combined matrix to compare to model matrix from 'fit' model final <- rbind(com1,com2,com3) aeq(mat1,combined.matrix) #GOOD survival/tests/summary_survfit.R0000644000176200001440000001013213537676563016713 0ustar liggesusers## check that the scale option to summary.survfit works ## Marc Schwartz reported this as a bug in 2.35-3. library(survival) fit <- survfit(Surv(futime, fustat) ~rx, data=ovarian) temp1 <- summary(fit) temp2 <- summary(fit, scale=365.25) all.equal(temp1$time/365.25, temp2$time) all.equal(temp1$rmean.endtime/365.25, temp2$rmean.endtime) all.equal(temp1$table[,5:6]/365.25, temp2$table[,5:6]) temp <- names(fit) temp <- temp[!temp %in% c("time", "table", "rmean.endtime")] all.equal(temp1[temp], temp2[temp]) # Reprise, using the rmean option temp1 <- summary(fit, rmean=300) temp2 <- summary(fit, rmean=300, scale=365.25) all.equal(temp1$time/365.25, temp2$time) all.equal(temp1$rmean.endtime/365.25, temp2$rmean.endtime) all.equal(temp1$table[,5:6]/365.25, temp2$table[,5:6]) all.equal(temp1[temp], temp2[temp]) # Repeat using multi-state data. Time is in months for mgus2 etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) event <- factor(event, 0:2, labels=c("censor", "pcm", "death")) mfit <- survfit(Surv(etime, event) ~ sex, mgus2) temp1 <- summary(mfit) temp2 <- summary(mfit, scale=12) all.equal(temp1$time/12, temp2$time) all.equal(temp1$rmean.endtime/12, temp2$rmean.endtime) all.equal(temp1$table[,3]/12, temp2$table[,3]) temp <- names(temp1) temp <- temp[!temp %in% c("time", "table", "rmean.endtime")] all.equal(temp1[temp], temp2[temp]) # Reprise, using the rmean option temp1 <- summary(mfit, rmean=240) temp2 <- summary(mfit, rmean=240, scale=12) all.equal(temp1$time/12, temp2$time) all.equal(temp1$rmean.endtime/12, temp2$rmean.endtime) all.equal(temp1$table[,3]/12, temp2$table[,3]) all.equal(temp1[temp], temp2[temp]) # The n.risk values from summary.survfit were off when there are multiple # curves (version 2.39-2) # Verify all components by subscripting m1 <- mfit[1,] m2 <- mfit[2,] s1 <- summary(m1, times=c(0,100, 200, 300)) s2 <- summary(m2, times=c(0,100, 200, 300)) s3 <- summary(mfit, times=c(0,100, 200, 300)) tfun <- function(what) { if (is.matrix(s3[[what]])) all.equal(rbind(s1[[what]], s2[[what]]), s3[[what]]) else all.equal(c(s1[[what]], s2[[what]]), s3[[what]]) } tfun('n') tfun("time") tfun("n.risk") tfun("n.event") tfun("n.censor") tfun("pstate") all.equal(rbind(s1$p0, s2$p0), s3$p0, check.attributes=FALSE) tfun("std.err") tfun("lower") tfun("upper") # Check the cumulative sums temp <- rbind(0, 0, colSums(m1$n.event[m1$time <= 100,]), colSums(m1$n.event[m1$time <= 200, ]), colSums(m1$n.event[m1$time <= 300, ])) all.equal(s1$n.event, apply(temp,2, diff)) temp <- rbind(0, 0, colSums(m2$n.event[m2$time <= 100,]), colSums(m2$n.event[m2$time <= 200, ]), colSums(m2$n.event[m2$time <= 300, ])) all.equal(s2$n.event, apply(temp,2, diff)) temp <- c(0, 0,sum(m1$n.censor[m1$time <= 100]), sum(m1$n.censor[m1$time <= 200]), sum(m1$n.censor[m1$time <= 300])) all.equal(s1$n.censor, diff(temp)) # check the same with survfit objects s1 <- summary(fit[1], times=c(0, 200, 400, 600)) s2 <- summary(fit[2], times=c(0, 200, 400, 600)) s3 <- summary(fit, times=c(0, 200, 400, 600)) tfun('n') tfun("time") tfun("n.risk") tfun("n.event") tfun("n.censor") tfun("surv") tfun("std.err") tfun("lower") tfun("upper") f2 <- fit[2] temp <- c(0, 0, sum(f2$n.event[f2$time <= 200]), sum(f2$n.event[f2$time <= 400]), sum(f2$n.event[f2$time <= 600])) all.equal(s2$n.event, diff(temp)) f1 <- fit[1] temp <- c(0, 0,sum(f1$n.censor[f1$time <= 200]), sum(f1$n.censor[f1$time <= 400]), sum(f1$n.censor[f1$time <= 600])) all.equal(s1$n.censor, diff(temp)) # # A check on the censor option # s1 <- summary(fit[1]) s2 <- summary(fit[2]) s3 <- summary(fit) tfun('n') tfun("time") tfun("n.risk") tfun("n.event") tfun("n.censor") tfun("surv") tfun("std.err") tfun("lower") tfun("upper") s1 <- summary(mfit[1,]) s2 <- summary(mfit[2,]) s3 <- summary(mfit) tfun('n') tfun("time") tfun("n.risk") tfun("n.event") tfun("n.censor") tfun("surv") tfun("std.err") tfun("lower") tfun("upper") survival/tests/summary_survfit.Rout.save0000644000176200001440000001313113537676563020402 0ustar liggesusers R Under development (unstable) (2019-05-15 r76504) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ## check that the scale option to summary.survfit works > ## Marc Schwartz reported this as a bug in 2.35-3. > library(survival) > fit <- survfit(Surv(futime, fustat) ~rx, data=ovarian) > temp1 <- summary(fit) > temp2 <- summary(fit, scale=365.25) > > all.equal(temp1$time/365.25, temp2$time) [1] TRUE > all.equal(temp1$rmean.endtime/365.25, temp2$rmean.endtime) [1] TRUE > all.equal(temp1$table[,5:6]/365.25, temp2$table[,5:6]) [1] TRUE > temp <- names(fit) > temp <- temp[!temp %in% c("time", "table", "rmean.endtime")] > all.equal(temp1[temp], temp2[temp]) [1] TRUE > > # Reprise, using the rmean option > temp1 <- summary(fit, rmean=300) > temp2 <- summary(fit, rmean=300, scale=365.25) > all.equal(temp1$time/365.25, temp2$time) [1] TRUE > all.equal(temp1$rmean.endtime/365.25, temp2$rmean.endtime) [1] TRUE > all.equal(temp1$table[,5:6]/365.25, temp2$table[,5:6]) [1] TRUE > all.equal(temp1[temp], temp2[temp]) [1] TRUE > > # Repeat using multi-state data. Time is in months for mgus2 > etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) > event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) > event <- factor(event, 0:2, labels=c("censor", "pcm", "death")) > mfit <- survfit(Surv(etime, event) ~ sex, mgus2) > temp1 <- summary(mfit) > temp2 <- summary(mfit, scale=12) > > all.equal(temp1$time/12, temp2$time) [1] TRUE > all.equal(temp1$rmean.endtime/12, temp2$rmean.endtime) [1] TRUE > all.equal(temp1$table[,3]/12, temp2$table[,3]) [1] TRUE > temp <- names(temp1) > temp <- temp[!temp %in% c("time", "table", "rmean.endtime")] > all.equal(temp1[temp], temp2[temp]) [1] TRUE > > # Reprise, using the rmean option > temp1 <- summary(mfit, rmean=240) > temp2 <- summary(mfit, rmean=240, scale=12) > all.equal(temp1$time/12, temp2$time) [1] TRUE > all.equal(temp1$rmean.endtime/12, temp2$rmean.endtime) [1] TRUE > all.equal(temp1$table[,3]/12, temp2$table[,3]) [1] TRUE > all.equal(temp1[temp], temp2[temp]) [1] TRUE > > > # The n.risk values from summary.survfit were off when there are multiple > # curves (version 2.39-2) > # Verify all components by subscripting > m1 <- mfit[1,] > m2 <- mfit[2,] > s1 <- summary(m1, times=c(0,100, 200, 300)) > s2 <- summary(m2, times=c(0,100, 200, 300)) > s3 <- summary(mfit, times=c(0,100, 200, 300)) > > tfun <- function(what) { + if (is.matrix(s3[[what]])) + all.equal(rbind(s1[[what]], s2[[what]]), s3[[what]]) + else all.equal(c(s1[[what]], s2[[what]]), s3[[what]]) + } > tfun('n') [1] TRUE > tfun("time") [1] TRUE > tfun("n.risk") [1] TRUE > tfun("n.event") [1] TRUE > tfun("n.censor") [1] TRUE > tfun("pstate") [1] TRUE > all.equal(rbind(s1$p0, s2$p0), s3$p0, check.attributes=FALSE) [1] TRUE > tfun("std.err") [1] TRUE > tfun("lower") [1] TRUE > tfun("upper") [1] TRUE > > # Check the cumulative sums > temp <- rbind(0, 0, + colSums(m1$n.event[m1$time <= 100,]), + colSums(m1$n.event[m1$time <= 200, ]), + colSums(m1$n.event[m1$time <= 300, ])) > all.equal(s1$n.event, apply(temp,2, diff)) [1] TRUE > > temp <- rbind(0, 0, + colSums(m2$n.event[m2$time <= 100,]), + colSums(m2$n.event[m2$time <= 200, ]), + colSums(m2$n.event[m2$time <= 300, ])) > all.equal(s2$n.event, apply(temp,2, diff)) [1] TRUE > > temp <- c(0, 0,sum(m1$n.censor[m1$time <= 100]), + sum(m1$n.censor[m1$time <= 200]), + sum(m1$n.censor[m1$time <= 300])) > all.equal(s1$n.censor, diff(temp)) [1] TRUE > > # check the same with survfit objects > s1 <- summary(fit[1], times=c(0, 200, 400, 600)) > s2 <- summary(fit[2], times=c(0, 200, 400, 600)) > s3 <- summary(fit, times=c(0, 200, 400, 600)) > tfun('n') [1] TRUE > tfun("time") [1] TRUE > tfun("n.risk") [1] TRUE > tfun("n.event") [1] TRUE > tfun("n.censor") [1] TRUE > tfun("surv") [1] TRUE > tfun("std.err") [1] TRUE > tfun("lower") [1] TRUE > tfun("upper") [1] TRUE > > f2 <- fit[2] > temp <- c(0, 0, sum(f2$n.event[f2$time <= 200]), + sum(f2$n.event[f2$time <= 400]), + sum(f2$n.event[f2$time <= 600])) > all.equal(s2$n.event, diff(temp)) [1] TRUE > > f1 <- fit[1] > temp <- c(0, 0,sum(f1$n.censor[f1$time <= 200]), + sum(f1$n.censor[f1$time <= 400]), + sum(f1$n.censor[f1$time <= 600])) > all.equal(s1$n.censor, diff(temp)) [1] TRUE > > # > # A check on the censor option > # > s1 <- summary(fit[1]) > s2 <- summary(fit[2]) > s3 <- summary(fit) > tfun('n') [1] TRUE > tfun("time") [1] TRUE > tfun("n.risk") [1] TRUE > tfun("n.event") [1] TRUE > tfun("n.censor") [1] TRUE > tfun("surv") [1] TRUE > tfun("std.err") [1] TRUE > tfun("lower") [1] TRUE > tfun("upper") [1] TRUE > > s1 <- summary(mfit[1,]) > s2 <- summary(mfit[2,]) > s3 <- summary(mfit) > tfun('n') [1] TRUE > tfun("time") [1] TRUE > tfun("n.risk") [1] TRUE > tfun("n.event") [1] TRUE > tfun("n.censor") [1] TRUE > tfun("surv") [1] TRUE > tfun("std.err") [1] TRUE > tfun("lower") [1] TRUE > tfun("upper") [1] TRUE > > proc.time() user system elapsed 0.800 0.060 0.861 survival/tests/concordance3.Rout.save0000644000176200001440000000546313537676563017475 0ustar liggesusers R Under development (unstable) (2018-09-18 r75322) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > options(na.action=na.exclude) > aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y), ...) > > # Make sure strata is retained, and that the overall variance is correct > fit1 <- coxph(Surv(time, status) ~ age + offset(ph.ecog*0) +strata(sex), lung) > fit2 <- coxph(Surv(time, status) ~ age + ph.ecog +strata(sex), lung) > > test <- concordance(fit1, fit2, influence=1) > > ksex <- model.frame(fit1)[["strata(sex)"]] > test1 <- concordance(fit1$y ~ fit1$linear.predictors + strata(ksex), + reverse=TRUE, influence=1) > test2 <- concordance(fit1$y ~ fit2$linear.predictors + strata(ksex), + reverse=TRUE, influence=1) > aeq(test$concordance, c(test1$concordance, test2$concordance)) [1] TRUE > aeq(diag(test$var), c(test1$var[1], test2$var[1])) [1] TRUE > aeq(test$dfbeta, cbind(test1$dfbeta, test2$dfbeta)) [1] TRUE > > cvec <- c(-1, 1) > aeq(cvec %*% test$var %*% cvec, sum((test1$dfbeta - test2$dfbeta)^2)) [1] TRUE > > # Time weights > # The mgus2 data set has very long follow-up and non-proportional hazards > # > mfit <- coxph(Surv(futime, death) ~ creat + hgb, mgus2) > cm1 <- concordance(mfit, timewt='n', ranks=TRUE) > cm2 <- concordance(mfit, timewt='S', ranks=TRUE) > cm3 <- concordance(mfit, timewt='S/G', ranks=TRUE) > sfit <- survfit(Surv(futime, death) ~ 1, mgus2, subset=!is.na(creat+hgb)) > gfit <- survfit(Surv(futime, 1-death)~1, mgus2, subset=!is.na(creat+hgb)) > > rd1 <- cm1$ranks > rd2 <- cm2$ranks > rd3 <- cm3$ranks > all.equal(rd1[c('time', 'rank', 'casewt')], rd2[c('time', 'rank', 'casewt')]) [1] TRUE > all.equal(rd1[c('time', 'rank', 'casewt')], rd3[c('time', 'rank', 'casewt')]) [1] TRUE > > # n(t) is the number of comparable pairs, which does not count tied times > indx <- match(rd1$time, sfit$time) > nt <- sfit$n.risk[indx] - sfit$n.event[indx] > all.equal(rd1$timewt, nt) [1] TRUE > > # I need S(t) and G(t-), G has the exact same time points as S though > gminus <- c(1, gfit$surv) > all.equal(rd2$timewt, mfit$n* sfit$surv[indx]) [1] TRUE > all.equal(rd3$timewt, mfit$n* sfit$surv[indx] /gminus[indx]) [1] TRUE > > > > proc.time() user system elapsed 0.911 0.048 0.953 survival/tests/doweight.Rout.save0000644000176200001440000003552613537676563016751 0ustar liggesusers R Under development (unstable) (2019-05-16 r76518) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # Tests of the weighted Cox model > # > # Similar data set to test1, but add weights, > # a double-death/censor tied time > # a censored last subject > # The latter two are cases covered only feebly elsewhere. > # > # The data set testw2 has the same data, but done via replication > # > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), + status= c(1,0,1,1,1,0,0,1,0), + x= c(2,0,1,1,0,1,0,1,0), + wt = c(1,2,3,4,3,2,1,2,1)) > xx <- c(1,2,3,4,3,2,1,2,1) > testw2 <- data.frame(time= rep(c(1,1,2,2,2,2,3,4,5), xx), + status= rep(c(1,0,1,1,1,0,0,1,0), xx), + x= rep(c(2,0,1,1,0,1,0,1,0), xx), + id= rep(1:9, xx)) > indx <- match(1:9, testw2$id) > testw2 <- data.frame(time= rep(c(1,1,2,2,2,2,3,4,5), xx), + status= rep(c(1,0,1,1,1,0,0,1,0), xx), + x= rep(c(2,0,1,1,0,1,0,1,0), xx), + id= rep(1:9, xx)) > indx <- match(1:9, testw2$id) > > fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, + method='breslow', iter=0) > fit0b <- coxph(Surv(time, status) ~x, testw2, ties='breslow', iter=0) > fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, ties='breslow') > fitb <- coxph(Surv(time, status) ~x, testw2, ties='breslow') > > texp <- function(beta) { # expected, Breslow estimate + r <- exp(beta) + temp <- cumsum(c(1/(r^2 + 11*r +7), 10/(11*r +5), 2/(2*r+1))) + c(r^2, 1,r,r,1,r,1,r,1)* temp[c(1,1,2,2,2,2,2,3,3)] + } > aeq(texp(0), c(1/19, 1/19, rep(103/152, 5), rep(613/456,2))) #verify texp() [1] TRUE > > xbar <- function(beta) { # xbar, Breslow estimate + r <- exp(beta) + temp <- r* rep(c(2*r + 11, 11/10, 1), c(2, 5, 2)) + temp * texp(beta) + } > > fit0 Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt, method = "breslow", iter = 0) coef exp(coef) se(coef) z p x 0.0000 1.0000 0.5858 0 1 Likelihood ratio test=0 on 1 df, p=1 n= 9, number of events= 5 > summary(fit) Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt, ties = "breslow") n= 9, number of events= 5 coef exp(coef) se(coef) z Pr(>|z|) x 0.8596 2.3621 0.7131 1.205 0.228 exp(coef) exp(-coef) lower .95 upper .95 x 2.362 0.4233 0.5839 9.556 Concordance= 0.638 (se = 0.161 ) Likelihood ratio test= 1.69 on 1 df, p=0.2 Wald test = 1.45 on 1 df, p=0.2 Score (logrank) test = 1.52 on 1 df, p=0.2 > aeq(resid(fit0), testw1$status - texp(0)) [1] TRUE > resid(fit0, type='score') 1 2 3 4 5 6 1.24653740 0.03601108 0.10056700 0.10056700 -0.22180142 -0.21193300 7 8 9 0.46569858 -0.10082189 0.91014302 > resid(fit0, type='scho') 1 2 2 2 4 1.3157895 0.3125000 0.3125000 -0.6875000 0.3333333 > > aeq(resid(fit0, type='mart'), (resid(fit0b, type='mart'))[indx]) [1] TRUE > aeq(resid(fit0, type='scor'), (resid(fit0b, type='scor'))[indx]) [1] TRUE > aeq(unique(resid(fit0, type='scho')), unique(resid(fit0b, type='scho'))) [1] TRUE > > > aeq(resid(fit, type='mart'), testw1$status - texp(fit$coef)) [1] TRUE > resid(fit, type='score') 1 2 3 4 5 6 0.88681615 0.02497653 0.03608964 0.03608964 -0.54297652 -0.12528780 7 8 9 0.29564605 -0.09476911 0.58400064 > resid(fit, type='scho') 1 2 2 2 4 1.0368337 0.1613774 0.1613774 -0.8386226 0.1746960 > aeq(resid(fit, type='mart'), (resid(fitb, type='mart'))[indx]) [1] TRUE > aeq(resid(fit, type='scor'), (resid(fitb, type='scor'))[indx]) [1] TRUE > aeq(unique(resid(fit, type='scho')), unique(resid(fitb, type='scho'))) [1] TRUE > rr1 <- resid(fit, type='mart') > rr2 <- resid(fit, type='mart', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > rr1 <- resid(fit, type='score') > rr2 <- resid(fit, type='score', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, ties='efron') > fit Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt, ties = "efron") coef exp(coef) se(coef) z p x 0.8726 2.3931 0.7126 1.225 0.221 Likelihood ratio test=1.75 on 1 df, p=0.1858 n= 9, number of events= 5 > resid(fit, type='mart') 1 2 3 4 5 6 0.85334536 -0.02560716 0.32265266 0.32265266 0.71696234 -1.07772629 7 8 9 -0.45034077 -0.90490339 -0.79598658 > resid(fit, type='score') 1 2 3 4 5 6 0.88116056 0.02477248 0.06057806 0.06057806 -0.59724033 -0.16737066 7 8 9 0.38040295 -0.13750290 0.66631324 > resid(fit, type='scho') 1 2 2 2 4 1.0325955 0.1621759 0.1621759 -0.8378241 0.1728229 > > # Tests of the weighted Cox model, AG form of the data > # Same solution as doweight1.s > # > testw3 <- data.frame(id = c( 1, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 8, 8, 9), + begin= c( 0, 5, 0, 0,10,15, 0, 0,14, 0, 0, 0,23, 0), + time= c( 5,10,10,10,15,20,20,14,20,20,30,23,40,50), + status= c( 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0), + x= c( 2, 2, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0), + wt = c( 1, 1, 2, 3, 3, 3, 4, 3, 3, 2, 1, 2, 2, 1)) > > fit0 <- coxph(Surv(begin,time, status) ~x, testw3, weights=wt, + ties='breslow', iter=0) > fit <- coxph(Surv(begin,time, status) ~x, testw3, weights=wt, ties='breslow') > fit0 Call: coxph(formula = Surv(begin, time, status) ~ x, data = testw3, weights = wt, ties = "breslow", iter = 0) coef exp(coef) se(coef) z p x 0.0000 1.0000 0.5858 0 1 Likelihood ratio test=0 on 1 df, p=1 n= 14, number of events= 5 > summary(fit) Call: coxph(formula = Surv(begin, time, status) ~ x, data = testw3, weights = wt, ties = "breslow") n= 14, number of events= 5 coef exp(coef) se(coef) z Pr(>|z|) x 0.8596 2.3621 0.7131 1.205 0.228 exp(coef) exp(-coef) lower .95 upper .95 x 2.362 0.4233 0.5839 9.556 Concordance= 0.638 (se = 0.172 ) Likelihood ratio test= 1.69 on 1 df, p=0.2 Wald test = 1.45 on 1 df, p=0.2 Score (logrank) test = 1.52 on 1 df, p=0.2 > resid(fit0, type='mart', collapse=testw3$id) 1 2 3 4 5 6 0.94736842 -0.05263158 0.32236842 0.32236842 0.32236842 -0.67763158 7 8 9 -0.67763158 -0.34429825 -1.34429825 > resid(fit0, type='score', collapse=testw3$id) 1 2 3 4 5 6 1.24653740 0.03601108 0.10056700 0.10056700 -0.22180142 -0.21193300 7 8 9 0.46569858 -0.10082189 0.91014302 > resid(fit0, type='scho') 10 20 20 20 40 1.3157895 0.3125000 0.3125000 -0.6875000 0.3333333 > > resid(fit, type='mart', collapse=testw3$id) 1 2 3 4 5 6 0.85531186 -0.02593169 0.17636221 0.17636221 0.65131344 -0.82363779 7 8 9 -0.34868656 -0.64894181 -0.69807852 > resid(fit, type='score', collapse=testw3$id) 1 2 3 4 5 6 0.88681615 0.02497653 0.03608964 0.03608964 -0.54297652 -0.12528780 7 8 9 0.29564605 -0.09476911 0.58400064 > resid(fit, type='scho') 10 20 20 20 40 1.0368337 0.1613774 0.1613774 -0.8386226 0.1746960 > fit0 <- coxph(Surv(begin, time, status) ~x,testw3, weights=wt, iter=0) > resid(fit0, 'mart', collapse=testw3$id) 1 2 3 4 5 6 0.94736842 -0.05263158 0.44454887 0.44454887 0.44454887 -0.88126566 7 8 9 -0.88126566 -0.54793233 -1.54793233 > resid(coxph(Surv(begin, time, status) ~1, testw3, weights=wt) + , collapse=testw3$id) #Null model 1 2 3 4 5 6 0.94736842 -0.05263158 0.44454887 0.44454887 0.44454887 -0.88126566 7 8 9 -0.88126566 -0.54793233 -1.54793233 > > fit <- coxph(Surv(begin,time, status) ~x, testw3, weights=wt, ties='efron') > fit Call: coxph(formula = Surv(begin, time, status) ~ x, data = testw3, weights = wt, ties = "efron") coef exp(coef) se(coef) z p x 0.8726 2.3931 0.7126 1.225 0.221 Likelihood ratio test=1.75 on 1 df, p=0.1858 n= 14, number of events= 5 > resid(fit, type='mart', collapse=testw3$id) 1 2 3 4 5 6 0.85334536 -0.02560716 0.32265266 0.32265266 0.71696234 -1.07772629 7 8 9 -0.45034077 -0.90490339 -0.79598658 > resid(fit, type='score', collapse=testw3$id) 1 2 3 4 5 6 0.88116056 0.02477248 0.06057806 0.06057806 -0.59724033 -0.16737066 7 8 9 0.38040295 -0.13750290 0.66631324 > resid(fit, type='scho') 10 20 20 20 40 1.0325955 0.1621759 0.1621759 -0.8378241 0.1728229 > # > # Check out the impact of weights on the dfbetas > # Am I computing them correctly? > # > wtemp <- rep(1,26) > wtemp[c(5,10,15)] <- 2:4 > fit <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp) > rr <- resid(fit, 'dfbeta') > > fit1 <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp, + subset=(-5)) > fit2 <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp, + subset=(-10)) > fit3 <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp, + subset=(-15)) > > # > # Effect of case weights on expected survival curves post Cox model > # > fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, ties='breslow', + iter=0) > fit0b <- coxph(Surv(time, status) ~x, testw2, ties='breslow', iter=0) > > surv1 <- survfit(fit0, newdata=list(x=0)) > surv2 <- survfit(fit0b, newdata=list(x=0)) > aeq(surv1$surv, surv2$surv) [1] TRUE > # > # Check out the Efron approx. > # > > fit0 <- coxph(Surv(time, status) ~x,testw1, weights=wt, iter=0) > fit <- coxph(Surv(time, status) ~x,testw1, weights=wt) > resid(fit0, 'mart') 1 2 3 4 5 6 0.94736842 -0.05263158 0.44454887 0.44454887 0.44454887 -0.88126566 7 8 9 -0.88126566 -0.54793233 -1.54793233 > resid(coxph(Surv(time, status) ~1, testw1, weights=wt)) #Null model 1 2 3 4 5 6 0.94736842 -0.05263158 0.44454887 0.44454887 0.44454887 -0.88126566 7 8 9 -0.88126566 -0.54793233 -1.54793233 > > # lfun is the known log-likelihood for this data set, worked out in the > # appendix of Therneau and Grambsch > # ufun is the score vector and ifun the information matrix > lfun <- function(beta) { + r <- exp(beta) + a <- 7*r +3 + b <- 4*r +2 + 11*beta - ( log(r^2 + 11*r +7) + + (10/3)*(log(a+b) + log(2*a/3 +b) + log(a/3 +b)) + 2*log(2*r +1)) + } > aeq(fit0$log[1], lfun(0)) [1] TRUE > aeq(fit$log[2], lfun(fit$coef)) [1] TRUE > > ufun <- function(beta, efron=T) { #score statistic + r <- exp(beta) + xbar1 <- (2*r^2+11*r)/(r^2+11*r +7) + xbar2 <- 11*r/(11*r +5) + xbar3 <- 2*r/(2*r +1) + xbar2b<- 26*r/(26*r+12) + xbar2c<- 19*r/(19*r + 9) + temp <- 11 - (xbar1 + 2*xbar3) + if (efron) temp - (10/3)*(xbar2 + xbar2b + xbar2c) + else temp - 10*xbar2 + } > print(ufun(fit$coef) < 1e-4) # Should be true x TRUE > > ifun <- function(beta, efron=T) { # information matrix + r <- exp(beta) + xbar1 <- (2*r^2+11*r)/(r^2+11*r +7) + xbar2 <- 11*r/(11*r +5) + xbar3 <- 2*r/(2*r +1) + xbar2b<- 26*r/(26*r+12) + xbar2c<- 19*r/(19*r + 9) + temp <- ((4*r^2 + 11*r)/(r^2+11*r +7) - xbar1^2) + + 2*(xbar3 - xbar3^2) + if (efron) temp + (10/3)*((xbar2- xbar2^2) + (xbar2b - xbar2b^2) + + (xbar2c -xbar2c^2)) + else temp + 10 * (xbar2- xbar2^2) + } > > aeq(fit0$var, 1/ifun(0)) [1] TRUE > aeq(fit$var, 1/ifun(fit$coef)) [1] TRUE > > > > # Make sure that the weights pass through the residuals correctly > rr1 <- resid(fit, type='mart') > rr2 <- resid(fit, type='mart', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > rr1 <- resid(fit, type='score') > rr2 <- resid(fit, type='score', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > # > # Look at the individual components > # > dt0 <- coxph.detail(fit0) > dt <- coxph.detail(fit) > aeq(sum(dt$score), ufun(fit$coef)) #score statistic [1] TRUE > aeq(sum(dt0$score), ufun(0)) [1] TRUE > aeq(dt0$hazard, c(1/19, (10/3)*(1/16 + 1/(6+20/3) + 1/(6+10/3)), 2/3)) [1] TRUE > > > > rm(fit, fit0, rr1, rr2, dt, dt0) > # > # Effect of weights on the robust variance > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0), + wt= c(3,0,1,1,1,1,1), + id= 1:7) > testx <- data.frame(time= c(4,4,4,1,1,2,2,3), + status=c(1,1,1,1,0,1,1,0), + x= c(0,0,0,1,1,1,0,0), + wt= c(1,1,1,1,1,1,1,1), + id= 1:8) > > fit1 <- coxph(Surv(time, status) ~x, cluster=id, test1, ties='breslow', + weights=wt) > fit2 <- coxph(Surv(time, status) ~x, cluster=id, testx, ties='breslow') > > db1 <- resid(fit1, 'dfbeta', weighted=F) > db1 <- db1[-2] #toss the missing > db2 <- resid(fit2, 'dfbeta') > aeq(db1, db2[3:8]) [1] TRUE > > W <- c(3,1,1,1,1,1) #Weights, after removal of the missing value > aeq(fit2$var, sum(db1*db1*W)) [1] TRUE > aeq(fit1$var, sum(db1*db1*W*W)) [1] TRUE > > > proc.time() user system elapsed 0.829 0.065 0.888 survival/tests/concordance.R0000644000176200001440000001263613537676563015725 0ustar liggesuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # # Simple tests of survConcordance, which has been replaced by the more general # concordance function. # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) grank <- function(x, time, grp, wt) unlist(tapply(x, grp, rank)) grank2 <- function(x, time, grp, wt) { #for case weights if (length(wt)==0) wt <- rep(1, length(x)) z <- double(length(x)) for (i in unique(grp)) { indx <- which(grp==i) temp <- tapply(wt[indx], x[indx], sum) temp <- temp/2 + c(0, cumsum(temp)[-length(temp)]) z[indx] <- temp[match(x[indx], names(temp))] } z } # Concordance by brute force. O(n^2) algorithm, but ok for n<500 or so allpair <- function(x, time, status, wt, all=FALSE) { if (missing(wt)) wt <- rep(1, length(x)) count <- sapply(which(status==1), function(i) { atrisk <- (time > time[i]) | (time==time[i] & status==0) temp <- tapply(wt[atrisk], factor(sign(x[i] -x[atrisk]), c(1, -1, 0)), sum) wt[i]* c(ifelse(is.na(temp), 0, temp), (sum(wt[time==time[i] & status==1]) - wt[i])/2) }) rownames(count) <- c("concordant", "discordant", "tied.x", "tied.y") if (all) { colnames(count) <- time[status==1] t(count) } else rowSums(count) } # The std of C = std(numerator)/(number of comparable pairs) # The information matrix of a Cox model is = to the var(C-D) cfun <- function(fit) fit$cvar * sum(fit$count[1:3])^2 tdata <- aml[aml$x=='Maintained', c("time", "status")] tdata$x <- c(1,6,2,7,3,7,3,8,4,4,5) tdata$wt <- c(1,2,3,2,1,2,3,4,3,2,1) fit <- concordance(Surv(time, status) ~x, tdata) aeq(fit$count[1:4], c(24,14,2,0)) cfit <- coxph(Surv(time, status) ~ tt(x), tdata, tt=grank, method='breslow', iter=0, x=T) cdt <- coxph.detail(cfit) aeq(sum(cdt$imat), cfun(fit)) aeq(sum(2*cdt$score), diff(fit$count[1:2])) aeq(with(tdata, allpair(x, time, status)), c(14,24,2,0)) # Lots of ties tempy <- Surv(c(1,2,2,2,3,4,4,4,5,2), c(1,0,1,0,1,0,1,1,0,1)) tempx <- c(5,5,4,4,3,3,7,6,5,4) fit2 <- concordance(tempy ~ tempx) addxy <- function(x) c(x[1:3], sum(x[4:5])) aeq(addxy(fit2$count), allpair(tempx, tempy[,1], tempy[,2])) cfit2 <- coxph(tempy ~ tt(tempx), tt=grank, method='breslow', iter=0) aeq(cfit2$var, 1/cfun(fit2)) # Bigger data fit3 <- concordance(Surv(time, status) ~ age, lung, reverse=TRUE) aeq(addxy(fit3$count), allpair(lung$age, lung$time, lung$status-1)) cfit3 <- coxph(Surv(time, status) ~ tt(age), lung, iter=0, method='breslow', tt=grank, x=T) cdt <- coxph.detail(cfit3) aeq(sum(cdt$imat), cfun(fit3)) aeq(2*sum(cdt$score), diff(fit3$count[2:1])) # More ties fit4 <- concordance(Surv(time, status) ~ ph.ecog, lung, reverse=TRUE) aeq(addxy(fit4$count), allpair(lung$ph.ecog, lung$time, lung$status-1)) aeq(fit4$count[1:5], c(8392, 4258, 7137, 21, 7)) cfit4 <- coxph(Surv(time, status) ~ tt(ph.ecog), lung, iter=0, method='breslow', tt=grank) aeq(1/cfit4$var, cfun(fit4)) # Case weights fit5 <- concordance(Surv(time, status) ~ x, tdata, weight=wt, reverse=TRUE) fit6 <- concordance(Surv(time, status) ~x, tdata[rep(1:11,tdata$wt),]) aeq(addxy(fit5$count), with(tdata, allpair(x, time, status, wt))) aeq(fit5$count[1:4], c(70, 91, 7, 0)) # checked by hand aeq(fit5$count[1:3], fit6$count[c(2,1,3)]) #spurious "tied on time" values, ignore aeq(fit5$std, fit6$std) cfit5 <- coxph(Surv(time, status) ~ tt(x), tdata, weight=wt, iter=0, method='breslow', tt=grank2) cfit6 <- coxph(Surv(time, status) ~ tt(x), tdata[rep(1:11,tdata$wt),], iter=0, method='breslow', tt=grank) aeq(1/cfit6$var, cfun(fit6)) aeq(cfit5$var, cfit6$var) # Start, stop simplest cases fit7 <- concordance(Surv(rep(0,11), time, status) ~ x, tdata) aeq(fit7$count, fit$count) aeq(fit7$std.err, fit$std.err) fit7 <- concordance(Surv(rep(0,11), time, status) ~ x, tdata, weight=wt) aeq(fit5$count, fit7$count[c(2,1,3:5)]) #one reversed, one not # Multiple intervals for some, but same risk sets as tdata tdata2 <- data.frame(time1=c(0,3, 5, 6,7, 0, 4,17, 7, 0,16, 2, 0, 0,9, 5), time2=c(3,9, 13, 7,13, 18, 17,23, 28, 16,31, 34, 45, 9,48, 60), status=c(0,1, 1, 0,0, 1, 0,1, 0, 0,1, 1, 0, 0,1, 0), x = c(1,1, 6, 2,2, 7, 3,3, 7, 3,3, 8, 4, 4,4, 5), wt= c(1,1, 2, 3,3, 2, 1,1, 2, 3,3, 4, 3, 2,2, 1)) fit8 <- concordance(Surv(time1, time2, status) ~x, tdata2, weight=wt, reverse=TRUE) aeq(fit5$count, fit8$count) aeq(fit5$std.err, fit8$std.err) cfit8 <- coxph(Surv(time1, time2, status) ~ tt(x), tdata2, weight=wt, iter=0, method='breslow', tt=grank2) aeq(1/cfit8$var, cfun(fit8)) # Stratified tdata3 <- data.frame(time1=c(tdata2$time1, rep(0, nrow(lung))), time2=c(tdata2$time2, lung$time), status = c(tdata2$status, lung$status -1), x = c(tdata2$x, lung$ph.ecog), wt= c(tdata2$wt, rep(1, nrow(lung))), grp=rep(1:2, c(nrow(tdata2), nrow(lung)))) fit9 <- concordance(Surv(time1, time2, status) ~x + strata(grp), data=tdata3, weight=wt, reverse=TRUE) aeq(fit9$count[1,], fit5$count) aeq(fit9$count[2,], fit4$count) survival/tests/r_donnell.Rout.save0000644000176200001440000000564113537676563017106 0ustar liggesusers R version 3.4.1 (2017-06-30) -- "Single Candle" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Good initial values are key to this data set > # It killed v4 of survreg; > # data courtesy of Deborah Donnell, Fred Hutchinson Cancer Center > # > > donnell <- scan("data.donnell", what=list(time1=0, time2=0, status=0)) Read 210 records > donnell <- data.frame(donnell) > > dfit <- survreg(Surv(time1, time2, status, type='interval') ~1, donnell) > summary(dfit) Call: survreg(formula = Surv(time1, time2, status, type = "interval") ~ 1, data = donnell) Value Std. Error z p (Intercept) 2.390 0.804 2.97 0.003 Log(scale) -0.237 0.346 -0.69 0.492 Scale= 0.789 Weibull distribution Loglik(model)= -51 Loglik(intercept only)= -51 Number of Newton-Raphson Iterations: 11 n= 210 > > # > # Fit the Donnell data using Statsci's code - should get the same coefs > # > if (exists('censorReg')) { + dfitc <- censorReg(censor(time1, time2, status, type='interval') ~1, + donnell) + summary(dfitc) + } > # > # Do a contour plot of the donnell data > # > npt <- 20 > beta0 <- seq(.4, 3.6, length=npt) > logsig <- seq(-1.4, 0.41, length=npt) > donlog <- matrix(0,npt, npt) > > for (i in 1:npt) { + for (j in 1:npt) { + fit <- survreg(Surv(time1, time2, status, type='interval') ~1, + donnell, init=c(beta0[i],logsig[j]), + maxiter=0) + donlog[i,j] <- fit$log[1] + } + } > > clev <- -c(51, 51.5, 52:60, 65, 75, 85, 100, 150) > #clev <- seq(-51, -50, length=10) > > contour(beta0, logsig, pmax(donlog, -200), levels=clev, xlab="Intercept", + ylab="Log(sigma)") > points(2.39, log(.7885), pch=1, col=2) > title("Donnell data") > # > # Compute the path of the iteration > # > # All the intermediate stops produce an ignorable "did not converge" > # warning > options(warn=-1) #turn them off > niter <- 14 > donpath <- matrix(0,niter+1,2) > for (i in 0:niter){ + fit <- survreg(Surv(time1, time2, status, type='interval') ~1, + donnell, maxiter=i) + donpath[i+1,] <- c(fit$coef, log(fit$scale)) + } > points(donpath[,1], donpath[,2]) > lines(donpath[,1], donpath[,2], col=4) > options(warn=0) #reset > > proc.time() user system elapsed 2.817 0.154 3.303 survival/tests/tt.Rout.save0000644000176200001440000001002313537676563015547 0ustar liggesusers R Under development (unstable) (2019-06-28 r76752) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > library(splines) > aeq <- function(x, y) all.equal(as.vector(x), as.vector(y)) > > # A contrived example for the tt function > # > mkdata <- function(n, beta) { + age <- runif(n, 20, 60) + x <- rbinom(n, 1, .5) + + futime <- rep(40, n) # everyone has 40 years of follow-up + status <- rep(0, n) + dtime <- runif(n/2, 1, 40) # 1/2 of them die + dtime <- sort(dtime) + + # The risk is set to beta[1]*x + beta[2]* f(current_age) + # where f= 0 up to age 40, rises linear to age 70, flat after that + for (i in 1:length(dtime)) { + atrisk <- (futime >= dtime[i]) + c.age <- age + dtime + age2 <- pmin(30, pmax(0, c.age-40)) + xbeta <- beta[1]*x + beta[2]*age2 + + # Select a death according to risk + risk <- ifelse(atrisk, exp(xbeta), 0) + dead <- sample(1:n, 1, prob=risk/sum(risk)) + + futime[dead] <- dtime[i] + status[dead] <- 1 + } + data.frame(futime=round(futime,1), status=status, age=age, x=x, risk=risk, + casewt = sample(1:5, n, replace=TRUE), + + grp = sample(1:15, n, replace=TRUE)) + } > > set.seed(1953) # a good year > # The functional form won't be well estimated with n=100, but a large > # n makes the test slow, and as a validity test n=100 and n=1000 are equally > # good. > tdata <- mkdata(100, c(log(1.5), 2/30)) # data set has many ties > > dtime <- sort(unique(tdata$futime[tdata$status==1])) > data2 <- survSplit(Surv(futime, status) ~., tdata, cut=dtime) > data2$c.age <- data2$age + data2$futime # current age > > # fit1 uses data at the event times, fit2$c.age might have a > # wider range due to censorings. To make the two fits agree > # fix the knots. I know a priori that 20 to 101 will cover it. > ns2 <- function(x) ns(x, Boundary.knots=c(20, 101), knots=c(45, 60, 75)) > > fit1 <- coxph(Surv(futime, status)~ x + tt(age), tdata, + tt= function(x, t, ...) ns2(x+t)) > > fit2 <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age), data2) > > aeq(coef(fit1), coef(fit2)) [1] TRUE > aeq(vcov(fit1), vcov(fit2)) [1] TRUE > > # > # Check that cluster, weight, and offset were correctly expanded > # > fit3a <- coxph(Surv(futime, status)~ x + tt(age), tdata, weights=casewt, + tt= function(x, t, ...) ns2(x+t)) > fit3b <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age), data2, + weights=casewt) > aeq(coef(fit3a), coef(fit3b)) [1] TRUE > aeq(vcov(fit3a), vcov(fit3b)) [1] TRUE > > fit4a <- coxph(Surv(futime, status)~ x + tt(age), tdata, + tt= function(x, t, ...) ns2(x+t), cluster=grp) > fit4b <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age), data2, + cluster=grp) > fit4c <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age) + cluster(grp), + data2) > aeq(coef(fit4a), coef(fit4b)) [1] TRUE > aeq(vcov(fit4a), vcov(fit4b)) [1] TRUE > aeq(coef(fit4a), coef(fit4c)) [1] TRUE > aeq(vcov(fit4a), vcov(fit4c)) [1] TRUE > > fit5a <- coxph(Surv(futime, status)~ x + tt(age) + offset(grp/10), tdata, + tt= function(x, t, ...) ns2(x+t),) > fit5b <- coxph(Surv(tstart, futime, status) ~ x + ns2(c.age)+ offset(grp/10) + , data=data2) > aeq(coef(fit5a), coef(fit5b)) [1] TRUE > aeq(vcov(fit5a), vcov(fit5b)) [1] TRUE > > proc.time() user system elapsed 1.024 0.052 1.084 survival/tests/counting.R0000644000176200001440000000364313537676563015273 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # Create a "counting process" version of the simplest test data set # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) test1b<- list(start= c(0, 3, 0, 0, 5, 0, 6,14, 0, 0, 10,20,30, 0), stop = c(3,10, 10, 5,20, 6,14,20, 30, 10,20,30,40, 10), status=c(0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0), x= c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, NA), id = c(3, 3, 4, 5, 5, 6, 6, 6, 7, 1, 1, 1, 1, 2)) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # # Check out the various residuals under an Efron approximation # fit0 <- coxph(Surv(time, status)~ x, test1, iter=0) fit <- coxph(Surv(time, status) ~x, test1) fit0b <- coxph(Surv(start, stop, status) ~ x, test1b, iter=0) fitb <- coxph(Surv(start, stop, status) ~x, test1b) fitc <- coxph(Surv(time, status) ~ offset(fit$coef*x), test1) fitd <- coxph(Surv(start, stop, status) ~ offset(fit$coef*x), test1b) aeq(fit0b$coef, fit0$coef) aeq(resid(fit0), resid(fit0b, collapse=test1b$id)) aeq(resid(fit), resid(fitb, collapse=test1b$id)) aeq(resid(fitc), resid(fitd, collapse=test1b$id)) aeq(resid(fitc), resid(fit)) aeq(resid(fit0, type='score'), resid(fit0b, type='score', collapse=test1b$id)) aeq(resid(fit, type='score'), resid(fitb, type='score', collapse=test1b$id)) aeq(resid(fit0, type='scho'), resid(fit0b, type='scho', collapse=test1b$id)) aeq(resid(fit, type='scho'), resid(fitb, type='scho', collapse=test1b$id)) # The two survivals will have different censoring times # nrisk, nevent, surv, and std should be the same temp1 <- survfit(fit, list(x=1), censor=FALSE) temp2 <- survfit(fitb, list(x=1), censor=FALSE) all.equal(unclass(temp1)[c(3,4,6,8)], unclass(temp2)[c(3,4,6,8)]) survival/tests/book7.Rout.save0000644000176200001440000000550613537676563016153 0ustar liggesusers R Under development (unstable) (2019-05-16 r76518) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > options(na.action=na.exclude) > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # > # Tests from the appendix of Therneau and Grambsch > # Data set 1 + exact method > > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > byhand7 <- function(beta) { + r <- exp(beta) + loglik <- 2*(beta - log(3*r + 3)) + u <- 2/(r+1) + imat <- 2*r/(r+1)^2 + haz <- c(1/(3*r+3), 2/(r+3), 0, 1 ) + + ties <- c(1,1,2,2,3,4) + wt <- c(r,r,r,1,1,1) + mart <- c(1,0,1,1,0,1) - wt* (cumsum(haz))[ties] #martingale residual + + list(loglik=loglik, u=u, imat=imat, mart=mart) + } > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > fit0 <-coxph(Surv(time, status) ~x, test1, iter=0, method='exact') > truth0 <- byhand7(0) > aeq(truth0$loglik, fit0$loglik[1]) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid[c(2:6,1)]) [1] TRUE > > fit1 <- coxph(Surv(time, status) ~x, test1, iter=1, method='exact') > aeq(fit1$coef, truth0$u*fit0$var) [1] TRUE > truth1 <- byhand7(fit1$coef) > aeq(fit1$loglik[2], truth1$loglik) [1] TRUE > aeq(1/truth1$imat, fit1$var) [1] TRUE > aeq(truth1$mart, resid(fit1)[c(3:7,1)]) [1] TRUE > > # Beta is infinite for this model, so we will get a warning message > fit2 <- coxph(Surv(time, status) ~x, test1, method='exact') Warning message: In fitter(X, Y, istrat, offset, init, control, weights = weights, : Loglik converged before variable 1 ; beta may be infinite. > aeq(resid(fit2)[-2], c(0, 2/3, -1/3, -4/3, 1, 0)) #values from the book [1] TRUE > > > # > # Now a multivariate case: start/stop data uses a different C routine > # > zz <- rep(0, nrow(lung)) > fit1 <- coxph(Surv(time, status) ~ age + ph.ecog + sex, lung, method="exact") > fit2 <- coxph(Surv(zz, time, status) ~ age + ph.ecog + sex, lung, + method="exact") > aeq(fit1$loglik, fit2$loglik) [1] TRUE > aeq(fit1$var, fit2$var) [1] TRUE > aeq(fit1$score, fit2$score) [1] TRUE > aeq(fit1$resid, fit2$resid) [1] TRUE > > proc.time() user system elapsed 0.934 0.064 0.993 survival/tests/pyear.Rout.save0000644000176200001440000004146113537676563016252 0ustar liggesusers R Under development (unstable) (2016-03-23 r70368) -- "Unsuffered Consequences" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > {if (is.R()) mdy.date <- function(m, d, y) { + y <- ifelse(y<100, y+1900, y) + as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") + } + else mdy.date <- function(m,d,y) { + y <- ifelse(y<100, y+1900, y) + timeDate(paste(y, m, d, sep='/'), in.format="%Y/%m/%d") + } + } > > # > # Simple case: a single male subject, born 6/6/36 and entered on study 6/6/55. > # > > temp1 <- mdy.date(6,6,36) > temp2 <- mdy.date(6,6,55)# Now compare the results from person-years > # > temp.age <- tcut(temp2-temp1, floor(c(-1, (18:31 * 365.24))), + labels=c('0-18', paste(18:30, 19:31, sep='-'))) > temp.yr <- tcut(temp2, mdy.date(1,1,1954:1965), labels=1954:1964) > temp.time <- 3700 #total days of fu > py1 <- pyears(temp.time ~ temp.age + temp.yr, scale=1) #output in days > > # The subject should appear in 20 cells > # 6/6/55 - 12/31/55, 209 days, age 19-20, 1955 > # 1/1/56 - 6/ 4/56, 156 days, age 19-20, 1956 > # 6/5/56 - 12/31/56, 210 days, age 20-21, 1956 (a leap year, and his > # birthday computes one day earlier) > # 1/1/57 - 6/ 5/57, 156 days, age 20-21, 1957 > # 6/6/57 - 12/31/57, 209 days, age 21-22, 1957 > # and etc > # with 203 days "off table", ie, beyond the last cell of the table > # > # It is a nuisance, but tcut follows 'cut' in that we give the ENDS of > # the intervals, whereas the survival tables use the starts of intervals. > # Thus this breakdown does not match that in doexpect.s > # > xx <- matrix(0, nrow=14, ncol=11) > xx[cbind(3:11, 3:11)] <- 156 > xx[cbind(3:12, 2:11)] <- c(209, 210, rep(c(209, 209, 209, 210),2)) > dimnames(xx) <- list(temp.age= c('0-18', paste(18:30, 19:31, sep='-')), + temp.yr = 1954:1964) > all.equal(xx, py1$pyears) [1] TRUE > all.equal(203, py1$offtable) [1] TRUE > all.equal(1*(xx>0), py1$n) [1] TRUE > > # > # Now with expecteds > # > py2 <- pyears(temp.time ~ temp.age + temp.yr + + ratetable(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us ) #output in days > all.equal(xx, py2$pyears) [1] TRUE > all.equal(203, py2$offtable) [1] TRUE > all.equal(1*(xx>0), py2$n) [1] TRUE > > py2b <- pyears(temp.time ~ temp.age + temp.yr, + rmap = list(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us ) #output in days > all.equal(xx, py2b$pyears) [1] TRUE > all.equal(203, py2b$offtable) [1] TRUE > all.equal(1*(xx>0), py2b$n) [1] TRUE > all.equal(py2$expected, py2b$expected) [1] TRUE > > > > py3 <- pyears(temp.time ~ temp.age + temp.yr, + rmap=list(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us , expect='pyears') > all.equal(py2$n, py3$n) [1] TRUE > all.equal(py2$pyear, py3$pyear) [1] TRUE > all.equal(py3$n, 1*(py3$expect>0)) [1] TRUE > > # Now, compute the py3 result "by hand". Since there is only one person > # it can be derived from py2. > # > xx1 <- py2$expect[py2$n>0] # the hazard over each interval > cumhaz <- cumsum(c(0, xx1[-length(xx1)])) # the cumulative hazard > xx2 <- py3$expect[py3$n>0] # the expected number of person days > xx3 <- py3$pyears[py3$n>0] # the potential number of person days > > # This is the integral of the curve "exp(-haz *t)" over the interval > integral <- xx3 * exp(-cumhaz)* (1- exp(-xx1))/ xx1 > # They might not be exactly equal, since the C code tracks changes in the > # rate tables that occur -within- an interval. So try for 6 digits > all.equal(round(integral,3), round(xx2,3)) [1] TRUE > > # Cut off the bottom of the table, instead of the side > temp.age <- tcut(temp2-temp1, floor(c(-1, (18:27 * 365.24))), + labels=c('0-18', paste(18:26, 19:27, sep='-'))) > > py4 <- eval(py3$call) > all.equal(py4$pyear, py3$pyear[1:10,]) [1] TRUE > all.equal(py4$expect, py3$expect[1:10,]) [1] TRUE > > > rm(temp.age, integral, xx1, xx2, xx3, cumhaz, py1, py2, py3, py4) > rm(temp1, temp2, temp.yr, temp.time, xx) > > > > > # > # Simple case: a single male subject, born 6/6/36 and entered on study 6/6/55. > # > > temp1 <- mdy.date(6,6,36) > temp2 <- mdy.date(6,6,55)# Now compare the results from person-years > # > temp.age <- tcut(temp2-temp1, floor(c(-1, (18:31 * 365.24))), + labels=c('0-18', paste(18:30, 19:31, sep='-'))) > temp.yr <- tcut(temp2, mdy.date(1,1,1954:1965), labels=1954:1964) > temp.time <- 3700 #total days of fu > py1 <- pyears(temp.time ~ temp.age + temp.yr, scale=1) #output in days > > # The subject should appear in 20 cells > # 6/6/55 - 12/31/55, 209 days, age 19-20, 1955 > # 1/1/56 - 6/ 4/56, 156 days, age 19-20, 1956 > # 6/5/56 - 12/31/56, 210 days, age 20-21, 1956 (a leap year, and his > # birthday computes one day earlier) > # 1/1/57 - 6/ 5/57, 156 days, age 20-21, 1957 > # 6/6/57 - 12/31/57, 209 days, age 21-22, 1957 > # and etc > # with 203 days "off table", ie, beyond the last cell of the table > # > # It is a nuisance, but tcut follows 'cut' in that we give the ENDS of > # the intervals, whereas the survival tables use the starts of intervals. > # > xx <- matrix(0, nrow=14, ncol=11) > xx[cbind(3:11, 3:11)] <- 156 > xx[cbind(3:12, 2:11)] <- c(209, 210, rep(c(209, 209, 209, 210),2)) > dimnames(xx) <- list(temp.age= c('0-18', paste(18:30, 19:31, sep='-')), + temp.yr = 1954:1964) > all.equal(xx, py1$pyears) [1] TRUE > all.equal(203, py1$offtable) [1] TRUE > all.equal(1*(xx>0), py1$n) [1] TRUE > > # > # Now with expecteds > # > py2 <- pyears(temp.time ~ temp.age + temp.yr + + ratetable(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us ) #output in days > all.equal(xx, py2$pyears) [1] TRUE > all.equal(203, py2$offtable) [1] TRUE > all.equal(1*(xx>0), py2$n) [1] TRUE > > > py3 <- pyears(temp.time ~ temp.age + temp.yr + + ratetable(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us , expect='pyears') > all.equal(py2$n, py3$n) [1] TRUE > all.equal(py2$pyear, py3$pyear) [1] TRUE > all.equal(py3$n, 1*(py3$expect>0)) [1] TRUE > > # Now, compute the py3 result "by hand". Since there is only one person > # it can be derived from py2. > # > xx1 <- py2$expect[py2$n>0] # the hazard over each interval > cumhaz <- cumsum(c(0, xx1[-length(xx1)])) # the cumulative hazard > xx2 <- py3$expect[py3$n>0] # the expected number of person days > xx3 <- py3$pyears[py3$n>0] # the potential number of person days > > # This is the integral of the curve "exp(-haz *t)" over the interval > integral <- xx3 * exp(-cumhaz)* (1- exp(-xx1))/ xx1 > # They might not be exactly equal, since the C code tracks changes in the > # rate tables that occur -within- an interval. So try for 6 digits > all.equal(round(integral,3), round(xx2,3)) [1] TRUE > > # Cut off the bottom of the table, instead of the side > temp.age <- tcut(temp2-temp1, floor(c(-1, (18:27 * 365.24))), + labels=c('0-18', paste(18:26, 19:27, sep='-'))) > > py4 <- eval(py3$call) > all.equal(py4$pyear, py3$pyear[1:10,]) [1] TRUE > all.equal(py4$expect, py3$expect[1:10,]) [1] TRUE > > > rm(temp.age, integral, xx1, xx2, xx3, cumhaz, py1, py2, py3, py4) > rm(temp1, temp2, temp.yr, temp.time, xx) > > > > > # > # Create a "user defined" rate table, using the smoking data > # > temp <- scan("data.smoke")/100000 Read 224 items > temp <- matrix(temp, ncol=8, byrow=T) > smoke.rate <- c(rep(temp[,1],6), rep(temp[,2],6), temp[,3:8]) > attributes(smoke.rate) <- list( + dim=c(7,2,2,6,3), + dimnames=list(c("45-49","50-54","55-59","60-64","65-69","70-74","75-79"), + c("1-20", "21+"), + c("Male","Female"), + c("<1", "1-2", "3-5", "6-10", "11-15", ">=16"), + c("Never", "Current", "Former")), + dimid=c("age", "amount", "sex", "duration", "status"), + factor=c(0,1,1,0,1), + cutpoints=list(c(45,50,55,60,65,70,75),NULL, NULL, + c(0,1,3,6,11,16),NULL), + class='ratetable' + ) > rm(temp) > > is.ratetable(smoke.rate) [1] TRUE > summary(smoke.rate) Rate table with 5 dimensions: age ranges from 45 to 75; with 7 categories amount has levels of: 1-20 21+ sex has levels of: Male Female duration ranges from 0 to 16; with 6 categories status has levels of: Never Current Former > print(smoke.rate) Rate table with dimension(s): age amount sex duration status , , Male, <1, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, <1, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, 1-2, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, 1-2, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, 3-5, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, 3-5, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, 6-10, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, 6-10, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, 11-15, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, 11-15, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, >=16, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, >=16, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, <1, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, <1, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, 1-2, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, 1-2, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, 3-5, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, 3-5, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, 6-10, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, 6-10, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, 11-15, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, 11-15, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, >=16, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, >=16, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, <1, Former 1-20 21+ 45-49 0.002344 0.004975 50-54 0.005447 0.004828 55-59 0.009452 0.017571 60-64 0.011777 0.015784 65-69 0.022449 0.023018 70-74 0.042553 0.031746 75-79 0.058824 0.040000 , , Female, <1, Former 1-20 21+ 45-49 0.000000 0.002667 50-54 0.001168 0.001387 55-59 0.002874 0.004736 60-64 0.010163 0.011148 65-69 0.011080 0.023196 70-74 0.006452 0.046358 75-79 0.000000 0.024096 , , Male, 1-2, Former 1-20 21+ 45-49 0.003658 0.002517 50-54 0.004310 0.005007 55-59 0.007288 0.009535 60-64 0.015892 0.018472 65-69 0.033803 0.037766 70-74 0.050830 0.029740 75-79 0.065972 0.044248 , , Female, 1-2, Former 1-20 21+ 45-49 0.004339 0.001027 50-54 0.000921 0.004668 55-59 0.002595 0.006020 60-64 0.003650 0.008621 65-69 0.013485 0.012500 70-74 0.014831 0.025172 75-79 0.025806 0.057692 , , Male, 3-5, Former 1-20 21+ 45-49 0.001596 0.004175 50-54 0.004548 0.004889 55-59 0.007294 0.010258 60-64 0.013165 0.017901 65-69 0.023749 0.020810 70-74 0.044850 0.037129 75-79 0.077075 0.073298 , , Female, 3-5, Former 1-20 21+ 45-49 0.002120 0.001786 50-54 0.002895 0.002701 55-59 0.003759 0.003610 60-64 0.006509 0.006996 65-69 0.012632 0.016880 70-74 0.012500 0.016873 75-79 0.025907 0.031250 , , Male, 6-10, Former 1-20 21+ 45-49 0.002169 0.001226 50-54 0.003497 0.004029 55-59 0.005902 0.007440 60-64 0.012669 0.012207 65-69 0.018202 0.027664 70-74 0.038887 0.039888 75-79 0.049451 0.063830 , , Female, 6-10, Former 1-20 21+ 45-49 0.001072 0.002247 50-54 0.002009 0.001902 55-59 0.001658 0.004545 60-64 0.004708 0.005417 65-69 0.008648 0.008287 70-74 0.011263 0.028487 75-79 0.039604 0.029787 , , Male, 11-15, Former 1-20 21+ 45-49 0.001674 0.001983 50-54 0.002140 0.003939 55-59 0.004473 0.006685 60-64 0.008756 0.011000 65-69 0.016691 0.022681 70-74 0.031843 0.032686 75-79 0.056180 0.076661 , , Female, 11-15, Former 1-20 21+ 45-49 0.001359 0.001421 50-54 0.001213 0.001168 55-59 0.002022 0.004122 60-64 0.005706 0.003731 65-69 0.005866 0.007979 70-74 0.010705 0.016212 75-79 0.016667 0.028037 , , Male, >=16, Former 1-20 21+ 45-49 0.001595 0.001934 50-54 0.002504 0.003543 55-59 0.004366 0.005378 60-64 0.007030 0.009933 65-69 0.011592 0.012307 70-74 0.021949 0.024689 75-79 0.041289 0.050481 , , Female, >=16, Former 1-20 21+ 45-49 0.000910 0.001388 50-54 0.001721 0.000830 55-59 0.002472 0.001821 60-64 0.003197 0.003564 65-69 0.006180 0.005815 70-74 0.012721 0.013634 75-79 0.018615 0.021954 > > summary(smoke.rate[1:3,,1,,]) #test subscripting Rate table with 4 dimensions: age ranges from 45 to 55; with 3 categories amount has levels of: 1-20 21+ duration ranges from 0 to 16; with 6 categories status has levels of: Never Current Former > > proc.time() user system elapsed 0.416 0.032 0.446 survival/tests/fr_ovarian.R0000644000176200001440000000065713537676563015575 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test on the ovarian data fit1 <- coxph(Surv(futime, fustat) ~ rx + age, ovarian) fit2 <- coxph(Surv(futime, fustat) ~ rx + pspline(age, df=2), data=ovarian) fit2$iter fit2$df fit2$history fit4 <- coxph(Surv(futime, fustat) ~ rx + pspline(age, df=4), data=ovarian) fit4 survival/tests/infcox.Rout.save0000644000176200001440000000424713537676563016421 0ustar liggesusers R Under development (unstable) (2019-05-15 r76504) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # A test to exercise the "infinity" check on 2 variables > # > test3 <- data.frame(futime=1:12, fustat=c(1,0,1,0,1,0,0,0,0,0,0,0), + x1=rep(0:1,6), x2=c(rep(0,6), rep(1,6))) > > # This will produce a warning message, which is the point of the test. > # The variance is close to singular and gives different answers > # on different machines > fit3 <- coxph(Surv(futime, fustat) ~ x1 + x2, test3, iter=25) Warning message: In fitter(X, Y, istrat, offset, init, control, weights = weights, : Loglik converged before variable 1,2 ; coefficient may be infinite. > > all(fit3$coef < -22) [1] TRUE > all.equal(round(fit3$log, 4),c(-6.8669, -1.7918)) [1] TRUE > > # > # Actual solution > # time 1, 12 at risk, 3 each of x1/x2 = 00, 01, 10, 11 > # time 2, 10 at risk, 2, 3, 2 , 3 > # time 5, 8 at risk, 1, 3, 1, 3 > # Let r1 = exp(beta1), r2= exp(beta2) > # loglik = -log(3 + 3r1 + 3r2 + 3 r1*r2) - log(2 + 2r1 + 3r2 + 3 r1*r2) - > # log(1 + r1 + 3r2 + 3 r1*r2) > true <- function(beta) { + r1 <- exp(beta[1]) + r2 <- exp(beta[2]) + loglik <- -log(3*(1+ r1+ r2+ r1*r2)) - log(2+ 2*r1 + 3*r2 + 3*r1*r2) - + log(1 + r1 + 3*r2 + 3*r1*r2) + loglik + } > > all.equal(fit3$loglik[2], true(fit3$coef), check.attributes=FALSE) [1] TRUE > > proc.time() user system elapsed 0.772 0.024 0.798 survival/tests/difftest.R0000644000176200001440000000314413537676563015251 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test some more features of surv.diff # # First, what happens when one group is a dummy # # # The AML data, with a third group of early censorings "tacked on" # aml3 <- list(time= c( 9, 13, 13, 18, 23, 28, 31, 34, 45, 48, 161, 5, 5, 8, 8, 12, 16, 23, 27, 30, 33, 43, 45, 1, 2, 2, 3, 3, 3, 4), status= c( 1,1,0,1,1,0,1,1,0,1,0, 1,1,1,1,1,0,1,1,1,1,1,1, 0,0,0,0,0,0,0), x = as.factor(c(rep("Maintained", 11), rep("Nonmaintained", 12), rep("Dummy",7) ))) aml3 <- data.frame(aml3) # These should give the same result (chisq, df), but the second has an # extra group survdiff(Surv(time, status) ~x, aml) survdiff(Surv(time, status) ~x, aml3) # # Now a test of the stratified log-rank # There are no tied times within institution, so the coxph program # can be used to give a complete test # fit <- survdiff(Surv(time, status) ~ pat.karno + strata(inst), cancer) cfit <- coxph(Surv(time, status) ~ factor(pat.karno) + strata(inst), cancer, iter=0) tdata <- na.omit(cancer[,c('time', 'status', 'pat.karno', 'inst')]) temp1 <- tapply(tdata$status-1, list(tdata$pat.karno, tdata$inst), sum) temp1 <- ifelse(is.na(temp1), 0, temp1) temp2 <- tapply(cfit$resid, list(tdata$pat.karno, tdata$inst), sum) temp2 <- ifelse(is.na(temp2), 0, temp2) temp2 <- temp1 - temp2 #Now temp1=observed, temp2=expected all.equal(c(temp1), c(fit$obs)) all.equal(c(temp2), c(fit$exp)) all.equal(fit$var[-1,-1], solve(cfit$var)) rm(tdata, temp1, temp2) survival/tests/r_sas.Rout.save0000644000176200001440000004170013537676603016230 0ustar liggesusers R Under development (unstable) (2019-03-27 r76274) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Reproduce example 1 in the SAS lifereg documentation > # > > # this fit doesn't give the same log-lik that they claim > fit1 <- survreg(Surv(time, status) ~ I(1000/(273.2+temp)), imotor, + subset=(temp>150), dist='lognormal') > summary(fit1) Call: survreg(formula = Surv(time, status) ~ I(1000/(273.2 + temp)), data = imotor, subset = (temp > 150), dist = "lognormal") Value Std. Error z p (Intercept) -10.471 2.772 -3.78 0.00016 I(1000/(273.2 + temp)) 8.322 1.284 6.48 9.1e-11 Log(scale) -0.504 0.183 -2.75 0.00596 Scale= 0.604 Log Normal distribution Loglik(model)= -145.9 Loglik(intercept only)= -155 Chisq= 18.3 on 1 degrees of freedom, p= 1.9e-05 Number of Newton-Raphson Iterations: 6 n= 30 > > # This one, with the loglik on the transformed scale (the inappropriate > # scale, Ripley & Venables would argue) does agree. > # All coefs are of course identical. > fit2 <- survreg(Surv(log(time), status) ~ I(1000/(273.2+temp)), imotor, + subset=(temp>150), dist='gaussian') > > > # Give the quantile estimates, which is the lower half of "output 48.1.5" > # in the SAS 9.2 manual > > pp1 <- predict(fit1, newdata=list(temp=c(130,150)), p=c(.1, .5, .9), + type='quantile', se=T) > pp2 <- predict(fit1, newdata=list(temp=c(130,150)), p=c(.1, .5, .9), + type='uquantile', se=T) > pp1 $fit [,1] [,2] [,3] [1,] 12033.185 26095.677 56592.20 [2,] 4536.877 9838.864 21336.98 $se.fit [,1] [,2] [,3] [1,] 5482.338 11359.450 26036.917 [2,] 1443.072 2901.155 7172.343 > > temp130 <- matrix(0, nrow=3, ncol=6) > temp130[,1] <- pp1$fit[1,] > temp130[,2] <- pp1$se.fit[1,] > temp130[,3] <- pp2$fit[1,] > temp130[,4] <- pp2$se.fit[1,] > temp130[,5] <- exp(pp2$fit[1,] - 1.64*pp2$se.fit[1,]) > temp130[,6] <- exp(pp2$fit[1,] + 1.64*pp2$se.fit[1,]) > dimnames(temp130) <- list(c("p=.1", "p=.2", "p=.3"), + c("Time", "se(time)", "log(time)", "se[log(time)]", + "lower 90", "upper 90")) > print(temp130) Time se(time) log(time) se[log(time)] lower 90 upper 90 p=.1 12033.18 5482.338 9.395424 0.4556015 5700.089 25402.68 p=.2 26095.68 11359.450 10.169525 0.4353001 12779.950 53285.37 p=.3 56592.20 26036.917 10.943626 0.4600796 26611.422 120349.71 > > # A set of examples, copied from the manual pages of SAS procedure > # "reliability", which is part of their QC product. > # > > color <- c("black", "red", "green", "blue", "magenta", "red4", + "orange", "DarkGreen", "cyan2", "DarkViolet") > palette(color) > pdf(file='reliability.pdf') > > # > # Insulating fluids example > # > > # Adding a -1 to the fit just causes the each group to have it's own > # intercept, rather than a global intercept + constrasts. The strata > # statement allows each to have a separate scale > ffit <- survreg(Surv(time) ~ factor(voltage) + strata(voltage) -1, ifluid) > > # Get predicted quantiles at each of the voltages > # By default predict() would give a line of results for each observation, > # I only want the unique set of x's, i.e., only 4 cases > uvolt <- sort(unique(ifluid$voltage)) #the unique levels > plist <- c(1, 2, 5, 1:9 *10, 95, 99)/100 > pred <- predict(ffit, type='quantile', p=plist, + newdata=data.frame(voltage=uvolt)) > tfun <- function(x) log(-log(1-x)) > > matplot(t(pred), tfun(plist), type='l', log='x', lty=1, + col=1:4, yaxt='n', + xlab="Predicted", ylab="Quantile") > axis(2, tfun(plist), format(100*plist), adj=1) > > kfit <- survfit(Surv(time) ~ voltage, ifluid, type='fleming') #KM fit > for (i in 1:4) { + temp <- kfit[i] + points(temp$time, tfun(1-temp$surv), col=i, pch=i) + } > > # Now a table > temp <- array(0, dim=c(4,4,4)) #4 groups by 4 parameters by 4 stats > temp[,1,1] <- ffit$coef # "EV Location" in SAS manual > temp[,2,1] <- ffit$scale # "EV scale" > temp[,3,1] <- exp(ffit$coef) # "Weibull Scale" > temp[,4,1] <- 1/ffit$scale # "Weibull Shape" > > temp[,1,2] <- sqrt(diag(ffit$var))[1:4] #standard error > temp[,2,2] <- sqrt(diag(ffit$var))[5:8] * ffit$scale > temp[,3,2] <- temp[,1,2] * temp[,3,1] > temp[,4,2] <- temp[,2,2] / (temp[,2,1])^2 > > temp[,1,3] <- temp[,1,1] - 1.96*temp[,1,2] #lower conf limits > temp[,1,4] <- temp[,1,1] + 1.96*temp[,1,2] # upper > # log(scale) is the natural parameter, in which the routine did its fitting > # and on which the std errors were computed > temp[,2, 3] <- exp(log(ffit$scale) - 1.96*sqrt(diag(ffit$var))[5:8]) > temp[,2, 4] <- exp(log(ffit$scale) + 1.96*sqrt(diag(ffit$var))[5:8]) > > temp[,3, 3:4] <- exp(temp[,1,3:4]) > temp[,4, 3:4] <- 1/temp[,2,4:3] > > dimnames(temp) <- list(uvolt, c("EV Location", "EV Scale", "Weibull scale", + "Weibull shape"), + c("Estimate", "SE", "lower 95% CI", "uppper 95% CI")) > print(aperm(temp, c(2,3,1)), digits=5) , , 26 Estimate SE lower 95% CI uppper 95% CI EV Location 6.86249 1.10404 4.69857 9.0264 EV Scale 1.83423 0.96114 0.65677 5.1227 Weibull scale 955.74665 1055.18620 109.78973 8320.0103 Weibull shape 0.54519 0.28568 0.19521 1.5226 , , 30 Estimate SE lower 95% CI uppper 95% CI EV Location 4.35133 0.30151 3.76037 4.9423 EV Scale 0.94446 0.22544 0.59156 1.5079 Weibull scale 77.58159 23.39176 42.96420 140.0911 Weibull shape 1.05881 0.25274 0.66318 1.6904 , , 34 Estimate SE lower 95% CI uppper 95% CI EV Location 2.50326 0.31476 1.88632 3.1202 EV Scale 1.29732 0.22895 0.91796 1.8334 Weibull scale 12.22222 3.84707 6.59509 22.6506 Weibull shape 0.77082 0.13603 0.54542 1.0894 , , 38 Estimate SE lower 95% CI uppper 95% CI EV Location 0.00092629 0.27318 -0.53450 0.53635 EV Scale 0.73367610 0.20380 0.42565 1.26460 Weibull scale 1.00092672 0.27343 0.58596 1.70976 Weibull shape 1.36299929 0.37861 0.79077 2.34933 > > rm(temp, uvolt, plist, pred, ffit, kfit) > > ##################################################################### > # Turbine cracks data > crack2 <- with(cracks, data.frame(day1=c(NA, days), day2=c(days, NA), + n=c(fail, 167-sum(fail)))) > cfit <- survreg(Surv(day1, day2, type='interval2') ~1, + dist='weibull', data=crack2, weight=n) > > summary(cfit) Call: survreg(formula = Surv(day1, day2, type = "interval2") ~ 1, data = crack2, weights = n, dist = "weibull") Value Std. Error z p (Intercept) 7.6880 0.0744 103.30 < 2e-16 Log(scale) -0.3953 0.0987 -4.01 6.2e-05 Scale= 0.674 Weibull distribution Loglik(model)= -309.6 Loglik(intercept only)= -309.6 Number of Newton-Raphson Iterations: 5 n= 9 > #Their output also has Wiebull scale = exp(cfit$coef), shape = 1/(cfit$scale) > > # Draw the SAS plot > # The "type=fleming" argument reflects that they estimate hazards rather than > # survival, and forces a Nelson-Aalen hazard estimate > # > plist <- c(1, 2, 5, 1:8 *10)/100 > plot(qsurvreg(plist, cfit$coef, cfit$scale), tfun(plist), log='x', + yaxt='n', type='l', + xlab="Weibull Plot for Time", ylab="Percent") > axis(2, tfun(plist), format(100*plist), adj=1) > > kfit <- survfit(Surv(day1, day2, type='interval2') ~1, data=crack2, + weight=n, type='fleming') > # Only plot point where n.event > 0 > # Why? I'm trying to match them. Personally, all should be plotted. > who <- (kfit$n.event > 0) > points(kfit$time[who], tfun(1-kfit$surv[who]), pch='+') > points(kfit$time[who], tfun(1-kfit$upper[who]), pch='-') > points(kfit$time[who], tfun(1-kfit$lower[who]), pch='-') > > text(rep(3,6), seq(.5, -1.0, length=6), + c("Scale", "Shape", "Right Censored", "Left Censored", + "Interval Censored", "Fit"), adj=0) > text(rep(9,6), seq(.5, -1.0, length=6), + c(format(round(exp(cfit$coef), 2)), + format(round(1/cfit$scale, 2)), + format(tapply(crack2$n, cfit$y[,3], sum)), "ML"), adj=1) > > # Now a portion of his percentiles table > # I don't get the same SE as SAS, I haven't checked out why. The > # estimates and se for the underlying Weibull model are the same. > temp <- predict(cfit, type='quantile', p=plist, se=T) > tempse <- sqrt(temp$se[1,]) > mat <- cbind(temp$fit[1,], tempse, + temp$fit[1,] -1.96*tempse, temp$fit[1,] + 1.96*tempse) > dimnames(mat) <- list(plist*100, c("Estimate", "SE", "Lower .95", "Upper .95")) > print(mat) Estimate SE Lower .95 Upper .95 1 98.47183 5.321676 88.04134 108.9023 2 157.59360 6.186246 145.46856 169.7186 5 295.17088 7.377034 280.71189 309.6299 10 479.31737 8.227489 463.19149 495.4432 20 794.55351 8.951640 777.00829 812.0987 30 1089.70373 9.404613 1071.27068 1108.1368 40 1387.95516 9.983696 1368.38712 1407.5232 50 1704.71015 10.888487 1683.36872 1726.0516 60 2057.23906 12.217230 2033.29329 2081.1848 70 2472.58593 14.035515 2445.07632 2500.0955 80 3006.43572 16.510569 2974.07501 3038.7964 > > # > # The cracks data has a particularly easy estimate, so use > # it to double check code > time <- c(crack2$day2[1], (crack2$day1 + crack2$day2)[2:8]/2, + crack2$day1[9]) > cdf <- cumsum(crack2$n)/sum(crack2$n) > all.equal(kfit$time, time) [1] TRUE > all.equal(kfit$surv, 1-cdf[c(1:8,8)]) [1] TRUE > rm(time, cdf, kfit) > > > ####################################################### > # > # Replacement of valve seats in diesel engines > # The input data has id, time, and an indicator of whether there was an > # event at that time: 0=no, 1=yes. No one has an event at their last time. > # The input data has two engines with dual failures: 328 loses 2 valves at > # time 653, and number 402 loses 2 at time 139. For each, fudge the first > # time to be .1 days earlier. > # > ties <- which(diff(valveSeat$time)==0 & diff(valveSeat$id)==0) > temp <- valveSeat$time > temp[ties] <- temp[ties] - .1 > n <- length(temp) > first <- !duplicated(valveSeat$id) > vtemp <- with(valveSeat, data.frame(id =id, + time1= ifelse(first, 0, c(0, temp[-n])), + time2= temp, status=status)) > kfit <- survfit(Surv(time1, time2, status) ~1, vtemp, id=id) > > plot(kfit, fun='cumhaz', ylab="Sample Mean Cumulative Failures", xlab='Time') > title("Valve replacement data") > > # The summary.survfit function doesn't have an option for printing out > # cumulative hazards instead of survival --- need to add that > # so I just reprise the central code of print.summary.survfit > xx <- summary(kfit) > temp <- cbind(xx$time, xx$n.risk, xx$n.event, -log(xx$surv), + xx$std.err/xx$surv, -log(xx$upper), -log(xx$lower)) > dimnames(temp) <- list(rep("", nrow(temp)), + c("time", "n.risk", "n.event", "Cum haz", "std.err", + "lower 95%", "upper 95%")) > print(temp, digits=2) time n.risk n.event Cum haz std.err lower 95% upper 95% 61 41 1 0.025 0.025 0.0000 0.073 76 41 1 0.049 0.034 0.0000 0.117 84 41 1 0.074 0.042 0.0000 0.156 87 41 1 0.099 0.047 0.0057 0.192 92 41 1 0.123 0.052 0.0208 0.226 98 41 1 0.148 0.057 0.0373 0.259 120 41 1 0.173 0.060 0.0548 0.291 139 41 1 0.198 0.063 0.0732 0.322 139 41 1 0.222 0.075 0.0750 0.369 165 41 1 0.247 0.077 0.0954 0.398 166 41 1 0.272 0.079 0.1163 0.427 202 41 1 0.296 0.081 0.1376 0.455 206 41 1 0.321 0.090 0.1452 0.497 249 41 1 0.346 0.091 0.1675 0.524 254 41 1 0.370 0.092 0.1903 0.551 258 41 1 0.395 0.093 0.2133 0.577 265 41 1 0.420 0.093 0.2368 0.603 276 41 1 0.444 0.100 0.2479 0.641 298 41 1 0.469 0.112 0.2490 0.689 323 41 1 0.494 0.112 0.2734 0.714 326 41 1 0.519 0.112 0.2981 0.739 328 41 1 0.543 0.118 0.3124 0.774 344 41 1 0.568 0.118 0.3376 0.798 348 41 1 0.593 0.127 0.3430 0.842 349 41 1 0.617 0.127 0.3686 0.866 367 41 1 0.642 0.126 0.3945 0.890 377 41 1 0.667 0.135 0.4018 0.932 404 40 1 0.692 0.139 0.4189 0.965 408 40 1 0.717 0.143 0.4365 0.998 410 40 1 0.743 0.143 0.4631 1.022 449 40 1 0.768 0.146 0.4813 1.055 479 40 1 0.793 0.150 0.4998 1.087 497 40 1 0.819 0.153 0.5187 1.118 538 40 1 0.844 0.156 0.5380 1.150 539 40 1 0.869 0.159 0.5576 1.181 561 40 1 0.895 0.166 0.5696 1.220 563 40 1 0.920 0.168 0.5898 1.250 570 40 1 0.945 0.175 0.6029 1.287 573 40 1 0.971 0.173 0.6310 1.310 581 38 1 0.997 0.176 0.6532 1.341 586 34 1 1.027 0.178 0.6777 1.376 604 22 1 1.074 0.190 0.7009 1.446 621 17 1 1.134 0.214 0.7144 1.554 635 16 1 1.199 0.214 0.7795 1.618 640 16 1 1.263 0.235 0.8033 1.723 646 13 1 1.343 0.238 0.8775 1.809 653 9 1 1.461 0.266 0.9394 1.983 653 9 1 1.579 0.336 0.9201 2.238 > > # Note that I have the same estimates but different SE's. We are using a > # different estimator. It's a statistical argument as to which is > # better (one could defend both sides): do you favor JASA or Technometrics? > rm(temp, kfit, xx) > > ###################################################### > # Turbine data, lognormal fit > turbine <- read.table('data.turbine', + col.names=c("time1", "time2", "n")) > > tfit <- survreg(Surv(time1, time2, type='interval2') ~1, turbine, + dist='lognormal', weights=n, subset=(n>0)) > > summary(tfit) Call: survreg(formula = Surv(time1, time2, type = "interval2") ~ 1, data = turbine, weights = n, subset = (n > 0), dist = "lognormal") Value Std. Error z p (Intercept) 3.6999 0.0708 52.23 <2e-16 Log(scale) -0.3287 0.1232 -2.67 0.0076 Scale= 0.72 Log Normal distribution Loglik(model)= -190.7 Loglik(intercept only)= -190.7 Number of Newton-Raphson Iterations: 6 n= 21 > > # Now, do his plot, but put bootstrap confidence bands on it! > # First, make a simple data set without weights > tdata <- turbine[rep(1:nrow(turbine), turbine$n),] > > qstat <- function(data) { + temp <- survreg(Surv(time1, time2, type='interval2') ~1, data=data, + dist='lognormal') + qsurvreg(plist, temp$coef, temp$scale, dist='lognormal') + } > > {if (exists('bootstrap')) { + set.seed(1953) # a good year :-) + bfit <- bootstrap(tdata, qstat, B=1000) + bci <- limits.bca(bfit, probs=c(.025, .975)) + } + else { + values <- matrix(0, nrow=1000, ncol=length(plist)) + n <- nrow(tdata) + for (i in 1:1000) { + subset <- sample(1:n, n, replace=T) + values[i,] <- qstat(tdata[subset,]) + } + bci <- t(apply(values,2, quantile, c(.05, .95))) + } + } > xmat <- cbind(qsurvreg(plist, tfit$coef, tfit$scale, dist='lognormal'), + bci) > > > matplot(xmat, qnorm(plist), + type='l', lty=c(1,2,2), col=c(1,1,1), + log='x', yaxt='n', ylab='Percent', + xlab='Time of Cracking (Hours x 100)') > axis(2, qnorm(plist), format(100*plist), adj=1) > title("Turbine Data") > kfit <- survfit(Surv(time1, time2, type='interval2') ~1, data=tdata) > points(kfit$time, qnorm(1-kfit$surv), pch='+') > > dev.off() #close the plot file pdf 2 > > > proc.time() user system elapsed 2.414 0.067 2.476 survival/tests/data.turbine0000644000176200001440000000217313537676563015622 0ustar liggesusersNA 4 0 4 NA 39 NA 10 4 10 NA 49 NA 14 2 14 NA 31 NA 18 7 18 NA 66 NA 22 5 22 NA 25 NA 26 9 26 NA 30 NA 30 9 30 NA 33 NA 34 6 34 NA 7 NA 38 22 38 NA 12 NA 42 21 42 NA 19 NA 46 21 46 NA 15 survival/tests/fr_lung.Rout.save0000644000176200001440000000262013537676563016560 0ustar liggesusers R version 2.11.1 (2010-05-31) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # A test with the lung data > # This caused problems in one release > > # > # First, get rid of some missings > # > lung2 <- na.omit(lung[c('time', 'status', 'wt.loss')]) > > # > # Test the logliklihoods > # > fit <- coxph(Surv(time, status) ~ pspline(wt.loss,3), lung2, x=T) > fit0<- coxph(Surv(time, status) ~ 1, lung2) > fit1<- coxph(Surv(time, status) ~ fit$x, lung2, iter=0, init=fit$coef) > > all.equal(fit$loglik[1], fit0$loglik) [1] TRUE > all.equal(fit$loglik[2], fit1$loglik[2]) [1] TRUE > > # > # Check variances > # > imat <- solve(fit1$var) > var2 <- fit$var %*% imat %*% fit$var > all.equal(fit$var2, var2) [1] TRUE > survival/tests/r_strata.R0000644000176200001440000000443713537676563015266 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test out the strata capabilities # tol <- survreg.control()$rel.tolerance aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y), ...) # intercept only models fit1 <- survreg(Surv(time, status) ~ strata(sex), lung) fit2 <- survreg(Surv(time, status) ~ strata(sex) + sex, lung) fit3a<- survreg(Surv(time,status) ~1, lung, subset=(sex==1)) fit3b<- survreg(Surv(time,status) ~1, lung, subset=(sex==2)) fit1 fit2 aeq(fit2$scale, c(fit3a$scale, fit3b$scale), tolerance=tol) aeq(fit2$loglik[2], (fit3a$loglik + fit3b$loglik)[2], tolerance=tol) aeq(fit2$coef[1] + 1:2*fit2$coef[2], c(fit3a$coef, fit3b$coef), tolerance=tol) #penalized models fit1 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+ strata(sex), lung) fit2 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+ strata(sex) + sex, lung) fit1 fit2 age1 <- ifelse(lung$sex==1, lung$age, mean(lung$age)) age2 <- ifelse(lung$sex==2, lung$age, mean(lung$age)) fit3 <- survreg(Surv(time,status) ~ pspline(age1, theta=.92) + pspline(age2, theta=.95) + sex + strata(sex), lung) fit3a<- survreg(Surv(time,status) ~pspline(age, theta=.92), lung, subset=(sex==1)) fit3b<- survreg(Surv(time,status) ~pspline(age, theta=.95), lung, subset=(sex==2)) fit3b<- survreg(Surv(time,status) ~pspline(age, theta=.95), lung[lung$sex==2,], x=T) # # The above line is tricky, and it took me a long time to realize # it's necessity. The range of age1 = range(age) = 39-82. That for # age2 = range of females = 41-77. The basis functions for pspline are # based on age. If I used data=lung, subset=(sex==2) in fit3b (earlier # form of the test, the pspline function is called before the subset # occurs, and fit3b has a different basis for the second spline than # fit3 does; leading to failure of the all.equal tests below. A theta # of .95 on one basis is not exactly the same as a theta of .95 on the # other. Coefficients were within 1%, but not the same. aeq(fit3$scale, c(fit3a$scale, fit3b$scale)) aeq(fit3$loglik[2], (fit3a$loglik + fit3b$loglik)[2]) pred <- predict(fit3) aeq(pred[lung$sex==1] , predict(fit3a)) aeq(pred[lung$sex==2], predict(fit3b)) survival/tests/quantile.Rout.save0000644000176200001440000000706713537676563016760 0ustar liggesusers R Under development (unstable) (2016-03-23 r70368) -- "Unsuffered Consequences" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Formal test of the quantile routine for survfit > library(survival) > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # There are 8 cases: strata Y/N, ncol(surv) >1, conf.int = T/F > # Subcase: the quantile exactly agrees with a horizontal segment of > # the curve or not. > # First do the 4 cases where fit$surv is a vector > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8, 10), + status=c(1,NA,1,0,1,1,0, 0), + x= c(0, 2,1,1,1,0,0, 0)) > > # True survival = (6/7) * (3/5) * (1/2) for overall > # The q's are chosen to include a point < first jump, mid, after last jump, > # and exact intersections with the "flats" of the curve. > # > qq <- c(13/14, 6/7, 2/3, .5, 9/35, .1) > > # Nothing on the right hand side, simple survival (no strata) > fit1 <- survfit(Surv(time, status) ~ 1, test1, conf.type='none') > aeq(quantile(fit1, 1-qq), c(1, 3.5, 6, 9, 9.5, NA)) #without conf.int [1] TRUE > > fit2 <- survfit(Surv(time, status) ~ 1, test1) #with conf.int > aeq(quantile(fit2, 1-qq), + list(quantile = c(1, 3.5, 6, 9, 9.5, NA), + lower = c(1,1,1,6,6,9), + upper = rep(as.numeric(NA), 6)), check.attributes=FALSE) [1] TRUE > aeq(quantile(fit2, 1-qq, FALSE), c(1, 3.5, 6, 9, 9.5, NA)) [1] TRUE > > > # Now a variable on the right (strata in the result) > # curve 0: (t=6, S=3/4), (t=9, S=3/8) > # curve 1: (t=1, S=2/3), (t=6, S= 0) > fit1 <- survfit(Surv(time, status) ~ x, test1, conf.type='none') > aeq(quantile(fit1, 1-qq), + matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) [1] TRUE > > fit2 <- survfit(Surv(time, status) ~ x, test1) > aeq(quantile(fit2, 1-qq, FALSE), + matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) [1] TRUE > > temp <- quantile(fit2, 1-qq) > aeq(temp$quantile, matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) [1] TRUE > aeq(temp$lower, matrix(c(6,6,6,6,9,9, 1,1,1,1, NA,NA), nrow=2, byrow=T)) [1] TRUE > aeq(temp$upper, rep(as.numeric(NA), 12)) [1] TRUE > > # Second major case set -- a survfit object where fit$surv is a matrix > # This arises from coxph models > # There is only 1 subject with ph.ecog=3 which is a nice edge case > cfit <- coxph(Surv(time, status) ~ age + strata(ph.ecog), lung) > sfit <- survfit(cfit, newdata=data.frame(age=c(50, 70))) > qtot <- quantile(sfit, qq) > for (i in 1:4) { + for (j in 1:2) { + temp <- quantile(sfit[i,j], qq) + print(c(aeq(qtot$quantile[i,j,], temp$quantile), + aeq(qtot$upper[i,j,], temp$upper), + aeq(qtot$lower[i,j,], temp$lower))) + } + } [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE > temp <- quantile(sfit, qq, conf.int=FALSE) > all.equal(qtot$quantile, temp) [1] TRUE > > > > > > proc.time() user system elapsed 0.324 0.032 0.355 survival/tests/survcheck.Rout.save0000644000176200001440000000647213537676603017125 0ustar liggesusers R Under development (unstable) (2019-08-23 r77061) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # dummy data 1, simple survival > data1 <- data.frame(id=c(1,2,2,2,3,4), time=c(10, 20, 25, 30, 30, 10), + status=factor(c(0,0,1,1, 2,3))) > fit1 <- survcheck(Surv(time, status) ~ 1, data1, id=id) > aeq(fit1$flag, c(2,0,0,0)) [1] TRUE > aeq(fit1$overlap$row, 3:4) [1] TRUE > aeq(fit1$overlap$id, 2) [1] TRUE > aeq(fit1$transitions, c(2,1,1,1)) [1] "Numeric: lengths (16, 4) differ" > > > # dummy data 2, no initial values, start stop data > # A: (0, 10, 0), (10, 20, 1), (20, 30, 2) # no issues > # B: (0, 20, 1), (15, 24, 2), (25,26, 0) > # C: (10,13, 1), (15, 18, 0), (18,25,3) > > data2 <- data.frame(id=rep(LETTERS[1:3], each=3), + t1 = c(0, 10, 20, 0, 15,25, 10, 15, 18), + t2 = c(10, 20,30, 20, 24, 26, 13, 18, 25), + status= factor(c(0, 1, 2, 1,2, 0, 1, 0, 3)), + x = c(1:5, NA, 7:9)) > fit2 <- survcheck(Surv(t1, t2, status) ~ 1, data2, id=id) > > aeq(fit2$flag , c(1,2,0,0)) [1] TRUE > aeq(fit2$transition, rbind(c(3,0,0,0), c(0,2,1,0), c(0,0,0,1))) [1] "Numeric: lengths (16, 12) differ" > (fit2$overlap$id == 'B') [1] TRUE > (fit2$overlap$row ==5) [1] TRUE > all(fit2$gap$id == c("B", "C")) [1] TRUE > aeq(fit2$gap$row, c(6,8)) [1] TRUE > > # scramble > reord <- c(9,2,1,4,3,5,6,8,7) > tfit <- survcheck(Surv(t1, t2, status) ~ 1, data2[reord,], id=id) > all.equal(fit2[1:4], tfit[1:4]) [1] TRUE > > # let a missing value in > fit2b <- survcheck(Surv(t1, t2, status) ~ x, data2, id=id) > aeq(fit2b$flag , c(1,1,0,0)) [1] TRUE > aeq(fit2b$transition, rbind(c(3,0,0,0), c(0,2,1,0))) [1] "Numeric: lengths (16, 8) differ" > (fit2b$overlap$id == 'B') [1] TRUE > (fit2b$overlap$row ==5) [1] TRUE > all(fit2b$gap$id == "C") [1] TRUE > aeq(fit2b$gap$row, 8) [1] TRUE > > data3 <- data2 > levels(data3$status) <- c("cens", "mgus", "recur", "death") > data3$istate <- c("entry", "entry", "recur", "entry", "recur", "recur", + "entry", "recur", "recur") > fit3 <- survcheck(Surv(t1, t2, status) ~ 1, data3, id=id, istate=istate) > > aeq(fit3$flag, c(1, 0, 2, 1)) [1] "Mean relative difference: 0.75" > aeq(fit3$transitions, rbind(c(3,0,0,0), c(0,2,1,1))) [1] "Numeric: lengths (16, 8) differ" > all.equal(fit3$overlap, fit2$overlap) [1] TRUE > all(fit3$teleport$id == c("A", "C")) [1] TRUE > all(fit3$teleport$row == c(3,9)) [1] FALSE Warning message: In fit3$teleport$row == c(3, 9) : longer object length is not a multiple of shorter object length > all(fit3$jump$id == "C") [1] TRUE > all(fit3$jump$row == 8) [1] TRUE > > > > proc.time() user system elapsed 0.993 0.059 1.163 survival/tests/fr_cancer.Rout.save0000644000176200001440000001113013537676563017042 0ustar liggesusers R Under development (unstable) (2018-05-10 r74706) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Here is a test case with multiple smoothing terms > # > > fit0 <- coxph(Surv(time, status) ~ ph.ecog + age, lung) > fit1 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,3), lung) > fit2 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,4), lung) > fit3 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,8), lung) > > > > fit4 <- coxph(Surv(time, status) ~ ph.ecog + pspline(wt.loss,3), lung) > > fit5 <-coxph(Surv(time, status) ~ ph.ecog + pspline(age,3) + + pspline(wt.loss,3), lung) > > fit1 Call: coxph(formula = Surv(time, status) ~ ph.ecog + pspline(age, 3), data = lung) coef se(coef) se2 Chisq DF p ph.ecog 0.44802 0.11707 0.11678 14.64453 1.00 0.00013 pspline(age, 3), linear 0.01126 0.00928 0.00928 1.47231 1.00 0.22498 pspline(age, 3), nonlin 2.07924 2.08 0.37143 Iterations: 4 outer, 12 Newton-Raphson Theta= 0.861 Degrees of freedom for terms= 1.0 3.1 Likelihood ratio test=21.9 on 4.08 df, p=2e-04 n= 227, number of events= 164 (1 observation deleted due to missingness) > fit2 Call: coxph(formula = Surv(time, status) ~ ph.ecog + pspline(age, 4), data = lung) coef se(coef) se2 Chisq DF p ph.ecog 0.45047 0.11766 0.11723 14.65751 1.00 0.00013 pspline(age, 4), linear 0.01117 0.00927 0.00927 1.45195 1.00 0.22822 pspline(age, 4), nonlin 2.95816 3.08 0.41197 Iterations: 4 outer, 11 Newton-Raphson Theta= 0.797 Degrees of freedom for terms= 1.0 4.1 Likelihood ratio test=22.7 on 5.07 df, p=4e-04 n= 227, number of events= 164 (1 observation deleted due to missingness) > fit3 Call: coxph(formula = Surv(time, status) ~ ph.ecog + pspline(age, 8), data = lung) coef se(coef) se2 Chisq DF p ph.ecog 0.47640 0.12024 0.11925 15.69732 1.00 7.4e-05 pspline(age, 8), linear 0.01172 0.00923 0.00923 1.61161 1.00 0.20 pspline(age, 8), nonlin 6.93188 6.99 0.43 Iterations: 5 outer, 15 Newton-Raphson Theta= 0.691 Degrees of freedom for terms= 1 8 Likelihood ratio test=27.6 on 8.97 df, p=0.001 n= 227, number of events= 164 (1 observation deleted due to missingness) > fit4 Call: coxph(formula = Surv(time, status) ~ ph.ecog + pspline(wt.loss, 3), data = lung) coef se(coef) se2 Chisq DF p ph.ecog 0.51545 0.12960 0.12737 15.81939 1.00 7e-05 pspline(wt.loss, 3), line -0.00702 0.00655 0.00655 1.14638 1.00 0.28 pspline(wt.loss, 3), nonl 2.44612 2.09 0.31 Iterations: 3 outer, 10 Newton-Raphson Theta= 0.776 Degrees of freedom for terms= 1.0 3.1 Likelihood ratio test=21.1 on 4.06 df, p=3e-04 n= 213, number of events= 151 (15 observations deleted due to missingness) > fit5 Call: coxph(formula = Surv(time, status) ~ ph.ecog + pspline(age, 3) + pspline(wt.loss, 3), data = lung) coef se(coef) se2 Chisq DF p ph.ecog 0.47422 0.13495 0.13206 12.34842 1.00 0.00044 pspline(age, 3), linear 0.01368 0.00976 0.00974 1.96406 1.00 0.16108 pspline(age, 3), nonlin 1.90116 2.07 0.40284 pspline(wt.loss, 3), line -0.00717 0.00661 0.00660 1.17529 1.00 0.27832 pspline(wt.loss, 3), nonl 2.07729 2.03 0.35929 Iterations: 4 outer, 12 Newton-Raphson Theta= 0.85 Theta= 0.779 Degrees of freedom for terms= 1.0 3.1 3.0 Likelihood ratio test=25.2 on 7.06 df, p=7e-04 n= 213, number of events= 151 (15 observations deleted due to missingness) > > rm(fit1, fit2, fit3, fit4, fit5) > > proc.time() user system elapsed 0.832 0.048 0.877 survival/tests/multistate.Rout.save0000644000176200001440000000746513547130116017307 0ustar liggesusers R Under development (unstable) (2019-09-07 r77160) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Tests for multi-state Cox models > # > library(survival) > > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # There are a few subjects with progression and death on the same day. In the > # usual multi-state data set only one will count. > data1 <- mgus2 > data1$etime <- with(data1, ifelse(pstat==1, ptime, futime)) > data1$event <- factor(ifelse(data1$pstat==1, 1, 2L*data1$death), + 0:2, c("censor", "PCM", "death")) > > data2 <- mgus2[rep(1:nrow(mgus2) ,2), c("id", "age", "sex", "mspike")] > data2$time <- rep(data1$etime, 2) > data2$status <- 1* c(data1$event=="PCM", data1$event=="death") > data2$type <- rep(c(2:3), each=nrow(mgus2)) > > fit1 <- coxph(Surv(etime, event) ~ age + sex + mspike, data1, id=id, x=TRUE, + robust=FALSE) > fit1a <- coxph(Surv(etime, event=="PCM") ~ age + sex + mspike, data1) > fit1b <- coxph(Surv(etime, event=='death') ~ age + sex + mspike, data1) > fit1c <- coxph(Surv(time, status) ~ strata(type)/(age + sex+ mspike), + data2, x=TRUE) > > aeq(fit1$loglik, fit1a$loglik + fit1b$loglik) [1] TRUE > aeq(fit1$coef, c(fit1a$coef, fit1b$coef)) [1] TRUE > aeq(fit1$var[1:3, 1:3], fit1a$var) [1] TRUE > aeq(fit1$var[4:6, 4:6], fit1b$var) [1] TRUE > aeq(fit1$x[,c(1,4,2,5,3,6)], fit1c$x) [1] TRUE > aeq(fit1$coef[c(1,4,2,5,3,6)], fit1c$coef) [1] TRUE > > # force a common age effect across all states > fit2 <- coxph(list(Surv(etime, event) ~ sex, + 1:0 ~ age / common), + data1, id=id) > > data2 <- rbind(cbind(data1, status= (data1$event=="PCM"), etype=1), + cbind(data1, status= (data1$event=='death'), etype=2)) > fit2a <- coxph(Surv(etime, status) ~ age + strata(etype)/sex, data2) > > aeq(coef(fit2), coef(fit2a)[c(2,1,3)]) # not in the same order [1] TRUE > aeq(fit2$loglik, fit2a$loglik) [1] TRUE > > #same fit in more complex ways > data1$entry <- "Entry" > fit2b <- coxph(list(Surv(etime, event) ~ sex, + "Entry":"PCM" + "Entry":"death" ~ age / common), + istate=entry, data1, id=id) > fit2c <- coxph(list(Surv(etime, event) ~ sex, + "Entry":state(c("PCM", "death")) ~ age / common), + istate=entry, data1, id=id) > > aeq(fit2b$loglik, fit2$loglik) [1] TRUE > aeq(fit2c$coef, fit2$coef) [1] TRUE > > # mspike size as a covariate for PCM only > # first, 3 different ways to write the same > fit3 <- coxph(list(Surv(etime, event) ~ age + sex, + 1:state("PCM") ~ mspike), + data1, id=id) > fit3b <- coxph(list(Surv(etime, event) ~ age + sex, + 1:"PCM" ~ mspike), + data1, id=id) > fit3c <- coxph(list(Surv(etime, event) ~ age + sex, + 1:c("PCM") ~ mspike), + data1, id=id) > > aeq(fit3b$coef, fit3$coef) [1] TRUE > aeq(fit3c$coef, fit3$coef) [1] TRUE > > data3 <- data2 > data3$mspike[data3$etype==2] <- 0 > fit3a <- coxph(Surv(etime, status) ~ strata(etype)/(age + sex + mspike), data3) > aeq(fit3$loglik, fit3a$loglik) [1] TRUE > aeq(fit3$coef, fit3a$coef[c(1,3,5,2,4)]) [1] TRUE > > > proc.time() user system elapsed 1.152 0.061 1.205 survival/tests/singtest.Rout.save0000644000176200001440000000343713537676563016773 0ustar liggesusers R Under development (unstable) (2018-04-09 r74565) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # A simple test of an overdetermined system > # Should give a set of NA coefficients > # > test1 <- data.frame(time= c(4, 3,1,1,2,2,3), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > temp <- rep(0:3, rep(7,4)) > > stest <- data.frame(start = 10*temp, + stop = 10*temp + test1$time, + status = rep(test1$status,4), + x = c(test1$x+ 1:7, rep(test1$x,3)), + epoch = rep(1:4, rep(7,4))) > > # Will create a warning about a singular X matrix > fit1 <- coxph(Surv(start, stop, status) ~ x * factor(epoch), stest) > fit1$coef # elements 2:4 should be NA x factor(epoch)2 factor(epoch)3 factor(epoch)4 0.1041579 NA NA NA x:factor(epoch)2 x:factor(epoch)3 x:factor(epoch)4 1.5726996 1.5726996 1.5726996 > all.equal(is.na(fit1$coef), c(F,T,T,T,F,F,F), check.attributes=FALSE) [1] TRUE > > proc.time() user system elapsed 0.668 0.040 0.704 survival/tests/mstate.Rout.save0000644000176200001440000002711313537676563016425 0ustar liggesusers R Under development (unstable) (2019-05-15 r76504) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # A tiny multi-state example > # > library(survival) > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > mtest <- data.frame(id= c(1, 1, 1, 2, 3, 4, 4, 4, 5, 5), + t1= c(0, 4, 9, 0, 2, 0, 2, 8, 1, 3), + t2= c(4, 9, 10, 5, 9, 2, 8, 9, 3, 11), + st= c(1, 2, 1, 2, 3, 1, 3, 0, 2, 0)) > > mtest$state <- factor(mtest$st, 0:3, c("censor", "a", "b", "c")) > > if (FALSE) { + # this graph is very useful when debugging + temp <- survcheck(Surv(t1, t2, state) ~1, mtest, id=id) + plot(c(0,11), c(1,5.1), type='n', xlab="Time", ylab= "Subject") + with(mtest, segments(t1+.1, id, t2, id, col=as.numeric(temp$istate))) + event <- subset(mtest, state!='censor') + text(event$t2, event$id+.2, as.character(event$state)) + } > > mtest <- mtest[c(1,3,2,4,5,7,6,10, 9, 8),] #not in time order > > mfit <- survfit(Surv(t1, t2, state) ~ 1, mtest, id=id) > > # True results > # > #time state probabilities > # entry a b c entry a b c > # > #0 124 1 0 0 0 > #1+ 1245 > #2+ 1235 4 3/4 1/4 0 0 4 -> a, add 3 > #3+ 123 4 5 9/16 1/4 3/16 0 5 -> b > #4+ 23 14 5 6/16 7/16 3/16 0 1 -> a > #5+ 3 14 5 3/16 7/16 6/16 0 2 -> b, exits > #8+ 3 1 5 4 3/16 7/32 6/16 7/32 4 -> c > #9+ 15 0 0 19/32 13/32 1->b, 3->c & exit > # 10+ 1 5 19/64 19/64 13/32 1->a > > # In mfit, the "entry" state is first in the matrices, when this function was > # first created it was the last. > swap <- c(4,1,2,3) # at one time it was last > all.equal(mfit$n.risk, matrix(c(0,1,1,2,2,1,0,0, + 0,0,1,1,1,1,2,1, + 0,0,0,0,0,1,0,0, + 4,4,3,2,1,1,0,0), ncol=4)[,swap]) [1] TRUE > all.equal(mfit$pstate, matrix(c(8, 8, 14, 14, 7, 0, 9.5, 9.5, + 0, 6, 6, 12, 12,19,9.5, 9.5, + 0, 0, 0, 0, 7, 13, 13, 13, + 24, 18, 12, 6, 6, 0, 0, 0)/32, ncol=4)[,swap]) [1] TRUE > all.equal(mfit$n.event, matrix(c(1,0,1,0,0,0,1,0, + 0,1,0,1,0,1,0,0, + 0,0,0,0,1,1,0,0, + 0,0,0,0,0,0,0,0), ncol=4)[,swap]) [1] TRUE > all.equal(mfit$time, c(2, 3, 4, 5, 8, 9, 10, 11)) [1] TRUE > > > # Somewhat more complex. > # Scramble the input data > # Not everyone starts at the same time or in the same state > # Case weights > # > tdata <- data.frame(id= c(1, 1, 1, 2, 3, 4, 4, 4, 5, 5), + t1= c(0, 4, 9, 1, 2, 0, 2, 8, 1, 3), + t2= c(4, 9, 10, 5, 9, 2, 8, 9, 3, 11), + st= c(1, 2, 1, 2, 3, 1, 3, 0, 3, 0), + i0= c(4, 1, 2, 1, 4, 4, 1, 3, 2, 3), + wt= 1:10) > > tdata$st <- factor(tdata$st, c(0:3), + labels=c("censor", "1", "2", "3")) > tdata$i0 <- factor(tdata$i0, 1:4, + labels=c("1", "2", "3", "entry")) > > tfun <- function(data=tdata) { + reorder <- c(10, 9, 1, 2, 5, 4, 3, 7, 8, 6) + new <- data[reorder,] + new + } > > # These weight vectors are in the order of tdata > # w[9] is the weight for subject 5 at time 1.5, for instance > p0 <- function(w) c(w[4], w[9], 0, w[1]+ w[6])/ (w[1]+ w[4] + w[6] + w[9]) > > # aj2 = Aalen-Johansen H matrix at time 2, etc. > aj2 <- function(w) { + rbind(c(1, 0, 0, 0), # state a (1) stays put + c(0, 1, 0, 0), + c(0, 0, 1, 0), + c(w[6], 0, 0, w[1])/(w[1] + w[6])) #subject 4 moves to 'a' + } > aj3 <- function(w) rbind(c(1, 0, 0, 0), + c(0, 0, 1, 0), # 5 moves from b to c + c(0, 0, 1, 0), + c(0, 0, 0, 1)) > aj4 <- function(w) rbind(c(1, 0, 0, 0), + c(0, 1, 0, 0), + c(0, 0, 1, 0), + c(w[1], 0, 0, w[5])/(w[1] + w[5])) #1 moves from 4 to a > aj5 <- function(w) rbind(c(w[2]+w[7], w[4], 0, 0)/(w[2]+ w[4] + w[7]), #2 to b + c(0, 1, 0, 0), + c(0, 0, 1, 0), + c(0, 0, 0, 1)) > aj8 <- function(w) rbind(c(w[2], 0, w[7], 0)/(w[2]+ w[7]), # 4 to c + c(0, 1, 0, 0), + c(0, 0, 1, 0), + c(0, 0, 0, 1)) > aj9 <- function(w) rbind(c(0, 1, 0, 0), # 1 to b + c(0, 1, 0, 0), + c(0, 0, 1, 0), + c(0, 0, 1 ,0)) # 3 to c > aj10 <- function(w)rbind(c(1, 0, 0, 0), + c(1, 0, 0, 0), #1 back to a + c(0, 0, 1, 0), + c(0, 0, 0, 1)) > > #time state > # a b c entry > # > #1 2 5 14 initial distribution > #2 24 5 1 4 -> a, add 3 > #3 24 5 13 5 from b to c > #4 124 5 3 1 -> a > #5 14 5 3 2 -> b, exits > #8 1 45 3 4 -> c > #9 1 45 1->b, 3->c & exit > #10 1 45 1->a > > # P is a product of matrices > dopstate <- function(w) { + p1 <- p0(w) + p2 <- p1 %*% aj2(w) + p3 <- p2 %*% aj3(w) + p4 <- p3 %*% aj4(w) + p5 <- p4 %*% aj5(w) + p8 <- p5 %*% aj8(w) + p9 <- p8 %*% aj9(w) + p10<- p9 %*% aj10(w) + rbind(p2, p3, p4, p5, p8, p9, p10, p10) + } > > # Check the pstate estimate > w1 <- rep(1,10) > mtest2 <- tfun(tdata) # scrambled order > mfit2 <- survfit(Surv(t1, t2, st) ~ 1, tdata, id=id, istate=i0) # ordered > aeq(mfit2$pstate, dopstate(w1)[,swap]) [1] TRUE > aeq(mfit2$p0, p0(w1)[swap]) [1] TRUE > > mfit2b <- survfit(Surv(t1, t2, st) ~ 1, mtest2, id=id, istate=i0)#scrambled > aeq(mfit2b$pstate, dopstate(w1)[,swap]) [1] TRUE > aeq(mfit2b$p0, p0(w1)[swap]) [1] TRUE > > mfit2b$call <- mfit2$call <- NULL > all.equal(mfit2b, mfit2) [1] TRUE > aeq(mfit2$transitions, c(2,0,1,0, 0,2,0,0, 1,1,1,0, 0,0,0,2)) [1] TRUE > > # Now the harder one, where subjects change weights > mfit3 <- survfit(Surv(t1, t2, st) ~ 1, tdata, id=id, istate=i0, + weights=wt, influence=TRUE) > aeq(mfit3$p0, p0(1:10)[swap]) [1] TRUE > aeq(mfit3$pstate, dopstate(1:10)[,swap]) [1] TRUE > > > # The derivative of a matrix product AB is (dA)B + A(dB) where dA is the > # elementwise derivative of A and etc for B. > # dp0 creates the derivatives of p0 with respect to each subject, a 5 by 4 > # matrix > # All the functions below are hand coded for a weight vector that is in > # exactly the same order as the rows of mtest. > # Since p0 = (w[4], w[9], 0, w[1]+ w[6])/ (w[1]+ w[4] + w[6] + w[9]) > # and subject id is 1,1,1, 2, 3, 4,4,4, 5,5 > # we get the derivative below > # > dp0 <- function(w) { + p <- p0(w) + w0 <- w[c(1,4,6,9)] # the 4 obs at the start, subjects 1, 2, 4, 5 + rbind(c(0, 0, 0, 1) - p, # subject 1 affects p[4] + c(1, 0, 0, 0) - p, # subject 2 affects p[1] + 0, # subject 3 affects none + c(0, 0, 0, 1) - p, # subject 4 affect p[4] + c(0, 1, 0, 0) - p)/ # subject 5 affects p[2] + sum(w0) + } > > > dp2 <- function(w) { + h2 <- aj2(w) # H matrix at time 2 + part1 <- dp0(w) %*% h2 + + # 1 and 4 in state 4, obs 1 and 6, 4 moves to a + mult <- p0(w)[4]/(w[1] + w[6]) #p(t-) / weights in state + part2 <- rbind((c(0,0,0,1)- h2[4,]) * mult, + 0, + 0, + (c(1,0,0,0) - h2[4,]) * mult, + 0) + part1 + part2 + } > > dp3 <- function(w) { + dp2(w) %*% aj3(w) + } > > dp4 <- function(w) { + h4 <- aj4(w) # H matrix at time 4 + part1 <- dp3(w) %*% h4 + + # subjects 1 and 3 in state 4, obs 1 and 5, 1 moves to a + mult <- dopstate(w)[2,4]/ (w[1] + w[5]) # p_4(time 4-0) / wt + part2 <- rbind((c(1,0,0,0)- h4[4,]) * mult, + 0, + (c(0,0,0,1)- h4[4,]) * mult, + 0, + 0) + part1 + part2 + } > dp5 <- function(w) { + h5 <- aj5(w) # H matrix at time 5 + part1 <- dp4(w) %*% h5 + + # subjects 124 in state 1, obs 2,4,7, 2 goes to 2 + mult <- dopstate(w)[3,1]/ (denom <- w[2] + w[4] + w[7]) + part2 <- rbind((c(1,0,0,0)- h5[1,]) * mult, + (c(0,1,0,0)- h5[1,]) * mult, + 0, + (c(1,0,0,0)- h5[1,]) * mult, + 0) + part1 + part2 + } > dp8 <- function(w) { + h8 <- aj8(w) # H matrix at time 8 + part1 <- dp5(w) %*% h8 + + # subjects 14 in state 1, obs 2 &7, 4 goes to c + mult <- dopstate(w)[4, 1]/ (w[2] + w[7]) + part2 <- rbind((c(1,0,0,0)- h8[1,]) * mult, + 0, + 0, + (c(0,0,1,0)- h8[1,]) * mult, + 0) + part1 + part2 + } > dp9 <- function(w) dp8(w) %*% aj9(w) > dp10<- function(w) dp9(w) %*% aj10(w) > > w1 <- 1:10 > aeq(mfit3$influence[,1,], dp0(w1)[,swap]) [1] TRUE > aeq(mfit3$influence[,2,], dp2(w1)[,swap]) [1] TRUE > aeq(mfit3$influence[,3,], dp3(w1)[,swap]) [1] TRUE > aeq(mfit3$influence[,4,], dp4(w1)[,swap]) [1] TRUE > aeq(mfit3$influence[,5,], dp5(w1)[,swap]) [1] TRUE > aeq(mfit3$influence[,6,], dp8(w1)[,swap]) [1] TRUE > aeq(mfit3$influence[,7,], dp9(w1)[,swap]) [1] TRUE > aeq(mfit3$influence[,8,], dp10(w1)[,swap]) [1] TRUE > aeq(mfit3$influence[,9,], dp10(w1)[,swap]) # no changes at time 11 [1] TRUE > > > # The cumulative hazard at each time point is remapped from a matrix > # into a vector (in survfit) > # First check out the names > nstate <- length(mfit3$states) > temp <- matrix(0, nstate, nstate) > indx1 <- match(rownames(mfit3$transitions), mfit3$states) > indx2 <- match(colnames(mfit3$transitions), mfit3$states, nomatch=0) > temp[indx1, indx2] <- mfit3$transitions[, indx2>0] > # temp is an nstate by nstate version of the transitions matrix > from <- row(temp)[temp>0] > to <- col(temp)[temp>0] > > all.equal(colnames(mfit3$cumhaz), paste(from, to, sep='.')) [1] TRUE > > > hazard <- function(fit, i, indx=which(temp>0)) { + nstate <- length(fit$states) + cmat <- matrix(0, nstate, nstate) + if (i==1) cmat[indx] <- fit$cumhaz[i,] + else cmat[indx] <- fit$cumhaz[i,] - fit$cumhaz[i-1,] + + diag(cmat) <- 1- rowSums(cmat) + cmat + } > > aeq(hazard(mfit3, 1), aj2(w1)[swap, swap]) [1] TRUE > aeq(hazard(mfit3, 2), aj3(w1)[swap, swap]) [1] TRUE > aeq(hazard(mfit3, 3), aj4(w1)[swap, swap]) [1] TRUE > aeq(hazard(mfit3, 4), aj5(w1)[swap, swap]) [1] TRUE > aeq(hazard(mfit3, 5), aj8(w1)[swap, swap]) [1] TRUE > aeq(hazard(mfit3, 6), aj9(w1)[swap, swap]) [1] TRUE > > proc.time() user system elapsed 0.840 0.060 0.901 survival/tests/expected2.Rout.save0000644000176200001440000000647313537676563017021 0ustar liggesusers R Under development (unstable) (2018-04-09 r74565) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > # > # A Cox model with a factor, followed by survexp. > # > pfit2 <- coxph(Surv(time, status > 0) ~ trt + log(bili) + + log(protime) + age + platelet + sex, data = pbc) > esurv <- survexp(~ trt, ratetable = pfit2, data = pbc) > > temp <- pbc > temp$sex2 <- factor(as.numeric(pbc$sex), levels=2:0, + labels=c("f", "m", "unknown")) > esurv2 <- survexp(~ trt, ratetable = pfit2, data = temp, + rmap=list(sex=sex2)) > > # The call components won't match, which happen to be first > all.equal(unclass(esurv)[-1], unclass(esurv2)[-1]) [1] TRUE > > > # Check that the ratetableDate function is okay > # > Datedate <- function(x) { + # Dates have an origin of 1/1/1970, dates of 1/1/1960 + offset <- as.numeric(as.Date("1970-01-01") - as.Date("1960-01-01")) + y <- as.numeric(x) + offset + class(y) <- "date" + y + } > as.data.frame.date <- as.data.frame.vector # needed to make the functions work > > n <- nrow(lung) > tdata <- data.frame(age=lung$age + (1:n)/365.25, + sex = c('male', 'female')[lung$sex], + ph.ecog = lung$ph.ecog, + time = lung$time*3, + status = lung$status, + entry = as.Date("1940/01/01") + (n:1)*50) > tdata$entry2 <- as.POSIXct(tdata$entry) > tdata$entry3 <- Datedate(tdata$entry) > > p1 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=survexp.us, + rmap= list(age=age*365.25, sex=sex, year=entry)) > p2 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=survexp.us, + rmap= list(age=age*365.25, sex=sex, year=entry2)) > p3 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=survexp.us, + rmap= list(age=age*365.25, sex=sex, year=entry3)) > > all.equal(p1$expected, p2$expected) [1] TRUE > all.equal(p1$expected, p3$expected) [1] TRUE > > > # Now a ratetable with ordinary dates rather than US census style year > trate <- survexp.us > attr(trate, 'type') <- c(2,1,3) > p4 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=trate, + rmap= list(age=age*365.25, sex=sex, year=entry)) > p5 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=trate, + rmap= list(age=age*365.25, sex=sex, year=entry2)) > p6 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=trate, + rmap= list(age=age*365.25, sex=sex, year=entry3)) > > #all.equal(p1$expected, p4$expected) # this won't be true, US special is special > all.equal(p4$expected, p5$expected) [1] TRUE > all.equal(p5$expected, p6$expected) [1] TRUE > > proc.time() user system elapsed 0.756 0.036 0.790 survival/tests/fr_lung.R0000644000176200001440000000131013537676563015066 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # A test with the lung data # This caused problems in one release # # First, get rid of some missings # lung2 <- na.omit(lung[c('time', 'status', 'wt.loss')]) # # Test the logliklihoods # fit <- coxph(Surv(time, status) ~ pspline(wt.loss,3), lung2, x=T) fit0<- coxph(Surv(time, status) ~ 1, lung2) fit1<- coxph(Surv(time, status) ~ fit$x, lung2, iter=0, init=fit$coef) all.equal(fit$loglik[1], fit0$loglik) all.equal(fit$loglik[2], fit1$loglik[2]) # # Check variances # imat <- solve(fit1$var) var2 <- fit$var %*% imat %*% fit$var all.equal(fit$var2, var2) survival/tests/tmerge2.R0000644000176200001440000000632013544413322014761 0ustar liggesuserslibrary(survival) # This test is based on a user report that a 0/1 variable would not reset # to zero. It turned out to be a bug when data2 was not sorted baseline <- data.frame(idd=1:5, futime=c(20, 30, 40, 30, 20), status= c(0, 1, 0, 1, 0)) tests <- data.frame(idd = c(2,3,3,3,4,4,5), date = c(25, -1, 15, 23, 17, 19, 14), onoff= c( 1, 1, 0, 1, 1, 0, 1)) tests <- tests[c(7,2,6,3,4,1,5),] #scramble data2 mydata <- tmerge(baseline, baseline, id=idd, death=event(futime, status)) mydata <- tmerge(mydata, tests, id=idd, ondrug=tdc(date, onoff)) all.equal(mydata$ondrug, c(NA, NA,1, 1,0,1, NA, 1,0, NA, 1)) # Check out addition of a factor, character, and logical tests$ff <- factor(tests$onoff, 0:1, letters[4:5]) tests$fchar <- as.character(tests$ff) tests$logic <- as.logical(tests$onoff) mydata <- tmerge(mydata, tests, id=idd, fgrp= tdc(date, ff), chgrp = tdc(date, fchar), options=list(tdcstart="new")) all.equal(mydata$fgrp, factor(c(3,3,2,2,1,2,3,2,1,3,2), labels=c("d", "e", "new"))) all.equal(mydata$chgrp, c("d", "e", "new")[c(3,3,2,2,1,2,3,2,1,3,2)]) mydat2 <- tmerge(mydata, tests, id=idd, logic1 = tdc(date, logic), logic2= event(date, logic)) all.equal(mydat2$logic1, c(FALSE, TRUE, NA)[as.numeric(mydat2$fgrp)]) all.equal(mydat2$logic2, c(FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE)) # Multiple chained calls. newcgd <- tmerge(data1=cgd0[, 1:13], data2=cgd0, id=id, tstop=futime) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime1)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime2)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime3)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime4)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime5)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime6)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime7)) newcgd <- tmerge(newcgd, newcgd, id, enum=cumtdc(tstart)) all.equal(dim(newcgd), c(203,17)) all.equal(as.vector(table(newcgd$infect)), c(127, 76)) tcount <- attr(newcgd, "tcount") all(tcount[,1:3] ==0) # no early, late, or gap # table with number of subjects who have etime1 < futime (row 1) # and etime1==futime (row 2) # the table command ignores the missings temp <- subset(cgd0, select=etime1:etime7) counts <- sapply(temp, function(x) as.vector(table(factor(x>= cgd0$futime, c(FALSE, TRUE))))) all(tcount[1:7, c("within", "trailing")] == t(counts)) # # Merging with a date as the time variable. In this case tstart/tstop are required # A default start of 0 has no meaning # base2 <- baseline base2$date1 <- as.Date("1953-03-10") # everyone enrolled that day base2$date2 <- as.Date("1953-03-10") + base2$futime base2$futime <- NULL test2 <- tests test2$date <- as.Date("1953-03-10") + test2$date mydata2 <- tmerge(base2, base2, id=idd, death=event(date2, status), tstart = date1, tstop= date2, options=list(tstartname="date1", tstopname="date2")) mydata2 <- tmerge(mydata2, test2, id=idd, ondrug=tdc(date, onoff)) all.equal(mydata$ondrug, c(NA, NA,1, 1,0,1, NA, 1,0, NA, 1)) survival/tests/expected2.R0000644000176200001440000000467113537676563015332 0ustar liggesuserslibrary(survival) # # A Cox model with a factor, followed by survexp. # pfit2 <- coxph(Surv(time, status > 0) ~ trt + log(bili) + log(protime) + age + platelet + sex, data = pbc) esurv <- survexp(~ trt, ratetable = pfit2, data = pbc) temp <- pbc temp$sex2 <- factor(as.numeric(pbc$sex), levels=2:0, labels=c("f", "m", "unknown")) esurv2 <- survexp(~ trt, ratetable = pfit2, data = temp, rmap=list(sex=sex2)) # The call components won't match, which happen to be first all.equal(unclass(esurv)[-1], unclass(esurv2)[-1]) # Check that the ratetableDate function is okay # Datedate <- function(x) { # Dates have an origin of 1/1/1970, dates of 1/1/1960 offset <- as.numeric(as.Date("1970-01-01") - as.Date("1960-01-01")) y <- as.numeric(x) + offset class(y) <- "date" y } as.data.frame.date <- as.data.frame.vector # needed to make the functions work n <- nrow(lung) tdata <- data.frame(age=lung$age + (1:n)/365.25, sex = c('male', 'female')[lung$sex], ph.ecog = lung$ph.ecog, time = lung$time*3, status = lung$status, entry = as.Date("1940/01/01") + (n:1)*50) tdata$entry2 <- as.POSIXct(tdata$entry) tdata$entry3 <- Datedate(tdata$entry) p1 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=survexp.us, rmap= list(age=age*365.25, sex=sex, year=entry)) p2 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=survexp.us, rmap= list(age=age*365.25, sex=sex, year=entry2)) p3 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=survexp.us, rmap= list(age=age*365.25, sex=sex, year=entry3)) all.equal(p1$expected, p2$expected) all.equal(p1$expected, p3$expected) # Now a ratetable with ordinary dates rather than US census style year trate <- survexp.us attr(trate, 'type') <- c(2,1,3) p4 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=trate, rmap= list(age=age*365.25, sex=sex, year=entry)) p5 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=trate, rmap= list(age=age*365.25, sex=sex, year=entry2)) p6 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=trate, rmap= list(age=age*365.25, sex=sex, year=entry3)) #all.equal(p1$expected, p4$expected) # this won't be true, US special is special all.equal(p4$expected, p5$expected) all.equal(p5$expected, p6$expected) survival/tests/model.matrix.Rout.save0000644000176200001440000000624613537676563017537 0ustar liggesusers R Under development (unstable) (2019-08-23 r77061) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Test out the revised model.matrix code > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0), + z= factor(c('a', 'a', 'b', 'b', 'c', 'c', 'a')), + stringsAsFactors=FALSE) > > fit1 <- coxph(Surv(time, status) ~ z, test1, iter=1) > fit2 <- coxph(Surv(time, status) ~z, test1, x=T, iter=1) > all.equal(model.matrix(fit1), fit2$x) [1] TRUE > > # This has no level 'b', make sure dummies recode properly > test2 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0), + z= factor(c('a', 'a', 'a', 'a', 'c', 'c', 'a')), + stringsAsFactors=FALSE) > > ftest <- model.frame(fit1, data=test2) > all.equal(levels(ftest$z), levels(test1$z)) [1] TRUE > > # xtest will have one more row than the others, since it does not delete > # the observation with a missing value for status > xtest <- model.matrix(fit1, data=test2) > dummy <- fit2$x > dummy[,1] <- 0 > all.equal(xtest[-2,], dummy, check.attributes=FALSE) [1] TRUE > > # The case of a strata by factor interaction > # Use iter=0 since there are too many covariates and it won't converge > test1$x2 <- factor(rep(1:2, length=7)) > fit3 <- coxph(Surv(time, status) ~ strata(x2)*z, test1, iter=0) > xx <- model.matrix(fit3) > all.equal(attr(xx, "assign"), c(2,2,3,3)) [1] TRUE > all.equal(colnames(xx), c("zb", "zc", "strata(x2)2:zb", + "strata(x2)2:zc")) [1] TRUE > all.equal(attr(xx, "contrasts"), + list("strata(x2)"= "contr.treatment", z="contr.treatment")) [1] TRUE > > fit3b <- coxph(Surv(time, status) ~ strata(x2)*z, test1, iter=0, x=TRUE) > all.equal(fit3b$x, xx) [1] TRUE > > > # A model with a tt term > fit4 <- coxph(Surv(time, status) ~ tt(x) + x, test1, iter=0, + tt = function(x, t, ...) x*t) > ff <- model.frame(fit4) > # There is 1 subject in the final risk set, 4 at risk at time 6, 6 at time 1 > # The .strata. variable numbers from last time point to first > all.equal(ff$.strata., rep(1:3, c(1, 4,6))) [1] TRUE > all.equal(ff[["tt(x)"]], ff$x* c(9,6,1)[ff$.strata.]) [1] TRUE > > xx <- model.matrix(fit4) > all.equal(xx[,1], ff[[2]], check.attributes=FALSE) [1] TRUE > > > proc.time() user system elapsed 0.746 0.041 0.781 survival/tests/coxsurv5.R0000644000176200001440000001500113537676603015225 0ustar liggesuserslibrary(survival) aeq <- function(x, y) all.equal(as.vector(x), as.vector(y)) # # Compute the hazard functions for a multi-state Cox model # coxhaz <- function(y, id, risk, wt) { # y should be a multi-state survival if (!inherits(y, "Surv") || attr(y, "type") != "mcounting") stop("invalid response") n <- nrow(y) if (missing(id) || length(id) !=n) stop("invalid id") if (missing(wt)) wt <- rep(1.0, n) else if (length(wt) !=n || any(wt <=0)) stop("invalid wt") # get the current state, and the list of transtions # transitions to censor don't count mcheck <- survcheck(y~1, id= id) states <- mcheck$states nstate <- length(states) istate <- mcheck$istate event <- y[,3] > 0 temp <- attr(y, 'states')[y[event,3]] tmat <- table(y[event,2], from=istate[event], to=temp) tmat2 <- tapply(wt[event], list(y[event,2], from=mcheck$istate[event], to=temp), sum) tmat2 <- ifelse(is.na(tmat2), 0, tmat2) # Hazards can be done one at a time. For each of them the risk # weight vector for the subjects can be different. # First organized the material as a 2 dim matrix temp <- apply(tmat, 2:3, sum) keep <- which(temp>0) from <- states[row(temp)[keep]] hlab <- outer(rownames(temp), colnames(temp), paste, sep=':')[keep] nhaz <- length(keep) nevent <- matrix(tmat2, nrow(tmat2))[,keep] dtime <- sort(unique(y[event,2])) ntime <- length(dtime) if (missing(risk)) risk <- matrix(1, nrow=n, ncol=nhaz) if (!is.matrix(risk) || nrow(risk) != n || ncol(risk) != nhaz) stop("invalid risk matrix") risk <- risk * wt # get the weighted at risk at each time wtrisk <- matrix(, length(dtime), nhaz) statematch <- outer(istate, from, function(x, y) x==y) risk <- ifelse(statematch, risk, 0) for (i in 1:ntime) { atrisk <- (y[,1]< dtime[i] & y[,2] >= dtime[i]) wtrisk[i,] <- colSums(risk[atrisk,, drop=FALSE]) } haz <- nevent/ifelse(wtrisk==0, 1, wtrisk) # avoid 0/0 chaz<- apply(haz, 2, cumsum) list(time=dtime, nrisk=wtrisk, nevent=nevent, haz=haz, cumhaz=chaz, states=states) } mtest <- data.frame(id= c(1, 1, 1, 2, 3, 4, 4, 4, 5, 5), t1= c(0, 4, 9, 0, 2, 0, 2, 8, 1, 3), t2= c(4, 9, 10, 5, 9, 2, 8, 9, 3, 11), state= c(1, 2, 1, 2, 3, 1, 3, 0, 2, 0), x = c(0, 0, 0, 1, 1, 0, 0, 0, 2, 2)) mtest$state <- factor(mtest$state, 0:3, c("censor", "a", "b", "c")) # True results # #time at risk events # entry a b c # #2 1245 4 -> a #3 1235 4 5 -> b #4 123 4 5 1 -> a #5 23 14 5 2 -> b, exits #8 3 14 5 4 -> c #9 3 1 5 4 1->b, 3->c & exit, 4 censored #10 15 1->a, exit #11 5 censor # with all coefficients =0 check1 <- coxhaz(Surv(mtest$t1, mtest$t2, mtest$state), mtest$id) fit1 <- survfit(Surv(t1, t2, state) ~1, mtest, id=id) aeq(check1$cumhaz, fit1$cumhaz[match(check1$time, fit1$time),]) dummy <- data.frame(x=1:2) cox0 <- coxph(Surv(t1, t2, state) ~x, iter=0, mtest, id=id) cfit0 <- survfit(cox0, newdata=dummy) indx <- match(check1$time, cfit0$time) aeq(check1$cumhaz, cfit0$cumhaz[indx,1,]) aeq(check1$cumhaz, cfit0$cumhaz[indx,2,]) # a fixed coefficient mfit <- coxph(Surv(t1, t2, state) ~x, iter=0, mtest, id=id, init= log(1:6)) msurv <- survfit(mfit, newdata=list(x=0:1)) mrisk <- exp(outer(mtest$x, log(1:6), '*')) # hazards for each transition check2 <- with(mtest, coxhaz(Surv(t1, t2, state), id=id, risk=mrisk)) aeq(check2$cumhaz, msurv$cumhaz[indx,1,]) # a different predicted x multiplies each column of the cumulative hazard aeq(check2$cumhaz %*% diag(1:6), msurv$cumhaz[indx,2,]) if (FALSE) { # this graph is very useful temp <- survcheck(Surv(t1, t2, state) ~1, mtest, id=id) plot(c(0,11), c(1,5.1), type='n', xlab="Time", ylab= "Subject") with(mtest, segments(t1+.1, id, t2, id, col=as.numeric(temp$istate))) event <- subset(mtest, state!='censor') text(event$t2, event$id+.2, as.character(event$state)) } # slight change, add a few censored subjects # all the events happen on even numbered days test2 <- data.frame(id= c(1, 1, 1, 2, 3, 4, 4, 4, 5, 5, 6, 7, 8, 9), t1= c(0, 8, 18, 0, 4, 0, 4, 16, 2, 6, 0, 0, 7, 8), t2= c(8, 18, 20, 10, 18, 4, 16, 18, 6, 22, 5, 10, 10, 15), state= c(1, 2, 1, 2, 3, 1, 3, 0, 2, 0,0,0,0,0), x = c(0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 1, 1, 2, 0)) test2$state <- factor(test2$state, 0:3, c("censor", "a", "b", "c")) if (FALSE) { # this graph is very useful temp <- survcheck(Surv(t1, t2, state) ~1, test2, id=id) plot(c(0,22), c(1,9.1), type='n', xlab="Time", ylab= "Subject") with(test2, segments(t1+.1, id, t2, id, col=as.numeric(temp$istate))) event <- subset(test2, state!='censor') text(event$t2, event$id+.2, as.character(event$state)) } # s0 to a, cumhaz of 1/6 (t=4) + 1/5 (t=8) # b to a, cumhaz of 1/2 at 20 # s0 to b, cumhaz of 1/5 at 6, +1/5 at 10 # a to b, cumhaz of 1/1 at 18 # s0 to c, cumhaz of 1/1 at 18 # a to c, cumhaz of 1/2 at 16 time2 <- c(4,5,6,8,10,15,16,18,20, 22) chaz2 <- matrix(0, nrow=10, ncol=6, dimnames=list(time2, c("1:2", "1:3", "1:3", "2:3", "1:4", "2:4"))) chaz2['4',1] <- 1/6; chaz2['8',1] <- 1/5 chaz2['20',2] <- 1/2 chaz2['6', 3] <- 1/5; chaz2['10', 3] <- 1/5 chaz2['18',4:5] <- 1 chaz2['16', 6] <- 1/2 chaz2 <- apply(chaz2, 2, cumsum) cox3 <- coxph(Surv(t1, t2, state) ~x, id=id, test2, iter=0) # no weights csurv3 <- survfit(cox3, newdata=data.frame(x=0:1)) aeq(csurv3$time, time2) aeq(csurv3$cumhaz[,1,], chaz2) aeq(csurv3$cumhaz[,2,], chaz2) check3 <- with(test2, coxhaz(Surv(t1, t2, state), id=id)) indx3 <- match(check3$time, csurv3$time) aeq(check3$cumhaz, chaz2[indx3,]) # a check on the coxhaz function above cox4 <- coxph(Surv(t1,t2, state) ~ x, id=id, test2, init=log(1:6), iter=0) csurv4 <- survfit(cox4, newdata=data.frame(x=0:1)) mrisk4 <- exp(outer(test2$x, log(1:6), '*')) # hazards for each transition check4 <- with(test2, coxhaz(Surv(t1, t2, state), id=id, risk=mrisk4)) aeq(check4$cumhaz, csurv4$cumhaz[indx3,1,]) aeq(csurv4$cumhaz[,2,], csurv4$cumhaz[,1,] %*% diag(1:6)) survival/tests/book1.Rout.save0000644000176200001440000001774413556063202016131 0ustar liggesusers R Under development (unstable) (2019-10-26 r77334) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > # > # Tests from the appendix of Therneau and Grambsch > # a. Data set 1 and Breslow estimate > # The data below is not in time order, to also test sorting, and has 1 NA > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > # Nelson-Aalen influence > s1 <- survfit(Surv(time, status) ~1, test1, id=1:7, influence=TRUE) > inf1 <- matrix(c(10, rep(-2,5), 10, -2, 7,7, -11, -11)/72, + ncol=2) > indx <- order(test1$time[!is.na(test1$status)]) > aeq(s1$influence.chaz[indx,], inf1[,c(1,2,2,2)]) [1] TRUE > > # KM influence > inf2 <- matrix(c(-20, rep(4,5), -10, 2, -13, -13, 17, 17, + rep(0,6))/144, ncol=3) > aeq(s1$influence.surv[indx,], inf2[, c(1,2,2,3)]) [1] TRUE > > # Fleming-Harrington influence > s2 <- survfit(Surv(time, status) ~ 1, test1, id=1:7, ctype=2, influence=2) > inf3 <- matrix(c( rep(c(5, -1), c(1, 5))/36, c(5,-1)/36, + c(21,21,-29, -29)/144), ncol=2) > aeq(s2$influence.chaz[indx,], inf3[,c(1,2,2,2)]) [1] TRUE > > > # Breslow estimate > byhand1 <- function(beta, newx=0) { + r <- exp(beta) + loglik <- 2*beta - (log(3*r+3) + 2*log(r+3)) + u <- (6 + 3*r - r^2) / ((r+1)*(r+3)) + imat <- r/(r+1)^2 + 6*r/(r+3)^2 + + x <- c(1,1,1,0,0,0) + status <- c(1,0,1,1,0,1) + xbar <- c(r/(r+1), r/(r+3), 0, 0) # at times 1, 6, 8 and 9 + haz <- c(1/(3*r+3), 2/(r+3), 0, 1 ) + ties <- c(1,1,2,2,3,4) + wt <- c(r,r,r,1,1,1) + mart <- c(1,0,1,1,0,1) - wt* (cumsum(haz))[ties] #martingale residual + + a <- 3*(r+1)^2; b<- (r+3)^2 + score <- c((2*r+3)/a, -r/a, -r/a + 3*(3-r)/b, r/a - r*(r+1)/b, + r/a + 2*r/b, r/a + 2*r/b) + + # Schoenfeld residual + scho <- c(1/(r+1), 1- (r/(3+r)), 0-(r/(3+r)) , 0) + + surv <- exp(-cumsum(haz)* exp(beta*newx)) + varhaz.g <- cumsum(c(1/(3*r+3)^2, 2/(r+3)^2, 0, 1 )) + + varhaz.d <- cumsum((newx-xbar) * haz) + + varhaz <- (varhaz.g + varhaz.d^2/ imat) * exp(2*beta*newx) + + names(xbar) <- names(haz) <- 1:4 + names(surv) <- names(varhaz) <- 1:4 + list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=haz, + mart=mart, score=score, + scho=scho, surv=surv, var=varhaz, + varhaz.g=varhaz.g, varhaz.d=varhaz.d) + } > > > > fit0 <-coxph(Surv(time, status) ~x, test1, iter=0, method='breslow') > truth0 <- byhand1(0,0) > aeq(truth0$loglik, fit0$loglik[1]) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid[c(2:6,1)]) [1] TRUE > aeq(truth0$scho, resid(fit0, 'schoen')) [1] TRUE > aeq(truth0$score, resid(fit0, 'score')[c(3:7,1)]) [1] TRUE > sfit <- survfit(fit0, list(x=0)) > aeq(sfit$cumhaz, cumsum(truth0$haz)) [1] TRUE > aeq(sfit$surv, exp(-cumsum(truth0$haz))) [1] TRUE > aeq(sfit$std.err^2, c(7/180, 2/9, 2/9, 11/9)) [1] TRUE > aeq(resid(fit0, 'score'), c(5/24, NA, 5/12, -1/12, 7/24, -1/24, 5/24)) [1] TRUE > > fit1 <- coxph(Surv(time, status) ~x, test1, iter=1, method='breslow') > aeq(fit1$coef, 8/5) [1] TRUE > > # This next gives an ignorable warning message > fit2 <- coxph(Surv(time, status) ~x, test1, method='breslow', iter=2) Warning message: In fitter(X, Y, istrat, offset, init, control, weights = weights, : Ran out of iterations and did not converge > aeq(round(fit2$coef, 6), 1.472724) [1] TRUE > > fit <- coxph(Surv(time, status) ~x, test1, method='breslow', eps=1e-8) > aeq(fit$coef, log(1.5 + sqrt(33)/2)) # the true solution [1] TRUE > truth <- byhand1(fit$coef, 0) > aeq(truth$loglik, fit$loglik[2]) [1] TRUE > aeq(1/truth$imat, fit$var) [1] TRUE > aeq(truth$mart, fit$resid[c(2:6,1)]) [1] TRUE > aeq(truth$scho, resid(fit, 'schoen')) [1] TRUE > aeq(truth$score, resid(fit, 'score')[c(3:7,1)]) [1] TRUE > expect <- predict(fit, type='expected', newdata=test1) #force recalc > aeq(test1$status[-2] -fit$resid, expect[-2]) #tests the predict function [1] TRUE > > sfit <- survfit(fit, list(x=0), censor=FALSE) > aeq(sfit$std.err^2, truth$var[c(1,2,4)]) # sfit skips time 8 (no events there) [1] TRUE > aeq(-log(sfit$surv), (cumsum(truth$haz))[c(1,2,4)]) [1] TRUE > sfit <- survfit(fit, list(x=0), censor=TRUE) > aeq(sfit$std.err^2, truth$var) [1] TRUE > aeq(-log(sfit$surv), (cumsum(truth$haz))) [1] TRUE > > # > # Done with the formal test, now print out lots of bits > # > resid(fit) 1 2 3 4 5 6 7 -0.3333333 NA 0.7287136 -0.2712864 -0.4574271 0.6666667 -0.3333333 > resid(fit, 'scor') 1 2 3 4 5 6 0.21138938 NA 0.13564322 -0.05049744 -0.12624360 -0.38168095 7 0.21138938 > resid(fit, 'scho') 1 6 6 9 0.1861407 0.4069297 -0.5930703 0.0000000 > > predict(fit, type='lp') [1] -0.7376425 NA 0.7376425 0.7376425 0.7376425 -0.7376425 -0.7376425 > predict(fit, type='risk') [1] 0.4782401 NA 2.0910001 2.0910001 2.0910001 0.4782401 0.4782401 > predict(fit, type='expected') 1 2 3 4 5 6 7 1.3333333 NA 0.2712864 0.2712864 1.4574271 0.3333333 0.3333333 > predict(fit, type='terms') x 1 -0.7376425 2 NA 3 0.7376425 4 0.7376425 5 0.7376425 6 -0.7376425 7 -0.7376425 > predict(fit, type='lp', se.fit=T) $fit 1 2 3 4 5 6 7 -0.7376425 NA 0.7376425 0.7376425 0.7376425 -0.7376425 -0.7376425 $se.fit 1 2 3 4 5 6 7 0.6278672 NA 0.6278672 0.6278672 0.6278672 0.6278672 0.6278672 > predict(fit, type='risk', se.fit=T) $fit 1 2 3 4 5 6 7 0.4782401 NA 2.0910001 2.0910001 2.0910001 0.4782401 0.4782401 $se.fit 1 2 3 4 5 6 7 0.4342009 NA 0.9079142 0.9079142 0.9079142 0.4342009 0.4342009 > predict(fit, type='expected', se.fit=T) $fit 1 2 3 4 5 6 7 1.3333333 NA 0.2712864 0.2712864 1.4574271 0.3333333 0.3333333 $se.fit [1] 1.0540926 NA 0.2785989 0.2785989 1.1069433 0.3333333 0.3333333 > predict(fit, type='terms', se.fit=T) $fit x 1 -0.7376425 2 NA 3 0.7376425 4 0.7376425 5 0.7376425 6 -0.7376425 7 -0.7376425 $se.fit x 1 0.6278672 2 NA 3 0.6278672 4 0.6278672 5 0.6278672 6 0.6278672 7 0.6278672 > > summary(survfit(fit)) Call: survfit(formula = fit) time n.risk n.event survival std.err lower 95% CI upper 95% CI 1 6 1 0.8783 0.122 0.66827 1 6 4 2 0.4981 0.218 0.21125 1 9 1 1 0.0615 0.150 0.00051 1 > summary(survfit(fit, list(x=2))) Call: survfit(formula = fit, newdata = list(x = 2)) time n.risk n.event survival std.err lower 95% CI upper 95% CI 1 6 1 3.05e-01 6.50e-01 4.72e-03 1 6 4 2 1.71e-03 1.98e-02 2.33e-13 1 9 1 1 8.52e-12 5.29e-10 1.22e-64 1 > > proc.time() user system elapsed 0.808 0.059 0.860 survival/tests/survreg1.R0000644000176200001440000000706513537676563015225 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) # fit1 and fit4 should follow identical iteration paths fit1 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, x=TRUE) fit4 <- survreg(Surv(log(futime), fustat) ~age + ecog.ps, ovarian, dist='extreme') aeq(fit1$coef, fit4$coef) aeq(fit1$var, fit4$var) resid(fit1, type='working') resid(fit1, type='response') resid(fit1, type='deviance') resid(fit1, type='dfbeta') resid(fit1, type='dfbetas') resid(fit1, type='ldcase') resid(fit1, type='ldresp') resid(fit1, type='ldshape') resid(fit1, type='matrix') aeq(resid(fit1, type='working'),resid(fit4, type='working')) #aeq(resid(fit1, type='response'), resid(fit4, type='response'))#should differ aeq(resid(fit1, type='deviance'), resid(fit4, type='deviance')) aeq(resid(fit1, type='dfbeta'), resid(fit4, type='dfbeta')) aeq(resid(fit1, type='dfbetas'), resid(fit4, type='dfbetas')) aeq(resid(fit1, type='ldcase'), resid(fit4, type='ldcase')) aeq(resid(fit1, type='ldresp'), resid(fit4, type='ldresp')) aeq(resid(fit1, type='ldshape'), resid(fit4, type='ldshape')) aeq(resid(fit1, type='matrix'), resid(fit4, type='matrix')) # Test suggested by Achim Zieleis: residuals should give a score vector r1 <-residuals(fit1, type='matrix') score <- c(as.vector(r1[,c("dg")]) %*% model.matrix(fit1), "log(scale)" = sum(r1[,"ds"])) all(abs(score) < 1e-6) # repeat this with Gaussian (no transform = different code path) tfit <- survreg(Surv(durable, durable>0, type='left') ~age + quant, data=tobin, dist='gaussian') r2 <- residuals(tfit, type='matrix') score <- c(as.vector(r2[, "dg"]) %*% model.matrix(tfit), "log(scale)" = sum(r2[,"ds"])) all(score < 1e-6) # # Some tests of the quantile residuals # # These should agree exactly with Ripley and Venables' book fit1 <- survreg(Surv(time, status) ~ temp, data= imotor) summary(fit1) # # The first prediction has the SE that I think is correct # The third is the se found in an early draft of Ripley; fit1 ignoring # the variation in scale estimate, except via it's impact on the # upper left corner of the inverse information matrix. # Numbers 1 and 3 differ little for this dataset # predict(fit1, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) fit2 <- survreg(Surv(time, status) ~ temp, data=imotor, scale=fit1$scale) predict(fit2, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) fit3 <- fit2 fit3$var <- fit1$var[1:2,1:2] predict(fit3, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) pp <- seq(.05, .7, length=40) xx <- predict(fit1, data.frame(temp=130), type='uquantile', se=T, p=pp) #matplot(pp, cbind(xx$fit, xx$fit+2*xx$se, xx$fit - 2*xx$se), type='l') # # Now try out the various combinations of strata, #predicted, and # number of quantiles desired # fit1 <- survreg(Surv(time, status) ~ inst + strata(inst) + age + sex, lung) qq1 <- predict(fit1, type='quantile', p=.3, se=T) qq2 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) aeq(qq1$fit, qq2$fit[,2]) aeq(qq1$se.fit, qq2$se.fit[,2]) qq3 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata= lung[1:5,]) aeq(qq3$fit, qq2$fit[1:5,]) qq4 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung[7,]) aeq(qq4$fit, qq2$fit[7,]) qq5 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung) aeq(qq2$fit, qq5$fit) aeq(qq2$se.fit, qq5$se.fit) survival/tests/factor.Rout.save0000644000176200001440000000342013537676563016401 0ustar liggesusers R version 2.14.0 (2011-10-31) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Ensure that factors work in prediction > # > library(survival) Loading required package: splines > > options(na.action="na.exclude") # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > tfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog), lung) > p1 <- predict(tfit, type='risk') > > # Testing NA handling is important too > keep <- (is.na(lung$ph.ecog) | lung$ph.ecog !=1) > lung2 <- lung[keep,] > p2 <- predict(tfit, type='risk', newdata=lung[keep,]) > aeq(p1[keep], p2) [1] TRUE > > # Same, for survreg > tfit <- survreg(Surv(time, status) ~ age + factor(ph.ecog), lung) > p1 <- predict(tfit, type='response') > p2 <- predict(tfit, type='response', newdata=lung2) > aeq(p1[keep], p2) [1] TRUE > > > # Now repeat it tossing the missings > options(na.action=na.omit) > keep2 <- (lung$ph.ecog[!is.na(lung$ph.ecog)] !=1) > > tfit2 <- survreg(Surv(time, status) ~ age + factor(ph.ecog), lung) > p3 <- predict(tfit2, type='response') > p4 <- predict(tfit2, type='response', newdata=lung2, na.action=na.omit) > aeq(p3[keep2] , p4) [1] TRUE > survival/tests/coxsurv2.Rout.save0000644000176200001440000000537213537676563016726 0ustar liggesusers R Under development (unstable) (2019-05-16 r76518) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > # > # Check that the survival curves from a Cox model with beta=0 > # match ordinary survival > # > # Aalen > surv1 <- survfit(Surv(time,status) ~ sex, data=lung, stype=2) > fit1 <- coxph(Surv(time, status) ~ age + strata(sex), data=lung, iter=0, + ties='breslow') > fit1$var <- 0*fit1$var #sneaky, causes the extra term in the Cox variance > # calculation to be zero > surv2 <- survfit(fit1, stype=2) > surv3 <- survfit(fit1) > > arglist <- c('n', 'time', 'n.risk','n.event', 'n.censor', 'surv', 'strata', + 'std.err', 'upper', 'lower') > all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) [1] TRUE > all.equal(unclass(surv1)[arglist], unclass(surv3)[arglist]) [1] TRUE > > > # Efron method > surv1 <- survfit(Surv(time,status) ~ sex, data=lung, stype=2, ctype=2) > surv2 <- survfit(fit1, ctype=2) > all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) [1] TRUE > > # Kaplan-Meier > surv1 <- survfit(Surv(time,status) ~ sex, data=lung) > surv2 <- survfit(fit1, stype=1) > all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) [1] TRUE > > > # Now add some random weights > rwt <- runif(nrow(lung), .5, 3) > surv1 <- survfit(Surv(time,status) ~ sex, data=lung, stype=2, weight=rwt) > fit1 <- coxph(Surv(time, status) ~ age + strata(sex), data=lung, iter=0, + ties='breslow', weight=rwt) > fit1$var <- 0*fit1$var #sneaky > surv2 <- survfit(fit1, stype=2, ctype=1) > surv3 <- survfit(fit1) > > all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) [1] TRUE > all.equal(unclass(surv1)[arglist], unclass(surv3)[arglist]) [1] TRUE > > > # Efron method > surv1 <- survfit(Surv(time,status) ~ sex, data=lung, stype=2, ctype=2, + weight=rwt) > surv2 <- survfit(fit1, ctype=2) > all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) [1] TRUE > > # Kaplan-Meier > surv1 <- survfit(Surv(time,status) ~ sex, data=lung, weight=rwt) > surv2 <- survfit(fit1, stype=1) > all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) [1] TRUE > > > proc.time() user system elapsed 0.753 0.049 0.797 survival/tests/prednew.R0000644000176200001440000000503313537676563015104 0ustar liggesusers# # Make sure that the newdata argument works for various # predictions # We purposely use a subset of the lung data that has only some # of the levels of ph.ecog library(survival) options(na.action=na.exclude, contrasts=c('contr.treatment', 'contr.poly')) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) myfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog) + strata(sex), lung) keep <- which(lung$inst<13 & (lung$ph.ecog==1 | lung$ph.ecog==2)) p1 <- predict(myfit, type='lp') p2 <- predict(myfit, type="lp", newdata=lung[keep,]) p3 <- predict(myfit, type='lp', se.fit=TRUE) p4 <- predict(myfit, type="lp", newdata=lung[keep,], se.fit=TRUE) aeq(p1[keep], p2) aeq(p1, p3$fit) aeq(p1[keep], p4$fit) aeq(p3$se.fit[keep], p4$se.fit) p1 <- predict(myfit, type='risk') p2 <- predict(myfit, type="risk", newdata=lung[keep,]) p3 <- predict(myfit, type='risk', se.fit=TRUE) p4 <- predict(myfit, type="risk", newdata=lung[keep,], se.fit=TRUE) aeq(p1[keep], p2) aeq(p1, p3$fit) aeq(p1[keep], p4$fit) aeq(p3$se.fit[keep], p4$se.fit) # The all.equal fails for type=expected, Efron approx, and tied death # times due to use of an approximation. See comments in the source code. myfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog) + strata(sex), data=lung, method='breslow') p1 <- predict(myfit, type='expected') p2 <- predict(myfit, type="expected", newdata=lung[keep,]) p3 <- predict(myfit, type='expected', se.fit=TRUE) p4 <- predict(myfit, type="expected", newdata=lung[keep,], se.fit=TRUE) aeq(p1[keep], p2) aeq(p1, p3$fit) aeq(p1[keep], p4$fit) aeq(p3$se.fit[keep], p4$se.fit) p1 <- predict(myfit, type='terms') p2 <- predict(myfit, type="terms",newdata=lung[keep,]) p3 <- predict(myfit, type='terms', se.fit=T) p4 <- predict(myfit, type="terms",newdata=lung[keep,], se.fit=T) aeq(p1[keep,], p2) aeq(p1, p3$fit) aeq(p1[keep,], p4$fit) aeq(p3$se.fit[keep,], p4$se.fit) # # Check out the logic whereby predict does not need to # recover the model frame. The first call should not # need to do so, the second should in each case. # myfit <- coxph(Surv(time, status) ~ age + factor(sex), lung, x=T) p1 <- predict(myfit, type='risk', se=T) myfit2 <- coxph(Surv(time, status) ~ age + factor(sex), lung) p2 <- predict(myfit2, type='risk', se=T) aeq(p1$fit, p2$fit) aeq(p1$se, p2$se) p1 <- predict(myfit, type='expected', se=T) p2 <- predict(myfit2, type='expected', se=T) aeq(p1$fit, p2$fit) aeq(p1$se.fit, p2$se.fit) p1 <- predict(myfit, type='terms', se=T) p2 <- predict(myfit2, type='terms', se=T) aeq(p1$fit, p2$fit) aeq(p1$se.fit, p2$se.fit) survival/tests/r_user.Rout.save0000644000176200001440000000305613537676563016427 0ustar liggesusers R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) #preserve length of missings > library(survival) Loading required package: splines > > # > # Check out using a "user specified" distribution > # > mydist <- c(survreg.distributions$extreme, survreg.distributions$weibull[-1]) > mydist$name <- "Weibull2" > mydist$dist <- NULL > > fit1 <- survreg(Surv(time, status) ~ age + ph.ecog, lung) > fit2 <- survreg(Surv(time, status) ~ age + ph.ecog, lung, dist=mydist) > > all.equal(fit1$coef, fit2$coef) [1] TRUE > all.equal(fit1$var, fit2$var) [1] TRUE > > # > # And with an data set containing interval censoring > # > idat <- read.table('data.interval', skip=3, header=T, sep=',') > > fit1 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps, idat) > fit2 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps, + data=idat, dist=mydist) > > all.equal(fit1$coef, fit2$coef) [1] TRUE > all.equal(fit1$var, fit2$var) [1] TRUE > all.equal(fit1$log, fit2$log) [1] TRUE > > survival/tests/gray1.rda0000644000176200001440000000644013537676563015033 0ustar liggesusers‹íÙ{TÍiÛðÝ © IR¢R9WhB¨†J„‰ÎÉ‹v”=C%¥ÈH'‘t>+©TƒôT¨br¬¦bš„æýµçþ]×{ßk=k½k½ëùã]ëÙëÛþìµÛ‡ßᆵë^{ß{©µÞpëá@\ !Á]sIqîJL )Æ9d—›®@ ¡ z@|ÐÁGÉpB¹˜xÕÒ¼  ©¥ “bô§ ?@{ömÄVÚ¨$ÚiÆ´—f2zÐþ"ÏhE{y4m\:cc?íÚø&Ú„-Œ¹Œ%´‰òŒ“i¯ª3ºÓ¦ÔÑ^§½þc c>cmj(íY´iZŒ;ýÑÞ̦M—gÌ¡ÍÐaÜF›¹“6{mÎTÆùŒ´ù>BÚpeÁÚ"[FÚRo!íAåí0ÆoBʲbÚ; i+´´uBÊš~‘fà/Æ.]r]£@!cЧq\ÀÓä~Þ³Fׯp£Èãx/«O,VW/‘çñÆ©ÜWàÆ“×áM´ ËL&¯Ë›rÑlÂE3eð:yÞÏÄ'=WÓÈûò¦Ë<—çfãàÍœU4š ˜m­ÈÌ!ÇÅ›»ÏG‰ ˜GŽ“7ÿ›ÆÿcÓ°€7oaªrªÁD°ˆœo±è°&·Èyñ–xõæ‚’óä-=þæÌñ7¡àmrÞ`DchDcXFÆL(K(ïq³3ó3Ï‚ådÁЏ³q`GpðmCÏ•d\Á×~ç^ûE‚wÉ8ƒ½.‘½.Q`wÞê¡¶ç¹ dxkE‚’yáýuÚâ.(™'Þ{†3/pAɼñÞ|™ Q2¼6å‚’yå­Õû:”Ì3˜ÿÉ*ÿÓZðáBW.¼ÿj0ê‘é4¿ºY‹×Xì«ZÙÈq àð§ovÑÌG5Z¸—ÞÊõG:Ms’ÇŸÐ 5Œ{ªÔUøKYW€“ƒ^üÐ4!T‹?7®Ï*œZ#Wÿ^œ~ÿѶ„¾àŒ–›Þù~µÚF ˜vÚoûög¿Uüè]êtÏKÔy ê¶Ëü`˜Þêývx”ùŠ pN“³ÛØ© Á-ûÍüj@ÃÔ…礃sÏg˜ŽÙ Îóÿ5¶Àè8ÿ'ßòî{%à‚µ5ýÑöƒ õo..>\4ÆòÆ}µ3èÇ@‡ãËÀÅlÓz•e@£¤‡&æÒJ ±oó³æ|h¢i\±mNf£ÞÿæGôËÊ–£>‚Kì>ö2§ÐÊ“V⻳Á¥ZmŠÓê3ÑŸG8®ö©B»%_Ë~—­­|/¦w½i7ÍõÖÐT¶ª6²qê,5Ë»/ ­R3ÝËü^í½žGz8qÇHû´q‰”RÀzÐL»XÚ7Põ—Ž®ŽöFŸÌ}˜,­ .×>mšøË.T˜µ¢3¯­»ÑÖ:þ¸B-üÝ”¤Ç¨»ÙQÙneôvX¬£ßp¥Üõ=ÙÊKPMÏqéèÕlcµ<5´7ØsÜÄÙ ùi; ôdÉRŠ‘h‡ÅÐÚËɼ엇}vÎ;?aÊ ¿4ü}§¤Çnçä¶Äwþ¦—ÇýCÌ”_JL”•M— i-ŒBZ£*íŽZW+Æ4Z¯K´Þª´¾:´BÖHÆ$Z?%ÆHÆ4Zÿí´Œ'¬siƒVÐ;ÑþÌxºžöL!íYGÆÚsV´QŽ´çÕ5 i£#cë[hc¶2¶Ó^¤µfÒ^ÚÉJû‹ ãÚËfŒ%Œí´q’Œã§Ñ^1dl§ M˜Â8Ñž±6q £?ã ÆS´IÅŒ¿Ñ&ë32¶Ó^í¢M©¥MMblgüD›6•qãqÆ(Ú›òŒ;+hÓu#£i3ì/1æ0¶Ðf~Ǹ˜q;c!ã{Ú,9ÆTÚìÃŒaŒWKhs&2j2` b¬büÄøm®ãÆ%Œ.Œ÷hó,0¾dì¡Í_Îèĸ—¶@ñ:m¡m‘$mqcí­¥´%êŒ „´ËÝ“3´¿2~R–ÎЮfÜËx\HKμ ¤-¦½M¶&ÁíŒeBZRw¼erŒ.BZÒ'`íÚòaŒ'i+|h+5…´dkŽ÷n·ˆžˆ’¾_.áÒ¶>÷ÌßÊ%}öèpy >%}ÔØÆ%}Ç+j£IÏPÒ‡ hšlQÒ—¼¢.yŽ’>Gqèv”ô-ï 9Q#¢¤Á ¢ÂEI_ƒ‘ƒ튒>E£‹’¾çmUíèæ‚’ut|w“ JÖ0©Í5©Í %ëØÞªÛÞª¾$ë¨#:0”¬# ‡¨²Q²®€¢¶wGÉ:ІqøŠ¬; IÍG.(Y‡@ÿÊ ÿÊL”¬KàÝ2÷»e(Y§x“¾¥Ï%ëh%š(”¬c`øàB–…’u lQºÒ¢¶ 1— º ¨#¿¨ ±9bó_hW@PW@0øÚ#ï"´¯#½¯#ƒ÷_}N4êYl¨uh ¯±XÿñØc´ÁáM½!z÷"ÁQõcÝ4º}@Eݱu.··ãýíòqœhèè¸T»ì+9¶ª œšû¹xbè pzuBè©í^àŒG~»â®ZÏ#‚Ó›‚Ú/Ÿ¤º†ng·®}صÔé8òݧ±«AÝ7íúzgÜ@½ç3gnç4„e|©êß½'u"{h»ûyV6h˜4ü±_o.87\vƒkÔ5pÞáTw—cp¾ãëØ²epÁÊœ'΋׃‹¤Õœ»Y¾+1XSS.¾óçæÒu—A£ •'Ã?×€Æ:Õ56‡@ueÃQ›úÐSí!žkJÑO'—ÏQ—lé ,4«BKfo_«.U×ú5 ºá‹y&úöJBWb¸l¥¬oª«/šdöÜÐãh:Ô¼<8HuP6:ØT€X6œ‹¿7ííP}-ÔÍö;™Êj´ÚáZ·gh6Ù ?Fù/Ô«¡÷Œe5ZcúDeËp¹Špi¤S#ê´ß4@-µÒ–r\1JlÛ‘d3ÔÖe’üÖíèµ”]q™Öh_Æ\ƒôµï_ñò›'šøh¦YðmôÃQ­Y]è*íXáû—G‹ÛÍCol›ø4·í4ÖQ9®ÖêÈ;Ók:9ÕyÖ}CãÒÜŠFç OïœwŽî×(Ư ñÐB-6þ(+wõÿç§qŸÏ£ù3»?RD;×y'¯õ-&›èÅOG×9°óÕsôعÖi•‹ÑôÏk´ÑÖéÎW,Z@KõŒäè$t~çQ‰S–¨càM…էЮõ*höÔoútúJ›žQ •˜o¬ÒË^¯þØ}ãÙãÅ}¾~9] ýSCüÊôùèÀÄï‡9î×J¸wõó-tø‚˜ÄE>¨¬}ºÊYT¡[Fw\3:¶í¦DJ.:Áä|Áè?Q±š#Wߣª3–y÷h “sÄëÊ¿¢SR†SGÕ†Xï64B§”ÿ>ìþ6trû½Æ ³QÕ£aÉ®¡*ÇV*Ú‡Nx¿Ú8¥UÊ9wb“6:ú/Þ9¨Üù”àò$tD|b€¦<:T±kÊV=Ðê¯Î€Y=èç™»='+ ÝµÑ6ª2è»fåu½h몎‘}Fèc5ë/÷ÐûÛýd‡H£w$ÍTT‹Ð<› ¿èõ#5{ß) ¿ì‘òI†ĆJoEÝC½÷æ£>g^MHîG÷*†%8½A·Š% J@WÛÜXQŽ.š¡£ùuªå”è²´/q?$•š Q|í*hùa•ü”ãŸÑr‡?,%_ Í5?@=¿Ux=G7/’Šv’G-K²Aè±”ëAm² Õ¡¬æ½vÁµûl5 Ï6ƒëÇ4…$Úƒëêm |§ñþý¶øà&ýàÆéÿúWkêYâü¿uUuñ¦ûó¸ÃOvîüÏãüC0 aeq(fit1$time[deaths], cfit1$time) aeq(fit1$n.risk[deaths], cfit1$n.risk) aeq(fit1$n.event[deaths], cfit1$n.event) aeq(fit1$surv[deaths], cfit1$surv) aeq(fit1$std.err[deaths], cfit1$std.err) deaths <- (fit2$n.event + fit2$n.censor)>0 aeq(fit2$time[deaths], cfit2$time) aeq(fit2$n.risk[deaths], cfit2$n.risk) aeq(fit2$n.event[deaths], cfit2$n.event) aeq(fit2$surv[deaths], cfit2$surv) fit3 <- survfit(Surv(start, stop, event) ~1, test2) #Kaplan-Meier aeq(fit3$n, 10) aeq(fit3$time, unique(test2$stop)) aeq(fit3$n.risk, c(2,3,5,4,4,5,2,1)) aeq(fit3$n.event,c(1,1,1,1,1,2,0,0)) aeq(fit3$surv[fit3$n.event>0], c(.5, 1/3, 4/15, 1/5, 3/20, 9/100)) # # Verify that both surv AND n.risk are right between time points. # fit <- survfit(Surv(time, status) ~1, test1) temp <- summary(fit, time=c(.5,1, 1.5, 6, 7.5, 8, 8.9, 9, 10), extend=TRUE) aeq(temp$n.risk, c(6,6,4,4,2,2,1,1,0)) aeq(temp$surv, c(1, fit$surv[c(1,1,2,2,3,3,4,4)])) aeq(temp$n.event, c(0,1,0,2,0,0,0,1,0)) aeq(temp$std.err, c(0, (fit$surv*fit$std.err)[c(1,1,2,2,3,3,4,4)])) fit <- survfit(Surv(start, stop, event) ~1, test2) temp <- summary(fit, times=c(.5, 1.5, 2.5, 3, 6.5, 14.5, 16.5)) aeq(temp$surv, c(1, 1, fit$surv[c(1,2,3,6,6)])) # This next fails. With start-stop data the number at risk at intermediate # endpoints is not known precisely, since the underlying routine does not report # time points at which only an addition occured. # aeq(temp$n.risk, c(0, 2, 3, 3, 4, 1,1)) survival/tests/survreg2.Rout.save0000644000176200001440000000642113537676563016706 0ustar liggesusers R Under development (unstable) (2014-05-11 r65563) -- "Unsuffered Consequences" Copyright (C) 2014 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > options(na.action=na.exclude, contrasts=c('contr.treatment', 'contr.poly')) > > # Verify stratified fits in a simple way, but combining two data > # sets and doing a single fit > # > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > tdata <- data.frame(time=c(lung$time, ovarian$futime), + status=c(lung$status-1, ovarian$fustat), + group =rep(0:1, c(nrow(lung), nrow(ovarian)))) > fit1 <- survreg(Surv(time, status) ~ 1, lung) > fit2 <- survreg(Surv(futime, fustat) ~ 1, ovarian) > fit3 <- survreg(Surv(time, status) ~ group + strata(group), tdata) > > aeq(c(fit1$coef, fit2$coef-fit1$coef), fit3$coef) [1] TRUE > aeq(c(fit1$scale, fit2$scale), fit3$scale) [1] TRUE > aeq(fit1$loglik[2] + fit2$loglik[2], fit3$loglik[2]) [1] TRUE > > # > # Test out the cluster term in survreg, which means first a test > # of the dfbeta residuals > # I also am checking that missing values propogate > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > fit1 <- survreg(Surv(time, status) ~ x + cluster(1:7), test1) > > db1 <- resid(fit1, 'dfbeta') > ijack <-db1 > eps <- 1e-7 > for (i in 1:7) { + temp <- rep(1.0,7) + temp[i] <- 1-eps + tfit <- survreg(Surv(time, status) ~ x, test1, weight=temp) + ijack[i,] <- c(tfit$coef, log(tfit$scale)) + } > ijack[2,] <- NA # stick the NA back in > ijack <- (rep(c(fit1$coef, log(fit1$scale)), each=nrow(db1)) - ijack)/eps > all.equal(db1, ijack, tolerance=eps) [1] TRUE > all.equal(t(db1[-2,])%*% db1[-2,], fit1$var) [1] TRUE > > # This is a harder test since there are multiple strata and multiple > # obs/subject. Use of enum + strata(enum) in essenence fits a different > # baseline Weibull to each strata, with common coefficients for rx, size, and > # number. > fit1 <- survreg(Surv(stop-start, event) ~ rx + size + number + + factor(enum) + strata(enum), data=bladder2) > > db1 <- resid(fit1, type='dfbeta', collapse=bladder2$id) > ijack <- db1 # a matrix of the same size > for (i in 1:nrow(db1)) { + twt <- rep(1., nrow(bladder2)) + twt[bladder2$id==i] <- 1-eps + tfit <- survreg(Surv(stop-start, event) ~ rx + size + number + + factor(enum) + strata(enum), data=bladder2, + weight=twt) + ijack[i,] <- c(coef(tfit), log(tfit$scale)) + } > ijack <- (rep(c(fit1$coef, log(fit1$scale)), each=nrow(db1)) - ijack)/eps > all.equal(db1, ijack, tolerance=eps*2) [1] TRUE > > > proc.time() user system elapsed 0.732 0.028 0.759 survival/tests/cancer.Rout.save0000644000176200001440000001767513537676603016372 0ustar liggesusers R Under development (unstable) (2019-06-28 r76752) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # > # Test out all of the routines on a more complex data set > # > temp <- survfit(Surv(time, status) ~ ph.ecog, lung) > summary(temp, times=c(30*1:11, 365*1:3)) Call: survfit(formula = Surv(time, status) ~ ph.ecog, data = lung) 1 observation deleted due to missingness ph.ecog=0 time n.risk n.event survival std.err lower 95% CI upper 95% CI 30 60 3 0.952 0.0268 0.9012 1.000 60 58 2 0.921 0.0341 0.8562 0.990 90 56 2 0.889 0.0396 0.8146 0.970 120 56 0 0.889 0.0396 0.8146 0.970 150 55 1 0.873 0.0419 0.7946 0.959 180 52 2 0.841 0.0461 0.7553 0.936 210 48 2 0.808 0.0498 0.7164 0.912 240 45 0 0.808 0.0498 0.7164 0.912 270 38 2 0.770 0.0543 0.6709 0.884 300 33 2 0.727 0.0591 0.6203 0.853 330 29 2 0.681 0.0637 0.5670 0.818 365 22 6 0.535 0.0728 0.4100 0.699 730 5 11 0.193 0.0707 0.0943 0.396 ph.ecog=1 time n.risk n.event survival std.err lower 95% CI upper 95% CI 30 111 2 0.982 0.0124 0.9583 1.000 60 110 3 0.956 0.0193 0.9186 0.994 90 104 4 0.920 0.0255 0.8718 0.972 120 99 5 0.876 0.0310 0.8174 0.939 150 93 6 0.823 0.0359 0.7556 0.896 180 82 8 0.751 0.0407 0.6756 0.836 210 68 9 0.666 0.0450 0.5831 0.760 240 57 6 0.604 0.0474 0.5176 0.704 270 53 4 0.561 0.0487 0.4729 0.665 300 46 3 0.527 0.0495 0.4384 0.633 330 40 4 0.480 0.0504 0.3903 0.589 365 34 4 0.431 0.0509 0.3417 0.543 730 7 21 0.114 0.0388 0.0582 0.222 ph.ecog=2 time n.risk n.event survival std.err lower 95% CI upper 95% CI 30 46 5 0.9000 0.0424 0.82057 0.987 60 43 2 0.8600 0.0491 0.76900 0.962 90 40 3 0.8000 0.0566 0.69647 0.919 120 34 4 0.7174 0.0641 0.60216 0.855 150 31 3 0.6541 0.0680 0.53342 0.802 180 26 6 0.5275 0.0719 0.40385 0.689 210 21 4 0.4431 0.0717 0.32266 0.608 240 17 3 0.3766 0.0705 0.26100 0.543 270 17 0 0.3766 0.0705 0.26100 0.543 300 13 3 0.3102 0.0677 0.20223 0.476 330 11 2 0.2624 0.0651 0.16135 0.427 365 9 2 0.2147 0.0614 0.12258 0.376 730 1 6 0.0371 0.0345 0.00601 0.229 ph.ecog=3 time n.risk n.event survival std.err lower 95% CI upper 95% CI 30 1 0 1 0 1 1 60 1 0 1 0 1 1 90 1 0 1 0 1 1 > print(temp[2:3]) Call: survfit(formula = Surv(time, status) ~ ph.ecog, data = lung) n events median 0.95LCL 0.95UCL ph.ecog=1 113 82 306 268 429 ph.ecog=2 50 44 199 156 288 > > temp <- survfit(Surv(time, status)~1, lung, type='fleming', + conf.int=.9, conf.type='log-log', error='tsiatis') > summary(temp, times=30 *1:5) Call: survfit(formula = Surv(time, status) ~ 1, data = lung, error = "tsiatis", type = "fleming", conf.int = 0.9, conf.type = "log-log") time n.risk n.event survival std.err lower 90% CI upper 90% CI 30 219 10 0.956 0.0135 0.928 0.974 60 213 7 0.926 0.0173 0.891 0.950 90 201 10 0.882 0.0213 0.842 0.913 120 189 10 0.838 0.0244 0.793 0.874 150 179 10 0.794 0.0268 0.745 0.834 > > temp <- survdiff(Surv(time, status) ~ inst, lung, rho=.5) > print(temp, digits=6) Call: survdiff(formula = Surv(time, status) ~ inst, data = lung, rho = 0.5) n=227, 1 observation deleted due to missingness. N Observed Expected (O-E)^2/E (O-E)^2/V inst=1 36 21.190058 17.455181 0.799149708 1.171232977 inst=2 5 3.173330 1.964395 0.744007932 0.860140808 inst=3 19 10.663476 11.958755 0.140294489 0.200472362 inst=4 4 2.245347 3.559344 0.485085848 0.677874608 inst=5 9 5.010883 4.500982 0.057765161 0.077128402 inst=6 14 8.862602 7.078516 0.449665221 0.582743947 inst=7 8 4.445647 4.416133 0.000197254 0.000253632 inst=10 4 2.901923 2.223283 0.207150016 0.249077097 inst=11 18 7.807867 9.525163 0.309611863 0.422142221 inst=12 23 14.009656 12.216768 0.263117640 0.365712493 inst=13 20 9.140983 11.863298 0.624699853 0.874238212 inst=15 6 3.170744 3.558447 0.042241456 0.057938955 inst=16 16 8.870360 9.992612 0.126038005 0.175170113 inst=21 13 9.263733 4.460746 5.171484268 6.149354145 inst=22 17 8.278566 11.971473 1.139171459 1.645863937 inst=26 6 1.627074 3.542694 1.035821659 1.286365543 inst=32 7 1.792468 2.679904 0.293869782 0.343966668 inst=33 2 0.929177 0.416202 0.632249272 0.676682390 Chisq= 15.1 on 17 degrees of freedom, p= 0.5904 > > # verify that the zph routine does the actual score test > dtime <- lung$time[lung$status==2] > lung2 <- survSplit(Surv(time, status) ~ ., lung, cut=dtime) > > cfit1 <-coxph(Surv(time, status) ~ ph.ecog + ph.karno + pat.karno + wt.loss + + sex + age + strata(inst), lung) > cfit2 <-coxph(Surv(tstart, time, status) ~ ph.ecog + ph.karno + pat.karno + + wt.loss + sex + age + strata(inst), lung2) > all.equal(cfit1$loglik, cfit2$loglik) [1] TRUE > all.equal(coef(cfit1), coef(cfit2)) [1] TRUE > > # the above verifies that the data set is correct > zp1 <- cox.zph(cfit1, transform="log") > zp2 <- cox.zph(cfit2, transform="log") > # everything should match but the call > icall <- match("Call", names(zp1)) > all.equal(unclass(zp2)[-icall], unclass(zp1)[-icall]) [1] TRUE > > # now compute score tests one variable at a time > ncoef <- length(coef(cfit2)) > check <- double(ncoef) > cname <- names(coef(cfit2)) > for (i in 1:ncoef) { + temp <- log(lung2$time) * lung2[[cname[i]]] + # score test for this new variable + tfit <- coxph(Surv(tstart, time, status) ~ ph.ecog + ph.karno + pat.karno + + wt.loss + sex + age + strata(inst) + + temp, lung2, init=c(cfit2$coef, 0), iter=0) + check[i] <- tfit$score + } > aeq(check, zp1$table[1:ncoef,1]) # skip the 'global' test [1] TRUE > > # > # Tests of using "." > # > fit1 <- coxph(Surv(time, status) ~ . - meal.cal - wt.loss - inst, lung) > fit2 <- update(fit1, .~. - ph.karno) > fit3 <- coxph(Surv(time, status) ~ age + sex + ph.ecog + pat.karno, lung) > all.equal(fit2, fit3) [1] TRUE > > proc.time() user system elapsed 1.492 0.052 1.544 survival/tests/ovarian.Rout.save0000644000176200001440000003160613537676603016564 0ustar liggesusers R Under development (unstable) (2019-09-06 r77159) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Test the coxph program on the Ovarian data > summary(survfit(Surv(futime, fustat)~1, data=ovarian), censor=TRUE) Call: survfit(formula = Surv(futime, fustat) ~ 1, data = ovarian) time n.risk n.event survival std.err lower 95% CI upper 95% CI 59 26 1 0.962 0.0377 0.890 1.000 115 25 1 0.923 0.0523 0.826 1.000 156 24 1 0.885 0.0627 0.770 1.000 268 23 1 0.846 0.0708 0.718 0.997 329 22 1 0.808 0.0773 0.670 0.974 353 21 1 0.769 0.0826 0.623 0.949 365 20 1 0.731 0.0870 0.579 0.923 377 19 0 0.731 0.0870 0.579 0.923 421 18 0 0.731 0.0870 0.579 0.923 431 17 1 0.688 0.0919 0.529 0.894 448 16 0 0.688 0.0919 0.529 0.894 464 15 1 0.642 0.0965 0.478 0.862 475 14 1 0.596 0.0999 0.429 0.828 477 13 0 0.596 0.0999 0.429 0.828 563 12 1 0.546 0.1032 0.377 0.791 638 11 1 0.497 0.1051 0.328 0.752 744 10 0 0.497 0.1051 0.328 0.752 769 9 0 0.497 0.1051 0.328 0.752 770 8 0 0.497 0.1051 0.328 0.752 803 7 0 0.497 0.1051 0.328 0.752 855 6 0 0.497 0.1051 0.328 0.752 1040 5 0 0.497 0.1051 0.328 0.752 1106 4 0 0.497 0.1051 0.328 0.752 1129 3 0 0.497 0.1051 0.328 0.752 1206 2 0 0.497 0.1051 0.328 0.752 1227 1 0 0.497 0.1051 0.328 0.752 > > # Various models > coxph(Surv(futime, fustat)~ age, data=ovarian) Call: coxph(formula = Surv(futime, fustat) ~ age, data = ovarian) coef exp(coef) se(coef) z p age 0.16162 1.17541 0.04974 3.249 0.00116 Likelihood ratio test=14.29 on 1 df, p=0.0001564 n= 26, number of events= 12 > coxph(Surv(futime, fustat)~ resid.ds, data=ovarian) Call: coxph(formula = Surv(futime, fustat) ~ resid.ds, data = ovarian) coef exp(coef) se(coef) z p resid.ds 1.2092 3.3507 0.6724 1.798 0.0721 Likelihood ratio test=3.76 on 1 df, p=0.05251 n= 26, number of events= 12 > coxph(Surv(futime, fustat)~ rx, data=ovarian) Call: coxph(formula = Surv(futime, fustat) ~ rx, data = ovarian) coef exp(coef) se(coef) z p rx -0.5964 0.5508 0.5870 -1.016 0.31 Likelihood ratio test=1.05 on 1 df, p=0.3052 n= 26, number of events= 12 > coxph(Surv(futime, fustat)~ ecog.ps, data=ovarian) Call: coxph(formula = Surv(futime, fustat) ~ ecog.ps, data = ovarian) coef exp(coef) se(coef) z p ecog.ps 0.3984 1.4894 0.5864 0.679 0.497 Likelihood ratio test=0.47 on 1 df, p=0.4935 n= 26, number of events= 12 > > coxph(Surv(futime, fustat)~ resid.ds + rx + ecog.ps, data=ovarian) Call: coxph(formula = Surv(futime, fustat) ~ resid.ds + rx + ecog.ps, data = ovarian) coef exp(coef) se(coef) z p resid.ds 1.3466 3.8444 0.6803 1.980 0.0478 rx -0.7493 0.4727 0.5949 -1.260 0.2078 ecog.ps 0.4528 1.5727 0.5903 0.767 0.4431 Likelihood ratio test=6.03 on 3 df, p=0.1101 n= 26, number of events= 12 > coxph(Surv(futime, fustat)~ age + rx + ecog.ps, data=ovarian) Call: coxph(formula = Surv(futime, fustat) ~ age + rx + ecog.ps, data = ovarian) coef exp(coef) se(coef) z p age 0.1470 1.1583 0.0463 3.175 0.0015 rx -0.8146 0.4428 0.6342 -1.285 0.1990 ecog.ps 0.1032 1.1087 0.6064 0.170 0.8649 Likelihood ratio test=15.92 on 3 df, p=0.00118 n= 26, number of events= 12 > coxph(Surv(futime, fustat)~ age + resid.ds + ecog.ps, data=ovarian) Call: coxph(formula = Surv(futime, fustat) ~ age + resid.ds + ecog.ps, data = ovarian) coef exp(coef) se(coef) z p age 0.14240 1.15303 0.05196 2.740 0.00614 resid.ds 0.66261 1.93984 0.75045 0.883 0.37727 ecog.ps 0.16634 1.18097 0.61486 0.271 0.78675 Likelihood ratio test=15.1 on 3 df, p=0.001732 n= 26, number of events= 12 > coxph(Surv(futime, fustat)~ age + resid.ds + rx, data=ovarian) Call: coxph(formula = Surv(futime, fustat) ~ age + resid.ds + rx, data = ovarian) coef exp(coef) se(coef) z p age 0.1285 1.1372 0.0473 2.718 0.00657 resid.ds 0.6964 2.0065 0.7585 0.918 0.35858 rx -0.8489 0.4279 0.6392 -1.328 0.18416 Likelihood ratio test=16.77 on 3 df, p=0.0007889 n= 26, number of events= 12 > > # Residuals > fit <- coxph(Surv(futime, fustat)~ age + resid.ds + rx + ecog.ps, data=ovarian) > resid(fit) 1 2 3 4 5 6 0.84103277 0.54424388 0.59670824 -0.11281376 0.75111588 -0.32609026 7 8 9 10 11 12 0.59998927 0.29570718 -2.15325805 0.76243469 0.06474272 -0.11680752 13 14 15 16 17 18 -1.22562781 -0.63474839 -0.07535824 -0.17058905 -0.22986038 -0.14654862 19 20 21 22 23 24 -0.18762920 -0.12771548 -0.53373114 -0.65480022 0.95866131 0.82111675 25 26 0.55136554 -0.09154014 > resid(fit, 'dev') 1 2 3 4 5 6 1.41281595 0.69505907 0.78916003 -0.47500266 1.13106322 -0.80757694 7 8 9 10 11 12 0.79532966 0.33122166 -2.07521471 1.16179002 0.06619519 -0.48333740 13 14 15 16 17 18 -1.56564862 -1.12671948 -0.38822221 -0.58410453 -0.67802711 -0.54138455 19 20 21 22 23 24 -0.61258338 -0.50540178 -1.03318066 -0.54976346 2.11059000 1.34157009 25 26 0.70736314 -0.42787881 > resid(fit, 'scor') age resid.ds rx ecog.ps 1 2.26503249 0.05686357 -0.10565379 -0.42661688 2 3.02525428 0.04641312 -0.08623662 -0.34821275 3 -0.06851355 0.07131430 -0.13250357 0.06167527 4 0.94597623 -0.02541510 -0.06423496 0.05971729 5 -5.41507168 0.21605962 -0.32258092 -0.39333909 6 1.48999552 0.24899474 0.14035143 -0.15380664 7 -0.68612431 0.13740891 0.28392482 0.29196506 8 0.93116906 0.08428957 0.16040160 0.18430641 9 -8.20092595 -0.51356176 0.95647608 1.11337112 10 0.95287510 -0.31078224 0.21463992 0.17363388 11 2.85526159 0.09417730 -0.14186603 -0.07586086 12 0.92721107 0.07495002 -0.05400751 0.07061578 13 -1.93962967 -0.43919871 -0.56668535 -0.48467672 14 0.63185387 -0.22745949 -0.29348437 0.38373600 15 1.41495195 0.04835392 0.04051535 0.04555769 16 2.54591188 0.10945916 0.09171493 -0.06745975 17 4.40282381 -0.08236953 0.12358137 -0.09089870 18 1.97071836 0.09403352 0.07878991 0.08859570 19 0.77692371 0.12039304 -0.08675286 0.11343089 20 1.76784279 -0.04576632 -0.05905095 0.07721016 21 -0.82272526 0.34247077 -0.24677770 -0.21106494 22 -3.48057998 -0.03965965 0.07368852 -0.26669335 23 -14.86623758 0.28137017 -0.52279208 -0.43881151 24 3.96084273 -0.56566921 0.34648950 0.44907410 25 4.30025715 0.15241262 0.22417527 -0.20390438 26 0.31490641 0.07091764 -0.05212198 0.04845623 > resid(fit, 'scho') age resid.ds rx ecog.ps 59 2.69315603 0.06761160 -0.1256239 -0.5072536 115 5.36390105 0.08039116 -0.1493686 -0.6031318 156 -0.89877512 0.10683985 -0.1985108 0.1984379 268 6.95664326 0.12857949 -0.2389036 0.2388157 329 -15.73656605 0.28889883 -0.5367805 -0.4634169 353 4.06104389 -0.70587654 0.4535120 0.5282024 365 5.50035833 0.25348264 0.4796230 -0.4413864 431 -8.06809505 0.27490176 -0.4297023 -0.5248323 464 -2.15471559 0.23158421 0.5066040 0.4814387 475 0.57065051 0.25226659 0.5518479 0.5244351 563 0.06487219 -0.47274522 0.3319974 0.2747028 638 1.64752655 -0.50593437 -0.6446947 0.2939883 > > fit <- coxph(Surv(futime, fustat) ~ age + ecog.ps + strata(rx), data=ovarian) > summary(fit) Call: coxph(formula = Surv(futime, fustat) ~ age + ecog.ps + strata(rx), data = ovarian) n= 26, number of events= 12 coef exp(coef) se(coef) z Pr(>|z|) age 0.13853 1.14858 0.04801 2.885 0.00391 ** ecog.ps -0.09670 0.90783 0.62994 -0.154 0.87800 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 exp(coef) exp(-coef) lower .95 upper .95 age 1.1486 0.8706 1.0454 1.262 ecog.ps 0.9078 1.1015 0.2641 3.120 Concordance= 0.819 (se = 0.058 ) Likelihood ratio test= 12.71 on 2 df, p=0.002 Wald test = 8.43 on 2 df, p=0.01 Score (logrank) test = 12.24 on 2 df, p=0.002 > summary(survfit(fit)) Call: survfit(formula = fit) rx=1 time n.risk n.event survival std.err lower 95% CI upper 95% CI 59 13 1 0.978 0.0266 0.9275 1 115 12 1 0.951 0.0478 0.8620 1 156 11 1 0.910 0.0760 0.7722 1 268 10 1 0.862 0.1055 0.6776 1 329 9 1 0.737 0.1525 0.4909 1 431 8 1 0.627 0.1704 0.3680 1 638 5 1 0.333 0.2296 0.0865 1 rx=2 time n.risk n.event survival std.err lower 95% CI upper 95% CI 353 13 1 0.943 0.0560 0.839 1.000 365 12 1 0.880 0.0812 0.735 1.000 464 9 1 0.789 0.1143 0.594 1.000 475 8 1 0.697 0.1349 0.477 1.000 563 7 1 0.597 0.1494 0.366 0.975 > sfit <- survfit(fit, list(age=c(30,70), ecog.ps=c(2,3))) #two columns > sfit Call: survfit(formula = fit, newdata = list(age = c(30, 70), ecog.ps = c(2, 3))) n events median 0.95LCL 0.95UCL rx=1, 1 13 7 NA NA NA rx=2, 1 13 5 NA NA NA rx=1, 2 13 7 268 115 NA rx=2, 2 13 5 365 353 NA > summary(sfit) Call: survfit(formula = fit, newdata = list(age = c(30, 70), ecog.ps = c(2, 3))) rx=1 time n.risk n.event survival1 survival2 59 13 1 0.999 0.87905 115 12 1 0.999 0.74575 156 11 1 0.998 0.57398 268 10 1 0.996 0.41764 329 9 1 0.992 0.16673 431 8 1 0.988 0.06489 638 5 1 0.973 0.00161 rx=2 time n.risk n.event survival1 survival2 353 13 1 0.999 0.7092 365 12 1 0.997 0.4738 464 9 1 0.994 0.2494 475 8 1 0.991 0.1207 563 7 1 0.987 0.0489 > > > # Check of offset + surv, added 7/2000 > fit1 <- coxph(Surv(futime, fustat) ~ age + rx, ovarian, + control=coxph.control(eps=1e-8)) > fit2 <- coxph(Surv(futime, fustat) ~ age + offset(rx*fit1$coef[2]), ovarian, + control=coxph.control(eps=1e-8)) > all.equal(fit1$coef[1], fit2$coef[1]) [1] TRUE > > fit <- coxph(Surv(futime, fustat) ~ age + offset(rx), ovarian) > survfit(fit, censor=FALSE)$surv^exp(-1.5) [1] 0.9977751 0.9951975 0.9917927 0.9881504 0.9825769 0.9770280 0.9704304 [8] 0.9603196 0.9499085 0.9385539 0.9217097 0.9031334 > > # Check it by hand -- there are no tied times > # Remember that offsets from survfit are centered, which is 1.5 for > # this data set. > eta <- fit$coef*(ovarian$age - fit$mean) + (ovarian$rx - 1.5) > ord <- order(ovarian$futime) > risk <- exp(eta[ord]) > rsum <- rev(cumsum(rev(risk))) # cumulative risk at each time point > dead <- (ovarian$fustat[ord]==1) > baseline <- cumsum(1/rsum[dead]) > all.equal(survfit(fit, censor=FALSE)$surv, exp(-baseline)) [1] TRUE > > rm(fit, fit1, fit2, ord, eta, risk, rsum, dead, baseline, sfit) > > proc.time() user system elapsed 1.529 0.203 1.714 survival/tests/bladder.R0000644000176200001440000000250413537676563015035 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly'), show.signif.stars=FALSE) #ensure constrast type library(survival) # # Fit the models found in Wei et. al. # wfit <- coxph(Surv(stop, event) ~ (rx + size + number)* strata(enum), cluster=id, bladder, ties='breslow') wfit # Check the rx coefs versus Wei, et al, JASA 1989 rx <- c(1,4,5,6) # the treatment coefs above cmat <- diag(4); cmat[1,] <- 1; #contrast matrix wfit$coef[rx] %*% cmat # the coefs in their paper (table 5) t(cmat) %*% wfit$var[rx,rx] %*% cmat # var matrix (eqn 3.2) # Anderson-Gill fit fita <- coxph(Surv(start, stop, event) ~ rx + size + number, cluster=id, bladder2, ties='breslow') summary(fita) # Prentice fits. Their model 1 a and b are the same fit1p <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, subset=(enum==1), ties='breslow') fit2pa <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, subset=(enum==2), ties='breslow') fit2pb <- coxph(Surv(stop-start, event) ~ rx + size + number, bladder2, subset=(enum==2), ties='breslow') fit3pa <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, subset=(enum==3), ties='breslow') #and etc. fit1p fit2pa fit2pb fit3pa rm(rx, cmat, wfit, fita, fit1p, fit2pa, fit2pb, fit3pa) survival/tests/anova.Rout.save0000644000176200001440000000357213537676563016237 0ustar liggesusers R version 3.0.0 (2013-04-03) -- "Masked Marvel" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Test out anova, with strata terms > # > options(na.action=na.omit) > library(survival) Loading required package: splines > > fit1 <- coxph(Surv(time, status) ~ ph.ecog + wt.loss + strata(sex) + + poly(age,3), lung) > ztemp <- anova(fit1) > > tdata <- na.omit(lung[, c('time', 'status', 'ph.ecog', 'wt.loss', 'sex', 'age')]) > fit2 <- coxph(Surv(time, status)~ ph.ecog + wt.loss + poly(age,3) + strata(sex), + data=tdata) > ztemp2 <- anova(fit2) > all.equal(ztemp, ztemp2) [1] TRUE > > > fit2 <- coxph(Surv(time, status) ~ ph.ecog + wt.loss + strata(sex), tdata) > fit3 <- coxph(Surv(time, status) ~ ph.ecog + strata(sex), tdata) > > all.equal(ztemp$loglik, c(fit1$loglik[1], fit3$loglik[2], fit2$loglik[2], + fit1$loglik[2])) [1] TRUE > all.equal(ztemp$Chisq[-1], 2* diff(ztemp$loglik)) [1] TRUE > all.equal(ztemp$Df[-1], c(1,1,3)) [1] TRUE > > ztemp2 <- anova(fit3, fit2, fit1) > all.equal(ztemp2$loglik, ztemp$loglik[-1]) [1] TRUE > all.equal(ztemp2$Chisq[2:3], ztemp$Chisq[3:4]) [1] TRUE > # Change from ztemp2$P; it's a data frame and in R 3.0.2 abbreviated names > # give a warning > all.equal(ztemp2[[4]][2:3], ztemp[[4]][3:4]) [1] TRUE > > > > proc.time() user system elapsed 0.284 0.020 0.301 survival/tests/fr_simple.R0000644000176200001440000000427713537676563015431 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test the logic of the penalized code by fitting some no-frailty models # (theta=0). It should give exactly the same answers as 'ordinary' coxph. # test1 <- data.frame(time= c(4, 3,1,1,2,2,3), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) zz <- rep(0, nrow(test1)) tfit1 <- coxph(Surv(time,status) ~x, test1, eps=1e-7) tfit2 <- coxph(Surv(time,status) ~x + frailty(zz, theta=0, sparse=T), test1) tfit3 <- coxph(Surv(zz,time,status) ~x + frailty(zz, theta=0, sparse=T), test1) temp <- c('coefficients', 'var', 'loglik', 'linear.predictors', 'means', 'n', 'concordance') all.equal(tfit1[temp], tfit2[temp]) all.equal(tfit2[temp], tfit3[temp]) zz <- rep(0, nrow(test2)) tfit1 <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-7) tfit2 <- coxph(Surv(start, stop, event) ~ x + frailty(zz, theta=0, sparse=T), test2) all.equal(tfit1[temp], tfit2[temp]) # # Repeat the above tests, but with a strata added # Because the data set is simply doubled, the loglik will double, # beta is the same, variance is halved. # test3 <- rbind(test1, test1) test3$x2 <- rep(1:2, rep(nrow(test1),2)) zz <- rep(0, nrow(test3)) tfit1 <- coxph(Surv(time,status) ~x + strata(x2), test3, eps=1e-7) tfit2 <- coxph(Surv(time,status) ~x + frailty(zz, theta=0, sparse=T) + strata(x2), test3) tfit3 <- coxph(Surv(zz,time,status) ~x + frailty(zz, theta=0, sparse=T) + strata(x2), test3) all.equal(tfit1[temp], tfit2[temp]) all.equal(tfit2[temp], tfit3[temp]) test4 <- rbind(test2, test2) test4$x2 <- rep(1:2, rep(nrow(test2),2)) zz <- rep(0, nrow(test4)) tfit1 <- coxph(Surv(start, stop, event) ~x, test4, eps=1e-7) tfit2 <- coxph(Surv(start, stop, event) ~ x + frailty(zz, theta=0, sparse=T), test4) all.equal(tfit1[temp], tfit2[temp]) rm(test3, test4, tfit1, tfit2, tfit3, temp, zz) survival/tests/fr_simple.Rout.save0000644000176200001440000000661513537676563017114 0ustar liggesusers R Under development (unstable) (2016-03-23 r70368) -- "Unsuffered Consequences" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Test the logic of the penalized code by fitting some no-frailty models > # (theta=0). It should give exactly the same answers as 'ordinary' coxph. > # > test1 <- data.frame(time= c(4, 3,1,1,2,2,3), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > zz <- rep(0, nrow(test1)) > tfit1 <- coxph(Surv(time,status) ~x, test1, eps=1e-7) > tfit2 <- coxph(Surv(time,status) ~x + frailty(zz, theta=0, sparse=T), test1) > tfit3 <- coxph(Surv(zz,time,status) ~x + frailty(zz, theta=0, sparse=T), test1) Warning message: In coxph(Surv(zz, time, status) ~ x + frailty(zz, theta = 0, sparse = T), : a variable appears on both the left and right sides of the formula > > temp <- c('coefficients', 'var', 'loglik', 'linear.predictors', + 'means', 'n', 'concordance') > > all.equal(tfit1[temp], tfit2[temp]) [1] TRUE > all.equal(tfit2[temp], tfit3[temp]) [1] TRUE > > zz <- rep(0, nrow(test2)) > tfit1 <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-7) > tfit2 <- coxph(Surv(start, stop, event) ~ x + frailty(zz, theta=0, sparse=T), + test2) > all.equal(tfit1[temp], tfit2[temp]) [1] TRUE > > > # > # Repeat the above tests, but with a strata added > # Because the data set is simply doubled, the loglik will double, > # beta is the same, variance is halved. > # > test3 <- rbind(test1, test1) > test3$x2 <- rep(1:2, rep(nrow(test1),2)) > zz <- rep(0, nrow(test3)) > tfit1 <- coxph(Surv(time,status) ~x + strata(x2), test3, eps=1e-7) > tfit2 <- coxph(Surv(time,status) ~x + frailty(zz, theta=0, sparse=T) + + strata(x2), test3) > tfit3 <- coxph(Surv(zz,time,status) ~x + frailty(zz, theta=0, sparse=T) + + strata(x2), test3) Warning message: In coxph(Surv(zz, time, status) ~ x + frailty(zz, theta = 0, sparse = T) + : a variable appears on both the left and right sides of the formula > > all.equal(tfit1[temp], tfit2[temp]) [1] TRUE > all.equal(tfit2[temp], tfit3[temp]) [1] TRUE > > > test4 <- rbind(test2, test2) > test4$x2 <- rep(1:2, rep(nrow(test2),2)) > zz <- rep(0, nrow(test4)) > tfit1 <- coxph(Surv(start, stop, event) ~x, test4, eps=1e-7) > tfit2 <- coxph(Surv(start, stop, event) ~ x + frailty(zz, theta=0, sparse=T), + test4) > all.equal(tfit1[temp], tfit2[temp]) [1] TRUE > > rm(test3, test4, tfit1, tfit2, tfit3, temp, zz) > > proc.time() user system elapsed 0.308 0.024 0.325 survival/tests/book3.Rout.save0000644000176200001440000002372013537676603016140 0ustar liggesusers R Under development (unstable) (2019-07-02 r76765) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # > # Tests from the appendix of Therneau and Grambsch > # c. Data set 2 and Breslow estimate > # > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > byhand <- function(beta, newx=0) { + r <- exp(beta) + loglik <- 4*beta - log(r+1) - log(r+2) - 3*log(3*r+2) - 2*log(3*r+1) + u <- 1/(r+1) + 1/(3*r+1) + 4/(3*r+2) - + ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) + imat <- r/(r+1)^2 + 2*r/(r+2)^2 + 6*r/(3*r+2)^2 + + 3*r/(3*r+1)^2 + 3*r/(3*r+1)^2 + 12*r/(3*r+2)^2 + + hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 2/(3*r+2) ) + xbar <- c(r/(r+1), r/(r+2), 3*r/(3*r+2), 3*r/(3*r+1), 3*r/(3*r+1), + 3*r/(3*r+2)) + + # The matrix of weights, one row per obs, one col per time + # deaths at 2,3,6,7,8,9 + wtmat <- matrix(c(1,0,0,0,1,0,0,0,0,0, + 0,1,0,1,1,0,0,0,0,0, + 0,0,1,1,1,0,1,1,0,0, + 0,0,0,1,1,0,1,1,0,0, + 0,0,0,0,1,1,1,1,0,0, + 0,0,0,0,0,1,1,1,1,1), ncol=6) + wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat + + x <- c(1,0,0,1,0,1,1,1,0,0) + status <- c(1,1,1,1,1,1,1,0,0,0) + xbar <- colSums(wtmat*x)/ colSums(wtmat) + n <- length(x) + + # Table of sums for score and Schoenfeld resids + hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time + dM <- -hazmat #Expected part + for (i in 1:6) dM[i,i] <- dM[i,i] +1 #observed + dM[7,6] <- dM[7,6] +1 # observed + mart <- rowSums(dM) + + # Table of sums for score and Schoenfeld resids + # Looks like the last table of appendix E.2.1 of the book + resid <- dM * outer(x, xbar, '-') + score <- rowSums(resid) + scho <- colSums(resid) + # We need to split the two tied times up, to match coxph + scho <- c(scho[1:5], scho[6]/2, scho[6]/2) + var.g <- cumsum(hazard*hazard /c(1,1,1,1,1,2)) + var.d <- cumsum( (xbar-newx)*hazard) + + surv <- exp(-cumsum(hazard) * exp(beta*newx)) + varhaz <- (var.g + var.d^2/imat)* exp(2*beta*newx) + + list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard, + mart=mart, score=score, rmat=resid, + scho=scho, surv=surv, var=varhaz) + } > > > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > fit0 <-coxph(Surv(start, stop, event) ~x, test2, iter=0, method='breslow') > truth0 <- byhand(0,0) > aeq(truth0$loglik, fit0$loglik[1]) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid) [1] TRUE > aeq(truth0$scho, resid(fit0, 'schoen')) [1] TRUE > aeq(truth0$score, resid(fit0, 'score')) [1] TRUE > sfit <- survfit(fit0, list(x=0), censor=FALSE) > aeq(sfit$std.err^2, truth0$var) [1] TRUE > aeq(sfit$surv, truth0$surv) [1] TRUE > aeq(fit0$score, truth0$u^2/truth0$imat) [1] TRUE > > beta1 <- truth0$u/truth0$imat > fit1 <- coxph(Surv(start, stop, event) ~x, test2, iter=1, ties="breslow") > aeq(beta1, coef(fit1)) [1] TRUE > > truth <- byhand(-0.084526081, 0) > fit <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-8, method='breslow') > aeq(truth$loglik, fit$loglik[2]) [1] TRUE > aeq(1/truth$imat, fit$var) [1] TRUE > aeq(truth$mart, fit$resid) [1] TRUE > aeq(truth$scho, resid(fit, 'schoen')) [1] TRUE > aeq(truth$score, resid(fit, 'score')) [1] TRUE > expect <- predict(fit, type='expected', newdata=test2) #force recalc > aeq(test2$event -fit$resid, expect) #tests the predict function [1] TRUE > > sfit <- survfit(fit, list(x=0), censor=FALSE) > aeq(sfit$std.err^2, truth$var) [1] TRUE > aeq(-log(sfit$surv), (cumsum(truth$haz))) [1] TRUE > > # Reprise the test, with strata > # offseting the times ensures that we will get the wrong risk sets > # if strata were not kept separate > test2b <- rbind(test2, test2, test2) > test2b$group <- rep(1:3, each= nrow(test2)) > test2b$start <- test2b$start + test2b$group > test2b$stop <- test2b$stop + test2b$group > fit0 <- coxph(Surv(start, stop, event) ~ x + strata(group), test2b, + iter=0, method="breslow") > aeq(3*truth0$loglik, fit0$loglik[1]) [1] TRUE > aeq(3*truth0$imat, 1/fit0$var) [1] TRUE > aeq(rep(truth0$mart,3), fit0$resid) [1] TRUE > aeq(rep(truth0$scho,3), resid(fit0, 'schoen')) [1] TRUE > aeq(rep(truth0$score,3), resid(fit0, 'score')) [1] TRUE > > fit1 <- coxph(Surv(start, stop, event) ~ x + strata(group), test2b, + iter=1, method="breslow") > aeq(fit1$coef, beta1) [1] TRUE > > fit3 <- coxph(Surv(start, stop, event) ~x + strata(group), + test2b, eps=1e-8, method='breslow') > aeq(3*truth$loglik, fit3$loglik[2]) [1] TRUE > aeq(3*truth$imat, 1/fit3$var) [1] TRUE > aeq(rep(truth$mart,3), fit3$resid) [1] TRUE > aeq(rep(truth$scho,3), resid(fit3, 'schoen')) [1] TRUE > aeq(rep(truth$score,3), resid(fit3, 'score')) [1] TRUE > > # > # Done with the formal test, now print out lots of bits > # > resid(fit) 1 2 3 4 5 6 0.52111895 0.65741078 0.78977654 0.24738772 -0.60629349 0.36902492 7 8 9 10 -0.06876579 -1.06876579 -0.42044692 -0.42044692 > resid(fit, 'scor') 1 2 3 4 5 6 0.27156496 -0.20696709 -0.45771743 -0.09586133 0.13608234 0.19288983 7 8 9 10 0.04655651 -0.37389040 0.24367131 0.24367131 > resid(fit, 'scho') 2 3 6 7 8 9 9 0.5211189 -0.3148216 -0.5795531 0.2661809 -0.7338191 0.4204469 0.4204469 > > predict(fit, type='lp') [1] -0.04226304 0.04226304 0.04226304 -0.04226304 0.04226304 -0.04226304 [7] -0.04226304 -0.04226304 0.04226304 0.04226304 > predict(fit, type='risk') [1] 0.9586176 1.0431688 1.0431688 0.9586176 1.0431688 0.9586176 0.9586176 [8] 0.9586176 1.0431688 1.0431688 > predict(fit, type='expected') 1 2 3 4 5 6 7 8 0.4788811 0.3425892 0.2102235 0.7526123 1.6062935 0.6309751 1.0687658 1.0687658 9 10 0.4204469 0.4204469 > predict(fit, type='terms') x 1 -0.04226304 2 0.04226304 3 0.04226304 4 -0.04226304 5 0.04226304 6 -0.04226304 7 -0.04226304 8 -0.04226304 9 0.04226304 10 0.04226304 attr(,"constant") [1] -0.04226304 > predict(fit, type='lp', se.fit=T) $fit 1 2 3 4 5 6 -0.04226304 0.04226304 0.04226304 -0.04226304 0.04226304 -0.04226304 7 8 9 10 -0.04226304 -0.04226304 0.04226304 0.04226304 $se.fit 1 2 3 4 5 6 7 8 0.3969086 0.3969086 0.3969086 0.3969086 0.3969086 0.3969086 0.3969086 0.3969086 9 10 0.3969086 0.3969086 > predict(fit, type='risk', se.fit=T) $fit 1 2 3 4 5 6 7 8 0.9586176 1.0431688 1.0431688 0.9586176 1.0431688 0.9586176 0.9586176 0.9586176 9 10 1.0431688 1.0431688 $se.fit 1 2 3 4 5 6 7 8 0.3886094 0.4053852 0.4053852 0.3886094 0.4053852 0.3886094 0.3886094 0.3886094 9 10 0.4053852 0.4053852 > predict(fit, type='expected', se.fit=T) $fit 1 2 3 4 5 6 7 8 0.4788811 0.3425892 0.2102235 0.7526123 1.6062935 0.6309751 1.0687658 1.0687658 9 10 0.4204469 0.4204469 $se.fit [1] 0.5182381 0.3982700 0.3292830 0.6266797 1.0255146 0.5852364 0.7341340 [8] 0.7341340 0.6268550 0.6268550 > predict(fit, type='terms', se.fit=T) $fit x 1 -0.04226304 2 0.04226304 3 0.04226304 4 -0.04226304 5 0.04226304 6 -0.04226304 7 -0.04226304 8 -0.04226304 9 0.04226304 10 0.04226304 attr(,"constant") [1] -0.04226304 $se.fit x 1 0.3969086 2 0.3969086 3 0.3969086 4 0.3969086 5 0.3969086 6 0.3969086 7 0.3969086 8 0.3969086 9 0.3969086 10 0.3969086 > > summary(survfit(fit)) Call: survfit(formula = fit) time n.risk n.event survival std.err lower 95% CI upper 95% CI 2 2 1 0.607 0.303 0.2279 1.000 3 3 1 0.437 0.262 0.1347 1.000 6 5 1 0.357 0.226 0.1034 1.000 7 4 1 0.277 0.188 0.0729 1.000 8 4 1 0.214 0.156 0.0514 0.894 9 5 2 0.143 0.112 0.0308 0.667 > summary(survfit(fit, list(x=2))) Call: survfit(formula = fit, newdata = list(x = 2)) time n.risk n.event survival std.err lower 95% CI upper 95% CI 2 2 1 0.644 0.444 0.16657 1 3 3 1 0.482 0.511 0.06055 1 6 5 1 0.404 0.504 0.03491 1 7 4 1 0.322 0.475 0.01801 1 8 4 1 0.258 0.437 0.00928 1 9 5 2 0.181 0.377 0.00302 1 > > proc.time() user system elapsed 0.849 0.056 0.898 survival/tests/survcheck.R0000644000176200001440000000401213537676563015431 0ustar liggesuserslibrary(survival) aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) # dummy data 1, simple survival data1 <- data.frame(id=c(1,2,2,2,3,4), time=c(10, 20, 25, 30, 30, 10), status=factor(c(0,0,1,1, 2,3))) fit1 <- survcheck(Surv(time, status) ~ 1, data1, id=id) aeq(fit1$flag, c(2,0,0,0)) aeq(fit1$overlap$row, 3:4) aeq(fit1$overlap$id, 2) aeq(fit1$transitions, c(2,1,1,1)) # dummy data 2, no initial values, start stop data # A: (0, 10, 0), (10, 20, 1), (20, 30, 2) # no issues # B: (0, 20, 1), (15, 24, 2), (25,26, 0) # C: (10,13, 1), (15, 18, 0), (18,25,3) data2 <- data.frame(id=rep(LETTERS[1:3], each=3), t1 = c(0, 10, 20, 0, 15,25, 10, 15, 18), t2 = c(10, 20,30, 20, 24, 26, 13, 18, 25), status= factor(c(0, 1, 2, 1,2, 0, 1, 0, 3)), x = c(1:5, NA, 7:9)) fit2 <- survcheck(Surv(t1, t2, status) ~ 1, data2, id=id) aeq(fit2$flag , c(1,2,0,0)) aeq(fit2$transition, rbind(c(3,0,0,0), c(0,2,1,0), c(0,0,0,1))) (fit2$overlap$id == 'B') (fit2$overlap$row ==5) all(fit2$gap$id == c("B", "C")) aeq(fit2$gap$row, c(6,8)) # scramble reord <- c(9,2,1,4,3,5,6,8,7) tfit <- survcheck(Surv(t1, t2, status) ~ 1, data2[reord,], id=id) all.equal(fit2[1:4], tfit[1:4]) # let a missing value in fit2b <- survcheck(Surv(t1, t2, status) ~ x, data2, id=id) aeq(fit2b$flag , c(1,1,0,0)) aeq(fit2b$transition, rbind(c(3,0,0,0), c(0,2,1,0))) (fit2b$overlap$id == 'B') (fit2b$overlap$row ==5) all(fit2b$gap$id == "C") aeq(fit2b$gap$row, 8) data3 <- data2 levels(data3$status) <- c("cens", "mgus", "recur", "death") data3$istate <- c("entry", "entry", "recur", "entry", "recur", "recur", "entry", "recur", "recur") fit3 <- survcheck(Surv(t1, t2, status) ~ 1, data3, id=id, istate=istate) aeq(fit3$flag, c(1, 0, 2, 1)) aeq(fit3$transitions, rbind(c(3,0,0,0), c(0,2,1,1))) all.equal(fit3$overlap, fit2$overlap) all(fit3$teleport$id == c("A", "C")) all(fit3$teleport$row == c(3,9)) all(fit3$jump$id == "C") all(fit3$jump$row == 8) survival/tests/coxsurv2.R0000644000176200001440000000355513537676563015242 0ustar liggesuserslibrary(survival) # # Check that the survival curves from a Cox model with beta=0 # match ordinary survival # # Aalen surv1 <- survfit(Surv(time,status) ~ sex, data=lung, stype=2) fit1 <- coxph(Surv(time, status) ~ age + strata(sex), data=lung, iter=0, ties='breslow') fit1$var <- 0*fit1$var #sneaky, causes the extra term in the Cox variance # calculation to be zero surv2 <- survfit(fit1, stype=2) surv3 <- survfit(fit1) arglist <- c('n', 'time', 'n.risk','n.event', 'n.censor', 'surv', 'strata', 'std.err', 'upper', 'lower') all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) all.equal(unclass(surv1)[arglist], unclass(surv3)[arglist]) # Efron method surv1 <- survfit(Surv(time,status) ~ sex, data=lung, stype=2, ctype=2) surv2 <- survfit(fit1, ctype=2) all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) # Kaplan-Meier surv1 <- survfit(Surv(time,status) ~ sex, data=lung) surv2 <- survfit(fit1, stype=1) all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) # Now add some random weights rwt <- runif(nrow(lung), .5, 3) surv1 <- survfit(Surv(time,status) ~ sex, data=lung, stype=2, weight=rwt) fit1 <- coxph(Surv(time, status) ~ age + strata(sex), data=lung, iter=0, ties='breslow', weight=rwt) fit1$var <- 0*fit1$var #sneaky surv2 <- survfit(fit1, stype=2, ctype=1) surv3 <- survfit(fit1) all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) all.equal(unclass(surv1)[arglist], unclass(surv3)[arglist]) # Efron method surv1 <- survfit(Surv(time,status) ~ sex, data=lung, stype=2, ctype=2, weight=rwt) surv2 <- survfit(fit1, ctype=2) all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) # Kaplan-Meier surv1 <- survfit(Surv(time,status) ~ sex, data=lung, weight=rwt) surv2 <- survfit(fit1, stype=1) all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) survival/tests/r_resid.R0000644000176200001440000000756713537676563015105 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) fit1 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian) fit4 <- survreg(Surv(log(futime), fustat) ~age + ecog.ps, ovarian, dist='extreme') print(fit1) summary(fit4) # Hypothesis (and I'm fairly sure): censorReg shares the fault of many # iterative codes -- it returns the loglik and variance for iteration k # but the coef vector of iteration k+1. Hence the "all.equal" tests # below don't come out perfect. # if (exists('censorReg')) { #true for Splus, not R fit2 <- censorReg(censor(futime, fustat) ~ age + ecog.ps, ovarian) fit3 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, iter=0, init=c(fit2$coef, log(fit2$scale))) aeq(resid(fit2, type='working')[,1], resid(fit3, type='working')) aeq(resid(fit2, type='response')[,1], resid(fit3, type='response')) temp <- sign(resid(fit3, type='working')) aeq(resid(fit2, type='deviance')[,1], temp*abs(resid(fit3, type='deviance'))) aeq(resid(fit2, type='deviance')[,1], resid(fit3, type='deviance')) } # # Now check fit1 and fit4, which should follow identical iteration paths # These tests should all be true # aeq(fit1$coef, fit4$coef) resid(fit1, type='working') resid(fit1, type='response') resid(fit1, type='deviance') resid(fit1, type='dfbeta') resid(fit1, type='dfbetas') resid(fit1, type='ldcase') resid(fit1, type='ldresp') resid(fit1, type='ldshape') resid(fit1, type='matrix') aeq(resid(fit1, type='working'),resid(fit4, type='working')) #aeq(resid(fit1, type='response'), resid(fit4, type='response'))#should differ aeq(resid(fit1, type='deviance'), resid(fit4, type='deviance')) aeq(resid(fit1, type='dfbeta'), resid(fit4, type='dfbeta')) aeq(resid(fit1, type='dfbetas'), resid(fit4, type='dfbetas')) aeq(resid(fit1, type='ldcase'), resid(fit4, type='ldcase')) aeq(resid(fit1, type='ldresp'), resid(fit4, type='ldresp')) aeq(resid(fit1, type='ldshape'), resid(fit4, type='ldshape')) aeq(resid(fit1, type='matrix'), resid(fit4, type='matrix')) # # Some tests of the quantile residuals # # These should agree exactly with Ripley and Venables' book fit1 <- survreg(Surv(time, status) ~ temp, data=imotor) summary(fit1) # # The first prediction has the SE that I think is correct # The third is the se found in an early draft of Ripley; fit1 ignoring # the variation in scale estimate, except via it's impact on the # upper left corner of the inverse information matrix. # Numbers 1 and 3 differ little for this dataset # predict(fit1, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) fit2 <- survreg(Surv(time, status) ~ temp, data=imotor, scale=fit1$scale) predict(fit2, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) fit3 <- fit2 fit3$var <- fit1$var[1:2,1:2] predict(fit3, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) pp <- seq(.05, .7, length=40) xx <- predict(fit1, data.frame(temp=130), type='uquantile', se=T, p=pp) #matplot(pp, cbind(xx$fit, xx$fit+2*xx$se, xx$fit - 2*xx$se), type='l') # # Now try out the various combinations of strata, #predicted, and # number of quantiles desired # fit1 <- survreg(Surv(time, status) ~ inst + strata(inst) + age + sex, lung) qq1 <- predict(fit1, type='quantile', p=.3, se=T) qq2 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) aeq(qq1$fit, qq2$fit[,2]) aeq(qq1$se.fit, qq2$se.fit[,2]) qq3 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata= lung[1:5,]) aeq(qq3$fit, qq2$fit[1:5,]) qq4 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung[7,]) aeq(qq4$fit, qq2$fit[7,]) qq5 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung) aeq(qq2$fit, qq5$fit) aeq(qq2$se.fit, qq5$se.fit) survival/tests/coxsurv4.Rout.save0000644000176200001440000000511613537676563016724 0ustar liggesusers R version 3.0.1 (2013-05-16) -- "Good Sport" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > > # Strata by covariate interactions, a case pointed out in early 2011 > # by Frank Harrell, which as it turns out had never been computed > # correctly by any version of the package. Which shows how often this > # case arises in practice. > # > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y)) > fit1 <- coxph(Surv(time, status) ~ wt.loss + age*strata(sex) + strata(ph.ecog), + data=lung) > tdata <- data.frame(wt.loss=c(10,5,0,10, 15,20,25), + age =c(50,60,50,60,70,40,21), + sex =c(1,1,2,2,1,1,1), + ph.ecog=c(0,0,1,1,2,2,2)) > surv1 <- survfit(fit1, newdata=tdata) > > fit2 <- coxph(Surv(time, status) ~ wt.loss + age + I(age*0), data=lung, + init=fit1$coef, iter=0, subset=(sex==1 & ph.ecog==0)) > fit2$var <- fit1$var > > surv2 <- survfit(fit2, newdata=list(wt.loss=c(10,5), age=c(50,60))) > s1 <- surv1[1:2] > aeq(s1$surv, surv2$surv) #first a vector, second a matrix [1] TRUE > aeq(s1$std.err, surv2$std.err) [1] TRUE > aeq(s1[1]$time, surv2$time) [1] TRUE > aeq(s1[1]$n.event, surv2$n.event) [1] TRUE > > fit3 <- coxph(Surv(time, status) ~ wt.loss + age + I(age*1), + data=lung, init=fit1$coef, iter=0, + subset=(sex==2 & ph.ecog==1)) > fit3$var <- fit1$var > surv3 <- survfit(fit3, newdata=list(wt.loss=c(0,10), age=c(50,60))) > aeq(surv1[3:4]$surv, surv3$surv) [1] TRUE > aeq(surv1[3:4]$std, surv3$std) [1] TRUE > > fit4 <- coxph(Surv(time, status) ~ wt.loss + age + I(age*0), + data=lung, init=fit1$coef, iter=0, + subset=(sex==1 & ph.ecog==2)) > fit4$var <- fit1$var > surv4 <- survfit(fit4, newdata=list(wt.loss=c(15,20,25), age=c(70,40,21))) > > aeq(surv1[5:7]$surv, surv4$surv) [1] TRUE > aeq(surv1[5:7]$std.err, surv4$std.err) [1] TRUE > aeq(surv1[5]$n.risk, surv4$n.risk) [1] TRUE > > > proc.time() user system elapsed 0.324 0.052 0.356 survival/tests/expected.R0000644000176200001440000002341413537676603015237 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # Tests of expected survival aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # # This makes several scripts easier # mdy.Date <- function(m, d, y) { y <- ifelse(y<100, y+1900, y) as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") } # This function takes a single subject and walks down the rate table # Input: the vector of starting points, futime, and a ratetable # Output: the full history of walking through said table. Let n= #unique # rates that were used # cell = n by #dims of the table: index of the table cell # days = time spent in cell # hazard= accumulated hazard = days * rate # This does not do date or factor conversions -- start has to be numeric # ratewalk <- function(start, futime, ratetable=survexp.us) { if (!is.ratetable(ratetable)) stop("Bad rate table") ratedim <- dim(ratetable) nvar <- length(ratedim) if (length(start) != nvar) stop("Wrong length for start") if (futime <=0) stop("Invalid futime") attR <- attributes(ratetable) discrete <- (attR$type ==1) #discrete categories maxn <- sum(!discrete)*prod(ratedim[!discrete]) #most cells you can hit cell <- matrix(0, nrow=maxn, ncol=nvar) days <- hazard <- double(maxn) eps <- 1e-8 #Avoid round off error n <- 0 while (futime >0) { n <- n+1 #what cell am I in? # Note that at the edges of the rate table, we use the edge: if # it only goes up the the year 2000, year 2000 is used for any # dates beyond. This effectively eliminates one boundary cell[n,discrete] <- start[discrete] edge <- futime #time to nearest edge, or finish for (j in which(!discrete)) { indx <- sum(start[j] >= attR$cutpoints[[j]]-eps) cell[n, j] <- max(1, indx) if (indx < ratedim[j]) edge <- min(edge, (attR$cutpoints[[j]])[indx+1] - start[j]) } days[n] <- edge #this many days in the cell # using a matrix as a subscript is so handy sometimes hazard[n] <- edge * (as.matrix(ratetable))[cell[n,,drop=F]] futime <- futime - edge #amount of time yet to account for start[!discrete] <- start[!discrete] + edge #walk forward in time } list(cell=cell[1:n,], days=days[1:n], hazard=hazard[1:n]) } # Simple test of ratewalk: 20 years old, start on 7Sep 1960 # 116 days at the 1960, 20 year old male rate, through the end of the day # on 12/31/1960, then 84 days at the 1961 rate. # The decennial q for 1960 males is .00169. zz <- ratewalk(c(20.4*365.25, 1, as.Date("1960/09/07")), 200) all.equal(zz$hazard[1], -(116/365.25)*log(1-.00169)) all.equal(zz$days, c(116,84)) # # Simple case 1: a single male subject, born 1/1/36 and entered on study 1/2/55 # # Compute the 1, 5, 10 and 12 year expected survival temp1 <- mdy.Date(1,1,36) temp2 <- mdy.Date(1,2,55) exp1 <- survexp(~1, ratetable=survexp.usr,times=c(366, 1827, 3653, 4383), rmap= list(year=temp2, age=(temp2-temp1), sex=1, race='white')) #older style call exp1b <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=1, race='white'), ratetable=survexp.usr, times=c(366, 1827, 3653, 4383)) t12 <- as.numeric(temp2-temp1) # difftimes are a PITA h1 <- ratewalk(c(t12, 1, 1, temp2), 366, survexp.usr) h2 <- ratewalk(c(t12, 1, 1, temp2), 1827, survexp.usr) h3 <- ratewalk(c(t12, 1, 1, temp2), 3653, survexp.usr) h4 <- ratewalk(c(t12, 1, 1, temp2), 4383, survexp.usr) aeq(-log(exp1$surv), c(sum(h1$hazard), sum(h2$hazard), sum(h3$hazard), sum(h4$hazard))) aeq(exp1$surv, exp1b$surv) # pyears should give the same result dummy <- data.frame(time = 4383, year=temp2, sex = 1, age= temp2-temp1, race="white") cuts <- tcut(0, c(0, 366, 1827, 3653, 4383)) exp1c <- pyears(time ~ cuts, data=dummy, ratetable=survexp.usr) aeq(exp1$surv, exp(-cumsum(exp1c$expected))) # Just a little harder: # Born 3/1/25 and entered the study on 6/10/55. The code creates shifted # dates to align with US rate tables - entry is 59 days earlier (days from # 1/1/1925 to 3/1/1925). # temp1 <- mdy.Date(3,1,25) temp2 <- mdy.Date(6,10,55) exp1 <- survexp(~1, ratetable=survexp.usr,times=c(366, 1827, 3653, 4383), rmap= list(year=temp2, age=(temp2-temp1), sex=2, race='black')) tyear <- temp2 - 59 t12 <- as.numeric(temp2-temp1) h1 <- ratewalk(c(t12, 2, 2, tyear), 366, survexp.usr) h2 <- ratewalk(c(t12, 2, 2, tyear), 1827, survexp.usr) h3 <- ratewalk(c(t12, 2, 2, tyear), 3653, survexp.usr) h4 <- ratewalk(c(t12, 2, 2, tyear), 4383, survexp.usr) aeq(-log(exp1$surv), c(sum(h1$hazard), sum(h2$hazard), sum(h3$hazard), sum(h4$hazard))) # # Simple case 2: make sure that the averages are correct, for Ederer method # # Compute the 1, 5, 10 and 12 year expected survival temp1 <- mdy.Date(1:6,6:11,1890:1895) temp2 <- mdy.Date(6:1,11:6,c(55:50)) temp3 <- c(1,2,1,2,1,2) age <- temp2 - temp1 exp1 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3), times=c(366, 1827, 3653, 4383)) exp2 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3) + I(1:6), times=c(366, 1827, 3653, 4383)) exp3 <- exp2$surv for (i in 1:length(temp1)){ exp3[,i] <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3), times=c(366, 1827, 3653, 4383), subset=i)$surv } print(aeq(exp2$surv, exp3)) print(all.equal(exp1$surv, apply(exp2$surv, 1, mean))) # They agree, but are they right? # for (i in 1:length(temp1)) { offset <- as.numeric(temp1[i] - mdy.Date(1,1, 1889+i)) tyear = temp2[i] - offset haz1 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 366) haz2 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 1827) haz3 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 3653) haz4 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 4383) print(aeq(-log(exp2$surv[,i]), c(sum(haz1$hazard), sum(haz2$hazard), sum(haz3$hazard), sum(haz4$hazard)))) } # # Check that adding more time points doesn't change things # exp4 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3) + I(1:6), times=sort(c(366, 1827, 3653, 4383, 30*(1:100)))) aeq(exp4$surv[match(exp2$time, exp4$time),], exp2$surv) exp4 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3), times=sort(c(366, 1827, 3653, 4383, 30*(1:100)))) aeq(exp1$surv, exp4$surv[match(exp1$time, exp4$time, nomatch=0)]) # # Now test Hakulinen's method, assuming an analysis date of 3/1/57 # futime <- mdy.Date(3,1,57) - temp2 xtime <- sort(c(futime, 30, 60, 185, 365)) exp1 <- survexp(futime ~ ratetable(year=temp2, age=(temp2-temp1), sex=1), times=xtime, conditional=F) exp2 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=1) + I(1:6), times=futime) wt <- rep(1,6) con <- double(6) for (i in 1:6) { con[i] <- sum(exp2$surv[i,i:6])/sum(wt[i:6]) wt <- exp2$surv[i,] } exp1$surv[match(futime, xtime)] aeq(exp1$surv[match(futime, xtime)], cumprod(con)) # # Now for the conditional method # exp1 <- survexp(futime ~ ratetable(year=temp2, age=(temp2-temp1), sex=1), times=xtime, conditional=T) cond <- exp2$surv for (i in 6:2) cond[i,] <- (cond[i,]/cond[i-1,]) #conditional survival for (i in 1:6) con[i] <- exp(mean(log(cond[i, i:6]))) all.equal(exp1$surv[match(futime, xtime)], cumprod(con)) cumprod(con) # # Test out expected survival, when the parent pop is another Cox model # test1 <- data.frame(time= c(4, 3,1,1,2,2,3), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) fit <- coxph(Surv(time, status) ~x, test1, method='breslow') dummy <- data.frame(time=c(.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5), status=c(1,0,1,0,1,0,1,1,1), x=(-4:4)/2) efit <- survexp(time ~ ratetable(x=x), dummy, ratetable=fit, cohort=F) # # Now, compare to the true answer, which is known to us # ss <- exp(fit$coef) haz <- c( 1/(3*ss+3), 2/(ss+3), 1) #truth at time 0,1,2,4+ chaz <- cumsum(c(0,haz)) chaz2 <- chaz[c(1,2,2,3,3,3,3,4,4)] risk <- exp(fit$coef*dummy$x) efit2 <- exp(-risk*chaz2) all.equal(as.vector(efit), as.vector(efit2)) #ignore mismatched name attrib # # Now test the direct-adjusted curve (Ederer) # efit <- survexp( ~ ratetable(x=x), dummy, ratetable=fit, se=F) direct <- survfit(fit, newdata=dummy, censor=FALSE)$surv chaz <- chaz[-1] #drop time 0 d2 <- exp(outer(-chaz, risk)) all.equal(as.vector(direct), as.vector(d2)) #this tests survfit all.equal(as.vector(efit$surv), as.vector(apply(direct,1,mean))) #direct # Check out the "times" arg of survexp efit2 <- survexp( ~ ratetable(x=x), dummy, ratetable=fit, se=F, times=c(.5, 2, 3.5,6)) aeq(efit2$surv, c(1, efit$surv[c(2,2,3)])) # # Now test out the Hakulinen method (Bonsel's method) # By construction, we have a large correlation between x and censoring # # In theory, hak1 and hak2 would be the same. In practice, like a KM and # F-H, they differ when n is small. # efit <- survexp( time ~ ratetable(x=x), dummy, ratetable=fit, se=F) surv <- wt <- rep(1,9) tt <- c(1,2,4) hak1 <- hak2 <- NULL for (i in 1:3) { wt[dummy$time < tt[i]] <- 0 hak1 <- c(hak1, exp(-sum(haz[i]*risk*surv*wt)/sum(surv*wt))) hak2 <- c(hak2, sum(exp(-haz[i]*risk)*surv*wt)/sum(surv*wt)) surv <- surv * exp(-haz[i]*risk) } all.equal(as.vector(efit$surv), as.vector(cumprod(hak1))) # # Now do the conditional estimate # efit <- survexp( time ~ ratetable(x=x), dummy, ratetable=fit, se=F, conditional=T) wt <- rep(1,9) cond <- NULL for (i in 1:3) { wt[dummy$time < tt[i]] <- 0 cond <- c(cond, exp(-sum(haz[i]*risk*wt)/sum(wt))) } all.equal(as.vector(efit$surv), as.vector(cumprod(cond))) survival/tests/fr_resid.R0000644000176200001440000000603613537676563015241 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # The residual methods treat a sparse frailty as a fixed offset with # no variance # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) kfit1 <- coxph(Surv(time, status) ~ age + sex + frailty(id, dist='gauss'), kidney) tempf <- predict(kfit1, type='terms')[,3] temp <- kfit1$frail[match(kidney$id, sort(unique(kidney$id)))] #all.equal(unclass(tempf), unclass(temp)) all.equal(as.vector(tempf), as.vector(temp)) # Now fit a model with explicit offset kfitx <- coxph(Surv(time, status) ~ age + sex + offset(tempf),kidney, eps=1e-7) # These are not always precisely the same, due to different iteration paths aeq(kfitx$coef, kfit1$coef) # This will make them identical kfitx <- coxph(Surv(time, status) ~ age + sex + offset(temp),kidney, iter=0, init=kfit1$coef) aeq(resid(kfit1), resid(kfitx)) aeq(resid(kfit1, type='score'), resid(kfitx, type='score')) aeq(resid(kfit1, type='schoe'), resid(kfitx, type='schoe')) # These are not the same, due to a different variance matrix # The frailty model's variance is about 2x the naive "assume an offset" var # Expect a value of about 0.5 aeq(resid(kfit1, type='dfbeta'), resid(kfitx, type='dfbeta')) # Force equality zed <- kfitx zed$var <- kfit1$var aeq(resid(kfit1, type='dfbeta'), resid(zed, type='dfbeta')) # The score residuals are equal, however. temp1 <- resid(kfit1, type='score') temp2 <- resid(kfitx, type='score') aeq(temp1, temp2) # # Now for some tests of predicted values # aeq(predict(kfit1, type='expected'), predict(kfitx, type='expected')) aeq(predict(kfit1, type='lp'), predict(kfitx, type='lp')) temp1 <- predict(kfit1, type='terms', se.fit=T) temp2 <- predict(kfitx, type='terms', se.fit=T) aeq(temp1$fit[,1:2], temp2$fit) # the next is not equal, all.equal returns a character string in that case is.character(aeq(temp1$se.fit[,1:2], temp2$se.fit)) mean(temp1$se.fit[,1:2]/ temp2$se.fit) aeq(as.vector(temp1$se.fit[,3])^2, as.vector(kfit1$fvar[match(kidney$id, sort(unique(kidney$id)))])) print(temp1) kfit1 kfitx rm(temp1, temp2, kfitx, zed, tempf) # # The special case of a single sparse frailty # kfit1 <- coxph(Surv(time, status) ~ frailty(id, dist='gauss'), kidney) tempf <- predict(kfit1, type='terms') temp <- kfit1$frail[match(kidney$id, sort(unique(kidney$id)))] all.equal(as.vector(tempf), as.vector(temp)) # Now fit a model with explicit offset kfitx <- coxph(Surv(time, status) ~ offset(tempf),kidney, eps=1e-7) aeq(resid(kfit1), resid(kfitx)) aeq(resid(kfit1, type='deviance'), resid(kfitx, type='deviance')) # # Some tests of predicted values # aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) aeq(predict(kfit1, type='expected'), predict(kfitx, type='expected')) aeq(predict(kfit1, type='lp'), predict(kfitx, type='lp')) temp1 <- predict(kfit1, type='terms', se.fit=T) aeq(temp1$fit, kfitx$linear) aeq(temp1$se.fit^2, kfit1$fvar[match(kidney$id, sort(unique(kidney$id)))]) temp1 kfit1 survival/tests/yates0.Rout.save0000644000176200001440000000627413537676563016342 0ustar liggesusers R Under development (unstable) (2019-08-23 r77061) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # This code verified some oddities about model frames > # > options(contrasts=c("contr.treatment", "contr.poly")) # clean slate > > tdata <- data.frame(y=1:10, x1=letters[c(1,2,3,1,2,3,1,2,3,1)], + x2=LETTERS[c(1,2,3,4,1,2,3,4,1,2)], + stringsAsFactors=TRUE) > tdata$x3 <- as.character(tdata$x1) > > fit1 <- lm(y ~ x1 + x2, tdata, x=TRUE) > m1 <- fit1$model > t1 <- terms(fit1) > > # Lesson 1: xlev is ignored when the variable already has levels > # as an attribute > > temp <- list(x1=c("a", "c", "b"), x2=LETTERS[4:1]) > x2 <- model.matrix(t1, m1, xlev=temp) > x3 <- model.matrix(t1, tdata, xlev=temp) > > all.equal(x2, fit1$x) [1] TRUE > !is.logical(all.equal(x2, x3)) # x2 and x3 do not agree [1] TRUE > attributes(m1$x1) $levels [1] "a" "b" "c" $class [1] "factor" > > > # Lesson 2: character variables do not have their levels > # remembered as attributes in the model frame, but these are > # found in fit$xlevels and fit$contrasts. > # However, the xlev argument is still ignored for a model frame! > fit2 <- lm(y ~ x3 + x2, tdata, x=TRUE) > m2 <- fit2$model > x3 <- model.matrix(terms(fit2), m2, xlev=fit2$xlevels) > x4 <- model.matrix(terms(fit2), m2, xlev=list(x3=letters[3:1])) > x5 <- model.matrix(terms(fit2), tdata, xlev=list(x3=letters[3:1])) > all.equal(fit2$x, x3) [1] TRUE > all.equal(x3, x4) [1] TRUE > all.equal(x3, x5) # FALSE [1] "Attributes: < Component \"dimnames\": Component 2: 1 string mismatch >" [2] "Mean relative difference: 2.333333" > > > # Lesson 3: contrasts.arg is relevant, even when the model frame > # has a saved contrast > ctemp <- list(x1="contr.SAS", x2= contr.helmert(LETTERS[1:4])) > x4 <- model.matrix(t1, m1, contrasts.arg=ctemp) # no saved contrast > > fit3 <- lm(y ~ x1 + C(x2, contr.SAS), tdata) > m3 <- fit3$model > attr(m3[[3]], 'contr') # the contrast is saved 1 2 3 A 1 0 0 B 0 1 0 C 0 0 1 D 0 0 0 > c2 <- ctemp > names(c2) <- names(fit3$contrasts) > x5 <- model.matrix(terms(fit3), m3, contrasts.arg=c2) > all.equal(x4, x5, check.attributes=FALSE) [1] TRUE > > # Lesson 4: and this holds for a character variable as well > fit4 <- lm(y ~ x3 + C(x2, contr.SAS), tdata, x=TRUE) > c4 <- ctemp > names(c4) <- names(fit4$contrasts) > x6 <- model.matrix(terms(fit4), fit4$model, xlev=fit4$xlevels, contrasts.arg=c4) > x7 <- model.matrix(terms(fit4), fit4$model, contrasts.arg=c4) > all.equal(x7, x6) [1] TRUE > all.equal(x7, x5, check.attributes=FALSE) [1] TRUE > > proc.time() user system elapsed 0.117 0.012 0.122 survival/tests/fr_kidney.Rout.save0000644000176200001440000003236213537676563017104 0ustar liggesusers R Under development (unstable) (2019-05-15 r76504) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # From: McGilchrist and Aisbett, Biometrics 47, 461-66, 1991 > # Data on the recurrence times to infection, at the point of insertion of > # the catheter, for kidney patients using portable dialysis equipment. > # Catheters may be removed for reasons other than infection, in which case > # the observation is censored. Each patient has exactly 2 observations. > > # Variables: patient, time, status, age, > # sex (1=male, 2=female), > # disease type (0=GN, 1=AN, 2=PKD, 3=Other) > # author's estimate of the frailty > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # I don't match their answers, and I think that I'm right > kfit <- coxph(Surv(time, status)~ age + sex + disease + frailty(id), kidney) > kfit1<- coxph(Surv(time, status) ~age + sex + disease + + frailty(id, theta=1), kidney, iter=20) > kfit0 <- coxph(Surv(time, status)~ age + sex + disease, kidney) > temp <- coxph(Surv(time, status) ~age + sex + disease + + frailty(id, theta=1, sparse=F), kidney) > > > # Check out the EM based score equations > # temp1 and kfit1 should have essentially the same coefficients > # temp2 should equal kfit1$frail > # equality won't be exact because of the different iteration paths > temp1 <- coxph(Surv(time, status) ~ age + sex + disease + + offset(kfit1$frail[id]), kidney) > rr <- tapply(resid(temp1), kidney$id, sum) > temp2 <- log(rr/1 +1) > aeq(temp1$coef, kfit1$coef, tolerance=.005) [1] TRUE > aeq(temp2, kfit1$frail, tolerance=.005) [1] TRUE > > > > kfit Call: coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id), data = kidney) coef se(coef) se2 Chisq DF p age 3.18e-03 1.11e-02 1.11e-02 8.14e-02 1 0.775 sex -1.48e+00 3.58e-01 3.58e-01 1.71e+01 1 3.5e-05 diseaseGN 8.80e-02 4.06e-01 4.06e-01 4.68e-02 1 0.829 diseaseAN 3.51e-01 4.00e-01 4.00e-01 7.70e-01 1 0.380 diseasePKD -1.43e+00 6.31e-01 6.31e-01 5.14e+00 1 0.023 frailty(id) 2.71e-05 0 0.933 Iterations: 6 outer, 35 Newton-Raphson Variance of random effect= 5e-07 I-likelihood = -179.1 Degrees of freedom for terms= 1 1 3 0 Likelihood ratio test=17.6 on 5 df, p=0.003 n= 76, number of events= 58 > kfit1 Call: coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, theta = 1), data = kidney, iter = 20) coef se(coef) se2 Chisq DF p age 0.00389 0.01959 0.00943 0.03933 1.0 0.84280 sex -2.00764 0.59104 0.41061 11.53834 1.0 0.00068 diseaseGN 0.35335 0.71653 0.38015 0.24319 1.0 0.62191 diseaseAN 0.52341 0.72298 0.40463 0.52413 1.0 0.46909 diseasePKD -0.45938 1.08977 0.66088 0.17770 1.0 0.67336 frailty(id, theta = 1) 28.50571 18.8 0.06909 Iterations: 1 outer, 14 Newton-Raphson Variance of random effect= 1 I-likelihood = -182.5 Degrees of freedom for terms= 0.2 0.5 1.1 18.8 Likelihood ratio test=63.8 on 20.6 df, p=3e-06 n= 76, number of events= 58 > kfit0 Call: coxph(formula = Surv(time, status) ~ age + sex + disease, data = kidney) coef exp(coef) se(coef) z p age 0.003181 1.003186 0.011146 0.285 0.7754 sex -1.483137 0.226925 0.358230 -4.140 3.47e-05 diseaseGN 0.087957 1.091941 0.406369 0.216 0.8286 diseaseAN 0.350794 1.420195 0.399717 0.878 0.3802 diseasePKD -1.431108 0.239044 0.631109 -2.268 0.0234 Likelihood ratio test=17.65 on 5 df, p=0.003423 n= 76, number of events= 58 > temp Call: coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, theta = 1, sparse = F), data = kidney) coef se(coef) se2 Chisq DF p age 0.00389 0.01865 0.01120 0.04342 1.0 0.83494 sex -2.00763 0.57624 0.40799 12.13849 1.0 0.00049 diseaseGN 0.35335 0.67865 0.43154 0.27109 1.0 0.60260 diseaseAN 0.52340 0.68910 0.44038 0.57690 1.0 0.44753 diseasePKD -0.45934 1.01394 0.71297 0.20523 1.0 0.65053 frailty(id, theta = 1, sp 26.23016 18.7 0.11573 Iterations: 1 outer, 5 Newton-Raphson Variance of random effect= 1 I-likelihood = -182.5 Degrees of freedom for terms= 0.4 0.5 1.4 18.7 Likelihood ratio test=63.8 on 21 df, p=3e-06 n= 76, number of events= 58 > > # > # Now fit the data using REML > # > kfitm1 <- coxph(Surv(time,status) ~ age + sex + disease + + frailty(id, dist='gauss'), kidney) > kfitm2 <- coxph(Surv(time,status) ~ age + sex + disease + + frailty(id, dist='gauss', sparse=F), kidney) > kfitm1 Call: coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, dist = "gauss"), data = kidney) coef se(coef) se2 Chisq DF p age 0.00489 0.01497 0.01059 0.10678 1.0 0.74384 sex -1.69728 0.46101 0.36170 13.55454 1.0 0.00023 diseaseGN 0.17986 0.54485 0.39273 0.10897 1.0 0.74131 diseaseAN 0.39294 0.54482 0.39816 0.52016 1.0 0.47077 diseasePKD -1.13631 0.82519 0.61728 1.89621 1.0 0.16850 frailty(id, dist = "gauss 17.89195 12.1 0.12376 Iterations: 7 outer, 42 Newton-Raphson Variance of random effect= 0.493 Degrees of freedom for terms= 0.5 0.6 1.7 12.1 Likelihood ratio test=47.5 on 14.9 df, p=3e-05 n= 76, number of events= 58 > summary(kfitm2) Call: coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, dist = "gauss", sparse = F), data = kidney) n= 76, number of events= 58 coef se(coef) se2 Chisq DF p age 0.004924 0.0149 0.01084 0.11 1.00 0.74000 sex -1.702037 0.4631 0.36134 13.51 1.00 0.00024 diseaseGN 0.181733 0.5413 0.40169 0.11 1.00 0.74000 diseaseAN 0.394416 0.5428 0.40520 0.53 1.00 0.47000 diseasePKD -1.131602 0.8175 0.62981 1.92 1.00 0.17000 frailty(id, dist = "gauss 18.13 12.27 0.12000 exp(coef) exp(-coef) lower .95 upper .95 age 1.0049 0.9951 0.97601 1.0347 sex 0.1823 5.4851 0.07355 0.4519 diseaseGN 1.1993 0.8338 0.41515 3.4646 diseaseAN 1.4835 0.6741 0.51196 4.2988 diseasePKD 0.3225 3.1006 0.06497 1.6010 gauss:1 1.7011 0.5879 0.51805 5.5856 gauss:2 1.4241 0.7022 0.38513 5.2662 gauss:3 1.1593 0.8626 0.38282 3.5108 gauss:4 0.6226 1.6063 0.23397 1.6566 gauss:5 1.2543 0.7972 0.39806 3.9526 gauss:6 1.1350 0.8811 0.38339 3.3599 gauss:7 1.9726 0.5069 0.56938 6.8342 gauss:8 0.6196 1.6140 0.21662 1.7721 gauss:9 0.8231 1.2149 0.28884 2.3456 gauss:10 0.5030 1.9882 0.17468 1.4482 gauss:11 0.7565 1.3218 0.27081 2.1134 gauss:12 1.1048 0.9052 0.33430 3.6510 gauss:13 1.3022 0.7679 0.42746 3.9673 gauss:14 0.5912 1.6915 0.18537 1.8855 gauss:15 0.5449 1.8352 0.18580 1.5980 gauss:16 1.0443 0.9576 0.31424 3.4702 gauss:17 0.9136 1.0945 0.30004 2.7820 gauss:18 0.9184 1.0889 0.32476 2.5970 gauss:19 0.6426 1.5562 0.19509 2.1166 gauss:20 1.1698 0.8549 0.34528 3.9631 gauss:21 0.3336 2.9974 0.10202 1.0910 gauss:22 0.6871 1.4554 0.23531 2.0064 gauss:23 1.4778 0.6767 0.47560 4.5918 gauss:24 1.0170 0.9832 0.31555 3.2779 gauss:25 0.8096 1.2352 0.27491 2.3843 gauss:26 0.6145 1.6274 0.21491 1.7570 gauss:27 1.0885 0.9187 0.32819 3.6101 gauss:28 1.5419 0.6485 0.49231 4.8292 gauss:29 1.3785 0.7254 0.43766 4.3421 gauss:30 1.3748 0.7274 0.44444 4.2530 gauss:31 1.4447 0.6922 0.47031 4.4380 gauss:32 1.1993 0.8339 0.35207 4.0850 gauss:33 1.9449 0.5142 0.55229 6.8491 gauss:34 0.8617 1.1605 0.27685 2.6820 gauss:35 1.7031 0.5872 0.52657 5.5084 gauss:36 0.8275 1.2085 0.22811 3.0015 gauss:37 1.4707 0.6800 0.38936 5.5549 gauss:38 1.0479 0.9543 0.30685 3.5789 Iterations: 6 outer, 21 Newton-Raphson Variance of random effect= 0.5090956 Degrees of freedom for terms= 0.5 0.6 1.7 12.3 Concordance= 0.796 (se = 0.796 ) Likelihood ratio test= 117.9 on 15.14 df, p=<2e-16 > # > # Fit the kidney data using AIC > # > > # gamma, corrected aic > coxph(Surv(time, status) ~ age + sex + frailty(id, method='aic', caic=T), + kidney) Call: coxph(formula = Surv(time, status) ~ age + sex + frailty(id, method = "aic", caic = T), data = kidney) coef se(coef) se2 Chisq DF p age 0.00364 0.01048 0.00891 0.12053 1.00 0.72846 sex -1.31953 0.39556 0.32497 11.12781 1.00 0.00085 frailty(id, method = "aic 13.55258 7.81 0.08692 Iterations: 9 outer, 63 Newton-Raphson Variance of random effect= 0.203 I-likelihood = -182.1 Degrees of freedom for terms= 0.7 0.7 7.8 Likelihood ratio test=33.3 on 9.21 df, p=1e-04 n= 76, number of events= 58 > > coxph(Surv(time, status) ~ age + sex + frailty(id, dist='t'), kidney) Call: coxph(formula = Surv(time, status) ~ age + sex + frailty(id, dist = "t"), data = kidney) coef se(coef) se2 Chisq DF p age 0.00561 0.01203 0.00872 0.21774 1.0 0.64077 sex -1.65487 0.48294 0.38527 11.74180 1.0 0.00061 frailty(id, dist = "t") 20.33462 13.9 0.11752 Iterations: 8 outer, 58 Newton-Raphson Variance of random effect= 0.825 Degrees of freedom for terms= 0.5 0.6 13.9 Likelihood ratio test=48.6 on 15.1 df, p=2e-05 n= 76, number of events= 58 > coxph(Surv(time, status) ~ age + sex + frailty(id, dist='gauss', method='aic', + caic=T), kidney) Call: coxph(formula = Surv(time, status) ~ age + sex + frailty(id, dist = "gauss", method = "aic", caic = T), data = kidney) coef se(coef) se2 Chisq DF p age 0.00303 0.01031 0.00895 0.08646 1.00 0.7687 sex -1.15152 0.36368 0.30556 10.02558 1.00 0.0015 frailty(id, dist = "gauss 12.35238 6.76 0.0800 Iterations: 7 outer, 41 Newton-Raphson Variance of random effect= 0.185 Degrees of freedom for terms= 0.8 0.7 6.8 Likelihood ratio test=28.4 on 8.22 df, p=5e-04 n= 76, number of events= 58 > > > # uncorrected aic > coxph(Surv(time, status) ~ age + sex + frailty(id, method='aic', caic=F), + kidney) Call: coxph(formula = Surv(time, status) ~ age + sex + frailty(id, method = "aic", caic = F), data = kidney) coef se(coef) se2 Chisq DF p age 0.00785 0.01503 0.00823 0.27284 1.0 0.60143 sex -1.88990 0.56114 0.39941 11.34311 1.0 0.00076 frailty(id, method = "aic 37.45897 19.7 0.00918 Iterations: 8 outer, 87 Newton-Raphson Variance of random effect= 0.886 I-likelihood = -182.8 Degrees of freedom for terms= 0.3 0.5 19.7 Likelihood ratio test=61.2 on 20.5 df, p=6e-06 n= 76, number of events= 58 Warning message: In coxpenal.fit(X, Y, istrat, offset, init = init, control, weights = weights, : Inner loop failed to coverge for iterations 4 > > coxph(Surv(time, status) ~ age + sex + frailty(id, dist='t', caic=F), kidney) Call: coxph(formula = Surv(time, status) ~ age + sex + frailty(id, dist = "t", caic = F), data = kidney) coef se(coef) se2 Chisq DF p age 0.00561 0.01203 0.00872 0.21774 1.0 0.64077 sex -1.65487 0.48294 0.38527 11.74180 1.0 0.00061 frailty(id, dist = "t", c 20.33462 13.9 0.11752 Iterations: 8 outer, 58 Newton-Raphson Variance of random effect= 0.825 Degrees of freedom for terms= 0.5 0.6 13.9 Likelihood ratio test=48.6 on 15.1 df, p=2e-05 n= 76, number of events= 58 > > proc.time() user system elapsed 0.864 0.060 0.924 survival/tests/anova.R0000644000176200001440000000204213537676563014541 0ustar liggesusers# # Test out anova, with strata terms # options(na.action=na.omit) library(survival) fit1 <- coxph(Surv(time, status) ~ ph.ecog + wt.loss + strata(sex) + poly(age,3), lung) ztemp <- anova(fit1) tdata <- na.omit(lung[, c('time', 'status', 'ph.ecog', 'wt.loss', 'sex', 'age')]) fit2 <- coxph(Surv(time, status)~ ph.ecog + wt.loss + poly(age,3) + strata(sex), data=tdata) ztemp2 <- anova(fit2) all.equal(ztemp, ztemp2) fit2 <- coxph(Surv(time, status) ~ ph.ecog + wt.loss + strata(sex), tdata) fit3 <- coxph(Surv(time, status) ~ ph.ecog + strata(sex), tdata) all.equal(ztemp$loglik, c(fit1$loglik[1], fit3$loglik[2], fit2$loglik[2], fit1$loglik[2])) all.equal(ztemp$Chisq[-1], 2* diff(ztemp$loglik)) all.equal(ztemp$Df[-1], c(1,1,3)) ztemp2 <- anova(fit3, fit2, fit1) all.equal(ztemp2$loglik, ztemp$loglik[-1]) all.equal(ztemp2$Chisq[2:3], ztemp$Chisq[3:4]) # Change from ztemp2$P; it's a data frame and in R 3.0.2 abbreviated names # give a warning all.equal(ztemp2[[4]][2:3], ztemp[[4]][3:4]) survival/tests/doaml.R0000644000176200001440000000356413537676603014536 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # # These results can be found in Miller # fit <- coxph(Surv(aml$time, aml$status) ~ aml$x, method='breslow') fit resid(fit, type='mart') resid(fit, type='score') resid(fit, type='scho') # Test the drop of an itercept: should have no effect fit2 <- coxph(Surv(time, status) ~ x -1, method='breslow', data=aml) aeq(fit$loglik, fit2$loglik) aeq(coef(fit), coef(fit2)) aeq(fit$var, fit2$var) fit <- survfit(Surv(aml$time, aml$status) ~ aml$x) fit summary(fit) survdiff(Surv(aml$time, aml$status)~ aml$x) # # Test out the weighted K-M # # First, equal case weights- shouldn't change the survival, but will # halve the variance temp2 <-survfit(Surv(aml$time, aml$status)~1, weight=rep(2,23)) temp <-survfit(Surv(time, status)~1, aml) aeq(temp$surv, temp2$surv) aeq(temp$std.err^2, 2*temp2$std.err^2) # Risk weights-- use a null Cox model tfit <- coxph(Surv(aml$time, aml$status) ~ offset(log(1:23))) sfit <- survfit(tfit, stype=2, ctype=1, censor=FALSE) # Now compute it by hand. The survfit program will produce a curve # corresponding to the mean offset. # Ties are a nuisance, the line above forced the Nelson rather than Efron # to make it easier rscore <- exp(log(1:23) - mean(log(1:23)))[order(aml$time)] atime <- sort(aml$time) denom <- rev(cumsum(rev(rscore))) denom <- denom[match(unique(atime), atime)] deaths <- tapply(aml$status, aml$time, sum) chaz <- cumsum(deaths/denom) all.equal(sfit$surv, as.vector(exp(-chaz[deaths>0]))) # And the Efron result summary(survfit(tfit)) # Lots of ties, so its a good test case x1 <- coxph(Surv(time, status)~x, aml, method='efron') x1 x2 <- coxph(Surv(rep(0,23),time, status) ~x, aml, method='efron') aeq(x1$coef, x2$coef) survival/tests/multi2.Rout.save0000644000176200001440000002103513561300400016304 0ustar liggesusers R Under development (unstable) (2019-10-26 r77334) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # Check that estimates from a multi-state model agree with single state models > # Use a simplified version of the myeloid data set > tdata <- tmerge(myeloid[,1:3], myeloid, id=id, death=event(futime,death), + priortx = tdc(txtime), sct= event(txtime)) > tdata$event <- factor(with(tdata, sct + 2*death), 0:2, + c("censor", "sct", "death")) > fit <- coxph(Surv(tstart, tstop, event) ~ trt + sex, tdata, id=id, + iter=4, x=TRUE) > > fit12 <- coxph(Surv(tstart, tstop, event=='sct') ~ trt + sex, tdata, + subset=(priortx==0), iter=4, x=TRUE) > fit13 <- coxph(Surv(tstart, tstop, event=='death') ~ trt + sex, tdata, + subset=(priortx==0), iter=4, x=TRUE) > fit23 <- coxph(Surv(tstart, tstop, event=='death') ~ trt + sex, tdata, + subset=(priortx==1), iter=4, x=TRUE) > aeq(coef(fit), c(coef(fit12), coef(fit13), coef(fit23))) [1] TRUE > aeq(fit$loglik, fit12$loglik + fit13$loglik + fit23$loglik) [1] TRUE > temp <- matrix(0, 6,6) > temp[1:2, 1:2] <- fit12$var > temp[3:4, 3:4] <- fit13$var > temp[5:6, 5:6] <- fit23$var > aeq(fit$naive.var, temp) [1] TRUE > > ii <- fit$strata==1 > tfit <- coxph(fit$y[ii,] ~ fit$x[ii,]) > aeq(tfit$loglik, fit12$loglik) # check that x, y, strata are correct [1] TRUE > ii <- fit$strata==2 > tfit <- coxph(fit$y[ii,] ~ fit$x[ii,]) > aeq(tfit$loglik, fit13$loglik) # check that x, y, strata are correct [1] TRUE > ii <- fit$strata==3 > tfit <- coxph(fit$y[ii,] ~ fit$x[ii,]) > aeq(tfit$loglik, fit23$loglik) # check that x, y, strata are correct [1] TRUE > > # check out model.frame > fita <- coxph(Surv(tstart, tstop, event) ~ trt, tdata, id=id) > fitb <- coxph(Surv(tstart, tstop, event) ~ trt, tdata, id=id, model=TRUE) > all.equal(model.frame(fita), fitb$model) [1] "Component \"trt\": 'current' is not a factor" > > #check residuals > aeq(residuals(fit), c(residuals(fit12), residuals(fit13), residuals(fit23))) [1] TRUE > aeq(residuals(fit, type='deviance'), + c(residuals(fit12, type='deviance'), residuals(fit13, type='deviance'), + residuals(fit23, type='deviance'))) [1] TRUE > > # score residuals > indx1 <- 1:fit12$n > indx2 <- 1:fit13$n + fit12$n > indx3 <- 1:fit23$n + (fit12$n + fit13$n) > temp <- residuals(fit, type='score') > aeq(temp[indx1, 1:2], residuals(fit12, type='score')) [1] TRUE > aeq(temp[indx2, 3:4], residuals(fit13, type='score')) [1] TRUE > aeq(temp[indx3, 5:6], residuals(fit23, type='score')) [1] TRUE > > all(temp[indx1, 3:6] ==0) [1] TRUE > all(temp[indx2, c(1,2,5,6)] ==0) [1] TRUE > all(temp[indx3, 1:4]==0) [1] TRUE > > temp <- residuals(fit, type="dfbeta") > all(temp[indx1, 3:6] ==0) [1] TRUE > all(temp[indx2, c(1,2,5,6)] ==0) [1] TRUE > all(temp[indx3, 1:4]==0) [1] TRUE > aeq(temp[indx1, 1:2], residuals(fit12, type='dfbeta')) [1] TRUE > aeq(temp[indx2, 3:4], residuals(fit13, type='dfbeta')) [1] TRUE > aeq(temp[indx3, 5:6], residuals(fit23, type='dfbeta')) [1] TRUE > > temp <- residuals(fit, type="dfbetas") > all(temp[indx1, 3:6] ==0) [1] TRUE > all(temp[indx2, c(1,2,5,6)] ==0) [1] TRUE > all(temp[indx3, 1:4]==0) [1] TRUE > aeq(temp[indx1, 1:2], residuals(fit12, type='dfbetas')) [1] TRUE > aeq(temp[indx2, 3:4], residuals(fit13, type='dfbetas')) [1] TRUE > aeq(temp[indx3, 5:6], residuals(fit23, type='dfbetas')) [1] TRUE > > # Schoenfeld and scaled shoenfeld have one row per event > ecount <- table(fit$strata[fit$y[,3]==1]) > temp <- rep(1:3, ecount) > sindx1 <- which(temp==1) > sindx2 <- which(temp==2) > sindx3 <- which(temp==3) > temp <- residuals(fit, type="schoenfeld") > all(temp[sindx1, 3:6] ==0) [1] TRUE > all(temp[sindx2, c(1,2,5,6)] ==0) [1] TRUE > all(temp[sindx3, 1:4]==0) [1] TRUE > aeq(temp[sindx1, 1:2], residuals(fit12, type='schoenfeld')) [1] TRUE > aeq(temp[sindx2, 3:4], residuals(fit13, type='schoenfeld')) [1] TRUE > aeq(temp[sindx3, 5:6], residuals(fit23, type='schoenfeld')) [1] TRUE > > > #The scaled Schoenfeld don't agree, due to the use of a robust > # variance in fit, regular variance in fit12, fit13 and fit23 > #Along with being scaled by different event counts > xfit <- fit > xfit$var <- xfit$naive.var > if (FALSE) { + xfit <- fit + xfit$var <- xfit$naive.var # fixes the first issue + temp <- residuals(xfit, type="scaledsch") + aeq(d1* temp[sindx1, 1:2], residuals(fit12, type='scaledsch')) + aeq(temp[sindx2, 3:4], residuals(fit13, type='scaledsch')) + aeq(temp[sindx3, 5:6], residuals(fit23, type='scaledsch')) + } > > > # predicted values differ because of different centering > c0 <- sum(fit$mean * coef(fit)) > c12 <- sum(fit12$mean * coef(fit12)) > c13 <- sum(fit13$mean* coef(fit13)) > c23 <- sum(fit23$mean * coef(fit23)) > > aeq(predict(fit)+c0, c(predict(fit12)+c12, predict(fit13)+c13, + predict(fit23)+c23)) [1] TRUE > aeq(exp(predict(fit)), predict(fit, type='risk')) [1] TRUE > > # expected survival is independent of centering > aeq(predict(fit, type="expected"), c(predict(fit12, type="expected"), + predict(fit13, type="expected"), + predict(fit23, type="expected"))) [1] TRUE > > # predict(type='terms') is a matrix, centering changes as well > temp <- predict(fit, type='terms') > if (FALSE) { + all(temp[indx1, 3:6] ==0) + all(temp[indx2, c(1,2,5,6)] ==0) + all(temp[indx3, 1:4]==0) + aeq(temp[indx1, 1:2], predict(fit12, type='terms')) + aeq(temp[indx2, 3:4], predict(fit13, type='terms')) + aeq(temp[indx3, 5:6], predict(fit23, type='terms')) + } > > # The global and per strata zph tests will differ for the KM or rank > # transform, because the overall and subset will have a different list > # of event times, which changes the transformed value for all of them. > # But identity and log are testable. > test_a <- cox.zph(fit, transform="log",global=FALSE) > test_a12 <- cox.zph(fit12, transform="log",global=FALSE) > test_a13 <- cox.zph(fit13, transform="log", global=FALSE) > test_a23 <- cox.zph(fit23, transform="log", global=FALSE) > aeq(test_a$y[test_a$strata==1, 1:2], test_a12$y) [1] TRUE > > aeq(test_a$table[1:2,], test_a12$table) [1] TRUE > aeq(test_a$table[3:4,], test_a13$table) [1] TRUE > aeq(test_a$table[5:6,], test_a23$table) [1] TRUE > > # check cox.zph fit - transform = 'identity' > test_b <- cox.zph(fit, transform="identity",global=FALSE) > test_b12 <- cox.zph(fit12, transform="identity",global=FALSE) > test_b13 <- cox.zph(fit13, transform="identity", global=FALSE) > test_b23 <- cox.zph(fit23, transform="identity", global=FALSE) > > aeq(test_b$table[1:2,], test_b12$table) [1] TRUE > aeq(test_b$table[3:4,], test_b13$table) [1] TRUE > aeq(test_b$table[5:6,], test_b23$table) [1] TRUE > > # check out subscripting of a multi-state zph > cname <- c("table", "x", "time", "y", "var") > sapply(cname, function(x) aeq(test_b[1:2]$x, test_b12$x)) table x time y var TRUE TRUE TRUE TRUE TRUE > sapply(cname, function(x) aeq(test_b[3:4]$x, test_b13$x)) table x time y var TRUE TRUE TRUE TRUE TRUE > sapply(cname, function(x) aeq(test_b[5:6]$x, test_b23$x)) table x time y var TRUE TRUE TRUE TRUE TRUE > > # check model.matrix > mat1 <- model.matrix(fit) > mat2 <- model.matrix(fit12) > mat3 <- model.matrix(fit13) > mat4 <- model.matrix(fit23) > > test.matrix1 <- matrix(0, nrow=dim(mat2),ncol=2,dimnames=c()) > test.matrix2 <- matrix(0, nrow=dim(mat3),ncol=2,dimnames=c()) > test.matrix3 <- matrix(0, nrow=dim(mat4),ncol=2,dimnames=c()) > > com1 <- cbind(mat2,test.matrix1, test.matrix1) > com2 <- cbind(test.matrix2, mat3, test.matrix2) > com3 <- cbind(test.matrix3, test.matrix3, mat4) > combined.matrix <- do.call(rbind,list(com1,com2,com3)) #create combined matrix to compare to model matrix from 'fit' model > > final <- rbind(com1,com2,com3) > > aeq(mat1,combined.matrix) #GOOD [1] TRUE > > > proc.time() user system elapsed 0.982 0.067 1.042 survival/tests/bladder.Rout.save0000644000176200001440000001421613537676563016525 0ustar liggesusers R Under development (unstable) (2019-05-15 r76504) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly'), + show.signif.stars=FALSE) #ensure constrast type > library(survival) > > # > # Fit the models found in Wei et. al. > # > wfit <- coxph(Surv(stop, event) ~ (rx + size + number)* strata(enum), + cluster=id, bladder, ties='breslow') > wfit Call: coxph(formula = Surv(stop, event) ~ (rx + size + number) * strata(enum), data = bladder, ties = "breslow", cluster = id) coef exp(coef) se(coef) robust se z p rx -0.51762 0.59594 0.31576 0.30750 -1.683 0.09231 size 0.06789 1.07025 0.10125 0.08529 0.796 0.42602 number 0.23599 1.26617 0.07608 0.07208 3.274 0.00106 rx:strata(enum)enum=2 -0.10182 0.90319 0.50427 0.32654 -0.312 0.75518 rx:strata(enum)enum=3 -0.18226 0.83339 0.55790 0.39162 -0.465 0.64165 rx:strata(enum)enum=4 -0.13317 0.87531 0.65813 0.49680 -0.268 0.78865 size:strata(enum)enum=2 -0.14401 0.86588 0.16800 0.11190 -1.287 0.19812 size:strata(enum)enum=3 -0.27920 0.75639 0.20862 0.15115 -1.847 0.06472 size:strata(enum)enum=4 -0.27106 0.76257 0.25146 0.18563 -1.460 0.14422 number:strata(enum)enum=2 -0.09843 0.90625 0.11931 0.11439 -0.861 0.38951 number:strata(enum)enum=3 -0.06616 0.93598 0.12983 0.11672 -0.567 0.57083 number:strata(enum)enum=4 0.09280 1.09724 0.14657 0.11754 0.790 0.42982 Likelihood ratio test=29.39 on 12 df, p=0.003443 n= 340, number of events= 112 > > # Check the rx coefs versus Wei, et al, JASA 1989 > rx <- c(1,4,5,6) # the treatment coefs above > cmat <- diag(4); cmat[1,] <- 1; #contrast matrix > wfit$coef[rx] %*% cmat # the coefs in their paper (table 5) [,1] [,2] [,3] [,4] [1,] -0.5176209 -0.6194404 -0.6998771 -0.6507935 > t(cmat) %*% wfit$var[rx,rx] %*% cmat # var matrix (eqn 3.2) [,1] [,2] [,3] [,4] [1,] 0.09455501 0.06017669 0.05677331 0.0437777 [2,] 0.06017669 0.13242834 0.13011557 0.1160420 [3,] 0.05677331 0.13011557 0.17235879 0.1590865 [4,] 0.04377770 0.11604200 0.15908650 0.2398112 > > # Anderson-Gill fit > fita <- coxph(Surv(start, stop, event) ~ rx + size + number, cluster=id, + bladder2, ties='breslow') > summary(fita) Call: coxph(formula = Surv(start, stop, event) ~ rx + size + number, data = bladder2, ties = "breslow", cluster = id) n= 178, number of events= 112 coef exp(coef) se(coef) robust se z Pr(>|z|) rx -0.45979 0.63142 0.19996 0.25801 -1.782 0.07474 size -0.04256 0.95833 0.06903 0.07555 -0.563 0.57317 number 0.17164 1.18726 0.04733 0.06131 2.799 0.00512 exp(coef) exp(-coef) lower .95 upper .95 rx 0.6314 1.5837 0.3808 1.047 size 0.9583 1.0435 0.8264 1.111 number 1.1873 0.8423 1.0528 1.339 Concordance= 0.634 (se = 0.032 ) Likelihood ratio test= 16.77 on 3 df, p=8e-04 Wald test = 11.76 on 3 df, p=0.008 Score (logrank) test = 18.57 on 3 df, p=3e-04, Robust = 11.44 p=0.01 (Note: the likelihood ratio and score tests assume independence of observations within a cluster, the Wald and robust score tests do not). > > # Prentice fits. Their model 1 a and b are the same > fit1p <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, + subset=(enum==1), ties='breslow') > fit2pa <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, + subset=(enum==2), ties='breslow') > fit2pb <- coxph(Surv(stop-start, event) ~ rx + size + number, bladder2, + subset=(enum==2), ties='breslow') > fit3pa <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, + subset=(enum==3), ties='breslow') > #and etc. > fit1p Call: coxph(formula = Surv(stop, event) ~ rx + size + number, data = bladder2, subset = (enum == 1), ties = "breslow") coef exp(coef) se(coef) z p rx -0.51762 0.59594 0.31576 -1.639 0.10115 size 0.06789 1.07025 0.10125 0.671 0.50253 number 0.23599 1.26617 0.07608 3.102 0.00192 Likelihood ratio test=9.66 on 3 df, p=0.02164 n= 85, number of events= 47 > fit2pa Call: coxph(formula = Surv(stop, event) ~ rx + size + number, data = bladder2, subset = (enum == 2), ties = "breslow") coef exp(coef) se(coef) z p rx -0.424214 0.654284 0.402200 -1.055 0.292 size -0.125033 0.882467 0.117088 -1.068 0.286 number 0.001987 1.001989 0.093760 0.021 0.983 Likelihood ratio test=2.02 on 3 df, p=0.5688 n= 46, number of events= 29 > fit2pb Call: coxph(formula = Surv(stop - start, event) ~ rx + size + number, data = bladder2, subset = (enum == 2), ties = "breslow") coef exp(coef) se(coef) z p rx -0.259112 0.771737 0.405110 -0.640 0.522 size -0.116363 0.890152 0.119236 -0.976 0.329 number -0.005709 0.994307 0.096671 -0.059 0.953 Likelihood ratio test=1.27 on 3 df, p=0.7353 n= 46, number of events= 29 > fit3pa Call: coxph(formula = Surv(stop, event) ~ rx + size + number, data = bladder2, subset = (enum == 3), ties = "breslow") coef exp(coef) se(coef) z p rx -0.89854 0.40716 0.55352 -1.623 0.105 size 0.08497 1.08869 0.20861 0.407 0.684 number -0.01716 0.98298 0.12802 -0.134 0.893 Likelihood ratio test=4.16 on 3 df, p=0.2452 n= 27, number of events= 22 > rm(rx, cmat, wfit, fita, fit1p, fit2pa, fit2pb, fit3pa) > > proc.time() user system elapsed 0.772 0.040 0.816 survival/tests/survfit2.Rout.save0000644000176200001440000000230013537676603016676 0ustar liggesusers R Under development (unstable) (2019-01-23 r76006) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > # > # Check out the Dory&Korn confidence interval option > # > tdata <- data.frame(time= 1:10, + status=c(1,0,1,0,1,0,0,0,1,0)) > > fit1 <- survfit(Surv(time, status) ~1, tdata, conf.lower='modified') > fit2 <- survfit(Surv(time, status) ~1, tdata) > > stdlow <- fit2$std.err * sqrt(c(1, 10/9, 1, 8/7, 1, 6/5, 6/4, 6/3, 1, 2/1)) > lower <- exp(log(fit2$surv) - qnorm(.975)*stdlow) > all.equal(fit1$lower, lower, check.attributes=FALSE) [1] TRUE > > proc.time() user system elapsed 0.748 0.036 0.786 survival/tests/r_user.R0000644000176200001440000000152513537676563014741 0ustar liggesusersoptions(na.action=na.exclude) #preserve length of missings library(survival) # # Check out using a "user specified" distribution # mydist <- c(survreg.distributions$extreme, survreg.distributions$weibull[-1]) mydist$name <- "Weibull2" mydist$dist <- NULL fit1 <- survreg(Surv(time, status) ~ age + ph.ecog, lung) fit2 <- survreg(Surv(time, status) ~ age + ph.ecog, lung, dist=mydist) all.equal(fit1$coef, fit2$coef) all.equal(fit1$var, fit2$var) # # And with an data set containing interval censoring # idat <- read.table('data.interval', skip=3, header=T, sep=',') fit1 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps, idat) fit2 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps, data=idat, dist=mydist) all.equal(fit1$coef, fit2$coef) all.equal(fit1$var, fit2$var) all.equal(fit1$log, fit2$log) survival/tests/tiedtime.Rout.save0000644000176200001440000000343113537676563016731 0ustar liggesusers R version 3.3.2 (2016-10-31) -- "Sincere Pumpkin Patch" Copyright (C) 2016 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin13.4.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > > # > # The survival code was failing for certain data sets when called as > # survfit(Surv(time2-time1, status) ~ ...... > # The issue was how tied floating point numbers are handled, and the > # fact that unique(x), factor(x) and tapply(x) are not guarranteed to > # all be the same. > # This test fails in survival 2.36-5, fixed in 2.36-6. Data sets that > # can cause it are few and far between. > # > > load('ties.rda') > x <- time2 -time1 > > # Here is the heart of the old problem > # length(unique(x))== length(table(x)) > # And the prior fix which worked ALMOST always > # x <- round(x, 15) > # length(unique(round(x,15)))== length(table(round(x,15))) > > fit1 <- survfit(Surv(x) ~1) > length(fit1$time) == length(fit1$surv) [1] TRUE > > > # a second test, once "rounding.R" > > tdata <- data.frame(time=c(1,2, sqrt(2)^2, 2, sqrt(2)^2), + status=rep(1,5), + group=c(1,1,1,2,2)) > fit <- survfit(Surv(time, status) ~ group, data=tdata) > > all.equal(sum(fit$strata), length(fit$time)) [1] TRUE > > proc.time() user system elapsed 0.733 0.053 0.802 survival/tests/fr_rat1.Rout.save0000644000176200001440000000625713555621425016457 0ustar liggesusers R Under development (unstable) (2019-10-26 r77334) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # Tests using the rats data > # > # (Female rats, from Mantel et al, Cancer Research 37, > # 3863-3868, November 77) > > rfit <- coxph(Surv(time,status) ~ rx + frailty(litter), rats, + method='breslow', subset= (sex=='f')) > rfit Call: coxph(formula = Surv(time, status) ~ rx + frailty(litter), data = rats, subset = (sex == "f"), method = "breslow") coef se(coef) se2 Chisq DF p rx 0.906 0.323 0.319 7.882 1.0 0.005 frailty(litter) 16.888 13.8 0.253 Iterations: 6 outer, 25 Newton-Raphson Variance of random effect= 0.474 I-likelihood = -181.1 Degrees of freedom for terms= 1.0 13.9 Likelihood ratio test=36.3 on 14.8 df, p=0.001 n= 150, number of events= 40 > > rfit$iter [1] 6 25 > rfit$df [1] 0.975943 13.854864 > rfit$history[[1]] $theta [1] 0.4742849 $done c.loglik TRUE $history theta loglik c.loglik [1,] 0.0000000 -181.8451 -181.8451 [2,] 1.0000000 -168.3683 -181.5458 [3,] 0.5000000 -173.3117 -181.0788 [4,] 0.3090061 -175.9446 -181.1490 [5,] 0.4645720 -173.7590 -181.0775 [6,] 0.4736210 -173.6431 -181.0773 $c.loglik [1] -181.0773 > > rfit1 <- coxph(Surv(time,status) ~ rx + frailty(litter, theta=1), rats, + method='breslow', subset=(sex=="f")) > rfit1 Call: coxph(formula = Surv(time, status) ~ rx + frailty(litter, theta = 1), data = rats, subset = (sex == "f"), method = "breslow") coef se(coef) se2 Chisq DF p rx 0.918 0.327 0.321 7.851 1.0 0.0051 frailty(litter, theta = 1 27.245 22.7 0.2324 Iterations: 1 outer, 6 Newton-Raphson Variance of random effect= 1 I-likelihood = -181.5 Degrees of freedom for terms= 1.0 22.7 Likelihood ratio test=50.7 on 23.7 df, p=0.001 n= 150, number of events= 40 > > rfit2 <- coxph(Surv(time,status) ~ frailty(litter), rats, subset=(sex=='f')) > rfit2 Call: coxph(formula = Surv(time, status) ~ frailty(litter), data = rats, subset = (sex == "f")) coef se(coef) se2 Chisq DF p frailty(litter) 18 14.6 0.24 Iterations: 6 outer, 22 Newton-Raphson Variance of random effect= 0.504 I-likelihood = -184.8 Degrees of freedom for terms= 14.6 Likelihood ratio test=30 on 14.6 df, p=0.01 n= 150, number of events= 40 > > proc.time() user system elapsed 0.755 0.045 0.793 survival/tests/fr_resid.Rout.save0000644000176200001440000003660613537676563016734 0ustar liggesusers R Under development (unstable) (2018-09-18 r75322) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # The residual methods treat a sparse frailty as a fixed offset with > # no variance > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > kfit1 <- coxph(Surv(time, status) ~ age + sex + + frailty(id, dist='gauss'), kidney) > tempf <- predict(kfit1, type='terms')[,3] > temp <- kfit1$frail[match(kidney$id, sort(unique(kidney$id)))] > #all.equal(unclass(tempf), unclass(temp)) > all.equal(as.vector(tempf), as.vector(temp)) [1] TRUE > > # Now fit a model with explicit offset > kfitx <- coxph(Surv(time, status) ~ age + sex + offset(tempf),kidney, + eps=1e-7) > > # These are not always precisely the same, due to different iteration paths > aeq(kfitx$coef, kfit1$coef) [1] TRUE > > # This will make them identical > kfitx <- coxph(Surv(time, status) ~ age + sex + offset(temp),kidney, + iter=0, init=kfit1$coef) > aeq(resid(kfit1), resid(kfitx)) [1] TRUE > aeq(resid(kfit1, type='score'), resid(kfitx, type='score')) [1] TRUE > aeq(resid(kfit1, type='schoe'), resid(kfitx, type='schoe')) [1] TRUE > > # These are not the same, due to a different variance matrix > # The frailty model's variance is about 2x the naive "assume an offset" var > # Expect a value of about 0.5 > aeq(resid(kfit1, type='dfbeta'), resid(kfitx, type='dfbeta')) [1] "Mean relative difference: 0.5216263" > > # Force equality > zed <- kfitx > zed$var <- kfit1$var > aeq(resid(kfit1, type='dfbeta'), resid(zed, type='dfbeta')) [1] TRUE > > # The score residuals are equal, however. > > temp1 <- resid(kfit1, type='score') > temp2 <- resid(kfitx, type='score') > aeq(temp1, temp2) [1] TRUE > > # > # Now for some tests of predicted values > # > aeq(predict(kfit1, type='expected'), predict(kfitx, type='expected')) [1] TRUE > aeq(predict(kfit1, type='lp'), predict(kfitx, type='lp')) [1] TRUE > > temp1 <- predict(kfit1, type='terms', se.fit=T) > temp2 <- predict(kfitx, type='terms', se.fit=T) > aeq(temp1$fit[,1:2], temp2$fit) [1] TRUE > # the next is not equal, all.equal returns a character string in that case > is.character(aeq(temp1$se.fit[,1:2], temp2$se.fit)) [1] TRUE > mean(temp1$se.fit[,1:2]/ temp2$se.fit) [1] 1.433017 > aeq(as.vector(temp1$se.fit[,3])^2, + as.vector(kfit1$fvar[match(kidney$id, sort(unique(kidney$id)))])) [1] TRUE > > print(temp1) $fit age sex frailty(id, dist = "gauss") 1 -0.073981042 1.039553 0.59814468 2 -0.073981042 1.039553 0.59814468 3 0.020278123 -0.371269 0.38512389 4 0.020278123 -0.371269 0.38512389 5 -0.055129209 1.039553 0.20210998 6 -0.055129209 1.039553 0.20210998 7 -0.059842167 -0.371269 -0.55932015 8 -0.055129209 -0.371269 -0.55932015 9 -0.158814289 1.039553 0.28558387 10 -0.158814289 1.039553 0.28558387 11 -0.130536540 -0.371269 0.06628942 12 -0.125823582 -0.371269 0.06628942 13 0.034416998 1.039553 0.80505119 14 0.034416998 1.039553 0.80505119 15 0.053268830 -0.371269 -0.43834241 16 0.057981789 -0.371269 -0.43834241 17 0.119250245 -0.371269 -0.05631649 18 0.119250245 -0.371269 -0.05631649 19 0.034416998 1.039553 -0.49980572 20 0.039129956 1.039553 -0.49980572 21 0.001426290 -0.371269 -0.13028264 22 0.001426290 -0.371269 -0.13028264 23 -0.045703292 -0.371269 0.06377401 24 -0.045703292 -0.371269 0.06377401 25 -0.040990334 -0.371269 0.38815296 26 -0.040990334 -0.371269 0.38815296 27 -0.007999626 -0.371269 -0.47650510 28 -0.007999626 -0.371269 -0.47650510 29 -0.125823582 -0.371269 -0.66986830 30 -0.125823582 -0.371269 -0.66986830 31 0.076833621 1.039553 0.19359678 32 0.076833621 1.039553 0.19359678 33 0.076833621 -0.371269 -0.16483200 34 0.076833621 -0.371269 -0.16483200 35 -0.003286668 -0.371269 -0.15794998 36 0.001426290 -0.371269 -0.15794998 37 0.043842914 -0.371269 -0.46236014 38 0.043842914 -0.371269 -0.46236014 39 0.001426290 -0.371269 0.12603308 40 0.001426290 -0.371269 0.12603308 41 0.010852206 1.039553 -1.74303142 42 0.015565165 1.039553 -1.74303142 43 -0.064555125 -0.371269 -0.45211210 44 -0.064555125 -0.371269 -0.45211210 45 0.086259538 -0.371269 0.51574106 46 0.090972496 -0.371269 0.51574106 47 -0.007999626 -0.371269 0.09475123 48 -0.003286668 -0.371269 0.09475123 49 -0.003286668 1.039553 0.05790354 50 -0.003286668 1.039553 0.05790354 51 0.062694747 -0.371269 -0.37933234 52 0.067407705 -0.371269 -0.37933234 53 -0.158814289 -0.371269 0.11248891 54 -0.158814289 -0.371269 0.11248891 55 0.039129956 -0.371269 0.54791210 56 0.039129956 -0.371269 0.54791210 57 0.043842914 1.039553 0.45873482 58 0.043842914 1.039553 0.45873482 59 0.048555872 -0.371269 0.35639797 60 0.048555872 -0.371269 0.35639797 61 0.057981789 -0.371269 0.48803342 62 0.057981789 -0.371269 0.48803342 63 0.029704039 -0.371269 0.25597325 64 0.034416998 -0.371269 0.25597325 65 0.062694747 -0.371269 0.23054948 66 0.062694747 -0.371269 0.23054948 67 0.001426290 -0.371269 -0.13680005 68 0.006139248 -0.371269 -0.13680005 69 -0.102258791 -0.371269 0.51977995 70 -0.102258791 -0.371269 0.51977995 71 -0.007999626 -0.371269 -0.23878154 72 -0.007999626 -0.371269 -0.23878154 73 0.039129956 -0.371269 0.17174306 74 0.039129956 -0.371269 0.17174306 75 0.076833621 1.039553 -0.35822829 76 0.076833621 1.039553 -0.35822829 $se.fit age sex frailty(id, dist = "gauss") 1 0.195861829 0.3280279 0.6246430 2 0.195861829 0.3280279 0.6246430 3 0.053685514 0.1171528 0.6954922 4 0.053685514 0.1171528 0.6954922 5 0.145952360 0.3280279 0.5705340 6 0.145952360 0.3280279 0.5705340 7 0.158429727 0.1171528 0.4894541 8 0.145952360 0.1171528 0.4894541 9 0.420454437 0.3280279 0.6071455 10 0.420454437 0.3280279 0.6071455 11 0.345590234 0.1171528 0.5633997 12 0.333112867 0.1171528 0.5633997 13 0.091117615 0.3280279 0.6641707 14 0.091117615 0.3280279 0.6641707 15 0.141027084 0.1171528 0.5101890 16 0.153504451 0.1171528 0.5101890 17 0.315710223 0.1171528 0.5491569 18 0.315710223 0.1171528 0.5491569 19 0.091117615 0.3280279 0.5264083 20 0.103594982 0.3280279 0.5264083 21 0.003776045 0.1171528 0.5180953 22 0.003776045 0.1171528 0.5180953 23 0.120997626 0.1171528 0.6208806 24 0.120997626 0.1171528 0.6208806 25 0.108520259 0.1171528 0.5811421 26 0.108520259 0.1171528 0.5811421 27 0.021178689 0.1171528 0.6247779 28 0.021178689 0.1171528 0.6247779 29 0.333112867 0.1171528 0.5615987 30 0.333112867 0.1171528 0.5615987 31 0.203413919 0.3280279 0.6532405 32 0.203413919 0.3280279 0.6532405 33 0.203413919 0.1171528 0.5247227 34 0.203413919 0.1171528 0.5247227 35 0.008701322 0.1171528 0.5106606 36 0.003776045 0.1171528 0.5106606 37 0.116072349 0.1171528 0.6284328 38 0.116072349 0.1171528 0.6284328 39 0.003776045 0.1171528 0.6320009 40 0.003776045 0.1171528 0.6320009 41 0.028730780 0.3280279 0.5235228 42 0.041208147 0.3280279 0.5235228 43 0.170907094 0.1171528 0.5492095 44 0.170907094 0.1171528 0.5492095 45 0.228368654 0.1171528 0.6058686 46 0.240846021 0.1171528 0.6058686 47 0.021178689 0.1171528 0.6267998 48 0.008701322 0.1171528 0.6267998 49 0.008701322 0.3280279 0.5526664 50 0.008701322 0.3280279 0.5526664 51 0.165981818 0.1171528 0.5556706 52 0.178459185 0.1171528 0.5556706 53 0.420454437 0.1171528 0.5849825 54 0.420454437 0.1171528 0.5849825 55 0.103594982 0.1171528 0.6081780 56 0.103594982 0.1171528 0.6081780 57 0.116072349 0.3280279 0.6010279 58 0.116072349 0.3280279 0.6010279 59 0.128549717 0.1171528 0.5762113 60 0.128549717 0.1171528 0.5762113 61 0.153504451 0.1171528 0.5982501 62 0.153504451 0.1171528 0.5982501 63 0.078640248 0.1171528 0.6614053 64 0.091117615 0.1171528 0.6614053 65 0.165981818 0.1171528 0.5609510 66 0.165981818 0.1171528 0.5609510 67 0.003776045 0.1171528 0.5844921 68 0.016253412 0.1171528 0.5844921 69 0.270726031 0.1171528 0.6089631 70 0.270726031 0.1171528 0.6089631 71 0.021178689 0.1171528 0.6795741 72 0.021178689 0.1171528 0.6795741 73 0.103594982 0.1171528 0.6421784 74 0.103594982 0.1171528 0.6421784 75 0.203413919 0.3280279 0.5779661 76 0.203413919 0.3280279 0.5779661 > kfit1 Call: coxph(formula = Surv(time, status) ~ age + sex + frailty(id, dist = "gauss"), data = kidney) coef se(coef) se2 Chisq DF p age 0.00471 0.01248 0.00856 0.14267 1.0 0.7056 sex -1.41082 0.44518 0.31504 10.04319 1.0 0.0015 frailty(id, dist = "gauss 26.54461 14.7 0.0294 Iterations: 6 outer, 39 Newton-Raphson Variance of random effect= 0.569 Degrees of freedom for terms= 0.5 0.5 14.7 Likelihood ratio test=47.5 on 15.7 df, p=5e-05 n= 76, number of events= 58 > kfitx Call: coxph(formula = Surv(time, status) ~ age + sex + offset(temp), data = kidney, init = kfit1$coef, iter = 0) coef exp(coef) se(coef) z p age 0.004713 1.004724 0.008749 0.539 0.59 sex -1.410822 0.243943 0.309164 -4.563 5.03e-06 Likelihood ratio test=0 on 2 df, p=1 n= 76, number of events= 58 > > rm(temp1, temp2, kfitx, zed, tempf) > # > # The special case of a single sparse frailty > # > > kfit1 <- coxph(Surv(time, status) ~ frailty(id, dist='gauss'), kidney) > tempf <- predict(kfit1, type='terms') > temp <- kfit1$frail[match(kidney$id, sort(unique(kidney$id)))] > all.equal(as.vector(tempf), as.vector(temp)) [1] TRUE > > # Now fit a model with explicit offset > kfitx <- coxph(Surv(time, status) ~ offset(tempf),kidney, eps=1e-7) > > aeq(resid(kfit1), resid(kfitx)) [1] TRUE > aeq(resid(kfit1, type='deviance'), resid(kfitx, type='deviance')) [1] TRUE > > # > # Some tests of predicted values > # > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > aeq(predict(kfit1, type='expected'), predict(kfitx, type='expected')) [1] TRUE > aeq(predict(kfit1, type='lp'), predict(kfitx, type='lp')) [1] TRUE > > temp1 <- predict(kfit1, type='terms', se.fit=T) > aeq(temp1$fit, kfitx$linear) [1] TRUE > aeq(temp1$se.fit^2, + kfit1$fvar[match(kidney$id, sort(unique(kidney$id)))]) [1] TRUE > > temp1 $fit [1] 0.696003729 0.696003729 0.244575316 0.244575316 0.494175549 [6] 0.494175549 -0.659248798 -0.659248798 0.521423106 0.521423106 [11] -0.114492938 -0.114492938 0.800127481 0.800127481 -0.488101282 [16] -0.488101282 -0.120396647 -0.120396647 0.131121515 0.131121515 [21] -0.214987009 -0.214987009 -0.054872789 -0.054872789 0.184657295 [26] 0.184657295 -0.510007747 -0.510007747 -0.790746805 -0.790746805 [31] 0.324674289 0.324674289 -0.239374060 -0.239374060 -0.264428564 [36] -0.264428564 -0.472698773 -0.472698773 0.006304049 0.006304049 [41] -0.873434085 -0.873434085 -0.530880840 -0.530880840 0.351411783 [46] 0.351411783 -0.037212138 -0.037212138 0.442049266 0.442049266 [51] -0.419206550 -0.419206550 -0.108012854 -0.108012854 0.346332076 [56] 0.346332076 0.659300205 0.659300205 0.197278585 0.197278585 [61] 0.304868889 0.304868889 0.139712997 0.139712997 0.093574024 [66] 0.093574024 -0.209690355 -0.209690355 0.302070834 0.302070834 [71] -0.278962288 -0.278962288 0.068599919 0.068599919 0.078493616 [76] 0.078493616 $se.fit [1] 0.6150025 0.6150025 0.6160184 0.6160184 0.5715622 0.5715622 0.4393615 [8] 0.4393615 0.5761369 0.5761369 0.4834244 0.4834244 0.6421184 0.6421184 [15] 0.4574824 0.4574824 0.4813578 0.4813578 0.5119792 0.5119792 0.4764145 [22] 0.4764145 0.5532477 0.5532477 0.5195437 0.5195437 0.5534327 0.5534327 [29] 0.4775572 0.4775572 0.6364522 0.6364522 0.4708988 0.4708988 0.4670896 [36] 0.4670896 0.5600672 0.5600672 0.5641880 0.5641880 0.4650576 0.4650576 [43] 0.4904715 0.4904715 0.5448430 0.5448430 0.5570120 0.5570120 0.5608187 [50] 0.5608187 0.4996021 0.4996021 0.4831697 0.4831697 0.5452255 0.5452255 [57] 0.6057428 0.6057428 0.5209402 0.5209402 0.5376594 0.5376594 0.5911350 [64] 0.5911350 0.5065368 0.5065368 0.5290283 0.5290283 0.5368433 0.5368433 [71] 0.5996077 0.5996077 0.5762814 0.5762814 0.5782753 0.5782753 > kfit1 Call: coxph(formula = Surv(time, status) ~ frailty(id, dist = "gauss"), data = kidney) coef se(coef) se2 Chisq DF p frailty(id, dist = "gauss 23 13.8 0.057 Iterations: 7 outer, 39 Newton-Raphson Variance of random effect= 0.458 Degrees of freedom for terms= 13.8 Likelihood ratio test=33.4 on 13.8 df, p=0.002 n= 76, number of events= 58 > > > > proc.time() user system elapsed 0.861 0.052 0.907 survival/tests/testnull.R0000644000176200001440000000113313537676563015307 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # A test of NULL models # fit1 <- coxph(Surv(stop, event) ~ rx + strata(number), bladder, iter=0) fit2 <- coxph(Surv(stop, event) ~ strata(number), bladder) all.equal(fit1$loglik[2], fit2$loglik) all.equal(fit1$resid, fit2$resid) fit1 <- coxph(Surv(start, stop, event) ~ rx + strata(number), bladder2, iter=0) fit2 <- coxph(Surv(start, stop, event) ~ strata(number), bladder2) all.equal(fit1$loglik[2], fit2$loglik) all.equal(fit1$resid, fit2$resid) survival/tests/frank.R0000644000176200001440000000136313537676563014543 0ustar liggesuserslibrary(survival) # # Check out intercept/interaction for Frank H # age2 <- lung$age - 50 fit1 <- coxph(Surv(time, status) ~ age * strata(sex), lung) fit2 <- coxph(Surv(time, status) ~ age2*strata(sex), lung) tdata <- data.frame(age=50:60, age2=0:10, sex=c(1,2,1,2,1,2,1,2,1,2,1)) surv1 <- survfit(fit1, tdata) surv2 <- survfit(fit2, tdata) # The call won't match, but the rest should icall <- match("call", names(surv1)) all.equal(unclass(surv1)[-icall], unclass(surv2)[-icall]) # It should match what I get with a single strata fit fit3 <- coxph(Surv(time, status) ~ age, data=lung, init=fit1$coef[1], subset=(sex==1), iter=0) surv1b <- survfit(fit3, newdata=list(age=c(50,52, 54))) all.equal(c(surv1b$surv), surv1[c(1,3,5)]$surv) survival/tests/data.donnell0000644000176200001440000001677413537676563015621 0ustar liggesusers0.558521561 1.000000000 0.000000000 1.059548255 1.000000000 0.000000000 1.659137577 1.000000000 0.000000000 0.561259411 1.000000000 0.000000000 1.108829569 1.000000000 0.000000000 1.530458590 1.000000000 0.000000000 0.550308008 1.000000000 0.000000000 1.065023956 1.000000000 0.000000000 1.546885695 1.000000000 0.000000000 0.668035592 1.000000000 0.000000000 1.048596851 1.000000000 0.000000000 1.549623546 1.000000000 0.000000000 0.594113621 1.000000000 0.000000000 1.010266940 1.000000000 0.000000000 1.577002053 1.000000000 0.000000000 0.569472964 1.000000000 0.000000000 1.045859001 1.000000000 0.000000000 1.555099247 1.000000000 0.000000000 0.605065024 1.000000000 0.000000000 1.054072553 1.000000000 0.000000000 1.566050650 1.000000000 0.000000000 0.544832307 1.000000000 0.000000000 1.048596851 1.000000000 0.000000000 1.544147844 1.000000000 0.000000000 0.550308008 1.000000000 0.000000000 1.065023956 1.000000000 0.000000000 1.568788501 1.000000000 0.000000000 0.528405202 1.000000000 0.000000000 1.070499658 1.000000000 0.000000000 1.546885695 1.000000000 0.000000000 0.813141684 1.000000000 0.000000000 1.226557153 1.000000000 0.000000000 1.744010951 1.000000000 0.000000000 0.520191650 1.000000000 0.000000000 1.075975359 1.000000000 0.000000000 1.557837098 1.000000000 0.000000000 0.577686516 1.000000000 0.000000000 1.067761807 1.000000000 0.000000000 1.590691307 1.000000000 0.000000000 0.580424367 1.000000000 0.000000000 1.043121150 1.000000000 0.000000000 1.560574949 1.000000000 0.000000000 0.539356605 1.000000000 0.000000000 1.097878166 1.000000000 0.000000000 1.557837098 1.000000000 0.000000000 0.613278576 1.000000000 0.000000000 1.065023956 1.000000000 0.000000000 1.629021218 1.000000000 0.000000000 0.542094456 1.000000000 0.000000000 1.021218344 1.000000000 0.000000000 1.535934292 1.000000000 0.000000000 0.542094456 1.000000000 0.000000000 1.084188912 1.000000000 0.000000000 1.541409993 1.000000000 0.000000000 0.479123888 1.000000000 0.000000000 1.166324435 1.000000000 0.000000000 1.609856263 1.000000000 0.000000000 0.574948665 1.000000000 0.000000000 1.032169747 1.000000000 0.000000000 1.511293634 1.000000000 0.000000000 0.580424367 1.000000000 0.000000000 1.015742642 1.000000000 0.000000000 1.593429158 1.000000000 0.000000000 0.580424367 1.000000000 0.000000000 0.580424367 1.059548255 3.000000000 0.555783710 1.000000000 0.000000000 1.073237509 1.000000000 0.000000000 1.552361396 1.000000000 0.000000000 0.558521561 1.000000000 0.000000000 1.048596851 1.000000000 0.000000000 1.549623546 1.000000000 0.000000000 0.569472964 1.000000000 0.000000000 1.048596851 1.000000000 0.000000000 1.546885695 1.000000000 0.000000000 0.591375770 1.000000000 0.000000000 1.147159480 1.000000000 0.000000000 1.549623546 1.000000000 0.000000000 0.673511294 1.000000000 0.000000000 1.111567420 1.000000000 0.000000000 1.609856263 1.000000000 0.000000000 0.574948665 1.000000000 0.000000000 1.051334702 1.000000000 0.000000000 1.566050650 1.000000000 0.000000000 0.558521561 1.000000000 0.000000000 1.034907598 1.000000000 0.000000000 1.555099247 1.000000000 0.000000000 0.539356605 1.000000000 0.000000000 1.040383299 1.000000000 0.000000000 1.615331964 1.000000000 0.000000000 0.572210815 1.000000000 0.000000000 1.056810404 1.000000000 0.000000000 1.552361396 1.000000000 0.000000000 0.550308008 1.000000000 0.000000000 1.125256674 1.000000000 0.000000000 1.596167009 1.000000000 0.000000000 0.514715948 1.000000000 0.000000000 1.010266940 1.000000000 0.000000000 1.585215606 1.000000000 0.000000000 0.555783710 1.000000000 0.000000000 1.054072553 1.000000000 0.000000000 1.566050650 1.000000000 0.000000000 0.632443532 1.000000000 0.000000000 1.073237509 1.000000000 0.000000000 1.585215606 1.000000000 0.000000000 0.569472964 1.000000000 0.000000000 1.067761807 1.000000000 0.000000000 1.612594114 1.000000000 0.000000000 0.566735113 1.000000000 0.000000000 1.125256674 1.000000000 0.000000000 1.607118412 1.000000000 0.000000000 0.728268309 1.000000000 0.000000000 1.095140315 1.000000000 0.000000000 1.634496920 1.000000000 0.000000000 0.550308008 1.000000000 0.000000000 1.149897331 1.000000000 0.000000000 1.508555784 1.000000000 0.000000000 0.553045859 1.000000000 0.000000000 1.029431896 1.000000000 0.000000000 1.546885695 1.000000000 0.000000000 0.547570157 1.000000000 0.000000000 1.070499658 1.000000000 0.000000000 1.549623546 1.000000000 0.000000000 0.607802875 1.000000000 0.000000000 1.007529090 1.000000000 0.000000000 1.508555784 1.000000000 0.000000000 0.528405202 1.000000000 0.000000000 1.056810404 1.000000000 0.000000000 1.549623546 1.000000000 0.000000000 0.522929500 1.000000000 0.000000000 0.544832307 1.000000000 0.000000000 1.084188912 1.000000000 0.000000000 1.519507187 1.000000000 0.000000000 0.563997262 1.000000000 0.000000000 0.999315537 1.000000000 0.000000000 1.503080082 1.000000000 0.000000000 0.536618754 1.000000000 0.000000000 1.103353867 1.000000000 0.000000000 1.601642710 1.000000000 0.000000000 0.520191650 1.000000000 0.000000000 1.056810404 1.000000000 0.000000000 1.541409993 1.000000000 0.000000000 0.522929500 1.000000000 0.000000000 1.095140315 1.000000000 0.000000000 1.697467488 1.000000000 0.000000000 0.659822040 1.000000000 0.000000000 1.122518823 1.000000000 0.000000000 1.648186174 1.000000000 0.000000000 0.536618754 1.000000000 0.000000000 1.078713210 1.000000000 0.000000000 1.557837098 1.000000000 0.000000000 0.517453799 1.000000000 0.000000000 1.125256674 1.000000000 0.000000000 1.571526352 1.000000000 0.000000000 0.520191650 1.000000000 0.000000000 1.026694045 1.000000000 0.000000000 1.609856263 1.000000000 0.000000000 0.561259411 1.000000000 0.000000000 1.059548255 1.000000000 0.000000000 1.538672142 1.000000000 0.000000000 0.536618754 1.000000000 0.000000000 1.021218344 1.000000000 0.000000000 1.560574949 1.000000000 0.000000000 0.613278576 1.000000000 0.000000000 1.092402464 1.000000000 0.000000000 1.596167009 1.000000000 0.000000000 0.525667351 1.000000000 0.000000000 1.023956194 1.000000000 0.000000000 1.738535250 1.000000000 0.000000000 0.542094456 1.000000000 0.000000000 1.021218344 1.000000000 0.000000000 1.524982888 1.000000000 0.000000000 0.577686516 1.000000000 0.000000000 1.097878166 1.000000000 0.000000000 1.557837098 1.000000000 0.000000000 0.572210815 1.000000000 0.000000000 1.013004791 1.000000000 0.000000000 1.516769336 1.000000000 0.000000000 0.544832307 1.000000000 0.000000000 0.999315537 1.000000000 0.000000000 1.555099247 1.000000000 0.000000000 0.536618754 1.000000000 0.000000000 1.002053388 1.000000000 0.000000000 1.494866530 1.000000000 0.000000000 0.555783710 1.000000000 0.000000000 1.059548255 1.000000000 0.000000000 1.593429158 1.000000000 0.000000000 0.522929500 1.000000000 0.000000000 1.062286105 1.000000000 0.000000000 1.571526352 1.000000000 0.000000000 0.580424367 1.000000000 0.000000000 1.037645448 1.000000000 0.000000000 1.670088980 1.000000000 0.000000000 0.536618754 1.000000000 0.000000000 1.073237509 1.000000000 0.000000000 1.494866530 1.000000000 0.000000000 0.539356605 1.000000000 0.000000000 1.054072553 1.000000000 0.000000000 1.533196441 1.000000000 0.000000000 0.670773443 1.000000000 0.000000000 1.004791239 1.000000000 0.000000000 0.580424367 1.059548255 3.000000000 0.985626283 1.503080082 3.000000000 0.002737851 0.539356605 3.000000000 1.062286105 1.541409993 3.000000000 0.002737851 0.501026694 3.000000000 0.002737851 0.574948665 3.000000000 0.002737851 0.583162218 3.000000000 1.037645448 1.516769336 3.000000000 0.574948665 1.114305270 3.000000000 0.002737851 0.528405202 3.000000000 survival/tests/nested.R0000644000176200001440000000065013537676563014722 0ustar liggesuserslibrary(survival) # # A test of nesting. It makes sure the model.frame is built correctly # tfun <- function(fit, mydata) { survfit(fit, newdata=mydata) } myfit <- coxph(Surv(time, status) ~ age + factor(sex), lung) temp1 <- tfun(myfit, lung[1:5,]) temp2 <- survfit(myfit, lung[1:5,]) indx <- match('call', names(temp1)) #the call components won't match all.equal(unclass(temp1)[-indx], unclass(temp2)[-indx]) survival/tests/pspline.R0000644000176200001440000000374013537676563015115 0ustar liggesuserslibrary(survival) # # Tests with the pspline function, to verify the prediction aspects # options(na.action=na.exclude) aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) spfit <- coxph(Surv(time, status) ~ pspline(age) + ph.ecog, lung) spfit2 <- coxph(Surv(time, status) ~ pspline(age) + ph.ecog, lung, x=TRUE) x2 <- model.matrix(spfit) all.equal(spfit2$x, x2) keep <- (lung$age < 60) x3 <- model.matrix(spfit, data=lung[keep,]) attr(x3, 'assign') <- NULL #subscripting loses the assign attr below all.equal(napredict(spfit$na.action,x2)[keep,], x3) p2 <- predict(spfit, newdata=lung[keep,]) aeq(p2, predict(spfit)[keep]) p3 <- survfit(spfit) p4 <- survfit(spfit, newdata=lung[1:2,]) temp <- scale(x2[1:2,], center=spfit$means, scale=FALSE)%*% coef(spfit) aeq(p3$time, p4$time) aeq(outer(-log(p3$surv), exp(temp), '*'), -log(p4$surv)) # Check out model.frame spfit3 <- coxph(Surv(time, status) ~ pspline(age) + sex, lung, model=TRUE) #avoid the missing value m2 <- model.frame(spfit3, data=lung[keep,]) all.equal(m2, spfit3$model[keep,], check.attributes=FALSE) # # Test of residuals, in response to a reported bug. # These are three progam paths that should all lead to the same C routine fit <- coxph(Surv(tstart, tstop, status) ~ sex + treat + pspline(age), cgd) fit2 <- coxph(Surv(tstart, tstop, status) ~ fit$linear, cgd, iter=0, init=1) fit3 <- coxph(Surv(tstart, tstop, status) ~ offset(fit$linear), cgd) all.equal(fit$resid, fit2$resid) all.equal(fit$resid, fit3$resid) # # Check using coxph.detail. The matrix multiply below only is # valid for the breslow approximation. fit4 <- coxph(Surv(tstart, tstop, status) ~ sex + treat + pspline(age), cgd, ties='breslow') dt <- coxph.detail(fit4, riskmat=TRUE) # the results of coxph.detail are in time order, censors before deaths timeord <- dt$sortorder rscore <- exp(fit4$linear)[timeord] exp4 <- (rscore *dt$riskmat) %*% dt$hazard r4 <- cgd$status[timeord] - exp4 aeq(r4, fit4$resid[timeord]) survival/tests/ties.rda0000644000176200001440000001365413537676563014761 0ustar liggesusers‹mZyœNeû·Ë¥¥RHÙ²e sÆ<3ó<çœ{;‰²EöHˆÒB e©PŠH!´ ½¶HZ(’l¯-’¤H‘%ï}Ÿïuæ÷Ïo>}¦™gÎrß×õÝ®[euhT²CÉ *P¨´ýWØ~[¤ýOAû¯„ýWtHï~5´ß”±ŸYN¢Òç#,:›‚ _=´|w’»FŸY4þQ’¢/W/n]äø>o˜˜]½,éÏ^7÷aI¹Óº'×>¦H½Qâ¦ÛÿAº×Ø«õ£HŒ:zo¹ß÷Qêš[Þ}ä»b¤'°XDú‰ÔàbÁYJÕ³—Ûó )wÛY½ÈÔš3»JÇÇI»Ë_û‰{Æ®;8 ùAf˦ž#Ùù­"wy?’ðëÂâ+JSÂÝæ¹r$[ÕþÖŠM¤–µë?nR9Rî1÷|Oâà€æUË'–|ºí›š’˾®”±£ ‰_Vg]Õç Rÿö-´µñQ[W÷He~ì^¨?©B+Ö¬Û˜ï/¤6œ£¼g‚³›ô%Y/zÒoŠwLí ä7zb~‹§j‘Ø2ì÷Ú_L%QüÈéó—ÆºíåÜyÛ{“שå‰Ìß6“ÚuÕ~y±Ë–+äÙOÏ}Šr·¾`ŸôW’gÔ†‹k¨;Þ]ˆ‚A‹Ü7¤^›ÿÛ5·,"i–®Ù´Å#9õ©½ÏvÎ#½ëσWí%]yÇ·þ ï“©skç‹_.%ÿ÷@OR¸¾g¥?»Ü@y/Øå¹æ’ÝÚØmFâo¼Ÿ_Ù³O8ŸDºGÚô-LfÑ÷JºíYl×¹«]æ=U(§Ãª;õ<éfêŒ 5ìîÙ[H²xa»1)Éï™Ýµ¡Ý±›(9¢Û+ž˜CªÂùœÓíú‘*øÛgKæÝB^ô^ÛH¼lwqR'q?%ï;T}Óõ¤3P:ºÝKä}_»|ɧ[“zg}Áɸ2 Ú’à}ÑEVŸ›ÖÝ®CyWw÷’w÷÷òþ/ê4Õ®©‘£3nž´‘ÄÅW”ùäes¯}nc×&dNØË·}¼Âv9sÚR]÷¸ýGæ×¹<ðé{·v¾d÷û)‡'$i7½Påy$ï¿ý{;OPÞ=KæÝ´/#ÿþ²Û¦òkʵ uþ­ãIG·ÿœÔ Uö‘“úÆ-Ô’Õ¶üûʱ«I<’×á®ÇHwßÞ»ÉkIR±Ï¢Óú—/7ÜB¢óÐjÚI©íöχ֢섫«ÇH݉zlçʯ|YjíG{í2–_OÚ=Ý_‘Wæ“É8Er¤}‹[I|í¾¾±}õ@ןÞ~šd©R';M}ŸÄòÝ}?¾¯ùµ.ØK)÷Û¿kSбÚ=fÿ\’îqKϦ¶ýÿN©ä<ûëú9$_Ç:„7æ´^9t;ù;l™ílH“®OŸÏ9Fæ¬_ÿ]NôœÃ)ñþ^]µÑVÌ$¯¡~ÅZì¿*VÝmµæ¾2ü<â&{™Ë?‘· 8 NÙåoyÒ¾w&þ³œ¼UûN »{sþ>´K• `¥íúÂÏÚë£Îu+ö>É[vÙ ¹™ôÇmƒt#³ÆÂÛ°S$æYøØÐŽD½ÞÇkeï"5ñ Û¨_’nîêâ)’÷¾j¿^#ÕfÓ–d)Û¯mlYm>lïg—éÍË$]yfÞMbÊG æÌ®Lò;ÅmFFò‚…Ï–’¾Ínó»¶ÿO·»ƒ¼øÏýÚºN‰ÑxoƶF’oßòDæY oëá¾(5ƾîÒÒ$w¸¶»‹‚—¦WüqÕ­¤ÝòþˆXTØwj8©±è»dÔ÷ ÈÜ›±£êú©¤J­},µÚ>_©æÛf!¹Ó=@Wªìà§f=‹3û-À ÊZ¿Nýeñ u ®quw‰ö5ëÞ¹lIaáðÛ+”×ǾޒwòûZ>;¡ÎÈ#(=æ^ |ÅÈ{´¾-ø¤¾Ñ´`ÏHWD&-ú[×€’÷uÝzm±ëŽ>’gûÙ ±õöö'Y û›CŒ¯‰ÆÀï0®‹ïæa߃ïÎT!Íý©v\nøu¥LÊ«þK—·åu´e:Z)³Žôa §Ëo§„Ãû SŽtûj×#Æãâ º_I ±|õ}ÃÑ$4ö#k¡ƒ¯WÉw46ÂâPGÔ_Ê}|pa ºÏgûÌa RÛ\¿œ¥ÜY=í…¾$¹Êîιi$ìjÛ $û?p¬S¨<É.îº%I|þÃëOy$DˆçÏv0°¦4iÆg]8(« OÔBK?ÿ΢äÀç{•~½O‘ažÓõ±~2®Âþe_祀#)Æ[¶åwÇývÿQDZƾ®Bòà=®¢HuÀûh^oU™ñ΢oë•ÃHgZšon¯Ç8¨–ZØ=PŒ„D?©2nƒRÖ´5åZÉ${€wRÚ‚êNò\¿íGÌõ(Ýb©+pJF¼¶Ùò~nZ8œxäíàQu¬.'Rnû¦—#ýüI·p¤—¸Bû…Tk[.ß’¼Ö>V‰I¼?Î"ÝE27Ú2©y”t•z¶¡?¢à4ê[Tµ·™ý5©§-\œìDú…=PPîîr¿[D¤äbÇ+»)ÛÁÔØ$ùùô,à¿äŸ;ôq|&×Úö}ù2©¾À“à9‡ŸÓIGuTÇֹРJn³2å¡Âämv×ë }%›Ð3 W[œ›é~5ù¯þÙ¥ÂÀ9ÔÎÉ¢ªëÉkâ3Iò°m“ õÉÿ}”EÊŠÚJ}‚Â>ŸËúK;x[ò¦­{ô§¬†}×ß¹­HÙŸ/ ó¨ª þU±NÒ[±Ï*åäßFÒQÝW%ýt ^†õ•®ÿk(qýï£Ï|.K°‹– ¬³²fvQ⻕d–A¿š+Æœ&ùŸ•C¿j7©ÉÀ39ÙÊ”Öö=¸Å0WØÃ(ûôpt׬¯­+“û~DšùC•‡ÎTOZ¹4²åD¸Ú˜$ó™b}›¼ð«$æ“©ni}t+’ ¡OÌnÆic—ût‚tD‹›IN²0PÍò/ëó øD6v¿n@aKK÷¿¾kùɶÇ}lÿX¹˜,Aúv ×%Ÿ¥\·ü-Z½ZÓ"šÕcmQoj=ú.7˜iâ2U°>íâ>—ÀÍ,ÖužÛ¾ùÇI¶N©WÝ¶Í Éë)#]ÔœD¬G_$¯¸×¿@jêK__…; ƒHÙ:pË‘q5bþÞgì:9Â8CŠ}‰~|%;?¤ÁºÇº>7úü¯”ÌvŸëIó¼t6¦Â R±âþQQ}|F¹ãÝ´¸ß¾Î› Ÿ)¶¸ŸOËÇ[™Å~¡|•€þ®]U§ÀÉ‚ µH;X?o×s:x-ë²¥ƒŠÖ?±Ñ?p=ý*ÛEI²_*ö‹2‚‡I°^Uos/B?Åë'N_ågÔËRXë/GñºG|\Éâ ÖG¾ žQKЇYœÛսƖ²ý€ºÊ+‰œ!þ{Íïç;;ôå Ò ?P±okéðmÉGÝãõ&uÔÂE^{ܲþCA„–§Ycø[çë 9•ûõ·ÊÂóë·€Oz›ýóóÿ俯úº&ˆl˜Ýwæ5z5‹yMö†NÓ"D£“ƒIŸAý&êσ«áïso¼~.Ÿø2_?è;ÌYЋõÎÓöu[ R£ XgªúÁçª?ív•jA²3túý—ÌpåzŽîO“‡õUágewèÁÅ”8hëõ.ËW;b[Eò8x^7E}™JðS: ªŸ`fÿ*¸ßE-wáä•g]Ù¼ª_tFÇâUì¿—ð{\vÝúª›Ñê1à—šÜÍÞŒu /ôAWÈ×ü¤©JV—8Vx éJÌk'¡·ÂvŽ05Éáðƒ‚ëUœƒ.ÐOr.Q þ+`ÞÖÏ£ÏýßáƒÕŽ`Èדʱw÷KV¯@§dòzÖ§òAøUéh«—½ïWÐrµë»µä³QU‡Þø¥dèv±’ýë@ûËççwþDè+É}󯺹˜töï¦ý¤˜t¬O‡c}Ò™àÝT¤çÞ#éC_é›áûõ}ÀÉ|æE°ð*™8ßqðÖÐêéoá'ÕJ\Wõ‡‘®]&&)Áü"¿rFw%ùÜWI®¯¼˜—c>Œúsä±Ë3¿i¾Ÿã÷ÞÐ%êø7õ9êÚû¿Ïa¿jb=D$_º‘ŽtÛbRQÞU“|^çuªù:N:¸m2ƒÒ9è{Ó>@އìsBÖ¹9ÜjøPŒðþÿ k凵ºŠPîácŠO–EQ)6" W‚Ä|Ç)=¿$}§ë¶ódZÁüÈe wŠSy8ÈlÙÒ‚”Õ– ‹R­Á nxyÃæP»__E‚ÅÏEª¶;ñ[×¾|G«”âÅ’½\W³ S¬Ç]Õgæ‡mHž‚hÐÇ`î‚ñ–Ëæ¼F²@Ha‘å¸íûg¨-›6‡l<גͺáEo |۸鸩T¶ë‡(ˆDëXÒÍH„ÊAô8­È²©zùæD^D*6Eº ÀDuEx ctëcžGs‡¬Gó-H”Ò+œ B~*®e±‹¯6kÁb=âò‹:PêHú‹£Ï,šHÉj£ÂXtr³éKn¿¿³bÇ… Õ(á¸<¹šRM™ìr9Üéñ*¹uÚô@h¥9$0ÍœéEz?HBLEhd¢0ág’‹bÇa¯aPÒ߃,7µÇ¦Gƒ84Å&Lì‚©3yÖ=·'Mn½n7XÓÆ Ê`%¹Ž‡ìŠÃŸÁÞ0h+JÞYÂêZ[rv.û%Rÿ Т™%‹Ù!’ÞêR•Ãd·*2Ñš öÔ4¡ BëÜû;ø•O²™l[EYŒIŸ8‘ö&é ^¾¨}4@x¨Ÿà:¨ˆë(6ïÁ+Žø‘é›KbÀE¹¬îÌ2º‡?§X´é¡X¿´ÇÃÆŠÍðdˆ§vqØÕÓÓÜÙ|›‡bê9–¨„ݾɣ¨u^"ãÚþãŽV c=ü(Ü@r(Ĥ؋û‰Ò0—q(%oƒ(–ÛħC<*Ós ~Ã~gåuÇ"Þ‡—»ÞIº7ÄŽšŽPÈ\©ËA®¨÷fÊë1LQ,¶ãþ0lÎ ‹\½2‹jÉñË* ±+˜r¡`"$™ÂN cQšE@3—Æ?B‚ñÀ¼€a@ƒH<  ?ç] QžîÃ!I×%‡o¦'BúÛÜkgUÌ…Ú5¹K&ÙÌ]w4©9<}™Å?÷kÊiàå·fQ££Çÿ‚:°hoÃÌ…-¹N›!lMF^Ê’éY˜ËœÒÒ¼îBêßÈ|e%qËK‹±O¢/‹ýþàÀ¤&#¾XNíë°8lr\ÿ¢0L¿™œÖçð>Ië–Îv¬ü0%ž„©oyæFZ½åô…XWï üÐX'³Ú¥Dü_˜Ã&)X‘©Øü{lÒD&BðÔ„èúm˜‚$›]Åx›?ÁÃIÁCõÄ»ìÎáÃùmÎÆ“:±“çàföÒ×a4ó¢â0NñzÏCü$Û`Xrèn¾ÆúÇ&FæÂôæÕ†(ówÁÌç c‘DaUЇ²ò a^dœÌ}Îü#¹®Ã>àG=Ô±åŸx8v7ÖW_@ÝäÎb2|äñPYFh™í2³ÄdjÂø溺“k¾Ãp0Ÿo{¸ £ ™).M)C>‡â憱áçéigòq" ů£4‡m!oĵ<¬y"×<‹á­ŒPÍã0ÕŸ‹õÍæB^Ý`XT«Íx/bè¦Z€w•ƒÙœ»ó¯‹gÉaOBøi„ ŠÍ¥a¢>aS;êà÷y‘,hJA~sˆ©ê¢ßƒä˜³4ã·ßÌéŒÇ­É>nÝ…gM †Ð±Ž4l–²wrí,……Øl­sxS‚ô ð‹Z~4ݰžê"ï{Î?@!÷‰ù|ãPò†Dâ=¼‡~’ã öUI§Úç’ä>›‡6áÑaQ/5׎CæÁf.‡y_vƒŽ Yß'Û>]Hf/Bp]z*7 ƒj“b“gxˆ,^/çi–ï!Éýrئ>~š›Ñïj3ˆë’à é¼Eóo)}=ô’ž “ž™H—m ÏÑêãCIpHî±)Œß?ÉæBl´^¨Z&µ ÝÆäE'\6wø ¸Ÿ%9u/ü\å ~5‡Þ²Â.ã5ÿ 3L èðpmªb¸-ZF:y y—à+ãÈú̸Yö.cëºRÝÊþa×Q8›ü°t´‰õûÃf\³Ù5#€3â<ãí/MQˆä“⡬لÐCðp3ÖkŠõ¯äPPÍÂ{i«LÚ2oÅà ӓù‚ýF‡V(ÆÁ'Ó¬[Ãö_³é 9TL{Å:9j)À}Çz_ð¡ɸ¢x(ü6b¨­'!Ì÷¢ýi’'€ÏIö‚uVÌ»JpÅx¦ßu\LzÖYrý‹q¸Ä/…ýJÆ¡Æ]¸¿ì ³l8¤Q=`š -óšc(ŸMðq<„ÎåúQ›ÑWq˜'ö3¯òá É>Ód7ôZ„SÙ\OŠÿßpˆfxª>®ë™8,a¢®DK Sò¸Nõ!„.mòb~ ü£w#ŒÌå°ÕŒdý¸ue¦p˜ó:ã•Wá£äCï³àpÃÔGˆeæcدÀ¿hZäñpG®ãC|x)U}¯9\4ç¡[Ã4†¼ð—cø£rÈ\aâ>/èáÐ)â|Ÿ)=öý†CP!¯æºˆ‡¾ŠÙ¨+Ð]úwø­ì|ÈbtgÈþÏgýªX‡š‡ÑOÁ2üÜÌǺ«¥È b¨YŸé,ø>ñ/뺫iÐãа/¼*Ò |6±?|Œýò|ä†õ£dÝ`zc¸¬ 4×»ùÅÂÞo‘(M'H³OJ„®¾ï#ɹF*ÂûAäÇøÒa~¬Ã5Þ1òáÉ<ª¯5óˆŠóö·)Þ¯€Q¥»cÝõõV³Ï6p$Õ|//@o¨ÑÐGš‡À†u‡áázZëŨ±8+ëÁ‡{<”бz•‡kŒ«ê!èg³“‡hŒSŠûG±?Mp-øÐ’a\ŠŸ_ñá@}ṎpýèŸá—÷“d~4¬tš92oľ38Î:|9ûÆðßzÂ|YŸË<̇“8ï‘ë8ØŒC ê= ¿ò‡7ìõ(„Ô¢²…äóýë+9x* XG+>T%ΠÕ0ä0ЇnÆ]þï#¤‹Ã—Çè4ëÊÔÜOŽŽÄz4Öw’ÅøFšÝÁýxXÂx©gãpšæÃ’q"—M©òÐ#¢ö+µûä\D¾ÂyÙä/‚‡$I" öÙ!«$׿æ!šPȽM®p;S.gÒ7‚'$÷“©œÖ;0lÑçaãhCÈć‹Ö ÞÛó!¬qXñÐTòP$Íáv..ÓM8'ÃÏ.õ¿ÿ\ÍR¹q+survival/tests/survreg2.R0000644000176200001440000000455013537676563015222 0ustar liggesuserslibrary(survival) options(na.action=na.exclude, contrasts=c('contr.treatment', 'contr.poly')) # Verify stratified fits in a simple way, but combining two data # sets and doing a single fit # aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) tdata <- data.frame(time=c(lung$time, ovarian$futime), status=c(lung$status-1, ovarian$fustat), group =rep(0:1, c(nrow(lung), nrow(ovarian)))) fit1 <- survreg(Surv(time, status) ~ 1, lung) fit2 <- survreg(Surv(futime, fustat) ~ 1, ovarian) fit3 <- survreg(Surv(time, status) ~ group + strata(group), tdata) aeq(c(fit1$coef, fit2$coef-fit1$coef), fit3$coef) aeq(c(fit1$scale, fit2$scale), fit3$scale) aeq(fit1$loglik[2] + fit2$loglik[2], fit3$loglik[2]) # # Test out the cluster term in survreg, which means first a test # of the dfbeta residuals # I also am checking that missing values propogate test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) fit1 <- survreg(Surv(time, status) ~ x + cluster(1:7), test1) db1 <- resid(fit1, 'dfbeta') ijack <-db1 eps <- 1e-7 for (i in 1:7) { temp <- rep(1.0,7) temp[i] <- 1-eps tfit <- survreg(Surv(time, status) ~ x, test1, weight=temp) ijack[i,] <- c(tfit$coef, log(tfit$scale)) } ijack[2,] <- NA # stick the NA back in ijack <- (rep(c(fit1$coef, log(fit1$scale)), each=nrow(db1)) - ijack)/eps all.equal(db1, ijack, tolerance=eps) all.equal(t(db1[-2,])%*% db1[-2,], fit1$var) # This is a harder test since there are multiple strata and multiple # obs/subject. Use of enum + strata(enum) in essenence fits a different # baseline Weibull to each strata, with common coefficients for rx, size, and # number. fit1 <- survreg(Surv(stop-start, event) ~ rx + size + number + factor(enum) + strata(enum), data=bladder2) db1 <- resid(fit1, type='dfbeta', collapse=bladder2$id) ijack <- db1 # a matrix of the same size for (i in 1:nrow(db1)) { twt <- rep(1., nrow(bladder2)) twt[bladder2$id==i] <- 1-eps tfit <- survreg(Surv(stop-start, event) ~ rx + size + number + factor(enum) + strata(enum), data=bladder2, weight=twt) ijack[i,] <- c(coef(tfit), log(tfit$scale)) } ijack <- (rep(c(fit1$coef, log(fit1$scale)), each=nrow(db1)) - ijack)/eps all.equal(db1, ijack, tolerance=eps*2) survival/tests/jasa.R0000644000176200001440000000660613537676603014360 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) expect <- survexp(futime ~ ratetable(age=(accept.dt - birth.dt), sex=1, year=accept.dt, race='white'), jasa, cohort=F, ratetable=survexp.usr) survdiff(Surv(jasa$futime, jasa$fustat) ~ offset(expect)) # Now fit the 6 models found in Kalbfleisch and Prentice, p139 sfit.1 <- coxph(Surv(start, stop, event)~ (age + surgery)*transplant, jasa1, method='breslow') sfit.2 <- coxph(Surv(start, stop, event)~ year*transplant, jasa1, method='breslow') sfit.3 <- coxph(Surv(start, stop, event)~ (age + year)*transplant, jasa1, method='breslow') sfit.4 <- coxph(Surv(start, stop, event)~ (year +surgery) *transplant, jasa1, method='breslow') sfit.5 <- coxph(Surv(start, stop, event)~ (age + surgery)*transplant + year , jasa1, method='breslow') sfit.6 <- coxph(Surv(start, stop, event)~ age*transplant + surgery + year, jasa1, method='breslow') summary(sfit.1) sfit.2 summary(sfit.3) sfit.4 sfit.5 sfit.6 # Survival curve for an "average" subject, # done once as overall, once via individual method surv1 <- survfit(sfit.1, newdata=list(age=-2, surgery=0, transplant=0)) newdata <- data.frame(start=c(0,50,100), stop=c(50,100, max(jasa1$stop)), event=c(1,1,1), age=rep(-2,3), surgery=rep(0,3), transplant=rep(0,3)) surv2 <- survfit(sfit.1, newdata, individual=T) # Have to use unclass to avoid [.survfit trying to pick curves, # remove the final element "call" because it won't match all.equal(unclass(surv1)[-length(surv1)], unclass(surv2)[-length(surv2)]) # Survival curve for a subject of age 50, with prior surgery, tx at 6 months # Remember that 'age' in jasa 1 was centered at 48 data <- data.frame(start=c(0,183), stop=c(183,3*365), event=c(1,1), age=c(2,2), surgery=c(1,1), transplant=c(0,1)) summary(survfit(sfit.1, data, individual=T)) # These should all give the same answer # When there are offsets, the default curve is always for someone with # the mean offset. j.age <- jasa$age -48 fit1 <- coxph(Surv(futime, fustat) ~ j.age, data=jasa) fit2 <- coxph(Surv(futime, fustat) ~ j.age, jasa, init=fit1$coef, iter=0) fit3 <- coxph(Surv(start, stop, event) ~ age, jasa1) fit4 <- coxph(Surv(start, stop, event) ~ offset(age*fit1$coef), jasa1) s1 <- survfit(fit1, list(j.age=fit3$means), censor=FALSE) s2 <- survfit(fit2, list(j.age=fit3$means), censor=FALSE) s3 <- survfit(fit3, censor=FALSE) s4 <- survfit(fit4, censor=FALSE) all.equal(s1$surv, s2$surv) all.equal(s1$surv, s3$surv) all.equal(s1$surv, s4$surv) # Still the same answer, fit multiple strata at once # Strata 1 has independent coefs of strata 2, so putting in # the other data should not affect it ll <- nrow(jasa1) ss <- rep(0:1, c(ll,ll)) tdata <- with(jasa1, data.frame(start=rep(start,2), stop=rep(stop,2), event=rep(event,2), ss=ss, age=rep(age,2), age2 = (rep(age,2))^2 * ss)) fit <- coxph(Surv(start, stop, event) ~ age*strata(ss) + age2, tdata) # Above replaced these 2 lines, which kill Splus5 as of 8/98 # Something with data frames, I expect. #fit <- coxph(Surv(rep(start,2), rep(stop,2), rep(event,2)) ~ # rep(age,2)*strata(ss) + I(rep(age,2)^2*ss) ) all.equal(fit$coef[1], fit3$coef) s5 <- survfit(fit, data.frame(age=fit3$means, age2=0, ss=0), censor=FALSE) all.equal(s5$surv[1:(s5$strata[1])], s3$surv) survival/tests/survreg1.Rout.save0000644000176200001440000003343113537676563016706 0ustar liggesusers R Under development (unstable) (2019-06-28 r76752) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # fit1 and fit4 should follow identical iteration paths > fit1 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, x=TRUE) > fit4 <- survreg(Surv(log(futime), fustat) ~age + ecog.ps, ovarian, + dist='extreme') > aeq(fit1$coef, fit4$coef) [1] TRUE > aeq(fit1$var, fit4$var) [1] TRUE > > resid(fit1, type='working') 1 2 3 4 5 6 -4.5081778 -0.5909810 -2.4878519 0.6032744 -5.8993431 0.6032744 7 8 9 10 11 12 -1.7462937 -0.8102883 0.6032744 -1.6593962 -0.8235265 0.6032744 13 14 15 16 17 18 0.6032744 0.6032744 0.6032744 0.6032744 0.6032744 0.6032744 19 20 21 22 23 24 0.6032744 0.6032744 0.6032744 0.2572623 -31.8006867 -0.7426277 25 26 -0.2857597 0.6032744 > resid(fit1, type='response') 1 2 3 4 5 6 -155.14523 -58.62744 -262.03173 -927.79842 -1377.84908 -658.86626 7 8 9 10 11 12 -589.74449 -318.93436 4.50671 -686.83338 -434.39281 -1105.68733 13 14 15 16 17 18 -42.43371 -173.09223 -4491.29974 -3170.49394 -5028.31053 -2050.91373 19 20 21 22 23 24 -150.65033 -2074.09345 412.32400 76.35826 -3309.40331 -219.81579 25 26 -96.19691 -457.76731 > resid(fit1, type='deviance') 1 2 3 4 5 6 7 -1.5842290 -0.6132746 -1.2876971 0.5387840 -1.7148539 0.6682580 -1.1102921 8 9 10 11 12 13 14 -0.7460191 1.4253843 -1.0849419 -0.7531720 0.6648130 1.3526380 1.1954382 15 16 17 18 19 20 21 0.2962391 0.3916044 0.3278067 0.5929057 1.2747643 0.6171130 1.9857606 22 23 24 25 26 0.6125492 -2.4504208 -0.7080652 -0.3642424 0.7317955 > resid(fit1, type='dfbeta') [,1] [,2] [,3] [,4] 1 0.43370970 -1.087867e-02 0.126322520 0.048379059 2 0.14426449 -5.144770e-03 0.088768478 -0.033939677 3 0.25768057 -3.066698e-03 -0.066578834 0.021817646 4 0.05772598 -5.068044e-04 -0.013121427 -0.007762466 5 -0.58773456 6.676156e-03 0.084189274 0.008064026 6 0.01499533 -7.881949e-04 0.026570173 -0.013513160 7 -0.17869321 4.126121e-03 -0.072760519 -0.015006956 8 -0.11851540 2.520303e-03 -0.045549628 -0.035686269 9 0.08327656 3.206404e-03 -0.141835350 0.024490806 10 -0.25083921 5.321702e-03 -0.073986269 -0.020648720 11 -0.21333934 4.155746e-03 -0.049832434 -0.040215681 12 0.13889770 -1.586136e-03 -0.019701151 -0.004686340 13 0.07892133 -2.706713e-03 0.085242459 0.007847879 14 0.29690157 -1.987141e-03 -0.085553120 0.017447343 15 0.04344618 -6.319243e-04 -0.001944285 -0.003533279 16 0.04866809 -1.068317e-03 0.012398602 -0.006340983 17 0.04368104 -9.248316e-04 0.009428718 -0.004869178 18 0.15684611 -2.081485e-03 -0.013068320 -0.003265399 19 0.48839511 -4.775829e-03 -0.093258090 0.032703354 20 0.17598922 -2.349254e-03 -0.014202966 -0.002486428 21 0.37869758 -8.442011e-03 0.163476417 0.100850775 22 -0.59761427 8.803638e-03 0.052784598 -0.053085234 23 -0.79017984 1.092304e-02 0.053690092 0.080780399 24 -0.02348526 8.331002e-04 -0.039028433 -0.032765737 25 -0.13948485 3.687927e-04 0.056781884 -0.055647859 26 0.05778937 3.766350e-06 -0.029232389 -0.008927920 > resid(fit1, type='dfbetas') [,1] [,2] [,3] [,4] 1 0.288846658 -0.4627232074 0.345395116 0.20574292 2 0.096078819 -0.2188323823 0.242713641 -0.14433617 3 0.171612884 -0.1304417700 -0.182041999 0.09278449 4 0.038444974 -0.0215568869 -0.035877029 -0.03301165 5 -0.391425795 0.2839697749 0.230193032 0.03429410 6 0.009986751 -0.0335258093 0.072649027 -0.05746778 7 -0.119008027 0.1755042532 -0.198944162 -0.06382048 8 -0.078930164 0.1072008799 -0.124543264 -0.15176395 9 0.055461420 0.1363841532 -0.387810796 0.10415271 10 -0.167056601 0.2263581990 -0.202295647 -0.08781336 11 -0.142082031 0.1767643342 -0.136253451 -0.17102630 12 0.092504589 -0.0674661531 -0.053867524 -0.01992972 13 0.052560878 -0.1151298322 0.233072686 0.03337488 14 0.197733705 -0.0845228882 -0.233922105 0.07419878 15 0.028934753 -0.0268788526 -0.005316126 -0.01502607 16 0.032412497 -0.0454407662 0.033900659 -0.02696647 17 0.029091172 -0.0393376416 0.025780305 -0.02070728 18 0.104458066 -0.0885357994 -0.035731824 -0.01388685 19 0.325266641 -0.2031395176 -0.254989284 0.13907843 20 0.117207199 -0.0999253459 -0.038834208 -0.01057410 21 0.252209096 -0.3590802699 0.446982501 0.42889079 22 -0.398005596 0.3744620571 0.144325354 -0.22575700 23 -0.526252483 0.4646108448 0.146801184 0.34353696 24 -0.015640965 0.0354358527 -0.106712804 -0.13934372 25 -0.092895624 0.0156865706 0.155254862 -0.23665514 26 0.038487186 0.0001602014 -0.079928144 -0.03796800 > resid(fit1, type='ldcase') 1 2 3 4 5 6 0.374432175 0.145690278 0.112678800 0.006399163 0.261176992 0.013280058 7 8 9 10 11 12 0.109842490 0.074103234 0.248285282 0.128482147 0.094038203 0.016111951 13 14 15 16 17 18 0.132812463 0.111857574 0.001698300 0.004730718 0.003131173 0.015840667 19 20 21 22 23 24 0.179925399 0.019071941 0.797119488 0.233096445 0.666613755 0.062959708 25 26 0.080117437 0.015922378 > resid(fit1, type='ldresp') 1 2 3 4 5 6 0.076910173 0.173810883 0.078356928 0.005310644 0.060742612 0.010002154 7 8 9 10 11 12 0.067356838 0.067065693 0.355103899 0.067043195 0.068142828 0.016740944 13 14 15 16 17 18 0.193444572 0.165021262 0.001494685 0.004083386 0.002767560 0.016400993 19 20 21 22 23 24 0.269571809 0.020129806 1.409736499 1.040266083 0.058637282 0.071819025 25 26 0.112702844 0.015105534 > resid(fit1, type='ldshape') 1 2 3 4 5 6 0.870628250 0.383362440 0.412503605 0.005534970 0.513991064 0.003310847 7 8 9 10 11 12 0.291860593 0.154910362 0.256160646 0.312329770 0.183191309 0.004184904 13 14 15 16 17 18 0.110215710 0.049299495 0.007678445 0.011633336 0.011588605 0.008641251 19 20 21 22 23 24 0.112967758 0.008271358 2.246729275 0.966929220 1.022043272 0.143857170 25 26 0.079754096 0.001606647 > resid(fit1, type='matrix') g dg ddg ds dds dsg 1 -1.74950763 -1.46198129 -0.32429540 0.88466493 -2.42358635 1.8800360 2 -0.68266980 -0.82027857 -1.38799493 -0.66206188 -0.57351872 1.3921043 3 -1.32369884 -1.33411374 -0.53625126 0.31503768 -1.83606321 1.8626973 4 -0.14514412 0.24059386 -0.39881329 -0.28013223 -0.26053084 0.2237590 5 -1.96497889 -1.50383619 -0.25491587 1.15700933 -2.68145423 1.8694717 6 -0.22328436 0.37012071 -0.61351964 -0.33477229 -0.16715487 0.1848047 7 -1.11099124 -1.23201028 -0.70550005 0.01052036 -1.48515401 1.8106760 8 -0.77288913 -0.95018808 -1.17265428 -0.51190170 -0.79753045 1.5525642 9 -1.01586016 1.68391053 -2.79128447 0.01598527 -0.01623681 -1.7104080 10 -1.08316634 -1.21566480 -0.73259465 -0.03052447 -1.43539383 1.7998987 11 -0.77825093 -0.95675178 -1.16177415 -0.50314979 -0.81016011 1.5600720 12 -0.22098818 0.36631452 -0.60721042 -0.33361394 -0.17002503 0.1866908 13 -0.91481479 1.51641567 -2.51364157 -0.08144930 0.07419757 -1.3814037 14 -0.71453621 1.18442981 -1.96333502 -0.24017106 0.15944438 -0.7863174 15 -0.04387880 0.07273440 -0.12056602 -0.13717935 -0.29168773 0.1546569 16 -0.07667699 0.12710134 -0.21068577 -0.19691828 -0.30879813 0.1993144 17 -0.05372862 0.08906165 -0.14763041 -0.15709224 -0.30221555 0.1713377 18 -0.17576861 0.29135764 -0.48296037 -0.30558900 -0.22570402 0.2151929 19 -0.81251205 1.34683655 -2.23254376 -0.16869744 0.13367171 -1.0672002 20 -0.19041424 0.31563454 -0.52320225 -0.31581218 -0.20797917 0.2078622 21 -1.97162252 3.26820173 -5.41743790 1.33844939 -2.24706488 -5.4868428 22 -0.68222519 1.23245193 -4.79064290 -0.58668577 -0.95209805 -2.8390386 23 -3.49689798 -1.62675999 -0.05115487 2.90949868 -4.20494743 1.7496975 24 -0.74529506 -0.91462436 -1.23160543 -0.55723389 -0.73139169 1.5108398 25 -0.56095318 -0.53280415 -1.86451840 -0.87536233 -0.22666819 0.9689667 26 -0.26776235 0.44384834 -0.73573207 -0.35281852 -0.11207472 0.1409908 > > aeq(resid(fit1, type='working'),resid(fit4, type='working')) [1] TRUE > #aeq(resid(fit1, type='response'), resid(fit4, type='response'))#should differ > aeq(resid(fit1, type='deviance'), resid(fit4, type='deviance')) [1] TRUE > aeq(resid(fit1, type='dfbeta'), resid(fit4, type='dfbeta')) [1] TRUE > aeq(resid(fit1, type='dfbetas'), resid(fit4, type='dfbetas')) [1] TRUE > aeq(resid(fit1, type='ldcase'), resid(fit4, type='ldcase')) [1] TRUE > aeq(resid(fit1, type='ldresp'), resid(fit4, type='ldresp')) [1] TRUE > aeq(resid(fit1, type='ldshape'), resid(fit4, type='ldshape')) [1] TRUE > aeq(resid(fit1, type='matrix'), resid(fit4, type='matrix')) [1] TRUE > > # Test suggested by Achim Zieleis: residuals should give a score vector > r1 <-residuals(fit1, type='matrix') > score <- c(as.vector(r1[,c("dg")]) %*% model.matrix(fit1), + "log(scale)" = sum(r1[,"ds"])) > all(abs(score) < 1e-6) [1] TRUE > > # repeat this with Gaussian (no transform = different code path) > tfit <- survreg(Surv(durable, durable>0, type='left') ~age + quant, + data=tobin, dist='gaussian') > r2 <- residuals(tfit, type='matrix') > score <- c(as.vector(r2[, "dg"]) %*% model.matrix(tfit), + "log(scale)" = sum(r2[,"ds"])) > all(score < 1e-6) [1] TRUE > > # > # Some tests of the quantile residuals > # > # These should agree exactly with Ripley and Venables' book > fit1 <- survreg(Surv(time, status) ~ temp, data= imotor) > summary(fit1) Call: survreg(formula = Surv(time, status) ~ temp, data = imotor) Value Std. Error z p (Intercept) 16.31852 0.62296 26.2 < 2e-16 temp -0.04531 0.00319 -14.2 < 2e-16 Log(scale) -1.09564 0.21480 -5.1 3.4e-07 Scale= 0.334 Weibull distribution Loglik(model)= -147.4 Loglik(intercept only)= -169.5 Chisq= 44.32 on 1 degrees of freedom, p= 2.8e-11 Number of Newton-Raphson Iterations: 7 n= 40 > > # > # The first prediction has the SE that I think is correct > # The third is the se found in an early draft of Ripley; fit1 ignoring > # the variation in scale estimate, except via it's impact on the > # upper left corner of the inverse information matrix. > # Numbers 1 and 3 differ little for this dataset > # > predict(fit1, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) $fit [1] 10.306068 9.676248 $se.fit [1] 0.2135247 0.2202088 > > fit2 <- survreg(Surv(time, status) ~ temp, data=imotor, scale=fit1$scale) > predict(fit2, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) $fit [1] 10.306068 9.676248 $se.fit 1 1 0.2057964 0.2057964 > > fit3 <- fit2 > fit3$var <- fit1$var[1:2,1:2] > predict(fit3, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) $fit [1] 10.306068 9.676248 $se.fit 1 1 0.2219959 0.2219959 > > pp <- seq(.05, .7, length=40) > xx <- predict(fit1, data.frame(temp=130), type='uquantile', se=T, + p=pp) > #matplot(pp, cbind(xx$fit, xx$fit+2*xx$se, xx$fit - 2*xx$se), type='l') > > > # > # Now try out the various combinations of strata, #predicted, and > # number of quantiles desired > # > fit1 <- survreg(Surv(time, status) ~ inst + strata(inst) + age + sex, lung) > qq1 <- predict(fit1, type='quantile', p=.3, se=T) > qq2 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T) > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > aeq(qq1$fit, qq2$fit[,2]) [1] TRUE > aeq(qq1$se.fit, qq2$se.fit[,2]) [1] TRUE > > qq3 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, + newdata= lung[1:5,]) > aeq(qq3$fit, qq2$fit[1:5,]) [1] TRUE > > qq4 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung[7,]) > aeq(qq4$fit, qq2$fit[7,]) [1] TRUE > > qq5 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung) > aeq(qq2$fit, qq5$fit) [1] TRUE > aeq(qq2$se.fit, qq5$se.fit) [1] TRUE > > proc.time() user system elapsed 1.592 0.131 1.709 survival/tests/yates1.Rout.save0000644000176200001440000001176013537676563016337 0ustar liggesusers R Under development (unstable) (2018-04-09 r74565) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) > > fit1 <- lm(skips ~ Opening + Solder + Mask + PadType + Panel, + data=solder) > y1 <- yates(fit1, "Opening") > > temp <- levels(solder$Opening) > tpred <- matrix(0., nrow(solder), 3) > for (i in 1:3) { + tdata <- solder + tdata$Opening <- temp[i] + tpred[,i] <- predict(fit1, newdata=tdata) + } > all.equal(y1$estimate[,"pmm"], colMeans(tpred)) [1] TRUE > > # This fit is deficient: there are no Opening=L and Mask=A6 obs > # The MPV for Mask=A6 and Opening L will therefore be NA, as well > # as for all levels of Solder, but we can compute the others. > # Solder will be NA for all levels > fit2 <- lm(skips ~ Opening*Mask + Solder, + data=solder) > y2a <- yates(fit2, "Mask", population="factorial") > y2b <- yates(fit2, "Opening", population="factorial") > y2c <- yates(fit2, "Solder", population="factorial") > > # The predict.lm function gives correct predictions for estimable > # functions (all but L,A6) and nonsense for others. It knows that > # some are not estimable due to the NA coefficients, but not which ones, > # so always prints a warning. Hence the suppressWarnings call. > tdata <- do.call(expand.grid, fit2$xlevels[1:3]) > temp <- levels(solder$Mask) > tpreda <- matrix(0., nrow(tdata), length(temp), + dimnames=list(NULL, temp)) > for (i in seq(along=temp)) { + tdata$Mask <- temp[i] + suppressWarnings(tpreda[,i] <- predict(fit2, newdata=tdata)) + } > tpreda[,"A6"] <- NA # the A6 estimate is deficient > aeq(y2a$estimate[,"pmm"], colMeans(tpreda)) [1] TRUE > > tdata <- do.call(expand.grid, fit2$xlevels[1:3]) > temp <- levels(solder$Opening) > tpredb <- matrix(0., nrow(tdata), length(temp), + dimnames=list(NULL, temp)) > for (i in seq(along=temp)) { + tdata$Opening <- temp[i] + suppressWarnings(tpredb[,i] <- predict(fit2, newdata=tdata)) + } > tpredb[,"L"] <- NA > aeq(y2b$estimate[,"pmm"], colMeans(tpredb)) [1] TRUE > > # Solder should be all NA > all(is.na(y2c$estimate[,"pmm"])) [1] TRUE > > # Tests for Solder are defined for a non-factorial population, however. > # the [] below retains the factor structure of the variable, where the > # runs above did not. R gets prediction correct both ways. > y2d <- yates(fit2, ~Solder) > temp <- levels(solder$Solder) > tdata <- solder > tpredd <- matrix(0, nrow(tdata), length(temp), + dimnames=list(NULL, temp)) > for (i in seq(along=temp)) { + tdata$Solder[] <- temp[i] + suppressWarnings(tpredd[,i] <- predict(fit2, newdata=tdata)) + } > aeq(y2d$estimate$pmm, colMeans(tpredd)) [1] TRUE > > # > # Verify that the result is unchanged by how dummies are coded > # The coefs move all over the map, but predictions are unchanged > fit3 <- lm(skips ~ C(Opening, contr.helmert)*Mask + C(Solder, contr.SAS), + data=solder) > y3a <- yates(fit3, ~Mask, population='yates') > equal <- c("estimate", "test", "mvar") > all.equal(y3a[equal], y2a[equal]) [1] TRUE > > tdata <- do.call(expand.grid, fit2$xlevels[1:3]) # use orignal variable names > temp <- levels(solder$Mask) > cpred <- matrix(0., nrow(tdata), length(temp), + dimnames=list(NULL, temp)) > for (i in seq(along=temp)) { + tdata$Mask <- temp[i] + suppressWarnings(cpred[,i] <- predict(fit3, newdata=tdata)) + } > aeq(cpred[, temp!="A6"], tpreda[, temp!= "A6"]) # same predictions [1] TRUE > all.equal(y3a$estimate, y2a$estimate) [1] TRUE > > y3b <- yates(fit3, ~Opening, population='yates') > # column names will differ > all.equal(y3b$estimate, y2b$estimate, check.attributes=FALSE) [1] TRUE > > y3d <- yates(fit3, ~Solder) > for (i in 1:3) { + print(all.equal(y3d[[i]], y2d[[i]], check.attributes=FALSE)) + } [1] TRUE [1] TRUE [1] TRUE > > # Reprise this with a character variable in the model > sdata <- solder > sdata$Mask <- as.character(sdata$Mask) > fit4 <- lm(skips ~ Opening*Mask + Solder, data=sdata) > y4a <- yates(fit4, ~ Mask, population= "yates") > y4b <- yates(fit4, ~ Opening, population= "yates") > y4d <- yates(fit4, ~ Solder) > equal <- c("estimate", "tests", "mvar", "cmat") > all.equal(y2a[equal], y4a[equal]) # the "call" component differs [1] TRUE > all.equal(y2b[equal], y4b[equal]) [1] TRUE > all.equal(y2d[equal], y4d[equal]) [1] TRUE > > proc.time() user system elapsed 1.004 0.032 1.034 survival/tests/concordance.Rout.save0000644000176200001440000001515513537676563017411 0ustar liggesusers R Under development (unstable) (2019-06-28 r76752) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # > # Simple tests of survConcordance, which has been replaced by the more general > # concordance function. > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > grank <- function(x, time, grp, wt) + unlist(tapply(x, grp, rank)) > grank2 <- function(x, time, grp, wt) { #for case weights + if (length(wt)==0) wt <- rep(1, length(x)) + z <- double(length(x)) + for (i in unique(grp)) { + indx <- which(grp==i) + temp <- tapply(wt[indx], x[indx], sum) + temp <- temp/2 + c(0, cumsum(temp)[-length(temp)]) + z[indx] <- temp[match(x[indx], names(temp))] + } + z + } > > # Concordance by brute force. O(n^2) algorithm, but ok for n<500 or so > allpair <- function(x, time, status, wt, all=FALSE) { + if (missing(wt)) wt <- rep(1, length(x)) + count <- sapply(which(status==1), function(i) { + atrisk <- (time > time[i]) | (time==time[i] & status==0) + temp <- tapply(wt[atrisk], factor(sign(x[i] -x[atrisk]), c(1, -1, 0)), + sum) + wt[i]* c(ifelse(is.na(temp), 0, temp), + (sum(wt[time==time[i] & status==1]) - wt[i])/2) + }) + rownames(count) <- c("concordant", "discordant", "tied.x", "tied.y") + if (all) { + colnames(count) <- time[status==1] + t(count) + } + else rowSums(count) + } > > > # The std of C = std(numerator)/(number of comparable pairs) > # The information matrix of a Cox model is = to the var(C-D) > cfun <- function(fit) fit$cvar * sum(fit$count[1:3])^2 > > tdata <- aml[aml$x=='Maintained', c("time", "status")] > tdata$x <- c(1,6,2,7,3,7,3,8,4,4,5) > tdata$wt <- c(1,2,3,2,1,2,3,4,3,2,1) > fit <- concordance(Surv(time, status) ~x, tdata) > > aeq(fit$count[1:4], c(24,14,2,0)) [1] TRUE > cfit <- coxph(Surv(time, status) ~ tt(x), tdata, tt=grank, method='breslow', + iter=0, x=T) > cdt <- coxph.detail(cfit) > aeq(sum(cdt$imat), cfun(fit)) [1] TRUE > aeq(sum(2*cdt$score), diff(fit$count[1:2])) [1] TRUE > aeq(with(tdata, allpair(x, time, status)), c(14,24,2,0)) [1] TRUE > > # Lots of ties > tempy <- Surv(c(1,2,2,2,3,4,4,4,5,2), c(1,0,1,0,1,0,1,1,0,1)) > tempx <- c(5,5,4,4,3,3,7,6,5,4) > fit2 <- concordance(tempy ~ tempx) > addxy <- function(x) c(x[1:3], sum(x[4:5])) > aeq(addxy(fit2$count), allpair(tempx, tempy[,1], tempy[,2])) [1] TRUE > cfit2 <- coxph(tempy ~ tt(tempx), tt=grank, method='breslow', iter=0) > aeq(cfit2$var, 1/cfun(fit2)) [1] TRUE > > # Bigger data > fit3 <- concordance(Surv(time, status) ~ age, lung, reverse=TRUE) > aeq(addxy(fit3$count), allpair(lung$age, lung$time, lung$status-1)) [1] TRUE > cfit3 <- coxph(Surv(time, status) ~ tt(age), lung, + iter=0, method='breslow', tt=grank, x=T) > cdt <- coxph.detail(cfit3) > aeq(sum(cdt$imat), cfun(fit3)) [1] TRUE > aeq(2*sum(cdt$score), diff(fit3$count[2:1])) [1] TRUE > > > # More ties > fit4 <- concordance(Surv(time, status) ~ ph.ecog, lung, reverse=TRUE) > aeq(addxy(fit4$count), allpair(lung$ph.ecog, lung$time, lung$status-1)) [1] TRUE > aeq(fit4$count[1:5], c(8392, 4258, 7137, 21, 7)) [1] TRUE > cfit4 <- coxph(Surv(time, status) ~ tt(ph.ecog), lung, + iter=0, method='breslow', tt=grank) > aeq(1/cfit4$var, cfun(fit4)) [1] TRUE > > # Case weights > fit5 <- concordance(Surv(time, status) ~ x, tdata, weight=wt, reverse=TRUE) > fit6 <- concordance(Surv(time, status) ~x, tdata[rep(1:11,tdata$wt),]) > aeq(addxy(fit5$count), with(tdata, allpair(x, time, status, wt))) [1] TRUE > aeq(fit5$count[1:4], c(70, 91, 7, 0)) # checked by hand [1] TRUE > aeq(fit5$count[1:3], fit6$count[c(2,1,3)]) #spurious "tied on time" values, ignore [1] TRUE > aeq(fit5$std, fit6$std) [1] TRUE > cfit5 <- coxph(Surv(time, status) ~ tt(x), tdata, weight=wt, + iter=0, method='breslow', tt=grank2) > cfit6 <- coxph(Surv(time, status) ~ tt(x), tdata[rep(1:11,tdata$wt),], + iter=0, method='breslow', tt=grank) > aeq(1/cfit6$var, cfun(fit6)) [1] TRUE > aeq(cfit5$var, cfit6$var) [1] TRUE > > # Start, stop simplest cases > fit7 <- concordance(Surv(rep(0,11), time, status) ~ x, tdata) > aeq(fit7$count, fit$count) [1] TRUE > aeq(fit7$std.err, fit$std.err) [1] TRUE > fit7 <- concordance(Surv(rep(0,11), time, status) ~ x, tdata, weight=wt) > aeq(fit5$count, fit7$count[c(2,1,3:5)]) #one reversed, one not [1] TRUE > > # Multiple intervals for some, but same risk sets as tdata > tdata2 <- data.frame(time1=c(0,3, 5, 6,7, 0, 4,17, 7, 0,16, 2, 0, + 0,9, 5), + time2=c(3,9, 13, 7,13, 18, 17,23, 28, 16,31, 34, 45, + 9,48, 60), + status=c(0,1, 1, 0,0, 1, 0,1, 0, 0,1, 1, 0, 0,1, 0), + x = c(1,1, 6, 2,2, 7, 3,3, 7, 3,3, 8, 4, 4,4, 5), + wt= c(1,1, 2, 3,3, 2, 1,1, 2, 3,3, 4, 3, 2,2, 1)) > fit8 <- concordance(Surv(time1, time2, status) ~x, tdata2, weight=wt, + reverse=TRUE) > aeq(fit5$count, fit8$count) [1] TRUE > aeq(fit5$std.err, fit8$std.err) [1] TRUE > cfit8 <- coxph(Surv(time1, time2, status) ~ tt(x), tdata2, weight=wt, + iter=0, method='breslow', tt=grank2) > aeq(1/cfit8$var, cfun(fit8)) [1] TRUE > > # Stratified > tdata3 <- data.frame(time1=c(tdata2$time1, rep(0, nrow(lung))), + time2=c(tdata2$time2, lung$time), + status = c(tdata2$status, lung$status -1), + x = c(tdata2$x, lung$ph.ecog), + wt= c(tdata2$wt, rep(1, nrow(lung))), + grp=rep(1:2, c(nrow(tdata2), nrow(lung)))) > fit9 <- concordance(Surv(time1, time2, status) ~x + strata(grp), + data=tdata3, weight=wt, reverse=TRUE) > aeq(fit9$count[1,], fit5$count) [1] TRUE > aeq(fit9$count[2,], fit4$count) [1] TRUE > > proc.time() user system elapsed 2.219 0.219 2.423 survival/tests/frailty.R0000644000176200001440000000154013537676563015111 0ustar liggesuserslibrary(survival) # # The constuction of a survival curve with sparse frailties # # In this case the coefficient vector is kept in two parts, the # fixed coefs and the (often very large) random effects coefficients # The survfit function treats the second set of coefficients as fixed # values, to avoid an unmanagable variance matrix, and behaves like # the second fit below. fit1 <- coxph(Surv(time, status) ~ age + frailty(inst), lung) sfit1 <- survfit(fit1) # A parallel model with the frailties treated as fixed offsets offvar <- fit1$frail[as.numeric(factor(lung$inst))] fit2 <- coxph(Surv(time, status) ~ age + offset(offvar),lung) fit2$var <- fit1$var #force variances to match all.equal(fit1$coef, fit2$coef) sfit2 <- survfit(fit2, newdata=list(age=fit1$means, offvar=0)) all.equal(sfit1$surv, sfit2$surv, tol=1e-7) all.equal(sfit1$var, sfit2$var) survival/tests/overlap.R0000644000176200001440000000254313537676563015113 0ustar liggesusers# # Make sure that useless intervals do not cause issues, i.e., any that do # not overlap at least one event time # library(survival) test2 <- data.frame(time1 =c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8, 3), time2 =c(2, 3, 6, 7, 8, 9, 9, 9,14,17, 5), event =c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 500) ) # The data set is the same as book3.R, except for the wild observation # with x=500 whose time interval of (4,5) overlaps no events. fit1 <- coxph(Surv(time1, time2, event) ~ x, test2, subset=(x<100)) fit2 <- coxph(Surv(time1, time2, event) ~ x, test2) ii <- match(c("coefficients", "var", "loglik", "score", "iter", "wald.test", "concordance"), names(fit1)) all.equal(fit1[ii], fit2[ii]) all.equal(c(fit1$residuals,0), fit2$residuals, check.attributes=FALSE) # The mean differs condiderably, and so to the linear predictors # Now the same with a penalized model fit3 <- coxph(Surv(time1, time2, event) ~ ridge(x, theta=.1), test2, subset= (x< 100)) fit4 <- coxph(Surv(time1, time2, event) ~ ridge(x, theta=.1), test2) fit5 <- coxph(Surv(time1,time2, event) ~ x, test2, iter=0, init=fit4$coef) all.equal(fit3[ii], fit4[ii]) all.equal(c(fit3$residuals,0), fit4$residuals, check.attributes=FALSE) all.equal(fit4$residuals, fit5$residuals) survival/tests/tmerge.Rout.save0000644000176200001440000000712713544413777016410 0ustar liggesusers R Under development (unstable) (2019-09-07 r77160) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > # Very simple tmerge example, for checking > data1 <- data.frame(idd = c(1,5,4,3,2,6), x1=1:6, age=50:55) > data2 <- data.frame(idd = c(2,5,1,2,1), x2=5:1, age=48:44) > test1 <- tmerge(data1, data1, id=idd, death=event(age)) > test2 <- tmerge(test1, data2, id=idd, zed=tdc(age, x2)) > all.equal(test2$idd, c(1,1,1,5,5,4,3,2,2,2,6)) [1] TRUE > all.equal(test2$tstop, c(44, 46, 50, 47, 51, 52, 53, 45, 48, 54, 55)) [1] TRUE > all.equal(test2$death, c(0,0,1,0,1,1,1,0,0,1,1)) [1] TRUE > all.equal(test2$zed, c(NA, 1, 3,NA, 4, NA, NA, NA, 2, 5, NA)) [1] TRUE > > #add in a cumtdc variable and cumevent variable > data3 <- data.frame(idd=c(5,5,1,1,6,4,3,2), + age=c(45, 50, 44, 48, 53,-5,0,20), + x = c(1,5,2,3,7, 4,6,8)) > test3 <- tmerge(test2, data3, id=idd, x=cumtdc(age, x), + esum = cumevent(age)) > all.equal(test3$x, c(NA,2,2,5,NA, 1,1,6,4,6, NA, 8,8,8, NA,7)) [1] TRUE > all.equal(test3$esum, c(1,0,2,0,1,0,2,0,0,0,1,0,0,0,1,0)) [1] TRUE > > > # An example from Brendan Caroll > # It went wrong because the data is not sorted > > ages <- data.frame( id = c(1L, 2L, 5L, 6L, 9L, 10L, 12L, 13L, 14L, 15L, 16L, + 17L, 18L, 20L, 21L, 24L, 26L, 27L, 28L, 29L, 30L, 31L, 34L, 35L, 36L, 37L, + 38L, 39L, 40L, 42L, 45L, 46L, 43L, 48L, 49L, 50L, 51L, 52L, 54L, 55L, 57L, + 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 68L, 69L, 70L, 71L, 72L, 73L, + 74L, 75L, 8L, 19L, 22L, 23L, 33L, 41L), + age = c(13668, 21550, 15249, 21550, + 16045, 21550, 14976, 14976, 6574, 21550, 4463, 16927, 16927, 15706, 4567, + 21306, 17235, 22158, 19692, 17632, 17597, 4383, 5811, 7704, 5063, 17351, + 17015, 16801, 4383, 5080, 13185, 12604, 19784, 5310, 15369, 13239, 1638, + 21323, 10914, 21262, 7297, 17214, 17508, 14199, 14062, 2227, 8434, 4593, + 14429, 21323, 4782, 10813, 2667, 2853, 5709, 3140, 12237, 7882, 21550, + 15553, 16466, 16621, 19534, 21842)) > > transitions <- data.frame(id=c(2,2, 8, 19, 22, 23, 24, 31, + 33, 41, 43, 52, 55, 66, 6, 10, 43), + transition = c(18993, 13668, 15706, + 11609, 4023, 9316, 16193, 1461, + 4584, 17824, 11261, 16818, + 10670, 15479, 15249, 15887,3713)) > > # Unsorted > tdata <- tmerge(ages, ages, id=id, tstop=age) > newdata<- tmerge(tdata, transitions, id=id, enum=cumtdc(transition)) > > # sorted > test1 <- ages[order(ages$id),] > test2 <- tmerge(test1, test1, id=id, tstop=age) > tran2 <- transitions[order(transitions$id, transitions$transition),] > test3 <- tmerge(test2, tran2, id=id, enum=cumtdc(transition)) > all.equal(attr(newdata,'tcount'), attr(test3, 'tcount')) [1] TRUE > > test4 <- newdata[order(newdata$id, newdata$tstart),] > all.equal(test3, test4, check.attributes=FALSE) #rownames differ [1] TRUE > > > proc.time() user system elapsed 0.743 0.032 0.769 survival/tests/singtest.R0000644000176200001440000000143513537676563015302 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # A simple test of an overdetermined system # Should give a set of NA coefficients # test1 <- data.frame(time= c(4, 3,1,1,2,2,3), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) temp <- rep(0:3, rep(7,4)) stest <- data.frame(start = 10*temp, stop = 10*temp + test1$time, status = rep(test1$status,4), x = c(test1$x+ 1:7, rep(test1$x,3)), epoch = rep(1:4, rep(7,4))) # Will create a warning about a singular X matrix fit1 <- coxph(Surv(start, stop, status) ~ x * factor(epoch), stest) fit1$coef # elements 2:4 should be NA all.equal(is.na(fit1$coef), c(F,T,T,T,F,F,F), check.attributes=FALSE) survival/tests/r_strata.Rout.save0000644000176200001440000001156113537676563016747 0ustar liggesusers R version 3.4.1 (2017-06-30) -- "Single Candle" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Test out the strata capabilities > # > tol <- survreg.control()$rel.tolerance > aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y), ...) > > # intercept only models > fit1 <- survreg(Surv(time, status) ~ strata(sex), lung) > fit2 <- survreg(Surv(time, status) ~ strata(sex) + sex, lung) > fit3a<- survreg(Surv(time,status) ~1, lung, subset=(sex==1)) > fit3b<- survreg(Surv(time,status) ~1, lung, subset=(sex==2)) > > fit1 Call: survreg(formula = Surv(time, status) ~ strata(sex), data = lung) Coefficients: (Intercept) 6.062171 Scale: sex=1 sex=2 0.8167551 0.6533036 Loglik(model)= -1152.5 Loglik(intercept only)= -1152.5 n= 228 > fit2 Call: survreg(formula = Surv(time, status) ~ strata(sex) + sex, data = lung) Coefficients: (Intercept) sex 5.494409 0.380171 Scale: sex=1 sex=2 0.8084294 0.6355816 Loglik(model)= -1147.1 Loglik(intercept only)= -1152.5 Chisq= 10.9 on 1 degrees of freedom, p= 0.000963 n= 228 > aeq(fit2$scale, c(fit3a$scale, fit3b$scale), tolerance=tol) [1] TRUE > aeq(fit2$loglik[2], (fit3a$loglik + fit3b$loglik)[2], tolerance=tol) [1] TRUE > aeq(fit2$coef[1] + 1:2*fit2$coef[2], c(fit3a$coef, fit3b$coef), tolerance=tol) [1] TRUE > > #penalized models > fit1 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+ + strata(sex), lung) > fit2 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+ + strata(sex) + sex, lung) > fit1 Call: survreg(formula = Surv(time, status) ~ pspline(age, theta = 0.92) + strata(sex), data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.9036 0.8469 0.5688 66.45 1.00 3.6e-16 pspline(age, theta = 0.92 -0.0124 0.0067 0.0067 3.45 1.00 6.3e-02 pspline(age, theta = 0.92 2.53 2.65 4.0e-01 Scale: sex=1 sex=2 0.807 0.654 Iterations: 1 outer, 4 Newton-Raphson Theta= 0.92 Degrees of freedom for terms= 0.5 3.6 2.0 Likelihood ratio test=6.54 on 3.1 df, p=0.09 n= 228 > fit2 Call: survreg(formula = Surv(time, status) ~ pspline(age, theta = 0.92) + strata(sex) + sex, data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.3729 0.84471 0.59118 56.92 1.00 4.5e-14 pspline(age, theta = 0.92 -0.0111 0.00666 0.00666 2.77 1.00 9.6e-02 pspline(age, theta = 0.92 2.46 2.68 4.2e-01 sex 0.3686 0.11711 0.11685 9.91 1.00 1.6e-03 Scale: sex=1 sex=2 0.800 0.636 Iterations: 1 outer, 5 Newton-Raphson Theta= 0.92 Degrees of freedom for terms= 0.5 3.7 1.0 2.0 Likelihood ratio test=16.8 on 4.2 df, p=0.002 n= 228 > > age1 <- ifelse(lung$sex==1, lung$age, mean(lung$age)) > age2 <- ifelse(lung$sex==2, lung$age, mean(lung$age)) > fit3 <- survreg(Surv(time,status) ~ pspline(age1, theta=.92) + + pspline(age2, theta=.95) + sex + strata(sex), lung) > fit3a<- survreg(Surv(time,status) ~pspline(age, theta=.92), lung, + subset=(sex==1)) > fit3b<- survreg(Surv(time,status) ~pspline(age, theta=.95), lung, + subset=(sex==2)) > fit3b<- survreg(Surv(time,status) ~pspline(age, theta=.95), + lung[lung$sex==2,], x=T) > # > # The above line is tricky, and it took me a long time to realize > # it's necessity. The range of age1 = range(age) = 39-82. That for > # age2 = range of females = 41-77. The basis functions for pspline are > # based on age. If I used data=lung, subset=(sex==2) in fit3b (earlier > # form of the test, the pspline function is called before the subset > # occurs, and fit3b has a different basis for the second spline than > # fit3 does; leading to failure of the all.equal tests below. A theta > # of .95 on one basis is not exactly the same as a theta of .95 on the > # other. Coefficients were within 1%, but not the same. > > aeq(fit3$scale, c(fit3a$scale, fit3b$scale)) [1] TRUE > aeq(fit3$loglik[2], (fit3a$loglik + fit3b$loglik)[2]) [1] TRUE > pred <- predict(fit3) > aeq(pred[lung$sex==1] , predict(fit3a)) [1] TRUE > aeq(pred[lung$sex==2], predict(fit3b)) [1] TRUE > > > > > > proc.time() user system elapsed 2.032 0.131 2.443 survival/tests/counting.Rout.save0000644000176200001440000000531613537676563016757 0ustar liggesusers R version 2.10.0 (2009-10-26) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # Create a "counting process" version of the simplest test data set > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > test1b<- list(start= c(0, 3, 0, 0, 5, 0, 6,14, 0, 0, 10,20,30, 0), + stop = c(3,10, 10, 5,20, 6,14,20, 30, 10,20,30,40, 10), + status=c(0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0), + x= c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, NA), + id = c(3, 3, 4, 5, 5, 6, 6, 6, 7, 1, 1, 1, 1, 2)) > > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > # > # Check out the various residuals under an Efron approximation > # > fit0 <- coxph(Surv(time, status)~ x, test1, iter=0) > fit <- coxph(Surv(time, status) ~x, test1) > fit0b <- coxph(Surv(start, stop, status) ~ x, test1b, iter=0) > fitb <- coxph(Surv(start, stop, status) ~x, test1b) > fitc <- coxph(Surv(time, status) ~ offset(fit$coef*x), test1) > fitd <- coxph(Surv(start, stop, status) ~ offset(fit$coef*x), test1b) > > aeq(fit0b$coef, fit0$coef) [1] TRUE > > aeq(resid(fit0), resid(fit0b, collapse=test1b$id)) [1] TRUE > aeq(resid(fit), resid(fitb, collapse=test1b$id)) [1] TRUE > aeq(resid(fitc), resid(fitd, collapse=test1b$id)) [1] TRUE > aeq(resid(fitc), resid(fit)) [1] TRUE > > aeq(resid(fit0, type='score'), resid(fit0b, type='score', collapse=test1b$id)) [1] TRUE > aeq(resid(fit, type='score'), resid(fitb, type='score', collapse=test1b$id)) [1] TRUE > > aeq(resid(fit0, type='scho'), resid(fit0b, type='scho', collapse=test1b$id)) [1] TRUE > aeq(resid(fit, type='scho'), resid(fitb, type='scho', collapse=test1b$id)) [1] TRUE > > # The two survivals will have different censoring times > # nrisk, nevent, surv, and std should be the same > temp1 <- survfit(fit, list(x=1), censor=FALSE) > temp2 <- survfit(fitb, list(x=1), censor=FALSE) > all.equal(unclass(temp1)[c(3,4,6,8)], unclass(temp2)[c(3,4,6,8)]) [1] TRUE > > > survival/tests/aareg.Rout.save0000644000176200001440000002766513537676563016223 0ustar liggesusers R Under development (unstable) (2019-05-16 r76518) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Test aareg, for some simple data where the answers can be computed > # in closed form > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > test1 <- data.frame(time= c(4, 3,1,1,2,2,3), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0), + wt= c(1, 1:6)) > > tfit <- aareg(Surv(time, status) ~ x, test1) > aeq(tfit$times, c(1,2,2)) [1] TRUE > aeq(tfit$nrisk, c(6,4,4)) [1] TRUE > aeq(tfit$coefficient, matrix(c(0,0,1/3, 1/3, 1, -1/3), ncol=2)) [1] TRUE > aeq(tfit$tweight, matrix(c(3,3,3, 3/2, 3/4, 3/4), ncol=2)) [1] TRUE > aeq(tfit$test.statistic, c(1,1)) [1] TRUE > aeq(tfit$test.var, c(1, -1/4, -1/4, 1/4 + 9/16 + 1/16)) [1] TRUE > > tfit <- aareg(Surv(time, status) ~ x, test1, test='nrisk') > aeq(tfit$tweight, matrix(c(3,3,3, 3/2, 3/4, 3/4), ncol=2)) #should be as before [1] TRUE > aeq(tfit$test.statistic, c(4/3, 6/3+ 4 - 4/3)) [1] TRUE > aeq(tfit$test.var, c(16/9, -16/9, -16/9, 36/9 + 16 + 16/9)) [1] TRUE > > # In the 1-variable case, this is the same as the default Aalen weight > tfit <- aareg(Surv(time, status) ~ x, test1, test='variance') > aeq(tfit$test.statistic, c(1,1)) [1] TRUE > aeq(tfit$test.var, c(1, -1/4, -1/4, 1/4 + 9/16 + 1/16)) [1] TRUE > > # > # Repeat the above, with case weights > # > tfit <- aareg(Surv(time, status) ~x, test1, weights=wt) > aeq(tfit$times, c(1,2,2)) [1] TRUE > aeq(tfit$nrisk, c(21,16,16)) [1] TRUE > aeq(tfit$coefficient, matrix(c(0,0,5/12, 2/9, 1, -5/12), ncol=2)) [1] TRUE > aeq(tfit$tweight, matrix(c(12,12,12, 36/7, 3,3), ncol=2)) [1] TRUE > aeq(tfit$test.statistic, c(5, 72/63 + 3 - 15/12)) [1] TRUE > aeq(tfit$test.var, c(25, -25/4, -25/4, (72/63)^2 + 9 + (5/4)^2)) [1] TRUE > > tfit <- aareg(Surv(time, status) ~x, test1, weights=wt, test='nrisk') > aeq(tfit$test.statistic, c(20/3, 42/9 + 16 - 16*5/12)) [1] TRUE > aeq(tfit$test.var, c(400/9, -400/9, -400/9, + (42/9)^2 + 16^2 + (16*5/12)^2)) [1] TRUE > > # > # Make a test data set with no NAs, in sorted order, no ties, > # 15 observations > tdata <- lung[15:29, c('time', 'status', 'age', 'sex', 'ph.ecog')] > tdata$status <- tdata$status -1 > tdata <- tdata[order(tdata$time, tdata$status),] > row.names(tdata) <- 1:15 > tdata$status[8] <- 0 #for some variety > > afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, tdata, nmin=6) > # > # Now, do it "by hand" > cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, tdata, iter=0, + method='breslow') > dt1 <- coxph.detail(cfit) > sch1 <- resid(cfit, type='schoen') > > # First estimate of Aalen: from the Cox computations, first 9 > # The first and last cols of the ninth are somewhat unstable (approx =0) > mine <- rbind(solve(dt1$imat[,,1], sch1[1,]), + solve(dt1$imat[,,2], sch1[2,]), + solve(dt1$imat[,,3], sch1[3,]), + solve(dt1$imat[,,4], sch1[4,]), + solve(dt1$imat[,,5], sch1[5,]), + solve(dt1$imat[,,6], sch1[6,]), + solve(dt1$imat[,,7], sch1[7,]), + solve(dt1$imat[,,8], sch1[8,]), + solve(dt1$imat[,,9], sch1[9,])) > mine <- diag(1/dt1$nrisk[1:9]) %*% mine > > aeq(mine, afit$coef[1:9, -1]) [1] TRUE > > # > # Check out the dfbeta matrix from aareg > # Note that it is kept internally in time order, not data set order > # Those who want residuals should use the resid function! > > # > # First, the simple test case where I know the anwers > # > afit <- aareg(Surv(time, status) ~ x, test1, dfbeta=T) > temp <- c(rep(0,6), #intercepts at time 1 + c(2,-1,-1,0,0,0)/9, #alpha at time 1 + c(0,0,0,2, -1, -1)/9, #intercepts at time 2 + c(0,0,0,-2,1,1)/9) #alpha at time 2 > aeq(afit$dfbeta, temp) [1] TRUE > > # > #Now a multivariate data set > # > afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, lung, dfbeta=T) > > ord <- order(lung$time, -lung$status) > cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung[ord,], + method='breslow', iter=0, x=T) > cdt <- coxph.detail(cfit, riskmat=T) > > # an arbitrary list of times > acoef <- rowsum(afit$coef, afit$times) #per death time coefs > indx <- match(cdt$time, afit$times) > for (i in c(2,5,27,54,101, 135)) { + lwho <- (cdt$riskmat[,i]==1) + lmx <- cfit$x[lwho,] + lmy <- 1*( cfit$y[lwho,2]==1 & cfit$y[lwho,1] == cdt$time[i]) + fit <- lm(lmy~ lmx) + cat("i=", i, "coef=", aeq(fit$coef, acoef[i,])) + + rr <- diag(resid(fit)) + zz <- cbind(1,lmx) + zzinv <- solve(t(zz) %*% zz) + cat(" twt=", aeq(1/(diag(zzinv)), afit$tweight[indx[i],])) + + df <- t(zzinv %*% t(zz) %*% rr) + cat(" dfbeta=", aeq(df, afit$dfbeta[lwho,,i]), "\n") + } i= 2 coef= TRUE twt= TRUE dfbeta= TRUE i= 5 coef= TRUE twt= TRUE dfbeta= TRUE i= 27 coef= TRUE twt= TRUE dfbeta= TRUE i= 54 coef= TRUE twt= TRUE dfbeta= TRUE i= 101 coef= TRUE twt= TRUE dfbeta= TRUE i= 135 coef= TRUE twt= TRUE dfbeta= TRUE > > > # Repeat it with case weights > ww <- rep(1:5, length=nrow(lung))/ 3.0 > afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, lung, dfbeta=T, + weights=ww) > cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung[ord,], + method='breslow', iter=0, x=T, weight=ww[ord]) > cdt <- coxph.detail(cfit, riskmat=T) > > acoef <- rowsum(afit$coef, afit$times) #per death time coefs > for (i in c(2,5,27,54,101, 135)) { + who <- (cdt$riskmat[,i]==1) + x <- cfit$x[who,] + y <- 1*( cfit$y[who,2]==1 & cfit$y[who,1] == cdt$time[i]) + w <- cfit$weight[who] + fit <- lm(y~x, weights=w) + cat("i=", i, "coef=", aeq(fit$coef, acoef[i,])) + + rr <- diag(resid(fit)) + zz <- cbind(1,x) + zzinv <- solve(t(zz)%*% (w*zz)) + cat(" twt=", aeq(1/(diag(zzinv)), afit$tweight[indx[i],])) + + df <- t(zzinv %*% t(zz) %*% (w*rr)) + cat(" dfbeta=", aeq(df, afit$dfbeta[who,,i]), "\n") + } i= 2 coef= TRUE twt= TRUE dfbeta= TRUE i= 5 coef= TRUE twt= TRUE dfbeta= TRUE i= 27 coef= TRUE twt= TRUE dfbeta= TRUE i= 54 coef= TRUE twt= TRUE dfbeta= TRUE i= 101 coef= TRUE twt= TRUE dfbeta= TRUE i= 135 coef= TRUE twt= TRUE dfbeta= TRUE > > # > # Check that the test statistic computed within aareg and > # the one recomputed within summary.aareg are the same. > # Of course, they could both be wrong, but at least they'll agree! > # If the maxtime argument is used in summary, it recomputes the test, > # even if we know that it wouldn't have had to. > # > # Because the 1-variable and >1 variable case have different code, test > # them both. > # > afit <- aareg(Surv(time, status) ~ age, lung, dfbeta=T) > asum <- summary(afit, maxtime=max(afit$times)) > aeq(afit$test.stat, asum$test.stat) [1] TRUE > aeq(afit$test.var, asum$test.var) [1] TRUE > aeq(afit$test.var2, asum$test.var2) [1] TRUE > > print(afit) Call: aareg(formula = Surv(time, status) ~ age, data = lung, dfbeta = T) n= 228 139 out of 139 unique event times used slope coef se(coef) robust se z p Intercept -0.000872 -0.000905 4.26e-03 4.13e-03 -0.219 0.8270 age 0.000110 0.000142 6.96e-05 6.75e-05 2.110 0.0351 Chisq=4.44 on 1 df, p=0.0351; test weights=aalen > > afit <- aareg(Surv(time, status) ~ age, lung, dfbeta=T, test='nrisk') > asum <- summary(afit, maxtime=max(afit$times)) > aeq(afit$test.stat, asum$test.stat) [1] TRUE > aeq(afit$test.var, asum$test.var) [1] TRUE > aeq(afit$test.var2, asum$test.var2) [1] TRUE > > summary(afit) $table slope coef se(coef) robust se z Intercept -0.0009538483 -0.11693804 0.534885651 0.533148054 -0.219335 age 0.0001053024 0.01795521 0.008746523 0.008734005 2.055782 p Intercept 0.82638908 age 0.03980352 $test [1] "nrisk" $test.statistic Intercept age -19.29478 2.96261 $test.var [,1] [,2] [1,] 7789.1449 -126.055872 [2,] -126.0559 2.082758 $test.var2 [,1] [,2] [1,] 7738.6204 -125.5077 [2,] -125.5077 2.0768 $chisq [,1] [1,] 4.22624 $n [1] 228 139 139 attr(,"class") [1] "summary.aareg" > > # > # Mulitvariate > # > afit <- aareg(Surv(time, status) ~ age + sex + ph.karno + pat.karno, lung, + dfbeta=T) > asum <- summary(afit, maxtime=max(afit$times)) > aeq(afit$test.stat, asum$test.stat) [1] TRUE > aeq(afit$test.var, asum$test.var) [1] TRUE > aeq(afit$test.var2, asum$test.var2) [1] TRUE > > print(afit) Call: aareg(formula = Surv(time, status) ~ age + sex + ph.karno + pat.karno, data = lung, dfbeta = T) n=224 (4 observations deleted due to missingness) 132 out of 136 unique event times used slope coef se(coef) robust se z p Intercept 2.15e-02 0.025000 8.45e-03 7.72e-03 3.25 0.00117 age 3.09e-05 0.000076 7.32e-05 6.49e-05 1.17 0.24100 sex -2.96e-03 -0.004020 1.25e-03 1.23e-03 -3.27 0.00109 ph.karno -6.77e-05 -0.000083 6.69e-05 8.30e-05 -1.00 0.31700 pat.karno -1.01e-04 -0.000112 5.59e-05 5.70e-05 -1.96 0.05010 Chisq=23.36 on 4 df, p=0.000107; test weights=aalen > > afit <- aareg(Surv(time, status) ~ age + sex + ph.karno + pat.karno, lung, + dfbeta=T, test='nrisk') > asum <- summary(afit, maxtime=max(afit$times)) > aeq(afit$test.stat, asum$test.stat) [1] TRUE > aeq(afit$test.var, asum$test.var) [1] TRUE > aeq(afit$test.var2, asum$test.var2) [1] TRUE > > summary(afit) $table slope coef se(coef) robust se z Intercept 2.119015e-02 3.05872822 1.044992929 0.955953617 3.199662 age 3.181122e-05 0.01071085 0.009280348 0.008182931 1.308926 sex -2.985556e-03 -0.49368373 0.153217001 0.151559500 -3.257359 ph.karno -8.371983e-05 -0.01131957 0.007825769 0.009654398 -1.172478 pat.karno -8.501076e-05 -0.01328844 0.007241150 0.007669582 -1.732617 p Intercept 0.00137589 age 0.19055946 sex 0.00112454 ph.karno 0.24100515 pat.karno 0.08316385 $test [1] "nrisk" $test.statistic Intercept age sex ph.karno pat.karno 480.220330 1.681604 -77.508345 -1.777173 -2.086286 $test.var b0 b0 26916.95995 -177.3767597 -791.4141458 -103.5540756 -69.1210402 -177.37676 2.1228915 0.1752574 0.4055099 0.1622945 -791.41415 0.1752574 578.6463538 -0.9726495 -0.6320578 -103.55408 0.4055099 -0.9726495 1.5095704 -0.5793466 -69.12104 0.1622945 -0.6320578 -0.5793466 1.2924520 $test.var2 [,1] [,2] [,3] [,4] [,5] [1,] 22525.42254 -109.0376340 -1294.620657 -135.7477106 -24.1718358 [2,] -109.03763 1.6505060 2.562655 0.1774270 -0.1206339 [3,] -1294.62066 2.5626546 566.194480 7.4865489 -4.7691882 [4,] -135.74771 0.1774270 7.486549 2.2974694 -0.9877341 [5,] -24.17184 -0.1206339 -4.769188 -0.9877341 1.4499155 $chisq [,1] [1,] 22.3874 $n [1] 224 132 136 attr(,"class") [1] "summary.aareg" > > # Weights play no role in the final computation of the test statistic, given > # the coefficient matrix, nrisk, and dfbeta as inputs. (Weights do > # change the inputs). So there is no need to reprise the above with > # case weights. > > proc.time() user system elapsed 0.949 0.056 0.998 survival/tests/factor2.Rout.save0000644000176200001440000000345113537676563016467 0ustar liggesusers R version 2.14.0 (2011-10-31) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > options(na.action=na.exclude) > # > # More tests of factors in prediction, using a new data set > # > fit <- coxph(Surv(time, status) ~ factor(ph.ecog), lung) > > tdata <- data.frame(ph.ecog = factor(0:3)) > p1 <- predict(fit, newdata=tdata, type='lp') > p2 <- predict(fit, type='lp') > aeq(p1, p2[match(0:3, lung$ph.ecog)]) [1] TRUE > > fit2 <- coxph(Surv(time, status) ~ factor(ph.ecog) + factor(sex), lung) > tdata <- expand.grid(ph.ecog = factor(0:3), sex=factor(1:2)) > p1 <- predict(fit2, newdata=tdata, type='risk') > > xdata <- expand.grid(ph.ecog=factor(1:3), sex=factor(1:2)) > p2 <- predict(fit2, newdata=xdata, type='risk') > all.equal(p2, p1[c(2:4, 6:8)], check.attributes=FALSE) [1] TRUE > > > fit3 <- survreg(Surv(time, status) ~ factor(ph.ecog) + age, lung) > tdata <- data.frame(ph.ecog=factor(0:3), age=50) > predict(fit, type='lp', newdata=tdata) 1 2 3 4 -0.39518177 -0.02634168 0.52120527 1.81279848 > predict(fit3, type='lp', newdata=tdata) 1 2 3 4 6.399571 6.142938 5.770523 4.916993 > survival/tests/testci.Rout.save0000644000176200001440000001311313537676563016416 0ustar liggesusers R Under development (unstable) (2019-05-15 r76504) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y),...) > > # > # Test out the survfit.ci function, which does competing risk > # estimates > # Replaced by ordinary calls to survfit, with status a factor > # > # First trivial test > tdata <- data.frame(time=c(1,2,2,3,3,3,5,6), + status = c(0,1,0,1,0,1,0,1), + event = c(1,1,2,2,1,2,3,2), + grp = c(1,2,1,2,1,2,1,2)) > fit <- survfit(Surv(time, status*event, type='mstate') ~1, tdata) > > byhand <- function() { + #everyone starts in state 0 + p1 <- c(1,0,0) + + p2 <- c(6/7, 1/7, 0) # 0-1 transition at time 2 + u2 <- matrix(rep(c(1/49, -1/49, 0), each=8), ncol=3) #leverage matrix at time 2 + u2[1,] <- 0 #subject 1 is not present + u2[2,1:2] <- u2[2, 1:2] + c(-1/7, 1/7) + + p3 <- c((6/7)*(3/5), 1/7, 12/35) # 0-2 transition at time 3, 5 at risk + h3 <- matrix(c(3/5, 0, 2/5, 0,1,0, 0,1,0), byrow=T, ncol=3) #hazard mat + u3 <- u2 %*% h3 + u3[4:8,1] <- u3[4:8,1] + p2[1]*2/25 + u3[4:8,3] <- u3[4:8,3] -p2[1]*2/25 + u3[4,] <- u3[4,] + c(-p2[1]/5, 0, p2[1]/5) + u3[6,] <- u3[4,] + + p6 <- c(0, 1/7, 6/7) # 0-2 at time 6, 1 at risk + h6 <- matrix(c(-1,0,1,0,1,0,0,1,0), byrow=T, ncol=3) + u6 <- cbind(0, u3[,2], -u3[,2]) + + V <- rbind(0, colSums(u2^2), + colSums(u3^2), + colSums(u3^2), + colSums(u6^2)) + list(P=rbind(p1, p2, p3, p3, p6), u2=u2, u3=u3, u6=u6, V=V) + } > bfit <- byhand() > aeq(fit$pstate, bfit$P) [1] TRUE > aeq(fit$n.risk[,1], c(8,7,5,2,1)) [1] TRUE > aeq(fit$n.event[,2:3], c(0,1,0,0,0, 0,0 ,2,0,1)) [1] TRUE > aeq(fit$std^2, bfit$V) [1] TRUE > > # Times purposely has values that are before the start, exact, intermediate > # and after the end of the observed times > sfit <- summary(fit, times=c(0, 1, 3.5, 6, 7), extend=TRUE) > aeq(sfit$pstate, rbind(c(1,0,0), bfit$P[c(1,3,5,5),])) [1] TRUE > aeq(sfit$n.risk[,1], c(8,8, 2, 1, 0)) [1] TRUE > aeq(sfit$n.event, matrix(c(0,0,0,0,0, 0,0,1,0,0, 0,0,2,1,0), ncol=3)) [1] TRUE > > # > # For this we need the competing risks MGUS data set, first > # event > # > tdata <- mgus1[mgus1$enum==1,] > # Ensure the old-style call using "etype" works (backwards compatability) > fit1 <- survfit(Surv(stop, status) ~ 1, etype=event, tdata) > fit1b <-survfit(Surv(stop, event) ~1, tdata) > indx <- match("call", names(fit1)) > all.equal(unclass(fit1)[-indx], unclass(fit1b)[-indx]) [1] TRUE > > # Now get the overall survival, and the hazard for progression > fit2 <- survfit(Surv(stop, status) ~1, tdata) #overall to "first bad thing" > fit3 <- survfit(Surv(stop, status*(event=='pcm')) ~1, tdata, + type='fleming') > fit4 <- survfit(Surv(stop, status*(event=='death')) ~1, tdata, + type='fleming') > > aeq(fit1$n.risk[,1], fit2$n.risk) [1] TRUE > aeq(rowSums(fit1$n.event), fit2$n.event) [1] TRUE > > # Classic CI formula > # integral [hazard(t) S(t-0) dt], where S= "survival to first event" > haz1 <- diff(c(0, -log(fit3$surv))) #Aalen hazard estimate for progression > haz2 <- diff(c(0, -log(fit4$surv))) #Aalen estimate for death > tsurv <- c(1, fit2$surv[-length(fit2$surv)]) #lagged survival > ci1 <- cumsum(haz1 *tsurv) > ci2 <- cumsum(haz2 *tsurv) > aeq(cbind(ci1, ci2), fit1$pstate[,2:3]) [1] TRUE > > # > # Now, make sure that it works for subgroups > # > fit1 <- survfit(Surv(stop, event) ~ sex, tdata) > fit2 <- survfit(Surv(stop, event) ~ 1, tdata, + subset=(sex=='female')) > fit3 <- survfit(Surv(stop, event) ~ 1, tdata, + subset=(sex=='male')) > > aeq(fit2$pstate, fit1$pstate[1:fit1$strata[1],]) [1] TRUE > aeq(fit2$std, fit1$std[1:fit1$strata[1],]) [1] TRUE > aeq(fit3$pstate, fit1$pstate[-(1:fit1$strata[1]),]) [1] TRUE > > # A second test of cumulative incidence > # compare results to Bob Gray's functions > # The file gray1 is the result of > # library(cmprsk) > # tstat <- ifelse(tdata$status==0, 0, 1+ (tdata$event=='death')) > # gray1 <- cuminc(tdata$stop, tstat) > load("gray1.rda") > fit2 <- survfit(Surv(stop, event) ~ 1, tdata) > > if (FALSE) { + # lines of the two graphs should overlay + plot(gray1[[1]]$time, gray1[[1]]$est, type='l', + ylim=range(c(gray1[[1]]$est, gray1[[2]]$est)), + xlab="Time") + lines(gray1[[2]]$time, gray1[[2]]$est, lty=2) + matlines(fit2$time, fit2$pstate, col=2, lty=1:2, type='s') + } > # To formally match these is a bit of a nuisance. > # The cuminc function returns a full step function, and survfit only > # the bottoms of the steps. > temp1 <- tapply(gray1[[1]]$est, gray1[[1]]$time, max)[-1] #toss time 0 > indx1 <- match(names(temp1), fit2$time) > aeq(temp1, fit2$pstate[indx1,2]) [1] TRUE > > > proc.time() user system elapsed 0.788 0.060 0.849 survival/tests/survtest.Rout.save0000644000176200001440000000667113537676603017030 0ustar liggesusers R Under development (unstable) (2019-01-23 r76006) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Simple test of (start, stop] Kaplan-Meier curves, using the test2 data > # set > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > fit1 <- survfit(Surv(start, stop, event) ~1, test2, type='fh2', + error='tsiatis') > fit2 <- survfit(Surv(start, stop, event) ~x, test2, start.time=3, + type='fh2') > > cfit1<- survfit(coxph(Surv(start, stop, event)~1, test2)) > cfit2<- survfit(coxph(Surv(start, stop, event) ~ strata(x), test2, subset=-1)) > > deaths <- (fit1$n.event + fit1$n.censor)>0 > aeq(fit1$time[deaths], cfit1$time) [1] TRUE > aeq(fit1$n.risk[deaths], cfit1$n.risk) [1] TRUE > aeq(fit1$n.event[deaths], cfit1$n.event) [1] TRUE > aeq(fit1$surv[deaths], cfit1$surv) [1] TRUE > aeq(fit1$std.err[deaths], cfit1$std.err) [1] TRUE > > deaths <- (fit2$n.event + fit2$n.censor)>0 > aeq(fit2$time[deaths], cfit2$time) [1] TRUE > aeq(fit2$n.risk[deaths], cfit2$n.risk) [1] TRUE > aeq(fit2$n.event[deaths], cfit2$n.event) [1] TRUE > aeq(fit2$surv[deaths], cfit2$surv) [1] TRUE > > fit3 <- survfit(Surv(start, stop, event) ~1, test2) #Kaplan-Meier > aeq(fit3$n, 10) [1] TRUE > aeq(fit3$time, unique(test2$stop)) [1] TRUE > aeq(fit3$n.risk, c(2,3,5,4,4,5,2,1)) [1] TRUE > aeq(fit3$n.event,c(1,1,1,1,1,2,0,0)) [1] TRUE > aeq(fit3$surv[fit3$n.event>0], c(.5, 1/3, 4/15, 1/5, 3/20, 9/100)) [1] TRUE > # > # Verify that both surv AND n.risk are right between time points. > # > fit <- survfit(Surv(time, status) ~1, test1) > temp <- summary(fit, time=c(.5,1, 1.5, 6, 7.5, 8, 8.9, 9, 10), extend=TRUE) > > aeq(temp$n.risk, c(6,6,4,4,2,2,1,1,0)) [1] TRUE > aeq(temp$surv, c(1, fit$surv[c(1,1,2,2,3,3,4,4)])) [1] TRUE > aeq(temp$n.event, c(0,1,0,2,0,0,0,1,0)) [1] TRUE > aeq(temp$std.err, c(0, (fit$surv*fit$std.err)[c(1,1,2,2,3,3,4,4)])) [1] TRUE > > > fit <- survfit(Surv(start, stop, event) ~1, test2) > temp <- summary(fit, times=c(.5, 1.5, 2.5, 3, 6.5, 14.5, 16.5)) > aeq(temp$surv, c(1, 1, fit$surv[c(1,2,3,6,6)])) [1] TRUE > > # This next fails. With start-stop data the number at risk at intermediate > # endpoints is not known precisely, since the underlying routine does not report > # time points at which only an addition occured. > # aeq(temp$n.risk, c(0, 2, 3, 3, 4, 1,1)) > > proc.time() user system elapsed 0.784 0.040 0.823 survival/tests/detail.Rout.save0000644000176200001440000000672313537676563016376 0ustar liggesusers R Under development (unstable) (2019-06-28 r76752) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # A short test on coxph.detail, to ensure that the computed hazard is > # equal to the theoretical value > library(survival) > aeq <- function(a,b) all.equal(as.vector(a), as.vector(b)) > > # taken from book4.R > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > byhand <- function(beta, newx=0) { + r <- exp(beta) + loglik <- 4*beta - (log(r+1) + log(r+2) + 2*log(3*r+2) + 2*log(3*r+1) + + log(2*r +2)) + u <- 1/(r+1) + 1/(3*r+1) + 2*(1/(3*r+2) + 1/(2*r+2)) - + ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) + imat <- r*(1/(r+1)^2 + 2/(r+2)^2 + 6/(3*r+2)^2 + + 6/(3*r+1)^2 + 6/(3*r+2)^2 + 4/(2*r +2)^2) + + hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), + 1/(3*r+2), 1/(2*r +2) ) + + + # The matrix of weights, one row per obs, one col per time + # deaths at 2,3,6,7,8,9 + wtmat <- matrix(c(1,0,0,0,1, 0, 0,0,0,0, + 0,1,0,1,1, 0, 0,0,0,0, + 0,0,1,1,1, 0, 1,1,0,0, + 0,0,0,1,1, 0, 1,1,0,0, + 0,0,0,0,1, 1, 1,1,0,0, + 0,0,0,0,0, 1, 1,1,1,1, + 0,0,0,0,0,.5,.5,1,1,1), ncol=7) + wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat + + x <- c(1,0,0,1,0,1,1,1,0,0) + status <- c(1,1,1,1,1,1,1,0,0,0) + xbar <- colSums(wtmat*x)/ colSums(wtmat) + n <- length(x) + + # Table of sums for score and Schoenfeld resids + hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time + dM <- -hazmat #Expected part + for (i in 1:5) dM[i,i] <- dM[i,i] +1 #observed + dM[6:7,6:7] <- dM[6:7,6:7] +.5 # observed + mart <- rowSums(dM) + + # Table of sums for score and Schoenfeld resids + # Looks like the last table of appendix E.2.1 of the book + resid <- dM * outer(x, xbar, '-') + score <- rowSums(resid) + scho <- colSums(resid) + + # We need to add the ties back up (they are symmetric) + scho[6:7] <- rep(mean(scho[6:7]), 2) + + list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard* exp(beta*newx), + mart=mart, score=score, rmat=resid, + scho=scho) + } > > # The actual coefficient of the fit is close to zero. Using a larger > # number pushes the test harder, but it should still work without > # the init and iter arguments, i.e., for any coefficient. > fit1 <- coxph(Surv(start, stop, event) ~x, test2,init=-1, iter=0) > temp <- coxph.detail(fit1) > temp2 <- byhand(fit1$coef, fit1$means) > aeq(temp$haz, c(temp2$haz[1:5], sum(temp2$haz[6:7]))) [1] TRUE > > > proc.time() user system elapsed 1.633 0.128 1.747 survival/tests/testreg.Rout.save0000644000176200001440000002407113537676603016600 0ustar liggesusers R Under development (unstable) (2019-06-28 r76752) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) #preserve length of missings > library(survival) > > # > # Run a test that can be verified using other packages > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > fit1w <- survreg(Surv(time, status) ~x, test1, dist='weibull') > fit1w Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "weibull") Coefficients: (Intercept) x 2.2373335 -0.7442249 Scale= 0.4563163 Loglik(model)= -10.3 Loglik(intercept only)= -11.4 Chisq= 2.22 on 1 degrees of freedom, p= 0.136 n=6 (1 observation deleted due to missingness) > summary(fit1w) Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "weibull") Value Std. Error z p (Intercept) 2.237 0.330 6.78 1.2e-11 x -0.744 0.486 -1.53 0.13 Log(scale) -0.785 0.433 -1.81 0.07 Scale= 0.456 Weibull distribution Loglik(model)= -10.3 Loglik(intercept only)= -11.4 Chisq= 2.22 on 1 degrees of freedom, p= 0.14 Number of Newton-Raphson Iterations: 8 n=6 (1 observation deleted due to missingness) > > fit1e <- survreg(Surv(time, status) ~x, test1, dist='exponential') > fit1e Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "exponential") Coefficients: (Intercept) x 2.442347 -1.056053 Scale fixed at 1 Loglik(model)= -11.7 Loglik(intercept only)= -12.2 Chisq= 1.07 on 1 degrees of freedom, p= 0.302 n=6 (1 observation deleted due to missingness) > summary(fit1e) Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "exponential") Value Std. Error z p (Intercept) 2.442 0.707 3.45 0.00055 x -1.056 1.000 -1.06 0.29094 Scale fixed at 1 Exponential distribution Loglik(model)= -11.7 Loglik(intercept only)= -12.2 Chisq= 1.07 on 1 degrees of freedom, p= 0.3 Number of Newton-Raphson Iterations: 4 n=6 (1 observation deleted due to missingness) > > fit1l <- survreg(Surv(time, status) ~x, test1, dist='loglogistic') > fit1l Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "loglogistic") Coefficients: (Intercept) x 2.177208 -1.195672 Scale= 0.3847582 Loglik(model)= -10.7 Loglik(intercept only)= -12 Chisq= 2.7 on 1 degrees of freedom, p= 0.1 n=6 (1 observation deleted due to missingness) > summary(fit1l) Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "loglogistic") Value Std. Error z p (Intercept) 2.177 0.365 5.96 2.5e-09 x -1.196 0.711 -1.68 0.093 Log(scale) -0.955 0.396 -2.41 0.016 Scale= 0.385 Log logistic distribution Loglik(model)= -10.7 Loglik(intercept only)= -12 Chisq= 2.7 on 1 degrees of freedom, p= 0.1 Number of Newton-Raphson Iterations: 4 n=6 (1 observation deleted due to missingness) > > fit1g <- survreg(Surv(time, status) ~x, test1, dist='lognormal') > summary(fit1g) Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "lognormal") Value Std. Error z p (Intercept) 2.210 0.404 5.48 4.4e-08 x -1.268 0.585 -2.17 0.03 Log(scale) -0.446 0.342 -1.30 0.19 Scale= 0.64 Log Normal distribution Loglik(model)= -10.5 Loglik(intercept only)= -12.1 Chisq= 3.26 on 1 degrees of freedom, p= 0.071 Number of Newton-Raphson Iterations: 5 n=6 (1 observation deleted due to missingness) > # > # Do a test with the ovarian data > # > fitfw <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, + dist='weibull') > fitfw Call: survreg(formula = Surv(futime, fustat) ~ age + ecog.ps, data = ovarian, dist = "weibull") Coefficients: (Intercept) age ecog.ps 12.28496723 -0.09702669 0.09977342 Scale= 0.6032744 Loglik(model)= -90 Loglik(intercept only)= -98 Chisq= 15.98 on 2 degrees of freedom, p= 0.000339 n= 26 > > fitfl <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, + dist='loglogistic') > fitfl Call: survreg(formula = Surv(futime, fustat) ~ age + ecog.ps, data = ovarian, dist = "loglogistic") Coefficients: (Intercept) age ecog.ps 11.50853384 -0.08876814 0.09033348 Scale= 0.4464064 Loglik(model)= -89.5 Loglik(intercept only)= -97.4 Chisq= 15.67 on 2 degrees of freedom, p= 0.000395 n= 26 > > #test out interval censoring, using some dummy time values > > idat <- read.table('data.interval', skip=3, header=T, sep=',') > flsurv<- Surv(idat$ltime, idat$rtime, type='interval2') > > fitfw2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='weibull') > summary(fitfw2) Call: survreg(formula = flsurv ~ age + ecog.ps, data = idat, dist = "weibull") Value Std. Error z p (Intercept) 12.3886 1.6027 7.73 1.1e-14 age -0.0986 0.0254 -3.89 0.0001 ecog.ps 0.0971 0.3776 0.26 0.7971 Log(scale) -0.4773 0.2583 -1.85 0.0647 Scale= 0.62 Weibull distribution Loglik(model)= -56.2 Loglik(intercept only)= -64 Chisq= 15.57 on 2 degrees of freedom, p= 0.00042 Number of Newton-Raphson Iterations: 6 n= 26 > > fitfl2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='loglogistic') > summary(fitfl2) Call: survreg(formula = flsurv ~ age + ecog.ps, data = idat, dist = "loglogistic") Value Std. Error z p (Intercept) 11.5268 1.5283 7.54 4.6e-14 age -0.0888 0.0240 -3.70 0.00021 ecog.ps 0.0818 0.3642 0.22 0.82219 Log(scale) -0.8023 0.2706 -2.96 0.00303 Scale= 0.448 Log logistic distribution Loglik(model)= -55.9 Loglik(intercept only)= -63.5 Chisq= 15.35 on 2 degrees of freedom, p= 0.00046 Number of Newton-Raphson Iterations: 5 n= 26 > > fitfg2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='lognormal') > summary(fitfg2) Call: survreg(formula = flsurv ~ age + ecog.ps, data = idat, dist = "lognormal") Value Std. Error z p (Intercept) 11.1548 1.4347 7.77 7.6e-15 age -0.0855 0.0238 -3.60 0.00032 ecog.ps 0.2066 0.3828 0.54 0.58945 Log(scale) -0.2297 0.2508 -0.92 0.35972 Scale= 0.795 Log Normal distribution Loglik(model)= -56 Loglik(intercept only)= -63.5 Chisq= 14.94 on 2 degrees of freedom, p= 0.00057 Number of Newton-Raphson Iterations: 5 n= 26 > > logt <- c(survreg.distributions$t, + survreg.distributions$weibull[c('trans', 'itrans', 'dtrans')]) > logt$name <- 'log(t)' > > fitft2 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps, + idat, dist=logt, parm=100) > summary(fitft2) #should be quite close to fitfg2 Call: survreg(formula = Surv(ltime, rtime, type = "interval2") ~ age + ecog.ps, data = idat, dist = logt, parms = 100) Value Std. Error z p (Intercept) 11.1856 1.4419 7.76 8.7e-15 age -0.0858 0.0238 -3.61 0.00031 ecog.ps 0.1978 0.3814 0.52 0.60401 Log(scale) -0.2394 0.2522 -0.95 0.34254 Scale= 0.787 log(t) distribution: parmameters= 100 Loglik(model)= -56 Loglik(intercept only)= -63.5 Chisq= 14.97 on 2 degrees of freedom, p= 0.00056 Number of Newton-Raphson Iterations: 5 n= 26 > > # > # Check out the survreg density and probability functions > # > > # Gaussian > x <- -10:10 > p <- seq(.1, .95, length=25) > all.equal(dsurvreg(x, 1, 5, 'gaussian'), dnorm(x, 1, 5)) [1] TRUE > all.equal(psurvreg(x, 1, 5, 'gaussian'), pnorm(x, 1, 5)) [1] TRUE > all.equal(qsurvreg(p, 1, 5, 'gaussian'), qnorm(p, 1, 5)) [1] TRUE > > # Lognormal > x <- 1:10 > all.equal(dsurvreg(x, 1, 5, 'lognormal'), dlnorm(x, 1, 5)) [1] TRUE > all.equal(psurvreg(x, 1, 5, 'lognormal'), plnorm(x, 1, 5)) [1] TRUE > all.equal(qsurvreg(p, 1, 5, 'lognormal'), qlnorm(p, 1, 5)) [1] TRUE > > # Weibull > lambda <- exp(-2) > rho <- 1/3 > temp <- (lambda*x)^rho > all.equal(psurvreg(x, 2, 3), 1- exp(-temp)) [1] TRUE > all.equal(dsurvreg(x, 2, 3), lambda*rho*(lambda*x)^(rho-1)*exp(-temp)) [1] TRUE > > > # verify labeling in the vcov function, with 0, 1, or 2 scale factors > fit0 <- survreg(Surv(time, status) ~ age + ph.ecog, lung, dist='exponential') > vcov(fit0) (Intercept) age ph.ecog (Intercept) 0.330860114 -0.0051541551 0.001441498 age -0.005154155 0.0000854214 -0.000240252 ph.ecog 0.001441498 -0.0002402520 0.013051391 > fit1 <- survreg(Surv(time, status) ~ age + ph.ecog, lung, dist='weibull') > vcov(fit1) (Intercept) age ph.ecog Log(scale) (Intercept) 0.1837842638 -2.858745e-03 0.0003634856 2.800938e-03 age -0.0028587447 4.731485e-05 -0.0001279049 -3.517281e-05 ph.ecog 0.0003634856 -1.279049e-04 0.0073616277 -7.091072e-04 Log(scale) 0.0028009379 -3.517281e-05 -0.0007091072 3.837229e-03 > > fit2 <- survreg(Surv(time, status) ~ age + ph.ecog + strata(sex), lung) > vcov(fit2) (Intercept) age ph.ecog Log(scale[sex=1]) (Intercept) 0.179740626 -2.845266e-03 0.0016839233 -1.147693e-03 age -0.002845266 4.803051e-05 -0.0001515280 4.208343e-05 ph.ecog 0.001683923 -1.515280e-04 0.0074813166 -6.291573e-04 Log(scale[sex=1]) -0.001147693 4.208343e-05 -0.0006291573 6.272257e-03 Log(scale[sex=2]) 0.009087054 -1.600040e-04 -0.0008306451 -4.558932e-04 Log(scale[sex=2]) (Intercept) 0.0090870545 age -0.0001600040 ph.ecog -0.0008306451 Log(scale[sex=1]) -0.0004558932 Log(scale[sex=2]) 0.0113833096 > > proc.time() user system elapsed 0.804 0.044 0.853 survival/tests/stratatest.R0000644000176200001440000000314113537676563015634 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Trivial test of stratified residuals # Make a second strata = replicate of the first, and I should get the # exact same answers test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) temp <- as.matrix(test1) n <- nrow(temp) ndead<- sum(test1$status[!is.na(test1$status)]) temp <- data.frame(rbind(temp, temp)) #later releases of S have rbind.data.frame tstrat <- rep(1:2, c(n,n)) fit1 <- coxph(Surv(time, status) ~x, test1) fit2 <- coxph(Surv(time, status) ~x + strata(tstrat), temp) all.equal(resid(fit1) , (resid(fit2))[1:n]) all.equal(resid(fit1, type='score') , (resid(fit2, type='score'))[1:n]) all.equal(resid(fit1, type='schoe') , (resid(fit2, type='schoe'))[1:ndead]) #AG model temp <- as.matrix(test2) n <- nrow(temp) ndead<- sum(test2$event[!is.na(test2$event)]) temp <- data.frame(rbind(temp, temp)) tstrat <- rep(1:2, c(n,n)) fit1 <- coxph(Surv(start, stop, event) ~x, test2) fit2 <- coxph(Surv(start, stop, event) ~x + strata(tstrat), temp) all.equal(resid(fit1) , (resid(fit2))[1:n]) all.equal(resid(fit1, type='score') , (resid(fit2, type='score'))[1:n]) all.equal(resid(fit1, type='schoe') , (resid(fit2, type='schoe'))[1:ndead]) survival/tests/difftest.Rout.save0000644000176200001440000000602213537676563016734 0ustar liggesusers R version 3.4.1 (2017-06-30) -- "Single Candle" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Test some more features of surv.diff > # > # First, what happens when one group is a dummy > # > > > # > # The AML data, with a third group of early censorings "tacked on" > # > aml3 <- list(time= c( 9, 13, 13, 18, 23, 28, 31, 34, 45, 48, 161, + 5, 5, 8, 8, 12, 16, 23, 27, 30, 33, 43, 45, + 1, 2, 2, 3, 3, 3, 4), + status= c( 1,1,0,1,1,0,1,1,0,1,0, 1,1,1,1,1,0,1,1,1,1,1,1, + 0,0,0,0,0,0,0), + x = as.factor(c(rep("Maintained", 11), + rep("Nonmaintained", 12), rep("Dummy",7) ))) > > aml3 <- data.frame(aml3) > > # These should give the same result (chisq, df), but the second has an > # extra group > survdiff(Surv(time, status) ~x, aml) Call: survdiff(formula = Surv(time, status) ~ x, data = aml) N Observed Expected (O-E)^2/E (O-E)^2/V x=Maintained 11 7 10.69 1.27 3.4 x=Nonmaintained 12 11 7.31 1.86 3.4 Chisq= 3.4 on 1 degrees of freedom, p= 0.07 > survdiff(Surv(time, status) ~x, aml3) Call: survdiff(formula = Surv(time, status) ~ x, data = aml3) N Observed Expected (O-E)^2/E (O-E)^2/V x=Dummy 7 0 0.00 NaN NaN x=Maintained 11 7 10.69 1.27 3.4 x=Nonmaintained 12 11 7.31 1.86 3.4 Chisq= 3.4 on 1 degrees of freedom, p= 0.07 > > > # > # Now a test of the stratified log-rank > # There are no tied times within institution, so the coxph program > # can be used to give a complete test > # > fit <- survdiff(Surv(time, status) ~ pat.karno + strata(inst), cancer) > > cfit <- coxph(Surv(time, status) ~ factor(pat.karno) + strata(inst), + cancer, iter=0) > > tdata <- na.omit(cancer[,c('time', 'status', 'pat.karno', 'inst')]) > > temp1 <- tapply(tdata$status-1, list(tdata$pat.karno, tdata$inst), sum) > temp1 <- ifelse(is.na(temp1), 0, temp1) > temp2 <- tapply(cfit$resid, list(tdata$pat.karno, tdata$inst), sum) > temp2 <- ifelse(is.na(temp2), 0, temp2) > > temp2 <- temp1 - temp2 > > #Now temp1=observed, temp2=expected > all.equal(c(temp1), c(fit$obs)) [1] TRUE > all.equal(c(temp2), c(fit$exp)) [1] TRUE > > all.equal(fit$var[-1,-1], solve(cfit$var)) [1] TRUE > > rm(tdata, temp1, temp2) > > proc.time() user system elapsed 1.824 0.117 2.230 survival/tests/finegray.R0000644000176200001440000001650513537676563015252 0ustar liggesuserslibrary(survival) # Test data set 1 for Fine-Gray regression fdata <- data.frame(time =c(1,2,3,4,4,4,5,5,6,8,8, 9,10,12), status=factor(c(1,2,0,1,0,0,2,1,0,0,2, 0,1 ,0), 0:2, c("cen", "type1", "type2")), x =c(5,4,3,1,2,1,1,2,2,4,6,1,2, 0), id = 1:14) test1 <- finegray(Surv(time, status) ~., fdata, count="fgcount") test2 <- finegray(Surv(time, status) ~x, fdata, etype="type2") # When creating the censoring time distribution remember that # censors happen after deaths, so the distribution does not drop until # time 3+, 4+, 6+, 8+ and 9+ csurv <- list(time=c(0, 3, 4, 6, 8, 9), p = cumprod(c(1, 11/12, 8/10, 5/6, 3/4, 2/3))) # # For estimation of event type 1, the first subject of event type # 2 will have weights of curve$p over (0,3], (3,4], (4,6], (6,8], (8,9] # and (9,12]. All that really matters is the weight at times 1, 4, 5, # and 10, however, which are the points at which events of type 1 happen # # The next subject of event type 2 occurs at time 5, and will have a # weight of (9,12] /(4,5] = (5*4*2)/(7*5*3) = 8/21 at time 10. The last # censor at time 6 has a weight of 2/3 at time 10. all.equal(test1$id, c(1, 2,2,2,2, 3:6, 7, 7, 8:11, 11, 12:14)) twt <- c(1, csurv$p[c(1,2,3,6)], 1,1,1, 1, 1, 5/12, 1,1,1, 1, 1/2, 1,1,1) all.equal(test1$fgwt, twt) #extra obs will end at times found in csurv$time, or max(time)=12 all.equal(test1$fgstop[test1$fgcount>0], c(4,6,12, 12,12)) # # Verify the data reproduces a multi-state curve # censoring times may be different in the two setups so only # compare at the event times sfit <- survfit(Surv(time, status) ~1, fdata) sfit1<- survfit(Surv(fgstart, fgstop, fgstatus) ~1, test1, weight=fgwt) sfita<- sfit[,"type1"] i1 <- sfita$n.event > 0 i2 <- sfit1$n.event > 0 all.equal(sfita$pstate[i1], 1- sfit1$surv[i2]) sfitb <- sfit[,"type2"] sfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~1, test2, weight=fgwt) i1 <- sfitb$n.event > 0 i2 <- sfit2$n.event > 0 all.equal(sfitb$pstate[i1], 1- sfit2$surv[i2]) # Test strata. Make a single data set that has fdata for the first 19 # rows, then fdata with outcomes switched for the second 19. It should # reprise test1 and test2 in a single call. fdata2 <- rbind(fdata, fdata) fdata2$group <- rep(1:2, each=nrow(fdata)) temp <- c(1,3,2)[as.numeric(fdata$status)] fdata2$status[fdata2$group==2] <- factor(temp, 1:3, levels(fdata$status)) test3 <- finegray(Surv(time, status) ~ .+ strata(group), fdata2) vtemp <- c("fgstart", "fgstop", "fgstatus", "fgwt") all.equal(test3[1:19, vtemp], test1[,vtemp]) all.equal(test3[20:38, vtemp], test2[,vtemp], check.attributes=FALSE) # # Test data set 2: use the larger MGUS data set # Time is in months which leads to lots of ties etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) e2 <- factor(event, 0:2, c('censor', 'pcm', 'death')) edata <- finegray(Surv(etime, e2) ~ sex + id, mgus2, etype="pcm") # Build G(t) = the KM of the censoring distribution # An event at time x is not "at risk" for censoring at time x (Geskus 2011) tt <- sort(unique(etime)) # all the times ntime <- length(tt) nrisk <- nevent <- double(ntime) for (i in 1:ntime) { nrisk[i] <- sum((etime > tt[i] & event >0) | (etime >= tt[i] & event==0)) nevent[i] <- sum(etime == tt[i] & event==0) } G <- cumprod(1- nevent/nrisk) # The weight is defined as w(t)= G(t-)/G(s-) where s is the event time # for a subject who experiences an endpoint other then the one of interest type2 <- event[edata$id]==2 # the rows to be expanded # These rows are copied over as is: endpoint 1 and censors all(edata$fgstop[!type2] == etime[edata$id[!type2]]) all(edata$fgstart[!type2] ==0) all(edata$fgwt[!type2] ==1) tdata <- edata[type2,] #expanded rows first <- match(tdata$id, tdata$id) #points to the first row for each subject Gwt <- c(1, G)[match(tdata$fgstop, tt)] # G(t-) all.equal(tdata$fgwt, Gwt/Gwt[first]) # Test data 3, left truncation. # Ties are assumed to be ordered as event, censor, entry # H(t) = truncation distribution, and is calculated on a reverse time scale # Since there is only one row per subject every obs is a "start" event. # Per equation 5 and 6 of Geskus both G and H are right continuous functions # (the value at t- epsilon is different than the value at t). fdata <- data.frame(time1 = c(0,0,0,3,2,0,0,1,0,7,5, 0, 0, 0), time2 = c(1,2,3,4,4,4,5,5,6,8,8, 9,10,12), status= c(1,2,0,1,0,0,2,1,0,0,2, 0, 1 ,0), x = c(5,4,3,1,2,1,1,2,2,4,6, 1, 2, 0), id = 1:14) tt <- sort(unique(c(fdata$time1, fdata$time2))) ntime <- length(tt) Grisk <- Gevent <- double(ntime) Hrisk <- Hevent <- double(ntime) for (i in 1:ntime) { Grisk[i] <- with(fdata, sum((time2 > tt[i] & status >0 & time1 < tt[i]) | (time2 >= tt[i] & status ==0 & time1 < tt[i]))) Gevent[i]<- with(fdata, sum(time2 == tt[i] & status==0)) Hrisk[i] <- with(fdata, sum(time2 > tt[i] & time1 <= tt[i])) Hevent[i]<- with(fdata, sum(time1 == tt[i])) } G <- cumprod(1- Gevent/pmax(1,Grisk)) G2 <- survfit(Surv(time1, time2 - .1*(status !=0), status==0) ~1, fdata) all.equal(G2$surv[G2$n.event>0], G[Gevent>0]) H <- double(ntime) # The loop below uses the definition of equation 6 in Geskus for (i in 1:ntime) H[i] <- prod((1- Hevent/pmax(1, Hrisk))[-(i:1)]) H2 <- rev(cumprod(rev(1 - Hevent/pmax(1, Hrisk)))) #alternate form H3 <- survfit(Surv(-time2, -time1, rep(1,14)) ~1, fdata) # alternate 3 # c(0,H) = H(t-), H2 = H(t-) already due to the time reversal i2 <- sort(match(unique(fdata$time1), tt)) #time points in H3 all.equal(c(0, H), c(H2, 1)) all.equal(H2[i2], rev(H3$surv)) fg <- finegray(Surv(time1, time2, factor(status, 0:2)) ~ x, id=id, fdata) stat2 <- !is.na(match(fg$id, fdata$id[fdata$status==2])) #expanded ids all(fg$fgwt[!stat2] ==1) #ordinary rows are left alone all(fg$fgstart[!stat2] == fdata$time1[fdata$status !=2]) all(fg$fgstop[!stat2] == fdata$time2[fdata$status !=2]) tdata <- fg[stat2,] index <- match(tdata$id, tdata$id) # points to the first row for each Gwt <- c(1, G)[match(tdata$fgstop, tt)] # G(t-) Hwt <- c(0, H)[match(tdata$fgstop, tt)] # H(t-) all.equal(tdata$fgwt, Gwt*Hwt/(Gwt*Hwt)[index]) # # Test data 4: mgus2 data on age scale # The answer is incorrect due to roundoff, but consistent # start <- mgus2$age # age in years end <- start + etime/12 #etime in months tt <- sort(unique(c(start, end))) # all the times ntime <- length(tt) Grisk <- Gevent <- double(ntime) Hrisk <- Hevent <- double(ntime) for (i in 1:ntime) { Grisk[i] <- sum(((end > tt[i] & event >0) | (end >= tt[i] & event==0)) & (tt[i] > start)) Gevent[i] <- sum(end == tt[i] & event==0) Hrisk[i] <- sum(start <= tt[i] & end > tt[i]) Hevent[i] <- sum(start == tt[i]) } G <- cumprod(1 - Gevent/pmax(1, Grisk)) # pmax to avoid 0/0 H <- rev(cumprod(rev(1-Hevent/pmax(1,Hrisk)))) H <- c(H[-1], 1) #make it right continuous wdata <- finegray(Surv(start, end, e2) ~ ., id=id, mgus2, timefix=FALSE) type2 <- event[wdata$id]==2 # the rows to be expanded tdata <- wdata[type2,] first <- match(tdata$id, tdata$id) Gwt <- c(1, G)[match(tdata$fgstop, tt)] # G(t-) Hwt <- c(0, H)[match(tdata$fgstop, tt)] # H(t-) all.equal(tdata$fgwt, (Gwt/Gwt[first]) * (Hwt / Hwt[first])) survival/tests/coxsurv4.R0000644000176200001440000000331713537676563015240 0ustar liggesuserslibrary(survival) # Strata by covariate interactions, a case pointed out in early 2011 # by Frank Harrell, which as it turns out had never been computed # correctly by any version of the package. Which shows how often this # case arises in practice. # aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y)) fit1 <- coxph(Surv(time, status) ~ wt.loss + age*strata(sex) + strata(ph.ecog), data=lung) tdata <- data.frame(wt.loss=c(10,5,0,10, 15,20,25), age =c(50,60,50,60,70,40,21), sex =c(1,1,2,2,1,1,1), ph.ecog=c(0,0,1,1,2,2,2)) surv1 <- survfit(fit1, newdata=tdata) fit2 <- coxph(Surv(time, status) ~ wt.loss + age + I(age*0), data=lung, init=fit1$coef, iter=0, subset=(sex==1 & ph.ecog==0)) fit2$var <- fit1$var surv2 <- survfit(fit2, newdata=list(wt.loss=c(10,5), age=c(50,60))) s1 <- surv1[1:2] aeq(s1$surv, surv2$surv) #first a vector, second a matrix aeq(s1$std.err, surv2$std.err) aeq(s1[1]$time, surv2$time) aeq(s1[1]$n.event, surv2$n.event) fit3 <- coxph(Surv(time, status) ~ wt.loss + age + I(age*1), data=lung, init=fit1$coef, iter=0, subset=(sex==2 & ph.ecog==1)) fit3$var <- fit1$var surv3 <- survfit(fit3, newdata=list(wt.loss=c(0,10), age=c(50,60))) aeq(surv1[3:4]$surv, surv3$surv) aeq(surv1[3:4]$std, surv3$std) fit4 <- coxph(Surv(time, status) ~ wt.loss + age + I(age*0), data=lung, init=fit1$coef, iter=0, subset=(sex==1 & ph.ecog==2)) fit4$var <- fit1$var surv4 <- survfit(fit4, newdata=list(wt.loss=c(15,20,25), age=c(70,40,21))) aeq(surv1[5:7]$surv, surv4$surv) aeq(surv1[5:7]$std.err, surv4$std.err) aeq(surv1[5]$n.risk, surv4$n.risk) survival/tests/coxsurv3.R0000644000176200001440000000742413537676603015235 0ustar liggesuserslibrary(survival) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # One more test on coxph survival curves, to test out the individual # option. First fit a model with a time dependent covariate # test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) # True hazard function, from the validation document lambda <- function(beta, x=0, method='efron') { r <- exp(beta) lambda <- c(1/(r+1), 1/(r+2), 1/(3*r +2), 1/(3*r+1), 1/(3*r+1), 1/(3*r+2) + 1/(2*r +2)) if (method == 'breslow') lambda[9] <- 2/(3*r +2) list(time=c(2,3,6,7,8,9), lambda=lambda) } fit <- coxph(Surv(start, stop, event) ~x, test2) # A curve for someone who never changes surv1 <-survfit(fit, newdata=list(x=0), censor=FALSE) true <- lambda(fit$coef, 0) aeq(true$time, surv1$time) aeq(-log(surv1$surv), cumsum(true$lambda)) # Reprise it with a time dependent subject who doesn't change data2 <- data.frame(start=c(0, 4, 9, 11), stop=c(4, 9, 11, 17), event=c(0,0,0,0), x=c(0,0,0,0)) surv2 <- survfit(fit, newdata=data2, individual=TRUE, censor=FALSE) aeq(surv2$surv, surv1$surv) # # Now a more complex data set with multiple strata # test3 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17, 1:11), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0,1), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 2, 3, 2, 1, 1, 1, 0, 2, 1,0), grp = c(rep('a', 10), rep('b', 11))) fit2 <- coxph(Surv(start, stop, event) ~ x + strata(grp), test3) # The above tests show the program works for a simple case, use it to # get a true baseline for strata 2 fit2b <- coxph(Surv(start, stop, event) ~x, test3, subset=(grp=='b'), init=fit2$coef, iter=0) temp <- survfit(fit2b, newdata=list(x=0), censor=F) true2 <- list(time=temp$time, lambda=diff(c(0, -log(temp$surv)))) true1 <- lambda(fit2$coef, x=0) # Separate strata, one value surv3 <- survfit(fit2, list(x=0), censor=FALSE) aeq(true1$time, (surv3[1])$time) aeq(-log(surv3[1]$surv), cumsum(true1$lambda)) data4 <- data.frame(start=c(0, 4, 9, 11), stop=c(4, 9, 11, 17), event=c(0,0,0,0), x=c(0,0,0,0), grp=rep('a', 4)) surv4a <- survfit(fit2, newdata=data4, individual=T, censor=FALSE) aeq(-log(surv4a$surv), cumsum(true1$lambda)) data4$grp <- rep('b',4) surv4b <- survfit(fit2, newdata=data4, individual=T, censor=FALSE) aeq(-log(surv4b$surv), cumsum(true2$lambda)) # Now for something more complex # Subject 1 skips day 4. Since there were no events that day the survival # will be the same, but the times will be different. # Subject 2 spends some time in strata 1, some in strata 2, with # moving covariates # data5 <- data.frame(start=c(0,5,9,11, 0, 4, 3), stop =c(4,9,11,17, 4,8,7), event=rep(0,7), x=c(1,1,1,1, 0,1,2), grp=c('a', 'a', 'a', 'a', 'a', 'a', 'b'), subject=c(1,1,1,1, 2,2,2)) surv5 <- survfit(fit2, newdata=data5, censor=FALSE, id=subject) aeq(surv5[1]$time, c(2,3,5,6,7,8)) #surv1 has 2, 3, 6, 7, 8, 9 aeq(surv5[1]$surv, surv3[1]$surv ^ exp(fit2$coef)) tlam <- c(true1$lambda[1:2]* exp(fit2$coef * data5$x[5]), true1$lambda[3:5]* exp(fit2$coef * data5$x[6]), true2$lambda[3:4]* exp(fit2$coef * data5$x[7])) aeq(-log(surv5[2]$surv), cumsum(tlam)) survival/tests/aareg.R0000644000176200001440000001560413537676563014524 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test aareg, for some simple data where the answers can be computed # in closed form # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) test1 <- data.frame(time= c(4, 3,1,1,2,2,3), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0), wt= c(1, 1:6)) tfit <- aareg(Surv(time, status) ~ x, test1) aeq(tfit$times, c(1,2,2)) aeq(tfit$nrisk, c(6,4,4)) aeq(tfit$coefficient, matrix(c(0,0,1/3, 1/3, 1, -1/3), ncol=2)) aeq(tfit$tweight, matrix(c(3,3,3, 3/2, 3/4, 3/4), ncol=2)) aeq(tfit$test.statistic, c(1,1)) aeq(tfit$test.var, c(1, -1/4, -1/4, 1/4 + 9/16 + 1/16)) tfit <- aareg(Surv(time, status) ~ x, test1, test='nrisk') aeq(tfit$tweight, matrix(c(3,3,3, 3/2, 3/4, 3/4), ncol=2)) #should be as before aeq(tfit$test.statistic, c(4/3, 6/3+ 4 - 4/3)) aeq(tfit$test.var, c(16/9, -16/9, -16/9, 36/9 + 16 + 16/9)) # In the 1-variable case, this is the same as the default Aalen weight tfit <- aareg(Surv(time, status) ~ x, test1, test='variance') aeq(tfit$test.statistic, c(1,1)) aeq(tfit$test.var, c(1, -1/4, -1/4, 1/4 + 9/16 + 1/16)) # # Repeat the above, with case weights # tfit <- aareg(Surv(time, status) ~x, test1, weights=wt) aeq(tfit$times, c(1,2,2)) aeq(tfit$nrisk, c(21,16,16)) aeq(tfit$coefficient, matrix(c(0,0,5/12, 2/9, 1, -5/12), ncol=2)) aeq(tfit$tweight, matrix(c(12,12,12, 36/7, 3,3), ncol=2)) aeq(tfit$test.statistic, c(5, 72/63 + 3 - 15/12)) aeq(tfit$test.var, c(25, -25/4, -25/4, (72/63)^2 + 9 + (5/4)^2)) tfit <- aareg(Surv(time, status) ~x, test1, weights=wt, test='nrisk') aeq(tfit$test.statistic, c(20/3, 42/9 + 16 - 16*5/12)) aeq(tfit$test.var, c(400/9, -400/9, -400/9, (42/9)^2 + 16^2 + (16*5/12)^2)) # # Make a test data set with no NAs, in sorted order, no ties, # 15 observations tdata <- lung[15:29, c('time', 'status', 'age', 'sex', 'ph.ecog')] tdata$status <- tdata$status -1 tdata <- tdata[order(tdata$time, tdata$status),] row.names(tdata) <- 1:15 tdata$status[8] <- 0 #for some variety afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, tdata, nmin=6) # # Now, do it "by hand" cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, tdata, iter=0, method='breslow') dt1 <- coxph.detail(cfit) sch1 <- resid(cfit, type='schoen') # First estimate of Aalen: from the Cox computations, first 9 # The first and last cols of the ninth are somewhat unstable (approx =0) mine <- rbind(solve(dt1$imat[,,1], sch1[1,]), solve(dt1$imat[,,2], sch1[2,]), solve(dt1$imat[,,3], sch1[3,]), solve(dt1$imat[,,4], sch1[4,]), solve(dt1$imat[,,5], sch1[5,]), solve(dt1$imat[,,6], sch1[6,]), solve(dt1$imat[,,7], sch1[7,]), solve(dt1$imat[,,8], sch1[8,]), solve(dt1$imat[,,9], sch1[9,])) mine <- diag(1/dt1$nrisk[1:9]) %*% mine aeq(mine, afit$coef[1:9, -1]) # # Check out the dfbeta matrix from aareg # Note that it is kept internally in time order, not data set order # Those who want residuals should use the resid function! # # First, the simple test case where I know the anwers # afit <- aareg(Surv(time, status) ~ x, test1, dfbeta=T) temp <- c(rep(0,6), #intercepts at time 1 c(2,-1,-1,0,0,0)/9, #alpha at time 1 c(0,0,0,2, -1, -1)/9, #intercepts at time 2 c(0,0,0,-2,1,1)/9) #alpha at time 2 aeq(afit$dfbeta, temp) # #Now a multivariate data set # afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, lung, dfbeta=T) ord <- order(lung$time, -lung$status) cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung[ord,], method='breslow', iter=0, x=T) cdt <- coxph.detail(cfit, riskmat=T) # an arbitrary list of times acoef <- rowsum(afit$coef, afit$times) #per death time coefs indx <- match(cdt$time, afit$times) for (i in c(2,5,27,54,101, 135)) { lwho <- (cdt$riskmat[,i]==1) lmx <- cfit$x[lwho,] lmy <- 1*( cfit$y[lwho,2]==1 & cfit$y[lwho,1] == cdt$time[i]) fit <- lm(lmy~ lmx) cat("i=", i, "coef=", aeq(fit$coef, acoef[i,])) rr <- diag(resid(fit)) zz <- cbind(1,lmx) zzinv <- solve(t(zz) %*% zz) cat(" twt=", aeq(1/(diag(zzinv)), afit$tweight[indx[i],])) df <- t(zzinv %*% t(zz) %*% rr) cat(" dfbeta=", aeq(df, afit$dfbeta[lwho,,i]), "\n") } # Repeat it with case weights ww <- rep(1:5, length=nrow(lung))/ 3.0 afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, lung, dfbeta=T, weights=ww) cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung[ord,], method='breslow', iter=0, x=T, weight=ww[ord]) cdt <- coxph.detail(cfit, riskmat=T) acoef <- rowsum(afit$coef, afit$times) #per death time coefs for (i in c(2,5,27,54,101, 135)) { who <- (cdt$riskmat[,i]==1) x <- cfit$x[who,] y <- 1*( cfit$y[who,2]==1 & cfit$y[who,1] == cdt$time[i]) w <- cfit$weight[who] fit <- lm(y~x, weights=w) cat("i=", i, "coef=", aeq(fit$coef, acoef[i,])) rr <- diag(resid(fit)) zz <- cbind(1,x) zzinv <- solve(t(zz)%*% (w*zz)) cat(" twt=", aeq(1/(diag(zzinv)), afit$tweight[indx[i],])) df <- t(zzinv %*% t(zz) %*% (w*rr)) cat(" dfbeta=", aeq(df, afit$dfbeta[who,,i]), "\n") } # # Check that the test statistic computed within aareg and # the one recomputed within summary.aareg are the same. # Of course, they could both be wrong, but at least they'll agree! # If the maxtime argument is used in summary, it recomputes the test, # even if we know that it wouldn't have had to. # # Because the 1-variable and >1 variable case have different code, test # them both. # afit <- aareg(Surv(time, status) ~ age, lung, dfbeta=T) asum <- summary(afit, maxtime=max(afit$times)) aeq(afit$test.stat, asum$test.stat) aeq(afit$test.var, asum$test.var) aeq(afit$test.var2, asum$test.var2) print(afit) afit <- aareg(Surv(time, status) ~ age, lung, dfbeta=T, test='nrisk') asum <- summary(afit, maxtime=max(afit$times)) aeq(afit$test.stat, asum$test.stat) aeq(afit$test.var, asum$test.var) aeq(afit$test.var2, asum$test.var2) summary(afit) # # Mulitvariate # afit <- aareg(Surv(time, status) ~ age + sex + ph.karno + pat.karno, lung, dfbeta=T) asum <- summary(afit, maxtime=max(afit$times)) aeq(afit$test.stat, asum$test.stat) aeq(afit$test.var, asum$test.var) aeq(afit$test.var2, asum$test.var2) print(afit) afit <- aareg(Surv(time, status) ~ age + sex + ph.karno + pat.karno, lung, dfbeta=T, test='nrisk') asum <- summary(afit, maxtime=max(afit$times)) aeq(afit$test.stat, asum$test.stat) aeq(afit$test.var, asum$test.var) aeq(afit$test.var2, asum$test.var2) summary(afit) # Weights play no role in the final computation of the test statistic, given # the coefficient matrix, nrisk, and dfbeta as inputs. (Weights do # change the inputs). So there is no need to reprise the above with # case weights. survival/tests/testreg.R0000644000176200001440000000477613537676563015132 0ustar liggesusersoptions(na.action=na.exclude) #preserve length of missings library(survival) # # Run a test that can be verified using other packages # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) fit1w <- survreg(Surv(time, status) ~x, test1, dist='weibull') fit1w summary(fit1w) fit1e <- survreg(Surv(time, status) ~x, test1, dist='exponential') fit1e summary(fit1e) fit1l <- survreg(Surv(time, status) ~x, test1, dist='loglogistic') fit1l summary(fit1l) fit1g <- survreg(Surv(time, status) ~x, test1, dist='lognormal') summary(fit1g) # # Do a test with the ovarian data # fitfw <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, dist='weibull') fitfw fitfl <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, dist='loglogistic') fitfl #test out interval censoring, using some dummy time values idat <- read.table('data.interval', skip=3, header=T, sep=',') flsurv<- Surv(idat$ltime, idat$rtime, type='interval2') fitfw2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='weibull') summary(fitfw2) fitfl2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='loglogistic') summary(fitfl2) fitfg2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='lognormal') summary(fitfg2) logt <- c(survreg.distributions$t, survreg.distributions$weibull[c('trans', 'itrans', 'dtrans')]) logt$name <- 'log(t)' fitft2 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps, idat, dist=logt, parm=100) summary(fitft2) #should be quite close to fitfg2 # # Check out the survreg density and probability functions # # Gaussian x <- -10:10 p <- seq(.1, .95, length=25) all.equal(dsurvreg(x, 1, 5, 'gaussian'), dnorm(x, 1, 5)) all.equal(psurvreg(x, 1, 5, 'gaussian'), pnorm(x, 1, 5)) all.equal(qsurvreg(p, 1, 5, 'gaussian'), qnorm(p, 1, 5)) # Lognormal x <- 1:10 all.equal(dsurvreg(x, 1, 5, 'lognormal'), dlnorm(x, 1, 5)) all.equal(psurvreg(x, 1, 5, 'lognormal'), plnorm(x, 1, 5)) all.equal(qsurvreg(p, 1, 5, 'lognormal'), qlnorm(p, 1, 5)) # Weibull lambda <- exp(-2) rho <- 1/3 temp <- (lambda*x)^rho all.equal(psurvreg(x, 2, 3), 1- exp(-temp)) all.equal(dsurvreg(x, 2, 3), lambda*rho*(lambda*x)^(rho-1)*exp(-temp)) # verify labeling in the vcov function, with 0, 1, or 2 scale factors fit0 <- survreg(Surv(time, status) ~ age + ph.ecog, lung, dist='exponential') vcov(fit0) fit1 <- survreg(Surv(time, status) ~ age + ph.ecog, lung, dist='weibull') vcov(fit1) fit2 <- survreg(Surv(time, status) ~ age + ph.ecog + strata(sex), lung) vcov(fit2) survival/tests/stratatest.Rout.save0000644000176200001440000000453713537676563017333 0ustar liggesusers R version 2.7.1 (2008-06-23) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Trivial test of stratified residuals > # Make a second strata = replicate of the first, and I should get the > # exact same answers > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > temp <- as.matrix(test1) > n <- nrow(temp) > ndead<- sum(test1$status[!is.na(test1$status)]) > temp <- data.frame(rbind(temp, temp)) #later releases of S have rbind.data.frame > tstrat <- rep(1:2, c(n,n)) > > fit1 <- coxph(Surv(time, status) ~x, test1) > fit2 <- coxph(Surv(time, status) ~x + strata(tstrat), temp) > > all.equal(resid(fit1) , (resid(fit2))[1:n]) [1] TRUE > all.equal(resid(fit1, type='score') , (resid(fit2, type='score'))[1:n]) [1] TRUE > all.equal(resid(fit1, type='schoe') , (resid(fit2, type='schoe'))[1:ndead]) [1] TRUE > > > #AG model > temp <- as.matrix(test2) > n <- nrow(temp) > ndead<- sum(test2$event[!is.na(test2$event)]) > temp <- data.frame(rbind(temp, temp)) > tstrat <- rep(1:2, c(n,n)) > > fit1 <- coxph(Surv(start, stop, event) ~x, test2) > fit2 <- coxph(Surv(start, stop, event) ~x + strata(tstrat), temp) > > all.equal(resid(fit1) , (resid(fit2))[1:n]) [1] TRUE > all.equal(resid(fit1, type='score') , (resid(fit2, type='score'))[1:n]) [1] TRUE > all.equal(resid(fit1, type='schoe') , (resid(fit2, type='schoe'))[1:ndead]) [1] TRUE > survival/tests/surv.R0000644000176200001440000000336113537676563014441 0ustar liggesusers# library(survival) # Some simple tests of the Surv function # The first two are motivated by a bug, pointed out by Kevin Buhr, # where a mixture of NAs and invalid values didn't work right # Even for the simplest things a test case is good. # All but the third should produce warning messages aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) temp <- Surv(c(1, 10, 20, 30), c(2, NA, 0, 40), c(1,1,1,1)) aeq(temp, c(1,10,NA,30, 2,NA,0,40, 1,1,1,1)) temp <- Surv(c(1, 10, 20, 30), c(2, NA, 0, 40), type='interval2') aeq(temp, c(1,10,20,30, 2,1,1,40, 3,0,NA,3)) #No error temp <- Surv(1:5) aeq(temp, c(1:5, 1,1,1,1,1)) temp1 <- Surv(c(1,10,NA, 30, 30), c(1,NA,10,20, 40), type='interval2') temp2 <- Surv(c(1,10,10,30,30), c(9, NA, 5, 20,40), c(1, 0, 2,3,3), type='interval') aeq(temp1, temp2) aeq(temp1, c(1,10,10,30,30, 1,1,1,1, 40, 1,0,2,NA,3)) # Use of inf temp1 <- Surv(c(1,10,NA, 30, 30), c(1,NA,10,30, 40), type='interval2') temp2 <- Surv(c(1,10,-Inf, 30, 30), c(1,Inf,10,30, 40), type='interval2') aeq(temp1, temp2) # Verify sorting and order routines # These fail in 3.4, succeed in 3.5 due to a system change in how # xtfrm.Surv is used. x1 <- Surv(c(4, 6, 3, 2, 1, NA, 2), c(1,0, NA, 0,1,1,1)) all.equal(order(x1), c(5,7, 4, 1, 2, 3, 6)) all.equal(order(x1, decreasing=TRUE), c(2,1,4,7,5, 3, 6)) all.equal(sort(x1), x1[c(5,7,4,1,2)]) x2 <- Surv(c(4, 6, 3, 2, 1, NA, 2), c(1,0, NA, 0,1,1,1), type='left') all.equal(order(x2), c(5,4, 7, 1, 2, 3, 6)) x3 <- Surv(c(1,5,NA,7, 9), c(6, 6, 4, NA, 9), type="interval2") all.equal(sort(x3), x3[c(1,3,2,4,5)]) x4 <- Surv(c(1,5,6,5,2, 4), c(3, 7, 7, 6, 3, NA), factor(c(1, 2, 0, 1, 1, 0))) all.equal(sort(x4), x4[c(1, 5, 4, 2,3)]) all.equal(sort(x4, na.last=FALSE), x4[c(6,1,5,4,2,3)]) survival/tests/testci2.Rout.save0000644000176200001440000001556013570767322016477 0ustar liggesusers R Under development (unstable) (2019-10-29 r77335) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > > # > # Test the multi-state version of the CI curve > # > tdata <- data.frame(id=c(1,1,1,1, 2,2,2, 3,3, 4,4,4,4, 5, 6, 6), + time1=c(0, 10,20,30, 0, 5, 15, 0, 20, 0, 6,18,34, 0, 0,15), + time2=c(10,20,30,40, 5, 15,25, 20, 22, 6,18,34,50,10,15,20), + status=c(1,1,1,1, 1,1,1, 1,0, 1,1,1,0,0,1,0), + event= letters[c(1,2,3,4, 2,4,3, 2,2, 3,1,2,2,1, 1,1)], + wt = c(2,2,2,2, 1,1,1, 3,3, 1,1,1,1, 2, 1,1), + stringsAsFactors=TRUE) > tdata$stat2 <- factor(tdata$status * as.numeric(tdata$event), + labels=c("censor", levels(tdata$event))) > > fit <- survfit(Surv(time1, time2, stat2) ~1, id=id, weight=wt, tdata, + influence=TRUE) > > # The exact figures for testci2. > # The subject data of id, weight, (transition time, transition) > > #1: 2 (10, 0->a) (20, a->b) (30, b->c) (40, c->d) no data after 40=censored > #2: 1 ( 5, 0->b) (15, b->d) (25, d->c) no data after 25 implies censored then > #3: 3 (20, 0->b) (22, censor) > #4: 1 ( 6, 0->c) (18, c->a) (34, a->b) (50, censor) > #5: 2 (10, censor) > #6: 1 (15, 0->a) (20, censor) > > # Each line below follows a subject through time as a (state, rdist weight) pair > # using the redistribute to the right algorithm. > # RDR algorithm: at each censoring (or last fu) a subject's weight is put into > # a "pool" for that state and their weight goes to zero. The pool is > # dynamically shared between all members of the state proportional to their > # original case weight, when someone leaves they take their portion of the > # pool to the new state. > > # Table of case weights and state, blank is weight of zero > # time 5 6 10 15 18 20 25 30 34 40 50 > # ----------------------------------------------------------------------- > # id, wt > # 1, 2 - - a a a b b c c d > # 2, 1 b b b d d d c > # 3, 3 - - - - - b > # 4, 1 - c c c a a a a b b b > # 5, 2 - - - > # 6, 1 - - - a a a > > # Pool weights > # 10 10+ 15 18 20 20+ 22+ 25 25+ 30 34 40 40+ > # - 0 2 3/2 3/2 0 > # a 0 0 1/2 1/2 1/4 5/4 5/4 5/4 5/4 5/4 > # b 0 0 0 0 7/4 7/4 19/4 19/4 19/4 5/4 5/4 5/4 > # c 0 0 0 0 0 1 23/4 23/4 > # d 0 0 0 0 0 23/4 31/4 > > # fit$pstate for time i and state j = total weight at that time/state in the > # above table (original weight + redistrib), divided by 10. > > # time 5 6 10 15 18 20 25 30 34 40 50 > truth <- matrix(c(0, 0, 2, 3, 4, 2, 1, 1, 0, 0, 0, + 1, 1, 1, 0, 0, 5, 2, 0, 1, 1, 1, + 0, 1, 1, 1, 0, 0, 1, 2, 2, 0, 0, + 0, 0, 0, 1, 1, 1, 0, 0, 0, 2, 0) + + c(0, 0, 0, .5, .5, 1/4, 5/4, 5/4, 0, 0, 0, + 0, 0, 0, 0, 0, 7/4, 19/4, 0, 5/4, 5/4, 5/4, + 0, 0, 0, 0, 0, 0, 0, 23/4, 23/4, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 23/4, 31/4), + ncol=4) > truth <- truth[c(1:6, 6:11),]/10 #the explicit censor at 22 > > #dimnames(truth) <- list(c(5, 6, 10, 15, 18, 20, 25, 30, 34, 40, 50), > # c('a', 'b', 'c', 'd') > all.equal(truth, fit$pstate[,2:5]) [1] TRUE > > # Test the dfbetas > # It was a big surprise, but the epsilon where a finite difference approx to > # the derivative is most accurate is around 1e-7 = approx sqrt(precision). > # Smaller eps makes the approximate derivative worse. > # There is a now a formal test in mstate.R, not approximate. > dfbeta <- 0*fit$influence[,-1,] # lose the first row > eps <- sqrt(.Machine$double.eps) > for (i in 1:6) { + twt <- tdata$wt + twt[tdata$id ==i] <- twt[tdata$id==i] + eps + tfit <- survfit(Surv(time1, time2, stat2) ~ 1, id=id, tdata, + weight=twt) + dfbeta[i,,] <- (tfit$pstate - fit$pstate)/eps #finite difference approx + } > all.equal(dfbeta, fit$influence[,-1,], tolerance= eps*10) [1] TRUE > twt <- tdata$wt[match(1:6, tdata$id)] # six unique weights > temp <- dfbeta > for (i in 1:6) temp[i,,] <- temp[i,,]* twt[i] > std2 <- sqrt(apply(temp^2, 2:3, sum)) > > all.equal(fit$std, std2, tolerance=eps, check.attributes=FALSE) [1] TRUE > > if (FALSE) { + # a plot of the data that helped during creation of the example + plot(c(0,50), c(1,6), type='n', xlab='time', ylab='subject') + with(tdata, segments(time1, id, time2, id)) + with(tdata, text(time2, id, as.numeric(stat2)-1, cex=1.5, col=2)) + } > > if (FALSE) { + # The following lines test out 4 error messages in the routine + # + # Gap in follow-up time, id 2 + survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 4, 6, 3), factor(c(0,0,1,1,0,2))) ~1, + id=c(1,1,1,2,2,3)) + # mismatched weights + survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 5, 6, 3), factor(c(0,0,1,1,0,2))) ~1, + id=c(1,1,1,2,2,3), weights=c(1,1,2,1,1,4)) + # in two groups at once + survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 5, 6, 3), factor(c(0,0,1,1,0,2))) ~ + c(1,1,2,1,1,2), id=c(1,1,1,2,2,3)) + # state change that isn't a state change (went from 1 to 1) + survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 5, 6, 3), factor(c(0,1,1,1,0,2))) ~1, + id=c(1,1,1,2,2,3)) + } > > # Check the start.time option > # > fit2 <- survfit(Surv(time1, time2, stat2) ~1, id=id, weight=wt, tdata, + start.time=20) > data2 <- subset(tdata, time2> 20) > data2$time1 <- pmax(20, data2$time1) > fit2x <- survfit(Surv(time1, time2, stat2) ~1, id=id, weight=wt, data2) > > ii <- names(fit2)[!(names(fit2) %in% c("call", "start.time"))] > all.equal(unclass(fit2)[ii], unclass(fit2x)[ii]) [1] TRUE > > proc.time() user system elapsed 1.776 0.092 1.864 survival/tests/r_lung.Rout.save0000644000176200001440000001211313537676563016410 0ustar liggesusers R version 3.4.1 (2017-06-30) -- "Single Candle" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > lfit2 <- survreg(Surv(time, status) ~ age + ph.ecog + strata(sex), lung) > lfit3 <- survreg(Surv(time, status) ~ sex + (age+ph.ecog)*strata(sex), lung) > > lfit4 <- survreg(Surv(time, status) ~ age + ph.ecog , lung, + subset=(sex==1)) > lfit5 <- survreg(Surv(time, status) ~ age + ph.ecog , lung, + subset=(sex==2)) > > if (exists('censorReg')) { + lfit1 <- censorReg(censor(time, status) ~ age + ph.ecog + strata(sex),lung) + aeq(lfit4$coef, lfit1[[1]]$coef) + aeq(lfit4$scale, lfit1[[1]]$scale) + aeq(c(lfit4$scale, lfit5$scale), sapply(lfit1, function(x) x$scale)) + } > aeq(c(lfit4$scale, lfit5$scale), lfit3$scale ) [1] TRUE > > # > # Test out ridge regression and splines > # > lfit0 <- survreg(Surv(time, status) ~1, lung) > lfit1 <- survreg(Surv(time, status) ~ age + ridge(ph.ecog, theta=5), lung) > lfit2 <- survreg(Surv(time, status) ~ sex + ridge(age, ph.ecog, theta=1), lung) > lfit3 <- survreg(Surv(time, status) ~ sex + age + ph.ecog, lung) > > lfit0 Call: survreg(formula = Surv(time, status) ~ 1, data = lung) Coefficients: (Intercept) 6.034904 Scale= 0.7593936 Loglik(model)= -1153.9 Loglik(intercept only)= -1153.9 n= 228 > lfit1 Call: survreg(formula = Surv(time, status) ~ age + ridge(ph.ecog, theta = 5), data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.83082 0.42860 0.42860 254.0 1 3.5e-57 age -0.00783 0.00687 0.00687 1.3 1 2.5e-01 ridge(ph.ecog) -0.32032 0.08484 0.08405 14.2 1 1.6e-04 Scale= 0.738 Iterations: 1 outer, 5 Newton-Raphson Degrees of freedom for terms= 1 1 1 1 Likelihood ratio test=18.6 on 2 df, p=9e-05 n=227 (1 observation deleted due to missingness) > lfit2 Call: survreg(formula = Surv(time, status) ~ sex + ridge(age, ph.ecog, theta = 1), data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.27163 0.45280 0.45210 191.84 1 1.3e-43 sex 0.40096 0.12371 0.12371 10.50 1 1.2e-03 ridge(age) -0.00746 0.00675 0.00674 1.22 1 2.7e-01 ridge(ph.ecog) -0.33848 0.08329 0.08314 16.51 1 4.8e-05 Scale= 0.731 Iterations: 1 outer, 6 Newton-Raphson Degrees of freedom for terms= 1 1 2 1 Likelihood ratio test=30 on 3 df, p=1e-06 n=227 (1 observation deleted due to missingness) > lfit3 Call: survreg(formula = Surv(time, status) ~ sex + age + ph.ecog, data = lung) Coefficients: (Intercept) sex age ph.ecog 6.273435252 0.401090541 -0.007475439 -0.339638098 Scale= 0.731109 Loglik(model)= -1132.4 Loglik(intercept only)= -1147.4 Chisq= 29.98 on 3 degrees of freedom, p= 1.39e-06 n=227 (1 observation deleted due to missingness) > > > xx <- pspline(lung$age, nterm=3, theta=.3) > xx <- matrix(unclass(xx), ncol=ncol(xx)) # the raw matrix > lfit4 <- survreg(Surv(time, status) ~xx, lung) > lfit5 <- survreg(Surv(time, status) ~age, lung) > > lfit6 <- survreg(Surv(time, status)~pspline(age, df=2), lung) > > lfit7 <- survreg(Surv(time, status) ~ offset(lfit6$lin), lung) > > lfit4 Call: survreg(formula = Surv(time, status) ~ xx, data = lung) Coefficients: (Intercept) xx1 xx2 xx3 xx4 xx5 13.551290 -7.615741 -7.424565 -7.533378 -7.571272 -14.527489 Scale= 0.755741 Loglik(model)= -1150.1 Loglik(intercept only)= -1153.9 Chisq= 7.52 on 5 degrees of freedom, p= 0.185 n= 228 > lfit5 Call: survreg(formula = Surv(time, status) ~ age, data = lung) Coefficients: (Intercept) age 6.88712062 -0.01360829 Scale= 0.7587515 Loglik(model)= -1151.9 Loglik(intercept only)= -1153.9 Chisq= 3.91 on 1 degrees of freedom, p= 0.0479 n= 228 > lfit6 Call: survreg(formula = Surv(time, status) ~ pspline(age, df = 2), data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.5918 0.63681 0.41853 107.15 1.00 4.1e-25 pspline(age, df = 2), lin -0.0136 0.00687 0.00687 3.94 1.00 4.7e-02 pspline(age, df = 2), non 0.78 1.06 4.0e-01 Scale= 0.756 Iterations: 4 outer, 12 Newton-Raphson Theta= 0.926 Degrees of freedom for terms= 0.4 2.1 1.0 Likelihood ratio test=5.2 on 1.5 df, p=0.04 n= 228 > signif(lfit7$coef,6) (Intercept) 1.47899e-09 > > proc.time() user system elapsed 1.959 0.081 2.236 survival/tests/book1.R0000644000176200001440000001037513556025630014440 0ustar liggesuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # # Tests from the appendix of Therneau and Grambsch # a. Data set 1 and Breslow estimate # The data below is not in time order, to also test sorting, and has 1 NA # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) # Nelson-Aalen influence s1 <- survfit(Surv(time, status) ~1, test1, id=1:7, influence=TRUE) inf1 <- matrix(c(10, rep(-2,5), 10, -2, 7,7, -11, -11)/72, ncol=2) indx <- order(test1$time[!is.na(test1$status)]) aeq(s1$influence.chaz[indx,], inf1[,c(1,2,2,2)]) # KM influence inf2 <- matrix(c(-20, rep(4,5), -10, 2, -13, -13, 17, 17, rep(0,6))/144, ncol=3) aeq(s1$influence.surv[indx,], inf2[, c(1,2,2,3)]) # Fleming-Harrington influence s2 <- survfit(Surv(time, status) ~ 1, test1, id=1:7, ctype=2, influence=2) inf3 <- matrix(c( rep(c(5, -1), c(1, 5))/36, c(5,-1)/36, c(21,21,-29, -29)/144), ncol=2) aeq(s2$influence.chaz[indx,], inf3[,c(1,2,2,2)]) # Breslow estimate byhand1 <- function(beta, newx=0) { r <- exp(beta) loglik <- 2*beta - (log(3*r+3) + 2*log(r+3)) u <- (6 + 3*r - r^2) / ((r+1)*(r+3)) imat <- r/(r+1)^2 + 6*r/(r+3)^2 x <- c(1,1,1,0,0,0) status <- c(1,0,1,1,0,1) xbar <- c(r/(r+1), r/(r+3), 0, 0) # at times 1, 6, 8 and 9 haz <- c(1/(3*r+3), 2/(r+3), 0, 1 ) ties <- c(1,1,2,2,3,4) wt <- c(r,r,r,1,1,1) mart <- c(1,0,1,1,0,1) - wt* (cumsum(haz))[ties] #martingale residual a <- 3*(r+1)^2; b<- (r+3)^2 score <- c((2*r+3)/a, -r/a, -r/a + 3*(3-r)/b, r/a - r*(r+1)/b, r/a + 2*r/b, r/a + 2*r/b) # Schoenfeld residual scho <- c(1/(r+1), 1- (r/(3+r)), 0-(r/(3+r)) , 0) surv <- exp(-cumsum(haz)* exp(beta*newx)) varhaz.g <- cumsum(c(1/(3*r+3)^2, 2/(r+3)^2, 0, 1 )) varhaz.d <- cumsum((newx-xbar) * haz) varhaz <- (varhaz.g + varhaz.d^2/ imat) * exp(2*beta*newx) names(xbar) <- names(haz) <- 1:4 names(surv) <- names(varhaz) <- 1:4 list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=haz, mart=mart, score=score, scho=scho, surv=surv, var=varhaz, varhaz.g=varhaz.g, varhaz.d=varhaz.d) } fit0 <-coxph(Surv(time, status) ~x, test1, iter=0, method='breslow') truth0 <- byhand1(0,0) aeq(truth0$loglik, fit0$loglik[1]) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid[c(2:6,1)]) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')[c(3:7,1)]) sfit <- survfit(fit0, list(x=0)) aeq(sfit$cumhaz, cumsum(truth0$haz)) aeq(sfit$surv, exp(-cumsum(truth0$haz))) aeq(sfit$std.err^2, c(7/180, 2/9, 2/9, 11/9)) aeq(resid(fit0, 'score'), c(5/24, NA, 5/12, -1/12, 7/24, -1/24, 5/24)) fit1 <- coxph(Surv(time, status) ~x, test1, iter=1, method='breslow') aeq(fit1$coef, 8/5) # This next gives an ignorable warning message fit2 <- coxph(Surv(time, status) ~x, test1, method='breslow', iter=2) aeq(round(fit2$coef, 6), 1.472724) fit <- coxph(Surv(time, status) ~x, test1, method='breslow', eps=1e-8) aeq(fit$coef, log(1.5 + sqrt(33)/2)) # the true solution truth <- byhand1(fit$coef, 0) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid[c(2:6,1)]) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')[c(3:7,1)]) expect <- predict(fit, type='expected', newdata=test1) #force recalc aeq(test1$status[-2] -fit$resid, expect[-2]) #tests the predict function sfit <- survfit(fit, list(x=0), censor=FALSE) aeq(sfit$std.err^2, truth$var[c(1,2,4)]) # sfit skips time 8 (no events there) aeq(-log(sfit$surv), (cumsum(truth$haz))[c(1,2,4)]) sfit <- survfit(fit, list(x=0), censor=TRUE) aeq(sfit$std.err^2, truth$var) aeq(-log(sfit$surv), (cumsum(truth$haz))) # # Done with the formal test, now print out lots of bits # resid(fit) resid(fit, 'scor') resid(fit, 'scho') predict(fit, type='lp') predict(fit, type='risk') predict(fit, type='expected') predict(fit, type='terms') predict(fit, type='lp', se.fit=T) predict(fit, type='risk', se.fit=T) predict(fit, type='expected', se.fit=T) predict(fit, type='terms', se.fit=T) summary(survfit(fit)) summary(survfit(fit, list(x=2))) survival/tests/coxsurv5.Rout.save0000644000176200001440000001722313537676603016722 0ustar liggesusers R Under development (unstable) (2019-06-28 r76752) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > aeq <- function(x, y) all.equal(as.vector(x), as.vector(y)) > # > # Compute the hazard functions for a multi-state Cox model > # > coxhaz <- function(y, id, risk, wt) { + # y should be a multi-state survival + if (!inherits(y, "Surv") || attr(y, "type") != "mcounting") + stop("invalid response") + + n <- nrow(y) + if (missing(id) || length(id) !=n) stop("invalid id") + + if (missing(wt)) wt <- rep(1.0, n) + else if (length(wt) !=n || any(wt <=0)) stop("invalid wt") + + # get the current state, and the list of transtions + # transitions to censor don't count + mcheck <- survcheck(y~1, id= id) + states <- mcheck$states + nstate <- length(states) + istate <- mcheck$istate + + event <- y[,3] > 0 + temp <- attr(y, 'states')[y[event,3]] + tmat <- table(y[event,2], from=istate[event], to=temp) + tmat2 <- tapply(wt[event], list(y[event,2], from=mcheck$istate[event], + to=temp), sum) + tmat2 <- ifelse(is.na(tmat2), 0, tmat2) + + + # Hazards can be done one at a time. For each of them the risk + # weight vector for the subjects can be different. + # First organized the material as a 2 dim matrix + temp <- apply(tmat, 2:3, sum) + keep <- which(temp>0) + from <- states[row(temp)[keep]] + hlab <- outer(rownames(temp), colnames(temp), paste, sep=':')[keep] + nhaz <- length(keep) + nevent <- matrix(tmat2, nrow(tmat2))[,keep] + dtime <- sort(unique(y[event,2])) + ntime <- length(dtime) + + if (missing(risk)) risk <- matrix(1, nrow=n, ncol=nhaz) + if (!is.matrix(risk) || nrow(risk) != n || ncol(risk) != nhaz) + stop("invalid risk matrix") + risk <- risk * wt + + # get the weighted at risk at each time + wtrisk <- matrix(, length(dtime), nhaz) + statematch <- outer(istate, from, function(x, y) x==y) + risk <- ifelse(statematch, risk, 0) + for (i in 1:ntime) { + atrisk <- (y[,1]< dtime[i] & y[,2] >= dtime[i]) + wtrisk[i,] <- colSums(risk[atrisk,, drop=FALSE]) + } + + haz <- nevent/ifelse(wtrisk==0, 1, wtrisk) # avoid 0/0 + chaz<- apply(haz, 2, cumsum) + + list(time=dtime, nrisk=wtrisk, nevent=nevent, + haz=haz, cumhaz=chaz, states=states) + } > > mtest <- data.frame(id= c(1, 1, 1, 2, 3, 4, 4, 4, 5, 5), + t1= c(0, 4, 9, 0, 2, 0, 2, 8, 1, 3), + t2= c(4, 9, 10, 5, 9, 2, 8, 9, 3, 11), + state= c(1, 2, 1, 2, 3, 1, 3, 0, 2, 0), + x = c(0, 0, 0, 1, 1, 0, 0, 0, 2, 2)) > mtest$state <- factor(mtest$state, 0:3, c("censor", "a", "b", "c")) > > # True results > # > #time at risk events > # entry a b c > # > #2 1245 4 -> a > #3 1235 4 5 -> b > #4 123 4 5 1 -> a > #5 23 14 5 2 -> b, exits > #8 3 14 5 4 -> c > #9 3 1 5 4 1->b, 3->c & exit, 4 censored > #10 15 1->a, exit > #11 5 censor > > # with all coefficients =0 > check1 <- coxhaz(Surv(mtest$t1, mtest$t2, mtest$state), mtest$id) > fit1 <- survfit(Surv(t1, t2, state) ~1, mtest, id=id) > aeq(check1$cumhaz, fit1$cumhaz[match(check1$time, fit1$time),]) [1] TRUE > > dummy <- data.frame(x=1:2) > cox0 <- coxph(Surv(t1, t2, state) ~x, iter=0, mtest, id=id) > cfit0 <- survfit(cox0, newdata=dummy) > indx <- match(check1$time, cfit0$time) > aeq(check1$cumhaz, cfit0$cumhaz[indx,1,]) [1] TRUE > aeq(check1$cumhaz, cfit0$cumhaz[indx,2,]) [1] TRUE > > # a fixed coefficient > mfit <- coxph(Surv(t1, t2, state) ~x, iter=0, mtest, id=id, + init= log(1:6)) > msurv <- survfit(mfit, newdata=list(x=0:1)) > mrisk <- exp(outer(mtest$x, log(1:6), '*')) # hazards for each transition > check2 <- with(mtest, coxhaz(Surv(t1, t2, state), id=id, risk=mrisk)) > aeq(check2$cumhaz, msurv$cumhaz[indx,1,]) [1] TRUE > > # a different predicted x multiplies each column of the cumulative hazard > aeq(check2$cumhaz %*% diag(1:6), msurv$cumhaz[indx,2,]) [1] TRUE > > if (FALSE) { + # this graph is very useful + temp <- survcheck(Surv(t1, t2, state) ~1, mtest, id=id) + plot(c(0,11), c(1,5.1), type='n', xlab="Time", ylab= "Subject") + with(mtest, segments(t1+.1, id, t2, id, col=as.numeric(temp$istate))) + event <- subset(mtest, state!='censor') + text(event$t2, event$id+.2, as.character(event$state)) + } > > > # slight change, add a few censored subjects > # all the events happen on even numbered days > test2 <- data.frame(id= c(1, 1, 1, 2, 3, 4, 4, 4, 5, 5, + 6, 7, 8, 9), + t1= c(0, 8, 18, 0, 4, 0, 4, 16, 2, 6, + 0, 0, 7, 8), + t2= c(8, 18, 20, 10, 18, 4, 16, 18, 6, 22, + 5, 10, 10, 15), + state= c(1, 2, 1, 2, 3, 1, 3, 0, 2, 0,0,0,0,0), + x = c(0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 1, 1, 2, 0)) > test2$state <- factor(test2$state, 0:3, c("censor", "a", "b", "c")) > > if (FALSE) { + # this graph is very useful + temp <- survcheck(Surv(t1, t2, state) ~1, test2, id=id) + plot(c(0,22), c(1,9.1), type='n', xlab="Time", ylab= "Subject") + with(test2, segments(t1+.1, id, t2, id, col=as.numeric(temp$istate))) + event <- subset(test2, state!='censor') + text(event$t2, event$id+.2, as.character(event$state)) + } > > # s0 to a, cumhaz of 1/6 (t=4) + 1/5 (t=8) > # b to a, cumhaz of 1/2 at 20 > # s0 to b, cumhaz of 1/5 at 6, +1/5 at 10 > # a to b, cumhaz of 1/1 at 18 > # s0 to c, cumhaz of 1/1 at 18 > # a to c, cumhaz of 1/2 at 16 > time2 <- c(4,5,6,8,10,15,16,18,20, 22) > chaz2 <- matrix(0, nrow=10, ncol=6, + dimnames=list(time2, c("1:2", "1:3", "1:3", "2:3", "1:4", "2:4"))) > chaz2['4',1] <- 1/6; chaz2['8',1] <- 1/5 > chaz2['20',2] <- 1/2 > chaz2['6', 3] <- 1/5; chaz2['10', 3] <- 1/5 > chaz2['18',4:5] <- 1 > chaz2['16', 6] <- 1/2 > chaz2 <- apply(chaz2, 2, cumsum) > > > cox3 <- coxph(Surv(t1, t2, state) ~x, id=id, test2, iter=0) # no weights > csurv3 <- survfit(cox3, newdata=data.frame(x=0:1)) > aeq(csurv3$time, time2) [1] TRUE > aeq(csurv3$cumhaz[,1,], chaz2) [1] TRUE > aeq(csurv3$cumhaz[,2,], chaz2) [1] TRUE > check3 <- with(test2, coxhaz(Surv(t1, t2, state), id=id)) > indx3 <- match(check3$time, csurv3$time) > aeq(check3$cumhaz, chaz2[indx3,]) # a check on the coxhaz function above [1] TRUE > > cox4 <- coxph(Surv(t1,t2, state) ~ x, id=id, test2, + init=log(1:6), iter=0) > csurv4 <- survfit(cox4, newdata=data.frame(x=0:1)) > mrisk4 <- exp(outer(test2$x, log(1:6), '*')) # hazards for each transition > check4 <- with(test2, coxhaz(Surv(t1, t2, state), id=id, risk=mrisk4)) > aeq(check4$cumhaz, csurv4$cumhaz[indx3,1,]) [1] TRUE > aeq(csurv4$cumhaz[,2,], csurv4$cumhaz[,1,] %*% diag(1:6)) [1] TRUE > > proc.time() user system elapsed 1.200 0.040 1.241 survival/tests/concordance2.Rout.save0000644000176200001440000002451513537676563017473 0ustar liggesusers R version 3.4.2 (2017-09-28) -- "Short Summer" Copyright (C) 2017 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # > # Tests for the condordance function. > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > grank <- function(x, time, grp, wt) { + if (all(wt==1)) unlist(tapply(x, grp, rank)) + else unlist(tapply(1:length(x), grp, function(i) { + xx <- x[i] # x and wts for this subset of the data + ww <- wt[i] + temp <- outer(xx, xx, function(a, b) sign(b-a)) + colSums(ww*temp)/2 + })) + } > > # a Cox model using iter=0, ties='breslow' and the above function has a score > # statistic which is U=(C-D)/2 and score test U^2/H, where H is the Cox model > # information matrix, with fit$var=1/H. The concordance is U+ 1/2. > # Pull out the Somers' d and its variance > phget <- function(fit) { + c(d = 2*sqrt(fit$score/fit$var), v= 4/fit$var) + } > fscale <- function(fit) { + if (is.matrix(fit$count)) temp <- colSums(fit$count) else temp <- fit$count + npair <- sum(temp[1:3]) + c(d = abs(temp[1]-temp[2]), v=4*fit$cvar*npair^2) + } > > # Concordance by brute force. O(n^2) algorithm, but ok for n<500 or so > allpair <- function(time, status, x, wt, all=FALSE) { + n <- length(time) + if (missing(wt)) wt <- rep(1, length(x)) + count <- sapply(which(status==1), function(i) { + atrisk <- (time > time[i]) | (time==time[i] & status==0) + temp <- tapply(wt[atrisk], factor(sign(x[i] -x[atrisk]), c(-1, 1, 0)), + sum) + tiedtime <- (time==time[i] & status ==1 & (1:n)>i) + ties <- tapply(wt[tiedtime], factor(x[tiedtime]==x[i], + c(FALSE, TRUE)),sum) + wt[i]* c(ifelse(is.na(temp), 0, temp), ifelse(is.na(ties), 0, ties)) + }) + rownames(count) <- c("concordant", "discordant", "tied.x", "tied.y", + "tied.xy") + if (all) { + colnames(count) <- time[status==1] + t(count) + } + else rowSums(count) + } > > # leverage by brute force > leverage <- function(time, status, x, wt, eps=1e-5) { + if (missing(wt)) wt <- rep(1, length(x)) + toss <- is.na(time + status + x +wt) + if (any(toss)) { + time <- time[!toss] + status <- status[!toss] + x <- x[!toss] + wt <- wt[!toss] + } + n <- length(time) + influence <- matrix(0, n, 5) + t2 <- time + eps*(status==0) + for (i in 1:n) { + if (status[i] ==0) comparable <- (time<=time[i] & status==1) + else comparable <- ifelse(status==0, time >= time[i], time!=time[i]) + temp <- sign((x[i]-x[comparable])*(t2[i] - t2[comparable])) + influence[i,1:3] <-tapply(wt[comparable],factor(temp, c(1,-1,0)), sum) + if (status[i]==1) { + tied <- (time==time[i] & status==1 & (1:n)!= i) + if (any(tied)) { + itemp<- tapply(wt[tied], factor(x[tied]==x[i], + c(FALSE, TRUE)), sum) + influence[i,4:5] <- itemp + } + } + } + dimnames(influence) <- list(as.character(Surv(time, status)), + c("concord", "discord", "tie.x", "tie.y", + "tie.xy")) + ifelse(is.na(influence), 0, influence) + } > > tdata <- aml[aml$x=='Maintained', c("time", "status")] > tdata$x <- c(1,6,2,7,3,7,3,8,4,4,5) > tdata$wt <- c(1,2,3,2,1,2,3,4,3,2,1) > > fit <- concordance(Surv(time, status) ~x, tdata, influence=2) > aeq(fit$count, with(tdata, allpair(time, status, x))) [1] TRUE > aeq(fit$influence, with(tdata, leverage(time, status, x))) [1] TRUE > > cfit <- coxph(Surv(time, status) ~ tt(x), tdata, tt=grank, ties='breslow', + iter=0, x=T) > aeq(phget(cfit), fscale(fit)) # agree with Cox model [1] TRUE > > # Test 2: Lots of ties > tempy <- Surv(c(1,2,2,2,3,4,4,4,5,2), c(1,0,1,0,1,0,1,1,0,1)) > tempx <- c(5,5,4,4,3,3,7,6,5,4) > fit2 <- concordance(tempy ~ tempx, influence=2) > aeq(fit2$count, allpair(tempy[,1], tempy[,2], tempx)) [1] TRUE > aeq(fit2$influence, leverage(tempy[,1], tempy[,2], tempx)) [1] TRUE > cfit2 <- coxph(tempy ~ tt(tempx), tt=grank, ties="breslow", iter=0) > aeq(phget(cfit2), fscale(fit2)) # agree with Cox model [1] TRUE > > # Bigger data > cox3 <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung) > fit3 <- concordance(Surv(time, status) ~ predict(cox3), lung, influence=2) > aeq(fit3$count, allpair(lung$time, lung$status-1,predict(cox3))) [1] TRUE > aeq(fit3$influence, leverage(lung$time, lung$status-1,predict(cox3))) [1] TRUE > cfit3 <- coxph(Surv(time, status) ~ tt(predict(cox3)), tt=grank, + ties="breslow", iter=0, data=lung) > aeq(phget(cfit3), fscale(fit3)) # agree with Cox model [1] TRUE > > # More ties > fit4 <- concordance(Surv(time, status) ~ ph.ecog, lung, influence=2) > fit4b <- concordance(Surv(time, status) ~ ph.ecog, lung, reverse=TRUE) > aeq(fit4$count, allpair(lung$time, lung$status-1, lung$ph.ecog)) [1] TRUE > aeq(fit4b$count, c(8392, 4258, 7137, 21, 7)) [1] TRUE > cfit4 <- coxph(Surv(time, status) ~ tt(ph.ecog), lung, + iter=0, method='breslow', tt=grank) > aeq(phget(cfit4), fscale(fit4)) # agree with Cox model [1] TRUE > > # Case weights > fit5 <- concordance(Surv(time, status) ~ x, tdata, weight=wt, influence=2) > fit6 <- concordance(Surv(time, status) ~x, tdata[rep(1:11,tdata$wt),]) > aeq(fit5$count, with(tdata, allpair(time, status, x, wt))) [1] TRUE > aeq(fit5$count, c(91, 70, 7, 0, 0)) # checked by hand [1] TRUE > aeq(fit5$count[1:3], fit6$count[1:3]) #spurious "tied.xy" values, ignore [1] TRUE > aeq(fit5$var[2], fit6$var[2]) [1] TRUE > aeq(fit5$influence, with(tdata, leverage(time, status, x, wt))) [1] TRUE > cfit5 <- coxph(Surv(time, status) ~ tt(x), tdata, weight=wt, + iter=0, method='breslow', tt=grank) > aeq(phget(cfit5), fscale(fit5)) # agree with Cox model [1] TRUE > > # Start, stop simplest cases > fit6 <- concordance(Surv(rep(0,11), time, status) ~ x, tdata) > aeq(fit6$count, fit$count) [1] TRUE > aeq(fit6$var, fit$var) [1] TRUE > fit7 <- concordance(Surv(rep(0,11), time, status) ~ x, tdata, weight=wt) > aeq(fit7$count, fit5$count) [1] TRUE > aeq(fit7$var, fit5$var) [1] TRUE > > # Multiple intervals for some, but same risk sets as tdata > tdata2 <- data.frame(time1=c(0,3, 5, 6,7, 0, 4,17, 7, 0,16, 2, 0, + 0,9, 5), + time2=c(3,9, 13, 7,13, 18, 17,23, 28, 16,31, 34, 45, + 9,48, 60), + status=c(0,1, 1, 0,0, 1, 0,1, 0, 0,1, 1, 0, 0,1, 0), + x = c(1,1, 6, 2,2, 7, 3,3, 7, 3,3, 8, 4, 4,4, 5), + wt= c(1,1, 2, 3,3, 2, 1,1, 2, 3,3, 4, 3, 2,2, 1), + id= c(1,1, 2, 3,3, 4, 5,5, 6, 7,7, 8, 9, 10,10, 11)) > fit8 <- concordance(Surv(time1, time2, status) ~x, cluster=id, tdata2, + weight=wt, influence=2) > aeq(fit5$count, fit8$count) [1] TRUE > # influence has one row per obs, so the next line is false: mismatched lengths > # aeq(fit5$influence, fit8$influence) > aeq(fit5$var, fit8$var) [1] TRUE > cfit8 <- coxph(Surv(time1, time2, status) ~ tt(x), tdata2, weight=wt, + iter=0, method='breslow', tt=grank) > aeq(phget(cfit8), fscale(fit8)) # agree with Cox model [1] TRUE > > # Stratified > tdata3 <- data.frame(time1=c(tdata2$time1, rep(0, nrow(lung))), + time2=c(tdata2$time2, lung$time), + status = c(tdata2$status, lung$status -1), + x = c(tdata2$x, lung$ph.ecog), + wt= c(tdata2$wt, rep(1, nrow(lung))), + grp=rep(1:2, c(nrow(tdata2), nrow(lung))), + id = c(tdata2$id, 100+ 1:nrow(lung))) > fit9 <- concordance(Surv(time1, time2, status) ~x + strata(grp), cluster=id, + data=tdata3, weight=wt, influence=2) > aeq(fit9$count, rbind(fit8$count, fit4$count)) [1] TRUE > > # check out case weights, strata, and grouped jackknife; > # force several ties in x, y, and xy (with missing values too for good measure). > tdata <- subset(lung, select=-c(meal.cal, wt.loss, sex, age)) > tdata$wt <- rep(1:25, length=nrow(tdata))/10 > tdata$time <- ceiling(tdata$time/30) # force ties in y > tfit <- coxph(Surv(time, status) ~ ph.ecog + pat.karno + strata(inst) + + cluster(inst), tdata, weight=wt) > tdata$tpred <- predict(tfit) > cm4 <- concordance(tfit, influence=3, keepstrata=TRUE) > cm5 <- concordance(Surv(time, status) ~ tpred + strata(inst) + cluster(inst), + data=tdata, weight=wt, reverse=TRUE, influence=3, + keepstrata=TRUE) > all.equal(cm4[1:6], cm5[1:6]) # call and na.action won't match [1] TRUE > > u.inst <- sort(unique(tdata$inst)) > temp <- matrix(0, length(u.inst), 5) > for (i in 1:length(u.inst)) { + temp[i,] <- with(subset(tdata, inst==u.inst[i]), + allpair(time, status-1, -tpred, wt)) + } > aeq(temp, cm4$count) [1] TRUE > > eps <- 1e-6 > keep <- (1:nrow(tdata))[-tfit$na.action] # the obs that are not tossed > lmat <- matrix(0., length(keep), 5) > for (i in 1:length(keep)) { + wt2 <- tdata$wt + wt2[keep[i]] <- wt2[keep[i]] + eps + + test <- concordance(Surv(time, status) ~ predict(tfit) + strata(inst), + data=tdata, weight=wt2, group=group, reverse=TRUE, + keepstrata=TRUE) + lmat[i,] <- colSums(test$count - cm4$count)/eps + } > aeq(lmat, cm4$influence, tolerance=eps) [1] TRUE > > # Check that keepstrata gives the correct sum > cm4b <- concordance(tfit, keepstrata=FALSE) > aeq(cm4b$count, colSums(cm4$count)) [1] TRUE > > proc.time() user system elapsed 12.828 1.282 14.194 survival/tests/detail.R0000644000176200001440000000515113537676563014703 0ustar liggesusers# A short test on coxph.detail, to ensure that the computed hazard is # equal to the theoretical value library(survival) aeq <- function(a,b) all.equal(as.vector(a), as.vector(b)) # taken from book4.R test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) byhand <- function(beta, newx=0) { r <- exp(beta) loglik <- 4*beta - (log(r+1) + log(r+2) + 2*log(3*r+2) + 2*log(3*r+1) + log(2*r +2)) u <- 1/(r+1) + 1/(3*r+1) + 2*(1/(3*r+2) + 1/(2*r+2)) - ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) imat <- r*(1/(r+1)^2 + 2/(r+2)^2 + 6/(3*r+2)^2 + 6/(3*r+1)^2 + 6/(3*r+2)^2 + 4/(2*r +2)^2) hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 1/(3*r+2), 1/(2*r +2) ) # The matrix of weights, one row per obs, one col per time # deaths at 2,3,6,7,8,9 wtmat <- matrix(c(1,0,0,0,1, 0, 0,0,0,0, 0,1,0,1,1, 0, 0,0,0,0, 0,0,1,1,1, 0, 1,1,0,0, 0,0,0,1,1, 0, 1,1,0,0, 0,0,0,0,1, 1, 1,1,0,0, 0,0,0,0,0, 1, 1,1,1,1, 0,0,0,0,0,.5,.5,1,1,1), ncol=7) wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat x <- c(1,0,0,1,0,1,1,1,0,0) status <- c(1,1,1,1,1,1,1,0,0,0) xbar <- colSums(wtmat*x)/ colSums(wtmat) n <- length(x) # Table of sums for score and Schoenfeld resids hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time dM <- -hazmat #Expected part for (i in 1:5) dM[i,i] <- dM[i,i] +1 #observed dM[6:7,6:7] <- dM[6:7,6:7] +.5 # observed mart <- rowSums(dM) # Table of sums for score and Schoenfeld resids # Looks like the last table of appendix E.2.1 of the book resid <- dM * outer(x, xbar, '-') score <- rowSums(resid) scho <- colSums(resid) # We need to add the ties back up (they are symmetric) scho[6:7] <- rep(mean(scho[6:7]), 2) list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard* exp(beta*newx), mart=mart, score=score, rmat=resid, scho=scho) } # The actual coefficient of the fit is close to zero. Using a larger # number pushes the test harder, but it should still work without # the init and iter arguments, i.e., for any coefficient. fit1 <- coxph(Surv(start, stop, event) ~x, test2,init=-1, iter=0) temp <- coxph.detail(fit1) temp2 <- byhand(fit1$coef, fit1$means) aeq(temp$haz, c(temp2$haz[1:5], sum(temp2$haz[6:7]))) survival/tests/tmerge.R0000644000176200001440000000530413544366313014707 0ustar liggesuserslibrary(survival) # Very simple tmerge example, for checking data1 <- data.frame(idd = c(1,5,4,3,2,6), x1=1:6, age=50:55) data2 <- data.frame(idd = c(2,5,1,2,1), x2=5:1, age=48:44) test1 <- tmerge(data1, data1, id=idd, death=event(age)) test2 <- tmerge(test1, data2, id=idd, zed=tdc(age, x2)) all.equal(test2$idd, c(1,1,1,5,5,4,3,2,2,2,6)) all.equal(test2$tstop, c(44, 46, 50, 47, 51, 52, 53, 45, 48, 54, 55)) all.equal(test2$death, c(0,0,1,0,1,1,1,0,0,1,1)) all.equal(test2$zed, c(NA, 1, 3,NA, 4, NA, NA, NA, 2, 5, NA)) #add in a cumtdc variable and cumevent variable data3 <- data.frame(idd=c(5,5,1,1,6,4,3,2), age=c(45, 50, 44, 48, 53,-5,0,20), x = c(1,5,2,3,7, 4,6,8)) test3 <- tmerge(test2, data3, id=idd, x=cumtdc(age, x), esum = cumevent(age)) all.equal(test3$x, c(NA,2,2,5,NA, 1,1,6,4,6, NA, 8,8,8, NA,7)) all.equal(test3$esum, c(1,0,2,0,1,0,2,0,0,0,1,0,0,0,1,0)) # An example from Brendan Caroll # It went wrong because the data is not sorted ages <- data.frame( id = c(1L, 2L, 5L, 6L, 9L, 10L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 20L, 21L, 24L, 26L, 27L, 28L, 29L, 30L, 31L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 42L, 45L, 46L, 43L, 48L, 49L, 50L, 51L, 52L, 54L, 55L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 8L, 19L, 22L, 23L, 33L, 41L), age = c(13668, 21550, 15249, 21550, 16045, 21550, 14976, 14976, 6574, 21550, 4463, 16927, 16927, 15706, 4567, 21306, 17235, 22158, 19692, 17632, 17597, 4383, 5811, 7704, 5063, 17351, 17015, 16801, 4383, 5080, 13185, 12604, 19784, 5310, 15369, 13239, 1638, 21323, 10914, 21262, 7297, 17214, 17508, 14199, 14062, 2227, 8434, 4593, 14429, 21323, 4782, 10813, 2667, 2853, 5709, 3140, 12237, 7882, 21550, 15553, 16466, 16621, 19534, 21842)) transitions <- data.frame(id=c(2,2, 8, 19, 22, 23, 24, 31, 33, 41, 43, 52, 55, 66, 6, 10, 43), transition = c(18993, 13668, 15706, 11609, 4023, 9316, 16193, 1461, 4584, 17824, 11261, 16818, 10670, 15479, 15249, 15887,3713)) # Unsorted tdata <- tmerge(ages, ages, id=id, tstop=age) newdata<- tmerge(tdata, transitions, id=id, enum=cumtdc(transition)) # sorted test1 <- ages[order(ages$id),] test2 <- tmerge(test1, test1, id=id, tstop=age) tran2 <- transitions[order(transitions$id, transitions$transition),] test3 <- tmerge(test2, tran2, id=id, enum=cumtdc(transition)) all.equal(attr(newdata,'tcount'), attr(test3, 'tcount')) test4 <- newdata[order(newdata$id, newdata$tstart),] all.equal(test3, test4, check.attributes=FALSE) #rownames differ survival/tests/prednew.Rout.save0000644000176200001440000000711213537676563016571 0ustar liggesusers R Under development (unstable) (2019-06-28 r76752) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Make sure that the newdata argument works for various > # predictions > # We purposely use a subset of the lung data that has only some > # of the levels of ph.ecog > library(survival) > options(na.action=na.exclude, contrasts=c('contr.treatment', 'contr.poly')) > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > myfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog) + strata(sex), lung) > > keep <- which(lung$inst<13 & (lung$ph.ecog==1 | lung$ph.ecog==2)) > p1 <- predict(myfit, type='lp') > p2 <- predict(myfit, type="lp", newdata=lung[keep,]) > p3 <- predict(myfit, type='lp', se.fit=TRUE) > p4 <- predict(myfit, type="lp", newdata=lung[keep,], se.fit=TRUE) > aeq(p1[keep], p2) [1] TRUE > aeq(p1, p3$fit) [1] TRUE > aeq(p1[keep], p4$fit) [1] TRUE > aeq(p3$se.fit[keep], p4$se.fit) [1] TRUE > > p1 <- predict(myfit, type='risk') > p2 <- predict(myfit, type="risk", newdata=lung[keep,]) > p3 <- predict(myfit, type='risk', se.fit=TRUE) > p4 <- predict(myfit, type="risk", newdata=lung[keep,], se.fit=TRUE) > aeq(p1[keep], p2) [1] TRUE > aeq(p1, p3$fit) [1] TRUE > aeq(p1[keep], p4$fit) [1] TRUE > aeq(p3$se.fit[keep], p4$se.fit) [1] TRUE > > # The all.equal fails for type=expected, Efron approx, and tied death > # times due to use of an approximation. See comments in the source code. > myfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog) + strata(sex), + data=lung, method='breslow') > p1 <- predict(myfit, type='expected') > p2 <- predict(myfit, type="expected", newdata=lung[keep,]) > p3 <- predict(myfit, type='expected', se.fit=TRUE) > p4 <- predict(myfit, type="expected", newdata=lung[keep,], se.fit=TRUE) > aeq(p1[keep], p2) [1] TRUE > aeq(p1, p3$fit) [1] TRUE > aeq(p1[keep], p4$fit) [1] TRUE > aeq(p3$se.fit[keep], p4$se.fit) [1] TRUE > > p1 <- predict(myfit, type='terms') > p2 <- predict(myfit, type="terms",newdata=lung[keep,]) > p3 <- predict(myfit, type='terms', se.fit=T) > p4 <- predict(myfit, type="terms",newdata=lung[keep,], se.fit=T) > aeq(p1[keep,], p2) [1] TRUE > aeq(p1, p3$fit) [1] TRUE > aeq(p1[keep,], p4$fit) [1] TRUE > aeq(p3$se.fit[keep,], p4$se.fit) [1] TRUE > > # > # Check out the logic whereby predict does not need to > # recover the model frame. The first call should not > # need to do so, the second should in each case. > # > myfit <- coxph(Surv(time, status) ~ age + factor(sex), lung, x=T) > p1 <- predict(myfit, type='risk', se=T) > myfit2 <- coxph(Surv(time, status) ~ age + factor(sex), lung) > p2 <- predict(myfit2, type='risk', se=T) > aeq(p1$fit, p2$fit) [1] TRUE > aeq(p1$se, p2$se) [1] TRUE > > p1 <- predict(myfit, type='expected', se=T) > p2 <- predict(myfit2, type='expected', se=T) > aeq(p1$fit, p2$fit) [1] TRUE > aeq(p1$se.fit, p2$se.fit) [1] TRUE > > p1 <- predict(myfit, type='terms', se=T) > p2 <- predict(myfit2, type='terms', se=T) > aeq(p1$fit, p2$fit) [1] TRUE > aeq(p1$se.fit, p2$se.fit) [1] TRUE > > proc.time() user system elapsed 0.848 0.048 0.895 survival/tests/r_stanford.Rout.save0000644000176200001440000000756013537676563017275 0ustar liggesusers R Under development (unstable) (2018-01-04 r74052) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # The Stanford data from 1980 is used in Escobar and Meeker, Biometrics 1992. > # t5 = T5 mismatch score > # Their case numbers correspond to a data set sorted by age > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > stanford2$t5 <- ifelse(stanford2$t5 <0, NA, stanford2$t5) > stanford2 <- stanford2[order(stanford2$age, stanford2$time),] > stanford2$time <- ifelse(stanford2$time==0, .5, stanford2$time) > > cage <- stanford2$age - mean(stanford2$age) > fit1 <- survreg(Surv(time, status) ~ cage + I(cage^2), stanford2, + dist='lognormal') > fit1 Call: survreg(formula = Surv(time, status) ~ cage + I(cage^2), data = stanford2, dist = "lognormal") Coefficients: (Intercept) cage I(cage^2) 6.717591081 -0.061908619 -0.003504315 Scale= 2.362872 Loglik(model)= -863.6 Loglik(intercept only)= -868.8 Chisq= 10.5 on 2 degrees of freedom, p= 0.00526 n= 184 > ldcase <- resid(fit1, type='ldcase') > ldresp <- resid(fit1, type='ldresp') > # The ldcase and ldresp should be compared to table 1 in Escobar and > # Meeker, Biometrics 1992, p519; the colums they label as (1/2) A_{ii} > # They give data for selected cases, entered below as mdata > mdata <- cbind(c(1,2,4,5,12,16,23,61,66,72,172,182,183,184), + c(.035, .244, .141, .159, .194, .402, 0,0, .143, .403, + .178, .033, .005, .015), + c(.138, .145, .073, .076, .104, .159, 0,0, .109, .184, + .116, .063, .103, .144)) > dimnames(mdata) <- list(NULL, c("case#", "ldcase", "ldresp")) > aeq(round(ldcase[mdata[,1]],3), mdata[,2]) [1] TRUE > aeq(round(ldresp[mdata[,1]],3), mdata[,3]) [1] TRUE > > plot1 <- function() { + # make their figure 1, 2, and 6 + temp <- predict(fit1, type='quantile', p=c(.1, .5, .9)) + plot(stanford2$age, stanford2$time, log='y', xlab="Age", ylab="Days", + ylim=range(stanford2$time, temp)) + matlines(stanford2$age, temp, lty=c(1,2,2), col=1) + + n <- length(ldcase) + plot(1:n, ldcase, xlab="Case Number", ylab="(1/2) A", type='l') + title (main="Case weight pertubations") + plot(1:n, ldresp, xlab="Case Number", ylab="(1/2) A", + ylim=c(0, .2), type='l') + title(main="Response pertubations") + indx <- which(ldresp > .07) + text(indx, ldresp[indx]+ .005, indx%%10, cex=.6) + } > > postscript('meekerplot.ps') > plot1() > dev.off() null device 1 > # > # Stanford predictions in other ways > # > fit2 <- survreg(Surv(time, status) ~ poly(age,2), stanford2, + dist='lognormal') > > p1 <- predict(fit1, type='response') > p2 <- predict(fit2, type='response') > aeq(p1, p2) [1] TRUE > > p3 <- predict(fit2, type='terms', se=T) > p4 <- predict(fit2, type='lp', se=T) > p5 <- predict(fit1, type='lp', se=T) > # aeq(p3$fit + attr(p3$fit, 'constant'), p4$fit) #R is missing the attribute > aeq(p4$fit, p5$fit) [1] TRUE > aeq(p3$se.fit, p4$se.fit) #this one should be false [1] "Mean relative difference: 0.758395" > aeq(p4$se.fit, p5$se.fit) #this one true [1] TRUE > > > proc.time() user system elapsed 0.864 0.064 0.925 survival/tests/surv.Rout.save0000644000176200001440000000623613537676563016132 0ustar liggesusers R Under development (unstable) (2019-07-02 r76765) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > library(survival) > > # Some simple tests of the Surv function > # The first two are motivated by a bug, pointed out by Kevin Buhr, > # where a mixture of NAs and invalid values didn't work right > # Even for the simplest things a test case is good. > # All but the third should produce warning messages > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > temp <- Surv(c(1, 10, 20, 30), c(2, NA, 0, 40), c(1,1,1,1)) Warning message: In Surv(c(1, 10, 20, 30), c(2, NA, 0, 40), c(1, 1, 1, 1)) : Stop time must be > start time, NA created > aeq(temp, c(1,10,NA,30, 2,NA,0,40, 1,1,1,1)) [1] TRUE > > temp <- Surv(c(1, 10, 20, 30), c(2, NA, 0, 40), type='interval2') Warning message: In Surv(c(1, 10, 20, 30), c(2, NA, 0, 40), type = "interval2") : Invalid interval: start > stop, NA created > aeq(temp, c(1,10,20,30, 2,1,1,40, 3,0,NA,3)) [1] TRUE > > #No error > temp <- Surv(1:5) > aeq(temp, c(1:5, 1,1,1,1,1)) [1] TRUE > > temp1 <- Surv(c(1,10,NA, 30, 30), c(1,NA,10,20, 40), type='interval2') Warning message: In Surv(c(1, 10, NA, 30, 30), c(1, NA, 10, 20, 40), type = "interval2") : Invalid interval: start > stop, NA created > temp2 <- Surv(c(1,10,10,30,30), c(9, NA, 5, 20,40), c(1, 0, 2,3,3), + type='interval') Warning message: In Surv(c(1, 10, 10, 30, 30), c(9, NA, 5, 20, 40), c(1, 0, 2, 3, : Invalid interval: start > stop, NA created > aeq(temp1, temp2) [1] TRUE > aeq(temp1, c(1,10,10,30,30, 1,1,1,1, 40, 1,0,2,NA,3)) [1] TRUE > > # Use of inf > temp1 <- Surv(c(1,10,NA, 30, 30), c(1,NA,10,30, 40), type='interval2') > temp2 <- Surv(c(1,10,-Inf, 30, 30), c(1,Inf,10,30, 40), type='interval2') > aeq(temp1, temp2) [1] TRUE > > # Verify sorting and order routines > # These fail in 3.4, succeed in 3.5 due to a system change in how > # xtfrm.Surv is used. > x1 <- Surv(c(4, 6, 3, 2, 1, NA, 2), c(1,0, NA, 0,1,1,1)) > all.equal(order(x1), c(5,7, 4, 1, 2, 3, 6)) [1] TRUE > all.equal(order(x1, decreasing=TRUE), c(2,1,4,7,5, 3, 6)) [1] TRUE > all.equal(sort(x1), x1[c(5,7,4,1,2)]) [1] TRUE > > x2 <- Surv(c(4, 6, 3, 2, 1, NA, 2), c(1,0, NA, 0,1,1,1), type='left') > all.equal(order(x2), c(5,4, 7, 1, 2, 3, 6)) [1] TRUE > > x3 <- Surv(c(1,5,NA,7, 9), c(6, 6, 4, NA, 9), type="interval2") > all.equal(sort(x3), x3[c(1,3,2,4,5)]) [1] TRUE > > x4 <- Surv(c(1,5,6,5,2, 4), c(3, 7, 7, 6, 3, NA), factor(c(1, 2, 0, 1, 1, 0))) > all.equal(sort(x4), x4[c(1, 5, 4, 2,3)]) [1] TRUE > all.equal(sort(x4, na.last=FALSE), x4[c(6,1,5,4,2,3)]) [1] TRUE > > proc.time() user system elapsed 0.738 0.033 0.764 survival/tests/ovarian.R0000644000176200001440000000372513537676603015100 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test the coxph program on the Ovarian data summary(survfit(Surv(futime, fustat)~1, data=ovarian), censor=TRUE) # Various models coxph(Surv(futime, fustat)~ age, data=ovarian) coxph(Surv(futime, fustat)~ resid.ds, data=ovarian) coxph(Surv(futime, fustat)~ rx, data=ovarian) coxph(Surv(futime, fustat)~ ecog.ps, data=ovarian) coxph(Surv(futime, fustat)~ resid.ds + rx + ecog.ps, data=ovarian) coxph(Surv(futime, fustat)~ age + rx + ecog.ps, data=ovarian) coxph(Surv(futime, fustat)~ age + resid.ds + ecog.ps, data=ovarian) coxph(Surv(futime, fustat)~ age + resid.ds + rx, data=ovarian) # Residuals fit <- coxph(Surv(futime, fustat)~ age + resid.ds + rx + ecog.ps, data=ovarian) resid(fit) resid(fit, 'dev') resid(fit, 'scor') resid(fit, 'scho') fit <- coxph(Surv(futime, fustat) ~ age + ecog.ps + strata(rx), data=ovarian) summary(fit) summary(survfit(fit)) sfit <- survfit(fit, list(age=c(30,70), ecog.ps=c(2,3))) #two columns sfit summary(sfit) # Check of offset + surv, added 7/2000 fit1 <- coxph(Surv(futime, fustat) ~ age + rx, ovarian, control=coxph.control(eps=1e-8)) fit2 <- coxph(Surv(futime, fustat) ~ age + offset(rx*fit1$coef[2]), ovarian, control=coxph.control(eps=1e-8)) all.equal(fit1$coef[1], fit2$coef[1]) fit <- coxph(Surv(futime, fustat) ~ age + offset(rx), ovarian) survfit(fit, censor=FALSE)$surv^exp(-1.5) # Check it by hand -- there are no tied times # Remember that offsets from survfit are centered, which is 1.5 for # this data set. eta <- fit$coef*(ovarian$age - fit$mean) + (ovarian$rx - 1.5) ord <- order(ovarian$futime) risk <- exp(eta[ord]) rsum <- rev(cumsum(rev(risk))) # cumulative risk at each time point dead <- (ovarian$fustat[ord]==1) baseline <- cumsum(1/rsum[dead]) all.equal(survfit(fit, censor=FALSE)$surv, exp(-baseline)) rm(fit, fit1, fit2, ord, eta, risk, rsum, dead, baseline, sfit) survival/tests/r_scale.Rout.save0000644000176200001440000000502213537676563016533 0ustar liggesusers R version 3.0.0 (2013-04-03) -- "Masked Marvel" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Verify that scale can be fixed at a value > # coefs will differ slightly due to different iteration paths > tol <- .001 > > # Intercept only models > fit1 <- survreg(Surv(time,status) ~ 1, lung) > fit2 <- survreg(Surv(time,status) ~ 1, lung, scale=fit1$scale) > all.equal(fit1$coef, fit2$coef, tolerance= tol) [1] TRUE > all.equal(fit1$loglik, fit2$loglik, tolerance= tol) [1] TRUE > > # The two robust variance matrices are not the same, since removing > # an obs has a different effect on the two models. This just > # checks for failure, not for correctness > fit3 <- survreg(Surv(time,status) ~ 1, lung, robust=TRUE) > fit4 <- survreg(Surv(time,status) ~ 1, lung, scale=fit1$scale, robust=TRUE) > > > # multiple covariates > fit1 <- survreg(Surv(time,status) ~ age + ph.karno, lung) > fit2 <- survreg(Surv(time,status) ~ age + ph.karno, lung, + scale=fit1$scale) > all.equal(fit1$coef, fit2$coef, tolerance=tol) [1] TRUE > all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol) [1] TRUE > > fit3 <- survreg(Surv(time,status) ~ age + ph.karno, lung, robust=TRUE) > fit4 <- survreg(Surv(time,status) ~ age + ph.karno, lung, + scale=fit1$scale, robust=TRUE) > > # penalized models > fit1 <- survreg(Surv(time, status) ~ pspline(age), lung) > fit2 <- survreg(Surv(time, status) ~ pspline(age), lung, scale=fit1$scale) > all.equal(fit1$coef, fit2$coef, tolerance=tol) [1] TRUE > all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol) [1] TRUE > > fit3 <- survreg(Surv(time,status) ~ pspline(age) + ph.karno, lung, robust=TRUE) > fit4 <- survreg(Surv(time,status) ~ pspline(age) + ph.karno, lung, + scale=fit1$scale, robust=TRUE) > > > > proc.time() user system elapsed 0.304 0.044 0.344 survival/tests/book5.Rout.save0000644000176200001440000001565313537676603016150 0ustar liggesusers R Under development (unstable) (2019-01-23 r76006) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # Tests of the weighted Cox model > # This is section 1.3 of my appendix -- not yet found in the book > # though, it awaits the next edition > # > # Similar data set to test1, but add weights, > # a double-death/censor tied time > # a censored last subject > # The latter two are cases covered only feebly elsewhere. > # > # The data set testw2 has the same data, but done via replication > # > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), + status= c(1,0,1,1,1,0,0,1,0), + x= c(2,0,1,1,0,1,0,1,0), + wt = c(1,2,3,4,3,2,1,2,1), + id = 1:9) > # Expanded data set > testw2 <- testw1[rep(1:9, testw1$wt), -4] > row.names(testw2) <- NULL > indx <- match(1:9, testw2$id) > > # Breslow estimate > byhand <- function(beta, newx=0) { + r <- exp(beta) + loglik <- 11*beta - (log(r^2 + 11*r +7) + 10*log(11*r +5) +2*log(2*r+1)) + hazard <- c(1/(r^2 + 11*r +7), 10/(11*r +5), 2/(2*r+1)) + xbar <- c((2*r^2 + 11*r)*hazard[1], 11*r/(11*r +5), r*hazard[3]) + U <- 11- (xbar[1] + 10*xbar[2] + 2*xbar[3]) + imat <- (4*r^2 + 11*r)*hazard[1] - xbar[1]^2 + + 10*(xbar[2] - xbar[2]^2) + 2*(xbar[3] - xbar[3]^2) + + temp <- cumsum(hazard) + risk <- c(r^2, 1,r,r,1,r,1,r,1) + expected <- risk* temp[c(1,1,2,2,2,2,2,3,3)] + + # The matrix of weights, one row per obs, one col per death + # deaths at 1,2,2,2, and 4 + riskmat <- matrix(c(1,1,1,1,1,1,1,1,1, + 0,0,1,1,1,1,1,1,1, + 0,0,1,1,1,1,1,1,1, + 0,0,1,1,1,1,1,1,1, + 0,0,0,0,0,0,0,1,1), ncol=5) + wtmat <- diag(c(r^2, 2, 3*r, 4*r, 3, 2*r, 1, 2*r, 1)) %*% riskmat + + x <- c(2,0,1,1,0,1,0,1,0) + status <- c(1,0,1,1,1,0,0,1,0) + wt <- c(1,2,3,4,3,2,1,2,1) + # Table of sums for score and Schoenfeld resids + hazmat <- riskmat %*% diag(c(1,3,4,3,2)/colSums(wtmat)) + dM <- -risk*hazmat #Expected part + dM[1,1] <- dM[1,1] +1 # deaths at time 1 + for (i in 2:4) dM[i+1, i] <- dM[i+1,i] +1 + dM[8,5] <- dM[8,5] +1 + mart <- rowSums(dM) + resid <-dM * outer(x, xbar[c(1,2,2,2,3)] ,'-') + + # Increments to the variance of the hazard + var.g <- cumsum(hazard^2/ c(1,10,2)) + var.d <- cumsum((xbar-newx)*hazard) + + list(loglik=loglik, U=U, imat=imat, hazard=hazard, xbar=xbar, + mart=c(1,0,1,1,1,0,0,1,0)-expected, expected=expected, + score=rowSums(resid), schoen=c(2,1,1,0,1) - xbar[c(1,2,2,2,3)], + varhaz=(var.g + var.d^2/imat)* exp(2*beta*newx)) + } > > aeq(byhand(0)$expected, c(1/19, 1/19, rep(103/152, 5), rep(613/456,2))) #verify [1] TRUE > > fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, + method='breslow', iter=0) > fit0b <- coxph(Surv(time, status) ~x, testw2, method='breslow', iter=0) > fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow') > fitb <- coxph(Surv(time, status) ~x, testw2, method='breslow') > > aeq(resid(fit0, type='mart'), (resid(fit0b, type='mart'))[indx]) [1] TRUE > aeq(resid(fit0, type='scor'), (resid(fit0b, type='scor'))[indx]) [1] TRUE > aeq(unique(resid(fit0, type='scho')), unique(resid(fit0b, type='scho'))) [1] TRUE > > truth0 <- byhand(0,pi) > aeq(fit0$loglik[1], truth0$loglik) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid) [1] TRUE > aeq(truth0$scho, resid(fit0, 'schoen')) [1] TRUE > aeq(truth0$score, resid(fit0, 'score')) [1] TRUE > sfit <- survfit(fit0, list(x=pi), censor=FALSE) > aeq(sfit$std.err^2, truth0$var) [1] TRUE > aeq(-log(sfit$surv), cumsum(truth0$haz)) [1] TRUE > > truth <- byhand(0.85955744, .3) > aeq(truth$loglik, fit$loglik[2]) [1] TRUE > aeq(1/truth$imat, fit$var) [1] TRUE > aeq(truth$mart, fit$resid) [1] TRUE > aeq(truth$scho, resid(fit, 'schoen')) [1] TRUE > aeq(truth$score, resid(fit, 'score')) [1] TRUE > > sfit <- survfit(fit, list(x=.3), censor=FALSE) > aeq(sfit$std.err^2, truth$var) [1] TRUE > aeq(-log(sfit$surv), (cumsum(truth$haz)* exp(fit$coef*.3))) [1] TRUE > > > fit0 Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt, method = "breslow", iter = 0) coef exp(coef) se(coef) z p x 0.0000 1.0000 0.5858 0 1 Likelihood ratio test=0 on 1 df, p=1 n= 9, number of events= 5 > summary(fit) Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt, method = "breslow") n= 9, number of events= 5 coef exp(coef) se(coef) z Pr(>|z|) x 0.8596 2.3621 0.7131 1.205 0.228 exp(coef) exp(-coef) lower .95 upper .95 x 2.362 0.4233 0.5839 9.556 Concordance= 0.638 (se = 0.161 ) Likelihood ratio test= 1.69 on 1 df, p=0.2 Wald test = 1.45 on 1 df, p=0.2 Score (logrank) test = 1.52 on 1 df, p=0.2 > resid(fit0, type='score') 1 2 3 4 5 6 1.24653740 0.03601108 0.10056700 0.10056700 -0.22180142 -0.21193300 7 8 9 0.46569858 -0.10082189 0.91014302 > resid(fit0, type='scho') 1 2 2 2 4 1.3157895 0.3125000 0.3125000 -0.6875000 0.3333333 > > resid(fit, type='score') 1 2 3 4 5 6 0.88681615 0.02497653 0.03608964 0.03608964 -0.54297652 -0.12528780 7 8 9 0.29564605 -0.09476911 0.58400064 > resid(fit, type='scho') 1 2 2 2 4 1.0368337 0.1613774 0.1613774 -0.8386226 0.1746960 > aeq(resid(fit, type='mart'), (resid(fitb, type='mart'))[indx]) [1] TRUE > aeq(resid(fit, type='scor'), (resid(fitb, type='scor'))[indx]) [1] TRUE > aeq(unique(resid(fit, type='scho')), unique(resid(fitb, type='scho'))) [1] TRUE > rr1 <- resid(fit, type='mart') > rr2 <- resid(fit, type='mart', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > rr1 <- resid(fit, type='score') > rr2 <- resid(fit, type='score', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > > proc.time() user system elapsed 0.860 0.040 0.902 survival/tests/jasa.Rout.save0000644000176200001440000003137713537676563016055 0ustar liggesusers R Under development (unstable) (2019-01-23 r76006) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > expect <- survexp(futime ~ ratetable(age=(accept.dt - birth.dt), sex=1, + year=accept.dt, race='white'), jasa, cohort=F, + ratetable=survexp.usr) > > survdiff(Surv(jasa$futime, jasa$fustat) ~ offset(expect)) Call: survdiff(formula = Surv(jasa$futime, jasa$fustat) ~ offset(expect)) Observed Expected Z p 75.000 0.587 -97.119 0.000 > # Now fit the 6 models found in Kalbfleisch and Prentice, p139 > sfit.1 <- coxph(Surv(start, stop, event)~ (age + surgery)*transplant, + jasa1, method='breslow') > sfit.2 <- coxph(Surv(start, stop, event)~ year*transplant, + jasa1, method='breslow') > sfit.3 <- coxph(Surv(start, stop, event)~ (age + year)*transplant, + jasa1, method='breslow') > sfit.4 <- coxph(Surv(start, stop, event)~ (year +surgery) *transplant, + jasa1, method='breslow') > sfit.5 <- coxph(Surv(start, stop, event)~ (age + surgery)*transplant + year , + jasa1, method='breslow') > sfit.6 <- coxph(Surv(start, stop, event)~ age*transplant + surgery + year, + jasa1, method='breslow') > > summary(sfit.1) Call: coxph(formula = Surv(start, stop, event) ~ (age + surgery) * transplant, data = jasa1, method = "breslow") n= 170, number of events= 75 coef exp(coef) se(coef) z Pr(>|z|) age 0.01386 1.01395 0.01813 0.765 0.445 surgery -0.54652 0.57896 0.61091 -0.895 0.371 transplant 0.11572 1.12268 0.32729 0.354 0.724 age:transplant 0.03473 1.03534 0.02725 1.274 0.202 surgery:transplant -0.29037 0.74799 0.75819 -0.383 0.702 exp(coef) exp(-coef) lower .95 upper .95 age 1.014 0.9862 0.9786 1.051 surgery 0.579 1.7272 0.1748 1.917 transplant 1.123 0.8907 0.5911 2.132 age:transplant 1.035 0.9659 0.9815 1.092 surgery:transplant 0.748 1.3369 0.1692 3.306 Concordance= 0.595 (se = 0.037 ) Likelihood ratio test= 12.45 on 5 df, p=0.03 Wald test = 11.62 on 5 df, p=0.04 Score (logrank) test = 12.02 on 5 df, p=0.03 > sfit.2 Call: coxph(formula = Surv(start, stop, event) ~ year * transplant, data = jasa1, method = "breslow") coef exp(coef) se(coef) z p year -0.2652 0.7671 0.1051 -2.522 0.0117 transplant -0.2871 0.7504 0.5137 -0.559 0.5762 year:transplant 0.1371 1.1469 0.1409 0.973 0.3306 Likelihood ratio test=8.61 on 3 df, p=0.03488 n= 170, number of events= 75 > summary(sfit.3) Call: coxph(formula = Surv(start, stop, event) ~ (age + year) * transplant, data = jasa1, method = "breslow") n= 170, number of events= 75 coef exp(coef) se(coef) z Pr(>|z|) age 0.01558 1.01571 0.01734 0.899 0.36887 year -0.27413 0.76023 0.10588 -2.589 0.00962 ** transplant -0.59388 0.55218 0.54222 -1.095 0.27339 age:transplant 0.03380 1.03438 0.02795 1.209 0.22653 year:transplant 0.20228 1.22419 0.14247 1.420 0.15566 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 exp(coef) exp(-coef) lower .95 upper .95 age 1.0157 0.9845 0.9818 1.0508 year 0.7602 1.3154 0.6178 0.9356 transplant 0.5522 1.8110 0.1908 1.5981 age:transplant 1.0344 0.9668 0.9792 1.0926 year:transplant 1.2242 0.8169 0.9259 1.6185 Concordance= 0.63 (se = 0.036 ) Likelihood ratio test= 14.85 on 5 df, p=0.01 Wald test = 13.77 on 5 df, p=0.02 Score (logrank) test = 14.06 on 5 df, p=0.02 > sfit.4 Call: coxph(formula = Surv(start, stop, event) ~ (year + surgery) * transplant, data = jasa1, method = "breslow") coef exp(coef) se(coef) z p year -0.2541 0.7756 0.1077 -2.360 0.0183 surgery -0.2365 0.7894 0.6282 -0.377 0.7065 transplant -0.2969 0.7431 0.5054 -0.588 0.5568 year:transplant 0.1653 1.1797 0.1416 1.167 0.2431 surgery:transplant -0.5499 0.5770 0.7759 -0.709 0.4785 Likelihood ratio test=12.36 on 5 df, p=0.03021 n= 170, number of events= 75 > sfit.5 Call: coxph(formula = Surv(start, stop, event) ~ (age + surgery) * transplant + year, data = jasa1, method = "breslow") coef exp(coef) se(coef) z p age 0.01504 1.01516 0.01760 0.855 0.3928 surgery -0.42025 0.65689 0.61564 -0.683 0.4948 transplant 0.07412 1.07694 0.33113 0.224 0.8229 year -0.13631 0.87258 0.07097 -1.921 0.0548 age:transplant 0.02691 1.02728 0.02712 0.992 0.3210 surgery:transplant -0.29656 0.74337 0.75800 -0.391 0.6956 Likelihood ratio test=16.2 on 6 df, p=0.0127 n= 170, number of events= 75 > sfit.6 Call: coxph(formula = Surv(start, stop, event) ~ age * transplant + surgery + year, data = jasa1, method = "breslow") coef exp(coef) se(coef) z p age 0.01527 1.01539 0.01750 0.873 0.3828 transplant 0.04457 1.04558 0.32171 0.139 0.8898 surgery -0.62113 0.53734 0.36786 -1.688 0.0913 year -0.13608 0.87278 0.07090 -1.919 0.0550 age:transplant 0.02703 1.02740 0.02714 0.996 0.3193 Likelihood ratio test=16.06 on 5 df, p=0.006687 n= 170, number of events= 75 > > # Survival curve for an "average" subject, > # done once as overall, once via individual method > surv1 <- survfit(sfit.1, newdata=list(age=-2, surgery=0, transplant=0)) > newdata <- data.frame(start=c(0,50,100), stop=c(50,100, max(jasa1$stop)), + event=c(1,1,1), age=rep(-2,3), surgery=rep(0,3), + transplant=rep(0,3)) > surv2 <- survfit(sfit.1, newdata, individual=T) > # Have to use unclass to avoid [.survfit trying to pick curves, > # remove the final element "call" because it won't match > all.equal(unclass(surv1)[-length(surv1)], + unclass(surv2)[-length(surv2)]) [1] TRUE > > > # Survival curve for a subject of age 50, with prior surgery, tx at 6 months > # Remember that 'age' in jasa 1 was centered at 48 > data <- data.frame(start=c(0,183), stop=c(183,3*365), event=c(1,1), + age=c(2,2), surgery=c(1,1), transplant=c(0,1)) > summary(survfit(sfit.1, data, individual=T)) Call: survfit(formula = sfit.1, newdata = data, individual = T) time n.risk n.event survival std.err lower 95% CI upper 95% CI 0.5 103 1 0.994 0.00722 0.980 1.000 1.0 102 3 0.975 0.01860 0.939 1.000 2.0 99 3 0.956 0.02914 0.900 1.000 4.0 96 2 0.943 0.03605 0.875 1.000 5.0 94 2 0.930 0.04286 0.849 1.000 7.0 92 1 0.923 0.04623 0.837 1.000 8.0 91 1 0.917 0.04959 0.824 1.000 11.0 89 1 0.910 0.05294 0.812 1.000 15.0 88 3 0.890 0.06278 0.775 1.000 16.0 85 1 0.883 0.06608 0.763 1.000 17.0 84 1 0.877 0.06928 0.751 1.000 20.0 83 2 0.864 0.07538 0.728 1.000 27.0 81 1 0.857 0.07849 0.716 1.000 29.0 80 1 0.850 0.08160 0.705 1.000 31.0 78 1 0.844 0.08473 0.693 1.000 34.0 77 1 0.837 0.08786 0.681 1.000 35.0 76 1 0.830 0.09098 0.669 1.000 36.0 75 1 0.823 0.09412 0.658 1.000 38.0 74 1 0.816 0.09727 0.646 1.000 39.0 72 2 0.802 0.10349 0.623 1.000 42.0 70 1 0.795 0.10664 0.611 1.000 44.0 69 1 0.788 0.10982 0.600 1.000 49.0 68 1 0.781 0.11300 0.588 1.000 50.0 67 1 0.774 0.11614 0.577 1.000 52.0 66 1 0.767 0.11925 0.565 1.000 57.0 65 1 0.760 0.12238 0.554 1.000 60.0 64 1 0.752 0.12552 0.542 1.000 65.0 63 1 0.745 0.12866 0.531 1.000 67.0 62 2 0.730 0.13494 0.508 1.000 68.0 60 1 0.722 0.13809 0.497 1.000 71.0 59 2 0.707 0.14420 0.474 1.000 76.0 57 1 0.699 0.14729 0.463 1.000 77.0 56 1 0.691 0.15043 0.451 1.000 79.0 55 1 0.683 0.15362 0.439 1.000 80.0 54 1 0.674 0.15680 0.428 1.000 84.0 53 1 0.666 0.16005 0.416 1.000 89.0 52 1 0.657 0.16326 0.404 1.000 95.0 51 1 0.648 0.16648 0.392 1.000 99.0 50 1 0.639 0.16972 0.380 1.000 101.0 49 1 0.630 0.17293 0.368 1.000 109.0 47 1 0.621 0.17611 0.356 1.000 148.0 45 1 0.611 0.17927 0.344 1.000 152.0 44 1 0.601 0.18236 0.332 1.000 164.0 43 1 0.592 0.18551 0.320 1.000 185.0 41 1 0.583 0.12737 0.380 0.894 187.0 40 1 0.574 0.12889 0.370 0.891 206.0 39 1 0.565 0.13036 0.359 0.888 218.0 38 1 0.556 0.13180 0.349 0.885 262.0 37 1 0.546 0.13320 0.339 0.881 284.0 35 2 0.527 0.13585 0.318 0.874 307.0 33 1 0.517 0.13707 0.308 0.869 333.0 32 1 0.507 0.13823 0.297 0.865 339.0 31 1 0.497 0.13930 0.287 0.861 342.0 29 1 0.486 0.14029 0.276 0.856 583.0 21 1 0.471 0.14187 0.261 0.850 674.0 17 1 0.452 0.14361 0.243 0.843 732.0 16 1 0.433 0.14506 0.225 0.835 851.0 14 1 0.410 0.14622 0.204 0.825 979.0 11 1 0.383 0.14698 0.180 0.813 995.0 10 1 0.356 0.14735 0.158 0.801 1031.0 9 1 0.330 0.14743 0.137 0.792 > > # These should all give the same answer > # When there are offsets, the default curve is always for someone with > # the mean offset. > j.age <- jasa$age -48 > fit1 <- coxph(Surv(futime, fustat) ~ j.age, data=jasa) > fit2 <- coxph(Surv(futime, fustat) ~ j.age, jasa, init=fit1$coef, iter=0) > fit3 <- coxph(Surv(start, stop, event) ~ age, jasa1) > fit4 <- coxph(Surv(start, stop, event) ~ offset(age*fit1$coef), jasa1) > > s1 <- survfit(fit1, list(j.age=fit3$means), censor=FALSE) > s2 <- survfit(fit2, list(j.age=fit3$means), censor=FALSE) > s3 <- survfit(fit3, censor=FALSE) > s4 <- survfit(fit4, censor=FALSE) > > all.equal(s1$surv, s2$surv) [1] TRUE > all.equal(s1$surv, s3$surv) [1] TRUE > all.equal(s1$surv, s4$surv) [1] TRUE > > # Still the same answer, fit multiple strata at once > # Strata 1 has independent coefs of strata 2, so putting in > # the other data should not affect it > ll <- nrow(jasa1) > ss <- rep(0:1, c(ll,ll)) > tdata <- with(jasa1, data.frame(start=rep(start,2), stop=rep(stop,2), + event=rep(event,2), ss=ss, age=rep(age,2), + age2 = (rep(age,2))^2 * ss)) > fit <- coxph(Surv(start, stop, event) ~ age*strata(ss) + age2, tdata) > # Above replaced these 2 lines, which kill Splus5 as of 8/98 > # Something with data frames, I expect. > #fit <- coxph(Surv(rep(start,2), rep(stop,2), rep(event,2)) ~ > # rep(age,2)*strata(ss) + I(rep(age,2)^2*ss) ) > all.equal(fit$coef[1], fit3$coef) [1] TRUE > s5 <- survfit(fit, data.frame(age=fit3$means, age2=0, ss=0), censor=FALSE) > all.equal(s5$surv[1:(s5$strata[1])], s3$surv) [1] TRUE > > > > proc.time() user system elapsed 0.856 0.064 0.929 survival/tests/fr_ovarian.Rout.save0000644000176200001440000000402613537676563017254 0ustar liggesusers R Under development (unstable) (2018-05-10 r74706) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > > # > # Test on the ovarian data > > fit1 <- coxph(Surv(futime, fustat) ~ rx + age, ovarian) > fit2 <- coxph(Surv(futime, fustat) ~ rx + pspline(age, df=2), + data=ovarian) > fit2$iter [1] 2 8 > > fit2$df [1] 0.9426611 1.9293051 > > fit2$history $`pspline(age, df = 2)` $`pspline(age, df = 2)`$theta [1] 0.4468868 $`pspline(age, df = 2)`$done [1] TRUE $`pspline(age, df = 2)`$history thetas dfs [1,] 1.0000000 1.000000 [2,] 0.0000000 5.000000 [3,] 0.6000000 1.734267 [4,] 0.4845205 1.929305 $`pspline(age, df = 2)`$half [1] 0 > > fit4 <- coxph(Surv(futime, fustat) ~ rx + pspline(age, df=4), + data=ovarian) > fit4 Call: coxph(formula = Surv(futime, fustat) ~ rx + pspline(age, df = 4), data = ovarian) coef se(coef) se2 Chisq DF p rx -0.373 0.761 0.749 0.241 1.00 0.6238 pspline(age, df = 4), lin 0.139 0.044 0.044 9.978 1.00 0.0016 pspline(age, df = 4), non 2.592 2.93 0.4457 Iterations: 3 outer, 14 Newton-Raphson Theta= 0.242 Degrees of freedom for terms= 1.0 3.9 Likelihood ratio test=19.4 on 4.9 df, p=0.001 n= 26, number of events= 12 > > > > proc.time() user system elapsed 0.808 0.040 0.847 survival/tests/survSplit.Rout.save0000644000176200001440000000657613544366313017140 0ustar liggesusers R Under development (unstable) (2019-06-28 r76752) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > # Make sure that the old-style and new-style calls both work > > # new style > vet2 <- survSplit(Surv(time, status) ~ ., data= veteran, cut=c(90, 180), + episode= "tgroup", id="id") > vet2[1:7, c("id", "tstart", "time", "status", "tgroup", "age", "karno")] id tstart time status tgroup age karno 1 1 0 72 1 1 69 60 2 2 0 90 0 1 64 70 3 2 90 180 0 2 64 70 4 2 180 411 1 3 64 70 5 3 0 90 0 1 38 60 6 3 90 180 0 2 38 60 7 3 180 228 1 3 38 60 > > # old style > vet3 <- survSplit(veteran, end='time', event='status', cut=c(90,180), + episode="tgroup", id="id") > all.equal(vet2, vet3) [1] TRUE > > all.equal(nrow(vet2), nrow(veteran) + sum(veteran$time >90) + + sum(veteran$time > 180)) [1] TRUE > > > # Do a parallel computation using survSplit, and pyears/tcut. We should get > # the same answer. > # Break subjects up by year of entry and current time on study. Most of > # the deaths are within 3 months > # pyears complains (justifiably) about the obs with 0 days of fu, so we add 1 > # > data1 <- jasa > data1$ayear <- as.numeric(substring(as.character(jasa$accept.dt), 1,4)) > temp <- round(c(0, .25, 1,2,5)*365.25) # years > ftime <- tcut(rep(0, nrow(jasa)), temp, + labels=paste(c(0, .25, 1:2), c(.25, 1,2,5), sep='-')) > pfit <- pyears(Surv(futime +1,fustat) ~ ayear + ftime, data1, + scale=1) > > data2 <- survSplit(Surv(futime+1, fustat) ~ ., cut=temp, data=data1, + episode = "tgroup") > > tab1 <- with(data2, tapply(fustat, list(ayear, tgroup), sum)) > tab1 <- ifelse(is.na(tab1), 0, tab1) > > all.equal(as.vector(tab1), as.vector(pfit$event)) # ignore dimnames [1] TRUE > > tab2 <- with(data2, tapply(tstop-tstart, list(ayear, tgroup), sum)) > tab2 <- ifelse(is.na(tab2), 0, tab2) > > all.equal(as.vector(tab2), as.vector(pfit$pyears)) [1] TRUE > > # double check that the "data" option gives the same values > pfit2 <- pyears(Surv(futime +1,fustat) ~ ayear + ftime, data1, + scale=1, data.frame=TRUE)$data > all.equal(pfit2$pyears, pfit$pyears[pfit$pyears >0]) [1] TRUE > all.equal(pfit2$event, pfit$event[pfit$pyears >0]) [1] TRUE > > # and that the rows of data2 have the right labels > keep <- which(pfit$pyears >0) # these are not in the data > rname <- rownames(pfit$pyears)[row(pfit$pyears)[keep]] > all.equal(rname, as.character(pfit2$ayear)) [1] TRUE > > cname <- colnames(pfit$pyears)[col(pfit$pyears)[keep]] > all.equal(cname, as.character(pfit2$ftime)) [1] TRUE > > > > proc.time() user system elapsed 0.764 0.032 0.805 survival/tests/book7.R0000644000176200001440000000337613537676563014471 0ustar liggesuserslibrary(survival) options(na.action=na.exclude) options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # # Tests from the appendix of Therneau and Grambsch # Data set 1 + exact method test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) byhand7 <- function(beta) { r <- exp(beta) loglik <- 2*(beta - log(3*r + 3)) u <- 2/(r+1) imat <- 2*r/(r+1)^2 haz <- c(1/(3*r+3), 2/(r+3), 0, 1 ) ties <- c(1,1,2,2,3,4) wt <- c(r,r,r,1,1,1) mart <- c(1,0,1,1,0,1) - wt* (cumsum(haz))[ties] #martingale residual list(loglik=loglik, u=u, imat=imat, mart=mart) } aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) fit0 <-coxph(Surv(time, status) ~x, test1, iter=0, method='exact') truth0 <- byhand7(0) aeq(truth0$loglik, fit0$loglik[1]) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid[c(2:6,1)]) fit1 <- coxph(Surv(time, status) ~x, test1, iter=1, method='exact') aeq(fit1$coef, truth0$u*fit0$var) truth1 <- byhand7(fit1$coef) aeq(fit1$loglik[2], truth1$loglik) aeq(1/truth1$imat, fit1$var) aeq(truth1$mart, resid(fit1)[c(3:7,1)]) # Beta is infinite for this model, so we will get a warning message fit2 <- coxph(Surv(time, status) ~x, test1, method='exact') aeq(resid(fit2)[-2], c(0, 2/3, -1/3, -4/3, 1, 0)) #values from the book # # Now a multivariate case: start/stop data uses a different C routine # zz <- rep(0, nrow(lung)) fit1 <- coxph(Surv(time, status) ~ age + ph.ecog + sex, lung, method="exact") fit2 <- coxph(Surv(zz, time, status) ~ age + ph.ecog + sex, lung, method="exact") aeq(fit1$loglik, fit2$loglik) aeq(fit1$var, fit2$var) aeq(fit1$score, fit2$score) aeq(fit1$resid, fit2$resid) survival/tests/data.interval0000644000176200001440000000161713537676563016000 0ustar liggesusers This data set is to test interval censoring. It has 2 left censored, 14 right censored, 2 exact and 8 interval censored observations, grafted onto covariates from the ovarian data set. "ltime","rtime","age","resid.ds","rx","ecog.ps" "1",NA,150,72.3315,2,1,1 "2",NA,150,74.4932,2,1,1 "3",146,166,66.4658,2,1,2 "4",421,NA,53.3644,2,2,1 "5",421,421,50.3397,2,1,1 "6",448,NA,56.4301,1,1,2 "7",454,474,56.937,2,2,2 "8",465,485,59.8548,2,2,2 "9",477,NA,64.1753,2,1,1 "10",553,573,55.1781,1,2,2 "11",628,648,56.7562,1,1,2 "12",744,NA,50.1096,1,2,1 "13",769,NA,59.6301,2,2,2 "14",770,NA,57.0521,2,2,1 "15",803,NA,39.2712,1,1,1 "16",855,NA,43.1233,1,1,2 "17",1040,NA,38.8932,2,1,2 "18",1106,NA,44.6,1,1,1 "19",1129,NA,53.9068,1,2,1 "20",1206,NA,44.2055,2,2,1 "21",1227,NA,59.589,1,2,2 "22",258,278,74.5041,2,1,2 "23",319,339,43.137,2,1,1 "24",343,363,63.2192,1,2,2 "25",375,375,64.4247,2,2,1 "26",377,NA,58.3096,1,2,1 survival/tests/book6.R0000644000176200001440000000741113537676603014455 0ustar liggesuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # Tests of the weighted Cox model # This is section 1.3 of my appendix -- no yet found in any of the # printings though, it awaits the next edition # # Efron approximation # aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), status= c(1,0,1,1,1,0,0,1,0), x= c(2,0,1,1,0,1,0,1,0), wt = c(1,2,3,4,3,2,1,2,1)) xx <- testw1$wt # Efron estimate byhand <- function(beta, newx=0) { r <- exp(beta) a <- 7*r +3; b<- 4*r+2 loglik <- 11*beta - (log(r^2 + 11*r +7) + 10*log(11*r +5)/3 + 10*log(a*2/3 +b)/3 + 10*log(a/3 +b)/3 +2*log(2*r+1)) hazard <- c(1/(r^2 + 11*r +7), 10/(3*c(11*r +5, a*2/3 +b, a/3+b)), 2/(2*r+1)) temp <- c(hazard[1], hazard[1]+hazard[2] + hazard[3]*2/3 + hazard[4]/3, cumsum(hazard)[4:5]) risk <- c(r^2, 1,r,r,1,r,1,r,1) expected <- risk* temp[c(1,1,2,2,2,3,3,4,4)] # The matrix of weights, one row per obs, one col per death # deaths at 1,2,2,2, and 4 riskmat <- matrix(c(1,1,1,1,1,1,1,1,1, 0,0,1,1,1,1,1,1,1, 0,0,2/3,2/3,2/3,1,1,1,1, 0,0,1/3,1/3,1/3,1,1,1,1, 0,0,0,0,0,0,0,1,1), ncol=5) wtmat <- diag(c(r^2, 2, 3*r, 4*r, 3, 2*r, 1, 2*r, 1)) %*% riskmat x <- c(2,0,1,1,0,1,0,1,0) xbar <- colSums(x*wtmat)/ colSums(wtmat) imat <- (4*r^2 + 11*r)*hazard[1] - xbar[1]^2 + 10* mean(xbar[2:4] - xbar[2:4]^2) + 2*(xbar[5] - xbar[5]^2) status <- c(1,0,1,1,1,0,0,1,0) wt <- c(1,2,3,4,3,2,1,2,1) # Table of sums for score resids hazmat <- riskmat %*% diag(c(1,10/3,10/3, 10/3,2)/colSums(wtmat)) dM <- -risk*hazmat #Expected part dM[1,1] <- dM[1,1] +1 # deaths at time 1 for (i in 2:4) dM[3:5, i] <- dM[3:5,i] + 1/3 dM[8,5] <- dM[8,5] +1 mart <- rowSums(dM) resid <-dM * outer(x, xbar ,'-') # Increments to the variance of the hazard var.g <- cumsum(hazard^2* c(1,3/10, 3/10, 3/10, 1/2)) var.d <- cumsum((xbar-newx)*hazard) sxbar <- c(xbar[1], mean(xbar[2:4]), xbar[5]) #xbar for Schoen list(loglik=loglik, imat=imat, hazard=hazard, xbar=xbar, mart=status-expected, expected=expected, score=rowSums(resid), schoen=c(2,1,1,0,1) - sxbar[c(1,2,2,2,3)], varhaz=((var.g + var.d^2/imat)* exp(2*beta*newx))[c(1,4,5)]) } # Verify temp <- byhand(0,0) aeq(temp$xbar, c(13/19, 11/16, 26/38, 19/28, 2/3)) aeq(temp$hazard, c(1/19, 5/24, 5/19, 5/14, 2/3)) fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, iter=0) fit <- coxph(Surv(time, status) ~x, testw1, weights=wt) truth0 <- byhand(0,pi) aeq(fit0$loglik[1], truth0$loglik) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')) sfit <- survfit(fit0, list(x=pi), censor=FALSE) aeq(sfit$std.err^2, truth0$var) aeq(-log(sfit$surv), cumsum(truth0$hazard)[c(1,4,5)]) truth <- byhand(fit$coef, .3) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')) sfit <- survfit(fit, list(x=.3), censor=FALSE) aeq(sfit$std.err^2, truth$var) aeq(-log(sfit$surv), (cumsum(truth$hazard)* exp(fit$coef*.3))[c(1,4,5)]) fit0 summary(fit) resid(fit0, type='score') resid(fit0, type='scho') resid(fit, type='score') resid(fit, type='scho') rr1 <- resid(fit, type='mart') rr2 <- resid(fit, type='mart', weighted=T) aeq(rr2/rr1, testw1$wt) rr1 <- resid(fit, type='score') rr2 <- resid(fit, type='score', weighted=T) aeq(rr2/rr1, testw1$wt) survival/tests/testci2.R0000644000176200001440000001356113570767322015011 0ustar liggesuserslibrary(survival) # # Test the multi-state version of the CI curve # tdata <- data.frame(id=c(1,1,1,1, 2,2,2, 3,3, 4,4,4,4, 5, 6, 6), time1=c(0, 10,20,30, 0, 5, 15, 0, 20, 0, 6,18,34, 0, 0,15), time2=c(10,20,30,40, 5, 15,25, 20, 22, 6,18,34,50,10,15,20), status=c(1,1,1,1, 1,1,1, 1,0, 1,1,1,0,0,1,0), event= letters[c(1,2,3,4, 2,4,3, 2,2, 3,1,2,2,1, 1,1)], wt = c(2,2,2,2, 1,1,1, 3,3, 1,1,1,1, 2, 1,1), stringsAsFactors=TRUE) tdata$stat2 <- factor(tdata$status * as.numeric(tdata$event), labels=c("censor", levels(tdata$event))) fit <- survfit(Surv(time1, time2, stat2) ~1, id=id, weight=wt, tdata, influence=TRUE) # The exact figures for testci2. # The subject data of id, weight, (transition time, transition) #1: 2 (10, 0->a) (20, a->b) (30, b->c) (40, c->d) no data after 40=censored #2: 1 ( 5, 0->b) (15, b->d) (25, d->c) no data after 25 implies censored then #3: 3 (20, 0->b) (22, censor) #4: 1 ( 6, 0->c) (18, c->a) (34, a->b) (50, censor) #5: 2 (10, censor) #6: 1 (15, 0->a) (20, censor) # Each line below follows a subject through time as a (state, rdist weight) pair # using the redistribute to the right algorithm. # RDR algorithm: at each censoring (or last fu) a subject's weight is put into # a "pool" for that state and their weight goes to zero. The pool is # dynamically shared between all members of the state proportional to their # original case weight, when someone leaves they take their portion of the # pool to the new state. # Table of case weights and state, blank is weight of zero # time 5 6 10 15 18 20 25 30 34 40 50 # ----------------------------------------------------------------------- # id, wt # 1, 2 - - a a a b b c c d # 2, 1 b b b d d d c # 3, 3 - - - - - b # 4, 1 - c c c a a a a b b b # 5, 2 - - - # 6, 1 - - - a a a # Pool weights # 10 10+ 15 18 20 20+ 22+ 25 25+ 30 34 40 40+ # - 0 2 3/2 3/2 0 # a 0 0 1/2 1/2 1/4 5/4 5/4 5/4 5/4 5/4 # b 0 0 0 0 7/4 7/4 19/4 19/4 19/4 5/4 5/4 5/4 # c 0 0 0 0 0 1 23/4 23/4 # d 0 0 0 0 0 23/4 31/4 # fit$pstate for time i and state j = total weight at that time/state in the # above table (original weight + redistrib), divided by 10. # time 5 6 10 15 18 20 25 30 34 40 50 truth <- matrix(c(0, 0, 2, 3, 4, 2, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 5, 2, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 2, 0) + c(0, 0, 0, .5, .5, 1/4, 5/4, 5/4, 0, 0, 0, 0, 0, 0, 0, 0, 7/4, 19/4, 0, 5/4, 5/4, 5/4, 0, 0, 0, 0, 0, 0, 0, 23/4, 23/4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23/4, 31/4), ncol=4) truth <- truth[c(1:6, 6:11),]/10 #the explicit censor at 22 #dimnames(truth) <- list(c(5, 6, 10, 15, 18, 20, 25, 30, 34, 40, 50), # c('a', 'b', 'c', 'd') all.equal(truth, fit$pstate[,2:5]) # Test the dfbetas # It was a big surprise, but the epsilon where a finite difference approx to # the derivative is most accurate is around 1e-7 = approx sqrt(precision). # Smaller eps makes the approximate derivative worse. # There is a now a formal test in mstate.R, not approximate. dfbeta <- 0*fit$influence[,-1,] # lose the first row eps <- sqrt(.Machine$double.eps) for (i in 1:6) { twt <- tdata$wt twt[tdata$id ==i] <- twt[tdata$id==i] + eps tfit <- survfit(Surv(time1, time2, stat2) ~ 1, id=id, tdata, weight=twt) dfbeta[i,,] <- (tfit$pstate - fit$pstate)/eps #finite difference approx } all.equal(dfbeta, fit$influence[,-1,], tolerance= eps*10) twt <- tdata$wt[match(1:6, tdata$id)] # six unique weights temp <- dfbeta for (i in 1:6) temp[i,,] <- temp[i,,]* twt[i] std2 <- sqrt(apply(temp^2, 2:3, sum)) all.equal(fit$std, std2, tolerance=eps, check.attributes=FALSE) if (FALSE) { # a plot of the data that helped during creation of the example plot(c(0,50), c(1,6), type='n', xlab='time', ylab='subject') with(tdata, segments(time1, id, time2, id)) with(tdata, text(time2, id, as.numeric(stat2)-1, cex=1.5, col=2)) } if (FALSE) { # The following lines test out 4 error messages in the routine # # Gap in follow-up time, id 2 survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 4, 6, 3), factor(c(0,0,1,1,0,2))) ~1, id=c(1,1,1,2,2,3)) # mismatched weights survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 5, 6, 3), factor(c(0,0,1,1,0,2))) ~1, id=c(1,1,1,2,2,3), weights=c(1,1,2,1,1,4)) # in two groups at once survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 5, 6, 3), factor(c(0,0,1,1,0,2))) ~ c(1,1,2,1,1,2), id=c(1,1,1,2,2,3)) # state change that isn't a state change (went from 1 to 1) survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 5, 6, 3), factor(c(0,1,1,1,0,2))) ~1, id=c(1,1,1,2,2,3)) } # Check the start.time option # fit2 <- survfit(Surv(time1, time2, stat2) ~1, id=id, weight=wt, tdata, start.time=20) data2 <- subset(tdata, time2> 20) data2$time1 <- pmax(20, data2$time1) fit2x <- survfit(Surv(time1, time2, stat2) ~1, id=id, weight=wt, data2) ii <- names(fit2)[!(names(fit2) %in% c("call", "start.time"))] all.equal(unclass(fit2)[ii], unclass(fit2x)[ii]) survival/tests/clogit.R0000644000176200001440000000164213537676563014723 0ustar liggesuserslibrary(survival) # # Test of the clogit function, and indirectly of the exact option # # Data set logan has the occupation of fathers, we create a # multinomial response # nresp <- length(levels(logan$occupation)) n <- nrow(logan) indx <- rep(1:n, nresp) logan2 <- data.frame(logan[indx,], id = indx, occ2 = factor(rep(levels(logan$occupation), each=n))) logan2$y <- (logan2$occupation == logan2$occ2) #We expect two NA coefficients, so ignore the warning fit1 <- clogit(y ~ occ2 + occ2:education + occ2:race + strata(id), logan2) #since there is only one death per group, all methods are equal dummy <- rep(1, nrow(logan2)) fit2 <- coxph(Surv(dummy, y) ~ occ2 + occ2:education + occ2:race + strata(id), logan2, method='breslow') all.equal(fit1$coef, fit2$coef) all.equal(fit1$loglik, fit2$loglik) all.equal(fit1$var, fit2$var) all.equal(fit1$resid, fit2$resid) survival/tests/book5.R0000644000176200001440000001064613537676603014460 0ustar liggesuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # Tests of the weighted Cox model # This is section 1.3 of my appendix -- not yet found in the book # though, it awaits the next edition # # Similar data set to test1, but add weights, # a double-death/censor tied time # a censored last subject # The latter two are cases covered only feebly elsewhere. # # The data set testw2 has the same data, but done via replication # aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), status= c(1,0,1,1,1,0,0,1,0), x= c(2,0,1,1,0,1,0,1,0), wt = c(1,2,3,4,3,2,1,2,1), id = 1:9) # Expanded data set testw2 <- testw1[rep(1:9, testw1$wt), -4] row.names(testw2) <- NULL indx <- match(1:9, testw2$id) # Breslow estimate byhand <- function(beta, newx=0) { r <- exp(beta) loglik <- 11*beta - (log(r^2 + 11*r +7) + 10*log(11*r +5) +2*log(2*r+1)) hazard <- c(1/(r^2 + 11*r +7), 10/(11*r +5), 2/(2*r+1)) xbar <- c((2*r^2 + 11*r)*hazard[1], 11*r/(11*r +5), r*hazard[3]) U <- 11- (xbar[1] + 10*xbar[2] + 2*xbar[3]) imat <- (4*r^2 + 11*r)*hazard[1] - xbar[1]^2 + 10*(xbar[2] - xbar[2]^2) + 2*(xbar[3] - xbar[3]^2) temp <- cumsum(hazard) risk <- c(r^2, 1,r,r,1,r,1,r,1) expected <- risk* temp[c(1,1,2,2,2,2,2,3,3)] # The matrix of weights, one row per obs, one col per death # deaths at 1,2,2,2, and 4 riskmat <- matrix(c(1,1,1,1,1,1,1,1,1, 0,0,1,1,1,1,1,1,1, 0,0,1,1,1,1,1,1,1, 0,0,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,1,1), ncol=5) wtmat <- diag(c(r^2, 2, 3*r, 4*r, 3, 2*r, 1, 2*r, 1)) %*% riskmat x <- c(2,0,1,1,0,1,0,1,0) status <- c(1,0,1,1,1,0,0,1,0) wt <- c(1,2,3,4,3,2,1,2,1) # Table of sums for score and Schoenfeld resids hazmat <- riskmat %*% diag(c(1,3,4,3,2)/colSums(wtmat)) dM <- -risk*hazmat #Expected part dM[1,1] <- dM[1,1] +1 # deaths at time 1 for (i in 2:4) dM[i+1, i] <- dM[i+1,i] +1 dM[8,5] <- dM[8,5] +1 mart <- rowSums(dM) resid <-dM * outer(x, xbar[c(1,2,2,2,3)] ,'-') # Increments to the variance of the hazard var.g <- cumsum(hazard^2/ c(1,10,2)) var.d <- cumsum((xbar-newx)*hazard) list(loglik=loglik, U=U, imat=imat, hazard=hazard, xbar=xbar, mart=c(1,0,1,1,1,0,0,1,0)-expected, expected=expected, score=rowSums(resid), schoen=c(2,1,1,0,1) - xbar[c(1,2,2,2,3)], varhaz=(var.g + var.d^2/imat)* exp(2*beta*newx)) } aeq(byhand(0)$expected, c(1/19, 1/19, rep(103/152, 5), rep(613/456,2))) #verify fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow', iter=0) fit0b <- coxph(Surv(time, status) ~x, testw2, method='breslow', iter=0) fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow') fitb <- coxph(Surv(time, status) ~x, testw2, method='breslow') aeq(resid(fit0, type='mart'), (resid(fit0b, type='mart'))[indx]) aeq(resid(fit0, type='scor'), (resid(fit0b, type='scor'))[indx]) aeq(unique(resid(fit0, type='scho')), unique(resid(fit0b, type='scho'))) truth0 <- byhand(0,pi) aeq(fit0$loglik[1], truth0$loglik) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')) sfit <- survfit(fit0, list(x=pi), censor=FALSE) aeq(sfit$std.err^2, truth0$var) aeq(-log(sfit$surv), cumsum(truth0$haz)) truth <- byhand(0.85955744, .3) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')) sfit <- survfit(fit, list(x=.3), censor=FALSE) aeq(sfit$std.err^2, truth$var) aeq(-log(sfit$surv), (cumsum(truth$haz)* exp(fit$coef*.3))) fit0 summary(fit) resid(fit0, type='score') resid(fit0, type='scho') resid(fit, type='score') resid(fit, type='scho') aeq(resid(fit, type='mart'), (resid(fitb, type='mart'))[indx]) aeq(resid(fit, type='scor'), (resid(fitb, type='scor'))[indx]) aeq(unique(resid(fit, type='scho')), unique(resid(fitb, type='scho'))) rr1 <- resid(fit, type='mart') rr2 <- resid(fit, type='mart', weighted=T) aeq(rr2/rr1, testw1$wt) rr1 <- resid(fit, type='score') rr2 <- resid(fit, type='score', weighted=T) aeq(rr2/rr1, testw1$wt) survival/tests/r_tdist.R0000644000176200001440000000163313537676563015112 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test out the t-distribution # # First, a t-dist with 500 df should be nearly identical to the Gaussian fitig <- survreg(Surv(time, status)~voltage, dist = "gaussian", data = capacitor) fit1 <- survreg(Surv(time, status) ~ voltage, dist='t', parms=500, capacitor) fitig summary(fit1, corr=F) # A more realistic fit fit2 <- survreg(Surv(time, status) ~ voltage, dist='t', parms=5, capacitor) print(fit2) if (FALSE) { resid(fit2, type='response') resid(fit2, type='deviance') resid(fit2, type='working') resid(fit2, type='dfbeta') resid(fit2, type='dfbetas') resid(fit2, type='ldresp') resid(fit2, type='ldshape') resid(fit2, type='ldcase') resid(fit2, type='matrix') predict(fit2, type='link') predict(fit2, type='terms') predict(fit2, type='quantile') } survival/tests/update.Rout.save0000644000176200001440000000263713537676603016411 0ustar liggesusers R Under development (unstable) (2019-08-23 r77061) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > > # the way a +cluster() term is handled in coxph has implications for update. > > fit1 <- coxph(Surv(time, status) ~ age, cluster= inst, lung) > fit2 <- coxph(Surv(time, status) ~ age + cluster(inst), lung) > all.equal(fit1, fit2) [1] TRUE > > fit3 <- coxph(Surv(time, status) ~ age + sex + cluster(inst), lung) > > test1 <- update(fit1, .~ .+ sex) > all.equal(test1, fit3) [1] TRUE > > # Gives a spurious warning message > test2 <- update(fit1, . ~ age + sex + cluster(inst), lung) Warning message: In coxph(formula = Surv(time, status) ~ age + sex + cluster(inst), : cluster appears both in a formula and as an argument, formula term ignored > all.equal(test2, fit3) [1] TRUE > > > proc.time() user system elapsed 0.751 0.039 0.791 survival/tests/book6.Rout.save0000644000176200001440000001423713537676603016146 0ustar liggesusers R Under development (unstable) (2019-01-23 r76006) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # Tests of the weighted Cox model > # This is section 1.3 of my appendix -- no yet found in any of the > # printings though, it awaits the next edition > # > # Efron approximation > # > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), + status= c(1,0,1,1,1,0,0,1,0), + x= c(2,0,1,1,0,1,0,1,0), + wt = c(1,2,3,4,3,2,1,2,1)) > xx <- testw1$wt > > # Efron estimate > byhand <- function(beta, newx=0) { + r <- exp(beta) + a <- 7*r +3; b<- 4*r+2 + loglik <- 11*beta - (log(r^2 + 11*r +7) + 10*log(11*r +5)/3 + + 10*log(a*2/3 +b)/3 + 10*log(a/3 +b)/3 +2*log(2*r+1)) + + hazard <- c(1/(r^2 + 11*r +7), + 10/(3*c(11*r +5, a*2/3 +b, a/3+b)), 2/(2*r+1)) + temp <- c(hazard[1], hazard[1]+hazard[2] + hazard[3]*2/3 + hazard[4]/3, + cumsum(hazard)[4:5]) + risk <- c(r^2, 1,r,r,1,r,1,r,1) + expected <- risk* temp[c(1,1,2,2,2,3,3,4,4)] + + # The matrix of weights, one row per obs, one col per death + # deaths at 1,2,2,2, and 4 + riskmat <- matrix(c(1,1,1,1,1,1,1,1,1, + 0,0,1,1,1,1,1,1,1, + 0,0,2/3,2/3,2/3,1,1,1,1, + 0,0,1/3,1/3,1/3,1,1,1,1, + 0,0,0,0,0,0,0,1,1), ncol=5) + wtmat <- diag(c(r^2, 2, 3*r, 4*r, 3, 2*r, 1, 2*r, 1)) %*% riskmat + + x <- c(2,0,1,1,0,1,0,1,0) + xbar <- colSums(x*wtmat)/ colSums(wtmat) + imat <- (4*r^2 + 11*r)*hazard[1] - xbar[1]^2 + + 10* mean(xbar[2:4] - xbar[2:4]^2) + 2*(xbar[5] - xbar[5]^2) + + status <- c(1,0,1,1,1,0,0,1,0) + wt <- c(1,2,3,4,3,2,1,2,1) + # Table of sums for score resids + hazmat <- riskmat %*% diag(c(1,10/3,10/3, 10/3,2)/colSums(wtmat)) + dM <- -risk*hazmat #Expected part + dM[1,1] <- dM[1,1] +1 # deaths at time 1 + for (i in 2:4) dM[3:5, i] <- dM[3:5,i] + 1/3 + dM[8,5] <- dM[8,5] +1 + mart <- rowSums(dM) + resid <-dM * outer(x, xbar ,'-') + + # Increments to the variance of the hazard + var.g <- cumsum(hazard^2* c(1,3/10, 3/10, 3/10, 1/2)) + var.d <- cumsum((xbar-newx)*hazard) + + sxbar <- c(xbar[1], mean(xbar[2:4]), xbar[5]) #xbar for Schoen + list(loglik=loglik, imat=imat, hazard=hazard, xbar=xbar, + mart=status-expected, expected=expected, + score=rowSums(resid), schoen=c(2,1,1,0,1) - sxbar[c(1,2,2,2,3)], + varhaz=((var.g + var.d^2/imat)* exp(2*beta*newx))[c(1,4,5)]) + } > > # Verify > temp <- byhand(0,0) > aeq(temp$xbar, c(13/19, 11/16, 26/38, 19/28, 2/3)) [1] TRUE > aeq(temp$hazard, c(1/19, 5/24, 5/19, 5/14, 2/3)) [1] TRUE > > fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, iter=0) > fit <- coxph(Surv(time, status) ~x, testw1, weights=wt) > > truth0 <- byhand(0,pi) > aeq(fit0$loglik[1], truth0$loglik) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid) [1] TRUE > aeq(truth0$scho, resid(fit0, 'schoen')) [1] TRUE > aeq(truth0$score, resid(fit0, 'score')) [1] TRUE > sfit <- survfit(fit0, list(x=pi), censor=FALSE) > aeq(sfit$std.err^2, truth0$var) [1] TRUE > aeq(-log(sfit$surv), cumsum(truth0$hazard)[c(1,4,5)]) [1] TRUE > > truth <- byhand(fit$coef, .3) > aeq(truth$loglik, fit$loglik[2]) [1] TRUE > aeq(1/truth$imat, fit$var) [1] TRUE > aeq(truth$mart, fit$resid) [1] TRUE > aeq(truth$scho, resid(fit, 'schoen')) [1] TRUE > aeq(truth$score, resid(fit, 'score')) [1] TRUE > > sfit <- survfit(fit, list(x=.3), censor=FALSE) > aeq(sfit$std.err^2, truth$var) [1] TRUE > aeq(-log(sfit$surv), (cumsum(truth$hazard)* exp(fit$coef*.3))[c(1,4,5)]) [1] TRUE > > > fit0 Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt, iter = 0) coef exp(coef) se(coef) z p x 0.0000 1.0000 0.5843 0 1 Likelihood ratio test=0 on 1 df, p=1 n= 9, number of events= 5 > summary(fit) Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt) n= 9, number of events= 5 coef exp(coef) se(coef) z Pr(>|z|) x 0.8726 2.3931 0.7126 1.225 0.221 exp(coef) exp(-coef) lower .95 upper .95 x 2.393 0.4179 0.5921 9.672 Concordance= 0.638 (se = 0.161 ) Likelihood ratio test= 1.75 on 1 df, p=0.2 Wald test = 1.5 on 1 df, p=0.2 Score (logrank) test = 1.58 on 1 df, p=0.2 > resid(fit0, type='score') 1 2 3 4 5 6 1.24653740 0.03601108 0.14118105 0.14118105 -0.30336782 -0.27962308 7 8 9 0.60164259 -0.16851197 1.04608703 > resid(fit0, type='scho') 1 2 2 2 4 1.3157895 0.3165727 0.3165727 -0.6834273 0.3333333 > > resid(fit, type='score') 1 2 3 4 5 6 0.88116056 0.02477248 0.06057806 0.06057806 -0.59724033 -0.16737066 7 8 9 0.38040295 -0.13750290 0.66631324 > resid(fit, type='scho') 1 2 2 2 4 1.0325955 0.1621759 0.1621759 -0.8378241 0.1728229 > > rr1 <- resid(fit, type='mart') > rr2 <- resid(fit, type='mart', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > rr1 <- resid(fit, type='score') > rr2 <- resid(fit, type='score', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > > proc.time() user system elapsed 0.832 0.032 0.875 survival/tests/pspline.Rout.save0000644000176200001440000000556613537676563016612 0ustar liggesusers R Under development (unstable) (2019-08-23 r77061) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > # > # Tests with the pspline function, to verify the prediction aspects > # > options(na.action=na.exclude) > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > spfit <- coxph(Surv(time, status) ~ pspline(age) + ph.ecog, lung) > > spfit2 <- coxph(Surv(time, status) ~ pspline(age) + ph.ecog, lung, x=TRUE) > x2 <- model.matrix(spfit) > all.equal(spfit2$x, x2) [1] TRUE > > keep <- (lung$age < 60) > x3 <- model.matrix(spfit, data=lung[keep,]) > attr(x3, 'assign') <- NULL #subscripting loses the assign attr below > all.equal(napredict(spfit$na.action,x2)[keep,], x3) [1] TRUE > > p2 <- predict(spfit, newdata=lung[keep,]) > aeq(p2, predict(spfit)[keep]) [1] TRUE > > > p3 <- survfit(spfit) > p4 <- survfit(spfit, newdata=lung[1:2,]) > temp <- scale(x2[1:2,], center=spfit$means, scale=FALSE)%*% coef(spfit) > aeq(p3$time, p4$time) [1] TRUE > aeq(outer(-log(p3$surv), exp(temp), '*'), -log(p4$surv)) [1] TRUE > > # Check out model.frame > spfit3 <- coxph(Surv(time, status) ~ pspline(age) + sex, lung, + model=TRUE) #avoid the missing value > m2 <- model.frame(spfit3, data=lung[keep,]) > all.equal(m2, spfit3$model[keep,], check.attributes=FALSE) [1] TRUE > > # > # Test of residuals, in response to a reported bug. > # These are three progam paths that should all lead to the same C routine > fit <- coxph(Surv(tstart, tstop, status) ~ sex + treat + pspline(age), cgd) > fit2 <- coxph(Surv(tstart, tstop, status) ~ fit$linear, cgd, iter=0, init=1) > fit3 <- coxph(Surv(tstart, tstop, status) ~ offset(fit$linear), cgd) > all.equal(fit$resid, fit2$resid) [1] TRUE > all.equal(fit$resid, fit3$resid) [1] TRUE > > # > # Check using coxph.detail. The matrix multiply below only is > # valid for the breslow approximation. > fit4 <- coxph(Surv(tstart, tstop, status) ~ sex + treat + pspline(age), + cgd, ties='breslow') > dt <- coxph.detail(fit4, riskmat=TRUE) > # the results of coxph.detail are in time order, censors before deaths > timeord <- dt$sortorder > rscore <- exp(fit4$linear)[timeord] > exp4 <- (rscore *dt$riskmat) %*% dt$hazard > r4 <- cgd$status[timeord] - exp4 > aeq(r4, fit4$resid[timeord]) [1] TRUE > > proc.time() user system elapsed 0.761 0.071 0.826 survival/tests/r_lung.R0000644000176200001440000000300713537676563014725 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) lfit2 <- survreg(Surv(time, status) ~ age + ph.ecog + strata(sex), lung) lfit3 <- survreg(Surv(time, status) ~ sex + (age+ph.ecog)*strata(sex), lung) lfit4 <- survreg(Surv(time, status) ~ age + ph.ecog , lung, subset=(sex==1)) lfit5 <- survreg(Surv(time, status) ~ age + ph.ecog , lung, subset=(sex==2)) if (exists('censorReg')) { lfit1 <- censorReg(censor(time, status) ~ age + ph.ecog + strata(sex),lung) aeq(lfit4$coef, lfit1[[1]]$coef) aeq(lfit4$scale, lfit1[[1]]$scale) aeq(c(lfit4$scale, lfit5$scale), sapply(lfit1, function(x) x$scale)) } aeq(c(lfit4$scale, lfit5$scale), lfit3$scale ) # # Test out ridge regression and splines # lfit0 <- survreg(Surv(time, status) ~1, lung) lfit1 <- survreg(Surv(time, status) ~ age + ridge(ph.ecog, theta=5), lung) lfit2 <- survreg(Surv(time, status) ~ sex + ridge(age, ph.ecog, theta=1), lung) lfit3 <- survreg(Surv(time, status) ~ sex + age + ph.ecog, lung) lfit0 lfit1 lfit2 lfit3 xx <- pspline(lung$age, nterm=3, theta=.3) xx <- matrix(unclass(xx), ncol=ncol(xx)) # the raw matrix lfit4 <- survreg(Surv(time, status) ~xx, lung) lfit5 <- survreg(Surv(time, status) ~age, lung) lfit6 <- survreg(Surv(time, status)~pspline(age, df=2), lung) lfit7 <- survreg(Surv(time, status) ~ offset(lfit6$lin), lung) lfit4 lfit5 lfit6 signif(lfit7$coef,6) survival/tests/tmerge2.Rout.save0000644000176200001440000001023713537676563016474 0ustar liggesusers R Under development (unstable) (2018-06-26 r74934) -- "Unsuffered Consequences" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > > # This test is based on a user report that a 0/1 variable would not reset > # to zero. It turned out to be a bug when data2 was not sorted > > baseline <- data.frame(idd=1:5, futime=c(20, 30, 40, 30, 20), + status= c(0, 1, 0, 1, 0)) > tests <- data.frame(idd = c(2,3,3,3,4,4,5), + date = c(25, -1, 15, 23, 17, 19, 14), + onoff= c( 1, 1, 0, 1, 1, 0, 1)) > tests <- tests[c(7,2,6,3,4,1,5),] #scramble data2 > > mydata <- tmerge(baseline, baseline, id=idd, death=event(futime, status)) > mydata <- tmerge(mydata, tests, id=idd, ondrug=tdc(date, onoff)) > > all.equal(mydata$ondrug, c(NA, NA,1, 1,0,1, NA, 1,0, NA, 1)) [1] TRUE > > > # Check out addition of a factor, character, and logical > tests$ff <- factor(tests$onoff, 0:1, letters[4:5]) > tests$fchar <- as.character(tests$ff) > tests$logic <- as.logical(tests$onoff) > > mydata <- tmerge(mydata, tests, id=idd, fgrp= tdc(date, ff), + chgrp = tdc(date, fchar), + options=list(tdcstart="new")) > all.equal(mydata$fgrp, + factor(c(3,3,2,2,1,2,3,2,1,3,2), labels=c("d", "e", "new"))) [1] TRUE > all.equal(mydata$chgrp, + c("d", "e", "new")[c(3,3,2,2,1,2,3,2,1,3,2)]) [1] TRUE > > mydat2 <- tmerge(mydata, tests, id=idd, + logic1 = tdc(date, logic), logic2= event(date, logic)) > all.equal(mydat2$logic1, c(FALSE, TRUE, NA)[as.numeric(mydat2$fgrp)]) [1] TRUE > all.equal(mydat2$logic2, c(FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, + FALSE, FALSE, TRUE, FALSE)) [1] TRUE > > # Multiple chained calls. > newcgd <- tmerge(data1=cgd0[, 1:13], data2=cgd0, id=id, tstop=futime) > newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime1)) > newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime2)) > newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime3)) > newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime4)) > newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime5)) > newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime6)) > newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime7)) > newcgd <- tmerge(newcgd, newcgd, id, enum=cumtdc(tstart)) > all.equal(dim(newcgd), c(203,17)) [1] TRUE > all.equal(as.vector(table(newcgd$infect)), c(127, 76)) [1] TRUE > > tcount <- attr(newcgd, "tcount") > all(tcount[,1:3] ==0) # no early, late, or gap [1] TRUE > > # table with number of subjects who have etime1 < futime (row 1) > # and etime1==futime (row 2) > # the table command ignores the missings > temp <- subset(cgd0, select=etime1:etime7) > counts <- sapply(temp, function(x) + as.vector(table(factor(x>= cgd0$futime, c(FALSE, TRUE))))) > > all(tcount[1:7, c("within", "trailing")] == t(counts)) [1] TRUE > > > # > # Merging with a date as the time variable. In this case tstart/tstop are required > # A default start of 0 has no meaning > # > base2 <- baseline > base2$date1 <- as.Date("1953-03-10") # everyone enrolled that day > base2$date2 <- as.Date("1953-03-10") + base2$futime > base2$futime <- NULL > test2 <- tests > test2$date <- as.Date("1953-03-10") + test2$date > > mydata2 <- tmerge(base2, base2, id=idd, death=event(date2, status), + tstart = date1, tstop= date2, + options=list(tstartname="date1", tstopname="date2")) > mydata2 <- tmerge(mydata2, test2, id=idd, ondrug=tdc(date, onoff)) > all.equal(mydata$ondrug, c(NA, NA,1, 1,0,1, NA, 1,0, NA, 1)) [1] TRUE > > proc.time() user system elapsed 0.972 0.048 1.017 survival/tests/survfit1.R0000644000176200001440000003100213545464052015201 0ustar liggesusers# # Check out the survfit routine on the simple AML data set. # The leverage validation makes use of the fact that when all # weights are 1 and there is 1 obs per subject, the IJ variance is # equal to the Greenwood. # There are 8 choices in the C code: Nelson-Aalen or Fleming-Harrington # estimate of cumulative hazard, KM or exp(cumhaz) estimate of survival, # regular or robust variance. This tries to exercise them all. library(survival) aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) set.seed(1953) # used only to reorder the data adata <- aml adata$id <- sample(LETTERS, nrow(aml)) # labels are not in time or data order adata <- adata[sample(1:nrow(aml), nrow(aml)),] # data is unordered adata$wt <- sample((2:30)/10, nrow(aml)) # non-integer weights byhand <- function(time, status, weights, id) { # for a single curve utime <- sort(unique(time)) ntime <- length(utime) n <- length(time) if (missing(weights)) weights <- rep(1.0, n) if (missing(id)) id <- seq(along=time) uid <- sort(unique(id)) nid <- length(uid) id <- match(id, uid) # change it to 1:nid n.risk <- n.event <- surv <- cumhaz <- double(ntime) KM <- 1; nelson <-0; kvar <- 0; hvar<-0; U <- matrix(0, nid, 2) # the two robust influence estimates V <- matrix(0, ntime, 4) # variances usave <- array(0., dim=c(nid, 2, ntime)) estimate <- matrix(0, ntime, 2) for (i in 1:ntime) { atrisk <- (time >= utime[i]) n.risk[i] <- sum(weights[atrisk]) deaths <- (time==utime[i] & status==1) n.event[i] <- sum(weights[deaths]) haz <- n.event[i]/n.risk[i] dhaz <- (ifelse(deaths,1,0) - ifelse(atrisk, haz, 0))/n.risk[i] U[,1] <- U[,1]*(1-haz) - KM*tapply(dhaz*weights, id, sum) V[i,1] <- sum(U[,1]^2) U[,2] <- U[,2] + tapply(dhaz* weights, id, sum) #result in 'id' order V[i,2] <- sum(U[,2]^2) usave[,,i] <- U if (n.event[i] >0 ) { KM <- KM*(1-haz) nelson <- nelson + haz kvar <- kvar + n.event[i]/(n.risk[i] * (n.risk[i] - n.event[i])) hvar <- hvar + n.event[i]/(n.risk[i]^2) } V[i,3] <- kvar # var of log(S) V[i,4] <- hvar estimate[i,] <- c(KM, nelson) } dimnames(usave) <- list(uid, c("KM", "chaz"), utime) list(time=utime, n.risk=n.risk, n.event=n.event, estimate=estimate, std = sqrt(V), influence=usave) } # the byhand function can only handle one group at a time true1a <- with(subset(adata, x=="Maintained"), byhand(time, status, id=id)) true1b <- with(subset(adata, x!="Maintained"), byhand(time, status, id=id)) # The Greenwood and IJ estimates agree, except for a last point with # variance of zero. These next few lines verify the byhand() function aeq(true1a$std[,1], true1a$estimate[,1]*true1a$std[,3]) aeq(true1b$std[1:9,1], true1b$estimate[1:9,1]*true1b$std[1:9,3]) aeq(true1b$std[10,1], 0) # variance of zero for jackknife !is.finite(true1b$std[10,3]) # Inf for Greenwood temp <- with(subset(adata, x=="Maintained"), byhand(time, status, id=id, weights=rep(3,11))) aeq(temp$std[,1:2], true1a$std[,1:2]) # IJ estimates should be invariant # fit1 uses the standard formulas: NA hazard, KM survival fit1 <- survfit(Surv(time, status) ~ x, data=adata) aeq(fit1$surv, c(true1a$estimate[,1], true1b$estimate[,1])) aeq(fit1$cumhaz, c(true1a$estimate[,2], true1b$estimate[,2])) aeq(fit1$std.err, c(true1a$std[,3], true1b$std[,3])) aeq(fit1$std.chaz, c(true1a$std[,4], true1b$std[,4])) aeq(fit1$n.risk, c(true1a$n.risk, true1b$n.risk)) aeq(fit1$n.event, c(true1a$n.event, true1b$n.event)) fit1$logse # logse should be TRUE # fit2 will use the IJ method fit2 <- survfit(Surv(time, status) ~ x, data=adata, id=id) aeq(fit2$surv, c(true1a$estimate[,1], true1b$estimate[,1])) aeq(fit2$cumhaz, c(true1a$estimate[,2], true1b$estimate[,2])) aeq(fit2$std.err, c(true1a$std[,1], true1b$std[,1])) aeq(fit2$std.chaz, c(true1a$std[,2], true1b$std[,2])) aeq(fit2$n.risk, c(true1a$n.risk, true1b$n.risk)) aeq(fit2$n.event, c(true1a$n.event, true1b$n.event)) !fit2$logse # logse should be FALSE # look at the leverage values fit3 <- survfit(Surv(time, status) ~ x, data=adata, id=id, influence=3) aeq(fit3$influence.surv[[1]], true1a$influence[,1,]) aeq(fit3$influence.surv[[2]], true1b$influence[,1,]) aeq(fit3$influence.chaz[[1]], true1a$influence[,2,]) aeq(fit3$influence.chaz[[2]], true1b$influence[,2,]) # compute the influence by brute force tdata <- subset(adata, x != "Maintained") tdata <- tdata[order(tdata$id),] # easier to compare if it's in order eps <- 1e-8 imat1 <- imat2 <- matrix(0., 12, 10) t1 <- survfit(Surv(time, status) ~x, data=tdata) for (i in 1:12) { wtemp <- rep(1.0, 12) wtemp[i] <- 1 + eps tfit <-survfit(Surv(time, status) ~x, data=tdata, weights=wtemp) imat2[i,] <- (tfit$cumhaz - t1$cumhaz)/eps imat1[i,] <- (tfit$surv - t1$surv)/eps } aeq(imat1, true1b$influence[,1,], tol= sqrt(eps)) aeq(imat2, true1b$influence[,2,], tol= sqrt(eps)) # Repeat using the Nelson-Aalen hazard and exp(NA) for survival fit1 <- survfit(Surv(time, status) ~ x, adata, stype=2) aeq(fit1$surv, exp(-c(true1a$estimate[,2], true1b$estimate[,2]))) aeq(fit1$cumhaz, c(true1a$estimate[,2], true1b$estimate[,2])) aeq(fit1$std.err, c(true1a$std[,4], true1b$std[,4])) aeq(fit1$std.chaz, c(true1a$std[,4], true1b$std[,4])) aeq(fit1$n.risk, c(true1a$n.risk, true1b$n.risk)) # Nelson-Aalen + exp() surv, along with IJ variance fit2 <- survfit(Surv(time, status) ~ x, data=adata, id=id, stype=2, influence=3) aeq(fit2$surv, exp(-c(true1a$estimate[,2], true1b$estimate[,2]))) aeq(fit2$cumhaz, c(true1a$estimate[,2], true1b$estimate[,2])) aeq(fit2$std.err, c(true1a$std[,2], true1b$std[,2])) aeq(fit2$std.chaz, c(true1a$std[,2], true1b$std[,2])) aeq(fit2$n.risk, c(true1a$n.risk, true1b$n.risk)) aeq(fit2$influence.chaz[[1]], true1a$influence[,2,]) aeq(fit2$influence.chaz[[2]], true1b$influence[,2,]) aeq(fit2$influence.surv[[2]], -true1b$influence[,2,]%*% diag(fit2[2]$surv)) # Cumulative hazard is the same for fit1 and fit2 all.equal(fit2$influence.chaz, fit3$influence.chaz) # Weighted fits true2a <- with(subset(adata, x=="Maintained"), byhand(time, status, id=id, weights= wt)) true2b <- with(subset(adata, x!="Maintained"), byhand(time, status, id=id, weights=wt)) fit3 <- survfit(Surv(time, status) ~ x, data=adata, id=id, weights=wt, influence=TRUE) aeq(fit3$influence.surv[[1]], true2a$influence[,1,]) aeq(fit3$influence.surv[[2]], true2b$influence[,1,]) aeq(fit3$influence.chaz[[1]], true2a$influence[,2,]) aeq(fit3$influence.chaz[[2]], true2b$influence[,2,]) aeq(fit3$surv, c(true2a$estimate[,1], true2b$estimate[,1])) aeq(fit3$cumhaz, c(true2a$estimate[,2], true2b$estimate[,2])) aeq(fit3$std.err, c(true2a$std[,1], true2b$std[,1])) aeq(fit3$std.chaz, c(true2a$std[,2], true2b$std[,2])) aeq(fit3$n.risk, c(true2a$n.risk, true2b$n.risk)) aeq(fit3$n.event, c(true2a$n.event, true2b$n.event)) # Different survival, same hazard fit3b <- survfit(Surv(time, status) ~ x, data=adata, id=id, weights=wt, influence=2, stype=2) temp <- c("n", "time", "cumhaz", "std.chaz", "influence.chaz", "n.risk", "n.event") aeq(unclass(fit3b)[temp], unclass(fit3)[temp]) # unclass avoids [.survfit aeq(fit3b$surv, exp(-c(true2a$estimate[,2], true2b$estimate[,2]))) aeq(fit3b$std.err, fit3b$std.chaz) aeq(fit3b$logse, FALSE) aeq(fit3b$n.risk, c(true2a$n.risk, true2b$n.risk)) aeq(fit3b$n.event, c(true2a$n.event, true2b$n.event)) # The grouped jackknife group <- rep("", nrow(adata)) temp <- table(adata$x) group[adata$x == "Maintained"] <- rep(letters[1:4], length=temp[1]) group[adata$x != "Maintained"] <- rep(letters[4:7], length=temp[2]) adata$group <- group fit4 <- survfit(Surv(time, status) ~ x, data=adata, id=id, weights=wt, influence=TRUE, cluster=group) g1 <- adata$group[match(rownames(true2a$influence[,1,]), adata$id)] g2 <- adata$group[match(rownames(true2b$influence[,1,]), adata$id)] aeq(fit4$influence.surv[[1]], rowsum(true2a$influence[,1,], g1)) aeq(fit4$influence.surv[[2]], rowsum(true2b$influence[,1,], g2)) aeq(fit4$influence.chaz[[1]], rowsum(true2a$influence[,2,], g1)) aeq(fit4$influence.chaz[[2]], rowsum(true2b$influence[,2,], g2)) aeq(c(colSums(fit4$influence.surv[[1]]^2), colSums(fit4$influence.surv[[2]]^2)), fit4$std.err^2) aeq(c(colSums(fit4$influence.chaz[[1]]^2), colSums(fit4$influence.chaz[[2]]^2)), fit4$std.chaz^2) # The Fleming-Harrington is a more complex formula. Start with weights of # 1. fit5 <- survfit(Surv(time, status) ~x, adata, ctype=2) nrisk <- c(11,10,8,7, 5,4,2, 12, 11, 10, 9, 8, 6:1) chaz <- c(cumsum(1/nrisk[1:7])[c(1:4,4, 5,6,6,7,7)], cumsum(1/nrisk[8:18])[c(2,4,5,5,6:11)]) aeq(fit5$cumhaz, chaz) aeq(fit5$std.chaz, sqrt(c(cumsum(1/nrisk[1:7]^2)[c(1:4,4, 5,6,6,7,7)], cumsum(1/nrisk[8:18]^2)[c(2,4,5,5,6:11)]))) # We can compute the FH using a fake data set where each tie is spread out # over a set of fake times. # fh <- function(time, status, weights, id) { counts <- table(time, status) utime <- sort(unique(time)) tied <- counts[,2] > 1 if (missing(weights)) weights <- rep(1.0, length(time)) if (missing(id)) id <- 1:length(time) # build the expanded data set delta <- min(diff(utime))/(2*max(counts[,2])) efun <- function(x) { who <- which(time==x & status==1) ntie <- length(who) data.frame(time = rep(x - (1:ntie -1)*delta, each=ntie), id = rep(id[who], ntie), status = rep(1, ntie^2), weight = rep(weights[who]/ntie, ntie), stringsAsFactors=FALSE ) } temp <- do.call(rbind, lapply(utime[tied], efun)) notie <- (status==0 | !(time %in% utime[tied])) bfit <- byhand(time = c(time[notie], temp$time), status = c(status[notie], temp$status), id = c(id[notie], temp$id), weights = c(weights[notie], temp$weight) ) keep <- match(utime, bfit$time) # the real time points list(time=bfit$time[keep], n.risk=bfit$n.risk[keep - pmax(0, counts[,2]-1)], n.event = bfit$n.event[keep]* counts[,2], estimate=bfit$estimate[keep,], std = bfit$std[keep,], influence=bfit$influence[,,keep]) } # Case weights true6a <- with(subset(adata, x=="Maintained"), fh(time, status, wt, id)) true6b <- with(subset(adata, x!="Maintained"), fh(time, status, wt, id)) fit6 <- survfit(Surv(time, status) ~ x, weight=wt, data=adata, stype=2, ctype=2) aeq(fit6$cumhaz, c(true6a$estimate[,2], true6b$estimate[,2])) aeq(fit6$surv, exp(-c(true6a$estimate[,2], true6b$estimate[,2]))) aeq(fit6$std.chaz, c(true6a$std[,4], true6b$std[,4])) aeq(fit6$n.risk, c(true6a$n.risk, true6b$n.risk)) aeq(fit6$n.event, c(true6a$n.event, true6b$n.event)) # Robust variance fit7 <- survfit(Surv(time, status) ~ x, weight=wt, data=adata, stype=2,ctype=2, id=id, influence=2) aeq(fit7$cumhaz, c(true6a$estimate[,2], true6b$estimate[,2])) aeq(fit7$surv, exp(-c(true6a$estimate[,2], true6b$estimate[,2]))) aeq(fit7$std.chaz, c(true6a$std[,2], true6b$std[,2])) aeq(fit7$n.risk, c(true6a$n.risk, true6b$n.risk)) aeq(fit7$n.event, c(true6a$n.event, true6b$n.event)) aeq(fit7$influence.chaz[[1]], true6a$influence[,2,]) aeq(fit7$influence.chaz[[2]], true6b$influence[,2,]) # compute the influence by brute force tdata <- subset(adata, x != "Maintained") tdata <- tdata[order(tdata$id),] eps <- 1e-8 imat <- matrix(0., 12, 10) t1 <- survfit(Surv(time, status) ~x, data=tdata, ctype=2, weights=wt) for (i in 1:12) { wtemp <- tdata$wt wtemp[i] <- wtemp[i] + eps tfit <-survfit(Surv(time, status) ~x, data=tdata, ctype=2, weights=wtemp) imat[i,] <- tdata$wt[i] * (tfit$cumhaz - t1$cumhaz)/eps } aeq(fit7$influence.chaz[[2]], imat, tol=sqrt(eps)) # # verify that the times and scale arguments work as expected. They # are in the summary and print.survfit functions. # s1 <- summary(fit1, scale=1) s2 <- summary(fit1, scale=2) aeq(s1$time/2, s2$time) #times change aeq(s1$surv, s2$surv) tscale <- rep(c(1,1,1,1, 2,2,2,2,2), each=2) aeq(s1$table, s2$table *tscale) s3 <- summary(fit1, scale=1, times=c(9, 18, 23, 33, 34)) s4 <- summary(fit1, scale=2, times=c(9, 18, 23, 33, 34)) aeq(s3$time, s4$time*2) aeq(s3$surv, s4$surv) print(fit1, rmean='common') print(fit1, rmean='common', scale=2) survival/tests/book2.R0000644000176200001440000000765213537676603014460 0ustar liggesuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # # Tests from the appendix of Therneau and Grambsch # b. Data set 1 and Efron estimate # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) byhand <- function(beta, newx=0) { r <- exp(beta) loglik <- 2*beta - (log(3*r +3) + log((r+5)/2) + log(r+3)) u <- (30 + 23*r - r^3)/ ((r+1)*(r+3)*(r+5)) tfun <- function(x) x - x^2 imat <- tfun(r/(r+1)) + tfun(r/(r+5)) + tfun(r/(r+3)) # The matrix of weights, one row per obs, one col per time # Time of 1, 6, 6+0 (second death), and 9 wtmat <- matrix(c(1,1,1,1,1,1, 0,0,1,1,1,1, 0,0,.5, .5, 1,1, 0,0,0,0,0,1), ncol=4) wtmat <- diag(c(r,r,r,1,1,1)) %*% wtmat x <- c(1,1,1,0,0,0) status <- c(1,0,1,1,0,1) xbar <- colSums(wtmat*x)/ colSums(wtmat) haz <- 1/ colSums(wtmat) # one death at each of the times hazmat <- wtmat %*% diag(haz) #each subject's hazard over time mart <- status - rowSums(hazmat) a <- r+1; b<- r+3; d<- r+5 # 'c' in the book, 'd' here score <- c((2*r + 3)/ (3*a^2), -r/ (3*a^2), (675+ r*(1305 +r*(756 + r*(-4 +r*(-79 -13*r)))))/(3*(a*b*d)^2), r*(1/(3*a^2) - a/(2*b^2) - b/(2*d^2)), 2*r*(177 + r*(282 +r*(182 + r*(50 + 5*r)))) /(3*(a*b*d)^2), 2*r*(177 + r*(282 +r*(182 + r*(50 + 5*r)))) /(3*(a*b*d)^2)) # Schoenfeld residual d <- mean(xbar[2:3]) scho <- c(1/(r+1), 1- d, 0- d , 0) surv <- exp(-cumsum(haz)* exp(beta*newx))[c(1,3,4)] varhaz.g <- cumsum(haz^2) # since all numerators are 1 varhaz.d <- cumsum((newx-xbar) * haz) varhaz <- (varhaz.g + varhaz.d^2/ imat) * exp(2*beta*newx) list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=haz, mart=mart, score=score, var.g=varhaz.g, var.d=varhaz.d, scho=scho, surv=surv, var=varhaz[c(1,3,4)]) } aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) fit0 <-coxph(Surv(time, status) ~x, test1, iter=0) truth0 <- byhand(0,0) aeq(truth0$loglik, fit0$loglik[1]) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid[c(2:6,1)]) aeq(resid(fit0), c(-3/4, NA, 5/6, -1/6, 5/12, 5/12, -3/4)) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')[c(3:7,1)]) sfit <- survfit(fit0, list(x=0), censor=FALSE) aeq(sfit$std.err^2, truth0$var) aeq(sfit$surv, truth0$surv) fit <- coxph(Surv(time, status) ~x, test1, eps=1e-8) aeq(round(fit$coef,6), 1.676857) truebeta <- log(cos(acos((45/23)*sqrt(3/23))/3) * 2* sqrt(23/3)) truth <- byhand(truebeta, 0) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid[c(2:6,1)]) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')[c(3:7,1)]) # Per comments in the source code, the below is expected to fail for Efron # at the tied death times. (When predicting for new data, predict # treats a time in the new data set that exactly matches one in the original # as being just after the original, i.e., experiences the full hazard # jump there, in the same way that censors do.) expect <- predict(fit, type='expected', newdata=test1) #force recalc use <- !(test1$time==6 | is.na(test1$status)) aeq(test1$status[use] - resid(fit)[use], expect[use]) sfit <- survfit(fit, list(x=0), censor=FALSE) aeq(sfit$surv, truth$surv) aeq(sfit$std.err^2, truth$var) # # Done with the formal test, now print out lots of bits # resid(fit) resid(fit, 'scor') resid(fit, 'scho') predict(fit, type='lp') predict(fit, type='risk') predict(fit, type='expected') predict(fit, type='terms') predict(fit, type='lp', se.fit=T) predict(fit, type='risk', se.fit=T) predict(fit, type='expected', se.fit=T) predict(fit, type='terms', se.fit=T) summary(survfit(fit)) summary(survfit(fit, list(x=2))) survival/tests/data.peterson0000644000176200001440000000017713537676563016013 0ustar liggesusers1 4 1 1 7 1 1 12 1 2 3 0 2 10 0 2 22 1 2 21 1 2 11 0 2 12 0 6 18 1 6 9 1 3 12 0 3 19 1 3 16 0 3 5 0 3 14 0 3 20 1 4 2 1 5 6 1 survival/tests/fr_cancer.R0000644000176200001440000000126113537676563015361 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Here is a test case with multiple smoothing terms # fit0 <- coxph(Surv(time, status) ~ ph.ecog + age, lung) fit1 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,3), lung) fit2 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,4), lung) fit3 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,8), lung) fit4 <- coxph(Surv(time, status) ~ ph.ecog + pspline(wt.loss,3), lung) fit5 <-coxph(Surv(time, status) ~ ph.ecog + pspline(age,3) + pspline(wt.loss,3), lung) fit1 fit2 fit3 fit4 fit5 rm(fit1, fit2, fit3, fit4, fit5) survival/tests/book4.R0000644000176200001440000001003313537676603014445 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Tests from the appendix of Therneau and Grambsch # d. Data set 2 and Efron estimate # test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) byhand <- function(beta, newx=0) { r <- exp(beta) loglik <- 4*beta - (log(r+1) + log(r+2) + 2*log(3*r+2) + 2*log(3*r+1) + log(2*r +2)) u <- 1/(r+1) + 1/(3*r+1) + 2*(1/(3*r+2) + 1/(2*r+2)) - ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) imat <- r*(1/(r+1)^2 + 2/(r+2)^2 + 6/(3*r+2)^2 + 6/(3*r+1)^2 + 6/(3*r+2)^2 + 4/(2*r +2)^2) hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 1/(3*r+2), 1/(2*r +2) ) # The matrix of weights, one row per obs, one col per time # deaths at 2,3,6,7,8,9 wtmat <- matrix(c(1,0,0,0,1, 0, 0,0,0,0, 0,1,0,1,1, 0, 0,0,0,0, 0,0,1,1,1, 0, 1,1,0,0, 0,0,0,1,1, 0, 1,1,0,0, 0,0,0,0,1, 1, 1,1,0,0, 0,0,0,0,0, 1, 1,1,1,1, 0,0,0,0,0,.5,.5,1,1,1), ncol=7) wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat x <- c(1,0,0,1,0,1,1,1,0,0) status <- c(1,1,1,1,1,1,1,0,0,0) xbar <- colSums(wtmat*x)/ colSums(wtmat) n <- length(x) # Table of sums for score and Schoenfeld resids hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time dM <- -hazmat #Expected part for (i in 1:5) dM[i,i] <- dM[i,i] +1 #observed dM[6:7,6:7] <- dM[6:7,6:7] +.5 # observed mart <- rowSums(dM) # Table of sums for score and Schoenfeld resids # Looks like the last table of appendix E.2.1 of the book resid <- dM * outer(x, xbar, '-') score <- rowSums(resid) scho <- colSums(resid) # We need to add the ties back up (they are symmetric) scho[6:7] <- rep(mean(scho[6:7]), 2) list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard, mart=mart, score=score, rmat=resid, scho=scho) } aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) fit0 <-coxph(Surv(start, stop, event) ~x, test2, iter=0) truth0 <- byhand(0,0) aeq(truth0$loglik, fit0$loglik[1]) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')) fit <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-8) truth <- byhand(fit$coef, 0) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')) # Reprise the test, with strata # offseting the times ensures that we will get the wrong risk sets # if strata were not kept separate test2b <- rbind(test2, test2, test2) test2b$group <- rep(1:3, each= nrow(test2)) test2b$start <- test2b$start + test2b$group test2b$stop <- test2b$stop + test2b$group fit0 <- coxph(Surv(start, stop, event) ~ x + strata(group), test2b, iter=0) aeq(3*truth0$loglik, fit0$loglik[1]) aeq(3*truth0$imat, 1/fit0$var) aeq(rep(truth0$mart,3), fit0$resid) aeq(rep(truth0$scho,3), resid(fit0, 'schoen')) aeq(rep(truth0$score,3), resid(fit0, 'score')) fit3 <- coxph(Surv(start, stop, event) ~x + strata(group), test2b, eps=1e-8) aeq(3*truth$loglik, fit3$loglik[2]) aeq(3*truth$imat, 1/fit3$var) aeq(rep(truth$mart,3), fit3$resid) aeq(rep(truth$scho,3), resid(fit3, 'schoen')) aeq(rep(truth$score,3), resid(fit3, 'score')) # # Done with the formal test, now print out lots of bits # resid(fit) resid(fit, 'scor') resid(fit, 'scho') predict(fit, type='lp') predict(fit, type='risk') predict(fit, type='expected') predict(fit, type='terms') predict(fit, type='lp', se.fit=T) predict(fit, type='risk', se.fit=T) predict(fit, type='expected', se.fit=T) predict(fit, type='terms', se.fit=T) summary(survfit(fit)) summary(survfit(fit, list(x=2))) survival/tests/tiedtime.R0000644000176200001440000000200013537676563015233 0ustar liggesuserslibrary(survival) # # The survival code was failing for certain data sets when called as # survfit(Surv(time2-time1, status) ~ ...... # The issue was how tied floating point numbers are handled, and the # fact that unique(x), factor(x) and tapply(x) are not guarranteed to # all be the same. # This test fails in survival 2.36-5, fixed in 2.36-6. Data sets that # can cause it are few and far between. # load('ties.rda') x <- time2 -time1 # Here is the heart of the old problem # length(unique(x))== length(table(x)) # And the prior fix which worked ALMOST always # x <- round(x, 15) # length(unique(round(x,15)))== length(table(round(x,15))) fit1 <- survfit(Surv(x) ~1) length(fit1$time) == length(fit1$surv) # a second test, once "rounding.R" tdata <- data.frame(time=c(1,2, sqrt(2)^2, 2, sqrt(2)^2), status=rep(1,5), group=c(1,1,1,2,2)) fit <- survfit(Surv(time, status) ~ group, data=tdata) all.equal(sum(fit$strata), length(fit$time)) survival/tests/yates0.R0000644000176200001440000000407413537676563014651 0ustar liggesusers# # This code verified some oddities about model frames # options(contrasts=c("contr.treatment", "contr.poly")) # clean slate tdata <- data.frame(y=1:10, x1=letters[c(1,2,3,1,2,3,1,2,3,1)], x2=LETTERS[c(1,2,3,4,1,2,3,4,1,2)], stringsAsFactors=TRUE) tdata$x3 <- as.character(tdata$x1) fit1 <- lm(y ~ x1 + x2, tdata, x=TRUE) m1 <- fit1$model t1 <- terms(fit1) # Lesson 1: xlev is ignored when the variable already has levels # as an attribute temp <- list(x1=c("a", "c", "b"), x2=LETTERS[4:1]) x2 <- model.matrix(t1, m1, xlev=temp) x3 <- model.matrix(t1, tdata, xlev=temp) all.equal(x2, fit1$x) !is.logical(all.equal(x2, x3)) # x2 and x3 do not agree attributes(m1$x1) # Lesson 2: character variables do not have their levels # remembered as attributes in the model frame, but these are # found in fit$xlevels and fit$contrasts. # However, the xlev argument is still ignored for a model frame! fit2 <- lm(y ~ x3 + x2, tdata, x=TRUE) m2 <- fit2$model x3 <- model.matrix(terms(fit2), m2, xlev=fit2$xlevels) x4 <- model.matrix(terms(fit2), m2, xlev=list(x3=letters[3:1])) x5 <- model.matrix(terms(fit2), tdata, xlev=list(x3=letters[3:1])) all.equal(fit2$x, x3) all.equal(x3, x4) all.equal(x3, x5) # FALSE # Lesson 3: contrasts.arg is relevant, even when the model frame # has a saved contrast ctemp <- list(x1="contr.SAS", x2= contr.helmert(LETTERS[1:4])) x4 <- model.matrix(t1, m1, contrasts.arg=ctemp) # no saved contrast fit3 <- lm(y ~ x1 + C(x2, contr.SAS), tdata) m3 <- fit3$model attr(m3[[3]], 'contr') # the contrast is saved c2 <- ctemp names(c2) <- names(fit3$contrasts) x5 <- model.matrix(terms(fit3), m3, contrasts.arg=c2) all.equal(x4, x5, check.attributes=FALSE) # Lesson 4: and this holds for a character variable as well fit4 <- lm(y ~ x3 + C(x2, contr.SAS), tdata, x=TRUE) c4 <- ctemp names(c4) <- names(fit4$contrasts) x6 <- model.matrix(terms(fit4), fit4$model, xlev=fit4$xlevels, contrasts.arg=c4) x7 <- model.matrix(terms(fit4), fit4$model, contrasts.arg=c4) all.equal(x7, x6) all.equal(x7, x5, check.attributes=FALSE) survival/tests/plot1.pdf0000644000176200001440000015236213537676563015057 0ustar liggesusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20140512144403) /ModDate (D:20140512144403) /Title (R Graphics Output) /Producer (R 3.2.0) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 9 0 R >> stream 1 J 1 j q Q q /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 59.04 73.44 m 449.23 73.44 l S 59.04 73.44 m 59.04 66.24 l S 137.08 73.44 m 137.08 66.24 l S 215.11 73.44 m 215.11 66.24 l S 293.15 73.44 m 293.15 66.24 l S 371.19 73.44 m 371.19 66.24 l S 449.23 73.44 m 449.23 66.24 l S BT /sRGB cs 0.000 0.000 0.000 scn /F2 1 Tf 12.00 0.00 0.00 12.00 55.70 47.52 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 127.07 47.52 Tm (200) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 205.11 47.52 Tm (400) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 283.14 47.52 Tm (600) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 361.18 47.52 Tm (800) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 435.88 47.52 Tm (1000) Tj ET 59.04 87.20 m 59.04 431.20 l S 59.04 87.20 m 51.84 87.20 l S 59.04 156.00 m 51.84 156.00 l S 59.04 224.80 m 51.84 224.80 l S 59.04 293.60 m 51.84 293.60 l S 59.04 362.40 m 51.84 362.40 l S 59.04 431.20 m 51.84 431.20 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 78.86 Tm (0.0) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 147.66 Tm (0.2) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 216.46 Tm (0.4) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 285.26 Tm (0.6) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 354.06 Tm (0.8) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 422.86 Tm (1.0) Tj ET 59.04 73.44 m 473.76 73.44 l 473.76 444.96 l 59.04 444.96 l 59.04 73.44 l S Q q Q q 59.04 73.44 414.72 371.52 re W n /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 59.04 431.20 m 60.99 431.20 l 60.99 425.74 l 63.33 425.74 l 63.33 420.28 l 64.89 420.28 l 64.89 414.82 l 71.14 414.82 l 71.14 409.36 l 79.72 409.36 l 79.72 403.90 l 84.40 403.90 l 84.40 398.44 l 90.64 398.44 l 90.64 392.98 l 116.40 392.98 l 116.40 387.52 l 123.81 387.52 l 123.81 382.06 l 127.71 382.06 l 127.71 376.49 l 132.78 376.49 l 132.78 370.93 l 137.47 370.93 l 137.47 365.26 l 155.03 365.26 l 155.03 358.94 l 163.22 358.94 l 163.22 352.14 l 170.24 352.14 l 170.24 344.78 l 170.63 344.78 l 170.63 337.42 l 177.27 337.42 l 177.27 329.60 l 183.90 329.60 l 183.90 321.52 l 190.53 321.52 l 190.53 313.16 l 191.70 313.16 l 191.70 304.79 l 194.82 304.79 l 194.82 296.42 l 195.60 296.42 l 195.60 288.05 l 196.78 288.05 l 196.78 271.31 l 203.80 271.31 l 203.80 262.94 l 212.77 262.94 l 212.77 253.69 l 226.04 253.69 l 226.04 244.44 l 227.99 244.44 l 227.99 235.19 l 231.50 235.19 l 231.50 225.94 l 236.57 225.94 l 236.57 216.03 l 276.76 216.03 l 276.76 205.30 l 283.01 205.30 l 283.01 193.49 l 309.93 193.49 l 309.93 180.20 l 314.61 180.20 l 314.61 166.92 l 334.12 166.92 l 334.12 153.63 l 367.68 153.63 l 367.68 140.34 l 403.57 140.34 l 403.57 113.77 l 453.13 113.77 l 453.13 113.77 l S BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 124.36 379.46 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 130.60 368.34 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 134.90 362.66 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.48 362.66 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 143.87 362.66 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 147.77 362.66 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.72 362.66 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.40 356.34 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.14 356.34 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 159.87 356.34 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 161.04 349.55 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 163.77 349.55 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 166.89 349.55 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 170.01 334.83 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.13 334.83 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 178.99 327.01 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.62 318.93 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.13 260.35 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.91 260.35 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.32 223.35 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 267.95 213.44 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.19 202.70 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.51 190.89 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 376.42 137.75 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 383.83 137.75 Tm (l) Tj 0 Tr ET BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 450.17 111.18 Tm (l) Tj 0 Tr ET 59.04 431.20 m 63.33 431.20 l 63.33 428.16 l 64.11 428.16 l 64.11 425.11 l 82.06 425.11 l 82.06 422.07 l 82.45 422.07 l 82.45 415.98 l 83.23 415.98 l 83.23 412.93 l 89.86 412.93 l 89.86 409.89 l 93.38 409.89 l 93.38 403.80 l 94.94 403.80 l 94.94 400.76 l 96.11 400.76 l 96.11 397.71 l 100.79 397.71 l 100.79 394.67 l 101.96 394.67 l 101.96 391.62 l 104.30 391.62 l 104.30 388.58 l 110.15 388.58 l 110.15 385.54 l 110.54 385.54 l 110.54 382.49 l 111.71 382.49 l 111.71 379.45 l 114.45 379.45 l 114.45 376.40 l 115.23 376.40 l 115.23 373.36 l 115.62 373.36 l 115.62 370.32 l 119.91 370.32 l 119.91 367.27 l 122.64 367.27 l 122.64 361.18 l 124.20 361.18 l 124.20 358.14 l 125.37 358.14 l 125.37 355.09 l 127.32 355.09 l 127.32 351.98 l 128.88 351.98 l 128.88 345.67 l 129.66 345.67 l 129.66 339.37 l 130.05 339.37 l 130.05 336.22 l 131.61 336.22 l 131.61 333.03 l 134.74 333.03 l 134.74 329.75 l 135.91 329.75 l 135.91 326.43 l 137.86 326.43 l 137.86 323.06 l 139.81 323.06 l 139.81 319.64 l 140.98 319.64 l 140.98 316.22 l 144.10 316.22 l 144.10 312.80 l 146.05 312.80 l 146.05 309.28 l 147.22 309.28 l 147.22 305.69 l 148.39 305.69 l 148.39 302.11 l 148.78 302.11 l 148.78 298.53 l 152.29 298.53 l 152.29 294.89 l 154.64 294.89 l 154.64 291.18 l 163.61 291.18 l 163.61 287.47 l 164.00 287.47 l 164.00 283.76 l 164.39 283.76 l 164.39 280.05 l 169.46 280.05 l 169.46 276.20 l 169.85 276.20 l 169.85 272.34 l 173.36 272.34 l 173.36 268.48 l 176.49 268.48 l 176.49 264.54 l 178.05 264.54 l 178.05 260.42 l 178.44 260.42 l 178.44 256.29 l 180.00 256.29 l 180.00 252.17 l 193.65 252.17 l 193.65 248.04 l 200.68 248.04 l 200.68 239.58 l 201.07 239.58 l 201.07 235.35 l 203.80 235.35 l 203.80 230.99 l 211.21 230.99 l 211.21 226.49 l 225.26 226.49 l 225.26 221.69 l 226.43 221.69 l 226.43 216.89 l 234.62 216.89 l 234.62 212.08 l 237.35 212.08 l 237.35 207.28 l 238.53 207.28 l 238.53 202.28 l 243.60 202.28 l 243.60 197.27 l 245.16 197.27 l 245.16 192.27 l 261.55 192.27 l 261.55 187.02 l 261.94 187.02 l 261.94 181.76 l 263.50 181.76 l 263.50 176.51 l 273.64 176.51 l 273.64 170.93 l 280.27 170.93 l 280.27 165.35 l 286.52 165.35 l 286.52 159.76 l 298.22 159.76 l 298.22 154.18 l 302.52 154.18 l 302.52 148.60 l 309.15 148.60 l 309.15 143.02 l 327.10 143.02 l 327.10 137.44 l 327.88 137.44 l 327.88 131.86 l 343.09 131.86 l 343.09 126.27 l 344.27 126.27 l 344.27 120.69 l 345.83 120.69 l 345.83 115.11 l 357.53 115.11 l 357.53 108.13 l 457.81 108.13 l 457.81 108.13 l S 126.54 359.29 m 130.18 352.99 l 122.91 352.99 l 126.54 359.29 l S 126.93 359.29 m 130.57 352.99 l 123.30 352.99 l 126.93 359.29 l S 128.10 356.18 m 131.74 349.88 l 124.47 349.88 l 128.10 356.18 l S 131.22 340.42 m 134.86 334.12 l 127.59 334.12 l 131.22 340.42 l S 132.39 337.22 m 136.03 330.93 l 128.76 330.93 l 132.39 337.22 l S 133.96 337.22 m 137.59 330.93 l 130.32 330.93 l 133.96 337.22 l S 135.52 333.95 m 139.15 327.65 l 131.88 327.65 l 135.52 333.95 l S 135.91 330.62 m 139.54 324.33 l 132.27 324.33 l 135.91 330.62 l S 138.25 327.25 m 141.88 320.96 l 134.61 320.96 l 138.25 327.25 l S 145.27 317.00 m 148.91 310.70 l 141.63 310.70 l 145.27 317.00 l S 145.66 317.00 m 149.30 310.70 l 142.02 310.70 l 145.66 317.00 l S 146.83 313.48 m 150.47 307.18 l 143.20 307.18 l 146.83 313.48 l S 151.51 302.73 m 155.15 296.43 l 147.88 296.43 l 151.51 302.73 l S 153.85 299.09 m 157.49 292.79 l 150.22 292.79 l 153.85 299.09 l S 165.17 284.25 m 168.81 277.95 l 161.53 277.95 l 165.17 284.25 l S 167.90 284.25 m 171.54 277.95 l 164.27 277.95 l 167.90 284.25 l S 174.53 272.68 m 178.17 266.38 l 170.90 266.38 l 174.53 272.68 l S 176.49 268.74 m 180.12 262.44 l 172.85 262.44 l 176.49 268.74 l S 177.27 268.74 m 180.90 262.44 l 173.63 262.44 l 177.27 268.74 l S 197.95 252.24 m 201.58 245.94 l 194.31 245.94 l 197.95 252.24 l S 201.07 239.54 m 204.70 233.25 l 197.43 233.25 l 201.07 239.54 l S 205.75 235.19 m 209.39 228.89 l 202.11 228.89 l 205.75 235.19 l S 216.67 230.69 m 220.31 224.40 l 213.04 224.40 l 216.67 230.69 l S 220.19 230.69 m 223.82 224.40 l 216.55 224.40 l 220.19 230.69 l S 237.74 211.48 m 241.38 205.18 l 234.11 205.18 l 237.74 211.48 l S 258.42 196.47 m 262.06 190.17 l 254.79 190.17 l 258.42 196.47 l S 265.45 180.71 m 269.08 174.41 l 261.81 174.41 l 265.45 180.71 l S 347.78 119.31 m 351.41 113.01 l 344.14 113.01 l 347.78 119.31 l S 373.53 112.33 m 377.17 106.03 l 369.89 106.03 l 373.53 112.33 l S 435.57 112.33 m 439.20 106.03 l 431.93 106.03 l 435.57 112.33 l S 457.81 112.33 m 461.45 106.03 l 454.17 106.03 l 457.81 112.33 l S 59.04 431.20 m 63.33 431.20 l 63.33 424.32 l 63.72 424.32 l 63.72 417.44 l 64.11 417.44 l 64.11 410.56 l 69.18 410.56 l 69.18 403.68 l 70.75 403.68 l 70.75 396.80 l 79.72 396.80 l 79.72 389.92 l 80.11 389.92 l 80.11 383.04 l 82.84 383.04 l 82.84 376.16 l 84.40 376.16 l 84.40 369.28 l 90.64 369.28 l 90.64 362.40 l 95.33 362.40 l 95.33 355.34 l 96.11 355.34 l 96.11 348.29 l 100.01 348.29 l 100.01 341.23 l 100.79 341.23 l 100.79 333.97 l 106.64 333.97 l 106.64 326.71 l 110.54 326.71 l 110.54 319.46 l 115.62 319.46 l 115.62 312.20 l 118.74 312.20 l 118.74 304.94 l 119.91 304.94 l 119.91 297.68 l 122.64 297.68 l 122.64 290.42 l 123.81 290.42 l 123.81 283.17 l 128.10 283.17 l 128.10 275.91 l 129.27 275.91 l 129.27 268.65 l 130.44 268.65 l 130.44 261.39 l 136.69 261.39 l 136.69 254.13 l 137.47 254.13 l 137.47 246.88 l 140.20 246.88 l 140.20 239.62 l 141.76 239.62 l 141.76 232.00 l 145.66 232.00 l 145.66 224.38 l 152.29 224.38 l 152.29 216.76 l 170.24 216.76 l 170.24 209.13 l 171.41 209.13 l 171.41 201.51 l 172.58 201.51 l 172.58 193.89 l 180.00 193.89 l 180.00 185.69 l 187.41 185.69 l 187.41 177.48 l 195.99 177.48 l 195.99 169.27 l 199.90 169.27 l 199.90 161.06 l 210.04 161.06 l 210.04 152.86 l 232.28 152.86 l 232.28 144.65 l 263.50 144.65 l 263.50 135.08 l 267.01 135.08 l 267.01 125.50 l 314.22 125.50 l 314.22 112.73 l 334.90 112.73 l 334.90 99.97 l 376.65 99.97 l 376.65 87.20 l S 91.12 362.40 m 98.76 362.40 l S 94.94 358.58 m 94.94 366.22 l S 96.19 341.23 m 103.83 341.23 l S 100.01 337.41 m 100.01 345.05 l S 137.55 239.62 m 145.19 239.62 l S 141.37 235.80 m 141.37 243.44 l S 169.16 193.89 m 176.79 193.89 l S 172.97 190.07 m 172.97 197.71 l S 254.61 144.65 m 262.24 144.65 l S 258.42 140.83 m 258.42 148.47 l S 270.21 125.50 m 277.85 125.50 l S 274.03 121.68 m 274.03 129.32 l S 59.04 431.20 m 105.08 431.20 l 105.08 87.20 l S Q endstream endobj 9 0 obj 10658 endobj 10 0 obj << /Type /Page /Parent 3 0 R /Contents 11 0 R /Resources 4 0 R >> endobj 11 0 obj << /Length 12 0 R >> stream 1 J 1 j q Q q 59.04 73.44 414.72 371.52 re W n Q q /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 74.40 73.44 m 450.13 73.44 l S 74.40 73.44 m 74.40 66.24 l S 149.55 73.44 m 149.55 66.24 l S 224.69 73.44 m 224.69 66.24 l S 299.84 73.44 m 299.84 66.24 l S 374.99 73.44 m 374.99 66.24 l S 450.13 73.44 m 450.13 66.24 l S BT /sRGB cs 0.000 0.000 0.000 scn /F2 1 Tf 12.00 0.00 0.00 12.00 71.06 47.52 Tm (0) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 139.54 47.52 Tm (200) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 214.69 47.52 Tm (400) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 289.83 47.52 Tm (600) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 364.98 47.52 Tm (800) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 436.79 47.52 Tm (1000) Tj ET 59.04 87.20 m 59.04 431.20 l S 59.04 87.20 m 51.84 87.20 l S 59.04 156.00 m 51.84 156.00 l S 59.04 224.80 m 51.84 224.80 l S 59.04 293.60 m 51.84 293.60 l S 59.04 362.40 m 51.84 362.40 l S 59.04 431.20 m 51.84 431.20 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 78.86 Tm (0.0) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 147.66 Tm (0.2) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 216.46 Tm (0.4) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 285.26 Tm (0.6) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 354.06 Tm (0.8) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 422.86 Tm (1.0) Tj ET 59.04 73.44 m 473.76 73.44 l 473.76 444.96 l 59.04 444.96 l 59.04 73.44 l S Q q Q q 59.04 73.44 414.72 371.52 re W n /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 74.40 87.20 m 76.28 87.20 l 76.28 92.66 l 78.53 92.66 l 78.53 98.12 l 80.04 98.12 l 80.04 103.58 l 86.05 103.58 l 86.05 109.04 l 94.31 109.04 l 94.31 114.50 l 98.82 114.50 l 98.82 119.96 l 104.83 119.96 l 104.83 125.42 l 129.63 125.42 l 129.63 130.88 l 136.77 130.88 l 136.77 136.34 l 140.53 136.34 l 140.53 141.91 l 145.41 141.91 l 145.41 147.47 l 149.92 147.47 l 149.92 153.14 l 166.83 153.14 l 166.83 159.46 l 174.72 159.46 l 174.72 166.26 l 181.48 166.26 l 181.48 173.62 l 181.86 173.62 l 181.86 180.98 l 188.25 180.98 l 188.25 188.80 l 194.63 188.80 l 194.63 196.88 l 201.02 196.88 l 201.02 205.24 l 202.15 205.24 l 202.15 213.61 l 205.16 213.61 l 205.16 221.98 l 205.91 221.98 l 205.91 230.35 l 207.03 230.35 l 207.03 247.09 l 213.80 247.09 l 213.80 255.46 l 222.44 255.46 l 222.44 264.71 l 235.21 264.71 l 235.21 273.96 l 237.09 273.96 l 237.09 283.21 l 240.47 283.21 l 240.47 292.46 l 245.36 292.46 l 245.36 302.37 l 284.06 302.37 l 284.06 313.10 l 290.07 313.10 l 290.07 324.91 l 316.00 324.91 l 316.00 338.20 l 320.51 338.20 l 320.51 351.48 l 339.29 351.48 l 339.29 364.77 l 371.61 364.77 l 371.61 378.06 l 406.17 378.06 l 406.17 404.63 l 453.89 404.63 l 453.89 404.63 l S 136.34 136.34 m 143.97 136.34 l S 140.15 132.52 m 140.15 140.16 l S 142.35 147.47 m 149.98 147.47 l S 146.17 143.65 m 146.17 151.29 l S 146.48 153.14 m 154.12 153.14 l S 150.30 149.33 m 150.30 156.96 l S 154.75 153.14 m 162.38 153.14 l S 158.56 149.33 m 158.56 156.96 l S 155.12 153.14 m 162.76 153.14 l S 158.94 149.33 m 158.94 156.96 l S 158.88 153.14 m 166.52 153.14 l S 162.70 149.33 m 162.70 156.96 l S 160.76 153.14 m 168.39 153.14 l S 164.58 149.33 m 164.58 156.96 l S 165.27 159.46 m 172.90 159.46 l S 169.08 155.65 m 169.08 163.28 l S 167.90 159.46 m 175.53 159.46 l S 171.72 155.65 m 171.72 163.28 l S 170.53 159.46 m 178.16 159.46 l S 174.35 155.65 m 174.35 163.28 l S 171.65 166.26 m 179.29 166.26 l S 175.47 162.44 m 175.47 170.08 l S 174.28 166.26 m 181.92 166.26 l S 178.10 162.44 m 178.10 170.08 l S 177.29 166.26 m 184.93 166.26 l S 181.11 162.44 m 181.11 170.08 l S 180.30 180.98 m 187.93 180.98 l S 184.11 177.16 m 184.11 184.79 l S 183.30 180.98 m 190.94 180.98 l S 187.12 177.16 m 187.12 184.79 l S 188.94 188.80 m 196.57 188.80 l S 192.76 184.98 m 192.76 192.61 l S 195.33 196.88 m 202.96 196.88 l S 199.14 193.06 m 199.14 200.69 l S 214.11 255.46 m 221.75 255.46 l S 217.93 251.64 m 217.93 259.28 l S 214.86 255.46 m 222.50 255.46 l S 218.68 251.64 m 218.68 259.28 l S 237.41 292.46 m 245.04 292.46 l S 241.23 288.64 m 241.23 296.27 l S 274.61 302.37 m 282.24 302.37 l S 278.42 298.55 m 278.42 306.18 l S 280.62 313.10 m 288.25 313.10 l S 284.44 309.28 m 284.44 316.92 l S 291.51 324.91 m 299.15 324.91 l S 295.33 321.09 m 295.33 328.73 l S 379.06 378.06 m 386.70 378.06 l S 382.88 374.24 m 382.88 381.87 l S 386.20 378.06 m 393.83 378.06 l S 390.02 374.24 m 390.02 381.87 l S 450.07 404.63 m 457.71 404.63 l S 453.89 400.81 m 453.89 408.45 l S 0.75 w [ 2.25 3.75] 0 d 74.40 87.20 m 76.28 87.20 l 76.28 103.11 l 78.53 103.11 l 78.53 112.69 l 80.04 112.69 l 80.04 121.18 l 86.05 121.18 l 86.05 129.10 l 94.31 129.10 l 94.31 136.65 l 98.82 136.65 l 98.82 143.92 l 104.83 143.92 l 104.83 150.99 l 129.63 150.99 l 129.63 157.87 l 136.77 157.87 l 136.77 164.62 l 140.53 164.62 l 140.53 171.39 l 145.41 171.39 l 145.41 178.05 l 149.92 178.05 l 149.92 184.76 l 166.83 184.76 l 166.83 192.32 l 174.72 192.32 l 174.72 200.43 l 181.48 200.43 l 181.48 209.21 l 181.86 209.21 l 181.86 217.80 l 188.25 217.80 l 188.25 226.88 l 194.63 226.88 l 194.63 236.14 l 201.02 236.14 l 201.02 245.60 l 202.15 245.60 l 202.15 254.86 l 205.16 254.86 l 205.16 263.94 l 205.91 263.94 l 205.91 272.84 l 207.03 272.84 l 207.03 290.17 l 213.80 290.17 l 213.80 298.60 l 222.44 298.60 l 222.44 307.98 l 235.21 307.98 l 235.21 317.15 l 237.09 317.15 l 237.09 326.12 l 240.47 326.12 l 240.47 334.89 l 245.36 334.89 l 245.36 344.23 l 284.06 344.23 l 284.06 354.25 l 290.07 354.25 l 290.07 365.14 l 316.00 365.14 l 316.00 377.16 l 320.51 377.16 l 320.51 388.38 l 339.29 388.38 l 339.29 398.77 l 371.61 398.77 l 371.61 408.27 l 406.17 408.27 l 406.17 425.95 l 453.89 425.95 l 453.89 425.95 l S 74.40 87.20 m 86.05 87.20 l 86.05 87.65 l 94.31 87.65 l 94.31 90.69 l 98.82 90.69 l 98.82 94.00 l 104.83 94.00 l 104.83 97.53 l 129.63 97.53 l 129.63 101.23 l 136.77 101.23 l 136.77 105.07 l 140.53 105.07 l 140.53 109.07 l 145.41 109.07 l 145.41 113.20 l 149.92 113.20 l 149.92 117.47 l 166.83 117.47 l 166.83 122.09 l 174.72 122.09 l 174.72 127.03 l 181.48 127.03 l 181.48 132.32 l 181.86 132.32 l 181.86 137.80 l 188.25 137.80 l 188.25 143.61 l 194.63 143.61 l 194.63 149.71 l 201.02 149.71 l 201.02 156.11 l 202.15 156.11 l 202.15 162.71 l 205.16 162.71 l 205.16 169.50 l 205.91 169.50 l 205.91 176.46 l 207.03 176.46 l 207.03 190.85 l 213.80 190.85 l 213.80 198.27 l 222.44 198.27 l 222.44 206.23 l 235.21 206.23 l 235.21 214.40 l 237.09 214.40 l 237.09 222.77 l 240.47 222.77 l 240.47 231.32 l 245.36 231.32 l 245.36 240.36 l 284.06 240.36 l 284.06 249.95 l 290.07 249.95 l 290.07 260.19 l 316.00 260.19 l 316.00 271.14 l 320.51 271.14 l 320.51 282.79 l 339.29 282.79 l 339.29 295.11 l 371.61 295.11 l 371.61 308.04 l 406.17 308.04 l 406.17 296.82 l 453.89 296.82 l 453.89 296.82 l S 1.000 0.000 0.000 SCN 0.75 w [] 0 d 74.40 87.20 m 78.53 87.20 l 78.53 90.24 l 79.28 90.24 l 79.28 93.29 l 96.57 93.29 l 96.57 96.33 l 96.94 96.33 l 96.94 102.42 l 97.70 102.42 l 97.70 105.47 l 104.08 105.47 l 104.08 108.51 l 107.46 108.51 l 107.46 114.60 l 108.97 114.60 l 108.97 117.64 l 110.09 117.64 l 110.09 120.69 l 114.60 120.69 l 114.60 123.73 l 115.73 123.73 l 115.73 126.78 l 117.99 126.78 l 117.99 129.82 l 123.62 129.82 l 123.62 132.86 l 124.00 132.86 l 124.00 135.91 l 125.12 135.91 l 125.12 138.95 l 127.75 138.95 l 127.75 142.00 l 128.51 142.00 l 128.51 145.04 l 128.88 145.04 l 128.88 148.08 l 133.01 148.08 l 133.01 151.13 l 135.64 151.13 l 135.64 157.22 l 137.15 157.22 l 137.15 160.26 l 138.27 160.26 l 138.27 163.31 l 140.15 163.31 l 140.15 166.42 l 141.66 166.42 l 141.66 172.73 l 142.41 172.73 l 142.41 179.03 l 142.78 179.03 l 142.78 182.18 l 144.29 182.18 l 144.29 185.37 l 147.29 185.37 l 147.29 188.65 l 148.42 188.65 l 148.42 191.97 l 150.30 191.97 l 150.30 195.34 l 152.18 195.34 l 152.18 198.76 l 153.30 198.76 l 153.30 202.18 l 156.31 202.18 l 156.31 205.60 l 158.19 205.60 l 158.19 209.12 l 159.32 209.12 l 159.32 212.71 l 160.44 212.71 l 160.44 216.29 l 160.82 216.29 l 160.82 219.87 l 164.20 219.87 l 164.20 223.51 l 166.45 223.51 l 166.45 227.22 l 175.10 227.22 l 175.10 230.93 l 175.47 230.93 l 175.47 234.64 l 175.85 234.64 l 175.85 238.35 l 180.73 238.35 l 180.73 242.20 l 181.11 242.20 l 181.11 246.06 l 184.49 246.06 l 184.49 249.92 l 187.50 249.92 l 187.50 253.86 l 189.00 253.86 l 189.00 257.98 l 189.37 257.98 l 189.37 262.11 l 190.88 262.11 l 190.88 266.23 l 204.03 266.23 l 204.03 270.36 l 210.79 270.36 l 210.79 278.82 l 211.17 278.82 l 211.17 283.05 l 213.80 283.05 l 213.80 287.41 l 220.94 287.41 l 220.94 291.91 l 234.46 291.91 l 234.46 296.71 l 235.59 296.71 l 235.59 301.51 l 243.48 301.51 l 243.48 306.32 l 246.11 306.32 l 246.11 311.12 l 247.24 311.12 l 247.24 316.12 l 252.12 316.12 l 252.12 321.13 l 253.63 321.13 l 253.63 326.13 l 269.41 326.13 l 269.41 331.38 l 269.78 331.38 l 269.78 336.64 l 271.28 336.64 l 271.28 341.89 l 281.05 341.89 l 281.05 347.47 l 287.44 347.47 l 287.44 353.05 l 293.45 353.05 l 293.45 358.64 l 304.72 358.64 l 304.72 364.22 l 308.86 364.22 l 308.86 369.80 l 315.25 369.80 l 315.25 375.38 l 332.53 375.38 l 332.53 380.96 l 333.28 380.96 l 333.28 386.54 l 347.93 386.54 l 347.93 392.13 l 349.06 392.13 l 349.06 397.71 l 350.56 397.71 l 350.56 403.29 l 361.84 403.29 l 361.84 410.27 l 458.40 410.27 l 458.40 410.27 l S 135.58 163.31 m 143.22 163.31 l S 139.40 159.49 m 139.40 167.12 l S 135.96 163.31 m 143.60 163.31 l S 139.78 159.49 m 139.78 167.12 l S 137.09 166.42 m 144.72 166.42 l S 140.90 162.60 m 140.90 170.24 l S 140.09 182.18 m 147.73 182.18 l S 143.91 178.36 m 143.91 186.00 l S 141.22 185.37 m 148.86 185.37 l S 145.04 181.56 m 145.04 189.19 l S 142.72 185.37 m 150.36 185.37 l S 146.54 181.56 m 146.54 189.19 l S 144.23 188.65 m 151.86 188.65 l S 148.04 184.83 m 148.04 192.47 l S 144.60 191.97 m 152.24 191.97 l S 148.42 188.16 m 148.42 195.79 l S 146.86 195.34 m 154.49 195.34 l S 150.67 191.53 m 150.67 199.16 l S 153.62 205.60 m 161.26 205.60 l S 157.44 201.78 m 157.44 209.42 l S 153.99 205.60 m 161.63 205.60 l S 157.81 201.78 m 157.81 209.42 l S 155.12 209.12 m 162.76 209.12 l S 158.94 205.31 m 158.94 212.94 l S 159.63 219.87 m 167.27 219.87 l S 163.45 216.05 m 163.45 223.69 l S 161.88 223.51 m 169.52 223.51 l S 165.70 219.69 m 165.70 227.33 l S 172.78 238.35 m 180.42 238.35 l S 176.60 234.53 m 176.60 242.17 l S 175.41 238.35 m 183.05 238.35 l S 179.23 234.53 m 179.23 242.17 l S 181.80 249.92 m 189.44 249.92 l S 185.62 246.10 m 185.62 253.74 l S 183.68 253.86 m 191.31 253.86 l S 187.50 250.04 m 187.50 257.68 l S 184.43 253.86 m 192.07 253.86 l S 188.25 250.04 m 188.25 257.68 l S 204.34 270.36 m 211.98 270.36 l S 208.16 266.54 m 208.16 274.17 l S 207.35 283.05 m 214.99 283.05 l S 211.17 279.24 m 211.17 286.87 l S 211.86 287.41 m 219.49 287.41 l S 215.68 283.59 m 215.68 291.23 l S 222.38 291.91 m 230.01 291.91 l S 226.20 288.09 m 226.20 295.72 l S 225.76 291.91 m 233.40 291.91 l S 229.58 288.09 m 229.58 295.72 l S 242.67 311.12 m 250.30 311.12 l S 246.49 307.30 m 246.49 314.94 l S 262.58 326.13 m 270.22 326.13 l S 266.40 322.31 m 266.40 329.95 l S 269.34 341.89 m 276.98 341.89 l S 273.16 338.07 m 273.16 345.71 l S 348.62 403.29 m 356.26 403.29 l S 352.44 399.47 m 352.44 407.11 l S 373.42 410.27 m 381.06 410.27 l S 377.24 406.45 m 377.24 414.09 l S 433.16 410.27 m 440.80 410.27 l S 436.98 406.45 m 436.98 414.09 l S 454.58 410.27 m 462.22 410.27 l S 458.40 406.45 m 458.40 414.09 l S 0.75 w [ 2.25 3.75] 0 d 74.40 87.20 m 78.53 87.20 l 78.53 96.13 l 79.28 96.13 l 79.28 101.55 l 96.57 101.55 l 96.57 106.38 l 96.94 106.38 l 96.94 115.21 l 97.70 115.21 l 97.70 119.38 l 104.08 119.38 l 104.08 123.44 l 107.46 123.44 l 107.46 131.31 l 108.97 131.31 l 108.97 135.15 l 110.09 135.15 l 110.09 138.93 l 114.60 138.93 l 114.60 142.66 l 115.73 142.66 l 115.73 146.35 l 117.99 146.35 l 117.99 150.01 l 123.62 150.01 l 123.62 153.63 l 124.00 153.63 l 124.00 157.21 l 125.12 157.21 l 125.12 160.77 l 127.75 160.77 l 127.75 164.30 l 128.51 164.30 l 128.51 167.80 l 128.88 167.80 l 128.88 171.29 l 133.01 171.29 l 133.01 174.75 l 135.64 174.75 l 135.64 181.60 l 137.15 181.60 l 137.15 185.00 l 138.27 185.00 l 138.27 188.38 l 140.15 188.38 l 140.15 191.84 l 141.66 191.84 l 141.66 198.79 l 142.41 198.79 l 142.41 205.67 l 142.78 205.67 l 142.78 209.09 l 144.29 209.09 l 144.29 212.54 l 147.29 212.54 l 147.29 216.09 l 148.42 216.09 l 148.42 219.67 l 150.30 219.67 l 150.30 223.30 l 152.18 223.30 l 152.18 226.97 l 153.30 226.97 l 153.30 230.62 l 156.31 230.62 l 156.31 234.25 l 158.19 234.25 l 158.19 238.00 l 159.32 238.00 l 159.32 241.79 l 160.44 241.79 l 160.44 245.57 l 160.82 245.57 l 160.82 249.33 l 164.20 249.33 l 164.20 253.15 l 166.45 253.15 l 166.45 257.03 l 175.10 257.03 l 175.10 260.89 l 175.47 260.89 l 175.47 264.72 l 175.85 264.72 l 175.85 268.54 l 180.73 268.54 l 180.73 272.51 l 181.11 272.51 l 181.11 276.47 l 184.49 276.47 l 184.49 280.40 l 187.50 280.40 l 187.50 284.41 l 189.00 284.41 l 189.00 288.62 l 189.37 288.62 l 189.37 292.80 l 190.88 292.80 l 190.88 296.95 l 204.03 296.95 l 204.03 301.07 l 210.79 301.07 l 210.79 309.50 l 211.17 309.50 l 211.17 313.67 l 213.80 313.67 l 213.80 317.95 l 220.94 317.95 l 220.94 322.36 l 234.46 322.36 l 234.46 327.10 l 235.59 327.10 l 235.59 331.79 l 243.48 331.79 l 243.48 336.43 l 246.11 336.43 l 246.11 341.03 l 247.24 341.03 l 247.24 345.81 l 252.12 345.81 l 252.12 350.53 l 253.63 350.53 l 253.63 355.20 l 269.41 355.20 l 269.41 360.09 l 269.78 360.09 l 269.78 364.92 l 271.28 364.92 l 271.28 369.67 l 281.05 369.67 l 281.05 374.71 l 287.44 374.71 l 287.44 379.65 l 293.45 379.65 l 293.45 384.50 l 304.72 384.50 l 304.72 389.24 l 308.86 389.24 l 308.86 393.88 l 315.25 393.88 l 315.25 398.41 l 332.53 398.41 l 332.53 402.81 l 333.28 402.81 l 333.28 407.07 l 347.93 407.07 l 347.93 411.19 l 349.06 411.19 l 349.06 415.13 l 350.56 415.13 l 350.56 418.87 l 361.84 418.87 l 361.84 423.45 l 458.40 423.45 l 458.40 423.45 l S 74.40 87.20 m 96.94 87.20 l 96.94 89.12 l 97.70 89.12 l 97.70 90.93 l 104.08 90.93 l 104.08 92.85 l 107.46 92.85 l 107.46 96.95 l 108.97 96.95 l 108.97 99.10 l 110.09 99.10 l 110.09 101.30 l 114.60 101.30 l 114.60 103.56 l 115.73 103.56 l 115.73 105.85 l 117.99 105.85 l 117.99 108.18 l 123.62 108.18 l 123.62 110.55 l 124.00 110.55 l 124.00 112.95 l 125.12 112.95 l 125.12 115.37 l 127.75 115.37 l 127.75 117.83 l 128.51 117.83 l 128.51 120.31 l 128.88 120.31 l 128.88 122.81 l 133.01 122.81 l 133.01 125.34 l 135.64 125.34 l 135.64 130.45 l 137.15 130.45 l 137.15 133.04 l 138.27 133.04 l 138.27 135.64 l 140.15 135.64 l 140.15 138.31 l 141.66 138.31 l 141.66 143.74 l 142.41 143.74 l 142.41 149.24 l 142.78 149.24 l 142.78 152.01 l 144.29 152.01 l 144.29 154.83 l 147.29 154.83 l 147.29 157.72 l 148.42 157.72 l 148.42 160.65 l 150.30 160.65 l 150.30 163.63 l 152.18 163.63 l 152.18 166.66 l 153.30 166.66 l 153.30 169.71 l 156.31 169.71 l 156.31 172.78 l 158.19 172.78 l 158.19 175.94 l 159.32 175.94 l 159.32 179.15 l 160.44 179.15 l 160.44 182.38 l 160.82 182.38 l 160.82 185.63 l 164.20 185.63 l 164.20 188.94 l 166.45 188.94 l 166.45 192.31 l 175.10 192.31 l 175.10 195.71 l 175.47 195.71 l 175.47 199.12 l 175.85 199.12 l 175.85 202.55 l 180.73 202.55 l 180.73 206.11 l 181.11 206.11 l 181.11 209.68 l 184.49 209.68 l 184.49 213.28 l 187.50 213.28 l 187.50 216.95 l 189.00 216.95 l 189.00 220.77 l 189.37 220.77 l 189.37 224.62 l 190.88 224.62 l 190.88 228.49 l 204.03 228.49 l 204.03 232.39 l 210.79 232.39 l 210.79 240.42 l 211.17 240.42 l 211.17 244.47 l 213.80 244.47 l 213.80 248.64 l 220.94 248.64 l 220.94 252.93 l 234.46 252.93 l 234.46 257.45 l 235.59 257.45 l 235.59 262.01 l 243.48 262.01 l 243.48 266.63 l 246.11 266.63 l 246.11 271.29 l 247.24 271.29 l 247.24 276.11 l 252.12 276.11 l 252.12 281.00 l 253.63 281.00 l 253.63 285.93 l 269.41 285.93 l 269.41 291.08 l 269.78 291.08 l 269.78 296.29 l 271.28 296.29 l 271.28 301.57 l 281.05 301.57 l 281.05 307.10 l 287.44 307.10 l 287.44 312.73 l 293.45 312.73 l 293.45 318.45 l 304.72 318.45 l 304.72 324.26 l 308.86 324.26 l 308.86 330.17 l 315.25 330.17 l 315.25 336.19 l 332.53 336.19 l 332.53 342.32 l 333.28 342.32 l 333.28 348.56 l 347.93 348.56 l 347.93 354.92 l 349.06 354.92 l 349.06 361.41 l 350.56 361.41 l 350.56 368.04 l 361.84 368.04 l 361.84 374.67 l 458.40 374.67 l 458.40 374.67 l S 0.000 0.804 0.000 SCN 0.75 w [] 0 d 74.40 87.20 m 78.53 87.20 l 78.53 94.08 l 78.91 94.08 l 78.91 100.96 l 79.28 100.96 l 79.28 107.84 l 84.17 107.84 l 84.17 114.72 l 85.67 114.72 l 85.67 121.60 l 94.31 121.60 l 94.31 128.48 l 94.69 128.48 l 94.69 135.36 l 97.32 135.36 l 97.32 142.24 l 98.82 142.24 l 98.82 149.12 l 104.83 149.12 l 104.83 156.00 l 109.34 156.00 l 109.34 163.06 l 110.09 163.06 l 110.09 170.11 l 113.85 170.11 l 113.85 177.17 l 114.60 177.17 l 114.60 184.43 l 120.24 184.43 l 120.24 191.69 l 124.00 191.69 l 124.00 198.94 l 128.88 198.94 l 128.88 206.20 l 131.89 206.20 l 131.89 213.46 l 133.01 213.46 l 133.01 220.72 l 135.64 220.72 l 135.64 227.98 l 136.77 227.98 l 136.77 235.23 l 140.90 235.23 l 140.90 242.49 l 142.03 242.49 l 142.03 249.75 l 143.16 249.75 l 143.16 257.01 l 149.17 257.01 l 149.17 264.27 l 149.92 264.27 l 149.92 271.52 l 152.55 271.52 l 152.55 278.78 l 154.06 278.78 l 154.06 286.40 l 157.81 286.40 l 157.81 294.02 l 164.20 294.02 l 164.20 301.64 l 181.48 301.64 l 181.48 309.27 l 182.61 309.27 l 182.61 316.89 l 183.74 316.89 l 183.74 324.51 l 190.88 324.51 l 190.88 332.71 l 198.02 332.71 l 198.02 340.92 l 206.28 340.92 l 206.28 349.13 l 210.04 349.13 l 210.04 357.34 l 219.81 357.34 l 219.81 365.54 l 241.23 365.54 l 241.23 373.75 l 271.28 373.75 l 271.28 383.32 l 274.67 383.32 l 274.67 392.90 l 320.13 392.90 l 320.13 405.67 l 340.04 405.67 l 340.04 418.43 l 380.25 418.43 l 380.25 431.20 l S 105.15 156.00 m 112.79 156.00 l S 108.97 152.18 m 108.97 159.82 l S 110.03 177.17 m 117.67 177.17 l S 113.85 173.35 m 113.85 180.99 l S 149.86 278.78 m 157.50 278.78 l S 153.68 274.96 m 153.68 282.60 l S 180.30 324.51 m 187.93 324.51 l S 184.11 320.69 m 184.11 328.33 l S 262.58 373.75 m 270.22 373.75 l S 266.40 369.93 m 266.40 377.57 l S 277.61 392.90 m 285.25 392.90 l S 281.43 389.08 m 281.43 396.72 l S 0.75 w [ 2.25 3.75] 0 d 74.40 87.20 m 78.53 87.20 l 78.53 107.17 l 78.91 107.17 l 78.91 119.13 l 79.28 119.13 l 79.28 129.71 l 84.17 129.71 l 84.17 139.56 l 85.67 139.56 l 85.67 148.92 l 94.31 148.92 l 94.31 157.93 l 94.69 157.93 l 94.69 166.66 l 97.32 166.66 l 97.32 175.16 l 98.82 175.16 l 98.82 183.47 l 104.83 183.47 l 104.83 191.62 l 109.34 191.62 l 109.34 199.86 l 110.09 199.86 l 110.09 207.96 l 113.85 207.96 l 113.85 215.93 l 114.60 215.93 l 114.60 224.06 l 120.24 224.06 l 120.24 232.05 l 124.00 232.05 l 124.00 239.93 l 128.88 239.93 l 128.88 247.70 l 131.89 247.70 l 131.89 255.37 l 133.01 255.37 l 133.01 262.94 l 135.64 262.94 l 135.64 270.41 l 136.77 270.41 l 136.77 277.79 l 140.90 277.79 l 140.90 285.08 l 142.03 285.08 l 142.03 292.28 l 143.16 292.28 l 143.16 299.39 l 149.17 299.39 l 149.17 306.41 l 149.92 306.41 l 149.92 313.35 l 152.55 313.35 l 152.55 320.21 l 154.06 320.21 l 154.06 327.38 l 157.81 327.38 l 157.81 334.45 l 164.20 334.45 l 164.20 341.42 l 181.48 341.42 l 181.48 348.27 l 182.61 348.27 l 182.61 355.01 l 183.74 355.01 l 183.74 361.63 l 190.88 361.63 l 190.88 368.75 l 198.02 368.75 l 198.02 375.70 l 206.28 375.70 l 206.28 382.46 l 210.04 382.46 l 210.04 389.03 l 219.81 389.03 l 219.81 395.39 l 241.23 395.39 l 241.23 401.52 l 271.28 401.52 l 271.28 408.61 l 274.67 408.61 l 274.67 415.15 l 320.13 415.15 l 320.13 423.37 l 340.04 423.37 l 340.04 429.13 l 380.25 429.13 l S 74.40 87.20 m 84.17 87.20 l 84.17 87.77 l 85.67 87.77 l 85.67 91.63 l 94.31 91.63 l 94.31 95.85 l 94.69 95.85 l 94.69 100.35 l 97.32 100.35 l 97.32 105.08 l 98.82 105.08 l 98.82 110.00 l 104.83 110.00 l 104.83 115.09 l 109.34 115.09 l 109.34 120.39 l 110.09 120.39 l 110.09 125.84 l 113.85 125.84 l 113.85 131.43 l 114.60 131.43 l 114.60 137.22 l 120.24 137.22 l 120.24 143.13 l 124.00 143.13 l 124.00 149.17 l 128.88 149.17 l 128.88 155.31 l 131.89 155.31 l 131.89 161.56 l 133.01 161.56 l 133.01 167.90 l 135.64 167.90 l 135.64 174.34 l 136.77 174.34 l 136.77 180.87 l 140.90 180.87 l 140.90 187.50 l 142.03 187.50 l 142.03 194.21 l 143.16 194.21 l 143.16 201.00 l 149.17 201.00 l 149.17 207.88 l 149.92 207.88 l 149.92 214.85 l 152.55 214.85 l 152.55 221.90 l 154.06 221.90 l 154.06 229.24 l 157.81 229.24 l 157.81 236.70 l 164.20 236.70 l 164.20 244.25 l 181.48 244.25 l 181.48 251.91 l 182.61 251.91 l 182.61 259.69 l 183.74 259.69 l 183.74 267.57 l 190.88 267.57 l 190.88 275.88 l 198.02 275.88 l 198.02 284.36 l 206.28 284.36 l 206.28 293.00 l 210.04 293.00 l 210.04 301.81 l 219.81 301.81 l 219.81 310.81 l 241.23 310.81 l 241.23 320.00 l 271.28 320.00 l 271.28 329.73 l 274.67 329.73 l 274.67 339.81 l 320.13 339.81 l 320.13 347.96 l 340.04 347.96 l 340.04 352.30 l 380.25 352.30 l S 0.000 0.000 1.000 SCN 0.75 w [] 0 d 74.40 87.20 m 118.74 87.20 l 118.74 431.20 l S 0.75 w [ 2.25 3.75] 0 d 74.40 87.20 m 118.74 87.20 l S 74.40 87.20 m 118.74 87.20 l S Q endstream endobj 12 0 obj 20952 endobj 13 0 obj << /Type /Page /Parent 3 0 R /Contents 14 0 R /Resources 4 0 R >> endobj 14 0 obj << /Length 15 0 R >> stream 1 J 1 j q Q q 59.04 73.44 414.72 371.52 re W n Q q /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 74.40 73.44 m 456.83 73.44 l S 74.40 73.44 m 74.40 66.24 l S 124.43 73.44 m 124.43 66.24 l S 174.46 73.44 m 174.46 66.24 l S 240.60 73.44 m 240.60 66.24 l S 290.63 73.44 m 290.63 66.24 l S 340.66 73.44 m 340.66 66.24 l S 406.80 73.44 m 406.80 66.24 l S 456.83 73.44 m 456.83 66.24 l S BT /sRGB cs 0.000 0.000 0.000 scn /F2 1 Tf 12.00 0.00 0.00 12.00 71.06 47.52 Tm (5) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 117.76 47.52 Tm (10) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 167.79 47.52 Tm (20) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 233.93 47.52 Tm (50) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 280.62 47.52 Tm (100) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 330.65 47.52 Tm (200) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 396.79 47.52 Tm (500) Tj ET BT /F2 1 Tf 12.00 0.00 0.00 12.00 443.49 47.52 Tm (1000) Tj ET 59.04 129.24 m 59.04 420.03 l S 59.04 129.24 m 51.84 129.24 l S 59.04 187.40 m 51.84 187.40 l S 59.04 245.56 m 51.84 245.56 l S 59.04 303.72 m 51.84 303.72 l S 59.04 361.87 m 51.84 361.87 l S 59.04 420.03 m 51.84 420.03 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 122.40 Tm (-4) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 180.56 Tm (-3) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 238.72 Tm (-2) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 296.88 Tm (-1) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 358.54 Tm (0) Tj ET BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 416.70 Tm (1) Tj ET 59.04 73.44 m 473.76 73.44 l 473.76 444.96 l 59.04 444.96 l 59.04 73.44 l S Q q Q q 59.04 73.44 414.72 371.52 re W n /sRGB CS 0.000 0.000 0.000 SCN 0.75 w [] 0 d 1 J 1 j 10.00 M 74.40 121.38 m 131.31 121.38 l 131.31 162.17 l 153.70 162.17 l 153.70 186.23 l 206.09 186.23 l 206.09 203.44 l 244.80 203.44 l 244.80 216.91 l 259.54 216.91 l 259.54 228.01 l 275.42 228.01 l 275.42 237.48 l 318.44 237.48 l 318.44 245.76 l 327.21 245.76 l 327.21 253.13 l 331.43 253.13 l 331.43 259.91 l 336.58 259.91 l 336.58 266.09 l 341.02 266.09 l 341.02 271.89 l 355.60 271.89 l 355.60 277.85 l 361.52 277.85 l 361.52 283.78 l 366.22 283.78 l 366.22 289.74 l 366.48 289.74 l 366.48 295.30 l 370.65 295.30 l 370.65 300.82 l 374.59 300.82 l 374.59 306.20 l 378.32 306.20 l 378.32 311.46 l 378.96 311.46 l 378.96 316.47 l 380.64 316.47 l 380.64 321.24 l 381.05 321.24 l 381.05 325.83 l 381.67 325.83 l 381.67 334.55 l 385.26 334.55 l 385.26 338.72 l 389.60 338.72 l 389.60 343.23 l 395.58 343.23 l 395.58 347.64 l 396.41 347.64 l 396.41 351.97 l 397.90 351.97 l 397.90 356.26 l 399.99 356.26 l 399.99 360.82 l 414.72 360.82 l 414.72 365.76 l 416.76 365.76 l 416.76 371.23 l 424.95 371.23 l 424.95 377.49 l 426.29 377.49 l 426.29 383.97 l 431.60 383.97 l 431.60 390.80 l 439.91 390.80 l 439.91 398.20 l 447.85 398.20 l 447.85 416.56 l 457.55 416.56 l 457.55 416.56 l S 131.31 87.20 m 143.37 87.20 l 143.37 127.77 l 252.55 127.77 l 252.55 151.61 l 253.76 151.61 l 253.76 181.85 l 256.13 181.85 l 256.13 192.72 l 273.62 192.72 l 273.62 201.96 l 281.40 201.96 l 281.40 217.12 l 284.61 217.12 l 284.61 223.53 l 286.93 223.53 l 286.93 229.35 l 295.51 229.35 l 295.51 234.69 l 297.51 234.69 l 297.51 239.63 l 301.34 239.63 l 301.34 244.23 l 310.12 244.23 l 310.12 248.53 l 310.67 248.53 l 310.67 252.57 l 312.29 252.57 l 312.29 256.39 l 315.94 256.39 l 315.94 260.01 l 316.95 260.01 l 316.95 263.45 l 317.45 263.45 l 317.45 266.74 l 322.73 266.74 l 322.73 269.88 l 325.90 269.88 l 325.90 275.79 l 327.65 275.79 l 327.65 278.57 l 328.93 278.57 l 328.93 281.26 l 331.02 281.26 l 331.02 283.92 l 332.65 283.92 l 332.65 289.04 l 333.46 289.04 l 333.46 293.86 l 333.85 293.86 l 333.85 296.17 l 335.42 296.17 l 335.42 298.45 l 338.46 298.45 l 338.46 300.73 l 339.57 300.73 l 339.57 302.98 l 341.38 302.98 l 341.38 305.21 l 343.14 305.21 l 343.14 307.41 l 344.18 307.41 l 344.18 309.57 l 346.88 309.57 l 346.88 311.68 l 348.52 311.68 l 348.52 313.81 l 349.48 313.81 l 349.48 315.93 l 350.43 315.93 l 350.43 318.01 l 350.75 318.01 l 350.75 320.06 l 353.52 320.06 l 353.52 322.10 l 355.31 322.10 l 355.31 324.14 l 361.79 324.14 l 361.79 326.14 l 362.05 326.14 l 362.05 328.12 l 362.32 328.12 l 362.32 330.07 l 365.72 330.07 l 365.72 332.06 l 365.97 332.06 l 365.97 334.03 l 368.22 334.03 l 368.22 335.97 l 370.17 335.97 l 370.17 337.93 l 371.12 337.93 l 371.12 339.96 l 371.36 339.96 l 371.36 341.97 l 372.29 341.97 l 372.29 343.96 l 380.02 343.96 l 380.02 345.93 l 383.69 345.93 l 383.69 349.93 l 383.88 349.93 l 383.88 351.90 l 385.26 351.90 l 385.26 353.93 l 388.86 353.93 l 388.86 356.01 l 395.24 356.01 l 395.24 358.22 l 395.74 358.22 l 395.74 360.43 l 399.19 360.43 l 399.19 362.64 l 400.31 362.64 l 400.31 364.85 l 400.78 364.85 l 400.78 367.15 l 402.79 367.15 l 402.79 369.47 l 403.40 369.47 l 403.40 371.79 l 409.49 371.79 l 409.49 374.26 l 409.63 374.26 l 409.63 376.74 l 410.18 376.74 l 410.18 379.26 l 413.68 379.26 l 413.68 381.98 l 415.87 381.98 l 415.87 384.75 l 417.88 384.75 l 417.88 387.59 l 421.51 387.59 l 421.51 390.51 l 422.79 390.51 l 422.79 393.52 l 424.73 393.52 l 424.73 396.65 l 429.73 396.65 l 429.73 399.93 l 429.94 399.93 l 429.94 403.38 l 433.92 403.38 l 433.92 407.07 l 434.21 407.07 l 434.21 411.05 l 434.61 411.05 l 434.61 415.43 l 437.49 415.43 l 437.49 421.74 l 458.40 421.74 l 458.40 421.74 l S 131.31 134.95 m 137.59 134.95 l 137.59 175.86 l 143.37 175.86 l 143.37 200.04 l 193.40 200.04 l 193.40 217.39 l 203.73 217.39 l 203.73 231.00 l 244.80 231.00 l 244.80 242.24 l 246.15 242.24 l 246.15 251.86 l 254.95 251.86 l 254.95 260.29 l 259.54 260.29 l 259.54 267.82 l 275.42 267.82 l 275.42 274.64 l 285.39 274.64 l 285.39 281.05 l 286.93 281.05 l 286.93 286.96 l 294.15 286.96 l 294.15 292.47 l 295.51 292.47 l 295.51 297.78 l 304.98 297.78 l 304.98 302.78 l 310.67 302.78 l 310.67 307.53 l 317.45 307.53 l 317.45 312.05 l 321.33 312.05 l 321.33 316.38 l 322.73 316.38 l 322.73 320.53 l 325.90 320.53 l 325.90 324.55 l 327.21 324.55 l 327.21 328.43 l 331.84 328.43 l 331.84 332.21 l 333.06 332.21 l 333.06 335.89 l 334.25 335.89 l 334.25 339.49 l 340.30 339.49 l 340.30 343.01 l 341.02 343.01 l 341.02 346.48 l 343.49 346.48 l 343.49 349.91 l 344.87 349.91 l 344.87 353.46 l 348.19 353.46 l 348.19 356.99 l 353.52 356.99 l 353.52 360.49 l 366.22 360.49 l 366.22 364.00 l 366.98 364.00 l 366.98 367.51 l 367.73 367.51 l 367.73 371.04 l 372.29 371.04 l 372.29 374.89 l 376.59 374.89 l 376.59 378.80 l 381.26 378.80 l 381.26 382.80 l 383.29 382.80 l 383.29 386.93 l 388.31 386.93 l 388.31 391.22 l 398.22 391.22 l 398.22 395.73 l 410.18 395.73 l 410.18 401.37 l 411.41 401.37 l 411.41 407.60 l 426.18 407.60 l 426.18 417.46 l 431.80 417.46 l 431.80 431.20 l 441.98 431.20 l S 0.000 0.804 0.000 SCN 0.75 w [ 0.00 3.00] 0 d 131.31 150.31 m 143.37 150.31 l 143.37 178.34 l 252.55 178.34 l 252.55 195.63 l 253.76 195.63 l 253.76 218.46 l 256.13 218.46 l 256.13 226.92 l 273.62 226.92 l 273.62 234.20 l 281.40 234.20 l 281.40 246.37 l 284.61 246.37 l 284.61 251.58 l 286.93 251.58 l 286.93 256.36 l 295.51 256.36 l 295.51 260.78 l 297.51 260.78 l 297.51 264.89 l 301.34 264.89 l 301.34 268.74 l 310.12 268.74 l 310.12 272.36 l 310.67 272.36 l 310.67 275.78 l 312.29 275.78 l 312.29 279.03 l 315.94 279.03 l 315.94 282.12 l 316.95 282.12 l 316.95 285.07 l 317.45 285.07 l 317.45 287.90 l 322.73 287.90 l 322.73 290.62 l 325.90 290.62 l 325.90 295.75 l 327.65 295.75 l 327.65 298.18 l 328.93 298.18 l 328.93 300.54 l 331.02 300.54 l 331.02 302.89 l 332.65 302.89 l 332.65 307.43 l 333.46 307.43 l 333.46 311.73 l 333.85 311.73 l 333.85 313.79 l 335.42 313.79 l 335.42 315.84 l 338.46 315.84 l 338.46 317.90 l 339.57 317.90 l 339.57 319.94 l 341.38 319.94 l 341.38 321.98 l 343.14 321.98 l 343.14 324.00 l 344.18 324.00 l 344.18 325.97 l 346.88 325.97 l 346.88 327.91 l 348.52 327.91 l 348.52 329.88 l 349.48 329.88 l 349.48 331.85 l 350.43 331.85 l 350.43 333.78 l 350.75 333.78 l 350.75 335.68 l 353.52 335.68 l 353.52 337.58 l 355.31 337.58 l 355.31 339.50 l 361.79 339.50 l 361.79 341.38 l 362.05 341.38 l 362.05 343.23 l 362.32 343.23 l 362.32 345.06 l 365.72 345.06 l 365.72 346.95 l 365.97 346.95 l 365.97 348.82 l 368.22 348.82 l 368.22 350.66 l 370.17 350.66 l 370.17 352.53 l 371.12 352.53 l 371.12 354.49 l 371.36 354.49 l 371.36 356.42 l 372.29 356.42 l 372.29 358.33 l 380.02 358.33 l 380.02 360.23 l 383.69 360.23 l 383.69 364.10 l 383.88 364.10 l 383.88 366.02 l 385.26 366.02 l 385.26 368.00 l 388.86 368.00 l 388.86 370.04 l 395.24 370.04 l 395.24 372.25 l 395.74 372.25 l 395.74 374.45 l 399.19 374.45 l 399.19 376.65 l 400.31 376.65 l 400.31 378.85 l 400.78 378.85 l 400.78 381.17 l 402.79 381.17 l 402.79 383.50 l 403.40 383.50 l 403.40 385.84 l 409.49 385.84 l 409.49 388.35 l 409.63 388.35 l 409.63 390.88 l 410.18 390.88 l 410.18 393.45 l 413.68 393.45 l 413.68 396.27 l 415.87 396.27 l 415.87 399.15 l 417.88 399.15 l 417.88 402.09 l 421.51 402.09 l 421.51 405.13 l 422.79 405.13 l 422.79 408.29 l 424.73 408.29 l 424.73 411.57 l 429.73 411.57 l 429.73 415.03 l 429.94 415.03 l 429.94 418.71 l 433.92 418.71 l 433.92 422.66 l 434.21 422.66 l 434.21 426.98 l 434.61 426.98 l 434.61 431.81 l 437.49 431.81 l 437.49 439.41 l 458.40 439.41 l 458.40 439.41 l S 253.76 60.17 m 256.13 60.17 l 256.13 99.05 l 273.62 99.05 l 273.62 123.41 l 281.40 123.41 l 281.40 155.48 l 284.61 155.48 l 284.61 167.25 l 286.93 167.25 l 286.93 177.32 l 295.51 177.32 l 295.51 186.13 l 297.51 186.13 l 297.51 193.97 l 301.34 193.97 l 301.34 201.03 l 310.12 201.03 l 310.12 207.46 l 310.67 207.46 l 310.67 213.36 l 312.29 213.36 l 312.29 218.82 l 315.94 218.82 l 315.94 223.90 l 316.95 223.90 l 316.95 228.66 l 317.45 228.66 l 317.45 233.13 l 322.73 233.13 l 322.73 237.35 l 325.90 237.35 l 325.90 245.14 l 327.65 245.14 l 327.65 248.77 l 328.93 248.77 l 328.93 252.23 l 331.02 252.23 l 331.02 255.60 l 332.65 255.60 l 332.65 262.00 l 333.46 262.00 l 333.46 267.94 l 333.85 267.94 l 333.85 270.77 l 335.42 270.77 l 335.42 273.52 l 338.46 273.52 l 338.46 276.25 l 339.57 276.25 l 339.57 278.92 l 341.38 278.92 l 341.38 281.55 l 343.14 281.55 l 343.14 284.13 l 344.18 284.13 l 344.18 286.64 l 346.88 286.64 l 346.88 289.09 l 348.52 289.09 l 348.52 291.53 l 349.48 291.53 l 349.48 293.95 l 350.43 293.95 l 350.43 296.31 l 350.75 296.31 l 350.75 298.63 l 353.52 298.63 l 353.52 300.92 l 355.31 300.92 l 355.31 303.20 l 361.79 303.20 l 361.79 305.44 l 362.05 305.44 l 362.05 307.64 l 362.32 307.64 l 362.32 309.80 l 365.72 309.80 l 365.72 311.99 l 365.97 311.99 l 365.97 314.15 l 368.22 314.15 l 368.22 316.27 l 370.17 316.27 l 370.17 318.40 l 371.12 318.40 l 371.12 320.56 l 371.36 320.56 l 371.36 322.71 l 372.29 322.71 l 372.29 324.83 l 380.02 324.83 l 380.02 326.92 l 383.69 326.92 l 383.69 331.14 l 383.88 331.14 l 383.88 333.22 l 385.26 333.22 l 385.26 335.33 l 388.86 335.33 l 388.86 337.47 l 395.24 337.47 l 395.24 339.70 l 395.74 339.70 l 395.74 341.93 l 399.19 341.93 l 399.19 344.15 l 400.31 344.15 l 400.31 346.37 l 400.78 346.37 l 400.78 348.65 l 402.79 348.65 l 402.79 350.94 l 403.40 350.94 l 403.40 353.24 l 409.49 353.24 l 409.49 355.62 l 409.63 355.62 l 409.63 358.03 l 410.18 358.03 l 410.18 360.46 l 413.68 360.46 l 413.68 363.00 l 415.87 363.00 l 415.87 365.59 l 417.88 365.59 l 417.88 368.23 l 421.51 368.23 l 421.51 370.92 l 422.79 370.92 l 422.79 373.69 l 424.73 373.69 l 424.73 376.53 l 429.73 376.53 l 429.73 379.47 l 429.94 379.47 l 429.94 382.52 l 433.92 382.52 l 433.92 385.70 l 434.21 385.70 l 434.21 389.03 l 434.61 389.03 l 434.61 392.56 l 437.49 392.56 l 437.49 396.25 l 458.40 396.25 l 458.40 396.25 l S Q endstream endobj 15 0 obj 11534 endobj 3 0 obj << /Type /Pages /Kids [ 7 0 R 10 0 R 13 0 R ] /Count 3 /MediaBox [0 0 504 504] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font << /F1 17 0 R /F2 18 0 R >> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /N 3 /Alternate /DeviceRGB /Length 9433 /Filter /ASCIIHexDecode >> stream 00 00 0c 48 4c 69 6e 6f 02 10 00 00 6d 6e 74 72 52 47 42 20 58 59 5a 20 07 ce 00 02 00 09 00 06 00 31 00 00 61 63 73 70 4d 53 46 54 00 00 00 00 49 45 43 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f6 d6 00 01 00 00 00 00 d3 2d 48 50 20 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 11 63 70 72 74 00 00 01 50 00 00 00 33 64 65 73 63 00 00 01 84 00 00 00 6c 77 74 70 74 00 00 01 f0 00 00 00 14 62 6b 70 74 00 00 02 04 00 00 00 14 72 58 59 5a 00 00 02 18 00 00 00 14 67 58 59 5a 00 00 02 2c 00 00 00 14 62 58 59 5a 00 00 02 40 00 00 00 14 64 6d 6e 64 00 00 02 54 00 00 00 70 64 6d 64 64 00 00 02 c4 00 00 00 88 76 75 65 64 00 00 03 4c 00 00 00 86 76 69 65 77 00 00 03 d4 00 00 00 24 6c 75 6d 69 00 00 03 f8 00 00 00 14 6d 65 61 73 00 00 04 0c 00 00 00 24 74 65 63 68 00 00 04 30 00 00 00 0c 72 54 52 43 00 00 04 3c 00 00 08 0c 67 54 52 43 00 00 04 3c 00 00 08 0c 62 54 52 43 00 00 04 3c 00 00 08 0c 74 65 78 74 00 00 00 00 43 6f 70 79 72 69 67 68 74 20 28 63 29 20 31 39 39 38 20 48 65 77 6c 65 74 74 2d 50 61 63 6b 61 72 64 20 43 6f 6d 70 61 6e 79 00 00 64 65 73 63 00 00 00 00 00 00 00 12 73 52 47 42 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00 00 00 00 00 00 12 73 52 47 42 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 58 59 5a 20 00 00 00 00 00 00 f3 51 00 01 00 00 00 01 16 cc 58 59 5a 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 58 59 5a 20 00 00 00 00 00 00 6f a2 00 00 38 f5 00 00 03 90 58 59 5a 20 00 00 00 00 00 00 62 99 00 00 b7 85 00 00 18 da 58 59 5a 20 00 00 00 00 00 00 24 a0 00 00 0f 84 00 00 b6 cf 64 65 73 63 00 00 00 00 00 00 00 16 49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e 69 65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00 00 16 49 45 43 20 68 74 74 70 3a 2f 2f 77 77 77 2e 69 65 63 2e 63 68 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 65 73 63 00 00 00 00 00 00 00 2e 49 45 43 20 36 31 39 36 36 2d 32 2e 31 20 44 65 66 61 75 6c 74 20 52 47 42 20 63 6f 6c 6f 75 72 20 73 70 61 63 65 20 2d 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00 00 2e 49 45 43 20 36 31 39 36 36 2d 32 2e 31 20 44 65 66 61 75 6c 74 20 52 47 42 20 63 6f 6c 6f 75 72 20 73 70 61 63 65 20 2d 20 73 52 47 42 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 64 65 73 63 00 00 00 00 00 00 00 2c 52 65 66 65 72 65 6e 63 65 20 56 69 65 77 69 6e 67 20 43 6f 6e 64 69 74 69 6f 6e 20 69 6e 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00 00 00 00 00 00 2c 52 65 66 65 72 65 6e 63 65 20 56 69 65 77 69 6e 67 20 43 6f 6e 64 69 74 69 6f 6e 20 69 6e 20 49 45 43 36 31 39 36 36 2d 32 2e 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 76 69 65 77 00 00 00 00 00 13 a4 fe 00 14 5f 2e 00 10 cf 14 00 03 ed cc 00 04 13 0b 00 03 5c 9e 00 00 00 01 58 59 5a 20 00 00 00 00 00 4c 09 56 00 50 00 00 00 57 1f e7 6d 65 61 73 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 8f 00 00 00 02 73 69 67 20 00 00 00 00 43 52 54 20 63 75 72 76 00 00 00 00 00 00 04 00 00 00 00 05 00 0a 00 0f 00 14 00 19 00 1e 00 23 00 28 00 2d 00 32 00 37 00 3b 00 40 00 45 00 4a 00 4f 00 54 00 59 00 5e 00 63 00 68 00 6d 00 72 00 77 00 7c 00 81 00 86 00 8b 00 90 00 95 00 9a 00 9f 00 a4 00 a9 00 ae 00 b2 00 b7 00 bc 00 c1 00 c6 00 cb 00 d0 00 d5 00 db 00 e0 00 e5 00 eb 00 f0 00 f6 00 fb 01 01 01 07 01 0d 01 13 01 19 01 1f 01 25 01 2b 01 32 01 38 01 3e 01 45 01 4c 01 52 01 59 01 60 01 67 01 6e 01 75 01 7c 01 83 01 8b 01 92 01 9a 01 a1 01 a9 01 b1 01 b9 01 c1 01 c9 01 d1 01 d9 01 e1 01 e9 01 f2 01 fa 02 03 02 0c 02 14 02 1d 02 26 02 2f 02 38 02 41 02 4b 02 54 02 5d 02 67 02 71 02 7a 02 84 02 8e 02 98 02 a2 02 ac 02 b6 02 c1 02 cb 02 d5 02 e0 02 eb 02 f5 03 00 03 0b 03 16 03 21 03 2d 03 38 03 43 03 4f 03 5a 03 66 03 72 03 7e 03 8a 03 96 03 a2 03 ae 03 ba 03 c7 03 d3 03 e0 03 ec 03 f9 04 06 04 13 04 20 04 2d 04 3b 04 48 04 55 04 63 04 71 04 7e 04 8c 04 9a 04 a8 04 b6 04 c4 04 d3 04 e1 04 f0 04 fe 05 0d 05 1c 05 2b 05 3a 05 49 05 58 05 67 05 77 05 86 05 96 05 a6 05 b5 05 c5 05 d5 05 e5 05 f6 06 06 06 16 06 27 06 37 06 48 06 59 06 6a 06 7b 06 8c 06 9d 06 af 06 c0 06 d1 06 e3 06 f5 07 07 07 19 07 2b 07 3d 07 4f 07 61 07 74 07 86 07 99 07 ac 07 bf 07 d2 07 e5 07 f8 08 0b 08 1f 08 32 08 46 08 5a 08 6e 08 82 08 96 08 aa 08 be 08 d2 08 e7 08 fb 09 10 09 25 09 3a 09 4f 09 64 09 79 09 8f 09 a4 09 ba 09 cf 09 e5 09 fb 0a 11 0a 27 0a 3d 0a 54 0a 6a 0a 81 0a 98 0a ae 0a c5 0a dc 0a f3 0b 0b 0b 22 0b 39 0b 51 0b 69 0b 80 0b 98 0b b0 0b c8 0b e1 0b f9 0c 12 0c 2a 0c 43 0c 5c 0c 75 0c 8e 0c a7 0c c0 0c d9 0c f3 0d 0d 0d 26 0d 40 0d 5a 0d 74 0d 8e 0d a9 0d c3 0d de 0d f8 0e 13 0e 2e 0e 49 0e 64 0e 7f 0e 9b 0e b6 0e d2 0e ee 0f 09 0f 25 0f 41 0f 5e 0f 7a 0f 96 0f b3 0f cf 0f ec 10 09 10 26 10 43 10 61 10 7e 10 9b 10 b9 10 d7 10 f5 11 13 11 31 11 4f 11 6d 11 8c 11 aa 11 c9 11 e8 12 07 12 26 12 45 12 64 12 84 12 a3 12 c3 12 e3 13 03 13 23 13 43 13 63 13 83 13 a4 13 c5 13 e5 14 06 14 27 14 49 14 6a 14 8b 14 ad 14 ce 14 f0 15 12 15 34 15 56 15 78 15 9b 15 bd 15 e0 16 03 16 26 16 49 16 6c 16 8f 16 b2 16 d6 16 fa 17 1d 17 41 17 65 17 89 17 ae 17 d2 17 f7 18 1b 18 40 18 65 18 8a 18 af 18 d5 18 fa 19 20 19 45 19 6b 19 91 19 b7 19 dd 1a 04 1a 2a 1a 51 1a 77 1a 9e 1a c5 1a ec 1b 14 1b 3b 1b 63 1b 8a 1b b2 1b da 1c 02 1c 2a 1c 52 1c 7b 1c a3 1c cc 1c f5 1d 1e 1d 47 1d 70 1d 99 1d c3 1d ec 1e 16 1e 40 1e 6a 1e 94 1e be 1e e9 1f 13 1f 3e 1f 69 1f 94 1f bf 1f ea 20 15 20 41 20 6c 20 98 20 c4 20 f0 21 1c 21 48 21 75 21 a1 21 ce 21 fb 22 27 22 55 22 82 22 af 22 dd 23 0a 23 38 23 66 23 94 23 c2 23 f0 24 1f 24 4d 24 7c 24 ab 24 da 25 09 25 38 25 68 25 97 25 c7 25 f7 26 27 26 57 26 87 26 b7 26 e8 27 18 27 49 27 7a 27 ab 27 dc 28 0d 28 3f 28 71 28 a2 28 d4 29 06 29 38 29 6b 29 9d 29 d0 2a 02 2a 35 2a 68 2a 9b 2a cf 2b 02 2b 36 2b 69 2b 9d 2b d1 2c 05 2c 39 2c 6e 2c a2 2c d7 2d 0c 2d 41 2d 76 2d ab 2d e1 2e 16 2e 4c 2e 82 2e b7 2e ee 2f 24 2f 5a 2f 91 2f c7 2f fe 30 35 30 6c 30 a4 30 db 31 12 31 4a 31 82 31 ba 31 f2 32 2a 32 63 32 9b 32 d4 33 0d 33 46 33 7f 33 b8 33 f1 34 2b 34 65 34 9e 34 d8 35 13 35 4d 35 87 35 c2 35 fd 36 37 36 72 36 ae 36 e9 37 24 37 60 37 9c 37 d7 38 14 38 50 38 8c 38 c8 39 05 39 42 39 7f 39 bc 39 f9 3a 36 3a 74 3a b2 3a ef 3b 2d 3b 6b 3b aa 3b e8 3c 27 3c 65 3c a4 3c e3 3d 22 3d 61 3d a1 3d e0 3e 20 3e 60 3e a0 3e e0 3f 21 3f 61 3f a2 3f e2 40 23 40 64 40 a6 40 e7 41 29 41 6a 41 ac 41 ee 42 30 42 72 42 b5 42 f7 43 3a 43 7d 43 c0 44 03 44 47 44 8a 44 ce 45 12 45 55 45 9a 45 de 46 22 46 67 46 ab 46 f0 47 35 47 7b 47 c0 48 05 48 4b 48 91 48 d7 49 1d 49 63 49 a9 49 f0 4a 37 4a 7d 4a c4 4b 0c 4b 53 4b 9a 4b e2 4c 2a 4c 72 4c ba 4d 02 4d 4a 4d 93 4d dc 4e 25 4e 6e 4e b7 4f 00 4f 49 4f 93 4f dd 50 27 50 71 50 bb 51 06 51 50 51 9b 51 e6 52 31 52 7c 52 c7 53 13 53 5f 53 aa 53 f6 54 42 54 8f 54 db 55 28 55 75 55 c2 56 0f 56 5c 56 a9 56 f7 57 44 57 92 57 e0 58 2f 58 7d 58 cb 59 1a 59 69 59 b8 5a 07 5a 56 5a a6 5a f5 5b 45 5b 95 5b e5 5c 35 5c 86 5c d6 5d 27 5d 78 5d c9 5e 1a 5e 6c 5e bd 5f 0f 5f 61 5f b3 60 05 60 57 60 aa 60 fc 61 4f 61 a2 61 f5 62 49 62 9c 62 f0 63 43 63 97 63 eb 64 40 64 94 64 e9 65 3d 65 92 65 e7 66 3d 66 92 66 e8 67 3d 67 93 67 e9 68 3f 68 96 68 ec 69 43 69 9a 69 f1 6a 48 6a 9f 6a f7 6b 4f 6b a7 6b ff 6c 57 6c af 6d 08 6d 60 6d b9 6e 12 6e 6b 6e c4 6f 1e 6f 78 6f d1 70 2b 70 86 70 e0 71 3a 71 95 71 f0 72 4b 72 a6 73 01 73 5d 73 b8 74 14 74 70 74 cc 75 28 75 85 75 e1 76 3e 76 9b 76 f8 77 56 77 b3 78 11 78 6e 78 cc 79 2a 79 89 79 e7 7a 46 7a a5 7b 04 7b 63 7b c2 7c 21 7c 81 7c e1 7d 41 7d a1 7e 01 7e 62 7e c2 7f 23 7f 84 7f e5 80 47 80 a8 81 0a 81 6b 81 cd 82 30 82 92 82 f4 83 57 83 ba 84 1d 84 80 84 e3 85 47 85 ab 86 0e 86 72 86 d7 87 3b 87 9f 88 04 88 69 88 ce 89 33 89 99 89 fe 8a 64 8a ca 8b 30 8b 96 8b fc 8c 63 8c ca 8d 31 8d 98 8d ff 8e 66 8e ce 8f 36 8f 9e 90 06 90 6e 90 d6 91 3f 91 a8 92 11 92 7a 92 e3 93 4d 93 b6 94 20 94 8a 94 f4 95 5f 95 c9 96 34 96 9f 97 0a 97 75 97 e0 98 4c 98 b8 99 24 99 90 99 fc 9a 68 9a d5 9b 42 9b af 9c 1c 9c 89 9c f7 9d 64 9d d2 9e 40 9e ae 9f 1d 9f 8b 9f fa a0 69 a0 d8 a1 47 a1 b6 a2 26 a2 96 a3 06 a3 76 a3 e6 a4 56 a4 c7 a5 38 a5 a9 a6 1a a6 8b a6 fd a7 6e a7 e0 a8 52 a8 c4 a9 37 a9 a9 aa 1c aa 8f ab 02 ab 75 ab e9 ac 5c ac d0 ad 44 ad b8 ae 2d ae a1 af 16 af 8b b0 00 b0 75 b0 ea b1 60 b1 d6 b2 4b b2 c2 b3 38 b3 ae b4 25 b4 9c b5 13 b5 8a b6 01 b6 79 b6 f0 b7 68 b7 e0 b8 59 b8 d1 b9 4a b9 c2 ba 3b ba b5 bb 2e bb a7 bc 21 bc 9b bd 15 bd 8f be 0a be 84 be ff bf 7a bf f5 c0 70 c0 ec c1 67 c1 e3 c2 5f c2 db c3 58 c3 d4 c4 51 c4 ce c5 4b c5 c8 c6 46 c6 c3 c7 41 c7 bf c8 3d c8 bc c9 3a c9 b9 ca 38 ca b7 cb 36 cb b6 cc 35 cc b5 cd 35 cd b5 ce 36 ce b6 cf 37 cf b8 d0 39 d0 ba d1 3c d1 be d2 3f d2 c1 d3 44 d3 c6 d4 49 d4 cb d5 4e d5 d1 d6 55 d6 d8 d7 5c d7 e0 d8 64 d8 e8 d9 6c d9 f1 da 76 da fb db 80 dc 05 dc 8a dd 10 dd 96 de 1c de a2 df 29 df af e0 36 e0 bd e1 44 e1 cc e2 53 e2 db e3 63 e3 eb e4 73 e4 fc e5 84 e6 0d e6 96 e7 1f e7 a9 e8 32 e8 bc e9 46 e9 d0 ea 5b ea e5 eb 70 eb fb ec 86 ed 11 ed 9c ee 28 ee b4 ef 40 ef cc f0 58 f0 e5 f1 72 f1 ff f2 8c f3 19 f3 a7 f4 34 f4 c2 f5 50 f5 de f6 6d f6 fb f7 8a f8 19 f8 a8 f9 38 f9 c7 fa 57 fa e7 fb 77 fc 07 fc 98 fd 29 fd ba fe 4b fe dc ff 6d ff ff > endstream endobj 16 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 17 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 18 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 16 0 R >> endobj xref 0 19 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000043825 00000 n 0000043922 00000 n 0000044046 00000 n 0000044079 00000 n 0000000212 00000 n 0000000292 00000 n 0000011002 00000 n 0000011023 00000 n 0000011105 00000 n 0000032111 00000 n 0000032133 00000 n 0000032215 00000 n 0000043803 00000 n 0000053615 00000 n 0000053873 00000 n 0000053957 00000 n trailer << /Size 19 /Info 1 0 R /Root 2 0 R >> startxref 54055 %%EOF survival/tests/frank.Rout.save0000644000176200001440000000302013537676563016220 0ustar liggesusers R version 3.0.0 (2013-04-03) -- "Masked Marvel" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > # > # Check out intercept/interaction for Frank H > # > age2 <- lung$age - 50 > fit1 <- coxph(Surv(time, status) ~ age * strata(sex), lung) > fit2 <- coxph(Surv(time, status) ~ age2*strata(sex), lung) > > tdata <- data.frame(age=50:60, age2=0:10, sex=c(1,2,1,2,1,2,1,2,1,2,1)) > > surv1 <- survfit(fit1, tdata) > surv2 <- survfit(fit2, tdata) > # The call won't match, but the rest should > icall <- match("call", names(surv1)) > all.equal(unclass(surv1)[-icall], unclass(surv2)[-icall]) [1] TRUE > > > # It should match what I get with a single strata fit > > fit3 <- coxph(Surv(time, status) ~ age, data=lung, + init=fit1$coef[1], subset=(sex==1), iter=0) > surv1b <- survfit(fit3, newdata=list(age=c(50,52, 54))) > all.equal(c(surv1b$surv), surv1[c(1,3,5)]$surv) [1] TRUE > > > > > proc.time() user system elapsed 0.280 0.028 0.306 survival/tests/fr_kidney.R0000644000176200001440000000454013537676563015414 0ustar liggesusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # From: McGilchrist and Aisbett, Biometrics 47, 461-66, 1991 # Data on the recurrence times to infection, at the point of insertion of # the catheter, for kidney patients using portable dialysis equipment. # Catheters may be removed for reasons other than infection, in which case # the observation is censored. Each patient has exactly 2 observations. # Variables: patient, time, status, age, # sex (1=male, 2=female), # disease type (0=GN, 1=AN, 2=PKD, 3=Other) # author's estimate of the frailty aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) # I don't match their answers, and I think that I'm right kfit <- coxph(Surv(time, status)~ age + sex + disease + frailty(id), kidney) kfit1<- coxph(Surv(time, status) ~age + sex + disease + frailty(id, theta=1), kidney, iter=20) kfit0 <- coxph(Surv(time, status)~ age + sex + disease, kidney) temp <- coxph(Surv(time, status) ~age + sex + disease + frailty(id, theta=1, sparse=F), kidney) # Check out the EM based score equations # temp1 and kfit1 should have essentially the same coefficients # temp2 should equal kfit1$frail # equality won't be exact because of the different iteration paths temp1 <- coxph(Surv(time, status) ~ age + sex + disease + offset(kfit1$frail[id]), kidney) rr <- tapply(resid(temp1), kidney$id, sum) temp2 <- log(rr/1 +1) aeq(temp1$coef, kfit1$coef, tolerance=.005) aeq(temp2, kfit1$frail, tolerance=.005) kfit kfit1 kfit0 temp # # Now fit the data using REML # kfitm1 <- coxph(Surv(time,status) ~ age + sex + disease + frailty(id, dist='gauss'), kidney) kfitm2 <- coxph(Surv(time,status) ~ age + sex + disease + frailty(id, dist='gauss', sparse=F), kidney) kfitm1 summary(kfitm2) # # Fit the kidney data using AIC # # gamma, corrected aic coxph(Surv(time, status) ~ age + sex + frailty(id, method='aic', caic=T), kidney) coxph(Surv(time, status) ~ age + sex + frailty(id, dist='t'), kidney) coxph(Surv(time, status) ~ age + sex + frailty(id, dist='gauss', method='aic', caic=T), kidney) # uncorrected aic coxph(Surv(time, status) ~ age + sex + frailty(id, method='aic', caic=F), kidney) coxph(Surv(time, status) ~ age + sex + frailty(id, dist='t', caic=F), kidney) survival/src/0000755000176200001440000000000013570775574012740 5ustar liggesuserssurvival/src/multicheck.c0000644000176200001440000000347413537676603015240 0ustar liggesusers/* ** create three variables ** 1. dupid = 1 if the id is the second or more ** 2. gap = -1 the start time for this obs is before the prior end time ** 1 the start time for this obs is after the prior end time ** 0 times match, or the first instance of the observation ** 3. cstate = current state for this obs, obtained by chaining forward ** initial state at entry, first transtion, second, etc. */ #include "survS.h" #include "survproto.h" SEXP multicheck(SEXP y2, SEXP status2, SEXP id2, SEXP istate2, SEXP sort2) { int i, ii, ilag; int n; double *time1, *time2; int *status; int *istate, *id; int *sort; /* returned object*/ static const char *outnames[]={"dupid", "gap", "cstate", ""}; int *dupid, *gap, *cstate; SEXP rlist; /* return list*/ n = LENGTH(id2); time1 = REAL(y2); time2 = time1 + n; status = INTEGER(status2); id = INTEGER(id2); istate = INTEGER(istate2); sort = INTEGER(sort2); PROTECT(rlist = mkNamed(VECSXP, outnames)); dupid = INTEGER(SET_VECTOR_ELT(rlist, 0, allocVector(INTSXP, n))); gap = INTEGER(SET_VECTOR_ELT(rlist, 1, allocVector(INTSXP, n))); cstate= INTEGER(SET_VECTOR_ELT(rlist, 2, allocVector(INTSXP, n))); ilag = -1; cstate[0] = istate[0]; for (i=0; i time2[ilag]) gap[ii] =1; else gap[ii] = -1; if (status[ilag]>0) cstate[ii] = status[ilag]; else cstate[ii] = cstate[ilag]; } else { /* first obs for a new id*/ dupid[ii] =0; gap[ii] =0; cstate[ii] = istate[ii]; } ilag = ii; } UNPROTECT(1); return(rlist); } survival/src/coxfit5.c0000644000176200001440000004314613537676563014476 0ustar liggesusers/* A reentrant version of the Coxfit program, for random effects modeling ** with reasonable efficiency (I hope). The important arrays are saved ** from call to call so as to speed up the process. The x-matrix itself ** is the most important of these. ** ** coxfit5_a: Entry and intial iteration step for beta=initial, theta=0 ** (no frailty) ** Most of the same arguments as coxfit2. ** Allocate and save arrays in static locations. ** coxfit5_b: Iterate to convergence given an initial value. ** coxfit5_c: Compute residuals and release the saved memory. ** ** McGilchrist's method for frailty with a fixed theta, but for ** space savings I assume that many elements of imat are zero ** ** the input parameters are ** ** maxiter :number of iterations ** nused :number of people ** nvar :number of covariates ** y[2,n] :row 1: time of event or censoring for person i ** :row 2: status for the ith person 1=dead , 0=censored ** covar(nv,n) :covariates for person i. ** Note that S sends this in column major order. ** strata(nstrat):sizes of the strata, cumulative ** sort : sort order for the obs, last to first within strata ** offset(n) :offset for the linear predictor ** weights(n) :case weights ** eps :tolerance for convergence. Iteration continues until ** the percent change in loglikelihood is <= eps. ** tolerch :tolerance for the Cholesky routines ** method : Method 0=Breslow, 1=Efron ** ptype : 1 or 3 -- there is a sparse term ** : 2 or 3 -- there is a non-sparse term in the model ** nfrail : number of frailty groups (sparse terms), 0 if there are ** none ** frail : a vector containing the frailty groups ** fbeta : initial frailty estimates ** pdiag : if 0, then for the non-sparse terms only the diagonal ** of the variance matrix is penalized, otherwise the ** full matrix is used. ** ** returned parameters ** means(nv) : vector of column means of X ** beta(nv) : the vector of answers (at start contains initial est) ** u(nv) : score vector ** imat(nv,nv) : the variance matrix at beta=final ** if flag<0, imat is undefined upon return ** loglik :loglik at beta=final ** flag :success flag 1000 did not converge ** 1 to nvar: rank of the solution ** maxiter :actual number of iterations used ** fbeta(nfrail): fitted frailty values ** fdiag(nfrail + nvar): diagonal of cholesky of the full inverse ** jmat : inverse of the cholesky ** imat : cholesky of the information matrix ** expect : contains the "expected" for each subject ** ** work arrays ** mark(n) ** wtave(n) ** score(n) ** a(nvar+ nfrail), a2(nvar+nfrail) ** cmat(nvar,nvar+nfrail) ragged array ** cmat2(nvar,nvar+nfrail) ** fdiag the diagonal of the sparse information ** oldbeta(nvar + nfrail) always contains the "last iteration" ** ** the work arrays are passed as a single ** vector of storage, and then broken out. ** ** calls functions: cholesky3, chsolve3, chinv2 ** ** the data must be sorted by ascending time within strata */ #include #include #include "survS.h" #include "survproto.h" static double **covar, **cmat, **cmat2; static double *mark, *wtave; static double *a, *oldbeta, *a2; static double *offset, *weights; static int *status, *frail=NULL, *sort; static double *score, *ttime; /* Hp-UX really doesn't like "time" as a var */ static double *tmean; static int ptype, pdiag; static double *ipen, *upen, logpen; static Sint *zflag; static double **cmatrix(double *, int, int); void coxfit5_a(Sint *nusedx, Sint *nvarx, double *yy, double *covar2, double *offset2, double *weights2, Sint *strata, Sint *sorted, double *means, double *beta, double *u, double *loglik, Sint *methodx, Sint *ptype2, Sint *pdiag2, Sint *nfrail, Sint *frail2, void *fexpr1, void *fexpr2, void *rho) { int i,j,k, p, istrat; int ii; int nused, nvar; int nf, nvar2; double denom, zbeta, risk; double temp, temp2; double ndead; double d2, efron_wt; double method; nused = *nusedx; nvar = *nvarx; nf= *nfrail; method= *methodx; nvar2 = nvar + nf; ptype = *ptype2; pdiag = *pdiag2; /* ** Allocate storage for the arrays and vectors ** Since they will be used later, sizes are based on what will be ** needed with the frailty terms. */ if (nvar >0) { covar= cmatrix(covar2, nused, nvar); cmat = cmatrix(0, nvar2, nvar+1); cmat2= cmatrix(0, nvar2, nvar+1); } a = Calloc(4*nvar2 + 6*nused, double); oldbeta = a + nvar2; a2 = oldbeta + nvar2; mark = a2 + nvar2; wtave= mark + nused; weights = wtave+ nused; offset = weights + nused; score = offset + nused; tmean = score + nused; ttime = tmean + nvar2; status = Calloc(2*nused, int); sort = status + nused; for (i=0; i nvar) i=nf; else i=nvar; if (nf > nvar*nvar) j=nf; else j=nvar*nvar; if (pdiag==0) upen = Calloc(2*i, double); else upen = Calloc(i+j, double); ipen = upen + i; if (ptype>1) zflag = Calloc(nvar, Sint); else zflag = Calloc(2, Sint); if (nf>0) { frail = Calloc(nused, int); for (i=0; i0) { /* once per unique death time */ /* ** Trick: when 'method==0' then temp=0, giving Breslow's method */ ndead = mark[p]; for (k=0; k0) { imat = dmatrix(imat2, nvar2, nvar); jmat = dmatrix(jmat2, nvar2, nvar); } else { imat = 0; /*never used, but passed as dummy to chol */ jmat = 0; } for (i=0; i0) { fgrp = frail[p] -1; zbeta = offset[p] + fbeta[fgrp]; } else zbeta = offset[p]; for (i=0; i0) a[fgrp] += risk; for (i=0; i0) cmat[i][fgrp] += risk*covar[i][p]; for (j=0; j<=i; j++) cmat[i][j+nf] += risk*covar[i][p]*covar[j][p]; } if (status[p]==1) { efron_wt += risk; newlk += weights[p] *zbeta; if (nf>0) { u[fgrp] += weights[p]; a2[fgrp] += risk; } for (i=0; i0) cmat2[i][fgrp] += risk*covar[i][p]; for (j=0; j<=i; j++) cmat2[i][j+nf] += risk*covar[i][p]*covar[j][p]; } } if (mark[p] >0) { /* once per unique death time */ ndead = mark[p]; for (k=0; k0 && newlk < *loglik) { /*it is not converging ! */ halving =1; for (i=0; i0) { /* ** Compute the size of the hazard jump at this point, with the ** total jump saved (temporarily) in "expect", and the Efron ** amount in "weights". It applies to deaths at this point. */ ndead = mark[p]; temp2 = 0; efron_wt =0; for (j=0; j=0; ) { p = sort[ip]; if (status[p] >0) { ndead = mark[p]; temp = expect[p]; hazard2 =weights[p]; for (j=0; j 0) { cmatrix_free(cmat2); cmatrix_free(cmat); cmatrix_free(covar); } } survival/src/survreg7.c0000644000176200001440000004153413537676563014700 0ustar liggesusers/* ** Fit one of several censored data distributions ** ** Input ** maxiter - max # of iterations allowed ** n - number of subjects ** nvar - number of variables in the x matrix ** y - matrix of start, stop, event ** ny - # columns of y. =3 if there is interval censored data ** event - 1=exact, 0= right censored, 2=left censored, 3=interval ** covar - covariates for patient i ** Note that S sends this in column major order ** wt - vector of case weights (usually 1) ** offset - offset vector (usually 0) ** beta - initial values for the parameters, of length 1+nvar ** last element contains the scale ** nstrat - an indicator: 0= scale is fixed, 1= estimate scale, ** >1: estimate multiple scales (strata) ** strat - if nstrat>0, contains the strata number for each subject ** eps - tolerance for convergence. Iteration continues until the ** relative change in the deviance is <= eps. ** tol_chol- tolerance for Cholesky decomposition ** dist - 1=extreme value, 2=logistic, 3=gaussian, 4=callback ** dexpr - for callback, the expression to be evaluated that evaluates ** the distribution function of the random effect ** rho - for callback, the environment (R) or frame (Splus) in which ** to do evaluations ** ptype - 1= sparse penalties, 2=dense penalties, 1+2 = both, 0=none ** pdiag - 0 = the penalty matrix is diagonal ** nfrail - number of levels of the sparse term (0 = no sparse term) ** fgrp - which frailty group each subject is in ** pexpr1 - for callback, the expression to eval for sparse penalties ** pexpr2 - the expression for dense penalties ** ** Output ** beta - the final coef vector ** iter - the number of iterations consumed ** hmat - the cholesky of the penalized information matrix ** hinv - the cholesky of the inverse of hmat ** hdiag - diagonal portion of hinv ** loglik - the final log-liklihood ** u - the final score vector. Usually =0 at convergence, but ** useful in other cases for a score test. ** flag - success flag 0 =ok ** -1= did not converge ** ** Work arrays ** newbeta(nvar)- always contains the "next iteration" ** u(nvar) - first deriv of the loglik ** JJ = the approx variance matrix J'J, guarranteed non-singular ** ** Notes on hmat: H will be p=(nfrail+ nvar + nstrat) square, but the ** upper left nfrail*nfrail corner is a diagonal matrix. It is stored ** as "hdiag", which "hmat" contains the remaining dense portion. If ** H = LDL' (see cholesky3), then H-inverse = (L-inv)' (Dinv) (L-inv) ** where D is diagonal and L is lower-triangular with ones on the diagonal, ** and L[1:nfrail, 1:nfrail] is the identity. ** The return parts are hmat = L[(nfrail+1):p, 1:p], hinv L-inverse[ same], ** and g=hdiag = D-inverse. See coxpenal.df for more. */ #include "survS.h" #include "survproto.h" SEXP survreg7(SEXP maxiter2, SEXP nvarx, SEXP y, SEXP ny2, SEXP covar2, SEXP wtx, SEXP offset2, SEXP beta2, SEXP nstratx, SEXP stratax, SEXP epsx, SEXP tolx, SEXP dist, SEXP dexpr, SEXP rho, SEXP ptype2, SEXP pdiag2, SEXP nfrail2, SEXP fgrp2, SEXP pexpr1, SEXP pexpr2) { /* local variables */ int i,j; int nvar, nvar2, nvar3, nstrat; int iter; double newlk =0; double (*dolik)(); /* will point to (*dolik) or survregc2 */ double x1, x2, x3, x4; double y1, y2, y3; int golden, goright; double newpen; /* pointers for the data regions of the input arguments */ double **covar; Sint *strat ; double *time2, *time1, *status; double *offset; Sint *fgrp; double *wt; /* copies of the scalar input arguments */ double eps, tol_chol; int n, maxiter, ny; int nfrail, ptype, pdiag; /* Variables allocated in this routine */ double *jdiag, *newbeta, *u; /* variables for the callback code */ SEXP coef1, coef2; double *cptr1=NULL, *cptr2 =NULL; /* stop a gcc warning */ double **JJ; SEXP z; double *zptr = NULL; /* structures and pointers for the returned list object */ SEXP out_iter, out_loglik, out_hmat, out_hinv, out_flag, out_beta; SEXP out_penalty; SEXP out_hdiag, out_u; double *loglik, *usave; double **hmat, **hinv, *beta, *hdiag; double *penalty; SEXP rlist, rlistnames; Sint *iter2, *flag; int nprotect; /* number of PROTECT calls that I have issued */ /* ** The only input arg that is rewritten is beta, so no need to duplicate */ maxiter = asInteger(maxiter2); n = LENGTH(wtx); ny = asInteger(ny2); nvar = asInteger(nvarx); offset = REAL(offset2); nstrat = asInteger(nstratx); strat = INTEGER(stratax); wt = REAL(wtx); eps = asReal(epsx); tol_chol= asReal(tolx); covar = dmatrix(REAL(covar2), n, nvar); nfrail = asInteger(nfrail2); ptype = asInteger(ptype2); pdiag = asInteger(pdiag2); fgrp = INTEGER(fgrp2); /* ** nvar = # of "real" x variables, found in the coefficient matrix ** nvar2= size of the dense portion of hmat = nvar + nstrat ** nvar3= #coefficients = nfrail + nvar2 ** nstrat= # of strata, where 0== fixed sigma */ nvar2 = nvar + nstrat; /* number of coefficients */ nvar3 = nvar2 + nfrail; /* ** Create the output variables */ PROTECT(out_beta = duplicate(beta2)); beta = REAL(out_beta); PROTECT(out_hmat = allocVector(REALSXP, nvar3*nvar2)); hmat = dmatrix(REAL(out_hmat), nvar3, nvar2); PROTECT(out_hinv = allocVector(REALSXP, nvar3*nvar2)); hinv = dmatrix(REAL(out_hinv), nvar3, nvar2); PROTECT(out_hdiag = allocVector(REALSXP, nvar3)); hdiag = REAL(out_hdiag); PROTECT(out_iter = allocVector(INTSXP, 1)); iter2 = INTEGER(out_iter); PROTECT(out_loglik = allocVector(REALSXP, 1)); loglik = REAL(out_loglik); PROTECT(out_flag = allocVector(INTSXP, 1)); flag = INTEGER(out_flag); PROTECT(out_u = allocVector(REALSXP, nvar3)); usave = REAL(out_u); /* the working vector 'u' gets destroyed in chsolve*/ PROTECT(out_penalty= allocVector(REALSXP, 1)); penalty = REAL(out_penalty); nprotect =9; /* Create the scratch vectors ** u = working version of score vector, overwritten with u H-inv during ** Newton steps ** usave = a copy of u, after each Newton step. Returned to the S ** parent routine, and also used to "backtrack" when we need to fail ** over to a Fisher step instead of an NR step */ newbeta = Calloc(LENGTH(beta2) + nvar3 + nfrail + nvar2*nvar3, double); jdiag = newbeta + length(beta2); u = jdiag + nfrail; JJ = dmatrix(u + nvar3, nvar3, nvar2); /* ** fixed scale parameters were tacked onto the end of beta at input ** copy them to to the end of newbeta as well ((*dolik) expects them) */ for (i=nvar; i1) { /* ** There is a penalty on the non-sparse terms ** Create the vector coef2 in the contained data frame ** (pexpr2 is implicitly a function of 'coef2') ** Since scale parameters are never panalized, only the first ** nvar of the coefficients are passed in. */ PROTECT(coef2 = allocVector(REALSXP, nvar)); defineVar(install("coef2"), coef2, rho); cptr2 = REAL(coef2); nprotect++; } /* ** Get the loglik, score, and hessian for the initial parameters */ *loglik = (*dolik)(n, nvar, nstrat, 0, beta, asInteger(dist), strat, offset, time1, time2, status, wt, covar, hmat, JJ, u, dexpr, rho, zptr, nfrail, fgrp, hdiag, jdiag); survpenal(0, nfrail, nvar, hmat, JJ, hdiag, jdiag, u, beta, penalty, ptype, pdiag, pexpr1, cptr1, pexpr2, cptr2, rho); *loglik += *penalty; for (i=0; i y3) { x4 = x3; x3 = x1; x1 = x3 - (x4-x3)/.618; y3 = y1; for (i=0; i y2) { /* toss away the interval from x1 to x2 */ x1=x2; x2=x3; x3 = .618*x4 + .382*x1; y2 =y3; for (i=0; i *loglik || y3 > *loglik) { /* Success - keep the better guess & compute derivatives */ if (y2 > y3) { for (i=0; i 1) *flag= 1000; /* no "non convergence" for 0 or 1 iter */ *iter2 = iter; /* ** Put together the return list */ alldone: *flag = cholesky3(hmat, nvar3, nfrail, hdiag, tol_chol); for (i=0; i SEXP survsplit(SEXP tstart2, SEXP tstop2, SEXP cut2) { int i,j, k, extra; int n; /* number of observations */ int ncut; /* number of cuts */ int n2; /* number of new obs */ double *tstart, *tstop, *cut; /* returned objects */ SEXP row2, interval2, start2, end2, censor2, rlist; double *start, *end; int *row, *censor, *interval; static const char *outnames[]={"row", "interval", "start", "end", "censor", ""}; n = LENGTH(tstart2); ncut = LENGTH(cut2); tstart = REAL(tstart2); tstop = REAL(tstop2); cut = REAL(cut2); /* ** how many obs will I need? Each cutpoint strictly within an interal ** generates an extra line. NA inputs are left alone. */ extra =0; for (i=0; i tstart[i] && cut[j] < tstop[i]) extra++; } /* allocate output */ n2 = n + extra; PROTECT(rlist = mkNamed(VECSXP, outnames)); row2 = SET_VECTOR_ELT(rlist, 0, allocVector(INTSXP, n2)); row = INTEGER(row2); interval2 = SET_VECTOR_ELT(rlist, 1, allocVector(INTSXP, n2)); interval = INTEGER(interval2); start2 = SET_VECTOR_ELT(rlist, 2, allocVector(REALSXP, n2)); start = REAL(start2); end2 = SET_VECTOR_ELT(rlist, 3, allocVector(REALSXP, n2)); end = REAL(end2); censor2= SET_VECTOR_ELT(rlist, 4, allocVector(LGLSXP, n2)); censor = LOGICAL(censor2); /* do the work */ k =0; for (i=0; i tstart[i]) { end[k] = cut[j]; censor[k] =1; k++; start[k] = cut[j]; row[k] =i+1; interval[k] = j+1; } } end[k] = tstop[i]; censor[k] =0; k++; } } UNPROTECT(1); return(rlist); } survival/src/survdiff2.c0000644000176200001440000000376613537676563015033 0ustar liggesusers#include #include "survS.h" #include "survproto.h" void survdiff2(Sint *nn, Sint *nngroup, Sint *nstrat, double *rho, double *time, Sint *status, Sint *group, Sint *strata, double *obs, double *exp, double *var, double *risk, double *kaplan) { register int i,j,k; int kk; int n, ngroup, ntot; int istart, koff; double km, nrisk, wt, tmp; double deaths; ntot = *nn; ngroup = *nngroup; istart=0; koff=0; for (i=0; i< ngroup*ngroup; i++) var[i]=0; for (i=0; i< *nstrat*ngroup; i++) { obs[i]=0; exp[i]=0; } while (istart < ntot) { /* loop over the strata */ for (i=0; i=istart; i--) { if (*rho ==0) wt=1; else wt= pow(kaplan[i], *rho); deaths = 0; for (j=i; j>=istart && time[j]==time[i]; j--) { k = group[j]-1; deaths += status[j]; risk[k] += 1; obs[k + koff] += status[j] *wt; } i= j +1; nrisk = n-i; if (deaths>0) { /* a death time */ for (k=0; k #include "survS.h" #include "survproto.h" /* ** these arrays are shared with the subroutine at the bottom, ** but remain unknown outside this source file */ static double *a, *a2, **cmat2; static double *xtime, *weights, *offset; static int *status, *strata; static double *u; static double **covar, **cmat, **imat; /*ragged arrays */ static double coxfit6_iter(int nvar, int nused, int method, double *beta); SEXP coxfit6(SEXP maxiter2, SEXP time2, SEXP status2, SEXP covar2, SEXP offset2, SEXP weights2, SEXP strata2, SEXP method2, SEXP eps2, SEXP toler2, SEXP ibeta, SEXP doscale2) { int i,j, person; double temp, temp2; double *newbeta, *scale; double halving =0, newlk; int notfinite; /* copies of scalar input arguments */ int nused, nvar, maxiter; int method; double eps, toler; int doscale; /* returned objects */ SEXP imat2, means2, beta2, u2, loglik2; double *beta, *loglik, *means; SEXP sctest2, flag2, iter2; double *sctest; int *flag, *iter; SEXP rlist, rlistnames; int nprotect; /* number of protect calls I have issued */ /* get local copies of some input args */ nused = LENGTH(offset2); nvar = ncols(covar2); method = asInteger(method2); maxiter = asInteger(maxiter2); eps = asReal(eps2); /* convergence criteria */ toler = asReal(toler2); /* tolerance for cholesky */ doscale = asInteger(doscale2); xtime = REAL(time2); weights = REAL(weights2); offset= REAL(offset2); status = INTEGER(status2); strata = INTEGER(strata2); /* ** Set up the ragged arrays and scratch space ** Normally covar2 does not need to be duplicated, even though ** we are going to modify it, due to the way this routine was ** was called. But check. */ nprotect =0; if (MAYBE_REFERENCED(covar2)) { PROTECT(covar2 = duplicate(covar2)); nprotect++; } covar= dmatrix(REAL(covar2), nused, nvar); PROTECT(imat2 = allocVector(REALSXP, nvar*nvar)); nprotect++; imat = dmatrix(REAL(imat2), nvar, nvar); a = (double *) R_alloc(2*nvar*nvar + 4*nvar, sizeof(double)); newbeta = a + nvar; a2 = newbeta + nvar; scale = a2 + nvar; cmat = dmatrix(scale + nvar, nvar, nvar); cmat2= dmatrix(scale + nvar +nvar*nvar, nvar, nvar); /* ** create output variables */ PROTECT(beta2 = duplicate(ibeta)); beta = REAL(beta2); PROTECT(means2 = allocVector(REALSXP, nvar)); means = REAL(means2); PROTECT(u2 = allocVector(REALSXP, nvar)); u = REAL(u2); PROTECT(loglik2 = allocVector(REALSXP, 2)); loglik = REAL(loglik2); PROTECT(sctest2 = allocVector(REALSXP, 1)); sctest = REAL(sctest2); PROTECT(flag2 = allocVector(INTSXP, 1)); flag = INTEGER(flag2); PROTECT(iter2 = allocVector(INTSXP, 1)); iter = INTEGER(iter2); nprotect += 7; /* ** Subtract the mean from each covar, as this makes the regression ** much more stable. */ temp2=0; for (i=0; i 0) temp = temp2/temp; /* scaling */ else temp=1.0; /* rare case of a constant covariate */ scale[i] = temp; for (person=0; person0 || newlk < loglik[1]) { /*it is not converging ! */ halving++; /* get more agressive when it doesn't work */ for (i=0; i 1) loglik[1] = coxfit6_iter(nvar, nused, method, beta); chinv2(imat, nvar); for (i=0; i=0; ) { if (strata[person] == 1) { nrisk =0 ; denom = 0; for (i=0; i=0 && xtime[person]==dtime) { /* walk through the this set of tied times */ nrisk++; zbeta = offset[person]; /* form the term beta*z (vector mult) */ for (i=0; i=0 && strata[person]==1) break; /*ties don't cross strata */ } if (ndead >0) { /* we need to add to the main terms */ if (method==0 || ndead==1) { /* Breslow */ denom += denom2; loglik -= deadwt* log(denom); for (i=0; i0) { /* ** This happens when a penalty is infinite. (Which itself ** is often how a penalty routine signals that it was given ** an illegal value for a parameter). In this case the ** updated value of beta will have already been set to 0 ** via cptr1 above, which is of course the correct solution, ** but the U and H use for the parent routine's Newton-Raphson ** step are infinite as well. We force the u and ** hmat matrices to dummy values that will cause no update ** (none needed) and more importantly no infinte/infinite ** arithmetic errors: u=0 and H = identity. (Only the ** relevant columns of each, of course). */ for (i=0; i 1) { /* ** Get the penalty for the dense part of the matrix ** Note that penalties never apply to the variance terms, ** which means that indices go to nvar, not nvar2 */ for (i=0; i #include "survS.h" #include "survproto.h" #define SMALL -200 /* exp(-200) is a really small loglik */ double survregc2(int n, int nvar, int nstrat, int whichcase, double *beta, int dist, Sint *strat, double *offset, double *time1, double *time2, double *status, double *wt, double **covar, double **imat, double **JJ, double *u, SEXP expr, SEXP rho, double *z, int nf, Sint *frail, double *fdiag, double *jdiag ) { int person, i,j,k; int nvar2; int strata; double eta, sigma; int icount; /* running count of # of interval censored */ int fgrp =0; /* the =0 to quiet a compiler warning */ double loglik, temp; double temp1, temp2; double sz, zz, zu; double sig2; /* add "=0" to keep the compiler from worrying about uninitialized vars */ /* double g, dg, ddg, dsig, ddsig, dsg; */ double g=0, dg=0, ddg=0, dsig=0, ddsig=0, dsg=0; SEXP rmat; double *funs[5]; double w; nvar2 = nvar + nstrat; loglik=0; if (whichcase==0) { for (i=0; i1) { strata= strat[person] -1; /*S likes to start counting at 1 */ sigma = exp(beta[strata+nvar+nf]); } eta =0; for (i=0; i0){ fgrp = frail[person] -1; eta += beta[fgrp]; } z[person] = (time1[person] - eta)/sigma; if (status[person]==3) { z[icount] = (time2[person] - eta)/sigma; icount++; } } /* ** The result of the eval will be a matrix of 5 rows and n colums, which ** we re-index for convenience. Note that the parent routine has given ** us the address of z WITHIN the evaluation frame rho, we just keep ** replacing the values it contains; expr then acts like a function of ** z. ** Actually, if there were any interval censored obs they take up 2 cols; ** icount from above contains the actual number of columns used. */ PROTECT(rmat = eval(expr, rho)); funs[0] = REAL(rmat); for (i=0; i<4; i++) funs[i+1] = funs[i] + icount; /* ** calculate the first and second derivative wrt eta, ** then the derivatives of the loglik (u, imat, JJ) */ icount =n; for (person=0; person1) { strata= strat[person] -1; /*S likes to start counting at 1 */ sigma = exp(beta[strata+nvar]); sig2 = 1/(sigma*sigma); } zz = z[person]; sz = zz * sigma; j = status[person]; /*convert to integer */ switch(j) { case 1: /* exact */ if (funs[2][person] <=0) { /* off the probability scale -- avoid log(0), and set the ** derivatives to gaussian limits (almost any deriv will ** do, since the function value triggers step-halving). */ g = SMALL; dg = -zz/sigma; ddg = -1/sigma; dsig =0; ddsig=0; dsg=0; } else { g = log(funs[2][person]) - log(sigma); temp1 = funs[3][person]/sigma; temp2 = funs[4][person]*sig2; dg = -temp1; dsig= -(sz*temp1 +1); ddg= temp2 - dg*dg; dsg = sz * temp2 - dg*(1- sz*temp1); ddsig = sz*sz*temp2 + sz*temp1*(1- sz*temp1); } break; case 0: /* right censored */ if (funs[1][person] <=0) { g = SMALL; dg = zz/sigma; ddg =0; dsig =0; ddsig=0; dsg=0; } else { g = log(funs[1][person]); temp1 = -funs[2][person]/(funs[1][person]*sigma); temp2 = -funs[3][person]*funs[2][person]*sig2/ funs[1][person]; dg = -temp1; dsig= -sz * temp1; ddg= temp2 - dg*dg; dsg = sz * temp2 - dg*(1+dsig); ddsig = sz*sz*temp2 - dsig*(1+dsig); } break; case 2: /* left censored */ if (funs[2][person] <=0) { /* off the probability scale -- avoid log(0) */ g = SMALL; dg = -zz/sigma; dsig =0; ddsig=0; dsg=0; ddg =0; } else { g = log(funs[0][person]); temp1 = funs[2][person]/(funs[0][person]*sigma); temp2 = funs[3][person]*funs[2][person]*sig2/ funs[0][person]; dg= -temp1; dsig= -sz * temp1; ddg= temp2 - dg*dg; dsg = sz * temp2 - dg*(1+dsig); ddsig = sz*sz*temp2 - dsig*(1+dsig); } break; case 3: /* interval censored */ zu = z[icount]; /*stop roundoff in tails*/ if (zz>0) temp = funs[1][person] - funs[1][icount]; else temp = funs[0][icount] - funs[0][person]; if (temp <=0) { /* off the probability scale -- avoid log(0) */ g = SMALL; dg = 1; ddg =0; dsig =0; ddsig=0; dsg=0; } else { funs[3][icount] *= funs[2][icount]; /*f', not f'/f */ funs[3][person] *= funs[2][person]; g = log(temp); dg = -(funs[2][icount] -funs[2][person])/(temp*sigma); ddg = (funs[3][icount] -funs[3][person])*sig2/temp - dg*dg; dsig = (zz*funs[2][person] - zu*funs[2][icount])/temp; ddsig= (zu*zu*funs[3][icount] - zz*zz*funs[3][person]) /temp - dsig*(1+dsig); dsg = (zu*funs[3][icount] - zz*funs[3][person])/ (temp*sigma) - dg *(1+dsig); } icount++; break; } loglik += g * wt[person]; /* ** Now the derivs wrt loglik */ if (whichcase==1) continue; /*only needed the loglik */ w = wt[person]; if (nf>0) { fgrp = frail[person] -1; u[fgrp] += dg * w; fdiag[fgrp] -= ddg * w; jdiag[fgrp] += dg*dg *w; } for (i=0; i0) { imat[i][fgrp] -= covar[i][person] * ddg * w; JJ [i][fgrp] += temp * dg; } } if (nstrat!=0) { /* need derivative wrt log sigma */ k = strata+nvar; u[k+nf] += w* dsig; for (i=0; i0) { imat[k][fgrp] -= dsg * w; JJ [k][fgrp] += dsig *dg *w; } } } UNPROTECT(1); /* release the memory pointed to by funs[] */ return(loglik); } survival/src/agexact.c0000644000176200001440000002471013537676563014525 0ustar liggesusers/* ** Anderson-Gill formulation of the cox Model ** Do an exact calculation of the partial likelihood. (CPU city!) ** ** the input parameters are ** ** maxiter :number of iterations ** nused :number of people ** nvar :number of covariates ** start(n) :each row covers the time interval (start,stop] ** stop(n) : ** event(n) :was there an event at 'stop':1=dead , 0=censored ** covar(nv,n) :covariates for person i. ** Note that S sends this in column major order. ** strata(n) :marks the strata. Will be 1 if this person is the ** last one in a strata. If there are no strata, the ** vector can be identically zero, since the nth person's ** value is always assumed to be = to 1. ** offset(n) :linear offset ** eps :tolerance for convergence. Iteration continues until ** the percent change in loglikelihood is <= eps. ** tol_chol : tolerance for the Cholesky routine ** ** returned parameters ** means(nv) :column means of the X matrix ** beta(nv) :the vector of answers (at start contains initial est) ** u :the first derivative vector at solution ** imat(nv,nv) :the variance matrix at beta=final, also a ragged array ** if flag<0, imat is undefined upon return ** loglik(2) :loglik at beta=initial values, at beta=final ** sctest :the score test at beta=initial ** flag :success flag 1000 did not converge ** 1 to nvar: rank of the solution ** maxiter :actual number of iterations used ** ** work arrays ** score(n) the score exp(beta*z) ** a(nvar) ** cmat(nvar,nvar) ragged array ** newbeta(nvar) always contains the "next iteration" ** ** the 4 arrays score, a, cmat, and newbeta are passed as a single ** vector of storage, and then broken out. ** ** calls functions: cholesky2, chsolve2, chinv2 ** ** the data must be sorted by ascending time within strata, deaths before ** living within tied times. */ #include #include "survS.h" #include "survproto.h" void agexact(Sint *maxiter, Sint *nusedx, Sint *nvarx, double *start, double *stop, Sint *event, double *covar2,double *offset, Sint *strata, double *means, double *beta, double *u, double *imat2, double loglik[2], Sint *flag, double *work, Sint *work2, double *eps, double *tol_chol, double *sctest) { int i,j,k, l, person; int iter; int n, nvar; double **covar, **cmat, **imat; /*ragged array versions*/ double *a, *newbeta; double *score, *newvar; double denom, zbeta, weight; double time; double temp; double newlk =0; int halving; /*are we doing step halving at the moment? */ int nrisk, deaths; int *index, *atrisk; n = *nusedx; nvar = *nvarx; /* ** Set up the ragged arrays */ covar= dmatrix(covar2, n, nvar); imat = dmatrix(imat2, nvar, nvar); cmat = dmatrix(work, nvar, nvar); a = work + nvar*nvar; newbeta = a + nvar; score = newbeta + nvar; newvar = score + n; index = (int *) work2; atrisk= index+n; /* ** Subtract the mean from each covar, as this makes the regression ** much more stable */ for (i=0; i=0) { for (i=0; i=0) { for (i=0; i newtime and id=nid. */ for (k=0; k=0; ) { ndeath =0; if (status[i]==1) { /* process all tied deaths at this point */ for (j=i; j>=0 && status[j]==1 && time[j]==time[i]; j--) { ndeath += wt[j]; index = indx[j]; for (k=i; k>j; k--) count[3] += wt[j]*wt[k]; /* tied on time */ count[2] += wt[j] * nwt[index]; /* tied on x */ child = (2*index) +1; /* left child */ if (child < ntree) count[0] += wt[j] * twt[child]; /*left children */ child++; if (child < ntree) count[1] += wt[j] * twt[child]; /*right children */ while (index >0) { /* walk up the tree */ parent = (index-1)/2; if (index & 1) /* I am the left child */ count[1] += wt[j] * (twt[parent] - twt[index]); else count[0] += wt[j] * (twt[parent] - twt[index]); index = parent; } } } else j = i-1; /* Add the weights for these obs into the tree and update variance*/ for (; i>j; i--) { wsum1=0; oldmean = twt[0]/2; index = indx[i]; nwt[index] += wt[i]; twt[index] += wt[i]; wsum2 = nwt[index]; child = 2*index +1; /* left child */ if (child < ntree) wsum1 += twt[child]; while (index >0) { parent = (index-1)/2; twt[parent] += wt[i]; if (!(index&1)) /* I am a right child */ wsum1 += (twt[parent] - twt[index]); index=parent; } wsum3 = twt[0] - (wsum1 + wsum2); /* sum of weights above */ lmean = wsum1/2; umean = wsum1 + wsum2 + wsum3/2; /* new upper mean */ newmean = twt[0]/2; myrank = wsum1 + wsum2/2; vss += wsum1*(newmean+ oldmean - 2*lmean) * (newmean - oldmean); vss += wsum3*(newmean+ oldmean+ wt[i]- 2*umean) *(oldmean-newmean); vss += wt[i]* (myrank -newmean)*(myrank -newmean); } count[4] += ndeath * vss/twt[0]; } UNPROTECT(1); return(count2); } SEXP concordance2(SEXP y, SEXP wt2, SEXP indx2, SEXP ntree2, SEXP sortstop, SEXP sortstart) { int i, j, k, index; int child, parent; int n, ntree; int istart, iptr, jptr; double *time1, *time2, *status, dtime; double *twt, *nwt, *count; int *sort1, *sort2; double vss, myrank; double wsum1, wsum2, wsum3; /*sum of wts below, tied, above*/ double lmean, umean, oldmean, newmean; double ndeath; SEXP count2; double *wt; int *indx; n = nrows(y); ntree = asInteger(ntree2); wt = REAL(wt2); indx = INTEGER(indx2); sort2 = INTEGER(sortstop); sort1 = INTEGER(sortstart); time1 = REAL(y); time2 = time1 + n; status= time2 + n; PROTECT(count2 = allocVector(REALSXP, 5)); count = REAL(count2); twt = (double *) R_alloc(2*ntree, sizeof(double)); nwt = twt + ntree; for (i=0; i< 2*ntree; i++) twt[i] =0.0; for (i=0; i<5; i++) count[i]=0.0; vss =0; istart = 0; /* where we are with start times */ for (i=0; i= dtime; istart++) { wsum1 =0; oldmean = twt[0]/2; jptr = sort1[istart]; index = indx[jptr]; nwt[index] -= wt[jptr]; twt[index] -= wt[jptr]; wsum2 = nwt[index]; child = 2*index +1; /* left child */ if (child < ntree) wsum1 += twt[child]; while (index >0) { parent = (index-1)/2; twt[parent] -= wt[jptr]; if (!(index&1)) /* I am a right child */ wsum1 += (twt[parent] - twt[index]); index=parent; } wsum3 = twt[0] - (wsum1 + wsum2); lmean = wsum1/2; umean = wsum1 + wsum2 + wsum3/2; /* new upper mean */ newmean = twt[0]/2; myrank = wsum1 + wsum2/2; vss += wsum1*(newmean+ oldmean - 2*lmean) * (newmean-oldmean); oldmean -= wt[jptr]; /* the z in equations above */ vss += wsum3*(newmean+ oldmean -2*umean) * (newmean-oldmean); vss -= wt[jptr]* (myrank -newmean)*(myrank -newmean); } /* Process deaths */ for (j=i; j 0) { /* walk up the tree */ parent = (index-1)/2; if (index &1) /* I am the left child */ count[1] += wt[jptr] * (twt[parent] - twt[index]); else count[0] += wt[jptr] * (twt[parent] - twt[index]); index = parent; } } } else j = i+1; /* Add the weights for these obs into the tree and compute variance */ for (; i0) { parent = (index-1)/2; twt[parent] += wt[iptr]; if (!(index&1)) /* I am a right child */ wsum1 += (twt[parent] - twt[index]); index=parent; } wsum3 = twt[0] - (wsum1 + wsum2); lmean = wsum1/2; umean = wsum1 + wsum2 + wsum3/2; /* new upper mean */ newmean = twt[0]/2; myrank = wsum1 + wsum2/2; vss += wsum1*(newmean+ oldmean - 2*lmean) * (newmean-oldmean); vss += wsum3*(newmean+ oldmean +wt[iptr] - 2*umean) * (oldmean-newmean); vss += wt[iptr]* (myrank -newmean)*(myrank -newmean); } count[4] += ndeath * vss/twt[0]; } UNPROTECT(1); return(count2); } survival/src/agsurv4.c0000644000176200001440000000203213570772320014456 0ustar liggesusers/* Automatically generated from the noweb directory */ #include "survS.h" #include "survproto.h" void agsurv4(Sint *ndeath, double *risk, double *wt, Sint *sn, double *denom, double *km) { int i,j,k, l; int n; /* number of unique death times */ double sumt, guess, inc; n = *sn; j =0; for (i=0; i #include #include "survS.h" #include "survproto.h" static double **covar, **cmat, **cmat2; static double *a, *oldbeta, *a2; static double *offset, *weights; static int *event, *frail = NULL; static double *score, *start, *stop; static int *sort1, *sort2; static double *tmean; static int ptype, pdiag; static double *ipen, *upen, logpen; static Sint *zflag; static double **cmatrix(double *, int, int); void agfit5a(Sint *nusedx, Sint *nvarx, double *yy, double *covar2, double *offset2, double *weights2, Sint *strata, Sint *sort, double *means, double *beta, double *u, double *loglik, Sint *methodx, Sint *ptype2, Sint *pdiag2, Sint *nfrail, Sint *frail2, void *fexpr1, void *fexpr2, void *rho) { int i,j,k, person; int nused, nvar; int nf, nvar2; int deaths, itemp; int istrat, indx2, p, ksave; double denom, zbeta, risk; double temp; double d2, efron_wt; double method; double meanwt, time; nused = *nusedx; nvar = *nvarx; nf= *nfrail; method= *methodx; nvar2 = nvar + nf; ptype = *ptype2; pdiag = *pdiag2; /* ** Allocate storage for the arrays and vectors ** Since they will be used later, sizes are based on what will be ** needed with the frailty terms. */ if (nvar >0) { covar= cmatrix(covar2, nused, nvar); cmat = cmatrix(0, nvar2, nvar+1); cmat2= cmatrix(0, nvar2, nvar+1); } a = Calloc(4*nvar2 + 5*nused , double); oldbeta = a + nvar2; a2 = oldbeta + nvar2; weights = a2+ nvar2; offset = weights + nused; score = offset + nused; tmean = score + nused; start = tmean + nvar2; stop = start + nused; event = Calloc(3*nused, int); sort1 = event + nused; sort2 = sort1 + nused; for (i=0; i nvar) i=nf; else i=nvar; if (nf > nvar*nvar) j=nf; else j=nvar*nvar; if (pdiag==0) upen = Calloc(2*i, double); else upen = Calloc(i+j, double); ipen = upen + i; if (ptype>1) zflag = Calloc(nvar, Sint); else zflag = Calloc(2, Sint); if (nf>0) { frail = Calloc(nused, int); for (i=0; i=time, ** and are thus potential members of the risk set. If 'indx2' =9, ** that means that 9 subjects have start >=time and thus are NOT part ** of the risk set. (stop > start for each subject guarrantees that ** the 9 are a subset of the 27). ** Basic algorithm: move 'person' forward, adding the new subject into ** the risk set. If this is a new, unique death time, take selected ** old obs out of the sums, add in obs tied at this time, then ** add terms to the loglik, etc. */ istrat=0; indx2 =0; denom =0; for (person=0; person0) { imat = dmatrix(imat2, nvar2, nvar); jmat = dmatrix(jmat2, nvar2, nvar); } else { imat = 0; /*never used, but passed as dummy to chol */ jmat = 0; } for (i=0; i0) { fgrp = frail[person] -1; zbeta = offset[person] + fbeta[fgrp]; } else zbeta = offset[person]; for (i=0; i 20 && *maxiter >1) { /* ** If the above happens, then ** 1. There is a real chance for catastrophic cancellation ** in the computation of "denom", which leads to ** numeric failure via log(neg number) -> inf loglik ** 2. A risk score for one person of exp(20) > 400 million ** is either an infinite beta, in which case any ** reasonable coefficient will do, or a big overreach ** in the Newton-Raphson step. ** In either case, a good solution is step halving. However, ** if the user asked for exactly 1 iteration, we should ** just return what they asked. ** ** Why 20? Most machines have about 16 digits of precision, ** and this preserves approx 7 digits in the subtraction ** when a high risk score person leaves the risk set. ** (Because of centering, the average risk score is about 0). ** Second, if eps is small and beta is infinite, we rarely ** get a value above 16. So a 20 is usually a NR overshoot. ** A data set with zbeta=54 on iter 1 led to this fix, the ** true final solution had max values of 4.47. */ halving=1; for (i=0; i0) fgrp = frail[p] -1; else fgrp = -1; if (event[p]==0){ risk = exp(score[p]) * weights[p]; denom += risk; if (fgrp >=0) a[fgrp] += risk; for (i=0; i=0) cmat[i][fgrp] += risk * covar[i][p]; for (j=0; j<=i; j++) cmat[i][j+nf] += risk*covar[i][p]*covar[j][p]; } person++; } else { time = stop[p]; /* ** subtract out the subjects whose start time is to the right */ for (; indx20) fgrp = frail[p] - 1; else fgrp = -1; if (fgrp >=0) a[fgrp] -= risk; for (i=0; i=0) cmat[i][fgrp] -= risk* covar[i][p]; for (j=0; j<=i; j++) cmat[i][j+nf] -= risk*covar[i][p]*covar[j][p]; } } /* ** compute the averages over this death time (a2 & c2) */ efron_wt =0; meanwt =0; for (i=0; i0) { fgrp = frail[p] -1; if (fgrp>=0) a[fgrp] += risk; } else fgrp = -1; for (i=0; i=0) cmat[i][fgrp] += risk*covar[i][p]; for (j=0; j<=i; j++) cmat[i][j+nf] += risk*covar[i][p]*covar[j][p]; } if (event[p]==1) { deaths += event[p]; efron_wt += risk* weights[p]; meanwt += weights[p]; if (fgrp >= 0) { u[fgrp] += weights[p]; a2[fgrp] += risk; } for (i=0; i=0) cmat2[i][fgrp] += risk*covar[i][p]; for (j=0; j<=i; j++) cmat2[i][j+nf] += risk*covar[i][p]*covar[j][p]; } } } ksave =k; /* add results into u and imat */ itemp = -1; meanwt /= deaths; for (; person0 && newlk < *loglik) { /*it is not converging ! */ halving =1; for (i=0; i 0) { cmatrix_free(cmat2); cmatrix_free(cmat); cmatrix_free(covar); } } survival/src/cholesky3.c0000644000176200001440000000514513537676563015016 0ustar liggesusers/* ** subroutine to do Cholesky decompostion on a matrix: C = FDF' ** where F is lower triangular with 1's on the diagonal, and D is diagonal ** This is a specialized form for the frailty problem. The matric C in this ** case has C[1:m, 1:m] diagonal and C[(m+1):n, 1:n)] is dense. ** ** arguments are: ** n the size of the matrix to be factored ** m the size of the diagonal upper portion ** diag the diagonal upper portion ** **matrix a ragged array containing the dense portion ** toler tolerance for detecting singularity ** ** The diagonal portion of the matrix is unchanged by the factorization. ** For the dense portion, D occupies the diagonal (of the full matrix). ** The factorization is returned in the lower triangle. ** The upper triangle of the matrix is entirely unused by the process (but ** because of the compressed storage, this isn't much space). ** ** Return value: the rank of the matrix (non-negative definite), or -rank ** if not non-negative definite ** ** If a column is deemed to be redundant, then that diagonal is set to zero. ** ** Terry Therneau */ #include "survS.h" #include "survproto.h" int cholesky3(double **matrix, int n, int m, double *diag, double toler) { double temp; int i,j,k; double eps, pivot; int rank; int n2; int nonneg; n2 = n-m; /* number of full covariates */ nonneg=1; eps =0; for (i=0; i eps) eps = matrix[i][i+m]; if (eps==0) eps= toler; /* no positive diagonals! */ else eps *= toler; rank =0; /* pivot out the diagonal elements */ for (i=0; i #include "survS.h" #include "survproto.h" void coxdetail(Sint *nusedx, Sint *nvarx, Sint *ndeadx, double *y, double *covar2, Sint *strata, double *score, double *weights, double *means2, double *u2, double *var, Sint *rmat, double *nrisk2, double *work) { int i,j,k,person; int nused, nvar; int nrisk, ndead; double **covar, **cmat; /*ragged arrays */ double **means; double **u; double *a; double *a2, **cmat2; double *wmeans; double denom; double time; double temp, temp2, temp3; double method; double hazard; double varhaz; int itemp, deaths; int ideath; double efron_wt, d2; double risk; double meanwt; double wdeath; double *start, *stop, *event; int rflag; nused = *nusedx; nvar = *nvarx; method= *means2; ndead = *ndeadx; rflag = 1- rmat[0]; /* ** Set up the ragged arrays */ covar= dmatrix(covar2, nused, nvar); means= dmatrix(means2, ndead, nvar); u = dmatrix(u2, ndead, nvar); cmat = dmatrix(work, nvar, nvar); cmat2= dmatrix(work + nvar*nvar, nvar, nvar); a = work + 2*nvar*nvar; a2= a+nvar; wmeans = a2+nvar; start =y; stop =y + nused; event =y + nused +nused; /* ** Subtract the mean from each covar, as this makes the variance calc ** much more stable */ for (i=0; i #include "survS.h" #include "survproto.h" /* my habit is to name a S object "charlie2" and the pointer ** to the contents of the object "charlie"; the latter is ** used in the computations */ SEXP pyears3b(SEXP death2, SEXP efac2, SEXP edims2, SEXP ecut2, SEXP expect2, SEXP grpx2, SEXP x2, SEXP y2, SEXP times2, SEXP ngrp2) { int i,j,k; int n, death, edim, ngrp, ntime; double **x; double *data2; double **ecut, *etemp; double hazard, /*cum hazard over an interval */ cumhaz; /*total hazard to date for the subject */ double timeleft, thiscell, etime, time, et2; int index, indx, indx2; double wt; double *wvec; /* vector of weights needed for unconditional surv */ int group; int *efac, *edims, *grpx; double *expect, *y, *times; SEXP esurv2, nsurv2, rlist, rlistnames; double *esurv; int *nsurv; /* ** copies of input arguments */ death = asInteger(death2); ngrp = asInteger(ngrp2); efac = INTEGER(efac2); edims = INTEGER(edims2); edim = LENGTH(edims2); expect= REAL(expect2); grpx = INTEGER(grpx2); n = LENGTH(y2); x = dmatrix(REAL(x2), n, edim); y = REAL(y2); times = REAL(times2); ntime = LENGTH(times2); /* scratch space */ data2 = (double *)ALLOC(edim+1, sizeof(double)); wvec = (double *)ALLOC(ntime*ngrp, sizeof(double)); for (j=0; j1) etemp += 1 + (efac[i]-1)*edims[i]; } /* ** Create output arrays */ PROTECT(esurv2 = allocVector(REALSXP, ntime*ngrp)); esurv = REAL(esurv2); PROTECT(nsurv2 = allocVector(INTSXP, ntime*ngrp)); nsurv = INTEGER(nsurv2); for (i=0; i<(ntime*ngrp); i++) { esurv[i] =0.; nsurv[i] =0; } /* compute */ for (i=0; i0; j++) { thiscell = times[j] - time; if (thiscell > timeleft) thiscell = timeleft; index =j + ntime*group; /* expected calc ** The wt parameter only comes into play for older style US rate ** tables, where pystep does interpolation. ** Each call to pystep moves up to the next 'boundary' in the ** expected table, data2 contains our current position therein */ etime = thiscell; hazard =0; while (etime >0) { et2 = pystep(edim, &indx, &indx2, &wt, data2, efac, edims, ecut, etime, 1); if (wt <1) hazard+= et2*(wt*expect[indx] +(1-wt)*expect[indx2]); else hazard+= et2* expect[indx]; for (k=0; k0) { if (death==0) esurv[i] /= wvec[i]; else esurv[i] = exp(-esurv[i]/wvec[i]); } else if (death!=0) esurv[i] = exp(-esurv[i]); } /* ** package the output */ PROTECT(rlist = allocVector(VECSXP, 2)); SET_VECTOR_ELT(rlist,0, esurv2); SET_VECTOR_ELT(rlist,1, nsurv2); PROTECT(rlistnames= allocVector(STRSXP, 2)); SET_STRING_ELT(rlistnames, 0, mkChar("surv")); SET_STRING_ELT(rlistnames, 1, mkChar("n")); setAttrib(rlist, R_NamesSymbol, rlistnames); unprotect(4); return(rlist); } survival/src/agmart.c0000644000176200001440000000432313537676563014362 0ustar liggesusers/* ** Compute the martingale residual for a counting process model ** This routine is only used by the exact partial likelihood routine ** agexact.fit, which has such low usage that it and components have ** not been coverted to faster algorithms as other routines have. ** ** Input ** n number of subjects ** method will be ==1 for the Efron method ** start ** stop vector of (start, stop] times for the subjects ** event vector of status values ** score the vector of subject scores, i.e., exp(beta*z) ** weight case weights ** strata is =1 for the last obs of a strata ** ** Output ** resid martingale residual ** ** The martingale residual is more of a nuisance for the Efron method ** ** Data must be sorted by time within strata, with events first */ #include #include "survS.h" #include "survproto.h" void agmart(Sint *n, Sint *method, double *start, double *stop, Sint *event, double *score, double *wt, Sint *strata, double *resid) { int i,k; double deaths, denom, e_denom; double hazard, e_hazard; double temp, time; double wtsum; int nused; int person; nused = *n; strata[nused-1] =1; /* Failsafe */ for (i=0; i=min) { ** some calculations ** } ** ** The result of this is as though the code had been written for "nloops" ** nested for loops: ** ** for (index[0]=min; index[0]= (minval+i)) return (minval+i-1); else return (minval-1); } nloops--; index[nloops]++; /*increment the lastmost index */ if (index[nloops] <= (maxval-depth)) return(index[nloops]); else if (nloops ==0) return(minval - depth); else { depth++; index[nloops] = doloop(nloops, index) +1; depth--; return(index[nloops]); } } survival/src/survfitkm.c0000644000176200001440000004722413570772324015135 0ustar liggesusers/* Automatically generated from the noweb directory */ #include #include "survS.h" #include "survproto.h" SEXP survfitkm(SEXP y2, SEXP weight2, SEXP sort12, SEXP sort22, SEXP type2, SEXP id2, SEXP nid2, SEXP position2, SEXP influence2) { int i, i1, i2, j, k, person1, person2; int nused, nid, type, influence; int ny, ntime; double *tstart=0, *stime, *status, *wt; double v1, v2, dtemp, haz; double temp, dtemp2, dtemp3, frac, btemp; int *sort1=0, *sort2, *id=0; static const char *outnames[]={"time", "n", "estimate", "std.err", "influence1", "influence2", ""}; SEXP rlist; double *gwt=0, *inf1=0, *inf2=0; /* =0 to silence -Wall */ int *gcount=0; int n1, n2, n3, n4; int *position=0, hasid; double wt1, wt2, wt3, wt4; /* output variables */ double *n[10], *dtime, *kvec, *nvec, *std[2], *imat1=0, *imat2=0; /* =0 to silence -Wall*/ double km, nelson; /* current estimates */ /* map the input data */ ny = ncols(y2); /* 2= ordinary survival 3= start,stop data */ nused = nrows(y2); if (ny==3) { tstart = REAL(y2); stime = tstart + nused; sort1 = INTEGER(sort12); } else stime = REAL(y2); status= stime +nused; wt = REAL(weight2); sort2 = INTEGER(sort22); nused = LENGTH(sort22); type = asInteger(type2); nid = asInteger(nid2); if (LENGTH(position2) > 0) { hasid =1; position = INTEGER(position2); } else hasid=0; influence = asInteger(influence2); /* nused was used for two things just above. The first was the length of the input data y, only needed for a moment to set up tstart, stime, and status. The second is the number of these observations we will actually use, which is the length of sort2. This routine can be called multiple times with sort1/sort2 pointing to different subsets of the data while y, wt, id and position can remain unchanged */ if (length(id2)==0) nid =0; /* no robust variance */ else id = INTEGER(id2); /* pass 1, get the number of unique times, needed for memory allocation Number of xval groups (unique id values) has been supplied Data is sorted by time */ ntime =1; temp = stime[sort2[0]]; for (i=1; i0 ) { /* robust variance */ gcount = (int *) R_alloc(nid, sizeof(int)); if (type <3) { /* working vectors for the influence */ gwt = (double *) R_alloc(3*nid, sizeof(double)); inf1 = gwt + nid; inf2 = inf1 + nid; for (i=0; i< nid; i++) { gwt[i] =0.0; gcount[i] = 0; inf1[i] =0; inf2[i] =0; } } else { gwt = (double *) R_alloc(2*nid, sizeof(double)); inf2 = gwt + nid; for (i=0; i< nid; i++) { gwt[i] =0.0; gcount[i] = 0; inf2[i] =0; } } /* these are not accumulated, so do not need to be zeroed */ if (type <3) { if (influence==1 || influence ==3) imat1 = REAL(SET_VECTOR_ELT(rlist, 4, allocMatrix(REALSXP, nid, ntime))); if (influence==2 || influence==3) imat2 = REAL(SET_VECTOR_ELT(rlist, 5, allocMatrix(REALSXP, nid, ntime))); } else if (influence !=0) imat2 = REAL(SET_VECTOR_ELT(rlist, 5, allocMatrix(REALSXP, nid, ntime))); } R_CheckUserInterrupt(); /*check for control-C */ /* ** person1, person2 track through sort1 and sort2, respectively ** likewise with i1 and i2 */ person1 = nused-1; person2 = nused-1; n1=0; wt1=0; for (k=ntime-1; k>=0; k--) { dtime[k] = stime[sort2[person2]]; /* current time point */ n2=0; n3=0; wt2=0; wt3=0; for (; person2 >=0; person2--) { i2= sort2[person2]; if (stime[i2] != dtime[k]) break; n1++; /* number at risk */ wt1 += wt[i2]; /* weighted number at risk */ if (status[i2] ==1) { n2++; /* events */ wt2 += wt[i2]; } else if (hasid==0 || (position[i2]& 2)) { /* if there are no repeated obs for a subject (hasid=0) ** or this is the last of a string (a,b](b,c](c,d].. for ** a subject (position[i2]=2 or 3), then it is a 'real' censor */ n3++; wt3 += wt[i2]; } } if (ny==3) { /* remove any with start time >=dtime*/ n4 =0; wt4 =0; for (; person1 >=0; person1--) { i1 = sort1[person1]; if (tstart[i1] < dtime[k]) break; n1--; wt1 -= wt[i1]; if (hasid==0 || (position[i1] & 1)) { /* if there are no repeated id (hasid=0) or this is the ** first of a string of (a,b](b,c](c,d] for a subject, then ** this is a 'real' entry */ n4++; wt4 += wt[i1]; } } if (n4>0) { n[6][k+1] = n4; n[7][k+1] = wt4; } } n[0][k] = n1; n[1][k]=n2; n[2][k]=n3; n[3][k] = wt1; n[4][k]=wt2; n[5][k]=wt3; } if (ny ==3) { /* fill in number entered for the initial interval */ n4=0; wt4=0; for (; person1>=0; person1--) { i1 = sort1[person1]; if (hasid==0 || (position[i1] & 1)) { n4++; wt4 += wt[i1]; } } n[6][0] = n4; n[7][0] = wt4; } R_CheckUserInterrupt(); /*check for control-C */ nelson =0.0; km=1.0; v1=0; v2=0; if (nid==0) { /* simple variance */ if (type==1 || type==3) { /* Nelson-Aalen hazard */ for (i=0; i0 && n[4][i]>0) { /* at least one event with wt>0*/ nelson += n[4][i]/n[3][i]; v2 += n[4][i]/(n[3][i]*n[3][i]); } nvec[i] = nelson; std[0][i] = sqrt(v2); std[1][i] = sqrt(v2); } } else { /* Fleming hazard */ for (i=0; i0 && n[4][i]>0) { /* at least one event */ km *= (n[3][i]-n[4][i])/n[3][i]; v1 += n[4][i]/(n[3][i] * (n[3][i] - n[4][i])); /* Greenwood */ } kvec[i] = km; std[0][i] = sqrt(v1); } } else { /* exp survival */ for (i=0; i< ntime; i++) { kvec[i] = exp(-nvec[i]); std[0][i] = std[1][i]; } } } else { /* infinitesimal jackknife variance */ v1=0; v2 =0; km=1; nelson =0; person2=0; if (ny==3) { person1 =0; } else { /* at the start, everyone is at risk */ for (i=0; i< nused; i++) { i2 = id[i]; gcount[i2]++; gwt[i2] += wt[i]; } } if (type==1) { for (i=0; i< ntime; i++) { if (ny==3) { /* add in new subjects */ for (; person1 < nused; person1++) { /* add in those whose start time is < dtime */ i1 = sort1[person1]; if (tstart[i1] >= dtime[i]) break; gcount[id[i1]]++; gwt[id[i1]] += wt[i1]; } } if (n[1][i] > 0 && n[4][i]>0) { /* need to update the sums */ haz = n[4][i]/n[3][i]; for (k=0; k< nid; k++) { inf1[k] = inf1[k] *(1.0 -haz) + gwt[k]*km*haz/n[3][i]; inf2[k] -= gwt[k] * haz/n[3][i]; } for (; person2 dtime[i]) break; /* those at this time */ if (status[i2]==1) { inf1[id[i2]] -= km* wt[i2]/n[3][i]; inf2[id[i2]] += wt[i2]/n[3][i]; } gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } km *= (1-haz); nelson += haz; v1=0; v2=0; for (k=0; k dtime[i]) break; gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } } kvec[i] = km; nvec[i] = nelson; std[0][i] = sqrt(v1); std[1][i] = sqrt(v2); if (influence==1 || influence ==3) for (k=0; k= dtime[i]) break; gcount[id[i1]]++; gwt[id[i1]] += wt[i1]; } } if (n[1][i] > 0 && n[4][i] >0) { /* need to update the sums */ dtemp =0; /* the working denominator */ dtemp2=0; /* sum of squares */ dtemp3=0; temp = n[3][i] - n[4][i]; /* sum of weights for the non-deaths */ for (k=n[1][i]; k>0; k--) { frac = k/n[1][i]; btemp = 1/(temp + frac*n[4][i]); /* "b" in the math */ dtemp += btemp; dtemp2 += btemp*btemp*frac; dtemp3 += btemp*btemp; /* non-death deriv */ } dtemp /= n[1][i]; /* average denominator */ if (n[4][i] != n[1][i]) { /* case weights */ dtemp2 *= n[4][i]/ n[1][i]; dtemp3 *= n[4][i]/ n[1][i]; } nelson += n[4][i]*dtemp; haz = n[4][i]/n[3][i]; for (k=0; k< nid; k++) { inf1[k] = inf1[k] *(1.0 -haz) + gwt[k]*km*haz/n[3][i]; if (gcount[k]>0) inf2[k] -= gwt[k] * dtemp3; } for (; person2 dtime[i]) break; if (status[i2]==1) { inf1[id[i2]] -= km* wt[i2]/n[3][i]; inf2[id[i2]] += wt[i2] *(dtemp + dtemp3 - dtemp2); } gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } km *= (1-haz); v1=0; v2=0; for (k=0; k dtime[i]) break; gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } } kvec[i] = km; nvec[i] = nelson; std[0][i] = sqrt(v1); std[1][i] = sqrt(v2); if (influence==1 || influence ==3) for (k=0; k= dtime[i]) break; gcount[id[i1]]++; gwt[id[i1]] += wt[i1]; } } if (n[1][i] > 0 && n[4][i]>0) { /* need to update the sums */ haz = n[4][i]/n[3][i]; for (k=0; k< nid; k++) { inf2[k] -= gwt[k] * haz/n[3][i]; } for (; person2 dtime[i]) break; if (status[i2]==1) { inf2[id[i2]] += wt[i2]/n[3][i]; } gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } nelson += haz; v2=0; for (k=0; k dtime[i]) break; gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } } kvec[i] = exp(-nelson); nvec[i] = nelson; std[1][i] = sqrt(v2); std[0][i] = sqrt(v2); if (influence>0) for (k=0; k= dtime[i]) break; gcount[id[i1]]++; gwt[id[i1]] += wt[i1]; } } if (n[1][i] > 0 && n[4][i] >0) { /* need to update the sums */ dtemp =0; /* the working denominator */ dtemp2=0; /* sum of squares */ dtemp3=0; temp = n[3][i] - n[4][i]; /* sum of weights for the non-deaths */ for (k=n[1][i]; k>0; k--) { frac = k/n[1][i]; btemp = 1/(temp + frac*n[4][i]); /* "b" in the math */ dtemp += btemp; dtemp2 += btemp*btemp*frac; dtemp3 += btemp*btemp; /* non-death deriv */ } dtemp /= n[1][i]; /* average denominator */ if (n[4][i] != n[1][i]) { /* case weights */ dtemp2 *= n[4][i]/ n[1][i]; dtemp3 *= n[4][i]/ n[1][i]; } nelson += n[4][i]*dtemp; for (k=0; k< nid; k++) { if (gcount[k]>0) inf2[k] -= gwt[k] * dtemp3; } for (; person2 dtime[i]) break; if (status[i2]==1) { inf2[id[i2]] += wt[i2] *(dtemp + dtemp3 - dtemp2); } gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } v2=0; for (k=0; k dtime[i]) break; gcount[id[i2]] --; if (gcount[id[i2]] ==0) gwt[id[i2]] = 0.0; else gwt[id[i2]] -= wt[i2]; } } kvec[i] = exp(-nelson); nvec[i] = nelson; std[1][i] = sqrt(v2); std[0][i] = sqrt(v2); if (influence>0) for (k=0; k #include "survS.h" #include "survproto.h" #include SEXP coxsurv1(SEXP y2, SEXP weight2, SEXP sort12, SEXP sort22, SEXP position2, SEXP strata2, SEXP xmat2, SEXP risk2) { int i, i2, j2, k, person, person2, itime; int nused, istrat; int ntime; double *tstart=0, *stime, *status, *wt; int *strata; double dtime; int *sort1=0, *sort2; double **xmat, *risk; /* X matrix and risk score */ int nvar; /* number of covariates */ double *xsum1, /* a weighted sum, for computing xbar */ *xsum2; static const char *outnames[]={"time", "strata", "count", "xbar1", "xbar2", ""}; SEXP rlist; double n[12]; int *position; /* output variables */ double *rtime, **rn, *rstrat; double **rx1, **rx2; /* map the input data */ nused = nrows(y2); tstart = REAL(y2); stime = tstart + nused; status= stime +nused; wt = REAL(weight2); sort1 = INTEGER(sort12); sort2 = INTEGER(sort22); strata= INTEGER(strata2); position = INTEGER(position2); risk = REAL(risk2); nvar = ncols(xmat2); xmat = dmatrix(REAL(xmat2), nrows(xmat2), nvar); /* pass 1, get the number of unique event times, needed to alloc memory ** data is sorted by time within strata. The same time in 2 strata ** counts as 2 separate times. */ ntime =1; dtime=stime[sort2[0]]; istrat= strata[sort2[0]]; for (i=1; i=0; itime--) { i2 = sort2[person]; if (person==0 || strata[i2] != istrat) { if (person>0) { /* catch up on entries at the end of a stratum */ j2 = sort2[person2]; for (; tstart[j2] >= dtime && strata[j2]==istrat; person2++) { n[10]++; n[11] += wt[j2]; j2 = sort1[person2]; } /* printf("itime=%d, n= %4.2f %4.2f\n", itime, n[10], n[11]); */ rn[10][itime+1] = n[10]; rn[11][itime+1] = n[11]; } /* new stratum, zero everything */ for (k=0; k<12; k++) n[k] =0; for (k=0; k < nvar; k++) xsum1[k] =0; istrat = strata[i2]; } dtime = stime[i2]; /*current time point */ rtime[itime] = dtime; rstrat[itime] = istrat; for (k=3; k<12; k++) n[k]=0; /* zero all but cumulative n */ while(person< nused && stime[i2]==dtime && strata[i2]==istrat) { for (k=0; k 0) { /* an event */ for (k=0; i1) { n[7]++; n[8]+= wt[i2]; n[9] += wt[i2]*risk[i2]; } } if (position[i2] > 1) { /* 2 or 3 = end of a subject's series */ n[5]++; n[6] += wt[i2]; } person++; i2 = sort2[person]; } j2 = sort1[person2]; while(person2 < nused && tstart[j2] >= dtime && strata[j2]==istrat) { /* remove subjects */ n[0]--; if (n[0] ==0) { n[1] =0; n[2] =0; for (k=0; k= R_Version(2, 16, 0) R_forceSymbols(dll, TRUE); #endif } survival/src/survS.h0000644000176200001440000000073713537676563014243 0ustar liggesusers/* ** This file started out with support for Splus, then morphed to allow ** either R or Splus (based on ifdef lines), and now is R only. */ #include "R.h" #include "Rinternals.h" #include /* typedef int Sint; */ /* no longer needed */ /* ** Memory defined with ALLOC is removed automatically by S. ** That with "Calloc" I have to remove myself. Use the ** latter for objects that need to to persist between calls. */ #define ALLOC(a,b) R_alloc(a,b) survival/src/coxsurv2.c0000644000176200001440000001745613537676563014715 0ustar liggesusers/* ** Survival curves for a Cox model. This routine counts up all ** the totals that we need (more than we need, actually). The number at risk ** is a PITA in R code. All of the rest of the computation can be done in R, ** however. ** ** otime: vector of output times. All the transitions will get reports at ** these time points. (Normally this fcn is called for all of the ** transitions at once, but separately for for any strata.) ** y : survival response ** weight: observation weight ** sort1, sort2: sort indices for the start and stop time ** sindex: in a sequence of obs (1,2) (2,3) (3,4) (5,8) for a given subject, ** 'sindex' would be 1, 0, 2, 3 ** 1= start of a sequence, 2= end of sequence, 3= both ** trans: the data set is stacked: all the data for transition 1, then ** transition 2, etc for a multi-state model ** xmat2: covariates ** risk2: risk score ** ** output: A matrix of counts, with one row per time, per stratum, and ** matrices with xbar for those at risk, and the sum of x for ** terminal events at the current time. ** ** For the weighted counts, number at risk != entries - exits. Someone with ** a sequence of (1,2)(2,5)(5,6) will have 1 entry and 1 exit, but they might ** have 3 changes of risk score due to time-dependent covariates. ** n0-3 has to count all the changes, while n8-n9 (only used in printout) ** keep track of the final exit, and 3-7 and 10-11 refer only to a given ** timepoint. ** ** Let w1=1, w2= wt, w3= wt*risk. The counts n[] are ** 0-2: number at risk, w1, w2, w3, ** 3-5: events: w1, w2, w3 ** 6-7: censored endpoints: w1,w2 ** 8-9: censor: w1, w2 ** 10-11: Efron sums 1 and 2 */ #include #include "survS.h" #include "survproto.h" #include SEXP coxsurv2(SEXP otime2, SEXP y2, SEXP weight2, SEXP sort12, SEXP sort22, SEXP sindex2, SEXP trans2, SEXP xmat2, SEXP risk2) { int i, i1, i2, k, person1, person2, itrans; int nused, ntrans, ntime, irow, ii, jj; double *tstart=0, *tstop, *status, *wt, *otime; int *trans; double dtime, meanwt; int *sort1=0, *sort2; double **xmat, *risk; /* X matrix and risk score */ int nvar; /* number of covariates */ double *xsum1, /* a weighted sum, for computing xbar */ *xsum2; int *atrisk; static const char *outnames[]={"ntrans", "count", "xbar", "xsum2", ""}; SEXP rlist; double n[12]; int *sindex; /* output variables */ double **rn, *rstrat; double **rx1, **rx2; /* map the input data */ otime = REAL(otime2); ntime = LENGTH(otime2); nused = nrows(y2); tstart = REAL(y2); tstop = tstart + nused; status= tstop +nused; wt = REAL(weight2); sort1 = INTEGER(sort12); sort2 = INTEGER(sort22); trans= INTEGER(trans2); sindex = INTEGER(sindex2); risk = REAL(risk2); nvar = ncols(xmat2); xmat = dmatrix(REAL(xmat2), nrows(xmat2), nvar); /* pass 1, count the number of transitions, needed to alloc memory ** data is sorted by time within trans */ itrans= trans[0]; ntrans=1; for (i=1; i otime, walk backwards adding subjects to the risk ** set when we cross their ending time. Also add them to the "censored" ** count. Don't add any who will be removed before otime to either ** count, however. ** Set atrisk=1 if they are added. ** ** 2. While tstop==otime, add them to the risk set, and count the ** observation with repect to n3- n7. ** ** 3. While tstart > otime, remove any obs currently at risk from n0-n2. ** ** In the code position1, position2 are current indices into the sort1 ** and sort2 vectors, and i1/i2 are the current values of those vectors. */ rstrat[0] = ntrans; /* single element, number of transitions found */ person1 = nused-1; person2= nused-1; /* person1 tracks start times */ irow = (ntime*ntrans); /* row of output objects */ for (ii =0; ii=0; jj--) { /* one by one through the times */ dtime = otime[jj]; for (k=3; k<12; k++) n[k]=0; /* counts are only for this interval*/ /* Step 1 */ for(; person2 >=0 && trans[person2]==itrans; person2--) { i2 = sort2[person2]; if (tstop[i2] 1 && status[i2]==0) { /* count them as a 'censor' */ n[8]++; n[9]+= wt[i2]; } } if (tstop[i2]==dtime && status[i2]>0) { /* step 2 (tstart < tstop BTW)*/ n[3]++; n[4] += wt[i2]; n[5] += wt[i2]* risk[i2]; for (k=0; i1) { n[6]++; n[7] += wt[i2]; } } } /* Step 3 */ for (; person1 >=0 && trans[person1]==itrans; person1--) { i1 = sort1[person1]; if (tstart[i1] < dtime) break; if (atrisk[i1]) { /* remove them from risk set */ n[0]--; if (n[0] ==0) { n[1] =0; n[2] =0; for (k=0; k int cholesky2(double **matrix, int n, double toler) { double temp; int i,j,k; double eps, pivot; int rank; int nonneg; nonneg=1; eps =0; for (i=0; i eps) eps = matrix[i][i]; for (j=(i+1); j x2[k]. (Draw a picture). ** The root of the tree is element k= floor((n2-1)/2), with value x2[k]. ** In general, for any subtree that "owns" elements i to j, the root ** of that subtree is element k= floor((i+j)/2), whose left subtree ** owns elements i to k-1 of the tree, and right subtree owns elements ** k+1 to j. ** ** As we update, count[i] will be the number of data values in this ** node and all nodes below. ** ** We walk through the data one survival time at at time, comparing each ** to all the survival times above it. ** If the time is censored, all those above are "incomparable". ** Otherwise, we need to find the position of x[i], among x[1: (i-1)] ** We do this by updating the counts in the binary tree. The count ** vector contains the number of x[0 to i] that are in or below any ** given node k of the binary tree. ** ** Tied death times are a nuisance; we have to refrain from updating ** the counts until the end of each set of them. Thus a vector ** count1 (up to date) and count2 (lagged). ** nright = sum(# values to the right, each time I take a left branch) */ tdeath =0; /* current count of tied deaths */ for (i=0; i 0) { /* ** Walk the tree a first time, to count this observation's ** position */ nright = 0; start = 0; end= n2-1; /*start to end of sublist being looked at */ if (tdeath==0) count=count1; /* use the appropriate count */ else count=count2; while(start <= end) { k = (start+end)/2; if (x[i] == x2[k]) break; if (x[i] < x2[k]) { /* take the left branch (smaller numbers) */ end = k-1; nright = nright + (count[k] - count[(start+end)/2]); } else start = k+1; /*right branch */ } /* ** At this point x[i] = x2[k]; we've found the number in the ** x2 list */ nsame = count[k]; /*provisional */ if (k start) /* there is a left hand branch below here */ nsame = nsame - count[(start+k-1)/2]; result[3] += nsame; result[1] += nright; /* # values bigger than x[i] */ result[0] += i - (tdeath + nsame + nright); /* # smaller */ /* Is the next survival time tied with this one? */ if (i<(n-1) && status[i+1]>0 &&(time[i] == time[i+1])) { tdeath += 1; /* Yes it is */ if (tdeath==1) { for (j=0; j #include "survS.h" #include "survproto.h" SEXP coxscore2(SEXP y2, SEXP covar2, SEXP strata2, SEXP score2, SEXP weights2, SEXP method2) { int i,j, k; double temp; int n, nvar, method; double deaths; int dd; double *time, *status; double *score, *weights; int *strata; double *a, *a2; double denom=0, e_denom; double risk; double **covar; double **resid; double hazard, meanwt; double downwt, temp2; double mean; SEXP resid2; /* the return matrix */ n = nrows(y2); nvar = ncols(covar2); time = REAL(y2); status = time +n; strata = INTEGER(strata2); score = REAL(score2); weights= REAL(weights2); method = asInteger(method2); /* scratch space */ a = (double *) R_alloc(2*nvar, sizeof(double)); a2 = a+nvar; /* ** Set up the ragged arrays */ covar= dmatrix(REAL(covar2), n, nvar); PROTECT(resid2 = allocMatrix(REALSXP, n, nvar)); resid= dmatrix(REAL(resid2), n, nvar); for (i=0; i=0; i--) { if (strata[i]==1) { denom =0; for (j=0; j0 && (i==0 || strata[i-1]==1 || time[i]!=time[i-1])){ /* last obs of a set of tied death times */ if (deaths <2 || method==0) { hazard = meanwt/denom; for (j=0; j=0; i--) { if (matrix[i][i]==0) y[i] =0; else { temp = y[i]/matrix[i][i]; for (j= i+1; j #include "survS.h" #include "survproto.h" SEXP agfit4(SEXP nused2, SEXP surv2, SEXP covar2, SEXP strata2, SEXP weights2, SEXP offset2, SEXP ibeta2, SEXP sort12, SEXP sort22, SEXP method2, SEXP maxiter2, SEXP eps2, SEXP tolerance2, SEXP doscale2) { int i,j,k, person; int indx1, istrat, p, p1; int nrisk, nr; int nused, nvar; int rank=0, rank2, fail; /* =0 to keep -Wall happy */ double **covar, **cmat, **imat; /*ragged array versions*/ double *a, *oldbeta; double *scale; double *a2, **cmat2; double *eta; double denom, zbeta, risk; double dtime =0; /* initial value to stop a -Wall message */ double temp, temp2; double newlk =0; int halving; /*are we doing step halving at the moment? */ double tol_chol, eps; double meanwt; int deaths; double denom2, etasum; /* inputs */ double *start, *tstop, *event; double *weights, *offset; int *sort1, *sort2, maxiter; int *strata; double method; /* saving this as double forces some double arithmetic */ int doscale; /* returned objects */ SEXP imat2, beta2, u2, loglik2; double *beta, *u, *loglik; SEXP sctest2, flag2, iter2; double *sctest; int *flag, *iter; SEXP rlist; static const char *outnames[]={"coef", "u", "imat", "loglik", "sctest", "flag", "iter", ""}; int nprotect; /* number of protect calls I have issued */ /* get sizes and constants */ nused = asInteger(nused2); nvar = ncols(covar2); nr = nrows(covar2); /*nr = number of rows, nused = how many we use */ method= asInteger(method2); eps = asReal(eps2); tol_chol = asReal(tolerance2); maxiter = asInteger(maxiter2); doscale = asInteger(doscale2); /* input arguments */ start = REAL(surv2); tstop = start + nr; event = tstop + nr; weights = REAL(weights2); offset = REAL(offset2); sort1 = INTEGER(sort12); sort2 = INTEGER(sort22); strata = INTEGER(strata2); /* ** scratch space ** nvar: a, a2, oldbeta, scale ** nvar*nvar: cmat, cmat2 ** nr: eta */ eta = (double *) R_alloc(nr + 4*nvar + 2*nvar*nvar, sizeof(double)); a = eta + nr; a2= a + nvar; scale = a2 + nvar; oldbeta = scale + nvar; /* ** Set up the ragged arrays ** covar2 might not need to be duplicated, even though ** we are going to modify it, due to the way this routine was ** was called. But check */ PROTECT(imat2 = allocMatrix(REALSXP, nvar, nvar)); nprotect =1; if (MAYBE_REFERENCED(covar2)) { PROTECT(covar2 = duplicate(covar2)); nprotect++; } covar= dmatrix(REAL(covar2), nr, nvar); imat = dmatrix(REAL(imat2), nvar, nvar); cmat = dmatrix(oldbeta+ nvar, nvar, nvar); cmat2= dmatrix(oldbeta+ nvar + nvar*nvar, nvar, nvar); /* ** create the output structures */ PROTECT(rlist = mkNamed(VECSXP, outnames)); nprotect++; beta2 = SET_VECTOR_ELT(rlist, 0, duplicate(ibeta2)); beta = REAL(beta2); u2 = SET_VECTOR_ELT(rlist, 1, allocVector(REALSXP, nvar)); u = REAL(u2); SET_VECTOR_ELT(rlist, 2, imat2); loglik2 = SET_VECTOR_ELT(rlist, 3, allocVector(REALSXP, 2)); loglik = REAL(loglik2); sctest2 = SET_VECTOR_ELT(rlist, 4, allocVector(REALSXP, 1)); sctest = REAL(sctest2); flag2 = SET_VECTOR_ELT(rlist, 5, allocVector(INTSXP, 4)); flag = INTEGER(flag2); for (i=0; i<4; i++) flag[i]=0; iter2 = SET_VECTOR_ELT(rlist, 6, allocVector(INTSXP, 1)); iter = INTEGER(iter2); /* ** Subtract the mean from each covar, as this makes the variance ** computation much more stable. The mean is taken per stratum, ** the scaling is overall. */ for (i=0; i0) temp = temp2/temp; /* 1/scale */ else temp = 1.0; /* rare case of a constant covariate */ scale[i] = temp; for (person=0; person 200) { flag[1]++; /* a count, for debugging/profiling purposes */ temp = etasum/nrisk; for (i=0; i 200) { flag[1]++; /* a count, for debugging/profiling purposes */ temp = etasum/nrisk; for (i=0; i0) break; } fail =0; for (i=0; i1 && ((newlk -loglik[1])/ loglik[1]) < -eps) { /* ** "Once more unto the breach, dear friends, once more; ..." **The last iteration above was worse than one of the earlier ones, ** by more than roundoff error. ** We need to use beta and imat at the last good value, not the ** last attempted value. We have tossed the old imat away, so ** recompute it. ** It will happen very rarely that we run out of iterations, and ** even less often that the Newton-Raphson is getting worse. */ for (i=0; i 200) { flag[1]++; /* a count, for debugging/profiling purposes */ temp = etasum/nrisk; for (i=0; i 200) { flag[1]++; /* a count, for debugging/profiling purposes */ temp = etasum/nrisk; for (i=0; i0 || newlk < loglik[1]) { /* ** The routine has not made progress past the last good value. */ halving++; flag[2]++; for (i=0; i notused[p1]) notused[p1] =1; else notused[p1] =0; } ndeath=0; istrat++; } else { for (; j= dtime; j++) { p1 = sort1[j]; if (ndeath > notused[p1]) notused[p1] =1; else notused[p1] =0; } } ndeath += status[p2]; notused[p1] = ndeath; } for (; j notused[p1]) notused[p1] =1; else notused[p1] =0; } return(notused); } survival/src/agsurv5.c0000644000176200001440000000202513570772321014462 0ustar liggesusers/* Automatically generated from the noweb directory */ #include "survS.h" void agsurv5(Sint *n2, Sint *nvar2, Sint *dd, double *x1, double *x2, double *xsum, double *xsum2, double *sum1, double *sum2, double *xbar) { double temp; int i,j, k, kk; double d; int n, nvar; n = n2[0]; nvar = nvar2[0]; for (i=0; i< n; i++) { d = dd[i]; if (d==1){ temp = 1/x1[i]; sum1[i] = temp; sum2[i] = temp*temp; for (k=0; k< nvar; k++) xbar[i+ n*k] = xsum[i + n*k] * temp*temp; } else { temp = 1/x1[i]; for (j=0; j1: estimate multiple scales (strata) ** strat - if nstrat>0, contains the strata number for each subject ** eps - tolerance for convergence. Iteration continues until the ** relative change in the deviance is <= eps. ** tol_chol- tolerance for Cholesky decomposition ** dist - 1=extreme value, 2=logistic, 3=gaussian, 4=callback ** debug - >0 causes tracing information. Can be removed ** expr - for callback, the expression to be evaluated ** rho - for callback, the environment (R) or frame (Splus) in which ** to do the evaluation. ** Output ** beta - the final coef vector ** iter - the number of iterations consumed ** imat - the information matrix ** loglik - the final log-liklihood ** flag - success flag 0 =ok ** -1= did not converge ** u - the score vector ** ** Work arrays ** newbeta(nvar)- always contains the "next iteration" ** JJ = the approx variance matrix J'J, guarranteed non-singular */ #include "math.h" #include "survS.h" #include "survproto.h" SEXP survreg6(SEXP maxiter2, SEXP nvarx, SEXP y, SEXP ny2, SEXP covar2, SEXP wtx, SEXP offset2, SEXP beta2, SEXP nstratx, SEXP stratax, SEXP epsx, SEXP tolx, SEXP dist, SEXP dexpr, SEXP rho) { int i,j; int n, maxiter, ny; double *newbeta; int halving, iter; double newlk; double *loglik, eps, tol_chol; double *beta; Sint *flag; SEXP out_beta; int nvar, nvar2, nstrat; double **covar; Sint *strat ; double *time2, *time1, *status; double *offset; double **imat, **JJ; double *u, *wt, *usave; double (*dolik)(); /* will be pointed to survregc1 or survregc2 */ SEXP z; double *zptr = NULL; SEXP out_iter, out_loglik, out_imat, out_flag; SEXP out_u; SEXP rlist, rlistnames; Sint *iter2; int nprotect; /* ** The only input arg that is overwritten is beta */ out_beta = PROTECT(duplicate(beta2)); beta = REAL(out_beta); maxiter = asInteger(maxiter2); n = LENGTH(wtx); ny = asInteger(ny2); nvar = asInteger(nvarx); offset = REAL(offset2); nstrat = asInteger(nstratx); strat = INTEGER(stratax); wt = REAL(wtx); eps = asReal(epsx); tol_chol= asReal(tolx); covar = dmatrix(REAL(covar2), n, nvar); /* ** nvar = # of "real" x variables, for iteration ** nvar2= # of parameters to maximize = nvar + nstrat ** nstrat= # of strata, where 0== fixed sigma */ nvar2 = nvar + nstrat; /* number of coefficients */ /* ** Create the output variables */ PROTECT(out_imat = allocVector(REALSXP, nvar2*nvar2)); imat = dmatrix(REAL(out_imat), nvar2, nvar2); PROTECT(out_iter = allocVector(INTSXP, 1)); iter2 = INTEGER(out_iter); PROTECT(out_loglik = allocVector(REALSXP, 1)); loglik = REAL(out_loglik); PROTECT(out_flag = allocVector(INTSXP, 1)); flag = INTEGER(out_flag); PROTECT(out_u = allocVector(REALSXP, nvar2)); usave = REAL(out_u); nprotect = 6; /* Create scratch variables ** u = working version of score vector, overwritten with u H-inv during ** Newton steps ** usave = a copy of u, after each Newton step. Returned to the S ** parent routine, and also used to "backtrack" when we need to fail ** over to a Fisher step after NR + halving didn't work */ newbeta = (double *) Calloc(LENGTH(beta2) + nvar2 + nvar2*nvar2, double); u = newbeta + length(beta2); JJ = dmatrix(u +nvar2, nvar2, nvar2); /* ** fixed scale parameters were tacked onto the end of beta at input ** copy them to to the end of newbeta as well (survregc1/c2 expects em) */ for (i=nvar; i0 when in the midst of "step halving" */ newlk = (*dolik)(n, nvar, nstrat, 0, newbeta,asInteger(dist), strat, offset, time1, time2, status, wt, covar, imat, JJ, u, dexpr, rho, zptr, 0, NULL, NULL, NULL); for (i=0; i10, in which ** case step halving isn't quite enough. Make sure the new ** try differs from the last good one by no more than 1/3 ** approx log(3) = 1.1 ** Step halving isn't enough of a "back away" when a ** log(sigma) goes from 0.5 to -3, or has become singular. */ if (halving==1) { /* only the first time */ for (i=0; i 1.1) newbeta[nvar+i] = beta[nvar+i] - 1.1; } } newlk = (*dolik)(n, nvar, nstrat, 1, newbeta,asInteger(dist), strat, offset, time1, time2, status, wt, covar, imat, JJ, u, dexpr, rho, zptr, 0, NULL, NULL, NULL); } } else { /* take a standard NR step */ halving=0; *loglik = newlk; *flag = cholesky3(imat, nvar2, 0, NULL, tol_chol); if (*flag < 0) { i = cholesky3(JJ, nvar2, 0, NULL, tol_chol); chsolve2(JJ, nvar2, u); } else chsolve2(imat,nvar2,u); for (i=0; i=2 special handling for US "calendar year" ** edims[edim] the number of rows, columns, etc ** ecut[ ] the starting points for each non-factor dimension, ** strung together. ** expect the actual table of expected rates ** edata[edim, n] the subject data-- where each indexes into the ** expected table, at time 0. ** ** output table's description ** odim number of dimensions ** ofac[odim] 1=is a factor, 0=continuous (time based) ** odims[odim] the number of rows, columns, etc ** ocut[] for each non-factor dimension, the odim[i]+1 cutpoints ** that define the intervals; concatonated. ** odata[odim, n] the subject data-- where each indexes into the ** expected table, at time 0. ** ** Output: ** pyears output table of person years ** pn number of observations that contribute to each cell ** pcount number of events ** pexpect expected number of events ** offtable total person years that did not fall into the output table ** ** Scratch -- allocated on the fly ** scratch[edim + odim] */ #include #include "survS.h" #include "survproto.h" /* names that begin with "s" will be re-declared in the main body */ void pyears1(Sint *sn, Sint *sny, Sint *sdoevent, double *sy, double *weight, Sint *sedim, Sint *efac, Sint *edims, double *secut, double *expect, double *sedata, Sint *sodim, Sint *ofac, Sint *odims, double *socut, Sint *smethod, double *sodata, double *pyears, double *pn, double *pcount, double *pexpect, double *offtable) { int i,j; int n, ny, doevent, method, edim, odim; double *start, *stop, *event, **ecut, **ocut, **edata, **odata; double *data, *data2; double timeleft, thiscell, etime, et2; int index, indx, indx2; double lwt; /*this variable is returned by pystep, and controls the "on the fly" linear interpolation done for the calandar year dimension of rate tables */ int dostart; double hazard, cumhaz; double temp, lambda; double eps; /* protection against accumulated round off */ n = *sn; ny= *sny; doevent = *sdoevent; method = *smethod; edim = *sedim; odim = *sodim; start = sy; if (ny==3 || (ny==2 && doevent==0)) { stop = sy +n; dostart =1; } else { stop = sy; dostart =0; } event = stop +n; edata = dmatrix(sedata, n, edim); odata = dmatrix(sodata, n, odim); i=edim + odim; data = (double *) ALLOC(i, sizeof(double)); data2 = data + odim; /* ** ecut and ocut will be ragged arrays */ ecut = (double **)ALLOC(edim, sizeof(double *)); for (i=0; i1) secut += 1 + (efac[i]-1)*edims[i]; } ocut = (double **)ALLOC(odim, sizeof(double *)); for (i=0; i0]) * 1e-8 ** The events are counted in the last cell to which person years are ** added in the while() loop below. We don't want to "spill over" into ** a next (incorrect) cell due to accumulated round off, in the case ** that a subjects fu time exactly matches one of the cell boundaries. */ eps =0; /* guard against the rare case that all(time==0) */ for (i=0; i0) { eps = timeleft; break; } } for (; i0 && timeleft < eps) eps = timeleft; } eps *= 1e-8; *offtable =0; for (i=0; i eps) { thiscell = pystep(odim, &index, &indx2, &lwt, data, ofac, odims, ocut, timeleft, 0); if (index >=0) { pyears[index] += thiscell * weight[i]; pn[index] += 1; /* expected calc */ etime = thiscell; hazard=0; temp =0; while (etime >0) { /* ** The hazard or survival curve (temp) calculated within ** this loop don't depend on the case weight --- the ** whole loop is only for one person, and hazard is a ** function of time alone. Once computed, however, the ** total hazard added into the expected table ** is weighted. */ et2 = pystep(edim, &indx, &indx2, &lwt, data2, efac, edims, ecut, etime, 1); if (lwt <1) lambda = (lwt*expect[indx] + (1-lwt)*expect[indx2]); else lambda = expect[indx]; if (method==0) temp += exp(-hazard)*(1-exp(-lambda*et2))/ lambda; hazard += lambda * et2; for (j=0; j=0 && doevent) pcount[index] += event[i] * weight[i]; } } survival/src/coxcount1.c0000644000176200001440000001424613570772322015022 0ustar liggesusers/* Automatically generated from the noweb directory */ #include "survS.h" /* ** Count up risk sets and identify who is in each */ SEXP coxcount1(SEXP y2, SEXP strat2) { int ntime, nrow; int i, j, n; int stratastart=0; /* start row for this strata */ int nrisk=0; /* number at risk (=0 to stop -Wall complaint)*/ double *time, *status; int *strata; double dtime; SEXP rlist, rlistnames, rtime, rn, rindex, rstatus; int *rrindex, *rrstatus; n = nrows(y2); time = REAL(y2); status = time +n; strata = INTEGER(strat2); /* ** First pass: count the total number of death times (risk sets) ** and the total number of rows in the new data set. */ ntime=0; nrow=0; for (i=0; i= dtime; istart++) nrisk--; for(j= i+1; j=dtime; istart++) { atrisk[sort1[istart]]=0; nrisk--; } for (j=1; j0) df++; /* count up the df */ for (i=0; i< *ntest; i++) { for (j=0; j0) { matrix[i][i] = 1/matrix[i][i]; /*this line inverts D */ for (j= (i+1); j0){ fdiag[i] = 1/fdiag[i]; /* this line inverts D */ for (j=0; j0) { matrix[i][ii] = 1/matrix[i][ii]; /*this line inverts D */ for (j= (i+1); j=0; i--) { if (matrix[i][i+m]==0) y[i+m] =0; else { temp = y[i+m]/matrix[i][i+m]; for (j= i+1; j=0; i--) { if (diag[i] == 0) y[i] =0; else { temp = y[i] / diag[i]; for (j=0; j=2: special handling for "years" dim of US rate tables ** dims[nc] the extent of each category ** cuts[nc,dims+1] ragged array, containing the start for each interval ** step the amount of time remaining for the subject. ** edge if =0, then the cuts contain +1 obs, and we are strict ** about out-of-range cells. If it is a 1, then the ** table is assummed to extend infinitly at the edges. ** ** Output ** *index linear index into the array ** if *index == -1, then the returned amount of time is "off table"; ** if one of the dimensions has fac >1 -- ** *index2 second index for linear interpolation ** *wt a number between 0 and 1, amount of wt for the first index ** this will be 1 if none of the dims have fac >1 ** ** Return value amount of time in indexed cell. */ #include "survS.h" #include "survproto.h" double pystep(int nc, int *index, int *index2, double *wt, double *data, Sint *fac, Sint *dims, double **cuts, double step, int edge) { int i,j; double maxtime; double shortfall; double temp; int kk, dtemp; kk=1; *index =0; *index2=0; *wt =1; shortfall =0; maxtime = step; for (i=0; i1) dtemp = 1 + (fac[i]-1)*dims[i]; else dtemp = dims[i]; for (j=0; j shortfall) { if (temp > step) shortfall = step; else shortfall = temp; } if (temp < maxtime) maxtime = temp; } else if (j==dtemp){ /*bigger than last cutpoint */ if (edge==0) { temp = cuts[i][j] - data[i]; /* time to upper limit */ if (temp <=0) shortfall = step; else if (temp < maxtime) maxtime = temp; } if (fac[i] >1) j = dims[i] -1; /*back to normal indices */ else j--; } else { temp = cuts[i][j] - data[i]; /* time to next cutpoint */ if (temp < maxtime) maxtime = temp; j--; if (fac[i] >1) { /*interpolate the year index */ *wt = 1.0 - (j%fac[i])/ (double)fac[i]; j /= fac[i]; *index2 = kk; } } *index += j*kk; } kk *= dims[i]; } *index2 += *index; if (shortfall ==0) return(maxtime); else { *index = -1; return(shortfall); } } survival/src/survfitci.c0000644000176200001440000002541213570772323015113 0ustar liggesusers/* Automatically generated from the noweb directory */ #include "survS.h" #include "survproto.h" #include SEXP survfitci(SEXP ftime2, SEXP sort12, SEXP sort22, SEXP ntime2, SEXP status2, SEXP cstate2, SEXP wt2, SEXP id2, SEXP p2, SEXP i02, SEXP sefit2) { int i, j, k, kk; /* generic loop indices */ int ck, itime, eptr; /*specific indices */ double ctime; /*current time of interest, in the main loop */ int oldstate, newstate; /*when changing state */ double temp, *temp2; /* scratch double, and vector of length nstate */ double *dptr; /* reused in multiple contexts */ double *p; /* current prevalence vector */ double **hmat; /* hazard matrix at this time point */ double **umat=0; /* per subject leverage at this time point */ int *atrisk; /* 1 if the subject is currently at risk */ int *ns; /* number curently in each state */ int *nev; /* number of events at this time, by state */ double *ws; /* weighted count of number state */ double *wtp; /* case weights indexed by subject */ double wevent; /* weighted number of events at current time */ int nstate; /* number of states */ int n, nperson; /*number of obs, subjects*/ double **chaz; /* cumulative hazard matrix */ /* pointers to the R variables */ int *sort1, *sort2; /*sort index for entry time, event time */ double *entry,* etime; /*entry time, event time */ int ntime; /* number of unique event time values */ int *status; /*0=censored, 1,2,... new states */ int *cstate; /* current state for each subject */ int *dstate; /* the next state, =cstate if not an event time */ double *wt; /* weight for each observation */ double *i0; /* initial influence */ int *id; /* for each obs, which subject is it */ int sefit; /* returned objects */ SEXP rlist; /* the returned list and variable names of same */ const char *rnames[]= {"nrisk","nevent","ncensor", "p", "cumhaz", "std", "influence.pstate", ""}; SEXP setemp; double **pmat, **vmat=0, *cumhaz, *usave=0; /* =0 to silence -Wall warning */ int *ncensor, **nrisk, **nevent; ntime= asInteger(ntime2); nperson = LENGTH(cstate2); /* number of unique subjects */ n = LENGTH(sort12); /* number of observations in the data */ PROTECT(cstate2 = duplicate(cstate2)); cstate = INTEGER(cstate2); entry= REAL(ftime2); etime= entry + n; sort1= INTEGER(sort12); sort2= INTEGER(sort22); status= INTEGER(status2); wt = REAL(wt2); id = INTEGER(id2); PROTECT(p2 = duplicate(p2)); /*copy of initial prevalence */ p = REAL(p2); nstate = LENGTH(p2); /* number of states */ i0 = REAL(i02); sefit = asInteger(sefit2); /* allocate space for the output objects ** Ones that are put into a list do not need to be protected */ PROTECT(rlist=mkNamed(VECSXP, rnames)); setemp = SET_VECTOR_ELT(rlist, 0, allocMatrix(INTSXP, ntime, nstate)); nrisk = imatrix(INTEGER(setemp), ntime, nstate); /* time by state */ setemp = SET_VECTOR_ELT(rlist, 1, allocMatrix(INTSXP, ntime, nstate)); nevent = imatrix(INTEGER(setemp), ntime, nstate); /* time by state */ setemp = SET_VECTOR_ELT(rlist, 2, allocVector(INTSXP, ntime)); ncensor = INTEGER(setemp); /* total at each time */ setemp = SET_VECTOR_ELT(rlist, 3, allocMatrix(REALSXP, ntime, nstate)); pmat = dmatrix(REAL(setemp), ntime, nstate); setemp = SET_VECTOR_ELT(rlist, 4, allocMatrix(REALSXP, nstate*nstate, ntime)); cumhaz = REAL(setemp); if (sefit >0) { setemp = SET_VECTOR_ELT(rlist, 5, allocMatrix(REALSXP, ntime, nstate)); vmat= dmatrix(REAL(setemp), ntime, nstate); } if (sefit >1) { /* the max space is larger for a matrix than a vector ** This is pure sneakiness: if I allocate a vector then n*nstate*(ntime+1) ** may overflow, as it is an integer argument. Using the rows and cols of ** a matrix neither overflows. But once allocated, I can treat setemp ** like a vector since usave is a pointer to double, which is bigger than ** integer and won't overflow. */ setemp = SET_VECTOR_ELT(rlist, 6, allocMatrix(REALSXP, n*nstate, ntime+1)); usave = REAL(setemp); } /* allocate space for scratch vectors */ ws = (double *) R_alloc(2*nstate, sizeof(double)); /*weighted number in state */ temp2 = ws + nstate; ns = (int *) R_alloc(2*nstate, sizeof(int)); nev = ns + nstate; atrisk = (int *) R_alloc(2*nperson, sizeof(int)); dstate = atrisk + nperson; wtp = (double *) R_alloc(nperson, sizeof(double)); hmat = (double**) dmatrix((double *)R_alloc(nstate*nstate, sizeof(double)), nstate, nstate); chaz = (double**) dmatrix((double *)R_alloc(nstate*nstate, sizeof(double)), nstate, nstate); if (sefit >0) umat = (double**) dmatrix((double *)R_alloc(nperson*nstate, sizeof(double)), nstate, nperson); /* R_alloc does not zero allocated memory */ for (i=0; i1) { /* copy influence, and save it */ dptr = i0; for (j=0; j0) { newstate = status[k] -1; /* 0 based subscripts */ oldstate = cstate[id[k]]; if (oldstate != newstate) { /* A "move" to the same state does not count */ dstate[id[k]] = newstate; nev[newstate]++; wevent += wt[k]; hmat[oldstate][newstate] += wt[k]; } } else ncensor[itime]++; } else break; } if (wevent > 0) { /* there was at least one move with weight > 0 */ /* finish computing H */ for (j=0; j0) { temp =0; for (k=0; k0) { if (sefit >0) { /* Update U, part 1 U = U %*% H -- matrix multiplication */ for (j=0; j0) { temp =0; for (k=0; k 1) for (k=0; k0) cstate[id[j]] = status[j]-1; /*new state */ atrisk[id[j]] =0; } else break; } itime++; } /* return a list */ UNPROTECT(3); return(rlist); } survival/src/zph2.c0000644000176200001440000002665713556546747014011 0ustar liggesusers/* ** The code for start-stop data ** this is the essentially the first iteration of agfit4.c */ #include #include "survS.h" #include "survproto.h" SEXP zph2(SEXP gt2, SEXP y2, SEXP covar2, SEXP eta2, SEXP weights2, SEXP strata2,SEXP method2, SEXP sort12, SEXP sort22) { int i,j, k, kk, person, p, p1; int cstrat; /* current stratum*/ int indx1, nrisk; double temp, temp2, tmean, etasum; double *dtemp, timewt=1; double *a, *a2, **cmat, **cmat2; int *keep; double denom, dtime=0, ndead, denom2; double risk, meanwt; /* scalar input arguments and counts*/ int nused, nvar, nevent, nstrat; int method; /* input vectors */ double *start, *tstop, *gt, *eta, *weights, *status; int *strata, *sort1, *sort2; double **covar; /* returned objects */ SEXP rlist; double *u, **imat, **schoen; int **used; static const char *rnames[]={"u", "imat", "schoen", "used", ""}; /* get local copies of input args */ nused = nrows(y2); nvar = ncols(covar2); method = asInteger(method2); start = REAL(y2); tstop = start + nused; status = tstop + nused; weights = REAL(weights2); strata = INTEGER(strata2); gt = REAL(gt2); eta = REAL(eta2); sort1= INTEGER(sort12); sort2= INTEGER(sort22); /* ** count up the number of events and the number of strata */ nevent =0; nstrat =1; for (i=0; i< nused; i++) { nevent += status[i]; if (strata[i] >= nstrat) nstrat= strata[i] + 1; } /* ** Set up the ragged arrays and scratch space */ if (MAYBE_REFERENCED(covar2)) covar = dmatrix(REAL(duplicate(covar2)), nused, nvar); else covar = dmatrix(REAL(covar2), nused, nvar); PROTECT(rlist = mkNamed(VECSXP, rnames)); u = REAL(SET_VECTOR_ELT(rlist, 0, allocVector(REALSXP, 2*nvar))); dtemp = REAL(SET_VECTOR_ELT(rlist, 1, allocMatrix(REALSXP, 2*nvar, 2*nvar))); imat = dmatrix(dtemp, 2*nvar, 2*nvar); /* information matrix */ dtemp = REAL(SET_VECTOR_ELT(rlist, 2, allocMatrix(REALSXP, nevent, nvar))); schoen = dmatrix(dtemp, nevent, nvar); /* schoenfeld residuals */ used = imatrix(INTEGER(SET_VECTOR_ELT(rlist, 3, allocMatrix(INTSXP, nstrat, nvar))), nstrat, nvar); /* scratch vectors */ a = (double *) R_alloc(2*nvar*nvar + 2*nvar, sizeof(double)); a2 = a + nvar; cmat = dmatrix(a2+ nvar, nvar, nvar); cmat2= dmatrix(a2+ nvar +nvar*nvar, nvar, nvar); keep = (int *) R_alloc(nused, sizeof(int)); /* zero variables */ for (i=0; i<2*nvar; i++) { u[i] =0; for (j=0; j<2*nvar; j++) imat[i][j] =0 ; } for (i=0; i 200) { temp = etasum/nrisk; for (i=0; i 200) { temp = etasum/nrisk; for (i=0; i #include "survS.h" #include "survproto.h" SEXP agmart3(SEXP nused2, SEXP surv2, SEXP score2, SEXP weight2, SEXP strata2, SEXP sort12, SEXP sort22, SEXP method2) { int i, k; int p1, p2, istrat; double deaths, denom, e_denom; double hazard, e_hazard, cumhaz; double temp, dtime =0; /* =0 to stop a -Wall message */ double wtsum; int nr, person1, person2, nused; /* pointers to the input data */ double *tstart, *tstop, *event; double *weight, *score; int *sort1, *sort2, *strata; int method; /* integer version of input */ int *atrisk; /* 1= ever at risk */ /* output */ SEXP resid2; double *resid; nused = asInteger(nused2); nr = nrows(surv2); method = asInteger(method2); tstart = REAL(surv2); tstop = tstart +nr; event = tstop +nr; weight= REAL(weight2); score = REAL(score2); sort1 = INTEGER(sort12); sort2 = INTEGER(sort22); strata= INTEGER(strata2); PROTECT(resid2 = allocVector(REALSXP, nr)); resid = REAL(resid2); atrisk = (int *) ALLOC(nr, sizeof(int)); for (k=0; k=time, ** and are thus potential members of the risk set. If 'person1' =9, ** that means that 9 subjects have start >=time and thus are NOT part ** of the risk set. (stop > start for each subject guarrantees that ** the 9 are a subset of the 27). ** A basic rule is to remove subjects from the sums as soon as possible ** and add them as late as possible: (a-b) +c vs (a+c)-b when b might ** be large. ** Algorithm: ** look ahead to find the next death time 'dtime' ** remove anyone no longer at risk from the sums, finish calculating resid ** add anyone newly at risk to the sums ** update the cumulative hazard ** everything resets at the end of a stratum. ** The sort order is from large time to small, so we encounter a subject's ** ending time first, then their start time. ** The martingale residual for a subject is ** status - (cumhaz at tstop - cumhaz at tstart+0)*score ** If there is an observation that is never in a risk set, i.e., the ** (time1, time2) pair overlaps no events, the parent routine will have ** sorted them to the end, set nused < nr, and their initial residual ** of zero never is updated. */ person1 =0; denom =0; cumhaz =0; istrat = strata[sort1[0]]; for (person2=0; person2 0) { dtime = tstop[p2]; break; } } if (k==nused) break; /* ** Remove those subjects whose start time is to the right ** from the risk set, and finish computation of their residual */ for (; person1 stop > dtime possible */ denom += score[p2] * weight[p2]; atrisk[p2] =1; resid[p2] = cumhaz * score[p2]; } } /* compute the increment in hazard ** hazard = usual increment ** e_hazard = efron increment, for tied deaths only */ if (method==0 || deaths==1) { /* Breslow */ hazard = wtsum/denom; person2 = k; } else { /* Efron */ hazard =0; e_hazard =0; /* hazard experienced by a tied death */ wtsum /= deaths; for (i=0; i 0) resid[p2] += temp*score[p2]; } } cumhaz += hazard; } /* finish up the last few */ for (; person1< nused; person1++) { p1 = sort1[person1]; if (atrisk[p1]==1) resid[p1] -= cumhaz * score[p1]; } UNPROTECT(1); return(resid2); } survival/src/chsolve5.c0000644000176200001440000000254113537676563014637 0ustar liggesusers/* ** Solve the equation Ab = y, where the cholesky decomposition of A and y ** are the inputs. ** ** Input **matrix, which contains the chol decomp of an n by n ** matrix in its lower triangle. ** y[n] contains the right hand side ** ** y is overwriten with b ** ** This differs from chsolve2 only in the flag. ** We recieved the cholesky A= LDL' where L is lower triangular, this ** is solveed in 3 stages: L' a = y, Db =a, Lc = b. ** If flag=0 we do all three, if 1 we do 1 and sqrt(D)b =a, ** if 2 we do ssqrt(D)b=a and stage 3. ** These latter support the backsolve routine. ** ** Terry Therneau */ #include void chsolve5(double **matrix, int n, double *y, int flag) { int i,j; double temp; /* ** solve L'z =y, */ if (flag <2) { for (i=0; i0) { /* ** solve D^{1/2}b =z */ for (i=0; i=0; i--) { temp = y[i]; for (j= i+1; j SEXP finegray(SEXP tstart2, SEXP tstop2, SEXP ctime2, SEXP cprob2, SEXP extend2, SEXP keep2) { int i,j, k, iadd, extra; int n; /* number of observations */ int ncut; /* number of censoring intervals */ int n2; /* number of new obs */ double tempwt; double *tstart, *tstop; double *ctime, *cprob; int *extend, *keep; /* returned objects */ SEXP row2, start2, end2, wt2, add2, rlist; double *start, *end, *wt; int *row, *add; static const char *outnames[]={"row", "start", "end", "wt", "add", ""}; n = LENGTH(tstart2); ncut = LENGTH(cprob2); tstart = REAL(tstart2); tstop = REAL(tstop2); extend= LOGICAL(extend2); keep = LOGICAL(keep2); ctime = REAL(ctime2); cprob = REAL(cprob2); /* ** how many obs will I need? NA inputs are left alone. ** Extend observations have weight 1 up to the next cutpoint after their ** max, and an extra for any cutpoints after that. */ extra =0; for (i=0; i=0; i--) { expected += resid[i]; resid[i] = status[i] - score[i]*expected; if (strata[i] ==1) expected=0; /* last obs of a strata */ } } survival/src/concordance3.c0000644000176200001440000003727013570772321015441 0ustar liggesusers/* Automatically generated from the noweb directory */ #include "survS.h" void walkup(double *nwt, double* twt, int index, double sums[3], int ntree) { int i, j, parent; for (i=0; i<3; i++) sums[i] = 0.0; sums[2] = nwt[index]; /* tied on x */ j = 2*index +2; /* right child */ if (j < ntree) sums[0] += twt[j]; if (j <=ntree) sums[1]+= twt[j-1]; /*left child */ while(index > 0) { /* for as long as I have a parent... */ parent = (index-1)/2; if (index%2 == 1) sums[0] += twt[parent] - twt[index]; /* left child */ else sums[1] += twt[parent] - twt[index]; /* I am a right child */ index = parent; } } void addin(double *nwt, double *twt, int index, double wt) { nwt[index] += wt; while (index >0) { twt[index] += wt; index = (index-1)/2; } twt[0] += wt; } SEXP concordance3(SEXP y, SEXP x2, SEXP wt2, SEXP timewt2, SEXP sortstop, SEXP doresid2) { int i, j, k, ii, jj, kk, j2; int n, ntree, nevent; double *time, *status; int xsave; /* sum of weights for a node (nwt), sum of weights for the node and ** all of its children (twt), then the same again for the subset of ** deaths */ double *nwt, *twt, *dnwt, *dtwt; double z2; /* sum of z^2 values */ int ndeath; /* total number of deaths at this point */ int utime; /* number of unique event times seen so far */ double dwt, dwt2; /* sum of weights for deaths and deaths tied on x */ double wsum[3]; /* the sum of weights that are > current, <, or equal */ double temp, adjtimewt; /* the second accounts for npair and timewt*/ SEXP rlist, count2, imat2, resid2; double *count, *imat[5], *resid[4]; double *wt, *timewt; int *x, *sort2; int doresid; static const char *outnames1[]={"count", "influence", "resid", ""}, *outnames2[]={"count", "influence", ""}; n = nrows(y); doresid = asLogical(doresid2); x = INTEGER(x2); wt = REAL(wt2); timewt = REAL(timewt2); sort2 = INTEGER(sortstop); time = REAL(y); status = time + n; /* if there are tied predictors, the total size of the tree will be < n */ ntree =0; nevent =0; for (i=0; i= ntree) ntree = x[i] +1; nevent += status[i]; } nwt = (double *) R_alloc(4*ntree, sizeof(double)); twt = nwt + ntree; dnwt = twt + ntree; dtwt = dnwt + ntree; for (i=0; i< 4*ntree; i++) nwt[i] =0.0; if (doresid) PROTECT(rlist = mkNamed(VECSXP, outnames1)); else PROTECT(rlist = mkNamed(VECSXP, outnames2)); count2 = SET_VECTOR_ELT(rlist, 0, allocVector(REALSXP, 6)); count = REAL(count2); for (i=0; i<6; i++) count[i]=0.0; imat2 = SET_VECTOR_ELT(rlist, 1, allocMatrix(REALSXP, n, 5)); for (i=0; i<5; i++) { imat[i] = REAL(imat2) + i*n; for (j=0; j current, <, or equal */ double temp, adjtimewt; /* the second accounts for npair and timewt*/ SEXP rlist, count2, imat2, resid2; double *count, *imat[5], *resid[4]; double *wt, *timewt; int *x, *sort2, *sort1; int doresid; static const char *outnames1[]={"count", "influence", "resid", ""}, *outnames2[]={"count", "influence", ""}; n = nrows(y); doresid = asLogical(doresid2); x = INTEGER(x2); wt = REAL(wt2); timewt = REAL(timewt2); sort2 = INTEGER(sortstop); sort1 = INTEGER(sortstart); time1 = REAL(y); time2 = time1 + n; status = time2 + n; /* if there are tied predictors, the total size of the tree will be < n */ ntree =0; nevent =0; for (i=0; i= ntree) ntree = x[i] +1; nevent += status[i]; } /* ** nwt and twt are the node weight and total =node + all children for the ** tree holding all subjects. dnwt and dtwt are the same for the tree ** holding all the events */ nwt = (double *) R_alloc(4*ntree, sizeof(double)); twt = nwt + ntree; dnwt = twt + ntree; dtwt = dnwt + ntree; for (i=0; i< 4*ntree; i++) nwt[i] =0.0; if (doresid) PROTECT(rlist = mkNamed(VECSXP, outnames1)); else PROTECT(rlist = mkNamed(VECSXP, outnames2)); count2 = SET_VECTOR_ELT(rlist, 0, allocVector(REALSXP, 6)); count = REAL(count2); for (i=0; i<6; i++) count[i]=0.0; imat2 = SET_VECTOR_ELT(rlist, 1, allocMatrix(REALSXP, n, 5)); for (i=0; i<5; i++) { imat[i] = REAL(imat2) + i*n; for (j=0; j= time2[ii]); i2++) { jj = sort1[i2]; /* influence */ walkup(dnwt, dtwt, x[jj], wsum, ntree); imat[0][jj] += wsum[1]; imat[1][jj] += wsum[0]; imat[2][jj] += wsum[2]; addin(nwt, twt, x[jj], -wt[jj]); /*remove from main tree */ /* Cox variance */ walkup(nwt, twt, x[jj], wsum, ntree); z2 -= wt[jj]*(wsum[0]*(wt[jj] + 2*(wsum[1] + wsum[2])) + wsum[1]*(wt[jj] + 2*(wsum[0] + wsum[2])) + (wsum[0]-wsum[1])*(wsum[0]-wsum[1])); } ndeath=0; dwt=0; dwt2 =0; xsave=x[ii]; j2= i; adjtimewt = timewt[utime++]; /* pass 1 */ for (j=i; j0, then C was symmetric positive definite, if D >=0, C is ** non-negative definite. ** ** The only difference between this routine and cholesky2 is what it does ** with negative pivots: cholesky2 considers them to be zero. ** ** arguments are: ** n the size of the matrix to be factored ** **matrix a ragged array containing an n by n submatrix to be factored ** toler the threshold value for detecting "singularity" ** ** The factorization is returned in the lower triangle, D occupies the ** diagonal and the upper triangle is left undisturbed. ** ** Return value: the rank of the matrix ** ** If a column is deemed to be redundant, then that diagonal is set to zero. ** ** Terry Therneau */ #include int cholesky5(double **matrix, int n, double toler) { double temp; int i,j,k; double eps, pivot; int rank; eps =0; for (i=0; i eps) eps = fabs(matrix[i][i]); } if (eps==0) eps = toler; else eps *= toler; rank =0; for (i=0; i0 ** isurv[n] -- individual survival curves ** ** cx and cy must be sorted by (event before censor) within stop time */ #include #include "survS.h" #include "survproto.h" static double *y, *nscore, **newx, **surv, **vsurv, *isurv, **used, **tvar; static int *strata; static double ttime, /* Some HP compilers choke on "time" as a variable */ **imat, *mean; static int death, ncurve, se, nvar, n; static void addup(); void agsurv3(Sint *sn, Sint *snvar, Sint *sncurve, Sint *snpt, Sint *sse, double *score, double *sy, Sint *grpx, double *r, double *coef, double *var, double *xmean, Sint *scn, double *cy, double *cx, double *ssurv, double *varh, double *sused, Sint *smethod) { int i,j,k,l; double *start, *stop, *event; int cn; int npt, nvar2, method; int kk=0, psave; int itime; int person; int deaths, nrisk; int need; double *a=0, *a2=0; double weight=0, e_denom, denom; double inc, sumt, km =0; double temp, downwt, d2; double haz, varhaz; double **oldx =0; n = *sn; nvar = *snvar; cn = *scn; npt = *snpt; se = *sse; ncurve = *sncurve; method = *smethod; death = method/10; method = method - death*10; y = sy; start = cy; stop = cy+ cn; event = cy+ cn+ cn; strata = grpx; /* ** scratch space */ need = 2*n + se*nvar*(2+ n*(n+1)/2) + nvar; nscore = (double *) ALLOC(need, sizeof(double)); for (i=0; i0) vsurv[i][itime]=0; } return; } /* ** Note that the subjects are sorted in strata order */ pstart=0; for (ic=0; ic= ttime) { temp = -haz*nscore[i]; /*increment to the individual hazard*/ if (death==0) { wt += isurv[i]; totsurv += exp(temp) * isurv[i]; } else { wt += 1; totsurv += temp; } isurv[i] *= exp(temp); } /* ** The variance is computed as though it were the Ederer est, always */ if (se==1) { /* Do the variance term (nasty) */ for (j=pstart; j<=i; j++) { temp =0; for (k=0; k LARGE) return(LARGE); return (x); } survival/src/pyears2.c0000644000176200001440000001145113537676563014474 0ustar liggesusers/* ** Person-years calculations. ** same as pyears1, but no expected rates ** ** Input: ** n number of subjects ** ny number of columns of y. ** doevent does y have an 'events' column? 1=yes, 0=no ** if ny=2 and doevent=1, then "start" is missing. ** y[3,n] contains start, stop, and event for each subject ** wt contains the case weights ** ** output table's description ** odim number of dimensions ** ofac[odim] 1=is a factor, 0=continuous (time based) ** odims[odim] the number of rows, columns, etc ** ocut[] for each non-factor dimension, the odim[i]+1 cutpoints ** that define the intervals; concatonated. ** odata[odim, n] the subject data-- where each indexes into the ** expected table, at time 0. ** ** Output: ** pyears output table of person years ** pn number of observations that contribute to each cell ** pcount number of events ** offtable total person years that did not fall into the output table ** ** Scratch allocated on the fly ** scratch[edim] */ #include "survS.h" #include "survproto.h" /* names that begin with "s" will be re-declared in the main body */ void pyears2(Sint *sn, Sint *sny, Sint *sdoevent, double *sy, double *wt, Sint *sodim, Sint *ofac, Sint *odims, double *socut, double *sodata, double *pyears, double *pn, double *pcount, double *offtable) { int i,j; int n, ny, doevent, odim; double *start, *stop, *event, **ocut, **odata; double *data; double timeleft, thiscell; int index; int dostart; int d1; /* a dummy */ double d2; /* a dummy for pystep */ double eps; /* round off protection */ n = *sn; ny= *sny; doevent = *sdoevent; odim = *sodim; start = sy; if (ny==3 || (ny==2 && doevent==0)) { /* each subject has a "start" time */ stop = sy +n; dostart =1; } else { /* followup starts at time 0 */ stop = sy; dostart =0; } event = stop +n; odata = dmatrix(sodata, n, odim); data = (double *) ALLOC(odim, sizeof(double)); /* ** will be a ragged array */ ocut = (double **)ALLOC(odim, sizeof(double *)); for (i=0; i0]) * 1e-8 ** The events are counted in the last cell to which person years are ** added in the while() loop below. We don't want to "spill over" into ** a next (incorrect) cell due to accumulated round off, in the case ** that a subjects fu time exactly matches one of the cell boundaries. */ eps =0; /* guard against the rare case that all(time==0) */ for (i=0; i0) { eps = timeleft; /* starting guess for min = first non-zero value*/ break; } } for (; i0) && (timeleft < eps)) eps = timeleft; } eps *= 1e-8; *offtable =0; for (i=0; i eps) { thiscell = pystep(odim, &index, &d1, &d2, data, ofac, odims, ocut, timeleft, 0); if (index >=0) { pyears[index] += thiscell * wt[i]; pn[index] += 1; } else *offtable += thiscell * wt[i]; for (j=0; j=0 && doevent) pcount[index] += event[i] * wt[i]; } } survival/src/dmatrix.c0000644000176200001440000000225413537676563014560 0ustar liggesusers/* ** set up the indices so that C code can use x[i][j] notation for R ** matrices. Remember that R sees matrices in column order and C in ** row order, so every reference in the C code will be x[col][row]. ** ** array = pointer to the data ** nrow, ncol = number of rows and colums, from R's point of view. ** ** Sometime in 2015-2018 R allowed for matrices whose total number of ** elements is > 2^31, although the numer of columns and rows must be <2^31. ** On a 64 bit machine the array variable is of type *double ** which is a 64 bit integer; using "array += nrow" rather than ** "pointer[i] = array + i*nrow" is critical to avoiding an integer ** overflow. */ #include "survS.h" #include "survproto.h" double **dmatrix(double *array, int nrow, int ncol) { int i; double **pointer; pointer = (double **) ALLOC(ncol, sizeof(double *)); for (i=0; i #include "survS.h" #include "survproto.h" SEXP zph1(SEXP gt2, SEXP y2, SEXP covar2, SEXP eta2, SEXP weights2, SEXP strata2,SEXP method2, SEXP sort2) { int i,j, k, kk, person, ip; int cstrat; /* current stratum*/ double temp, temp2, tmean; double *dtemp, timewt=1; double *a, *a2, **cmat, **cmat2; double denom=0, dtime, ndead, denom2; double risk, deadwt, wtave; /* scalar input arguments and counts*/ int nused, nvar, nevent, nstrat; int method; /* input vectors */ double *gt, *eta, *weights, *status; int *strata, *sort; double **covar, *xtime; /* returned objects */ SEXP rlist; double *u, **imat, **schoen; int **used; static const char *rnames[]={"u", "imat", "schoen", "used", ""}; /* get local copies of input args */ nused = nrows(y2); nvar = ncols(covar2); method = asInteger(method2); xtime = REAL(y2); status = xtime + nused; weights = REAL(weights2); strata = INTEGER(strata2); gt = REAL(gt2); eta = REAL(eta2); sort= INTEGER(sort2); /* ** count up the number of events and the number of strata ** strata are numbered from 0 */ nevent =0; nstrat =1; for (i=0; i< nused; i++) { nevent += status[i]; if (strata[i] >= nstrat) nstrat= strata[i]+1; } /* ** Set up the ragged arrays and scratch space */ if (MAYBE_REFERENCED(covar2)) covar = dmatrix(REAL(duplicate(covar2)), nused, nvar); else covar = dmatrix(REAL(covar2), nused, nvar); PROTECT(rlist = mkNamed(VECSXP, rnames)); u = REAL(SET_VECTOR_ELT(rlist, 0, allocVector(REALSXP, 2*nvar))); dtemp = REAL(SET_VECTOR_ELT(rlist, 1, allocMatrix(REALSXP, 2*nvar, 2*nvar))); imat = dmatrix(dtemp, 2*nvar, 2*nvar); /* information matrix */ dtemp = REAL(SET_VECTOR_ELT(rlist, 2, allocMatrix(REALSXP, nevent, nvar))); schoen = dmatrix(dtemp, nevent, nvar); /* schoenfeld residuals */ used = imatrix(INTEGER(SET_VECTOR_ELT(rlist, 3, allocMatrix(INTSXP, nstrat, nvar))), nstrat, nvar); /* scratch vectors */ a = (double *) R_alloc(2*nvar*nvar + 2*nvar, sizeof(double)); a2 = a + nvar; cmat = dmatrix(a2+ nvar, nvar, nvar); cmat2= dmatrix(a2+ nvar +nvar*nvar, nvar, nvar); /* count the number of events, per covariate per strata ** if a covariate is constant in the stratum it gets a 0, otherwise ** the number of events in the stratum. The algorithm is fairly ** simple but the code is ugly. Count the number of deaths, then at ** the end of each stratum set used[][] to the number of events or ** to zero for each covariate. */ k = 0; /* first obs of the stratum */ ndead=0; cstrat = strata[sort[0]]; for (i=0; i=0) { /* backwards in time */ person = sort[ip]; if (strata[person] != cstrat) { cstrat= strata[person]; denom = 0; for (i=0; i=0; ip--) { person = sort[ip]; if (xtime[person] != dtime || strata[person] !=cstrat) break; /* walk through the this set of tied times */ risk = exp(eta[person]) * weights[person]; if (status[person] ==0) { denom += risk; /* a contains weighted sums of x, cmat sums of squares */ for (i=0; i0) { /* we need to add to the main terms */ if (method==0) { /* Breslow */ denom += denom2; for (i=0; i #include "survS.h" #include "survproto.h" #include double coxd0(int d, int n, double *score, double *dmat, int dmax) { double *dn; if (d==0) return(1.0); dn = dmat + (n-1)*dmax + d -1; /* pointer to dmat[d,n] */ if (*dn ==0) { /* still to be computed */ *dn = score[n-1]* coxd0(d-1, n-1, score, dmat, dmax); if (d1) d1[indx] += score[n-1]* coxd1(d-1, n-1, score, dmat, d1, covar, dmax); } return(d1[indx]); } double coxd2(int d, int n, double *score, double *dmat, double *d1j, double *d1k, double *d2, double *covarj, double *covark, int dmax) { int indx; indx = (n-1)*dmax + d -1; /*index to the current array member d1[d,n]*/ if (d2[indx] ==0) { /*still to be computed */ d2[indx] = coxd0(d-1, n-1, score, dmat, dmax)*score[n-1] * covarj[n-1]* covark[n-1]; if (d1) d2[indx] += score[n-1] * ( coxd2(d-1, n-1, score, dmat, d1j, d1k, d2, covarj, covark, dmax) + covarj[n-1] * coxd1(d-1, n-1, score, dmat, d1k, covark, dmax) + covark[n-1] * coxd1(d-1, n-1, score, dmat, d1j, covarj, dmax)); } return(d2[indx]); } SEXP coxexact(SEXP maxiter2, SEXP y2, SEXP covar2, SEXP offset2, SEXP strata2, SEXP ibeta, SEXP eps2, SEXP toler2) { int i,j,k; int iter; double **covar, **imat; /*ragged arrays */ double *time, *status; /* input data */ double *offset; int *strata; int sstart; /* starting obs of current strata */ double *score; double *oldbeta; double zbeta; double newlk=0; double temp; int halving; /*are we doing step halving at the moment? */ int nrisk =0; /* number of subjects in the current risk set */ int dsize, /* memory needed for one coxc0, coxc1, or coxd2 array */ dmemtot, /* amount needed for all arrays */ ndeath; /* number of deaths at the current time point */ double maxdeath; /* max tied deaths within a strata */ double dtime; /* time value under current examiniation */ double *dmem0, **dmem1, *dmem2; /* pointers to memory */ double *dtemp; /* used for zeroing the memory */ double *d1; /* current first derivatives from coxd1 */ double d0; /* global sum from coxc0 */ /* copies of scalar input arguments */ int nused, nvar, maxiter; double eps, toler; /* returned objects */ SEXP imat2, beta2, u2, loglik2; double *beta, *u, *loglik; SEXP rlist, rlistnames; int nprotect; /* number of protect calls I have issued */ nused = LENGTH(offset2); nvar = ncols(covar2); maxiter = asInteger(maxiter2); eps = asReal(eps2); /* convergence criteria */ toler = asReal(toler2); /* tolerance for cholesky */ /* ** Set up the ragged array pointer to the X matrix, ** and pointers to time and status */ covar= dmatrix(REAL(covar2), nused, nvar); time = REAL(y2); status = time +nused; strata = INTEGER(PROTECT(duplicate(strata2))); offset = REAL(offset2); /* temporary vectors */ score = (double *) R_alloc(nused+nvar, sizeof(double)); oldbeta = score + nused; /* ** create output variables */ PROTECT(beta2 = duplicate(ibeta)); beta = REAL(beta2); PROTECT(u2 = allocVector(REALSXP, nvar)); u = REAL(u2); PROTECT(imat2 = allocVector(REALSXP, nvar*nvar)); imat = dmatrix(REAL(imat2), nvar, nvar); PROTECT(loglik2 = allocVector(REALSXP, 5)); /* loglik, sctest, flag,maxiter*/ loglik = REAL(loglik2); nprotect = 5; strata[0] =1; /* in case the parent forgot (e.g., no strata case)*/ temp = 0; /* temp variable for dsize */ maxdeath =0; j=0; /* start of the strata */ for (i=0; i0) { /* assign data for the prior stratum, just finished */ /* If maxdeath <2 leave the strata alone at it's current value of 1 */ if (maxdeath >1) strata[j] = maxdeath; j = i; if (maxdeath*nrisk > temp) temp = maxdeath*nrisk; } maxdeath =0; /* max tied deaths at any time in this strata */ nrisk=0; ndeath =0; } dtime = time[i]; ndeath =0; /*number tied here */ while (time[i] ==dtime) { nrisk++; ndeath += status[i]; i++; if (i>=nused || strata[i] >0) break; /*tied deaths don't cross strata */ } if (ndeath > maxdeath) maxdeath = ndeath; } /* data for the final stratum */ if (maxdeath*nrisk > temp) temp = maxdeath*nrisk; if (maxdeath >1) strata[j] = maxdeath; /* Now allocate memory for the scratch arrays Each per-variable slice is of size dsize */ dsize = temp; temp = temp * ((nvar*(nvar+1))/2 + nvar + 1); dmemtot = dsize * ((nvar*(nvar+1))/2 + nvar + 1); if (temp != dmemtot) { /* the subscripts will overflow */ error("(number at risk) * (number tied deaths) is too large"); } dmem0 = (double *) R_alloc(dmemtot, sizeof(double)); /*pointer to memory */ dmem1 = (double **) R_alloc(nvar, sizeof(double*)); dmem1[0] = dmem0 + dsize; /*points to the first derivative memory */ for (i=1; i0) { /* first obs of a new strata */ maxdeath= strata[i]; dtemp = dmem0; for (j=0; j=nused || strata[i] >0) break; } /* We have added up over the death time, now process it */ if (ndeath >0) { /* Add to the loglik */ d0 = coxd0(ndeath, nrisk, score+sstart, dmem0, maxdeath); R_CheckUserInterrupt(); newlk -= log(d0); dmem2 = dmem0 + (nvar+1)*dsize; /*start for the second deriv memory */ for (j=0; j 3) R_CheckUserInterrupt(); u[j] -= d1[j]; for (k=0; k<= j; k++) { /* second derivative*/ temp = coxd2(ndeath, nrisk, score+sstart, dmem0, dmem1[j], dmem1[k], dmem2, covar[j] + sstart, covar[k] + sstart, maxdeath); if (ndeath > 5) R_CheckUserInterrupt(); imat[k][j] += temp/d0 - d1[j]*d1[k]; dmem2 += dsize; } } } } loglik[0] = newlk; /* save the loglik for iteration zero */ loglik[1] = newlk; /* and it is our current best guess */ /* ** update the betas and compute the score test */ for (i=0; i0) { /* first obs of a new strata */ maxdeath= strata[i]; dtemp = dmem0; for (j=0; j=nused || strata[i] >0) break; } /* We have added up over the death time, now process it */ if (ndeath >0) { /* Add to the loglik */ d0 = coxd0(ndeath, nrisk, score+sstart, dmem0, maxdeath); R_CheckUserInterrupt(); newlk -= log(d0); dmem2 = dmem0 + (nvar+1)*dsize; /*start for the second deriv memory */ for (j=0; j 3) R_CheckUserInterrupt(); u[j] -= d1[j]; for (k=0; k<= j; k++) { /* second derivative*/ temp = coxd2(ndeath, nrisk, score+sstart, dmem0, dmem1[j], dmem1[k], dmem2, covar[j] + sstart, covar[k] + sstart, maxdeath); if (ndeath > 5) R_CheckUserInterrupt(); imat[k][j] += temp/d0 - d1[j]*d1[k]; dmem2 += dsize; } } } } /* am I done? ** update the betas and test for convergence */ loglik[3] = cholesky2(imat, nvar, toler); if (fabs(1-(loglik[1]/newlk))<= eps && halving==0) { /* all done */ loglik[1] = newlk; loglik[4] = iter; chinv2(imat, nvar); for (i=1; i #define SMALL -200 /* what to use for log(f(x)) when f(x) gives a zero, i.e., the calling made a really bad guess for beta */ static void exvalue_d(double z, double ans[4], int j); static void logistic_d(double z, double ans[4], int j); static void gauss_d(double z, double ans[4], int j); static void (*sreg_gg)(); #define SPI 2.506628274631001 /* sqrt(2*pi) */ #define ROOT_2 1.414213562373095 double survregc1(int n, int nvar, int nstrat, int whichcase, double *beta, int dist, Sint *strat, double *offset, double *time1, double *time2, double *status, double *wt, double **covar, double **imat, double **JJ, double *u, SEXP expr, SEXP rho, double *dummy, int nf, Sint *frail, double *fdiag, double *jdiag ) { int person, i,j,k; int nvar2; /* nvar + nstrat */ int nvar3; /* nvar2 + nf */ int strata; double eta, sigma; double z, zu, loglik, temp, temp2; double sz; double sig2; double funs[4], ufun[4]; int fgrp =0; /* the =0 to quiet a compiler warning */ double w; /* add "=0" to keep the compiler from worrying about uninitialized vars */ double g=0, dg=0, ddg=0, dsig=0, ddsig=0, dsg=0; switch(dist) { case 1: sreg_gg = exvalue_d; break; case 2: sreg_gg = logistic_d; break; case 3: sreg_gg = gauss_d; break; } nvar2 = nvar + nstrat; nvar3 = nvar2 + nf; loglik =0; if (whichcase==0) { for (i=0; i1) { /* ** multiple scales: pick the right sigma for this obs ** The more common case of a single scale is set 6 lines above */ strata= strat[person] -1; /*S likes to start counting at 1 */ sigma = exp(beta[strata+nvar+nf]); sig2 = 1/(sigma*sigma); } eta =0; for (i=0; i0){ fgrp = frail[person] -1; eta += beta[fgrp]; } sz = (time1[person] - eta); /* sigma * z */ z = sz /sigma; j = status[person]; /*convert to integer */ switch(j) { case 1: /* exact */ (*sreg_gg)(z, funs,1); if (funs[1] <=0) { /* off the probability scale -- avoid log(0), and set the ** derivatives to gaussian limits (almost any deriv will ** do, since the function value triggers step-halving). */ g = SMALL; dg = -z/sigma; ddg = -1/sigma; dsig =0; ddsig=0; dsg=0; } else { g = log(funs[1]) - log(sigma); temp = funs[2]/sigma; temp2= funs[3]*sig2; dg = -temp; dsig= -temp*sz; ddg= temp2 - dg*dg; dsg = sz * temp2 - dg*(dsig +1); ddsig = sz*sz* temp2 - dsig*(1+dsig); dsig -= 1; } break; case 0: /* right censored */ (*sreg_gg)(z, funs,2); if (funs[1] <=0) { g = SMALL; dg = z/sigma; ddg =0; dsig =0; ddsig=0; dsg=0; } else { g = log(funs[1]); temp = -funs[2]/(funs[1]*sigma); temp2= -funs[3]*sig2/funs[1]; dg = -temp; dsig= -temp*sz; ddg= temp2 - dg*dg; dsg = sz * temp2 - dg*(dsig +1); ddsig = sz*sz* temp2 - dsig*(1+dsig); } break; case 2: /* left censored */ (*sreg_gg)(z, funs,2); if (funs[0] <=0) { /* off the probability scale -- avoid log(0) */ g = SMALL; dg = -z/sigma; dsig =0; ddsig=0; dsg=0; ddg =0; } else { g = log(funs[0]); temp = funs[2]/(funs[0]*sigma); temp2= funs[3]*sig2/funs[0]; dg = -temp; dsig= -temp*sz; ddg= temp2 - dg*dg; dsg = sz * temp2 - dg*(dsig +1); ddsig = sz*sz* temp2 - dsig*(1+dsig); } break; case 3: /* interval censored */ zu = (time2[person] - eta)/sigma; /*upper endpoint */ (*sreg_gg)(z, funs, 2); (*sreg_gg)(zu,ufun ,2); if (z>0) temp = funs[1] - ufun[1]; /*stop roundoff in tails*/ else temp = ufun[0] - funs[0]; if (temp <=0) { /* off the probability scale -- avoid log(0) */ g = SMALL; dg = 1; ddg =0; dsig =0; ddsig=0; dsg=0; } else { g = log(temp); dg = -(ufun[2] - funs[2])/(temp*sigma); ddg = (ufun[3] - funs[3])*sig2/temp - dg*dg; dsig = (z*funs[2] - zu*ufun[2])/temp; ddsig= ((zu*zu*ufun[3] - z*z*funs[3])/temp) - dsig*(1+dsig); dsg = ((zu*ufun[3] - z*funs[3])/ (temp*sigma)) - dg * (dsig +1); } break; } loglik += g * wt[person]; /*if (person<8) fprintf(stderr, "i=%d, g=%g, dg=%g, ddg=%g, dsg=%g\n", person, g, dg, ddg, dsg);*/ /* ** Now the derivs wrt loglik ** Remember that the "x" for a sparse term is 1 */ if (whichcase==1) continue; /*only needed the loglik */ w = wt[person]; if (nf>0) { u[fgrp] += dg * w; fdiag[fgrp] -= ddg * w; jdiag[fgrp] += dg*dg *w; } for (i=0; i0) { imat[i][fgrp] -= covar[i][person] * ddg * w; JJ [i][fgrp] += temp * dg; } } if (nstrat!=0) { /* need derivative wrt log sigma */ k = strata+nvar; u[k+nf] += w* dsig; for (i=0; i0) { imat[k][fgrp] -= dsg * w; JJ [k][fgrp] += dsig *dg *w; } } } return(loglik); } /* ** Case ans[0] ans[1] ans[2] ans[3] ** 1 f f'/f f''/ f ** 2 F 1-F f f' ** ** We do both F and 1-F to avoid the error in (1-F) for F near 1 */ static void logistic_d(double z, double ans[4], int j) { double w, temp; int sign, ii; /* ** The symmetry of the logistic allows me to be careful, and never take ** exp(large number). This routine should be very accurate. */ if (z>0) { w = exp(-z); sign = -1; ii=0; } else { w = exp(z); sign = 1; ii=1; } temp = 1+w; switch(j) { case 1: ans[1] = w/(temp*temp); ans[2] = sign*(1-w)/temp; ans[3] = (w*w -4*w +1)/(temp*temp); break; case 2: ans[1-ii] = w/temp; ans[ii] = 1/temp; ans[2] = w/(temp*temp); ans[3] = sign*ans[2]*(1-w)/temp; break; } } static void gauss_d(double z, double ans[4], int j) { double f; f = exp(-z*z/2) /SPI; switch(j) { case 1: ans[1] =f; ans[2] = -z; ans[3] = z*z -1; break; case 2: if (z>0) { ans[0] = (1 + erf(z/ROOT_2))/2; ans[1] = erfc(z/ROOT_2) /2; } else { ans[1] = (1 + erf(-z/ROOT_2))/2; ans[0] = erfc(-z/ROOT_2) /2; } ans[2] = f; ans[3] = -z*f; break; } } /* ** In the Gaussian and logistic cases, I could avoid numeric disaster by only ** evaluating exp(x) for x<0. By symmetry, I got what I need for ** x >0. The extreme value dist, howerver, is asymmetric, and I don't yet ** see the appropriate numeric tricks. ** Perhaps a Taylor series will could be used for large z. */ static void exvalue_d(double z, double ans[4], int j) { double temp; double w; if (z < SMALL) w= exp(SMALL); else if (-z < SMALL) w = exp(-SMALL); /* stop infinite answers */ else w = exp(z); temp = exp(-w); switch(j) { case 1: ans[1] = w*temp; ans[2] = 1-w; ans[3] = w*(w-3) +1; break; case 2: ans[0] = 1-temp; ans[1] = temp; ans[2] = w*temp; ans[3] = w*temp*(1-w); break; } } survival/src/survfit4.c0000644000176200001440000000200613537676603014664 0ustar liggesusers/* ** C routine to do a small computation that is hard in Splus ** ** n = number of observations ** d = number of deaths ** x1, x2 = ingredients in the sums ** ** If d=0, then new x1 = new x2 =1 (fill in value) ** d=1, new x1 = 1/x1, ** new x2 = (1/x1)^2 ** d=2, new x1 = (1/2) [ 1/x1 + 1/(x1 - x2/2)] ** new x2 = (1/2) [ same terms, squared] ** d=3 new x1 = (1/3) [ 1/x1 + 1/(x1 - x2/3) + 1/(x1 - 2*x2/3)] ** etc. */ #include "survS.h" #include "survproto.h" void survfit4(Sint *n, Sint *dd, double *x1, double *x2) { double temp, temp1, temp2; int i,j; double d; for (i=0; i< *n; i++) { d = dd[i]; if (d==0) { x1[i] =1; x2[i] =1; } else if (d==1){ temp = 1/x1[i]; x1[i] = temp; x2[i] = temp*temp; } else { temp1 = 1/x1[i]; temp2 = temp1 * temp1; for (j=1; j #include "survS.h" #include "survproto.h" void coxscho(Sint *nusedx, Sint *nvarx, double *y, double *covar2, double *score, Sint *strata, Sint *method2, double *work) { int i,k,person; int nused, nvar; double **covar; double *a; double *a2; double *mean; double denom, weight; double time; double temp; double method; double deaths; double efron_wt; double *start, *stop, *event; nused = *nusedx; nvar = *nvarx; method= *method2; /* ** Set up the ragged arrays */ covar= dmatrix(covar2, nused, nvar); a = work; a2= a+nvar; mean = a2+nvar; start =y; stop =y + nused; event =y + nused +nused; /* ** Now walk through the data */ for (person=0; person #include "survS.h" #include "survproto.h" void coxmart(Sint *sn, Sint *method, double *time, Sint *status, Sint * strata, double *score, double *wt, double *expect) { int i,j; int lastone; int n; double deaths, denom=0, e_denom=0; double hazard; double temp, wtsum; double downwt; n = *sn; strata[n-1] =1; /* Failsafe */ /* Pass 1-- store the risk denominator in 'expect' */ for (i= n -1; i>=0; i--) { if (strata[i]==1) denom =0; denom += score[i]*wt[i]; if (i==0 || strata[i-1]==1 || time[i-1]!=time[i]) expect[i] = denom; else expect[i] =0; } /* Pass 2-- now do the work */ deaths=0; wtsum =0; e_denom=0; hazard =0; lastone = 0; for (i= 0; i>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=10) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #ensure default library("survival") @ \title{Multi-state models and competing risks} \author{Terry Therneau \and Cynthia Crowson \and Elizabeth Atkinson} \newcommand{\code}[1]{\texttt{#1}} \begin{document} \maketitle \section{Multi-state models} \begin{figure} <>= oldpar <- par(mar=c(.1, .1, .1, .1), mfrow=c(2,2)) cmat1 <- matrix(c(0,0,1,0), nrow=2, dimnames=list(c("Alive", "Dead"), c("Alive", "Dead"))) statefig(c(1,1), cmat1, cex=1.5) state4 <- c("0", "1", "2", "...") cmat4 <- matrix(0, 4,4, dimnames= list(state4, state4)) cmat4[1,2] <- cmat4[2,3] <- cmat4[3,4] <- 1 statefig(c(1,1,1,1), cmat4, bcol=c(1,1,1,0), cex=c(1.5, 1.5, 1.5, 3)) states <- c("A", "D1", "D2", "D3") cmat2 <- matrix(0, 4,4, dimnames=list(states, states)) cmat2[1, -1] <- 1 statefig(c(1,3), cmat2, cex=1.5) state3 <- c("Health", "Illness", "Death") cmat3 <- matrix(0, 3, 3, dimnames = list(state3, state3)) cmat3[1,2] <- cmat3[2,1] <- cmat3[-3, 3] <- 1 statefig(c(1,2), cmat3, offset=.03, cex=1.5) state4 <- c("0", "1", "2", "...") cmat4 <- matrix(0, 4,4, dimnames= list(state4, state4)) cmat4[1,2] <- cmat4[2,3] <- cmat4[3,4] <- 1 statefig(c(1,1,1,1), cmat4, bcol=c(1,1,1,0), cex=c(1.5, 1.5, 1.5, 3)) par(oldpar) @ \caption{Four multi-state models. The upper left panel depicts simple survival, the upper right depicts sequential events, the lower left is an example of competing risks, and the lower right panel is a multi-state illness-death model.} \label{mfig1} \end{figure} A multi-state model is used to model a process where subjects transition from one state to the next. For instance, a standard survival curve can be thought of as a simple multi-state model with two states (alive and dead) and one transition between those two states. A diagram illustrating this process is shown in the top left corner of figure \ref{mfig1}. In these types of diagrams, each box is a state and each arrow is a possible transition. The lower left diagram depicts a classic competing risk analysis, where all subjects start on the left and each subject can make a single transition to one of 3 terminal states. The bottom right diagram shows a common multi-state situation known as the illness-death model with recovery. Finally, the upper right diagram represents sequential events, such as repeated infections in the CGD study. In that case one subject had 8 events so there are 9 states corresponding to entry into the study (0 infections) and the first, second, \ldots, eighth events. As will be shown below, there are often multiple choices for the state and transition diagram, and for some data sets it is revealing to look at a problem from multiple views. In addition to deciding the diagram that best matches the research questions, the two other primary decisions are the choice of time scale for the fits, e.g., time from entry in the study vs. time from entry in the state, and what covariates will be used. \section{Multi-state curves} \subsection{Aalen-Johansen estimate} As a starting point for the analysis, it is important to compute and plot estimates of $p(t)$, which is a vector containing the probability of being in each of the states at time $t$. If there is no censoring then $p$ becomes a simple tabulation at time $t$ of all the states. For the general case, we compute this using the Aalen-Johansen estimate via the \code{survfit} function. Mathematically the estimate is simple. For each unique time where an event occurs, form the transition matrix $T(t)$ with elements or rates of $\lambda_{ij}(t) =$ the fraction of subjects who transition from state $i$ to $j$ at time $t$, among those in state $i$ just prior to time $t$. ($T$ is equal to the identity matrix at any time point without an observed transition.) Then \begin{equation} p(t) = p(0) \prod_{s \le t} T(s) \label{AJ} \end{equation} where $p(0)$ is the initial distribution of subjects. Let's work this out for the simple two-state alive $\rightarrow$ {death} model. Let $n(t)$ be the number of subjects still at risk at time $t$ and $d(t)$ the number of deaths at that time point. All subjects start in the alive state and thus $p(0) = (1,0)$ and the transition matrix is \begin{equation*} T(s) = \left( \begin{array}{cc} \frac{n(s)- d(s)}{n(s)} & \frac{d(s)}{n(s)} \\\\ 0 & 1 \end{array} \right) \end{equation*} The two rows are ``start in state 1 (alive)'' and ``start in state 2'' and the two colums are ``finish in state 1'', ``finish in state 2 (death)''. The second row corresponds to the fact that death is an absorbing state: the probability of a death $\rightarrow$ alive transition (lower left element) is 0. Writing out the matrices for the first few transitions and multiplying them leads to \begin{equation} p_1(t) = \prod_{s \le t} \left[n(s) - d(s)\right] /n(s) \label{km} \end{equation} which we recognize as the Kaplan-Meier estimate of survival. For the two state alive-dead model the Aalen-Johansen (AJ) estimate has reprised the KM. In the competing risks case $p(t)$ has an alternate form known as the \emph{cumulative incidence} (CI) function \begin{equation} CI_k(t) = \int_0^t \lambda_k(u) S(u) du \label{cuminc} \end{equation} where $\lambda_k$ is the incidence function for outcome $k$, and $S$ is the overall survival curve for ``time to any endpoint''. Repeating the same matrix exercise for the competing risks, i.e. writing out the Aalen-Johansen computation, exactly recovers the CI formula. The CI is also a special case of the Aalen-Johansen. (The label ``cumulative incidence'' is one of the more unfortunate ones in the survival lexicon, since we normally use `incidence' and `hazard' as interchangeable synonyms but the CI is \emph{not} a cumulative hazard.) The AJ estimate is very flexible; subjects can visit multiple states during the course of a study, subjects can start after time 0 (delayed entry), and they can start in any of the states. The \code{survfit} function implements the AJ estimate and will handle all these cases. The standard error of the estimates is computed using an infinitesimal jackknife. Let $D(t)$ be a matrix with one row per subject and one column per state. Each row contains the \emph{change} in $p(t)$ corresponding to subject $i$, i.e., the derivative of $p$ with respect to the $i$th subject's case weight $dp(t)/dw_i$. Then $V(t) = D'WD$ is the estimated variance-covariance matrix of the estimates at time $t$, where $W$ is a diagonal matrix of observation weights. If a single subject is represented by multiple rows in the data set, then $D$ is first collapsed to have one row per subject, the new row for subject $i$ is the sum of the rows for the observations that represented the subject. This is essentially the same algorithm as the robust variance for a Cox model. For simple two state alive -> dead model without case weights, the IJ estimate of variance is identical to the traditional Greenwood estimate for the variance of the survival curve $S$. (This was a surprise when we first observed it; proving the equivalence is not straightforward.) The $p(t)$ vector obeys the obvious constraint that its sum at any time is equal to one; i.e., each person has to be somewhere. We will use the phrase \emph{probability in state} or simply $p$ when referring to the vector. In the simple two state model Pr(alive) is the usual KM survival estimate, and we have $p_1(t) = 1- p_2(t)$, Pr(alive) = 1 - Pr(dead). Plots for the 2 state case sometimes choose to show Pr(alive) and sometimes Pr(dead). Which one is used often depends on a historical whim of the disease specialty; cardiology journals for instance quite often use Pr(event) resulting in curves that rise starting from zero, while oncology journals invariably use Pr(alive) giving curves that fall downhill from 1. The \code{survfit} routine's historical default for the 2 state case is to print and plot Pr(alive)= $p_1(t)$, which reflects that the author of the routine was working primarily in cancer trials at the time said default was chosen. For simple survival we have gotten used to the idea of using Pr(dead) and Pr(alive) interchangeably, but that habit needs to be left behind for multi-state models, as curves of $1-p_k(t)$ = probability(any other state than $k$) are not useful. In the multi-state case, some curves will rise and then fall. For competing risks the curve for the initial state (leftmost in the diagram) is rarely included in the final plot. Since the curves sum to 1, the full set is redundant. Pr(nothing yet) is usually the least interesting of the set and so it is left off to make the plot less busy. The remaining curves in the competing risks case rise from 0. (This bothers some researchers as it `just looks wrong' to them.) \subsection{Examples} \begin{figure} <>= par(mar=c(.1, .1, .1, .1)) frame() oldpar <- par(usr=c(0,100,0,100)) # first figure xx <- c(0, 10, 10, 0) yy <- c(0, 0, 10, 10) polygon(xx +10, yy+70) temp <- c(60, 80) for (j in 1:2) { polygon(xx + 30, yy+ temp[j]) arrows(22, 70 + 3*j, 28, temp[j] +5, length=.1) } text(c(15, 35, 35), c(75, 65, 85),c("Entry", "Death", "PCM")) text(25, 55, "Competing Risk") # Second figure polygon(xx +60, yy+70) for (j in 1:2) { polygon(xx + 80, yy+ temp[j]) arrows(72, 70+ 3*j, 78, temp[j] +5, length=.1) } text(50+ c(15, 35, 35), c(75, 65, 85),c("Entry", "Death", "PCM")) arrows(85, 78, 85, 72, length=.1) text(75, 55, "Multi-state 1") # third figure polygon(xx+10, yy+25) temp <- c(15, 35) for (j in 1:2) { polygon(2*xx +30, yy + temp[j]) arrows(22, 25 + 3*j, 28, temp[j] +5, length=.1) } text(c(15, 40, 40), c(30, 20, 40),c("Entry", "Death w/o PCM", "PCM")) polygon(2*xx + 60, yy+temp[2]) arrows(52, 40, 58, 40, length=.1) text(70, 40, "Death after PCM") text(40, 10, "Multi-state 2") @ \caption{Three models for the MGUS data.} \label{mfig2} \end{figure} Start with a simple competing risks problem as illustrated in the first diagram of figure \ref{mfig2}. The \code{mgus2} data set contains the time to plasma cell malignancy (PCM) and/or death for 1384 subjects diagnosed with monoclonal gammopathy of undetermined significance (MGUS). Survival and progression time are in months. The code below creates an ordinary Kaplan-Meier curve of post-diagnosis survival for these subjects, along with a histogram of age at diagnosis. The mean age at diagnosis is just over 70 years. <>= oldpar <- par(mfrow=c(1,2)) hist(mgus2$age, nclass=30, main='', xlab="Age") with(mgus2, tapply(age, sex, mean)) mfit1 <- survfit(Surv(futime, death) ~ sex, data=mgus2) mfit1 plot(mfit1, col=c(1,2), xscale=12, mark.time=FALSE, lwd=2, xlab="Years post diagnosis", ylab="Survival") legend("topright", c("female", "male"), col=1:2, lwd=2, bty='n') par(oldpar) @ The xscale and yscale arguments to \code{plot.survfit} affect only the axis labels, not the data. Further additions to the plot region such as \code{legend}, \code{lines}, or \code{text} remain in the original scale. This simplifies programmatic additions such as adding another curve to the plot, while making interactive additions such as a legend somewhat less simple. As a second model for these subjects we will use competing risks (CR), where PCM and death without malignancy are the two terminal states, as shown in the upper left of figure \ref{mfig2}. In a CR model we are only interested in the first event for each subject. Formally we are treating progression to a PCM as an \emph{absorbing state}, i.e., one that subjects never exit. We create a variable \code{etime} containing the time to the first of progression, death, or last follow-up along with an event variable that contains the outcome. The starting data set \code{mgus2} has two pairs of variables \code{(ptime, pstat)} that contain the time to progression and \code{(futime, status)} that contain the time to death or last known alive. The code below creates the necessary \code{etime} and \code{event} variables, then computes and plots the competing risks estimate. <>= etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) event <- factor(event, 0:2, labels=c("censor", "pcm", "death")) table(event) mfit2 <- survfit(Surv(etime, event) ~ sex, data=mgus2) print(mfit2, rmean=240, scale=12) mfit2$transitions plot(mfit2, col=c(1,2,1,2), lty=c(2,2,1,1), mark.time=FALSE, lwd=2, xscale=12, xlab="Years post diagnosis", ylab="Probability in State") legend(240, .6, c("death:female", "death:male", "pcm:female", "pcm:male"), col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n') @ The \code{mfit2} call is nearly identical to that for an ordinary Kaplan-Meier, with the exception of the \code{event} variable. \begin{enumerate} \item The event variable was created as a \emph{factor}, whereas for ordinary single state survival the status is either 0/1 or TRUE/FALSE. The first level of the factor must be censoring, which is the status code for those whose follow-up terminated without reaching a new endpoint. Codes for the remaining states can be in any order. The labels for the states are unrestricted, e.g., the first one does not have to be ``censor''. (It will be treated as `no event at this time', whatever the label.) \item A simple print of the \code{mfit2} object shows the order in which the curves will be displayed. This information was used to choose the line types and colors for the curves. \item The \code{mfit2} object contains curves for all the states, but by default the entry state will not be plotted. The remaining curves all start at 0. \item The transitions component of the result is useful as a data check, e.g., if it showed a transition from death to PCM. \item Each subject's initial state can be specified by the \code{istate} argument. When this is omitted all subjects are assumed to start from an entry state named '(s0)'. This default name is an amalgam of ``state 0'', a label sometimes used in textbooks for the leftmost box, and an R convention of using () for constructed names, e.g., `(Intercept)' from an lm() call. \end{enumerate} The printout shows that a male subject will spend, on average, 8.7 of his first 20 years post diagnosis in the entry state, 1.1 years in the PCM state and 10.3 of those 20 in the death state. If a cutoff time is not given the default is to use the maximum observed time for all curves, which is 424 months in this case. The result of a multi-state \code{survfit} is a matrix of probabilities with one row per time and one column per state. These are contained in the probability-in-state (\code{pstate}) component of the resulting survfit object. Since the three MGUS states of entry/pcm/death must sum to 1 at any given time (everyone has to be somewhere), one of the three curves is redundant and the ``fraction still in the entry state'' curve is normally the least interesting. By default, any state with the label `(s0)' is left off of the plot; which is the default value of the \code{noplot} option of \code{plot.survfit}. One can easily plot all of the states by setting the option to NULL. A common mistake with competing risks is to use the Kaplan-Meier separately on each event type while treating other event types as censored. The next plot is an example of this for the PCM endpoint. <>= pcmbad <- survfit(Surv(etime, pstat) ~ sex, data=mgus2) plot(pcmbad[2], lwd=2, fun="event", conf.int=FALSE, xscale=12, xlab="Years post diagnosis", ylab="Fraction with PCM") lines(mfit2[2,"pcm"], lty=2, lwd=2, mark.time=FALSE, conf.int=FALSE) legend(0, .25, c("Males, PCM, incorrect curve", "Males, PCM, competing risk"), col=1, lwd=2, lty=c(1,2), bty='n') @ There are two problems with the \code{pcmbad} fit. The first is that it attempts to estimate the expected occurrence of plasma cell malignancy (PCM) if all other causes of death were to be disallowed. In this hypothetical world it is indeed true that many more subjects would progress to PCM (the incorrect curve is higher), but it is also not a world that any of us will ever inhabit. This author views the result in much the same light as discussions of survival after the zombie apocalypse. The second problem is that the computation for this hypothetical case is only correct if all of the competing endpoints are independent, a situation which is almost never true. We thus have an unreliable estimate of an uninteresting quantity. The competing risks curve, on the other hand, estimates the fraction of MGUS subjects who \emph{will experience} PCM, a quantity sometimes known as the lifetime risk, and one which is actually observable. The last example chose to plot only a subset of the curves, something that is often desirable in competing risks problems to avoid a ``tangle of yarn'' plot that simply has too many elements. This is done by subscripting the \code{survfit} object. For subscripting, multi-state curves behave as a matrix with the outcomes as the second subscript. The columns are in order of the levels of \code{event}, i.e., as displayed by our earlier call to \code{table(event)}. The first subscript indexes the groups formed by the right hand side of the model formula, and will be in the same order as simple survival curves. Thus \code{mfit2[2,1]} corresponds to males (2) and the PCM endpoint (1). Curves are listed and plotted in the usual matrix order of R. A third example using the MGUS data treats it as a multi-state model and it shown in the upper right of figure \ref{mfig2}. In this version a subject can have multiple transitions and thus multiple rows in the data set. In this case it is necessary to identify which data rows go with which subject via the \code{id} argument of \code{survfit}; valid estimates of the curves and their standard errors both depend on this. Our model looks like the illness-death model of figure \ref{mfig1} but with ``PCM'' as the upper state and no arrow for a return from that state to health. The necessary data set will have two rows for any subject who has further follow-up after a PCM and a single row for all others. The data set is created below using the \code{tmerge} function, which is discussed in detail in another vignette. We need to decide what to do with the 9 subjects who have PCM and death declared at the same month. (Some of these were cancer cases discovered at autopsy.) They slipped through without comment in the earlier competing risks analysis; only when setting up this second data set did we notice the ties. Looking back at the code, the prior example counted these subjects as a progression. In retrospect this is a defensible choice: even though undetected before death, the disease must have been present for some amount of time previous and so progression did occur first. For the multi-state model we need to be explicit in how this is coded since a sojourn time of 0 within a state is not allowed. Below we push the progression time back by .1 month when there is a tie, but that amount is entirely arbitrary. Since there are 3 possible transitions we will call the data set \code{data3}. <>= ptemp <- with(mgus2, ifelse(ptime==futime & pstat==1, ptime-.1, ptime)) data3 <- tmerge(mgus2, mgus2, id=id, death=event(futime, death), pcm = event(ptemp, pstat)) data3 <- tmerge(data3, data3, id, enum=cumtdc(tstart)) with(data3, table(death, pcm)) @ The table above shows that there are no observations in \code{data3} that have both a PCM and death, i.e., the ties have been resolved. The last \code{tmerge} line above creates a variable \code{enum} which simply counts rows for each person, which is often useful. <>= temp <- with(data3, ifelse(death==1, 2, pcm)) data3$event <- factor(temp, 0:2, labels=c("censor", "pcm", "death")) mfit3 <- survfit(Surv(tstart, tstop, event) ~ sex, data=data3, id=id) print(mfit3, rmean=240, digits=2) mfit3$transitions plot(mfit3[,"pcm"], mark.time=FALSE, col=1:2, lty=1:2, lwd=2, xscale=12, xlab="Years post MGUS diagnosis", ylab="Fraction in the PCM state") legend(40, .4, c("female", "male"), lty=1:2, col=1:2, lwd=2, bty='n') @ This plot is quite different in that it shows the fraction of subjects \emph{currently} in the PCM state. Looking at our multi-state diagram this is the fraction of subjects in the upper right PCM box. The curve goes up whenever someone enters the box (progression) and down when they leave (death). Myeloma survival was quite short during the era of this study --- most subjects died within 1 year of PCM --- and the proportion currently in the PCM state rarely rises above 2 percent. The result of \code{print(mfit3)} reveals, as expected, less time spent in the PCM state. In the prior \code{mfit2} model, subjects who enter that state remain there for the duration; in this one they quickly pass through. It is worthwhile to check the \code{transitions} table in the output, simply as a data check, since an error in creating the input data can lead to surprising counts and an even more surprising curve. In this case it shows subjects going from the entry state to PCM and death along with transitions from PCM to death. This is as expected. We have often found the three curve display shown below useful in the case of a transient state. It combines the results from competing risk model used above along with a second fit that treats death after PCM as a separate state from death before progression, the \emph{multi-state 2} model of figure \ref{mfig2}. In this plot the fraction of subjects currently in the PCM state is shown by the distance between the two curves. Only males are shown in the plot to minimize overlap. <>= # Death after PCM will correspond to data rows with # enum = 2 and event = death d2 <- with(data3, ifelse(enum==2 & event=='death', 4, as.numeric(event))) e2 <- factor(d2, labels=c("censor", "pcm", "death w/o pcm", "death after pcm")) mfit4 <- survfit(Surv(tstart, tstop, e2) ~ sex, data=data3, id=id) plot(mfit2[2,], lty=c(1,2), xscale=12, mark.time=FALSE, lwd=2, xlab="Years post diagnosis", ylab="Probability in State") lines(mfit4[2,4], mark.time=FALSE, col=2, lty=1, lwd=2, conf.int=FALSE) legend(200, .5, c("Death w/o PCM", "ever PCM", "Death after PCM"), col=c(1,1,2), lty=c(2,1,1), lwd=2, bty='n', cex=.82) @ \subsection{Further notes} The Aalen-Johansen method used by \code{survfit} does not account for interval censoring, also known as panel data, where a subject's current state is recorded at some fixed time such as a medical center visit but the actual times of transitions are unknown. Such data requires further assumptions about the transition process in order to model the outcomes and has a more complex likelihood. The \code{msm} package, for instance, deals with data of this type. If subjects reliably come in at regular intervals then the difference between the two results can be small, e.g., the \code{msm} routine estimates time until progression \emph{occurred} whereas \code{survfit} estimates time until progression was \emph{observed}. \begin{itemize} \item When using multi-state data to create Aalen-Johansen estimates, individuals are not allowed to have gaps in the middle of their time line. An example of this would be a data set with (0, 30, pcm] and (50,70, death] as the two observations for a subject where the time from 30-70 is not accounted for. \item Subjects must stay in the same group over their entire observation time, i.e., variables on the right hand side of the equation cannot be time-dependent. \item A transition to the same state is allowed, e.g., observations of (0,50, 1], (50, 75, 3], (75, 89, 4], (89, 93, 4] and (93, 100, 4] for a subject who goes from entry to state 1, then to state 3, and finally to state 4. However, a warning message is issued for the data set in this case, since stuttering may instead be the result of a coding mistake. The same result is obtained if the last three observations were collapsed to a single row of (75, 100, 4]. \end{itemize} \section{Rate models} For simple two-state survival, the Cox model leads to three relationships \begin{align} \lambda(t) &= \lambda_0(t) e^{X\beta} \label{hazard} \\ \Lambda(t) &= \Lambda_0(t) e^{X\beta} \label{cumhaz}\\ S(t) &= \exp(-\Lambda(t)) \label{surv} \end{align} where $\lambda$, $\Lambda$ and $S$ are the hazard, cumulative hazard and survival functions, respectively. There is a single linear predictor which governs both the rate $\lambda$ (the arrow in figure \ref{mfig1}) and probability of residing in the left hand box of the figure. For multi-state models this simplicity no longer holds; proportional hazards does not lead to proportional $p(t)$ curves. There is a fundamental dichotomy in the analysis namely that \begin{itemize} \item hazards can be computed one at a time, \item probability in state must be done for all states at once. \end{itemize} The analysis of multi-state data has four key steps. In order of importance: \begin{enumerate} \item Draw a box and arrow figure describing the model. \item Think through the rates (arrows). \begin{enumerate} \item Which covariates should be attached to each rate? Sometimes a covariate is important for one transition, but not for another. \item For which transitions should one or more of the covariates be constrained to have the same coefficient? Sometimes there will be a biologic rationale for this. For other studies an equivalence is forced simply because we have too many unknowns and cannot accommodate them all. (This is the same reason that models often contain very few interaction terms). \item Which, if any, of the transitions should share the same baseline hazard? Most of the time the baseline rates are all assumed to be different. \item Should there be random effects, and if so what is an appropriate correlation structure? Do some pairs of transitions have a shared effect, some pairs separate effects and others no random effect? Mixed effects Cox models tend to need larger sample size --- does the data set have enough events? \end{enumerate} \item Build an appropriate data set. \item Fit the data. Examine multiple summaries of the model fit, including the predicted occupancy curves. \end{enumerate} Step 1 is key to the entire endeavor. We saw in figure \ref{mfig2} and the examples above that multiple views of a multi-state process can be useful, and this will hold for modeling as well. Step 3 will often be the one that demands the most attention to detail. \subsection{MGUS example} Start with the simplest model for the MGUS data: a competing risks model (upper left diagram of figure \ref{mfig2}), distinct baseline hazards for the two rates, no shared coefficients, and three covariates. <>= options(show.signif.stars = FALSE) # display intelligence cfit1 <- coxph(Surv(etime, event) ~ age + sex + mspike, mgus2, id=id) cfit1$cmap print(cfit1, digits=2) @ This above call fits both endpoints at once. The resulting R object contains a single vector of coefficients, the \code{cmap} component documents which goes with which endpoint and is used by the print routine to organize the printout. We see that the effect of age and sex on non-PCM mortality is profound, which is not a surprise given the median starting age of \Sexpr{median(mgus2$age)}. Risk rises \Sexpr{round(exp(10*coef(cfit1)[4]),1)} fold per decade of age and the death rate for males is \Sexpr{round(exp(coef(cfit1)[5]),1)} times as great as that for females. The size of the serum monoclonal spike has almost no impact on non-PCM mortality. A 1 unit increase changes mortality by only 6\%. The mspike size has a major impact on progression, however; each 1 gram change increases risk by \Sexpr{round(exp(coef(cfit1)[3]) ,1)} fold. The interquartile range of \code{mspike} is 0.9 gram so this risk increase is clinically important. The effect of age on the progression rate is much less pronounced, with a coefficient only 1/4 that for mortality, while the effect of sex on progression is completely negligible. The effect of sex on the \emph{lifetime} probability of PCM is not zero, however. Because females live longer, a female with MGUS will on average spend more total years at risk for PCM than the average male, and so has a larger lifetime risk of PCM. The average rate of progression is about 1\% per year, as shown below, while the mean post diagnosis lifetime is 19 months longer for females. The overall effect is a 1.6\% increase in lifetime risk. <>= pfit1 <- pyears(Surv(ptime, pstat) ~ sex, mgus2, scale=12) round(100* pfit1$event/pfit1$pyears, 1) # PCM rate per year temp <- summary(mfit1, rmean="common") #print the mean survival time round(temp$table[,1:6], 1) @ The same Cox model coefficients can also be obtained by fitting separate models for the PCM and death endpoint, censoring cases that fail due to the other cause. Hazards can be computed one at a time. When computing $p(t)$, on the other hand, all the rates must be considered at once, it is necessary to use the joint fit \code{cfit1} above. We create predicted curves for four hypothetical subjects below. <>= dummy <- expand.grid(sex=c("F", "M"), age=c(60, 80), mspike=1.2) dummy csurv <- survfit(cfit1, newdata=dummy) dim(csurv) @ The resulting set of Aalen-Johansen estimates can be indexed as though it were an array. There is only one stratum (the Cox model did not have strata), four hypothetical subjects, and 3 states. (When there is only a single stratum, as here, the subscript method allows that index to be omitted, for backwards compatability). <>= plot(csurv[,,'pcm'], xmax=25*12, xscale=12, xlab="Years after MGUS diagnosis", ylab="PCM", col=1:2, lty=c(1,1,2,2), lwd=2) legend(10, .14, outer(c("female", "male "), c("diagnosis at age 60", "diagnosis at age 80"), paste, sep=", "), col=1:2, lty=c(1,1,2,2), bty='n', lwd=2) @ The individual survival curves that would result from fitting each endpoint separately are not actually of interest, since each will be a Cox model analog of the pcmbad curve we criticized earlier. The coxph fits showed that sex has nearly no effect on the hazard of PCM, i.e., on any given day the risk of conversion for a male is essentially the same as for a female of the same age. Yet we see above that the fitted Cox models predict a higher lifetime risk for females; this is due to a longer lifespan. The age effect on lifetime risk that is far from proportional: the 80 year curves flatten out while predictions for the younger subjects do not. Very few subjects acquire PCM more than 15 years after a MGUS diagnosis at age 80 for the obvious reason: very few of them will still be alive. <>= # Print out a M/F results at 20 years temp <- summary(csurv, time=20*12)$pstate cbind(dummy, PCM= round(100*temp[,,2], 1)) @ The above table shows that females are predicted to have a higher risk of 20 year progression, even though their hazard at any given moment is nearly identical to males. The female/male difference at 20 years is on the order of our ``back of the napkin'' person-years estimate of 1\% progression per year * 1.7 more years of life for the females, but the progression fraction varies substantially by group. \section{Fine-Gray model} For the competing risk case the Fine-Gray model provides an alternate way of looking at the data. As we saw above, the impact of a particular covariate on the final values $P$ can be complex, even if the models for the hazards are relatively simple. The primary idea of the Fine-Gray approach is to turn the multi-state problem into a collection of two-state ones. In the upper right diagram of figure 1, draw a circle around all of the states except the chosen endpoint and collapse them into a single meta-state. For the MGUS data these are \begin{itemize} \item Model 1 \begin{itemize} \item left box: All subjects in the entry or ``death first'' state \item right box: PCM \end{itemize} \item Model 2 \begin{itemize} \item left box: All subjects in the entry or ``PCM first'' state \item right box: Death (without PCM) \end{itemize} \end{itemize} An interesting aspect of this is that the fit can be done as a two stage process: the first stage creates a special data set while the second fits a weighted \code{coxph} or \code{survfit} model to the data. The data set can be created using the \code{finegray} command. <>= # (first three lines are identical to an earlier section) etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) event <- factor(event, 0:2, labels=c("censor", "pcm", "death")) pcmdat <- finegray(Surv(etime, event) ~ ., data=mgus2, etype="pcm") pcmdat[1:4, c(1:3, 11:14)] deathdat <- finegray(Surv(etime, event) ~ ., data=mgus2, etype="death") dim(pcmdat) dim(deathdat) dim(mgus2) @ The \code{finegray} command has been used to create two data sets: one for the PCM endpoint and one for the death endpoint. In each, four new variables have been added containing a survival time \code{(fgstart, fgstop, fgstatus)} with an `ordinary' status of 0/1, along with a case weight and a large number of new rows. We can use this new data set as yet another way to compute multi-state survival curves, though there is no good reason to use this rather roundabout approach instead of the simpler \code{survfit(Surv(etime, event) \textasciitilde sex)}. <>= # The PCM curves of the multi-state model pfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~ sex, data=pcmdat, weight=fgwt) # The death curves of the multi-state model dfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~ sex, data=deathdat, weight=fgwt) @ Inspection shows that the two new curves are almost identical to the prior estimates based on the Aalen-Johansen estimate (\code{mfit2}), and in fact would be identical if we had accounted for the slightly different censoring patterns in males and females (by adding \code{strata(sex)} to the right hand side of the \code{finegray} formulas). A Cox model fit to the constructed data set yields the Fine-Gray models for PCM and for death. <>= fgfit1 <- coxph(Surv(fgstart, fgstop, fgstatus) ~ sex, data=pcmdat, weight= fgwt) summary(fgfit1) fgfit2 <- coxph(Surv(fgstart, fgstop, fgstatus) ~ sex, data=deathdat, weight= fgwt) fgfit2 mfit2 <- survfit(Surv(etime, event) ~ sex, data=mgus2) #reprise the AJ plot(mfit2[,'pcm'], col=1:2, lwd=2, xscale=12, conf.times=c(5, 15, 25)*12, xlab="Years post diagnosis", ylab="Fraction with PCM") ndata <- data.frame(sex=c("F", "M")) fgsurv1 <- survfit(fgfit1, ndata) lines(fgsurv1, fun="event", lty=2, lwd=2, col=1:2) legend("topleft", c("Female, Aalen-Johansen", "Male, Aalen-Johansen", "Female, Fine-Gray", "Male, Fine-Gray"), col=1:2, lty=c(1,1,2,2), bty='n') # rate models with only sex cfitr <- coxph(Surv(etime, event) ~ sex, mgus2, id=id) rcurve <- survfit(cfitr, newdata=ndata) #lines(rcurve[, 'pcm'], col=6:7) # makes the plot too crowsded @ The FG model states that males have a less \emph{observed} PCM, by a factor of \Sexpr{round(exp(coef(fgfit1)), 2)}, and that this hazard ratio is constant over time. An overlaid plot of the non-parametric Aalen-Johansen estimates for the PCM state (from \code{survfit}) along with predicted curves from the Fine-Gray model show that proportional hazards is not unreasonable for this particular fit. The predicted values from the rate model, computed just above but not plotted on the curve, also fit well with the data. When there is only a single categorical 0/1 covariate the Fine-Gray model reduces to Gray's test of the subdistribution function, in the same way that a \code{coxph} fit with a single categorical predictor is equivalent to the log-rank test. The mathematics behind the Fine-Gray estimate starts with the functions $F_k(t) = p_k(t)$, where $p$ is the probability in state function estimated by the AJ estimate. This can be thought of as the distribution function for the improper random variable $T^*= I(\mbox{event type}=k)T + I(\mbox{event type}\ne k)\infty$. Fine and Gray refer to $F_k$ as a subdistribution function. In analogy to the survival probability in the two state model define \begin{equation} \gamma_k(t) = - d \log[1-F_k(t)]/dt \label{FG} \end{equation} and assume that $\gamma_k(t;x) = \gamma_{k0}(t) \exp(X\beta)$. In a 2 state alive $\longrightarrow$ death model, $\gamma$ becomes the usual hazard function $\lambda$. In the same way that our multivariate Cox model \code{cfit1} made the simplifying assumption that the impact of male sex is to increase the hazard for death by a factor of \Sexpr{round(exp(coef(cfit1)[5]), 2)}, independent of the subject's age or serum mspike value, the Fine-Gray model assumes that each covariate's effect on $\log(1-F)$ is a constant, independent of other variables. Both model's assumptions are wonderfully simplifying with respect to understanding a covariate, since we can think about each covariate separately from all the others. This is, of course, under the assumption that the model is correct: that additivity across covariates, linearity, and proportional hazards all hold. In a multi-state model, however, these assumptions cannot hold for both the per-transition and Fine-Gray models formulations at the same time; if true for one, they will not be true for the other. Now consider a multivariate fit on age, sex, and serum m-spike. <>= fgfit2a <- coxph(Surv(fgstart, fgstop, fgstatus) ~ age + sex + mspike, data=pcmdat, weight=fgwt) fgfit2b <- coxph(Surv(fgstart, fgstop, fgstatus) ~ age + sex + mspike, data=deathdat, weight=fgwt) round(rbind(PCM= coef(fgfit2a), death=coef(fgfit2b)), 3) @ The Fine-Gray fits show an effect of all three variables on the subdistribution rates. Males have a lower lifetime risk of PCM before death and a higher risk of death before PCM, while a high serum m-spike works in the opposite direction. The Cox models showed no effect of sex on the instantaneous hazard of PCM and none for serum m-spike on the death rate. However, as shown in the last section, the Cox models do predict a greater lifetime risk for females. We had also seen that older subjects are less likely to experience PCM due to the competing risk of death; this is reflected in the FG model as a negative coefficient for age. Now compute predicted survival curves for the model, and show them alongside the predictions from the multi-state Cox model. <>= oldpar <- par(mfrow=c(1,2)) dummy <- expand.grid(sex= c("F", "M"), age=c(60, 80), mspike=1.2) fsurv1 <- survfit(fgfit2a, dummy) # time to progression curves plot(fsurv1, xscale=12, col=1:2, lty=c(1,1,2,2), lwd=2, fun='event', xlab="Years", ylab="Fine-Gray predicted", xmax=12*25, ylim=c(0, .15)) legend(1, .15, c("Female, 60", "Male, 60","Female: 80", "Male, 80"), col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n') plot(csurv[,2], xscale=12, col=1:2, lty=c(1,1,2,2), lwd=2, xlab="Years", ylab="Multi-state predicted", xmax=12*25, ylim=c(0, .15)) legend(1, .15, c("Female, 60", "Male, 60","Female: 80", "Male, 80"), col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n') par(oldpar) @ The predictions as a function of age group are quite different for the Fine-Gray model: new PCM cases are predicted 20+ years after diagnosis in both the old and young age groups, while they are predicted to cease in the multi-state fit. The average of all four curves is nearly the same at each age, but the global proportional hazards assumption of the FG model forces the curves to remain parallel. We can check the proportional hazards assumption of the models using the \code{cox.zph} function, linearity of the continuous variables age and mspike by using non-linear terms such as \code{pspline} or \code{ns}, and additivity by exploring interactions. All are obvious and important next steps. For instance, the proportional hazards assumption for age shows clear violations. <>= zph.fgfit2a <- cox.zph(fgfit2a) zph.fgfit2a plot(zph.fgfit2a[1]) abline(h=coef(fgfit2a)[1], lty=2, col=2) @ A further weakness of the Fine-Gray approach is that since the two endpoints are modeled separately, the results do not have to be consistent. Below is a graph of the predicted fraction who have experienced neither endpoint. For subjects diagnosed at age 80 the Fine-Gray models predict that more than 100\% will either progress or die by 30 years. Predictions based on the Aalen-Johansen approach do not have this issue. <>= fsurv2 <- survfit(fgfit2b, dummy) # time to progression curves xtime <- 0:(30*12) #30 years y1a <- 1 - summary(fsurv1, times=xtime)$surv #predicted pcm y1b <- 1 - summary(fsurv2, times=xtime)$surv #predicted deaths before pcm y1 <- (y1a + y1b) #either matplot(xtime/12, y1, col=1:2, lty=c(1,1,2,2), type='l', xlab="Years post diagnosis", ylab="FG: either endpoint") abline(h=1, col=3) legend("bottomright", c("Female, 60", "Male, 60","Female: 80", "Male, 80"), col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n') @ The primary strength of the Fine-Gray model with respect to the Cox model approach is that if lifetime risk is a primary question, then the model has given us a simple and digestible answer to that question: ``females have a 1.2 fold higher lifetime risk of PCM, after adjustment for age and serum m-spike''. This simplicity is not without a price, however, and these authors are not proponents of the approach. There are five issues. \begin{enumerate} \item The attempt to capture a complex process as a single value is grasping for a simplicity that does not exist for many (perhaps most) data sets. The necessary assumptions in a multivariate Cox model of proportional hazards, linearity of continuous variables, and no interactions are strong ones. For the FG model these need to hold for a combined process --- the mixture of transition rates to each endpoint --- which turns out to be a more difficult barrier. \item The sum of predictions need not be consistent. \item From the per-transition Cox model one can work forward and compute $p(t)$, the occupancy probabilities for each state over time; both the hazard ratios and $p$ are useful summaries of the data. We don't have tools to work backwards from a Fine-Gray fit to the per transition hazards. \item The approach is viable only for competing risks and not for other multi-state models. \item The risk sets are odd. \end{enumerate} The last of these is perhaps the most frequently listed issue with the Fine-Gray model, but it is actually a minor complaint. The state probabilities $p(t)$ in a multi-state model are implicitly fractions of the total population we started with: someone who dies in month 1 is still a part of the denominator for the fraction of subjects with PCM at 20 years. In the Fine-Gray formulas this subject explicitly appears in risk set denominators at a later time, which looks odd but is more of an artifact. The first issue is substantial, however, and checking the model assumptions of a Fine-Gray fit is mandatory. The second point is alarming, but it normally does not have a practical impact unless there is long follow-up. \section{Shared coefficients} To fit risk models that have shared coefficients or baseline hazards we use an extended formula notation for the \code{coxph} function. For the simple competing risks MGUS fit above, assume that we wanted to add hemoglobin to the fit, with a common coefficient for both the PCM and death endpoint. (Anemia is a feature of both PCM and old age.) <>= hgfit <- coxph(list(Surv(etime, event) ~ age + sex + mspike, 1:2 + 1:3 ~ hgb / common), data = mgus2, id = id) hgfit @ Notice that the hemoglobin coefficient is identical for the PCM and death models. A closer look at the result shows that the coefficient vector is of length 7 and not 8, orchestrated by the \code{cmap} component. The variance matrix likewise is 7 by 7. <>= hgfit$coef hgfit$cmap @ In a \code{coxph} formula list, the first element is the default formula which will be applied to all the transitions. The second, third, etc. elements are pseudo-formulas that have a set of transitions as the ``response'', and usual covariate formulas on the right. For instance, if we wanted creatinine to be a covariate for only the transition to PCM a third line of \code{1:2 \textasciitilde creat} could be added. There is flexibility in how the left hand side is written. The following are all valid forms for the second line of our formula. <>= list(1: c("pcm", "death") ~ hgb / common, 1:0 ~ hgb / common, state("(s0)"): (2:3) ~ hgb / common) @ A '0' is shorthand for ``any state''. Transitions in the formula that do not occur in the data are silently ignored, e.g., the implicit 1:1 transition of our second line above. For the three transition model based on data3, the following fits first a model with 3 baseline hazards and 6 coefficients. The second fit assumes a common baseline hazard for the two transitions to death. <>= cox3a <- coxph(Surv(tstart, tstop, event) ~ age + sex, data3, id=id) cox3b <- coxph(list(Surv(tstart, tstop, event) ~ age + sex, 1:3 + 2:3 ~ 1/ common), data= data3, id= id) cox3b$cmap @ For this data set model \code{cox3b} makes very little medical sense, since death rates after PCM do not even remotely resemble those for patients without a plasma cell malignancy. (The fact that the package allows something does not make it a good idea.) In other data sets a shared baseline for all the transitions to death can be an effective model. Be aware that though shared baselines for two transitions that end in the same state is acceptable, a shared hazard for two transitions that originate in the same state is not compatable with the partial likelihood formulation of a Cox model, and will lead to surprising results (often a large number of NA coefficients). An alternative approach to the above is to fit the joint model using a special data set. To reproduce the \code{hgfit} model above, create a stacked data set with $2n$ observations. The first $n$ rows are the data set we would use for a time to PCM analysis, with a simple 0/1 status variable encoding the PCM outcome. The second $n$ rows are the data set we would have used for the `death before PCM' fits, with status encoding the death-before-PCM endpoint. A last variable, \code{group}, is `pcm' for the first $n$ observations and `death' for the remainder. Then fit a model <>= temp1 <- data.frame(mgus2, time=etime, status=(event=="pcm"), group='pcm') temp2 <- data.frame(mgus2, time=etime, status=(event=="death"), group="death") stacked <- rbind(temp1, temp2) allfit <- coxph(Surv(time, status) ~ hgb + (age + sex+ mspike)*strata(group), data=stacked) all.equal(allfit$loglik, hgfit$loglik) @ This fits a common effect for hemoglobin (hgb) but separate age and sex effects for the two endpoints, along with separate baseline hazards. \section{Other software} \subsection{The mstate package} As the number of states + transitions (arrows + boxes) gets larger then the `by hand' approach used above for creating a stacked data set becomes a challenge. (It is still fairly easy to do, just not as easy to ensure it has been done \emph{correctly}.) The \code{mstate} package starts with a definition of the matrix of possible transitions and uses that to drive tools that build and analyze a stacked data set in a more automated fashion. We find it a little more difficult to use than a \code{coxph} model with a multistate status variable. (The fact that we like our own child best should be no surprise, however). One current disadvantage of the survival package is that the Aalen-Johansen curves from a multi-state coxph model currently do not include a variance estimate, whereas those from mstate do have a variance. A current restriction in R is that packages on the \emph{recommended} list (of which survival is one) should not depend on any packages outside that list. This precludes adding an mstate example to this vignette, even though it is a natural fit. \subsection{The \code{msm} package} There are two broad classes of multi-state data: \begin{itemize} \item Panel data arises when subjects have regular visits, with the current state assessed at each visit. We don't know when the transitions between states occur, or if other states may have been visited in the interim --- only the subject's state at specific times. This is also known as interval censored data. \item Survival data arises when we observe the transition times; death, for example. \end{itemize} The overall model (boxes and arrows), the quantities of interest (transition rates and $p(t)$), and the desired printout and graphs are identical for the two cases. Much of the work in creating a data set is also nearly the same. The underlying likelihood equations and resulting analytical methods for solving the problem are, however, completely different. The \code{msm} package addresses panel data, while \code{survival}, \code{mstate}, and many others are devoted to survival data. \section{Conclusions} When working with acute diseases, such as advanced cancer or end-stage liver disease, there is often a single dominating endpoint. Ordinary single event Kaplan-Meier curves and Cox models are then efficient and sufficient tools for much of the analysis. Such data was the primary use case for survival analysis earlier in the authors' careers. Data with multiple important endpoints is now common, and multi-state methods are an important addition to the statistical toolbox. As shown above, they are now readily available and easy to use. It is sometimes assumed that the presence of competing risks \emph{requires} the use of a Fine-Gray model (we have seen it in referee reports), but this is not correct. The model may often be useful, but is one available option among many. Grasping the big picture for a multi-state data set is always a challenge and we should make use of as many tools as possible. It is not always easy to jump between observed deaths, hazard rates, and lifetime risk. We are often reminded of the story of the gentleman on his 100th birthday who proclaimed that he was looking forward to many more years ahead because ``I read the obituaries every day, and you almost never see someone over 100 listed there''. %\bibliographystyle{plain} %\bibliography{refer} \end{document} survival/vignettes/tiedtimes.Rnw0000644000176200001440000001235713537676563016651 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \newcommand{\code}[1]{\texttt{#1}} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{prefix.string=adjcurve,width=6,height=4} \setkeys{Gin}{width=\textwidth} %\VignetteIndexEntry{Roundoff error and tied times} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text library(survival, quietly=TRUE) @ \title{Roundoff error and Tied Times} \author{Terry M Therneau} \date{Oct 2016} \begin{document} \maketitle \section{Round off error} The heart of the issue can be shown with a simple example. Calculate the following set of intervals for subjects with the same birth date who were enrolled in a study from September 14 through October 23, and then followed for 2--3 months. <>= birth <- as.Date("1973/03/10") start <- as.Date("1998/09/13") + 1:40 end <- as.Date("1998/12/03") + rep(1:10, 4) interval <- (end-start) table(interval) @ Each interval has a different start and end date, but there are only 4 unique interval lengths, each of which appears 10 times. Now convert this to an age scale. <>= start.age <- as.numeric(start-birth)/365.25 end.age <- as.numeric(end -birth)/365.25 age.interval <- end.age - start.age length(unique(age.interval)) table(match(age.interval, sort(unique(age.interval)))) @ There are now eight different age intervals instead of 4, and the 8 unique values appear between 1 and 9 times each. We have become a victim of floating point precision. The exact results above, i.e. how many 'unique' time intervals are found, may depend on your computer system. Some users prefer to use time in days and some prefer time in years, and those users reasonably expect survival analysis results to be identical on the two scales. Both the coxph and survfit routines treat tied event times in a special way, however, and this roundoff can make actual ties appear as non-tied values. In that case results will differ. Parametric survival routines such as \code{survreg} are not affected by the problem since they do not treat ties differently than other values. In survival version 2.40 this issue has been addressed for the coxph and survfit routines; input times are subjected to the same logic found in the all.equal routine in order to determine actual ties. This may change the results for some data sets. For the following test case cox1 and cox2 have identical results in in version 2.40 but different results in prior versions of the survival package. <<>>= ndata <- data.frame(id=1:30, birth.dt = rep(as.Date("1953/03/10"), 30), enroll.dt= as.Date("1993/03/10") + 1:30, end.dt = as.Date("1996/10/21") + 1:30 + rep(1:10, 3), status= rep(0:1, length=30), x = 1:30) ndata$enroll.age <- with(ndata, as.numeric(enroll.dt - birth.dt))/365.25 ndata$end.age <- with(ndata, as.numeric(end.dt - birth.dt))/365.25 fudays <- with(ndata, as.numeric(end.dt - enroll.dt)) fuyrs <- with(ndata, as.numeric(end.age- enroll.age)) cox1 <- coxph(Surv(fudays, status) ~ x, data=ndata) cox2 <- coxph(Surv(fuyrs, status) ~ x, data=ndata) @ A downside to the new procedure is that the code will now give an error message for some constructed data sets. An example sent by one user had several time intervals of length 1e-9, which is less than the roundoff precision used by the \code{all.equal} routine and consequently turned them into illegal intervals of zero length. The \code{timefix} argument of \code{coxph.control} can be used to address this. This general issue of floating point precision arises often enough in R that it is part of the frequently asked questions, see FAQ 7.31 on CRAN. The author of the survival routines (me) has always used days as the scale for analysis -- just by habit, not for any particluarly scientific reason -- so the issue had never appeared in my work nor in the survival package's test suite. Due to user input, near ties had been addressed earlier in the survfit routine, but only when the status variable was 0/1, not when it is a factor. The new code uses a single routine \code{aeqSurv} to deal with ties in a uniform way for all the affected functions. As a final footnote, the simple data set above also gives different results when using the SAS phreg procedure and I suspect the problem exists in other software as well --- the R routines are not alone.\footnote{I have reported this to SAS as of November 2016 and was told that they plan to address the problem.} As a consequence, the maintainer expects to get new emails that ``we have found a bug in your code: it gives a different answer than SAS''. (This is an actual quote.) \end{document} survival/vignettes/population.Rnw0000644000176200001440000013313313537676563017050 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} %\VignetteIndexEntry{Population contrasts} \SweaveOpts{prefix.string=tests,width=6,height=4, keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{width=6,height=4} \setkeys{Gin}{width=\textwidth} <>= options(continue=" ", width=70) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #reset default library(survival) library(splines) @ \title{Population contrasts} \author{Terry M Therneau \\ \emph{Mayo Clinic}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {tests-#1.pdf}} \newcommand{\ybar}{\overline{y}} \begin{document} \maketitle \ \tableofcontents \section{Introduction} Statisticians and their clients have always been fond of single number summaries for a data set, perhaps too much so. Consider the hypothetical data shown in figure \ref{fig1} comparing treatments A and B with age as a confounder. What is a succinct but useful summary of the difference between treatment arms A and B? One approach is to select a fixed \emph{population} for the age distribution, and then compute the mean effect over that population. \begin{figure} <>= plot(c(50,85), c(2,4.5), type='n', xlab="Age", ylab="Effect") #abline(.645, .042, lty=1, col=1, lwd=2) #abline(.9, .027, lty=1, col=2, lwd=2) abline(.35, .045, lty=1, col=1, lwd=2) abline(1.1, .026, lty=1, col=2, lwd=2) legend(50, 4.2, c("Treatment A", "Treatment B"), col=c(1,2), lty=1, lwd=2, cex=1.3, bty='n') @ \caption{Treatment effects for a hypothetical study.} \label{fig1} \end{figure} More formally, assume we have a fitted model. We want to compute the conditional expectation \begin{equation*} m_A = E_F\left( \hat y | trt=A \right) \end{equation*} where $F$ is some chosen population for the covariates other than treatment. Important follow-up questions are: what population should be used, what statistic should be averaged, what computational algorithm should be used, and what are the statistical properties of the resulting estimate? Neither the statistic nor population questions should be taken lightly, and both need to be closely linked to the scientific question. If, for instance, the model of figure 1 were used to inform a nursing home formulary, then the distribution $F$ might be focused on higher ages. Four common populations are \begin{itemize} \item Empirical: The data set itself. For the simple example above, this would be the distribution of all $n$ ages in the data set, irrespective of treatment. \item Factorial or Yates: This is only applicable if the adjusting variables are all categorical, and consists of all unique combinations of them. That is, the data set one would envision for a balanced factorial experiment. \item External: An external reference such as the age/sex distribution of the US census. This is common in epidemiology. \item SAS type 3: A factorial distribution for the categorical predictors and the data distribution for the others. More will be said about this in section \ref{sect:SAS}. \end{itemize} The \code{yates} function is designed to compute such population averages from a fitted model, along with desired contrasts on the resultant estimates, e.g., whether the population average effects for treatment A and treatment B are equal. The function has been tested with the results of \code{lm}, \code{glm}, and \code{coxph} fits, and can easily be extended to any R model that includes a standard set of objects in the result, i.e., \code{terms}, \code{contrasts}, \code{xlevels}, and \code{assign}. The routine's name is a nod to the 1934 paper by Yates \cite{Yates34} \emph{The analysis of multiple classifications with unequal numbers in different classes}. In dealing with an unbalanced 2-way layout he states that \begin{quote}\ldots in the absence of any further assumptions the efficient estimates of the average A effects are obtained by taking the means of the observed sub-class means for like A over all B sub-classes. \end{quote} In his example these sub-class means are the predicted values for each A*B combination, thus his estimate for each level of A is the mean predicted value over B, i.e., the mean prediction for A over a factorial population for B. Yates then develops formulas for calculating these quantities and testing their equality that are practical for the manual methods of the time; these are now easily accomplished directly using matrix computations. (It is interesting that Yates' paper focuses far more on estimands than tests, while later references to his work focus almost exclusively on the latter, e.g., the ``Yates sum of squares''. Reflecting, again, our profession's singular focus on p values.) This concept of population averages is actually a common one in statistics. Taking an average is, after all, nearly the first thing a statistician will do. Yates' weighted means analysis, the g-estimates of causal models, direct adjusted survival curves, and least squares means are but a small sample of the idea's continual rediscovery. Searle et. al. \cite{Searle80} use the term population marginal mean (PMM), which we will adopt as the acronym, though they deal only with linear models, assume a factorial population, and spend most of their energy writing out explicit formulas for particular cases. They also use a separate acronym to distinguish the estimated PMM based on a model fit from the ideal, which we will not do. \section{Solder Example} \subsection{Data} In 1988 an experiment was designed and implemented at one of AT\&T's factories to investigate alternatives in the wave soldering procedure for mounting electronic components to printed circuit boards. The experiment varied a number of factors relevant to the process. The response, measured by eye, is the number of visible solder skips. The data set was used in the book Statistical Models in S \cite{Chambers93} and is included in the \code{survival} package. <>= summary(solder) length(unique(solder$PadType)) @ A perfectly balanced experiment would have 3*2*10*3 = 180 observations for each Mask, corresponding to all combinations of Opening, Solder Thickness, PadType and Panel. The A3 Mask has extra replicates for a subset of the Opening*Thickness combinations, however, while Mask A6 lacks observations for these sets. Essentially, one extra run of 180 was done with a mixture of Masks. Figure \ref{fig:solder} gives an overview of univariate results for each factor. \begin{figure} <>= # reproduce their figure 1.1 temp <- lapply(1:5, function(x) tapply(solder$skips, solder[[x]], mean)) plot(c(0.5, 5.5), range(unlist(temp)), type='n', xaxt='n', xlab="Factors", ylab ="mean number of skips") axis(1, 1:5, names(solder)[1:5]) for (i in 1:5) { y <- temp[[i]] x <- rep(i, length(y)) text(x-.1, y, names(y), adj=1) segments(i, min(y), i, max(y)) segments(x-.05, y, x+.05, y) } @ \caption{Overview of the solder data.} \label{fig:solder} \end{figure} \subsection{Linear model} A subset of the solder data that excludes Mask A6 is exactly the type of data set considered in Yates' paper: a factorial design whose data set is not quite balanced. Start with a simple fit and then obtain the Yates predictions. <>= with(solder[solder$Mask!='A6',], ftable(Opening, Solder, PadType)) fit1 <- lm(skips ~ Opening + Solder + Mask + PadType + Panel, data=solder, subset= (Mask != 'A6')) y1 <- yates(fit1, ~Opening, population = "factorial") print(y1, digits=2) # (less digits, for vignette page width) @ The printout has two parts: the left hand columns are population marginal mean (PMM) values and the right hand columns are tests on those predicted values. The default is a single global test that these PMM are all equal. Under a factorial population these are the Yates' weighted means \cite{Yates34} and the corresponding test is the Yates' sum of squares for that term. These would be labeled as ``least squares means'' and ``type III SS'', respectively, by the glm procedure of SAS. More on this correspondence appears in the section on the SGTT algorithm. Now we repeat this using the default population, which is the set of all 810 combinations for Solder, Mask, PadType and Panel found in the non-A6 data. The \code{pairwise} option requests tests on all pairs of openings. <>= y2 <- yates(fit1, "Opening", population = "data", test="pairwise") print(y2, digits=2) # # compare the two results temp <- rbind(diff(y1$estimate[,"pmm"]), diff(y2$estimate[,"pmm"])) dimnames(temp) <- list(c("factorial", "empirical"), c("2 vs 1", "3 vs 2")) round(temp,5) @ Although the PMM values shift with the new population, the difference in PMM values between any two pairs is unchanged. This is because we have fit a model with no interactions. Referring to figure \ref{fig1}, this is a model where all of the predictions are parallel lines; shifting the population left or right will change the PMM, but has no effect on the difference between two lines. For a linear model with no interactions, the test statistics created by the \code{yates} function are thus not very interesting, since they will be no different than simple comparisons of the model coefficients. Here are results from a more interesting fit that includes interactions. <>= fit2 <- lm(skips ~ Opening + Mask*PadType + Panel, solder, subset= (Mask != "A6")) temp <- yates(fit2, ~Opening, population="factorial") print(temp, digits=2) @ This solder data set is close to being balanced, and the means change only a small amount. (One hallmark of a completely balanced experiment is that any PMM values are unaffected by the addition of interaction terms.) \subsection{Missing cells} Models that involve factors and interactions can have an issue with missing cells as shown by the example below using the full version of the solder data. <>= fit3 <- lm(skips ~ Opening * Mask + Solder + PadType + Panel, solder) temp <- yates(fit3, ~Mask, test="pairwise") print(temp, digits=2) @ The population predictions for each Mask include all combinations of Opening, Solder, PadType, and Panel that are found in the data. The above call implicity uses the default value of \code{population=`data'}, which is the option that users will normally select. The underlying algorithm amounts to: \begin{enumerate} \item Make a copy of the data set (900 obs), and set Mask to A1.5 for all observations \item Get the 900 resulting predicted values from the model, and take their average \item Repeat 1 and 2 for each mask type. \end{enumerate} However, there were no observations in the data set with Mask = A6 and Opening = Large. Formally, predictions for the A6/Large combination are \emph{not estimable}, and as a consequence neither are any population averages that include those predicted values, nor any tests that involve those population averages. This lack of estimability is entirely due to the inclusion of a Mask by Opening interaction term in the model, which states that each Mask/Opening combination has a unique effect, which in turn implies that we need an estimate for all Mask*Opening pairs to compute population predictions for all levels of the Mask variable. If you do the above steps `by hand' using the R \code{predict} function, it will return a value for all 900 observations along with a warning message that the results may not be reliable, and the warning is correct in this case. The result of \code{coef(fit2)} reveals that the fit generated an NA as one of the coefficients. The presence of a missing value shows that some preditions will not be estimable, but it is not possible to determine \emph{which} ones are estimable from the coefficients alone. The predict function knows that some predictions will be wrong, but not which ones. A formal definition of estimability for a given prediction is that it can be written as a linear combination of the rows of $X$, the design matrix for the fit. The \code{yates} function performs the necessary calculations to verify formal estimability of each predicted value, and thus is able to correctly identify the deficient terms. \section{Generalized linear models} \label{sect:glm} Since the solder response is a count of the number of skips, Poisson regression is a more natural modeling approach than linear regression. In a glm model we need to consider more carefully both the population and the statistic to be averaged. <>= gfit2 <- glm(skips ~ Opening * Mask + PadType + Solder, data=solder, family=poisson) y1 <- yates(gfit2, ~ Mask, predict = "link") print(y1, digits =2) print( yates(gfit2, ~ Mask, predict = "response"), digits=2) @ Mean predicted values for the number of skips using \code{type=`response'} in \code{predict.glm} are similar to estimates when the linear regression model was used. Prediction of type `link' yields a population average of the linear predictor $X\beta$. Though perfectly legal (you can, after all, take the mean of anything you want), the linear predictor PMM values can be more difficult to interpret. Since the default link function for Poisson regression is log(), the PMM of the linear predictor equals the mean of the log(predicted values). Since $\exp({\rm mean}(\log(x)))$ defines the geometric mean of a random variable $x$, one can view the exponentiated version of the link estimate as a geometric mean of predicted values over the population. Given the skewness of Poisson counts, this may actually be an advantageous summary. Arguments for other links are much less clear, however: the authors have for instance never been able to come to a working understanding of what an ``average log odds'' would represent, i.e., the link from logistic regression. One computational advantage of the linear predictor lies in creating the variance. Since \code{mean(Z \%*\% b) = colMeans(Z) \%*\%b} the computation can be done in 3 steps: first create $Z$ with one row for each observation in the population, obtain the vector of column means $d= 1'Z/m$, and then the PMM estimate is $d'\hat\beta$ and its variance is $d'Vd$ where $V$ is the variance matrix of $\hat\beta$. For other PMM quantities the routine samples \code{nsim} vectors from $b \sim N(\hat\beta, V)$, then computes PMM estimates separately for each vector $b$ and forms an empirical variance of the PMM estimates from the results. For nonlinear predictors such as the response, the population choice matters even for an additive model. The two results below have different estimates for the ``between PMM differences'' and tests. <>= gfit1 <- glm(skips ~ Opening + Mask +PadType + Solder, data=solder, family=poisson) yates(gfit1, ~ Opening, test="pairwise", predict = "response", population='data') yates(gfit1, ~ Opening, test="pairwise", predict = "response", population="yates") @ \section{Free Light Chain} As an example for the more usual case, a data set which does \emph{not} arise from a balanced factorial experiment, we will look at the free light chain data set. In 2012, Dispenzieri and colleagues examined the distribution and consequences of the free light chain value, a laboratory test, on a large fraction of the 1995 population of Olmsted County, Minnesota aged 50 or older \cite{Kyle06, Dispenzieri12}. The R data set \code{flchain} contains a 50\% random sample of this larger study and is included as a part of the \code{survival} package. The primary purpose of the study was to measure the amount of plasma immunoglobulin and its components. Intact immunoglobulins are composed of a heavy chain and light chain portion. In normal subjects there is overproduction of the light chain component by the immune cells leading to a small amount of \emph{free light chain} in the circulation. Excessive amounts of free light chain (FLC) are thought to be a marker of disregulation in the immune system. An important medical question is whether high levels of FLC have an impact on survival, which will be explored using a Cox model. Free light chains have two major forms denoted as kappa and lambda; we will use the sum of the two. A confounding factor is that FLC values rise with age, in part because it is eliminated by the kidneys and renal function declines with age. The age distribution of males and females differs, so we will adjust any comparisons for both age and sex. The impact of age on mortality is dominatingly large and so correction for the age imbalance is critical when exploring the impact of FLC on survival. Figure \ref{fig:flc} shows the trend in FLC values as a function of age. For illustration of linear models using factors, we have also created a categorical age value using deciles of age. \begin{figure} <>= male <- (flchain$sex=='M') flchain$flc <- flchain$kappa + flchain$lambda mlow <- with(flchain[male,], smooth.spline(age, flc)) flow <- with(flchain[!male,], smooth.spline(age, flc)) plot(flow, type='l', ylim=range(flow$y, mlow$y), xlab="Age", ylab="FLC") lines(mlow, col=2, lwd=2) legend(60, 6, c("Female", "Male"), lty=1, col=1:2, lwd=2, bty='n') @ \caption{Free light chain values as a function of age.} \label{fig:flc} \end{figure} The table of counts shows that the sex distribution becomes increasingly unbalanced at the older ages, from about 1/2 females in the youngest group to a 4:1 ratio in the oldest. <>= flchain$flc <- flchain$kappa + flchain$lambda age2 <- cut(flchain$age, c(49, 59, 69, 79, 89, 120), labels=c("50-59", "60-69", "70-79", "80-89", "90+")) fgroup <- cut(flchain$flc, quantile(flchain$flc, c(0, .5, .75, .9, 1)), include.lowest=TRUE, labels=c("<50", "50-75", "75-90", ">90")) counts <- with(flchain, table(sex, age2)) counts # # Mean FLC in each age/sex group cellmean <- with(flchain, tapply(flc, list(sex, age2), mean)) round(cellmean,1) @ Notice that the male/female difference in FLC varies with age, \Sexpr{round(cellmean[1,1],1)} versus \Sexpr{round(cellmean[2,1],1)} at age 50--59 years and \Sexpr{round(cellmean[1,5],1)} versus \Sexpr{round(cellmean[2,5],1)} at age 90 years, and as shown in figure \ref{fig:flc}. The data does not fit a simple additive model; there are ``interactions'' to use statistical parlance. Men and women simply do not age in quite the same way. \subsection{Linear models} Compare the mean FLC for males to females, with and without adjusting for age. <>= library(splines) flc1 <- lm(flc ~ sex, flchain) flc2a <- lm(flc ~ sex + ns(age, 3), flchain) flc2b <- lm(flc ~ sex + age2, flchain) flc3a <- lm(flc ~ sex * ns(age, 3), flchain) flc3b <- lm(flc ~ sex * age2, flchain) # # prediction at age 65 (which is near the mean) tdata <- data.frame(sex=c("F", "M"), age=65, age2="60-69") temp <- rbind("unadjusted" = predict(flc1, tdata), "additive, continuous age" = predict(flc2a, tdata), "additive, discrete age" = predict(flc2b, tdata), "interaction, cont age" = predict(flc3a, tdata), "interaction, discrete" = predict(flc3b, tdata)) temp <- cbind(temp, temp[,2]- temp[,1]) colnames(temp) <- c("Female", "Male", "M - F") round(temp,2) @ The between sex difference is underestimated without adjustment for age. The females are over-represented at the high ages, which inflates their estimate. For this particular data set, both continuous and categorical age adjustment are able to recover the true size of the increment for males. Now look at population adjustment. <>= yates(flc3a, ~sex) # additive, continuous age # yates(flc3b, ~sex) # interaction, categorical age # yates(flc3b, ~sex, population="factorial") @ The population average values are just a bit higher than the prediction at the mean due to the upward curvature of the age vs FLC curve. The average for a factorial population is larger yet, however. This is because it is the average for an unusual population which has as many 90+ year old subjects as 50--59 year old; i.e., it is the correct answer to a rather odd question, since this is a population that will never be encountered in real life. We can also reverse the question and examine age effects after adjusting for sex. For the continuous model the age values for the PMM need to be specified using the \code{levels} argument; otherwise the routine will not know which ages are ``of interest'' to the reader. (With a factor the routine will assume that you want all the levels, but a subset can be chosen using the \code{levels} argument.) <>= yates(flc3a, ~ age, levels=c(65, 75, 85)) yates(flc3b, ~ age2) @ Not surprisingly the predicton at age 65 years for a continuous model is quite close to that for the 60--69 year age group from a dicrete model. \section{Cox Models} Finally we come to Cox models which are, after all, the point of this vignette, and the question that prompted creation of the \code{yates} function. Here the question of what to predict is more serious. To get a feel for the data look at three simple models. <>= options(show.signif.stars=FALSE) # show statistical intelligence coxfit1 <- coxph(Surv(futime, death) ~ sex, flchain) coxfit2 <- coxph(Surv(futime, death) ~ sex + age, flchain) coxfit3 <- coxph(Surv(futime, death) ~ sex * age, flchain) anova(coxfit1, coxfit2, coxfit3) # exp(c(coef(coxfit1), coef(coxfit2)[1])) # sex estimate without and with age @ The model with an age*sex interaction does not fit substantially better than the additive model. This is actually not a surprise: in a plot of log(US death rate) the curves for males and females are essentially parallel after age 50 years. (See the \code{survexp.us} data set, for instance.) The sex coefficients for models 1 and 2 differ substantially. Males in this data set have almost 1.5 the death rate of females at any given age, but when age is ignored the fact that females dominate the oldest ages almost completely cancels this out and males appear to have the same `overall' mortality. Adjustment for both age and sex is critical to understanding the potential effect of FLC on survival. Dispenzieri \cite{Dispenzieri12} looked at the impact of FLC by dividing the sample into those above and below the 90th percentile of FLC; for illustration we will use 4 groups consisting of the lowest 50\%, 50 to 75th percentile, 75 to 90th percentile and above the 90th percentile. <>= coxfit4 <- coxph(Surv(futime, death) ~ fgroup*age + sex, flchain) yates(coxfit4, ~ fgroup, predict="linear") yates(coxfit4, ~ fgroup, predict="risk") @ We see that after adjustment for age and sex, FLC is a strong predictor of survival. Since the Cox model is a model of relative risk, any constant term is arbitrary: one could add 100 to all of the log rates (type `linear' above) and have as valid an answer. To keep the coefficients on a sensible scale, the \code{yates} function centers the mean linear predictor of the original data at zero. This centers the linear predictor at 0 but does not precisely center the risks at exp(0) = 1 due to Jensen's inequality, but suffices to keep values in a sensible range for display. A similar argument to that found in section \ref{sect:glm} about the arithmetic versus geometric mean can be made here, but a more fundamental issue is that the overall hazard function for a population is not the average of the hazards for each of its members, and in fact will change over time as higher risk members of the population die. Though computable, the mean hazard ratio only applies to the study at time 0, before selective death begins to change the structure of the remaining population, and likewise for the average linear predictor = mean log hazard ratio. A PMM based on either of these estimates is hard to interpret. Survival curves, however, do lead to a proper average: the survival curve of a population is the mean of the individual survival curves of its members. Functions computed from the survival curve, such as the mean time until event, will also be proper and interpretable. The longest death time for the FLC data set is at \Sexpr{round(with(flchain, max(futime[death==1])/365.25),1)} years; as a one number summary of each PMM curve we will use a restricted mean survival with a threshold of 13 years. <>= # longest time to death round(max(flchain$futime[flchain$death==1]) / 365.25, 1) #compute naive survival curve flkm <- survfit(Surv(futime, death) ~ fgroup, data=flchain) print(flkm, rmean= 13*365.25, scale=365.25) @ Straightforward survival prediction takes longer than recommended for a CRAN vignette: there are \Sexpr{nrow(flchain)} subjects in the study and 4 FLC groups, which leads to just over 30 thousand predicted survival curves when using the default \code{population=`data'}, and each curve has over 2000 time points (the number of unique death times). To compute a variance, this is then repeated the default \code{nsim = 200} times. We can use this as an opportunity to demonstrate a user supplied population, i.e., a data set containing a population of values for the control variables. We'll use every 20th observation in the \code{flchain} data as the population and also reduce the number of simulations to limit the run time. <>= mypop <- flchain[seq(1, nrow(flchain), by=20), c("age", "sex")] ysurv <- yates(coxfit4, ~fgroup, predict="survival", nsim=50, population = mypop, options=list(rmean=365.25*13)) ysurv # display side by side temp <- rbind("simple KM" = summary(flkm, rmean=13*365.25)$table[, "*rmean"], "population adjusted" = ysurv$estimate[,"pmm"]) round(temp/365.25, 2) @ The spread in restricted mean values between the different FLC groups is considerably less in the marginal (i.e., PMM) survival curves than in the unadjusted Kaplan-Meier, with the biggest change for those above the 90th percentile of FLC. Males dominate the highest FLC values. Without adjustment for sex, the survival for the high FLC group is biased downward by the male predominance. The \code{ysurv} object also contains an optional \code{summary} component, which in this case is the set of 4 PMM survival curves. Plot these along with the unadjusted curves, with solid lines for the PMM estimates and dashed for the unadjusted curves. This shows the difference between adjusted and unadjusted even more clearly. Adjustment for age and sex has pulled the curves together, though the $>90$th percentile group still stands apart from the rest. (It is not a 1 number summary with a simple p value, however, and so spurned by users and journals ;-). <>= plot(flkm, xscale=365.25, fun="event", col=1:4, lty=2, xlab="Years", ylab="Death") lines(ysurv$summary, fun="event", col=1:4, lty=1, lwd=2) legend(0, .65, levels(fgroup), lty=1, lwd=2, col=1:4, bty='n') @ \section{Mathematics} The underlying code uses a simple brute force algorithm. It first builds a population data set for the control variables that includes a placeholder for the variable of interest. Then one at a time, it places each level of variable(s) of interest in all rows of the data (e.g., sex=F for all rows). It computes the model's prediction for all rows, and then comptes the mean prediction. Since predicted values are independent of how the variables in a model are coded, the result is also independent of coding. When the prediction is the simple linear predictor $X\beta$, we take advantage of the fact that $\mbox{\rm mean}(X \beta) = [\mbox{\rm column means}(X)] \beta = c\beta$. If $C$ is the matrix of said column means, one row for each of the groups of interest, then $C\beta$ is the vector of PMM values and $CVC'$ is the variance covariance matrix of those values, where $V$ is the variance matrix of $\hat \beta$. The lion's share of the work is building the individual $X$ matrices, and that is unchanged. For other than the linear case, the variance is obtained by simulation. Assume that $\hat\beta \sim N(\beta, V)$, and draw \code{nsim} independent samples $b$ from $N(\hat\beta, V)$. PMM values are computed for each instance of $b$, and an empirical variance matrix for the PMM values is then computed. \section{SAS glim type III (SGTT) algorithm} \label{sect:SAS} Earlier in this document reference was made to the SAS ``type 3'' estimates, and we now delve into that topic. It is placed at the end because it is a side issue with respect to population averages. However, whatever one's opinion on the wisdom or folly of the SAS estimator, one cannot ignore its ubiquity, and showing how it fits into this framework is an important part of the picture. As groundwork we start with some compuational facts about ANOVA. Assume an $X$ matrix for the model in standard order: the intercept, then main effects, then first order interactions, second order interactions, etc. as one proceeds from the leftmost column. \begin{itemize} \item Let $LDL' = (X'X)$ be the generalized Cholesky decomposition of the $X'X$ matrix, where $L$ is lower triangular with $L_{ii}=1$ and $D$ is diagonal. $D_{ii}$ will be zero if column $i$ of $X$ can be written as a linear combination of prior columns and will be positive otherwise. \item Let $L'_k$ refer to the rows of $L'$ that correspond to the $k$th term in the model, e.g., a main effect. Then the test statistics for $L'_1\beta= 0$, $L'_2 \beta=0$, \ldots, are the sums of squares for the standard ANOVA table, often referred to as type I or sequential sums of squares. \item If $X$ corresponds to a balanced factorial design, then $L_{ij} \ne 0$ only if $i>= options(contrasts = c("contr.treatment", "contr.poly")) # default nfit1 <- lm(skips ~ Solder*Opening + PadType, solder) drop1(nfit1, ~Solder) @ This shows a type III sum of squares of 389.88. However, if a different coding is used then we get a very different SS: it increases by over 25 fold. <>= options(contrasts = c("contr.SAS", "contr.poly")) nfit2 <- lm(skips ~ Solder*Opening + PadType, solder) drop1(nfit2, ~Solder) @ The example shows a primary problem with the NSTT: the answer that you get depends on how the contrasts were coded. For a simple 2 way interaction like the above, it turns out that the NSTT actually tests the effect of Solder within the reference cell for Opening, the NSTT is not a global test at all. <>= with(solder, tapply(skips, list(Solder, Opening), mean)) @ Looking at the simple cell means shown above, it is no surprise that the \code{contr.SAS} fit, which uses Opening=S as the reference will yield a large NSTT SS since it is a comparison of 17.4 and 5.5, while the \code{contr.treatment} version using Opening=L as reference has a much smaller NSTT. In fact, re-running a particular analysis with different reference levels for one or more of the adjusting variables is a quick way to diagnose probable use of the NSTT algorithm by a program. Several R libraries that advertise type 3 computations actually use the NSTT. The biggest problem with the NSTT is that it sometimes gives the correct answer. If one uses summation constraints, a form of the model that most of us have not seen since graduate school: \begin{align*} y_{ijk} &= \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon \\ \sum_i \alpha_i & = 0 \\ \sum_j \beta_j & = 0 \\ \sum_{ij} \gamma_{ij} &=0 \end{align*} then the `reference cell' for Opening is the mean Opening effect, and the NSTT for Solder will correspond to an PMM using the factorial population, the PMM is invariant to the chosen coding. <>= options(contrasts = c("contr.sum", "contr.poly")) nfit3 <- lm(skips ~ Solder*Opening + PadType, solder) drop1(nfit3, ~Solder ) yates(nfit1, ~Solder, population='factorial') @ Thus our acronym for this method of not-safe-type-three (NSTT), since the method does work if one is particularly careful. Given the number of incorrect analyses that have arisen from this approach `nonsense type 3' would also be valid interpretation, however. <>= options(contrasts = c("contr.treatment", "contr.poly")) # restore @ \section{Conclusion} The population average predicted value or marginal estimate is a very useful statistical concept. The \code{yates} function computes these using a direct approach: create the relevant population, get \emph{all} the predicted values, and average them. An advantage of this simple approach is that because predicted values do not depend on how a model is parameterized, the results are naturally invariant to how categorical variables are represented. But like many good ideas in statistics, proper application of the idea requires some thought with respect to the choice of a statistic to be averaged, and the population over which take the expectation. For linear models the simple linear predictor $X\beta$ is an obvious choice as a statistic, but for other models the choice is more nuanced. For a Cox model we prefer the restricted mean, but this is an area that needs more research for a firm recommendation. In terms of the population choice, the population should match the research question at hand. The factorial population in particular has been badly overused. This population is appropriate for the use cases described in Yates \cite{Yates34} and Goodnight \cite{Goodnight78} that relate to designed experiments, the solder data is a good example. But in observational or clinical data the factorial population result will too often be the ``answer to a question that nobody asked''. In the FLC data set, for instance, the factorial population has equal numbers of subjects in every age group: a a population that no one will ever observe. Using the result from such computations to inform medical decisions begins to resemble medieval debates of angels dancing on the head of a pin. This suboptimal population choice is the primary damming criticism for ``type III'' estimates. Because the detailed algorithm and criteria for type III tests is not well documented, many psuedo type 3 estimates have arisen of which the NSTT is perhaps the most common. Statistical software that claims to produce a ``type III'' estimate while doing something else is indisputably wrong, even dangerous, and should not be tolerated. \appendix \section{Miscellaneous notes.} None of the material below is presented with proof. Comments to the authors that fill in any of these gaps are welcome. \subsection{Subsampling} One reaction that I have seen to the solder data is to instead analyse a balanced subset of the data, throwing away extra observations, because then ``the result is simple to understand''. Let's take this desire at face value, but then add statistics to it: rerun the two steps of ``select a subset'' and ``compute the balanced 2-way solution'' multiple times, with different random subsets each time. In fact, we could be more compuslive and tabulate the solution for \emph{all} the possible balanced subsets, and then take an average. This will give the Yates estimate. \subsection{Type 3} Based on the $L$ matrix argument above, one natural defintion of type III contrasts would be an upper triangular matrix, with appropriate zeros, whose terms were orthogonal with respect to $(Z'Z)^-$, the design matrix for a balanced data set. The SAS algorithm creates contrasts in an expanded basis, and these contrasts are instead made orthogonal with respect to the identity matrix $I$. Why does this work? Multiple example cases have shown that in data with no missing cells the resulting sum of squares agrees with the Yates' SS, but a formal proof of equivalence has been elusive. It would be preferable to use an algorithm that does not require rebuilding the $X$ matrix in the extended basis set used by the SAS approach, but instead directly used the $X$ matrix of the user, as it would be simpler and more portable code. For the case of no missing cells the Cholesky decompostion of $Z'Z$, for instance, satisfies this requirement. The original fit may use treatment, SAS, Helmert, or any other dummy variable coding for the factors without affecting the computation or result. We have not been able to discover an approach that replicates the SAS algorithm when there are missing cells, however. Is there a unique set of contrasts that fullfill the type III requirements for any given model and data set pair, or many? How might they be constructed? Since tests of $L'\beta =0$ and $cL'\beta=0$ are equivalent for any constant $c$, wlog we can assume that the diagonal of $L$ is 0 or 1. \subsection{Additive models} Consider the free light chain data and a linear model containing age group and sex as predictors. We have spoken of factorial, data, and external populations, each of which leads to a global test comparing the PMM estimates for males versus females. What population would give the smallest variance for that comparison? (A question that perhaps only an academic statistician could love.) Here are the sample sizes of each cell. <>= with(flchain, table(sex, age2)) @ The optimal population for comparing male to female will have population sizes in each age group that are proportional to the harmonic means in each column: $(1/n_{11} + 1/n_{21})^{-1}$ for age group 1, and etc. These are the familiar denominators found in the t-test. A PMM built using these population weights will yield the same sex difference and test as a simple additive model with sex and age group. Linear regression is, after all, the UMVE. \bibliographystyle{plain} \bibliography{refer} \end{document} survival/vignettes/adjcurve.Rnw0000644000176200001440000014734513537676563016473 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{prefix.string=adjcurve,width=6,height=4} \setkeys{Gin}{width=\textwidth} %\VignetteIndexEntry{Adjusted Survival Curves} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text library(survival, quietly=TRUE) fdata <- flchain[flchain$futime > 7,] fdata$age2 <- cut(fdata$age, c(0,54, 59,64, 69,74,79, 89, 110), labels = c(paste(c(50,55,60,65,70,75,80), c(54,59,64,69,74,79,89), sep='-'), "90+")) @ \title{Adjusted Survival Curves} \author{Terry M Therneau, Cynthia S Crowson, Elizabeth J Atkinson} \date{Jan 2015} \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {adjcurve-#1.pdf}} \begin{document} \maketitle \section{Introduction} Suppose we want to investigate to what extent some factor influences survival, as an example we might compare the experience of diabetic patients who are using metformin versus those on injected insulin as their primary treatment modality. There is some evidence that metformin has a positive influence, particularly in cancers, but the ascertainment is confounded by the fact that it is a first line therapy: the patients on metformin will on average be younger and have had a diabetes diagnosis for a shorter amount of time than those using insulin. ``Young people live longer'' is not a particularly novel observation. The ideal way to test this is with a controlled clinical trial. This is of course not always possible, and assessments using available data that includes and adjusts for such confounders is also needed. There is extensive literature --- and debate --- on this topic in the areas of modeling and testing. The subtopic of how to create honest survival curve estimates in the presence of confounders is less well known, and is the focus of this note. Assume that we have an effect of interest, treatment say, and a set of possible confounding variables. Creation a pair of adjusted survival curves has two parts: definition of a reference population for the confounders, and then the computation of estimated curves for that population. There are important choices in both steps. The first, definition of a target, is often not explicitly stated but can be critical. If an outcome differs with age, myocardial infarction say, and two treatments also had age dependent efficacy, then the comparison will depend greatly on whether we are talking about a population of young, middle aged, or older subjects. The computational step has two main approaches. The first, sometimes known as \emph{marginal} analysis, first reweights the data such that each subgroup's weighted distribution matches that of our population target. An immediate consequence is that all subgroups will be balanced with respect to the confounding variables. We can then proceed with a simple analysis of survival using the reformulated data, ignoring the confounders. The second approach seeks to understand and model the effect of each confounder, with this we can then correct for them. From a comprehensive overall model we can obtain predicted survival curves for any configuration of variables, and from these get predicted overall curves for the reference population. This is often called the \emph{conditional} approach since we are using conditional survival curves given covariates $x$. A third but more minor choice is division of the covariates $x$ into effects of interest vs. confounders. For instance, we might want to see separate curves for two treatments, each adjusted for age and sex. The reference population will describe the age and sex distribution. For simplicity we will use $x$ to describe all the confounding variables and use $c$ for the control variable(s), e.g. treatment. The set $c$ might be empty, producing a single overall curve, but this is the uncommon case. As shown below, our two methods differ essentially in the \emph{order} in which the two necessary operations are done, balancing and survival curve creation. \begin{center} \begin{tabular}{rccc} Marginal: & balance data on $x$ & $\longrightarrow$ & form survival curves for each $c$\\ Conditional: & predicted curves for $\{x,c\}$ subset & $\longrightarrow$ & average the predictions for each $c$ \end{tabular} \end{center} We can think of them as ``balance and then model'' versus ``model then balance''. An analysis might use a combinations of these, of course, balancing on some factors and modeling others. All analyses are marginal analyses with respect to important predictors that are unknown to us, although in that case we have no assurance of balance on those factors. \begin{figure}[tb] \myfig{flc1} \caption{Survival of \Sexpr{nrow(flchain)} residents of Olmsted County, broken into three cohorts based on FLC value.} \label{flc1} \end{figure} \section{Free Light Chain} Our example data set for this comparison uses a particular assay of plasma immunoglobulins and is based on work of Dr Angela Dispenzieri and her colleagues at the Mayo Clinic \cite{Dispenzieri12}. In brief: plasma cells (PC) are responsible for the production of immunoglobulins, but PC comprise only a small portion ($<1$\%) of the total blood and marrow hematapoetic cell population in normal patients. The normal human repertoire is estimated to contain over $10^{8}$ unique immunoglobulins, conferring a broad range of immune protection. In multiple myeloma, the most common form of plasma cell malignancy, almost all of the circulating antigen will be identical, the product of a single malignant clone. An electrophoresis examination of circulating immunoglobulins will exhibit a ``spike'' corresponding to this unique molecule. This anomaly is used both as a diagnostic method and in monitoring the course of the disease under treatment. The presence of a similar, albeit much smaller, spike in normal patients has been a long term research interest of the Mayo Clinic hematology research group \cite{Kyle93}. In 1995 Dr Robert Kyle undertook a population based study of this, and collected serum samples on 19,261 of the 24,539 residents of Olmsted County, Minnesota, aged 50 years or more \cite{Kyle06}. In 2010 Dr. Angela Dispenzieri assayed a sub fraction of the immunoglobulins, the free light chain (FLC), on 15,748 of these subjects who had sufficient remaining sera from the original sample collection. All studies took place under the oversight of the appropriate Institutional Review Boards, which ensure rigorous safety and ethical standards in research. A subset of the Dispenzieri study is available in the survival package as data set \texttt{flchain}. Because the original study assayed nearly the entire population, there is concern that some portions of the anonymized data could be linked to actual subjects by a diligent searcher, and so only a subset of the study has been made available as a measure to strengthen anonymity. It was randomly selected from the whole within sex and age group strata so as to preserve the age/sex structure. The data set contains 3 subjects whose blood sample was obtained on the day of their death. It is rather odd to think of a sample obtained on the final day as ``predicting'' death, or indeed for any results obtained during a patient's final mortality cascade. There are also a few patients with no follow-up beyond the clinic visit at which the assay occurred. We have chosen in this analysis to exclude the handful of subjects with less than 7 days of follow-up, leaving \Sexpr{nrow(fdata)} observations. \begin{table} \centering \begin{tabular}{l|cccc} & 50--59 & 60--69 & 70--79 & 80+ \\ \hline <>= group3 <- factor(1+ 1*(fdata$flc.grp >7) + 1*(fdata$flc.grp >9), levels=1:3, labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71")) age1 <- cut(fdata$age, c(49,59,69,79, 110)) levels(age1) <- c(paste(c(50,60,70), c(59,69,79), sep='-'), '80+') temp1 <- table(group3, age1) temp2 <- round(100* temp1/rowSums(temp1)) pfun <- function(x,y) { paste(ifelse(x<1000, "\\phantom{0}", ""), x, " (", ifelse(y<10, "\\phantom{0}", ""), y, ") ", sep="") } cat(paste(c("FLC $<$ 3.38", pfun(temp1[1,], temp2[1,])), collapse=" & "), "\\\\\n") cat(paste(c("FLC 3.38--4.71", pfun(temp1[2,], temp2[2,])), collapse=" & "), "\\\\\n") cat(paste(c("FLC $>$ 4.71", pfun(temp1[3,], temp2[3,])), collapse=" & "), "\n") @ \end{tabular} \caption{Comparison of the age distributions (percents) for each of the three groups.} \label{tflc1} \end{table} Figure \ref{flc1} shows the survival curves for three subgroups of the patients: those whose total free light chain (FLC) is in the upper 10\% of all values found in the full study, those in the 70--89th percentile, and the remainder. There is a clear survival effect. Average free light chain amounts rise with age, however, at least in part because it is eliminated through the kidneys and renal function declines with age. Table \ref{tflc1} shows the age distribution for each of the three groups. In the highest decile of FLC (group 3) over half the subjects are age 70 or older compared to only 23\% in those below the 70th percentile. How much of the survival difference is truly associated with FLC and how much is simply an artifact of age? (The cut points are arbitrary, but we have chosen to mimic the original study and retain them. Division into three groups is a convenient number to illustrate the methods in this vignette, but we do not make any claim that such a categorization is optimal or even sensible statistical practice.) The R code for figure 1 is shown below. <>= fdata <- flchain[flchain$futime >=7,] fdata$age2 <- cut(fdata$age, c(0,54, 59,64, 69,74,79, 89, 110), labels = c(paste(c(50,55,60,65,70,75,80), c(54,59,64,69,74,79,89), sep='-'), "90+")) fdata$group <- factor(1+ 1*(fdata$flc.grp >7) + 1*(fdata$flc.grp >9), levels=1:3, labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71")) sfit1 <- survfit(Surv(futime, death) ~ group, fdata) plot(sfit1, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") text(c(11.1, 10.5, 7.5)*365.25, c(.88, .57, .4), c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71"), col=c(1,2,4)) @ \section{Reference populations} There are a few populations that are commonly used as the reference group. \begin{enumerate} \item Empirical. The overall distribution of confounders $x$ in the data set as a whole. For this study we would use the observed age/sex distribution, ignoring FLC group. This is also called the ``sample'' or ``data'' distribution. \item External reference. The distribution from some external study or standard. \item Internal reference. A particular subset of the data is chosen as the reference, and other subsets are then aligned with it. \end{enumerate} Method 2 is common in epidemiology, using a reference population based on a large external population such as the age/sex distribution of the 2000 United States census. Method 3 most often arises in the case-control setting, where one group is small and precious (a rare disease say) and the other group (the controls) from which we can sample is much larger. In each case the final result of the computation can be thought of as the expected answer we ``would obtain'' in a study that was perfectly balanced with respect to the list of confounders $x$. Population 1 is the most frequent. \section{Marginal approach} \begin{table} \centering \begin{tabular}{crrrrrrrr} \multicolumn{3}{c}{Females} \\ & \multicolumn{8}{c}{Age} \\ FLC group & 50--54& 55--59& 60--64 & 65--69 & 70--74 & 75--79 & 80--89& 90+ \\ \hline <>= tab1 <- with(fdata, table(group, age2, sex)) cat("Low&", paste(tab1[1,,1], collapse=" &"), "\\\\\n") cat("Med&", paste(tab1[2,,1], collapse=" &"), "\\\\\n") cat("High&", paste(tab1[3,,1], collapse=" &"), "\\\\\n") @ \\ \multicolumn{3}{c}{Males} \\ % & 50--54& 55--59& 60--64 & 65--69 & 70--74 & 75--79 & 80--89& 90+ \\ \hline <>= cat("Low&", paste(tab1[1,,2], collapse=" &"), "\\\\\n") cat("Med&", paste(tab1[2,,2], collapse=" &"), "\\\\\n") cat("High&", paste(tab1[3,,2], collapse=" &"), "\n") @ \end{tabular} \caption{Detailed age and sex distribution for the study population} \label{tab2} \end{table} \subsection{Selection} One approach for balancing is to select a subset of the data such that its distribution matches the referent for each level of $c$, i.e., for each curve that we wish to obtain. As an example we take a case-control like approach to the FLC data, with FLC high as the ``cases'' since it is the smallest group. Table \ref{tab2} shows a detailed distribution of the data with respect to age and sex. The balanced subset has all \Sexpr{tab1[3,1,1]} females aged 50--54 from the high FLC group, a random sample of \Sexpr{tab1[3,1,1]} out of the \Sexpr{tab1[1,1,1]} females in the age 50--54 low FLC group, and \Sexpr{tab1[3,1,1]} out of \Sexpr{tab1[2,1,1]} for the middle FLC. Continue this for all age/sex subsets. We cannot \emph{quite} compute a true case-control estimate for this data since there are not enough ``controls'' in the female 90+ category to be able to select one unique control for each case, and likewise in the male 80-89 and 90+ age groups. To get around this we will sample with replacement in these strata. \begin{figure}[tb] \myfig{flc2} \caption{Survival curves from a case-control sample are shown as solid lines, dashed lines are curves for the unweighted data set (as found in figure \ref{flc1}).} \label{flc2} \end{figure} <>= temp <- with(fdata, table(group, age2, sex)) dd <- dim(temp) # Select subjects set.seed(1978) select <- array(vector('list', length=prod(dd)), dim=dd) for (j in 1:dd[2]) { for (k in 1:dd[3]) { n <- temp[3,j,k] # how many to select for (i in 1:2) { indx <- which(as.numeric(fdata$group)==i & as.numeric(fdata$age2) ==j & as.numeric(fdata$sex) ==k) select[i,j,k] <- list(sample(indx, n, replace=(n> temp[i,j,k]))) } indx <- which(as.numeric(fdata$group)==3 & as.numeric(fdata$age2) ==j & as.numeric(fdata$sex) ==k) select[3,j,k] <- list(indx) #keep all the group 3 = high } } data2 <- fdata[unlist(select),] sfit2 <- survfit(Surv(futime, death) ~ group, data2) plot(sfit2,col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit1, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(730, .4, levels(fdata$group), lty=1, col=c(1,2,4), bty='n', lwd=2) @ %\begin{table}[tb] \centering % \begin{tabular}{ccccccc} % &\multicolumn{2}{c}{FLC low} & \multicolumn{2}{c}{FLC med}& % \multicolumn{2}{c}{FLC high} \\ % & Total & Subset & Total & Subset & Total & Subset \\ \hline %<>= %tab3 <- with(fdata, table(age2, group)) %tab3 <- round(100*scale(tab3, center=F, scale=colSums(tab3))) %tab4 <- with(data2, table(age2, group)) %tab4 <- round(100*scale(tab4, center=F, scale=colSums(tab4))) %tab5 <- cbind(tab3[,1], tab4[,1], tab3[,2], tab4[,2], tab3[,3], tab4[,3]) %pfun <- function(x) paste(ifelse(x<10, paste("\\phantom{0}", x), x), % collapse=" &") %dtemp <- dimnames(tab5)[[1]] %for (j in 1:7) % cat(dtemp[j], " &", pfun(tab5[j,]), "\\\\\n") %cat(dtemp[8], " & ", pfun(tab5[8,]), "\n") %@ %\end{tabular} %\caption{Age distributions (\%) of the original data set along with that of % the subset, for the three FLC groups.} %\label{tflc2} %\end{table} The survival curves for the subset data are shown in figure \ref{flc2}. The curve for the high risk group is unchanged, since by definition all of those subjects were retained. We see that adjustment for age and sex has reduced the apparent survival difference between the groups by about half, but a clinically important effect for high FLC values remains. The curve for group 1 has moved more than that for group 2 since the age/sex adjustment is more severe for that group. <>= # I can't seem to put this all into an Sexpr z1 <- with(fdata,table(age, sex, group)) z2<- apply(z1, 1:2, min) ztemp <- 3*sum(z2) z1b <- with(fdata, table(age>64, sex, group)) ztemp2 <- sum(apply(z1b, 1:2, min)) @ In actual practice, case-control designs arise when matching and selection can occur \emph{before} data collection, leading to a substantial decrease in the amount of data that needs to be gathered and a consequent cost or time savings. When a data set is already in hand it has two major disadvantages. The first is that the approach wastes data; throwing away information in order to achieve balance is always a bad idea. Second is that though it returns an unbiased comparison, the result is for a very odd reference population. One advantage of matched subsets is that standard variance calculations for the curves are correct; the values provided by the usual Kaplan-Meier program need no further processing. We can also use the usual statistical tests to check for differences between the curves. <<>>= survdiff(Surv(futime, death) ~ group, data=data2) @ \subsection{Reweighting} \label{sect:logistic} A more natural way to adjust the data distribution is by weighting. Let $\pi(a,s)$, $a$ = age group, $s$ = sex be a target population age/sex distribution for our graph, and $p(a,s,i)$ the observed probability of each age/sex/group combination in the data. Both $\pi$ and $p$ sum to 1. Then if each observation in the data set is given a case weight of \begin{equation} w_{asi} = \frac{\pi(a,s)}{p(a,s,i)} \label{wt1} \end{equation} the weighted age/sex distribution for each of the groups will equal the target distribution $\pi$. An obvious advantage of this approach is that the resulting curves represent a tangible and well defined group. As an example, we will first adjust our curves to match the age/sex distribution of the 2000 US population, a common reference target in epidemiology studies. The \texttt{uspop2} data set is found in later releases of the survival package in R. It is an array of counts with dimensions of age, sex, and calendar year. We only want ages of 50 and over, and the population data set has collapsed ages of 100 and over into a single category. We create a table \texttt{tab100} of observed age/sex counts within group for our own data, using the same upper age threshold. New weights are the values $\pi/p$ = \texttt{pi.us/tab100}. <<>>= refpop <- uspop2[as.character(50:100),c("female", "male"), "2000"] pi.us <- refpop/sum(refpop) age100 <- factor(ifelse(fdata$age >100, 100, fdata$age), levels=50:100) tab100 <- with(fdata, table(age100, sex, group))/ nrow(fdata) us.wt <- rep(pi.us, 3)/ tab100 #new weights by age,sex, group range(us.wt) @ There are infinite weights! This is because the US population has coverage at all ages, but our data set does not have representatives in every age/sex/FLC group combination; there are for instance no 95 year old males in in the data set. Let us repeat the process, collapsing the US population from single years into the 8 age groups used previously in table \ref{tab2}. Merging the per age/sex/group weights found in the 3-dimensional array \texttt{us.wt} into the data set as per-subject weights uses matrix subscripts, a useful but less known feature of R. <<>>= temp <- as.numeric(cut(50:100, c(49, 54, 59, 64, 69, 74, 79, 89, 110)+.5)) pi.us<- tapply(refpop, list(temp[row(refpop)], col(refpop)), sum)/sum(refpop) tab2 <- with(fdata, table(age2, sex, group))/ nrow(fdata) us.wt <- rep(pi.us, 3)/ tab2 range(us.wt) index <- with(fdata, cbind(as.numeric(age2), as.numeric(sex), as.numeric(group))) fdata$uswt <- us.wt[index] sfit3a <-survfit(Surv(futime, death) ~ group, data=fdata, weight=uswt) @ \begin{figure}[tb] \myfig{flc3a} \caption{Population totals for the US reference (red) and for the observed data set (black).} \label{flc3a} \end{figure} A more common choice is to use the overall age/sex distribution of the sample itself as our target distribution $\pi$, i.e., the empirical distribution. Since FLC data set is population based and has excellent coverage of the county, this will not differ greatly from the US population in this case, as is displayed in figure \ref{flc3a}. <>= tab1 <- with(fdata, table(age2, sex))/ nrow(fdata) matplot(1:8, cbind(pi.us, tab1), pch="fmfm", col=c(2,2,1,1), xlab="Age group", ylab="Fraction of population", xaxt='n') axis(1, 1:8, levels(fdata$age2)) tab2 <- with(fdata, table(age2, sex, group))/nrow(fdata) tab3 <- with(fdata, table(group)) / nrow(fdata) rwt <- rep(tab1,3)/tab2 fdata$rwt <- rwt[index] # add per subject weights to the data set sfit3 <- survfit(Surv(futime, death) ~ group, data=fdata, weight=rwt) temp <- rwt[,1,] #show female data temp <- temp %*% diag(1/apply(temp,2,min)) round(temp, 1) #show female data @ \begin{figure}[tb] \myfig{flc3} \caption{Survival curves for the three groups using reweighted data are shown with solid lines, the original unweighted analysis as dashed lines. The heavier solid line adjusts to the Olmsted population and the lighter one to the US population.} \label{flc3} \end{figure} <>= plot(sfit3, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit3a, mark.time=F, col=c(1,2,4), lty=1, lwd=1, xscale=365.25) lines(sfit1, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(730, .4, levels(fdata$group), lty=1, col=c(1,2,4), bty='n', lwd=2) @ The calculation of weights is shown above, and finishes with a table of the weights for the females. The table was scaled so as to have a minimum weight of 1 in each column for simpler reading. We see that for the low FLC group there are larger weights for the older ages, whereas the high FLC group requires substantial weights for the youngest ages in order to achieve balance. The resulting survival curve is shown in figure \ref{flc3}. The distance between the adjusted curves is similar to the results from subset selection, which is as expected since both approaches are correcting for the same bias, but results are now for an overall population distribution that matches Olmsted County. The curves estimate what the results would have looked like, had each of the FLC groups contained the full distribution of ages. Estimation based on reweighted data is a common theme in survey sampling. Correct standard errors for the curves are readily computed using methods from that literature, and are available in some software packages. In R the \texttt{svykm} routine in the \texttt{survey} package handles both this simple case and more complex sampling schemes. Tests of the curves can be done using a weighted Cox model; the robust variance produced by \texttt{coxph} is identical to the standard Horvitz-Thompsen variance estimate used in survey sampling \cite{Binder92}. The robust score test from \texttt{coxph} corresponds to a log-rank test corrected for weighting. (In the example below the svykm function is only run if the survey package is already loaded, as the variance calculation is very slow for this large data set.) <<>>= id <- 1:nrow(fdata) cfit <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight=rwt) summary(cfit)$robscore if (exists("svykm")) { #true if the survey package is loaded sdes <- svydesign(id = ~0, weights=~rwt, data=fdata) dfit <- svykm(Surv(futime, death) ~ group, design=sdes, se=TRUE) } @ Note: including the \texttt{cluster} term in the coxph call causes it to treat the weights as resampling values and thus use the proper survey sampling style variance. The default without that term would be to treat the case weights as replication counts. This same alternate variance estimate is also called for when there are correlated observations; many users will be more familiar with the cluster statement in that context. \paragraph{Inverse probability weighting} Notice that when using the overall population as the target distribution $\pi$ we can use Bayes rule to rewrite the weights as \begin{align*} \frac{1}{w_{asi}} &= \frac{{\rm Pr}({\rm age}=a, {\rm sex} =s, {\rm group}=i)} {{\rm Pr}({\rm age}=a, {\rm sex} =s)} \\ &= {\rm Pr}({\rm group}=i | {\rm age}=a, {\rm sex} =s) \end{align*} This last is precisely the probability estimated by a logistic regression model, leading to \emph{inverse probability weighting} as an alternate label for this approach. We can reproduce the weights calculated just above with three logistic regression models. <>= options(na.action="na.exclude") gg <- as.numeric(fdata$group) lfit1 <- glm(I(gg==1) ~ factor(age2) * sex, data=fdata, family="binomial") lfit2 <- glm(I(gg==2) ~ factor(age2) * sex, data=fdata, family="binomial") lfit3 <- glm(I(gg==3) ~ factor(age2) * sex, data=fdata, family="binomial") temp <- ifelse(gg==1, predict(lfit1, type='response'), ifelse(gg==2, predict(lfit2, type='response'), predict(lfit3, type='response'))) all.equal(1/temp, fdata$rwt) @ If there were only 2 groups then only a single regression model is needed since P(group 2) = 1 - P(group 1). Note the setting of na.action, which causes the predicted vector to have the same length as the original data even when there are missing values. This simplifies merging the derived weights with the original data set. An advantage of the regression framework is that one can easily accommodate more variables by using a model with additive terms and only a few selected interactions, and the model can contain continuous as well as categorical predictors. The disadvantage is that such models are often used without the necessary work to check their validity. For instance models with \texttt{age + sex} could have been used above. This makes the assumption that the odds of being a member of group 1 is linear in age and with the same slope for males and females; ditto for the models for group 2 and group 3. How well does this work? Since the goal of reweighting is to standardize the ages, a reasonable check is to compute and plot the reweighted age distribution for each flc group. \begin{figure}[tb] \myfig{flc4} \caption{The re-weighted age distribution using logistic regression with continuous age, for females, FLC groups 1--3. The target distribution is shown as a ``+''. The original unadjusted distribution is shown as dashed lines.} \label{flc4} \end{figure} Figure \ref{flc4} shows the result. The reweighted age distribution is not perfectly balanced, i.e., the `1', `2' and `3' symbols do no exactly overlay one another, but in this case the simple linear model has done an excellent job. We emphasize that whenever the reweighting is based on a simplified model then such a check is obligatory. It is quite common that a simple model is not sufficient and the resulting weight adjustment is inadequate. Like a duct tape auto repair, proceeding forward as though the underlying problem has been addressed is then most unwise. <>= lfit1b <-glm(I(gg==1) ~ age + sex, data=fdata, family="binomial") lfit2b <- glm(I(gg==2) ~ age +sex, data=fdata, family="binomial") lfit3b <- glm(I(gg==3) ~ age + sex, data=fdata, family="binomial") # weights for each group using simple logistic twt <- ifelse(gg==1, 1/predict(lfit1b, type="response"), ifelse(gg==2, 1/predict(lfit2b, type="response"), 1/predict(lfit3b, type="response"))) tdata <- data.frame(fdata, lwt=twt) #grouped plot for the females temp <- tdata[tdata$sex=='F',] temp$gg <- as.numeric(temp$group) c1 <- with(temp[temp$gg==1,], tapply(lwt, age2, sum)) c2 <- with(temp[temp$gg==2,], tapply(lwt, age2, sum)) c3 <- with(temp[temp$gg==3,], tapply(lwt, age2, sum)) xtemp <- outer(1:8, c(-.1, 0, .1), "+") #avoid overplotting ytemp <- 100* cbind(c1/sum(c1), c2/sum(c2), c3/sum(c3)) matplot(xtemp, ytemp, col=c(1,2,4), xlab="Age group", ylab="Weighted frequency (%)", xaxt='n') ztab <- table(fdata$age2) points(1:8, 100*ztab/sum(ztab), pch='+', cex=1.5, lty=2) # Add the unadjusted temp <- tab2[,1,] temp <- scale(temp, center=F, scale=colSums(temp)) matlines(1:8, 100*temp, pch='o', col=c(1,2,4), lty=2) axis(1, 1:8, levels(fdata$age2)) @ \paragraph{Rescaled weights} As the weights were defined in equation \ref{wt1}, the sum of weights for each of the groups is \Sexpr{nrow(fdata)}, the number of observations in the data set. Since the number of subjects in group 3 is one seventh of that in group 1, the average weight in group 3 is much larger. An alternative is to define weights in terms of the \emph{within} group distribution rather than the overall distribution, leading to the rescaled weights $w^*$ \begin{align} w^* &= \frac{\pi(a,s)}{p(a,s|i)} \label{wt2} \\ &= \frac{{\rm P}({\rm group}=i)} {{\rm P}({\rm group}=i | {\rm age}=a, {\rm sex}=s)} \label{wt2b} \end{align} Each group's weights are rescaled by the overall prevalence of the group. In its simplest form, the weights in each group are scaled to add up to the number of subjects in the group. <<>>= # compute new weights wtscale <- table(fdata$group)/ tapply(fdata$rwt, fdata$group, sum) wt2 <- c(fdata$rwt * wtscale[fdata$group]) c("rescaled cv"= sd(wt2)/mean(wt2), "rwt cv"=sd(fdata$rwt)/mean(fdata$rwt)) cfit2a <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight= rwt) cfit2b <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight=wt2) round(c(cfit2a$rscore, cfit2b$rscore),1) @ The rescaling results in weights that are much less variable across groups. This operation has no impact on the individual survival curves or their standard errors, since within group we have multiplied all weights by a constant. When comparing curves across groups, however, the rescaled weights reduce the standard error of the test statistic. This results in increased power for the robust score test, although in this particular data set the improvement is not very large. \section{Conditional method} In the marginal approach we first balance the data set and then compute results on the adjusted data. In the conditional approach we first compute a predicted survival curve for each subject that accounts for flc group, age and sex, and then take a weighted average of the curves to get an overall estimate for each flc group. For both methods a central consideration is the population of interest, which drives the weights. Modeling has not removed the question of \emph{who} these curves should represent, it has simply changed the order of operation between the weighting step and the survival curves step. \subsection{Stratification} Our first approach is to subset the data into homogeneous age/sex strata, compute survival curves within each strata, and then combine results. We will use the same age/sex combinations as before. The interpretation of these groups is different, however. In the marginal approach it was important to find age/sex groups for which the probability of membership within each FLC group was constant within the strata (independent of age and sex, within strata), in this case it is important that the survival for each FLC group is constant in each age/sex stratum. Homogeneity of membership within each stratum and homogeneity of survival within each stratum may lead to different partitions for some data sets. Computing curves for all the combinations is easy. <>= allfit <- survfit(Surv(futime, death) ~ group + age2 + sex, fdata) temp <- summary(allfit)$table temp[1:6, c(1,4)] #abbrev printout to fit page @ The resultant survival object has 48 curves: 8 age groups * 2 sexes * 3 FLC groups. To get a single curve for the first FLC group we need to take a weighted average over the 16 age/sex combinations that apply to that group, and similarly for the second and third FLC subset. Combining the curves is a bit of a nuisance computationally because each of them is reported on a different set of time points. A solution is to use the \texttt{summary} function for survfit objects along with the \texttt{times} argument of that function. This feature was originally designed to allow printout of curves at selected time points (6 months, 1 year, \ldots), but can also be used to select a common set of time points for averaging. We will arbitrarily use 4 per year, which is sufficient to create a visually smooth plot over the time span of interest. By default \texttt{summary} does not return data for times beyond the end of a curve, i.e., when there are no subjects left at risk; the \texttt{extend} argument causes a full set of times to always be reported. As seen in the printout above, the computed curves are in sex within age within group order. The overall curve is a weighted average chosen to match the original age/sex distribution of the population. <>= xtime <- seq(0, 14, length=57)*365.25 #four points/year for 14 years smat <- matrix(0, nrow=57, ncol=3) # survival curves serr <- smat #matrix of standard errors pi <- with(fdata, table(age2, sex))/nrow(fdata) #overall dist for (i in 1:3) { temp <- allfit[1:16 + (i-1)*16] #curves for group i for (j in 1:16) { stemp <- summary(temp[j], times=xtime, extend=T) smat[,i] <- smat[,i] + pi[j]*stemp$surv serr[,i] <- serr[,i] + pi[i]*stemp$std.err^2 } } serr <- sqrt(serr) plot(sfit1, lty=2, col=c(1,2,4), xscale=365.25, xlab="Years from sample", ylab="Survival") matlines(xtime, smat, type='l', lwd=2, col=c(1,2,4),lty=1) @ \begin{figure}[tb] \myfig{flc5} \caption{Estimated curves from a stratified model, along with those from the uncorrected fit as dashed lines.} \label{flc5} \end{figure} Figure \ref{flc5} shows the resulting averaged curves. Overlaid are the curves for the unadjusted model. Very careful comparison of these curves with the weighted estimate shows that they have almost identical spread, with just a tiny amount of downward shift. There are two major disadvantages to the stratified curves. The first is that when the original data set is small or the number of confounders is large, it is not always feasible to stratify into a large enough set of groups that each will be homogeneous. The second is a technical aspect of the standard error estimate. Since the curves are formed from disjoint sets of observations they are independent and the variance of the weighted average is then a weighted sum of variances. However, when a Kaplan-Meier curve drops to zero the usual standard error estimate at that point involves 0/0 and becomes undefined, leading to the NaN (not a number) value in R. Thus the overall standard error becomes undefined if any of the component curves falls to zero. In the above example this happens at about the half way point of the graph. (Other software packages carry forward the se value from the last no-zero point on the curve, but the statistical validity of this is uncertain.) To test for overall difference between the curves we can use a stratified test statistic, which is a sum of the test statistics computed within each subgroup. The most common choice is the stratified log-rank statistic which is shown below. The score test from a stratified Cox model would give the same result. <<>>= survdiff(Surv(futime, death) ~ group + strata(age2, sex), fdata) @ \subsection{Modeling} The other approach for conditional estimation is to model the risks due to the confounders. Though we have left it till last, this is usually the first (and most often the only) approach used by most data analysts. Let's start with the very simplest method: a stratified Cox model. <>= cfit4a <- coxph(Surv(futime, death) ~ age + sex + strata(group), data=fdata) surv4a <- survfit(cfit4a) plot(surv4a, col=c(1,2,4), mark.time=F, xscale=365.25, xlab="Years post sample", ylab="Survival") @ This is a very fast and easy way to produce a set of curves, but it has three problems. First is the assumption that this simple model adequately accounts for the effects of age and sex on survival. That is, it assumes that the effect of age on mortality is linear, the sex difference is constant across all ages, and that the coefficients for both are identical for the three FLC groups. The second problem with this approach is that it produces the predicted curve for a single hypothetical subject of age \Sexpr{round(cfit4a[['means']][1], 1)} years and sex \Sexpr{round(cfit4a[['means']][2],2)}, the means of the covariates, under each of the 3 FLC scenarios. However, we are interested in the adjusted survival of a \emph{cohort} of subjects in each range of FLC, and the survival of an ``average'' subject is not the average survival of a cohort. The third and most serious issue is that it is not clear exactly what these ``adjusted'' curves represent --- exactly who \emph{is} this subject with a sex of \Sexpr{round(cfit4a[['means']][2],2)}? Multiple authors have commented on this problem, see Thomsen et al \cite{Thomsen91}, Nieto and Coresh \cite{Nieto96} or chapter 10 of Therneau and Grambsh \cite{Therneau00} for examples. Even worse is a Cox model that treated the FLC group as a covariate, since that will impose an additional constraint of proportional hazards across the 3 FLC groups. \begin{figure} \myfig{flc6} \caption{Curves for the three groups, adjusted for age and sex via a risk model. Dotted lines show the curves from marginal adjustment. Solid curves are for the simple risk model \texttt{cfit4a}.} \label{flc6} \end{figure} We can address this last problem problem by doing a proper average. A Cox model fit can produce the predicted curves for any age/sex combination. The key idea is to produce a predicted survival curve for every subject of some hypothetical population, and then take the average of these curves. The most straightforward approach is to retrieve the predicted individual curves for all \Sexpr{nrow(fdata)} subjects in the data set, assuming each of the three FLC strata one by one, and take a simple average for each strata. For this particular data set that is a bit slow since it involves \Sexpr{nrow(fdata)} curves. However there are only 98 unique age/sex pairs in the data, it is sufficient to obtain the 98 * 3 FLC groups unique curves and take a weighted average. We will make use of the survexp function, which is designed for just this purpose. Start by creating a data set which has one row for each age/sex combination along with its count. Then replicate it into 3 copies, assigning one copy to each of the three FLC strata. <>= tab4a <- with(fdata, table(age, sex)) uage <- as.numeric(dimnames(tab4a)[[1]]) tdata <- data.frame(age = uage[row(tab4a)], sex = c("F","M")[col(tab4a)], count= c(tab4a)) tdata3 <- tdata[rep(1:nrow(tdata), 3),] #three copies tdata3$group <- factor(rep(1:3, each=nrow(tdata)), labels=levels(fdata$group)) sfit4a <- survexp(~group, data=tdata3, weight = count, ratetable=cfit4a) plot(sfit4a, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit3, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(730,.4, c("FLC low", "FLC med", "FLC high"), lty=1, col=c(1,2,4), bty='n', lwd=2) @ Figure \ref{flc6} shows the result. Comparing this to the prior 3 adjustments shown in figures \ref{flc3}, \ref{flc4}, and \ref{flc5} we see that this result is different. Why? Part of the reason is due to the fact that $E[f(X)] \ne f(E[X])$ for any non-linear operation $f$, so that averages of survival curves and survival curves of averages will never be exactly the same. This may explain the small difference between the stratified and the marginal approaches of figures \ref{flc3} and \ref{flc5}, which were based on the same subsets. The Cox based result is systematically higher than the stratified one, however, so something more is indicated. Aside: An alternate computational approach is to create the individual survival curves using the \texttt{survfit} function and then take averages. <<>>= tfit <- survfit(cfit4a, newdata=tdata, se.fit=FALSE) curves <- vector('list', 3) twt <- c(tab4a)/sum(tab4a) for (i in 1:3) { temp <- tfit[i,] curves[[i]] <- list(time=temp$time, surv= c(temp$surv %*% twt)) } @ The above code is a bit sneaky. I know that the result from the survfit function contains a matrix \texttt{tfit\$surv} of 104 columns, one for each row in the tdata data frame, each column containing the curves for the three strata one after the other. Sub setting \texttt{tfit} results in the matrix for a single flc group. Outside of R an approach like the above may be needed, however. \begin{figure} \myfig{flc6b} \caption{Left panel: comparison of Cox model based adjustment (solid) with the curves based on marginal adjustment (dashed). The Cox model curves without (black) and with (red) an age*sex interaction term overlay. Right panel: plot of the predicted relative risks from a Cox model \texttt{crate} versus population values from the Minnesota rate table.} \label{flc6b} \end{figure} So why are the modeling results so different than either reweighting or stratification? Suspicion first falls on the use of a simple linear model for age and sex, so start by fitting a slightly more refined model that allows for a different slope for the two sexes, but is still linear in age. In this particular data set an external check on the fit is also available via the Minnesota death rate tables, which are included with the survival package as \texttt{survexp.mn}. This is an array that contains daily death rates by age, sex, and calendar year. <>= par(mfrow=c(1,2)) cfit4b <- coxph(Surv(futime, death) ~ age*sex + strata(group), fdata) sfit4b <- survexp(~group, data=tdata3, ratetable=cfit4b, weights=count) plot(sfit4b, fun='event', xscale=365.25, xlab="Years from sample", ylab="Deaths") lines(sfit3, mark.time=FALSE, fun='event', xscale=365.25, lty=2) lines(sfit4a, fun='event', xscale=365.25, col=2) temp <- median(fdata$sample.yr) mrate <- survexp.mn[as.character(uage),, as.character(temp)] crate <- predict(cfit4b, newdata=tdata, reference='sample', type='lp') crate <- matrix(crate, ncol=2)[,2:1] # mrate has males then females, match it # crate contains estimated log(hazards) relative to a baseline, # and mrate absolute hazards, make both relative to a 70 year old for (i in 1:2) { mrate[,i] <- log(mrate[,i]/ mrate[21,2]) crate[,i] <- crate[,i] - crate[21,2] } matplot(mrate, crate, col=2:1, type='l') abline(0, 1, lty=2, col=4) @ The resulting curves are shown in the left panel of figure \ref{flc6b} and reveal that addition of an interaction term did not change the predictions, and that the Cox model result for the highest risk group is distinctly different predicted survival for the highest FLC group is distinctly different when using model based prediction. The right hand panel of the figure shows that though there are slight differences with the Minnesota values, linearity of the age effect is very well supported. So where exactly does the model go wrong? Since this is such a large data set we have the luxury of looking at subsets. This would be a very large number of curves to plot --- age by sex by FLC = 48 --- so an overlay of the observed and expected curves by group would be too confusing. Instead we will summarize each of the groups according to their observed and predicted number of events. <>= obs <- with(fdata, tapply(death, list(age2, sex, group), sum)) pred<- with(fdata, tapply(predict(cfit4b, type='expected'), list(age2, sex, group), sum)) excess <- matrix(obs/pred, nrow=8) #collapse 3 way array to 2 dimnames(excess) <- list(dimnames(obs)[[1]], c("low F", "low M", "med F", "med M", "high F", "high M")) round(excess, 1) @ The excess risks, defined as the observed/expected number of deaths, are mostly modest ranging from .8 to 1.2. The primary exception exception is the high FLC group for ages 50--59 which has values of 1.6 to 2.5; the Cox model fit has greatly overestimated the survival for the age 50--54 and 55--59 groups. Since this is also the age category with the highest count in the data set, this overestimation will have a large impact on the overall curve for high FLC subset, which is exactly where the the deviation in figure \ref{flc6b} is observed to lie. There is also mild evidence for a linear trend in age for the low FLC females, in the other direction. Altogether this suggests that the model might need to have a different age coefficient for each of the three FLC groups. <<>>= cfit5a <- coxph(Surv(futime, death) ~ strata(group):age +sex, fdata) cfit5b <- coxph(Surv(futime, death) ~ strata(group):(age +sex), fdata) cfit5c <- coxph(Surv(futime, death) ~ strata(group):(age *sex), fdata) options(show.signif.stars=FALSE) # see footnote anova(cfit4a, cfit5a, cfit5b, cfit5c) temp <- coef(cfit5a) names(temp) <- c("sex", "ageL", "ageM", "ageH") round(temp,3) @ The model with separate age coefficients for each FLC group gives a major improvement in goodness of fit, but adding separate sex coefficients per group or further interactions does not add importantly beyond that. \footnote{There are certain TV shows that make one dumber just by watching them; adding stars to the output has the same effect on statisticians.} \begin{figure} \myfig{flc7} \caption{Adjusted survival for the 3 FLC groups based on the improved Cox model fit. Dashed lines show the predictions from the marginal model.} \label{flc7} \end{figure} A recheck of the observed/expected values now shows a much more random pattern, though some excess remains in the upper right corner. The updated survival curves are shown in figure \ref{flc7} and now are in closer concordance with the marginal fit. <>= pred5a <- with(fdata, tapply(predict(cfit5a, type='expected'), list(age2, sex, group), sum)) excess5a <- matrix(obs/pred5a, nrow=8, dimnames=dimnames(excess)) round(excess5a, 1) sfit5 <- survexp(~group, data=tdata3, ratetable=cfit5a, weights=count) plot(sfit3, fun='event', xscale=365.25, mark.time=FALSE, lty=2, col=c(1,2,4), xlab="Years from sample", ylab="Deaths") lines(sfit5, fun='event', xscale=365.25, col=c(1,2,4)) @ One problem with the model based estimate is that standard errors for the curves are complex. Standard errors of the individual curves for each age/sex/FLC combination are a standard output of the survfit function, but the collection of curves is correlated since they all depend on a common estimate of the model's coefficient vector $\beta$. Curves with disparate ages are anti-correlated (an increase in the age coefficient of the model would raise one and lower the other) whereas those for close ages are positively correlated. A proper variance for the unweighted average has been derived by Gail and Byar \cite{Gail86}, but this has not been implemented in any of the standard packages, nor extended to the weighted case. A bootstrap estimate would appear to be the most feasible. \section{Conclusions} When two populations need to be adjusted and one is much larger than the other, the balanced subset method has been popular. It is most often seen in the context of a case-control study, with cases as the rarer group and a set of matched controls selected from the larger one. This method has the advantage that the usual standard error estimates from a standard package are appropriate, so no further work is required. However, in the general situation it leads to a correct answer but for the wrong problem, i.e., not for a population in which we are interested. The population reweighted estimate is flexible, has a readily available variance in some statistical packages (but not all), and the result is directly interpretable. It is the method we recommend in general. The approach can be extended to a large number of balancing factors by using a regression model to derive the weights. Exploration and checking of said model for adequacy is an important step in this case. The biggest downside to the method arises when there is a subset which is rare in the data sample but frequent in the adjusting population. In this case subjects in that subset will be assigned large weights, and the resulting curves will have high variance. The stratified method is closely related to reweighting (not shown). It does not do well if the sample size is small, however. Risk set modeling is a very flexible method, but is also the one where it is easiest to go wrong by using an inadequate model, and variance estimation is also difficult. To the extent that the fitted model is relevant, it allows for interpolation and extrapolation to a reference population with a different distribution of covariates than the one in the training data. It may be applicable in cases such as rare subsets where population reweighting is problematic, with the understanding that one is depending heavily on extrapolation in this case, which is always dangerous. \section{A note on type 3 tests} One particular software package (not R) and its proponents are very fond of something called ``type 3'' tests. Said tests are closely tied to a particular reference population: \begin{itemize} \item For all continuous covariates in the model, the empirical distribution is used as the reference. \item For all categorical adjusters, a uniform distribution over the categories is used. \end{itemize} Figure \ref{flc8} shows the fit from such a model. Not surprisingly, the predicted death rate is very high: 1/4 of our population is over 80 years old! The authors do not find such a prediction particularly useful since we don't ever expect to see a population like this (it's sort of like planning for the zombie apocalypse), but for those enamored of type 3 tests this shows how to create the corresponding curves. <>= # there is a spurious warning from the model below: R creates 3 unneeded # columns in the X matrix cfit6 <- coxph(Surv(futime, death) ~ strata(group):age2 + sex, fdata) saspop <- with(fdata, expand.grid(age2= levels(age2), sex= levels(sex), group = levels(group))) sfit6 <- survexp(~group, data=saspop, ratetable=cfit6) plot(sfit6, fun='event', xscale=365.25, mark.time=FALSE, lty=1, col=c(1,2,4), xlab="Years from sample", ylab="Deaths") lines(sfit5, fun='event', xscale=365.25, lty=2, col=c(1,2,4)) @ \begin{figure} \myfig{flc8} \caption{Adjusted survival for the 3 FLC groups based on a fit with categorical age, and predicting for a uniform age/sex population. Dashed lines show the predictions from the marginal model.} \label{flc8} \end{figure} \newpage \bibliographystyle{plain} \bibliography{refer} \end{document} survival/vignettes/.install_extras0000644000176200001440000000001013537676563017206 0ustar liggesusersfigures survival/vignettes/refer.bib0000644000176200001440000024323613555573437015751 0ustar liggesusers@string{annals= {Annals of Stat.}} @string{applstat= {Applied Stat.}} @string{bioj = {Biometrical J.}} @string{biok = {Biometrika}} @string{biom = {Biometrics}} @string{commstata = {Comm. Stat. Theory Methods}} @string{jap = {J. Applied Probability}} @string{jasa = {J. Amer. Stat. Assoc.}} @string{jrssa= {J. Royal Stat. Soc. A}} @string{jrssb= {J. Royal Stat. Soc. B}} @string{jrssc= {J. Royal Stat. Soc. C}} @string{jscs = {J Stat. Comput. Simul.}} @string{lifetime = {Lifetime Data Analysis}} @string{NEJM = {New England J. Medicine}} @string{scand = {Scandinavian J. Stat.}} @string{statmed= {Stat. in Medicine}} @string{statsci = {Stat. Science}} @article{Aalen78, author= {Aalen, O. O.}, title= {Nonparametric estimation of partial transition probabilities in multiple decrement models}, year= {1978}, journal=annals, volume={6}, pages={534--545} } @article{Aalen88, author= {Aalen, O. O.}, title= {Heterogeneity in survival analysis}, year= {1988}, journal=statmed, volume={7}, pages={1121--1137} } @article{Aalen89, author= {Aalen,O. O.} , title= {A linear regression model for the analysis of life times}, year= {1989}, journal=statmed, volume={8}, pages={907--925} } @article{Aalen93, author= {Aalen,O. O.} , title= {Further results on the non-parametric linear regression model in survival analysis}, year= {1993}, journal=statmed, volume={12}, pages={1569--1588} } @Manual{AdjCurves, author={Therneau, T. M. and Crowson, C. S. and Atkinson, E. J.}, year={2015}, title= {Adjusted Survival Curves}, url= {https://cran.r-project.org/web/packages/survival/vignettes/adjcurve.pdf} } @article{Aitkin78, author= {Aitkin,M} , title= {The analysis of unbalanced cross classifications (with discussion)}, year= {1978}, journal=jrssa, volume={141}, pages={195--223} } @article{Aitkin80, author= {Aitkin,M. and Clayton, D.} , title= {The fitting of exponential, Weibull and extreme value distributions to complex censored survival data using GLIM}, year= {1980}, journal=applstat, volume={29}, pages={156--163} } @article{Andersen00, author= {Andersen, P. K. and Esbjerg, S. and S{\o}rensen, T.I.A.} , title= {Multi-state models for bleeding episodes and morality in lever cirrhosis}, year= {2000}, journal=statmed, volume={19}, pages={587--599} } @article{Andersen82, author= {Andersen, P. K. and Gill, R. D} , title= {Cox's regression model for counting processes: A large sample study}, year= {1982}, journal=annals, volume={10}, pages={1100--1120} } @article{Andersen89, author= {Andersen, P. K. and V{\ae}th, M.} , title= {Simple parametric and nonparametric models for excess and relative mortality}, year= {1989}, journal=biom, volume={45}, pages={523--535} } @book{Andersen92, author={Andersen, P. K. and Borgan, {\O}. and Gill, R. D. and Keiding, N.}, title= {Statistical Models Based on Counting Processes}, publisher={Springer-Verlag}, address={New York}, year= {1993} } @book{Anderson58, author= {V. E Anderson and H. O. Goodman and S. Reed}, title= {Variables Related to Human Breast Cancer}, year = 1958, publisher={University of Minnesota Press}, address={Minneapolis} } @article{Anderson82, author= {J. R. Anderson and L. Bernstein and M. C. Pike}, year= {1982}, title= {Approximate confidence intervals for probabilities of survival and quantiles in life-table analysis}, journal=biom}, volume={38}, pages= {407--416}, } @article{Anderson83, author={Anderson, J. R. and Cain, K. C. and Gelber, R.D.}, title={Analysis of survival by tumor response}, year= 1983, journal={J Clinical Oncology}, volume=1, pages={710--719} } @article{Antolini05, author={Laura Antolini and Patriza Boracchi and Elia Biganzoli}, title={A time-dependent discrimination index for survival data}, year=2005, journal=statmed, volume=24, pages={3927--3944} } @article{Arvesen69, title={Jackknifing {U}-statistics}, author={Arvesen, James N}, journal={The Annals of Mathematical Statistics}, pages={2076--2100}, year={1969}, publisher={JSTOR} } @article{Barlow88, author= { Barlow, W. E. and Prentice, R. L.}, year = {1988}, title= {Residuals for relative risk regression}, journal= {Biometrika}, volume={75}, pages={65--74} } @article{Barlow94, author= {Barlow, W. E.}, year ={1994}, title= {Robust variance estimation for the case-cohort design}, journal= {Biometrics}, volume={50}, pages= {1064--1072} } @article{Bartolucci77, author = {Bartolucci, A. A. and Fraser, M. D.}, year = 1977, title = {Comparative step-up and composite tests for selecting prognostic indicators associated with survival}, journal = {Biometrical J.}, volume = 19, pages = {437-448} } @book{Becker84, author={Becker, R. A. and Chambers, J. M.}, title= {S: {A}n Interactive Environment for Data Analysis and Graphics}, publisher={Wadsworth}, address={Belmont, CA}, year= {1984} } @techreport{Bergstralh88, author= {Bergstralh, E. J. and Offord, K. P.}, year = {1988}, title = {Conditional probabilities used in calculating cohort expected survival}, number = {37}, institution= {Department of Health Sciences Research, Mayo Clinic} } @article{Bernstein78, author= {Berstein,D. and Lagakos, S. W.} , title= {Sample size and power determination for stratified clinical trials}, year= {1978}, journal=jscs, volume={8}, pages={65--73} } @article{Berry83, author= {Berry, G.}, year = {1983}, title= {The analysis of mortality by the subject years method}, journal= biok, volume={39}, pages={173--184} } @article{Beyersmann2012, author= {Beyersmann J and Allignol A. And Schumacher M.}, year = {2012}, title= {Competing Risks and Multi-state Models with R}, publisher={Springer-Verlag}, address={New York, NY}, } @book{Bickel77, author={Bickel, P. J. and Doksum,K. J. }, title= { Mathematical Statistics: Basic Ideas and Selected Topics}, publisher={Holden-Day}, address={San Francisco}, year= {1977} } @article{Bie87, author= {Bie, O. and Borgan, O. and Liestoel, K.}, year = {1987}, title= {Confidence intervals and confidence bands for the cumulative hazard rate function and their small sample properties}, journal= scand, volume={14}, pages={221--233} } @book{Billingsley68, author={Billingsley, P.}, title= {Convergence of Probability Measures}, publisher={Wiley}, address={New York}, year= {1968} } @article{Binder92, author= {Binder, D. A.}, year= {1992}, title= {Fitting {C}ox's proportional hazards models from survey data}, journal={Biometrika}, volume={79}, pages={139--147} } @ARTICLE{Blackstone86, author = {Blackstone, E. H. and Naftel, D. C. and Turner, M. E.}, year = 1986, title = {The decomposition of time-varying hazard into phases, each incorporating a separate stream of concomitant information}, journal = JASA, volume = 81, pages = {615-624}, annote = {parametric survival models; non PH} } @article{Block85, author= {Block, H. W. and Borges, W. S. and Savits, T. H.}, year= {1985}, title= {Age-dependent minimal repair}, journal=jap, volume={22}, pages={370--385} } @article{Bonsel90, author= {Bonsel, G. J. and Klompmaker, I. J. and {van't Veer}, F. and Habbema, J. D. F. and Slooff, M. J. H.}, year= {1990}, title= {Use of prognostic models for assessment of value of liver transplantation in primary biliary cirrhosis}, journal={Lancet}, volume={335}, pages={493--497} } @article{Borgan95, author= {Borgan, \O. and Goldstein, L. and Langholz, B.}, year= {1995}, title= {Methods for the analysis of sampled cohort data in the {C}ox proportional hazards model}, journal=annals, volume={23}, pages={1749--1778} } @book{Box87, author= {Box, G. E. P. and Draper, N. R.}, title = {Empirical Model Building and Response Surfaces}, year = 1987, publisher= {John Wiley and Sons}, address = {New York} } @book{Breiman84, author= {Breiman, L. and Friedman, J. H. and Olshen, R. A. and Stone, C. J.}, title= {Classification and Regression Trees}, year = 1984, publisher={Wadsworth}, address={Belmont, CA} } article{Breslow72, author= {Breslow, N. E.}, year= {1972}, title= {Discussion of {P}rofessor {C}ox's paper}, journal=jrssb, volume={34}, pages={216--217} } @article{Breslow74, author= {Breslow, N. E.}, year= {1974}, title= {Covariance analysis of censored survival data}, journal=biom, volume={30}, pages= {89--99} } @book{Breslow80, author={Breslow, N. E. and Day, N. E.}, title= {The Analysis of Case-Control Studies}, volume={1}, series = {Statistical Methods in Cancer Research}, publisher={IARC}, address={Lyon}, year= {1980} } @article{Breslow84, author= {Breslow, N. E. and L. Edler and J. Berger}, year= {1984}, title= {A two-sample censored-data rank test for acceleration}, journal=biom, volume={40}, pages= {1049--1062} } @article{Breslow93, author= {Breslow, N. E. and Clayton, D. G.}, year= {1993}, title= {Approximate inference in generalized linear mixed models}, journal=jasa, volume={88}, pages={9--25} } @book{Broca66, author= {Broca, P. P.}, title= {Traites de Tumerus, volumes 1 and 2}, year = 1866, publisher={Asselin}, address={Paris} } @article{Bryson81, author= {Bryson, M. C. and Johnson, M. E}, year= {1981}, title= {The incidence of monotone likelihood in the {C}ox model}, journal={Technometrics}, volume={23}, pages= {381--383} } @article{Buyse96, author= {M. Buyse and P. Piedbois}, year= {1996}, title= {The relationship between response to treatment and survival time}, journal=statmed, volume={15}, pages={2797--2812} } @article{Cai95, author= {Cai, J. and Prentice, R. G.}, year= {1995}, title= {Estimating equations for hazard ratio parameters based on correlated failure time data}, journal={Biometrika}, volume={82}, pages={151--164} } @article{Cain84, author={Cain, K. C. and Lange, N. T.}, year= {1984}, title= {Approximate case influence for the proportional hazards regression model with censored data}, journal={Biometrics}, volume={40}, pages={493--499} } @book{Chambers83, author= {Chambers, J. M. and Cleveland, W. S. and Kleiner, B. and Tukey, P. A.}, year= {1983}, title={Graphical Methods for Data Analysis}, publisher ={Wasdworth}, address ={Belmont, CA} } @book{Chambers91, author= {Chambers, J. M. and Hastie, T. J.}, year= {1993}, title={Statistical Models in {S}}, publisher ={Chapman and Hall}, address ={New York} } @article{Chang82, author= {Chang, I. M. and Gelman, R. and Pagano, M.}, year= {1982}, title= {Corrected group prognostic curves and summary statistics}, journal={J. Chronic Diseases}, volume={35}, pages= {669--674} } @article{Chappell92, author= {Chappell, R.}, year= {1992}, title= {A note on linear rank tests and {G}ill and {S}chumacher's tests of proportionality}, journal={Biometrika}, volume={79}, pages= {199--201} } @article{Chen91, author= {Chen, C. H. and Wang, P. C.}, year= {1991}, title= {Diagnostic plots in {C}ox's regression model}, journal={Biometrics}, volume={47}, pages= {841--850} } @inproceedings{Clarkson89, author= {Clarkson, D. B.}, year= {1989}, title= {Computing extended maximum likelihood estimates in monotone likelihood {C}ox proportional-hazards models}, booktitle={Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface}, publisher={American Statistical Association}, address={Alexandria, Virginia}, pages={464--469} } @article{Clegg99, author= {Clegg, L. X. and Cai, J. and Sen, P. K.}, year= {1999}, title= {A marginal mixed baseline hazards model for multivariate failure time data}, journal=jasa, volume={55}, pages= {805--812} } @book{Cochran76, author= {Cochran, W.G.}, year= {1976}, title={Sampling Techniques, third edition}, publisher ={Wiley}, address ={New York} } @article{Conroy03, author= {Conroy, RM and Pyorala, K and Fitzgerald, AP and Sans, S and Menotti, A and De Backer, G and De Bacquer, D and Ducimetiere, P and Jousilahti, P and Keil, U and Njolstad, I and Oganov, RG and Thomsen, T and Tunstall-Pedoe, H and Tverdal, A and Wedel, H and Whincup, P and Wilhelmsen, L and Graham, IM}, title={Estimation of ten-year risk of fatal cardiovascular disease in {E}urope: the {SCORE} project}, year=2003, journal={Eur Heart J}, volume=24, pages={987--1003} } @book{Cook82, author= {Cook, R. D. and Weisberg, S.}, year= {1982}, title= {Residuals and Influence in Regression}, publisher={Chapman and Hall}, address= {London} } @article{Cooney09, author = {Cooney, MT and Dudina, AL and Graham, IM}, title = {Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians}, year=2009, journal = {J Am Coll Cardol}, volume=54, pages={1209--27} } @article{Cox72, author= {Cox, D. R.}, year= {1972}, title= {Regression models and life-tables (with discussion)}, journal=jrssb, volume={34}, pages= {187--220} } @book{Cox84, author= {Cox, D. R. and Oakes, D. O.}, year= {1984}, title= {Analysis of Survival Data}, publisher= {Chapman and Hall}, address= {London} } @article{Crowley77, author= {Crowley, J. and Hu, M.}, year= {1977}, title= {Covariance analysis of heart transplant survival data}, journal=jasa, volume={72}, pages= {27--36} } @article{Crowson16, author= {C. S. Crowson and E. J. Atkinson and T. M. Therneau}, year= {2016}, title= {Assessing calibration of prognostic risk scores}, journal={Stat Methods Med Res},volume={25}, pages= {1692--1706} } @article{Cutolo14, author = {Cutolo, M and Kitas, GD and van Riel, PL}, title = {Burden of disease in treated rheumatoid arthritis patients: going beyond the joint}, journal= {Semin Arthritis Rheum}, volume=43, year=2014, pages={479--88} } @article{DAgostino08, author ={D'Agostino, RB, Sr. and Vasan, RS and Pencina, MJ and Wolf, PA and Cobain, M and Massaro, JM and Kannel, WB}, title={General cardiovascular risk profile for use in primary care: the {F}ramingham {H}eart {S}tudy}, year=2008, journal={Circulation}, volume=117, pages={743--54} } @article{Daniel12, author= {R. M. Daniel and S. N Cousens and B. L. De Stavola and M. G. Kenward and J. A. C. Sterne}, year= {2012}, title= {Methods for dealing with time-dependent confounding}, journal=statmed, volume={32}, pages= {1584--1618} } @article{DeLong88, title={Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach}, author={De{L}ong, Elizabeth R and De{L}ong, David M and Clarke-Pearson, Daniel L}, journal={Biometrics}, volume={44}, number={3}, pages={837--845}, year={1988}, publisher={JSTOR} } @article{DeLong94, author= {D. M. DeLong and G. H. Guirguis and Y. C. So}, year= {1994}, title= {Efficient computation of subset selection probabilities with application to {C}ox regression}, journal=biok, volume={81}, pages= {607--611} } @book{Delwiche98, author={Delwiche, L. D. and S. J. Slaughter}, title= {The Little {SAS} Book}, publisher={SAS Institute}, address={Cary, NC}, year= {1998} } @article{Dempster77, author= {Dempster, A. P. and Laird, N. M. and Rubin, D. B.}, year= {1977}, title= {Maximum likelihood from incomplete data via the {EM} algorithm (with discussion)}, journal=jrssb, volume={39}, pages= {1--38} } @techreport{Deng95, author= {Deng, Y. and Quigley, J.M. and Van Order, R.}, year= {1995}, title= {Mortgage Terminations}, institution={Institute of Business and Economic Research, University of California at Berkeley}, type= {Working Paper}, number={95-230}, } @article{Dickson89, author= {Dickson, E. R. and Grambsch, P. M. and Fleming, T. R and Fisher, L. D. and Langworthy, A.}, year= {1989}, title= {Prognosis in primary biliary cirrhosis: Model for decision making}, journal ={Hepatology}, volume={10}, pages ={1--7} } @article{Dispenzieri12, author={A. Dispenzieri and J. Katzmann and R. Kyle and D. Larson and T. Therneau and C. Colby and R. Clark and G. Mead and S. Kumar and L.J. Melton III and S.V. Rajkumar}, year=2012, title ={Use of monclonal serum immunoglobulin free light chains to predict overall survival in the general population}, journal={Mayo Clinic Proc}, volume=87, pages= {512--523} } @article{Ducrocq96, author={V. Ducrocq and G. Casella}, title= {A {B}ayesian analysis of mixed survival models}, year= {1996}, journal={Genet. Sel. Evol.}, volume={28}, pages= {505--529} } @article{Dory87, author = {Dorey, F. J. and Korn, E. L.}, year= 1987, title = {Effective sample sizes for confidence intervals for survival probabilities}, journal=statmed, volume=6, pages = {679--87} } \emph{Statistics in Medicine} @article{Ederer61, author= {Ederer, F. and Axtell, L. M. and Cutler, S. J.}, year= {1961}, title= {The relative survival rate: A statistical methodology}, journal ={National Cancer Inst. Monographs}, volume={6}, pages ={101--121} } @techreport{Ederer77, author= {Ederer, F. and Heise, H.}, year= {1977}, title= {Instructions to {IBM} 650 programmers in processing survival computations}, institution={End Results Evaluation Section, National Cancer Institute}, type={Methodological Note}, number={No. 10}, pages ={101--121} } @article{Edmonson79, author= {Edmonson, J. H. and Fleming, T. R. and Decker, D. G. and Malkasian, G. D. and Jorgensen, E. O. and Jefferies, J. A. and Webb, M. J. and Kvols, L. K.}, year= {1979}, title= {Different chemotherapeutic sensitivities and host factors affecting prognosis in advanced ovarian carcinoma versus minimal residual disease }, journal ={Cancer Treatment Reports}, volume={63}, pages ={241--247} } @article{Efron77, author= {Efron, B.}, year= {1977}, title ={The efficiency of {C}ox's likelihood function for censored data}, journal=jasa, volume={72}, pages= {557--565} } @book{Efron82, author= {Efron, B.}, year= {1982}, title ={The Jackknife, the Bootstrap and Other Resampling Plans}, publisher={SIAM}, address ={Philadelphia} } @article{Eilers96, author= {Eilers, P. H. C. and Marx, B. D.}, year= {1996}, title ={Flexible smoothing with {B}-splines and penalties}, journal={Stat. Science}, volume={11}, pages= {89--121} } @article{Escobar92, author= { Escobar, L.A. and Meeker W.Q., Jr.}, year = {1992}, title ={Assessing influence in regression analysis with censored data}, journal=biom, volume={48}, pages={507--28} } @article{Ezekiel24, author= {Ezekiel, M.}, year= {1924}, title ={A method for handling curvilinear correlation for any number of variables}, journal=jasa, volume={19}, pages= {431--453} } @article{Fleming81, author= {Fleming, T. R. and Harrington, D. P.}, year= {1981}, title ={A class of hypothesis tests for one and two sample censored survival data}, journal=commstata, volume={10}, pages= {763--794} } @article{Fleming84, author= {Fleming, T. R. and Harrington, D. P.}, year= {1984}, title ={Nonparametric estimation of the survival distribution in censored data}, journal=commstata, volume={13}, pages= {2469--2486} } @book{Fleming91, author= {Fleming, T. R. and Harrington, D. P.}, year= {1991}, title= {Counting Processes and Survival Analysis}, publisher= {Wiley}, address= {New York} } @article{Gail72, author= {Gail, M. H.}, year = {1972}, title = {Does cardiac transplantation prolong life? A reassessment}, journal={Annals Internal Medicine}, volume=76, pages={815-817} } @article{Gail81, author= {M. H. Gail and J. H. Lubin and L. V. Rubinstein}, year= {1981}, title= {Likelihood calculations for matched case-control studies and survival studies with tied death times}, journal=biok, volume={68}, pages= {703--707} } @article{Gail86, author= {Gail, M. H. and Byar, D. P.}, year= {1986}, title= {Variance calculations for direct adjusted survival curves, with applications to testing for no treatment effect}, journal=bioj, volume={28}, pages= {587--599} } @article{Gehan65, title={A generalized {W}ilcoxon test for comparing arbitrarily singly-censored samples}, author={Gehan, Edmund A}, journal={Biometrika}, volume={52}, number={1-2}, pages={203--223}, year={1965}, publisher={Biometrika Trust} } @article{Gerds13, title={Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring}, author={Gerds, Thomas A and Kattan, Michael W and Schumacher, Martin and Yu, Changhong}, journal=statmed, volume={32}, number={13}, pages={2173--2184}, year={2013}, publisher={Wiley Online Library} } @Manual{survival-package, title = {A Package for Survival Analysis in S}, author = {Terry M Therneau}, year = {2015}, note = {Version 2.38}, url = {http://CRAN.R-project.org/package=survival}, } @article{Gill87, author= {Gill, R. and Schumacher, M.}, year= {1987}, title= {A simple test of the proportional hazards assumption}, journal={Biometrika}, volume={74}, pages= {289--300} } @book{glim, author= {McCullagh, P. and Nelder, J.A.}, year= {1983}, title= {Generalized Linear Models}, publisher= {Chapman and Hall} } @book{glim2, author= {McCullagh, P. and Nelder, J.A.}, year= {1989}, title= {Generalized Linear Models, 2nd ed.}, publisher= {Chapman and Hall} } @article{Goff14, author = {Goff DC, Jr. and Lloyd-Jones DM and Bennett G and Coady S and D'Agostino RB, Sr. and Gibbons R and Greenland P and Lackland DT and Levy D and O'Donnell CJ and Robinson JG and Schwartz JS and Shero ST and Smith SC, Jr. and Sorlie P and Stone NJ and Wilson PW}, title= {2013 {ACC/AHA} guideline on the assessment of cardiovascular risk: a report of the {A}merican {C}ollege of {C}ardiology/{A}merican {H}eart {A}ssociation Task Force on Practice Guidelines}, journal={J Am Coll Cardiol}, volume=63, pages={2935--59}, year=2014 } @article{Goodman54, title={Measures of association for cross classifications}, author={Goodman, Leo A and Kruskal, William H}, journal=jasa, volume={49}, number={268}, pages={732--764}, year={1954}, publisher={Taylor \& Francis} } @techreport{Goodnight78, author={Goodnight, J.}, title={Tests of Hypotheses in fixed-effects linear models}, year = 1978, institution={SAS Institute, Inc.}, number = {Technical Report R-101}, note = {author formally changed to "SAS Institute" at a later date} } @article{Gooley1999, author={Gooley, T. A. and Leisenring W and Crowley J and Storer B. E.}, year={1999}, title={Estimation of failure probabilities in the presence of competing risks: new representations of old estimators}, journal=statmed, volume={18}, pages={695 -- 706} } @article{Grambsch94, author= {Grambsch, P. M. and Therneau, T. M.}, year= {1994}, title ={Proportional hazards tests and diagnostics based on weighted residuals}, journal={Biometrika}, volume={81}, pages= {515--526} } @article{Grambsch95, author= {Grambsch, P. M. and Therneau, T. M. and Fleming, T. R.}, year= {1995}, title= {Diagnostic plots to reveal functional form for covariates in multiplicative intensity models}, journal={Biometrics}, volume={51}, pages= {1469-1482} } @book{Graunt62, author = {Graunt, J.}, title = {Observations on the {B}ills of {M}ortality}, year = 1662, publisher={Royal Society, London} } @article{Gray92, author= {Gray, R. J.}, year = {1992}, title= {Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis}, journal=jasa, volume={87}, pages = {942--951} } @article{Gray94, author= {Gray, R. J.}, year = {1994}, title= {Spline-based tests in survival analysis}, journal=biom, volume={50}, pages = {640--652} } @article{Green84, author={Green, P.J.}, year = {1984}, title = {Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives (with discussion)}, journal=jrssb, volume=46, pages={149--192} } @article{Guo92, author= {G. Guo and G. Rodr\'{\i}guez}, year= {1992}, title= {Estimating a multivariate proportional hazards model for clustered data using the {EM} algorithm, with an application to child survival in {G}uatemala}, journal=jasa, volume={87}, pages= {969--976} } @article{Ha01, author={I. L. Ha and Y. Lee and J. Song}, year={2001}, title={Heirarchical likelihood approach for frailty models}, journal=biok, pages={233--243} } @article{Hakama77, author= {Hakama, M. and Hakulinen, T.}, year= {1977}, title= {Estimating the expectation of life in cancer survival studies with incomplete follow-up information}, journal={J Chronic Diseases}, volume={30}, pages= {585--597} } @article{Hakulinen77, author= {Hakulinen, T.}, year= {1977}, title= {On long term relative survival rates}, journal={J Chronic Diseases}, volume={30}, pages= {431--443} } @article{Hakulinen82, author= {Hakulinen, T.}, year= {1982}, title= {Cancer survival corrected for heterogeneity in patient withdrawal}, journal=biom, volume={38}, pages= {933--942} } @article{Hakulinen85, author= {Hakulinen, T. and Abeywickrama, K. H.}, year= {1985}, title= {A computer program package for relative survival analysis}, journal={Computer Programs in Biomedicine}, volume={19}, pages= {197--207} } @techreport{Hall95, author= {Hall, C. B. and Zeger, S. L. and Bandeen-Roche, K. J.}, year= {1995}, title= {Adjusted variable plots for {C}ox's proportional hazards regression model}, institution={The John's Hopkins University, School of Hygiene and Public Health, Department of Biostatistics} } @article{Harrell82, title={Evaluating the yield of medical tests}, author={Harrell, Frank E and Califf, Robert M and Pryor, David B and Lee, Kerry L and Rosati, Robert A}, journal={Journal of the American Medical Association}, volume={247}, number={18}, pages={2543--2546}, year={1982}, } @article{Harrell96, title={Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors}, author={Harrell, Frank E and Lee, Kerry L and Mark, Daniel B}, journal=statmed, volume={15}, pages={361--387}, year={1996}, publisher={JOHN WILEY \& SONS LTD} } @article{Harrington82, author= {Harrington, D. P. and Fleming, T. R.}, year= {1982}, title= {A class of rank test procedures for censored survival data}, journal=biok, volume={69}, pages= {553-566} } @book{Hastie90, author= {Hastie, T. J. and Tibshirani, R. J.}, year= {1990}, title ={Generalized Additive Models}, publisher ={Chapman and Hall}, address= {London} } @article{Hastie96, author= {Hastie, T. J.}, year= {1996}, title= {Pseudosplines}, journal=jrssb, volume={58}, pages= {379--396} } @article{Heagerty05, title={Survival model predictive accuracy and {ROC} curves}, author={Heagerty, Patrick J and Zheng, Yingye}, journal={Biometrics}, volume={61}, number={1}, pages={92--105}, year={2005}, publisher={Wiley Online Library} } @article{Heit99, author= {Heit, J. A. and M. D. Siverstein and D. N. Mohr and T. M. Petterson and W. M. O'Fallon and L. J. Melton III}, year= {1999}, title= {Predictors of survival after deep vein thrombosis and pulmonary embolism}, journal={Arch Internal Med}, volume={159}, pages= {445--453} } @article{Henderson99, author= {R. Henderson and P. Oman}, year= {1999}, title= {Effect of frailty on marginal regression estimates in survival analysis}, journal=jrssb, volume={61}, pages= {367--379} } @incollection{Hettmansperger98, author= {Hettmansperger, T.}, year= {1998}, title= {Median}, editor={Armitage, P. and Colton, T.}, booktitle={Encyclopedia of Biostatics}, volume={4}, publisher= {Wiley}, address={New York}, pages={2525--2526} } @article{Hilden14, author={Hilden, J. and Gerds, T.A.}, year={2014}, title={A note on the evaluation of novel biomarkers: do not rely on integrated discrimination improvement and net reclassification index}, journal=statmed, volume={33}, pages={3405--3414} } @inproceedings{Hodges61, title={Comparison of the normal scores and {W}ilcoxon tests}, author={Hodges Jr, JL and Lehmann, Erich L}, booktitle={Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability}, volume={1}, pages={307--317}, year={1961} } @techreport{Hodges99, author= {J. S. Hodges and D. J. Sargent}, year= {1998}, title= {Counting degrees of freedom in hierarchical and other richly-parameterized models}, institution={University of Minnesota, Division of Biostatistics}, type={Research Report}, number={98-004} } @book{Hougaard00, author={Hougaard, P.}, title= {Analysis of Multivariate Survival Data}, publisher={Springer-Verlag}, address={New York}, year= {2000} } @article{Hougaard86, author= {Hougaard, P.}, year= {1986}, title= {Survival models for heterogeneous populations derived from stable distributions}, journal=biok, volume={73}, pages= {387--396} } @inproceedings{Huber67, author= {Huber, P. J.}, year= {1967}, title= {The behavior of maximum likelihood estimates under non-standard conditions}, booktitle= {Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability}, volume={1}, pages= {221--233} } @book{Huber81, author={Huber, P. J.}, title= {Robust Statistics}, publisher={Wiley}, address={New York}, year= {1981} } @article{Huffer91, author= {Huffer, F.W. and McKeague, I.W}, title= {Weigthed least squares estimation for {A}alen's additive risk model}, year= {1991}, journal=jasa, volume={86}, pages={114--129} } @article{Hurvich98, author= {Hurvich, C. M. and Simonoff, J. S. and Tsai, C.-L.}, year= {1998}, title= {Smoothing parameter selection in nonparametric regression using an improved {A}kaike information criterion}, journal=jrssb, volume={60}, pages= {271--293} } @article{Huster89, author= {W. J. Huster and R. Brookmeyer and S. G. Self}, year= {1989}, title= {Modelling paired survival data with covariates}, journal=biom, volume={45}, pages= {145--156} } @article{Islam94, author= {Islam, M. A.}, year= {1994}, title= {Multistate survival models for transitions and reverse transitions: an application to contraceptive use data}, journal=jrssa, volume={157}, pages= {441--455} } @techreport{Jaeckel72, author= {Jaeckel, L.}, year= {1972}, title= {The infinitesimal jackknife}, institution={Bell Laboratories}, type={Memorandum}, number={MM 72-1215-11} } @article{Jeon12, author={J. Jeon and L. Hsu and M. Gorfine}, title={Bias correction in the heirarchical likelihood approach to the analysis of multivariate survival data}, year=2012, journal=Bioinformatics, volume=13, pages={384--397} } @article{Johansen83, author= {Johansen, S.}, year= {1983}, title= {An extension of {C}ox's regression model}, journal={Int. Stat. Review}, volume={51}, pages={165--174} } @article{Jones90, author={Jones, M. P. and Crowley, J.}, title={Asymptotic proporties of a general class of nonparametric tests for survival analysis}, year={1990}, journal=annals, volume={18},pages={1203--1220} } @book{Kalbfleisch02, author={John D. Kalbfleisch and Ross L. Prentice}, title = {The statistical analysis of failure time data, second edition}, year= {2002}, publisher={Wiley} } @book{Kalbfleisch80, author= {Kalbfleisch, J. D. and Prentice, R. L.}, year= {1980}, title= {The Statistical Analysis of Failure Time Data}, publisher= {Wiley}, address ={New York} } @article{Kavanagh94, author= {Kavanagh, B. F. and Wallrichs, S. and Dewitz, M. and Berry, D. and Currier, B. and Ilstrup, D. and Coventry, M. B.}, year= {1994}, title ={Charnley low-friction arthroplasty of the hip. {T}wenty-year results with cement}, journal={J. Arthroplasty}, volume={9}, pages= {229--234} } @article{Kay83, author= {Kay, R.}, year= {1983}, title ={The analysis of transition times in a multistate stochastic process using proportional hazard regression models}, journal=commstata, volume={11}, pages= {1743--1756} } @book{Klein03, title={Survival analysis: techniques for censored and truncated data}, author={Klein, John P and Moeschberger, Melvin L}, year={2003}, publisher={Springer-Verlag}, address={New York} } @article{Klein92, author= {Klein, J. P.}, year= {1992}, title ={Semiparametric estimation of random effects using the {C}ox model based on the {EM} algorithm}, journal=biom, volume={48}, pages= {795--806} } @article{Klein91, author= {Klein, J. P.}, year= {1991}, title ={Small sample moments of some estimators of the variance of the {K}aplan--{Meier} and {N}elson--{A}alen estimators}, journal=scand, volume={18}, pages= {333--340} } @article{Korn90, author = {Korn, E. L. and Simon, R.}, year = {1990}, title = {Measures of explained variation for survival data}, journal=statmed, volume={9}, pages = {487-503} } @article{Korn97, author= {Korn, Edward L. and Graubard, Barry I. and Midthune, Douglas}, year= {1997}, title ={Time-to-event analysis if longitudinal follow-up of a survey: Choice of the time scale}, journal={Am J of Epidemiology}, volume={145}, pages= {72--80} } @article{Kyle02, year= 2002, author={Kyle, R. and Therneau, T. and Rajkumar S. and Offord, J. and Larson, D. and Plevak, M. and L. J. Melton (III)}, title={A long-term study of prognosis in monoclonal gammopathy of undetermined significance}, journal={New England J Medicine}, vol=346, pages={564--569} } @article{Kyle06, year= 2006, author={Kyle, R. and Therneau, T. and Rajkumar, S.V. and Larson, D. and Pleva, M. and Offord, J. and Dispenzieri, A. and Katzman, J. and L.J. Melton III}, title={ Prevalence of monoclonal gammopathy of undetermined significance}, journal={New England J Medicine}, vol=354, pages={1362--1369} } @article{Kyle93, author= {R. A. Kyle}, year= {1993}, title= {``{B}enign'' monoclonal gammopathy --- after 20 to 35 years of follow-up}, journal={Mayo Clinic Proceedings}, volume={68}, pages= {26--36} } @article{Kyle97, author= {R. A. Kyle}, year= {1997}, title= {Moncolonal gammopathy of undetermined significance and solitary plasmacytoma. {I}mplications for progression to overt multiple myeloma}, journal={Hematology/Oncology Clinics N. Amer.}, volume={11}, pages= {71--87} } @article{Lagakos84, author={Lagakos, S. W. and Schoenfeld, D. A.}, title={Properties of proportional-hazards score tests under misspecified regression models}, year={1984}, journal=biom, volume={40}, pages={1037--1048} } @article{Laird81, author= {Laird, N. and Olivier, D.}, year= {1981}, title= {Covariance analysis of censored survival data using log-linear analysis techniques}, journal=jasa, volume={76}, pages= {231--240} } @article{Langholz91, author= {Langholz, B. and Thomas, D.C.}, year= {1991}, title= {Efficiency of cohort sampling designs: some surprising resluts}, journal={Biometrics}, volume={47}, pages= {1563--1572} } @article{Langholz96, author= {Langholz, B. and Goldstein, L.}, year= {1996}, title= {Risk set sampling in epidemiologic cohort studies}, journal={Statistical Science}, volume={11}, pages= {35--53} } @article{Laurie89, author ={Laurie, J. A. and Moertel, C. G. and Fleming, T. R. and Wieand, H. S. and Leigh, J. E. and Rubin, J. and McCormack, G. W. and Gerstner, J. B. and Krook, J. E. and Malliard, J.}, year= {1989}, title= {Surgical adjuvant therapy of large-bowel carcinoma: {A}n evaluation of levamisole and the combination of levamisole and fluorouracil: The {N}orth {C}entral {C}ancer {T}reatment {G}roup and the {M}ayo {C}linic}, journal={J. Clinical Oncology}, volume={7}, pages= {1447--1456} } @article{Leblanc92, author = {LeBlanc, M. and Crowley, J.}, title = {Relative risk trees for censored survival data}, journal = {Biometrics}, year = {1992}, volume={48}, pages = {411-425} } @article{leCessie91, author={S. le Cessie and J. C. van Houwelingen}, year={1991}, title={A goodness-of-fit test for binary data based on smoothing residuals}, journal={Biometrika}, volume={47}, pages={1267--1282} } @article{Lee83, author= {K. L. Lee and Harrell, Jr., F. E. and H. D. Tolley and R. A. Rosati}, year= {1983}, title= {A comparison of test statistics for assessing the effects of concomitant variables in survival analysis}, journal=biom, volume={39}, pages= {341--350} } @incollection{Lee92, author= {Lee, E. W. and Wei, L. J. and Amato, D.}, year= {1992}, title= {{C}ox-type regression analysis for large number of small groups of correlated failure time observations}, editor= {Klein, J. P. and Goel, P. K.}, booktitle= {Survival Analysis, State of the Art}, pages= {237--247}, publisher= {Kluwer}, address= {Netherlands} } @article{Lee96, author={Y. Lee and J. A. Nelder}, year={1996}, title={Hierarchical generalized linear models (with discussion)}, journal=jrssb, volume=58, pages={619--678} } @article{Leening14, author={M. J. Leending and E. W. Steyerberg and B. Van Calster and R. B. D'Agostino, Sr. and M. J. Pencina}, year={2014}, title={ Net reclassification improvement and integrated discrimination improvement require calibrated models: relevance from a marker and model perspective}, journal={statmed}, volume={33}, pages={3415--3418} } @article{Liang86, author= {Zeger, S. L. and Liang, K. Y.}, year= {1986}, title= {Longitudinal data analysis for discrete and continuous outcomes}, journal={Biometrics}, volume={42}, pages= {121--130} } @article{Liang86b, author= {Liang, K. Y. and Zeger, S. L.}, year= {1986}, title= {Longitudinal data analysis using generalized linear models}, journal=biok, volume={73}, pages= {13--22} } @article{Liang88, author= {Zeger, S. L. and Liang, K. Y. and Albert, P. S.}, year= {1988}, title= {Models for longitudinal data: A generalized estimating equation approach}, journal=biom, volume={44}, pages= {1049--1060} } @booklet{lifeaz70, title ={U.S. Decennial Lifetables 1969--71}, year = {1975}, howpublished= {DHEW Publication No. HRA 75-1151}, note={Volume 2, Number 3} } @booklet{lifefl70, title ={U.S. Decennial Lifetables 1969--71}, year = {1975}, howpublished= {DHEW Publication No. HRA 75-1151}, note={Volume 2, Number 10} } @booklet{lifemn60, title ={Minnesota State Lifetables 1959--61}, year = {1965}, howpublished= {Public Health Service Publication No. 1252}, note={Volume 2, Number 24} } @booklet{lifemn70, title ={U.S. Decennial Lifetables 1969--71}, year = {1975}, howpublished= {DHEW Publication No. HRA 75-1151}, note={Volume 2, Number 24} } @booklet{lifemn80, title ={U.S. Decennial Lifetables 1979--81}, year = {1985}, howpublished= {DHEW Publication No. PHS 86-1151-2451}, note={Volume 2, Number 24} } @booklet{lifest60, key = {United States Lifetables 1959--61}, title = {Life tables for the geographic divisions of the {U}nited {S}tates: 1959--61}, note = {Vol. 1, number 3}, howpublished={National Center for Health Statistics, Public Health Service, Washington, U.S. Government Printing Office}, month=May, year={1965} } @book{Lifetable, author={National {C}enter for {H}ealth {S}tatistics}, year={1965}, title={Life tables for the geographic divisions of the {U}nited {S}tates: 1959-1961}, volume={1}, number={3}, publisher={US Government Printing Office, Washington} } @booklet{lifeus40, title={United States Life Tables and Actuarial Tables, 1939--41}, author={Thomas N. E. Greville}, howpublished={Federal Security Agency, United States Public Health Service, National Office of Vital Statistics}, note={U.S. Government Printing Office, 1947} } @booklet{lifeus50, key={United States Lifetables 1950}, title={United States Life Tables for 1949--51}, howpublished={U.S. Department of Health, Education and Welfare, Public Health Service, National Office of Vital Statistics} } @booklet{lifeus60, key={United States Lifetables 1960}, title ={United States Lifetables 1959--61}, year = {1964}, howpublished= {Public Health Service Publication No. 1252}, note={Volume 1, Number 1} } @booklet{lifeus60b, key={Vital Statistics}, title ={Vital Statistics of the United States, 1960}, year = {1963}, howpublished= {U.S. Department of Health, Education, and Welfare, Public Health Service, National Center for Vital Statistics}, note={Volume 2A, Tabl3 3B} } @booklet{lifeus70, key={United States Lifetables 1970}, title ={U.S. Decennial Lifetables 1969--71}, year = {1975}, howpublished= {DHEW Publication No. HRA 75-115}, note={Volume 1, Number 1} } @booklet{lifeus80, key={United States Lifetables 1990}, title ={U.S. Decennial Lifetables 1979--81}, year = {1985}, howpublished= {DHEW Publication No. PHS 85-1150-1}, note={Volume 1, Number 1} } @article{Lin89, author= {Lin, D. Y. and Wei, L. J.}, year= {1989}, title= {The robust inference for the {C}ox proportional hazards model}, journal=jasa, volume={84}, pages= {1074--1078} } @article{Lin91, author= {Lin, D. Y.}, year= {1991}, title= {Goodness-of-fit analysis for the {C}ox regression model based on a class of parameter estimators}, journal=jasa, volume={86}, pages= {725--728} } @article{Lin91b, author= {Lin, D. Y. and Wei, L. J.}, year= {1991}, title= {Goodness-of-fit tests for the general {C}ox regression model}, journal= {Statistica Sinica}, volume={1}, pages= {1--17} } @article{Lin93, author= {Lin, D. Y. and Wei, L. J. and Ying, Z.}, year= {1993}, title= {Checking the {C}ox model with cumulative sums of martingale-based residuals}, journal={Biometrika}, volume={80}, pages= {557--572} } @article{Lin93b, author= {Lin, D. Y. and Ying, Z.}, year= {1993}, title= {Cox regression with incomplete covariate measurements}, journal= jasa, volume={88}, pages= {1341--1349} } @article{Lin94, author= {Lin, D. Y.}, year= {1994}, title= {Cox regression analysis of multivariate failure time data: the marginal approach}, journal= statmed, volume={13}, pages= {2233--2247} } @article{Lindor94, author= {K. D. Lindor and E. R. Dickson and W. P. Baldus and R. A. Jorgensen and J. Ludwig and P. A. Murtaugh and J. M. Harrison and R. H. Wiesner and M. L. Anderson and S. M. Lange and G. LeSage and S. S. Rossi and A. F. Hofman}, year= {1994}, title= {Ursodeoxycholic acid in the treatment of primary biliary cirrhosis}, journal={Gastroenterology}, volume={106}, pages= {1284--1290} } @article{Link84, author= {C. L. Link}, year= {1984}, title= {Confidence intervals for the survival function using {C}ox's proportional-hazard model with covariates}, journal=biom, volume={40}, pages= {601--610} } @article{Link86, author= {C. L. Link}, year= {1986}, title= {Response to {J}. {O'Quigley}, correspondence section}, journal=biom, volume={42}, pages= {219--220} } @article{Lipsitz90, author= {Lipsitz, S. R. and Laird, N. M. and Harrington, D. P.}, year= {1990}, title= {Using the jackknife to estimate the variance of regression estimators from repeated measures studies}, journal=commstata, volume={19}, pages= {821--845} } @article{Lipsitz94, author= {Lipsitz, S. R. and Dear, K. B .G. and Zhao, L.}, year= {1994}, title= {Jackknife estimators of variance for parameter estimates from estimating equations with applications to clustered survival data}, journal= biom, volume={50}, pages= {842--846} } @book{Little87, author={Little, R.J.A. and Rubin, D.B.}, title= {Statistical Analysis with Missing Data}, publisher={John Wiley \& Sons}, address={New York}, year= {1987} } @incollection{Little98, author= {Little, R. J.}, year= {1998}, title= {Missing Data}, editor={Armitage, P. and Colton, T.}, booktitle={Encyclopedia of Biostatics}, volume={4}, publisher= {Wiley}, pages={2622--2635} } @article{Loprinzi94, author= {Loprinzi, C. L. and Laurie, J. A. and Wieand, H. S. and Krook, J. E. and Novotny, P. J. and Kugler, J. W. and Bartel, J. and Law, M. and Bateman, M. and Klatt, N. E. and Dose, A. M. and Etzell, P. S. and Nelimark, R. A. and Mailliard, J. A. and Moertel, C. G.}, year= {1994}, title= {Prospective evaluation of prognostic variables from patient-completed questionnaires}, journal={J. Clinical Oncol.}, volume={12}, pages= {601--607} } @article{Lloyd99, author={Lloyd-Jones, DM and Larson, MG and Beiser, A and Levy, D.}, title= {Lifetime risk of developing coronary heart disease}, year=1999, journal={Lancet}, volume={353}, pages={89--92} } @article{Lloyd06, author= {Lloyd-Jones, DM}, title ={Short-term versus long-term risk for coronary artery disease: implications for lipid guidelines}, year=2006, journal={Curr Opin Lipidol}, volume=17, pages={619-25} } @article{Lunn95, author= {Lunn, M. and McNeil, D.}, year= {1995}, title= {Applying {C}ox regression to competing risks}, journal={Biometrics}, volume={51}, pages= {524--532} } @report{Macnaughton92, author= {D. B. Macnaughton}, year= {1992}, title= {Which sum of squares are best in an unbalanced analysis of variance}, type={www.matstat.com/ss} } @article{Mahe99, author= {C{\'{e}}dric Mah{\'{e}} and Sylvie Chevret}, year= {1999}, title= {Estimating regression parameters and degree of dependence for multivariate failure time data}, journal=biom, volume={55}, pages= {1078--1084} } @article{Makuch82, author= {Makuch, R. W.}, year= {1982}, title= {Adjusted survival curve estimation using covariates}, journal={J. Chronic Disease}, volume={35}, pages= {437--443} } @article{Mallows86, author= {Mallows, C. L.}, year= {1986}, title= {Augmented partial residuals}, journal={Technometrics}, volume={28}, pages= {313--319} } @article{Mantel66, author= {Mantel, N.}, year= {1966}, title= {Evaluation of survival data and two new rank order statistics arising in its consideration}, journal={Cancer Chemotherapy Reports}, volume={50}, pages= {163--166} } @article{Mantel77, author= {Mantel, N. and Bohidar, N. R. and Ciminera, J. L.}, year= {1977}, title= {Mantel--{H}aenszel analyses of litter-matched time-to-response data with modifications for recovery of interlitter information}, journal={Cancer Research}, volume={37}, pages= {3863--3868} } @article{Markus89, author= {Markus, B. H. and Dickson, E. R. and Grambsch, P. M. and Fleming, T. R. and Mazzaferro, V. and Klintmalm, G. B .G. and Wiesner, R. H. and VanThiel, D. H. and Starzl, T. E.}, year= {1989}, title= {Efficiency of liver transplantation in patients with primary biliary cirrhosis}, journal=NEJM, volume={320}, pages= {1709--1713} } @article{McGilchrist91, author= {McGilchrist, C. A. and Aisbett, C. W.}, year= {1991}, title= {Regression with frailty in survival analysis}, journal={Biometrics}, volume={47}, pages= {461--466} } @article{Myasoedova11, author ={Myasoedova, E and Chandran, A and Ilhan, B and Major, BT and Michet, CJ and Matteson, EL and Crowson, CS}, year=2011, title={The role of rheumatoid arthritis (RA) flare and cumulative burden of {RA} severity in the risk of cardiovascular disease}, journal={Ann Rheum Dis}, volume=75, pages={560--5} } @article{Myasoedova16, author= {Myasoedova, E and Crowson, CS and Kremers, HM and Roger, VL and Fitz-Gibbon, PD and Therneau, TM and Gabriel, SE}, title= {Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease}, year=2018, journal= {J Clin Epidemiol}, volume=49, pages={1373--9} } @article{McGilchrist93, author= {McGilchrist, C. A.}, year= {1993}, title= {{REML} estimation for survival models with frailty}, journal={Biometrics}, volume={49}, pages= {221--225} } @article{McGilchrist95, author= {McGilchrist, C. A. and Yau, K. K. W.}, year= {1995}, title= {The derivation of {BLUP}, {ML} and {REML} estimation methods for generalised linear mixed models}, journal= commstata, volume={24}, pages= {2963--2980} } @book{Miller81, author= {Miller, Jr., R. G.}, year= {1981}, title ={Survival Analysis}, publisher= {Wiley}, address= {New York} } @article{Miller83, author= {Miller, Jr., R.G.}, year= {1983}, title= {What price {Kaplan--Meier}?}, journal=biom, volume={39}, pages= {1077--1081} } @article{Moertel90, author= {Moertel, C.G. and Fleming, T.R. and McDonald, J.S. and Haller, D.G. and Laurie, J.A. and Goodman, P.J. and Ungerleider, J.S. and Emerson, W.A. and Tormey, D.C. and Glick, J.H. and Veeder, M.H. and Mailliard, J.A.}, year= {1990}, title= {Levamisole and fluorouracil for adjucant therapy of resected colon carcinoma}, journal= NEJM, volume={332}, pages= {352--358} } @article{Moons15, author={Moons K. G. and Altman D. G. and Reitsma J. B. and Ioannidis J. P. and Macaskill P. and Steyerberg E. W. and Vickers A. J. and Ransohoff D. F. and Collins G. S.}, year={2015}, title={Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration}, journal={Ann Intern Med}, volume={162}, pages={W1--73} } @article{Moreau85, author= {Moreau, T. and O'Quigley, J. and Mesbah, M.}, year= {1985}, title= { A global goodness-of-fit statistic for the proportional hazards model}, journal= {Applied Stat.}, volume={34}, pages= {212--218} } @article{Moss83, author= {Moss, A. J. and {the Multicenter Postinfarction Research Group}}, year= {1983}, title= {Risk stratification and survival after myocardial infarction}, journal= {New England J. Medicine}, volume={309}, pages= {331--336} } @article{Moss87, author= {Digitalis Subcommittee of the Multicenter Post-Infarction Research Group and Moss A. J. and Bigger, J. T. Jr and Carleen, E. and Fleiss, J. L. and Odoroff, C. L. and Rolnitzky, L. and Therneau T.}, year= {1987}, title= {The mortality risk associated with digitalis treatment after myocardial infarction}, journal= {Carivascular Drugs Ther}, volume={1}, pages= {125--132} } @article{Moss88, author= {Moss, A. J. and {the Multicenter Diltiazem Postinfarction Trial Research Group}}, year= {1988}, title= {The effect of diltiazem on mortality and reinfarction after myocardial infarction}, journal= {New England J. Medicine}, volume={319}, pages= {385--392} } @book{Mosteller77, author= {Mosteller, F. and Tukey, J. W.}, year= {1977}, title= {Data Analysis and Regression}, publisher= {Addison-Wesley}, address={Reading, MA} } @article{Murphy81, author= {Murphy, V. K. and Haywood, L. J.}, year= {1981}, title= {Survival analysis by sex, age group and hemotype in sickle cell disease}, journal={J. Chronic Diseases}, volume={34}, pages= {313--319} } @article{Nagelkerke84, author= {Nagelkerke, N. J. D. and Oosting, J. and Hart, A. A. M.}, year= {1984}, title ={A simple test for goodness of fit of {C}ox's proportional hazards model}, journal={Biometrics}, volume={40}, pages= {483--486} } @article{Nelder77, author= {Nelder, J. A.}, year= {1977}, title ={A reformulation of linear models (with discussion)}, journal={JRSSA}, volume={140}, pages= {48--76} } @article{Nelson69, author= {Nelson, W.}, year= {1969}, title= {Hazard plotting for incomplete failure data}, journal= {J. Quality Technology}, volume={1}, pages= {27--52} } @article{Neuberger86, author= {Neuberger, J. and Altman, D. G. and Christensen, E. and Tygstrup, N. and Williams, R.}, year= {1986}, title ={Use of a prognostic index in evaluation of liver transplantation for primary biliary cirrhosis}, journal={Transplantation}, volume={41}, pages= {713--716} } @article{Newson06, author = {Newson, R}, title = {Confidence intervals for rank statistics: {So}mers' {D} and extensions}, year = 2006, journal={Stata Journal}, volume={6}, number={3}, pages={309--334} } @article{Nielsen92, author= {Nielsen, G. G. and Gill, R. D. and Andersen, P. K. and S{\o}rensen, T. I.}, year= {1992}, title ={A counting process approach to maximum likelihood estimation of frailty models}, journal=scand, volume={19}, pages= {25--43} } @article{Nieto96, author ={F. Javier Nieto and Josef Coresh}, title = {Adjusting survival curves for confounders: a review and a new method}, year={1996}, journal={Am J of Epidemiology}, vol=143, pages= {1059--1068} } @incollection{Oakes92, author= {Oakes, D.}, year= {1992}, title ={Frailty models for multiple event times}, editor= {Klein, J. P. and Goel, P. K.}, booktitle= {Survival Analysis, State of the Art}, publisher= {Kluwer}, address= {Netherlands} } @article{Oakes93, author={Oakes, D. and A.J. Moss and J.T. Fleiss and J.T. Bigger, Jr. and T.M. Therneau and S.W. Eberly and M.P. McDermott and A. Manatunga and E. Carleen and J. Benhorin, and {the Multicenter Diltiazem Post-Infarction Research Group}}, year = {1993}, title = {Use of compliance measures in and analysis of the effect of {D}iltiazem on mortality and reinfarction after myocardial infarction}, journal=jasa, volume={88}, pages = {44-49} } @article{Obrien78, author= {Peter C O'Brien}, title= {A nonparmetric test for association with censored data}, year= {1978}, journal=biom, volume={34}, number={2}, pages={243--250} } @article{Omori93, author={Omori,Y. and Johnson,R. A.}, title={The influence of random effects on the unconditional hazard rate and survival functions}, year={1993}, journal=biok,volume={80}, pages={910--914} } @phdthesis{Parner96, author={Parner, E.}, title={Inference in semiparametric frailty models}, year ={1997}, school={University of Aarhus, Denmark} } @article{Pencina04, title={Overall {C} as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation}, author={Pencina, Michael J and D'{A}gostino, Ralph B}, journal=statmed, volume={23}, number={13}, pages={2109--2123}, year={2004}, publisher={Wiley Online Library} } @article{Pencina08, author= {Pencina, M. J. and R. B. D'Agostino Sr. and R. B. D'Agostino Jr. and R. S Vasan}, year= {2008}, title= {Evaluating the added predictive ability of a new marker: {F}rom area under the {ROC} curve to reclassification and beyond}, journal=statmed, volume={27}, pages= {157--72} } @article{Pencina11, author= {Pencina, M. J. and E. W. Steyerberg and R. B. D'Agostino Sr.}, year= {2011}, title= {Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers}, journal=statmed, volume={30}, pages= {11--21} } @article{Pencina12, title={Quantifying discrimination of {F}ramingham risk functions with different survival {C} statistics}, author={Pencina, Michael J and D'Agostino, Ralph B and Song, Linye}, journal=statmed, volume={31}, number={15}, pages={1543--1553}, year={2012}, publisher={Wiley Online Library} } @article{Peto72, author= {R. Peto and J. Peto}, title = {Asymptotically efficient rank invariant test procedures (with discussion)}, journal= jrssa, year=1972, volume={135}, number={2}, pages={185--206} } @article{Peto72b, author= {Peto, R.}, year= {1972}, title= {Discussion of {P}rofessor {C}ox's paper}, journal=jrssb, volume={34}, pages={205--207} } @article{Pettitt90, author={Pettitt, A. N. and Bin Daud, I.}, title={Investigating time dependence in {C}ox's proportional hazards model}, year= {1990}, journal=applstat, volume={39},pages={313--329} } @article{Pocock02, author= {Stuart J. Pocock and Tim C. Clayton and Douglas G. Altman}, year= {2002}, title= {Survival plot of time-to-event outcomes in clinical trials: practice and pitfalls}, journal={Lancet}, volume={359}, pages= {1686--1689} } @article{Prentice78, author= {Prentice, R. L. and Gloeckler, L. A. } , title= {Regression analysis of grouped survival data with application to breast cancer data}, year= {1978}, journal=biom, volume={34}, pages={57--67} } @article{Prentice79, title={A qualitative discrepancy between censored data rank tests}, author={Prentice, Ross L and Marek, P}, journal={Biometrics}, pages={861--867}, year={1979}, volume={35}, number={4}, publisher={JSTOR} } @article{Prentice81, author= {Prentice, R. L. and Williams, B. J. and Peterson, A. V.}, year= {1981}, title= {On the regression analysis of multivariate failure time data}, journal={Biometrika}, volume={68}, pages= {373--379} } @article{Prentice86, author= {Prentice, R. L.}, year= {1986}, title ={A case-cohort design for epidemilogic cohort studies and disease prevention trials}, journal={Biometrika}, volume={73}, pages ={1--11} } @incollection{Prentice91, author= {Prentice, R. L. and Cai, J.}, year= {1991}, title ={Marginal and conditional models for the analysis of multivariate failure time data}, pages ={393--406}, editor= {Klein, J. P and Goel, P. K.}, booktitle= {Survival Analysis, State of the Art}, publisher= {Kluwer Academic Publishers}, address= {Netherlands} } @article{Prentice92, author= {Prentice, R. L. and Cai, J.}, year= {1992}, title ={Covariance and survivor function estimation using censored multivariate failure time data}, journal={Biometrika}, volume={79}, pages ={495--512} } @book{Press88, author= {Press, W.H. and Teukolsky, S.A. and Vetterling, W.T. and Flannery, B.P.}, year= {1988}, title= {Numerical Recipes in {C}}, publisher= {Cambridge University Press}, address ={Cambridge} } @techreport{Pugh92, author= {M. Pugh and J. Robbins and S. Lipsitz and D. Harrington}, year= {1992}, title= {Inference in the {C}ox proportional hazards model with missing covariates}, institution={Department of Biostatistics, Harvard School of Public Health}, address={Boston}, number={758Z} } @article{Putter07, author= {Putter H. and Fiocco M. and Geskus R. B.}, year= {2007}, title= {Tutorial in biostatistics: Competing risk and multi-state models}, journal=statmed, volume={26}, pages={2389--2430} } @article{Quantin96, author= {Quantin, C. and Moreau, T. and Asselaiin B. and Maccario, J. and Lelloucj, J. } , title= {A regression survival model for testing the proportional hazards hypothesis }, year= {1996}, journal=biom, volume={52}, pages={874--885} } @article{Quigley89, author= {O'Quigley, J. and Pessione, F.}, year= {1989}, title= {Score tests for homogeneity of regression effect in the proportional hazards model}, journal={Biometrics}, volume={45}, pages ={135--144} } @article{Redmond83, author= {C. Redmond and B. Fisher and H. S. Wieand}, year= {1983}, title= {The methodologic dilemma in retrospectively correlating the amount of chemotherapy received in adjuvant therapy protocols with disease free survival: a commentary}, journal={Cancer Treatment Reports}, volume={67}, pages= {519--526} } @article{Reid85, author= {Reid, N. and Cr{\'{e}}peau, H.}, year= {1985}, title= {Influence functions for proportional hazards regression}, journal={Biometrika}, volume={72}, pages= {1--9} } @article{Ricci97, author= {Ricci, P. and Therneau, T. M. and Malinchoc, M. and Benson, J. T. and Petz, J. L. and Klintmalm, G. B. and Crippin, J. S. and Wiesner, R. H. and Steers, J. L. and Rakela, J. and Starzl, T. E. and Dickson, E. R.}, year= {1997}, title= {A prognostic model for the outcome of liver transplantation in patients with cholestatic liver disease}, journal={Hepatology}, volume={25}, pages= {672--677} } @article{Ripatti00, author= {Ripatti, S. and Palmgren, J.}, year= {2000}, title= {Estimation of multivariate frailty models using penalized partial likelihood}, journal=biom, volume={56}, pages={1016--1022} } @manual{SAS96, author={{SAS Institute Inc.}}, year={1996}, title={{SAS/STAT} Software: Changes and Enhancements through Release 6.11}, organization={{SAS} Institute, Inc.}, address={Cary, N.C.}, note={Chapter 8: The PHREG procedure} } @article{Sasieni93, title={Maximum weighted partial likelihood estimators for the {C}ox model}, author={Sasieni, Peter}, journal=jasa, volume={88}, number={421}, pages={144--152}, year={1993}, publisher={Taylor \& Francis} } @article{Sastry97, author= {Sastry, N.}, title={A nested frailty model for survival data, with an application to the study of child survival in northesat Brazil}, year={1997}, journal=jasa, volume={92}, pages = {426--435} } @manual{SAStype3, author={{SAS Institute Inc.}}, year={2008}, title={The four types of estimable functions}, organization={{SAS} Institute, Inc.}, address={Cary, N.C.}, note={SAS/STAT 9.2 User's Guide: Chapter 15} } @article{Schechtman91, title={On estimating the asymptotic variance of a function of {U} statistics}, author={Schechtman, Edna}, journal={The American Statistician}, volume={45}, number={2}, pages={103--106}, year={1991}, publisher={Taylor \& Francis Group} } @article{Schemper09, author={Schemper, M. and Wakounig, S. and Heinze, G.}, title={The estimation of average hazard ratios by weighted {C}ox regression}, year=2009, journal=statmed, volume={28}, number={19}, pages={2473--2489} } @article{Schemper92, title={Cox analysis of survival data with non-proportional hazard functions}, author={Schemper, Michael}, journal={The Statistician}, volume={41}, number={4}, pages={455--465}, year={1992}, publisher={JSTOR} } @article{Schemper96, author= {Schemper, M. and Smith, T. L.}, title={A note on quantifying follow-up in studies of failure time}, year = 1996, journal = {Controlled Clinical Trials}, volumne = 17, pages={343--346} } @article{Schemper03, author = {Schemper, M.}, title = {Predictive accuracy and explained variation}, year = 2003, journal=statmed, volume=22, pages = {2299 -- 2308} } @article{Schoenfeld80, author= {Schoenfeld, D.}, year= {1980}, title= {Chi-squared go1963odness-of-fit tests for the proportional hazards regression model}, journal={Biometrika}, volume={67}, pages= {145--153} } @article{Schoenfeld81, author={Schoenfeld, D.}, title={The asymptotic properties of nonparametric tests for comparing survival distributions}, year={1981}, journal=biok, volume={68}, pages={316--319} } @article{Schoenfeld83, author={Schoenfeld, D. A.}, title={Sample-size formula for the proportional-hazards regression model}, year={1983}, journal=biom, volume={39}, pages={499--503} } @article{Schum87, author={Schumacher, M. and Olschewski, M. and Schmoor,C.}, title={The impact of heterogeneity on the comparison of survival times}, year={1987}, journal=statmed, volume={6},pages={773-784} } @book{Searle71, author= {S. R. Searle}, year= {1971}, title= {Linear Models}, publisher= {Wiley}, address ={New York} } @article{Searle80, author={S. R. Searle and F. M. Speed and G. A. Milliken}, year = 1980, title= {Population marginal means in the linear model: an alternative to least squares means}, journal={Amer. Statistician}, volume=34, pages={216--221} } @booklet{Seer81, key = {Surveillance}, title= {Surveillance, Epidemiology, and End Results: Incidence and Mortality Data, 1973--77}, year = {1981}, howpublished= {National Cancer Institute Monograph 57, U.S. Department of Health and Human Services, Public Health Service}, address= {National Cancer Institute, Bethesda, MD}, note = {NIH Publication No. 81-2330}, } @article{Segal93, author= {Segal, M.R. and Neuhaus, J. M.}, year= {1993}, title= {Robust inference for multivariate survival data}, journal=statmed, volume={12}, pages= {1019--1031} } @article{Segal94, author= {Segal, M.R. and Baccheti, P. and Jewell, N. P.}, year= {1994}, title= {Variances for maximum penalized likelihood estimates obtained via the {EM} algorithm }, journal=jrssb, volume={56}, pages= {345--352} } @article{Self88, author= {Self, S. G. and Prentice, R. L.}, year= {1988}, title= {Asymptotic distribution theory and efficiency results for case-cohort studies}, journal=annals, volume={16}, pages= {64--81} } @article{Sellers95, author= {T. A Sellers and V. E. Anderson and J. D. Potter and S. A. Bartow and P. L. Chen and L. Everson and R. A. King and C. C. Kuni and L. H. Kushi and P. G. McGovern and S. S. Rich and J. F. Whitbeck and G. L. Wiesner}, year= {1995}, title= {Epidemiologic and genetic follow-up study of 544 Minnesota breast cancer families: {D}esign and methods}, journal={Genetic Epidemiology}, volume={12}, pages= {417--429} } @article{Senn00, title= {The many modes of meta}, author= {S. Senn}, year=2000, journal={Drug Information}, volume=34, pages={1535--549} } @book{Senn07, author= {S. Senn}, year= {2007}, title= {Statistical Issues in Drug Development}, publisher= {Wiley}, address ={New York} } @article{Silverstein99, author= {M. D. Silverstein and Loftus, Jr., E. V. and W. J. Sandborn and W. J. Tremaine and B. G. Feagan and P. J. Nietert and W. S. Harmsen and A. R. Zinsmeister}, year= {1999}, title= {Clinical course and costs of care for {C}rohn's disease: {M}arkov model analysis of a population-based cohort}, journal={Gastroenterology}, volume={117}, pages= {49--57} } @article{Simon11, title= {Regularization Paths for {C}ox’s Proportional Hazards Model via Coordinate Descent}, author= {Noah Simon and Jerome Friedman and Trevor Hastie Rob Tibshirani}, journal={J Statistical Software}, volume=39, pages={1--123} } @article{Smith96, author= {Smith, P.J. and Hietjan, D.F.}, year= {1996}, title= {Testing and adjusting for overdispersion in generalized linear models}, journal=jrssc, volume={?} } @booklet{smoke90, key={Department of Health}, title={The Health Benefits of Smoking Cessation}, year={1990}, howpublished ={Department of Health and Human Services. Public Health Service, Centers for Disease Control, Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health}, note={DHHS Publication No (CDC)90-8416} } @article{Solomon84, author= {Solomon, P. J. } , title= {Effect of misspecification of regression models in the analysis of survival data}, year= {1984}, journal=biok, volume={71}, pages={291--298} } @article{Solomon86, author= {Solomon, P. J. } , title= {Amendments and corrections}, year= {1986}, journal=biok, volume={73}, pages={245--245} } @book{Spector94, author={Spector, P.}, title= {An Introduction to {S} and {S-Plus}}, publisher={Wadsworth}, address={Pacific Grove, CA}, year= {1994} } @article{Stablein81, author= {Stablein, D. M. and Carter, Jr., W. H. and Novak, J. W.}, title= {Analysis of survival data with nonproportional hazard functions}, year= {1981}, journal={Controlled Clinical Trials}, volume={2}, pages={149--159} } @article{Steyerberg10, author={E. W. Steyerberg and A. J. Vickers and N. R. Cook and T. Gerds and N. Obuchowski and M. J. Pencina and M. W. Kattan}, year={2010}, title={Assessing the performance of prediction models: a framework for traditional and novel measures}, journal={Epidemiology}, volume={21}, pages={128--138} } @article{Steyerberg14, author={E. W. Steyerberg and Y. Vergouwe}, year={2014}, title={Towards better clinical prediction models: seven steps for development and an ABCD for validation}, journal={Eur Heart J.}, volume={35}, pages={1925-31} } @inproceedings{Stone85, author= {Stone, C. J. and Koo, C. Y.} , title= { Additive splines in statistics}, year= {1985}, booktitle={Computational Statistics Section}, organization={American Statistical Association}, address={Alexandria, Virginia}, pages={646--651} } @article{Stone86, author= {Stone, C. J.} , title= {Comment to paper by {H}astie and {T}ibshirani}, year= {1986}, journal=statsci, volume={1}, pages={312--314} } @article{Storer85, author= {Storer, B. E. and Crowley, J.}, year= {1985}, title ={A diagnostic for {C}ox regression and general conditional likelihoods}, journal =jasa, volume={80}, pages= {139-147} } @article{Struthers86, author= {Struthers, C. A. and Kalbfleisch, J. D. } , title= {Misspecified proportional hazard models}, year= {1986}, journal=biok, volume={73}, pages={363--369} } @article{Suissa08, author= {Suissa, S.}, title= {Immortal time bias in pharmacoepidemiology}, year= {2008}, journal={American J Epidemiology}, volume={167}, pages={492-499} } @book{Therneau00, author={Therneau, T. M. and Grambsch, P. M.}, title= {Modeling Survival Data: Extending the {C}ox Model}, publisher={Springer-Verlag}, address={New York}, year= {2000} } @article{Therneau03, author= {Therneau, T. M. and Grambsch, P. M. and Pankratz, V. S.}, year= {2003}, title= {Penalized survival models and frailty}, journal={J Computational Graphical Statistics}, volume={12}, pages= {156--175} } @techreport{Watson15, author= {Therneau, T. M. and Watson, D. A.}, year= {2015}, title= {The concordance statistic and the {C}ox model}, number={85}, institution={Department of Health Science Research, Mayo Clinic} } @article{Therneau90, author= {Therneau, T. M. and Grambsch, P. M. and Fleming, T. R.}, year= {1990}, title= {Martingale based residuals for survival models}, journal={Biometrika}, volume={77}, pages= {147--160} } @techreport{Therneau94, author= {Therneau, T. M. and Sicks, J. and Bergstralh, E. and Offord, J.}, year = {1994}, title = {Expected survival based on hazard rates}, number = {52}, institution= {Department of Health Sciences Research, Mayo Clinic} } @article{Therneau97, author= {Therneau, T. M. and Hamilton, S. A.}, year= {1997}, title= {{rhDNase} as an example of recurrent event analysis}, journal=statmed, volume={16}, pages= {2029--2047} } @article{Therneau99, author= {Therneau, T. M. and Li, H.}, year= {1999}, title= {Computing the {C}ox model for case-cohort designs}, journal=lifetime, volume={5}, pages= {99--112} } @article{Thomsen91, author= {Thomsen, B. L. and Keiding, N. and Altman, D. G.}, year= {1991}, title= {A note on the calculation of expected survival, illustrated by the survival of liver transplant patients}, journal=statmed, volume={10}, pages= {733--738} } @article{Thomsen92, author= {Thomsen, B. L. and Keiding, N. and Altman, D. G.}, year= {1992}, title= {Reply to a letter to the editor}, journal=statmed, volume={11}, pages= {1528--1530} } @article{Tobin58, author= {Tobin, James}, title = {Estimation of relationships for limited dependent variables}, year = 1958, journal={Econometrica}, volume=26, pages={24--36} } @article{Tsiatis81, author= {A. A. Tsiatis}, year= {1981}, title= {A large sample study of {C}ox's regression model}, journal= annals, volume={9}, pages= {93--108} } @article{Turnbull76, author= {Turnbull, B.W.}, year= {1976}, title= {The empirical distribution function with arbitrarily grouped, censored and truncated data}, journal={jrssb}, volume={38}, pages= {290--295} } @article{Uitti93, author= {Uitti, R.J. and Ahlskog, J.E. and Maraganore, D.M. and Muenter, M.D. and Atkinson, E.J. and Cha, R.H. and O'Brien, P.C.}, year= {1993}, title= {Levodopa therapy and survival in idiopathic Parkinson's disease: Olmsted County Project}, journal ={Neurology}, volume={43}, pages= {1918--1926} } @article{Uno11, author={H. Uno and T. Cai and M. J. Pencina and R. B D'Agnostino and L. J. Wei}, title={On the {C}-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data}, year=2011, journal=statmed, volume=30, number=10, pages={1105--1117} } @article{VanCalster16, author={B. Van Calster and D. Nieboer and Y. Vergouwe and B. De Cock and M.J. Pencina and E.W. Steyerberg}, year={2016}, title={A calibration hierarchy for risk models was defined: from utopia to empirical data}, journal={J Clin Epidemiol.}, volume={74}, pages={167--176} } @book{Venables97, author= {Venables, W. N. and Ripley, B. D.}, year= {1997}, title= {Modern Applied Statistics with {S-PLUS}, second edition}, publisher= {Springer-Verlag}, address ={New York} } @article{Verhuel93, author= {Verheul, H. A. and Dekker, E. and Bossuyt, P. and Moulijn, A. C. and Dunning, A. J.}, year= {1993}, title= {Background mortality in clinical survival studies}, journal ={Lancet}, volume={341}, pages= {872--875} } @article{Verweij94, author= {P. J .M. Verweij and Van Houwlingen, H. C.}, year= {1994}, title= {Penalized likelihood in {C}ox regression}, journal= statmed, volume={13}, pages= {2427--2436} } @ARTICLE{Volinsky98bayesianinformation, author = {Chris Volinsky and Adrian E. Raftery}, title = {Bayesian Information Criterion for Censored Survival Models}, journal = {Biometrics}, year = {1998}, volume = {56}, pages = {256--262} } @article{Wahba83, author= {Wahba, G.}, year= {1983}, title= {Bayesian ''confidence intervals'' for the cross-validated smoothing spline}, journal =JRSSB, volume={45}, pages= {133--150} } @article{Wei89, author= {Wei, L. J. and Lin, D. Y. and Weissfeld, L.}, year= {1989}, title= {Regression analysis of multivariate incomplete failure time data by modeling marginal distributions}, journal=jasa, volume={84}, pages= {1065--1073} } @article{Wei90, author= {L. J. Wei and Z. Ying and D. Y. Lin}, year= {1990}, title= {Linear regression analysis of censored survival data based on rank tests}, journal= biok, volume={77}, pages= {845--851} } @article{Wei93, author= {Lin, D. Y. and Wei, L. J. and Ying, Z.}, year= {1993}, title= {Checking the {C}ox model with cumulative sums of martingale-based residuals}, journal=biok, volume={80}, pages= {557--572} } @article{White80, author= {White, H.}, year= {1980}, title ={A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity}, journal= {Econometrica}, volume={48}, pages= {817--838} } @article{White82, author= {White, H.}, year= {1982}, title= {Maximum likelihood estimation of misspecified models}, journal= {Econometrica}, volume={50}, pages= {1--26} } @article{Whitehead80, author= {Whitehead, J.}, year= {1980}, title= {Fitting {C}ox's regression model to survival data using {GLIM}}, journal= applstat, volume={29}, pages= {268--275} } @unpublished{Winemiller98, author= {Winemiller, M.H. and Stolp-Smith, K.A, and Silverstein, M.D. and Therneau, T.M.}, year= {1998}, title= {Sequential pneumatic compression or heparin is effective in preventing venous thromboembolism in spinal cord injury patients}, note={Submitted} } @article{Winkler88, author= {Winkler, H. Z. and Rainwater, L. M. and Myers, R. P. and Farrow, G. M. and Therneau, T. M. and Zincke, H. and Lieber, M. M.}, year= {1988}, title= {Stage {D}1 Prostatic Adenocarcinoma: {S}ignificance of nuclear {DNA} ploidy patterns studied by flow cytometry}, journal= {Mayo Clinic Proceedings}, volume={63}, pages= {103--112} } @article{Yates34, author= {F. Yates}, year = 1934, title={The analysis of multiple classifications with unequal numbers in the different classes}, journal=JASA, volume={29}, pages= {51--66} } @article{Yates78, author= {F. Yates} , title= {Discussion of "The analysis of unbalanced cross classifications"}, year= {1978}, journal=jrssa, volume={141}, pages={2xx--2xx} } @article{Yau97, author= {Yau, K. K .W. and McGilchrist, C. A.}, year= {1997}, title= {Use of generalised linear mixed models for the analysis of clustered survival data}, journal= {Biometrical Journal}, volume={39}, pages= {3--11} } @article{Yau98, author= {Yau, K. K .W. and McGilchrist, C. A.}, year= {1998}, title= {{ML} and {REML} estimation in survival analysis with time dependent correlated frailty}, journal= statmed, volume={17}, pages= {1201--1213} } @article{Yoon16, author = {Yoon, SS and Dillon, CF and Illoh, K and Carroll, M}, title = {Trends in the Prevalence of Coronary Heart Disease in the {U.S}.: {N}ational {H}ealth and {N}utrition {E}xamination {S}urvey}, year=2016, journal = {Am J Prev Med}, volume=51, pages={437--45} } @article{Zahl96, author= {Zahl, Per-Henrik}, title= {A linear non-parametric model for the excess intensity}, year= {1996}, journal=scand, volume={23}, pages={353--364} } @article{Zhen94, author= {Zhen, B. and Murphy, J.R.}, year= {1994}, title= {Sample size determination for an exponential survival model with an unrestricted covariate}, journal=statmed, volume={13}, pages= {391--397} } survival/vignettes/survival.Rnw0000644000176200001440000045511613555602207016521 0ustar liggesusers\documentclass{report}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} %\VignetteIndexEntry{The survival package} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} % I had been putting figures in the figures/ directory, but the standard % R build script does not copy it and then R CMD check fails \SweaveOpts{prefix.string=surv,width=6,height=4} \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {surv-#1.pdf}} \newcommand{\bhat}{\hat \beta} %define "bhat" to mean "beta hat" \newcommand{\Mhat}{\widehat M} %define "Mhat" to mean M-hat \newcommand{\zbar}{\bar Z} \newcommand{\lhat}{\hat \Lambda} \newcommand{\Ybar}{\overline{Y}} \newcommand{\Nbar}{\overline{N}} \newcommand{\Vbar}{\overline{V}} \newcommand{\yhat}{\hat y} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\co}[1]{\texttt{#1}} \newcommand{\twid}{\ensuremath{\sim}} \newcommand{\Lhat}{\hat\Lambda} \setkeys{Gin}{width=\textwidth} <>= options(continue=" ", width=70) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=10) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #ensure default library("survival") palette(c("#000000", "#D95F02", "#1B9E77", "#7570B3", "#E7298A", "#66A61E")) # These functions are used in the document, but not discussed until the end crisk <- function(what, horizontal = TRUE, ...) { nstate <- length(what) connect <- matrix(0, nstate, nstate, dimnames=list(what, what)) connect[1,-1] <- 1 # an arrow from state 1 to each of the others if (horizontal) statefig(c(1, nstate-1), connect, ...) else statefig(matrix(c(1, nstate-1), ncol=1), connect, ...) } state3 <- function(what, horizontal=TRUE, ...) { if (length(what) != 3) stop("Should be 3 states") connect <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3,3, dimnames=list(what, what)) if (horizontal) statefig(1:2, connect, ...) else statefig(matrix(1:2, ncol=1), connect, ...) } state4 <- function() { sname <- c("Entry", "CR", "Transplant", "Transplant") layout <- cbind(c(1/2, 3/4, 1/4, 3/4), c(5/6, 1/2, 1/2, 1/6)) connect <- matrix(0,4,4, dimnames=list(sname, sname)) connect[1, 2:3] <- 1 connect[2,4] <- 1 statefig(layout, connect) } state5 <- function(what, ...) { sname <- c("Entry", "CR", "Tx", "Rel", "Death") connect <- matrix(0, 5, 5, dimnames=list(sname, sname)) connect[1, -1] <- c(1,1,1, 1.4) connect[2, 3:5] <- c(1, 1.4, 1) connect[3, c(2,4,5)] <- 1 connect[4, c(3,5)] <- 1 statefig(matrix(c(1,3,1)), connect, cex=.8,...) } @ \title{A package for survival analysis in R} \author{Terry Therneau} \begin{document} \maketitle \clearpage \tableofcontents \chapter{Introduction} \section{History} Work on the survival package began in 1985 in connection with the analysis of medical research data, without any realization at the time that the work would become a package. Eventually, the software was placed on the Statlib repository hosted by Carnegie Mellon University. Multiple version were released in this fashion but I don't have a list of the dates --- version 2 was the first to make use of the \code{print} method that was introduced in `New S' in 1988, which places that release somewhere in 1989. The library was eventually incorporated directly in S-Plus, and from there it became a standard part of R. I suspect that one of the primary reasons for the package's success is that all of the functions have been written to solve real analysis questions that arose from real data sets; theoretical issues were explored when necessary but they have never played a leading role. As a statistician in a major medical center, the central focus of my department is to advance medicine; statistics is a tool to that end. This also highlights one of the deficiencies of the package: if a particular analysis question has not yet arisen in one of my studies then the survival package will also have nothing to say on the topic. Luckily, there are many other R packages that build on or extend the survival package, and anyone working in the field (the author included) can expect to use more packages than just this one. The author certainly never foresaw that the library would become as popular as it has. This vignette is an introduction to version 3.x of the survival package. We can think of versions 1.x as the S-Plus era and 2.1 -- 2.44 as maturation of the package in R. Version 3 had 4 major goals. \begin{itemize} \item Make multi-state curves and models as easy to use as an ordinary Kaplan-Meier and Cox model. \item Deeper support for absolute risk estimates. \item Consistent use of robust variance estimates. \item Clean up various naming inconsistencies that have arisen over time. \end{itemize} With over 600 dependent packages in 2019, not counting Bioconductor, other guiding lights of the change are \begin{itemize} \item We can't do everything (so don't try). \item Allow other packages to build on this one. That means clear documentation of all of the results that are produced, the use of simple S3 objects that are easy to manipulate, and setting up many of the routines as a pair. For example, \code{concordance} and \code{concordancefit}; the former is the user front end and the latter does the actual work. Other package authors might want to access the lower level interface, while accepting the penalty of fewer error checks. \item Don't mess it up! \end{itemize} This meant preserving the current argument names as much as possible. Appendix \ref{sect:changes} summarizes changes that were made which are not backwards compatible. The two other major changes are to collapse many of vignettes into this single large one, and the parallel creation of an actual book. We've recognized that the package needs more than a vignette. With the book's appearance this vignette can also be more brief, essentially leaving out a lot of the theory. Version 3 will not appear all at once, however; it will take some time to get all of the documentation sorted out in the way that we like. \section{Survival data} The survival package is concerned with time-to-event analysis. Such outcomes arise very often in the analysis of medical data: time from chemotherapy to tumor recurrence, the durability of a joint replacement, recurrent lung infections in subjects with cystic fibrosis, the appearance of hypertension, hyperlipidemia and other comorbidities of age, and of course death itself, from which the overall label of ``survival'' analysis derives. A key principle of all such studies is that ``it takes time to observe time'', which in turn leads to two of the primary challenges. \begin{enumerate} \item Incomplete information. At the time of an analysis, not everyone will have yet had the event. This is a form of partial information known as \emph{censoring}: if a particular subject was enrolled in a study 2 years ago, and has not yet had an event at the time of analysis, we only know that their time to event is $>2$ years. \item Dated results. In order to report 5 year survival, say, from a treatment, patients need to be enrolled and then followed for 5+ years. By the time recruitment and follow-up is finished, analysis done, the report finally published the treatment in question might be 8 years old and considered to be out of date. This leads to a tension between early reporting and long term outcomes. \end{enumerate} \begin{figure} <>= oldpar <- par(mar=c(.1, .1, .1, .1), mfrow=c(2,2)) sname1 <- c("Alive", "Dead") cmat1 <- matrix(c(0,0,1,0), nrow=2, dimnames=list(sname1, sname1)) statefig(c(1,1), cmat1) sname2 <- c("0", "1", "2", "...") cmat2 <- matrix(0, 4,4, dimnames= list(sname2, sname2)) cmat2[1,2] <- cmat2[2,3] <- cmat2[3,4] <- 1 statefig(c(1,1,1,1), cmat2, bcol=c(1,1,1,0)) sname3 <- c("Entry", "Transplant", "Withdrawal", "Death") cmat3 <- matrix(0, 4,4, dimnames=list(sname3, sname3)) cmat3[1, -1] <- 1 statefig(c(1,3), cmat3) sname4 <- c("Health", "Illness", "Death") cmat4 <- matrix(0, 3, 3, dimnames = list(sname4, sname4)) cmat4[1,2] <- cmat4[2,1] <- cmat4[-3, 3] <- 1 statefig(c(1,2), cmat4, offset=.03) par(oldpar) @ \caption{Four multiple event models.} \label{fig:multi} \end{figure} Survival data is often represented as a pair $(t_i, \delta_i)$ where $t$ is the time until endpoint or last follow-up, and $\delta$ is a 0/1 variable with 0= ``subject was censored at $t$'' and 1 =``subject had an event at $t$'', or in R code as \code{Surv(time, status)}. The status variable can be logical, e.g., \code{vtype=='death'} where \code{vtype} is a variable in the data set. An alternate view is to think of time to event data as a multi-state process as is shown in figure \ref{fig:multi}. The upper left panel is simple survival with two states of alive and dead, ``classic'' survival analysis. The other three panels show repeated events of the same type (upper right) competing risks for subjects on a liver transplant waiting list(lower left) and the illness-death model (lower right). In this approach interest normally centers on the transition rates or hazards (arrows) from state to state (box to box). For simple survival the two multistate/hazard and the time-to-event viewpoints are equivalent, and we will move freely between them, i.e., use whichever viewpoint is handy at the moment. When there more than one transition the rate approach is particularly useful. The figure also displays a 2 by 2 division of survival data sets, one that will be used to organize other subsections of this document. \begin{center} \begin{tabular}{l|cc} & One event & Multiple events \\ & per subject& per subject \\ \hline One event type & 1 & 2 \\ Multiple event types & 3 & 4 \end{tabular} \end{center} \section{Overview} The summary below is purposefully very terse. If you are familiar with survival analysis {\em and} with other R modeling functions it will provide a good summary. Otherwise, just skim the section to get an overview of the type of computations available from this package, and move on to section 3 for a fuller description. \begin{description} \item[Surv()] A {\em packaging} function; like I() it doesn't transform its argument. This is used for the left hand side of all the formulas. \begin{itemize} \item \code{Surv(time, status)} -- right censored data \item \code{Surv(time, endpoint=='death')} -- right censored data, where the status variable is a character or factor \item \code{Surv(t1, t2, status)} -- counting process data \item \code{Surv(t1, ind, type='left')} -- left censoring \item \code{Surv(time, fstat} -- multiple state data, fstat is a factor \end{itemize} \item[aareg] Aalen's additive regression model. \begin{itemize} \item The \code{timereg} package is a much more comprehensive implementation of the Aalen model, so this document will say little about \code{aareg} \end{itemize} \item[coxph()] Cox's proportional hazards model. \begin{itemize} \item \code{coxph(Surv(time, status) {\twid}x, data=aml)} -- standard Cox model \item \code{coxph(Surv(t1, t2, stat) {\twid} (age + surgery)* transplant)} -- time dependent covariates. \item \code{y <- Surv(t1, t2, stat)} \\ \code{coxph(y {\twid} strata(inst) * sex + age + treat)} -- Stratified model, with a separate baseline per institution, and institution specific effects for sex. \item \code{coxph(y {\twid} offset(x1) + x2)} -- force in a known term, without estimating a coefficient for it. \end{itemize} \item[cox.zph] Computes a test of proportional hazards for the fitted Cox model. \begin{itemize} \item \code{zfit <- cox.zph(coxfit); plot(zfit)} \end{itemize} \item[pyears] Person-years analysis \item[survdiff] One and k-sample versions of the Fleming-Harrington $G^\rho$ family. Includes the logrank and Gehan-Wilcoxon as special cases. \begin{itemize} \item \code{survdiff(Surv(time, status) {\twid} sex + treat)} -- Compare the 4 sub-groups formed by sex and treatment combinations. \item \code{survdiff(Surv(time, status) {\twid} offset(pred))} - One-sample test \end{itemize} \item[survexp] Predicted survival for an age and sex matched cohort of subjects, given a baseline matrix of known hazard rates for the population. Most often these are US mortality tables, but we have also used local tables for stroke rates. \begin{itemize} \item \code{survexp(entry.dt, birth.dt, sex)} -- Defaults to US white, average cohort survival \item \code{pred <- survexp(entry, birth, sex, futime, type='individual')} Data to enter into a one sample test for comparing the given group to a known population. \end{itemize} \item[survfit] Fit a survival curve. \begin{itemize} \item \code{survfit(Surv(time, status))} -- Simple Kaplan-Meier \item \code{survfit(Surv(time, status) {\twid} rx + sex)} -- Four groups \item \code{fit <- coxph(Surv(time, stat) {\twid} rx + sex)} \\ \code{survfit(fit, list(rx=1, sex=2))} -- Predict curv \end{itemize} \item[survreg] Parametric survival models. \begin{itemize} \item \code{survreg(Surv(time, stat) {\twid} x, dist='loglogistic')} - Fit a log-logistic distribution. \end{itemize} \item[Data set creation] \begin{itemize} \item \code{survSplit} break a survival data set into disjoint portions of time \item \code{tmerge} create survival data sets with time-dependent covariates and/or multiple events \item \code{survcheck} sanity checks for survival data sets \end{itemize} \end{description} \section{Mathematical Notation} We start with some mathematical background and notation, simply because it will be used later. A key part of the computations is the notion of a \emph{risk set}. That is, in time to event analysis a given subject will only be under observation for a specified time. Say for instance that we are interested in the patient experience after a certain treatment, then a patient recruited on March 10 1990 and followed until an analysis date of June 2000 will have 10 years of potential follow-up, but someone who recieved the treatment in 1995 will only have 5 years at the analysis date. Let $Y_i(t), \,i=1,\ldots,n$ be the indicator that subject $i$ is at risk and under observation at time t. Let $N_i(t)$ be the step function for the ith subject, which counts the number of ``events'' for that subject up to time t. There might me things that can happen multiple times such as rehospitalization, or something that only happens once such as death. The total number of events that have occurred up to time $t$ will be $\Nbar(t) =\sum N_i(t)$, and the number of subjects at risk at time $t$ will be $\Ybar(t) = \sum Y_i(t)$. Time-dependent covariates for a subject are the vector $X_i(t)$. It will also be useful to define $d(t)$ as the number of deaths that occur exactly at time $t$. \chapter{Survival curves} \section{One event type, one event per subject} \index{function!survfit}% \index{survival curves!one event} The most common depiction of survival data is the Kaplan-Meier curve, which is a product of survival probabilities: \begin{equation} \hat S_{KM}(t) = \prod_{s < t} \frac{\Ybar(ts) - d(s)}{\Ybar(s)}\,. \end{equation} Graphically, the Kaplan-Meier survival curve appears as a step function with a drop at each death. Censoring times are often marked on the plot as ``$+$'' symbols. KM curves are created with the \code{survfit} function. The left-hand side of the formula will be a Surv object and the right hand side contains one or more categorical variables that will divide the observations into groups. For a single curve use $\sim 1$ as the right hand side. <>= fit1 <- survfit(Surv(futime, fustat) ~ resid.ds, data=ovarian) print(fit1, rmean= 730) summary(fit1, times= (0:4)*182.5, scale=365) @ The default printout is very brief, only one line per curve, showing the number of observations, number of events, median survival, and optionally the restricted mean survival time (RMST) in each of the groups. In the above case we used the value at 2.5 years = 913 days as the upper threshold for the RMST, the value of 453 for females represents an average survival for 453 of the next 913 days after enrollment in the study. The summary function gives a more complete description of the curve, in this case we chose to show the values every 6 months for the first two years. In this case the number of events (\code{n.event}) column is the number of deaths in the interval between two time points, all other columns reflect the value at the chosen time point. Arguments for the survfit function include the usual \code{data}, \code{weights}, \code{subset} and \code{na.action} arguments common to modeling formulas. A further set of arguments have to do with standard errors and confidence intervals, defaults are shown in parenthesis. \begin{itemize} \item se.fit (TRUE): compute a standard error of the estimates. In a few rare circumstances omitting the standard error can save computation time. \item conf.int (.95): the level of confidence interval, or FALSE if intervals are not desired. \item conf.type ('log'): transformation to be used in computing the confidence intervals. \item conf.lower ('usual'): optional modification of the lower interval. \end{itemize} \index{survfit!confidence intervals} For the default \code{conf.type} the confidence intervals are computed as $ \exp[\log(p) \pm 1.96 {\rm se}(\log(p))] $ rather than the direct formula of $p \pm 1.96 {\rm(se)}(p)$, where $p = S(t)$ is the survival probability. Many authors have investigated the behavior of transformed intervals, and a general conclusion is that the direct intervals do not behave well, particularly near 0 and 1, while all the others are acceptable. Which of the choices of log, log-log, or logit is ``best'' depends on the details of any particular simulation study, all are available as options in the function. (The default corresponds to the most recent paper the author had read, at the time the default was chosen; a current meta review might give a slight edge to the log-log option.) The \code{conf.lower} option is mostly used for graphs. If a study has a long string of censored observations, it is intuitive that the precision of the estimated survival must be decreasing due to a smaller sample size, but the formal standard error will not change until the next death. This option widens the confidence interval between death times, proportional to the number at risk, giving a visual clue of the decrease in $n$. There is only a small (and decreasing) population of users who make use of this. \index{function!plot.survfit} The most common use of survival curves is to plot them, as shown below. <>= plot(fit1, col=1:2, xscale=365.25, lwd=2, mark.time=TRUE, xlab="Years since study entry", ylab="Survival") legend(750, .9, c("No residual disease", "Residual disease"), col=1:2, lwd=2, bty='n') @ Curves will appear in the plot in the same order as they are listed by \code{print}; this is a quick way to remind ourselves of which subset maps to each color or linetype in the graph. Curves can also be labeled using the \code{pch} option to place marks on the curves. The location of the marks is controlled by the \code{mark.time} option which has a default value of FALSE (no marks). A vector of numeric values specifies the location of the marks, optionally a value of \code{mark.time=TRUE} will cause a mark to appear at each censoring time; this can result in far too many marks if $n$ is large, however. By default confidence intervals are included on the plot of there is a single curve, and omitted if there is more than one curve. Other options: \begin{itemize} \item xaxt('r') It has been traditional to have survival curves touch the left axis (I will not speculate as to why). This can be accomplished using \code{xaxt='S'}, which was the default in before survival 3.x. The current default is the standard R style, which leaves space between the curve and the axis. \item The follow-up time in the data set is in days. This is very common in survival data, since it is often generated by subtracting two dates. The xscale argument has been used to convert to years. Equivalently one could have used \code{Surv(futime/365.25, status)} in the original call to convert all output to years. The use of \code{scale} in print and summary and \code{xscale} in plot is a historical mistake. \item Subjects who were not followed to death are \emph{censored} at the time of last contact. These appear as + marks on the curve. Use the \code{mark.time} option to suppress or change the symbol. \item By default pointwise 95\% confidence curves will be shown if the plot contains a single curve; they are by default not shown if the plot contains 2 or more groups. \item Confidence intervals are normally created as part of the \code{survfit} call. However, they can be omitted at that point, and added later by the plot routine. \item There are many more options, see \code{help('plot.survfit')}. \end{itemize} The result of a \code{survfit} call can be subscripted. This is useful when one wants to plot only a subset of the curves. Here is an example using a larger data set collected on a set of patients with advanced lung cancer \cite{Loprinzi94}, which better shows the impact of the Eastern Cooperative Oncolgy Group (ECOG) score. This is a simple measure of patient mobility: \begin{itemize} \item 0: Fully active, able to carry on all pre-disease performance without restriction \item 1:Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature, e.g., light house work, office work \item 2: Ambulatory and capable of all selfcare but unable to carry out any work activities. Up and about more than 50\% of waking hours \item 3: Capable of only limited selfcare, confined to bed or chair more than 50\% of waking hours \item 4: Completely disabled. Cannot carry on any selfcare. Totally confined to bed or chair \end{itemize} \index{survfit!subscript} <>= fit2 <- survfit(Surv(time, status) ~ sex + ph.ecog, data=lung) fit2 plot(fit2[1:3], lty=1:3, lwd=2, xscale=365.25, fun='event', xlab="Years after enrollment", ylab="Survival") legend(550, .6, paste("Performance Score", 0:2, sep=' ='), lty=1:3, lwd=2, bty='n') text(400, .95, "Males", cex=2) @ The argument \code{fun='event'} has caused the death rate $D = 1-S$ to be plotted. The choice between the two forms is mostly personal, but some areas such as cancer trial always plot survival (downhill) and other such as cardiology prefer the event rate (uphill). \paragraph{Mean and median} For the Kaplan-Meier estimate, the estimated mean survival is undefined if the last observation is censored. One solution, used here, is to redefine the estimate to be zero beyond the last observation. This gives an estimated mean that is biased towards zero, but there are no compelling alternatives that do better. With this definition, the mean is estimated as $$ \hat \mu = \int_0^T \hat S(t) dt $$ where $\hat S$ is the Kaplan-Meier estimate and $T$ is the maximum observed follow-up time in the study. The variance of the mean is $$ {\rm var}(\hat\mu) = \int_0^T \left ( \int_t^T \hat S(u) du \right )^2 \frac{d \Nbar(t)}{\Ybar(t) (\Ybar(t) - \Nbar(t))} $$ where $\bar N = \sum N_i$ is the total counting process and $\bar Y = \sum Y_i$ is the number at risk. The sample median is defined as the first time at which $\hat S(t) \le .5$. Upper and lower confidence intervals for the median are defined in terms of the confidence intervals for $S$: the upper confidence interval is the first time at which the upper confidence interval for $\hat S$ is $\le .5$. This corresponds to drawing a horizontal line at 0.5 on the graph of the survival curve, and using intersections of this line with the curve and its upper and lower confidence bands. In the very rare circumstance that the survival curve has a horizontal portion at exactly 0.5 (e.g., an even number of subjects and no censoring before the median) then the average time of that horizonal segment is used. This agrees with usual definition of the median for even $n$ in uncensored data. \section{Repeated events} \index{survival curves!repeated events} This is the case of a single event type, with the possibility of multiple events per subject. Repeated events are quite common in industrial reliability data. As an example, consider a data set on the replacement times of diesel engine valve seats. The simple data set \code{valveSeats} contains an engine identifier, time, and a status of 1 for a replacement and 0 for the end of the inspection interval for that engine; the data is sorted by time within engine. To accommodate multiple events for an engine we need to rewrite the data in terms of time intervals. For instance, engine 392 had repairs on days 258 and 328 and a total observation time of 377 days, and will be represented as three intervals of (0, 258), (258, 328) and (328, 377) thus: <>= data.frame(id=rep(392,3), time1=c(0, 258, 328), time2=c(258, 328, 377), status=c(1,1,0)) @ Intervals of length 0 are illegal for \code{Surv} objects. There are 3 engines that had 2 valves repaired on the same day, which will create such an interval. To work around this move the first repair back in time by a tiny amount. <>= vdata <- with(valveSeat, data.frame(id=id, time2=time, status=status)) first <- !duplicated(vdata$id) vdata$time1 <- ifelse(first, 0, c(0, vdata$time[-nrow(vdata)])) double <- which(vdata$time1 == vdata$time2) vdata$time1[double] <- vdata$time1[double] -.01 vdata$time2[double-1] <- vdata$time1[double] vdata[1:7, c("id", "time1", "time2", "status")] survcheck(Surv(time1, time2, status) ~ 1, id=id, data=vdata) @ Creation of (start time, end time) intervals is a common data manipulation task when there are multiple events per subject. A later chapter will discuss the \code{tmerge} function, which is very often useful for this task. The \code{survcheck} function can be used as check for some of more common errors that arise in creation; it also will be covered in more detail in a later section. (The output will be also be less cryptic for later cases, where the states have been labeled.) In the above data, the engines could only participate in 2 kinds of transitions: from an unnamed initial state to a repair, (s0) $\rightarrow$ 1, or from one repair to another one, 1 $\rightarrow$ 1, or reach end of follow-up. The second table printed by \code{survcheck} tells us that 17 engines had 0 transitions to state 1, i.e., no valve repairs before the end of observation for that engine, 9 had 1 repair, etc. Perhaps the most important message is that there were no warnings about suspicious data. We can now compute the survival estimate. When there are multiple observations per subject the \code{id} statement is necessary. (It is a good idea any time there \emph{could} be multiples, even if there are none, as it lets the underlying routines check for doubles.) <>= vfit <- survfit(Surv(time1, time2, status) ~1, data=vdata, id=id) plot(vfit, cumhaz=TRUE, xlab="Days", ylab="Cumulative hazard") @ By default, the \code{survfit} routine computes both the survival and the Nelson cumulative hazard estimate $$ \hat\Lambda(t) = \sum_{i-1}^n \int_0^t \frac{dN_i(s)}{\Ybar (s)} $$ Like the KM, the Nelson estimate is a step function, it starts at zero and has a step of size $d(t)/\Ybar(t)$ at each death. To plot the cumulative hazard the \code{cumhaz} argument of \code{survfit} is used. \index{cumulative hazard function}% \index{mean cumulative function|see cumulative hazard function} In multi-event data, the cumulative hazard is an estimate of the expected \emph{number} of events for a unit that has been observed for the given amount of time, whereas the survival $S$ estimates the probability that a unit has had 0 repairs. The cumulative hazard is the more natural quantity to plot in such studies; in reliability analysis it is also known as the \emph{mean cumulative function}. The estimate is also important in multi-state models. An example is the occurene of repeated infections in children with chronic granultomous disease, as found in the \code{cgd} data set. <>= cgdsurv <- survfit(Surv(tstart, tstop, status) ~ treat, cgd, id=id) plot(cgdsurv, cumhaz=TRUE, col=1:2, conf.times=c(100, 200, 300, 400), xlab="Days since randomization", ylab="Cumulative hazard") @ \section{Competing risks} The case of multiple event types, but only one event per subject is commonly known as competing risks. We do not need the (time1, time2) data form for this case, since each subject has only a single outcome, but we do need a way to identify different outcomes. In the prior sections, \code{status} was either a logical or 0/1 numeric variable that represents censoring (0 or FALSE) or an event (1 or TRUE), and the result of \code{survfit} was a single survival curve for each group. For competing risks data \code{status} will be a factor; the first level of the factor is used to code censoring while the remaining ones are possible outcomes. \subsection{Simple example} Here is a simple competing risks example where the three endpoints are labeled as a, b and c. <>= crdata <- data.frame(time= c(1:8, 6:8), endpoint=factor(c(1,1,2,0,1,1,3,0,2,3,0), labels=c("censor", "a", "b", "c")), istate=rep("entry", 11), id= LETTERS[1:11]) tfit <- survfit(Surv(time, endpoint) ~ 1, data=crdata, id=id, istate=istate) dim(tfit) summary(tfit) @ The resulting object \code{tfit} contains an estimate of $P$(state), the probability of being in each state at each time $t$. $P$ is a matrix with one row for each time and one column for each of the four states a--c and ``still in the starting state''. By definition each row of $P$ sums to 1. We will also use the notation $p(t)$ where $p$ is a vector with one element per state and $p_j(t)$ is the fraction in state $j$ at time $t$. The plot below shows all 4 curves. (Since they sum to 1 one of the 4 curves is redundant, often the entry state is omitted since it is the least interesting.) In the \code{plot.survfit} function there is the argument \code{noplot="(s0)"} which indicates that curves for state (s0) will not be plotted. If we had not specified \code{istate} in the call to \code{survfit}, the default label for the initial state would have been ``s0'' and t he solid curve would not have been plotted. <>= plot(tfit, col=1:4, lty=1:4, lwd=2, ylab="Probability in state") @ The resulting \code{survfms} object appears as a matrix and can be subscripted as such, with a column for each state and rows for each group, each unique combination of values on the right hand side of the formula is a group or strata. This makes it simple to display a subset of the curves using plot or lines commands. The entry state in the above fit, for instance, can be displayed with \code{plot(tfit[,1])}. <<>>= dim(tfit) tfit$states @ The curves are computed using the Aalen-Johansen estimator. This is an important concept, and so we work it out below. 1. The starting point is the column vector $p(0) = (1, 0, 0, 0)$, everyone starts in the first state. 2. At time 1, the first event time, form the 4 by 4 transition matrix $T_1$ \begin{align*} T(1) &= \left( \begin{array}{cccc} 10/11 & 1/11 & 0/11 & 0/11 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right ) p(1) &= p(0)T_1 \end{align*} The first row of $T(1)$ describes the disposition of everyone who is in state 1 and under observation at time 1: 10/11 stay in state 1 and 1 subject transitions to state a. There is no one in the other 3 states, so rows 2--4 are technically undefined; use a default ``stay in the same state'' row which has 1 on the diagonal. (Since no one ever leaves states a, b, or c, the bottom three rows of $T$ will continue to have this form.) 3. At time 2 the first row will be (9/10, 0, 1/10, 0), and $p(2) = p(1)T(2) = p(0) T(1) T(2)$. Continue this until the last event time. At a time point with only censoring, such as time 4, $T$ would be the identity matrix. It is straightforward to show that when there are only two states of alive -> dead, then $p_1(t)$ replicates the Kaplan-Meier computation. For competing risks data such as the simple example above, $p(t)$ replicates the cumulative incidence (CI) estimator. That is, both the KM and CI are both special cases of the Aalen-Johansen. The AJ is more general, however; a given subject can have multiple transitions from state to state, including transitions to a state that was visited earlier. \subsection{Monoclonal gammopathy} \label{mgusplot} The \code{mgus2} data set contains information of 1384 subjects who were who were found to have a particular pattern on a laboratory test (monoclonal gammopathy of undetermined significance or MGUS). The genesis of the study was a suspicion that such a result might indicate a predisposition to plasma cell malignancies such a multiple myeloma; subjects were followed forward to assess whether an excess did occur. The mean age at diagnosis is 63 years, so death from other causes will be an important competing risk. Here are a few observations of the data set, one of which experienced progression to a plasma cell malignancy. <>= mgus2[55:59, -(4:7)] @ To generate competing risk curves create a new (etime, event) pair. Since each subject has at most 1 transition, we do not need a multi-line (time1, time2) dataset. <>= event <- with(mgus2, ifelse(pstat==1, 1, 2*death)) event <- factor(event, 0:2, c("censored", "progression", "death")) etime <- with(mgus2, ifelse(pstat==1, ptime, futime)) crfit <- survfit(Surv(etime, event) ~ sex, mgus2) crfit plot(crfit, col=1:2, noplot="", lty=c(3,3,2,2,1,1), lwd=2, xscale=12, xlab="Years post diagnosis", ylab="P(state)") legend(240, .65, c("Female, death", "Male, death", "malignancy", "(s0)"), lty=c(1,1,2,3), col=c(1,2,1,1), bty='n', lwd=2) @ There are 3 curves for females, one for each of the three states, and 3 for males. The three curves sum to 1 at any given time (everyone has to be somewhere), and the default action for \code{plot.survfit} is to leave out the ``still in original state'' curve (s0) since it is usually the least interesting, but in this case we have shown all 3. We will return to this example when exploring models. A common mistake with competing risks is to use the Kaplan-Meier separately on each event type while treating other event types as censored. The next plot is an example of this for the PCM endpoint. <>= pcmbad <- survfit(Surv(etime, pstat) ~ sex, data=mgus2) plot(pcmbad[2], mark.time=FALSE, lwd=2, fun="event", conf.int=FALSE, xscale=12, xlab="Years post diagnosis", ylab="Fraction with PCM") lines(crfit[2,2], lty=2, lwd=2, mark.time=FALSE, conf.int=FALSE) legend(0, .25, c("Males, PCM, incorrect curve", "Males, PCM, competing risk"), col=1, lwd=2, lty=c(1,2), bty='n') @ There are two problems with the \code{pcmbad} fit. The first is that it attempts to estimate the expected occurrence of plasma cell malignancy (PCM) if all other causes of death were to be disallowed. In this hypothetical world it is indeed true that many more subjects would progress to PCM (the incorrect curve is higher), but it is also not a world that any of us will ever inhabit. This author views the result in much the same light as a discussion of survival after the zombie apocalypse. The second problem is that the computation for this hypothetical case is only correct if all of the competing endpoints are independent, a situation which is almost never true. We thus have an unreliable estimate of an uninteresting quantity. The competing risks curve, on the other hand, estimates the fraction of MGUS subjects who \emph{will experience} PCM, a quantity sometimes known as the lifetime risk, and one which is actually observable. The last example chose to plot only a subset of the curves, something that is often desirable in competing risks problems to avoid a ``tangle of yarn'' plot that simply has too many elements. This is done by subscripting the \code{survfit} object. For subscripting, multi-state curves behave as a matrix with the outcomes as the second subscript. The columns are in order of the levels of \code{event}, i.e., as displayed by our earlier call to \code{table(event)}. The first subscript indexes the groups formed by the right hand side of the model formula, and will be in the same order as simple survival curves. Thus \code{mfit2[2,2]} corresponds to males (2) and the PCM endpoint (2). Curves are listed and plotted in the usual matrix order of R. <<>>= dim(crfit) crfit$strata crfit$states @ One surprising aspect of multi-state data is that hazards can be estimated independently although probabilities cannot. If you look at the cumulative hazard estimate from the \code{pcmbad} fit above using, for instance, \code{plot(pcmbac, cumhaz=TRUE)} you will find that it is identical to the cumulative hazard estimate from the joint fit. This will arise again with Cox models. \subsection{Variance} The variance of the AJ estimate is computed using an infinitesimal jackknife (IJ) matrix, which contains the influence of each subject on the estimator; formally the derivative with respect to each subject's case weight. For a single simple survival curve that has $k$ unique values, for instance, the IJ matrix will have $n$ rows and $k$ columns, one row per subject. Columns of the matrix sum to zero, by definition, and the variance at a time point $t$ will be the column sums of $(IJ)^2$. For a competing risk problem the \code{crfit} object above will contain a matrix \code{pstate} with $k$ rows and one column for each state, where $k$ is the number of unique time points; and the IJ is an array of dimension $(n, k, p)$. In the case of simple survival and all case weights =1, the IJ variance collapses to the well known Greenwood variance estimate. \section{Multi-state data} The most general multi-state data will have multiple outcomes and multiple endpoints per subject. In this case, we will need to use the (time1, time2) form for each subject. The dataset structure is similar to that for time varying covariates in a Cox model: the time variable will be intervals $(t_1, t_2]$ which are open on the left and closed on the right, and a given subject will have multiple lines of data. But instead of covariates changing from line to line, in this case the status variable changes; it contains the state that was entered at time $t_2$. There are a few restrictions. \begin{itemize} \item An identifier variable is needed to indicate which rows of the dataframe belong to each subject. If the \code{id} argument is missing, the code assumes that each row of data is a separate subject, which leads to a nonsense estimate when there are actually multiple rows per subject. \item Subjects do not have to enter at time 0 or all at the same time, but each must traverse a connected segment of time. Disjoint intervals such as the pair $(0,5]$, $(8, 10]$ are illegal. \item A subject cannot change groups. Any covariates on the right hand side of the formula must remain constant within subject. (This function is not a way to create supposed `time-dependent' survival curves.) \item Subjects may have case weights, and these weights may change over time for a subject. \end{itemize} The \code{istate} argument can be used to designate a subject's state at the start of each $t_1, t_2$ time interval. Like variables in the formula, it is searched for in the \code{data} argument. If it is not present, every subject is assumed to start in a common entry state which is given the name ``(s0)''. The parentheses are an echo of ``(Intercept)'' in a linear model and show a label that was provided by the program rather than the data. The distribution of states just prior to the first event time is treated as the initial distribution of states. In common with ordinary survival, any observation which is censored before the first event time has no impact on the results. \subsection{Myeloid data} The \code{myeloid} data set contains data from a clinical trial in subjects with acute myeloid leukemia. To protect patient confidentiality the data set in the survival package has been slightly perturbed, but results are essentially unchanged. In this comparison of two conditioning regimens, the canonical path for a subject is initial therapy $\rightarrow$ complete response (CR) $\rightarrow$ hematologic stem cell transplant (SCT) $\rightarrow$ sustained remission, followed by relapse or death. Not everyone follows this ideal path, of course. <>= myeloid[1:5,] @ The first few rows of data are shown above. The data set contains the follow-up time and status at last follow-up for each subject, along with the time to transplant (txtime), complete response (crtime) or relapse after CR (rltime). Subject 1 did not receive a transplant, as shown by the NA value, and subject 2 did not achieve CR. \begin{figure} \myfig{sfit0} \caption{Overall survival curves for the two treatments.} \label{sfit0} \end{figure} Overall survival curves for the data are shown in figure \ref{sfit0}. The difference between the treatment arms A and B is substantial. A goal of this analysis is to better understand this difference. Code to generate the two curves is below. <>= sfit0 <- survfit(Surv(futime, death) ~ trt, myeloid) plot(sfit0, xscale=365.25, xaxs='r', col=1:2, lwd=2, xlab="Years post enrollment", ylab="Survival") legend(20, .4, c("Arm A", "Arm B"), col=1:2, lwd=2, bty='n') @ The full multi-state data set can be created with the \code{tmerge} routine. <>= mdata <- tmerge(myeloid[,1:2], myeloid, id=id, death= event(futime, death), sct = event(txtime), cr = event(crtime), relapse = event(rltime)) temp <- with(mdata, cr + 2*sct + 4*relapse + 8*death) table(temp) @ Our check shows that there is one subject who had CR and stem cell transplant on the same day (temp=3). To avoid length 0 intervals, we break the tie so that complete response (CR) happens first. (Students may be surprised to see anomalies like this, since they never appear in textbook data sets. In real data such issues always appear.) <>= tdata <- myeloid # temporary working copy tied <- with(tdata, (!is.na(crtime) & !is.na(txtime) & crtime==txtime)) tdata$crtime[tied] <- tdata$crtime[tied] -1 mdata <- tmerge(tdata[,1:2], tdata, id=id, death= event(futime, death), sct = event(txtime), cr = event(crtime), relapse = event(rltime), priorcr = tdc(crtime), priortx = tdc(txtime)) temp <- with(mdata, cr + 2*sct + 4*relapse + 8*death) table(temp) mdata$event <- factor(temp, c(0,1,2,4,8), c("none", "CR", "SCT", "relapse", "death")) mdata[1:7, c("id", "trt", "tstart", "tstop", "event", "priorcr", "priortx")] @ Subject 1 has a CR on day 44, relapse on day 113, death on day 235 and did not receive a stem cell transplant. The data for the first three subjects looks good. Check it out a little more thoroughly. <<>>= survcheck(Surv(tstart, tstop, event) ~1, mdata, id=id) @ The second table shows that no single subject had more than one CR, SCT, relapse, or death; the intention of the study was to count only the first of each of these, so this is as expected. Several subjects visited all four intermediate states. The transitions table shows 11 subjects who achieved CR \emph{after} stem cell transplant and another 106 who received a transplant before achieving CR, both of which are deviations from the ``ideal'' pathway. No subjects went from death to another state (which is good). For investigating the data we would like to add a set of alternate endpoints. \begin{enumerate} \item The competing risk of CR and death, ignoring other states. This is used to estimate the fraction who ever achieved a complete response. \item The competing risk of SCT and death, ignoring other states. \item An endpoint that distinguishes death after SCT from death before SCT. \end{enumerate} Each of these can be accomplished by adding further outcome variables to the data set, we will not need to change the time intervals. <>= levels(mdata$event) temp1 <- with(mdata, ifelse(priorcr, 0, c(0,1,0,0,2)[event])) mdata$crstat <- factor(temp1, 0:2, c("none", "CR", "death")) temp2 <- with(mdata, ifelse(priortx, 0, c(0,0,1,0,2)[event])) mdata$txstat <- factor(temp2, 0:2, c("censor", "SCT", "death")) temp3 <- with(mdata, c(0,0,1,0,2)[event] + priortx) mdata$tx2 <- factor(temp3, 0:3, c("censor", "SCT", "death w/o SCT", "death after SCT")) @ Notice the use of the \code{priorcr} variable in defining \code{crstat}. This outcome variable treats complete response as a terminal state, which in turn means that no further transitions are allowed after reaching CR. \begin{figure} \myfig{curve1} \caption{Overall survival curves: time to death, to transplant (Tx), and to complete response (CR). Each shows the estimated fraction of subjects who have ever reached the given state. The vertical line at 2 months is for reference. The curves were limited to the first 48 months to more clearly show early events. The right hand panel shows the state-space model for each pair of curves.} \label{curve1} \end{figure} This data set is the basis for our first set of curves, which are shown in figure \ref{curve1}. The plot overlays three separate \code{survfit} calls: standard survival until death, complete response with death as a competing risk, and transplant with death as a competing risk. For each fit we have shown one selected state: the fraction who have died, fraction ever in CR, and fraction ever to receive transplant, respectively. Most of the CR events happen before 2 months (the green vertical line) and nearly all the additional CRs conferred by treatment B occur between months 2 and 8. Most transplants happen after 2 months, which is consistent with the clinical guide of transplant after CR. The survival advantage for treatment B begins between 4 and 6 months, which argues that it could be at least partially a consequence of the additional CR events. The code to draw figure \ref{curve1} is below. It can be separated into 5 parts: \begin{enumerate} \item Fits for the 3 endpoints are simple and found in the first set of lines. The \code{crstat} and \code{txstat} variables are factors, which causes multi-state curves to be generated. \item The \code{layout} and \code{par} commands are used to create a multi-part plot with curves on the left and state space diagrams on the right, and to reduce the amount of white space between them. \item Draw a subset of the curves via subscripting. A multi-state survfit object appears to the user as a matrix of curves, with one row for each group (treatment) and one column for each state. The CR state is the second column in \code{sfit2}, for instance. The CR fit was drawn first simply because it has the greatest y-axis range, then the other curves added using the lines command. \item Decoration of the plots. This includes the line types, colors, legend, choice of x-axis labels, etc. \item Add the state space diagrams. The functions for this are described elsewhere in the vignette. \end{enumerate} <>= # I want to have the plots in months, it is simpler to fix time # once rather than repeat xscale many times tdata$futime <- tdata$futime * 12 /365.25 mdata$tstart <- mdata$tstart * 12 /365.25 mdata$tstop <- mdata$tstop * 12 /365.25 sfit1 <- survfit(Surv(futime, death) ~ trt, tdata) # survival sfit2 <- survfit(Surv(tstart, tstop, crstat) ~ trt, data= mdata, id = id) # CR sfit3 <- survfit(Surv(tstart, tstop, txstat) ~ trt, data= mdata, id =id) # SCT layout(matrix(c(1,1,1,2,3,4), 3,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1.1, .1)) mlim <- c(0, 48) # and only show the first 4 years plot(sfit2[,"CR"], xlim=mlim, lty=3, lwd=2, col=1:2, xaxt='n', xlab="Months post enrollment", ylab="Fraction with the endpoint") lines(sfit1, mark.time=FALSE, xlim=mlim, fun='event', col=1:2, lwd=2) lines(sfit3[,"SCT"], xlim=mlim, col=1:2, lty=2, lwd=2) xtime <- c(0, 6, 12, 24, 36, 48) axis(1, xtime, xtime) #axis marks every year rather than 10 months temp <- outer(c("A", "B"), c("CR", "transplant", "death"), paste) temp[7] <- "" legend(25, .3, temp[c(1,2,7,3,4,7,5,6,7)], lty=c(3,3,3, 2,2,2 ,1,1,1), col=c(1,2,0), bty='n', lwd=2) abline(v=2, lty=2, col=3) # add the state space diagrams par(mar=c(4,.1,1,1)) crisk(c("Entry", "CR", "Death"), alty=3) crisk(c("Entry", "Tx", "Death"), alty=2) crisk(c("Entry","Death")) par(oldpar) layout(1) @ The association between a particular curve and its corresponding state space diagram is critical. As we will see below, many different models are possible and it is easy to get confused. Attachment of a diagram directly to each curve, as was done above, will not necessarily be day-to-day practice, but the state space should always be foremost. If nothing else, draw it on a scrap of paper and tape it to the side of the terminal when creating a data set and plots. \begin{figure} \myfig{badfit} \caption{Correct (solid) and invalid (dashed) estimates of the number of subjects transplanted.} \label{badfit} \end{figure} Figure \ref{badfit} shows the transplant curves overlaid with the naive KM that censors subjects at death. There is no difference in the initial portion as no deaths have yet intervened, but the final portion overstates the transplant outcome by more than 10\%. \begin{enumerate} \item The key problem with the naive estimate is that subjects who die can never have a transplant. The result of censoring them is an estimate of the ``fraction who would be transplanted, if death before transplant were abolished''. This is not a real world quantity. \item In order to estimate this fictional quantity one needs to assume that death is uninformative with respect to future disease progression. The early deaths in months 0--2, before transplant begins, are however a very different class of patient. Non-informative censoring is untenable. \end{enumerate} We are left with an unreliable estimate of an uninteresting quantity. Mislabeling any true state as censoring is always a mistake, one that will not be repeated here. Here is the code for figure \ref{badfit}. The use of a logical (true/false) as the status variable in the \code{Surv} call leads to ordinary survival calculations. <>= badfit <- survfit(Surv(tstart, tstop, event=="SCT") ~ trt, id=id, mdata, subset=(priortx==0)) layout(matrix(c(1,1,1,2,3,4), 3,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1.1, .1)) plot(badfit, fun="event", xmax=48, xaxt='n', col=1:2, lty=2, lwd=2, xlab="Months from enrollment", ylab="P(state)") axis(1, xtime, xtime) lines(sfit3[,2], xmax=48, col=1:2, lwd=2) legend(24, .3, c("Arm A", "Arm B"), lty=1, lwd=2, col=1:2, bty='n', cex=1.2) par(mar=c(4,.1,1,1)) crisk(c("Entry", "transplant"), alty=2, cex=1.2) crisk(c("Entry","transplant", "Death"), cex=1.2) par(oldpar) layout(1) @ \begin{figure} \myfig{cr2} \caption{Models for `ever in CR' and `currently in CR'; the only difference is an additional transition. Both models ignore transplant.} \label{cr2} \end{figure} Complete response is a goal of the initial therapy; figure \ref{cr2} looks more closely at this. As was noted before arm B has an increased number of late responses. The duration of response is also increased: the solid curves show the number of subjects still in response, and we see that they spread farther apart than the dotted ``ever in response'' curves. The figure shows only the first eight months in order to better visualize the details, but continuing the curves out to 48 months reveals a similar pattern. Here is the code to create the figure. <>= cr2 <- mdata$event cr2[cr2=="SCT"] <- "none" # ignore transplants crsurv <- survfit(Surv(tstart, tstop, cr2) ~ trt, data= mdata, id=id, influence=TRUE) layout(matrix(c(1,1,2,3), 2,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1.1, .1)) plot(sfit2[,2], lty=3, lwd=2, col=1:2, xmax=12, xlab="Months", ylab="CR") lines(crsurv[,2], lty=1, lwd=2, col=1:2) par(mar=c(4, .1, 1, 1)) crisk( c("Entry","CR", "Death"), alty=3) state3(c("Entry", "CR", "Death/Relapse")) par(oldpar) layout(1) @ The above code created yet another event variable so as to ignore transitions to the transplant state. They become a non-event, in the same way that extra lines with a status of zero are used to create time-dependent covariates for a Cox model fit. The \code{survfit} call above included the \code{influence=TRUE} argument, which causes the influence array to be calculated and returned. It contains, for each subject, that subject's influence on the time by state matrix of results and allows for calculation of the standard error of the restricted mean. We will return to this in a later section. <>= print(crsurv, rmean=48, digits=2) @ <>= temp <- summary(crsurv, rmean=48)$table delta <- round(temp[4,3] - temp[3,3], 2) @ @ The restricted mean time in the CR state is extended by \Sexpr{round(temp[4,3], 1)} - \Sexpr{round(temp[3,3], 1)} = \Sexpr{delta} months. A question which immediately gets asked is whether this difference is ``significant'', to which there are two answers. The first and more important is to ask whether 5 months is an important gain from either a clinical or patient perspective. The overall restricted mean survival for the study is approximately 30 of the first 48 months post entry (use \code{print(sfit1, rmean=48)}); on this backdrop an extra 5 months in CR might or might not be an meaningful advantage from a patient's point of view. The less important answer is to test whether the apparent gain is sufficiently rare from a mathematical point of view, i.e., ``statistical'' significance. The standard errors of the two values are \Sexpr{round(temp[3,4],1)} and \Sexpr{round(temp[4,4],1)}, and since they are based on disjoint subjects the values are independent, leading to a standard error for the difference of $\sqrt{1.1^2 + 1.1^2} = 1.6$. The 5 month difference is more than 3 standard errors, so highly significant. \begin{figure} \myfig{txsurv} \caption{Transplant status of the subjects, broken down by whether it occurred before or after CR.} \label{txsurv} \end{figure} In summary \begin{itemize} \item Arm B adds late complete responses (about 4\%); there are 206/317 in arm B vs. 248/329 in arm B. \item The difference in 4 year survival is about 6\%. \item There is approximately 2 months longer average duration of CR (of 48). \end{itemize} CR $\rightarrow$ transplant is the target treatment path for a patient; given the improvements listed above why does figure \ref{curve1} show no change in the number transplanted? Figure \ref{txsurv} shows the transplants broken down by whether this happened before or after complete response. Most of the non-CR transplants happen by 10 months. One possible explanation is that once it is apparent to the patient/physician pair that CR is not going to occur, they proceed forward with other treatment options. The extra CR events on arm B, which occur between 2 and 8 months, lead to a consequent increase in transplant as well, but at a later time of 12--24 months: for a subject in CR we can perhaps afford to defer the transplant date. Computation is again based on a manipulation of the event variable: in this case dividing the transplant state into two sub-states based on the presence of a prior CR. The code makes use of the time-dependent covariate \code{priorcr}. (Because of scheduling constraints within a hospital it is unlikely that a CR that is within a few days prior to transplant could have effected the decision to schedule a transplant, however. An alternate breakdown that might be useful would be ``transplant without CR or within 7 days after CR'' versus those that are more than a week later. There are many sensible questions that can be asked.) <>= event2 <- with(mdata, ifelse(event=="SCT" & priorcr==1, 6, as.numeric(event))) event2 <- factor(event2, 1:6, c(levels(mdata$event), "SCT after CR")) txsurv <- survfit(Surv(tstart, tstop, event2) ~ trt, mdata, id=id, subset=(priortx ==0)) dim(txsurv) # number of strata by number of states txsurv$states # Names of states layout(matrix(c(1,1,1,2,2,0),3,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1,.1)) plot(txsurv[,c(3,6)], col=1:2, lty=c(1,1,2,2), lwd=2, xmax=48, xaxt='n', xlab="Months", ylab="Transplanted") axis(1, xtime, xtime) legend(15, .13, c("A, transplant without CR", "B, transplant without CR", "A, transplant after CR", "B, transplant after CR"), col=1:2, lty=c(1,1,2,2), lwd=2, bty='n') state4() # add the state figure par(oldpar) @ \begin{figure} \myfig{sfit4} \caption{The full multi-state curves for the two treatment arms.} \label{sfit4} \end{figure} Figure \ref{sfit4} shows the full set of state occupancy probabilities for the cohort over the first 4 years. At each point in time the curves estimate the fraction of subjects currently in that state. The total who are in the transplant state peaks at about 9 months and then decreases as subjects relapse or die; the curve rises whenever someone receives a transplant and goes down whenever someone leaves the state. At 36 months treatment arm B (dashed) has a lower fraction who have died, the survivors are about evenly split between those who have received a transplant and those whose last state is a complete response (only a few of the latter are post transplant). The fraction currently in relapse -- a transient state -- is about 5\% for each arm. The figure omits the curve for ``still in the entry state''. The reason is that at any point in time the sum of the 5 possible states is 1 --- everyone has to be somewhere. Thus one of the curves is redundant, and the fraction still in the entry state is the least interesting of them. <>= sfit4 <- survfit(Surv(tstart, tstop, event) ~ trt, mdata, id=id) sfit4$transitions layout(matrix(1:2,1,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1,.1)) plot(sfit4, col=rep(1:4,each=2), lwd=2, lty=1:2, xmax=48, xaxt='n', xlab="Months", ylab="Current state") axis(1, xtime, xtime) text(c(40, 40, 40, 40), c(.51, .13, .32, .01), c("Death", "CR", "Transplant", "Recurrence"), col=c(4,1,2,3)) par(mar=c(5.1, .1, 1, .1)) state5() par(oldpar) @ The transitions table above shows \Sexpr{sfit4$transitions[1,4]} %$ direct transitions from entry to death, i.e., subjects who die without experiencing any of the other intermediate points, \Sexpr{sfit4$transitions[2,2]} who go from CR to transplant (as expected), \Sexpr{sfit4$transitions[3,1]} who go from transplant to CR, etc. %$ No one was observed to go from relapse to CR in the data set, this serves as a data check since it should not be possible per the data entry plan. \section{Influence matrix} For one of the curves above we returned the influence array. For each value in the matrix $P$ = probability in state and each subject $i$ in the data set, this contains the effect of that subject on each value in $P$. Formally, \begin{equation*} D_{ij}(t) = \left . \frac{\partial p_j(t)}{\partial w_i} \right|_w \end{equation*} where $D_{ij}(t)$ is the influence of subject $i$ on $p_j(t)$, and $p_j(t)$ is the estimated probability for state $j$ at time $t$. This is known as the infinitesimal jackknife (among other labels). <>= crsurv <- survfit(Surv(tstart, tstop, cr2) ~ trt, data= mdata, id=id, influence=TRUE) curveA <- crsurv[1,] # select treatment A dim(curveA) # P matrix for treatement A curveA$states dim(curveA$pstate) # 426 time points, 5 states dim(curveA$influence) # influence matrix for treatment A table(myeloid$trt) @ For treatment arm A there are \Sexpr{table(myeloid$trt)[1]} subjects and \Sexpr{dim(curveA$pstate)[1]} time points in the $P$ matrix. The influence array has subject as the first dimension, and for each subject it has an image of the $P$ matrix containing that subject's influence on each value in $P$, i.e., \code{influence[1, ,]} is the influence of subject 1 on $P$. For this data set everyone starts in the entry state, so $p(0)$ = the first row of \code{pstate} will be (1, 0, 0, 0, 0) and the influence of each subject on this row is 0; this does not hold if not all subjects start in the same state. As an exercise we will calculate the mean time in state out to 48 weeks. This is the area under the individual curves from time 0 to 48. Since the curves are step functions this is simple sum of rectangles, treating any intervals after 48 months as having 0 width. <>= t48 <- pmin(48, curveA$time) delta <- diff(c(t48, 48)) # width of intervals rfun <- function(pmat, delta) colSums(pmat * delta) #area under the curve rmean <- rfun(curveA$pstate, delta) # Apply the same calculation to each subject's influence slice inf <- apply(curveA$influence, 1, rfun, delta=delta) # inf is now a 5 state by 310 subject matrix, containing the IJ estimates # on the AUC or mean time. The sum of squares is a variance. se.rmean <- sqrt(rowSums(inf^2)) round(rbind(rmean, se.rmean), 2) print(curveA, rmean=48, digits=2) @ The last lines verify that this is exactly the calculation done by the \code{print.survfitms} function; the results can also be found in the \code{table} component returned by \code{summary.survfitms}. In general, let $U_i$ be the influence of subject $i$. For some function $f(P)$ of the probability in state matrix \code{pstate}, the influence of subject $i$ will be $\delta_i = f(P + U_i) - f(P)$ and the infinitesimal jackknife estimate of variance will be $\sum_i \delta^2$. For the simple case of adding up rectangles $f(P +U_i) - f(P) = f(U_i)$ leading to particularly simple code, but this will not always be the case. \section{Differences in survival} There is a single function \code{survdiff} to test for differences between 2 or more survival curves. It implements the $G^\rho$ family of Fleming and Harrington \cite{FH2}. A single parameter $\rho$ controls the weights given to different survival times, $\rho=0$ yields the log-rank test and $\rho=1$ the Peto-Wilcoxon. Other values give a test that is intermediate to these two. The default value is $\rho=0$. The log-rank test is equivalent to the score test from a Cox model with the group as a factor variable. The interpretation of the formula is the same as for \code{survfit}, i.e., variables on the right hand side of the equation jointly break the patients into groups. <>= survdiff(Surv(time, status) ~ x, aml) @ \section{State space figures} \label{sect:statefig} The state space figures in the above example were drawn with a simple utility function \code{statefig}. It has two primary arguments along with standard graphical options of color, line type, etc. \begin{enumerate} \item A layout vector or matrix. A vector with values of (1, 3, 1) for instance will allocate one state, then a column with 3 states, then one more state, proceeding from left to right. A matrix with a single row will do the same, whereas a matrix with one column will proceed from top to bottom. \item A $k$ by $k$ connection matrix $C$ where $k$ is the number of states. If $C_{ij} \ne 0$ then an arrow is drawn from state $i$ to state $j$. The row or column names of the matrix are used to label the states. The lines connecting the states can be straight or curved, see the help file for an example. \end{enumerate} The first few state space diagrams were competing risk models, which use the following helper function. It accepts a vector of state names, where the first name is the starting state and the remainder are the possible outcomes. <>= crisk <- function(what, horizontal = TRUE, ...) { nstate <- length(what) connect <- matrix(0, nstate, nstate, dimnames=list(what, what)) connect[1,-1] <- 1 # an arrow from state 1 to each of the others if (horizontal) statefig(c(1, nstate-1), connect, ...) else statefig(matrix(c(1, nstate-1), ncol=1), connect, ...) } @ This next function draws a variation of the illness-death model. It has an initial state, an absorbing state (normally death), and an optional intermediate state. <>= state3 <- function(what, horizontal=TRUE, ...) { if (length(what) != 3) stop("Should be 3 states") connect <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3,3, dimnames=list(what, what)) if (horizontal) statefig(1:2, connect, ...) else statefig(matrix(1:2, ncol=1), connect, ...) } @ The most complex of the state space figures has all 5 states. <>= state5 <- function(what, ...) { sname <- c("Entry", "CR", "Tx", "Rel", "Death") connect <- matrix(0, 5, 5, dimnames=list(sname, sname)) connect[1, -1] <- c(1,1,1, 1.4) connect[2, 3:5] <- c(1, 1.4, 1) connect[3, c(2,4,5)] <- 1 connect[4, c(3,5)] <- 1 statefig(matrix(c(1,3,1)), connect, cex=.8, ...) } @ For figure \ref{txsurv} I want a third row with a single state, but don't want that state centered. For this I need to create my own (x,y) coordinate list as the layout parameter. Coordinates must be between 0 and 1. <>= state4 <- function() { sname <- c("Entry", "CR", "Transplant", "Transplant") layout <- cbind(x =c(1/2, 3/4, 1/4, 3/4), y =c(5/6, 1/2, 1/2, 1/6)) connect <- matrix(0,4,4, dimnames=list(sname, sname)) connect[1, 2:3] <- 1 connect[2,4] <- 1 statefig(layout, connect) } @ The statefig function was written to do ``good enough'' state space figures quickly and easily, in the hope that users will find it simple enough that diagrams are drawn early and often. Packages designed for directed acyclic graphs (DAG) such as diagram, DiagrammeR, or dagR are far more flexible and can create more nuanced and well decorated results. \subsection{Further notes} The Aalen-Johansen method used by \code{survfit} does not account for interval censoring, also known as panel data, where a subject's current state is recorded at some fixed time such as a medical center visit but the actual times of transitions are unknown. Such data requires further assumptions about the transition process in order to model the outcomes and has a more complex likelihood. The \code{msm} package, for instance, deals with data of this type. If subjects reliably come in at regular intervals then the difference between the two results can be small, e.g., the \code{msm} routine estimates time until progression \emph{occurred} whereas \code{survfit} estimates time until progression was \emph{observed}. \begin{itemize} \item When using multi-state data to create Aalen-Johansen estimates, individuals are not allowed to have gaps in the middle of their time line. An example of this would be a data set with (0, 30, pcm] and (50,70, death] as the two observations for a subject where the time from 30-70 is not accounted for. \item Subjects must stay in the same group over their entire observation time, i.e., variables on the right hand side of the equation cannot be time-dependent. \item A transition to the same state is allowed, e.g., observations of (0,50, 1], (50, 75, 3], (75, 89, 4], (89, 93, 4] and (93, 100, 4] for a subject who goes from entry to state 1, then to state 3, and finally to state 4. However, a warning message is issued for the data set in this case, since stuttering may instead be the result of a coding mistake. The same result is obtained if the last three observations were collapsed to a single row of (75, 100, 4]. \end{itemize} %-------------------------------------------------------- \chapter{Cox model} \index{Cox model} The most commonly used models for survival data are those that model the transition rate from state to state, i.e., the arrows of figure \ref{fig:multi}. They are Poisson regression \eqref{eq2.1}, the Cox or proportional hazards model \eqref{eq2.2} and the Aalen additive regression model \eqref{eq2.3}, of which the Cox model is far and away the most popular. As seen in the equations they are closely related. \begin{eqnarray} \lambda(t) &= e^{beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots} \ \label{eq2.1} \\ \lambda(t) &= e^{\beta_0(t) + \beta_1 x_1 + \beta_2 x_2 + \ldots} \nonumber \\ &= \lambda_0(t) e^{\beta_1 x_1 + \beta_2 x_2 + \ldots} \label{eq2.2} \\ \lambda(t) &= \beta_0(t) + \beta_1(t) x_1 + \beta_2(t) x_2 + \ldots \label{eq2.3} \end{eqnarray} (Textbooks on survival use $\lambda(t)$, $\alpha(t)$ and $h(t)$ in about equal proportions. There is no good argument for any one versus another, but this author started his career with books that used $\lambda$ so that is what you will get.) % ----------------------------------------- \section{One event type, one event per subject} Single event data is the most common use for Cox models. We will use a data set that contains the survival of 228 patients with advanced lung cancer. <>= options(show.signif.stars=FALSE) # display statistical intelligence cfit1 <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung) print(cfit1, digits=3) summary(cfit1, digits=3) anova(cfit1) @ As is usual with R modeling functions, the default \code{print} routine gives a short summary and the \code{summary} routine a longer one. The \code{anova} command shows tests for each term in a model, added sequentially. We purposely avoid the innane addition of ``significant stars'' to any printout. Age and gender are strong predictors of survival, but the amount of recent weight loss was not influential. The following functions can be used to extract portions of a \code{coxph} object. \begin{itemize} \item \code{coef} or \code{coefficients}: the vector of coefficients \item \code{concordance}: the concordance statistic for the model fit \item \code{fitted}: the fitted values, also known as linear predictors \item \code{logLik}: the partial likelihood \item \code{model.frame}: the model.frame of the data used in the fit \item \code{model.matrix}: the $X$ matrix used in the fit \item \code{nobs}: the number of observations \item \code{predict}: a vector or matrix of predicted values \item \code{residuals}: a vector of residuals \item \code{vcov}: the variance-covariance matrix \item \code{weights}: the vector of case weights used in the fit \end{itemize} Further details about the contents of a \code{coxph} object can be found by \code{help('coxph.object')}. The global \code{na.action} function has an important effect on the returned vector of residuals, as shown below. This can be set per fit, but is more often set globally via the \code{options()} function. <>= cfit1a <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung, na.action = na.omit) cfit1b <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung, na.action = na.exclude) r1 <- residuals(cfit1a) r2 <- residuals(cfit1b) length(r1) length(r2) @ The fits have excluded 14 subjects with missing values for one or more covariates. The residual vector \code{r1} omits those subjects from the residuals, while \code{r2} returns a vector of the same length as the original data, containing NA for the omitted subjects. Which is preferred depends on what you want to do with the residuals. For instance \code{mean(r1)} is simpler using the first while \code{plot(lung\$ph.ecog, r2)} is simpler with the second. Stratified Cox models are obtained by adding one or more \code{strata} terms to the model formula. In a stratified model each subject is compared only to subjects within their own stratum for computing the partial likelihood, and then the final results are summed over the strata. A useful rule of thumb is that a variable included as a stratum is adjusted for in the most general way, at the price of not having an estimate of its effect. One common use of strata is to adjust for the enrolling institution in a multi-center study, as below. We see that in this case the effect of stratification is slight. <>= cfit2 <- coxph(Surv(time, status) ~ age + sex + wt.loss + strata(inst), data=lung) round(cbind(simple= coef(cfit1), stratified=coef(cfit2)), 4) @ Predicted survival curves from a Cox model are obtained using the \code{survfit} function. Since these are predictions from a model, it is necessary to specify \emph{whom} the predictions should be for, i.e., one or more sets of covariate values. Here is an example. <>= dummy <- expand.grid(age=c(50, 60), sex=1, wt.loss=5) dummy csurv1 <- survfit(cfit1, newdata=dummy) csurv2 <- survfit(cfit2, newdata=dummy) dim(csurv1) dim(csurv2) plot(csurv1, col=1:2, xscale=365.25, xlab="Years", ylab="Survival") dummy2 <- data.frame(age=c(50, 60), sex=1:2, wt.loss=5, inst=c(6,11)) csurv3 <- survfit(cfit2, newdata=dummy2) dim(csurv3) @ The simplifying aspects of the Cox model that make is so useful are exactly those that should be verified, namely proportional hazards, additivity, linearity, and lack of any high leverage points. The first can be checked with the \code{cox.zph} function. <>= zp1 <- cox.zph(cfit1) zp1 plot(zp1[2], resid=FALSE) abline(coef(fit1)[2] ,0, lty=3) @ None of the test statistics for PH are remarkable. A simple check for linearity of age is to replace the term with a smoothing spline. <>= cfit3 <- coxph(Surv(time, status) ~ pspline(age) + sex + wt.loss, lung) print(cfit3, digits=2) termplot(cfit3, term=1, se=TRUE) cfit4 <- update(cfit1, . ~ . + age*sex) anova(cfit1, cfit4) @ The age effect appears reasonbly linear. Additivity can be examined by adding and age by sex interaction, and again is not remarkable. \section{Repeating Events} Children with chronic granulotomous disease (CGD) are subject to repeated infections due to a compromised immune system. The \code{cgd0} data set contains results of a clinical trial of gamma interferon as a treatment, the data set \code{cdg} contains the data reformatted into a (tstart, tstop, status) form: each child can have multiple rows which describe an interval of time, and status=1 if that interval ends with an infection and 0 otherwise. A model with a single baseline hazard, known as the Andersen-Gill model, can be fit very simply. The study recruited subjects from four types of institutions, and there is an a priori belief that the four classes might recruit a different type of subject. Adding the hospital category as a strata allows each group to have a different shape of baseline hazard. <>= cfit1 <- coxph(Surv(tstart, tstop, status) ~ treat + inherit + steroids + age + strata(hos.cat), data=cgd) print(cfit1, digits=2) @ Further examination shows that the fit is problematic in that only 3 of 128 children have \code{steroids ==1}, so we refit without that variable. <>= cfit2 <- coxph(Surv(tstart, tstop, status) ~ treat + inherit+ age + strata(hos.cat), data=cgd) print(cfit2, digits=2) @ Predicted survival and/or cumulative hazard curves can then be obtained from the fitted model. Prediction requires the user to specifiy \emph{who} to predict; in this case we will use 4 hypothetical subjects on control/interferon treatment, at ages 7 and 20 (near the quantiles). This creates a data frame with 4 rows. <>= dummy <- expand.grid(age=c(6,12), inherit='X-linked', treat=levels(cgd$treat)) dummy csurv <- survfit(cfit2, newdata=dummy) dim(csurv) plot(csurv[1,], fun="event", col=1:2, lty=c(1,1,2,2), xlab="Days on study", ylab="Pr( any infection )") @ The resulting object was subscripted in order to make a plot with fewer curves, i.e., predictions for the first level of \code{hosp.cat}. We see that treatment is effective but the effect of age is small. Perhaps more interesting in this situation is the expected number of infections, rather than the probability of having at least 1. The former is estimated by the cumulative hazard, which is also returned by the \code{survfit} routine. <>= plot(csurv[1,], cumhaz=TRUE, col=1:2, lty=c(1,1,2,2), lwd=2, xlab="Days on study", ylab="E( number of infections )") legend(20, 1.5, c("Age 6, control", "Age 12, control", "Age 6, gamma interferon", "Age 12, gamma interferon"), lty=c(2,2,1,1), col=c(1,2,1,2), lwd=2, bty='n') @ \section{Competing risks} Our third category is models where there is more than one event type, but each subject can have only one transition. This is the setup of competing risks. \subsection{MGUS} As an simple multi-state example consider the monoclonal gammopathy data set \code{mgus2}, which contains the time to a plasma cell malignancy (PCM), usually multiple myleoma, and the time to death for 1384 subjects found to have a condition known as monoclonal gammopathy of undetermined significance (MGUS), based on a particular test. This data set has already appeared in \ref{mgusplot}. The time values in the data set are from detection of the condition. Here are a subset of the observations along with a simple state figure for the data. <>= mgus2[56:59,] sname <- c("MGUS", "Malignancy", "Death") smat <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3, 3, dimnames = list(sname, sname)) statefig(c(1,2), smat) @ In this data set subject 56 was diagnosed with a PCM 29 months after detection of MGUS and died at 44 months. This subject passes through all three states. The other three listed individuals died without a plasma cell malignancy and traverse one of the arrows; 103 subjects (not shown) are censored before experiencing either event and spend their entire tenure in the leftmost state. The competing risks model will ignore the transition from malignacy to death: the two ending states are ``malignancy before death'' and ``death without malignancy''. The \code{statefig} function is designed to create simple state diagrams, with an emphasis on ease rather than elegance. See more information in section \ref{sect:statefig}. For competing risks each subject has at most one transition, so the data set only needs one row per subject. <>= crdata <- mgus2 crdata$etime <- pmin(crdata$ptime, crdata$futime) crdata$event <- ifelse(crdata$pstat==1, 1, 2*crdata$death) crdata$event <- factor(crdata$event, 0:2, c("censor", "PCM", "death")) quantile(crdata$age, na.rm=TRUE) table(crdata$sex) quantile(crdata$mspike, na.rm=TRUE) cfit <- coxph(Surv(etime, event) ~ I(age/10) + sex + mspike, id = id, crdata) print(cfit, digits=1) # narrow the printout a bit @ The effect of age and sex on non-PCM mortality is profound, which is not a surprise given the median starting age of \Sexpr{median(mgus2$age)}. %$ Death rates rise \Sexpr{round(exp(10*coef(cfit)[4]),1)} fold per decade of age and the death rate for males is \Sexpr{round(exp(coef(cfit)[5]),1)} times as great as that for females. The size of the serum monoclonal spike has almost no impact on non-PCM mortality. A 1 unit increase changes mortality by only 2\%. The mspike size has a major impact on progression, however; each 1 gram change increases risk by \Sexpr{round(exp(coef(cfit)[3]) ,1)} fold. The interquartile range of \code{mspike} is 0.9 grams so this risk increase is clinically important. The effect of age on the progression rate is much less pronounced, with a coefficient only 1/4 that for mortality, while the effect of sex on progression is completely negligible. Estimates of the probability in state can be simply computed using \code{survfit}. As with any model, estimates are always for a particular set of covariates. We will use 4 hypothetical subjects, male and female with ages of 60 and 80. <>= dummy <- expand.grid(sex=c("F", "M"), age=c(60, 80), mspike=1.2) csurv <- survfit(cfit, newdata=dummy) plot(csurv[,,2], xmax=20*12, xscale=12, xlab="Years after MGUS diagnosis", ylab="Pr(has entered PCM state)", col=1:2, lty=c(1,1,2,2), lwd=2) legend(100, .04, outer(c("female,", "male, "), c("diagnosis at age 60", "diagnosis at age 80"), paste), col=1:2, lty=c(1,1,2,2), bty='n', lwd=2) @ Although sex has no effect on the \emph{rate} of plasma cell malignancy, its effect on the \emph{lifetime probability} of PCM is not zero, however. As shown by the simple Poisson model below, the rate of PCM is about 1\% per year. Other work reveals that said rate is almost constant over follow-up time (not shown). Because women in the study have an average lifetime that is 2 years longer than men, their lifetime risk of PCM is higher as well. Very few subjects acquire PCM more than 15 years after a MGUS diagnosis at age 80 for the obvious reason that very few of them will still be alive. <>= mpfit <- glm(pstat ~ sex -1 + offset(log(ptime)), data=mgus2, poisson) exp(coef(mpfit)) * 12 # rate per year @ A single outcome fit using only time to progression is instructive: we obtain exactly the same coefficients but different absolute risks. This is a basic property of multi-state models: hazards can be explored separately for each transition, but absolute risk must be computed globally. (The estimated cumulative hazards from the two models are also identical). The incorrect curve is a vain attempt to estimate the progression rate which would occur if death could be abolished. It not surprisingly ends up as about 1\% per year. <>= sfit <- coxph(Surv(etime, event=="PCM") ~ I(age/10) + sex + mspike, crdata) rbind(single = coef(sfit), multi = coef(cfit)[1:3]) #par(mfrow=c(1,2)) ssurv <- survfit(sfit, newdata=dummy) plot(ssurv[3:4], col=1:2, lty=2, xscale=12, xmax=12*20, lwd=2, fun="event", xlab="Years from diagnosis", ylab= "Pr(has entered PCM state)") lines(csurv[3:4, 2], col=1:2, lty=1, lwd=2) legend(20, .22, outer(c("80 year old male,", "80 year old female,"), c("incorrect", "correct"), paste), col=1:2, lty=c(2,2,1,1), lwd=2, bty='n') @ \section{Multiple event types and multiple events per subject} Non-alcoholic fatty liver disease (NAFLD) is defined by three criteria: presence of greater than 5\% fat in the liver (steatosis), absence of other indications for the steatosis such as excessive alcohol consumption or certain medications, and absence of other liver disease \cite{Puri12}. NAFLD is currently responsible for almost 1/3 of liver transplants and it's impact is growing, it is expected to be a major driver of hepatology practice in the coming decade \cite{Tapper18}. The \code{nafld} data set includes all patients with a NAFLD diagnosis in Olmsted County, Minnesota between 1997 to 2014 along with up to four age and sex matched controls for each case \cite{Allen18}. We will model the onset of three important components of the metabolic syndrome: diabetes, hypertension, and dyslipidemia, using the model shown below. Subjects have either 0, 1, 2, or all 3 of these metabolic comorbidities. <>= state5 <- c("0MC", "1MC", "2MC", "3MC", "death") tmat <- matrix(0L, 5, 5, dimnames=list(state5, state5)) tmat[1,2] <- tmat[2,3] <- tmat[3,4] <- 1 tmat[-5,5] <- 1 statefig(rbind(4,1), tmat) @ \subsection{Data} The NAFLD data is represented as 3 data sets, \code{nafld1} has one observation per subject containing basline information (age, sex, etc.), nafld2 has information on repeated laboratory tests, e.g. blood pressure, and nafld3 has information on yes/no endpoints. Because NAFLD is often a disease of exclusion, a NAFLD diagnosis followed shortly by the diagnosis of another liver disease is considered a false positive. For this study we only consider ``confirmed'' NAFLD, i.e., if someone were diagnosed on 2001-06-20, the index date for confirmed NAFLD would be 2002-06-20, assuming that another liver diagnosis, death, or incomplete follow-up did not intervene. Control subjects are matched on age and sex, and for each their follow-up also commences on the ``confirmed NAFLD'' date. After the case-control set was assembled, we removed any subjects with less than 7 days of follow-up. These subjects add little information, and it prevents a particular confusion that can occur with a multi-day medical visit where two results from the same encounter have different dates. To protect patient confidentiality all time intervals are in days since the index date; none of the dates from the original data were retained. Subject age is their integer age at the index date, and the subject identifier is an arbitrary integer. As a final protection, only a 90\% random sample of the data was retained. As a consequence analyses results will not exactly match the original paper. Start by building an analysis data set using the first and third of these. <>= ndata <- tmerge(nafld1[,1:8], nafld1, id=id, death= event(futime, status)) ndata <- tmerge(ndata, subset(nafld3, event=="nafld"), id, nafld= tdc(days)) ndata <- tmerge(ndata, subset(nafld3, event=="diabetes"), id = id, diabetes = tdc(days), e1= event(days)) ndata <- tmerge(ndata, subset(nafld3, event=="htn"), id = id, htn = tdc(days), e2 = event(days)) ndata <- tmerge(ndata, subset(nafld3, event=="dyslipidemia"), id=id, lipid = tdc(days), e3= event(days)) attr(ndata, "tcount") @ <>= tc <- attr(ndata, 'tcount') # shorter name for use in Sexpr below icount <- table(table(nafld3$id)) #number with 1, 2, ... intervals ncount <- sum(nafld3$event=="nafld") @ The \code{tcount} attribute tells us a lot about the creation process. Each addition of a new endpoint or covariate to the data generates one row in the table. Column labels are explained by figure \ref{fig:timeline}. \begin{itemize} \item There are \Sexpr{tc[1,7]} last fu/death additions, which by definition fall at the trailing end of a subject's observation interval: they define the interval. \item There are \Sexpr{tc[2,2]} nafld splits that fall after the end of follow-up (`late'). These are subjects whose first NAFLD fell within a year of the end of their time line, and the one year delay for ``confirmed'' pushed them over the end. (The time value in the \code{nafld3} data set is 1 year after the actual notice of NAFLD; no other observations have this offset added). The time dependent covariate \code{nafld} never turns from 0 to 1 for these subjects. (Why were these subject not removed earlier by my ``at least 7 days of follow-up rule? They are all controls for someone else and so appear in the data at a younger age than their NAFLD date.) \item \Sexpr{tc[3,1]} of the diabetes diagnoses are before entry, i.e., these are the prevalent cases. One diagnosis occurred on the day of entry (``leading''), and will not be counted as a post-enrollment endpoint, all the other fall somewhere between study entry and last follow-up. \item Conversely, \Sexpr{tc[5,7]} subjects were diagnosed with hypertension at their final visit (``trailing''). These will be counted as an occurrence of a hypertension event (\code{e2}), but the time dependent covariate \code{htn} will never become 1. \end{itemize} Such a detailed look at data set construction may seem overmuch. Our experience is that issues with covariate and event timing occur in nearly all data sets, large or small. The 13 NAFLD cases ``after last follow-up'' were for instance both a surprise and a puzzle to us; but we have learned through experience that it is best not to proceed until such puzzles are understood. (This particular one was benign.) If, for instance, some condition is noted at autopsy, do we want the related time dependent covariate to change before or after the death event? Some sort of decision has to be made, and it is better to look and understand than to blindly accept some programming default. \subsection{Fits} Create the covariates for current state and the analysis endpoint. <>= ndata$cstate <- with(ndata, diabetes + htn + lipid) temp <- with(ndata, e1 + e2 + e3) temp2 <- with(ndata, ifelse(death, 4, ifelse(temp ==0, 0, cstate + temp))) ndata$event <- factor(temp2, 0:4, c("censored", "1mc", "2mc", "3mc", "death")) ndata$cstate <- factor(ndata$cstate, 0:3, c("0mc", "1mc", "2mc", "3mc")) ndata$age1 <- ndata$age + ndata$tstart/365.25 # analysis on age scale ndata$age2 <- ndata$age + ndata$tstop/365.25 temp3 <- survcheck(Surv(age1, age2, event) ~ nafld, data=ndata, id=id, istate=cstate) temp3 @ This is a rich data set with a large number of transitions: over 1/4 have at least one event, and there are a few subjects who transition through all 5 possible states (4 transitions). Unlike prior examples, subjects do not all enter the study in the same state; about 14\% have diabetes at the time of recruitment, for instance. Note one major difference between current state and outcome, namely that the first is a time-dependent variable. If a piece of a subject's time were divided into multiple sub-intervals, time dependent covariates repeat in each interval. An endpoint, however, does not repeat. We see a number of subjects who ``jump'' states, e.g., directly from 0 to 2 comorbidities. This serves to remind us that this is actually a model of time until \emph{detected} comorbidity; which will often have such jumps even if the underlying biology is continuous. The data look like the figure below. <>= @ states <- c("No comorbidity", "1 comorbidity", "2 comorbidities", "3 comorbitities", "Death") cmat <- matrix(0, 5,5) cmat[,5] <- 1 cmat[1,2] <- cmat[2,3] <- cmat[3,4] <- 1 cmat[1,3] <- cmat[2,4] <- 1.6 cmat[1,4] <- 1.6 dimnames(cmat) <- list(states, states) statefig(cbind(4,1), cmat) @ Since age is the dominant driver of the transitions we have chosen to do the fits directly on age scale rather than model the age effect. We force common coefficients for the transitions from 0 comorbidities to 1, 2 or 3, and for transitions from 1 comorbidity to 2 or 3. This is essentially a model of ``any progression'' from a given state. We also force the effect of male sex to be the same for any transition to death. <>= nfit1 <- coxph(list(Surv(age1, age2, event) ~ nafld + male, "0mc":state("1mc", "2mc", "3mc") ~ nafld+ male / common, 2:3 + 2:4 ~ nafld + male / common, 0: "death" ~ male / common), data=ndata, id=id, istate=cstate) nfit1$states round(coef(nfit1), 3) nfit1$cmap @ A list has been used as the formula for the \code{coxph} call. The first element is a standard formula, and will be the default for all of the transitions found in the model. Elements 2--4 of the list are pseudo formulas, which specify a set of states on the left and covariates on the right, along with the optional modifier \code{/common}. As shown, there are multiple ways to specify a set of transitions either by name or by number, the value 0 is shorthand for ``any state''. A '1' on the right-hand side can be used to force a common baseline hazard for two transitions. A common baseline for two transitions that originate from the same state is incompatable with the Cox partial likelihood, however, and will lead to multiple un-estimable coefficients. Here are two forms of the printout. We limit the number of digits to better fit on this document page. <>= options(show.signif.stars = FALSE) # display statistical maturity print(summary(nfit1, digits =3)) print(nfit1, digits =3) @ It is interesting, though not surprising, that the impact of NAFLD on death is largest for those with 0mc and smallest for those with 3mc. \section{Testing proportional hazards} The usual Cox model with $p$ covariates has the form \begin{align*} \lambda(t) &= \lambda_0(t) e^{\beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p} \\ &= e^{\beta_0(t) + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p} \end{align*} A key simplifying assumption of the model is that all of the coefficients except $\beta_0$ (the baseline hazard) are constant over time, which is referred to as the \emph{proportional hazards} assumption. Numerous approaches to verifying or testing this assumption have been proposed, of which the three most enduring have been the addition of an additional constructed covariate, score tests, and tests based on cumulative martingale sums. Each of these is normally applied to one covariate at a time. \subsection{Constructed variables} For the constructed variable approach, assume that the true form of the model for variable $x_1$ is $\beta_1(t) x_1$, with the coefficient having the simple linear form $\beta_1(t) = a + bt$. Then \begin{align} \beta_1(t)x_1 &= ax_1 + b(x_1t) \nonumber \\ & = ax_1 + b z \label{ph1} \end{align} that is, we can create a special time-dependent covariate $z = x_1t$, add add it to the data set, and then use an ordinary \code{coxph} fit. Consider the veterans lung cancer data set, which has often been used to illustrate non-proportional hazards. Adding this special covariate is not quite as simple as writing <>= fit2 <- coxph(Surv(time, status) ~ trt + trt*time + celltype + karno, data = veteran) @ The problem is that \code{time} is trying to play two roles in the above equation, the \emph{final} follow-up time for each subject and the \emph{continuous} time scale $t$ of equation \eqref{ph1}. The solution to to create the special variable explicitly before calling the regression function. Since the Cox model adds a term to the likelihood at each unique death time, it is sufficient to create a data set with the same granularity. <>= dtime <- unique(veteran$time[veteran$status==1]) # unique times newdata <- survSplit(Surv(time, status) ~ trt + celltype + karno, data=veteran, cut=dtime) nrow(veteran) nrow(newdata) fit0 <- coxph(Surv(time, status) ~ trt + celltype + karno, veteran) fit1 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno, data=newdata) fit2 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno + time:karno, newdata) fit2 fit2b <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno + rank(time):karno, newdata) @ The fits give a warning message about the use of the \code{time} variable on both sides of the equation, since two common cases where time appears on both sides are the naive model shown further above and frank typing mistakes. In this particular case we can ignore the warning since the data set was carefully constructed for this special purpose, but it should never be treated casually. Alternatively, \code{coxph} has built-in functionality that will build the expanded data set for us, behind the scenes, and then use that expanded data for the fit. Here is eqivalent code to test the Karnofsky variable: <>= fit2 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno + tt(karno), data =newdata, tt = function(x, t,...) x*t) @ There are 4 issues with the constructed variable approach. \begin{enumerate} \item The choice $\beta(t) \approx a + bt$ was arbitrary. Perhaps the true form is $a + b\log(t)$ (fit2b above), or some other function. \item The intermediate data set can become huge. It will be of order $O(nd)$ where $d$ is the number of unique event times, and $d$ grows along with $n$. \item The coefficients for a factor variable such as celltype can be confusing, since the results depend on how the 0/1 indicators for the variable are chosen. \item Outliers in time are an issue. The veteran cancer data set, for instance, contains a time of 999 days (a particularly suspicious value in any data set). The Cox model itself depends only on the rank order of the event times, so such outliers are not an issue for the base model, but as a covariate these values can have undue influence. The time-dependent coeffient for Karnofsky has $p<.01$ in fit2b above, which uses rank(time), a change that is largely due to dampening the leverage of outliers. \end{enumerate} \subsection{Score tests} The \code{cox.zph} function checks proportional hazards for a fitted Cox model directly, and tries to address the four issues discussed above. \begin{itemize} \item It is easy to specify alternate time transforms such as x*log(t). More importantly, the code produces both a diagnostic plot that suggests the shape of any non-proportionality, along with a test of the chosen time-transform. \item The test statistic is based on a score test, which does not require creating the expanded data set. \item Multi-covariate terms such as a factor or splines are by default treated as a single effect. \item The default time transform is designed to minimize outliers in time. \end{itemize} Shown below are results for the veterans data using \code{fit0} from above. The score statistic for the simple term x*time (\code{zp1}) closely matches the Wald test for the full time dependent fit found in \code{fit2} above, which is what we would expect; score, Wald and likelihood ratio tests usually agree quite closely for Cox models. <>= zp0 <- cox.zph(fit0, transform='identity') zp0 zp1 <- cox.zph(fit0, transform='log') zp1 oldpar <- par(mfrow=c(2,2)) for (i in 1:3) {plot(zp1[i]); abline(0,0, lty=3)} plot(zp0[3]) par(oldpar) @ A test for zero slope, from a least squares regression using data in the matching plot approximates the score test. (In versions of the package prior to survival3.0, the approximate test was used for the formal printout and test as well.) If proporitional hazard holds we would expect the fitted line to be horizontal, i.e., $\beta(t)$ is constant. Rather than show a fitted line the plot adds a general smooth curve, which can help reveal the \emph{form} of non-proportional hazards, if it exists. The first three panels of the plot show curves for the three covariates on a log(time) scale. Since \code{celltype} is a factor, the plot shows the time dependent effect of the portion of the linear predictor associated with cell type; if proportional hazards is true wrt that term a fitted line should be horizontal with a coefficient of 1. The effect of Karnofsky score appears become essentially 0 after approximately 6 months; for this cohort of subjects with advanced lung cancer, a 6 month old assessment is no longer relevant. The corresponding plot in the lower right panel, however, shows that the outlier time of 999 days has an undue influence on any such regression. A test of proportional hazards on that scale must also be treated with caution. The plot using log scale lacks these outliers and is more interpretable. The default time transform is based on a Kaplan-Meier transform, i.e., that monotone transform of the time axis that will cause the KM plot to be a straight line. This is a good default for the score tests, since it essentially guarrantees that there wil be no outliers in the constructed $x g(time)$, while dealing with censoring in a defensible way. That is, the code has opted for a \emph{safe} default. It is not as easily interpreted as other scales for the plots, however. The \code{cox.zph} function does not attempt a score test for random effects (frailty) terms, in fact is not clear what the computation for such a test should be. The function will check other covariates in a model that contains a random effect, however; the estimated random effect per subject is essentially treated as a fixed offset. \chapter{Accelerated Failure Time models} \label{chap:aft} \chapter{Tied event times} \label{chap:tied} \section{Cox model estimates} The theory for the Cox model has always been worked out for the case of continuous time, which implies that there will be no tied event or censoring times in the data set. With respect to censoring times, all of the survival library commands treat censoring as occuring ``just after'' the recorded time point. The rationale is that if a subject was last observed alive on day 231, say, then their death time, whatever it is, must be strictly greater than 231. For formally, a subject who was censored at time $t$ is considered to have been at risk for any events that occured at time $t$. The issue with tied event times is more complex, and the software supports three different algorithms for dealing with this. The Cox partial likelihood is a sum of terms, one for each event time, each of which compares the subject who had the event to the set of subjects who ``could have had the event": the \emph{risk set}. The overall view is essentially a lottery model: at each event time there was a drawing to select one subject for the event, the risk score for each subject $\exp(X_i\beta)$ tells how many ``tickets'' each subject had in the drawing. The software implements three different algorithms for dealing with tie event times. The Breslow approximation (\code{ties='breslow'}) in essence ignores the ties. If two subjects A and B died on day 100, say, the partial likelihood will have separate terms for the two deaths. Subject A will be at risk for the death that happened to B, and B will be at risk for the death that happened to A. In life this is not technically possible of course: whoever died first will not be at risk for the second death. The Efron approximation can be motivated by the idea of \emph{coarsening}: time is on a continuous scale but we only observe a less precise version of it. For example consider the acute myelogenous leukemia data set that is part of the package, which was a clinical trial to test if extendend chemotherapy (``Maintained'') was superior to standard. The time to failure was recorded in months, and in the non-maintained arm there are two pairs of failures, at 5 and at 8 months. It might be reasonable to assume that if the data had been recored in days these ties might not have occured. <<>>= with(subset(aml, x=="Nonmaintained"), Surv(time, status)) @ Let the risk scores $\exp(X\beta)$ for the 12 subjects be $r_1$--$r_{12}$, and assume that the two failures actually at month 5 are not tied on a finer time scale. For the first event, whichever it is, the risk set with be all subjects 1--12 and the denominator of the partial likelihood term is $\sum r_i$. For the second event, the denominator is either $r_1 + r_3 + \ldots r_{12}$ or $r_2 + r_3 + \ldots r_{12}$; the Efron approximation is to use the average of the two as the denominator term. In the software this is easily done by using temporary case weights: if there were $k$ tied events then one of the denomiators gives each of those $k$ subjects a weight of 1, then next gives each a weight of $(k-1)/k$, then next a weight of $(k-2)/k$, etc. The Efron approximation imposes a tiny bit more bookkeeping, but the the computational burden is no different that for case weights; i.e., it effectively takes no more computational time than the Breslow approximation. The third possiblility is the exact partial likelihood due to Cox, which treats the underlying time scale as discrete rather than continuous. When taking this view the denominator of the partial likelihood term is again an average, but over a much larger subset. If there are $k$ events and $n$ subjects at risk, the EPL sum is over all $k$ choose $n$ possible choices. In the AML example above, the event at time 5 will be a sum over 12(11)/2= 33 terms. If the number of ties is large this quickly grows unreasonable: for 20 ties out of 1000 the sum has over 39 billion terms. A clever algorithm by Gail makes this sum barely possible, but it does not extend to the case of (tstart, tstop) style data. An important aside is that the log-likelihood for matched logistic regression is identical to the Cox partial likelihood for a particular data set, when the EPL is used. Namely, set time=1 (or any other constant), status = 0 for controls and 1 for cases, and fit a coxph model with each matched set as a separate stratum. In most instances a matched set will consist of a single case along with one or more controls, however, which is the case where the Breslow, Efron, and EPL are identical. (The EPL will still take slightly longer to run due to setting up the necessary structure for all those sums.) How important are the ties, actually? Below we show a small computation in which a larger data set is successively coarsened and compare the results. The colon cancer data set has 929 subjects with stage B/C colon cancer who were randomized to three treatment arms and then followed for 5 years; the time to death or progression is in days. In the example below we successively coarsen the time scale to be monthly, bimonthly, \ldots, bi-annual; the last of which generates an very large number of ties. What we see is that \begin{itemize} \item The Efron approximation is quite good at dealing with the coarsened data, producing nearly the same coefficient as the original data even when the coarsening is extreme. \item The Breslow approximation is biased somewhat towards 0, the exact paritial likelihood somewhat away from 0. \item The differences are very small. With monthly coarsening, which is itself fairly large, the 3 estimates differ by about .01 while the standard error of the original coefficient is 0.96; i.e. a shift that is statistically immaterial. \end{itemize} <>= tdata <- subset(colon, etype==1) # progression or death cmat <- matrix(0, 7, 6) for( i in 1:7) { if (i==1) scale <-1 else scale <- (i-1)*365/12 temp <- floor(tdata$time/scale) tfit <- coxph(Surv(temp, status) ~ node4 + extent, tdata) tfit2 <- coxph(Surv(temp, status) ~ node4 + extent, tdata, ties='breslow') tfit3 <- coxph(Surv(temp, status) ~ node4 + extent, tdata, ties='exact') cmat[i,] <- c(coef(tfit2), coef(tfit), coef(tfit3)) } matplot(1:7, cmat[,c(1,3,5)], xaxt='n', pch='bec', xlab="Time divisor", ylab="Coefficient for node4") axis(1, 1:7, c(1, floor(1:6 *365/12))) @ Early on in the package the decision was made to make the Efron approximation the default. The reasoning was simply that is \emph{is} more accurate, even if only a little, and the author's early background in numerical analysis argued strongly to always use the best approximation available. The second reason is that the computational cost is low. Most of us would pick up a 1 Euro coin on the sidewalk, even though it will not make any real change in our income. One downside is that no other package did this, leading to a very common complaint/question that R ``gives different results''. A second is that it leads to further downstream programming as discussed in following sections. \section{Cumulative hazard and survival} The coarsening argument can also be applied to the cumulative hazard $\Lambda(t)$. Say that there were 3 deaths with 10 subjects at risk. The increment to the Nelson-Aalen cumulative hazard estimate would then be 3/10. If the data had been observed in continuous time, however, there would have been 3 increments of 1/10 + 1/9 + 1/8. This estimate was explored by Fleming and Harrington \cite{Fleming84}. In the \code{survfit} function the \code{ctype} option selects for 1=Nelson-Aalen and 2= Fleming-Harrington. The Kaplan-Meier estimate is not subject to the coarsening phenominon. In our example, the observed data will lead to a multipilicative increment of 7/10 and the continuous data to one of (9/10)(8/9)(7/8), which are the same. An alternate estimate of the survival is $S(t) = \exp(-\Lambda(t))$. Basing this on the FH estimate of hazard will more closely track the KM when there are tied event times. The direct (KM) vs. exponential estimates of survival are obtained with the \code{ctype=1} and \code{ctype=2} arguments; however, the exponential estimate is quite uncommon outside of the Cox model. \section{Predicted cumulative hazard and surival from a Cox model} Predictions from a coxph model must always be for \emph{someone}, i.e., some particular set of covariate values. Let $r_i = \exp(X_i\hat\beta -c)$ be the recentered risk scores for each subject $i$, where the recentering constant $c = X_n\hat\beta$, $X_n$ being the covariates of the ``new'' subject for which prediction is desired. (We don't want to create a prediction for a baseline subject with X=0, what textbooks often call a ``baseline hazard'', since if 0 is too far from the center of the data the exp function can easily overflow.) The estimated cumulative hazard at any event time is then \begin{equation} \Lhat(t) = \int_0^t \frac{\sum_i dN_i(t)}{\sum_i Y_i(t) r_i} \label{haz:breslow} \end{equation} Equation \eqref{haz:breslow} is known as the Breslow estimate; if $\hat\beta=0$ then $r_i=1$ and it becomes equal to the Nelson-Aalen estimator. If the Efron estimate is used for ties, then the software uses an Efron estimate of the cumulative hazard; which reduces to the Fleming-Harrington if $\hat\beta =0$. Using the hazard estimate that matches the parial likelihood estimate causes an important property of the vector of martingale residuals $m$ to hold, namely that $mX$ is equal to the first derivative of the partial likelihood. residuals hold for both The Cox model is a case where the default estimate of survival is based on the exponent of the cumulative hazard, rather than a 'direct' one such as the Kaplan-Meier. There are three reasons for this. \begin{enumerate} \item The most obvious 'direct' estimate is to use $(\sum dN_i(t) -\sum Y_i(t)r_i)/ (\sum Y_i(t)r_i)$ as a multiplicative update at each event time $t$. This expression in not guarranteed to be between 0 and 1, however, particular for new subjects who are near or past the boundaries of the original data set. This leads to using some sort of ad hoc correction to avoid failure. \item The direct estimate of Kalbfleisch and Prentice avoids this, but it does not extend to delayed entry, multi-state models or other extensions of the basic model. \item The KP estimate reqires iteration so the code is more complex. \end{enumerate} \section{Multi-state models} Multi-state hazards models have a very interesting (and useful) property, which is that hazards can be estimated singly (without reference to any other transition) but probability-in-state estimators must be computed globally. Thus, one can estimate non-parametric cumulative hazard estimates (Nelson-Aalen), the hazard ratios for any given transtion (Cox model) or the predicted cumulative hazard function based on a per transition Cox model without incurring any issues with respect to competing risks. (If there is informative censoring the overall and individual estimates still agree, but they will both be wrong. An example of informative censoring would be subjects who are removed from the data because of an impending event, e.g., censoring subjects who enter hospice care would underestimate death rates.) Now say that we had a simple competing risks problem, 10 subjects are alive and in the initial state on day 100, at which time two of them transition to two different endpoints. A coarsening argument would say that on the underlying continuous time scale these two subjects would not be tied, and then would use 9.5 as the denominator for each of the two cumulative hazard increments. Such an estimate would however then be at variance with the two indiviually computed hazards: global coarsening removes the separability. The survival package takes a moderated view and will apply the coarsening argument separately to each hazard, i.e., it chose to retain the separation policy. \section{Parametric Regression} \subsection{Usage} The \co{survreg} function implements the class of parametric accelerated failure time models. Assume that the survival time $y$ satisfies $\log(y) = X'\beta + \sigma W$, for $W$ from some given distribution. Then if $\Lambda_w(t)$ is the cumulative hazard function for $W$, the cumulative hazard function for subject $i$ is $\Lambda_w[\exp(-\eta_i/\sigma)t]$, that is, the time scale for the subject is accelerated by a constant factor. A good description of the models is found in chapter 3 of Kalbfleisch and Prentice \cite{Kalbfleisch80}. The following fits a Weibull model to the lung cancer data set included in the package. \begin{verbatim} > fit <- survreg(Surv(time, status) {\twiddle} age + sex + ph.karno, data=lung, dist='weibull') > fit Call: survreg(formula = Surv(time, status) {\twiddle} age + sex + ph.karno, data = lung, dist = "weibull") Coefficients: (Intercept) age sex ph.karno 5.326344 -0.008910282 0.3701786 0.009263843 Scale= 0.7551354 Loglik(model)= -1138.7 Loglik(intercept only)= -1147.5 Chisq= 17.59 on 3 degrees of freedom, p= 0.00053 n=227 (1 observations deleted due to missing) \end{verbatim} The code for the routines has undergone substantial revision between releases 4 and 5 of the code. Calls to the older version are not compatable with all of the changes, users can use the \code{survreg.old} function if desired, which retains the old argument style (but uses the newer maximization code). Major additions included penalzed models, strata, user specified distributions, and more stable maximization code. \subsection{Strata} In a Cox model the \code{strata} statement is used to allow separate baseline hazards for subgroups of the data, while retaining common coefficients for the other covariates across groups. For parametric models, the statement allows for a separate scale parameter for each subgroup, but again keeping the other coefficients common across groups. For instance, assume that separate ``baseline'' hazards were desired for males and females in the lung cancer data set. If we think of the intercept and scale as the baseline shape, then an appropriate model is \begin{verbatim} > sfit <- survreg(Surv(time, status) ~ sex + age + ph.karno + strata(sex), data=lung) > sfit Coefficients: (Intercept) sex age ph.karno 5.059089 0.3566277 -0.006808082 0.01094966 Scale: sex=1 sex=2 0.8165161 0.6222807 Loglik(model)= -1136.7 Loglik(intercept only)= -1146.2 Chisq= 18.95 on 3 degrees of freedom, p= 0.00028 \end{verbatim} The intercept only model used for the likelihood ratio test has 3 degrees of freedom, corresponding to the intercept and two scales, as compared to the 6 degrees of freedom for the full model. This is quite different from the effect of the \code{strata} statement in \code{censorReg}; there it acts as a `by' statement and causes a totally separate model to be fit to each gender. The same fit (but not as nice a printout) can be obtained from \code{survreg} by adding an explicit interaction to the formula: \begin{verbatim} Surv(time,status) ~ sex + (age + ph.karno)*strata(sex) \end{verbatim} \subsection{Penalized models} Let the linear predictor for a \code{survreg} model be $\eta = X\beta + Z\omega$, and consider maximizing the penalized log-likelihood $$ PLL = LL(y; \beta, \omega) - p(\omega; \theta)\,, $$ where $\beta$ and $\omega$ are the unconstrained effects, respectively, $X$ and $Z$ are the covariates, $p$ is a function that penalizes certain choices for $\omega$, and $\theta$ is a vector of tuning parameters. For instance, ridge regression is based on the penalty $p = \theta \sum \omega_j^2$; it shrinks coefficients towards zero. The penalty functions in \code{survreg} currently use the same code as those for \code{coxph}. This works well in the case of ridge and pspline, but frailty terms are more problematic in that the code to automatically choose the tuning parameter for the random effect no longer solves an MLE equation. More work on understanding these models is needed. \subsection{Specifying a distribution} The fitting routine is quite general, and can accept any distribution that spans the real line for $W$, and any monotone transformation of $y$. The standard set of distributions is contained in a list \code{survreg.distributions}. Elements of the list are of two types. Basic elements are a description of a distribution. Here is the entry for the logistic family: \begin{verbatim} logistic = list( name = "Logistic", variance = function(parm) pi^2/3, init = function(x, weights, ...) \{ mean <- sum(x*weights)/ sum(weights) var <- sum(weights*(x-mean)^2)/ sum(weights) c(mean, var/3.2) \}, deviance= function(y, scale, parms) \{ status <- y[,ncol(y)] width <- ifelse(status==3,(y[,2] - y[,1])/scale, 0) center <- y[,1] - width/2 temp2 <- ifelse(status==3, exp(width/2), 2) #avoid a log(0) message temp3 <- log((temp2-1)/(temp2+1)) best <- ifelse(status==1, -log(4*scale), ifelse(status==3, temp3, 0)) list(center=center, loglik=best) \}, density = function(x, ...) \{ w <- exp(x) cbind(w/(1+w), 1/(1+w), w/(1+w)^2, (1-w)/(1+w), (w*(w-4) +1)/(1+w)^2) \}, quantile = function(p, ...) log(p/(1-p)) ) \end{verbatim} \begin{itemize} \item Name is used to label the printout. \item Variance contains the variance of the distribution. For distributions with an optional parameter such as the $t$-distribution, the \code{parm} argument will contain those parameters. \item Deviance gives a function to compute the deviance residuals. More on this is explained below in the mathematical details. \item The density function gives the necessary quantities to fit the distribution. It should return a matrix with columns $F(x)$, $1-F(x)$, $f(x)$, $f'(x)/f(x)$ and $f''(x)/f(x)$, where $f'$ and $f''$ are the first and second derivatives of the density function, respectively. \item The quantiles function returns quantiles, and is used for residuals. \end{itemize} The reason for returning both $F$ and $1-F$ in the density function is to avoid round off error when $F(x)$ is very close to 1. This is quite simple for symmetric distributions, in the Gaussian case for instance we use \code{qnorm(x)} and \code{qnorm(-x)} respectively. (In the intermediate steps of iteration very large deviates may be generated, and a probabilty value of zero will cause further problems.) Here is an example of the second type of entry: \begin{verbatim} exponential = list( name = "Exponential", dist = "extreme", scale =1 , trans = function(y) log(y), dtrans= function(y) 1/y , itrans= function(x) exp(x) ) \end{verbatim} This states that an exponential fit is computed by fitting an extreme value distribution to the log transformation of $y$. (The distribution pointed to must not itself be a pointer to another). The extreme value distribution is restricted to have a scale of 1. The first derivative of the transformation, \code{dtrans}, is used to adjust the final log-likelihood of the model back to the exponential's scale. The inverse transformation \code{itrans} is used to create predicted values on the original scale. The formal rules for an entry are that it must include a name, either the ``dist" component or the set ``variance",``init", ``deviance", ``density" and ``quantile", an optional scale, and either all or none of ``trans", ``dtrans" and ``itrans". The \code{dist="weibull"} argument to the \code{survreg} function chooses the appropriate list from the survreg.distributions object. User defined distributions of either type can be specified by supplying the appropriate list object rather than a character string. Distributions should, in general, be defined on the entire real line. If not the minimizer used is likely to fail, since it has no provision for range restrictions. Currently supported distributions are \begin{itemize} \item basic \begin{itemize} \item (least) Extreme value \item Gaussian \item Logistic \item $t$-distribution \end{itemize} \item transformations \begin{itemize} \item Exponential \item Weibull \item Log-normal ('lognormal' or 'loggaussian') \item Log-logistic ('loglogistic') \end{itemize} \end{itemize} % Residuals for parametric survival models % and predicted values \subsection{Residuals} \subsubsection{Response} The target return value is $y - \yhat$, but what should we use for $y$ when the observation is not exact? We will let $\yhat_0$ be the MLE for the location parameter $\mu$ over a data set with only the observation of interest, with $\sigma$ fixed at the solution to the problem as a whole, subject to the constraint that $\mu$ be consistent with the data. That is, for an observation right censored at $t=20$, we constain $\mu \ge 20$, similarly for left censoring, and constrain $\mu$ to lie within the two endpoints of an interval censored observation. To be consistent as the width of an interval censored observation goes to zero, this definition does require that the mode of the density lies at zero. For exact, left, and right censored observations $\yhat_0 =y$, so that this appears to be an ordinary response residual. For interval censored observations from a symmetric distribution, $\yhat_0 =$ the center of the censoring interval. The only unusual case, then, is for a non-symmetric distribution such as the extreme value. As shown later in the detailed information on distributions, for the extreme value distribution this occurs for $\yhat_0 = y^l - \log(b/[exp(b)-1])$, where $b = y^u - y^l$ is the length of the interval. \subsubsection{Deviance} Deviance residuals are response residuals, but transformed to the log-likelihood scale. $$ d_i = sign(r_i) \sqrt{LL(y_i, \yhat_0;\sigma) -LL(y_i,\eta_i; \sigma)}$$ The definition for $\yhat_0$ used for response residuals, however, could lead to the square root of a negative number for left or right censored observations, e.g., if the predicted value for a right censored observation is less than the censoring time for that observation. For these observations we let $\yhat_0$ be the \emph{unconstrained} maximum, which leads to $yhat_0 = -\infty$ and $+\infty$ for right and left censored observations, respectively, and a log-likelihood term of 0. The advantages of these residuals for plotting and outlier detection are nicely detailed in McCullagh and Nelder \cite{glim}. However, unlike GLM models, deviance residuals for interval censored data are not free of the scale parameter. This means that if there are interval censored data values and one fits two models A and B, say, that the sum of the squared deviance residuals for model A minus the sum for model B is \emph{not} equal to the difference in log-likelihoods. This is one reason that the current \code{survreg} function does not inherit from class \code{glm}: \code{glm} models use the deviance as the main summary statistic in the printout. \subsubsection{Dfbeta} The \code{dfbeta} residuals are a matrix with one row per subject and one column per parameter. The $i$th row gives the approximate change in the parameter vector due to observation $i$, i.e., the change in $\bhat$ when observation $i$ is added to a fit based on all observations but the $i$th. The \code{dfbetas} residuals scale each column of this matrix by the standard error of the respective parameter. \subsubsection{Working} As shown in section \ref{sect:irls} below, the Newton-Raphson iteration used to solve the model can be viewed as an iteratively reweighted least squares problem with a dependent variable of ``current prediction - correction''. The working residual is the correction term. \subsubsection{Likelihood displacement residuals} Escobar and Meeker \cite{Escobar92} define a matrix of likelihood displacement residuals for the accelerated failure time model. The full residual information is a square matrix $\ddot A$, with dimension the number of pertubations considered. Three examples are developed in detail, all with dimension $n$, the number of observations. Case weight pertubations measure the overall effect on the parameter vector of dropping a case. Let $V$ be the variance matrix of the model, and $L$ the $n$ by $p$ matrix with elements $\partial L_i/ \partial \beta_j$, where $L_i$ is the likelihood contribution of the $i$th observation. Then $\ddot A = LVL'$. The residuals function returns the diagonal values of the matrix. Note that $LV$ equals the \code{dfbeta} residuals. Response pertubations correspond to a change of 1 $\sigma$ unit in one of the response values. For a Gaussian linear model, the equivalent computation yields the diagonal elements of the hat matrix. Shape pertubations measure the effect of a change in the log of the scale parameter by 1 unit. The \code{matrix} residual type returns the raw values that can be used to compute these and other LD influence measures. The result is an $n$ by 6 matrix, containing columns for $$ L_i \quad \frac{\partial L_i}{\partial \eta_i} \quad \frac{\partial^2 L_i}{\partial \eta_i^2} \quad \frac{\partial L_i}{\partial \log(\sigma)} \quad \frac{\partial L_i}{\partial \log(\sigma)^2} \quad \frac{\partial^2 L_i}{\partial \eta \partial\log(\sigma)} $$ \subsection{Predicted values} \subsubsection{Linear predictor and response} The linear predictor is $\eta_i = x'_i \bhat$, where $x_i$ is the covariate vecor for subject $i$ and $\bhat$ is the final parameter estimate. The standard error of the linear predictor is $x'_i V x_i$, where $V$ is the variance matrix for $\bhat$. The predicted response is identical to the linear predictor for fits to the untransformed distributions, i.e., the extreme-value, logistic and Gaussian. For transformed distributions such as the Weibull, for which $\log(y)$ is from an extreme value distribution, the linear predictor is on the transformed scale and the response is the inverse transform, e.g. $\exp(\eta_i)$ for the Weibull. The standard error of the transformed response is the standard error of $\eta_i$, times the first derivative of the inverse transformation. \subsubsection{Terms} Predictions of type \code{terms} are useful for examination of terms in the model that expand into multiple dummy variables, such as factors and p-splines. The result is a matrix with one column for each of the terms in the model, along with an optional matrix of standard errors. Here is an example using psplines on the 1980 Stanford data \begin{verbatim} > fit <- survreg(Surv(time, status) ~ pspline(age, df=3) + t5, stanford2, dist='lognormal') > tt <- predict(fit, type='terms', se.fit=T) > yy <- cbind(tt$fit[,1], tt$fit[,1] -1.96*tt$se.fit[,1], tt$fit[,1] +1.96*tt$se.fit[,1]) > matplot(stanford2$age, yy, type='l', lty=c(1,2,2)) > plot(stanford2$age, stanford2$time, log='y', xlab='Age', ylab='Days', ylim=c(.1, 10000)) > matlines(stanford2$age, exp(yy+ attr(tt$fit, 'constant')), lty=c(1,2,2)) \end{verbatim} The second plot puts the fit onto the scale of the data, and thus is similar in scope to figure 1 in Escobar and Meeker \cite{Escobar92}. Their plot is for a quadratic fit to age, and without T5 mismatch score in the model. \subsubsection{Quantiles} If predicted quantiles are desired, then the set of probability values $p$ must also be given to the \code{predict} function. A matrix of $n$ rows and $p$ columns is returned, whose $ij$ element is the $p_j$th quantile of the predicted survival distribution, based on the covariates of subject $i$. This can be written as $X\beta + z_q \sigma$ where $z_q$ is the $q$th quantile of the parent distribution. The variance of the quantile estimate is then $cVc'$ where $V$ is the variance matrix of $(\beta, \sigma)$ and $c=(X,z_q)$. In computing confidence bands for the quantiles, it may be preferable to add standard errors on the untransformed scale. For instance, consider the motor reliability data of Kalbfleisch and Prentice \cite{Kalbfleisch02}. \begin{verbatim} > fit <- survreg(Surv(time, status) ~ temp, data=motors) > q1 <- predict(fit, data.frame(temp=130), type='quantile', p=c(.1, .5, .9), se.fit=T) > ci1 <- cbind(q1$fit, q1$fit - 1.96*q1$se.fit, q1$fit + 1.96*q1$se.fit) > dimnames(ci1) <- list(c(.1, .5, .9), c("Estimate", "Lower ci", "Upper ci")) > round(ci1) Estimate Lower ci Upper ci 0.1 15935 9057 22812 0.5 29914 17395 42433 0.9 44687 22731 66643 > q2 <- predict(fit, data.frame(temp=130), type='uquantile', p=c(.1, .5, .9), se.fit=T) > ci2 <- cbind(q2$fit, q2$fit - 1.96*q2$se.fit, q2$fit + 1.96*q2$se.fit) > ci2 <- exp(ci2) #convert from log scale to original y > dimnames(ci2) <- list(c(.1, .5, .9), c("Estimate", "Lower ci", "Upper ci")) > round(ci2) Estimate Lower ci Upper ci 0.1 15935 10349 24535 0.5 29914 19684 45459 0.9 44687 27340 73041 \end{verbatim} Using the (default) Weibull model, the data is fit on the $\log(y)$ scale. The confidence bands obtained by the second method are asymmetric and may be more reasonable. They are also guarranteed to be $>0$. This example reproduces figure 1 of Escobar and Meeker \cite{Escobar92}. \begin{verbatim} > plot(stanford2$age, stanford2$time, log='y', xlab='Age', ylab='Days', ylim=c(.01, 10^6), xlim=c(1,65)) > fit <- survreg(Surv(time, status) ~ age + age^2, stanford2, dist='lognormal') > qq <- predict(fit, newdata=list(age=1:65), type='quantile', p=c(.1, .5, .9)) > matlines(1:65, qq, lty=c(1,2,2)) \end{verbatim} Note that the percentile bands on this figure are really quite a different object than the confidence bands on the spline fit. The latter reflect the uncertainty of the fitted estimate and are related to the standard error. The quantile bands reflect the predicted distribution of a subject at each given age (assuming no error in the quadratic estimate of the mean), and are related to the standard deviation of the population. \subsection{Fitting the model} \label{sect:irls} With some care, parametric survival can be written so as to fit into the iteratively reweighted least squares formulation used in Generalized Linear Models of McCullagh and Nelder \cite{glim}. A detailed description of this setup for general maximum likelihood computation is found in Green \cite{Green84}. Let $y$ be the data vector (possibly transformed), and $x_i$ be the vector of covariates for the $i$th observation. Assume that $$ z_i \equiv \frac{y_i - x_i'\beta}{\sigma} \sim f $$ for some distribution $f$, where $y$ may be censored. Then the likelihood for $y$ is $$ l = \left( \prod_{exact} f(z_i)/\sigma \, \right) \left( \prod_{right} \int_{z_i}^\infty f(u) du \, \right) \left( \prod_{left} \int_{-\infty}^{z_i} f(u) du \,\right) \left( \prod_{interval} \int_{z_i^l}^{z_i^u} f(u) du \right), $$ where ``exact'', ``right'', ``left'', and ``interval'' refer to uncensored, right censored, left censored, and interval censored observations, respectively, and $z_i^l$, $z_i^u$ are the lower and upper endpoints, respectively, for an interval censored observation. Then the log likelihood is defined as \begin{equation} LL = \sum_{exact} g_1(z_i) - log(\sigma) + \sum_{right} g_2(z_i) + \sum_{left} g_3(z_i) + \sum_{interval} g_4(z_i, z_i^*)\,, \label{ggdef} \end{equation} where $g_1=\log(f)$, $g_2 = \log(1-F)$, etc. Derivatives of the LL with respect to the regression parameters are: \begin{eqnarray} \frac{\partial LL}{\partial \beta_j} &=& \sum_{i=1}^n \frac{\partial g}{\partial \eta_i} \frac{\partial \eta_i}{\partial \beta_j} \nonumber \\ &=& \sum_{i=1}^n x_{ij} \frac{\partial g}{\partial \eta_i} \\ \frac{\partial^2 LL} {\partial \beta_j \beta_k} &=& \sum x_{ij}x_{ik} \frac{\partial^2 g}{\partial \eta_i^2}\, , \end{eqnarray} where $\eta = X'\beta$ is the vector of linear predictors. Ignore for a moment the derivatives with respect to $\sigma$ (or treat it as fixed). The Newton-Raphson step defines an update $\delta$ $$ (X^T DX) \delta = X^T U, $$ where $D$ is the diagonal matrix formed from $-g''$, and $U$ is the vector $g'$. The current estimate $\beta$ satisfies $X \beta = \eta$, so that the new estimate $\beta + \delta$ will have \begin{eqnarray*} (X^T DX)(\beta + \delta) &=& X^T D \eta + X^T U \\ &=& (X^T D) (\eta + D^{-1}U) \end{eqnarray*} Thus if we treat $\sigma$ as fixed, iteration is equivalent to IRLS with weights of $-g''$ and adjusted dependent variable of $\eta - g'/g''$. At the solution to the iteration we might expect that $\hat\eta \approx y$; and a weighted regression with $y$ replacing $\eta$ gives, in general, good starting estimates for the iteration. (For an interval censored observation we use the center of the interval as `y'). Note that if all of the observations are uncensored, then this reduces to using the linear regression of $y$ on $X$ as a starting estimate: $y=\eta$ so $z=0$, thus $g'=0$ and $g''=$ a constant (all of the supported densities have a mode at zero). This clever starting estimate is introduced in Generalized Linear Models (McCullagh and Nelder \cite{glim}), and works extremely well in that context: convergence often occurs in 3-4 iterations. It does not work quite so well here, since a ``good" fit to a right censored observation might have $\eta >> y$. Secondly, the other coefficients are not independent of $\sigma$, and $\sigma$ often appears to be the most touchy variable in the iteration. Most often, the routines will be used with $\log(y)$, which corresponds to the set of accelerated failure time models. The transform can be applied implicitly or explicitly; the following two fits give identical coefficients: \begin{verbatim} > fit1 <- survreg(Surv(futime, fustat)~ age + rx, fleming, dist='weibull') > fit2 <- survreg(Surv(log(futime), fustat) ~ age + rx, data=fleming, dist='extreme') \end{verbatim} The log-likelihoods for the two fits differ by a constant, i.e., the sum of $d\log(y)/dy$ for the uncensored observations, and certain predicted values and residuals will be on the $y$ versus $\log(y)$ scale. \subsection {Derivatives} This section is very similar to the appendix of Escobar and Meeker \cite{Escobar92}, differing only in our use of $\log(\sigma)$ rather than $\sigma$ as the natural parameter. Let $f$ and $F$ denote the density and distribution functions, respectively, of the distributions. Using (\ref{ggdef}) as the definition of $g1,\ldots,g4$ we have \begin{eqnarray*} \frac{\partial g_1}{\partial \eta} &=& - \frac{1}{\sigma} \left[\frac{f'(z)}{f(z)} \right] \\ \frac{\partial g_4}{\partial \eta} &=& - \frac{1}{\sigma} \left[ \frac{f(z^u) - f(z^l)}{F(z^u) - F(z^l)} \right] \\ \frac{\partial^2 g_1}{\partial \eta^2} &=& \frac{1}{\sigma^2} \left[ \frac{f''(z)}{f(z)} \right] - (\partial g_1 / \partial \eta)^2 \\ \frac{\partial^2 g_4}{\partial \eta^2} &=& \frac{1}{\sigma^2} \left[ \frac{f'(z^u) - f'(z^l)}{F(z^u) - F(z^l)} \right] - (\partial g_4 / \partial \eta)^2 \\ \frac{\partial g_1}{\partial \log\sigma} &=& - \left[ \frac{zf'(z)}{f(z)} \right] \\ \frac{\partial g_4}{\partial \log\sigma} &=& - \left[ \frac{z^uf(z^u) - z^lf(z^l)}{F(z^u) - F(z^l)} \right] \\ \frac{\partial^2 g_1}{\partial (\log\sigma)^2} &=& \left[ \frac{z^2 f''(z) + zf'(z)}{f(z)} \right] - (\partial g_1 / \partial \log\sigma)^2 \\ \frac{\partial^2 g_4}{\partial (\log\sigma)^2} &=& \left[ \frac{(z^u)^2 f'(z^u) - (z^l)^2f'(z_l) } {F(z^u) - F(z^l)} \right] - \partial g_1 /\partial \log\sigma(1+\partial g_1 / \partial \log\sigma) \\ \frac{\partial^2 g_1}{\partial \eta \partial \log\sigma} &=& \frac{zf''(z)}{\sigma f(z)} -\partial g_1/\partial \eta (1 + \partial g_1/\partial \log\sigma) \\ \frac{\partial^2 g_4}{\partial \eta \partial \log\sigma} &=& \frac{z^uf'(z^u) - z^lf'(z^l)}{\sigma [F(z^u) - F(z^l)]} -\partial g_4/\partial \eta (1 + \partial g_4/\partial \log\sigma) \\ \end{eqnarray*} To obtain the derivatives for $g_2$, set the upper endpoint $z_u$ to $\infty$ in the equations for $g_4$. To obtain the equations for $g_3$, left censored data, set the lower endpoint to $-\infty$. After much experimentation, a further decision was made to do the internal iteration in terms of $\log(\sigma)$. This avoids the boundary condition at zero, and also helped the iteration speed considerably for some test cases. The changes to the code were not too great. By the chain rule \begin{eqnarray*} \frac{\partial LL}{\partial \log\sigma} &=& \sigma \frac{\partial LL}{\partial \sigma} \\ \frac{\partial^2 LL}{\partial (\log\sigma)^2} &=& \sigma^2 \frac{\partial^2 LL}{\partial \sigma^2} + \sigma \frac{\partial LL}{\partial \sigma} \\ \frac{\partial^2 LL} {\partial \eta \partial \log\sigma} &=& \sigma \frac{\partial^2}{\partial \eta \partial \sigma} \end{eqnarray*} At the solution $\partial LL/\partial \sigma =0$, so the variance matrix for $\sigma$ is a simple scale change of the returned matrix for $\log(\sigma)$. \subsection{Distributions} \subsubsection {Gaussian} Everyone's favorite distribution. The continual calls to $\Phi$ may make it slow on censored data, however. Because there is no closed form for $\Phi$, only the equations for $g_1$ simplify from the general form given in section 2 above. \begin{eqnarray*} \mu=0 &,& \sigma^2=1 \\ F(z)&=& \Phi(z) \\ f(z)&=&\exp(-z^2/2) / \sqrt{2 \pi} \\ f'(z) &=& -zf(z) \\ f''(z) &=& (z^2-1)f(z) \end{eqnarray*} For uncensored data, the standard glm results are clear by substituting $g_1= -z/\sigma$ into equations 1-5. The first derivative vector is equal to $X'r$ where $r= -z/\sigma$ is a scaled residual, the update step $I^{-1}U$ is independent of the estimate of $\sigma$, and the maximum likelihood estimate of $n\sigma^2$ is the sum of squared residuals. None of these hold so neatly for right censored data. \subsubsection{Extreme value} If $y$ is Weibull then $\log(y)$ is distributed according to the (least) extreme value distribution. As stated above, fits on the latter scale are numerically preferable because it removes the range restriction on $y$. A Weibull distribution with the scale restricted to 1 gives an exponential model. $$ \mu= -\gamma = .5722\ldots,\; \sigma^2=\pi^2/6 $$ \begin{eqnarray*} F(z)&=&1 - \exp(-w)\\ f(z)&=& we^{-w} \\ f'(z) &=& (1-w)f(z) \\ f''(z) &=& (w^2 - 3w+1)f(z) \end{eqnarray*} where $w \equiv exp(z)$. The mode of the distribution is at $f(0) = 1/e$, so for an exact observation the deviance term has $\hat y = y$. For interval censored data where the interval is of length $b = z^u - z^l$, it turns out that we cover the most mass if the interval has a lower endpoint of $a=\log(b/(\exp(b)-1)))$, and the resulting log-likelihood is $$ \log(e^{-e^a} - e^{-e^{a+b}}). $$ Proving this is left as an exercise for the reader. The cumulative hazard for the Weibull is usually written as $\Lambda(t) = (at)^p$. Comparing this to the extreme value we see that $p = 1/\sigma$ and $a= \exp(-\eta)$. (On the hazard scale the change of variable from $t$ to $\log(t)$ adds another term). The Weibull can be thought of as both an accelerated failure time model, with acceleration factor $a$ or as a proportional hazards model with constant of proportionality $a^p$. If a Weibull model holds, the coefficients of a Cox model will be approximately equal to $-\beta/\sigma$, the latter coming from a \code{survreg} fit. The change in sign reflects a change in perspective: in a proportional hazards model a positive coefficient corresponds to an increase in the death rate (bad), whereas in an accelerated failure time model a positive coefficient corresponds to an increase in lifetime (good). \subsubsection{Logistic} This distribution is very close to the Gaussian except in the extreme tails, but it is easier to compute. However, some data sets may contain survival times close to zero, leading to differences in fit between the lognormal and log-logistic choices. (In such cases the rationality of a Gaussian fit may also be in question). Again let $w= \exp(z)$. $$ \mu=0,\; \sigma^2=\pi^2/3 $$ \begin{eqnarray*} F(z) &=& w/(1+w) \\ f(z) &=& w/(1+w)^2 \\ f'(z) &=& f(z)\,(1-w)/(1+w) \\ f''(z)&=& f(z)\,(w^2 -4w+1)/(1+w)^2 \end{eqnarray*} The distribution is symmetric about 0, so for an exact observation the contribution to the deviance term is $-\log(4)$. For an interval censored observation with span $2b$ the contribution is $$ \log\left(F(b) - F(-b)\right) = \log \left( \frac{e^b-1}{e^b+1} \right). $$ \subsubsection{Other distributions} Some other population hazards can be fit into this location-scale framework, some can not. \begin{center} \begin{tabular}{ll} Distribution & \multicolumn{1}{c}{Hazard} \\ \hline Weibull& $p\lambda (\lambda t)^{p-1}$ \\ Extreme value& $(1/ \sigma) e^{ (t- \eta)/ \sigma}$\\ Rayleigh& $a + bt$\\ Gompertz& $b c^t$\\ Makeham& $ a + b c^t$ \\ \end{tabular} \end{center} The Makeham hazard seems to fit human mortality experience beyond infancy quite well, where $a$ is a constant mortality which is independent of the health of the subject (accidents, homicide, etc) and the second term models the Gompertz assumption that ``the average exhaustion of a man's power to avoid death is such that at the end of equal infinitely small itervals of time he has lost equal portions of his remaining power to oppose destruction which he had at the commencement of these intervals". For older ages $a$ is a neglible portion of the death rate and the Gompertz model holds. Clearly \begin{itemize} \item The Wiebull distribution with $p=2$ ($\sigma=.5$) is the same as a Rayleigh distribution with $a=0$. It is not, however, the most general form of a Rayleigh. \item The extreme value and Gompertz distributions have the same hazard function, with $ \sigma = 1/ \log(c)$, and $\exp(-\eta/ \sigma) = b$. \end{itemize} It would appear that the Gompertz can be fit with an identity link function combined with the extreme value distribution. However, this ignores a boundary restriction. If $f(x; \eta, \sigma)$ is the extreme value distribution with paramters $\eta$ and $\sigma$, then the definition of the Gompertz densitiy is \begin{displaymath} \begin{array}{ll} g(x; \eta, \sigma) = 0 & x< 0 \\ g(x; \eta, \sigma) = c f(x; \eta, \sigma) & x>=0 \end{array} \end{displaymath} where $c= \exp(\exp(-\eta / \sigma))$ is the necessary constant so that $g$ integrates to 1. If $\eta / \sigma$ is far from 1, then the correction term will be minimal and the above fit will be a good approximation to the Gompertz. Alternatively, one could use \code{censorReg} with the \code{truncation} argument to indicate that each observation is restricted to $(0,\infty)$. The Makeham distribution falls into the gamma family (equation 2.3 of Kalbfleisch and Prentice, Survival Analysis), but with the same range restriction problem. \appendix \chapter{Changes from version 2.44 to 3.1} \section{Changes in version 3} \label{sect:changes} Some common concepts had appeared piecemeal in more than one function, but not using the same keywords. Two particular areas are survival curves and multiple observations per subject. Survival and cumulative hazard curves are generated by the \code{survfit} function, either from raw data (survfit.formula), or a fitted Cox or parametric survival model (survfit.coxph, survfit.survreg). Two choices that appear are: \begin{enumerate} \item If there are tied event times, to estimate the hazard using a straightforward increment of (number of events)/(number at risk), or make a correction for the ties. The simpler method is known variously as the Nelson, Aalen, Breslow, and Tsiatis estimate, along with hyphenated forms combining 2 or 3 of these labels. One of the simpler corrections for ties is known as the Fleming-Harrington approximation when used with raw data, and the Efron when used in a Cox model. \item The survival curve $S(t)$ can be estimated directly or as the exponential of the cumulative hazard estimate. The first of these is known as the Kaplan-Meier, cumulative incidence (CI), Aalen-Johansen, and Kalbfleisch-Prentice estimate, depending on context, the second as a Fleming-Harrington, Breslow, or Efron estimate, again depending on context. \end{enumerate} With respect to the two above, subtypes of the \code{survfit} routine have had either a \code{type} or \code{method} argument over the years which tried to capture both of these at the same time, and consequently have had a bewildering number of options, for example ``fleming-harrington'' in \code{survfit.formula} stood for the simple cumulative hazard estimate plus the exponential survival estimate, ``fh2'' specified the tie-corrected cumulative hazard plus exponential survival, while \code{survfit.coxph} used ``breslow'' and ``efron'' for the same two combinations. The updated routines now have separate \code{stype} and \code{ctype} arguments. For the first, 1= direct and 2=exponent of the cumulative hazard and for the second, 1=simple and 2= corrected for ties. The Cox model is a special case in two ways: 1. the the way in which ties are treated in the likelihood should match the way they are treated in creating the hazard and 2. the direct estimate of survival can be very difficult to compute. The survival package's default is to use the \code{ctype} option which matches the ties option of the \code{coxph} call along with an exponential estimate of survival. This \code{ctype} choice preserves some useful properties of the martingale residuals. A second issue is multiple observations per subject, and how those impact the computations. This leads to 3 common arguments: \begin{itemize} \item id: an identifier in each row of the data, which allows the routines to identify multiple rows for a subject \item cluster: identify correlated rows, which should be combined when creating the robust variance \item robust: TRUE or FALSE, to compute a robust variance. \end{itemize} These arguments have been inconsistent in the past, partly because of the sequential appearance of multiple use cases. The package started with only the simplest data form: one observation per subject, one endpoint. To this has been added: \begingroup \renewcommand{\theenumi}{\alph{enumi}} \begin{enumerate} \item Multiple observations per subject \item Multiple endpoints per subject \item Multiple types of endpoints \end{enumerate} \endgroup Case (a) arises as a way to code time-dependent covariates, and in this case an \code{id} statement is not needed, and in fact you will get the same estimates and standard errors with or without it. (There will be a change in the counts of subjects who leave or enter an interval, since an observation pair (0, 10), (10, 20) for the same subject will not count as an exit (censor) at 10 along with an entry at 10.) If (b) is true then the robust variance is called for and one will want to have either a \code{cluster} argument or the \code{robust=TRUE} argument. In the coxph routine, a \code{cluster(group)} term in the model statement can be used instead of the cluster argument, but this is no longer the preferred form. When (b) and (c) are true then the \code{id} statement is required in order to obtain a correct \emph{estimate} of the result. This is also the case for (c) alone when subjects do not all start in the same state. For competing risks data --- multiple endpoints, everyone starts in the same state, only one transition per subject --- the \code{id} statement is not necessary nor (I think) is a robust variance. When there is an \code{id} statement but no \code{cluster} or \code{robust} directive, then the programs will use (b) as a litmus test to decide between model based or robust variance, if possible. (There are edge cases where only one of the two variance estimates has been implemented, however). If there is a \code{cluster} argument then \code{robust=TRUE} is assumed. If only a \code{robust=TRUE} argument is given then the code treats each line of data as independent. \section{Survfit} There has been a serious effort to harmonize the various survfit methods. Not all paths had the same options or produced the same outputs. \begin{itemize} \item Common arguments of id, cluster, influence, stype and ctype. \begin{itemize} \item If stype=1 then the survival curve S(t) is produced directly, if stype=2 it is created as the exp(-H) where H is the cumulative hazard. \item If ctype=1 the Nelson-Aalen formula is used, and for ctype=2 there is a correction for ties. \item The usual curve for a Cox model using the Efron approximate is (2,2), for instance, while the ordinary non-parametric KM is (1, 1). \end{itemize} \item The routines now produce both the estimated survival and the estimated cumulative hazard, along with their errors \item Some code paths produce std(S) and some std(log(S)), the object now contains a \code{log.se} flag telling which. (Before, downstream routines just ``had to know''). \item using a single subscript on a survfit object now behaves like the use of a single subscript on an array or matrix, in that the result has only one dimension. \end{itemize} A utility function \code{survfit0} is used by the print and plot methods to add a starting ``time 0'' value, normally x=0, y=1, to the survival curve(s). It also aligns all the matrices so that they correspond to the time vector, inserts the correct standard errors, etc. This may be useful to other programs. \section{Coxph} The multi-state objects include a \code{states} vector, which is a simple list of the state names. The \code{cmap} component is an integer matrix with one row for each term in the model and one column for each transition. Each element indexes a position in the coefficient vector and variance matrix. \begin{itemize} \item Column labels are of the form 1:2, which denotes a transition from \code{state[1]} to \code{state[2]}. \item If a particular term in the data, ``age'' say, was not part of the model for a particular transition then a 0 will appear in that position of \code{cmap}. z \item If two transitions share a common coefficient, both those element of \code{cmap} will point to the same location. \item The first row of \code{cmap}, labeled ``stratum'', is numbered separately and partitions the transitions into disjoint strata. \end{itemize} \bibliographystyle{plain} \bibliography{refer} \end{document} survival/vignettes/splines.Rnw0000644000176200001440000003241613537676563016335 0ustar liggesusers\documentclass{article} \usepackage{amsmath} \usepackage{Sweave} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \SweaveOpts{keep.source=TRUE, fig=FALSE} %\VignetteIndexEntry{Splines, plots, and interactions} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{prefix.string=splines,width=6,height=4} \setkeys{Gin}{width=\textwidth} \newcommand{\code}[1]{\texttt{#1}} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #reset default @ \title{Spline terms in a Cox model} \author{Terry Therneau} \begin{document} \maketitle This is a trio of topics that comes up just often enough in my work that I end up re-discovering how to do it correctly about once a year. A note showing how may be useful to others, it is certainly a useful reference for me. \section{Plotting smooth terms} Here is a simple example using the MGUS data. I prefer a simpler color palette than the default found in termplot. <>= require(survival) mfit <- coxph(Surv(futime, death) ~ sex + pspline(age, df=4), data=mgus) mfit termplot(mfit, term=2, se=TRUE, col.term=1, col.se=1) @ Note that the \code{term=2} option is passed directly from the \code{termplot} routine to a \code{predict(fit, type='terms')} call. For coxph models, the \code{predict} function allows terms to be specified either by position or name. Other routines, e.g. \code{gam}, respond only to a name. (This can be a bit of a pain since it must exactly match the \emph{printed} call in both spelling and spacing; and the printed spacing may not match what the user typed.) Three questions are whether the curve is significantly non-linear, how the curve is centered and whether we can easily plot it on the hazard as opposed to the log hazard scale. The first question is answered by the printout, the solution to the others is to use the plot=FALSE option of termplot, which returns the data points that would be plotted back to the user. <>= ptemp <- termplot(mfit, se=TRUE, plot=FALSE) attributes(ptemp) ptemp$age[1:4,] @ The termplot function depends on a call to predict with type='terms', which returns a centered set of predictions. Like a simple linear model fit, the intercept is a separate term, which is found in the ``constant'' attribute above, and each column of the result is centered so that the average predicted value is zero. Since any given $x$ value may appear multiple times in the data and thus in the result of predict, and the termplot function removes duplicates, the data returned by \code{termplot} may not be precisely centered at zero. Now suppose we want to redraw this on log scale with age 50 as the reference, i.e., the risk is 1 for a 50 year old. Since the Cox model is a relative hazards model we can choose whatever center we like. (If there were no one of exactly age 50 in the data set the first line below would need to do an interpolation, e.g. by using the approx function.) <>= ageterm <- ptemp$age # this will be a data frame center <- with(ageterm, y[x==50]) ytemp <- ageterm$y + outer(ageterm$se, c(0, -1.96, 1.96), '*') matplot(ageterm$x, exp(ytemp - center), log='y', type='l', lty=c(1,2,2), col=1, xlab="Age at diagnosis", ylab="Relative death rate") @ Voila! We now have a plot that is interpretable with respect to a fixed reference. The approach is appropriate for any term, not just psplines. The above plot uses log scale for the y axis which is appropriate for the question of whether a non-linear age effect was even necessary for this model (it is not), one could remove the log argument to emphasize the Gomperzian effect of age on mortality. \section{Monotone splines} Consider the following model using the \code{mgus2} data set. <>= fit <- coxph(Surv(futime, death) ~ age + pspline(hgb, 4), mgus2) fit termplot(fit, se=TRUE, term=2, col.term=1, col.se=1, xlab="Hemoglobin level") @ Low hemoglobin or anemia is a recognized marker of frailty in older age, so the rise in risk for low levels is not surprising. The rise on the right hand portion of the curve is less believable --- the normal range of HGB is 12-15.5 for women and 13.5 to 17.5 for men, why would we expect a rise there? A monotone fit that forces the curve to be horizontal from 14 onward fits well within the confidence bands, so we might want to force monotonicity. There are two tools for this within the pspline function. The first is to decrease the overall degrees of freedom and the second is to use \code{combine} option to force equality of selected coefficients. Start by decreasing the degrees of freedom. The pspline function automatically picks the number of basis (nterms) to be ``sufficiently large'' for the given degrees of freedom. We fix it at a single value for the rest of this example to better isolate the effects of degrees of freedom and of constraints. <>= termplot(fit, se=TRUE, col.term=1, col.se=1, term=2, xlab="Hemoglobin level", ylim=c(-.4, 1.3)) df <- c(3, 2.5, 2) for (i in 1:3) { tfit <- coxph(Surv(futime, death) ~ age + pspline(hgb, df[i], nterm=8), mgus2) temp <- termplot(tfit, se=FALSE, plot=FALSE, term=2) lines(temp$hgb$x, temp$hgb$y, col=i+1, lwd=2) } legend(14, 1, paste("df=", c(4, df)), lty=1, col=1:4, lwd=2) @ This has reduced, but not eliminated, the right hand rise at the expense of a less sharp transition at the value of 14. The \code{combine} option makes use of a property of the P-spline basis, which is that the curve will be monotone if and only if the coefficients are monotone. We can then use a pool adjacent violators algorithm to sequentially force equality for those coefficients which go the wrong way. Look at the coefficients for the fit with 2.5 degrees of freedom. <>= fit2a <- coxph(Surv(futime, death) ~ age + pspline(hgb, 2.5, nterm=8), mgus2) coef(fit2a) plot(1:10, coef(fit2a)[-1]) @ Now force the last 3 to be equal, then the last 4, and see how this changes the fit. <>= temp <- c(1:7, 8,8,8) fit2b <- coxph(Surv(futime, death) ~ age + pspline(hgb, 2.5, nterm=8, combine=temp), data= mgus2) temp2 <- c(1:6, 7,7,7,7) fit2c <- coxph(Surv(futime, death) ~ age + pspline(hgb, 2.5, nterm=8, combine=temp2), data= mgus2) matplot(1:10, cbind(coef(fit2a)[-1], coef(fit2b)[temp+1], coef(fit2c)[temp2+1]), type='b', pch='abc', xlab="Term", ylab="Pspline coef") @ We see that constraining the last four terms along with a degrees of freedom of is almost enough to force monotonicity; it may be sufficient if our goal is a simple plot for display. This dance between degrees of freedom, number of terms, and constraints has a component of artistry. When all three values become large the result will begin to approach a step function, reminiscent of non-parametric isotonic regression, whereas small values begin to approach a linear fit. The best compromise of smoothness and constraints will be problem specific. \section{Splines in an interaction} As an example we will use the effect of age on survival in the \texttt{flchain} data set, a population based sample of subjects from Olmsted County, Minnesota. If we look at a simple model using age and sex we see that both are very significant. <>= options(show.signif.stars=FALSE) # display intelligence fit1 <- coxph(Surv(futime, death) ~ sex + pspline(age, 3), data=flchain) fit1 termplot(fit1, term=2, se=TRUE, col.term=1, col.se=1, ylab="log hazard") @ We used a \code{pspline} term rather than \code{ns}, say, because the printout for a pspline nicely segregates the linear and non-linear age effects. The non-linearity is not very large, as compared to the linear portion, but still may be important. We would like to go forward and fit separate age curves for the males and the females, since the above fit makes an untested assumption that the male/female ratio of death rates will be the same at all ages. The primary problem is that a formula of \texttt{sex * pspline(age)} does not work; the coxph routine is not clever enough to do the right thing automatically for \code{pspline} interactions. (Perhaps some future version will be sufficiently intelligent, but don't hold your breath). As a first solution we will use regression splines, i.e., splines that can be represented using a basis matrix. <>= options(show.signif.stars=FALSE) # display statistical intellegence require(splines, quietly=TRUE) nfit1 <- coxph(Surv(futime, death) ~ sex + age, flchain) nfit2 <- coxph(Surv(futime, death) ~ sex + ns(age, df=3), flchain) nfit3 <- coxph(Surv(futime, death) ~ sex * ns(age, df=3), flchain) anova(nfit1, nfit2, nfit3) @ The nonlinear term is significant but the interaction is not. Nevertheless we would like to plot the two estimated curves for \code{nfit3}, expecting that they will be approximately parallel. The \code{termplot} routine is not able to deal with models that have an interaction and will bow out with a warning message; we use explicit prediction instead, which is nearly as easy. <>= pdata <- expand.grid(age= 50:99, sex=c("F", "M")) pdata[1:5,] ypred <- predict(nfit3, newdata=pdata, se=TRUE) yy <- ypred$fit + outer(ypred$se, c(0, -1.96, 1.96), '*') matplot(50:99, exp(matrix(yy, ncol=6)), type='l', lty=c(1,1,2,2,2,2), lwd=2, col=1:2, log='y', xlab="Age", ylab="Relative risk") legend(55, 20, c("Female", "Male"), lty=1, lwd=2, col=1:2, bty='n') abline(h=1) @ The \code{ns} function generates a basis of dummy variables to represent the spline, which will work automatically in interactions. The coefficients that result are not very interpretable, but the result of predict is invariant to this. The issues as compared to using \code{termplot} are \begin{enumerate} \item We need to provide our own set of predictor values for the plot, whereas \code{termplot} would automatically use the set of unique age and sex values. \item Keeping track of the indexing. The predict function produces two vectors each of length \code{nrow(pdata)} with a predicted value and its standard error, one value for each row of \code{pdata}. The data set is in order of females, then males. We fold it into an appropriate matrix for use with matplot. \item The vertical centering of the curves corresponds to an average population predictor of$\eta = X\beta =0$; i.e., the average over the subjects in the data set. This is a consequence of the variable centering that \code{coxph} does for numerical stability. To center at some particular (age, sex) pair obtain the predicted value for that fictional subject and subtract the resulting value from \code{yy}. \end{enumerate} To create the same figure with \code{pspline} curves it is necessary to code the males and females as two separate terms. To do this create our own dummy variables to handle the interaction. <>= agem <- with(flchain, ifelse(sex=="M", age, 60)) agef <- with(flchain, ifelse(sex=="F", age, 60)) fit2 <- coxph(Surv(futime, death) ~ sex + pspline(agef, df=3) + pspline(agem, df=3), data=flchain) anova(fit2, fit1) @ You might well ask why we used 60 as a dummy value of \texttt{agem} for the females instead of 0? If a value of 0 is used it forces the pspline function to create a basis set that includes all the empty space between 0 and 50, and do predictions at 0; these last can become numerically unstable leading to errors or incorrect values. Best is to pick a value close to the mean, though any value within the range will do. For this plot we will use a 65 year old female as the reference. <>= # predictions pdata2 <- pdata pdata2$agem <- with(pdata2, ifelse(sex=="M", age, 60)) pdata2$agef <- with(pdata2, ifelse(sex=="F", age, 60)) ypred2 <- predict(fit2, pdata2, se=TRUE) yy <- ypred2$fit + outer(ypred2$se, c(0, -1.96, 1.96), '*') # reference refdata <- data.frame(sex='F', agef=65, agem=60) ref <- predict(fit2, newdata=refdata, type="lp") # plot matplot(50:99, exp(matrix(yy-ref, ncol=6)), type='l', lty=c(1,1,2,2,2,2), lwd=2, col=1:2, log='y', xlab="Age", ylab="Relative risk") legend(55, 20, c("Female", "Male"), lty=1, lwd=2, col=1:2, bty='n') abline(h=1) @ The final curves for males and female are not quite parallel, most of the difference is at the highest ages, however, where there are very few subjects. One thing the plot does not display is that the spacing between the male and female points also has a standard error. This moves the entire bundle of three red curves up and down. It is not clear how best to add this information into the plot. For questions of parallelism and shape, as here, it seemed best to ignore it, which is what the termplot function also does. If someone were reading individual male/female differences off the plot a different choice would be appropriate. \end{document} survival/vignettes/approximate.Rnw0000644000176200001440000001362413537676563017211 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \newcommand{\code}[1]{\texttt{#1}} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{prefix.string=adjcurve,width=6,height=4} \setkeys{Gin}{width=\textwidth} %\VignetteIndexEntry{Approximating a Cox Model} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text library(survival, quietly=TRUE) @ \title{Approximating the Cox Model} \author{Chenyang Zhong, Robert Tibshirani and Terry Therneau} \date{May 2019} \begin{document} \maketitle The Cox model can be approximated using Poisson regression, a trick that was well known when Cox models were not yet common in the major software packages \cite{Whitehead80, Laird81}. Start by plotting the cumulative hazard for the data set, and approximate it with a set of connected line segments. The kidney cancer data set, for instance, is moderately well approximated using cutpoints at 45 and 500 days. <>= ksurv <- survfit(Surv(time, status) ~1, data=kidney) plot(ksurv, fun="cumhaz", conf.int=FALSE, lwd=2, xlab="Time since catheter insertion", ylab="Cumulative Hazard") lines(c(0, 45, 500, 560), c(0, .55, 2.7, 4), col=2, lwd=2) @ Break the time scale into intervals based on these cutpoints, and fit a Poisson regression with one intercept per interval. <>= kdata2 <- survSplit(Surv(time, status) ~., data=kidney, cut=c(45, 500), episode="interval") kfit1 <- coxph(Surv(time, status) ~ age + sex, kidney, ties='breslow') kfit2 <- glm(status ~ age + sex + factor(interval) -1 + offset(log(time-tstart)), family=poisson, data=kdata2) cbind(Cox= summary(kfit1)$coefficients[,c(1,3)], poisson = summary(kfit2)$coefficients[1:2, 1:2]) @ We see that the coefficients and standard errors are very similar. If each unique death time is made into its own interval the Cox result can be duplicated exactly. One more correction is needed for perfect agreement, which is to toss away any partial contributions. If there were unique death times at 100 and 110 days, for instance, and a subject were censored at time 103, those 3 days are not counted in the in the 100--110 interval. If there is someone with follow-up after the last event, that is removed as well. After removal, everyone in the same interval will have the same number of days at risk, which means that an offset correction is no longer needed. <>= utime <- sort(unique(kidney$time[kidney$status==1])) # unique deaths kdata3 <- survSplit(Surv(time, status) ~., data=kidney, cut=utime, episode="interval") kdata3 <- subset(kdata3, time == c(utime,0)[interval]) # remove partials kfit3 <- glm(status ~ age + sex + factor(interval) -1, family=poisson, data=kdata3) kfit4 <- glm(status ~ age + sex + factor(interval) -1, family=binomial, data=kdata3) rbind(poisson= coef(kfit3)[1:2], binomial = coef(kfit4)[1:2]) @ The Poisson coefficients now exactly match those of the Cox model. Almost all of the intervals in \code{kdata3} have only a single event, i.e., both the event count and the event rate are low, which is the case in which the binomial and Poisson distributions closely approximate each other. Consequently, the last model shows that binomial fits are also effective. This computational trick can be particularly useful in contexts where there is readily available code for binomial outcomes but time-to-event models are lacking, e.g., machine learning. We can make the connection easier to expliot by pre-centering the data. The plot shows that when this is done, the intercepts are very close to the simple event rate for each interval of (number of events) / (number of observations). We can add this variable to the model as an offset. <>= counts <- c(table(kdata3$interval)) # subjects in each interval xmat <- as.matrix(kdata3[,c('age', 'sex')]) centers <- rowsum(xmat, kdata3$interval) / counts xmat2 <- xmat - centers[kdata3$interval,] kfit4a <- glm(status ~ xmat2 + factor(interval) -1, poisson, kdata3) temp <- coef(kfit4a)[-(1:2)] # intercepts phat <- with(kdata3, tapply(status, interval, sum)) /counts matplot(1:length(counts), cbind(phat, exp(temp)), log='y', xlab="Interval", ylab="Simple event rate") legend(5, .5, c("Rate", "Poisson intercept"), pch="12", col=1:2) @ <>= kdata3$phat <- phat[kdata3$interval] # add phat to the data set logit <- function(x) log(x/(1-x)) kfit4b <- glm(status ~ xmat2 + offset(log(phat)), poisson, kdata3) kfit4c <- glm(status ~ xmat2, poisson, kdata3) kfit4d <- glm(status ~ xmat2 + offset(logit(phat)), binomial, kdata3, subset=(phat<1)) kfit4e <- glm(status ~ xmat2, binomial, kdata3, subset=(phat<1)) rbind(Cox= coef(kfit1), poisson=coef(kfit4a)[1:2], poisson2 = coef(kfit4b)[2:3], poisson3 = coef(kfit4c)[2:3], binomial2 = coef(kfit4d)[2:3], binomial3 = coef(kfit4e)[2:3]) @ The fits show that adding an approximate per-interval intercept via the offset term gives a very close approximation to the \code{coxph} fit with the Poisson and a reasonable one with the binomial. Using no intercept at all produces some bias, the size of which will be related to the correlation between \code{phat} and the covariate in question. The advantage of the offset models is a smaller number of coefficients, particularly for large data sets where the number of intercepts would be excessive. \end{document} survival/vignettes/multi.Rnw0000644000176200001440000000046413537676603016003 0ustar liggesusers\documentclass{article} \usepackage{Sweave} \usepackage{amsmath} \title{Multi-state models as a data exploration tool} \author{Terry Therneau} %\VignetteIndexEntry{Multi-state survival curves} \begin{document} \maketitle This vignette has been absorbed into the overall `survival' vignette. \end{document} survival/vignettes/validate.Rnw0000644000176200001440000013625113556034141016430 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{prefix.string=adjcurve,width=6,height=4} \setkeys{Gin}{width=\textwidth} %\VignetteIndexEntry{Validation} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text library(survival, quietly=TRUE) @ \newcommand{\imat}{H} % use H for the hessian rather than script I \newcommand{\Cvar}{H^{-1}} % use H for the hessian rather than script I \newcommand{\splus}{R} % ``the survival package'' would be an alternate \newcommand{\xbar}{\overline x} \newcommand{\lhat}{\hat \Lambda} \def\bhat{\hat\beta} %define "bhat" to mean "beta hat" \def\Mhat{\widehat M} %define "Mhat" to mean M-hat \newcommand{\code}[1]{\texttt{#1}} \title{Validation} \author{Terry M Therneau} \date{Dec 2015} \begin{document} \maketitle \section{Introduction} \begin{quotation} `When I use a word,' Humpty Dumpty said, in rather a scornful tone, `it means just what I choose it to mean - neither more nor less.' `The question is,' said Alice, `whether you can make words mean so many different things.' `The question is,' said Humpty Dumpty, `which is to be master - that's all.' -Lewis Caroll, \emph{Through the Looking Glass} \end{quotation} ``Validatation'' has become a Humpty-Dumpty word: it is used for many different things in scientific research that it has become essentially meaningless without further clarification. One of the more common meanings assigned to it in the software realm is ``repeatability'', i.e. that a new release of a given package or routine will give the same results as it did the week before. Users of the software often assume the word implies a more rigorous criterion, namely that the routine gives \emph{correct} answers. Validation of the latter type is rare, however; working out formally correct answers is boring, tedious work. This note contains a set of examples of this latter type. Although the data sets are very simple, the examples have proven extremely useful in debugging the methods, not least because all the intermediate steps of each calculation are transparent, and have been incorporated into the formal test suite for the survival package as the files \code{book1.R}, \code{book2.R}, etc. in the \code{tests} subdirectory. They also continue to be a resource for package's defence: I have been told multiple times that some person or group cannot use R in their work because ``SAS is validated'' while R is not. The survival package passes all of the tests below and SAS passes some but not all of them. It is my hope that the formal test cases will be a resource for developers on multiple platforms. Portions of this work were included as an appendix in the textbook of Therneau and Grambsch \cite{Therneau00} precisely for this reason. \section{Basic formulas} All these examples have a single covariate. Let $x_i$ be the covariate for each subject, $r_i= exp(x_i \beta)$ the risk score for the subject, and $w_i$ the case weight, if any. Let $Y_i(t)$ be 1 if subject $i$ is at risk at time $t$ and 0 otherwise, and $dN_i(t)$ be the death indicator which is 1 if subject $i$ has an event at time $t$. At each death time we have the following quantities: \begin{align} LPL(t) &= \frac{\sum_i dN_i(t) \log(r_i)}{\log\left( \sum_i Y_i(t) w_i r_i \right)} \\ \xbar(t) &= \frac{\sum_i Y_i(t) w_i r_i x_i}{ \sum_i Y_i(t) w_i r_i}\\ U(t) &= \sum_i dN_i(t) (x_i - \xbar(t)) \label{U1} \\ H(t) &= \frac{\sum_i Y_i(t) (x_i - \xbar(t))^2}{\sum_i Y_i(t) w_i r_i}\\ &= \frac{\sum_i Y_i(t) x_i^2}{\sum_i Y_i(t) w_i r_i}- \xbar(t)^2 \label{H2} \\ \lambda(t) &= \frac{\sum_i w_i dN_i(t)}{\sum_i Y_i(t) w_i r_i} \end{align} The denominator for all the sums is the weighted number of subjects who are at risk, $LPL$ is the contribution to the log partial likelihood at time $t$, and $\xbar$ and $H$ are the weighted mean and variance of the covariate $x$ at each time. The sum of $H(t)$ over the death times is the second derivative of the LPL, also known as the Hessian matrix. $U$ is the contribution to the first derivative of the LPL at time $t$ and $\lambda$ is the increment in the baseline hazard function. \section{Test data 1} This data set of $n=6$ subjects has a single 0/1 covariate $x$. There is one tied death time, one time with both a death and a censored observation, one with only a death, and one with only censoring. (This is as small as a data set can be and still cover these four important cases.) Let $r = \exp(\beta)$ be the risk score for a subject with $x=1$; the risk score is $\exp(0) =1$ for those with $x=0$. Table \ref{tab:val1} shows the data set along with the mean and increment to the hazard at each time point. \begin{table}[b] \centering \begin{tabular}{ccc|cc|cc} &&& \multicolumn{2}{c|}{$\xbar(t)$} & \multicolumn{2}{c}{$d\lhat_0(t)$} \\ Time& Status& $x$& Breslow& Efron& Breslow& Efron \\ \hline 1&1&1&$r/(r+1)$ & $r/(r+1)$& $1/(3r+3)$ & $1/(3r+3)$ \\ 1&0&1&&&&\\ 6&1&1& $r/(r+3)$ & $r/(r+3)$ & $1/(r+3)$& $1/(r+3)$ \\ 6&1&0& $r/(r+3)$ & $r/(r+5)$ & $1/(r+3)$& $1/(r+5)$ \\ 8&0&0&&&& \\ 9&1&0&0&0& 1& 1\\ \end{tabular} \caption{Test data 1} \label{tab:val1} \end{table} \subsection{Breslow estimates} \label{sect:valbreslow} The log partial likelihood (LPL) has a term for each event; each term is the log of the ratio of the score for the subject who had an event over the sum of scores for those who did not. The LPL, first derivative $U$ of the LPL and second derivative (or Hession) $\imat$ are: \begin{eqnarray*} LPL &=& \{\beta- \log(3r+3)\} + \{\beta - \log(r+3)\} + \{0-\log(r+3)\} + \{0-0\} \\ &=& 2\beta - \log(3r+3) - 2\log(r+3). \\ \\ U &=& \left(1-\frac{r}{r+1}\right) + \left(1-\frac{r}{r+3}\right) + \left(0-\frac{r}{r+3} \right) + (0-0) \\ &=& \frac{-r^2 + 3r + 6}{(r+1)(r+3)} .\\ \\ -\imat&=& \left\{\frac{r}{r+1} - \left( \frac{r}{r+1} \right )^2\right\} +2 \left\{\frac{r}{r+3} - \left( \frac{r}{r+3} \right )^2\right\} + (0-0) \\ &=& \frac{r}{(r+1)^2} + \frac{6r}{(r+3)^2}. \end{eqnarray*} (For a 0/1 covariate the variance formula \eqref{H2} simplifies to $\xbar - \xbar^2$, but only in that case. We used this fact above.) The following function computes these quantities. <>= breslow1 <- function(beta) { # first test data set, Breslow approximation r = exp(beta) lpl = 2*beta - (log(3*r +3) + 2*log(r+3)) U = (6+ 3*r - r^2)/((r+1)*(r+3)) H = r/(r+1)^2 + 6*r/(r+3)^2 c(beta=beta, loglik=lpl, U=U, H=H) } beta <- log((3 + sqrt(33))/2) temp <- rbind(breslow1(0), breslow1(beta)) dimnames(temp)[[1]] <- c("beta=0", "beta=solution") temp @ The maximum partial likelihood occurs when $U(\beta)=0$, namely $r^2 -3r -6 =0$. Using the usual formula for a quadratic equation gives $r=(1/2)(3 + \sqrt{33})$ and $\bhat = \log(r) \approx 1.475285$. The above call to \code{breslow1} verifies that the first derivative is zero at this point. Newton--Raphson iteration has increments of $-\Cvar U$. Starting with the usual initial estimate of $\beta=0$, the first iteration is $\beta=8/5$ and further ones are shown below. <<>>= iter <- matrix(0, nrow=6, ncol=4, dimnames=list(paste("iter", 0:5), c("beta", "loglik", "U", "H"))) # Exact Newton-Raphson beta <- 0 for (i in 1:6) { iter[i,] <- breslow1(beta) beta <- beta + iter[i,"U"]/iter[i,"H"] } print(iter, digits=10) # coxph fits test1 <- data.frame(time= c(1, 1, 6, 6, 8, 9), status=c(1, 0, 1, 1, 0, 1), x= c(1, 1, 1, 0, 0, 0)) temp <- matrix(0, nrow=6, ncol=4, dimnames=list(1:6, c("iter", "beta", "loglik", "H"))) for (i in 0:5) { tfit <- coxph(Surv(time, status) ~ x, data=test1, ties="breslow", iter.max=i) temp[i+1,] <- c(tfit$iter, coef(tfit), tfit$loglik[2], 1/vcov(tfit)) } temp @ The \code{coxph} routine declares convergence after 4 iterations for this data set, so the last two calls with \code{iter.max} of 4 and 5 give identical results. The martingale residuals are defined as $O-E$ = observed - expected, where the observed is the number of events for the subject (0 or 1) and $E$ is the expected number assuming that the model is completely correct. For the first death all 6 subjects are at risk, and the martingale formulation views the outcome as a lottery in which the subjects hold $r$, $r$, $r$, 1, 1 and 1 tickets, respectively. The contribution to $E$ for subject 1 at time 1 is thus $r/(r+3)$. Carrying this forward the residuals can be written as simple function of the cumulative baseline hazard $\Lambda_0(t)$, the Nelson cumulative hazard estimator with case weights of $w_ir_i$; this is shown in the `Breslow' column of table \ref{tab:val1}. (Also known as the Aalen estimate, Breslow estimate, and all possible combinations of the three names.) Then the residual can be written as \begin{equation} M_i = \delta_i - \exp(x_i\beta)\lhat(t_i) \label{mart} \end{equation} Each of the two subjects who die at time 6 are credited with the full hazard increment at time 6. Residuals at $\beta=0$ and $\bhat$ are shown in the table below. <>= mresid1 <- function(r) { status <- c(1,0,1,1,0,1) xbeta <- c(r,r,r,1,1,1) temp1 <- 1/(3*r +3) temp2 <- 2/(r+3) + temp1 status - xbeta*c(temp1, temp1, temp2, temp2, temp2, 1+ temp2) } r0 <- mresid1(1) r1 <- round(mresid1((3 + sqrt(33))/2), 6) @ \begin{center} \begin{tabular}{c|lrr} Subject &\multicolumn{1}{c}{$\Lambda_0$} & $\Mhat(0)$ & $\Mhat(\bhat)$ \\ \hline 1& $1/(3r+3)$ & $5/6$ & \Sexpr{r1[1]} \\ 2& $1/(3r+3)$ & $-1/6$ & \Sexpr{r1[2]} \\ 3& $1/(3r+3) + 2/(r+3)$ &$1/3$ & \Sexpr{r1[3]} \\ 4& $1/(3r+3) + 2/(r+3)$ &$1/3$ & \Sexpr{r1[4]} \\ 5& $1/(3r+3) + 2/(r+3)$ & $-2/3$ & \Sexpr{r1[5]} \\ 6 & $1/(3r+3) + 2/(r+3) +1$ & $-2/3$ & \Sexpr{r1[6]} \end{tabular} \end{center} The score statistic $U$ can be written as a two way sum involving the covariate(s) and the martingale residuals \begin{equation} U = \sum_{i=1}^n \int [x_i - \xbar(t)] dM_i(t) \label{score} \end{equation} The martingale residual $M$ has jumps at the observed deaths, leading to the table below with 6 rows and 3 columns. The score residuals $L_i$ are defined as the per-patient contributions to this total, i.e., the row sums, and the Schoenfeld residuals are the per-time point contributions, i.e., the column sums. \begin{center} \begin{tabular}{cccc} &\multicolumn{3}{c}{Time} \\ Subject & 1 & 6 & 9 \\ \hline 1&$ \left(1- \frac{r}{r+1} \right) \left(1- \frac{r}{3r+3} \right)$ &0&0 \\ 2& $\left(1- \frac{r}{r+1} \right) \left(0- \frac{r}{3r+3} \right)$ &0&0 \\ 3& $\left(1- \frac{r}{r+1} \right) \left(0- \frac{r}{3r+3} \right)$ & $\left(1- \frac{r}{r+3} \right) \left(1- \frac{2r}{r+3} \right)$ & 0\\ 4& $\left(0- \frac{r}{r+1} \right) \left(0- \frac{1}{3r+3} \right)$ & $\left(0- \frac{r}{r+3} \right) \left(1- \frac{2}{r+3} \right)$ & 0\\ 5& $\left(0- \frac{r}{r+1} \right) \left(0- \frac{1}{3r+3} \right)$ & $\left(0- \frac{r}{r+3} \right) \left(0- \frac{2}{r+3} \right)$ & 0\\ 6& $\left(0- \frac{r}{r+1} \right) \left(0- \frac{1}{3r+3} \right)$ & $\left(0- \frac{r}{r+3} \right) \left(0- \frac{2}{r+3} \right)$ & (0 - 0) (1-1) \end{tabular} \end{center} At $\beta=0$ the score residuals are 5/12, -1/12, 7/24, -1/24, 5/24 and 5/24. Showing that the three column sums are identical to the three terms of equation \eqref{U1} is left as an exercise for the reader, namely $1- \xbar(1)$, $(1- \xbar(6)) + (0- \xbar(6))$ and $1 - \xbar(9)$. The computer program returns 4 residuals, one per event, rather than one per death time as this has proven to be more useful for plots and other downstream computations. In the multivariate case there will be a matrix like the above for each covariate. Let $L$ be the $n$ by $p$ matrix made up of the collection of row sums where $n$ is the number of subjects and $p$ is the number of covariates, this is the matrix of score residuals. The dfbeta residuals are the $n$ by $p$ matrix $D = L \Cvar$; $\imat$ has been defined above for this data set. $D$ is an approximate measure of the influence of each observation on the solution vector. Similarly, the scaled Schoenfeld residuals are the (number of events) by $p$ matrix obtained by multiplying the Schoenfeld residuals by $\Cvar$. As stated above there is a close connection between the Nelson--Aalen estimate estimate of cumulative hazard and the Breslow approximation for ties. The baseline hazard is shown as the column $\Lambda_0$ in table \ref{tab:val1}. The estimated hazard for a subject with covariate $x_i$ is $\Lambda_i(t) = \exp(x_i \beta) \Lambda_0(t)$ and the survival estimate for the subject is $S_i(t)= \exp(-\Lambda_i(t))$. The variance of the cumulative hazard is the sum of two terms. Term 1 is a natural extension of the Nelson--Aalen estimator to the case where there are weights. It is a running sum, with an increment at each death of $1/(\sum Y_i(t)r_i(t))^2$. For a subject with covariate $x_i$ this term is multiplied by $[\exp(x_i \beta)]^2$. The second term is $c\Cvar c'$, where $\imat$ is the information matrix of the Cox model and $c$ is a vector. The second term accounts for the fact that the weights themselves have a variance; $c$ is the derivative of $S(t)$ with respect to $\beta$ and can be formally written as $$ \exp(x\beta) \int_0^t (\bar x(s) - x_i) d\hat\Lambda_0 (s)\,. $$ This can be recognized as $-1$ times the score residual process for a subject with $x_i$ as covariates and no events; it measures leverage of a particular observation on the estimate of $\beta$. It is intuitive that a small score residual --- an observation whose covariates has little influence on $\beta$ --- results in a small added variance; that is, $\beta$ has little influence on the estimated survival. \begin{center} \begin{tabular}{c|l} Time & Term 1 \\ \hline 1& $1/(3r+3)^2$ \\ 6& $1/(3r+3)^2 + 2/(r+3)^2$ \\ 9& $1/(3r+3)^2 + 2/(r+3)^2 + 1/1^2$ \\ \multicolumn{2}{c}{} \\ Time & $c$ \\ \hline 1& $(r/(r+1))* 1/(3r+3)$ \\ 6& $(r/(r+1))* 1/(3r+3) + (r/(r+3))* 2/(r+3)$ \\ 9& $(r/(r+1))* 1/(3r+3) + (r/(r+3))* 2/(r+3) + 0*1$\\ \end{tabular} \end{center} For $\beta=0$, $x=0$: \begin{center} \begin{tabular}{c|lll} Time & \multicolumn{2}{c}{Variance}&\\ \hline 1 & 1/36 &+ $1.6*(1/12)^2 $ &= 7/180\\ 6 & (1/36 + 2/16) &+ $1.6*(1/12 + 2/16)^2 $ &= 2/9\\ 9 & (1/36 + 2/16 + 1)&+ $1.6*(1/12 + 2/16 + 0)^2$&= 11/9\\ \end{tabular} \end{center} For $\beta=1.4752849$, $ x=0$ \begin{center} \begin{tabular}{c|lll} Time & \multicolumn{2}{c}{Variance}&\\ \hline 1 & 0.0038498 &+ .004021 &= 0.007871\\ 2 & 0.040648 &+ .0704631 &= 0.111111\\ 4 & 1.040648 &+ .0704631 &= 1.111111\\ \end{tabular} \end{center} \subsection{Efron approximation} The Efron approximation \cite{Efron77} differs from the Breslow only at day 6, where two deaths occur. A useful way to view the approximation is to recast the problem as a lottery model. On day 1 there were 6 subjects in the lottery and 1 ticket was drawn, at which time the winner became ineligible for further drawings and withdrew. On day 6 there were 4 subjects in the drawing (at risk) and two tickets (deaths) were drawn. The Breslow approximation considers all four subjects to be eligible for both drawings, which implies that one of them could in theory have won both, that is, died twice. This is of clearly impossible. The Efron approximation treats the two drawings on day 6 as sequential. All four living subjects are at risk for the first of them, then the winner is withdrawn. Three subjects are eligible for the second drawing, either subjects 3, 5, and 6 or subjects 2, 5, and 6, but we do not know which. In some sense then, subjects 3 and 4 each have ``.5 probability" of being at risk for the second event at time 6. In the computation, we treat the two deaths at time 6 as two separate times (two terms in the loglik), with subjects 3 and 4 each having a case weight of 1/2 for the second one. The mean covariate for the second event is then $$ \frac{1*r/2 + 0*1/2 + 0*1 + 0*1 } {r/2 + 1/2 + 1+1} = \frac{r}{r+5} $$ and the main quantities are \begin{eqnarray*} LL &=& \{\beta- \log(3r+3)\} + \{\beta - \log(r+3)\} + \{0-\log(r/2 +5/2)\} + \{0-0\} \\ &=& 2\beta - \log(3r+3) - \log(r+3) - \log(r/2 +5/2)\\ \\ U &=& \left(1-\frac{r}{r+1}\right) + \left(1-\frac{r}{r+3}\right) + \left(0-\frac{r}{r+5}\right) + (0-0) \\ &=& \frac{-r^3 + 23r + 30}{(r+1)(r+3)(r+5)} \\ \\ I&=& \left\{\frac{r}{r+1} - \left( \frac{r}{r+1} \right )^2\right\} + \left\{\frac{r}{r+3} - \left( \frac{r}{r+3} \right )^2\right\} \\ && + \left\{\frac{r}{r+5} - \left( \frac{r}{r+5} \right )^2\right\}. \end{eqnarray*} The solution corresponds to the one positive root of $U(\beta)=0$, which is $r=2\sqrt{23/3}\cos(\phi/3)$ where $\phi=\arccos\{(45/23)\sqrt{3/23}\}$ via the standard formula for the roots of a cubic equation. This yields $r \approx 5.348721$ or $\bhat = \log(r) \approx 1.676857$. Plugging this value into the formulas above yields $$ \begin{array}{ll} LL(0)=-4.276666 & LL(\bhat)=-3.358979 \\ U(0) = 52/48 & U(\bhat) = 0 \\ \imat(0) = 83/144 & \imat(\bhat) = 0.612632. \end{array} $$ The martingale residuals are again $O-E$, but the expected part of the calculation changes. For the first drawing at time 6 the total number of ``tickets'' in the drawing is $r+1+1+1$; subject 4 has an increment of $r/(r+3)$ and the others $1/(r+3)$ to their expected value. For the second event at time 6 subjects 3 and 4 have a weight of 1/2, the total number of tickets is $(r+5)/2$ and the consequent increment in the cumulative hazard is $2/(r+5)$. This $\beta=0$ this calculation is equivalent to the Fleming-Harrington \cite{Fleming84} estimate of cumulative hazard. Subjects 3 and 4 receive 1/2 of this second increment to $E$ and subjects 5 and 6 the full increment. Efron \cite{Efron77} did not discuss residuals so did not investigate this aspect of the approximation, we nevertheless sometime refer to this using combinations of Fleming, Harrington, Efron in the same way as the Nelson-Aalen-Breslow estimate. The martingale residuals are \begin{center} \begin{tabular}{cl} Subject & $M_i$ \\ \hline 1 & $1 - r/(3r+3)$ \\ 2 & $0 - r/(3r+3)$ \\ 3 & $1 - r/(3r+3) - r/(r+3) - r/(r+5)$ \\ 4 & $1 - 1/(3r+3) - 1/(r+3) - 1/(r+5)$ \\ 5 & $0 - 1/(3r+3) - 1/(r+3) - 2/(r+5)$ \\ 6 & $0 - 1/(3r+3) - 1/(r+3) - 2/(r+5) - 1$ \\ \end{tabular} \end{center} giving residuals at $\beta=0$ of 5/6, -1/6, 5/12, 5/12, -3/4 and -3/4. The matrix defining the score and Schoenfeld residuals has the same first column (time 1) and last column as before, with the following contributions at time 6. \begin{center} \begin{tabular}{ccc} &\multicolumn{2}{c}{Time} \\ Subject & 6 (first) & 6 (second)\\ \hline 1&0 & 0 \\ 2&0 & 0 \\ 3& $\left(1- \frac{r}{r+3} \right) \left(1- \frac{r}{r+3} \right)$ & $\left(1- \frac{r}{r+5} \right) \left(1- \frac{2r}{r+5} \right)/2$ \\ 4& $\left(0- \frac{r}{r+3} \right) \left(0- \frac{1}{r+3} \right)$ & $\left(0- \frac{r}{r+5} \right) \left(1- \frac{2}{r+5} \right)/2$ \\ 5& $\left(0- \frac{r}{r+3} \right) \left(0- \frac{1}{r+3} \right)$ & $\left(0- \frac{r}{r+5} \right) \left(0- \frac{2}{r+5} \right)$ \\ 6& $\left(0- \frac{r}{r+3} \right) \left(0- \frac{1}{r+3} \right)$ & $\left(0- \frac{r}{r+5} \right) \left(0- \frac{2}{r+5} \right)$ \end{tabular} \end{center} The score residuals at $\beta=0$ are 5/12, -1/12, 55/144, -5/144, 29/144 and 29/144. It is an error to generate residuals for the Efron method by using formula \eqref{mart}, which was derived from the Breslow approximation. It is clear that some packages do exactly this, however, which can be verified using formulas from above. (Statistical forensics is another use for our results.) What are the consequences of this? On a formal level the resulting ``martingale residuals'' no longer have an expected value of 0 and thus are not martingales, so one loses theoretical backing for derived plots or statistics. The score, Schoenfeld, dfbeta and scaled Schoenfeld residuals are based on the martingale residual so suffer the same loss. On a practical level, when the fraction of ties is small it is quite often the case that $\bhat$ is nearly the same when using the Breslow and Efron approach. We have normally found the correct and ad hoc residuals to be similar as well in that case, sufficiently so that explorations of functional form (martingale residuals), leverage and robust variance (dfbeta) and proportional hazards (scaled Schoenfeld) led to the same conclusions. This will not hold when there are a moderate to large number of ties. The variance formula for the baseline hazard function in the Efron case is evaluated the same way as before, as the sum of $(\mbox{hazard increment})^2$, treating a tied death as multiple separate hazard increments. In term 1 of the variance, the variance increment at time 6 is now $1/(r+3)^2 + 4/(r+5)^2$ rather than $2/(r+3)^2$. The increment to $d$ at time 6 is $(r/(r+3))* 1/(r+3) + (r/(r+5))* 2/(r+5)$. (Numerically, the result of this computation is intermediate between the Nelson--Aalen variance and the Greenwood variance used in the Kaplan--Meier.) For $\beta=0$, $x=0$, let $v= \Cvar = 144/83$. \begin{center} \begin{tabular}{c|ll} Time & \multicolumn{2}{c}{Variance}\\ \hline 1 & 1/36 \\ & \quad + $v(1/12)^2 $ &= \phantom{0}119/2988\\ 6 & (1/36 + 1/16 + 4/25)& \\ &\quad + $v(1/12 + 1/16+ 1/18)^2$ &= 1996/6225\\ 9 & (1/36 + 1/16 + 4/25 + 1) \\& \quad + $v(1/12 + 1/16 + 1/18 +0)^2$&= 8221/6225\\ \end{tabular} \end{center} For $\beta=1.676857$, $ x=0$. \begin{center} \begin{tabular}{c|ll} Time & \multicolumn{2}{c}{Variance}\\ \hline 1 & 0.00275667 + .00319386 & = 0.0059505\\ 2 & 0.05445330 + .0796212 & = 0.134075\\ 4 & 1.05445330 + .0796212 &= 1.134075\\ \end{tabular} \end{center} \subsection{Exact partial likelihood} Returning to the lottery analogy, for the two deaths at time 6 the exact partial likelihood computes the direct probability that those two subjects would be selected given that a pair will be chosen. The numerator is $r_3 r_4$, the product of the risk scores of the subjects with an event, and the denominator is the sum over all 6 pairs who could have been chosen: $r_3r_4 + r_3r_5 + r_3r_6 + r_4 r_5 + r_4r_6 + r_5r_6$. (If there were 10 tied deaths from a pool of 60 available the sum will have over 75 billion terms, each a product of 10 values; a truly formidable computation!) In our case, three of the four subjects at risk at time 6 have a risk score of $\exp(0x)=1$ and one a risk score of $r$, and the denominator is $r +r+ r+1 +1 +1$. \begin{eqnarray*} LL &=& \{\beta- \log(3r+3)\} + \{\beta - \log(3r+3)\} + \{0-0\} \\ &=& 2\{\beta - \log(3r+3)\}. \\ \\ U &=& \left(1-\frac{r}{r+1}\right) + \left(1-\frac{r}{r+1}\right) + (0-0)\\ &=& \frac{2}{r+1}. \\ \\ -\imat&=& \frac{2r}{(r+1)^2}. \\ \end{eqnarray*} The solution $U(\beta)=0$ corresponds to $r=\infty$, with a loglikelihood that asymptotes to $-2\log(3)$ = 2.1972. The Newton--Raphson iteration has increments of $(r+1)/r$ leading to the following iteration for $\bhat$: <>= temp <- matrix(0, 8, 3) dimnames(temp) <- list(paste0("iteration ", 0:7, ':'), c("beta", "loglik", "H")) bhat <- 0 for (i in 1:8) { r <- exp(bhat) temp[i,] <- c(bhat, 2*(bhat - log(3*r +3)), 2*r/(r+1)^2) bhat <- bhat + (r+1)/r } round(temp,3) @ The Newton-Raphson iteration quickly settles down to addition of a constant increment to $\bhat$ at each step while the partial likelihood approaches an asymptote: this is a fairly common case when the Cox MLE is infinite. A solution at $\bhat=10$ or 15 is hardly different in likelihood from the true maximum, and most programs will stop iterating around this point. The information matrix, which measures the curvature of the likelihood function at $\beta$, rapidly goes to zero as $\beta$ grows. It is difficult to describe a satisfactory definition of the expected number of events for each subject and thus a definition of the proper martingale residual for the exact calculation. Among other things it should lead to a consistent score residual, i.e., ones that sum to the total score statistic $U$ \begin{align*} L_i &= \int (x_i - \xbar(t)) dM_i(t) \\ \sum L_i &= U \end{align*} The residuals defined above for the Breslow and Efron approximations have this property, for instance. The exact partial likelihood contribution to $U$ for a set of set of $k$ tied deaths, however, is a sum of all subsets of size $k$; how would one partition this term as a simple sum over subjects? The exact partial likelihood is infrequently used and examination of post fit residuals is even rarer. The survival package (and all others that I know of) takes the easy road in this case and uses equation \eqref{mart} along with the Nelson-Aalen-Breslow hazard to form residuals. They are certainly not correct, but the viable options were to use this, the Efron residuals, or print an error message. At $\bhat=\infty$ the Breslow residuals are still well defined. Subjects 1 to 3, those with a covariate of 1, experience a hazard of $r/(3r+3)=1/3$ at time 1. Subject 3 accumulates a hazard of 1/3 at time 1 and a further hazard of 2 at time 6. The remaining subjects are at an infinitely lower risk during days 1 to 6 and accumulate no hazard then, with subject 6 being credited with 1 unit of hazard at the last event. The residuals are thus $1-1/3=2/3$, $0-1/3$, $1-7/3= -4/3$, $1-0$, 0, and 0, respectively, for the six subjects. \section{Test data 2} This data set also has a single covariate, but in this case a (start, stop] style of input is employed. Table \ref{tab:val2} shows the data sorted by the end time of the risk intervals. The columns for $\xbar$ and hazard are the values at the event times; events occur at the end of each interval for which status = 1. \begin{table}\centering \begin{tabular}{ccc|ccc} &&&Number& \\ Time&Status&$x$&at Risk& $\xbar$& $d\lhat$ \\ \hline (1,2] &1 &1 &2 &$r/(r+1)$ & $1/(r+1)$\\ (2,3] &1 &0 &3 & $r/(r+2)$ & $1/(r+2)$ \\ (5,6] &1 &0 &5 & $3r/(3r+2)$ & $1/(3r+2)$ \\ (2,7] &1 &1 &4 & $3r/(3r+1)$ & $1/(3r+1)$ \\ (1,8] &1 &0 &4 & $3r/(3r+1)$ & $1/(3r+1)$ \\ (7,9] &1 &1 &5 & $3r/(3r+2)$ & $2/(3r+2)$ \\ (3,9] &1 &1 && \\ (4,9] &0 &1 && \\ (8,14]&0 &0 &2& 0&0 \\ (8,17]&0 &0 &1& 0&0 \\ \end{tabular} \caption{Test data 2} \label{tab:val2} \end{table} \subsection{Breslow approximation} For the Breslow approximation we have \begin{eqnarray*} LL &=& \log\left(\frac{r}{r+1}\right) +\log\left(\frac{1}{r+2}\right) +\log\left(\frac{1}{3r+2}\right) +\\ && \log\left(\frac{r}{3r+1}\right) +\log\left(\frac{1}{3r+1}\right) +2\log\left(\frac{r}{3r+2}\right) \\ &=& 4\beta - \log(r+1) - \log(r+3)- 3\log(3r+2) -2\log(3r+1). \\ \\ U &=& \left(1-\frac{r}{r+1}\right) + \left(0-\frac{r}{r+2}\right) + \left(0-\frac{3r}{3r+2}\right) + \\ && \left(1-\frac{3r}{3r+1}\right) + \left(0-\frac{3r}{3r+1}\right) + 2\left(1-\frac{3r}{3r+2}\right) \\ \\ \\ \imat &=& \frac{r}{(r+1)^2} + \frac{2r}{(r+2)^2} + \frac{6r}{(3r+2)^2} + \frac{3r}{(3r+1)^2} \\ && \frac{3r}{(3r+1)^2} + \frac{12r}{(3r+2)^2} . \\ \end{eqnarray*} In this case $U$ is a quartic equation and we find the solution numerically. <>= ufun <- function(r) { 4 - (r/(r+1) + r/(r+2) + 3*r/(3*r+2) + 6*r/(3*r+1) + 6*r/(3*r+2)) } rhat <- uniroot(ufun, c(.5, 1.5), tol=1e-8)$root bhat <- log(rhat) c(rhat=rhat, bhat=bhat) @ The solution is at $U(\bhat)=0$ or $r \approx .9189477$; $\bhat = \log(r) \approx -.084526$. Then <>= true2 <- function(beta, newx=0) { r <- exp(beta) loglik <- 4*beta - log(r+1) - log(r+2) - 3*log(3*r+2) - 2*log(3*r+1) u <- 1/(r+1) + 1/(3*r+1) + 4/(3*r+2) - ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) imat <- r/(r+1)^2 + 2*r/(r+2)^2 + 6*r/(3*r+2)^2 + 3*r/(3*r+1)^2 + 3*r/(3*r+1)^2 + 12*r/(3*r+2)^2 hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 2/(3*r+2) ) xbar <- c(r/(r+1), r/(r+2), 3*r/(3*r+2), 3*r/(3*r+1), 3*r/(3*r+1), 3*r/(3*r+2)) # The matrix of weights, one row per obs, one col per time # deaths at 2,3,6,7,8,9 wtmat <- matrix(c(1,0,0,0,1,0,0,0,0,0, 0,1,0,1,1,0,0,0,0,0, 0,0,1,1,1,0,1,1,0,0, 0,0,0,1,1,0,1,1,0,0, 0,0,0,0,1,1,1,1,0,0, 0,0,0,0,0,1,1,1,1,1), ncol=6) wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat x <- c(1,0,0,1,0,1,1,1,0,0) status <- c(1,1,1,1,1,1,1,0,0,0) xbar <- colSums(wtmat*x)/ colSums(wtmat) n <- length(x) # Table of sums for score and Schoenfeld resids hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time dM <- -hazmat #Expected part for (i in 1:6) dM[i,i] <- dM[i,i] +1 #observed dM[7,6] <- dM[7,6] +1 # observed mart <- rowSums(dM) # Table of sums for score and Schoenfeld resids # Looks like the last table of appendix E.2.1 of the book resid <- dM * outer(x, xbar, '-') score <- rowSums(resid) scho <- colSums(resid) # We need to split the two tied times up, to match coxph scho <- c(scho[1:5], scho[6]/2, scho[6]/2) var.g <- cumsum(hazard*hazard /c(1,1,1,1,1,2)) var.d <- cumsum( (xbar-newx)*hazard) surv <- exp(-cumsum(hazard) * exp(beta*newx)) varhaz <- (var.g + var.d^2/imat)* exp(2*beta*newx) list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard, mart=mart, score=score, rmat=resid, scho=scho, surv=surv, var=varhaz) } val2 <- true2(bhat) rtemp <- round(val2$mart, 6) @ $$ \begin{array}{ll} LL(0)= \Sexpr{round(true2(0)$loglik, 6)} & LL(\bhat)= \Sexpr{round(val2$loglik,6)} \\ U(0) = -2/15 & U(\bhat) = 0 \\ \imat(0) = 2821/1800 & \imat(\bhat) = \Sexpr{round(val2$imat,6)} %$ \end{array} $$ \def\haz{\hat \lambda} The martingale residuals are (status--cumulative hazard) or $O-E = \delta_i - \int Y_i(s) r_i d\lhat(s)$. Let $\haz_1, \ldots, \haz_6$ be the six increments to the cumulative hazard listed in Table \ref{tab:val2}. Then the cumulative hazards and martingale residuals for the subjects are as follows. \begin{center} \begin{tabular}{c|lrr} Subject &$\Lambda_i$ & $\Mhat(0)$ & $\Mhat(\bhat)$ \\ \hline 1& $r\haz_1$ & 1--30/60 & \Sexpr{rtemp[1]} \\ 2& $\haz_2 $ & 1--20/60 & \Sexpr{rtemp[2]}\\ 3& $\haz_3 $ & 1--12/60 & \Sexpr{rtemp[3]} \\ 4& $r(\haz_2 + \haz_3 + \haz_4)$& 1--47/60 & \Sexpr{rtemp[4]}\\ 5& $\haz_1+\haz_2+\haz_3+\haz_4+\haz_5$& 1--92/60 & \Sexpr{rtemp[5]}\\ 6 &$r*(\haz_5 + \haz_6) $& 1--39/60 & \Sexpr{rtemp[6]} \\ 7& $r*(\haz_3+\haz_4+\haz_5+ \haz_6)$& 1--66/60& \Sexpr{rtemp[7]}\\ 8& $r*(\haz_3+\haz_4+\haz_5+ \haz_6)$& 0--66/60&\Sexpr{rtemp[8]} \\ 9& $\haz_6$ & 0--24/60 & \Sexpr{rtemp[9]} \\ 10& $\haz_6$ & 0--24/60 & \Sexpr{rtemp[10]} \end{tabular} \end{center} The score and Schoenfeld residuals can be laid out in a tabular fashion. Each entry in the table is the value of $\{x_i - \xbar(t_j)\} d\Mhat_i(t_j)$ for subject $i$ and event time $t_j$. The row sums of the table are the score residuals for the subject; the column sums are the Schoenfeld residuals at each event time. Below is the table for $\beta= \log(2)$ ($r=2$). This is a slightly more stringent test than the table for $\beta=0$, since in this latter case a program could be missing a factor of $r = \exp(\beta)=1$ and give the correct answer. However, the results are much more compact than those for $\bhat$, since the solutions are exact fractions. %\newcommand{\pf}[2]{$\left(\frac{#1}{#2}\right)$} %positive fraction %\newcommand{\nf}[2]{$\left(\frac{-#1}{#2}\right)$} %negative fraction \newcommand{\pf}[2]{$\phantom{-}\frac{#1}{#2}$} %positive fraction \newcommand{\nf}[2]{$-\frac{#1}{#2}$} %negative fraction \renewcommand{\arraystretch}{1.5} \begin{center} \begin{tabular}{c|cccccc|c} & \multicolumn{6}{c|}{Event Time} & Score\\ Id&2&3&6&7&8&9& Resid \\ \hline 1&\pf{1}{9} &&&&&& $\phantom{-}\frac{1}{9}$ \\ 2&&\nf{3}{8} &&&&& $-\frac{3}{8}$ \\ 3&&&\nf{21}{32}&&&& $-\frac{21}{32}$ \\ 4&&\nf{1}{4} & \nf{1}{16} & \pf{5}{49} &&& $-\frac{165}{784} $\\ 5&\pf{2}{9}& \pf{1}{8} & \pf{3}{32} & \pf{6}{49} & \nf{36}{49}&& $-\frac{2417}{14112} $\\ 6&&&&& \nf{2}{49} & \pf{1}{8} & $\phantom{-}\frac{33}{392}$ \\ 7&&& \nf{1}{16} & \nf{2}{49}& \nf{2}{49} & \pf{1}{8} & $-\frac{15}{784}$ \\ 8&&& \nf{1}{16} & \nf{2}{49}& \nf{2}{49} & \nf{1}{8} & $-\frac{211}{784}$ \\ 9&&&&&& \pf{3}{16} &$ \phantom{-}\frac{3}{16}$ \\ 10&&&&&& \pf{3}{16} & $\phantom{-}\frac{3}{16}$ \\ \hline & \pf{1}{3} &\nf{1}{2} & \nf{3}{4} & \pf{1}{7} & \nf{6}{7} & \pf{1}{2} & \nf{95}{84} \\ &&&&&&& \\ & $\frac{1}{r+1}$ & $\frac{-r}{r+2}$ & $\frac{-3r}{r+2}$ & $\frac{1}{3r+1}$ & $\frac{3r}{3r+1}$ & $\frac{4}{3r+2}$ \end{tabular} \end{center} Both the Schoenfeld and score residuals sum to the score statistic $U(\beta)$. As discussed further above, programs will return two Schoenfeld residuals at time 7, one for each subject who had an event at that time. \subsection{Efron approximation} This example has only one tied death time, so only the term(s) for the event at time 9 change. The main quantities at that time point are as follows. \begin{center} \begin{tabular}{r|cc} &Breslow & Efron \\ \hline $LL$ & $2\log\left(\frac{r}{3r+2}\right)$ & $\log\left(\frac{r}{3r+2}\right) + \log\left(\frac{r}{2r+2}\right)$ \\ $U$ & $\frac{2}{3r+2}$& $\frac{1}{3r+2} + \frac{1}{2r+2}$ \\ $\imat$& $2\frac{6r}{(3r+2)^2} $ &$\frac{6r}{(3r+2)^2} + \frac{4r}{(2r+2)^2}$\\ $d\lhat$ & $\frac{2}{3r+2} $ & $\frac{1}{3r+2} + \frac{1}{2r+2}$ \end{tabular} \end{center} \renewcommand{\arraystretch}{1} \section{Test data 3} This is very similar to test data 1, but with the addition of case weights. There are 9 observations, $x$ is a 0/1/2 covariate, and weights range from 1 to 4. As before, let $r = \exp(\beta)$ be the risk score for a subject with $x=1$. Table \ref{tab:val3} shows the data set along with the mean and increment to the hazard at each point. \begin{table} \centering \begin{tabular}{cccc|cc} Time&Status&$X$ & Wt& $\xbar(t)$ & $d\lhat_0(t)$ \\ \hline 1& 1& 2 & 1& $(2r^2+11r) d\lhat_0 =\xbar_1$ & $1/(r^2 + 11r +7)$ \\ 1& 0& 0 & 2&& \\ 2& 1& 1 & 3& $11r/(11r+5) = \xbar_2$ & $10/(11r+5)$ \\ 2& 1& 1 & 4&& \\ 2& 1& 0 & 3&& \\ 2& 0& 1 & 2&& \\ 3& 0& 0 & 1&& \\ 4& 1& 1 & 2& $2r/(2r+1)= \xbar_3$ & $ 2/(2r+1)$ \\ 5& 0& 0 & 1 & \\ \end{tabular} \caption{Test data 3} \label{tab:val3} \end{table} \subsection{Breslow estimates} The likelihood is a product of terms, one for each death, of the form $$ \left( \frac{e^{X_i \beta}}{\sum_j Y_j(t_i) w_j e^{X_j \beta}} \right) ^{w_i} $$ For integer weights, this gives the same results as would be obtained by replicating each observation the specified number of times, which is in fact one motivation for the definition. The definitions for the score vector $U$ and information matrix $\imat$ simply replace the mean and variance with weighted versions of the same. Let $PL(\beta,w)$ be the log partial liklihood when all the observations are given a common case weight of $w$; it is easy to prove that $PL(\beta,w) = wPL(\beta,1) - d\log(w)$ where $d$ is the number of events. One consequence of this is that $PL$ can be positive for weights that are less than 1, a case which sometimes occurs in survey sampling applications. (This can be a big surprise the first time one encounters it.) \begin{eqnarray*} LL &=& \{2\beta - \log(r^2 + 11r +7)\} + 3\{\beta - \log(11r+5)\} \\ && + 4\{\beta - \log(11r+5)\} +3\{0 - \log(11r+5)\} \\ && + 2\{\beta - \log(2r+1) \} \\ &=& 11\beta - \log(r^2 + 11r +7) -10\log(11r+5) - 2\log(2r+1) \\\\ U &=& (2- \xbar_1) + 3(0-\xbar_2) + 4(1-\xbar_2) + 3(1-\xbar_2) + 2(1-\xbar_3) \\ &=& 11 - [(2r^2+11r)/(r^2+11r+7) + 10(11r/(11r+5)) + 2(2r/(2r+1))] \\ I &=& [(4r^2 + 11r)/(r^2 + 11r +7) - \xbar_1^2] + 10(\xbar_2 - \xbar_2^2) + 2(\xbar_3 - \xbar_3^2) \\ \end{eqnarray*} The solution corresponds to $U(\beta)=0$ and can be computed using a simple search for the zero of the equation. <>= ufun <- function(r) { xbar <- c( (2*r^2 + 11*r)/(r^2 + 11*r +7), 11*r/(11*r + 5), 2*r/(2*r +1)) 11- (xbar[1] + 10* xbar[2] + 2* xbar[3]) } rhat <- uniroot(ufun, c(1,3), tol= 1e-9)$root bhat <- log(rhat) c(rhat=rhat, bhat=bhat) @ From this we have <>= wfun <- function(r) { beta <- log(r) pl <- 11*beta - (log(r^2 + 11*r + 7) + 10*log(11*r +5) + 2*log(2*r +1)) xbar <- c((2*r^2 + 11*r)/(r^2 + 11*r +7), 11*r/(11*r +5), 2*r/(2*r +1)) U <- 11 - (xbar[1] + 10*xbar[2] + 2*xbar[3]) H <- ((4*r^2 + 11*r)/(r^2 + 11*r +7)- xbar[1]^2) + 10*(xbar[2] - xbar[2]^2) + 2*(xbar[3]- xbar[3]^2) c(loglik=pl, U=U, H=H) } temp <- matrix(c(wfun(1), wfun(rhat)), ncol=2, dimnames=list(c("loglik", "U", "H"), c("beta=0", "beta-hat"))) round(temp, 6) @ When $\beta=0$, the three unique values for $\xbar$ at $t=1$, 2, and 4 are 13/19, 11/16 and 2/3, respectively, and the increments to the cumulative hazard are 1/19, 10/16 = 5/8, and 2/3, see table \ref{tab:val3}. The martingale and score residuals at $\beta=0$ and $\bhat$ are \begin{center} \begin{tabular}{cc|lr} Id &Time& \multicolumn{1}{c}{$M(0)$} &\multicolumn{1}{c}{$M(\bhat)$} \\ \hline A&1 & $1-1/19 = 18/19 $&0.85531\\ B&1 & $0-1/19 = -1/19 $&-0.02593\\ C&2 & $1-(1/19 + 5/8)= 49/152 $&0.17636 \\ D&2 & $1-(1/19 + 5/8)= 49/152 $&0.17636\\ E&2 & $1-(1/19 + 5/8)= 49/152 $&0.65131\\ F&2 & $0-(1/19 + 5/8)= -103/152 $&-0.82364\\ G&3 & $0-(1/19 + 5/8)= -103/152 $&-0.34869\\ H&4 & $1-(1/19 + 5/8 +2/3)= -157/456 $&-0.64894\\ I&5 & $0-(1/19 + 5/8 +2/3)= -613/456 $&-0.69808\\ \end{tabular} \end{center} Score residuals at $\beta=0$ are \begin{center} \begin{tabular}{cc|r} Id &Time& Score \\ \hline A&1 &$(2-13/19)(1-1/19)$\\ B&1 &$(0-13/19)(0-1/19)$\\ C&2 &$ (1-13/19)(0-1/19) + (1-11/16)(1-5/8) $ \\ D&2 &$(1-13/19)(0-1/19) + (1-11/16)(1-5/8)$ \\ E&2 &$(0-13/19)(0-1/19) + (0-11/16)(1-5/8)$ \\ F&2 &$(1-13/19)(0-1/19) + (1-11/16)(0-5/8)$ \\ G&3 &$(1-13/19)(0-1/19) + (0-11/16)(0-5/8)$ \\ H&4 &$(1-13/19)(0-1/19) + (1-11/16)(0-5/8) $ \\ && $ + (1-2/3)(1-2/3)$ \\ I&5 &$(1-13/19)(0-1/19) + (1-11/16)(0-5/8)$ \\ & &$+ (0-2/3)(0-2/3) $ \\ \end{tabular} \end{center} {\splus} also returns unweighted residuals by default, with an option to return the weighted version; it is the weighted sum of residuals that totals zero, $\sum w_i \Mhat_i=0$. Whether the weighted or the unweighted form is more useful depends on the intended application, neither is more ``correct'' than the other. {\splus} does differ for the dfbeta residuals, for which the default is to return weighted values. For the third observation in this data set, for instance, the unweighted dfbeta is an approximation to the change in $\bhat$ that will occur if the case weight is changed from 2 to 3, corresponding to deletion of one of the three ``subjects'' that this observation represents, and the weighted form approximates a change in the case weight from 0 to 3, i.e., deletion of the entire observation. The increments of the Nelson-Aalen estimate of the hazard are shown in the rightmost column of table \ref{tab:val3}. The hazard estimate for a hypothetical subject with covariate $X^\dagger$ is $\Lambda_i(t) = \exp(X^\dagger \beta) \Lambda_0(t)$ and the survival estimate is $S_i(t)= \exp(-\Lambda_i(t))$. The two term of the variance, for $X^\dagger=0$, are Term1 + $d'Vd$: \begin{center} \begin{tabular}{c|l} Time & Term 1 \\ \hline 1& $1/(r^2 + 11r+7)^2$ \\ 2& $1/(r^2 + 11r+7)^2 + 10/(11r+5)^2$ \\ 4& $1/(r^2 + 11r+7)^2 + 10/(11r+5)^2 + 2/(2r+1)^2$ \\ \multicolumn{2}{c}{} \\ Time & $d$ \\ \hline 1& $(2r^2+11r)/(r^2+11r+7)^2$ \\ 2& $(2r^2+11r)/(r^2+11r+7)^2 + 110r/(11r+5)^2$ \\ 4& $(2r^2+11r)/(r^2+11r+7)^2 + 110r/(11r+5)^2 + 4r/(2r+1)^2$ \end{tabular} \end{center} For $\beta=\log(2)$ and $X^\dagger =0$, where $k\equiv$ the variance of $\bhat$ = 1/2.153895 this reduces to \begin{center} \begin{tabular}{c|ll} Time & \multicolumn{2}{c}{Variance}\\ \hline 1 & 1/1089 &+ $k(30/1089)^2$ \\ 2 & (1/1089+ 10/729) &+ $k(30/1089+ 220/729)^2 $ \\ 4 & (1/1089+ 10/729 + 2/25)&+ $k(30/1089+ 220/729 + 8/25)^2$\\ \end{tabular} \end{center} giving numeric values of 0.0012706, 0.0649885, and 0.2903805, respectively. \subsection{Efron approximation} For the Efron approximation the combination of tied times and case weights can be approached in at least two ways. One is to treat the case weights as replication counts. There are then 10 tied deaths at time 2 in the data above, and the Efron approximation involves 10 different denominator terms. Let $a= 7r+3$, the sum of risk scores for the 3 observations with an event at time 2 and $b=4r+2$, the sum of risk scores for the other subjects at risk at time 2. For the replication approach, the loglikelihood is \begin{eqnarray*} LL &=& \{2\beta - \log(r^2 + 11r +7)\} + \\ && \{7\beta - \log(a+b) - \log(.9a+b) - \ldots - \log(.1a+b) \} + \\ && \{2\beta - \log(2r+1) - \log(r+1)\}. \end{eqnarray*} A test program can be created by comparing results from the weighted data set (9 observations) to the unweighted replicated data set (19 observations). This is the approach taken by SAS \code{phreg} using the \code{freq} statement. It's advantage is that the appropriate result for all of the weighted computations is perfectly clear the disadvantage is that the only integer case weights are supported. (A secondary advantage is that I did not need to create another algebraic derivation for this appendix.) A second approach, used in the survival package, allows for non-integer weights. The data is considered to be 3 tied observations, and the log-likelihood at time 2 is the sum of 3 weighted terms. The first term of the three is one of \begin{eqnarray*} && 3 [\beta - \log(a+b)] \\ && 4 [\beta - \log(a+b)] \\ &{\rm or}&3 [0 - \log(a+b)], \end{eqnarray*} depending on whether the event for observation C, D or E actually happened first (had we observed the time scale more exactly); the leading multiplier of 3, 4 or 3 is the case weight. The second term is one of \begin{eqnarray*} && 4 [\beta - \log(4s+3+b)] \\ && 3 [0 - \log(4s+3+b)] \\ && 3 [\beta - \log(3s+3+b)] \\ && 3 [\beta - \log(3s+3+b)] \\ && 3 [0 - \log(4s+3+b)] \\ &{\rm or}&4 [\beta - \log(4s+3+b)]. \end{eqnarray*} The first choice corresponds to an event order of observation C then D (subject D has the event, with D and E still at risk), the second to $C \rightarrow E$, then $D\rightarrow C$, $D\rightarrow E$, $E \rightarrow C$ and $E \rightarrow D$, respectively. For a weighted Efron approximation first replace the argument to the $\log$ function by its average argument, just as in the unweighted case. Once this is done the average term in the above corresponds to using an average weight of 10/3. The final log-likelihood and score statistic are \begin{eqnarray*} LL &=& \{2\beta - \log(r^2 + 11r +7)\} \\ && + \{7\beta - (10/3)[\log(a+b) + \log(2a/3 +b) + \log(a/3+b)] \} \\&& + 2\{\beta - \log(2r+1) \} \\ \\ U &=& (2- \xbar_1) + 2(1-\xbar_3) \\ && + 7 - (10/3)[\xbar_2 + 26r/(26r+12) + 19r/(19r+9)] \\ &=& 11 -(\xbar_1 + (10/3)(\xbar_2 + \xbar_{2b} +\xbar_{2c}) + 2\xbar_3)\\ \\ I &=& [(4s^2+11s)/(s^2+11s+7)- \xbar_1^2] \\ &&+ (10/3)[ (\xbar_2- \xbar_2^2) + (\xbar_{2b}- \xbar_{2b}^2) + (\xbar_{2b}- \xbar_{2b}^2) \\ &&+2(\xbar_3 - \xbar_3^2) \\ \end{eqnarray*} The solution is at $\beta=.87260425$, and $$ \begin{array}{ll} LL(0)=-30.29218 & LL(\bhat)=-29.41678 \\ U(0) = 2.148183 & U(\bhat) = 0 \\ \imat(0) = 2.929182 & \imat(\bhat) = 1.969447 \,. \end{array} $$ The hazard increment and mean at times 1 and 4 are identical to those for the Breslow approximation, as shown in table \ref{tab:val3}. At time 2, the number at risk for the first, second and third portions of the hazard increment are $n_1= 11r+5$, $n_2= (2/3)(7r+3) + 4r+2 = (26r+12)/3$, and $n_3=(1/3)(7r+3) + 4r+2 = (19r+9)/3$. Subjects F--I experience the full hazard at time 2 of $(10/3)(1/n_1 + 1/n_2 + 1/n_3)$, subjects B--D experience $(10/3)(1/n_1 + 2/3n_2 + 1/3n_3)$. Thus, at $\beta=0$ the martingale residuals are \begin{center} \begin{tabular}{cc|ll} Id& Time & \multicolumn{1}{c}{$\Mhat(0)$} \\ \hline A & 1 & 1 - 1/19 & = 18/19 \\ B & 1 & 0 - 1/19 & = -1/19 \\ C & 2 & 1 - (1/19 + 10/48 + 20/114 + 10/84)& =473/1064 \\ D & 2 & 1 - (1/19 + 10/48 + 20/114 + 10/84)& =473/1064 \\ E & 2 & 1 - (1/19 + 10/48 + 20/114 + 10/84) &=473/1064 \\ F & 2 & 0 - (1/19 + 10/48 + 10/38\phantom{4} + 10/28)& =-2813/3192 \\ G & 3 & 0 - (1/19 + 10/48 + 10/38\phantom{4} + 10/28) &=-2813/3192 \\ H & 4 & 1 - (1/19 + 10/48 + 10/38\phantom{4} + 10/28 + 2/3) &=-1749/3192 \\ I & 5 & 0 - (1/19 + 10/48 + 10/38\phantom{4} + 10/28 + 2/3) &=-4941/3192 \end{tabular} \end{center} The hazard estimate for a hypothetical subject with covariate $X^\dagger$ is $\Lambda_i(t) = \exp(X^\dagger \beta) \Lambda_0(t)$, $\Lambda_0$ has increments of $1/(r^2 + 11r +7$, $(10/3)(1/n_1 + 1/n_2 + 1/n_3)$ and $2/(2r+1)$. This increment at time 2 is a little larger than the Breslow jump of $10/d1$. The first term of the variance will have an increment of $[\exp((X^\dagger \beta)(]^2 (10/3)(1/n_1^2 + 1/n_2^2 + 1/n_3^2)$ at time 2. The increment to the cumulative distance from the center $d$ will be \begin{eqnarray*} && [X^\dagger - \frac{11r}{11r+5}] \frac{10}{3 n_1} \\ &+& [X^\dagger -\frac{(2/3)7r + 4r}{n2} ] (10/3)(1/n_2) \\ &+& [X^\dagger -\frac{(1/3)7r + 4r}{n2} ] (10/3)(1/n_3) \end{eqnarray*} For $X^\dagger = 1$ and $\beta=\pi/3$ we get cumulative hazard and variance below. We have $r\equiv e^\pi/3$, $V$= %\begin{tabular}{l$=$l|l$+$l$=$r} %\multicolumn{2}{c}{$\Lambda$} & \multicolumn{3}{c}{Variance} \\ \hline %e/(r^2+ 11r+7) & 0.03272832 & e^2/(r^2+ 11r+7)^2 & \section{Multi-state data} \begin{figure} <>= states <- c("Entry", "a", "b", "c") smat <- matrix(0, 4, 4, dimnames=list(states, states)) smat[1,2:3] <- 1 smat[2,3] <- smat[3,2] <- smat[3,4] <- smat[2,4] <- 1 statefig(c(1,2,1), smat) @ \caption{A simple 4 state model.} \label{mstate1} \end{figure} Figure \ref{mstate1} shows a simple multi-state model, while table \ref{mstate1t} shows a data set for the model. Subject 1 follows the path of Entry, a, b, a, with no further follow up after the final transition, while subjects 4 and 5 are 'censored'; they have further follow-up after the last observed change of state. \begin{table} \centering \begin{tabular}{ccrcc} id & time1& time2 & event x \\ \hline 1 & 0 & 4 & a & 0 \\ 1 & 4 & 9 & b & 0 \\ 1 & 9 & 10 & a & 0 \\ 2 & 0 & 5 & b & 1 \\ 3 & 2 & 9 & c & 1 \\ 4 & 0 & 2 & a & 0 \\ 4 & 2 & 8 & c & 0\\ 4 & 8 & 9 & & 0 \\ 5 & 1 & 3 & b & 2\\ 5 & 3 & 11 & & 2 \end{tabular} \caption{A multi-state data set.} \label{mstate1t} \end{table} \bibliographystyle{plain} \bibliography{refer} \end{document} survival/vignettes/timedep.Rnw0000644000176200001440000016112113537676563016303 0ustar liggesusers\documentclass{article} \usepackage{amsmath} \usepackage{Sweave} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \newcommand{\code}[1]{\texttt{#1}} %\VignetteIndexEntry{Using Time Dependent Covariates} \title{Using Time Dependent Covariates and Time Dependent Coefficients in the Cox Model} \author{Terry Therneau \and Cynthia Crowson \and Elizabeth Atkinson\\ \emph{Mayo Clinic}} \begin{document} \maketitle \SweaveOpts{prefix.string=compete,width=6,height=4} \setkeys{Gin}{width=\textwidth} \SweaveOpts{keep.source=TRUE} <>= options(width=60, continue=" ") makefig <- function(file, top=1, right=1, left=4) { pdf(file, width=9.5, height=7, pointsize=18) par(mar=c(4, left, top, right) +.1) } library(survival) @ \section{Introduction} This vignette covers 3 different but interrelated concepts: \begin{itemize} \item An introduction to time dependent covariates, along with some of the most common mistakes. \item Tools for creating time-dependent covariates, or rather the data sets used to encode them. \item Time dependent coefficients. \end{itemize} \section{Time dependent covariates} One of the strengths of the Cox model is its ability to encompass covariates that change over time. The practical reason that time-dependent covariates work is based on the underlying way in which the Cox model works: at each event time the program compares the current covariate values of the subject who had the event to the current values of all others who were at risk at that time. One can think of it as a lottery model, where at each death time there is a drawing to decide which subject ``wins'' the event. Each subject's risk score $\exp(X\beta)$ determines how likely they are to win, e.g., how many ``tickets'' they have purchased for the drawing. The model tries to assign a risk score to each subject that best predicts the outcome of each drawing based on \begin{itemize} \item The risk set: which subjects are present for each event; the set of those able to ``win the prize''. \item The covariate values of each subject just prior to the event time. \end{itemize} The model has a theoretical foundation in martingale theory, a mathematical construct which arose out of the study of games of chance. A key underlying condition for a martingale like game is that present actions depend only on the past. The decision of whether to play (is one in the risk set or not) and the size of a bet (covariates) can depend in any way on prior bets and patterns of won/lost, but cannot look into the future. If this holds then multiple properties can be proven about the resulting process. A simple way to code time-dependent covariates uses intervals of time. Consider a subject with follow-up from time 0 to death at 185 days, and assume that we have a time dependent covariate (creatinine) that was measured at day 0, 90 and 120 with values of .9, 1.5, and 1.2 mg/dl. A way to encode that data for the computer is to break the subject's time into 3 time intervals 0-90, 90-120, 120-185, with one row of data for each interval. The data might look like the following <>= tdata <- data.frame(subject=c(5,5,5), time1=c(0,90, 120), time2 = c(90, 120, 185), death=c(0,0,1), creatinine=c(0.9, 1.5, 1.2)) tdata @ We read this as stating that over the interval from 0 to 90 the creatinine for subject ``5'' was 0.9 (last known level), and that this interval did not end in a death. The underlying code treats intervals as open on the left and closed on the right, e.g. the creatinine on exactly day 90 is 0.9. One way to think of this is that all changes for a given day (covariates or status) are recorded at the start of the next interval. The key rule for time dependent covariates in a Cox model is simple and essentially the same as that for gambling: \emph{you cannot look into the future}. A covariate may change in any way based on past data or outcomes, but it may not reach forward in time. In the above simple data set this means that we cannot add a linear interpolation between the creatinine values 0.9 and 1.5 to get a predicted value of 1.1 on day 100; on day 100 the later value of 1.5 has not yet been seen. A an example consider a recent analysis from the Mayo Clinic study of aging (MCSA), a study which enrolled a stratified random sample from the population of Olmsted County and then has followed them forward in time. The occurrence of mild cognitive impairment (MCI), dementia, and death are all of interest. The paper starts out with a table comparing baseline covariates for those who never progress to MCI versus those who ever did, there is also a table of baseline covariates versus survival. Both of these are fine: if you think in terms of an R formula they could be written with future outcomes on the left hand side of the formula and past information on the right. A table that compared the survival of those who did or did not progress to MCI, however, would be invalid. It corresponds to a model with a future occurrence on both sides of the equation. One of the more well known examples of this error is analysis by treatment response: at the end of a trial a survival curve is made comparing those who had an early response to treatment (shrinkage of tumor, lowering of cholesterol, or whatever) to those who did not, and it discovered that responders have a better curve. A Cox model fit to the same data will demonstrate a strong ``significant'' effect. The problem arises because any early deaths, those that occur before response can be assessed, will all be assigned to the non-responder group, even deaths that have nothing to do with the condition under study. Below is a simple example based on the advanced lung cancer data set. Assume that subjects came in monthly for 12 cycles of treatment, and randomly declare a ``response'' for 5\% of the subjects at each visit. <>= set.seed(1953) # a good year nvisit <- floor(pmin(lung$time/30.5, 12)) response <- rbinom(nrow(lung), nvisit, .05) > 0 badfit <- survfit(Surv(time/365.25, status) ~ response, data=lung) plot(badfit, mark.time=FALSE, lty=1:2, xlab="Years post diagnosis", ylab="Survival") legend(1.5, .85, c("Responders", "Non-responders"), lty=2:1, bty='n') @ What is most surprising about this error is the \emph{size} of the false effect that is produced. A Cox model using the above data reports a hazard ratio of 1.9 fold with a p-value of less than 1 in 1000. The alarm about this incorrect approach has been sounded often \cite{Anderson83, Buyse96, Suissa08} but the analysis is routinely re-discovered. A slightly subtler form of the error is discussed in Redmond et al \cite{Redmond83}. The exploration was motivated by a flawed analysis presented in Bonadonna et. al \cite{Bref} which looked at the effect of total dose. Breast cancer chemotherapy patients were divided into three groups based on whether the patient eventually received $>85$\%, 65--85\% or $<65$\% of the dose planned at the start of their treatment. Per the above, this approach leads to a severe bias since early deaths do not finish all their cycles of chemotherapy and hence by definition get a lower dose. A proportional hazards model using total dose received shows a very strong effect for dose, so much so that it could encourage a treating physician to defer necessary dose reductions in response to treatment toxicity. This false result actively harmed patients. Redmond looked at a variant of this: create a variable $p$ for each subject which is the fraction of the target dose \emph{up to} the last entry for that subject. A subject who died after recieving only 6 weeks of a planned 12 week regimen could still score 100\%. This looks like it should cure the bias issue, but as it turns out it leads to bias in the other direction. The reason is that dose reductions due to toxicity occur more often in the later cycles of treatment, and thus living longer leads to smaller values of $p$. A proportional hazards regression fit to $p$ implies that a smaller dose is protective! The proper approach is to code the predictor as a time-dependent covariate. For treatment response this will be a variable that starts at 0 for all subjects and is recoded to 1 only when the response occurs. For dose it would measure cumulative dose to date. There are many variations on the error: interpolation of the values of a laboratory test linearly between observation times, removing subjects who do not finish the treatment plan, imputing the date of an adverse event as midway between observation times, etc. Using future data will often generate large positive or negative bias in the coefficients, but sometimes it generates little bias at all. It is nearly impossible to predict a priori which of these will occur in any given data set. Using such a covariate is similar to jogging across a Los Angeles freeway: disaster is not guaranteed --- but it is likely. The most common way to encode time-dependent covariates is to use the (start, stop] form of the model. <>= fit <- coxph(Surv(time1, time2, status) ~ age + creatinine, data=mydata) @ In data set \code{mydata} a patient might have the following observations \begin{center} \begin{tabular}{ccccccc} subject & time1 & time2 & status & age & creatinine & \ldots \\ \hline 1 & 0 & 15 & 0 & 25 & 1.3 \\ 1 & 15& 46 & 0 & 25 & 1.5 \\ 1 & 46& 73 & 0 & 25 & 1.4 \\ 1 & 73& 100& 1 & 25 & 1.6 \\ \end{tabular} \end{center} In this case the variable \code{age} = age at entry to the study stays the same from line to line, while the value of creatinine varies and is treated as 1.3 over the interval $(0, 15]$, 1.5 over $(15, 46]$, etc. The intervals are open on the left and closed on the right, which means that the creatinine is taken to be 1.3 on day 15. The status variable describes whether or not each interval ends in an event. One common question with this data setup is whether we need to worry about correlated data, since a given subject has multiple observations. The answer is no, we do not. The reason is that this representation is simply a programming trick. The likelihood equations at any time point use only one copy of any subject, the program picks out the correct row of data at each time. There two exceptions to this rule: \begin{itemize} \item When subjects have multiple events, then the rows for the events are correlated within subject and a cluster variance is needed. \item When a subject appears in overlapping intervals. This however is almost always a data error, since it corresponds to two copies of the subject being present in the same strata at the same time, e.g., she could meet herself at a party. \end{itemize} A subject can be at risk in multiple strata at the same time, however. This corresponds to being simultaneously at risk for two distinct outcomes. \section{Building time-dependent sets with tmerge} \subsection{The function} A useful function for building data sets is \code{tmerge}, which is part of the survival library. The idea is to build up a time dependent data set one endpoint at at time. The primary arguments are \begin{itemize} \item data1: the base data set that will be added onto \item data2: the source for new information \item id: the subject identifier in the new data \item \ldots: additional arguments that add variables to the data set \item tstart, tstop: used to set the time range for each subject \item options \end{itemize} The created data set has three new variables (at least), which are \code{id}, \code{tstart} and \code{tstop}. The key part of the call are the ``\ldots'' arguments which each can be one of four types: tdc() and cumtdc() add a time dependent variable, event() and cumevent() add a new endpoint. In the survival routines time intervals are open on the left and closed on the right, i.e., (tstart, tstop]. Time dependent covariates apply from the start of an interval and events occur at the end of an interval. If a data set already had intervals of (0,10] and (10, 14] a new time dependent covariate or event at time 8 would lead to three intervals of (0,8], (8,10], and (10,14]; the new time-dependent covariate value would be added to the second interval, a new event would be added to the first one. The basic form of the function is <>= newdata <- tmerge(data1, data2, id, newvar=tdc(time, value), ...) @ Where \code{data1} is the starting data set and additions to the data are taken from \code{data2}. The idea behind the function is that each addition will be ``slipped in'' to the original data in the same way that one would slide a new card into an existing deck of cards. It is a complex function, and we illustrate it below with a set of examples that sequentially reveal its features. \subsection{CGD data set} Chronic granulomatous disease (CGD) is a heterogeneous group of uncommon inherited disorders characterized by recurrent pyogenic infections that usually begin early in life and may lead to death in childhood. In 1986, Genentech, Inc. conducted a randomized, double-blind, placebo-controlled trial in 128 CGD patients who received Genentech's humanized interferon gamma (rIFN-g) or placebo three %' times daily for a year. Data were collected on all serious infections until the end of followup, which occurred before day 400 for most patients. One patient was taken off on the day of his last infection; all others have some followup after their last episode. Below are the first 10 observations, see the help page for \texttt{cgd0} for the full list of variable names. The last few columns contain the duration of follow-up for the subject followed by infection times. Subject 1 was followed for 414 days and had infections on days 219 and 373, subject 2 had 7 infections and subject 3 had none. \small \begin{verbatim} 1 204 082888 1 2 12 147.0 62.0 2 2 2 2 414 219 373 2 204 082888 0 1 15 159.0 47.5 2 2 1 2 439 8 26 152 241 249 322 350 3 204 082988 1 1 19 171.0 72.7 1 2 1 2 382 4 204 091388 1 1 12 142.0 34.0 1 2 1 2 388 5 238 092888 0 1 17 162.5 52.7 1 2 1 1 383 246 253 6 245 093088 1 2 44 153.3 45.0 2 2 2 2 364 7 245 093088 0 1 22 175.0 59.7 1 2 1 2 364 292 8 245 093088 1 1 7 111.0 17.4 1 2 1 2 363 9 238 100488 0 1 27 176.0 82.8 2 2 1 1 349 294 10 238 100488 1 1 5 113.0 19.5 1 2 1 1 371 \end{verbatim} \normalsize The data set is included as \code{cgd0} in the survival library. Here is the R printout of the first four subjects. <<>>= cgd0[1:4,] @ We want to turn this into a data set that has survival in a counting process form. \begin{itemize} \item Each row of the resulting data set represents a time interval (time1, time2] which is open on the left and closed on the right. Covariate values for that row are the covariate values that apply over that interval. \item The event variable for each row $i$ is 1 if the time interval ends with an event and 0 otherwise. \end{itemize} We don't need variables etime1--etime7 in the final data set, so they are left out of the data1 argument in the first call. <>= dim(cgd0) newcgd <- tmerge(data1=cgd0[, 1:13], data2=cgd0, id=id, tstop=futime) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime1)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime2)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime3)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime4)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime5)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime6)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime7)) newcgd <- tmerge(newcgd, newcgd, id, enum=cumtdc(tstart)) dim(newcgd) newcgd[1:5,c(1, 4:6, 13:17)] attr(newcgd, "tcount") coxph(Surv(tstart, tstop, infect) ~ treat + inherit + steroids + + cluster(id), newcgd) @ These lines show the canonical way to use tmerge: each call adds one more bit of information to the data set. \begin{itemize} \item The first call sets the \emph{time range} for each subject to be from 0 (default) to last follow-up. If a later call tried to add an event outside that range, at time = -2 say, that addition would be ignored. The range can be set explicitly by using the tstop and (optional) tstart arguments, or implicitly as will be done in the heart transplant example below. This first result has \Sexpr{nrow(cgd0)} rows, the same number as \code{cgd0}. \item Each additional call then adds either an endpoint or a covariate, splitting individual rows of the input in two as necessary. An \code{event} or \code{cumevent} directive adds events, while a \code{tdc} or \code{cumtdc} one adds a time dependent covariate. Events happen at the ends of intervals and time-dependent covariates change at the start of an interval. \item Additions from \code{data2} with a missing time value are ignored. \item The result of \code{tmerge} is a data frame with a few extra attributes. One of these, tcount, is designed to help visualize the process and was printed out after the last step above. Assume that a subject already had 3 intervals of (2,5), (5,10) and (14,40). A new event added at time 1 would be ``early'' while one at time 50 is after any interval and would be recorded as ``late''. An event at time 3 is within an interval, one at 5 is on the border of two intervals, one at 14 is at the leading edge of an interval, one at time 10 in on the trailing edge and at time 11 is in a gap. In this data set all new additions fell strictly within prior intervals. We also see that etime6 and etime7 each added only a single event to the data. \item If two observations in data2 for a single person share exactly the same time, the created value will be the later contribution for tdc() or event() calls, cumtdc() and cumevent() will add. The ``tied'' column tells how often this happened; in some data sets this behavior might not be desired and one would need to break the ties before calling tmerge. \item The last tmerge call adds a simple time-dependent variable \code{enum} which is a running observation count for each subject. This can often be a useful variable in later models or processing, e.g. \code{enum==1} selects off the first row for each subject. \item The extra attributes of the data frame are ephemeral: they will be lost as soon as any further manipulation is done. This is intentional. \item One can verify that the resulting data set is equivalent to \code{cgd}, a (start, stop] version of the CGD data in the survival library which had been created by hand several years earlier. \end{itemize} The \code{tmerge} function processes arguments sequentially, and the above example can be rewritten as below. There is no computational advantage of one form versus the other. <>= test <- tmerge(cgd0[, 1:13], cgd0, id=id, tstop=futime, infect = event(etime1), infect= event(etime2), infect = event(etime3), infect= event(etime4), infect = event(etime5), infect= event(etime6), infect = event(etime7)) test <- tmerge(test, test, id= id, enum = cumtdc(tstart)) all.equal(newcgd, test) @ \subsection{Stanford heart transplant} The \code{jasa} data set contains information from the Stanford heart transplant study, in the form that it appeared in the paper of Crowley and Hu \cite{Crowley77}. The data set has one line per subject which contains the baseline covariates along with dates of enrollment, transplant, and death or last follow-up. We want to create \code{transplant} as a time dependent covariate. As is often the case with real data, this data set contains a few anomalies that need to be dealt with when setting up an analysis data set. \begin{enumerate} \item One subject died on the day of entry. However (0,0) is an illegal time interval for the \code{coxph} routine. It suffices to have them die on day 0.5. An alternative is to add 1 day to everyone's follow-up, e.g., subject 2 who enrolled on Jan 2 1968 and died on Jan 7 would be credited with 6 days. (This is what Kalbfleisch and Prentice do in their textbook.) The result of the final \code{coxph} call is the same from either strategy. \item A subject transplanted on day 10 is considered to have been on medical treatment for days 1--10 and as transplanted starting on day 11. That is, except for patient 38 who died on the same day as their procedure. They should be treated as a transplant death; the problem is resolved by moving this transplant back .5 day. \item The treatment coefficients in table 6.1 of the definitive analysis found in Kalbfleisch and Prentice \cite{Kalbfleisch02} will only be obtained if covariates are defined in precisely the same way, since their models include interactions. (Table 5.2 in the original edition of the book). For age this is (age in days)/ 365.25 - 48 years, and for year of enrollment it is the number of years since the start of the study: (entry date - 1967/10/1)/365.25. (Until I figured this out I would get occasional ``why is coxph giving the wrong answers'' emails.) \end{enumerate} Since time is in days the fractional time of 0.5 could be any value between 0 and 1, our choice will not affect the results. <>= jasa$subject <- 1:nrow(jasa) #we need an identifier variable tdata <- with(jasa, data.frame(subject = subject, futime= pmax(.5, fu.date - accept.dt), txtime= ifelse(tx.date== fu.date, (tx.date -accept.dt) -.5, (tx.date - accept.dt)), fustat = fustat )) sdata <- tmerge(jasa, tdata, id=subject, death = event(futime, fustat), trt = tdc(txtime), options= list(idname="subject")) attr(sdata, "tcount") sdata$age <- sdata$age -48 sdata$year <- as.numeric(sdata$accept.dt - as.Date("1967-10-01"))/365.25 # model 6 of the table in K&P coxph(Surv(tstart, tstop, death) ~ age*trt + surgery + year, data= sdata, ties="breslow") @ This example shows a special case for the \code{tmerge} function that is quite common: if the first created variable is an event then the time range for each subject is inferred to be from 0 to the event time: explicit \code{tstop} and \code{tstart} arguments are not required. It also makes use of a two argument form of \code{event}. Each of the \code{event}, \code{cumevent}, \code{tdc} and \code{cumtdc} functions may have a second argument, which if present will be used as the value for the event code or time dependent covariate. If this second argument is not present a value of 1 is used. If a created variable is not already in data1, the starting value \emph{before} the first definition of that variable is a NA for a \code{tdc} or \code{cumtdc} call that has two arguments and 0 in all other cases. If the variable being created is already a part of data1, then our updates make changes to that variable. Be careful of this. This feature is what allowed for the \code{infection} indicator to be build up incrementally in the cgd example above, but quite surprising results can occur when you think a new variable is being created de novo but its name is already in use. For example, if we name the new variable `transplant' in the third line of \code{sdata} above it collides with an existing variable in the \code{jasa} data set; the result is to not create a time-dependent transplant variable at all. (The author made this mistake himself when creating this vignette, and then spent several hours searching the tmerge code for an error that wasn't there.) The \code{tcount} table for the above fit shows all the deaths at the trailing edge of their interval, which is expected since the time of death or last follow-up was used to define each subject's interval of risk. Two of the transplants happened on day 0 and are listed as occurring on the leading edge of the first follow-up interval for the subject. The other 67 transplants were strictly within the (0, last follow up) interval of each subject. \subsection{PBC data} The \code{pbc} data set contains baseline data and follow-up status for a set of subjects with primary biliary cirrhosis, while the \code{pbcseq} data set contains repeated laboratory values for those subjects. The first data set contains data on 312 subjects in a clinical trial plus 106 that agreed to be followed off protocol, the second data set has data only on the trial subjects. <>= temp <- subset(pbc, id <= 312, select=c(id:sex, stage)) # baseline pbc2 <- tmerge(temp, temp, id=id, death = event(time, status)) #set range pbc2 <- tmerge(pbc2, pbcseq, id=id, ascites = tdc(day, ascites), bili = tdc(day, bili), albumin = tdc(day, albumin), protime = tdc(day, protime), alk.phos = tdc(day, alk.phos)) fit1 <- coxph(Surv(time, status==2) ~ log(bili) + log(protime), pbc) fit2 <- coxph(Surv(tstart, tstop, death==2) ~ log(bili) + log(protime), pbc2) rbind('baseline fit' = coef(fit1), 'time dependent' = coef(fit2)) @ We start the build with a baseline data set that has a subset of the variables. This is due to my own frugality --- I happen to like data sets that are more trim. It is not a requirement of the tmerge function, however, and a user is certainly free to skip the first step above and build \code{pbc2} directly from data set \code{pbc}. The coefficients of bilirubin and prothrombin time are somewhat larger in the time-dependent analysis than the fit using only baseline values. In this autoimmune disease there is steady progression of liver damage, accompanied by a steady rise in these two markers of dysfunction. The baseline analysis captures patients' disease status at the start, the time-dependent analysis is able to account for those who progress more quickly. In the pbc data set the status variable is 0= censored, 1= liver transplant and 2= death; the above analyses were models of time to death, censoring at transplant. (At the time of the PBC study liver transplantation was still in its infancy and it is fair to view the 19/312 subjects who received the procedure as a random sample. In the modern era there are far more waiting recipients than organs and available livers are directed to those patients who illness is most dire; censoring at transplant would not lead to an interpretable result.) By default \code{tmerge} ignores any updates from \code{data2} that have a missing value for either the time or the value. In the pbcseq data set there are several observations with a missing alkaline phosphotase value. A consequence of this behavior is that the pbc2 data set effectively uses ``last value carried forward'' values for alk.phos, replacing those missing values. Subject 6 for instance has a total follow-up of 2503, and alk.phos values of 682 and NA on days 1492 and 2453, respectively; in the final data set it is coded 682 from day 1492 until last follow up. One can change this default by adding \code{options=list(na.rm=FALSE)} to the second call above, in which case the alkaline phosphotase value over the interval (2453, 2503] will become missing. Any \code{tdc} calls with a missing time are still ignored, independent of the na.rm value, since we would not know where to insert them. <<>>= attr(pbc2, "tcount") @ <>= #grab a couple of numbers for the paragraph below atemp <- attr(pbc2, "tcount")[2:3,] @ The tcount results are interesting. For the first addition of ascites we have \Sexpr{atemp[1, 'leading']} observations on a leading edge of follow up, which is all of the baseline lab values at time 0, and \Sexpr{atemp[1, 'within']} further additions within the subjects' follow-up interval. The latter cause a new break point to be added at each of these intermediate laboratory dates, for subsequent additions these \Sexpr{atemp[1, 'within']} times lie on a boundary of two intervals. Another \Sexpr{atemp[1, 'late']} non-missing alkaline phosphotase values occurred after the last follow-up date of the pbc data set and are ignored. Bilirubin is missing on no subjects, so it's addition creates a few more unique break points in the follow-up, namely those clinical visits for which the ascites value was missing. The data for the pbcseq data set was assembled at a later calendar time than the primary data set. Since having lab test results is a certain marker that the patient is still alive, would a better analysis have used this test information to extend the last follow-up date for these \Sexpr{atemp[2,'late']} ``late'' subjects with a later laboratory date? Not necessarily. Odd things happen in survival analysis when risk sets are extended piecemeal. A basic tenet of the Cox model is that if someone is marked as being ``at risk'' over some interval $(s, t)$, this means that ``if they had had an event over that interval, we would have recorded it.'' Say someone ended their initial follow-up time at 3000 days and then had a lab test at 3350 days (subjects returned about once a year). If we only extend the time of those who had a test, then saying that this subject was at risk during the interval (3000, 3350) is false: if they had died in that interval, they would not have had the lab test and would not obtained the extension, nor would their death have been updated in the original \code{pbc} data set. The cutoff rule of \code{tmerge} is purposefully conservative to avoid creating such anomalies. In the case of the PBC data set this author happens to know that active follow-up \emph{was} continued for all subjects, both those that did and did not return for further laboratory tests. This updated follow-up information is included in the pbcseq data and could have been used to set a wider time range. Such is not always the case, however. Automatic additions to a data set via electronic systems can be particularly troublesome. One case from the author's experience involved a study of patient outcomes after organ transplant. Cases were actively followed up for 3 years, at which time priorities shifted and the clerical staff responsible for the active follow-up were reassigned. Automatic updates from a state death index continued to accumulate, however. A Kaplan-Meier curve computed at 5 years showed the remarkable result of a 3 year survival of .9 followed by a precipitous drop to 0 at 5 years! This is because there was, by definition, 100\% mortality in all those subjects with more than 3 years of supposed follow-up. \subsection{Time delay and other options} The \code{options} argument to the tmerge routine is a list with one or more of the following five elements, listed below along with their default values. \begin{itemize} \item idname = 'id' \item tstartname = 'tstart' \item tstopname = 'tstop' \item na.rm = TRUE \item delay = 0 \end{itemize} The first three of these are the variable names that will be used for the identifier, start, and stop variables which are added to the output data set. They only need to be specified one time within a series of tmerge calls in order to effect a change. The na.rm option has been discussed above; it affects tdc() and cumtdc() directives within a single tmerge call. The delay option causes any tdc or cumtdc action in the tmerge call to be delayed by a fixed amount. The final two tmerge calls below are \emph{almost} identical in their action: <>= temp <- subset(pbc, id <= 312, select=c(id:sex, stage)) pbc2 <- tmerge(temp, temp, id=id, death = event(time, status)) pbc2a <- tmerge(pbc2, pbcseq, id=id, ascites = tdc(day, ascites), bili = tdc(day, bili), options= list(delay=14)) pbc2b <- tmerge(pbc2, pbcseq, id=id, ascites = tdc(day+14, ascites), bili = tdc(day+14, bili)) @ The difference between \code{pbc2a} and \code{pbc2b} is that the first call does not defer baseline values for each subject, i.e., any value with a time that is on or before the the subject's first time point, as that will introduce intervals with a missing value into the result. The more important question is \emph{why} one would wish to delay or lag a time dependent covariate. One reason is to check for cases of reverse causality. It is sometimes the case that a covariate measured soon before death is not a predictor of death but rather is simply a marker for an event that is already in progress. A simple example would the the time dependent covariate ``have called the family for a final visit''. A less obvious one from the author's experience occurs when a clinical visit spans more than one day, the endpoint is progression, and one or more laboratory results that were used to define ``progression'' get recorded in the data set 1-2 days before the progression event. (They were perhaps pulled automatically from a laboratory information system). One then ends up with the tautology of a test value predicting its own result. Even more subtle biases can occur via coding errors. For any data set containing constructed time-dependent covariates, it has become the author's practice to re-run the analyses after adding a 7-14 day lag to key variables. When the results show a substantial change, and this is not infrequent, understanding why this occurred is an critical step. Even if there is not an actual error, one has to question the value of a covariate that can predict death within the next week but fails for a longer horizon. \subsection{Cumulative events} The action of the \code{cumevent} operator is different than \code{cumtdc} in several ways. Say that we have a subject with outcomes of one type at times 5, 10, and 15 and another type at times 6 and 15, with a follow-up interval of 0 to 20. For illustration I'll call the first event 'asthma' and the second 'IBD' (a disease flare in inflammatory bowel disease). A resulting data set would have the following form: \begin{center} \begin{tabular}{rcccc} &\multicolumn{2}{c}{cumtdc} & \multicolumn{2}{c}{cumevent} \\ interval & asthma & IBD & asthma & IBD \\ \hline (0, 5] & 0 &0 & 1 & 0 \\ (5, 6] & 1 &0 & 0 & 1 \\ (6, 10]& 1 &1 & 2 & 0 \\ (10, 15] & 2& 1& 3 & 2 \\ (15, 20] & 3& 2& 0 & 0 \end{tabular} \end{center} Events happen at the ends of an interval and time-dependent covariates change the following intervals. More importantly, time-dependent covariates persist while events do not, a \code{cumevent} action simply changes the label attached to an event. \subsubsection{REP} The motivating case for \code{tmerge} came from a particular problem: the Rochester Epidemiology Project has tracked all subjects living in Olmsted County, Minnesota, from 1965 to the present. For an investigation of cumulative comorbidity we had three data sets \begin{itemize} \item base: demographic data such as sex and birth date \item timeline: one or more rows for each subject containing age intervals during which they were a resident of the county. The important variables are id, age1 and age2; each (age1, age2) pair marks an interval of residence. Disjoint intervals are not uncommon. \item outcome: one row for the first occurrence of each outcome of interest. The outcomes were 20 comorbid conditions as defined by a particular research initiative from the National Institutes of Health. \end{itemize} The structure for building the data is shown below. (The data for this example unfortunately cannot be included with the survival library so the code is shown but not executed.) <>= newd <- tmerge(data1=base, data2=timeline, id=repid, tstart=age1, tstop=age2, options(id="repid")) newd <- tmerge(newd, outcome, id=repid, mcount = cumtdc(age)) newd <- tmerge(newd, subset(outcome, event='diabetes'), diabetes= tdc(age)) newd <- tmerge(newd, subset(outcome, event='arthritis'), arthritis= tdc(age)) @ The first call to tmerge adds the time line for each observation to the baseline data. For this first call both data1 and data2 must contain a copy of the id variable (here \code{repid}), and data1 is constrained to have only a single line for each id value. (Subjects have a single baseline.) Each subsequent call adds a new variable to the data set. The second line creates a covariate which is a cumulative count of the number of comorbidities thus far for each subject. The third line creates a time dependent covariate (tdc) which will be 0 until the age of diabetes and is 1 thereafter, the fourth line creates a time dependent variable for the presence of arthritis. Time dependent covariates that occur before the start of a subject's follow-up interval or during a gap in time do not generate a new time point, but they do set the value of that covariate for future times. Events that occur in a gap are not counted. The rationale is that during a subject's time within the county we would like the variable ``prior diagnosis of diabetes'' to be accurate, even if that diagnosis occurred during a prior period when the subject was not a resident. For events outside of the time line, we have no way to know who the appropriate comparison group is, and so must ignore those events. (Formally, the risk set would be the set of all non-residents who, if they were to have had an event at the same age, we would find out about it because they will later move to the county, have a medical encounter here, and have that event written into the ``prior conditions'' section of their medical record.) \section{Time dependent coefficients} Time dependent covariates and time dependent coefficients are two different extensions of a Cox model, as shown in the two equations below. \begin{align} \lambda(t) &= \lambda_0(t) e^{\beta X(t)} \label{tdcovar} \\ \lambda(t) &= \lambda_0(t) e^{\beta(t) X} \label{tdbeta} \end{align} Equation \eqref{tdcovar} is a time dependent covariate, a commonly used and well understood usage. Equation \eqref{tdbeta} has a time dependent coefficient. These models are much less common, but represent one way to deal with non-proportional hazards -- the proportional hazard assumption is precisely that the coefficient does not change over time: $\beta(t) = c$. The \code{cox.zph} function will plot an estimate of $\beta(t)$ for a study and is used to diagnose and understand non-proportional hazards. Here for example is a test case using the veterans cancer data. <>= options(show.signif.stars = FALSE) # display user intelligence vfit <- coxph(Surv(time, status) ~ trt + prior + karno, veteran) vfit quantile(veteran$karno) zp <- cox.zph(vfit, transform= function(time) log(time +20)) zp plot(zp[3]) # a plot for the 3rd variable in the fit abline(0,0, col=2) abline(h= vfit$coef[3], col=3, lwd=2, lty=2) @ Karnofsky score is a very important predictor, but its effect is not constant over time as shown by both the test and the plot. Early on it has a large negative effect: the risk of someone at the first quartile is approximately exp(35*.03377) = 3.2 fold times that of someone at the third quartile, but by 200 days this has waned and is not much different from zero. One explanation is that, in this very acute illness, any measure that is over 6 months old is no longer relevant. The proportional hazards model estimates an average hazard over time, the value of which is shown by the dashed horizontal line. The use of an average hazard is often reasonable, the proportional hazards assumption is after all never precisely true. In this case, however, the departure is quite large and a time dependent coefficient is a more useful summary of the actual state. The cox.zph plot is excellent for diagnosis but does not, however, produce a formal fit of $\beta(t)$. What if we want to fit the model? \subsection{Step functions} One of the simplest extensions is a step function for $\beta(t)$, i.e., different coefficients over different time intervals. An easy way to do this is to use the \code{survSplit} function to break the data set into time dependent parts. We will arbitrarily divide the veteran's data into 3 epochs of the first 3 months, 3-6 months, and greater than 6 months. <>= vet2 <- survSplit(Surv(time, status) ~ ., data= veteran, cut=c(90, 180), episode= "tgroup", id="id") vet2[1:7, c("id", "tstart", "time", "status", "tgroup", "age", "karno")] @ The first subject died at 72 days, his data is unchanged. The second and third subjects contribute time to each of the three intervals. <>= vfit2 <- coxph(Surv(tstart, time, status) ~ trt + prior + karno:strata(tgroup), data=vet2) vfit2 cox.zph(vfit2) @ A fit to the revised data shows that the effect of baseline Karnofsky score is essentially limited to the first two months. The \code{cox.zph} function shows no further time dependent effect of Karnofsky score. This last is of course no surprise, since we used the original graph to pick the cut points. A ``test'' that the coefficients for the three intervals are different will be biased by this sequential process and should be viewed with caution. Survival curves post fit require a little more care. The default curve uses the mean covariate values, which is always problematic and completely useless in this case. Look at the set of saved means for the model: <>= vfit2$means @ The default curve will be for someone on treatment arm \Sexpr{round(vfit2$means[1], 2)}, %$ which applies to no one, and a single set of ``blended'' values of the Karnofsky score, each times the three Karnofsky coefficients. This is rectified by creating a new data set with time intervals. We create two hypothetical subjects labeled as ``curve 1'' and ``curve 2''. One has a Karnofsky of 40 and the other a Karnofsky of 75, both on treatment 1 and with no prior therapy. Each has the appropriate values for the time dependent covariate \code{tgroup}, which is 1, 2, 3 over 0--90, 90--180 and 180+ days, respectively. We will draw curves for the first year. <>= quantile(veteran$karno) cdata <- data.frame(tstart= rep(c(0,90,180), 2), time = rep(c(90,180, 365), 2), status= rep(0,6), #necessary, but ignored tgroup= rep(1:3, 2), trt = rep(1,6), prior= rep(0,6), karno= rep(c(40, 75), each=3), curve= rep(1:2, each=3)) cdata sfit <- survfit(vfit2, newdata=cdata, id=curve) km <- survfit(Surv(time, status) ~ I(karno>60), veteran) plot(km, xmax= 365, col=1:2, lwd=2, xlab="Days from enrollment", ylab="Survival") lines(sfit, col=1:2, lty=2, lwd=2) @ The default behavior for survival curves based on a coxph model is to create one curve for each line in the input data; the \code{id} option causes it to use a set of lines for each curve. Karnofsky scores at the 25th and 75th percentiles roughly represent the average score for the lower half of the subjects and that for the upper half, respectively, and are plotted over the top of the Kaplan-Meier curves for those below and above the median. \subsection{Continuous time-dependent coefficients} If $\beta(t)$ is assumed to have a simple functional form we can fool an ordinary Cox model program in to doing the fit. The particular form $\beta(t) = a + b\log(t)$ has for instance often been assumed. Then $\beta(t) x = ax + b \log(t) x = ax + b z$ for the special time dependent covariate $z = \log(t) x$. The time scale for the \code{cox.zph} plot used further above of $\log(t + 20)$ was chosen to make the first 200 days of the plot roughly linear. Per the figure this simple linear model does not fit over the entire range, but we will forge ahead and use it as an example anyway. (After all, most who fit the log(t) form have not bothered to even look at a plot.) An obvious but incorrect approach is <>= vfit3 <- coxph(Surv(time, status) ~ trt + prior + karno + I(karno * log(time + 20)), data=veteran) @ This mistake has been made often enough the the \code{coxph} routine has been updated to print an error message for such attempts. The issue is that the above code does not actually create a time dependent covariate, rather it creates a time-static value for each subject based on their value for the covariate \code{time}; no differently than if we had constructed the variable outside of a \code{coxph} call. This variable most definitely breaks the rule about not looking into the future, and one would quickly find the circularity: large values of \code{time} appear to predict long survival because long survival leads to large values for \code{time}. A true time-dependent covariate can be constructed using the \emph{time-transform} functionality of coxph. <>= vfit3 <- coxph(Surv(time, status) ~ trt + prior + karno + tt(karno), data=veteran, tt = function(x, t, ...) x * log(t+20)) vfit3 @ The time dependent coefficient is estimated to be $\beta(t) =$ \Sexpr{round(coef(vfit3)[3], 3)} + \Sexpr{round(coef(vfit3)[4], 3)} * log(t + 20). We can add said line to the \code{cox.zph} plot. Not surprisingly, the result is rather too high for time $>$ 200 and underestimates the initial slope. Still the fit is better than a horizontal line, as confirmed by the p-value for the slope term in \code{vfit3}. (The p-value for that term from cox.zph is nearly identical, as it must be, since the tests in cox.zph are for a linear effect on the chosen time scale.) <>= plot(zp[3]) abline(coef(vfit3)[3:4], col=2) @ This same coding dichotomy exists in SAS phreg, by the way. Adding \code{time} to the right hand side of the model statement will create the time-fixed (incorrect) variable, while a programming statement within phreg that uses \code{time} as a variable will generate time-dependent objects. The error is less likely there because phreg's model statement is less flexible than R, i.e., you cannot simply write ``log(time)'' on the right hand side. The use of programming statements to create a yes/no variable deserves extra comment because of a common error. Assume one has a data set with two time variables: the time from enrollment to last follow up and the time to diabetes, say, and we want to use the presence of diabetes as time dependent covariate. Here is a small made up example. <>= data1 <- read.table(col.names=c("id", "diabetes", "lfu", "status"), header=FALSE, text=" 1 5 30 1 2 10 15 1 3 NA 60 0 4 NA 80 1 5 10 80 0 6 NA 90 1 7 30 95 1 ") data1$d2 <- pmin(data1$diabetes, 300, na.rm=TRUE) #replace NA with 300 fit1 <- coxph(Surv(lfu, status) ~ tt(d2), data=data1, tt = function(d2, t, ...) ifelse(t > d2, 1, 0)) fit2 <- coxph(Surv(lfu, status) ~ tt(d2), data=data1, tt = function(d2, t, ...) ifelse(t < d2, 0, 1)) c(coef(fit1), coef(fit2)) @ One might have expected fit1 and fit2 to give the same coefficient but they are completely different. The issue is subject 7 whose time to diabetes falls exactly at one of the event times. In fit1 their diabetes covariate effectively changes just after the event at time 30, in fit2 it changes before the event. The second is incorrect. Stated in the gambling context, all bets must be placed \emph{before} the roulette ball lands. When a data set is expanded into a start, stop format using the \code{tmerge} function ties are dealt with correctly. <>= data2 <- tmerge(data1, data1, id=id, dstat=event(lfu, status), diab = tdc(diabetes)) subset(data2, id %in% c(1,7), c(id, tstart:diab)) fit3 <- coxph(Surv(tstart, tstop, dstat) ~ diab, data2) c(coef(fit1), coef(fit2), coef(fit3)) @ \section{Predictable time-dependent covariates} Occasionally one has a time-dependent covariate whose values in the future are predictable. The most obvious of these is patient age, occasionally this may also be true for the cumulative dose of a drug. If age is entered as a linear term in the model, then the effect of changing age can be ignored in a Cox model, due to the structure of the partial likelihood. Assume that subject $i$ has an event at time $t_i$, with other subject $j \in R_i$ at risk at that time, with $a$ denoting age. The partial likelihood term is \begin{equation*} \frac{e^{\beta * a_i}}{\sum_{j \in R_i} e^{\beta* a_j}} = \frac{e^{\beta * (a_i + t_i)}}{\sum_{j \in R_i} e^{\beta* (a_j + t_i)}} \end{equation*} We see that using time-dependent age (the right hand version) or age at baseline (left hand), the partial likelihood term is identical since $\exp(\beta t_i)$ cancels out of the fraction. However, if the effect of age on risk is \emph{non-linear}, this cancellation does not occur. Since age changes continuously, we would in theory need a very large data set to completely capture the effect, one interval per day to match the usual resolution for death times. In practice this level of resolution is not necessary; though we all grow older, risk does not increase so rapidly that we need to know our age to the day! One method to create a time-changing covariate is to use the \emph{time-transform} feature of coxph. Below is an example using the pbc data set. The longest follow-up time in that data set is over 13 years, follow-up time is in days, and we might worry that the intermediate data set would be huge. The program only needs the value of the time dependent covariate(s) for each subject at the times of events, however, so the maximum number of rows in the intermediate data set is the number of subjects times the number of unique event times. <>= pfit1 <- coxph(Surv(time, status==2) ~ log(bili) + ascites + age, pbc) pfit2 <- coxph(Surv(time, status==2) ~ log(bili) + ascites + tt(age), data=pbc, tt=function(x, t, ...) { age <- x + t/365.25 cbind(age=age, age2= (age-50)^2, age3= (age-50)^3) }) pfit2 anova(pfit2) # anova(pfit1, pfit2) #this fails 2*(pfit2$loglik - pfit1$loglik)[2] @ Since initial age is in years and time is in days, it was important to scale within the tt function. The likelihood ratio of 10.8 on 2 degrees of freedom shows that the additional terms are mildly significant. When there are one or more terms on the right hand side of the equation marked with the tt() operator, the program will pre-compute the values of that variable for each unique event time. A user-defined function is called with arguments of \begin{itemize} \item the covariate: whatever is inside the tt() call \item the event time \item the event number: if there are multiple strata and the same event time occurs in two of them, they can be treated separately \item the weight for the observation, if the call used weights \end{itemize} The underlying code constructs a single call to the function with a large $x$ vector, it contains an element for each subject at risk at each event time. If there are multiple tt() terms in the formula, then the tt argument should be a list of functions with the requisite number of elements. One footnote to this, however, is that you cannot have a formula like \code{log(bili) + tt(age) + tt(age)}. The reason is that the R formula parser removes redundant terms before the result even gets to the \code{coxph} function. (This is a convenience for users so that \code{y ~ x1 + x2 + x1} won't generate redundant columns in an X matrix.) An alternate way to fit the above model is to create the expanded data set directly and then do an ordinary \code{coxph} call on the expanded data. The disadvantage of this is the very large data set, of course, but it is no larger than the internal one created by the \code{tt} call. An advantage is that further processing of the model is available, such as residuals or survival curves. The following reprises the above \code{tt} call. <>= dtimes <- sort(unique(with(pbc, time[status==2]))) tdata <- survSplit(Surv(time, status==2) ~., pbc, cut=dtimes) tdata$c.age <- tdata$age + tdata$time/365.25 -50 #current age, centered at 50 pfit3 <- coxph(Surv(tstart, time, event) ~ log(bili) + ascites + c.age + I(c.age^2) + I(c.age^3), data=tdata) rbind(coef(pfit2), coef(pfit3)) @ The above expansion has resulted in a data set of \Sexpr{nrow(tdata)} observations, as compared to the \Sexpr{nrow(pbc)} observations of the starting \code{pbc} data. A sensible fit can often be obtained with a coarser time grid: in the pbc data there is an event on day 41 and 43, is it really necessary to update all the subject ages by 2/365 at the second of these to reflect an increased risk? Instead divide the \code{max(dtimes)/365.25} = 11.5 years of total follow up into years. <>= dtime2 <- 1:11 * 365.25 tdata2 <-survSplit(Surv(time, status==2) ~., pbc, cut=dtime2) tdata2$c.age <- tdata2$age + tdata2$time/365.25 -50 #current age, centered at 50 pfit4 <- coxph(Surv(tstart, time, event) ~ log(bili) + ascites + c.age + I(c.age^2) + I(c.age^3), data=tdata2) rbind('1 day grid'= coef(pfit3), '1 year grid'= coef(pfit4)) # c(tdata=nrow(tdata), tdata2=nrow(tdata2)) @ We have almost the same result but at 1/20th the data set size. This can make a substantial difference in compute time for large data sets. Exactly how much to `thin down' the list of cutpoints can be based on subject specific knowledge, one could choose selected points based on a \code{cox.zph} plot, or start with a very coarse time grid and then sequentially refine it. In this data set we reasoned that although risk increases with age, a age change of less than one year would have minimal impact. The Cox model requires computation of a weighted mean and variance of the covariates at each event time, a process that is inherently $O(ndp^2)$ where $n$ = the sample size, $d$ = the number of events and $p$= the number of covariates. Much of the algorithmic effort in the underlying code is to use updating methods for the mean and variance matrices, reducing the compute time to $O((n+d) p^2)$. Updating is not possible across a time split and the compuatation starts anew, for a \code{tt} term we never update at all; for even moderate size data sets the impact of $nd$ versus $n+d$ can be surprising. There are other interesting uses for the time-transform capability. One example is O'Brien's logit-rank test procedure \cite{obrien78}. He proposed replacing the covariate at each event time with a logit transform of its ranks. This removes the influence of any outliers in the predictor $x$. For this case we ignore the event time argument and concentrate on the groupings to create the following tt function. <<>>= function(x, t, riskset, weights){ obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } @ This relies on the fact that the input arguments to tt() are ordered by the event number or risk set. This function is used as a default if no tt argument is present in the coxph call, but there are tt terms in the model formula. (Doing so allowed me to depreciate the survobrien function). Another interesting usage is to replace the data by simple ranks, not rescaled to 0--1. <<>>= function(x, t, riskset, weights) unlist(tapply(x, riskset, rank)) @ The score statistic for this model is $(C-D)/2$, where $C$ and $D$ are the number of concordant and discordant pairs, see the survConcordance function. The score statistic from this fit is then a test for significance of the concordance statistic, and is in fact the basis for the standard error reported by survConcordance. The O'Brien test can be viewed as concordance statistic that gives equal %' weight to each event time, whereas the standard concordance weights each event proportionally to the size of the risk set. \begin{thebibliography}{9} \bibitem{Anderson83} Anderson JR, Cain KC, and Gelber RD. Analysis of survival by tumor response. J Clinical Oncology 1:710--719, 1983. \bibitem{Buyse96} M Buyse and P Piedbois. The relationship between response to treatment and survival time. Stat in Med 15:2797--2812, 1996. \bibitem{Crowley77} J Crowley and M Hu. Covariance analysis of heart transplant survival data. J American Statistical Assoc, 72:27--36, 1977. \bibitem{Gail72} M H Gail. Does cardiac transplantation prolong life? A reassessment. Annals Int Medicine 76:815-17, 1972. \bibitem{Kalbfleisch02} J Kalbfleisch and R Prentice. The statistical analysis of failure time data, second edition. Wiley, 2002. \bibitem{obrien78} O'Brien, Peter. A non-parametric test for association with censored data, Biometrics 34:243--250, 1978. \bibitem{Redmond83} Redmond C, Fisher B, Wieand HS. The methodologic dilemma in retrospectively correlating the amount of chemotherapy received in adjuvant therapy protocols with disease free survival: a commentary. Cancer Treatment Reports 67:519--526, 1983. \bibitem{Suissa08} S Suissa. Immortal time bias in pharmacoepidemiology. Am J Epi, 167:492-499, 2008. \end{thebibliography} \end{document} survival/vignettes/concordance.Rnw0000644000176200001440000006130413537676563017134 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} %\VignetteIndexEntry{Concordance} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} % I had been putting figures in the figures/ directory, but the standard % R build script does not copy it and then R CMD check fails \SweaveOpts{prefix.string=compete,width=6,height=4} \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {compete-#1.pdf}} \setkeys{Gin}{width=\textwidth} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=10) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #ensure default #require("survival") #library(survival) library(survival) library(splines) @ \title{Concordance} \author{Terry Therneau, Elizabeth Atkinson} \newcommand{\code}[1]{\texttt{#1}} \begin{document} \maketitle \section{The concordance statistic} Use of the concordance statistic for Cox models was popularized by Harrell \cite{Harrell96}, and it is now the most used measure of goodness-of-fit in survival models. One advantage of the statistic is that it is well defined not just for survival models, but also for logistic and ordinary linear regression. In general let $y_i$ and $x_i$ be observed and predicted data values, in the most common case $x = \hat\eta$, the linear predictor from a fitted model. The concordance is defined $P(x_i > x_j | y_i > y_j)$, the probability that the prediction $x$ goes in the same direction as the actual data $y$. A pair of obervations $i$, $j$ is considered concordant if the prediction and the data go in the same direction, i.e., $(y_i > y_j, x_i > x_j)$ or $(y_i < y_j, x_i < x_j)$. The concordance is the fraction of concordant pairs. For a Cox model remember that the predicted survival $\hat y$ is longer if the risk score $X\beta$ is lower, so we have to flip the definitions of concordant and discordant. For now, ignore this detail and use the usual definition for exposition. One wrinkle is what to do with ties in either $y$ or $x$. Such pairs can be ignored in the count (treated as incomparable), treated as discordant, or given a score of 1/2. Let $C, D, T_x, T_y$ and $T_{xy}$ be a count of the pairs that are concordant, discordant, and tied on the predictor $x$ (but not $y$), tied on $y$ (but not $x$), and tied on both. Then \begin{align} \tau_a &= \frac{C-D}{C+D + T_x + T_y + T_{xy}} \label{tau.a} \\ \tau_b &= \frac{C-D}{\sqrt{(C+D+T_x)(C + D + T_y)}} \label{tau.b} \\ \gamma &= \frac{C-D}{C+D} \label{gamma} \\ d &= \frac{C-D}{C + D + T_x} \label{somer} \end{align} \begin{itemize} \item Kendall's tau-a \eqref{tau.a} is the most conservative; essentially treating ties as failures \item The Goodman-Kruskal $\gamma$ statistic \eqref{gamma} ignores ties in either $y$ or $x$. \item Somers' $d$ \eqref{somer} treats ties in $y$ as incomparable; pairs that are tied in $x$ (but not $y$) score as 1/2. The AUC measure commonly used in logistic regression is equivalent to Somers' $d$. \end{itemize} All three of the above range from -1 to 1. The concordance is $(d+1)/2$. The concordance has a natural interpretation as an experiment: present pairs of subjects one at a time to the physician, statistical model, or some other oracle, and count the number of correct predictions. Pairs that have the same outcome are not put forward for scoring (that would be unfair to the contestant); and if the oracle cannot decide it makes a random choice. This leads to $C + T_x/2$ correct selections out of $C + D + T_x$ choices, which is easily seen to be equal to $(d+1)/2$. Kendall's tau-b has a denominator of the same type, but treats $x$ and $y$ symmetrically. This hypothetical experiment gives a baseline insight into the concordance. A value of 1/2 corresponds to using a random guess for each subject. Values of $<.55$ are not very impressive, since the ordering for some pairs of subjects will be obvious, and someone with almost no medical knowledge could do nearly that well by marking those pairs and using a coin flip for the rest. Values of less than 1/2 are possible --- some stock market analysts come to mind. For survival data any pairs which cannot be ranked with certainty are also considered incomparable. For instance is $y_i$ is censored at time 10 and $y_j$ is an event (or censor) at time 20. Subject $i$ may or may not survive longer than subject $j$, and so it is not possible to tell if the rule has ranked them correctly or not. Note that if $y_i$ is censored at time 10 and $y_j$ is an event at time 10 then $y_i > y_j$. For stratified models, observations that are in different strata are also considered to be incomparable. \section{Examples} The \code{concordance} function available in the survival package can be used to estimate concordance for various types of models, including logistic and linear regression. <>= # logistic regression using Fisher's iris data fit1 <- glm(Species=="versicolor" ~ ., family=binomial, data=iris) concordance(fit1) # this gives the AUC # linear regression fit2 <- lm(karno ~ age + trt, data=veteran) concordance(fit2) # 2*concordance-1 = somers' d @ The primary the focus of this vignette will be on survival data. <>= # parametric survival regression fit3 <- survreg(Surv(time, status) ~ karno + age + trt, data=veteran) concordance(fit3) # 3 Cox models fit4 <- coxph(Surv(time, status) ~ karno + age + trt, data=veteran) fit5 <- update(fit4, . ~ . + celltype) fit6 <- update(fit5, . ~ . + prior) ctest <- concordance(fit4, fit5, fit6) ctest @ As shown in the last example, the concordance for multiple fits can be obtained from a single call. The variance-covariance matrix for all three concordance values is available using \code{vcov(ctest)}; this is used in an example below to formally test equality of two concordance values. The above also shows that addition of another variable to a fitted model can decrease the concordance. Concordance can be visualized using its contribution at each event time as shown below. The vertial axis on the graph is the rank of each of the risk score for each subject who has an event, among all those with at risk. Each rank ranges from 0 to 1, where 1= the subject who died had the highest risk score at that time and 0 = lowest. In a highly predictive Cox model we expect the subjects with the highest risks to die soonest. A log transformation on the x-axis was used to visually spread out the points. The concordance is a weigthed average of these $y$ values. After about 50 days, the baseline data has little predictive ability and the average ranks are close to 1/2. The second panel shows two possible weights, based on the number of subjects available at a given time, where $n(t)$, the default choice, is the number of comparable pairs at each time point. Alternate weights such as $S/G$ are discussed in section \ref{weighted}. For both choices the weights decrease precipitously over time and the final average is based largely on the left hand portion of the plot. <>= par(mfrow=c(1,2)) c3 <- concordance(fit3, ranks=TRUE) c4 <- concordance(fit3, ranks=TRUE, timewt="S/G") # For technical reasons the code returns ranks on Somers' d scale, # from -1 to 1. Transform them to 0-1 d.to.c <- function(x) (x+1)/2 plot(d.to.c(rank) ~ time, data=c3$ranks, log='x', ylab="Rank") lfit <- with(c3$ranks, lowess(log(time), d.to.c(rank))) lines(exp(lfit$x), lfit$y, col=2, lwd=2) abline(.5,0, lty=2) matplot(c3$ranks$time, cbind(c3$ranks$timewt, c4$ranks$timewt), type="l", col=c("black", "red"), lwd=2, xlab="Time", ylab="Weight", log="x") legend("topright", legend=c("n(t)","S(t)/G(t)"), lty=1:2, col=c("black","red"), bty="n") @ \section{Connection to the proportional hazards model} Watson and Therneau \cite{Watson15} show that the numerator of Somers' $d$ for a response $y$ and predictor $x$ can be re-written as \begin{equation} C-D = 2 \sum \delta_i n(t_i) \left[ r_i(t_i) - 1/2 \right] \label{cscore} \end{equation} where $C$ and $D$ are the total number of concordance and discordant pairs, $n(t)$ is the number of subjects still at risk at time $t$, and $r_i(t)$ is the rank of $x_i$ among all those still at risk at time $t$, where ranks are defined such that $0 \le r \le 1$. It turns out that equation \eqref{cscore} is exactly the score statistic for a Cox model with a single time-dependent covariate $n(t) r(t)$. One immediate consequence of this connection is a straightforward definition of concordance for a risk score containing time dependent covariates. Since the Cox model score statistic is well defined for time dependent terms this justifies calculation of the values $C$, $D$, etc in the same way: at each event time the current risk score of the subject who failed is compared to the current scores of all those still at risk. \section{Variance} The variance of the statistic is estimated in two ways. The first is to use the variance of the equivalent Cox model score statistic. As pointed out by Watson, this estimate is both correct and efficient under $H_0: d=0$, a null concordance of 1/2, and so it forms a valid test of $H_0$. However, when the concordance is larger than 1/2 the estimate systematically overestimates the true variance. An alternative that remains unbiased is the infinitesimal jackknife (IJ) variance \begin{align*} V &= \sum_{i=1}^n w_iU_i^2 \\ U_i &= \frac{\partial c}{\partial w_i} \end{align*} The concordance routine calculates an influence matrix $U$ with one row per subject and columns that contain the derivitives of the 5 individual counts: concordant, discordant, tied on x, tied on y, and tied on xy pairs. From this it is straightforward to derive the influence of each subject on the concordance, or on any other of the other possible association measures \eqref{tau.a} -- \eqref{somer} mentioned earlier. The IJ variance is printed by default but the PH variance is also returned; the earlier \code{survConcordance} function only computed the PH variance. The PH variance is a simple sum of the variances for each of the $r_i$ terms shown in the prior plot of the ranks. Under $H_0$ each of these terms will be approximately uniformly distributed between -1 and 1, which implies that the variance of the individual terms will be about 1/3, and indeed this is true as seen in the plot below. The ranks $r$ are discrete rather than continuous, but this does not have any appreciable affect until the number at risk drops below about 5 or there are a substantial number of ties in the predictor. <>= plot(variance ~ time, c3$ranks, ylim=c(0, .34), log="x") abline(h=1/3, col=2) @ This suggests that the most \emph{statisticially efficient} estimate of the average rank would use weights of 1 rather than $n(t)$ when adding up the $r_i$ terms, which leads to something very like an ordinary Cox model or logrank test. However, it is no longer the concordance. One aside to remember, however, is the p-value from a Cox model will almost always be smaller than that for the concordance statistic for that same model, which is one side effect of this difference in efficiency. \section{Multiple concordances} One useful property of using a jackknife variance estimate is that the variance of the difference in concordance between two separately fitted models is also easily obtained. If $c_a$ and $c_b$ are the two concordance statistics and $U_{ia}$ and $U_{ib}$ the corresponding influence values, the influence vector for $c_a-c_b$ is $U_a - U_b$. (If subject $i$ increases $c_a$ by .03 and $c_b$ by .01, then he/she raises the difference between them by .02.) It is not necessary that the models be nested. However, it is crucial that they be computed on the exact same set of observations. Here is a comparison of concordance values from previous models. <>= ctest <- concordance(fit4, fit5, fit6) ctest # compare concordance values of fit4 and fit5 contr <- c(-1, 1, 0) dtest <- contr %*% coef(ctest) dvar <- contr %*% vcov(ctest) %*% contr c(contrast=dtest, sd=sqrt(dvar), z=dtest/sqrt(dvar)) @ \subsection{Missing data} The lung data set has several variables with missing data and shows that care is necessary. <>= colSums(is.na(lung)) # count missing values/variable # First attempt fit6 <- coxph(Surv(time, status) ~ age + ph.ecog, data=lung) fit7 <- coxph(Surv(time, status) ~ meal.cal + pat.karno, data=lung) #tryCatch(concordance(fit6,fit7)) # produces an error # Second attempt lung2 <- na.omit(subset(lung, select= -c(inst, wt.loss))) fit6b <- coxph(Surv(time, status) ~ age + ph.ecog, data=lung2) fit7b <- coxph(Surv(time, status) ~ meal.cal + pat.karno, data=lung2) concordance(fit6b,fit7b) @ \section{Weighted concordance} \label{weighted} An interesting consequence of the equivalence between the concordance and the Cox model is the question of alternate weightings of the risk scores. Let $0 < r_i(t) < 1$ be the time dependent rank then the values of $2 (r_i(t) -1/2)$ range from -1 to 1 and their weighted sum is both the Cox score statistic and the numerator of Somers' $d$. If the original Cox model has a single 0/1 treatment covariate then $d$ is exactly the Gehan-Wilcoxon statistic; replacing these with weights of 1 instead of $n(t)$ will yield the log-rank statistic. There has been a long debate about the "best" weight for survival tests, and we can apply some of the same historical arguments to the concordance as well. We will point out four of interest: \begin{itemize} \item Peto and Peto \cite{Peto72} point out that $n(t) \approx n(0)S(t-)G(t-)$, where $S$ is the survival distribution and $G$ the censoring distribution. They argue that $S(t)$ would be a better weight since $G$ may have features that are irrelevant to the question being tested. For a particular data set Prentice \cite{Prentice79} later showed that these concerns were indeed justified, and almost all software now uses the Peto-Wilcoxon variant. \item Schemper et al \cite{Schemper09} argue for a weight of $S(t)/G(t)$ in the Cox model. When proportional hazards does not hold the coefficient from the Cox model is an ``average'' hazard ratio, and they show that using $S/G$ leads to a value that remains interpretable in terms of an underlying population model. The same argument may apply more strongly for the concordance, since the target is an ``assumption free'' assessment of association. \item Uno et al \cite{Uno11} recommend the use of $n/G^2$ as a weight based on a consistency argument. If we assume that the concordance value that would be obtained after full followup of all subjects (no censoring) is the ``right'' one, and proportional hazards does not hold, then the standard concordance will not consistently estimate this target quantity when there is censoring. It is ``biased''. (The Peto and Peto argument might suggest $S/G$ as an equivalent but more stable choice of weight.) \item Korn and Simon \cite{Korn90} point out the importance of restricting the range of comparison. Though a risk model can be used for long-range prediction, in actual patient practice this will not be the case; the model should be evaluated over the time range in which it will actually be used. For example, a physician is quite unlikely to look up my lab tests from 5 years ago, and then compute a 6 year survival probability forward from that point, in order to predict my outcome one year from today. \end{itemize} The \code{timewt} option allows you to modify weights for the concordance. The options are: \code{n, S, S/G, n/G, n/G2, I}, the last giving equal weight to each event time. The figure below shows the first four weights for the colon cancer data set. This data is from a clinical trial with 3 years of enrollment followed by 5 years of follow. Since there is almost no one lost to follow-up in the first 5 years all four weights are nearly identical over that time. From 5 to 8 years $S(t)$ continues its steady decline, $n(t)$ plummets due to administrative censoring, and $S/G$ explodes. Even with these changes in weights, the concordance values are all very similar. <>= colonfit <- coxph(Surv(time, status) ~ rx + nodes + extent, data=colon, subset=(etype==2)) # death only cord1 <- concordance(colonfit, timewt="n", ranks=TRUE) cord2 <- concordance(colonfit, timewt="S", ranks=TRUE) cord3 <- concordance(colonfit, timewt="S/G", ranks=TRUE) cord4 <- concordance(colonfit, timewt="n/G2", ranks=TRUE) c(n= coef(cord1), S=coef(cord2), "S/G"= coef(cord3), "n/G2"= coef(cord4)) matplot(cord1$ranks$time/365.25, cbind(cord1$ranks$timewt, cord2$ranks$timewt, cord3$ranks$timewt, cord4$ranks$timewt), type= "l", ylim= c(0, 6000), xlab="Years since enrollment", ylab="Weight") legend("left", c("n(t)", "S(t)", "S(t)/G(t)", "n(t)/G^2(t)"), lwd=2, col=1:4, lty=1:4, bty="n") @ A second example where we would expect weights to have a larger influence uses the \code{mgus2} data set. The underlying study has an unusually long median follow-up time of over 15 years, giving ample time for non-proportionality to manifest. Both creatinine and hemoglobin levels are associated with higher mortality, but of course a 10 year old marker is not nearly as predictive. The R data set has time in months, which has been converted to years for plotting purposes. <>= fit6 <- coxph(Surv(futime/12, death) ~ hgb, data=mgus2) zp <- cox.zph(fit6, transform="identity") plot(zp, df=4, resid=FALSE, ylim=c(-.4, .1), xlab="Years") abline(0,0, lty=3, col=2) @ The predictive effect of hemoglobin drops to less than half after 5 years, with a maximum study follow-up of 35 years. Now calculate the weighted concordance using four approaches. <>= c6a <- concordance(fit6, timewt="n", ranks=TRUE) c6b <- concordance(fit6, timewt="S", ranks=TRUE) c6c <- concordance(fit6, timewt="S/G", ranks=TRUE) c6d <- concordance(fit6, timewt="n/G2", ranks=TRUE) c(n= coef(c6a), S=coef(c6b), "S/G"= coef(c6c), "n/G2"= coef(c6d)) par(mfrow=c(1,2)) rfit <- lm(rank ~ ns(time,3), data=c6a$ranks) termplot(rfit, se=TRUE, col.se=1, col.term=1, xlab="Years", ylab="Smoothed rank") matplot(c6a$ranks$time, cbind(c6a$ranks$timewt, c6b$ranks$timewt, c6c$ranks$timewt, c6d$ranks$timewt), type= "l", xlab="Years since enrollment", ylab="Weight") # distribution of death times quantile(c6a$ranks$time) @ Surprisingly, the four weightings still yield almost identical concordance values. A clue to this lies in the quantile result. The concordance is a weighted mean of the ranks, with one term per death time in the sum. The quantile shows that 1/2 the deaths occur before 5 years and 3/4 of them before 9; the larger weights simply play only a small role in the overll sum. So, which weight should we use? As shown in the examples above, it may not matter that much. The fact that we have not found examples where the effect is large does not mean there are no such data sets, however. For survival data, one important issue that has not been sorted out is how to extend the weighting arguments to data sets that are subject to delayed entry, e.g., when using age as the time scale instead of time since enrollment. Since this usage is moderately frequent, and also because it is not possible for the \code{coxph} routine to reliably tell the difference between such left censoring and simple time-dependent covariates or strata, the default action of the routine is to use the safe choice of $n(t)$ and not to impose a range restriction. Further issues to consider: \begin{enumerate} \item Consider setting a time ($y$) restriction using the \code{ymin} or \code{ymax} options, based on careful thought about the proper range of interest. This part of the choice may often have the largest practical effect. \item Safety. If using the usual Gehan-Wilcoxon weights of $n(t)$, the Peto-Wilcoxon variant $S(t)$ would appear advantageous, particularly if there is differential censoring for some subjects. \item Current data versus future invariance. On the one hand assessment of a model should make use of the all available data, ``make the most with what you have'', but on the other hand we would prefer the estimated concordance to stay stable as a study's follow-up matures, which argues for $S/G$ or $n/G^2$ weights. If $G(t)$ approaches 0, however, these weights can become unstable and so may need to be combined with a time restriction. \item Equality vs. efficiency. On one hand we would like to treat each data pair equally, but in our quest for ever sharper p-values we want to be efficient. The first argues for $n(t)$ as the weight and the second for using equal weights, since the variances of each term are the same. This is exactly the argument between the Gehan-Wilcoxon and the log-rank tests. \item For uncensored data $n$, $S$ and $S/G$ weights are all identical. \end{enumerate} Our current opinion is that since the point of the concordance is to evaluate the model in a more non-parametric way, so a log-rank type of focus on ideal p-values is misplaced. This suggests using either $S$ or $S/G$ as weights. Both give more prominence to the later time points as compared to the default $n(t)$ choice, but if time limits have been thought through carefully the difference will often be minor. We most definitely do not agree that the ``proper'' target for estimation is always the $c$ statistic one would obtain with infinite follow-up and no censoring, which is the unstated assumption underlying Uno's assertion that the ordinary concordance is biased and must be repaired by use of $n/G^2$. Proportional hazards never is true over the long term, simply because it is almost impossible to predict events that are a decade or more away and thus the points in the $r(t)$ plot above will eventually tend to 0. The starting point should always be to think through exactly \emph{what} one wants to estimate. As stated by Yogi Berra ``if you don't know where you are going, you might not get there.'' \section{Details} This section documents a few details - most readers can skip it. The usual convention for survival data is to assume that censored values come after deaths, even if they are recorded on the same day. This corresponds to the common case that a subject who is censored on day 200, say, was actually seen on that day. That is, their survival is strictly greater than 200. As a consequence, censoring weights $G$ actually use $G(t-)$ in the code: if 10 subjects are censored at day 100, and these are the first censorings in the study, then an event on day 100 should not be given a larger weight. (Both the Uno and Schemper papers ignore this detail.) When using weights of $S(t)$ the program actually uses a weight of $nS(t)$ where $n$ is the number of subjects. The reason is that for a stratified model the weighted number of concordant, discordant and tied pairs is calculated separately for each stratum, and then added together. If one stratum were much smaller or larger than the others we want to preserved this fact in the sum. Consider a time point $t$ at which there were 3 events out of 40 subjects at risk. For the the ordinary concordance the time weight at this point will be the number of \emph{comparable pairs} for each of the 3 events, i.e., 37 for each. The rank of an event will be 1 if its predictor is smaller than all 37 comparitors and -1 if it is larger than all 37. When using a weight of $S(t)$ the weight will be $nS(t)$ at that point, for $S/G$ it will be $nS(t)/G(t-)$. The Cox model computation takes a slightly different view, in that all 40 subjects are considered to be at risk for each of the 3 events. The upshot of this is that the time weight changes to 40 rather than 37, while the rank becomes smaller by a factor of 37/40. The weighted sum remains the same, i.e., the Cox score statistic is equal to the numerator of the concordance statistic. For other weights $S(t-)$ replaces $S(t)$ in the Cox calculation, the individual ranks again shrink slightly but the weighted sum stays the same. \bibliography{refer} \bibliographystyle{plain} \end{document} survival/R/0000755000176200001440000000000013570771466012346 5ustar liggesuserssurvival/R/neardate.R0000644000176200001440000000550313565311650014244 0ustar liggesusers# Create a "nearest date" index # date1: the trial date # date2: target to match to # # result: an index vector for data set 1, which shows the row in data set # 2 that has the same id, and the best date. # # best = "after" The closest date in #2 that is on or after the date in #1 # "prior" The closest date in #2 that is on or before the date in #1 # neardate <- function(id1, id2, y1, y2, best=c("after", "prior"), nomatch=NA_integer_) { if (missing(id1)) stop("id1 argument is required") if (missing(id2)) stop("id2 argument is required") if (missing(y1)) stop("y1 argument is required") if (missing(y2)) stop("y2 argument is required") if (length(id1) != length(y1)) stop("id1 and y1 have different lengths") if (length(id2) != length(y2)) stop("id2 and y2 have different lengths") best <- match.arg(best) # This check could be more sophisticated (though I don't see how to do it) # We want to make sure that the "alldate" line below makes sense for the # data types that the user passed in. if (is.factor(y1) || is.factor(y2)) stop("y1 and y2 must be sortable") if (inherits(y1, 'POSIXt')) if (!inherits(y2, 'POSIXt')) y2 <- as(y2, class(y1)) else if (inherits(y2, 'POSIXt')) y1 <- as(y1, class(y2)) alldate <- sort(unique(c(y1, y2))) y1 <- match(y1, alldate) y2 <- match(y2, alldate) # Throw out lines with missing y2, but remember which ones rowid <- 1:length(y2) if (any(is.na(y2))) { toss <- is.na(y2) y2 <- y2[!toss] if (!missing(id2)) id2 <- id2[!toss] rowid <- rowid[!toss] } n2 <- length(y2) if (n2 ==0) stop("No valid entries in data set 2") # Toss out any rows in id2 that are not possible targets for id1 # (id2 is usually the larger data set, thinning speeds it up) indx1 <- match(id2, id1) toss <- is.na(indx1) if (any(toss)) { id2 <- id2[!toss] y2 <- y2[!toss] indx1 <- indx1[!toss] rowid <- rowid[!toss] } n2 <- length(y2) if (n2 ==0) stop("No valid entries in data set 2") # We need to create a merging id. A minimal amount of # spread for the dates keeps numeric overflow at bay delta <- 1.0 + length(alldate) #numeric, not integer, on purpose hash1 <- match(id1, id1)*delta + y1 hash2 <- indx1*delta + y2 if (best=="prior") { indx2 <- findInterval(hash1, hash2) indx2 <- ifelse(indx2==0, NA, indx2) } else { indx2 <- findInterval(hash1, hash2, left.open=TRUE) indx2 <- ifelse(indx2==n2, NA, indx2 + 1L) } temp <- (!is.na(indx2) & id1== id2[indx2]) ifelse(temp, rowid[ifelse(is.na(indx2), 1, indx2)], nomatch) } survival/R/survfit0.R0000644000176200001440000001226113570767322014251 0ustar liggesusers# This is a utility function, used by printing and plotting. # It's job is to add a "time 0" to the survival curve, and at the same time # to fill in values for the responses at that time. For ordinary survival # the standard response is surv=1, cumulative hazard =0, and standard errors # of 0. For a multi-state curve the values of p0 and sd0 are used to fill # in these values. # The influence matrix, if present, is also filled out to have a 0's for the # time, or for a multi-state object, use the influence matrix as provided. # # It is legal for start.time to be a vector, so that multiple curves start in # different places. I don't yet have a use for that, but had considered one. # survfit0 <- function(x, start.time=0) { if (!inherits(x, "survfit")) stop("function requires a survfit object") if (inherits (x, "survfit0")) return(x) if (missing(start.time) || is.null(start.time)) { if (is.null(x$start.time)) start.time <- min(c(0, x$time)) else start.time <- x$start.time } if (is.null(x$strata)) insert <- 1 # where to add the zero else insert <- unname(1 + cumsum(c(0, x$strata[-length(x$strata)]))) same <- x$time[insert] == start.time # no row need to be inserted here insert <- insert[!same] if (length(insert)==0) return(x) # nothing to do if (!is.null(x$strata)) { newstrat <- x$strata newstrat[!same] <- newstrat[!same] +1 } # actual work needs to be done # this adds rows to a vector or matrix, and preserves double/integer addto <- function(x, i, z) { # i = where to add, z = what to add n.add <- length(i) i2 <- i + 1:n.add -1 if (is.matrix(x)) { # indx is the new rows that are equal to the old ones indx <- seq(1, n.add + nrow(x))[ -i2] newx <- matrix(x[1], nrow(x) + n.add, ncol(x)) if (length(colnames(x)) >0) colnames(newx) <- colnames(x) newx[indx,] <- x newx[i2,] <- z } else if (is.array(x)) { # pstate is sometimes an array dd <- dim(x) indx <- seq(1, n.add + dd[1])[ -i2] newx <- matrix(x[1], dd[1] + n.add, dd[2]*dd[3]) newx[indx,] <- c(x) newx[i2,] <- rep(z, each=dd[2]) dim(newx) <- c(dd[1]+n.add, dd[2], dd[3]) dimnames(newx) <- list(NULL, NULL, dimnames(x)[[3]]) } else{ indx <- seq(1, n.add + length(x))[ -i2] newx <- rep(x[1], length(x) + n.add) newx[indx] <- x newx[i2] <- z } newx } # I want the result to be a list in the same order newname <- names(x)[!(names(x) %in% c("start.time", "p0", "sp0"))] new <- vector("list", length(newname)) names(new) <- newname add1 <- "surv" add0 <- c("n.event", "n.censor", "n.add", "cumhaz", "std.chaz") if (inherits(x, "survfitms")) add0 <- c(add0, "lower", "upper") else add1 <- c(add1, "lower", "upper") if (!is.null(x$p0)) { if (is.null(x$sp0)) sp0 <- 0 else sp0 <- x$sp0 if (any(same)) {# we have to subscript p0 and sp0 # if p0 isn't a matrix, we can't end up here BTW p00 <- x$p0[!same,,drop=FALSE] if (!is.null(x$sp0)) sp0 <- x$sp0[!same,,drop=FALSE] } else p00 <- x$p0 } else { # this call is simply adding a time 0 to the front p00 <- x$pstate[insert,] if (!is.null(x$xtd.err)) sp0 <- x$std.err[insert,] else sp0 <- 0 } for (i in names(new)) { if (i=="time") new[[i]] <- addto(x[[i]], insert, start.time) else if (i=="n.risk") { if (is.matrix(x$n.risk)) new[[i]] <- addto(x[[i]], insert, x$n.risk[insert,]) else new[[i]] <- addto(x[[i]], insert, x$n.risk[insert]) } else if (i=="pstate") new[[i]] <- addto(x[[i]], insert, p00) else if (i=="strata") new[[i]] <- newstrat else if (i=="std.err") new[[i]] <- addto(x[[i]], insert, sp0) else if (i %in% add0) new[[i]] <- addto(x[[i]], insert, 0L) else if (i %in% add1) new[[i]] <- addto(x[[i]], insert, 1L) else new[[i]] <- x[[i]] } if (!inherits(x, "survfitms")) { addcol <- function(x) cbind(0, x) # we need to fix up influence objects, which have subjects as the # rows and time as the columns. If there are multiple curves it # will be a list with one element per curve for (i in c("influence.surv", "influence.chaz")) { if (!is.null(x[[i]])) { if (is.list(x[[i]])) new[[i]] <- lapply(x[[i]], addcol) else new[[i]] <- addcol(x[[i]]) } } } if (is.null(new$logse)) { # reprise the logic of the older code if (inherits(x, "survfitms")) x$logse <- FALSE else x$logse <- TRUE } if (is.null(x$cumhaz) && class(x)[1] == "survfit") { # fill it in! new$cumhaz <- -log(new$surv) if (!is.null(x$std.err)) { if (x$logse) new$std.chaz <- new$std.err else new$std.chaz <- new$std.err/new$surv } } class(new) <- c("survfit0", class(x)) new } survival/R/cox.zph.R0000644000176200001440000002227313570772317014064 0ustar liggesusers# Automatically generated from the noweb directory cox.zph <- function(fit, transform='km', terms=TRUE, singledf =FALSE, global=TRUE) { Call <- match.call() if (!inherits(fit, "coxph") && !inherits(fit, "coxme")) stop ("argument must be the result of Cox model fit") if (inherits(fit, "coxph.null")) stop("there are no score residuals for a Null model") if (!is.null(attr(terms(fit), "specials")[["tt"]])) stop("function not defined for models with tt() terms") cget <- coxph.getdata(fit, y=TRUE, x=TRUE, stratax=TRUE, weights=TRUE) y <- cget$y ny <- ncol(y) event <- (y[,ny] ==1) if (length(cget$strata)) istrat <- as.integer(cget$strata) - 1L # number from 0 for C else istrat <- rep(0L, nrow(y)) varnames <- names(fit$coefficients) nvar <- length(varnames) # if terms==FALSE the singledf argument is moot, but FALSE leads to a # simpler path through the code if (!terms) singledf <- FALSE eta <- fit$linear.predictors if (!terms) { # create a fake asgn that has one value per coefficient asgn <- as.list(1:nvar) names(asgn) <- names(fit$coefficients) } else if (inherits(fit, "coxme")) { asgn <- attrassign(cget$x, terms(fit)) # allow for a spelling inconsistency in coxme, later fixed if (is.null(fit$linear.predictors)) eta <- fit$linear.predictor } else asgn <- fit$assign if (!is.list(asgn)) stop ("unexpected assign component") frail <- grepl("frailty(", names(asgn), fixed=TRUE) if (any(frail)) { dcol <- unlist(asgn[frail]) # remove these columns from X cget$x <- cget$x[, -dcol, drop=FALSE] asgn <- asgn[!frail] } nterm <- length(asgn) termname <- names(asgn) if (any(is.na(fit$coefficients))) { # fix up assign so as to ignore missing coefs, this should be rare mcoef <- which(is.na(fit$coefficients)) asgn <- lapply(asgn, function(i) i[!(i %in% mcoef)]) asgn <- asgn[sapply(asgn, length)>0] # drop any that were lost termname <- names(asgn) nterm <- length(asgn) # asgn will be 1, 2,2,2, 3, etc } times <- y[,ny-1] if (is.character(transform)) { tname <- transform ttimes <- switch(transform, 'identity'= times, 'rank' = rank(times), 'log' = log(times), 'km' = { temp <- survfitKM(factor(rep(1L, nrow(y))), y, se.fit=FALSE) # A nuisance to do left cont KM indx <- findInterval(times, temp$time, left.open=TRUE) 1.0 - c(1, temp$surv)[indx+1] }, stop("Unrecognized transform")) } else { tname <- deparse(substitute(transform)) if (length(tname) >1) tname <- 'user' ttimes <- transform(times) } gtime <- ttimes - mean(ttimes[event]) # Now get the U, information, and residuals if (ny==2) { ord <- order(istrat, y[,1]) -1L resid <- .Call(Czph1, gtime, y, cget$x, eta, cget$weights, istrat, fit$method=="efron", ord) } else { ord1 <- order(-istrat, -y[,1]) -1L # reverse time for zph2 ord <- order(-istrat, -y[,2]) -1L resid <- .Call(Czph2, gtime, y, cget$x, eta, cget$weights, istrat, fit$method=="efron", ord1, ord) } test <- double(nterm+1) df <- rep(1L, nterm+1) u0 <- rep(0, nvar) if (!is.null(fit$coxlist2)) { # there are penalized terms pmat <- matrix(0., 2*nvar, 2*nvar) # second derivative penalty pmat[1:nvar, 1:nvar] <- fit$coxlist2$second pmat[1:nvar + nvar, 1:nvar + nvar] <- fit$coxlist2$second imatr <- resid$imat + pmat } else imatr <- resid$imat for (ii in 1:nterm) { jj <- asgn[[ii]] kk <- c(1:nvar, jj+nvar) imat <- imatr[kk, kk] u <- c(u0, resid$u[jj+nvar]) if (singledf && length(jj) >1) { vv <- solve(imat)[-(1:nvar), -(1:nvar)] t1 <- sum(fit$coef[jj] * resid$u[jj+nvar]) test[ii] <- t1^2 * (fit$coef[jj] %*% vv %*% fit$coef[jj]) df[ii] <- 1 } else { test[ii] <- drop(solve(imat,u) %*% u) if (is.null(fit$df)) df[ii] <- length(jj) else df[ii] <- fit$df[ii] } } #Global test if (global) { u <- c(u0, resid$u[-(1:nvar)]) test[nterm+1] <- solve(imatr, u) %*% u if (is.null(fit$df)) df[nterm+1] <- nvar else df[nterm+1] <- sum(fit$df) tbl <- cbind(test, df, pchisq(test, df, lower.tail=FALSE)) dimnames(tbl) <- list(c(termname, "GLOBAL"), c("chisq", "df", "p")) } else { tbl <- cbind(test, df, pchisq(test, df, lower.tail=FALSE))[1:nterm,, drop=FALSE] dimnames(tbl) <- list(termname, c("chisq", "df", "p")) } # The x, y, residuals part is sorted by time within strata; this is # what the C routine zph1 and zph2 return indx <- if (ny==2) ord +1 else rev(ord) +1 # return to 1 based subscripts indx <- indx[event[indx]] # only keep the death times rval <- list(table=tbl, x=unname(ttimes[indx]), time=unname(y[indx, ny-1])) if (length(cget$strata)) rval$strata <- cget$strata[indx] # Watch out for a particular edge case: there is a factor, and one of the # strata happens to not use one of its levels. The element of resid$used will # be zero, but it really should not. used <-resid$used for (i in asgn) { if (length(i) > 1 && any(used[,i] ==0)) used[,i] <- apply(used[,i,drop=FALSE], 1, max) } # Make the weight matrix wtmat <- matrix(0, nvar, nvar) for (i in 1:nrow(used)) wtmat <- wtmat + outer(used[i,], used[i,], pmin) # with strata*covariate interactions (multi-state models for instance) the # imatr matrix will be block diagonal. Don't divide these off diagonal zeros # by a wtmat value of zero. vmean <- imatr[1:nvar, 1:nvar, drop=FALSE]/ifelse(wtmat==0, 1, wtmat) sresid <- resid$schoen if (terms && any(sapply(asgn, length) > 1)) { # collase multi-column terms temp <- matrix(0, ncol(sresid), nterm) for (i in 1:nterm) { j <- asgn[[i]] if (length(j) ==1) temp[j, i] <- 1 else temp[j, i] <- fit$coefficients[j] } sresid <- sresid %*% temp vmean <- t(temp) %*% vmean %*% temp used <- used[, sapply(asgn, function(x) x[1]), drop=FALSE] } dimnames(sresid) <- list(signif(rval$time, 4), termname) # for each stratum, rescale the Schoenfeld residuals in that stratum sgrp <- rep(1:nrow(used), apply(used, 1, max)) for (i in 1:nrow(used)) { k <- which(used[i,] > 0) if (length(k) >0) { # there might be no deaths in the stratum j <- which(sgrp==i) if (length(k) ==1) sresid[j,k] <- sresid[j,k]/vmean[k,k] else sresid[j, k] <- t(solve(vmean[k, k], t(sresid[j, k, drop=FALSE]))) sresid[j, -k] <- NA } } # Add in beta-hat. For a term with multiple columns we are testing zph for # the linear predictor X\beta, which always has a coefficient of 1 for (i in 1:nterm) { j <- asgn[[i]] if (length(j) ==1) sresid[,i] <- sresid[,i] + fit$coefficients[j] else sresid[,i] <- sresid[,i] +1 } rval$y <- sresid rval$var <- solve(vmean) rval$transform <- tname rval$call <- Call class(rval) <- "cox.zph" return(rval) } print.cox.zph <- function(x, digits = max(options()$digits - 4, 3), signif.stars=FALSE, ...) { invisible(printCoefmat(x$table, digits=digits, signif.stars=signif.stars, P.values=TRUE, has.Pvalue=TRUE, ...)) } "[.cox.zph" <- function(x, ..., drop=FALSE) { i <- ..1 if (!is.null(x$strata)) { y2 <- x$y[,i,drop=FALSE] ymiss <- apply(is.na(y2), 1, all) if (any(ymiss)) { # some deaths played no role in these coefficients # due to a strata * covariate interaction, drop unneeded rows z<- list(table=x$table[i,,drop=FALSE], x=x$x[!ymiss], time= x$time[!ymiss], strata = x$strata[!ymiss], y = y2[!ymiss,,drop=FALSE], var=x$var[i,i, drop=FALSE], transform=x$transform, call=x$call) } else z<- list(table=x$table[i,,drop=FALSE], x=x$x, time= x$time, strata = x$strata, y = y2, var=x$var[i,i, drop=FALSE], transform=x$transform, call=x$call) } else z<- list(table=x$table[i,,drop=FALSE], x=x$x, time= x$time, y = x$y[,i,drop=FALSE], var=x$var[i,i, drop=FALSE], transform=x$transform, call=x$call) class(z) <- class(x) z } survival/R/predict.coxph.R0000644000176200001440000003340013570772307015236 0ustar liggesusers# Automatically generated from the noweb directory predict.coxph <- function(object, newdata, type=c("lp", "risk", "expected", "terms", "survival"), se.fit=FALSE, na.action=na.pass, terms=names(object$assign), collapse, reference=c("strata", "sample"), ...) { if (!inherits(object, 'coxph')) stop("Primary argument much be a coxph object") Call <- match.call() type <-match.arg(type) if (type=="survival") { survival <- TRUE type <- "expected" #this is to stop lots of "or" statements } else survival <- FALSE n <- object$n Terms <- object$terms if (!missing(terms)) { if (is.numeric(terms)) { if (any(terms != floor(terms) | terms > length(object$assign) | terms <1)) stop("Invalid terms argument") } else if (any(is.na(match(terms, names(object$assign))))) stop("a name given in the terms argument not found in the model") } # I will never need the cluster argument, if present delete it. # Terms2 are terms I need for the newdata (if present), y is only # needed there if type == 'expected' if (length(attr(Terms, 'specials')$cluster)) { temp <- untangle.specials(Terms, 'cluster', 1) Terms <- object$terms[-temp$terms] } else Terms <- object$terms if (type != 'expected') Terms2 <- delete.response(Terms) else Terms2 <- Terms has.strata <- !is.null(attr(Terms, 'specials')$strata) has.offset <- !is.null(attr(Terms, 'offset')) has.weights <- any(names(object$call) == 'weights') na.action.used <- object$na.action n <- length(object$residuals) if (missing(reference) && type=="terms") reference <- "sample" else reference <- match.arg(reference) have.mf <- FALSE if (type == "expected") { y <- object[['y']] if (is.null(y)) { # very rare case mf <- stats::model.frame(object) y <- model.extract(mf, 'response') have.mf <- TRUE #for the logic a few lines below, avoid double work } } # This will be needed if there are strata, and is cheap to compute strat.term <- untangle.specials(Terms, "strata") if (se.fit || type=='terms' || (!missing(newdata) && type=="expected") || (has.strata && (reference=="strata") || type=="expected")) { use.x <- TRUE if (is.null(object[['x']]) || has.weights || has.offset || (has.strata && is.null(object$strata))) { # I need the original model frame if (!have.mf) mf <- stats::model.frame(object) if (nrow(mf) != n) stop("Data is not the same size as it was in the original fit") x <- model.matrix(object, data=mf) if (has.strata) { if (!is.null(object$strata)) oldstrat <- object$strata else { if (length(strat.term$vars)==1) oldstrat <- mf[[strat.term$vars]] else oldstrat <- strata(mf[,strat.term$vars], shortlabel=TRUE) } } else oldstrat <- rep(0L, n) weights <- model.weights(mf) if (is.null(weights)) weights <- rep(1.0, n) offset <- model.offset(mf) if (is.null(offset)) offset <- 0 } else { x <- object[['x']] if (has.strata) oldstrat <- object$strata else oldstrat <- rep(0L, n) weights <- rep(1.,n) offset <- 0 } } else { # I won't need strata in this case either if (has.strata) { stemp <- untangle.specials(Terms, 'strata', 1) Terms2 <- Terms2[-stemp$terms] has.strata <- FALSE #remaining routine never needs to look } oldstrat <- rep(0L, n) offset <- 0 use.x <- FALSE } if (!missing(newdata)) { use.x <- TRUE #we do use an X matrix later tcall <- Call[c(1, match(c("newdata", "collapse"), names(Call), nomatch=0))] names(tcall)[2] <- 'data' #rename newdata to data tcall$formula <- Terms2 #version with no response tcall$na.action <- na.action #always present, since there is a default tcall[[1L]] <- quote(stats::model.frame) # change the function called if (!is.null(attr(Terms, "specials")$strata) && !has.strata) { temp.lev <- object$xlevels temp.lev[[strat.term$vars]] <- NULL tcall$xlev <- temp.lev } else tcall$xlev <- object$xlevels mf2 <- eval(tcall, parent.frame()) collapse <- model.extract(mf2, "collapse") n2 <- nrow(mf2) if (has.strata) { if (length(strat.term$vars)==1) newstrat <- mf2[[strat.term$vars]] else newstrat <- strata(mf2[,strat.term$vars], shortlabel=TRUE) if (any(is.na(match(newstrat, oldstrat)))) stop("New data has a strata not found in the original model") else newstrat <- factor(newstrat, levels=levels(oldstrat)) #give it all if (length(strat.term$terms)) newx <- model.matrix(Terms2[-strat.term$terms], mf2, contr=object$contrasts)[,-1,drop=FALSE] else newx <- model.matrix(Terms2, mf2, contr=object$contrasts)[,-1,drop=FALSE] } else { newx <- model.matrix(Terms2, mf2, contr=object$contrasts)[,-1,drop=FALSE] newstrat <- rep(0L, nrow(mf2)) } newoffset <- model.offset(mf2) if (is.null(newoffset)) newoffset <- 0 if (type== 'expected') { newy <- model.response(mf2) if (attr(newy, 'type') != attr(y, 'type')) stop("New data has a different survival type than the model") } na.action.used <- attr(mf2, 'na.action') } else n2 <- n if (type=="expected") { if (missing(newdata)) pred <- y[,ncol(y)] - object$residuals if (!missing(newdata) || se.fit) { ustrata <- unique(oldstrat) risk <- exp(object$linear.predictors) x <- x - rep(object$means, each=nrow(x)) #subtract from each column if (missing(newdata)) #se.fit must be true se <- double(n) else { pred <- se <- double(nrow(mf2)) newx <- newx - rep(object$means, each=nrow(newx)) newrisk <- c(exp(newx %*% object$coef) + newoffset) } survtype<- ifelse(object$method=='efron', 3,2) for (i in ustrata) { indx <- which(oldstrat == i) afit <- agsurv(y[indx,,drop=F], x[indx,,drop=F], weights[indx], risk[indx], survtype, survtype) afit.n <- length(afit$time) if (missing(newdata)) { # In this case we need se.fit, nothing else j1 <- approx(afit$time, 1:afit.n, y[indx,1], method='constant', f=0, yleft=0, yright=afit.n)$y chaz <- c(0, afit$cumhaz)[j1 +1] varh <- c(0, cumsum(afit$varhaz))[j1 +1] xbar <- rbind(0, afit$xbar)[j1+1,,drop=F] if (ncol(y)==2) { dt <- (chaz * x[indx,]) - xbar se[indx] <- sqrt(varh + rowSums((dt %*% object$var) *dt)) * risk[indx] } else { j2 <- approx(afit$time, 1:afit.n, y[indx,2], method='constant', f=0, yleft=0, yright=afit.n)$y chaz2 <- c(0, afit$cumhaz)[j2 +1] varh2 <- c(0, cumsum(afit$varhaz))[j2 +1] xbar2 <- rbind(0, afit$xbar)[j2+1,,drop=F] dt <- (chaz * x[indx,]) - xbar v1 <- varh + rowSums((dt %*% object$var) *dt) dt2 <- (chaz2 * x[indx,]) - xbar2 v2 <- varh2 + rowSums((dt2 %*% object$var) *dt2) se[indx] <- sqrt(v2-v1)* risk[indx] } } else { #there is new data use.x <- TRUE indx2 <- which(newstrat == i) j1 <- approx(afit$time, 1:afit.n, newy[indx2,1], method='constant', f=0, yleft=0, yright=afit.n)$y chaz <-c(0, afit$cumhaz)[j1+1] pred[indx2] <- chaz * newrisk[indx2] if (se.fit) { varh <- c(0, cumsum(afit$varhaz))[j1+1] xbar <- rbind(0, afit$xbar)[j1+1,,drop=F] } if (ncol(y)==2) { if (se.fit) { dt <- (chaz * newx[indx2,]) - xbar se[indx2] <- sqrt(varh + rowSums((dt %*% object$var) *dt)) * newrisk[indx2] } } else { j2 <- approx(afit$time, 1:afit.n, newy[indx2,2], method='constant', f=0, yleft=0, yright=afit.n)$y chaz2 <- approx(-afit$time, afit$cumhaz, -newy[indx2,2], method="constant", rule=2, f=0)$y chaz2 <-c(0, afit$cumhaz)[j2+1] pred[indx2] <- (chaz2 - chaz) * newrisk[indx2] if (se.fit) { varh2 <- c(0, cumsum(afit$varhaz))[j1+1] xbar2 <- rbind(0, afit$xbar)[j1+1,,drop=F] dt <- (chaz * newx[indx2,]) - xbar dt2 <- (chaz2 * newx[indx2,]) - xbar2 v2 <- varh2 + rowSums((dt2 %*% object$var) *dt2) v1 <- varh + rowSums((dt %*% object$var) *dt) se[indx2] <- sqrt(v2-v1)* risk[indx2] } } } } } if (survival) { #it actually was type= survival, do one more step if (se.fit) se <- se * exp(-pred) pred <- exp(-pred) # probablility of being in state 0 } } else { if (is.null(object$coefficients)) coef<-numeric(0) else { # Replace any NA coefs with 0, to stop NA in the linear predictor coef <- ifelse(is.na(object$coefficients), 0, object$coefficients) } if (missing(newdata)) { offset <- offset - mean(offset) if (has.strata && reference=="strata") { # We can't use as.integer(oldstrat) as an index, if oldstrat is # a factor variable with unrepresented levels as.integer could # give 1,2,5 for instance. xmeans <- rowsum(x*weights, oldstrat)/c(rowsum(weights, oldstrat)) newx <- x - xmeans[match(oldstrat,row.names(xmeans)),] } else if (use.x) newx <- x - rep(object$means, each=nrow(x)) } else { offset <- newoffset - mean(offset) if (has.strata && reference=="strata") { xmeans <- rowsum(x*weights, oldstrat)/c(rowsum(weights, oldstrat)) newx <- newx - xmeans[match(newstrat, row.names(xmeans)),] } else newx <- newx - rep(object$means, each=nrow(newx)) } if (type=='lp' || type=='risk') { if (use.x) pred <- drop(newx %*% coef) + offset else pred <- object$linear.predictors if (se.fit) se <- sqrt(rowSums((newx %*% object$var) *newx)) if (type=='risk') { pred <- exp(pred) if (se.fit) se <- se * sqrt(pred) # standard Taylor series approx } } else if (type=='terms') { asgn <- object$assign nterms<-length(asgn) pred<-matrix(ncol=nterms,nrow=NROW(newx)) dimnames(pred) <- list(rownames(newx), names(asgn)) if (se.fit) se <- pred for (i in 1:nterms) { tt <- asgn[[i]] tt <- tt[!is.na(object$coefficients[tt])] xtt <- newx[,tt, drop=F] pred[,i] <- xtt %*% object$coefficient[tt] if (se.fit) se[,i] <- sqrt(rowSums((xtt %*% object$var[tt,tt]) *xtt)) } pred <- pred[,terms, drop=F] if (se.fit) se <- se[,terms, drop=F] attr(pred, 'constant') <- sum(object$coefficients*object$means, na.rm=T) } } if (type != 'terms') { pred <- drop(pred) if (se.fit) se <- drop(se) } if (!is.null(na.action.used)) { pred <- napredict(na.action.used, pred) if (is.matrix(pred)) n <- nrow(pred) else n <- length(pred) if(se.fit) se <- napredict(na.action.used, se) } if (!missing(collapse) && !is.null(collapse)) { if (length(collapse) != n2) stop("Collapse vector is the wrong length") pred <- rowsum(pred, collapse) # in R, rowsum is a matrix, always if (se.fit) se <- sqrt(rowsum(se^2, collapse)) if (type != 'terms') { pred <- drop(pred) if (se.fit) se <- drop(se) } } if (se.fit) list(fit=pred, se.fit=se) else pred } survival/R/coxph.detail.R0000644000176200001440000000535013556065622015050 0ustar liggesuserscoxph.detail <- function(object, riskmat=FALSE) { method <- object$method if (method!='breslow' && method!='efron') stop(paste("Detailed output is not available for the", method, "method")) n <- length(object$residuals) temp <- coxph.getdata(object, offset=TRUE) weights <- temp$weights #always present if there are weights x <- temp$x y <- temp$y strat <- temp$strata Terms <- object$terms if (!inherits(Terms, 'terms')) stop("invalid terms component of object") nvar <- ncol(x) if (ncol(y)==2) { mintime <- min(y[,1]) if (mintime < 0) y <- cbind( 2*mintime -1, y) else y <- cbind(-1,y) } if (is.null(strat)) { ord <- order(y[,2], -y[,3]) newstrat <- rep(0,n) } else { ord <- order(strat, y[,2], -y[,3]) newstrat <- c(diff(as.numeric(strat[ord]))!=0 ,1) } newstrat[n] <- 1 # sort the data x <- x[ord,] y <- y[ord,] storage.mode(y) <- 'double' score <- exp(object$linear.predictors)[ord] if (is.null(weights)) weights <- rep(1.0, n) else weights <- weights[ord] ndeath <- sum(y[,3]) if (riskmat) { rmat <- integer(ndeath*n) } else rmat <- as.integer(1) ff <- .C(Ccoxdetail, as.integer(n), as.integer(nvar), ndeath= as.integer(ndeath), y = y, as.double(x), index = as.integer(newstrat), event2 =as.double(score), weights = as.double(weights), means= c(method=='efron', double(ndeath*nvar-1)), u = double(ndeath*nvar), i = double(ndeath*nvar*nvar), rmat = rmat, nrisk2 = double(ndeath), double(nvar*(3 + 2*nvar))) keep <- 1:ff$ndeath vname<- dimnames(x)[[2]] time <- y[ff$index[keep],2] names(time) <- NULL means<- (matrix(ff$means,ndeath, nvar))[keep,] score<- matrix(ff$u, ndeath, nvar)[keep,] var <- array(ff$i, c(nvar, nvar, ndeath))[,,keep] if (riskmat) { rmat <- matrix(0, n, ff$ndeath) rmat[,] <- ff$rmat[1:(n*ff$ndeath)] #in time order dimnames(rmat) <- list(NULL, time) } if (nvar>1) { dimnames(means) <- list(time, vname) dimnames(score) <- list(time, vname) dimnames(var) <- list(vname, vname, time) } else { names(means) <- time names(score) <- time names(var) <- time } dimnames(ff$y) <- NULL temp <- list(time = time, means=means, nevent=ff$y[keep,1], nrisk = ff$y[keep,2], hazard= ff$y[keep,3], score= score, imat=var, varhaz=ff$weights[keep], y=y, x=x) if (length(strat)) temp$strata <- table((strat[ord])[ff$index[keep]]) if (riskmat) { temp$riskmat <- rmat temp$sortorder <- ord } if (!all(weights==1)) { temp$weights <- weights temp$nevent.wt <- ff$event2[keep] temp$nrisk.wt <- ff$nrisk2[keep] } temp } survival/R/cch.R0000644000176200001440000003463713537676563013250 0ustar liggesusers### Suite of programs for case-cohort analysis ### Main program cch <- function(formula, data=sys.parent(), subcoh, id, stratum=NULL, cohort.size, method=c("Prentice", "SelfPrentice", "LinYing","I.Borgan","II.Borgan"), robust=FALSE){ call <- match.call() if (is.data.frame(data)){ if (inherits(id,"formula")) id<- stats::model.frame(id,data,na.action=na.fail)[,1] if (inherits(subcoh,"formula")) subcoh<- stats::model.frame(subcoh,data,na.action=na.fail)[,1] if (inherits(stratum,"formula")) stratum<- stats::model.frame(stratum,data,na.action=na.fail)[,1] } ## Check id, subcoh and cohort.size variables if(length(id)!=length(unique(id))) stop("Multiple records per id not allowed") if (is.logical(subcoh)) subcoh <- as.numeric(subcoh) tt <- table(subcoh) if(min(charmatch(names(tt), c("0","1"), 0))==0) stop("Permissible values for subcohort indicator are 0/1 or TRUE/FALSE") if(length(id)>sum(cohort.size)) stop("Number of records greater than cohort size") nn <- cohort.size method<-match.arg(method) stratified<-method %in% c("I.Borgan","II.Borgan") if (!is.null(stratum)) stratum<-factor(stratum) if (stratified){ if (robust) warning("`robust' not implemented for stratified analysis.") if (is.null(stratum)) stop("method (",method,") requires 'stratum'") if (length(cohort.size)!=length(levels(stratum))) stop("cohort.size and stratum do not match") if (!(all(levels(stratum) %in% names(cohort.size)))) warning("stratum levels and names(cohort.size) do not agree") subcohort.sizes<-table(stratum) } else if(!stratified) { if (!(method =="LinYing") && robust) warning("`robust' ignored for method (",method,")") if (!is.null(stratum)) warning("'stratum' ignored for method (",method,")") if (length(cohort.size)!=1) stop("cohort size must be a scalar for unstratified analysis") subcohort.sizes<-length(id) } if (any(subcohort.sizes>cohort.size)) stop("Population smaller than sample in some strata") ## Evaluate model formula m <- match.call(expand.dots=FALSE) m$method <- m$cohort.size <- m$id <- m$subcoh <- m$stratum <-m$robust<- NULL m[[1L]] <- quote(stats::model.frame) m <- eval(m,sys.parent()) Terms <- attr(m,"terms") Y <- model.extract(m, "response") if(!inherits(Y, "Surv")) stop("Response must be a survival object") type <- attr(Y, "type") itype<-charmatch(type,c("right","counting"),nomatch=0) cens<-switch(itype+1, stop(paste("Cox model doesn't support \"", type, "\" survival data", sep = "")), Y[,2], Y[,3]) if (any(!subcoh & !cens)) stop(sum(!subcoh & !cens),"censored observations not in subcohort") cc<-cens+1-subcoh texit<-switch(itype+1, stop(), Y[,1], Y[,2]) tenter<-switch(itype+1, stop(), rep(0,length(texit)), Y[,1]) X <- model.matrix(Terms, m) X <- X[,2:ncol(X)] fitter <- get(method) # The artificial offset is 1/2 the minimal distance between events # If there is only one unique event time then any offset is ok if (ncol(Y)==3) dtime <- unique(Y[cens==1,2]) else dtime <- unique(Y[cens==1, 1]) if (length(dtime) > 1) delta <- min(diff(sort(dtime))) /2 else delta <- 1 if (stratified) out<-fitter(tenter=tenter, texit=texit, cc=cc, id=id, X=X, stratum=as.numeric(stratum), stratum.sizes=cohort.size, delta) else out<-fitter(tenter=tenter, texit=texit, cc=cc, id=id, X=X, ntot=nn, robust=robust, delta) out$method <- method names(out$coefficients) <- dimnames(X)[[2]] if(!is.null(out$var)) dimnames(out$var) <- list(dimnames(X)[[2]], dimnames(X)[[2]]) if(!is.null(out$naive.var)) dimnames(out$naive.var) <- list(dimnames(X)[[2]], dimnames(X)[[2]]) out$call <- call out$cohort.size <- cohort.size out$stratified<-stratified if (stratified){ out$stratum<-stratum out$subcohort.size <-subcohort.sizes } else { out$subcohort.size <- tt[2] } class(out) <- "cch" out } ### Subprograms Prentice <- function(tenter, texit, cc, id, X, ntot,robust, delta){ cens <- as.numeric(cc>0) # Censorship indicators subcoh <- as.numeric(cc<2) # Subcohort indicators ## Calculate Prentice estimate ent2 <- tenter ent2[cc==2] <- texit[cc==2]- delta fit1 <- coxph(Surv(ent2,texit,cens)~X, x=TRUE, timefix=FALSE) ## Calculate Prentice estimate and variance nd <- sum(cens) # Number of failures nc <- sum(subcoh) # Number in subcohort ncd <- sum(cc==1) #Number of failures in subcohort X <- as.matrix(X) aent <- c(tenter[cc>0],tenter[cc<2]) aexit <- c(texit[cc>0],texit[cc<2]) aX <- rbind(as.matrix(X[cc>0,]),as.matrix(X[cc<2,])) aid <- c(id[cc>0],id[cc<2]) dum <- rep(-100,nd) dum <- c(dum,rep(0,nc)) gp <- rep(1,nd) gp <- c(gp,rep(0,nc)) fit <- coxph(Surv(aent,aexit,gp)~aX+offset(dum)+cluster(aid), x=TRUE, iter.max=35,init=fit1$coefficients, timefix=FALSE) db <- resid(fit,type="dfbeta") db <- as.matrix(db) db <- db[gp==0,] fit$phase2var<-(1-(nc/ntot))*t(db)%*%(db) fit$naive.var <- fit$naive.var+fit$phase2var fit$var<-fit$naive.var fit$coefficients <- fit$coef <- fit1$coefficients fit } SelfPrentice <- function(tenter, texit, cc, id, X, ntot,robust, delta){ cens <- as.numeric(cc>0) # Censorship indicators subcoh <- as.numeric(cc<2) # Subcohort indicators ## Calculate Self-Prentice estimate and variance nd <- sum(cens) # Number of failures nc <- sum(subcoh) # Number in subcohort ncd <- sum(cc==1) #Number of failures in subcohort X <- as.matrix(X) aent <- c(tenter[cc>0],tenter[cc<2]) aexit <- c(texit[cc>0],texit[cc<2]) aX <- rbind(as.matrix(X[cc>0,]),as.matrix(X[cc<2,])) aid <- c(id[cc>0],id[cc<2]) dum <- rep(-100,nd) dum <- c(dum,rep(0,nc)) gp <- rep(1,nd) gp <- c(gp,rep(0,nc)) fit <- coxph(Surv(aent,aexit,gp)~aX+offset(dum)+cluster(aid), x=TRUE, timefix=FALSE) db <- resid(fit,type="dfbeta") db <- as.matrix(db) db <- db[gp==0,,drop=FALSE] fit$phase2var<-(1-(nc/ntot))*t(db)%*%(db) fit$naive.var <- fit$naive.var+fit$phase2var fit$var<-fit$naive.var fit } LinYing <- function(tenter, texit, cc, id, X, ntot,robust, delta){ cens <- as.numeric(cc>0) # Censorship indicators subcoh <- as.numeric(cc<2) # Subcohort indicators nd <- sum(cens) # Number of failures nc <- sum(subcoh) # Number in subcohort ncd <- sum(cc==1) #Number of failures in subcohort ## Calculate Lin-Ying estimate and variance offs <- rep((ntot-nd)/(nc-ncd),length(texit)) offs[cc>0] <- 1 loffs <- log(offs) fit <- coxph(Surv(tenter, texit, cens)~X+offset(loffs)+cluster(id), x=TRUE, timefix=FALSE) db <- resid(fit,type="dfbeta") db <- as.matrix(db) db0 <- db[cens==0,,drop=FALSE] dbm <- apply(db0,2,mean) db0 <- sweep(db0,2,dbm) fit$phase2var<-(1-(nc-ncd)/(ntot-nd))*crossprod(db0) fit$naive.var <- fit$naive.var+fit$phase2var if (robust) fit$var<- crossprod(db,db/offs)+fit$phase2var else fit$var<-fit$naive.var fit } I.Borgan <- function(tenter, texit, cc, id, X, stratum, stratum.sizes, delta){ nobs <- length(texit) idx <- 1:length(nobs) jj <- max(stratum) nn <- stratum.sizes ## Cohort stratum sizes n <- table(stratum) ## Sample stratum sizes d <- table(stratum[cc>0]) ## Failures in each stratum tt <- table(cc,stratum) cens <- as.numeric(cc>0) ## Failure indicators subcoh <- as.numeric(cc<2) ## Subcohort indicators nd <- sum(cens) ## Number of failures nc <- sum(subcoh) ## Number in subcohort ncd <- sum(as.numeric(cc==1)) #Number of failures in subcohort m0 <- tt[1,] ## Subcohort stratum sizes (noncases only) if (ncd>0) m <- m0+tt[2,] else m <- m0 #Subcohort stratum sizes X <- as.matrix(X) kk <- ncol(X) ## Number of variables wt <- as.vector(nn/m) ## Weights for Estimator I stratum <- c(stratum[cc>0],stratum[cc<2]) w <- wt[stratum] ent <- c(tenter[cc > 0], tenter[cc < 2]) exit <- c(texit[cc > 0], texit[cc < 2]) X <- rbind(as.matrix(X[cc > 0, ]), as.matrix(X[cc < 2, ])) id <- c(id[cc > 0], id[cc < 2]) dum <- rep(-100, nd) dum <- c(dum, rep(0, nc)) gp <- rep(1, nd) gp <- c(gp, rep(0, nc)) w[gp==1] <- 1 fit <- coxph(Surv(ent,exit,gp)~X+offset(dum)+cluster(id), weights=w, x=T, iter.max=25, timefix=FALSE) score <- resid(fit, type = "score", weighted=F) sc <- resid(fit, type="score", collapse=id, weighted=T) score <- as.matrix(score) score <- score[gp == 0,,drop=F] st <- stratum[gp==0] sto <- st %o% rep(1,kk) Index <- col(score) tscore <- tapply(score,list(sto,Index),mean) pscore <- tapply(score,list(sto,Index)) score <- score-tscore[pscore] delta <- matrix(0,kk,kk) opt <- NULL for (j in 1:jj) { temp <- t(score[st==j,])%*%score[st==j,]/(m[j]-1) delta <- matrix(delta+(wt[j]-1)*nn[j]*temp,kk,kk) if(is.null(opt)) opt <- nn[j]*sqrt(diag(fit$naive.var %*% temp %*% fit$naive.var)) else opt <- rbind(opt,nn[j]*sqrt(diag(fit$naive.var %*% temp %*% fit$naive.var))) } z <- apply(opt,2,sum) fit$opt <- sweep(opt,2,z,FUN="/") fit$phase2var<-fit$naive.var%*%delta%*%fit$naive.var fit$naive.var <- fit$naive.var+fit$phase2var fit$var<-fit$naive.var fit$delta <- delta fit$sc <- sc fit } II.Borgan <- function(tenter, texit, cc, id, X, stratum, stratum.sizes, delta){ jj <- max(stratum) nn <- stratum.sizes ## Cohort stratum sizes n <- table(stratum) ## Sample stratum sizes d <- table(stratum[cc>0]) ## Failures in each stratum tt <- table(cc,stratum) cens <- as.numeric(cc>0) ## Failure indicators subcoh <- as.numeric(cc<2) ## Subcohort indicators nd <- sum(cens) ## Number of failures nc <- sum(subcoh) ## Number in subcohort ncd <- sum(as.numeric(cc==1)) #Number of failures in subcohort m0 <- tt[1,] ## Subcohort stratum sizes (controls only) if (ncd>0) m <- m0+tt[2,] else m <- m0 #Subcohort stratum sizes X <- as.matrix(X) kk <- ncol(X) ## Number of variables nn0 <- nn-as.vector(d) #Noncases in cohort wt <- as.vector(nn0/m0) w <- wt[stratum] w[cens==1] <- 1 fit <- coxph(Surv(tenter,texit,cens)~X+cluster(id), weights=w, x=T, iter.max=25, timefix=FALSE) ## Borgan Estimate II score <- resid(fit, type = "score", weighted=F) sc <- resid(fit,type="score", collapse=id, weighted=T) score <- as.matrix(score) score <- score[cens == 0,,drop=F] ## Scores for controls st <- stratum[cens==0] ## Stratum indicators for controls sto <- st %o% rep(1,kk) Index <- col(score) tscore <- tapply(score,list(sto,Index),mean) ## Within stratum control score means pscore <- tapply(score,list(sto,Index)) score <- score-tscore[pscore] ## Subtract off within stratum score means delta <- matrix(0,kk,kk) opt <- NULL for (j in 1:jj) { temp <- t(score[st==j,])%*%score[st==j,]/(m0[j]-1) ## Borgan equation (19) delta <- delta+(wt[j]-1)*nn0[j]*temp ## Borgan equation (17) if(is.null(opt)) opt <- nn0[j]*sqrt(diag(fit$naive.var %*% temp %*% fit$naive.var)) else opt <- rbind(opt,nn0[j]*sqrt(diag(fit$naive.var %*% temp %*% fit$naive.var))) } z <- apply(opt,2,sum) fit$opt <- sweep(opt,2,z,FUN="/") fit$phase2var<-fit$naive.var %*% delta %*% fit$naive.var fit$naive.var <- fit$naive.var+fit$phase2var fit$var<-fit$naive.var fit$delta <- delta fit$sc <- sc fit } ## Methods vcov.cch<-function(object,...) object$var "print.cch"<- function(x,...) { ## produces summary from an x of the class "cch" call<-x$call coef <- coef(x) method <- x$method se <- sqrt(diag(vcov(x))) Z<- abs(coef/se) p<- pnorm(Z) cohort.size<-x$cohort.size subcohort.size<-x$subcohort.size coefficients <- matrix(0, nrow = length(coef), ncol = 4) dimnames(coefficients) <- list(names(coef), c("Value", "SE", "Z", "p")) coefficients[, 1] <- coef coefficients[, 2] <- se coefficients[, 3] <- Z coefficients[, 4] <- 2*(1-p) if (x$stratified){ cat("Exposure-stratified case-cohort analysis,", x$method, "method.\n") m<-rbind(subcohort=x$subcohort.size, cohort=x$cohort.size) print(m,quote=FALSE) } else{ cat("Case-cohort analysis,") cat("x$method,", x$method,"\n with subcohort of", x$subcohort.size,"from cohort of", x$cohort.size,"\n\n") } cat("Call: "); print(x$call) cat("\nCoefficients:\n") print(coefficients) invisible(x) } "summary.cch"<-function(object,...) { ## produces summary from an object of the class "cch" call<-object$call coef <- coef(object) method <- object$method se <- sqrt(diag(vcov(object))) Z<- abs(coef/se) p<- pnorm(Z) cohort.size<-object$cohort.size subcohort.size<-object$subcohort.size coefficients <- matrix(0, nrow = length(coef), ncol = 4) dimnames(coefficients) <- list(names(coef), c("Value", "SE", "Z", "p")) coefficients[, 1] <- coef coefficients[, 2] <- se coefficients[, 3] <- Z coefficients[, 4] <- 2*(1-p) structure(list(call=call, method=method, cohort.size=cohort.size, subcohort.size=subcohort.size, coefficients = coefficients, stratified=object$stratified), class = "summary.cch") } print.summary.cch <- function(x,digits=3,...){ if (x$stratified){ cat("Exposure-stratified case-cohort analysis,", x$method, "method.\n") m<-rbind(subcohort=x$subcohort.size, cohort=x$cohort.size) print(m,quote=FALSE) } else{ cat("Case-cohort analysis,") cat("x$method,", x$method,"\n with subcohort of", x$subcohort.size,"from cohort of", x$cohort.size,"\n\n") } cat("Call: "); print(x$call) cat("\nCoefficients:\n") output<-cbind(Coef=x$coefficients[,1],HR=exp(x$coefficients[,1]), "(95%"=exp(x$coefficients[,1]-1.96*x$coefficients[,2]), "CI)"=exp(x$coefficients[,1]+1.96*x$coefficients[,2]), "p"=x$coefficients[,4] ) print(round(output,3)) invisible(x) } survival/R/basehaz.R0000644000176200001440000000167113537676563014120 0ustar liggesusers# # This function is simply an alias for "survfit". In the Cox model # case users often look for the words "baseline hazard" # basehaz <- function (fit, centered = TRUE) { if (!inherits(fit, "coxph")) stop("must be a coxph object") sfit <- survfit(fit, se.fit=FALSE) if (!centered) { # The right thing to do here is to call survfit with a vector of # all zeros for the "subject to predict". But if there is a factor # in the model, there may be no subject at all who will give all # zeros, so we post process instead zcoef <- ifelse(is.na(coef(fit)), 0, coef(fit)) offset <- sum(fit$means * zcoef) chaz <- sfit$cumhaz * exp(-offset) } else chaz <- sfit$cumhaz new <- data.frame(hazard=chaz, time=sfit$time) strata <- sfit$strata if (!is.null(strata)) new$strata <- factor(rep(names(strata), strata), levels = names(strata)) new } survival/R/summary.coxph.penal.R0000644000176200001440000000756413537676563016425 0ustar liggesuserssummary.coxph.penal <- function(object, conf.int = 0.95, scale=1, terms=FALSE, maxlabel=25, ...) { beta <- object$coefficients if (length(beta)==0 && length(object$frail)==0) stop("Penalized summary function can't be used for a null model") if (length(beta) > 0) { #has non-penalized coefs nacoef <- !(is.na(beta)) #non-missing coefs beta2 <- beta[nacoef] if(is.null(beta2) | is.null(object$var)) stop("Input is not valid") se <- sqrt(diag(object$var)) } # # Map terms to special print functions, and the list of iteration histories # pterms <- object$pterms nterms <- length(pterms) npenal <- sum(pterms>0) print.map <- rep(0,nterms) if (!is.null(object$printfun)) { temp <- unlist(lapply(object$printfun, is.null)) #which ones are missing print.map[pterms>0] <- (1:npenal) * (!temp) } # Tedious, but build up the coef matrix a term at a time print1 <- NULL pname1 <- NULL if (is.null(object$assign2)) alist <- object$assign[-1] else alist <- object$assign2 print2 <- NULL for (i in 1:nterms) { kk <- alist[[i]] if (print.map[i] >0) { j <- print.map[i] if (pterms[i]==2) temp <- (object$printfun[[j]])(object$frail, object$fvar, , object$df[i], object$history[[j]]) else temp <- (object$printfun[[j]])(beta[kk], object$var[kk,kk], object$var2[kk,kk], object$df[i], object$history[[j]]) print1 <- rbind(print1, temp$coef) if (is.matrix(temp$coef)) { xx <- dimnames(temp$coef)[[1]] if (is.null(xx)) xx <- rep(names(pterms)[i], nrow(temp$coef)) else xx <- paste(names(pterms)[i], xx, sep=', ') pname1 <- c(pname1, xx) } else pname1 <- c(pname1, names(pterms)[i]) print2 <- c(print2, temp$history) } else if (terms && length(kk)>1) { pname1 <- c(pname1, names(pterms)[i]) temp <- coxph.wtest(object$var[kk,kk], beta[kk])$test print1 <- rbind(print1, c(NA, NA, NA, temp, object$df[i], pchisq(temp, 1, lower.tail=FALSE))) } else { pname1 <- c(pname1, names(beta)[kk]) tempe<- (diag(object$var))[kk] temp <- beta[kk]^2/ tempe print1 <- rbind(print1, cbind(beta[kk], sqrt(tempe), sqrt((diag(object$var2))[kk]), temp, 1, pchisq(temp, 1, lower.tail=FALSE))) } } dimnames(print1) <- list(substring(pname1,1, maxlabel), c("coef","se(coef)", "se2", "Chisq","DF","p")) rval <- object[match(c("call", "fail", "na.action", "n", "nevent", "loglik", "iter", "df"), names(object), nomatch=0)] rval$coefficients <- print1 rval$print2 <- print2 if(conf.int & length(beta) >0 ) { z <- qnorm((1 + conf.int)/2, 0, 1) beta <- beta * scale se <- se * scale tmp <- cbind(exp(beta), exp(-beta), exp(beta - z * se), exp(beta + z * se)) dimnames(tmp) <- list(substring(names(beta),1, maxlabel), c("exp(coef)", "exp(-coef)", paste("lower .", round(100 * conf.int, 2), sep = ""), paste("upper .", round(100 * conf.int, 2), sep = ""))) rval$conf.int <- tmp } df <- sum(object$df) logtest <- -2 * (object$loglik[1] - object$loglik[2]) rval$logtest <- c(test = logtest, df=df, pvalue= pchisq(logtest,df, lower.tail=FALSE)) if (!is.null(object$waldtest)) rval$waldtest <- c(test= object$wald.test, df=df, pvalue = pchisq(object$wald.test, df, lower.tail=FALSE)) if (!is.null(object$concordance)) { ctemp <- object$concordance # C= (concordant + tied/2)/(concordant + discordant + tied) rval$concordance <- c((ctemp[1] + ctemp[3]/2)/sum(ctemp[1:3]), ctemp[6]) names(rval$concordance) <- c("C", "se(C)") } class(rval) <- "summary.coxph.penal" rval } survival/R/stacker.R0000644000176200001440000001007413546636444014126 0ustar liggesusers# # This routine creates a stacked data set # The key input is the cmap matrix, which has one row for each column # of X (plus a first row for the intercept of a Cox model which turns into # strata) and one column for each transition. # Input data is X, Y, strata, and initial state (integer). # # For each transition the expanded data has a set of rows, all those whose # initial state makes them eligible for the transition. # stacker <- function(cmap, istate, X, Y, strata, states) { from.state <- as.numeric(sub(":.*$", "", colnames(cmap))) to.state <- as.numeric(sub("^.*:", "", colnames(cmap))) # just in case cmap has columns I don't need (I don't think this can # happen check <- match(from.state, istate, nomatch=0) if (any(check==0)){ # I think that this is impossible warning("extra column in cmap") # debugging line browser() cmap <- cmap[,check>0] from.state <- from.state[check>0] to.state <- to.state[check>0] } endpoint <- c(0, match(attr(Y, "states"), states)) endpoint <- endpoint[ 1 + Y[,ncol(Y)]] # endpoint of each row, 0=censor # Usually each transition is a separate stratum, but the user can set it # up otherwise. The first row of cmat gives the strata for each change ustrata <- unique(cmap[1,]) nstrat <- length(ustrata) n.perstrat <- integer(nstrat) for (i in 1:nstrat) { itemp <- unique(from.state[cmap[1,] == ustrata[i]]) n.perstrat[i] <- sum(istate %in% itemp) } # The constructed X matrix has a block or rows for each ustrata level n2 <- sum(n.perstrat) # number of rows in new data newX <- matrix(0, nrow=n2, ncol=max(cmap[-1,])) k <- 0 rindex <- integer(n2) # original row for each new row of data newstat <- integer(n2) # new status for (i in 1:nstrat) { whichcol <- which(cmap[1,] == ustrata[i]) # cols of cmap to look at subject <- which(istate %in% from.state[whichcol]) # data rows in strata nr <- k + seq(along=subject) # rows in the newX for this strata rindex[nr] <- subject # Fill in X one transition at a time for (j in whichcol) { j1 <- which(istate == from.state[j]) # rows of X in transition j2 <- which(istate[subject] == from.state[j]) # new rows nc <- cmap[-1,j] # variables in this transition newX[nr[j2], nc[nc>0]] <- X[j1, nc>0] # rows of cmap = cols of X } event.that.counts <- (endpoint[subject] %in% to.state[whichcol]) newstat[nr] <- ifelse(event.that.counts, 1L, 0L) k <- max(nr) } # which transition each row of newX represents transition <- rep(ustrata, n.perstrat) # remove any rows where X is missing # these arise when a variable is used only for some transitions # the row of data needs to be tossed for the given ones, but will be # okay for other transitions keep <- !apply(is.na(newX), 1, any) if (!all(keep)) { newX <- newX[keep,, drop=FALSE] rindex <- rindex[keep] newstat <- newstat[keep] transition <- transition[keep] } if (ncol(Y) ==2) newY <- Surv(Y[rindex,1], newstat) else newY <- Surv(Y[rindex,1], Y[rindex,2], newstat) # new strata, add on any implicit strata in the data. if (is.null(strata)) newstrat <- ustrata[transition] else { # if the old strata is 1, 2, 3 and states are 1-5, the new ones will # 11-15 for strata 1, 21-25 for strata 2, etc. # (this is always called with 1,2,3... for the strata) # there are usually <10 transitions, so this makes simple labels temp <-10^ ceiling(log(length(ustrata), 10)) newstrat <- ustrata[transition] + strata[rindex]*temp } # give variable names to the new data vname <- rep("", ncol(newX)) ctemp <- cmap[-1,,drop=FALSE] vname[ctemp[ctemp>0]] <- colnames(X)[row(ctemp)[ctemp>0]] colnames(newX) <- vname list(X=newX, Y=newY, strata=as.integer(newstrat), transition= as.integer(transition), rindex=rindex) } survival/R/methods.R0000644000176200001440000000146013537676563014142 0ustar liggesusers# # new generic methods sprout up regularly # This is a convenient place to add them # # The AER package has a deviance function for tobit models, but I don't think # that deviance is a useful quantity there. # fitted.survreg <- function(object, ...) predict(object, type = "response", se.fit = FALSE) fitted.coxph <- function(object, ...) object$linear.predictors # The nobs result is intended for computing BIC; for coxph we think that # this is the number of events. nobs.survreg <- function(object, ...) length(object$linear.predictors) nobs.coxph <- function(object, ...) object$nevent weights.survreg <- function(object, ...) model.weights(model.frame(object)) weights.coxph <- function(object, ...) { if (!is.null(object$weights)) object$weights else model.weights(model.frame(object)) } survival/R/frailty.t.R0000644000176200001440000000765013537676563014422 0ustar liggesusers# $Id: frailty.t.S 11377 2009-12-14 22:59:56Z therneau $ # # Defining function for t-distribution frailty fits # frailty.t <- function(x, sparse=(nclass>5), theta, df, eps= 1e-5, tdf=5, method=c("aic", "df", "fixed"), ...) { nclass <- length(unique(x[!is.na(x)])) if (sparse){ x <-as.numeric(factor(x)) class(x) <- "coxph.penalty" } else{ x <- factor(x) class(x) <- c("coxph.penalty",class(x)) attr(x,'contrasts') <- contr.treatment(nclass, contrasts=FALSE) } if (tdf <=2) stop("Cannot have df <3 for the t-frailty") # Check for consistency of the arguments if (missing(method)) { if (!missing(theta)) { method <- 'fixed' if (!missing(df)) stop("Cannot give both a df and theta argument") } else if (!missing(df)) { if (df==0) method <- 'aic' else method <- 'df' } } method <- match.arg(method) if (method=='df' && missing(df)) stop("Method = df but no df argument") if (method=='fixed' && missing(theta)) stop("Method= fixed but no theta argument") if (method !='fixed' && !missing(theta)) stop("Method is not 'fixed', but have a theta argument") pfun<- function(coef, theta, ndead, tdf){ if (theta==0) list(recenter=0, penalty=0, flag=TRUE) else { sig <- theta* (tdf-2)/tdf #scale contant^2 in density formula # # Find the centering constant, using 1 NR step # temp <- 1 + coef^2/(tdf*sig) temp1 <- coef/temp temp2 <- 1/temp - (2/(tdf*sig))*coef^2/temp^2 recenter <- sum(temp1)/sum(temp2) #NR step towards MLE coef <- coef - recenter const <- (tdf+1)/(tdf*sig) temp <- 1 + coef^2/(tdf*sig) list(recenter=recenter, first= const*coef/temp, second= const*(1/temp - (2/(tdf*sig))*coef^2/temp^2), penalty= sum(.5*log(pi*tdf*sig) + ((tdf+1)/2)*log(temp) + lgamma(tdf/2) - lgamma((tdf+1)/2)), flag=FALSE) } } printfun <- function(coef, var, var2, df, history) { if (!is.null(history$history)) theta <- history$history[nrow(history$history),1] else theta <- history$theta if (is.matrix(var)) test <- coxph.wtest(var, coef)$test else test <- sum(coef^2/var) df2 <- max(df, .5) # Stop silly p-values list(coef=c(NA, NA, NA, test, df, pchisq(test, df2, lower.tail=FALSE)), history=paste("Variance of random effect=", format(theta))) } # The final coxph object will contain a copy of printfun. Stop it from # also containing huge unnecessary variables, e.g. 'x', known at this # point in time. Not an issue for pfun, which does not get saved. # The reason for using the survival namespace instead of globalenv() is # that we call coxph.wtest, which may not be visible outside the name space environment(printfun) <- asNamespace('survival') if (method=='fixed') { temp <- list(pfun=pfun, pparm=tdf, printfun=printfun, diag =TRUE, sparse= sparse, cfun = function(parms, iter, old){ list(theta=parms$theta, done=TRUE)}, cparm= list(theta=theta, ...)) } else if (method=='aic') { temp <- list(pfun=pfun, pparm=tdf, printfun=printfun, diag =TRUE, sparse= sparse, cargs = c("neff", "df", "plik"), cparm=list(lower=0, init=c(.1,1), eps=eps, ...), cfun = frailty.controlaic) } else { #df method if (missing(eps)) eps <- .1 temp <- list(pfun=pfun, pparm=tdf, printfun=printfun, diag =TRUE, sparse= sparse, cargs= c('df'), cparm=list(df=df, eps=eps, thetas=0, dfs=0, guess=3*df/length(unclass(x)), ...), cfun = frailty.controldf) } # If not sparse, give shorter names to the coefficients, so that any # printout of them is readable. if (!sparse) { vname <- paste("t", levels(x), sep=':') temp <- c(temp, list(varname=vname)) } attributes(x) <- c(attributes(x), temp) x } survival/R/model.matrix.coxph.R0000644000176200001440000002206513570772306016213 0ustar liggesusers# Automatically generated from the noweb directory # In internal use "data" will often be an already derived model frame. # We detect this via it having a terms attribute. model.matrix.coxph <- function(object, data=NULL, contrast.arg=object$contrasts, ...) { # # If the object has an "x" component, return it, unless a new # data set is given if (is.null(data) && !is.null(object[['x']])) return(object[['x']]) #don't match "xlevels" Terms <- delete.response(object$terms) if (is.null(data)) mf <- stats::model.frame(object) else { if (is.null(attr(data, "terms"))) mf <- stats::model.frame(Terms, data, xlev=object$xlevels) else mf <- data #assume "data" is already a model frame } cluster <- attr(Terms, "specials")$cluster if (length(cluster)) { temp <- untangle.specials(Terms, "cluster") dropterms <- temp$terms } else dropterms <- NULL strats <- attr(Terms, "specials")$strata hasinteractions <- FALSE if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.integer(strata.keep) for (i in stemp$vars) { #multiple strata terms are allowed # The factors attr has one row for each variable in the frame, one # col for each term in the model. Pick rows for each strata # var, and find if it participates in any interactions. if (any(attr(Terms, 'order')[attr(Terms, "factors")[i,] >0] >1)) hasinteractions <- TRUE } if (!hasinteractions) dropterms <- c(dropterms, stemp$terms) } else istrat <- NULL if (length(dropterms)) { Terms2 <- Terms[ -dropterms] X <- model.matrix(Terms2, mf, constrasts=contrast.arg) # we want to number the terms wrt the original model matrix temp <- attr(X, "assign") shift <- sort(dropterms) temp <- temp + 1*(shift[1] <= temp) if (length(shift)==2) temp + 1*(shift[2] <= temp) attr(X, "assign") <- temp } else X <- model.matrix(Terms, mf, contrasts=contrast.arg) # drop the intercept after the fact, and also drop strata if necessary Xatt <- attributes(X) if (hasinteractions) adrop <- c(0, untangle.specials(Terms, "strata")$terms) else adrop <- 0 xdrop <- Xatt$assign %in% adrop #columns to drop (always the intercept) X <- X[, !xdrop, drop=FALSE] attr(X, "assign") <- Xatt$assign[!xdrop] attr(X, "contrasts") <- Xatt$contrasts X } model.frame.coxph <- function(formula, ...) { dots <- list(...) nargs <- dots[match(c("data", "na.action", "subset", "weights", "id", "cluster", "istate"), names(dots), 0)] # If nothing has changed and the coxph object had a model component, # simply return it. if (length(nargs) ==0 && !is.null(formula$model)) return(formula$model) else { # Rebuild the original call to model.frame Terms <- terms(formula) fcall <- formula$call indx <- match(c("formula", "data", "weights", "subset", "na.action", "cluster", "id", "istate"), names(fcall), nomatch=0) if (indx[1] ==0) stop("The coxph call is missing a formula!") temp <- fcall[c(1,indx)] # only keep the arguments we wanted temp[[1]] <- quote(stats::model.frame) # change the function called temp$xlev <- formula$xlevels # this will turn strings to factors temp$formula <- Terms #keep the predvars attribute # Now, any arguments that were on this call overtake the ones that # were in the original call. if (length(nargs) >0) temp[names(nargs)] <- nargs # Make "tt" visible for coxph formulas, if (!is.null(attr(temp$formula, "specials")$tt)) { coxenv <- new.env(parent= environment(temp$formula)) assign("tt", function(x) x, envir=coxenv) environment(temp$formula) <- coxenv } # The documentation for model.frame implies that the environment arg # to eval will be ignored, but if we omit it there is a problem. if (is.null(environment(formula$terms))) mf <- eval(temp, parent.frame()) else mf <- eval(temp, environment(formula$terms), parent.frame()) if (!is.null(attr(formula$terms, "dataClasses"))) .checkMFClasses(attr(formula$terms, "dataClasses"), mf) if (is.null(attr(Terms, "specials")$tt)) return(mf) else { # Do time transform tt <- eval(formula$call$tt) Y <- aeqSurv(model.response(mf)) strats <- attr(Terms, "specials")$strata if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.numeric(strata.keep) } timetrans <- untangle.specials(Terms, 'tt') ntrans <- length(timetrans$terms) if (is.null(tt)) { tt <- function(x, time, riskset, weights){ #default to O'Brien's logit rank obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } } if (is.function(tt)) tt <- list(tt) #single function becomes a list if (is.list(tt)) { if (any(!sapply(tt, is.function))) stop("The tt argument must contain function or list of functions") if (length(tt) != ntrans) { if (length(tt) ==1) { temp <- vector("list", ntrans) for (i in 1:ntrans) temp[[i]] <- tt[[1]] tt <- temp } else stop("Wrong length for tt argument") } } else stop("The tt argument must contain a function or list of functions") if (ncol(Y)==2) { if (length(strats)==0) { sorted <- order(-Y[,1], Y[,2]) newstrat <- rep.int(0L, nrow(Y)) newstrat[1] <- 1L } else { sorted <- order(istrat, -Y[,1], Y[,2]) #newstrat marks the first obs of each strata newstrat <- as.integer(c(1, 1*(diff(istrat[sorted])!=0))) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount1, Y[sorted,], as.integer(newstrat)) tindex <- sorted[counts$index] } else { if (length(strats)==0) { sort.end <- order(-Y[,2], Y[,3]) sort.start<- order(-Y[,1]) newstrat <- c(1L, rep(0, nrow(Y) -1)) } else { sort.end <- order(istrat, -Y[,2], Y[,3]) sort.start<- order(istrat, -Y[,1]) newstrat <- c(1L, as.integer(diff(istrat[sort.end])!=0)) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount2, Y, as.integer(sort.start -1L), as.integer(sort.end -1L), as.integer(newstrat)) tindex <- counts$index } Y <- Surv(rep(counts$time, counts$nrisk), counts$status) type <- 'right' # new Y is right censored, even if the old was (start, stop] mf <- mf[tindex,] istrat <- rep(1:length(counts$nrisk), counts$nrisk) weights <- model.weights(mf) if (!is.null(weights) && any(!is.finite(weights))) stop("weights must be finite") tcall <- attr(Terms, 'variables')[timetrans$terms+2] pvars <- attr(Terms, 'predvars') pmethod <- sub("makepredictcall.", "", as.vector(methods("makepredictcall"))) for (i in 1:ntrans) { newtt <- (tt[[i]])(mf[[timetrans$var[i]]], Y[,1], istrat, weights) mf[[timetrans$var[i]]] <- newtt nclass <- class(newtt) if (any(nclass %in% pmethod)) { # It has a makepredictcall method dummy <- as.call(list(as.name(class(newtt)[1]), tcall[[i]][[2]])) ptemp <- makepredictcall(newtt, dummy) pvars[[timetrans$terms[i]+2]] <- ptemp } } attr(Terms, "predvars") <- pvars mf[[".strata."]] <- istrat return(mf) } } } survival/R/residuals.survreg.R0000644000176200001440000001740413570772311016154 0ustar liggesusers# Automatically generated from the noweb directory # # Residuals for survreg objects residuals.survreg <- function(object, type=c('response', 'deviance', 'dfbeta', 'dfbetas', 'working', 'ldcase', 'ldresp', 'ldshape', 'matrix'), rsigma =TRUE, collapse=FALSE, weighted=FALSE, ...) { type <-match.arg(type) n <- length(object$linear.predictors) Terms <- object$terms if(!inherits(Terms, "terms")) stop("invalid terms component of object") # If the variance wasn't estimated then it has no error if (nrow(object$var) == length(object$coefficients)) rsigma <- FALSE # If there was a cluster directive in the model statment then remove # it. It does not correspond to a coefficient, and would just confuse # things later in the code. cluster <- untangle.specials(Terms,"cluster")$terms if (length(cluster) >0 ) Terms <- Terms[-cluster] strata <- attr(Terms, 'specials')$strata intercept <- attr(Terms, "intercept") response <- attr(Terms, "response") weights <- object$weights if (is.null(weights)) weighted <- FALSE if (is.null(object$naive.var)) vv <- object$var else vv <- object$naive.var need.x <- is.na(match(type, c('response', 'deviance', 'working'))) if (is.null(object$y) || !is.null(strata) || (need.x & is.null(object[['x']]))) mf <- stats::model.frame(object) if (is.null(object$y)) y <- model.response(mf) else y <- object$y if (!is.null(strata)) { temp <- untangle.specials(Terms, 'strata', 1) Terms2 <- Terms[-temp$terms] if (length(temp$vars)==1) strata.keep <- mf[[temp$vars]] else strata.keep <- strata(mf[,temp$vars], shortlabel=TRUE) strata <- as.numeric(strata.keep) nstrata <- max(strata) sigma <- object$scale[strata] } else { Terms2 <- Terms nstrata <- 1 sigma <- object$scale } if (need.x) { x <- object[['x']] #don't grab xlevels component if (is.null(x)) x <- model.matrix(Terms2, mf, contrasts.arg=object$contrasts) } if (is.character(object$dist)) dd <- survreg.distributions[[object$dist]] else dd <- object$dist ytype <- attr(y, "type") if (is.null(dd$itrans)) { itrans <- dtrans <-function(x)x # reprise the work done in survreg to create a transformed y if (ytype=='left') y[,2] <- 2- y[,2] else if (type=='interval' && all(y[,3]<3)) y <- y[,c(1,3)] } else { itrans <- dd$itrans dtrans <- dd$dtrans # reprise the work done in survreg to create a transformed y tranfun <- dd$trans exactsurv <- y[,ncol(y)] ==1 if (any(exactsurv)) logcorrect <-sum(log(dd$dtrans(y[exactsurv,1]))) if (ytype=='interval') { if (any(y[,3]==3)) y <- cbind(tranfun(y[,1:2]), y[,3]) else y <- cbind(tranfun(y[,1]), y[,3]) } else if (ytype=='left') y <- cbind(tranfun(y[,1]), 2-y[,2]) else y <- cbind(tranfun(y[,1]), y[,2]) } if (!is.null(dd$dist)) dd <- survreg.distributions[[dd$dist]] deviance <- dd$deviance dens <- dd$density if (type=='response') { yhat0 <- deviance(y, sigma, object$parms) rr <- itrans(yhat0$center) - itrans(object$linear.predictor) } else { status <- y[,ncol(y)] eta <- object$linear.predictors z <- (y[,1] - eta)/sigma dmat <- dens(z, object$parms) dtemp<- dmat[,3] * dmat[,4] #f' if (any(status==3)) { z2 <- (y[,2] - eta)/sigma dmat2 <- dens(z2, object$parms) } else { dmat2 <- dmat #dummy values z2 <- 0 } tdenom <- ((status==0) * dmat[,2]) + #right censored ((status==1) * 1 ) + #exact ((status==2) * dmat[,1]) + #left ((status==3) * ifelse(z>0, dmat[,2]-dmat2[,2], dmat2[,1] - dmat[,1])) #interval g <- log(ifelse(status==1, dmat[,3]/sigma, tdenom)) #loglik tdenom <- 1/tdenom dg <- -(tdenom/sigma) *(((status==0) * (0-dmat[,3])) + #dg/ eta ((status==1) * dmat[,4]) + ((status==2) * dmat[,3]) + ((status==3) * (dmat2[,3]- dmat[,3]))) ddg <- (tdenom/sigma^2) *(((status==0) * (0- dtemp)) + #ddg/eta^2 ((status==1) * dmat[,5]) + ((status==2) * dtemp) + ((status==3) * (dmat2[,3]*dmat2[,4] - dtemp))) ds <- ifelse(status<3, dg * sigma * z, tdenom*(z2*dmat2[,3] - z*dmat[,3])) dds <- ifelse(status<3, ddg* (sigma*z)^2, tdenom*(z2*z2*dmat2[,3]*dmat2[,4] - z * z*dmat[,3] * dmat[,4])) dsg <- ifelse(status<3, ddg* sigma*z, tdenom *(z2*dmat2[,3]*dmat2[,4] - z*dtemp)) deriv <- cbind(g, dg, ddg=ddg- dg^2, ds = ifelse(status==1, ds-1, ds), dds=dds - ds*(1+ds), dsg=dsg - dg*(1+ds)) if (type=='deviance') { yhat0 <- deviance(y, sigma, object$parms) rr <- (-1)*deriv[,2]/deriv[,3] #working residuals rr <- sign(rr)* sqrt(2*(yhat0$loglik - deriv[,1])) } else if (type=='working') rr <- (-1)*deriv[,2]/deriv[,3] else if (type=='dfbeta' || type== 'dfbetas' || type=='ldcase') { score <- deriv[,2] * x # score residuals if (rsigma) { if (nstrata > 1) { d4 <- matrix(0., nrow=n, ncol=nstrata) d4[cbind(1:n, strata)] <- deriv[,4] score <- cbind(score, d4) } else score <- cbind(score, deriv[,4]) } rr <- score %*% vv if (type=='dfbetas') rr <- rr %*% diag(1/sqrt(diag(vv))) if (type=='ldcase') rr<- rowSums(rr*score) } else if (type=='ldresp') { rscore <- deriv[,3] * (x * sigma) if (rsigma) { if (nstrata >1) { d6 <- matrix(0., nrow=n, ncol=nstrata) d6[cbind(1:n, strata)] <- deriv[,6]*sigma rscore <- cbind(rscore, d6) } else rscore <- cbind(rscore, deriv[,6] * sigma) } temp <- rscore %*% vv rr <- rowSums(rscore * temp) } else if (type=='ldshape') { sscore <- deriv[,6] *x if (rsigma) { if (nstrata >1) { d5 <- matrix(0., nrow=n, ncol=nstrata) d5[cbind(1:n, strata)] <- deriv[,5] sscore <- cbind(sscore, d5) } else sscore <- cbind(sscore, deriv[,5]) } temp <- sscore %*% vv rr <- rowSums(sscore * temp) } else { #type = matrix rr <- deriv } } #case weights if (weighted) rr <- rr * weights #Expand out the missing values in the result if (!is.null(object$na.action)) { rr <- naresid(object$na.action, rr) if (is.matrix(rr)) n <- nrow(rr) else n <- length(rr) } # Collapse if desired if (!missing(collapse)) { if (length(collapse) !=n) stop("Wrong length for 'collapse'") rr <- drop(rowsum(rr, collapse)) } rr } survival/R/print.survdiff.R0000644000176200001440000000247713537676563015473 0ustar liggesusers# $Date: 2006-08-28 14:31:20 $ $Id: print.survdiff.S 11166 2008-11-24 22:10:34Z therneau $ print.survdiff <- function(x, digits = max(options()$digits - 4, 3), ...) { saveopt <-options(digits=digits) on.exit(options(saveopt)) if (!inherits(x, 'survdiff')) stop("Object is not the result of survdiff") if (!is.null(cl<- x$call)) { cat("Call:\n") dput(cl) cat("\n") } omit <- x$na.action if (length(omit)) cat("n=", sum(x$n), ", ", naprint(omit), ".\n\n", sep='') if (length(x$n)==1) { z <- sign(x$exp - x$obs) * sqrt(x$chisq) temp <- c(x$obs, x$exp, z, signif(pchisq(x$chisq, 1, lower.tail=FALSE), digits)) names(temp) <- c("Observed", "Expected", "Z", "p") print(temp) } else { if (is.matrix(x$obs)){ otmp <- apply(x$obs,1,sum) etmp <- apply(x$exp,1,sum) } else { otmp <- x$obs etmp <- x$exp } df <- (sum(1*(etmp>0))) -1 temp <- cbind(x$n, otmp, etmp, ((otmp-etmp)^2)/ etmp, ((otmp-etmp)^2)/ diag(x$var)) dimnames(temp) <- list(names(x$n), c("N", "Observed", "Expected", "(O-E)^2/E", "(O-E)^2/V")) print(temp) cat("\n Chisq=", format(round(x$chisq,1)), " on", df, "degrees of freedom, p=", format.pval(pchisq(x$chisq, df, lower.tail=FALSE)), "\n") } invisible(x) } survival/R/coxph.fit.R0000644000176200001440000001067613537676563014412 0ustar liggesuserscoxph.fit <- function(x, y, strata, offset, init, control, weights, method, rownames, resid=TRUE) { n <- nrow(y) if (is.matrix(x)) nvar <- ncol(x) else { if (length(x)==0) nvar <-0 else nvar <-1 } time <- y[,1] status <- y[,2] # Sort the data (or rather, get a list of sorted indices) if (length(strata)==0) { sorted <- order(time) strata <- NULL newstrat <- as.integer(rep(0,n)) } else { sorted <- order(strata, time) strata <- strata[sorted] newstrat <- as.integer(c(1*(diff(as.numeric(strata))!=0), 1)) } if (missing(offset) || is.null(offset)) offset <- rep(0,n) if (missing(weights)|| is.null(weights))weights<- rep(1,n) else { if (any(weights<=0)) stop("Invalid weights, must be >0") weights <- weights[sorted] } stime <- as.double(time[sorted]) sstat <- as.integer(status[sorted]) if (nvar==0) { # A special case: Null model. # (This is why I need the rownames arg- can't use x' names) # Set things up for 0 iterations on a dummy variable x <- as.matrix(rep(1.0, n)) nullmodel <- TRUE nvar <- 1 init <- 0 maxiter <- 0 } else { nullmodel <- FALSE maxiter <- control$iter.max if (!missing(init) && length(init)>0) { if (length(init) != nvar) stop("Wrong length for inital values") } else init <- rep(0,nvar) } storage.mode(weights) <- storage.mode(init) <- "double" coxfit <- .Call(Ccoxfit6, as.integer(maxiter), stime, sstat, x[sorted,], as.double(offset[sorted]), weights, newstrat, as.integer(method=="efron"), as.double(control$eps), as.double(control$toler.chol), as.vector(init), as.integer(1)) # internally rescale if (nullmodel) { if (resid) { score <- exp(offset[sorted]) coxres <- .C(Ccoxmart, as.integer(n), as.integer(method=='efron'), stime, sstat, newstrat, as.double(score), as.double(weights), resid=double(n)) resid <- double(n) resid[sorted] <- coxres$resid names(resid) <- rownames list( loglik = coxfit$loglik[1], linear.predictors = offset, residuals = resid, method = method, class = c('coxph.null', 'coxph') ) } else list(loglik = coxfit$loglik[1], linear.predictors = offset, method = method, class = c('coxph.null', 'coxph') ) } else { coef <- coxfit$coef lp <- c(x %*% coef) + offset - sum(coef*coxfit$means) var <- matrix(coxfit$imat,nvar,nvar) if (coxfit$flag < nvar) which.sing <- diag(var)==0 else which.sing <- rep(FALSE,nvar) infs <- abs(coxfit$u %*% var) if (maxiter >1) { if (coxfit$flag == 1000) { warning("Ran out of iterations and did not converge") if (max(lp) > 500 || any(!is.finite(infs))) warning("one or more coefficients may be infinite") } else { infs <- (!is.finite(coxfit$u) | ((infs > control$eps) & infs > control$toler.inf*abs(coef))) if (any(infs)) warning(paste("Loglik converged before variable ", paste((1:nvar)[infs],collapse=","), "; coefficient may be infinite. ")) } } names(coef) <- dimnames(x)[[2]] if (maxiter > 0) coef[which.sing] <- NA #leave it be if iter=0 is set rval <- list(coefficients = coef, var = var, loglik = coxfit$loglik, score = coxfit$sctest, iter = coxfit$iter, linear.predictors = as.vector(lp), means = coxfit$means, method = method, class ='coxph') if (resid) { score <- exp(lp[sorted]) coxres <- .C(Ccoxmart, as.integer(n), as.integer(method=='efron'), stime, sstat, newstrat, as.double(score), as.double(weights), resid=double(n)) resid <- double(n) resid[sorted] <- coxres$resid names(resid) <- rownames # rval$residuals <- resid # not good enough # some other code expects the ORDER of components in a coxph # object will never change: residuals right before means rval <- c(rval[1:6], list(residuals=resid), rval[-(1:6)]) } rval } } survival/R/frailty.controldf.R0000644000176200001440000000602713537676563016146 0ustar liggesusers# $Id: frailty.controldf.S 11373 2009-10-28 17:12:59Z therneau $ # A function to calibrate the df # very empirical # Find the closest 3 points that span the target value # We know the function is monotone, so fit the function # dy = a * (dx)^p to the 3 points, where dx and dy are the distance # from the leftmost of the three points. # This method can fail near a boundary, so use step halving if things don't # go well # On input, parms$df = target degrees of freedom # parms$dfs, parms$thetas = known values (usually 0,0) # parms$guess = first guess # frailty.controldf <- function(parms, iter, old, df) { if (iter==0) { theta <- parms$guess return(list(theta=theta, done=FALSE, history=cbind(thetas=parms$thetas, dfs=parms$dfs))) } eps <- parms$eps if (length(eps)==0) eps <- .1 thetas <- c(old$history[,1], old$theta) dfs <- c(old$history[,2], df) nx <- length(thetas) if (nx==2) { #linear guess based on first two # but try extra hard to bracket the root theta <- thetas[1] + (thetas[2]-thetas[1])*(parms$df - dfs[1])/ (dfs[2] - dfs[1]) if (parms$df > df) theta <- theta * 1.5 return(list(theta=theta, done=FALSE, history=cbind(thetas=thetas, dfs=dfs), half=0)) } else{ # Now, thetas= our guesses at theta # dfs = the degrees of freedom for each guess done <- (iter>1 && (abs(dfs[nx]-parms$df) < eps)) # look for a new minimum x <- thetas y <- dfs target <- parms$df # How am I doing if ( abs( (y[nx]-target)/(y[nx-1]-target)) > .6) doing.well <- FALSE else doing.well <- TRUE ord <- order(x) if ((x[1]-x[2])*(y[1]-y[2]) >0) y <- y[ord] #monotone up else { #monotone down y <- -1* y[ord] target <- -target } x <- x[ord] if (all(y>target)) b1 <- 1 #points 1:3 are the closest then else if (all(y1 && ((target -y[b1]) < (y[b1+1] -target)))) b1 <- b1-1 } #now have the best 3 points # fit them with a power curve anchored at the leftmost one b2 <- b1 + 1:2 xx <- log(x[b2] - x[b1]) yy <- log(y[b2] - y[b1]) power <- diff(yy)/diff(xx) a <- yy[1] - power*xx[1] newx <- (log(target -y[b1]) - a)/power if (length(parms$trace) && parms$trace){ print(cbind(thetas=thetas, dfs=dfs)) cat(" new theta=" , format(x[b1] + exp(newx)), "\n\n") } list(theta=x[b1] + exp(newx), done=done, history=cbind(thetas=thetas, dfs=dfs), half=0) } } survival/R/print.summary.survexp.R0000644000176200001440000000311013537676563017034 0ustar liggesusersprint.summary.survexp <- function(x, digits = max(options()$digits - 4, 3), ...) { savedig <- options(digits=digits) on.exit(options(savedig)) if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } omit <- x$na.action if (length(omit)) cat(naprint(omit), "\n") mat <- cbind(x$time, x$n.risk, x$surv) if (is.matrix(x$n.risk)) cnames <- c("time", paste("nrisk", 1:ncol(x$n.risk), sep='')) else cnames <- c("time", "n.risk") if (is.matrix(x$surv)) ncurve <- ncol(x$surv) else ncurve <- 1 if (ncurve==1) { #only 1 curve cnames <- c(cnames, "survival") # if (!is.null(x$std.err)) { # if (is.null(x$lower)) { # mat <- cbind(mat, x$std.err) # cnames <- c(cnames, "std.err") # } # else { # mat <- cbind(mat, x$std.err, x$lower, x$upper) # cnames <- c(cnames, 'std.err', # paste("lower ", x$conf.int*100, "% CI", sep=''), # paste("upper ", x$conf.int*100, "% CI", sep='')) # } # } } else cnames <- c(cnames, paste("survival", seq(ncurve), sep='')) if (!is.matrix(mat)) mat <- matrix(mat, nrow=1) if (!is.null(mat)) { dimnames(mat) <- list(rep("", nrow(mat)), cnames) if (is.null(x$strata)) print(mat) else { #print it out one strata at a time strata <- x$strata for (i in levels(strata)) { who <- (strata==i) cat(" ", i, "\n") print(mat[who,]) cat("\n") } } } else stop("There are no observations to print.") invisible(x) } survival/R/coxph.wtest.R0000644000176200001440000000274013537676603014762 0ustar liggesusers# # A Wald test routine, used by the Cox model # Why not just do sum(b * solve(var, b))? -- because the solve # function chokes on singular matrices. # coxph.wtest <- function(var, b, toler.chol=1e-9) { if (is.matrix(b)) { nvar <- nrow(b) ntest<- ncol(b) } else { nvar <- length(b) ntest<- 1 } if (length(var)==0) { #special case added by Tom Lumley if (nvar==0) return(list(test=numeric(0), df=0, solve=0)) else stop("Argument lengths do not match") } if (length(var)==1) { if (nvar ==1) return(list(test=b*b/var, df=1, solve=b/var)) else stop("Argument lengths do not match") } if (!is.matrix(var) || (nrow(var) != ncol(var))) stop("First argument must be a square matrix") if (nrow(var) != nvar) stop("Argument lengths do not match") if (any(!is.finite(b)) || any(!is.finite(var))) { cat("not finite in coxph.wtest\n") print(b) print(var) } temp <- .C(Ccoxph_wtest, df=as.integer(nvar), as.integer(ntest), as.double(var), tests= as.double(b), solve= double(nvar*ntest), as.double(toler.chol)) if (ntest==1) list(test=temp$tests[1], df=temp$df, solve=temp$solve) else list(test=temp$tests[1:ntest], df=temp$df, solve=matrix(temp$solve, nvar, ntest)) } survival/R/model.frame.survreg.R0000644000176200001440000000513113537676563016363 0ustar liggesusersmodel.frame.survreg <- function (formula, ...) { dots <- list(...) nargs <- dots[match(c("data", "na.action", "subset"), names(dots), 0)] if (length(nargs) || is.null(formula$model)) { fcall <- formula$call indx <- match(c("formula", "data", "weights", "subset", "na.action"), names(fcall), nomatch = 0) if (indx[1] == 0) stop("The coxph call is missing a formula!") temp <- fcall[c(1, indx)] temp[[1L]] <- quote(stats::model.frame) temp$xlev <- formula$xlevels if (length(nargs) > 0) temp[names(nargs)] <- nargs if (is.null(environment(formula$terms))) eval(temp, parent.frame()) else eval(temp, environment(formula$terms), parent.frame()) } else formula$model } # model.matrix.survreg <- function(object, data, ...) { if (missing(data) && !is.null(object[["x"]])) object[["x"]] else { Terms <- delete.response(object$terms) strats <- attr(Terms, "specials")$strata cluster<- attr(Terms, "specials")$cluster dropx <- NULL if (length(cluster)) { tempc <- untangle.specials(Terms, 'cluster', 1:10) dropx <- tempc$terms } if (length(strats)) { temp <- untangle.specials(Terms, 'strata', 1) dropx <- c(dropx, temp$terms) } if (length(dropx)) { newTerms <- Terms[-dropx] # R (version 2.7.1) adds intercept=T anytime you drop something attr(newTerms, 'intercept') <- attr(Terms, 'intercept') # The predvars attribute, if present, is lost when we # subscript. The attribute is a Call, so has one more element # than term wrt subscripting, i.e., the called function "list" if (!is.null(attr(terms, "predvars"))) attr(newTerms, "predvars") <- attr(terms, "predvars")[-(dropx+1)] } else newTerms <- Terms # Grab the model frame. By using "newterms" for a new data set, # we allow the new data to be missing things we don't need: y, # strata, and cluster. For the original data we can assume they # are present. if (missing(data)) mf <- stats::model.frame(object, ...) else { if (is.null(attr(data, "terms"))) mf <- stats::model.frame(newTerms, data, xlev=object$xlevels) else mf <- data #assume we were given a model frame } model.matrix(newTerms, mf, contrasts.arg= object$contrasts) } } survival/R/print.summary.coxph.R0000644000176200001440000000444313537676563016453 0ustar liggesusersprint.summary.coxph <- function(x, digits = max(getOption('digits')-3, 3), signif.stars = getOption("show.signif.stars"), ...) { if (!is.null(x$call)) { cat("Call:\n") dput(x$call) cat("\n") } if (!is.null(x$fail)) { cat(" Coxreg failed.", x$fail, "\n") return() } savedig <- options(digits = digits) on.exit(options(savedig)) omit <- x$na.action cat(" n=", x$n) if (!is.null(x$nevent)) cat(", number of events=", x$nevent, "\n") else cat("\n") if (length(omit)) cat(" (", naprint(omit), ")\n", sep="") if (nrow(x$coef)==0) { # Null model cat (" Null model\n") return() } if(!is.null(x$coefficients)) { cat("\n") printCoefmat(x$coefficients, digits=digits, signif.stars=signif.stars, ...) } if(!is.null(x$conf.int)) { cat("\n") print(x$conf.int) } cat("\n") if (!is.null(x$concordance)) { cat("Concordance=", format(round(x$concordance[1],3)), " (se =", format(round(x$concordance[2], 3)),")\n") } # cat("Rsquare=", format(round(x$rsq["rsq"],3)), # " (max possible=", format(round(x$rsq["maxrsq"],3)), # ")\n" ) pdig <- max(1, getOption("digits")-4) # default it too high IMO cat("Likelihood ratio test= ", format(round(x$logtest["test"], 2)), " on ", x$logtest["df"], " df,", " p=", format.pval(x$logtest["pvalue"], digits=pdig), "\n", sep = "") cat("Wald test = ", format(round(x$waldtest["test"], 2)), " on ", x$waldtest["df"], " df,", " p=", format.pval(x$waldtest["pvalue"], digits=pdig), "\n", sep = "") cat("Score (logrank) test = ", format(round(x$sctest["test"], 2)), " on ", x$sctest["df"]," df,", " p=", format.pval(x$sctest["pvalue"], digits=pdig), sep ="") if (is.null(x$robscore)) cat("\n\n") else cat(", Robust = ", format(round(x$robscore["test"], 2)), " p=", format.pval(x$robscore["pvalue"], digits=pdig), "\n\n", sep="") if (x$used.robust) cat(" (Note: the likelihood ratio and score tests", "assume independence of\n observations within a cluster,", "the Wald and robust score tests do not).\n") invisible() } survival/R/aeqSurv.R0000644000176200001440000000241613537676563014127 0ustar liggesusers# # Create time values such that tiny differences are treated as a tie # The decision and tolerance are the same as all.equal # aeqSurv <- function(x, tolerance = sqrt(.Machine$double.eps)) { if (!missing(tolerance)) { if (!is.numeric(tolerance) || length(tolerance)!=1 || !is.finite(tolerance)) stop("invalid value for tolerance") if (tolerance <=0) return(x) # do nothing } if (!is.Surv(x)) stop("argument is not a Surv object") y <- sort(unique(c(x[, -ncol(x)]))) y <- y[is.finite(y)] #someone may hand us an INF dy <- diff(y) tied <- ((dy <=tolerance) |( (dy/ mean(abs(y)) <=tolerance))) if (!any(tied)) return(x) # all values are unique cuts <- y[c(TRUE, !tied)] if (ncol(x) ==2) { # simple survival z <- findInterval(x[,1], cuts) z <- cbind(cuts[z], as.integer(x[,2])) } else { z <- matrix(findInterval(x[,1:2], cuts), ncol=2) # We may have created zero length intervals zeros <- which(z[,1] == z[,2]) if (length(zeros)>0 && any(x[zeros,1] != x[zeros,2])) stop("aeqSurv exception, an interval has effective length 0") z <- cbind(matrix(cuts[z], ncol=2), as.integer(x[,3])) } attributes(z) <- attributes(x) z } survival/R/survConcordance.fit.R0000644000176200001440000000600513537676563016416 0ustar liggesusers# Automatically generated from the noweb directory # Replaced by concordance.R. This code is now frozen and will be deprecated survConcordance.fit <- function(y, x, strata, weight) { # The coxph program may occassionally fail, and this will kill the C # routine below if (any(is.na(x)) || any(is.na(y))) return(NULL) btree <- function(n) { ranks <- rep(0L, n) #will be overwritten yet.to.do <- 1:n depth <- floor(logb(n,2)) start <- as.integer(2^depth) lastrow.length <- 1+n-start indx <- seq(1L, by=2L, length= lastrow.length) ranks[yet.to.do[indx]] <- start + 0:(length(indx)-1L) yet.to.do <- yet.to.do[-indx] while (start >1) { start <- as.integer(start/2) indx <- seq(1L, by=2L, length=start) ranks[yet.to.do[indx]] <- start + 0:(start-1L) yet.to.do <- yet.to.do[-indx] } ranks } docount <- function(stime, risk, wts) { if (attr(stime, 'type') == 'right') { ord <- order(stime[,1], -stime[,2]) ux <- sort(unique(risk)) n2 <- length(ux) index <- btree(n2)[match(risk[ord], ux)] - 1L .Call(Cconcordance1, stime[ord,], as.double(wts[ord]), as.integer(index), as.integer(length(ux))) } else if (attr(stime, 'type') == "counting") { sort.stop <- order(-stime[,2], stime[,3]) sort.start <- order(-stime[,1]) ux <- sort(unique(risk)) n2 <- length(ux) index <- btree(n2)[match(risk, ux)] - 1L .Call(Cconcordance2, stime, as.double(wts), as.integer(index), as.integer(length(ux)), as.integer(sort.stop-1L), as.integer(sort.start-1L)) } else stop("Invalid survival type for concordance") } if (missing(weight) || length(weight)==0) weight <- rep(1.0, length(x)) storage.mode(y) <- "double" if (missing(strata) || length(strata)==0) { count <- docount(y, x, weight) if (count[1]==0 && count[2]==0) count[5]<-0 else count[5] <- 2*sqrt(count[5]) names(count) <- c("concordant", "discordant", "tied.risk", "tied.time", "std(c-d)") } else { strata <- as.factor(strata) ustrat <- levels(strata)[table(strata) >0] #some strata may have 0 obs count <- matrix(0., nrow=length(ustrat), ncol=5) for (i in 1:length(ustrat)) { keep <- which(strata == ustrat[i]) count[i,] <- docount(y[keep,,drop=F], x[keep], weight[keep]) } count[,5] <- 2*sqrt(ifelse(count[,1]+count[,2]==0, 0, count[,5])) dimnames(count) <- list(ustrat, c("concordant", "discordant", "tied.risk", "tied.time", "std(c-d)")) } count } survival/R/survreg.R0000644000176200001440000002220413537676563014173 0ustar liggesuserssurvreg <- function(formula, data, weights, subset, na.action, dist='weibull', init=NULL, scale=0, control, parms=NULL, model=FALSE, x=FALSE, y=TRUE, robust=FALSE, score=FALSE, ...) { Call <- match.call() # save a copy of the call indx <- match(c("formula", "data", "weights", "subset", "na.action"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") temp <- Call[c(1,indx)] # only keep the arguments we wanted temp[[1L]] <- quote(stats::model.frame) # change the function called special <- c("strata", "cluster") temp$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) m <- eval(temp, parent.frame()) Terms <- attr(m, 'terms') weights <- model.extract(m, 'weights') Y <- model.extract(m, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") type <- attr(Y, "type") if (type== 'counting') stop ("start-stop type Surv objects are not supported") if (type=="mright" || type=="mcounting") stop("multi-state survival is not supported") strats <- attr(Terms, "specials")$strata cluster<- attr(Terms, "specials")$cluster dropx <- NULL if (length(cluster)) { if (missing(robust)) robust <- TRUE tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] if (any(ord>1)) stop ("Cluster can not be used in an interaction") cluster <- strata(m[,tempc$vars], shortlabel=TRUE) #allow multiples dropx <- tempc$terms } if (length(strats)) { temp <- untangle.specials(Terms, 'strata', 1) dropx <- c(dropx, temp$terms) if (length(temp$vars)==1) strata.keep <- m[[temp$vars]] else strata.keep <- strata(m[,temp$vars], shortlabel=TRUE) strata <- as.numeric(strata.keep) nstrata <- max(strata) } else { nstrata <- 1 strata <- 0 } if (length(dropx)) { newTerms <- Terms[-dropx] # R (version 2.7.1) adds intercept=T anytime you drop something attr(newTerms, 'intercept') <- attr(Terms, 'intercept') } else newTerms <- Terms X <- model.matrix(newTerms, m) assign <- lapply(attrassign(X, newTerms)[-1], function(x) x-1) xlevels <- .getXlevels(newTerms, m) contr.save <- attr(X, 'contrasts') if (!all(is.finite(X))) stop("data contains an infinite predictor") n <- nrow(X) nvar <- ncol(X) offset<- model.offset(m) # R returns NULL if no offset, Splus a zero if (length(offset)==0 || all(offset==0)) offset <- rep(0.,n) # The user can either give a distribution name, in which the distribution # is found in the object survreg.distributions, or include a list object # of the same format as is found there. if (is.character(dist)) { # partial matching of names in [[ is on its way out in R, so # first use match.arg, e.g. turn 'exp' into 'exponential' dist <- match.arg(dist, names(survreg.distributions)) dlist <- survreg.distributions[[dist]] if (is.null(dlist)) stop(paste(dist, ": distribution not found")) } else if (is.list(dist)) dlist <- dist else stop("Invalid distribution object") # # Make sure it is legal # if (!survregDtest(dlist)) stop("Invalid distribution object") # If the distribution is a transformation of another, perform # said transform. # logcorrect <- 0 #correction to the loglik due to transformations Ysave <- Y # for use in the y component if (!is.null(dlist$trans)) { tranfun <- dlist$trans exactsurv <- Y[,ncol(Y)] ==1 if (any(exactsurv)) { if (is.null(weights)) logcorrect <- sum(log(dlist$dtrans(Y[exactsurv, 1]))) else logcorrect <- sum(weights[exactsurv]*log(dlist$dtrans(Y[exactsurv, 1]))) } if (type=='interval') { if (any(Y[,3]==3)) Y <- cbind(tranfun(Y[,1:2]), Y[,3]) else Y <- cbind(tranfun(Y[,1]), Y[,3]) } else if (type=='left') Y <- cbind(tranfun(Y[,1]), 2-Y[,2]) else Y <- cbind(tranfun(Y[,1]), Y[,2]) if (!all(is.finite(Y))) stop("Invalid survival times for this distribution") } else { if (type=='left') Y[,2] <- 2- Y[,2] else if (type=='interval' && all(Y[,3]<3)) Y <- Y[,c(1,3)] } if (!is.null(dlist$scale)) { if (!missing(scale)) warning(paste(dlist$name, "has a fixed scale, user specified value ignored")) scale <- dlist$scale } if (!is.null(dlist$dist)) if (is.atomic(dlist$dist)) dlist <- survreg.distributions[[dlist$dist]] else dlist <- dlist$dist # check for parameters ptemp <- dlist$parms if (is.null(ptemp)) { if (!is.null(parms)) stop(paste(dlist$name, "distribution has no optional parameters")) } else { if (!is.numeric(ptemp)) stop("Default parameters must be a numeric vector") if (!missing(parms)) { temp <- unlist(parms) # just in case they gave a list object indx <- match(names(temp), names(ptemp)) if (any(is.na(indx))) stop("Invalid parameter names") ptemp[names(ptemp)] <- temp } parms <- ptemp } # An idea originally from Brian R: if the user gave a list of # control values, use it, but if they did not give an explicit control # argument assume that they mistakenly wrote control parameters as a # part of the "..." or other arguments if (missing(control)) control <- survreg.control(...) else control <- do.call('survreg.control', control) # The any() construction below is to catch a user that mistakenly # thinks that 'scale' can be used in a model with multiple strata, and # so provided a vector of scale values. # (A 'perhaps should be be added someday' feature). if (any(scale < 0)) stop("Invalid scale value") if (any(scale >0) && nstrata >1) stop("The scale argument is not valid with multiple strata") # Check for penalized terms pterms <- sapply(m, inherits, 'coxph.penalty') if (any(pterms)) { pattr <- lapply(m[pterms], attributes) # # the 'order' attribute has the same components as 'term.labels' # pterms always has 1 more (response), sometimes 2 (offset) # drop the extra parts from pterms temp <- c(attr(Terms, 'response'), attr(Terms, 'offset')) if (length(dropx)) temp <- c(temp, dropx+1) pterms <- pterms[-temp] temp <- match((names(pterms))[pterms], attr(Terms, 'term.labels')) ord <- attr(Terms, 'order')[temp] if (any(ord>1)) stop ('Penalty terms cannot be in an interaction') assign <- attrassign(X, newTerms) pcols <- assign[match(names(pterms[pterms]), names(assign))] fit <- survpenal.fit(X, Y, weights, offset, init=init, controlvals = control, dist= dlist, scale=scale, strata=strata, nstrat=nstrata, pcols, pattr, parms=parms, assign) } else fit <- survreg.fit(X, Y, weights, offset, init=init, controlvals=control, dist= dlist, scale=scale, nstrat=nstrata, strata, parms=parms) if (is.character(fit)) fit <- list(fail=fit) #error message else { if (scale==0) { nvar <- length(fit$coefficients) - nstrata fit$scale <- exp(fit$coefficients[-(1:nvar)]) if (nstrata==1) names(fit$scale) <- NULL else names(fit$scale) <- levels(strata.keep) fit$coefficients <- fit$coefficients[1:nvar] fit$idf <- 1 + nstrata } else { fit$scale <- scale fit$idf <- 1 } fit$loglik <- fit$loglik + logcorrect } if (!score) fit$score <- NULL #do not return the score vector fit$df.residual <- n - sum(fit$df) fit$terms <- Terms fit$contrasts <- contr.save if (length(xlevels)) fit$xlevels <- xlevels fit$means <- apply(X,2, mean) if (!is.null(weights)) fit$weights <- weights fit$call <- Call fit$dist <- dist if (model) fit$model <- m if (x) fit$x <- X if (y) fit$y <- Ysave if (length(parms)) fit$parms <- parms # Do this before attaching the na.action, so that residuals() won't # reinsert missing values under na.exclude if (robust) { fit$naive.var <- fit$var if (!model) fit$model <- m #temporary addition, so resid doesn't # have to reconstruct if (length(cluster)) fit$var <- crossprod(rowsum(residuals.survreg(fit, 'dfbeta'), cluster)) else fit$var <- crossprod(residuals.survreg(fit, 'dfbeta')) if (!model) fit$model <- NULL # take it back out } # set singular coefficients to NA # this is purposely not done until the residuals, etc. are computed singular <- (diag(fit$var)==0)[1:length(fit$coef)] if (any(singular)) fit$coef <- ifelse(singular, NA, fit$coef) na.action <- attr(m, "na.action") if (length(na.action)) fit$na.action <- na.action if (any(pterms)) class(fit) <- c('survreg.penal', 'survreg') else class(fit) <- 'survreg' fit } survival/R/untangle.specials.R0000644000176200001440000000121013537676563016107 0ustar liggesusers# # This function takes a terms object, and extracts some aspects # of it into a "nice" list. It is simple an operation that # I do again and again in the modeling routines, so it was # made into a separate function # untangle.specials <- function(tt, special, order=1) { spc <- attr(tt, 'specials')[[special]] if (length(spc)==0) return(list(vars=character(0), terms=numeric(0))) facs <- attr(tt, 'factors') fname <- dimnames(facs) ff <- apply(facs[spc,,drop=FALSE], 2, sum) list(vars= (fname[[1]])[spc], tvar = spc - attr(tt, "response"), terms= seq(ff)[ff & match(attr(tt, 'order'), order, nomatch=0)]) } survival/R/frailty.gaussian.R0000644000176200001440000000754713537676563015776 0ustar liggesusers# # Defining function for gaussian frailty fits # frailty.gaussian <- function(x, sparse=(nclass >5), theta, df, method=c("reml", "aic", "df", "fixed"), ...) { # Check for consistency of the arguments if (missing(method)) { if (!missing(theta)) { method <- 'fixed' if (!missing(df)) stop("Cannot give both a df and theta argument") } else if (!missing(df)) { if (df==0) method <- "aic" else method <- 'df' } } method <- match.arg(method) if (method=='df' && missing(df)) stop("Method = df but no df argument") if (method=='fixed' && missing(theta)) stop("Method= fixed but no theta argument") if (method !='fixed' && !missing(theta)) stop("Method is not 'fixed', but have a theta argument") nclass <- length(unique(x[!is.na(x)])) if (sparse){ x <- as.numeric(factor(x)) #if there are missing levels, drop them class(x) <- "coxph.penalty" } else{ x <- factor(x) nclass <- length(levels(x)) class(x) <- c("coxph.penalty", class(x)) attr(x, 'contrasts') <- contr.treatment(nclass, contrasts=FALSE) } if (!missing(theta) & !missing(df)) stop("Cannot give both a df and theta argument") pfun<- function(coef, theta, ndead){ if (theta==0) list(recenter=0, penalty=0, flag=TRUE) else { recenter <- mean(coef) coef <- coef - recenter list(recenter = recenter, first= coef/theta, second= rep(1, length(coef))/theta, # penalty= -sum(log(dnorm(coef,0, sqrt(theta))), penalty= 0.5* sum(coef^2/theta + log(2*pi*theta)), flag=FALSE) } } printfun <- function(coef, var, var2, df, history) { if (!is.null(history$history)) theta <- history$history[nrow(history$history),1] else theta <- history$theta if (is.matrix(var)) test <- coxph.wtest(var, coef)$test else test <- sum(coef^2/var) df2 <- max(df, .5) # Stop silly p-values list(coef=c(NA, NA, NA, test, df, pchisq(test, df2, lower.tail=FALSE)), history=paste("Variance of random effect=", format(theta))) } # The final coxph object will contain a copy of printfun. Stop it from # also containing huge unnecessary variables, e.g. 'x', known at this # point in time. Not an issue for pfun, which does not get saved. # Setting to globalenv() will not suffice since coxph.wtest is not visible # outside the survival library's name space. temp <- new.env(parent=globalenv()) assign("cox.zph", cox.zph, envir=temp) #make a private copy environment(printfun) <- temp if (method=='reml') { temp <- list(pfun=pfun, printfun=printfun, diag =TRUE, sparse= sparse, cargs = c('coef', 'trH', 'loglik'), cfun = frailty.controlgauss, cparm= list( ...)) } else if (method=='fixed') { temp <- list(pfun=pfun, printfun = printfun, diag =TRUE, sparse= sparse, cfun = function(parms, iter, old){ list(theta=parms$theta, done=TRUE)}, cparm= list(theta=theta, ...)) } else if (method=='aic') { temp <- list(pfun=pfun, printfun=printfun, diag =TRUE, sparse= sparse, cargs = c("neff", "df", "plik"), cparm=list(lower=0, init=c(.1,1), ...), cfun = frailty.controlaic) } else { #df method temp <- list(pfun=pfun, printfun =printfun, diag =TRUE, sparse= sparse, cargs=('df'), cparm=list(df=df, thetas=0, dfs=0, guess=3*df/length(unclass(x)), ...), cfun = frailty.controldf) } # If not sparse, give shorter names to the coefficients, so that any # printout of them is readable. if (!sparse) { vname <- paste("gauss", levels(x), sep=':') temp <- c(temp, list(varname=vname)) } attributes(x) <- c(attributes(x), temp) x } survival/R/survSplit.R0000644000176200001440000001271513537676563014517 0ustar liggesuserssurvSplit <- function(formula, data, subset, na.action=na.pass, cut, start="tstart", id, zero=0, episode, end="tstop", event="event") { Call <- match.call() if (missing(formula) || is.data.frame(formula)) { # an old style call # match arguments and build a formula if (missing(data)) { if (!missing(formula)) { names(Call)[[2]] <- "data" # The line above is sneaky: it makes model.frame() work later data <- formula } else stop("a data frame is required") } if (missing(end) || missing(event)) stop("either a formula or the end and event arguments are required") if (!(is.character(event) && length(event) ==1 && event %in% names(data))) stop("'event' must be a variable name in the data set") if (!(is.character(end) && length(end) ==1 && end %in% names(data))) stop("'end' must be a variable name in the data set") if (!(is.character(start) && length(start)==1)) stop("'start' must be a variable name") if (start %in% names(data)) temp <- paste(start, end, event, sep=',') else temp <- paste(end, event, sep=',') formula <- as.formula(paste("Surv(", temp, ")~ .")) } else if (missing(formula)) stop("either a formula or the end and event arguments are required") # create a call to model.frame() that contains the formula (required) # and any other of the relevant optional arguments # then evaluate it in the proper frame indx <- match(c("data", "weights", "subset"), names(Call), nomatch=0) temp <- Call[c(1L,indx)] # only keep the arguments we wanted temp$formula <- formula temp$na.action <- na.action temp[[1L]] <- quote(stats::model.frame) # change the function called mf <- eval.parent(temp) Y <- model.response(mf) states <- attr(Y, "states") if (!is.Surv(Y)) stop ("the model must have a Surv object as the response") if (!(attr(Y, "type") %in% c("right", "mright", "counting", "mcounting"))) stop(paste("not valid for", attr(Y, "type"), "censored survival data")) nY <- ncol(Y) ymiss <- is.na(Y) # these pass through unchanged if (nY ==2) { if (any(Y[!ymiss,1] <= zero)) stop("'zero' parameter must be less than any observed times") Y <- cbind(zero, Y) } temp <- (Y[!ymiss,1] >= Y[!ymiss,2]) if (any(temp)) stop("start time must be < stop time") if (!is.numeric(cut) || any(!is.finite(cut))) stop("cut must be a vector of finite numbers") cut <- unique(sort(cut)) ntimes <- length(cut) n <- nrow(data) if (!missing(id)) { if (!is.character(id)) stop("id must be a variable name") if (id %in% names(mf)) stop("the suggested id name is already present") id <- make.names(id) if (id %in% names(mf)) stop("the suggested id name is already present") mf[[id]] <- 1:nrow(mf) } storage.mode(Y) <- "double" index <- .Call(Csurvsplit, Y[,1], Y[,2], as.double(cut)) newdata <- mf[index$row, -1, drop=FALSE] row.names(newdata) <- NULL # erase R's manufactured row names attr(newdata, "terms") <- NULL status <- Y[index$row, 3] status[index$censor] <- 0 if (!is.null(states)) status <- factor(status, labels=c("censor", states)) # Did the user hand me a Surv call with multiple variables, or a # premade Surv object? if (inherits(formula[[2]], "call") && formula[[2]][[1]]== as.name("Surv")){ # it was a call, figure out the names # The user might have used something like Surv(status=abc, time=fred), # so use match.call to find "abc" and "fred". But give up if there # is anything complex. temp <- match.call(Surv, formula[[2]]) if (nY==2) { if (missing(end) && !is.null(temp[["time"]]) && is.name(temp[["time"]])) end <- as.character(temp[["time"]]) # $time might match 'time2' if (missing(event) && !is.null(temp$time2) && is.name(temp$time2)) event <- as.character(temp$time2) if (missing(event) && !is.null(temp$event) && is.name(temp$event)) event <- as.character(temp$event) } else { if (missing(end) && !is.null(temp[["time"]]) && is.name(temp["time"])) start <- as.character(temp[["time"]]) if (missing(end) && !is.null(temp$time2) && is.name(temp$time2)) end <- as.character(temp$time2) if (missing(event) && !is.null(temp$event) && is.name(temp$event)) event <- as.character(temp$event) if (missing(start) && !is.null(temp$time) && is.name(temp$time)) start <- as.character(temp$time) } newdata[[start]] <- index$start newdata[[end]] <- index$end newdata[[event]] <- status } else { if (class(formula[[2]]) != "name") stop("left hand side not recognized") temp <- as.character(formula[[2]]) newdata[temp] <- Surv(index$start, index$end, status) } if (!missing(episode)) { if (!is.character(episode)) stop("episode must be a character string") newdata[[make.names(episode)]] <- index$interval +1 } newdata } survival/R/lines.survexp.R0000644000176200001440000000015213537676563015321 0ustar liggesuserslines.survexp <- function(x, type="l", ...) { type <- type NextMethod("lines", type=type, ...) } survival/R/ridge.R0000644000176200001440000000251213537676563013570 0ustar liggesusers# $Id: ridge.S 11166 2008-11-24 22:10:34Z therneau $ ridge <- function(..., theta, df=nvar/2, eps=.1, scale=TRUE) { x <- cbind(...) nvar <- ncol(x) xname <- as.character(parse(text=substitute(cbind(...))))[-1] vars <- apply(x, 2, function(z) var(z[!is.na(z)])) class(x) <- 'coxph.penalty' if (!missing(theta) && !missing(df)) stop("Only one of df or theta can be specified") if (scale) pfun <- function(coef,theta, ndead, scale) { list(penalty= sum(coef^2 *scale)*theta/2, first = theta*coef*scale, second = theta*scale, flag=FALSE) } else pfun <- function(coef,theta, ndead, scale) { list(penalty= sum(coef^2)*theta/2, first = theta*coef, second = theta, flag=FALSE) } if (!missing(theta)) { temp <- list(pfun=pfun, diag=TRUE, cfun=function(parms, iter, history) { list(theta=parms$theta, done=TRUE) }, cparm=list(theta= theta), pparm= vars, varname=paste('ridge(', xname, ')', sep='')) } else { temp <- list(pfun=pfun, diag=TRUE, cfun=frailty.controldf, cargs = 'df', cparm=list(df=df, eps=eps, thetas=0, dfs=nvar, guess=1), pparm= vars, varname=paste('ridge(', xname, ')', sep='')) } attributes(x) <- c(attributes(x), temp) x } survival/R/ratetable.R0000644000176200001440000000411713537676563014444 0ustar liggesusers# Methods for actual rate tables, like # the table of US survival rates by age and sex (survexp.us). Rate tables # have the "ratetable" class. However, since each one is rather unique, # there is no function to create a rate table. Each consists of a multi-way # array of event rates along with a set of attributes. # "[.ratetable" <- function(x, ..., drop=TRUE) { aa <- attributes(x) attributes(x) <- aa[c("dim", "dimnames")] y <- NextMethod("[", drop=FALSE) newdim <- attr(y, 'dim') if (is.null(newdim)) return(y) #when the subscript was a single vector dropped <- (newdim==1) if (drop) change <- (newdim!=aa$dim & !dropped) else change <- (newdim!=aa$dim) if (any(change)) { #dims that got smaller, but not dropped newcut <- aa$cutpoints for (i in (1:length(change))[change]) if (!is.null(newcut[[i]])) newcut[[i]] <- (newcut[[i]])[match(dimnames(y)[[i]], aa$dimnames[[i]])] aa$cutpoints <- newcut } if (drop && any(dropped)){ if (all(dropped)) as.numeric(y) #single element else { #Note that we have to drop the summary function attributes(y) <- list( dim = dim(y)[!dropped], dimnames = dimnames(y)[!dropped], dimid = aa$dimid[!dropped], factor = aa$factor[!dropped], cutpoints =aa$cutpoints[!dropped], type = aa$type[!dropped]) class(y) <- 'ratetable' y } } else { aa$dim <- aa$dimnames <- NULL attributes(y) <- c(attributes(y), aa) y } } is.na.ratetable <- function(x) structure(is.na(as.vector(x)), dim=dim(x), dimnames=dimnames(x)) Math.ratetable <- function(x, ...) { attributes(x) <- attributes(x)[c("dim", "dimnames")] NextMethod(.Generic) } Ops.ratetable <- function(e1, e2) { #just treat it as an array if (nchar(.Method[1])) attributes(e1) <- attributes(e1)[c("dim","dimnames")] if (nchar(.Method[2])) attributes(e2) <- attributes(e2)[c("dim","dimnames")] NextMethod(.Generic) } as.matrix.ratetable <- function(x, ...) { attributes(x) <- attributes(x)[c("dim", "dimnames")] x } survival/R/residuals.coxph.null.R0000644000176200001440000000053713537676563016567 0ustar liggesusers# $Id $ residuals.coxph.null <- function(object, type=c("martingale", "deviance", "score", "schoenfeld"), collapse=FALSE, weighted=FALSE, ...) { type <- match.arg(type) if (type=='martingale' || type=='deviance') NextMethod() else stop(paste("\'", type, "\' residuals are not defined for a null model", sep="")) } survival/R/ratetableold.R0000644000176200001440000000341113537676563015137 0ustar liggesusers# These functions are depricated # Only relsurv uses them, and I'm working on that ratetable <- function(...) { datecheck <- function(x) inherits(x, c("Date", "POSIXt", "date", "chron")) args <- list(...) nargs <- length(args) ll <- sapply(args, length) n <- max(ll) # We assume this is the dimension of the user's data frame levlist <- vector("list", nargs) x <- matrix(0,n,nargs) dimnames(x) <- list(1:n, names(args)) isDate <- sapply(args, datecheck) for (i in 1:nargs) { if (ll[i] ==1) args[[i]] <- rep(args[[i]], n) else if (ll[i] != n) stop(paste("Aguments do not all have the same length (arg ", i, ")", sep='')) # In Splus cut and tcut produce class 'category' if (inherits(args[[i]], 'cateogory') || is.character(args[[i]])) args[[i]] <- as.factor(args[[i]]) if (is.factor(args[[i]])) { levlist[[i]] <- levels(args[[i]]) x[,i] <- as.numeric(args[[i]]) # the vector of levels } else x[,i] <- ratetableDate(args[[i]]) } attr(x, "isDate") <- isDate attr(x, "levlist") <- levlist class(x) <- 'ratetable2' x } # The two functions below should only be called internally, when missing # values cause model.frame to drop some rows is.na.ratetable2 <- function(x) { attributes(x) <- list(dim=dim(x)) as.vector((1 * is.na(x)) %*% rep(1, ncol(x)) >0) } "[.ratetable2" <- function(x, rows, cols, drop=FALSE) { if (!missing(cols)) { stop("This should never be called!") } aa <- attributes(x) attributes(x) <- aa[c("dim", "dimnames")] y <- x[rows,,drop=FALSE] attr(y,'isDate') <- aa$isDate attr(y,'levlist') <- aa$levlist class(y) <- 'ratetable2' y } survival/R/predict.coxph.penal.R0000644000176200001440000000704213537676603016344 0ustar liggesuserspredict.coxph.penal <- function(object, newdata, type=c("lp", "risk", "expected", "terms"), se.fit=FALSE, terms=names(object$assign), collapse, safe=FALSE, ...) { type <- match.arg(type) n <- object$n pterms <- object$pterms # If there are no sparse terms if (!any(pterms==2) || (missing(newdata) && se.fit==FALSE && type!='terms')) NextMethod('predict',object,...) else { # treat the sparse term as an offset term # It gets picked up in the linear predictor, so all I need to # do is "X" it out of the model so that it doesn't get picked up # as a part of the X matrix and etc. # I know that the sparse term is a single column BTW # termname <- names(object$pterms) sparsename <- termname[object$pterms==2] nvar <- length(termname) na.action <- object$na.action object$na.action <- NULL if (missing(newdata) && (se.fit || type=='terms')) { # I need the X matrix x <- object[['x']] # object$x might grab object$xlevels if (is.null(x)) { temp <- coxph.getdata(object, y=TRUE, x=TRUE, stratax=TRUE) if (is.null(object$y)) object$y <- temp$y if (is.null(object$strata)) object$strata <- temp$strata x <- temp$x } xvar <- match(sparsename, dimnames(x)[[2]]) indx <- as.numeric(as.factor(x[,xvar])) object$x <- x[, -xvar, drop=FALSE] } if (nvar==1) { # Only the sparse term! if (!missing(newdata)) { n <- nrow(as.data.frame(newdata)) pred <- rep(0,n) se <- rep(0,n) } else { if (se.fit) se <- sqrt(object$fvar[indx]) pred <- object$linear.predictor } if (type=='risk') pred <- exp(pred) if (type=='expected') { pred <- object$y[,ncol(object$y)] -object$residuals se.fit=FALSE } } else { # temporarily remove the sparse term, call NextMethod, # and then put it back oldTerms <- object$terms temp <- attr(object$terms, 'term.labels') object$terms <- object$terms[-match(sparsename, temp)] pred <- NextMethod('predict',object,terms=terms,...) object$terms<- oldTerms if (se.fit) { se <- pred$se.fit pred <- pred$fit } if (type=='terms' && missing(newdata)) { # In this case (only) I add the sparse term back in spterm <- object$frail[indx] spstd <- sqrt(object$fvar[indx]) if (nvar==2) { if (xvar==2) { pred <- cbind(pred, spterm) if (se.fit) se <- cbind(se, spstd) } else { pred <- cbind(spterm, pred) if (se.fit) se <- cbind(spstd, se) } } else { first <- if (xvar==1) 0 else 1:(xvar-1) secnd <- if (xvar==nvar) 0 else (xvar+1):nvar pred <- cbind(pred[,first], spterm, pred[,secnd]) if (se.fit) se <- cbind(se[,first], spstd, se[,secnd]) } dimnames(pred) <- list(dimnames(x)[[1]], termname) if (se.fit) dimnames(se) <- dimnames(pred) } } #Expand out the missing values in the result # But only if operating on the original dataset if (missing(newdata) && !is.null(na.action)) { pred <- naresid(na.action, pred) if (is.matrix(pred)) n <- nrow(pred) else n <- length(pred) if(se.fit) se <- naresid(na.action, se) } # Collapse over subjects, if requested if (!missing(collapse)) { if (length(collapse) != n) stop("Collapse vector is the wrong length") pred <- drop(rowsum(pred, collapse)) if (se.fit) se <- sqrt(drop(rowsum(se^2, collapse))) } if (se.fit) list(fit=pred, se.fit=se) else pred } } survival/R/survfitcoxph.fit.R0000644000176200001440000000217513537676563016030 0ustar liggesusers# The survfitcoxph.fit function was replaced by coxsurv.fit, which has a few # more arguments and a more logical naming (it fits in with other calls). # Enough people use rms, however, which calls survfitcoxph.fit, that we are # giving this as a temporary pass through. survfitcoxph.fit <- function(y, x, wt, x2, risk, newrisk, strata, se.fit, survtype, vartype, varmat, id, y2, strata2, unlist=TRUE) { # soon, but not at first issue # .Deprecated("coxsurv.fit", "survival") Call <- match.call() if (missing(survtype)) { stype <- 1 ctype <- 1 } else { stype <- c(1,2,2)[survtype] ctype <- c(1,1,2)[survtype] } indx <- match(c("y", "x", "wt", "x2", "y2", "risk", "strata", "strata2", "se.fit", "varmat"), names(Call), nomatch=0) temp <-Call[c(1, indx)] temp[[1]] <- quote(survival::coxsurv.fit) temp$ctype <- ctype temp$stype <- stype if (!missing(newrisk)) temp$risk2 <- newrisk if (!missing(id)) temp$id2 <- id temp$unlist <- unlist eval(temp, parent.frame()) } survival/R/plot.cox.zph.R0000644000176200001440000000531013537676563015043 0ustar liggesusersplot.cox.zph <- function(x, resid=TRUE, se=TRUE, df=4, nsmo=40, var, xlab="Time", ylab="", lty=1:2, col=1, lwd=1, ...) { xx <- x$x yy <- x$y # d <- nrow(yy) df <- max(df) #error proofing nvar <- ncol(yy) pred.x <- seq(from=min(xx), to=max(xx), length=nsmo) temp <- c(pred.x, xx) lmat <- ns(temp, df=df, intercept=TRUE) pmat <- lmat[1:nsmo,] # for prediction xmat <- lmat[-(1:nsmo),] qmat <- qr(xmat) if (qmat$rank < df) stop("Spline fit is singular, try a smaller degrees of freedom") if (se) { bk <- backsolve(qmat$qr[1:df, 1:df], diag(df)) xtx <- bk %*% t(bk) # seval <- d*((pmat%*% xtx) *pmat) %*% rep(1, df) seval <- ((pmat%*% xtx) *pmat) %*% rep(1, df) } if (missing(ylab)) ylab <- paste("Beta(t) for", dimnames(yy)[[2]]) if (missing(var)) var <- 1:nvar else { if (is.character(var)) var <- match(var, dimnames(yy)[[2]]) if (any(is.na(var)) || max(var)>nvar || min(var) <1) stop("Invalid variable requested") } # # Figure out a 'good' set of x-axis labels. Find 8 equally spaced # values on the 'transformed' axis. Then adjust until they correspond # to rounded 'true time' values. Avoid the edges of the x axis, or # approx() may give a missing value if (x$transform == 'log') { xx <- exp(xx) pred.x <- exp(pred.x) } else if (x$transform != 'identity') { xtime <- x$time indx <- !duplicated(xx) #avoid a warning message in R apr1 <- approx(xx[indx], xtime[indx], seq(min(xx), max(xx), length=17)[2*(1:8)]) temp <- signif(apr1$y,2) apr2 <- approx(xtime[indx], xx[indx], temp) xaxisval <- apr2$y xaxislab <- rep("",8) for (i in 1:8) xaxislab[i] <- format(temp[i]) } col <- rep(col, length=2) lwd <- rep(lwd, length=2) lty <- rep(lty, length=2) for (i in var) { y <- yy[,i] yhat <- pmat %*% qr.coef(qmat, y) if (resid) yr <-range(yhat, y) else yr <-range(yhat) if (se) { temp <- 2* sqrt(x$var[i,i]*seval) yup <- yhat + temp ylow<- yhat - temp yr <- range(yr, yup, ylow) } if (x$transform=='identity') plot(range(xx), yr, type='n', xlab=xlab, ylab=ylab[i], ...) else if (x$transform=='log') plot(range(xx), yr, type='n', xlab=xlab, ylab=ylab[i], log='x', ...) else { plot(range(xx), yr, type='n', xlab=xlab, ylab=ylab[i], axes=FALSE,...) axis(1, xaxisval, xaxislab) axis(2) box() } if (resid) points(xx, y) lines(pred.x, yhat, lty=lty[1], col=col[1], lwd=lwd[1]) if (se) { lines(pred.x, yup, col=col[2], lty=lty[2], lwd=lwd[2]) lines(pred.x, ylow, col=col[2], lty=lty[2], lwd=lwd[2]) } } } survival/R/survfitCI.R0000644000176200001440000003232713570772045014410 0ustar liggesusers# Automatically generated from the noweb directory docurve2 <- function(entry, etime, status, istate, wt, states, id, se.fit, influence=FALSE, p0) { timeset <- sort(unique(etime)) nstate <- length(states) uid <- sort(unique(id)) index <- match(id, uid) # Either/both of id and cstate might be factors. Data may not be in # order. Get the initial state for each subject temp1 <- order(id, entry) temp2 <- match(uid, id[temp1]) cstate <- (as.numeric(istate)[temp1])[temp2] # initial state for each # The influence matrix can be huge, make sure we have enough memory if (influence) { needed <- max(nstate * length(uid), 1 + length(timeset)) if (needed > .Machine$integer.max) stop("number of rows for the influence matrix is > the maximum integer") } storage.mode(wt) <- "double" # just in case someone had integer weights # Compute p0 (unless given by the user) if (is.null(p0)) { if (all(status==0)) t0 <- max(etime) #failsafe else t0 <- min(etime[status!=0]) # first transition event at.zero <- (entry < t0 & etime >= t0) wtsum <- sum(wt[at.zero]) # weights for a subject may change p0 <- tapply(wt[at.zero], istate[at.zero], sum) / wtsum p0 <- ifelse(is.na(p0), 0, p0) #for a state not in at.zero, tapply =NA } # initial leverage matrix nid <- length(uid) i0 <- matrix(0., nid, nstate) if (all(p0 <1)) { #actually have to compute it who <- index[at.zero] # this will have no duplicates for (j in 1:nstate) i0[who,j] <- (ifelse(istate[at.zero]==states[j], 1, 0) - p0[j])/wtsum } storage.mode(cstate) <- "integer" storage.mode(status) <- "integer" # C code has 0 based subscripts if (influence) se.fit <- TRUE # se.fit is free in this case fit <- .Call(Csurvfitci, c(entry, etime), order(entry) - 1L, order(etime) - 1L, length(timeset), status, as.integer(cstate) - 1L, wt, index -1L, p0, i0, as.integer(se.fit) + 2L*as.integer(influence)) if (se.fit) out <- list(n=length(etime), time= timeset, p0 = p0, sp0= sqrt(colSums(i0^2)), pstate = fit$p, std.err=fit$std, n.risk = fit$nrisk, n.event= fit$nevent, n.censor=fit$ncensor, cumhaz = fit$cumhaz) else out <- list(n=length(etime), time= timeset, p0=p0, pstate = fit$p, n.risk = fit$nrisk, n.event = fit$nevent, n.censor= fit$ncensor, cumhaz= fit$cumhaz) if (influence) { temp <- array(fit$influence, dim=c(length(uid), nstate, 1+ length(timeset)), dimnames=list(uid, NULL, NULL)) out$influence.pstate <- aperm(temp, c(1,3,2)) } out } survfitCI <- function(X, Y, weights, id, istate, cluster, stype=1, ctype=1, se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none', 'logit', "arcsin"), conf.lower=c('usual', 'peto', 'modified'), influence = FALSE, start.time, p0, type){ if (!missing(type)) { if (!missing(ctype) || !missing(stype)) stop("cannot have both an old-style 'type' argument and the stype/ctype arguments that replaced it") if (!is.character(type)) stop("type argument must be character") # older style argument is allowed temp <- charmatch(type, c("kaplan-meier", "fleming-harrington", "fh2")) if (is.na(temp)) stop("invalid value for 'type'") type <- c(1,3,4)[temp] } else { if (!(ctype %in% 1:2)) stop("ctype must be 1 or 2") if (!(stype %in% 1:2)) stop("stype must be 1 or 2") type <- as.integer(2*stype + ctype -2) } conf.type <- match.arg(conf.type) conf.lower<- match.arg(conf.lower) if (conf.lower != "usual") warning("conf.lower is ignored for multi-state data") if (is.logical(conf.int)) { # A common error is for users to use "conf.int = FALSE" # it's illegal per documentation, but be kind if (!conf.int) conf.type <- "none" conf.int <- .95 } if (is.logical(influence)) { # TRUE/FALSE is treated as all or nothing if (!influence) influence <- 0L else influence <- 3L } else if (!is.numeric(influence)) stop("influence argument must be numeric or logical") if (!(influence %in% 0:3)) stop("influence argument must be 0, 1, 2, or 3") else influence <- as.integer(influence) if (!se.fit) { # if the user asked for no standard error, skip any robust computation ncluster <- 0L influence <- 0L } type <- attr(Y, "type") # This line should be unreachable, unless they call "surfitCI" directly if (type !='mright' && type!='mcounting') stop(paste("multi-state computation doesn't support \"", type, "\" survival data", sep='')) # If there is a start.time directive, start by removing any prior events if (!missing(start.time)) { if (!is.numeric(start.time) || length(start.time) !=1 || !is.finite(start.time)) stop("start.time must be a single numeric value") toss <- which(Y[,ncol(Y)-1] <= start.time) if (length(toss)) { n <- nrow(Y) if (length(toss)==n) stop("start.time has removed all observations") Y <- Y[-toss,,drop=FALSE] X <- X[-toss] weights <- weights[-toss] if (length(id) ==n) id <- id[-toss] if (!missing(istate) && length(istate)==n) istate <- istate[-toss] } } n <- nrow(Y) status <- Y[,ncol(Y)] ncurve <- length(levels(X)) # The user can call with cluster, id, both, or neither # If only id, treat it as the cluster too # If influence is requested, this implies clustering has.cluster <- !(missing(cluster) || length(cluster)==0) has.id <- !(missing(id) || length(id)==0) if (has.id) id <- as.factor(id) else { if (ncol(Y) ==3) stop("an id statement is required for start,stop data") id <- 1:n } if (influence && !(has.cluster || has.id)) { cluster <- seq(along=X) has.cluster <- TRUE } if (has.cluster) { if (is.factor(cluster)) { clname <- levels(cluster) cluster <- as.integer(cluster) } else { clname <- sort(unique(cluster)) cluster <- match(cluster, clname) } ncluster <- length(clname) } else { if (has.id) { # treat the id as both identifier and clustering clname <- levels(id) cluster <- as.integer(id) ncluster <- length(clname) } else { ncluster <- 0 # has neither clname <- NULL } } if (missing(istate) || is.null(istate)) mcheck <- survcheck2(Y, id) else mcheck <- survcheck2(Y, id, istate) if (any(mcheck$flag > 0)) stop("one or more flags are >0 in survcheck") states <- mcheck$states istate <- mcheck$istate nstate <- length(states) smap <- c(0, match(attr(Y, "states"), states)) Y[,ncol(Y)] <- smap[Y[,ncol(Y)] +1] # new states may be a superset status <- Y[,ncol(Y)] if (mcheck$flag["overlap"] > 0) stop("a subject has overlapping time intervals") # if (mcheck$flag["gap"] > 0 || mcheck$flag["jump"] > 0) # warning("subject(s) with time gaps, results may be questionable") # The states of the status variable are the first columns in the output # any extra initial states are later in the list. # Now that we know the names, verify that p0 is correct (if present) if (!missing(p0)) { if (length(p0) != nstate) stop("wrong length for p0") if (!is.numeric(p0) || abs(1-sum(p0)) > sqrt(.Machine$double.eps)) stop("p0 must be a numeric vector that adds to 1") } else p0 <- NULL curves <- vector("list", ncurve) names(curves) <- levels(X) if (ncol(Y)==2) { # 1 transition per subject # dummy entry time that is < any event time t0 <- min(0, Y[,1]) entry <- rep(t0-1, nrow(Y)) for (i in levels(X)) { indx <- which(X==i) curves[[i]] <- docurve2(entry[indx], Y[indx,1], status[indx], istate[indx], weights[indx], states, id[indx], se.fit, influence, p0) } } else { # extra censors indx <- order(id, Y[,2]) # in stop order extra <- (survflag(Y[indx,], id[indx]) ==0 & (Y[indx,3] ==0)) # If a subject had obs of (a, b)(b,c)(c,d), and c was a censoring # time, that is an "extra" censoring/entry at c that we don't want # to count. Deal with it by changing that subject # to (a,b)(b,d). Won't change S(t), only the n.censored/n.enter count. if (any(extra)) { e2 <- indx[extra] Y <- cbind(Y[-(1+e2),1], Y[-e2,-1]) status <- status[-e2] X <- X[-e2] id <- id[-e2] istate <- istate[-e2] weights <- weights[-e2] indx <- order(id, Y[,2]) } # Now to work for (i in levels(X)) { indx <- which(X==i) # temp <- docurve1(Y[indx,1], Y[indx,2], status[indx], # istate[indx], weights[indx], states, id[indx]) curves[[i]] <- docurve2(Y[indx,1], Y[indx,2], status[indx], istate[indx], weights[indx], states, id[indx], se.fit, influence, p0) } } # Turn the result into a survfit type object grabit <- function(clist, element) { temp <-(clist[[1]][[element]]) if (is.matrix(temp)) { do.call("rbind", lapply(clist, function(x) x[[element]])) } else { xx <- as.vector(unlist(lapply(clist, function(x) x[element]))) if (inherits(temp, "table")) matrix(xx, byrow=T, ncol=length(temp)) else xx } } # we want to rearrange the cumulative hazard to be in time order # with one column for each observed transtion. nstate <- length(states) temp <- matrix(0, nstate, nstate) indx1 <- match(rownames(mcheck$transitions), states) indx2 <- match(colnames(mcheck$transitions), states, nomatch=0) #ignore censor temp[indx1, indx2[indx2>0]] <- mcheck$transitions[,indx2>0] ckeep <- which(temp>0) names(ckeep) <- outer(1:nstate, 1:nstate, paste, sep='.')[ckeep] #browser() if (length(curves) ==1) { keep <- c("n", "time", "n.risk", "n.event", "n.censor", "pstate", "p0", "cumhaz", "influence.pstate") if (se.fit) keep <- c(keep, "std.err", "sp0") kfit <- (curves[[1]])[match(keep, names(curves[[1]]), nomatch=0)] names(kfit$p0) <- states if (se.fit) kfit$logse <- FALSE kfit$cumhaz <- t(kfit$cumhaz[ckeep,,drop=FALSE]) colnames(kfit$cumhaz) <- names(ckeep) } else { kfit <- list(n = as.vector(table(X)), #give it labels time = grabit(curves, "time"), n.risk= grabit(curves, "n.risk"), n.event= grabit(curves, "n.event"), n.censor=grabit(curves, "n.censor"), pstate = grabit(curves, "pstate"), p0 = grabit(curves, "p0"), strata= unlist(lapply(curves, function(x) length(x$time)))) kfit$p0 <- matrix(kfit$p0, ncol=nstate, byrow=TRUE, dimnames=list(names(curves), states)) if (se.fit) { kfit$std.err <- grabit(curves, "std.err") kfit$sp0<- matrix(grabit(curves, "sp0"), ncol=nstate, byrow=TRUE) kfit$logse <- FALSE } # rearrange the cumulative hazard to be in time order, with columns # for each transition kfit$cumhaz <- do.call(rbind, lapply(curves, function(x) t(x$cumhaz[ckeep,,drop=FALSE]))) colnames(kfit$cumhaz) <- names(ckeep) if (influence) kfit$influence.pstate <- lapply(curves, function(x) x$influence.pstate) } if (!missing(start.time)) kfit$start.time <- start.time kfit$transitions <- mcheck$transitions # # Last bit: add in the confidence bands: # if (se.fit) { kfit$conf.int <- conf.int kfit$conf.type <- conf.type if (conf.type != "none") { ci <- survfit_confint(kfit$pstate, kfit$std.err, logse=FALSE, conf.type, conf.int) kfit <- c(kfit, ci, conf.type=conf.type, conf.int=conf.int) } } kfit$states <- states kfit$type <- attr(Y, "type") kfit } survival/R/match.ratetable.R0000644000176200001440000000776513537676563015553 0ustar liggesusers# Do a set of error checks on whether any categorical vars match the # level set of the actual ratetable. If so they are mapped to the levels # found in the ratetable. Dates need to match dates, and others are set # to simple numerics with unclass(). A matrix is returned. # This is called by pyears and survexp, but not by users # # The categoricals are turned into integer subscripts # match.ratetable <- function(R, ratetable) { datecheck <- function(x) inherits(x, c("Date", "POSIXt", "date", "chron", "rtabledate")) if (!is.ratetable(ratetable)) stop("Invalid rate table") dimid <- names(dimnames(ratetable)) if (is.null(dimid)) dimid <- attr(ratetable, 'dimid') # older ratetable datecut <- sapply(attr(ratetable, "cutpoints"), datecheck) rtype <- attr(ratetable, 'type') # 1= class, 2=cont, 3=date, 4=US yr if (is.null(rtype)) { #old style ratetable, be backwards compatable temp <- attr(ratetable, 'factor') rtype <- 1*(temp==1) + ifelse(datecut, 3,2)*(temp==0) + 4*(temp >1) } # is.ratetable has ensured that rtype agrees with datecut if (is.matrix(R)) { # depricated: use of the ratetable function attR <- attributes(R) attributes(R) <- attR['dim'] #other attrs get in the way later Rnames <- attR$dimnames[[2]] isDate <- attR[["isDate"]] levlist <- attR[['levlist']] } else { # newer style is a dataframe Rnames <- names(R) levlist<- lapply(R, levels) isDate <- sapply(R, datecheck) } ord <- match(dimid, Rnames) # This should have already been checked in pyears or survexp if (any(is.na(ord))) stop(paste("Argument '", dimid[is.na(ord)], "' needed by the ratetable was not found in the data", sep='')) # Neither should this -- two argments matched one of the dimids -- since # I demand an exact match if (any(duplicated(ord))) stop("A ratetable argument appears twice in the data") R <- R[,ord,drop=FALSE] #put cols in same order as the ratetable levlist<- levlist[ord] isDate <- isDate[ord] # Now, go through the dimensions of the ratetable 1 by 1, and # verify that the user's variable is compatable # with the rate table's dimensions # dtemp <-dimnames(ratetable) if (any((rtype<3) & isDate)) { indx <- which(rtype<3 & isDate) stop(paste("Data has a date type variable, but the reference", "ratetable is not a date variable:", paste(dimid[indx], collapse=" "))) } if (any((rtype>2) & !isDate)) { indx <- which(rtype>2 & !isDate) # currently relsurv fails with this check # stop(paste("the reference ratetable expects a date for variable", # dimid[indx])) } for (i in (1:ncol(R))) { if (rtype[i] > 2) R[,i] <- ratetableDate(R[,i]) if (length(levlist[[i]]) >0) { #factor or character variable if (rtype[i]!=1) stop(paste("for this ratetable,", dimid[i], "must be a continuous variable")) temp <- charmatch(casefold(levlist[[i]]), casefold(dtemp[[i]])) if (any(is.na(temp))) stop(paste("Levels do not match for ratetable() variable", dimid[i])) if (any(temp==0)) stop(paste("Non-unique ratetable match for variable", dimid[i])) R[,i] <- temp[as.numeric(R[,i])] } else { # user's data isn't a factor or date R[,i] <- unclass(R[,i]) # get rid of difftimes & other such if (rtype[i]==1) { #ratetable is a factor: ok if data is integer temp <- R[,i] if (any(floor(temp)!=temp) || any(temp<=0) || max(temp) > length(dtemp[[i]])) stop(paste("The variable", dimid[i], "is out of range")) } } } R <- as.matrix(R) summ <- attr(ratetable, 'summary') cutpoints <- lapply(attr(ratetable, 'cutpoints'), ratetableDate) if (is.null(summ)) list(R= R, cutpoints = cutpoints) else list(R= R, cutpoints = cutpoints, summ=summ(R)) } survival/R/survreg.fit.R0000644000176200001440000002154213537676563014760 0ustar liggesusers# # Do the actual fit of a survreg model. This routine is for the case # of no penalized terms (splines, etc). # survreg.fit<- function(x, y, weights, offset, init, controlvals, dist, scale=0, nstrat=1, strata, parms=NULL, assign) { iter.max <- controlvals$iter.max eps <- controlvals$rel.tolerance toler.chol <- controlvals$toler.chol if (!is.matrix(x)) stop("Invalid X matrix ") n <- nrow(x) nvar <- ncol(x) ny <- ncol(y) if (is.null(offset)) offset <- rep(0,n) if (missing(weights)|| is.null(weights)) weights<- rep(1.0,n) else if (any(weights<=0)) stop("Invalid weights, must be >0") if (scale <0) stop("Invalid scale") if (scale >0 && nstrat >1) stop("Cannot have both a fixed scale and strata") if (nstrat>1 && (missing(strata) || length(strata)!= n)) stop("Invalid strata variable") if (nstrat==1) strata <- rep(1,n) if (scale >0) nstrat2 <- 0 # number of variances to estimate else nstrat2 <- nstrat if (is.character(dist)) { sd <- survreg.distributions[[dist]] if (is.null(sd)) stop ("Unrecognized distribution") } else sd <- dist if (!is.function(sd$density)) stop("Missing density function in the definition of the distribution") dnum <- match(sd$name, c("Extreme value", "Logistic", "Gaussian")) if (is.na(dnum)) { # We need to set up a callback routine # This returns the 5 number distribution summary (see the density # functions in survreg.distributions). Interval censored obs require # 2 evals and all others 1, so the call to the routine will have n2 # values. dnum <- 4 # flag for the C routine n2 <- n + sum(y[,ny]==3) # not needed, keep for documentation # # Create an expression that will be evaluated by the C-code, # but with knowledge of some current variables # In the R doc, this would be "body(function(z) {" # in Splus (Chambers book): "functionBody(function(z)" # same action, different name. Luckily 'quote' exists in both. # We make very sure the result is the right type and length here # rather than in the C code, for simplicity. f.expr <- quote({ if (length(parms)) temp <- sd$density(z, parms) else temp <- sd$density(z) if (!is.matrix(temp) || any(dim(temp) != c(n2,5)) || !is.numeric(temp)) stop("Density function returned an invalid matrix") as.vector(as.double(temp)) }) # create an isolated sandbox (frame or environment) in which # we can do the evaluation without endangering local objects # but still with knowlege of sd, parms, and n2 rho <- new.env() #inherits necessary objects } else { f.expr <- 1 #dummy values for the .Call rho <- 1 } # This is a subset of residuals.survreg: define the first and second # derivatives at z=0 for the 4 censoring types # Used below for starting estimates derfun <- function(y, eta, sigma, density, parms) { ny <- ncol(y) status <- y[,ny] z <- (y[,1] - eta)/sigma dmat <- density(z,parms) dtemp<- dmat[,3] * dmat[,4] #f' if (any(status==3)) { z2 <- (y[,2] - eta)/sigma dmat2 <- density(z2, parms) } else { dmat2 <- matrix(0,1,5) #dummy values z2 <- 0 } tdenom <- ((status==0) * dmat[,2]) + ((status==1) * 1 ) + ((status==2) * dmat[,1]) + ((status==3) * ifelse(z>0, dmat[,2]-dmat2[,2], dmat2[,1] - dmat[,1])) tdenom <- 1/(tdenom* sigma) dg <- -tdenom *(((status==0) * (0-dmat[,3])) + ((status==1) * dmat[,4]) + ((status==2) * dmat[,3]) + ((status==3) * (dmat2[,3]- dmat[,3]))) ddg <- (tdenom/sigma)*(((status==0) * (0- dtemp)) + ((status==1) * dmat[,5]) + ((status==2) * dtemp) + ((status==3) * (dmat2[,3]*dmat2[,4] - dtemp))) list(dg = dg, ddg = ddg - dg^2) } # Rescale the X matrix, which leads to more stable results, but only # if the first column is an intercept. # If someone provided initial values, assume they know what they # are doing. rescaled <- FALSE if (is.null(init) && all(x[,1]==1) && ncol(x)>1 && is.null(init)) { okay <- apply(x, 2, function(z) all(z==0 | z==1)) # leave these alone if (!all(okay)) { rescaled <- TRUE center <- ifelse(okay, 0, colMeans(x)) stdev <- ifelse(okay, 1, apply(x, 2, sd)) x <- scale(x, center, stdev) } } # # A good initial value of the scale turns out to be critical for successful # iteration, in a surprisingly large number of data sets. # The best way we've found to get one is to fit a model with only the # mean and the scale. We don't need to do this in 3 situations: # 1. The only covariate is a mean (this step is then just a duplicate # of the main fit). # 2. There are no scale parameters to estimate # 3. The user gave initial estimates for the scale # However, for 2 and 3 we still want the loglik for a mean only model # as a part of the returned object. # nvar2 <- nvar + nstrat2 meanonly <- (nvar==1 && all(x==1)) if (!meanonly) { yy <- ifelse(y[,ny]!=3, y[,1], (y[,1]+y[,2])/2 ) coef <- sd$init(yy, weights, parms) #starting estimate for this model #init returns \sigma^2, I need log(sigma) # We sometimes get into trouble with a small estimate of sigma, # (the surface isn't SPD), but never with a large one. Double it. if (scale >0) vars <- log(scale) else vars <- log(4*coef[2])/2 # log(2*sqrt(variance)) = log(4*var)/2 coef <- c(coef[1], rep(vars, nstrat)) # get a better initial value for the mean using the "glim" trick deriv <- derfun(y, yy, exp(vars), sd$density, parms) wt <- -1*deriv$ddg*weights coef[1] <- sum(weights*deriv$dg + wt*(yy -offset)) / sum(wt) # Now the fit proper (intercept only) fit0 <- .Call(Csurvreg6, iter = as.integer(20), nvar = as.integer(1), as.double(y), as.integer(ny), x = as.double(rep(1.0, n)), as.double(weights), as.double(offset), coef= as.double(coef), as.integer(nstrat2), as.integer(strata), as.double(eps), as.double(toler.chol), as.integer(dnum), f.expr, rho) } # # Fit the model with all covariates # if (is.numeric(init)) { if (length(init) == nvar && (nvar2 > nvar)) { # Add on the variance estimates from above init <- c(init, fit0$coef[-1]) } if (length(init) != nvar2) stop("Wrong length for initial parameters") if (scale >0) init <- c(init, log(scale)) } else { # Do the 'glim' method of finding an initial value of coef if (meanonly) { yy <- ifelse(y[,ny]!=3, y[,1], (y[,1]+y[,2])/2 ) coef <- sd$init(yy, weights, parms) if (scale >0) vars <- rep(log(scale), nstrat) else vars <- rep(log(4*coef[2])/2, nstrat) } else vars <- fit0$coef[-1] eta <- yy - offset #what would be true for a 'perfect' model deriv <- derfun(y, yy, exp(vars[strata]), sd$density, parms) wt <- -1*deriv$ddg*weights coef <- coxph.wtest(t(x)%*% (wt*x), c((wt*eta + weights*deriv$dg)%*% x), toler.chol=toler.chol)$solve init <- c(coef, vars) } # Now for the fit in earnest fit <- .Call(Csurvreg6, iter = as.integer(iter.max), as.integer(nvar), as.double(y), as.integer(ny), as.double(x), as.double(weights), as.double(offset), as.double(init), as.integer(nstrat2), as.integer(strata), as.double(eps), as.double(toler.chol), as.integer(dnum), f.expr, rho) if (iter.max >1 && fit$flag > nvar2) { warning("Ran out of iterations and did not converge") } cname <- dimnames(x)[[2]] if (is.null(cname)) cname <- paste("x", 1:ncol(x)) if (scale==0) cname <- c(cname, rep("Log(scale)", nstrat)) if (scale>0) fit$coef <- fit$coef[1:nvar2] names(fit$coef) <- cname if (meanonly) { coef0 <- fit$coef loglik <- rep(fit$loglik,2) } else { coef0 <- fit0$coef names(coef0) <- c("Intercept", rep("Log(scale)", nstrat)) loglik <- c(fit0$loglik, fit$loglik) } var.new <- matrix(fit$var, nvar2, dimnames=list(cname, cname)) coef.new <- fit$coef if (rescaled) { vtemp <- diag(c(1/stdev, rep(1.0, nrow(var.new)- length(stdev)))) vtemp[1, 2:nvar] <- -center[2:nvar]/stdev[2:nvar] coef.new <- drop(vtemp %*%coef.new) var.new <- vtemp%*% var.new %*% t(vtemp) names(coef.new) <- names(fit$coef) } temp <- list(coefficients = coef.new, icoef = coef0, var = var.new, loglik = loglik, iter = fit$iter, linear.predictors = c(x %*% fit$coef[1:nvar] + offset), df= length(fit$coef), score = fit$u ) temp } survival/R/print.coxph.R0000644000176200001440000000560213555573437014751 0ustar liggesusersprint.coxph <- function(x, digits=max(1L, getOption("digits") - 3L), signif.stars=FALSE, ...) { if (!is.null(cl<- x$call)) { cat("Call:\n") dput(cl) cat("\n") } if (!is.null(x$fail)) { cat(" Coxph failed.", x$fail, "\n") return() } savedig <- options(digits = digits) on.exit(options(savedig)) coef <- x$coefficients se <- sqrt(diag(x$var)) if(is.null(coef) | is.null(se)) stop("Input is not valid") if (is.null(x$naive.var)) { tmp <- cbind(coef, exp(coef), se, coef/se, pchisq((coef/se)^2, 1, lower.tail=FALSE)) dimnames(tmp) <- list(names(coef), c("coef", "exp(coef)", "se(coef)", "z", "p")) } else { nse <- sqrt(diag(x$naive.var)) tmp <- cbind(coef, exp(coef), nse, se, coef/se, pchisq((coef/se)^2, 1, lower.tail=FALSE)) dimnames(tmp) <- list(names(coef), c("coef", "exp(coef)", "se(coef)", "robust se", "z", "p")) } if (inherits(x, "coxphms")) { # print it group by group tmap <- x$cmap[-1,,drop=FALSE] # ignore the intercept (strata) cname <- colnames(tmap) for (i in 1:length(cname)) { tmp2 <- tmp[tmap[,i],, drop=FALSE] names(dimnames(tmp2)) <- c(cname[i], "") # restore character row names rownames(tmp2) <- rownames(tmap)[tmap[,i]>0] printCoefmat(tmp2, digits=digits, P.values=TRUE, has.Pvalue=TRUE, signif.stars = signif.stars, ...) cat("\n") } cat(" States: ", paste(paste(seq(along=x$states), x$states, sep='= '), collapse=", "), '\n') # cat(" States: ", paste(x$states, collapse=", "), '\n') if (FALSE) { # alternate forms, still deciding which I like stemp <- x$states names(stemp) <- 1:length(stemp) print(stemp, quote=FALSE) } } else printCoefmat(tmp, digits=digits, P.values=TRUE, has.Pvalue=TRUE, signif.stars = signif.stars, ...) logtest <- -2 * (x$loglik[1] - x$loglik[2]) if (is.null(x$df)) df <- sum(!is.na(coef)) else df <- round(sum(x$df),2) cat("\n") cat("Likelihood ratio test=", format(round(logtest, 2)), " on ", df, " df,", " p=", format.pval(pchisq(logtest, df, lower.tail=FALSE), digits=digits), "\n", sep="") omit <- x$na.action cat("n=", x$n) if (!is.null(x$nevent)) cat(", number of events=", x$nevent, "\n") else cat("\n") if (length(omit)) cat("\ (", naprint(omit), ")\n", sep="") invisible(x) } coef.coxphms <- function(object, type=c("vector", "matrix"), ...) { type <- match.arg(type) if (type=="matrix") { cmap2 <- object$cmap[-1,, drop=FALSE] cmat <- 0*cmap2 # all the right names cmat[cmap2>0] <- object$coefficient[cmap2] attr(cmat, "states") <- object$states cmat } else NextMethod(object, ...) } survival/R/normalizetime.R0000644000176200001440000000231513537676563015356 0ustar liggesusers# # Create time values such that tiny differences are treated as a tie # The actions and tolerance are the same as all.equal # normalizetime <- function(x, replace=TRUE, tolerance = sqrt(.Machine$double.eps)) { if (is.Surv(x)) y <- sort(unique(c(x[, -ncol(x)]))) else y <- sort(unique(x)) y <- y[is.finite(y)] #someone may hand us an INF dy <- diff(y) tied <- ((dy <=tolerance) |( (dy/ mean(abs(y)) <=tolerance))) if (!any(tied)) return(x) # all values are unique cuts <- y[c(TRUE, !tied)] if (is.Surv(x)) { z <- findInterval(x[, -ncol(x)], cuts) if (replace) { z <- matrix(c(cuts[z], as.integer(x[,ncol(x)])), ncol=ncol(x)) attributes(z) <- attributes(x) } else { z <- matrix(c(z, as.integer(x[,ncol(x)])), ncol=ncol(x)) attributes(z) <- attributes(x) attr(z, 'utime') <- unname(cuts) } } else { z <- findInterval(x, cuts) if (replace) { z <- cuts[z] attributes(z) <- attributes(x) } else { attributes(z) <- attributes(x) attr(z, 'utime') <- unname(cuts) } } z } survival/R/print.pyears.R0000644000176200001440000003723013570772311015122 0ustar liggesusers# Automatically generated from the noweb directory print.pyears <- function(x, ...) { if (!is.null(cl<- x$call)) { cat("Call:\n") dput(cl) cat("\n") } if (is.null(x$data)) { if (!is.null(x$event)) cat("Total number of events:", format(sum(x$event)), "\n") cat ( "Total number of person-years tabulated:", format(sum(x$pyears)), "\nTotal number of person-years off table:", format(x$offtable), "\n") } else { if (!is.null(x$data$event)) cat("Total number of events:", format(sum(x$data$event)), "\n") cat ( "Total number of person-years tabulated:", format(sum(x$data$pyears)), "\nTotal number of person-years off table:", format(x$offtable), "\n") } if (!is.null(x$summary)) { cat("Matches to the chosen rate table:\n ", x$summary) } cat("Observations in the data set:", x$observations, "\n") if (!is.null(x$na.action)) cat(" (", naprint(x$na.action), ")\n", sep='') cat("\n") invisible(x) } summary.pyears <- function(object, header=TRUE, call=header, n= TRUE, event=TRUE, pyears=TRUE, expected = TRUE, rate = FALSE, rr = expected, ci.r = FALSE, ci.rr = FALSE, totals=FALSE, legend=TRUE, vline = FALSE, vertical = TRUE, nastring=".", conf.level=0.95, scale= 1, ...) { # Usual checks if (!inherits(object, "pyears")) stop("input must be a pyears object") temp <- c(is.logical(header), is.logical(call), is.logical(n), is.logical(event) , is.logical(pyears), is.logical(expected), is.logical(rate), is.logical(ci.r), is.logical(rr), is.logical(ci.rr), is.logical(vline), is.logical(vertical), is.logical(legend), is.logical(totals)) tname <- c("header", "call", "n", "event", "pyears", "expected", "rate", "ci.r", "rr", "ci.rr", "vline", "vertical", "legend", "totals") if (any(!temp) || length(temp) != 14 || any(is.na(temp))) { stop("the ", paste(tname[!temp], collapse=", "), "argument(s) must be single logical values") } if (!is.numeric(conf.level) || conf.level <=0 || conf.level >=1 | length(conf.level) > 1 || is.na(conf.level) > 1) stop("conf.level must be a single numeric between 0 and 1") if (is.na(scale) || !is.numeric(scale) || length(scale) !=1 || scale <=0) stop("scale must be a value > 0") vname <- attr(terms(object), "term.labels") #variable names if (!is.null(object$data)) { # Extra work: restore the tables which had been unpacked into a df # All of the categories are factors in this case tdata <- object$data[vname] # the conditioning variables dname <- lapply(tdata, function(x) { if (is.factor(x)) levels(x) else sort(unique(x))}) # dimnames dd <- sapply(dname, length) # dim of arrays index <- tapply(tdata[,1], tdata) restore <- c('n', 'event', 'pyears', 'expected') #do these, if present restore <- restore[restore %in% names(object$data)] new <- lapply(object$data[restore], function(x) { temp <- array(0L, dim=dd, dimnames=dname) temp[index] <- x temp} ) object <- c(object, new) } if (is.null(object$expected)) { expected <- FALSE rr <- FALSE ci.rr <- FALSE } if (is.null(object$event)) { event <- FALSE rate <- FALSE ci.r <- FALSE rr <- FALSE ci.rr <- FALSE } # print out the front matter if (call && !is.null(object$call)) { cat("Call: ") dput(object$call) cat("\n") } if (header) { cat("number of observations =", object$observations) if (length(object$omit)) cat(" (", naprint(object$omit), ")\n", sep="") else cat("\n") if (object$offtable > 0) cat(" Total time lost (off table)", format(object$offtable), "\n") cat("\n") } # Add in totals if requested if (totals) { # if the pyear object was based on any time dependent cuts, then # the "n" component cannot be totaled up. tcut <- if (is.null(object$tcut)) TRUE else object$tcut object$n <- pytot(object$n, na=tcut) object$pyears <- pytot(object$pyears) if (event) object$event <- pytot(object$event) if (expected) object$expected <- pytot(object$expected) } dd <- dim(object$n) vname <- attr(terms(object), "term.labels") #variable names # Put the elements to be printed onto a list pname <- (tname[3:6])[c(n, event, pyears, expected)] plist <- object[pname] if (rate) { pname <- c(pname, "rate") plist$r <- scale* object$event/object$pyears } if (ci.r) { pname <- c(pname, "ci.r") plist$ci.r <- cipoisson(object$event, object$pyears, p=conf.level) *scale } if (rr) { pname <- c(pname, "rr") plist$rr <- object$event/object$expected } if (ci.rr) { pname <- c(pname, "ci.rr") plist$ci.rr <- cipoisson(object$event, object$expected, p=conf.level) } rname <- c(n = "N", event="Events", pyears= "Time", expected= "Expected events", rate = "Event rate", ci.r = "CI (rate)", rr= "Obs/Exp", ci.rr= "CI (O/E)") rname <- rname[pname] if (length(dd) ==1) { # 1 dimensional table cname <- names(object$n) #category names if (vertical) { # The person-years objects list across the top, categories up and down # This makes columns line up in a standard "R" way # The first column label is the variable name, content is the categories plist <- lapply(plist, pformat, nastring, ...) # make it character pcol <- sapply(plist, function(x) nchar(x[1])) #width of each one colwidth <- pmax(pcol, nchar(rname)) +2 for (i in 1:length(plist)) plist[[i]] <- strpad(plist[[i]], colwidth[i]) colwidth <- c(max(nchar(vname), nchar(cname)) +2, colwidth) leftcol <- list(strpad(cname, colwidth[1])) header <- strpad(c(vname, rname), colwidth) } else { # in this case each column will have different types of objects in it # alignment is the nuisance newmat <- pybox(plist, length(plist[[1]]), nastring, ...) colwidth <- pmax(nchar(cname), apply(nchar(newmat), 1, max)) +2 # turn the list sideways plist <- split(newmat, row(newmat)) for (i in 1:length(plist)) plist[[i]] <- strpad(plist[[i]], colwidth[i]) colwidth <- c(max(nchar(vname), nchar(rname)) +2, colwidth) leftcol <- list(strpad(rname, colwidth[1])) header <- strpad(c(vname, cname), colwidth) } # Now print it if (vline) { # use a pipe table cat(paste(header, collapse = "|"), "\n") cat(paste(strpad("-", colwidth, "-"), collapse="|"), "\n") temp <- do.call("paste", c(leftcol, plist, list(sep ="|"))) cat(temp, sep= '\n') } else { cat(paste(header, collapse = " "), "\n") cat(paste(strpad("-", colwidth, "-"), collapse=" "), "\n") temp <- do.call("paste", c(leftcol, plist, list(sep =" "))) cat(temp, sep='\n') } } else { # more than 1 dimension if (header) { # the header is itself a table width <- max(nchar(rname)) if (vline) { cat('+', strpad('-', width, '-'), "+\n", sep="") cat(paste0('|',strpad(rname, width), '|'), sep='\n') cat('+', strpad('-', width, '-'), "+\n\n", sep="") } else { cat(strpad('-', width, '-'), "\n") cat(strpad(rname, width), sep='\n') cat(strpad('-', width, '-'), "\n\n") } } tname <- vname[1:2] #names for the row and col rowname <- dimnames(object$n)[[1]] colname <- dimnames(object$n)[[2]] if (length(dd) > 2) newmat <- pybox(plist, c(dd[1],dd[2], prod(dd[-(1:2)])), nastring, ...) else newmat <- pybox(plist, dd, nastring, ...) if (length(dd) > 2) { newmat <- pybox(plist, c(dd[1],dd[2], prod(dd[-(1:2)])), nastring, ...) outer.label <- do.call("expand.grid", dimnames(object$n)[-(1:2)]) temp <- names(outer.label) for (i in 1:nrow(outer.label)) { # first the caption, then data cat(paste(":", paste(temp, outer.label[i,], sep="=")), '\n') pyshow(newmat[,,i,], tname, rowname, colname, vline) } } else { newmat <- pybox(plist, dd, nastring, ...) pyshow(newmat, tname, rowname, colname, vline) } } invisible(object) } strpad <- function(x, width, pad=' ') { # x = the string(s) to be padded out # width = width of desired string. nc <- nchar(x) added <- width - nc left <- pmax(0, floor(added/2)) # can't add negative space right <- pmax(0, width - (nc + left)) # right will be >= left if (all(right <=0)) { if (length(x) >= length(width)) x # nothing needs to be done else rep(x, length=length(width)) } else { # Each pad could be a different length. # Make a long string from which we can take a portion longpad <- paste(rep(pad, max(right)), collapse='') paste0(substring(longpad, 1, left), x, substring(longpad,1, right)) } } pformat <- function(x, nastring, ...) { # This is only called for single index tables, in vertical mode # Any matrix will be a confidence interval if (is.matrix(x)) ret <- paste(ifelse(is.na(x[,1]), nastring, format(x[,1], ...)), "-", ifelse(is.na(x[,2]), nastring, format(x[,2], ...))) else ret <- ifelse(is.na(x), nastring, format(x, ...)) } pybox <- function(plist, dd, nastring, ...) { ci <- (substring(names(plist), 1,3) == "ci.") # the CI components int <- sapply(plist, function(x) all(x == floor(x) | is.na(x))) int <- (!ci & int) real<- (!ci & !int) nc <- prod(dd) final <- matrix("", nrow=nc, ncol=length(ci)) if (any(int)) { # integers if (any(sapply(plist[int], length) != nc)) stop("programming length error, notify package author") temp <- unlist(plist[int]) final[,int] <- ifelse(is.na(temp), nastring, format(temp)) } if (any(real)) { # floating point if (any(sapply(plist[real], length) != nc)) stop("programming length error, notify package author") temp <- unlist(plist[real]) final[,real] <- ifelse(is.na(temp), nastring, format(temp, ...)) } if (any(ci)) { if (any(sapply(plist[ci], length) != nc*2)) stop("programming length error, notify package author") temp <- unlist(plist[ci]) temp <- array(ifelse(is.na(temp), nastring, format(temp, ...)), dim=c(nc, 2, sum(ci))) final[,ci] <- paste(temp[,1,], temp[,2,], sep='-') } array(final, dim=c(dd, length(ci))) } pyshow <- function(dmat, labels, rowname, colname, vline) { # Every column is the same width, except the first colwidth <- c(max(nchar(rowname), nchar(labels[1])), rep(max(nchar(dmat[1,1,]), nchar(colname)), length(colname))) colwidth[2] <- max(colwidth[2], nchar(labels[2])) ncol <- length(colwidth) dd <- dim(dmat) # vector of length 3, third dim is the statistics rline <- ceiling(dd[3]/2) #which line to put the row label on. if (vline) { # use a grid table cat("+", paste(strpad('-', colwidth, pad='-'), collapse='+'), "+\n", sep='') temp <- rep(' ', ncol); temp[2] <- labels[2] cat("|", paste(strpad(temp, colwidth), collapse="|"), "|\n", sep='') cat("|", paste(strpad(c(labels[1], colname), colwidth), collapse="|"), "|\n", sep='') cat("+", paste(strpad('=', colwidth, pad='='), collapse="+"), "+\n", sep='') for (i in 1:dd[1]) { for (j in 1:dd[3]) { #one printout line per stat if (j==rline) temp <- c(rowname[i], dmat[i,,j]) else temp <- c("", dmat[i,,j]) cat("|", paste(strpad(temp, colwidth), collapse='|'), "|\n", sep='') } cat("+", paste(strpad('-', colwidth, '-'), collapse='+'), "+\n", sep='') } } else { # use a multiline table cat(paste(strpad('-', colwidth, '-'), collapse='-'), "\n") temp <- rep(' ', ncol); temp[2] <- labels[2] cat(paste(strpad(temp, colwidth), collapse=" "), "\n") cat(paste(strpad(c(labels[1], colname), colwidth), collapse=" "), "\n") cat(paste(strpad('-', colwidth, pad='-'), collapse=" "), "\n") for (i in 1:dd[1]) { for (j in 1:dd[3]) { #one printout line per stat if (j==rline) temp <- c(rowname[i], dmat[i,,j]) else temp <- c("", dmat[i,,j]) cat(paste(strpad(temp, colwidth), collapse=' '), "\n") } if (i< dd[1]) cat(" \n") #blank line } cat(paste(strpad('-', colwidth, '-'), collapse='-'), "\n") } } pytot <- function(x, na=FALSE) { dd <- dim(x) if (length(dd) ==1) { if (na) array(c(x, NA), dim= length(x) +1, dimnames=list(c(dimnames(x)[[1]], "Total"))) else array(c(x, sum(x)), dim= length(x) +1, dimnames=list(c(dimnames(x)[[1]], "Total"))) } else if (length(dd) ==2) { if (na) new <- rbind(cbind(x, NA), NA) else { new <- rbind(x, colSums(x)) new <- cbind(new, rowSums(new)) } array(new, dim=dim(x) + c(1,1), dimnames=list(c(dimnames(x)[[1]], "Total"), c(dimnames(x)[[2]], "Total"))) } else { # The general case index <- 1:length(dd) if (na) sum1 <- sum2 <- sum3 <- NA else { sum1 <- apply(x, index[-1], sum) # row sums sum2 <- apply(x, index[-2], sum) # col sums sum3 <- apply(x, index[-(1:2)], sum) # total sums } # create a new matrix and then fill it in d2 <- dd d2[1:2] <- dd[1:2] +1 dname <- dimnames(x) dname[[1]] <- c(dname[[1]], "Total") dname[[2]] <- c(dname[[2]], "Total") new <- array(x[1], dim=d2, dimnames=dname) # say dim(x) =(5,8,4); we want new[6,-9,] <- sum1; new[-6,9,] <- sum2 # and new[6,9,] <- sum3 # if dim is longer, we need to add more commas commas <- rep(',', length(dd) -2) eval(parse(text=paste("new[1:dd[1], 1:dd[2]", commas, "] <- x"))) eval(parse(text=paste("new[ d2[1],-d2[2]", commas, "] <- sum1"))) eval(parse(text=paste("new[-d2[1], d2[2]", commas, "] <- sum2"))) eval(parse(text=paste("new[ d2[1], d2[2]", commas, "] <- sum3"))) new } } survival/R/anova.coxph.penal.R0000644000176200001440000001233313537676603016015 0ustar liggesusers# The first section of this is identical to anova.coxph anova.coxph.penal <- function (object, ..., test = 'Chisq') { if (!inherits(object, "coxph")) stop ("argument must be a cox model") # All the ... args need to be coxph or coxme fits. If any of them # have a name attached, e.g., 'charlie=T' we assume a priori # that they are illegal # dotargs <- list(...) named <- if (is.null(names(dotargs))) rep(FALSE, length(dotargs)) else (names(dotargs) != "") if (any(named)) warning(paste("The following arguments to anova.coxph(..)", "are invalid and dropped:", paste(deparse(dotargs[named]), collapse = ", "))) dotargs <- dotargs[!named] # frailties don't work, due to mutability. has.frailty <- function(x) any(x$pterms==2) if (length(dotargs) >0) { # Check that they are all cox or coxme models is.coxmodel <-unlist(lapply(dotargs, function(x) inherits(x, "coxph"))) is.coxme <- unlist(lapply(dotargs, function(x) inherits(x, "coxme"))) if (!all(is.coxmodel | is.coxme)) stop("All arguments must be Cox models") if (any(sapply(dotargs, has.frailty))) stop("anova command does not handle frailty terms") if (any(is.coxme)) { # We need the anova.coxmelist function from coxme # If coxme is not loaded the line below returns NULL temp <- getS3method("anova", "coxmelist", optional=TRUE) if (is.null(temp)) stop("a coxme model was found and library coxme is not loaded") else return(temp(c(list(object), dotargs), test = test)) } else return(anova.coxphlist(c(list(object), dotargs), test = test)) } # # The argument is a single Cox model # Show the nested list of models generated by this model. # By tradition the sequence is main effects (in the order found in # the model statement), then 2 way interactions, then 3, etc. # One does this by using the "assign" attribute of the model matrix. # This does not work for penalized terms, however, so we use a mixed # strategy. The penalized terms do not participate in interactions # (which are the terms for which assign is really handy). Use # the model frame for the penalized terms, and assign for all the # others. if (length(object$rscore)>0) stop("Can't do anova tables with robust variances") if (has.frailty(object)) stop("anova command does not handle frailty terms") has.strata <- !is.null(attr(terms(object), "specials")$strata) # The following line causes pspline terms to be re-evaluated correctly # The predvars attr for them does not retrieve the correct penalty attr(object$terms, "predvars") <- NULL mf <- stats::model.frame(object) # we must have the model frame Y <- model.response(mf) X <- model.matrix(object, mf) assign <- attr(X, 'assign') if (has.strata) { stemp <- untangle.specials(terms(object), "strata") if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) strats <- as.numeric(strata.keep) } pname <- names(object$pterms)[object$pterms >0] pindex <- match(pname, attr(terms(object), "term.labels")) alevels <- sort(unique(assign)) #if there are strata the sequence has holes nmodel <- length(alevels) df <- integer(nmodel+1) #this will hold the df vector loglik <- double(nmodel+1) #and the loglike vector df[nmodel+1] <- if (is.null(object$df)) sum(!is.na(object$coefficients)) else sum(object$df) loglik[nmodel+1] <- object$loglik[2] df[1] <- 0 loglik[1] <- object$loglik[1] # Now refit intermediate models assign2 <- assign[!(assign %in% pindex)] pform <- paste("mf[['", pname, "']]", sep='') for (i in seq.int(1, length.out=nmodel-1)){ j <- assign2[assign2 <= alevels[i]] if (length(j)) form <- "Y ~ X[,j]" else form <- "Y ~" form <- paste(c(form, pform[pindex <= i]), collapse=" +") if (length(object$offset)) form <- paste(form, " + offset(object$offset") if (has.strata) form <- paste(form, " + strata(strats)") tfit <- coxph(as.formula(form)) df[i+1] <- if (!is.null(tfit$df)) sum(tfit$df) else sum(!is.na(tfit$coefficients)) loglik[i+1] <- tfit$loglik[2] } table <- data.frame(loglik=loglik, Chisq=c(NA, 2*diff(loglik)), Df=c(NA, diff(df))) if (nmodel == 0) #failsafe for a NULL model table <- table[1, , drop = FALSE] if (length(test) >0 && test[1]=='Chisq') { table[['Pr(>|Chi|)']] <- pchisq(table$Chisq, table$Df, lower.tail=FALSE) } row.names(table) <- c('NULL', attr(terms(object), "term.labels")) title <- paste("Analysis of Deviance Table\n Cox model: response is ", deparse(object$terms[[2]]), "\nTerms added sequentially (first to last)\n", sep = "") structure(table, heading = title, class = c("anova", "data.frame")) } survival/R/aareg.taper.R0000644000176200001440000000213213537676563014665 0ustar liggesusers# # Do running averages of an information matrix # aareg.taper <- function(taper, imat, nevent) { dd <- dim(imat) if (length(taper)==0 || !is.numeric(taper) || any(taper <=0)) stop("Invalid taper vector") ntaper <- length(taper) ntime <- dd[3] if (ntaper > ntime) { taper <- taper[1:ntime] ntaper <- ntime } # # Turn imat into an array: 1 row per coef, one col per time # and then scale it by the number of events to get a variance # (coxph.detail returns imat = var(X) * nevents) # imat <- matrix(as.vector(imat), ncol=dd[3]) imat <- imat / rep(nevent, rep(dd[1]*dd[2], dd[3])) if (ntaper >1) { smoother <- matrix(0., ntime, ntime) tsum <- cumsum(rev(taper)) for (i in 1:ntaper) smoother[1:i, i] <- taper[seq(to=ntaper, length=i)]/tsum[i] if (ntaper < ntime) { for (i in (ntaper+1):ntime) smoother[seq(to=i, length=ntaper),i] <- taper/tsum[ntaper] } imat <- imat %*% smoother } array(imat, dim=dd) } survival/R/agsurv.R0000644000176200001440000000617013570772303013773 0ustar liggesusers# Automatically generated from the noweb directory agsurv <- function(y, x, wt, risk, survtype, vartype) { nvar <- ncol(as.matrix(x)) status <- y[,ncol(y)] dtime <- y[,ncol(y) -1] death <- (status==1) time <- sort(unique(dtime)) nevent <- as.vector(rowsum(wt*death, dtime)) ncens <- as.vector(rowsum(wt*(!death), dtime)) wrisk <- wt*risk rcumsum <- function(x) rev(cumsum(rev(x))) # sum from last to first nrisk <- rcumsum(rowsum(wrisk, dtime)) irisk <- rcumsum(rowsum(wt, dtime)) if (ncol(y) ==2) { temp2 <- rowsum(wrisk*x, dtime) xsum <- apply(temp2, 2, rcumsum) } else { delta <- min(diff(time))/2 etime <- c(sort(unique(y[,1])), max(y[,1])+delta) #unique entry times indx <- approx(etime, 1:length(etime), time, method='constant', rule=2, f=1)$y esum <- rcumsum(rowsum(wrisk, y[,1])) #not yet entered nrisk <- nrisk - c(esum,0)[indx] irisk <- irisk - c(rcumsum(rowsum(wt, y[,1])),0)[indx] xout <- apply(rowsum(wrisk*x, y[,1]), 2, rcumsum) #not yet entered xin <- apply(rowsum(wrisk*x, dtime), 2, rcumsum) # dtime or alive xsum <- xin - (rbind(xout,0))[indx,,drop=F] } ndeath <- rowsum(status, dtime) #unweighted death count ntime <- length(time) if (survtype ==1) { #Kalbfleisch-Prentice indx <- (which(status==1))[order(dtime[status==1])] #deaths km <- .C(Cagsurv4, as.integer(ndeath), as.double(risk[indx]), as.double(wt[indx]), as.integer(ntime), as.double(nrisk), inc = double(ntime)) } if (survtype==3 || vartype==3) { # Efron approx xsum2 <- rowsum((wrisk*death) *x, dtime) erisk <- rowsum(wrisk*death, dtime) #risk score sums at each death tsum <- .C(Cagsurv5, as.integer(length(nevent)), as.integer(nvar), as.integer(ndeath), as.double(nrisk), as.double(erisk), as.double(xsum), as.double(xsum2), sum1 = double(length(nevent)), sum2 = double(length(nevent)), xbar = matrix(0., length(nevent), nvar)) } haz <- switch(survtype, nevent/nrisk, nevent/nrisk, nevent* tsum$sum1) varhaz <- switch(vartype, nevent/(nrisk * ifelse(nevent>=nrisk, nrisk, nrisk-nevent)), nevent/nrisk^2, nevent* tsum$sum2) xbar <- switch(vartype, (xsum/nrisk)*haz, (xsum/nrisk)*haz, nevent * tsum$xbar) result <- list(n= nrow(y), time=time, n.event=nevent, n.risk=irisk, n.censor=ncens, hazard=haz, cumhaz=cumsum(haz), varhaz=varhaz, ndeath=ndeath, xbar=apply(matrix(xbar, ncol=nvar),2, cumsum)) if (survtype==1) result$surv <- km$inc result } survival/R/concordance.R0000644000176200001440000005733613570772304014755 0ustar liggesusers# Automatically generated from the noweb directory concordance <- function(object, ...) UseMethod("concordance") concordance.formula <- function(object, data, weights, subset, na.action, cluster, ymin, ymax, timewt=c("n", "S", "S/G", "n/G", "n/G2", "I"), influence=0, ranks=FALSE, reverse=FALSE, timefix=TRUE, keepstrata=10, ...) { Call <- match.call() # save a copy of of the call, as documentation timewt <- match.arg(timewt) if (missing(ymin)) ymin <- NULL if (missing(ymax)) ymax <- NULL index <- match(c("data", "weights", "subset", "na.action", "cluster"), names(Call), nomatch=0) temp <- Call[c(1, index)] temp[[1L]] <- quote(stats::model.frame) special <- c("strata", "cluster") temp$formula <- if(missing(data)) terms(object, special) else terms(object, special, data=data) mf <- eval(temp, parent.frame()) # model frame if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) Y <- model.response(mf) if (inherits(Y, "Surv")) { if (timefix) Y <- aeqSurv(Y) } else { if (is.factor(Y) && (is.ordered(Y) || length(levels(Y))==2)) Y <- Surv(as.numeric(Y)) else if (is.numeric(Y) && is.vector(Y)) Y <- Surv(Y) else stop("left hand side of the formula must be a numeric vector, survival object, or an orderable factor") if (timefix) Y <- aeqSurv(Y) } n <- nrow(Y) wt <- model.weights(mf) offset<- attr(Terms, "offset") if (length(offset)>0) stop("Offset terms not allowed") stemp <- untangle.specials(Terms, "strata") if (length(stemp$vars)) { if (length(stemp$vars)==1) strat <- mf[[stemp$vars]] else strat <- strata(mf[,stemp$vars], shortlabel=TRUE) Terms <- Terms[-stemp$terms] } else strat <- NULL # if "cluster" was an argument, use it, otherwise grab it from the model group <- model.extract(mf, "cluster") cluster<- attr(Terms, "specials")$cluster if (length(cluster)) { tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] if (any(ord>1)) stop ("Cluster can not be used in an interaction") cluster <- strata(mf[,tempc$vars], shortlabel=TRUE) #allow multiples Terms <- Terms[-tempc$terms] # toss it away } if (length(group)) cluster <- group x <- model.matrix(Terms, mf)[,-1, drop=FALSE] #remove the intercept if (ncol(x) > 1) stop("Only one predictor variable allowed") if (!is.null(ymin) & (length(ymin)> 1 || !is.numeric(ymin))) stop("ymin must be a single number") if (!is.null(ymax) & (length(ymax)> 1 || !is.numeric(ymax))) stop("ymax must be a single number") if (!is.logical(reverse)) stop ("the reverse argument must be TRUE/FALSE") fit <- concordancefit(Y, x, strat, wt, ymin, ymax, timewt, cluster, influence, ranks, reverse, keepstrata=keepstrata) na.action <- attr(mf, "na.action") if (length(na.action)) fit$na.action <- na.action fit$call <- Call class(fit) <- 'concordance' fit } print.concordance <- function(x, digits= max(1L, getOption("digits") - 3L), ...) { if(!is.null(cl <- x$call)) { cat("Call:\n") dput(cl) cat("\n") } omit <- x$na.action if(length(omit)) cat("n=", x$n, " (", naprint(omit), ")\n", sep = "") else cat("n=", x$n, "\n") if (length(x$concordance) > 1) { # result of a call with multiple fits tmat <- cbind(concordance= x$concordance, se=sqrt(diag(x$var))) print(round(tmat, digits=digits), ...) cat("\n") } else cat("Concordance= ", format(x$concordance, digits=digits), " se= ", format(sqrt(x$var), digits=digits), '\n', sep='') if (!is.matrix(x$count) || nrow(x$count < 11)) print(round(x$count,2)) invisible(x) } concordancefit <- function(y, x, strata, weights, ymin=NULL, ymax=NULL, timewt=c("n", "S", "S/G", "n/G", "n/G2", "I"), cluster, influence=0, ranks=FALSE, reverse=FALSE, timefix=TRUE, keepstrata=10) { # The coxph program may occassionally fail, and this will kill the C # routine further below. So check for it. if (any(is.na(x)) || any(is.na(y))) return(NULL) timewt <- match.arg(timewt) # these should only occur if something other package calls this routine if (!is.Surv(y)) { if (is.factor(y) && (is.ordered(y) || length(levels(y))==2)) y <- Surv(as.numeric(y)) else if (is.numeric(y) && is.vector(y)) y <- Surv(y) else stop("left hand side of the formula must be a numeric vector, survival object, or an orderable factor") if (timefix) y <- aeqSurv(y) } n <- length(y) if (length(x) != n) stop("x and y are not the same length") if (missing(strata) || length(strata)==0) strata <- rep(1L, n) if (length(strata) != n) stop("y and strata are not the same length") if (missing(weights) || length(weights)==0) weights <- rep(1.0, n) else if (length(weights) != n) stop("y and weights are not the same length") type <- attr(y, "type") if (type %in% c("left", "interval")) stop("left or interval censored data is not supported") if (type %in% c("mright", "mcounting")) stop("multiple state survival is not supported") nstrat <- length(unique(strata)) if (!is.logical(keepstrata)) { if (!is.numeric(keepstrata)) stop("keepstrat argument must be logical or numeric") else keepstrata <- (nstrat <= keepstrata) } if (timewt %in% c("n", "I") && nstrat > 10 && !keepstrata) { # Special trickery for matched case-control data, where the # number of strata is huge, n per strata is small, and compute # time becomes excessive. Make the data all one strata, but over # disjoint time intervals stemp <- as.numeric(as.factor(strata)) -1 if (ncol(y) ==3) { delta <- 2+ max(y[,2]) - min(y[,1]) y[,1] <- y[,1] + stemp*delta y[,2] <- y[,2] + stemp*delta } else { delta <- max(y[,1]) +2 m1 <- rep(-1L, nrow(y)) y <- Surv(m1 + stemp*delta, y[,1] + stemp*delta, y[,2]) } strata <- rep(1L, n) nstrat <- 1 } # This routine is called once per stratum docount <- function(y, risk, wts, timeopt= 'n', timefix) { n <- length(risk) # this next line is mostly invoked in stratified logistic, where # only 1 event per stratum occurs. All time weightings are the same # don't waste time even if the user asked for something different if (sum(y[,ncol(y)]) <2) timeopt <- 'n' sfit <- survfit(y~1, weights=wts, se.fit=FALSE, timefix=timefix) etime <- sfit$time[sfit$n.event > 0] esurv <- sfit$surv[sfit$n.event > 0] if (length(etime)==0) { # the special case of a stratum with no events (it happens) # No need to do any more work return(list(count= rep(0.0, 6), influence=matrix(0.0, n, 5), resid=NULL)) } if (timeopt %in% c("S/G", "n/G", "n/G2")) { temp <- y temp[,ncol(temp)] <- 1- temp[,ncol(temp)] # switch event/censor gfit <- survfit(temp~1, weights=wts, se.fit=FALSE, timefix=timefix) # G has the exact same time values as S gsurv <- c(1, gfit$surv) # We want G(t-) gsurv <- gsurv[which(sfit$n.event > 0)] } npair <- (sfit$n.risk- sfit$n.event)[sfit$n.event>0] temp <- ifelse(esurv==0, 0, esurv/npair) # avoid 0/0 timewt <- switch(timeopt, "S" = sum(wts)*temp, "S/G" = sum(wts)* temp/ gsurv, "n" = rep(1.0, length(npair)), "n/G" = 1/gsurv, "n/G2"= 1/gsurv^2, "I" = rep(1.0, length(esurv)) ) if (!is.null(ymin)) timewt[etime < ymin] <- 0 if (!is.null(ymax)) timewt[etime > ymax] <- 0 timewt <- ifelse(is.finite(timewt), timewt, 0) # 0 at risk case # order the data: reverse time, censors before deaths if (ncol(y)==2) { sort.stop <- order(-y[,1], y[,2], risk) -1L } else { sort.stop <- order(-y[,2], y[,3], risk) -1L #order by endpoint sort.start <- order(-y[,1]) -1L } # match each prediction score to the unique set of scores # (to deal with ties) utemp <- match(risk, sort(unique(risk))) bindex <- btree(max(utemp))[utemp] storage.mode(y) <- "double" # just in case y is integer storage.mode(wts) <- "double" if (ncol(y) ==2) fit <- .Call(Cconcordance3, y, bindex, wts, rev(timewt), sort.stop, ranks) else fit <- .Call(Cconcordance4, y, bindex, wts, rev(timewt), sort.start, sort.stop, ranks) # The C routine gives back an influence matrix which has columns for # concordant, discordant, tied on x but not y, tied on y, and tied on # both x and y. dimnames(fit$influence) <- list(NULL, c("concordant", "discordant", "tied.x", "tied.y", "tied.xy")) if (ranks) { if (ncol(y)==2) dtime <- y[y[,2]==1, 1] else dtime <- y[y[,3]==1, 2] temp <- data.frame(time= sort(dtime), fit$resid) names(temp) <- c("time", "rank", "timewt", "casewt", "variance") fit$resid <- temp[temp[,3] > 0,] # don't return zeros } fit } if (nstrat < 2) { fit <- docount(y, x, weights, timewt, timefix=timefix) count2 <- fit$count[1:5] vcox <- fit$count[6] fit$count <- fit$count[1:5] imat <- fit$influence if (ranks) resid <- fit$resid } else { strata <- as.factor(strata) ustrat <- levels(strata)[table(strata) >0] #some strata may have 0 obs tfit <- lapply(ustrat, function(i) { keep <- which(strata== i) docount(y[keep,,drop=F], x[keep], weights[keep], timewt, timefix=timefix) }) temp <- t(sapply(tfit, function(x) x$count)) fit <- list(count = temp[,1:5]) count2 <- colSums(fit$count) if (!keepstrata) fit$count <- count2 vcox <- sum(temp[,6]) imat <- do.call("rbind", lapply(tfit, function(x) x$influence)) # put it back into data order index <- match(1:n, (1:n)[order(strata)]) imat <- imat[index,] if (ranks) { nr <- lapply(tfit, function(x) nrow(x$resid)) resid <- do.call("rbind", lapply(tfit, function(x) x$resid)) resid$strata <- rep(ustrat, nr) } } npair <- sum(count2[1:3]) somer <- (count2[1] - count2[2])/npair dfbeta <- weights*((imat[,1]- imat[,2])/npair - (somer/npair)* rowSums(imat[,1:3])) if (!missing(cluster) && length(cluster)>0) { dfbeta <- tapply(dfbeta, cluster, sum) dfbeta <- ifelse(is.na(dfbeta),0, dfbeta) # if cluster is a factor } var.somer <- sum(dfbeta^2) if (!keepstrata && is.matrix(fit$count)) fit$count <- colSums(fit$count) rval <- list(concordance = (somer+1)/2, count=fit$count, n=n, var = var.somer/4, cvar=vcox/(4*npair^2)) if (is.matrix(rval$count)) colnames(rval$count) <- c("concordant", "discordant", "tied.x", "tied.y", "tied.xy") else names(rval$count) <- c("concordant", "discordant", "tied.x", "tied.y", "tied.xy") if (influence == 1 || influence==3) rval$dfbeta <- dfbeta/2 if (influence >=2) rval$influence <- imat if (ranks) rval$ranks <- resid if (reverse) { # flip concordant/discordant values but not the labels rval$concordance <- 1- rval$concordance if (!is.null(rval$dfbeta)) rval$dfbeta <- -rval$dfbeta if (!is.null(rval$influence)) { rval$influence <- rval$influence[,c(2,1,3,4,5)] colnames(rval$influence) <- colnames(rval$influence)[c(2,1,3,4,5)] } if (is.matrix(rval$count)) { rval$count <- rval$count[, c(2,1,3,4,5)] colnames(rval$count) <- colnames(rval$count)[c(2,1,3,4,5)] } else { rval$count <- rval$count[c(2,1,3,4,5)] names(rval$count) <- names(rval$count)[c(2,1,3,4,5)] } if (ranks) rval$ranks$rank <- -rval$ranks$rank } rval } btree <- function(n) { tfun <- function(n, id, power) { if (n==1L) id else if (n==2L) c(2L *id + 1L, id) else if (n==3L) c(2L*id + 1L, id, 2L*id +2L) else { nleft <- if (n== power*2L) power else min(power-1L, n-power%/%2L) c(tfun(nleft, 2L *id + 1L, power%/%2), id, tfun(n-(nleft+1L), 2L*id +2L, power%/%2)) } } tfun(as.integer(n), 0L, as.integer(2^(floor(logb(n-1,2))))) } cord.getdata <- function(object, newdata=NULL, cluster=NULL, need.wt, timefix=TRUE) { # For coxph object, don't reconstruct the model frame unless we must. # This will occur if weights, strata, or cluster are needed, or if # there is a newdata argument. Of course, if the model frame is # already present, then use it! Terms <- terms(object) specials <- attr(Terms, "specials") if (!is.null(specials$tt)) stop("cannot yet handle models with tt terms") if (!is.null(newdata)) { mf <- model.frame(object, data=newdata) y <- model.response(mf) if (!is.Surv(y)) { if (is.numeric(y) && is.vector(y)) y <- Surv(y) else stop("left hand side of the formula must be a numeric vector or a survival object") } if (timefix) y <- aeqSurv(y) rval <- list(y= y, x= predict(object)) # the type of prediction does not matter, as long as it is a # monotone transform of the linear predictor } else { mf <- object$model y <- object$y if (is.null(y)) { if (is.null(mf)) mf <- model.frame(object) y <- model.response(mf) } if (!is.Surv(y)) { y <- Surv(y) if (timefix) y <- aeqSurv(y) } # survival models will have already called timefix x <- object$linear.predictors # used by most if (is.null(x)) x <- object$fitted.values # used by lm if (is.null(x)) {object$na.action <- NULL; x <- predict(object)} rval <- list(y = y, x= x) } if (need.wt) { if (is.null(mf)) mf <- model.frame(object) rval$weights <- model.weights(mf) } if (!is.null(specials$strata)) { if (is.null(mf)) mf <- model.frame(object) stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) rval$strata <- mf[[stemp$vars]] else rval$strata <- strata(mf[,stemp$vars], shortlabel=TRUE) } if (is.null(cluster)) { if (!is.null(specials$cluster)) { if (is.null(mf)) mf <- model.frame(object) tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] rval$cluster <- strata(mf[,tempc$vars], shortlabel=TRUE) } else if (!is.null(object$call$cluster)) { if (is.null(mf)) mf <- model.frame(object) rval$cluster <- model.extract(mf, "cluster") } } else rval$cluster <- cluster rval } concordance.lm <- function(object, ..., newdata, cluster, ymin, ymax, influence=0, ranks=FALSE, timefix=TRUE, keepstrata=10) { Call <- match.call() fits <- list(object, ...) nfit <- length(fits) fname <- as.character(Call) # like deparse(substitute()) but works for ... fname <- fname[1 + 1:nfit] notok <- sapply(fits, function(x) !inherits(x, "lm")) if (any(notok)) { # a common error is to mistype an arg, "ramk=TRUE" for instance, # and it ends up in the ... list # try for a nice message in this case: the name of the arg if it # has one other than "object", fname otherwise indx <- which(notok) id2 <- names(Call)[indx+1] temp <- ifelse(id2 %in% c("","object"), fname, id2) stop(temp, " argument is not an appropriate fit object") } cargs <- c("ymin", "ymax","influence", "ranks", "keepstrata") cfun <- Call[c(1, match(cargs, names(Call), nomatch=0))] cfun[[1]] <- cord.work # or quote(survival:::cord.work) cfun$fname <- fname if (missing(newdata)) newdata <- NULL if (missing(cluster)) cluster <- NULL need.wt <- any(sapply(fits, function(x) !is.null(x$call$weights))) cfun$data <- lapply(fits, cord.getdata, newdata=newdata, cluster=cluster, need.wt=need.wt, timefix=timefix) rval <- eval(cfun, parent.frame()) rval$call <- Call rval } concordance.survreg <- function(object, ..., newdata, cluster, ymin, ymax, timewt=c("n", "S", "S/G", "n/G", "n/G2", "I"), influence=0, ranks=FALSE, timefix=FALSE, keepstrata=10) { Call <- match.call() fits <- list(object, ...) nfit <- length(fits) fname <- as.character(Call) # like deparse(substitute()) but works for ... fname <- fname[1 + 1:nfit] notok <- sapply(fits, function(x) !inherits(x, "survreg")) if (any(notok)) { # a common error is to mistype an arg, "ramk=TRUE" for instance, # and it ends up in the ... list # try for a nice message in this case: the name of the arg if it # has one other than "object", fname otherwise indx <- which(notok) id2 <- names(Call)[indx+1] temp <- ifelse(id2 %in% c("","object"), fname, id2) stop(temp, " argument is not an appropriate fit object") } cargs <- c("ymin", "ymax","influence", "ranks", "timewt", "keepstrata") cfun <- Call[c(1, match(cargs, names(Call), nomatch=0))] cfun[[1]] <- cord.work cfun$fname <- fname if (missing(newdata)) newdata <- NULL if (missing(cluster)) cluster <- NULL need.wt <- any(sapply(fits, function(x) !is.null(x$call$weights))) cfun$data <- lapply(fits, cord.getdata, newdata=newdata, cluster=cluster, need.wt=need.wt, timefix=timefix) rval <- eval(cfun, parent.frame()) rval$call <- Call rval } concordance.coxph <- function(object, ..., newdata, cluster, ymin, ymax, timewt=c("n", "S", "S/G", "n/G", "n/G2", "I"), influence=0, ranks=FALSE, timefix=FALSE, keepstrata=10) { Call <- match.call() fits <- list(object, ...) nfit <- length(fits) fname <- as.character(Call) # like deparse(substitute()) but works for ... fname <- fname[1 + 1:nfit] notok <- sapply(fits, function(x) !inherits(x, "coxph")) if (any(notok)) { # a common error is to mistype an arg, "ramk=TRUE" for instance, # and it ends up in the ... list # try for a nice message in this case: the name of the arg if it # has one other than "object", fname otherwise indx <- which(notok) id2 <- names(Call)[indx+1] temp <- ifelse(id2 %in% c("","object"), fname, id2) stop(temp, " argument is not an appropriate fit object") } # the cargs trick is a nice one, but it only copies over arguments that # are present. If 'ranks' was not specified, the default of FALSE is # not set. We keep it in the arg list only to match the documentation. cargs <- c("ymin", "ymax","influence", "ranks", "timewt", "keepstrata") cfun <- Call[c(1, match(cargs, names(Call), nomatch=0))] cfun[[1]] <- cord.work # a copy of the function cfun$fname <- fname cfun$reverse <- TRUE if (missing(newdata)) newdata <- NULL if (missing(cluster)) cluster <- NULL need.wt <- any(sapply(fits, function(x) !is.null(x$call$weights))) cfun$data <- lapply(fits, cord.getdata, newdata=newdata, cluster=cluster, need.wt=need.wt, timefix=timefix) rval <- eval(cfun, parent.frame()) rval$call <- Call rval } cord.work <- function(data, timewt, ymin, ymax, influence=0, ranks=FALSE, reverse, fname, keepstrata) { Call <- match.call() fargs <- c("timewt", "ymin", "ymax", "influence", "ranks", "reverse", "keepstrata") fcall <- Call[c(1, match(fargs, names(Call), nomatch=0))] fcall[[1L]] <- concordancefit nfit <- length(data) if (nfit==1) { dd <- data[[1]] fcall$y <- dd$y fcall$x <- dd$x fcall$strata <- dd$strata fcall$weights <- dd$weights fcall$cluster <- dd$cluster rval <- eval(fcall, parent.frame()) } else { # Check that all of the models have the identical Y and weights n <- length(data[[1]]$x) for (i in 2:nfit) { if (length(data[[i]]$x) != n) stop("all models must have the same sample size") if (!identical(data[[1]]$y, data[[i]]$y)) stop("all models must have the exact same response vector") if (!identical(data[[1]]$weights, data[[i]]$weights)) stop("all models must have the same weight vector") } if (influence==2) fcall$influence <-3 else fcall$influence <- 1 flist <- lapply(data, function(d) { temp <- fcall temp$y <- d$y temp$x <- d$x temp$strata <- d$strata temp$weights <- d$weights temp$cluster <- d$cluster eval(temp, parent.frame()) }) for (i in 2:nfit) { if (length(flist[[1]]$dfbeta) != length(flist[[i]]$dfbeta)) stop("models must have identical clustering") } count = do.call(rbind, lapply(flist, function(x) { if (is.matrix(x$count)) colSums(x$count) else x$count})) concordance <- sapply(flist, function(x) x$concordance) dfbeta <- sapply(flist, function(x) x$dfbeta) names(concordance) <- fname rownames(count) <- fname wt <- data[[1]]$weights if (is.null(wt)) vmat <- crossprod(dfbeta) else vmat <- t(wt * dfbeta) %*% dfbeta rval <- list(concordance=concordance, count=count, n=length(flist[[1]]$x), var=vmat, cvar= sapply(flist, function(x) x$cvar)) if (influence==1) rval$dfbeta <- dfbeta else if (influence ==2) { temp <- unlist(lapply(flist, function(x) x$influence)) rval$influence <- array(temp, dim=c(dim(flist[[1]]$influence), nfit)) } if (ranks) { temp <- lapply(flist, function(x) x$ranks) rdat <- data.frame(fit= rep(fname, sapply(temp, nrow)), do.call(rbind, temp)) row.names(rdat) <- NULL rval$ranks <- rdat } } class(rval) <- "concordance" rval } coef.concordance <- function(object, ...) object$concordance vcov.concordance <- function(object, ...) object$var survival/R/anova.coxph.R0000644000176200001440000001233513544366313014711 0ustar liggesusers# The anova function for a coxph object anova.coxph <- function (object, ..., test = 'Chisq') { if (!inherits(object, "coxph")) stop ("argument must be a cox model") # All the ... args need to be coxph or coxme fits. If any of them # have a name attached, e.g., 'charlie=T' we assume a priori # that they are illegal # dotargs <- list(...) named <- if (is.null(names(dotargs))) rep(FALSE, length(dotargs)) else (names(dotargs) != "") if (any(named)) warning(paste("The following arguments to anova.coxph(..)", "are invalid and dropped:", paste(deparse(dotargs[named]), collapse = ", "))) dotargs <- dotargs[!named] single <- (inherits(object, "coxph") || inherits(object, "coxme")) if (length(dotargs) >0 || !single) { # there are multiple arguments, either the object itself is a list # of models, or there were multiple arguments. # paste them all together into a single list if (single) object <- list(object) if (length(dotargs)>0) object <- c(object, dotargs) # coxme and coxphms models get sent elsewhere is.coxme <- sapply(object, function(x) inherits(x, "coxme")) is.multi <- sapply(object, function(x) inherits(x, "coxphms")) if (any(is.multi)) return(anova.coxphms(object, test=test)) if (any(is.coxme)) { # We need the anova.coxmelist function from coxme # If coxme is not loaded the line below returns NULL temp <- getS3method("anova", "coxmelist", optional=TRUE) if (is.null(temp)) stop("a coxme model was found and library coxme is not loaded") else return(temp(object, test = test)) } else return(anova.coxphlist(object, test = test)) } # # The argument is a single Cox model # Show the nested list of models generated by this model. # By tradition the sequence is main effects (in the order found in # the model statement), then 2 way interactions, then 3, etc. # One does this by using the "assign" attribute of the model matrix. # (This does not work for penalized terms.) # Remember to propogate any the method argument mtie <- object$method if (inherits(object, "coxphms")) return(anova.coxphms(object, test=test)) if (length(object$rscore)>0) stop("Can't do anova tables with robust variances") has.strata <- !is.null(attr(terms(object), "specials")$strata) if (is.null(object[['y']]) || (has.strata && is.null(object$strata))) { # We need the model frame mf <- stats::model.frame(object) Y <- model.response(mf) X <- model.matrix(object, mf) if (has.strata) { stemp <- untangle.specials(terms(object), "strata") if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) strats <- as.numeric(strata.keep) } } else { Y <- object[['y']] X <- model.matrix(object) if (has.strata) strats <- object$strata } assign <- attr(X, 'assign') alevels <- sort(unique(assign)) #if there are strata the sequence has holes nmodel <- length(alevels) df <- integer(nmodel+1) #this will hold the df vector loglik <- double(nmodel+1) #and the loglike vector df[nmodel+1] <- if (is.null(object$df)) sum(!is.na(object$coefficients)) else sum(object$df) loglik[nmodel+1] <- object$loglik[2] df[1] <- 0 loglik[1] <- object$loglik[1] # Now refit intermediate models for (i in seq.int(1, length.out =nmodel-1)){ if (length(object$offset)) { if (has.strata) tfit <- coxph(Y ~ X[,assign <= alevels[i]] + strata(strats) + offset(object$offset), ties=mtie) else tfit <- coxph(Y ~ X[, assign<= alevels[i]] + offet(object$offset), ties=mtie) } else { if (has.strata) tfit <- coxph(Y ~ X[,assign <= alevels[i]] + strata(strats), ties=mtie) else tfit <- coxph(Y ~ X[,assign <= alevels[i]], ties=mtie) } df[i+1] <- sum(!is.na(tfit$coefficients)) loglik[i+1] <- tfit$loglik[2] } table <- data.frame(loglik=loglik, Chisq=c(NA, 2*diff(loglik)), Df=c(NA, diff(df))) if (nmodel == 0) #failsafe for a NULL model table <- table[1, , drop = FALSE] if (length(test) >0 && test[1]=='Chisq') { table[['Pr(>|Chi|)']] <- pchisq(table$Chisq, table$Df, lower.tail=FALSE) } temp <- attr(terms(object), "term.labels") if (has.strata) temp <- temp[-stemp$terms] row.names(table) <- c('NULL', temp) title <- paste("Analysis of Deviance Table\n Cox model: response is ", deparse(object$terms[[2]]), "\nTerms added sequentially (first to last)\n", sep = "") structure(table, heading = title, class = c("anova", "data.frame")) } anova.coxphms <- function(object, ..., test="chisq") { stop("anova method not yet available for multi-state coxph fits") } survival/R/tcut.R0000644000176200001440000000236013537676563013456 0ustar liggesuserstcut <- function (x, breaks, labels, scale=1){ # avoid some problems with dates x <- as.numeric(x) breaks <- as.numeric(breaks) if(length(breaks) == 1) { if(breaks < 1) stop("Must specify at least one interval") if(missing(labels)) labels <- paste("Range", seq(length = breaks)) else if(length(labels) != breaks) stop("Number of labels must equal number of intervals") r <- range(x[!is.na(x)]) r[is.na(r)] <- 1 if((d <- diff(r)) == 0) { r[2] <- r[1] + 1 d <- 1 } breaks <- seq(r[1] - 0.01 * d, r[2] + 0.01 * d, length = breaks +1) } else { if(is.na(adb <- all(diff(breaks) >= 0)) || !adb) stop("breaks must be given in ascending order and contain no NA's") if(missing(labels)) labels <- paste(format(breaks[ - length(breaks)]), "+ thru ", format(breaks[-1]), sep = "") else if(length(labels) != length(breaks) - 1) stop("Number of labels must be 1 less than number of break points") } temp <- structure(x*scale, cutpoints=breaks*scale, labels=labels) class(temp) <- 'tcut' temp } "[.tcut" <- function(x, ..., drop=FALSE) { atts <- attributes(x) x <- unclass(x)[..1] attributes(x) <- atts class(x) <- 'tcut' x } levels.tcut <- function(x) attr(x, 'labels') survival/R/xtras.R0000644000176200001440000000645213537676563013646 0ustar liggesusersvcov.coxph <- function (object, complete=TRUE, ...) { # conform to the standard vcov results vmat <- object$var vname <- names(object$coefficients) dimnames(vmat) <- list(vname, vname) if (!complete && any(is.na(coef(object)))) { keep <- !is.na(coef(object)) vmat[keep, keep, drop=FALSE] } else vmat } vcov.survreg<-function (object, complete=TRUE, ...) { if (!complete && any(is.na(coef(object)))) { keep <- !is.na(coef(object)) vv <- object$var[keep, keep, drop=FALSE] } else vv <- object$var vname <- names(coef(object)) # add dimnames extra <- ncol(vv) - length(vname) if (extra ==1) vname <- c(vname, "Log(scale)") else if(extra >1) vname <- c(vname, paste("Log(scale[", names(object$scale), "])", sep='')) dimnames(vv) <- list(vname, vname) vv } # The extractAIC methods for coxph and survreg objects are defined # in the stats package. Don't reprise them here. extractAIC.coxph.penal<- function(fit,scale,k=2,...){ edf<-sum(fit$df) loglik <- fit$loglik[length(fit$loglik)] c(edf, -2 * loglik + k * edf) } extractAIC.coxph.null <- function(fit, scale, k=2, ...) { c(0, -2*fit$loglik[1]) } labels.survreg <- function(object, ...) attr(object,"term.labels") rep.Surv <- function(x, ...) { indx <- rep(1:nrow(x), ...) x[indx,] } # This function is just like all.vars -- except that it does not recur # on the $ sign, it follows both arguments of +, * and - in order to # track formulas, all arguments of Surv, and only the first of things # like ns(). And - it works only on formulas. # This is used to generate a warning in coxph if the same variable is used # on both sides, so perfection is not required of the function. terms.inner <- function(x) { if (inherits(x, "formula")) { if (length(x) ==3) c(terms.inner(x[[2]]), terms.inner(x[[3]])) else terms.inner(x[[2]]) } else if (inherits(x, "call") && (x[[1]] != as.name("$") && x[[1]] != as.name("["))) { if (x[[1]] == '+' || x[[1]]== '*' || x[[1]] == '-') { # terms in a model equation, unary minus only has one argument if (length(x)==3) c(terms.inner(x[[2]]), terms.inner(x[[3]])) else terms.inner(x[[2]]) } else if (x[[1]] == as.name("Surv")) unlist(lapply(x[-1], terms.inner)) else terms.inner(x[[2]]) } else(deparse(x)) } # If a subject had (start, stop) observations of (1,2) (2,10) (10,15) (20,25), # say, code often wants to distiguish intervals that are "real" censoring # from a simple split due to a time dependent covariate. # This routine returns 1*(first in a sequence) + 2*(last in a sequence), # which for the above is 1,0,2,3. This assumes no overlapping intervals survflag <- function(y, id) { if (!inherits(y, "Surv")) stop("y must be a Surv object") if (nrow(y) != length(id)) stop("length mismatch") if (ncol(y) != 3) stop("y needs to be of (tstart, tstop) form") n <- nrow(y) indx <- order(id, y[,2]) # sort the data by time within id y2 <- y[indx,] id2 <- id[indx] newid <- (id2[-n] != id2[-1]) gap <- (y2[-n,2] < y2[-1,1]) flag <- 1L*c(TRUE, newid | gap) + 2L*c(newid | gap, TRUE) flag[indx] <- flag # return it to data order flag } survival/R/summary.survreg.R0000644000176200001440000000442213537676563015671 0ustar liggesusers# $Id: summary.survreg.S 11166 2008-11-24 22:10:34Z therneau $ summary.survreg<- function(object, correlation = FALSE,...) { if (!is.null(object$fail)) { warning(" Survreg failed.", object$fail, " No summary provided\n") return(invisible(object)) } nvar0 <- length(object$coefficients) nvar <- nrow(object$var) if (nvar > nvar0) { coef <- c(object$coefficients, log(object$scale)) if ( (nvar-nvar0)==1) cname <- c(names(object$coefficients), "Log(scale)") else cname <- c(names(object$coefficients), names(object$scale)) } else { coef <- object$coefficients cname <- names(object$coefficients) } n <- length(object$linear.predictors) p <- sum(!is.na(coef)) if(!p) { warning("This model has zero rank --- no summary is provided") return(invisible(object)) } if (is.null(object$naive.var)){ table <- matrix(rep(coef, 4), ncol = 4) dimnames(table) <- list(cname, c("Value", "Std. Error", "z", "p")) stds <- sqrt(diag(object$var)) table[, 2] <- stds table[, 3] <- table[, 1]/stds table[, 4] <- 2*pnorm(-abs(table[,3])) } else { table <- matrix(rep(coef, 5), ncol = 5) dimnames(table) <- list(cname, c("Value", "Std. Err","(Naive SE)", "z", "p")) stds <- sqrt(diag(object$var)) table[, 2] <- stds table[, 3] <- sqrt(diag(object$naive.var)) table[, 4] <- table[, 1]/stds table[, 5] <- 2*pnorm(-abs(table[,4])) } if(correlation) { nas <- is.na(coef) stds <- stds[!nas] correl <- diag(1/stds) %*% object$var[!nas, !nas] %*% diag(1/stds) dimnames(correl) <- list(cname, cname) } else correl <- NULL dist <- object$dist if (is.character(dist)) sd <- survreg.distributions[[dist]] else sd <- dist if (length(object$parms)) pprint<- paste(sd$name, 'distribution: parmameters=', object$parms) else pprint<- paste(sd$name, 'distribution') x <- object[match(c('call', 'df', 'loglik', 'iter', 'na.action', 'idf', 'scale', 'coefficients', 'var'), names(object), nomatch=0)] x <- c(x, list(table=table, correlation=correl, parms=pprint, n=n, chi=2*diff(object$loglik)), robust=!is.null(object$naive.var)) class(x) <- 'summary.survreg' x } survival/R/cipoisson.R0000755000176200001440000000243013544417210014462 0ustar liggesuserscipoisson <- function(k, time=1, p=0.95, method=c('exact', 'anscombe')) { nn <- max(length(k), length(time), length(p)) if (nn>1) { k <- rep(k, length=nn) time <- rep(time, length=nn) p <- rep(p, length=nn) } p <- (1-p)/2 method <- match.arg(method) if (method=='exact') { dummy1 <- ifelse(k==0, 1, k) #avoid an error message of qgamma lower <- ifelse(k==0, 0, qgamma(p, dummy1)) upper <- qgamma(1-p, k+1) } else if (method=='anscombe'){ # anscombe's method upper <- (sqrt(k + 7/8) - qnorm(p)/2)^2 lower <- (sqrt(k - 1/8) + qnorm(p)/2)^2 } else stop("Invalid method") # The summary.pyears routine sometimes calls this with time=0 if (any(time<=0)) { lower <- ifelse(time<=0, NA, lower) upper <- ifelse(time<=0, NA, upper) } if (nn==1) c(lower=lower, upper=upper)/time else { temp <- cbind(lower=lower, upper=upper)/time if (is.array(k)) { if (is.null(dd <- dimnames(k))) array(temp, dim=c(dim(k), 2), dimnames=list(NULL, NULL, c("lower", "upper"))) else array(temp, dim=c(dim(k), 2), dimnames=list(dd, c("lower", "upper"))) } else temp } } survival/R/ratetableDate.R0000644000176200001440000000307613543467040015226 0ustar liggesusers# # Support for older style ratetables: if the type attribute for the dimension # is 3 or 4 (a date) and the associated cutpoint is a vector of integers, # then the date has a baseline of 1/1/1960. (Ratetables predate the # Date class). # The newer and simpler form uses a Date vector for the cutpoints. # ratetableDate <- function(x) { UseMethod("ratetableDate", x) } # This function places a fake "rtabledate" class on the object, for recognition rtfun <- function(x) { y <- as.vector(x) # as.integer makes sense, but Dates are double class(y) <- "rtabledate" y } # Normally used in R ratetableDate.Date <- function(x) rtfun(x) # POSIXt includes both POSIXlt and POSIXct ratetableDate.POSIXt <- function(x) rtfun(as.Date(x)) # Normally Splus #ratetableDate.timeDate <- function(x) # rtfun(x - timeDate('1/1/1970')) # Therneau's old "date" class (should someday wither away) ratetableDate.date <- function(x) rtfun(x - 3653) # David James's old "chron" class (will someday wither away) # Support it without using the chron library, which may not be loaded. ratetableDate.chron <- function(x) { origin <- attr(x, "origin") x<- as.numeric(x) + as.Date(paste(origin["year"], origin["month"], origin["day"], sep='/')) rtfun(x) } ratetableDate.dates <- ratetableDate.chron # Old ratetables had an integer based on 1/1/1960 ratetableDate.integer <- function(x) rtfun(x - 3653) # number of days from 1/1/1960 to 1/1/1970 # leave other data types alone ratetableDate.default <- function(x) x survival/R/print.summary.survfit.R0000644000176200001440000000405313537676563017031 0ustar liggesusersprint.summary.survfit <- function(x, digits = max(options()$digits - 4, 3), ...) { savedig <- options(digits=digits) on.exit(options(savedig)) if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } omit <- x$na.action if (length(omit)) cat(naprint(omit), "\n") if (x$type == 'right' || is.null(x$n.enter)) { mat <- cbind(x$time, x$n.risk, x$n.event, x$surv) cnames <- c("time", "n.risk", "n.event") } else if (x$type == 'counting') { mat <- cbind(x$time, x$n.risk, x$n.event, x$n.censor, x$surv) cnames <- c("time", "n.risk", "n.event", "censored") } if (is.matrix(x$surv)) ncurve <- ncol(x$surv) else ncurve <- 1 if (ncurve==1) { #only 1 curve cnames <- c(cnames, "survival") if (!is.null(x$std.err)) { if (is.null(x$lower)) { mat <- cbind(mat, x$std.err) cnames <- c(cnames, "std.err") } else { mat <- cbind(mat, x$std.err, x$lower, x$upper) cnames <- c(cnames, 'std.err', paste("lower ", x$conf.int*100, "% CI", sep=''), paste("upper ", x$conf.int*100, "% CI", sep='')) } } } else cnames <- c(cnames, paste("survival", seq(ncurve), sep='')) if (!is.null(x$start.time)) { mat.keep <- mat[,1] >= x$start.time mat <- mat[mat.keep,,drop=FALSE] if (is.null(dim(mat))) stop(paste("No information available using start.time =", x$start.time, ".")) } if (!is.matrix(mat)) mat <- matrix(mat, nrow=1) if (!is.null(mat)) { dimnames(mat) <- list(rep("", nrow(mat)), cnames) if (is.null(x$strata)) print(mat) else { #print it out one strata at a time strata <- x$strata if (!is.null(x$start.time)) strata <- strata[mat.keep] for (i in levels(strata)) { who <- (strata==i) cat(" ", i, "\n") print(mat[who,]) cat("\n") } } } else stop("There are no events to print. Please use the option ", "censored=TRUE with the summary function to see the censored ", "observations.") invisible(x) } survival/R/predict.survreg.R0000644000176200001440000001507113537676563015630 0ustar liggesuserspredict.survreg <- function(object, newdata, type=c('response', "link", 'lp', 'linear', 'terms', 'quantile','uquantile'), se.fit=FALSE, terms=NULL, p=c(.1, .9), na.action=na.pass, ...) { # # What do I need to do predictions ? # # linear predictor: exists # +se : X matrix # newdata : new X matrix # # response -- same as lp, +transform, from distribution # # p -- density function from distribution # scale(s) -- if multiple I need the strata # +se : variance matrix # newdata: new X type <-match.arg(type) if (type=='link') type<- 'lp' #true until their are link functions if (type=='linear') type<- 'lp' n <- length(object$linear.predictors) Terms <- object$terms if(!inherits(Terms, "terms")) stop("invalid terms component of object") strata <- attr(Terms, 'specials')$strata Terms <- delete.response(Terms) coef <- object$coefficients intercept <- attr(Terms, "intercept") nvar <- length(object$coefficients) vv <- object$var[1:nvar, 1:nvar] fixedscale <- (nvar == ncol(object$var)) if (missing(newdata) && (type=='terms' || se.fit)) need.x <- TRUE else need.x <- FALSE if (!missing(newdata)){ newframe <- stats::model.frame(Terms, data=newdata, na.action= na.action, xlev=object$xlevels) na.action.used <- attr(newframe, 'na.action') } else na.action.used <- object$na.action if (length(strata) && (type=='quantile' || type=='uquantile') && !fixedscale) { # # We need to reconstruct the original "strata" variable # mf <- stats::model.frame(object) temp <- untangle.specials(Terms, 'strata', 1) if (length(temp$vars)==1) strata.keep <- mf[[temp$vars]] else strata.keep <- strata(mf[,temp$vars], shortlabel=TRUE) strata <- as.numeric(strata.keep) nstrata <- max(strata) if (missing(newdata) && need.x){ #need the old x x <- object[['x']] if (is.null(x)) x <- model.matrix(object, mf) } else if (!missing(newdata)) { #need the new x if (length(temp$vars)==1) newstrat <- newframe[[temp$vars]] else newstrat <- strata(newframe[,temp$vars], shortlabel=TRUE) strata <- match(newstrat, levels(strata.keep)) x <- model.matrix(object, newframe) offset <- model.offset(newframe) } } else { # per subject strata not needed nstrata <- 1 if (missing(newdata)) { strata <- rep(1L, n) if (need.x) x <- model.matrix(object) } else { x <- model.matrix(object, newframe) strata <- rep(1L, nrow(x)) offset <- 0 } } scale <- object$scale[strata] #center x if terms are to be computed if(type=='p' || (type == "terms" && intercept)) x <- sweep(x, 2, object$means) # # Grab the distribution # if (is.character(object$dist)) dd <- survreg.distributions[[object$dist]] else dd <- object$dist if (is.null(dd$itrans)) { itrans <- function(x) x # identity transformation dtrans <- function (x) 1 # derivative of the transformation } else { itrans <- dd$itrans dtrans <- dd$dtrans } if (!is.null(dd$dist)) dd <- survreg.distributions[[dd$dist]] # # Now, lay out the code one case at a time. # There is some repetition this way, but otherwise the code just gets # too complicated. # if (type=='lp' || type=='response') { if (missing(newdata)) { pred <- object$linear.predictors # names(pred) <- names(object$residuals) } else pred <- drop(x %*% coef) + offset if (se.fit) se <- sqrt(diag(x %*% vv %*% t(x))) if (type=='response') { pred <- itrans(pred) if (se.fit) se <- se/ dtrans(pred) } } else if (type=='quantile' || type=='uquantile') { if (missing(newdata)) pred <- object$linear.predictors else pred <- x %*% coef # "pred" is the mean of the distribution, # now add quantiles and then invert qq <- dd$quantile(p, object$parm) if (length(qq)==1 || length(pred)==1) { pred <- drop(pred) + qq*scale if (se.fit && fixedscale) { var <- ((x %*% vv) * x) %*% rep(1., ncol(x)) se <- rep(sqrt(drop(var)), length(qq)) } else if (se.fit) { x.strata <- outer(strata, 1:nstrata, function(x,y) 1*(x==y)) se <- matrix(0, ncol=length(qq), nrow=nrow(x)) for (i in 1:(length(qq))) { temp <- cbind(x, (qq[i]*scale)* x.strata) var <- ((temp %*% object$var) *temp) %*% rep(1, ncol(temp)) se[,i] <- sqrt(drop(var)) } se <- drop(se) } } else { pred <- c(pred) + outer(scale, qq) if (se.fit && fixedscale) { var <- ((x %*% vv) * x) %*% rep(1., ncol(x)) if (length(qq) >1) { se <- rep(sqrt(drop(var)), length(qq)) se <- matrix(se, ncol=length(qq)) } else se <- sqrt(drop(var)) } else if (se.fit) { x.strata <- outer(strata, 1:nstrata, function(x,y) 1*(x==y)) se <- pred nc <- rep(1., ncol(object$var)) for (i in 1:length(qq)) { temp <- cbind(x, (qq[i]*scale)*x.strata) var <- ((temp %*% object$var)* temp) %*% nc se[,i] <- sqrt(drop(var)) } se <- drop(se) } } pred <- drop(pred) if (type == 'quantile') { pred <- itrans(pred) if (se.fit) se <- se/dtrans(pred) } } else { #terms # In Splus we can use Build.terms, in R we have to do it ourselves asgn <- attrassign(x,Terms) hasintercept<-attr(Terms,"intercept")>0 if (hasintercept) asgn$"(Intercept)"<-NULL nterms<-length(asgn) pred<-matrix(ncol=nterms,nrow=NROW(x)) dimnames(pred)<-list(rownames(x),names(asgn)) if (se.fit){ se<-matrix(ncol=nterms,nrow=NROW(x)) dimnames(se)<-list(rownames(x),names(asgn)) R<-object$var } for (i in 1:nterms){ ii<-asgn[[i]] pred[,i]<-x[,ii,drop=FALSE]%*%(coef[ii]) if (se.fit){ for(j in (1:NROW(x))){ xi<-x[j,ii,drop=FALSE]*(coef[ii]) vci<-R[ii,ii] se[j,i]<-sqrt(sum(xi%*% vci %*%t( xi))) } } } if (!is.null(terms)){ pred<-pred[,terms,drop=FALSE] if (se.fit) se<-se[,terms,drop=FALSE] } } #Expand out the missing values in the result # if (!is.null(na.action.used)) { pred <- naresid(na.action.used, pred) if(se.fit) se <- naresid(na.action.used, se) } if (se.fit) list(fit=pred, se.fit=se) else pred } survival/R/survregDtest.R0000644000176200001440000000510713537676563015202 0ustar liggesusers# # Test out if a distribution object found in survreg is legal. Mostly called # by the survreg routine, but a user might use it when developing a new # distribution object # # Short form, returns just T or F # Long form, returns all of the issues with the object, or T if it is ok # survregDtest <- function(dlist, verbose=F) { errlist <- NULL if (is.null(dlist$name)) errlist <- c(errlist, "Missing a name") else if (length(dlist$name) !=1 || !is.character(dlist$name)) errlist <- c(errlist, "Invalid name") # # First case, the object is a reference to another distribution # if (!is.null(dlist$dist)) { if (!is.character(dlist$dist) || is.null(match(dlist$dist, names(survreg.distributions)))) errlist <- c(errlist, "Reference distribution not found") else { if (!is.function(dlist$trans)) errlist <- c(errlist, "Missing or invalid trans component") if (!is.function(dlist$itrans)) errlist <- c(errlist, "Missing or invalid itrans component") if (!is.function(dlist$dtrans)) errlist <- c(errlist, "Missing or invalid dtrans component") } if (is.null(errlist)) { if (!all.equal(dlist$itrans(dlist$trans(1:10)), 1:10)) errlist <- c(errlist, "trans and itrans must be inverses of each other") if (length(dlist$dtrans(1:10)) != 10) errlist <- c(errlist, "dtrans must be a 1-1 function") } } # Second case, the actual definition of a distribution else { # Comment out the next line, until some function uses the variance #if (!is.function(dlist$variance)) # errlist <- c(errlist, "Missing or invalid variance function") if (!is.function(dlist$init)) errlist <- c(errlist, "Missing or invalid init function") if (!is.function(dlist$deviance)) errlist <- c(errlist, "Missing or invalid deviance function") if (!is.function(dlist$density)) errlist <- c(errlist, "Missing or invalid density function") else { if (is.null(dlist$parms)) temp <- dlist$density(1:10/10) else temp <- dlist$density(1:10/10, unlist(dlist$parms)) if (!is.numeric(temp) || !is.matrix(temp) || nrow(temp) != 10 || ncol(temp) != 5) errlist <- c(errlist, "Density function must return a 5 column matrix") } if (!is.function(dlist$quantile)) errlist <- c(errlist, "Missing or invalid quantile function") } if (is.null(errlist)) T else if (verbose) errlist else F } survival/R/labels.survreg.R0000644000176200001440000000021213537676563015427 0ustar liggesusers# $Id: labels.survreg.S 11166 2008-11-24 22:10:34Z therneau $ labels.survreg <- function(object, ...) attr(object$terms, "term.labels") survival/R/attrassign.R0000644000176200001440000000252413537676563014660 0ustar liggesusers# $Id$ # When X is a model matrix, Splus and R have a different format # for the "assign" attribute # For instance # survreg(Surv(time, status) ~ age + sex + factor(ph.ecog), lung) # R gives the compact form, a vector (0, 1, 2, 3, 3, 3); which can be # read as "the first column of the X matrix (intercept) goes with none of # the terms', 'the second column goes with term 1', etc. # Splus gives a list # $(Intercept) 1 # $age 2 # $sex 3 # $factor(ph.ecog) 4 5 6 # # This function creates the Splus style of output from the R style. Several # of the routines in the package use this, as it is somewhat easier (more # transparent) to work with. # attrassign<-function (object, ...) UseMethod("attrassign") attrassign.lm<-function(object, ...){ attrassign(model.matrix(object), terms(object))} attrassign.default<-function(object, tt, ...){ if (!inherits(tt,"terms")) stop("need terms object") aa<-attr(object,"assign") if (is.null(aa)) stop("argument is not really a model matrix") ll<-attr(tt,"term.labels") temp <- c("(Intercept)", ll)[aa+1] #vector of term names # Don't put them in alphabetical order, retain the order we inherited split(seq(along=temp), factor(temp, levels=unique(temp))) } survival/R/anova.survreg.R0000644000176200001440000000400313537676563015273 0ustar liggesusers# $Id: anova.survreg.S 11230 2009-02-09 23:37:55Z therneau $ anova.survreg <- function(object, ..., test = c("Chisq", "none")) { test <- match.arg(test) margs <- function(...) nargs() if(margs(...)) return(anova.survreglist(list(object, ...), test = test)) Terms <- object$terms term.labels <- attr(Terms, "term.labels") nt <- length(term.labels) m <- stats::model.frame(object) family.obj <- object$family y <- model.extract(m, "response") if(!inherits(y, "Surv")) stop("Response must be a survival object") loglik <- numeric(nt + 1) df.res <- loglik if(nt) { loglik[nt + 1] <- -2 * object$loglik[2] df.res[nt + 1] <- object$df.residual fit <- object for(iterm in seq(from = nt, to = 1, by = -1)) { argslist <- list(object = fit, formula = eval(parse(text = paste("~ . -", term.labels[iterm])))) fit <- do.call("update", argslist) loglik[iterm] <- -2 * fit$loglik[2] df.res[iterm] <- fit$df.residual } dev <- c(NA, - diff(loglik)) df <- c(NA, -diff(df.res)) } else { loglik[1] <- -2 * object$loglik[2] df.res[1] <- object$df.residual #dim(y)[1] - attr(Terms, "intercept") dev <- df <- as.numeric(NA) } heading <- c("Analysis of Deviance Table\n", paste(family.obj[1], "distribution with", family.obj[2], "link\n"), paste("Response: ", as.character(formula(object))[2], "\n", sep = ""), if (nrow(fit$var) == length(fit$coefficients)) paste("Scale fixed at", format(object$scale, digits = getOption("digits")),"\n") else "Scale estimated\n", "Terms added sequentially (first to last)") aod <- data.frame(Df = df, Deviance = dev, "Resid. Df" = df.res, "-2*LL" = loglik, row.names = c("NULL", term.labels), check.names = FALSE) attr(aod, "heading") <- heading class(aod) <- c("anova", "data.frame") if(test == "none") return(aod) else stat.anova(aod, test, scale=1 ,n= nrow(y)) } survival/R/strata.R0000644000176200001440000000450013537676563013773 0ustar liggesusers# Create a strata variable, possibly from many objects # strata <- function(..., na.group=FALSE, shortlabel, sep=', ') { # First, grab a copy of the call, which will be used to manufacture # labels for unlabeled arguments # Then get the arguments as a list words <- as.character((match.call())[-1]) allf <- list(...) # If there is only one argument, and it itself is a list, use # it instead if(length(allf) == 1 && is.list(ttt <- unclass(allf[[1]]))) allf <- ttt nterms <- length(allf) # Keep the names of named args as their label, what was typed otherwise if (is.null(names(allf))) { argname <- words[1:nterms] if (missing(shortlabel)) shortlabel <- all(sapply(allf, function(x) is.character(x) | inherits(x, 'factor'))) } else { argname <- ifelse(names(allf) == '', words[1:nterms], names(allf)) if (missing(shortlabel)) shortlabel <- FALSE } # If the arguments are not all the same length, stop now # Mostly this is to stop calls with an improper object arglength <- sapply(allf, length) if (any(arglength != arglength[1])) stop("all arguments must be the same length") if (!all(sapply(allf, is.atomic))) stop("all arguments must be vectors") # Process the first argument what <- allf[[1]] if(is.null(levels(what))) what <- factor(what) levs <- unclass(what) - 1 wlab <- levels(what) if (na.group && any(is.na(what))){ # add "NA" as a level levs[is.na(levs)] <- length(wlab) wlab <- c(wlab, "NA") } if (shortlabel) labs <- wlab else labs <- paste(argname[1], wlab, sep='=') # Now march through the other variables, if any for (i in (1:nterms)[-1]) { what <- allf[[i]] if(is.null(levels(what))) what <- factor(what) wlab <- levels(what) wlev <- unclass(what) - 1 if (na.group && any(is.na(wlev))){ wlev[is.na(wlev)] <- length(wlab) wlab <- c(wlab, "NA") } if (!shortlabel) wlab <- format(paste(argname[i], wlab, sep='=')) levs <- wlev + levs*(length(wlab)) labs <- paste(rep(labs, rep(length(wlab), length(labs))), rep(wlab, length(labs)), sep=sep) } levs <- levs + 1 ulevs <- sort(unique(levs[!is.na(levs)])) levs <- match(levs, ulevs) labs <- labs[ulevs] factor(levs, labels=labs) } survival/R/agreg.fit.R0000644000176200001440000001414513570772302014332 0ustar liggesusers# Automatically generated from the noweb directory agreg.fit <- function(x, y, strata, offset, init, control, weights, method, rownames, resid=TRUE) { nvar <- ncol(x) event <- y[,3] if (all(event==0)) stop("Can't fit a Cox model with 0 failures") if (missing(offset) || is.null(offset)) offset <- rep(0.0, nrow(y)) if (missing(weights)|| is.null(weights))weights<- rep(1.0, nrow(y)) else if (any(weights<=0)) stop("Invalid weights, must be >0") else weights <- as.vector(weights) # Find rows to be ignored. We have to match within strata: a # value that spans a death in another stratum, but not it its # own, should be removed. Hence the per stratum delta if (length(strata) ==0) {y1 <- y[,1]; y2 <- y[,2]} else { if (is.numeric(strata)) strata <- as.integer(strata) else strata <- as.integer(as.factor(strata)) delta <- strata* (1+ max(y[,2]) - min(y[,1])) y1 <- y[,1] + delta y2 <- y[,2] + delta } event <- y[,3] > 0 dtime <- sort(unique(y2[event])) indx1 <- findInterval(y1, dtime) indx2 <- findInterval(y2, dtime) # indx1 != indx2 for any obs that spans an event time ignore <- (indx1 == indx2) nused <- sum(!ignore) # Sort the data (or rather, get a list of sorted indices) # For both stop and start times, the indices go from last to first if (length(strata)==0) { sort.end <- order(ignore, -y[,2]) -1L #indices start at 0 for C code sort.start<- order(ignore, -y[,1]) -1L strata <- rep(0L, nrow(y)) } else { sort.end <- order(ignore, strata, -y[,2]) -1L sort.start<- order(ignore, strata, -y[,1]) -1L } if (is.null(nvar) || nvar==0) { # A special case: Null model. Just return obvious stuff # To keep the C code to a small set, we call the usual routines, but # with a dummy X matrix and 0 iterations nvar <- 1 x <- matrix(as.double(1:nrow(y)), ncol=1) #keep the .C call happy maxiter <- 0 nullmodel <- TRUE if (length(init) !=0) stop("Wrong length for inital values") init <- 0.0 #dummy value to keep a .C call happy (doesn't like 0 length) } else { nullmodel <- FALSE maxiter <- control$iter.max if (is.null(init)) init <- rep(0., nvar) if (length(init) != nvar) stop("Wrong length for inital values") } # the returned value of agfit$coef starts as a copy of init, so make sure # is is a vector and not a matrix; as.double suffices. # Solidify the storage mode of other arguments storage.mode(y) <- storage.mode(x) <- "double" storage.mode(offset) <- storage.mode(weights) <- "double" agfit <- .Call(Cagfit4, nused, y, x, strata, weights, offset, as.double(init), sort.start, sort.end, as.integer(method=="efron"), as.integer(maxiter), as.double(control$eps), as.double(control$toler.chol), as.integer(0)) # internally rescale vmat <- agfit$imat coef <- agfit$coef if (agfit$flag[1] < nvar) which.sing <- diag(vmat)==0 else which.sing <- rep(FALSE,nvar) if (maxiter >1) { infs <- abs(agfit$u %*% vmat) if (any(!is.finite(coef)) || any(!is.finite(vmat))) stop("routine failed due to numeric overflow.", "This should never happen. Please contact the author.") if (agfit$flag[4] > 0) warning("Ran out of iterations and did not converge") else { infs <- (!is.finite(agfit$u) | infs > control$toler.inf*(1+ abs(coef))) if (any(infs)) warning(paste("Loglik converged before variable ", paste((1:nvar)[infs],collapse=","), "; beta may be infinite. ")) } } lp <- as.vector(x %*% coef + offset - sum(coef * colMeans(x))) if (resid) { score <- as.double(exp(lp)) residuals <- .Call(Cagmart3, nused, y, score, weights, strata, sort.start, sort.end, as.integer(method=='efron')) names(residuals) <- rownames } # The if-then-else below is a real pain in the butt, but the tccox # package's test suite assumes that the ORDER of elements in a coxph # object will never change. # if (nullmodel) { rval <- list(loglik=agfit$loglik[2], linear.predictors = offset, method= method, class = c("coxph.null", 'coxph') ) if (resid) rval$residuals <- residuals } else { names(coef) <- dimnames(x)[[2]] if (maxiter > 0) coef[which.sing] <- NA # always leave iter=0 alone flag <- agfit$flag names(flag) <- c("rank", "rescale", "step halving", "convergence") if (resid) { rval <- list(coefficients = coef, var = vmat, loglik = agfit$loglik, score = agfit$sctest, iter = agfit$iter, linear.predictors = as.vector(lp), residuals = residuals, means = colMeans(x), first = agfit$u, info = flag, method= method, class = "coxph") } else { rval <- list(coefficients = coef, var = vmat, loglik = agfit$loglik, score = agfit$sctest, iter = agfit$iter, linear.predictors = as.vector(lp), means = colMeans(x), first = agfit$u, info = flag, method = method, class = "coxph") } rval } rval } survival/R/plot.survfit.R0000644000176200001440000011356213570772307015153 0ustar liggesusers# Automatically generated from the noweb directory plot.survfit<- function(x, conf.int, mark.time=FALSE, pch=3, col=1,lty=1, lwd=1, cex=1, log=FALSE, xscale=1, yscale=1, xlim, ylim, xmax, fun, xlab="", ylab="", xaxs='r', conf.times, conf.cap=.005, conf.offset=.012, conf.type=c('log', 'log-log', 'plain', 'logit', "arcsin"), mark, noplot="(s0)", cumhaz=FALSE, firstx, ymin, ...) { dotnames <- names(list(...)) if (any(dotnames =='type')) stop("The graphical argument 'type' is not allowed") x <- survfit0(x, x$start.time) # align data at 0 for plotting # decide on logarithmic axes, yes or no if (is.logical(log)) { ylog <- log xlog <- FALSE if (ylog) logax <- 'y' else logax <- "" } else { ylog <- (log=='y' || log=='xy') xlog <- (log=='x' || log=='xy') logax <- log } if (!missing(fun)) { if (is.character(fun)) { if (fun=='log'|| fun=='logpct') ylog <- TRUE if (fun=='cloglog') { xlog <- TRUE if (ylog) logax <- 'xy' else logax <- 'x' } } } # The default for plot and lines is to add confidence limits # if there is only one curve if (missing(conf.int) && missing(conf.times)) conf.int <- (!is.null(x$std.err) && prod(dim(x) ==1)) if (missing(conf.times)) conf.times <- NULL else { if (!is.numeric(conf.times)) stop('conf.times must be numeric') if (missing(conf.int)) conf.int <- TRUE } if (!missing(conf.int)) { if (is.numeric(conf.int)) { conf.level <- conf.int if (conf.level<0 || conf.level > 1) stop("invalid value for conf.int") if (conf.level ==0) conf.int <- FALSE else if (conf.level != x$conf.int) { x$upper <- x$lower <- NULL # force recomputation } conf.int <- TRUE } else conf.level = 0.95 } # Organize data into stime, ssurv, supper, slower stime <- x$time std <- NULL yzero <- FALSE # a marker that we have an "ordinary survival curve" with min 0 smat <- function(x) { # the rest of the routine is simpler if everything is a matrix dd <- dim(x) if (is.null(dd)) as.matrix(x) else if (length(dd) ==2) x else matrix(x, nrow=dd[1]) } if (cumhaz) { # plot the cumulative hazard instead if (is.null(x$cumhaz)) stop("survfit object does not contain a cumulative hazard") if (is.numeric(cumhaz)) { dd <- dim(x$cumhaz) if (is.null(dd)) nhazard <- 1 else nhazard <- prod(dd[-1]) if (cumhaz != floor(cumhaz)) stop("cumhaz argument is not integer") if (any(cumhaz < 1 | cumhaz > nhazard)) stop("subscript out of range") ssurv <- smat(x$cumhaz)[,cumhaz, drop=FALSE] if (!is.null(x$std.chaz)) std <- smat(x$std.chaz)[,cumhaz, drop=FALSE] } else if (is.logical(cumhaz)) { ssurv <- smat(x$cumhaz) if (!is.null(x$std.chaz)) std <- smat(x$std.chaz) } else stop("invalid cumhaz argument") } else if (inherits(x, "survfitms")) { i <- (x$states != noplot) if (all(i) || !any(i)) { # the !any is a failsafe, in case none are kept then ignore noplot ssurv <- smat(x$pstate) if (!is.null(x$std.err)) std <- smat(x$std.err) } else { i <- which(i) # the states to keep # we have to be careful about subscripting if (length(dim(x$pstate)) ==3) { ssurv <- smat(x$pstate[,,i, drop=FALSE]) if (!is.null(x$std.err)) std <- smat(x$std.err[,,i, drop=FALSE]) } else { ssurv <- x$pstate[,i, drop=FALSE] if (!is.null(x$std.err)) std <- x$std.err[,i, drop=FALSE] } } } else { yzero <- TRUE ssurv <- as.matrix(x$surv) # x$surv will have one column if (!is.null(x$std.err)) std <- as.matrix(x$std.err) # The fun argument only applies to single state survfit objects # First deal with the special case of fun='cumhaz', which is here for # backwards compatability; people should use the cumhaz argument if (!missing(fun) && is.character(fun) && fun=="cumhaz") { cumhaz <- TRUE if (!is.null(x$cumhaz)) { ssurv <- as.matrix(x$cumhaz) if (!is.null(x$std.chaz)) std <- as.matrix(x$std.chaz) } else { ssurv <- as.matrix(-log(x$surv)) if (!is.null(x$std.err)) { if (x$logse) std <- as.matrix(x$std.err) else std <- as.matrix(x$std.err/x$surv) } } } } # set up strata if (is.null(x$strata)) { nstrat <- 1 stemp <- rep(1, length(x$time)) # same length as stime } else { nstrat <- length(x$strata) stemp <- rep(1:nstrat, x$strata) # same length as stime } ncurve <- nstrat * ncol(ssurv) conf.type <- match.arg(conf.type) if (conf.type=="none") conf.int <- FALSE if (conf.int== "none") conf.int <- FALSE if (conf.int=="only") { plot.surv <- FALSE conf.int <- TRUE } else plot.surv <- TRUE if (conf.int) { if (is.null(std)) stop("object does not have standard errors, CI not possible") if (cumhaz) { if (missing(conf.type)) conf.type="plain" temp <- survfit_confint(ssurv, std, logse=FALSE, conf.type, conf.level, ulimit=FALSE) supper <- as.matrix(temp$upper) slower <- as.matrix(temp$lower) } else if (is.null(x$upper)) { if (missing(conf.type) && !is.null(x$conf.type)) conf.type <- x$conf.type temp <- survfit_confint(ssurv, x$std.err, logse= x$logse, conf.type, conf.level, ulimit=FALSE) supper <- as.matrix(temp$upper) slower <- as.matrix(temp$lower) } else { supper <- as.matrix(x$upper) slower <- as.matrix(x$lower) } } else supper <- slower <- NULL if (!inherits(x, "survfitms") && !cumhaz & !missing(fun)) { yzero <- FALSE if (is.character(fun)) { tfun <- switch(tolower(fun), 'log' = function(x) x, 'event'=function(x) 1-x, 'cumhaz'=function(x) -log(x), 'cloglog'=function(x) log(-log(x)), 'pct' = function(x) x*100, 'logpct'= function(x) 100*x, #special case further below 'identity'= function(x) x, 'f' = function(x) 1-x, 's' = function(x) x, 'surv' = function(x) x, stop("Unrecognized function argument") ) if (tolower(fun) %in% c("identity", "s") && !inherits(x, "survfitms") && !cumhaz) yzero <- TRUE } else if (is.function(fun)) tfun <- fun else stop("Invalid 'fun' argument") ssurv <- tfun(ssurv ) if (!is.null(supper)) { supper <- tfun(supper) slower <- tfun(slower) } } if (missing(mark.time) & !missing(mark)) mark.time <- TRUE if (missing(pch) && !missing(mark)) pch <- mark if (length(pch)==1 && is.character(pch)) pch <- strsplit(pch, "")[[1]] # Marks are not placed on confidence bands pch <- rep(pch, length.out=ncurve) mcol <- rep(col, length.out=ncurve) if (is.numeric(mark.time)) mark.time <- sort(mark.time) # The actual number of curves is ncurve*3 if there are confidence bands, # unless conf.times has been given. Colors and line types in the latter # match the curves # If the number of line types is 1 and lty is an integer, then use lty # for the curve and lty+1 for the CI # If the length(lty) <= length(ncurve), use the same color for curve and CI # otherwise assume the user knows what they are about and has given a full # vector of line types. # Colors and line widths work like line types, excluding the +1 rule. if (conf.int & is.null(conf.times)) { if (length(lty)==1 && is.numeric(lty)) lty <- rep(c(lty, lty+1, lty+1), ncurve) else if (length(lty) <= ncurve) lty <- rep(rep(lty, each=3), length.out=(ncurve*3)) else lty <- rep(lty, length.out= ncurve*3) if (length(col) <= ncurve) col <- rep(rep(col, each=3), length.out=3*ncurve) else col <- rep(col, length.out=3*ncurve) if (length(lwd) <= ncurve) lwd <- rep(rep(lwd, each=3), length.out=3*ncurve) else lwd <- rep(lwd, length.out=3*ncurve) } else { col <- rep(col, length.out=ncurve) lty <- rep(lty, length.out=ncurve) lwd <- rep(lwd, length.out=ncurve) } # check consistency if (!missing(xlim)) { if (!missing(xmax)) warning("cannot have both xlim and xmax arguments, xmax ignored") if (!missing(firstx)) stop("cannot have both xlim and firstx arguments") } if (!missing(ylim)) { if (!missing(ymin)) stop("cannot have both ylim and ymin arguments") } # Do axis range computations if (!missing(xlim) && !is.null(xlim)) { tempx <- xlim if (xaxs == 'S') tempx[2] <- tempx[2] + diff(tempx)*1.04 } else { temp <- stime[is.finite(stime)] if (!missing(xmax) && missing(xlim)) temp <- temp[temp <= xmax] if (xaxs=='S') { #special x- axis style for survival curves if (xlog) tempx <- c(min(temp[temp>0]), max(temp)+ diff(temp)*1.04) else tempx <- c(min(temp), max(temp)) * 1.04 } else if (xlog) tempx <- range(temp[temp > 0]) else tempx <- range(temp) } if (!missing(ylim) && !is.null(ylim)) tempy <- ylim else { skeep <- is.finite(stime) & stime >= tempx[1] & stime <= tempx[2] if (ylog) { if (!is.null(supper)) tempy <- range(c(slower[is.finite(slower) & slower>0 & skeep], supper[is.finite(supper) & skeep])) else tempy <- range(ssurv[is.finite(ssurv)& ssurv>0 & skeep]) if (tempy[2]==1) tempy[2] <- .99 # makes for a prettier axis if (any(c(ssurv, slower)[skeep] ==0)) { tempy[1] <- tempy[1]*.8 ssurv[ssurv==0] <- tempy[1] if (!is.null(slower)) slower[slower==0] <- tempy[1] } } else { if (!is.null(supper)) tempy <- range(c(supper[skeep], slower[skeep]), finite=TRUE, na.rm=TRUE) else tempy <- range(ssurv[skeep], finite=TRUE, na.rm= TRUE) if (yzero) tempy <- range(c(0, tempy)) } } if (!missing(ymin)) tempy[1] <- ymin # # Draw the basic box # temp <- if (xaxs=='S') 'i' else xaxs plot(range(tempx, finite=TRUE, na.rm=TRUE)/xscale, range(tempy, finite=TRUE, na.rm=TRUE)*yscale, type='n', log=logax, xlab=xlab, ylab=ylab, xaxs=temp,...) if(yscale != 1) { if (ylog) par(usr =par("usr") -c(0, 0, log10(yscale), log10(yscale))) else par(usr =par("usr")/c(1, 1, yscale, yscale)) } if (xscale !=1) { if (xlog) par(usr =par("usr") -c(log10(xscale), log10(xscale), 0,0)) else par(usr =par("usr")*c(xscale, xscale, 1, 1)) } if (xaxs=='i') resetclip <- FALSE else resetclip <- !(missing(xlim) & missing(ylim) & missing(xmax) & missing(firstx)& missing(ymin)) if (resetclip) { # yes, do it if (xaxs=='S') tempx <- c(tempx[1], temp[1]) clip(tempx[1], tempx[2], tempy[1], tempy[2]) options(plot.survfit = list(plotclip=c(tempx, tempy), plotreset=par('usr'))) } else options(plot.survfit = NULL) #remove any notes from a prior plot # Create a step function, removing redundancies that sometimes occur in # curves with lots of censoring. dostep <- function(x,y) { keep <- is.finite(x) & is.finite(y) if (!any(keep)) return() #all points were infinite or NA if (!all(keep)) { # these won't plot anyway, so simplify (CI values are often NA) x <- x[keep] y <- y[keep] } n <- length(x) if (n==1) list(x=x, y=y) else if (n==2) list(x=x[c(1,2,2)], y=y[c(1,1,2)]) else { # replace verbose horizonal sequences like # (1, .2), (1.4, .2), (1.8, .2), (2.3, .2), (2.9, .2), (3, .1) # with (1, .2), (.3, .2),(3, .1). # They are slow, and can smear the looks of the line type. temp <- rle(y)$lengths drops <- 1 + cumsum(temp[-length(temp)]) # points where the curve drops #create a step function if (n %in% drops) { #the last point is a drop xrep <- c(x[1], rep(x[drops], each=2)) yrep <- rep(y[c(1,drops)], c(rep(2, length(drops)), 1)) } else { xrep <- c(x[1], rep(x[drops], each=2), x[n]) yrep <- c(rep(y[c(1,drops)], each=2)) } list(x=xrep, y=yrep) } } drawmark <- function(x, y, mark.time, censor, cex, ...) { if (!is.numeric(mark.time)) { xx <- x[censor>0] yy <- y[censor>0] if (any(censor >1)) { # tied death and censor, put it on the midpoint j <- pmax(1, which(censor>1) -1) i <- censor[censor>0] yy[i>1] <- (yy[i>1] + y[j])/2 } } else { #interpolate xx <- mark.time yy <- approx(x, y, xx, method="constant", f=0)$y } points(xx, yy, cex=cex, ...) } type <- 's' c1 <- 1 # keeps track of the curve number c2 <- 1 # keeps track of the lty, col, etc xend <- yend <- double(ncurve) if (length(conf.offset) ==1) temp.offset <- (1:ncurve - (ncurve+1)/2)* conf.offset* diff(par("usr")[1:2]) else temp.offset <- rep(conf.offset, length=ncurve) * diff(par("usr")[1:2]) temp.cap <- conf.cap * diff(par("usr")[1:2]) for (j in 1:ncol(ssurv)) { for (i in unique(stemp)) { #for each strata who <- which(stemp==i) # if n.censor is missing, then assume any line that does not have an # event would not be present but for censoring, so there must have # been censoring then # otherwise categorize is 0= no censor, 1=censor, 2=censor and death if (is.null(x$n.censor)) censor <- ifelse(x$n.event[who]==0, 1, 0) else censor <- ifelse(x$n.censor[who]==0, 0, 1 + (x$n.event[who] > 0)) xx <- stime[who] yy <- ssurv[who,j] if (plot.surv) { if (type=='s') lines(dostep(xx, yy), lty=lty[c2], col=col[c2], lwd=lwd[c2]) else lines(xx, yy, type=type, lty=lty[c2], col=col[c2], lwd=lwd[c2]) if (is.numeric(mark.time) || mark.time) drawmark(xx, yy, mark.time, censor, pch=pch[c1], col=mcol[c1], cex=cex) } xend[c1] <- max(xx) yend[c1] <- yy[length(yy)] if (conf.int && !is.null(conf.times)) { # add vertical bars at the specified times x2 <- conf.times + temp.offset[c1] templow <- approx(xx, slower[who,j], x2, method='constant', f=1)$y temphigh<- approx(xx, supper[who,j], x2, method='constant', f=1)$y segments(x2, templow, x2, temphigh, lty=lty[c2], col=col[c2], lwd=lwd[c2]) if (conf.cap>0) { segments(x2-temp.cap, templow, x2+temp.cap, templow, lty=lty[c2], col=col[c2], lwd=lwd[c2] ) segments(x2-temp.cap, temphigh, x2+temp.cap, temphigh, lty=lty[c2], col=col[c2], lwd=lwd[c2]) } } c1 <- c1 +1 c2 <- c2 +1 if (conf.int && is.null(conf.times)) { if (type == 's') { lines(dostep(xx, slower[who,j]), lty=lty[c2], col=col[c2],lwd=lwd[c2]) c2 <- c2 +1 lines(dostep(xx, supper[who,j]), lty=lty[c2], col=col[c2], lwd= lwd[c2]) c2 <- c2 + 1 } else { lines(xx, slower[who,j], lty=lty[c2], col=col[c2],lwd=lwd[c2], type=type) c2 <- c2 +1 lines(xx, supper[who,j], lty=lty[c2], col=col[c2], lwd= lwd[c2], type= type) c2 <- c2 + 1 } } } } lastx <- list(x=xend, y=yend) if (resetclip) { xx <- par("usr") clip(xx[1], xx[2], xx[3], xx[4]) # undo the clipping } invisible(lastx) } lines.survfit <- function(x, type='s', pch=3, col=1, lty=1, lwd=1, cex=1, mark.time=FALSE, fun, conf.int=FALSE, conf.times, conf.cap=.005, conf.offset=.012, conf.type=c('log', 'log-log', 'plain', 'logit', "arcsin"), mark, noplot="(s0)", cumhaz=FALSE, ...) { x <- survfit0(x, x$start.time) xlog <- par("xlog") # The default for plot and lines is to add confidence limits # if there is only one curve if (missing(conf.int) && missing(conf.times)) conf.int <- (!is.null(x$std.err) && prod(dim(x) ==1)) if (missing(conf.times)) conf.times <- NULL else { if (!is.numeric(conf.times)) stop('conf.times must be numeric') if (missing(conf.int)) conf.int <- TRUE } if (!missing(conf.int)) { if (is.numeric(conf.int)) { conf.level <- conf.int if (conf.level<0 || conf.level > 1) stop("invalid value for conf.int") if (conf.level ==0) conf.int <- FALSE else if (conf.level != x$conf.int) { x$upper <- x$lower <- NULL # force recomputation } conf.int <- TRUE } else conf.level = 0.95 } # Organize data into stime, ssurv, supper, slower stime <- x$time std <- NULL yzero <- FALSE # a marker that we have an "ordinary survival curve" with min 0 smat <- function(x) { # the rest of the routine is simpler if everything is a matrix dd <- dim(x) if (is.null(dd)) as.matrix(x) else if (length(dd) ==2) x else matrix(x, nrow=dd[1]) } if (cumhaz) { # plot the cumulative hazard instead if (is.null(x$cumhaz)) stop("survfit object does not contain a cumulative hazard") if (is.numeric(cumhaz)) { dd <- dim(x$cumhaz) if (is.null(dd)) nhazard <- 1 else nhazard <- prod(dd[-1]) if (cumhaz != floor(cumhaz)) stop("cumhaz argument is not integer") if (any(cumhaz < 1 | cumhaz > nhazard)) stop("subscript out of range") ssurv <- smat(x$cumhaz)[,cumhaz, drop=FALSE] if (!is.null(x$std.chaz)) std <- smat(x$std.chaz)[,cumhaz, drop=FALSE] } else if (is.logical(cumhaz)) { ssurv <- smat(x$cumhaz) if (!is.null(x$std.chaz)) std <- smat(x$std.chaz) } else stop("invalid cumhaz argument") } else if (inherits(x, "survfitms")) { i <- (x$states != noplot) if (all(i) || !any(i)) { # the !any is a failsafe, in case none are kept then ignore noplot ssurv <- smat(x$pstate) if (!is.null(x$std.err)) std <- smat(x$std.err) } else { i <- which(i) # the states to keep # we have to be careful about subscripting if (length(dim(x$pstate)) ==3) { ssurv <- smat(x$pstate[,,i, drop=FALSE]) if (!is.null(x$std.err)) std <- smat(x$std.err[,,i, drop=FALSE]) } else { ssurv <- x$pstate[,i, drop=FALSE] if (!is.null(x$std.err)) std <- x$std.err[,i, drop=FALSE] } } } else { yzero <- TRUE ssurv <- as.matrix(x$surv) # x$surv will have one column if (!is.null(x$std.err)) std <- as.matrix(x$std.err) # The fun argument only applies to single state survfit objects # First deal with the special case of fun='cumhaz', which is here for # backwards compatability; people should use the cumhaz argument if (!missing(fun) && is.character(fun) && fun=="cumhaz") { cumhaz <- TRUE if (!is.null(x$cumhaz)) { ssurv <- as.matrix(x$cumhaz) if (!is.null(x$std.chaz)) std <- as.matrix(x$std.chaz) } else { ssurv <- as.matrix(-log(x$surv)) if (!is.null(x$std.err)) { if (x$logse) std <- as.matrix(x$std.err) else std <- as.matrix(x$std.err/x$surv) } } } } # set up strata if (is.null(x$strata)) { nstrat <- 1 stemp <- rep(1, length(x$time)) # same length as stime } else { nstrat <- length(x$strata) stemp <- rep(1:nstrat, x$strata) # same length as stime } ncurve <- nstrat * ncol(ssurv) conf.type <- match.arg(conf.type) if (conf.type=="none") conf.int <- FALSE if (conf.int== "none") conf.int <- FALSE if (conf.int=="only") { plot.surv <- FALSE conf.int <- TRUE } else plot.surv <- TRUE if (conf.int) { if (is.null(std)) stop("object does not have standard errors, CI not possible") if (cumhaz) { if (missing(conf.type)) conf.type="plain" temp <- survfit_confint(ssurv, std, logse=FALSE, conf.type, conf.level, ulimit=FALSE) supper <- as.matrix(temp$upper) slower <- as.matrix(temp$lower) } else if (is.null(x$upper)) { if (missing(conf.type) && !is.null(x$conf.type)) conf.type <- x$conf.type temp <- survfit_confint(ssurv, x$std.err, logse= x$logse, conf.type, conf.level, ulimit=FALSE) supper <- as.matrix(temp$upper) slower <- as.matrix(temp$lower) } else { supper <- as.matrix(x$upper) slower <- as.matrix(x$lower) } } else supper <- slower <- NULL if (!inherits(x, "survfitms") && !cumhaz & !missing(fun)) { yzero <- FALSE if (is.character(fun)) { tfun <- switch(tolower(fun), 'log' = function(x) x, 'event'=function(x) 1-x, 'cumhaz'=function(x) -log(x), 'cloglog'=function(x) log(-log(x)), 'pct' = function(x) x*100, 'logpct'= function(x) 100*x, #special case further below 'identity'= function(x) x, 'f' = function(x) 1-x, 's' = function(x) x, 'surv' = function(x) x, stop("Unrecognized function argument") ) if (tolower(fun) %in% c("identity", "s") && !inherits(x, "survfitms") && !cumhaz) yzero <- TRUE } else if (is.function(fun)) tfun <- fun else stop("Invalid 'fun' argument") ssurv <- tfun(ssurv ) if (!is.null(supper)) { supper <- tfun(supper) slower <- tfun(slower) } } if (missing(mark.time) & !missing(mark)) mark.time <- TRUE if (missing(pch) && !missing(mark)) pch <- mark if (length(pch)==1 && is.character(pch)) pch <- strsplit(pch, "")[[1]] # Marks are not placed on confidence bands pch <- rep(pch, length.out=ncurve) mcol <- rep(col, length.out=ncurve) if (is.numeric(mark.time)) mark.time <- sort(mark.time) # The actual number of curves is ncurve*3 if there are confidence bands, # unless conf.times has been given. Colors and line types in the latter # match the curves # If the number of line types is 1 and lty is an integer, then use lty # for the curve and lty+1 for the CI # If the length(lty) <= length(ncurve), use the same color for curve and CI # otherwise assume the user knows what they are about and has given a full # vector of line types. # Colors and line widths work like line types, excluding the +1 rule. if (conf.int & is.null(conf.times)) { if (length(lty)==1 && is.numeric(lty)) lty <- rep(c(lty, lty+1, lty+1), ncurve) else if (length(lty) <= ncurve) lty <- rep(rep(lty, each=3), length.out=(ncurve*3)) else lty <- rep(lty, length.out= ncurve*3) if (length(col) <= ncurve) col <- rep(rep(col, each=3), length.out=3*ncurve) else col <- rep(col, length.out=3*ncurve) if (length(lwd) <= ncurve) lwd <- rep(rep(lwd, each=3), length.out=3*ncurve) else lwd <- rep(lwd, length.out=3*ncurve) } else { col <- rep(col, length.out=ncurve) lty <- rep(lty, length.out=ncurve) lwd <- rep(lwd, length.out=ncurve) } do.clip <- options("plot.survfit") if (!is.null(xx <- do.clip$plotclip)) clip(xx[1], xx[2], xx[3], xx[4]) # Create a step function, removing redundancies that sometimes occur in # curves with lots of censoring. dostep <- function(x,y) { keep <- is.finite(x) & is.finite(y) if (!any(keep)) return() #all points were infinite or NA if (!all(keep)) { # these won't plot anyway, so simplify (CI values are often NA) x <- x[keep] y <- y[keep] } n <- length(x) if (n==1) list(x=x, y=y) else if (n==2) list(x=x[c(1,2,2)], y=y[c(1,1,2)]) else { # replace verbose horizonal sequences like # (1, .2), (1.4, .2), (1.8, .2), (2.3, .2), (2.9, .2), (3, .1) # with (1, .2), (.3, .2),(3, .1). # They are slow, and can smear the looks of the line type. temp <- rle(y)$lengths drops <- 1 + cumsum(temp[-length(temp)]) # points where the curve drops #create a step function if (n %in% drops) { #the last point is a drop xrep <- c(x[1], rep(x[drops], each=2)) yrep <- rep(y[c(1,drops)], c(rep(2, length(drops)), 1)) } else { xrep <- c(x[1], rep(x[drops], each=2), x[n]) yrep <- c(rep(y[c(1,drops)], each=2)) } list(x=xrep, y=yrep) } } drawmark <- function(x, y, mark.time, censor, cex, ...) { if (!is.numeric(mark.time)) { xx <- x[censor>0] yy <- y[censor>0] if (any(censor >1)) { # tied death and censor, put it on the midpoint j <- pmax(1, which(censor>1) -1) i <- censor[censor>0] yy[i>1] <- (yy[i>1] + y[j])/2 } } else { #interpolate xx <- mark.time yy <- approx(x, y, xx, method="constant", f=0)$y } points(xx, yy, cex=cex, ...) } c1 <- 1 # keeps track of the curve number c2 <- 1 # keeps track of the lty, col, etc xend <- yend <- double(ncurve) if (length(conf.offset) ==1) temp.offset <- (1:ncurve - (ncurve+1)/2)* conf.offset* diff(par("usr")[1:2]) else temp.offset <- rep(conf.offset, length=ncurve) * diff(par("usr")[1:2]) temp.cap <- conf.cap * diff(par("usr")[1:2]) for (j in 1:ncol(ssurv)) { for (i in unique(stemp)) { #for each strata who <- which(stemp==i) # if n.censor is missing, then assume any line that does not have an # event would not be present but for censoring, so there must have # been censoring then # otherwise categorize is 0= no censor, 1=censor, 2=censor and death if (is.null(x$n.censor)) censor <- ifelse(x$n.event[who]==0, 1, 0) else censor <- ifelse(x$n.censor[who]==0, 0, 1 + (x$n.event[who] > 0)) xx <- stime[who] yy <- ssurv[who,j] if (plot.surv) { if (type=='s') lines(dostep(xx, yy), lty=lty[c2], col=col[c2], lwd=lwd[c2]) else lines(xx, yy, type=type, lty=lty[c2], col=col[c2], lwd=lwd[c2]) if (is.numeric(mark.time) || mark.time) drawmark(xx, yy, mark.time, censor, pch=pch[c1], col=mcol[c1], cex=cex) } xend[c1] <- max(xx) yend[c1] <- yy[length(yy)] if (conf.int && !is.null(conf.times)) { # add vertical bars at the specified times x2 <- conf.times + temp.offset[c1] templow <- approx(xx, slower[who,j], x2, method='constant', f=1)$y temphigh<- approx(xx, supper[who,j], x2, method='constant', f=1)$y segments(x2, templow, x2, temphigh, lty=lty[c2], col=col[c2], lwd=lwd[c2]) if (conf.cap>0) { segments(x2-temp.cap, templow, x2+temp.cap, templow, lty=lty[c2], col=col[c2], lwd=lwd[c2] ) segments(x2-temp.cap, temphigh, x2+temp.cap, temphigh, lty=lty[c2], col=col[c2], lwd=lwd[c2]) } } c1 <- c1 +1 c2 <- c2 +1 if (conf.int && is.null(conf.times)) { if (type == 's') { lines(dostep(xx, slower[who,j]), lty=lty[c2], col=col[c2],lwd=lwd[c2]) c2 <- c2 +1 lines(dostep(xx, supper[who,j]), lty=lty[c2], col=col[c2], lwd= lwd[c2]) c2 <- c2 + 1 } else { lines(xx, slower[who,j], lty=lty[c2], col=col[c2],lwd=lwd[c2], type=type) c2 <- c2 +1 lines(xx, supper[who,j], lty=lty[c2], col=col[c2], lwd= lwd[c2], type= type) c2 <- c2 + 1 } } } } lastx <- list(x=xend, y=yend) if (!is.null(xx <- do.clip$plotreset)) clip(xx[1], xx[2], xx[3], xx[4]) invisible(lastx) } points.survfit <- function(x, fun, censor=FALSE, col=1, pch, noplot="(s0)", cumhaz=FALSE, ...) { conf.int <- FALSE # never draw these with 'points' x <- survfit0(x, x$start.time) # The default for plot and lines is to add confidence limits # if there is only one curve if (missing(conf.int) && missing(conf.times)) conf.int <- (!is.null(x$std.err) && prod(dim(x) ==1)) if (missing(conf.times)) conf.times <- NULL else { if (!is.numeric(conf.times)) stop('conf.times must be numeric') if (missing(conf.int)) conf.int <- TRUE } if (!missing(conf.int)) { if (is.numeric(conf.int)) { conf.level <- conf.int if (conf.level<0 || conf.level > 1) stop("invalid value for conf.int") if (conf.level ==0) conf.int <- FALSE else if (conf.level != x$conf.int) { x$upper <- x$lower <- NULL # force recomputation } conf.int <- TRUE } else conf.level = 0.95 } # Organize data into stime, ssurv, supper, slower stime <- x$time std <- NULL yzero <- FALSE # a marker that we have an "ordinary survival curve" with min 0 smat <- function(x) { # the rest of the routine is simpler if everything is a matrix dd <- dim(x) if (is.null(dd)) as.matrix(x) else if (length(dd) ==2) x else matrix(x, nrow=dd[1]) } if (cumhaz) { # plot the cumulative hazard instead if (is.null(x$cumhaz)) stop("survfit object does not contain a cumulative hazard") if (is.numeric(cumhaz)) { dd <- dim(x$cumhaz) if (is.null(dd)) nhazard <- 1 else nhazard <- prod(dd[-1]) if (cumhaz != floor(cumhaz)) stop("cumhaz argument is not integer") if (any(cumhaz < 1 | cumhaz > nhazard)) stop("subscript out of range") ssurv <- smat(x$cumhaz)[,cumhaz, drop=FALSE] if (!is.null(x$std.chaz)) std <- smat(x$std.chaz)[,cumhaz, drop=FALSE] } else if (is.logical(cumhaz)) { ssurv <- smat(x$cumhaz) if (!is.null(x$std.chaz)) std <- smat(x$std.chaz) } else stop("invalid cumhaz argument") } else if (inherits(x, "survfitms")) { i <- (x$states != noplot) if (all(i) || !any(i)) { # the !any is a failsafe, in case none are kept then ignore noplot ssurv <- smat(x$pstate) if (!is.null(x$std.err)) std <- smat(x$std.err) } else { i <- which(i) # the states to keep # we have to be careful about subscripting if (length(dim(x$pstate)) ==3) { ssurv <- smat(x$pstate[,,i, drop=FALSE]) if (!is.null(x$std.err)) std <- smat(x$std.err[,,i, drop=FALSE]) } else { ssurv <- x$pstate[,i, drop=FALSE] if (!is.null(x$std.err)) std <- x$std.err[,i, drop=FALSE] } } } else { yzero <- TRUE ssurv <- as.matrix(x$surv) # x$surv will have one column if (!is.null(x$std.err)) std <- as.matrix(x$std.err) # The fun argument only applies to single state survfit objects # First deal with the special case of fun='cumhaz', which is here for # backwards compatability; people should use the cumhaz argument if (!missing(fun) && is.character(fun) && fun=="cumhaz") { cumhaz <- TRUE if (!is.null(x$cumhaz)) { ssurv <- as.matrix(x$cumhaz) if (!is.null(x$std.chaz)) std <- as.matrix(x$std.chaz) } else { ssurv <- as.matrix(-log(x$surv)) if (!is.null(x$std.err)) { if (x$logse) std <- as.matrix(x$std.err) else std <- as.matrix(x$std.err/x$surv) } } } } # set up strata if (is.null(x$strata)) { nstrat <- 1 stemp <- rep(1, length(x$time)) # same length as stime } else { nstrat <- length(x$strata) stemp <- rep(1:nstrat, x$strata) # same length as stime } ncurve <- nstrat * ncol(ssurv) if (!inherits(x, "survfitms") && !cumhaz & !missing(fun)) { yzero <- FALSE if (is.character(fun)) { tfun <- switch(tolower(fun), 'log' = function(x) x, 'event'=function(x) 1-x, 'cumhaz'=function(x) -log(x), 'cloglog'=function(x) log(-log(x)), 'pct' = function(x) x*100, 'logpct'= function(x) 100*x, #special case further below 'identity'= function(x) x, 'f' = function(x) 1-x, 's' = function(x) x, 'surv' = function(x) x, stop("Unrecognized function argument") ) if (tolower(fun) %in% c("identity", "s") && !inherits(x, "survfitms") && !cumhaz) yzero <- TRUE } else if (is.function(fun)) tfun <- fun else stop("Invalid 'fun' argument") ssurv <- tfun(ssurv ) if (!is.null(supper)) { supper <- tfun(supper) slower <- tfun(slower) } } do.clip <- options("plot.survfit") if (!is.null(xx <- do.clip$plotclip)) clip(xx[1], xx[2], xx[3], xx[4]) if (ncurve==1 || (length(col)==1 && missing(pch))) { if (censor) points(stime, ssurv, ...) else points(stime[x$n.event>0], ssurv[x$n.event>0], ...) } else { c2 <- 1 #cycles through the colors and characters col <- rep(col, length=ncurve) if (!missing(pch)) { if (length(pch)==1) pch2 <- rep(strsplit(pch, '')[[1]], length=ncurve) else pch2 <- rep(pch, length=ncurve) } for (j in 1:ncol(ssurv)) { for (i in unique(stemp)) { if (censor) who <- which(stemp==i) else who <- which(stemp==i & x$n.event >0) if (missing(pch)) points(stime[who], ssurv[who,j], col=col[c2], ...) else points(stime[who], ssurv[who,j], col=col[c2], pch=pch2[c2], ...) c2 <- c2+1 } } } if (!is.null(xx <- do.clip$plotreset)) clip(xx[1], xx[2], xx[3], xx[4]) } survival/R/coxpenal.df.R0000644000176200001440000000610413537676563014700 0ustar liggesusers# $Id: coxpenal.df.S 11166 2008-11-24 22:10:34Z therneau $ # # degrees of freedom computation, based on Bob Gray's paper # # hmat = right hand slice of cholesky of H # hinv = right hand slice of cholesky of H-inverse # fdiag= diagonal of D-inverse # assign.list: terms information # ptype= 1 or 3 if a sparse term exists, 2 or 3 if a non-sparse exists # nvar = # of non-sparse terms # pen1 = the penalty matrix (diagonal thereof) for the sparse terms # pen2 = the penalty matrix for the non-sparse terms # sparse = indicates which term is the sparse one coxpenal.df <- function(hmat, hinv, fdiag, assign.list, ptype, nvar, pen1, pen2, sparse) { if (ptype ==1 & nvar==0) { #only sparse terms hdiag <- 1/fdiag list(fvar2=(hdiag-pen1)*fdiag^2, df=sum((hdiag-pen1)*fdiag), fvar = fdiag, trH=sum(fdiag)) } else if (ptype==2) { # only dense ones hmat.full <- t(hmat) %*% (ifelse(fdiag==0, 0,1/fdiag)* hmat) hinv.full <- hinv %*% (fdiag* t(hinv)) if (length(pen2)==length(hmat.full)) imat <- hmat.full - pen2 else imat <- hmat.full - diag(pen2) var <- hinv.full %*% imat %*% hinv.full if (length(assign.list)==1) list(var2=var, df=sum(imat * hinv.full), trH=sum(diag(hinv.full)), var=hinv.full) else { df <- trH <- NULL d2 <- diag(hinv.full) for (i in assign.list) { temp <- coxph.wtest(hinv.full[i,i], var[i,i])$solve if (is.matrix(temp)) df <- c(df, sum(diag(temp))) else df <- c(df, sum(temp)) trH<- c(trH, sum(d2[i])) } list(var2=var, df=df, trH=trH, var = hinv.full) } } else { # sparse terms + other vars nf <- length(fdiag) - nvar nr1 <- 1:nf nr2 <- (nf+1):(nf+nvar) d1 <- fdiag[nr1] d2 <- fdiag[nr2] temp <- t(hinv[nr1,]) temp2<- t(hinv[nr2,,drop=FALSE]) A.diag <- d1 + c(rep(1,nvar) %*% (temp^2*d2)) B <- hinv[nr1,] %*% (d2 * temp2) C <- hinv[nr2,] %*% (d2 * temp2) #see notation in paper var2 <- C - t(B) %*% (pen1 * B) if (ptype==3) { #additional work when we have penalties on both the sparse term # and on non-sparse terms hmat.22 <- t(hmat) %*%(ifelse(fdiag==0, 0,1/fdiag)* hmat) temp <- C - coxph.wtest(hmat.22, diag(nvar))$solve if (nvar==1) { var2 <- var2 - C*pen2*C # C will be 1 by 1 temp2 <- c(temp*pen2) } else if (length(pen2) == nvar) { var2 <- var2 - C %*% (pen2 * C) #diagonal penalty temp2 <- sum(diag(temp) * pen2) } else { var2 <- var2 - C %*% matrix(pen2,nvar) %*% C temp2 <- sum(diag(temp * pen2)) } } else temp2 <- 0 #temp2 contains trace[B'A^{-1}B P2], this line: P2=0 df <- trH <- NULL cdiag <- diag(C) for (i in 1:length(assign.list)) { if (sparse==i){ df <- c(df, nf - (sum(A.diag * pen1) + temp2)) trH <- c(trH, sum(A.diag)) } else { j <- assign.list[[i]] temp <- coxph.wtest(C[j,j], var2[j,j])$solve if (is.matrix(temp)) df <- c(df, sum(diag(temp))) else df <- c(df, sum(temp)) trH <- c(trH, sum(cdiag[j])) } } list(var=C, df=df, trH=trH, fvar=A.diag, var2=var2) } } survival/R/coxexact.fit.R0000644000176200001440000001171213537676563015077 0ustar liggesusers# This routine fits right censored data when the method is # "exact". The most common use for this option is matched # case-control data. coxexact.fit <- function(x, y, strata, offset, init, control, weights, method, rownames, resid=TRUE) { if (!is.matrix(x)) stop("Invalid formula for cox fitting function") if (!is.null(weights) && any(weights!=1)) stop("Case weights are not supported for the exact method") n <- nrow(x) nvar <- ncol(x) # The risk set addition in the C-code, which is the critically slow # part of the calculations, expects to have the data in sorted order: # (large to small times) within strata if (length(strata)==0) { sorted <- order(-y[,1]) newstrat <- as.integer(rep(0,n)) } else { sorted <- order(strata, -y[,1]) strata <- (as.numeric(strata))[sorted] newstrat <- as.integer(c(1, 1*(diff(strata)!=0))) } y <- y[sorted,] if (is.null(offset)) offset <- rep(0.,n) else offset <- offset[sorted] if (nvar==0) { # A special case: Null model. Trick the C code, which requires # at least one variable, by creating one and then doing 0 # iterations at beta=0 x <- matrix(1:n, ncol=1) init <- NULL maxiter <- 0 nullmodel <- TRUE nvar <- 1 } else { maxiter <- control$iter.max nullmodel <- FALSE } if (!is.null(init)) { if (length(init) != nvar) stop("Wrong length for inital values") } else init <- rep(0.,nvar) # Prescale the data set to improve numerical accuracy. # We will undo the scaling before finishing up. newx <- scale(x[sorted,]) # newx <- scale(x, scale=NULL) #debug rescale <- attr(newx, "scaled:scale") means <- attr(newx, "scaled:center") cfit <- .Call(Ccoxexact, as.integer(maxiter), as.double(y), # interger data? Just in case. newx, as.double(offset), as.integer(newstrat), as.double(init*rescale), as.double(control$eps), as.double(control$toler.chol) ) if (nullmodel) { score <- exp(offset[sorted]) cxres <- .C(Ccoxmart2, as.integer(n), as.double(y[,1]), as.integer(y[,2]), newstrat, score, rep(1.0, n), #weights resid=double(n)) resid <- double(n) resid[sorted] <- cxres$resid names(resid) <- rownames return( list(loglik = cfit$loglik[1], linear.predictors = offset, residuals = resid, method = method, class = c("coxph.null", "coxph"))) } loglik <- cfit$loglik[1:2] #these are packed into one vector sctest <- cfit$loglik[3] iter <- cfit$loglik[5] flag <- cfit$loglik[4] var <- matrix(cfit$imat,nvar,nvar) coef <- cfit$coef if (flag < nvar) which.sing <- diag(var)==0 else which.sing <- rep(FALSE,nvar) infs <- abs(cfit$u %*% var) if (control$iter.max >1) { if (flag == 1000) warning("Ran out of iterations and did not converge") else { infs <- ((infs > control$eps) & infs > control$toler.inf*abs(coef)) if (any(infs)) warning(paste("Loglik converged before variable ", paste((1:nvar)[infs],collapse=","), "; beta may be infinite. ")) } } names(coef) <- dimnames(x)[[2]] lp <- newx %*% coef + offset score <- as.double(exp(lp)) if (resid) { # Compute the residuals cxres <- .C(Ccoxmart2, as.integer(n), as.double(y[,1]), as.integer(y[,2]), newstrat, score, rep(1.0, n), #weights resid=double(n)) resid <- double(n) resid[sorted] <- cxres$resid names(resid) <- rownames coef[which.sing] <- NA lp.unsort <- double(n) lp.unsort[sorted] <- lp scmat <- diag(1/rescale, nvar,nvar) rval <- list(coefficients = coef/rescale, var = scmat %*% var %*% scmat, loglik = loglik, score = sctest, iter = iter, linear.predictors = lp.unsort, residuals = resid, means = means, method = method, class = 'coxph') } else { rval <- list(coefficients = coef/rescale, var = scmat %*% var %*% scmat, loglik = loglik, score = sctest, iter = iter, linear.predictors = lp.unsort, means = means, method = method, class = 'coxph') } rval } survival/R/agexact.fit.R0000644000176200001440000000664013537676563014701 0ustar liggesusersagexact.fit <- function(x, y, strata, offset, init, control, weights, method, rownames, resid=TRUE) { if (!is.matrix(x)) stop("Invalid formula for cox fitting function") if (!is.null(weights) && any(weights!=1)) stop("Case weights are not supported for the exact method") n <- nrow(x) nvar <- ncol(x) if (ncol(y)==3) { start <- y[,1] stopp <- y[,2] event <- y[,3] } else { start <- rep(0,n) stopp <- y[,1] event <- y[,2] } # Sort the data (or rather, get a list of sorted indices) if (length(strata)==0) { sorted <- order(stopp, -event) newstrat <- as.integer(rep(0,n)) } else { sorted <- order(strata, stopp, -event) strata <- (as.numeric(strata))[sorted] newstrat <- as.integer(c(1*(diff(strata)!=0), 1)) } if (is.null(offset)) offset <- rep(0,n) sstart <- as.double(start[sorted]) sstop <- as.double(stopp[sorted]) sstat <- as.integer(event[sorted]) if (is.null(nvar)) { # A special case: Null model. Not worth coding up stop("Cannot handle a null model + exact calculation (yet)") } if (!is.null(init)) { if (length(init) != nvar) stop("Wrong length for inital values") } else init <- rep(0,nvar) agfit <- .C(Cagexact, iter= as.integer(control$iter.max), as.integer(n), as.integer(nvar), sstart, sstop, sstat, x= x[sorted,], as.double(offset[sorted]), newstrat, means = double(nvar), coef= as.double(init), u = double(nvar), imat= double(nvar*nvar), loglik=double(2), flag=integer(1), double(2*nvar*nvar +nvar*4 + n), integer(2*n), as.double(control$eps), as.double(control$toler.chol), sctest=double(1)) var <- matrix(agfit$imat,nvar,nvar) coef <- agfit$coef if (agfit$flag < nvar) which.sing <- diag(var)==0 else which.sing <- rep(FALSE,nvar) infs <- abs(agfit$u %*% var) if (control$iter.max >1) { if (agfit$flag == 1000) warning("Ran out of iterations and did not converge") else { infs <- ((infs > control$eps) & infs > control$toler.inf*abs(coef)) if (any(infs)) warning(paste("Loglik converged before variable ", paste((1:nvar)[infs],collapse=","), "; beta may be infinite. ")) } } names(coef) <- dimnames(x)[[2]] lp <- x %*% coef + offset - sum(coef *agfit$means) score <- as.double(exp(lp[sorted])) coef[which.sing] <- NA if (resid) { agres <- .C(Cagmart, as.integer(n), as.integer(0), sstart, sstop, sstat, score, rep(1.0, n), newstrat, resid=double(n)) resid <- double(n) resid[sorted] <- agres$resid names(resid) <- rownames rval <- list(coefficients = coef, var = var, loglik = agfit$loglik, score = agfit$sctest, iter = agfit$iter, linear.predictors = lp, residuals = resid, means = agfit$means, method= 'coxph') } else { rval <- list(coefficients = coef, var = var, loglik = agfit$loglik, score = agfit$sctest, iter = agfit$iter, linear.predictors = lp, means = agfit$means, method= 'coxph') } rval } survival/R/frailty.controlgauss.R0000644000176200001440000000556313537676563016703 0ustar liggesusers# $Id: frailty.controlgauss.S 11166 2008-11-24 22:10:34Z therneau $ # # The control function for REML on a gaussian # frailty.controlgauss <- function(opt, iter, old, fcoef, trH, loglik){ if (iter==0) { # initial call # Because of how the iteration works, 0 is not a useful trial value if (!is.null(opt$theta)) theta <- opt$theta #fixed theta case else { if (is.null(opt$init)) theta <- 1 else theta <- opt$init[1] } list(theta=theta) } else { if (is.null(opt$trace)) trace <-FALSE else trace <- opt$trace nfrail <- length(fcoef) fsum <- sum(fcoef^2) theta <- old$theta resid <- fsum/(nfrail - trH/theta) - theta # save history of the iteration, and get the next theta if (iter==1) { history <- c(theta=theta, resid=resid, fsum=fsum, trace=trH) if (is.null(opt$init )) { if (resid>0) theta <- theta*3 else theta <- theta/3 } else theta <- opt$init[2] list(theta=theta, done=FALSE, history=history) } else { history <- rbind(old$history, as.vector(c(theta, resid, fsum, trH))) if (iter ==2) { if (all(history[,2] > 0)) theta <- history[2,1]*2 else if (all(history[,2] <0)) theta <- history[2,1]/2 else theta <- mean(history[1:2,1]) if (trace) { print(history) cat(" new theta=", theta, "\n\n") } list(theta=theta, done=FALSE, history=history) } else { done <- (abs(history[iter,2]) < opt$eps) ord <- order(history[,1]) tempy <- history[ord,2] #x & y from left to right tempx <- history[ord,1] # make sure we have one positve and one negative y value # y must be positive near 0, and negative for large x if (all(tempy>0)) newtheta <- 2*max(tempx) else if (all(tempy<0)) newtheta <- .5 * min(tempx) else{ #find the latest point, and one on each side of 0 b1 <- (1:iter)[ord==iter] if (b1==1) b1 <-2 else if (b1==iter) b1 <- iter-1 # Brent's formula, straight from Numerical Recipies # Why, you may ask, don't we use the uniroot() function # which is built into S, and implements Brent's method? # Because all we want is the next guess for x. The interal # loop of coxph is calling us, not the other way around. R <- tempy[b1]/ tempy[b1+1] S <- tempy[b1]/ tempy[b1-1] U <- R/S P <- S* (U*(R-U)*(tempx[b1+1]-tempx[b1]) - (1-R)*(tempx[b1]-tempx[b1-1])) Q <- (U-1)*(R-1)*(S-1) newtheta <- tempx[b1] + P/Q # if the new guess is outside the brackets, do a binomial # search step if (newtheta > tempx[b1+1]) newtheta <- mean(tempx[b1+0:1]) if( newtheta < tempx[b1-1]) newtheta <- mean(tempx[b1-0:1]) } if (trace) { print(history) cat(" new theta=", format(newtheta), "\n\n") } list(theta=newtheta, done=done, history=history) } } } } survival/R/residuals.survreg.penal.R0000644000176200001440000000052413537676563017264 0ustar liggesusers# This routine just stops disastrous arithmetic for models with sparse # terms. A placeholder until the proper sparse terms actions are inserted. residuals.survreg.penal <- function(object, ...) { pterms <- object$pterms if (any(pterms==2)) stop("Residualss not available for sparse models") NextMethod('residuals') } survival/R/anova.survreglist.R0000644000176200001440000000406713537676563016201 0ustar liggesusersanova.survreglist <- function(object, ..., test = c("Chisq", "none")) { diff.term <- function(term.labels, i) { t1 <- term.labels[[1]] t2 <- term.labels[[2]] m1 <- match(t1, t2, FALSE) m2 <- match(t2, t1, FALSE) if(all(m1)) { if(all(m2)) return("=") else return(paste(c("", t2[ - m1]), collapse = "+")) } else { if(all(m2)) return(paste(c("", t1[ - m2]), collapse = "-")) else return(paste(i - 1, i, sep = " vs. ")) } } test <- match.arg(test) rt <- length(object) if(rt == 1) { object <- object[[1]] UseMethod("anova") } forms <- sapply(object, function(x) as.character(formula(x))) subs <- as.logical(match(forms[2, ], forms[2, 1], FALSE)) if(!all(subs)) warning("Some fit objects deleted because response differs from the first model") if(sum(subs) == 1) stop("The first model has a different response from the rest") forms <- forms[, subs] object <- object[subs] ## older survival objects might have df.resid: recent ones have df.residual dfres <- sapply(object, "[[", "df.resid", exact=FALSE) m2loglik <- -2 * sapply(object, "[[", "loglik")[2, ] tl <- lapply(object, labels) rt <- length(m2loglik) effects <- character(rt) for(i in 2:rt) effects[i] <- diff.term(tl[c(i - 1, i)], i) dm2loglik <- - diff(m2loglik) ddf <- - diff(dfres) heading <- c("Analysis of Deviance Table", paste("\nResponse: ", forms[2, 1], "\n", sep = "")) aod <- data.frame(Terms = forms[3, ], "Resid. Df" = dfres, "-2*LL" = m2loglik, Test = effects, Df = c(NA, ddf), Deviance = c(NA, dm2loglik), check.names = FALSE) aod<-structure(aod,heading=heading,class=c("anova","data.frame")) if(test != "none") { n <- length(object[[1]]$residuals) o <- order(dfres) ## R uses scale argument even for "Chisq" if (test=="Chisq") scale<-1 else scale<-sum(object$residuals^2)/dfres[o[1]] stat.anova(aod, test, scale, dfres[o[1]], n) } else aod } survival/R/print.summary.coxph.penal.R0000644000176200001440000000507513537676563017553 0ustar liggesusersprint.summary.coxph.penal <- function(x, digits = max(options()$digits - 3, 3), signif.stars = getOption("show.signif.stars"), ...) { if (!is.null(x$call)) { cat("Call:\n") dput(x$call) cat("\n") } if (!is.null(x$fail)) { cat(" Coxreg failed.", x$fail, "\n") return() } savedig <- options(digits = digits) on.exit(options(savedig)) omit <- x$na.action cat(" n=", x$n) if (!is.null(x$nevent)) cat(", number of events=", x$nevent, "\n") else cat("\n") if (length(omit)) cat(" (", naprint(omit), ")\n\n", sep="") else cat("\n") # Format out the NA in the coef matrix print1 <- x$coefficients temp <- cbind(format(print1[,1]), format(print1[,2]), format(print1[,3]), format(round(print1[,4], 2)), format(round(print1[,5], 2)), format(signif(print1[,6], 2))) temp <- ifelse(is.na(print1), "", temp) dimnames(temp) <- dimnames(print1) print(temp, quote=FALSE) if(length(x$conf.int) >0 ) { cat("\n") print(x$conf.int) } logtest <- -2 * (x$loglik[1] - x$loglik[2]) sctest <- x$score cat("\nIterations:", x$iter[1], "outer,", x$iter[2], "Newton-Raphson\n") if (length(x$print2)) { for (i in 1:length(x$print2)) cat(" ", x$print2[i], "\n") } if (is.null(x$df)) df <- sum(!is.na(coef)) else df <- round(sum(x$df),2) cat("Degrees of freedom for terms=", format(round(x$df,1)), "\n") if (!is.null(x$concordance)) { cat("Concordance=", format(round(x$concordance[1],3)), " (se =", format(round(x$concordance[2], 3)),")\n") } pdig <- max(1, getOption("digits")-4) # default it too high IMO cat("Likelihood ratio test= ", format(round(logtest, 2)), " on ", df, " df,", " p=", format.pval(pchisq(logtest, df, lower.tail=FALSE), digits=pdig), "\n", sep = "") if (!is.null(x$wald.test)) cat("Wald test = ", format(round(x$wald.test, 2)), " on ", df, " df, p=", format.pval(pchisq(x$wald.test, df, lower.tail=FALSE), digits=pdig), sep = "") if (!is.null(x$score)) cat("\nScore (logrank) test = ", format(round(sctest, 2)), " on ", df, " df,", " p=", format.pval(pchisq(sctest, df, lower.tail=FALSE), digits=pdig), sep ="") if (is.null(x$rscore)) cat("\n") else cat(", Robust = ", format(round(x$rscore, 2)), " p=", format.pval(pchisq(x$rscore, df, lower.tail=FALSE), digits=pdig), "\n", sep="") invisible() } survival/R/pyears.R0000644000176200001440000003375113570772310013772 0ustar liggesusers# Automatically generated from the noweb directory pyears <- function(formula, data, weights, subset, na.action, rmap, ratetable, scale=365.25, expect=c('event', 'pyears'), model=FALSE, x=FALSE, y=FALSE, data.frame=FALSE) { expect <- match.arg(expect) Call <- match.call() # create a call to model.frame() that contains the formula (required) # and any other of the relevant optional arguments # then evaluate it in the proper frame indx <- match(c("formula", "data", "weights", "subset", "na.action"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") tform <- Call[c(1,indx)] # only keep the arguments we wanted tform[[1L]] <- quote(stats::model.frame) # change the function called Terms <- if(missing(data)) terms(formula, 'ratetable') else terms(formula, 'ratetable',data=data) if (any(attr(Terms, 'order') >1)) stop("Pyears cannot have interaction terms") rate <- attr(Terms, "specials")$ratetable if (length(rate) >0 || !missing(rmap) || !missing(ratetable)) { has.ratetable <- TRUE if(length(rate) > 1) stop("Can have only 1 ratetable() call in a formula") if (missing(ratetable)) stop("No rate table specified") if(length(rate) == 1) { if (!missing(rmap)) stop("The ratetable() call in a formula is depreciated") stemp <- untangle.specials(Terms, 'ratetable') rcall <- as.call(parse(text=stemp$var)[[1]]) # as a call object rcall[[1]] <- as.name('list') # make it a call to list(.. Terms <- Terms[-stemp$terms] # remove from the formula } else if (!missing(rmap)) { rcall <- substitute(rmap) if (!is.call(rcall) || rcall[[1]] != as.name('list')) stop ("Invalid rcall argument") } else rcall <- NULL # A ratetable, but no rcall argument # Check that there are no illegal names in rcall, then expand it # to include all the names in the ratetable if (is.ratetable(ratetable)) { varlist <- names(dimnames(ratetable)) if (is.null(varlist)) varlist <- attr(ratetable, "dimid") # older style } else if(inherits(ratetable, "coxph") && !inherits(ratetable, "coxphms")) { ## Remove "log" and such things, to get just the list of # variable names varlist <- all.vars(delete.response(ratetable$terms)) } else stop("Invalid rate table") temp <- match(names(rcall)[-1], varlist) # 2,3,... are the argument names if (any(is.na(temp))) stop("Variable not found in the ratetable:", (names(rcall))[is.na(temp)]) if (any(!(varlist %in% names(rcall)))) { to.add <- varlist[!(varlist %in% names(rcall))] temp1 <- paste(text=paste(to.add, to.add, sep='='), collapse=',') if (is.null(rcall)) rcall <- parse(text=paste("list(", temp1, ")"))[[1]] else { temp2 <- deparse(rcall) rcall <- parse(text=paste("c(", temp2, ",list(", temp1, "))"))[[1]] } } # Create a temporary formula, used only in the call to model.frame newvar <- all.vars(rcall) if (length(newvar) > 0) { temp <- paste(paste(deparse(Terms), collapse=""), paste(newvar, collapse='+'), sep='+') tform$formula <- as.formula(temp, environment(Terms)) } } else has.ratetable <- FALSE mf <- eval(tform, parent.frame()) Y <- model.extract(mf, 'response') if (is.null(Y)) stop ("Follow-up time must appear in the formula") if (!is.Surv(Y)){ if (any(Y <0)) stop ("Negative follow up time") Y <- as.matrix(Y) if (ncol(Y) >2) stop("Y has too many columns") } else { stype <- attr(Y, 'type') if (stype == 'right') { if (any(Y[,1] <0)) stop("Negative survival time") nzero <- sum(Y[,1]==0 & Y[,2] ==1) if (nzero >0) warning(paste(nzero, "observations with an event and 0 follow-up time,", "any rate calculations are statistically questionable")) } else if (stype != 'counting') stop("Only right-censored and counting process survival types are supported") } n <- nrow(Y) if (is.null(n) || n==0) stop("Data set has 0 observations") weights <- model.extract(mf, 'weights') if (is.null(weights)) weights <- rep(1.0, n) # rdata contains the variables matching the ratetable if (has.ratetable) { rdata <- data.frame(eval(rcall, mf), stringsAsFactors=TRUE) if (is.ratetable(ratetable)) { israte <- TRUE rtemp <- match.ratetable(rdata, ratetable) R <- rtemp$R } else if (inherits(ratetable, 'coxph') && !inherits(ratetable, "coxphms")) { israte <- FALSE Terms <- ratetable$terms if (!is.null(attr(Terms, 'offset'))) stop("Cannot deal with models that contain an offset") strats <- attr(Terms, "specials")$strata if (length(strats)) stop("pyears cannot handle stratified Cox models") if (any(names(mf[,rate]) != attr(ratetable$terms, 'term.labels'))) stop("Unable to match new data to old formula") R <- model.matrix.coxph(ratetable, data=rdata) } else stop("Invalid ratetable") } ovars <- attr(Terms, 'term.labels') if (length(ovars)==0) { # no categories! X <- rep(1,n) ofac <- odim <- odims <- ocut <- 1 } else { odim <- length(ovars) ocut <- NULL odims <- ofac <- double(odim) X <- matrix(0, n, odim) outdname <- vector("list", odim) names(outdname) <- attr(Terms, 'term.labels') for (i in 1:odim) { temp <- mf[[ovars[i]]] if (inherits(temp, 'tcut')) { X[,i] <- temp temp2 <- attr(temp, 'cutpoints') odims[i] <- length(temp2) -1 ocut <- c(ocut, temp2) ofac[i] <- 0 outdname[[i]] <- attr(temp, 'labels') } else { temp2 <- as.factor(temp) X[,i] <- temp2 temp3 <- levels(temp2) odims[i] <- length(temp3) ofac[i] <- 1 outdname[[i]] <- temp3 } } } ocut <-c(ocut,0) #just in case it were of length 0 osize <- prod(odims) if (has.ratetable) { #include expected atts <- attributes(ratetable) datecheck <- function(x) inherits(x, c("Date", "POSIXt", "date", "chron")) cuts <- lapply(attr(ratetable, "cutpoints"), function(x) if (!is.null(x) & datecheck(x)) ratetableDate(x) else x) if (is.null(atts$type)) { #old stlye table rfac <- atts$factor us.special <- (rfac >1) } else { rfac <- 1*(atts$type ==1) us.special <- (atts$type==4) } if (any(us.special)) { #special handling for US pop tables if (sum(us.special) > 1) stop("more than one type=4 in a rate table") # Someone born in June of 1945, say, gets the 1945 US rate until their # next birthday. But the underlying logic of the code would change # them to the 1946 rate on 1/1/1946, which is the cutpoint in the # rate table. We fudge by faking their enrollment date back to their # birth date. # # The cutpoint for year has been converted to days since 1/1/1970 by # the ratetableDate function. (Date objects in R didn't exist when # rate tables were conceived.) if (is.null(atts$dimid)) dimid <- names(atts$dimnames) else dimid <- atts$dimid cols <- match(c("age", "year"), dimid) if (any(is.na(cols))) stop("ratetable does not have expected shape") # The format command works for Dates, use it to get an offset bdate <- as.Date("1970-01-01") + (R[,cols[2]] - R[,cols[1]]) byear <- format(bdate, "%Y") offset <- as.numeric(bdate - as.Date(paste0(byear, "-01-01"))) R[,cols[2]] <- R[,cols[2]] - offset # Doctor up "cutpoints" - only needed for (very) old style rate tables # for which the C code does interpolation on the fly if (any(rfac >1)) { temp <- which(us.special) nyear <- length(cuts[[temp]]) nint <- rfac[temp] #intervals to interpolate over cuts[[temp]] <- round(approx(nint*(1:nyear), cuts[[temp]], nint:(nint*nyear))$y - .0001) } } docount <- is.Surv(Y) temp <- .C(Cpyears1, as.integer(n), as.integer(ncol(Y)), as.integer(is.Surv(Y)), as.double(Y), as.double(weights), as.integer(length(atts$dim)), as.integer(rfac), as.integer(atts$dim), as.double(unlist(cuts)), as.double(ratetable), as.double(R), as.integer(odim), as.integer(ofac), as.integer(odims), as.double(ocut), as.integer(expect=='event'), as.double(X), pyears=double(osize), pn =double(osize), pcount=double(if(docount) osize else 1), pexpect=double(osize), offtable=double(1))[18:22] } else { #no expected docount <- as.integer(ncol(Y) >1) temp <- .C(Cpyears2, as.integer(n), as.integer(ncol(Y)), as.integer(docount), as.double(Y), as.double(weights), as.integer(odim), as.integer(ofac), as.integer(odims), as.double(ocut), as.double(X), pyears=double(osize), pn =double(osize), pcount=double(if (docount) osize else 1), offtable=double(1)) [11:14] } has.tcut <- any(sapply(mf, function(x) inherits(x, 'tcut'))) if (data.frame) { # Create a data frame as the output, rather than a set of # rate tables if (length(ovars) ==0) { # no variables on the right hand side keep <- TRUE df <- data.frame(pyears= temp$pyears/scale, n = temp$n) } else { keep <- (temp$pyears >0) # what rows to keep in the output # grap prototype rows from the model frame, this preserves class # (unless it is a tcut variable, then we know what to do) tdata <- lapply(1:length(ovars), function(i) { temp <- mf[[ovars[i]]] if (inherits(temp, "tcut")) factor(outdname[[i]]) else temp[match(outdname[[i]], temp)] }) tdata$stringsAsFactors <- FALSE # argument for expand.grid df <- do.call("expand.grid", tdata)[keep,,drop=FALSE] names(df) <- ovars df$pyears <- temp$pyears[keep]/scale df$n <- temp$pn[keep] } row.names(df) <- NULL # toss useless 'creation history' if (has.ratetable) df$expected <- temp$pexpect[keep] if (expect=='pyears') df$expected <- df$expected/scale if (docount) df$event <- temp$pcount[keep] # if any of the predictors were factors, make them factors in the output for (i in 1:length(ovars)){ if (is.factor( mf[[ovars[i]]])) df[[ovars[i]]] <- factor(df[[ovars[i]]], levels( mf[[ovars[i]]])) } out <- list(call=Call, data= df, offtable=temp$offtable/scale, tcut=has.tcut) if (has.ratetable && !is.null(rtemp$summ)) out$summary <- rtemp$summ } else if (prod(odims) ==1) { #don't make it an array out <- list(call=Call, pyears=temp$pyears/scale, n=temp$pn, offtable=temp$offtable/scale, tcut = has.tcut) if (has.ratetable) { out$expected <- temp$pexpect if (expect=='pyears') out$expected <- out$expected/scale if (!is.null(rtemp$summ)) out$summary <- rtemp$summ } if (docount) out$event <- temp$pcount } else { out <- list(call = Call, pyears= array(temp$pyears/scale, dim=odims, dimnames=outdname), n = array(temp$pn, dim=odims, dimnames=outdname), offtable = temp$offtable/scale, tcut=has.tcut) if (has.ratetable) { out$expected <- array(temp$pexpect, dim=odims, dimnames=outdname) if (expect=='pyears') out$expected <- out$expected/scale if (!is.null(rtemp$summ)) out$summary <- rtemp$summ } if (docount) out$event <- array(temp$pcount, dim=odims, dimnames=outdname) } out$observations <- nrow(mf) out$terms <- Terms na.action <- attr(mf, "na.action") if (length(na.action)) out$na.action <- na.action if (model) out$model <- mf else { if (x) out$x <- X if (y) out$y <- Y } class(out) <- 'pyears' out } survival/R/plot.aareg.R0000644000176200001440000000453713537676563014543 0ustar liggesusers# $Id: plot.aareg.S 11166 2008-11-24 22:10:34Z therneau $ plot.aareg <- function(x, se=TRUE, maxtime, type='s', ...) { if (!inherits(x, 'aareg')) stop ("Must be an aareg object") if (missing(maxtime)) keep <- 1:length(x$time) else keep <- 1:sum(x$time <= maxtime) yylab <- names(x$test.statistic) if (is.matrix(x$coefficient) && ncol(x$coefficient)>1) { yy <- apply(x$coefficient[keep,], 2,cumsum) yy <- rbind(0,yy) # make the plot start at 0,0 if (se) { if (!is.null(x$dfbeta)) { # There was a cluster term, so use the robust variance # dfbeta will be of dimension (n, nvar, n-unique-times) # The first variance increment is apply(dfbeta[,,1]^2,2,sum) # second is apply(dfbeta[,,2]^2,2,sum) # ... , apply(dfbeta[,,ndeath]..... # By being sneaky, it can be done quickly dd <- dim(x$dfbeta) keep2 <- 1:length(unique(x$time[keep])) temp <- matrix(x$dfbeta[,,keep2], nrow=dd[1]) se.increment <- matrix(apply(temp^2, 2, sum), nrow=dd[2]) se.yy <- sqrt(apply(t(se.increment), 2, cumsum)) } else se.yy <- sqrt(apply(x$coefficient[keep,]^2, 2,cumsum)) se.yy <- rbind(0, se.yy) } ncurve <- ncol(yy) } else { # this is the branch most often called, when someone has done # plot(fit[3]), so that only 1 coefficient remains yy <- cumsum(c(0, x$coefficient[keep])) if (se) { if (!is.null(x$dfbeta)) { dd <- dim(x$dfbeta) keep2 <- 1:length(unique(x$time[keep])) temp <- matrix(x$dfbeta[,,keep2], nrow=dd[1]) se.yy <- sqrt(cumsum(c(0, apply(temp^2, 2, sum)))) } else se.yy <- sqrt(cumsum(c(0, x$coefficient[keep]^2))) } ncurve <- 1 } xx <- c(0, x$time[keep]) # There may be multiplicities in x$times. Only plot the last of # each of them indx <- 1 + length(xx) - rev(match(unique(rev(xx)), rev(xx))) xx <- xx[indx] yy <- as.matrix(yy)[indx,] if (se) { if (is.null(x$dfbeta)) se.yy<- as.matrix(se.yy)[indx,] yy <- cbind(yy, yy + 1.96*se.yy, yy - 1.96*se.yy) if (ncurve >1) { for (i in 1:ncurve) { j <- c(i, i+ncurve, i+2*ncurve) matplot(xx, yy[,j], type=type, ..., col=1, lty=c(1,2,2), xlab='Time', ylab=yylab[i]) } } else matplot(xx, yy, type=type, ..., col=1, lty=c(1,2,2), xlab='Time', ylab=yylab) } else { matplot(xx, yy, type=type, ..., xlab='Time') } } survival/R/survfit.coxphms.R0000644000176200001440000004530413570772716015660 0ustar liggesusers# Automatically generated from the noweb directory survfit.coxphms <- function(formula, newdata, se.fit=TRUE, conf.int=.95, individual=FALSE, stype=2, ctype, conf.type=c("log", "log-log", "plain", "none", "logit", "arcsin"), censor=TRUE, start.time, id, influence=FALSE, na.action=na.pass, type, ...) { Call <- match.call() Call[[1]] <- as.name("survfit") #nicer output for the user object <- formula #'formula' because it has to match survfit se.fit <- FALSE #still to do Terms <- terms(object) robust <- !is.null(object$naive.var) # did the coxph model use robust var? if (!is.null(attr(object$terms, "specials")$tt)) stop("The survfit function can not process coxph models with a tt term") if (!missing(type)) { # old style argument if (!missing(stype) || !missing(ctype)) warning("type argument ignored") else { temp1 <- c("kalbfleisch-prentice", "aalen", "efron", "kaplan-meier", "breslow", "fleming-harrington", "greenwood", "tsiatis", "exact") survtype <- match(match.arg(type, temp1), temp1) stype <- c(1,2,2,1,2,2,2,2,2)[survtype] if (stype!=1) ctype <-c(1,1,2,1,1,2,1,1,1)[survtype] } } if (missing(ctype)) { # Use the appropriate one from the model temp1 <- match(object$method, c("exact", "breslow", "efron")) ctype <- c(1,1,2)[temp1] } else if (!(ctype %in% 1:2)) stop ("ctype must be 1 or 2") if (!se.fit) conf.type <- "none" else conf.type <- match.arg(conf.type) tfac <- attr(Terms, 'factors') temp <- attr(Terms, 'specials')$strata has.strata <- !is.null(temp) if (has.strata) { stangle = untangle.specials(Terms, "strata") #used multiple times, later # Toss out strata terms in tfac before doing the test 1 line below, as # strata end up in the model with age:strat(grp) terms or *strata() terms # (There might be more than one strata term) for (i in temp) tfac <- tfac[,tfac[i,] ==0] # toss out strata terms } if (any(tfac >1)) stop("not able to create a curve for models that contain an interaction without the lower order effect") Terms <- object$terms n <- object$n[1] if (!has.strata) strata <- rep(0L, n) else strata <- object$strata missid <- missing(id) # I need this later, and setting id below makes # "missing(id)" always false if (!missid & !missing(individual)) warning("the `id' option supersedes `individual'") if (!missid) individual <- TRUE else if (missid && individual) id <- rep(0,n) #dummy value else id <- NULL if (individual & missing(newdata)) { stop("the id and/or individual options only make sense with new data") } if (has.strata) { temp <- attr(Terms, "specials")$strata factors <- attr(Terms, "factors")[temp,] strata.interaction <- any(t(factors)*attr(Terms, "order") >1) } coxms <- inherits(object, "coxphms") if (coxms || is.null(object$y) || is.null(object[['x']]) || !is.null(object$call$weights) || !is.null(object$call$id) || (has.strata && is.null(object$strata)) || !is.null(attr(object$terms, 'offset'))) { mf <- stats::model.frame(object) } else mf <- NULL #useful for if statements later position <- NULL Y <- object[['y']] if (is.null(mf)) { weights <- rep(1., n) offset <- rep(0., n) X <- object[['x']] } else { weights <- model.weights(mf) if (is.null(weights)) weights <- rep(1.0, n) offset <- model.offset(mf) if (is.null(offset)) offset <- rep(0., n) X <- model.matrix.coxph(object, data=mf) if (is.null(Y) || coxms) { Y <- model.response(mf) if (is.null(object$timefix) || object$timefix) Y <- aeqSurv(Y) } oldid <- model.extract(mf, "id") if (length(oldid) && ncol(Y)==3) position <- survflag(Y, oldid) else position <- NULL if (!coxms && (nrow(Y) != object$n[1])) stop("Failed to reconstruct the original data set") if (has.strata) { if (length(strata)==0) { if (length(stangle$vars) ==1) strata <- mf[[stangle$vars]] else strata <- strata(mf[, stangle$vars], shortlabel=TRUE) } } } # Rebuild istate using the mcheck routine istate <- model.extract(mf, "istate") mcheck <- survcheck2(Y, oldid, istate) transitions <- mcheck$transitions istate <- mcheck$istate if (!identical(object$states, mcheck$states)) stop("failed to rebuild the data set") # Let the survfitCI routine do the work of creating the # overall counts (n.risk, etc). The rest of this code then # replaces the surv and hazard components. if (missing(start.time)) start.time <- min(Y[,2], 0) # If the data has absorbing states (ones with no transitions out), then # remove those rows first since they won't be in the final output. t2 <- transitions[, is.na(match(colnames(transitions), "(censored)")), drop=FALSE] absorb <- row.names(t2)[rowSums(t2)==0] if (length(absorb)) droprow <- istate %in% absorb else droprow <- FALSE if (any(droprow)) { j <- which(!droprow) cifit <- survfitCI(as.factor(strata[j]), Y[j,], weights[j], oldid[j], istate[j], stype=stype, ctype=ctype, se.fit=FALSE, start.time=start.time) } else cifit <- survfitCI(as.factor(strata), Y, weights, oldid, istate, stype=stype, ctype=ctype, se.fit=FALSE, start.time=start.time) # For computing the actual estimates it is easier to work with an # expanded data set. # Replicate actions found in the coxph-multi-X chunk, cluster <- model.extract(mf, "cluster") xstack <- stacker(object$cmap, as.integer(istate), X, Y, as.integer(strata), states= object$states) if (length(position) >0) position <- position[xstack$rindex] # id was required by coxph X <- xstack$X Y <- xstack$Y strata <- strata[xstack$rindex] transition <- xstack$transition if (length(offset)) offset <- offset[xstack$rindex] if (length(weights)) weights <- weights[xstack$rindex] if (length(cluster)) cluster <- cluster[xstack$rindex] oldid <- oldid[xstack$rindex] if (robust & length(cluster)==0) cluster <- oldid if (length(object$means) ==0) { # a model with only an offset term # Give it a dummy X so the rest of the code goes through # (This case is really rare) # se.fit <- FALSE X <- matrix(0., nrow=n, ncol=1) xcenter <- mean(offset) coef <- 0.0 varmat <- matrix(0.0, 1, 1) risk <- rep(exp(offset- mean(offset)), length=n) } else { varmat <- object$var beta <- ifelse(is.na(object$coefficients), 0, object$coefficients) xcenter <- sum(object$means * beta)+ mean(offset) if (!is.null(object$frail)) { keep <- !grepl("frailty(", dimnames(X)[[2]], fixed=TRUE) X <- X[,keep, drop=F] } risk <- c(exp(X%*% beta + offset - xcenter)) } if (missing(newdata)) { # If the model has interactions, print out a long warning message. # People may hate it, but I don't see another way to stamp out these # bad curves without backwards-incompatability. # I probably should complain about factors too (but never in a strata # or cluster term). if (any(attr(Terms, "order") > 1) ) warning("the model contains interactions; the default curve based on columm means of the X matrix is almost certainly not useful. Consider adding a newdata argument.") if (length(object$means)) { mf2 <- as.list(object$means) #create a dummy newdata names(mf2) <- names(object$coefficients) mf2 <- as.data.frame(mf2) x2 <- matrix(object$means, 1) } else { # nothing but an offset mf2 <- data.frame(X=0) x2 <- 0 } offset2 <- 0 found.strata <- FALSE } else { if (!is.null(object$frail)) stop("Newdata cannot be used when a model has frailty terms") Terms2 <- Terms if (!individual) Terms2 <- delete.response(Terms) if (is.vector(newdata, "numeric")) { if (individual) stop("newdata must be a data frame") if (is.null(names(newdata))) { stop("Newdata argument must be a data frame") } newdata <- data.frame(as.list(newdata), stringsAsFactors=FALSE) } if (has.strata) { found.strata <- TRUE tempenv <- new.env(, parent=emptyenv()) assign("strata", function(..., na.group, shortlabel, sep) list(...), envir=tempenv) assign("list", list, envir=tempenv) for (svar in stangle$vars) { temp <- try(eval(parse(text=svar), newdata, tempenv), silent=TRUE) if (!is.list(temp) || any(unlist(lapply(temp, class))== "function")) found.strata <- FALSE } if (!found.strata) { ss <- untangle.specials(Terms2, "strata") Terms2 <- Terms2[-ss$terms] } } tcall <- Call[c(1, match(c('id', "na.action"), names(Call), nomatch=0))] tcall$data <- newdata tcall$formula <- Terms2 tcall$xlev <- object$xlevels[match(attr(Terms2,'term.labels'), names(object$xlevels), nomatch=0)] tcall[[1L]] <- quote(stats::model.frame) mf2 <- eval(tcall) } if (has.strata && found.strata) { #pull them off temp <- untangle.specials(Terms2, 'strata') strata2 <- strata(mf2[temp$vars], shortlabel=TRUE) strata2 <- factor(strata2, levels=levels(strata)) if (any(is.na(strata2))) stop("New data set has strata levels not found in the original") # An expression like age:strata(sex) will have temp$vars= "strata(sex)" # and temp$terms = integer(0). This does not work as a subscript if (length(temp$terms) >0) Terms2 <- Terms2[-temp$terms] } else strata2 <- factor(rep(0, nrow(mf2))) if (!robust) cluster <- NULL if (individual) { if (missing(newdata)) stop("The newdata argument must be present when individual=TRUE") if (!missid) { #grab the id variable id2 <- model.extract(mf2, "id") if (is.null(id2)) stop("id=NULL is an invalid argument") } else id2 <- rep(1, nrow(mf2)) x2 <- model.matrix(Terms2, mf2)[,-1, drop=FALSE] #no intercept if (length(x2)==0) stop("Individual survival but no variables") offset2 <- model.offset(mf2) if (length(offset2) ==0) offset2 <- 0 y2 <- model.extract(mf2, 'response') if (attr(y2,'type') != type) stop("Survival type of newdata does not match the fitted model") if (attr(y2, "type") != "counting") stop("Individual=TRUE is only valid for counting process data") y2 <- y2[,1:2, drop=F] #throw away status, it's never used } else if (missing(newdata)) { if (has.strata && strata.interaction) stop ("Models with strata by covariate interaction terms require newdata") offset2 <- 0 if (length(object$means)) { x2 <- matrix(object$means, nrow=1, ncol=ncol(X)) } else { # model with only an offset and no new data: very rare case x2 <- matrix(0.0, nrow=1, ncol=1) # make a dummy x2 } } else { offset2 <- model.offset(mf2) if (length(offset2) >0) offset2 <- offset2 else offset2 <- 0 x2 <- model.matrix(Terms2, mf2)[,-1, drop=FALSE] #no intercept } risk2 <- exp(x2 %*% coef(object, type="matrix") - xcenter) if (individual) { stop("time dependent survival curves not yet supported for multistate") result <- coxsurv.fit2(ctype, stype, se.fit, varmat, cluster, start.time, object$cmap, object$transitions, object$states, Y, X, weights, risk, position, strata, oldid, transition, y2, x2, risk2, strata2, id2) } else { if (is.null(cifit$strata)) p0 <- cifit$pstate[1,, drop=FALSE] else { last <- cumsum(cifit$strata) # last obs of each strata first<- 1 + c(0, last[-length(last)]) p0 <- cifit$pstate[first,, drop=FALSE] } cifit <- coxsurv.fit2(ctype, stype, se.fit, varmat, cluster, start.time, object$cmap, object$transitions, object$states, Y, X, weights, risk, position, strata, oldid, transition, y2, x2, risk2, cifit=cifit) cifit$newdata <- mf2 } cifit$call <- Call class(cifit) <- c("survfitms", "survfit") cifit } coxsurv.fit2 <- function (ctype, stype, se.fit, varmat, cluster, start.time, cmap, tmat, states, y, x, weights, risk, position, strata, id, transition, y2, x2, risk2, strata2, id2, cifit) { # args are the options (ctype, stype, se.fit), args info from the prior fit # (varmat, ..., tmat), original data (Y, ..., transition), and data for the # new subjects if (length(strata)==0) strata <- rep(0L, nrow(y)) if (is.factor(strata)) ustrata <- levels(strata) else ustrata <- sort(unique(strata)) nstrata <- length(ustrata) # make the expansion map. # cmap[1,] will contain integers 1, 2,... which match the values in # the transtion vector, which in turn is the set of hazard functions that # come back from the .Call # The H matrices we will need are nstate by nstate, at each time, with # elements that are non-zero only for observed transtions. Some elements # may be the same: cmat[1,] can have repeats. nstate <- length(states) tmat <- tmat[,is.na(match(colnames(tmat), "(censored)")), drop=FALSE] from <- row(tmat)[tmat>0] # tmat contains fit$transitions matrix from <- match(rownames(tmat), states)[from] # actual row of H to <- col(tmat)[tmat>0] to <- match(colnames(tmat), states)[to] # actual col of H hfill <- cbind(from, to) if (nstrata==1) { temp <- multihaz(y, x, position, weights, risk, transition, ctype, stype, hfill, cmap[1,], x2, risk2, varmat, nstate, se.fit, cifit$pstate[1,], cifit$time) cifit$pstate <- temp$pstate cifit$cumhaz <- temp$cumhaz } else { itemp <- rep(1:nstrata, cifit$strata) timelist <- split(cifit$time, itemp) firstrow <- match(1:nstrata, itemp) ustrata <- names(cifit$strata) survlist <- vector("list", nstrata) for (i in 1:nstrata) { indx <- which(strata== ustrata[i]) # divides the data survlist[[i]] <- multihaz(y[indx,,drop=F], x[indx,,drop=F], position[indx], weights[indx], risk[indx], transition[indx], ctype, stype, hfill, cmap[1,], x2, risk2, varmat, nstate, se.fit, cifit$pstate[firstrow[i],], timelist[[i]]) } cifit$pstate <- do.call(rbind, lapply(survlist, function(x) x$pstate)) cifit$cumhaz <- do.call(rbind, lapply(survlist, function(x) x$cumhaz)) } cifit } # Compute the hazard and survival functions multihaz <- function(y, x, position, weight, risk, transition, ctype, stype, hfill, cmap, x2, risk2, vmat, nstate, se.fit, p0, utime) { if (ncol(y) ==2) { sort1 <- seq.int(0, nrow(y)-1L) # sort order for a constant y <- cbind(-1.0, y) # add a start.time column, -1 in case # there is an event at time 0 } else sort1 <- order(transition, y[,1]) -1L sort2 <- order(transition, y[,2]) -1L ntime <- length(utime) # this returns all of the counts we might desire. storage.mode(weight) <- "double" #failsafe # for Surv(time, status) data position is 2 (last) for all obs if (length(position)==0) position <- rep(2L, nrow(y)) fit <- .Call(Ccoxsurv2, utime, y, weight, sort1, sort2, position, transition, x, risk) cn <- fit$count # 1-3 = at risk, 4-6 = events, 7-8 = censored events # 9-10 = censored, 11-12 = Efron, 13-15 = entry if (ctype ==1) { denom1 <- ifelse(cn[,4]==0, 1, cn[,3]) denom2 <- ifelse(cn[,4]==0, 1, cn[,3]^2) } else { denom1 <- ifelse(cn[,4]==0, 1, cn[,11]) denom2 <- ifelse(cn[,4]==0, 1, cn[,12]) } hazard <- matrix(cn[,5] / denom1, ncol = fit$ntrans) varhaz <- matrix(cn[,5] / denom2, ncol = fit$ntrans) if (any(cmap != seq(along=cmap))) { hazard <- hazard[, cmap] varhaz <- varhaz[, cmap] } # Expand the result, one "hazard set" for each row of x2 nx2 <- nrow(x2) h2 <- array(0, dim=c(nrow(hazard), nx2, ncol(hazard))) if (se.fit) v2 <- h2 S <- matrix(0, nrow(hazard), nstate) S2 <- array(0, dim=c(nrow(hazard), nx2, nstate)) H <- matrix(0, nstate, nstate) for (i in 1:nx2) { h2[,i,] <- apply(hazard %*% diag(risk2[i,]), 2, cumsum) if (se.fit) { d1 <- fit$xbar - rep(x[i,], each=nrow(fit$xbar)) d2 <- apply(d1*hazard, 2, cumsum) d3 <- rowSums((d2%*% vmat) * d2) # v2[jj,] <- (apply(varhaz[jj,],2, cumsum) + d3) * (risk2[i])^2 } S[1,] <- p0 for (j in 2:ntime) { H[,] <- 0.0 H[hfill] <- hazard[j,] *risk2[i,] if (stype==1) { diag(H) <- pmin(0, 1 + diag(H)- rowSums(H)) S[j,] <- drop(S[j-1,] %*% H) } else { diag(H) <- diag(H) - rowSums(H) S[j,] <- as.vector(S[j-1,] %*% expm(H)) # dgeMatrix issue } } S2[,i,] <- S } rval <- list(time=utime, xgrp=rep(1:nx2, each=nrow(hazard)), pstate=S2, cumhaz=h2) if (se.fit) rval$varhaz <- v2 rval } survival/R/coxph.control.R0000644000176200001440000000140613537676563015277 0ustar liggesusers# # Gather all of the control parameters for coxph into one spot # coxph.control <- function(eps=1e-9, toler.chol = .Machine$double.eps ^ .75, iter.max=20, toler.inf= sqrt(eps), outer.max=10, timefix =TRUE) { if (iter.max <0) stop("Invalid value for iterations") if (eps <=0) stop ("Invalid convergence criteria") if (eps <= toler.chol) warning("For numerical accuracy, tolerance should be < eps") if (toler.inf <=0) stop ("The inf.warn setting must be >0") if (!is.logical(timefix)) stop("timefix must be TRUE or FALSE") list(eps=eps, toler.chol=toler.chol, iter.max=as.integer(iter.max), toler.inf=toler.inf, outer.max=as.integer(outer.max), timefix=timefix) } survival/R/firstlib.R0000644000176200001440000000011613537676563014312 0ustar liggesusers.onUnload <- function(libpath) library.dynam.unload("survival", libpath) survival/R/survcheck.R0000644000176200001440000001553313537676563014502 0ustar liggesuserssurvcheck <- function(formula, data, id, istate, istate0="(s0)", timefix=TRUE, ...) { Call <- match.call() indx <- match(c("formula", "data", "id", "istate"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") tform <- Call[c(1,indx)] # only keep the arguments we wanted tform[[1L]] <- quote(stats::model.frame) # change the function called mf <- eval(tform, parent.frame()) Y <- model.response(mf) if (!inherits(Y, "Surv")) stop("response must be a survival object") type <- attr(Y, "type") if (type=="right") Y <- Surv(Y[,1], factor(Y[,2])) # pretend its multi else if (type=="counting") Y <- Surv(Y[,1], Y[,2], factor(Y[,3])) else if (!(type %in% c("mright", "mcounting"))) stop("response must be right censored") n <- nrow(Y) if (!is.logical(timefix) || length(timefix) > 1) stop("invalid value for timefix option") if (timefix) Y <- aeqSurv(Y) id <- model.extract(mf, "id") if (is.null(id)) stop("an id argument is required") else if (length(id) !=n) stop("wrong length for id") istate <- model.extract(mf, "istate") if (!is.null(istate) && length(istate) !=n) stop("wrong length for istate") fit <- survcheck2(Y, id, istate, istate0) # fit$istate <- NULL # used by coxph, but not part of user printout na.action <- attr(mf, "na.action") if (!is.null(na.action)) { fit$na.action <- na.action # make any numbering match the input data, not the retained data lost <- unclass(na.action) # the observations that were removed dummy <- seq.int(1, n+ length(lost))[-lost] for (i in c("overlap", "gap", "teleport", "jump")){ if (!is.null(fit[[i]]$row)) { temp <- fit[[i]] temp$row <- dummy[temp$row] fit[[i]] <- temp } } } fit$Y <- Y # used by the summary function fit$id <- unname(id) # "" "" fit$call <- Call class(fit) <- "survcheck" fit } # # The multi-state routines need to check their input data # y = survival object # id = subject identifier # istate = starting state for each row, this can be missing. # The routine creates a proper current-state vector accounting for censoring # (which should be called cstate for 'current state', but istate is retained) # If a subject started in state A for instance, and had observations # of (0, 10, B), (10, 15, censor), (15, 20, C) the current state is # (A, B, B). It checks that against the input 'istate' if it is present # to generate checks. # Multiple other checks as well # survcheck2 <- function(y, id, istate=NULL, istate0="(s0)") { n <- length(id) ny <- ncol(y) # the next few line are a debug for my code, since survcheck2 is not visible # to users if (!is.Surv(y) || is.null(attr(y, "states")) || any(y[,ncol(y)] > length(attr(y, "states")))) stop("survcheck2 called with an invalid y argument") to.names <- c(attr(y, "states"), "(censored)") if (length(istate)==0) { inull<- TRUE cstate <- factor(rep(istate0, n)) } else { if (length(istate) !=n) stop ("wrong length for istate") cstate <- as.factor(istate) inull <- FALSE } ystate <- attr(y, "states") # The vector of all state names is put in a nice printing order: # initial states that are not destination states, then # the destination states. This keeps destinations in the order the # user chose, while still putting initial states first. index <- match(levels(cstate), ystate, nomatch=0) states <- c(levels(cstate)[index==0], ystate) cstate2 <- factor(cstate, states) # we keep a form with all the levels for returning to the parent (cstate2) # one without this (cstate) to make a smaller transitions table # Calculate the counts per id for each state, e.g., 10 subjects had # 3 visits to state 2, etc. # Don't count "censored" as an endpoint, nor any missings. But we can't # just omit censored rows, or those with 0 transitions don't get counted! # Instead remove the 'censored' column after making tab1 tab1 <- table(id, factor(y[,ncol(y)], 0:length(ystate)))[,-1, drop=FALSE] tab1 <- cbind(tab1, rowSums(tab1)) tab1.levels <- sort(unique(c(tab1))) #unique counts events <- apply(tab1, 2, function(x) table(factor(x, tab1.levels))) dimnames(events) = list("count"= tab1.levels, "state"= c(ystate, "(any)")) # check for errors sindx <- match(ystate, states) if (ncol(y)==2) y <- cbind(0,y) # make it 3 cols for the C routine stat2 <- ifelse(y[,3]==0, 0L, sindx[pmax(1, y[,3])]) # map the status index <- order(id, y[,ny-1], y[,1]) # by start time, within stop time id2 <- match(id, id) # we need unique integers, but don't need 1, 2,... check <- .Call(Cmulticheck, y, stat2, id2, as.integer(cstate2), index-1L) if (inull) { # if there was no istate entered in, use the constructed one from # the check routine cstate2 <-factor(check$cstate, seq(along=states), states) } # create the transtions table # if someone has an intermediate visit, i.e., (0,10, 0)(10,20,1), don't # report the false 'censoring' in the transitions table yfac <- factor(y[,3], c(seq(along=ystate), 0), to.names) keep <- (y[index,3]!=0 | !duplicated(id[index], fromLast=TRUE)) keep[index] <- keep # put it back into data order transitions <- table(from=cstate2[keep], to= yfac[keep], useNA="ifany") # now continue with error checks. mismatch <- (as.numeric(cstate2) != check$cstate) # gap = 0 (0, 10], (10, 15] # gap = 1 (0, 10], (12, 15] # a hole in the time # gap = -1 (0, 10], (9, 15] # overlapping times flag <- c(overlap= sum(check$gap < 0), gap = sum(check$gap > 0 & !mismatch), jump = sum(check$gap > 0 & mismatch), teleport = sum(check$gap==0 & mismatch & check$dupid==1)) rval <- list(states=states, transitions=transitions, events= t(events), flag=flag, istate= factor(check$cstate, seq(along=states), states)) # add error details, if necessary if (flag["overlap"] > 0) { j <- which(check$gap < 0) rval$overlap <- list(row=j, id= unique(id[j])) } if (flag["gap"] > 0) { j <- which(check$gap > 0 & !mismatch) rval$gap <- list(row=j, id= unique(id[j])) } if (flag["jump"] > 0) { j <- which(check$gap > 0 & mismatch) rval$jump <- list(row=j, id= unique(id[j])) } if (flag["teleport"] > 0) { j <- (check$gap==0 & mismatch) rval$teleport <- list(row=j, id= unique(id[j])) } rval } survival/R/frailty.gamma.R0000644000176200001440000001147313537676563015237 0ustar liggesusers# # Defining function for gamma frailty fits # frailty.gamma <- function(x, sparse=(nclass >5), theta, df, eps= 1e-5, method=c("em", "aic", "df", "fixed"), ...) { nclass <- length(unique(x[!is.na(x)])) if (sparse) x <-as.numeric(factor(x)) #drop extra levels if a factor else{ x <- factor(x) attr(x,'contrasts') <- contr.treatment(nclass, contrasts=FALSE) } class(x) <- c("coxph.penalty",class(x)) # Check for consistency of the arguments if (missing(method)) { if (!missing(theta)) { method <- 'fixed' if (!missing(df)) stop("Cannot give both a df and theta argument") } else if (!missing(df)) method <- 'df' } method <- match.arg(method) if (method=='df' && missing(df)) stop("Method = df but no df argument") if (method=='fixed' && missing(theta)) stop("Method= fixed but no theta argument") if (method!='df' && !missing(df)) stop("Method is not df, but have a df argument") if (method !='fixed' && !missing(theta)) stop("Method is not 'fixed', but have a theta argument") pfun<- function(coef, theta, ndeath){ if (theta==0) list(recenter=0, penalty=0, flag=TRUE) else { recenter <- log(mean(exp(coef))) coef <- coef - recenter nu <- 1/theta list(recenter=recenter, first= (exp(coef) -1) * nu, second= exp(coef) * nu, penalty= -sum(coef)*nu, # The exp part sums to a constant flag=FALSE) } } printfun <- function(coef, var, var2, df, history) { if (!is.null(history$history)) theta <- history$history[nrow(history$history),1] else theta <- history$theta clog <- history$c.loglik if (is.matrix(var)) test <- coxph.wtest(var, coef)$test else test <- sum(coef^2/var) df2 <- max(df, .5) # Stop silly p-values list(coef=c(NA, NA, NA, test, df, pchisq(test, df2, lower.tail=FALSE)), history=paste("Variance of random effect=", format(theta), " I-likelihood =", format(round(clog,1), digits=10))) } # The final coxph object will contain a copy of printfun. Stop it from # also containing huge unnecessary variables, e.g. 'x', known at this # point in time. Not an issue for pfun, which does not get saved. # Setting to globalenv() will not suffice since coxph.wtest is not visible # outside the survival library's name space. temp <- new.env(parent=globalenv()) assign("cox.zph", cox.zph, envir=temp) #make a private copy environment(printfun) <- temp if (method=='fixed') { temp <- list(pfun=pfun, printfun=printfun, diag =TRUE, sparse= sparse, cargs = c("x", "status", "loglik"), cfun = frailty.controlgam, cparm= list(theta=theta, ...)) } else if (method=='em'){ temp <- list(pfun=pfun, printfun=printfun, diag =TRUE, sparse= sparse, cargs = c("x", "status", "loglik"), cfun = frailty.controlgam, cparm= c(list(eps=eps), ...)) } else if (method=='aic') { temp <- list(pfun=pfun, printfun=printfun, diag =TRUE, sparse= sparse, cargs = c("x", "status", "loglik", "neff","df", "plik"), cparm=list(eps=eps, lower=0, init=c(.1, 1), ...), cfun =function(opt, iter, old, group, status, loglik,...){ temp <- frailty.controlaic(opt, iter, old, ...) if (iter >0) { #compute correction to the loglik if (old$theta==0) correct <- 0 else { if (is.matrix(group)) group <-c(group %*% 1:ncol(group)) d <- tapply(status,group,sum) correct <- frailty.gammacon(d, 1/old$theta) } temp$c.loglik <- loglik + correct } temp }) } else { #df method # The initial guess is based on the observation that theta=1 often # gives about df= (#groups)/3 if (missing(eps)) eps <- .1 temp <- list(pfun=pfun, printfun=printfun, diag =TRUE, sparse= sparse, cargs= c('df', "x", "status", "loglik"), cparm=list(df=df, thetas=0, dfs=0, eps=eps, guess=3*df/length(unclass(x)), ...), cfun =function(opt, iter, old, df, group, status, loglik){ temp <- frailty.controldf(opt, iter, old, df) if (iter >0) { #compute correction to the loglik if (old$theta==0) correct <- 0 else { if (is.matrix(group)) group <-c(group %*% 1:ncol(group)) d <- tapply(status,group,sum) correct <- frailty.gammacon(d, 1/old$theta) } temp$c.loglik <- loglik + correct } temp }) } # If not sparse, give shorter names to the coefficients, so that any # printout of them is readable. if (!sparse) { vname <- paste("gamma", levels(x), sep=':') temp <- c(temp, list(varname=vname)) } attributes(x) <- c(attributes(x), temp) x } survival/R/print.summary.survreg.R0000644000176200001440000000327113537676563017025 0ustar liggesusersprint.summary.survreg <- function(x, digits = max(options()$digits - 4, 3), signif.stars=FALSE, ...) { correl <- x$correlation if(is.null(digits)) digits <- options()$digits cat("\nCall:\n") dput(x$call) printCoefmat(x$table, digits = digits, signif.stars=signif.stars, P.values=TRUE, has.Pvalue=TRUE) if (nrow(x$var)==length(x$coefficients)) cat("\nScale fixed at",format(x$scale, digits=digits),"\n") else if (length(x$scale)==1) cat ("\nScale=", format(x$scale, digits=digits), "\n") else { cat("\nScale:\n") print(x$scale, digits=digits, ...) } cat("\n", x$parms, "\n", sep='') df <- sum(x$df) - x$idf # The sum is for penalized models cat("Loglik(model)=", format(round(x$loglik[2],1)), " Loglik(intercept only)=", format(round(x$loglik[1],1))) if (df > 0) cat("\n\tChisq=", format(round(x$chi,2)), "on", round(df,1), "degrees of freedom, p=", format(signif(pchisq(x$chi, df, lower.tail=FALSE),2)), "\n") else cat("\n") if (x$robust) cat("(Loglikelihood assumes independent observations)\n") cat("Number of Newton-Raphson Iterations:", format(trunc(x$iter)), "\n") omit <- x$na.action if (length(omit)) cat("n=", x$n, " (", naprint(omit), ")\n", sep="") else cat("n=", x$n, "\n") if(!is.null(correl)) { p <- dim(correl)[2] if(p > 1) { cat("\nCorrelation of Coefficients:\n") ll <- lower.tri(correl) correl[ll] <- format(round(correl[ll], digits=digits)) correl[!ll] <- "" print(correl[-1, - p, drop = FALSE], quote = FALSE) } } cat("\n") invisible(NULL) } survival/R/yates.R0000644000176200001440000010167013570772316013616 0ustar liggesusers# Automatically generated from the noweb directory cmatrix <- function(fit, term, test =c("global", "trend", "pairwise"), levels, assign) { # Make sure that "fit" is present and isn't missing any parts. if (missing(fit)) stop("a fit argument is required") Terms <- try(terms(fit), silent=TRUE) if (inherits(Terms, "try-error")) stop("the fit does not have a terms structure") else Terms <- delete.response(Terms) # y is not needed Tatt <- attributes(Terms) # a flaw in delete.response: it doesn't subset dataClasses Tatt$dataClasses <- Tatt$dataClasses[row.names(Tatt$factors)] test <- match.arg(test) if (missing(term)) stop("a term argument is required") if (is.character(term)) term <- formula(paste("~", term)) else if (is.numeric(term)) { if (all(term == floor(term) & term >0 & term < length(Tatt$term.labels))) term <- formula(paste("~", paste(Tatt$term.labels[term], collapse='+'))) else stop("a numeric term must be an integer between 1 and max terms in the fit") } else if (!inherits(term, "formula")) stop("the term must be a formula, character string, or integer") fterm <- delete.response(terms(term)) fatt <- attributes(fterm) user.name <- fatt$term.labels # what the user called it indx <- match(fatt$term.labels, Tatt$term.labels) if (any(is.na(indx))) { # allow partial matching. If the fit had factor(x) but user said "x", # pretend they said "factor(x)". Fail for ns(x) + log(x) though. # but match the first for factor(x) + factor(x):z temp <- fatt$term.labels temp2 <- Tatt$term.labels temp2[grepl(":", temp2)] <- "" for (i in 1:length(temp)) { j <- grep(temp[i], Tatt$term.labels) k <- grep(temp[i], temp2) if (length(j)==1) temp[i] <- Tatt$term.labels[j] else if (length(k)==1) temp[i] <- Tatt$term.labels[k] else stop("term '", temp[i], "' not found in the fit") } fterm <- terms(formula( paste("~", paste(temp, collapse="+")))) fatt <- attributes(fterm) indx <- match(fatt$term.labels, Tatt$term.labels) } # match these up with the columns via the assign attribute if (missing(assign)) assign <- fit$assign if (missing(assign)) stop("the fit is missing an assign component") if (is.list(assign)) { # old style assign as used in Splus, and still used in coxph assign <- rep(1:length(assign), sapply(assign, length)) } ncoef <- length(assign) whichcol <- which(assign %in% indx & !is.na(coef(fit))) ntest <- length(whichcol) if (ntest ==0) stop("no non-missing coefficients in the estimate") termname <- Tatt$term.labels[indx] # to label the output # What kind of term is being tested. It can be categorical, continuous, # an interaction of only categorical terms, interaction of only continuous # terms, or a mixed interaction. parts <- row.names(Tatt$factors)[Tatt$factors[,indx] !=0] types <- Tatt$dataClasses[parts] iscat <- as.integer(types=="factor" | types=="character") if (length(parts)==1) termtype <-iscat else termtype <- 2 + any(iscat) + all(iscat) # Were levels specified? If so we either simply accept them (continuous), # or double check them (categorical) if (missing(levels)) { temp <- fit$xlevels[match(parts, names(fit$xlevels), nomatch=0)] if (length(temp) ==0) stop("continuous variables require the levels argument") levels <- do.call(expand.grid, c(temp, stringsAsFactors=FALSE)) } else { #user supplied if (is.data.frame(levels)) { temp <- match(names(levels), parts) if (any(is.na(temp))) stop("not found in levels data frame:", parts) else levels <- levels[temp] # reorder it if (any(duplicated(levels))) stop("levels data frame has duplicates") } else if (is.list(levels)) { if (length(levels) != length(parts)) stop("levels list should have", length(parts), "components") if (!is.null(names(levels))) { temp <- match(names(levels), parts) if (any(is.null(temp))) stop("names of levels does not match the terms") else levels <- levels[temp] #reorder them } if (any(sapply(levels, function(x) any(duplicated(x))))) stop("one or more elements of the levels list has duplicates") levels <- do.call("expand.grid", levels) } else if (is.matrix(levels)) { if (ncol(levels) != length(parts)) stop("levels matrix has the wrong number of columns") if (!is.null(dimnames(levels)[[2]])) { temp <- match(dimnames(levels)[[2]], parts) if (any(is.na(temp))) stop("matrix column names do no match the terms") } else dimnames(levels)[[2]] <- parts if (any(duplicated(levels))) stop("levels matrix has duplicated rows") levels <- data.frame(levels, stringsAsFactors=FALSE) } else if (length(parts) > 1) stop("levels should be a data frame or matrix") else levels <- data.frame(x=unique(levels), stringsAsFactors=FALSE) names(levels) <- user.name } # check that any categorical levels are legal for (i in which(iscat==1)) { xlev <- fit$xlevels[[parts[i]]] if (is.null(xlev)) stop("xlevels attribute not found for", parts[i]) temp <- match(levels[[parts[i]]], xlev) if (any(is.na(temp))) stop("invalid level for term", parts[i]) } rval <- list(levels=levels, termname=termname) # Now add the contrast matrix between the levels, if needed if (test=="global") { if (TRUE) { #if (length(parts) ==1) { cmat <- diag(nrow(levels)) cmat[, nrow(cmat)] <- -1 # all equal to the last cmat <- cmat[-nrow(cmat),, drop=FALSE] } else if (termtype== 4) { # anova type stop("not yet done 1") } else stop("not yet done 2") } else if (test=="pairwise") { if (length(parts) > 1) stop("pairwise tests must be for a single term") tindex <- match(levels[[1]], levels[[1]]) #convert to integer nlev <- length(tindex) # this is the number of groups being compared if (nlev < 2) stop("pairwise tests need at least 2 levels") npair <- nlev*(nlev-1)/2 if (npair==1) cmat <- matrix(c(1, -1), nrow=1) else { cmat <- vector("list", npair +1) k <- 1 cname <- rep("", npair) for (i in 1:(nlev-1)) { temp <- double(nlev) temp[tindex[i]] <- 1 for (j in (i+1):nlev) { temp[tindex[j]] <- -1 cmat[[k]] <- matrix(temp, nrow=1) temp[tindex[j]] <- 0 cname[k] <- paste(i, "vs", j) k <- k+1 } } # global test temp <- diag(nlev) temp[,nlev] <- -1 cmat[[k]] <- temp[-nlev,] names(cmat) <- c(cname, termname) } } else { cmat <- vector("list", 2) cmat[[1]] <- matrix(1:ntest, 1, ntest) cmat[[2]] <- diag(ntest) attr(cmat, "nested") <- TRUE if (is.null(levels[[1]])) { # a continuous variable, and the user didn't give levels for the test # look up the call and use the knots tcall <- Tatt$predvars[[indx + 1]] # skip the 'call' if (tcall[[1]] == as.name("pspline")) { bb <- tcall[["Boundary.knots"]] levels[[1]] <- seq(bb[1], bb[2], length=ntest) } else if (tcall[[1]] %in% c("ns", "bs")) { bb <- c(tcall[["Boundary.knots"]], tcall[["knots"]]) levels[[1]] <- sort(bb) } else stop("don't know how to do a linear contrast for this term") } } rval <- list(levels=levels, termname=termname, cmat=cmat, iscat=iscat) class(rval) <- "cmatrix" rval } gsolve <- function(mat, y, eps=sqrt(.Machine$double.eps)) { # solve using a generalized inverse # this is very similar to the ginv function of MASS temp <- svd(mat, nv=0) dpos <- (temp$d > max(temp$d[1]*eps, 0)) dd <- ifelse(dpos, 1/temp$d, 0) # all the parentheses save a tiny bit of time if y is a vector if (all(dpos)) x <- drop(temp$u %*% (dd*(t(temp$u) %*% y))) else if (!any(dpos)) x <- drop(temp$y %*% (0*y)) # extremely rare else x <-drop(temp$u[,dpos] %*%(dd[dpos] * (t(temp$u[,dpos, drop=FALSE]) %*% y))) attr(x, "df") <- sum(dpos) x } qform <- function(var, beta) { # quadratic form b' (V-inverse) b temp <- gsolve(var, beta) list(test= sum(beta * temp), df=attr(temp, "df")) } estfun <- function(cmat, beta, varmat) { nabeta <- is.na(beta) if (any(nabeta)) { k <- which(!nabeta) #columns to keep estimate <- drop(cmat[,k] %*% beta[k]) # vector of predictions evar <- cmat[,k] %*% varmat %*% t(cmat[,k, drop=FALSE]) list(estimate = estimate, var=evar) } else { list(estimate = drop(cmat %*% beta), var = cmat %*% varmat %*% t(cmat)) } } testfun <- function(cmat, beta, varmat, sigma2) { nabeta <- is.na(beta) if (any(nabeta)) { k <- which(!nabeta) #columns to keep estimate <- drop(cmat[,k] %*% beta[k]) # vector of predictions temp <- qform(cmat[,k] %*% varmat %*% t(cmat[,k,drop=FALSE]), estimate) rval <- c(chisq=temp$test, df=temp$df) } else { estimate <- drop(cmat %*% beta) temp <- qform(cmat %*% varmat %*% t(cmat), estimate) rval <- c(chisq=temp$test, df=temp$df) } if (!is.null(sigma2)) rval <- c(rval, ss= unname(rval[1]) * sigma2) rval } nafun <- function(cmat, est) { used <- apply(cmat, 2, function(x) any(x != 0)) any(used & is.na(est)) } yates <- function(fit, term, population=c("data", "factorial", "sas"), levels, test =c("global", "trend", "pairwise"), predict="linear", options, nsim=200, method=c("direct", "sgtt")) { Call <- match.call() if (missing(fit)) stop("a fit argument is required") Terms <- try(terms(fit), silent=TRUE) if (inherits(Terms, "try-error")) stop("the fit does not have a terms structure") else Terms <- delete.response(Terms) # y is not needed Tatt <- attributes(Terms) # a flaw in delete.response: it doesn't subset dataClasses Tatt$dataClasses <- Tatt$dataClasses[row.names(Tatt$factors)] if (is.list(predict) || is.function(predict)) { # someone supplied their own stop("user written prediction function are not yet supported") } else { # call the method indx <- match(c("fit", "predict", "options"), names(Call), nomatch=0) temp <- Call[c(1, indx)] temp[[1]] <- quote(yates_setup) mfun <- eval(temp, parent.frame()) } if (is.null(mfun)) predict <- "linear" # we will need the original model frame and X matrix mframe <- fit$model if (is.null(mframe)) mframe <- model.frame(fit) Xold <- model.matrix(fit) if (is.null(fit$assign)) { # glm models don't save assign xassign <- attr(Xold, "assign") } else xassign <- fit$assign nvar <- length(xassign) nterm <- length(Tatt$term.names) termname <- rownames(Tatt$factors) iscat <- sapply(Tatt$dataClasses, function(x) x %in% c("character", "factor")) method <- match.arg(casefold(method), c("direct", "sgtt")) #allow SGTT if (method=="sgtt" && missing(population)) population <- "sas" if (is.character(population)) { population <- match.arg(tolower(population[1]), c("data", "factorial", "sas", "empirical", "yates")) if (population=="empirical") population <- "data" if (population=="yates") population <- "factorial" } else { if (!inherits(population, "data.frame")) stop("the population argument must be a data frame or character") } test <- match.arg(test) if (method=="sgtt" && (population !="sas" || predict != "linear")) stop("sgtt method only applies if population = sas and predict = linear") beta <- coef(fit, complete=TRUE) nabeta <- is.na(beta) # undetermined coefficients vmat <- vcov(fit, complete=FALSE) if (nrow(vmat) > sum(!nabeta)) { # a vcov method that does not obey the complete argument vmat <- vmat[!nabeta, !nabeta] } # grab the dispersion, needed for the writing an SS in linear models if (class(fit)[1] =="lm") sigma <- summary(fit)$sigma else sigma <- NULL # don't compute an SS column # process the term argument and check its legality if (missing(levels)) contr <- cmatrix(fit, term, test, assign= xassign) else contr <- cmatrix(fit, term, test, assign= xassign, levels = levels) x1data <- as.data.frame(contr$levels) # labels for the PMM values # Make the list of X matrices that drive everything: xmatlist # (Over 1/2 the work of the whole routine) xmatlist <- yates_xmat(Terms, Tatt, contr, population, mframe, fit, iscat) # check rows of xmat for estimability if (any(is.na(beta)) && population != "none") { if (inherits(fit, "coxph")) X.qr <- qr(rbind(1, t(Xold))) else X.qr <- qr(t(Xold)) # QR decomposition of the row space estimcheck <- function(x, eps= sqrt(.Machine$double.eps)) { temp <- abs(qr.resid(X.qr, t(x))) # apply(abs(temp), 1, function(x) all(x < eps)) # each row estimable all(temp < eps) } estimable <- sapply(xmatlist, estimcheck) } else estimable <- rep(TRUE, length(xmatlist)) # Drop missing coefficients, and use xmatlist to compute the results beta <- beta[!nabeta] if (predict == "linear" || is.null(mfun)) { # population averages of the simple linear predictor if (is.na(match(contr$termname, colnames(Tatt$factors)))) stop("term '", contr$termname, "' not found in the model") Cmat <- t(sapply(xmatlist, colMeans))[,!nabeta] # coxph model: the X matrix is built as though an intercept were there (the # baseline hazard plays that role), but then drop it from the coefficients # before computing estimates and tests. if (inherits(fit, "coxph")) { Cmat <- Cmat[,-1, drop=FALSE] offset <- -sum(fit$means[!nabeta] * beta) # recenter the predictions too } else offset <- 0 # Get the PMM estimates, but only for estimable ones estimate <- cbind(x1data, pmm=NA, std=NA) if (any(estimable)) { etemp <- estfun(Cmat[estimable,,drop=FALSE], beta, vmat) estimate$pmm[estimable] <- etemp$estimate + offset estimate$std[estimable] <- sqrt(diag(etemp$var)) } # Now do tests on the PMM estimates, one by one if (method=="sgtt") { # It would be simplest to have the contrasts.arg to be a list of function names. # However, model.matrix plays games with the calling sequence, and any function # defined at this level will not be seen. Instead create a list of contrast # matrices. temp <- sapply(fit$contrasts, function(x) (is.character(x) && x %in% c("contr.SAS", "contr.treatment"))) if (!all(temp)) stop("yates sgtt method can only handle contr.SAS or contr.treatment") temp <- vector("list", length(fit$xlevels)) names(temp) <- names(fit$xlevels) for (i in 1:length(fit$xlevels)) { cmat <- diag(length(fit$xlevels[[i]])) dimnames(cmat) <- list(fit$xlevels[[i]], fit$xlevels[[i]]) if (i>1 || Tatt$intercept==1) { if (fit$contrasts[[i]] == "contr.treatment") cmat <- cmat[, c(2:ncol(cmat), 1)] } temp[[i]] <- cmat } sasX <- model.matrix(formula(fit), data=mframe, xlev=fit$xlevels, contrasts.arg=temp) sas.assign <- attr(sasX, "assign") # create the dependency matrix D. The lm routine is unhappy if it thinks # the right hand and left hand sides are the same, fool it with I(). # We do this using the entire X matrix even though only categoricals will # eventually be used; if a continuous variable made it NA we need to know. D <- coef(lm(sasX ~ I(sasX) -1)) dimnames(D)[[1]] <- dimnames(D)[[2]] #get rid if the I() names zero <- is.na(D[,1]) # zero rows, we'll get rid of these later D <- ifelse(is.na(D), 0, D) # make each row orthagonal to rows for other terms that contain it # Containing blocks, if any, will always be below # this is easiest to do with the transposed matrix # Only do this if both row i and j are for a categorical variable if (!all(iscat)) { # iscat marks variables in the model frame as categorical # tcat marks terms as categorical. For x1 + x2 + x1:x2 iscat has # 2 entries and tcat has 3. tcat <- (colSums(Tatt$factors[!iscat,,drop=FALSE]) == 0) } else tcat <- rep(TRUE, max(sas.assign)) # all vars are categorical B <- t(D) dimnames(B)[[2]] <- paste0("L", 1:ncol(B)) # for the user if (ncol(Tatt$factors) > 1) { share <- t(Tatt$factors) %*% Tatt$factors nc <- ncol(share) for (i in which(tcat[-nc])) { j <- which(share[i,] > 0 & tcat) k <- j[j>i] # terms that I need to regress out if (length(k)) { indx1 <- which(sas.assign ==i) indx2 <- which(sas.assign %in% k) B[,indx1] <- resid(lm(B[,indx1] ~ B[,indx2])) } } } # Cut B back down to the non-missing coefs of the original fit Smat <- t(B)[!zero, !zero] Sassign <- xassign[!nabeta] keep <- match(contr$termname, colnames(Tatt$factors)) if (length(keep) > 1) { # more than 1 term in the model test <- t(sapply(keep, function(i) testfun(Smat[Sassign==i,,drop=FALSE], beta, vmat, sigma^2))) rownames(test) <- contr$termname } else { test <- testfun(Smat[Sassign==keep,, drop=FALSE], beta, vmat, sigma^2) test <- matrix(test, nrow=1, dimnames=list(contr$termname, names(test))) } } else { if (is.list(contr$cmat)) { test <- t(sapply(contr$cmat, function(x) testfun(x %*% Cmat, beta, vmat, sigma^2))) natest <- sapply(contr$cmat, nafun, estimate$pmm) } else { test <- testfun(contr$cmat %*% Cmat, beta, vmat, sigma^2) test <- matrix(test, nrow=1, dimnames=list(contr$termname, names(test))) natest <- nafun(contr$cmat, estimate$pmm) } if (any(natest)) test[natest,] <- NA } if (any(estimable)){ # Cmat[!estimable,] <- NA result <- list(estimate=estimate, test=test, mvar=etemp$var, cmat=Cmat) } else result <- list(estimate=estimate, test=test, mvar=NA) if (method=="sgtt") result$SAS <- Smat } else { xall <- do.call(rbind, xmatlist)[,!nabeta, drop=FALSE] if (inherits(fit, "coxph")) { xall <- xall[,-1, drop=FALSE] # remove the intercept eta <- xall %*% beta -sum(fit$means[!nabeta]* beta) } else eta <- xall %*% beta n1 <- nrow(xmatlist[[1]]) # all of them are the same size index <- rep(1:length(xmatlist), each = n1) if (is.function(mfun)) predfun <- mfun else { # double check the object if (!is.list(mfun) || any(is.na(match(c("predict", "summary"), names(mfun)))) || !is.function(mfun$predic) || !is.function(mfun$summary)) stop("the prediction should be a function, or a list with two functions") predfun <- mfun$predict sumfun <- mfun$summary } pmm <- predfun(eta, xall) n2 <- length(eta) if (!(is.numeric(pmm)) || !(length(pmm)==n2 || nrow(pmm)==n2)) stop("prediction function should return a vector or matrix") pmm <- rowsum(pmm, index, reorder=FALSE)/n1 pmm[!estimable,] <- NA # get a sample of coefficients, in order to create a variance # this is lifted from the mvtnorm code (can't include a non-recommended # package in the dependencies) tol <- sqrt(.Machine$double.eps) if (!isSymmetric(vmat, tol=tol, check.attributes=FALSE)) stop("variance matrix of the coefficients is not symmetric") ev <- eigen(vmat, symmetric=TRUE) if (!all(ev$values >= -tol* abs(ev$values[1]))) warning("variance matrix is numerically not positive definite") Rmat <- t(ev$vectors %*% (t(ev$vectors) * sqrt(ev$values))) bmat <- matrix(rnorm(nsim*ncol(vmat)), nrow=nsim) %*% Rmat bmat <- bmat + rep(beta, each=nsim) # add the mean # Now use this matrix of noisy coefficients to get a set of predictions # and use those to create a variance matrix # Since if Cox we need to recenter each run sims <- array(0., dim=c(nsim, nrow(pmm), ncol(pmm))) if (inherits(fit, 'coxph')) offset <- bmat %*% fit$means[!nabeta] else offset <- rep(0., nsim) for (i in 1:nsim) sims[i,,] <- rowsum(predfun(xall %*% bmat[i,] - offset[i]), index, reorder=FALSE)/n1 mvar <- var(sims[,,1]) # this will be used for the tests estimate <- cbind(x1data, pmm=unname(pmm[,1]), std= sqrt(diag(mvar))) # Now do the tests, on the first column of pmm only if (is.list(contr$cmat)) { test <- t(sapply(contr$cmat, function(x) testfun(x, pmm[,1], mvar[estimable, estimable], NULL))) natest <- sapply(contr$cmat, nafun, pmm[,1]) } else { test <- testfun(contr$cmat, pmm[,1], mvar[estimable, estimable], NULL) test <- matrix(test, nrow=1, dimnames=list(contr$termname, names(test))) natest <- nafun(contr$cmat, pmm[,1]) } if (any(natest)) test[natest,] <- NA if (any(estimable)) result <- list(estimate=estimate,test=test, mvar=mvar) else result <- list(estimate=estimate, test=test, mvar=NA) # If there were multiple columns from predfun, compute the matrix of # results and variances if (ncol(pmm) > 1 && any(estimable)){ pmm <- apply(sims, 2:3, mean) mvar2 <- apply(sims, 2:3, var) # Call the summary function, if present if (is.list(mfun)) result$summary <- sumfun(pmm, mvar2) else { result$pmm <- pmm result$mvar2 <- mvar2 } } } result$call <- Call class(result) <- "yates" result } yates_xmat <- function(Terms, Tatt, contr, population, mframe, fit, iscat) { # which variables(s) are in x1 (variables of interest) x1indx <- apply(Tatt$factors[,contr$termname,drop=FALSE] >0, 1, any) x2indx <- !x1indx # adjusters if (inherits(population, "data.frame")) pdata <- population #user data else if (population=="data") pdata <- mframe #easy case else if (population=="factorial") pdata <- yates_factorial_pop(mframe, Terms, x2indx, fit$xlevels) else if (population=="sas") { if (all(iscat[x2indx])) pdata <- yates_factorial_pop(mframe, Terms, x2indx, fit$xlevels) else if (!any(iscat[x2indx])) pdata <- mframe # no categoricals else { # mixed population pdata <- yates_factorial_pop(mframe, Terms, x2indx & iscat, fit$xlevels) n2 <- nrow(pdata) pdata <- pdata[rep(1:nrow(pdata), each=nrow(mframe)), ] row.names(pdata) <- 1:nrow(pdata) # fill in the continuous k <- rep(1:nrow(mframe), n2) for (i in which(x2indx & !iscat)) { j <- names(x1indx)[i] if (is.matrix(mframe[[j]])) pdata[[j]] <- mframe[[j]][k,, drop=FALSE] else pdata[[j]] <- (mframe[[j]])[k] attributes(pdata[[j]]) <- attributes(mframe[[j]]) } } } else stop("unknown population") # this should have been caught earlier # Now create the x1 data set, the unique rows we want to test if (is.null(contr$levels)) stop("levels are missing for this contrast") x1data <- as.data.frame(contr$levels) # in case it is a list x1name <- names(x1indx)[x1indx] for (i in 1:ncol(x1data)) { if (is.character(x1data[[i]])) { if (is.null(fit$xlevels[[x1name[i]]])) x1data[[i]] <- factor(x1data[[i]]) else x1data[[i]] <- factor(x1data[[i]], fit$xlevels[[x1name[i]]]) } } xmatlist <- vector("list", nrow(x1data)) if (is.null(attr(pdata, "terms"))) { np <- nrow(pdata) k <- match(x1name, names(pdata), nomatch=0) if (any(k>0)) pdata <- pdata[, -k, drop=FALSE] # toss out yates var for (i in 1:nrow(x1data)) { j <- rep(i, np) tdata <- cbind(pdata, x1data[j,,drop=FALSE]) # new data set xmatlist[[i]] <- model.matrix(Terms, tdata, xlev=fit$xlevels, contrast.arg= fit$contrasts) } } else { # pdata is a model frame, convert x1data # if the name and the class agree we go forward simply index <- match(names(x1data), names(pdata), nomatch=0) if (all(index >0) && identical(lapply(x1data, class), lapply(pdata, class)[index]) & identical(sapply(x1data, ncol) , sapply(pdata, ncol)[index])) { # everything agrees for (i in 1:nrow(x1data)) { j <- rep(i, nrow(pdata)) tdata <- pdata tdata[,names(x1data)] <- x1data[j,] xmatlist[[i]] <- model.matrix(Terms, tdata, contrasts.arg= fit$contrasts) } } else { # create a subset of the terms structure, for x1 only # for instance the user had age=c(75, 75, 85) and the term was ns(age) # then call model.frame to fix it up x1term <- Terms[which(x1indx)] x1name <- names(x1indx)[x1indx] attr(x1term, "dataClasses") <- Tatt$dataClasses[x1name] # R bug x1frame <- model.frame(x1term, x1data, xlev=fit$xlevels[x1name]) for (i in 1:nrow(x1data)) { j <- rep(i, nrow(pdata)) tdata <- pdata tdata[,names(x1frame)] <- x1frame[j,] xmatlist[[i]] <- model.matrix(Terms, tdata, xlev=fit$xlevels, contrast.arg= fit$contrasts) } } } xmatlist } yates_factorial_pop <- function(mframe, terms, x2indx, xlevels) { x2name <- names(x2indx)[x2indx] dclass <- attr(terms, "dataClasses")[x2name] if (!all(dclass %in% c("character", "factor"))) stop("population=factorial only applies if all the adjusting terms are categorical") nvar <- length(x2name) n2 <- sapply(xlevels[x2name], length) # number of levels for each n <- prod(n2) # total number of rows needed pdata <- mframe[rep(1, n), -1] # toss the response row.names(pdata) <- NULL # throw away funny names n1 <- 1 for (i in 1:nvar) { j <- rep(rep(1:n2[i], each=n1), length=n) xx <- xlevels[[x2name[i]]] if (dclass[i] == "factor") pdata[[x2name[i]]] <- factor(j, 1:n2[i], labels= xx) else pdata[[x2name[i]]] <- xx[j] n1 <- n1 * n2[i] } attr(pdata, "terms") <- terms pdata } print.yates <- function(x, digits = max(3, getOption("digits") -2), dig.tst = max(1, min(5, digits-1)), eps=1e-8, ...) { temp1 <- x$estimate temp1$pmm <- format(temp1$pmm, digits=digits) temp1$std <- format(temp1$std, digits=digits) # the spaces help separate the two parts of the printout temp2 <- cbind(test= paste(" ", rownames(x$test)), data.frame(x$test), stringsAsFactors=FALSE) row.names(temp2) <- NULL temp2$Pr <- format.pval(pchisq(temp2$chisq, temp2$df, lower.tail=FALSE), eps=eps, digits=dig.tst) temp2$chisq <- format(temp2$chisq, digits= dig.tst) temp2$df <- format(temp2$df) if (!is.null(temp2$ss)) temp2$ss <- format(temp2$ss, digits=digits) if (nrow(temp1) > nrow(temp2)) { dummy <- temp2[1,] dummy[1,] <- "" temp2 <- rbind(temp2, dummy[rep(1, nrow(temp1)-nrow(temp2)),]) } if (nrow(temp2) > nrow(temp1)) { # get rid of any factors before padding for (i in which(sapply(temp1, is.factor))) temp1[[i]] <- as.character(temp1[[i]]) dummy <- temp1[1,] dummy[1,] <- "" temp1 <- rbind(temp1, dummy[rep(1, nrow(temp2)- nrow(temp1)),]) } print(cbind(temp1, temp2), row.names=FALSE) invisible(x) } yates_setup <- function(fit, ...) UseMethod("yates_setup", fit) yates_setup.default <- function(fit, type, ...) { if (!missing(type) && !(type %in% c("linear", "link"))) warning("no yates_setup method exists for a model of class ", class(fit)[1], " and estimate type ", type, ", linear predictor estimate used by default") NULL } yates_setup.glm <- function(fit, predict = c("link", "response", "terms", "linear"), ...) { type <- match.arg(predict) if (type == "link" || type== "linear") NULL # same as linear else if (type == "response") { finv <- family(fit)$linkinv function(eta, X) finv(eta) } else if (type == "terms") stop("type terms not yet supported") } yates_setup.coxph <- function(fit, predict = c("lp", "risk", "expected", "terms", "survival", "linear"), options, ...) { type <- match.arg(predict) if (type=="lp" || type == "linear") NULL else if (type=="risk") function(eta, X) exp(eta) else if (type == "survival") { # If there are strata we need to do extra work # if there is an interaction we want to suppress a spurious warning suppressWarnings(baseline <- survfit(fit, censor=FALSE)) if (missing(options) || is.null(options$rmean)) rmean <- max(baseline$time) # max death time else rmean <- options$rmean if (!is.null(baseline$strata)) stop("stratified models not yet supported") cumhaz <- c(0, baseline$cumhaz) tt <- c(diff(c(0, pmin(rmean, baseline$time))), 0) predict <- function(eta, ...) { c2 <- outer(exp(drop(eta)), cumhaz) # matrix of values surv <- exp(-c2) meansurv <- apply(rep(tt, each=nrow(c2)) * surv, 1, sum) cbind(meansurv, surv) } summary <- function(surv, var) { bsurv <- t(surv[,-1]) std <- t(sqrt(var[,-1])) chaz <- -log(bsurv) zstat <- -qnorm((1-baseline$conf.int)/2) baseline$lower <- exp(-(chaz + zstat*std)) baseline$upper <- exp(-(chaz - zstat*std)) baseline$surv <- bsurv baseline$std.err <- std/bsurv baselinecumhaz <- chaz baseline } list(predict=predict, summary=summary) } else stop("type expected is not supported") } survival/R/print.summary.survfitms.R0000644000176200001440000000544313550143337017354 0ustar liggesusersprint.summary.survfitms <- function(x, digits = max(options()$digits - 4, 3), ...) { savedig <- options(digits=digits) on.exit(options(savedig)) if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } tsum <- function(x) { if (is.matrix(x)) rowSums(x) else x } omit <- x$na.action if (length(omit)) cat(naprint(omit), "\n") mat <- cbind(x$time, tsum(x$n.risk), tsum(x$n.event)) cnames <- c("time", "n.risk", "n.event") # If there is only one state, print the estimate, se, and CI at each # time point. If there are multiples, print just the estimate. # If there are multiple strata, or multiple newdata rows (predicted # curves from a multi-state coxph model), then print those sequentially # with a header line between each. if (is.null(x$states)) nstate <-1 else nstate <- length(x$states) dd <- dim(x$pstate) if (length(dd) ==3 ) { if (is.null(x$strata)) group <- rep(paste("data", 1:dd[2]), each=dd[1]) else group <- c(outer(rep(names(x$strata), x$strata), paste("data", 1:dd[2]), paste, sep=(", "))) mat <- mat[rep(1:nrow(mat), dim(x$pstate)[2]), ] mat <- cbind(mat, matrix(x$pstate, ncol= dd[3])) } else { if (is.null(strata)) group <- NULL else group <- rep(names(x$strata), x$strata) mat <- cbind(mat, x$pstate) } if (nstate >1) cnames <- c(cnames, paste0("P(", x$states[1:nstate], ")")) else { cnames <- c(cnames, "P") if (!is.null(x$std.err)) { if (is.null(x$lower)) { mat <- cbind(mat, as.vector(x$std.err)) cnames <- c(cnames, "std.err") } else { mat <- cbind(mat, as.vector(x$std.err), as.vector(x$lower), as.vector(x$upper)) cnames <- c(cnames, 'std.err', paste("lower ", x$conf.int*100, "% CI", sep=''), paste("upper ", x$conf.int*100, "% CI", sep='')) } } } if (!is.null(x$start.time)) { mat.keep <- mat[,1] >= x$start.time if (!any(mat.keep)) stop(paste("No rows remain using start.time =", x$start.time, ".")) mat <- mat[mat.keep,,drop=FALSE] if (!is.null(group)) group <- group[mat.keep] } if (nrow(mat) > 1) { dimnames(mat) <- list(rep("", nrow(mat)), cnames) if (is.null(group)) print(mat) else { #print it out one group at a time for (i in unique(group)) { who <- (group==i) cat(" ", i, "\n") print(mat[who,]) cat("\n") } } } else stop("There are no events to print. Please use the option ", "censored=TRUE with the summary function to see the censored ", "observations.") invisible(x) } survival/R/survexp.cfit.R0000644000176200001440000001063413537676563015142 0ustar liggesusers# Do expected survival based on a Cox model # This version relies on the survfit routine to do most of # the work. survexp.cfit <- function(group, ndata, y, method, coxfit, weights) { # If it is individual survival, call the predict method if (method=='individual') { temp <- predict(coxfit, newdata=ndata, type='expect', se=FALSE) return(list(surv= exp(-temp))) } # Get the set of survival curves on which I'll base my work # There is no id statement allowed yet, so no survexp for time-dependent # covariates sfit <- survfit.coxph(coxfit, newdata=ndata, se.fit=FALSE, censor=FALSE) # rare case: someone called survexp with a single-obs newdata # The average of n curves is just the curve, when n=1 if (length(group)==1) return(sfit) # number of curves to create & number of subjects ncurve <- max(group) #group was preset to contain integer group number n <- length(group) # matches nrow(ndata) # If the Cox model had strata then the newdata object also had to contain # the strata (needed to fully identify the new subjects), and the # n survival curves will be "strung out" as a single surv vector in # sfit, along with a strata component saying how many points for each. # If the Cox model did not have strata, sfit$surv and sfit$cumhaz will be # matrices with n columns. # The output should be a list with components time, n, and surv. # time = vector of unique time points # surv = matrix with 1 column per created curve (often just 1) # n = same shape as surv, containing the number of obs from ndata # that contribute to each row. newtime <- sort(unique(sfit$time)) # all of the unique times ntime <- length(newtime) newsurv <- list(time=newtime) # Each row of the input data is part of one and only one of the output # curves. Each column of gmat will contain the weights we need. # Each col sums to 1, and has zeros for those who belong to another curve gmat <- matrix(0., nrow=n, ncol=ncurve) for (i in 1:ncurve) { temp <- weights[group==i] gmat[group==i, i] <- temp/sum(temp) } # If the result is a set of curves with strata rather than a matrix, we # need to index into it, using a code trick taken from summary.survfit # Note that is is possible (though odd) for someone to specify a population # of subjects in survexp whose individual members come from different # strata in sfit. The result curves could have any of the times # that appear in any stratum. So we create a regular matrix of survivals. if (is.null(sfit$strata)) ssurv <- sfit$surv else { ssurv <- matrix(0., nrow=ntime, ncol=n) indx <- rep(1:length(sfit$strata), sfit$strata) for (i in 1:n) { itemp <- which(indx==i) ssurv[,i] <- approx(sfit$time[itemp], sfit$surv[itemp], newtime, yleft=1, method="constant", f=0, rule=2)$y } } if (method=="ederer") { # This is the most common call. We can work directly # with the returned survival curves, taking weighed averages. newsurv$n <- matrix(rep(table(group), each=ntime), nrow=ntime) newsurv$surv <- ssurv %*% gmat } else { # These are rarely used, so are implemented in S code rather than # C, even though it involves a loop over time points. # We need the hazard at each of the new time points, from which # a weighted average at each time point is computed # the Hakulinen also the survival at each time point. hazard <- apply(rbind(0, sfit$cumhaz), 2, diff) cmat <- matrix(0, ntime, ncurve) # Holds the result if (method== "conditional") { for (i in 1:ntime) { tmat <- ifelse(y >= newtime[i],1,0) * gmat #zero if not at risk cmat[i,] <- hazard[i,] %*% tmat / colSums(tmat) } } else { #Hakulinen method # Weights in this case are S(newtime) * I(newtime >=y) * gmat lsurv <- rbind(1.0, ssurv) #right continuous time for (i in 1:ntime) { tmat <- (ifelse(y>=newtime[i],1,0) * lsurv[i,]) * gmat cmat[i,] <- hazard[i,] %*% tmat / colSums(tmat) } } newsurv$surv <- exp(-apply(cmat, 2, cumsum)) } newsurv } survival/R/residuals.coxph.penal.R0000644000176200001440000000236113537676563016711 0ustar liggesusers# $Id: residuals.coxph.penal.S 11516 2012-04-24 12:49:14Z therneau $ residuals.coxph.penal <- function(object, type=c("martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas", "scaledsch","partial"), collapse=FALSE, weighted=FALSE, ...) { type <- match.arg(type) # Are there any sparse terms, and if so do I need the X matrix? if (any(object$pterms==2) && !(type=='martingale' || type=='deviance')){ # treat the sparse term as an offset term # It gets picked up in the linear predictor, so all I need to # do is "X" it out of the model so that it doesn't get picked up # as a part of the X matrix and etc. # I know that the sparse term is a single column BTW # sparsename <- (names(object$pterms))[object$pterms==2] x <- object[['x']] #don't accidentally get object$xlevels if (is.null(x)) { temp <- coxph.getdata(object, y=TRUE, x=TRUE, stratax=TRUE) if (is.null(object$y)) object$y <- temp$y if (is.null(object$strata)) object$strata <- temp$strata x <- temp$x } object$x <- x[, -match(sparsename, dimnames(x)[[2]]), drop=FALSE] temp <- attr(object$terms, 'term.labels') object$terms <- object$terms[-match(sparsename, temp)] } NextMethod('residuals') } survival/R/summary.coxph.R0000644000176200001440000000545713537676563015326 0ustar liggesuserssummary.coxph <- function(object, conf.int = 0.95, scale = 1, ...) { cox<-object beta <- cox$coefficients * scale if (is.null(cox$coefficients)) { # Null model return(object) #The summary method is the same as print in this case } nabeta <- !(is.na(beta)) #non-missing coefs beta2 <- beta[nabeta] if(is.null(beta) | is.null(cox$var)) stop("Input is not valid") se <- sqrt(diag(cox$var)) * scale if (!is.null(cox$naive.var)) nse <- sqrt(diag(cox$naive.var)) rval<-list(call=cox$call,fail=cox$fail, na.action=cox$na.action, n=cox$n, loglik=cox$loglik) if (!is.null(cox$nevent)) rval$nevent <- cox$nevent if (is.null(cox$naive.var)) { tmp <- cbind(beta, exp(beta), se, beta/se, pchisq((beta/ se)^2, 1, lower.tail=FALSE)) dimnames(tmp) <- list(names(beta), c("coef", "exp(coef)", "se(coef)", "z", "Pr(>|z|)")) } else { tmp <- cbind(beta, exp(beta), nse, se, beta/se, pchisq((beta/ se)^2, 1, lower.tail=FALSE)) dimnames(tmp) <- list(names(beta), c("coef", "exp(coef)", "se(coef)", "robust se", "z", "Pr(>|z|)")) } rval$coefficients <- tmp if (conf.int) { z <- qnorm((1 + conf.int)/2, 0, 1) tmp <- cbind(exp(beta), exp(-beta), exp(beta - z * se), exp(beta + z * se)) dimnames(tmp) <- list(names(beta), c("exp(coef)", "exp(-coef)", paste("lower .", round(100 * conf.int, 2), sep = ""), paste("upper .", round(100 * conf.int, 2), sep = ""))) rval$conf.int <- tmp } df <- length(beta2) logtest <- -2 * (cox$loglik[1] - cox$loglik[2]) rval$logtest <- c(test=logtest, df=df, pvalue= pchisq(logtest, df, lower.tail=FALSE)) rval$sctest <- c(test=cox$score, df=df, pvalue= pchisq(cox$score, df, lower.tail=FALSE)) rval$rsq<-c(rsq=1-exp(-logtest/cox$n), maxrsq=1-exp(2*cox$loglik[1]/cox$n)) rval$waldtest<-c(test=as.vector(round(cox$wald.test, 2)), df=df, pvalue= pchisq(as.vector(cox$wald.test), df, lower.tail=FALSE)) if (!is.null(cox$rscore)) rval$robscore<-c(test=cox$rscore, df=df, pvalue= pchisq(cox$rscore, df, lower.tail=FALSE)) rval$used.robust<-!is.null(cox$naive.var) if (!is.null(cox$concordance)) { # throw away the extra info, in the name of backwards compatability rval$concordance <- cox$concordance[6:7] names(rval$concordance) <- c("C", "se(C)") } class(rval) <-"summary.coxph" rval } survival/R/survfitms.R0000644000176200001440000007122313570772315014532 0ustar liggesusers# Automatically generated from the noweb directory # Methods for survfitms objects summary.survfit <- function(object, times, censored=FALSE, scale=1, extend=FALSE, rmean=getOption('survfit.rmean'), ...) { fit <- object #save typing if (!inherits(fit, 'survfit')) stop("summary.survfit can only be used for survfit objects") if (is.null(fit$logse)) fit$logse <- TRUE #older style # The print.rmean option is depreciated, it is still listened # to in print.survfit, but ignored here if (is.null(rmean)) rmean <- "common" if (is.numeric(rmean)) { if (is.null(fit$start.time)) { if (rmean < min(fit$time)) stop("Truncation point for the mean time in state is < smallest survival") } else if (rmean < fit$start.time) stop("Truncation point for the mean time in state is < smallest survival") } else { rmean <- match.arg(rmean, c('none', 'common', 'individual')) if (length(rmean)==0) stop("Invalid value for rmean option") } # adding time 0 makes the mean and median easier fit0 <- survfit0(fit, fit$start.time) #add time 0 temp <- survmean(fit0, scale=scale, rmean) table <- temp$matrix #for inclusion in the output list rmean.endtime <- temp$end.time if (!is.null(fit$strata)) { nstrat <- length(fit$strata) } delta <- function(x, indx) { # sums between chosen times if (is.logical(indx)) indx <- which(indx) if (!is.null(x) && length(indx) >0) { fx <- function(x, indx) diff(c(0, c(0, cumsum(x))[indx+1])) if (is.matrix(x)) { temp <- apply(x, 2, fx, indx=indx) # don't return a vector when only 1 time point is given if (is.matrix(temp)) temp else matrix(temp, nrow=1) } else fx(x, indx) } else NULL } if (missing(times)) { if (!censored) { index <- (rowSums(as.matrix(fit$n.event)) >0) for (i in c("time","n.risk", "n.event", "surv", "pstate", "std.err", "upper", "lower", "cumhaz", "std.chaz")) { if (!is.null(fit[[i]])) { # not all components in all objects temp <- fit[[i]] if (is.matrix(temp)) temp <- temp[index,,drop=FALSE] else if (!is.array(temp)) temp <- temp[index] #simple vector else temp <- temp[index,,, drop=FALSE] # 3 way fit[[i]] <- temp } } # The n.enter and n.censor values are accumualated # both of these are simple vectors if (is.null(fit$strata)) { for (i in c("n.enter", "n.censor")) if (!is.null(fit[[i]])) fit[[i]] <- delta(fit[[i]], index) } else { sindx <- rep(1:nstrat, fit$strata) for (i in c("n.enter", "n.censor")) { if (!is.null(fit[[i]])) fit[[i]] <- unlist(sapply(1:nstrat, function(j) delta(fit[[i]][sindx==j], index[sindx==j]))) } # the "factor" is needed for the case that a strata has no # events at all, and hence 0 lines of output fit$strata[] <- as.vector(table(factor(sindx[index], 1:nstrat))) } } #if missing(times) and censored=TRUE, the fit object is ok as it is } else { fit <- fit0 ssub<- function(x, indx) { #select an object and index if (!is.null(x) && length(indx)>0) { if (is.matrix(x)) x[pmax(1,indx),,drop=FALSE] else if (is.array(x)) x[pmax(1,indx),,,drop=FALSE] else x[pmax(1, indx)] } else NULL } findrow <- function(fit, times, extend) { if (FALSE) { if (is.null(fit$start.time)) mintime <- min(fit$time, 0) else mintime <- fit$start.time ptimes <- times[times >= mintime] } else ptimes <- times[is.finite(times)] if (!extend) { maxtime <- max(fit$time) ptimes <- ptimes[ptimes <= maxtime] } ntime <- length(fit$time) index1 <- findInterval(ptimes, fit$time) index2 <- 1 + findInterval(ptimes, fit$time, left.open=TRUE) # The pmax() above encodes the assumption that n.risk for any # times before the first observation = n.risk at the first obs fit$time <- ptimes for (i in c("surv", "pstate", "upper", "lower")) { if (!is.null(fit[[i]])) fit[[i]] <- ssub(fit[[i]], index1) } for (i in c("std.err", "cumhaz")) { if (!is.null(fit[[i]])) fit[[i]] <- ssub(fit[[i]], index1) } if (is.matrix(fit$n.risk)) { # Every observation in the data has to end with a censor or event. # So by definition the number at risk after the last observed time # value must be 0. fit$n.risk <- rbind(fit$n.risk,0)[index2,,drop=FALSE] } else fit$n.risk <- c(fit$n.risk, 0)[index2] for (i in c("n.event", "n.censor", "n.enter")) fit[[i]] <- delta(fit[[i]], index1) fit } # For a single component, turn it from a list into a single vector, matrix # or array unlistsurv <- function(x, name) { temp <- lapply(x, function(x) x[[name]]) if (is.vector(temp[[1]])) unlist(temp) else if (is.matrix(temp[[1]])) do.call("rbind", temp) else { # the cumulative hazard is the only component that is an array # it's third dimension is n xx <- unlist(temp) dd <- dim(temp[[1]]) dd[3] <- length(xx)/prod(dd[1:2]) array(xx, dim=dd) } } # unlist all the components built by a set of calls to findrow # and remake the strata unpacksurv <- function(fit, ltemp) { keep <- c("time", "surv", "pstate", "upper", "lower", "std.err", "cumhaz", "n.risk", "n.event", "n.censor", "n.enter", "std.chaz") for (i in keep) if (!is.null(fit[[i]])) fit[[i]] <- unlistsurv(ltemp, i) fit$strata[] <- sapply(ltemp, function(x) length(x$time)) fit } times <- sort(times) #in case the user forgot if (is.null(fit$strata)) fit <- findrow(fit, times, extend) else { ltemp <- vector("list", nstrat) for (i in 1:nstrat) ltemp[[i]] <- findrow(fit[i], times, extend) fit <- unpacksurv(fit, ltemp) } } # finish off the output structure fit$table <- table if (length(rmean.endtime)>0 && !any(is.na(rmean.endtime[1]))) fit$rmean.endtime <- rmean.endtime # A survfit object may contain std(log S) or std(S), summary always std(S) if (!is.null(fit$std.err) && fit$logse) fit$std.err <- fit$std.err * fit$surv # Expand the strata if (!is.null(fit$strata)) fit$strata <- factor(rep(1:nstrat, fit$strata), 1:nstrat, labels= names(fit$strata)) if (scale != 1) { # fix scale in the output fit$time <- fit$time/scale } class(fit) <- "summary.survfit" fit } summary.survfitms <- function(object, times, censored=FALSE, scale=1, extend=FALSE, rmean= getOption("survfit.rmean"), ...) { fit <- object # save typing if (!inherits(fit, 'survfitms')) stop("summary.survfitms can only be used for survfitms objects") if (is.null(fit$logse)) fit$logse <- FALSE # older style # The print.rmean option is depreciated, it is still listened # to in print.survfit, but ignored here if (is.null(rmean)) rmean <- "common" if (is.numeric(rmean)) { if (is.null(fit$start.time)) { if (rmean < min(fit$time)) stop("Truncation point for the mean is < smallest survival") } else if (rmean < fit$start.time) stop("Truncation point for the mean is < smallest survival") } else { rmean <- match.arg(rmean, c('none', 'common', 'individual')) if (length(rmean)==0) stop("Invalid value for rmean option") } fit0 <- survfit0(fit, fit$start.time) # add time 0 temp <- survmean2(fit0, scale=scale, rmean) table <- temp$matrix #for inclusion in the output list rmean.endtime <- temp$end.time if (!missing(times)) { if (!is.numeric(times)) stop ("times must be numeric") times <- sort(times) } if (!is.null(fit$strata)) { nstrat <- length(fit$strata) sindx <- rep(1:nstrat, fit$strata) } delta <- function(x, indx) { # sums between chosen times if (is.logical(indx)) indx <- which(indx) if (!is.null(x) && length(indx) >0) { fx <- function(x, indx) diff(c(0, c(0, cumsum(x))[indx+1])) if (is.matrix(x)) { temp <- apply(x, 2, fx, indx=indx) if (is.matrix(temp)) temp else matrix(temp, nrow=1) } else fx(x, indx) } else NULL } if (missing(times)) { if (!censored) { index <- (rowSums(as.matrix(fit$n.event)) >0) for (i in c("time","n.risk", "n.event", "surv", "pstate", "std.err", "upper", "lower", "cumhaz", "std.chaz")) { if (!is.null(fit[[i]])) { # not all components in all objects temp <- fit[[i]] if (is.matrix(temp)) temp <- temp[index,,drop=FALSE] else if (!is.array(temp)) temp <- temp[index] #simple vector else temp <- temp[index,,, drop=FALSE] # 3 way fit[[i]] <- temp } } # The n.enter and n.censor values are accumualated # both of these are simple vectors if (is.null(fit$strata)) { for (i in c("n.enter", "n.censor")) if (!is.null(fit[[i]])) fit[[i]] <- delta(fit[[i]], index) } else { sindx <- rep(1:nstrat, fit$strata) for (i in c("n.enter", "n.censor")) { if (!is.null(fit[[i]])) fit[[i]] <- unlist(sapply(1:nstrat, function(j) delta(fit[[i]][sindx==j], index[sindx==j]))) } # the "factor" is needed for the case that a strata has no # events at all, and hence 0 lines of output fit$strata[] <- as.vector(table(factor(sindx[index], 1:nstrat))) } } #if missing(times) and censored=TRUE, the fit object is ok as it is } else { fit <-fit0 # easier to work with ssub<- function(x, indx) { #select an object and index if (!is.null(x) && length(indx)>0) { if (is.matrix(x)) x[pmax(1,indx),,drop=FALSE] else if (is.array(x)) x[pmax(1,indx),,,drop=FALSE] else x[pmax(1, indx)] } else NULL } findrow <- function(fit, times, extend) { if (FALSE) { if (is.null(fit$start.time)) mintime <- min(fit$time, 0) else mintime <- fit$start.time ptimes <- times[times >= mintime] } else ptimes <- times[is.finite(times)] if (!extend) { maxtime <- max(fit$time) ptimes <- ptimes[ptimes <= maxtime] } ntime <- length(fit$time) index1 <- findInterval(ptimes, fit$time) index2 <- 1 + findInterval(ptimes, fit$time, left.open=TRUE) # The pmax() above encodes the assumption that n.risk for any # times before the first observation = n.risk at the first obs fit$time <- ptimes for (i in c("surv", "pstate", "upper", "lower")) { if (!is.null(fit[[i]])) fit[[i]] <- ssub(fit[[i]], index1) } for (i in c("std.err", "cumhaz")) { if (!is.null(fit[[i]])) fit[[i]] <- ssub(fit[[i]], index1) } if (is.matrix(fit$n.risk)) { # Every observation in the data has to end with a censor or event. # So by definition the number at risk after the last observed time # value must be 0. fit$n.risk <- rbind(fit$n.risk,0)[index2,,drop=FALSE] } else fit$n.risk <- c(fit$n.risk, 0)[index2] for (i in c("n.event", "n.censor", "n.enter")) fit[[i]] <- delta(fit[[i]], index1) fit } # For a single component, turn it from a list into a single vector, matrix # or array unlistsurv <- function(x, name) { temp <- lapply(x, function(x) x[[name]]) if (is.vector(temp[[1]])) unlist(temp) else if (is.matrix(temp[[1]])) do.call("rbind", temp) else { # the cumulative hazard is the only component that is an array # it's third dimension is n xx <- unlist(temp) dd <- dim(temp[[1]]) dd[3] <- length(xx)/prod(dd[1:2]) array(xx, dim=dd) } } # unlist all the components built by a set of calls to findrow # and remake the strata unpacksurv <- function(fit, ltemp) { keep <- c("time", "surv", "pstate", "upper", "lower", "std.err", "cumhaz", "n.risk", "n.event", "n.censor", "n.enter", "std.chaz") for (i in keep) if (!is.null(fit[[i]])) fit[[i]] <- unlistsurv(ltemp, i) fit$strata[] <- sapply(ltemp, function(x) length(x$time)) fit } times <- sort(times) if (is.null(fit$strata)) fit <- findrow(fit, times, extend) else { ltemp <- vector("list", nstrat) for (i in 1:nstrat) ltemp[[i]] <- findrow(fit[i,], times, extend) fit <- unpacksurv(fit, ltemp) } } # finish off the output structure fit$table <- table if (length(rmean.endtime)>0 && !any(is.na(rmean.endtime))) fit$rmean.endtime <- rmean.endtime if (!is.null(fit$strata)) fit$strata <- factor(rep(names(fit$strata), fit$strata)) # A survfit object may contain std(log S) or std(S), summary always std(S) if (!is.null(fit$std.err) && fit$logse) fit$std.err <- fit$std.err * fit$surv if (scale != 1) { # fix scale in the output fit$time <- fit$time/scale } class(fit) <- "summary.survfitms" fit } print.survfitms <- function(x, scale=1, rmean = getOption("survfit.rmean"), ...) { if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } omit <- x$na.action if (length(omit)) cat(" ", naprint(omit), "\n") x <- survfit0(x, x$start.time) if (is.null(rmean)) rmean <- "common" if (is.numeric(rmean)) { if (is.null(x$start.time)) { if (rmean < min(x$time)) stop("Truncation point for the mean is < smallest survival") } else if (rmean < x$start.time) stop("Truncation point for the mean is < smallest survival") } else { rmean <- match.arg(rmean, c('none', 'common', 'individual')) if (length(rmean)==0) stop("Invalid value for rmean option") } temp <- survmean2(x, scale=scale, rmean) if (is.null(temp$end.time)) print(temp$matrix, ...) else { etime <- temp$end.time dd <- dimnames(temp$matrix) cname <- dd[[2]] cname[length(cname)] <- paste0(cname[length(cname)], '*') dd[[2]] <- cname dimnames(temp$matrix) <- dd print(temp$matrix, ...) if (length(etime) ==1) cat(" *mean time in state, restricted (max time =", format(etime, ...), ")\n") else cat(" *mean time in state, restricted (per curve cutoff)\n") } invisible(x) } survmean2 <- function(x, scale=1, rmean) { nstate <- length(x$states) #there will always be at least 1 state ngrp <- max(1, length(x$strata)) if (is.null(x$newdata)) ndata <- 0 else ndata <- nrow(x$newdata) if (ngrp >1) { igrp <- rep(1:ngrp, x$strata) rname <- names(x$strata) } else { igrp <- rep(1, length(x$time)) rname <- NULL } # The n.event matrix may not have nstate columms. Its # colnames are the first elements of states, however if (is.matrix(x$n.event)) { nc <- ncol(x$n.event) nevent <- tapply(x$n.event, list(rep(igrp, nc), col(x$n.event)), sum) dimnames(nevent) <- list(rname, x$states[1:nc]) } else { nevent <- tapply(x$n.event, igrp, sum) names(nevent) <- rname } if (ndata< 2) { outmat <- matrix(0., nrow=nstate*ngrp , ncol=2) outmat[,1] <- rep(x$n, nstate) outmat[1:length(nevent), 2] <- c(nevent) if (ngrp >1) rowname <- c(outer(rname, x$states, paste, sep=", ")) else rowname <- x$states } else { outmat <- matrix(0., nrow=nstate*ndata*ngrp, ncol=2) outmat[,1] <- rep(x$n, nstate*ndata) outmat[, 2] <- rep(c(nevent), each=ndata) temp <- outer(1:ndata, x$states, paste, sep=", ") if (ngrp >1) rowname <- c(outer(rname, temp, paste, sep=", ")) else rowname <- temp nstate <- nstate * ndata } # Caculate the mean time in each state if (rmean != "none") { if (is.numeric(rmean)) maxtime <- rep(rmean, ngrp) else if (rmean=="common") maxtime <- rep(max(x$time), ngrp) else maxtime <- tapply(x$time, igrp, max) meantime <- matrix(0., ngrp, nstate) if (!is.null(x$influence)) stdtime <- meantime for (i in 1:ngrp) { # a 2 dimensional matrix is an "array", but a 3-dim array is # not a "matrix", so check for matrix first. if (is.matrix(x$pstate)) temp <- x$pstate[igrp==i,, drop=FALSE] else if (is.array(x$pstate)) temp <- matrix(x$pstate[igrp==i,,,drop=FALSE], ncol= nstate) else temp <- matrix(x$pstate[igrp==i], ncol=1) tt <- x$time[igrp==i] # Now cut it off at maxtime delta <- diff(c(tt[tt nrow(temp)) delta <- delta[1:nrow(temp)] if (length(delta) < nrow(temp)) delta <- c(delta, rep(0, nrow(temp) - length(delta))) meantime[i,] <- colSums(delta*temp) if (!is.null(x$influence)) { # calculate the variance if (is.list(x$influence)) itemp <- apply(x$influence[[i]], 1, function(x) colSums(x*delta)) else itemp <- apply(x$influence, 1, function(x) colSums(x*delta)) stdtime[i,] <- sqrt(rowSums(itemp^2)) } } outmat <- cbind(outmat, c(meantime)/scale) cname <- c("n", "nevent", "rmean") if (!is.null(x$influence)) { outmat <- cbind(outmat, c(stdtime)/scale) cname <- c(cname, "std(rmean)") } # report back a single time, if there is only one if (all(maxtime == maxtime[1])) maxtime <- maxtime[1] } else cname <- c("n", "nevent") dimnames(outmat) <- list(rowname, cname) if (rmean=='none') list(matrix=outmat) else list(matrix=outmat, end.time=maxtime/scale) } "[.survfitms" <- function(x, ..., drop=FALSE) { nmatch <- function(i, target) { # This function lets R worry about character, negative, # or logical subscripts # It always returns a set of positive integer indices temp <- seq(along=target) names(temp) <- target temp[i] } x <- survfit0(x, x$start.time) # otherwise influence and pstate don't align # ndots <- ...length() # the simplest, but not avail in R 3.4 # ndots <- length(list(...))# fails if any are missing, e.g. fit[,2] ndots <- if (missing(drop)) nargs()-1 else nargs()-2 # a workaround dd <- dim(x) dtype <- match(names(dd), c("strata", "data", "states")) if (is.null(x$states)) stop("survfitms object has no states component") if (ndots==0) return(x) # no subscript given if (ndots >0 && !missing(..1)) i <- ..1 else i <- NULL if (ndots> 1 && !missing(..2)) j <- ..2 else j <- NULL if (ndots> 2 && !missing(..3)) k <- ..3 else k <- NULL if (ndots >3) stop("too many subscripts for survfit object") if (is.null(i) & is.null(j) & is.null(k)) return(x) # Make a new object newx <- vector("list", length(x)) names(newx) <- names(x) for (kk in c("logse", "version", "conf.int", "conf.type", "type", "call")) if (!is.null(x[[kk]])) newx[[kk]] <- x[[kk]] class(newx) <- class(x) if (ndots==1 && length(dd[dd>1]) > 1) { # the 'treat it as a vector' case if (!is.numeric(i)) stop("single subscript must be numeric") # when subscripting a mix, these don't endure newx$cumhaz <- newx$std.chaz <- newx$influence.chaz <- NULL newx$transitions <- newx$states <- newx$newdata <- NULL # what strata and columns do I need? itemp <- matrix(1:prod(dd), nrow=dd[1]) jj <- (col(itemp))[i] # columns ii <- (row(itemp))[i] # this is now the strata id if (dtype[1]!=1 || dd[1]==1) # no strata or only 1 irow <- rep(seq(along= x$time), length(ii)) else { itemp2 <- split(1:sum(x$strata), rep(1:length(x$strata), x$strata)) irow <- unlist(itemp2[ii]) # rows of the pstate object } inum <- x$strata[ii] # number of rows in each ii indx <- cbind(irow, rep(jj,ii)) # matrix index for pstate # The n.risk, n.event, .. matrices dont have a newdata dimension. if (all(dtype!=2) || dd["data"]==1) kk <- jj else { # both data and states itemp <- matrix(1:(dd["data"]*dd["states"]), nrow=dd[2]) kk <- (col(itemp))[jj] # the state of each selected one indx2 <- cbind(irow, rep(k, irow)) } newx$n <- x$n[ii] newx$time <- x$time[irow] for (z in c("n.risk", "n.event", "n.censor", "n.enter")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[indx2] for (z in c("pstate", "std.err", "upper", "lower")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[indx] newx$strata <- x$strata[ii] names(newx$strata) <- seq(along=ii) return(newx) } # not a single subscript, i.e., the usual case if (dd[1]==1 && (ndots+1 == length(dd)) && is.null(x$strata)) { # if there is only one curve, no 'strata', then we allow users # to ignore the first dimension k <- j; j <- i; i <- 1 ndots <- ndots +1 } else if (ndots != length(dd)) stop("incorrect number of dimensions") if (is.null(i)) i <- seq.int(dd[1]) else if (length(x$strata)) i <- nmatch(i, names(x$strata)) if (dd[1]==1) # no strata or only 1 irow <- rep(seq(along= x$time), length(i)) else { itemp <- split(1:sum(x$strata), rep(1:length(x$strata), x$strata)) irow <- unlist(itemp[i]) # rows of the pstate object } newx$n <- x$n[i] newx$time <- x$time[irow] # The n.censor and n.enter values do not repeat with multiple X values for (z in c("n.censor", "n.enter")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow, drop=FALSE] # two cases: with newx or without newx (pstate is always present) nstate <- length(x$states) if (dtype[2] !=2) { # j indexes the states if (is.null(j)) j <- seq.int(nstate) else j <- nmatch(j, x$states) if (length(i) ==1 && drop) newx$strata <- NULL else newx$strata <- x$strata[i] # in the rare case of a single strata with 1 obs, don't drop dims if (length(irow)==1 && length(j) > 1) drop2 <- FALSE else drop2 <- drop for (z in c("n.risk", "n.event")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,j, drop=drop2] for (z in c("pstate", "std.err", "upper", "lower")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,j, drop=drop2] if (!is.null(x$influence.pstate)) { if (is.list(x$influence.pstate)) { if (length(i)==1) newx$influence.pstate <- x$influence.pstate[[i]] else newx$influence.pstate <- lapply(x$influence.pstate[i], function(x) x[,,j, drop= drop]) } else newx$influence.pstate <- x$influence.pstate[,,j, drop=drop] } if (length(j)== nstate && all(j == seq.int(nstate))) { # user kept all the states, in original order newx$states <- x$states for (z in c("cumhaz", "std.chaz")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,, drop=drop2] if (!is.null(x$influence.chaz)) { if (is.list(x$influence.chaz)) { newx$influence.chaz <- x$influence.chaz[i] if (length(i)==1 && drop) newx$influence.chaz <- x$influence.chaz[[i]] } else newx$influence.chaz <- x$influence.chaz } } else { newx$cumhaz <- newx$std.chaz <- newx$influence.chaz <- NULL if (length(j)==1 & drop) { newx$states <- NULL temp <- class(newx) class(newx) <- temp[temp!="survfitms"] } else newx$states <- x$states[j] } } else { # j points at newdata, k points at states if (is.null(j)) j <- seq.int(dd[2]) else j <- nmatch(j, seq.int(dd[2])) if (is.null(k)) k <- seq.int(nstate) else k <- nmatch(k, x$states) if (length(irow)==1) { if (length(j) > 1) drop2 <- FALSE else drop2<- drop if (length(k) > 1) drop3 <- FALSE else drop3 <- drop } else drop2 <- drop3 <- drop for (z in c("n.risk", "n.event")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow, k, drop=drop3] for (z in c("pstate", "std.err", "upper", "lower")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,j,k, drop=drop2] if (!is.null(x$influence.pstate)) { if (is.list(x$influence.pstate)) { if (length(i)==1) newx$influence.pstate <- (x$influence.pstate[[i]])[,,j,k, drop=drop] else newx$influence.pstate <- lapply(x$influence.pstate[i], function(x) x[,,j,k, drop= drop]) } else newx$influence.pstate <- x$influence.pstate[,,j,k, drop=drop] } if (length(k)== nstate && all(k == seq.int(nstate))) { # user kept all the states newx$states <- x$states for (z in c("cumhaz", "std.chaz")) if (!is.null(x[[z]])) newx[[z]] <- (x[[z]])[irow,j,, drop=drop2] if (!is.null(x$influence.chaz)) { if (is.list(x$influence.chaz)) { newx$influence.chaz <- (x$influence.chaz[i])[,j,] if (length(i)==1 && drop) newx$influence.chaz <- x$influence.chaz[[i]] } else newx$influence.chaz <- x$influence.chaz[,j,] } } else { # never drop the states component. Otherwise downstream code # will start looking for x$surv instead of x$pstate newx$states <- x$states[k] newx$cumhaz <- newx$std.chaz <- newx$influence.chaz <- NULL x$transitions <- NULL } if (length(j)==1 && drop) newx$newdata <- NULL else newx$newdata <- x$newdata[j,,drop=FALSE] #newdata is a data frame } newx } survival/R/is.ratetable.R0000644000176200001440000001241313537676563015054 0ustar liggesusersis.ratetable <- function(x, verbose=FALSE) { datecheck <- function(x) inherits(x, c("Date", "POSIXt", "date", "chron")) att <- attributes(x) dlist <- c("dim", "dimnames", "cutpoints") isDate <- sapply(att$cutpoints, datecheck) dimid <- names(att$dimnames) if (is.null(dimid)) dimid <- att$dimid if (!verbose) { if (!inherits(x, 'ratetable')) return(FALSE) if (any(is.na(match(dlist, names(att))))) return(FALSE) if (is.null(att$dimid)) att$dimid <- names(att$dimnames) nd <- length(att$dim) if (length(x) != prod(att$dim)) return(FALSE) if (is.null(dimid)) return(FALSE) if (any(is.na(dimid) | dimid == "")) return(FALSE) if (!(is.list(att$dimnames) && is.list(att$cutpoints))) return(FALSE) if (length(att$dimnames)!=nd || length(att$cutpoints)!=nd) return(FALSE) # One of 'factor' (old style table) or 'type' (new style) should exist if (!is.null(att$type)) { if (length(att$type) != nd) return(FALSE) if (any(is.na(match(att$type, 1:4)))) return(FALSE) if (sum(att$type==4) > 1) return(FALSE) if (any((att$type >2) != isDate)) return(FALSE) fac <- ifelse(att$type==1, 1, 0) # is a 'factor' } else if (!is.null(att$factor)) { fac <- as.numeric(att$factor) if (any(is.na(fac))) return(FALSE) if (any(fac <0)) return(FALSE) if (length(att$factor)!=nd ) return(FALSE) if (sum(fac>1) >1) return(FALSE) # more than 1 col marked as US year if (any(fac==1 & isDate)) return(FALSE) } else return(FALSE) if (length(att$dimid) != nd) return(FALSE) for (i in 1:nd) { n <- att$dim[i] if (length(att$dimnames[[i]]) !=n) return(FALSE) if (fac[i]!=1 && length(att$cutpoints[[i]])!=n) return(FALSE) if (fac[i]!=1 && any(order(att$cutpoints[[i]])!= 1:n)) return(FALSE) if (fac[i]==1 && !is.null(att$cutpoints[[i]])) return(FALSE) if (fac[i]>1 && i 2 & ! isDate) if (length(indx) > 0) msg <- c(msg, paste0("type[", indx, "] is 3 or 4 but the cutpoint is not one of the date types")) indx <- which(type <3 & isDate) if (length(indx)>0) msg <- c(msg, paste0("type[", indx, "] is numeric or factor but the cutpoint is a date")) } if (sum(type==4) >1) msg <- c(msg, "two dimenesions idenitied as US ratetable years") } else if (!is.null(att$factor)) { fac <- as.numeric(att$factor) if (any(is.na(fac))) msg <- c(msg, "illegal 'factor' attribute of NA") if (any(fac <0)) msg <- c(msg, "illegal 'factor' attribute of <0") if (length(att$factor)!=nd) msg <- c(msg, 'wrong length for factor') type <- 1*(fac==1) + 2*(fac==0) + 4*(fac>1) if (sum(fac>1) >1) msg <- c(msg, "two dimenesions idenitied as US ratetable years") } else msg <- c(msg, "missing the 'type' attribute") for (i in 1:nd) { n <- att$dim[i] if (length(att$dimnames[[i]]) !=n) msg <- c(msg, paste('dimname', i, 'is the wrong length')) if (type[i] >1) { #continuous variable if (length(att$cutpoints[[i]]) != n) msg <- c(msg, paste('wrong length for cutpoints', i)) else if (any(order(att$cutpoints[[i]])!= 1:n)) msg <- c(msg, paste('unsorted cutpoints for dimension',i)) } if (type[i]==1 && !is.null(att$cutpoints[[i]])) msg <- c(msg, paste0('attribute type[', i, '] is continuous; cutpoint should be null')) # This message only applies to old style rate table if (!is.null(att$fac) && type[i]==4 && i 1) stop("a formula cannot have multiple cluster terms") if (length(tcl) > 0) { # there is one # subscripting of formulas is broken at least through R 3.5, if the # formula contains an offset. Adding offset to the "specials" above # is just a sneaky way to find out if one is present, then call # reformulate ourselves. tt is a correct index into the row labels # of the factors attribute, tt+1 to the variables attribute (which is # a list, so you have to skip the "list" call). The term.labels attr # contains neither the response nor the offset, but does contain the # interactions, which we need. factors <- attr(Terms, 'factors') if (any(factors[tcl,] >1)) stop("cluster() cannot be in an interaction") if (attr(Terms, "response") ==0) stop("formula must have a Surv response") # reformulate with the response option puts ` ` around Surv, which messes # up evaluation, hence the fancy dance to replace a piece rather # than recreate temp <- attr(Terms, "term.labels") oo <- attr(Terms, 'specials')$offset if (!is.null(oo)) { # add the offset to the set of labels ooterm <- rownames(factors)[oo] if (oo < tcl) temp <- c(ooterm, temp) else temp <- c(temp, ooterm) } if (is.null(Call$cluster)) Call$cluster <- attr(Terms, "variables")[[1+tcl]][[2]] else warning("cluster appears both in a formula and as an argument, formula term ignored") if (is.list(formula)) formula[[1]][[3]] <- reformulate(temp[1-tcl])[[2]] else formula[[3]] <- reformulate(temp[1-tcl])[[2]] Call$formula <- formula } # create a call to model.frame() that contains the formula (required) # and any other of the relevant optional arguments # but don't evaluate it just yet indx <- match(c("formula", "data", "weights", "subset", "na.action", "cluster", "id", "istate"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") tform <- Call[c(1,indx)] # only keep the arguments we wanted tform[[1L]] <- quote(stats::model.frame) # change the function called # if the formula is a list, do the first level of processing on it. if (is.list(formula)) { multiform <- TRUE dformula <- formula[[1]] # the default formula for transitions if (missing(statedata)) covlist <- parsecovar1(formula[-1]) else { if (!inherits(statedata, "data.frame")) stop("statedata must be a data frame") if (is.null(statedata$state)) stop("statedata data frame must contain a 'state' variable") covlist <- parsecovar1(formula[-1], names(statedata)) } # the term.labels + reformulate + environment trio is used in [.terms; # if it's good enough for base R it's good enough for me tlab <- unlist(lapply(covlist$rhs, function(x) attr(terms.formula(x$formula), "term.labels"))) tlab <- c(attr(terms.formula(dformula), "term.labels"), tlab) newform <- reformulate(tlab, dformula[[2]]) environment(newform) <- environment(dformula) formula <- newform tform$na.action <- na.pass # defer any missing value work to later } else { multiform <- FALSE # formula is not a list of expressions covlist <- NULL dformula <- formula } # add specials to the formula special <- c("strata", "tt") tform$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) # Make "tt" visible for coxph formulas, without making it visible elsewhere if (!is.null(attr(tform$formula, "specials")$tt)) { coxenv <- new.env(parent= environment(formula)) assign("tt", function(x) x, envir=coxenv) environment(tform$formula) <- coxenv } # okay, now evaluate the formula mf <- eval(tform, parent.frame()) if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) # Grab the response and id variables Y <- model.extract(mf, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") type <- attr(Y, "type") multi <- FALSE if (type=="mright" || type == "mcounting") multi <- TRUE else if (type!='right' && type!='counting') stop(paste("Cox model doesn't support \"", type, "\" survival data", sep='')) data.n <- nrow(Y) #remember this before any time transforms if (!multi && multiform) stop("formula is a list but the response is not multi-state") if (control$timefix) Y <- aeqSurv(Y) if (length(attr(Terms, 'variables')) > 2) { # a ~1 formula has length 2 ytemp <- terms.inner(formula[1:2]) xtemp <- terms.inner(formula[-2]) if (any(!is.na(match(xtemp, ytemp)))) warning("a variable appears on both the left and right sides of the formula") } # The time transform will expand the data frame mf. To do this # it needs Y and the strata. Everything else (cluster, offset, weights) # should be extracted after the transform # strats <- attr(Terms, "specials")$strata hasinteractions <- FALSE dropterms <- NULL if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.integer(strata.keep) for (i in stemp$vars) { #multiple strata terms are allowed # The factors attr has one row for each variable in the frame, one # col for each term in the model. Pick rows for each strata # var, and find if it participates in any interactions. if (any(attr(Terms, 'order')[attr(Terms, "factors")[i,] >0] >1)) hasinteractions <- TRUE } if (!hasinteractions) dropterms <- stemp$terms } else istrat <- NULL if (hasinteractions && multi) stop("multi-state coxph does not support strata*covariate interactions") timetrans <- attr(Terms, "specials")$tt if (missing(tt)) tt <- NULL if (length(timetrans)) { if (multi) stop("the tt() transform is not implemented for multi-state models") timetrans <- untangle.specials(Terms, 'tt') ntrans <- length(timetrans$terms) if (is.null(tt)) { tt <- function(x, time, riskset, weights){ #default to O'Brien's logit rank obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } } if (is.function(tt)) tt <- list(tt) #single function becomes a list if (is.list(tt)) { if (any(!sapply(tt, is.function))) stop("The tt argument must contain function or list of functions") if (length(tt) != ntrans) { if (length(tt) ==1) { temp <- vector("list", ntrans) for (i in 1:ntrans) temp[[i]] <- tt[[1]] tt <- temp } else stop("Wrong length for tt argument") } } else stop("The tt argument must contain a function or list of functions") if (ncol(Y)==2) { if (length(strats)==0) { sorted <- order(-Y[,1], Y[,2]) newstrat <- rep.int(0L, nrow(Y)) newstrat[1] <- 1L } else { sorted <- order(istrat, -Y[,1], Y[,2]) #newstrat marks the first obs of each strata newstrat <- as.integer(c(1, 1*(diff(istrat[sorted])!=0))) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount1, Y[sorted,], as.integer(newstrat)) tindex <- sorted[counts$index] } else { if (length(strats)==0) { sort.end <- order(-Y[,2], Y[,3]) sort.start<- order(-Y[,1]) newstrat <- c(1L, rep(0, nrow(Y) -1)) } else { sort.end <- order(istrat, -Y[,2], Y[,3]) sort.start<- order(istrat, -Y[,1]) newstrat <- c(1L, as.integer(diff(istrat[sort.end])!=0)) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount2, Y, as.integer(sort.start -1L), as.integer(sort.end -1L), as.integer(newstrat)) tindex <- counts$index } Y <- Surv(rep(counts$time, counts$nrisk), counts$status) type <- 'right' # new Y is right censored, even if the old was (start, stop] mf <- mf[tindex,] istrat <- rep(1:length(counts$nrisk), counts$nrisk) weights <- model.weights(mf) if (!is.null(weights) && any(!is.finite(weights))) stop("weights must be finite") tcall <- attr(Terms, 'variables')[timetrans$terms+2] pvars <- attr(Terms, 'predvars') pmethod <- sub("makepredictcall.", "", as.vector(methods("makepredictcall"))) for (i in 1:ntrans) { newtt <- (tt[[i]])(mf[[timetrans$var[i]]], Y[,1], istrat, weights) mf[[timetrans$var[i]]] <- newtt nclass <- class(newtt) if (any(nclass %in% pmethod)) { # It has a makepredictcall method dummy <- as.call(list(as.name(class(newtt)[1]), tcall[[i]][[2]])) ptemp <- makepredictcall(newtt, dummy) pvars[[timetrans$terms[i]+2]] <- ptemp } } attr(Terms, "predvars") <- pvars } xlevels <- .getXlevels(Terms, mf) # grab the cluster, if present. Using cluster() in a formula is no # longer encouraged cluster <- model.extract(mf, "cluster") id <- model.extract(mf, "id") if (!is.null(id) && is.null(cluster) && (missing(robust) || robust)) cluster <- id if (missing(robust)) robust <- !is.null(cluster) else if (robust && is.null(cluster)) { if (ncol(Y) ==2) cluster <- seq.int(1, nrow(mf)) else stop("one of cluster or id is needed") } contrast.arg <- NULL #due to shared code with model.matrix.coxph attr(Terms, "intercept") <- 1 # always have a baseline hazard # Grab the id variable to check out multi-state data id <- model.extract(mf, "id") if (multi) { # remove strata from dformula, before any further processing if (length(dropterms)){ Terms2 <- Terms[-dropterms] dformula <- formula(Terms2) } else Terms2 <- Terms # check for consistency of the states, and create a transition # matrix if (length(id)==0) stop("an id statement is required for multi-state models") istate <- model.extract(mf, "istate") mcheck <- survcheck2(Y, id, istate) # error messages here if (mcheck$flag["overlap"] > 0) stop("data set has overlapping intervals for one or more subjects") transitions <- mcheck$transitions istate <- mcheck$istate states <- mcheck$states # build tmap, which has one row per term, one column per transition if (missing(statedata)) covlist2 <- parsecovar2(covlist, NULL, dformula= dformula, Terms2, transitions, states) else covlist2 <- parsecovar2(covlist, statedata, dformula= dformula, Terms2, transitions, states) tmap <- covlist2$tmap if (!is.null(covlist)) { # first vector will be true if there is at least 1 transition for which all # covariates are present, second if there is at least 1 for which some are not good.tran <- bad.tran <- rep(FALSE, nrow(Y)) # We don't need to check interaction terms termname <- rownames(attr(Terms, 'factors')) trow <- (!is.na(match(rownames(tmap), termname))) # create a missing indicator for each term termiss <- matrix(0L, nrow(mf), ncol(mf)) for (i in 1:ncol(mf)) { xx <- is.na(mf[[i]]) if (is.matrix(xx)) termiss[,i] <- apply(xx, 1, any) else termiss[,i] <- xx } for (i in levels(istate)) { rindex <- which(istate ==i) j <- which(covlist2$mapid[,1] == match(i, states)) #possible transitions for (jcol in j) { k <- which(trow & tmap[,jcol] > 0) # the terms involved in that bad.tran[rindex] <- (bad.tran[rindex] | apply(termiss[rindex, k, drop=FALSE], 1, any)) good.tran[rindex] <- (good.tran[rindex] | apply(!termiss[rindex, k, drop=FALSE], 1, all)) } } n.partially.used <- sum(good.tran & bad.tran & !is.na(Y)) omit <- (!good.tran & bad.tran) | is.na(Y) if (all(omit)) stop("all observations deleted due to missing values") temp <- setNames(seq(omit)[omit], attr(mf, "row.names")[omit]) attr(temp, "class") <- "omit" mf <- mf[!omit,, drop=FALSE] attr(mf, "na.action") <- temp Y <- Y[!omit] id <- id[!omit] if (length(istate)) istate <- istate[!omit] # istate can be NULL } } if (length(dropterms)) { Terms2 <- Terms[ -dropterms] X <- model.matrix(Terms2, mf, constrasts=contrast.arg) # we want to number the terms wrt the original model matrix temp <- attr(X, "assign") shift <- sort(dropterms) temp <- temp + 1*(shift[1] <= temp) if (length(shift)==2) temp + 1*(shift[2] <= temp) attr(X, "assign") <- temp } else X <- model.matrix(Terms, mf, contrasts=contrast.arg) # drop the intercept after the fact, and also drop strata if necessary Xatt <- attributes(X) if (hasinteractions) adrop <- c(0, untangle.specials(Terms, "strata")$terms) else adrop <- 0 xdrop <- Xatt$assign %in% adrop #columns to drop (always the intercept) X <- X[, !xdrop, drop=FALSE] attr(X, "assign") <- Xatt$assign[!xdrop] attr(X, "contrasts") <- Xatt$contrasts offset <- model.offset(mf) if (is.null(offset) | all(offset==0)) offset <- rep(0., nrow(mf)) else if (any(!is.finite(offset) | !is.finite(exp(offset)))) stop("offsets must lead to a finite risk score") weights <- model.weights(mf) if (!is.null(weights) && any(!is.finite(weights))) stop("weights must be finite") assign <- attrassign(X, Terms) contr.save <- attr(X, "contrasts") if (sum(Y[, ncol(Y)]) == 0) { # No events in the data! ncoef <- ncol(X) ctemp <- rep(NA, ncoef) names(ctemp) <- colnames(X) concordance= c(concordant=0, discordant=0, tied.x=0, tied.y=0, tied.xy=0, concordance=NA, std=NA, timefix=FALSE) rval <- list(coefficients= ctemp, var = matrix(0.0, ncoef, ncoef), loglik=c(0,0), score =0, iter =0, linear.predictors = offset, residuals = rep(0.0, data.n), means = colMeans(X), method=method, n = data.n, nevent=0, terms=Terms, assign=assign, concordance=concordance, wald.test=0.0, y = Y, call=Call) class(rval) <- "coxph" return(rval) } if (multi) { cmap <- parsecovar3(tmap, colnames(X), attr(X, "assign")) xstack <- stacker(cmap, as.integer(istate), X, Y, strata=istrat, states=states) X <- xstack$X Y <- xstack$Y istrat <- xstack$strata if (length(offset)) offset <- offset[xstack$rindex] if (length(weights)) weights <- weights[xstack$rindex] if (length(cluster)) cluster <- cluster[xstack$rindex] t2 <- tmap[-1,,drop=FALSE] # remove the intercept row r2 <- row(t2)[!duplicated(as.vector(t2))] c2 <- col(t2)[!duplicated(as.vector(t2))] a2 <- lapply(seq(along=r2), function(i) {cmap[1+assign[[r2[i]]], c2[i]]}) # which elements are unique? tab <- table(r2) count <- tab[r2] names(a2) <- ifelse(count==1, row.names(t2)[r2], paste(row.names(t2)[r2], colnames(cmap)[c2], sep="_")) assign <- a2 } # infinite covariates are not screened out by the na.omit routines # But this needs to be done after the multi-X part if (!all(is.finite(X))) stop("data contains an infinite predictor") # init is checked after the final X matrix has been made if (missing(init)) init <- NULL else { if (length(init) != ncol(X)) stop("wrong length for init argument") temp <- X %*% init - sum(colMeans(X) * init) + offset # it's okay to have a few underflows, but if all of them are too # small we get all zeros if (any(exp(temp) > .Machine$double.xmax) || all(exp(temp)==0)) stop("initial values lead to overflow or underflow of the exp function") } pterms <- sapply(mf, inherits, 'coxph.penalty') if (any(pterms)) { pattr <- lapply(mf[pterms], attributes) pname <- names(pterms)[pterms] # # Check the order of any penalty terms ord <- attr(Terms, "order")[match(pname, attr(Terms, 'term.labels'))] if (any(ord>1)) stop ('Penalty terms cannot be in an interaction') pcols <- assign[match(pname, names(assign))] fit <- coxpenal.fit(X, Y, istrat, offset, init=init, control, weights=weights, method=method, row.names(mf), pcols, pattr, assign) } else { if( method=="breslow" || method =="efron") { if (grepl('right', type)) fitter <- get("coxph.fit") else fitter <- get("agreg.fit") } else if (method=='exact') { if (type== "right") fitter <- get("coxexact.fit") else fitter <- get("agexact.fit") } else stop(paste ("Unknown method", method)) fit <- fitter(X, Y, istrat, offset, init, control, weights=weights, method=method, row.names(mf)) } if (is.character(fit)) { fit <- list(fail=fit) class(fit) <- 'coxph' } else { if (!is.null(fit$coefficients) && any(is.na(fit$coefficients))) { vars <- (1:length(fit$coefficients))[is.na(fit$coefficients)] msg <-paste("X matrix deemed to be singular; variable", paste(vars, collapse=" ")) if (!singular.ok) stop(msg) # else warning(msg) # stop being chatty } fit$n <- data.n fit$nevent <- sum(Y[,ncol(Y)]) fit$terms <- Terms fit$assign <- assign class(fit) <- fit$class fit$class <- NULL # don't compute a robust variance if there are no coefficients if (robust && !is.null(fit$coefficients) && !all(is.na(fit$coefficients))) { fit$naive.var <- fit$var # a little sneaky here: by calling resid before adding the # na.action method, I avoid having missings re-inserted # I also make sure that it doesn't have to reconstruct X and Y fit2 <- c(fit, list(x=X, y=Y, weights=weights)) if (length(istrat)) fit2$strata <- istrat if (length(cluster)) { temp <- residuals.coxph(fit2, type='dfbeta', collapse=cluster, weighted=TRUE) # get score for null model if (is.null(init)) fit2$linear.predictors <- 0*fit$linear.predictors else fit2$linear.predictors <- c(X %*% init) temp0 <- residuals.coxph(fit2, type='score', collapse=cluster, weighted=TRUE) } else { temp <- residuals.coxph(fit2, type='dfbeta', weighted=TRUE) fit2$linear.predictors <- 0*fit$linear.predictors temp0 <- residuals.coxph(fit2, type='score', weighted=TRUE) } fit$var <- t(temp) %*% temp u <- apply(as.matrix(temp0), 2, sum) fit$rscore <- coxph.wtest(t(temp0)%*%temp0, u, control$toler.chol)$test } #Wald test if (length(fit$coefficients) && is.null(fit$wald.test)) { #not for intercept only models, or if test is already done nabeta <- !is.na(fit$coefficients) # The init vector might be longer than the betas, for a sparse term if (is.null(init)) temp <- fit$coefficients[nabeta] else temp <- (fit$coefficients - init[1:length(fit$coefficients)])[nabeta] fit$wald.test <- coxph.wtest(fit$var[nabeta,nabeta], temp, control$toler.chol)$test } # Concordance. Done here so that we can use cluster if it is present # The returned value is a subset of the full result, partly because it # is all we need, but more for backward compatability with survConcordance.fit if (length(cluster)) temp <- concordancefit(Y, fit$linear.predictors, istrat, weights, cluster=cluster, reverse=TRUE, timefix= FALSE) else temp <- concordancefit(Y, fit$linear.predictors, istrat, weights, reverse=TRUE, timefix= FALSE) if (is.matrix(temp$count)) fit$concordance <- c(colSums(temp$count), concordance=temp$concordance, std=sqrt(temp$var)) else fit$concordance <- c(temp$count, concordance=temp$concordance, std=sqrt(temp$var)) na.action <- attr(mf, "na.action") if (length(na.action)) fit$na.action <- na.action if (model) { if (length(timetrans)) { stop("'model=TRUE' not supported for models with tt terms") } fit$model <- mf } if (x) { fit$x <- X if (length(timetrans)) fit$strata <- istrat else if (length(strats)) fit$strata <- strata.keep } if (y) fit$y <- Y fit$timefix <- control$timefix # remember this option } if (!is.null(weights) && any(weights!=1)) fit$weights <- weights names(fit$means) <- names(fit$coefficients) if (multi) { fit$transitions <- transitions fit$states <- states fit$cmap <- cmap fit$resid <- rowsum(fit$resid, xstack$rindex) names(fit$coefficients) <- seq(along=fit$coefficients) if (x) fit$strata <- istrat # save the expanded strata class(fit) <- c("coxphms", class(fit)) } fit$formula <- formula(Terms) if (length(xlevels) >0) fit$xlevels <- xlevels fit$contrasts <- contr.save if (any(offset !=0)) fit$offset <- offset fit$call <- Call fit } survival/R/anova.coxphlist.R0000644000176200001440000000457013543504461015604 0ustar liggesusers# This is usually called from anova.coxph, not a user # It's first argument must be a list of coxph models anova.coxphlist <- function (object, test = 'Chisq' ,...) { if (!is.list(object)) stop("First argument must be a list") is.coxmodel <- sapply(object, function(x) inherits(x, "coxph")) if (!all(is.coxmodel)) stop("All arguments must be Cox models") is.robust <- sapply(object, function(x) !is.null(object$rscore)) if (any(is.robust)) stop("Can't do anova tables with robust variances") ties <- sapply(object, function(x) x$method) if (any(ties != ties[1])) stop("all models must have the same ties option") responses <- as.character(unlist(lapply(object, function(x) deparse(formula(x)[[2]])))) sameresp <- (responses == responses[1]) if (!all(sameresp)) { object <- object[sameresp] warning(paste("Models with response", deparse(responses[!sameresp]), "removed because response differs from", "model 1")) } ns <- sapply(object, function(x) length(x$residuals)) if (any(ns != ns[1])) stop("models were not all fit to the same size of dataset") nmodels <- length(object) if (nmodels == 1) # only one model remains return(anova.coxph(object[[1]], test = test)) # The model ~1 only has one loglik value, hence the rev(x)[1], not x[2] loglik <- unlist(lapply(object, function(x) rev(x$loglik)[1])) df <- unlist(lapply(object, function(x) if (!is.null(x$df)) sum(x$df) else if (is.null(coef(x))) 0 else sum(!is.na(coef(x))))) table <- data.frame(loglik, Chisq= c(NA, abs(2*diff(loglik))), Df= abs(c(NA, diff(df)))) tfun <- function(x) paste(as.character(delete.response(terms(formula(x)))), collapse=' ') variables <- lapply(object, tfun) dimnames(table) <- list(1:nmodels, c("loglik", "Chisq", "Df")) title <- paste("Analysis of Deviance Table\n Cox model: response is ", responses[1]) topnote <- paste(" Model ", format(1:nmodels), ": ", variables, sep = "", collapse = "\n") if (!is.null(test)) { table[['P(>|Chi|)']] <- pchisq(table$Chisq, table$Df, lower.tail=FALSE) } structure(table, heading = c(title, topnote), class = c("anova", "data.frame")) } survival/R/logLik.coxph.R0000644000176200001440000000152413537676563015041 0ustar liggesusers# # The AIC function depends on a logLik method # logLik.coxph <- function(object, ...) { out <- object$loglik[2] if (!is.null(object$df)) attr(out, "df") <- sum(object$df) else attr(out, 'df') <- sum(!is.na(coefficients(object))) attr(out, "nobs") <- object$nevent class(out) <- 'logLik' out } # Cox models with no covariates logLik.coxph.null <- function(object, ...) { out <- object$loglik[1] attr(out, "df") <- 0 attr(out, "nobs") <- object$nevent class(out) <- "logLik" out } logLik.survreg <- function(object, ...) { out <- object$loglik[2] dd <- diag(object$var) if (!is.null(object$df)) attr(out, "df") <- sum(object$df) else attr(out, 'df') <- sum(!is.na(dd) & dd > 0) # attr(out, "nobs") <- sum(object$df) + object$df.residual class(out) <- 'logLik' out } survival/R/lines.aareg.R0000644000176200001440000000440013537676563014664 0ustar liggesusers# $Id: lines.aareg.S 11166 2008-11-24 22:10:34Z therneau $ lines.aareg <- function(x, se=FALSE, maxtime, type='s', ...) { if (!inherits(x, 'aareg')) stop ("Must be an aareg object") if (missing(maxtime)) keep <- 1:length(x$time) else keep <- 1:sum(x$time <= maxtime) if (is.matrix(x$coefficient) && ncol(x$coefficient)>1) { yy <- apply(x$coefficient[keep,], 2,cumsum) yy <- rbind(0,yy) # make the plot start at 0,0 if (se) { if (!is.null(x$dfbeta)) { # There was a cluster term, so use the robust variance # dfbeta will be of dimension (n, nvar, n-unique-times) # The first variance increment is apply(dfbeta[,,1]^2,2,sum) # second is apply(dfbeta[,,2]^2,2,sum) # ... , apply(dfbeta[,,ndeath]..... # By being sneaky, it can be done quickly dd <- dim(x$dfbeta) keep2 <- 1:length(unique(x$time[keep])) temp <- matrix(x$dfbeta[,,keep2], nrow=dd[1]) se.increment <- matrix(apply(temp^2, 2, sum), nrow=dd[2]) se.yy <- sqrt(apply(t(se.increment), 2, cumsum)) } else se.yy <- sqrt(apply(x$coefficient[keep,]^2, 2,cumsum)) se.yy <- rbind(0, se.yy) } ncurve <- ncol(yy) } else { # this is the branch most often called, when someone has done # plot(fit[3]), so that only 1 coefficient remains yy <- cumsum(c(0, x$coefficient[keep])) if (se) { if (!is.null(x$dfbeta)) { dd <- dim(x$dfbeta) keep2 <- 1:length(unique(x$time[keep])) temp <- matrix(x$dfbeta[,,keep2], nrow=dd[1]) se.yy <- sqrt(cumsum(c(0, apply(temp^2, 2, sum)))) } else se.yy <- sqrt(cumsum(c(0, x$coefficient[keep]^2))) } ncurve <- 1 } xx <- c(0, x$time[keep]) # There may be multiplicities in x$times. Only plot the last of # each of them indx <- 1 + length(xx) - rev(match(unique(rev(xx)), rev(xx))) xx <- xx[indx] yy <- as.matrix(yy)[indx,] if (se) { if (is.null(x$dfbeta)) se.yy<- as.matrix(se.yy)[indx,] yy <- cbind(yy, yy + 1.96*se.yy, yy - 1.96*se.yy) if (ncurve >1) { for (i in 1:ncurve) { j <- c(i, i+ncurve, i+2*ncurve) matlines(xx, yy[,j], type=type, ..., col=1, lty=c(1,2,2)) } } else matlines(xx, yy, type=type, ..., col=1, lty=c(1,2,2),) } else { matlines(xx, yy, type=type, ..., xlab='Time') } } survival/R/survdiff.fit.R0000644000176200001440000000257513537676563015120 0ustar liggesuserssurvdiff.fit <- function(y, x, strat, rho=0) { # # This routine is almost always called from survdiff # If called directly, remember that it does no error checking # n <- length(x) if (ncol(y) !=2) stop ("Invalid y matrix") if (nrow(y) !=n | length(x) !=n) stop("Data length mismatch") ngroup <- length(unique(x)) if (ngroup <2) stop ("There is only 1 group") if (inherits(x, "factor")) x <- as.numeric(x) else x <- match(x, unique(x)) if (missing(strat)) strat <- rep(1,n) else strat <- as.numeric(as.factor(strat)) nstrat <- length(unique(strat)) if (length(strat) !=n) stop("Data length mismatch") ord <- order(strat, y[,1], -y[,2]) strat2 <- c(1*(diff(strat[ord])!=0), 1) xx <- .C(Csurvdiff2, as.integer(n), as.integer(ngroup), as.integer(nstrat), as.double(rho), as.double(y[ord,1]), as.integer(y[ord,2]), as.integer(x[ord]), as.integer(strat2), observed = double(ngroup*nstrat), expected = double(ngroup*nstrat), var.e = double(ngroup * ngroup), double(ngroup), double(n)) if (nstrat==1) list(expected = xx$expected, observed = xx$observed, var = matrix(xx$var.e, ngroup, ngroup)) else list(expected = matrix(xx$expected, ngroup), observed = matrix(xx$observed, ngroup), var = matrix(xx$var.e, ngroup, ngroup)) } survival/R/pspline.R0000644000176200001440000001757213537676563014164 0ustar liggesusers# # the p-spline function for a Cox model # pspline <- function(x, df=4, theta, nterm=2.5*df, degree=3, eps=0.1, method, Boundary.knots=range(x), intercept=FALSE, penalty=TRUE, combine, ...) { if (!missing(theta)) { method <- 'fixed' if (theta <=0 || theta >=1) stop("Invalid value for theta") } else if (df ==0 || (!missing(method) && method=='aic')) { method <- 'aic' nterm <- 15 #will be ok for up to 6-8 df if (missing(eps)) eps <- 1e-5 } else { method <- 'df' if (df <=1) stop ('Too few degrees of freedom') # The below used to say "df+1 > nterm", but we need some scope for # the smoother parameter to avoid strange conditions if (df > nterm) stop("`nterm' too small for df=",df) } xname <- deparse(substitute(x)) keepx <- !is.na(x) if (!all(keepx)) x <- x[keepx] #this is done before any reference to # Boundary.knots, so the default works nterm <- round(nterm) if (nterm < 3) stop("Too few basis functions") if (!missing(Boundary.knots)) { if (!is.numeric(Boundary.knots) || length(Boundary.knots) !=2 || Boundary.knots[1] >= Boundary.knots[2]) stop("Invalid values for Boundary.knots") # Check for data values outside the knot range outl <- (x < Boundary.knots[1]) outr<- (x > Boundary.knots[2]) outside <- outl | outr } else outside <- FALSE # Set up the evenly spaced knots dx <- (Boundary.knots[2] - Boundary.knots[1])/nterm knots <- c(Boundary.knots[1] + dx*((-degree):(nterm-1)), Boundary.knots[2]+ dx*(0:degree)) # Set up the basis. Inside the boundary knots we use spline.des. # Outside of them we use f(edge) + (x-edge)* f'(edge) if (any(outside)) { newx <- matrix(0., length(x), nterm + degree) if (any(outl)) { tt <- spline.des(knots, Boundary.knots[c(1,1)], degree+1, 0:1) newx[outl,] <- cbind(1, x[outl] - Boundary.knots[1]) %*% tt$design } if (any(outr)) { tt <- spline.des(knots, Boundary.knots[c(2,2)], degree+1, 0:1) newx[outr,] <- cbind(1, x[outr] - Boundary.knots[2]) %*% tt$design } if (any(inside <- !outside)) newx[inside,] <- spline.des(knots, x[inside], degree+1)$design } else newx <- spline.des(knots, x, degree+1, outer.ok=TRUE)$design # put missings back in so that the number of rows is right if (!all(keepx)) { temp <- matrix(NA, length(keepx), ncol(newx)) temp[keepx,] <- newx newx <- temp } # deal with the combine argument if (!missing(combine)) { if (any (combine != floor(combine) | combine < 0) || any(diff(combine) < 0)) stop("combine must be an increasing vector of positive integers") if (!intercept) combine <- c(0, combine) if (length(combine) != ncol(newx)) stop("wrong length for combine") uc <- sort(unique(combine)) tmat <- matrix(0., nrow=ncol(newx), ncol=length(uc)) for (i in 1:length(uc)) tmat[combine==uc[i], i] <- 1 newx <- newx %*% tmat } nvar <- ncol(newx) #should be nterm + degree dmat <- diag(nvar) dmat <- apply(dmat, 2, diff, 1, 2) dmat <- t(dmat) %*% dmat if (intercept) xnames <-paste('ps(', xname, ')', 1:nvar, sep='') else { newx <- newx[,-1, drop=FALSE] dmat <- dmat[-1,-1, drop=FALSE] # rows corresponding to the 0 coef xnames <-paste('ps(', xname, ')', 1+ 2:nvar, sep='') } if (!penalty) { attributes(newx) <- c(attributes(newx), list(intercept=intercept, nterm=nterm, Boundary.knots=Boundary.knots)) class(newx) <- "pspline" return(newx) } pfun <- function(coef, theta, n, dmat) { if (theta >=1) list(penalty= 100*(1-theta), flag=TRUE) else { if (theta <= 0) lambda <- 0 else lambda <- theta / (1-theta) list(penalty= c(coef %*% dmat %*% coef) * lambda/2, first = c(dmat %*% coef) * lambda , second = c(dmat * lambda), flag=FALSE ) } } printfun <- function(coef, var, var2, df, history, cbase) { test1 <- coxph.wtest(var, coef)$test # cbase contains the centers of the basis functions # do a weighted regression of these on the coefs to get a slope xmat <- cbind(1, cbase) xsig <- coxph.wtest(var, xmat)$solve # V X , where V = g-inverse(var) # [X' V X]^{-1} X' V cmat <- coxph.wtest(t(xmat)%*% xsig, t(xsig))$solve[2,] linear <- sum(cmat * coef) lvar1 <- c(cmat %*% var %*% cmat) lvar2 <- c(cmat %*% var2%*% cmat) test2 <- linear^2 / lvar1 # the "max(.5, df-1)" below stops silly (small) p-values for a # chisq of 0 on 0 df, when using AIC gives theta near 1 cmat <- rbind(c(linear, sqrt(lvar1), sqrt(lvar2), test2, 1, pchisq(test2, 1, lower.tail=FALSE)), c(NA, NA, NA, test1-test2, df-1, pchisq(test1-test2, max(.5,df-1), lower.tail=FALSE))) dimnames(cmat) <- list(c("linear", "nonlin"), NULL) nn <- nrow(history$thetas) if (length(nn)) theta <- history$thetas[nn,1] else theta <- history$theta list(coef=cmat, history=paste("Theta=", format(theta))) } # The printfun needs to remember the spline's knots, # but I don't need (or want) to carry around the entire upteen # variables defined here as an environment # So fill in defaults for the cbase argument, and # force the function's environment to simplicity (amnesia) temp <- formals(printfun) temp$cbase <- knots[2:nvar] + (Boundary.knots[1] -knots[1]) formals(printfun) <- temp environment(printfun) <- .GlobalEnv if (method=='fixed') { temp <- list(pfun=pfun, printfun=printfun, pparm=dmat, diag =FALSE, cparm=list(theta=theta), varname=xnames, cfun = function(parms, iter, old) list(theta=parms$theta, done=TRUE)) } else if (method=='df') { temp <- list(pfun=pfun, printfun=printfun, diag =FALSE, cargs=('df'), cparm=list(df=df, eps=eps, thetas=c(1,0), dfs=c(1, nterm), guess=1 - df/nterm, ...), pparm= dmat, varname=xnames, cfun = frailty.controldf) } else { # use AIC temp <- list(pfun=pfun, printfun=printfun, pparm=dmat, diag =FALSE, cargs = c('neff', 'df', 'plik'), cparm=list(eps=eps, init=c(.5, .95), lower=0, upper=1, ...), varname=xnames, cfun = frailty.controlaic) } attributes(newx) <- c(attributes(newx), temp, list(intercept=intercept, nterm=nterm, Boundary.knots=Boundary.knots)) class(newx) <- c("pspline", 'coxph.penalty') newx } makepredictcall.pspline <- function(var, call) { if (call[[1]] != as.name("pspline")) return(call) #wrong phone number newcall <- call[1:2] #don't let the user override anything at <- attributes(var)[c("nterm", "intercept", "Boundary.knots", "combine")] newcall[names(at)] <- at newcall } predict.pspline <- function(object, newx, ...) { if (missing(newx)) return(object) a <- c(list(x=newx, penalty=FALSE), attributes(object)[c("intercept, Boundary.knots", "combine")]) do.call("pspline", a) } # Given a pspline basis, recover x psplineinverse <- function(x) { if (!inherits(x, "pspline")) stop("Argment must be the result of a call to pspline") intercept <- attr(x, "intercept") knots <- attr(x, "knots") nknot <- length(knots) if (!intercept) { indx <- 1:(ncol(x)+1) + (nknot- (ncol(x) +1))/2 as.vector(cbind(1-rowSums(x), x) %*% knots[indx]) } else { indx <- 1:ncol(x) + (nknot - ncol(x))/2 as.vector(x %*% knots) } } as.matrix.pspline <- function(x, ...) { temp <- attributes(x) attributes(x) <- temp['dim'] x } survival/R/print.survcheck.R0000644000176200001440000001020013537676563015617 0ustar liggesusersprint.survcheck <- function(x, ...){ if (!is.null(cl <- x$call)) { cat("Call:\n") dput(cl) cat("\n") } #browser() if(!is.null(x$na.action)){ cat(length(x$na.action), "observations with missing values:","\n") } cat(sum(x$events[1,]),"subjects available for analysis","\n") ## change between states if(nrow(x$transitions)>1){ cat("Transitions table:\n") print(x$transitions) cat('\n') } ## how many of each state does each id have? cat("Number of subjects with 0, 1, ... transitions to each state:\n") print(x$events) cat("\n") if(x$flag["overlap"]>0) { cat("Overlap check: ", length(x$overlap$id), ifelse(length(x$overlap$id)==1," id (", " ids ("), length(x$overlap$row), " rows)\n", sep="") } if(x$flag["gap"]>0) { cat("Gap check: ", length(x$gap$id), ifelse(length(x$gap$id)==1," id (", " ids ("), length(x$gap$row), " rows)\n", sep="") } if(x$flag["teleport"]>0) { cat("Teleport check: ", length(x$teleport$id), ifelse(length(x$teleport$id)==1," id (", " ids ("), length(x$teleport$row), " rows)\n", sep="") } if(x$flag["jump"]){ cat("Jump check: ", length(x$jump$id), ifelse(length(x$jump$id)==1," id (", " ids ("), length(x$jump$row), " rows)\n", sep="") } } summary.survcheck <- function(object, max.show=5, ...){ if (!is.null(cl <- object$call)) { cat("Call:\n") dput(cl) cat("\n") } if(!is.null(object$na.action)){ cat(length(object$na.action), "observations with missing values:","\n") } cat(sum(object$statecount[,1]),"subjects available for analysis","\n") ## change between states if(nrow(object$transitions)>1){ cat("Transitions table:\n") print(object$transitions) cat('\n') } ## how many of each state does each id have? cat("Number of subjects with 1, 2, ... copies of each state:\n") print(object$events) cat("\n") ## change between states if(nrow(object$transitions)>1){ cat("# subjects moving between states:\n") print(object$transitions) cat('\n') } if(object$flag["overlap"]>0) { cat("Overlap check: ", length(object$overlap$id), ifelse(length(object$overlap$id)==1," id (", " ids ("), length(object$overlap$row), " rows)\n", sep="") o.mat <- cbind(id=object$id,object$Y)[object$overlap$row,] max.show <- min(max.show, length(object$overlap$id)) print(o.mat[o.mat[,1] %in% object$overlap$id[1:max.show],]) cat('\n') } if(object$flag["gap"]>0) { cat("Gap check: ", length(object$gap$id), ifelse(length(object$gap$id)==1," id (", " ids ("), length(object$gap$row), " rows)\n", sep="") g.mat <- cbind(id=object$id,object$Y)[object$gap$row,] max.show <- min(max.show, length(object$gap$id)) print(g.mat[g.mat[,1] %in% object$gap$id[1:max.show],]) cat('\n') } if(object$flag["teleport"]>0) { cat("Teleport check: ", length(object$teleport$id), ifelse(length(object$teleport$id)==1," id (", " ids ("), length(object$teleport$row), " rows)\n", sep="") t.mat <- cbind(id=object$id,object$Y)[object$teleport$row,] max.show <- min(max.show, length(object$teleport$id)) print(t.mat[t.mat[,1] %in% object$teleport$id[1:max.show],]) cat('\n') } if(object$flag["jump"]){ cat("Jump check: ", length(object$jump$id), ifelse(length(object$jump$id)==1," id (", " ids ("), length(object$jump$row), " rows)\n", sep="") j.mat <- cbind(id=object$id,object$Y)[object$jump$row,] max.show <- min(max.show, length(object$jump$id)) print(j.mat[j.mat[,1] %in% object$jump$id[1:max.show],]) cat('\n') } } survival/R/predict.survreg.penal.R0000644000176200001440000000063213537676563016723 0ustar liggesusers# $Id: predict.survreg.penal.S 11166 2008-11-24 22:10:34Z therneau $ # # This routine just stops disastrous arithmetic for models with sparse # terms. A placeholder until the proper sparse terms actions are inserted. # predict.survreg.penal <- function(object, ...) { pterms <- object$pterms if (any(pterms==2)) stop("Predictions not available for sparse models") NextMethod('predict') } survival/R/cluster.R0000644000176200001440000000012013537676563014150 0ustar liggesusers# $Id: cluster.S 11166 2008-11-24 22:10:34Z therneau $ cluster <- function(x) x survival/R/survobrien.R0000644000176200001440000001311613537676563014676 0ustar liggesusers# # Create a data set with a particular time-dependent covariate, # the default corresponds to a test proposed by Peter O'Brien # survobrien <- function(formula, data, subset, na.action, transform) { Call <- match.call() if (missing(transform)) transform <-function(x) { r <- rank(x, na.last="keep") temp <- (r -.5)/ length(r[!is.na(r)]) #percentiles log(temp/(1-temp)) #logits } else if (length(transform(1:10)) != 10) stop("Transform function must be 1 to 1") # create a call to model.frame() that contains the formula (required) # and any other of the relevant optional arguments # then evaluate it in the proper frame indx <- match(c("formula", "data", "subset", "na.action"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") temp <- Call[c(1,indx)] # only keep the arguments we wanted temp[[1L]] <- quote(stats::model.frame) # change the function called special <- c("strata", "cluster", "tt") temp$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) m <- eval(temp, parent.frame()) if (nrow(m) ==0) stop("No (non-missing) observations") n <- nrow(m) Terms <- attr(m, 'terms') y <- model.extract(m, 'response') if (!inherits(y, "Surv")) stop ("Response must be a survival object") if (!attr(y, "type") %in% c("right", "counting")) stop("Response must be right censored or (start, stop] data") cluster <- untangle.specials(Terms, "cluster") if (length(cluster$terms) > 0) { if (length(cluster$terms) >1) stop ("Can have only 1 cluster term") idvar <- m[[cluster$vars]] Terms2 <- Terms[-cluster$tvar] } else { idvar <- 1:n Terms2 <- Terms } if (length(attr(Terms, "specials")$strata)) { stemp <- untangle.specials(Terms2, 'strata', 1) if (length(stemp$terms) >0) #beware strata by covariate interactions Terms2 <- Terms2[-stemp$terms] #not needed for model.matrix later if (length(stemp$vars)==1) strata.keep <- m[[stemp$vars]] else strata.keep <- strata(m[,stemp$vars], shortlabel=TRUE) } else strata.keep <- NULL if (any(attr(Terms2, "order") > 1)) stop("This function cannot deal with iteraction terms") # Figure out which are the continuous predictor variables myvars <- attr(Terms2, "term.labels") factors <- sapply(m[myvars], is.factor) protected <- sapply(m[myvars], function(x) inherits(x, "AsIs")) keepers <- factors | protected #variables to be left alone if (all(keepers)) stop ("No continuous variables to modify") if (ncol(y) ==3) { # counting process data if (is.null(strata.keep)) { etime <- sort(unique(y[y[,3]==1, 2])) #unique event times indx <- lapply(etime, function(x) which(y[,1]= x)) } else { temp <- unique(data.frame(y[,2], strata.keep, stringsAsFactors=FALSE)[y[,3]==1,]) etime <- temp[,1] indx <- lapply(1:nrow(temp), function(x) which(y[,1] < temp[x,1] & y[,2]>= temp[x,1] & !strata.keep == temp[x,2])) } } else { # Simple survival data if (is.null(strata.keep)) { etime <- sort(unique(y[y[,2]==1,1])) #unique event times indx <- lapply(etime, function(x) which(y[,1] >=x)) } else { temp <- unique(data.frame(y[,1], strata.keep, stringsAsFactors=FALSE)[y[,2]==1,]) etime <- temp[,1] indx <- lapply(1:nrow(temp), function(x) which(y[,2] >= temp[x,1] & strata.keep == temp[x,2])) } } # The indx list now has an entry for each event time containing the # row numbers of those at risk indx2 <- unlist(indx) # Create the new survival variables nrisk <- unlist(sapply(indx, length)) #number of obs at risk if (ncol(y)==3) { newdata <- list(y[indx2, 1], y[indx2,2]) newdata <- c(newdata, list(1L*(newdata[[2]]==rep(etime, nrisk) &y[indx2,3]==1))) } else { newdata <- list(y[indx2,1]) newdata <- c(newdata, list(1L*(newdata[[1]]==rep(etime, nrisk) &y[indx2,2]==1))) } names(newdata) <- dimnames(y)[[2]] # Add any untransformed variables if (any(keepers)) { temp <- lapply(myvars[keepers], function(x) all.vars(parse(text=x))) knames <- unlist(temp) } else knames <- NULL if (length(strata.keep)) { knames <- c(knames, unlist(lapply(names(m)[stemp$vars], function(x) all.vars(parse(text=x))))) } if (length(knames)) newdata <- c(newdata, lapply(data[knames], function(x) x[indx2])) # Add the identifier variable if (length(cluster$vars) >0) { clname <- all.vars(parse(text=names(m)[cluster$vars])) newdata <- c(newdata, lapply(data[clname], function(x) x[indx2])) } else newdata <- c(newdata, list(".id."=idvar[indx2])) # Add transformed variables tvars <- myvars[!keepers] newx <- lapply(m[tvars], function(z) unlist(lapply(indx, function(x) transform(z[x])))) data.frame(c(newdata, newx, list(".strata."=rep(1:length(indx), sapply(indx, length))))) } survival/R/print.survfit.R0000644000176200001440000002362313537676603015334 0ustar liggesusersprint.survfit <- function(x, scale=1, digits = max(options()$digits - 4, 3), print.rmean = getOption('survfit.print.rmean'), rmean = getOption('survfit.rmean'), ...) { if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } omit <- x$na.action if (length(omit)) cat(" ", naprint(omit), "\n") savedig <- options(digits=digits) on.exit(options(savedig)) # x <- survfit32(x) # The print.rmean option is depreciated, with the more general # rmean option taking its place. But if someone specifically # uses print.rmean in the call, or has it as an option without # the rmean option, listen to them. if (!missing(print.rmean) && is.logical(print.rmean) && missing(rmean)) { if (print.rmean) rmean <- 'common' else rmean <- 'none' } else { if (is.null(rmean)) { if (is.logical(print.rmean)) { if (print.rmean) rmean <- 'common' else rmean <- 'none' } else rmean <- 'none' #no option set } # Check validity: it can be numeric or character if (is.numeric(rmean)) { if (is.null(x$start.time)) { if (rmean < min(x$time)) stop("Truncation point for the mean is < smallest survival") } else if (rmean < x$start.time) stop("Truncation point for the mean is < smallest survival") } else { rmean <- match.arg(rmean, c('none', 'common', 'individual')) if (length(rmean)==0) stop("Invalid value for rmean option") } } temp <- survmean(x, scale=scale, rmean) # If the first columns of survmean are identical, suppress duplicates # mtemp <- if (is.matrix(temp$matrix)) temp$matrix else matrix(temp$matrix, nrow=1, dimnames=list(NULL, names(temp$matrix))) if (all(mtemp[,2] == mtemp[,3])){ cname <- dimnames(mtemp)[[2]] mtemp <- mtemp[,-2, drop=FALSE] cname <-cname[-2] cname[2] <- "n" dimnames(mtemp)[[2]] <- cname } if (all(mtemp[,1] == mtemp[,2])) mtemp <- mtemp[,-1, drop=FALSE] temp$matrix <- drop(mtemp) print(temp$matrix) if (rmean != 'none') { if (rmean == 'individual') cat(" * restricted mean with variable upper limit\n") else cat(" * restricted mean with upper limit = ", format(temp$end.time[1]), "\n") } invisible(x) } # # The function that does all of the actual work -- output is a matrix # Used by both print.survfit and summary.survfit # survmean <- function(x, scale=1, rmean) { # The starting point for the integration of the AUC if (!is.null(x$start.time)) start.time <- x$start.time else start.time <- min(0, x$time) # # The function below is called once for each line of output, # i.e., once per curve. It creates the line of output # pfun <- function(nused, time, surv, n.risk, n.event, lower, upper, start.time, end.time) { # # Start by defining a small utility function # Multiple times, we need to find the x corresponding to the first # y that is <.5. (The y's are in decreasing order, but may have # duplicates). # Nuisance 1: if one of the y's is exactly .5, we want the mean of # the corresponding x and the first x for which y<.5. We need to # use the equivalent of all.equal to check for a .5 however: # survfit(Surv(1:100)~1) gives a value of .5 + 1.1e-16 due to # roundoff error. # Nuisance 2: there may by an NA in the y's # Nuisance 3: if no y's are <=.5, then we should return NA # Nuisance 4: the obs (or many) after the .5 may be censored, giving # a stretch of values = .5 +- epsilon # minmin <- function(y, x) { tolerance <- .Machine$double.eps^.5 #same as used in all.equal() keep <- (!is.na(y) & y <(.5 + tolerance)) if (!any(keep)) NA else { x <- x[keep] y <- y[keep] if (abs(y[1]-.5) 1 Y/N # Repeat the code, with minor variations, for each one if (is.matrix(surv) && !is.matrix(x$n.event)) #make it easier x$n.event <- matrix(rep(x$n.event, ncol(surv)), ncol=ncol(surv)) if (is.null(x$strata)) { if (rmean=='none') end.time <- NA else if (is.numeric(rmean)) end.time <- rmean else end.time <- max(stime) if (is.matrix(surv)) { out <- matrix(0, ncol(surv), ncols) for (i in 1:ncol(surv)) { if (is.null(x$conf.int)) out[i,] <- pfun(x$n, stime, surv[,i], x$n.risk, x$n.event[,i], NULL, NULL, start.time, end.time) else out[i,] <- pfun(x$n, stime, surv[,i], x$n.risk, x$n.event[,i], x$lower[,i], x$upper[,i], start.time, end.time) } dimnames(out) <- list(dimnames(surv)[[2]], plab) } else { out <- matrix(pfun(x$n, stime, surv, x$n.risk, x$n.event, x$lower, x$upper, start.time, end.time), nrow=1) dimnames(out) <- list(NULL, plab) } } else { #strata case nstrat <- length(x$strata) stemp <- rep(1:nstrat,x$strata) # the index vector for strata1, 2, etc last.time <- (rev(stime))[match(1:nstrat, rev(stemp))] if (rmean=='none') end.time <- rep(NA, nstrat) else if (is.numeric(rmean)) end.time <- rep(rmean, nstrat) else if (rmean== 'common') end.time <- rep(median(last.time), nstrat) else end.time <- last.time if (is.matrix(surv)) { ns <- ncol(surv) out <- matrix(0, nstrat*ns, ncols) if (is.null(dimnames(surv)[[2]])) dimnames(out) <- list(rep(names(x$strata), ns), plab) else { cname <- outer(names(x$strata), dimnames(surv)[[2]], paste, sep=", ") dimnames(out) <- list(c(cname), plab) } k <- 0 for (j in 1:ns) { for (i in 1:nstrat) { who <- (stemp==i) k <- k+1 if (is.null(x$lower)) out[k,] <- pfun(x$n[i], stime[who], surv[who,j], x$n.risk[who], x$n.event[who,j], NULL, NULL, start.time, end.time[i]) else out[k,] <- pfun(x$n[i], stime[who], surv[who,j], x$n.risk[who], x$n.event[who,j], x$lower[who,j], x$upper[who,j], start.time, end.time[i]) } } } else { #non matrix case out <- matrix(0, nstrat, ncols) dimnames(out) <- list(names(x$strata), plab) for (i in 1:nstrat) { who <- (stemp==i) if (is.null(x$lower)) out[i,] <- pfun(x$n[i], stime[who], surv[who], x$n.risk[who], x$n.event[who], NULL, NULL, start.time, end.time[i]) else out[i,] <- pfun(x$n[i], stime[who], surv[who], x$n.risk[who], x$n.event[who], x$lower[who], x$upper[who], start.time, end.time[i]) } } } if (is.null(x$lower)) out <- out[,1:7, drop=F] #toss away the limits if (rmean=='none') out <- out[,-(5:6), drop=F] #toss away the mean & sem list(matrix=out[,,drop=T], end.time=end.time) } survival/R/print.aareg.R0000644000176200001440000000205613537676563014713 0ustar liggesusersprint.aareg <- function(x, maxtime, test=c('aalen', 'nrisk'), scale=1, ...) { if (!inherits(x, 'aareg')) stop ("Must be an addreg object") if (!is.null(cl<- x$call)) { cat("Call:\n") dput(cl) cat("\n") } if (missing(test)) test <- x$test else test <- match.arg(test) if (missing(maxtime)) summ <- summary(x, test=test, scale=scale) else summ <- summary(x, maxtime=maxtime, test=test, scale=scale) omit <- x$na.action if (length(omit)) cat(" n=", x$n[1], " (", naprint(omit), ")\n", sep="") else cat(" n=", x$n[1], "\n") cat(" ", summ$n[2], "out of", x$n[3], "unique event times used\n\n") print(signif(summ$table,3)) chi <- summ$chisq df <- nrow(summ$table) -1 pdig <- max(1, getOption("digits")-4) # default it too high IMO cat("\nChisq=", format(round(chi,2)), " on ", df, " df, p=", format.pval(pchisq(chi,df, lower.tail=FALSE), digits=pdig), "; test weights=", x$test, "\n", sep="") invisible(x) } survival/R/summary.ratetable.R0000644000176200001440000000557713543467364016145 0ustar liggesusers# # Print out information about a rate table: it's dimensions and keywords # summary.ratetable <- function(object, ...) { rtable<-object if (!inherits(rtable, 'ratetable')) stop("Argument is not a rate table") att <- attributes(rtable) ncat <- length(dim(rtable)) cat (" Rate table with", ncat, "dimensions:\n") if (is.null(att$dimid)) dimid <- names(dimnames(rtable)) else dimid <- att$dimid for (i in 1:ncat) { # One of 'factor' (old style table) or "type" (new style) should exist if (!is.null(att$factor)) { if (att$factor[i]==0) { cat("\t", dimid[i], " ranges from ", format(min(att$cutpoints[[i]])), " to ", format(max(att$cutpoints[[i]])), "; with ", att$dim[i], " categories\n", sep='') } else if(att$factor[i]==1) { cat("\t", dimid[i], " has levels of: ", paste(att$dimnames[[i]], collapse=' '), "\n", sep='') } else { cat("\t", dimid[i], " ranges from " , format(min(att$cutpoints[[i]])), " to ", format(max(att$cutpoints[[i]])), "; with ", att$dim[i], " categories,\n\t\tlinearly interpolated in ", att$factor[i], " steps per division\n", sep='') } } else { if (att$type[i]==1) { cat("\t", dimid[i], " has levels of: ", paste(att$dimnames[[i]], collapse=' '), "\n", sep='') } else if (att$type[i]>2) { #date if (is.numeric(att$cutpoints[[i]])) { #old, numeric # This format is > 5 years out of date # but some user might keep an old rate table around cat("\t", dimid[i], " ranges from " , format(as.Date(min(att$cutpoints[[i]]), origin='1960/01/01')), " to ", format(as.Date(max(att$cutpoints[[i]]), origin='1960/01/01')), "; with ", att$dim[i], " categories\n", sep='') } else # newer, Date cat("\t", dimid[i], " ranges from " , format(min(att$cutpoints[[i]])), " to ", format(max(att$cutpoints[[i]])), "; with ", att$dim[i], " categories\n", sep='') } else { cat("\t", dimid[i], " ranges from ", format(min(att$cutpoints[[i]])), " to ", format(max(att$cutpoints[[i]])), "; with ", att$dim[i], " categories\n", sep='') } } } invisible(att) } survival/R/survfitKM.R0000644000176200001440000002654413570772313014426 0ustar liggesusers# Automatically generated from the noweb directory survfitKM <- function(x, y, weights=rep(1.0,length(x)), stype=1, ctype=1, se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none', 'logit', "arcsin"), conf.lower=c('usual', 'peto', 'modified'), start.time, id, cluster, influence=FALSE, type) { if (!missing(type)) { if (!is.character(type)) stop("type argument must be character") # older style argument is allowed temp <- charmatch(type, c("kaplan-meier", "fleming-harrington", "fh2")) if (is.na(temp)) stop("invalid value for 'type'") type <- c(1,3,4)[temp] } else { if (!(ctype %in% 1:2)) stop("ctype must be 1 or 2") if (!(stype %in% 1:2)) stop("stype must be 1 or 2") type <- as.integer(2*stype + ctype -2) } conf.type <- match.arg(conf.type) conf.lower<- match.arg(conf.lower) if (is.logical(conf.int)) { # A common error is for users to use "conf.int = FALSE" # it's not correct, but allow it if (!conf.int) conf.type <- "none" conf.int <- .95 } # The user can call with cluster, id, both, or neither # If only id, treat it as the cluster too # If influence is requested, this implies clustering has.cluster <- !(missing(cluster) || length(cluster)==0) has.id <- !(missing(id) || length(id)==0) if (has.id) id <- as.factor(id) if (influence && !(has.cluster || has.id)) { cluster <- seq(along=x) has.cluster <- TRUE } if (has.cluster) { if (is.factor(cluster)) { clname <- levels(cluster) cluster <- as.integer(cluster) } else { clname <- sort(unique(cluster)) cluster <- match(cluster, clname) } ncluster <- length(clname) } else { if (has.id) { # treat the id as both identifier and clustering clname <- levels(id) cluster <- as.integer(id) ncluster <- length(clname) } else { ncluster <- 0 # has neither clname <- NULL } } if (is.logical(influence)) { # TRUE/FALSE is treated as all or nothing if (!influence) influence <- 0L else influence <- 3L } else if (!is.numeric(influence)) stop("influence argument must be numeric or logical") if (!(influence %in% 0:3)) stop("influence argument must be 0, 1, 2, or 3") else influence <- as.integer(influence) if (!se.fit) { # if the user asked for no standard error, skip any robust computation ncluster <- 0L influence <- 0L } if (!is.Surv(y)) stop("y must be a Surv object") if (attr(y, 'type') != 'right' && attr(y, 'type') != 'counting') stop("Can only handle right censored or counting data") ny <- ncol(y) # Will be 2 for right censored, 3 for counting # The calling routine has used 'strata' on x, so it is a factor with # no unused levels. But just in case a user called this... if (!is.factor(x)) stop("x must be a factor") xlev <- levels(x) # Will supply names for the curves x <- as.integer(x) # keep the integer index if (missing(start.time)) time0 <- min(0, y[,ny-1]) else time0 <- start.time if (ny==3 & has.id) position <- survflag(y, id) else position <- integer(0) if (length(xlev) ==1) {# only one group if (ny==2) { sort1 <- NULL sort2 <- order(y[,1]) } else { sort2 <- order(y[,2]) sort1 <- order(y[,1]) } toss <- (y[sort2, ny-1] < time0) if (any(toss)) { # Some obs were removed by the start.time argument sort2 <- sort2[!toss] if (ny ==3) { index <- match(which(toss), sort1) sort1 <- sort1[-index] } } n.used <- length(sort2) if (ncluster > 0) cfit <- .Call(Csurvfitkm, y, weights, sort1-1L, sort2-1L, type, cluster-1L, ncluster, position, influence) else cfit <- .Call(Csurvfitkm, y, weights, sort1-1L, sort2-1L, type, 0L, 0L, position, influence) } else { # multiple groups ngroup <- length(xlev) cfit <- vector("list", ngroup) n.used <- integer(ngroup) if (influence) clusterid <- cfit # empty list of group id values for (i in 1:ngroup) { keep <- which(x==i & y[,ny-1] >= time0) if (length(keep) ==0) next; # rare case where all are < start.time ytemp <- y[keep,] n.used[i] <- nrow(ytemp) if (ny==2) { sort1 <- NULL sort2 <- order(ytemp[,1]) } else { sort2 <- order(ytemp[,2]) sort1 <- order(ytemp[,1]) } # Cluster is a nuisance: every curve might have a different set # We need to relabel them from 1 to "number of unique clusters in this # curve for the C routine if (ncluster > 0) { c2 <- cluster[keep] c.unique <- sort(unique(c2)) nc <- length(c.unique) c2 <- match(c2, c.unique) # renumber them if (influence >0) { clusterid[[i]] <-c.unique } } if (ncluster > 0) cfit[[i]] <- .Call(Csurvfitkm, ytemp, weights[keep], sort1 -1L, sort2 -1L, type, c2 -1L, length(c.unique), position, influence) else cfit[[i]] <- .Call(Csurvfitkm, ytemp, weights[keep], sort1 -1L, sort2 -1L, type, 0L, 0L, position, influence) } } # create the survfit object if (length(n.used) == 1) { rval <- list(n= length(x), time= cfit$time, n.risk = cfit$n[,4], n.event= cfit$n[,5], n.censor=cfit$n[,6], surv = cfit$estimate[,1], std.err = cfit$std[,1], cumhaz = cfit$estimate[,2], std.chaz = cfit$std[,2]) } else { strata <- sapply(cfit, function(x) nrow(x$n)) names(strata) <- xlev # we need to collapse the curves rval <- list(n= as.vector(table(x)), time = unlist(lapply(cfit, function(x) x$time)), n.risk= unlist(lapply(cfit, function(x) x$n[,4])), n.event= unlist(lapply(cfit, function(x) x$n[,5])), n.censor=unlist(lapply(cfit, function(x) x$n[,6])), surv = unlist(lapply(cfit, function(x) x$estimate[,1])), std.err =unlist(lapply(cfit, function(x) x$std[,1])), cumhaz =unlist(lapply(cfit, function(x) x$estimate[,2])), std.chaz=unlist(lapply(cfit, function(x) x$std[,2])), strata=strata) if (ny==3) rval$n.enter <- unlist(lapply(cfit, function(x) x$n[,8])) } if (ny ==3) { rval$n.enter <- cfit$n[,8] rval$type <- "counting" } else rval$type <- "right" if (se.fit) { rval$logse = (ncluster==0 || (type==2 || type==4)) # se(log S) or se(S) rval$conf.int = conf.int rval$conf.type= conf.type if (conf.lower != "usual") rval$conf.lower = conf.lower if (conf.lower == "modified") { nstrat = length(n.used) events <- rval$n.event >0 if (nstrat ==1) events[1] <- TRUE else events[1 + cumsum(c(0, rval$strata[-nstrat]))] <- TRUE zz <- 1:length(events) n.lag <- rep(rval$n.risk[events], diff(c(zz[events], 1+max(zz)))) # # n.lag = the # at risk the last time there was an event (or # the first time of a strata) # } std.low <- switch(conf.lower, 'usual' = rval$std.err, 'peto' = sqrt((1-rval$surv)/ rval$n.risk), 'modified' = rval$std.err * sqrt(n.lag/rval$n.risk)) if (conf.type != "none") { ci <- survfit_confint(rval$surv, rval$std.err, logse=rval$logse, conf.type, conf.int, std.low) rval <- c(rval, list(lower=ci$lower, upper=ci$upper)) } } else { # for consistency don't return the se if std.err=FALSE rval$std.err <- NULL rval$std.chaz <- NULL } # Add the influence, if requested by the user # remember, if type= 3 or 4, the survival influence has to be constructed. if (influence > 0) { if (type==1 | type==2) { if (influence==1 || influence ==3) { if (length(xlev)==1) { rval$influence.surv <- cfit$influence1 row.names(rval$influence.surv) <- clname } else { temp <- vector("list", ngroup) for (i in 1:ngroup) { temp[[i]] <- cfit[[i]]$influence1 row.names(temp[[i]]) <- clname[clusterid[[i]]] } rval$influence.surv <- temp } } if (influence==2 || influence==3) { if (length(xlev)==1) { rval$influence.chaz <- cfit$influence2 row.names(rval$influence.chaz) <- clname } else { temp <- vector("list", ngroup) for (i in 1:ngroup) { temp[[i]] <- cfit[[i]]$influence2 row.names(temp[[i]]) <- clname[clusterid[[i]]] } rval$influence.chaz <- temp } } } else { # everything is derived from the influence of the cumulative hazard if (length(xlev) ==1) { temp <- cfit$influence2 row.names(temp) <- clname } else { temp <- vector("list", ngroup) for (i in 1:ngroup) { temp[[i]] <- cfit[[i]]$influence2 row.names(temp[[i]]) <- clname[clusterid[[i]]] } } if (influence==2 || influence ==3) rval$influence.chaz <- temp if (influence==1 || influence==3) { # if an obs moves the cumulative hazard up, then it moves S down if (length(xlev) ==1) rval$influence.surv <- -temp * rep(rval$surv, each=nrow(temp)) else { for (i in 1:ngroup) temp[[i]] <- -temp[[i]] * rep(cfit[[i]]$estimate[,1], each=nrow(temp[[i]])) rval$influence.surv <- temp } } } } if (!missing(start.time)) rval$start.time <- start.time rval } survival/R/survreg.distributions.R0000644000176200001440000001045713537676563017103 0ustar liggesusers# # Create the survreg.distributions object # survreg.distributions <- list( 'extreme' = list( name = "Extreme value", variance = function(parm) pi^2/6, init = function(x, weights, ...) { mean <- sum(x*weights)/ sum(weights) var <- sum(weights*(x-mean)^2)/ sum(weights) c(mean + .572, var/1.64) }, deviance= function(y, scale, parms) { status <- y[,ncol(y)] width <- ifelse(status==3,(y[,2] - y[,1])/scale, 1) temp <- width/(exp(width)-1) # the definition of "center" is discussed in the parametric # section of the survival document center <- ifelse(status==3, y[,1] - log(temp), y[,1]) temp3 <- (-temp) + log(1- exp(-exp(width))) loglik <- ifelse(status==1, -(1+log(scale)), ifelse(status==3, temp3, 0)) list(center=center, loglik=loglik) }, density = function(x,parms) { w <- exp(x) ww <- exp(-w) cbind(1-ww, ww, w*ww, (1-w), w*(w-3) +1) }, quantile = function(p,parms) log(-log(1-p)) ), logistic = list( name = "Logistic", variance = function(parm) pi^2/3, init = function(x, weights, ...) { mean <- sum(x*weights)/ sum(weights) var <- sum(weights*(x-mean)^2)/ sum(weights) c(mean, var/3.2) }, deviance= function(y, scale, parms) { status <- y[,ncol(y)] width <- ifelse(status==3,(y[,2] - y[,1])/scale, 0) # for the symmetric distributions "center" is obvious center <- ifelse(status==3, rowMeans(y), y[,1]) temp2 <- ifelse(status==3, exp(width/2), 2) #avoid a log(0) message temp3 <- log((temp2-1)/(temp2+1)) loglik <- ifelse(status==1, -log(4*scale), ifelse(status==3, temp3, 0)) list(center=center, loglik=loglik) }, density = function(x, parms) { w <- exp(x) cbind(w/(1+w), 1/(1+w), w/(1+w)^2, (1-w)/(1+w), (w*(w-4) +1)/(1+w)^2) }, quantile = function(p, parms) log(p/(1-p)) ), gaussian = list( name = "Gaussian", variance = function(parm) 1, init = function(x, weights, ...) { mean <- sum(x*weights)/ sum(weights) var <- sum(weights*(x-mean)^2)/ sum(weights) c(mean, var) }, deviance= function(y, scale, parms) { status <- y[,ncol(y)] width <- ifelse(status==3,(y[,2] - y[,1])/scale, 0) center <- ifelse(status==3, rowMeans(y), y[,1]) temp2 <- log(1 - 2*pnorm(width/2)) loglik <- ifelse(status==1, -log(sqrt(2*pi)*scale), ifelse(status==3, temp2, 0)) list(center=center, loglik=loglik) }, density = function(x, parms) { cbind(pnorm(x), pnorm(-x), dnorm(x), -x, x^2-1) }, quantile = function(p, parms) qnorm(p) ), weibull = list( name = "Weibull", dist = 'extreme', trans = function(y) log(y), dtrans= function(y) 1/y , itrans= function(x) exp(x) ), exponential = list( name = "Exponential", dist = 'extreme', trans = function(y) log(y), dtrans= function(y) 1/y, scale =1, itrans= function(x) exp(x) ), rayleigh = list( name = "Rayleigh", dist = 'extreme', trans = function(y) log(y), dtrans= function(y) 1/y, itrans= function(x) exp(x), scale =0.5 ), loggaussian = list( name = "Log Normal", dist = 'gaussian', trans = function(y) log(y), itrans= function(x) exp(x), dtrans= function(y) 1/y ), lognormal = list( name = "Log Normal", dist = 'gaussian', trans = function(y) log(y), itrans= function(x) exp(x), dtrans= function(y) 1/y ), loglogistic = list( name = "Log logistic", dist = 'logistic', trans = function(y) log(y), dtrans= function(y) 1/y , itrans= function(x) exp(x) ), t = list( name = "Student-t", variance = function(df) df/(df-2), parms = c(df=4), init = function(x, weights, df) { if (df <=2) stop ("Degrees of freedom must be >=3") mean <- sum(x*weights)/ sum(weights) var <- sum(weights*(x-mean)^2)/ sum(weights) c(mean, var*(df-2)/df) }, deviance= function(y, scale, parms) { status <- y[,ncol(y)] width <- ifelse(status==3,(y[,2] - y[,1])/scale, 0) center <- ifelse(status==3, rowMeans(y), y[,1]) temp2 <- log(1 - 2*pt(width/2, df=parms)) loglik <- ifelse(status==1, -log(dt(0, df=parms)*scale), ifelse(status==3, temp2, 0)) list(center=center, loglik=loglik) }, density = function(x, df) { cbind(pt(x, df), pt(-x, df), dt(x,df), -(df+1)*x/(df+x^2), (df+1)*(x^2 *(df+3)/(df+x^2) - 1)/(df +x^2)) }, quantile = function(p, df) qt(p, df) ) ) survival/R/residuals.coxph.R0000644000176200001440000001235113537676603015606 0ustar liggesusersresiduals.coxph <- function(object, type=c("martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas", "scaledsch","partial"), collapse=FALSE, weighted=FALSE, ...) { type <- match.arg(type) otype <- type if (type=='dfbeta' || type=='dfbetas') { otype <- type # used for error messge type <- 'score' if (missing(weighted)) weighted <- TRUE # different default for this case } if (type=='scaledsch') type<-'schoenfeld' n <- length(object$residuals) rr <- object$residuals y <- object$y x <- object[['x']] # avoid matching object$xlevels vv <- drop(object$naive.var) if (is.null(vv)) vv <- drop(object$var) weights <- object$weights if (is.null(weights)) weights <- rep(1,n) strat <- object$strata method <- object$method if (method=='exact' && (type=='score' || type=='schoenfeld')) stop(paste(otype, 'residuals are not available for the exact method')) if (type == 'martingale' || type == 'partial') rr <- object$residuals else { # I need Y, and perhaps the X matrix (and strata) Terms <- object$terms if (!inherits(Terms, 'terms')) stop("invalid terms component of object") strats <- attr(Terms, "specials")$strata if (is.null(y) || (is.null(x) && type!= 'deviance')) { temp <- coxph.getdata(object, y=TRUE, x=TRUE, stratax=TRUE) y <- temp$y x <- temp$x if (length(strats)) strat <- temp$strata } ny <- ncol(y) status <- y[,ny,drop=TRUE] if (type != 'deviance') { nstrat <- as.numeric(strat) nvar <- ncol(x) if (is.null(strat)) { ord <- order(y[,ny-1], -status) newstrat <- rep(0,n) } else { ord <- order(nstrat, y[,ny-1], -status) newstrat <- c(diff(as.numeric(nstrat[ord]))!=0 ,1) } newstrat[n] <- 1 # sort the data x <- x[ord,] y <- y[ord,] score <- exp(object$linear.predictors)[ord] } } # # Now I have gotton the data that I need-- do the work # if (type=='schoenfeld') { if (ny==2) { mintime <- min(y[,1]) if (mintime < 0) y <- cbind(2*mintime -1, y) else y <- cbind(-1,y) } temp <- .C(Ccoxscho, n=as.integer(n), as.integer(nvar), as.double(y), resid= as.double(x), as.double(score * weights[ord]), as.integer(newstrat), as.integer(method=='efron'), double(3*nvar) ) deaths <- y[,3]==1 if (nvar==1) rr <- temp$resid[deaths] else rr <- matrix(temp$resid[deaths], ncol=nvar) #pick rows if (weighted) rr <- rr * weights[deaths] if (length(strats)) attr(rr, "strata") <- table((strat[ord])[deaths]) time <- c(y[deaths,2]) # 'c' kills all of the attributes if (is.matrix(rr)) dimnames(rr)<- list(time, names(object$coefficients)) else names(rr) <- time if (otype=='scaledsch') { ndead <- sum(deaths) coef <- ifelse(is.na(object$coefficients), 0, object$coefficients) if (nvar==1) rr <- rr * vv * ndead + coef else rr <- drop(rr %*% vv *ndead + rep(coef, each=nrow(rr))) } return(rr) } if (type=='score') { storage.mode(y) <- storage.mode(x) <- "double" storage.mode(newstrat) <- "integer" storage.mode(score) <- storage.mode(weights) <- "double" if (ny==2) { resid <- .Call(Ccoxscore2, y, x, newstrat, score, weights[ord], as.integer(method=='efron')) } else { resid<- .Call(Cagscore2, y, x, newstrat, score, weights[ord], as.integer(method=='efron')) } if (nvar >1) { rr <- matrix(0, n, nvar) rr[ord,] <- resid dimnames(rr) <- list(names(object$residuals), names(object$coefficients)) } else rr[ord] <- resid if (otype=='dfbeta') { if (is.matrix(rr)) rr <- rr %*% vv else rr <- rr * vv } else if (otype=='dfbetas') { if (is.matrix(rr)) rr <- (rr %*% vv) %*% diag(sqrt(1/diag(vv))) else rr <- rr * sqrt(vv) } } # # Multiply up by case weights (which will be 1 for unweighted) # if (weighted) rr <- rr * weights #Expand out the missing values in the result if (!is.null(object$na.action)) { rr <- naresid(object$na.action, rr) if (is.matrix(rr)) n <- nrow(rr) else n <- length(rr) if (type=='deviance') status <- naresid(object$na.action, status) } if (type=="partial"){ # This needs to be done after the naresid expansion, since the # predict function will have done naresid expansion, so that # the lengths match rr <- rr + predict(object,type="terms") } # Collapse if desired if (!missing(collapse)) { if (length(collapse) !=n) stop("Wrong length for 'collapse'") rr <- drop(rowsum(rr, collapse)) if (type=='deviance') status <- drop(rowsum(status, collapse)) } # Deviance residuals are computed after collapsing occurs if (type=='deviance') sign(rr) *sqrt(-2* (rr+ ifelse(status==0, 0, status*log(status-rr)))) else rr } survival/R/survfit.matrix.R0000644000176200001440000001677613537676563015524 0ustar liggesusers# Create the Aalen-Johansen estimate by joining a set of # survival curves. Actually the cumulative hazard estimates are used. # survfit.matrix <- function(formula, p0, method=c("discrete", "matexp"), start.time, ...) { Call <- match.call() curves <- formula if (!is.matrix(curves)) stop("input must be a square matrix of survival curves") if (!is.list(curves)) stop("input must be a matrix of survival curves") if (nrow(curves) != ncol(curves)) stop("input must be a square matrix survival curves") nstate <- nrow(curves) states <- names(p0) if (is.null(states)) { dname <- dimnames(curves) if (!is.null(dname)[[1]]) states <- dname[[1]] else if (!is.null(dname[[2]])) states <- dname[[2]] else states <- 1:nstate } nonzero <- sapply(curves, function(x) length(x) > 0) # transitions curves <- curves[nonzero] #toss away the NULLS if (any(sapply(curves, function(z) !inherits(z, 'survfit')))) stop("input must be a square matrix survival curves") if (sum(nonzero) < 2) stop("input must have at least 2 transitions") classes <- lapply(curves, class) # Make sure we were sent the right things. If any of the curves inherit # from "survfitms", they are the result of a prior AJ computation; # such recursion does not lead to valid estimates. dd <- dim(curves[[1]]) ncurve <- prod(dd) for (i in 1:length(classes)) { if (length(classes[[i]]) != length(classes[[1]]) || any(classes[[i]] != classes[[1]])) stop("all curves must be the same type") if (length(dim(curves[[i]])) != length(dd) || any(dim(curves[[i]]) != dd)) stop("all curves must be of the same dimension") } if (any(sapply(curves, function(x) inherits(x, "survfitms")))) stop("multi-state curves are not a valid input") type <- classes[[1]][1] # 'survfit' or 'survfit.cox' # the user can set start.time in the supplied curves, or with # a parameter. The max of all these is the min possible start time. if (missing(start.time)) start.time <- NULL else if (!is.numeric(start.time) || length(start.time) > 1) stop("start.time must be a single numeric value") temp <- sapply(curves, function(x) x$start.time) tlen <- sapply(temp, length) if (any(tlen >0)) { # at least one curve with start.time if (any(tlen != 1) || any(temp != temp[1])) stop("all curves must have a consistent start.time value") if (is.null(start.time)) start.time <- temp[1] else if (temp[1] > start.time) warning("curves have a larger start.time than the parameter, start.time parameter value was ignored") } if (missing(method)) { if (type=='survfit.cox') method <- "matexp" else method <- "discrete" } else method <- match.arg(method) if (missing(p0)) p0 <- c(1, rep(0, nstate-1)) if (!is.matrix(p0)) p0 <- matrix(rep(p0, ncurve), ncol=nstate, byrow=TRUE) else if (nrow(p0) != ncurve) stop("wrong number of rows for p0") if (ncol(p0) != nstate) stop("incorrect number of states in p0") if (any( rowSums(p0) !=1) || any(p0<0)) stop("invalid elements in p0") docurve <- function(z, nonzero, nstate, p0) { # z is a list of survival curves utime <- lapply(z, function(x) x$time[x$n.event>0]) utime <- sort(unique(unlist(utime))) # set of unique times cumhaz<- lapply(z, function(x) summary(x, times=utime, extend=TRUE)$cumhaz) jumps <- matrix(unlist(lapply(cumhaz, function(x) diff(c(0, x)))), ncol= sum(nonzero)) Tmat <- diag(nstate) # deal with the start time argument if (is.null(start.time)) stime <- min(c(0, utime)) else stime <- start.time toss <- (utime < stime) if (any(toss)) { utime <- utime[!toss] jumps <- jumps[!toss,] } # A design decision long ago was to NOT include time 0 in the # returned survival curve. A bad choice in retrospect. # In the code below pstate[1,] will be less than p0, even # if utime[1]==stime. The curve has an immediate drop. pstate <- matrix(0., nrow= length(utime), ncol=nstate) ptemp <- p0 for (i in 1:nrow(jumps)) { Tmat[nonzero] <- jumps[i,] if (method == "matrix") { temp <- pmin(1, rowSums(Tmat) - diag(Tmat)) # failsafe diag(Tmat) <- 1 - temp #rows sum to 1 ptemp <- ptemp %*% Tmat } else { diag(Tmat) <- diag(Tmat) - rowSums(Tmat) #rows sum to 0 ptemp <- as.vector(ptemp %*% expm(Tmat)) } pstate[i,] <- ptemp } # Fill in the n.risk and n.event matrices zz <- matrix(0, nstate, nstate) from <- (row(zz))[nonzero] to <- (col(zz))[nonzero] n.risk <- n.event <- matrix(0, length(utime), ncol= nstate) # the n.risk matrix is based on "from", n.event on "to" # If multiple curves come from the same source, we blithely # assume that they will agree on the sample size. If multiples # go to the same ending, add the events. for (i in 1:length(z)) { index <- findInterval(utime, z[[i]]$time) n.risk[,from[i]] <- c(0, z[[i]]$n.risk)[index +1] n.event[, to[i]] <- n.event[,to[i]] + c(0, z[[i]]$n.event)[index+1] } # All the curves should have the same n list(n = z[[1]]$n, time = utime, pstate= pstate, n.risk= n.risk, n.event=n.event) } # The output will have nstate columns, one for each state, and # prod(dim(curves)) strata. If the input has strata and # columns, the output strata will repeat the original strata, once # for each column of the input, adding "new1", "new2", etc to the # end to recognize the rows of the newdata frame that gave rise to it. # nstrat <- length(curves[[1]]$strata) tlist <- vector("list", prod(dd)) k <- 1 if (length(dd) ==1) { tname <- paste0("new", 1:dd[1]) for (j in 1:dd[1]) { tlist[[j]] <- docurve(lapply(curves, function(x) x[j]), nonzero, nstate, p0[j,]) } } else { tname <- paste0("new", 1:dd[2]) for (j in 1:dd[2]) { for (i in 1:dd[1]) { tlist[[k]] <- docurve(lapply(curves, function(x) x[i,j]), nonzero, nstate, p0[k,]) k <- k+1 } } } fit <- list() fit$n <- tlist[[1]]$n fit$time <- unlist(lapply(tlist, function(x) x$time)) fit$pstate <- do.call("rbind", lapply(tlist, function(x) x$pstate)) fit$n.risk <- do.call("rbind", lapply(tlist, function(x) x$n.risk)) fit$n.event<- do.call("rbind", lapply(tlist, function(x) x$n.event)) ntemp <- unlist(lapply(tlist, function(x) length(x$time))) if (nstrat > 0 && length(dd)==2) names(ntemp) <- as.vector(outer(names(curves[[1]]$strata), tname, paste, sep=", ")) else names(ntemp) <- tname fit$strata <- ntemp ns <- length(fit$strata) fit$p0 <- p0 fit$states <- states fit$n <- curves[[1]]$n if (!is.null(start.time)) fit$start.time <- start.time fit$call <- Call class(fit) <- c("survfitms", "survfit") fit } survival/R/frailty.R0000644000176200001440000000075213537676563014154 0ustar liggesusers# $Id: frailty.S 11166 2008-11-24 22:10:34Z therneau $ # # Parent function for frailty, calls the actuall working functions # frailty <- function(x, distribution = 'gamma', ...) { dlist <- c("gamma", "gaussian", "t") i <- pmatch(distribution, dlist) if (!is.na(i)) distribution <- dlist[i] temp <- paste("frailty", distribution, sep='.') if (!exists(temp)) stop(paste("Function '", temp, "' not found", sep="")) (get(temp))(x, ...) } survival/R/print.ratetable.R0000644000176200001440000000044213537676563015574 0ustar liggesusers print.ratetable <- function(x, ...) { if (is.null(attr(x, 'dimid'))) cat ("Rate table with dimension(s):", names(dimnames(x)), "\n") else cat ("Rate table with dimension(s):", attr(x, 'dimid'), "\n") attributes(x) <- attributes(x)[c("dim", "dimnames")] NextMethod() } survival/R/print.coxph.penal.R0000644000176200001440000000764013537676563016057 0ustar liggesusersprint.coxph.penal <- function(x, terms=FALSE, maxlabel=25, digits=max(options()$digits - 4, 3), ...) { if (!inherits(x, 'coxph.penal')) stop("Invalid object") if (!is.null(x$call)) { cat("Call:\n") dput(x$call) cat("\n") } if (!is.null(x$fail)) { cat(" Coxph failed.", x$fail, "\n") return() } savedig <- options(digits = digits) on.exit(options(savedig)) coef <- x$coefficients if (length(coef)==0 && length(x$frail)==0) stop("Penalized print function can't be used for a null model") # # Map terms to special print functions, and the list of iteration histories # pterms <- x$pterms nterms <- length(pterms) npenal <- sum(pterms>0) print.map <- rep(0,nterms) if (!is.null(x$printfun)) { temp <- unlist(lapply(x$printfun, is.null)) #which ones are missing print.map[pterms>0] <- (1:npenal) * (!temp) } # Tedious, but build up the coef matrix a term at a time print1 <- NULL pname1 <- NULL if (is.null(x$assign2)) alist <- x$assign[-1] else alist <- x$assign2 print2 <- NULL for (i in 1:nterms) { kk <- alist[[i]] if (print.map[i] >0) { j <- print.map[i] if (pterms[i]==2) temp <- (x$printfun[[j]])(x$frail, x$fvar, ,x$df[i], x$history[[j]]) else temp <- (x$printfun[[j]])(coef[kk], x$var[kk,kk], x$var2[kk,kk], x$df[i], x$history[[j]]) print1 <- rbind(print1, temp$coef) if (is.matrix(temp$coef)) { xx <- dimnames(temp$coef)[[1]] if (is.null(xx)) xx <- rep(names(pterms)[i], nrow(temp$coef)) else xx <- paste(names(pterms)[i], xx, sep=', ') pname1 <- c(pname1, xx) } else pname1 <- c(pname1, names(pterms)[i]) print2 <- c(print2, temp$history) } else if (terms && length(kk)>1) { pname1 <- c(pname1, names(pterms)[i]) temp <- coxph.wtest(x$var[kk,kk], coef[kk])$test print1 <- rbind(print1, c(NA, NA, NA, temp, x$df[i], pchisq(temp, 1, lower.tail=FALSE))) } else { pname1 <- c(pname1, names(coef)[kk]) tempe<- (diag(x$var))[kk] temp <- coef[kk]^2/ tempe print1 <- rbind(print1, cbind(coef[kk], sqrt(tempe), sqrt((diag(x$var2))[kk]), temp, 1, pchisq(temp, 1, lower.tail=FALSE))) } } # Format out the NA's # temp <- cbind(format(print1[,1]), format(print1[,2]), # format(print1[,3]), # format(round(print1[,4], 2)), # format(round(print1[,5], 2)), # format(signif(print1[,6], 2))) # temp <- ifelse(is.na(print1), "", temp) # dimnames(temp) <- list(substring(pname1,1, maxlabel), # c("coef","se(coef)", "se2", "Chisq","DF","p")) # print(temp, quote=FALSE) dimnames(print1) <- list(substring(pname1,1, maxlabel), c("coef","se(coef)", "se2", "Chisq","DF","p")) printCoefmat(print1, signif.stars=FALSE, P.values=TRUE, has.Pvalue=TRUE, digits = digits, na.print="") # # Write out the remaider of the info # cat("\nIterations:", x$iter[1], "outer,", x$iter[2], "Newton-Raphson\n") if (length(print2)) { # cat("Penalized terms:\n") for (i in 1:length(print2)) cat(" ", print2[i], "\n") } logtest <- -2 * (x$loglik[1] - x$loglik[2]) if (is.null(x$df)) df <- sum(!is.na(coef)) else df <- round(sum(x$df),2) # cat("\n") cat("Degrees of freedom for terms=", format(round(x$df,1)), "\n") # cat("Cox PL (initial,final) = ", format(round(x$loglik,2)), # " Penalty = ", format(x$penalty), "\n") pdig <- max(1, getOption("digits")-4) # default it too high IMO cat("Likelihood ratio test=", format(round(logtest, 2)), " on ", df, " df,", " p=", format.pval(pchisq(logtest, df, lower.tail=FALSE), digits=pdig), sep="") omit <- x$na.action cat("\nn=", x$n) if (!is.null(x$nevent)) cat(", number of events=", x$nevent, "\n") else cat("\n") if (length(omit)) cat(" (", naprint(omit), ")\n", sep="") invisible(x) } survival/R/survreg.control.R0000644000176200001440000000065013537676563015653 0ustar liggesusers# $Id: survreg.control.S 11236 2009-02-14 11:46:53Z therneau $ survreg.control <- function(maxiter=30, rel.tolerance=1e-9, toler.chol=1e-10, iter.max, debug=0, outer.max = 10) { if (missing(iter.max)) { iter.max <- maxiter } else maxiter <- iter.max list(iter.max = iter.max, rel.tolerance = rel.tolerance, toler.chol= toler.chol, debug=debug, maxiter=maxiter, outer.max=outer.max) } survival/R/coxsurvfit.R0000644000176200001440000001732513570772305014706 0ustar liggesusers# Automatically generated from the noweb directory coxsurv.fit <- function(ctype, stype, se.fit, varmat, cluster, y, x, wt, risk, position, strata, oldid, y2, x2, risk2, strata2, id2, unlist=TRUE) { if (missing(strata) || length(strata)==0) strata <- rep(0L, nrow(y)) if (is.factor(strata)) ustrata <- levels(strata) else ustrata <- sort(unique(strata)) nstrata <- length(ustrata) survlist <- vector('list', nstrata) names(survlist) <- ustrata survtype <- if (stype==1) 1 else ctype+1 vartype <- survtype for (i in 1:nstrata) { indx <- which(strata== ustrata[i]) survlist[[i]] <- agsurv(y[indx,,drop=F], x[indx,,drop=F], wt[indx], risk[indx], survtype, vartype) } expand <- function(fit, x2, varmat, se.fit) { if (survtype==1) surv <- cumprod(fit$surv) else surv <- exp(-fit$cumhaz) if (is.matrix(x2) && nrow(x2) >1) { #more than 1 row in newdata fit$surv <- outer(surv, risk2, '^') dimnames(fit$surv) <- list(NULL, row.names(x2)) if (se.fit) { varh <- matrix(0., nrow=length(fit$varhaz), ncol=nrow(x2)) for (i in 1:nrow(x2)) { dt <- outer(fit$cumhaz, x2[i,], '*') - fit$xbar varh[,i] <- (cumsum(fit$varhaz) + rowSums((dt %*% varmat)* dt))* risk2[i]^2 } fit$std.err <- sqrt(varh) } fit$cumhaz <- outer(fit$cumhaz, risk2, '*') } else { fit$surv <- surv^risk2 if (se.fit) { dt <- outer(fit$cumhaz, c(x2)) - fit$xbar varh <- (cumsum(fit$varhaz) + rowSums((dt %*% varmat)* dt)) * risk2^2 fit$std.err <- sqrt(varh) } fit$cumhaz <- fit$cumhaz * risk2 } fit } if (missing(id2) || is.null(id2)) result <- lapply(survlist, expand, x2, varmat, se.fit) else { onecurve <- function(slist, x2, y2, strata2, risk2, se.fit) { ntarget <- nrow(x2) #number of different time intervals surv <- vector('list', ntarget) n.event <- n.risk <- n.censor <- varh1 <- varh2 <- time <- surv hazard <- vector('list', ntarget) stemp <- as.integer(strata2) timeforward <- 0 for (i in 1:ntarget) { slist <- survlist[[stemp[i]]] indx <- which(slist$time > y2[i,1] & slist$time <= y2[i,2]) if (length(indx)==0) { timeforward <- timeforward + y2[i,2] - y2[i,1] # No deaths or censors in user interval. Possible # user error, but not uncommon at the tail of the curve. } else { time[[i]] <- diff(c(y2[i,1], slist$time[indx])) #time increments time[[i]][1] <- time[[i]][1] + timeforward timeforward <- y2[i,2] - max(slist$time[indx]) hazard[[i]] <- slist$hazard[indx]*risk2[i] if (survtype==1) surv[[i]] <- slist$surv[indx]^risk2[i] n.event[[i]] <- slist$n.event[indx] n.risk[[i]] <- slist$n.risk[indx] n.censor[[i]]<- slist$n.censor[indx] dt <- outer(slist$cumhaz[indx], x2[i,]) - slist$xbar[indx,,drop=F] varh1[[i]] <- slist$varhaz[indx] *risk2[i]^2 varh2[[i]] <- rowSums((dt %*% varmat)* dt) * risk2[i]^2 } } cumhaz <- cumsum(unlist(hazard)) if (survtype==1) surv <- cumprod(unlist(surv)) #increments (K-M) else surv <- exp(-cumhaz) if (se.fit) list(n=as.vector(table(strata)[stemp[1]]), time=cumsum(unlist(time)), n.risk = unlist(n.risk), n.event= unlist(n.event), n.censor= unlist(n.censor), surv = surv, cumhaz= cumhaz, std.err = sqrt(cumsum(unlist(varh1)) + unlist(varh2))) else list(n=as.vector(table(strata)[stemp[1]]), time=cumsum(unlist(time)), n.risk = unlist(n.risk), n.event= unlist(n.event), n.censor= unlist(n.censor), surv = surv, cumhaz= cumhaz) } if (all(id2 ==id2[1])) { result <- list(onecurve(survlist, x2, y2, strata2, risk2, se.fit)) } else { uid <- unique(id2) result <- vector('list', length=length(uid)) for (i in 1:length(uid)) { indx <- which(id2==uid[i]) result[[i]] <- onecurve(survlist, x2[indx,,drop=FALSE], y2[indx,,drop=FALSE], strata2[indx], risk2[indx], se.fit) } names(result) <- uid } } if (unlist) { if (length(result)==1) { # the no strata case if (se.fit) result[[1]][c("n", "time", "n.risk", "n.event", "n.censor", "surv", "cumhaz", "std.err")] else result[[1]][c("n", "time", "n.risk", "n.event", "n.censor", "surv", "cumhaz")] } else { temp <-list(n = unlist(lapply(result, function(x) x$n), use.names=FALSE), time= unlist(lapply(result, function(x) x$time), use.names=FALSE), n.risk= unlist(lapply(result, function(x) x$n.risk), use.names=FALSE), n.event= unlist(lapply(result, function(x) x$n.event), use.names=FALSE), n.censor=unlist(lapply(result, function(x) x$n.censor), use.names=FALSE), strata = sapply(result, function(x) length(x$time))) names(temp$strata) <- names(result) if ((missing(id2) || is.null(id2)) && nrow(x2)>1) { temp$surv <- t(matrix(unlist(lapply(result, function(x) t(x$surv)), use.names=FALSE), nrow= nrow(x2))) dimnames(temp$surv) <- list(NULL, row.names(x2)) temp$cumhaz <- t(matrix(unlist(lapply(result, function(x) t(x$cumhaz)), use.names=FALSE), nrow= nrow(x2))) if (se.fit) temp$std.err <- t(matrix(unlist(lapply(result, function(x) t(x$std.err)), use.names=FALSE), nrow= nrow(x2))) } else { temp$surv <- unlist(lapply(result, function(x) x$surv), use.names=FALSE) temp$cumhaz <- unlist(lapply(result, function(x) x$cumhaz), use.names=FALSE) if (se.fit) temp$std.err <- unlist(lapply(result, function(x) x$std.err), use.names=FALSE) } temp } } else { names(result) <- ustrata result } } survival/R/summary.aareg.R0000644000176200001440000001040113537676563015245 0ustar liggesusers# The summary routine for aareg models. # A lot of the work below relates to one particular issue: the coeffients # of an aareg model often get "wild" near the end (at the largest times). # So, a common case is to # fit the model (very slow) # look at the printout -- Hmmm x1 is significant, x2 not, ...., why? # look at plot(fit) and # oh my gosh, I should have cut the time scale off at 520 days # # This routine allows one to do that. If maxtime is given, the overall # test statistic is re-computed. One consequence is that lots of the # intermediate material from the fit had to be included in the aareg # object. # The "variance" based weighting for a test is not allowed, because it would # have meant an awful lot more stuff to pass, lots more work, for a test # that is rarely used. # summary.aareg <- function(object, maxtime, test=c('aalen', 'nrisk'), scale=1,...) { if (!inherits(object, 'aareg')) stop ("Must be an aareg object") if (missing(test)) test <- object$test test <- match.arg(test) if (!missing(maxtime)) ntime <- sum(object$time <= maxtime) else ntime <- nrow(object$coefficient) times <- object$time[1:ntime] if (test=='aalen') { twt <- (as.matrix(object$tweight))[1:ntime,] scale <- apply(twt, 2, sum)/scale } else { twt <- object$nrisk[1:ntime] scale <- ntime/scale } # Compute a "slope" for each line, using appropriate weighting # Since this is a single variable model, no intercept, I # don't need to call lm.wfit! tx <- as.matrix(twt * object$coefficient[1:ntime,]) ctx <- apply(tx, 2, cumsum) if (is.matrix(twt) && ncol(twt) >1) tempwt <- apply(twt*times^2, 2, sum) else tempwt <- sum(twt*times^2) if (ncol(ctx) >1) slope<- apply(ctx* times, 2, sum)/ tempwt else slope <- sum(ctx*times) / tempwt if (!missing(maxtime) || object$test != test) { # Compute the test statistic test.stat <- apply(tx, 2, sum) #sum of tested coefficients test.var <- t(tx) %*% tx #std Poisson, ind coefficients variance if (!is.null(object$dfbeta)) { dd <- dim(object$dfbeta) indx <- match(unique(times), object$times) influence <- matrix(0, dd[1], dd[2]) for (i in 1:length(indx)) { if (test=='aalen') influence <- influence + object$dfbeta[,,i] %*% diag(twt[indx[i],]) else influence <- influence + object$dfbeta[,,i]* object$nrisk[indx[i]] } if (!is.null(object$cluster)) influence <- rowsum(influence, cluster) test.var2 <- t(influence) %*% influence } else test.var2 <- NULL } else { #use the value that was passed in test.stat <- object$test.statistic test.var <- object$test.var test.var2 <- object$test.var2 #NULL if dfbeta option was false } # create the matrix for printing out # The chisquare test does not include the intercept se1 <- sqrt(diag(test.var)) if (is.null(test.var2)) { mat <- cbind(slope, test.stat/scale, se1/scale, test.stat/se1, 2*pnorm(-abs(test.stat/se1))) dimnames(mat) <- list((dimnames(object$coefficient)[[2]]), c("slope", "coef", "se(coef)", "z", "p")) chi <- test.stat[-1] %*% solve(test.var[-1,-1],test.stat[-1]) } else { se2 <- sqrt(diag(test.var2)) mat <- cbind(slope, test.stat/scale, se1/scale, se2/scale, test.stat/se2, 2*pnorm(-abs(test.stat/se2))) dimnames(mat) <- list((dimnames(object$coefficient)[[2]]), c("slope", "coef", "se(coef)", "robust se", "z", "p")) chi <- test.stat[-1] %*% solve(test.var2[-1,-1], test.stat[-1]) } temp <- list(table=mat, test=test, test.statistic=test.stat, test.var=test.var, test.var2=test.var2, chisq=chi, n = c(object$n[1], length(unique(times)), object$n[3])) class(temp) <- 'summary.aareg' temp } print.summary.aareg <- function(x, ...) { print(signif(x$table,3)) chi <- x$chisq df <- length(x$test.statistic) -1 pdig <- max(1, getOption("digits")-4) # default it too high IMO cat("\nChisq=", format(round(chi,2)), " on ", df, " df, p=", format.pval(pchisq(chi, df, lower.tail=FALSE), digits=pdig), "; test weights=", x$test, "\n", sep='') invisible(x$table) } survival/R/print.survreg.penal.R0000644000176200001440000000737213537676563016435 0ustar liggesusersprint.survreg.penal <- function(x, terms=FALSE, maxlabel=25, digits=max(options()$digits - 4, 3), ...) { if (!inherits(x, 'survreg.penal')) stop("Invalid object") if (!is.null(x$call)) { cat("Call:\n") dput(x$call) cat("\n") } if (!is.null(x$fail)) { cat(" Survreg failed.", x$fail, "\n") return() } savedig <- options(digits = digits) on.exit(options(savedig)) coef <- x$coefficients if (length(coef)==0) stop("Penalized fits must have an intercept!") # # Map terms to special print functions, and the list of iteration histories # pterms <- x$pterms nterms <- length(pterms) npenal <- sum(pterms>0) print.map <- rep(0,nterms) if (!is.null(x$printfun)) { temp <- unlist(lapply(x$printfun, is.null)) #which ones are missing print.map[pterms>0] <- (1:npenal) * (!temp) } # Tedious, but build up the coef matrix a term at a time print1 <- NULL pname1 <- NULL if (is.null(x$assign2)) alist <- x$assign else alist <- x$assign2 print2 <- NULL for (i in 1:nterms) { kk <- alist[[i]] if (print.map[i] >0) { j <- print.map[i] if (pterms[i]==2) temp <- (x$printfun[[j]])(x$frail, x$fvar, ,x$df[i], x$history[[j]]) else temp <- (x$printfun[[j]])(coef[kk], x$var[kk,kk], x$var2[kk,kk], x$df[i], x$history[[j]]) print1 <- rbind(print1, temp$coef) if (is.matrix(temp$coef)) { xx <- dimnames(temp$coef)[[1]] if (is.null(xx)) xx <- rep(names(pterms)[i], nrow(temp$coef)) else xx <- paste(names(pterms)[i], xx, sep=', ') pname1 <- c(pname1, xx) } else pname1 <- c(pname1, names(pterms)[i]) print2 <- c(print2, temp$history) } else if (terms && length(kk)>1) { pname1 <- c(pname1, names(pterms)[i]) temp <- coxph.wtest(x$var[kk,kk], coef[kk])$test print1 <- rbind(print1, c(NA, NA, NA, temp, x$df[i], pchisq(temp, 1, lower.tail=FALSE))) } else { pname1 <- c(pname1, names(coef)[kk]) tempe<- (diag(x$var))[kk] temp <- coef[kk]^2/ tempe print1 <- rbind(print1, cbind(coef[kk], sqrt(tempe), sqrt((diag(x$var2))[kk]), temp, 1, pchisq(temp, 1, lower.tail=FALSE))) } } # Format out the NA's temp <- cbind(format(print1[,1]), format(print1[,2]), format(print1[,3]), format(round(print1[,4], 2)), format(round(print1[,5], 2)), format(signif(print1[,6], 2))) temp <- ifelse(is.na(print1), "", temp) dimnames(temp) <- list(substring(pname1,1, maxlabel), c("coef","se(coef)", "se2", "Chisq","DF","p")) print(temp, quote=FALSE) # # Write out the remaider of the info # if (nrow(x$var)==length(coef)) cat("\nScale fixed at",format(x$scale),"\n") else if (length(x$scale)==1) cat ("\nScale=", format(x$scale), "\n") else { cat("\nScale:\n") print(x$scale, ...) } cat("\nIterations:", x$iter[1], "outer,", x$iter[2], "Newton-Raphson\n") if (length(print2)) { # cat("Penalized terms:\n") for (i in 1:length(print2)) cat(" ", print2[i], "\n") } logtest <- -2 * (x$loglik[1] - x$loglik[2]) df <- sum(x$df) - x$idf # cat("\n") cat("Degrees of freedom for terms=", format(round(x$df,1)), "\n") # cat("Loglik (initial,final) = ", format(round(x$loglik,2)), # " Penalty = ", format(x$penalty), "\n") pdig <- max(1, getOption("digits")-4) # default it too high IMO cat("Likelihood ratio test=", format(round(logtest, 2)), " on ", round(df,1), " df,", " p=", format.pval(pchisq(logtest, df, lower.tail=FALSE), digits=pdig), sep="") n <- length(x$linear.predictors) omit <- x$na.action if (length(omit)) cat("\n n=", n, " (", naprint(omit), ")\n", sep="") else cat(" n=", n, "\n") invisible() } survival/R/Surv.R0000644000176200001440000003777613537676563013461 0ustar liggesusers# # Package up surivival type data as a structure # Surv <- function(time, time2, event, type=c('right', 'left', 'interval', 'counting', 'interval2', "mstate"), origin=0) { if (missing(time)) stop ("Must have a time argument") if (inherits(time ,"difftime")) time <- unclass(time) if (!missing(time2) && inherits(time2, "difftime")) time2 <-as.numeric(time2) if (!is.numeric(time)) stop ("Time variable is not numeric") nn <- length(time) # ng = number of the first 3 arguments that are present ng <- (!missing(time)) + (!missing(time2)) + (!missing(event)) # The logic below uses "ng" throughout; why not use "missing(time2)" # and missing(event) instead? Because we want to assume that # "Surv(a,b)" has the variable b matched to event rather than time2. # mtype <- match.arg(type) # If type is missing or it is "mstate", I need to figure out for myself # whether I have (time, time2, status) or (time, status) data if (missing(type) || mtype=="mstate") { if (ng==1 || ng==2) type <- 'right' else if (ng==3) type <- 'counting' else stop ("No time variable!") # no time variable at all! } else { type <- mtype if (ng!=3 && (type=='interval' || type =='counting')) stop("Wrong number of args for this type of survival data") if (ng!=2 && (type=='right' || type=='left' || type=='interval2')) stop("Wrong number of args for this type of survival data") } if (ng==1) { # only a time variable given if (!is.numeric(time)) stop("Time variable is not numeric") ss <- cbind(time=time-origin, status=1) type <- "right" } else if (type=='right' || type=='left') { if (!is.numeric(time)) stop("Time variable is not numeric") if (missing(event)) { event <- time2 # treat time2 as event time2 <- NULL # force any inputAttributes to attach to "event" } if (length(event) != nn) stop ("Time and status are different lengths") if (mtype=="mstate" || (is.factor(event))) { mstat <- as.factor(event) status <- as.numeric(mstat) -1 type <- "mright" } else { if (is.logical(event)) status <- as.numeric(event) else if (is.numeric(event)) { who2 <- !is.na(event) if (max(event[who2]) ==2) status <- event -1 else status <- event temp <- (status==0 | status==1) status <- ifelse(temp, status, NA) if (!all(temp[who2], na.rm=TRUE)) warning("Invalid status value, converted to NA") } else stop("Invalid status value, must be logical or numeric") } ss <- cbind(time=time-origin, status=status) } else if (type=='counting') { if (length(time2) !=nn) stop ("Start and stop are different lengths") if (length(event)!=nn) stop ("Start and event are different lengths") if (!is.numeric(time)) stop("Start time is not numeric") if (!is.numeric(time2)) stop("Stop time is not numeric") temp <- (time >= time2) if (any(temp & !is.na(temp))) { time[temp] <- NA warning("Stop time must be > start time, NA created") } if (mtype=="mstate" || is.factor(event)) { mstat <- as.factor(event) status <- as.numeric(mstat) -1 type <- "mcounting" } else { if (is.logical(event)) status <- as.numeric(event) else if (is.numeric(event)) { who2 <- !is.na(event) if (max(event[who2])==2) status <- event - 1 else status <- event temp <- (status==0 | status==1) status <- ifelse(temp, status, NA) if (!all(temp[who2], na.rm=TRUE)) warning("Invalid status value, converted to NA") } else stop("Invalid status value") } ss <- cbind(start=time-origin, stop=time2-origin, status=status) } else { #interval censored data if (type=='interval2') { # convert to "interval" type, infer the event code if (!is.numeric(time2)) stop("Time2 must be numeric") if (length(time2) !=nn) stop ("time and time2 are different lengths") backwards <- (!is.na(time) & !is.na(time2) & time > time2) # allow for infinite times (important to do the backwards check # first) time <- ifelse(is.finite(time), time, NA) time2 <- ifelse(is.finite(time2), time2, NA) unknown <- (is.na(time) & is.na(time2)) status <- ifelse(is.na(time), 2, ifelse(is.na(time2), 0, ifelse(time==time2, 1,3))) time <- ifelse(status!=2, time, time2) if (any(backwards)) { warning("Invalid interval: start > stop, NA created") status[backwards] <- NA } if (any(unknown)) status[unknown] <- NA type <- 'interval' } else { #check legality of event code if (length(event)!=nn) stop("Time and status are different lengths") if (!is.numeric(event)) stop("Invalid status value, must be logical or numeric") temp <- (event==0 | event==1| event==2 | event==3) status <- ifelse(temp, event, NA) if (!all(temp, na.rm=TRUE)) warning("Status must be 0, 1, 2 or 3; converted to NA") if (any(event==3, na.rm=T)) { if (!is.numeric(time2)) stop("Time2 must be numeric") if (length(time2) !=nn) stop ("time and time2 are different lengths") temp <- (status==3 & time>time2) if (any(temp & !is.na(temp))) { status[temp] <- NA warning("Invalid interval: start > stop, NA created") } } else time2 <- 1 #dummy value, time2 is never used } ss <- cbind(time1=time-origin, time2=ifelse(!is.na(status) & status==3, time2-origin, 1), status=status) } # Retain any attributes of the input arguments. Originally requested # by the rms package inputAttributes <- list() if (!is.null(attributes(time))) inputAttributes$time <-attributes(time) if (!missing(time2) && !is.null(attributes(time2))) inputAttributes$time2 <- attributes(time2) if (!missing(event) && !is.null(attributes(event))) inputAttributes$event <- attributes(event) # In rare cases there are no column names, and I have discovered that # people depend on them. cname <- dimnames(ss)[[2]] if (length(cname) ==0) { if (ncol(ss)==2) cname <- c("time", "status") else if (type=="counting") cname <- c("start", "stop", "status") else cname <- c("time1", "time2", "status") } dimnames(ss) <- list(NULL, cname) #kill extraneous row names attr(ss, "type") <- type if (type=="mright" || type=="mcounting") { states <- levels(mstat)[-1] if (any(is.na(states) | states=='') ) stop("each state must have a non-blank name") attr(ss, "states") <- states } if (length(inputAttributes) > 0) attr(ss, "inputAttributes") <- inputAttributes class(ss) <- 'Surv' ss } print.Surv <- function(x, quote=FALSE, ...) { invisible(print(as.character.Surv(x), quote=quote, ...)) } as.character.Surv <- function(x, ...) { new <- switch(attr(x, "type"), "right"={ temp <- x[,2] temp <- ifelse(is.na(temp), "?", ifelse(temp==0, "+","")) paste0(format(x[,1]), temp) }, "counting"= { temp <- x[,3] temp <- ifelse(is.na(temp), "?", ifelse(temp==0, "+","")) paste0('(', format(x[,1]), ',', format(x[,2]), temp, ']') }, "left" ={ temp <- x[,2] temp <- ifelse(is.na(temp), "?", ifelse(temp==0, "-","")) paste0(format(x[,1]), temp) }, "interval"= { stat <- x[,3] temp <- c("+", "", "-", "]")[stat+1] temp2 <- ifelse(stat==3, paste("[", format(x[,1]), ", ",format(x[,2]), sep=''), format(x[,1])) ifelse(is.na(stat), "NA", paste0(temp2, temp)) }, "mright" = { #multi-state temp <- x[,2] end <- c("+", paste(":", attr(x, "states"), sep='')) #endpoint temp <- ifelse(is.na(temp), "?", end[temp+1]) paste0(format(x[,1]), temp) }, "mcounting"= { temp <- x[,3] end <- c("+", paste(":", attr(x, "states"), sep='')) #endpoint temp <- ifelse(is.na(temp), "?", end[temp+1]) paste0('(', format(x[,1]), ',', format(x[,2]), temp, ']') }) names(new) <- rownames(x) new } "[.Surv" <- function(x, i, j, drop=FALSE) { # If only 1 subscript is given, the result will still be a Surv object, # and the drop argument is ignored. # I would argue that x[3:4,,drop=FALSE] should return a matrix, since # the user has implicitly specified that they want a matrix. # However, [.dataframe calls [.Surv with the extra comma; its # behavior drives the choice of default. if (missing(j)) { xattr <- attributes(x) x <- unclass(x)[i,, drop=FALSE] # treat it as a matrix: handles dimnames attr(x, 'type') <- xattr$type if (!is.null(xattr$states)) attr(x, "states") <- xattr$states if (!is.null(xattr$inputAttributes)) { # If I see "names" subscript it, leave all else alone attr(x, 'inputAttributes') <- lapply(xattr$inputAttributes, function(z) { if (any(names(z)=="names")) z$names <- z$names[i] z }) } class(x) <- "Surv" #restore the class x } else { # return a matrix or vector class(x) <- 'matrix' NextMethod("[") } } is.na.Surv <- function(x) { as.vector(rowSums(is.na(unclass(x))) >0) } Math.Surv <- function(...) stop("Invalid operation on a survival time") Ops.Surv <- function(...) stop("Invalid operation on a survival time") Summary.Surv<-function(...) stop("Invalid operation on a survival time") # The Ops.Surv method could in theory define == and >, to allow sorting # but I've left them out since it is the xtfrm method that explicitly # is used for this. For (start, stop) data we order by event within # ending time. Start time is included as a last index, but it is not # clear that we need to do so. xtfrm.Surv <- function(x) { if (attr(x, 'type') == "interval") { temp <- ifelse(x[,3]==3, (x[,1] + x[,2])/2, x[,1]) index <- order(temp, match(x[,3], c(2,1,3,0))) } else if (attr(x, 'type')== "left") index <- order(x[,1], x[,2]) else if (ncol(x)==2) index <- order(x[,1], x[,2]==0, x[,2]) # censor last else index <- order(x[,2], x[,3]==0, x[,3], x[,1]) # ending time, stat, start temp <- integer(nrow(x)) temp[index] <- seq.int(nrow(x)) temp[is.na(x)] <- NA temp } is.Surv <- function(x) inherits(x, 'Surv') as.matrix.Surv <- function(x, ...) { y <- unclass(x) attr(y, "type") <- NULL attr(y, "states") <- NULL attr(y, "inputAttributes") <- NULL y } # You can't do length without names # and names doesn't pay attention to my definition of length: # we need to map to rownames instead length.Surv <- function(x) nrow(x) "names<-.Surv" <- function(x, value) { rownames(x) <- value x } names.Surv <- function(x) rownames(x) format.Surv <- function(x, ...) format(as.character.Surv(x), ...) as.data.frame.Surv <- function(x, ...) as.data.frame.model.matrix(x, ...) # all sorts of methods for Surv, caused by searching for every case of # UseMethod in the standard libraries # package:utils methods tail.Surv <- function(x, ...) x[tail(1:nrow(x), ...)] head.Surv <- function(x, ...) x[head(1:nrow(x), ...)] # packge:graphics. All try to give a nicer failure message plot.Surv <- function(x, ...) plot(survfit(x ~1), ...) barplot.Surv <- function(height, ...) stop("not defined for a Surv object") density.Surv <- function(x, ...) stop("method not defined for a Surv object") hist.Surv <- function(x, ...) stop("method not defined for a Surv object") identify.Surv <- function(x, ...) stop("method not defined for a Surv object") image.Surv <- function(x, ...) stop("method not defined for a Surv object") lines.Surv <- function(x, ...) stop("method not defined for a Surv object") points.Surv <- function(x, ...) stop("method not defined for a Surv object") pairs.Surv <- function(x, ...) stop("method not defined for a Surv object") text.Surv <- function(x, ...) stop("method not defined for a Surv object") # package:base methods anyDuplicated.Surv <- function(x, ...) anyDuplicated(as.matrix(x), ...) duplicated.Surv <- function(x, ...) duplicated(as.matrix(x), ...) rev.Surv <- function(x) x[rev(1:nrow(x))] unique.Surv <- function(x, ...) x[!duplicated(as.matrix(x), ...)] c.Surv <- function(...) { slist <- list(...) if (!all(sapply(slist, function(x) inherits(x, "Surv")))) stop("all elements must be of class Surv") types <- sapply(slist, function(x) attr(x, "type")) if (!all(types == types[1])) stop("all elements must be of the same Surv type") if (types[[1]] %in% c("mright", "mcounting")) { states <- lapply(slist, function(x) attr(x, 'states')) if (any(diff(sapply(states, length))!=0)) stop("all elements must have the same list of states") if (!all(sapply(states, function(x) all.equal(x, states[[1]])))) stop("all elements must have the same list of states") } new <- do.call("rbind", lapply(slist, as.matrix)) att1 <- attributes(slist[[1]]) att1 <- att1[is.na(match(names(att1), c("dim","dimnames")))] attributes(new) <- c(attributes(new)[c('dim', 'dimnames')], att1) new } # The cbind/rbind methods cause more trouble than they solve # The problem is when one is called with mixed arguments, e.g. # cbind(Surv(1:4), data.frame(x=6:9, z=c('a', 'b', 'a', 'a')) # R will call cbind.Surv for cbind(Surv(1:4), Surv(2:5)), giving a matrix. # In the above, however, cbind.Surv is never called, but the \emph{presence} # of a cbind.Surv method messes up the default behavior, see the # 'Dispatch' section of help('cbind'). The result becomes a matrix of # lists rather than a dataframe. # #rbind.Surv <- function(...) { # dotlist <- list(...) # if (all(sapply(dotlist, is.Surv))) do.call("c.Surv", dotlist) # else do.call("rbind", lapply(dotlist, function(x) # if (is.Surv(x)) as.matrix(x) else x)) # } # #cbind.Surv <- function(...) # do.call("cbind", lapply(list(...), # function(x) if (is.Surv(x)) as.matrix(x) else x)) #} rep.Surv <- function(x, ...) { index <- rep(1:nrow(x), ...) x[index] } rep.int.Surv <- function(x, ...) { index <- rep.int(1:nrow(x), ...) x[index] } rep_len.Surv <- function(x, ...) { index <- rep_len(1:nrow(x), ...) x[index] } t.Surv <- function(x) t(as.matrix(x)) as.logical.Surv <- function(x, ...) stop("invalid operation on a survival time") as.integer.Surv <- function(x, ...) { nc <- ncol(x) x[,-nc] <- as.integer(x[,-nc]) if (nc==3 && any(x[,1] >= x[,2])) stop("invalid survival time created") x } as.numeric.Surv <- function(x, ...) { nc <- ncol(x) x[,-nc] <- as.numeric(x[, -nc]) x } mean.Surv <-function(x, ...) stop("a mean method has not been defined for Surv objects") median.Surv <- function(x, ...) quantile(x, probs=0.5, ...) quantile.Surv <- function(x, probs, na.rm=FALSE, ...) { if (!na.rm && any(is.na(x))) stop("missing values and NaN's not allowed if 'na.rm' is FALSE") if (attr(x, "type") %in% c("mright", "mcounting")) stop("quantile method not defined for multiple-endpoint Surv objects") fit <- survfit(x~1) quantile.survfit(fit, probs, ...) } # these make sense but aren't S3 methods # sd, IQR, mad, cov, cor levels.Surv <- function(x) attr(x, "states") survival/R/survdiff.R0000644000176200001440000000553313537676563014334 0ustar liggesuserssurvdiff <- function(formula, data, subset, na.action, rho=0, timefix=TRUE) { call <- match.call() m <- match.call(expand.dots=FALSE) m$rho <- NULL if (!inherits(formula, 'formula')) stop("The 'formula' argument is not a formula") Terms <- if(missing(data)) terms(formula, 'strata') else terms(formula, 'strata', data=data) m$formula <- Terms m[[1L]] <- quote(stats::model.frame) m <- eval(m, parent.frame()) y <- model.extract(m, "response") if (!inherits(y, "Surv")) stop("Response must be a survival object") if (attr(y, 'type') != 'right') stop("Right censored data only") ny <- ncol(y) n <- nrow(y) # Deal with the near-ties problem if (!is.logical(timefix) || length(timefix) > 1) stop("invalid value for timefix option") if (timefix) y <- aeqSurv(y) offset<- attr(Terms, "offset") if (!is.null(offset)) { #one sample test offset <- as.numeric(m[[offset]]) if (length(attr(Terms,"factors"))>0) stop("Cannot have both an offset and groups") if (any(offset <0 | offset >1)) stop("The offset must be a survival probability") expected <- sum(-log(offset)) #sum of expected events observed <- sum(y[,ny]) if (rho!=0) { num <- sum(1/rho - ((1/rho + y[,ny])*offset^rho)) var <- sum(1- offset^(2*rho))/(2*rho) } else { var <- sum(-log(offset)) num <- var - observed } chi <- num*num/var rval <-list(n= n, obs = observed, exp=expected, var=var, chisq= chi) } else { #k sample test strats <- attr(Terms, "specials")$strata if (length(strats)) { temp <- untangle.specials(Terms, 'strata', 1) dropx <- temp$terms if (length(temp$vars)==1) strata.keep <- m[[temp$vars]] else strata.keep <- strata(m[,temp$vars], shortlabel=TRUE) } else strata.keep <- rep(1,nrow(m)) #Now create the group variable if (length(strats)) ll <- attr(Terms[-dropx], 'term.labels') else ll <- attr(Terms, 'term.labels') if (length(ll) == 0) stop("No groups to test") else groups <- strata(m[ll]) fit <- survdiff.fit(y, groups, strata.keep, rho) if (is.matrix(fit$observed)){ otmp <- apply(fit$observed,1,sum) etmp <- apply(fit$expected,1,sum) } else { otmp <- fit$observed etmp <- fit$expected } df <- (etmp >0) #remove groups with exp=0 if (sum(df) <2) chi <- 0 # No test, actually else { temp2 <- ((otmp - etmp)[df])[-1] vv <- (fit$var[df,df])[-1,-1, drop=FALSE] chi <- sum(solve(vv, temp2) * temp2) } rval <-list(n= table(groups), obs = fit$observed, exp = fit$expected, var=fit$var, chisq=chi) if (length(strats)) rval$strata <- table(strata.keep) } na.action <- attr(m, "na.action") if (length(na.action)) rval$na.action <- na.action rval$call <- call class(rval) <- 'survdiff' rval } survival/R/summary.survexp.R0000644000176200001440000001232213537676563015706 0ustar liggesusers# # Almost identical to summary.survfit. The big differences # are no calls to the survmean function (irrelevant), and # there is no censoring, extend, or rmean argument. # And there is never an se, upper or lower component. # Because survexp objects do not contain n.event or n.censor, # subsetting is easier. summary.survexp <- function(object, times, scale=1, ...) { fit <- object if (!inherits(fit, 'survexp')) stop("Invalid data") # The fit$surv object is sometimes a vector and sometimes a matrix. # Make a copy of it that is always a matrix, to simplify the number of # cases for our subscripting work below. At the end of the routine # we'll turn it back into a vector if needed. Similar treatment is # given to the n.risk argument. surv <- as.matrix(fit$surv) n.risk <- as.matrix(fit$n.risk) if (is.null(fit$strata)) { nstrat <- 1 stemp <- rep(1, nrow(surv)) strata.names <- "" } else { nstrat <- length(fit$strata) stemp <- rep(1:nstrat, fit$strata) strata.names <- names(fit$strata) } # if (is.null(fit$std.err)) std.err <- NULL # else std.err <- fit$std.err * surv # if (!is.null(fit$lower)) { # lower <- as.matrix(fit$lower) # upper <- as.matrix(fit$upper) # } if (missing(times)) { times <- fit$time strata <- factor(stemp, labels=strata.names) } else { #this case is harder, since it involves "in between" points times <- sort(times) #just in case the user didn't # The basic idea is to process the curves one at a time, # adding the results for that curve onto a list, so the # survival surv[[1], surv[[2]], etc. # For the survival, stderr, and confidence limits it suffices # to create a single list 'indx1' containing a subscripting vector indx1 <- indx2 <- newtimes <- vector('list', nstrat) n <- length(stemp) for (i in 1:nstrat) { who <- (1:n)[stemp==i] # the rows of the object for this strata stime <- fit$time[who] # First, toss any printing times that are outside our range mintime <- min(stime, 0) ptimes <- times[times >= mintime] maxtime <- max(stime) ptimes <- ptimes[ptimes <= maxtime] newtimes[[i]] <- ptimes # If we tack a -1 onto the front of the vector of survival # times, then indx1 is the subscript for that vector # corresponding to the list of "ptimes". If the input # data had stime=c(10,20) and ptimes was c(5,10,15,20), # the result would be 1,2,2,3. # For n.risk we want a slightly different index: 2,2,3,3. # "In between" times point to the next higher index for n.risk, # but the next lower one for survival. (Survival drops at time t, # the n.risk immediately afterwords at time t+0: you were at # risk just before you die, but not a moment after). The # extra point needs to be added at the end. # ntime <- length(stime) #number of points temp1 <- approx(c(mintime-1, stime), 0:ntime, xout=ptimes, method='constant', f=0, rule=2)$y indx1[[i]] <- ifelse(temp1==0, 1, 1+ who[pmax(1,temp1)]) # Why not just "who[temp1]" instead of who[pmax(1,temp1)] in the # line just above? When temp1 has zeros, the first expression # gives a vector that is shorter than temp1, and the ifelse # doesn't work right due to mismatched lengths. # Compute the number at risk. If stime = 1,10, 20 and ptime=3,10, # 12, then temp1 = 2,2,3: the nrisk looking ahead # approx() doesn't work if stime is of length 1 if (ntime ==1) temp1 <- rep(1, length(ptimes)) else temp1 <- approx(stime, 1:ntime, xout=ptimes, method='constant', f=1, rule=2)$y indx2[[i]] <- ifelse(ptimes>max(stime), length(n.risk), who[temp1]) } # Now create the output list times <- unlist(newtimes) n.risk <- unlist(n.risk) indx1 <- unlist(indx1) surv <- (rbind(1.,surv))[indx1,,drop=FALSE] n.risk <- n.risk[unlist(indx2),, drop=FALSE] # if (!is.null(std.err)) std.err <- rbind(0.,std.err)[indx1,,drop=FALSE] # if (!is.null(fit$lower)) { # lower <- rbind(1.,lower)[indx1,,drop=FALSE] # upper <- rbind(1.,upper)[indx1,,drop=FALSE] # } if (!is.null(fit$strata)) { scount <- unlist(lapply(newtimes, length)) strata <- factor(rep(1:nstrat, scount), labels=names(fit$strata)) } } # # Final part of the routine: paste the material together into # the correct output structure # temp <- list(time=times/scale, n.risk=n.risk, surv=surv) if (ncol(surv)==1) { # Make surve & etc vectors again temp$surv <- drop(temp$surv) temp$n.risk <- drop(temp$n.risk) # if (!is.null(std.err)) temp$std.err <- drop(std.err) # if (!is.null(fit$lower)) { # temp$lower <- drop(lower) # temp$upper <- drop(upper) # } } # else { # if (!is.null(std.err)) temp$std.err <- std.err # if (!is.null(fit$lower)) { # temp$lower <- lower # temp$upper <- upper # } # } if (!is.null(fit$strata)) { temp$strata <- strata } temp$method <- fit$method temp$call <- fit$call if (!is.null(fit$na.action)) temp$na.action <- fit$na.action class(temp) <- "summary.survexp" temp } survival/R/finegray.R0000644000176200001440000001762113570772305014275 0ustar liggesusers# Automatically generated from the noweb directory finegray <- function(formula, data, weights, subset, na.action= na.pass, etype, prefix="fg", count="", id, timefix=TRUE) { Call <- match.call() indx <- match(c("formula", "data", "weights", "subset", "id"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") temp <- Call[c(1,indx)] # only keep the arguments we wanted temp$na.action <- na.action temp[[1L]] <- quote(stats::model.frame) # change the function called special <- c("strata", "cluster") temp$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) mf <- eval(temp, parent.frame()) if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) Y <- model.extract(mf, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") type <- attr(Y, "type") if (type!='mright' && type!='mcounting') stop("Fine-Gray model requires a multi-state survival") nY <- ncol(Y) states <- attr(Y, "states") if (timefix) Y <- aeqSurv(Y) strats <- attr(Terms, "specials")$strata if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata <- mf[[stemp$vars]] else strata <- survival::strata(mf[,stemp$vars], shortlabel=TRUE) istrat <- as.numeric(strata) mf[stemp$vars] <- NULL } else istrat <- rep(1, nrow(mf)) id <- model.extract(mf, "id") if (!is.null(id)) mf["(id)"] <- NULL # don't leave it in result user.weights <- model.weights(mf) if (is.null(user.weights)) user.weights <- rep(1.0, nrow(mf)) cluster<- attr(Terms, "specials")$cluster if (length(cluster)) { stop("a cluster() term is not valid") } # If there is start-stop data, then there needs to be an id # also check that this is indeed a competing risks form of data. # Mark the first and last obs of each subject, as we need it later. # Observations may not be in time order within a subject delay <- FALSE # is there delayed entry? if (type=="mcounting") { if (is.null(id)) stop("(start, stop] data requires a subject id") else { index <- order(id, Y[,2]) # by time within id sorty <- Y[index,] first <- which(!duplicated(id[index])) last <- c(first[-1] -1, length(id)) if (any(sorty[-last, 3] != 0)) stop("a subject has a transition before their last time point") delta <- c(sorty[-1,1], 0) - sorty[,2] if (any(delta[-last] !=0)) stop("a subject has gaps in time") if (any(Y[first,1] > min(Y[,2]))) delay <- TRUE temp1 <- temp2 <- rep(FALSE, nrow(mf)) temp1[index[first]] <- TRUE temp2[index[last]] <- TRUE first <- temp1 #used later last <- temp2 } } else last <- rep(TRUE, nrow(mf)) if (missing(etype)) enum <- 1 #generate a data set for which endpoint? else { index <- match(etype, states) if (any(is.na(index))) stop ("etype argument has a state that is not in the data") enum <- index[1] if (length(index) > 1) warning("only the first endpoint was used") } # make sure count, if present is syntactically valid if (!missing(count)) count <- make.names(count) else count <- NULL oname <- paste0(prefix, c("start", "stop", "status", "wt")) find2 <- function(x, vec, left.open=FALSE, ...) { if (!left.open) findInterval(x, vec, ...) else { # the left.open arg is a recent addition to findInterval, and I want # this to work in 3.2.0 (my employer's default). In another cycle or # so we can drop this workaround and call findInterval directly # length(vec) - findInterval(-x, rev(-vec), ...) } } if (ncol(Y) ==2) { temp <- min(Y[,1], na.rm=TRUE) if (temp >0) zero <- 0 else zero <- 2*temp -1 # a value less than any observed y Y <- cbind(zero, Y) # add a start column } utime <- sort(unique(c(Y[,1:2]))) # all the unique times newtime <- matrix(findInterval(Y[,1:2], utime), ncol=2) status <- Y[,3] newtime[status !=0, 2] <- newtime[status !=0,2] - .2 Gsurv <- survfit(Surv(newtime[,1], newtime[,2], last & status==0) ~ istrat, se.fit=FALSE) if (delay) Hsurv <- survfit(Surv(-newtime[,2], -newtime[,1], first) ~ istrat, se.fit =FALSE) status <- Y[, 3] # Do computations separately for each stratum stratfun <- function(i) { keep <- (istrat ==i) times <- sort(unique(Y[keep & status == enum, 2])) #unique event times if (length(times)==0) return(NULL) #no events in this stratum tdata <- mf[keep, -1, drop=FALSE] maxtime <- max(Y[keep, 2]) if (dim(Gsurv)==1) { # the phrase Gsurv[1] gives a warning when there is only one curve # keep only the event times, and convert back to the original time units if (delay) { dtime <- rev(-Hsurv$time[Hsurv$n.event > 0]) dprob <- c(rev(Hsurv$surv[Hsurv$n.event > 0])[-1], 1) ctime <- Gsurv$time[Gsurv$n.event > 0] cprob <- c(1, Gsurv$surv[Gsurv$n.event > 0]) temp <- sort(unique(c(dtime, ctime))) # these will all be integers index1 <- findInterval(temp, dtime) index2 <- findInterval(temp, ctime) ctime <- utime[temp] cprob <- dprob[index1] * cprob[index2+1] # G(t)H(t), eq 11 Geskus } else { ctime <- utime[Gsurv$time[Gsurv$n.event > 0]] cprob <- Gsurv$surv[Gsurv$n.event > 0] } } else { Gtemp <- Gsurv[i] if (delay) { Htemp <- Hsurv[i] dtime <- rev(-Htemp$time[Htemp$n.event > 0]) dprob <- c(rev(Htemp$surv[Htemp$n.event > 0])[-1], 1) ctime <- Gtemp$time[Gtemp$n.event > 0] cprob <- c(1, Gtemp$surv[Gtemp$n.event > 0]) temp <- sort(unique(c(dtime, ctime))) # these will all be integers index1 <- findInterval(temp, dtime) index2 <- findInterval(temp, ctime) ctime <- utime[temp] cprob <- dprob[index1] * cprob[index2+1] # G(t)H(t), eq 11 Geskus } else { ctime <- utime[Gtemp$time[Gtemp$n.event > 0]] cprob <- Gtemp$surv[Gtemp$n.event > 0] } } ct2 <- c(ctime, maxtime) cp2 <- c(1.0, cprob) index <- find2(times, ct2, left.open=TRUE) index <- sort(unique(index)) # the intervals that were actually seen # times before the first ctime get index 0, those between 1 and 2 get 1 ckeep <- rep(FALSE, length(ct2)) ckeep[index] <- TRUE expand <- (Y[keep, 3] !=0 & Y[keep,3] != enum & last[keep]) #which rows to expand split <- .Call(Cfinegray, Y[keep,1], Y[keep,2], ct2, cp2, expand, c(TRUE, ckeep)) tdata <- tdata[split$row,,drop=FALSE] tstat <- ifelse((status[keep])[split$row]== enum, 1, 0) tdata[[oname[1]]] <- split$start tdata[[oname[2]]] <- split$end tdata[[oname[3]]] <- tstat tdata[[oname[4]]] <- split$wt * user.weights[split$row] if (!is.null(count)) tdata[[count]] <- split$add tdata } if (max(istrat) ==1) result <- stratfun(1) else { tlist <- lapply(1:max(istrat), stratfun) result <- do.call("rbind", tlist) } rownames(result) <- NULL #remove all the odd labels that R adds attr(result, "event") <- states[enum] result } survival/R/print.survreg.R0000644000176200001440000000260613537676563015332 0ustar liggesusersprint.survreg <- function(x, ...) { if(!is.null(cl <- x$call)) { cat("Call:\n") dput(cl) } if (!is.null(x$fail)) { cat(" Survreg failed.", x$fail, "\n") return(invisible(x)) } coef <- x$coef if(any(nas <- is.na(coef))) { if(is.null(names(coef))) names(coef) <- paste("b", 1:length(coef), sep = "") cat("\nCoefficients: (", sum(nas), " not defined because of singularities)\n", sep = "") } else cat("\nCoefficients:\n") print(coef, ...) if (nrow(x$var)==length(coef)) cat("\nScale fixed at",format(x$scale),"\n") else if (length(x$scale)==1) cat ("\nScale=", format(x$scale), "\n") else { cat("\nScale:\n") print(x$scale, ...) } pdig <- max(1, getOption("digits")-4) # default it too high IMO nobs <- length(x$linear) chi <- 2*diff(x$loglik) df <- sum(x$df) - x$idf # The sum is for penalized models cat("\nLoglik(model)=", format(round(x$loglik[2],1)), " Loglik(intercept only)=", format(round(x$loglik[1],1))) if (df > 0) cat("\n\tChisq=", format(round(chi,2)), "on", round(df,1), "degrees of freedom, p=", format.pval(pchisq(chi, df, lower.tail=FALSE), digits=pdig), "\n") else cat("\n") omit <- x$na.action if (length(omit)) cat("n=", nobs, " (", naprint(omit), ")\n", sep="") else cat("n=", nobs, "\n") invisible(x) } survival/R/aareg.R0000644000176200001440000003433213537676563013562 0ustar liggesusers# Aalen's additive regression model # Originally, this tried to call coxph with certain options. # But we found the passing ... to a model method just doesn't work (for # optional things like weights). So the first portion of this is # essentially coxph, to set up for coxph.detail. # For distribution, the "variance" test is omitted. Not all aspects are # yet supported by the downstream printing. # aareg <- function(formula, data, weights, subset, na.action, qrtol=1e-7, nmin, dfbeta=FALSE, taper=1, test = c('aalen', 'variance', 'nrisk'), model=FALSE, x=FALSE, y=FALSE) { call <- match.call() m <- match.call(expand.dots=FALSE) temp <- c("", "formula", "data", "weights", "subset", "na.action") m <- m[ match(temp, names(m), nomatch=0)] special <- c("strata", "cluster") Terms <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) m$formula <- Terms m[[1L]] <- quote(stats::model.frame) m <- eval(m, sys.parent()) test <- match.arg(test) #check for legal argument # Now grab the terms that we need Y <- model.extract(m, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") offset<- attr(Terms, "offset") tt <- length(offset) offset <- if(tt == 0) rep(0, nrow(Y)) else if(tt == 1) m[[offset]] else { #multiple offset terms! add them ff <- m[[offset[1]]] for(i in 2:tt) ff <- ff + m[[offset[i]]] ff } # Create an X matrix, to feed to the coxdetail routine. attr(Terms,"intercept")<- 1 # force no intercept strats <- attr(Terms, "specials")$strata cluster<- attr(Terms, "specials")$cluster dropx <- NULL if (length(cluster)) { dropx <- cluster dfbeta <- TRUE tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] if (any(ord>1)) stop ("Cluster can not be used in an interaction") cluster <- strata(m[,tempc$vars], shortlabel=TRUE) #allow multiples cluster <- as.numeric(cluster) #labels don't matter, and processing # is a bit faster without them } else cluster <- 1:nrow(m) # Adding strata, when there is a coefficent per death, is identical # to doing a totally separate fit per group. # Using "factor(group)" to get multiple baselines is likely what the # user wants. However, because we have not processed the strata # statement (taken it out of X, and created the 'newstrat' of coxph) # it will act just like a factor. # I've changed my mind multiple times on commenting out the line below. # Computationally identical to factor() -- is an error message or not # an error message the greater source of confusion to a user? if (length(strats)) { stop("Strata terms not allowed") } if (length(dropx)) X <- model.matrix(Terms[-dropx], m)[,-1,drop=FALSE] else X <- model.matrix(Terms, m)[,-1,drop=FALSE] nvar <- ncol(X) nused<- nrow(X) weights <- model.extract(m, 'weights') if (length(weights)==0) weights <- rep(1.0, nused) type <- attr(Y, "type") if (type!='right' && type!='counting') stop(paste("Aalen model doesn't support \"", type, "\" survival data", sep='')) # Get the peices that I need from the coxdetail routine # 1. It expects a "counting process" type of Y if (ncol(Y)==2) { mintime <- min(Y[,1]) if (mintime < 0) Y <- cbind( 2*mintime -1, Y) else Y <- cbind(-1,Y) } # Because there are no strata, the number of unique death times is the # number that will be in the output structures times <- as.vector(Y[,2]) # toss the labels away status<- as.vector(Y[,3]) ndeath <- length(unique(times[status==1])) # Sort everything ord <- order(times, -status) times <- times[ord] status <- status[ord] weights <- weights[ord] if (x) saveX <- X X <- X[ord,,drop=FALSE] storage.mode(Y) <- 'double' ff <- .C(Ccoxdetail, as.integer(nused), as.integer(nvar), ndeath= as.integer(ndeath), y = Y[ord,], as.double(X), index = as.integer(rep(0,nused)), event2 = rep(1.0, nused), weights = as.double(weights), means= c(0., double(ndeath*nvar-1)), u = double(ndeath*nvar), i = double(ndeath*nvar*nvar), rmat = integer(ndeath*nused), nrisk2 = double(ndeath), double(nvar*(3 + 2*nvar)) ) # riskmat is an nused by ndeath 0/1 matrix showing who is present riskmat <- matrix(ff$rmat, nused, ndeath) # Note that imat, as returned by coxdetail, is Var(X) * nevents. dt <- list(means= (matrix(ff$means,ndeath, nvar)), var = aareg.taper(taper, array(ff$i, c(nvar, nvar, ndeath)), ff$event2[1:ndeath]), time = times[ff$index[1:ndeath]], nrisk= ff$nrisk2, #weighted # at risk nevent=ff$event2[1:ndeath]) #weighted number of events # Set the number of deaths that will be used in the analysis # This may be smaller than the curren "ndeath", due to small nrisk # The number of times may even be smaller, if imat is singular at that # time point. if (missing(nmin)) nmin <- 3*nvar if (nvar==1) ndeath <- sum(dt$nrisk>= nmin & c(dt$var)>0) else { ndeath <- sum(dt$nrisk >= nmin) if (ndeath >0) { while (1) { #we expect very few iterations of this loop qri <- qr(dt$var[,,ndeath], tol=qrtol) if (qri$rank >= nvar) break #not singular ndeath <- ndeath -1 } } } if (ndeath<=1) stop("The threshold 'nmin' is too high, no model can be fit") # This matches the death times in the data set to the # sorted list of unique death times. "0" = not a death index <- match(times, dt$time[1:ndeath], nomatch=0) * status deaths <- (status==1 & index >0) dindex <- index[deaths] #for each death, a pointer into dt objects nevent <- length(dindex) #total number of events (ndeath = #unique times) if (length(cluster)) ncluster <- length(unique(cluster)) else ncluster <- nused if (dfbeta) { dmat <- array(0.0, dim=c(ncluster, nvar+1, ndeath)) # the resid marix has a row for each death, and nused cols # each row has a "1" in it at the position of the death # the yhat part is subtracted later resid <- rep(0., nevent*nused) resid[nevent*((1:nused)[deaths]-1) + 1:nevent] <- 1.0 resid <- matrix(resid, ncol=nused) } # Coefficient is the step in Aalen's plots # If we keep one row of "coefficent" per death, then Aalen's # variance is coef *% t(coef), treating coef as a col vector. # If we kept one row per death, then the ndeath nvar by nvar variance # matrices would need to be kept too. So keep 1 row per event. # Things like plot will end up accumlating. # There is no such cheat for dfbeta: it is kept as "# unique deaths" # p by p matrices. # if (nvar==1) { # special case of only 1 covariate means <- dt$means[dindex] nrisk <- dt$nrisk[dindex] xx <- (X[deaths] - means) * weights[deaths] v.inverse <- 1/dt$var[dindex] #for all time points twt <- nrisk* 1/cbind(1+ means^2*v.inverse, v.inverse) coefficient <- v.inverse * xx / nrisk # Note that ybar is always w_i/nrisk, since we are doing the # regressions one event at a time. b0 <- weights[deaths]/nrisk - means*coefficient if (dfbeta) { # We first create the nused * #events matrix, and then # collapse it to be ncluster by n-unique-death-times xx <- c(X) * riskmat[,dindex] # X repeated in each col, if at risk predicted <- coefficient * t(xx) + b0*t(riskmat[,dindex]) resid <- resid - predicted #nused cols, nvevent rows temp1 <- (resid * (t(xx) -means)/(nrisk*dt$var[dindex])) * rep(weights, rep(nevent, nused)) # temp1[i,j] is the change in alpha at time i for subject j # the "intercept dfbeta" is resid*wt/sum(wt) - xbar*temp1 temp0 <- resid * outer(1/nrisk, weights) - temp1 * means # get the matrix, nused by 2, which is the influence of each # subject on the test statistic. # This is a bit easier before collapsing if (test=='nrisk') { test.dfbeta <- cbind(apply(temp0*nrisk, 2, sum), apply(temp1*nrisk, 2, sum)) } else { test.dfbeta <- cbind(apply(temp0*twt[,1], 2, sum), apply(temp1*twt[,2], 2, sum)) } # Now collapse dfbeta, first on the deaths, and then on the cluster if (nevent > ndeath) { temp1 <- rowsum(temp1, times[deaths], reorder=FALSE) temp0 <- rowsum(temp0, times[deaths], reorder=FALSE) } dmat[,1,] <- rowsum(t(temp0), cluster[ord], reorder= FALSE) dmat[,2,] <- rowsum(t(temp1), cluster[ord], reorder =FALSE) } # Compute the test statistic, including the intercept term # (Much of the code above was a litte easier to write without # the intercept term in thec coef matrix, that below is easier # with it in). coefficient <- cbind(b0,coefficient) if (test=='nrisk') { temp <- coefficient*nrisk test.statistic <- apply(temp,2,sum) test.var <- matrix(0.,2,2) diag(test.var) <- apply(temp^2, 2, sum) test.var[1,2] <- test.var[2,1] <- sum(temp[,1]*temp[,2]) } else { # full V^{-1} and diag(V){-1} variance (Aalen) are the same temp <- coefficient* twt test.statistic <- apply(temp,2,sum) test.var <- matrix(0.,2,2) diag(test.var) <- apply(temp^2, 2, sum) test.var[1,2] <- test.var[2,1] <- sum(temp[,1]*temp[,2]) } } else { # 2 or more covariates coefficient <- matrix(0,nevent, nvar) twt <- matrix(0, nevent, nvar+1) means <- dt$means[dindex,] # vector of means, at each deatj nrisk <- dt$nrisk[dindex] dindex2 <- (1:nused)[deaths] # row number of each death ybar <- weights[deaths]/nrisk test.var <- matrix(0.0, nvar, nvar) if (dfbeta) test.dfbeta <- matrix(0., nused, nvar+1) for (i in 1:nevent) { who <- riskmat[,dindex[i]] # 0/1 vector of who is at risk wt <- weights* who xx <- who* (X- rep(means[i,], rep(nused, nvar))) # (X-Xbar) # solve, and check for singularity # Note that the increment to imat, as returned by # the coxph.detail function, is Var(X) * #events # and qri is intended to be the qr of V-inverse if (i==1 || dindex[i] != dindex[i-1]) { #don't redo qr for ties qri <- qr(dt$var[,,dindex[i]], tol=qrtol) vmat <- qr.coef(qri, diag(nvar)) twt[i,] <- nrisk[i] /c(1+ means[i,] %*% vmat %*% means[i,], diag(vmat)) } else twt[i,] <- twt[i-1,] j <- dindex2[i] coefficient[i,] <-qr.coef(qri, wt[j]*xx[j,]) / nrisk[i] if (test=='variance') { temp <- wt[j]*xx[j,] test.var <- test.var + outer(temp,temp) } if (dfbeta) { resid[i, ] <- resid[i,]- c(ybar[i] + xx %*% c(coefficient[i,])) temp1 <- t(qr.coef(qri, t(resid[i,]* wt *xx)))/ nrisk[i] temp0 <- resid[i,]*wt/nrisk[i] - temp1%*% means[i,] if (test=='aalen') test.dfbeta <- test.dfbeta + cbind(temp0, temp1) %*% diag(twt[i,]) else if (test=='nrisk') test.dfbeta <- test.dfbeta + cbind(temp0, temp1)* nrisk[i] else { test.dfbeta[,-1] <- test.dfbeta[,-1] + resid[i,]* wt *xx # There really isn't a definition for what weight to # put on the intercept in the "variance" weighting # (and who really cares about "testing the intercept" # anyway). So use the twt one test.dfbeta[,1] <- test.dfbeta[,1] + temp0*twt[i,1] } dmat[,-1,dindex[i]] <- dmat[,-1, dindex[i]] + rowsum(temp1, cluster[ord], reorder=FALSE) dmat[,1, dindex[i]] <- dmat[,1,dindex[i]] + rowsum(temp0, cluster[ord], reorder=FALSE) } } temp <- apply(means*coefficient, 1, sum) # xbar * coef at time t b0 <- weights[deaths]/nrisk - temp coefficient <- cbind(b0,coefficient) # Note - the intercept is a part of the test statistic, even # though it will always be ignored in the overall chisquare test if (test=='aalen') { temp <- twt* coefficient test.statistic <- colSums(temp) test.var <- t(temp) %*% temp } else if (test=='nrisk') { temp <- coefficient * nrisk test.statistic <- colSums(temp) test.var <- t(temp) %*% temp } else { xx <- weights[deaths]*(X[deaths,] - means[dindex,]) test.statistic <- apply(xx, 2, sum) } } if (dfbeta) { # The model variance is sum( term[i]^2), i ranging over times, # and each term an n by p matrix (one row per person) # The dfbeta one is essentially [sum(term[i])]^2 # the test.dfbeta matrix contains this sum over death times temp <- rowsum(test.dfbeta, cluster, reorder=FALSE) test.var2 <- t(temp) %*% temp } dimnames(coefficient) <- list(times[deaths], c("Intercept", dimnames(X)[[2]])) names(test.statistic) <- c("Intercept", dimnames(X)[[2]]) dimnames(twt) <- NULL ans <- list(n= c(nused, ndeath, length(dt$time)), times=times[deaths], nrisk=dt$nrisk[dindex], coefficient=coefficient, test.statistic=test.statistic, test.var=test.var, test=test, tweight = twt, call=call) if (dfbeta) { ans$dfbeta <- dmat ans$test.var2 <- test.var2 } if (any(weights!=1)) ans$weights <- weights # if (ncluster < nused) ans$cluster <- as.numeric(cluster) na.action <- attr(m, "na.action") if (length(na.action)) ans$na.action <- na.action if (model) ans$model <- m else { if (x) ans$x <- saveX if (y) ans$y <- Y } class(ans) <- 'aareg' ans } "[.aareg" <- function(x, ..., drop=FALSE) { if (!inherits(x, 'aareg')) stop ("Must be an aareg object") i <- ..1 if (is.matrix(x$coefficient)) { x$coefficient <- x$coefficient[,i, drop=drop] x$tweight <- x$tweight[,i,drop=drop] } else stop("Subsripting impossible, coefficient component not a matrix") if (!is.null(x$dfbeta)){ x$dfbeta <- x$dfbeta[,i,,drop=drop] x$test.var2 <- x$test.var2[i,i,drop=drop] } x$test.statistic <- x$test.statistic[i, drop=drop] x$test.var <- x$test.var[i,i,drop=drop] x } survival/R/frailty.controlaic.R0000644000176200001440000000354213537676563016310 0ustar liggesusers# $Id: frailty.controlaic.S 11166 2008-11-24 22:10:34Z therneau $ # Control function to minimize the AIC # the optional paramater "caic" chooses corrected aic (default=FALSE) # n is the "effective" sample size # frailty.controlaic <- function(parms, iter, old, n, df, loglik) { if (iter==0) { # initial call if (is.null(parms$init)) theta <-0.005 else theta <- parms$init[1] return(list(theta=theta, done=FALSE)) } # by default, do the corrected AIC if (length(parms$caic)) correct <- parms$caic else correct <- FALSE if (n < df+2) dfc <- (df -n) + (df+1)*df/2 -1 #avoid pathology else dfc <- -1 + (df+1)/(1- ((df+2)/n)) if (iter==1) { # Second guess in series history <- c(theta=old$theta, loglik=loglik, df=df, aic=loglik-df, aicc=loglik - dfc) if (length(parms$init) <2) theta <-1 else theta <- parms$init[2] temp <- list(theta=theta, done=FALSE, history=history) return(temp) } history <- rbind(old$history,c(old$theta, loglik, df, loglik-df, loglik -dfc)) if (iter==2) { #Third guess theta <- mean(history[,1]) return(list(theta=theta, done=FALSE, history=history)) } # # Ok, now we're ready to actually use prior data # Now, history has iter rows, each row contains the # value of theta, the Cox PL, the df, aic, and corrected aic if (correct) aic <- history[,5] #use corrected aic for convergence else aic <- history[,4] done <- (abs(1- aic[iter]/aic[iter-1]) < parms$eps) x <- history[,1] if (x[iter]== max(aic) && x[iter]==max(x)) newtheta <- 2* max(x) else newtheta <- frailty.brent(x, aic, lower=parms$lower, upper=parms$upper) if (length(parms$trace) && parms$trace) { print(history) cat(" new theta=", format(newtheta), "\n\n") } list(theta=newtheta, done=done, history=history) } survival/R/tmerge.R0000644000176200001440000005017713570772316013761 0ustar liggesusers# Automatically generated from the noweb directory tmerge <- function(data1, data2, id, ..., tstart, tstop, options) { Call <- match.call() # The function wants to recognize special keywords in the # arguments, so define a set of functions which will be used to # mark objects new <- new.env(parent=parent.frame()) assign("tdc", function(time, value=NULL) { x <- list(time=time, value=value); class(x) <- "tdc"; x}, envir=new) assign("cumtdc", function(time, value=NULL) { x <- list(time=time, value=value); class(x) <-"cumtdc"; x}, envir=new) assign("event", function(time, value=NULL, censor=NULL) { x <- list(time=time, value=value, censor=censor); class(x) <-"event"; x}, envir=new) assign("cumevent", function(time, value=NULL, censor=NULL) { x <- list(time=time, value=value, censor=censor); class(x) <-"cumevent"; x}, envir=new) if (missing(data1) || missing(data2) || missing(id)) stop("the data1, data2, and id arguments are required") if (!inherits(data1, "data.frame")) stop("data1 must be a data frame") tmerge.control <- function(idname="id", tstartname="tstart", tstopname="tstop", delay =0, na.rm=TRUE, tdcstart=NA, ...) { extras <- list(...) if (length(extras) > 0) stop("unrecognized option(s):", paste(names(extras), collapse=', ')) if (length(idname) != 1 || make.names(idname) != idname) stop("idname option must be a valid variable name") if (!is.null(tstartname) && (length(tstartname) !=1 || make.names(tstartname) != tstartname)) stop("tstart option must be NULL or a valid variable name") if (length(tstopname) != 1 || make.names(tstopname) != tstopname) stop("tstop option must be a valid variable name") if (length(delay) !=1 || !is.numeric(delay) || delay < 0) stop("delay option must be a number >= 0") if (length(na.rm) !=1 || ! is.logical(na.rm)) stop("na.rm option must be TRUE or FALSE") if (length(tdcstart) !=1) stop("tdcstart must be a single value") list(idname=idname, tstartname=tstartname, tstopname=tstopname, delay=delay, na.rm=na.rm, tdcstart=tdcstart) } tname <- attr(data1, "tname") firstcall <- is.null(tname) #first call to the function if (!firstcall && any(is.null(match(unlist(tname), names(data1))))) stop("data1 does not match its own tname attribute") if (!missing(options)) { if (!is.list(options)) stop("options must be a list") if (!is.null(tname)) { # If an option name matches one already in tname, don't confuse # the tmerge.control routine with duplicate arguments temp <- match(names(options), names(tname), nomatch=0) topt <- do.call(tmerge.control, c(options, tname[temp==0])) if (any(temp >0)) { # A variable name is changing midstream, update the # variable names in data1 varname <- tname[c("idname", "tstartname", "tstopname")] temp2 <- match(varname, names(data1)) names(data1)[temp2] <- varname } } else topt <- do.call(tmerge.control, options) } else if (length(tname)) topt <- do.call(tmerge.control, tname) else topt <- tmerge.control() # id, tstart, tstop are found in data2 if (missing(id)) stop("the id argument is required") if (missing(data1) || missing(data2)) stop("two data sets are required") id <- eval(Call[["id"]], data2, enclos=emptyenv()) #don't find it elsewhere if (is.null(id)) stop("id variable not found in data2") if (any(is.na(id))) stop("id variable cannot have missing values") if (firstcall) { if (!missing(tstop)) { tstop <- eval(Call[["tstop"]], data2) if (length(tstop) != length(id)) stop("tstop and id must be the same length") # The neardate routine will check for legal tstop data type } if (!missing(tstart)) { tstart <- eval(Call[["tstart"]], data2) if (length(tstart)==1) tstart <- rep(tstart, length(id)) if (length(tstart) != length(id)) stop("tstart and id must be the same length") if (any(tstart >= tstop)) stop("tstart must be < tstop") } } else { if (!missing(tstart) || !missing(tstop)) stop("tstart and tstop arguments only apply to the first call") } # grab the... arguments notdot <- c("data1", "data2", "id", "tstart", "tstop", "options") dotarg <- Call[is.na(match(names(Call), notdot))] dotarg[[1]] <- as.name("list") # The as-yet dotarg arguments if (missing(data2)) args <- eval(dotarg, envir=new) else args <- eval(dotarg, data2, enclos=new) argclass <- sapply(args, function(x) (class(x))[1]) argname <- names(args) if (any(argname== "")) stop("all additional argments must have a name") check <- match(argclass, c("tdc", "cumtdc", "event", "cumevent")) if (any(is.na(check))) stop(paste("argument(s)", argname[is.na(check)], "not a recognized type")) # The tcount matrix is useful for debugging tcount <- matrix(0L, length(argname), 8) dimnames(tcount) <- list(argname, c("early","late", "gap", "within", "boundary", "leading", "trailing", "tied")) tevent <- attr(data1, "tevent") # event type variables tcens <- attr(data1, "tcensor")# censor code for variables if (is.null(tcens)) tcens <- vector('list', 0) newdata <- data1 #make a copy if (firstcall) { # We don't look for topt$id. What if the user had id=clinic, but their # starting data set also had a variable named "id". We want clinic for # this first call. idname <- Call[["id"]] if (!is.name(idname)) stop("on the first call 'id' must be a single variable name") # The line below finds tstop and tstart variables in data1 indx <- match(c(topt$idname, topt$tstartname, topt$tstopname), names(data1), nomatch=0) if (any(indx[1:2]>0) && FALSE) { # warning currently turned off. Be chatty? overwrite <- c(topt$tstartname, topt$tstopname)[indx[2:3]] warning("overwriting data1 variables", paste(overwrite, collapse=' ')) } temp <- as.character(idname) if (!is.na(match(temp, names(data1)))) { data1[[topt$idname]] <- data1[[temp]] baseid <- data1[[temp]] } else stop("id variable not found in data1") if (any(duplicated(baseid))) stop("for the first call (that establishes the time range) data1 must have no duplicate identifiers") if (length(baseid)== length(id) && all(baseid == id)) newdata <- data1 else { # Note: 'id' is the idlist for data 2 indx2 <- match(id, baseid) if (any(is.na(indx2))) stop("'id' has values not in data1") newdata <- data1[indx2,] } if (missing(tstop)) { # case 2 if (length(argclass)==0 || argclass[1] != "event") stop("neither a tstop argument nor an initial event argument was found") tstop <- args[[1]][[1]] } # at this point newdata and data2 are in the same order, same # rows if (any(is.na(tstop))) stop("missing time value, when that variable defines the span") if (missing(tstart)) { indx <- which(tstop <=0) if (length(indx) >0) stop("found an ending time of ", tstop[indx[1]], ", the default starting time of 0 is invalid") tstart <- rep(0, length(tstop)) } if (any(tstart >= tstop)) stop("tstart must be < tstop") newdata[[topt$tstartname]] <- tstart newdata[[topt$tstopname]] <- tstop n <- nrow(newdata) if (any(duplicated(id))) { # sort by time within id indx1 <- match(id, unique(id)) newdata <- newdata[order(indx1, tstop),] } temp <- newdata[[topt$idname]] if (any(tstart >= tstop)) stop("tstart must be < tstop") if (any(newdata$tstart[-n] > newdata$tstop[-1] & temp[-n] == temp[-1])) stop("first call has created overlapping or duplicated time intervals") } else { #not a first call if (any(is.na(match(id, data1[[topt$idname]])))) stop("id values were found in data2 which are not in data1") } saveid <- id for (ii in seq(along.with=args)) { argi <- args[[ii]] baseid <- newdata[[topt$idname]] dstart <- newdata[[topt$tstartname]] dstop <- newdata[[topt$tstopname]] argcen <- argi$censor # if an event time is missing then skip that obs etime <- argi$time if (length(etime) != length(saveid)) stop("argument ", argname[ii], " is not the same length as id") if (!is.null(argi$value)) { if (length(argi$value) != length(saveid)) stop("argument ", argname[ii], " is not the same length as id") if (topt$na.rm) keep <- !(is.na(etime) | is.na(argi$value)) else keep <- !is.na(etime) if (!all(keep)) { etime <- etime[keep] argi$value <- argi$value[keep] } } else { keep <- !is.na(etime) etime <- etime[keep] } id <- saveid[keep] # Later steps become easier if we sort the new data by id and time # The match() is critical when baseid is not in sorted order. The # etime part of the sort will change from one ii value to the next. indx <- order(match(id, baseid), etime) id <- id[indx] etime <- etime[indx] if (!is.null(argi$value)) yinc <- argi$value[indx] else yinc <- NULL # indx1 points to the closest start time in the baseline data (data1) # that is <= etime. indx2 to the closest end time that is >=etime. # If etime falls into a (tstart, tstop) interval, indx1 and indx2 # will match # If the "delay" argument is set and this event is of type tdc, then # move any etime that is after the entry time for a subject. if (topt$delay >0 && argclass[ii] %in% c("tdc", "cumtdc")) { mintime <- tapply(dstart, baseid, min) index <- match(id, names(mintime)) etime <- ifelse(etime <= mintime[index], etime, etime+ topt$delay) } indx1 <- neardate(id, baseid, etime, dstart, best="prior") indx2 <- neardate(id, baseid, etime, dstop, best="after") # The event times fall into one of 5 categories # 1. Before the first interval # 2. After the last interval # 3. Outside any interval but with time span, i.e, it falls into # a gap in follow-up # 4. Strictly inside an interval (does't touch either end) # 5. Inside an interval, but touching. itype <- ifelse(is.na(indx1), 1, ifelse(is.na(indx2), 2, ifelse(indx2 > indx1, 3, ifelse(etime== dstart[indx1] | etime== dstop[indx2], 5, 4)))) # Subdivide the events that touch on a boundary # 1: intervals of (a,b] (b,d], new count at b "tied edge" # 2: intervals of (a,b] (c,d] with c>b, new count at c, "front edge" # 3: intervals of (a,b] (c,d] with c>b, new count at b, "back edge" # subtype <- ifelse(itype!=5, 0, ifelse(indx1 == indx2+1, 1, ifelse(etime==dstart[indx1], 2, 3))) tcount[ii,1:7] <- table(factor(itype+subtype, levels=c(1:4, 6:8))) # count ties. id and etime are not necessarily sorted tcount[ii,8] <- sum(tapply(etime, id, function(x) sum(duplicated(x)))) indx4 <- which(itype==4) n4 <- length(indx4) if (n4 > 0) { # we need to eliminate duplicate times within the same id, but # do so without changing the class of etime: it might # be a Date, an integer, a double, ... # Using unique on a data.frame does the trick icount <- data.frame(irow= indx1[indx4], etime=etime[indx4]) icount <- unique(icount) # the icount data frame will be sorted by second column within first # so rle is faster than table n.add <- rle(icount$irow)$length # number of rows to add for each id # expand the data irep <- rep.int(1L, nrow(newdata)) erow <- unique(indx1[indx4]) # which rows in newdata to be expanded irep[erow] <- 1+ n.add # number of rows in new data jrep <- rep(1:nrow(newdata), irep) #stutter the duplicated rows newdata <- newdata[jrep,] #expand it out dstart <- dstart[jrep] dstop <- dstop[jrep] #fix up times nfix <- length(erow) temp <- vector("list", nfix) iend <- (cumsum(irep))[irep >1] #end row of each duplication set for (j in 1:nfix) temp[[j]] <- -(seq(n.add[j] -1, 0)) + iend[j] newrows <- unlist(temp) dstart[newrows] <- dstop[newrows-1] <- icount$etime newdata[[topt$tstartname]] <- dstart newdata[[topt$tstopname]] <- dstop for (ename in tevent) newdata[newrows-1, ename] <- tcens[[ename]] # refresh indices baseid <- newdata[[topt$idname]] indx1 <- neardate(id, baseid, etime, dstart, best="prior") indx2 <- neardate(id, baseid, etime, dstop, best="after") subtype[itype==4] <- 1 #all the "insides" are now on a tied edge itype[itype==4] <- 5 } # add a tdc variable newvar <- newdata[[argname[ii]]] # prior value (for sequential tmerge calls) if (argclass[ii] == "tdc") { if (argname[[ii]] %in% tevent) stop("attempt to turn event variable", argname[[ii]], "into a tdc") #if (!is.null(newvar)) #warning(paste0("replacement of variable '", argname[ii], "'")) # id can be any data type; feed integers to the C routine storage.mode(dstop) <- storage.mode(etime) <- "double" #if time is integer uid <- unique(baseid) index <- .Call(Ctmerge2, match(baseid, uid), dstop, match(id, uid), etime) if (is.null(yinc)) newvar <- ifelse(index==0, 0L, 1L) # add a 0/1 variable else { newvar <- yinc[pmax(1L, index)] if (any(index==0)) { if (is.na(topt$tdcstart)) is.na(newvar) <- (index==0L) else { if (is.numeric(newvar)) newvar[index=0L] <- as.numeric(topt$tdcstart) else { if (is.factor(newvar)) { # special case: if tdcstart isn't in the set of levels, # add it to the levels if (is.na(match(topt$tdcstart, levels(newvar)))) levels(newvar) <- c(levels(newvar), topt$tdcstart) } newvar[index== 0L] <- topt$tdcstart } } } } } # add events if (argclass[ii] %in% c("cumtdc", "cumevent")) { if (is.null(yinc)) yinc <- rep(1L, length(id)) else if (is.logical(yinc)) yinc <- as.numeric(yinc) # allow cumulative T/F if (!is.numeric(yinc)) stop("invalid increment for cumtdc or cumevent") ykeep <- (yinc !=0) # ignore the addition of a censoring event yinc <- unlist(tapply(yinc, match(id, baseid), cumsum)) } if (argclass[ii] %in% c("event", "cumevent")) { if (!is.null(newvar)) { if (!argname[ii] %in% tevent) { #warning(paste0("non-event variable '", argname[ii], "' replaced by an event variable")) newvar <- NULL } else if (!is.null(yinc)) { if (class(newvar) != class(yinc)) stop("attempt to update an event variable with a different type") if (is.factor(newvar) && !all(levels(yinc) %in% levels(newvar))) stop("attemp to update an event variable and levels do not match") } } if (is.null(yinc)) yinc <- rep(1L, length(id)) if (is.null(newvar)) { if (is.numeric(yinc)) newvar <- rep(0L, nrow(newdata)) else if (is.factor(yinc)) newvar <- factor(rep(levels(yinc)[1], nrow(newdata)), levels(yinc)) else if (is.character(yinc)) newvar <- rep('', nrow(newdata)) else if (is.logical(yinc)) newvar <- rep(FALSE, nrow(newdata)) else stop("invalid value for a status variable") } keep <- (subtype==1 | subtype==3) # all other events are thrown away if (argclass[ii] == "cumevent") keep <- (keep & ykeep) newvar[indx2[keep]] <- yinc[keep] # add this into our list of 'this is an event type variable' if (!(argname[ii] %in% tevent)) { tevent <- c(tevent, argname[[ii]]) if (is.factor(yinc)) tcens <- c(tcens, list(levels(yinc)[1])) else if (is.logical(yinc)) tcens <- c(tcens, list(FALSE)) else if (is.character(yinc)) tcens <- c(tcens, list("")) else tcens <- c(tcens, list(0)) names(tcens) <- tevent } } else if (argclass[ii] == "cumtdc") { # process a cumtdc variable # I don't have a good way to catch the reverse of this user error if (argname[[ii]] %in% tevent) stop("attempt to turn event variable", argname[[ii]], "into a cumtdc") keep <- itype != 2 # changes after the last interval are ignored indx <- ifelse(subtype==1, indx1, ifelse(subtype==3, indx2+1L, indx2)) # we want to pass the right kind of NA to the C code if (is.na(topt$tdcstart)) topt$tdcstart <- as.numeric(topt$tdcstart) if (is.null(newvar)) { # not overwriting a prior value if (is.null(argi$value)) newvar <- rep(0.0, nrow(newdata)) else newvar <- rep(topt$tdcstart, nrow(newdata)) } # the increment must be numeric if (!is.numeric(newvar)) stop("data and options$tdcstart do not agree on data type") # id can be any data type; feed integers to the C routine storage.mode(yinc) <- storage.mode(dstop) <- "double" storage.mode(newvar) <- storage.mode(etime) <- "double" newvar <- .Call(Ctmerge, match(baseid, baseid), dstop, newvar, match(id, baseid)[keep], etime[keep], yinc[keep], indx[keep]) } newdata[[argname[ii]]] <- newvar } attr(newdata, "tname") <- topt[c("idname", "tstartname", "tstopname")] attr(newdata, "tcount") <- rbind(attr(data1, "tcount"), tcount) if (length(tevent)) { attr(newdata, "tevent") <- tevent attr(newdata, "tcensor" ) <- tcens } row.names(newdata) <- NULL #These are a mess; kill them off. # Not that it works: R just assigns new row names. class(newdata) <- c("data.frame") newdata } survival/R/frailty.brent.R0000644000176200001440000000327513537676563015270 0ustar liggesusers# $Id: frailty.brent.S 11166 2008-11-24 22:10:34Z therneau $ # # Brent's method for finding a maximum # If upper and/or lower is given, it transforms x to stay out of trouble # during the "bracketing" phase # frailty.brent <- function(x, y, lower, upper) { n <- length(x) if (length(y) != n) stop ("Length mismatch for x and y") if (n<3) return(mean(x)) # First, is the solution bracketed? # If not, take big steps until it is ord <- order(x) xx <- x[ord] yy <- y[ord] best <- (1:n)[yy==max(y)] if (length(best) >1) stop("Ties for max(y), I surrender") #fix this later if (best==1) { new <- xx[1] - 3*(xx[2] - xx[1]) if (!missing(lower) && !is.null(lower) && new < lower) new <- lower + (min(xx[xx>lower])-lower)/10 return(new) } if (best==n) { new <- xx[n] + 3*(xx[n] - xx[n-1]) if (!missing(upper) && !is.null(upper) && new > upper) new <- upper + (max(xx[xx xx[3] || ( (n>4) && (new-x[n]) > .5*abs(x[n-1]-x[n-2]))) { if ((xx[2]-xx[1]) > (xx[3]-xx[2])) return(xx[2] - .38*(xx[2]-xx[1])) else return(xx[2] + .32*(xx[3]-xx[2])) } else return(new) } survival/R/frailty.controlgam.R0000644000176200001440000000427613537676563016325 0ustar liggesusers# $Id: frailty.controlgam.S 11166 2008-11-24 22:10:34Z therneau $ # # The control function for a single Gamma frailty term. # frailty.controlgam <- function(opt, iter, old, group, status, loglik){ if (iter==0) { # initial call if (!is.null(opt$theta)) theta <- opt$theta #fixed theta case else { if (is.null(opt$init)) theta <- 0 #no initial value -- use 0 else theta <- opt$init[1] } list(theta=theta) } else { if (is.null(opt$trace)) trace <-FALSE else trace <- opt$trace theta <- old$theta #compute correction to the loglik if (theta==0) correct <- 0 else { if (is.matrix(group)) group <- c(group %*% 1:ncol(group)) d <- tapply(status,group,sum) correct <- frailty.gammacon(d, 1/theta) } if (!is.null(opt$theta)) # fixed theta case list(theta=theta, done=TRUE, c.loglik=loglik + correct) else { # save history of the iteration, and get the next theta if (iter==1) history <- c(theta=theta, loglik=loglik, c.loglik=loglik + correct) else history <- rbind(old$history, as.vector(c(theta, loglik, loglik + correct))) if (iter==1) { if (is.null(opt$init )) theta <-1 else theta <- opt$init[2] list(theta=theta, done=FALSE, history=history, c.loglik= loglik+correct) } else if (iter ==2) { if (history[2,3] < (history[1,3] +1)) theta <- mean(history[1:2,1]) else theta <- 2*history[2,1] if (trace) { print(history) cat(" new theta=", theta, "\n\n") } list(theta=theta, done=FALSE, history=history, c.loglik= loglik+correct) } else { #Now, history has iter rows, each row contains the value # of theta, the Cox PL, and the full LL done <- (abs(1- history[iter,3]/history[iter-1,3]) < opt$eps) x <- history[,1] y <- history[,3] if (y[iter]== max(y) && x[iter]==max(x)) newtheta <- 2* max(x) else newtheta <- frailty.brent(sqrt(x), y, lower=0)^2 if (trace) { print(history) cat(" new theta=", format(newtheta), "\n\n") } list(theta=newtheta, done=done, history=history, c.loglik = loglik + correct) } } } } survival/R/statefig.R0000644000176200001440000002145713570772312014277 0ustar liggesusers# Automatically generated from the noweb directory statefig <- function(layout, connect, margin=.03, box=TRUE, cex=1, col=1, lwd=1, lty=1, bcol= col, acol=col, alwd = lwd, alty= lty, offset=0) { # set up an empty canvas frame(); # new environment par(usr=c(0,1,0,1)) if (!is.numeric(layout)) stop("layout must be a numeric vector or matrix") if (!is.matrix(connect) || nrow(connect) != ncol(connect)) stop("connect must be a square matrix") nstate <- nrow(connect) dd <- dimnames(connect) if (!is.null(dd[[1]])) statenames <- dd[[1]] else if (is.null(dd[[2]])) stop("connect must have the state names as dimnames") else statenames <- dd[[2]] # expand out all of the graphical parameters. This lets users # use a vector of colors, line types, etc narrow <- sum(connect!=0) acol <- rep(acol, length=narrow) alwd <- rep(alwd, length=narrow) alty <- rep(alty, length=narrow) bcol <- rep(bcol, length=nstate) lty <- rep(lty, length=nstate) lwd <- rep(lwd, length=nstate) col <- rep(col, length=nstate) # text colors if (is.matrix(layout) && ncol(layout)==2 && nrow(layout) > 1) { # the user provided their own if (any(layout <0) || any(layout >1)) stop("layout coordinates must be between 0 and 1") if (nrow(layout) != nstate) stop("layout matrix should have one row per state") cbox <- layout } else { if (any(layout <=0 | layout != floor(layout))) stop("non-integer number of states in layout argument") space <- function(n) (1:n -.5)/n # centers of the boxes if (sum(layout) != nstate) stop("number of boxes != number of states") cbox <- matrix(0, ncol=2, nrow=nstate) #coordinates will be here n <- length(layout) ix <- rep(seq(along=layout), layout) if (is.vector(layout) || ncol(layout)> 1) { #left to right cbox[,1] <- space(n)[ix] for (i in 1:n) cbox[ix==i,2] <- 1 -space(layout[i]) } else { # top to bottom cbox[,2] <- 1- space(n)[ix] for (i in 1:n) cbox[ix==i,1] <- space(layout[i]) } } text(cbox[,1], cbox[,2], statenames, cex=cex, col=col) # write the labels textwd <- strwidth(statenames, cex=cex) textht <- strheight(statenames, cex=cex) temp <- par("pin") #plot region in inches dx <- margin * temp[2]/mean(temp) # extra to add in the x dimension dy <- margin * temp[1]/mean(temp) # extra to add in y if (box) { drawbox <- function(x, y, dx, dy, lwd, lty, col) { lines(x+ c(-dx, dx, dx, -dx, -dx), y+ c(-dy, -dy, dy, dy, -dy), lwd=lwd, lty=lty, col=col) } for (i in 1:nstate) drawbox(cbox[i,1], cbox[i,2], textwd[i]/2 + dx, textht[i]/2 + dy, col=bcol[i], lwd=lwd[i], lty=lty[i]) dx <- 2*dx; dy <- 2*dy # move arrows out from the box } arrow2 <- function(...) arrows(..., angle=20, length=.1) doline <- function(x1, x2, d, delta1, delta2, lwd, lty, col) { if (d==0 && x1[1] ==x2[1]) { # vertical line if (x1[2] > x2[2]) # downhill arrow2(x1[1], x1[2]- delta1[2], x2[1], x2[2] + delta2[2], lwd=lwd, lty=lty, col=col) else arrow2(x1[1], x1[2]+ delta1[2], x2[1], x2[2] - delta2[2], lwd=lwd, lty=lty, col=col) } else if (d==0 && x1[2] == x2[2]) { # horizontal line if (x1[1] > x2[1]) # right to left arrow2(x1[1]-delta1[1], x1[2], x2[1] + delta2[1], x2[2], lwd=lwd, lty=lty, col=col) else arrow2(x1[1]+delta1[1], x1[2], x2[1] - delta2[1], x2[2], lwd=lwd, lty=lty, col=col) } else { temp <- phi(x1[1], x1[2], x2[1], x2[2], d, delta1, delta2) if (d==0) { arrow2(temp$center[1] + temp$r*cos(temp$angle[1]), temp$center[2] + temp$r*sin(temp$angle[1]), temp$center[1] + temp$r*cos(temp$angle[2]), temp$center[2] + temp$r*sin(temp$angle[2]), lwd=lwd, lty=lty, col=col) } else { # approx the curve with 21 segments # arrowhead on the last one phi <- seq(temp$angle[1], temp$angle[2], length=21) lines(temp$center[1] + temp$r*cos(phi), temp$center[2] + temp$r*sin(phi), lwd=lwd, lty=lty, col=col) arrow2(temp$center[1] + temp$r*cos(phi[20]), temp$center[2] + temp$r*sin(phi[20]), temp$center[1] + temp$r*cos(phi[21]), temp$center[2] + temp$r*sin(phi[21]), lwd=lwd, lty=lty, col=col) } } } k <- 1 for (j in 1:nstate) { for (i in 1:nstate) { if (i != j && connect[i,j] !=0) { if (connect[i,j] == 2-connect[j,i] && offset!=0) { #add an offset toff <- c(cbox[j,2] - cbox[i,2], cbox[i,1] - cbox[j,1]) toff <- -offset *toff/sqrt(sum(toff^2)) doline(cbox[i,]+toff, cbox[j,]+toff, connect[i,j]-1, delta1 = c(textwd[i]/2 + dx, textht[i]/2 + dy), delta2 = c(textwd[j]/2 + dx, textht[j]/2 + dy), lty=alty[k], lwd=alwd[k], col=acol[k]) } else doline(cbox[i,], cbox[j,], connect[i,j]-1, delta1 = c(textwd[i]/2 + dx, textht[i]/2 + dy), delta2 = c(textwd[j]/2 + dx, textht[j]/2 + dy), lty=alty[k], lwd=alwd[k], col=acol[k]) k <- k +1 } } } dimnames(cbox) <- list(statenames, c("x", "y")) invisible(cbox) } statefigx <- function(x, C, r, a1, a2) { temp <-(x - C[1])/r if (abs(temp) >1) return(NULL) # no intersection of the arc and x phi <- acos(temp) # this will be from 0 to pi pi <- 3.1415926545898 # in case someone has a variable "pi" if (x > C[1]) phi <- c(phi, pi - phi) else phi <- -c(phi, pi - phi) # Add reflection about the X axis, in both forms phi <- c(phi, -phi, 2*pi - phi) amax <- max(a1, a2) amin <- min(a1, a2) phi[phi amin] } statefigy <- function(y, C, r, a1, a2) { pi <- 3.1415926545898 # in case someone has a variable named "pi" amax <- max(a1, a2) amin <- min(a1, a2) temp <-(y - C[2])/r if (abs(temp) >1) return(NULL) # no intersection of the arc and y phi <- asin(temp) # will be from -pi/2 to pi/2 phi <- c(phi, sign(phi)*pi -phi) # reflect about the vertical phi <- c(phi, phi + 2*pi) phi[phi amin] } phi <- function(x1, y1, x2, y2, d, delta1, delta2) { # d = height above the line theta <- atan2(y2-y1, x2-x1) # angle from center to center if (abs(d) < .001) d=.001 # a really small arc looks like a line z <- sqrt((x2-x1)^2 + (y2 - y1)^2) /2 # half length of chord ab <- c((x1 + x2)/2, (y1 + y2)/2) # center of chord r <- abs(z*(1 + d^2)/ (2*d)) if (d >0) C <- ab + (r - d*z)* c(-sin(theta), cos(theta)) # center of arc else C <- ab + (r + d*z)* c( sin(theta), -cos(theta)) a1 <- atan2(y1-C[2], x1-C[1]) # starting angle a2 <- atan2(y2-C[2], x2-C[1]) # ending angle if (abs(a2-a1) > pi) { # a1= 3 and a2=-3, we don't want to include 0 # nor for a1=-3 and a2=3 if (a1>0) a2 <- a2 + 2 *pi else a1 <- a1 + 2*pi } if (d > 0) { #counterclockwise phi1 <- min(statefigx(x1 + delta1[1], C, r, a1, a2), statefigx(x1 - delta1[1], C, r, a1, a2), statefigy(y1 + delta1[2], C, r, a1, a2), statefigy(y1 - delta1[2], C, r, a1, a2), na.rm=TRUE) phi2 <- max(statefigx(x2 + delta2[1], C, r, a1, a2), statefigx(x2 - delta2[1], C, r, a1, a2), statefigy(y2 + delta2[2], C, r, a1, a2), statefigy(y2 - delta2[2], C, r, a1, a2), na.rm=TRUE) } else { # clockwise phi1 <- max(statefigx(x1 + delta1[1], C, r, a1, a2), statefigx(x1 - delta1[1], C, r, a1, a2), statefigy(y1 + delta1[2], C, r, a1, a2), statefigy(y1 - delta1[2], C, r, a1, a2), na.rm=TRUE) phi2 <- min(statefigx(x2 + delta2[1], C, r, a1, a2), statefigx(x2 - delta2[1], C, r, a1, a2), statefigy(y2 + delta2[2], C, r, a1, a2), statefigy(y2 - delta2[2], C, r, a1, a2), na.rm=TRUE) } list(center=C, angle=c(phi1, phi2), r=r) } survival/R/survfit.coxph.R0000644000176200001440000003545513570772314015320 0ustar liggesusers# Automatically generated from the noweb directory survfit.coxph <- function(formula, newdata, se.fit=TRUE, conf.int=.95, individual=FALSE, stype=2, ctype, conf.type=c("log", "log-log", "plain", "none", "logit", "arcsin"), censor=TRUE, start.time, id, influence=FALSE, na.action=na.pass, type, ...) { Call <- match.call() Call[[1]] <- as.name("survfit") #nicer output for the user object <- formula #'formula' because it has to match survfit Terms <- terms(object) robust <- !is.null(object$naive.var) # did the coxph model use robust var? if (!is.null(attr(object$terms, "specials")$tt)) stop("The survfit function can not process coxph models with a tt term") if (!missing(type)) { # old style argument if (!missing(stype) || !missing(ctype)) warning("type argument ignored") else { temp1 <- c("kalbfleisch-prentice", "aalen", "efron", "kaplan-meier", "breslow", "fleming-harrington", "greenwood", "tsiatis", "exact") survtype <- match(match.arg(type, temp1), temp1) stype <- c(1,2,2,1,2,2,2,2,2)[survtype] if (stype!=1) ctype <-c(1,1,2,1,1,2,1,1,1)[survtype] } } if (missing(ctype)) { # Use the appropriate one from the model temp1 <- match(object$method, c("exact", "breslow", "efron")) ctype <- c(1,1,2)[temp1] } else if (!(ctype %in% 1:2)) stop ("ctype must be 1 or 2") if (!se.fit) conf.type <- "none" else conf.type <- match.arg(conf.type) tfac <- attr(Terms, 'factors') temp <- attr(Terms, 'specials')$strata has.strata <- !is.null(temp) if (has.strata) { stangle = untangle.specials(Terms, "strata") #used multiple times, later # Toss out strata terms in tfac before doing the test 1 line below, as # strata end up in the model with age:strat(grp) terms or *strata() terms # (There might be more than one strata term) for (i in temp) tfac <- tfac[,tfac[i,] ==0] # toss out strata terms } if (any(tfac >1)) stop("not able to create a curve for models that contain an interaction without the lower order effect") Terms <- object$terms n <- object$n[1] if (!has.strata) strata <- rep(0L, n) else strata <- object$strata missid <- missing(id) # I need this later, and setting id below makes # "missing(id)" always false if (!missid & !missing(individual)) warning("the `id' option supersedes `individual'") if (!missid) individual <- TRUE else if (missid && individual) id <- rep(0,n) #dummy value else id <- NULL if (individual & missing(newdata)) { stop("the id and/or individual options only make sense with new data") } if (has.strata) { temp <- attr(Terms, "specials")$strata factors <- attr(Terms, "factors")[temp,] strata.interaction <- any(t(factors)*attr(Terms, "order") >1) } coxms <- inherits(object, "coxphms") if (coxms || is.null(object$y) || is.null(object[['x']]) || !is.null(object$call$weights) || !is.null(object$call$id) || (has.strata && is.null(object$strata)) || !is.null(attr(object$terms, 'offset'))) { mf <- stats::model.frame(object) } else mf <- NULL #useful for if statements later position <- NULL Y <- object[['y']] if (is.null(mf)) { weights <- rep(1., n) offset <- rep(0., n) X <- object[['x']] } else { weights <- model.weights(mf) if (is.null(weights)) weights <- rep(1.0, n) offset <- model.offset(mf) if (is.null(offset)) offset <- rep(0., n) X <- model.matrix.coxph(object, data=mf) if (is.null(Y) || coxms) { Y <- model.response(mf) if (is.null(object$timefix) || object$timefix) Y <- aeqSurv(Y) } oldid <- model.extract(mf, "id") if (length(oldid) && ncol(Y)==3) position <- survflag(Y, oldid) else position <- NULL if (!coxms && (nrow(Y) != object$n[1])) stop("Failed to reconstruct the original data set") if (has.strata) { if (length(strata)==0) { if (length(stangle$vars) ==1) strata <- mf[[stangle$vars]] else strata <- strata(mf[, stangle$vars], shortlabel=TRUE) } } } if (FALSE) { if (!is.null(mf)){ y2 <- object[['y']] if (!is.null(y2)) { if (ncol(y2) != ncol(Y) || length(y2) != length(Y)) stop("Could not reconstruct the y vector") } } } type <- attr(Y, 'type') if (!type %in% c("right", "counting", "mright", "mcounting")) stop("Cannot handle \"", type, "\" type survival data") if (type=="right" || type== "mright") individual <- FALSE if (!missing(start.time)) { if (!is.numeric(start.time) || length(start.time) > 1) stop("start.time must be a single numeric value") # Start the curves after start.time # To do so, remove any rows of the data with an endpoint before that # time. if (ncol(Y)==3) { keep <- Y[,2] > start.time Y[keep,1] <- pmax(Y[keep,1], start.time) } else keep <- Y[,1] > start.time if (!any(Y[keep, ncol(Y)]==1)) stop("start.time argument has removed all endpoints") Y <- Y[keep,,drop=FALSE] X <- X[keep,,drop=FALSE] offset <- offset[keep] strata <- strata[keep] if (length(id) >0 ) id <- id[keep] if (length(position)) position <- position[keep] n <- nrow(Y) } if (length(object$means) ==0) { # a model with only an offset term # Give it a dummy X so the rest of the code goes through # (This case is really rare) # se.fit <- FALSE X <- matrix(0., nrow=n, ncol=1) xcenter <- mean(offset) coef <- 0.0 varmat <- matrix(0.0, 1, 1) risk <- rep(exp(offset- mean(offset)), length=n) } else { varmat <- object$var beta <- ifelse(is.na(object$coefficients), 0, object$coefficients) xcenter <- sum(object$means * beta)+ mean(offset) if (!is.null(object$frail)) { keep <- !grepl("frailty(", dimnames(X)[[2]], fixed=TRUE) X <- X[,keep, drop=F] } risk <- c(exp(X%*% beta + offset - xcenter)) } if (missing(newdata)) { # If the model has interactions, print out a long warning message. # People may hate it, but I don't see another way to stamp out these # bad curves without backwards-incompatability. # I probably should complain about factors too (but never in a strata # or cluster term). if (any(attr(Terms, "order") > 1) ) warning("the model contains interactions; the default curve based on columm means of the X matrix is almost certainly not useful. Consider adding a newdata argument.") if (length(object$means)) { mf2 <- as.list(object$means) #create a dummy newdata names(mf2) <- names(object$coefficients) mf2 <- as.data.frame(mf2) x2 <- matrix(object$means, 1) } else { # nothing but an offset mf2 <- data.frame(X=0) x2 <- 0 } offset2 <- 0 found.strata <- FALSE } else { if (!is.null(object$frail)) stop("Newdata cannot be used when a model has frailty terms") Terms2 <- Terms if (!individual) Terms2 <- delete.response(Terms) if (is.vector(newdata, "numeric")) { if (individual) stop("newdata must be a data frame") if (is.null(names(newdata))) { stop("Newdata argument must be a data frame") } newdata <- data.frame(as.list(newdata), stringsAsFactors=FALSE) } if (has.strata) { found.strata <- TRUE tempenv <- new.env(, parent=emptyenv()) assign("strata", function(..., na.group, shortlabel, sep) list(...), envir=tempenv) assign("list", list, envir=tempenv) for (svar in stangle$vars) { temp <- try(eval(parse(text=svar), newdata, tempenv), silent=TRUE) if (!is.list(temp) || any(unlist(lapply(temp, class))== "function")) found.strata <- FALSE } if (!found.strata) { ss <- untangle.specials(Terms2, "strata") Terms2 <- Terms2[-ss$terms] } } tcall <- Call[c(1, match(c('id', "na.action"), names(Call), nomatch=0))] tcall$data <- newdata tcall$formula <- Terms2 tcall$xlev <- object$xlevels[match(attr(Terms2,'term.labels'), names(object$xlevels), nomatch=0)] tcall[[1L]] <- quote(stats::model.frame) mf2 <- eval(tcall) } if (has.strata && found.strata) { #pull them off temp <- untangle.specials(Terms2, 'strata') strata2 <- strata(mf2[temp$vars], shortlabel=TRUE) strata2 <- factor(strata2, levels=levels(strata)) if (any(is.na(strata2))) stop("New data set has strata levels not found in the original") # An expression like age:strata(sex) will have temp$vars= "strata(sex)" # and temp$terms = integer(0). This does not work as a subscript if (length(temp$terms) >0) Terms2 <- Terms2[-temp$terms] } else strata2 <- factor(rep(0, nrow(mf2))) if (!robust) cluster <- NULL if (individual) { if (missing(newdata)) stop("The newdata argument must be present when individual=TRUE") if (!missid) { #grab the id variable id2 <- model.extract(mf2, "id") if (is.null(id2)) stop("id=NULL is an invalid argument") } else id2 <- rep(1, nrow(mf2)) x2 <- model.matrix(Terms2, mf2)[,-1, drop=FALSE] #no intercept if (length(x2)==0) stop("Individual survival but no variables") offset2 <- model.offset(mf2) if (length(offset2) ==0) offset2 <- 0 y2 <- model.extract(mf2, 'response') if (attr(y2,'type') != type) stop("Survival type of newdata does not match the fitted model") if (attr(y2, "type") != "counting") stop("Individual=TRUE is only valid for counting process data") y2 <- y2[,1:2, drop=F] #throw away status, it's never used } else if (missing(newdata)) { if (has.strata && strata.interaction) stop ("Models with strata by covariate interaction terms require newdata") offset2 <- 0 if (length(object$means)) { x2 <- matrix(object$means, nrow=1, ncol=ncol(X)) } else { # model with only an offset and no new data: very rare case x2 <- matrix(0.0, nrow=1, ncol=1) # make a dummy x2 } } else { offset2 <- model.offset(mf2) if (length(offset2) >0) offset2 <- offset2 else offset2 <- 0 x2 <- model.matrix(Terms2, mf2)[,-1, drop=FALSE] #no intercept } if (missing(newdata)) risk2 <- 1 else { if (length(object$means)) risk2 <- exp(c(x2 %*% beta) + offset2 - xcenter) else risk2 <- exp(offset2 - xcenter) } if (individual) { result <- coxsurv.fit(ctype, stype, se.fit, varmat, cluster, Y, X, weights, risk, position, strata, oldid, y2, x2, risk2, strata2, id2) } else { result <- coxsurv.fit(ctype, stype, se.fit, varmat, cluster, Y, X, weights, risk, position, strata, oldid, y2, x2, risk2) if (has.strata && found.strata) { if (is.matrix(result$surv)) { nr <- nrow(result$surv) #a vector if newdata had only 1 row indx1 <- split(1:nr, rep(1:length(result$strata), result$strata)) rows <- indx1[as.numeric(strata2)] #the rows for each curve indx2 <- unlist(rows) #index for time, n.risk, n.event, n.censor indx3 <- as.integer(strata2) #index for n and strata for(i in 2:length(rows)) rows[[i]] <- rows[[i]]+ (i-1)*nr #linear subscript indx4 <- unlist(rows) #index for surv and std.err temp <- result$strata[indx3] names(temp) <- row.names(mf2) new <- list(n = result$n[indx3], time= result$time[indx2], n.risk= result$n.risk[indx2], n.event=result$n.event[indx2], n.censor=result$n.censor[indx2], strata = temp, surv= result$surv[indx4], cumhaz = result$cumhaz[indx4]) if (se.fit) new$std.err <- result$std.err[indx4] result <- new } } } if (!censor) { kfun <- function(x, keep){ if (is.matrix(x)) x[keep,,drop=F] else if (length(x)==length(keep)) x[keep] else x} keep <- (result$n.event > 0) if (!is.null(result$strata)) { temp <- factor(rep(names(result$strata), result$strata), levels=names(result$strata)) result$strata <- c(table(temp[keep])) } result <- lapply(result, kfun, keep) } result$logse = TRUE # this will migrate further in if (se.fit && conf.type != "none") { ci <- survfit_confint(result$surv, result$std.err, logse=result$logse, conf.type, conf.int) result <- c(result, list(lower=ci$lower, upper=ci$upper, conf.type=conf.type, conf.int=conf.int)) } if (!missing(start.time)) result$start.time <- start.time result$call <- Call class(result) <- c('survfitcox', 'survfit') result } survival/R/print.coxph.null.R0000644000176200001440000000065213537676563015726 0ustar liggesusers# $Id: print.coxph.null.S 11166 2008-11-24 22:10:34Z therneau $ print.coxph.null <- function(x, digits=max(options()$digits - 4, 3), ...) { if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } cat("Null model\n log likelihood=", format(x$loglik), "\n") omit <- x$na.action if (length(omit)) cat(" n=", x$n, " (", naprint(omit), ")\n", sep="") else cat(" n=", x$n, "\n") } survival/R/survfitTurnbull.R0000644000176200001440000002500613537676563015733 0ustar liggesusers# Compute the K-M for left/right/interval censored data via Turnbull's # slow EM calculation # x is a factor giving the groups, y is a survival object survfitTurnbull <- function(x, y, weights, type=c('kaplan-meier', 'fleming-harrington', 'fh2'), error=c('greenwood', "tsiatis"), se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none', 'logit', 'arcsin'), conf.lower=c('usual', 'peto', 'modified'), start.time) { type <- match.arg(type) error <- match.arg(error) conf.type <- match.arg(conf.type) conf.lower<- match.arg(conf.lower) if (is.logical(conf.int)) { # A common error is for users to use "conf.int = FALSE" # it's illegal, but allow it if (!conf.int) conf.type <- "none" conf.int <- .95 } if (!is.Surv(y)) stop("y must be a Surv object") if (!is.factor(x)) stop("x must be a factor") xlev <- levels(x) # Will supply names for the curves x <- as.numeric(x) # keep only the levels if (!missing(start.time)) { # The user has requested that survival be "survival given that they # made it to start.time". We do this by just tossing those who # are known to end before start.time. Now if one of the times were # interval censored (15,42) and start.time were 20, perhaps it should # be modified too, but we don't. I really don't know what the # correct action would be, actually. # ny <- ncol(y) # remove any obs whose end time is <= start.time keep <- (y[,ny-1] >= start.time) if (all(keep==FALSE)) stop(paste("start.time =", start.time, "is greater than all time points.")) x <- x[keep] y <- y[keep,,drop=FALSE] #make sure y remains a matrix weights <- weights[keep] } n.used <- as.vector(table(x)) # This is for the printout nstrat <- length(n.used) # Make sure that the time variable is not "counting" type, # and convert "left" to "interval" style. stype <- attr(y, 'type') if (stype=='counting') stop("survfitTurnbull not appropriate for counting process data") if (stype=='interval') status <- y[,3] if (stype=='left') status <- ifelse(y[,2]==0,2,1) if (stype=='right')status <- y[,2] # If any exact times were represented as interval censored, e.g. (x,x) # as the interval for some x, change the code to "uncensored". if (any(status==3)) { who <- (status==3 & y[,1]==y[,2]) status[who] <- 1 } # the code below actually does the estimate, one curve at a time doit <- function(y,status, wt, ...) { n <- length(status) # Find all of the jump points for the KM in the data set, which are # the exact times, plus any right-followed-by-left pairs. # For this computation, an interval censored observation is considered # to be of the form (a,b], left censored is (-infinity,b] and right # censored is (a, infinity). If there are two interval censored # obs of (10,20] and (20,40], we do NOT want to create a jtimes entry # at 20. # # The algorithm puts a [ at t for each exact, a ( at t for each right # censored, a ] at t for each left censored, and ( and ] at t1/t2 # for each interval censor. In ties, order the parens as [, ], (. # Then find pairs of left-followed-immediately-by-right. The stat2 # variable is 0= [ at t, 1= ] at t, 2= ( at t. # The variables time2, stat2 are never needed after jtimes has # been created. if (any(status==3)) { #interval censored stat2 <- c(c(2,0,1,2)[status+1], rep(1, sum(status==3))) time2 <- c(y[,1], y[status==3,2]) } else { stat2 <- c(2,0,1)[status+1] time2 <- y[,1] } ord <- order(time2, stat2) time2 <- time2[ord] stat2 <- stat2[ord] n2 <- length(time2) pairs <- (stat2[-n2]!=1 & stat2[-1]==1) jtimes <- c(time2[stat2==0], .5*(time2[-n2] + time2[-1])[pairs]) # # If any of the left censored times are < min(jtime), then treat # them as though they were exact (for now). The formal MLE # algebra puts all their mass at an arbitray point between the # smallest of such times and -infinity. # mintime <- min(jtimes) who <- (status==2 & y[,1] < mintime) if (any(who)) { status[who] <- 1 jtimes <- c(y[who,1], jtimes) } # The KM is computed on a fake data set with njump points # standing in for the left and interval censored observations # So tempy contains the exact and right censored y data, followed # by the fakes jtimes <- sort(unique(jtimes)) njump <- length(jtimes) nreal <- sum(status<2) tempx <- factor(rep(1, njump + nreal)) #dummy x var for survfit.km tempy <- Surv(c(y[status<2, 1], jtimes), c(status[status<2], rep(1, njump))) # wtmat marks, for each left/interval obs, which jump points are in it # A column is a "fake" time point, a row is an observation # For a left censored obs, we assume that the true event time is # <= the time recorded, and for an interval one that (a, b] contains # the true event time. This is motivated by data that would come # from repeated visits, and agrees with Turnbull's paper. # If all status <=1, this is the unusual case of left censoring before # some minimal time, in which case I can skip this step. There are # no interval censored or left censored be "split". if (any(status>1)) { temp <- matrix(jtimes, nrow=sum(status>1), ncol=njump, byrow=TRUE) indx <- (1:n)[status>1] #the subjects of interest temp1 <- (temp <= y[indx,1]) # logical matrix for the left censored if (any(status>2)) #interval censored temp2 <- (temp > y[indx,1] & temp <= y[indx,2]) else temp2 <- FALSE & temp1 temp3 <- rep(status[indx]==2, njump) wtmat <- matrix(as.numeric((temp3&temp1) | (!temp3 & temp2)), ncol=njump) lwt <- wt[indx] # the input vector of case weights, for these } else { wtmat <- matrix(rep(1, length(jtimes)), nrow=1) lwt <- 1 } eps <- 1 # The initial "starter" KM is proportional to the number of intervals # that overlap each time point temp <- apply(wtmat, 2, sum) tfit <- list(time=jtimes, surv= 1- cumsum(temp)/sum(temp)) old <- tfit$surv iter <- 0 aitken1 <- jump1 <- 0 #dummy values for lagging while (eps > .00005) { iter <- iter +1 # partition each left/interval person out over the jumps jumps <- -diff(c(1, tfit$surv[match(jtimes, tfit$time)])) #KM jumps if (TRUE) { # add Aitken acceleration to speed things up # Given 3 points on a sequence, it guesses ahead. So we use # a set of 3 to guess ahead, generate 3 more regular EM, # guess ahead, 3 regular EM, etc. # Actually, we go every 5th below instead of every 3rd, to # give the EM a chance to restabilize the relative # sizes of elements of "jump". We also only allow it to # stop when comparing two "real EM" iterations. aitken2 <- aitken1 aitken1 <- jumps - jump1 jsave <- jumps if (iter%%5 ==0) { oldlik <- sum(log(wtmat %*% jumps)) jumps <- jump2 - (aitken2)^2/(aitken1 - aitken2) bad <- (jumps<=0 | jumps >=1 | is.na(jumps)) jumps[bad] <- jsave[bad] #failsafe newlik <- sum(log(wtmat %*% jumps)) if (newlik < oldlik) jumps <- jsave # aitkin didn't work! } jump2 <- jump1 # jumps, lagged by 2 iterations jump1 <- jsave # jumps, lagged by 1 iteration } wt2 <- wtmat %*% diag(jumps, length(jumps)) wt2 <- (lwt/(apply(wt2,1,sum))) * wt2 wt2 <- apply(wt2, 2, sum) tfit <- survfitKM(tempx, tempy, weights=c(wt[status<2], wt2), ...) if (FALSE) { # these lines are in for debugging: change the above to # " if (TRUE)" to turn on the printing cat("\n Iteration = ", iter, "\n") cat("survival=", format(round(tfit$surv[tfit$n.event>0],3)), "\n") cat(" weights=", format(round(wt2,3)), "\n") } stemp <- tfit$surv[match(jtimes, tfit$time)] if (iter%%5<2) eps <- 1 #only check eps for a pair of EM iters else eps <- max(abs(old-stemp)) old <- stemp } # # Now, fix up the "cheating" I did for any left censoreds which were # less than the smallest jump time who <- (tfit$time < mintime & tfit$n.event >0) if (any(who)) { indx <- match(mintime, tfit$time) # first "real" time # tfit$surv[who] <- tfit$surv[indx] tfit$n.event[who] <- 0 # if (!is.null(tfit$std.err)) { # tfit$std.err[who] <- tfit$std.err[indx] # tfit$lower[who] <- tfit$lower[indx] # tfit$upper[who] <- tfit$upper[indx] # } } tfit } # # Now to work, one curve at a time # time <- vector('list', nstrat) n.risk <- vector('list', nstrat) surv <- vector('list', nstrat) n.cens <- vector('list', nstrat) n.event<- vector('list', nstrat) uniquex <- sort(unique(x)) for (i in 1:nstrat) { who <- (x== uniquex[i]) tfit <- doit(y[who,,drop=FALSE], status[who], weights[who]) time[[i]] <- tfit$time n.risk[[i]] <- tfit$n.risk surv[[i]] <- tfit$surv n.cens[[i]] <- tfit$n.cens n.event[[i]]<- tfit$n.event if (i==1) { if (!is.null(tfit$std.err)) { std.err <- vector('list', nstrat) conf.lower <- vector('list', nstrat) conf.upper <- vector('list', nstrat) se.fit <- TRUE } else se.fit <- FALSE } if (se.fit) { std.err[[i]] <- tfit$std.err conf.lower[[i]] <- tfit$lower conf.upper[[i]] <- tfit$upper } } temp <- list(n=n.used, time = unlist(time), n.risk = unlist(n.risk), n.event= unlist(n.event), n.censor = unlist(n.cens), surv = unlist(surv), type='right') if (nstrat >1) { strata <- unlist(lapply(time, length)) names(strata) <- xlev[sort(unique(x))] temp$strata <- strata } if (se.fit) { temp$std.err <- unlist(std.err) temp$lower <- unlist(conf.lower) temp$upper <- unlist(conf.upper) temp$conf.type <- tfit$conf.type temp$conf.int <- tfit$conf.int } temp } survival/R/survConcordance.R0000644000176200001440000000457513537676563015647 0ustar liggesusers# Automatically generated from the noweb directory # Replaced by concordance.R; this code now frozen and will eventually be # deprecated survConcordance <- function(formula, data, weights, subset, na.action) { Call <- match.call() # save a copy of of the call, as documentation #.Deprecated("concordance") m <- match.call(expand.dots=FALSE) m[[1L]] <- quote(stats::model.frame) m$formula <- if(missing(data)) terms(formula, "strata") else terms(formula, "strata", data=data) m <- eval(m, sys.parent()) Terms <- attr(m, 'terms') Y <- model.extract(m, "response") if (!inherits(Y, "Surv")) { if (is.numeric(Y) && is.vector(Y)) Y <- Surv(Y) else stop("left hand side of the formula must be a numeric vector or a surival") } n <- nrow(Y) wt <- model.extract(m, 'weights') offset<- attr(Terms, "offset") if (length(offset)>0) stop("Offset terms not allowed") stemp <- untangle.specials(Terms, 'strata') if (length(stemp$vars)) { if (length(stemp$vars)==1) strat <- m[[stemp$vars]] else strat <- strata(m[,stemp$vars], shortlabel=TRUE) Terms <- Terms[-stemp$terms] } else strat <- NULL x <- model.matrix(Terms, m)[,-1, drop=FALSE] #remove the intercept if (ncol(x) > 1) stop("Only one predictor variable allowed") count <- survConcordance.fit(Y, x, strat, wt) if (is.null(strat)) { concordance <- (count[1] + count[3]/2)/sum(count[1:3]) std.err <- count[5]/(2* sum(count[1:3])) } else { temp <- colSums(count) concordance <- (temp[1] + temp[3]/2)/ sum(temp[1:3]) std.err <- temp[5]/(2*sum(temp[1:3])) } fit <- list(concordance= concordance, stats=count, n=n, std.err=std.err, call=Call) na.action <- attr(m, "na.action") if (length(na.action)) fit$na.action <- na.action oldClass(fit) <- 'survConcordance' fit } print.survConcordance <- function(x, ...) { if(!is.null(cl <- x$call)) { cat("Call:\n") dput(cl) cat("\n") } omit <- x$na.action if(length(omit)) cat(" n=", x$n, " (", naprint(omit), ")\n", sep = "") else cat(" n=", x$n, "\n") cat("Concordance= ", format(x$concordance), " se= ", format(x$std.err), '\n', sep='') print(x$stats) invisible(x) } survival/R/pade.R0000644000176200001440000001012013537676563013401 0ustar liggesusers# This is a trimmed copy of expm:::expm2.R # I don't need balancing, don't need Matrix objects # The matrices are usually very nice # If I need derivatives, then deriv is an (n,n, k) array, the first # slice is dA/(d theta1), and etc for the second, third etc. # pade <- function(A, deriv) { n <- nrow(A) nA <- max(colSums(abs(A))) I <- diag(n) if (!missing(deriv)) { if (!is.array(deriv) || length(dim(deriv))!=3 || any(dim(deriv)[1:2] != n)) stop ("invalid derivative array") nderiv <- dim(deriv)[3] dmat <- array(0., dim=c(n, n, nderiv)) } else nderiv <- 0 ## If the norm is small enough, use the Pade-Approximation (PA) directly if (nA <= 2.1) { t <- c(0.015, 0.25, 0.95, 2.1) ## the minimal m for the PA : l <- which.max(nA <= t) nterm <- l+1 # for reporting: number of terms used ## Calculate PA C <- rbind(c(120,60,12,1,0,0,0,0,0,0), c(30240,15120,3360,420,30,1,0,0,0,0), c(17297280,8648640,1995840,277200,25200,1512,56,1,0,0), c(17643225600,8821612800,2075673600,302702400,30270240, 2162160,110880,3960,90,1)) A2 <- A %*% A P <- I U <- C[l,2]*I V <- C[l,1]*I for (k in 1:l) { P <- P %*% A2 U <- U + C[l,(2*k)+2]*P V <- V + C[l,(2*k)+1]*P } U <- A %*% U X <- solve(V-U,V+U) if (nderiv > 0) { for (dk in 1:nderiv) { P <- I U <- C[l,2]*I V <- C[l,1]*I dA <- deriv[,,dk] dA2 <- A %*% dA + dA %*% A dU <- dV <- dP <- 0*I for (k in 1:l) { dP <- dP %*% A2 + P %*% dA2 P <- P %*% A2 U <- U + C[l,(2*k)+2]*P dU <- dU + C[l,(2*k)+2]* dP V <- V + C[l,(2*k)+1]*P dV <- dV + C[l,(2*k)+1]*dP } dU <- dA %*%U + A %*% dU U <- A %*% U dmat[,,dk] <- -solve(V-U, dV-dU)%*% X + solve(V-U, dV + dU) } } } else { # This section should be rarer than rare s <- log2(nA/5.4) B <- A ## Scaling if (s > 0) { s <- ceiling(s) B <- B/(2^s) if (nderiv>0) deriv <- deriv/(2^s) } nterm <- max(0, ceiling(s)) + 6 ## Calculate PA c. <- c(64764752532480000,32382376266240000,7771770303897600, 1187353796428800, 129060195264000,10559470521600, 670442572800, 33522128640, 1323241920, 40840800,960960,16380, 182,1) B2 <- B %*% B B4 <- B2 %*% B2 B6 <- B2 %*% B4 U <- B %*% (B6 %*% (c.[14]*B6 + c.[12]*B4 + c.[10]*B2) + c.[8]*B6 + c.[6]*B4 + c.[4]*B2 + c.[2]*I) V <- B6 %*% (c.[13]*B6 + c.[11]*B4 + c.[9]*B2) + c.[7]*B6 + c.[5]*B4 + c.[3]*B2 + c.[1]*I X <- solve(V-U,V+U) if (nderiv > 0) { for (dk in 1:nderiv) { dB <- deriv[,,dk] dB2 <- B %*% dB + dB %*% B dB4 <- B2%*% dB2 + dB2 %*% B2 dB6 <- B2 %*%dB4 + dB2 %*% B4 dU <- dB %*% (B6 %*% (c.[14]*B6 + c.[12]*B4 + c.[10]*B2) + c.[8]*B6 + c.[6]*B4 + c.[4]*B2 + c.[2]*I) + B %*% (dB6 %*% (c.[14]*B6 + c.[12]*B4 + c.[10]*B2) + B6 %*% (c.[14]*dB6 + c.[12]*dB4 + c.[10]*dB2) + c.[8]*dB6 + c.[6]*dB4 + c.[4]*dB2) dV <- dB6 %*% (c.[13]*B6 + c.[11]*B4 + c.[9]*B2) + B6 %*% (c.[13]*dB6 + c.[11]*dB4 + c.[9]*dB2) + c.[7]*dB6 + c.[5]*dB4 + c.[3]*dB2 dX <- -solve(V-U, dV-dU)%*% X + solve(V-U, dV + dU) } if (s > 0) for (t in 1:s) { dX <- X %*% dX + dX %*% X X <- X %*% X } dmat[,,dk] <- dX } else if (s>0) for (t in 1:s) { X <- X %*% X } } if (nderiv > 0) list(P=X, dmat=dmat, nterm=nterm) else list(S=X, nterm=nterm) } survival/R/survexp.R0000644000176200001440000002202413570772312014174 0ustar liggesusers# Automatically generated from the noweb directory survexp <- function(formula, data, weights, subset, na.action, rmap, times, method=c("ederer", "hakulinen", "conditional", "individual.h", "individual.s"), cohort=TRUE, conditional=FALSE, ratetable=survival::survexp.us, scale=1, se.fit, model=FALSE, x=FALSE, y=FALSE) { Call <- match.call() # keep the first element (the call), and the following selected arguments indx <- match(c('formula', 'data', 'weights', 'subset', 'na.action'), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") tform <- Call[c(1,indx)] # only keep the arguments we wanted tform[[1L]] <- quote(stats::model.frame) # change the function called Terms <- if(missing(data)) terms(formula, 'ratetable') else terms(formula, 'ratetable',data=data) rate <- attr(Terms, "specials")$ratetable if(length(rate) > 1) stop("Can have only 1 ratetable() call in a formula") if(length(rate) == 1) { if (!missing(rmap)) stop("The ratetable() call in a formula is depreciated") stemp <- untangle.specials(Terms, 'ratetable') rcall <- as.call(parse(text=stemp$var)[[1]]) # as a call object rcall[[1]] <- as.name('list') # make it a call to list(.. Terms <- Terms[-stemp$terms] # remove from the formula } else if (!missing(rmap)) { rcall <- substitute(rmap) if (!is.call(rcall) || rcall[[1]] != as.name('list')) stop ("Invalid rcall argument") } else rcall <- NULL # A ratetable, but no rcall argument # Check that there are no illegal names in rcall, then expand it # to include all the names in the ratetable if (is.ratetable(ratetable)) { varlist <- names(dimnames(ratetable)) if (is.null(varlist)) varlist <- attr(ratetable, "dimid") # older style } else if(inherits(ratetable, "coxph") && !inherits(ratetable, "coxphms")) { ## Remove "log" and such things, to get just the list of # variable names varlist <- all.vars(delete.response(ratetable$terms)) } else stop("Invalid rate table") temp <- match(names(rcall)[-1], varlist) # 2,3,... are the argument names if (any(is.na(temp))) stop("Variable not found in the ratetable:", (names(rcall))[is.na(temp)]) if (any(!(varlist %in% names(rcall)))) { to.add <- varlist[!(varlist %in% names(rcall))] temp1 <- paste(text=paste(to.add, to.add, sep='='), collapse=',') if (is.null(rcall)) rcall <- parse(text=paste("list(", temp1, ")"))[[1]] else { temp2 <- deparse(rcall) rcall <- parse(text=paste("c(", temp2, ",list(", temp1, "))"))[[1]] } } # Create a temporary formula, used only in the call to model.frame newvar <- all.vars(rcall) if (length(newvar) > 0) { temp <- paste(paste(deparse(Terms), collapse=""), paste(newvar, collapse='+'), sep='+') tform$formula <- as.formula(temp, environment(Terms)) } mf <- eval(tform, parent.frame()) n <- nrow(mf) if (n==0) stop("Data set has 0 rows") if (!missing(se.fit) && se.fit) warning("se.fit value ignored") weights <- model.extract(mf, 'weights') if (length(weights) ==0) weights <- rep(1.0, n) if (class(ratetable)=='ratetable' && any(weights !=1)) warning("weights ignored") if (any(attr(Terms, 'order') >1)) stop("Survexp cannot have interaction terms") if (!missing(times)) { if (any(times<0)) stop("Invalid time point requested") if (length(times) >1 ) if (any(diff(times)<0)) stop("Times must be in increasing order") } Y <- model.extract(mf, 'response') no.Y <- is.null(Y) if (no.Y) { if (missing(times)) { if (is.ratetable(ratetable)) stop("either a times argument or a response is needed") } else newtime <- times } else { if (is.matrix(Y)) { if (is.Surv(Y) && attr(Y, 'type')=='right') Y <- Y[,1] else stop("Illegal response value") } if (any(Y<0)) stop ("Negative follow up time") # if (missing(npoints)) temp <- unique(Y) # else temp <- seq(min(Y), max(Y), length=npoints) temp <- unique(Y) if (missing(times)) newtime <- sort(temp) else newtime <- sort(unique(c(times, temp[temp0") } # Get the list of sort indices, but don't sort the data itself if (ncol(y) ==3) { if (length(strata) ==0) { sorted <- cbind(order(-y[,2], y[,3]), order(-y[,1])) -1L newstrat <- as.integer(n) } else { sorted <- cbind(order(strata, -y[,2], y[,3]), order(strata, -y[,1])) -1L newstrat <- as.integer(cumsum(table(strata))) } status <- y[,3] andersen <- TRUE } else { if (length(strata) ==0) { sorted <- order(-y[,1], y[,2]) -1L newstrat <- as.integer(n) } else { sorted <- order(strata, -y[,1], y[,2]) -1L newstrat <- as.integer(cumsum(table(strata))) } status <- y[,2] andersen <- FALSE } n.eff <- sum(y[,ncol(y)]) #effective n for a Cox model is #events # # are there any sparse frailty terms? # npenal <- length(pattr) if (npenal == 0 || length(pcols) != npenal) stop("Invalid pcols or pattr arg") sparse <- sapply(pattr, function(x) !is.null(x$sparse) && x$sparse) if (sum(sparse) >1) stop("Only one sparse penalty term allowed") # # Create a marking vector for the terms, the same length as assign # with pterms == 0=ordinary term, 1=penalized, 2=sparse, # pindex = length of pcols = position in pterms # # Make sure that pcols is a strict subset of assign, so that the # df computation (and printing) can unambiguously decide which cols of # X are penalized and which are not when doing "terms" like actions. # To make some downstream things easier, order pcols and pattr to be # in the same relative order as the terms in 'assign' # ## can't compute assign attribute in R without terms ## if (missing(assign)) assign <- attr(x, 'assign')[-1] ##Remove 'intercept' pterms <- rep(0, length(assign)) names(pterms) <- names(assign) pindex <- rep(0, npenal) for (i in 1:npenal) { temp <- unlist(lapply(assign, function(x,y) (length(x) == length(y) && all(x==y)), pcols[[i]])) if (sparse[i]) pterms[temp] <- 2 else pterms[temp] <- 1 pindex[i] <- (seq(along.with=temp))[temp] } if ((sum(pterms==2) != sum(sparse)) || (sum(pterms>0) != npenal)) stop("pcols and assign arguments disagree") if (any(pindex != sort(pindex))) { temp <- order(pindex) pindex <- pindex[temp] pcols <- pcols[temp] pattr <- pattr[temp] } # ptype= 1 or 3 if a sparse term exists, 2 or 3 if a non-sparse exists ptype <- any(sparse) + 2*(any(!sparse)) ## Make sure these get defined f.expr1<-function(coef) NULL f.expr2<-function(coef) NULL if (any(sparse)) { sparse.attr <- (pattr[sparse])[[1]] #can't use [[sparse]] directly # if 'sparse' is a T/F vector fcol <- unlist(pcols[sparse]) if (length(fcol) > 1) stop("Sparse term must be single column") # Remove the sparse term from the X matrix xx <- x[, -fcol, drop=FALSE] for (i in 1:length(assign)){ j <- assign[[i]] if (j[1] > fcol) assign[[i]] <- j-1 } for (i in 1:npenal) { j <- pcols[[i]] if (j[1] > fcol) pcols[[i]] <- j-1 } frailx <- x[, fcol] frailx <- match(frailx, sort(unique(frailx))) nfrail <- max(frailx) nvar <- nvar - 1 #Set up the callback for the sparse frailty term pfun1 <- sparse.attr$pfun ### In R we use a function and eval() it, not an expression f.expr1 <- function(coef){ coxlist1$coef <- coef if (is.null(extra1)) temp <- pfun1(coef, theta1, n.eff) else temp <- pfun1(coef, theta1, n.eff, extra1) if (!is.null(temp$recenter)) coxlist1$coef <- coxlist1$coef - as.double(temp$recenter) if (!temp$flag) { coxlist1$first <- -as.double(temp$first) coxlist1$second <- as.double(temp$second) } coxlist1$penalty <- -as.double(temp$penalty) coxlist1$flag <- as.logical(temp$flag) if (any(sapply(coxlist1, length) != c(rep(nfrail,3), 1, 1))) stop("Incorrect length in coxlist1") coxlist1 } if (!is.null(getOption("survdebug"))) debug(f.expr1) coxlist1 <- list(coef=double(nfrail), first=double(nfrail), second=double(nfrail), penalty=0.0, flag=FALSE) ## we pass f.expr1 in as an argument in R ##.C("init_coxcall1", as.integer(sys.nframe()), expr1) } else { xx <- x frailx <- 0 nfrail <- 0 } # Now the non-sparse penalties if (sum(!sparse) >0) { full.imat <- !all(unlist(lapply(pattr, function(x) x$diag))) ipenal <- (1:length(pattr))[!sparse] #index for non-sparse terms f.expr2 <- function(coef){ coxlist2$coef<-coef ## pentot <- 0 for (i in ipenal) { pen.col <- pcols[[i]] coef <- coxlist2$coef[pen.col] if (is.null(extralist[[i]])) temp <- ((pattr[[i]])$pfun)(coef, thetalist[[i]],n.eff) else temp <- ((pattr[[i]])$pfun)(coef, thetalist[[i]], n.eff,extralist[[i]]) if (!is.null(temp$recenter)) coxlist2$coef[pen.col] <- coxlist2$coef[pen.col]- temp$recenter if (temp$flag) coxlist2$flag[pen.col] <- TRUE else { coxlist2$flag[pen.col] <- FALSE coxlist2$first[pen.col] <- -temp$first if (full.imat) { tmat <- matrix(coxlist2$second, nvar, nvar) tmat[pen.col,pen.col] <- temp$second coxlist2$second <- c(tmat) } else coxlist2$second[pen.col] <- temp$second } pentot <- pentot - temp$penalty } coxlist2$penalty <- as.double(pentot) if (any(sapply(coxlist2, length) != length2)) stop("Length error in coxlist2") coxlist2 } if (!is.null(getOption("survdebug"))) debug(f.expr2) if (full.imat) { coxlist2 <- list(coef=double(nvar), first=double(nvar), second= double(nvar*nvar), penalty=0.0, flag=rep(FALSE,nvar)) length2 <- c(nvar, nvar, nvar*nvar, 1, nvar) } else { coxlist2 <- list(coef=double(nvar), first=double(nvar), second=double(nvar), penalty= 0.0, flag=rep(FALSE,nvar)) length2 <- c(nvar, nvar, nvar, 1, nvar) } ## in R, f.expr2 is passed as an argument later ##.C("init_coxcall2", as.integer(sys.nframe()), expr2) } else full.imat <- FALSE # # Set up initial values for the coefficients # If there are no sparse terms, finit is set to a vector of length 1 # rather than length 0, just to stop some "zero length" errors for # later statements where fcoef is saved (but not used) # if (nfrail >0) finit <- rep(0,nfrail) else finit <- 0 if (!missing(init) && !is.null(init)) { if (length(init) != nvar) { if (length(init) == (nvar+nfrail)) { finit <- init[-(1:nvar)] init <- init[1:nvar] } else stop("Wrong length for inital values") } } else init <- double(nvar) # # "Unpack" the passed in paramter list, # and make the initial call to each of the external routines # cfun <- lapply(pattr, function(x) x$cfun) parmlist <- lapply(pattr, function(x,eps) c(x$cparm, eps2=eps), sqrt(eps)) extralist<- lapply(pattr, function(x) x$pparm) iterlist <- vector('list', length(cfun)) thetalist <- vector('list', length(cfun)) printfun <- lapply(pattr, function(x) x$printfun) for (i in 1:length(cfun)) { temp <- (cfun[[i]])(parmlist[[i]], iter=0) if (sparse[i]) { theta1 <- temp$theta extra1 <- extralist[[i]] } thetalist[[i]] <- temp$theta iterlist[[i]] <- temp } # # Manufacture the list of calls to cfun, with appropriate arguments # ## Amazingly, all this works in R, so I don't need to understand it. ## temp1 <- c('x', 'coef', 'plik', 'loglik', 'status', 'neff', 'df', 'trH') temp2 <- c('frailx', 'coxfit$fcoef', 'loglik1', 'coxfit$loglik', 'status', 'n.eff') temp3 <- c('xx[,pen.col]', 'coxfit$coef[pen.col]','loglik1', 'coxfit$loglik', 'status', 'n.eff') calls <- vector('expression', length(cfun)) cargs <- lapply(pattr, function(x) x$cargs) for (i in 1:length(cfun)) { tempchar <- paste("(cfun[[", i, "]])(parmlist[[", i, "]], iter,", "iterlist[[", i, "]]") temp2b <- c(temp2, paste('pdf[', i, ']'), paste('trH[', i, ']')) temp3b <- c(temp3, paste('pdf[', i, ']'), paste('trH[', i, ']')) if (length(cargs[[i]])==0) calls[i] <- parse(text=paste(tempchar, ")")) else { temp <- match(cargs[[i]], temp1) if (any(is.na(temp))) stop(paste((cargs[[i]])[is.na(temp)], "not matched")) if (sparse[i]) temp4 <- paste(temp2b[temp], collapse=',') else temp4 <- paste(temp3b[temp], collapse=',') calls[i] <- parse(text=paste(paste(tempchar,temp4,sep=','),')')) } } need.df <- any(!is.na(match(c('df', 'trH'), unlist(cargs))))#do any use df? # # Last of the setup: create the vector of variable names # varnames <- dimnames(xx)[[2]] for (i in 1:length(cfun)) { if (!is.null(pattr[[i]]$varname)) varnames[pcols[[i]]] <- pattr[[i]]$varname } ## need the current environment for callbacks rho<-environment() # # Have C store the data, and get the loglik for beta=initial, frailty=0 # storage.mode(y) <- storage.mode(weights) <- "double" storage.mode(xx) <- storage.mode(offset) <- "double" if (andersen) coxfit <- .C(Cagfit5a, as.integer(n), as.integer(nvar), y, xx , offset, weights, newstrat, sorted, means= double(nvar), coef= as.double(init), u = double(nvar), loglik=double(1), as.integer(method=='efron'), as.integer(ptype), as.integer(full.imat), as.integer(nfrail), as.integer(frailx), #R callback additions f.expr1,f.expr2,rho) else coxfit <- .C(Ccoxfit5a, as.integer(n), as.integer(nvar), y, xx, offset, weights, newstrat, sorted, means= double(nvar), coef= as.double(init), u = double(nvar), loglik=double(1), as.integer(method=='efron'), as.integer(ptype), as.integer(full.imat), as.integer(nfrail), as.integer(frailx), f.expr1,f.expr2,rho) loglik0 <- coxfit$loglik means <- coxfit$means # # Now for the actual fit # iter2 <- 0 iterfail <- NULL thetasave <- unlist(thetalist) for (outer in 1:control$outer.max) { if (andersen) coxfit <- .C(Cagfit5b, iter=as.integer(control$iter.max), as.integer(n), as.integer(nvar), as.integer(newstrat), coef = as.double(init), u = double(nvar+nfrail), hmat = double(nvar*(nvar+nfrail)), hinv = double(nvar*(nvar+nfrail)), loglik = double(1), flag = integer(1), as.double(control$eps), as.double(control$toler.chol), as.integer(method=='efron'), as.integer(nfrail), fcoef = as.double(finit), fdiag = double(nfrail+nvar), f.expr1,f.expr2,rho) else coxfit <- .C(Ccoxfit5b, iter=as.integer(control$iter.max), as.integer(n), as.integer(nvar), as.integer(newstrat), coef = as.double(init), u = double(nvar+nfrail), hmat = double(nvar*(nvar+nfrail)), hinv = double(nvar*(nvar+nfrail)), loglik = double(1), flag = integer(1), as.double(control$eps), as.double(control$toler.chol), as.integer(method=='efron'), as.integer(nfrail), fcoef = as.double(finit), fdiag = double(nfrail+nvar), f.expr1,f.expr2,rho) iter <- outer iter2 <- iter2 + coxfit$iter if (coxfit$iter >=control$iter.max) iterfail <- c(iterfail, iter) # If any penalties were infinite, the C code has made fdiag=1 out # of self-preservation (0 divides). But such coefs are guarranteed # zero so the variance should be too.) temp <- rep(FALSE, nvar+nfrail) if (nfrail>0) temp[1:nfrail] <- coxlist1$flag if (ptype >1) temp[nfrail+ 1:nvar] <- coxlist2$flag fdiag <- ifelse(temp, 0, coxfit$fdiag) if (need.df) { #get the penalty portion of the second derive matrix if (nfrail>0) temp1 <- coxlist1$second else temp1 <- 0 if (ptype>1) temp2 <- coxlist2$second else temp2 <- 0 dftemp <-coxpenal.df(matrix(coxfit$hmat, ncol=nvar), matrix(coxfit$hinv, ncol=nvar), fdiag, assign, ptype, nvar, temp1, temp2, pindex[sparse]) df <- dftemp$df var <- dftemp$var var2 <- dftemp$var2 pdf <- df[pterms>0] # df's for penalized terms trH <- dftemp$trH[pterms>0] # trace H } if (nfrail >0) penalty <- -coxlist1$penalty else penalty <- 0 if (ptype >1) penalty <- penalty - coxlist2$penalty loglik1 <- coxfit$loglik + penalty #C code returns PL - penalty if (iter==1) penalty0 <- penalty # # Call the control function(s) # done <- TRUE for (i in 1:length(cfun)) { pen.col <- pcols[[i]] temp <- eval(calls[i]) if (sparse[i]) theta1 <- temp$theta thetalist[[i]] <- temp$theta iterlist[[i]] <- temp done <- done & temp$done } if (done) break # # Choose starting estimates for the next iteration # if (iter==1) { init <- coefsave <- coxfit$coef finit <- fsave <- coxfit$fcoef thetasave <- cbind(thetasave, unlist(thetalist)) } else { # the "as.vector" removes names, dodging a bug in Splus5.1 temp <- as.vector(unlist(thetalist)) coefsave <- cbind(coefsave, coxfit$coef) fsave <- cbind(fsave, coxfit$fcoef) # temp = next guess for theta # *save = prior thetas and the resultant fits # choose as initial values the result for the closest old theta howclose <- apply((thetasave-temp)^2,2, sum) which <- min((1:iter)[howclose==min(howclose)]) if (nvar>0) init <- coefsave[,which] if (nfrail>0) finit<- fsave[,which] thetasave <- cbind(thetasave, temp) } } if (nfrail >0) { lp <- offset + coxfit$fcoef[frailx] if (nvar >0) #sparse frailties and covariates lp <- lp + x[,-fcol,drop=FALSE] %*%coxfit$coef - sum(means*coxfit$coef) } else lp <- offset + as.vector(x%*%coxfit$coef) - sum(means*coxfit$coef) # release the memory if (andersen) { .C(Cagfit5c, as.integer(nvar)) #release the memory # the agmart3 routine uses slightly different arguments: # strata are marked by a vector 1,1,1,...1,2,2,2 etc. if (length(strata) < nrow(y)) strata <- rep(1L, nrow(y)) resid <- .Call(Cagmart3, nrow(y), y, exp(lp), weights, as.integer(strata), sorted[,2], sorted[,1], as.integer(method=='efron')) } else { expect <- .C(Ccoxfit5c, as.integer(n), as.integer(nvar), as.integer(newstrat), as.integer(method=='efron'), expect= double(n))$expect resid <- status - expect } names(resid) <- rownames if (!need.df) { #didn't need it iteration by iteration, but do it now #get the penalty portion of the second derive matrix if (nfrail>0) temp1 <- coxlist1$second else temp1 <- 0 if (ptype>1) temp2 <- coxlist2$second else temp2 <- 0 dftemp <-coxpenal.df(matrix(coxfit$hmat,ncol=nvar), matrix(coxfit$hinv,ncol=nvar), fdiag, assign, ptype, nvar, temp1, temp2, pindex[sparse]) df <- dftemp$df trH <- dftemp$trH var <- dftemp$var var2 <- dftemp$var2 } if (control$iter.max >1 && length(iterfail)>0) warning(paste("Inner loop failed to coverge for iterations", paste(iterfail, collapse=' '))) which.sing <- (fdiag[nfrail + 1:nvar] ==0) coef <- coxfit$coef names(coef) <- varnames coef[which.sing] <- NA names(iterlist) <- names(pterms[pterms>0]) if (nfrail >0) { if (nvar >0) { #sparse frailties and covariates list(coefficients = coef, var = var, var2 = var2, loglik = c(loglik0, loglik1), iter = c(iter, iter2), linear.predictors = as.vector(lp), residuals = resid, means = means, method = method, class = c('coxph.penal', 'coxph'), frail = coxfit$fcoef, fvar = dftemp$fvar, df = df, df2=dftemp$df2, penalty= c(penalty0, penalty), pterms = pterms, assign2=assign, history= iterlist, coxlist1=coxlist1, printfun=printfun) } else { #sparse frailties only list( loglik = c(loglik0, loglik1), iter = c(iter, iter2), linear.predictors = as.vector(lp), residuals = resid, means = means, method = method, class = c('coxph.penal', 'coxph'), frail = coxfit$fcoef, fvar = dftemp$fvar, df = df, df2=dftemp$df2, penalty = c(penalty0, penalty), pterms = pterms, assign2=assign, history= iterlist, printfun=printfun) } } else { #no sparse terms list(coefficients = coef, var = var, var2 = var2, loglik = c(loglik0, loglik1), iter = c(iter, iter2), linear.predictors = lp, residuals = resid, means = means, method = method, class = c('coxph.penal', 'coxph'), df = df, df2=dftemp$df2, penalty= c(penalty0, penalty), pterms = pterms, assign2=assign, history= iterlist, coxlist2=coxlist2, printfun= printfun) } } survival/R/clogit.R0000644000176200001440000000441513537676563013763 0ustar liggesusers## conditional logistic regression ## ## case ~ exposure + strata(matching) ## clogit <- function(formula, data, weights, subset, na.action, method=c("exact","approximate", "efron", "breslow"), ... ) { Call <- match.call() # how we were called # Create a call to model.frame() that contains the formula (required) # and the data argument (if present). # It's only job is to find out the number of rows in the data # before subset or na.action are applied. indx <- match(c("formula", "data"), names(Call), nomatch=0) if (indx[1]==0) stop("A formula argument is required") mf <- Call[c(1,indx)] mf[[1L]] <- quote(stats::model.frame) mf$na.action <- "na.pass" nrows<-NROW(eval(mf, parent.frame())) # Now build a call to coxph with the formula fixed up to have # our special left hand side. coxcall <- Call coxcall[[1]] <- as.name("coxph") newformula <- formula newformula[[2]] <- substitute(Surv(rep(1,nn),case), list(case=formula[[2]],nn=nrows)) environment(newformula) <- environment(formula) coxcall$formula<-newformula # Set the method, with "approximate" matched to "breslow" method <- match.arg(method) coxcall$method <- switch(method, exact="exact", efron="efron", "breslow") # If the method is "exact", then case weights nor robust variance are # possible if (method =="exact") { if (missing(data)) temp <- terms(formula, special='cluster') else temp <- terms(formula, special="cluster", data=data) if (!is.null(attr(temp, 'specials')$cluster) && method=="exact") stop("robust variance plus the exact method is not supported") if (!is.null(coxcall$weights)) { coxcall$weights <- NULL warning("weights ignored: not possible for the exact method") } } coxcall<-eval(coxcall, sys.frame(sys.parent())) coxcall$userCall<-sys.call() class(coxcall)<-c("clogit","coxph") coxcall } print.clogit <- function(x,...){ x$call<-x$userCall NextMethod() } survfit.clogit <- function(formula, ...) stop("predicted survival curves are not defined for a clogit model") survival/R/quantile.survfit.R0000644000176200001440000001563213537676563016030 0ustar liggesusers# # quantile function for survfit objects # # First a little function to find quantiles in a CDF # curve. It would be a trivial use of approx, except that # once in a while the survival curve has a flat spot exactly # at the requested quantile. Then we use the median of the # flat. findq <- function(x, y, p, tol) { # This case occurs for a survival curve whose upper limit never drops below 1 if (max(y, na.rm=T) < min(p)) return(rep(NA, length(p))) # Remove duplicate y values, i.e., the censors, since dups cause # issues for approx xmax <- x[length(x)] dups <- duplicated(y) if (any(dups)) { x <- x[!dups] y <- y[!dups] } n <- length(y) # quantile = where a horzontal line at p intercects the curve. At each # x the curve of 1-y jumps up to a new level # The most work is to check for horizontal lines in the survival # curve that match one of our quantiles within tolerance. If any # p matches, then our quantile is the average of the given x and # the x value of the next jump point, i.e., the usual midpoint rule # used for medians. # A flat at the end of the curve is a special case, as is the quantile # of 0. indx1 <- approx(y+tol, 1:n, p, method="constant", f=1)$y indx2 <- approx(y-tol, 1:n, p, method="constant", f=1)$y quant <- (x[indx1] + x[indx2])/2 quant[p==0] <- x[1] if (!is.na(y[n])) { lastpt <- (abs(p- y[n]) < tol) # end of the curve if (any(lastpt)) quant[lastpt] <- (x[indx1[lastpt]] + xmax)/2 } quant } doquant <- function(p, time, surv, upper, lower, firstx, tol) { qq <- findq(c(firstx,time), c(0, 1-surv), p, tol) # browser() if (missing(upper)) qq else rbind(qq, findq(c(firstx, time), c(0, 1-lower), p, tol), findq(c(firstx, time), c(0, 1-upper), p, tol)) } quantile.survfit <- function(x, probs=c(.25, .5, .75), conf.int=TRUE, tolerance= sqrt(.Machine$double.eps), ...) { if (!inherits(x, "survfit")) stop("Must be a survfit object") if (any(!is.numeric(probs)) || any(is.na(probs))) stop("invalid probability") if (any(probs <0 | probs >1)) stop("Invalid probability") if (is.null(x$lower)) conf.int <- FALSE nprob <- length(probs) pname <- format(probs*100) # What do we report for p=0? Use x$start.time if it exists, 0 otherwise xmin <- if (is.null(x$start.time)) 0 else x$start.time # There are 8 cases: strata yes/no # ncol(x$surv) =1 or >1 # conf.int = T/F if (is.null(x$strata)) { if (is.matrix(x$surv) && ncol(x$surv) >1) { qmat <- matrix(0., ncol=nprob, nrow=ncol(x$surv)) dimnames(qmat) <- list(dimnames(x$surv)[[2]], pname) if (conf.int) { qupper <- qlower <- qmat for (i in 1:ncol(x$surv)) { temp <- doquant(probs, x$time, x$surv[,i], x$upper[,i], x$lower[,i], xmin, tolerance) qmat[i,] <- temp[1,] qupper[i,] <- temp[3,] qlower[i,] <- temp[2,] } return(list(quantile=qmat, lower=qlower, upper=qupper)) } else { for (i in 1:ncol(x$surv)) qmat[i,] <- doquant(probs, x$time, x$surv[,i], firstx=xmin, tol=tolerance) return(qmat) } } else { # No strata and no matrix if (conf.int) { temp <- doquant(probs, x$time, x$surv, x$upper, x$lower, xmin, tolerance) dimnames(temp) <- list(NULL, pname) return(list(quantile=temp[1,], lower=temp[2,], upper=temp[3,])) } else { temp <- doquant(probs, x$time, x$surv, firstx=xmin, tol =tolerance) names(temp) <- pname return(temp) } } } else { nstrat <- length(x$strata) if (is.matrix(x$surv) && ncol(x$surv) >1) { # uncommon case, e.g., predicted survivals from a Cox model # return an array with strata as the first dimension, and # the probabilites as the third. qmat <- array(0., dim=c(nstrat, ncol(x$surv), nprob)) dimnames(qmat) <-list(names(x$strata), dimnames(x$surv)[[2]], pname) if (conf.int) { qupper <- qlower <- qmat for (strat in 1:nstrat) { z <- x[strat, ] for (i in 1:ncol(z$surv)) { temp <- doquant(probs, z$time, z$surv[,i], z$upper[,i], z$lower[,i], xmin,tolerance) qmat[strat,i,] <- temp[1,] qupper[strat,i,] <- temp[3,] qlower[strat,i,] <- temp[2,] } } return(list(quantile=qmat, lower=qlower, upper=qupper)) } else { for (strat in 1:nstrat) { z <- x[strat, ] for (i in 1:ncol(z$surv)) qmat[strat,i,] <- doquant(probs, z$time, z$surv[,i], firstx=xmin, tol=tolerance) } return(qmat) } } else { # Only a strata, the most common case qmat <- matrix(0., nstrat, nprob) dimnames(qmat) <- list(names(x$strata), pname) if (conf.int) { qupper <- qlower <- qmat for (i in 1:nstrat) { z <- x[i] temp <- doquant(probs, z$time, z$surv, z$upper, z$lower, xmin, tolerance) qmat[i,] <- temp[1,] qupper[i,] <- temp[3,] qlower[i,] <- temp[2,] } return(list(quantile=qmat, lower=qlower, upper=qupper)) } else { for (i in 1:nstrat) { z <- x[i] qmat[i,] <- doquant(probs, z$time, z$surv, firstx=xmin, tol = tolerance) } return(qmat) } } } } # Why can't I just fudge the object and call quantile.survfit? Because # the code below uses subscripted objects, and the class of the chimeric # object doesn't work out for that operation. But more importantly, # I don't know how a quantile would be defined. # quantile.survfitms <- function(x, probs=c(.25, .5, .75), conf.int=TRUE, tolerance= sqrt(.Machine$double.eps), ...) { stop("quantiles are not a well defined quantity for multi-state models") } survival/R/survfit.R0000644000176200001440000003030713570772313014166 0ustar liggesusers# Automatically generated from the noweb directory survfit <- function(formula, ...) { UseMethod("survfit") } dim.survfit <- function(x) { d1name <- "strata" d2name <- "data" d3name <- "states" if (is.null(x$strata)) d1 <- 1 else d1 <- length(x$strata) if (is.null(x$newdata)) {d2 <- d2name <- NULL} else d2 <- nrow(x$newdata) if (is.null(x$states)) {d3 <- d3name <- NULL} else d3 <- length(x$states) if (inherits(x, "survfitcox") && is.null(d2) && is.null(d3) && is.matrix(x$surv)) { # older style survfit.coxph object, before I added newdata to the output d2name <- "data" d2 <- ncol(x$surv) } dd <- c(d1, d2, d3) names(dd) <- c(d1name, d2name, d3name) if (is.null(dd)) 1 else dd } # there is a separate function for survfitms objects "[.survfit" <- function(x, ... , drop=TRUE) { nmatch <- function(indx, target) { # This function lets R worry about character, negative, or # logical subscripts. # It always returns a set of positive integer indices temp <- 1:length(target) names(temp) <- target temp[indx] } if (!inherits(x, "survfit")) stop("[.survfit called on non-survfit object") # ndots <- ...length() # the simplest, but not avail in R 3.4 # ndots <- length(list(...))# fails if any are missing, e.g. fit[,2] ndots <- if (missing(drop)) nargs()-1 else nargs()-2 # a workaround dd <- dim(x) dtype <- match(names(dd), c("strata", "data", "states")) if (ndots >0 && !missing(..1)) i <- ..1 else i <- NULL if (ndots> 1 && !missing(..2)) j <- ..2 else j <- NULL if (ndots > length(dd)) stop("incorrect number of dimensions") if (length(dtype) > 2) stop("invalid survfit object") # should never happen if (is.null(i) && is.null(j)) { # called with no subscripts given -- return x untouched return(x) } # Code below is easier if "i" is always the strata if (dtype[1] !=1) { dtype <- c(1, dtype) j <- i; i <- NULL dd <- c(1, dd) ndots <- ndots +1 } # We need to make a new one newx <- vector("list", length(x)) names(newx) <- names(x) for (k in c("logse", "version", "conf.int", "conf.type", "type", "call")) if (!is.null(x[[k]])) newx[[k]] <- x[[k]] class(newx) <- class(x) if (ndots== 1 && length(dd)==2) { # one subscript given for a two dimensional object # If one of the dimensions is 1, it is easier for me to fill in i and j if (dd[1]==1) {j <- i; i<- 1} else if (dd[2]==1) j <- 1 else { # the user has a mix of rows/cols index <- 1:prod(dd) itemp <- matrix(index, nrow=dd[1]) keep <- itemp[i] # illegal subscripts will generate an error if (length(keep) == length(index) && all(keep==index)) return(x) ii <- row(itemp)[keep] jj <- col(itemp)[keep] # at this point we have a matrix subscript of (ii, jj) # expand into a long pair of rows and cols temp <- split(seq(along=x$time), rep(1:length(x$strata), x$strata)) indx1 <- unlist(temp[ii]) # rows of the surv object indx2 <- rep(jj, x$strata[ii]) # return with each curve as a separate strata newx$n <- x$n[ii] for (k in c("time", "n.risk", "n.event", "n.censor", "n.enter")) if (!is.null(x[[k]])) newx[[k]] <- (x[[k]])[indx1] k <- cbind(indx1, indx2) for (j in c("surv", "std.err", "upper", "lower", "cumhaz", "std.chaz", "influence.surv", "influence.chaz")) if (!is.null(x[[j]])) newx[[j]] <- (x[[j]])[k] temp <- x$strata[ii] names(temp) <- 1:length(ii) newx$strata <- temp return(newx) } } # irow will be the rows that need to be taken # j the columns (of present) if (is.null(x$strata)) { if (is.null(i) || all(i==1)) irow <- seq(along=x$time) else stop("subscript out of bounds") newx$n <- x$n } else { if (is.null(i)) indx <- seq(along= x$strata) else indx <- nmatch(i, names(x$strata)) #strata to keep if (any(is.na(indx))) stop(paste("strata", paste(i[is.na(indx)], collapse=' '), 'not matched')) # Now, indx may not be in order: some can use curve[3:2] to reorder # The list/unlist construct will reorder the data temp <- split(seq(along=x$time), rep(1:length(x$strata), x$strata)) irow <- unlist(temp[indx]) if (length(indx) <=1 && drop) newx$strata <- NULL else newx$strata <- x$strata[i] newx$n <- x$n[indx] if (length(indx) ==1 & drop) x$strata <- NULL else newx$strata <- x$strata[indx] } if (length(dd)==1) { # no j dimension for (k in c("time", "n.risk", "n.event", "n.censor", "n.enter", "surv", "std.err", "cumhaz", "std.chaz", "upper", "lower", "influence.surv", "influence.chaz")) if (!is.null(x[[k]])) newx[[k]] <- (x[[k]])[irow] } else { # 2 dimensional object if (is.null(j)) j <- seq.int(ncol(x$surv)) # If the curve has been selected by strata and keep has only # one row, we don't want to lose the second subscript too if (length(irow)==1) drop <- FALSE for (k in c("time", "n.risk", "n.event", "n.censor", "n.enter")) if (!is.null(x[[k]])) newx[[k]] <- (x[[k]])[irow] for (k in c("surv", "std.err", "cumhaz", "std.chaz", "upper", "lower", "influence.surv", "influence.chaz")) if (!is.null(x[[k]])) newx[[k]] <- (x[[k]])[irow, j, drop=drop] } newx } survfit.formula <- function(formula, data, weights, subset, na.action, stype=1, ctype=1, id, cluster, istate, timefix=TRUE, etype, error, ...) { Call <- match.call() Call[[1]] <- as.name('survfit') #make nicer printout for the user # create a copy of the call that has only the arguments we want, # and use it to call model.frame() indx <- match(c('formula', 'data', 'weights', 'subset','na.action', 'istate', 'id', 'cluster', "etype"), names(Call), nomatch=0) #It's very hard to get the next error message other than malice # eg survfit(wt=Surv(time, status) ~1) if (indx[1]==0) stop("a formula argument is required") temp <- Call[c(1, indx)] temp[[1L]] <- quote(stats::model.frame) mf <- eval.parent(temp) Terms <- terms(formula, c("strata", "cluster")) ord <- attr(Terms, 'order') if (length(ord) & any(ord !=1)) stop("Interaction terms are not valid for this function") n <- nrow(mf) Y <- model.extract(mf, 'response') if (!is.Surv(Y)) stop("Response must be a survival object") casewt <- model.extract(mf, "weights") if (is.null(casewt)) casewt <- rep(1.0, n) else { if (!is.numeric(casewt)) stop("weights must be numeric") if (any(!is.finite(casewt))) stop("weights must be finite") if (any(casewt <0)) stop("weights must be non-negative") casewt <- as.numeric(casewt) # transform integer to numeric } if (!is.null(attr(Terms, 'offset'))) warning("Offset term ignored") id <- model.extract(mf, 'id') istate <- model.extract(mf,"istate") cluster <- model.extract(mf, "cluster") temp <- untangle.specials(Terms, "cluster") if (length(temp$vars)>0) { if (length(cluster) >0) stop("cluster appears as both an argument and a model term") if (length(temp$vars) > 1) stop("can not have two cluster terms") cluster <- mf[[temp$vars]] Terms <- Terms[-temp$terms] } ll <- attr(Terms, 'term.labels') if (length(ll) == 0) X <- factor(rep(1,n)) # ~1 on the right else X <- strata(mf[ll]) if (!is.Surv(Y)) stop("y must be a Surv object") # Backwards support for the now-depreciated etype argument etype <- model.extract(mf, "etype") if (!is.null(etype)) { if (attr(Y, "type") == "mcounting" || attr(Y, "type") == "mright") stop("cannot use both the etype argument and mstate survival type") if (length(istate)) stop("cannot use both the etype and istate arguments") status <- Y[,ncol(Y)] etype <- as.factor(etype) temp <- table(etype, status==0) if (all(rowSums(temp==0) ==1)) { # The user had a unique level of etype for the censors newlev <- levels(etype)[order(-temp[,2])] #censors first } else newlev <- c(" ", levels(etype)[temp[,1] >0]) status <- factor(ifelse(status==0,0, as.numeric(etype)), labels=newlev) if (attr(Y, 'type') == "right") Y <- Surv(Y[,1], status, type="mstate") else if (attr(Y, "type") == "counting") Y <- Surv(Y[,1], Y[,2], status, type="mstate") else stop("etype argument incompatable with survival type") } # Deal with the near-ties problem if (!is.logical(timefix) || length(timefix) > 1) stop("invalid value for timefix option") if (timefix) newY <- aeqSurv(Y) else newY <- Y # Call the appropriate helper function if (attr(Y, 'type') == 'left' || attr(Y, 'type') == 'interval') temp <- survfitTurnbull(X, newY, casewt, ...) else if (attr(Y, 'type') == "right" || attr(Y, 'type')== "counting") temp <- survfitKM(X, newY, casewt, stype=stype, ctype=ctype, id=id, cluster=cluster, ...) else if (attr(Y, 'type') == "mright" || attr(Y, "type")== "mcounting") temp <- survfitCI(X, newY, weights=casewt, stype=stype, ctype=ctype, id=id, cluster=cluster, istate=istate, ...) else { # This should never happen stop("unrecognized survival type") } if (is.null(temp$states)) class(temp) <- 'survfit' else class(temp) <- c("survfitms", "survfit") if (!is.null(attr(mf, 'na.action'))) temp$na.action <- attr(mf, 'na.action') temp$call <- Call temp } survfit.Surv <- function(formula, ...) stop("the survfit function requires a formula as its first argument") survfit_confint <- function(p, se, logse=TRUE, conf.type, conf.int, selow, ulimit=TRUE) { zval <- qnorm(1- (1-conf.int)/2, 0,1) if (missing(selow)) scale <- 1.0 else scale <- ifelse(selow==0, 1.0, selow/se) # avoid 0/0 at the origin if (!logse) se <- ifelse(se==0, 0, se/p) # se of log(survival) = log(p) if (conf.type=='plain') { se2 <- se* p * zval # matches equation 4.3.1 in Klein & Moeschberger if (ulimit) list(lower= pmax(p -se2*scale, 0), upper = pmin(p + se2, 1)) else list(lower= pmax(p -se2*scale, 0), upper = p + se2) } else if (conf.type=='log') { #avoid some "log(0)" messages xx <- ifelse(p==0, NA, p) se2 <- zval* se temp1 <- exp(log(xx) - se2*scale) temp2 <- exp(log(xx) + se2) if (ulimit) list(lower= temp1, upper= pmin(temp2, 1)) else list(lower= temp1, upper= temp2) } else if (conf.type=='log-log') { xx <- ifelse(p==0 | p==1, NA, p) se2 <- zval * se/log(xx) temp1 <- exp(-exp(log(-log(xx)) - se2*scale)) temp2 <- exp(-exp(log(-log(xx)) + se2)) list(lower = temp1 , upper = temp2) } else if (conf.type=='logit') { xx <- ifelse(p==0, NA, p) # avoid log(0) messages se2 <- zval * se *(1 + xx/(1-xx)) temp1 <- 1- 1/(1+exp(log(p/(1-p)) - se2*scale)) temp2 <- 1- 1/(1+exp(log(p/(1-p)) + se2)) list(lower = temp1, upper=temp2) } else if (conf.type=="arcsin") { xx <- ifelse(p==0, NA, p) se2 <- .5 *zval*se * sqrt(xx/(1-xx)) list(lower= (sin(pmax(0, asin(sqrt(xx)) - se2*scale)))^2, upper= (sin(pmin(pi/2, asin(sqrt(xx)) + se2)))^2) } else stop("invalid conf.int type") } survival/R/survexp.fit.R0000644000176200001440000000663613543466051014770 0ustar liggesusers# Actually compute the expected survival for one or more cohorts # of subjects. If each subject is his/her own group, it gives individual # survival # group = groups (one curve per group) # x matrix contains the rate # table indices = starting point for each obs in the rate table. # y is the number of follow-up days for each subject # times = the time points at which survival is desired # death = T if we want the conditional estimate survexp.fit <- function(group, x, y, times, death, ratetable) { if (!is.matrix(x)) stop("x must be a matrix") if (ncol(x) != length(dim(ratetable))) stop("x matrix does not match the rate table") atts <- attributes(ratetable) ngrp <- max(group) times <- sort(unique(times)) if (any(times <0)) stop("Negative time point requested") if (missing(y)) y <- rep(max(times), nrow(x)) ntime <- length(times) if (!is.logical(death)) stop("Invalid value for death indicator") datecheck <- function(x) inherits(x, c("Date", "POSIXt", "date", "chron")) cuts <- lapply(attr(ratetable, "cutpoints"), function(x) if (!is.null(x) & datecheck(x)) ratetableDate(x) else x) if (is.null(atts$type)) { # old style rate table rfac <- atts$factor us.special <- (rfac >1) } else { rfac <- 1*(atts$type ==1) us.special <- (atts$type==4) } if (any(us.special)) { #special handling for US pop tables # Someone born in June of 1945, say, gets the 1945 US rate until their # next birthday. But the underlying logic of the code would change # them to a new rate on both calendar year and birthdays. # We fudge by moving their enrollment date back to their birthday. # # The cutpoint for year has been converted to days since 1/1/1970 by # the ratetableDate function. if (is.null(atts$dimid)) dimid <- names(atts$dimnames) else dimid <- atts$dimid cols <- match(c("age", "year"), dimid) if (any(is.na(cols))) stop("ratetable does not have expected shape") # The format command works for Dates, use it to get an offset bdate <- as.Date("1970-01-01") + (x[,cols[2]] - x[,cols[1]]) byear <- format(bdate, "%Y") offset <- as.numeric(bdate - as.Date(paste0(byear, "-01-01"))) x[,cols[2]] <- x[,cols[2]] - offset # Doctor up "cutpoints" - only needed for (very) old style rate tables # for which the C code does interpolation on the fly if (any(rfac >1)) { temp <- which(us.special) nyear <- length(cuts[[temp]]) nint <- rfac[temp] #intervals to interpolate over cuts[[temp]] <- round(approx(nint*(1:nyear), cuts[[temp]], nint:(nint*nyear))$y - .0001) } } storage.mode(x) <- storage.mode(y) <- "double" storage.mode(times) <- "double" temp <- .Call(Cpyears3b, as.integer(death), as.integer(rfac), as.integer(atts$dim), as.double(unlist(cuts)), ratetable, as.integer(group), x, y, times, as.integer(ngrp)) if (ntime==1) list(surv=temp$surv, n=temp$n) else if (ngrp >1) list(surv=apply(matrix(temp$surv, ntime, ngrp),2,cumprod), n= matrix(temp$n, ntime, ngrp)) else list(surv=cumprod(temp$surv), n=temp$n) } survival/R/frailty.gammacon.R0000644000176200001440000000136713537676563015740 0ustar liggesusers# $Id: frailty.gammacon.S 11166 2008-11-24 22:10:34Z therneau $ # Correct the loglik for a gamma frailty # Term2 is the hard one, discussed in section 3.5 of the report # The penalty function only adds \vu \sum(w_j) to the CoxPL, so this # does a bit more than equation 15. # frailty.gammacon <- function(d, nu) { maxd <- max(d) if (nu > 1e7*maxd) term1 <- sum(d*d)/nu #second order Taylor series else term1 <- sum(d + nu*log(nu/(nu+d))) #easy part tbl <- table(factor(d[d>0], levels=1:maxd)) ctbl<- rev(cumsum(rev(tbl))) dlev<- 1:maxd term2.numerator <- nu + rep(dlev-1, ctbl) term2.denom <- nu + rep(dlev, tbl*dlev) term2 <- sum(log(term2.numerator/term2.denom)) term1 + term2 } survival/R/parsecovar.R0000644000176200001440000002611513570772306014635 0ustar liggesusers# Automatically generated from the noweb directory parsecovar1 <- function(flist, statedata) { if (any(sapply(flist, function(x) !inherits(x, "formula")))) stop("an element of the formula list is not a formula") if (any(sapply(flist, length) != 3)) stop("all formulas must have a left and right side") # split the formulas into a right hand and left hand side lhs <- lapply(flist, function(x) x[-3]) rhs <- lapply(flist, function(x) x[-2]) # take apart the right hand side of each formula # the function below is applied to each formula in turn. rh2 <- lapply(rhs, function(form) { parts <- strsplit(deparse(form, width.cutoff=300, control=NULL), '/', fixed=TRUE)[[1]] if (length(parts) ==1) { # nothing after a / ival <- NULL; common <- FALSE; fixed <- FALSE; clear <- FALSE; } else{ # treat the right hand side as though it were a formula optterms <- terms(formula(paste("~", parts[2]))) ff <- rownames(attr(optterms, "factors")) index <- match(ff, c("common", "fixed", "init", "clear")) if (any(is.na(index))) stop("option not recognized in a covariates formula: ", paste(ff[is.na(index)], collapse=", ")) common <- any(index==1) fixed <- any(index==2) clear <- any(index==3) if (any(index==3)) { optatt <- attributes(optterms) j <- optatt$variables[1 + which(index==3)] j[[1]] <- as.name("list") ival <- unlist(eval(j, parent.frame())) } else ival <- NULL } # and now the terms before the slash, which is the actual formula # a formula of -1 +1 is recorded as intercept=TRUE, pasting a -1 on # allows us to tell if a 1 was included. (But don't add a second ~). form <- formula(paste("~ -1 +", substring(parts[1], 2, nchar(parts[1])))) list(common=common, fixed=fixed, clear=clear, ival=ival, formula = form) }) # deal with the left hand side of the formula # the next routine cuts at '+' signs pcut <- function(form) { if (length(form)==3) { if (form[[1]] == '+') c(pcut(form[[2]]), pcut(form[[3]])) else if (form[[1]] == '~') pcut(form[[2]]) else list(form) } else list(form) } lcut <- lapply(lhs, function(x) pcut(x[[2]])) env1 <- new.env(parent= parent.frame(2)) env2 <- new.env(parent= env1) if (missing(statedata)) { assign("state", function(...) list(stateid= "state", values=c(...)), env1) assign("state", list(stateid="state")) } else { for (i in statedata) { assign(i, eval(list(stateid=i)), env2) tfun <- eval(parse(text=paste0("function(...) list(stateid='" , i, "', values=c(...))"))) assign(i, tfun, env1) } } lterm <- lapply(lcut, function(x) { lapply(x, function(z) { if (length(z)==1) { temp <- eval(z, envir= env2) if (is.list(temp) && names(temp)[[1]] =="stateid") temp else temp } else if (length(z) ==3 && z[[1]]==':') list(left=eval(z[[2]], envir=env2), right=eval(z[[3]], envir=env2)) else stop("invalid term: ", deparse(z)) }) }) list(rhs = rh2, lhs= lterm) } parsecovar2 <- function(covar1, statedata, dformula, Terms, transitions,states) { if (is.null(statedata)) statedata <- data.frame(state = states, stringsAsFactors=FALSE) else { if (is.null(statedata$state)) stop("the statedata data set must contain a variable 'state'") indx1 <- match(states, statedata$state, nomatch=0) if (any(indx1==0)) stop("statedata does not contain all the possible states: ", states[indx1==0]) statedata <- statedata[indx1,] # put it in order } # Statedata might have rows for states that are not in the data set, # for instance if the coxph call had used a subset argument. Any of # those were eliminated above. # Likewise, the formula list might have rules for transitions that are # not present. Don't worry about it at this stage. allterm <- attr(Terms, 'term.labels') nterm <- length(allterm) # create the map and fill it in with the default formula nstate <- length(states) tmap <- array(0L, dim=c(nterm+1, nstate, nstate)) dterms <- match(attr(terms.formula(dformula), "term.labels"), allterm) dterms <- c(1L, 1L + dterms) # add the intercept k <- seq(along=dterms) for (i in 1:nstate) { for (j in 1:nstate) { tmap[dterms,j,i] <- k # fill in in column major order k <- k + length(k) } } ncoef <- max(tmap) # number of coefs used so far inits <- NULL # if there is no formula extension, the middle part of the work is skipped if (!is.null(covar1)) { for (i in 1:length(covar1$rhs)) { rhs <- covar1$rhs[[i]] lhs <- covar1$lhs[[i]] # the two are the same length rterm <- terms.formula(rhs$formula) rindex <- 1L + match(attr(rterm, "term.labels"), allterm, nomatch=0) if (any(rindex== 1L)) stop("dterm mismatch bug 2") if (attr(rterm, "intercept")==1) rindex <- c(1L, rindex) state1 <- state2 <- NULL for (x in lhs) { # x is one term if (is.null(x$left)) stop("term found without a :", x) # left of the colon if (!is.list(x$left) && length(x$left) ==1 && x$left==0) temp1 <- 1:nrow(statedata) else if (is.numeric(x$left)) { temp1 <- as.integer(x$left) if (any(temp1 != x$left)) stop("non-integer state number") if (any(temp1 <1 | temp1> nstate)) stop("numeric state is out of range") } else if (is.list(x$left) && names(x$left)[1] == "stateid"){ if (is.null(x$left$value)) stop("state variable with no list of values: ",x$left$stateid) else { if (any(k= is.na(match(x$left$stateid, names(statedata))))) stop(x$left$stateid[k], ": state variable not found") zz <- statedata[[x$left$stateid]] if (any(k= is.na(match(x$left$value, zz)))) stop(x$left$value[k], ": state value not found") temp1 <- which(zz %in% x$left$value) } } else { k <- match(x$left, statedata$state) if (any(is.na(k))) stop(x$left[k], ": state not found") temp1 <- which(statedata$state %in% x$left) } # right of colon if (!is.list(x$right) && length(x$right) ==1 && x$right ==0) temp2 <- 1:nrow(statedata) else if (is.numeric(x$right)) { temp2 <- as.integer(x$right) if (any(temp2 != x$right)) stop("non-integer state number") if (any(temp2 <1 | temp2> nstate)) stop("numeric state is out of range") } else if (is.list(x$right) && names(x$right)[1] == "stateid") { if (is.null(x$right$value)) stop("state variable with no list of values: ",x$right$stateid) else { if (any(k= is.na(match(x$right$stateid, names(statedata))))) stop(x$right$stateid[k], ": state variable not found") zz <- statedata[[x$right$stateid]] if (any(k= is.na(match(x$right$value, zz)))) stop(x$right$value[k], ": state value not found") temp2 <- which(zz %in% x$right$value) } } else { k <- match(x$right, statedata$state) if (any(is.na(k))) stop(x$right[k], ": state not found") temp2 <- which(statedata$state %in% x$right) } state1 <- c(state1, rep(temp1, length(temp2))) state2 <- c(state2, rep(temp2, each=length(temp1))) } npair <- length(state1) if (rhs$clear) { for(k in 1:npair) tmap[-1, state1[k], state2[k]] <- 0 } if (length(rhs$ival)) inits <- c(inits, list(term=rindex, state1=state1, state2= state2, init= rhs$ival)) j <- ncoef + seq_len(length(rindex)) if (rhs$common) { for(k in 1:npair) tmap[rindex, state1[k], state2[k]] <-j } else { for(k in 1:npair){ tmap[rindex, state1[k], state2[k]] <-j j <- j + length(rindex) } } ncoef <- max(j) } } i <- match("(censored)", colnames(transitions), nomatch=0) if (i==0) t2 <- transitions else t2 <- transitions[,-i, drop=FALSE] # transitions to 'censor' don't count indx1 <- match(rownames(t2), states) indx2 <- match(colnames(t2), states) tmap2 <- matrix(0L, nrow= 1+nterm, ncol= sum(t2>0)) trow <- row(t2)[t2>0] tcol <- col(t2)[t2>0] for (i in 1:nrow(tmap2)) { for (j in 1:ncol(tmap2)) tmap2[i,j] <- tmap[i, indx1[trow[j]], indx2[tcol[j]]] } # relabel as 1-k tmap2[1,] <- match(tmap2[1,], unique(c(0L, tmap2[1,]))) -1L if (nrow(tmap2) > 1) tmap2[-1,] <- match(tmap2[-1,], unique(c(0L, tmap2[-1,]))) -1L dimnames(tmap2) <- list(c("(Baseline)", allterm), paste(indx1[trow], indx2[tcol], sep=':')) list(tmap = tmap2, inits=inits, mapid= cbind(indx1[trow], indx2[tcol])) } parsecovar3 <- function(tmap, Xcol, Xassign) { # sometime X will have an intercept, sometimes not, tmap and cmap # always do hasintercept <- (Xassign[1] ==0) cmap <- matrix(0L, length(Xcol) + !hasintercept, ncol(tmap)) cmap[1,] <- tmap[1,] xcount <- table(factor(Xassign, levels=1:max(Xassign))) mult <- 1+ max(xcount) #used to keep the coefs in the same oder ii <- 1 for (i in 2:nrow(tmap)) { k <- seq_len(xcount[i-1]) for (j in 1:ncol(tmap)) cmap[ii+k, j] <- if(tmap[i,j]==0) 0 else tmap[i,j]*mult +k ii <- ii + max(k) } # renumber coefs as 1, 2, 3, ... cmap[-1,] <- match(cmap[-1,], sort(unique(c(0L, cmap[-1,])))) -1L colnames(cmap) <- colnames(tmap) if (hasintercept) rownames(cmap) <- Xcol else rownames(cmap) <- c("(Baseline)", Xcol) cmap } survival/R/survpenal.fit.R0000644000176200001440000005105513537676563015304 0ustar liggesusers# # fit a penalized parametric model # survpenal.fit<- function(x, y, weights, offset, init, controlvals, dist, scale=0, nstrat=1, strata, pcols, pattr, assign, parms=NULL) { iter.max <- controlvals$iter.max outer.max <- controlvals$outer.max eps <- controlvals$rel.tolerance toler.chol <- controlvals$toler.chol if (!is.matrix(x)) stop("Invalid X matrix ") n <- nrow(x) nvar <- ncol(x) ny <- ncol(y) if (is.null(offset)) offset <- rep(0,n) if (missing(weights)|| is.null(weights)) weights<- rep(1.0,n) else if (any(weights<=0)) stop("Invalid weights, must be >0") # The strata() term in survreg signals one scale parameter is # to be fit per strata. Here strata contains the strata level of each # subject (variable not needed for only one strata), nstrat= # of strata. # Set nstrat2 = the number of coefficients I need to fit (which is 0 # if the scale is pre-fixed). if (scale <0) stop("Invalid scale") if (scale >0 && nstrat >1) stop("Cannot have both a fixed scale and strata") if (nstrat>1 && (missing(strata) || length(strata)!= n)) stop("Invalid strata variable") if (nstrat==1) strata <- rep(1,n) if (scale >0) nstrat2 <- 0 else nstrat2 <- nstrat if (is.character(dist)) { sd <- survreg.distributions[[dist]] if (is.null(sd)) stop ("Unrecognized distribution") } else sd <- dist dnum <- match(sd$name, c("Extreme value", "Logistic", "Gaussian")) if (is.na(dnum)) { # Not one of the three distributions built in to the C code # We need to set up a callback routine # This returns the 5 number distribution summary (see the density # functions in survreg.distributions). Interval censored obs require # 2 evals and all others 1, so the call to the routine will have n2 # values. dnum <- 4 # flag for the C routine n2 <- n + sum(y[,ny]==3) # # Create an expression that will be evaluated by the C-code, # but with knowledge of some current variables # In the R doc, this would be "body(function(z) {" # in Splus (Chambers book): "functionBody(function(z)" # same action, different name. Luckily 'quote' exists in both # We make very sure the result is the right type and length here, # rather than in the C code, for simplicity. fdensity <- quote({ if (length(parms)) temp <- sd$density(z, parms) else temp <- sd$density(z) if (!is.matrix(temp) || any(dim(temp) != c(n2,5)) || !is.numeric(temp)) stop("Density function returned an invalid matrix") as.vector(as.double(temp)) }) } else { fdensity <-1 #dummy value for the .Call n2 <- n #a dummy value for inclusion in rho } # This is a subset of residuals.survreg: define the first and second # derivatives at z=0 for the 4 censoring types # Used below for starting estimates derfun <- function(y, eta, sigma, density, parms) { ny <- ncol(y) status <- y[,ny] z <- (y[,1] - eta)/sigma dmat <- density(z,parms) dtemp<- dmat[,3] * dmat[,4] #f' if (any(status==3)) { z2 <- (y[,2] - eta)/sigma dmat2 <- density(z2) } else { dmat2 <- matrix(0,1,5) #dummy values z2 <- 0 } tdenom <- ((status==0) * dmat[,2]) + ((status==1) * 1 ) + ((status==2) * dmat[,1]) + ((status==3) * ifelse(z>0, dmat[,2]-dmat2[,2], dmat2[,1] - dmat[,1])) tdenom <- 1/(tdenom* sigma) dg <- -tdenom *(((status==0) * (0-dmat[,3])) + ((status==1) * dmat[,4]) + ((status==2) * dmat[,3]) + ((status==3) * (dmat2[,3]- dmat[,3]))) ddg <- (tdenom/sigma)*(((status==0) * (0- dtemp)) + ((status==1) * dmat[,5]) + ((status==2) * dtemp) + ((status==3) * (dmat2[,3]*dmat2[,4] - dtemp))) list(dg = dg, ddg = ddg - dg^2) } status <- y[,ny] # # are there any sparse frailty terms? # npenal <- length(pattr) #total number of penalized terms if (npenal == 0 || length(pcols) != npenal) stop("Invalid pcols or pattr arg") sparse <- sapply(pattr, function(x) !is.null(x$sparse) && x$sparse) if (sum(sparse) >1) stop("Only one sparse penalty term allowed") # # Create a marking vector for the terms, the same length as assign # with pterms == 0=ordinary term, 1=penalized, 2=sparse, # pindex = length of pcols = position in pterms # # Make sure that pcols is a strict subset of assign, so that the # df computation (and printing) can unambiguously decide which cols of # X are penalized and which are not when doing "terms" like actions. # To make some downstream things easier, order pcols and pattr to be # in the same relative order as the terms in 'assign' # pterms <- rep(0, length(assign)) names(pterms) <- names(assign) pindex <- rep(0, npenal) for (i in 1:npenal) { temp <- unlist(lapply(assign, function(x,y) (length(x) == length(y) && all(x==y)), pcols[[i]])) if (sparse[i]) pterms[temp] <- 2 else pterms[temp] <- 1 pindex[i] <- (seq(along.with=temp))[temp] } if ((sum(pterms==2) != sum(sparse)) || (sum(pterms>0) != npenal)) stop("pcols and assign arguments disagree") if (any(pindex != sort(pindex))) { temp <- order(pindex) pindex <- pindex[temp] pcols <- pcols[temp] pattr <- pattr[temp] } # ptype= 1 or 3 if a sparse term exists, 2 or 3 if a non-sparse exists ptype <- any(sparse) + 2*(any(!sparse)) if (any(sparse)) { sparse.attr <- (pattr[sparse])[[1]] #can't use [[sparse]] directly # if 'sparse' is a T/F vector fcol <- unlist(pcols[sparse]) if (length(fcol) > 1) stop("Sparse term must be single column") # Remove the sparse term from the X matrix frailx <- x[, fcol] x <- x[, -fcol, drop=FALSE] for (i in 1:length(assign)){ j <- assign[[i]] if (j[1] > fcol) assign[[i]] <- j-1 } for (i in 1:npenal) { j <- pcols[[i]] if (j[1] > fcol) pcol[[i]] <- j-1 } frailx <- match(frailx, sort(unique(frailx))) nfrail <- max(frailx) nvar <- nvar - 1 #Set up the callback for the sparse frailty term # (At most one sparse term is allowed). The calling code will # first set 'coef1' to the current value of the sparse coefficients, # then call the expression below. It uses a separate context (Splus # frame or R environment), so there is no conflict between that # variable name and the rest of the code. Thus, think of the below as # a funcion of the temporary variable coef1 (current value found # in the calling C code), theta1 (current value in the S code # below, using calls to cfun), and fixed known values of pfun1 etc. # The expression will constantly replace components of "coxlist1". By # creating it first, we assure the order of the components, again # to make it simpler for the C code (it can grab the first component # and know that that is 'coef', etc). # pfun1 <- sparse.attr$pfun coxlist1 <- list(coef=0, first=0, second=0, penalty=0, flag=F) f.expr1 <- quote({ if (is.null(extra1)) temp <- pfun1(coef1, theta1, n.eff) else temp <- pfun1(coef1, theta1, n.eff, extra1) if (!is.null(temp$recenter)) coxlist1$coef <- coef1 - as.double(temp$recenter) else coxlist1$coef <- coef1 if (!temp$flag) { coxlist1$first <- -as.double(temp$first) coxlist1$second <- as.double(temp$second) } else { coxlist1$first <- double(nfrail) coxlist1$second <- double(nfrail) } coxlist1$penalty <- -as.double(temp$penalty) coxlist1$flag <- as.logical(temp$flag) # Make sure the list has exactly the right structure, so # the the C code can be simple. The first line below is # probably unnecessary (belt AND suspenders); the second is # checking a possibly user-supplied penaly function if (any(names(coxlist1) != c('coef', 'first', 'second', 'penalty', 'flag'))) stop("Invalid coxlist1") if (any(sapply(coxlist1, length) != c(rep(nfrail,3), 1, 1))) stop("Incorrect length in coxlist1") coxlist1 }) } else { # no sparse terms frailx <- 0 nfrail <- 0 f.expr1 <- NULL #dummy value pfun1 <- NULL #dummy coxlist1 <- NULL # " } nvar2 <- nvar + nstrat2 if (nvar2 ==0) { # There are no non-sparse coefficients, and no scale parameters # A strange model, leading to an hmat with 0 columns. The # underlying C code will choke, since this case is not built in. stop("Cannot fit a model with no coefficients other than sparse ones") } # Now the non-sparse penalties # There can be multiple penalized terms if (sum(!sparse) >0) { full.imat <- !all(unlist(lapply(pattr, function(x) x$diag))) ipenal <- (1:length(pattr))[!sparse] #index for non-sparse terms if (full.imat) { coxlist2 <- list(coef=double(nvar), first=double(nvar), second= double(nvar^2), penalty=0.0, flag=rep(FALSE,nvar)) length2 <- c(nvar, nvar, nvar*nvar, 1, nvar) } else { coxlist2 <- list(coef=double(nvar), first=double(nvar), second=double(nvar), penalty= 0.0, flag=rep(FALSE,nvar)) length2 <- c(nvar, nvar, nvar, 1, nvar) } # The C code will set the variable coef2, containing the concatonation # of all the non-sparse penalized coefs. Think of the below as # a function of coef (from the C code), thetalist (set further # below), and unchanging variables such as pattr. f.expr2 <- quote({ pentot <- 0 newcoef <- coef2 for (i in ipenal) { pen.col <- pcols[[i]] tcoef <- coef2[pen.col] if (is.null(extralist[[i]])) temp <- ((pattr[[i]])$pfun)(tcoef, thetalist[[i]], n.eff) else temp <- ((pattr[[i]])$pfun)(tcoef, thetalist[[i]], n.eff,extralist[[i]]) if (!is.null(temp$recenter)) newcoef[pen.col] <- tcoef - temp$recenter if (temp$flag) coxlist2$flag[pen.col] <- TRUE else { coxlist2$flag[pen.col] <- FALSE coxlist2$first[pen.col] <- -temp$first if (full.imat) { tmat <- matrix(coxlist2$second, nvar, nvar) tmat[pen.col,pen.col] <- temp$second coxlist2$second <- c(tmat) } else coxlist2$second[pen.col] <- temp$second } pentot <- pentot - temp$penalty } coxlist2$penalty <- as.double(pentot) coxlist2$coef <- newcoef if (any(sapply(coxlist2, length) != length2)) stop("Length error in coxlist2") coxlist2 }) } else { full.imat <- FALSE # no non-sparse penalties length2 <- 0 #dummy value f.expr2 <- NULL coxlist2 <- NULL ipenal <- NULL } # Create the frame for penalized evaluation rho <- new.env() # # "Unpack" the passed in paramter list, # and make the initial call to each of the external routines # cfun <- lapply(pattr, function(x) x$cfun) parmlist <- lapply(pattr, function(x,eps) c(x$cparm, eps2=eps), sqrt(eps)) extralist<- lapply(pattr, function(x) x$pparm) iterlist <- vector('list', length(cfun)) thetalist <- vector('list', length(cfun)) printfun <- lapply(pattr, function(x) x$printfun) extra1 <- NULL theta1 <- NULL for (i in 1:length(cfun)) { temp <- (cfun[[i]])(parmlist[[i]], iter=0) if (sparse[i]) { assign('theta1', temp$theta, rho) assign('extra1', extralist[[i]], rho) } thetalist[[i]] <- temp$theta iterlist[[i]] <- temp } # # Manufacture the list of calls to cfun, with appropriate arguments # temp1 <- c('x', 'coef', 'plik', 'loglik', 'status', 'neff', 'df', 'trH') temp2 <- c('frailx', 'fcoef', 'fit$loglik-fit$penalty', 'fit$loglik', 'status', 'n.eff') temp3 <- c('x[,pen.col]', 'coef[pen.col]', 'fit$loglik-fit$penalty', 'fit$loglik', 'status', 'n.eff') calls <- vector('expression', length(cfun)) cargs <- lapply(pattr, function(x) x$cargs) for (i in 1:length(cfun)) { tempchar <- paste("(cfun[[", i, "]])(parmlist[[", i, "]], iter,", "iterlist[[", i, "]]") temp2b <- c(temp2, paste('pdf[', i, ']'), paste('trH[', i, ']')) temp3b <- c(temp3, paste('pdf[', i, ']'), paste('trH[', i, ']')) if (length(cargs[[i]])==0) calls[i] <- parse(text=paste(tempchar, ")")) else { temp <- match(cargs[[i]], temp1) if (any(is.na(temp))) stop(paste((cargs[[i]])[is.na(temp)], "not matched")) if (sparse[i]) temp4 <- paste(temp2b[temp], collapse=',') else temp4 <- paste(temp3b[temp], collapse=',') calls[i] <- parse(text=paste(paste(tempchar,temp4,sep=','),')')) } } need.df <- any(!is.na(match(c('df', 'trH'), unlist(cargs))))#do any use df? # # Last of the setup: create the vector of variable names # varnames <- dimnames(x)[[2]] for (i in 1:npenal) { if (!is.null(pattr[[i]]$varname)) varnames[pcols[[i]]] <- pattr[[i]]$varname } nvar2 <- nvar + nstrat2 nvar3 <- nvar2 + nfrail # # A good initial value of the scale turns out to be critical for successful # iteration, in a surprisingly large number of data sets. # The best way we've found to get one is to fit a model with only the # mean and the scale. We also the loglik of the mean-only model in the # result # Even this model needs starting guesses... yy <- ifelse(status !=3, y[,1], (y[,1]+y[,2])/2 ) coef <- sd$init(yy, weights,parms) # We sometimes get into trouble with a small initial estimate of sigma, # (the surface isn't SPD), but never with a large one. Double it. if (scale >0) vars <- log(scale) else vars <- log(4*coef[2])/2 # init gives \sigma^2, I need log(sigma) coef <- c(coef[1], rep(vars, nstrat)) # get a better initial value for the mean using the "glim" trick deriv <- derfun(y, yy, exp(vars), sd$density, parms) wt <- -1*deriv$ddg*weights coef[1] <- sum(weights*deriv$dg + wt*(yy -offset)) / sum(wt) fit0 <- .Call(Csurvreg6, iter = as.integer(20), nvar = as.integer(1), as.double(y), as.integer(ny), x = as.double(rep(1.0, n)), as.double(weights), as.double(offset), coef= as.double(coef), as.integer(nstrat2), as.integer(strata), as.double(eps), as.double(toler.chol), as.integer(dnum), fdensity, rho) # The "effective n" of the model temp <- mean(exp(fit0$coef[-1])) #overall sd n.eff <- sd$variance(temp^2) * (solve(matrix(fit0$var,1+nstrat2)))[1,1] # # Fit the model with all covariates # Start with initial values # if (is.numeric(init)) { if (length(init) == nvar) { if (scale >0) init <- c(init, log(scale)) else init <-c(rep(0, nfrail), init, fit0$coef[-1]) } else if (length(init) == nvar2) init <- c(rep(0,nfrail), init) else if (length(init) != nvar3) stop("Wrong length for inital values") if (scale >0) init <- c(init, log(scale)) } else { # The algebra behind the 'glim' trick just doesn't work here # Use the intercept fit + zeros # coef order = frailty, intercept, other covariates, sigmas init <- c(rep(0, nfrail), fit0$coef[1], rep(0, nvar-1), fit0$coef[-1]) } # # Tack on the sigmas to "assign", so that the df component includes # the sigmas if (nstrat2 >0) assign <- c(assign, list(sigma=(1+nvar):nvar2)) iter2 <- 0 iterfail <- NULL thetasave <- unlist(thetalist) for (iterx in 1:outer.max) { fit <- .Call(Csurvreg7, iter = as.integer(iter.max), as.integer(nvar), as.double(y), as.integer(ny), as.double(x), as.double(weights), as.double(offset), coef= as.double(init), as.integer(nstrat2), as.integer(strata), as.double(eps), as.double(toler.chol), as.integer(dnum), fdensity, rho, as.integer(ptype), as.integer(full.imat), as.integer(nfrail), as.integer(frailx), f.expr1, f.expr2) iter <- iterx iter2 <- iter2 + fit$iter if (fit$flag == 1000) iterfail <- c(iterfail, iter) if (nfrail >0) { fcoef <- fit$coef[1:nfrail] coef <- fit$coef[nfrail + 1:nvar2] } else coef <- fit$coef[1:nvar2] # We need to fetch back some of the results from the # evaluation area of f.expr1 and f.expr2 if (nfrail >0) coxlist1 <- get('coxlist1', envir=rho) if (ptype >1 ) coxlist2 <- get('coxlist2', envir=rho) # If any penalties were infinite, the C code has made hdiag=1 out # of self-preservation (avoid zero divides). But such coefs are # guarranteed to be zero so the variance should be too. temp <- rep(FALSE, nvar2+nfrail) if (nfrail>0) temp[1:nfrail] <- coxlist1$flag if (ptype >1) temp[nfrail+ 1:nvar] <- coxlist2$flag hdiag <- ifelse(temp, 0, fit$hdiag) if (need.df) { #get the penalty portion of the second derive matrix if (nfrail>0) temp1 <- coxlist1$second else temp1 <- 0 if (ptype>1) { if (full.imat) { temp2 <- matrix(0., nvar2, nvar2) temp2[1:nvar, 1:nvar] <- coxlist2$second } else temp2 <- diag(c(coxlist2$second, rep(0, nstrat2))) } else temp2 <- 0 dftemp <-coxpenal.df(matrix(fit$hmat, ncol=nvar2), matrix(fit$hinv, ncol=nvar2), hdiag, assign, ptype, nvar2, temp1, temp2, pindex[sparse]) df <- dftemp$df var <- dftemp$var var2 <- dftemp$var2 pdf <- df[pterms>0] # df's for penalized terms trH <- dftemp$trH[pterms>0] # trace H } # # Call the control function(s) # done <- TRUE for (i in 1:length(cfun)) { pen.col <- pcols[[i]] temp <- eval(calls[i]) if (sparse[i]) assign('theta1', temp$theta, rho) thetalist[[i]] <- temp$theta iterlist[[i]] <- temp done <- done & temp$done } if (done) break # # Choose starting estimates for the next iteration # if (iter==1) { init <- coefsave <- fit$coef thetasave <- cbind(thetasave, unlist(thetalist)) } else { temp <- unlist(thetalist) coefsave <- cbind(coefsave, fit$coef) # temp = next guess for theta # *save = prior thetas and the resultant fits # choose as initial values the result for the closest old theta howclose <- apply((thetasave-temp)^2,2, sum) which <- min((1:iter)[howclose==min(howclose)]) init <- coefsave[,which] thetasave <- cbind(thetasave, temp) } } #end of the iteration loop if (!need.df) { #didn't need it iteration by iteration, but do it now #get the penalty portion of the second derive matrix if (nfrail>0) temp1 <- coxlist1$second else temp1 <- 0 if (ptype>1) { if (full.imat) { temp2 <- matrix(0., nvar2, nvar2) temp2[1:nvar, 1:nvar] <- coxlist2$second } else temp2 <- diag(c(coxlist2$second, rep(0, nstrat2))) } else temp2 <- 0 dftemp <-coxpenal.df(matrix(fit$hmat,ncol=nvar2), matrix(fit$hinv,ncol=nvar2), hdiag, assign, ptype, nvar2, temp1, temp2, pindex[sparse]) df <- dftemp$df trH <- dftemp$trH var <- dftemp$var var2 <- dftemp$var2 } if (iter.max >1 && length(iterfail)>0) warning(paste("Inner loop failed to coverge for iterations", paste(iterfail, collapse=' '))) which.sing <- (hdiag[nfrail + 1:nvar] ==0) coef[which.sing] <- NA names(iterlist) <- names(pterms[pterms>0]) cname <- varnames cname <- c(cname, rep("Log(scale)", nstrat2)) dimnames(var) <- list(cname, cname) names(coef) <- cname if (nfrail >0) { lp <- offset + fcoef[frailx] lp <- lp + x %*%coef[1:nvar] list(coefficients = coef, icoef = fit0$coef, var = var, var2 = var2, loglik = c(fit0$loglik, fit$loglik- fit$penalty), iter = c(iter, iter2), linear.predictors = as.vector(lp), frail = fcoef, fvar = dftemp$fvar, df = df, penalty= c(fit0$penalty, -fit$penalty), pterms = pterms, assign2=assign, history= iterlist, printfun=printfun, score = fit$u) } else { #no sparse terms list(coefficients = coef, icoef = fit0$coef, var = var, var2 = var2, loglik = c(fit0$loglik, fit$loglik- fit$penalty), iter = c(iter, iter2), linear.predictors = as.vector(x%*%coef[1:nvar]), df = df, df2=dftemp$df2, penalty= c(0, -fit$penalty), pterms = pterms, assign2=assign, history= iterlist, printfun= printfun, score = fit$u) } } survival/R/survcallback.R0000644000176200001440000001670713537676563015165 0ustar liggesusers# # This is common code for survpenal.fit and coxpenal.fit. # It's all the bookkeeping to set up the penalized callbacks # This code is in development, and not yet used by anything, the if(FALSE) # keeps it out of the distribution if(FALSE){ survcallback <- function(pcols, pattr, assign, x) { # # are there any sparse frailty terms? # npenal <- length(pattr) #total number of penalized terms if (npenal == 0 || length(pcols) != npenal) stop("Invalid pcols or pattr arg") sparse <- sapply(pattr, function(x) !is.null(x$sparse) && x$sparse) if (sum(sparse) >1) stop("Only one sparse penalty term allowed") # # Create a marking vector for the terms, the same length as assign # with pterms == 0=ordinary term, 1=penalized, 2=sparse, # pindex = length of pcols = position in pterms # # Make sure that pcols is a strict subset of assign, so that the # df computation (and printing) can unambiguously decide which cols of # X are penalized and which are not when doing "terms" like actions. # To make some downstream things easier, order pcols and pattr to be # in the same relative order as the terms in 'assign' # pterms <- rep(0, length(assign)) names(pterms) <- names(assign) pindex <- rep(0, npenal) for (i in 1:npenal) { temp <- unlist(lapply(assign, function(x,y) (length(x) == length(y) && all(x==y)), pcols[[i]])) if (sparse[i]) pterms[temp] <- 2 else pterms[temp] <- 1 pindex[i] <- (seq(along.with=temp))[temp] } if ((sum(pterms==2) != sum(sparse)) || (sum(pterms>0) != npenal)) stop("pcols and assign arguments disagree") if (any(pindex != sort(pindex))) { temp <- order(pindex) pindex <- pindex[temp] pcols <- pcols[temp] pattr <- pattr[temp] } # ptype= 1 or 3 if a sparse term exists, 2 or 3 if a non-sparse exists ptype <- any(sparse) + 2*(any(!sparse)) if (any(sparse)) { sparse.attr <- (pattr[sparse])[[1]] #can't use [[sparse]] directly # if 'sparse' is a T/F vector fcol <- unlist(pcols[sparse]) if (length(fcol) > 1) stop("Sparse term must be single column") # Remove the sparse term from the X matrix frailx <- x[, fcol] x <- x[, -fcol, drop=FALSE] for (i in 1:length(assign)){ j <- assign[[i]] if (j[1] > fcol) assign[[i]] <- j-1 } for (i in 1:npenal) { j <- pcols[[i]] if (j[1] > fcol) pcol[[i]] <- j-1 } frailx <- match(frailx, sort(unique(frailx))) nfrail <- max(frailx) nvar <- nvar - 1 #Set up the callback for the sparse frailty term # (At most one sparse term is allowed). The calling code will # first set 'coef' to the current value of the sparse coefficients, # then call the expression below. It uses a separate context (Splus # frame or R environment), so there is no conflict between that # variable name and the rest of the code. Thus, think of the below as # a funcion of the temporary variable coef (current value found # in the calling C code), theta1 (current value in the S code # below, using calls to cfun), and fixed known values of pfun1 etc. # The expression will constantly replace components of "coxlist1". By # creating it first, we assure the order of the components, again # to make it simpler for the C code (it can grab the first component # and know that that is 'coef', etc). # pfun1 <- sparse.attr$pfun coxlist1 <- list(coef=0, first=0, second=0, penalty=0, flag=F) f.expr1 <- quote({ if (is.null(extra1)) temp <- pfun1(coef1, theta1, n.eff) else temp <- pfun1(coef1, theta1, n.eff, extra1) if (!is.null(temp$recenter)) coxlist1$coef <- coef1 - as.double(temp$recenter) else coxlist1$coef <- coef1 if (!temp$flag) { coxlist1$first <- -as.double(temp$first) coxlist1$second <- as.double(temp$second) } else { coxlist1$first <- double(nfrail) coxlist1$second <- double(nfrail) } coxlist1$penalty <- -as.double(temp$penalty) coxlist1$flag <- as.logical(temp$flag) # Make sure the list has exactly the right structure, so # the the C code can be simple. The first line below is # probably unnecessary (belt AND suspenders); the second is # checking a possibly user-supplied penaly function if (any(names(coxlist1) != c('coef', 'first', 'second', 'penalty', 'flag'))) stop("Invalid coxlist1") if (any(sapply(coxlist1, length) != c(rep(nfrail,3), 1, 1))) stop("Incorrect length in coxlist1") coxlist1 }) } else { # no sparse terms frailx <- 0 nfrail <- 0 f.expr1 <- NULL #dummy value pfun1 <- NULL #dummy coxlist1 <- NULL # " } nvar2 <- nvar + nstrat2 if (nvar2 ==0) { # There are no non-sparse coefficients, and no scale parameters # A strange model, leading to an hmat with 0 columns. The # underlying C code will choke, since this case is not built in. stop("Cannot fit a model with no coefficients other than sparse ones") } # Now the non-sparse penalties # There can be multiple penalized terms if (sum(!sparse) >0) { full.imat <- !all(unlist(lapply(pattr, function(x) x$diag))) ipenal <- (1:length(pattr))[!sparse] #index for non-sparse terms if (full.imat) { coxlist2 <- list(coef=double(nvar), first=double(nvar), second= double(nvar^2), penalty=0.0, flag=rep(FALSE,nvar)) length2 <- c(nvar, nvar, nvar*nvar, 1, nvar) } else { coxlist2 <- list(coef=double(nvar), first=double(nvar), second=double(nvar), penalty= 0.0, flag=rep(FALSE,nvar)) length2 <- c(nvar, nvar, nvar, 1, nvar) } # The C code will set the variable coef, containing the concatonation # of all the non-sparse penalized coefs. Think of the below as # a function of coef (from the C code), thetalist (set further # below), and unchanging variables such as pattr. f.expr2 <- quote({ pentot <- 0 newcoef <- coef2 for (i in ipenal) { pen.col <- pcols[[i]] tcoef <- coef2[pen.col] if (is.null(extralist[[i]])) temp <- ((pattr[[i]])$pfun)(tcoef, thetalist[[i]], n.eff) else temp <- ((pattr[[i]])$pfun)(tcoef, thetalist[[i]], n.eff,extralist[[i]]) if (!is.null(temp$recenter)) newcoef[pen.col] <- tcoef - temp$recenter if (temp$flag) coxlist2$flag[pen.col] <- TRUE else { coxlist2$flag[pen.col] <- FALSE coxlist2$first[pen.col] <- -temp$first if (full.imat) { tmat <- matrix(coxlist2$second, nvar, nvar) tmat[pen.col,pen.col] <- temp$second coxlist2$second <- c(tmat) } else coxlist2$second[pen.col] <- temp$second } pentot <- pentot - temp$penalty } coxlist2$penalty <- as.double(pentot) coxlist2$coef <- newcoef if (any(sapply(coxlist2, length) != length2)) stop("Length error in coxlist2") coxlist2 }) } else { full.imat <- FALSE # no non-sparse penalties length2 <- 0 #dummy value f.expr2 <- NULL coxlist2 <- NULL ipenal <- NULL } list(f.expr1=f.expr1, f.expr2=f.expr2, coxlist1=coxlist1, coxlist2=coxlist2, full.imat=full.imat, ipenal=ipenal, length2=length2, pfun1=pfun1, pindex=pindex, pcols=pcols, pattr=pattr, sparse=sparse, frailx=frailx, nfrail=nfrail, nvar=nvar) } } survival/R/coxph.getdata.R0000644000176200001440000001061313560127216015206 0ustar liggesusers# # Reconstruct the Cox model data. This is done in many routines. # Users use model.matrix.coxph and model.frame.coxph methods, but they # do not extract strata or offset. # # The "stratax" name is to avoid conflicts with the strata() function, but # still allow users to type "strata" as an arg. # coxph.getdata <- function(fit, y=TRUE, x=TRUE, stratax=TRUE, weights=TRUE, offset=FALSE) { ty <- fit[['y']] #avoid grabbing this by accident due to partial matching tx <- fit[['x']] # for x, fit$x will get fit$xlevels --> not good twt <- fit[["weights"]] toff <- fit[["offset"]] # if x or y is present, use it to set n if (!is.null(ty)) n <- nrow(ty) else if (!is.null(tx)) n <- nrow(tx) else n <- NULL coxms <- inherits(fit, "coxphms") Terms <- fit$terms if (!inherits(Terms, 'terms')) stop("invalid terms component of fit") # Avoid calling model.frame unless we have to: fill in weights and/or # offset when they were not present. But we can only do it successfully # if we know n. if (!is.null(n)) { if (is.null(fit$call$weights)) twt <- rep(1,n) if (is.null(attr(terms(fit), "offset"))) toff <- rep(0, n) } strat <- fit$strata strats <- attr(Terms, "specials")$strata if (length(strats)==0 && length(strat)==0 & !coxms) stratax <- FALSE if ((y && is.null(ty)) || (x && is.null(tx)) || (weights && is.null(twt)) || (stratax && is.null(strat)) || (offset && is.null(toff))) { # get the model frame mf <- stats::model.frame(fit) n <- nrow(mf) # Pull things out if (is.null(twt) && weights) { twt <- model.extract(mf, "weights") if (is.null(twt)) twt <- rep(1.0, n) } if (offset && is.null(toff)) { toff <- model.extract(mf, 'offset') if (is.null(toff)) toff <- rep(0.0, n) } if (inherits(fit, "coxphms") && ((y && is.null(ty)) || ((x | stratax) && is.null(tx)))) { # If we need either of y or x, both have to be fetched # due to the need for a call to stacker() # If both were saved in the model, they will be post-stacker id <- model.extract(mf, "id") istate <- model.extract(mf, "istate") ty <- model.response(mf) if (is.null(fit$timefix) || fit$timefix) ty <- aeqSurv(ty) check <- survcheck2(ty, id, istate) tx <- model.matrix.coxph(fit, data=mf) if (length(strats)) { temp <- untangle.specials(Terms, 'strata', 1) strat <- as.integer(strata(mf[temp$vars], shortlabel=T)) } else strat <- NULL # Now expand the data xstack <- stacker(fit$cmap, as.integer(check$istate), tx, ty, strat, check$states) tx <- xstack$X ty <- xstack$Y strat <- xstack$strata stratax <- TRUE if (offset) toff <- toff[xstack$rindex] if (weights) twt <- twt[xstack$rindex] # And last, toss missing values, which had been deferred ismiss <- is.nan(ty) | apply(is.na(tx), 1, any) if (offset) ismiss <- ismiss | is.nan(toff) if (weights) ismiss <- ismiss | is.nan(twt) if (any(ismiss)) { if (offset) toff <- toff[!ismiss] if (weights) twt <- twt[!ismiss] if (y) ty<- ty[!ismiss] if (x) tx <- tx[!ismiss,,drop=FALSE] if (stratax) strat <- strat[!ismiss] } } else { # not multi-state, or everything was there if (y && is.null(ty)) { ty <- model.extract(mf, "response") if (is.null(fit$timefix) || fit$timefix) ty <- aeqSurv(ty) } # strata was saved in the fit if and only if x was if ((x || stratax) && is.null(tx)) { if (stratax) { temp <- untangle.specials(Terms, 'strata', 1) strat <- strata(mf[temp$vars], shortlabel=T) } tx <- model.matrix.coxph(fit, data=mf) } } } temp <- list() if (y) temp$y <- ty if (x) temp$x <- tx if (stratax) temp$strata <- strat if (offset) temp$offset <- toff if (weights) temp$weights <- twt temp } survival/R/print.survexp.R0000644000176200001440000000366513537676563015357 0ustar liggesusersprint.survexp <- function(x, scale=1, digits = max(options()$digits - 4, 3), naprint=FALSE, ...) { if (!inherits(x, 'survexp')) stop("Invalid data") savedig <- options(digits=digits) on.exit(options(savedig)) if (!is.null(cl<- x$call)) { cat("Call:\n") dput(cl) cat("\n") } if (!is.null(x$summ)) cat(x$summ) omit <- x$na.action if (length(omit)) cat(naprint(omit), "\n") else cat("\n") if (is.null(x$strata)) { #print it as a matrix mat <- cbind(x$time/scale, x$n.risk, x$surv, x$std.err) if (!naprint) { miss <- (is.na(mat)) %*% rep(1,ncol(mat)) mat <- mat[miss<(ncol(mat)-2),,drop=FALSE] } if (is.matrix(x$surv)) cname <- dimnames(x$surv)[[2]] else cname <- "survival" if (is.matrix(x$n.risk)) cname <- c(paste("nrisk", 1:ncol(x$n.risk), sep=''), cname) else cname <- c("n.risk", cname) cname <- c("time", cname) if (!is.null(x$std.err)) cname <- c(cname, paste("se(", cname, ")", sep='')) dimnames(mat) <- list(rep("", nrow(mat)), cname) print(mat) } else { #print it out one strata at a time, since n's differ if (is.null(x$std.err)) tname <- 'survival' else tname <- c('survival', 'se(surv)') nstrat <- length(x$strata) levs <- names(x$strata) if (nrow(x$surv)==1) { mat <- cbind(c(x$n.risk), c(x$surv), c(x$std.err*x$surv)) dimnames(mat) <- list(levs, c("n.risk", tname)) cat(" Survival at time", x$time, "\n") print(mat) } else { for (i in 1:nstrat) { cat(" ", levs[i], "\n") mat <- cbind(x$time/scale, x$n.risk[,i], x$surv[,i]) if (!is.null(x$std.err)) mat<- cbind(mat, x$std.err[,i] * x$surv[,i]) if (!naprint) mat <- mat[!is.na(mat[,3]),,drop=FALSE] dimnames(mat) <- list(rep("",nrow(mat)), c("Time", "n.risk", tname)) print(mat) cat("\n") } } } invisible(x) } survival/R/is.na.coxph.penalty.R0000644000176200001440000000216213537676563016302 0ustar liggesusers# $Id: is.na.coxph.penalty.S 11447 2010-11-12 15:10:18Z therneau $ # The subscript function for coxph.penalty objects # without it the "subset" arg of a model statement tosses # away all of the attributes # "[.coxph.penalty" <- function(x, ..., drop=FALSE) { attlist <- attributes(x) attributes(x) <- attlist[match(c('dim', 'dimnames', 'levels', 'class'), names(attlist), 0)] x <- NextMethod('[') #let the default method do actual subscripting # Tack back on all of the old attributes, except dim and dimnames # which will have been properly modified by the standard [ method, # "levels" which may have dropped some, and "class" which is special attributes(x) <- c(attributes(x), attlist[is.na(match(names(attlist), c("dim", "dimnames", "levels", "class")))]) # The class will have lost it's first level oldClass(x) <- attlist$class return(x) } is.na.coxph.penalty <- function(x) { if (is.matrix(x)) is.na(c(unclass(x) %*% rep(1,ncol(x)))) else is.na(unclass(x)) } survival/MD50000644000176200001440000010124213571515632012445 0ustar liggesusers71ec2bdee8ec27be0ac3d5ffcf7085d9 *DESCRIPTION 0821b94712becd7c2a2605a0dde65a04 *NAMESPACE 8832a09384db2ba7d905016e7b1e89ca *R/Surv.R 18d616dcd94d2763aa6d98a396f26361 *R/aareg.R 6f777ad55c8e99787f05779083a73afa *R/aareg.taper.R d1d8d78d263e7ed1cc7ebdfc80203667 *R/aeqSurv.R 7da19e28fe86d26e7a2907cacd125e74 *R/agexact.fit.R eda0fc7fa81e0c62d688fee001d1bfb7 *R/agreg.fit.R 8d343d3977dd06f5abd803222e9e30e9 *R/agsurv.R fe53e8b29f34b2a3c9f3558bdf6e9b4f *R/anova.coxph.R ed05b73de8327a43ea269f11dbb7e467 *R/anova.coxph.penal.R e8373876706879b1973335b112d5042d *R/anova.coxphlist.R e2fdce4dd99decef0f3fef2e62b6866a *R/anova.survreg.R efaa3cd0eb97c8bb0012aff71a069afb *R/anova.survreglist.R 6dc7b000fee7e32406b724d229fe0963 *R/attrassign.R 31e0ffaae991686af37f66671c745f64 *R/basehaz.R 8dcd9603057da6285bae2e609b87ff23 *R/cch.R 4696548963d14529a80b67935ec99dae *R/cipoisson.R 6a7ae6876a34e3f55d34de654dc3afe6 *R/clogit.R 142abff209b16e6fb74a2962442ffc34 *R/cluster.R 31bd032a14dff02017b2d6df4c8949cf *R/concordance.R 18f979008cc201d4d1637eadb704076e *R/cox.zph.R c35eeb88e9603b732863591821b83cf9 *R/coxexact.fit.R 94e49b45d947935252dac8935c85b14f *R/coxpenal.df.R 17d8987218ae14a72cf60a07338df2e1 *R/coxpenal.fit.R daba44cb14d4dd74a4dc3b431e356886 *R/coxph.R 1db9683e308bfaba24c8af91d9a509d7 *R/coxph.control.R fbe682c59326ff0b09748658e83a7477 *R/coxph.detail.R 62c4314464ee0a2a66e880464c913997 *R/coxph.fit.R 5500ca1460387b640a40d23bbd7337c2 *R/coxph.getdata.R e3be8309b3f3d56d044b556e9d6a5ab7 *R/coxph.wtest.R 99e450c9928e596da17966e2c7d4fc7e *R/coxsurvfit.R 7f0a427c669fdd31d7c578defab7bfe6 *R/dsurvreg.R 4476e218996a996afd115bdf3a997873 *R/finegray.R 2397dbf8ca81beab3803e3ea3c88b7dc *R/firstlib.R f205c222671ea50fd55a03bc7a037fef *R/frailty.R ef7a10d0a2ad7db3e2e224af7be6407e *R/frailty.brent.R 218a909b4a0b567afaf80fbe89a945d0 *R/frailty.controlaic.R dda96a5c22e785c06f1ba4e40f194e98 *R/frailty.controldf.R 6bc29d2e848783a072d0211a720f268f *R/frailty.controlgam.R 2c9f1894713f0c635b30e6f30c9fb5c1 *R/frailty.controlgauss.R f68a758d49424d7934399cf5cd63d52a *R/frailty.gamma.R 8d5f1d4180a4bcea66a6e814115b124a *R/frailty.gammacon.R ded57e3681627f16c3c3a2816c1ed3c9 *R/frailty.gaussian.R 2ccd66998426af1bad4ed185f1262520 *R/frailty.t.R 1bc2b7f9b1220c242b86cd1a678a87ed *R/is.na.coxph.penalty.R 66380ece0cd139d37e44613ea9456633 *R/is.ratetable.R 392d2f367e5d2122cb375ec6043ab70e *R/labels.survreg.R 3b2e2ddba169ba87bc21830937a974fb *R/lines.aareg.R 612d578cc5306fa3814ecdc28a9005bd *R/lines.survexp.R 009724b24c5d4d0d76bcb05af737d768 *R/lines.survfit.coxph.R 5ccd147677efdc7ad86af3a621fe581b *R/logLik.coxph.R 53319d54b8d892261cd8f79b51f5b6cd *R/match.ratetable.R 709628cd8de5418eef8ec337632e8f9e *R/methods.R bfd89f7f3cf649b4ce8f38ed8d41e4b7 *R/model.frame.survreg.R a9b50c5c8e66ecaa51fe4e4ca3774bec *R/model.matrix.coxph.R 98cca72dc580ee3e7c21ce212b93ad69 *R/neardate.R 7b4afad5696ef2f1fd01499488da51b2 *R/normalizetime.R 2e8efcaf679a4cabbdaec2b342d38d51 *R/pade.R 00367286e34dd8b6e45ec7b326c0e355 *R/parsecovar.R 5220681f176b87fb822910dea854ccf4 *R/plot.aareg.R bfbeb021ec253a85a848e0c863c2bae4 *R/plot.cox.zph.R 7cc823f60a9521b6d729cb33b17e1060 *R/plot.survfit.R 7a866d546f5264744430536c779d76ed *R/predict.coxph.R bf8f5ab0bb5491ea6ab6c1c3ac4fdb5f *R/predict.coxph.penal.R ab222d970b26ee908f2acc250b04e0fe *R/predict.survreg.R a2e60c0b4dd9667bcfbac613c929b42c *R/predict.survreg.penal.R e8dc0601452488a22df48d545be06edc *R/print.aareg.R 98adb33cab7deccf635903ab243eaf8d *R/print.coxph.R 9bc844ff207051b2c422f17cfb026981 *R/print.coxph.null.R f1c8f318572434c69c5ec8fff7b6c108 *R/print.coxph.penal.R 4b59fc74eb3ce7c6dd195651339a09d6 *R/print.pyears.R 4e794cd106b6225d687ed58acfe3c112 *R/print.ratetable.R ab982a110a0bf50fef3dee4d42ebc5b2 *R/print.summary.coxph.R 592a17659e17a6ccb85d519c4b284034 *R/print.summary.coxph.penal.R a5fbce4916ba3ac805bf29e434eedf06 *R/print.summary.survexp.R fa8753120300851242ec7286d3edfa64 *R/print.summary.survfit.R 0823b87d28b7b14ae423d8b92c1c63ad *R/print.summary.survfitms.R 69cfc284bb126050a4adbb0f2aeddd50 *R/print.summary.survreg.R f34d207de2825bd5139f4a76c194f385 *R/print.survcheck.R 69c1cd6a55cca3dfad2e1d65745a5692 *R/print.survdiff.R 435591842ba7380ea9c94033fd867165 *R/print.survexp.R 90f112bfdd842ec827f41b268381e0e7 *R/print.survfit.R 67edc10ae58de66955889a85822297b7 *R/print.survreg.R 4227591baa8a237ff83b8976b230856b *R/print.survreg.penal.R 0a6b806244056b84905449d75758979d *R/pspline.R dd5c3a90d9adced8b88334d5fbed68cc *R/pyears.R c596219c1d6f31581a3ec622c586b0f7 *R/quantile.survfit.R b2f82c369fd6c8bf4496b1fe56ddef5d *R/ratetable.R f13ece60eca7461865a3efd1b9daffa7 *R/ratetableDate.R e7ff25f0ad7bad53552bc9d15e3b4fb8 *R/ratetableold.R cc274d54216721d3964568f28b2f1e21 *R/residuals.coxph.R 871dc4bdd8fc9c0528e9c794498afcab *R/residuals.coxph.null.R 71bb8b32a975d5add7bff7d5963c8ea2 *R/residuals.coxph.penal.R 754627902dd32d5dc894506a03aedbcb *R/residuals.survreg.R 754a417ad23f70056005558688c57e88 *R/residuals.survreg.penal.R 5a28f06bc0463f5278e17e894b5bbc78 *R/ridge.R 1708f9c9e6bc1d7fcb9f209f47f5fe5e *R/stacker.R c1bc3f2ca2758374d291aae108e9448a *R/statefig.R d4965488f4b863ef65b00c93886454e9 *R/strata.R cf9ec91bb29089a64cae0e83801e0b90 *R/summary.aareg.R fa194b5d7d4908607fcb2321b5a4d033 *R/summary.coxph.R ab7c37261a9ad2ea16b24155c4b75c41 *R/summary.coxph.penal.R 50a7f4971ccb0004da11691bd7dbd9c9 *R/summary.ratetable.R 5c340d79d336b2033f2287b104bfffd8 *R/summary.survexp.R 0c04162e93f7031993ce5515c7202d25 *R/summary.survreg.R 04b0f6b5ad33704c9164fd8ed795ff1b *R/survConcordance.R 3b53d1f647391695c4bac97f0ab201b8 *R/survConcordance.fit.R d77d5fb984e1cd3345e55df7af866ef9 *R/survSplit.R bc393f42ff473330532bbdbf046ea772 *R/survcallback.R 5c48b721ba5beef18554b6df5c63f358 *R/survcheck.R 82c4bc1c9eb611f6350036873b32431b *R/survdiff.R c6ddf6a691e8b761df6e38e5bb6f8884 *R/survdiff.fit.R b045d10cf20e99cab84090c2efcd1d6a *R/survexp.R a433af13bab47bfad69eb23fff44ad96 *R/survexp.cfit.R 698310d1669dc83ec7704313fcefeb35 *R/survexp.fit.R 2b50527ed00a4e669e39d47d9b3f4178 *R/survfit.R 57d000af6436851dd3d5851d3e96b729 *R/survfit.coxph.R 552771465c95c4214668dd0f84b5b79e *R/survfit.coxphms.R 56c11848d3d383dc1b406195253b24ef *R/survfit.matrix.R 2c3890642cbc9a81e59459cf7cb14835 *R/survfit0.R 76a0daf08aea1396fdcda4a255ea38f4 *R/survfitCI.R 816b3c76b5d64651f11a743940f297a9 *R/survfitKM.R 0f3ae678304c7a201eb669a45014ffaa *R/survfitTurnbull.R 660815936af268231f5dd93957a487f2 *R/survfitcoxph.fit.R 0996f0082afaacc82ffba4c94a700b01 *R/survfitms.R 6f569551847344ce3de24907cf8b2826 *R/survobrien.R 6b7ed37ba87c7060dda9f744e3507f9e *R/survpenal.fit.R e4024c281758dc0521dec3e06439da3f *R/survreg.R 96e65ede62cf0161f2577850b8c57414 *R/survreg.control.R 43dd81b0ec98ddcea973ae8b6efd168f *R/survreg.distributions.R 7e396c0fd8c8b7b97f5e5dcf79064396 *R/survreg.fit.R 7c797d7ee0fcfd0a92dd654a7e5aa03d *R/survregDtest.R 016e8b5dd0f4dfe6fb13b4f262bec247 *R/tcut.R 6636841371b27dc4733bf0803f80a1eb *R/tmerge.R 5bd109e83e16ef7659f0a81709694ec2 *R/untangle.specials.R 6a0998da3982b925dcb70fa95978dc36 *R/xtras.R 0e76b8a5afc0c8207059775c65423783 *R/yates.R ee23ff48a96fdc2697903ff904f7c7bc *build/vignette.rds ba8f4bf4656d05f12e3e66649318f52d *data/bladder.rda e458ee36a24bd3de07fe2c43502ca199 *data/cancer.rda 4204f35b614c1c940bcfe1c6d70def90 *data/cgd.rda 81cbcf099abf5f0cbea248e0012b483c *data/colon.rda 7ab17e8ecd5cec219e98686f8e04edfe *data/diabetic.rda 8506dffe31d64e1b4b7fd34f41c88b59 *data/flchain.rda e6b0243c6add347247c4e1951e4d68d8 *data/heart.rda 122d1aaa56eeb859d8165f00892fe526 *data/kidney.rda 020b59a7c604dd2499832e1b56a7bc33 *data/leukemia.rda 7b14acde4513dba5ddf30bf676500a1d *data/logan.rda c6ade79b0722aafbfa91a4bc9126bc64 *data/lung.rda 8a9e8e399d90412c35ed596e9d1e4a40 *data/mgus.rda 73f16a85e00791846977aba4d3c2fd51 *data/myeloid.rda 9c829132117cea31eb6a21dbb2b14063 *data/nafld.rda 6473af5d92183e8533ad71464faea559 *data/nwtco.rda 05d33350ef15295f6b1362c927d199ba *data/ovarian.rda 640a93d6e0bb2deb8668433bd39f4b05 *data/pbc.rda 2abe3dfb644c627ca0174fd59785b662 *data/rats.rda a9d62c71b0d18f31b0d8b6eeecdfcf26 *data/reliability.rda eee0957d142d619c3f45f20782c97302 *data/retinopathy.rda 700cafea722e21b6b1c11d72d03c37f1 *data/rhDNase.rda f6b7695a65d2503ac69826797c12061e *data/solder.rda b75bf4f19a344d7defddeed1a48cbc1c *data/stanford2.rda 6d87bec345f03e658c6441af5cdea34b *data/survexp.rda 548861c6297e3bf0957ca099bb5e4fd0 *data/tobin.rda 1349117ec7f1b23d891a20571b878f11 *data/transplant.rda 6b016a6be8a1ff47f01e307f8e5734a8 *data/udca.rda 76fb141b816ea857308105f26e26e87f *data/uspop2.rda d4b78dd46512d982683f6bb2a025aa9a *data/veteran.rda b6991f4124dcc3bef51e7340d91beb64 *inst/CITATION 3e8ebae349953a3b7a665eecce562802 *inst/COPYRIGHTS fbb0fac5984cb26dc938cc24f39530fa *inst/NEWS.Rd 097160093b374a96be83fb1c1f6265c9 *inst/doc/adjcurve.R eb3426c1018a1a407180b922c8568920 *inst/doc/adjcurve.Rnw db65ddbe69c6c4f1c07238d7f9c3690e *inst/doc/adjcurve.pdf ae5a9072b9763462ae72b58e0b15d38f *inst/doc/approximate.R 0f1ca788773dcad8ef5f1372722e629c *inst/doc/approximate.Rnw 7451c1da808b858024ad872b8814fb4c *inst/doc/approximate.pdf f5db3b691ac914fbf44a096ec5b43470 *inst/doc/compete.R 2efc66310e74010eb99efcc6cc4c6fa1 *inst/doc/compete.Rnw ee3e6d28c772581414892a5067d3c73e *inst/doc/compete.pdf d263e16c5004ad8e0b718d8deee81a29 *inst/doc/concordance.R b931633a7cacd56bde2ecf4654cebc96 *inst/doc/concordance.Rnw 0b82d3a871b2bd9e74434c599b4c8a21 *inst/doc/concordance.pdf 5f0a233bbc83852d406f28858d6cacdb *inst/doc/multi.Rnw 80829a6d825dbd2b70d11abb327967ce *inst/doc/multi.pdf 24c8cf5cb39d43041713e77c4d88d6a0 *inst/doc/other.Rnw 66392c947560913a07441242b8c1c00b *inst/doc/other.pdf 24c8009f8a654c9d1bde3a8371385a11 *inst/doc/population.R e5e28360d2f5718b176951da04d5e24b *inst/doc/population.Rnw ad74988aa5265e5d5908254bdeb7d1b9 *inst/doc/population.pdf 3b2499552d20bd20231bca68696caf23 *inst/doc/splines.R d05b97e79328012602fd6e7a2867ed81 *inst/doc/splines.Rnw 0eef2363060500a83f0654f8f9b581d2 *inst/doc/splines.pdf da96690e64daf512296d6d99dcbb25a6 *inst/doc/survival.R 373c53ef508d72a258a552759e7d42fe *inst/doc/survival.Rnw eb4ffdc4d2c51524c0d199b8bd0618a9 *inst/doc/survival.pdf 40ceb0c930e083a97a0a35702af6c5da *inst/doc/tiedtimes.R e786486fd295208ebdc6a15d3fe56e5b *inst/doc/tiedtimes.Rnw 1fbfb8d5ead888bf36923d77b8598234 *inst/doc/tiedtimes.pdf c9caef55c6e902140899b994c35ed1a6 *inst/doc/timedep.R 5d034a0848ea5caa82a65639264b9782 *inst/doc/timedep.Rnw e69c583da6383d06e989bd838d407a34 *inst/doc/timedep.pdf 30e95a3026ae131c606f45fdb4732a4f *inst/doc/validate.R dfffceef39872c105be8fb3b54d2c15d *inst/doc/validate.Rnw 1b24a81d4b20debf69ddb797a5a4f784 *inst/doc/validate.pdf 35602740015d6a49b48756564c05c191 *man/Surv.Rd bffb4bc6a2827e87f8a1b38d0cf3c083 *man/Survmethods.Rd 2712884a7d58a481678f80f0ff17a0a9 *man/aareg.Rd 51202fe9ff04084b7a9e24433e282724 *man/aeqSurv.Rd 861f9197e551fcfbccb7f08a18f61038 *man/agreg.fit.Rd a243059ab841bde163e28f3831038eca *man/aml.Rd d2288843d4656e44c0a566e50f0b55e7 *man/anova.coxph.Rd b88c1e139fd5de07e43e0e93816513a0 *man/attrassign.Rd 8862bf1ab7b1829cf13b46be52a6da05 *man/basehaz.Rd e5460ab64c139f0cd6fec61687d5f6df *man/bladder.Rd 42ec07662436bc190d2307e61113229a *man/cch.Rd e3ca7ff15a11d8ef4319193e883d0c7a *man/cgd.Rd f3d7a31b2bf19fe555fd3facfe670093 *man/cgd0.Rd 65388257cec8deba460c062cb915d8a7 *man/cipoisson.Rd 7e166b6150f9746e3ec90829e49f1c84 *man/clogit.Rd 45fd52791a5f219b29563b6bc0b38ea1 *man/cluster.Rd 1068017e149f39920b93d280f9ae7dcc *man/colon.Rd ad5e45c483b88a6f5476e26427538192 *man/concordance.Rd b3d81c8e8d7219c0588845a5019cb213 *man/concordancefit.Rd 1f91aedb37f89d1951ded0d47a4a0c7b *man/cox.zph.Rd faeff07a36cd0bafbd858617f7c5ea64 *man/coxph.Rd 3aa398cfa6989e15a73eef4cd65fe565 *man/coxph.control.Rd d90b227d1ff0e2c44c2382944f05ddb6 *man/coxph.detail.Rd ba16ad811717398eb585ea042731939e *man/coxph.object.Rd 9ddf29b72b12fc0c5e699dc29da68c05 *man/coxph.wtest.Rd 10d2e71cef66968916ceea299fc6d244 *man/coxsurv.fit.Rd d53d3301783f2a269e92ef72639d5e81 *man/diabetic.Rd 94cd3f055c7cc5714f8727136d3774f4 *man/dsurvreg.Rd b6fc42c75c3239383dc632004f6522e1 *man/figures/logo.png e936a44fdea29411adbc248c8dabdcfc *man/finegray.Rd 71f664a8e04457bf1fa491f2d6369a4e *man/flchain.Rd cd56b78bd4e24ae4919992906e62fae2 *man/frailty.Rd 78baa99307d7a66c3eaa338378371318 *man/heart.Rd a97e4438991c438a09a2e3097d83aef8 *man/is.ratetable.Rd 3a65ab9dfd4e8b848853397add094231 *man/kidney.Rd 007125656dba686dead87e88c6585a88 *man/levels.Surv.Rd cd2554e7c0aaa9ae7b408956e49fb347 *man/lines.survfit.Rd 914d8176b24badadfd48012d1b01cbed *man/logLik.coxph.Rd 378fb131601504618640f8beb5915b8f *man/logan.Rd 186817358a8575b975da81f879331aed *man/lung.Rd 0b142980419327b25624f9453cc0eae6 *man/mgus.Rd 7a026b2ea8afabb67cd9c2721a8532c9 *man/mgus2.Rd d880904b50ae1b456211415705c9230d *man/model.frame.coxph.Rd bf8a3bbe77aa44813dedc947ff0a1874 *man/model.matrix.coxph.Rd 13e8eac7cb1227fbf7d114ac4b4baf69 *man/myeloid.Rd 8c55b778ea6623190ea8af1cc7692c37 *man/nafld.Rd d5f0665610fdea7c8a8de470fed738f8 *man/neardate.Rd b112d5586741689cb69c72259245d819 *man/nwtco.Rd 3fdf3afd881e4563da52cc1ce590a6ef *man/ovarian.Rd 8ff3921ecb24c5b0c3d366f3a0e8d122 *man/pbc.Rd 1613918dc23a29b3f3fcf84c309837d4 *man/pbcseq.Rd 415495ead19d69d6b12b31247f18e610 *man/plot.aareg.Rd f7c41dcbabe212fcc906c40d17c75a66 *man/plot.cox.zph.Rd 99c82ef1415ce48ca5be83d30ca9412e *man/plot.survfit.Rd ba60d52509eb08e7739d8074f5c6977f *man/predict.coxph.Rd 10e5e565d7daf52446e36cd7570eb9e7 *man/predict.survreg.Rd f70cce7373972ebe96d1a3b1a3c7bb5c *man/print.aareg.Rd c2c0676f5df40330a19a7e32d6fa38db *man/print.summary.coxph.Rd e050e3df696e9d25620f1c7527fbb08f *man/print.summary.survexp.Rd 71404c1cf6a8734cbd1705be65d83c43 *man/print.summary.survfit.Rd 5f007654b51ebc58e1ca94f48c477df6 *man/print.survfit.Rd c9d8d4c71a9694ddc95ae8f277bfcccd *man/pspline.Rd 25e8ace4f72a142925392011b105bb7e *man/pyears.Rd ca1f8feeb43a0869b5686fb80b1d9714 *man/quantile.survfit.Rd b0e4938ed3f4aafc4900e288f98c567e *man/ratetable.Rd 3683c1dd8254d836e811dc0758851164 *man/ratetableDate.Rd da6c229aaaf231d2b43fb5f7cdf24efc *man/rats.Rd 1846c4b11dac5c278d588a92f0cdc961 *man/rats2.Rd eda615a96f28c34d247e86ff6f32012e *man/reliability.Rd 704103c600d7679e780a84cabb048c2e *man/residuals.coxph.Rd 4740daa59827b508e37ab82ef83ee1c3 *man/residuals.survreg.Rd ba447075e83be16859b2e793c224dd97 *man/retinopathy.Rd 6a9441a53a752bdf96b876416d7df17f *man/rhDNase.Rd 4b6e3777c271edc74a93470560da7cc3 *man/ridge.Rd e09dda67da2f29cf5a2cc921c1823bbb *man/solder.Rd 2275b3b5eeed3ba4bdf48b0daa820077 *man/stanford2.Rd dff75428d5caa748426a28218861d5cc *man/statefig.Rd cddab299dbe5d27b62297335fd99c593 *man/strata.Rd 02588806b65c0c69938ea45e5f7e4416 *man/summary.aareg.Rd 6ada886c983ac6a327c5a4477227d251 *man/summary.coxph.Rd 80df19c1b85694a372e922bd575446f1 *man/summary.pyears.Rd c0d88cf9eaa9591962b96f3e7a7cb648 *man/summary.survexp.Rd 4df84fa21a9d207959343b48b0009ee8 *man/summary.survfit.Rd 84ee7e8d8a38c7651b2882373dcb0f32 *man/survConcordance-deprecated.Rd 54506d288b5871c1d8588e3e80df3ce9 *man/survSplit.Rd 5417f895c80be70c93fde7853d993b75 *man/survcheck.Rd d3e26ce68b91b1ea2facbcf3d5197b5b *man/survdiff.Rd f1d6904a6d2c6c38493f9b928e15ad06 *man/survexp.Rd 65e8c2fdd454ccb1a16f6dcdb86d77bc *man/survexp.fit.Rd ba1b872d6b262e863a85432110ca2652 *man/survexp.object.Rd 579c4b9a9f36583b45d38690230330d4 *man/survexp.us.Rd 0ac1253bf9bd23f09842e478370de9dd *man/survfit.Rd 866764193ba72358ad8acab836011df4 *man/survfit.coxph.Rd 0065d5230ea5d4a7cd9d95642c85a365 *man/survfit.formula.Rd 735f4fe4a5d43a09fb24f6fd84052ccc *man/survfit.matrix.Rd 4ce0622986eafaccacd7002bdddb2864 *man/survfit.object.Rd 59bb4b7a625d9d09c7b4e452b6ed9f85 *man/survfit0.Rd 3a233294c478403e4f9e3cc13dfb160e *man/survfitcoxph.fit.Rd 910fbe6e37e320791fe0a65c5b9a99a7 *man/survival-internal.Rd ee739a1671c6e23ae0b2e56dbcc32967 *man/survobrien.Rd feb1ebbf45a3e47852b0e6f37577f8d0 *man/survreg.Rd 3d62a4ef5a22c39d2df18b9e50ea30fc *man/survreg.control.Rd c200f5eef33d393215e5052828a417b4 *man/survreg.distributions.Rd a5c5d529d3f760f342e988e96b40b004 *man/survreg.object.Rd ec57c575435869dbb1c776a2d99c0e6a *man/survregDtest.Rd cceef705b631580e3ce011d02ae575ab *man/tcut.Rd b6f178adb540199dc66759c29ff3433b *man/tmerge.Rd c7813220c476cd8a2752753e515a7c4e *man/tobin.Rd 4fde122c45c3363f67161fdc969839b4 *man/transplant.Rd 159cb11c3e63a893afd43a5baad98817 *man/udca.Rd 142cf81539d3cb828029c39c4c31393c *man/untangle.specials.Rd 01f7ef06320eac9f9179dd081d872e8d *man/uspop2.Rd 83ba65ec2e6effb14bc69128dc8a8b82 *man/vcov.coxph.Rd b8c31e8659277599a13d5121efe76d6a *man/veteran.Rd 7b121e90822a4035afc6f4d4d6463b12 *man/xtfrm.Surv.Rd d20742985c36b4f72f97ceb944529891 *man/yates.Rd 15f50590f49d06d9c8c2b587bae08528 *man/yates_setup.Rd 17dd3bd58cd9adcaff7043888aa7add1 *noweb/Makefile a4c97b72df7c0819b710f4bda5e5adab *noweb/Readme 87b794e23fcfbe3c21e73615ea7cbb97 *noweb/agreg.Rnw 064c19c6153c5934c977c3e06ed84df9 *noweb/casecohort.Rnw deee274f667f087bb948bdee592d076b *noweb/cch.Rnw 5c0e1f2f964e48d94e428611d0c2b7fb *noweb/code.nw 8610f3b2df8e5559b151317a8119082f *noweb/code.toc 3a3d3aee3a4a9a7b19a5f0c45fd6551f *noweb/concordance.Rnw 099ea7b709d6521fc862938c279551f5 *noweb/concordance2.Rnw 0c7d9cd6b8ef7322606fba80f3e35999 *noweb/coxph.Rnw 0b03327c96b83acec21eb57563b151b4 *noweb/coxph.Rnw.orig 97e9e74a285071aaac11f8c36ae754f7 *noweb/coxsurv.Rnw e2d0b6ad8a1886a63b56d0362a8eed2d *noweb/coxsurv2.Rnw 8a445a83e715f284ff318d1c6bde722c *noweb/coxsurv3.Rnw 01b1d864a903a3c3cff1ea0725075363 *noweb/exact.nw dd53136ac036954c3ac43c1f7d95050f *noweb/finegray.Rnw ec7ddcb0dd1cb1bfd3a3722d2da12cfc *noweb/main.Rnw 31aad4320b375a1c097ec48087e4589f *noweb/msurv.nw df28925c86bc02dbd9bf8b2f73856f4f *noweb/noweb.sty 1284d9fb78ba492253ccceefea18b17b *noweb/parse.Rnw fbafe763beacc125abdc6fc11cf0892b *noweb/plot.Rnw 354522d4762cf4cac3189ae1404ce6cf *noweb/predict.coxph.Rnw 4c349d0baeb6aa069e313feb6ff01fc9 *noweb/pyears.Rnw 36cf079089d42e45b7a7f4ef6ea7755f *noweb/pyears2.Rnw 187ea85cbb59be4927267557053c4370 *noweb/rates/minn2000.dat d182ccf1c260eb85c07d1a91a8033f28 *noweb/rates/minn2004.dat 918625355bfc11989a7b05745aa83baf *noweb/rates/minndecennial.dat b9acc42a330baad84a34096c494bff88 *noweb/rates/us1996.dat 81eb91848f4e8e2f53443b324937fb11 *noweb/rates/us1997.dat 824ed4be3f405ade0f30cba46a464364 *noweb/rates/us1998.dat ab6c1c04e7c16f47d138830da46386b3 *noweb/rates/us1999.dat 56b217899eb362ebeb2d2d5922475dc9 *noweb/rates/us2000.dat 4b9513029d6b3142b94354a90181761d *noweb/rates/us2001.dat aac9d4a9950bb2628814d678e9213cdc *noweb/rates/us2002.dat 8cf2a7b7c2667aaf51f4c6a44b7b2ede *noweb/rates/us2003.dat 578fe312faa8ff142d8078bd039aa03c *noweb/rates/us2004.dat 97e9477d3a5196c8313c15a90fe69973 *noweb/rates/us2005.dat 4d12032e51839a0afd77f72b822b8d89 *noweb/rates/us2006.dat b75ba40c947031f3285135bf83218664 *noweb/rates/usdecennial.dat 8337d1debe3db49ad09a3ab8c9872789 *noweb/rates/usinfant.dat 4cea128faf7fbd8e6ab46070dce67cb3 *noweb/ratetable.Rnw 00153a591d69dc50d6852fb8f9f2ddb2 *noweb/refer.bib fd02d5e7a239e8ebcb06296bbdd22167 *noweb/residuals.survreg.Rnw c7315b78224994c56c4d140e221fab3a *noweb/statefig.Rnw 67c10c8c39f68add5d487185eb3f9f7e *noweb/survConcordance.Rnw 2e1d48d5dbfdc85b69dae483686173e4 *noweb/survexp.Rnw a8254cc0f8daeeab337ccb2067fc3801 *noweb/survfit.Rnw 685d9ef9867b76e4704ff510d898b881 *noweb/survfitCI.Rnw 64198344a2855e8c6d3f78e09a3968c6 *noweb/survfitKM.Rnw 9e4f3d256bf768545064ac2b8044d361 *noweb/survfitms.Rnw 9534b235ab22d3c6d25f7a1821cac049 *noweb/tail 2d864277a77464462f4d5360d7334343 *noweb/tmerge.Rnw ba373139f6ca0bee540a95f16f65e9e3 *noweb/yates.Rnw 7b4c8ccf7679d96d4a13e659b08116f8 *noweb/yates2.Rnw 9ae7d3e5048dd95d39a5a7210bad5eb0 *noweb/zph.Rnw d7779d57ef8c1ee91f9bde3b7bca545f *src/agexact.c 2e3d5f936a6541d9d55cac7c1142e218 *src/agfit4.c 85e382344b4f2cec6a07a4ad0121f95e *src/agfit5.c 2510be13268a84154521b1b600a02b7e *src/agmart.c adfd31e63e6469abba982803fc711664 *src/agmart3.c be783b22d28ba908a7542653b00e9aba *src/agscore2.c 422e2dd61103541815331727949e97c7 *src/agsurv3.c 2c2d058aa9c70a8ddc53665e58c7e300 *src/agsurv4.c 93a384422000e8a5be2f8edfe7401704 *src/agsurv5.c 5330d21cfddf92a20de0b076be3fa8ff *src/chinv2.c cf61004fca14214a3d40e19c8239bf21 *src/chinv3.c 439c29e6677448002855eb1ae6b1b798 *src/cholesky2.c a1b6d6f08cd050363a841bb53fe83d55 *src/cholesky3.c 30b326d5fc0c54a22bbe840281a400e0 *src/cholesky5.c e88a56cc52359f1fead9dd0cb84c4f8e *src/chsolve2.c db03bf4d4b066001ab3693254d9075aa *src/chsolve3.c fc32e83bc93cdefa0426d16f33a75720 *src/chsolve5.c 387272b6e79e53fbcf13601e30519f6c *src/concordance1.c 404282121883ad66ddc2b2ff0920d99b *src/concordance3.c 930bbf937212093bb26d0ce18fccc51e *src/cox_Rcallback.c 856540d5e382d1f62bf44d9cf59c234b *src/coxcount1.c d5175cc631ac23130cfb02777b1b92ab *src/coxdetail.c 2d9d21dea5c3447ccd213da2247f5f99 *src/coxexact.c a9c2e6da56d8b08ee590bac499eab525 *src/coxfit5.c 0284444c01f0266a7ddf9c0425b28aa8 *src/coxfit6.c 54ceb86f1a94b6f558db2fc382222059 *src/coxmart.c 040bc0dff9e64ba27ca36c1ed540747d *src/coxmart2.c 42736aecbca3f7118ebf4d0c088bd580 *src/coxph_wtest.c d9ee5e75ea894b8f6526ecd7e0917e63 *src/coxsafe.c af39bc50750347c450b763af5eeed973 *src/coxscho.c c658e5655161bda6a2f0551ac5af265e *src/coxscore2.c 813c88d9a3e8210736fe914283997e2b *src/coxsurv1.c 0dc18dc7902143906d445a346a202ee3 *src/coxsurv2.c 874bdd1c76499952b715e1ebb8434256 *src/dmatrix.c 6a5de3098ea717defac73b46aaf36006 *src/doloop.c 893b8f26f882396c490b9c18b3072051 *src/finegray.c d581082f66939c0281ce8c859f723148 *src/gchol.c 5baa10a3c202f9ada646b0380822db30 *src/init.c 9d4c35fa01498378f366900acce90441 *src/multicheck.c 1385cc1bf5e1b1de23bd1a842be745d4 *src/norisk.c 23bb38ccf2c88c0f47776f5b38b03ab6 *src/pyears1.c 3f85ef9d57e28eb78ac14afb2cf8e855 *src/pyears2.c 97e294af3935dca814ebd26bae16f168 *src/pyears3b.c db3ba3cf82fecd184767eb3a9ccbb2a6 *src/pystep.c 742076d420af39f42f7b18ee21cfd53e *src/survConcordance.c fc0ac8ab4beb30ed546189f2702de17d *src/survS.h 3feb3dcdeecc7d4f1760c0692a0f83f8 *src/survdiff2.c 224931d576f14db64b84177727b5248e *src/survfit4.c 8dc673be20ef1e7ad592d053336a5ea3 *src/survfitci.c a58fdee2ebab7f4c5e13b982c72868ad *src/survfitkm.c 0ca9cc1702f9f87b2e25c414892f4e14 *src/survpenal.c 75a12a1367acdd8058a910b9168f8d73 *src/survproto.h 2f1657fe25d2d8d6c1ecd3ae64b8a658 *src/survreg6.c 7483bb0e3da8485fae01944322021385 *src/survreg7.c fec3ad6f2d4918cb7115f6efe5439bf3 *src/survregc1.c 803c4db11e03621954ac362de4957b48 *src/survregc2.c 1f287cced7b7527881c56b5e3f7c5a70 *src/survsplit.c fd828f24cd4f2e4b68bd77699c5b68a6 *src/tmerge.c a5902a7b6c356734387bf0e17d349904 *src/zph1.c e4a7135b73d591c55444f6265cf761c4 *src/zph2.c ab2989d395c2102a8802f0734419eb22 *tests/aareg.R b9c7ea3cc2e4ac2607c9c79e495b1d51 *tests/aareg.Rout.save 7adcf3da61f0cb888ed3ae1787d85fd5 *tests/anova.R 5a9d96c769ebdb6aa6e411040eeeb481 *tests/anova.Rout.save c9b49b35003eae9f212814dd7a3ddcb8 *tests/bladder.R 4844620b91122079db3873a2b1dd3ea7 *tests/bladder.Rout.save 37a7c04cdfaa85744d42102c782977d8 *tests/book1.R f95fd2db0e4e05b569b858b1cfcf1fd2 *tests/book1.Rout.save 5ac036f9883a56eb8d3fcfda81c3dc7a *tests/book2.R 7421e76d22ba88963745388b4e7443c6 *tests/book2.Rout.save 1e44c0f82fb5fce9246635a9e8f5458b *tests/book3.R 6f5498d25e3e712eaa69c35ee753c8e5 *tests/book3.Rout.save e2dac82a95f6c623bc4685b1b9c4c389 *tests/book4.R 6187357af28e99b9a2ecf99b06385f86 *tests/book4.Rout.save b878fcc994199cbc85e659c193266496 *tests/book5.R bf8c822bd6fc2b2a47a9892b26d9193d *tests/book5.Rout.save 6c123e7a51c707a4708de781550425a8 *tests/book6.R 08d7daf71984ff2501e0be471c51921f *tests/book6.Rout.save 7f0043933913df6795c66c8af6a278fc *tests/book7.R b3297d78ca2a2d942a91ab83954c8123 *tests/book7.Rout.save 047709f7cab960044afaefd038e09b1e *tests/cancer.R 1a3d8bd4a23320c192f3af78317540fa *tests/cancer.Rout.save 9700f9df5c3fafb13be25a1a551bf3b3 *tests/clogit.R 5c6eed9caf7cc033178ccffbeddfe0bc *tests/clogit.Rout.save 315636c8a71b865e068d5ef7d893d892 *tests/concordance.R 5c2015e1b2c00d681cda04851a5872e4 *tests/concordance.Rout.save 6f56e261c8f9e5c2124aa9b00246e4c0 *tests/concordance2.R 1c362e9f3b4e97d839cf623cf3db04d9 *tests/concordance2.Rout.save 9824ba4a995dc62646d47da8e59d35a1 *tests/concordance3.R 42db11c09ed9153126a09c82302ec9a4 *tests/concordance3.Rout.save c82eeced77b617173ec9570c73f2a9a2 *tests/counting.R 1ea18186b135e14be8b306e6e935488d *tests/counting.Rout.save 78ef1f7b722ed80a680f740fdd6f4805 *tests/coxsurv.R 49969755dd602dd0b05533bdafd218e0 *tests/coxsurv.Rout.save 7db43247f0998023bbf778df9751584a *tests/coxsurv2.R c8bf54414668779041cc9237dca88af8 *tests/coxsurv2.Rout.save daf2f2353861e51e0a42d32fd66899b7 *tests/coxsurv3.R 37ce48c7b195e8d51462125bb577487f *tests/coxsurv3.Rout.save 18a3b389ac1df5e8d31cb54d4fc84d88 *tests/coxsurv4.R 450400f45ddcf1d8ecc8aa02c01fcfde *tests/coxsurv4.Rout.save fd5f4ab3b0ac971f8dac98397058ac50 *tests/coxsurv5.R 51593bd10ad45b6531a1209e52a7de1c *tests/coxsurv5.Rout.save 24d53e3037dc40c31e3825757010d330 *tests/data.donnell e98a53ae045a2c998873558384b4496f *tests/data.interval 427145fabf975124abe33aa7ef844117 *tests/data.peterson 3376a88bd91fe9e39caeda263f31b14f *tests/data.smoke c749f7cf62ac6445dc1e8e973245c916 *tests/data.turbine 37b3b890eb0064e23dfa8ac56e53a726 *tests/detail.R bd647c589c568219642a09e35ea05772 *tests/detail.Rout.save a6ef6105689649a42cd6c80f150b9e6e *tests/difftest.R bbae35a40e4108958f73154d442f0cae *tests/difftest.Rout.save 2d9aa1e5509fbc7504b3f7d729e48911 *tests/doaml.R 6c7a563e04818392a55bfb6aec2e55db *tests/doaml.Rout.save cdf564fec0e0177ca97abbd83c70499a *tests/doweight.R 30e61555f74f20162832dda71a93e634 *tests/doweight.Rout.save 106d5e11a7b70ae5712b1a631236b303 *tests/expected.R 067cf68e6507773929a7f0a76f405a45 *tests/expected.Rout.save d0e4b970ff89cca427af7fa83819529e *tests/expected2.R 390bf3f1cd83d17cf552aca49d66bb09 *tests/expected2.Rout.save ad56241e8136d97f4c732eb444fdb46b *tests/factor.R c5da54a4d59d6824dae9ff849a705124 *tests/factor.Rout.save 02de4596b58fb4fdf0dbe5533f0b418e *tests/factor2.R 12c3b09b26f1307be02a08f4524d5a09 *tests/factor2.Rout.save 70a1e6340a93607b4e1ed4f2478aaf10 *tests/finegray.R f6f54e83863eaaf66973bcf1aaa628ce *tests/finegray.Rout.save 9ed932a843ad295f3712cf9616dcd6c8 *tests/fr_cancer.R 37c3e490fd13b64cda286d1aa10f48ea *tests/fr_cancer.Rout.save a3d4515cba9f78cd376c96c4020fa835 *tests/fr_kidney.R 82b4160b7eeae67ccf444174e817f2ea *tests/fr_kidney.Rout.save cb0228f2570cedaab05550c53a7b7249 *tests/fr_lung.R 7a5619d6a9628bb594fbae58a3576fb1 *tests/fr_lung.Rout.save 9f58191cb3ec3ef7e94a34d4bfc81f5f *tests/fr_ovarian.R 4ac7d30e91ca157ed3b45d91f15570b0 *tests/fr_ovarian.Rout.save 198b6ed6c0cf75a77243d44a5011dab7 *tests/fr_rat1.R 48803952549155a77a63ff890463f58d *tests/fr_rat1.Rout.save e2b0adf5d38af756f7b0b7fb3276b54b *tests/fr_resid.R bc1d3c4d688e6bfb339a71e0a360cd20 *tests/fr_resid.Rout.save 1e2bc4e6a3d37c8658ca50e7ff612b52 *tests/fr_simple.R 0d58118424b5b1615424a54d216c1cf1 *tests/fr_simple.Rout.save b88b447010459f743aae7cbaf1161e94 *tests/frailty.R 5b40eb6f0c480f591a90815ed821c783 *tests/frailty.Rout.save 18b3c00b4da6297b3b34f90925c8f17a *tests/frank.R e0fdc91c27e7d792f9d1feacd7dab6b1 *tests/frank.Rout.save 3b5bdb63f459497a25843938065daf4c *tests/gray1.rda da2189dca094543c747c16ee2ff1e7b3 *tests/infcox.R f5fb8a9d85990a7f0403bcb24f6b7831 *tests/infcox.Rout.save 82613d425beb20ed7ec958f7363c15ff *tests/jasa.R e03b9adb8343f79d0756829386931176 *tests/jasa.Rout.save 2ec36edd2e0f4e6da8ecf024566c4364 *tests/model.matrix.R 3420bc9074403be91eb174edcc6ddca0 *tests/model.matrix.Rout.save 368ff5b4a7e36aecd151045224fadf2a *tests/mstate.R 9977a6a68692576e369a48441142bb0c *tests/mstate.Rout.save d4a5aad81340b09e689c5a982a1a8b86 *tests/multi2.R 4040092697ffda04ac739ad11fdb4014 *tests/multi2.Rout.save bcf5abf8a0c1239bfc64a4922abd2c85 *tests/multistate.R 9474486cd3303f3e6372027b7903ff4e *tests/multistate.Rout.save 47a92a7fedb1912814f5b71d55cc1470 *tests/nested.R 89322b4b48d5537d1395478bf9d6932b *tests/nested.Rout.save 3221aeabfeb69dc6ff1dd51d8fc6d8bc *tests/ovarian.R 6f43a0c29f88ac68ebac3e1a8c39e6d0 *tests/ovarian.Rout.save 4909e1cfc284d954647175d53f00acd8 *tests/overlap.R c536966cbbac1020d7193a644aee4d8e *tests/overlap.Rout.save c11f65f1efc009dadc20baeaef146999 *tests/plot1.pdf 76dbadb2ca71f52219fd8e0afce0231b *tests/prednew.R 839d3254e81b3498ad9871a17833adc4 *tests/prednew.Rout.save 8b55a9a103b6c152f8f00dede62c6930 *tests/pspline.R 32be0791942670bc1e7bfe9748142631 *tests/pspline.Rout.save fca9e8611bea2b31e57aa3faa2c7a853 *tests/pyear.R 4d4ad286eb51dfc7c9c60e04c112c768 *tests/pyear.Rout.save 84b659c168c08dcab443055f42ced6f8 *tests/quantile.R b11de7240223c5f41c2ed16d77279373 *tests/quantile.Rout.save 744357fcbd29347f2406e75fa947de10 *tests/r_donnell.R 0eabe9f8adbe09f5c4ad0c84eea24d14 *tests/r_donnell.Rout.save 3f721f6e1617f9ccabfd8242839866f2 *tests/r_lung.R 52a323b9aa99d0aa5b495e181538e0b2 *tests/r_lung.Rout.save c64871cdf6b3821b9c363f414300277c *tests/r_peterson.R cbaf6a0759f58a50c68b82ff6000fdee *tests/r_peterson.Rout.save 672df5418ed229dc3e76949585e3790e *tests/r_resid.R 5687da81357331f70ecbde12b940b6a6 *tests/r_resid.Rout.save fa316196fb935eacc2d179388d728ce9 *tests/r_sas.R 1a3e481043d7aee83a08323da5435c9a *tests/r_sas.Rout.save 59912fe4c23adf729630b2a9256749bd *tests/r_scale.R 9c44d08c1462edc432d1162f6353a785 *tests/r_scale.Rout.save 3c6a7056af6fb278f774abf6a69c3968 *tests/r_stanford.R 86585988a82a2c981fe9cb3298ac7654 *tests/r_stanford.Rout.save ad42cc2df70a8719e7627dd1b96b0a74 *tests/r_strata.R 5621cc37ea0d61d4b8e1305f0203069e *tests/r_strata.Rout.save 0b9bc7c933dae97f250455896472d719 *tests/r_tdist.R c6df681a781aea291b8932ec5c94045b *tests/r_tdist.Rout.save 714c0d3571c7fa78db7e1231f9d1ae9d *tests/r_user.R bcf83472af25c444668fb004755e2b52 *tests/r_user.Rout.save 1f42efa1bfc2374f79ba2bc55ef9cfdb *tests/ratetable.R f33d097be853fbabb5536dc1332c5e90 *tests/ratetable.Rout.save 5a65fb2b39182a19953db1807ec3f991 *tests/singtest.R 3a893b1ed2457350aed62c2cd17ab441 *tests/singtest.Rout.save f7a452292c0f25593b8cbc15bdd572d5 *tests/strata2.R 3cab8ccaf10d497954942d8c07f68468 *tests/strata2.Rout.save 29d08550132c65bfde059ff1be9338aa *tests/stratatest.R fe2734507c238020983489f7d79445f7 *tests/stratatest.Rout.save e6a578dc8d6984fd83649c03a725d74a *tests/summary_survfit.R 6a8d58f20b2c67556fa712fcec707c6c *tests/summary_survfit.Rout.save f5f8c9bfbfbbe871a4c80bdd150445ae *tests/surv.R ae2c73dff8c70a7e30d28ed7a5a8bee4 *tests/surv.Rout.save 85c94bf1652e4b3102d0841de108cd9e *tests/survSplit.R 38f51a5663deb639f278e410c1a26568 *tests/survSplit.Rout.save 9d699784b63cb37da438af411d85b50e *tests/survcheck.R 6078de8f6f7a35c9b7fc61db3bad0f58 *tests/survcheck.Rout.save 7740b37978d2b72f2f554f4cf42022f9 *tests/survfit1.R 1a0bc7dfb07c7d9d2092cb01a5c5e73e *tests/survfit1.Rout.save 41e3629b6abc984689331b047ee491ba *tests/survfit2.R 18d246eb6fd8cee60ae0ad8bb08742b3 *tests/survfit2.Rout.save ed8f93490794bde116fb2e8492404041 *tests/survreg1.R 28e7fa1e889461796a2b6c5db70aca8e *tests/survreg1.Rout.save b0f6760a9a3c67d3161839f69783cfda *tests/survreg2.R 13b9d7c952840e299affee6a5ab8d971 *tests/survreg2.Rout.save 4bacf2249726393af3bece316c3962de *tests/survtest.R 395fcb402dc8d65ef3bc9ac77f41ef75 *tests/survtest.Rout.save 707acbade4bf621380a4da3f07cf2670 *tests/testci.R c6c9a036327dba4546902590ece0640f *tests/testci.Rout.save ca1c0b81401d5f7c05ec2bb2fcc32232 *tests/testci2.R 932e393a1feadadd58e67481c2dec30d *tests/testci2.Rout.save 3eb98e4f934e6845ed620ea906658989 *tests/testnull.R 6a2a25754a6c6e37ed8ae5af3f6b5e34 *tests/testnull.Rout.save f8f405206c7c8434a6460f4e187fe959 *tests/testreg.R d95c006d7ef4f6a8a27ce9bbbfff8c67 *tests/testreg.Rout.save 33a21d80a2823c48a4d0cd25b96348ce *tests/tiedtime.R 5650b6ef7fe76fc6ededcce78f3cd46d *tests/tiedtime.Rout.save cbf88f37cce8fca1e91e7ae4c1d467e5 *tests/ties.rda 5730073802b9ad66c58c4d15e01cbfc2 *tests/tmerge.R ecefc6b3b922ee53c8d7234b519791d5 *tests/tmerge.Rout.save 6dbf149f8da192b5dbbbcf0a2cc47840 *tests/tmerge2.R 81ce8cb239643765af84eab1fb45f170 *tests/tmerge2.Rout.save b293576661a786d575b375ca16d78ac9 *tests/tmerge3.R eb2fd4977d5ac90e9f38804d3a53293d *tests/tmerge3.Rout.save 1e369715fdeb935e8cc784f0f40502ce *tests/tt.R 1bdb4feff5648ee13239625ef5d090f9 *tests/tt.Rout.save b1dd6e9b7bf7a5a26e8879c3f7fb03d9 *tests/turnbull.R d0e0c0f2ef0cbc69aebb7800b5fee3a2 *tests/turnbull.Rout.save 3e5e2a5e0859a7bfa594ca80a3fe79e8 *tests/update.R fbe4ce7f36507c549c2178eb2dc6d730 *tests/update.Rout.save 6e815f066b52b8c037109e8bcb9e837f *tests/yates0.R 8b838fc0e3ee170a970c1a437e31014c *tests/yates0.Rout.save be35f47cd3f08a1e05efc826ec123607 *tests/yates1.R 3ef9ea330121633f6afc0f96b0fdbd67 *tests/yates1.Rout.save 3cfbfc723e976a3050bc65d3bbd52808 *tests/yates2.R 10090c096a34c5d77dd3dde579bed3d4 *tests/zph.R 89e97f963a2a832f2642e53cf022f9e7 *tests/zph.Rout.save eb3426c1018a1a407180b922c8568920 *vignettes/adjcurve.Rnw 0f1ca788773dcad8ef5f1372722e629c *vignettes/approximate.Rnw 2efc66310e74010eb99efcc6cc4c6fa1 *vignettes/compete.Rnw b931633a7cacd56bde2ecf4654cebc96 *vignettes/concordance.Rnw 5f0a233bbc83852d406f28858d6cacdb *vignettes/multi.Rnw 24c8cf5cb39d43041713e77c4d88d6a0 *vignettes/other.Rnw e5e28360d2f5718b176951da04d5e24b *vignettes/population.Rnw 7d2afaa75cefcc21619b18780d9bb86b *vignettes/refer.bib d05b97e79328012602fd6e7a2867ed81 *vignettes/splines.Rnw 373c53ef508d72a258a552759e7d42fe *vignettes/survival.Rnw e786486fd295208ebdc6a15d3fe56e5b *vignettes/tiedtimes.Rnw 5d034a0848ea5caa82a65639264b9782 *vignettes/timedep.Rnw dfffceef39872c105be8fb3b54d2c15d *vignettes/validate.Rnw survival/inst/0000755000176200001440000000000013570775574013126 5ustar liggesuserssurvival/inst/doc/0000755000176200001440000000000013570775574013673 5ustar liggesuserssurvival/inst/doc/multi.pdf0000644000176200001440000010313713570775545015523 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 3 0 obj << /Length 340 /Filter /FlateDecode >> stream xÚE’MOÃ0 †ïû¹‘H$›“&k®v@âÖB¢£UÚZ´uü{üщCš7¶ûäµÛ‡fµÞ¯`ë<ÄJ5Ÿ ªìÊÑ…ìUÓ©Wýr5 ¸¦ÞâóBªŠ±a³Ñ§ÑXŸt‡ÁBe ··6àtËïI¸üàá›êG|œ9Õ“$?5êñhÞšçõ²p9FÏ&Ñ\ÊAY_»:ƒ˜lLÎDÃõ‹|¿9˜%8 k®DT6:@Bpa…ðH%åd|­÷ÜTa’’”÷õ(7tÎb®VÙåäY³HuÑWʆäêtóF6z !èy9~ tÃD‹¦¼>ðÜP-(ƒDÚ=Fjæ?Ù °çÑ7±F‰MÜ»èÑ`ýLÜR{äÊØw¢^—±ÍšMLšKî¤d¯„›¿Åññ¯q•Ç9VØn–f2«§fõH Ú endstream endobj 12 0 obj << /Length1 1666 /Length2 11276 /Length3 0 /Length 12352 /Filter /FlateDecode >> stream xÚ·Pœ[Ó-Œkî68wwww—Á3¸»‚Kp‡àÁÝ58ww‚ÛåÈ÷žó~ÿ_uoMÕ̳ZÖîÞ½ú©*2uFQ °P radebáˆ+ª±²XXØ™XXب¨4l\쀛‘¨´€NÎ6`߿¦.o6 S—·8E0 çj`e°rñ±ró±°ØXXxÿ'ìÄ0u³±(2äÀ  3•8ØÁÓÉÆÊÚåí˜ÿyКÓXyy¹þLˆÚlÌMAESk ýÛ‰æ¦vu°¹ ÐÅó¿(h¬]\ø˜™ÝÝÝ™Lí™ÀNVBt wk€Ðèä´üÑ0@ÉÔøWgLHT kç¿ìê`KwS' àÍ`gc9¿e¸‚,€N€·Ãê² e è¯`…¿ß €•‰õ?tgÿAdú3ÙÔÜlï` ò´Y,mì€e)&€)Èâ@S;gð[¾©›©©Ù[ÀŸ•›¤DU¦o þÝž³¹“ƒ‹3“³Ý-2ÿAóvË’ q°½=äâŒôG}6N@ó·k÷dþk²A`w÷ßÀÒdaùG®Ìš GW ¬Äß!o&¤lV@' 7/;èz˜[3ÿA¯áéüÓÉú‡ù­_o°Àò­  ¯%ðíÉÛÙÔ pqrúzÿÛñ߉•`acî0ZÙ€þa3-ÿÂoÃw²ñè³¼iÀòÇç?O†oò²ƒì<ÿ ÿs¾ÌzÊ:вôuüŸ˜ØàÍÈÁ`dãd°þ!2î·ßÿ¦Q1µù»ŒåÊ‚,ÁÞ¿ª}»¦ÿ©ØíoÐþ½t€ÿæR¿© ýGä,œ,æo_¬ÿÏRÿ3åÿOá°üßDþ¿ ’rµ³ûÓMû§ÿÿã6µ·±óü;àM´®.o  ~[ÐÿÕþµ´Š@ Wûÿí•u1}[Q•Ý®ÑÆYÊÆh¡bãbný—Zþ²kþ±ev6   ØÙæ× €ñm4ÿË÷¶Zæß^Îo’üÓ|Ûœÿ>Rd¶øcÅØ8¹¦NN¦žHoC~CœoÖ·]´zü)b3ìò–xkÏ` vBúc¢<f?L"^n³é?ˆÀlöôGuÌÿ‚¬fà¿ ;€Ùê_ð×ú_Àló/øÆl÷|“+3è_ðüÈÁû†@ÿœÄÁ`vxøŸZxßLŽ®` ÐÒå?VvÞ¿­Iðú·ÒœþßJsþ|ãúwðÛ¸þ ¾îö'ü¯)˜»:9½½ˆþÜ“·ýþó­zÍ‘~ÍÍùClkCZノº3îŒ NSíh§Ò1zÿrjs}xŸLW´æt#š<Ô¶¼%I{-²Húì}ÔTÞœ¨Úòèód¯6¹Ó‚´0Óÿ³ðHô{1"£†È®Ï³£VàGè&È9ª\GWž÷*ù˜wî½ÒßûÊ–FÃævTw«¹ä‘ŸÊ¦£5?~¡Ê3ËšÅ#‡sa$Fø€qî:s}3‘óó•T.žÉ÷8š½È[o-æ~Ök¥BƒÍ¹Ÿ_úct’Ú[l?EwÞ»¤h¹Á£I ˆ4…áË2#Ó>[FµZ¨¡§ÆmôW;ëvn2 „†°s;±¦´Ë؉\»ºÅ8 Ó¥†ý#x¿ÝRl¥õF«ËÒö Ñ"ïÔ÷WÀ Š®õQ@c—÷cãÊÐp?ãmؗ满†á­._í¯Â}ÂDVî¬$­õ#——ø2ˆ¿À–¹ŒAuje±ÐÝ’yž`MC¼ƒ.ÄX7 YXôx`{ G‰N9s}.b|+ëÏ•Ú×gÐçíÜ1 ƒ_ƒ¹”^Í:¾œŸâ[³Kšd†ÑæeHv}Ê[¥Qå¯ÖÏ—1Ÿ¯Wâ0I”z’*$lr.\ PqÈJ÷ìÌW EyÚÞó0jUj¶Äq¨’mG1Ží׊‡öòÞXìoÞ”—‹a€µîÏ+Ý#Ćb64¸Cò>µ«ät:+§I‹FAßnÍö šQœhˆ¹‘Ù7Ä¢jk>lu?¹3”ÉJPÑýRì“?÷ùe¸ QÔƒÿ-@çÓuC[m›ò-Ä»L´•ªÌÝ%h ã¶¡­‹1Bu»| ¯uˆžù©±-²‘É-Jo»Jƒ¯½~ÎÏiÐvñÔdó[éWk‚´Ÿ#_,#W5ÝEë‰j2fúkǃ£0bðmì,XBãÇ2€ÂRšÌU…"z¬×¹ÄlÛM¯,‘ÒØFÁ*gƒÚU¬kÐrAƒN]HÊ5 áÍCĉÝ'®äœ)é£ôu£”O¾òvŒ—¬ ÷È'á˜Óáü¼Ý08·Êq©¤.ÝŠùÙûû§qäÞ–¸ÛJ™k¡d Þ˜Q8¾¨|3÷S¤H›ÍƒtŸÇ‘LÁbªj‹|ä·ÍªÅüyPLP¤æ÷à KB—nØëžòä~âv €ª·²crÛ}cuƒÍ\Ö³¨2~–µAuÝϳ?•‚Ãå«g}°bP:èÉuÔ¹¸ –B) ÁSqª_ºS—2M«Î–öº+á=ĤIئ}n•}²Vz¨›óÞVƼOe…Vp3ŸµÇ†µ©/î¤$W<>´ïiО «Ä+¬´_6£bù• ûáÁ$ý¾7/q-‘Ùòº'Ë®JE’-DK”N]LyW  申L<[´`í6ËŽ¿Ê{¤™–¢yA$—@Ž‘ Âã­¶N@ïêÕÀ¥Ý6Ö>‡2}ñ—÷+"cÎMÑF_{!ŠoCñÜVÜå (Ï­1j»5uÉ&EQf=Êc΂º MúÁîIB‘¶eŽª¨8?!ݧ÷¼¢m_ñÚìõó³”?"†]Ù}9y·œPfAK,V[ŒÈwO‹.fY}pÉŸ!ï,põë™N#NQ[‹TôtY›JÓ~›Ìd€ÇL1ž±þ¸ŽV:îÀÕoÕÜj •×k·àÜ{$à0C‚ÃË"A°“¿uâCc¢+ÎE\Ègz;o„[ êí\œ±ˆ%.;ÌšŠ©Û¤¾æ¶ñ·œ1¬~½rV’eÛÑÕ±ŠôfaüÞ+e£ˆ•ªì8ûZZü y­cÓïQ0ª”™”³×mZyxÊçH‚{ÂB­r ×EÈ¥Öä¥î4òÌSãÛµcìhí¬ªº²ͦ*£WÈ÷ËfSfG 6žïM9TYq¿úÊy7µŠ¿Žœ>žä;[Äd€Þ{Åw!ÀWìòÍ)d{áÆ Ÿ—9!Gå—»)I´G)JsóRÊ*ؼP'Š.Xn€ì¸™EnHáå‡÷嫃ÛeJqX|ÚÍB_ ““ï'JlP£®x¥8ëC¯K™…Åm ÄÄG¥ð™(ùo¹Óü‡3‰vR´pÈ Ÿ•®"‹!ù×7Š,^*ºO *ÑžÖ>´F ôç%oõa†`–A;wó ÔKÇ¢ˆKš„jä[¯· õRa«&ŽKUÚz7'уý)ËâÚÈ'ÙÙ[oUxçyõ¢yÃ!iL¶*IP޵ïù”’ŠŽ§¯’HEà,ƒßek¯„R³q¸c”Úy!ïRΰiŸaÖº¯„ö+óš½ì+ç`i÷|Â0\a.6ñ,û¬Zƒ1”d šÜM(õ¡lÙFç"zßH pca\ h\¦N¥ñ]©Yž;¶^-mîXß©(ãiP÷ºóD×èÛZ³@ô®(êvA7\åá7Ò¸¤¦dþñÕËçóiùàÎYT™Ï4µõBzª"㨲¿Ö]¨ ¶_S2;õKè¸{©ÛŸr­ÇAYïjðtif–L»hô\Ðè8ùϬ¥1ƒŒAÉÐr y8È´)"Hµ{¹#éH•õJÄÞòRõkKçF3ÌV»A‡~8'& Õ†K¦…šyM}ÞOn›g kËÍ»ù‰¿YS)ý1ìE_O“±ºû¯.AzkÐÒZKo‡¯ÏÁXf"ÞñžsÈdââ¤QÞ¸æLÚþz?ŽÏHvYpAÈëf¡VÎ*©”Œ“7Õã3Ô 0¨v˜ï|šü2êxö˜†zS~Ð[Žxy–¸“n׊yU ‡ç„ýfv›iE€ƒ:¼j½žïÑ4- ãÁŸ-´GJY dzrÿE„pǽ#…¨+â©nèwš•Vyo›;¨HD$MÉr#c¹ßoˆ”J z·²öpZ*¹fªdy§âÁ š‹ís¯ýTÇ¿$M2‡…¦‹IÎ.ö›ó×ÕÓî݆Œùt¹>ÜkÊxÚ‰9§Òo™ƒ·\‹ØóU½33ôiä+Úߥت ï]„ô«6yÆ¥ûùHÕ(y ¹°¨#ì=«èlêñ#݆l»o´K¢zÕÄŒˆÕÄLí:Ž<¾çÎëfñÕr*~­†YÛ=]Â:‹„ÇŒi©D­'ô/yd¶- ]ïû•Gæ»j’tz$A­M0X¶=§ªÓD '³öuuÔE¶°²Ñp–é—.Ñ…È»Ü)Íø÷1h9°¥]ùiËET –Q”õEÖxÇÈ8tÉ +¡Þ/§?–?Ú„äÛÄI‰¼Xøê9°÷G×2iu|#’PÒ¾]‡ªC|Ay¾ÿ4]gجûú¢Kæh~xu|šwFM×|Û.0r5¶"‡Xå߃%iY¤‡ùÇ›±—T¡bJ’>jÐ4g£ñg Ä9‚¶]]ìÄYuzœc_ãç{§Š…·£&¼XÅÕé;‰ TX{üH€CPêlcÈìår)Š‹Ã!Év´Óõ”$ÍÀ!Õf{%NynHíg`¤]ÏÒªi¤LJåº^Ót5‡k´¦oG_ï^Ïï8,MÀ$ÙHŠnòñ!Ä=Ù ¤,ÂŒîNÉt¾<Õ¾y‘duã1Éc† Ø¯QYCÂu8Ö[ÅÕt3ºõûQ}Õ0ë2]Æ ?u§OSN€¢Š®téì? /L4‘!Lé$®.NT¨g@ÂÊÚ$-Ò]f¼rVOpÄŒmx>Ú–3¶vÇr Ò.S·ÐâÄ\uuÞÏ_ªízù©Sª)öÓ¿]ãè,'·¥¼2L„ó·dÍ!DÔe¨S^a[Na€n ÌÀ,© "ƒ-­š2ö¾+ÓJQ2OÏÖ-¾‹iz¬ls²sØ” ³ŸŠ/sŸ6˜-}Ù×R2ŽFŠ¶È¥KSÐ+÷h,'ágHu´5Ÿ}Ÿnêu{ë£fæ©lÇÈdÚÏ¢”e^†ÆbHïDñï‡×Ž_úÇoÊ5ºå½¯ 4\¦@¢ü_†ºD#n-È™&¢Ž÷LÜr2ò­ëB$±/ 1Ý´¢.€+MÔß<2ìÀ¬ Y§H{ çÑð•bÉd~¤ëm»dÂîcåF\eÒL#k—ûì¿^C¶S÷”w=­Ò=|ì”'Yz&8î`ºo„¸`}¤üÚ$«á4cËáîá]%«ç2¥ÓeÊÊU²+’¥¯¹c=g—§ÙóŠálÖá]çñ{M†JÈv—\º]>™ËÜvåÐÞ%Ú*c rà±”Vû‹ãŽP…ëþz/£4_ÄÆE¯Wpvh†ŒžU¬æ‰ÛB' ʄזÞúˆX´'U€’ÆfãvA¼*£uáV{,¹„;Æiö[b›­y‘å¸@ËŸÁÏÕ˜Ž2®ŸÝhì™0hÆÔ·º%ZFÙy>‘âq'âä¿Ó½žÿ^ÙgPoô£ZÚ•ÓX:þ®þkñ#ª óçä—õèÑÍs¤uŽO5¬• ãG !_8ú]Ë2+^kJ⇒>HC‘3Å{“£©&iù~Îr¸B÷£˜mY'Ç3ÑvKÑ 5]t׊€î•ížË¶É³ã) ]'´b‰ë¾ØèE xµ"è@¢¨ ú»#Ʋ8,ºÍfӲ¡fëÍŸ¼ú3_]_Ô÷ðxåðCÐ{5äKMu(·Ý­†(ëoByD:xÂÈÒ¦¼¶Ú¢q*|-“í4¯÷õ±&餌÷’ØÄÔüÙçÞ¢Mßö\¡Ç7~¶×û³°/“µã²ÞÎÿ°“pÒÄõNŠÀ¦â˜{n9b¿.½ßh‘‹ð”9ÛsòÑÄô<£x%R¿z<Ídª}T2» Û  öØ”„ð]ž×®Í¥‚i.†¯íð·½!‘Ç‚Èß>ÔÝ3í°ði; pç˜TЇ÷Þï«í„õJ½®¢’‡1¢„÷xNH&© ¡ÏäM„&u%TÝ&)ù§+CÎeÂÍn#-ýFOŸ>$`Ï=«o”(™Y†Ò/µ¶¯†dƒÉ£}ÕDlõš¼²:´3ÝŽ‰s­“ÊLèÁÔyð\i,«˜€zøÐ 5huóÊ!¬ÃfØÇQ"“>–Ÿ1™nÔ5á¨×f¦jž\ù½»-JH˜à:¦ë/¼J“ÅeC5—TŠr“xK„© 0³¹<+ö ü¾wÞ)xüÈ+«ó;Á² 4szóõçó#=æ¯bÉã¯)hƒL‡d=ää–Ô¹ßw.ê’T#íÞÙ.¡SOýÝ—{G_¾ÑÑÔ‚€±ˆ!x¢”·CÉåV«N ¡‹þ‰b ¯JáË+Çø×Ó=á ˆŸ47Ç·=÷þR¸ZÒ s ô{8ÎØÒ/…ëFÌ¥Žu=0C7ÖŸûP+îïõH*¼B$J]DÞ±ß1Ò3röD„lé´­M¶[#„^çó‡^ý6€ë'Zr³>_š›uP}'¿Š;Eâök Šî#[â=C¥$$©øòÃF’O·ÊßLSŒÇkä6¼—º}0Ø#x¾5šI„&&€FæOCìô9THô¡È¸Îp½ªö=O¤Òd©²šñ{P4Ʋ_‘ªò•Ùš¡Ÿ,Q5ºÈÅÃ3 ç)¿žf;i­vã{~k‚k¢Û<Ëéª7 °Ëº‡æ·£éïåMHñ£1(Q—Ð`Ú”FÔ(©vÉ^ÊÌŒýž íÖà;Y:ÃÝSzE†W×éZa©¨ k±^מƒ lã°l’’h°Ž]bZø®Eg¤;ÉH r÷}f@ŽÐSj”Äž‡ü]}‹¬‹­ ¬÷êž¹9go2@ú±àròò¢»Ái‹+ågœáÑ ­™íE£“P?"-‚ª9‡Æ%‹l@š²·|#ôÄ7¤eü5$4[ÌûA–ÅgºÞ€Ü{áŒ]sÑ«ÿbÈu[*ÓzôWaèµÊZÉ0d\jГfQæƒ;]Õ¹fä¶ã ߺ…-EQSõ2v„5¼ãrQf«3…±I$IZš;v‹¼ÒGu"j·ìa wéåìä[Ы0[§ŽYÄ`Y6kßúµ[”ý,vî\™­W?~Nÿ»EÃBâ“\¦Áòw’J¢KóãE¼€§{T¸—v[ÖÉþ Ñ=§—HìªÎɪüQ9·nyRHÄ˺ПÉZ«qq™H©Oª!uúË«š]:|D0A‹KÂæô7Të5ˆ'J-ËbꜼawÁ]ß!£Ë²É{æz3¿[ík´®l™•j÷!À-ÑÖ~ |v‡«¸Û§ÃŽüœ¸j„¥DæTÙ£ëU$PFëô…_ÔBVœÐ„9"ЉÑÉåe0bw‰:ú™)ÏAða,Pž~E»H}G%j¬J´Lš&¸§wù÷ûÄÔ¨äÛ„Œ wn5ɉî¶öc­Ô†¤bü¼aú Ø§ÍJ à 6*Õ¦ÝM¿]hk£ ’­ƒÑãoþ‹ÞÅî“!Ä66‡¤`^§Ä1Mo׈/—ºá• ŠñÖ Nà§z @«ª†ƒj‘’šþ×È[epá³¶2W“EÿF%ÙÞü—}Q#‚*Ü=yäªeñ~*—åѹÐfØ]uúFí~3}‚ïb#b)ìµ—˜õT¾û¯i3˜ <Ødk¨[WÛÍáHùã¶Ãî¥f¶ôüã]„„~[iÃh :ãÖF/«h2™jùYî2th«%- I=±áмcFŒ•}•qc¾iGufÖ\&¯èÁ7ŠiXíÜo}y¨8zv(Siù3+;’è7½,$t…¹zÒœ®Fû! ÿ¹ÔsøY^èV¥bÌI&þ× ñ‚™[L¹>ØC@–;©C… æI NÉ|öZŽÄÖ%Å×ʱÅÓW“‡¡H ™FÛ» °+<.O§Y:üÞA|ÞÎ*)ñ=yðÛ¿åúÈ›Ï/#ˆ¬ÂÚ’ßèå ¢ùîéö·¦y|¹;±½­˜ÂÁÄð’ýª˜g*­“Î(X¹šQSÌ'"}XÙœz>|–ÙH B‚³ÑCþ º AƒŒ Û< ¢à’·P8Ü©Œnˆt‘‚Ó÷EÈéðÆŒ^®¨·¬ޝ×6•AF=å+ÁävT=ÔâïýEã}_Ut¹rç"‡‰mìâšÎº°WØ{Ã’-!–|3†öáj¿©Ç¦ÔÆÆH3òíõVΑow2Dš¤ñ·Œœ'CfÞdYª"„ÝÁã_Í…ˆƒV9+žÖ' ¿*™Ê¡¼Ý“?ˆäK$\€úÆ<9‚t&É‚u }›†Çû2©›¼4ü³#Âx$ÏdÅn÷ka\'Úâe ܼ ýn›™ö1ƒ|M÷Ý*šP¦F¸>™ÔÁìýv v•UvàQ…ˆ\XVµ( |8íPýO¼¨%DÝʳγsOÉ\à%‰ë6Pä4õtáØ¢•ÉXßaˆ‚M}øy,ÑõN’^]À˜Ú:‹õ”F·7j´Ð!¬-g‡XoÂb5îl|³‘/ð¯U¿Á‚*1‘!e”9*ÉʶJh¸…Y xMC¨cx‰›šþqŽf1W'U²}ßøÙÅÞª´T<¾\œå»¯’Ô‚UA·g•Õ‡šü—Ÿ ߨºÇÈE“ï ð×9]Šf÷¸¿é]TBºh’½‹ÂzQ3£ëë ar·„ížÝ›«€;.óÛsh¿29jË G’wV¢iN?ÔÅ‘™æËÄcì›ÃÉë˜ÆÌÕô¢œ‰<ͼoj9¸$Ýš@u E¤ÆÍ?ÞñÌ·P³ƒðÓ ["ŠÒµû`ýÀ÷!Ôß8¦8ë$“¹p25VòS¨~¦O¼ƒ2¼ï5TJ¸æH'© ôë=—L]ÝNf‰?ôÛÖ×õS=¡·<|ñ›CÒ<1þΕª 7éŸ1íµÅ4;-<áßeØ ‘$ô¼…s&% ï[Çû¡;PSUþxŸåÿLâ‹Ì\H´è{E{ùËñoˆµHä~é|ØŒdÁÓeàoŽàì³áL’,Z¶ZÃÔF–nÓw¸|3üÅhk¢ðkR%|‚à³ûµìxº}þTÄ—HY´]!õûšˆN†XIÄFY’ÆïÉÓ§­'Ÿìý¦B‡72…1ºƒN°ÊÏa)1—®‹a‘ø`ØÂ~·/îË/áD7ÇÐá„MÁk·s¾æÙÃù²OÊG¬h\|†ù¤.,<ëÂÜÕ‡—Wº1\t  %T$ aª„2`Yxz®”4 ÕqGo‡õi¼“]ßgQLZ¥:Èt.žh<ýuÄm\Û\˜è! zy´Và ”"?Xîëø¡Y¾)Ý7IO¢q€8B&«ŸÍŸBW$cÇrÄæeØ?Û6Ò…|áÚZ‡¥Ùk´Å'ô \ˆÇ õir…Ý8|BØVYek¾¨^ýM®yÅ ‹šÏ঄ü1U" !¥Î3 ü²Ææz a 5ðå®â†6¨CTUÁTvÓœ`©‘“<âþÑVÙ< 9ðÑíC6~ø3rÒPõØ'ÌÐÙàø,†N}åíeò–ŸiÊâšκaíòˆ¿ž:¯Æ·_aë^¿‰3^Ä_]U°åq¼Lóð\æ)ÜEk{îX>A¹£ÀBm,‹~ÚîÆ¥Üg°Wäæ#úÁZ]D@aåsnêWþRÔfÎ8—t—w{˜È„žòƒ½Ï¯Ù£ð»´tw°‚½õUnÃ…Zéá˜Ñ{²±;ú!LhŒqQù3°~=Ù ÆøBž)2BßeÎS.PBñ÷ÅŽEqdžU^HÊObƒñ¿ølü*@Ñ £”W,Mù mðK‡¿R¯¯lFÖ®þuïŒßˆØÈYÑ©;$õ@C%³R[¶ÈŠGÌýt8¾0Ìé\5ÄUŸ ã¨Âãøn$w3ZѤʰNòq'¬=ªc¿þš;+ö'§ƒRjÁdY}_ðŠúïIc²„†zãÄ})¬.É…É €R àå¹ÅÁ:£/ö8+¢^2{A *·&Œµ!U~÷R¿aÅøcìÜ´9‚-2Þ¯v ûqj…´Ú)’læX©•ï®nø^¶ß©2˜ºðNïŽíî†Hr·z¢ï$ãJŽ…zq&I‰ŒsöéNÍg:TL[ܦÁ*Çýz”òö04æ‹]ßœ%è÷ÈÒÉ_µÒ43?{GŽw),±ÉÛ¸45âyTT–‡*ôOˆí­¢ZÝØˆ;Ž+Dµ;›™m²†Pçx6–k"?~`²“oŨ\^!™@È‹Œ£ç`{ôµ‚WGúáoúétWJsc}fQÛ2fØÒ"!^ 7æó1Î,NÙ@¼ÁFAÕ®,……Ÿ±vûý„ÂWŸ w…dÿø9ߌ—PEˆE¶ŽóW:úÍmFÑèÆ†ÜÙ’­µë: käåånD,ÌÇ—þ!Ò|ñ£8Vðq ~±ùBGÎ(m6ùTY¹‚í¬i:ß°r^ÖEs}jE2ÅôCt݃³®š<ÀÇÓ”òäÖ€¥ÊÓC8¥ÄÙ¸(pª«?þé€Ê¸õKÓW\q‰ç#ž>§ÜyaÕfi€^-Û]iNbÆC}ŸðCªNÝÍ»šˆ‘ò¸ŒÚUãÊ#Mõ^ÙªëPOÏõ¾Ñu?Î%Å3Q ùï•Ã+Õ˜LG6ÅVuIP?^ÆåéÀ™2ùJo[‡Ü²ßÑ'H£”p½ÁƒH³s9/í·GG0,±¯°Fwj‹w?:tkÜœP>ãe¤ÌàHA 9R6†)/£¯ °/„•$(Eø”q¹&”cíPjc‰—Û}¤÷OúA\p Õy÷SkBÎŒÁ¡Ý½¨†`ÉÕæ–ÓX,r­¥uDºC­DoX ç¬&Š-þÑ|šÛÊ; Í "a¦s,ó~säÇô g/õªdÖ­Äß„“´ƒµy!®«y„Öh¿Œq˜±B `‡=´„×íÖ‰}çmÊz>/üŠxëçâ?=ꦰü±.l¢Æ~%&F‹xŽîlúüln¯±ï„·ÅùÜ¥Þ‚þRÅ ôé!d—åKÜÏtY’9&L+xbG!;¨ë©Yúµ¾ÃçN‡õ²‚‹’¸m=pï±r7wØ E↡‚‰¹/5ÄäËßã:¸OH¬V¦²ï~: Jj±<€`4‰LàŸ‹3³ÈUÅk‹!×óØ: êï°?ª˜1 ¨/<‹A¶ÚKø~aË8Lڀͮ;uNÙ„|àš‰Þ;AâŽØUíG¼K#æ­ár¼FDýÆeø­ýX9©Öm–Ó·ªcʰóåYúÀÛÎLC(yšÞK„€†Ó‘† ÷CX¦Ú8jL¹³ÙdŸÚTjüä+'#Ìuí ë¸Ú£ )Ò@Ázj”»ùCX²Û}ÑÍíõ§Üã{fU#ž­M)šûŸœQ«%•u×j.ž,ô,Ï/’mÌÖ22‘DÎh¬Ò£­Š7bV6ê›a;ØfZH²WV_­E‘D‰zý}Çp?]ÏDW Ìйiá–u8³m0Û£F¿öÀÖEÄ×d¯ä QÈ9m£Ôl9]WUáåÍF„¡<Š0ÒÀŸ’•Máqùhn#*úиÄ •é";ÚXšb?¹qzVÓè\W5±=NLco”9êEJv¸ZÖҟиó,rÏש7•õ¥I î),7øÚ]Ö‡Óë¾X_σ3+ ·Û_<¶GÄ~3¥ÃûÒRUЪ~îRfsÓЩ–rÔŸ”§Ï ŒêÍ|$¬ë3œâ¹…àÕlýÁüÀ€kÝø#9ŸÁ±¤ƒó=ã«=ÞÃIÀ®íšèwiBìRA[ h=Ó9ƒT߀KPš^¥eL8>º×!WšÃ¡Rž&O @“.u …‚…z«,cWuÎcÝÉtÔ;é%PSzC¶ëq¦°Êpc¸s§žÀPáÏè-‰z«³é‰›‚càÕqxdSÚÒvTáÛ&ƒ&GªVå%ƒùŽI¶r#Óœr|¦L=^¿üE …ÅGºYÚ‰e|KIäÓÎML8yQV´Û9¯ñ¤ël}Ñ]_e…LÚÁ¼ŠOhlŸxJp£ áUˆ.ZËxmáÆ7LöÒ†¦­®Â ÔR.<Šæ"H87ë ØHxŸ2㌙dÚ÷çU:_¢|ÈzF¢= qªÖâ|· zÏððÚM^‘!¤¿ªÃ¦®j¢œ‘ *¾[Ãðz£°•ö½7XÍÌcoÔ_~"ÀìØÔQÖ×Bäx5VŽ!©h˜x¬ôb;«zôâæ—Û}‰oê•c…Ôíüï6ÿ\n]µœY‘¨¸w’b8’·ÎÍçUË¥|šîÀÄÿb¦IFïçYæ-ë¿k‰kãø¥B_íb!ic¹FFú7$A‚ß=©ïçKf8jöËQ®K¤Ý½LñYrõ5õ fo0›£:]GF¨†è01 ÇÛßGn’“ù’½$w[&?îÕì“sœ%±d)î%å° 4í»Ó¡d´ÁÞäÂöüù÷6//©ÃâÊÓŸ}êõÙ4àK·1¤ëôb¤ñú9•€ÆÆ×c/yÌ^ȸx9ÂÚ¥7žAªÄo´Ö¦Yy:/AÐ#ª°Ud§»^ƒ€Ý‹´WÑ)ÎòF3ÏÕ[@˜@Z06¡O‡½2óÌ©–`.ïz©#ÚçÍ(ÈÄÌÜõÀ×;ä•м°T™MÑ4õs·V´ã]ø0VøH\&ÚúILºpI)t â[©;U÷ä“Èòè—kó%gЪ%›i«Ù¤Y®õ;?Œìs2J¨²J®vLÅÌ1šc÷«!CJ.ÒsÒbNHÿ!…6Í¥Ê gžûg>‰¦ÿæ hfˆ.i¿Z,R_y·’rQ­!ügóœ€-ºBfDé!äÎ"¬'Ðm’w pô £ô[äŒù÷×ÙkŸ§® œu[H_Ö—”Ïʃn[è^y¹ò¬Ê-ƒñIï&Sqhãv5k†Ô-~›åŠâsîGÒùK–Þl›pÈÙV÷£Eáïè»õübýB芥|˜öj姯 Ämb?ÜÜÜ/2µ¼x•jü i†Ûý*ª—Üæ@gà ¿M‡­è™×®]‚éþöÏAQ÷° Og–þJ3."éu¦;0n3z›]Dñ3á2€kʪ‘f z,ЄÒsn¹¹͈* þ}®7BØŒEML8Ö~T­‡È*å žöœ„6ò³Ï™NÖ­ÞYOÛH¯&¢76*‰£Ï/üëÕdPO¹À…ŸîeÍ#_ƒa¹\Z-£D‰”a¾?„!ĆùS9)—Û%ŸÈÓö5ÑæMÝ5ÓÏqAIvÀòþÉÞISqë ÆáSW@ñyœcÿW¬Ø)ÚðßÚ}µ`Ë*r7»÷Y)¤ž™Þ‹¾8á®b ‹yÏ 9SPÝÇåú›ië쪧Ç*mCšÈY"9~Ãñö=áÞïØ&Ý™æú[‹í”ÔÜø»eK©üROÒ¾ ýœné°ï¢CúGS”~…†þs4šã «¶±á„ŠØ'íÈ¿È^ž‚ñî‹f‹ÃŠîµñ8*`*QùgöùHÑëIÛ,ÑìWáìT«¼Â |}¤œ/¹ÝõÌ`ìkGmu“zCtG™Ùtv¼ª†¼Z—äËBO𚙞—›0•„ïOæÏ6]Τ'× Ûˆ>Eê@KÄn%ÚÃá.m¼8hè‹(»™Ð.eÕ¦½,â¾M¼qLÑ”+‹/éÓÇãÒw3rüiYPéÑá‘O§í¹m«gò¡eÄ™[Ì_2²A>vOaóÓ2Éù»/Q\1§¾j6–}>DHF(cyº¬ø²ì@9 ø?­g endstream endobj 14 0 obj << /Length1 1607 /Length2 8680 /Length3 0 /Length 9736 /Filter /FlateDecode >> stream xÚ·P›k6Œw§h ¸w‡"ŵ8)„‚»kâP(…âî(ÚJqwo¡@qŠ|ôœóžsÞ÷ÿg¾o2“<×îµ{ïî}í3fm=n9ø ðS8Ì›(PÐÐåã<@ ?63³>Ä þËŒÍlF¸Bà0ñ`ÛƒMäöÀÓ€ÃjîPŸ€OXœODðbÿ!ÂâEÄ ÁPƒÃÀ®ØÌ pgoÄÎÞíá˜ÿ<جÙ|bb"\„äœÀˆ5йكN´AzpkØÍû¿R°IÚ»¹9‹óòzzzò€œ\yà;iv.€'ÄÍ  v#<À6€ß 4ANà?;ãÁfèÛC\ÿ´ëÁmݾ¿Óýý;öG0ÈÚîä ‚yC`v[ ÐzªÎãæåÆÁl~APWøC<È‚^<þ¨x*§=4øW{®Öˆ³›++ú»EÞßi¦¬³Q€;9an®Ø¿ëS„ ÀÖc÷æýófapO˜ï_À³±ýÝ„»3¯ ââVUü‹ò`ÂþÇfv@1AØö²¶çý^ßÛü‡“ï·ù¡_g¸3Àö¡ °?Äüðƒíë òÜî`ß;þaóñl Ön€`; ûŸìf°íŸøáò/€)ðA{|àïÏßOæò²Ã ÞÿÐÿ¸_^Eu5cÎ?;þÛ'/÷ør ¸ù…øb¢¢! Àÿ¿³hƒ Uü'Tf ˆýYìÔþS°Ç_÷Ïö×n°þ;—&üA´`Û?7 ­¾øþŸ•þGÈÿŸÀgù¿iü zê…þáfûÃÿÿqƒœ Pᅳuw{пüa `ÿK5ÿ¹³`ˆ»ÓÿzUÝ@{ ³ƒþ=FˆëSˆØFâfmÿ§Xþ´ü^2(Ö†»B~¿UÜ|@àÿø6ËÚñáÍáú È?\à‡Åùï#•`Öp›ßÆ/$ ! olàƒø…„¾|«höúCÃ^Üí!ðО?ÀŽÀþ}£Â¢²ùmú‰ xõÿFb"^Ð?èùâ$àµþ >Ä=,»Ó?l¾­ò‚ÿöÿ‚áNÿ@> €ö7z8öÐý?éØða>¾‡lˆøÑnžð¹¸ÿùJñþ'ÙC>`ÄŸôÿš¥µ;ñð6ùCíƒþþãÕ{­±ç¦áÖaua—5rÔžÜ[_¤&˜·Œ2ع}çî×ø©ìÕoBVçr©?.n(±ÉÎÓßú~omÀˆlKÖiÿåwc™¨;¶ÕŽ=û•|`´è»\}?- ·¾ì¶ß­‹Ÿa°#j+r—sž‹»(¾vÉ¥gŸ²W}ÙÂpÄô–Îvµð3œ›²qî8ƒX³à’IæüÙS”ŒènÜ´˜ÄG^“gçĹ£÷ôj‰œØþûqž&«üñWS>Kúü®Ý™›PÒ¢ž±øÊ囹QÌø–¯ †Ó§È;GÖœRø »l>[šº—ˆ½Ÿ,Ì£âl)yQIU_Æ®´©$9•0$¡ f-ª­x©þi}áÊ¥•¹×‚ŠÔ éâˆmõ\çÖûìb°‘Õ=çˆÔµ'K­§‡õ EÒ"çÖ³àGnÙ ÞÄQ,› Z/}Z"ml÷R¢mí Z·{Sç¼·¤ÏðqÑkHuòXÍg<ÊcoƒJztjèÚqµqzlœÊÜØ"µ[Ó–š«ˆÃIý’¼>›Öý\¬•*îIê›Ì¼VFmœAKóº­ï8ìYÕ»íýžØ—Qýß6HË Êîåª+óDßa©`¼Š¿jF‰\q'Wþº&®¸L¹¦ÇQpbTùádäýÉ¡y!7P’§ÌNOžWšBb’£• ~8‘/Dm!ÖÐKz'^ò¬ÍïÇSì°{ßÞhÀ|dPÙ´×Êãœ_.(Ò@‹t¯ïiu:ýw¬Ï{÷÷£; q?J<ö6ù¨}æÖòh£…\ú¾vvÑy‡Ž/XϰÙÿÕ øÛîå2Љ оoÆ70PÒ }Šßó`87í:‚,ÜNh 5$mè û*”†ZL9Ä>(6`ôàd’]R@oŒ/ܦ«E­išBÎ…ãåY3uø†¤'+_žkð‰…¦¢GaSláå¾=X‡—Éá¢$rŸ‰¬_<Ùz/“5NéÙ#$?6Çþð¸Õž°z"ɧúDËrËu©¨½oèé…{MïÆù‹U‡N7ôˆËûä¤ü£_x¹NÚåì^¬×¯Xø…}­œm§í ¢).Fo1â níŽi5ÊGÍÚ51*Nðéje 3KÇ)¼Æ³žƒXS;CÞ~z†Ûóš`/]dñƒŒN y– JŸIß${ú]'U´“N+‰˜ðÚ¬ªzHt‹Uñ Ê#ýs`áñ§–Ì+Îo£6Kæò{i¤ãx2ƒIv% ï¦C¹·uc›ÍeVè¯ÎÄÈ3…xö ©œ¡±ïÕмªqÅ{ ·GýuwFí·Äª¿î¹íA ®É|ÊÌY#2¿d8léW.ý¦ÎÇØ ”N•{ºdÑÚq‰`ŽY>»àƒù˜þB­séÞå µœØz¹\öœ/呦}Xèí¤™´ѽR·hÞ‡q”BgdÎ)G-º¹-?IXm¥$ !¬iÜ«YïêDIRÇÜTïå¼8† ™ÖíèuQ)U‚ôhÊ%t{ ‘ Vƒöe oã4æ*ÆøíH´vxHÃõûD’)¯›ý•ˆƒêF0EdÐP:Õm=ˆ4ú¦„÷>CVDGö‰ì› [MòÀ½Uθ=«sÅø§WªÇÈsÿˆ:™—ÃDÊÓDŠ´âé!M¯ó'r8XZgë^q7kB`Tº¼WöY޲Çz–Ãñ[ô P ôaÿù&n1Ù¶±ðý2–lmûÝ[Œ¼f¿OD²5©ØŠ6Ûfޤ£h;FµDj™È  ora³`ºî¼ e»Ðûʉ ôé-ƒF²®§4~#‹¡±a¨$1 ú-çh|ÊPM=ܯ¦ ,•h$ 4[ýL~SNÌ(Òú£Ž5k˜{÷ðcY XL³û#+f*QÚSOe;Ú ;‰›bô–Eè'8ÖU+ÿ-n²ÁÚÉ™{·ðz†ÂôKfª~cý3VÝÓØA*‡q¤\ø4­FÌ_ýî'ÒQ²¸Ö]#ï°Õ…lèÎDîDüÙGÁ–ø†r5lü0yÜ—ÃCL寠©2,¹Ä@; ¹ªNÊãÉe ôô_~’“Ês›²nq.Ï#b¥×>¾rV¥¨d®a£{~ê‘úi[ÄŸ¯A Z.Wýl¾*™^¸˜3-Í<¹‡3ózµšxj)LvšöøûWE+G}Ü&¶ªwæ9½ÂBº³Ü¦=lJ•ûrj ®âh`¹‚o‹…øh&weCJ® šc±N Ö_ËŽyx®¤q#?DMü|#­ÓÉÒJ6èUµõ}¸Õ–ßá¨PZcëbÄ=—z*ì ÇàÈpæä9·s€šä!èìݨ_}‘ç/v›;žóf¡~úšÁSòÜ…þÿ ¦ý)ƾ/å»5‰L9 ìúER•ŒG‰±æNµôj’~a–<¦ý¬_ ’8ÞÄßž8\ŒÖ Â¨BOjxô7SqÎ")wYʉ"E·&s}jû³•áQbÝÓŒ•WAº„E$^‘~& ýï=•@3¶µã?>6CœîßÄ Ró¾¨Ò¼ßg¥z}ŽúláƒÀV'ÑñϽÚàr-ûQ5¹Á×™õÒ%Äb¹ ÞÔ¬ªNn-Uâ6šOÓC SÔ'¨·Aº^y½ á76 º8È)YQ™ÇyèÁ]›bÛyzUýŠ6$޳½TI/˜j® #Ê,ÜÒýí…À‰Ë*šQˆ>•JÕb.­f aÖÕâÇk£DЂzúˆ,ì°ûM­o”óO¼@HXŸ´ôs0 ·¸ÛÙšÔ›MÞ{?_Áê,e0¯ö™Y”ái zwE†+t4Êý*YQ½AÈ1§²µWébRRÍK‡Ø) !ܵ©ÖfN~騰ùÖ•Öí•7)wký½?ãSÛh~Á±Í[‡xÎ%<ÎÆ*ª @NãZûEXl7¬(1r¯ÚíQ’ù“Æâè¨ËÇ piz%ÁnÚ !’1-%,¡¼Z}ûëÇKP.±vjKvä«ÉÇÃLÎ Y™ßi 9‡ÙZ4ⱦ:æµ¾LÒrÎÿ4èf­`Õ6•·ÌŠï« ªª0–cëgÝKŠâSËÄaÇ¥ª&I™ú“QrŽ_¹ĘU_}ceÿl)8GûÞÿ™q~5g£Í´´…õ²áKáb ’É€×Ð-)Écö È9*8 E__9‘+#zK •ºãØK÷Z…uÊÒ÷(ýBQÔ¾—nË3‘ªž-ì[´ÀæºA8ÆeÒd—ùŽOV«­g0"ßG{@Ý}ƒª®gDZ4\,SÁó{Ôô5fT• ‹›_ øÔåkÊG‰Ÿ¨mÖ!7uŸÜõ·Ð:SPÉF¤H_ž‡«%>1QWd¦žÚn«ò•ÒÈL:¸õ²~çe‹UÍQÎÏÇ@GúÔ(3øèqdžd(g~Ý;Ä9àòWάCðg©¨†Àêv±®-Ÿ^Õ÷ Þ4!ˆÀÊš]Ï5å¢ÓÑ \Í_HØ%"ÓÅq«‹ïÄ^ð’UÌW ;“€fÓ0 Ä7¾òy] ¦üÚ´JD7ìN=fQRBÉ –i²&¤ÄŸ¾$ÅUXH|-"RÇm58Çô¨ºRÃcãí7r¿úp×¾Ø/¸UÂÏúìžÀlF#M“=‰6Âala6sñéðI8ýE‰eø~ œCr©½ %ª–f¯‡….ÒK#AµË»ó´Ò”ÉFQÿ›É4áîx¯C_ójH2ÄO‹gGIÌó…J›k¿<†OÂÚtæPCc&¿ÝJÑô ©p)áêÂÈ kD}ëÏ…D#*>ü@9ÆØó‚ác¾FävÁpXbð3Ú-nrM¹wkRbvBRF^#Ãlh^Á }÷ó9Jt5=ón¢„þš¹§ÓªñŠŸÂR’2¢»Ê3‹é»‚(?¢,£1šû#7=%íêïNœSÒ'árÒ…Hb½ý€‘¿÷3ÐÙ®' Çè½a1"ó5¤žFªB_°¼Ç+Ã_í+iäMmdŒ·Å—<+”ë(ZOÍ‹Û6nضQ]r:WÒÚû38$›Ãâ©?ý\mêíø– nô›Ã€4*§Þ‡£”7I˜O=h ôÑÏŽfy1ÌX ÎâOMBbrIâh££¦ý¶‰ÅX0Þtöã/Û"DÖš‚t:`ÍÜu¡hâ­^Ó”NJÓä -]wp Åô–rß(N±Òuµƒöçj.£àrÝù*w‘¼ýöK'(vDL¦@.ÃâÑc1DRØwª8Ö¡•{Ÿ(CU½õ£Ò+ƒ×7ZŸ$üJ Zˆ.m¤Ãb†¨0?á§]áÑÛµ½Ç@C†ÜÀ=Šocr9‰êu˜}¤ú˜J Ý%›ÉÔ„u•ÓÏ?5,Gz8-oÖS0Ÿ]õ¶çÖ“šWHi+ø‡Ý,Zò/N:Þž‘’°|@ÁÙ“×*‹Ì$¡«¦]Ævul{xÛϱb~Ñ?^9ÌÊ3è­ûñÇ'?ý*7# ?SvHˆ¼`pLÍžÓ`•{Y² +­@Ó¶¢aáma£.ïÞÂæ™1ÔϘRVã 8œ|¯ô#ÝUð€wC4cƒžÉjÊfÄ~'͸°­îÛ\º å_®)ú™F䋌¡E0ÓxÅŒ‹¼<ýÜ|T9T ä0%~×™­èéÌX.áp\#÷èºë‹•ž®Y“ñ#üZžqOÍUŠ[…ÚDÇ-o’ò€ew•'{l¢ø£š"õ‚^U :;‰Ýd †-•ïlÒ¯§´XÉq¡zž*0gÅZàÆõ÷Sï³MmQhPé9¥óx]Â\y|ä´­àt4ëQ?­Ÿ¥œ­´L ˆ1©¹Èè„*jXÂmÃŽÕpj!×êïä‘BBH†JìÓì´ÎÍeFhÅÊÅ›D»ôg)߈ K‚¡×ÀI•i¶Ï îFÅ>~Yúà †ªÕ¶+…aÂÈ0†­wªæ-$Óßè xp{VqliÌ¾Šº:Iã 1,x‹ ‰”Ù,Q“· Ï{œýV÷- ÄwSåIƒ =[8rµ]@¶è{îéø™oá#¤²—lþûY”7ÑÛäúoÐõq4Òß„iWÖ†X:OFå[ùÄúÞ±f½‰òÂ>$ãÌLÂþL!ùCÒm&IL3s®gxªªB›·äšÝ+uè &¨^~DqXħö¥ìGÜLM×;uÓ×Í}q®Övg²³N޶¥ ¢KŸIÂ"ððÄôMd_Y… –„åADœ›Ëù›RCtÔËëEꊜ»ñšÉmdwØuÍ{îíeæMÂežì{¦¹ynËÀ}êf5/bª®»kÊ«°î#×ÅSô•‘Å2<žg>o?á ôw½ôÉÎ<`[ðã‹>èvoºÎeDõ¡_¸£EoŸRìÔ¸*ãyG™Q(üTCÊcfYévÒˆf¦~´‘7Ü…‘iöH®«çëðOg…мBõâb5ùVàÙ9ÑY–nÀU¡Ó½°Dh|%–‡ö:;‰rõÍÆ–6%3A­9ó+-·àÀW­[”PÛ9GŒõ|béÓ¹ákôþM²Q–£Íu÷hïNŒHYvJÙÑž\}™ ªÉŒþÅ™OÁô1bùú|¶Ç£C+s…½AskÎÝ à±Ø¶°4ŽÐOWU[ÔÀÖŽˆ‹ü³‘¡;tøýÂIü‰S›!ö;®b}ÓŽô¹iPØ!k?"~þý\ó)Î<ž=7ËÆq.Ö ·´ÙçO¾–ä 8&ˆÖÂg˜òph |i¹c›JÇB䣩O¹±T.óy¯ °AVZÃ~.Ñ6hùËk_ö¨P'zÛ˜Ö¾ñžøkè^7s[ÅR¯V㾓ÞÖ¸öëÏíµ øta p/3­…þdƒwÌÝ£OÛQ½†*ì{&7·ôL‡qÅ:ŸÚÌ×?‡’¾R|îNOZ£ŒÓJ÷‚_\‰·Íž™¹\è.<÷m•ÛMW‚é§šé’å£çy§+M¬g}@}ý!”ÚaôF_ŒòP;¹QÝ4wj®ï×7æ|í³j¤£·#U“Œz£F^¢ w̺ʺë‹ÃOÆqíÆõM]ÒËN?Ížulà}av¶±[硺t±ý¥5_‡x™ø$Y±vòÛÉ/ÇK×´{é¦L«ðÄ\PÜ;í¶fíªˆ–¡ÒØÊFÐTõà1”×Ù‘›GWoÏ-%¾c鉱w?Cb餓CŽ`"Œ ‰›d¾Ž³6ÓÆeTfc\Æí_/»º=kŒXÛGûØÝCš:Nˆäþˆ&67“1y3ˆº…t¾%´Ìp]%æuÒÙüãÆ8>åùÜ ¯˜uc‚Ž=ýº‘ñòÈ® ܽÎz±èå= õuy.âØ!¨bb^`ktsÝ _…ZÔÈ6o­6½ižmÎUý'V7VŒ³€`¬ÇÄ7ŽürYÒ[,4¡uK»u}Ƥl‰¢÷ÒØ/íä–’Y½"_ÈkÛHVo[ŒÇsM0ôæ{Lm9Íâ¨1$ÖrHVÕòêÕ¡ }@‘ÒóNkº +°v-ÇÏ©jóqÝé©0–ÒY’é!Aþ— MÍEjÚ;ôö”d±…~ôÄGÏv¤…Æ_ò±=[»&›æÄˆål÷ž’-%[FËŽÿ*?õÃÔ˜¾¥#å «‚–Ûê†(65:%ñx$‘¡¸„ÛïÝ™®¡Bˆ‰È!î¢Ü³ L•ÛVwÀÆÌcÅsþÏ­;ÛŠòx(0*g÷¼áŒoË@ó[ëf¯=]9m’.kÕ ÜÍEPz~ðÔrçмÄwDò²ŽÉ~}oX8Ù#V¡òÁE´†ÿcÑ(‘ÀqÁ—Ÿ?g§²N By‚õ2Ñ9‡(dY:cÍúÆÌ»³_­ä3h.;Ï‘z“l_u@_-ÁÚ'°•ãpœ1vâÇ5'´D[“û:„¤ 7‘wIׇ³©QÉE}é f›%šuÜî¨7²M«bLVʈ‰2üŒQu釶$ÉLÀ£³?(à›[׊AtLœYI¥™¤rè O»:¦±KÏêÞÇ2ÌÔ²­báî¿Üðí¿å*–lc5ò-n;# J¸mé?Èr Ùcc&oÂ)Ýï ¤ã-3|ÛÂøä+‰•ð^Œ7 ™Ype Q®n³4ô,3•–G umíx&>‡û&éD¤kÿXW€PBN+F”;&ÜdX€É7+n] èGôŽÅíÏ ævc\îpQoÏúŽ™LS¥ø»½©é/’2ß2&Ÿ|bR‡%”ÍŽq²ŽÑdnB ôgœ>Dœ¥xª³‘xwvÕåi9»TB¹Ô̯¹‰‘ßsغª–¹Ú¦wØé Dç™h~H½b¯g«lP`ß@O¯­cÑ¢Ɔ[T³ |•7Ê Û彟Ѻ1nÀ+q÷Pxw0»Í† «ã{Â6‚ÖMøÇ{†éPòyûsñgÜÓœÊ÷^ÉÏ0ט2ê¨YÐÒýtÑɘ9°ó\!Íe…©ÊÆ<üížÛÔØþ)R¤ccٿ̱þY7’Ç2K~†NÎôæI§dlÁ“(–¹Ô'¾ƒþ‘Zh”A››i”²ïPKZy¤gëæ\<¯Í¹„¡Ë:cTÜî%J$RxCϰOu8޶ ŸÈ…QÆÐwºC»|Ðêè^gwí,îÄ! jUk@²÷‹XßÞ"Ú= ¿µ½çJH"p1ò!Þ-3ßuÅçèAµ4-ËOÝ>KÚ]«s§d=¸ùå dåÝæÈ-rîNÇ-üvºQùùMkÊé[@ÑÛ,¨òkŠ)ÞÅ:òï«Ê·¹ãé¢4z©üô ˆ[ø~•ì%OŘ|æHdÌP[?M'9/CÈ㑃Þg¬F{ÙèÒrz„^`»´f;[ÚPêâ c¥ý,û $²mÈ©8·Ò¹´q©0ØfˤÃO³µÌÐê…;=»KœÛZ¼3mÿ‰0ÕÉBB¡œ2{ÕÚ4GÛtT´Ñn±JÆö”±¢TìTqwµÈ+”ÎÁ*ƒPì’²ãbøbæ%qÍêèE¼M"zEp@ù糉ͱqãõ¤óå 9\K<“!.νæ,†œó°«]†Ã¹`ÖuÕÃøLñzaœÛB—o9™:ŧ§õù‚d1®%tŽ+Ÿ½NÌÁ,áR”Rä Ui!bsØE„Y¹ *öÒÞDªy*qŠÍþD×WÂ:¼ñ> †òfãcôÉÖ ÜÉ®«ÀD¾"!\(þȦtŸÚµxa+JìAuÖ:Àg9ø«Ã}̲wà‘Ùý8:ÉxkÖ¨úÏXæ=z1úC2¢D=}¯ r ‚œ£˜~׺\– ®õ÷*ûÇ‘abuŒ×-öÄ4•àuV²]Ýn6ئژ ¥Ð˜é‰Òlu³³!',ÙG6¸€@ÂQ¸<“äE’¯™Q­Ê×F["ª2£˜âRþÃÅ¢b¢ýÕÔMx>ÄyH¯9{o%…ˆC›ˆu¼@ëôZÖz}áâ±°,ã'&ÑûÉÑiO–)Ëåm ´lÃLßÊÒeK¾ ='œ¼lŸðÚ|ndÆÎ3 !ó‡êÛM„ª¹”<7•¢~íö÷ÂgI—6')gÃüRÛ<íWÀ^Ušêv[·”Ma§ôìd20p^/Çxç­i¶¥“ó™WÃÜm£è6ÿ)ñ.Ò€'‰õëÐÑ"£¬‡9ûžõ-ÏÍ‹ÜêóM|<Ÿx|Æ\t{XþåóÔRET€á/‡½mЦ"5+•”!ýù²¾–ÂáÝDzP[Î ™‚œI¿qªdwkæÕK°nû{LÝsÏaƒ{W¹O~}¾N@zè e­nÞb¿Ç4R~oϧ¡²Ä¡¨Ú%¨¯ý•©áà “µ<Û™ò}VÀÕ=”‹8¶q¬álôšÖÄ(A mêkEš§¤n¼×£l»~ŒÔƒ68=Ç…²š}k{xîdü¶i-ðô¾MðzÌ0Ý:IÎ%5¯Á ˜pÖÌÜ}Ë…£N }u:ÈççV % …C«È°ƒãø˜ ¹;tõHÄY=_*5e=q*ûÞžÉÖ+è.)ŸY’)(³“÷ñvÐÿ³oöôSͨ® bÕ…[’¥ª Æ·ß_kêÀB¤*ç—a?âó¸uXÛ0 =y¦ßÛEì_Ô Q$2~]((«(dAÐʯx×ûY{‘‹¹ý !5ÙÆ²Þ"ÈÀpÞ$­.±*”üó$Gî´´ðÒ’íjÑö+¤§0×úq¬“€îøÚõm× : i›³e¢yRÅ¥Þ9µËÄ(o”Ù†–:µ>›õi<…2g¸ß4ÓR\²¸T?”oÌ-9pÂõbm…S½ÃÓ¼g‰`šF ÃC>§Yâ~[#DÚ"únŠ#ß7ž¾¹É^œbÕ»Ô‡° Í—ò¹¶}§ .·@©þ~Fh<ï¾o<ïAo«{"Ç×&ˆ6‡écðkK•5~¥U²íÜQF$£Ÿ3gxÑç#¸çÄ—Ùx)tÕKß÷^:$·*ŒËÙd¤—!];ØK-,‘ˆ²ÿë dqWö’ +ð¹xåIJò5LR¨´ªÈ"F½ŨֶÉË[é«ðæ´8ÃæìÉAe@ !ªR"ÇêÊÔÆ:€nõ}¾£W 2xVÐtÂ? Ù¨KÉ‘ËØv¤|0_ë ÍôN©—äU$q5žÏV”†õìÁ÷¡þ$ti¦Õµ>;–3I'úþˆ®Óo%Z·|À¾åQìŠ;Z"?X;Ê/þO–sfùõWIŒºz±Jepezú˜*j(s¹yê/!¡xVõ`Êk=³T^‰vLü8×¾@MÓh×L¬êÏ´;ñèšàTølÄ—Ž¡µ¨ˆ ã¡e~,ã_ì •ú-̺Üô ~Ò{”N`â>öõ©ßõ;¢X8ô˜ÊêsI;©VMaåøÅÕD®‰néAcùa0ž!yø›_Çyk¶ãgÆ­TOgf¢ò‚CøØÅ\µ¯‘ð¾‡Lß1~Izt󽜵úÆÄÖV}}ö ¥9 q«‰o+µ®‘I<52ºc¡ãã.ê+TØ·a€D¶?P¢6ñ»Þ7­±׬ãYI´wÚfJž,\gçBmnêyBhÞO‰øk WyEpɶ_¯,Λzývô˜o0ɉ¡o³GœùÝ:3•‡ÊÜkH/mí(ÐS«±•/ üjF+˜œÎ³×”îÌ„g†šA1çNŠíÄÍÁ>(j汪’ÓÛ¨«Š_÷O”»™‹bE#RoÊÊ;¡m>;¸ËæØ”aèüÝ`JGîZxÆóéÊç Iš>iA0¥xfÇ5¬Ï5ßÏ"e¨è."ˆÆ»/œ•rXê=Aߘ6ï™åçJ*¢Œ]–F[7c«>Iì4yj;'ÁtòX… ªŠ§„‹>h}I¹ÇG¾Je1!ê%‡Žt…iÌÕl1;µî7<¹ë†œlW+ÕšËT´Á5’å Ó¤¼1y5Sž,Êø<ó$f5§ñ÷MÁŠ8)(–›¨2ÕVTÚÊŸc:\$JàÙD7säæþ™õ‘Í™*9Øvb—á«í—MrÜÆT"#¸á}lo@îüÝômB…zM ³>[âìINùòëð^K`5œç;E Ç„ÎJ˜Ðv¦£Jæ¡v´ze÷ÿ¦ö£g endstream endobj 16 0 obj << /Length1 1590 /Length2 8760 /Length3 0 /Length 9802 /Filter /FlateDecode >> stream xÚ¶T”í6Œ’Jw ÒÌ’ÒÝÝH 0ÀÀ0CwwJˆt£ÒÒÝ !)Ý-ˆ4ÒRú¾çœ÷œÿ_ëûÖ³Ö<ϵëÞ{ß×ÞkhÕ4ÙÅ-fÜ™“$TÖàä€@Ü &ƒÔù[ŒÉ qt‚"à‚ÿ0t„€dR`ç;e àpr8y9ùA $ð/C„£ @ ì µ(spˆ&ƒ$ÂÞÃjeíüpÌ¿>LæÌN>¶?îq;ˆ#Ô (ƒ­!v'šƒaM„9âìñ_!˜„¬í@777°ÂÑJ„™ àu¶h@œ Ž® Àï‚*`;È_•q`2´¬¡NÉ5–În`GàAƒšCàN.p ˆ#àáp€¦¼@ÕÿËXé/6Àß½prpþ;ÜßÞ¿AáœÁææ;{0Ü ·XBa€ªŒ‡³»3 ·øm†9!üÁ®`( lö`ð's0@F\~(ðïòœÌ¡öÎNNPØï¿ÃŒ¢Äý‡@8ÂùÁðPžÀáˆùûFùø@åߢ?Hàÿ~ç´øä!ÿ†4Z{Ø[?l‡ÿX<È ÿ€ü ìP´ûä|ˆþ߇¡"þ¹@ûÀ— ã?àÃANÿ€¼ ó?àC.ÿ\¹ÿÿÕ:sGLJåñ‡Ü}ýþ³© wˆ9æÜ4ÂüU°MUpËe…8…ûæˆðæn 3»×œc«Ë¯gèï˜Ë3WÏÅß}éÂ]Üf:›§¹õÚm¬Akz«Þ|í}c¯1¶ÙŒ9û•¸wôý®xuÕJv-±-ï[o[äÆGí 9.üÏÔò.Ý>˺W÷/ …Noªo•ó*bݳÇhG¿(˜dÈ5Ëœ"}ŽæÌN…Á‚äŽ3yv>Ÿ=zO£ÏŠé³ÃýÁË`•ëÍÕ”çR©—S=™)òþÐØ /‰í$’¯ÂQ¸ ƒ\y· ™F{˜³ ´LÆ›þÝ^6#ŠèR{ç«‘/Ü!¡­ƒ[þ>hGž2-’5Q[º!ú²îÂMvꔈÄ/xæq ÎÛ½/§\öÆ Òˆ¡fþO‡@mË‘oˆ“ 1™u ²Šã|Ø\Ü5gßw¶YåI÷D8vó×Jèãé?ÛYQ›}';Ÿ—ƒ‹º –Ê׆³”Þ¹•,be‚ñ³¥™ ?æÕ3»@¡Ëèi-åõëQ…Êr×è¾ÍŒyȶ&šGÓjUè­%_øXÙ:dÊá“ì=%Ž?ó*»Š{…_Š\†j„ì_&u½ØÐÚ9{°}Îâ¾n=Þ²ò2¬–JÞ-Éþé@‚P–ÿô‘>·ɶkZߨ§[yjŽ›Ä×¥pí*#e™î:¶›•¾&ݶè c6­ê)³> ÓeŽ-K4 Þ_xL¿(å5Ä„˜‹§oòïØ‚);4£ß^ø×°f[Gæ5ž¿:²“õÏdö£œX«Æ!/í2GB'èq/—†R½æ¶Úû9^sð=} BÍéû+d;«Êò–ŒÞƒywiÍØÔÄÓŸõO˜~×YtÛ;Þ„h>·_¥PÞ pM¼†/öNí醅Y´8× ²OF—Γ¬ã¸x÷¥—ú ¾ðg£‰.”¯ :(ï’±}…}¡AÅ3=/WºýÚ;nr…~±ó¼»Ï“%¯7H7¤8(ª•Z‚U=,ûuðdQk*è0ù›í%ßL÷${îÇ»ä»ZUËt æJdí1IKi~Žê§òº ¯åõ>ÙÉ!‰ÛOj $*/"‡C$4Èì鬛—Ððží´¯+𬄵+ŸžÏykKE.§–LE± ï³ôÌuŽ«¹ÛµeU8Rï­Eñõ´ÈˆøZ5‚%€.„Øn—z\¾º:Q•€¦ ã k)èÎÏšÎvHÖ«BÃí|Î6ê© qù6ÅêœÇ×(ËfÍ:gȃ“PµÃÚÞ;ßüÁ¡oÈÑ÷tŒh¯ ꋲžÍcÙì”Æ+ðð”T Yy"óÅXÉÊ•…J2¼™›¸ž¯ á`Ï•Z%Ã&Éào–RXž30›­ö“t'Q}Ñ|€ò¥G¿wCx¯÷fF|ç©z%dAÇXÆn1B8ÿ ˜&àׯK´è‚4Û!ŽóÃëM©L BÒ¥—bzÂþcÜæ?›ï—ø«k61lŸw]ZÉLç4›¸y¶²7Ü¿{͈œÏ¿Š¤CŠ¤Ñ¾Î}sfÀøÃ%Fý^ÏNè½"©ru†¦ÙPjk§@壗·NZú7Öòù«~Ôv!FK]BŸ°_â”}=+>‹¾Ëo<ÏriÔÖ@œLš _Îü¤s5EþÁ”ž(âYgÆ7—uËhó]ž -‚º‰Ø~y=¶ÑÕÆ1?1ÄõžYL·,ŸQE»d#„áÕ@äÉ|B+HXš¹˜…Y-yÎ0ßJVÃ2­¹„trÕçÖ’¡Ÿ@œS×ô`¹…0Ò‘¸ ×œéJȾ¦ÇJ ׯ[¾’6ŠÖûK¾©Mãq«v$ö2Sj§¦*½qsâ(¥x¬{œþâùÏn±}Å{]ƒ€=£ÊÉ €TR#c å¹.Mþ‘ÍI&"Q{~VˆfÊüÛÞûÚ+=ªVN Ðe«{Ý&ŽÞ½dZvƒòA˜žÒÆó‘¢”¥\d  t¨¿]ÙÇD,Ðá}b+Í•9‚d¹=ÄÆ¬Ic¬yÔ4'¹äùˆi ^Bp¤ûûMÆ9.ìC£™QŸáó\›Î-6¨þ?Õ 4§÷÷kŽF*%'»—~Êû(uÄFh¶•ý²VL[Ù~[ø’Ié3ÕAâNYT2A6GAés>P6,ÙFg4¼i¼ "Íæ>ЩÂç×½ “âþg©!1.d: ßqI§Òa‹"^×T›J3ý2*t¥ò1\âKŸÈ¥ô+_{ÝXã)øüîÄ{L+gM{K–eÂo°_þ;ªÃ™~л¹²EÓ¬ËWÏÆÒ`ä©|xM¸”…uI^(úÑ{adož+>AÊШD8óã=9‚ÒÚØ£²~«oç@iªÌj#WßÅœu†kwËå)6lÔ¶ÛãúVxá ¼Š7ÔKŽ ý‘*ïªþ6Ÿ=ϸö;GsË[á×VjïKë=˜÷jqIžÔ±`‡‹¶Yµ3|}»õ<â'`Þ;6²Pæ©D2"xíT`Þz(¶™,Üãédp¯Jƺúiè‹$$/Í„.KÄÅ'E`QÀz­H@=?ëa‡ÿÀ@©4&×åc¶G×êZ1Í+öæÆÓv½À©ãÓÔd‰­è’€DÁR¿úíS­9ñÃê›a> 2TGëÙH4±ª3üo÷ÃEd¤® Úaj¯ð÷I’¯î°<86;ãNZ’ëäO‘£5¬r`"æÍ1¬QgëÆÛ‡ã{ì1-¦èÅÒž¿déQýP€Ì¾­ìêTÉT§°]-Ù ÕËÆð‡5ë{ˆf®ε)ß’¹²oÌ—ËC>Œ³S #Ô'‹ŠÖè`ÇÀJd ŸgK¾¢ïðË-D+vFÝcªUÿ€™0ÎSº¬UrÒa9zÕpšf>$& ߌ"1‘wa”Œ¿°ÁW¥§MGÔ–w 8x±Ý-eÁò±<*‰¥¾º†7ñÓÒ7wäYrGm͘y¼¢!yÈ÷é.âh4ÄàôNòàF]™œOM·­s½º :šÇç­ÎLÿvVøÏk(rÖœiô¢š,)Q'Ø·td¼Cßb‘LE.±Þÿ‰ëÓW¦Ñ2mB†\|VÊÄÎÍ.ÞöAþ(©8öM¸6§l]¶Öqäh‘Ìâ­ŠèNßFsQ*ä:Ã)×§WænZ¯†=m†õÂë V,²Ä4ADõÛð¨&´phSËQŠm™v˜A} J>4·‰«)aÿM¹}s}½}íbiê¤iz<õ\Ù®0ʘâÆZƒþIBM@ùóÄVÚÁ‹'ÓŸy÷̈7!Ûz…Wtƶí"Ð(ªJ¥!&U9’¥€îlör&$?F‰Åå7xˆLƒ˜$ºi>§gÅî|Väþä«^f™}fATêë¤,±¹H\÷Šàw )_zÜl‡©¾Wá­à'„%š£|*«C;EƯù<•Œ©A””æÛ/Ð*©Ù¬ÜQÙtö] xþÙ6*ª‚a2aÿ˜¹¬ªöK‹²–j þ/R”›¯ÕÖ õ%Üë‚ÉjuÉý*¹|ɹ¬JŠ{Ê4ªx*aIäM4ŸÏ¢ƒE§&g&×{!Æ×¨×ï0íÂ^<™M ùê²óé)­½‰hV§¹«ž?Û“a_›èr͇>¡áÓl$TƒFÇÚÞ©§"eA¸ûšÒAn+ ¨ô6÷ËÚŒ ;ÿoR¨Ý¹°4Ó\#*âgzîZu˜CͰ›N”G÷"Ðsâ&a¦áGn^HÑœ§àúƒ\Ô ¥¾<;ï”âè½;¯¸¯×“<„WNû[cs§n\ ÞJ«"£5E|±Z{$OúÇ2úljÞ×ú' ƒ@mÍjÕ„‚É­’ETÝ<´DªÁÌx²Þ‰­ù4œtª’Q8†&)ZÛ¸ªâ‹À$MUk!#$Ô«¿¶}æÝ‚ŧå2`i¦[ia¾QpßY°¿¹÷T­#q`ò¢|IV2ç31,?‘O½‘ RÖ »ÁŒP¤&ÁÃeš©½MùEèt@»|„½Þ¤®t2„j1#ÕÈ-}­†º˜à¾ð˜P#µ–QóF ;)s— pì­#þ¼åÉ®ü£6ºÓ©H%UàÇ‚0L›xŽ¥ÚÃà_ÓXöÝé±î+ëî%š1vn8#6û…/üئp­kk‰ŸE<êkŒ .¡ÈJxl«¸uEØ8öAâÊ]O*gzPnÔmñB°ý”’¿Ül‰¿É®þq¸ÁD­E]Ø›°KïÐ/Ý;ŽvÍ–Ålö <ÁxFF]Åß´‹"Œjªgùrÿcc‡Ón™ŒúlÑ:Õì&µÝVs—#ý›§<Ò=P8©ÙìèY÷ÞôYõ-oN o<å$\òðóJ±IWb/+eµð…Fí-ºIKö*nÕIgä ¤¬ÔìSЄOv"¼Y&4VÞévKdߥ´ðH Ù >¨;­&I¼¤âº’ùæìñHBTåQ¬˜-,^ÐÿOÑ'ügîì k°ûEù³ÉóµOÖFlžªá·šŸ2ÓSºÌ]/ë„Dýcɶ—zäFüB•É´‹ØÌ™AßÂY³{¤ˆz#VNÉrÓ|‰VËS @‡¿lºK™Ö8¨»YÚ'µÊ/4\Ó1)Ĉ1"û|í> ¦5½9fÞÏo³¼P"ì>ºFœàØDÔTÁ¿B~d}˜°›?(«{lÂ< ™^>òÌc3J”¦W“îÙXýM}Áè|_èî{9›Q˜ê\¦ªŸ¿ò`2a4¬]:¶‚7Ãì|i ‰9¯ô3û%ÎM_U…§×_šÚ­º S€íS¿÷HcUC+_©@Èãšr$èõö£â|wPé0•Í4ƒÅ.¢dHù9.—¢_pš‹†Ò¥“ÐF.J£UžÞõ®Ï‘Ü΄  ÊòÃÕH9$®ï¢Ý(çOªï)˜áޤ}2ÖJŸ¨Åî¶±üù²¬OVÐÊÈy D0BÊ«O‡%ŠW±ŸOD geŽ|§ tϽ&‘k#gC-ë"d~_Ç´“m¨® _Ø.nW¬_sMJ%Ø›ÞCDY;\s˜MÕœyøµ–%NˆC+õ9ºq²§~¹úáx{Û•,W]ýµ¶8[.>¸87NbiIâ½ÏI.Œ-Žß­óJ݈oAÓ´Ó­ÞJö7âyuë(í:·N÷‹‰rÞú87ã³VL WA¯®I µ•J!Â7ù×K‰ðc‡þ"ÖÛ|K²þy–À}߬rZu¢Cgþ@µæ—c¬3…%áò„~[êÞx GÑÁ Ü]õ 0jN\Æ7è¯?¥Q£(¡ã ÞÃï4åe˜ÓÎp*¤aT`I+'¶ï¤0Ú>,ùù¼¦ å凅»·.¹WÒ“.gòcÔ³ÓóD4Š¡w˜‡¡û# %X¡ÍăÁ]ï¡9]ý¬™¥˜Š/„A/¿*ú¸®2CÕ¥üYD7JÝη¥`B÷]P`ž,|8ÐFÃîp’ÒúÅ—-e™×HCïÔ'™z4qÒ«‘D°Ž:ú’œï#øà“iæývÈ—Ç6ߣ#›:VÛ¼;/VÑ2Cq.ùtD› üë/ÂSÝþ¨±yü© „9óúµË£__ö.=lý/û~¾ÈV,ž<pÔ|ýòóMŒÑ†³þ%aãJ5îa‡òŠÁùX|áË+[*ïÖ×=4–‚{À•šÙ#Ö³Ò±i¯·Câßž(¿Ãa$!ÓMœèxN‡¤:ˆqÎDê8§‡Àø1”¨²žúCcâ(Ì¿/ZÂ+±F¾bõÂ\„–v;Â-z„ÆKÆÝg^_±Õ™ä¢°2M6DèNc¹DaX¢¹‘!~dU"ŽÝ~ãY±ífè:ô î-¦R×4Ч”Ìš7T®TXpÊ-W6-^4ðjøíí•¶§…à,Ç•‚^úp-‰Iø£0j`°Ÿ2«uʵÆöô³†c¤ÅdLâxO Yø~ž5Å*m°ÜÊþ1ìç<…s@ñÑÃü¹5щØO4³P^[ð„çÌA4>ò’¦€×c2/Äãäž·[.¶ä¸qvõ+ô_FŠèçºÒp¶ë|ÚN=>X5U»JλW‡{ÚíánP•NL½X·’ºÐ̲*ìÐý…ˆ¾¶õ™˜páÙE¹u~½¬ìó³²@%Q„©HaW¹ŠÊñN®°†ÙæN™:i\’±ábÖ˜„þC€â§ïÓ>)$<[@W¶ˆSj[´y$Àú:´N±¤W2<5VÀ~êJî.⸘º—öŽ˜ &·¤_u-y ˆ¾@l³>Áô½+”„”IµVöÞ`jP>õ5n¦'¼÷ MŠJ2‡Y4©ªHIÕJß3G¶Ð¤T !ÓnÝá­ÌS0àÑWiiÉœ‹î*Ú9hlxTáäh*I…ÁBŠÂ6 DÜq-!Z?©ûšœ% q 8@0‚°Ï(C߉ÑW¿ ¦¹WK‹?Ç´È™l~#ðËÁN'^}ê à©¢fÁ®±ñR_™È=­F‚øÊ#*+ÏST¹ ®0>÷ÙåÌexÅn½˜o/ü%›ÛvVlAûò’˜5Ê_¼Q$‡3i 9’Cö)·m A1øý‡{ãpÞ\û²H³ÔbÎã‰Øxï–eþëW“øtÛÖS]´ºšE—Uo¨Xä†1éê‚l)zzÙQ‡ï r’ÇùÁ"Nz¼#tÉ~*¨Cºª d²3tœ9ë«FÏ}?3ÉìK!¼ ’ Ñæ—ÖÌF–²Õ:B~AqR¢6ãJ² –­ü³[žë$KÄA°––2†º]ÕË1[p×ÓðëÍy‰ +f-ß¶}"²Èõ§ VþÜÙ=¸YO5-K)&²²KmYØgûØöÆÞ`P¸ d\’÷œ¾QÑ;h>‰Y)𬚵î/ߺ¿†ÅÞ æddç1•¼xä»kØSßoÇÉ"xR²ìš—V-,r}…»$­Ñ”UGاÖ­r%ЙÁŸÖÚãÇêW_艊–«·!¤Óæw71€j¦ÞT–qÈm–›gZé®ÍžÝC¥=õîýÛ÷< WºgüŽ!^c„îó_$.óòb¶eUʦPŸÁUb~~•Wï6t@×èic÷¿ -½˜WïëŽ 7 ÚèÑjœñ/þ±”¢e0Þ›ºv‘ Ñ·ß—èå$‰E1UÅæí¡seØ1òɃ‹5$ï Ï,G/–GYr/qfßÛÍŸž¼1|Go²¨!øÁ=ž*]˜ßð©d‹{/#§ßqØLÕÓSsÈÌPnÛ“Òõ×ig´m»°ç\ªæ2ôdûÂ=Ùç5-&§ýÁ|Ø1[HeåŸ)løã‡ Y%$ Ûê®ï{4…¹Ü1óœ•#SßT*÷;¾‹7ºU4˜0JYÛƒúc&¦„hC” ‰—–&Ö—"ŽÝtàhozq©º±±†rÅ×9î $´ì?Ò‹n÷&-0Šv £ö—ªPÐñ<ñDÑzë¬ÿH·<ß"â*Õ„ØLLßr:¯}óYÜÇ^ÇâÃ)Ø6Y”7Vzp­™ŽmÝꨪ‘ýéàÈ ©zâÀᬳrT+ãÅVrmyOÂwÞBT*Þ/rά[n¸—ä¥ßøšmçmqLý°jOM™£q~ëB{Ꟁï;ó‡n¦]%3ˆÏ—Š¥%+ø{_½Û=RÖª0Õjsä)ÿé-ZEa,oŒX‚˜ÉUÒ“T.7rΚ$4.x ÕëœÓ—Œk.æ|Y(˜>"öЬý¾X‚l3c¬z‚Õ—n´Mµs® ¿u`Õ!Tp+U-èKe´_Jîq×"ª3#8GsÖ$ÌÄEô5x0lP0ˆlS½YãÑ fÎß,!Z fDSvòN6‘åYu:U´`BØR„W'‰˜Z¸É³e?üyÞÞ½&«);(yaÐ_ýËÕàJOfY俱w‹ê“?3$°z&§œ·}to«‚K1«£Á8pAäD,bs¬¼Ô~oZw‚«uŒYÜd Ô58Åó|ÝÂo1Ë•²¢¢U/,äÔ¢¨uæ–:ž½ÇZìn<©4ô§Ð§šýr ¢^b:ã›q‹{¬” °Çà¦Sä\×H²ÿ*9×h[Á®ÅN2œäòR3ôûñ¨â‘•×ÑøyS9ÁR‰KËùvf̺ùŽ^¼¡e„þtçÉ´t+-ë¹°ë«"³Å£‘=?š FzoBPs*W@÷ƒåRHÆc†ýèÉ+®|‡þ÷üj!ë2{¬ÒNDIBn3@`ì|]Gl‚Øj[Ðùh÷#mòýhÁ]!BªäTsª›é)wÔ*D‹¨>ÎSnÌcUÙ"ÍÁ¥ ãØ.º¾7önã³êÒe⾎^9CšÌöš ½ÑúBܵ©4;ºÖ»ëê¤Ç~œ|Llg¶=!žêi…úå?S‹‹e_•tÍ!2>ÚYÙlÝAžœi»ÎÏþJÎ9 ãF2€{P+Ùœ$¶Ê‹\Ê7fáåBV*b-Ÿt?ÒĺB/vGªµFÏÃl&®PXïCé[pÒ¾‡/aªæo&SÚÒô`³0:6»B¡à\=ú;~äÐM³Þmy䣮†(ä¿( ¼ƒ-°^,{+îPe¾ì|MâÙº2L8¡WR·ýÐdŸGi²©ØVM&éðf`G g&åo³C«í£ùl·*X'L§®òÓãžr«É"À»ðàœó§AüI}.ôaGÈ÷LjFS±´ìÍÜA¯áöíë|e aQw[ãG¹oú¾%¶^ư I¯µ–%·<Ñd9Ab^rº–z1#On¿ïÞf‚€µÍ/° \ÊS*j(g2©>åz#ä¿æh ©W»( xå[Ú“]¸<^½¹ ü ³•%bLJQZ%ÅŒi³k”«ör|QŠÜ¤"K¼lh; nÏy1…í¾b2*¤©ìT%”úã1Ï Þ®Øòl² Š¥¦þ©ñvÜWö)/²AN:fXΙ°‘Èàå–L½ý¥›’üË‹[+‹ð’#þ›5kF¡±¥]Å4Ù–œöz—>©¹DË*jv(ð¤Ó¹~Õ‚“EëŽ1 9¦³Âƒw¶ ,¼¦^(Ø×BÀÑwœÌÈdØS_+KDhÌÆ`j°u:Ö»púì_ kÍ´LœÇÉviO:Jwˆ2íc£/Ýæ©åds‡ÜìÈ›z¢ü£ù¼`¯8)DQ0ɹ_û^°£1õ’©_Z@ð%Bš‹–±@è ßpðSއQ|â”PsR TjÓÙQŸQ¡É«Û¤5Ÿûø¡]XÕ]'ã®8„;Yûk\K›+ ë ÛÝž¨ÓáYÔó„bqáü…úuõžoÁ߯b*ò¥tÍ.Oœ Áæ'Ž?èXdâù=”ž= 8\lEN<W}é ácJ5­s^ñ†1+Õyü6Ø+8¹Æ-$­õ¯9*²;±asì´J²$ž,Œ õ´>¦qÿ¸£( endstream endobj 19 0 obj << /Producer (pdfTeX-1.40.18) /Creator (TeX) /CreationDate (D:20191201114157-06'00') /ModDate (D:20191201114157-06'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) kpathsea version 6.2.3) >> endobj 7 0 obj << /Type /ObjStm /N 13 /First 90 /Length 1020 /Filter /FlateDecode >> stream xÚ­VKoãF ¾ëWðØ¢ˆæý‚61Œnš´A6hÓ>hmÕ`[®¤´I}É­-9tƒíÁ4‡Cr† ø„U 8˜`Aä8ŠP¢Il@8‰r"8 ¤ä H¥x¦Aj£Áƒ4΃À+yvzš±Ûç] ìºX–;¯·]¹íZPò&c7e[?6ó²ÅøQpU.ªâ¬~‚Ž+$¸ gº7è‡ðdõî]ž"œž›* š4ÈŠ€;J¬Ç-‡æìº©çËp'“)°Ûò©ƒ!=HçrÊû<ôÔp.J{R¹êyÒ}íO0M¨ÚÉ\ö4IœÁˆÜc'£Ô*܇õ<·`$ ¯s픹#È"y[i Ûë{YôíÑ•%cH’ðÉ‚Ë}xCõ&èC¢ÇÜ Lkë¯8ñ‹¾€I*>–4Ù¬“… SQ!⥆´3j˜%-j‰Ó>Pôo „òùç°¸(·ÑM§4Ø hÍPÇ"[‹¼UØ›‡VÊ(”®¢§Œ5Å|CôRŸñ’g-©UFï±É xûì~a‚%<æ+‚ÑÊÐöœ !ê£G”<5>®½è}÷VI§ð¥í&þ KÛM|¤ØÅ6LêX^ã¿‘&œ!u"Ð R27=MjŽÂ»¢‰ZG–ÜR¡¥§&p‰§i£¥’d£è0'gÁÓ%ˆú5z÷üp~u#8Ê×Ų Îâ?ÑNd2øÁñ‚cü};§1nZž»Ëj¹Â¥W£(¤;¤üÐëjþ~»\—€ð»ró+ºeì®÷ÑJ ĪhhªÇnYÁ>±+Ù’­XÅÖlËjVoK¶+›ª^°?ë®\—t‰k„5¬e{d}Ÿ6>­0~s™ÿ*Ãäòâþþ÷Xùå2àåÅ2Þÿ?U0¯VaÒ×aÎæõfS`5Vlƒ•ØVX*Fú¿kLø™ýS6õ(ký–¬§—w×1k÷JÖ*5?h¼_:|uÖæ•¬f͇Y_aÎÔùÕónUncó7±ý»}ƒŸF©Ú/§Š¡?uqIB¬ìYÑ–ñ•q|ÚG…¡R|¼L«¦íh_øñÊØeÑ/„ðû­Zt«_Xo}tÂŽB›ãÐZCK±-øÛcõù(¶{ÛŒbóClñ26½[z>b$ŒúSµhá!^¾ÙØò¼ÀQ/³ärxþ rÄŠo endstream endobj 20 0 obj << /Type /XRef /Index [0 21] /Size 21 /W [1 2 1] /Root 18 0 R /Info 19 0 R /ID [<2746CFE3F6E8CA7D08E26E7855EAA9D1> <2746CFE3F6E8CA7D08E26E7855EAA9D1>] /Length 71 /Filter /FlateDecode >> stream xÚc``øÏÄÀÎÄ Œ ü @š ˆ9˜ƒ±a+ˆÏ ÄL@Ì Ä,ŒŒ›@b¬ŒFY š1â%ˆfbÆúU Œ­r Åj endstream endobj startxref 34078 %%EOF survival/inst/doc/other.Rnw0000644000176200001440000000314713544366313015475 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} %\VignetteIndexEntry{Other vignettes} \title{Other Vignettes} \author{Terry Therneau} \begin{document} \maketitle A parallel source for the survival package is the therneau/survival directory on github. This copy contains several extra vignettes, in the vignette2 directory, that are not part of the CRAN copy. \begin{enumerate} \item tutorial.Rnw: This works through the examples found in the excellent tutorial by H. Putter, M. Fiocco and R. Geskus. Tutorial in biostatistics: competing risks and multi-state models, Statistics in Medicine, 2006. \item sas.Rnw: An expanded discussion answering some repeated queries about how survival package results differ from SAS. \item tests.Rnw: A harder look at what SAS ``type 3'' tests are. \item singer.Rnw: Worked examples from a texbook by Singer and Willett. \end{enumerate} Number 1 is not on CRAN because it makes use of a data set from the mstate package. As a recommended package survival cannot depend on anything outside of the base + recommended R. (A minimally sufficient set that is self contained is useful for R maintainance and validation.) Number 2 delves into relative computing time questions, and those examples take a very long time to run. Material in the third vigette is now discussed at a higher level in the population estimate and adjusted survival curves vignettes. In time, we expect this set of other vignettes to grow. \end{document} survival/inst/doc/population.R0000644000176200001440000002341713570775562016214 0ustar liggesusers### R code from vignette source 'population.Rnw' ################################################### ### code chunk number 1: population.Rnw:20-26 ################################################### options(continue=" ", width=70) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #reset default library(survival) library(splines) ################################################### ### code chunk number 2: fig1 ################################################### getOption("SweaveHooks")[["fig"]]() plot(c(50,85), c(2,4.5), type='n', xlab="Age", ylab="Effect") #abline(.645, .042, lty=1, col=1, lwd=2) #abline(.9, .027, lty=1, col=2, lwd=2) abline(.35, .045, lty=1, col=1, lwd=2) abline(1.1, .026, lty=1, col=2, lwd=2) legend(50, 4.2, c("Treatment A", "Treatment B"), col=c(1,2), lty=1, lwd=2, cex=1.3, bty='n') ################################################### ### code chunk number 3: solder1a ################################################### summary(solder) length(unique(solder$PadType)) ################################################### ### code chunk number 4: solder1b ################################################### getOption("SweaveHooks")[["fig"]]() # reproduce their figure 1.1 temp <- lapply(1:5, function(x) tapply(solder$skips, solder[[x]], mean)) plot(c(0.5, 5.5), range(unlist(temp)), type='n', xaxt='n', xlab="Factors", ylab ="mean number of skips") axis(1, 1:5, names(solder)[1:5]) for (i in 1:5) { y <- temp[[i]] x <- rep(i, length(y)) text(x-.1, y, names(y), adj=1) segments(i, min(y), i, max(y)) segments(x-.05, y, x+.05, y) } ################################################### ### code chunk number 5: solder2 ################################################### with(solder[solder$Mask!='A6',], ftable(Opening, Solder, PadType)) fit1 <- lm(skips ~ Opening + Solder + Mask + PadType + Panel, data=solder, subset= (Mask != 'A6')) y1 <- yates(fit1, ~Opening, population = "factorial") print(y1, digits=2) # (less digits, for vignette page width) ################################################### ### code chunk number 6: solder2b ################################################### y2 <- yates(fit1, "Opening", population = "data", test="pairwise") print(y2, digits=2) # # compare the two results temp <- rbind(diff(y1$estimate[,"pmm"]), diff(y2$estimate[,"pmm"])) dimnames(temp) <- list(c("factorial", "empirical"), c("2 vs 1", "3 vs 2")) round(temp,5) ################################################### ### code chunk number 7: solder3 ################################################### fit2 <- lm(skips ~ Opening + Mask*PadType + Panel, solder, subset= (Mask != "A6")) temp <- yates(fit2, ~Opening, population="factorial") print(temp, digits=2) ################################################### ### code chunk number 8: solder4 ################################################### fit3 <- lm(skips ~ Opening * Mask + Solder + PadType + Panel, solder) temp <- yates(fit3, ~Mask, test="pairwise") print(temp, digits=2) ################################################### ### code chunk number 9: glm ################################################### gfit2 <- glm(skips ~ Opening * Mask + PadType + Solder, data=solder, family=poisson) y1 <- yates(gfit2, ~ Mask, predict = "link") print(y1, digits =2) print( yates(gfit2, ~ Mask, predict = "response"), digits=2) ################################################### ### code chunk number 10: glm3 ################################################### gfit1 <- glm(skips ~ Opening + Mask +PadType + Solder, data=solder, family=poisson) yates(gfit1, ~ Opening, test="pairwise", predict = "response", population='data') yates(gfit1, ~ Opening, test="pairwise", predict = "response", population="yates") ################################################### ### code chunk number 11: data ################################################### getOption("SweaveHooks")[["fig"]]() male <- (flchain$sex=='M') flchain$flc <- flchain$kappa + flchain$lambda mlow <- with(flchain[male,], smooth.spline(age, flc)) flow <- with(flchain[!male,], smooth.spline(age, flc)) plot(flow, type='l', ylim=range(flow$y, mlow$y), xlab="Age", ylab="FLC") lines(mlow, col=2, lwd=2) legend(60, 6, c("Female", "Male"), lty=1, col=1:2, lwd=2, bty='n') ################################################### ### code chunk number 12: counts ################################################### flchain$flc <- flchain$kappa + flchain$lambda age2 <- cut(flchain$age, c(49, 59, 69, 79, 89, 120), labels=c("50-59", "60-69", "70-79", "80-89", "90+")) fgroup <- cut(flchain$flc, quantile(flchain$flc, c(0, .5, .75, .9, 1)), include.lowest=TRUE, labels=c("<50", "50-75", "75-90", ">90")) counts <- with(flchain, table(sex, age2)) counts # # Mean FLC in each age/sex group cellmean <- with(flchain, tapply(flc, list(sex, age2), mean)) round(cellmean,1) ################################################### ### code chunk number 13: flc1 ################################################### library(splines) flc1 <- lm(flc ~ sex, flchain) flc2a <- lm(flc ~ sex + ns(age, 3), flchain) flc2b <- lm(flc ~ sex + age2, flchain) flc3a <- lm(flc ~ sex * ns(age, 3), flchain) flc3b <- lm(flc ~ sex * age2, flchain) # # prediction at age 65 (which is near the mean) tdata <- data.frame(sex=c("F", "M"), age=65, age2="60-69") temp <- rbind("unadjusted" = predict(flc1, tdata), "additive, continuous age" = predict(flc2a, tdata), "additive, discrete age" = predict(flc2b, tdata), "interaction, cont age" = predict(flc3a, tdata), "interaction, discrete" = predict(flc3b, tdata)) temp <- cbind(temp, temp[,2]- temp[,1]) colnames(temp) <- c("Female", "Male", "M - F") round(temp,2) ################################################### ### code chunk number 14: flc2 ################################################### yates(flc3a, ~sex) # additive, continuous age # yates(flc3b, ~sex) # interaction, categorical age # yates(flc3b, ~sex, population="factorial") ################################################### ### code chunk number 15: flc3 ################################################### yates(flc3a, ~ age, levels=c(65, 75, 85)) yates(flc3b, ~ age2) ################################################### ### code chunk number 16: cox1 ################################################### options(show.signif.stars=FALSE) # show statistical intelligence coxfit1 <- coxph(Surv(futime, death) ~ sex, flchain) coxfit2 <- coxph(Surv(futime, death) ~ sex + age, flchain) coxfit3 <- coxph(Surv(futime, death) ~ sex * age, flchain) anova(coxfit1, coxfit2, coxfit3) # exp(c(coef(coxfit1), coef(coxfit2)[1])) # sex estimate without and with age ################################################### ### code chunk number 17: coxfit2 ################################################### coxfit4 <- coxph(Surv(futime, death) ~ fgroup*age + sex, flchain) yates(coxfit4, ~ fgroup, predict="linear") yates(coxfit4, ~ fgroup, predict="risk") ################################################### ### code chunk number 18: surv ################################################### # longest time to death round(max(flchain$futime[flchain$death==1]) / 365.25, 1) #compute naive survival curve flkm <- survfit(Surv(futime, death) ~ fgroup, data=flchain) print(flkm, rmean= 13*365.25, scale=365.25) ################################################### ### code chunk number 19: surv2 ################################################### mypop <- flchain[seq(1, nrow(flchain), by=20), c("age", "sex")] ysurv <- yates(coxfit4, ~fgroup, predict="survival", nsim=50, population = mypop, options=list(rmean=365.25*13)) ysurv # display side by side temp <- rbind("simple KM" = summary(flkm, rmean=13*365.25)$table[, "*rmean"], "population adjusted" = ysurv$estimate[,"pmm"]) round(temp/365.25, 2) ################################################### ### code chunk number 20: surv3 ################################################### getOption("SweaveHooks")[["fig"]]() plot(flkm, xscale=365.25, fun="event", col=1:4, lty=2, xlab="Years", ylab="Death") lines(ysurv$summary, fun="event", col=1:4, lty=1, lwd=2) legend(0, .65, levels(fgroup), lty=1, lwd=2, col=1:4, bty='n') ################################################### ### code chunk number 21: nstt ################################################### options(contrasts = c("contr.treatment", "contr.poly")) # default nfit1 <- lm(skips ~ Solder*Opening + PadType, solder) drop1(nfit1, ~Solder) ################################################### ### code chunk number 22: nstt2 ################################################### options(contrasts = c("contr.SAS", "contr.poly")) nfit2 <- lm(skips ~ Solder*Opening + PadType, solder) drop1(nfit2, ~Solder) ################################################### ### code chunk number 23: means ################################################### with(solder, tapply(skips, list(Solder, Opening), mean)) ################################################### ### code chunk number 24: nstt3 ################################################### options(contrasts = c("contr.sum", "contr.poly")) nfit3 <- lm(skips ~ Solder*Opening + PadType, solder) drop1(nfit3, ~Solder ) yates(nfit1, ~Solder, population='factorial') ################################################### ### code chunk number 25: nstt4 ################################################### options(contrasts = c("contr.treatment", "contr.poly")) # restore ################################################### ### code chunk number 26: sizes ################################################### with(flchain, table(sex, age2)) survival/inst/doc/approximate.R0000644000176200001440000000654013570775540016345 0ustar liggesusers### R code from vignette source 'approximate.Rnw' ################################################### ### code chunk number 1: init ################################################### options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text library(survival, quietly=TRUE) ################################################### ### code chunk number 2: approx1 ################################################### getOption("SweaveHooks")[["fig"]]() ksurv <- survfit(Surv(time, status) ~1, data=kidney) plot(ksurv, fun="cumhaz", conf.int=FALSE, lwd=2, xlab="Time since catheter insertion", ylab="Cumulative Hazard") lines(c(0, 45, 500, 560), c(0, .55, 2.7, 4), col=2, lwd=2) ################################################### ### code chunk number 3: approx2 ################################################### kdata2 <- survSplit(Surv(time, status) ~., data=kidney, cut=c(45, 500), episode="interval") kfit1 <- coxph(Surv(time, status) ~ age + sex, kidney, ties='breslow') kfit2 <- glm(status ~ age + sex + factor(interval) -1 + offset(log(time-tstart)), family=poisson, data=kdata2) cbind(Cox= summary(kfit1)$coefficients[,c(1,3)], poisson = summary(kfit2)$coefficients[1:2, 1:2]) ################################################### ### code chunk number 4: approx3 ################################################### utime <- sort(unique(kidney$time[kidney$status==1])) # unique deaths kdata3 <- survSplit(Surv(time, status) ~., data=kidney, cut=utime, episode="interval") kdata3 <- subset(kdata3, time == c(utime,0)[interval]) # remove partials kfit3 <- glm(status ~ age + sex + factor(interval) -1, family=poisson, data=kdata3) kfit4 <- glm(status ~ age + sex + factor(interval) -1, family=binomial, data=kdata3) rbind(poisson= coef(kfit3)[1:2], binomial = coef(kfit4)[1:2]) ################################################### ### code chunk number 5: approx4 ################################################### getOption("SweaveHooks")[["fig"]]() counts <- c(table(kdata3$interval)) # subjects in each interval xmat <- as.matrix(kdata3[,c('age', 'sex')]) centers <- rowsum(xmat, kdata3$interval) / counts xmat2 <- xmat - centers[kdata3$interval,] kfit4a <- glm(status ~ xmat2 + factor(interval) -1, poisson, kdata3) temp <- coef(kfit4a)[-(1:2)] # intercepts phat <- with(kdata3, tapply(status, interval, sum)) /counts matplot(1:length(counts), cbind(phat, exp(temp)), log='y', xlab="Interval", ylab="Simple event rate") legend(5, .5, c("Rate", "Poisson intercept"), pch="12", col=1:2) ################################################### ### code chunk number 6: approx5 ################################################### kdata3$phat <- phat[kdata3$interval] # add phat to the data set logit <- function(x) log(x/(1-x)) kfit4b <- glm(status ~ xmat2 + offset(log(phat)), poisson, kdata3) kfit4c <- glm(status ~ xmat2, poisson, kdata3) kfit4d <- glm(status ~ xmat2 + offset(logit(phat)), binomial, kdata3, subset=(phat<1)) kfit4e <- glm(status ~ xmat2, binomial, kdata3, subset=(phat<1)) rbind(Cox= coef(kfit1), poisson=coef(kfit4a)[1:2], poisson2 = coef(kfit4b)[2:3], poisson3 = coef(kfit4c)[2:3], binomial2 = coef(kfit4d)[2:3], binomial3 = coef(kfit4e)[2:3]) survival/inst/doc/compete.Rnw0000644000176200001440000014714713556611531016017 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} %\VignetteIndexEntry{Multi-state models and competing risks} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} % I had been putting figures in the figures/ directory, but the standard % R build script does not copy it and then R CMD check fails \SweaveOpts{prefix.string=compete,width=6,height=4} \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {compete-#1.pdf}} \setkeys{Gin}{width=\textwidth} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=10) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #ensure default library("survival") @ \title{Multi-state models and competing risks} \author{Terry Therneau \and Cynthia Crowson \and Elizabeth Atkinson} \newcommand{\code}[1]{\texttt{#1}} \begin{document} \maketitle \section{Multi-state models} \begin{figure} <>= oldpar <- par(mar=c(.1, .1, .1, .1), mfrow=c(2,2)) cmat1 <- matrix(c(0,0,1,0), nrow=2, dimnames=list(c("Alive", "Dead"), c("Alive", "Dead"))) statefig(c(1,1), cmat1, cex=1.5) state4 <- c("0", "1", "2", "...") cmat4 <- matrix(0, 4,4, dimnames= list(state4, state4)) cmat4[1,2] <- cmat4[2,3] <- cmat4[3,4] <- 1 statefig(c(1,1,1,1), cmat4, bcol=c(1,1,1,0), cex=c(1.5, 1.5, 1.5, 3)) states <- c("A", "D1", "D2", "D3") cmat2 <- matrix(0, 4,4, dimnames=list(states, states)) cmat2[1, -1] <- 1 statefig(c(1,3), cmat2, cex=1.5) state3 <- c("Health", "Illness", "Death") cmat3 <- matrix(0, 3, 3, dimnames = list(state3, state3)) cmat3[1,2] <- cmat3[2,1] <- cmat3[-3, 3] <- 1 statefig(c(1,2), cmat3, offset=.03, cex=1.5) state4 <- c("0", "1", "2", "...") cmat4 <- matrix(0, 4,4, dimnames= list(state4, state4)) cmat4[1,2] <- cmat4[2,3] <- cmat4[3,4] <- 1 statefig(c(1,1,1,1), cmat4, bcol=c(1,1,1,0), cex=c(1.5, 1.5, 1.5, 3)) par(oldpar) @ \caption{Four multi-state models. The upper left panel depicts simple survival, the upper right depicts sequential events, the lower left is an example of competing risks, and the lower right panel is a multi-state illness-death model.} \label{mfig1} \end{figure} A multi-state model is used to model a process where subjects transition from one state to the next. For instance, a standard survival curve can be thought of as a simple multi-state model with two states (alive and dead) and one transition between those two states. A diagram illustrating this process is shown in the top left corner of figure \ref{mfig1}. In these types of diagrams, each box is a state and each arrow is a possible transition. The lower left diagram depicts a classic competing risk analysis, where all subjects start on the left and each subject can make a single transition to one of 3 terminal states. The bottom right diagram shows a common multi-state situation known as the illness-death model with recovery. Finally, the upper right diagram represents sequential events, such as repeated infections in the CGD study. In that case one subject had 8 events so there are 9 states corresponding to entry into the study (0 infections) and the first, second, \ldots, eighth events. As will be shown below, there are often multiple choices for the state and transition diagram, and for some data sets it is revealing to look at a problem from multiple views. In addition to deciding the diagram that best matches the research questions, the two other primary decisions are the choice of time scale for the fits, e.g., time from entry in the study vs. time from entry in the state, and what covariates will be used. \section{Multi-state curves} \subsection{Aalen-Johansen estimate} As a starting point for the analysis, it is important to compute and plot estimates of $p(t)$, which is a vector containing the probability of being in each of the states at time $t$. If there is no censoring then $p$ becomes a simple tabulation at time $t$ of all the states. For the general case, we compute this using the Aalen-Johansen estimate via the \code{survfit} function. Mathematically the estimate is simple. For each unique time where an event occurs, form the transition matrix $T(t)$ with elements or rates of $\lambda_{ij}(t) =$ the fraction of subjects who transition from state $i$ to $j$ at time $t$, among those in state $i$ just prior to time $t$. ($T$ is equal to the identity matrix at any time point without an observed transition.) Then \begin{equation} p(t) = p(0) \prod_{s \le t} T(s) \label{AJ} \end{equation} where $p(0)$ is the initial distribution of subjects. Let's work this out for the simple two-state alive $\rightarrow$ {death} model. Let $n(t)$ be the number of subjects still at risk at time $t$ and $d(t)$ the number of deaths at that time point. All subjects start in the alive state and thus $p(0) = (1,0)$ and the transition matrix is \begin{equation*} T(s) = \left( \begin{array}{cc} \frac{n(s)- d(s)}{n(s)} & \frac{d(s)}{n(s)} \\\\ 0 & 1 \end{array} \right) \end{equation*} The two rows are ``start in state 1 (alive)'' and ``start in state 2'' and the two colums are ``finish in state 1'', ``finish in state 2 (death)''. The second row corresponds to the fact that death is an absorbing state: the probability of a death $\rightarrow$ alive transition (lower left element) is 0. Writing out the matrices for the first few transitions and multiplying them leads to \begin{equation} p_1(t) = \prod_{s \le t} \left[n(s) - d(s)\right] /n(s) \label{km} \end{equation} which we recognize as the Kaplan-Meier estimate of survival. For the two state alive-dead model the Aalen-Johansen (AJ) estimate has reprised the KM. In the competing risks case $p(t)$ has an alternate form known as the \emph{cumulative incidence} (CI) function \begin{equation} CI_k(t) = \int_0^t \lambda_k(u) S(u) du \label{cuminc} \end{equation} where $\lambda_k$ is the incidence function for outcome $k$, and $S$ is the overall survival curve for ``time to any endpoint''. Repeating the same matrix exercise for the competing risks, i.e. writing out the Aalen-Johansen computation, exactly recovers the CI formula. The CI is also a special case of the Aalen-Johansen. (The label ``cumulative incidence'' is one of the more unfortunate ones in the survival lexicon, since we normally use `incidence' and `hazard' as interchangeable synonyms but the CI is \emph{not} a cumulative hazard.) The AJ estimate is very flexible; subjects can visit multiple states during the course of a study, subjects can start after time 0 (delayed entry), and they can start in any of the states. The \code{survfit} function implements the AJ estimate and will handle all these cases. The standard error of the estimates is computed using an infinitesimal jackknife. Let $D(t)$ be a matrix with one row per subject and one column per state. Each row contains the \emph{change} in $p(t)$ corresponding to subject $i$, i.e., the derivative of $p$ with respect to the $i$th subject's case weight $dp(t)/dw_i$. Then $V(t) = D'WD$ is the estimated variance-covariance matrix of the estimates at time $t$, where $W$ is a diagonal matrix of observation weights. If a single subject is represented by multiple rows in the data set, then $D$ is first collapsed to have one row per subject, the new row for subject $i$ is the sum of the rows for the observations that represented the subject. This is essentially the same algorithm as the robust variance for a Cox model. For simple two state alive -> dead model without case weights, the IJ estimate of variance is identical to the traditional Greenwood estimate for the variance of the survival curve $S$. (This was a surprise when we first observed it; proving the equivalence is not straightforward.) The $p(t)$ vector obeys the obvious constraint that its sum at any time is equal to one; i.e., each person has to be somewhere. We will use the phrase \emph{probability in state} or simply $p$ when referring to the vector. In the simple two state model Pr(alive) is the usual KM survival estimate, and we have $p_1(t) = 1- p_2(t)$, Pr(alive) = 1 - Pr(dead). Plots for the 2 state case sometimes choose to show Pr(alive) and sometimes Pr(dead). Which one is used often depends on a historical whim of the disease specialty; cardiology journals for instance quite often use Pr(event) resulting in curves that rise starting from zero, while oncology journals invariably use Pr(alive) giving curves that fall downhill from 1. The \code{survfit} routine's historical default for the 2 state case is to print and plot Pr(alive)= $p_1(t)$, which reflects that the author of the routine was working primarily in cancer trials at the time said default was chosen. For simple survival we have gotten used to the idea of using Pr(dead) and Pr(alive) interchangeably, but that habit needs to be left behind for multi-state models, as curves of $1-p_k(t)$ = probability(any other state than $k$) are not useful. In the multi-state case, some curves will rise and then fall. For competing risks the curve for the initial state (leftmost in the diagram) is rarely included in the final plot. Since the curves sum to 1, the full set is redundant. Pr(nothing yet) is usually the least interesting of the set and so it is left off to make the plot less busy. The remaining curves in the competing risks case rise from 0. (This bothers some researchers as it `just looks wrong' to them.) \subsection{Examples} \begin{figure} <>= par(mar=c(.1, .1, .1, .1)) frame() oldpar <- par(usr=c(0,100,0,100)) # first figure xx <- c(0, 10, 10, 0) yy <- c(0, 0, 10, 10) polygon(xx +10, yy+70) temp <- c(60, 80) for (j in 1:2) { polygon(xx + 30, yy+ temp[j]) arrows(22, 70 + 3*j, 28, temp[j] +5, length=.1) } text(c(15, 35, 35), c(75, 65, 85),c("Entry", "Death", "PCM")) text(25, 55, "Competing Risk") # Second figure polygon(xx +60, yy+70) for (j in 1:2) { polygon(xx + 80, yy+ temp[j]) arrows(72, 70+ 3*j, 78, temp[j] +5, length=.1) } text(50+ c(15, 35, 35), c(75, 65, 85),c("Entry", "Death", "PCM")) arrows(85, 78, 85, 72, length=.1) text(75, 55, "Multi-state 1") # third figure polygon(xx+10, yy+25) temp <- c(15, 35) for (j in 1:2) { polygon(2*xx +30, yy + temp[j]) arrows(22, 25 + 3*j, 28, temp[j] +5, length=.1) } text(c(15, 40, 40), c(30, 20, 40),c("Entry", "Death w/o PCM", "PCM")) polygon(2*xx + 60, yy+temp[2]) arrows(52, 40, 58, 40, length=.1) text(70, 40, "Death after PCM") text(40, 10, "Multi-state 2") @ \caption{Three models for the MGUS data.} \label{mfig2} \end{figure} Start with a simple competing risks problem as illustrated in the first diagram of figure \ref{mfig2}. The \code{mgus2} data set contains the time to plasma cell malignancy (PCM) and/or death for 1384 subjects diagnosed with monoclonal gammopathy of undetermined significance (MGUS). Survival and progression time are in months. The code below creates an ordinary Kaplan-Meier curve of post-diagnosis survival for these subjects, along with a histogram of age at diagnosis. The mean age at diagnosis is just over 70 years. <>= oldpar <- par(mfrow=c(1,2)) hist(mgus2$age, nclass=30, main='', xlab="Age") with(mgus2, tapply(age, sex, mean)) mfit1 <- survfit(Surv(futime, death) ~ sex, data=mgus2) mfit1 plot(mfit1, col=c(1,2), xscale=12, mark.time=FALSE, lwd=2, xlab="Years post diagnosis", ylab="Survival") legend("topright", c("female", "male"), col=1:2, lwd=2, bty='n') par(oldpar) @ The xscale and yscale arguments to \code{plot.survfit} affect only the axis labels, not the data. Further additions to the plot region such as \code{legend}, \code{lines}, or \code{text} remain in the original scale. This simplifies programmatic additions such as adding another curve to the plot, while making interactive additions such as a legend somewhat less simple. As a second model for these subjects we will use competing risks (CR), where PCM and death without malignancy are the two terminal states, as shown in the upper left of figure \ref{mfig2}. In a CR model we are only interested in the first event for each subject. Formally we are treating progression to a PCM as an \emph{absorbing state}, i.e., one that subjects never exit. We create a variable \code{etime} containing the time to the first of progression, death, or last follow-up along with an event variable that contains the outcome. The starting data set \code{mgus2} has two pairs of variables \code{(ptime, pstat)} that contain the time to progression and \code{(futime, status)} that contain the time to death or last known alive. The code below creates the necessary \code{etime} and \code{event} variables, then computes and plots the competing risks estimate. <>= etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) event <- factor(event, 0:2, labels=c("censor", "pcm", "death")) table(event) mfit2 <- survfit(Surv(etime, event) ~ sex, data=mgus2) print(mfit2, rmean=240, scale=12) mfit2$transitions plot(mfit2, col=c(1,2,1,2), lty=c(2,2,1,1), mark.time=FALSE, lwd=2, xscale=12, xlab="Years post diagnosis", ylab="Probability in State") legend(240, .6, c("death:female", "death:male", "pcm:female", "pcm:male"), col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n') @ The \code{mfit2} call is nearly identical to that for an ordinary Kaplan-Meier, with the exception of the \code{event} variable. \begin{enumerate} \item The event variable was created as a \emph{factor}, whereas for ordinary single state survival the status is either 0/1 or TRUE/FALSE. The first level of the factor must be censoring, which is the status code for those whose follow-up terminated without reaching a new endpoint. Codes for the remaining states can be in any order. The labels for the states are unrestricted, e.g., the first one does not have to be ``censor''. (It will be treated as `no event at this time', whatever the label.) \item A simple print of the \code{mfit2} object shows the order in which the curves will be displayed. This information was used to choose the line types and colors for the curves. \item The \code{mfit2} object contains curves for all the states, but by default the entry state will not be plotted. The remaining curves all start at 0. \item The transitions component of the result is useful as a data check, e.g., if it showed a transition from death to PCM. \item Each subject's initial state can be specified by the \code{istate} argument. When this is omitted all subjects are assumed to start from an entry state named '(s0)'. This default name is an amalgam of ``state 0'', a label sometimes used in textbooks for the leftmost box, and an R convention of using () for constructed names, e.g., `(Intercept)' from an lm() call. \end{enumerate} The printout shows that a male subject will spend, on average, 8.7 of his first 20 years post diagnosis in the entry state, 1.1 years in the PCM state and 10.3 of those 20 in the death state. If a cutoff time is not given the default is to use the maximum observed time for all curves, which is 424 months in this case. The result of a multi-state \code{survfit} is a matrix of probabilities with one row per time and one column per state. These are contained in the probability-in-state (\code{pstate}) component of the resulting survfit object. Since the three MGUS states of entry/pcm/death must sum to 1 at any given time (everyone has to be somewhere), one of the three curves is redundant and the ``fraction still in the entry state'' curve is normally the least interesting. By default, any state with the label `(s0)' is left off of the plot; which is the default value of the \code{noplot} option of \code{plot.survfit}. One can easily plot all of the states by setting the option to NULL. A common mistake with competing risks is to use the Kaplan-Meier separately on each event type while treating other event types as censored. The next plot is an example of this for the PCM endpoint. <>= pcmbad <- survfit(Surv(etime, pstat) ~ sex, data=mgus2) plot(pcmbad[2], lwd=2, fun="event", conf.int=FALSE, xscale=12, xlab="Years post diagnosis", ylab="Fraction with PCM") lines(mfit2[2,"pcm"], lty=2, lwd=2, mark.time=FALSE, conf.int=FALSE) legend(0, .25, c("Males, PCM, incorrect curve", "Males, PCM, competing risk"), col=1, lwd=2, lty=c(1,2), bty='n') @ There are two problems with the \code{pcmbad} fit. The first is that it attempts to estimate the expected occurrence of plasma cell malignancy (PCM) if all other causes of death were to be disallowed. In this hypothetical world it is indeed true that many more subjects would progress to PCM (the incorrect curve is higher), but it is also not a world that any of us will ever inhabit. This author views the result in much the same light as discussions of survival after the zombie apocalypse. The second problem is that the computation for this hypothetical case is only correct if all of the competing endpoints are independent, a situation which is almost never true. We thus have an unreliable estimate of an uninteresting quantity. The competing risks curve, on the other hand, estimates the fraction of MGUS subjects who \emph{will experience} PCM, a quantity sometimes known as the lifetime risk, and one which is actually observable. The last example chose to plot only a subset of the curves, something that is often desirable in competing risks problems to avoid a ``tangle of yarn'' plot that simply has too many elements. This is done by subscripting the \code{survfit} object. For subscripting, multi-state curves behave as a matrix with the outcomes as the second subscript. The columns are in order of the levels of \code{event}, i.e., as displayed by our earlier call to \code{table(event)}. The first subscript indexes the groups formed by the right hand side of the model formula, and will be in the same order as simple survival curves. Thus \code{mfit2[2,1]} corresponds to males (2) and the PCM endpoint (1). Curves are listed and plotted in the usual matrix order of R. A third example using the MGUS data treats it as a multi-state model and it shown in the upper right of figure \ref{mfig2}. In this version a subject can have multiple transitions and thus multiple rows in the data set. In this case it is necessary to identify which data rows go with which subject via the \code{id} argument of \code{survfit}; valid estimates of the curves and their standard errors both depend on this. Our model looks like the illness-death model of figure \ref{mfig1} but with ``PCM'' as the upper state and no arrow for a return from that state to health. The necessary data set will have two rows for any subject who has further follow-up after a PCM and a single row for all others. The data set is created below using the \code{tmerge} function, which is discussed in detail in another vignette. We need to decide what to do with the 9 subjects who have PCM and death declared at the same month. (Some of these were cancer cases discovered at autopsy.) They slipped through without comment in the earlier competing risks analysis; only when setting up this second data set did we notice the ties. Looking back at the code, the prior example counted these subjects as a progression. In retrospect this is a defensible choice: even though undetected before death, the disease must have been present for some amount of time previous and so progression did occur first. For the multi-state model we need to be explicit in how this is coded since a sojourn time of 0 within a state is not allowed. Below we push the progression time back by .1 month when there is a tie, but that amount is entirely arbitrary. Since there are 3 possible transitions we will call the data set \code{data3}. <>= ptemp <- with(mgus2, ifelse(ptime==futime & pstat==1, ptime-.1, ptime)) data3 <- tmerge(mgus2, mgus2, id=id, death=event(futime, death), pcm = event(ptemp, pstat)) data3 <- tmerge(data3, data3, id, enum=cumtdc(tstart)) with(data3, table(death, pcm)) @ The table above shows that there are no observations in \code{data3} that have both a PCM and death, i.e., the ties have been resolved. The last \code{tmerge} line above creates a variable \code{enum} which simply counts rows for each person, which is often useful. <>= temp <- with(data3, ifelse(death==1, 2, pcm)) data3$event <- factor(temp, 0:2, labels=c("censor", "pcm", "death")) mfit3 <- survfit(Surv(tstart, tstop, event) ~ sex, data=data3, id=id) print(mfit3, rmean=240, digits=2) mfit3$transitions plot(mfit3[,"pcm"], mark.time=FALSE, col=1:2, lty=1:2, lwd=2, xscale=12, xlab="Years post MGUS diagnosis", ylab="Fraction in the PCM state") legend(40, .4, c("female", "male"), lty=1:2, col=1:2, lwd=2, bty='n') @ This plot is quite different in that it shows the fraction of subjects \emph{currently} in the PCM state. Looking at our multi-state diagram this is the fraction of subjects in the upper right PCM box. The curve goes up whenever someone enters the box (progression) and down when they leave (death). Myeloma survival was quite short during the era of this study --- most subjects died within 1 year of PCM --- and the proportion currently in the PCM state rarely rises above 2 percent. The result of \code{print(mfit3)} reveals, as expected, less time spent in the PCM state. In the prior \code{mfit2} model, subjects who enter that state remain there for the duration; in this one they quickly pass through. It is worthwhile to check the \code{transitions} table in the output, simply as a data check, since an error in creating the input data can lead to surprising counts and an even more surprising curve. In this case it shows subjects going from the entry state to PCM and death along with transitions from PCM to death. This is as expected. We have often found the three curve display shown below useful in the case of a transient state. It combines the results from competing risk model used above along with a second fit that treats death after PCM as a separate state from death before progression, the \emph{multi-state 2} model of figure \ref{mfig2}. In this plot the fraction of subjects currently in the PCM state is shown by the distance between the two curves. Only males are shown in the plot to minimize overlap. <>= # Death after PCM will correspond to data rows with # enum = 2 and event = death d2 <- with(data3, ifelse(enum==2 & event=='death', 4, as.numeric(event))) e2 <- factor(d2, labels=c("censor", "pcm", "death w/o pcm", "death after pcm")) mfit4 <- survfit(Surv(tstart, tstop, e2) ~ sex, data=data3, id=id) plot(mfit2[2,], lty=c(1,2), xscale=12, mark.time=FALSE, lwd=2, xlab="Years post diagnosis", ylab="Probability in State") lines(mfit4[2,4], mark.time=FALSE, col=2, lty=1, lwd=2, conf.int=FALSE) legend(200, .5, c("Death w/o PCM", "ever PCM", "Death after PCM"), col=c(1,1,2), lty=c(2,1,1), lwd=2, bty='n', cex=.82) @ \subsection{Further notes} The Aalen-Johansen method used by \code{survfit} does not account for interval censoring, also known as panel data, where a subject's current state is recorded at some fixed time such as a medical center visit but the actual times of transitions are unknown. Such data requires further assumptions about the transition process in order to model the outcomes and has a more complex likelihood. The \code{msm} package, for instance, deals with data of this type. If subjects reliably come in at regular intervals then the difference between the two results can be small, e.g., the \code{msm} routine estimates time until progression \emph{occurred} whereas \code{survfit} estimates time until progression was \emph{observed}. \begin{itemize} \item When using multi-state data to create Aalen-Johansen estimates, individuals are not allowed to have gaps in the middle of their time line. An example of this would be a data set with (0, 30, pcm] and (50,70, death] as the two observations for a subject where the time from 30-70 is not accounted for. \item Subjects must stay in the same group over their entire observation time, i.e., variables on the right hand side of the equation cannot be time-dependent. \item A transition to the same state is allowed, e.g., observations of (0,50, 1], (50, 75, 3], (75, 89, 4], (89, 93, 4] and (93, 100, 4] for a subject who goes from entry to state 1, then to state 3, and finally to state 4. However, a warning message is issued for the data set in this case, since stuttering may instead be the result of a coding mistake. The same result is obtained if the last three observations were collapsed to a single row of (75, 100, 4]. \end{itemize} \section{Rate models} For simple two-state survival, the Cox model leads to three relationships \begin{align} \lambda(t) &= \lambda_0(t) e^{X\beta} \label{hazard} \\ \Lambda(t) &= \Lambda_0(t) e^{X\beta} \label{cumhaz}\\ S(t) &= \exp(-\Lambda(t)) \label{surv} \end{align} where $\lambda$, $\Lambda$ and $S$ are the hazard, cumulative hazard and survival functions, respectively. There is a single linear predictor which governs both the rate $\lambda$ (the arrow in figure \ref{mfig1}) and probability of residing in the left hand box of the figure. For multi-state models this simplicity no longer holds; proportional hazards does not lead to proportional $p(t)$ curves. There is a fundamental dichotomy in the analysis namely that \begin{itemize} \item hazards can be computed one at a time, \item probability in state must be done for all states at once. \end{itemize} The analysis of multi-state data has four key steps. In order of importance: \begin{enumerate} \item Draw a box and arrow figure describing the model. \item Think through the rates (arrows). \begin{enumerate} \item Which covariates should be attached to each rate? Sometimes a covariate is important for one transition, but not for another. \item For which transitions should one or more of the covariates be constrained to have the same coefficient? Sometimes there will be a biologic rationale for this. For other studies an equivalence is forced simply because we have too many unknowns and cannot accommodate them all. (This is the same reason that models often contain very few interaction terms). \item Which, if any, of the transitions should share the same baseline hazard? Most of the time the baseline rates are all assumed to be different. \item Should there be random effects, and if so what is an appropriate correlation structure? Do some pairs of transitions have a shared effect, some pairs separate effects and others no random effect? Mixed effects Cox models tend to need larger sample size --- does the data set have enough events? \end{enumerate} \item Build an appropriate data set. \item Fit the data. Examine multiple summaries of the model fit, including the predicted occupancy curves. \end{enumerate} Step 1 is key to the entire endeavor. We saw in figure \ref{mfig2} and the examples above that multiple views of a multi-state process can be useful, and this will hold for modeling as well. Step 3 will often be the one that demands the most attention to detail. \subsection{MGUS example} Start with the simplest model for the MGUS data: a competing risks model (upper left diagram of figure \ref{mfig2}), distinct baseline hazards for the two rates, no shared coefficients, and three covariates. <>= options(show.signif.stars = FALSE) # display intelligence cfit1 <- coxph(Surv(etime, event) ~ age + sex + mspike, mgus2, id=id) cfit1$cmap print(cfit1, digits=2) @ This above call fits both endpoints at once. The resulting R object contains a single vector of coefficients, the \code{cmap} component documents which goes with which endpoint and is used by the print routine to organize the printout. We see that the effect of age and sex on non-PCM mortality is profound, which is not a surprise given the median starting age of \Sexpr{median(mgus2$age)}. Risk rises \Sexpr{round(exp(10*coef(cfit1)[4]),1)} fold per decade of age and the death rate for males is \Sexpr{round(exp(coef(cfit1)[5]),1)} times as great as that for females. The size of the serum monoclonal spike has almost no impact on non-PCM mortality. A 1 unit increase changes mortality by only 6\%. The mspike size has a major impact on progression, however; each 1 gram change increases risk by \Sexpr{round(exp(coef(cfit1)[3]) ,1)} fold. The interquartile range of \code{mspike} is 0.9 gram so this risk increase is clinically important. The effect of age on the progression rate is much less pronounced, with a coefficient only 1/4 that for mortality, while the effect of sex on progression is completely negligible. The effect of sex on the \emph{lifetime} probability of PCM is not zero, however. Because females live longer, a female with MGUS will on average spend more total years at risk for PCM than the average male, and so has a larger lifetime risk of PCM. The average rate of progression is about 1\% per year, as shown below, while the mean post diagnosis lifetime is 19 months longer for females. The overall effect is a 1.6\% increase in lifetime risk. <>= pfit1 <- pyears(Surv(ptime, pstat) ~ sex, mgus2, scale=12) round(100* pfit1$event/pfit1$pyears, 1) # PCM rate per year temp <- summary(mfit1, rmean="common") #print the mean survival time round(temp$table[,1:6], 1) @ The same Cox model coefficients can also be obtained by fitting separate models for the PCM and death endpoint, censoring cases that fail due to the other cause. Hazards can be computed one at a time. When computing $p(t)$, on the other hand, all the rates must be considered at once, it is necessary to use the joint fit \code{cfit1} above. We create predicted curves for four hypothetical subjects below. <>= dummy <- expand.grid(sex=c("F", "M"), age=c(60, 80), mspike=1.2) dummy csurv <- survfit(cfit1, newdata=dummy) dim(csurv) @ The resulting set of Aalen-Johansen estimates can be indexed as though it were an array. There is only one stratum (the Cox model did not have strata), four hypothetical subjects, and 3 states. (When there is only a single stratum, as here, the subscript method allows that index to be omitted, for backwards compatability). <>= plot(csurv[,,'pcm'], xmax=25*12, xscale=12, xlab="Years after MGUS diagnosis", ylab="PCM", col=1:2, lty=c(1,1,2,2), lwd=2) legend(10, .14, outer(c("female", "male "), c("diagnosis at age 60", "diagnosis at age 80"), paste, sep=", "), col=1:2, lty=c(1,1,2,2), bty='n', lwd=2) @ The individual survival curves that would result from fitting each endpoint separately are not actually of interest, since each will be a Cox model analog of the pcmbad curve we criticized earlier. The coxph fits showed that sex has nearly no effect on the hazard of PCM, i.e., on any given day the risk of conversion for a male is essentially the same as for a female of the same age. Yet we see above that the fitted Cox models predict a higher lifetime risk for females; this is due to a longer lifespan. The age effect on lifetime risk that is far from proportional: the 80 year curves flatten out while predictions for the younger subjects do not. Very few subjects acquire PCM more than 15 years after a MGUS diagnosis at age 80 for the obvious reason: very few of them will still be alive. <>= # Print out a M/F results at 20 years temp <- summary(csurv, time=20*12)$pstate cbind(dummy, PCM= round(100*temp[,,2], 1)) @ The above table shows that females are predicted to have a higher risk of 20 year progression, even though their hazard at any given moment is nearly identical to males. The female/male difference at 20 years is on the order of our ``back of the napkin'' person-years estimate of 1\% progression per year * 1.7 more years of life for the females, but the progression fraction varies substantially by group. \section{Fine-Gray model} For the competing risk case the Fine-Gray model provides an alternate way of looking at the data. As we saw above, the impact of a particular covariate on the final values $P$ can be complex, even if the models for the hazards are relatively simple. The primary idea of the Fine-Gray approach is to turn the multi-state problem into a collection of two-state ones. In the upper right diagram of figure 1, draw a circle around all of the states except the chosen endpoint and collapse them into a single meta-state. For the MGUS data these are \begin{itemize} \item Model 1 \begin{itemize} \item left box: All subjects in the entry or ``death first'' state \item right box: PCM \end{itemize} \item Model 2 \begin{itemize} \item left box: All subjects in the entry or ``PCM first'' state \item right box: Death (without PCM) \end{itemize} \end{itemize} An interesting aspect of this is that the fit can be done as a two stage process: the first stage creates a special data set while the second fits a weighted \code{coxph} or \code{survfit} model to the data. The data set can be created using the \code{finegray} command. <>= # (first three lines are identical to an earlier section) etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) event <- factor(event, 0:2, labels=c("censor", "pcm", "death")) pcmdat <- finegray(Surv(etime, event) ~ ., data=mgus2, etype="pcm") pcmdat[1:4, c(1:3, 11:14)] deathdat <- finegray(Surv(etime, event) ~ ., data=mgus2, etype="death") dim(pcmdat) dim(deathdat) dim(mgus2) @ The \code{finegray} command has been used to create two data sets: one for the PCM endpoint and one for the death endpoint. In each, four new variables have been added containing a survival time \code{(fgstart, fgstop, fgstatus)} with an `ordinary' status of 0/1, along with a case weight and a large number of new rows. We can use this new data set as yet another way to compute multi-state survival curves, though there is no good reason to use this rather roundabout approach instead of the simpler \code{survfit(Surv(etime, event) \textasciitilde sex)}. <>= # The PCM curves of the multi-state model pfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~ sex, data=pcmdat, weight=fgwt) # The death curves of the multi-state model dfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~ sex, data=deathdat, weight=fgwt) @ Inspection shows that the two new curves are almost identical to the prior estimates based on the Aalen-Johansen estimate (\code{mfit2}), and in fact would be identical if we had accounted for the slightly different censoring patterns in males and females (by adding \code{strata(sex)} to the right hand side of the \code{finegray} formulas). A Cox model fit to the constructed data set yields the Fine-Gray models for PCM and for death. <>= fgfit1 <- coxph(Surv(fgstart, fgstop, fgstatus) ~ sex, data=pcmdat, weight= fgwt) summary(fgfit1) fgfit2 <- coxph(Surv(fgstart, fgstop, fgstatus) ~ sex, data=deathdat, weight= fgwt) fgfit2 mfit2 <- survfit(Surv(etime, event) ~ sex, data=mgus2) #reprise the AJ plot(mfit2[,'pcm'], col=1:2, lwd=2, xscale=12, conf.times=c(5, 15, 25)*12, xlab="Years post diagnosis", ylab="Fraction with PCM") ndata <- data.frame(sex=c("F", "M")) fgsurv1 <- survfit(fgfit1, ndata) lines(fgsurv1, fun="event", lty=2, lwd=2, col=1:2) legend("topleft", c("Female, Aalen-Johansen", "Male, Aalen-Johansen", "Female, Fine-Gray", "Male, Fine-Gray"), col=1:2, lty=c(1,1,2,2), bty='n') # rate models with only sex cfitr <- coxph(Surv(etime, event) ~ sex, mgus2, id=id) rcurve <- survfit(cfitr, newdata=ndata) #lines(rcurve[, 'pcm'], col=6:7) # makes the plot too crowsded @ The FG model states that males have a less \emph{observed} PCM, by a factor of \Sexpr{round(exp(coef(fgfit1)), 2)}, and that this hazard ratio is constant over time. An overlaid plot of the non-parametric Aalen-Johansen estimates for the PCM state (from \code{survfit}) along with predicted curves from the Fine-Gray model show that proportional hazards is not unreasonable for this particular fit. The predicted values from the rate model, computed just above but not plotted on the curve, also fit well with the data. When there is only a single categorical 0/1 covariate the Fine-Gray model reduces to Gray's test of the subdistribution function, in the same way that a \code{coxph} fit with a single categorical predictor is equivalent to the log-rank test. The mathematics behind the Fine-Gray estimate starts with the functions $F_k(t) = p_k(t)$, where $p$ is the probability in state function estimated by the AJ estimate. This can be thought of as the distribution function for the improper random variable $T^*= I(\mbox{event type}=k)T + I(\mbox{event type}\ne k)\infty$. Fine and Gray refer to $F_k$ as a subdistribution function. In analogy to the survival probability in the two state model define \begin{equation} \gamma_k(t) = - d \log[1-F_k(t)]/dt \label{FG} \end{equation} and assume that $\gamma_k(t;x) = \gamma_{k0}(t) \exp(X\beta)$. In a 2 state alive $\longrightarrow$ death model, $\gamma$ becomes the usual hazard function $\lambda$. In the same way that our multivariate Cox model \code{cfit1} made the simplifying assumption that the impact of male sex is to increase the hazard for death by a factor of \Sexpr{round(exp(coef(cfit1)[5]), 2)}, independent of the subject's age or serum mspike value, the Fine-Gray model assumes that each covariate's effect on $\log(1-F)$ is a constant, independent of other variables. Both model's assumptions are wonderfully simplifying with respect to understanding a covariate, since we can think about each covariate separately from all the others. This is, of course, under the assumption that the model is correct: that additivity across covariates, linearity, and proportional hazards all hold. In a multi-state model, however, these assumptions cannot hold for both the per-transition and Fine-Gray models formulations at the same time; if true for one, they will not be true for the other. Now consider a multivariate fit on age, sex, and serum m-spike. <>= fgfit2a <- coxph(Surv(fgstart, fgstop, fgstatus) ~ age + sex + mspike, data=pcmdat, weight=fgwt) fgfit2b <- coxph(Surv(fgstart, fgstop, fgstatus) ~ age + sex + mspike, data=deathdat, weight=fgwt) round(rbind(PCM= coef(fgfit2a), death=coef(fgfit2b)), 3) @ The Fine-Gray fits show an effect of all three variables on the subdistribution rates. Males have a lower lifetime risk of PCM before death and a higher risk of death before PCM, while a high serum m-spike works in the opposite direction. The Cox models showed no effect of sex on the instantaneous hazard of PCM and none for serum m-spike on the death rate. However, as shown in the last section, the Cox models do predict a greater lifetime risk for females. We had also seen that older subjects are less likely to experience PCM due to the competing risk of death; this is reflected in the FG model as a negative coefficient for age. Now compute predicted survival curves for the model, and show them alongside the predictions from the multi-state Cox model. <>= oldpar <- par(mfrow=c(1,2)) dummy <- expand.grid(sex= c("F", "M"), age=c(60, 80), mspike=1.2) fsurv1 <- survfit(fgfit2a, dummy) # time to progression curves plot(fsurv1, xscale=12, col=1:2, lty=c(1,1,2,2), lwd=2, fun='event', xlab="Years", ylab="Fine-Gray predicted", xmax=12*25, ylim=c(0, .15)) legend(1, .15, c("Female, 60", "Male, 60","Female: 80", "Male, 80"), col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n') plot(csurv[,2], xscale=12, col=1:2, lty=c(1,1,2,2), lwd=2, xlab="Years", ylab="Multi-state predicted", xmax=12*25, ylim=c(0, .15)) legend(1, .15, c("Female, 60", "Male, 60","Female: 80", "Male, 80"), col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n') par(oldpar) @ The predictions as a function of age group are quite different for the Fine-Gray model: new PCM cases are predicted 20+ years after diagnosis in both the old and young age groups, while they are predicted to cease in the multi-state fit. The average of all four curves is nearly the same at each age, but the global proportional hazards assumption of the FG model forces the curves to remain parallel. We can check the proportional hazards assumption of the models using the \code{cox.zph} function, linearity of the continuous variables age and mspike by using non-linear terms such as \code{pspline} or \code{ns}, and additivity by exploring interactions. All are obvious and important next steps. For instance, the proportional hazards assumption for age shows clear violations. <>= zph.fgfit2a <- cox.zph(fgfit2a) zph.fgfit2a plot(zph.fgfit2a[1]) abline(h=coef(fgfit2a)[1], lty=2, col=2) @ A further weakness of the Fine-Gray approach is that since the two endpoints are modeled separately, the results do not have to be consistent. Below is a graph of the predicted fraction who have experienced neither endpoint. For subjects diagnosed at age 80 the Fine-Gray models predict that more than 100\% will either progress or die by 30 years. Predictions based on the Aalen-Johansen approach do not have this issue. <>= fsurv2 <- survfit(fgfit2b, dummy) # time to progression curves xtime <- 0:(30*12) #30 years y1a <- 1 - summary(fsurv1, times=xtime)$surv #predicted pcm y1b <- 1 - summary(fsurv2, times=xtime)$surv #predicted deaths before pcm y1 <- (y1a + y1b) #either matplot(xtime/12, y1, col=1:2, lty=c(1,1,2,2), type='l', xlab="Years post diagnosis", ylab="FG: either endpoint") abline(h=1, col=3) legend("bottomright", c("Female, 60", "Male, 60","Female: 80", "Male, 80"), col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n') @ The primary strength of the Fine-Gray model with respect to the Cox model approach is that if lifetime risk is a primary question, then the model has given us a simple and digestible answer to that question: ``females have a 1.2 fold higher lifetime risk of PCM, after adjustment for age and serum m-spike''. This simplicity is not without a price, however, and these authors are not proponents of the approach. There are five issues. \begin{enumerate} \item The attempt to capture a complex process as a single value is grasping for a simplicity that does not exist for many (perhaps most) data sets. The necessary assumptions in a multivariate Cox model of proportional hazards, linearity of continuous variables, and no interactions are strong ones. For the FG model these need to hold for a combined process --- the mixture of transition rates to each endpoint --- which turns out to be a more difficult barrier. \item The sum of predictions need not be consistent. \item From the per-transition Cox model one can work forward and compute $p(t)$, the occupancy probabilities for each state over time; both the hazard ratios and $p$ are useful summaries of the data. We don't have tools to work backwards from a Fine-Gray fit to the per transition hazards. \item The approach is viable only for competing risks and not for other multi-state models. \item The risk sets are odd. \end{enumerate} The last of these is perhaps the most frequently listed issue with the Fine-Gray model, but it is actually a minor complaint. The state probabilities $p(t)$ in a multi-state model are implicitly fractions of the total population we started with: someone who dies in month 1 is still a part of the denominator for the fraction of subjects with PCM at 20 years. In the Fine-Gray formulas this subject explicitly appears in risk set denominators at a later time, which looks odd but is more of an artifact. The first issue is substantial, however, and checking the model assumptions of a Fine-Gray fit is mandatory. The second point is alarming, but it normally does not have a practical impact unless there is long follow-up. \section{Shared coefficients} To fit risk models that have shared coefficients or baseline hazards we use an extended formula notation for the \code{coxph} function. For the simple competing risks MGUS fit above, assume that we wanted to add hemoglobin to the fit, with a common coefficient for both the PCM and death endpoint. (Anemia is a feature of both PCM and old age.) <>= hgfit <- coxph(list(Surv(etime, event) ~ age + sex + mspike, 1:2 + 1:3 ~ hgb / common), data = mgus2, id = id) hgfit @ Notice that the hemoglobin coefficient is identical for the PCM and death models. A closer look at the result shows that the coefficient vector is of length 7 and not 8, orchestrated by the \code{cmap} component. The variance matrix likewise is 7 by 7. <>= hgfit$coef hgfit$cmap @ In a \code{coxph} formula list, the first element is the default formula which will be applied to all the transitions. The second, third, etc. elements are pseudo-formulas that have a set of transitions as the ``response'', and usual covariate formulas on the right. For instance, if we wanted creatinine to be a covariate for only the transition to PCM a third line of \code{1:2 \textasciitilde creat} could be added. There is flexibility in how the left hand side is written. The following are all valid forms for the second line of our formula. <>= list(1: c("pcm", "death") ~ hgb / common, 1:0 ~ hgb / common, state("(s0)"): (2:3) ~ hgb / common) @ A '0' is shorthand for ``any state''. Transitions in the formula that do not occur in the data are silently ignored, e.g., the implicit 1:1 transition of our second line above. For the three transition model based on data3, the following fits first a model with 3 baseline hazards and 6 coefficients. The second fit assumes a common baseline hazard for the two transitions to death. <>= cox3a <- coxph(Surv(tstart, tstop, event) ~ age + sex, data3, id=id) cox3b <- coxph(list(Surv(tstart, tstop, event) ~ age + sex, 1:3 + 2:3 ~ 1/ common), data= data3, id= id) cox3b$cmap @ For this data set model \code{cox3b} makes very little medical sense, since death rates after PCM do not even remotely resemble those for patients without a plasma cell malignancy. (The fact that the package allows something does not make it a good idea.) In other data sets a shared baseline for all the transitions to death can be an effective model. Be aware that though shared baselines for two transitions that end in the same state is acceptable, a shared hazard for two transitions that originate in the same state is not compatable with the partial likelihood formulation of a Cox model, and will lead to surprising results (often a large number of NA coefficients). An alternative approach to the above is to fit the joint model using a special data set. To reproduce the \code{hgfit} model above, create a stacked data set with $2n$ observations. The first $n$ rows are the data set we would use for a time to PCM analysis, with a simple 0/1 status variable encoding the PCM outcome. The second $n$ rows are the data set we would have used for the `death before PCM' fits, with status encoding the death-before-PCM endpoint. A last variable, \code{group}, is `pcm' for the first $n$ observations and `death' for the remainder. Then fit a model <>= temp1 <- data.frame(mgus2, time=etime, status=(event=="pcm"), group='pcm') temp2 <- data.frame(mgus2, time=etime, status=(event=="death"), group="death") stacked <- rbind(temp1, temp2) allfit <- coxph(Surv(time, status) ~ hgb + (age + sex+ mspike)*strata(group), data=stacked) all.equal(allfit$loglik, hgfit$loglik) @ This fits a common effect for hemoglobin (hgb) but separate age and sex effects for the two endpoints, along with separate baseline hazards. \section{Other software} \subsection{The mstate package} As the number of states + transitions (arrows + boxes) gets larger then the `by hand' approach used above for creating a stacked data set becomes a challenge. (It is still fairly easy to do, just not as easy to ensure it has been done \emph{correctly}.) The \code{mstate} package starts with a definition of the matrix of possible transitions and uses that to drive tools that build and analyze a stacked data set in a more automated fashion. We find it a little more difficult to use than a \code{coxph} model with a multistate status variable. (The fact that we like our own child best should be no surprise, however). One current disadvantage of the survival package is that the Aalen-Johansen curves from a multi-state coxph model currently do not include a variance estimate, whereas those from mstate do have a variance. A current restriction in R is that packages on the \emph{recommended} list (of which survival is one) should not depend on any packages outside that list. This precludes adding an mstate example to this vignette, even though it is a natural fit. \subsection{The \code{msm} package} There are two broad classes of multi-state data: \begin{itemize} \item Panel data arises when subjects have regular visits, with the current state assessed at each visit. We don't know when the transitions between states occur, or if other states may have been visited in the interim --- only the subject's state at specific times. This is also known as interval censored data. \item Survival data arises when we observe the transition times; death, for example. \end{itemize} The overall model (boxes and arrows), the quantities of interest (transition rates and $p(t)$), and the desired printout and graphs are identical for the two cases. Much of the work in creating a data set is also nearly the same. The underlying likelihood equations and resulting analytical methods for solving the problem are, however, completely different. The \code{msm} package addresses panel data, while \code{survival}, \code{mstate}, and many others are devoted to survival data. \section{Conclusions} When working with acute diseases, such as advanced cancer or end-stage liver disease, there is often a single dominating endpoint. Ordinary single event Kaplan-Meier curves and Cox models are then efficient and sufficient tools for much of the analysis. Such data was the primary use case for survival analysis earlier in the authors' careers. Data with multiple important endpoints is now common, and multi-state methods are an important addition to the statistical toolbox. As shown above, they are now readily available and easy to use. It is sometimes assumed that the presence of competing risks \emph{requires} the use of a Fine-Gray model (we have seen it in referee reports), but this is not correct. The model may often be useful, but is one available option among many. Grasping the big picture for a multi-state data set is always a challenge and we should make use of as many tools as possible. It is not always easy to jump between observed deaths, hazard rates, and lifetime risk. We are often reminded of the story of the gentleman on his 100th birthday who proclaimed that he was looking forward to many more years ahead because ``I read the obituaries every day, and you almost never see someone over 100 listed there''. %\bibliographystyle{plain} %\bibliography{refer} \end{document} survival/inst/doc/validate.pdf0000644000176200001440000067602013570775574016172 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 3 0 obj << /Length 2864 /Filter /FlateDecode >> stream xÚ­ZYsãÆ~ß_ÁòË’U"Œ`€SyXÇñ‘ÚÄ®µâTÊëª`AH¢E4A®¤Ÿ>gÅ©<ˆÀ\==}|Ý=Зׯ>ÿ:ó S&Ö¸|q}³°ešØ¼\Æ%Ye×›ÅÏËŸV¥_Ö+³ÜÁßv?Ø8m{øÝ¯~¹þËç_›jaLR9g‘ÊÚX ¸X[ŸøÊ0‘ë•7ËöKðïiµÎ¬[þÅòún%c{|Aêg¤»°yb=Ê’¬tLè+œÒðB ï©Çlänaò$Ë aÃç‰s‹unï+^nVkc`ëïh· Î,õ@/]nÎ ¶Æó‹*© [ ½¬J¼CnLâSÏäþSÿw-­YgIÓã =CËï5?V¶\öxP”âü½†"]~{î q8­¬'Ù¸œÎyÙ;ÔÛ°šVnã¾H·>)3ÇÉÎC]´óþ ï˜ÎîIèBσ$O<Þµ5ޤ5ȶÊsx’ªY¿"µAVdvùpWËŠ!Ë– rÆ£ãÄ–û·q qÁ½²^ï¹±æñÇÓáll*´®£µqV/;¤2àfÉkb}Žs<*[ðæìò72;h²Õ$#,ì¼mÙ¢¤wÑ¿Ùa£1â ¤ý@jëç>¡8ú37šZvèê{ìo¹55“ÙëÈ5dþÐ뺽¶pöö}j2u§–FOŸÖžJt‹Ò»²ÈÿF`(qIú$VÓïYþÛadÞ0s,0l‹rî$±mèýJ0ð9:Œ²He£%t'›±ŒpÎÈ> "”Ó®Vªé¬ã‚;r›×JÅ.ë]”E*b(X ë·xæ‡Ñ¶ªQØýN òŠ¡°0bG‘%d©b!ìz\9dŽ|KL€¿•j-ð^,ßòü¹—cïoyè܉Î4\ÂÔÚÓ;áTeJÞò½ÉòŸV>ƒÃ ­ AEU÷H,/Yx°Ò’Ë%·é»–ûj~LË,×sÚ£™#kþbµvÖ×/ Z M°d ö k’a¬:Ž~ÒÐi45IL6Ø*¦ƒ2³¤¨ª©R ·‘¾Â9ÙAáQ¡¡%m e+Â6@›<ƒ(aÎ…(a¼%ˆRÞy6¾'ž ðËÙ‘ç®Ň1$ögÙ“Ðýø xpzC6srz¶‘þPNZ.¿×0<±}€þ¥é#c³"lê-Q¤é:Âh*náîšÎŽ;ßîƒÞ}ð` ¬Ä‡ w¹3éoÈÜð§V.H]dì]¤APš‘3qÓCP ;Ç­f9lÃ%™ög+L†FÖ•—Ù(²Þ“ô×¾(8¹pÒ¾?±m`£éC°¡|l/“j|ääþ퉻P#øÄ<Öìwâãál¥ÿBi…ò8Fz§#„ÀÞ!xv`]ì–Æ7¼à®©ƒzâ9Ûýœ„èhìÈ *}¨¤[$ê5±1?L`<`JhŠ˜´.†aŠ;!Ä%aòtšÀ}”WXÆ ÙKq”xÏñØû IðÄ‚9 ä4G8/Î?¬¸éLŒ¤9ïfâ@‘¸<Ó…W3´‹¤°Õ§(ÛßEy±ÎUÙ©ÊÚ“Ü#y¼ÇVÁK.¹ÊK|J\­tèqÁ­’4 Ç ýqQ¹Ùª[ä÷Œ1P©"3¶‚¹Õa8æQ¹^qdíƒñ—:Ë%„p/“Õl™ ÷…”¬'idôFî>pÊL¢…ìÀ7 ;íž–ÓU .Cœ—¬£9æ ñKqM‰•—²{'.íN¥à¾ `* ‡5¥ œöx ÒêdžÄø#‰P6cŸ4‡ ·B‰€uÐ Þßá#e„˜­TH~N©CŽÑÑ:OÅÃÐ~óãÜå€Þ 8"ŠšòP¥ƒ…6Þ”i VÁÀšw\ßSU O>V&'³¢^2Å€º ÍV @—ú¹ÚÒµ–®dˆvÓtØE¤NñP"’™)¥ULm¿á‘Ìå¦s¡»ïbÖŠ0q–ûÀ FºŒ>3Î9ô¾|¬K>yYõ¦byr.xí¸ ƒw(Íû˜?æy´? 9( Üèµ)»NU`Çv#eœlãH¯[áÉE?†Ù5?(Š ”_ñ~Üœ^ÈOCJAÒŽ©ÓQÎC¹3ŸËÇm25%×#ã‹g’O_ þÀéð(Agå[NÒ3+ÒRK‡öÔq´£Õ(Tú7;¹"ÚhÁ#µÐ¦;_l&iâ^“ÞÇ@(² ô]0ÕÇS@i¹qŽ”õk¹1\“ƒgëî£o(ú“± Q’¶ÌðÏ0œýÂ6yÓê-Nf:/G·‡|S1ÈÌÌw Ø5ƒhå*ÏÊŒ/åCÌîD!ÂB…“3Øø¼«çC[:ýˆñF­ÕeÑ·ïrk̈ÕÐaäy¸ ÎšC¸ïQS”+(I–1¥Ñ⇑ƒ§)—oÛX}3Ç©I 0V‰Ç2%…l£*3O¥mRThÍI㋳»Äçåb4'Ü[7±+âXÙ-ž³Ëã!ðâm^­w‚ØÒ|&ýJ)ö)Þ OÎeò,1E¨«3çʉÙÎU$©wãsýqn³4q&ìÕ>.éà—?°?™ò>ué ,ñåÿ¦Šgd23Ñe­3G3…qd43†öò‹¢‚á+[úqÏí¡ ŒŒ‹niòɪ 9G·¤®çZÃx usZ¬cB:ý0#’21™}Y‹9¤£9c ¦›zˆpÁ@7Owã¢ÈpÍrÃGª÷ú$GÍÐÍæ|ÌØ4É¢bÿ9«ØÒ¿h‹3z}ٌ殜Wù‰âéÜñÛ4¤/œÖq%®G œ;j ¶¬|V®4qœÑˆS’ª¶…Ý÷lŒYé“´Ìž]ÿžx‘Ó®¸··ÿA ERævrï¶a²)>Še?ú.ª¦ôþËTºârã*KrÀ`ó·mÀ¦êÿ©m÷‚¶ËçÚ.¦ÚŽŽê8IâÞÑè°ÛðiƒÜÅd;|·1n¬VÙë÷Z‘© 8¼ÁŽ‚ŒÃ!SpÂû´£›þÑÇZ ç<€œëðú¿ 0öêÏׯþ ˆ  endstream endobj 16 0 obj << /Length 2881 /Filter /FlateDecode >> stream xÚí[ëo7ÿî¿b?®p1Ã÷£‡|¸-ŠÂ8äP¸CÛK‰ÝXR*Ù¯ýÍ Éwµ«G$Û¹C>DÞ]’Ãá<~3ä0¯/Ï^~ç«À‚•¶º|WÇœõ•5ŽIeªËIõs=¾+%뻑¨oàßl:úõò‡—ß Q Tšy*‡ÜÅ%eÅLð¹ÎµVõßFÒÕ‰út|5’¾¾Æ7UO`žég¼.&Ÿáרáƶë1¾üÃÓ—»ëuÏw𸸅ü·ÀžŸpó÷±ùwx¾‡ãyd&®1ÿ®à盞õ .˜â¦:—()—uñft.T¨/6—/¡»ÎËÿ…Þ'CæÞW„@CŒ`v_¿J¤Jî2•Ð0©ýߤ^¼²,8åã"˜¶:‡¿ÚŠØï¦‡1 #\%Yð!všü½šb"1¦ƒiÑj¯A W}N' a]}»µ =DUJËÖ=‹ÐÀ™þœEìvöíåÙïg&à•¨¤×ÌZSY%™ö¾ºšýü+¯&ÐøCÅ™‚|¢®³ÊY¦ºÏmõãÙ?Î^wý²!%AÈVÇYãb½(W[gš«Êeyð¥ ü«‡˜aÎï%=»§ ˜&àZ&°ƒÆ§ŽJöqÜ!ÓQøé˜Ï6pV_ôJ‚µ0/¶îm¹cFn5/ÃlÐmëjûECJ0¯Óì›Üg:O„bž)£NŠb{Y°:%ˆý_Xð©–ÿ>ôÊÑöáè@rP1ý ¶ŠI!;&ÜÈÀ„@ ±V>BÌ; ï'äí ñ%à°œ9P¸² -T“K8—²T‘ÔLÚ4è§MÒŽyžŒ@r‡ê~ÿ9`ȹk Ãòã“`÷B0gÌ~)•Þþôie1@¶ºé·Ã÷Û\ ÝŠ%F‰6Ûœob„2àа1À„c¢\CÊAÀtæè(w´§UºÀ³¨!Â0oÀMH²ï7çŒñEGã}‚±ß+ŸÆüÕØù‡§3 䬫Œl^è£Ì¿!%ÁªÂ3˜?us­h„²TÌŠd*r8I0Ú“åm‘€·Lü& ŠC07¶[A=}’ð ~d’ ÷Iô^IÂðâD|! % ¾•$èf{t.%|p =s!)¥§@ÞöñŽ>þ÷ÒÀ‡M¿‹.Ž~g ¿ë¬ŠWç–Iîw¦ïFfÌvl‚TŽ‹mé{&Àå×ÍÞsnöÊ0e!TØvö>”¥I k¤¤ìðÈ,H)p«Ÿ6LmºJ$¡™ªå*-ü‚< øÎ‹n ÀÌð.,]‚3aЗ¦o¥ž¶¾O–çóˆ:dÖêðƒ‡á=“xÖCÈ~˜Ô¦;Hjx«ýWübÎ8 l÷]χ]§/šƒœC ‚‘ ɱ.sÊóz2ŪÔbFÅ),Ha j±ŒïèÁ…z|{+,`ÍVñǧDzO,˜aãûk¬”!õé$¶ÍñÃý ß".ÔÈJšyñ®˜Z©áW©JFS /êëEì:^¦9©r—©š¶ú?/út›{¥n«£R.ÏÊ@’|a;,nžYȇ*T@Df„ª¯ó¼îå ­EÔ÷¹ÎmÐISëbý˜å¯T=Äš¡0õGTϲ(Žo×ðýÕ"óÊ„'‘Mše°¨*e€ð«ö…õHÒÕãù¤/@[&`o¤d‚VÇèD ²v<‘ ОyÙ„¤1šô¤ï( Ïms¯žCÙ€lNRŸ JÊ´nèGUãñ<É= Ü0xf•nÛË#caŽ›Xõ²MNàZ6¯W‹Xx¦AÙhê¾…âiW¬¼}žcˆ®c˲¸w¥µ,¢[n q5V«ÁéxîcÂ3éåy?Ò¡q´.Ó/ãêÂ3á_Sòï.v¿Ý¬;ºXa/ôñdf a°S|D 'Ä¥‹¤«¨¶Íˆâè”Ú2aÓ(å§^'Q¡ ŠÄCgWéÒ=‡l±oï $[Ì×#i ¬4 ãVwIÆ.0­EÛ‹vɯ]G¥{×éÖÆÅ›‹Ø¸×“˜toK& Œ »)Sä}8Ot勌–6¯9t_J‘Ý΋+.±ycÙoÇhM´˜7·Zþ¤03‰¯x垈ªjìEçË2 [˼‡`¨ éÉôU!M}9 :^lA¾œ®'¤¡q|›«çTÐðù$€' ô»/ä†wñ¹¦çVæ½²VMû«Òl"žs]ÿ6Í¢H\ Sãôœy‰÷|n“‚à )âÃaÈ ]¿ ÌŠ"¹º´…ÜAÊd²ÓøÒ §L¹üŠrnj[QÝNFà¤Ý“Œ …}z÷2ÔTØf€³¹ ·gÁmyˆ¿"iÓ 0S±)"ÞV¤îeZV¶;è˜äÉËS›Hxs4Çbµž¥ð޾C(©šílšz3S½‘ˆÉ0;Çüf¸yˆØo“éâ´AkAÕ«ëæÎå*64ªƒçIöïqêc´‘‹-è’fèøx(îwÂó,æö¡€‡b-Jt9ÍèÙ„âФ7]Ž(ˆüI!ѧMN¨å1Œ¹ $¼YOœ‚uçpH+†B–V3Îå¶}Ç£-q(nÌÊ&,gÁ_ˆSÒÉ£.‚eRrš\š}ÊÃ×nõÓû‡K§gÛêak#L{i“^2º’Ìä ÿŽ:çÐoÖ ¿p®6Œ1ëlßÙà›“hÀ‰ðEë¼õ1LùŽ…^fó"„úÇ»ì}÷ù¥›©iØ*ŠØ Ø®‘Œk·C;‘“¡û­@B)W!ãV¥#ô×Ë|{}u¼JB¼úö]ÚÀ,æ[¬æx¾`g›v³_΄í| #èèO¼e¹•/ÅóÆ_Æ ßHRìÁ"_1P\ÊÙZlQ™ ”²(š6Vh ÁU›ˆC²)+´Cˆ3ês…eï†Î7[ƒ¿ )ÈZ sæœZ{.¶Lóóäï;u2àÐ1ÞS~_ä$=X|ëÄGõñÉ·ÉÀtd ò'Î{S†®¿=giå™T¶ •Ù“øž$±ŽçÐd5Lcð4#ß™´àˆež“àAÉÓ;žú2ñ@íÀƒÏ“4óÖ¶Å?„b‡×Ɉ`ÜhÐPyòóÄŒ%4=hÓFƒ®ñ-~ÄéNãGà•¿¯~T°evøÑçÉ¿×Jñõ£=3;üÈw¢ê?Rd'Šª‡ÓŠªÂÃ>‹'Sû£p@J·1“|éÛ,€µ5¾æÃŽp‚©•“tTßšZàá¶ uÒ35…¤ú@¾,´y¤T-¾‰ÿã—›Úƒ’Eñ{Q »6<]émÎk›{Áÿ…™B endstream endobj 22 0 obj << /Length 2848 /Filter /FlateDecode >> stream xÚÕ]“·íý~…&}YŽüæ¦u­`TWÅ ÿü2®X¬h ßߌ'ÂÒ÷<àúW©K˜yûã[xâáíëé.LNÃb_àznÂÿKDµ Ï‹é É\Ó¿_=Í5~ã[ÆUËd= ï¢[î2«Ü\fAÉÔ¯}éeçudçßÂW¬(P#³Í–pÀÀ¥_‰åm¨;øóa<Ѫø7êg¶0÷×›p=‡‘é: ´Wî‡6¸æ0ÊrxFd†AÀ…ÀÎìÚ(2™³ ¢j‰ìY]°¯“*@ŸBŽ3£Õiq=AòkV@ù ÀÃÖ>…j\P€ùÒ ðXÑs–§ðÈet›À”g¿Ž‰ªÎzoj"ý-kTUÇ‹ãk••.DT ä$3\Ç葨q`4 PG¬-¹†Àû¸¸aú¦ÃÄ Øn:@,GWLjÓ¶œVü L%h²‘V6èI°¬ÇÆeŽÊ ¢­ìâ ¾} cžÀ+Nª$v RÄ’†IóëÈë*Vjù€ÐkÁâíAÑbGæÀ¬í ¿€¸Ëœ1#åÓR–¿¨qYÉçOŠ˜Z‚,Pü²'Ôºâ®D8œ™'à“K7ÃT 6t‘Ô¸>C$ª‚å]šú :æ Vš¶“i@•©Fì­Ù¢œ¬QœTZ°JšCš” $kF\¥0e_&âöõH‡LÝ`.ƒ¹cT+ÈšdÚŸvu*3P#-^;®2S XN ÁÕEøõ‰°EP3;%‘áw™J ·lŸÈê*õ½¼x=vÊןE¥±‚?å fÔ!Àòu¬³O÷ œTuI; ëYhàTèÅÜ`Ñûnå[J~˜ÈëÐÔÁ‘Xù¾ÁŽ‘ïQÉ[ °÷ ¢Ì¹Æ1ž@ PøÛCÙ)D\uðXQqØ3”ñʟɴ꺉[FþìIتQõÙJ-&à‘¾º8´ç‚ïœ$@Ø_)Eñ¤{·ªÝ`ccõ[øƒšX7¸-­`ø¼[„^Ž’¼ø'Z)ÛG~nNþÑZˆ$"ÓùZú£ï€\N'õw¦¨X·©˜· ò¸tºiá«»RË[…'`À~ÔvÕLß­Cï,ö\ÝÙÆÛàïFÞdÓÛÛ54>"Ü´n'.Ç¡¶ô¯± ~­z~kÉ|%ˆçïÇ-¤WÀ¶¦ÈC{>÷¡i‹ ÇIxôÜ{Íðb©Òë ¥Ò·Â=5sÃvC¿{bKGDùSCa;nA)8¼OX¤¡yì‡íC»„îó0ôjp}~ÜÒgKSŸ¢KH4‹Ìt ·×Ëð³ ·Gä‘A´¢×V-„F¾íañS¤"×vÕP–ô.±øŒ†…¿ê‰âUX=#)ô?äËx¡L“×SdÃøë¹ÝˆÐ=ëÒŒ€/p"h!–h Ï>×ÌKs4‚—‘ëóqyœþ;ÿÜ? P’Þù¨³&U…Xû)\Üo)WÜN·Éšü5.õº ׸bÒž»ÆáÏ íûnK9 ß_/b,ïUXœÅÝÔã£sM~üHÛt”ÛG2n’ÛþŽY©0(áO‰é±Åzê·9.ø· GC­ŸPÛo+àÈëªVq?_‚€@P©É{'˜²:\çðDjùš¶T0߇Ýx±K“jU%÷ßüî–J@~i¼Ã(ã5D0¸#+NÆëzèhÀFêSb3ãŸiè#m¯é¼¹\çs`?»¨§Ó¤g®š»W»lM0îU?ðW5åw¼=å­ŽçûqÒvoJ ^`±kᘠ‘½ò§HGFÇ„¢ Äm®èX©Ìˆ;XŒ´‡Îœ±Š5Pó¨1Yé«ÔÁÐ$Ö]}÷ÍŸ!ÀÊ%*Œ #åϹÛfœ)t; T~;:8¹Ž˜]€ƒ¥®¨.l¾²[,ìì=£’ÊŸÌ5¯=?vs+S‰þR.Í+«…Ó¸“ÀêÏC5%ìÙÁ®QrüaØÔ‡a[ÐmÄÙtÎ)ñšâ&sêÔxÑ/Ò=œ õ…§YÙ,*^ › U˜9!O÷ý[“ú¸Ë›eRøÏ"œ ÃÝË”¾G@·!ô„„’Nå,ˆÕ9fu'ÕøÛW½÷ßÿ1Å\íz½ ZÆ ÐÁÙ,“)¿P,M•˜¿Î¼\}¤¨©Èæ2×(Àô‡»ßb}]¹Ýä2 .8óVpi¥1È0àû°ùRq¨F4vë͆Ö[ºâ'S+CX_)ÝÇ’Èuø_W ÑÓï|õ£X¶#ËN’`‹]¹™î›Ø"”bÂuÎC›Ü}JÒÎrnÇÇþÄÆí›È»¦RµŒ©òvÚ-&-›Ûóm¦Ê ö¤|> stream xÚÅXKoã6¾çWÛ$Rć(©hz(°‹ ‡Z÷”æàí$hb/ÖÚM€¢ýíåã£8”©H ‚îÃá7gôóâèìC)gMÞ(®f‹ÍŒ±*Wœ©²Ê¹(g‹ÕìrþÓqVr1¿;fóV·µnŸÝÔº›¹îƒî.AñY7Cý¤ÛŸEYèi§Žr Šnºë¦âåk,ßcYÚå«Å/³ºÎ+YÍ2Æò¦¾Ž3¶€ñ {p¸ÍëÈ÷D6,½ÃŽ ²›LCòƒn¥ÛÁ:„•È‹ºŒ^Çl?‚e‹Ó ÛwÀj¤¿!¸ÿ:$ûãpêSD?ZÆËkÁcp0ïwîóv[ ­›þ{]gºýr£Ì[(Ó­›C‹äi± úÎTD;U´sîpA¨õ.øèÖu ¤¼ììß–³`¹à=5ôm} ÍŸêvu€ð#¨¼Ý‡fÁÚ}Kw¦èiåyu$VORw2M}äJ·³„C÷é/:zë/¼È뺧§àJE.eÒ´ŸHØÆ×­<\×_àBâ/.Cðè4×Ý/‘Ë´ö„RÕÀ%ÊjQ ­+Bê¦&‚\.|0Ï7Kž!låˆ co ÙûÕꔕO;Â<éÆ —JHÂÂÍÈi¢$[ jÔŠHàûeØRaKÔ°nŽ•Æ §ò‰ÂðX ¶œ|Žv<(Œ$(A«zfQ„¾!¬9ŠJ"&J"Ò’”8®û çQI(™ÅJ¢ˆƒùµ ´¾ñ„$U*'$‘ã’Hâåë%©ÉŒ(¨!q4/ ³ôÓlRþ’ø-^¾èÀ†±Æ™¥:}ë¥D.Â¥–Æ#œ"^0^rŠ^È¡1ƒª©±@Yûઈg0°.^`}1Ìšaìo%ëœmk9µ7¿SÌ‹|öu¬Ãkçƒ>ê¼. Oõpž×’© Á‹$7+R8,}ƒü€fòH!Z’ì¯mŽàI±YÈ,HW%»uè6ýLž1™×²‰åÚ¨æû…ä*i EÎ0A„¡§Õ''1W¬—8}D¯{X#¤¤îYóÁ:Ã7*›&guýf% ­NƒÏO«ß®š+Ý"©_W”¬#Q‹›xÊ@bíÃÀÐ)íwÜ £¬¯ÃWÒݨñ_÷yŠ+4Ή‰B¨‰Jru(Ü]ÏC¼5‡ ;b²¾Oäk œƒ}0àˆpŸB9vÒÁOÕž×±Ji(þ~¸ÈòöZcˇ.út¾ÏÈ¡/ñ¦\Åè NàÏÿ:zvÐÙÄúS=¤l ­~ãt`K=Ÿ6 öÊH^4åP)+Vú$+Q 3ìžT:N,'¦h‰Gƒ ŸRþ–|&ûÚÍ›±5µ„×¥‘È.Ã`:¿¸÷uKî^Qå:üëצѯMíã‚^:z¿8úU*ñ endstream endobj 29 0 obj << /Length 3749 /Filter /FlateDecode >> stream xÚí\[s·~÷¯à[W“Æý2<Ää¡Ó´ÓZé4I§kJ²˜ˆ¢CR–“_ßsp[` RT¼uäÖž±¸ `€sùpv_œ?{þµ9â4׳ó«cœÆgZÂ…š_̾íίÏXwy6çBt«~7»%ü¹…ÿ¯û›T'»¿dÝk/îà¯Ý†'ûM$q;£L" llϾ?ÿãó¯+¤-‘VÏhÊ_bY4±„Q›|G)m1ÄY–Ú|Tó¦„+“|´~…£ÇnÞžqÛå±ÊnZ`É»7p­»Ëò§†óûÊ”èî=ç6û°ÁõeEkùȇåÀ³Ø†;›sêˆ1z6gŒ8Es‹ޭθé^…alàÇÒn}…¿Ðo íÛí"a(¾ZoÂ…ï!Žn·(5 ¤T÷–†Iùªï¨¢pGñŽwéyÅ,tÙß^´èQ ¯£¼7"7XƒÌÌÂy¼ƒ›’ÓI¦oð¡ßú)­²Â†á§i÷»ý®Vp½†KÓ]`'7‰ýšpikö§Á*Úá Ö«7þ®×¼úª¥ Õ›ÍÀSÖ‘³¹dºûúÌÊÀNhVŠˆF+ÁǶ»ÐÂ[OÚùoc7áZ‡Ç¶Pr‡R”Ý8…E’<6ß äûH‹üT~Œª«•—fkHÈ~³‹OD ¸ M¯ü$W^'owC³õ­g"­¹÷6Ö^ÞÃØeWx»¾‹œZ¬W±¨-ûðƒ¬wÉð6Ý‚òny~ﯱƒŽèºÙG[á=·°úz}ãõl_¯¹bD z½Ù×k æš1çó EìCÏó÷|¾èæc;æ]Ç"oƒáu,Úe†ýè‘Ã3#>íUg;»eÆÆ îV€f“1†ÀcµÐ“3‘Jƒ\3.m–^ ·…ÎøF;oŽû³w‚Ðã¸Â‰4Óƒn’Yèƒ}ør~úÝÐ3ŽduYUG£÷-®½®û‚ôINœsƒˆ^À·ì p]‰Á©–ÄšcÂ6ÄÒÜÓg(.Õ Äf@ËD÷‡~Ì#ÚíëaŠ×Å„—îqVýæËN%Dª¡KžœNÃAµðNèý>ÚäÝ¢¿ •ñÜbœlº±•7oh°Mœ÷xz*¯î"à,JÁtvøXiÛp‹z×@£¨°¾ ª\ï}üM³XãÝÃ/./B7°¶óf¦‰3ÂzÉHÐr0´9#ÒÉÀÚ²FifE“Sä¼Û'#ˆrÅbGyƒ–2 ÉóÏÞñl#èÎ…r€T¢6ÃEö—wÑrûÒ˜çj®û_<Ø_„ÛËm²øUjŽ%à{,> ›.úmޝć#ï__ã]BX¨Ù5À•°‰ ^÷± -Øn¼bú²ÉNÁ*¶o¤@4NµHÙc”~ãÜãr˜Rq‰l¸^ã”ïok‚–ùÊR]áößpù"¯¡½kóþ.òÔ»"/¶H*°ŒRh€B^ ‰÷¯n’VБ@‚cGÅû2¬Ëý:GHÖýU©¤Ñi^áõ—a½-„ÈéÕá2,P_ ¦&Hy(»#ì=.kð:xœõv›œD1-X„U_¶rÍÄ iâÝg‘Ÿ˜ˆ ÂÄ|_&{1}_ ³HÁZÚŠÁl÷—|pÅj¸Kv]ËÖ( A“u-Úá\UPñM;D¢x¹E É’ëNaÇÁ`Lµ÷ì”÷%€ªÜ÷0‰¢!ª²1¬Ö"fF®¬1<"bhFŒ@>1sСZ|Q;¢VŒþ¸Z 8¤VÜ Z·ßåˆe² Q~ÑÚ@8[©€hüìÎR~êýu~!=Z‡½<Ôù,€7¿-FŒ—{|¼]¤üÛ3Lœù@fˆêƈ²"ÆNqt˜TÆ‹ò`ž9‘ãðuÿhƒmµßÃ&<-l—û1N,Â>­>ÆÁ–×g¡}«Š¥Î1ò=ð·­t 1ÃþîHª<%¾+k#®‘Y0 ÅL<øÁŽ!sè·ÚÎ×`”HiE¨4Õl5²@gÒÌÛ÷­¥Ñ2›îE+2Ï$àû£“M§€ñ1›*¼ª dŽÛ"¬%è#ꥆ_[cžà‡~æÚIV¤½Cu·bN‚8‘¹ìS°ÛÐý!™Ëº7ÛЧÌ27dqàºu¤ Ë‹C3Û˜n_ä!¥¿(.Ñ[‡>KÒu> ^ù#B>sœÓ[P\E£FÚBsŒpŽ–-›݆,®ÇGL> üQ^obÎf†afc±À#Ûp²(Þ ‚x-%–g^ÿ©¡«šûpÉH[¦† ½ ¨0òw›ãõñ O•²–éd>:““Ñ—ÉíbB¿8/‚õ¯¢²íê|ŸÌ2ÖùÙ '‰P£C »t”È3 5DØnIbR€Ä‚*ÄmºM–<ÜOºžÒfüÔËpièö*‹ŒNT ySDãÍÀA¸~“©y&V•\½Ž>¤7„9…£‰þÄtGüH§Ž’ÕP¹âý0`çž·à¡Ó+Ž7Èݹ‘½42seœ?»Ä(shmsã Ú5âÈݳqmÕ1·#À7‡³S‡âÈ–Z-ŸDE§Jü³WtTå88§-åO íZ+dãƒûû']+ÿðM9 ¿ã¢X¤6G°"‚MWŽnƒ·¢tĈª»L \ ­ÏXT‡dˆÎj}ÖZÍÀj<“¥Ïã(Wmð,,j¦ašõi˜¦ñS˜f Ý( Q-í¡‚g¢™öuÆèS³3ýLœÎÔ}gqWð’FS¢Ñ ­€}´ôùb—RtüãSy‰®ÊL¢ó°ŸV†ýÖ:O?„ΟÀµ•¾dÚÇ©ôâãSzŽj#'Qzà„öÿBéOàÚ‰J_2íƒ*}pµÙ ÓÃHã‡ÓFÁ-ruÌ´¥â ,:pea pµÌ¿r÷¿®§0íDp-yö \§ÐÆÖcÔQ<5u| ¸N¶Lk ¶M ®¼8¥r\í‰àj'Ógþ ¸jpTZM®l2…ÊpµS+\O`Ú‰àZòìi‚ë‡PÆ ˆhã@ë1ê(žš:àÊ×)Ø–iMÁ¶SÀM„Ž´lø ¾K4?4žfùT›³â\ƒÃÏ$àË.’0¹õeH*·Ž ¥Ôñ²¨lùB– ÚIÑ*Ñ‹ßá¹ù¡ uN§¬‡ïr`3õœqL»*˜$®Ís.‡â|­à2<8_„gœô9ÓøÆVñ ”r°á7W½ç/¬?@»Ÿß-_‘U适?šy^%÷GV1_ -†yÉp(¡Hê‡õ¿ «†¬}¼¼¾,®=•¢ÀXmCK~‘ôOw£øØ2* °lôÇ9®Â7nð¾å}|ÌuÆw…]n‡‰§ÏIäz5p“™x:Ÿ‡W·ã«Åñ1‚«öVÃÙ Fimˉ`jÆ@âN˜÷9M•IÇæéœÛÓTÕ÷*Xú7á¾1úø\ð ­âSL%QzìL4Î$žV¥ÎŸV¥6¼pט“pDÊähG¤q“L*‘:aVòÀ¬×&èœDüÀœ„”d1EB‹6æGÔtúÓÝðA ?M> stream xÚí[Yo#Ç~ׯà#…˜³}w?ØI Û0Œ$¶P$w¥„‡¢¡,ùøñ©£{¦gØCJ^ ;k`Í9jº«ªëøªºõÉÕÅ«Oä®j§Üäêõ¤ö•wa⬯”¶“«åä›éý¥œ®š[øÿþ=À¿ùåLN×pÑÀ¿.gZÊén‹dp-Üôîr¦ÜtuwÊé÷—ÊÓÅ/öé3AƒÏ÷7øm$Ç—x?ßòýn»â •‰”ËUü¸ý™ÜDòyÃ̤ñn‰_zDÃ7‰WIL챌MsÇ¿×qjºÙìî;QQ ~ñ¯ÖLñ(¾»úb"&3)«ÚFEâTëÝ>ò¡ˆ¸ä zx“DƒKbçuÚì#‡«ù†_.v›»¸ûy›ôßT4¯4UmLòÏA$U›V+¾Ýà<¸–i ï/­›ÎïoI·á‚t¶Ê!vãƒGüxÍÀûk¶¾™ãè-Hc?ñ»uœõ?—*Lû£ó·+›V <…vF°Úò4Õ·BJ¥p½äç¥hŽÏ1avÉ?ËÔ˶çxïÉWx_•êCejy|Q¬?)ÈXd|މõ® jO S¤Lˆ4Ê7èî#$g"¿WÍrÌï-† ÝØV˜œ.âKrI‹‰~º¹‰O¯FG)5·QØ6Åß<»ÃmCü!Þø˜U¿ˆ^KþOî§_'ocäŸßãÿ¸ ›r¾?…¢Yã"ãè8FÌÆÄ$ÚÆ6Ƌ՚b-ÑÝS(kqeŒÜ4o”Ë‚¨%ZÁòØA µ1ÄÁ=ËKt÷áCÉ$×øU1p(H>êXäð•s~4Ñâ¼»ëo“àã¬èzC¼çðëŽõMåÍ¡ÔÏR/Ð`ûºéqPHÉÖUÚ›Aè…$ˆË5G${¦ˆÇaè:Óu€È?K£›ºš±p›—üpÎñ§T\\‡gÉåñ3øñ‚°âz×t$ BÒ[œ`‘kzík³<^æAÏõa Ü~E‹ÑÐh?}Ì)W Ö÷c ¾i2Sè½I!¦„í-’xHnKc$m­9`ÿH®´ä'÷Ðu20¼þ¤Íßë ÜmbtDC/DǤ'"¡ó4ô-1Æ ‚¥Â¯cUÁsÝnÓ›¿qíð²¹i9‹3΋‘£Ë. (n¸ÀÇ`¼º`¼²Ò€ëfÒII”ЩÐ~’ÑÜvã’^¯£8ð@‚ðTz6b,.|q3ÿ‘â/ÝzN‘ø|Î?”"¢¶Jt8ÖÄx3! žÀc]›Þä™V,à$ÓSÊm)*€e¥4Ce÷Æ•€¢äœXW°KFCÑ¿Ì1Ù$ƾ4Ž­ÛÀĉÀ„À £O k€WOw#“IŒ†î”Ò¢%™žl¦µdS2‰1ÀN¼;¨‡dÎ{Ù|XúÁ¤b,÷æ<—B5E—ØÛh+Jô[t?F2y³aÍoGÂbOt UÝ«Öl¬ì(€ÒÌ·MqÉ qÛv;.¬¨YÔ¥5 Ç—lT}æ„úB_}Ê£=ÒOßôL¯Sþšƒ%gô¦ÎHtQØZ†w&,þC虥\ÔÎM n¹§Á×ÔP ’vÝ7„46 Ãi‡Ñþ2èØ±Œ#¨©dú„Dj®màÅ6qI•9ð´zŠˆ€@^Ó¢‘/=v#ð ŸJY±#F˜’×Qª܈Ûá¥ÍçÀ7‹y“nl¯ÍÓ~—#/|6O/[Ütûæ¦Eä¨/ÈŸc]ªÇ6.…#=0K%Ô~ߤŒå‰Q*æ?b€çbÒg‹ËXvlR5P*7öQ1m†óPI;oæêÉdÁ¸Š”ƒâ¿|ë 2GHÎtàK¾2`çDö×b™¹êÍŒìÅ,„}¬w–aOŒq_àØP¬yÇþ×à¸ã:Ï«N³’E=¯®™9'¦Ÿb ‹ŒÚ•º’ì"îÁ¸¬1_êw…Êteë[À8mu®Ù¶ÕØDÏ¢zCæ±]!ÒÖ´ ß'xK[*©m Y§ûnøÍ8ìRLþK„]öE°ë»R½ëŒFmR÷„º`ýJµŸ5vžø e]ŸáZ¸þS¬‡ùnÊ,¹Ã}Ae¯ØAžÛwP‚z‹Û¥Þ·±ÑŒäT)ÝAw‰¶òʆ^ï¢iz&F-»‡ÔYÛÇÑÛš^öѾšGÔ¿›ï‹´œþ‘ë,ý3ã-å†6U×-X‹Шy—‡…Ž×Ê ë¶<`F)‹o#+ïõ…{|`L‡µÈ2é1–6¶€:ŒQì2˜JJ=(KúQÈ]€ g¨Õò|ƒ÷÷iŸ)nä/ö])·+Lë”Áo¥ ZCðk¡j=ád‹´××í†jVô¡WÒ>äÌÄcRð¾Ƽ›7ßjARÎÀçB ì'JøVgOeæÁªBn2LÓÛ=±ÚbˆMæ÷ÏB^"r` â§î­R~g^qóâÀxï«&övF1s.”;U=ÈIóÖ”rœ+a?Ó3dÂaáÚOfpõÜožhÍóÑ責Te¡R&š±¥  ¨q5Û#ýD¨±ësöcÌËWàÐT#͇…MQåEpLéJˆšÉ®zghBç¶ÂçÇc<ÅîÍ6Òÿ˜ZõðѼ)؃”úržO¶2$–øiÙÊ#2î.ºÃ:~¸%B%6<”%š†_ÅIßî?Žt›„σh鬃'?}[‹Œtn$óÈè‘Ãc; ÈLÁWÛ¨ëGl5”Ï¡¤)-z ê3˜õÐqeƒ©W +°$áwìû•°ìúUc!I½ÓÆ.ðPë£ï#Y^9S}–ˆ­nÉ÷ðÎ,€.é‰U,w÷g,¿ú S˱p/XuŽ8w΄4ÈņA|4)¨²Â™‚°u•qïƒð{ü¿uÁ|ŠÇ÷ðOÇ^jch¡"%‚ȈåÒÑ’Ò_Ää%Ê'{*tz¢c‡âƒò© Ûm“<·¥Žôaì!öÅýoWIYŸÂ¾øÇ_>”¬+¥ý[E$€ƒÊa1@m±Œû;vº? }³C.¬©Œf.„>ÚDÒ÷Žâa’àP€Œ¢á$·ptŠú-äË©`øÞŒ¯´»œyíÈ0ÛÖÙÁ_¥Õ•õ‘Ý!("ºÝW°m4Ü—x/:Ÿ<þNy°T#å"ø0ØÐ‰rÑB½hzõâG¬"ÿJª*QŸÆ´qemȵΰŒ²••ù!7—Û·q5Õ+éâž¾4qõïl³¸ZîV(,²Ÿ]Ê»“63ÞÈÔšáUFõQZˆúˆÅÔG,&(äá,\{á˜Áôp>žI%Äï3DœÛ|z㉲1iQÕ Èqc‚¼ˆÇ6 Æ$e²&Ì2ÒzJ¢:%ÑóçþâŠÛÊt÷O-¸ñVS—0„eÿR ‘N[iž !”7jiuxáuåñ€TêC¤}ÁCL˜ @âX? ÓtÇ @ àOª¹0Š Z±^‚¡¾Ø¸TµìO)*¼V7ôãD%„ ƒ‡‡‡Ñv#¹>Õ¤x}pÎWCñIÔsˆ¡j0‹a„3!2ÜJá…q:ÅÀ\ Iÿ‹aŽˆ!ñô§<‹èÕ6ÀËÄ1ÿA?4µÀ™ÿ–¢\V endstream endobj 35 0 obj << /Length 3617 /Filter /FlateDecode >> stream xÚÍ[Yo#7~Ÿ_!䩉;¼ÉÞE`‚Í"@v±ÎS& h$Jt8–=ŽÿýÖA²Ù[–d=ÀXÝ$»Xüê$»úÛ³w_}gìDʶ³VMÎ.&o½ g}«´œÍ'?7º=‘:9•R™æÃÜÜlàÏúäT{ÛLáòúZ´jþXÀÍ [náÿ‚Gýröϯ¾ “®íœr8‡˜œÊÐê ™üÙ ;bH./nàÏfÍ Ók$O-'Ê7 Yšã6^¥?õü…¯ç±ï£úÙÝr;±ŽÏ¬øi\Ñ̺ù;ηË4Ó=ò²ÁƇÈÏ-ŸOqÐ߸/ñ×6÷´’›~9·'*%¹‰œ!;ÄûUä : {-³;d¯=95F4ß l„Ɇ‘ÂÛs\ÅqOJ&Ÿ¸Q^Ъ6Ü÷À)ïù>-‡M¯¯Y’£°âx½t#QZ2<ÝÞö3&²,«OÈN¼âg¦ÛøË?„òmTì;V‰wFj‰h(ÕüÈê†#P¶ýjAæÅÊzô+àN¤ Ä©iþXXÀùéäÔšæWìžÝ¦%Zýš‡å ¸gÙ³$¸uŠÚ2çkÙ?‡df8ýo¨ç„šŽ‚Ûò°yTMZÚýJKÚ†´H±2•+nL”W‘¥Û‚½{â|Í€P ¬P¹(·ôÄ‚,#KüWÁÕnÄ´ôÍ©j9µ×@\n¹+£%ÚÌ—ž³@@CQÔ:$QãÀRÔHÄq󎨩‹…[4»½£5í ‡,Öü[H–V±»nþ(¬`Û¥Û6 "E?ceZ缆ÝÐøŽe7ÃÖ¤Ìtʼnž"Oý=ƆÕ+€ÒÝ;VÝJ7»7h>νÂÀ9Âí"ŠŒ Ž O—ìŒðš”äõÁàÛæ×ä3n·=‹¨™5Üvts×c\¯pÍ6 ÿpk÷ˆoÑC›.ÅÓr¯£“'_¹å‚žÄ 47ë8ïæ¢èEvV|?ÛÜEóžîº{N ?0¹+bï3‰žÇ°r¬‡ Šs ïVä)§*ÇP‘>âHïš9Þœ##Õ›ÄMˆVÔ âì*zvíBS\Òúàw¶Œ®mz“¢ÐZ ¾&ÿ¼Ù&}ø”†"ià3«ùCîšbÔ(Ü*iú"ºcض}cAzhS®q?­¢Yô0”à=úHbÐ%ãígÿ£Ã9ÉRùìrIå)Rëæ›¤þðH¯þ:*ÔI ÂÉ“ ÝšYD àôÉ‹éèm4/‹„ô[1Oœ¦„‡œÇD ¶ñi’i9r• Û¨a]!%‡A¤‚cRX Í>}ßIP 쥵!ypȇp€¶Œ\ø rA0Ø"—CÊäê7)æØ^§ÙÈ' NŽ-¡¬äm7n-MöØ56@ŸO9îßTÁD®QHIFŠJÑÒqn }Ÿîj‹!€®çÑ‘BðYsVEÍ–ÖÙÓã3…ç£Pë›ï×ܵݬ"±-+é>5d×µŽlŒeK8XïÆzÇaxf— ï‡PÊVÁ6d€×G© î;,<#º†sUÌN¦øg‘‚¼À\|û“`X×EHA%¦Bö½{‚ûlObèf/˜T@fZsw]´ú»ŠãHdÓ˜ÏÎRpý|’Üè"©Uqô|QË×ø7¦¾‹>…ίYÿ”je“S%ÚNÅí½äiŠßÊθléBè8FŽÁMLh¾Þ?KèZou€*Ø-¾çQ™X™V÷ãû™ÃØÄ²Â™i» Ò€ OØ/ÿTž^‹¤,ó݇³w¿¿CÎÅDN”ìÈ/Z˜g2[½ûù1™C'ØE«»0¹§¡«‰Ôºõ!YNþóîßï¾Ås¥dÊá'Ɖ6tþùB­ÉµNwÏa©Ô'^µÂȉkƒ6šÃY–y“V³!d¥­vêxÕ@0Ó"¸·VkÍb˲e•­eëÔNóˆìõÐ×Âíjšü0¤•”O£ˆ¡w]÷–ÇOóÑË.ë¦õL K”§ýá‡}Εn­Ò;b¨µô­—Y#¦){½‡TxŸJhµ/¨)`ç2'Ë 8ùÁjŽ Öå•é=UU$vG$šBWe‰¡ 2ëòå#žà}…]=†‘zŒT £Ê”ÍD¿iˆÂBâˆøõƒG½$ÖÙçºÅ<«AÀ¶ö°Ý[û Á$•U`6Ó:ÎQÂP“Ýþ©„ùë*º®ÓG˜‘y«®ˆ ­ß¨‘ÿÙÌý…&&k&VRò ÈÂ(ù]ýÓ>5ÐÑ`ån„Ü ÃÂøR5«ÕÛœ–åñ¦7D¶£Ìî`"$»®5hH­5¶æ7‡¿r 9B¾ þ™Ö3ð×oñ'â¯5¬rÛ×À?Ózþö•ñ'¢èqŘ WOˆ~"ùGðˆv”7 vYÝø–@‹ÖS ?"%pŒ¦Û‰M(´ÎëÀŽÚ{Sëd*z¨!ê‚'ÝŠ(]׋N¹§†CQqž£H€m”iÍaå @n†Ê3 ‘”¶­t±jÄÔmðOM5$Jp„Þ0azJzðšíX –´Ê8Ð8ÐôhUßWB0×g`B°I¸ƒc4ÇyAÁÝxä º¬]˜Ø¾,rFZªƒ¤þYqsg¦­)OI ÓÛËÒê.y)ð͇2È•$è¯H¢õ|@v)ä‚uOZºš{T+’ª}j`ê®›ØV$]ìõv Ž =Ç m{?*‚WRIÕI‹¯$Hëq ¸‘TbO%õq*©_O%Ñ› â5I´ž®’OÌ­v5R¡‘þq…<•LêääÔŠ¶Ý4Ðûjn²S­Qj¢ À)Ø"½lƒi9–ê'­oC+ä‰ æ} H2­# 92çüK\¥âë@^_ù·š;°b‹›qÈÕUÖ¨ªÀo„7Ëô¶6KB½y»I…+Ûk.ãYÏcAaÈeOé² J/Ýâu|p»(æøßù«bù UáÜrËæ¢š ÙÖw9ëý©¶ ŠGó@»Î5;Z¼(ÐÇw x|¦¼‡Õ)½¢ûmî¯b#àZùmâþ´Î‚¿9”ÝyHÓŠ£š±¢°PõÐÚôîázßVŒ½[R²·Ã¶Bi½O±3)ÝÑ k­®êc±÷yììHˆÎ7³Ív,ÖåAíGPñ¯«é¾‚I4ûý–àž,Z‡nSÙ÷ý°žv/rƒÙ•ÓÕ6wA‡BBºÃꦬ¡¶‘/)ä#çÄ¥’ S;‘þìÆ=ô.÷©Vpnð€äÁ‰)M&‹{Ìrú‚WÏzä8^8 à|3~©tmzÒ—ãõ6U«{£wsî‰õ XHênÙ?Ÿ*2-vyx;piä.±k%ŒéyªÿÄ„ÚÏùµdᇱ6‚KŠÀ%H5Úf½Oõ ºkÒ+Ìå|Ä Az‹¹©ž9ã C¨gé®ß4ÚÇÞ[V¢’¢¯2’Ýšà•äÄb31ÓæTL¹þ[ÝäBbƒá4ªûóŽ"dáZÁO?r¾® T;À]ã‹Ĉ}(]yHs ”VgŒ@™u«õXNãtó¯XÁ{wyY–÷˜¾ô¶P.®YÆo1ιqQŠn¸-WzéX}³ÂðÇv‰McÅo¬‹ó¹..„Ö¹Š"#T9¯)­„G+ôæÉz?þÊmÕ>U”Ñ»r¤çèáà‘Þà¤Í¼Tוw𯖖@tÉántmr7¹;)*‰uýÔDn”|Z¥Æ³_aÙÞ¼ÇRAJ\Å<–ŧ®7ù“úªXÖKR;Ûh{¬£>æäe„}?Î~ÊAc‘=)قٵix’[W$·ñ{‘lx»˜ ÊÆ£á¶Âu /®ÛxÄçÓúðv() endstream endobj 39 0 obj << /Length 3500 /Filter /FlateDecode >> stream xÚí[Yܸ~Ÿ_ÑÈ“ë¦ÅSÔCÄ€$@²<@»53½éc¶Õ³ÞÝ_Ÿ:HŠêVÏᕽGöa¦)²X,~U,^ÅWW/ßøY-j§ÜìêzVW¢r~æl%”¶³«åì]Ñ~w©|Ñ^Êb{©ªâp9×®*úõð)‹ümZþvüÓÝCއ˹5Å7Xut—iþi¶Kfeð§.n¢ÁB{LÄe) Û¹¹Í„Ø]3•|©^@ªr$ÎmË¥‡~5kþ"áQª &@4åŠv?ä;³@’ÿR›™Ü«>ùïÒ–—ï¯þöò”|ºª…©Ì¬däöL’ ¸*Ë¿!Œ+,p“#Üd-J›˜ýñ”™µOÌ–ÏæF–¢Ò³¹”¢¶AƒÍ$G°¥d€à¯åÏ$wÛ3¾…÷5Ë’úŒµ{$Ùà¿-â‹·ü{Ì5ጉ5j Mš…*·Í˜¿_ö u\[`¡¬Né§‚qN?ÂWöí8aÍ´#+ÏÚ—s£]qu ¤an*Qצ—@šÓ¼¨•ï;1WÐ@9TLÄ¢Y_²Šî{ Ia¬k­KQ7Tv¨otIc–´Šyß]ZWäA£jjvÇäqì`ö› ·v-àfþ—ÿV”q`Qˆþ¤Õ{N·]r $r`‰ƒ Œ#õ*ÒôÆ! À¾Ò¦x‹ NÅß _DæÐwWóO´väC*¼‘)/Ú¾ÙŠš•ý&Ø!`Æ‘R°ˆÆÊb"BeÙ·ä¼ÁnllW`-½-¾>5©DÙtêTà>øÖCÇíY&i2ñg%íBÖu4©uÖƒ~”gN€àwµ)^_ݓơÎ;ùž­PÖ%ø©#+DÅ­@Uûb ~˜K‚‘ì¹c@U]³:º %d¢¡¨cãÔeÉ ¹SX’x®¢¬i–JÖw­+25âwÓÝñÀFDy¨u¢í½‘ÞÝžcCß#£Md 8û”§©*Öڶɦ÷ÁNoÛ8ªºn`˜ŽAëvä`Sjé „Ÿ¦+hæa©N¼ã !8·7œA>žg½¨èÌ•„Z4ï7$¶Î,^°{†±¿U¶qàs·ÁO½†äu´ dÆÍ°¬qZ€lTg{EXÑ|ÿS6A’ý‘±û–ÍÛšÿ¹‰Ânçðï[Ò:*ê#ðÓzhÑ#‘]cŠ«¸`Ð £¦ØÁöÄ…y³U³#jÖW£Z,mm„45Ž ¡\Å"¿Í†kX LFx£âhÿ{ (aFª+íii&œ³ÀY˜:yz ºx}uñíú‰r&gÒ[˜fÖ)a¬œ-6ïÞ—³%”’B×~ö‘(73¥k+H¯go/þyñêx)¨J ³åÌZ˜4½æ%Œqµbò¹Õƒ¿Ê¦¿rl¦T?ÏatŒL嵨¬Î§r=ÂÊ ãæ¡¹¼öù\®”*t\iÍ`JÎ mK…Þ•¿ÉÞéߊîŽdWR”Z=Avý|ÙÏ,!Í#¢»©EW“‰nŸ‰ºímJVÔf‡Ve>Áªü¹Þm‚pY¯ž³ìÿ¹ìÍŸ3·s½’ôJM`‰Ïꔞ@U_¢Sî!­„ñv¸¬²Ÿà×·Ñ_¿ª)Tõ¹m4øQ7þdmþn£¿ÛèOÐÔÐGÎ`kè„õ´ªÃâ†O\âëñ­ÕØ^É+QyÿimÐít·}é^pj.SÒ¾”ê8© Ü]ê—†?øÜ«A–ëm'ªJ ‡ôUÜùz¶{ìý÷œƒ]mIvÞ‘'@üàüI»Ånßqóxªoù8 ¬Ã‰/ÐÑ©Ôéù Ý6!1h±Î6êÞÀû°é>pÖb·šÚl#˜aØ;ozF2s{`¶Æœ9˜X鄳;0´tdAmPh Á">pG±ŸŒJÐÖÇU òkèò$.Ra8Gõ³ùH?•ѪÇ}ä°%^SÀöSœ¤ŸÌàÔãNräz^ÏAÎþâ î!/9l=¯ÏÛ©›Ä¦<†øh¼éñG7ZÓi}oð ·,µ\þ§Þ²4YÓÙ¥Ê\f,oL,È?Tñº¥¿#àüpçR+Šœ)ÿ•ÎÎu¯Kõá×ЕÅ/(T#Ÿ¡ì†b#Esh™â dX„—,9£ÛPå(LÖ)¢³¿¥Y2é‡ûˆé>f“o°&ßo £è¹$ôWtºOQ˜ÀùHq  Œ8½e®bÙ¿YrPi™ÏñµUU¤nlø;‰…ÏW š<ÚKŒ•½˦¸K¾MÁÈKeHWªr)(*/bÞæïDlU 24H„§%ø‘¯ú;œvÉ”/£:XÕ <¾cZRj?ncâž«ÐZ•U4Ž·ášˆq—F«ExYîèv€PYÇ‚Äñ£B8ýޝÓöAnºeÊ™pzw¿ kf[‰6Lû"]`™ÒÿBuŠUЦ¥tY˜æû.½ihcÔ=i(z;V¢ü ÙWÅ×LÌù' -?Éê’Î×§m'k¿_g÷‚¨µ—Úœ‹V*x‘tË^?ÿ0fZÛøÃñÈÚÞ°W¢œ“R˜If§m2ö»tAJVO¶Åýóû–sèü–‰?Ð1Ú¸ï˜&* Ù8?ë7’²q`'c?Ö#ýµYßH—]Þ"”ó”Õ?Ä"´F€ú þl×E‰ž ×î Ù’³Ñs¬wñéd0}Utã£%›ûʦI«Å›y謕ê 7òýîuð‡à׫ìÕ±NX.¹ô ÷ýç»ô·ÿi³¦W*¤ ÎŽð±š'/ÈM3›å‰¬Ù'UçVŽÅ§QÄ©Ûq1 pš|ˆÕÖ)Ü?Ø4:vh¾ôqø’ÄüCÓKC72#Iµ³¡|Þ}·W0|§Ì}­èAƒ.CÌHo mÇßñÙ$;h½æ «,1¤ù6¨`uè[Ü]‡ÆÎH´hºþã<%…`Ð ,qv¶ÿYÇá‹Ûéžj|-W ÓGðd2oÃ| hþÀ}Ko,µÌ"Eà#6Nn¼žáÃOo„×Gï„ò÷š¯âªáz*Ö€@5|l‚/Qûç9Mã)<Ì,Þ}î=«˜IÎl¿‰N™ºè‚AMÅ7ª¹R@ Eœ¨÷1bƒ$ÉÄlÂï-Ô[„‡vcÓgZOèZÞz²Z‡e’®%ÇÀ/¯^ÂÃ.̈qêÞtècÁÃtiÓàt‹U|Ob¢ ëàPFò5æ·<ë„¥à>¥ÈFTóÜŒ´ôðlç¦DEot,[ÿÐwXËœ™ežæí`ÏYÄ7Cý‚YÃÄù r(7´d{5‚íYQ4…&AO¤qE×ð„+qsïŽr7¼Ò]f Þ2„×~ÇOÐvûÌÝ0€„0þ‘ZZvœ#|Ñ^ÛÀî-/ûwiîßf³Bt WbáÒCP]•}ì¤ûX´ºæÎjÆñî÷*‹(Ô*Ú£ ÏöâcïÝ:4Ýû =”Û·œÑ¤óÜ„]Ô`»vÔƒ5ÁvĦ™£O¿éÍß0½ŸçÍæØæ).`Ç~Î(”Wg¶qX Kˆ$ß\Áçöøëhï!;·‡Àú>®³ÑD¬Ã¸?a®Ù}’ñ…òà ø#îÅzýœŠ endstream endobj 42 0 obj << /Length 3192 /Filter /FlateDecode >> stream xÚíÙr¹ñ]_Á¼Ê&„ûpj²Uëd¸*%/›MMR×"©ˆ’eÇ?Ÿî0H"#)ëTò Î ŽFw£/tC_ŸŸœ½öƒÀ‚•vp~1Ž9ëÖ8&•œO?u—§¢ýstÉéPyÕÍàu1†l›Î§øy*]w /+øc§CL÷-µÓ ì™âèyüñ±¼Xw_Nñ]vNéh5\fDëL_B@¤qø§ÁP Cã8øO üð{ ?Za”žm6_ƒ³iö*>§Ýgœ>ÿî쵿TÌy;à‘U_Å!%G5 ^æþ¿qÃ[P˜w:¹Ù†á˜’"÷¿ÀþÁPsýj0‚“¶JÁ M7°,8åq¾gÞXXÅ ÇÉí5,lx ‹A/N‡ÂùN7š™hÐlöÐl™ÑÍ„Ši“'ë¦Ø K܃Š6a÷¦(iÚ”À{˜òßÜù\„‘žúVtoîæÓäug¨©£+ø¹útêu‡Ròµ#>:gtÇw8ŒtÏE+|ØkœïÜr~}G#“]Äîå"öCg¥»N±šÌò¼´þ[ÛMoÑŽÜãx5]ëÓX’7g@Ìl-no¦W)žX.>ÿŽh¥ÙJfÇ8®?´“øÒóÞŸmZ4i„ÊpË¿“ævÜ]ªC®¬¦)þQ9¾ØZèûÑ5îÍþüGšÀhÇüd!Eï´®‰}›¸¼iùZÐD[hŽÐ-3¤_Ë(På;þ²L fÖÊú±I[± ‰è£¸m‰7ì^/¾Z¾7½¡B5œÑû‘?¤ªpsñ ÈËõƈómoQŒt&¶ÆDªä ME£Ð­8G`Ç¡Ù+…9H¦ü\³÷i™óäð`ÀÉ7ç'ÿ8Ái| `G`@Œ*´Œç'?ýÌèünÀ™ ~pOCç8J9D LC‰Ü*˜VÓ‡ÊmÑ :ñ€CxáÅÓH1x0ý>N†+€¼-Ñ !˜íÂ2-ë”E’h§hiÀñ K‡Qâ¹ÊsH¡øjÝé2ë¬7îåŽÒ—Æx ¤Ph"^eâwG[Jñb Ƥ⠢-í!¤Æ]=&Ü ‡F,„]ûÂ-‚˜`Üi[$h¡h :ëõîp+Sn „[þQæAÉÕ’8œK‘« ƒs7…TMHγ§ &ÞË1º‘Ñ”{(1 ‹˜{J0ß-CI‰Ñ_ñ JÌD$Ü!BiîöС÷С³Þ= Ú0é²I‡¨é8{­MZVâC¡9Lò,bÂç(€#¤î¾ùˆBÇqL68Ó]ãÇ ¥Ft2†VÝ]¡n¼?…§ôz¹Ä”ÆoåyÔmŸtûÇ)¼KyEÎõ¿;êàR¦^mY,ÀO<½.±í6çP>ÅÊ Pza @°9æSŒ²Ý¶Þ4áÝ–Él˜Lû„ò*A¾Å§©žØn €Ó8dJ¼§ ×dCò4À­§ òVžæ¯Ë:—ÈkÙ/±ÈÑçv¦˜ÇíêSð>IÀ(OBÛ׉OË·£·©Ÿ6Œ(ÿT‰t¯¿—«”;¡ª À Ü`iºâñØ«»_Òj1µƒ#;)_5‰-)‰”¦"XÊBŒ3-iØ;ÄëñeQ ±“ç#A£ÙM^ H¢Z‹gëu ïÆˆR¹\M±¾…»t~™ú)¯tGÜPj°/&Ξb,äFR° 4¸VÌ"Ð#j[3= fxP :’nÖj@˜õ1ºª¹=×7QÃPØäqÊ-Bå ßœq3Ki¼÷ñ{5ŽìI’¸{b/)¦û¥Üô4ë~–¾/ã7Umà9rPf)_¦Ð_c%­ŽüIû'˜µ†õÓâøNÚ¼ Í™-ÊMÅΔ ¥9I‹ðžã{ªö˜¤y1aßm—e²x™ ãå]Ê(& /GXjI‚ŠbŸcìJ ˆh¿j[J‚·8Lòô!’§€¤[Ç«*@/šÇ„ ¯„³ù/ÄÙ6qÖ¡Ü®+³³ÏÃoK¬|yÁ„ÖG1\?'ß iÓFÚ€³~çM8x—C‡œ®ø-µ-Ê77É\Û¢ÆsC ®uÚÐÇ1䬡½”pêEŽ4æñ{'^“mKñÍUœ¼LXž‡’AÄzys U®ÖXõQ¼S1lž±íÝ?Á­,k¬IŒ“kE(¬:úwî:gâóí,­Kq•Íx*‘!qèGVèQ…¤†QŠ)h’Ëý:Þ*¼+ºVn#Õ<±†F‚q©;„¶ú-B6ÐmDÔ§8ó";Ý9":©ØÝ#âòw›Å?Ñý&‡µÒÝ·‰ªå]º0GT{Ù ¢ˆ÷7‰T$K¾^†Þ×bá–aÂ7íS3D 1Є1ù½z_´ËP_.Pñr<(F-}'6Ž P9@«ñ2‹5|Â0júñ• UÞ•ÁÃ!WïI_˜²ÀŠ Jd8º ¥DŠÐª‹´|Ʊ¤qÍ8Ær=‡£0œkY½hçì”ò{JÑš9×'Z^¶Êªëºè$GKªÅ:ð…±;_0xÖoªëN èíö ¤Üà:±§ª/::7\©Ç0KÀ™3§Óù‡92ÅŒT›õQ]§ìœèwåbÇ-¹Ó« Ä›B|³~ê7ÓcrEçaM¶_µ‹ÉX.9ŽjÇ] ,–®/мk•nEØ’ ½ ÷‹‡nrìá‘y˜Gò(™Ã…ýWàÑÎ\6oÀìüiÁ¨dµAð€3¯±DoJ䤯€õú;:ÕE æïpïw›€WéÄ+,G^¥ˆ8êûK£Öà˜7›E±m`C8ć‰C²yÏR)M;×;ä¨ÁëÚSæ°®Œi7’¨:0#ä@Î80so*êLz½_–ƒmtÛ³LÀE9§.cª%SFûšc/¶ÁEÉûâø¯Pr`Á§àë à?A-ã=]+6Wò+Øßý g˜ò1nE¡oXhÄ$÷šÝ­Ú‡4ŒK|*8§=RÜ3, \˜£ŒT³üÖ0w°¬VœZO Œq {Å,ŽwÂê‹FŒ›:lb‚ëMî3”7»™,Ë j{˜¬ð2”ÛSË  äV<ò’hCîw^ Ggñ§ó»ù‡‹Eè>Ú¨ßRÎÔô 0ܧùÞ¸ö2^мº+êplÜ^Ì :Mó.tßûcîѶ+× …VÔ'-Ǿ¯âƒGœcº¿ {3 ñøE'Mþ=dÙLØ`œØ³SpÂá[Wjo.YaÏEÅÊ|`1Jø*áŽâ#V®*Áx±®ŒàÇhE)8/ãñÿv™ è:DóÌø­ â-KXé1Ö­«C§¸KÊÐyX×IªD'1ù$B.´øî ¢v›SŸ]£$®(Ýg}¾¥¾Àl0¿³Š06þ9¨¿|»Šc1ÂïAô(µ÷¿u„)/sKJ=­eɃR¯ÿ›¤%K¸ÉuȉèŽrµnñ.¢šŠžùõ2g †Ï˜:Tà¯LŽQ]¯úÿm*ê§ùjs¯;2q™®:§ ‚`záQw.šÿ½u ޽ÃbÔ*WÔ1C…׃ôÆ%­µTEô endstream endobj 45 0 obj << /Length 3021 /Filter /FlateDecode >> stream xÚµkoÛÈñ»…p_J7Í}ñqmZ$E‚»âî€ö\ h’‰¶ÕH¢BJqœ¢ÿ½óÚåR¢·¹~ µÜ÷ÎÌýâòì╳³*­rÏ.¯fJi^ÙYîŠT7»\Î^'8Ÿ;m’ý¹Jx6ðìxê÷0œógkxªƒgÏ'xÞd.ƒ|ž2d9 ¨ó·—že³¹RiåÆT—‚ ño…ÆF8éücæë1kÁÕËÙ»´}„'–¿‘]~©‹$Åù–8#ß ¢áÎoá)h ä»x•ëHÓ:ÏSmHMÒþ†AFÆp©Ö•øv<i$°·Ë÷NdÛ‹l‘ 8\‹˜×2F±ßŸ‚}'SB*Xv®K0¬ª& Œ¤o‚JM–=àWÂUǯ"ΊßVƒU”˜¢ùÅ¿³Q©%ŽÐw'\4âÌ»Akc¶'Ü8gdÇŽùZÔ÷ž·'„÷=«Ì‰†ñoï#$‘·{£ °‘½"á™Ší ª¬J.øŠû¢ ¿À£8É[xbõÉÈ /hš]+KËòÈ€ÿæ%•¥ÖNzN'ª9HPYÞHžÆ:B´…I³ÒZ“V¶$ŽÏ‰ö‡#3×¹ªàœSÄà# G—0L%bñ#NÀ|ã’ç·ã.ì˜0Ú#Q#ú~Fü’ªj̈ë~ #z`Ä‹­Dî”-ѧ:,¿’30b#F0TÓŒ03'Œ˜FòÿŠ;0â"FªÁŽɦQôüïq#ùµì~FÔ´{Û¯`$)ލéSF¼²ªiF¾F#ÅÀHùxFʹxUF‰®` ùƼ+Aêò†›[¥’Ÿš[d«Åà7ÿkî¦ç Z_„د¢¥7W‹s]R°¾Ã•,雽ˆ‹¯é~I¢ë"¹D‡:©—|WAIÔ^ñoÍ€ ZòZ½E|{¦ºBÛÍÙÚǤÐN™V…šé4‡’ˆôñ ëM©‘âR É$‚z“);¡`›U©sjlýÈS#õy¼á‰Þ«sÇï·hŠÕší{I‚ôZqEÚyß©×8[$kÎ! ^ã3Ê ë(ñß%£«w;±]ëù`ƒÐâV~û;TØNÈ´Ä#x¥u–ùáR™`£aÍ,bñU¯:1ö¯‘™6›v;¼Ö}3uPH ÂY;’ÞºäOÞc>ñò?¼äçB†[² gðà°)PTÉsëÛµ¸+i²‚`(äIUxLŠ_Ë)ªTiãËíg`ªHTÆ2µSVŽß#Q¨øé–‘&ar¹¢šCah:Öûuž‡t €¼"Øø² .zfl2Ú ®qyßÔŸÂE P¢F7P(š’N£"ÖöÈb‘%;¢vMñcÓóê-î_¯ùÅævÇïCÈ©}0ØRý«šOC{ˆH\´ £…ó>Tx‚sU{ˆÅ#½jÝ¦Ž¢ÎDžåõp™EqKn=ÝpÀ]a§Fy]¸™Â´4êZÿxîò„P 8-cÀCLû›an¨Gæ=¶-캢Jv1òs˜f??rg]Ù´Ôn¸Nùržª<\NEr²ån%!£>Ò¸fF(º ÿ-óþÙ;.½ƒû VTV¦.ÿ+Ó±öº y¥Où4[(ÈêýïÑó<·¼  –/rêLR‘Þúï°t'»ÀZÍ?}ð´ýUíÕßvwŒI5>H­âR`ËÈèB×Û¦¾kE´Y2è6?[¯ytÍGr‰Arº/wB"JQ|YšÐ^`É!!ü7,PMØr»äó- !•Ìrà‡ô‡²o£öIˆÙÌŒd‡WJ\­ÏWUœÞ é•y]¯‡-'7^Z"+”1¿+×3*àþ2_{q„,øBí'c’ç›–CÑD"k5sZ¸ óÙóäJ|¬€”Dáù°ö‘Ìqµ„„—ôÂ"'eÂÌPþ¬B“*äXÇÉEë£IáD%þ¨H@ ×Ì –M:Ì‘xM? Ž6G¬¹([¸¡~ Å£ž›‰°JÅÐptü`1 $©²ôááo|̵I‹¢€fS§$!ÿ ›3\UaJaEI¹»²¾8ŸsYigÌ3A4 R@'ŸÁ}ßAH$¨L%ÿŠòiE… ¡Ò²°^¦OŒ;jÁNp®ÆÍ=gTÌú›,#rg//Ï>œaðÎfjf°£kŠx~šƒ ›³×o³ÙÁ2©©ÊÙ-n„n6[Ï~>ûËÙ lTP×P- PŽ8c<_RBˆûûS Æªˆ[—¾ÿr„§H ZœË'´ ­¤äñ #˜¤kóËÆ»‡ïrÔr=ñ§¹‚[Y¦ÄWòïSÉœ¯R›»ÿ“›Oøy|ØŽo•%èÒ:8z .§Ç×JS™É°ÓóÒ(ú|ó5§0Ê䜶x>$«Ê ¡¦ÒÉ ¦±Ù_ÐøÊÆ/1w>ÕàâNšy\+¤’ë¿ÀèM}ÌJш«ÛϾ’þî¼4RmVPê¹§AÝcˆçVÛ H]ã¥!œÞ5fŽGÿ¸цj [IÛø§d ×åãŠÑhpEó€k€ïä6œ o;Í B‘‘3?þs™£Mp8qUðÊ÷§¤ËT»|8‘,Q#b“×ÕÞ€=ØF—…舜+W¶uç?ÔÌæF£ŸW§–ë«e™ —Gžb™LB.¿ŽÖ߉”a³‡¤lþÙ'Éã³XS= 6„¿ú;¼jšX*"Dµ¾ªY2ÕvÛð`7*¨†Õœn–qäöˆrï‹úH+Ä&¾£žÂº™ÐRt´¨`ò»Re"þÅ^*ê?JeŠ¥iåÆEDˆ:—‰Ÿ¤ú† w$ƒ=,ˆÐtØDÝ%ôç©|à±J¤5\ÙôÐû°/R";®åë¿yÖã2Xjvä™Ùè)0XÊp²Â#vY¾ø¿·¬§{ÉÓAè)àÒZƒFÊ=¾§=¾¬®qÉ‚^¥ç‡s׉ÒG_|÷'7DÅqÏ«qq‰ïßóÏ{Q÷_kX3p„ù‹b£ùžŽ,K +TD÷w ݵõ’G«í°ßw üöTH'ÖñÝÆ_ê-S!GÛÒZÿ ©`–©Ñ´n}vÞú£võ½ÿÔ¬ÅíÛ-6Ÿ×kr4Oå-ÜE) 2$YÁ»³¸¿Í26ßžÇt_é|3d!Ÿ/­*8ï°#`tùÃ×þȾ[“í.jk°ñ`öÖûA× ¨ZŠÅFèâ$LQÕ 8qßq£í9¥6ÛùdZÎ0Yo§TGA³ó%á— =¤ûûÏ9ÎÐ2DüBÿZ½Ê2­† x6q½Wƒß zÍì(ñú¬²ä…˜c§Í*™=-a©î}À©c˜•br /¸a¢¦”;{žü|œU¡Rüã 3xV’ó(7 ÃGö†¨x!i £ ïÕûpjæ¹J]YŒó…y¤‘ÍF-£¡/ò  f8Š•Ã1‡…öj²^€K± ÅÌZz³Žo©…ÓñÕÌL +ᔨNi¦Ãç mŽyº,©ó]V‰š¾Ï«Ü.F G  mGÃ*ð_U¼;lDC -¶´4ª\dl†2¢ÎÅâ7¯C£‡¿ŠLè+¡N²«©^ɬ•J UN}ÊŽx¥™øÒŠQü…k‹ƒ«7\_ æ¤î†ÌB†Ÿ Á=´rÔ‹ÕÕ cµ 1›S ×^!T÷‚ßGãm äÛQvÿç—ð1ÈÿÓP¨²Ã¿ld§Õç÷@%,tŸ4I—²;þI¡Vúz-sþ ¥H†·§÷®à0‹óâVöõŒ+Á[Ÿ2*êú¯$u#ÌDÑJá_¸xÇ=ñ‘ü³óq*¨L¨ÆÅó÷eiê”@üI -Wnú<ÿ´Î endstream endobj 49 0 obj << /Length 1421 /Filter /FlateDecode >> stream xÚíYKo7¾ëWìq…Z 9|·È¥@sÈ¡@Ý¥u­Æ–ÙÊë×÷’+­¬õ – ( í.¹ÃáÇùæA®? T%ñ§*rQD©*g­ £«éÅàý±¬fxù¶’BÇP}I¢,®D´¶:¯Þ þü:¼z* wäªñiEÞŠà#T(VãYõ¾þ}=TõÅ|}2‘«›Õðxü¶EÞúj¤´¤³ìxβÍp¤(Pýî­ _XÅ{õF©Î„˜OÉ\iôW–ü6|Ú_œ!A*Þ³¸ŒäÖÅyᵇ*,Rº<%д¦úO~õq€6FM0‰æÎù­pÑà©3ýÎZ7šºóެ$[ϲqºx¨RT‘°*dῲá%Db5ê¼ø ¥Þ‡®¼"l;IwA'ðí0—¼Ív*ძœÖÂXjgµVSG¸Ð1|ÆX+ܵw¸ßÎ%Eœ{’£F6íâ¡Ó^H©Z[\¨_ïÛ:•u+•ÖÕ£ ¡a¶šöù*ïÂLDµ‚.XDE+³Enè4Zmõ3PJÏ,¹š"Ø€@Î&ïrKÌ­¾É­¼ƒ[åáµê ÜGœÏxôËã–^*·ô0n-sëí´IÉ!¸•QXSâÖbj¯ÌA9îÓ…šfÝ=¶´·L²Ÿdm1³½‡dõ|È ËVhsGûGdg‹"v†mô†½æ3¬^,Ãêa §úÇ6`?`Ç6`ף閟eÏ,ÇÇı—BƃìµpÞÿXÉš~ŒdívHÖ&w¥ŸÊíÖÞðâvñ˜<òxŒ8q< zÑVÎ`÷.œÀp”aÂýkÛ➎ÅÌÎ=P¢ÑÞ Æ o6xÍ “‚ÈHXÁ«Ý´Òg-/T¼×-9y”#·½O³ÝŽ8—ù»ß”#–ƒ(Ñ·a0u‘=E{¹ÊÑßW49IÌ¿f1~^Ÿpê©ÿaíÓël· ,6¦Ê B%àŽàаšD$·Ùh*E(šmò¦“РýÅ˔݂,y(¥ˆyŽu$Úípn\5×üêœ-–¹÷lRd[)¾Àïïó&÷°•–œD>­Cz™·ß@y±G¼'¢š3êº¨Ï ÒÐdµžiJsÍ΄\MòŠ9S^·:1†Ÿ——¸hI L}+É›;9Õò½…}¹ÎÖKHÊ´ ô‚§u|KlsîL ±»~¸W#ÈZ®|cgIÉ—²*tv|ƒ›³Ö>“í˜åª5Ø,wž¤uð³¹9ž¥³í«ö 4·ÓjoNiêÕ¼¸ÜÇÜžojG³JîÍÄ%Ö¹–(¿©%¬+ñË/׋vQ¦>]®ö ¹±^h]©„5á)ߎ‹&QÆé|-ßõod(½ îÉbk?Æ?ù^*kÊ)Ú!WaÎ.7ÅPí†0š[£¬›Rћ곢›Â¥$'ù¡ÂüRªwÎ'¾+]ÔSÍAçëé”t•»vflòsSVÊS§½÷M¦Œá,÷fwï#9½Þ¤. ü’’Bwð&ÜÒ2 ´×ù¦rL$¼åmŽ×…!µÙ)ÿ ÿ§j endstream endobj 52 0 obj << /Length 2362 /Filter /FlateDecode >> stream xÚÍ[ÝsÛ6÷_Á‡{ .,¾“º™i¦×ÉÌÍõ|~Ì(–›úF¶SIizíÜÿÞ]$A ’(‹ró`“— ìo‹ý _]]<­t%óZCuõSå-³ÆUF[RWWóê»Z±‰¨Åd*¨úÕÿ¸Yá¯ÅÃDBýq2•V×3xÿžžá¨¨Û[ü¹£ñ5Ý=ÜO~¸úúùkWyæ šŒWSá˜t"ÎózâTý°D†RÖk|çgš*þù o—7økµs€ 3ã“Ù{šzÙŒv3¯ÓÎ?NÀ5ìˆóŒÈ¥_7qiBdkÓžÐÕ,“ÒÆ¾y³-H¦A¢(âQâœ#6ïÏŒTU ŸJ ¿ç…¹…e‚»jŠSóD¹$²‹/¯.~¹8¯D X]âˆä×wßýÀ«9>üºâLzW} ¤wRzðx»¨þ}ñ¯‹W¤÷ÞŒ-/®˜q2›³/­aÞ™FØg“) elI* ÒWÀ™k”‹¢Êm~ži…‚æ˜$®EA1åÅ]AÎeAQ@Сâîî}V‡nùÜ[VÖ0ëì~Üáîú8ßCqwÇù7Ô²ÝnßàéPàÄi¾b|Õ@xm^ÀCÌØg˜@íÉñ Yn/*@ž]n/þÃb•Íc¢ ƒÇzb•ëçSÎ úì0IðÁr¦B¢_ôçsde-ªÇ+±õM¯'æ‘ÆÝê'Í1FrƒCw¡yªcÀÚô’–&ï#è/qzJý©“Šåm¸:{<1º¥Å™4Œ Æ†ÓYÔxäYØ›o #ØÔ`Ü›²Å¯Šxr­6cÆ^~*ƒdâ@É#+!+¥1/ÃDq¢˜± ´ˆ¶¬”eÚ´i`1‰A »„mhˆ×EÞdFÞJ—Þ€]þÌØY³zmòªºb©s„à1GƒrL€–ÕHîɰ¶ ô t5žäù¶6Ð#tj˜zDÈïsωÕ&„¥½†rk}l˜t3$ ͉ŠÔâA?†-«¡žDáTXô‹žŽ:Íì)ˆµKr¼ž„XËŠjþCl¨ó%ï×+¬”¶®–Lp?ˆ-«sxìÖí7A™1:GñEÉ6gD5•TæL"ü#4]!¶q© »Š×kj¼®Š WHÁË΂‘À´?ã9‹—_pä±_6ßëø€ÚÆááFKêÙý<Þ|Œmà@ê­¢¾ÇŸy±MÍï‡MµÙb¾§ó‡;"]6k˜QÚ~þGímåÒy 9Õh$’2Dƒ–}1™jA Ÿ’`÷qès¼ÆÛî‰ȶëIcáõ2ÞŠøÒa'`b.pÎÐûOþH˜g/?ïóz¾Èy>‹—´P¢•8ø÷mþùðÎwͰwÅ ï¶ó¦K¬mÆb´ÿ§^ ºÕòEJüÞ€´©ÂF}·iî‡ô³î–Ö·Qß¼î(è Ý=ÙP’!=Y'îd— ¡›°Q»Žúo[‹!yÏôÄ{»W¼Eâð®oÝ ¼¼ßõî7/ cŸ•VIßîš—¦Šµ@O§Ú^UO,%ü&ƒ öÒ6j4âÀ.Ý“W±øcÂßi«‰–œ'R•4‰4ŽÚJkCí%tœiÕWƒÜTë;Ñ®Kç g`ÝWŒ§«ó]êcu<-ÀcºÇ ¤*×¥TO0‚:£êú[ý³L‘M›×Dm3ºð(Èò”$Xfôf!p#s×Òu¼e±·á °½ÞÆÆÉͬiŸ£¼²öeÀAA豌„Kõë¦kHâh—e Ýž@Aa =p·A2Ì(è¦ÞU¶w Œ:W»$î”Ãp[)™lö¾‘ŠÒc$üßóî\Ý3Îs›)ô× ãBî¯ÞXŒ[äý¡`ûÌÒƒ1¥ CÄ.j&Ün·mèèë4ힺvwIg¹ÐEé´`ÂF×-¤Úë°Ü9ÍUÑ.K»0à(Ÿ’áã‰OÚ—8 Ì+”îkå«Rù–ûJ pPrÎJ3/ýh[è1A)“¨lÇêÊ»N?¶¶åOCD'ù¡£ñR¥ØUa¨")^œ^¼ÝÜõr' 4ßÍá¯Û~oçM–µXÅG³eÇ"Åi«sÌÖD¹úƒB8ÌŠ(7Z„á4ǯé‹\z5ÄU¿fó6l'þÅ3èóÜîûˆ¶0( ÙLÉyËäË‚çåÌt5þ˃aj¹)ò,ÙVh 6ESt¿-,Xá\UF“­ycɃÞ$Šß ’¾~ͨ¾-,K3ëdiY½º“(_oY;K³-R«ÒŽ4¶qªînâèuG±oÅóâÆÓä!u8ÿ7 hM³¨¹ë«$Îl÷™Ö™)à_¿¹i’‡G¿‘!yôzŸ?¡:“Ùp( ·Ë:š9=„Šî“©¾©½Œ½ ‹‰Û\^| â£;ÁÇ/Ú”N:ò»Í[t&x§ò 8L}È»üïƒ3»N™âÍÝMðm`Ã+«H³â£kr`wD¾Ãs!Íϳ߃çœÇ?‰dµN¹u¿½×+*ÍÞ.ºI Ø…mávMíBT}À…sÂSQ?“墹[]m½îÂpëðßÍ]ò¸L‹HΣÃï*nTˆÿ¨õz#åü€ŠÑªþ/^¯³Lsy“nr&Mq,þGÇŠÅ*-‡àM¦V3Ù|É+µTˆýþˆ2c endstream endobj 55 0 obj << /Length 3518 /Filter /FlateDecode >> stream xÚí\K·¾ï¯èã,â¡HŸrˆ‰mN¶Œvg¥5öáìŽ,þó®â£›œé×n·d0ìôô°‹U_U},²I½¾8{õk<óFšæâº˜tº1Ú2É]sqÕ|·ys.6ÞžoµÚü¸ÇëËÃùßž}}qöß3Ñpü')%ÊãƒÀŒÍåÝÙw?ðæ ü¶á ¼k>†¦wÔ˜¶¶¹mÞœýóìõ±R:&ð²Òá{Îz}õàaÞ‚£¶x%|³LyÞ¤V¥QÂ2«}£[]¦Ve3”"¥j¶’i‘zýGlV!ÄQYÔÒœãqÚ«B@P©BÚšR›F3z0ÒÇ_þÓ߃B‡l‹fßs¡N;1L˜²qêea-nƒ—•”c^–Ú0€×nÝ (KaÄØä=1YŠ3îÜdd Pe—mh•}>žB¡™pvXΔÐGÀJ[Ú"H5sø`RU˜yìbüÝAS¶úø+ÃÏ·Bl8ÃÔÓRáƒó·#ÌkT ž‘#JTI«çxœšZ‰Ë„] YA#û 1L¢â4ò¤ %Ä40 ¶srd$F)˜u¡Ñ…ÃÐäúUÈ#h¬óÖÚhÔ4œ3ãÌ:iÇ“ÓN1kå Ëá3ίšŒ5¬² MJÅÔæOA¤a°îSð°‡?Ÿ*5*ªÏ=ÊøR•0Hl•Ò£NÙ£¨“ …»u] ¢:=tÚY¦õ* ©=0kÜ'ÁH|9‘#¿œÈù$AlÖ âßËAº‡¼ QºænŸ¸[r¾ÙÆqc_0BÞf$,æ¬X§fÒÖ1ÎUEÞBUÈz'øq½^ZlCIüÙ^ BßEúÒÞž,‡œbE½µÃø»)Ÿ\¾IÀi¢xù{„Ê0ÏŒÑ}Þu•Â Ž ûÜ0†<¸Žôâý‰bŸ^Bi‚YpòúT)M%\»ˆxÓ[UɶðÚÝgªà›ýÏ”áHCø÷o Üí{z2§ïë›O„£ òhJôÇÀÈ5#(OÄwY ´ºFÒœ‚ÞçèÒQ\ë¥kS²}¥~.Šßã%öè•Ü‘™~;"©‰ûÂuë·î塨ü™V eÝ£ÆÞn³m÷ÅÃw©‡N׺‡7‘™Ó(B“.ûÛèYjòåU"ÑÝíS 8½qJû¾e{ÅUYdžâ°9„À Éè1ƒ{Æ®ì*jr“áQµ©êذ¹~xì 1arC±$Þ÷Þ N!Zþø Fƒ·¨Ç;¶!¤®Lë´Øï@&+zá岈ž•yǬ<î"Š›dþYXXÜ^ ¸tçé6¥Ó»÷yì¼c'5ºëbM…à ckQñ‘Œ},<0ÎåipïŸÒpï;ÈC¿ï»ëÝÛ¤@º7ຼœp^uœCð8¾á_‘)>¦Ëýe×O.²JyàÇï¡9$Û÷Ä|6—»§ôä.~üDÀ<¼#¸vwñÖåC®c®â®(Â/w¡‹ËBšŽOÈÊ@µøÃÃuï#dàû óÇ>~Õ8é°Mùå§È“8"© tO_L¡I6 Ri‰ïnÚt¥ºª¦ðk¬I3™]òãÑÇóD!ŒÊmþ–Ò™nG™ôàWñ™6 ð:RLvÂ!¹:†¥Fw$çC[HÒ¶:ΚÝý”üÑuc8>Æ=X¦#]n¢ Õ »vKMl%›X»{+%Ó{åíðþ›ìkMûµà¹@TsI Áô ÎLÞI‘çÞµ .,@(^÷¿Ð‚7ŠHí°$&²$wu -µç X Å1_í\(ô­ÇCÑJ:b*x`$xÀ20ËbÇ 3¢ À¢Àªy¡“`•}|biA¥é°†;¢ªJ¼¡ÐI‚0´!¿_9:Ë‘]9½ ` ¤\ E+é‹ãØŽaVljA«vò‘Xpû,ÜÄùHÌ“ñÅÁ¹ä#E(Ë—G•šÄÜÌ=¦>f°‡)õSØNk?3þKåE|9‘‹l¨K†6M7¡þ[®I'©Äqdh_!¨À£uþ…Aet_6jVXÑLV¨±tÌ¢ <¬S½ùh—®ÎG=’<.ù­QøÑîð±ú#·ÃɽFáÇ)ƒ|Q5‰ çE¤ŽeürMZI…&q¯¡ôLø*g`8y§™™¼¥‘°{’׌$ïbM:I…*Ê÷° ¤EXÐ<¯‚ì3NMÍ´’N ègŸ—¥ÐûÐAÀsvæ˜ÐJØ>ú‘+fàAÙ¤ÍýdQ B Ñ_HƵ­ È tÀ´‘ËÐÃ\ó Q– ®}zá$q"®@®JÒi¦ó4<†Vi¡´g*š´ 7G“ ¢Ê‚JE†§E/tJ_ )½dÎä†ÇÉ6Î'++Á˹㤠S£ÃªäiãܯTøIôì #‡4–i eÙw¬¾ÄYÅ º&Ý©:/&+ÃãÍRí[9¥ú‹F›èÇb©öYΩö%?øI~˜Òc&;”jŒ°Ã ¹ËíåÂHµ=‰Äl)±xF­íF8DYfü:‹'RãÖ¬Å! ÓØXDÑ{41Eôz,²XÿVRiÀèÕxd¹þYÒ´þš–­&ÕŸ³r’icZû™üS*?Â?+äQË?ÓyÔ³ö&FhŒÙTÂñ ò#„•2}.(첯À3nÌàÌØ…ÇjIh·’³ù¾0Ãá±ÜƼt>ed[ä.6²“tbäéj=·ºvyïVàìsŒ7b ŸKôD~³;æsœQZ.Öð¹@ÚCù#>_ncëó #[O-6²“4ad~3LVšñ)Òñ›áÓp~¢Bš»Þ'i3-—“/ze|?¶|¹OxzÙ_©—Õ=SÖÛòÊÞrí“ J{Ù70s†mçi¯Kí{×éåÔØ'A•ö*NP0OìÔR+ЦµŒYP¥ˆ]PŸÀØÇ.Š3gä Ú'A§Ú7 ‘vÜÌu ÅzD9§±ØËª/¢ŠÞ7œÂSyꟕ”^ï$3¹·B¼¸v²®;BãÎ"Z5ôd¥1Íß:l¦Ø™ÔËß<ü.ŒÇXE«pvÕôV–ö8«vÕ¦Í*>SeϱåS PJÂÚØTË"]8ý—L²Û_ÿØc½Evjó²¬g™'ûÌÓ¨6ô›g¬³YônúD0h¾qáÿcšg~ÜØ=h>É²ó¼ µùD‰a|™KâlÍÐÉÂÊbìÛ±…Š,ªÔu€“¡JïüTýË]^g8»†µ­¨Oa-Ђ}•Š=ü Ç74b c²¨uÿ^F¶ÕŽ|þסâKØÐã뇸7y‹Ýt›·>Xœ#¡víi!¼®ŽÇÐC&ÔW<Æ›báò}÷ô‰¸pa—÷>‡o7A;=ô'í³÷íÉwÝñŽ9§¹fnħ£Üoþšì¼ ªÒî¤ðÓ¾ƒ‹ üð˜¶Æ¿[ìó9%`ÃJJq¬`/„Í÷íÞkÚpÎm}ú:æbó‘`º ›ïñ;ß<îSO¡ËûØè@ûîÃVþ‡xcüjÒ‹Ás¨<ÖÅÂ}›” {ÖÓ½ö4^wŒè[Ï© õcR ¸Œ§’Bé4¯AKŽv©ïÒg{’àÐmÓOÓžÀ¢4±´t Ø‡x‰£B;Ëù *dÌÕ endstream endobj 59 0 obj << /Length 3165 /Filter /FlateDecode >> stream xÚÍ[Ks7¾ûWpoÊ ãÁ¦rØT%•Jù­(µ»•d«ilÑE…”#yý~Ç f’²Åìæ`q=îÝîüåÅ‹W_·3ϼ•vvñf&Œg\ª™5Ž9+fW³›‹Õ\4ën¾Âûæû{Ü-éÏ{üÛ;øöÕ×BLœf²3¿þg¤(G‘œyßülî‰èÅW/~{AÏùLÌ$Ø(ë!Šf™ÙåúÅ?óÙ^~;ãLùvöH×D®‚Ø7³ï_ü½à¡„eÒµ3kÓú(ì׸Š,¾$`FJõ¬Jd÷uË|ÂûŸ¸á€k]Os¿ÏC1É¢²bª‡ðjŸ‡eÂè™dF´‘æßD3[zÛÎÅ‹Ÿ8Wñ{‡¯¼SmüÞƒ`!˜†:Žï¢™Æ 4G6'vS…Çæ ¦X[௠ãÑ©TÜ@y;žÌ‘•[fVÔ£ŠùBIÙÒ¯4Z5æÞZш#–©9sF}„eîI"[Ðë‰(¢¬ Ø²6hˆ¶ûS¦™s°yf…4²f¶U³EAô–²5#¸”Ó!Ç@C·ÔÑäµT¿g©>Zª¶¥:&•+-õ‹ýyUüZãaΞ-2«r^÷e|JÙžìˆÑhHÍüt¿¨MUñþ)~úç°0 Þö"%N.[¬Ãf”„‚ycƾ̓/óäËòˆ/Ë–9Lðq_Žcœˆ*XÝ´ôŸqTIuDLw«ås$‘-oÇ¢Tá§+5 ¿€¨Óñ!̦SŸJXr9•&Lå+kÝ#-ãŠAÏôÈ̪ÀäIY±qé@%GÉ +O¸¤ü#q.‚ŒE…Y¸È!ÃÔG “kÖÂÀŸï"ÆÛ!¨O%á§]Äxɼ’ç¤ÕÌÀF’ð &G†ÁúíÝY0q’YžR2u €IFŒ¥Ìý,˜XÎeEIô;9† ì[÷¼Ö2…d{$Š<µè==~=5»:åeâDôŒCIc-’÷¼è•Y€ˆ^j½T%ÛFô2£|B~b>!Ÿª9ª­‚šB— ÈB—ùçШ ØsLÒbœI©dòÓ‹y«šå/(`oð²RªQ/4ä /»]¨nñB6W¡j^&ªŠÒ8®¤A…ªâTŸyÄÚ4Šfsê!uóÕÜl7øs F΀Ÿhîîð#<†J}†Í*RíÎ1ü+ëpM¤¡”_(m›î‘„\ßJáéõ2½ÞܦŠûDtŸ8uWtoš«.´ ®ã]~»î^Òß4›Ì¥`I„×c®Ý–> Y«ßEǣׄÇf[ý²û};é Ò…i€Ëû±´ë.>÷ôãšKúæzIj½íX°Cž Ј¥É^/Wi*ÿoÔÁ—`™‡ß.¡ úe²…,i¼Wƒ0ë;Ø7Y%~á³åvx¿L,7iV6¤èÃŽU|9s­Z&ÚSE«Ãúz¸hÕ¨É4XiÔíHp(_Év#1æ +o¾Âƒ7ôzs[‹ d'raÌãrIÞ¢¨ðG¤äpN$f(—ऩIóúõa0àΜê-ÑÂê‚¡$k¹IÎj]s³y›bbù`E” €Þ×µ2§¼æ"6¾Ž e‹:QI ZÕLîx@Óêä¿rõX Cv´€Œ$S‰Ï¡:ïE¿à~&÷A€ö(RHâu$kµ/Dæ&ø_WV°2˜¥§ÂªOÁª0í­;ª=§'€*N€ªÏ*"€ÕcLÓÚ[·XbxF‹EfçkÏ‚mϪWþÏ-v„°¸ÆQÁ/g3ˆ8„8g­üèˆ)„L¤Ö.@¤<’G™6ąþ•9µ8[+5£t¡ÑüäÈ64ém,ñT2L$b( ½Wa2ŠYXй˜O‡I ÖôçÃÔsúÿÃ4Ùj€¨®µ:èãX®$ÖÒÂâô“\®΀db4RR?=²ã$\8ÅZAE1¢Å7:ëÁÆB:ãα +Ú·'aåÞd{ŽEXY<ãâ[„ý©Eø ºdN€*a{–EøÊ'N¥òg[„©Ç„¹Ô6ö˜¤m™v†/û¦š@æØ\̽šVNM+ܨj3 Á¬å•n’Ô¼¼ŒÍ˜mìóHå›]hx¬RË`¹d÷±+”/³,ôA/ ½/©ÿ×6Ô}{ŸrËå:Þß§N Ñ/¯pMÿV¹×²¹T›7‘âr¹È¨ƒÑ%Ê·×±]Ø|¡…L= mÁ¾¸öñgC¢íˆÇö÷¹±ñÐL/^VbÞ¤ÓôX«ÝìÐËÎèzPÁ%^Éxy™û0qðí*ŸÛ ý7®šÐ㺊ćԥ·¶Ù¦vX¤ Hb¾Ž÷"þä‰Ã¥&””hþ–„û%´²ºÔª$¸éòÙŸi#§µ(çÅ‘Î1…Z?´§C¾{¼;°±-=³¢ØýººØñY†RöAÇlS¸Ýfcÿ5â´ ˜o»¸)Gk͸{Ý·+Ujãk:H…aŒiÞïËÜ2¥AWšëXö‡3@U[ÑVL045ZæÖuß·aÓ‰¤¹ÚˆñIÙUÅmÑÆNæ„]ÞdÛ~»•¥;V­C{ø6}œŒ‘®CK•PØv¡?;t@6S^ëÖ3áåêÐ_ýOpÌ«q÷5 |I:^ÇÔkuÍ&örSû–Õ:ô<†ÍTKê̋ԙ/: ¡ÿûó¡ù<`ƒèÝpp®Ö—ûmæ›dh¿†šï®7Qìð÷*j²*z͹6 "M<µw™p ÈºÑ]réõîezs; >˜¬ÚG.õøIš—¦ô¬‹×o‚Û¯+m:NgèüírgßÓÕÃ)†ª9òë»Ê©Q¤øpFÅŒ ú"ýDpAG)bæ´ª.¶áÙ@”ãÆ´‹!¹In‘†MhW´“öh“)³‚¬ùøÌwµFò>a:F|WÁ )’7 ÅS ÷¯ 3TQíxÓð]m»OĪæŽúMP¥³~åh«Ú@%Üd4qê$åCµZªªÛd¯s¢Ü1ÃâÊ}„a½«B@mÏŠa­̬§Ã²­Jžñ—ª†´Qˆ:‡[=¡” Sl“\î è´ÊGÕñ7~=oupÙÆtî6']È Ò›ƒ „h(QóCÄÎI >z»êwè“ÑA»å:ßÄâ+…°›ûÍrWȰyŸÊ«øð—ù¿’…åku›6*¥ó ɇH²MšÝå({Ùçm·o#I·Œ›„™ç.ç‚1ÓZŒ6 Mv…!éTœÖBÜîîRšñVaSè.-\x¥÷kú›õ!<»¾z_ìg&зÍCF<Çl¢\íÒïmü}‚ú}¼ÙÜvñb½É‹ìuS|²ÙVU¡E¦  Äú=РzH å°²M©‰ðz$ºv}é:/4tÝg`á.Z×e’a³­®âp A~¨T‹ˆ°º?¢Ð§Ì`,(ÊVöû¾¦ÀËø$ç‡Õä†ßT†Ìê^¶]Þ¾K[å4L0Ö¼U¿¼ìöé“,ºYÞ^e`BI@â•ò—ã|A)&Ýäxåàêäç1Y ž¤!žŒs7š2­S™¥Š¢LgÿE•j^wµZ@h$ï}Éó²-Ôl¯+pÑQ®9à¬naTó9m×Ú7§Û­Ÿ{*¸)cnCL‘B›{˜ƒq A„ÈòkšµZ"GD×ñàB์ûûµáöÂOé+aŠ)nôxû“Ò# ‡ÉW(:áw.74=ëMzÚÈôÑC /£=;šåÊÒ²·P˹þíç‘ÿ*%ç´x¬y÷!>O']Þm‡j7¬(‘ ±¨y_ËäPþ ¬ÊõGׯ‚ºÐˆê‘# 9,­Ä Ûùß'…´µÐg1E‘‚é1ÛèùñúIØSÿ ‚,mB/„>$¿@š­ÕÓl©8J† §Ó¸ EYzÊ»†tþ¿€óË endstream endobj 64 0 obj << /Length 2177 /Filter /FlateDecode >> stream xÚíZK㸾÷¯9Èهŧ¤÷°@“`lžÓl/àv»HÛžµÝÛ“ûßS|I¤D?GÙd€lKd±X_U±ª¤òw×oßÕECÅTq}_4šhUJj¸,®ïŠåëãÊùÚ|Mn®ÿüö@´‚ÕDª¦ ŽöÎQÄ,kÂêvþ ¹l&(·xù8w×Ë «Ë—Å„éòvR1…;A¹vs«{÷;ÿÅÍ-©Y»!“JpUþebÖጕ3¼\-7fàgüz1fz6OÙÙí#qú’M·9°Bª˜&ð¦ü~ˆ4QJºÙtélö擽YmÌÆfÇ'‡ÏMÞ^¯F-sCöðØ‚7{§”Ȇi¤·W¿âB–ÓµWÐå³½ÄŧPžpéÁ”—æº)§n~6݄нÀH03<º‘Íj1²/ ¡g»B`ºœC¼¬½VqøÉÚÉ­|±æ…ò /þá'¦†Ñ'#è“7냓}ú)ž˜M·þjµ ®P‹òG*)Þ^?N:{ZK«.šê©³ç2þÜš•îz˜­×Žz«»îöG ÂPm¬BpˆEzq$«ewí㊌ÉxpÅ+ÏI¤ÎªŠû! AšÂ<ËÈ’XU w© ײ£¡t¸¹j%}^¡ÀÛt¸%(¢E+ôÚQèB‘FóÚɤ5Ãožo¨ˆªyQEDß O0VBN〗Lö¶LÙ5µ 󞓎̗(½&5ÔøaÈLhdÏ1Bå ѳÞÀ:ìëˆ3­“UCûÐS•%ÏUVÅ0Bƒ¶ôêp\sHÍ©k$gf§©KP—K]Æ·Ô¹¾µ32Ð ‡Ä‹¿B¿‚ZÌŽ=¿bÿ‹~• ̘ôÁÕw+8_[°Ø«Sm]¡„ˆ$SJqàùê8œ:Ш”³ôÕ¡tªÈKÊQÙ¬)YIù þ̆‚²ü3Wê Ü’Ü¡€(´NÅR£÷ÚE²E}-¡«¤œ[Ç2ŠTFŸw‡ýâ×?_˜aZº… ŒŠB º˜-.>ÞÐâç°X%¼©‹WK¹($Q9&ÏÅß.þzñylë9˜çÄ5¡èIvÓÏC×v|* ¢ñÇrQ]`eÑXÍY%†daPçâ=g(ÛÚ;«’è¨ÆÁ!ü©ìï>=†òÞŸ…~øC7ôÞ½?§J³úÖGÜ…{ÔêyÚ"ÊÒk/æçEèµWE'>=Ú;³ÅHmHj]ñäÔ~iQ ó‹§gÿÎ ½ð»MýõÜÿ›î*Òÿ&­ð"poöXìM'Þo¥ÞÐ{?”bé±O3ŸŒyõɪžÚÞ T×ùG¢9(‡W‘Qî:áRi…Q1k©‰`"­Ûò€*ú +lË26o ÜadQ-§|¼’i¹×'¥Qeâ©ÊbÌ#šnaX ý"i:„4b>üä£|¼ñˆH:æ™CD£üG¶Ÿá«ùš‘F4éÿ @†·Nÿмå~ endstream endobj 67 0 obj << /Length 3074 /Filter /FlateDecode >> stream xÚí\Ýo¹÷_±èÓ‰h~´¸‡K{iï€mc´.W`#ɱ¶å“äs’¿¾3Cr?¤ÕÚª7©èÁÞ]îÎüfHwôêüäìµ/ VÚâü¢B2'dacR™â|VüXþóT”—søwsúÓùg¯…hÕyWðHù– i:r¦”Ì4ßœN´% WåÊMlÊl¹¹„‡üÍ©À•wÔ©(¿À?|H忞[VWXˆ|­céÅr…Ÿ|w~òˉ€þx! Å9 ÊÖJd1½>ùñ'^ÌàÝð|qO”×…a6h¸»*ÞœüíäЦ3Òº¥¶l>ìbò`«MÈ„bœëL²ÙmÁ1gÖ¼D’—¤«/+”Ë,\ÇKµj$$Ô™©ŠgÂbq·–d÷$ ÛÓÒ÷À?ÙÌÎ8gRŒã~8ì¿vïóÌQf…eÁsŸ‚¾NSô àÆ´K+Ë7½1IŒT.f)_]­cœ³7 ékâ~ûÑ~O8²(´€SbNfæ%r mÓöI 4Í=5¡­ã²»âé ®ÁÎK{ê\ºÁØš…u…÷׈ {H6AœÃz-Œƒq<Ž÷òK;_ÆùãÀ8—怈uĸò=õ"B\apBÝø×âÆùs„¸õª{†:|Ow°Š÷£¸qÛï£ïGŒÿß»ñg‰q#Ô' ãÖ0­F¸ Œ {„øÑˆï¯QL»'-C”ÖV¤m“‹~±Àžyá€|*^ÔÐÒ?Ù“æ °³u&‘|ßýØaðT))M ðUa§£ üètŽNçK:¸;ŽÓQŠÎm§ÃŸ—ÓáÏÍé(ÁAbéѦ]ãß1§DçäÊýÀg:VÛ¤SÆÕMÌ|V•w7˜ñqOi'xò÷þŸ‘r>‹{N)ñÕ;¤ýïg˜]qQÝ¥ÜláeüÌì~‘ž/#eu¯ËÛœu²L%›} Sb •Çvèk 1sYV9éc‰£þ]ú ôvÜuär¢Läio[ýáã}ÎÏÉ]Æd›yÎsz1³†î—ñ:|’»¨¨ë˜¤³ÜlQ|š'!,_&ütξ- J®9iþkßÙ¶d¹bÒ"»Od¼€œòéë%)-"ÔrÙéR3£%üç°Ì&šij…Äh ®Æ}'y£ÓaüD¯§Ãnú…ò¾hÑ`ª÷øÑáDßdÑmòÍj@}»pAÉ/wªÄ©¶Vˆî–ù.gZíöéBy:[%@x^ ^]×_@9¶GiQÑ~ˆÍmžrÄ(•(ÕDkÁkÏåR&X7³Õ-<Ü^%6§UËîÈJUˆ©€óŶ±ém†¥Ñå[¡t<¬§BÊ_ûMÒÕ²ªn4ÞÐä#JPÙ²–3¶€zT’¼¼›%?àÐñÔ%‹·€·XÊ’pé¾íß½‹¢#cŠÅ«ÆѳDÃñsM ŽÄä=¶³˜"<.ûßötTšT›é‘ýjËß´ÝXð-Üt€Ø#ÀítL”óº|¹È²Ö¶Í Ö®~\¤>g±xù.£lE™~Æ”m$PKG±ÑÜÄ:>Ϫ$IlkÝ3¦Aº$½¦¨DÄx7'š-.Û6ä£ì8Tê7ë2 ¬ÅD͜ÞzdqOŽþ€ºÆúÝa×Ö[\*ðlP‘2!oÞ§¢EÎÖ-„Žîr¤$3Áé‘·-gƒ}Ê8‡^E߀?æ”g˜üÈk!w'pb?ש·kr_@Ó;Mȹ‘ì·±¯ÆŠ¢ins·Šn;%å®ç7Ù¾£§q)•·Ãnv÷xˆ ¬—ÉÚ✢Á†ooóê`äè?‰(^¶ÐŒEÉâU†þ®£ –¬vwñw^/Bí¦ÔEOVµO »Ð]^„ò/YZvßLàÿ·ÕÕ<‰Þγ[¤/ì¢z›ëKÀnÞb7—Ëè@ë>²6¡ÑM«¥UKwðá±\o"Ýt‰J˜ì_Ó‚e²4ì´z—|Ò<–a²¶5ª–%Ò_VŸr5‹dþ;"ÀÊy2Gª*Î>&aÓ‚¡í¦ÕU¬@kn´iSþLË‘8-ã«ö柧$±ŒÕ¢6“¾DL`i¾ýW"Qµ+W¶P°>L¢úØ÷E&›·ˆ²«…!ÂŽQõ¬‰…jÅzï¢X1D-šœú¼=æÝÐ/"(f‚ïä6ÂÐÄhlâ.s+´5ÿp»§3Ø‹òæóåC„¶µ'ÆX@[jÌËn$êÚåÌÑGhÍ‚÷m´ñ£ÔÍ€@Íu[U¦õûº1N¸'ôÂd’!®÷èU´2‚jªÔ÷ã0NWwý¦Z 0Ún5È2c#KzAß%Ã¥ ¢Nà ö{Bð9÷;‚;áÇìAZÇ?úýŠÐL/¨ú:ಌ¸ØäMÐu|¦Ù@uV¢Xœ|V‚IE¿û1Ï?2â8,.·rž“Kí FŒÕS[n‹(oþ2}ÃÞúÔý·+´hB ‹Xø¢/kÖÀ o³Þ Þ´yëS–¤Ÿh3÷ëõ,»“¢v"¿%‰Z| ó °ã˱Ùýê endstream endobj 70 0 obj << /Length 2954 /Filter /FlateDecode >> stream xÚí[YoG~ׯàÛRpØîûÈbÀX,,,p¼Àˆ¤d®x(¤|ýû­£{rHê`bç€ÍLwMu]]]_ ýÃÅÙóWqDòÚ.®Ê9¡¤xEÔip1¼^ÌÎÕp1=wñÓÙË‹³_ÎÔ@Â?5PшàP;¡­ŒgoßÉÁ&HaR|"Ò’+‘€v>xsö¯³vŽI³½ðy4Ã),¾^œŒÑCÕ#ƒMBi–AZ{H£´Hð,÷ áH6 ¼õÂÏB¨z[-bL'Ñ{gÉ篔jZ‘¢vDð&ˆ[óªÌÿ,ìáaD ¶Ð¬™ ¼HÁDæ‚*¯ÓèÝu¼ðÑ F-¢gç#­Á7}R+¸çt—ì²KÑ—ùÌ)€øjW:‘¡âñFÉ‹(í`¤œp¡E¶ÇƒFŠdìI¡à¿Z¤>F¼ß_¤>BKÝ'(aíC”ìãb9ÿ@ÕTilÖ‘Âý=«— âðñ¡;²k¯¼%]Š*^y²¿ÊqÉŠèÓIª½0R­r\Ô"€uNy:K>Äû_9sð’MÔªc ï IÓQ]^õ‡îµ§$Í‘²R„ºBSGK4€ÞŸ$ú‚Æú¿¢ïÏ}(ží¯Ï"Ì&[òtì3.„—3ßÞÉ èï]c:ßò$hÈy ï,ÓÿfhæÛÛk'Uýô{ÍÝg¯¹?È^{„/ìÑ*ùþªîÛC=ê) µròàXí ,ÌÙçÕy´ÃÕºO×kK ewyC› exÎW×çP+°Þ$/¬l†ÕªòIÏ:ºgÿɦ¥]"¸Ýʘ_zžnYù7 ?½‡å§küÓ'äÊ&¡Ýd ÛÑTûÐC«] ¿Ê†æ–¢5YýçΫ5B²ÄxÊr­®ÑÀGÚCZ€ÅéõÿöH9RÂjp_MÔï”$lh;…ú¯Ïµ€U•319–è¥Cy6üL¶™ÀŸ$Þ†_D5V$âHK/°úK"jw¨¥œ8å!_ƧLFZ@P§¥°¥÷ñoì/Wë¬@µ¿nƒ¯°¥ðáø²B†^ÆFÀ›ê0ô"½%öŸ ½”Q[K>W2¦óQr:ARèËŸNĸÉm¶PP´3“‘G“𞃲>lQ¢þ¼¤¡:IÇ‹ ùÎÝûà ´­M;Ä'0­M8¶pn²ð³¼mäó Y¹‘õVK&ç¡´ttS„´î¾L‹¦<^´ƒ­®C§ox1JàgOâÆ{·Ýœèw#§¹g|ÑÏ5W #¥Rú£ûµÃ3öUµš¾Þ³4Öû .VöXâ 7Ê„Í;!AL"¼ÆDþ:žŽ×ì¤å9ÔWåäžÙ|–Îñœ*Ç£ô†ÄSNJ¥ƒôùäç!oSŒ.UËIkN'i¢,skül¹¹Sùát|—˜(Étw_°`¬ø€#T£b’Ú1‡¾#Ö^Ú_^á·ÐüYÂ*Á +¸½½…Xñ3¢8B«1ÕŽÙ€;ìCU·n;µ<¾„Û+4ØjÉÕ-.Ç"è0üœ•ZTE½B¸ÅhL‡ÿ(QýËIçíökdýüúŒ^ÇR¯3´ O©m7ãj3å»O(Ô©®ßãBw¹(A ª%Ó\b9WäjéSñ÷ÓR\’8kXæ‘Õņ«¢§Õ&?Ýáû$ÁŠÉè¾Â?_Pq> Zÿ™uŸ2Q®›ð–+$¸õtKeTU3¯í‰¤ ró°Gk’4_‰ê9G²qmúÕ’ÙWH,`Äo«a÷¢Uî2Ëõ´%Ò´ÄXm®ò[‚…£k<‰Î‚H›d­X ¡–8Ùø˜Ÿ5OgÓv%®qª2—KÚk™¼Íp'¦PÃ.ÇNþ_2GŽŠù^ «ÐR«9¯ØèT 0ÉïA‰m²kK÷„Ùå]-hZ—¶§åšx,²‡l0Ã×SÚð='Ô{RÖÙ½êC]*…6êJvú89á½:1áqª1ÓРõm'¤Àà Éa ïu+Å÷æ&ÓŒY㜓a䪭qp0™Ñ%¾M?á„Þr»ˆ>ÍrZ|Ϭ(ÀuÊ~[òÆ!x¢Þ*Ûõ …hŽúÙ"ËÛAó“Ñ®Ý<†Mç²×nÖlÁ^Ûï›73¢é8@†¡Fädò¾‘CçÂïÉ Õz–wýMC3n|#W% µÛf¸ªŸ×̼ ›Ñ¹áÿpz·á9¶£ëz½ûÒnk٣ܪÖ1Õ€–”pÖwýu(ãÑÉÝìsÌüø}×@Õ÷VÏW×ó,êM}tÏòú+:Køï„ë6dO(@…sƒŒP“Œ¯_ï:J§ÍVýÔi ¨ ‚ª}}u¬Â:öq¿þ[m Ót8–RöµRÓÖi7kúØ‹ÐDúÞn'tâH;±EôäèvvÎÀL|Ý·“Uj1Ûå0R€N­Öøù‹z÷r_øÝWõ©oã¶öjßb—}Jëàzšî¶ã/Ù ¨Sëô}ÏV¡éÂ¥cŽx¤Qô£øÇe¿ñ¿›øÀ_ÔîÆziî7´þU ­¾QCw>ù<*hM"õ°ð5òwßšpnmÿ•¡#0“FÿZöDár“ªëéû«ñ<ÒÖ‡c÷´õuâ~CÅ(=ßf¨·º^W soŸîÓL› j+P-ƒŠI .ù‚÷sW dÈíÜA.å°.›ç:xà ~l¹°ÃG–¹ÞAlÉè×Uª»Ši ÞñDîœ%žY]n lòÜm—çÅ Û@¨ aÓ  õÕ‡e ³· /Š…d ÛR¦ÙT ‘Ù¤˜¯âç Jï•~_âñŒ*²ØT±!8b3J¶Qròðrë¶Üí«;iu’è&c¢,nÅÙ7/Þp˜9»ÕÉiYì6¯T@fO’2R¸TÇ6†Ã†P&D‰uª[Wo-!íŒmÊÎf_z2ºƒôS¯³¹«C–Àý²¸ ­ñò#Þÿ-› Ĩ&lñš®ºžò̬!"Y©=âdÇÈÈà¶ÞU·õ·»fž[sÍn Á‚pˆÁœæˆ7b¤ã`9¨Cu=Ðl˜nXj °3Ñóòö«ÑïD ˜åëmnP˜W5zÊ¢â.H=ÎÓjÍ÷“‚åv͈¸ëL6++7!ŠÖÜæ¶ZÖëšÒóÈiClš¨RÈ¯Ï y©ªþpº½änǨZgµéK"‚@ãË}Í» ùÇd ñý‚ãrKoŠžmøZ>üȬ¨I3á¡å*ÏQ—®î@ª’‘ðv¼®ÛX™{µìÂ`š_ãÛ—H[1 ­›®ë~0å–œ{i5ðÎIbëckÕ˜ŒK¥ÝôY”$…> stream xÚí[Ks7¾ëWpo£² ãÁnù°~Õf+U[[QNŠSEQÔ#–H/)Evòç·hÌ‹ÎP¢ílmÒ gF£Ñý5ÐóêäèÅ»râ™·ÒNN.&Þ1gˉ5ŽIe&'ç“ÓâüX‹ÇSi‹ÅîϯáÞ\OµµÅj‰WS<\-àáü…›u|zw…Íãýâ×cY"ø]¬ˆnut›Ðð×cc‹2žû×Ïãõ ÑS»·ñ2›#ý=üÍnàßÍçø;Ÿ}$áQlüwåþ‰ ä„~IšŸ¸á(?¶"ª‡ òñû“Nød*ó†ôBcû8.h¡ˆƒV"*Çq»ˆ¯7ó$$Ü®Öé/Ÿðm ’|†?JÀåoHà*}"ñÍ"Ú˜ÀïXº ‰›ãº÷7tò†¶«‹xUÏñª ¯èµŠ?±Å¦G£ïùlCwØJr}ygV ”§lqd”fz¾ZÆéPJ…faúoñ·¬º†WlA÷pš!&S)àª#S}Šï^¼ƒçµIƒEëºaÎ#nДL9SÓpiZ+îT"¹Y®Aih/:Ó'å¤NÔ›mn–•eõþ˜§”¨r¼<ËñsLÈD~¶ÍN3él-¿¦¥e܃â5óšt¤NyFD1¨ùM5 T`r*€‘‰® ¾™¨ÿ3QêèÏ¥”_J‚+æŒm+†€A毴Ìxýé};L,³ºbò×m&€PsÁòkE4  Sé]¯Ho‹9†^$Ya´œ/èik ¦›}bœÝÄ×hW‘ål¯‹ˆaâÍo¨ƒÀéœ`CxpA׳M|Š \KX ß¾Žl+È@ßÄ ¡¬ b”³ã©1Å/H4p¥IpئË$Ž«WÏs8ãá:aR€–#g¼Ìð°$>Ú$´ð#‘<ÊøbÀȇŒ!h²-¡Ó& cµ< ¢®·­A@X²Â%{xó#‚ñÚæÿ’c¢˜ð•M½Ý¶)Ǽôé}WäeÎÒ=SuŸoòR9cÆKõ:'U©t-Un©h))İj„x›B˜rPµCÀBËÊÈ&3|<³J ÊâÇ+äͶ,%3Ò´2™j!a%ÉöŠ É ùZ³1O¨HL\J²-‹wÇ¥Ž‰…‚%…AI6«“†@ÉÛ rsèNxö3|¸ÂfŸRFÕʱ%ºÈäñ÷šrŠýÌæ‹ø”RÔ(’\Þ߯óÒ@³¢kZÞpâŽÒ´ÞSÆ5oq>gÈð3º º£|îg8ŠèÀ°ûÙ傞¯/ïc¦Ørkð\ä}—áÁ)*s¤elÛtEð&J=l)š2`l9¶Àiò¾ø6™×,Ç”ˆ™:'31(¬–‹Fç‹Ýƒ»Kñâ¶){Sk6j­žYÌ >»UÍ3>§×0Å*Äáë8{*haÓLáÙlI×O`å„¶Û–‡|š þB±˜‚FÔšñ“«:S¥x½œÝDhƒ«ËiJÄ?„®Ó¯« ÿŸÓàÙñ&¤Ëëš{WÕ¿ ¦ëEÆ hÇ8€ˆ0èÿý¶/ œAåp^æ¤5&ºÈa"_VSædi|`˜óò—Šx)xzïTerNÀ‘”#sØÑ–ÒD …È»n/m§Ë6;_šudd”^²RTç2ƒ!—LÊB–aÕÊäz¦¯š^÷e§O6 3<¼JUvì±×ÚªïtÀ$g«‰™åB­ \RÐ’|LRò‹piJ—[ &¨ÖÝ,3dÁ![¨$Ü‘½ÀRÆDÒœ ’¹:ÁëÔ´|Lž¥;y–صF¤6Á»µ×ˆÌ­7›ê,’¯êÃä`r;Ò£ˆ}S€åžºÈ™¡¶~Ò ÙZ32x²Ì°aµ€‹6Ȉ+ûÃN¬ö¶ÊÛm:n)Hcº ÊbklwDpA¶#BFÕÆ2l”5Lõ$U'VÆ3æ1BÕzc4h’]Ù>ˆaj‡0Xù2§WgTS¯yf-½Žõ.²³%ûœ»4Ì+¿¿¤Yf’Ô7v3%¸wm:GÉo‰Üê%8Þ—§˜ÙõkÃÁ @"Ç÷OókÄJkf¥ÙÃêÄx«ë]„&ìÊzôŽ®ôQqÚ[ãÖà–äŠ+Žï’'N•\ð•‚»]ûû–Ia‡†ÆÎÝaÆ–Xlp•cŸç¬Žˆl0َΙÑZ0ey¬Xí=Ú]1W·cn¤InX©Ûí» F3LÔØ1ùºÓÞs!ÍtÎQÚù²u!]ÖcÒe=2]6;NnB|§2@ý5àrK}Y ðÐO¸>ÜÀsGV}û"p5€2•âLƒq) W@ÆO±øÄ ©ƒ¼Ûâ»»+¸ûg™qvÞvˆÕ–š¥ÓHåaÉììV‚™Òì‡{â•VàcÀŸÁ¢ÓîiXI Ç«G¸F½+dõ$€v•?ŒüÄjœüÝ“¦Þõ.¢˜j5æ~Ë™÷L‘‡¡•â C$VŸ¢Þèu–C)Ìð*0gãL¬9‡{Á ìþ“¬ –ö¸ƒè€Xn’ÅÐ$Û“ püâ!Æ9ýÁ¦8ºq¯˜.í¸žu-3ÁßpfÔÓöĪÔüþ8íQ®b–W‡‘?±%ÿÀœª±®7N™‘à1`Ê”… ÚmŸ|áiÔêæ¾q6¼¢C·ª¨SbmÅv”;•.SbÖ>©ö²›w¶Á(Wص629ÓûÒI˵4ÏÓ¡[ö” PxŠûˆºÿàL(fl \rrf®Ìž£I˸P»·ð¬¦Ú5Q¼ç,B Œ·‚ÍÒKQæ0/ ÑVýŒ]°Ã$X˜0FVøsv™…“Çš*?¹–‰V;t×>/¡;é‡Îq†lE ëÊìè nÐO(&”îÝ%wí¤Ž}„Kö8ˆ3ïÍØ€WÊ\-¥Q°º*íöˆç¿Ñ‡ ÏAHpq¶­ÜäöÞ¸_H¹Õ¤yéE™cN‘×dcÄ«”k¾†r]‘K<Á¡‰zOvȲ<Ä;V]i¿³¼ÑÁ$–&ðn¹„6Tì÷ÛlMhS\‡›TÃs[7ïÐM‡›P,ƒ5:~46¾¹ñß "Y¦,~ó­“Ðçy£(2™cG⺊MBÊjSK%Ká“¢»"~¯bJ¨ýÀÂ’ ¡ÍÚJ}c•Ó:Q†*'¬KjT9aŒâŠj"m±¹ªØR…%¥‚ÉÙ•cQe¨ ßeÈâïU‰'éê¶®¬”ÔI§à2¨$T'aÛ³XþEE¡3*Û\§j”ñwRJª:½Z¤ÐXÉšJ.©ÇM];¸ÒLU­¯©äçþ2‡¿|9´óî˜4²‰Âõù­"ܰñj÷ÁG]éGç1æy~K„×ecd—yÙEFö¾óká™*ÝÞÇ._0Ð(BêÑ„èhB¥ìR¥ì2·õ©`è^ïÉZÆ‘7;cÓàr÷œ>:aËÁðñ»Z©®“»°µЮòSU‡€1f¢Æ›xó¤|ËLÊ?Ž™¨~3±7“’÷p¢™pµ'oßc'Xè!G0¡mñ~R‰úºøe‘Ê]雼w¿o‹CÝb(¤¼¦x]•’‚km§ÂOŒ ÷©Ì}q+ô#Åì®öØÈi·²vS¶-Wâwˆ†¾hÔýç•J…,x_›ƒ6õ2³( õV Ÿ¹*Ù=s¥ÍB5À ¦>Ù§ü*}ÊYT3Ó8É _ž–a· ke0—¯~o*+³±ˆø:†çøÑËÎY0í{˜þ·œu9<Câ÷T©É'Fù'ØÌ—‘ØùÇœøë0í@0»©>šâ)úvDÌíPA.*¬Ùk‡Š2Û‚Ö;e·Áé%/ªÔg7Tˆ?຦°îÃ'㛄E«ïªE)˜+eûì7nðàÞã*)Qû endstream endobj 77 0 obj << /Length 2869 /Filter /FlateDecode >> stream xÚÝÙrÛFò]_Á7ƒµâhî#[~ˆ;‰«œÚĪìnÙ~€IêHxh)*²“ŸOwÏQÊjí­”Ë0hôô}ž¼ð£À‚•vtz6Ú2íÜÈÇ$÷£ÓÙèMõÝl<"„êôr,ªå|üîôåÑóÓ£ÿ‰‡b$‚eRÀWŠY¸N—GoÞñÑ Þ½q¦‚Ýä¡3°Ãbôú臣gH€È>0®S`Wpÿ)n`9ÜD0)õh"™‰ÌW¬ÇgÎ ‘ð–ÎáGМéˆ-å](Å™4p›qСcŠ«‘Õšy£ãÖ_Ž'R8Q‰aÙiàȺ²,3´³ä’ ïú;‹ñD)UMâEœˆÊtRûê).ÉJx\²F£™u Ô´ }ÿ )ò.Êe`JÈG¡\IæA ´3?DùDä”;½CùWH¹7•¦\€ªÌãÈ\rtQæhvà7‘\ø[^XmµF¸ ü¶ùtZ/âg×ðpó~ öYýŒÓmÄr‹PÛ‹4…ûõXºê×±±@ ¾K{ïvÒ (^dS³ý+@=Å‚SA B„Ø¥¦H‘ÿã~剜~’á®×‘ ·œ«„—gx…eÔ;Á`©›ö0+(vÜ(ƒ!ï3¢˜‡Z*±±-á1`{]i j–Žj¼Ì?\½C¨Á¢!þ õÐh& 8Îeô– ½O©ÏÏ‹hÑÉÏåâƒb;¨žøø>2Í´ ÷Ÿ9 >—u=Bsàݹ~x( w"¢ IËœ^ô® Iz_]®Ðæ7dÊØ­Ðk¶ÑÐðýú,^EA¥® OK’ ¾×»2²Í>‹P;™ÛÜßÇ€ÚdÏ ü,¹Kd‹hZý-ûÖÂCû>arÇ ‡`‰ Qäw„Ñp•tÌe¨VEC `йâEY,*W|#•ÒžšJ“C{ÊÞžƒªxÀžú|ªû9¤ˆf[¯fñF–TÆô¬±ßN`hM¨zÁ Zg£dwÙyÜ€GRhPÒ@ÐýÐPcƲ¾MmKLˆ«iº4YnëxY$Àmú¿HI4½ª7ç¸ó&®PæÄÕUÚ境~†`”‘M‚¼o~Ƭº„Ÿ«øŒa¿.ºŽÔª˜ÎfÅ1ˆ°m°DÑ#@tóˆ£þ†øDŽZº‰e‰tü$RBG‰Ô$ø„‘Òÿ‚þ“ä%ÔlÆîHžäËø™§òc¯ˆ S%Ê¢Q%½&zàúò$šÖ@x„º‰ioeJKÒÜ+SšfJÃß=ÓˆÞ®rÈ1û›„Oy@¹O>w‰‡O&à­ÞFTKv*¡bU?‡Áèf¹GD=@†ü$d”F9ŠvÉ’‘÷Bs\ú‹ŒÁí4Ù?•Êi.íŽhƒ‘Hi¨õU™@* J Ðâ)„4Õ+Tó‚4;¡Aæ (gªYó\ïïÌé Â7Wò"©ùü&Îk&Ô(âåú¢Uòu\©Ó üˆf#‹î£%êúf‘PLb›²Ía¨Œ³Æˆh*©Á¢¡e¹ìF9M_¿Ç5ZP¼ábhû‹4«IC§–´YùŽt&×ÀoépoÒAJ‘hÙê5zž¨ͧ„&u”¹fÑkƒ«ÎÍb‘KKÛî„÷WulÊè&'ðÝó®YÄi•€8D㤬jºªê}R·$ÓÉNƒÏQÿ¹N¤Ü$TíyÑ&§™l§\@ÉÍU¼Ögí´)‚ç-$¬Q‡dŒ›¸÷,®Oñá‚ØÆ7tðׯ¿øð$¹k6Áý…äÑ<]DgL.! ­È /#)íòjšào –gÜê$4èc³T²éÎ^F¡B«¾C˜]¶.Ñ®¿Þ¶ê:Ml×c#ˆV¨p4ܦútB†ÕŸÞ9 sò À`ŒûÝXsœÎ£”žMõÏ´ÇÓ @-M§1™4vŠÊѲú‘®‚";yß²QG:Q@ˆ¯“FaíxÒý·ädMþ_o3íkÇ«ïéአêes$M'ÊÓˆ¡pÄÝè _SøÓ¢‹°F‡ØªSšzÇÚ‹øvÖ04qçò}²Š&ìд£‘P&ÔÈ{>ËM„jd"EûpžßV)dÇËeP÷:æ]zrÕiäÆÈŠ>F˜WóxŸldVðB!}~ŽÚh^¡5HmÃïR{{œþ/xìºf­Ú7•„—T-¤ÛÓ6) æõ .‹d>3ƒü3Q}U>L‘,Æ­’ÄDàP·µÝ«–ï&Ý_®À 51Ƕ ÇT¶æ’Ì’[ébÐ|¢H?‹&QlÑxð Ò̇¸ø*ßoOÖ(4ј±‚7¦Ñk´ñÎ HhøGA?¡† ¸JåõyRÌ÷pïÿ d¿ÄtHG-sÜNxGabp8Ý~†¦íü%­É` endstream endobj 81 0 obj << /Length 433 /Filter /FlateDecode >> stream xÚSÁnÛ0 ½û+x”RER’¥Ý:¬ÖÛ0ߊÒº-ÄíÖ¹Û>TL#©›ƒaI¦Þãc^H/Bé\—2p’=$¸›+‰8ìÇÝ*MgŸG„OÏÍy–+«)íAÎ}sv™¡Ôt ú &ç ‡è2eè¸6—-šoò>¾¾ÈzßZf6ø¡µ!°9Ÿ?VÌ(Ë÷í‚!ôn’ÐfÚsÇçÖRg†©p×ÞôW@.)/ÉžºY¹ª­EòÞLZÅx/ ¾ ’Fêí¯V²×ÃS=Ls1ªHsѸETœGêŠÃ.VG®o< ryÞ±”ó{#;¢êø¾Š«GœK.–\Þ%¯õK™ÄÜ/^!r5„¢Ô²ÑÝï~¸‹èJŒoIAI¥‚}0·ºŸ$ ˜“П”J3‹VõÅ•“b%Ña}É›;Ý’ÂJ‰þlj°RÊ+¥“¤¼//ÆôÛ¢‚QÁ¼2€Ž¹¶xñUbF[éKèB,3¥o3›Í­´äv?áíµY_2Õ®¶ò¾žaùÞètÕFŸæJa–Žä0/ÿ±_ÿ/yIêù endstream endobj 74 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-mstate1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 82 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 83 0 R>> /ExtGState << >>/ColorSpace << /sRGB 84 0 R >>>> /Length 477 /Filter /FlateDecode >> stream xœ•TMÓ0½ûW̱=0ë™ñçuW R%–Dâ°Ú8Tm¥Ý"!þ=c;NJ„{¨Ó¿y~ó2 Áðlà$£„¾&F›€Çàå|‚³¹ÍÍåã»[Ø_ŒEk-\¯—ýÙܼe¿CÂé~[*Ì‚>‹Ì0žàqsþñ²…7baókûãÎÜõ”É0'$µÆ„>Íç-Œ‡W”戹U~ùßJñ5ˆbž|-Ý÷ÒÉÝð—H†»z7zøiŸÀÂWC°ÓßÁP•~o’Ã@@Þ¢d8Ò¦\ìø8ãèÐ<ÑW°³Ô‘µO"L¢zìÃŒ3¾â‰¿Æ?+¦„Ù/‚ ÎzDŒÁ/õkÜéƒ0æ¥a £,-tÜ;ìü5^Z&±èœ2<:†“z×ù½f‚#h Ö#°Måj2t_ÐÆŠiбhjš~¨š ³eL¡iJýK9_'³bf1×÷¯}:Í"->I/ÞN>Õ‡jjøú‚Ì>;£õQÂõ-Üauêìsò]5':ørå³3æ>Ú~ÕÔh}ìéœ@$b*3×FB5E5ÔEF_fbÅPÌí™…òš]iN,šžË¡i¶ÑÉ•æÄ˜ÏôÔò̃ù ^fïÇ endstream endobj 86 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 89 0 obj << /Length 104 /Filter /FlateDecode >> stream xÚ31Ö3µT0P04W0#S#…C®B. ‚‘)T&9—ËÉ“K?\Á’Kß(Ì¥ïé«PRTšÊ¥ïà¬`È¥ï¢m¨`Ëåé¢`ÇP„ÿþ7Ô3`‡v(P†ËÕ“+ L5* endstream endobj 105 0 obj << /Length1 1860 /Length2 11633 /Length3 0 /Length 12798 /Filter /FlateDecode >> stream xÚ¶PœÙ-ŒCp·@hÜiÜÁà.ièww !4¸ww‚»»$·`á‘™¹3sïÿW½W]Õý­½¶žoíSMK©¢Î*¶3HÛÙ:³r°± $”Äu88ìì\lì율´´PgkÈ쨴ZG'¨­à¿<$! çg›$ÈùÙQÉÎ ïb ààpð rð ²³8ÙÙþãhç(¹BÁ%6€¼-Ä •VÂÎÞÃjnáü\ç?SF‡€Ëá1ˆ#Ôd P9[@lž+š‚¬êv¦Pˆ³Ç¥`¶pv¶ÝÜÜØ@6NlvŽæ"Œ,7¨³@ âqt…€¿G(ƒl ƆJ а€:ýI¨Û™9»!€gƒ5Ôbëôâb †8ž«Ôåoí!¶:+þéÀøëpl§û+úw"¨íÁ SS;{­ÔÖ`µ†ÞJ+²9»;³@¶àߎ k'»çx+j 2yvø£u@ZLzžð¯ùœL¡öÎNlNPëß3§y>f)[°„ ÄÖÙ õw’PGˆéó¹{ÿz¹V¶vn¶^ÿAfP[°Ùï1À.ö@M[¨ƒ DNò/Ÿgê?6sˆ3€‡Wq@ÜM-€¿ hxØCþ 9~›Ÿgðñ²·³˜=ñšAžP½œ@®€³£ ÄÇëßÄ#Tjê 0˜CmQÿÉþl†˜ý‰Ÿß¿#Ô Ïþ,?ûïÏßO†Ï ÛÙZ{üãþÇ+J)HHKŠ3ÿ5òߤ¸¸;À‹•‡ ÀÊÉÃàààðñ°|þ; úWìÿÄÊÙšÙþl÷ùœþÓ²ë_`økAÿKÙîY¹Ã?B7`ça7}þâø–û!ÿ*ÿåÿ*ôÿíHÚÅÚúžáO‡ÿ²Z{üåñ¬\çç-P²{ÞÛÿuÕ†ü¹ºâvÖàÿåäœAÏ» fkný÷1B¤¡î° ÔÙÔâO¹üi×ü½hÖP[ˆŠô÷Õ`å`gÿîy»L­ž¯§gMþAAž—ç¿KJÙšÚo'/äèò@e–'À‹ãyÁ÷?T ²ÙÚ9?‡ž‡ó˜Ù9¢þ~£¼¼ øoÓŸHàYF#>.PîÄ*ýø9@µ7¨ñ7xöýƒžsšþ~Ïÿ r€Áç´fÃgÍÍ ®ÿð<¿i;Çßíÿ¢Ÿ»³ÿ‡~>YûgÛýkZŽçnÿÕ<ÇskNÿ ÷L:=oý?ôsçèçâÎŽÆswÎnvÿ xžÍå_ð¹A· ç³ûŸÙÿKA¦.ŽŽÏ÷è;þ,¯ÿà?.mÄbŠº8gg*lYÜú³Rì¥ë·±×Ó´ß´“Y½Û\î0‘+ÒׯݱW¶¥®Þ,Q?¢¹ò½ô68cng=WK58:IhHôˆÉá¯pG&é¼Ä÷“䉿½Š båC# ÌÈæDÚ°@ÜU”‹ÂÅÃã›ÃÄÆÅXÛ“¡±¦ª[´âƒÖê™íĸY5|…Sƹ¨Nªí{„ž‘e3éŽA¢}VÎG*œa)=¬__1ˆ"µï‡í'Íó.äôõ øNÑ×~xò{¿Ài’í¬ßårÇ8j‡ãûyæ3>.c‹òYÿRC÷HDc†l4ÄaA™)„ôîè³ö@_9î“•ìË/Ñ“p –#Uëòž˜O=ÊŸMƒD—Œ„woß ÃmÌ;h|s ^ëC&cR-å»l†î#¨9Õs*õ?öfˆ›àŠŽ”*ÁÚWóU@yIá9ô¤aæ—…7*ä‚cµ“_¦Þ£€+ÄÁ¼'åŠ'ŽCdÜÞ+a•—ŒC¨%%O82J¸´r;ÃÙF&.:äÙyçËgÈ…“5H”PÕ‰;3”*ö|NBß ¢Niг캶ȬcNÖüåVñt¶úPK·Ó3±e°©­Ì&‘Ï 5ep¢¼»K–ÕÖÝÈ…ƒ‰8#&znmŒíÔõE)T¥á¦­=ÆÃLÝ£hs®Ãdg´ç€ ¹}LßµÊÖ@\¥²‹ã£âk‹/1³S’c‹ÙÍ]*3‘F…>Ä ˆ3¨;¬EcžšL£Ë¯¸J÷|¯·eó݈‚<¿© ÂÍ"·P`Îm޲}œ$0uo.&Ìu%þTLʈ+¬'Á»Ê£°<“Z;Íìù€#Ó–ÍËØéç¨[š!8_?hšK(Žñ%›ONk6àqî[–öSSšš!F]ºÀWD=½4roS"»à°ª¸€Á@9›Pe˜P_۔߿¡_g‘°<š)¢§9",Ì!$¶¼ýú䋲´:z“VÖ‰ /Ì0D¿´Kð©Ë¬*ã˜oªý)H2¹ÿ‘¤ˆ6hèN­Á«(¸y /áëâTGêý)^åùÊ…@M”à5ŸÞ¹Ï—ô•8CæCOH±²~ÊÐ R$›:Öv¦õíÎ î|šÅZ’z¬I]å)3ÚK IöuèÇ9õÙ¾.7ù§sok8âK)oÈ|Ait|ÜyA{ˆQ+S½È,¯›™‡‹µ¤‰Lw¹z¹*‡Iúù­zÑ,~#!Y·ì‰Ù¢Ä­ƒR¿Õ6\+wöcÌtžfê§ÐŒf‚' ¦s)–÷Jœ;ïFxËc/s‰wjòî6ÊÚG}7~™fáÎ+½{Q´ŽGi&`,¢ò½ÂE:ïËu™âÂn2^b}2ò7î„Vr~Oœ& ³<ñâ-‰ º°‹¬o¹Qɬ¦H…/îš/#‚Q’L&+¾q0óøLÒ'Ο­q6©ÐÝÛ± ǪÄ/?.{EôJŽGÖDÇcFù·Tô`möã¨m ’*—“©Eïy›_Ƽ(p}m!Õi¬ÃÐçªü3™A€´pÌ3'œ³¦Ã]ŒØÂƒG{Š®#‘†T)õJþ:¦¤½Û`aÆP'Ÿ¸9éUmyÚâ5SãÌÈKA]²:V2ûA¾ëÄFÅæûÚþ½Ïý¾5ýÖW·W¥¸-à޼QA`ÀÀœ’¿µmÅ':SuŒùY€KË Ðž¨m=w(S^W¿…ÁC)DëáÀ¼¹[r†1%_›è'vˆˆôb×õÆè81»”¤G®‚ÍÈ]i6ÇüÖ^Çø½³/€'I?VMFØ"KbÍ-¹âìž[E …I‡Ÿì-TÊ'8°N+ßæ‡çM¢ÁOòéx}©,n/¼¯öžj@íÛLÖ-E c9Äݺ‹„bˆÙ9}k£ÿž¾CZC! [Æœ» ™fÎ ù6ºâoË,b“/ÜX©˜¹khÖòE¦šò’_S—CÞ(0iõJ…W8#²Ê·}ìG3!Ë Ë½ÐÇž~±KŠ«ŽŒý*â®|ô%gÍ~;Ö ¾ £IFÑñm¾…ÈEæ´]ôåôaVQi'Ì’¼Ð©<³ ê™<É=/ñP· ^ÌœM€’2:àäT—~Û)`ß‚×ÍK ËTøõZ¹«OÚ– ŒDþ:ÊS„·“Øü§f }Ì—e”eÑ… ê¶·y½Û¾ÔÑ~Æ8L¡†äŸë  §”·ò£Ðô!‡ády€B À¬-뽓ú-,¦Ïu8TF‹× ÔK´IcSê*Œí©§úÒHqv]ù»šCê5å2ß ‹âÛÖ±×&~£¾ÇÆ«ò/%åD…yÎòÑ4Ð= k|\ß%)-ø·Sñ}VhŸFƒ?¾Ùk9ß ]å÷x ˆô:?ËóÎr}Çøª›M2”ŒŒ+{q7Q&‘?wÿEJ+€…˯:5ijÕ©'C’¨ecZí)_oåBâ–†ýXñÉ#Fú{rðš}O-ç+ü¦„¯>rLkµDâã"¢©oa[¹?á>n%V™HíeisÔOiÞš°Q…)ØI³ƒMâ@¤Í?HžF2×̸eŒFJ­>0xíõŒ ® ¢¤ÔýZ3d…È7,˜&›ÌŠTe>ŒX Þ81ãŽåøEÜõ×9¥}îS¯&ÊØ'g9y@a«Î&G5ÑÖžKs‘<˜cçgæ¯EÒå(ù,, peJZ X¼‹6Ètt‹¬Ÿ Ý@›Ä^·‡ ÚIO¦˜Z])§ÍDþ¤°}—sç:O0ËÈ™š¸œòa‡†úƒ÷vÒë× ÊCÉÞVy½´ë•æmr´ëcTZwD}óÚì£K^ß|\ ´‚ªŒ¬¬%ªO<°šWhÉ~Q0NÐÚÖkÏJ§¿Âà+a§x”ù âÏìù^è9´}Y¢€Êå„ÐdJ k¤1¹÷Þï%1^R@3aa¹õÒ’´`f m¾…hMÃÄ/½½Oð/¿je4‡þjB=§e…“×ìËÒ7«ÔÐᛲ‘†˜†F h"¼g¹±à;áWÊáÿNöÂs_@p{¤fÓò—£ëUšÊe 5†È‡,÷ó–mã›–‚aŞƯ™h%¡Å A•—ã%à¡N”ùkß…mÇšÊ xî–ÇÌɸ«–(3•\»†#ÿ¥if#z–dÌc^cಶ—ÅÂèàÉ 0|2õûˆå^ºÏÔ¯#ù0O´I§ÐˆÙúˆÍ9K¢Ek5¾žiŠ^b0jS4Œ‘‚žÊêòŠ«d–FŸ¿~ìÿ@^×GöŠqJcÂwBA^ŒàN…16I^…ЗAÄW`‹®'͵kËè‰ %±±-L‡gïåk xå©@2öBõÚhÄ­9W$ŽsWÑ=nÞ¾ÙëxÂCÊ_uÊ—]–9[o¹É‹ÚðÛMVŸ¾å5EÃ:gKŸ{œïÖ|»:£;ñºpSÕgÖ‹ÿãЈÊÜ´ùídÛÆ–eÝRÉVÊLÝ­HM†¼B¡¬V³‚¿;õ§rQQîS†v„àKïy┎DÊ¢þò'{ôóbl×V^Â*ÝŸD¿ÑMr¶iMÕjB7m[)˜‚¶ÏS³ðñù#(V”±\Œ52¾§rÔ£SÐ3!Bò”è ]伯nƒ™ŸæØ¿ÔQ¡ ¢ÁƉԑOËJºyË5Ý®ÞRIÍßû‘Oœž¾–Žíî£Èšԧ qgLJÁÙ~DK¹Òóò Œî¹\£` &F?â×{QÛ5j ¢5cø¶øÅ™lï+hÏ”jfy†žÃ^çD)g„æ\³È& ÇÐ{pÖ"õ{e›¦Û¹¡ˆÌ@kñ¬I_|xÏÖÝ,´veÄtm>Ú…æ”=+ §\½U8}Y¡¼‰ðˆx"îµw¿îV@ª©Cg1úž7námûÞÅÝÆŒög•ÑñÏ8XLO™Š£T9kj¬äñÑìÍXý‰jQäžÍüÝ5©8¯ÌêãÀ¡x⫇°Îq\þUL“Ž”LUúQHÈ.D·Åx?ÓÚZõ ï#Ô®(8àƒ´pM)×Lʃü¯Õ-eZÂ5U$#·1âՠȯ4:©²(Á«×¬ðƒ—g©dâEU rÞù‰¨™¾³Kif _ Vîù€ØcÏ.›ºFÚ4×Ýb¯Í‘ªZ.k¾_öc‹lÕ¡SÒRøÒƒ^á·Òb6Ã_]†D9”õŒ#€ï43}Y‚bë•P®å€!ýõ0Ï>Ì^ ©ð$H÷±°%‰e<fpÑÁk|T1³Ð¹ßD*ÕÍ#3«=…‡iV[èñÆŸOG? ;ùŒ«MÏÛ"/Vt/s%´…¡õ µ~húÉQ Ø¢q|`—|+×¶mŠMÁWxeØ=yËŤL}¦jJÄ?a{K“¤o\Ø]ÖüË-4\S¿K ¼wt¨Úžòkͬ6y¢ÎMpu•z“Îp_©Y(©7þêaËH©{Êã^Üt¥HVÈKYMûJaÍ~#ž%uÛÖ¾‹ð•¢¯¶$³·ÓX[†·¼ÚƒÙ¤Y‡QA&¿šúë1ßä×,«#!6v<7•-ƘX’üÅ"îK¤ÄM !6_ØXI…YØá»@½‚ ¡\7÷‹ÖC ʇànm Mb÷PGßËOR­Î'„øD®†¨\‘J³§ÌF¼7 ã7Ÿ{Û)kÕýä65 ˆï8=Y-Pð‹g*ØjÞš”»: µmò„_Vm5{ÆÆ½l>x»“^×dƒÝ:qÈ•éÀÀü–œ­è2*8eþ’ñ0Íÿ>Ü #)’'‹QÑÄ: UÉHßš ÑôCHh‡°)÷«pwY‡yÐíÖzH%^Æð±^ÝÕy7ñ¼×HK̦xô¶üİ¢‰•ÕP9dî¤>C[ÀÞ¼ÇÐF1‹î±´ö&Òÿû»\£L>Mú ‰pû0™ß›[ ?.ŽïÛӧtjÞ˜TðB]O»Þ“g…._ðƒ‘õÊhÄ” §SæqÔ3*Ì«°a Š(áÛN&;º#´ŸmUÝÜv{Ñžþp1& Ŷ¯žEÐ'ÇF­k%àÉõ}ÇuÈ!b¿~:,³¼ÛiŒõO¡[0Üè@‘×øU¹ª¿ïÿ¦¿ƒŽZšºýÂH ­^8! 6ØmœÍZhÝÐ&ž NOsÅ;Ùÿ‚Çi¿ùJŸŠˆð‚ØrÔW‘\½4q² úÅÍŽ„W&ˆuYön~Þîs.îd¼¢Ñ,$<'ímÐÄ"¨¢ß|N~YõBÎIßúò꽇\à{ χñ5÷¯‹*¥oõ·•¥t‰\nÍñ‘Ä¢6œ?’Íîa ë ¹Ý>]üòSB MFضaÊõÀPN ƒëN£áŸe㑱]½Oi[eüùÔu ÝÒ_Ê•mÚÃôœ{-S¸s{u*K™ožtðUÌõi`2—m‹Ðj­¶Ž ùÀ6-ŸïHX<ËÔXBÚ‡ÐÏçvzÅâP<½Ò[Ò».Ìê‰:<Y®;gÍSsƒŒŸÃI}Œ9DF÷*‘12ô@Á(ñÝbÊA6_qmËâ•'Ò’£Lƒ{§ /@«ÈCÒwÝ‚°t;¾>7Ÿ¶EvfꦓJ–¬R£ã¢q¨¢å‚ UH”mÚˆ$ù‚¢^ò¬ø |@UÚ¬2‹oägn¬ñõõ‹†¡ºxfyoßîìȘÉ{hßiüvH]nà8ð}—Ìç:òC\!«v:Æ~€±ÕÖ@æçœ0ùú6s[‰kŹ®à:+e®öƒjvùž"³ÓŠyÎF*•èz0%aˆ´ÕD #¡ß%‰‰)a8¸8Â5:¼ûØ>ꛪù â+u²Ë2úL|$Yn=S©þn4å”õóSïÁÛ¦†æ’¯³ïS"fóª:¶¢ãþ¡ˆp7¨þ%ø¸ohùwÙÍÚ½8.rá–yQ­eE XÂW¾¯ÓºÞ#y?T }_%hþ`¾…ZžUÅÔeøHŠv«êE•Øõ½riÛÿ˜$žwàø‰/TùL…fp¯ß<ÎAˆù|`_ú¨)Ä»Ia,¾€¶Ùqn"&ØgªUó)HŠINü8Š.“(¤óª(àeîkjKK Ä‚ôUàf:N\0üõ†•í:^YÈËÖMë"½åÀù=¡¾oÕñfÛŽPûŽ»7!í­ÉšßØfÏÏ;T¼¢ñEåC]Y©ûd¼òK|éTŸ^rÁ˜»üØèÇ¢ó‚öºnÝy+Ö:ËΞ4šµâp”§Á±ý~?ͼµkO 1AgfËJ±(:Š-ïa¨ •¸-ôõÂZ?“Áû8óN‚«qöLæ$;-’F ×äÑìL&ø+%ÕÞ•–Eš~¢÷ôµü‰2øhyµìÉ­r w?A¦O«ó~«ÇœÁWaûÒØ¨§6–,8"ðãs¢1á\í kk>`†OKpMqUX»o5¿/cUý±¨š.ݺÜi`ÇšAœçÒÈ6j”¶/±ØòuZe6+½'M×%qÔÚyõcö§²õ‹-1}-KÎZ£G•«GýÝ`} èâí[iÓQÜ­Pp÷qQŸÇ/ß嚛ɓ|®‚žÉÅë/¢üì1àýôr5ôb¡WëíVLBu©-~Ÿì—€§™U˸à0@Cƒž:î6@X92ãíþ¢ª˜þ¯‰ˆµ±ë0ÅUåEJiaÔ\­cÊsœÁÁWŸ¶/éãü«ÇÕÈ4@–ÙCLHUýèB>ccŸ']H>sF«Gs²Œã@B›™<÷ƒó_wï’Âð1Wx-^£âÈTwŒsö¬/ô#L)d°—·?Šø$ñåõ·šOõ{…RµœîqÇø/U³ðX²’p‰¾hй\Zì¾×@ß1@ôûy§ÂWÊ.ŽªÑ€r¡³}+$¦BÀ$S €3}¾;eˆ_¥G]ês—Ñ ‹Xj¹¬ûÇþ ð¶WNõŽ`n‰)ÎrüÆn¨çwÖ  v½Dܔݕ„ÐRt¦ªï–Ø2ÐD&mÌ–Ç]Øý>¸$ °K“qÑ–ÇÛŠC”  Aù ÅõV©¨<ȵ¹ÎáOœ-UÀÁ-×Eégyèa§6©Hƒo¯‰8tU­Ú‰–‡­uœn.U¶!ßTº¯~-%0P¥…b–’yýJ²˜Ð_)ÊÌKs^?Yp\s1Œ¼ÿ±iN$db½þ¡€UA áÓ,ïƒ>ó¢ÍЙ‘–·z[g´ig/´š5ŽþÃI]?OÛm+N²’¼ŠEˆúû¤µÂ‹,ÚÀ½ŸV’˜¾¾øLyMc³¸å ”ØÞfo¡'8Ó Ý-8¤ƒjÌW!£oxö.6ñÐ+˜xÍÙóãá½L—[Rúfœ$¹¶fGwHÞ Eþ<XâpúÖ­¹J½ ·w✿¤Ÿ¤4=÷ÆýÁFæ…OìPƒ±gSÕ×´.‹°_F(ÁU/!&%Ú´önøÍCQ—ŠN•|Ù…Ûq>—<Œj±)ŠŽú3¤ÍU¢T!]¾@oS5ç[ÌÖ7ÛQ‡â7¡ ¿˜Þ—£ÏŒÅEì”׳ãE¥Á·—©ØPz?DLÂ=NÆWbþB _e‚i#—oÔ›í}g –ž ëÕöh÷y/¯¤Ó_&,6©çõòL¼IðöðE5Üà‰\¯‰þR^f€ƒXkH¡_7®/»4Ü1ó&0‘Ûx9Þ?’"Ó«fÅ'Œb7–„>ZIáxö.(Ì™{í‘Ê—že ”^3¡_ë‹a«KÚWoE’ éí:u’¥ÔÙõ6D¯V-˜3¥•pÞ±¼ÝŒ#j;Ð ÿЛû¿¯7¨ôüïlÞ“DXOófÕÓ–gëSßùl8‘Î6å@3áÂvñìÚ¬{€é§„½ù•VîM•ó·Ó^·U ”‚‚u㙀–ë®ñ4§ïÓŒ–I…CQ Cæ²O€%-©,öî…bãO¸ápǼ¤°ƒì¾I?+&O•—,¨Ù^³–÷´÷Çå{çÌê(îàÿÔ#ŒW eú Ú±ª™É„ù© ¸M‰l&µYYþÄŽŠZžñVŠWþ,)ì.ü*'¿V†ý¾Ll"ºwf`“§VYMkÃQ´™·Çy-AîÃÇT¢UœkAN…Aëâ˜ø,Ýòu‘ùêïȈ/GzSxK쉚u— m—î’¶p…Åž–a:Èœ?¦è¢ä­/ã‚Nß¼&I`‘‰ˆ—9€²q‘ih©ÌZ¾]Æï7—Ð&äHJâ›ñ:ùNl{ÿû­•o£ÂÕnêÁ׌ñþ¾^à˜à„pÅ‹ù@£”eIæä>¶±20g˜$>›uÉ“¯H#ðº7ŽêKŒ/¥Äö b2‘À¥,Ì0p'Òªv y²G?w¾¶ªo“b¥Íi.bˆçsMâ`6ê¾ O\®{¶Ïïœ`ÍužåC¦WhÈó¥2óÁîç%œUQ•Ók>#øŠg½èJ.ó—b½:o%+m\YwôN¶wÀy/Ú“X›A ­JxÂÒ–üÓQZmŽ*„?ûØ)>÷™ZÞ J‘ÔÝm…ì<&qÑ;(”DO¬¸«°*|€ïg¥ÕÖý9Þ«}B4§é– 'Pø¨9Ã&*‘R ijô%õ—&¾ºŠ”=ËH0¤Ø$µ7gì†ùàŒ Û‰†îá£õÔ(y¤ôéЫ#_÷dªx*˾ûœ¿ ž‘sãº5w0ÿxìEi‡ðÀÛÔSut-zÆjÉoèÀ-—g¨òtžñI¡LÏ9/ÜÄæFüÁ —àyùÂvÝËžÙ/üx'‹›O¼׳ã¢{XÞÛœ{Æõ%“êÁ(ÏkÙXïž´jŠ$P,Ìfr*ZsÔ±Î%‹`­ÄÀ[‰ ÷ªcGMüÅÄi»ôŽN=K[r —Q¶H貈& s\ÔŒvÊ"ZˆqH“s‡‚V>S"‡!-®3¥¦HVþÄfEÌÿjùÕÝ üB>‚V%–^‘®·Èn> s ‘äQÒù’®ªÙ¶„;.zVb›Î߆V‘×cÊ£NOm…:Ý+¯0²¨pNÞÏ_Ò¬‘ÚH÷FéCoè«zžÒ8Òö£A&Ùy¦ÀkÊ;,,ê É3¬Wû-aŽ)öó÷ïod=2ÈŒ¾³ófhx±чUnÄ@LjÌ)Xì"Aë2øBä0?nﺃšÏõuÞ‘Ã1!0ðÃEþŸšýµ­wUÆëÊwmbVôy³ý ýö©IæýýÑTè'‹F`‚7‘¿©„u"—:¯ª§à'Q)*vW-á= bWm¦ë|—Œ‚»ÄvÙ=žå˲îWŸÖÇ1žxEï°hÅu¤•ëÍÅé¼NU¡™lsJ>|PLºÙOqY×vÔN×™+™qÄ®1ßgœ+mt6ÞøäÊDUêÃ06a¶Ùvj‰‡¬Àñ-z_¿‚d1çP”Pa!‹å·æíÆüÐ8Õ*cïí›M7rIÏ<„`IF ›wNQƃåtÔBäAÓ/*ù—ùÎ6Ãý·Ã´†ÚØŽïÓ‚Ö|»øÜG8B7µXEzôµû_X”ḭ¾¢:Êù–à˜ÅŠ d[ŽÆõF“•$ÙÉ\²}.⽚Iêp@#šOfE=Œ–ÇÝ¡¬±e#I5Õiºä¶†­:7£ô ±áEŠÖ>Ù~²G^‡!¼¨Ãßvûx©¨=HoÕt/Œãg4)–¼‡ý‘4’ø÷e}ÄÞÞëæò9§`´4.:›%9U­M¶õ¨mŽBkSÞ‚„—‡èF. vï×v"äÊÎÌÜ ©z=†ï½‚£i¯ú\<ý¤â”>i¿¥R~C~ÔŸ4øÐK¦Îz^Qqö€ÄÆïwŠ©£kQ¨³Å»ói±NÏB‰@ F§×ÈHóJÞgžн`©™,±ÄÅ)&" Ç%Ýÿ2«ÑxX3)hx4ýƒìèGhø—P®ÁDù0öƒNónÊI¸šDù0Ò§N]§IɽKW)½oVÈïe\‡H]ÂD ~¾<(Ç?TPÕ¦µ³#«`Üð2­Ú×剗‘Qèðê¶´ºµûr½È©Ó‹W_ˆ #DµÝ¤MI¤zâ cfÖS“ï°µT¢¥Q¥"sª¦EPå½]ñ€2Údc¹µÓelWw~iùš|KnéÐÛ!”)ÌzA’ €¢Bv-ƾ^6{1_™hÓFô®RªŠb¹øì­ÈŒPíèßÔ3…QÆmÍq­d¯ÿhumUÎå'ü$4«4ྈdøÚ¼IVŸÈ™VXB…·ÁBŒÜ»&4 ò!Bò—ÙeÃJÆ ”íE gŸH|Öªjõö> úv”>p|e›^ú±åTržnbH€íbÝX™Yå)#O‡ÇÁhvP⼄UÈâß œ|÷·lºø7#¾“Ï>¸Ñø½$VUã#‡}ƒF^ÑÅ’¶ë"N¦Æ.pÀÊHýþ'Ø-YY ôã:èÎõu|1d`¶éšµ`Ëò¾Š…øÕÍôçú7G\-vãxþDuê–Þwæ°ºÖo™p¹X[Î-yßWÁa“¢cl+«“ í"e 4±e«ºy M}‘ ŽJ@ľº¥gŒb`´5¨OÂÒ}~ÓLÈ2–ýhÂE]'æÙÎ]HJÝÌû’•‰˜?OýMä0µ÷»ZCDn€Ïþ··wÖüHAÕƒËÁ8‡Ë®K°Á_+ß!ç‰gJ?¬ž·pˆ0èž´ysm‘Xï |5‘žO÷àÒQ%ì1?Ô”E˜Å™“ªVøt ¸`x…!=ãk«:*ôý`ú!ùÃ(bòjý¾iîŽ?ÑõʦÍþ¨/F‡T/ù«Jºá³ ×9Ø_ìCü@±¹Íà>† `YpôÒAÞÏáo®ù?&߆ }º÷¼þlø x¶²Œ—-?ÕÿQ¤ï¤÷²’5ëÕlCÁÅd®ÞÚ7Ãr_tâë×M¯®a@‰3Wlˆ«Á`{ ÖïÁå ›¹¾ýD³ ¸ÈG´ÕTÛ€]ö[±ãöj¥Î,?ê‡)Á V‘ÈÁÙ«Ëó€XΙD|j«j+œæÆ~ß³öÙbþá%RzQB²®ò2_wšV“jg˜>v[¡¼>+ÿE¥Ã ‰ñà¦Á*¬êH…»FËe&Ó¤æ£0!Y’륫 KYaÃCýWðŸ¾`i¬r$ÂYeϦZì71Ò–ëOKÂËq8©`¶Š% ´®'j¨È_ò/ÈgÍ\ƒm2]°®PÍ€¦Æšæ[}vP+hôvPrQ™«Ái ÝI±ëlTĹa*q.ܦ”+EÙ® tå±Ýž*Ôz6z‘Ñõȯl¥›mmÕfrK¢ªŽ'dÅCáç„ >Qò¢ª’IÑB`ëcRÚ-ÃÒ‘ºtÍ^[ó¹ÅÙ» ÖjÏt´£42¶+UÕ÷Ø;S.]³^;^Øæ4ä~²þÉmÓÇg:M›n‡I¥™ßd¹ñÂòÕĘk—â—H]~£² ~l>É¢ÅÏØYJ±0ZùØ#dP;ëÑLª#3·DKãN NâjÁüèêhºñú„kcÑ¢]gMÿÑÍ¿# endstream endobj 107 0 obj << /Length1 1721 /Length2 8148 /Length3 0 /Length 9236 /Filter /FlateDecode >> stream xÚ¶T”k6LJw#ÈÐÝÝÝtÃ0À30 ]Ò*%Ý"ÝJƒÒ„´(Òõã9žz¿­ï[³ÖÌsïk罯½Ÿa¦×{Ì-o³«À n~> €¢¶²)?€O‡O›™Ù‚pÿ%Çf6Ã= 0¨Ä¿4á` â^¦DÜ+jà O¿ €_D‚_T‚ ÀÇ'þ—" .PzAìÚ< ìͬsó…C÷qþz°Øüââ¢\˜ä]ÁphŽ`×ûˆ   à1 #|ÿã‚MÊp“àåõööæºzðÀà2ì\oÂ`öýÀv€_%t€®àߥñ`3 !aöo  ¸¸@@`¨Ç½‰'Ô ÜG.j÷Kèâ»·z!.@Û{…?RTäõÀû ×ç‚CÜ<—_5òþrsÍÊP;E˜«+ŠðÀþ•ŸÝß»/ïïæ:CaÞPÿ¿Nö¨ý¯2ì<Ýx wO°ºÒo{ö?20 Ì'. *"»À> GÞ_ }ÝÀ€ü¿Ä÷5ú»ÁÜö÷e€!öàûl €€{‚ýÿ ü÷„Íϰƒ€[°Šý÷{1ØþÏó}ÿá€ß=ýø|¿>?YÝ3ÌuñýGý󩙪ê«qþ.ùoPAæðçp ˆ‹ðø…„…¢¢€Àÿ:ÒB~'ò/cu¨= þg¾÷õWÎ^¿IÀö{BØÿõ¥»§.ÀöÓ-ù„ù@÷_üÿÏ|ÿÃäÿ濼ü_™þ¿©xº¸ü³ý©ðà@Wˆ‹ïo{êz"îÇ@v? ÐÿU5ÿ9»Ú`;ˆ§ëÿ¢êàý8ÈC\þ¾Hˆ‡ Äl§A€ÿdÌŸr£_³æ‚õ`_ÛÀÍÏÇ÷?Øý€œï7ˆÇ=-ÿ€À÷óóßÊPÌî×  ‹€p8Ðû¾Í÷'a€?ÿýDÚ}þ 2€— CÜ›îË ØÃàØ¿z*Ä൅A`°=Bâàð þáÿüÑÃÿ@ââ^G Âòk]ü-¼÷tO"°èbñpsúþ‰ üƒ!À>ˆ¿~¯Ûý‚þÿ7 (ð_à„_ì_ˆíÑßÈ_ÿãMð‰ÿú¯?þû$à@»_Ä´ý—7±û <<]]ÿx)ü¥òý ü»Öÿô ä ¿‡øc®îú×ùM û€AØsÓ0d¸S}xûy­üCoîÍQéÏÌ›&ìÜþsðÏK|ŒTöšìÐø©|êà;ÂÅue¶¹yºÿ½–FŒ¨ÖúmW×ÖÏ Æ7Û°gÇÈû?ïÉ7ôÑbÑpÊmܸ‡8£¶ wi0ç»{Šáë’œ{¿Wõiè+_ø9½©¿U#¢‰s]>Á`oòj’¹À6gŠ’á‚›“ƒøÈ‡`òäô3qÞ§;:gœØû ‚%þ櫉S~K•†ÝTLTæ”´¨'ÄÇYü¶Ó4(füËJ–‹&éíÝîTe-N CΞ٬Â亸zþ#<Õ ƒ ©û 0¾”¼Æ0Ì#UÉ¢Þy{O*µí41hP#Y,Í ý½*ñ\í”…E[UƒV p9C-úJ"2EãûrÈ%X×¶ XLt¼Ý3´/³èÜëz8췴㟿ˆ'Tœ¨î2;}Qì+@/é«|T…ra¿yCqá5 ­2½²ž{¯ \2ì’GµEŠá3/Sðß(.À³›Þìx  qšV½!s5øŒ3ªY)¿†–1“”Œ9>KÑcH(ù¡v{¿ŠÓB(Yᘉ&µ Ó](HR4¿A Œa"‹òø¬eF0µl|ù»…ÖæÁEÅéÑVÿøk=vãA \Yü|æV´†W SФ`Ii¹Ï¢ËÐË쪼“©G‹\ÊD!ùM—¡œCmÌ5ÇÖø x£­¢lì8‘W>dš"/S®Ýßõêß‘¸,IPTc•Ú¸Lú~ƒä[ëu¢‰î~ÑÖ¤ï®eóØ¥´—RæÃlSó^6ß“qh|õ~DíA ¹>?Nœ8ý¦¤ŽÜüÊK‰§Ÿ*Yv¹“Ø”ÂøøÞ•Ù;+ÒbZ„äU§-úPÅ/±JûDö˜«ýx ÂöÀKLvSéu‘PÔ [ÜñÔx·::’5©©µJùù’ùy*•ÿ”ïRŠ Õ5ƒvõ,¿Åâmï· <è´G8wÍŠ[i“'íGF6Áb¦ØÇ”»ž£n¥4›Ñ_QÎZ˜þlôÛ©’jÔãïõ™&žº!?,Ÿ ûz^„qÄ ´Óå0•ËOºJ›Dãå;®Y“Y4ËéE¡6Íæ¬þ4¶[[u:ÑÓÙ#aOQaJ¤Ý³¸_ÊFü*ñ È'þýöOPg¹èÙ†)C6ç*ý–Ãz"*­ !¥$³óöh ch|¦×>Vè[æí×ïÐ䟋LGêøG|`nMµJ Tºª·‘Ü’QßkoØ*êßth¦Ï.P| ÙžíÍ€Ù 8PĺPzJÀó}ÓhŽ– gŽ,yèä=’èû¬/Vcì+äÖ²^zÍ~©Œ½5¿©qÂÑQ¨· +!=âñ} 91ì½ÂöŽÿÀÄ€D"ùpgÆìÚª"Ñ&ŸÂÿÝÿº¾Î<¼JpŒTnü˜Ë«Fd±ï ÏЕ)`™tNf|âË»a°b××´Ig†¢g‚t¤ë°z9£®Äi‘è ©‡ŒBï„0mâ}”úÞ#Ã$”§ üµÃE%¢Ò#«3­¼¿.çžd)ʗ禲:YH_]i E£ÿ¤=T–ï•.®•ÖÖöOp›Z¬—Úr-Ѻç8Zb)Ÿˆˆ§›ÇÖZ ·µG‡ÔØ<ú$KJ‡ðú®²]è=; `‹y4Í»Á½ŽªëU'ŒÚGÔ#çü:.T`ÕÊ8v‡<3þáâÙ'(Òé=Öp‘ß ”9Ò ,‘a; `ßJ}¤ß¼”;ô®°–y¢Ò :ÀW¢É¡Ã|´G‹_áo=Áb;—k—¢Ù€£„2=Ú$¿xY?û  ·K€ÃH—ø¶å'|ÌÅdï)y{« úäÓÚ«ÜYµŠ7þ«[¨ŽóúÕÓ] ß¶}^PÌa2ÝÁIV¤TY±Sd`oþÁ'ÒyR7 iÏÁ ™¡OGb’Ô7"Æñ^¯ÎÅÇoZ= §¬íáBU9>“¨U+˜}>íb†§’¦ö8ø Bóául7•Dª*©ÙúÏ›ðÖª È~H1þ&æHù-6Þ7c™2”…Α5]JØu½­£·hç†ÎÔ Õxi¡â”R§vYmy¿ùVùeVõ]¹–ÁëµQú°¤Äæ7 ýïŸ7Ågiœ‘ì:#/¼»S‡¬¾B¼I¦©¾ˆÒðëuÜÔ1ÚeèØÍ7 wËVІÕ*¤_ï¦}› õn—÷ôü ãoاd%Úz·7xd·¶ïÿ⢠s‚jÝAö#LÛ$22ÂFRpÆiÉEçfn%ö¦«·°¥Êäb­L½?{Ýývô©* ãË™ÉÏu=w«2¥­ÌD‰9²§áaú·zýÅÏáð¾“òSäU;mñGÝŸ¡Ômzõ€ÆNšD”ìÕXÛÁðŠ…V40!î©¿£®úy9fÄ…åYƈ‚/È?Ã<¿È @njúüYmF6¹o‡¸+Õ(3ˆÔmç£r( ÁöF)O¥sð€ú‹êUƒÔôNÅÆ‚Ânë…ùžeŠÙ£ŠaÇÐxs$•rQ~8™Ý’>ïòw±(s¦7®€BIŒ\JÙ¾]l+ë:ò׿J 1½GÈ–;£?½3²ÙChÂÄ™Åó‰(޳ì‹OR™&ÈFÆs®çj š•i|zâ+Ç1´OØcsô7ª§¾×S¹Vp©ðÚmdÐÆNÒ2¨‰R˾sÂÍ6 =MÀÞrÁÖmt±eS1Q%º\©;ªåéÃ?ÆÇDª·*“ª«Nj+çÿq°Xž™çq4Þ ½L<¬ûT«¨¿@$wékWJo‰®Z5X~­8 màç(#¡„Óá&v£(NI·HÙF÷Ø/ZxãŽ,z#…Îù´ñ„úøœS©Ï“=ùÑ©»• Ê­ó\Í:tOÄóÇwÏlÌÃVU l¦:î«õ­åÌ°Žƒ5 ðlÊCœs8ßT,S­-9¬µˆ.ÂVÛÔtô¸Ç$i8Œ=š>ØY-ò¿`ˆÿŠ¢ƒùcIãÛü,ÏÎ÷ctÔŸ«ctª0‹S_¯ºg<ê9Û9“Ä ÉœFµì8£›^Ø{¦´—¼rÕ/¨³Ôë¡ú]{ÔvŒ}×ÀL`í½Lµ¯€]Œ4ÚÛ°Qª6#‚Ôïhàƒ½Ùë-Hb‘rR²M[ô'IÉ<û¾yVzމ:Ócãü$ÝŸö~Û‚›‘8Ö×j'6 |áÃ'ÞíÁþim:8;ºÑÖ¹÷d•_qó“pSÛ˜aȸGL~˜ª¶‹Ø}‹>ë4'|Ž×õ¼Œ—½Iu‡šròý2Û°å¼pðà›uTÄ;§'qÜ[ã¬Ðb¨/™®y‘„îÆí¤¬QbJyð«äNA?I8p­œíU`2¯5^÷ê˜R+¬žžFwCŸ5n¨NkôT.÷õ,½‘ÏØ °“´‘ôh‰’ûVféÊs–\Oñ+´÷¬Q%)‰@SMÑš–m`û÷»àpÐÆ-:ó¼UÅLŒ$ZuUÏ{TÜ#ŠŽMàAs†odÞ‚ù¼ÄTB¯Ë³ÄÎÓ'!Ð?B|úa^øµQ|)ÊTé¡{Ÿ£î›çÚÚvïG[¶žßNãîñ 4òš^żñÖRò1¢ÉWìU6 œ€á/ךŸ»$¢*èÄæÃóÄrÆ—j;Á}ÅããúdwAŽs¹iô—át lR3´¯ñºñ„ — bâ“Å@w‚Naô¼ô4ËæË4¶Vß)zò¤›Ò'_æöPÙ´^5ãð Î9yEùýtŒ ™Úßy“R»•þPtšÄüDÑìôòfBÃÓ–º=«å\ôožß‘F(2qÌ;Z¨†¼cFJØÖüÙÉÈYìû"M„aLÆÀ€›H‚qÐT‹¹Ë,—¬0yP)Æ®¢ŠËbùÁueuu”J¡án~qH´Ã°)(t¬®«C¢˜ &>•jé^ut×îÈì%~Š ÇX2z¤@ZÒX¢ß—Êv©rçÖ7Y²0É%f·¹—Þ|º§ÒòI%/$ãE7·~±²Iû˜’r½ß¸°G.#á%~B¾ð¥ØÊ:‰+¦¥@Î08ÇN•IJpnÖ)úÓåj#Û®lK+å2/Œ€^Y-gX}q¢nuñä-d@%!&Ö'u„M,Æí‚Ì.¬÷RÌ‹'‡úÈö)Cv-³&æˆpD¯xbÀ™­Æ×  ¡7„S_lï3Å”ŒQ)!q#Øï«¨'UéÀÛ1›¼ €Gh!Œ?H±VäèdÚt‘¶?”ëø¾Wõd¡L`ÉÖXÖlÍŠ?wìE©‡»¥ŸðØøPýàœ% }!àn.æ´^Wºƒ0Ѧì¨Õ,—ì«é/•ÏÆõØgq¿¶„¹—µ&;¡ë˜!Õ‚Î!Ï‘˜ 'Ç'”¬¤½ÒñÊŒ½Ø&ÆÆ¸ùê«zúb{”O®ß ÊL®Cp§„(m]±Þ»B®‚73‡:ÇyôlêMøFÆYŽ#ù¶¦‘F½®¼]x¬Àq./ÇBƒh/–hûè«ÍÒÓý²¦†oÂTVœ F^6OnrUeÚ8¯1Çe¨{Ú¯¡–·óQž”vTËèx#ˆEÙ7µûf¥/¯ xML]Èuw’ð«­züËœ’±»ëìÓS£­cÜR6w¥Íu³ؾq–ߨì©aa· ãef?еsÄü€Ò5]ae¼Àß85¾Ÿ-PH4¦Ä6jbÑËKŠPÅ6¤°5áíûåçiž£ÕL'l÷• šÓÇÑÊüLÔz·b2ÄWy%Yê]È·¼êjئ•O«MY ÝYÔ"…´)%×kq¥à³Ÿ á¿D{½8 ä²iHF‰yO”)^l¹ßü®œd+‹z%¿%NÚ+x”û뎒 ¡ƒ­´ Õ‡+]š-,ï!?É$)̓RÓ'ØcAø_X’ÌÔ.xhUÐ߯Þö{ª|Ú/_‡|LPlA7ÒÇŽ£žðI!‰EžÅ6Ñ_Á£›g}qÙ$ª÷¿Zβ¯@aûÔ᫪O=‹<ÓnÉÍwȧŸx_¼—!@ ±ææWü®Ø³ß«¢ç58ÚÔ ~øFdИxt÷‹|»Q4ÐQ±yû*AÔõçé\€‘RìòËÒ‰ HGÅÏæ¬1 ÕºMÐ g¦£œ¨6ßävND”e(9PdÆ’ÌU ŸÚR³ÔRôúª¾èyÆãÓ¹ ³¢dÂ׿)N»°j±~ÕbwcEÚDíøºüD”»H-¬ß6‡ŽDAÙää_î«Ì»Ç(7´”G#޼Ò$GË?ä_Í?¦ly՗О¹ ã ™‚î¸e{@TÎÄøkz"/ÛƒÅlèî> õ‘˜s?¼½(ذ™kè3–åy¬¿ÿý¨™.Š©l+¥V”)幫1õ¥Ê˜~ž4>aåx6¿¶‚XñÐ<ƒÙ¼º!)ZLBæÞ,ïÀ;o ã똊Zj׺Õþ–¾JÅÏ!â¤Ú$üTÐt‚¥ßãí3JïßÏÓ ž¿Þ|¸»áÁV•À¨§0× p„é"˜c5’Úz±z)=Ç‘Nñ—y$®¿ÿL‹^ ûc¯oz<ò¨Q.îß~Låxy«·›å•ÂQâl…)|Фt%²• [é³%¸ê¿Àüf¬Fù¸¬ b|×çÔÿ¹¬¦åUŠ^QØ#‹ÌSœoc¯¡?ƒ‰ôfæùiM0ƼJ²äÅ–»D ìü^¼ÍÑ:øŽP=´Ö»ÎñæâÉéHbth{P;¦"1×}ˆz$t#áI¢`|&¤ÑÝL(ñË„Ò÷àØ¸µ9zÃUEoS–¤ñlwüv=&ÇŠ;ŠÓÌä*šQùbýůE˜†Ò'_IÑÇ&4¯¯H§H®†Q>åŒêÊo,™®T]©êvÉ4F{Õ*M„äì%3'S1D’&g (s¼ ºXNúaðÀZºfbó#u0áÙyŸÖÏ´Û’,çlT¦iåL úö£Š«Š%×héé§8º†#?N%™©×G4鞦ƒÏÑ S-E»](†W's¢ÃÍ8x=ê(Câïšæ*9ÏÛ^§>qï´-N>ˆ¤–³Y9+ðWŸbº¤¶†,dtd’ô9YûÅ@é'¯lؤ ɾj †¾•ž\[`­,YüŠ·ilÄLáîïKxà„R–Œšeƒ% “Ä0œ5DÄcæn¬ôÇ]"CRà X/q%‹å»Ð¿¶ štD("p ¿ÍIàÖù~Œ/ÌV9° ‰¦ãMT‚,™?“¯âú1¤S\Íæ(šk^~ƒ+ý1t#ÔÊÞá8;Û›@ò)*½÷Úñ2Í£Ùá%§ž| qç4S`…†Õç©&–"ìqŠM+¥–&I“øæ±Ñ𠸫êE]Ô$µn9en";m;F¹Âµ¦z}¾­–äMƱ¤¡!Y=D&:k÷' a(%™Ý@sëÁOy‘oÂÉÂÛkHÃngg-„~2 3¡Ÿ}¡ê™ ü•ÅyÊ8ú­›‡^‹N@ÜxÞµaK ·—ÙT–åeÁGóÃèû«$3² &ça¼ãyÚL¼Z2¥]%œ›y)lÐãýNzÚ3ÙZ4vC–·#f6Œ½T; xžÓì3¿;Áˆ—Yìf½Ó_»²”¦† Æ—Ð/íŸo©ª\mhuì| I—Ÿ\xOÓ–ÕCæÍ’ÈÅúºU£“r‡gE)Øü^ê¥[qÊüÇeä°}²&ÄÎΙH&ò¸äzŒOO ƒ•çÜÖ‹Ej¬Ÿi׺uM®þc𦒝g—ÿ™†7³ÇKAHö×ežÀ±xÖŠ˜·¼ïñsó¯ïAW5—iTøÛÇøµo%ùÎS4ƒ™(ˆ˜"t†«y d&ÞöKÜ¥DÊ¥M¨HÇ ©‚Zôí ¸;ŽðÐèXGÓF,—èƒÍyvöè`ó‹ÖùµÙÊ&ô©Éæ­Fã²æÛQP£s¤ä_f³zœ'ÚÜ$L„³Ã3šŠs~Uº þ~¤spŠ˜|CA}ðR*Uúä“àP ߊ,%9øóÔ$ :Ñrý¼?GÊÒËCâœ3û:À :·OTÏVˆôXJsSîøÊÙz¯$8ñEFÜ[±\œt­ÕL™µ¡Vªx¯â»´ìÊ£´QÙÎüÅÕ®ÞÝÜãÅ›»àÈ tG‡t¼üxß Òôo”ËîÝ5ƒíÉŸOr(¾Mje* wå›Ä/TR¥Ó,é+˜ · ¤15DùwˆœzÑC(_“|y÷èš–°$b©»Mk¯]Kô‰c¼S—ËçÌ‘—ÓS ¦éøÜhÏzñCŽ{AT-ì/¤×)Úð¦deßò¶¾0î¹ýöªªøù;WUF=>k½að“Hƒ>Ç­•”Eä&uâ°Îܾ<—c·m¯2sÓEú™Ô‰e6Søqë …«o ÀíªOQŒêÍ&|™Æ`úx¨\=€GB7H{{vä=‘Ç ù솚E—R¯š&ÑóׂŸÆðë`Éqæ£ zs5ëÙàhÒ—©ÛËó>iy¿¨,È<S·¬ËvÖ6>á#¸Ž&‹¹n,És”„R`ÛFʼMAöÄÂisÔj„eN]š¦"_L¤RY ‘,*RÈu†­PÆnQÓÆÕËqÍ {)cÎ<i`8  Š.íKl%]8蓪fü´t/-ÍbŸþÞÐõÁ%Fýð˶ҸöÁÍÐëÚ/sϲ2w™²N¾ºJ–ø«¤®}AŠ¿üYÜ JÏ“4‰ ô¼êwñ 9]™ÔÈz,zmug×L‹ ·]“mNGr£]o±Ý(Ð/Ó\@Ô | ’qŸþ ¼N—iÉhV{JêLJ`…Á0Yý :Rÿ®pPZé¥ô óµkæëµ*Q\¯^r¦xqHÔg‚Ù!ÛGÝøb5¦²RVú›þyÝ*nO ðÚíºŠÎ®ÎÅ’m°¢Jß·fJ*yN=eKŽêÕu‰ˆFN6X½?¾k¬ÀjUŠÊ,üÞ•df« 7ŸåLCM7yÆÀ,„@ÓuüÉn”Þ ßë,Ïã±Óo )ßÚD*›8m$]ÞV”ͽ!Çôpº’tiI ”»¸u¶Ò»Ù¨Üm¹ÛØE]nub™SÇbû{ʾÖbˆUãÎîs±¹w´¬G.O]Ù­0"òv¿ a>dfk 7ªÑ¬±¦Šq\¨‹GÇ0‘Ÿh¦¾®?âÀÒ¯«t£—…çûè±.Gœ^˜neúöi—oŽóvÔy­S¿q¨Õ^ÍqÆÊXßäÃîå14‚4ÞÞg\¡hçAÓ.Y¥a-óB•kÖ‡—e&2 ʧ ²zgÄd×ͺqÖÕÒ:Q@J‹HSU>Ô‰¤œIÕ‡šÔñ+¤ÕUù˨4£÷ÿ¿­t.®/°MŒcAÙY»¾!ªÖےЦÞݕڥ öØÔ‰_BUô ™ó‡d |K^9ó]XY}ÈiÎy=W¯Çÿ ¾ÿL¼Ç‹¶ ÕæhÝÕ7…ÒÃñ§Ëò RjÑkÅ\&åÐÖ罤½B&ù!–ý/nø9w\Š.‰v_½SžÂN "Ô3¡ËØ”áÒxÚeE1KžS’k$?…¿»Ë¼˜JwxBYÙxÌÑ3áTˆˆžF'C÷kE±¹D“;ä£êãôhçxuRvWIKƒYaƒ‹|µã~ø½ÿt|…µfw"ö¡º üƒßÄru ¹ŠH ‚ô5©hÇ—¤æVßÕÚy+À³P¦›«McîSí\]-y_ÞÑ)_G—E®”ÉѦþÛåÏ;å¨?Կߢĕ¾õ“é×n¦ªêŸ§O {:šEˆç£t…ÃY‘Žm6æí¡döá\w]êÃ{t@]!›wÊ‘Ç ¢ís¢Þä+öSóü—È*Ï2Ÿ_íù[M k/9j³ùu¬îEP~gCÉ@I}kêÊ4ÿÒþ‰]]Ü7áñÙ†°2VC?ÞCLæ‹Ú¦ÌÄâÅÁfÙ®¶1œn×þZ¤f—ôôÌ×Uô_žú¿}öŸž¤U Ì‹ÈVjúœ¥1¡†dÈ/¯‚ÈLd5ÇeǶî|[ü6o¨wå…´}³7¦UeqÍW’o§^ù~0êíOí(w¯JSÚ/nºCã_cr“þ?®ñ endstream endobj 109 0 obj << /Length1 1951 /Length2 13815 /Length3 0 /Length 15027 /Filter /FlateDecode >> stream xÚöP\ÛÖ€‹bÁ î îîîîm Æ¥qNðànÁ‚Cpî ·àܹdï}Nöùß«º·ºŠ^ßð1狦&WÕ`3w0I;ØC˜Ø˜YùJJrl¬VVfVVvdjjM0Äô92µ6ÈÙì`Ïÿ/ gò"“B^ •ìò®¶67??++€••ï?†ÎüI Ø Ä w°¹ SK88z:ƒ-­ /yþó 5£°ñññ0þå³9ƒÍ€ö% Ä d÷’Ñ h Ðp0ƒ žÿ‚VÐ qägaqwwgÚ¹0;8[ Ó1ÜÁ+€:Èäì2ün  ´ýÓ325@Ó ìò·BÃÁât^¶`3½Ë‹‹«½9Èð’ !§PqÙÿm¬ø·#àŸÃ°1³ý7Ü?Þ¿íÿrš™9Ø9í=Áö– °- "­È ñ€0€öæ¿ ¶./þ@7 ØhúbðWé@€´˜øÒá?ý¹˜9ƒ!.Ì.`Ûß=²üórÌRöævv {ˆ òïú$ÁÎ ³—s÷dùçrmìÜí½ÿC`{s‹ßm˜»:²hÙƒ\Ar’ÿؼˆÿÈ,A+//äy˜Y±üN ééúKÉö[üÒƒ¯·£ƒ#À⥠/Øôò…ìít ή _ï+þ—ÙØæ`3Àd ¶GþýE ²ø›_îßìÐg}?6ëïÏŸ _&ÌÜÁÞÖóù_WÌ¢¤%®ª+ÍðOËÿUŠ‹;x¼™8ØLì\¬6VN^Ï˃ïÿÆQ‚ÿ©ã_¾rö€ßÁ~×ûrPÿ©ÙíŸ! ýgCèÿLÙáetAÚ?“nÀÊÅjöò‡íÿó¼ÿåòÿoÌGùôÿ[‘´«­í_zÚ¿ þô@;°­ç?/£ë yY%‡—e°ÿ¿¦: ¿wW dvµû¿Z9ðeÄì-_Fš‰“™•óo9ØEì2WC̬þ›¿åZ¿ÎlRupÿ~żx±²þÝË–™Ù¼¼F\^fóoÐåeå ]äo½,ÕÿÖ!eoæ`þ{ûع¸@gg 'òËå¿À›íeMÍAM7€…ÙÞòâxéÙ`áàŒüû¢¹y,¿E/€EòñX¤þK<ìÙ?Ä`‘ûCÜÅ?ôSé½ÄTþC/1UþK¼¬Õ?ôSãqX´þÐKí?ôS÷½ÄÔû/ñ½dþ¡KÓÿÛK¦ È¿Ô/®fÿ%®ßôòºù£ÿ}E,æó…@¶°X@ÿ—ªÁÿ—blþ‹ì/¶¶@;Sóù¿l‹ý¿ð¥BÇ?½Tïø²;Jàx±w´ú“‚ý%¡ã¿2þ.Ñù_ø¢vùs£/¸Ø]¬þeðr°áKF·áˉ¸ÿëø^’{ü…ÿ3„f®ÎÎ/Sú×ÛãeBÿÃý?<@fÈ ófÁÖµÁm75bÄîLÛクNRotÙ™Æ Œ!ýRÓÆëñY™‹ eÒ }lÒFÖÊâN7Ù+ßν·êÈê=9¯˜È¤w-ÉLc矯 g¼¯ßPÌ£7C}ÒI'å/vî‡R%‰ÄèB1·ì× F÷y[Ûû=Á§DšG>¤M¹£«¦$Sï Ÿöá†:¤ÅtHs›ë‚àmΆÝÇ Í(ƒðåt ÁŽ[äx÷jŒµÁá¡%Ì>’îÈy·ÀíSªP¦”ÀÐIN„jí¥¼×9ÅnéXÞ¦2Ø¢æýå«tÉ7µÊgV[g†ä´‰]l®7e´&ÚÙ ‚èˆ æxS Þß"Fº¿'¼¸D…¢¨T0ÛÛ1FF¾~øú é0%T@ÿ»ùëÈgÿ¥#6Aü{‹y X>Æärîº |c¶»ü™÷î”/¥o4_‰°} BD9Ÿ›í_õ´¥ ÜT„n™€|É%ƒ=ÑŠÅ:>ÜEê",·¦Ç»ÕÄá‹ý!ÕS¨£bÉ´˜<ß…^#»ç¸Cð( OJhàUð؃Á2=C,e­ýÊ;‹-üœm4Hós’¶âã4—§Ž‚—ÿôùfÊ©Ïb#¡ÀZÜ|/D[¨Êkc±Ks^þ}ÛŽ~mGÃӇɣ[î“£½sª’¶NYÆóOl=&ÈnZê^Me-»WÖܯ¸àB¨È‚ܶ۾e“/¦é;P9­PrxS$ÆtYïÒÎgAR¯5 h…Zf\‡c뢑ý\ƒŠ’cb©~ýÊE$“êˆÅÈ£L‹vIÚäÀQûÜÚÅùÌà¥è²‰©Ò(´Þ…¶è ;fçÄXÒs)ýR&؊ǦÃË×»A%^íÉÛ«^¡ï¯MSŠ—¡(°DÄþäoÇ»̯|£ñ—!Ξgsåf5t1 @Ž¿HòIoM ýŒÇ™³ZL»w*^ûÈ„iÓö¥%{ Ù¦pýâþ‹i•]ä²èŠqØÛo]ïZgº°©ÔAHv³’ú°•Ñ]ÑŽïGN«NÃQàu—Äyíļ.f™w( Pl¥½'€ŸŠ/ép\m»JÁm&”)zퟠ<™SÓ·ê#P@8æÆè[½ž41Ùê°ægAÁ‡zW÷ÑÿùI«ˆšþŽ›Øàûy£øÎzÂbœàðþ¶j•#¬u¥×Àž{/$„\²®*/›Ínz˜´köœºìêµfY‡øæ!ô@d%öN†oIÓX%×·_†‘¼Á ¾MÔ4Ø ÁOÕÄû>=ÌÞ)f5loXcòÃh‹ñý$SŽÇÞ4¿Yx×üäH ù…,F¯§’*‹—–¶ƒ¢[Å_)àxUYUßgØR±R{Ø?J¤ñûóíý4gúâkó^qJôçQEÚˆŒPŸQ¹Õ÷}:›êŒ0¯éLܨ‹þ‡Ì3s\("úÊuhú»ÈcëêMiÍ¥¶I4F*àI‘úš;‹Äúü‚ïvþf6lŸvü?Œî¬ÂùwKí0=‰d”¨r:ï¥ }ÔÅ>ËϘM…sn7øÑØøõyã^ä`â¿ÞêlŽï(r81[Ui1'1Ž ÿ¹t¾EçÕ•cèì¹ |^ÐøX.í‚¡Òá7Lt$ œ«¥X£€Ê©9•¤Ï¶Ë“žBo.JŒ¼¸¤¢½¨žGÌŽVXGl4"?¶‹ÂX;» „´‡™¼’Kx²‰lk•‘²š¥ÙÁ äc¯U›$emŠòE’§:ˆ*&5S Õ!(‡è^Õo‰è»¯µB™¤¦ˆ¶C¾hšn,wrmU7u>´³'v—*x8qô®}5†“TfìÅNúLé|£cÍÚ‘Š­nMd>a7Zs®+äÏ¡%‘®í.ªŽ.×Í T_üö)Ø×N'séWƒÒºØ¸—‹‰‹©olvÔÂc¯K³(Žq‚K LJö¦tXg0ºJ¼TOyŠíq䊕Œ‰)ô”· ½‰ŠvålÈH‹»Ú)½~öòdó\âEù³[gdó¥õ&T´HjÎÝÒˆÉLÓs‰ ‡á ±€,{UH{­ˆmg}­ÖÖ”jáõ91ÿÇ>„-æ; Ë`œ©`hRÂÒ£Í=˶÷*üÞT¢CÆx.vðDZØÍÃB^jÌpÇñ¶¯MJ¿øg’îì{¨Ì4üˆ¹ÈËâ³[Y“"6ECÈ“ßoI"ÍPò  ú}:«>w#É1Ú¯²”8Í‹«X¹Ý=øæ… ml˜ÐæüdM¨g< ôžïrK”òÈXÆ´¤Þ~%æG¿⣺Dø5x@@•AßÄwy7dåŒ~I„DªØyí?­ÓÏ\bþþZæ‰U*u} ª`E”m«±0Ú\¡]æ„7Ú\]žX‰1ïøÓ²@ÚÝÓpuÞ sÉ…ÝÉîøI$›ù{¡BãÝ•€÷å¥f g FhWNÏÇb弓YŒ5ø›ƒµ>ó5n9+)¡Á â°BÃxCg€f|—/Zë±\àýQû2a%ZḴ§ý~}¤šä¹x3×GÏ-õ›5ØØ—_$ ÃáÄåc¡Á>mºª³¹Úíý´{^+SûvÞní1½ÊúœÑ_éfP’iŸG‰âQŒ 6³+LYûœ$ÔÅů¤KnOÒQo–j‰ aÅTrh«B]¾Z|¦¦]ºw—ü!KÁNó*•É1Eáä}M¸é湫ԹÚ^b "í¤ @uMßpÓÝê‚Üö-» I^ãê½X½e¨L˜²Æ`„ÙûìCë7g,æÐåMž9‰# ñÜõÈÝ¡eçØ)“ä3œL[§JZvÃåÎ4eq–Ân"kÉ¡Hñ´#[òõ/£èÔ³×8¸˜&ªï5žÉ„–ŸE¤nwˆ32hêÎÃó ¨Ø‘¨ô¿E±xÌ;rt@lèi}ªp zÕ@c’ë (½C©LÐâìwˆ¥wtA}s‹&UxekSl*j¯Æp>* eŸÎî9Z¼ÐèKúeWaﻂ¶fe9/ÑzTv’£‡ûpVöž”JBNoE¯Üå^x±ü Éé×D]:u“•ø½XØ>$®)æE«JÄVIYÂýœÖ!³†÷Ý-xò…¨›¡Í'…üNpxCVž ËõOÒ‚zÏ9“!ï{}ÎÊ›V‘f1±/4Yœ;‹ÈªOÄúL÷Ûóëï·l+¨m½.XÓï]~&HªJ(s*4.ŸíˆHQþR·Ÿ¾N¢Ø_·¡\ιˆÕȽó‘G¡{¾5€#†ÇñeLœvÓ‘¤óI>1,Èx,8Núr_±±²'39ˆÙð ª)]“jWNéjÝ3*“E‰Ä§¦©“2GÈ„›hàÌ«8ö8¯Í0)8o^Ðô6)3§y3‡ ŒT@-N懟Ÿ/†³#Mh-U¸ÍåÖ˜è&bCQj$PÉ?¬'‡r¸äsŸzaZ½Aš†‚ QüÀ;õ™5e8Ìgbf¿C…”nÕirC: ‚”¬’“/äQ[ØÚÿ*rí{‘ñN¿ÐsÆ#CJõ´ ßv¨˜ï(Á'”uO#tF!ã¨îr­W_>v­~âVAü`-¾¸É+"üs[òÕ—h¨¸7ú1ž’‰ v:EÆ”ñ¦‘Àçdw:L9“5ôÊ^0èpigb–ÏÒt¤à¥Ùñm?ÂÛ˜ d‡éJv`¹ú™"Bñ@I:¿dÅ£çi<‘0¾Q¼ `ssQño Ò„®ûa3Ç•b®ër—,ó9ÈÜFÇ‘gÛÉS}ZptÝEè‚)Ó- îAfÇ·F¯åØË,mö¢z‚‰ óËN{~•¶B1=ySÇ2²úÉy\ˆå3z' ›´¦¯”á¯6ŽO«ÅÔoh”š=£óõ$ ‘Lo7›‹¢ÄÜqò‘¯Ûo*ã2‘ò¥¸·Hluœ?Âs>Ý( j†¥½›êVMr/¢æ‰l½2™]°žè×’êÃTc¦ˆ|Q¯ ‡™sìõ~&ó™XñŽ(”g¶°R†á]×HŽxÔçÕˆÎ}¡fDzšÑMžrÞ÷~b)S§×:m“zxÉpÉjûÛ›­äºsßäÑZG?›nÓã ù@¢ˆͦX±úYm›NjêÇ\µ[Ý¡*Ù¦¯?‘Ñ“}”& :Ka*éýQw‹éçåÀ4T¸T^g^‹!å—p?LÓ‹ø~ ¸àÆO±…Y„µ~™insQÃD*Ç ¤™^€W,hZˆâè©mZ™®hꨘ„¾™>ådVñ òˆ÷ø‰ù+æF·™0·bÄ’WAÇø˜µŽ<`Þá«H'èttÌ?¯ÓÆp—¢P×Öù0¯ çþ³ÔÅéƒfE‡U ·óâþ™b ¿Ž^D_[Z`Ó²¬ AÑ\8*üŒBšè=ÇœÁ±†2?ï§|¼·–p{E«ˆZ"+t[³ê¦ÔS÷‹QMþ©»ÂÜh›}ƒïéR‘Tâ‘ËKuݹÆX(FÖ}lÒJhA„T,+òå2(Ík ¤ƒ—ÝÙoX•.(­§4÷¨ûζ¡™Ôsi… éÇï¦K‡Ø¹Â¬ÚvOZ}䘹\»MÔTó¯çéL~•¦¨© 6îÑ> \s&p$Õ­â(­V;„‘ rÉЛˆŒ©K+• ­õú?ÍZnÆì;vY,®ÂØÃ>Aup °¡›W´Ä)ô`é+"{6;!Õ‹w5Rõо% æÞ#×9XC½“Âmk9á¾a¼—Óì¦úý4î™±ðá8Z6Ùܲó¬mf•mH`Kócõ“tï2K†JÁåP"¹$ T$&T5 `3CÉ#áqhÂX1åNäM9ýÿ‡yÖvCÚÃVNG”*UÞ6ú7Ìpn\$Ù.#¦‚—1u†Šj¡¬'ô7 GIßšD…AÌL‹e3wŸ$«Ñá’? øÛcœ L¼'TgÀ¥rëuH–,L[´ ]E|ò ¸ÝÏÝbÿð±ÏI fKþTCZš`|ëcå)ÉUK« ¡|{ºÝÑÎ -“'uŒ¨!?¡3’4ZF¤Œ&÷ncÊ9ävc“ü«ÃQ3ÞaENî£ôt/ÓÍ].•‘ÞëõÏ>àõÒ18®g!LËý1 { ¯}û艻` Áp64ÓñÜŒ&) ZNÞ^¨%OÁ wêyÜy´žcþm èƒ·ö°:¥Ãë&9`YªÀÇ­©Þï_nØËu¯#¤§u£ Žù RyXä‘õˆ¶7Lw|ª¾[0'¹9˜¿äñ@±Öºâ­FU—˜é)KòCÒåë‰~Xî Dlÿ¤ö2e½3ß|»æk ¢t?~C5h2ì-@üxïÏ9Ë‚§ž&KfsÁvæ5ì"+»PcdÛì—®xöŸâ3ÄÇÂUlW¨¤ŠbC!fÓ¦lóŠQ-VY¡åòVéÍ&ÿ‰ôQšvÚ%<ÐÄɶÿæ~·>ˆwÍþ޹欓/š?uf¹…[CàÊ?Ù€”°TƒS,_ÁbªðéSqó‡Åum_œêþ€f‡{Yî!D ÕZÍ(8|•¢Q–/›\0œÏ=oƒÇ¸±Îèê©{Í{¤y\ÃdÌ”%×p¬Ggæ˜N]]X«ï¿"ZÔ‘¥ô-(*GÈH&*– +¿• ]iÖkÌ_År53sÑLuƒ©Ðë¹p_œí‘zº$àJƒEÇ/¯OÝ&~÷êë·jÈÝ$ÇEöæÕ9ÿéX|±}Ø&/ëwA~×e†S¨g¤ÒT÷ƒ‡æ*bí»Ïo‰¨Ð¤Bü™bhzüΖ¼ÅçEÇ C¹_÷ß½¡‘óZ1 !£y½HÔð‘få¤=–B7=ñ2ÓÕ|ðÚÚΦî8€bLü"¤ûr¬½²h…+ZÜÇÔÝ¡®<,ÕnW@¨”ÿ!Øî;kñm—‚M.Àd4Á êMÆfR>™õÁE¶ñä‘ûc‡aÓC#"q[JP÷¸<ÒÜ@—<êÎ[ðkÄWÀ>š­S£yʃÑ(°=ýS¦`HçÆ$ÞãdTRyo¶M¨V2)©|’žD>µ8·W4 #…kkÅ[ùœ½©M>,E¦£ËƇØ|Ř4Ð%ãÉ~kN|U¦Ã‡U@Å9#ýy¯†ˆø N¬ÊF仹‹·wßÐûùQ·”ä ôÖ·b­÷‹<±~e×0i+u¯¥Í­~•5l³¡ÜëàÙŠï1X[r£>N_žo5 Æçm¯W÷}iWýõ9ú'[inäY+=Ò>†¾A,øYÅ?–kP1Ï”šUtNQÊ':ÅÏ@o~¨„² xÔ¢H´ygüe˜ ÀZü ³†Ú{~¸õR¨-ê|û·Ôˆó&vÁAF`’#ìg–©æ/ Uß/×I™‰¶à]ïòåKM|âw‘–µø•$ÀI!·G NÚ‹î¯.§y!, ß;d–Æ>Ãe¾>Ûíéo]}&{¬-¿ëò=ÛØñ®õøeÛ‚•‹7¥þ´:G2çk{ôa‡óë;U–ä™ÓL$ð:ëÕÏ ¶F«ÇúwÕtÈ•–÷! ¶ˆ`‹¶è•Íï^ËŒtjb9ʹr³2ìòÜpsG˜îQå|7áEÁ¨8°L9¯¿E¤Gt³òVÔz¢y({Dçb<»t“sÒ¾£Pû¬9нPÿ³HF³#ˆ±"´ßùê9ß·'>å<… —}³\¡ç€¿_œõÝ­CŠjÏàµB¡ææ›xZW9¾T6™–oê˜V@+ç.â¶Åæåラ¥þ‰+«fqUèF9/÷ûxܪŒ•Ú”'ü𿱄¸cÚÀÁ´,üFÖþ?±ñôÀß7â‹##âô|Î@åce¬º<¥¯ýÛÝ<‹¯n["ѨWªòýr;ióCwéüÏדºêi»zÌYú"R¤B‰o&Zãît·rt–É7IXò’Ð4®X ™µÊ<£ @/ú¼wŽæ†„¤Þä#þ°ÎùË · ¹K¨v°-6–ûÜ•çf}ªÕÝXŽŸ6=Q¸›03r·MfÎ'û‘Ʊåd$À#ôÕ± lw8Be¸(©ÄD.bŒö¯æ0¼ä>ˆð`•x¬ÑjªÕõ¾"Þ;êJ& €ðÁñ >Öü#’µmÚ[ ‘аŸ„GDíèLj:¸Ž¾ËÌÂ9Êðd_ÿÏôÏ»_Î.tá$üê˜ÍÙb‚ˆïÛpúècœä"Ùñ†3÷6ʈ e¿¼¬ùQðµ½A™––Xv­Ð‚¢WYáQ YHÖnY— ãµ~[If>/ã]s¶+Åe-ôí‚_ÂÚy¼)Ò¥‰Ý]X¨Ã·Ô½¯ðžZé"Ëâg;Öe1¢÷—_“é8Ë÷óig¸­ È-÷ ĸ˜$ä),ß⫈lsûß°ÙÖõã†ÀiïÒA™S7&oòùú¨gÍO¤À”_\j$ý:.u-Û)ÙE 9wvc~;¹Î/Ýøœ²G^‚½™kˆCOÙÒ—J”¹-RJ aU`þ4sã£9IÕÃÌ JWóIgq>²J:Ußb ²è ¯câ×ÿX"ãN==½Ù®ä +grªÝ,«ÞK1~Ãc1ŠRˆR»‰ppÛ¶x”˜öpAB§øaøXȘÈB j5] eú©²Ð\ÝÿsÁRy%…+Žù¡(þMóä> NîTñ…WÍCb–ÈjOoµ-¦e†Èrý}Ènd óö,‡ÑäOÞTß”Å×W˜ SÖ<ËëÔ 7s‰é3°GÐ è0‰ïHÄ.RyÖ¼N´ÕwÚù뻄‰ˆ¡L¹öZ䛬· û”«® ‰&S'ÃÙžæüyä²z„Ies°¿X9òn*jR H âÛ´HÛä)ÓzȲ­W„Ò&û+óGÏÞ(ËyßÅ7ÄÀTÖ¬†(¬‹ß2k¾jLÁååS')ÕBÍF›·;-ßP$¶Ã‚ÂL–T±Â =Q—¡„ÙІåp@P©jŒèþôìÄ/ôbèô!9xih¨Q3ÆåUÿ¸€†Ø§bÿ˜¦‹] ŽÖ´ô•ÍamQLº÷dÞCîg,¦´‡Üá‰G(Õ´îˆ9Å©¨ÄZ•QÈ®ÂùÉï¾d ÌËÖœ SZ¹0™äeÝ…Ó0tFÂ÷nˆ“R^¾çãm£$¦¥ú¹fl³a@-¸PÅÿî'j‰?:Là}çDã…â÷€éà#ºUÇà~B¶A•÷>çÑï#”ö”;i‡<úA#ȂώIõù÷å u ¶¡Äµ6š´Ò•á ¦»ƒà0Æ’Åð.Oðà}áJÝç©3…”âÖ)mlJS–}d/jómv ÇýUŸþ—ñw «< üKÈ5×ÎUkÙN"–l} o1rB}g#Š÷ é%óº9N·+«m¹Ï|ÔWêB JÇÃO½Dx3ûÍ=(LÏÁ¡åŠàää_„ÄvHYólú•̱šK¸L}èwLþ¾²\|EÝÑð>nƒ,µNT¼…Ÿ ý»œ¹i•ÒëåDE'1ñâf *‡BªÕx*ZÕ‰`¢fó–>ąűO§vóö3èàwšÃéiŽ¢‰£Û’GÅpçäAJÑjÞ´c:Q?ub²ðÀîHÎJ¤*ä¬{]q‘¢LbPXÛ÷§Ã\qº¼aÃ.ðQ6ÉÎsf.k‡ºG™H·Sº%è;'{B°Óß Dó-“ñ÷çc;àqPJcè Ge´H–ò«Ý¡¼ß2Ôõy{ÑÖ9í#®Îü=• lºóbTPCÇ<”B‰zoš; d¾Ò@¥ŒÝwhL*:ŸL„v2$\£“ .+y÷‹°c÷øaUg3u¨Þ/Û°Ù¤¢S%„ØÊ*cÞe =ÄÍ3U‘˪d⎕eSÛ²ìùuë„ɱµ>÷è¥À ¹ìI5ºk…Gã¹'‡˜µÚ-:³>ît—û6²šuÂCá!^¥»dç¦N@¯¶Ã}€mzøºÖÒ¤¢º¢¹.ƒð••Ô°`̷η#[¢g4üÛz¬¢=8¸ÜËÏ7Y<†€ lbé».BC–öá÷@‹17 …û7–6¸Ï9›Oib­ ÌxšÇ%P»˜O¶³¾8‘-N©òSº¶Æ4´×ÝÓºa½<± }ÓÝ^dåFTl„Ï$;ª\L;Á¼nq>öfe¸]¤ÞGæÂ‹Ug*1äRpÐHùÓ Q¨ÂöoE{L”0U¯+õªÒM绎°ÙÓ„¥¹í´o}«Y°Iý«³FœSµPûÆ…s×¾ë£LAQKôÎ’õ:gXþTä詇eªWá ä`{9lýG]œDš¾X¶uÌüïøž‘6ACNpYuäìÓwVRD¯ì²pï- ¥w?^‚±o ŽÃìóÖ­‰Ç9H÷r¨çlÐ+tôÜx‚h`Ì©YQÔ¾¨Yê†é]ÉñÎ=J$Ý-ò:v¿ ³PpWÀxl«±T² ÇÀ˜#þÉ”P=5´avœ uCþ3 ·S¡ÂˆÏ²é‡ß´ï`Y4¥Z¼?TYyÈ7‚Ün·u™·æÂ>¶ø5¿È9t<¶~aí£}þ€‡½Nq71ú@ƒq997=¢Ö#º ½¥FuxS¿-€G #˜tÚâòKf˜Òû¢ýhc³HrÌ]©¼k)7.€3­´PÒ]²{9tß]^ÔmýQ…v{Ip.áñSÓ7Ü÷æ;ßÔ$Ý‹¼–ŠùÚêŒAœ| zóñyÆ•l ï(ÏžuWcíÏê3¨’ ¤ù—¸£ÑÊ4xõ(çE±ó …T#4|¤¶î*]\‚Ý])W¶ÀíA‘ó~:ÛêêLÚé€E¦*¼Ñ-¢¯¢Ë8%²prž»a˜òÆ\Z9ÆéP·¼Ù¶c*ëó #àËi Ô–m¬Cíûh$O]kR„,æ‹1`/Д¾_¤X3ÖV=©Ÿ¯cÑ]”7Ÿ ùíB¿éøüff“Môøi݉ïn®?3u¸}É\d¶Æfú‡Çö½U´ðÓ‹5~)Žj MÀæ55õÉʰú¢Só`¨a߀–ý ¡giÓºú~Ðõ®mO6l‹QN4s°Þ'ŒB7µý,'BÉW»3[œÙÚ¯ç2&rn¯Òâ|ùù9øž!ÓñÖTl“êÇVJÓ÷`'1Þ8B“ùÄ6/=X¥4Å^Êvy9¯À@)›ÖD"PÂà¬CjaããaÎqBŸÇLöܹ¿Ô§¦.8ìÆ°òÛ¸;å‚Ê `;ÉàáA“ú"Þ|ÌŽÜ`@úƒÍ÷A®[jª—âšíbMP·tBí§zy¥äš’ÈHVÞ;sÔcÄ®®ô¤ÓÎý. òLLa¶.E\Jà[¦v_ ¼BÌ@r$š3»c[ÐU° 1ê!òcœé~Ö¸ÔLôKþ^¡Ì9]:†Çf+b޷µZF§ÜÕdô¡`c`¶çÍÜ•u?«©ºB¿þŒ_xÿÝháv’лÝWgÄ£„^í­¹`ªXÓf#“j*ý¨ôâÉ\òbd®oG%ŸAˆ±šþú`'÷g)O³¹†' M×olo†îì:.}è‰Èjææ—‹¥Ø(J|lœ Äõþëí"=É?ýÙ — S¾èA'r.©Ø ~æx¿‘WÌÌwhøÆ·£×§<à‚ˆ‹l»)4W5ø˜ÿÞØÕ“½—{uÑ5£zAôêÃû»)õB’hm“PTüÃXWI(ÖÉœéå_ºäd–“ïªwʇƒ=—-? N!ó’Ïin6‚ߕ͡þ:K.©ç’c6²60Ž0EÒ3g·² 0½þxUÊg<Åb(0«’ß݆,ß;*šx‚-N l¦´I™ïô»Lƒ7p¿jòxB(sÌŒ öf \F<¬ò†AãS®¤_]zôÜmÏgšyàÙ)re>€úz Êò>æåøU{‡Vë[4K¯¦B-•j áY:mCÊ%}&¨wi¹ïÊOu…çóŸ^‡à˜U1EKù!p¥ïÐvû}(½¸#3!ªH»7%ÓÑø Cœ’ÜÉ>é'DmåîÜDÄƒÊÆÍ™Á}]îò]®—á¥z;?†?úÞ Ò³ê[‡k=š1׈Kj°]¥3Vš,6êLÓîâ>Ok<"Œ“cåüŠr J«Fzü$81©õx3‘2øò©‚×éêR.¼ÑÒõŽW -Nळk8‡…=‹ ÿÊñÐéŠó‰žÚ¨š&s"SewØr‰ó*¡³§\qìýR!Û ¾å±Oå ôUðÍÑãô”òrh Àï ÉËÞCb/åžsfÝŽKu×~C›ª \uNµ”ÿ­ ÖÜk—®ŽÈ“Ý‚a½zó'$ Ùh8[ %™¹\-,Zô@Ÿ:!ö4îr~Æi½‹îãÆk'—Šv8G$?º"®ÍØÏRéPêm¶R üíïp?ñÌVóˆPÆ” §F6v4†&×j=N÷ð¬Y,Í¥y÷u\êVÈäyãì·È/|<© Ëû¿ûeß Ž•Ë©½9óÒ¨iÝÇ0,n 5˜`;A$ær±Y]é'™é抷RïÙôÓÅ6 š~±WÕßÛróäã “ ý:v-"ö_Ë 59ã´æ& ö‰–Cææ›kI£¢s€J„O"Ùr%¦õ8*ä‚uøLÃ)š±À˜ü5œŽ¶Ç^âä Æ|ð=vÛ¢Ïa¢_ü˜ñÓF½¾8ó›T§mmHƵ—ø ‰ÛaŸ¹Sžd‹G8¦²äÕ~RG„ ÔVcsʶ©ÈÙËbt¶—b;9+›­RE¦%¢Ë®¶®Óúñ#úc_7C]Õ”q:aG2ܸDÒÔ/(/Øø£ -ô#Àòkú>…7[Ix³,›#ûR‡ù{D? ¦_’xÞ1škŸÜ­©<’¹ÐRxÑ‘³ó {°£Í?%¯4 1k‹·H)ÄþìhÊ¢°#Pº€U7Š—þضXlÕȪEU ËA2'3!<,Wö§…ÙøzÉ]EŠtH”tgÅ[¿÷ ¾Dü׉.cú¬}|MíoÑŒ[-…÷mk®ÛïJÌ@ ³Z\{Á¹Í4h¢Õpœ4²äW3ГB_¯“Hª«i¸¯u¹¬¸p«mM/B9Ù.ÓG´û™R‰v$“gN9.ûÙ«»‰ÛÑW•5–ä£oó[i÷zcÆ·ÕÓz £¿z(µ ²Ú¾ŸÈâ§í­Gìã7éMwqÕ7£Á"Ðá¹"ðõScëdð‹ª¸ÚrB¨$€©vâ[%³iÓûy0¯ÕŸ‰Ùa— ß+nõ’ígŒ>h"‚ÍTëaK“I¤F 2”׌¼¶=ó‡¨ÜÙ±' {Øgšou¦Ih\¶^™y*êµÖÝó$íê)Jë‚ë'’÷§êÞ®Ö>H_–ë®úä\6P“[•ø ñp´ŠPΠ­Kd³¾IÖúdrˆ˜‰ÃÀO¯%²¥HÐsIO\”nfÝ­påÎÐz:Xâ'„ÊuÃ03d9Ùýs4LIûŒZ,iKÜg·Â)%÷K~ë ü×-4(ºš§:F=ëošwïTC“Ûà§ÆEÞ Ï •31LÞ,»Ûu@Wî…èÚQU|̘d—6œqÀd~0[^“ÁO`)Sd’ËŒÑ y½‚õÁÃQþÝD&ÔÔ¸XèöÇÊŒUk¶b‚•9h¸{;øòAñnÀë¤ào¶ì>ä Ì•+X£W¿6oëÃE¼ÒÏÃ.çiµ÷åÊ}¶jj‘jb¡8+ÝK#ÙU–kèÙÊ TÑ€ ÑÝB½LÃ3×Z›É,a¼ï>#ÆÁ{xÝ–QátÏ3pë Ç|†„d` Z—œEp·Ì*0ö¥îˆ²Îõð¸ûG‰ãŒÃz¹ÇÈ!4¼'¨ÂT¸·Fc=®ß½M&Êî’šÃS,Œ =•5Í¢Î[õЈ¤ì |O³‘йâ9}0Hª×Q’‡lì‹^ëÃ*.NÅÓ*óÚ¬ìËã@Œ Z¾rãÒL áо7ûÒž¥?70ªöŽMïPHÎ J]5Õ=Âf°B;A‚³²™]VæZÁ»€ýºÓéuí[Ò…t–ä1’ém„6Ê\µç^¹ry ™픚´†8‹_áîDŠw6ïªwÃÞ½ÿìArbïÀ:¨%NRÅv,ÜK^Æuåõ ´YehgÖ_:Õ®×Þö¾Î›–F­í^É)›,·&ñ­¹˜Ÿr¯´À;–Òðù!ªÆÕ ““^ðCQ*Ÿ'^”HD3ÍÁ$âØ›ävŠüªÑñ)½a,¨;¡íœ‘9”Æü€ûC£À ¯Võq‡ž¾]¼ŸÞÈC3jÂ)wÛìJ‡ü!·]F9Úg÷^WégtCB;¤¬Í_³øÐ$Uó¢®>˜¦Zµa«ù1Aü~Ö`_Zš™Øaq¦ˆ¬nh±¯V$±w^G§b Î{)i ¥Q„©ŸðáÑ ¦}ßÖúÍ6Û§CJ0ØJ’B£;Arš„Àâõs1“ß1ƒT-«6Xrž^]¡u–"HÕ»µM’X—÷[†ÿ§¬+ Š»ò„‰“kÅŠÙ nÕ%±ôÄ•µXq§±¡™’éIedQ‡ö'íyÜìm$ïpmWªZèêpþH“DY‡ÂR“ûzÿ<=þ½fÙk:‰™ðîäÞ°‰8¬íåç?åYU¨Çå&:¿Þ{ǽ÷ß¾êo›¢QÐRƒ*HNÕUÄbE ZhHÚSd$è-ð*SÑ;U ×éÀ•Ø87:ÚÚõ}ï•XbØ éE^§¡#ÏíS=#:ì]ݯÅö,ÆI=k½Ûx½Sù©˜h¸Å3`“+A_/ÝÞYÎÕ‹•]5z!B.æ—\ï[ØÉ‡÷ZŠ€á²EÜc´!OyûaoBe”9¥/ÅJÏ ý·#2M8œô&-gn”}¡ˆi·ä<ÓRì%‰'Fšäì]¿É6¡é´îÿe1&Š zý„Úª‰ð£)ébáãÞnÅ‘G¸ÊmB¾Á#.íÍÌÒÊ»0ª“{4; ·gE2£ vOœ³›ÚïéwÀât¯±ÆÊ·Šè_ú¡Øom—œ™Œ ç7ìà Ç%w“!bt-á2ì^†ÞÀîŒ@Bèz•‚;ÖL< ¢ô#•àlš±SB% ’Ûdpf0·ò¶2;ߘUaƒ¶õ&¬>´Ž½¬]/kÍ…C+ë'cNÛ„»:;L_ÚúU[]ǯ+0$Áu/†2K‹½Wü>Çðqußó±07pÎ*løôšgJ£QR_‡C”Õò€Þ~VĘöˆ³×²èóV“ìŽöÑZ€Wf —ãHì–M î´hÐõësHRZŸq…I0[Õmu"ù¾¬º“SÒÎð0¡è ³=ωZ“ûŽîÎhb&£cíg4Î]«ÒnTµBRT7¯›| u Š1rÓhÑu®  µœoloÆJ7a)m\º<~MÍfª1 n€|lÓ1cI¨öóg"¦+—ïÊê §C±¦2]>·/14q]z˜`g‹ïŸÞ“—FÎÖÎØƒ]”­$]½knA)s“‚Z|nön„µÅ½Õ÷ÁtFªô{üªcÑA= +ü!MhÜLÔ‰J•hĄŚÅÓí°ÞãwcTÒºÝQÌ_†‹Vã3ÑZ&Ù¤´¯Çì`#–eÞ$ZšF‡ëÒ‰ŒT;Ñ|’\¹=ÌZ¤á6k`Z_i \>¦a¡"/ûA êÁçü×vªà”~'°/›êî]ž\7s"ö§æù»ý+"•ɾ:’!¢Q»O·JûRä¬X,Ʊ¬Ö.ÛSé'¹\·ÆÏVå›p"bjP¯e#èÃsíЫ:çQQá?: 2.Ÿ“SZñ,ÜwÜ{'´l!|òµ7'J5Êøf¾‡ç´#Ð ! §Ã@rúu` endstream endobj 111 0 obj << /Length1 1400 /Length2 6370 /Length3 0 /Length 7325 /Filter /FlateDecode >> stream xÚtTTïö6)]JI@º»SºI`€A˜!†Aº»i‘iTIé”îPá?ƽ÷ÿ»ß·Ö÷­YëÌÙ{?{¿{¿ûy#¶§¬ Ì ¬ƒÂ9y¹xÄ€Ç*‚?6#£>îþëÆf4»ºA`P±ÿxì Á>yÓ€AUwG€—àããáøxxDÿ„¹Šò ˆ  Á¨Â `7lÆÇ0goWˆ=qÌ¿^kV€WTT˜ãw: ëv…Xƒ €nvBœh rô`Ö0Üû%X$ìápg1nnOOO.“ÌÕNŠ•ð„Àí]°ØÕlüÐ9ÿLÆ…ÍèÛCÜþøõ`¶pO+@8!Ö`¨"Ãjv‡z*ꀖ3ú¬þÀü½€—‹÷ßåþfÿ*þNY[ÜœAPoÔ°…8‚-Eu.¸œAm~AŽn0D>ÈqY!¿;в:1àßñܬ]!Îp7.7ˆã¯¹•AܲÔæ1ÌÉ …»aÿêOâ ¶F\»7÷ŸÍ>ƒÂ<¡¾ [ÔÆö×6îÎÜPˆ‹;XEþ/áÂþÏ yD„ùEx° ö²¶çþU^ßÛü;Èû˘Àß׿ Ø"†ûClÁˆ?l_7€»ºƒý}ÿwàŸ6//`±†V`;û?Õn°í±|Wˆ`ʃà/Àóë÷ï7s½l`PGïÿÀï—[W^]ÙDŸýÏÄÿŽÉÉÁ¼_~a€“OAWQ@ñâÿÏ*Ú Èß.xþ“ªµ…¼<ºE\Ó¿:öøK–¿â`þYL†`-`ùÉÍxy¬ÞÿoªÿNù¿1üW•ÿÉÿ»!EwGÇßa–ßñÿ# r‚8zÿ HëG@†ô¿¡Fà?¢ÕÛ@Üþ;ª!„ µC™“W€‹Gàâ¦ñÛhCàÖö(óÇoðKjŽ(XæùõmAdñðüW ¡/ëgˆï‡‚—B 7„Øà¿×øË#äôÏ> Ö0›_ºã@®® olÄê– àË‹¨ Øë7³n.( ŽH3û¶0Wì_kæå¸!¿|M!€Ûá·ùc¬Ý]]}üf¢‡Ù¿µ{­±g§`Öâ!5!­U²”žœëÃè‡Oø8‡ ,0áÝ cOW’ô^¿šS{§8ÛÅ«háðQSÎå"{qú»ïZ-m·À'­â–­UÂÔÝòD²ï9ýA#R®QšX±k7’6u4á',i»n=F?æšÎ™dO&ⷊª¡­š>U½}¥NJ%j¸÷MÞdÕ§¿.øƒœ9ç›S|ðjŒYdºf&½šÄ‡Kì$ÏJÂåÞþ¾y¢.êöèªAëGÂàD â}Tò•†óyø79Å»™÷}­”ÈìÚt—.±¦]ÔhžØ¯ìšÓ±¹te7waîª+%=ÏÌëO’J¬úžh6U]$öâþ( D£»'ÚÐ@y®ãÓþu,f]àð¼}Â=÷¬túä@ìáÂÄâ½È¸† -¥[§¢xŒ—µoù *óOŸE¥»„¡G‡ƒ÷¶7Ë1]çJ'VŒ$Wº%“òŽ@Lg÷wb­øŠS {.¾D•vv¾—Mu¥dý¼,|}í7ælf$þØOk¹œÇç;0ïY£ƒQƒµ0¥›ÂltT Í7_µ©Ðä?&Œr:íÃÛÐîm,ûNTÅì5 -égùStT†³á¦ç×Xù'±\L8¥Uà=òŒn‘Nâ‡ù?š< A*?õ"KiíÅü½PQš–ª¹)ð›ZÇ>®¥FŸ˜bo+;Öºù)©©uc%}J|–³Iv‰fÊDˆr0ìÂij+óÉø‡Âp•ÊI¯R´ÖÔqâûþÐUÇaɼ2Å—ä;¯_¼Š­Í|Þ/É4ÌÀË|)åÑ~§k…[Q×Ñ:@²)Zd|¾Öí¸w‹UȈ&4~zú6~èL›²U.+.f–@ Ÿô‹Â¾#ÅÈte_mü„º6¶¹½£þ™øæ"íK—Õ oò²ëB)¼^¢7Ý1¦¬­¤UêtŽ4Us?²–(e ~ÊT…ªOLÍ~±ïk»æ÷F“Ý"ÀW³ Rò`¾—U9tXaðsÆFZXÿ’Ýa.Pc€Ck]物F{Êù ‡/`üãî®WÄ-†r˹`ð}ƒÂ&ù·­,«E+…—d«ë#†ÑäZ#­|”¤¤IOB~Ür©ûQXoûÞ²þdÄò޾gq>•7Æ‘Ã7”ö!ÂSLênéx ¯}Ñ¢P¡.R@Ó¦~LÊ¢` ”[Æv '“zÖæÆò®J7äê²2›è¨Ö‘œÃTšâxXO¾€°Dµº:5Õ ØÇY³¤<K®Ãö~„Öi\bµ‹{ñk ]ê¢ gˆíe”jËÉÚQ¾ve`®åûóÍíd‹ÜÇ*È×xßæ:†Fü7ÉA‚ïhÑ88»Ä›R>*Lx<×ÝyÕq?ãndîÂ¥ˆlWÄhhº‚DGÜWÍøšTßÜv „ÍZD¸z[8†Ã Å,nVü’·¬’ !þÄM‰ÂÒwT6«xA©æ‘Ê?ú'l&øÖ:*´4Û¿âj_ŒÙ¶úªTàgP=qØ[ÜÊT Û=¤vŒ™µü:#·ÔìZIC{:Ù]Eu;ÝCckÊ¥¯l3ÊÇSõÄÅð—èž²ñ×{üUÕ“!)œæîmš5Ås<Ïvk^Rpè‹5áLI*Ú\ª‰Z€Ÿ¥_\p¡0d}Á»{¥Õ¨â×/`0`lt²üæÔJHáëûnCõ€h"(ó†Ô[Š _ÕµäÍ®kì`›[½SÙâáø`u5>¬Z½Â ñfßï ó¡;Î8cámÒ},|U-Š©7ɧ‡÷nfü‡6“;ª7PuÛ=™HžÒã௘ԴO¦ÅéöaâŽn¿–Äì8Œþ8k‰œÇt»ïFtXW §fàîækÚ¯ïE€;6ø ©©öuÕ3¶ŸŒ÷Fk„ȯ27fˆ%¦F… È:[5% ðûk›Èx¹ˆ·%®ë™NÆ Ò´ Á_uh¨ŽçÄìMOõ=H7´ÇVG-Œæ‡÷<G¶¬P¶ÎOŽŠ¤|ÿêJ‹%eAMýFT=õn襅DBV´í7 é8(”Š9‡ðKbž[oRîÈeÛäB`žšÜ-Þ|ŠÍÀm+dånŒ}†0(Ц ˆ¼Ý„+} +É?=«àÍô®‘•ß ñ{Æè—îé3äy݃0¾¨1“QÚB­ á 8|êÂD—<éÚ5#³tw™ÿ6¢ȩ̀#Ç–Õf¯Ž£òœ½Dâž/7Êh¿Ÿ@…ß¼¢—>ƒzôV ‹LrUäj’¯$'ÈØh>žlSŠº§Ž7fÞî=ø0’òßjø–Qo0ߌ€]bê oxCšS~ C¼ÞèŠô·xƒ}‡¤bí^FܬÄoéiV4ÏSa>âé¹5á&Nü"lwN+¬GÊë6³]eÛ4Š!…„ )b*6¥†FS„búè‡#£»E!¤H°$Òì¼}ë<Èê-õPºho»ÌÚ›·Ê «ðø¤¨™å@W¤+ ŒpÙü‡Õ†šhÍtXiZ9(ùL1¥kÚ£¶ÅÖ§,*ú†ªTa `ùîÓ²¥åé'_ÃL¨n.oc&/;k^Æ*ÆOr^Xö$›HÒÓTôºhŠó‹ñÍLnãÀ¸a‡–Íì{ ÒN\äàÏ4¨îâùûŸÂÂ#&Oq’õ¾Ðû¯|zÍDÿÉ=kêÙš¼œö“œWû›¶3M2ž¸õ©¨ÛŒµfH{,nc󪬘 ×>Âdõ™þû̓÷¼U’™Y¶²úK¨W+³Žœ›>ñ\Å`ô‰Ä¼ãF'I4ËØx“Ú’‘æO\5_YbťɅÿ±×~=´l‰e¦°£þ€{óÝ÷uÂ)äB õ¥ÓQû¤+¿m—Ðf¼{S]@z$:›Ëˆ™JBÌ<õÜCµëHâéÕé‰i6‚©»©×ë%>.˜m'Š0Þæ>ªò÷yZ¾ÕæÑ};g‹6¾¸};N…db:+ž£22/98Ìn‡…fyÆÇLåbÔÖqdÚÏ™´ºa±g9èŽÖ{è/y5„ˆew8øÛ%WAëH4M×SãÔÈ—‰yR äøöl§XQž•+Q <ç<=N;°VÅÔ?Ò¼5Ù —O*v“[à?=ý.# z¢w˜ß‚4Á¹ÎwâX?ð‘Šz;Bø×ÎTZ'çŠd=Ÿà£w¥ø >ýH¨Q)„Ûáò lÊt9®2~P˶h¬+kH0™¤J¦Çå€üõ‹Å±BÚîêwhÍrqg˜Ö‹ìóªP:VNen4ƒ!W—[Ô#®Â{›Ù™=ú¢Ì슻#É}›™NÙ0š‹úŸ¦K&}‚œ+b4<_\–¶GšJ9*¿ü’°œ8W­½@Û«!ŠÂ`åÊCKo˜ZÍ]AÑóY²Mœ¼y6žiù7™zÅÊí£ñïSg4ÃÛ¯ŸqóÙ|Ceâ°µò9¼Oª­ï2D×ícÍ­ô˜V¶g Ö™Ë ]J‘¶? ¢ÉV¹÷<Í᪦T7)>vJðem§O‘îu°*Öz[²ØÕ ˆÞ£G#+ßr#÷q«À¦¦z¦¿Dœºµ³J©÷àf|ûæv)O=Û¶ëYîªóéYK&*ZvsÿÑɳCþ3âóƒ†AÌ« E¶XSŽÁô +^N–¥ê¡Ð{ÖŸär¢›“è 7p–±8÷ŠÆØ; 'Õ¥1¦ ôíW¨«Òñ2Y)?Ž@¼]#a’ðʉ¼'åò)¯UI19°á†f7|bxúG>h=ô™â¦4ß õÒ«éZר“Ôè@Y[]Ðl+ùV€Þ#ûµ IËÜ4üU÷þø mX€Ó‘þ}g»Å0òãÜ&‚¹Ö¥œÖLÄÁϹB.¬it„=:³ÊTû_cÌ= 3÷m¶Ÿ>ÿ"WQÁýüE®Lœ±d'^§Àþöó,_S<Þühê‰!Æ ’ŽßDW¢®Û¦…_>¾!\Ÿ+‘ c‚ ’Bú×arõ1NÈ+;¨ÖÃ3H?gGfródwÏ÷¯d½5óÌ6ÓÛ´Y58&Lõ‚ÕT£š6{öËö"ž‡'ø$ŸÙ—`Y<Í%r¸Ïo ÿFïÖà ï™ ô& Bc˜“j_|‡‚p‚+Ÿ«‹uÀ-Ýîiïγ3ê²ù1"‡å¹BJ:E°¥Ž,d"Oj3AG—a)üºæÜ,ú©7ù NVšŽšÚù|Vq¶‡ýgÏkb5ÓmnsqóɃû籤ŒÅq8á._ŸÐÉD5„­ï¼\ÅÕ“yD^=¹æðårÅúzpÕ6ÒÞi¹k~•IEEH»ù¡ªf÷N½sµ³4‡óGü£ÕÜUÅIî4‡‡žÕŠÄ8Ý óÁ·l’ äVTgXÓàåÛœÀ„ŠWJ«ì*¹..ÅÍkYò‘1H7|h—`±‰Ë,¤Ö;¦mL ÎI¯Xˆh-”¨B¡Ø¦Ù¶àºx“‚%vjØd£%C"WeOw÷z¥Xá6³»È"ŽP/‘X_ßâã·²ñøÜy~öÛªëykªä=ý)&’à¢ÔÓü¤0£Ó,8ÍÍØüí@·9Má ¯òç¥íýÑE+»ô·¦“Ñ/)wž,í›ea:É nðÍÍ{Ë&ú†'Š.“V-ì†(6#ô˜*ðOÙU?5Gñï˜ lXûÅì3¸ÙÓ5›¤fî&r~\¥ö‚´Ç€i׌pÍ$*tšô@ð:³ù§_dùzy’ ™,d¸m;ºå>^JSždŸ¨Œl<Ô#;¹Â£Wù4³¡Ò9[~÷€Ÿ+oíóÐŒ¼Tßs=ÕaROQçDYó ékIþéÉ+R^!|¾‹öÏbô„N¬bee˜Õ…rôA¯:űx{·×Öχ¢Ö˜ú¸ižSõ}d;˧ÅÓ [1>›öqÆñ‰].màB¹m'›ê㜺c†Ç˜]1œ}Pºd¢Ò¯ê Èžd+?ˆPâ[§/§fÍ©XTm ÀÑOuXdŲ¢ŒõØQ¾ÿaîED…b’yË{v’1x«;:Á< ó¦šÝC´>ËŠšñS§ÁÉMîµúÖ­4¹}ñ¢,P~¯ÌHÚ³Q>Kd“êٜͮtÊ£ o7["ç ê¾XýÓ$>iÅ þ¥b#ÂçÙglJƒÚW¹õq“‚Ë+‚|o,ÆEû¦qÄ3l£š‡Þ¥nÿ,Ôïq°{ú¾\Øèé/Š… Ê®§óÝ<ºká&ßìäÕäê"Qœ¶Lc_($€‹ÃñÓ6Ù•3E¦”ß<‘IÓ=ûü:?gG„žÆ½•f ¹ô¬Š@×Pç«l¨m© ÁYdåLPX¥ø€\SpØy+±Êbc PT{WN~§U;‰?áž5ŠOtYç¢ ÔP5…“2ü¸«øž†=r…7Gÿ*RÖ‰ž}-¥Ã¤¬Mü.ÝøPQêt3Ž°á£ ’)Ûüˆ©Ø˜¹¡á%qHt_Ü)&I¶˜ã)0Œ·Ì£0åZª.›wB"Ñ„l$y3±0"”Ú*07a…¥ÄÜ:†±$‰ã$P:i˜>k˜ÈìcîUqŸ/ í¢ç½™‡O¬‡cK}WÙb9Ë´âÆ…OÎÕî;~¾tÆ,† +DM‰=¤¨|r½ç,1n9d:ôzT·aʺy‡ŽáçCí(•ØU߃ #ù™Æ?—d6dJ¤þdüÖ^jFƒm‡‡Âó _?òÜ‹K9­YŒss+…Ÿx Qì âþ>àþqE“ãeß:Zƶ€go‹çΪí˜-7¿‘éöœ öаùÄæËdœô!ÙÇŸ°¯–(f¡í¥ÍËë´ÝQ(¦wBx/Ðøkϵ`X/½ûctÍäÄßõ"¯¼øÀYæWÍ.©äÃÙš²ªjùÕzÔ×Ç{&G´¦,&Fn‰ Òa›‘»·—½ÑVðESj¥x}H¯ ŒÐ|Š{)ÔìrÓÕ—¶’`@€ã ‹y`Ð-Y‰gŒ¥Š_*irõn”‡r͉«“5’:ÇI(Ìox¤ëvjðOÃJ‚£~@‰NdÙX“_p 'ã:¬È.Î}G)—Cfö ÉôBJ «-pŒ ÁÉ¥ñ#VkÿR´‰[Ô=[Lì9Ù¯ÑqB¶X}┴®·½1oO(.]«6ñ1Ý$9ý\¯Õp—Ò‘?Ç—d˜Fy]A%ÛÕÔa~ b”³ìL¤³@o¢¦Bx½Gœ©M?¢Ëe‰ºHW‚½ÞËRfñ ÞòÁ¿¨ãO±ŸJLݳÁ’.\Ñv™o1ÁT†4¨J <žž¨Cü¨ÕŠ:Ê«é'#1kÔRИ˜ÌÛ¶•K beÞæï—‘PоAwÊ%™ñãæš‹˜4¸çüjf6 endstream endobj 113 0 obj << /Length1 1534 /Length2 8277 /Length3 0 /Length 9304 /Filter /FlateDecode >> stream xÚ´TÔÝ6NJ ˆtÝ0C§Hw·Ò0ÀPÌÐ J—€twwJwwHƒ"HHIŠ4ú¾÷¾÷Þÿ­ï[³Öoγ÷³÷Ùûœgu- K¨9Xêçq…R**  ‡äÆd`ІÀíÁ›1tÁ.0ÔQø?R.`3ø£MÚ þÈS:]í ˆ_$ ¸@¡¡.Âi37ˆ%@… uÃ0¤ Nž.køã6ÿZ˜-X !!ö?á ° ÄÂÌ b·;<îhafЂZ@ÀpÏÿJÁ,j‡; sq¹»»sš9À8¡.Ö/XØî¸ @ »¸-¿¨š9€ÿꌓ mýeׂZÁÝÍ\À€Gƒ=Äì{Œpu´»7h)(ÔœÀŽ‘•ÿ"°þ>ˆôïtGÿNqülfaup2sô„8Z¬ ö`€š¬2'ÜÎ0s´üM4³‡AãÍÜÌ öfæ„?•›d%4f þÝÌÂâ‡q ö¿[äúæñ”e-¥ `G8 ów}Ò°Åã±{rýu³vŽPwGï¿ÄÑÒêw–®N\:ŽgW°‚ôß”Gæ?6k0Ààä€` ®ßéµ=Àœ ßæÇ|½ N«Ç&À¾+ðã¦7ÌÌ €»¸‚}½ÿÓñßXB,às°5ÄóŸìf°Õ_øñò] €×ÀGíÀß¿¯Œåe u´÷ü‡þç~¹äõå$•$Øþêøß>II¨À›ààæ@ @àqáûßYÔÍ Wü'TÁÑ ÿªöñ˜þU±Ûß`þ{8XÿLú¨Z0€ù‘ù€Ðÿ³Ôÿ„üÿ)üw–ÿ›Èÿ· YW{û?næ?þÿÛÌbïù7áQ´®ðÇP>ŽãÿRõÀ ­ Øâêð¿^¸Ùã H8Z?Š™ÄË äýËÉB<À–긅Í_’ùË®ó{Ôì!Ž`u( òûmyŒÿÇ÷8_vïìQ—¹Ì`Ãÿs¿1øqœþ»G ¨åï¹ãæã˜¹¸˜yb>^ý#âxƒÔìñGÙ.NG(ü1ðس/À ê‚ùûš\ú¿MÐ#2ÿ7q?"0Üì·€Ëâ7ÀùÈà²ý>ЉËñßû‘ëôd/€Ëå?àc,ü?àãFîà5káêâòx4úxÿÂ^0Øl¹4µ ´­ l»¬– wçØšE=J¾Ôçæ˜È7F‡÷Ë̘¬Çje¤/+•Ê.õdm;U%/3¿,œyoÖQ×{ò^pPË~·¦6™¸@œóþEA;Û„£—(I%\äÒ Nñ¬ CÜÒº_‹ׇ©¶w1Α XV@1¨Mµ£«º8]™ˆBH÷`CÞl>¤½ÅwN”µáð-Ò0,I5•VI´ã 3Ö½êÙ×Á‘¡U¼>ÊîˆwŠnþ[ÇôÁp<‘! i^´*ÝÕ\œÛ¬"·ýÔçÞærø’ò,¯gXâŠc¶ÒúõöQüBªF¶ßo»æ‰ô¼µÝ/½M—øXOÉë”nª16°õ£®æìݪâ9õà ò»'mÑ•<Ç/3©òOåÛ€Uö}e8 1­kGðy*Ƶ—wMùÂHæÖX3å bÁÿêã¡>eüëÒ7½ÖqŸ«g® “¬÷_Ýk[‹×û²’„IÞÚ}*bxñvZjÔ"hŒ#T"WEe±%_ð‰É{‚f.!!uÔ ÍFj,û«¼ŽsK#Œò»µ ~ò»>“iâ7VŸ©3öY¯mT\}ÀÎ{cÚÂl÷öò;3zjŒüÇï% ¡Þ»%/º`³‹ÅùYBu_~M&i0Å3ôäGbM–4„1U<ßBvÎÔ&ĘUþ)ù!¨-r¢gOxÔ.Â>¯,Ú§n šà §ª ¿Ê AB|úK¾wë P«kæ 3}êÃ? ]ë ‹KìÄ‘5?ÁY/çÍBOSôV¸A°è¾&ù¡iø”—Ø ²Ra5‚­†À{ À ’ŒÐÐd„–7úY–—¦4¬yK7Á¼ˆy¹Ø_,r1žþTµjWÍ=mcÎ÷ÏBßF¾e1×ó¢…ݾ:ªˆaü¥ö‘Œé~{Òâò–Ë$ŽÉû†‚gùmÉáèçÆ°`ê:hêØŠhή ÷“LÍ{½õå}¤¢ЄÇÁ¹ã•cÊ ²þ`žmžxµ…äJùzvòÏ–#d’c^U÷(’¶u8/‡G¼š’'Y¢|Ãx ?§í¯ yJéÝqÎ {ëŒ÷KîÕ…G¡A³>Á|Rzä,¹‘Iþï®OCÇøSÜ|Ï y¹%C_à õÏŒ9—3œ¼ù&ZQá1Îk:"íȱ¯êLÐ\T}²ALú½¡Wþލ›£0.8©õB7cÆ'¢$GÕűž>W±¾MF"múJ‰œÖ¾ïrO²R,æˆ]S‘â8ʼnW¢ÒÒ†ˆžPE¥¨•R£j“»~[…=`¹4˜Š”t1¤/ÅÆEMM}lGÒþtRH–o¢\b«ë«ÿ—N?¢–᯳5N8[/sÖËBàXl³QEQaeo:Ïp¾ób·²'OÐÒ%;Ò4´ÿ,ÕvVè¢g­Ä¸s¹¤m&k$â' ÒÍÙä«rëݧÜS(·˜Š ¾GdŠ”<êj‰j™’ÏHž:DK°kjœHæ›Â$i,U{Û•”shê5ç¯ sŸq\í¥‰P• j`âº7û‡*3ØV‰®[!Ï8ÀÉØ“D(Ž%ýÕÅF åÆfy%€_ðÂx^¥èà#Ï]ŠÈ­Z»!/3wQ˜Ïº„¼­½®7~.tÙöW9` ¥»ÿ]ñ¼gsöt­Ì¶-\ºˆLÕÑ!Fn ¢àlŽ ÷Y‘0nq$ Bäs¬û0Ú ”7[3ˆÁôL*åÏõ0*!8âš4ŽÜU—,Gm¶ûSö4Šö9P«.iU  7顊öÎ ‡ã C¯cAOÃçU’³o L’?yÚùá­9ŸL¿6ÞÚ±Šk™‹5!Åån|Ç#/h½·cgÌ}NýipdæéN½»‰T#*©j´ð̶Á›0K“äîųàå­t|P]ÿÑYå¥Ð˜fõ'ñôƒ97gW,‰Æ…f¯–AÕméj>Brc‚⛋q…f$¹ìÔeð0 zoý×ÓĪ…äI’ŒÈC¸¿påyûŠ?r8_güvd úxéT£è’vÖ‚&îбðakÜw3E[±Æ ‰ŒE)<‡irË´1yuôÙ…º¿î4¾ø‹@K!6ì}.Ïàém+k¢Ú‚,»ã‰eˆU°ÙqÝÅo,("6÷¯éZÍS"®j\H­ym©T“¨˜ÞˆvŠ$jg,oôÅ‘drLëÂïüæei"ƒ:–1Å1Fs_sSø²q¨cQßüÜ=P^’ݦ@Þ°Òýõ+¿ƒw`ø” ï×SÍR7u†fÍ2ºD2ºTÃæ°îË«ƒó¤cҠñÌð L¶®E*YË8’I†Žºð2ʱa±¡ïÖ2*›5®±Nºïˆœ^ 9¯ài@~ÜÝ6è&¢D«p™õE_º™¨+n×ßÞùÔX-qmÈF»”^¡ÇãjêºÝ~0>?C9®Ä@¼óé+áˆwZô;¼;B.Ã}Ÿæ'΄¶aÝéµHd_[ry¼Çž½E>QG×T˜Ú,ñQJ¶"%ÑÀ!3Èëàe$'~á"l¾%æè¹Åâ‚"^öÌ'©grwÕ®$-»sDQ3žRÑm•z°%¢oؽÕŒaµï´ÉñdÇß*v€GÏp¿¿gä¨ÓëfOÚ1×bô­&ºÙÓ]0ñŸ¤aEÔ ^ÆE`˯uHø/ ¤åUCBñxÀèË£c›[¡\ž¤VFǘ{/.·LcOß]×ö àm¿aªËðE6=ã¹GéÞ=eÞÞ•ͯP¿éÙõšÕ´•p¿t­4¤ƒ«ŽT;ç¡NãùçÓ?Cü’@ðAK-}J0wï凊Έ†VòMO;©Öpiê”§ -Ú9K¾¡f, ­¼ËŒ7lT×Ö3ôejáÃØ{\–Êòʈ‹17&ìB¥€Ù忇ž Õ Ñ^.ŠxN'mÈ4Ä7<«x݉ػ›yѤø‚ñ+m˜¤ÿ ‰–EêBø9)Õˆ¯Ÿô»-iÄ6›Ù]%? ‹ÝÀñ":‹ú:—=ž|µ)ùÞ¢ý†Ø/n]û©‰MךM âÉ{»Ó¤Î¶Õ”C†¥jìç_Í (ŒvLÀö£ä†¤ƒ§ÑGÕn¡P;!Æ‘Ež‹:‚J>îEýAA—Ûq¿]#þ« 1R"r^ˆ¾]àÓ+ƒ–OL9`zßê?˜î¢ÎD0 ÜÓlÈÖÏM§XÕJ6Í[-õ­1³ ÔU¥Ðj¼ÿÊ`>ý’¤ß™-ÖX½‘_bjÓ•º´Ï÷+J º°3 ªmÀ²<«¢¯­©æò¬IVg¸¿Eáœ"½}ß[eMZšµV“ýr“£ì¾Osþ˼ŸÉd®ºW¿Æ˜ÝÖŠó“Y]¸  Ãx‡hïv­¡½RtÖ{¤ ¸Ñæ~nésÕ ]iu[xˆFƒDu4žö’à¬Ùqhê:v©$‰Ì|sЖ‰E%ªfÔ³4n7Õçö²_Òt¨™š6=}¶Gdò.ð—xÈo)k d¡Ù¦=FN0Ìpì°†¶óá-¯iì~ÄüOåÃÉ_ã_!uz×¶ìKs8© ‹FM·}öM™R¢xÒ`Ôyš¿94Dô„ëióœˆg~BÞ]ß4˜ÌKV9Ù“!þ|'RùèʺRu9£µ€øÆ•„¥°]‰ä‚n¯£ìê|Þ¤S?Gθ†uC ï¹àPÛÈ+º’z –š=Q²JÃyâÒmÃ<ÆØåD-·–‹{r¥$½ð &Àvž_ Ú¯Ð{úö¹÷„òèÒÃ@Oæ‘‘“×"‰ÅÉÍÕÓ·³x;žì2_O®¾ÎéÞôO )ú…áŒÿê?C»ÞTãXeƒ0Ú?SAàÑô‹µ÷Aä$9D³ì¡¾Û'µ¢_¯_OnÒ{Rf-—°E°0Ç¢z8•~n¾Ûí»[^h‡W„eÃÓâb ÛhŸqÁ¹TÞÅUÌ?uo]þy… ¦`³D¡Ð£~“ûÓœ™r0T|ÉÂdÂ6÷Óh¥]wÎFŒ#ןùÖdи4’ZØÔ{\¼ðA²Sçm1§ñÉÖêùÅì=Æ’|Ÿ³÷éÇ.(É¢ðm›å±ôG¬|R©­.ÍK>7¥m™kˆîšë¦«æúçÜX*\ômxÌ­ƒ€žWÜYҡ훚ž#kç¶À­Ãè(­nŠÄúµc½qQ«¹ˆZÛØá‹}¥(å#nÚþBUôa”Ÿ+D¾ù=I˜ÆØaÊðaËVw#RHÚÚ§áùH¿[¸-u­ïPZ&?"= »Edãä!¾km1^ÄãÜçúElšNº/åûf:lã Yøìeù O²7ý0¾NË››âÈÖ'/ÝxðÑàÄGF12‡ŒIíÚ_+ì¨;Ç‘Óbã=Åe©Ï¥2ˆŒs7l±o¶¿ÊnXמ4yŒ\Ù7€çݸÜלúƒ½Oì›N¶ú¶¦%óò4PËv×öò0Ï¢°[œÅ‘+ÐN”‰g剙¿\ ®·‘¡ðM{¯¦ÁªÉJ¿0kQ~Û½¼„×£²ø”#¦/ííá™úô-*œ¶[t!+A±Ù3ag€ÓX%óÊt¥ê|öeô6ˆy~™sk„•'\¹òÀ¦_ƒ› 2É—'<b‹¢Š!yšR܈;È@¨ñÅçšÊÙÞ½ +øA„èÔ•ƒa|* •ÈžœVÊò޽þ¢‹¦¼¼àGBú ÞÓ;ùÔ¨Ñæ3 á¼áLJ‚§ßó?¥¿€66”„ûÑØÄn™ÏC÷õ=Ã.«¯áù¶Èaᣵ/¬î3[(ˆ„0y©ô¤‰¢_Ùõa*Ï}(Ý#–FgeÄÅ/½£ÓX?õ†ëc×f$Åo“üÙ×{NKBÕ®5ëËÏÞ7´• ñ¦„O)pHN…q:²¦ù»Oluy¾å|4p8¡s¥kW6]mTC,’(}qƤ—°{Pá%>üX¢:NtLÒbg¡æ|Iî/H^ÄÈ¢°¼û2¶<;²ÓY¬ø5/¯s£Ÿó+*ב- º ׇ¥¢}ñeZ׸æÃ íù"/#ëUs‹ÛYá‰a´æü̪Q¾–ºŒ òu2V¾2‚B]·–Xý1X1¼"Øj¢+WN4fÝ£;?ù¥~ìTaÎ!gùÎãt´¾ãž@Ð?ô˜.ÍðT®rlć²µ*FdzSéß˽$ׇºÛ„mè’Èû5.j²âEjÑÛˆIH½g¡Í˜.¬!ܺÀóá¹/Uä´}[¿ý äýãV!€wåDG‡kñ¢¾¢†b œˆgìT ®Ì/²#é1SÿÒ“wŽ•µMÝ€£t##¥rèíÄ…ç†õ¢ö‹²óKúË׉Ïõã¼¥A»pÂcq¥J·;@ͨ÷}îBËŒí—ô”û]ÂÚa^o©}o¤3ëþRu’fȼÈsíZQ$NyUÙ䟓Éо¾Ð„U jŠ2—}óóo£Îú ˜µGiîçÓãÆzûî}·Ç¥ÒF$i½o^ ¾aާ½5s§“AÈתD‹8Ã'­}† IJv%s¡ ¶—e·=­òÓ'ѰòúÖ– /Œu–ÎðÉþmÂp«óhÓÒýôcγ8Lò½Ž¦N³SQËÎ>ãÉgz4RÜ–&Ò×ýQÉÉ >è×DMQ ¹ß—Þ®ì{>=S»|«‹4qêo>S:\B6òÍ» A=ñÃ æ¾ š-‹Ñ–À¯È+h›¹zJ•…âè%®œˆ¦ñ"øé«€Ð.-•ÝN³—W‚ýý´v)ÖRʳјŸoh‹'ã²£©&í èÒ÷rÑ„ˆâ$ߪضë¿ëòÛ㙩X®ºØw”!mñ3ÕÞ‡¿nøˆ?¾œ5E^«Zµ6—¶Ýà”þ>úܵ‹[M#pÂŒ4ëÜÖB+Ù’®¸þ úÚè¶ûxß7¶á]ïTáý #ÖC"‚O ö~§ïäýÃ'÷%ÒFì‘mß¾&˪8èk P " è0VRào½-JC>ào°Ù¼ì± ˆ »j'{éÐ_ç ~]Ý‹òãÔ¯²Þ }yœ½ó½ØNC~F_·í@ãº3ÒL{Ä\qK¥©BÑ׉ÒÉoðYë>E1dWk³SËöú¥Ð|Šágk‚3•$ÅÐë£óÄ©/È‘‚_aߌšIÇ$-Ö4ÌF½ôZDIsžåžZ¼ª‰LìœMòÖýe×ÍmÊq1ò1‚œï©žÍçÃù…5nl¾BÉ(BwÍÛ²{ânÆ›*ö*¾=†Úï/ý•(NÔÄ8ìbë¥x'^u³¤UÑëˆã{/Ø,è·a{ªCø`¤Îqh×Ü’!Ž—™ž©õãðݤíÛ ù'hXZªØÍ®YÕw!æXšÎ°÷S\ÍÌ€K•á:”®®/¥Ì·]®Åõ Þ³èh«Çì‡H\*ÁX\g…ú–ÉmRŽ‚tÛŠgëÐ-¹”~7N ÞÑ]-sY4¶ë{¼÷•_³<>ÙÙ(Ñ»¿¥º(C åíŒK ´Áå¶ÕSX>wã¦H¼2Êuc„rd¼À%Pcjì! í¿s1¥,½lóJ8Š4¢É§“YRѤøÒ<]néSœ]ÌPRÆIF¶V|ý¼¶ˆÊªø¶o¾±E¬Â ÀW° þlþsÄPÈ’ÛøŒtlöÖ¤é}¨¥}ïiû]O’!>rúaÊRKÕ­ž…ý÷–Q¯ñœ=¹¦Þ…Îô9Œ )â¤_q »öõy§–qŸõ®M©¤WÛsWö]9IDO¡‰hôíÚ‰pù¾"òÚ×âOü.íü¾óÈÒÆOSWA'ñù’vˆ*Bit-³‚em˜3üJœ¤·ö @4·¤PÓ 5çÚßá«<¡ÛnÿÖ¾ÈÂOÛm‡iL•…qÿáç§ô笧£ºóYfÓz¸4£Å–m®n¯»éŒ+OHÖü: I¦Ñ£ Wý*³6;à’¸’¼XfÄöm+=£$ÃMllUÕ ¨!¬,ª?‰ð™êC‡­eʤ¢§/µ8Ä­6w„ £·”§ àɇngCRÐ`îLQMïø~.Ñè—)c?šo4ûË0ú­àfq*^Ћë•|ID-åÈ–|ÊÊ *†”G˜Uü´À&掯ö³˜¥2ñö×j¨ñg>¥Œ¤=Ù¹ž~r:ËñX-‡óý5“g<èÒ¶\q¤¹ÚÌP¸=0÷L¢Nh5p­üé“%—ñ«¨±”]º*¡–ð{4`q‘¥èÌÔœï9²½Më€[q]g¤RMÛíÀE —ªÚ"½OÔ ê~÷½…ù:ýënͶ› £C®†Rà7;)œdã[/T÷Ó*“Ï/|·&[|š\WѼ¬&ÂhY@²K'ŒḆ%NhÄèäÓÚ¤rdCߨ4½l-x»ªÖ%GómôÈÄTŒ½'cô„¥¨[RÄ£–¨ù”ú=Ñ#0ìaû î„Îq¿)gý‰‘ÏU¿ÞT [Ú~xàÌñfJýb¼ùEÐÚ&ú9,¯*ùÂ#k’ØjªãG9“_‚/(Í&?š÷A¦eª@U ’ª!(¯‹qŒ¢y­“|H.ì‰1o@ pM †•æˆ^¹Vº4ݱì¬Zóêd}§ËÛ“G^±Ô ÖÙ0×´‘pö¸ös>Z@'Ó„ÁS¬¶-þ)4 6­|ð°Âí¦ò!’-?P¥?•Ö7;¦Á#¥Üç:Þ缊‡…Ç3r@3¾\h¢—`¹gÎBÔQ‰Ms:’>y?™~"{êæÛ½ghB„$û&=‘mCC ߣ¼Ë}HäòÁÇNæµ€¢Jøþìz†»à¹1º;­"¬k†| ‹…÷윳¹Å¥ú»Ð'Rê×r0‹d9XÿÒ3«á˜lØu¼VámÙØë+Ú/©øsßü)$ÚC›ô `ùv=|®}Û›]¡}=[¿¼ÏÊxP^ùVÓïóŦu–á–­AP#d)—xޢػñQ LžŒfžP1çƒËñ¦³u²ì6 OÛY]…Eš …P‡v)´*i¶ž·¨~¡×êºLË1NŠí|Ûú…M†N7‰ùr9PVŸjsÜ>>Úä•x-­®R¨1#\)>W¿Á©äEý“JÔ<¡`Ï#Ô™£¾§ :sá©i i®eçcW¯â Q&íO.`¡Hþ«ý‹Åð™â¼(´˜òSGbvBü[å; `\K/¾Ñé ;œ.½†µö;NVùf DìЪ7Ég£G#;#2‹U1DØÆÆvŸ^£Nïú>VÅ­wÄ#ôud!áüH2¢Þ{±]&”ÔÁo2 ÏËq]Š}?Ü_]Ý8jŠh¿ At¯Þêw¤À¯ªdò'É(Á1›±<*$,¸ŸÎ Hå*i˜0—{¥ßò3>Ž&^å^7Þró‰ËL‡×ÈWË#“¶_Œ<3!ý„ÕL²Ó{iã&gmÐ>%´Œ`U™°M'é¼~å }#Ÿ¥˜p≣ÄÜ@ð¶U%}Sº51Þ‘¹k^¯Ú‘¶å=Õ’Á›é-«`i­eË„ïôÚ¥‚'…é¼¢yœ¨ß×1Œ4×tÙέ0ÂcUVVÿîê´aoº:¨ô¦GÄ(öò殯SásÛ‰~ä["maƒâm^Z2`±Ê"\oy¶ín^ôJf Ý ç¾6Lôó˜kÉ×½ûNê ˆé[œ['–zŸ>jpç`à/£í[Î\Î;`Ï4QgŒlóÀ(Ã󹡦ˆØŸå‡ÕÚt á×#ýJô–><ÊL€h°¢³#!¯Üò&ãq šÑâê[¶¡öÚJdö"ãQíØ)ÂȵebaZéIV1¬Zã\4þIWblgo¸ƒ½A5ù9¯øöäãf}¾\}DV@òbœIÛõb°Ç–óJöXîz°HøÖXwÊ5õqE)…}Oäj %'€Vãj]6Ü“ ýDW4yª<‰á)„”3r›xÅ”ÀQ Öi÷BñÙÌÞúBŸ3™-ÊŽáãeæØ“=”O ×VÍ6±øo[†5ª“¢9kk³ŸÝ.ë`³Z÷¬mŠdê·3åÖV!ƒJÅc9Ue~$ïþØ8  endstream endobj 115 0 obj << /Length1 2754 /Length2 23189 /Length3 0 /Length 24732 /Filter /FlateDecode >> stream xÚŒöPœéó ãîB€ÁÝÝÝÝÝœÁÝ-Á5¸w ·à®Á] ¸ p'»ûÛdÿßWuoQ5Ìéî§û<ݧßw(IUÔE-Í€RŽ 7FV&>€¸¢+ €……‰…… ‰’RÃÆÍø‰R èâjãâû#@Ühê¶I˜ºãA9w{+;€•‹•›…ÀÆÂÂû¿@G>€„©‡@‘ çº"QŠ;:y»ØXY»Ëüï+€ÆœÀÊËËÍð×q€¨ÐÅÆÜP4u³:€+š›ÚÔÍm€nÞÿIA#`íææÄÇÌìééÉdêàÊäèb%DËð´q³¨].@ À¯ ”L€ߌ ‰ amãú·]ÝÑÒÍÓÔìmÌ Wð wÐ.P—U(;A+üÀø§7V&ÖÓýsúW"Ð_‡MÍÍœLAÞ6 +€¥= ,¥ÀäæåÆ0Yü 4µwuŸ7õ0µ±75üÅÜ %ª 0_ðŸë¹š»Ø8¹¹2¹ÚØÿº"ó¯4à.K‚,Ä€ 7W¤_ü$l\€æà¶{3ÿ=Y;£'È÷`i²°üu w'fM³;PV⟰ é·Í èàdaaáæe@/skæ_é5¼€9Y™Á7ð÷urtX‚/ô·±‚ÿ!ùºšzn.î@ß?ÿEH¬¬ s7€ÐÊ„ô;;Ø ´üƒ‡ïbãÐgkÀòëïßo†`yY8‚콇ÿ5_f1E=ú¿oü¯OLÌÑ àËÈÁ`dãd°þ7ø‹ÿÓ¨˜ÚüCã³² KGïßlÁmúc@óÏrÐþ›KɬZ €æ·È X8YÌÁ¬ÿŸ¥þבÿ ÿ•åÿMäÿ—”»½ý_nš¿üÿ?nS{ïÀ¢uw/€¢#x @ÿ7Tø÷Ò*-lÜþ¯WÖͼ¢ +ûÛhã*eã´P±q3·þ[-Û5m™½ ¨âèjóë±`æÿøÀ«en~t¸‚%ù— Þœÿ–”™;ZüZ16N.€©‹‹©7xÈ`Ä ðeï¢Ðë/˜™@Žnà#ðõü–Ž.H¿&ÊÅ `ýeúqUôq˜Å#³ÄoÄ `–üq³˜¥~#V³ôoÄ`–ùØ̲¿¸ºüo®®ð/*˜:˜Y˜þöƒù(þF`>J¿˜ò¿ˆÌGå73PûÀ‰Õ#³Æoæ£ùùhýFàêÚ¿¸žî¿ˆìûÍ“ÌÌì7wÃÌÅÔÜ~¿Xºý¶³ÿkÿ{Gþu€S›ÿF`‚æ6.æî–öàQþÏÌ ®aîh–Íÿ,¿ÁÄß<~é‰Ùâfü|;à ³²S,L]­ÿ°i‚U÷§ëWgwð®þ;«_A^æö¦TwÝò7Ÿ±ürü‚6”ãß“ýôøM–õ—áw=Î_áŽî.TXýÁùæÕÚÛÉú#lû£> ¸¶@ð@íþ€ànÛÿÁú}S60Ss—?fÁ ~3ÿ†œàl ð:ÿá·Ãñ7?p>Çÿ¸Á)~»ÁÉœÀoiÐôÃÁúõ¿êá_Ä ü\uü=xpoœìÝ]ÿȶ8ÿžç/ätýë)ô¯îØ~Ý€föÿ©ËÎñÛñ„Ëõç¿ñ¼ÿXÿÌúK <ß 9Á‡\6ÿ•8篠Çcä'qµù½àN»ÚÿGÀ¬`V¿Ë‚ß@ÌnÖ.À?öÜ]7OÇ?€s¸ÿÁ³÷ø‚™yþ¡[ði¯? 8½÷ÜDŸßäÀ™|€.—úÏSÜÜÝ 2¤­1b0°eÕÚ¨Eƒšûê<Æ—»X÷òRaÔ„ƒØ{ÉuåÍ8Æ.dʸµíÆÑØnuìv@¢ƒ.K±õŽ­KÛ´7+¼_>½æPu­‚Zz|œ×GFoߦµÝ4îöøk— ¿±òd¥“´ÖZ[åË"Jƒ­p›€êÖÊâ`0¬x¤ðü„5 ð ¹{xͺSÄ¢ÇÛ9þæ”3Ïï"οºñ\©kksÑÞË0ô%”KéÅìsÚùy5»¤Iö[šü,ÉžÈüxjUþz`ã\hóùV5“D¹7‰BÒçÒÅE1‡¬tß×Åš‘(ƒoÛ{ÞB¦S­jÍöÎBUÒ½ãhƉƒÆàa±Ðð~Þ‹ƒ›ÊJ1#ÜCG­ûójϱ‘¸m î°üÈ.µ Ý®ÊÒ¢ÑP%·»ó}ˆfä'b¤ÍñèÚ‚»Ý%?=*d%(©‹—äÞù-.I÷| Á‹üÑÄVß©|G’±G™ýmšÜ¸s¤Yëâùµ¡ºÆ]¹ÏDßâ—‰]Ò±™] _ûjƒRŽþ?gL´}"éânPæÕ¦ MLÔ³eTˆ¦§hÃÊ›º¬¹Aàæñð8Œ9|'; ŽÐä±  ¨œ:{C¡˜çe!9×vÇ'Gä$¾E°ÆÕ ~ç‡@x¥ A·.$Ŧ„p„æwÄéo?¹R>|ñ’ÎW UfFìÙÔR.¼Ï%]œAR`ƒÀ¯ÓÏÍļÞ-¤%± × A0?ÀŒF€Ø˜§Æ®O½PÃVa—Ì' cä«Ã¤ÆÜzžE“C¯e‚]›„s«€ êóå†KàªC"Öšî›î>š_™'L¾Šf.E“Z´ò$“â|ïy¡AáWûì¨*0¹?™†ŒÕþÄüfýše“¨òRQî^ñƒ.KÕx¼‡/׿«÷ w}(—Î#™dì‚·Ðïs4¾èÊ3­É¿ú>BÛÀ/=*ïk!®'&Û‰DLä½Jƒ%Oý¶M™eV+­†KV…‚Âþñ𡪅1K¿ûÕÑpb$únè5üø"¥Õ{³ZŸw·rã Ulý¯|6Ü“2òÞÍqÑe¶Ó• ô¢Vμð~ž,Ûî/”gNûjlêvÛàÜêƒ[5•pùnÜTÿõ#Nãȳ3ù[Ež…’xKVÑäŠòÍ”H±6›É3©‚Å—š]BÇ£€=V-æ˜a1A‘ºë‡R–¤Ý|GŸ{Š“ûéÛ¡ ÊþêÏ3#¸žÛÛl†Ž}›€ã'aYë1t÷ƒ|1‡S)8|¾FV4„¥T „òao®Ûî• ‘jYØ+§ú¥'U9ãÑìÇÚ\iŸ»2Þ﯇©“öhÆŸ:dZ+=4,øî)cÐÒY¡<ÌçpamKº©†É¿;ô‹4kÏ¿­~UTí°fFɲœK÷`’yߟŸ¼™Ìlù£/Ǿ“RE’-ŸXK”V]Lù›@Þ)'v…x®háæmŽ=ïX72 yÛ’,H .‰ !""ŒÇWmÉ1 ³§_ŸfÏXûÊLô9PÞÏQÙ{a6MsóùMb'ª÷žâÁ WPe^Qç­©[. ‚ˆ2ëQ>s„ÔÉû&vobòŒ]stEÅÅié½§u}h‡ª—6Ÿ©©@8D,ûŠûJ²^9¡ Ì’–X¼¶Øÿ}-Ú˜5õáU†ü³àÒ35,¼¼âÎv©Ø!èŠN•¦ƒN˜™ ¯;˜’WÆú“:Z˜øCWתyµ¨*/?? ¢!E±oÆž9e5Yãqgºr§?Ý]&{¸â?gôi˜¡Drl¯ÝÌó‚fIw Á\&ÀÒf•òš:;HÛX=;$Æ6ziyÿh\ÁœÉ!3$÷ x•VêäqÙƒšCô61ãfi ŒÉEŒ7’Ô¢+^-ÎúÐïVa!B~[Æ1m§ôn.Zþ#dÞ,a÷÷¹dû`©8䥥«¨Hþ­íb‹çªÞÇȤjŒŸ›tQƒ%ù)»ØaØЮÝ%¼Òñ¨â’&áZ‡Ö[#ý”¸ªÉ“RÅŽ*ý;3˜¡ d3ìì·*¼‹¼Çz±®¼ï ©Mv«‰Q]V´ïù”Þ»ÎþzßL"gŠ’mD¤½NÅÆá‰UnïƒübŽMû »Þs=|ðX™×ì¥ð+™rÉìÑ í>:),ÃuæïŠÕ:Ĉ‘÷ª)½„Rtk6x±FJ€ ãBE“Т·ê”Ÿ”Úä¹ãkèÕ2Žõ]г~ëþÀ>ÑuúwÔ-½A)޾]Ò}§òp4)©)Yp|õs>+Ú=.C]ß(©§*2‰.»¼åFY¸÷’šÝ­_FËÝOÕõ3Ïz”ƒRGp¨K=·jÚÛ¤ÑwA­ã8·™Á 2¥@Ë)äã!#Ð¤Š ÕïçMg"U7*ùÊK5n®žÙe™mô‚¾à˜(Ô"¬šiæC¶øþŒÀòØ9SØ\kûVÀ‘|ÍšNˆíâ úrêš‚Ó;xu ÒÛ„¦Ëh,¿uýqc&â›è½€Œ@*.Ní‹oŽÀ¤¨×t|Fü„¼eæn媒nAÁ8cpS;9—E¥ àô«Ýů5 «çài¤?µ‰ÞrrÈÇ»Ì#”dÛ¸^̧fô݇·×lÂspP߯:~,¾ëÓ4-$å!˜/r@J]}÷ÊÊs™ áŽû«¢®ˆ·ºaÀEø¨Œê{{G±…êdD’ÔR–ûƒæ(©÷!(ë›§å’›¦ú!–w*^A2áy¸~ßáµ6ð¯J/à`èb“±‹]s._ýüv·-c@6[©wÇš:™qbΩtÇ[á$ÄÆ-×.ötÕèÊ }ÕdEs]î…«Ê€æ&¤_³Ã3‘,í:ÐÌG¢FÁkÈ…Cñàà]CkÓHå1rhÛ{£]­Ð¯&fD¤&fjÿùÈë“qÞ¢n_=§bi-Ìæ·ÓUœ³(xì¸öjôFÂÀ²GfÛ¢ð­å|Rÿ “÷§GTÚo‚†+öTuZ)àd6K÷ÑÇÝd‹ª;‡ç™–uß\ˆ,p+]R1Œ¯AkÁ½¨]Ê?wÝD•`PA©Ñi°ÆxFÆá«V8I¹xƒñü±&ħOÊäÅÞmœsû›zÖHj[„ÞØVuJ|ûº² p–¶ûmSÎ}cñ%s,?¼:5ŠQë¾=7¹:[‘ï8^•ŸB%iX¤Gù'ÛpWU¡âʇÞÛiP·žçbðç $8‚–ö܃ÝìÄY“uúœ¯Óœû¿ ïEOû°Š«Ów¿)Taí Ž@©³M ³WÊ¥*®Œ†¥ØÓ\Ì6R ·GT¿2;8)qÊsCj?£ühûV—6L£dR«·ôZgk9Üc5ý?ôï÷]—ÁáhfHÇRuSŽ¿CÜ“ÎAÊ"Ìé~-›ý@ Oy`^,YÛrLü˜%(¶<.kH¤Çz ¿šmôF×W}«`]¡Ëø5$@ÝåÙÛ” ¨¢+]>?ÍOÌ ûƦ|_/:\„3(i}s†æ5Ò]v¢rN_h󈄌í»Œ]W\ܯµT¤oL½B+Ó µµùSvi5+öýüT©µäû+™/ ´–3{R>Y&ÍCÍ»²æ"ê2T©/°I§0@vpŽTȃ]­º ö+ÓjQRoïŽ]¾‹Yzœ\sÒB¯sØÔ³)Åç…ÈmfKöÍÔ¬£±’¡]2éòTÌê}jKE×ø9mÍ'ÿŸ7Í-ºý±FÈAs‹”¶C¤2]gÑÊ2/#q$Æ÷MÑüïê'/wäZ<òÑêƒ ×È‘(–á+ÐW©Å­…ƒ93ÂÔ_=µŸŒ}ì¹I®~•ƒ˜iZÕĈ“!hõöÐÞQ²A‘æ2΢¹”|Õdq¤ëk»jÂîgåATcÒF-kŸ÷¸UGúµágþY•ÞÑcß÷p’µég‚“N¦FÈÁKÖGÊvÐ&9ͧY»Nw(Õ<îÞk.—©ëW)îH–þæÎ}ôœ=Þ¤Oë†ó9„wÝÇhš Õ]ny´ßlød.óº”ÃûWijŒÊÁ‡DRZ]ÏÎÓpxBUî[ýŒÒ|Ûý>¡¹áY2z”ñš'KÝĨÓ>»F¯¶ÆÄb½)ƒ”4vZšØ_Õèm w8àÈ%Ýá1β‡ÝÙì.ʈ¬%[N…>Ùµ¨1eýxò r`¢žPßí•h_¶÷þIòŠ;¯E÷Ç‚ø§ê‡ÃF£¦ZiwNcé,ø»ÆeÖ’Gt7æ˜9äç­Øñs¤-ŽÈ:ÖjP„ñ£„¿ý7Ë +^k ¢‡²HC‘3Å{“%£/­Òò7üœ•pEžCGí0{².Îg¢eì–¢!›º˜6îUA½ë{}—3gÇ_°t]0‰$~ÜðÅÇ®XëC¯’EÝ0QŽ+phwÚL+ŠFÚ¬w¦xõçJÝ_Ô÷_ñÊ'„aökÈ—›êPìyZ$7)‡êï@yE:…zÃÈÒ¤¾tØbp*”VÈv›7úûYwS$úHì`kNõ&x¶ëÆÒw>UéñMží÷O d³~¾l´\vAš¸ß‰@½öƒ©:&Á]X‹8hÈ4Zá"–¿íèÇý‘Ǩ¯þ^èßδ›`á3¾‚޹ƥ³€èÐ|Ñjí…õÊ}®¢SF±¢…ZöyNHœf¨† ¡ÏäM„& e”½&©§ëŸG\+„Û<ÆÚ ~FÒ%á.<©Žn—)™Y†Ó¯vtm„å:’!Æ.—j"vøÌ\Y}·š0Ý‹KpoÊ›ÉèÃÖyð^o©¨š†z ë€¶ºyáÖa3ìMà(“Éœ(ÈZ¼Ì4ê™vV:Ög§kž\ Ü'%Ms Ó]eÈ€r¡ÚʪE¹É}%Þª 0³¹=) ]ß»~- z´ã•Õ¹N²,,ÏžÞy™zz¤Ç^.Ñ‘<.MÅfú¾MÚ=ÝGF'·ªÎÖ½¢K\‹ðæöÌv•ˆê˲è }巈ϭíX+X‚?R•ò¿RpyÔ«¿ÖÐÅŒ$_}U£öÂ1Yzº/œ1E}s|Ûw(…o¡%­°À@¿çŠ[%ý\´eÄÜRîÜÐ3ri3€^u¯G\å&Qî&‚Â~ ÄÊÌúp ¸$"dK+ mm²§Ø!ô²X0ò° Ü:Ñ’›÷KkkÓA÷Ÿ)w‰ÆÔ>@¶|õ•^˜ô^ÅŸ6Šl¶Cþf–|2Q#¯MêöÁ`ÿõÓ­Ñ\24Ñkhdþ Än¿ïj ƒþT÷9®Õ§étêUöa3~/ò–8ö+õq¾ [3Ì“UÊ7¹Dxf¡Ñ|å—Ól"­à^/ípB´;gz ƒìsî¡9»0ô÷ó§¥ø1”¨Ê¨±mÊ£ ê”T{d/eæ&®§Iº…5øND–¤Îð÷•^áÕuzÖYêªhÛ­·´à‚;9,[¥$š­ãW™–>i@Ñ©ÃÎ0‡ƒ<ýŸ#ô”Z$q§Å!¯ko‘u‘cÕ`>½s7çì_ š–ÜNžŸu·9Mâñ¥Œ³¼zbC¡5sý¢©u’‡Þ…I‹ k.`pÉ"d„í¯ÝýäÑ2~„š/ᥓeñÇ›m4 ó]ÂE8c×\ñ¼qߓʶ„_. ÿ¡²Y6J+™ÁƒòS³8ûÁ“¶æÜ ;j ×yŽoË–¼¸µv 7ÂÞy¹8»ÃÕ•±U$ IZš;~—¬ÚOuúÔ·Š‡¯½KW¿ðÿÂ~…ùuì¨b¾ ËŠy‡ŽÒ^Qö³ø…sud¶~A‚ÄýOÍKÉ?å² Ö>áW¿¹Ä3?^yôóÝnÌ­Ë–uf0Ktßå9 ·¦{¦æ™`\Σ—AžÄñ²!|*Ek#!!)ýg–jXƒþÚ†€fߘ•UasúÊ­:Ä¥ö51uNÞ·w¡=Ÿ c+rÉúú³?Yhv¬ï™•k À­ÒÔÓQb<áªîhq£b’wÃp”H]ªût}ŠŠßRỤñ‹ZÈŠš0Gû#1Ú ¹| Æì/ÑÇŸ¢²å9^ÓMË3,®k«U‰ž¨­¦íÇë_{Àÿ4ýe\òŒmiZF…»¿–øDwO{„±^jKR1qÑ0sX,rç„᥀jë·€oÐÖFÛÄ»‡ãÇ ‡ÈW†|-Jœ§6⸧/,bâ̘n³õªkòC5Cúy†¥Î”b f&ÒÅ÷aã(7¿½Rà ¸`[•ªƒ«<òX2Ù)Ûâ¦E«ª4î[FaÉѾ:[Ò m··lM¯]çì:Û288q; ÐDí Z#Œ/|ÆÙ©g×ÊzÁ]Ð…ŠÞõüÆk~Èíµùþe{¶ï„±‰Ò äŸÛß ìŒéì¯Þ§ZX?4;Ù»ÜP¨^ÏPt>qBßô¾† ¿9¹#à¶Ëj•š)q¼½ò‚`¤Ño~>Ù-ºEtJs oP߈·W޽Æ›§Rr$g(êY+ÊâvrÓ÷T|—QWóz, ž6Ôr]–бÎkp¡å®¬fêÇñˆÝjó-ÖdrÕNÜÎçý†·­ªÈ/&–CÔ”nu«¸º ‰Y¢Ž.Â7¼¢f×(oræ€_9,ŸÎ@r°õ$j‘x¨²Œ§Lã"@÷Wfro:y²+XÖ„ùÎÖrHˆØ}pŠlø¡¯e¾O2¶²Å²nç&kW›˜ð£f;Áb Ä…^¿Éå ¡uƒK@w¡{—}3éå¡L3±àµw‘“Ž{hµ¹©8 ›``ü”úü`ü™6 æCEi|òØRáC2eÓsÅpi˜kª"Y«‚Ò>…àúÎP2—d¦9–à6Œ¯ÅúPÁO°M§‹‘/ž=÷­sB„@ëÅJ#?ïW²‚Î)¡Çí­üð€= ¹‚Œzcknr‰•Q¹ ´Í°ìgC¶Þ YjEå·çv¡xâü–rÓŸzNpKÎûïžÃfÁm) j³f$ú€ë ›!ó-f˜k¨Kã‚*TJ£ð˜®+€ ¯þh׬,`Q`‡Ù´d²é¿æ(Ä0¼©0r(Vr%„ïIgªaaw(&}©:ƒññÖ1ÐuŸä<¨þ5ÿ"GÝ –¦¿n°€Ðµz’9å± ¥ZŽfÇ3{¯âøêšÞF‘s¼§Ã#s¥øÁ}Ó^îÁ ƒ{áG2|~{FÝ gc­ìªÏŽ¥‚?¬TŸO›2`ÂE%åT'×K,6·mÕ-д–ˆœ¯t„QYîGÖ(DžÂ÷Bóòº%E-+XÎTŒ)I«9V•?ž”]h@=ñ‘ÙÞ¢²š÷L.¹Nu$[½»“{¯áüzÂUSW>ˆg˜¬m=bjû+ÑFR|›u‚rñʓ⨵ “¡¿3(ÜïP-åSZÚ6³w¾¦íûm¦Þ—¨SE!š Ê>„i¦zö=ìzwH®7+?¹Š»û“ jxyï«W3Îùª{ÅRŽðâV#Ã&PÑ·cJ ÷òUãè'Î3VéäˆZÊn Bª-ýg*©-õ¯§ì^A¨q%ØÙÉ–ïÌEp>Ì)•Úã ÐÝ{~•\ã,AÎNVMeçj?N’v'¿¾}°o¤ÏÀáõRŸR¶¬ÖAÔ Â<Óîòðž¢X–¼OÃäÕ¡†Ö³PcÔ–¢®j ¯¬A483­ WqáôºÎ¤â„·uK•^•øæòùK¿ñL!œ»jRº”ž©­õHnüÜERÖÉpê­Ñçò—/pV¬&?KW3<&G#4‹Ëª¹»É})Ê!öâu@rÕ1DZ?VN髨vѤä<Äzð]´@¸÷Ûïü¬{‰p†ÚÀ˜×íøØ÷t,¯ýçCîu¤{Ìûì0‚;ö[VÑ(§‘çî +6„²µ¾œÇü¼‘´¹‘d梯—rS›]tëv’°7W´bðkñ¿ÈtaŽ1ˆÿt¾üž¶óè©»´ÛXlÏ<ËǸGóúã{Žq3ezÔ°ñj2<çÎé«,T©uΠ觨ŠÎuöSTgW·6|ÝL©Ýß­í÷ Þ„œ®}G…Ãv®Aî$xž¸³Õ ’+¡v×ß¡e-Ô“ xPG—-8€ ù¶{¤/5v¦¨ÃAnxfø’‰ÎÖKÈIµ·¨Œ  &b)+Þ{Ëœð™3ðºÄM;µâuNЍc×÷L3&só~çŸ[Y,Æ>p±g»Â8]ºÂ³"ùØ»&Òx·R5ëÚ'v9l\ƒÞ i´]ì¨ôF/ ®-b[ ¼‹‹Þ_î~FUÕÕÛX‘|zóѾE,—áŒhÏv<£6™«Û±´Þìw§8ë(bPNNö$ÖÜ“M¡˜JÐ}&[ú­ŸN?³¿ƒä¯Fܲu¯pH]uäù½ ïŒBúR—w dîAèߖQSCÃï~>Yö‘®ô“Ñ—ªÃêž³²¹ÀCBsù|@ß‘B×y»c‚c“ k7³ÑüÌVôD¦SºôpàªØíŽÜ8zwçÅ9g{£»_6+ܧº­.±aÍ–nd´ùãaÄkøþù(Nsw¥PÐ,G~ž0­Þ2u9BB˜mÀÛÿäsV,$”æ{i-w–ЉsŒèá„à^ÏÞ>§æw{±5ˆAY­ öúëJS©8kɰµæaÔƒLÍáulº_XRê÷©MÎ.iGÎê} ;Ó®”ºêÅ MÃ)€o}…˜½}zÒô±1XÇ£Rž‰-@%¯¾I³Â²Í€*¨̨šÚ¸>-PœXÇŒhµµ177=Œ ¦Ƽ¾–$ÌïëÛí3úݨÃ`ÍqY-Ž/ëPÁsû¶™ Õȹ»ñ”Ñ%O×ôë¦Úsê^Ë\šFý>ÁCá2êcÄþb7mxñHÒf2ÉvœŒ+x“å:hEhœkQ‹2û†×_4×”djŸÜHòÖ^°R¢˜¹îêl>þ(‡h0ï CngŠH¤fd:D@|Úë‡ïn”ôå@Ø ÇHûùuö… –˜?“ǽkãñ„#ôŠ…J&©äÙE F.^%æ|ߣvüSÑÁGž ?ɺ÷Rw9À²3ËŸK>@ñD¿¹¹"èM¶N×—½YºÜþgÂqS³d:Vø1Ú˜ãm*h¤ «~—€”‡Üˤøïrë`¾aÑuó€Ka„ȜٳåÃ=­½5á'ÅŸv—¯ékPAéhu´¡q;ã•q£Z„¿³xËÍÞÒ¾ÔËQÌàâP}ÎôÍÈ[S?‡)¢ÞíƒPˆÛ'ÏMù Ú\«§ˆw½çM›•ywc79x#ÿ¬gr¦QŸÃ¾ÖÊ&6ScÚ1cìà?;|B”Ü-Lz¾ƒÝu8³Á]pTb(OçfˆÔwøü$ôëfVÄäëÕÆ¢°Ò’ v5á3V&Û—Ø ¯°Ú˃««»[ÆÇ)¢%ŽÒ´óÚò_ŸêC ‡ëqì÷¿Á“ãà—Ά© ¤­ÓTü4¬¨\iK1¨³0²^ š'­úÆ3Äsœ'¿¢€ÏBiáýHØ—s›”|8¹íc²WªZ'˜ì1ÜÙ_€$i šz43NJ‰))+e!DjY_(X’ú¤-^­ëÄnº6Ά™Ì^ía'ŠJõc4ŸÍ"ôñ†ÚO"¯‹¤¡‹ºd•êü'‡E{`úñJ˧£é®(÷bz·(âØuŸXZ3~&kkF”(cµ§"¿H,ø¨L´ËS÷eŠ[Å©°‚8yòB¸®¹!\ç½Ü$Æ8ef‰´A:ƒJÔñëžYF2 =È–õºKF®®¦$oØq$l !+8%ËÝSÏ® çCË9“‹›4nßçøKT"®ÎxJ0?¡à¢›t®ðeZ_éÜÙû­Ä&c]:‹{ùÂPüpX:ýú!Ãfj8h­ ¡óíy¾¼¡4¬D¥ð ωp¿Aïþ}&†¼DE.?Â|ØÌöµ+k:"‹úBEA/òU§çâc'š oQ “~Ì·Ž€eû^ϲ‚›Óçøg¹O(‘Óqst0]­@Ibq¿v2’íhVatäãÇ-Ø»ã”áÂ?Ñ{ûo ÜJ¥±²Ó*­Y.EŸùÜõ-ã»1.…XÅu®tp›E sš–wTå·zl‚ïiUu©çÐ,'_Þ±È.¹Pâ1ë0½ʾOsV+4Oº3°ò2â*Z×o #9')äñÙDô ö«Z)?53áï.õnÛ7¼1Y¨†•ö†’±1L@À|£ §®‡ø]|q‘¥æƒ§áÌýô§ïš4¢¬Êlt¦8õ´ØF±é3¶Ìn…¬ÕwÍÌ?–=YŽLôÞÑ\n¿k¢Rfç–h›(Êed`ŽÑ ³-øê[p¿ð!šPP€Ü¼] 2XÓã~Ö¾=Œ û’Sh~#í0¸ì6û>\–SŸa,¡ý³Oò éVFÒ÷w¥Tcΰ¸ñ!Rï\Oª†’«~C'r}&rÅóvl×9<9U…ŠtÂ÷öOQ_Š ‡—ŸH SÊßr«ò¢\KútÛ•£:bP$«4„à“Yj6—Áöæ†2ÌçEûȯÿ¬.ñú ömŸ{&‘ÃÕv J´µaG,u¯èim߸‚SÀgXxÚh™ÄÖj´!‚×<-*¬a–]¹/L_œ¤s¢lû5íDR`V w“Ö¨G/·tѯ“õüP,eË Rq-¨­´à0¶¢=¨†º¿ß¤3hûaÌÐŒ÷¨™0¦¥`C”O&:Ê$Û3!ÎßqèBµ12–©½gTkzkÒ(³|XcJɘ.VÁÑÓ3*õ¿¼{Ú5¬ß0¯9Š‹£sA~åEð¶Mï zÈá–‰Ö»î7ŒÜÜøGd©nÒ™Ÿr1^Ã×H>þ€Ï•ÔPq[&5½¦wd¼¦-±oŒKéq è°;Ukî£yê£HÈáAÅèÞ¨*—£0Á ™ ^-æ_ÿÆ‚þ^cj–ðvi]b1Qÿ?Gý^ÄŽwe¦Ð£«§·Zªœ«µ¼MéƉÀ-#.úðk…ï…S ;‘ÜTYÓê¢B´‘XÄÝî=ÈC+oVDu–×rIâ0ó6â˜÷öÉyÎö¥pù9,ñ„u´g5vÚy"ä­Ù†€OI Å籬¬J\¡’ØŸ¨êÃ;‹IŠiàZ¥æ3"’²C¦¸ÔwH…ýˆ¹!oÈ'¸ª*ûØžÛ'óß °òÍÓûa›§‰ù »M~°¿ÅS¬ûþj1g.8–K¿„2DpÏÅææPQðÕVöM…ñ»|V‚—âÐûfRgΚª¨|&-ÍWWÚ³eJ«˜O1¨»€(õ»³÷ÚòLîcÇÌ?Îã®ôÄí°t“õˆB:¸.ì/=¥Z%ÝÍаÏ6r® ¨Z]j’øJ¼XbI¦´tœÜóŠí4®õ˜%PµÇb¤Ñ5V óíÉk®™áJ,bé*ɽEÙ¡ûíj«z;•‰”¬6H/¦3$ô—‹ÚµL51˰!ê³MûDp3®BðÇíÒ½ƒ®h'=܇åwÛÌaNº«ñmó„)ËGèÔ¯›I¦6D°TFÉ{ÑM{ÖøC(-Þ#Òv„J³@·AÎæ7µ+\L_§g\SBO„Q EŸ×E6‘ÄSýS–“|Óg[T¹µ\îÈ?Ä+éh(í~0˜Bº"tR-Þ?YL¡Ù-ÔN?Š %2‘à;Â@U;z\ev£OÆPˆ‡†úΔ ™<‡º¹ö¹ì#pÉZª’³Œ9iæ!¯Æø@£ju ¢/ ØŠÓR™Ãçh*¼C°׬¾“'p³iºh³ŽDLÂÞÅoS¥ÜGf^àÏ—ãô¦¹ÙNlúá däów¯nT›G_ÃâO‰2ë=í“áÄÝv‰8ŽYäÜû¹P¥õÅ!ˆúÃÊ3'Ë/T¬˜ßoz½¥à%âʼn¨”µFoÙ=;ë[[=%ÉhéQ娭c"ß®Ü}3¶a‹2&jP·MjÏ;…ZˆŸ‡gŸæ'MÉ%g+ë=öV›V”4‹¦qÐMìÇî;’VAÖÉLæ'ŽÐX2%/ð–ßQ¶Wƒ-ŠLí{ŠwØÕÉÊߣöˆG,kA‘Óã5ž£¡¥·Z)b‘ó¶T Ó|E¯\Ce`*äÉK "Ëy.šÒÄ<ÞÁLŒN¸ ¼:NøQ¦·¥«Þw[àò•€–d «IP=C9³À”/ÒN. ¬¶=P$…˜ˆ6ég÷JÙó9bО h¹A{A týŠ—åNeáŒÂbæJqU?{g:í:¡í±Dh^ S:K¥šMŸäZ Gz³tíº°¤DgY"QA©R–Ó›ZnIW;/RIÓŠ ól±Ñ³›ñqê:ÃSæ‡ qyÂÍÆ««¬}«…5DžÜâ|v§þ‘‘YRR†H)L–>œåÌâ++¹Uãø%˜“%¾©ªüÖ&3=é´³em&€p)]ü©«a =ï ›]÷é{yzdÚÜ8x^îá¼`|Í¢“&{†N?ê§žÎô¬¬›ê,¥=Òm²š·ÝdÖû„žVQn´¤ºPã¹ Ÿ)N®ÖHÐ`¬¬]£UUäM¡cHORˆ¦º´”(ÖXŠGœí¤\±£YÞªe_ÒoSŒV~˜3ð¾?#sGêzó&HâRF½êÊ7Á{ 4sÛÊõ£\÷qmÚ'¤’ñzAP‰=Ÿ¢L¡_†Ž+¶Ì¹=õæ1¯ªÙOK¤E‘ÏÊ•âü}_ÉݚʴgYiw<´«BãØ(CD¥–R²ÑÖã–V UÓ‘¤0%2fë>ÈÿÔ†¤;Ý”Ö:&YKÕǸ÷8­|Å"¨Â»`XÀ’ÛU¹¥s™*‘Ÿ_„Kñ_ŸÐ‹þùÂ@œ]`'8¸Öˆ-¤gˆ¬BpO«PT& ßzS$¡R/õ4íHoéQv¡w[µË±¯wüÓiÒlŽ6Á¤uA½fm·1‚};s΂~p)OÖ½»0 no¹SÙ¨Q8_ƒbª…,¼RÏË&ä ·y¬ʃ¹¦¨œ¾†*ÑŒÀ lú·Ããµl#)Þ)9GÁ.Žæë Çù9ºWžµþv ‘î:ÁIgß²ìnÄÂh3*«rZ)'·sTÚHÏøª+8x4å½eµi›o“·¬Âvþá µ!9Pö/Âkˆ.>AÚß ¯ ÉXµ Úi²\ØøBÚ¾­Æž‘¹Ã >7j¥6êY#;ÈŽo~\U€A…-4ËH­ŠWb´ÐÅ ?ínú[bPéɽ'^‡‡DÄüVZµhw’í»†}†].Óþ<8)kÔõUnZÊìD‘NBËŠš?Z=1JÍF™–»¨•SX,Ñ IìÑ‹*ež-Ûø#MAÍ}yâ†+±`µÊnSG™Ì{)DfÉ õɤ9“¬·EÂ7µR£lóbQýŸ‹AŸ¯ ü‚ä?”Ú¿ª*‘_›Öjâxi@PàFLrI:‘× ø4ür’D4û2ç0öhŠ”O‡H#R*rÅ(ŸÎ Û!M7>t¥r’KšÝ™$ÊYÀôqg"‹fG|3ÅŽÄb>¢‰"Ýb.Op‰­<#»‰Ç…’Êo£AÞn¼œv=“è]”½á ³»pœ›ÂKô"ÌV¾¢ãó΢Ánû»­~0“—Ê&àEwT6k·óDŒzãi„É)ꔿyyÛB"^ÃÁØ sK«%EÎ0“fÔBÝýs<ž˜ÁFKA ¥EöBäÊ&° s7Œi.kg… ;‹øÔ;CeÛ•8åGÇÎ6Œý¹ÝËï}»¯”É]~•eDÓ{ò¥.À*䆡m•••ÊÚé´*ș٫óê\®®¾§Ç?liV!Buše¨P¬ÕœPAè‹ÈÙæ×x$‰‘‘®öéùû8cç´±»ï³ êZ*ûäjÓÏuPÄ^dcilMøý`+k"²Ãé¦ÉÆé)F¢ð"†½~嵄TM)%½Ã¬ƒ;ÒK­˜ª  XÞÓ‡MØa+²”_Áá]˹ì+#^“9iÿ¤g0¢nÜ{U×½˜2õP}Ñ0‘›–#±VíÕeØ%]SoQnËÁ*´¦…µª/AϧçunÞK†cRkg)áU§ø1î%ÇÀy`÷Û¯™Šž‡C‘ø¶¶Ì~›IòùdNÝflôI<ø­«OH—5uÛRs”Š[|zy‘7!¹s¬b9ë=ÁÍúf1_Hô©€¡ÍP—q‹?æwwÎñ\o¢PjçI}§Z¬¹·žHÞ4¶È¨àéߪ%žÜOc¸¾¬Ò,cÇ@‰g^äŒåqů†ÂÙ_„uã ¼µçZê>å=ñ»HB8B‰_f/tíƒÔ—róC—G #4µË›Dm›`—;P Œ”&ÝɽèÊD+}÷‹Ì;ë1èš‹êùÄ9w3ìÞ¥/jýÈÁ¶o°¯¥:?«sV?#|…d3¿xyiŸì>~çËêY3‡þ[|4á³ öÁj`X="ìQÎ’åÓ`1«åzÓ—N£Ä~Î^|êñ»ËæJFP¾»èKjü¡à•l *Pž$79ļs6W»ªFûòk^}i1]+ueÀü§tûØñéVa9òný±)V†i`7gfQ5‘˜¢ñÄÜ®]]Ú“Ù ]Öq®üYg'™¯Æ»ëZ”Q±©4=)Œ¶ùCga^~‘㯓<-ª·¢5ÑžÑçáŸÏ¡ ®‰*ˆ+‰ì9[¯PˆØÞK-rÊæK¦ƒÜÆ¿aŸá&ðwèI… ag„æFY~Ø`‘-‹eÈœ³±ÓÝ":h~÷ȇÊÚá©´.Ãs'Ãn;¢iÓýù ³ùÝd[Ñbëq{ôÇïnß"Wf’F°;+\Dç¢mns¯¶‚? Ñf\‰'îÏ+÷ëèd¦}ï[‘Çy{LßœçâN™„þý¾#Kjç8Χ3¡õt±߬‰&±à•ƒ>:È? p­çª-Q¯SÅ<`ÙÂàn9P+ÓØ,f_2@¿ÝÁn%ë—Rd–,YšÏôÃ<ÉÞø4˜°ž<ž¯Ó£Ïíµ¸÷®ÙÞRe ‰_I«y€¹“ ;ÓÂ"½Änwk¯ VÈõÞOÏû©©)ô¦D–À£ÁTÖƒí¾»ršß(¬Çx¾Qòøs–Œª·rM":OZÔgç·d8($èâ[ö­"Ý›*+.\ÈEâ<¯Îv{WÉÏViñŒ_ê¥ÏĦöܾšW`øc =ztz:>îÉ ¬‘È&c/f¼ “Žúdª‚×ý9~¨í«žÍ?õ^@CÝ"£¿Öé[ùâ5Ú¸[«•l.lþ æ:àsâ3»GK»SgUÑvSë½1ó¢áß*‰¡{‡ÝøÌ8?í¿ƒ(?{E-v¾%|«Þ/ªf@ù“G·IŸÐ&#K—m~ïКN$}lÌabþbÉ^£\ú観/çèNE“µÇH×KA†·Ä9õ9·ÔÎÎ1IOzã„519¦í»,2”•Aúý@¿‹ça½a!¾‚¦¬ºz–®Cüjæ4q/çÃrŠÌ·;›b¶ãq­aêºÉÝäÒ^Ð6 U )·¥ëÖ1êÔÒÌÆR§]^uó~âF¸oÔEî³€móÝ'Qv¯Ó+êáe :‹ h¥Ï»˜öR=áÑb¡B‡¥NÏj€ªÛ{õ]³$fôXÞT÷ ÒRJÝI§œL£ƒ‰ù<—’ȱ{_—üÛ­Ã9ZÑ©)ÃÙ1Ä“¬£‚(߸ÝMˆnõñõøLÙêœ 3õ¦&iž‰xJ—Á‚Q‡ÏæKµšææÅòXßgÅ#}Thdã@qÈ ŽO‚¼8t–ȯsn¢[{Z¿¾ê~¨òŠ™éäì-«çõ¸wKh”·Ú|êµ9­Ê´|Ñ›–@xGíÓ+½õ2í©j©ËÕP lå!²¬™hïWII€Ÿxû¥ÆhIo£´Y÷j“Ù¬Gጙ´«ÿ¥ë½'öù­uü8_Uü²X\S+Ir8O;RÆa¥éÉçÒŸØEÁá˜Ê•Ž>³‹qM šÉÙ]'ÈnÓAšKG|ë- ¹›ìüfxò•A„»uç³£ŽÖ!dªx’Æô1ñÜFg†L½ŽñFºo ɉÌÎfMòÑì;¨+à)[¡Zg¢?ƒÄ‰£Ñl5ß6]óq¨7¥râÈÀ fâ•4Þ¦°ôGÎcV=šáÁs¥_ý?°Oá<¡ÖÇz‡2¹¹D­Ô:W“!„g§t ÷°=äTÔjAïß“:Øû'—†<)©ŒÝ_íJ¤I6Þ~7Káy=Dh}lºGóš´Þ¯Nâ’«MCÇK䔹žkØc1‘öo€ƒwR^Û%쬻8òëìƒÅÑÿ'ÛsËú] u\èŠD¼Á•Œ§mßo€\o¿h¥•ÆöT'k?kz®]ÌÞöiº´XmàÓãðú›D±øö4V©Zy`}U-••º R½§…Nì6øÁ·ÆÂó*÷P›{³‡ê9ž\Õ"Rö^ù; n=ܵä¸)%%BJÊÒìl}àãí®;ñ”Ö­4ؾ†h´ÔIÚµþø@ú¢Çxº³›—®VxÝ"5Õ88EÍNSË3¿š³jm¤: 5 *îì‘=þï^¨!|Läcxð3yBã¦ù4u?:z“¶ÒJ–Õáî¨6öA&ÎAqš_ßL!¨§0ˆ‡¦yóì|Nþ ˜§&¨ðn- ¤ÛQÐnÇQ×IÏfÛSkÌ;åñG~iËhÐãßú9­½7ºÉèƒ#ºkƒ©%[“ûÖùG¡ø ;u °céÙšŠ$ ÌÓ!Œÿ|¦Qᩯ<3ä\Œw}>¾û÷hˆC"œ‹QJj ÝDEÕGX{ÉCšS’¢”/½‡ƒ‡6êí#ZqÖa•Vé•;,MÇ@iOå÷®9™¢”Wo+ƒsPÞÔ‘¿O1$ —ˆ .?’fÅpÙvç¤pR¥ŽkFc´­0l—}<ßõö(ýU+¡8@Žín-½£=&“)ßçÇ„é$,¿yôO.Á+®íËšsäÍFje O.%¯9½æö²„»z,¶ð¬5xó'?l6΋e«‘ó6gK’×·ùDÌöã;•˜~}ûäÛtþGzC€|[gU¤~ ½8EJäÍ5Å. ՅüèS°àeOx`vÆ“è5éU7½[Ì Žú hYîM°¡•HKb¢ÐÌ{ýiEKþSIUiÐÀ`*òu[X(ð¢Ç×vðÙ™¼ÙÒ’éiñ¯» ôø7øWßÏEÚŽmôQÖNì°nxêy*îW!œHõÙvÆE™Ÿ•7baç‘åìUò²‹‡Q1Ýü]øt,$W%žž”‚HIºŠõÔžl–ãYŸÜ¨kƽ8ñˆ!?5¨qH4¨„¤•{ÙURS"`ÏX—4‰ A~ ü˜ ùÈ׌’ZÝ#Ú0R²%«ÓžW Ü"J'õô7õž|"Bu7Ö6èX¶[#1ž®Þ·î^5IÕ o4Þ#5bŃ —‰tº$s|j¼¼p„¸/PùrÑКûTAG‰xÇêk<ÍPâÜäSõæÇ¢vÒÕè&Å'\ÑV–ûJÎ É7î–(ðÜA–j»ƒ%ª©-Ÿwb# j–ï" áyoBWÕ@¸öÚ¾$™¼ þ½âÑq/¢îC³xdêÓGo¯kS_¯R~Ó.‘k9àá›ú¾þ´wÎ1È‚«(ýÒ6&à»ÉŒš”<ÝŒö3¹㜣Þܲ$ÐH³ÒÉ€üB×Ì™“¶­lÏ%oÄÆßúDö÷^vE§Ž4Ï´Þ0Žo#‘EÏ^b±DK*yŒ«œæï#ÏÔ%­‹+§;¦ÛŸeÙJ¿¦ï³&²¨n”J§òln4çJ×Ê£9aÈÑœ}”ÖG‰ÙrbÑ"lA)ÜQ_ŠgžñL©6³ í¸¾÷\QŽËÂMP*÷Д fº[I_$Y¹Ò\(¢ÄüÁÄèðPÒsÿ i37Ðiy´ûÙ 1HOl˜W†±2ý'µ|Å1MìÈ&ml"•éÌëÞP¤uj¡c¤œa¯2_m'3ჸ·üáCÃñÔÇ—°Ù¼ixüë‘?€9Q£ä=–‘Bd”Ø4Çàe&߇R|ñòÆ >@x˜|¬œê'pBA+kÅ—dœ¯~:3?WWÀ¤q-ðŽ|Ö«µ–\8¨7©Â¹JS}ãqvî7ÑÒÌsŽ2—ÅÎóò1=ί0m2 eÔ²‘9Ò}Ø}PÊ™ûçB×SÁ"O?þ„J¬fUa¯ 2ŸñÉoÍùÃ:ºu2®u–Ë$-ø¯M@¤DIpëñ‹hÏ|RꥵÆÈ¥t=2<ž Hº"K´_0¾™²³4Óî]ÒÚš×hì[°l“ˆ)ïl¢d´:ô«±Ù=o¬€oC²YX¶xÅâgõÆ(…q:ñKO|µ²49I!ÙG†â¯¦nŒ¼MÔŸ0rºˆó§À€¹¿¾¬Ž‚œÿÛB׿ G³râ«@ Ý„˜áÀ8öyKcãá')d¶ýhøepôU÷ŠKä4ÇÂQ{œg~޾} ¦MN7îõÑfaã:ÙDÓUë …jð2Y“x!ô·§£½Èò¿²Ú¹|×à#뼓âÙLSà9Í{f£bü·›ep•”¡ñxZ1‚½ïk“Cu,åRâtò½¼Àqò«bÛ+¬gïqvËFSŠæ AÁ~¨£ÙúÂi8õF¸?QªkVÒ‰ŒG놸ÒÙØ´c•´Q1´€k°n;Q«ý^P:´¾}ù:%lÂ|+ãt4õ*î·‡±V ‚º‚e¢²¢9œW¾Žv:Ûòp§²ÁÀÚ8ÈlÈyXåÖtôW«!êo ¹qóó¬ìÒ R¤èrSŸ¤5PÑúV¼ZÛRÙÅÕ›álA7æåb2¸4Ló=¼L¯dí«¿OÒÖ†|ñ3^hfÖÒÓÁš./Ä'ŒGpÌ”9ßõ0Ÿ€=v_LübÅÀ†ŠÒ£/¹"žÍû«áT,\r CõÞ%QÚØWr@¯B''„~@piÆûØ7¨ælSo\¡£#ßÚb`H»æj<®å3xw8Š©‡²f@ͦ DÎøÍø‡u“vEùGÏâ»W…MK:¨DC[š• ŒO™ïD–D“\µgLnszA ^Øå x—à¿ù‹˜EªpµsbÞË6ó¤Ëa©¥)Qnó*nÄ…+„2¨ŽLÊ´œ;ħªxzRkÐ |ˆpÇÂD0ÒwÝ}“ÓÌÓ,<£ ô(K/µâúnû`š|ˆô‰NÒ$tÇØR'¦“ö*ƒ¡ M>‚à¨'ØQ‘¼á˜9?lž³òRD&+?¤¯2I=æg/LÌÊË©EæéFÛeËëuº­™%R{o{Þ4e CŒŠ²Ë’äyÔÚÈ¿žñ'Ù@xr$>*O:êyÔÏœ0ðIÑô¨Á}耯¨?šÕ•=ÂTÝT*´©ÆB5«SþjQkøÓ_¿¬¹»@åöxµÈ•ršók½í'cTu™¶}0&ï´¼¸Œt“'XïMäÄ6Ðfo„9Ø·oæ’»+!-e—žúXËHÝå ¤löU™E¦ _á~ÏÇÕúdøáÔÀ9u³TÏÏädLFXzý…[Œ„ng;³š0 ºV¸%P²‰êòʘ+©óU½¥[CLŸgi]É›˜Õ‹ñv @÷LX´¹ñµ8ͼAÞ¯â^@UŒ'(Ç8+‘øH&qýq~5›ïôÅ{3ëÄS{Ó­´NŒòÅVè„â ÿè*é;öÄ4Û¢fhÜ…!èýr· èHǘªwzö#ÌiHÒú˜àç\ø9R¤0Ò,ÔBO ·ì;{+눹hø Þ^[;Z ²4ûÜœõ²Ï½6¦ÏK\pSub†b'µÔ˜ë²JE&ÎsÒ£ÍºåŽ G¢‘]5Í‚¯ab(6.ÕAÜ ÍCÛ6Dó »TåõæLªÞ½/›Æ/é[Žê®Ì´µR,)vI®ïY+&°¢ŒV/œ¦1 ± Öù{#I]æ,\D¿ÇÖÁ:ð³×}¾ü¡ÿFۼׇ7žyñhµ„¦sÒü>°ícvPÅ^8ÝÌF/DŸ~»A6Ú=Ç™ýH˜zgDŒu)‡úzm|}DŒFÎÿtßðÒ,†NÃÄã”ô’¼jö뵊,F¿·Vý ”´¿¨ÎÐĺSJkŒš©´Ç&à¿@×´-Zë„Ï7nùƒzjt>‚ma†pö|•¡îw-Nä.ßW8íN²Œm ŸiD%'ŠÛTYÀgzÎd¼Ž\¨{º…økÐÐ$ÒPŸ$´|wìÌ snÍï^ðAì›™›Ðb%ÍëÕÖ²‹—áÅ[;ìåtÅ·#Gš+ Zãkb+’¨ë/« äãlÖ§š_ÜžSø5N£%l$ÕJÿ‹D‚Ì—@ïÔ” ÍŠ)ë™÷„¢„*›-sØÝ4âOÞ+£¦4™é––Z/÷ûñФ#» ¡»-7Û)Ér°È”þcðßv0Dw³‘ÒB®R“+µŽ­Y5ë…KåP4ز×ðŒ'çµô²rrd¡†0õ{øZœ‘™Ùø 'V H)&M›1Y˜PÍic}ákfŸ´¿ì[žuž}§y:€«=iåî(Xã‚tŒp|ˆ™‡ŒÜÓRtG›ô©'9Æœ,°°Õ(’7*î\,«Æõü³$u¸HÛÀ\míÁbjo²²ígFpôV “çU˃lc¸. /}qÑRs£4z¡üccå·S~9jC0_›ªw³åÃw㞊jƒRc k‚,-É»0ýçu69‘;‹TöÛC˜Ç_ñZœd/P^ÍÖÄïšJ˜\ØKŒÞ‰âAüt˜Ða®ÉÇÛÚåwU^õYP&ðÒhg0ž½9•9/Bîé^áT‰9+2f)Œt+¼µ˜7Xú8þkþæ"'‰dâ»<ï‹U~õPôp‡üۥפEhÜfša¾„£ƒ®*æ*–ü¹À÷ÕøÆ!G¶Ub„¸=Ž{…E¥µ‹¹´rî&^Öâ²uÛ ½°‘Ã+Asv•+‰‘éNÀ&(!Xó?áõÿuB.Øá›¨´¡27#}Æý5áBHUí$J03 $9m½®£¿Œ÷ö,ÈKªÅu‡Þå m\ôh¡ìÜng²ßùHix™¿N–0M„ÃÌ»±GÿYê|†y…#ñ&‘Iröøs‹_$‚Xãfº—¥=Oø[»Œõ笴ŸØ½è÷Ý`¤ð‰ÓÂö´w’ø.~‘_¸.`*Øjƒm²ªÎ2ɦN²ñLÞ°ŒYÆ-Ä[…Ôƒ,:@¤7a•“Êx@Û«÷~-ÈOÿ„”MG]Kvå&qýAú€‡ÎÄÞ-Õ2€’‹Ö£U‘'ˆýz›Ÿ<)ÅgmŒÅn¸yÜ;3Ž]FñOÈôBž¾w9ñ ~Ü4f¬a 7Õ±!„ß³}£vÁôÎ×[“Ù~ë Ÿó¤bù[¡ Ô"©vÝçØdÇÓõNÛMíû‚\FÕµm²<ýšÃ·)A ½à0t F)éHvœXSåÒÑ‹Ûc\¾o0¹L긴ghiò ¾'¾ô®~õ!Q~Yɪ԰%&™ôT° \ãÔ“X¹³ôk*¹eFËÑr’yÌ-áÊý;÷ÆHwZ›“TðÈN"ê´¶E“Ø) ¿°A—\}[#fIžòt9 Ì,$ÓŸ­uØ£±²÷NÎ]¨,Þ`.µLºùÖxtÑ|µŠ€O†]l²+j€ÆÍ‹s«Ä” ÛïØ´:e,aäkç)Âüêmt|qÑÖ#R»-ûÍ“;º°B¢³CÃŒàK §RlÝX°XZaƒª›Ä&ÉBdnáØŽU:ð9[ |H”‚ê^J°ŠWOѪhWïüyóÔoÓæMè™ ©Ö#÷/h!H·\ë7)’wÙùõ;¹Y’Öƒ[¶LhœFYp¬“®{n2ÿ»¹™z¡E¤&„¯' ƒžÈÿðr×q±äßlW =f/z8çÝ'ûJ„ƒv@çÒ­ ‹ýƒ2§{õu™=§2í,)íöÿ¼>Ƈÿ»U.î“Og ßñ Š ­Ýc° Þ`Ù¿nü¿…‹U8½< N­Ôeá €þy`F:³À8=v•‹*ž~#\NuÁ%–ì|† WìÌâÔýÏf˰ÐÛfS\6O'_oè¦×¹VËÉã3Ì`¦¨ò¿|b% ¥gšÊT÷SÔáü d-rÜôã¯*°²¾î|=àA7üÅíQ xOùÝØªXå¢e_w æ/~[#"{¨Æ–”ü8 L]‡ç²sK{b¤³DçûÚ •|÷¦`öžì}ð0¢qqë£ã‘Øß –jxÕán[˜ª¿TUÖ+·]u, ûkØÀ«¤úB<¸$ÁìÁz·âð)«úoñ„½¹2òð"óV“™¹p€È,–xd)]¸Õºð©ËCÀG©s§Ÿù˜牞gz†ÿ~uHâá§µ‘”*<õÃŒ4äíDGžt31ÀÓõ4Z ôÆ Ãp“Y‡úÛD#£TÿÑ J&¶ ÑÑÁ<º8pä!ƒëî^³¦uWŸÈþ»Œeã×ízd›h™‚=¦Eíµ'}µx ÏœzÈ É€ó=ôO ºçþÓ°ó”›À+¤¿EGa¯4‡Ž¦>j ÅõŽÈ‡Òû 3÷9ç'\j‘%Q«ÚµÕMk¬ANº6p‚ì gº5Æúûý8J üUÝžj$$b_7=5NÚXÍ ÉŠüÒ}Vü…˜À%Ná%*œ3IÚÆú_-t4¬¦ö'Þj1ô‘R‘ù0>>FG4º®öĆiPû`=j œ+õ䛺0Ïé,)ƒ„Q†y1¯Ã2¸Œ xIšµê…î?ÊC@O^9g2bã2d·oé[^üÛËiÑVn éù&K¼>7dn Ÿ-”Wó“FôƒóÐÿ­¼FÙÙ‰B«ü—à€|û\lÖ…µnݹ‘bJ®ãã!< &O÷½°ˆÞóúø~Ï´A½ˆ÷·.¢ž¤'O.=Áìåß½'þ›Â5ÿŽd+‡"„ª÷ݬ¥âyÃë±Gwz—PCÉY°5¼á°' >JkÕÇáѶtí1)Å!PböT·²h‚/Û'%·ô.ìÓÕK·Äím`šõcù×·BLäÜÛ3g>)ÃÍ—¥ˆeßo ˆ¥¨leÇ'tܸ ÚV3Ûj"P°°wPm^æ&¢24Ðl <€3lÀK }Ã|¤ÎVIÿkxº± N‡L P7F%¯ÁßZ²*Í;”%8“;½Ê@Œ˜aóðBÉÝÒnÛú9õ½w ¶™pÖËø—–+fìà®û,$l«P`±<ƒ‘óÁ3T ²$|iÔÐÄ-… “ó"ë8äõÞ*¾ šÓGyBåÊeE©;f¨  ƒõñä#e”vöÍ.tI «ìÈ>Æ}ÿ·â™…8'U˜?ÉLc¸kÓC ÷'^r;²pˆì_ÍTñ~Iy!d¥0p°‚ÁäëRw´.%áŸýæ%W皌Wóu‡6_úÆä'ÏþÁ‚lD» ô“dC_Ÿ=&%U9Ï^Œò†3”é\ƒV@ˆË—uó¹o–1zã{•RYþ¤^AGw•:2öwäÝ’ ­ÝÒž”9Y“h+ïáyˆ?\J½ÏFìµ¢´í>¯J¡IezÇ“ŠÆÃ—ú­Š–H‡Ô±R 0m;® jq{ÇuxL@•eïë(äi‰`LRã©)J.ºÑ‘ûY˜m²DŒÇNŒ\3þ¦ÛìL¦ò«øƒ"*…–µå©ä£|¶=;:€(UÃê›=¤ïVpJ켚vÙf¿)ñûп9_ Ù¸oij¸Þ& §J<º®ÑկĺšiÕR‚’¯ÅÑ8w±žáð#2w†ºfÎíøò\p( ó6A’òÿ3;[šüõ§9CP¦[ ¥Ò‰ïöwÑŸ€–û×U'a\B02®¡¸/ˆÏÞëÍ3—÷XÛdV‹ô hBÁÑÜåTÞ÷A7Pjá2,œpê:¼'?;ÄØ–6«%0Š”õKÒúbX”Ÿe®_AF¬Í1DwŸÜ:RåK¶j×UÔ734øI<®“L¢È0¨ìr%ÓÅžÑåi`îð ìêÃÄf¸Bú[9Hr™±[š½,Z¡«8‡þ»H<¤ð;|©ƒGÝ7h&=qÏG´W$å% é1oMó876€„¥o"Â(âT­—ÆqÕ ª%ÕƒJ~ˆbÚ338ª#õÎÙë’ÇŒS¡‡ð[8OèJ°Lá±½ÚÍx_\¨‚6)u+2µ(\zÉÎÈ?Ýa)«åiÔÀ`†*H3Ã*3h”šoÏíAÏ‚4Ã.Þñ¦MTTDØ-aó^)´6]gj%ûÌ:7ô¡¢>úh4mA}3íô-9q"ðZÞÁ(‘ÂcK¸>ª‚%h.³I¸Ýs&zcø¤£õЈ×8J¬îr¶´\<úáÔ¹öÄá`wÌa§òN•ðŠ{Ûð. ÷Á^lyÿØ ÔjÉ s…rGR4cáªÞb]!‰³ÔAQ9¡g9Tü H?GTTW§ã‘wè‚"^m­—Xµ3a[;**‰Œó+¯$à=ÏýbîZ„¸$ýCP#Éc«úab‹F×dS&T^`íü}ÂC’âùµa×ÓZŠÝ lpB Ý%Í„Ýò¿Û/TSÉj|²äµ $y¸d¦X¸×U‘»0÷]¬Ó8Ó*5û–-ÝÁXQê粜 ž-u O<23£3Üvþ'B¤rFâãìIW–cŒ¥ Y(¨‹§)Kux€Þj;šëÝð;.zÝäy9ÐÞ<¹§â” ¶& 9âÓM§3ß¡²¢B—îR’ÄþLJ: 1=qÄšý?“ùij¨³,ÊÔ‡ñæôFOh::ÁÂÞj‰$¾+ü?Ð^½ÕøÉozQ\,4Ú=ßÇâ^äÆ[[ãß@ÞX[ä a݃C1ººyyZkú’³6+$lO.\GD%×öFH5% P_¤ž`fú«Ú® ü¸úcìG7 ¯=]]£€^¬J¨Ä$E<‰È™(ü(°¶jÀŒ"éõ㳌°ÄK´ËÝNEðØúBÕÊcŽz¼UxÆ3ü+’³@9Ìr§@œG|£×;+û-hð^Q™ôG;øuMú†&¹íÊJî¹Ü¬›,€–> stream xÚµTê6LHwƒ "]3ô€t£t) 20 1ƒÃÐÝ!ÝÒ!RÒ -"„„”¤tI§ žsî9÷Üÿ_ëûÖ¬ÅÌÞϳ÷»÷~ŸýÂΪ£Ï/EZÀT4?H( PÔÔ €@a Pˆ€Ý޶‡ýå&`7‚¡œàH„äQ0úÖ§Aßò4‘€†³=$ ‰I‚Ä%@€þ‰’(A\àP€¦@‰€9°+"ÝQpkôí1ÿù à²ä€À`q¾?Âò0Ü‚hBÐ60‡Û-!ö}¤%†vÿW ®‡6h´£¤  «««ÄÁI‰²–áæ¸ÂÑ6=˜ åƒ~7 Ђ8ÀþìL€€``wúÓ¯´B»BP0À­Ãn C8ÝF8# 0àöp€¾úc€¶# ñ'ùñŸ>À_³€@§û+úw"8â`ˆ¥%ÒÁ‚p‡#¬Vp{@[å±Ú Í€  ¿‰{'äm<Ä·‡XÜþ¨P‘×@nü«='KÜí$à·ÿÝ¢àï4·SVF@‘0Ú‰àw}JpÌòvìî‚Þ¬éŠðü˰‚# V¿›€:; "à/aêJQn]ÿø¬ah€(‹`/07KÁßé Üa€ ßîÛ¼=‘Ž«Û&`Þp+Øí§Ä@£œaÞžÿ üÛ"P¸%`³†#þÉ~ë†Yýiß^> îx¼Õüýùû—é­¼ H„½û?ô?îWPU^_QãïŸÿ)( ÝžüÂ"~!Q,!¼ÿEÿ« à?¡ê+$üg±·SúOÁ.Ý?×_»Á øw.-ä­ha®4þ( ´¼ýúVú!ÿÿåÿ¦ñÿ-HÅÙÞþ˜ëüÿCàöîn5댾տ&òv ÿK5†ý¹³š0(ÜÙáQu4äväÖöî¤wƒAuàhK›?Åò§ßð÷’ÙÃ0¤ü÷«àÿƒÝn–¥ÝíËát«È? ØíâüûHe„%ú{ÄDÅ âN¼’¨(Àt»ŠP˜Û èÛÀm{Þ+$Šà÷ŠI•~»þ°ÄÅ‚š["Aƒ¿-ð-ùÇ-ÿ¶@·Ê„ýmŠ ­à.°ÿÂoSÙüc‚€AÄߦÈm®Û÷ñ¿à[6êŸl·d´+ò¿àÛJœÿ1…nÏvÿ'ÙmC0ÔŸôÊÒ…º},þóíÿcÿñ2Á`n0K‚é ¤¥TmuPËy¥<£+ÿêôûªq*7¿ç4ªÕù’/‰»"#`u*ŸÔ÷‰lvY™ëDn†åÚs»±/´)A·ù§×Õ‹8½‘Õf‚©/4ÝÃo¶åkº˜ñ™ø äÖ¼®_zùÛa7b¶i°ç¼t– ÑÉ£?ð¡@‰µ¾)‘–}"¥I–vìã½±ÜhQF3pmÕ/ÉÂGM<8^?T‚n<;Â3¡~%Ê| ôY?_¶`ÑÊ´ÚÍRܶ“«u»~q>éØÜõÝ oÓõIÑ»›ô霠î,çaÑÈÜTMÍ:®ßùëUbzÇôH¾ý8_9‚m:'=}}:à~rÝÈN¾ ¡¶íöÁHîÝà ¸db«ØøEú ïs?Ö¡#†¶•bit`LÐ>¾÷’çÕI;cðòCWNPŽ“ÿ‘™–’KþûÈ,² ÕÎZ}D‹›ÉÞ7ñ4cé?2õ_%h³p‡|{ØWùÃåZgÌÆí!HMûŪÓÜ›æÎ^•3kçÊŽå]‹EÛo¼hÜó›„øÜýŸÄÙ:¥Ünœ—Ë1BbžæŽV6¤á´gÃWdxQð;×ÖÌš¥ÃÏ›µðÞ‘Ü«’5J+¥uMûaÉèÛÿˆ¨ý5éfŠøì'YÝTšt¬N“Îqî”_oxÂt;9)ÁbKSêâ¸y‰UN¥ ¬‘û,O€ùý i¼[ÃÐ9S…ÍdªQbÙžxëBˆûû=ù·Õ#f+õ%æ¸1'`š4QMxo`ä · "ÉöüµÙá½§ÞzëÃÖ=«`ŸŠ/›èM{ÃKjÖSÎP”ìOY+–…s¯Ø¯§#\yÊǪíÝmr8ÍDä»t ØîLDW¾ö©LÇü²FVd|6wÖPjiè³N|ÜæwTĭáÒ×8î{Qt¢'ÔŽ‰û zÙ†g ‡”=À–¦"ÊØÎdþÅôâj ʤ´ú¼Ï@þƒ%ÖYk=l:5?} ¦R)½v#Œ]ÃE¿YVû·QšÓïF„¬)µ7¾ PtŠ'Ð]¾wNðå–mÄ.P¼»“ldA%nöÝ.=«øDCê%1ÖÇDž#âé(U¦oß,N{¥ÇwÜ 3|sc9X¾·AÒWd?î»” 6j“&†ó _hz¡îKvì=“EÃã´ïö-:^ìÜF= $ûM“¥™ÌÒ-‚õw4ÇÑN©A/˜óªã_ã¸GûN3xyêäE‰uÖfõ§(¤ÄˆÛªŸ1àùÓ†úõ¦ ¥0\×@¨Â¯ Ù‰nRåÄEån0¨·D¸â™Z¤1Y̳Fm8ß.óº%¹ >ñ©–}5@®:!L®Ä,™`ö>¦.w,;–‡£QäÀq õÝ-êjI†}/'ÆÌ†4ÝNî@ÿÅ@ô*‹¢½™î€÷Ì{þ—`¹¦‘ØÍ<¾\Uó¯·x9õ^®š¨K*ð‚5×JÖC;‰f¼ ©¤ñ5Á„üz‘½5ºfÑec~¸«†uÔ“|*L^ƒ<³‘AØ”ï" ,«Žá$tZúD_ž±r”áPÆ2­v=ðõúzæÀŽ%cÐ:lW¹twå\ùTNQèÚR ’ ¢W½JŸB¾VªQãËÇùZiÔuéÎKá¦ütñz¸+†7®:½"‡Žzù$$Rf©/ÆQ¶Œ½’ëÞ“c—¤þ5qoP-Ó¾T¾âÑL¹&‹XùÝädÓ„v2Þ´ËÅ*û¸ãbÔGœÉôÛ_„gÍíx ˆÞs•›fuЉêMñ?kçR.Û‘×`v’ÄñÈçmÍæá˜ü*éUvªÕ‰t¨µüRr ðíB†(ôSØØa†Œn[(G#cr[ùêö@£"•¤-,ÄN±¨Òê¥1ÿtÒu ØËp$Oª#¯À©µ­½Iêž š1fHVXR¨=}0íÎÁ¨òšÕõáéK–=’ÝÊfÍ1Oºâ%©4y âÒ"¾\Ö¥“ò©Ö¯FJ÷re—G΃ôŸ± Ý)¶ØIφ+± Ƕ•+I„'¡t¥ä¡«ãÙU]™ªÈ0ðÇñûf´e~zdo(ÝB½LXͺH?¸*C&­ªFôÕÃn2¢DD-ʵnv8^Ÿb?úöIxµ•üàp³Ê¿TÛfXC¾çuZM‹ŒY!Ø%{,Ö‡SÝÝ0V. ÕbÛK ÈO|<ƸÑsËé` ¾‚²¶êb&¦û†¥Õñäàú·­€×rhõË»” ”vS ñ*/zBJÌÐÉ"Þ6¢°¸y5­0T§Z™zŸv=žçbýÒ0¹}^ KH:AÐMˆ–öÝ ›¿_Û ë®Ñ*3W=«F]½É÷' ø­E¬¦“³r“ïýŠ/¨‰DwÃ1†ùc”׊¾@M«­n–½´(¬¼‡Z/ Û°¬ÐaOxåxÝjKþè–3.m¹Ý•Úß4œ›wõ:ÇÄ#™uŽŒ‚š‡ååÉk^êXE†ð#ÞÄ…nV ïÄ›²Õ„wÛ[sôÁŠRÊH7’-D¡”#<ÚÊø¢±ÄU†6—ôsö.màfÆܘãôÓÓº·™Éx¸4£ñ¿¶Ìèü4z¯í˜Û߃¶T4oúšó˜ÝYíW.!úî©®5Bñ©Gã ‚ÜóÎ&Poǰ¼íÑA$ÇWÿ™MF–Êç Ýe±³+_ò@*K‡)Ø4Vª1ëö?ýê8h`v¤¥R¨0†žkPÇ=7y¬t’Ÿtlµ¦*b’·EwpöIH rEªg©æfÏàábô׉EôÜ¡M%~È›[]Œ:œg¸eMÙú–«õ­h·­zt¨`½ó¶û=ЦªÕöDËQ>ƒ– %óÖÊ>žPVêJŒO o+M+`icõ¥ëÚÇñ»oêù^…ª­ëcÜ´²¥P¯ƒü!þÛO(a °g»‹õžÕ÷øž œæý cjO#Æ ŒrÜo/nˆKH; ëS^[ø¯‚¦D³Ýã$j‰š&pš–+ § ;ý2ÉxÌT¼XØd‰t×¢üøq¯ö|’:|l÷3â視0uXÂíO á=ç|šwÚ}l‘MÅ6áµFæÀËhí"™·B‰“.½÷ÓmñAÔó‹†ëR¬î >‹Àje¢{–à§­ç +¤½’YUí&,ðÀ¸¬°Õù\Ágk¼îŸH£7Sî,^û’x§ùÜÖÁž $"M8›uvŸŒŠÚfˆ‚ão’™;wJ°V‹>`¨±¼StahøúJ»_ÊÇû[iù9T&(¢—án?É@ò1‹uÓ<L{Ã+¤KÁuD6/yÍ}]véÎE†˜Îë©5ÄôTSNûkgB]æWjhÙO.:š³kF©LßIë(z];ší·»>¡¢äØîÆ"Ü”‚U©ŠOÆã¨'ŸG¶u­Ú›âNñ#~²Ð/ì¥gÁXõ¿{ E'¨|‘ŠšˆEPû Kž¨ÚƆžqûØ%¥ LkrÊ¿*ü¦'£ÈÔ´ iæ}i}¬àÜÀåšÚÛÅøªªÁCº7þA? èEµ¡èÖl+€kEú=’Ó’KܦJ=³ªè\™»š¯|ó >ÊÁ agÊ£t‹)µ+ñ¹~7ȯ*´7OÔÎç«ä¯ÖL%WÇû¥R¶•òw.Ëð‡Ìõõž¿z‡¤J`ÔUk‘öZ±*ÎnÕ²ÔgÞYm“K‚dXK¼àBº ¨N{ÐZj#¨iÅà9ÿSE˜?!*PßU áè­TÜÅ»Ü>v?YX½ ô+Ê–U>Ð#ËV Á\ÀYõOÁ±6ôÒ>,âm4d~P‹‘ž -gDÄ^×®‹š$åó-. Žï›¡¤DeÀýSû¤2ºZ“ª&p¼Àw gqÖ)!ŽÒž!c/H{_ÇÕe¸>×:·Žxx¥ Ô.©k.WXñ,ä‰}¢Æ°\/Ÿ1{˜’¡':èÂïZγªI:vq” 0Ê{K•]É ÐP° ΡÏÜfÖ{‹…÷\Qc«±!ä ÆÌa´îòi!øÀ?=¹Ü:H%wÎ当Nw¾Fck@¨™’¤SV`¾ç8–kîéù‹3=#Ì(|š7-žà3íÃÑ“ñ`­´éö{u5æœ9§Ìé='iåÀ÷;´§¾o@C%Å‘›òq°³r)R”˜ëï¡ !&8šÈŘ‘tcåÀÅëK…Þ'è>.­¯~ãø‘¸ž*·Î­gÚ~c#;óÌ!ØQ–mÇ-?ÈwÇuMéQs˜^?{Wý»³–‚)çfÍ~4m—‘q u$ë±qXÚ“æ#A_o§s÷ÁÌ´]®oÞ`Pøn+ðãŠÓtjX'î™3NøÚ1íz¥SO¾*±{Øó7´Š‡9Üþ 4ÃÙï,ç ´á¥=¿#ßÖþeàPÜQñ]NþãBŠ …FàÉ)ùIºžÏE¾Ã˜T`t¾‹ÎwnJÕŠ«åU:vÒj+Söm´¿oLãê2½U‹¼Þ÷\ ™¾‰ìà¥:ï÷ra/†ë«—opŠŒ©8Ö‹¸qØ.†&ý*Ó"'~òæÒ>è‹Zƒ¿x]¬éárgÏœÉTq³ÇÔ’wÃÏ$²)¨‡'°ÿ¢®|U“ØØr–;ù|°÷.²›åÛQô‘C“A1_Á³–#Üüé HÐg*zæÃtý4oŽÀ&úEÝ(§ßÛO:Ü3G_ ³PÄëéëx ©ybO£ôÄ™…*/K•°ñž…&¬Œx5œ69y¾×ûöÄM¢Q~#E¡O‘ô\:7Ç=Eyl‰Ô?ýöëOŒ¶ÃW`ÝžNB!ªâýô±©Wçˆ3ðµÇ¢±f„þºtelö‚sŽ!pÔ.ý"ýWgÔ]ØxßFTç×sùü •Ì)»ZA‹ç'ËÕ.êsgk}Xõ„عºóG™˜JUã[G?íÎ’óldÞ§™ÇeC¢Šu*¹|lÙuÊCzûdH êTí“ûÈb½Î ]©Û¿x{zg.®˜£=ÂÆùƒ£õž+0Y(¡ ·íN«õzŠ­+ÂÒ»¦øÚ6<õƒ¹²z©äwïoz|Q•ÛJs±Íw@=»Èªô1t®÷QÂÝ$fiì¥1œƒÉè,þ«ø#ñ¶=a2)yí þˆ`±\§ŸÕãÝâk~oeéÁCA\r‚EÃôò> ÛjßT<ð8kU!âKCMM²?âJçƒòá’Zrz _! êm×¥?êó!¹÷ÍD$üz¼Y%Ü¢Ž¿²hÏ`¹Ï7KF“Ÿ¿1þÀù+‰Lןés·ÿWbèµ{L=ò‡(^å‘û½ AÓÇFWoˆˆ­v|…èË Aë¯òF¢}<^• öA[:KBÑÙ¹Wj8éU©EBÙuûÛ8(Ê8‰«žHŸ¬˜5^Ŭ qÁ·ùüPüRâ æX‹¹áGøþØ-¹»T‡ž^j"ï¬ÌÉœ›œ6õ¯eÃûp•0”m1)Ê`N/*†‡B¼1ßfW'Õ¸ÓúáúqÁò+x⩈@>!Jæ½$‹5Í…ã+o}Qù™/Öö·®µ”; t9õ:åÙo7ó’âphfGMeô+öïŒ|5ð½ÖT´%\Ó‘aEwKÆuíÃm3¼œ2»(ñs]z¡×÷³YŒÌ—(vŸ'F¸8øFCûž¢Óø–™gáØ A,r¿òŠ1î”ßÀÉ4Ÿ^;ûÉE°Ý󔋃›.NÎáÃ8µ3¾¥ ÑøYÿhÙW2Eá¼k´BP›~Ö¿ëÁÊ•õ/õ¬ æfü—­ ¦ÓÑò;†` `ÃPÿá„‚‡1‹óÎ.£çêItrà5k–«f1‹¸°Ô)ùTýLØòF²p§réåý¨ª"òvÚW_ï{mÉêʼnª_ˆýKÄãmϑϮ:>?%F-—è'¿+(l}©úch{®zæîV~Cåûçʼn÷‹~zíCsFW´`î3;ñìÅ¡„oaÄWƘ»?: ¥H=÷îqº{`Î× âÔk½ðafI º"ôI,d§Ž­SòªQèÓ~”„…8—HU÷»  ¸ØyûYÃ0Fž_Õ3bÙèÚréGö+³ÎluL1ßš¨êù|;Ãß>§š1‚œ¨oƘ‚ErýøW‡q°öÒIÈa»OIgñij?J P•S{q.OÏAj€2ø3‰øäšéúèø`”2_¨gZãKD[Iø´n÷ô¤ì¶©“@.Ë€?hHò‰nq ôÿë¥ ¾æ*¡iO«W©äKYO¶Y$6ªŽÿ2<à³çÐÕ-?-&±x©Ö Ò“+à$¼p•Ë@¥ÅŒãu,¶ÝÂ>j¯±T2'j%‹ÏWâ?²“¨P¢‘šÁ`Æ58;Cƒ~ü,6mÃ|Û[n¹;N³è­VwÐ䙜x>’ømÒ]í>Ø?Y³$á‰|VorP~ׂ÷á'œ¡ ÿã›Ýl)‚¬t¹î›DÅ‹;!’o*pþ–»ãdéÇß=©¡+×d„Œ[rêõí4ºW¡ZUÓÚ™¸—|>²ÐÍÞ pŸ¨§ñìƒwÿ¬c#D¿®!ð3ó~å;ÛØó;wÃÓòiˉñM¾ùdÖ ¾x«÷¡eOðu`ýw$"eT \ìÇéý—·šåmÙØ6™§Qwjµv»@‡üÄÓ±[1Š>†Ìä ŽT‰Åhn_E¹À•êËÐ-± ŠÃ í„x7ýyf€é>ê|ú ÑVc3ë°S\M bm¼!7@šì¼ùøEÔ^8íΉWõ9—ì.h¤ æ_1©òš:Z2æ qß›‚b(ËHiâi0c»AIAuX±Xô„×™ˆÕZÉ$0U÷&Bú#ß§¨’¦ªà˜ÂHÊÙý–´OÙ:˜Þp-óm"3hÎÅ¢eä&°@ÏøOaãS:á ñ&š›Ÿ¦–(|#þ|ÝB¥íÔ7Û_‘$u@0Iú±,LnX­ !)í××ÝÙF&,IÑ^½KúeײÆ÷¬lqÅm™™Þ<ð„3ÔØÝJþlpiOܱP3U%™É« e4òsq—¦ÖMš01þŠÐ3Ý ß{=Ðe²¬|ÔnµØÏÃS˜3Ì~©Siï#)â}Ú ª o;]ÖÛv«Ò9ÁÔ¢âa–ùIüIØ OïNxiþù!{¡þwãñ}KÃ(l”•Iß§ÁìZŸ–_0fÑÍîÔáMvv>bðY¢ÝcþrŠº TEÒõ‡úŒtDG*æ©QÈ5¬¬`tÏE^ž«‡‘@rÛÄQ@ˆ}÷õôÐ ÷•›×¨½øª¡ÁN{bØË hÛŠõ…>iœ;´t~ Ôp¶V“õQvëar«¹Rl„FÑÉ:Õ•˜fö'ð3›Œ”Ü©d•¯bñÌØºãËMáÂ$¤Hùú> stream xÚ¶P\Û.L‚» 6¸;www`€\‚»&·à$$Á‚»;—Aƒ{$9÷žsîÿW½W»jöþº¿îÕ½Ö׫†FK—CÚn R€ÃÜ9x8¹E²ê:<‚nn>Nnn^ =°;ô—ƒÁäê†ÃDþAuÝlr@÷ž:Pñ€xø<ÏDxE¸¹¼ÜÜÂÿ!Â]Er@O°-@ ‡Ü0dáÎ>®`{÷‡eþó `¶að ²ÿHCA®`  twAV´Bºp0ÈÝç_)˜ÅÜÝE¸¸¼¼¼8P7N¸«½ ;À ìîй\=A¶€_ 4€PПÎ81z`·?v]¸»Ðx0@À6 ˜ÛC„Ìä xX «¬ÐtÁþÕþØí €‡“ç¿éþŠþ• û ´±C00Ì`†€š jœîÞîì Ìöqƒ?Ä=`Ðúð»r @AZ|hð¯öÜl\ÁÎînœn`ȯ¹~¥yØey˜­, ÁÜÝ0~Õ'vÙ¸7À—ƒÀÁ+À æò üÿE þ« î¿C•avp€ðŸbvé?{þuþÌÍ àß¹4࢘ÿÖ¸··ÍÃÏÿ³Ò‡üÿ üW–ÿ›Æÿ· ä·›ù·ÿÿãBÁŸ¿šõpп:üa `ÿK5ý™Yu-Øú¿^ewàÃHÃì!ÿÝF°›Ød«v·qø#–?vý_CÃ@Zp7ð¯[ÀÁÃÍý?¾‡É²qz¸9ÜùÛzœ/)³Ûþš0^g «+ЃûAH¼_ž‡Q´yÿÖ0€‹w<´ç°ƒ»bü:Q¡g.ƒ_¦ßHXÀü/úU—í? € ü(à‚ü yȰ@üða÷ßð_åÛx¸º> ðo=ôöüû¶¼A6‹spÑ0Çê°ÖËJir/Ž1ñi†ÃtßE×6Ÿ8¨),^‡¬¹žK§ vá-oÉ3ŸI-Qßú~oªElNÒn¹ö»±LЙÜiÁX˜ î/ú.]ÓK‰NÁ¡'õÙïÖÅÏ Ø ±éÑG†<!­ÂK¯EïšÞÒO#s;ÚŸ?M;~O­’À†á¿÷‚ï¯É:ïË«Ùç+åz¼ndôd&¤”ˆg#“Œ¾2_SUHæ}KÞÆâ5róܪd›ïEc,¨Ð0[ìuû:Ž©v¢Êí¯Ç0zƒ"Ú†?_ù£ =Wh•­E‹ýln¬èÝ)Þ Õ¦€'âsÚ<Æ39ÿèw9뱯2YœI ¶Âán_mŠyùÄ5ƒYÄÀ$§ô•?»‡·îBQgû‘}|o´k·PŒ1¾1ÎîšÖ´dŠâRAò'­ ÁvÜ•¬ÎÏiV±–h?Z[È^ˆâ@CÄ.ãæôÔ7¯Ç Þ”¨+=Þ ÛžŸô1QlK¶9Ž£Ñ«4ÚH»ð·wrÎV" ÙÃ&N8ó­¸å’öº”¸ŒÐ ß¿"JíbÜ2œÝ=ãþzÎê½é0ÕºÆYG©ì•êŒ=”(–#'4wdÌg@òÕ3³òý­2çMø |b%J¿Ú\]¡»žýfm·¿Ù°=.ô˜]¯f–ÚºÍj•sHÏ…üÙO|fÛŸÊ:ÂRb,¥s7…wìaºqIAµl¹öÀ±%Ú$±#¨bP6K ÅôF îÓò.KiTÂ^ïò`J3Nyû½Sµ_²†¢µÜ¾ˆ"Bí«>´¾î;Xò–×ÏH>íð/ ·%eפ[ÀÉÚ¾%4±w½æ…W#0´ZtŽÑ+oúW äé¿ç"*xÜzùÙþ U›Ö#Üm<¶1 øGŒøówæÔˆ+³“³>ÌÛ7I ¾1ŠC1W¸âž‹ƒØÂDý7R¨±6xæ£æ*O×H‡_¶ÕŠ£ócä/xæ©”°‹Ï2y‰5:#gò¶v‡‘±1n¤Ù³r«h„xã¾>)ÚÍDÉ[P \ê ¯WŠ8òëX"m_³1üžŠtX,?9Sxn©ì•7´`$uýy=(°â†A,-ÞðƒB›y„råøi/ùÕ3üÉØ17/šñd%RMVaõ¡)ÚÇUùž2„qgï{7$XìŠSaæþ¶“ñÑ2K5OÁwm°\¾ä9B%GÑä8w i0]ÿ'Ûáï H-еø ¥ÆË-U+-ù¤Ñ€È…r¢¯Í·,^ôD‘H8¼Ô¯ñ?-ʇ[Æ÷¯x<~HƒºÐF†³™#’Ø2²÷ÊŠ‚Ÿ÷­¨Ö\_Ö±”Ÿ»R8òÓ)Š ws"§N}©œA;>g3u¹4œqyjÓ{§ÜÒ*“1èwY%)rM LÌ=&󪆃)îÔᥥ:a9B¬MËùÎØ„YEé¶óÜ„Â7ƒ-)%^ņÆz]«}¡[Aî4?üfÆØPYÙ'o„q|ÊmøÞà;d :²kzOG6œ-§ëyD5.µ«vkk§ø3)ë¿Aˆw )ÁJœKé|wÛ7Õ o9w^'Wß öL¾†•.÷ÍîFFÚ¶º×"sÌÄ•/‘lâzø„õg•' ±S…Ç•(WR|èRpźС˜[R*ÿjæ÷jŽt…z±KÛÝ´ÃZÐjøš[uX.B/£ ³f)LqbødYo6ô0mÛéEp¾{†#ÿí]â]¦]– K¢þ¤¬¼g ¶²!·ïêf¿âÌÛƒðä¯èu„2U1£á2„:dÎt-+(ø8»7U-×"Ï>ªŸž/úéËŬf”ÍÆ²Žî³ö.uNiyCÛs*]©vŸlÄ s é‘=lÓ “áò Âòº4â ¾02ˆ­4‡Z\8ÈwÔv~½¦Ö-1ýZÈÓN5»%­Ü®ú†P›ç¸òi5ĺÅà qx¬³qX×wP8<²'|OÇDŽbVÜð.g Óyl·¨ O Ðåhñƒ0êàŸ?/QâŠ3F8ϯwäÞ2s—®ðK‰MòÙüh¹_ª®ÝAs¢íº´W˜Ëk±!"ôzÞÆÑxŸbÆ„XÈš°Ž`@Š óq“ï:ïÌ„é›Ò ímüÞ݈{URõš×¶Ö#mÂU=’¢ÝôŒo” ש áæ¶+]bï±ø‰+&ÎJÏâcÅï ›Îs<šŒÆÄuà'3VŨ_V³ß\Í>}cEOÈ%ñ¼ÞZp1ç–Éñ‹2 {4=xþ•ÿzr««siz„·ˆEʰ¢IC¿l+œAt(æd)1œ[\ž¥”•E+mÑ´Ð^RË:§»‚prÕïÕúÚ8‘8¢m8ãÃz bd!ð‚¯y²Ô¬ŽÕT®ÍÚಎªû+ͯ§^­CIœ‡fµN­4ú^-VJ#•ã³íñIâÜbH÷y†"põŽ«§52HÍ-¸ÀH´†Ô…GŽ'Åðdý¥1êY›í½¢º+#Ê6.±Ë6ïú\£{ÙÌÜFõƒH#µ-Ú‰wé+ùˆ\ à‘zTu/KãÉ—¢ä6ê+8ÉêÇpGëfÉ–q«¼´2Ú1sÒWÔø‰a1ÞEºL‹¼>¹‡DGóŒ±=°%Þ÷VGä ÚźsûûµÇ c‡*U²3Ý+?”ýÕ:â£uMÛ+~:¨f®}M*ágVë¡<ຢ[åwB’Žªo®Ë žHŽ‹]épû›®fMçS~Ø0kªõ÷¤œxñMêåmèoð*"M(¡Öt93MY¬X¶ Ǽř̄<}!øæ™%¯º¸! £j ½ßÄ<GËèbéÂk*¸»>ú˜ÆÑ™m»á#'R³XUNûSíï Ü]§Q:âÝÊ¥¦MúÐ=Þí’ Ï8®«S£´˜ˆoÊžÚIu_8;XZ“ÄÍìµ^•'7û°ìÕᑠ׳bEIš¶Ûd˜HúKý°€ûTñ\0}LäڭئíPe'M¼×ÃÁä^“ŒmýýÈ6«,¨ Ó’.GÂÃ?IxYØaã°v:AÎÃþ ©Êâ©ñ¸ ‹3ª^ךUÁ»Q?>|}Ï›!ÜúgRºº¬ñ•]2 XHÆDHà>军¤°éŸè¢@y´™‹@‘ª>#ؾ~GFêùI?RK” d™$íêÓ‡s§ó1ÞŒÝSƒÂÙ§(ë<ňÁ!‹ T¹† ÎQ¾Üζ³ôR™´/EX{5㹿©€–J’Bº:5²µÉÖËv#ŒrÑ‚ ÍçÆ>’Ùë%Ëíê¥7Ddž[K”Ao¦8ÈQƒÒ$%k °^@ÊMi³GeEé;óKPJÝ‘÷˜ë´§Þ`$N ÔG¬ê•tØ_5žfÚŒÈE +· É M\˜rÉ&\8hJÒÓdÁ ë>t ¹ø²ß­ä@ 1}ªˆå&<£š…hè[: ìx§bwž,™XûˆÒp#ø(÷.ãê4¾Àí›À‹½µ<ŸkßäM‘¹ =Z"xV“µ}Vòßw$„;ü¬%Ûœ±†,5Ù , |lªÃØv™LC)¹!Ý;ÝS‚y¼BŸˆ!Ÿ€"¹s§Ë´÷ã°P¬Ü+Ž˜>b}®æqÌøÀ;…å[ ÉÝþA&IJKÄzÓYOì+/=ÑÑ玣FQõ`{VEbêƒÐ' _a±Í(QàæÖ£t§ ýZ)“†`j¤~p2^3osâþËÎ- ÎuËå3VY T‹ßÅ‘&U·6eN+`(Âê=ÓŸ3ÞØ¢Ïõ<³Ø³&Þ}5ª,ñ¾¢{ýhò+4…¼º\^dY]œ'[èÎåøÀŒÈ$³¼úžmò"ÕƒnNÐíÆ]µ» q íªEaŸE™ê:5Gj1Ï»2,…!}°×Ëi”òK5î“wkÉÅ‘É6Hï+êQNѤk%zfÓ0tž„f ·ÅGÈ궨wT5Ÿ}[ÂùŠŒ¬¢D”F40)öTQSŸßѶ¢µÆVhPŽbÇLkÜÙPÆ·)’¦UŸ6 ‘/˜vñ˜×¾¬´·B§Z  â’ú´™ºç,î0Lrvf~fã±/|jƒjóM¤iɈ¾>á±û›ÆÙR2§ÓÆÓ(ˆ}4À1¼šGý¦_ìmÔ!; å°ù±¾_Æ©„LE(Þ¾®|¨×Zˆø'dzÇûUý&nŸ» m9äî|È G«|sJb#o½zŒ‘– ÈM'Ò£{ ð9ñ³†8óè#¯×¾q<Ó§À·ÆoC=´Àå»)j¯èý:¯ø®7S}Ä×NÚâógoÕx]2‰"+Y×´®€Ì,O[g« &Ö§ž°ñõ̯SPÏcÈÎÚ°$ÆÖf«ø¾78¦xÿS̶V#gòÐÌŇEÙ¼bHa² v;„[Ý ò#Zk˜Šy¾î6ý'‘ÛÍ ×#¬ÍŽPmµ“dÛy¹&@Žd¹™òr¢÷§ÇDúh¡Èu|ðÚ—êXiÙß™Ç~Ò´uHèß•°ÓÎÆ¨é¬s½-ŽÄpLà\©; û9‡éÜï½¶é]¦ûê…;æ¸_²ÅÈ>‹çPWOî‘ði¨57¹#ªá³¯ãÕ¿ÃÂu •VïB¯ZîEºÑvÂÇ VK¼ù,ý2·Ajø\ÅóŒp#×Q3Eo9ëÝôR÷9Wß6½Wošü‹Ò"ã ˆ"Bß÷Ë‚Œ´€M‡´±_«?¼W 5Õ×=+Õzƃ¾ÕTCæùe}¨?•ºÝ™ÖC•æà Â;Ë$´V.°:Ì—¥*غ̕ÈN% ßÕ=?)`*!;ÊtÕRggdò-ÃÒ§*GÑì­NÝÊÆ¶ÉÔ4µÝ_¡‘écž§‚ÕÕ"Qd­{PØ£hñ›é$«Ó2lÒ}ëE{ü]óh?¤Pæ]·ÉÓæ—™ý§¦˜Vk`*™¥„søá–`L(•UI_âZ<½Ë€6Šñ º[T(Ikî:^õI"OÌ<¨¢Üú}è´n2¬E!"^Ùíö³Ä¾Gyà‘¢=lØpNK–xEÃs-»âîóHF„TãQ¼”$ V<`†¯êõ#á„-Ìûâà £ù¹™ÎV|¦éví…¡¹Ù&C–.þz1É x²¯+½Jcêd‰úïØmX¸·£Ør{åžôE¯’åg£»ì{S!œïnÀÀîÒié˜hñï3ØlÙ!³ù0!íGï…|´;GãÒ;o#c:4÷y&Ñ€Ïõg3C ð ê3«‘æ‹J¯è› }.r•[ɘ}9²¨D ¬ÖgÏF _È‘^ÉQ78«‘¤½gE×ê7õ++” Žh¢îN˜ >þé`ÿh3ýæ¨ZÛ7ؼ%yc”ÀJx ^ú”ZMмŒŽs,l ¸Û\ðÚ†¦øÑG¤ü#îÒy†4o¡âìt*ç“›DuÚý[D]BÒÐdÃÊô×Rt“ w&áϵˆ¤KÑ"rwúÌëkÂ]`]I7Ä]Ú{ßêï†yltò¸(PÓyª³£QS 7b:æÅv4JRûn*ãGe{Î?R·#ñ¿ùt—ä‘%?ãq¦ó3¯O‰>?Ú @È$Ë¥—Gä÷ßʤJbëà϶ Ü"S y×/  7_{*Ë•wäb0×S­ª4¨78ãïe;Ò/Ÿ›D K¤X¨¢Ÿ®÷èæ¨fˆ¡‚PË—.Bß½ÝÔ˜§ìRï‘0ŒÕ†zâµOþ¤ )P„f ;ê@g(?«+˜!Œ¤hÏ0÷êâfÕ"2H`uô§ºÞÇ4 Âf2m8£¡ˆ—ÇŽÓ_âbš;Ö|vñ¶®åÛX‰o•ÈÒˆ,Î8œ5J]wU™íµÌ4û˜üëB(ïæ{‰)Óä–0ÆîYœ× žWrfª„q{ EIKò‘•­óäçŠ1Øcú¬¦°°ïA5_r¹9¿/gɾ6óxô3d"òó¥SàáeÿÆ\ÕÒ™ã`W]œ8þž—ºhãg+âUZ|£.‚ȇ—â 4Ä/¯œ(ýÚÌz©íDö¸ÖjÒÍÙÎÊ'ç|“F¤·ÑÕSpÙ‡IÈ “§;hé4‡ÑΙɳõ àOºBc&-ì·ê¢\$ÈÌËOAx%p—ºÕ&²ŽõduõÞ]¥òQ£…úä¯RÞ³E/lꌋ–¿ØÂ~ºQ’ŽóµœçîîηÎúÏs˜ Üôø=ÚÁ›EÝ!Cãe´Cg¦ Å^ÜYÔ£ o¾Ñ=,b}•Ÿ®¼H1Ä›³í“ȆS¦!³JN¹tÀJò½Ê‡˜;ê3?¯}K…{‹d8»{Õ”ƒƒšhÚIÿúwôû#tŠ59òçóí¬ü¡Ž+ýÖtìðÓ—³Sf§ÔT˜$õ9©<«{TŠÅ…cåd§ð(ÎsÏ«CœSq¡X±nwT‘vaÌ"ˆÓ…²ºióš_¢²Ñùé:_¬ ;F¦<;©k{Ú6‰£^~Áoš9*¹ ÏLžÓ_µ4œ²=Ýì~²)S#bø:ušæÌ†‘Ç€p#¡u\Uò£§n©£Ç,c(]W dfoÛ˜"Ÿ‹(P¼í<Ë•P¾§ÌWnާÐÙqnî$o€Ji˜Zígê3@í r ¿x¬ÖÈ;æ`sõ¤œesÛ:m:£”ècV ¦0DýÀlð=òë†,3¥¤;é·éAS‡k³f^\«.B,Þ#»ÁäÃzïîJ°¥[PCbÌFV–h0µÑÏ ý²"dÁÇ&¯jt`,Ø”5F ñò`þÇ­±_jT%~L3ß{‰H˜X>eÖôª¦otj”ž•aU¹‘¼ïxç{èìv1òÆa# 'DSŒýggê5 ššµ'e2h"®”ôPþÞ1X>c ¿N("ǽHÚlšÎÜepè8¥>˜'ø5õ§Ãâ«Á%•“™¯}SnÂxñã›1/j‰ó.íX% m£ªSÛl£e•üHÁÛ}e^š?7ÔéW½¢5{%ën%¯)–y¨¿ÎI‘£Ï~AfÊDø¶Á鈮ü¥ê-£yR™»z¿“× ù]&NMÍʬžÇâ–D#ü%nÿ‰‹Ý=¾^Wýö¢LΘßôa+Æ“IóGú´’YTß —W!IIÏÊ»d Þ, O M4¬È`B¢°SúOŽMïdNÃN;9¾ån+Ùä¯}»±Æ“™­yÛþØB(œWBM¦búÉL~g"kæa€¬utH5bg›ÆÚqaÏÛoá{'7®éˆzWG$ÒÑbš–<0 Ïð»Í›Vðd4_ˆDÒŠS £½Û¯_CÓïðÜ?t„ëx,êÿXߤ+¯Ea¨;µ|‚iòeûKJyH¾ï”píÛþV„„SŽÐîôÂÛYú”êv;WQÄï›ÄÊ‹š¾‡wöç+2º ŒDZ¨j|š•:z9WOÛÞmS‡¤F¸ë§¢ë h¥4. ¾?^}²awŠ7Ü ¡È}ü̃9Ùq‚`_ˆÏÏûý®ÒŠàX·Q®2ä(”fa ä^FÖ­4'Ó=ø¼ÓB©{ýûZØ%³VmŠ(ý2ÞU™Æ£.¦Q-¤-6ëè°è¼/÷¡ÌB[4ÛiKas5Þd¾~a_ͺFnwg_y`áN,#,ØŠš·Ø¶wND>®2¿ /šQ &ÎåUyωÝ $I2­ø 2'þ„«<rBü- ùnY婀ؠÀoÎFì#mk4ÎÂYØT;ûPò/¾/ùܲ¶ómV§§Ä{P^'ŠRN7¾Iôàšï¾wÞu§v1×½~xÏmCÞ‘Q†Gˆ0¨T=Ä3¤¸©ßçѪÕa®Œ0²Ö¬Þý'–B,ÆëöK Þ‘e" < A0¬Ù§rP„Q†„Vì$蘺Ép¢Ådƒà©Æ¥Ÿl=ÁƒHtK¸y©¦©RsEt˜ìÀólw©,’6í~!Ó!¤±Zï+¿œ ¬v¢9ÉÊ=°ñ;*˾1†ŠPVšJ&™« JGCßK&I6tÕì7ž`Ïc_FR¹!—NùÇ_ð¸H¶M¨˜£¼ßZ4TRŒz:onòTS?ϨþFÌ7ö@?ƯoV+~HgÉ  °95~és$H!-{RZ #œœÔ >wJ>X0=àq±Bg^Žö “Ûʬª]ª_ëXÐÜibWçHCMEýšš ‡[àŒÏÚnV^Â(WgQŽ]Í]ÿ­Çà™ endstream endobj 121 0 obj << /Length1 1357 /Length2 5962 /Length3 0 /Length 6901 /Filter /FlateDecode >> stream xÚVT”]·é–@Jjié†bf†¥”NA@¤A¥»A:¤ E鸣~ÿÿÝï¿w­{×»Ö¼çìxÎÞg?Ï»†ƒU×€_Áa QAÀÑüB@)ÀCm}Q(" spÂÐÎ?VbcCÀ¥þ›ÿ!BclJ 4&Lh¸;„DBbRBâR@ @”üW )PyÀìÚ ‚"æxˆpõF hÌ)ÿZ¸Á<!IIq¾ßéÁÚ 4â‚9 r À0ÚûÜ2P4ÚUJPÐÓÓSä‚@ ððn÷+äŒB`òA ˜3Èð»p@EAÂô÷Ww(0æŠF  `ο:üƒ¹de¸ÝC„‹ ŽFÿªO †„€1·î-ø{¬Np„'Ü÷ÏÚ·³ÿÕ‚»« ææQWú+c"þÛæAD@ ¸„â€x¡‚¿À ½]!¿B¿Ì˜úý}]®{L ˜=ó"öE< 4ÒâïûßÿÜ ì``4ÀâƒÿŽ1Cìÿì1“G¼æ@ ñ„À_Ï¿W–nÙ!àÎÞ‡ÿ® ¡šªŽ‚ïï†ÿíRTDx|ù…€~aQ †«ÀûqÌÂÿŸ(º Ø_UÿÎU‡Û#’ŠÅÜÒ¿ öøkúÜ ƒðO¬G c!î¿ n‚1?BÿošÿNùߨý åÿ øÖ£âîìüÛËýËý?¼ ˜³÷_~ _ÝÑîk#0 €ÿg¨ ä\µ!v0w—ÿôª£A (Àœÿ}‰0” Ì b§ Cƒ¡¨òÇnôK`Î08D‚ýú 0þ‡£*°æ£Âðñ· ‚Í?T†ƒv¿Ô%,*!‘ ob̈1;Q€¯F†v¯ß  ÀhL Óž?À$þ5O ® ÚñËHü`°;‰‘ÕïÁcNý×þ·†!/˜xv –q¬ i:­P`òä_‘ýȱnò’‡ßwÙì~NFÄSž´„’Ÿ»sé»SÿŽ ´!A¯ñÂï§uœþØz#ñÌÚžÑÜ…ênf¢Ûü†ò~—n~ÆN8õØ­YnîdºÙÔ§ž]ª^ÕÝÅóCϧÖõ6ÊÅ4I~óGEZLp¼±Í˜¤gÃGó3Þ£úáE>qtü‘êõèõ8^bÿ¯Q"y¾fËÂÑg“>‹%†Â¨6†» fôÌ8GTCcœ¾Š›ÉtÓ¾…y =3^õ2yw^ßäKYà§Ø~UÓ¯í¬ôšmúœ•ábê¡þœPYTKcdÓ¹UÞhý‚])âaÞl±Wœ£µÐŸbˆ?ÊÌÛyÛßBÃA«ß)íÿ=ÖEðùël…yXt±Èä<ý¶_YKžW†OšQ˜þÔ;ú8ÈÜ[Ò®‡™Oˆ;v€M¼kïK¢u©TŽN»8Î ‰ŠrqW?\ŒxøìŒŽ ÎiDhcù›ÈÖ¾JŸ2Ú·–Ïäਲ਼|6=¡„Þ×Û¨ìg¯Šù1è,ÆM3‹‰‰0v¡ÃªŠ]_pFWXL÷|a— ‹`'Il}<ì û u‡.é'6îà§`®K1—º$nU\JÆ\ÍÅPÿÛñÀ뱈‘>¼ûÙý™·+P·;敽Ô^@ÓÞr+sšˆ§z"ä`æå™šÿæ<Þ_A°u^8 m‘ÈQugÛ#.è´õ;çÜÚZ>]®Ýáäl <È·aœ À¯{ÀÁñÕ}¡ü£>Ó–è£Å+sÊ"íËËwñÁš'„¯M$bx±Ol‹òô ù‰‰¥ û§°+SIÌP«*û½‘g{²3åç?Š÷Ûu³©¢msž“}[¯ Çx|ø8vPÉ4êÞòéØyÕÌZ>¥³Ë€J`®WEÌb\Mšgº¿EÒýT‘Œ|¹“;W»÷J: ¬”`g§ †/Øwããà _‰£»½ªhÆõ)„CÓÚ;`*™©“ñX¦¬ÒΖ¥Ôà¤#î ´ p¼Õ$Á¼Ê¡µnzÀ¥S•ì¡ò—9¶î%óê‡ïzpÎߤ2w½/{‚µEÒWLt_¯¹xR&æU„4ÂÓi´`CE¸¬Í3Ø]ee#ÂÑC”hkóˆh™Á0¤µMÜ‘Z5ðtROÛî¢Ftzyôÿc±¿ sÌ‘FºqÜtu|ß±)¢poÁêÛ„C1¹÷k‡rœ‚ш‡L1«ÕÁ"cäZÃG¼Ë3¼\8ƒÍª7ïçßyÅŸSÜÚÔ!EêÂ;«·ÞvÜó©™!§ðzwÃ_ºczéÕ'õåKû›K¦í7g¬üïÖZJ~±àß…¶Õxläí|£œŠÜtë€ã×» e]ÙOεôïÒiÝÐHQëúXD4þ”:çºÉ°ª›gŒ?/ø Ëñsåö³~KáW;q J_X£ïS¾¨òs6îo|3lÊÑñÑé}@ü²wXî%áØ?8tú+J,?¬§7±Ív;$(™»&Ý~w¹]å²è¬¬ÄI(ú¢zßš“´®Úz’L±ÏÚÏÀEîv¡°ûè†A«¤ÑRÙQwJªïäÚ3Û5<ûÕÔX7fYr ó''YàÌ!·ÝFí%aFlU3ÁñyèËT¹ÃýÞfì€×õ©ébL;Ù¥—¡e&ÇWzv­ öçÖQN÷ILæ^!¦äbŽIéV,ƒüШÑÓá­ù²9M,'Òùí(ßó}=ü·ëé^5¸¹%Ї‹åŒí ÷çËç– Ô‰°Žú¸+à—宦ŒŽÆí[ õøádÆX¡>ޛި™ñ“ Ÿ¼ó¶‚h^µsÎe ÇÝ5á ÜÅ×úÚ nÐ"íÓ(¼3ÿ¾Öé^”ú9“Ý`&¯†Ãô£͇ÈW&ÙÂOñžÛ©Ö#W‡ãZb€Ö¤Æê®Ÿï8.‹¾ÊWÒ¨Òéud–Kçj¨wsŠV‡ø-ܺu’æ,eÆpg§¤‡Ö²Æ±|M…ÆpqG·$ÎÀˆ]Sû\âê'¹šð‡ÃóGžqg%O(d¥?2ç±j£MêE#) Ÿš³² Ñ.g¤¬ÕaÑsG‘Sâºl[/ÛÇ‘#ýÒJëÉ(ÀéFTÍ<>…rÔœ)Q¡†±išÈ¥>ŒVÅr—ÜîZÕjªÊg|¸ßmë—™/g@o>0w7Ôì(þ¥DME=ÎÄ”XÄ”Í@:.ÇûÚ–.açþ%Ï7w=M7â'gÖýl‡§Z1”ÜŸÞé4õª^©"öÚˈîC°Kl˜u>¢³×tÚ9+Êžo<»r]3û:y«æ9™y¸¶EËžõ6„iÅi,ešŠˆñ&ee‘u%—ÝtÁÀT<@±$òŠLZpîÛ',òQvÏùœ›g4ÅdÛK½÷{h¸ô¾ ¹ô~¿éêr3'±¹ÜêÈ*÷míVo91mèÏ’®è ²åyEÅÖ-®Î#Ù>›tz~´`[¼ãsVÏ\[kŽÄˆbì®Î…sË,_"Åjî¡rŸ2xÁçûWa¼BAT÷¾vñh̤°”å×%KÛPrц‰tÝšœÄU¿-rßo°•;†‚?rõºë¤Q¯é¢ÔÄãÁfÞÉ2FA!άÁ =N&îN}IšÞêMìþ¶2ÈwèQp}csâ Õ¼/( +Aö¶ªÿ݃6Ô6ÊÖrßk"Ÿ4“xy-fývhîh„´òhÅ-†d#ŠðÖ9U†„Þnñ†Õu¬O=d ÷¸Õ¦¸™×k«œ~F&‘8̻޺B‹0ˆ’ܾ˜…6aY©u÷˜½¡¬µM-a™%=?ÕaÁÎtwrð˜ñP û~e]'‘"ší">,®<ê층{MﺫŸ•qh” ÿ&ÖÿÃyWó*ÆíëÏ™ê=GL‹ ./ø_ÊœlîÄHšÞ¿ÀŸP³ zù–$˜BŸÏÎ~ZåÎ`Dðþt%Ëeþ³0>Å®ð³±s°s¯Ç÷ë÷óã‹tÅÊ9ž7&"ža³;n”ÝýÞ©>t#ïéGbA!…JžSéW4ßÝÞK1»P‘¸Î Ø?ZÞ+Ë6å=BùíNNÔgå»5OÒÓa'7w®&VZõ{®Žlk>®ehTPdl+:§NQs"N7+ǪÍÓØd¯ÔÒ¯Þv’½˜gyªjZ‰«G@€ŠwŸ¤¼áᣃVÌÅÒ ÏCâ'ÌŽ=8š’œÏR˜ò\„å.+hm¥ôƒ+ b> Ao'¾±˜T–ˆÜ+,AŸü˜žŒ)Û>U³§öùѤõÔS5Hý¬ðzF'ˆß‘oèÆqö®À“ï¬?ƒSviµR¥tQFS>Þ:p(8o7,§‰Ž?ÿ®”-ìÖÑë¨tc>·¹§Gê;y'©n ÌÞªzQ Ï»²ÝÀªjÀ¢Æ3Нm/„,§i%Ïáfë>ËøÕ'bpת+8zd® Ÿ›&?µfæóu_}Sí-Y¹Tž5Ÿd’9ïÛÝ·iê-ã5LÑüKÛ̵(ÑÖ„ªcaŠiÿ7>à›uóBò'Oú&é2àaVvO—ù,âi…8äïeúÒ!¬’ÔÖè&MurläóŸ¸Ô‰¼ôûáàÞ˜yQv=j0{á3¶¤1"Æë¢$ìZM[y7M¶ u2·-keݰn¿2ަ‚àE•Öø%óž›çàßì*!㎠~ ÷}n,‰Gÿ.[åÄU»k4vn×ú(gA ÏÝÏh•mI1—aý2òÒ$Ðð©Ã —£:ÜÈb²Û‘«@ÎæÛ¾d^s—5ÀAŸ/Ÿôã[Γ T ÐX§Ä=±ž,R‚@Ü&¦@ƒÿYsýw  î0;Ä0'¼¼ö„€w2±yBqu¼Þ0ûZj™KÊEñutç+Þøj6UF&¨qÉ#Ó»óU£š0Üd|;<÷e‰º õî^ ×gU[|‘\ñ~‚Êþ™Ýа¡uÈÃä-Ë8Æ/[ù$Ér»BÁpJ_£“`nÇH&¯æDy ²]‹ö!h—F!™è\„Ò臭ê™Ä úa>,»šêDäG¦jlþ6Â8¢«]ê9tå6MÝfu‡º£h^–M9J2豉ÙjƲÿ€}š^ܵ`O”ñ4¶áà.¹ç41ž½¡BÁb“–$ÕÃÕ\áôø|A°.»n"ï²5`wΙ‰ÛÜ kP…Do‘!‹|ûˆáü¼®nËŸbWÍ …Ž{ض]E/E:ÛýÌ‹hÎ/<œ˜k6°(N+é~ê‡Xš’ûo.×§‰©¶‹ï$ÜRzr&ӺɶÀå,±ø‘§OÚÀºr'Îñ JoH»…L¹¨H JO7ɦ^gû.U ;ë%ÖO:ÃßSضmXWªR ÛÖ±{ìøôu§> ìLu~êÞÛ4j·ÕÒ›f·QPo:½‰۔ͬ˜¯e*žÙ ÓM€Î,sXMüàöÜÎ[ï(ògy± OZg(Nƒý÷Åõ-ÒREé뼸 @²šãcSfS¤1/‘jÛ&Üȸ&'hVO¬ÿþ„¬xiv¼O÷AÂû]>†‹K5´ê½\®YtíVÉò÷­ÁáÔñ׋0E>àa3ãUϳ÷®|vA8 *¯zCo|[eñ0ÝLÆõ3)­ÖÖê"µB½ˆ¿¢IšŸôøÄv‰ói¨¢Æqë=‰¨ÐÊÁˆÙÙ5ƒæÈ¾©Ž ÎHGˆi½Û‡ PE³3;pBeman9FùµÂÍí´9÷Μª‚r¤ÎZ‡Ö„Á@!ÿÆJóíó”ÀÅŽL†Føè9½ƒ¼Û·™d('çã/Ä ùŠû¹mžðg ¥š <—Q=ëóMU )ÍL‚ìjã3Åyï.ŸÞc[ ,o&¬V¬D°àðàjzW;à³hšÎž~ ˜Š®‹ò02ÔY÷Å!%´ÿ°»£‰£ðúø}JGÝNÉâo1!5m¯Âû¤ÁL ßBð¦÷e^Õ.Øo=·ÝÕ#Ž»—0ðÅEMšÝ-ž¹áÖ—<< =ɶ/'Ñ#Ò¸€]ªîÄ)Þ äBNÎ…_¿÷¬ôÌ\kp ~p3M6èk²h'êÅX<)Å3‘~w'®¬”à¦$Éå§¢ ¡,^Ås8~i'ÞìÈçÂø”å+õåÁ iy6†.G@Ú©¹ºñ<½OoЗ b5EÍön®W}SÒÒÎZéauƒÍù”Úñ.?m¦³|sÌÖr¿±t®sGÊRÀÒp;˜.Näð­OˆÃÂÕ¥x¾B•ñ –©o‡ä×™viüïséz7C‡’èF[ÔÙdïU).˜¢ 8ïEÈY$­„—~Kªúâ;ÐûXࢗÀ(UÖúù&ÁD•HUåZFL#^„çlxð¹Ï:O7å­°þ(Á å‘ Tò^z?z“lÕ¶tÖLøµÏ½Ä“Õ+#޶¥ƒ˜\êÖ¥v'pJ†.è¼ ®zYoºwQPXYÌÊsRtJ_ÏH©nTë×mwFƒ¬ô >Å7µ&shtNó¿Ç{CÒéíܘ]ù“^ËúnÜk‹ó7Š:ºØâÙ;wüÀ媳…woê[Òmr9©f¦_5“ø'‰6~É*š#ïÚÛóy±¿q‹—A™v!;ðëKÑ=޼øºYAÙ!lå¶òªÂôèO…u ¡=5µÌŠ”@s¶ÎÍ-e½Ÿ—©½y'K™ùæ:zÑ_TÍ6¬º® sÈâ½(q|þõíoÙ>iÎw&ϯ~/W4Ç ‰›½áœeÕÆ…¸Ê™I0Yz)¥/Ñ c,+ó†‘:ÕäbMâ‡ÂK¾¶»"Åøûgç ºåLÕp!Ê[T&ô ·3Gº${9Õž‘^©m•-/ [ôªÏZÆR(8‰ "ʆšW\ùJ"·xåR¡³ÇìÎOÙ6î?E×®2~ ö6ÇÓµ N娣êíIˆñçdQ‚úÊè¥ÉáädÔˆ·§Úk³Mz©çBåó»ÑÏÊÞ†¹Œ ÜeÐ-™Õ¤¶;—Áö<ÄñâÙ;ؽ¥hÁuZIão<΢)ó¥åöy0°¥!6’äöfLso¯ÛóŦ(ÓÁ›ò¦/'õM*î¾^›eº—wUº¿½¡¡LÜ©zÙ²Ð6ævù¿" ž$¨†éÌ^d Ëì0 £ëbÊó‡',•½Dœ-•äòÇéCÎzq±g¯Ì>±´RÖ[ëÝ?yyÛ÷^_8 ‡¿cøE.lý«ý®Üi¿¡×9MqwnT? úñ€d {ÛÝ?î)…Az¹z\ßä#ç’,>ʬ© 4T°ª÷ØÓò°\>–°âCèAÃýÜe†·–ÝÖIÎCf…è ù~¤f¤g…GOfªÌùÚ65Ùã?_ý–µ¡°¯êáÔgšf8’ßpº5á˳y{X)hànßüxך{Ù)ÿ@~›fM›¨j5ɽMe¬‚ä¶-#mLÑÅ¡PpüÆvß8z‘&Ö%§·Ý}"þDƒ=è›âñò®¸íÅwå%½*µ±à‚«]¼âÓIJÚê.OÅöÃu&qdé *ÈØ‘‘ógîãÈÞ"B^ÆJõ‰­gã"ŸTŒ?µó„-a™Íf2¡EC¦ßâgÓµ8>NiÚ‡+¶•S³ÍÍQ«í*/1;Ê÷d¦ùVͺul4w^,„×å¾>֖߆¤ß% kÉv:*à˜À~‰'¾Wt̸\^žºsø`:¾“)@ö°9+øH1˜7t;5„‰RbHV¾ÀüvD09Êo1TgÿëøzhÿëR]ýæej\n^=R­c3Kc¤b]€îrÅ iÏö]$ÐåS˜oâ‹ílžm…îÖh5oÃ(ºêRªšèâæþ Õ³zX endstream endobj 123 0 obj << /Length1 1591 /Length2 7913 /Length3 0 /Length 8969 /Filter /FlateDecode >> stream xÚ¶Tl7Ž Äèn™„4Ûhîn¥›C¶#G Š€¤´()­HR"Ò%!%’ÒÍ7õyŸç}Þÿÿœï;;g»ïßÕ×õ»î3Ž;z†üòH;¨ ⇀%ŠÚb@0XH ppÁP®Ð?(€ãÔÆDHþ—\Ñj‹Â`J¶(Œš6ÔðrB„€QIˆ˜$ ƒ%þ£ˆô*ÙzÀÚ@ $ê àPDºùyÀœœQ˜(ÿ9¹ì¹ 1¾ßæ@y8Ôfo‹jÛ¢œ¡pLD{[W !ÒEùýË—”3 å& ùøøØÂ=N2Ü|@Êhõ„zxC€¿ÊêØÂ¡¿ pœaž`C¤#ÊÇÖ Ä®0{(Âcà…p€z1±†êZ@]7(â²Ö>à_­B »ûËú—#â·±­½=îf‹ðƒ!œ€Ž0W(PWEKå‹âÚ"~)Úºz"1ö¶Þ¶0W[;ŒÂïÄm*òú@[L}UçiïsCy xÂ\UúåÓde„ƒ"‡"Pž€_ù)Á< ö˜®û~õ!éƒ@ÿ9;ÂŽ¿JpðrÝGÀܽ êJi` À?˜ƒÁb` Ôõµwýrnäçý-„ü‚1ù¢Ýn@GL Ð@˜#ó@{ÚzC(/h ú¿ÿ¾  Ì´ƒ:Á€¼c`¨ãŸ;fò0_ 9C<üëó÷ÉÃ-$ÂÕïõßÙ©™i)ªóþ.øo‘‚Òˆæò Š€ˆ  P sü·=[Ø_Y€ÿ±UG8"’Åté? {ÿ5}®¿ƒøo_:H c¡@®nÛc¾ ÿÏ4ÿmòÿÇî_^þ/ÿß|T¼\]K¹~‰ÿ?R[8ÌÕï/9†¯^( ÷µ‘˜ @ü¯ª1ôϺjC`^ðÿ•ª£l1; prý»‰0O˜/ÔA†²wþC•?øý_ æ C@õž°_ ÿ ³Uö1†'†¿EPÌÒü;¤2Âéðk»ED¶¶~̈17 ‚YC¨ïoA$ cÄ”tDz~ÍcúSþˆB0ˆ»fÿAD„€ G†Ö‚éåñ !0ùþ KAÈÿ¾ƒ 7̃p…:þJòêñ¯ „1ñÜ\½<ÿq/yB½1oÐ߈0ÁlÇßwŒ'”³ô¿rÄDDù ÿq*ùC=þÿj¡½—&ÔoŠcúûŸûï× õ…Ú&Æö÷»T>þxR.ÏèÿÜ/=̱lœÆÍžðhô:#ÁKæ~÷2tÖãH>¹ëÙô¢2סÜ$Ë%z£î=ÞÓúDý†ó€ 냡åÀø Í—×òUíÌLüFr+—î=Ä©»Ñ¬Á‘íî%N¢—KyâóYÕ·ª½dª7|lYå¨&áEÉWþ˜ûÑ G8rì^Ò±â¢ø™ñy(v}IG†)²®Y4x›1Bùh³9ÁØÓQÿïoŒ=[èÙéÍè˜q)z‡î¢ÖR4h¿¡‹ògòF,¼ "…¦[°,UƒÆĤü` â²8wVœæ7› k{|ªe“)¯W.ùJƒËܰEVV/À‡YÁdÛè1抚JÖæ‹×bŠ'ïÓ©D#C4Øî0HKr&±ìz<›ôf‘™dQ= O)»"fÑ'V!Ñ~Ôî‚ßfäÉ=ãÊd½+nÍh†ˆPʵç]8$òiX•V?a¤¿É·;`j• ð_¥¥eøÊÃH°WÍñйxÛE×g­qÚ}›`÷á]¾ÄkÙôÞ«®ûÛ¬‰Ù£‚þQãˆDîÌÄ”Ñg,”- ýÌ81ÛRV¢’m¶bÌÞ~HjÄR¦ðôÉ&WãÛà-%-·;!›¶.GºË*íZaâÎPÏ“¦r}RØÙã®zan•œ„SJïÚî£!zD¶—‹hÆã[Ü`jm\vFw—lZ2ª[•Kïs#ñ·Tïº(è8>kj© Óë2ŠÇ­/øjk;³Nö–¸ËKÉ*|\(Vÿ(UÞÌÐÑÏK˜h-³È÷Ó\AýüìΩÔUV4dœñëBŽÉüÃd1ÚaõŒ:Æ‹µÀá`À8çÔ²Qú5wq5»:GÿµûÜs=u¶*~mŠÄµ¾ûI>ù¶oÊÍ|™zIi6«!ê²óvaRÚY~²|¶¿W’¬™-i7æ]?C†6Y\²ælÝø”ÓÎ NìZ»uh¯÷NÁÝÎëˆ%={Rã‰úñ]õ'º ò­EΡ_)ÈÏÄ£)Y©L×,¾H¹K` ~Zz#‘‹Ãª¨$ø ¥––»¶‰áÕ¯íK\³»[ðzzÇzz¼[L±‚`:›™ÈFZðУ%}ÊX­çÝL¡ÄþšãÚÌð –¾üŠü—»ã¼VëµcÞòUHåž+U_–o¦Í-“ê¾òØ]ûÆï³^ãužÊøN*~*iÞº–t°sÇ'gØj=‘è”jüsþ¸wÎÁ0^(ôÓÏà yø² ƒÈÅÍTÙX¥*w¨{kÊ'òW1¥LøUü9ÙEø¾Ê[Û@öÃé´šø\!äÇù²´PÓ^0šWGàì²:¤]f "‚S:ûчus¦6€£eïSEVO7Dhy¶`(„-t&­|1éR¶-|8b¦Ó-Àzw¨Äãó¨^öêÆÍëµm¶”÷Ùá7%JîÞß”¿ÅýBÏ„P,"pÚªîŨ²ýr¼Cð,*'éM¹o\ô®Ô+MW–~ÿq~Çe¯Y•óÅIUÉNrVÚ—>øÜ¤áÒH²ú1ªÍ0Í&ÞŠ”áúÅ9o¾e&»m» §ž¢KÒ¤*ž<” aÊNow^Ró­09m‡„4ëÛ“ÚŠÓ7Ç Ò6^ér¿ëG¨åžÞ—–‰BëW„é÷‘ç9rÑûæ$ªß-}ó:E$*_ÔÂÜ mðγO‚X»›“”íäÖ–™CÐdt®Q²uÄ”c?ƒuÿnBèÝ~†ÅÈŠþ䙥RRá»øªí²ù¢E$éZÜPŸOt Ómi ¼# ñö«S™ÙBOZ½©swÞ¿‘£½èµ·ÛråoãM¹¢Ý…Œ­°Š9_}纤¤3ÍÇêtF€ÇŒ?¬ÅÎËbyQœbM~&ºÄÞL5kg)¯IŽˆƒ% Þ/ŽvKO4ÖNfw¤qo$¢«=ßI¯Á-B…&7{‘»Z©:ët²ŒãÊoÌq1¥Æ{ûÞl8¥Nœ`ª¸iw¦ýô'ÏüNœ’‚vÑeÙ¥å D³|vúefy: _C:$¡|±)0fà צ¯8»ÂE…åC™Qç*Ö>%+ÁiΚZ™·PÆŠ¢¯ò\¯a¿ŸÅO?t»ÜêCmù}'`˜En‘Êœn  ¯l­Sß}0Šql?[}ð£l4±tÆEì­µmWËþ!+?šmkx‹v¥‘ÿÑ5àHr•ÉN7uÊü'7ù¶ÚÛx#ò&Ø“Ê IŸ¯ ï;eI=¬v/ÄÒ¢o«R(]ëæqy3\OîL2¦ÍIÄ~«InR. rOå(qs*„€‰-×—½4ìo§6’hf-ï¾pNŠñöµ„c'‰m­ò°zlŸ¤|h޾g!¾#â´½l.É«ª"yP©Â˪CfÞxj–§O•GÉl dÁ§x¥ËK|¦TÃ5ÎÖœÚ 8ÇÎvƒ§ƒYò›î;ˆ­Ö|k¢ï4`’¹“,P€j|§ÒÝè1ZãWg”÷žÎq²ºqp”ƒº3ìÄŸåð‰ªöœ~Јt¬^ÏŽÒ€+ÖÒ¹‘[‡é7Å#"úkûýW’Û³X.‰ë‹E³’£gÀþÒÌìH²µ I “ûC@—(lƒŒY'6Ëlc÷ê—;fµE ‹ !/Z{ÃÃÙŠ8¯ÖvüX3#ñ7*]Øx;::-ÒÇЉ}IÁ~É«%É–ƒ¤º' S>ÊÐçnøÎ÷Ï€ï.Ô-ÍÞ¬¾WW#›Vh°Ë•ì<»ÝNMÈ󣈡)ÃÏg—æ’ŒœH3‹tàÎ^î( ¸lmCèÇÝûfª€J™5³‰|JŽJàÑ3c?+l²Àhc™‘aAÝd÷•›……ÁîåayÑŒ¬™À'Wê]A]Ó,ì…2ž+x3[‡y¸·Àå¦rE§õE"gÅkdÐê±ãØ2”½~·VC+‘ƒŠï¿o†±È J·(œÊnç}le5ˆ /´:YwñÕœ» (ÈÞT#Ñ{0Y“(»^á°ï¨chfËöÈäõ­HÐÆÝD-³¾ÀÁpãý r áÂØ0í+Ž>žüAæ*𥉀3Ùª­Çbc!»7Þñ+Ié-Bz\,O#çý5š(O’³¿ãþx.Ãü“J‰!KVÏúz5ˆÌéÛ׌JŽ×Šâ´/‰:üÀŒu8C0Í4û4ûœŽÊW†ª•ÿUô8[@B,ѽàþsÎòdî³d›@µœ²¦qâÌ´ûQ`¤ýÁØwÞ!ÊïY©KÜ&¤l̵§¹ùžþÂ?M"Y+ÙìH}p´Ð™öXá*!:o±°æ]ð93¾DgëG$ êŽ˜N¿M"‚¶¶JÀ›{“J¬ÛoSîÒÍÆ×^=àz«r  Åy2/˜L±„NYœ°‚Ö… ÆßÜéKÝëóœÿHÀÛ¿ø=œ8%–V;±®$V×E£tÑpZ¶Ï¶üîpª©|®­»#JzŸ)[<úJt‰ÝNM+c1­ë\Õ_›ª­‰{´Ón*‚¢i:p­ñŸ”®-Þ¡$j|qjs²~øj÷óVW AÍù¤Qu©2{xa8pˆBËLqã‘Ý’9²þ¸x:îB6¯+hÞÚ÷9¼5©\28n{ #îõíÀÈgRÁfï?@HÞœ$[ŠÕ¤."Öž\&¯4“H“‰FmØÝf³y{©mS«>·ô\U1ŠÞ¾}N=Æà—#ù÷DRÙ…äu^Àò}çU¤ôòd(–¦¶È>æe¤í`ÅCÏÔ½æ3å'GFê¬q¡ûЂL}Q—çx^dÛ‘wª‰ PÁ˦Z|lÊ?®¼ÃzÆ.kÅeCHå¥Öɯá²Å;m_,|ª½n6ÝN¥mµº~ÚñSÛ¦i„o¢ë‰í_ð‚€hJÇ2¼èjú—DÑp7×Ín¬g¸¹óÚ¢sqÚN'È™Í3º«a°£èu—à¤ÃVmêO è9¼­qþx}a˜ùŠ.Ã_·ßÔ(EÑr6Ò:ûòã¨IoU]ðT×¶Sñ6,{ïÆüëb ¼Ç6…O·î䪌¿÷?Œ4U›#KŠWeßИø|8’˜ª[-£Éûˆ˜‰Wej_€Csz+÷ú›ñ$)ÉäúŒ±Ù-¢d/{&}²ÜóQƒXª‚øU£×Ìê×Àï2;kaG)[QÑ÷To«Žþä¼lb–¬l/Îs Þ¤1y:€PÿxhÙW”çëZ¥ƒà?½¨÷„è°Û¹¥„|uû ußîÌÖ•P¬¦²±{ZÅÙ1}Ô6î]ç _aONÞgšîÐOFœâ ]nɯ½žÉ… ¬GŸ¥qå/oJàpŽ)Ú™ð$ ®"wÙ¶—B(g<‡bVÃç}¹Ço“»QÕØŽÞ±ØjatnºQwЗjèA…óIL@àe6¥ÝtÓ[±Ò:÷ dޤá7B?¾N™/®‘noó9Œölÿd0ÏŸÂái,Ÿùî(ÕÃ-ì]èPÄ?Óܪ‚=‘º¹k¾µÛd3˜õn9‰¾†NÙd¤ bM߀OØÏlôÑ©=tšOû9% ê™W"FÚ¡±ØïzZñXÇž®Už9OY|§Ùa§…ß5sÖy„w¯ª†í½¼ª¨‚l K{ˆâju‡ênÎÅo¤uñæ@*É„|ãVµ‚Öm£`Ò= Ùg•*›½Ðúä27à¤%Éí‰(>Ûbû©B?¼ñç)£or']|·ÈÏ'úDV{Qó¹ð¾ÉMמU¯ûEö(ª¨6~P{‚ˆ'!“_J…ªýøÊ#òcІ>üRD~‹)ÎŸŽ·œwÞV™š¨3Ò‰3w´#«(¿kWMMàk öŠ.ä‡ Kèk­æÜrµÕS±QеŒÀ ̤^0;N¨ä~'îZ`þ”Äg½¶‡«”µÁün©W®dÎ+^Ûü}QÒiEլРO§Qƣǻ/ûœ†O•Å%Êþ“Rv•ý¥¶„û~þOy)*1ÿq®ý^LT„ã×¶Ã¥ëDß +ŠÞÐî¾%)cvé³NŒ7Ýh›¨s—ójO©á |¶è€ƒÑ­ÏFñ¹O]Cö?O~´ RÈ»´òµOB y‹ÐivûÉà¶¢e¶áqê”%—‚E 2 ç:‚ûC.ùj7z>Ç%©k…ê]Ää8s¯ëô÷MÑ,–hÊ‚«QÖ‹Ä<6º…ø’" #µ73_,&œ,›é4Üï8ŽÝ¸Ã6K¬ÿµ‘T±<%S½P´‚d<&dÞŒZ`ׄP":|%^ÖGlJ¼žÇÛCÛêÅWÛÝ¢Õ¤9’ÇpéøÀq²ŽnEpñx~Q²ûýtNØ?ÈÒVUr×Hž…°0Èk¬RsHM ¹QZ öl%W»”48hë¶5³,aE-NÁ¡ÅŒŸXÛg ¤sá7J$£ì÷»ìž<•%ZN®˜2ëãʵ„a[f¾§×tÎ}3Þå6ùé=Õœh èºÀÙ›àmI¼‡Ð|9+Q«õ¨•2ºŒ‡ªÔ¦ž?BÂ[Óº—š±CWæÒ>Ø;¥¶·oŒ²ˆ>Þþ2¸§Ú¢æèJ¿¹Ü´!Ÿ¾çxà(c+¢¤HÆ^,Z·àêßt™\Ã#¼Êá¡LcZdמc,-¸‚/8°ãU%±S€£oBWÆ\Ålm§/Ê"ˆ¹·}„",ÖÓ-L2å;›3‚…3lz-ßm¥$z‡/†M Bš¹ã3/Ÿd94ŠÞS©¨¸šÃ‚Œkˆ8d¬ÐA_ª¶UDž1„¹‡–¥Ô…°Ìcy‡1ζÌfêt ¬ÈY4rà|Á ‡*ZoÊ´Q²›ŠÛ+ìÕr:¢‰ò³Yú·+Ít¾xTÅ!²  ã!3x þÄ+ëé´Öƒ/£¿½Xý´ÊO:Œ¯œwøÐee`cŽxÈúœñ›H¡ËH0:è͢ݳ¸Cå²'ûl­*)pÓ©âÕ %··©FLF¢f?ÏÕìÉ.ÚQ.%{þBY/'-¨¶xÂŽEV®Ø¤b·³ïª­Ã?F€¥¾g!gW}êV¹x­£7Q)ÿDÿ6Çdf¾î£a£ÏoÒªO™Òò¶¸if»*ánMôBáE]¦O.ms=‰¾g}ºYÍc¨oªU¯ gmªf|Sâ³¾“ã Ðf·‰)ˆ‘¼(vÓÜ·w 'tÛÏmà #¬•Éð§÷í¦ïXöìq³úÜ$—Îæå3(%¼hGÆw ÎXâööÓtƒãA¶rH„œ£NöœI޳k{u]ÑÂ…eòqOzaúhCþ¶ûT]d´Ö¾/°ç®mzUØHf—›ãÑýXqR÷gŠîç{BƒyX‘šmCS\mÊCÎ*>ÀƒpÊ%OÃÀí·\gѱIó}B¢üO)]KGdiíN„YÆ`Þh¿7*²_×§.`¨n¡›­Ø¡…"“ª–¶ÖØö¾Nd'Ÿ» ˜/m߯`s b#•™rIâXŽÎаŸMG²õl·Ú²‹žØÓµäyò§ m^sÍÒ¯j¶½Î~Žs™W±“`޾kÞ™Ê|ÉM¬QQ“6FêOBj*V§ÎG²çb+{ÈWHÀ Ôíw4š“þ4ø¤Up WðüÏæ^ôíK‚z` vå0‹IK7–Ì'’Ï­>c“æxg©íݺ€s /­~šSº_Òov-j‘b_|ÂÃÆjƒS[ûúÕóQ*„{vl+%ËÝÙ5 r1êšÉît~³}s•¹ñª ÉUM¦{ØÚ9®f ÝZæ 8£ ]] çÏu—Ù¾I? .1ÓS~õ¥ÊOÞ®¾Š¯%ÈV Æž³£NúqÁÞôEì!˜óÀ’Œñð·ˆu~ÝXDzfCEc'"ÚßtvŸÔ W¦²jU‚…a“Ùݳ‡ ‚Å®ÒU^D3^dÓX±‹wWÀ 3Å„¿©­,éPãšMDZÄ7nj(J¥LšJ7ÞÖÄÿ>4èÔ%]–ßÕ» 6‘n·ÛÆzF²WGg Åý©4¨œ“áŒÛi¾ Up!~’Qõ;0dŒ.S Sìb#%Ž^ñ¤À?|qS=ïÉjÊYìyò£úø|ꘞ×B]‡Å¿ô ²%³Ó-ä¿…›ûþ0éV˜ï­¤ŒÏ'~gy(?ZZô´ššÔ­óI]™Ù}™€}³> y®šï£¢±VâÍ’F›5³Bzè+I;YoÛT¹m>Ššß[ ±œU«(]“r"ùŒgÇ4åCÊûIƒ_ÞrzA¹;Gd’.ëEðÂû w©Ú®ò:­xSô¡ó¡¯ƒ‡Õóðxê>œÊ÷ö5ˆ0)·R9yQ|Ùh±BÄ늦M]f\au?)RSbŸ…P—›k$›IðÂѤ.àᇕO¬®jZÓQbŠQQOT5™w2¦ïà×ÁYà¤BŒorPºU,—A;Ø!ªpõÄ–¹žH)¿¯m« Êá§yÏØ ÒðÔ¡5Oª÷Ðáw/ŽVüq'_{õè3T-Ð7Â`k'ZQY»4YÛõÕ…} qg¯aæŠl.;·)}}†>j¢º‘Ðy9÷ǧûgbŠ¥´¨HG¹€Nسçž:ÑðÖÇU³LĸÏZ¿û¹Ž¯lyñDÜX>¿Ö͵.IG>€þH<ÕÕ]ˆúî×_iìPXwU=Rt1¢¡Tq«Á·Ð„v梱f%ã|Ù™¥»<Ù'Ë—©EÇVÇbqÎSXÍYöEAubç‘8N™fì_,«ÝhZo|íàî\Æ–TÚ“ÿ–?˜2»JUÙÑÀ°Y¬å׌çÚùh#w«:l `tØyº¸eþD…û³­kß¹î°+~’âÑü.ÖɧzICÊC 4¯ÇŽïdýP˸bÞ*F¡q?9àþ£ÛÌÅ.u)Ž—¬y§¾Å즊Ëe•¦oËÄß¡:Ÿ ñ·”3>È+½÷T‚Ë/sÔÕó èý¨ù£”ކÝåJm*¿ù÷îT´sXÉ»¾G¯¤ñ9·Äxëék’_BÀ±ìxT"Ó&Ý´Ù‚VŸñ(æn]5d@³‚jQ©Žõ\³ýœoŸˆ‘4(ìå±Ç<î’r`×RYDä=6ŽQ.¿^|®²¬V#$¦œç^Ç·+®‹Ñž¤ÿ¢ wªUk·¯ºBqq¤@>þºb\«t2M¸Ê's®ÛñÔG×y/W*™¼¤bxñ)ÁpCUkñ(ìÂ5ÏýJŽ:}uá5¬yeÛÖñ)Y¢w[…K?\n¡¬*ä¼3wÔ/ÜG)—×ÙŒŽÐîI¼>¬?Yh®UM’ßyB§ôäž›©ù Š3ó8Rw òŽ\QÀðMÔ­êC~e;íYE{æ\ü…¢q޼o4¸3¯§q̼M[©}åoàÙ ü° ÝDï‘<[*ý¸ùñG2]ÄÂuªò¡®•›È“O„ùºiÏ–ÿŒõ/Ÿ ï$ëÈ\䕳PrJ•±±÷ •L€‡ÄÓðµ-ýѧ{·V{Õ?Ž¢7Fz_±™]-Rã S@9ñSÓßßÀY,ûÚ÷"u—3µÊ‡Ã[âE±¶+ j§ÇLæo¦ßF(©æ»8šïJþyÈ R¹©×óÁ!N•·“àæ·>íÏh£”–ù‘2ÝŽÒ ˜Åué3RÉ”Œ×E.E¦\£ô%|IW!~ÉozÌǦöýWB( æ©xX'_î€#$V¾•Vòô½‚ÇOÏ×Zëæ’vM*ÊQÕBS>Újµ6Hàôï4!‡Vn Ð Íi1\“(²"À[Ö0ÛO$™ìæó¢<(”’Ý&’”ß^ˆwÚ±lº—Æ„#r"·…C«ÀÑ3±²êB©÷ÑF[n endstream endobj 125 0 obj << /Length1 1563 /Length2 7312 /Length3 0 /Length 8369 /Filter /FlateDecode >> stream xÚxTÓ}Û?%’Ò0îî¤$Ç6`06`£A:¥‘”néVRiDR éVßéíý<Ïýüÿç¼ïÙ9Ûïû¹úº>×w;ccÖ3äS#ì j8ŠOˆ_P  ¬mh.$á&`c3‚¢`¿q6ˆ;Š€Ký‡†²;ˆBc*@ZQ<ò€„DBbRBâR‚‚aAAÉ¿îR ' ÐæI1A€@\\ðO?z@èŸ<þÃVnHþ•.ºO§ìù‡œ„ ðO_:4s!ÎÝRPT„~ú?Óý·Éÿ忼ü¯DÿïŒÔ<`°ßrοþ9Ð óù£f® ½Úô.Àÿ[Õò×êjCÀP—ÿ–j €èmP„; Í'ô€_ðÁ_8©õ†€õ (ã_¬ù 7þµo0(¢‡@BÝ0h+AÁÿ’¡— 䌾EhjþAÐ;ôϸªpükÙ„EÅ@ww zÖè“(ÀO½•`ˆ÷o2øáÚ€®1`p'ø5XaQ€ÐÕÕá qó@-ü‹ˆ qww„×_cüŒF‘èA‘Îè±9þ عAÄõ°ÈøŸn„ÄèxPO Gæoü$@ G/-̓¿AA€€ îü·µ:˜;ü›5¿Àtäá~SÝ®¿Ï¿ï"Ä"˜ŸA€¤Ãœ^…u\Ô*Òyñ}Å]^éŠN4ïE±Ï¾ðsÔÂËzøÞMÉ\M=œ®7W19ãOÇ}p1æmù&;x)M=…¡Ú¿¦tÄ—ÿîò䄌 uO^#;LÒg ±µÀ±àH1¹ ïÙ|¹Qô½ ¹ùXrà(9#eN£CÅ)ævíb=5gf]A ™[’Æßu·Èð0Ò0ÿŽõ®ÔKsé³fŸ9´¸ø6{ ?]ä¸@³·F¬:‚œ†Â÷sîpò eRö£f$»’è™ryj" M±Kû¶­øÒõTÁ@{Ò ˆG£ƒŽrðÝ'#MõÑÙÜž¥cz›õçF—DÔ-ÉÑŽ¼µé¬Jl5`Œ³¡ŒÃX^/Î=Fn}×ÇŸÚSˆÒ²ss-¬…¦X¼'¡"ÖÔ¶qYIBÂV©²0‰ÁÏ…Jbz0F×a{Ó…™T9-¹ž¶³ÓŠÇð}^þo…ýÐJ3¦øéVËÛŽ¡žÈ#ëåûàD³Î¬Ý¾¤f ѳd&ܪb¨:ÍYD· WBnÂT A^.Ž^{×CéÇ ’s, &"$ùFd³FZ›:øæRáŠAS¤ÄäÎå /ªÄF^Ȇ´È¦J >ù8q„©¢¿—@Z·vG¿çò–u¢û‘€ðmkͼ®Ç޶¥:P¡M»‰7[JæïƒÄg–ò”~Ú—=±Ì³»Žÿ¶yÚx˜g¦Xõý¬û}àšMáCçãxúŒ×{½©›ÞêWg8GävC¥YŠa•M ¢mÊ‹”ÑÆ@­ŽÓ–Ûî=#öM§—„BçÒÖƒ]­·u]¯+Ü”TwI8æÂ%EÖªµƒØ%ýp£LUˆ¾IÜ%N4†ÏÀù1í›Öaòš ÷ v-XŸ¶ÄÕ_=t=:ë¥_$o«£x4è :Ç.Q“¸öÔùôYÀLWì­"¢»îàÉ©Jˆv+n”ùƒåÒ“ˆ²ó„é‘3=Õ#­ïÂk6­wª[Ëê©~BTÞïi(ÞíptwxÐø·#ˆ.ήLu˜ ²TŸ—ìg¶&La^³?[Ë€1©ý¼g¨E†eà(ô’Q-×îkIõxO$ŒHù PRü±‡óv½§ý4"”Ç~œ:[{wŸ©>à&Oâ^Šb9¨¶4¨Ú°ªp‰X'ý- Ó¬Ð}÷>žYãNì«©W×›Ôß È~Ø ¦L¥3»G¾f z(pÞ¯@q”’OÝ1~‘íç¿öí›~Pä‹Z ;µëDÂ§Š¯è=*YÝT±¬§zUºžyÁdiâ‘rÛE¨ ¢>ý£g[î^²|Oý3&égÙu²ÃŸäxÃÖJ+»,Y*/›R³¨& öoy(§Îãdë«8ÐO)ØðæÞÎ&ét¾{/Î橨q¡gUQŸé5ŸE^Öx§îëÌ : õ¾NdŒy¼g8d¬§Qoï§9V>Ф '<5¯éÈߨó|“0n‘ßz=ÇØ¢Å¦›¯°›©‘rWfI#þQáðÇ@ϤiÞÖGãRmùÓú]ù•Wî™0qOâY*ÙzBÈ€µ‡$) E:É¢ÖG"©ÑF_ê%ìÛ"´>ú%‘¡­º\a DU‚âSïÙˆÃñÃ]%ø’ŸœØoûENX“©8~:•Y/ðËÌ\UJÞ™ ¸z=0Ÿ‹¶çP>ñYZ­µ|9õRÁ Ä(‘R§wã¥ÙÀÔŒºyà¬+Kµÿ£RaÆ\ö Æ»¨‡P}ºDµáŒõ!“›Xü¶¶Å3îÞùUóØÜÖ”%¢=Äz–µ™=öËɱ™,5a½ÙÊöF quÕš+‹ÙèK_èk¥ê`~¢~å^p§!K¾tÂVê‡5†a4¢èq¦˜’,ÙÇOøÇL£µÛÕ™ uã,á“çåäV¸£|~Q“ïò¦ÒxžÒgA‰1¿—ƒ€c®ðwצ>OûU锇`:²!/+¶r­³+:E÷BÖ¿T™,¬ †v˳¬N·ä§y ±öíPù°” GR±¤ŸºQž=6¥¸Û#õ’‰†kl½}f}×sü7‰tç­îbço¤‹ë§mu¬{Î1J:úÅßkTOöq•¦Uy7»Hq¢ÙÊž:2³ªZ|nçûPYž…-IJXìżU—6*7\l ·ÅºÑÜ*õ³ó×»ÎxÕûs[Å`ŽªÞ/Ýt|­M„o…1èúl_ã"ç»ébç>Qº ‡×<¾¡í+Ð"–}:>iGPÌcUÅ<×R/þЦùéô¤)—+ãž[.ÏìG¹Ojÿh{qÞsLrí‘Øï¶| õx‚wMp¿Óqœf×Mœ•£ ËÞ‘€åëÌ(qÈ9CÍCÃûÎuLÍ_ï«ÍÉl)Ô§m;×ìÅ[6Øç\˜·žc#ÄR¼ù¾çÖŽ;F² ów EL½Ý+@£ÿ¥²:,ß'‡Ü?%aÁ“éî!ϓĢ<ƾgª ø¯æ±“µvgªÏîí¢æÂ±oÔ!YózÊ Ûž:›,ÅKöˆðòr­…ò©_Ç>ãñ߬å\o5™þºó°¬ &¢iOgJá»äžg³/{ýÅ£âÁp„™6 „³›º7µ.âÆWàS}Ó¼ï{­ÞÇaþ­Ñ*˜ŒøH.WU÷]›bh^µœ(®DVÝŽª»B3×¢¸þ¬õM' ÖU7¦þ=ßÃ(Ø9¦]À®ÍÝð)O(±/éÂðr^ˆ¤f¼Pâ¿]–e‰›è= ad˜ûÜPÙk"í¾{7Ú÷dSb ß¿»XüÓÉÇ(+.¸·ÑÄep#}…Æ­tÄAyˆ&é$épîu[¦¤ï­ö/FQÊK}¨'mIý·J Üûé’±îãÓOóN5ÆûšgäÞNùmüø¼¸£oÒãƒ#N;Ž;9d&Ì;—q!|{BıyâÁ±Üª¢÷ÓÁ‘_‹ñi~VÊr¬?°Õð}˜'¢¸ mS·œb>ðé\ïV#Ž%ú5½ôã\³¹…¬É‰Cøgb¢rÆzvëµL¢Ÿœ¾ýysáBDŽY±Qìñ³”Ø&¶—Û¼Ôo†ÒÒ®»¾>ëgÂÃC&c‰úð›…&`Ó¿}Éõuƒ¾À(£ä ,¤™Wà\Y9ã´XYp›.èKUñð%à “[tsÂ.°ÜT›Í7lŠúÑ«Ö9³"Ú‚”†`_W!?ÎÔýè~‹”ûE ¡*÷U?„$»ºÖ¨qW–}«[Êða=’T-h»—è$KðÔJP¹•ãçu«Æ†DTä¼XíÀaª»þAŽRæÖúó=Ųʻ+n¯Æ†I˜–_/M>hÄ‹aŒ,Jœ8z©gOý¿ê„wư?Oìt­ãý ÷¢R‹¤Å7ž¶Ÿ ;ë®ã¨N»½Ï²þÌ£ +ÞçÈo»3ò¬¹ŒêÓx—Úhæ3Pm]VRˆ,uõ{f*L&îáÎ ~\M/ܾh‰6N…ùù§Y¾D –N…^v —ôÜÅB93æ·.©¯C c°{Ħ?YÞ›(«o]äH|p¦šNº%ãs‘­ãA|†·S\ÖÙÏ_2pˆ…Òi(î‹‚ ¿"mqVÔ°Šä¢Ò¾ l2,Øøiž6o¤ ‰ÃÅÍL˜f/ã¶ŽgLâ¸)`¬Rß°7¿ó—Yë/J?ïbœ¤Ý¯½ûsg¾‚爸:¨I&ÿ‰‡ËR&Óx;XÒ•Ù¦ «T¿cáÛ:G‰Îó‡ ‡+·2䈱úËF_;Y5Ü…Ÿˆ˜É=Ê÷•ŸWÙ’Õ¹Çì´ƒ1Äù¹QÙ™sʱÌKpo=íz7ê\æ#rX¹Àø:‰V_ë!JPñZm½°* "ì¤K¤Ü¿ðSM¦*î}êóufuvfµz°[C‰s²oÉ¿ª!mWÆ1MS8>¹É9Kwe‚é×¼HÑßȌƱ[)£p=Ál÷9×jlÙü*èHK™;ô³Ù‘ËÞ­§ö›J•è×â:h`m>™ECÌKð‚U­ìCšºÊü± ­¼ë1žÏdz+…Þ›šl{HÏà€R$îÙüYþCÍ9=Çú': -8C6;QAÊ·Œîù.½·ÇßÄ—™J{{Œiûý­¬*4óˆ£ãûÊ"«m€>.IÞB eYÙªŽ°³}ðáñH\$'t§áØse§û4Pó£©_¶öÔ’ˆülB\¹ö±Õ¥”)4™'Sb8iÆ-³Ué[aJLÉøÑ¥fä üz+ÒòyÌFEQþ;ÍÈ{{ØgÆVë/C“e'Íb~Üùž,Úð:&È=H%ç#[Á½l§ŒÝõÄš¨ÕO§è^—ãhºè/I½9Á´<=ŸË{G¯Œµš¯—Â.ŽB‘`y<ô•Ötx°p2Ç(ÝìÁŲ]/}õÉ05­Ç³søèæ›ò“zùîG¡íÉj,bÆüµ‚r›¸X§<Ÿ4õ§ÂiX†¦*'ewƒ¿"·—öC½¬Vf+˜G¼nÄtùžæ¡v‡EÉŽ LV‡ËëyªÈŠ›«ª_ß0ˆÇÔ#C²^Δøl~êKÁ3Ê‹U½yèî°jŒÛG*:š™Ëî_›ÐØsûIêâÊõ9‰Üô¢ü\mÏ/ËœNT¨ÒеeÑ×ñø×ýçVcVýúX#¦ÔáºsI´Q.Äü±…ñÕGø]T§û·p„löuU“Ï¿–`"9 ·ÔÌÍpJÍAêäÏÂ#ÖÈg>`ÔŒrˆÄ)ïß*ê)ß$!WˆÍ6ªz˜æž±° húÛêk|.x»vì¡‘MpÂô½OB’ÿûLiû¦­§ˆ'Pµ›GžðhI;LòÔ¬UOnîpН¡¶)%߃z6—ˆkh¬; vVv±(þ\©+.ìlzå\\PÞ‰5lVÃúꀡä^6 eŒqé«YZ°ÓGä,±i¤aæ}:Ú¯i“(³T0¥$ªxÝ‘Î:îíLp¬„_¿Õq¬KkŽ@$ͯ¤¹í³ñ”Å`ZOš§æX¸æig?˜¼®ä§Û™Ì™ª}z9âjòêñ>'=ÉÕãj–çoR”brbÇúçõâO¥•¬õtËSD.»¹•îˆÔ‡zÀÛ±Y›—5ˆw~æÙèâB~Ø~ `Ê`}½lÀ'I©/ÐWüE»”+?÷fðÝÎûÚFLFÒ=Çul«˜»£nüïÛí;•6;Â2“£i<8¤{(úžŠZ‹ñìº(šGù?ÊuŠØ´“4B–¶‰P%sž¸¡Ó–´­vk“½ÇÚ&j”C‚¢?Çxœ5¾›JÊÙ§”7H'.úšNEP‘M•?Ûò*"JzýYJ6NgòßYPNiÅ8æaśߥ¬çšCˆŠ;S.ÿH¹Ïˆ§žl‰Á[å=æЬAzï«çʨi’­­GÎÝÝw,½ÓúXl‚:Ã…wiÒÑÏôñÝbì±GÔ͵çC²e럼t¾äÔaRѬº¢Ëzëa^½6Ѫ‚1ÌšK"ÑÃ,Ö_&/Ü~H ÖÙ«pJ»²Èþ²Íò?w~ˆÜŸVÞ ^‹Á×½üºk{wèv©kr†_Ër™†•ršæwel¯Ú ¼ÊOC†X_ê_3N*kœ$µÜóÎðÂÿÜU®ֲôü;Ñ–°uÕ¹Ñÿ&i[’~BÏk¶ ¦…#‹}Ð ®Õa+†åaº1­SÜr%n˜OÌÊÓ{ZʬŸtÏã± Å+#0KJE¡ÏæÝ«9X÷g1¯ã51³WʤÝ*šŒºx4o"íŸs:(xYÙ—˜d÷Xì>ÙR»Üf´&Qñ¬Â\Õ}îù¾†¾IÓ“À÷ê‹QËÒÕ°àü"…Ýý³ç˜Ï}}Æ“§Yq BU§EÓÁŠ{¶œýá ~‰²·|L庢Öå®’j6}6ú¶¯\Ýþý—B¯ºô È/íHÆGÉN¼ÆÌîÐvtK¡<òÃaêm>p>ÎÇNõKŒžQ¬ –ŒÀsƒ!Jf¹"ׂ qT½…ÖÓ/ŸQsMgòù5ë&´ÖêÎ\ “”õ4x¿ÝڽͥßûÔKÉa"iµã»á÷öÜç,³°çvGg¾Ò­u>Ó–ª³·Þ ïD»º—9k6+à*ô@Ø_¿IÍ€õE£ Ï7úØ‚÷¹¶\ /–æ_W°P 7zd¨B’E/xúæk‘¥9hoSÔµ–~Ëø¼i¥ÿŠöô¨Öv7Ï©ÿ HCë‹çIƒAº´ú„Ÿ\Ó×R‡"?&lófíüžêïÄDø=™¬6‚œ‹‚/øhÐäs‘Ô{ZãyáɹwBQ³oSXHºõMÛ^„ê~ÿ6™ô€[×÷ºÔrâzViÎ~³üinnœ9?2®/ ïÞ¢y|¹<ÏI­äö»2bbvš³¼^7×Ò?æA†ä|aM.¶ŠspïéÔƒ%ŠgÄÑìV1þí0wÊ•ÎOײªž..€ƒñkç??pÁ*oTºkÕ=Vðæªuõ+OȰjI²•7Ûî“ÚÅÄ6ý>œo*ýÙïXjÁËqTçúÈîü”¤>¿©ô3ez›H$+îÙzoZE†+-'ÿåš´wñ±HI^‘Jû`¶2÷ç!M+-¢ˆ%Åv£f;M+G55Óœ‘Ó…΃e i',ïÏ›KÇ—,ç)KA.7]›Ò¹}ÍÎØN"#¯Zᬕ9s×,íaŠ¡ \[õ\çÉÙa/»[€‚’OAòf¹ó®!ÁE"³Y6ŠwLU}™ºšùë‚ÊC¥Á íc ’'=7\ž2`ÏŠ ü\é¡K‘½p}ÙH§}˜’±D:(‡R„Ÿ÷²±ï`ˆ]3¢ à Ô”ñm1;î{*œäp¯´(¼DÁ ©Oi#¤\tè™·>]6 ¼•ÓòYë˜ÕÒæLÕê3‘2Ù:»Øa}üó??)Ñæ>$%È©Ùúûí|-µ÷Žp䑱†Ì>üMï=œ©Å{ê bsýŒ:ŽÕcª>ý%úÅÏã¯x“2^LJ&Á «'‡dÛCòÚ˜=ø$„Bîu“›É½Téø$)þMaŠ*T…œêT)¹§‡IFÒ2ZÌ‹K P³ ËÃtÕC>ók†ÑÇé îSv”zîjžð=Pê*·öœ Œ<Ò3L*ê¡H‹ö÷KxQÓ9*€å²gÒ2bD“ƒ»Ìbú¸M°uû•eõ”R7[2|rQ¨›í"]ŸXÈ÷Ä7JI/eƒÞmê…ÜÛØwiÈDKÒÏzÆÎ瘦iɳZÊàŽÏa¾z&?Z ¨2°x×÷“DIÆñ™æRÿnÓL³÷ýºôÎØÄU•ܽxÌàdV½p$æˆ[æSÅ)F9ÛŸCÉ/”ø3éDeLÞáÖR£í2kö"ãH¢åm—í ½§žÌKUGKg…_ú§õÒo=Ámá æ2ýì•6¬^é SºÄ¨Ñ¹_¯^S2¢ˆ¹W„Ð8ݵ9wìCŠGè"p:+ýƒÆ6œ˜Ú,Àù„¦öUž­\&ŠÂ§CcŠžfÅ›Œ"u^éË`·¯ß‹p)ß¼uÜþ€UÜ&¹û€ Õš(çr­‘¸}ÆçL½2Áh ÝyIeK/k.Os¨dYH(Úð¸¸Kqkü½¬ÆdñIuà9Õ=q/u¾â¦™'4O|‰Í« fØDï’ÅTÉí.¥”¬è²§œÎñŒ^öy52ú<øvÙ‡«@ýË^ÞyqšÖOž‰=˜O5ýµÉ‹†cÊzÓ•ËZÆö–OØ{ÍkZùé>²¿Q§06ÅÁƒ_AØ'îƒeyðHd¾¬{çp¹1ïzòC}q…A½†¼Ï»Òã5¿ÏÈ ¶2*Юi¼/Pn/18Ç—ÓgÞ€Ú’Ø“ èN«áɸù“ä©ä¨¼ðàs}ÏI²ÖôÑgÍÚš º‡µŸ4¦F*íB&Ü Â›gÍZgð$· ¯É+“OL3®g–.o¶µK-…èiΉ@J§Õ/tfðrvYÒrZo­È›ç[æ=j‹Æ¨6$»%z%Õ#žy{Êš¡ pÛUQ<þ’O¦×y®cˆ¼¯ÐæjQxSùCÄϘ+¦‹È¼õ5¾±côÑKUìßʼn†Ÿ*„÷µ„:™JG8:´Óqî²uç8|/Pwù¤SÊäØ¿@ž HêhëÅ µ°¿Qç 7w/mÜGõPzŽqÊno4‡‡¾ rÇNî,º ¦8- Ájú6ì ‰â“Ù.ô#y¶y=ÖSìD-â÷)o[|õ†™$13¿@¤ËŸv$áÉÂÉf{ÈÛjÔË|€}ºý!>ò¥)Ï÷wÿòm8â endstream endobj 127 0 obj << /Length1 1409 /Length2 6219 /Length3 0 /Length 7188 /Filter /FlateDecode >> stream xÚtT”ßÞ5Ý(Ýà €„0 ÝH‡4H ÃCÌÀ0tJ·€‚ ¥’* %ˆtw#Hww‰ ñŽqï}ÿ÷ûÖú¾5k=óœý‹óÛçìý°³êèóÊÙ ¬¡Ê8ŠÄÇ/PÐÔ7ðó òñó ±³ÀPNп0»!éCÀ%þW‚ F¡1E0 §‰€ÔÝ AHD$*ÁÏàçÿW")P{Àlš|uêFÄ®€pñFÂììQèmþõ à„p@ââ¢~—䜡H h‚QöPgôް@AQÞÿhÁ)eB¹Hžžž|`g7>ÒN†ëÀ†²èAÝ H¨ àa€Øú‡;ÀÀæö×GØ¢<ÁH( 8Á P¸ºÂnEЛôÕ4Ú.PøŸd? Ïâý»Ýßê_`ðßÅ`áì†{Ãàv[˜ ­¬Á‡òB=€á6¿ÁNnt=Ø s[£~O(ËéÀh‚é¹A0”ŸÌéEà¯6èSV‚Û( œ¡p”ѯùaH(}ìÞÀ?7ëGxÂ}ÿ.lapÛ_$lÜ]€á0Ww¨šâß4DôÌŠ󋋈‰ ®¨Äø«½· ôwô F3ð÷uA¸lÑ$ þ0[(úÈ× ì îPßÿøçŠØÀ (€5Ô'úOw4 µý³F_>æ0ãGkàÿõû÷Û´¼lp'ïÿ¤ÿ¾_ œš¾¦ºÏÆÿŽÉË#¼¾¼ a¯¸0@?DÅþÿl£†ýƒÿ?µjp[@üÏ´ècú×ÄÀù×\€öÒB U pþGäæüÂüôôÿ-õß%ÿ7…ÿêòÿù¤ìîäô;Ìù;þ„ÁÎ0'ï¿ hѺ£ÐÐD mÿïT#èÓjBm`îÎÿUCÑFƒÛ¡ÅÌ âãúƒÃÜ”a^P bÿG2ðÇ¿¬æƒCun°_ßt?ÿÅÐþ‚8¢¿nh]þAÑöùç¾JpÂæ—Ï„E`$ìMÄ–“€°0À„6¤ Ôë·’@>8…. 9úlH¢_× €6`;;4mtà7Æ:ÃàînÿÐ~º aè3ú…ücˆ;‰öáo™ ‡û×ú·é¡P/(„hr‘ u(­ûQ*ÇèÉ»Ú7¿Ø•`Ò)Œâ˜xík¯ÿJeÄUÞʦ˜®÷¥Î·wáÃã~ŒÜ{?¼Ì›3žÎ¥¨f£0”Ú—åxßtŸ7ÛAYl vƒ¢/£–É÷u™o[™á˜Ýn4~&Ú"¸^²–{Õà¶n*¾ pä'cMaDÅÉe5lcذ²-¢zLÌÉâ)f©îj¯°b`ñgòu±ôçÞËfñi=³³]í/Þ>jý(RNIOå£ÎšÕ›ÔIO˜¡^í†Á!/ü]á]rÂ]ú<çpŽ9lçò1[|=¿3 €É¡W‰™„Ô¾­>XY[7Ü'ÀÑ%Åzéã÷š]ºÿVÒ YŒî…sB6½ zÖ£T*Wç'’=‚¶Á&l™Ñút½»-œ ÙsÆ1®ª·´´/¢Ö›Ó\j¥aOîè–+›NéOk”“øéŠÌBcs¿Ú¯™+Ð?£  S¸ëth¼6ñJåp{ó鸼€ü>Ó¶Q:îÇûJëf‹š–ªšG‘½­"ïx ”‹ÖS.Yó¦ÖUJC䙸û½ˆ¡•ÊÍž×$±*¥ú ü3æ×À™ã¡#eF†· ~¸¤#ä‹L¤(ßÚ®¼uƒ^,V™ïÜêû %Ìrb}ª6¾JqZœ@ŠžY`¾çç#ÆH•a)†{U›Y@³Ñ4¡oµ>õ>® Ã,hÔð’óªzƒ§rh|¶>z-^bZ§òþÔR}FAûœ¦gŸ\ K®ÀC6ˆq9^êO~p}«Ô=õ(ýF¶€s;Ç›‚2ñsÅüè9Íe',Ó­}9yG_áÁñ™z´£¿TÞ´—¥#/zA½n™Ñ0ïô6—jwÅSWp2cªlv‹äáø„|‡ÏXåo‹YÅ¢ÒÈ[ªïsú eøQ ±äEG®²*‹ëdJ{P¸Jz=¤Çk3ûPÜ©‚ê6òÃÎ¥E¼Ê†ë·öæ‹ÃÒ½;Øo[¿=¯ñ\ü1d $’C 笮¸:ßÓ–PwÀ›MÊŒhƒœš VM° ©ÖéxäðšqÒo€E;ç„m¡)cqÓeµ–^vëp‹B¯~s–„¢òú§ 7óm÷ÏãéÆ‚Û¿–0½©@‚¬é4¾›¶ía‘ÓžI´’óbÄðíu"ižy=êå¯5SÖ™µ=Õ—ñ0[·? ã;º‹u~ Áñ€|f›»—v“>¾/ù LÎ&xQZàG!ôÒkát¾žä¦ã=QA(ù;Îü¸Ôà‡]½¾i¸ˆ‹ý·W¦ô¶>>G²Ñz‰©&é/Ø"MΫÔÀh×£ž>²Æûá8±kýG{|Ç ÛÃÆ³/¡¤™IêTò䣞÷…>z*{Eæ¯xLã$ í2•6|™’œ¿Ôÿ~Y´Z)P êëgöm½t-ië.Íå2Ž÷<'µBUX¨mJhƒ‡ç[:>ùÒ¦È àcN;yóéè•ñ#H~éAš¶g6içæã/θ 5_¹o‰¸>¶½“$>ÀÉ"çLä¥ ”À‘’†¶¥µ˜ÜÉ:¿ª—(§Å©ØV„Ÿ*£$îáö„·‹×dr4e3ÈKt{’äÔDÅï2tà¾;ÇWÕXpXze=òÚÂo&k;¼Éþ‚µ4ºòcÞäþb.ÍDzÙ±¥[UŸ{Cáø?oÜ8u£Wð½ªmEáS *Áƒwú]¨ú‘¡ д!Y¹Ød´sæ|ßœ™¿ÔÙ²èéTmœ"·Æœh€a®[vv­  ìuiw\ìGÿ ¹ž ÚïßoGuïf_ÇE1Þ¬<í|¿=M¶ÙÖØ·Ã:n,.¢t_j“%y«Å™€ƒk/^½¬_ß“FˆUp rg·h±ÿ Ó‡…¬Šœ¾Áаð—†5[ê)«®Bâ›¶†Î𥫭×}DO›Å­ñRìãRXÅhýCþ¸Ò”.êŸ×SÓvø~]¥ÊeV‹«ŽûÉ”ÏRR3GÒk'â:"ŠïEßécÉìÞô²n· 1yúðCwá›56JÓ±>óøi K( sdËì¢(…áãJãßWx±øGGi×ív&̽µWš}Æ"ÅJ}¬ä‰ª'›òž|Ln }Î/I e‘zâ$:¦…úój±Ãr‘Ä8µªÔû\¾Þ†WÊ_ÑÍÜÚ¬O-©MbJ-|7²ñ:8uãc4>È`–†²Ø-GÜáÊ”ùÜ|oé'˜ F6ÑÉ–pL‹ÍNumºÇÍ<Î*p=+ôC?mõn¥—¾æQ¾J¯ cÎIp3OäDÝ­Ÿmøâø‘隆tòSöº>C X’¢§k»Æô;ØŸ¬U¢:ƒ Bˆ ¯Ów¶'s8±÷‹¡ãC…I<>dÃHÃÃ^Eš·R—6J‹‡ôÑ.&(ï²NÙÜÙH¯(Rf|8¿Ï€ïï_íªDs»Ÿ1¹ÈÛ:7l´À »ðqkxô½Cø‘K‡öº–©+ˆ&ƒÚùèíàǾ«Ô~æc¯¿!Û†`µ†wî”]þ×QãœsìúQj¡ÙñA¤ÊšYÌÔþòq€ÑaÏ ¦ T+YI„bŒen^šwÒ|—Ø—¿w+;ÿU ˜3ßP`ªN‹@XFñD㇠m¯û+-Ñ0‰öÎg~B×ÒzÀ¯óÆs\l˜j__.ñ#hM“2Ù•H%~öË‘Q<ÄÊ_dgåØÉþ˜–,h+–=ît±ir©©—λù€ÿò9‹™:ã¾ÉwÏám÷½V²ÊRîA·u‰³-Âæ”ê†ÞŽ 믭 p:^F3וçrù¾tµv·9G¤ßàÛ‰PÐ,¶‡q™ Ȉ ±n“®<ñ3ìqþŽk]ä 2¾°Qô¡Å%$qˆáÃÓqº5yD¸´RÝÃ;Â3ì eF¯[‡n’¼ƒGVs»’Õjp$ùç¦ ö®Ø°@üé«*¸˜,Ô'Û¦c)V* ¼ÜÏê’¶ÏSPVÌ[¸U qÂô‹Ôò!ÌÒßa‰q`á­h÷l”Y×¶º{¿=ò®Ë¹t6qåòJ·ëëÑ7˜$2­LÇïŽP¹~sÞ½ýÇñ´xÝÔtîä "©ÖÉå5‹wöúšèÀg˜¸._è?’6.¼$ff-}šZ¼„Õ8n¹¶<~y#°’7øf÷sc›ëç.ŠÈ1*…Ái* Âd¸Rr5§Ûj´œçŒÊ—ƒßš‡Ð!õî2˽)¹^{BJSd~ Ÿ­€’³rumPDnWE±™Ãk¯‚Žc{¿§ûŽ"ÙÖâŽnOÇd?”íß`P7y —ËÅ–%xÆ#ìÍ_»ˆ£*ú†Çäó6æè#áXÃû®Œ”FDÆÖ ¶" /œ&RÏt“EêX”¸¢xçHäÛÛWÒ4H%,ª»ek‚ÿÔR/ê¶P&&7Ï5³n„œîÞ?£¶ßtJ|-ãûª'j4Æ‹ÁÓÖ¿ÆÌep¾h·ÄÑ›Ê1aǪÔî^ŠÙµÜiÈ·MÆ.Š@šÑ»è«‚f¶yú† Ý>~jËm:+ޠѶ{C]BÆ"yF¦3 Âqü¦Õ Á'¢ nŽxùÔ˜¾ ráñÈ©$ËDŒŽÊlŸ#ÂÏ´ö[‡L…mZ$ÅYÏ)‡I[ÇRgYŠÔo˜Ê6‰I64옴úµ¯4·Ì*ê2é —ìXzy¤’üÛd—üò $—2´}î05UZ¼°oïXjŠIËKìüVË&’*­`'kI-öýÂ÷äÔÝþ›ûˆPâ’_P#>‹üìZÄ Þ¢¬Ùáó(»®˜YûEôMU¿(IU´Ý¶ïˆp¬KÀ3G” Õ´çX$å‘€öAÂ#ú¼ [º$cúOŸ4Oççâ%*içb‘ÇVGÌÅêLã>ÿ£Ši-y_˜ùëÁéÇ/£”»c$Â-rš×÷Z燰>écêÛ·,¦æ”'Š¢×qÆ·Á¢aŸÎo÷Åãb&t«|¹äZ£ú¢ø;ædˆÃ aºnß½³yßé ÞGUm²}ÜÒù+£þü›è#í> š}ïX™×"NÜÙ¹q!<ÜfNÇ\ùã‹h‹j„ÞÈ÷ݹ>3`@“B À,IùÑö.»#¡fUÈ‚o|•KÈ7 :¦Ð¢¯ë¡žÕ±L²çÌugé“Ú~ŸË%Wž6¤4u†/x+OïlÞ“h'ìó‚·ì=Ÿ3hV-U·XP3g¦õXt9C±T_7¥bm`‚þ=tz|wÕô[—ck¨ /4#þkµnJõ5^=9n‡Õ¬îQU»\=Ó­ã8O Ïs>]]±ùü´ KmL(‘4ºÌCe\GTHý îU"!l—Ðv§ÙS$\S›?åoH.{z¹©p§#cÅgª³qãøèàQ`ìT+¿Ç²ƒ™UM%KìåÙT;WO­„ßųwp¦§)(‚rF·xïAlPA€;‘Ÿ~Ö›(“.˜Õæ¤R¹Õ×AEÉÂH5æ½èSÎ\;ÿÍ‘É1CÞòÜ?Îm\©Ê̶¢[-I#'"ÉVê0€“Þ´´m‰¤Ó÷ ’Ê`¥R&…p Å£U“bè»mž®–}5¯ˆ‹oËÏ“¢b9µ÷çÙ°ãåÂÕ… ÖMÒßßåàc a6ñýîŠ w¨ÿ8¬0uÉÑȰt« ì‹b[­ˆ±NQ3ãH¯éiÎû™sî¦ì“ð¨yÁ †œü›=qEih‡ÄÆIR˜¶ÒJ¤%øÈ˜Ï84÷áX¨±ÆÐ¨ xH¡ht\CÌ%ßÙí|. Ëô0ºŸÍ2…õ—ÞIä°-¨Ú'†Yå/ÝÓäU0M­ÂÃõkÈëWTG½ŒvFË”’¤X®ÉëßÞl=n+ÖF2o¬òFóþØ‹"Ê‚t°?{j„­'+ª£KR·*t•öI7†Pó\$8·~’eÌ#Œ.¤ḃS¶y铽:ŒÒ3|ÿòcüð“þÚéüŠ-n&ÁÑYa ÑyÀZâéýl*¿…êd-á»”û$]zê¤OGªOé¹'Ïß,ǯI€7ÖÒ-À|Lž¢Ý0go]oŸEžôÀÄ…† u(­4’ùötöL:=Æ×a~ÉÛƒQ¦ÒHâØÄÊ-ìA¶qœE@õe²‘R+7W§Ý´ü‘㥅'öw.pvQ~¯šõâ|’z’È šxå¨ .¢ÙRK]¡ª@µ ¹÷Ý\°ƒÇ{???&~‚mUÌ ;àìs¬—Á9ÕÅ⦲ìü–Ž ~„SO4Ü|X%7äW¥Â3g ³™©·v0B*¨=~(·,ÿÙ©eØwÍÍé.åÀ!èL°<àØ3Â`™]楸IÐ ×*RÖMúJ™Nôb/å ŽÖÐ&½Y2£,¶Ã]þ†j]Z³˜Ñ+¼É¬ ÿÍ,ÑjÕààæhÞ&è‹b`r5$ñ¹Ò2Ë\¥$3A­&P+6[a@jûmü8BƒøLáù½aûWDžòÇ·Û?ؤ!¿ùý¨ôÍÄè2X~£‹˜hØmØÎ”Õ)Xw†F…fMóñö­>q*ïhì>*{s#ô ƒšêZj@k›W¥`¸í¡AãaÝ@oÑÁ©E’õp)LnzTYY9¿ëÜlÞ°€N.æ´Y²usPdåéÖ‹Mg²è1Ĭîw)Ú(¤U*·o©úô¿£ÊÝ[ èÏYÆ<µ,c×Q×%/šazþŒµÓt3꜔Ÿ¡ÝgFÎ’áBèyŒq»›Èˆ\îÞ›±õ2ó ™\ˆDk]¢þÉA‘çæõ!Îîfì[<ÊÿPŠ…H÷™?€ç]m"cË—rÐI–tøN¯s)¬ˆêˇw„þï©yÈtJ”ør‚ò+ Æ~¦]Ôk'öH…Êr¿‚õé8âÄ'ß(ä’[è‰W óNÛûuÌæ ÂíIAçÃz‘·gä†Ã›šþÔuw÷2NFžyL:Z®™«*sqî'„×/ön\$g|ÚHÔ*ìór¥wÔšÔ+ˆ™‰fõ.3š2ÖŒqiyªi02KØãÈ•ÛÆõ@'>EDx#Š]X´Kvå1G¾¥&Gþ‚Á72{"û³ë$Ä^èÚŸ:‘|k¿yžÏ’iVPÛNµ‘Ígañ§fâs+øÇ¼`1ž¡"s#{Vv½×k¤Þ·|j =!NÁ‰õå>Ú†wxQøìz4¥Ð– ¬½êòžþ€Ò.ÝxYí5: =[ÇšÌêöp}d¹”Ùt.Å»P<íøÙ7x-(G2ˆw» ;ÿíTöA¼Q6­sÛiWa_e%½Ð\››CŸœ…œ 1Ñ—Kz¦dÅìeý 6ÂÝ>© ?ÿóùFX{mPhzØ¥8¶Â'-†nwQÞÙëg¼("‚H Y\ƒœ“· Ì/7¸xaq±Ø³]=U·é¥Ean΢àã4¶pæi‚t‰UÇNB öwë: µ„ñÄB©‘À¡o>ùægÆ]૟ヌòW4.§Ô|=_ÿ’éc[ÕRz–çàYB o™r¿÷¼kbåÍ7²¡ÆÛ·YÄq-Â{ñÖç±æõ‡è *‰/æ­ÈǬªð„Çéf–±HNÞMØRû’³Kg¯lóÁ.-}™ö¥éöG//! Àté`¹›ëí©]oÉbªÃsE6gme#IŸå¹¨DA,¶¯´ªªfÉ%dãcóY² ói?A·)¸ _¿ÕYqÎbšSzfûýøÁÅ™¿eX¹c[#®Ö/±<ªa8†÷¨¿lD5u<ŽY8 ä¼K'.âCö)8¨©\ëænYÞ&ÿÔ4s9«·õ)ŒiÓ)ظ¾„žEÑr€`äónIóÛÁ~Ó6ï ,ņMùÄÜHl‘³OW{„Àxw‚'<ì\8ö¦mïÏO³Ö×¹k„¤'¡¼{©)pR ë¹ ï«±FÙ¢$5‰µWèü¿þæßñî endstream endobj 129 0 obj << /Length1 1822 /Length2 13110 /Length3 0 /Length 14255 /Filter /FlateDecode >> stream xÚ÷P\ÛÖ€‹âîAw—àîî’àÐ@hÜ!¸·àîw‡àî$hðà®—-çì}þ÷ªî-ªšõ sޱ ©ÉU5˜ÅÌíLÒv`gfv6~€„’¦;€“…‰šZälü‰Zèè²óÿËBÂhâü&“4q~3T²ä]lìœv~ö÷üll66¾ÿÚ9ò$M\Aæ%€¼è„D-agïá²´r~ËóŸG=€ï=ÓŸî1[ #ÈÌ P2q¶Ú¾e43±hØ™€Îÿ‚NÐÊÙÙžŸ•ÕÍÍÅÄÖ‰ÅÎÑR˜ž àr¶¨€Ž®@sÀ-”Ml·Æ‚D д9ý¥Ð°³pv3qÞ6 3 ØéÍÅlt¼ehÈ)Tì࿌ÿ2`ü}8vöÿ†ûÛû@ ðŸÎ&ffv¶ö&`Ø`²T¤YœÝ™&`ó? MlœìÞüM\M@6&¦o–nS˜¼uøwNfŽ {g''Í=²þæí˜¥Àæv¶¶@°³ÒõI‚foçîÁú÷åZƒíÜÀ^ÿ! ØÜâ6Ì]ìYµÀ  œäß6o"¤d–@g7//躛Y±þ‘@ÓÃø§’ýñ[>^övö‹·6€> àÛ/$/'W ÀÙÑèãõoÅÿ;;Àdæ 0Z‚ÀHÿD-þâ·ûw¹>²½;€íŸÿ>¼M˜¹ØÆãó?¯˜UGY\\Mñï–ÿ«·sx1sr˜9¸Ùìì\€÷o>ÿGÕôwÿò•[Øøþ*÷íœþS²ëß3@÷÷‚Ðþ7–²ÝÛätÿ º>7›ÙÛûÿçqÿÓåÿß”ÿåÿuÐÿoEÒ.66êéþ2øÿћ؂l<þ¶x›\ç·-P²{Ûðÿ5ÕþµºJ@s‹íÿÕÊ9›¼mƒØòm¢™Ù¹Xظþ’ƒœ¤Aî@sU³™Õ_Só—\ë}³ªvN ?Þ0o^llÿG÷¶dfÖoo§·ÑüS|Û¡ÿÍ+6³3ÿcÙ8¸y&ŽŽ&HowýFÜ/ö·­4ºÿ9ÌV°ó› à­G€…#ÒËà `ûCô½°JüC¼VɈÀ*õ_zÏ`•ù‡¸¬òÿ€Uñz‹©ô_âå°jüCo~šÿ%¾7K“è-ŸÙ‰û­3;›·cúäÓb5ÿ¾Uü¾%²ü¾e²ú¾µ ú¾e¶þ¾%³ù¾Ubû¾íë¿ÊxÛjV»ÿ"×[ïöoÓm÷¯ÊØßr;þ ßr;ý ß<œÿ…o¥¸ü ßJqý9Þr»ÿ ßr{ü‰ÿ3f.ŽŽooÈ?·÷mbþþŽ@w Ò;3 OµAíwÕbïܘMpp¡\D\!èìHºî©HÞ_ræG.‰uÏíFÞo`q”¼6Yëâ±Y®{§Fòãý¨o‡µ0ÝfòžÂz8rRtáØUèêú`Ì 6·Ä;mVr»¥Çgr8ÿ5Ÿq #HÓ\yûÍêž¶ñ˜j"*ž€——*¨C,££R¼Flv®SŽÊéBtâw‰ôÁ}jÿ(÷ÖÀr$h3õÝá!ª½ÂUÆ¡ð×ý^"ã)À,õN¯Ác,]ÀU{?©Ó˜†¥@¦ÜÎÔ…ìÅN”œºe³ìàt ´ÄF,ÅÙ¢X¶»)í–¡C—dIkÄ$ÍBONnÚ²Þòrl!iDä¾%Dééã Z–lLoÅšáéxCM§¤ÌÙÔB¦ÑtìFUK¯Eöi3ÄÑÈ@Çh“xɶ¯z DVü§E£µ€Iç­‚öïè²ÈÔäèç¤G”ÚÄÞ<“'c2| \Ü”±GÖvZÖ–!¬xÖ#ˆšÂÁïæ9v ì—}:£‘F2a} H½áY5&(®Šö&ÐÉÌ%Åy–{¡>Îm›¢^„4I¥Sz³×™ÆárHÞ+yN˜Ó ‹Ùç–mâÑPƒ× :A¨0ϧšcÐkz²Mæ™NÊk0‰V͘E\r¹Ïd®C”¡S°hE’WXÝ(OïçÓu‘y®Ú²¾:×kªÄº+PÕy­Ê¤¼4²líjq"GkûåœXµ.ŸókÛ!¶H¿mç'ó]wýú^C9®$ToÁbŠu1;T¾MäÛ†*C:‹ÒtTz¼ãŸ;G¡@–ÿkù!»,`"—ª¯\Çй¦–³ò›G O†‹‹íÕÄÁ¼®+ƒÎ§¨#U˜—àJD+Ý-¢B–~²÷ºƒ3ÜP^Ÿá•R=÷d»47Ñ“®?%‰øá÷=’l¦Á"Í+Z}«,z”sÆóÁ NÃoãÐtî1‰©6Þ¡«_Ÿ+{üø”6·§öö%,0"ÔÜ)Ì¿$,¯V¶úAÍvj¼*ùí×ch´ÃÉù2E ŽõüF·!§$C ¢Åíƒy5ˆó´W;2u—‚‘ŠŽ{Í›%Qýö$ÚxIæc9®û䱟Mãà{j¡ÅÆ+ê„çltÏø|yNi1ê#ÑXëœè²ËsV?¨rƒ,ËË>ÿŽÑ›Á"AýÇpêõð¤] ·‹Þ:ÍÌOó|9Ä êvçrƒ”{ØÎCN²k(Ó‹ƒÒ,Xm4¨†iÏ~*×¥• ¨û4‰ÆÏVºN2buÛÔ{èqã)ÓV'm‚¯ ÑÚïßcUZQæ$Q¾K…לœŒÈuFQ”€$µÌœkUWæÌ[ñQ2ó1î½HŽ+xöO•)­Ògµš;,¸×ñQBf‚ð?ùÄMõSÝgïô!£vݘ—NioT6–æë•Ÿ1‰çšH‡µ2æ·|§f™V°gלּ‘<ÄGÑBY)ÉpN5XÖžµåᡟ (áS(Âðò ˆÍTs»b=Ÿ.å1-¤´¦åC4òðpóG‹høa8Rr4]C@#bF3^üîìqÅ«©ý²~´Ô×ó¢-d€¢…†Ïûylbg3 °rqÇJëǽ'@r‰×Õ"ðii[>ð…ñn©Å.“?0:øX•~XünƒÓýacq‘Ïü =á½ø®@c¿ QHB¯fåxáhà¤ýj+=d5L™5×GAøh2ŒY ïY×,›Èã’¹ƒëW3¥Ñ´b÷…UÏžÖ’žg¤ì€_¿:À =[/ÑQ¦ƒ<©ÅÀW3ïøÝ Ò,s¿Þ¤ÁÒ³¬rÝŽpò+•h˜/r^E¶ú^£Ô•êUý¹ŽU}ÄÒx‡§4®ÜRn—çJÝþ®â„7…„Tµ›ønFGáA%[%'ý¥k0—¿Ë ÂW·Ž+F°ÄÜg×®›g;ˆ¬ºþ“:&T2}xB=Þ“E€Ó¯Úž³ÉÉ*¼Ïøæ£ÝØíq½öEBà8Iºs”¸!án߃iÛp?Èž¹ÊÜOaˆXD(h3—L£T¬¿!Ðq.-|‹³yrɨéÕ©GL×x|*Í ä'³=ÅMop@•Rc– CwJVhš{•ôÿvÑ _ ¤Î‰?Œû`.L®·2}Äצ¦V 7‘Ī=o^·Y ‰°ÖËø"¾· …[u¯CH(w~°J,wmŸ)v]ŒmÅÐR øÎ¤[ý}óÝÅzA5¦–u‰Ç‚ ͯ(gë"F+mAªR#MËbÅ£¥F—g˜+3O>‘SÃúY§:Š\ŽšÕ߇WcÌKwŸßÃï7À¸ö?tüVL£–´Èö±3}ZLÉ Ëb^wW¤ÑÝ€4Ôr—º{Ö~8õÏ[¥i~¦›îÖ‰# LgÁA5aW„a©wk™„ÿ”ýVþrpK)Åll)D„_i±F¤™P+%âûŠL—s‘ ´‘~g‰<ËÚãÄWSFîw5%£çø=€j!wpš}©¸Ó݇ÓÁ›`Åô‰„˜!ùËŒ8”ך˜åîÄæwU/º·7&fJikùÝjšm*‡ª â&øv¶fîÉF¿OâiÉoƒ??ióK­7ó¬S€G0î7$p{T²8‘ ˆù(>9^˹œ‚VX”Gœt×Ç–Ç&k-õsý&Ã@n@…ƒ|²odä€û¼q:Ùå8L/ /Ð’6¶!ÏÑp8ãaÀÂ~° A ÌûB˶·¡_rˆ¥ÔáÌOãoÙ½>0°/Íhpè˜È¹€W[Ê€ã쬫ðÎEZ‘,vã(`´¤°_|Ž òLô˜ª-FfŸU8Ðfç¥ëã7S¾‘æŸ÷ÊꥎAmÔl D§ƒ,ÛíÑǦ¼}šy©^Lª¸.¿ùa¨):ÒÙ±Æû–Z1¯ ´0åV<[J²ìXÜoÖ:íáAtÑ–¦JƒÜdh8FL %ucЯ§d'n» ]çf.…uS¸B.ÞõÏÑlR8¸vjq^ ;ä¶ôÆ­7>Ä›’rÜûžµØÊ~ g÷qxn+7RåÀó^3á=.þ6:f]«ºyÃew_dt´ŠqL¼%$ô 7 ñ2µÐ5}..ô2 ã²|x}eœ÷N‹ûc‹Ñ,Ú!rÏ4ýÁNÈvdóa$€ÿõ¹™}. ô U²ˆïßgTÚ8z¡ëÛ­Ù^Ó8O}5°[î&̾Þ¤!2æÉíL¨Ó0w¸x^"^QÕ2åµy¢7 R…휟¸i8ÎÏòðÚ›>èLR½t)©ñ«N¶uëŸtO¸Ý´±^ºŠ~jšxÝ0RL )¼-sû®<Ó ä#½j®+€Ð7qâ9¸{:AÝj¢Tbö=Ç÷ˆ5ï„øÜÔ”ÔW7=Ãág¹…¦Z@tF1, xG}ÑŽ5"„Ö-j¡ÂA;/Ѥ¶¤0#,Ü®ñü1b“-)Ýæ„ƒ¾žˆý€ȸT|Ûiù’Ÿ†üütØI^kYêGkñ]ġέ-Üy1C!ïÃü£óí5 ì4T“ %Ä3ý–ÞW&ϯ÷ýž‘S]Q°ð»EUÔìäIƒ9Õu!:ö.“O€DÛ+uGö’õmǧ§jlQ‰P:dÃÌ&TçÆÍWuC¶¢Èqg¬S¯ù.tKñºGŠùõâÛSI‹;òu!ïÈøRµE$èmþ§óº.Äß?—È`F9¹’~òMI°.WE¶$Þf=#¨‚[@¿¼‰52Ђ ÍiìIò<$K@ÑaÞ#1^^»CtöÑ»´ê²¡ðð\•!1W‘ȔĜõ¶y¨í–8mk'!WÓŸ“ùP¼ÃÞµCßõ;Œ¨½ÎfJê„ih<‰åàq3®«Ñt´;4@ZbQ§ÚùŒk³ñTC’>ñ(í×2×Oû™@! Eoôãoú ;ŒÈLC)㛦²¦ƒU9×x¬w'ïOý,0ÚëÚr%=s8œÎûaK^¹{|;;Ãñ ‹}í4Y~4Óè¾FÏ ®å®hF3‰j ¸•#¿Ü–ÎfŸT—yµÏoàMzço ×¬ãÍ„<Ï®Mvîeç©ð“o¸ú0Б°dÈf°Ò:#è¼ê©©,Í>ø±æ¡]‰ú³h•–!u󨕳w¨3–÷B¡‚g¢uŠ\†]ÐóÅ`(Ã(Þ Îàî³ò¯[7E‚MîG濞4›BséÜŸÊŸšÌ7£ïh×Ìà½CçÑu³ÛSÇ*=‹ÉB"ÒÛäéKï‘Ô_ ! ?o<¼ÀŸ´?ÕÔßbÿh»د@äL¢ÇÅ/tÞÉ~?~ô£>8nærþÂe†Ù#¢+°Yíjwœú݆a6gb êHÝn?œ”÷>ªêItÏQß»|¾^<ÎóYÚ$^s<N¬ÇA~¦jy‡ |û.º=?÷7a™÷ÞÎÀîµÎw9<]ŒÙ÷“ZŸ;¾]õÀªŸÒ_@­JU¸ÈäÉž*Lš¿Â.4;âí€ßíZO./}[ì>ØõÀAÈøpzR}Ÿ\Ž‹¬I“Ò|ø©ìùJj8>$«fI%¼ê vt'ì©Ñ :\M ö¸„ÕRAüЗ##’i =]¡8xòº·xg£j[åÙwºRf/ fòðí%æZÀw*†áïwWNoÈÄ?TÐ5á |@Bˆ†vqv£k|Z¤¾íÇ®­ß+Ü_ÜBnXÁ¾c’þ ¾ô0°5z6PFóÕŠ‡e]£¤ 'un†;e)õ+í&ŸL¹…»g%’xù¢xH\­¡H˜zGNu|CÆhjK¨ÙNzmÝ“X°“ùªp¤Á~ÑñuGÞ„¯ÁsM§Û)4qÒ\²AWö+Cß|%3þS§/=§û*5ø™Öщ뫠RüPe«Ž£¿&ÇmÂUùÌ-åi`_Ñ2TœHQÌ"Ò;?]5Ǻj³úÑf&c‡+\ýsŒŽ›8yþUüí#Ø`€—QŽÛMÏ@Ö{µ¶C@‹bð+ÙUàÆeB‚žUX¬–3®‹ôÉ5†5¸¾k!¯™ÇZ<1vŒŠÔãkBÏÕw€,š¶:×á@LŸr§ê€î&µ­jé*õN[“ Ø®»UÐѯ,§#Ó@÷) -|ÅØLµÛQô­UfžJàÊÁ–VF9¼º$ç3r B·“&[1å±v?ÅÍ«íèçózÓŠ+*çE·òj ôÄݪÐT‚ºƒíV´ˆ*¤Õ0S„h'd¯uxbàpÓ!üÝq1ï§ÖI–Øà]°éQ lX9’•8Ïiá§–ƒeb÷/³Â¦"µrñ*Á\v(?¯¶TäKÎn nê^ö¢Sæf%¡ÃùCyI­[^8DB 4SaN˜ÔŠôöåZ‚êÄ¥`å;iÛ?˜"âT«h Ì}væ3¢¼+*73K!l]Hí4W,0eHíÂŒLûiÕÿañ¬V=G¾x Ì0'S†,óƒpÛK@‚h#g¦k ÀdÊX åÉ[H¥ÙÊ“²M¹ÂD±¨Ël¿Ž‹…kË‚ û 8RuH¼‘RjàK§•¨ÂÐî±õä÷¸yу(¨ÈJãbשsU·Kƒ>h¦¯Ûœ¨y¬+1aNôô†Ø%«07 ›Ò䟑ì¸êýK׺I‚þäÊA☸æ}2K.²éZ.Öž~]uhÆ)o9 Ó ¯\« ©Ü°îÀ`¦to^Ò*‰&üvñyHía å€ÂsMƒÃ)–‰U?ŒëEžVbá3 UC"$%‚Ú²..éç¥$—1zWgN‰44& 순ULÃËôÓà5…X<^=ú9 M÷_÷w“EÞ4:—‹HÕ©ZHãߤ"®²˜üN¦“ _Z‡”4í¹F K‡“*u'úñ‰úwó´ÞïþÞSçxö‹ô¨ŸÉ{¹¬zÖ΢9,|¾Ü÷n‚ßÕÈÌfоÞ/©>(U.ZF1cf%}ß¿RRÓÃËö\ TðžJØÊ¦66pJ¶Uä½ëµMxE›¤{„“ôê[®!ô'0œ†ØÉòÅF“=”î4ë[V–Ä•8û¹";pJ˜>ÛjL"¨ ƒš¬ú€Å+Æ“˜¨ðAÉê]²­Ô­Œ½nÖ\ÎÍvŽ‘@ÑŽ >«³Mr{m¥þv@JN¦pÆk'Az‹E™Û;Saoã×'â´±ai§=™ÛFÉå¹L¯Ï©¼vAû˜ùwüg¾ÜøÓvf†Dö_:ÈV#o¶p?)£\›nÙ“¼Â |Š<çÔÙíVLJy¾z‘ÊA3 ¶@Ö§÷2nkдÀ…ì_ó½ñ§³É‚Κ wÇ=©;ïšÌ-„²n{xˆ¥ÄQJ-&]tˆ8¥Nl9s|0hN’c7˜6ú¼‰‡žOÈ U_9.¢?Kõ+—+j°¹Âux[ûÝú]ïR`ê9PŽÙEZTÑ÷]U{êÄWáÓ•ÞÌÇ4Þ”œÓ†9ÿ£xƒö,诘‡Ýö:-˜QOB§mvž¶³Z”·^÷¨K!Ž¿‰¶{Móà”výfR™}]$=ÆyRé]ñÄÒ~çHÑC×§©Cn`ÎKÞôC‘gƒ¼Ð/ ÖÒE÷'4øa麱ó»"Ô4>?0G#_:Ë0ê{5 CB:š½ÉNVüÊZNœm£&KǧÛd¢ø¬Á Ìí"Ö¬áŽë©þ0)$Ä(SÀGm–~ªC´èHƒWï6ö¢"?ð0r‚9óŒGIï$+ÌδÜc“cQ.—ÿó§1l¶r\¦óÀ“âw ©Ïû¦wØsOê€}C"TŽ€ùoòr3#²LâÜ®v.†ÞSYÀ œ˜qí÷¯ïdÑ÷ ›ã„­[ŒNû®¡Üâ*ƒð«»ÈOŸèIPŒÃ¦ˆSÛ û¥a µ‹ £¬{¦q“7_˜qF:ÜÐp;é! ž|ØÍBvŽÕ>§_Œ@Áïìdf,¸ ‚úy_6áµh-$O¥Ì?(5ï×~' ø B/¹ˆ-ͬ³}›Ù g¤õAìA%¢3‡«2W—­*Æy›Û-¥Ð1Rºu„û‡Ø›‹IÎ(íüfZ&±k ÷cˆ®±¸rñõxZ/ } º}Œv ‡WÓƒ~Ï/Ü%‰ªÛBtŸm©ûѲ…eiÚ³k*¿ÊÌÔ£¤šÊGBsÕÈŒ.’Èä«Ûñ @å%7!†ˆÃ0~ &nÞ J!§tÀÿ¦@)É;>"ÿ™ZœÈÜÌwü!ÈY·Ðš ñ;8\PH‚ìÉÏkÛü®2s·©Yþö£Ÿ"' •'•)Þ ¼Òç“lrŠú2ɦæo¼,™!Õ0{A+…‘Å-Y¡€‚‚O¡gzƒºRŽ]¿ö Zп¾æO„··:Ût„,U‘ºL—O&Vy¤ôÜá¦dŬó‰{ ;¶¨è1Ñ®š_g÷NeZ{E»Gû‚ÛI¤À½Æ;7z;u•‚+î««ÜÙ:|îUË¡¨­¦ø½‡øõ-B ”¿¹õØ1gÉS‚8púRKVÅû¾a„e4ã¥rmù*gÂ}¹#õ·Ÿ¡Ñ<[­±Q›”Ùñჳ½øÇÌW*/ŸÇùýºËã§û`o©$*í‘ñãgym“¶›š1vðÞ TalóÒjÎ60:½4tù L]‡( ;âT}©<8 ÊøÅz¾ö!È(>Kv¸~´ìÙëÞòJS¸<•瓪;š…Ó»I QUQÆŸu¹Ÿâo|{àt6L±‡å5§uí–Kör6:yÇDE…ð'cÖà°ïK÷ÓQ6XqwŒ°56IÔ:О. à‘¶J6F"‚ë¯@äŽÓS"%ÂÝ£ƒÉ`¿E€óË«òù}õ+€;½Šh‘Ÿ8"ôl fM6ªKφ–ãM*:ô-ˆdŠuCº¼!áDëAÑkJÖu™&C¦ËòÌ´ :(È~WHH.ùRbžQéóžçtÚø¬0"Þ éo¶âÀ«°™ð?çY¡®á}$é\ù¶_¤ØÏw±Ra¼CŸ¾T˜5Ôåû L3×R¸jišÿõ®¨¶£Ìì·Ê’ÍEx@ ’ƒZdúœs0êoPÈj…Ç VY,'}åŠj²ÆBgg\œ`(ªr³},upR¿â)¥ǽ46Hó~kXÙcˆY‚uc„˜;>ip&yåGÁ©Þ6òøHŠ/:ã’¨·›r§ÛG÷æwTK "1ƒ†H5œ¾Á´ýê*\Ø@Ñ€IÇ ¦à˜ŸÒ5jòË/—Ô•Â~%ºø{ §Â-´hk6eõ!ùËg¢êÙ#Ub;Uœµx³^ú¡¦‰Lä~‹òkø›²™Ÿ‘ΆŒÏº3½…IãCÔ2¤Õ»Î£qÆœ2û1ÓŽ©»%î^È­ÊèÕ¯Cì$L¨â% â*±TP#츔{Zj´ Žk뇠è†N<ÑTZYŠî’±,ëÝ2 sïUÛ©!¿%¦ò÷Iy’=¬Â#J—©Ø‡íf«”'5Ṥa–éÌ'씳 µ¿Ú¨R:ÒSã ÐÍ·5€6éáµL’ Y‰qD®_/ž6?™%ÌÈW”vÌå~…AäÑê–á…^tþº¯=¬*{4ÌȾëY[&+g£r–À’FõpHaþ-óIÁ›9f¼ŽgÍiϼJ|á—N ¤Ø‰4±Ó0¨´ùôÚW—£›Ü¢ÒKÅî¥8:ãXl¡`g‡/‰_L쎽¶wGç)èÐùÚôEì[ÉäQ‚×ã²Ø8Ý“€o!ºj]iªµº¥3ä67 LL#{q‰fÞHÃ!L™3 …ë¯XIÝEòéÊ’ÎÄ)”Ï3/ƒÑü±0y Ò¬Ó§¾@óhuó½=CJûI5£P· U[?Ü„iÙa^-ëùŠ;"Ò ãùór½Õ• °Ó8°8ç7MÅQäUÀx|Jxîèè7²!Òº‘/wpíF‹?”PO!¶ #( Zô0®LYC2hÉEQñëçñ/š{ •uâ¾—#”[<ü䂪çüQ9·^ϵó1’ú%£XÌufí>Ö"™ó> "ù™ò9­:¡z’{.üìvPCtÆGp7 šùGRÍ"Ö#ÏÞrè–qJÛá{zäš¡¯tÕÍð€…»ZHŒ1Ïs`,P‰ŸfÅ©Ó-”êíŸ@FÍõ7Hà´‹>ü5,#û”²ˆ%v¤{ó¦³b3C~~"ÀÏgJuׯÑÑ ?mÅ6µÄ*ÔûQý îWÙ];Ÿ”ËCØÖxÅÇä†âŠü¾|ˆ: 0Ì·¾îÕ÷IÁûçžͧ¿x$Õìˆ)åã/h Iá³M=_\ ¡lIs¨tô”ëœÉŽúÜ…ÖÂëµ¢ v.17±Ôî7€ÂL)sò›ãŠ®±¦{ÞÚ K*,“+¥ð–øP£O£Æâýç´·#Z uy€#RÏvݳ†Ý¬¸0+le¾dñ±$LÓæ gÉœ )ëœBÍ‹Z^zÏMH‘­Ø€íBšhÛ+U¨Éø6^;è±ôn»8˜G+ÙËðÈÞžåmÑY1²_R`v`o{ EÖûqF[¿‘U}±:­9œÞ$OûBÇR]Ðì?ŽÏ¨Ñ8ƒ¼Ø,Lª£xmÙø³³epŸA#4 f­wñ*Š\ØØa9(5Å/ìïöT}óË JXÓwù¢Ròà­~ ¿šfÈpt÷Rýd¼}S8ÈÕ¡²/NOËæB·ç½›n:]…¨Ö^Žï-FÙSîHùµÑñ“ôc Ri2Ûç…e‡%ØìLØ2}Xu–u[Ì ±®È¶Zd®KNOÿ‹ÄÏϰ¹xñ\ rË" ~ë²èI}à‡«ö±ƒHzÏ]˜mD Ю›a¹×ÆNK0l nL’ÆfDÃíão޳CQžÌYÈÑSjm:Iõ;”=öÌ/š²ÏqäeíÖ "lÛ%vµÐN²â5 ¡Lm´939öey°sÇŠñÄ]‹ÞÅÔLU¢–¢¸¨ }S½÷ »_œUå»—¢¤4Ö÷6¾ÙƒjŽfŸºˆä0ü{¤©S¸éĤ?Uæ{´P0/OM·Å$æ´¦Ò7 ~$K²W°¬æ)콬.–)™ªæc9•¯…šLI!ÆÊ£éFKù€"µÅét&?Zc—í·Å§r¿ª2÷úÜêM¾·üù¬™Cl"‘z_¨Ã­®hô'"nz°Y³Y2Ôª=­•`ø=Ïü±aðZ®²uK—’hØ [®yèÒ¶Œ§S…²>N€ÿX”"£SDà)aÂÿéfÈ÷›bT6e~™IòwJšÞYK?Üä\QÅ2O‡ƒu”Žà±èø"Y%Ê£‡OùèÕþv¬OÇÂuh‹Êß “~€W Š‘q ^Ξ0_<È4L¬Z¯Îß}€òÁ„mo¿îš&¸çS5÷m¡›úz+OA· ákÏ´ö²ë§Ú¬6Ã:!Ï)hÞgØìþòÃ,еœ¢iQ¾ˆFN„ª`¹³Å=£ú•o÷?9’¤`H%_†‹‘àôÔP¢Lw„)‡ûÂ'œoÉ2~À*yçti/Aö’n!«:ækq€{ÆñQ¢ÎÍ̽?ªžŒ²üذb.õã»… ßÄñ_ P¾wà„ä4“º <7ëNê[‰å#ì9«§i+¹qpñ:IxYL-Ê,õ-¢LòD ß›§+zJ}¦5¸Ëa7d¯ôœÈ¯r0 %’Ù7c6…¬Ñ·úúäÃI¿³áõÄâÃluÚPïÍ6.¼ë>%¡üѱ‡i5+׸âΘ‘åÄ€<¬x‹ô¼Õ›,5_ãÛv£({s{¤Ìë(ÁQöÙõû^VY0‘"çæÃóçdAEïl4·‚³ò~ ±X㉫’g¥ÀR×ü~¬£w5HMkpÃ^yfMÓb ¯Çпo/•G¾Û,IÚÍ#Š×BÜ8È.tð)àvØ{§¨ÇÝÌäï8Z ¬ûhl˜GÜvØQâÖˆ«æXº£8Úƒÿëh­ßœÏÀäS“ 8ÆNq Ú«Òªñ7ýÝO$Y×£#šd`%to»ß:Žš1£}×ÍÈÙò-$g|X—çûI‡Ø3bê»-}:ýñ\s·%Ì=§í$Òß8qùÙ øD›¸£€…Bfv›qÕ•©=öæš› >•T"'xÁ¸¾ùËšM‰ðý—ÝRYN<®7ióõëÞú ½°–4Ç”>RZŒ‰ôq%™‚ͪT%·oíÌX;Íd6¨±‡O…IÞË\C1µ‘òYЛj¦¿½RK7EàÚ†Où±ùÃÇ;¶©œ üïÜŒÆ3G!jöôÏf"Ç¢yÄóS4xè: ‰OZ9²˜j2œõpŒòX[çDÍ &HɳÁa–„C‡þ|el? rÈŸ)ËVÃ’:¿×Å„…KHŽ­ƒø,-¯»•†¿ÔÙ¼ž„Òt01‘ÿ„Lgv` Lk‚ÙVZQ`™úâZqtYØòxcb*Ä™–O™TM]0eݯ­/¹& Qô] *‹»vA¹y¡¸Uùtj‹Ëuë6º†ýô)§Ç¦¶2©)(…‹:ò·ªŒüø"wÎhî&`Ú’[7“þ†²›³Vâ¡fF^Ã<݇‰µ¡Å˜¥CC?^†ešAâW_u“úè:méªêi3’d½9IDµ »éßÒ‰“È æÍÅêJ$úzcw’MŠN`s¥¤Ø+¡ÌÝÖ†ð{-¯5éï­¨½ï0R‡î¶™› OÎ YCmAGѯü#ô>Ìf!q0—Q0Ãù,^_—“+Z†gòMpSË¥{%‰æ'{8QÛ–<…’Èsa_»+y’±òEÅ鹈ÙÎo—m?êmVµ÷ÏÖµí³Ëô—!W®<ÏŒ$i—ÆEÇÜ{Ö£kmóömž¦§·÷F û‘áõ ÷QÎx õœá‰ÞZqáxØ¡} Í\µ"\™ß&Æ) ¥Xʳš†Ñ ~ÁØ÷ÿØW·[dëTžI¼Æ®è¨ð}©HcÏÄù­ý»:w«ÞÔ‰ý²†R?Ñ‚v<¶œ_nz•aík w•;¦üºÓ/c‘’<Ï]G\“(…&U;q’ÂÑi¬±—Åi*Ïû"Œ‰Ð02á½®Ù9­ÈNЩù7Œú‡f"ðÏñ”öÞ,Ž*µp1rÞ2¼Í¢¤°ïUòWó ?%)a Á£·??íæržçñðhy¯7FÜh-W› Ẻ^ËÄY·*¿bf`âUû—AÇzQÙ&ÖÐà—W|¬ ËÝ7î!ñ¾Œ!æzÚ'¾¨â˜q„ÌVÕ@l¤Ã²§ò‘ÞZ$Ýÿ b’¿¹ý[þ—†oÞʲ&F­Ù—oÙ¡êöÔþ‹*‚}i”dTí´tDjãí3fâH½û,-NÏaáxš>£:ïw&EÆ;JuúÑmcäN‰WÓ· _û sMl&˜5³g…žöLÿzt[8Ô,7-‚öÐ.ø**WK™ãètV&!>îíïîÈb»·r𤔠×É!Ð=#¿¥pÀ¸/9ãØÛY? JÏ µ]Ì©;÷“˜¿‹S‚÷Á¨»ãUiÝÚÄ¡„UI{JA ÏȤFF–Ɖ7uNOÝæ×´§ð¿lÜZäÝ"÷ß–9.ëg<çû¤à¤-)Ç øÇuIã‰y!”Õ-8³›sIãÛ|B&Tì÷”p8„rGÏÀ84š6Nè9¼ü9Z­1oLfB4ü0oAÌd!vÇ·«C$ÙêŠÌ,…gÂñ¨ÉÿÕÔ¢Va!ù¥éi‰ï•]K]!^r‚¶-E[a$0ä «SÑc‚†ÝÂ5ÁðõƒÁß’°ÐD„‰(ùn×ÈÄ.O¼›ŠU ÚqÓ¾íkS˜ ûqü—Œ)ù.Ú§!“!ú¨¨Q$q»&Šû]¥wnTˆW¯>R²/‘*;_8MÈX˜_t_N©®GJ¨ˆë/’Ñ=ë ¢˜•:Ü–JòâY‡ß@³=1N ^2õ4xQˆ¨ÌV‰Ä:–Ðç¢cï öˆë¥2,‘Šï®EÄ8ñ}a¨o{à*c”_ нljb&²ÏÛ®ní½Ñ'ÎóË}YÂa {“'®E¹#øY?÷ŽÇÒæ“Œ¼u/Á•{p&ô-™¦d7ì¿zZ·Ýƒê½?Iþ`ÛÀZÛnÙôãLÀA•ààtÒˆ¼ýT]Uy Ä½‹àçÞSy N„=Î䔀 Eïú¯'{ÊK÷1ÇÑ… ;Ú$ŠÙB<ðíC̺¿o¥¾Èà±æSüXVòÕZè‘zh±Âg³`Œ4EíÓšb/Öh ÁoˆF9DVùžäc‡»ß‡9h9µ“|:ÆËæçAžý§L£Waø–cOÊIzšÀE’*óÏ`ŽThèC>A’>¥Ã#l¹ ÿÚøÖÞÔÒŠ‹`x÷Ò Ž˜ïÒƒLaØ9¢h#Ÿc HkÏýc+lÏÏ­«!Ž®;£D†…DãB_¯V%£Ðwg»Ñ80™É5êZ£`Õ5ç!= :!U·+°kË¥Iì,ñ~;ùÓìã – F} —mœþᙯwÕ Ö]é¸ÊeÿŒ¦Å/ME\øØ}x-,±.ãâ_[«¨Kóó´»÷!¹:;½EºRÒ“ ÷1˜±ÕƒnDÀ|¥Çþä([«—-W¥´˜Õì¢ï[öo AÇ÷ÞS¸ŒuôÂ@£6ã}Ñèºë[)U½¸ïfwMÅbd”klÐuñ¾KæÇ‘²}»O™8ynõNz-q'!ÆìCo_:nÍ‹âÌ{ íÚz#cˆ-·å˜ f˧ü Ýzèüó Ê<³Þ2mC•QSLSjˆ³²3Ík â‡ÍKÅÜXEeõ-i䵹ދq…í%êaÊyVßrßwoäî ˆŸ²Éâ—x·ž—ÙT¬±€£]Œ'V$É:¡ÏÏ^1ÆyRæ ôÃ?¨Þ¥íÜ3¤ÎølÉ&'.ÔÓÅkB”O¾¢…ꘑ²z]¸ìTÜ5”·žw¡ÕÉCÑøÝp//bŒÞÁWŽ6’­vª[HM^Ë6VÏugJ×GvNÇ«%ª±‰3³:G8¨ñ] q‘šƒFZ®îÍÝ6,ÁÊŽíÝ©÷7ý£îwÎE(GUÙ ÷Ø‘b[¦Ðw‹µeÕáÞI× õWY• òèŠ5ã UÍä²ã­{`q@15&!é‘gÂGñ “¡QϺO.ß§¯Ï»Øø›ƒ üi‹ ÃƉs$j‹ü{ NFŸ›ŽOË}9¨Â©V—! Š$,ˆç"È]}ÚѦHm5›°\ãws½qü«ÆLádî±ÐÉ[µßÛñ½câ+c%‰b¢¶«¦r1krvfA7´Fò™êþ<Þ^pT ÷ ~·@f€‘T2Jõ•5¿ðžd¨¿\¹?2Qùî¨-9‰ZÉ5 +P´ÿ0ç|=f¸2êó¥wÈë|yšW@ Lu˜2­y‹¹¢N†ÍÅj[ ¡ô{vâ|`!{_¦ÂDwò”3ÚNÖ¢æ§ÚóñÂXÉy²Ï®­ ÈM¹O“ʱôM¡g™èÜcC?êóCìÆÇâáD…¼å²0˜Ø%*9!óÔhy)KO–tò2ŠèÃÓM±Û†ó¼àÛS©Þ¯¸¬`òK•"[Ci&pµ­ušÉâ×q2­„ä~†ÉÉV“ÚØp¡´—3§}TVòNÚóïäÕîó°ñÈ;%‘Ýû©ºHZjùÝŸ¿~’›Û&‘º îwGÒ½êNš‡&×«ÆÆF…lBµ¾?ÔoÄ︃Р„éàqΣ9ùž¡¢„›¿.¥hfgð](D1©Ò=8¦/BR3³ÒRqjúå¬Z¢Y¾6üeÎd+þëÉn}Ðèô+2=¬>ÃGroۑ̲K÷ÏNæ1 ƒ¯®ÑpèL ÞAÍæL 9Γ]o WÁ-N‡u|s«^ñ˼@žPw#v£} ª–ªº6ÚÛ] Ûd]!wÚLÛÚ©ö6Sh§ÏÐvá'mSqÞ)³\^ßâó8›Àô;íUãbïÉ6kö•œ©ãE“?å’ƒ­†=ë´Àïèò7$÷}^y\|î°ÌVû§‹rÇEÕR¸­Ž\ñ¢ùâZUŠ`Öp{#ܘã0 ʬ’(Î…3ÉêlÿsåÔ endstream endobj 131 0 obj << /Length1 2401 /Length2 16526 /Length3 0 /Length 17956 /Filter /FlateDecode >> stream xÚŒ÷T%úþ g[“ÛÙ¶'Û6w¶m[“›0Õd»&Û® “&»É|šsÏ=gîÿ}×zžÕZ»ýùÚ¿µÉ‰Uè…Líâöv.ôÌ L<9UUf&+ 9¹ª¥‹ ð¿t8ru “³¥½Ï"N@#—wš¨‘Ë» œ½@ÚÕÀÌ `æàaæäab°01qÿWÐÞ‰ jäfi cHÛÛáÈEì<,Í-\Þýü÷+€Ê„ÀÌÍÍI÷—:@Èèdibd3r±Ú¾{41²¨Ø›X]<ÿÇŸ…‹‹#£»»;ƒ‘­3ƒ½“¹5ÀÝÒÅ  t:¹M¿SÈÙÿNŽ jaéü†Š½™‹»‘ðN°±4Ú9¿«¸Ú™ïÞ*R² Ý„eÿ#@ø»8fæÌý­ýÛ¥Ý_ÊF&&ö¶Fvž–væ3K @A\–ÁÅÃ…`dgú[ÐÈÆÙþ]ßÈÍÈÒÆÈø]à¯ÐâBJ£÷ ÿÎÏÙÄÉÒÁÅ™ÁÙÒæwŽŒ¿Í¼—YÌÎTÄÞÖhçâ ÷;>QK' É{Ý=ÿn®µ½»÷‘™¥©Ùï4L]Õì,]R¢˼“àþ¥™]ìLLL\¬, #èabÁøÛª§ð/&óoò{¾Þö³÷4€¾–fÀ÷pÞÎFn@€‹“+Ð×ûOÆÿ"8ff€©¥‰ Àhni÷¯õw2Ðì?ø½ÿN–¦÷ñc0ýþûç›Þû„™ÚÛÙxþ+þW‹Õ•ÔÅiÿNù¦°°½À›ž @ÏÂÊ `gåpps|ÿ׊¢‘åßQü¡)egfàþO°ïUúoÀnOÕßëA ø_[òöïs Pý;æºLìL&ïÌÿŸ‡ý/•ÿ3þÛÊÿë˜ÿ߈Ä]mlþâSýGàÿ‡odkiãù·Äûܺº¼ï€œýû&Øý_Q àWhjéjû¹R.Fï» dgnóO!-Å-=€¦Š–.&ÍÆÈj¿÷ÌÆÒ¨hïlùû²è™™˜þï}¹L¬ß¯‡óûHþžïÎÿz³3±7ý½d,ì#''#O8¦÷Ibagx3¿o£)Ðã¯!02ØÙ»¼«Þ³ó˜Ù;Áýn)€Qø7é?ˆÀ(öâd0Jþ‹¸Œòÿ ®wžò¿ˆÀ¨ò/b0ªýƒ¸9ŒFÿ"¶wälbiibédâjû™…ão†‹¥)ð:Ëoò{;,­ÿ5òŠñªïÞŒL€6@3—?Èì“ÿ3ƒÿ(3ÿ‡l tùynÖèÿGá½(&ÿ öwß&ö6ïýú'D¶ß[Û“üÝHFÓ ë{j¦ö66FNH¼Gño–ï­cþSŽß|G×÷…øWå½fÿª¼‡kféö‡ßl{×?}¼‹˜ÿkñoþûqþ)ò»Å¿™¼WÌÂÓÁh÷‡Ä;ÍòøÞMë?à{5þ ‘ã=m›ßÓú/ÿ½v4ùý,1þk›ýÝ–Ýû”ÿ[¨w_v®¶Æ¿ï‹ù1¼LFû£|·iÿ‡3ó{fÿ²ß}8¼¿jvÿÓ]6æ¿©ÿÛ[¶÷Â;¼ˆý¿Ýb{¯šƒëI¼¿òŒŽÿù^2GW{ ©ñÍa~§þQWæ÷LþµÀþÝþ(+û»¸óûÿÇé{)œmŒœ-þ0ñÚ¿¾ŸNF 'àý~ÏÓÅÝþ…w®À÷Ö¸ýß«æþÇr¼kÿáþ]Ö èôcÿs_L\Þ‹æò×ð~|þ‹ÿzÑ@  Ü÷E{Þ«ºŽû!V-F7ðëc]ħ<:²Rh˜lœ¾sKŒ“ù¶×3jö!Àfïª:ÐÔ9#-aÓš¹»‹K(´÷ëï ‡ÃÞE8њʹÅCË{zïm}‡¸Ñ:¾‘9>­›ÒñÕ1Û†…ÛÆ\k^} wôŃ¿Þãêö)´Ê*%«õ:q˜óØóPù6X.væŠ]ø)½0³‰“|$ñ¦M¶š»ÝV·‡ZggE\m•Áñrï•í4\;KæÉËÝ¿ÑÓ&eªXŠÝ­™ÈÊ$ñT³ )#Š.™3·pq¤L¦–çžô£ôªiÕÇ™vñÐ ¹ðý»ƒ²ü'STRsÚºÇcþæã(ˆyíœp#ÿ–æ4 ü(ùŒ(Iv-Æ•>íºÁƒÂüðdP,<±‰"±IмX)ø^¶ƒ…»[ĘŸP©ÈØÖfÍò:•ÙäXÂÏ#£WÕ⽂æÊ2¥õz‘ |*sŠA-ÝoÈñEü7eÛ:ãø}ÉßõjHýÒǵçz´—=G=†«cêÂk‡5(DuçA²(ÐwÛxI¸ñÛC}|;7ºúfŒn­ ^&cóVÆ$‰×íöbõîÝãGæäšçh–ïçæðê1VwZøLM3ÜU‚ø1R#3n›ms«¿F¡±ð!z}È›°¹àâÅV¼wý¼œ §!­ oe!c„5A\ÆO +¬ˆó#–*§ÐšÜ“‚"RoÜzBŒä(­e˜fíg^ߺ¤ûÏ{VZš7bK®åD_؇ÚV„¥:Š·ò£TXÏ¥yœJßbÙ˜L@%3æØ.\uNݵ¾õ¥f~ÞÍaéÐq™žM]ùÓ-hqÕbœ½õJóŒ,Ît°È0Š  ŠšÉˆB”wYJWê£6s>Xzcöê¡]´±ÐåeÞ4­÷kEV6ûįZ¼¦Â3+ÎòcËoiXÛèèÔ8 3cªŒ ÓŽ¸jkÓ⇵w ­Ì).bSA³Íëg >0ãô}©×WL¥Ïù”sÕ[숭ŸMüFÃlî~·ÏÒÏÆXœ—ÛÂÚõ±|[·†ÓkÕÈëh†ÿ:²™a3ãâW`´˜GeÛpÙÝ{„¸‰?¿U'Ëö·¨EŒƒwf„ØçûñÖã\)½ðì¨Ï–:ž¸ñŸˆf‹ù¥kGÑÉ»G—ÅO%fæ'ä]ùO|–—D „T”Þ¥ñ ucHîå¯*{*À,J.ѷ˱¼íz–©Éî=_Â;ñÊá…û¹Ø¶ÄSt}ˆàž´3íâ\(øãïo”Ÿ*Ã@¼gÄÓ#ûŒ¶²4†Ÿî§xÙ׳ m…æ‡ióÔ—F½ÖG¿$e™`…c²ê«"Áå*ºÁQàÖÔìôU$êÝ)+g•‰‰@èW³¿p“^ nÑ  “í¯ Q}LªãùJ¥A¹Gò*< Q†€Cï”4®šöiKË29D˜Î:¼dŸÅ²\Œ$Ëõ²ý»Öæc©á¹êŒ¾!!HÕ§Ê9J(ÛŒGxJd™í9DJ\Ôl±MEy:¹ï(V e¤º¹›‚ô úX𱔫7þâX Žé}wZx¹WO6AFe%îãßå«Ô&¾VV^ogÊq×Bý4À6Ÿ5v'ÞNCïpîUM©í7áÑp$Öó·ÌwoO6|;(,…€Ž¡Üí5ܴЇêEPU—*·“ŒÚül*@ý6‘tw×—gˆ¶~»¸˜p»´ ,!tˆØ@¢â‡(×bnÝ»-ÌSëš©(a”`焹‰TG+½vÄ!jÄŠoKC+w—¿z æõ}c æú"”íbH›6iôý(¦ª1 Ø ÃpØçÕ¿Òˆ¦jÂt_ >ššÁE ßÂ1qé5‚† <Ïñ, ­6 Z`?DsH v€uh8~“¹?€[Á¥I‡Õ'ö‚݉ üW«ÃàòëÓ2ôÆ't|GQÙoqÞk§†uÉæî)x>K!ˆÒo^ŒÍÙ’”Úd!‘ßA2–å& ¹b 7ãâµQÆ#â@ aø87¼«e~ öÝ©S“££mX®±‡œd¨Ú>‹Øù² 4k¿9 ×x·;}èQÓ~ã+Ë]œ—¨ÚrMdã^Ø4´Çqìœ` *Üò;DòØNW õÉ6ã&ZªìÖ¼dpö0“0{fp×à} Ͱ§ë†ýP$,km-Óè ÍmcnþLjsèSNÑ0‹$7lDóežì6’ Ët­Ià„SíÄäТ¯ º„² #Ü®Ey:c’9&s¿XãÇ`ù+tÉ÷7õ5„ÒtyW(Zî·d6NÔhO dª™Þ× Ä’@ÄÞî(’J¯Ñm${…^ƒŸ íW|/á½àÍÚBD뛾=RwñŒöH&1?¾@ku‡žŸe/~ˆà,ùÃ3¡L4oÕÍc¾Æù¸fJÈ Ùr8Ïãn‡q}ÓLáIÂEie*PzUšS6âìØO-CJ¹Æ*pøJ˜êÓQ9ôrE!ÒA³ÄU3üAà]Ú«æWŠ$åÎ~±¡cx½Ù€£°~„KA j.ŠqLFa#³àÛÔdâmL.(Ír|ÑàšL ^ߘ7È8È0›}Ÿ5ø6˜­v-·99ö_È:Ùj 5 õ€ýRÙ]:·É|UW¥ûVžõ+þK_‚F±†±ª•ѱ &†ä®ê8æÔð¦OXÑÁ¤¿F¥ &xÛõ> }i¼lÅRízýô|ð©M œ.…dX0+'9ðvÇX8wjrøy‰ËgmUbêóõs]Þ6I8»Á-(–ˆj"ÍI(Œ>"’ÔÉZG,Ñó¦åøh Q;zÆÎ^”]Ã<»SFB elØ´p/`Åì®üÒ„ªW•É’˜ \%Z[ÍXv-èÓSÞϵôÈ÷0Ÿ]Þf}ŸOR\ú1 ¾J{ÔâZžSÆ_Ýbø ë=jèºþ¦ƒGÔøõšü°•µ'"þ9”³WwÁÉ.(L^š¨ñè5zê*ã%O¼Òº¢¾òªSÁª+ínÕÆÊm´waÚ¹TnA=-šºì>=õWÏ&t™ô¥–úåXWÃI7sÏ ”)©´,3– º\ð :É@–ñ×q¥$üóÎV3“æé¹\§†oÕð|æ6~±çi‰ìZÕ2Sü*»—zǦp#   Ù$7ƒžnÖ0¯¶Û¢Ç­Õñ×]÷Ìú§¼äG/ž¡øR²Ù|šNÙýøPÝe  µÑʉ“5Åè áåIoê4íh†—ÿmœèSzcfñò>di®û®A%§t‡2Ï˧õظ±hÎÄZÑÆo0dŽ)¿¶·ï¾x oGj®’8Q5¸%Z¹ŒlŽ®ˆ0¨ä„1ï@¤ðd;B,Š«§>cèYÖ]í.û„-my¥Ÿ.{Ó²8\Ëp£•¸¬§Eëx-—XHÓœã׆×íµÖÆ÷Ã3PmOdúcXšÖ—0¼\Q½¶± [ל°IŽ'_…C1UãFmÔ…V¿LTÖ(õ‚†3œ<¨<6åC’x¬ÂºéÆ£‹-$$ÄRû0é´8Š.ÌV mª‡£iIYØ‘{ᓜ¦ }_öFC5¢ÃŒ¯pª×*?|æqþ@íFHC"Ç7E˜îy¸´mÅ-/¥ ™>Èk±°ŽL¯›õðS–Ðx³‡®Ú\ÁŽ’ säy¸¬²Šø®Ø|%/Ák(3 |',{ÔŸç—‘ö Àf¿d®â–ó$Ò8@uöc*‰^Š»Ã¤Ufò‚…&ó]=/åMÉ4dƒ~±#2ßÕù/ÿÇv‰nø ŠA‚Ѥ><‘¬i­M¹*‰7¡%G›“ºÂ*VA h‚Tê~nP™Eð†9c†G{~üÌéàœ‹à•¹È†R`9©œ¯–´ŒNÐÃ@]çÜPú¹²â8´¢µ%߆*ènraâæ±a„ˤBD’â`¦Íxü­ª7.“*ü!ù°ðÊnž|B $SJšÎÛé«ìECŠfC-âÊÑ#y¨]£@4§¶¥ä…8¦ei=)ûnÕìõ`GmÙì@Ì~Q3eÚf~EK°7çòUÍD.‚×Ìùi[Ûè€ÌU^±ÊjÙ£~½lIŸJ•äÞšÚðféÍpt×׋û1‚†¯»û5ÝíƒÈe6ûH7ux;€á»’«$¬‡¨½ `áYO1+hŒ°–ª9J:Ô T­/–j¾ªQúdDPDnù˜fÖ¼ynqûüë…f±­K s> µÐ"’÷FÉýùŽIðRM^by‰—"ÒXišÊ’ò®) Ѿüé‡åxct«‘ðR 0÷o®_Á±ñ™6°Y‹ ºlûøÁ6ü•.¯ë]Í®· à.)¥`å! Ú·GЭÊ.3¨áFãŽ3çêh?7å ¡ ÍL;l·—rPHN§ˆp/Ú:Aúôq:Õ¡ý’x ç ¿’vzmâûAUn.¡ßÛßPïWí¡x¥ ³ýcçCϦ֣V¨èX2É}K † Y3'aÚJæ†/jk’æØOûƒˆ}ÖçlÊmZÕP ç_®Ç=·xgÒ"Ôh2à†+ÜøyzŠåŒ·¼ *AR(wP»«¥ÉžóÄOéw8mŸ¦ H2‘aB˨%àE0ü,ÉÈSÝfç /.«P¢—ø–Û­ô² ¾ähºôÖ×χÔ~oäÙ_uºPû.x1s•ÝÃ7Z‡Ä*Ù¿’|ÖØõ à]¨’â8‹KÑ£Ô5:y¸vöe‰ÁñV¢vÇ•>rÖ܌ôduQFcSÍrdO4ö!ô;~Lâ;dyêæÄ1ò ÌÍÀ-’ÕœWàØbD¡3ä!šš¿üÖÐÕXBØŠyÉe#Jv#A÷ém\ÎÐÓWâ¨8ûè µIÒä_©™oœ[2ðÄ\£ßâl@GÖÀìo§°\#ÜàdšCT'˜´ùÊ:®äô?Û‹m-ž§ òiF˜eõý†6›ha‰‘:7ùl%ZÝb=Í™¸¾62ŸêV'+¤šTœQG„¥T›cæÝ®Ð¾ó‰`•Û­ÝlÈ|*-ïN˜.¾Á)y€Ì8ÙïH>*EÔg¸y]îg _#¾_²Å– KïÒÛËÕ)«<.0 zi¶&°`‡òAÛý¢åvED® "«Rn˜fIœ2ñœ³&UDªöÀø{g=GžtæŸæõùˆé‹™ÉjØeS~È¡¢JÑ ¼b-¤H0‡›’f£IsŸQdHч’Ö¦Ìã6šLhÚ…QAiK*1×Ä5ìLÃä|§”µ\3ŒÁ›ƒ*Ý2÷M Ìå¬Ùµíûí×1~â—äÖÏšå…û}Ø8•è˜^n<žˆ ËEÉ«Hß1·ÑãBoOÏ]64Šg4t€úм?¹}ÈÂb ^òè2KŨÓÿqLJW¤xDÏȉcgAó1D£…¬C$: Dë6Ré$R˰dßPÚ@¸z“Ðâë¼ãå!:1ïÃÕÔ^M—¬Ü]ÅÐù~–qWJ±œ Nš‘·±½L–Ԟ݌Zˆ} žû‚9ÁkRÏB¬O¢r§# êE9åc)ò¨Ê㢽Ԣºn?ôªžå¢ªùpt¬ŽÁ†v£Á‰U~Õ—×öÂêJy.wd¹rhZ1·¸¨Q’ð–¹²óRÿ­d£b,Þ)-„8Ãz[„»ÚÉA`ìÕùy)‰±ó¦¥£]?®¶Ý(A_Ië^o pzœª¨Ö|pÙþ©³ÀOv¢üÐü–ÛøºVñYK ¾-ÍcbUÆZdÆ'ŸÔÈÃ*"’À«€2êFÂç5\/$ÈÍß5n”4‡=ìñø(7ÖÕtKá+»gçšSì]Ķš«®3¾IËP`j|TBær[žÀ|ÄÐä;²84×c2ó\íý³œ/Ëíän­ekÜkñ:œï~ä2uxúË:÷¸ÔìÆ@’lã —¦ŒÑt2ÏÃé²Å|õ€žF*vïâì¼À—õ&ðϨ7þDŠ…ÂIÍ4Ú"#ƒYQ ŸT`™êŒâ?´M.v·Aíª„Ô²O~º£÷åŒ ‚™ÄúNß“Eó¡EJ¤*Þ›y¸5L(*}C{ þ'tŽ“B"• <®]:ÇFG|·åû†1ªè‹ü]!¥»l/""è.ZɧC ·zO¹Ic3·¬ÖÂ| º…0I誰`”™¦ ³ÐÓ~LŠäRÅn– )4ìÌŒ·ãÂxK~*ä±´¼/ž _@&ÙÑ£À"ÄŒ^Cþ¾”[•§âõ÷gÓ˜9Bð Ô6¯÷Ÿ¼3 &EܩՇš*\'hÞ9‰H 9ZÒl֘έ”dN´Y.™/á{œÔ!Ô¶ѲãJóˆ;²œÉÔ•õæ·ÍaK¿'›H"º;ÞÌ(bY/4ÛpÈ5äFoƒx8ñ«o¬pm³ÒÁʈ)‹!º0X[=0úñøtœg?Ë!Î"ópŽíÖõ3œÛFxrõÓä¼û¸Å’š1fðÁƹfÖ…w\øV4Hë5œWaY“|{Q÷üô¦ä…^füÎ㆟ÄÛ»­ßffÆY"È瘼?œ¯PwýD•ÄqšóZ?›&«wÔ(¿ÿPÒ›u¿FùDSDDŸb7ÙýO'­iRÚŽ…ö,X-ñ(/+O£Le†ð‹\ï@®~º‡V털õ;¥X‚Twæ’6åœú•ÎorPF{×a³òÑØë_àÓüM¥¾H&£ 3¯ð¹šn‡0 Î:o°0= É‚ž¨öoöÓÂè˜-N~L‘)RÂ7 çNáËpɆÁÊí¿ÚMy´›(a`õkP~\E†°òB‘cƒqÖiðö°CÒ€Mö1¤'Ê©€á\ˆÑh+$!¤`Þòe=9o#àª6ˆƒùK ÷¹™¯…eø[O±5õººÁ•¸€Ù\æ˜ÀÚ ùèùšmüdgd“»äö_…nR–¿PÓXaËNª†œ;œÕª)góÿÊ ­ý¹äKäè–æaØá›ãÖ$¬Ü\÷@ÍZ$ïr~ãð=â±­MZ”Â#ØÆÊu‚‚ ¼ÜÜDN*)[„,úvG*ù¾Ép¡¹KC¡*CÝÖF·ë<Ÿå„p¯¹ò²;C'ð| Ÿ‚ë¢Æoµ þB ¼IfS$$W¼ Lû{y ¡RQch” q>޹u1 [‹j\ öÑÅ•’+¶º½ªt虓 ß¡?ÏÀM-ë¡”Ù*]ˆ¼~ìRãȆ?|UòE˜¾¯H}´ŽÞá«*¸²X¶æíŽütSŸÕCE”qž Æ¥n•Þ³F ù½ºG6rLV¨å*Ь ‹µ\pÌÎ÷äþÐEÔU¸»ç°ïj~¶£AyÛZAo¡s ÷s«­iÿìÄ&¯øÌŽ{âòòçדÐPSkÝS(RC[ñ놃³KËæÐrnËŸ07Â!‹«âméêùÖ.³rœ%ãÉCE(¯‚üyU;L ‹]¦‚j©üsJ™,冢fÒ/SÅà—_5¯˜dCšo ô‡ó²R¢êžt™Mi.Rߢ¦…†y‰Ú;lB×ç?AÉL.?ëÃ+yíY¾äzÆjº€˜Æzóû0!;ƒ¼ˆðñÊåÞ.]RÜLIÂm|Ήî$µëæXÍÄh'GÛ¢;ù˜V ^ãBÌœËb ‹„ƒpmsC½ü@ÊKò0sŽNFLgBSks\ÕÕÔr¨¯1qïäÑ#8u[Ã$p£—b0WÙÝãð´XSê$Qd Vc ³#Oï·Þíï–:‚o<³ü vG£ ŠÒ¶Ih^ük¦ž^±Sd–ðQ:ÂóØ/ œjš6šVZ®`gçQ «cFÊÛŸ×Êê“Ö7œŠvZ€ÍOŸ;±ŸŒW¼<Üší£J»5¶]¶(Z´Þy#£òsº i<™ÒÈ}\ç–”Ðڜϊæ]÷ñU”¸ÝÙ.EçàÙqC?C›Z‹æÛ³]ÔŸüމ$‚?º;>\½øÅƒâˆ˜+/ˆX¦sxÖXÕ læSë=ºŽWT™I´µeö)ê=õ5Û¼ÔÄF9ó hA›Í`Šk£gööJÚ–HBm¨ìR^ÂdûI¦Ñà³ là±5é©ë‚Ôo°¹öÓ„ ! ›Vƒ˜Tßà Lqù\Å7‰!*É…m%¡yíp§îÛQcѮݗ7x`"I+aÇíán>„m>´=è¥ÈÅ«®ÿR‡›ä äƒ'ˆ¢ìß'ÁÞŠ¥óœg b$>¿ØVÝ%õn4Н4 uÊuÕè2*c:W4 ³'&åŠù†é…N­b IÕSxä>àçÍ‚øu;"᳕è)m—`Ňúé“H:¯@­,Ì”=ûðƒ/vZ)½Nµn<¿sm#qÖ1ج?ÒëÇh!Ü1K(Ì©îaÔ7b±ÃúîyâÀ!W!5åà¸ÚÄÞ-àKAÖàvXÓ;øãÝ¿2d¡xÒTϬ toÉ¡é:íµÓuÍn#m•ì‹&$¿´f öÖÐâºgúi˜ÛvBŽò ›÷˜¥e'k<òÜBµL~¤°iM9NsLb€¡®F;vÊè*=–ÃĨ~hdsÀÛmr¨dªQãe‘Zl Ó#ùaÛšá`¼ {u¾BQIˆ®ˆû¤Á‘pÆ'¿ñÀÒ8wÓ× „×re&)a{U.^3qtÎ"ÓRWÑA×½K…2*<ÒjwAÞ"°A´Dã‡,ÄßM\À/lÁìË›&xý¢‘¾ ¶üBçüÃL‹'˜o, ÖQI`÷¢ø Îih e54T¿ÚXH°±Ú•´Xœ#‰ Ô{sŽÅŽy^L .žg¬ˆ ®Jæí”°ì¹ic&‰„BͲŒX=d³€*HfM39·È×itº¸Â;HÂÐÂŒŠô|ƒ^¬eñu·TtA­øp#¼ IG¦ɘ–töCŽßARœLþvð¯}»ð (Ö~è3v•Gþô—XlÊœŠ)S“¼Y¤j]‘¯ -²Ý_nñ^Uò{sùî *3é…úe'n …é"ä÷”;T¡ëøQ!¢%ç•(Mƒj¾ ©«©NC,íyQ0eæ½þ˜E]§‘8íÔR³Ê÷“ àšu;ûb¤æ§rgèŇ˜imØD•ÎhR(P•øIbPqÍü Æ sj¼tˆ´­&×YóH}¥ánËFøU›¡ãgã'!¶¤Ü¦}ˆöÕ~ñÔî¼Dô,úžšÆ<²P‚I@D´iʼn$·eŸå~2) ;lìg°íâ6RãyÀ(FGüî„ú=33«$¶GÑ-qÿè#0Œ¿Ê¿qªea• ž1Q-ˆI¦—ôLQzÄ@½h“½&új‡\ë>cVž`±ÇŒ´¾ä×5Œ€ §-ÍJ¥é¡,ð (}…MÃN©»ÀÝý®wÓé)]ØëuÕËDnœJ¥2…1)à›úKêÉ»CnÇŒ¾ÂÕU!¸¢ŸÒïð'¹¦2;Êõ–°Ê·/ðiL˜{86ø“ÍNº/ÑÝG¡—Á_Ò(ÃH“P˜—$sÞ&è™34/€§Sz.q{#> '6¤'æ(Ùßb¶"Où‘íæÂ¶<öKÿDv:ãafGåWBrõÔÕ™= ž†Ž°F*¹Ôî:š]Òhýòå#û·'åÈj¨¬~€âW¬²(:é‡f 6cÒf³(6®‘«&Œ\ö<ÌyÚceRMªÞ¬Cƒ—_!ˆìSnÜ«ûA/îýDöP|’4z'RÄÍ®ô8WÍ­ÅzHnàMpÌ¡èÒNóOeJ?ÛLå¥à·Ü9%"¦9~5Ò6ÁÊUË 86Ù«KgÑ/g‘û¥&o¾Âã”dûlsÚJ¼ÄHºqUu%¼ìz‚Ù{§nzÎiBˆ6Þ~Ib­cÒARèrÙì:7o«Ï.†”–j¬R£ kÓøÑ52ÓŒÝÅPWVâSi*=Ò˜ƒ‡ÌG;öü“ã¡H›f¨VØ“ŒO^ÖÓ&1?qÇ$ƒtyèòI;rîìa¨ (ÔMO|Ü ¿Q—VÀ´žlÓ|qÉ| ' Ujü±G¡¹U‡ž7™Ï`Á¡Vl‘ŒÛ‚ܹݴ¸ŸMËB”£Ø ²x–‡Ä‹‰ ²Î°9œ„Àð7áž}µüPI5‰ô¼LÇÏ•V«ªË œ®?F"‚&怑“Ô¥$Zw* qj·‘N(-fÓÚµ14¢±*7X0wÊò¹:Њ+øà\\ÓY¶øUÿênH(CN” úhÕê:ˆ?ùf…èLüi.¿P³‚**Ý9ylfÇ­…FqÌÿ-ìFm.%P«Ð| “ÝžQlµªU}²BÏ–(Ù¤‡yã‹¶\ÐwðA.MåPÿÑaªÀG°|òNð„¸Ä«{Še÷û²7ì KùL„¦ò’˜ªéÊIÑ<%‚TófƒY,5´’çAë(ÝŽËÔmá©p—}3mCú ›Ñ«eÇcêë•Ç8½êKr_š™g’~&ß5¯ëQ®kã¡ ÈBÝÔæ¢áoäBù`UZñ$ƒÌ\óRc±mn(LU°í*Še&|î…1éR†Ÿ@Ä©êðºÐv9žÊ¢`»lÅ>½v*{üA;¸º?Üi¯žÈ9ÏÓ©é—G=ͳ7¡¤È¤èæ|÷›ã³ó>_­§†µKÿðKçr£wAù&ÚVç¦wäDлe(h9ÁO²®¯6N$¾ $aRñU3½–DÛÞÚºÉmПíÃæ`¨£÷\ÎG]ý9(y†ðÛ¿¢ Íò£aU É¡Œ+5Ú±çä®94äoÄìh—\h»SØfr*cOÊidÒ 1o±uo‹8 æÑ±>Ä·ÛúÌÙÓìÎI\ w1`Ô²@Ü3WÂVk–ß s_j/ð ÓÉú>Â.åe£W›âà:šÂb‡TBØ¢*÷æÊ‡1@ ã#µ²„®]¨jʺ>A¨Z~²¬Üù>Kìíh%ËÂ)>õà´óóÅ’òPr'€|±I“Í?BJRc4S¦‡„樊“4÷7ÚFecɧ£˜¹‚¾òEœ<=†¨´ßAf&'œ›ƒ·)&¦úì›·XÖ)MouDhÿH2™–7?%°¦qât±Õ®?Q†ŒVy±:/ÛxBCS~wÒ„ÃÈ2H±òGBI1@ª<6ÏÛë›ME…®ÄÏ| k¯ìZ†¦USiMï8H 78ÉÔìW7m„aìRü»½>+¯/ ýŸ¿` 99ÆUá|³¾m“ aŠ®#ÏxÔà4.q+n[o“ð˜Ò¾þ¬Ö½w÷6Ç=šYµ`Ê€?ö"Z&•µýZ†–š.ºÈ}C/Ù?Æ5j‚’qt¡¹«ÚG>¿á9»ä¥jý:áÚ{˼ÅÈó9¯Î»dÓðÆP”žÊ´dZM¤2¿F(ñĹ¢„|¿Ñ}5è/Í®9’­LÒ<š·¢Òê6ãγ|º/$ .ûŽ‚>Š>,Ñ.Æ–Âd»Ù‘PX“Æ{Ôèî3Ï*ÂŽâ‚¿ù¹µ¥¨@@šrV’‚ÞÞ-u˜ÍµÚÄÝê\=1ƒ’†®Þ‡‘þRI›jT¶~O¯µKe¬þ°#Oòùˆ«=2½µ–Ò{„Ž^u1‡>ÙÕb$¾´¡{ÓÅf+LZ1žLŸÐ¢ø§ý芡7)udî6Þž0›JP{w” ¾‚°Zß[K¤üÂ" ®ãŸÒRë Ç+ èZÅuòŽ—ÚÚ‹[ ö?`9` ìG¡ù¬·²ò˜[¶”û?QA7Lˆ}oôÝß½4Ÿ:.²ùוõ¼ˆ Û@†º§ÛBsl³$×XÆ-$x•«_f0Eã30Á@ŸÍ#ñÍ[‰‹Çt¾U|lˆCRÑBÊ£lèñ,Dím½˜.#”3Ú.˜,1³ë•ØTÛÇÉ g_GÖüœUd}NÜšÓÑÚÆßCAÇëʵCÆä:Ûwk%H‚éþkEþ»øäwŽ[kÿ}ä—®NÑ®R©wC|4ío×~5s»KÔ`²ËäPòŒ& èí£æ3Û˜GhŠ:ui.ߎƒT­¨‹¸¾`S(¤•¡l¤€|T—°×pÍÛ›ƒÜ–¶/9ä·ö´IÕJ[ø%¯Zßubê*ê®ä6…èÈJô¾æ¾ÆË{÷w˜PåfËÍe_a1M¶³“ËyOÜI0÷횦^kƒ}Öt¬ ä|¬…ºà˜ÏŸ*Ð+4Ýj„ƤO^!H}ó°~ÁL–«|Š‘û¢JÈ´¯®&.Ö§ôùQA§VS 2/VË#âiM/»“GxnÇÁØ`£Ï˜ØHLÖC¾ÚÆ‚<èœ1‰WËþóº_×£U/hQ‚™­òëâÓd³ È‹™¶C¬i Cù[òך¼ç.¢.É— ‘Þ²¼Žto LzïZÕty˜=hŠ„0Þƒ0fHÖ¼ÞùðpÛ ycaªOˆ¢<”ó£½\;Ôi8£®ù¥:K#ÏÏ©§dn{*®ýœ›u5oéUkv9ÿÎoªæ±xƒ•Ž6àDfù/ærü_[t¤0­{ö,eø!»"Ž…ÂX·“ØX¬†È†Õ£b¬”P矂?EˆÆ@P.«bºkàÓä\#Em}¹Qö”xŸ˜ÝXù´l7=¶$áq™„äÉAgÒ,«@Fw?QÐÕuƒ ‡¢“a\…° Àih;k[RPʇîí+Ÿê_DþMe/ìH*eT!Ë<òp ½¬†ÈÔçöñ«ÌgýEÓEàq–P9‰P7³¢+˜Ý&|k†µQà‰‘jHu)æœxµ@ýYDÛuäb‚úº{å`@x]9½M\\lÿwâÜuÿý#DÉQ°œa÷Œ¥ø&/3ë,1lÇ$<4u²°[¦³S$7çz6‡nèØ¨]z /Ñ­À4»Pwú6‡Ó0&Ml:A¼h!Ï$Gre«¾?×ëÇnèá&®YL€æ¨ç}êÈ+-›¿a}éÎèX0²=™¥„K‘ôõƒÁÚ`·zÈb‚¹òHg´µ¶nœEˆ:SäÓó\&7îæ ‡†Žcƒ¾Léâ½Å€Wä]÷áÏKD?þºybusƸA3ãÉãZ€Ìq§äx}²qÊ»hÂM7&ý&Yi4dVÖr8:+®iËh· HPJ¬å4 6@õTmV8 :Ó‰¬yÇDÐ*ÿ­VÖ¿À=àgé …õ:Ü0Èeƒ\Ç´."Ûã+ð…DÜœïÆ…8¸*!EÚ¬þÆÇ= pïÖíS¡ˆÈÃ}|U8\І_:±2çØF^ërR(YODUœZÏøX£¶eÈÀçžH—`Úc8yÎD;CìIÒY/L6œh5£¢,çŒß„Áǂφœéa;!EærÓgïo©¡BE~ûjAØÉiçOm^íØkW[hCJ§&n…›_.ÄŒrÙ!|bð<Ù¯?¸“<#–]/÷Ê.Éõ„c3ò½B®àT%±®\U €å\üåúe ¬ñçÖì‰6|Õ7Òò.PAÌpdùsoÚº7¸Ÿu37䔘‘I¿|Ù|âÔÍœ9—iQƒƒ»?;®£fX‚øDuž¢ 8XtÔ™õ¦´=`cX¾hi0“l¨;Â>—ïc‹"gÞ”S‰¢ýNC–ŒtcÌ Mpè¹õY Á"Û=i:9™¿Q{í•l.æö«ój4n¹`¶LÁþ@)ý#96Û­JQ@%Îï9BªèŸq*²i:CÞäγRùDímBOOVŸC‰æ”Cœqæ–,B0®®¡mÕHZ4Ò$Gp£2>ù¡s}^ªF+-£ˆ,´¢™¾ÑºÎ[IÁ׃—-~sw©eâöc¾Ìp¦7Û[¸ÚFðÎíÔ“u¨žg$GEM7Ô‡÷¬èWnb¿ÁmN?è_°w¤iN;Ó¶§—ë.ñâiQxøÞù>tPÓÃíÄÎÏ>lï!yµ8¬ôÂ÷6ž_3F²Þò‚s6"ºÈ`ÊÜý ôYxfÁ4q}H£ÓÏõ‡Ä–OW©ßP…J \®›8`NBg '¤,º\`÷=À&„3cÊEÔ±q´¬<¨®"Ux«—5vö¤{4’ÇH®)9òàU2ñZRȤç`Š2ÏV­¤öÊŠG½ù#óº>1‚oËŠ=7¯Êý(IAÊ:GãmAE!´¹ ŸßݨiÃÀƒÀß4#[¦R¥‘a¹=°ª˜‹'Bc„çÃd -€×“R`ËÛìí’`åØÐaü´¿ b{ì•6„ˆÒð]ë¶ô¨¾AÄ.-Àb¬ L“È>¤3J½QäÚœ¤#åE¯ðW39a¨ àÒ¾Gm…??·\]‰Ù¹rY…<´/$‚…¢úŇ ßn°µY‰}U»mF:ðà[íûT½^<_ËkF4Oƒ¶ýQ­PfQÕ³L"ñ‹pm4E²[\æò¹pr¥AO5j˜ÌQ"º·‹çRßk4…±W½ëøf ~]Xªø‡ÏÅ•}ël¤œ8£€—5Q>>>†Ó^¼Újì:de‹%uç©eH`è ÕÑ׌UœL؈]{+|ô ’E¿=ñYj®ô¾òLÀ©š»Á·~‹¥ ëMںݯ¨ðe[#æ6Ø›¬÷KÄk?^â+{Öäm0â§-òxlã’4Æ8NÂU..$Á-Ö!HˆÒÔìKŸ6Æì²“wÜgó=IKÆžI ?_ÔbT¸b˜øéG—­À²#yôËÑFöû|n.ƒQ‹x|käÀh…=…„ì +0“t,\G‰n©Vs0*òŒÜþÔ™)rg¢6·ô¼÷lôfæ§I®¶ß­UÊiQ•¸ëžPÑ£ÿ«:´yÝE>^l|zBöîæÓ6ÆY¸ªì¯ó=cêÊ_€=HÕ²?tC–JÜ÷(*èóÁWÊ7M§” •ÍYº¾‡]çdÄäúà¡„ñïñ‘BŸï‘–³ò5‡µPÊʪ@`;±Á­ é(g±Cí±Ýàùo„Ò¿¥±ŸPt·¡åט;_*$¹˜«[§n‡I‹ù2`Vá!1“dËá>Æ}u"ºnN ¦ã»ø5é©Z(³Ô¬'N¤Yë|EÍ÷mÝÚ‰Û‡‰‘ÑÆæ5E-½Ó˜»–è'r{Ö–Ë.ܪ×ÇÓË> A7ïP<+°_’ˆ$¢”>95 zÛæ6n•p~©xj+ü±ü\§œ¶Ú`'Ah·ü¢]#´/Úå³ ´ÿø=hœtJ_ï³ÍÎþÒv2äewkwÏRâ7[F|rƒ.õ¤ ò:aT³\ìÛ ïG+ÆPcÛÖiÕÑ€ûðÚéUI¥È ü0¥ë#ëÐg5[ÉkJkƒ؅VÔ‡,!2{²ôÃNÔ &oo±¿Úƒ·rÅ Ôå·êMí^”Õö¨“$b­´Í·ˆÁh~€œ¸ÝJñê(57{ï& c‹÷ãƒöG^êͰðÚuoA?~?<÷">Ðú¼‘òÓùA_1&=ö&eJSMtO1­%Éù¸L®©‹¢˜Ø:ÞH[9Î&í­¨¼/öDí|w/AãÉÆè™¥WÅ7¡‰½jú½ËV…vÆÖccalµ_Nå|Ç«-æ_WlcÚ©›©Ñ\üfv"'gò;*,.ðÅ&lŽ0A×39rÃî¸:!¬ôô^•-þxÕŠnk9¬"½a2úÀÎfúMÛ*uкS £{HsѾ…ï׃]´:ôÁõNZmõXÛC»â‹›>Øó·*8¤å È—¡yñóѲ——t|<¹7?OÐ9Ï]=#x>Zò&Ïr`ß=jÉeͬ^åð UXäGœ¸…ò 9þòœÄã9¬æD‹¸ñdS¦òŽ™Ç÷èÔ²- ˆªC«©„Á¿²*²¶ð ½Îf¥fÞ1Í`•Ää'Šº!âZ NšáU=^ÅÂà ttómƒž H–PÉç<ô³CõíÈFëæZ"8qõ;÷ÉÉ«÷¡#Pðn(ÍxÁËS?Àv`¬hîîaFƬ*’“ó:ÓžeÒ ù2)o’¶þBs˜ÐÑ øY(œ‡“²£H–Wsf¨p%¿pù¢úÃâbuå$úÞB8¢"¼ü•Žd|bÀ€/:l¬‚‘V#ι¡ŒmG‚0ñ„Z G:9®ðçÊjf'e»«‡Qÿ'·+°›ï±N/™ÕÆ'3%òrG‰÷&ìÈš¸¶¦yöè^ך–\˜¡Ó ÁÂc›üdE°vÌ÷ ÂfÂ:O5ðÎ÷20Á^ËÞÏ£·lU^Ql=1ƒû¯È ~m¿&r÷mUV9=Ttg[ h-Ÿù‰)È©º•›S¹;ÃeÏtqü÷²«ghÆ?òn;ƒ×™œfx§Wš<³£®“è>OWF’ãCwB€Éð’©Ú°°·|·Ú‚µœÒ½à[5' †³³«®¾Ÿõ˜L§¾Žæˆfy3—£„*ÙyÊõҶAâàÜö”X… `f^£•›Dž¶:°T%C)TÐG”íoÙØ_ûl½Q|ÕÙj,àÉ‚²›÷“¹\ט<Π°XÄ#ZäŒÇ9êÅ " ùrµQQgO,)À)(E?¡’d!îº<ïx ³ÀŽÝpÈa®zÚš¦Œ|≄ü^ mVtCèXkÙªb-ª.lÄø©Êñ¡üÚhiçö!¡3ñ¼€RÈÉtÚÒ6c,™‹@hqX&+"»UÑî+i#<€×oPfÑT²t¶é‰ïôÃIwÙjˆ=_‚Ye^þ¥ –ŠÊ³u˜Ë‹¦˜€ó¹ñÙyr>‚yà„tqÏUÖœyÃýa—, m2Á’è5z5å«]¢ #QY´i?ú2Þi·.¾™8Ò{š]¯é?·^5xÑê‰$FÇ›¹Y¢)gÑŸg“»!L„6+ÏàÙ•ùÉuáâÓê,ä̉=ÖœcpEQeÑZ†Ÿtá’™¿Ò.ÂÑŒ:Ë¡“½/ž éjÛÑ—@døñ®f¹˜7Î ü>¼¾’bFx%T.òãÒÂË—ÆëÇÙÛi$Òê Ç}Q_ÕÝy:B7íóïd˜D¼žE=RmZigÂÖŽ?Û‘ø}¬`Â,áÏHÌ­û¹WùòjP„G`@7ZeÎg#¤ èµ-Ë)*¹ËT Œú.iã±9s%˜úpý˜îöï$ãäbÐ7ÅR`7G@óG}yà{àcW5ØvŸ–?Ÿ6©¹c)ŸÉé|Ra¡ Ù(Ñz¶ªõ]Õ-b3£ûª0¨µuǸv$­6ThÜëÇq?JYý|Z•x©[ÂÚ¦ÿ¼¢,·Ò`?h°GEBË4z!6»à<Å‹’rk¨Ûi›9÷5%¼PžòÄ<ŠV¯†:jÚ†h¬.|§LBiUÞ1C= ËÈ — Ƃ˅gALªŒF0¥ðV \OÈÊ€¢*@¨üƒlªïЙ¸Çiy<)Ó¡’Õ6¢ÐÝl =†UñZˆZÅ¢‘¢ënÕ6̦¤¦ÖÄtë î¸Âi߇—ßÄÍr8u |«ò;Šƒ­Ÿ£F¤ R1‚%Å;e‹6|CõÖz÷:•ž$e©Éˆ¾Ÿ»& nÁ ?´‡Ö~ç1nàµ0Tö (wÀ?Y1‰=ÈEÝKÈ»@æT¼QŠžH ¿¬×½1ìׄ*Þð2{ËãR§×6‡kžê’fÃÉHtv;)[dÚ£L¬f«ø-/2i‘H:E˜£\´žJdiààHRØßK¥:ÉÅÝïÖ¡}c‹Ñ>£‚¤ZÉ“ÿ•¹h½ÓL˜ÚUH’‰zµF†éq‚—Ù‹4pœ+€>2s¯[iNÝözv|ý”§EñEÜlo?¨‡µ%`Kg§=OÕÏJ ÙÌ€I5íùÆ©—ÿ} ‘¾ƒImüðÄ8íŸÙ„l¤xì}Át£´‘«»Ù—ÏLw$$ð©´¾„£,Jbà(¸œ÷zz¶‰¬k׃Ե•UÊh‘$($-·£¸¯ŸL mhfÅzÚpÓ¹2=»D¥Ë#ÈÓêd¸Žqë!ã¼” $a –”m¿°Z……@fÆ•a¸Z™7ŒŽB"/¾ïß.ùv‰ûô}ñ»H<ìÓ?–G‰….opÚþô¤ð¸®!ÄÛ­¤eŸ 2‹·¿GÄ5ðp–ýå©jBÈ+ÔNKæ­¬„e)Ÿ GI: 6„ÙÎëú›È}ßA`5ˆtï6}B`F\¶‹°Ê ¾ (N[ më ¾¾Ô)Ô»9xÒ?Õ·ø¹pÊ_†h÷˜Jć¤@½ÔÓåT' ¿G>„悊P´[äb©KùF*^Bu5Û¶&J|™¶4JzÒºPÇœ2¿­žø¸›ôšÝ ÷ö)}ïˆÆý}#sá¦V0› ¥.¥PݽûbÀЇàÆï²v¨¥wî0!çÌoí'$§&Ö­Hö$žÀ®e ¸vóÞâ“ûRÅó^ž”ëÓ¸HÑÛå•2‡ØŽ‰‚¬M~QóÀƒäi¢ã öhñý²ècC;PNã$›?|ì&¾0Ó¼UœÛ™G+O¼+¶Ÿœ›þŠ‚óaT£rÔp¬ùÖ(¿@VÛj¥õ-3ƒS¦~]öŠ¥PÐñØfÅfÃ}¾.lU‚ãý|ë0$m‹âqÖ_< ý©q©÷¡pÏ|ómÅ1‹·fØ”qÃMôñ¿\ À¤à(eÿ§møÎ%ä(»É°åÿ®L‡ç!Þ/q2£“(èƒÔõ{PavìÇsetðz{欫ùxJ]Eè¬çwŠéYyò 8«N‘0øRzâì—ŒžŽ*ÅÆèE³9ÏT!ØÔv×ú}ÓÐ’±r\ËBí…˲Q>Ãâr!K^ Ž7ÛHý5<´]ß)õC‚Û ¿Û™n÷lbÁÁôduÕSQ^óûÚ°Ñǂ׸­Nœ[ä¢ÌBv »íbp•ö9f‘9ê“WÖ¾îGÄ׎ÿå{Ü2Ý´üÈ=æ²FËSnÑDÌv:çˆ(L=æ³K¤ÇÃ@¨ð&~Š&)“/Œ "}¦0>bÿ¢?¯°±s.!uéÓ„ Æ#»lg,ncJ ¥´"÷Æñ$C´8ª³p§=Gêç*øg/Ø40â»Û^[Ö,]o9¥¡âfú¿ÃX «Ù¤ø 8ÝL–H-[hLþWM“9¡£‹ð%îÛ—bOÛ×µáªR&Ù`o‚”M å~b¨õ ì·¿BÀ!yÝ!9K‰R¿|=R _ëÿΫ 'fz7¿8,º‰Xmg½Â/~Ú /š¸Š}ÀΘ‹®§àÕ䮃×Z+‹\Ü¢ã üº­þø5‚äãÂøMæÇ—%’àuö'P·ýìºÞaÿ×!  {î”4€ÀŠb£Æ›”96v|÷Nêò§î åbó¡ÏÜloú ¨_«¢–7fÖ„X‚·r¥móÖ_õQí„ê⽄D×T’sPý’†ô¹2,Ѻê)²z°kÍLÓ}Ðâñôô9³ÎŠ<ï>ó¤®h3ˆ.ã¾9÷ì»¶ù,ަÃ9ãˆto¨VuÓ÷f¸r ‘TXÜîbÀÁˆû$n(ž™?Õ‹A vø£ endstream endobj 135 0 obj << /Producer (pdfTeX-1.40.18) /Creator (TeX) /CreationDate (D:20191201114220-06'00') /ModDate (D:20191201114220-06'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) kpathsea version 6.2.3) >> endobj 12 0 obj << /Type /ObjStm /N 96 /First 804 /Length 4610 /Filter /FlateDecode >> stream xÚí[YsÛÆ²~ç¯Àãqݲfßn¥N•$G¶c+qlÅvìÒDŠT¸x9¿þö‚C‚”DÊ>O·$ƒ™îéîoº{°èBªHP¸BkU([e ¨Yc - §}¡]á],´-‚“…ŽEÄ.†¹ž1 ¡d(`”Ò:ÆÊ&\4Xh]Xèï ¡ŠúGë€]¡’ = |¤K… 0 § ø×ˆ ctÌÊz]8˜ƒœ—¾pÐ?øXxhOJÐÅHizÞƒ@ÎaŠÀ ð85˜/t5æ Ÿ‘LÕƒ¼@Ê•@R˜:Љ0õä\qÊ6ô¢‚-"L];_D˜º†Î¦ì€O p„A1Â1A'ÿR£Šme%ÐláЋÑö`J6áuŃ2’Q€~ò…·Ò)À”X‚)zç ¦‚J”Àà (+@%(ßSÒ`+pV´+IPâY£)ÑRhk…6³`r¥4üµáY£+?0ÐR0B¼ R:9Óƒ}•Ç+Ðn@gPƒÆ;¸ U& âÂR?0º²ÖêzÙ„ø@HH~*‚Ä@Ä¥{ +ÌŽ]ØÄsu Ç3ÁQ ^(A6/¡NÒ#mah:8ZT¢x‰˜À…•ˆÖþ °¡h^F)Dr5÷~ú©'ξÝT…xU^V=q<ͪÑlZX<¯{âu5Ï'ýj +‰N«A]¿%4xPnHú¼Ã'0(S·ÿ›(Ÿµâ§Ÿ qbP<¸UÊ5UX¾©¢:¸:Ž‹*`e1 a±¨£m©|īɸÿ¦šA†''…8«¾ÎŠóÅ6 §|G:û ñ–³_™'Â`}ÊPG·ÐÔyM{ ¨]JË µÑ:+òe‚d²f2å4ˆÞ‡È×1š~˜Ñ²É-äÛwj©3µð#ð´8+ØZ˜aOILDFþIZ0l—d¸ö•Êu¤2÷’Êø]–F>ãÍn •u_A:@3áA‚l1Ï]vx¸$¶4+€$9¸rA2üe¶|(Îlgöa8Ë\$}öw¼Éärï+Utö‡€.³ÏCc¡ë Ëɰà·ÄúÍn:…M`\hî~@sw›d ŠvYTûJÕš ßKªÍÓß´öWUà1çjÂþ;­)o×Eõúˆz÷}èÌÞýàÙoË¥7%{JdGªøcá—Ï~£û{¸©Bg#Ôhvt¡ƒ´p?¤…xçô7;·›dHÛâôrS-6®{ÊUGÖ´‡¬Ç“ªœÕãÑ“rVÿzò¿Zª¤ PÊj•µñ`ëµ³z6„+¯‹§“òæªîO‹ßæ³›ùìI4˜÷« ^µò@>jx±éѪh¨ðžx3¿˜Ñ)6ªžøµ¼Ækº'ŽÊiEFϪáçjV÷ËžøyÔêÑ%Þxjú(žcçAIÏç“E&׎ïêÑáhZ//?©?}ª@U¨Ó¥‰ëz4ŸÉ‹æãY5¬>ÍðþŒAúé´—“òs%Êþ|V‰~=éϯ? «¯bV•¸.û“ñH\L*èCÊ~¬ 5°˜ÖSq0ÏÕ'1Þ¢¦˶ñj>º,'óëa9Ÿ‰ñåxTý-ú%Ò›Þ”ýê|;bUï»ø«êó…çתö€ûèŒ9ð…‹ñ@óÑGyàÏo·•imå5Ïå´œMjàÀ [ø[ÖϹ×–¦Xç9 qÞë}~ Ëà¨8')NêÉtv|UN`«Ó/Ëìä]=˜]Mñf#­‰ÖÜ©Y6ØiOñþã>Ö@V±4+¨0I”&µê‡zSK&&}€7WÓ)¸î¢ÛX¿O©”‰í°]ß‹tsØ~%ç½zeeèj[ºsyË £ÓmÇøt›o¦cg>+³Ú¹ä>:ŒM™ Á¼“ €çà \õZ€ßé±ò ÜhÄv@;ÞaŽèã}P=ƒ‚–°TÆj8$ã€\’ØG™ ¶¤"Cyp‚ŠËÄ»†ÊhqžÚ@K.ï†2Ó ƒþqS™™ÆzÝ–Œ¾üjC‡ê|5”:º3Ige®ý|¹>3¾à,è ŸZ`éá4¢¢‰ÂjA’¦`zÚÑô>ìaVàê=-m[!·–™Ê¬%`wÊ…ö ©ˆKÝBǵŠÇ·GŒ`çRuq ÊÃ%«¥)£¡Å¶^âcÃü§$M¦9°£á2åÉ9vËHZë–Š'Ü"ÉÑ”ÁÑïýu t{Ùôoh·<2+îÀ²Iâ±Ø4)LJÛÎ$ H2&ÁT·•øŒ º6ZXewË!mE+ŽÉu[x.P9²2×+ŽÅ̊„‡ÅÏvÑÛà›z¤ü‹èKk"± Í|Â…â¶s¸ ÔÄDÓjÅ'Àèµ}ôuúîû4 I/ƒ%®P]Dk ´àÔ2$oÔ×oö?©¦ýI}3Oø®=ßêÿùÅñÉ“£ÿ9>=z¯ð¦ÿ°¼œ6¿¯ÿØ™â±v¸¯6”PŸ÷Äá~àöµ'ŽË›gU}y5ÃjO ¼öXáÅç³rX÷G—ê=ñfV]¿¤žxß ?ÅwññéÀ¿Ä‘øY<§âµ8¥è‹¨Ä'ñ©þ ‡ñ|"®ÄÕ·›«j$jñ·Šk1c1UâFÜT“z<1Óú«˜‰ÙÕ¤ªÄìËXÌÅñõKuRÃ\”tùÓ³»´ôdz÷OZúù½’›µ¤-h)á[¼ÖY´ÕRMVæZ’™Ž 5ߢ#2•«èbRöééÕQ}yÉgìG§WåìK=¨&¢ͪËI9ÔÓ›aù­=ŸU_gâ!6$VN²³‹ölA}õ,?¥¾“rP÷Ë!ÔÅt~}M#ÜÛd¿jˆ°‹!Nÿ8zõþ qú|›!ŒF¸Ò-¹x\Ímp}¬ìÂAo5Ʊxˆ}˜} ¨ýUü&^‰7âñV¼‚/ÄE5C ÷Ç €ó ÂyÅø-¯/%@¸ïÍU-njÆð°œ^Š?w±›vQÙë'/Ÿ}8#•¹3¡Q˜±é;),É­ «Å_+Âð£öû ëðèÅ! 6›_5¨ ¾“0QmæýÒ¾ m7_VE4»ˆxôêôå‡W âëm·rpù ƒµÎƧ­‚GfŒŸˆ§„ó€ô— Üà_äÏôï ¯ôw5C?²¨“£À…°|²ÞÇ£veT‚f ªë"¿ñáŸy9Õ×>,Œø_ úǘ0ä°p™†¿šÐÐ<²‡¿D&.ó_íòΧâñϼš¢³âCê¾8áí;\ãFZ·ÕuÍ‚M«Ï0ŒE‹µœG$Z×â›øøO5¯f§àôôðÍñ//0["¸±Áñ³›ï‚·/O¹+¶ÐFhPü¤ûÛqw ǧ¿’¸[\€1¼>’…mM÷×m×™\\™‹ûV rk€æ!«‘Míä¦Ïž=ýíðŠå¶8¶Åª7ÒÞaEy/+Æí«Lµ"ŠÞÉIxöáåñse‹ô"âàGWßa»(O!/²L#Ù# ?Øè Ð ,WïrÕv «wrí¾zvòê(æÍŸ[ÓÈT<¦,¿V Á-UzÚ/~ÙíÁ¸¼¹™Œ¿²rÊÉdü…å/§èЦCÊvµL7³TõY.‡ø d–ŸêQ=ûÆïW-ÒÀU5íäП¿9ý…Õ´-È;ÐnIЫÁÎÿ{hi;„åå%dÔ,Þͤ¾®V…ÛÉ}½ûõèè÷?A¸³í¬k—‡ýN9Œ·DxŽïOÅ/”þiü7Ç0 Ë\óíV¶ÑšQ ƒ0¶ª‘<ßÛW¿¿=Á„çìlkÆ ¯î ~;ê3}(µ¢nËV’žÁx8,'Ë܇ýTæ©.Å%¾nYu¶¾øÎ"„|Ùh~}QM¦õåh·D‡Sš&q¹;]é8@³%2t_]¾ü¹~Ïaôa/½Ú·|+кì­@¥eûZ ~!¼3ûõÍü:û¸Î^ùœ=NyñV¢ßûúv»’îz‹ð)îÎ}m3¸Î\w˜ËÕKßrawîk»·uîövÑUö:èÌ×öUëÌ; 3+j·æö€üZŽ¾Î¼9W¸«Œ»Ùs«)ówÝ\\¼Ï¸Ûݹ¯f¶ëÌ;ÃÞ2wK¸Ç=ྚ‰®³îàÍæ¬ýRéi©×s½uæ¼ÉmNÆíÎ|-ƒZçoå¡-í¶õg¹é Íú­X—»³_Ï&ÖÙwðfì û%ØÓ†,?Þ˜â×sÌ>²ï ›n^Ôƒiñ‘x¼‹/xïTèæŒ?á°y¾qÃoÿ&d™ºåFËnêŽ 9&äù›Ï»xþ&軨ëmÔŠòN r1„ož5Ÿh6ß'5ß¾¬8.!×_ö˜RËúü­A§ endstream endobj 136 0 obj << /Type /XRef /Index [0 137] /Size 137 /W [1 3 1] /Root 134 0 R /Info 135 0 R /ID [<3805E71F43FE5AE0D7D99D7061D1ED20> <3805E71F43FE5AE0D7D99D7061D1ED20>] /Length 385 /Filter /FlateDecode >> stream xÚ%Ñ¿KUqðs¾×²ô™eæ³|ùê©iZ¦ý²RË_=í•–©¥V: .Bà M5´ M5¹*4º4‰ƒÐ*4´”8æ`˜ç¼åÃ9çÞû…{/ì F…POÅ#Ñ/†ÅˆèOM•ûæQ‰@ä/xëÏÄ8$rˆxÒWŸ‹\q˜H-z;*Ž5q×|‘G4Å\ DŒH¯º¾…â1”ðvB'&J]OŠ"bæ·k½8%Љ·ÿ¼ÅE ñî§ëiQJÌ¿v})ÊÄâóoƒâ±8+Ä—ì%E9ñu×õ¼8G|ëp­)b3qð‰·[¼U‰JbkÍõ•¨ˆ_ÍÞªE¸(j‰?}á’¸Lü-s½"D£¸*®‰ë↸)šÄ-q[ÜÍ¢E´œ·åóî’©ŒÓ=2ýé|œÚÉ¥ì?ê 7vœ:*÷œº2ãN÷¦WœÒ ²Ot3,rêaø¾îô€a§×)Ã(9ëôPŒ‰qF“E`4·ˆÿ=% endstream endobj startxref 227727 %%EOF survival/inst/doc/concordance.pdf0000644000176200001440000062606313570775545016657 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 3 0 obj << /Length 3086 /Filter /FlateDecode >> stream xÚÝZYÛF~Ÿ_¡·HبÍ>ÙD’;ÞÈ.¬ 8^€–dlqÆï¯ß:ú ¥–fœ8ÁbfD²»««ëøê ¿›]=y®ë‘¬…’ÖŒfoFÊI¡­9i…nÔh¶½?Èñ~ÿæxqXÀÿþèÉròjö×'Ïe3’R4Ö*¤25^ÔÒ¦Ê ßH¦2›x9^`þ}œLµ²ãÙõ$Aæ×]¼˜ó~~ÔˆÆ)‡»Up)|åy›;  7Þ¿á_–œ okÖ)&ì”Ds;œÜÞYuñbΣoH¹|ýt’½ç›í~ë1ª}‰ éøñœÒ†›çþ•‡sÚ© —,xÆk”úG¾þs{8Ï0yƒìø¥|Pé1qÖ­I8é²ãsââñCO d‹(16E–ØvÏâjëȶ:äl|¼]¶8tǬÐ8JW|ä|ðòÚuSÜö þÿ©’æ–é¬w¼({û~OÛ žHQL¦Vêñ»¼}»à%;”)kuÄØm4/{¢N}ÈžpØf¼M^ÅJÃ%ÿ!$Àœ›ûËã^œ¹ +nyjôŽËŽ@¹b/“¾x8;»7ŒÍ÷Û- á6m·,ÈEy+¤?LÿÈ^ ܇ño€žiÆÿ.I¸Vº8ñ§JÉSZJ+§|I¦45R%©¡EEï6£è:zZ'>¼É2DS¿ ®€Cè‡ý–oZüQãà´··l<ºí»ü9[…XÌ+9Žp¼Ä\ ç°áTFàÎB«$ÍœJ¨µÏ2´U‰ˆðµùE–< ©Ž–}Sþ#è¶ÑEŠi[H¾ ÓL¤²ñ£Â¤Å‰Úù_äù'ì«û%ŠÒ kŠìûK܃ü%øœ‰¾ÆQv‘¢ò6¬ã¹äÖäÿíëõ$ímöFÛä°àãù~É×´žÌfÒK‚qÎàŽ=ÍTÂywÁgÁ+l$ÄðeÇ[1Ò8"&8n·ÛÀ1B^Ö熆ڮ¸¼ïý6 Î VPy!>²ƒ!V(“<³¶Ò\Ú…Õ2{Ää¬:Tv%ûчrc€¤ô°+0g!ߨΆ-ŒV;¦ ¼Lò[rsçzp‚RUmPëE ¥)Ѩ`DÅGÈhÉP.Ü$ËÂë›D#!e8< ·»EoM'@ÈCfNc«}ØbWœÛµÛáÂu´æÞvî]#Ð+Or/DÈzduüTY5À‡9\˜¹Ið¡j_†+ì$KÀ–ñ#Lú *!W—µC•âÒ¸¼/ƒœ*2yŒquŸ bêͦLò¼àëJÁŽôõeÁ~±«O7ޝ?ƒØý±Øcä,9’=Ÿl b¸,1¹òÁ€ríSSžÿæ”Þ^˜ñM¾ã¬~*놢ßÀ9ŸO¼aã@ˆÇŸ:WÅølXÏÑ£9ÛÜb¨S‹Æoc¤›˜í 2†¨»0LUTª+ œ§””Bö$ݦ·¶©‘ØØÄ±Z¦¾&–—ù¬Ô¸x8dq—’m ög|B¯AP󜚞FpàËÊs|q½Ÿd*c.­}E>P •‹ÆãOB†k’?xÏTà!÷Â\`Êâ¦7yä:Ì¢d™Þ¥‡Sf“õ™ºh}5Y ¦šIÒùfÊ~ôßôlÐô;*,3±Úíc÷ÂäÒh™Zp!‡MdbQªg¹9‚òÖCëÔQØsÍøïÅÆ6•«Ø‡X#î3’p¸™b¥Fø†ßûbò\IWˆè³rD§„?O.ŸÄó³m"(î@¹õQ7bV,²ýQ&q_ØÚ¶N #lÖ¶üCJ¼‹±›ÀÜÔ¶½DÞöãõ°ã݆Eí!¶¿ÝYì ]E0wИ{Òzf6ÖË|ÏÅÃQÏÝ…î^_¦`EXcåPXì;¹\ÿ÷Âúú.œ64]K:„4Ñf Ã‡*Ìž÷n÷ŒØ]¬Ã†*Î]=Ûœ9îrö€0þ±H8dœÊ¹t‚oŠSC8 Ûßž4‡ jtÈ@wÅî €4 ìÒŠ°Ÿ6Åìß–õ[,m©ìµ¾î·X¾)‰Õ å,®M™ÓVv8LeP•jºŠsžá„«ïgW?_¡ÙU#9R`„Î{À%GÙÖ|{õòU5ZÀ äBCÎþ¦na? öˆ 7£Wÿ¼úßeˆ©¦J¹ëþ,çxÛ'jÝ&d °Öü†^¡€—ªymÊÑ畃V u°²ÔÒ E‹Räh¬¾¤° <Ûï £À²6î’j¬å5Qt¢Rêÿ ›PžÙ®É6æÚOä=X hóOç¢Ç+YRÇ«TMüóY¬j6¡GòEìlpG§Å¢~ÚòƒAô§dy=œÝëÿä·ì0mÎ]¯øjÉåWK\tÅÓøû‰e*°ÖÔ>Ú„/B®žk}ê¬òîƒÆŒæ€æoKÚøªñ.|§Q"Kf*áW=^„³Þ™ÿ”¾MÉÞm»ÃPÒꉽ ­ØÒ‡à¾Wh• ¶+O!êüçY(-T—êjµ =×ÚÖ,“4k—ûpë¤Öb+ÊØ~ñùPew®%óøvVAsª\Ò}²ê°'¶ß’Qv_”r pÜTµ.JgÓ¹7pÑ©–Ç)¯tCqËØé*d"ZØËrÕ¹Øâ½¶¶OCÛ -U‰N¦dhü"K¶÷ŽAæÖÈ€×Åe^¥ƒlؘ‹- oäq}¿Ö’öb}oÜcß}gѧW |¦.4ý!¨üQ»ƒ»x¹ºgÓ§ÏD| Œ”˜^¨„),ä-!Û&àS臧nHr&¿;ë}¸IËåÕÁ+—?#võ¿$àï¨2îyÙ bì‚Y×(ä@¶(IUz;ð¸ÑÔT–¾ƒÁoKâÒ·ñ›?äà:Êg)oŠ¡ •ðRÅÇçd¬»UXLïëðÛ$B•™X8'½4&?›Íñ—¬G‘êÜ‹[‹Ï_+S(Ýô€©Rêl) µ˜—þ(ßfèMÆz_,b÷Ä”i- Ä…Cõ_)ú~ endstream endobj 17 0 obj << /Length 2795 /Filter /FlateDecode >> stream xÚÝZI㸾÷¯0&‡QÍ´Õ"EjI¦Lz¦ ˜J.™T¶Ê¥.ÛªXv/@0¿=o¥([U]r(›Ëããã[?Òõ»ë¯ÞV‹:­ [,®oÆØ´4vQø2µ¹_\¯M®ï®LÒ^-­’U¿‡Îª?À纡¶Ì Q3p»Á¯:Áéæ'$o¶<ÙA{eËäHlM‚“øÑuÒÀNÌL™J¿ýˆôWK[$-®êv¸8VÄñ×WË"÷@ÀŒÛ¡÷ƒõeòÐt2'Œû[þN0vsµô>y‡+Wðq$²¿]ÿ~±4.­ƒo“Ö^TCÚäU‚Ãw‰‡Ç®cGÓ,[?NÝéÂ*y¸CÙ?áN¸`…¤Ú— Wfa–£9v$ ÷º•èYì€3mL·ºö;ðôЫ}Ø[¦È’Íj+¶-iû5S¬úS¤A{×aŒ¢<ÚíWA¢‰>¸°ÃXœ9ñ Õÿ€N ¥øa–E5žäó,S«™Sk¼Q•zWÅZ]¡×¡¯Œþ4¼DuÔÉu!¡!E.Õ6Íêö“*škJäcÐô!P©\Ø¢}i½(XŒöïX µšZW;›qv¸Ôˆsi–µ¯/ÏZ‚jªQ§K[e‰¡ŸQoæu ~ÄÕÂfRo™¹ä\`9<›-jâk)Ÿr„æ´¼áÞ2‚0Diaßï:ITá1Sâ$ß,N7ØE•7˜—y¬Rò±B¹,¹‡V (u7¡\Ÿ;Ïò8†f<¦N«2x¿ä¢K>6K­Í•ìÓ%rK9MRÖöÝNÎAý­ÙJ¢ÿtUå’ßæPÆ$É•yréc,èLj-ÙK DhDªQlpˆ ¦°nøë†¬ØŠx¢˜Q#TÙÜE̺P_z& 0&'¸‘ŠVÞk{‘'ßó‚÷W¾HH)'YF°fÌ+û8“TH…NN\2v :àÆ ÍÓ šØoxOìJZÎf§ú›“r˜$xWP–mB€¤;!xtT²–,û4¯ž+°›Mör©·!B¿Ò,L{™JóÔgÎ{9Ì¡åF(ËÐf$9ψù!(l½à¥ä®º‚¤Sœy±š¿Ut%m6,¡y%ÛàL´†TŒC±õ@FÀ1¸’GA8qû ©xËä€RûÈÔ/ÑF¤ÀÚ(Ë>t ʸO–Úõš¨»gçÁÝw¦ øžA$÷”ìP”•ðÈzCXÈ ”Ð΃³1ú¡#0©e&'RçÙGNŽtV¡$`u¸=[×÷ÈØ6 öò ‘ã¤n hµ*˜­úNŠÐýœßqŒa7DÄ9^,…øÃñºI-œ‰Š<çˆÏ-é¡î°&öÜÁ\@¤®C[’á@‡¸=ÊÜ?økP_:’lÉ•ÿžÙïˆí=©ûÈCä<Íö“Þ¾DªU¿7ÑÍPèÖ§ô·W•“˜³Ï(Á‚šij­õ² `ÍŽ1ˆ´ç€fÊàœF§÷T,-ELIeæBÖ ¨|-l¢˜ &zQ?6r¯¤,‹\b j£î‡^ö¡Zpzˆ6!N˧;%*âÝÜh4aR-ý¨ÁÜEUé8Ö–qfëR›Ÿ—ò ÒtV=#MÇTÝe.Ò2¯Éð¢´=ù‡)¤]>}!€¾Éd~¿žèjÝ— ün.öy)Âà»åb ÉÕ•õ ®Opp ¬OP3:˜½8 &ÅÄ lvVW~Š*§\^f\‘&¾›;– ׆]£¹2?‰\:ΑaܲÔÔÂ^€jK…bÃÞO#áÕaÏýá9â(¨&ÀÏws¸»(ƒ3âÅœ;\Ìe—ž›ÝqDbÃùYܘ å47š Ëñ®"ÍPN„Ûíô„z‘qEê‹3H‹†?)g€ã û±ÍI…3(ŠŸ× À%˜dz{«L‘½òZË.g!ŒùÂ'ìã–“çèó f •-Ò¼ðŸ 7¹SÎGzV.&49Ù|¤g,š¿Û¢s¤gOD:\3Ÿéþ‰H÷UõˆÀê¥ü÷šû嬞Ãõµ¬ìÔê¬êò,ÀK9O)ïOû™3•Žä¿ìHÝÜËMšÛ‰~‹ÙÎr4>-œûœ–ÜÒ'Z"Ð^Æõ¥äºrˆ_§ ¹`éòâ–2„¤Ði¹¸c]Ÿ¾Ìˆ.G7.GTãô©œ†×ã¾9±‹ÒsàÌA±sóhAæB›ÙÔeõ‹ÅUš‡Ä®‘MÀ8NÂñû)‘CpWÊjåCY‡+ˆEEüËmZÛ"¼cc}ò#,øHBƒ?=0ì»´,¶&­àÆÿ$Ad)“ŽÊÕêg$ÞZ¤n Ñx;í$ìp¿B K/¯ñÛ4èBJ ›¶“ã7šrq^LˆÍ!c÷¼èêé‡p»¼§á,YIÝÁv°…-3¾Õ¢ÁtŸž›møµ`§Î«¬æ~È!)A åYº@?×[ú!ºe‰›D42Æ`>§Ú+Bo r1›xÑö$† /æ°Ê/½R áyCÀ¿G¡Rˆ·(bLyxCŸ¡R=Ùë…äÒuÐ9ÑÏjS…ìâmžüŠ¿¶âB›ðc’H,$ÑkÏF_$„l”€ÜIOѰ‡ßFÌïÂ/d,®Å­Ê´ÎCJýzæD>µ6ÄÂÀì»èJ†48up’¨sÀSgp\”q+«‘ÜðÐwÐ\rs#A°cdˆ ñ§+öèV¢­‹ôòZþ¾’ÛOn3ªVÖÙ6ŠÞ¯x§_ø+e_RÉÙ» ¨‚7¸‰4ÝG4нœÓ/ªLïÌÍ_ôóü¤44U©Bj“Aî×ÓÜ™m2‡ªsBÙr÷{hþþÞ‰s¸hUúÊ?*`K¿ÎëKΓ^Z¿å¿‹<àȲ½žs¨©~-HkXŽ=™ƒV •‡¿lî]áÍÈ+ü2½‚?+¼+žæ)ñ;êþêUsÇÑïÔ¿ž µ…Yne>¥ úøk›Õþ‘u†±Ó"„fÏðž‹X:!¾µ³ŽÊúu‚Я(ʤZœs2gK*ëÈõ.3kÈàrä×dÔÇÃ1ö.{‘®Îœõ>ì­™"N5ˆ!¡õípÙà‰,¢aÿ׃Zö¿›QìlFÁÑo"†Ïa¾Sþë1<4޹û²ZYçáP?U­ð‡?ù Âß{}õÿzÖ²ÏÎZ9EÈŒ¼ÿFÖò·&ÞÏËZ3yóÿ"[iN¶’•°_„½t¥ñ¤'ÍZšÝ {6ÍÊ`—¿¸x¸*ÆÎ¦U]ë-è^üxýâŸÎ¦ò endstream endobj 22 0 obj << /Length 2139 /Filter /FlateDecode >> stream xÚåËrÛ6ðž¯ÐL/ô4bà£m:“f’™öZßš`’–ÔH¤*R±ÝC¿½Ø”(ÛI:½ô }ïbwÿtýâÕûrQÅU.óÅõíBB.rUÄ2U‹ëfñ[t½¾Q{µLÓ4Ú›áacþìÌO`UF£™@·fØ_-eÕG3hµ¿ €7~ý“ÂtÕØ=©;ØÙâ‘o ÙÜnö-Àå`é|ºRy¤·Ò€˜@OÇW¿_ÿòê½Ju³¸*åb)E,” e¼Z*™FßÐÔÕ@œ¿;”Œ$<0¿š@3<ò²…жr`샵húmÐf"ê@ÌE²X WJM„ºe8àžÒÒf¸œ äö!Q‰ùüzÂË#ÓµÚ½ôGÖ`d̰AüMŸ•:ò=,KÍ2´“UkÁÑók^ð}ÍR¶.$¼#:+ÇekÕ΢½ HÔL– 15ð ‡4.*æðÖù•~ß͉ñ9üc6íþ7æ÷oÕ(+jûz.D¦È4®8Ê;4/b†,&:ä^ÑçêÀôV§0? -ñçj2qP$‰üRkŽ>Ž6lÐG@e.*ú-ïƒ<÷완'“J]Àƒ}=q*åTœ5Ìéð¦y^à\ñzqµÌ ¡ÐfÁ*U+å¥# á˜Íå,Î Öu÷4Ýñ´a¡·h çåšì,×ÔŽ¸À¹þßä˜ü¢•Ô™•Žlé…l“yã‰ÞñD£:ðÞ–Q˜KûtJ 9æ_#®zž¸û LÚSøŒ¬=µq¼{_˜×K_Ðhj¥/ø¿ªœÂÏ«_g“ùºBùJæ±Hä—ªIy˜Êf¿9r'™*Ùy.‘ÎVlœí3ºœKŸOé ÏxùäÎÒU—å®BZcöÿ÷«¤Í£3EòÒÖÃcX¶D>Ë•P#ú)fêfÅQÂuÇ\7öI¨€Q†ˆÙ¶$ 3_=Í$ŸwtȤÀà™2‘AËKL¦÷µåÌ æÍÝC kôª¹…Ýu´²A·â0¸±ÁR’Œ»³¼ŠZð’Þí9Uµ’ŒPƒ¬Ç˜Ñ8æM¼þh¼þÇ Z û­çü!`qð„5Ëèîz0éo°do82ÛÆó ú¶L&r1¸„±K–M}>XÜ•e/ â·Ýbx.ó*s—]ؤ›¤-`ºÃ¤´¬­Yy›ö¬þ"vÚ]ïiÅYDàÍ/„0F“Ú>?¨GVý¡9%mX*¢6mZåË4`k/˜½9ë§oí]³[Í܇ONɧ 5­ÜyÁóõ`žªˆ3© Y$÷½¡J]èm@dÓØZ鳄¤C×ÂzG_ ³ÙrþàÈli÷ß°'¢X§å±'$¶¼é;µ-½´ã4 £ý“­ª·the‰ f ^.Ŭݦ~î«Ú×*V~’ìۄᄼ¡]*‹èšVZ&Æ]¨G˜ah×±cïaBf_“¾m[«šØ#ð¦ ÒÏŸJÌ2>ÂÀ6öÐ|¤!Xq•Â˼ KŸ™kúØ“k£¡!À½üà=cKKöP®×öz«‡v.=ÛT;u˜g¼ñ9g1wÎßÎ&&Y('Œ]rÉ'[he˜ýEe ·ÃCƒ Ö¬Ó5£Fk8h¼Ž6ÙõÌ#‹Ìè\ƒßÖ´ÚâÑ/ Zu—%–O3£ÀíQ;Ìd™„LÖ^N†Äó$e|13húÞ5f®è‘Ë9úÄÀ¬ðŠ´_ÓÌg“‡@3= ù?ÒCÏ|AXg¿a8„˜” òà\Ê·OgÉ¡]TFÝo=ù»5‡°Q O ËŒ‘ „&~€Îw&2õ£keÚçòTÏÖýÀšÍ;%kÀ“i¾jä«´ŒÞM”` Ý} '«–íÌÅ–=˜'ô±‡Ô ÅKø–¤u{ðb‰×¼~9´^XZg5c3 u³·ÖÍ£§×dHLô«5+l(auâ]3(…2Žf¨IJãùfÇ"g\ÚKhé5Ͷ®ó?­-R`lÓGýÜ1ÂÁ·h‘«ìí¤'?ñŽîA—²Á{k™ÜŠM|-Ç„Y"ö4né–fk=εŒÞt9½jƒGÇ1·I°G±µ¦‰G*ÈÞ¨­mq°ùíã@`6P2JÔÆÜÃ}ß1>Y­Ì£7R’iWž Å& Þr @ÙopY¥|9I6ûKó߂ڋ!‚–’ÞÚ}îfJ(’øü€ù¡!ØþÈO¥pVƒ1¹¥§‘ÿ€i4w !à_¨E´ÉjÀPÓ‡Ý'À)ßGíË;ZpÅD ¢tîÈ´ÔV ôU©qžÚ¾êá¼ñ*ãDI»?Ót€bonýƒ=-ª*ÎË“+™¦BÙ!”T)8iª2•4xขd“+‰ªÂ"å\²éØó€êþ'Có5:Ü ¶AÇ2ÚÛmím—ÜÌŸG¢ãÆÓ þ dÖ]CƒP¾À`ôÀØšE1 €/Fá?´ž\?žâ•„ë„HüÿÎÊÒÄ2õ‹ M÷¶¹§6©> stream xÚÍWKoã6¾ûWn€Ê¨E‹õ*š]t³hoݸè¡Ûƒlɱ±¶åZN\úÛ;C%R–“t{)ZÔpøÍ7•wóÑì.ór–'"ñæ+/OYšd^§LD±7/½ßýÃ$‰_oö‘ù§ ÷Ù$ˆ“Ìÿa‹/Œã~ ýD©ôÏ‘úÕk³«Á¥Ü\¢p­u‹fòÇüçÙç.S&…ôBMá(ø·´¢ÍW–¤©Q+ކBì—0EÍ ¢Õ©–zWöÚ>.UË©×$MÈÉ»I&ýú¨…  ‘ú5êù%:ºÆ}¸yYu~j¥W"þxOCÆCÎò˜‚^*VÊŸ¢!˜8÷G ù¡øƒHõ#ÂmáçYëÕhî/4T!÷ ¢î®C*ö¥žØDáõSÈ¥Jç–ôl$?Þ†\…éB3$»»ÇŒ«®_;Ó¡|>]é%ó^,ë×ÚÏo¤º¡ã¼¦˜¯õY½ôtÑ©†âjЊªËê[á@Az…ÎÚ@Fön¢hé0™µK óù6¼÷2iö9Ä¥oäÉ„åY¯‡q)ñ7ÔÑ¢GÉ„ÂNØèý|„[èqó/7—œ¥Ð›–»ÑŸ#¼à"©¬©Z2ÛH0ûiǽëÑ/ðg–‚ ,Ìwýÿô£0b¾ß²œE ÅEnÿÕ-„u endstream endobj 23 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-rplot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 27 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 28 0 R/F2 29 0 R>> /ExtGState << >>/ColorSpace << /sRGB 30 0 R >>>> /Length 3567 /Filter /FlateDecode >> stream xœí[ËŽÇ ÝÏWôRZ¤]ïÇÖFbÀ@ØàEìEà8‰I€@~?ç¬î«™;Ò\Ž“•–|TÍ®.VñqX¼qûb‹ÛÛOw_n?meî)ØŸ±æ½…-åJôó÷Û×Û»»O~ùêóO·Ï^Ý…=„°]þù곿à_{Ýþs÷×o·°ýý.n_à¿ï"Øþ|÷éë»Oþ1Ýë🷶§Œ'ƒþOM{I[Šye{ýv{ñæåöúGŒ¾þù(ÝÞÃíÒ­í=b­s/é^÷зTÆ>ÛíÒ#R=)‡½åÛ¥gÚkÙâÄžU¯t*q/~ièË!ž÷„axÚàñóχ‹ a=ûž*C+uv­½IŒkˆÝ#CÇ™ïc®µOf° *pùy¤%o)t:—øÔ]³'þ•ºÓd ÎäÄ-žEó³ððyÅ,Ǖיø3>~ÐUÎ=xœ•Ч\Üÿ,ñB[¡êšÇ`!ÞÚFGë±•Ž¥ú’Jë%9tåã¹é¶ú[‡8 A†y™ëã]`pXûô|| Ìe%\ñâƒÛž}¾ª$îýtp}¼ŠCóÉãæ‘ˆó̶ìâüï]Ÿ‹‡XڔʎëÌËI£/#†xcrQø—C\#$‚…+#6ñœ‡¶³Ö1àn=áY¥c/>{…xnR:ˆ{…øìä]Ù|LIgð1Ð2÷œ¶ÑXpIƒ6s×¢k×Dœ…WbñÄãLÏ®×ÀBªp1ÞM‰¥kÛ N_Qã>=ž r ®9]óøŠš„|#À¹4ò˜Äè;tOp5ðTÝã'`®ZrsIK¹ªíݵoeïykÑyæŠäTÞ„°VÚ©»äʳìúp}|ãWÓ_—8Ü$“ªà#¿Ï¯ÍÞƒSuÐ|òØ[“Z<¶=z4‡ÓÄ*±ËÍB©é¿+%kb­îCgh±×Ú ùƒ{ßš;TP\ßXŽÕw#Á>àÐÅàs³mz%D(Ï5Å-&ùJ&m²Z‘¬Þ#Ž|²²^}—ž„† —žž}§‡…øp–‹ 2:§á«´õ*ª‹“aÒ%Ž„Ò›”Aº&ŒA`¬A˜”ovq”ÕɇT ÜzÏ(Mq2йýô¼›vFÿi÷øo1]g&¢ðÍöêÞ°¡¼FÇ`Ø]£†ŽQZ9ÎÌñnƒç8Ye9Ç žãù7xŽCµ µÇ¸Ásür1çÚŽqª^T÷Ý/WT÷Ëwï°3ÉvF´uþ¡˜+¸Â‘ïFnͱ©z1|ˆÖ§‹Jéu\ʆ„áEó.…iU’’¡.E –Û¦¨ëÞp>Ñ9Ê|tw ¼£éWx1Ž3„ØxŒ+<ÇSN4å5nðb\?÷?¿þR5úøÃ…šà×–Vkþñšb?( sµÈöt³tÌcå±a/·‹¸ŠD ‚7‹'ðÆ8L|Ü.ŽØnô%î÷•Ùà]‚‡Y0Â{ú7k߇ëáWÒwtÎ*|zð/ë:z¶Mó"³Ö-/ûøõ‡·ßß  ü/7±&êF|õ·wÿ^ò·õMÅ«Þ<2~Ä›³Î Çôö}øæŽÙÓj\‡ÑÝõ.=9y2@¼¹ÓJUÂDrôænV¹‰ÏR®þ(ìRãŒéVhqÉüWqa=ˆXV‘ýÉ%¿ä×pg¢”rÔu=ÀQZZØEUÃUœx·ÁÚÈqÑ —ñT\™çÓ÷]ÁM{[ñk¸¯Þú®+xð–[zcäùx3Àv“–¯â¸ÚQr{Nr# o0DŸ©åŠwP¬{ŸÌJ¯á6¤ÜÞ¯ãÆB…]`KÅ'¥`û ÌýJÁæÃÆIo@ág'¹;d÷_7ÌË@lÛÔç3«ÄAÖ÷ÔI¦éWKi&+À1êíI¸ { •‰ÝÓ0übÂ1ž*ßuþÂLü:æuE¼“xèüa­oJU|N;O%hZbq†7ËqŠ3Ÿ¦_¸IL‡ÙÓŒïDQÎ[±D¶ ‰£Ø~¹búeóÉ‹$oî†I\†t^ÃSìÖüñÐ,¾‹~¡K‘›ëÚ Ëx·ý©0ô)¤!eÃs™å*N,’7Ū?dJjÏW0K…äcÓðT~–e=ÚyEºgÏWFâP ÷(lr¨|“õçh¸7ÁIöIƒEë{;'"V{à-xlÏ©ýž©™ŸT©Sÿì-×p 4â(ßÇROî­ïoJˆ¯ž_â 'Ãr>Z•šxëæOZãÿÖ÷ËAã_S¾‚Uäc0ÜÓjt žRó;æ'«ò}jßTD¿ø^`)³M[6¢$YŸWÝßhöÃ&Åj8X²ßÉægÜì‚õ¼÷®ç/Ñ-+žS°Ú*/S0­úë¡ú<θ+טvÈù†¡±ªˆ×èyD¼{ªtÓ̃>Ìó¶ÄçØÊ¤9‚åÔ:iå\†™3-a×Ù³ú¹?œ—ðö“™ˆ¥ç÷0Á!©g‚Nd/ÙI{-F$uviá£ö š g½Ãú¾Ûñœ„Õêy ³ K{yÄ'夗p5bÓ±\˲<´«¸INRŠ­÷a—fä™Éì§š¼Å'a¹&áë|°¶¸àŸu¾8¯œE×ûÍQšúÀÌöƒ(9@W±4ú¦8Öû?†‡ä(L­d>ÆÀ(9ÎWtÿqþôýW0s¤†%_ÅIrÆð ¸HŽŠé»H1޶T«`m@dŒVùÁEmYW<ƒ” lþ©M{M}tæÕ[jÎ_¥®Î®ó3fU‰É3? '‰,‰Ô'b‰ùqÍ/°Ò6Á£kaNå‹Ì¿bd®zsŸ§ë¯z—Þ£­¿Nõ±aÍ/ÎYªË"˜c¥òØÁüÞ–mþ–Ö†ÎÌ…¡PŸÏ’£à³„#dƬ(ŽNõÛ´¸Šm°÷ÝÇUbú#xh»„®G»î¥ó$Úcïë’£äª91s’œÖûîã!9JŽëýª?p{ÿC̘û3} ™‘ŽEñg];j˜ú‹ÿbŒÄþ±ÿ¶fŽ{ ú¼ÆüØL]šZH}ºÊk½&f›_õ6Vå…ñ7]×Ë2TÐVw•¯ÊžÛš¿ŠþC^óÝÇÒ_Îú’Íßõ}aÍ?ø½0/n—Ð_c(DèGŒÑÉpêa|°5]+Wä'3ØT´‘Éâ¦Î4d‹Gµ…1 NìòÜ%óßó†7ØDÿŽéšx)˜'Rˆ>×Drÿ‡O/*+­×\©È"_Ç–BQQdùy€Éæ’„jê£9 w}ÄqÓn-…ÈHZ³yáeàÜpÄuÞ)ºƒÅȼ:E:“yK´ö)ó–(,Üê~Z“y^ÚRU¥åïU ï/xTq3yÓY„^ð×P}Œ<Çk¼¬B/xŽ«iãÏqøø‹*ô‚Çø{ :×÷ÛU¡Ywó–¡sˆî:tf7Ÿ·a^Õ¡-EÈH,åL¼HÑZóýê<៚ì1n|Ž›÷;XÞðâ ç/.žØÎ'_¯Ôö¯ûmÔ–¿îÖç•ÚêOj»®·µÕŸižT6•«X©- ¬Ï+µIËáFmå–ò‚Û’Z÷ rË[Oµe·ò›vÙ?¥·¤Òú>å·ÒĪlX.q»`¸0gýe¸³šv”á’ÊaQ† [Õ³  wÈÅÁp‡]ŒÃòKóƒáŽUB3†;´Ên ·7½T0†«mQÃ]%üÅp×7†ÛÔ"Ã5m —f·“á=þO#µâÔ¦ue‰óK3ÒM5ûõ¾ÞŸâß„6òÉ+Çj^~÷Í‹_¿yy‡³7ÀSØ^É>ùü½}y÷_°:6o endstream endobj 32 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 36 0 obj << /Length 3603 /Filter /FlateDecode >> stream xÚ½ZYãÆ~ß_!Âf¸lv7â#ÆÚ/qà±ÀöWâ®ä•¨±(yw ¿=uõ%µvìÄðÃŒÈ>ª«ª««¾ªæÇ÷ÏžfÌB™R›¦^Ü¿ZômÙ6Ý¢±mYk»¸_-¾+ôÍRµ->¹QÅþ¦i\7ø2ÝÜéÖGêð둟Øþ/<0À¿-Zãó¿ðßa5c“)vBO«‘þpÿÅóϺE_öMÝ ›Õâ®VeWuÌá·7)$?OÆÃo+~¾g¦`l‡6›â;xi~à!óšÖ¬Ûâ-7 ðT“÷‘_§›º+N;"J£ö&ºÅ¾BzÜ?ÿ?± JEBÔ­--ˆP±«K1»²©­ë…"ÿàÒã ®Ü ̬ӘR©Æ‘yÌ.Ó)×+îÙGV¸ÝË#sp¹Â¶MÙëØIÙ[1›w— õe¥j·ÐrÀ­Òuñ’øGÅjÍ"ݽŅqÍ£ü2v˜3Ë«Z—}ß§Ë"M<°*+Ó:¾¯ª*C Ÿ´ó饰HÝ{)>æÛ®¨…P<®-•ʼn¦–þ™ã½)+«wѰï+ÕÈÈjzmu‡#Miêd,Moxà&CO—Zµ‹hÐt)-û.(ÁVY2]kܘc†]Ú>ËMwÆL3«)ð&M ‡ïrѮԕ×ü!¯ ô mϽ&¢}JÄöYMeL¶¹ë.-¯»fx*ñ}SÁð.`¿7Ì<›ª+ð°$¿*¬ã |g Cm ²ÁäZÌî-¹7:9gÕ•Öxî>É‹ªìչɨ{Ψ{ÿñj‚ ñ¹UŸ¸`yÝã¿#IÕ¡On‹4ìðA¼ÊûÈ-Ãï’ÜärdWÄäräžaZñà £ÔFá DúÈýè‡ vá Ûœ®,ªî ¿Ý L Ï&4keC|åô%! ÿ£nÚ‚ƒ—S†Ö]Y5xÒ†‰Ï¨S˜bMñãèâÀÌán¦˜NAš#º125;pÔÑ›¸ÝnÊnÌúrSâù{¿àÞ‡ß"Éöº¹Õ¶l‚³þ]|ʯÝ4ÐÈfšñ Ãë™ÐÞ—u8tï2â¡üOŠ×”­écñ†“ׂ6üæjfq?$4K„&#An§Ò>¿IÛßoâ@ÿK•xˆkT--‚±GÓnªMoÄ|¡aˆ:ñ { ÔQ@´“ù/Ѭ±  Ç…ðRå`H`û&ìsmrrV¥m/L3¦ÓsI¥;'â @•7wÆêâsaîx|:‰¼ûíwâN:1ÆŸàíDryd¯9tX±SxÝÍïpðR6ûÑ}:ò©®-â¥{DdpáÝÉ’áÞ+¼ˆû~Bý·íöäÆhß¶ÜôÖaÆu2mÆæéõÖmv]”;š4Ÿ1ô8‰ÃÉYyöÒ¥?ßX4™ã8'ë²µÍïíûŸ qÈ…6XßoÅG)øÒHÝÆ¿ó¹¢xCÚßùÌB´Eèû~:ñV„ íÂ8m±unÒ䣓·aYK"âÀ-deä 6¯×¼ÑŠLMAöû<äô#@šè&!›’ï² 6úÌ@|³éÞ2&Õ‡ËçŒn‘1ƒþ)Š˜Ø!€r"¿´p2½æÑ‘W¥Á†=Ò$F2DíªaãÂàKZˉìÆíΊ‚®ê$öI控’3wj®Ÿx$Ç@¥UgÎüF £tº3ã MPª’(³“…•-Þ{ÐÝ »94¬Òûè$}À“X1Jç’ (þ?mc ÑP° Åù™ÃO£üü šRóäÝ–ÖI<<#Ñ–Uˆ#ŸæòÊ ·¸¦²'À%3¿þ\7¶´ú,;w–-îkܸÇ`~Ýsجt1>¢V†¶õg·¿ÞõVé"ÁÒ‚Ê)¾±mÓÆžyÀ{r’°­ˆ9 ki§Ç¥Kèz»–š0ñŠ<Z¢C • ^Æò±ÚQšpˆF÷A¦õ˜3ñ¥ ׇDWû3·ÿœ<6à–`3Œ{ÎT£Aƒ<¸4ç u2Š´Üi@Uµì¬‘2à77=`yW Á‡i9>Y¢»w.£jwã= ´Ó ©ŠÀ6''/Ð’GÒÁ„ßÑ»‘ÄR;pÆ[¡çË"?²çöödŸ¸}àñšF»r!3~`O•¬)UOSqÒ9n‘àƒ¬ÈÝûdÍXƒ‡d:Vpxb] ‰àåAÓÌ!i”·+ÎDÄZ|„ÖÕ™BJŠ›ÉEGô¯8’e_bÏ#?{Ói)¿’¿Ã¤¬špGèŽ~wqØïL<ˆ3÷ýqÍÔÙîá@ft劖¦b ß,eÝàß+Væ´b'Ÿ©>5vøÄòh£Tª+ëNq*%ËV9_ª[Îe̹´­lBéi•­“ö:ª0ê¾.*t̪#¨P©Pì£m—dé Q‰Á©B=¯¥Hi³3æZ@½?ˆ‰Áj¦¦P[«>)ðħ«&ÖO*[w+‘'É«q€ûrµ¶Tºþõw__r Ä›)Sg–ƒ…ª®]Ü5¥§zu½;Û”me°®]öZ%k&ôÀ#õÓÅ0„Ûјsê‚Ý……3ôW ˜QÁÐg»öÓ3,ÊT µ€cÞ¼^h h¹_,wϾû¡Z¬ Î$Dœnñ–Fîð*ˆ/–¶‹¯žýãÙÇx;›zQGª†‘ÎmzE3Oˆ ¦c`]¼=ƒ=iu ×êÎ^©™c]ðRIÉå£n ¹Š¥‹OÁ'u–½cgý¡¶sƘ2»1çŽÞåBŠ© §öŒ¯ó'Qû¼'. á {Ï.×Ýå/ö=ÄõqlÈ”À,YM[‘d7ù$ö®¶ ‚}sé|©ôV÷F¢6#:I,&î aÃp¶{`o›"|d#Ÿo)П϶ܵqˆæm$ÀÐzNNóÍ”³™L@tÌR(­ GqNªH…«‚ɉEð] á¤WܵŸrQë/úq†Rî¦I¦â;Wf¢þÈN³Áù˜â~†°•¶~…ªRã{”Ö¨z„ñí”Á¥Nyk{~Œ7PÂ¥[r kd„–|)qî8qn®g¬ÍúõT{ è zëŠ?5€Q¤MF‹‚ø±ñè?©à^bOµIàÆæt\+'‹rTŠÝ/]Mú†yö壥¯Em˜¶ rá0»™aXBBº’pÿt˜Ð±‹r'_›!»‰5%øq$0´u¶uàŠ˜íüç$wºíIÐï9|r±«BfSñ÷®jçø ³!£ª8£:¹Ð£†!ϱ¢a—ðø‚³Hî‚rТo|'œ†DOçÊ‘‰?#¨×Ñg=}¬ÞXr¼V§¹Rãƒ>ˆ÷ò ¸ÝKßÊÕ¤=SU€<¢©MüIÌiº(úbyd¼Œ/K®ÆœÜ·$«¨\"ð÷Ë 3éºriFi[—Jv¿æë¶@µÙ‡VÁ‹(ªøâÏìráäTï䤽â¶pp›üÏÜç¿RBM5™Sz売O]™Ú§a”i•TWIÌðÍÕô3eIN´À’{Ù¨³íÀQÛý‘‹2œð¶¾ÂgªN.19 wÓôÅ×¾8ž+ (€ëUß?‘º¦¨2[°ÚÆêŽÜÈÅ1ëüå,»Lç°cÛÁ¶·›8ïïÂTø2 <¢y—æ…r*¨håî$˺VîâèŒL\«¬ñ¥†Õ«3h#¼„RÛ8:@ÓwŠ3]ÿ<«8ß8àèp.6ç)-c§Ä âë5/Ìe‰ó.ŸŸÜ5”CV«“|Uâ&x³Å†Xûøî>¦ —ßÜ=+Wô-‡ä𕹇ôÀltãV'·º­åW‡Ô]Ä€¦AºèÚŒ¾•kµ?M0ÕW¹¡ùAØßù]vlë#†¹ÆßÖêäâ<÷‘EUVZ½ç²±Ãäòü“ ë mIdzôid ÝuXRO.'™oÇû •F÷JÛ‹:eËß1!¿ ƒ&¯±–YLË ·>—‡‡¸f¹^ŠÒÝ`€yÚ£µ–¹NÉ6âmt,\ù€ äÞ£åJðaÿà$k£™Ûø‹Wyº«S‹åq¸y)2ÊUDü. N/]}j»åJ6We‚É|Å¥R?ÚL—ñûÁÂ’/UýÅF‚N裷&ýøí/`óut6*†üY€‰÷, H¡™ÿá_†vn¹jøû£K„Àÿ {Œ'RøPÖ6ª0²‚Ʋ|cÿµÌÿåÏüë¿<ÛM‘~G¿õ牅å×B{.ëGòíe&©£ÅÎ’òÎÒ·qJ—ÊÈi´®lò_Ãíï° endstream endobj 40 0 obj << /Length 1734 /Filter /FlateDecode >> stream xÚ¥XKoÛF¾ûWðHÑzŸ$·h{hÚ )PÜSÓ-Q6ITE9Žÿ}æ±K.-ª÷1;óÍì¼V*“ðOe¾eQeÆK!­ÍV»«®„/´±D iK…caáúÝNg?wWÀ¿¸µ ,— ÏŸn®®ßT™GvEv³É”Ò¢T:3e%då³›uöW~s¿Py ýbiµÎûßÝ5ýi\Ã!’Õ§é¼áé®â¿o~½~ãŠTœöBøHPNõ‰EÁ« »Þ.–Nå[>OãµÊßKU$D¸´‚Rµ|!Œ-¢˜†˜ã‘#`v›}X«ºÌ?-tEÜõ]X?âÙ=ü÷‘çHסiãšzb€²¥¶RXí²¥RÂ;ÇXè2nïîQF0©)Œ)L®xz¬›ye°ùž5V*5­ô¢”ƒi÷çFqÂWqû½tr†‰U9°˜±«Η ň åžQÖk4ÞëŽ)ÐL‡D‹fF¸¯D5*p 2+„/M…VXö„eªö#•%4'6¡Êwx9¯E)áû\È=CËl?bíXƒ¾CçiNñ\¢;Ë‘=5òiÉSȋ،¦ª¦ÞP£Í,È8¦6«ÈÇÊüu‡à>3Í€À Ñ5ÛáÑm»»Ô;q‹”Ž~/À9Aç·Äî‘@˜Ñ ÖÞŸ ¡Ã}Ç_Ô¨ÛßQDŒ0dp¼êPòе   Š-|þ;ª(k„Ô®9#›Ž,$§¦A^Íîõ-(_ €­áQާ‰B¸µðňջü°$bç0Ã(r̆©6¨Ü2Mjþ¼&xá`¾c‡À{h(òiõ± Y`Ë2ˆ3¥ÀqJ@)·<À‚V<éwœö€M´sÄΗ;Ÿæ¬†:WT‰Ö•›Þùɪaªè#”mÚ!SRdÁ†ù9æ‡ù'}½ ÎLÂ.å=§…v…sÏ´ñN`H€"\_¨ äxƒœVAåŨOÂapý1VƒÕȶÝOLT„jkHËI FO‹ÊBP*B©,VÉÎ-¼gÝXi—ÿ†ž³%C¶A`IV^uxuëš 4ö,CS­ ×UÌtŒêdžØóʼò0ºÿ íùÄ›dëÈ‹û4+ÁZÍŸ5]ÀGL û`±Maž~lcî Ÿ€3„;ºÁ.L<Ñöü}!N"‹\ñxÂuûŒüüá÷f!¼‹ ;!¨ÈNCzh±qµÃ…’ü¿9PÖ¥(ˆ>üÄô€ÊžBP4¡ÎÃòî™Ç÷Ì,6M@AÜ!HV÷í”uwC¯¥XXs¦.¼Íßm抳+„-m,«ÙiàÈXaÎݯr.cBÅÎ%j)”Wÿ%POÞÎ TNOÇ.ÉJ-,NîyH]`»ÉáÂ…\îòTŸ†î5i)ÑoUuYU@½ºþ9£k!;Õµ±®’@f¿Ê¼Ê -í EÎØF•K%¦æ[QE8Ævà@~ÛíC¥ncÂÛÄü.ï’8$6ÔT1);`Š×rËèÿñ|¤ é˜; Y€;Ó›æ²T'ª3ÐòcÁ97–uÂIÿ2_ ×£l§ª˜\Ï{)ål?-¤×ßìû¥pʤâÚ±&<—§ÆÞúëœá›õ3/“7£ŸRNb2˜“š Ü©¦X|€Äìlþ=bušùÍ•¤ùÖÞÚq?¸ùvÝ7 k•(LJÏ7dMc&ŠÞÆ: ê - ŽÍåp· ê_ä‚GÙ¢08]9çž7i|ÝÇäà›–<²é9H„7ž³Ó–iÈ'&d ¬ÕñU5¦ ؽ¥ôÒp›ß$ߨöØFÀbàZð›ÒZ¿;ñu_"ajå*æ³¾Žï.3ýQbMŸO\CìÀa²OM±[x½MÞãO¯B:p¡[A1šKÐñ!vøÛFš= ¯N ôÄû#¸À¢Ûa§òàM·Ox5#SêŸa† q·®¹(6aƒ2üÞöñ29ÍS¥Ñ þíå-)Ø'zÕ=ŽÜôQß³DÌæÂ{ÍiÎ* ¯Ž3¸§ùݧ Œ~ƒ dç·¬bcïÌ´ôbS}¸W¡ÿÒ“6dçØí±/Ðò÷0\Ž](–q<¨’¬óV”7‹è'*·üBBNé²›_.˜‰š³ãEÄ‘Ö@ ڽà¶áï»Ù‹yf"¡ùL;oЗ±ÁýÈW£)8×òÿÛäY÷U9þ m¥¥,Y«é®~¹¹úûŒX endstream endobj 33 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-varest.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 42 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 43 0 R/F2 44 0 R>> /ExtGState << >>/ColorSpace << /sRGB 45 0 R >>>> /Length 1158 /Filter /FlateDecode >> stream xœåšKk$G Çïý)êh¢-•êyÝ% p<ò‡Åë…5¶ÁvH¾~TÏî ƒI«Ù4CnFýC]/Õ_ÕƒêJ¡ºWÏÓµzV6ÑíJ>×ÊËÖËú]=Mï^ûù½úp3iÐZ«åõæÃ¯ümpê¯éã'¥Õ— ÕÿÝO˜oP¿LïÓ»ŸÃ¾æË‹ò`ˆïÔõƒ×`2ÖXuxT—êpÏÞÃËôãáûÒÉBD1h!Ƀ£I€IŽ;É+î \¨8ýßð`ÁÛýð´áá#Oûá¼ß çtvÄ$9n4AÔg‹{°q?<¦ÝpD°n?œ¶LZƒtË6æ¿ÇÔg‹ÓP"<€õp'v7œXRn÷­8'«-¸‡6àqÈBàÖA$yt²j—GcÜE8s^Ž;3æ¼§±Mˆp6œ-Î[$-†¦Õ<éÝp.a7àf(jnÜÜõ2sÖz<˜^IÉpêéB†‡.JwÁYÖý£:'x9޽šÀ Á©¡2œK¡ºÞÑKpdöÃcÏ6èvÁ›8AÁÁ‹I¨õ¼DÏ'“6àT3.'\Aë6ë$ÛÄvܶ¶KReòýðAKÒÅVœu]Õ6Z²`Sì V – é1ë´`Ò’6=ÛhA®#M QÜvÒå(\ÞvÎoˆÎ㎢ûžçµ ÛN@¸aàÒˆ.Xï„ÉMß µ Ymƹšh]'H„¡–’dÎcï*.8Ãʪá‚T™q§ ÉŠL¨Ç>ŒKÆÝ¤üBªà’‡' ¶>|,X2°à^²`ÉVqóN)Àù_í:'Yq”ÀÕYg%¸Õµ9kpÌr2ãUIÖÏé"@’Ì:Ëm»3õä$d• Àm=· "iD\þ—m‚w îëzwùÌQ„— ÚB’LZW’œñ”UÂzœŸº, Aòð\E]PD¹.TaÆ“Ï Þ6mƒâ©<­ž·½~÷&çàúrÿ‘Ã5RÍuów³¨{Ñš¬ûº»›³Ÿk`ÖÒÃßÌá7õ5q÷wsös=Avö7sø)”ŒÐýÝþ£æÌ­þÜù¥ón_OtÞëíicSúk¾T»΄žŒ1ÎÖ7Qä\šÏFëV°ÜP·dQÿ{Ø8îÅ´ ¼æÊ>ÿ[D^ASž@tz +,{{àuŒ]È‹ô±¸‰&WCe&»i¶foLY uoµf/šr$ÒÝÍ\øå}eø«¹ðGŸUîðWsö——Ysøf.üNgÕ3üÕ\økc‡nû²gÝùâ—YU°–ͧó5Éä/O Ì›x>rÂŽŸœÍoâÈ‚ÚPãOOè·ykóq_ãñ9S›Ôx³>¾ÑCÖ0¿>¾auD¶ñ$ˆ Po?¹ã…ÑRàdyZÅn>t3¸Ùb·©tdö›oÊn³9gcs¦¾Šÿøöx·¢±ü± vù¹ó/þ¼äÕ .>¿\òüáÛç§Û»ËOêpÕvÈ¿`CÁÚ:s²-ë»õiµó¼žþi–./ endstream endobj 47 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 50 0 obj << /Length 1198 /Filter /FlateDecode >> stream xÚÝMoÛ6ôž_! ( o#’"%M+–ÀêÛ¶ƒb+±ÛØé,ÅivØoÉ÷(‘ú²\X±Ãƒ(òñ}I?//®nr’K&ƒå]@iJdžR¤„q,×Áïá~AÃëE$ãÅŸË_& YQJrH+…ô¨@#ÛõAÁZAáì—‹ˆIš‡•Ykjѹ;u¼UP+H§‰fNC¢ U@r+é'CH õxœ® ËdÀsˆ.5ëtå]1./5O×¶Œ“œÒù¶­ðå¨N£ÖˆZâ±–çëøÑËÔ-}<Û—R¦ÊF ¸4ÊÃC1°“  w̚þÁç8×2JÌÅö2C‡ÄÈ\;뛘È“ÔDÏ„9Ì&™p"Sàñl} ëÇ‚/èǤ’{<#ó4ú·<¡#+8Ò7ï`Ùñ™Þ²´Ö} 1d¨÷}ñj#šÙ~§–Q‹ñG,b³¹ðœ8Ëè§5r(1þëAN²¼Q˼ñ±JcŽF¶Uü,‰ŽÇ"'éùâ¿gˆ3¥RËÉZöæðð¯.–ß5†YWôY…Ç×xô’¨[¾…Pƒ†Àß<®Î&Ú8‹Æ$I(dœÌû5¶¯j”¤T >Z²\‰fê]Cʱc·¸Ûê ú6Ð_(¢H§‡¥PÉl.¦‹´mƒâõØÔ%ÔÕM’ŒL÷ôˆªþ®Ú»*7„Å È(Ô>J™Ó©\¡²Ûý½ªLi®‹ÚØÀÌœ!A‡MFx†Ýi¹âÂ9oŠŠ¡Á!Œy¯J0§^ëkE…ûšÄqÁ²°4†ÐÛL9QȰ8è2SÜbÍ*+8{6Åg/;Ûóªí÷Ë—å¸y\°4|F‚qSÔð¢Ã¡8”ð²EŒ½–~e‚°2ç/‹,QN1òç(49‹‰`Ù`=Ôº|DsíPzŒ_« Áx,Ú£ÆÀ î;¡=Ô3žüž¿s¨W¸R½rÍM¨-®ŸøcaÛÈ,}Ì"Óí±Ãi0ÎE“Ô>Ÿ )™Y ª%¾W(˜šU¨H¡%nÐZ¥S´î!×…ÊqêWgŠùŸxBµÐy#î“p™~v,³7Ì1¿8úŒ ™†°C¹­á êï ã³Cçõj ‡´:rõ¤¹O`M›éX½“Tò‰áã½uð›ªUÌVe;›Ôݰ39ô毋֥ô6M~ôÉë:ýXrsäŸV‡ûv0ú±uÛp85Öõ[Ô`bγEúØâDvì3Ö¯i§K§¿(øà\ù–™?7WüˆÔrÓŽg:Ö$ãekˆòY£V+ ¶fY"ö¡‘lp›²„y|ì„¥3‘KNvÝÁz±hq¾B¶þ¼U!‘[\—þq—‡›eÓ@Ú5D¸åôÄ}Ä/Œ¾çÎJHitùŸ(vn‘ú>lòŸªöz… t;R…n»ÜÛ~ýÁ±††·Cž#qpûˆâ|òòÖàz,—KŸÒËýíÕûïÈ)áìõþ;‘(Þ¿<‰_Zy;Ãt?÷²9ÿÓÚöËNÀ_¤1Ú²ÿEF3Až›q.S“ a—j¼‹_–ÿˆ¿ endstream endobj 54 0 obj << /Length 3733 /Filter /FlateDecode >> stream xÚÅZI“ÛÆ¾ûWLù²J„Ðèn,v|H\±ËN©Ò¤t°uÀ LÒãɯÏÛz#AÉŽåÊ3请·|ïküõþ³×ßX}×dMY”w÷wÊ4Y®Ê»ÒVY¡íÝýæî‡Åz©#üø¹ç#ü6ðk¥þ´\ÙBSU¿éã]OÒµ“æ ~¿ÜnzùÐ[Øüîþû»•V™.Š»•RYceúò ¾ZÂïa¹ÒeY-*x6ðÓð³R‡åJêôrUä](j§>E©)sÿœ†ÍoX] XÀ¯¡‰„›0  ¡~7{ý1pL™6e'¶Rpzpx+Sd¥®y ]©Â.Þ.M[ÕoáÏn©aR¼s+]ÙÅzÖtB:›uÇÔ‘BÀÒ •Õ¹þËo6†–7,‹ŠÖˆøgr§ƒÇ¼Åž4¶`ó¿áwîh$z‹ÚÇG–x¢ JµYtÔÅý¼´å¢Ýc) txÀ Zt§eQ/žq&÷˜ÆsX¤‰m,… ›è%©ÿzD‘¿`A/#ŒU-68Â>¬š;{/D7a½~_Æ[hÑ&çeù-Ĺ´'™6´>ãÚ:|o»s{íwwâ>$ $Æãâ2{´À÷\žÈù„²åÊ”fñŽ ›E­”ŠŽ½(mV© VG«ú3l@‚¹g~WfM…ÊÃf ÕOe¦‘=è¯ÕHg¤E}~Ìíܸ:«+ãF=ÍɱMíÚA†š‘Qf•-Ã̯d¨ ŵ+ÞFÑ&.ÄÚ#EÜöƒl/éÁ©)ó†Îê$N(G'Z§Š‡Òp"&¯ÃCTîøôݲb úw×â9›¼Y76N©2ÓrËš;)»o>åAÙT5sP&9(ÛØÐ'ÏgÏÊ”M8¬ë‰˜¬© ×á«k Øî·¥ ™ÐFòyleÓ±8¸iÏÒëD1Œ¥¦…óŽÏŒuãÈs+þ›Ñ&Ï~½—ƒ} EY#bÁ¤JÊÖY•+Q¥’Wœ“e™ìÙ:©897ÒÇ®gÍ­ÞáÙÈgÀ3é/Ì ÄÝû •ÚÈÇÀÿ7´GÔŽ£þiÎo¨:+·¾Íõy€»¨ý¡gÔ¿£êdB´$ÚÉžüâž«¿¦ Ëw¾'¾g)»v’µÊ†ÏÜîÃå¯ooQ€kuíÂi?i]u«¢©`³±ÀQ‰æè\vÑ$†=c£àê`£3›SgÊzmçCb;„8íúDˆ°P2¿ÅÇ©5jðÛ^z¯e¿8ü`ÏI¢k‰+õ&¾\¢ûâpþ´§Q±I:º¥ždÜg‡uvRvѸG#àiN¢Î ¹M·›#XAžXkjr†Ón¸:Í8z›éÜëÒ0§kI°ø4‡æóì6wÏ“q˜t/æ¥uF ˆ-ãvåã¾ÂfïX T:ݱû3S]k…”ž%’±ÖRMËÿö¬ ÌjÃ&óCì˯guº (~¾D`)£¸EëNÞ¹¿ÚIxt¾¤†£äãÏbÛÛùZÍâ¹ÌñmUO6¿‡U‘UÚ÷æZR™•µþÜd²¦ ?9‡åª¬2ÍG°{2ηs2jý™ë+Äf’E®wfä†LéöVœµÆ\x¯¸?J<’wŒÒ_2wH­È4uV—ejÍèÜÏIêY–ÎÖ®'oUfuõ½G•¬#Ýa¡¬ÈS~>yà6lyÄMÛŽ="éÄAc$²½ÈL½‡í¸âtÛ´›2Ëkó ”ü·Ù6-@ÿxv‘&²I\÷ò|…$üK;2ù<+å0\ò¿žS>€²M®?t~÷†õZ‘$Ä•]˘]/ÖXŠ €Ï> pKäc©Ü ÁgJ…Ž u>Â{ü\ PçÀÂÛó| ¶ÈæEÔ’{Ýwï˜ \錕ˆ8h~üï‰æé³¡³DÐö(9»ÉlU§yÖÆ#Rzü£Ò&öï0D»í8kÃöx‰üæÑÓGã«9ËwxÝØ2Ð`/\F×±s¦ï; k3Ö²p0UóL•uÐüU1«vêLàQˆØi7²pÓ/6?¬ wh£~VŰL¾ 3Ä– ®½Î‡žœë§¸ð J'BûWyrnú r$Û‚ÄTg¥m®v¢ûH&“žç Ô ö çpÞÇ,ß("R… c¨ªŽÛC‚ qZ‡ˆ¾f!˜¢€Üú)N<„¸y’ç ( Q·Gt€( b3/´èF.üJ¨‘ìpÔð\ <óÜý%†öXq?‹¼f½ÇçpÀuœÂ%LÁÆFaòs~¡&u§„öÃÞŽ¦âN¼ÏdÃÑ!|,ýúù_ƒ$ÀMÁQ§ ʈ/ªw\GgA±òp˪wY *F4Å€Sª¬ðV78‹«â[ž:«®ºTâ‹9öRW‚Dˆ”‚a[þ˜Á$6œ´“»šÄ‰²h¾‚£%SLÉðmà‹t»ÖeO¡©ºÎÌéÈŒ³ ”Þ¹]‘šØIÄeiæIñå+°SWhŒ\Nx#À<7öxŽHCk£Ô ãƒãɺЭ}ŒóöxŽIËø}ÜK»ãówe:ß~ÙùÖ:ÿ„ƒ®·•[òJÕ(¥³¡»‹ã#RnS¼Ÿ“/´¹Dh$ç€Î€¼ 8 ÄyàQ¼a ëÇè¹Ü\Åm¨Ú„,ó¡Eœä‰Û„‰#Ç¥˜|™½ç•ƒ-ò@ä’w±T¹Éøa#yxdJP„ö$áÔÇD¸Bâcñí$U:xWÜÐO¡,.SÆ \«õ¦ÒŒá¶gw5‹ IFƒbçüy¤>peL7~‡ÉFH˜/ŠGÿàp<Û=ËÒ_´ìÞi‹­.2&œ^H{  åBÏÆ80‡Câ}°†ô}»:{Áæ9¹¿â•ÙÜÓFèühÿ§O Î)óÍÓТÈt®S *t …~)F2Ù‡ŸºŒý:dc.vÍÝÌd„Güÿ)ÔßÀºm®ý!áó§­#5B0+Þñà ‡ÕŽÝÅ—#›ÃbÏQ=AôÞº°.eÛy›õ)â¨fD‡ËašÃ#×rœ}"[rœ–ýK[ ÅÏ[¼Ò­ ÁÐÊúá§÷\}‰ß¡ÊÝk`w °pv_Ñl¸ì’L|‰¯v¶+‚ö##êäÑêÆ]_Où Õ0fÅ)RëÙÝp@Í“¿˜JÒi9úÉÞ3R~ÊÔI’ª‘ì‚g¤j#¯6QÔsSÇ kv_¢WPéU”½ºû…þL¯x.®¶©ha¤¢ï+Ú“ãI yL³¤h:aÐäkÚFª¢…x*Ï;æ… L }ãiN[’ÛDˆ}ÉY—_Çß©@ð^¶.ï…­|g|pðpµªš¯ËvŒóY‘I;z«–v:^ËßÂàƒîß» Ûã$+ÿѳ÷Xy|/ïñÇ3øx<ßÙs:Eõ4Êtºõ‰áv̵ÊéÛ8…Û#ž­=Ê´¡²ÝŽÄoÙpÁoœBtË!Ô"d|:GkSÂ÷ñ7z,Ö×ù”ô‰Z™fxp¹!){ïX²îóHÞ*Pf2/ÿ ŠŽ4)Á|æî qÊÍ<öúrFÞmä¶§àØrpq¢½ãU²E.’ á9Ú̦üôåê;§ä“ ›‚È1\èôÚP"=E–ä‹Ô"Ï×åOœÒsØ £d³<÷¡ŒiæW6ÁªO\û"xœ n¯ªœ“Å G±Æ²™!ïY÷à%Ï–Ñw6åM8ˆ hû>ê9>%7$"—IÖ/f6Jk³"ƒ×„ºYQ]\&¼a¤‹Ÿßàãkø}ª†W¡ú»¹‹˜IÀA¯pïÂç•…¬v:qaÛ;krÜ>D.ÿý'Zöšù¶ÀIå•VÐ5tÞ{ì'Ý{ é¶@Ølb|{v7!ï#>«c–+|Ý"ëžÿ pô—aPe’{y,Ï}A6ñÛD©è¬à+ëqïtAJ]P{r‘F'\½]qã`à×V43tä×…9ÊýX—²p¯LÁà5PRùun¤CØÔøu/¹ŽIfè(­"7š³r}¼‹Æ0‘z)Dw”ÂË ÃÅhó 0u]Z¼ÎêZ>Ú®±é³¿Ýö_ˆLS, endstream endobj 58 0 obj << /Length 1203 /Filter /FlateDecode >> stream xÚÍXMoã6½ûWé$lĈ¤HJEÓâÉb{ëÆEQt[À‘•T–·¶“l.ýíå ‡%+I7ÈA@‹"‡óÞ ÇtÞÍgG§ET²R Í/¢Ò0£‹H+ÄTÑ|ýÊxžðx³µ»$%•{Ü'Âĵ^lìÇÖ .š:Y|±¾enôΛ^Ûvyo»` ¬¯]¿u€Møt½„Ù6®„jA›¬éÖƒÓf`u(»þV­j–¤¹(ãÓ¤ÈcØs½ á áÚÅ"®‰ßŸóŸN9ô’*gV§Ì)uæ,BA5ÓEîç?e*›a…élvû’©²0¸s­Z÷’`ä®ÑË(•º`*ÓQÊ9+Eò:áê…Ž1 ¨ö”.TŒBWö£ÓÞ'6%3FzÚ}8üiõi3"m}þ ÎÑÕ ¼ Ø€ï7”FöÕ‡Òv0µBFð±Ýa¦`z¸¼¸Å ;ã iAšõÆ)kóõWñ^–dLÞçA*âã÷û¤g¦ìB]±pHˆ|5ñvßb–šøÄùÕºØÜùè]Q„…aº§²‘RÄœ < íeí´’RÆ.ºhá¦?•6€ú¡›#8‡´òвD!*š¹M”Õ¸¡ìáņæ Ò#;JïÝìt½¢4xƘÓLÉ@4n»¶—ZñJ^8¢?&©2®P8/ ËØ Ü9“l7Z{ÙAÌNn#æ’gƒÙÐ w…ó u -M-èyƒÊrJS°ø×=6¸vߺGK>, q;˜­É»Ͷԧ}—Ážð<†(LH€g6*KÆ 3L-y{NׄvÜsöC÷¤RMÓЄ'é¹rexü]ï]xx冽S® cêNy6Šè†4âF± È{ëE0^÷”O“NÞq´ïqhÙ3™-›`Ç¿IP°ÛöѶ_m;ñRñìQ¯ˆòÙKQÖR–¯Œò‘mï{ê<ËÍ·ŠvþÊÜS=}_É^ˆ=ùÜ"€qMnXõµ «>äÕÙ¨> ö¦þuNÉIÌ)%¿7•ZÐ4·×-­°’•yáo_in¸‚;‡ÔÚlRÉs9òËoÄ'Ã/_ën÷}+¨Q›å¤€¦ö€™¤'¼Û²§ÍšÏ$ l™´ ¾i>©¿{<Þø»ß(—ßL|Ûä¹*¨Ø󜖵´Í í~×]AðœeÒ «éT~?‹Ñ‰Jôož?¼;y˜Ø\sVH¹'ÞeºSÚ kÜ= ùŽ÷jVÖkzõmàɈí^P¶øzû{pcÚô—ÁmP®Ðw—Ö,}±oMüeq‚Ñxãßh ^ûé&ì—vÕÆ"0‘å“_à \{¹ïÅõ5näV5´l‡nRò`¿J?ÓÈ—¿'—·.ÿ«ÿ™€~4”£ËàâìR#×ö·±œ> YÐ÷t*@ŸÉ˜œLÂ+«êìd>ƒŸ©YÄýÿz¸P¬à*ªV³fð£KæhtqÊ/££+ý´žýbÿüTJi€ùnü/&™IÆí!-J&5 Pzßþ—Å , endstream endobj 55 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-tmwt.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 59 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 60 0 R>> /ExtGState << >>/ColorSpace << /sRGB 61 0 R >>>> /Length 5873 /Filter /FlateDecode >> stream xœíœK«Iv…ç÷Wä°4ð­ŒwÄ´» À†¶é˜²lw!Ét©Áß±×Z;2ϹYê[jOŒÏ@–òµ32v¼¾7lßoaûqûóÓo¶?oy<Ç]¿©Žçºo1S?½ß~»}zúöó?÷«í×oŸöç}ß·óïÛ_ÿÓüßV¶ÿ~úݶ}û·§°}?ÿýøì„íŸj|îcûóÈÛǧšž÷µožj~8Ö›©ò\v¨dª>§µSukÕÔx.8ÖâT-è.u˜JÏ¥BSù¹F¨@5º©ÒMÍwı’©r TOÈY«ÏgæDÕq—l‘µöqfªT wI‘j¾õT‘¡hMª†{Æ@Õqf°È:žd*¼TQå²7*–Ën‘õlo6PòP=n}<‹¬+SY¯vÎT}PœÙã•ÊÝTëTwiVf½=× …Èúsj¦j£j *Qu\W¢˜¿Å"³7ñ’¨*®Ëƒªã 9¾Tá9C%‹lÄçwI™j–¹©@U³©Ø¨®‹‰ªãý¢E6’ýïT¡RÍ7›j/U¶(LªŽç투X™Ïwˆ¬Ú½M!²fßÊT š1Yé4ªù.¦ö+5k²•*"ëV XÆP³îN… ˜ªàžÈ€©z€BdÃjíTÈ€°£‚›,’GƒdÇ#‘aö…LfÈYÄÙ$*þ…L(‚” “Õ×)‘ &gÊš,’wŽQ²àuƒÌÏ· E²áäÀ ‹Jbo’aìY²Î2l̲¢ô›å:e&;ƒlVJ&«¤•FcZ„ï2eë’VÅšµ…”×69RÍι”·Br˜´kö§ Hu“I2àdä‡ÉÙ”šDa¶…É$râBf\›Š¤UÓÆ$ afbŽùZF<yb2ã}C“dÁ™T°û8Šì!£‚V¦‡ÉYoÙ²PÎÏa’QËÅŽ6—2vÈýZ6œÜUµJb2IΟ²ÉŒ0*‹®YG`2JVœ\†dÃÉÌ”0ðª2% ¡±¦r•l¸6!È8?(žËL™Òò¼*S¦ì#"È­b›Œ’ GÃì’™jlU¦ÄŒ:Yí³š,ÈЪL™²!Hô!V¤älÈš¤U³Â~û…lHÉ¢L‰Ý¾»É(iU¥(5^J«9E™2¥u E©q/ºŠÂîÜdí˜)SÜŠ™’v+¥ŽQeÂÉÌ”)­ö%&+bN(ɬb›,’ïËL™²àÎL—²âA‘'Gt)E™2eÂ+0S¦´bŸr—8º3Èdm É(i½ÌL™­LÉ9¢0É“Q zVâ$T!“áZZ_“•8Sve⤎,ËÖ;P6Ü™‰“Ð{™ô“‚dâ¤ÌJœ)3N.Q²àιKÎNÒ$J2ïV&ƒdÀÉLœ)­?ÊJœÐM¹K&\ËÄ™r¶®&yrDþfk‡_#^‰3eÅ+0qrB†fؚ̨üI‰3å¬&÷k9‡@S2qrAv'Ž€MÚLÖ\PZ£š”8SܪEI7%Ë&ÊŽ“+O®(ç¤Ä™Ò:ú¤ÄÉÍJØd–lˆŠ‰“; 6qôûBb46%gÊŠk™8e·ªk2J˵Œx_&Δ ¯ÀÄ™²áä%;Â`âL9ð\&N hdÇÅ&go2ËLœ1‹”ŒìŽJœ)-£§äoT¦¼” ×¶|%«ÕF“ ²£å!›dTÌ”{ÉÆ-r*f &£dBLœ)mí×dÀH&*q¦´Ê•8sJ–pg •MÚ8:*qæ­áäØ$­×ˆJœ9eëx.{œŠÆÇ$ƒD Ù#Å]V<—‰3§x3ezШ 6 ?GÍ&탔/¤]PâTŒ§dâLÙprcM}Pâ´M}Ш a¶fAÚä2BÉ„;sü½ %Δ ×2ql†Šq8=pÏ)™)·2îXC2 ƒ•pL“·Bâ˜ä b8çLsæï”H“sT`’''ë­¦ÄpÚdÆ­Ðã˜ì8Ãé¸c=jJ$ŽÉùeMfÉŠ× cã)wYõF;OÆ´qÖùQ¯$ŠtÊ>.dÀbYÃ’‰É`=ì”È” 9›ëÖ9*ˆsª5sJdŠÉŠ£H2[K5%2ÅdÃs1~69prfT/Ø™)&ÂÀø9,ƒµÎL1™ñFĬΘ ’¼32%ÎyÊLÖ9~Ž«X&wÉYÁ¦D¦ÄˆŠÉ$9›ˆÖ™)1¢„M"ª„¥%[†+×Ò^¿15LÚë7¦F´Q}ƒÌ’FcjØiÇÉÈ…˜0Åž¹ªAk!›Œ¸r!ΫNc'3ÖUZã9f̦dåŸÃËŠ“YÛ_ÊWH<¹Z»mQ¬‚Ú %¢*˜Â›DTcQ“ˆj]^•]$æ’±`UÄ$ʪàcµÆ!q,˜³;˜²b¨Ö{X1Km•CâX1ž7‰ ­£‡då¯(ðV9$Ž ˆÉ(Ùp={l™D ±VÙkÄÙÃÅØdB˜KÆÙÃÎ-í"*ë«ILãìé,Sª*0ƒŸ¿;6=—ÕŒ•Ó:Gž·j5/͉ölŸ«Ö¾RBC]+?Y*HçªywšY6[†ª o*X,¯š[¥Šw©šÔ¤Š©AÕL$U,úU ԛĪñdê¨ÏUƒ±Ô±VP5 JFGÚ6‡!qž½ÕÌ…¢è­Ÿ¿‘ë`èBjôqËó£ÏP)?loïK%?Š èqØå:&~Üå:ž†7~Üå:~ÎÝ:þ«wzù>_¼üç>=}ûq Û»ßø¾ÇuA{±dûîãöÍþf{÷ãÓ߿ÿ|©-Œóµñõ×F®Z׿×_k 1?Âqm}ýµyǪÃqm÷kYÄ}èG8ÏÁq{8ê8:ÐùQªãh`/í‡%Olj×qÊã¸ñÂq\òt|vÎsB°ŽSžŽóeÖñãÝÎÅv*«¿;ál)f0‹}?[M¾x-ç6vm˜Uó_޵çÎjöU×»>}Õõœç ª~Íõ6 ›C'»¾|Õõ¬Õýtýy|ÊŒM—Kë]1ÈR=¸•~2[Ò¿¹=±IëìD’òëwßüË›ÙPìÛ7ïÿõ§ÏÛç?}úáýöþÓOÿõáÃÇ÷ŸþòæÛ»ï_YaçwÄ:nýÛ7[²;ÿé?þó¸Ó/3„/v[´é•µKÀÃð°<,KÀÃðs–IKÀÉ! K€;d `n Xyòµ¤%@e p‡-Ë! K€CYÜ!@KÀrÈÀ —%À‚þùU’–:K€;h XYúËàZ–C@–Bÿe |wK€ËàYßi 89äHWrY䲸C@€q-e p‡€<ýJ.K€;h `â–ríe p‡€,CR–wÐ ‡À²¸C@–wÈЯ¥,t¸% :ô—%À²¸C@–>wYÜ!ÐÇÉ!°,î%€Aº%`Üyòµ¤%€‰sXä²8ô—%`HÊàZªCYÜ! K€;h `sXȵ—%À´0qK¹ö²¸C€–€å%€ð}Aÿò*IKç°0Èe `´d%ÎáH×’–9–%À´t‡þ²¸C@–wÐÀç°0Èe È’´0qK€;d ¸óÔ+é–&Îa ×^–€;@¿–²8ô§% :ô—%À²$IZäX–w ¼ ç°0Èe (’´Œ;@¾–ò´+¹, Ò-Ë!@3å^.K¹ö²IZ˜8‡%€<}Y²$-r,K€;d OwKÀrÈ@žî–ö8‡%€A.èß_%e `´,‡À²Üz˜)/¥, Ò-LœÃÀ —%€Ðß-LœÃàÐ_–‡þ´,‡€,MR–€$IK€ËP%i `â–wÈÀ òÓ-óK¥,MR–€$É¢ ýe ¨’²DIYä²IZäX€|!—%@e h’²ú»%€‰sXý—% JÊ@è¿,E’–9–%€ÐY¤[–C@–¹,Dän `â–òôe ˆ’²§/Kyº[‚CYúË%bfâ–‡þ²$IZÆ ]Ée ’²0H·ÐZsXä²ÜyÚKy²8ô§% ìÛ% n7–ž¼,c»±8ô§% ÅíÆзK€CZbØn,m»±ð¹n  rYî<ãJº€ÄíN–€[2åBÊàZ@½’n ¨î%`lgK@q-%n7–÷ЀÄ9,Ù=²´íl ¹^–€äYêv¶D÷È0¶³%€äzYÂÙ Õ€ É×ßo-ãÖ@r½,ãÖ@Àº,$×ËÐÜ!@KÉõ²\/KÉõ²\/@i×’–&βÐű,Lœe  ‹cYèâX–&βÐű,Lœe `â,K]ËÀÄ‘%@‹n Ðâ€[´8à–-–,–Áw·¾»%€¦Že  ©cYhêX–€FÊï–&βÐã±,•ÏuK@åsi Ðâ€[ªüN²Tµf²¸÷@–€ªÖL–€ªÖL–w&ÈPõQd ¨²ÖÈP•)²h¿€[ª¬5²TeŠ,Z pK€VÜPØ|¹%@·Èᖀ¯à–mpK@¹–%@ ·q|Y4ßwK€æûîçÿBvD “,M3zYLž,MSxYš\ý²´ÂFF–)ñd¬m›ÄÉ´49óe h™]ª,îÄ%À†dt`jÙ4ÿ•%ÀÆox.-SbyG–³màh hšÊÐä=%Àœvíáèó_@RµùC¨ó€8ˆó€8ˆó€8ˆãrAg:uÜ0AßÈ)ˆãLGÔ¦]KAÆìg1Ag:„8b: â8ÓÄq¦Cˆ#¦³ Ž3ašö*)ˆCág1Ag:„8b: â8Ói·»> qÄtÄ!Y‡¸Ä!Îb:‚8¾‘SÇ™Ž¨M»’qÄtĹ¥6wÛ<—Ĺ¥6wÛ<›oäÄñœ‚8ÎtqªoäÄq¦Cˆ³˜Ž Ž3A’‡8‹éâÜR›»mžK â8¦Äq¦Cˆ³˜Ž N•ç]Ÿ â8ÓÄáÉ„8'¦#ˆã9qœéˆÚ´k)ˆãL‡§ûFNAÇ4„8‹éâ8ÓÄáÉqÓÄñœ‚8ÎtqŠoäÄñœ‚8Îtq²cAßÈ)ˆãLG‡dašþ*)ˆãL‡GLgAßÈ)ˆãLGÔ¦^KAßÈ)ˆã˜FÇ1 !Îb:‚8¾‘SÇO&Äi¾‘S§I âøFNBœÅtqî¨Í¸’ âIBœì9qn©M ×RÇ1 Ž3BœÅtqª¤ ŽoäÄ’‚8Ä4„8‹é,ˆÓ%qxò¢6íZ’Ú0Sîå‚8 rAg:¢6åJ:Ä©¾‘SÇ7r âdIBœâ9qš¤ Žoä$Äaâ‡dAg:‚8¾‘S§Hâˆé8¦ajüU)ˆÃ Äñœ;ž»ßQ›t-q|#§ N‘$ÄÓY‡˜fAœ,IˆÓÓâ8¦Äq¦CˆS}#§ N•Äñœ‚8CR‡Ä!Îb:‚8·[5cþIˆ}#§ N•Äñœ‚8CR§HŽ~b: âtIAœ;jÓ.äqˆiâ0qˆCL³ Ž3AbšqŠ$!Nõœ‚8]R‡˜Æ!ç€8 rAœ$IˆÃÄ9 1Í‚8ÎtqH@Ä)’„8b: â€,ˆã˜†'8¦Äi’‚8I²ãvÇ4‚8URçŽÚ”+釉s@¹ N–$Äaâç–Ú0Snå â8¦Ä‰Û ÄÛ Ä!¦qˆÃ¥éâ8¦ÄÉÛâpô€8ŽiqÒv†8\š> ƒ\‡Ï]çLm´ ðB.j“/ä‚8ãŽÚ¤kIˆÓ}ç&!Î’¤6ܽu/ÄqjCˆÃ•êq¸R}@œ¾!NqjCˆÃ•êâ8µ!ÄáJõ‚8Üœx@§6„8änÄqjCˆÃ¹ â»-ˆËðÎ!_K¾>1œ ŽVât¦Õ âË8Ä‘tˆ3|#'!Îp¦CˆC*· ÷í.ˆC*· ޤSÂ…—’§q›§CBºq¸ŸtABºqéÄáÞêqéÄ!¤[‡_pABºqéÄá\':µÙOÛKÄ Nm â4}2Aß^*ˆÓôÉqš>™ Žo/]‡ßhAœq†8ëdBœu+BYÇcÄYrø–Xg:¥;dqüdAœ¦JgIBœ“¬änäA„8ív_§C:Aœ% qüs â4\A¯ü‚8ž°‚8]DG›Çâˆ};ÄQ;éGÛáâ¸$ı~ð´¯ÓûAAëRA1qÜ4"jã äBöãï„âôÄÔÄñ9¬ N×nbAœ.p,ˆsH@[ö>íë¸ â y qlñ4ž(Ž-.ãØZKÇÔAN"ü"9XFÀq¢›”¢ ËÁüÇ s‚Ï^Es¬ö£ZÜnê _À9¾[çv`çv`çv><ÀÎì<ÀÎì<ÀÎì<ÀÎì<ÀÎì<ÀÎì<ÀÎì<ÀÎìü¿;xîì<ÀÎÿU°Ã“¿ìàôØ9mÐØáþì ÀN`ǰSO›t0ÿÃù'°cÏ?t?÷×:±¥|ýµÎ‡rAà#6€-‰?ÀùÅ{lìfæÏÍÝZ¼¹¥ÝízçкF6u&Ý­î7w£<ßí\½¼£|qßÜoîKù¿òG?¹¸‹Þþ¤à§ßó—ß¿yýŸÑÔ êð¼ýº”v{ƒo¿ûºûärû&ß~÷Çxs§ß<ýðKå) endstream endobj 63 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 67 0 obj << /Length 1465 /Filter /FlateDecode >> stream xÚÅX[oãD~ϯ°V<8ÒÚõx|•i+¶´Bb˃c'M´¾§iš}à·sn㌓´[!P…ܙ̜ë7ç¶\Ï&W7™“ûy&Îlé(ú© $NýPÇάrþpßM=%îvªÜEÙµ°Tx»‹GØÍþÖxÉtûî{s»ûi˜ŽöÝ®>²™zaÒa{o3­áàn5 38V`)ÀmÇ[TU åÒˆ/¨£@3îÀ’‰ÒÐüOŠwhþ(Ųù·å¨bµ˜þ9ûùê&Ö@:ü$‰€¡iP<|;²N¹!³Øz:Ëý$ÈO)?Ó »GKÓÐÝ.ÈoåúS/NBw¶ZðŠm+':t€oÝ’V Ð¤9w]²å}ÑŠ¤"wE=£;Üv–ÌÍ©,ýD âêì=ì¼Ý†ïP;Ò6bs·”õø,ª\³üÒÓlß"`€æœ;”÷`yÆÙ8ÎðÀVÆ©»ìzÞ´ä‡a…:: .º^ ZÓ5°¦#°æÀœY(½)PÌzIúÀPyžHeîuGáÁ,%za·&ÆÄÈBÒ÷”1ÝA>gZS/Èe¦æH'n΢ Û­Ø &ÐS¡ Ì) ɳ_WøÒDòHñ[E3ÀQÔ Yä¾e–ùNröô¤ÀTvxØo%µ5§,*À5•—å¼cN“è°oÈ›ÏCDhNÈ-ß¶Ý=ŸxDZø¤|ÿ~ˆMªë5zž @ÍVÆZí~ä¥2pü[Òö;¬,dÑÍ‘WÞ · çK˜ ÄÆÄD¥ƒÛÕ‰È9½Ö‚ `5ã¦rnބߌèX£…«È¢`Ç %ä‚’ÉÀ·Ù‰PI.qþ…º¦` ;/ ü\e Ý÷PBMÉoâ)á£o±ð¶¤0T.Wq†ãS°ÜJaì%›åx)ÇCþJŠ]Á§¨†* B^ÉU1„3IQ|û7/+©Áó1ŸáÁõ;Q3.Õ"ëBЈç_¹g<öáûrîù²Á¬{£WÚ i'ç˜úFØû­…Ö½47_7ßÔËNØÄ8c¯…ÕRGÇãÞ>Ë$¹ï|äßY¢om¹Rõz‚—¥Ä—''G†ÓG‘SÈ£H~·¢¡Ó.ÂŒ`0bj+?G³RlVâ¨-œQ¹>^™Ç¯åÊŽ¢ÉûÙD£œ<õÓ$sÂDû:H²™ü5ÁdÓX[º2lrpõS9?t“_á?så‰HÏ’yýÔüÆÊ×qxRs.=W@£´ëÁLi9Ü„¤iÜ»çê¹’fú×(‰®Dt·Ù2±™ÓàŽÚÛÖ:_Ñh!‹ZÄKS{>ˆ™}<1xQÐ ²6-.çZ”Mñ8D ø³£ Ɔ§"?¢q¢PWGšê eutÈvœu¼W¬§ÜCWÇv]f»p8ˆ´û‹LHt_’sø—&^îÑRÚ­¾´'1fÖå¶²0Sb®¥¿}ÅS™Œ­ ‡FºµUóÉ…t‡bc¼+¤'Ñ+ÍòåM ”JV-kú<™‰zˆt8;úÌ€$Ð5‚d/ÈîÏg3%CPxÝËy×Òå4÷jQ+âÇY`ïf ÂÓL{+àŒ#èÒxoý7g*%êüШ,„É ‡¶—ûY&h¿he¢ûÊ‚H— endstream endobj 64 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-mgus1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 68 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 69 0 R>> /ExtGState << >>/ColorSpace << /sRGB 70 0 R >>>> /Length 1207 /Filter /FlateDecode >> stream xœ¥WMk]7Ýß_¡¥½ˆ2úÜ:´C © ¥$Y¤©Óbœ”Úþýž‘t¯ä`LYø‘óæ43çèHawéØÝº·×ø{ùðëOîÕÕFžˆÜúyõê|›£ûo{óΑûscw‰¿Ûíîç-‰§âBõBî“ Ä¾äïÜÕWát2VIr„w8ã±zN3>àÊ>óßáŒÇä%Îø€G\)ø\øg<ªWñø£vg÷Güâz ÷ÃÃÃ}øðy{ù£€‰ë®Ïs~tŒ†•œdŸÈ]rgtî®o·®ÛÊϧ2†QÂ’OÈE£iÝ—OØXH<Ç5ù„%BuI–Sv® B×ävÖñä%YOØYkòÊkò±sG̾²I¤!ÉѺlzÖ‰f”¡«ð€K"»¢Ý`X‚y‰ÅƒVõdùÙs÷ ò {bÃf™ÈÇ©4Wh—f@~Æ×-õ0òS²¯sòùÖ‘•Ç%šº,­š¬ˆ|¸P´¸N=òc´3nqäGüÌ~/BvÑØ‘sÃÕ66­Ñâµ.q-÷ü`ó,\C[?¶x vØl²ùHV,¿XÙÀE¼XýÜÕ+0x §}}Ü…[¿ÉêU*Ƨö50g¯ÈDz¸,€%y¶ù%cØt‡|šm?…ë%›?΢Í_£Xá –ÉúS+ÄøÓ~¶ƒ'ã÷oi¸Ø«Â®ÅÖ¯‚ȘÚc…[=vwà¢f6ÕãlR´€pòQÚéÜ•éÄž/h3vvMšž@ì!JÅíP¦(A«Ô)Jlު"ˆ¦(mS¥)JÁ¬ì*ØEiÜwwQ µ{ï¥Y¯S”è­‹zˆÚêë Q‚».º!ÊŠÙ­¢´«*.¢Dùae¤í¢ÜÛÛE‰|ª‹(±¾È"ÊÚÜjв–ÞÏ¥àE¨iŠÒHÊ:EiÛhœ¢¥Þߥ²1¢h§‹¨‹RRì‡dˆR2D•›(¥ÍÓêïÝÉFÙùÎ5,%ӤŴäAu¶Äá? ¥Êâ?8”ÿ·µó½û0—Å–Ñźì'Õ8Ï]JƒjL´~§ÚF¡ Õðæ.¥A5t+i¡ÚSa¡e%Y¨ÆmSóB5×á'ƒjH¹ùÛN5k—âNµýgƒÿ±±¬þCÃÕ˜b·§Î4ÜYò$:Œiòl„ÔIsÝÊ˘¤Öé< ¦izOÔ~`‡ïà1WÛéÍ®½ež¦ÕTšžÃ¡«oXN¨FíÊâg¯ÃñÁG7¯ŸŒã¡1ߌ¯·ÿB|Ô[ endstream endobj 72 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 76 0 obj << /Length 1591 /Filter /FlateDecode >> stream xÚ­koÛ6ð{~…Ðm€ DŠEQ/ ÛÐb-Ð}Ûêa¶} m9öfY©i5Ϳ߽HQ‰Rë0"wÇ{“çW««›7E5iSª2Zí¢,«Ò²ÑQYT©Ê‹hµþˆ¿_$…ÊãË"‹[gŒ;G= ÜûsY,e{ã àk¦¶BýŒŒ_`ü ãõˆ²fÈ4…’dÏ£=–kDÿkõSŠh¥£$ËÒ¦…> µ±Š0~NF¸YËÁϽ“ƒûÀ{aµeÒ³`ü#d`¯ŒDLæd£wBxyÞàhRоÉó¬À/â”ND ̹–­IüÅœï½ëQ½¬¬Ò%DÙD=ÇzýE¬—óL7ÿ ÓrÊtû™’›oà¬ÓZ7S¹íAÌOžy!þ~ñœ¾ŸÇ>—7„BàV@ç ¯Ž"'Qä32á7!ÁSn% .OÃ]¥j9î_ñg+<¬ÐŸeg ­{Hz*;žº òf?Ö¯ÐAvΤ"Ç{9ÈúDéöËÄÛB—iScjä©Îj³Ht•±‚y¬qîWÁ~ÖpÝ[z²¶ÎÒª|”}K)ø­aä³#É–º"Ò€íü`ÜBpØŸÂm>/zÙ9ôò£B¯^¯®2pë2Ê¢¦ÝëHåuZCÄmº«÷Wx×åš‚)m92ܼíŠèÇþêgøs[‰°Lž¯ð­'·¨J«LEJ•”ìds¼% ;ÍÖ%ãí‘ @c~iU7H¢—M¼ë .ZÜ/T·”aû…à£[Ë6 Ö#ÃÔùNB˜¡$ï–u| ´9…,7FÈéÊ=Ñÿ3¢*!"݇EQ03”²µä¨¤¬tüR¨ýFé’Ø÷RuÚhý´î9û“#\àKOËk±žÛÚ å:2 ¿ÏÜÆœYYÕTD¶ïÑ÷ì :eA b‘ݨ§†‚zÊ>yb#¨kÖpG®ò‚?Îæ©k©º9\ëÕÎå™qy¼N=íÆ8nK.0²ÛŠ;,•Åšôà@ÄPp&Z\gñ›E­¡.µ»d?HxºË)<èšq¹¾Â„Ê#—QÊû p kÅ5Ók¡+\.`¬¨éLs©\­„5 èO€ûb®0ñó6Qµw‘‚wK‚_Ä=5{ö£k€1JÙ—Ù:ÿÄk°ß‡nr÷Û'çxá‚úòGx¾ÞÙæ,‡“§Áà‚¿‘fãtË'¼Û Šs·£zâ²tö5–vH|Þ¦Ï5GœxÕÕE<؉Þeln[Þ1–Aʸ¥¿6ÍnŒ»ö`Eœ¨9¡»gËP¼Tfi }32'µ¨Ýò½Öhü”Ÿ€ïœÀ›©P{߈jªWæ`ùÛqönÝü×òÍ2cª—Ž,~?øžOŒŽ¹RÔþJÍ pïѲóòB»G!Í`%Ù -¿þ¾«40õ¹ó;±·î!¼v6Øã«žçÍ ö£ßª”ªR( ŒïÓ± ü(ôžIÂw¹jÒRŽ€0\‚¦Xd¿8õr¶ =@Í:¸›E¬ÖݪÅôuPhßÁRÙuæ_r¬ShØ hÒº–Î/Ë\ó/`zÛ endstream endobj 73 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-mgus2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 77 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 78 0 R>> /ExtGState << >>/ColorSpace << /sRGB 79 0 R >>>> /Length 10041 /Filter /FlateDecode >> stream xœíÝKìFv-àùù9”ÍxGLÛ°/ÐÀ5à«F£ Y~´Ô°dÀÿÆÞk3+“U|3³Î©A«õ)+“dðMÆÚaN<™Ó_OÿýéŸNÿ}òål;þÓwŽÝɺ úõ§Ó?Ÿ~ùôûßþßÿùÃéï~øÔ»®;]ÿó‡¿ûÇOælìé?ýéϧîô¯ŸÌéõýdäNÿ÷Sðç\NÖ”sò§Ÿ_òË?¸ëö+Lçœ>ø´ŒÂxîÌ×ÉúÿB6á¡ڳ랊zdèÎ><’I7þ.ËùukÊV×ÅsJï•Y7¤ÎŸ‹,eËéÜÙ¸§b©—d9;ûHÙŸL)çà6g¦s +»³†s)S„þlÃæ,B‹\Eƒ¶êÎÙîMiÉ\ÎÆoL«ÍžÓÙ§”†Íáœýc)+%×õkgÓi;g{Žþ™©«Ìœ»<@¯+%Õ6LY ©¦w§¬²Ï!¯e8;S¸ñÈ$t¸Ú‘ñl„õú*oÎ 4\)²TÆz.‰û2é*‹Y&,e Êíf3ë:’Uå6§¬…ºyuÝÞÔµàÎÅ®eAÃZ¹¸ßšÚìFŽ&›2uhöza6g» (í\¯çL§Ñ¦«W¨zÜ8’ÉV&ÜyíH+UÜCƽ@“Ö³Ž9_!Ü ŒÍn¤¶f±³¯£®”zãƙаõl0¶¬e–ka°ÞÊ_¸DëXÀ÷e½8C·€ ti[æNVÞUƃɵ`Òz²M÷Hš¶Êôêk[r•uv6mkv}²-ÃË mÈr½øÏIׯ£2H®¥ï÷2»€ÁãÈЭgý±¬×  ^^> Ô'«åY”P_댒k¡˜”–lgØ-™´qä¼o0z·xˬ‹ß.Nve“Û›l:¬”4Žág¨ckX:´•9û<…Œi KPêõ<ÖshÐÛ=\Ïeõ–ç8Z9Š ½ÝœŒfLe-]kÉ’¦¶¤;›¸/=ÖÉî´3¨ç”¹,`,ã hI‡NDs©ãÏß—ãÏÖLaõ4qÏê±y¬§§¨Lö`&P…0˦*Ùp4cõ„»+ ˆµ0‹­äô0 LÝ(M×µæÐÓÆëR²‡ÚXof×Û 1"›Mq‚õü|o‹åçèhÎʯ˜óSÜ";Ì_:wi#×kc±Åòzi(±‹ à`&ºÀ1,r5b=¿Š¹yÜÂŽvÐFbOmó£×uS,ÓCG´e.°^:ŒÛÉ)IìÜB'Øëö,]}á_1ç7&šóƒãí¨C›¾^ YçÇàÅþ½#æÇ´öªûQ³=Æ]`7ìz`…½}Å û8·ùÉpiÓ/¯Y¿oyþ¶¼@›æãø8à»aLÏÊÿ ›ÓÇùÙÚ6ý^1§¯o!îídE‹µ»ç{8»Wœa´×¨½¦¤¢kíéåÄ .ƒ˜ÇëgûÛc›ž7Íé{L?ayÏÏÕüý„åÉíû¹£ù}œol‘6ÑãY·qz`ëíå½4ŒX¶L1ßµïgØëò;×þÇß;‡æòšùû8þº$ "ƒ°}Wgû÷‹ìØâÐÌÏõËx}ò'ÆõAu¤ñ¹iÓÓ›Wã­\˜ŠÑ¾ÞÉ‚ŠKxÅ™Æ÷¬‡¹)NÍh_ŸåA­Ç«Ð5cÿ«wÊÆþSoÒøyÖå¯7>Àø<Ê‚ts'¹OS;šå©Î´Î\X‰ß·– ]ç7ªõ…‚6,­íUÿ…Ÿãz:éV¬ÖóY®ë/_ý}u,°¶_ÖY­_ï]ÙƒM÷—$@9–ì¤-ßÊGÖ]éËŸO¦ÞJ&C~9ýpó1åÚ§x;Ü>¥úOy·Óÿ6yùG‹þsòò9¶Žþsòòyª[G¾|N^>¿^˜Ë²õŸÿá3›îÇßšî·ùôû¨;Ïéó¿ÐZ—ÀÁÈZí3õùçÓwÝ÷§Ïýô÷Ÿõ—ßþjÒ6—¯†é_-ºq^¾jfLVNˆ¿þòŒ ËÞÝå«/Û9SŽz~õå9S.Nv°Ë—]?e¬Ýe±~溶rþ³ºŽo>v]>•³|½Šk“WŸG ŠôŸƒ—Ï%pgSÿ9yõ9f§ÿü2w×K~µ¸¿»jçeWzŸ)Kþ»z)<Ôpo~]¯ËMû¾ÿý¨÷ºŸWú›_·r›fùõùS·òø'ñëþåŠçÎýÉÖƒKnüÒh³Ç«N®ˆ—l¬GÑ«mN”ò×Yþ!ôÕ ¹—©‡/ÇMøOßýË÷uêNßýô—_ûþϧÏœØ(õ_e•8}• ¿ôÃÏûÛÿüÇOÿzúµþdýÅ¿üò_ýn‘°og“•ÛhyÂÿfÖÞ½ÌÚ»—é~p["Ö-—ÖùƒOKÉÛ:ÞW}…D]î»o„’¶ D<åÈ€‰yË·±ÛR¶ºz¯ÏÞ%‘y7ìù@j•†ˆ')ÏCɼÿ"z<µg¢•· is&Üø°’x)a;>;e¶DÞ¦Ô2ÔVQñ¶{߉Zµ ã1Ú–D|¾ðÛ\jƒÐÇöÅ‚Gz¯8Hµüí³RWYÇ]ㆈÀ×›_íòq$µâA’'¢;SË#<#^EDà³Çãö#)Ûìpñ¹#ÏVŸhmL‰ßfƒ'çGR’¼¹Ã²‰|*è×}$µZBféŒYD@>ñuöԊñlÝÞ”µ yȸ–È#Ò¹5[E ³-O¨m@}5µ’ÚÎr#D>ux%x$%€Y©¯úv$ñ±àè®”lÝʵsÜJð:zÿ5iúz|Ô¢:£L`gIdÞååz|,úà¸q è¯ñ­+Æ®L ŽW‡y© S6gCXÏꃅ">/½§–0šYEÄç¥[ZÀj¡•,`«°Ÿ:)ÍeãÆd^º~v3€zẒÒÎÒû¶{$—NÄys&P‹%Î#òÒ5»lÎà.·¥6lÆÆÿ¤D¸>ð‰Ü=˜Ž%âóÒÁ.. ]™‚XɆx(‘y†Ç2mE¤é…y ÛZp È–Lfc¦Ö8y ÙzñyK&â nñve­Û›Ô«ë[2/ÏœÊJ&P+ß®!ÓôRâ/Oaµëû(%è*×*Ýl">/™’¼€’ó•|I<”ÈKÎd{0 S›Îbk_EDà#k½É"Q»‘ˆgïÒ}@°€¨Yñ6Ÿ—ôG·€ Ä»‘¦—HHœÂêö=uñÒÆóˆ¼$=üÁL ÞÿŽiúY eŒDÙ=Y@=wÏ#Òô-Ð1Ê¢<›lÙùêYú9֥̗ìû\ØocdéåòTk{”–­¾5²ö±´¬9²õ‘µ †\àYúéFV>µlë–lr5k ;ßÞ?,±dµ“aVn‚ ló"#k_<àÙû×ì|²èڶĶeÐÈΧ–•œmdéK¹Nq€}ÜÈŽy#;_]º…Ööò/³÷½™•O¾e¹×;ÀØÞ6pÓ°‘µoã´,} xJ<Ån¡ Œ¬ì¨‘¯ÆúY`]Þˆû¡–­OH3 :À}6¿À¬U0fdë«SyÅœd5½ô0p´dµÇ ˜âãütgdë«QËeÀ Fvys#kŸ2·ÌÖW³½ïàØ²òN‘p1¯X§×ίwF¶>ñÀÌì=²õm,•!8™A#K_Í,ø¸%k.ýoÜ+Î0²¶£FÖ¾×ÌÖË3~;hdëá¶þ¾ióskdés«1Áv¨m€¬½·í™Y{yÆdiÉÚ Ѳö…å6[Ö¾Öa¶^žp˜Wœá|¥¯÷ÄȾYûz_Èl?²ö%q~™µ/ízY{æ Û²ö2j§ k/ýœiÍÚ÷=ª™µc{AÖ^†DÖY{1Ö7²õÒ}Ç÷[#[/ã&âzøÎza$]åQ{Y{éÐåGÖÞZËõ¬½­»²ùÈÚÛºZpƒSŒZÈÚ[ßjs!koS‡Úâ_˜ííº]\ÚúCoÙ^.™ñÄjo7r ãF.ð‹¡…/F¼Ñ{Ü—´ø¢oC[N0§Ç¡vç›óƒ¸×¨WÇ…æò2^çÛòà|2`Î/‡þõm~ŠŸäЦϡ—ï­óÿº3ââO”x\{­:Å…ŽƒFœÑ·¡Hœh¿‹s›Äëgôìëⱌ7Êö†8"⌲=šA#¾(û_œhýý~¨_ÄûããŒýñöΈ3ö×Oö0Ž_Œ7V#žÎ8£<JƒF¼Ñ›ö{ˆ7zs‰3ZØ·¸c„íu¼Ñ^1ÞX×wqF™L÷Š3ã_ÇëlbèöQ#ÞX›ÇgÆ];Þ1Þè_JØuŒOs(áºYp(` %lù–° %,›Œ¡„m‹“r(áºY£|‡–xáUœ‘»Õ€9tp=Œ`(ñ;c(aÃNDm(aãy¼áP†ã'´¡„1´æ—o,mät¤‹aøáÆœxòG¶12Ê‹0-F¥^?Läðऔ‰Ô·‘øäKùð‡l-‡,ûP?üþ¬c§óÉ×o‹±á-Nߢ%[ T?£3ÜuOa‡ý¥Cgø=,Ûg ¼ë“8½Ž+ObÙ¾ëû=£%<$×Íî)4˜{Ûà ÖõŽ«÷%ú‚`Šìö²¶§ÇøõNh?7ãG8áF&ïãŒõápƒºÄÚÞ¯éžÁöe‘…4ÞƒìÍ3"Öõ5ák½¢#,ëÓ<0_oŽ 2< /}@¸¿-e Øö0Sfú@ëfp-u‡Øõ5ÿ '<àMf‘=Ö(ïá€Èú‚à÷۫зtÚËÉ\oo$¾å9xØÉ¶~#kût7‚×Þà…É#œxãùpogäüúóáþH¥Å­Ì´î_¿z—–3y¢5—ðÂùá–ÚâÈçÏO`Ýž:´=ÂÖŸVú†Ã8ß`]?ì@t¼gwíüµƒ¬}í·°®/‹ÞãFª¼Úw ­íex¿ºÚLažXÃs^oaɹY©µ¿µ'„¼Ï~¡ŒãëæŽÚÞÒïÃ?Ȳ~,ëoamÿ€wÂú ¨ê¸‡u}zt™oDÏ­G}ÿ=¬ë‡I=¬íÍ„ÙóÑwkø~qÀº~:t8?Ú®C½Ú/µdܤaØÈÖÛÇÛh°Ðd<ïzK:Ñ$<[o«FÃzóS¬ë‡£z-±¶/Ç_ÙÞíåqü]âk‡×{{´ÓeG8À]8ÈÚžï,xu7²¶¯Áõçz#3^mÂDëòwè 8Å’˜ëúãÓ\'MVëó‰%–à`— 8ÞY³ˆõ?{·“%ÍØ±pÛ Ìã×Z´oÀûÿGXÛ×ãþ|wK F̀ܰ[j]_öò{oYwœ¶–YÛË ƒûþF’½^vhâxЬ’‡\ÛC†Ÿ1ó©áÂÊ.ÍT™‘飗®â…e¶Æ*:OíË¢ÄUÚËH‘¬güÜ.|FY”8ŒÜRŸæŽ÷|÷¬'ˆTÐ#`Sêó‰ãW9dºè8Ȥă4å‰KbPM”¸ ºgQbï¾¥†Ž+;3L™nl?¥u'SÄûÊt¼c‘^ð‰aÑqz¥MÃÌ•ÌyPR•J} ŒJì¡·Ô®úÒïûÊ/·î–üKÌqœ2ݶzWâÁ"¦É¶_Öc%.?¼çw±z¥&ƒ‡ÞÎG™DêÐç÷ŽºfÛˆç㬿,ï7f%v+_ä#¯½e0¤F(¿œøà#89ªK¾Ò’¹2ró¾e?‹m«“ÞØ ~9Ê#2³,ŒJlWA#»±mHÒ³ßbÛT<ˆ¾ýñ³R;ã¹h” »ŽQ£·Ñòj3j6¶Õ#‰Õ-¹ÒJû֤±ÚhøÇuEû Äa3ig¥J\&½ÎŒ¬”-”?nk?iéžØ¡ÿ´K:°kìÐúŽ‘Ô—w,òÐ3´m£™³×uÙñSüT=™Ö¹ §ØÕ{Ú†¡ú*ëmEh·¢×+õ¦Õ×[ýþìÉœ>ÿÛ Mvùl1¨G½0ªóýùçÓwÝ÷§Ïýô÷Ÿõ§G¾‹º—ï†éß•»}ù‰þ»fÆ„åTÖùë/Ï™²ìPùêËvΔ³䯾/zêí?¯>—þrÎ]þ€¾þ ¹ÄKW_ý…E-þ/èë¿À|_þâ²×­tÕ4¿»j1:9cÊÀ­ùõMòí/}Œ¯Ûd·àëÒ­£ži±].ú¤7±m.ùkL[|»hlОEØF»Û ”z|ÉòÇ<`6Jçbôâú¼qûsV:0ñ2qü»ô.ìúBëRòl#œ÷›?}÷/ßË–{úî§¿üúÛé·ÿüåÇŸN?ýòëß¾|ùù§_þçû?Ÿ>ÿqjcÕÄŒ˜J½âÒßþçïON~ú?ÿý?.?5³¢ƒyóTv²òÔR*B~Ôvøð{t_+}?üîÜjäoÂ}­ƒ¾Q³–³©ÏçV[!?…/µö2k#ÜÖzx§îk+¤ø$f-d=ŸÐ¬­`ÊS¸¯Å÷2k3 ûºÚ¬Ý[mŠq³CØËîkO¬s_{µ1öw‚»}Ü×j@–wY[µ/oÖjˆ~‘ûÚ É½³–kmÜøRk}Û`Ö^pö ³6C?ýuîk-0[|¼Y{!ÆClÛ`Áf/³ÖBèä6(±=Ä}­dÖjо»óÝ×bð{™µr8ȬÍÐOûZ ÅïdÖbðû¸¯ÅPö2k3àzlÖzÈ“Ü×ZˆæAæÐθÞÝÝ}í2Çnf-™õfídã¿z÷µp½?Á¬­Ðÿ¡nµzB<ƒj= ¶ß\èVû€µ’9È f{mÖbh÷¯;8ÀÌ6¯wA­‡œ'™µ\›ŸùN°±›˜µlËÞÏw€Y«e½ jG¤cŒZ 2&…]è„ÚÌ~omÔZÀ˜q@-Œ—µV˜µ5ºî)œZ­_vr«Õá9·ZÑîäwe'ÔöèkI<·K«ÍÁÚ÷N¬Ýñ÷µ8XÎKºÚ‡,Ùr«ûGµ¬mÙâÇ;Á蛽ڨÝ`[°c‚uýæ`¸ÀÎìbÔj°ûr/p‚S4j/ØŽqÂÌZ'èç}€YÛÄ–A‡Vk$Ûœ`61k7d Ö7ŵKÐ%‚%KnR«e3רÕ`X‰%n"£ ‡µL_›`{Ø¿æ#™´Ú¨µ`8¸ê#¬íëæÝÛ¬½`,ãX8À¨³À6ÓŒZ †÷_Kœ`æ´÷6j7Ö¾â#$4àëõæ|cðhÙL̓,ƒow™íQk1qÌ-ƒu×ÃZ ¹ÀHÎv@û$^M°¶OÄýý¸#Ú'¶Z#ó`nÏó­ËZ‘ŒµNh9ÅÚåÞËÛrßHq‰ßpðœí‚ùs¨%½…e°ìŽc°àƒ×— ,ƒ‡w|>7Åv~‘µP„çKÔ‚Ú8Ø~Gm1ÿ†÷“ `ì_wv˜^»?˜méu/ E¼i©ÁQ^ƒXÌ¢DÄ}Kj1ˆÒ޹s™”> Qã¾%µ* 딸°]É¢¼®q¡VŽ(‘‰hÔ†(±íc JÜ­Ì¥Ìß¼ŒQ‹A”Ð6ë™LJ”ÃD©ˆâ¹™Ý3(S+$Q”ÎO –ЍDM¨{Êl8d¹¥VŽ×Ê o?¦°(ûª/¨¥"ŠÅpÐLJl [R+GH¾ Í®¥"*Y¿ãŽIé[1£Ä]3JEÓZòŽ2¡®-Ñ µTÞ32)J6h©ˆÊ.S vÞkßRŸ©çÒæyŒ^ÉutÇ:ó9³àèÛDå©Ýɨ4ƒÔR¹d¸»¥Ö†¨DkŒR¦Ûª! rDej…$rw)¸ƒÊ•¾’ÀwqøBåˆÜJ' T„tÄ CÔÚ¹íû£ôÊΓÙh ü”–ŠÈ­lê Q*"·¢÷”_v|Œ„ÊÙµrúß3ˆ¹£VŽžp™•¸‚CåˆÌb÷¬‘[u-TŽÈ­(*GHά¥"¤<f=åv+‡Ú‰£tÑ‘xŒ„Ê©mϨ 2n¨Q©ïøY9"¥VîA¯mRb;£r„”zÁkåˆÄ±Y9¢[*G¤Àúh(‘ÚÅï-µTDjÅÔn©•#drº¢r„Ô:ÑÙ@åˆÔÚ•#*Qá•#R»iE刘ùǨ}¬ÑF'¾‹Èu­ $lÖ¯ÿ@Âö#Qûáçö%¡Y>ü.­‰SÏJ_½û„)"ßž™`íG63ÑjÂS¸OÀ"²ƒ["õ6aû>Ý'Z³{¸3Oj&Z ÷ X$Bv0±Hˆ¬vŸ˜5y¢™€eÂw{3kÓ&î¯üýýͬÙÇ}B6Ç…0Ç7²è:Û}b£¾3AË„ó[ÂÕ´ÄÊñfâÕǃ\`\_®vŸpEbâfâ5w‡¸OÀb´´Ì„k²r9ZôÞî®>?È îçgžû,G¿ÞÞîâAf"÷_«Í,{pía&`Ó>fÖµémo&bQ¡i31Ò$÷ WVH8ÞL¼²âÃÞî¯\¿û›‰XÔõÜÀš`cç¯ß}b–Û˸ÌýëÁ¾$ZQÁå Ì„k.2µùEâ5¶Ñ¹÷7®¹{ˆ™€ LÜï`ŽN ¸ a›ò$3!ÛîϘ£ËãyÉj3!ËN1K`TàÛÀ6ñ3!ëñâx‰5Û*„mn&\+B>ÀL<÷ ßµ.p?ücZBšÇÛí`æ ØjT8ÚÁ jT¨ÝÁ~1:ùó Ú·¬ ×Âçß»OÈ–6:ð|k‚²Oè­·&&[g¡ÃÍDkn ÇÇ[ž©%ך‰Yv?šâ‡¥.ü=»‹™mØ.0Û' Û·öÀIXÛ/â}é.o‰Øjt‘ÝÀ æèåkĬ ìÀ=Áv- ´ëéÍ3²6¾LÌα$òCx„‘€• ~'ý=¬íéÙvµ‘pµ-Ñôkûöv6¯ÕèZ€Ìñ«ç»Ð~’‘µŽÃ¤.°¶—mc*ïm$f¥bFžh¶‡Ú¾wÁß'»ÈH¸ZÓ¡Ç;Ñ~’‘˜µ¦%Ç`(¾¿%1i»¶¾ç‰Y©èá':Í2²œ, è¼Ð²¼¦ j½ÚHÌŠóD§7DíµŒ×€u~²—‰X“[û®·$8«ãuBV*Џ…–D©4“ŸèûeF¢Vìè›iFB¶n&y©¹<ÆÚõÓ[fߦWÂD÷ÇXۛﻷwÀú Lœ-p‚ø¹³vÔ“ %Øÿ7p€MØÈ…öƒÖ¸í•3æÇ1F8ÁŽf¡ ÌÄö˜µã˜ ÷ùNp¸Šßêò¤WnÌù ÓlÚôM~Å:?–:îl1?W®3.S]`7lÍߪó+NE+°˜}ì1?íúA\­ˆc^qz±|ÍÕí#ÑaÄœîçîœ0=ÇL怌 sÈäêþ“^q ã 5ˆ«ûƒŸh»ôŠe˜Mi/?ňëªámÚü ¾>àÌù ƒ¶˜žkã°;rù0¿®-oln¿ù÷íû½õûï˜Þ½TèB^WÌøò­5¢+Æö6ÁúûYºù|i!^1žï!¶+×çŒßÁ]¹?¯Y~¿ž†º«(o_1“á]}~—­i^}Sè c{Ež·¯¨Ì@¯¼/s°&zõs]Dz vË/-Ä+ïÛÑ~Îâö¼Á]íÖM²ƒ +’!Ú«#‚èö€l¯Ÿk¸WòÌÑjºWŒç‰ˆ÷jŸk¾·Ï_1à+ùü¾’‡(W_íßêձʠ#Ð?èÞšó•ßG}M?Î;’¾’ÂöŒ¨¯©‹ã²¾2¨1ÙûZÛŽ·HûÚΡý÷•˜‚¾98¼y#ïÛÆÖýHþ~ø}øñÉÕ¯ós%s?’¿ÉßG&}?’¿[%Ý“øÑÉÞ÷šüÝËÏ’üÝËÉß·¼]ò×<‰¿Õäo7äo8ùë7ñ·›üÍ;ù[Mþ¦y«äï^þHþ~É_³‘[²7Nòó$Í!þHþ¾/=Éßð$nIÜü ·äoKƶdîmx/3‰Ë±ŽöqÉ_»‘[²7Mò%É{›žê–ܵ›ø’äu Ý’»ÝFnÉ\ˆ/IÞ°ÐLê2™½µ/IÜø 3¹›óFnÉÛð<þlï–䵋|IêúÜ’ºa'·d­y¾$}»WÜ’¸ö¾Nòº…nÉÝ­Ì$nLqŸ¼Å`Oà–DÝÆ}²=ç&˜I^¿ÔLê¢gîæî“¼~©Ù>L²ßºOæ2ɹ¿[2×ä–ôµƒ¾$wÍFnÉÝn÷É^nßã3Í$/zÎ6“¼cõ-pKâvqŸÔ5i'3鋞ñfr—竵èiû3™ËãËξJæv¹%SãB3ÙkÂ$÷I^šÉÜ`qŸìÍi¢“Àå3É‹žÞ³Ý'q³™ìÍv’ûd/’Ìä)Ç’ÝßLò†e·IàWÍd/×ç˜û$/†´Z`./FõZ`&w]ÚÄ}²cêMpzÓ}ò·7“¾¨Ì2`&yq?4Û}r—í³ÞLþ"¹Ü’¼m`µfò£ÇM0“¼n™ûä¯-tbvšû$/‡jo&eqýug×Oo™ûd/F¦œ`N×ϘIÝÐíâ>É‹¤Ðk{µ¡XïÜ'wÝVfÒÉ¢ Ì$*×÷­SKÂÒ}²7Ú‰æô˜ŒŸoÎ*­ŒºOòvKÍåÅõá%é‹$Ø€Ãp²×åIfÒ÷*Ù{k&}92ì­ûäoºIöún¢™ôµÃ¦¼bMº²Òáöî“¿H2^’¾lÿ{3ùëZ’—É_&‡û¤/’ÞnIc;èÔ¦Çù»7“¿8>·¤¯ã˜²æôq=vç>ÙËíeÜL¾"y9`&{CžâKòÛ÷%é‹óß™ôe¥ù!3‰‹õsgÛ¦—¦:¾H÷Éß> œ_¸Oþ"©Ú’¿Ž•+Zò74÷I_$cïÜ'{qü™`ý}ö§»Jþ¢ÒFKúvxÿuçKÒË;`Ï$°.oKþ¶J-éù¼èÎ}ò—I^&ÛõxKþ:&][ò·UfjÉß–¤¿$™fÒ7pûpFë·%{[~ÔLþ¶çÑ-ùy>jÉß6ŠsKþFnß-ùÛž7¶äoæöÙ’¿íøÛ’¿¯ÿZò7ñxÜ’¿¡}Τ¯çýòc3“Æ·fò7ñxÔ’¿­LKþ¶û­–üíX¹ƒÉ_yl•hIþšÀJ8Hþš’‘/hÉߘQ鿇Oÿôéÿ-óÐ endstream endobj 81 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 84 0 obj << /Length 3822 /Filter /FlateDecode >> stream xÚ½ZK“ã¶¾ûWLùbªjD ørUÙÄër.v•'åJÅ9p$Ž$¯$ŽEig'¿>ý@ŠÚÝ”fâÑýøº7_|ý¶¾kÒ¦´åÝÃÓ]S¥UYß•E•Ú¼¸{Xßý3y\,m™tç…­“—…­’®[˜äµu P¼¬°iË{¨èžàß¿«dÕácèOðGãL²Á¦&i±¼t°ùð ÿö=S \®ñÿ3¯„‡,À¼g&°‚ŠW÷~QI«Óµgì8pXѰò¤­í=Ô6erÞbWî¹Ö]´—}ØK»: ÙþÈ5ýÓâ_»Ëî–Æ¤M!Ã^[ ”›,9õ" »§Z.\<Ó©xxZ½•2V·OòÁÌî‘Â*tç…|ýÖ˜è4MY¦e–ÃòhYGîŸw‘6µ6ÿ’Ù ‘<­«Bûœ¯IäiÑT à jkfÀ±?sÁoÔêIãiöƒì å:–ãF¹‡¢æk·ŠXÙÓÅÒåeòvQ»™|"ž!ONtü}ãŒu©kŒ²øuî­³ã#pÙóP`bùÅ)/ºnQK—ÙÄs‘'*òx-Y–V6,…Õ“ \- Ö]W^¼@ùfèYèâ¦ôZøûpƒ^ãé¡¥8Ëf` ÅÎTÉcKl_3 tŸ+2¤Ñ¸å=KƒiÈK;£¼Hõ²ÙŠ}q™KZ6ƒ¢ÍTEŸÏ8E/6ŠD ONdã6Ò””~™_D[d¬DL@¢Àø&[±DYr ó2™Ü›¬»¶ X{hÑ"¾r÷þéÌF“¾¶-KÖM·3cÒöº†M7 >ç––EÚê¥jÕû%39’ZñžX÷,ˆ2NÔ Y+ôSûÄÊËyE}&ÝΓïa«9¬v*§ù˜ýÔ…\­„ø;”ý-qù³,÷°"ñATDZK“.xäQ¸uÖ®ZWT°]½Ç5ÓmÿH'H&ìÇXŠclEúæŒM™Vµ_ûO×ë—R矱7÷‰½Õ#ƒE’×eÚä"x%·ÒñôÙ¡9”=Ô4>¹–üz–´kÞ#ï®Ýt¤Æ(äâM¤Iª(/ØXxeòØøÄ$EÇ Sª½Änè!v*é§ôØs··Œ@І›Pè{YüÐd òX`nÇüJJ$¶aøˆ"åêŠÈžFè¨pÉš‘~¢ô§{¨ËÀµj±ãå$Pê½±š+ÜѪKÙêþ ˆzDò‰Ÿdœ¥¼].À%µjú`DIªGhâp„¬øÀÚÉ¿î¹GnG¢!]Ûw¬Óâ·™Y‘1#k‚ú“74Sž×ýa]»çI°¾ ˜RU \cTl_ iŠä“»N_+­X]áóг¥§ä%w Z/ÛöÌ¥W¤[£nĶ`­¿\[ Dç.Kp)DŠ~=ed8¢Ç0cæÅéæZó°ò™%DW º&`U({ÌAȆ᷌%ˆ~\±ÌE¡@AX‘%ê Õya3Õ1ãegPÙò»t{ýJŒ8´“šÑ™’QD¶//lA°™WyÑ’˜ãÌV’À7ÍñÒÉTE­}m«"-Œ vui“?}7ƒqlZdÍ3MLtꜧtT*Xæ¦ÊkêR§US€™-:Úë©ê4ËÝÐ)¸B…>dt–hø÷sްÈR[zC?³*­óÿ½³ N³ ÌÕ2ú‰Ž!Cõ(sr d/¤:ÁòI»W 2E%,P(P{(Pp„Ù9f\‹fìª$P^õU>.G/ÐûТÑ/â¥AÂ×°’ g§ò8L‘™$fÁú|T„Ô Ý—Ì¼•9% <°#Ð[ÂGœ¿óíoâ>ÈvîÈQ<ñ^¤¨»ŽÛY®v¢ldñåŒ|óä‡#ê¶Ê(À5ˆ}Úk«%Ó°{ç!­g™iŸí™;w­¦-°yMÙ€–?&ì4Ëi¡¿ùÍíuÅqX1ÁÄç[þ†lÄd6‹„X&ö’*`G¬Wq¥ÆÌö)ÄX‰+]2èÙ{jL ˜ò‚Ë ú¨U… ŠA˜dZ: deä•)2qµ…ÈDío‰°U·0±ˆÐé¦EÌK“‚'ûý(ú¿5°¨VòyåÒ¢ªæ#À.b“@Õ^5 #†Ž]Ýšc‘':S(Ýù+ÒšI0™þuˆVÝì¬,‹eÐbq°!”¡UÁW"d²­SÇÝÎ7cÁ¡%‡árÍgq‰Š¸‘­ÂWØj€¶‘)d¡!‹ä…ìÒ£Gø×ÉÇ2ßaq«ûæhh/8Ÿ£!FH6²½WDp@¿Yž”Ì»ÐËC›Y .N ƒHY):xõt!P½öyÈ9_Ÿ¹´*ËÏÔ‘û ešUÕGÂ9“¥YæÑ„0ff!MšÕçÀ[úüЬ4GG®Çïá6g£Ü®†ií^Y^:ÉÃU<Ï ß–ySrPwRcï¥ ZúgU Í€åMåŵa›È¼)DÛ4ÃÚT#9Î}öQ*‡'yZQWN*®¦ Züä•7ÈPÛEt´>)$ÂÖ} &ðĸ´qnŒNзå‡R¨ãÎ6Ä ZÜò™„;J·R/öŒL@¨Ñí£Ä·Í–ûTçÖ![hGëäe°'e°¬sÚÈê"ù®\’v0vG»CÓˆ_ÏKòˆˆíÅj¢eC2š+ƒâÊÏ©­?JV¹õIµ9“†ä6Ÿ†#ße¯ÓNP×… ,çµ®4yš4…‚:W—Ÿù¶þuËïÆá™Ç°h–Ê&yÓ+„Ž›\qèU-]Èïõ¹¹ˆôÁ…{ gGªá†µgÍÃCîq”2¥Rw1¼Ð}^§&›à'ÚX…ÙùƒÏàù¬*®Æ Aø¼ºÃ™ã20°ªþø ’jœ±í$"Pù( fÜ›ä¡t›»CØÜ^!ü.’ØjšÖÅšàD1õ«´&n_M~aÑažG™ó€~嬊´¶Í»/'°c4™K- ‚ƒ5ýðÝ?ÉVh0\WN­þžD”Àh–üŒöH;øÌ |ÐÙ <=*‹(uô*K ø—Œà™«Û -SH‡àœß˜5 ¥y&é~“| E+gÊed@ÀS³ãí m{ù&܃c›bß2¹®Ë7X Äj. `s/œnü*|gÅi&Ë/œŸÒÄPèòñ¬QÓQûDÙ­†¥ù¨g¢m·=õ*[œ¡ñéÜú1Ìrì¹n6§z/bij°¿Å$|•¾©jÏߪb eEkllê¤õŠdˆˆAtXÑ(¾d5 Ù^ìñw’´¯†˜V§÷–þÜu1<÷è[ÖןÖJ™í•«ãôÚ: ÿx«3"øH÷ƒßdø]!Z€s¾¨bUY,Âlj/åñؽIó¨I (û+mè>G]Yˆ?;UÞLg¹ü§³¤f®.ü)j%6(ì‚•³ÿMÌ\¼ð£àl:OÜÏ Læó Ý\°»'¦D*cÉfÁ2Ú‘ŒF¦“C±{>´!¼ˆÐcö'@¨8æî.R´L²Á4²ÈÔzßøÄTî顨 [‡ÛwjÙ‰c ìe4ÛL˜Ë£üŠ@"þz¬Úu$'•5A¦4’µÁÞ͈®ÔÒ Þ¶¬ƒt~cLRš¸î{ªÉ*Í'l)H¡÷ó§9¬*ûHW” Åöê¦Jã/£G¾¾´lrÕ¥–æê˜&9,¿ç.æ¤?ËPƒT?DŒÎá6:Jf”s¨ª3Î[©«Ü¥Mã&‡9ïà²&‚Y¸&ЋPçïÆ—£§€a ¶û@±®Ùׯ߂kˆN·pin¼'|Ù¶2NÞ ëOлĬ 9¶èþx´Þnz-"8&/“?KoŸ(öN‡öϹT,ÿóŽ=àvúz£ãÄ—{¦æ(ÅÐE/’˜ñUMW#Æ:~¥·RX‰(‹õâó—ø{D·SãH~Óû`éÞw­¤«e°0'æ¸{)l:]@”‘9qš ¡„´Ùf³x` r›6V’ì/Æþª!l«Ê0\cF „:“‡<Ó¹åÑcÊÔH¨ŠVÿЃN+ñhºÞ­ýjíÊKÉø#}}QÁùiÿðhùýV2^( ïv‚$]ræÔÈ(æ/¢}uQ,ësÎPZ‚®uÅÇùÝø=C'Î]:Š«zÏA#g(¨É_.ã4»=GbœºqÌÈðZb º)éOzéál¥B$àÇZ¾òJ­d©kIóóÃýLNDñ·OvÖßüç6“ Î+x!·âÃ-¦.Ö ÓldàÓ盕â*x%?ígþ]ÇOàÛ°¼©-¢˜_µ=&?ÙÍô’®¸=Ë*=[BÆËã·ªÂEôØDµò; ŸÄµÌh =¤nê`5ðvŒ…fæ…OÓø| öôØ?¢t¦Pmy¿ñÚH ‡5ü`üâ ¿Â}ÃSPê»Çošà“y.ûGìøŠ1ä ïaôFM&¦h9J \M+9j„K÷èv6j¿†©FGo@k–³ÁãñSeŠ˜¿øöá‹ÿ aif endstream endobj 87 0 obj << /Length 3020 /Filter /FlateDecode >> stream xÚÅZKsÜ6¾çWè¶TU“ ‚®ÚƒI¼‰]qÙÚò!ÉQ®g†ZrÆŠâ?¿ý$ÁÊÎî&» ñhîF÷×€ž^~õèÛpV™Ê[vy}–eÖ”™=óEil^œ]^ý”¼;Ï’u?»ó ç‹ä0@¹ÝÁÏ 6øäî܆¤i±a}nËd¥i»ëó_.¿ôm–Å«¤¥É –òüo™$æÃríÿ9-Ò…YrÊBiö§s䦨ÊhŽŒ™EæÖð×põŠ=üu7}½ežëÒà¯ÞÀþÝG;odkõ¸ù2Aé´¸ùófãÁ™ÊeÊÔnaç ïÿ¤­ßѾ{Úü¤Áø,Œ¼-°–oµ¿t¼_ëŒgy•šÂWgYfª¢Ð¹@.‡- êýù…õÈ|< ¾e‚b=@Wá’à\+¶ ,1°‚µÉ%[ Ñû5vv;nV°¨Ê­÷\¿F²žËõ´’õ5þâØŸÓÌá¤WL°Å1P,“«†Ô?›Y¸`­«Éêæ §n¥ªLê?ã«J“£/Ãs‹‹‘§jGÓrÑùë§µ9îD 9Éc GØÓD^Ž"¶¹”¿8!Þüžiz•ÿqN¡H¾=Ž ÄÍÜļJÞ1³ìöÈ;ò‰fíÉöxÄÐC‡£ß^Î;XjÃûÑÐxV5âC¢€L”õ~1³¤0ªq’QÞµr6\O~±™O#ëŽ^>Œdx ©O£!ØXp,èÞ:Õýê¼°I‡¹=/PX¯ßãâ¸BÒŽŒ÷Äù©-yS–cˆçO’winÊÊÏ%9/q͹„†Ë9Ä vêéôj¥#š†L=´å%KGC¯ÅÅÑàÇ.GÁyˆD¨Ús.Ø«xâGÕ褚âH5>VO2þ´2Y+>qàêèbÈêÈΕÓv¢Š7¾ts}ÅFcC¦àd‰·ÌØÊÿ?*òEø-¤ìç´rK®>*Zº°Uõ£õƒ5.³“ž.lò×ïNÙ¿\º"ƶ{fäNÜäfÃ<<,0—šÒÚ/ Ìý¹/,Ìö…9–¶ œ„ÌýªƒAê.M—‚{骘[ô~t(âgð¯,ß­ oƛԴâ˜pư°?¶| “;ˆé°ù[Lf?‡>›(,²mîq˜e„ ™@>b ±1êý¨°úŽ Î*ز!Ÿç@[³­XH‹FîÀ}u¯‚°’0ðjF=-ÒqQMÇË¢0¡ú˜ø N£ˆ:) 3ÄŠÕ\ȗЮØÿ VÃX É1:úº=·P,ƒï1Þ€¦v˜wÕûy½™ª#¶ú©¯£æ1ºR$½i¢É;öâò ‰³‚µâÚÔÅ!¬€¸QpE•‚Ú¶Qtr½·”rm$Ñpô¹¿çrÍö˜ƒà‚>OÆPèr}ŒúNRìÆ,(°Qm)%Ü ö›á¸Š”]o‚3|0k¤a‚Ga:º´Ê˜žFM'Vk9–„£Öa«¤ùçtC ªÉz­Ù)ò 1^qp™.)a7=5̔ǹå×úrPWÎ-¤B½¸P~*Ò\uUU©êEªÅOjÉE-$mW&¯õh)ˆvATßË^˜p/ƆO: Ñéá1ŒQ4wÏ34üšàÉèã +w‡„±2&±¢»VnôƒRïÙ}dZgGD^€|ðÕAå=@€QöNoYÖܦ1l À7 RívNÓ©{ÉY‰r`õ ÞÁu÷ ¡ B:ßvØ»š¨Ÿœ*¿²&Ÿ® T«yA(Δ°ö8 Å'›úQí¥Uµ§¥ ®8=ŽNõÞ rÝ‹1”ýºŸ«C´'w´DHÿôáxÑH|§KÞ6B3M¸´[và¯}C$w]ù–qæ=/!ÙÂþÜF×µôâD½;zàÒ PçäCÊõ)ýPkQÈ:ü^µ>U{ØÊð}¯f½â]iRw¬¸QoNõÀ_Nz«Doޚ§ǵµ½BQ!yË—² ;y<#œæª4y+Tï0@qæO—ú;‚HB4F£¢J¾%BñE£Që7¾´½6³(¤hÆ¿‹žûÐãʲÆpMj¸‘áëú72Yºí£¸ñ=²|ÿ .8}NÖw1!Z²7½º‰¡•p² z˜?øêÔÿ±QÔ1…¬R[”w[)Išª5Øü@Xª^Ìá½rÅ\Iñr|Q£ÀR°Ù‹/‡ÂsÃß'BÿóµZ/0(Ö"Ô/Ÿª¥wØÕÔùP:ȽjdXŽoR :]iU§ïÉÊ2׌7;~ð"·úm¼!O· ½½Øî5#Ž_‰)†ï‹†²! Øòv¥\ºÄ@oÆgȺçC) ½šr <Lýl£!Ÿ„4ªv²¯#—¢ñ(ÀçßuxŽ3G6€-Ï辂 5lÿ~*¾–EœµLñFúŸò…¿<9ÂóT“ÙLJj ~yº ¹}\ƒ6ŸWÉ;î‹o&`;Ï xñ <$z¢š)\Üc£M¢Î>úÇ›¼H“N\_×õã ô4ŒÃŽÜ‡8öKtóëú?0ÚÛU”(аÏB×FÖäøŽ…T1t½º/Ç÷A„n#Z0ŒÀøö 1$”þ$ `Ü(KÙÕ‘WûœK+2“Ùc—–§êÒÒ–diñ > stream xÚ31Ö3µT0P04W0#S#…C®B. ‚‘)T&9—ËÉ“K?\Á’Kß(Ì¥ïé«PRTšÊ¥ïà¬`È¥ï¢m¨`Ëåé¢`ÇP„ÿþ7Ô3`‡v(P†ËÕ“+ L5* endstream endobj 96 0 obj << /Length 149 /Filter /FlateDecode >> stream xÚ31Ô35R0P0Bc3cs…C®B.c46K$çr9yré‡+pé{E¹ô=}JŠJS¹ôœ ¹ô]¢  b¹<]ä00üÿÃÀøÿûÿÿ üÿÿÿÿÿýÿÿ@¸þÿÿ0üÿÿÿ?Ä`d=0s@f‚ÌÙ² d'Èn.WO®@.Æsud endstream endobj 108 0 obj << /Length1 1887 /Length2 11976 /Length3 0 /Length 13153 /Filter /FlateDecode >> stream xÚ´TØ- -.…âP$¸»Š/îR<@€ w‡"Š—Å¡¸kÑâî®-îÎÌ™{ÿ­÷VÖJ²?Ýß9û;´”*ê¬bfP4âÈÊÉÆ!P×áäppp³qpp¡ÑÒj€m@ÿ±£Ñj``(Dð_0ÐñÉ& t| T„BrN6Nn'Ÿ '¿ €‹ƒCà?P˜ @è 6(²ä ­ÔÎ ¶°t|êóŸ¿SF§€?Ëé1[ l „Ž– Û§Ž¦@€:Ô rtû¯ B–ŽŽv‚ìì...l@[6(ÌB„‘àv´¨@0gà÷È% -è¯ÑØÐh–`‡?êPsG x2Ø€MA‡§'ˆxêP—U(Û +üÀøëpœlœ—û+ûw!0äd ©)ÔÖqC,æ`@YZÍÑÕ‘„˜ýÚ8@ŸòÎ@° Ðä)àê@€´˜*ø4á_ó9˜ÂÀvŽl`›ß3²ÿ.ótÌR3 ¨­-âè€ö›Ÿ$2}:w7ö¿.×uxü™ƒ!fæ¿Ç0s²cׄ€í@²’Å<™Ðþ±Y€¼ü|=äjjÉþ»†›è'çoóÓ ^vP;€ùÓ /°9èéÍÃè 8œ@^ÿvü7Bãä˜M& 0íŸêOfùŸøéþa`W€Ç“ü8¿?ÿ3xR˜bãöOøWÌ.¡©®®¬Íü×È;ÅÅ¡®V^n+/'€““[ÀÏËðúï:*@ð_<8þÉ•…˜CÒ}:§ÿPvþK -#à¿k)AŸ” 0ü#t}^Ó§/Îÿg¹ÿ‘òÿ§òßUþ¯Bÿ_FÒN66øþ øÿø¶`·¿"ž”ëäø´ŠÐ§]€üo¨6èÏÕ‡Ú˜ý¯OÖø´ b ›¿ì v™©€M-ÿ”ËŸvÍß‹f†€T àßO €•“ƒã|OÛejýô|8µ4ÿ>é™ÝìüŸ÷·êûWÂSˆÅ¿àIËA^;ø_ðit›Á'f¶ÿ@Î'fÁ'fп!ÏSìÓ#ÿ/÷»ÜOÇa÷¤tè¿Fã|âò/¦œO\þ™ä79ƒþiÈûîðô ü“ðTÓñ÷GKè_‡ñÄ×Ñú¯„§swúr=ùÿUŽë‰°ûð¿Äeêƒ==±¬ÿ“òþƒÿxÏA W)ÚìÔôM UE`ÓÕ7±W.¬›CÂã´›Ú‰Œ¬³°f§›ÈñŒe©þ˰ ±ø¾ì…u)†ó·s÷»õUÈ! ±ª·žwFŸÔF7ÑfFº‡svÅ*»ÈPIY5ÞnyÞÛ{jùY?¯‡o•£Í´wzýBå î•K§ŒkeWáü@ðÔ¦êVŸ<ú]áëGÍ}¿¼ Ú,“´I"*$GV2&œ#W¬‰ó‹qœŒáG ¹OÌh^{¹s=tW¸"¯'Ý‹5¸Úˆiˆu‰ÈžŸã ŒÒyˆï$ÈN{ä’ ÿjNf8U+ÒŒ´ç)§l*ì^í'úiä'Qˆµ>eªºF+Þ÷ÓF=£…'³’?oìžÓ(ÍAµeûžÀ=¼d" Úmí¸¯Â’ô=Ɔ<ðœA©e'd'ašo†øKw—€÷}UÌ£ÏÛO3\&YŽzí@WÌý–güWÇ^ÃÃ2”t½3÷û"#p¤}ÔÀœ–”oŒ÷Óµ{»Kq­Eà_|}&o5P¾,×êþâñ»Rú®i€èœ¡ÐÖõ[Œg+Óö›N3f…z ÑÈd+A¹vB¿üm5—ú—ozq»]iâ&8¢ÅŠðþÐÀ þ²| 0'!ô =I]ˆÅYÞ¥ ™àPÕhÁØôŸfeâf1ž£²…#Aï ]>(b• ƒ¨%%9ÓŠ¸µc³ÛBÙFN[娸¦K'È„5ˆûö¨ªEaD ÄÅJþ=øé kÔ)"µºVí–_úª™5\Ê×Ñîªh¢7¾¬é¯j+±Iä2hé*mm‘f6wÔq¿|8!&zbc„íÐ^ ¬R{YˆÞéf®î–¿:Õj²òrð»±€™]d÷…ÊZoô7%'Ø£‚°“eAä¤ÿX¯äÐlVC»ÊD¸ažQmb[ÛÚkþ»&Óà<9wñ¶÷Åú»\Â÷MUÁg“}È/¦VÙâFñM] ²‰>’0$ûãé …ñÍ$óÊÏO$WÂ3»ß½”iÎâ€gló½/Ž œ.Ãë3ýO ŽYÅ/«5éw8µ™©ýXŸ¢f€Y*Љ¨«›BfëiJ )öëó—Õ· V‚ ö†$ÅýÚÜǸÈ$æÐ'¾7WÀH!ÌL!Ä7ù)w>z£Ì-îG¦”´aÁ?Èðƒ~n‹Âïs»yyæ{®©öçÉÄž{âü×ð?nÔºô±ò†p¿ tÎŽµ&ßÑØáÆRŽP‘-œ TF¨„ùuO¼ R¢ ˜wÝAADZÈzI?PIl«Y[˜–×ÛVx¾âÑÌÆiIê²–%´—&MhÏÉ'ØU—a|©«ÉòÖpºÌ=šRÞ­äÄÿTLyíGê L¡ãçÉ ØFŒø¹0ÖÚ…Ì"ÜÀÜ_¨%MhºÅÝÅý­Ÿ¸çµuºåžâ>’M#þ¶%z˜¼Yí_{¡ÔÖƒ9Ñ*x”•§—D3˜a&86ÅŸJ²º—¸UäÚ0à…•*D fmTæôÞ¬”´ z¯<˜fâL+£æ¯„âR𠉍ü*óB‘Î)¸(AœÙJįIDÞDá‰m"{íz¦‰Â,G´xMlý’CH„åw©aQ/¼¦H™÷Kœ%oF™ V<£@æá‰¤Ï\WMѶÉà­ë¡4N8Xy|ÁÞY—ˆnÑÁÀ’èpäàë5]xÛh$j[¤ÊÙhrþ¾†WŸâ®¾: [Jµé0t»E+]%"3ämšñN }YÒá)DläÅ¥Œ:ÂБHAú&E.wYÔR‹­?3a “…GÔ@^Ušr7kÃT71ðJð=i5«©]ÿE|BÃmUÏŒnz„weÍùõyqN£YgΠ »ß À‚’¯­yÁëcÖ Õ!æ#dn-@K¼êG›©]™Òêš5L~8Ê7ÏàÝì™W·ŠŽ1Çäªâ}Äv‘P·œ/­Øa#“s©ºd*ØŒ<ß̧˜•ítŒ>8zxô¢Ôti„,3%–\›)ŽoyTÄpã\,MZ}Þ]sƒ¥¼ý«õ°rm÷Ü/ãÕð¯hÈÆïžëIeòxàuÚ¹«±k_ÿ|ÁŠÚè—4’EÜªŽµµŒ-™ŸÐ7ÕùnëÙ§Ôæ¡°¥MIp8‘j~¹$Ûk¦+ÜœgEua¥b橤YÊ«ÏI¦.½•gÒ~Ö$Zæˆ`ÔÇ*×׃nB6”’}ªkuT`’]Õ)⪴_ðeÉn=Êáù×´zßYå\K‘ÓŒqèdzñÝÌü4’6¸9¹7GrÌú¶hC¤rÄ·|D?:¬‰q#§lý¨”0Æ’cízÍG€K>1,S!á¥Rg¯”,8‰Üe”1¦0O±éÏ{æòÝÌg%œ”~%óbÕ!×9]ëÞÔ}Œ^2¥Wëƒ(ñ¯åÁ©?ìûmåò•óæÌnLê×ð/¼.BÁ2Z|.ÀZxÂUÛŠ`g!lw]ÕW† “ÛJ¿Ôì“/(ç™øûœ”›†„M|½îŒåPï%üeE…xsÑ50Üòªö½œŒg| [¨øÓå[ÆÑŸ\n7žl/¾vS„{œœDçxf:3’w°I“’rgÍnÅËÓÄãeï &5X¸}*’ƾ§I6®Œ«=†Æævh`Öø˜–#qí}  õ»s“ÔW¬z©.ðnæHõcÓdÌüL&ÏðNŸ—7$žz}Ö_/èýp#þ6ü†z®!i•7¤>©D‘Dç–å5]6?³ÛŒæáób<º¡#»6ŽßŒÛp«Ok'QÊi1Oª¼ã¬ð \¶d“™H#”ôkN7Ån6žÈ Âz«£ðhåY|Am‡HÅ×*ÿñ……ŠNÿ²»É‹¯ºÁ¦c—^~ûŒ´„ 3òæÊ\X‹¥~k+¥‰*Íè2Ö*Ðc3Ì'#âÄ C­¨Þ-BÃÚ†@¤~¥âÝþ8Æ’À¨?kãuë­S9Z›3žM•ÙùOõÏ:÷S‡X‚+ 9$=AÄbç!’» ­QíP¥«pE|¦ÌoJˆàÃóSsé ö-´âs–'ó4¤Ó,«§"[!$§ÐŸòŸç¨Þ¥ —½˜ÀÊÔq ‰cçkòÓË•3Ô6’õ¤Œž”˜rªÈ.F¯^²ÙdªNÀ[õIÓZeä«T¡q4º›põ•–kû.)2ÛÊ×Öw÷˜³P-°s{gw–½¹½HàÿÂÎß^"ÜeÝV£õ ÛZ$ʉ׾…lÁ?ò‰qüì°lÃS“ø–¡1…áÍð….ñˆf9(ÚG°ÿ̲•äòñ¬+Ÿ5”"¸ˆÌþE¡÷—zÞÏ5%g=KÏ"wQðÆWZV§^ÿ¢¹i¥¦¡ŒãLZ“¡“›/™f%DEdô£—âøWa¨¸¼’ªÈ;¦Qj œúrŸÿøÊJ±QÇáù½"Œdæ—TYÕ^Ú¤ÂÕå“9s %¼¦Xè§áÏ0XD¹qÚÖ]ùŽù¨_µ>)OÄ?¬S÷âÞÞ£÷Å÷9军|©c]–i­\ ¼S¹Ô/Ð76Y]Ÿ¤¹€ ·0ŠF³%¹ˆJâŠkbÿÚå/eËä-X'¯YW“$Uæ ©ˆ´(q×éÈ\_rZlåíÛ'ZÇ 'ïE°t9›‚?–5-¾Ó;,MÞ>oPw~;– þYã²=æF}o–üø¬£ÿ0›ÖáDzwŠþsÐuèÕ¸Cäášàæ «!GtwaÁ#(ss]&c*åm…`w–MñM—pëõÎl‹LØV˜yã™Ü˦¬…–ÝÜYx!ãúƒHVуsƒ7¬§»H2^ê4ä@OŒËU(Ætµý¡K ö}Ùg7?8é_‰Kvß«¸Èñêc;½d™–ªÅ%†EÜD“•úà›x>ãÜ ®Å—›HmgjrÖŒi]›°P…ÈC¥9ÌL¢$ {ÄKæ<2†ÅÖ1 ÛßÐP’ª– XArµ3&$ñý¦~“¢øåw–}—Ì8C_|ÂnºªRÒ»Õ+ÓvÈX€Žùn`øòãÑØC=mÕ‰47ñvnFîR8ÝE¯™ùü^î Ië^Kãú0'3‘åã7—àz±WF-¡øhPi£Ñ$Sës¥”‰ð+ ˆñ—çiüIF®äøù¤˜ ê}L¾ëQ‡C”»¢íµÒ}içsÍ=m2ôV_›4ZWD=‹ª ìý +>ï\ ô üª˜Ck‰ŠC7¬†ZÒ ÆZHö¤tª2;ž"v’[‰OÞĶ÷©®}ó~ÁXöKÍ× ‰~&×€Â.ƒÛÂíÆ3 p<¼#nJ‚Ü„íf¨ŸÖ8ܧ9åÛX?ßÒó&F 8ðC=Ú -ë39ÍîL=óo:üìl$A¦!á~(šX.-ù_+~áþEŠê¾# ¸>P¹jõ` s>OQ9‹¤Æ‰ÉD1ñu=i\7ºlüÚ¯ð½®3Ý­(¸06àÛÙ0/Ö¨Ú[vó]U‰c¯"³m(½ÓÞ3ë°ÊŸ”eÏyï3F£Ï#ÌU²¡µû¾­Šã̆ô,‰/øŒØçµ=,gûûØCG“ XmWª{=ìË…¸£:‡MÖl„­NY¢æ/Uz»§(xØ‹ééYÒ0† º+©Ë),º‘Z¦wÆõÄUÃGw“’3ŽiŒxÈë>ÿQá@ŒòG’S!ðfñX£ûž»äܾføH…€ØÂآûýJØò¹Ò˜?P {¦¢€ö#'âÚ”3ç‚…³è¶/_%¿ß»‹O»”§ÕJg÷íV_Ö”yÈò›ñf[L7sê?Â;fIŸ¸lUnžÓzœº¨ê1ë†ÉÅ|±¯Cc®_}‹~¸n aY¶R„H™ËbØ¢ç«É•i"”T½Qöº#ùJ)ˆ0?û1M;Lð•AgŽ8ea¡’¨¯~Øá6ý´Û…u›‡JoÇgÑMv“/ë´¦jU~Á«&J¦€õ“ä,<¼×a JXNFi¿’9k0(è˜A9J†tyN²žç×ÌSÕTè‚èðÑf„êÈG%E|¥š.çÊTRÓ·>d#G'»ÂÒQß…º)2±Fõ¨‚\9ðà^®ß£'ëzxøü~¶DÁH„±ÿº¿‡¾Fµª}ÐHka†éÝèm²¾#¯=Q´«™é|ñ%ü‡RZð— YÀ茺ýÌF¤æn»dÕt=;¸ ‘™ÝF®¶i#,j÷gP(a„¨O‡‹™/¼>Í›¯Åޤjm´xНÛ%÷|êF2Þ{„JVQó _Hz ô­ÞÔÒ@r±Í~dÐÊKa$ÐÛÅnbÇÉ/Œ$^ÂsN™½xq÷ã(%õb‡ªõ«Þ¯¾b/D~_~Ú™†¤m_kv.ÙëPú’<—ç&Bâñ8ž=oÞ¯}B/mµi“ö˜)dÁ¿HÝÊ@Ã¥g °Ù%ÍÖµ·û͘ ”O"üÛË >â9ÏMâ =®ž«ºÍ-3£JÒ°'qÛ¤5éµ1œ'.H¯E§ÒUÉS²q8þd,ÎÆ6?:Ÿœ8åGŠ´…$+ºlꥢ{öa¶^eÕ-¹qQ7þôìiâ[Êšæywý-wÂvì-'™k{6qœì\ZfÂÒ¡—ìZèï·Ú‹ý>èmmâ ŒT°¶þ†‚»_Ð8WŒ_"Ê[‡Ùh+±EZfCL«ÓÑ LrÉ ³¥ŠuŠÃwÉÏiqÞýÌdƒð›â·W»E°÷£û_+”¾eÔОŽ[ Àô’hêÐY~à‹žQnÙ>½Y™Ðâ*7œ#ºŠ†á.S¶+eŽ Ýß»™7©?R͊ܲY_ˆóÉl£Ý÷îŠÇ“ßõšéDWãGÖëHyÁ•§îm´qv2llT pùî‘ÀÐü@¿i¡Êh;Ýç‹kJ´KªH†.CD‹áß=Rè¤J"¿X °B¾:N&Ï/¯•õÌGËðžœK)3—/[»æ¢ÜÛm«ëèãÜ7³•Þ¶ûÖhjÙ¬¹>µë°Æwå» s¡swºy›Å…lí„_„(kð-ß=SÌõÞáÚ,sÏûýÐ[qï~ÑÅ@Ê; xŸ×˜À²c6¢ÚÊý˜¸_61Ó¶SO"ÕñNfR{ ÷…yUžÛ[_~½L ìpxäŸf8Úô|rbù·2çrì‡è4Þd‘”Uk^™˜ë¾Šò•èbµº‚™Ä-혟>A½ðJ¥U³–ÃÕ#bkU,Õ‘ †¶æœëï“5³Á•𯋈æ«ø /ãŽd¾7Ç8a1%« µ/Ÿ¬ÕP ²=ßõJºB¡+¹ ž­Ö@ƒSx¥$P)ã-Ì jf±ßL72T¡=¢µ>ÿ1þ(´¬îÝ"[ˆ4Ñ¢Ë{ -ô»&®9¹•¨UM _@®iôŒ¾úw”4<¸‡jêµ+šmï襁$=,™W…"T»..R÷¿ 3ØQlx“ÂTË÷éünÍP±cÌíVƬþ\4²‚–\~ÉnåKò:Ä®€\Á[[’ÙÓᇙ¶ _i…'²I²¢¼Lnuçÿè6÷$+ŒûsH,AîtçRü*þ6oø(IùIøþ¨¿îב7Ù.&®§M»”wÚì¶ñ?Z»_}–Ziât<$À“ t6@ãWœ—k›uv*ñÐR/Dt†¸ugÇ­ø“.C-1ÛÂà&mé¡AY=+«RP/ÞÔaM4¦¶€Åw[…Lºûâª}¸ÜQß_ÆÙ†üšôi¡v!2~Þ—×–>Üœ¿úWÇèÔ<_P=Óþ¸å9JqœçDÑiˆ¬[B#¦ä—7æN “ÄÞ¥=›}ÔÕzf°žëŸEA£“I› n¬ÏžLSÂT©éDêdÞàG Kdæø~ÿ0ÊK#2‡³†Q~Z… ³ODÏvw4æŠÐDt¼V~yÝèA{´çdDŒmW1‰ G†V݄ϛím̽Ë)b·¼Ü-±º5ƒj õüJ¢›1XiE‘Óë}ø¶¨·ãû¶§•ŽZú5xÕP ¥F(6>ÐeĜŚgSÛ,že–šâŒ{(²!^€Íe·J®GEHpJd5 ì.K¬˜9X<ðp á–ˆúc•OOCÓ³qF?)N‚B“^£+ŒÌËz,¶ŸÉ­#«žÊ:èÙœp“õÿ@á~7¼äÚ9«R¬¬K°®$õžÐéÚIì)bÅñ³éä6&Ù{çÃ#*áúâ¯ÈMoSÄ|®Ëˆ8ŽÍš‘Íý›üˆÌ!ñ/^]᲋Ñjd¾ŸË‘?3š®qoËíSÁ6X½g‹‘i÷Bh€Õ¿‘émXµL2´P²Ñøö WÒ¸þÕFÐ:‰ÌkñG°„Í2ÎØýF½Ÿµ¾ã™ý’y†½wL4aîR=²xâ«.ëgz}z'írðü™:e"ÍÕM¸¾®ï¹»Óã<ÈF­>º­aâ"4âÐ!Z¦ð¿Ê  §ãÃn%‰´^d^ŽU^~Ðûˆc¬áõ —Ä¥ Mð›ö/#).˜zd²„ÍPïZÌÄ1YÅ;µôq75cÙÿêbi·ÝI.¾m á†Hây?pgP[øSO¯\xÆÚªÃx#oß_ íåÜ. ”3Ë@®"­¼[¿„IrN]3éÌ99UQä¤Ä(ÝdÇomºànˆ®lÎ+ÉÑa_?®”TX¦8(61É’‚}ò§*DM|éWÈvö²qàsg®÷†G…È£¹¤åc½Ö]ñC¶M¡@@r÷ܵ}à”<®Ãúq—$N7Ã&)Ê[¸7ªQåÃÇQ¹©ç¿ø)™)¾P{Ç Ž\ƒòç=D|Î¥ú!dÑŸöS«¼ƒçÏiîGËF¤Ÿi(ÕUܯά8øã%ÖQuÁíËEej^IÓïÝç ìhtH¿ñ¿y$ŸN¸lßÀëç¬a*étçbþ¼>,)NTšìGªÞl3bÇÅÉ–ápÝ|ô›I"o—i kjÝÛcÅ»Èâ ãè±¥l{ép2ayBGëHЦy÷ 'Њ2öÔzux„æEr,ç§ø–i×'2¼¦Á$Êãw߆åßúb0:󯹵du3VÇEã˜Ìß1 1¨õ¼ï¦Æt¶¨.«z9ü íÈ 1Áy]wrç›6¬ÓêÄÛ)qÌ?ËÔ¤kIÖ®g/çb>´2Ê ²F<\Ć­ ¹ŒQPM9VÑyäÄÓ?}eÖxò>0bm¿#Nìz•õzûõë¥O÷ÜÇâU·e;„ò8Ù´1}Ï|ÔÓ‡@?Jüª†Œ˜'ñeÐ!u [å!IXÈÉÊ„nÉ1õ±‰W5xë´ö'Чå]•£9Û}*yÏs*Äxq—œ{–†4•ï°¥Ž”·’%:ô¡˜ÏŠÊ¬ö~èE_ÖN9q)z븲)‘ÚÓã4í;´ÝËŠo¿²QHkö*³NÜôŒ8ÁiÆã)V ’êq d‹jì]4½ùVüíRðʪÝ4j nËŽñïøÂ,˜‡o2z«Ç,èâDîR³,:­JnäßHªôê&1DâάÂúzC6ÚÕ22‚/BUZ«…èCù¾-#Ð}0 jÄ0£ èH“êáD ×fÙ{,ÚŽ¦,:]6‚þ4œð]¬Í$ç¤LýûÐËØþŸ€üE–û„0‡CDÏÑ][”I £Sîê°ƒ–%gýÖh¡@Ýyùg8±WþÀ¯€!߹甴ŽóoiãÖ´­s$lOfÊ’³ZÖå³záÚv(Þ»Ú¦­‡¤4ûœÞÀŒ>ʧKUãå˜3iötfTm˜$-áGT¡Xœ¤g—|hJ€ÙþXáA Y¡ïlA–‡"\bD¥hXŽ’Œ÷ûà€”‰‹µ¦rð³#zÔ¨þs¦ðã§IÛo¦†ã„ûEõï’j”»MäHËâò*(²Y.iÁä h¦N¼6ó\ŽIr—¡dÑ5;ÃpäHů!ƒî§xzFJÈ_5 ¿}Yp{dÎMw‹×¦R+˜GÑkÍ—‹4`ŠÃJ³¼{îÙÛ÷¤ƒ°™e1lEµ0Ï#ÎUeÒ“/›§9,YŸ^úÞ†§nt}Ú”Ž‹m´8„+Ÿó'ßžXƶˆŠ¦Š‡‘¥ÿá‘£&d»SìµZ9úî[~l÷ªÉQkÑÄôöÆNúIæ :ø6ÏŸ…à[¿xOœ³,jÅlÂsž¥”!¤Ú=‘=ÂÆæšyž»Â Z¾›»8 €…Ÿi*&Îç@¸^.HB¹ÂÅ´©µÖ3åæÔg·ó´Š$(©@gÑ:™ïTu­õZÅ¥mp,ÇF­ôËD áïH¿Îù£DQ~„<úG¼Pر‰qz¹Ô%­ BAæ©*>.¿ÍŠ¿´µ3aV÷P{F¿üzûi¢æÁx'VbB$]ìJXˆ²±3:—VqÍ>©òý9÷¨ìT$øõÝö¨¿ñ’š8Ï[ý¢¬ÒéMyUÚÑ‹ îOg!ÒÃNßı[Ç™'J…ÁÛ{¤ÏŠÞÁ+jí5FGÉWHb‰Êâ¾~gá¼Â-л\°œß¦M¬Ä ø;A™÷„`=H®ÝWçeÈ*cGÈ` Bµœ¼0 –šC;È´Û®O¦ÕT€ÿá°~xºÔUà³¹§hÓ‰:(_üÉQìû»r:°ñl×…Ó Þù^åâãJ}Ð2—h&¥-Œ0¦PîÇñ6k8ûÛªWíiÐ ¯Kv»}.·H\<Õ©ö0KšÙ:+®T‰{ôj+£¨[ÆÒ‘+öÚŸ#ä>\QŸYSª¬ïYsgG8=›¯ ­É^ß+J×¾{aÊ“GnY˜×0žå»Ê«©gÝ–,rò¦ž?á–I$ïÏÕ¢ $z·8Ù oiv¯ü)Yv8²«0h—ä²µNaŸ³§RóìÌÜ9è…ƒÀ½©š›ÎÎáV»’L­fT™ä7xõáÞù(FzᩲÝ@Sà3“¸…ïÜ|¿øº|%MØwëC±oÊ%0'#2¢y@õk¸ÌÙ»¥(ÆŠ‰gÌ“Œˆ ß’À›ÝˆGe¢ýÒ™c>>9Ï_©Õø¹¯ C#ÊUñcZljÁ¢äLd™‘ö+To„¹‹npú÷VÝDA8ÞzÆÂ³k -­¢ëõ3_}:ñ6^Ía R¼›Uc}ö1á÷u.s¡Èu4ડàa úÕ;ÙM™ÍñŠô:W•VoõÞ × H/œÊ„h4œ²~Ú^òšp\Ï9žx˜ëaoÕ5þ%—tŠ>“–Œ Cä,ž*#‚ÊzÙflWòŠåa9Ý\óñļ’ˆ\™;ûUOSKõQÇé§î÷=´º=x„ú¼BExº¯dé™kÝ’2Hî,Å„ßUnñÜ ŽÞ‹qÒ3ÅEcÍýŽÉÌ9åN¼ud¶3•|aª$œñ!‘R.Å–þô(*á‰C¬NXuí¡ÇF]äã`æ™¶•€@(wGéó›äcì¡jÏOñ<-pð©ÍfÒ(¢ê97Ò×Vý±Ú ÷}š’Q5ýï P, q Vš_€˜4 Žår‘5g$þˆ´²Ç³ù³ÇÔ 'ã"j}Nv?/»h¶!éæL¸Jµ%¢V#,¹=m¿žc÷æ˜2”Ñ–0“]rÝ}NÇѰk*–þ!A›Ûøvò¢ãâ;‘ cB;þÍGØ·¦Tµ4vœô÷7F‘ô u«Ï¦¡Ÿ÷ù6#ñ×Ë£/Œ]h,ï¥|õ †íx·zgýË™tÌ6ª*Žy¸?Ýá¦<ÞÕÆ;Éb A|ž¶ó¶Cjˆuþõ;ƹý0g…ëvΤÐü©ìñt?RM_Hd2Yd6óQÝ-_½iÍ‹Vw¹¬$[,ŒÚ)m9ÓXñ<ÊL€ ÇiPkFˆÄ\AÜ¿‘³~½®®Ó›æR›’ýÌ©³0chk¨3:ó|k$¥oãzü69VžìÞ{žo‰´zïrê7ÇAuË-æá„KÎ÷º>¼5¢¶1Rr±€ôVýåÄ•¨h—ä¨ê0éžÕžw‚^ ÔM¾@í}®}?£Ýkæ>ÚJwIÀ¨U×CuñÔÖµ R²m]µž {•Cü‡ë»êž—âc(\“ÕIbðÃϬˋe¾çªCâÂÛZx®§¤ðIÜ3PexîJçäâ*²¹Ç•64+®¸G@Xhˆ—¾¾ÐúƒIŸâ¢Â#9{,ú­m%ïÙâÅâd2Q’FÌLiÒÉ‘»Q=xëŽu6žn‚cìÉ6ôšY9œX£ðg¯uê!œØ1æœ ²\$žsfìÉœB‰¶ÿ:‡j U—ÄÇÎYY¥ÙA¹Ý%jW¾ç/±›¶"d²†±´YJ¿&._}ˆ7¶¸‚ðR7ùËmD“ðu–%=/òÇÌzƒK»ãø“&žy\‚¹3 Áš¤÷\XðÅîI©¨WÛóœw.Ðê—qTå[W*¬{´s|½)›/\ù‡Õ•óù(WSvzu”z!` ì:C&?yÕêï¾Ù¿–D§6ùxÙoù\¢KkY…ÞIBÞü$Ýü`ö>©:*˜5P¸¥}f¶á`?ýÓòR«¢×u\~óáÈ ›‘i½(¥ªa9…oÂãCíº€Qâµt¯‘N+ñ&mÐI²Gã³åÀ:¦÷8šV#¶‚•âJëfJ)±þüÕõÇÆ•Cû³üUYta½)üs¯øȶǤÝyÈ|]ÄÞ(è@Ÿuy§@&gÞx—D©&åñv˜`}qB¾Uç[¾hêq<”pÑöÔ69¸ :CW/ŸÔîš³Ë45ƒÌŒ^û¾¹¡nÈ‹©×L.Žþˆî›7¥¾±jx\/nS‚ðÅ÷Fn‹fÉ[1lªÓ4MýÅç;+¬O¢Ÿe7L"ŽñÅ'£M’6¦G)ÊdA[ìü³fi¬¹½…Vãk„c»Kž7- nÜá.÷Ê¡æ^•kùèý¤·œçÐ,Vg&H:­x8q´LÔ’)ƹ§ã÷å;4ž‚ ñƒss§O3ѳz¨þÅlÄ?9Ž®®ÇâÓü¾~_ì¨Ú$<™o*+ä"ÏAý”:3Rõi:²°¥€{c¢¨ÈÁþýõRJªmB\äUeì ƒ ®§¸' !wQGÉ%,Å iÒ£ö˜­Ì€Þ/ÀN­x8'Ŧùe8ÕãŽAЉÓÚd\ÔëøÉљ̜¥A‹f¤ ãp ¥ü2!_'ò"ÔU_+\·Ãš½;g²£‘\—g5î¾wÇ×Ö½&}y92ckø‹ã/5ñ’^âÃ@žËÕ=ëqâóz=”Þ¨«ö¬Œ÷ÎA¢Ÿyx›(£á"=»G!åjÏnD”<ç¹ãy#7£¯—¾«ã;<ŠWMšÎº³égl–^_0s —GÄ’ï1FújØHNó·.±áuã]ä!›’P>K¹:vç²Iù† 1'0¡Ë£Òuˆ\"t¾ 0unW™!8µz¦4Cª*¡©Àqê¾ áâß“H5…¹ko{1[=Øi.ÊŸ†g{#ñwJSÄì 3`˜:×ÔêDÜJ„«½ö  mn7ñ1¡äž£À O‰Wã™'+¥i~-7K ̳!íBpìÆý‰ô†:bJ6Óù-¢z‰Ž’Lì‡Ãåó«˜á ÅXºì¢•Çœñ09î·yÔ#“!í¯ºRZš¨¿fÎÊi‹#ªJÐb"\Ìëi†Š @Í/ë)V`ü¦8ª?3=•©b ÝŸ+E«øL‚àsjwºšƒ•ä#QšêωJ, Æö†ƒ› ‘Ó[ýAž_ìKìPøÃ¶'¿ZUÇ9r„ji“„‹aÑÖ¿¨Z?”„k,`ñýßœyu1·É.0#bº·Öo±mH bó³#Ïʨû&ôæ»F‹…,ÓÜU– WŒ-áð|¹j;•ñü Û¥ zç‚…\5"l3?‹Õ¦[0TÁYi.cÅ5YÈa ’z^ýÇŽ¸LþˆD›Xäˆ3s>•£®‹KrɆxOÂÞ¦8=YÞÏ·KÜIÞSo9_bæ†zM¦¿›ô§,JKïâ±Ã§ã¦»Ành©$ÛÝQ¦!E´Ÿ|9t×9Í*®N/ZôÒ=ì =:ã›GÜ@?ßîý µ`¥ß· 0Ä3Yf(Zî+F’ÍT0åó¥çKVg½ zã<=%l׿È8;,JHeìuò;•›Ÿª©{L%‹Â}n‡ÜÔI_èà+v0¥Ú‘M³u.ÓtUµ+?öÿ˜$àCð²ålr|µrZ?(è½o¹,C…æ!ÂãÅ@wÙì·Ñ£¼K-K‹z˜yq#@I¾‰ßÂmý¾"¹J\H ƒ=_ð@v´8˜a_MŽÇ‚D‰.üU~àúK>BV’0E¨¡m²¡â9ñ·™}_Ha©-Î,r¿H õ†`\]¿Eã× §)DÌû:=]{ÊzK­ge^Ø•eƒ¼C¬òv—Ðoƒ½žêóg †šŒ¦o›‹¸Hó¾”õ„‰_?™ísV&x’÷%à ‹tÖ}¥ÉÒ'÷ h°·56ýl)¥@ܯT¶¥Âø±-ÔŒº)°¥ 1¦…gëc¶V#Ž^âõâØø…¨ýig«¾“¶¡;˜šZØèëtì#ùu=÷öùGS5“Zá„<‘Í7<‹Æœ­œC¼…žœ.­Ã-ïÔçëX4b¡h‹µ6>²d\wÇ#ôºµ·ªÇ>X×w¨£û6 q¥Ne_áäNÓ £JÊõP,0qü‡Ÿ“Úa1ÝÆ¼Fd`{჆ž:õüMjeÚtàü==‚µ{–E7̨Z{EÀôx%éñl,Y ^+fµ&h¢ØœQ­ÝšþóÒ˜]ç ¿Óê«ýÀÜn~(b ‘‡ô÷ùc´Ãð¾gHîÊïck§ÝÜï¿ )b¨Åâ–âÎè™÷ºÑhÃʃxw$-Ý"OoåTƒ?iã|ŸädßæÆnh¹¾ºÇTs}—u‚La['™†ˆ‘6€‰ÍÚjÊ>fñ¨Ÿ5‡çRóáÕÙ«c¸®¦áÎeÑz?UùÏvw‰‰Ÿ¬ >E‹ŠÝθ°ôAOÍ.:o÷û¸ ê4î}|¨µê¦5Èá+B-ŠÑZçSÁ0ijƒÉû¦S ^pLÁ¯C{Ÿ%3¼Ö=Îêý‘91>ÓºšqP¤J™ýÐ6yÒvÇ[gŒ@º^™Cdòv»Ý>¾øñ 5¦Òµƒbö±Æ`ÙêÔG*·Ñ«¸M­gcÙWCTRøb¹flg`m+Ÿ¢…ÀÆî1¯PŠà?`ħ(LÑ¢ú>ÝO£ Lú¡O8> Áç)ĉÚã$yã`ú it`"È ©Ó“ 6†+­ýà ]N ÙG¬µ÷êßN¤Ï€Z˜q¬ÛÞ•æ §«À»¶ƒ ¡W™G›Tˆ:Û¹¨;± èXeo8ÐeRÀȉ»žîíã~/ŒÈ×2ßYk­‘pÚš¡lgÔ]xÚôQ?eèkìžÙY½¬ ziUFPòïš jsëP֫梙0qÚq1X³"šb<€}^nhl]Ì$EF÷rÎÅz‹á`Æciáœy½ÖWÿ0´ÍX>tyðQ¢e²R<âr¦u87³ ËÜ•îÎhöZ¦M7FŽð¹„§eZSHÆÿþ(³¸ endstream endobj 110 0 obj << /Length1 1411 /Length2 6080 /Length3 0 /Length 7049 /Filter /FlateDecode >> stream xÚt4œëÚ¶.jô’ƒè £÷^£÷ÆŒ2ãŒÞ;-]”D-B5Q£D‰Ñ>ÉÎ>çìóÿk}ßšµÞyŸû¾îú\×ËÁj`, äˆp€ª#à(PH ¢«f ‰…„„‰98L`(wèßvb3(Ò†€KÿB £®mª`Ô5PÜóq€D qi„´@XHHêo ) P£aŽ] àõ&æPAxú#aÎ.¨ë:¿¸!<””ÿïp€’ ƒ€á]0Êêq]v# 0(Êÿ)¸e]P(OiAA___ ØÃˆ@:Ëóð|a(€ÔŠDC¿Fè= FsL\`Þ9ŒN(_0 ¸6¸Ã P¸÷uˆÜŠ\Wkéô=¡ð¿À:ø–AÿJ÷'úW"üw0Axx‚áþ0¸3À æè«ëQ~(~îø v÷F\ǃÑ`˜;Øáð»u0@]ɾžðÏ|Þ$Ìå ô†¹ÿšQðWšë5«ÁUP8Ê›øWª0$r½wÁ?—ëGøÂ1Ÿœ`pG§_c8úx šÂa^>P-Õ?˜kñ¿mÎP@LHJXB\õ@ý .‚¿ ˜ø{B;A¿Ì×3a<ž§ë1 A0'èõ1ÆŒ†PHhæ?ÿ<ƒ@Gp€:ÃàÄÿÎ~m†:ýu¾¾$Ì`-tM?@è×ï_o¶× sDÀÝýÿ ÿ}Å‚*Ú:šZ|Fþ—SYáÀ‹„¥Ä… Q1Q€„„0 蟉 À°?üG°Ü ú«ßëEýÝ3ú ¸ÿ(„ðÏ\zˆkêBÜÿfº˜äúú?óýwÈÿ濲ü¯LÿïŽÔ}ÜÝû¹ÿü?~°ÌÝÿ⚺>¨kè"®Åÿo¨9ô/íêBa>ÿíÕB¯å wvÿ×"aÞê0?¨£ qù‹1ÙMi͇ ¼a¿¾.Ðù®q»þ‚x_Óò· z­Ÿ–TƒCŽ¿„&,&#‘`âëk¾>‰0 kE:Bý~ „#P×!€ëñ‚N$ñ¯;„‚H°ã¯å;Àœ9Û%%‚Þ>¿?|Ž0oOw°ÿoç?ªC|ÈkþfÈukŸk õƒBˆg§™H×ç‘m?ê”nû ¬È}àX3ÏæÀÌ"Û}~’fðÔ> _D+e tSÌ­¨q)~d¹Àl·4ƼzhØzxn÷Àhl­•xf”®ï}ɶRC/ÑÅõÀ ¯@³07ÜìŽ{^>’äEÔ?|ßhø5ôV|z=µf¸^+®Mr^1.dšhV6ÁQè;ÉÀF€`ºÁKµïwsâèøUþû+–{øˆƒv’DJ1VKÂɧ“óU&ÂÞŒw­˜p¨Þqb”72ïÑOcÊKŠ'X“<¯4¬MÂPn>O¸ÄèôI  oÃÖÀååŒe„Pú0Ù;3Ä} ™°âo¾ùÛ·ªTtµ ïàFsÚXš`ØÑUd€651‰WÁ‹…¤|á"Ö½¥Q%Ezsé¤9}ô m•W‰îA)IJF.ÑgÝÜTŸcq$îai‘«ë â»Yñ¨àÕjs¥Òޥʼnæ]¦ÕþIƒ\?™b[d.¥bÉ6áUr>e¡aFÍRèîZ°ÓÏ{¢‘Û’3§tººîaÑŸ_°åW}ÁOÛò}Œ®úÜ?sI jÚ¾|³­……EêqÏÂí‘^2Íäf¯ˆV5/)v¡ÏzÈáé¾rŸ{÷« í¸oø²¬ù…¾ÅQ9g¨åc@$Á':ßÂþéeҸ¬g\Z´c»é?;¨Šü_„Õ÷ò,ØûhS*eŒ:#v8à™k)ìç <:µ5Ât±/Êìvl³àfü?O¨ïD´»ZOÐj>Ÿh0‹ÒMsu,Ö™ FY)¯=æþ±[.uz"ÐÖdm@¤QÂÓúCÏŽøkÒR€ÑØëu®AW%yru‚©Ã!­€ͨguþw³Šî"ñIoÏëý\‡%Er(>í-ËGÈßZo¿)u¢7ö-ðñºx‰çÜĤX•—©UK'(¿ÙëNÝçòO~Óò'ÇL>äAí©5œ›Ò#Ûrî¶“Ì;ÆÒ/^4Æl•¨=L¨†}*ÛµNQºŸùþâ˜,¶ß:KðæššÑ°ÌÛ£Í$™tr¶>qîÞg Ú·TX‡åeœ]x^O’j€[¾IÁ Ÿ±Ìwʆ+Ò¯ïGçrS³È~ÄŽMʹÈÍ4iÐ7C#Ìù¬Þ‘9ÓËr¾È¾¢Eîò¼y£gMýªu&k܀ǔ7KÉ_ýò.S a‰uòG'‰ ÕœuoÛ¢õc欨ÞÇ ê±kíÕpaÛHÍùœõDÔàz¦|¿Äe¿Õ«ÞÁã^ÒÃgÄp*-úV›¨Ô6øÀZáAÈéàUPVÈ ½O<½¨#ž’û•jZÜ÷çÒt­o.ÆÛ_n›8•[¿Þî¸=0¿‰)˜#AR¨L ×tX~‡|Vé-éÇ/í­b®Æ9uZ» ?EÁ«MöœM”gï;½ŠÔ§)1¯"‰¢x-¢=ïü¥泿1ó*ûøT¯%*u:ãUÕS–¯rÐŒ1phªˆ/¥Mèm\ˆìòI™mó;t^Í”¡ÕÉ^iÁiN-Ë™\»¹™‹åMN£KL5«pȧ¹¶ ®m=¤8Ó@}ŠCR[‰]ÃÇgc+76ë.éòé;ŸÝ^ÞæêTŒeõÑ.‹4aÈ÷uµçSCíŽÏìfßh€çM:”p°㇅¬Ê•1«%…dŽSkíÂ÷Ž3kVåÏFnÄhWI$.ãeO§¤Þ›¡ï2¡y[·±SÍg-šªüëNFÇ /Ñ`‰‚U€n”¹ŽñI+ç´HFùØÂµÎÚîiåñþ}.Lâ¹Ù»ÆàBeþ•-“ÉYÒ¤Š0 TFNñƒÄüg­8q cþÑ$ó¿eXAÓÏp¾ÁVŽÚïväÊd#¯$¸yH¢Ï¢ühµÅ¥Ÿ{u÷^ìS»ÏKÓ×=°÷Úðÿ Ëÿn§_üOb“æ³®6k‡X·÷ƒ“ì šÐVMß«myçÆ²7Ú¥t† ½)Ö5IÅ‹¤CßWqn ¤p«F ½Ø/ßwrSa"¤±˯ɜócLœç’ó‹î2ÑüöŒLìM^OE{Qåsš”TÜ _Òj¶UË™¸­³Äðá'GZ#fÒ>G‹ñœMš¸fd=wÙó5÷¦5|Ê; š·l+ ºÌü–ý‚â´ËTé½›·’«e«:“ÝWYÁU”ù`ä뱪FŒ1Áû㡞ط+&#;Åe¯¾ü¨ &ÜgSÝìpžÌÑ,Ñ!&ðù$¿×„-ËÏY涇ãܲxÂWó~t«®úx<êuÜë.i'úJ JÝ®¹òÂpnª²`A°_â›CH9_…½&äÁ*š†í ß(.ëºóJ2.“;ƒ ‡ÛÆH {xâcôQøKŽOºÏºñ”Òħ¢õ0!Qo9^eØ&1¨ž=·—Y—×ÚnkX/î[snf}R¨b Û˜éÉF8ö;ÓÇ»3øH#D ü3™L÷狦÷mÀùøt]2ø;\—âœ*—s¡g>WÅ_Z]Ôº’è)?·(¥Ùú¿„™‹ôœ‰abßÞeâ–¹½9myn[™l_À `Ο×[EÖÁo~ǪŠ43æG׊Ïõ~öƒ=î®pÐÌÊÞå1 Qéø’9áÆVü@„…fñ\‘×Ètš?yJ3‹ë•§üóLàYÞ–x†´aq©,«ø:ÛÁ’ֶ؈ÀZ{æÁ÷ 4t (ôúF‘ïÌR˜§o”‰%ŽyJpU`W]/†ÛKÙ¥èò,!\ `ûŠ}ô {zìíéwl¿àh ÖWV¢¡â€Y+¬#D2åЯìôêÖ¾aóRpÞ`wQÇx•Ql  ©2L›Wc?x›‰¼c7Îé0›ç„”½³ŠÄ ¿{ìd”ú°ÿÍÏç‰ã ó:¤Ä$ì,É/[‘£îæÛ¡tm¯Ì…ñ/dBëÎò4“ôè_`–úw×q]nç÷ieͱ»Ã¿nø7<¤Ÿ½q÷ I½(Ûˆb̉‡Y`ƒ{ vßÓçË^4d¦Aû?=ŽKÑZ#{¶4M›˜¸fKÀô‘¡®‹Wýû‰tfáLÚ”»%™z¦¦qÈ-ìÎÛ·â;¥34h,W/"_}ÓhÀØÅŠÃ˜[aƒ¬Wß4Y°•SFš|¤mú)íØñ²žÚ¢›>½[;X‹ÖÁ3!yÊH•ÑaC¹šÊè/ˆµ9÷}ËÌk a`ù,ĺñÈ„îUKƒ^Ñ µ´ŠäI3ÏG©Û#ßV‰–‡ 2b’n¯Ò«Å4N$VK¥NÒÕ ­$3Sñ ±¥×›Ïº;´‘–äS91JæJ2š%*КèÚȘÚu­éd…ôî¸Ú"f£œ™ŠÞ öÞó–þèhs%zìœN&“ããöwZ¢Þs±RÅ"ÅÚw kÉ|%´Ï¶»ÞJêSœëÈÿÀÛàc¹óžbL8ކ¾vÀQqèêzg ‘qÑýýô£ñ4~£I§ÔæKµn›œš«Bvú™iÖŒôÚWkãkR3wܰ_GŸúvf Ú~ùRO1~–¸2h¿¨gwÌÖsüØ4Ô©P%^\§˜u¾•ùub Ü·MÉÇç­<ƤWÕVâÕÕöÀ¾ãòæáiõqÆsí·]OêèØÇ0nêÂ>~z2O+[É=E-Õ¾w;µ[;3ç/GB5pØoŸNO|¨ïên¦Úª~,gk)AÅû$y ax `57œû‰ì=ª8vÆ^rÔ•bîü¿ÅÛjðÐøúN2Γ¥x‡E‘ÈÊMåW~x7¡¤ÇŠ #}WüQt7¢NmN²‡•ý!¾äÙt¹ä}ƒ® hSÓ‡šÓ ©½›TD¦7‚i<7ß©…ß¹¹±ú”XåÒ¯õ°f "ê,;µÙJ¿úIyëÕ©Õ¶MŽ2-se”˜Kx.²9ú&£ZqA$­ã}ê^ߊîxœYXÓ @‘ á‘0)›Bï±­½]=Ý3+¡¤3¶ÍæÈ¡oöž°;RR”ôßs#ÅC&-’‚¢ùVòt,Ëソï¯:Ü gls»`LŸß:…>gô¨ÜåWt\ÍfŠŸ`bÓ”¸¥ÐíJúÄ,(ü8S˜xÝX¿ÑÝ[ÝRrXƒòçbý®h°— jL~ë¹m¹lýó4EÌ»%l q,Ù€“|"¢óX§¸¯Pâ9ëýUC®„Áz‘cÅlÒg3@VS¿ÑoÁ7¡F®r¦r#¥ª^ëõÚOÓ8ó|¤6Ïð†½rFTe¥Mµ ”Ë:í@‘¶ƒ«HÈê%>ÇG?ÛÊé8¼šê®7¸¤ûôíkàÝæl#ÿè|²OV¥'“zÜ$¿>¾v Ÿ  gDž›&>Å™|º'ÊÓë¢ÿ"M—P×ñÍ0EËzZÈåé6Hô¨QÐâ,î…7¸ŽAˆmO©r»ª©ÿŠ|´ÜœæžŒ«¬w3¾™/™;6_gù%é/•à’Ы°q™ÍËdýÉ!¦±Äû’¥ŸHÑþé'¤„êh.Èëæk1üü¬L›æŸ™Ü¯ü'YéR.žÞÿ<»Ë­SÖL™uEǺÄߙܔÚ|‘^¿žu[bŠÚêHÅò˜{-©!´å~×R…4?ë‹´ Sš(•»¼]¬5º9°E“6ô£_³ó•ø?Ìg•72 ”f°Ðáè°Ì£-JPs¬¬æ·^ 8¯ª©‰Q/2Ù*( ‹u²€„Öw´K—0"¤úc2l0{‘ÕûWm.h©#.á¼)³2Mic©aogÄOõ+ÏÞ‰ÒOü’æ kÛYÍÇÛê-ïÕóòv –¨™·ªª=óÎcš¨‚(Œ„"çã«ê¥ÏîÎñE y7«ÍÓCòrŽñCjL:žØØª•£½ {tÜÏK’õkJ&.aýêIqñ~ÃÜ’q åSZLjžŸ’¾„DÀÜ[û¡lOê8´o܇‰EõHu©žØ2Ýû²ŠC/Zè‰ríïy ’žý6&=,a˜øMõ­ èFÜš €/Œý Ñ¢"+˜V—%Úá›Z½ÐAuWÎ8¡©B­ `ÙÁ²äCûv̉VD‰Ç`ÖªßÞñß uøCa/+i<וú§›(s]†ö:í ™>ÉÚ¾§JOH½w8½Îm^寒Í\ñ °·°4¬»ð£ïG \4=r‰jì¼=Äæff¤íZK†’Û ¡‡+¸òK!0ÒIQ¢nÊØYÈÚãÁ×c@ûçæBÃc\Âߣ…Ö§æ°FÐg¾î@[h‚û£Ñð]¦Óy¦^Öˬ¬€œ)¶¡‹õE7£áGÍ“#küÕíÝ–9²µ|Àçp›K£1> ŽŒ ødÃÒ¨9…u;–O“ž š[¸Óéo¦×ØvaÊ]S‰;ë²2bíâ<Ó×¶ä¬ôsú¹¿òU\Øok¿# ~üdŒ9FÂÑåÆ[œŽ©J[³O ÆÉ‰È'ÂE”£ªÜ#æÖ=‚4( bs@:wÙN@A¾ö¼Ú©¤.Ê +Ö&ùÃd²„Eói0¹z™LM¸o‘ÐÂ*¤£aƒI)³.}.|gxN‡Öª–Y©#•EÎßÇ#„÷Œxn Ìoߊ÷†2;ZªÄf§¹»‚z=çÖNAK‚:dDàצª:…³ƒœ;ãÛ3ý;ëD¾ƒ2)²Ú»O-î“æL±Ô<ì¿Ã\ÉzÙç£þ~§b¥ûûÍç!Ö,ý<$ZIï•Sp”8’1ÊÞÀMü¹ó˜žnŒfî‚¿p0EÛä^Yõû®9àÔ©gêëæ+ìã÷‚ßtg 3Áì@**];=êj èþ ‘¦>pȃĽâfT#[ÇDtAæ¨ÊµË²$ ÃãÙ@SÕø…GaOǃaÁÞ•‡{M9q’`ÛûàÒnw÷scZýSÛøP16át`=0|‚ƒH&O%Pjr]ÓFGýEk#Ù-z/è÷z'aËp—\ž¯2åÈ¥ÃõE‡Ç+ k ·ýËÂ!„2oî–˜aë,>=C“+¦Â_Mp›]q,x>ŸA}¦M‡Uº Z*øÎÐò(¦1!?¥ >q"Á²€\ ì)tAݨȗ ĵ…HÚ³\½…bqä½}yZ¸j?3ÚÚßk¦46Ü9Øof‰¡Æ*_O¯S‡<–uŽÞº7ù¹ÚŒù#elÜÖåäãò"jÑÛ@äa_vqS¼xA$[`­¢ìG‹PûÌ`Ì‚„h›Î¥î׬%F¯q¼­Uû^Þ3»ê,¸ríûP^ÛR–nPÁ¬çgýø˜äëè3øa¥ÁôG»9á(º4GIr¡C¼Ð1àáË\ݔƞƒ˜Áy®/?0·=…ݹ• 2*ñrT]z¶sw_ôBÚ‡ZÙìD|G-C¸4à1œµ‹ÄÞ³ÕÙÄ©1'q™>/Gæ°°å=1ZÒ^’i©X™Ô„+‘:WÞ¿;˜5Q&ËŸ¼Û¼²Ô/—.³Á` ÉÑWZ·X¬>ÓÐï<Î2Ã+{%G‰å†–M¯¤ƒ‹Êѱ–»\Ÿ.dˆ~3"°“«_{GÄÄŠ¿ŒŸ_gc|çkŒÞÖÏìѶV CƒÕ{NÂÂü‚Û¨Ž¤øà÷Ïú¦ëKËù¬;½¸^ÆÚ¥0Ø[ìŸï7½eÉ©þÑ—Ó»ƒcŒóø©m‘ÎÞ'gœEŸ÷è-€Vtú謦[Ð!ðò S6³‘TåS÷è}&ª YSÝJ…fÞÕSàHG A÷aÚ‰}½R¦»Á<ºƒ’Àn@ÀœË;‰nÐå$¬£ÏüÊ©c'yù¹ÃÙ'5“eËtìÊ:9Âân;_˜{€·Õgݳí2ÅÎ4ÇÞñÛ¥¶=ña•mðK°‰üP±›eRù€Åâ> stream xÚ·Pœé-Jp .Áiœàîîî´—î<¸î܃îÜý’™93sÎ{U÷VWuÿkûÞßÚ_ýMM®ªÁ$fî` ’v°‡0±1³ò$””äØX¬¬̬¬ìÈÔÔš`ˆ-è?rdjm³ ØÁžÿ_Î äE& „¼*9ØäßÛØ8lÜül<ü¬¬vVV¾ÿ:8ó$®`s€3@ÞÁä‚L-áàèá ¶´‚¼äùÏ#€Îì-€‡ñw€˜Èl´(!V »—Œf@[€†ƒñø¯t‚Vˆ#? ‹››3ÐÎ…ÙÁÙRø-#À ±¨ƒ\@ή sÀï–Ê@;Ð_­1#S4­À.*4, n@gàE` 6Ù»¼¸¼·79^²4ä*Ž û?ÿ4`ü53Ûßáþòþlÿ‡3ÐÌÌÁÎhï¶·X€mAiEfˆ;„´7ÿm´uqxñºÁ¶@Óƒ?J¤ÅÔÀ—ÿêÏÅÌìqavÛþî‘åw˜—1KÙ›K8ØÙì!.È¿ë“;ƒÌ^æîÁò×áÚØ;¸Ù{ýY€íÍ-~·aþÞ‘EËìô$'ù—Í‹ù™%àbååáà倜 w3+–ß 4=A(Ù~‹_zðñrtpX¼´ò[€^~½\€® Äù=ÈÇëߊÿFÈlls°` ²Û#ÿýE ²ø¿œ¿3Ø ÏúB?6ëïÏßO†/ 3w°·õøÇü#f‘—P–ÔUdø«å¿•ââî/&v;+€•“ÀóòàóßqTà¿êø—¯œ½…àw°ßõ¾ ê?5»þEº¿6ä-࿃);¼P û‡é¬\¬f/_lÿÏ|ÿÃåÿæ¿£ü_™þ¿I¿·µýCO÷§ÁÿG´ÛzüeñBÝ÷—5PrxYûÿ5Õý¹»J sð{»ÿÕÊA€/ë foùBi&6NfVÎ?å`i°;È\ 1³ú“6ʵ~/œ-ؤêàþ}żx±²þîeËÌl^®—nþ©º¼¬äƒüA/KõßuHÙ›9˜ÿÞ>v.nÐÙèürø/ˆ àÅö²¦æ ÷?Ø `a¶w€¼¸^zöX88#ÿ>hn‹ÄoÑŸˆÀ"ù7âa°ÈüƒØ,²#^V‹ê?ˆÀ¢ñâ°hþƒ¸,Zÿ n‹ö?è%Ÿî߈í%ƒ)ü[ÀÇ`1ûqýF/—Á?úßd1ÿ¾ä5Ùþ+ÛKwÿør‘³Xÿ‚û%§åï»ü…ÿ„})ü/øR³õ?/9mÑßú—Åa±ÿGÿR…#ÐÚšƒ-,þ)ÿ¥WÇ—=pøWÁ¿+þ'/÷˼]l.Vÿ2xI ù²¿„€ßÿKý2·Íï¥÷Á—xÀÿ¢ŒÙ{gçNý±ë/|úþãöÜAfÈs3fÁÖÕÁ-7•bDnL[£‚pÇ©7ºìL£yFˆ^© ãµxÌŒy…bé¹6i#ëveq§›Ï˳ç^›5dµœWLdÒ»–d¦±3ÏW¯¦¼®‰)fС¾è$‹“ò:÷B©’Dbt ‰˜[öjP£{ÓVwÿLp£Á)’æ‘iQnë¨,ÊPÄ#æÓþµ®i2ÐÜâºÀ§ÍZ·û´ež¢ü‰BA°í9Þ­cµp`³‡¤32@Þ5pë„*‚)%0@,ɉP¡½˜ƒöUèzð ËËT[ôÀ¼·dåmòMµò™ÕæÙ!9]b•I¢EÛ/Ï[LÇEñTçìÜíó…ÏÈ`ú…®]´»ÓÀ²]Ëeë$6òB<槺ÇWÞ+¤ÈéõÓ1*Å =•nþò©£nvµ…n¦­LÆÜ”bÀËx»ïc”ÓGe›¹xE2¥Ã®Ï›jÕ¢)\°ÈÜ쯋ÉÁê N-×Bc©ÛéGÈ×»òòä|Ê9ok§™wªˆ´ÆŠò\­Yôþ”÷åî˜å{­YZU”„§›ÝÚ•w…ûš¡b¿C¾O™g‹×áê,fL”?€ìó×ýöˆàh|ææpв…ž°KÒRèXs¨"åì’»‹¼‘>‡(d×¢€¨»ÏÇèOedÇZO¸bU\í‰vKîþœ^há9ÆçSáæyN;1ÖáGuŽú™&zœ¯6†¼æM,>̵ðû­1¥ÄMQt+&ìºÔ@µ ½øQ-b«MY‘o'«ˆ¦_·  2ó}ÝÉ8¸à°$"<ÏB#Óo3&{6}v0Æ='ÖÎ[¹ë B¨?Ó¡ ;$€Þ¬ÏLïZží9¼“vQ‰{œ˜G}lÎ~Öä¥ü­lRVøRÒçòq!3®W/ ­å°¶ŠÍú]ye|;›i[S†|1ÐÛ¤Í*ºÐÔïm§›^б™> «uâIµ.Ç%2vªFCH œŸ–ãÓľŌx?cŒÜKdË驽w¾k¯~¾ÚNb ­¨¡‡öôNŽKÒ37ð ¿éOKÕˆYqáûøÑ&›Ñ(Ê4þÓ‰çP"e(„ÓX~ckñ¾oôŽí˜a|sòú/ºjöAG‡ ÉûŒ’p˜6wáA‹YÙš;}2CM©«NëOê¾, ÷(››xû€O©K¶¼›žº‹ñŽÕY陲äÚ׋æõäõþæœ9¹šùès\üŒw®8”f ég<Çpt£*°©›äñK0Ã¥–Ý:IŨe-¨ƒºãõG­ÌæU/á©h–ìÒŠ¯v+[¬£Ô¥>_Þ˜ïxYáq G`E ¹Iœˆ‚Ô.ÌÑz`ö`s½q£UÑö:DÇ×`âêñÞ&1Ðý=iÿÅåk˜qŠ2³½mcdä á‡ïšãByôĨ߇î<òüç(±á©Ò´F‰þÕþ™\jìï8øñ3ˆõdƽØnžÍ´å*a¸éŒ•(nÂ!!æþþAKÅÊ¡ì†f`àÚçù³Ð1ɈsÚ7W… +#úNY…¹*oƒ‹ŸzánØu„J¹Œôu=®\>ÌÅù|o*³(¸-µ˜h ½½O>±0Ü_Ù}‚XŒµ+ñF¿E!, ³rwø…³žÙˆÇ‡õ=Ù »Å/ëî ®ËêEWöÁº»bµbûøoJ3Q¥S¤›âÓÕyÚHª©›BjúÑö¬ó{2mP6• ®8Ë&á9oÓ.VjŸ­ÅèÓM,'>¨WU#Ñì Tª¡j‘K8šîŽˆ ÜtK@ñöh¤õé"‘sBnco DFñ£¡"S[š/ÊC0',Tu–@oe½¿e]ºŽ‹¶a‰/§©àº|ý}¢è¶nú'R@ÓŠ¢žö»bÓ_œºŸõ‡Yß[ã KMÙTûW“ëöv(ƶÕß|éÓJ©¼Jß(}°½Ó”%°ŸxòHïiõõ=?¸„ˆÁ.fD8„pz’* Ó6·‰<›–”Ëi’e¦µØDëB™Yø úÇå^íI{&R´ùkýdQ€†±µàvwZÍ&Aò@®vó© ”•e©¡§¾[0M²I¨xЫòppÿQo]~”âž[­Ñš càQ÷ÖþHógíÝ@ùzÒ[x²"`H¶>žçâ°Ej•?Vʬ…ý’¾´Çä[ê–Ó¯å NÅåõ*tpíLïÈ£H?Èw#˾%vV»Š­#QãºÊõÓÄ7Uôaå²Áú…-¤æ–£òăÇõFIÄŸ4˘£eŒ§¨*W×?øFY¢|[Céj|<:/œ„†Ù7v¶õz딃~ÖšR§;SrŸw7’êlÒûì3yƒtÄÊàpDãáÞ¼b‚€±²¹Z²¼U}sr·ÞÝO|<;u§]ìë\y}üx_‹ >Æäîšõ7Ælw¹“¾n”o_‰5áDØ>Š!¢œÏˆMõ®xØÒn(¾jƒ|Ë&ƒ9ÖŠÅ:úµ‹ÔAPb':Aw«‰Ã» Õ¯£bÉ4Ÿ<Ó…^)»ç¸”…'¥@4ðÌ{ìÂ`™˜$ –²Ö†óÊd ?gÒ¬JÒV|œàòÐQðöôŸ8ßH9ñž¯‡ äY‹›ï…h •{ÎqÌwhÎÈû¶lëW·Õ=Ms˜<ºf?9Ú;i½VÒÖ)N¿bÞÁÖc‚즥îU–U³{fNŸÆçC}@Ôà†°ÕÙö,™|3ý´•Õ %w€7Nbü6ó]Úù”1C M‚š¯eÆõkDbM42С— £ß]Qr¤],5¢Þï±W¹€ä‡:"@1ò0âÏ}›]’.9pØ>»z~&c¼]<6þ5ʵ{®%:hýŽÙy±†ô\Jÿ+LécïK´Ý ¢ÏÖä­Îåpèû«TùâÅ(ŠÐ,±;üâx—€™åY¢Ï£lï¹Y ]Lã/’¼?5'ÐUáqf­ÒíˆW?2aÚ´|kúÜ—l“¿vqÿM´Ü.rItÙ8OŒv{¶ã]ód"#•:ÉnJR¦,º#ÚÑwè¤ü$^w1Aì‘×NÌsîr'Ö¼MY€b3Í~<¾¨Íq¥å*·‘@B¦Í?AùGVeLÏŠ·@ሣClåzªßÄd³ÍšŸú Ô»šþÏOZÔôwÜD?Ïëŷ׿ã÷·T£¨a¬Ëü;úöܺ!! à¢epyž|ñÔ熇)@«V~ïЉˮ^s¦uˆO²ADVbáxð–4Yrm ðmÉ êÙxS*ø¥‚¨mìÑ»‹Ù+Ŭòƒí kLn]!Þ¼Ÿb*ÃÑq#ñÜ»Æ'G*Í)°½–Jª8^Z6ÚêíÊ›å<¸RÈŠú8Ý–Š•Ú݆üQ"ߟooÇx”雯â¸èÎaiêŒPQ‰ÕÏý·6éM`$^ÓɸQ£77î2ÏÌq¡ˆèø*סŸÞEYWlHãh.¶ü@e¤ª/TÞ¹X$Öææý4°ó7³as¨bØöCü0¼½ëß)µÿÁô8’Q¢Üé¼›&ôQû@.7½o*Ö¹Õ`¡¾+ðûóú½:ÈÁÄ5~­ÙÙü£È¯±©òŠ ‹i‰Q\øª¯3M:pWŽ¡Sç6ð9A£bÙdts†J›³˜èH8W‹±FeãÓ*IU¶Kc?<„ˆ/ŠŒ<¹¤¢<©ž‡Ì—Y‡l4"?¶Š@[:» „´†™ÀÉ$<ÙD¶4 ËHYMÑìŠà…r±WˉL’27Dù"ÉS D€š)†ê”_èží´„ô×Z¡LRã„[! ß4M×—Ú¹6+ÚZÙÛ„K~)¸;qtç¯~7†’”¥ïÅþð×™¥cÍÚ–Š­hNd>f7Zu®ÉçÏ¢#‘.íΫ/ÕL T\ÿìŸýìc§“±ÇtZ§´&6êébâbêû9jî±Û¥QÇ8Á¥…:åó†tX{0ºJ¼TWIŠíQ䲕Œ‰é«+ )oÞ§*ºå³#-ì §OµS—Ççp%Ϯ푗ÖO˜PÑ"©Yw‹Cb$“ Û\ÌE.üm†ýD²ìå!­Õ"¶íµÕf8X›OPªù×ä ÄÜ…}&[ÌOB–þ8SÁФ„ÅG›{–-¯ø½ñD‡ôÑlìà#}0¿òye¨1ÃG[¾ô5(òO&ÝÙ?vQ™iøq‘ÇnfMŠXŸ !O®÷Ý”Dš¤äxí÷å¬öùÜ–$Ëh¿RÈRâ$'®6`Iäv÷`ÖA ÚØ0¡ÅÙ÷åo¼lBE8 ä¥û|—[â+ŒeLSêíw"~ô[q!>ªK„Óþ|ªtúî¸Ë»+gôKò $2P©Àîšÿ„N/s‘¹ïµÌ«TêÚ(TÞ²(Ûf}~´;¸2B»ØéuÜpcEIbÆŒãŽežò+7ÕƒŒEv'»£'‘ÏÌ?óê﮼./5›81B;²º>*çOa¬Â·Ù¬ö˜¯ºwÊYI õ†åÆ:4ã;|P›äïÓÙ—Ê)Qó?À¦=í÷ê#U¦ OÇ›½ôhÒR°Y…‰}y#© '* h önÑUÊÖní¥Ûó\ß·órméV†Ðg Ÿ~2À’L«&ŒG1€ØL-3¥gîs’PÖÃIݧ¼¾Y:¬&|#¦’EWêòÝ¢ŠšnñÞqTrA–‚.•É1EáØ·2Ütゃ\è½Ô¹Ú^b "ݤ @ueÏ`ÃÝÊœÜÖ-» INýʽX­e¨Lˆ²F„YûÔCó¬3sèÒÏ´DŒ‘„xöZän%ŽÐ’sì¸IòN†­S»áR{š2ˆ(Sa7‘µ†ä—Há„#[òõ)ŠQtê.¦‰ª¯Æ3™ÂÒ³ˆÔí¶Qz:M Ãyx®³;•þl‹ûŒ#GÔÁºžÖ—R§ ¸:zh“lgÀ×k1”²-Þ¾þ^‡XzG—×Ä·¨RùW¶6…¦¢öj çÃêqQöŸãÃÙ=ÆB+ð‚çê}H¿í*ìýTÐÖ ¢,á%\‹úœä(Åßæ6˜ùyOÊ %!«»´[Hîr/¼P¾ßää{¢î[u÷ãåø½X˜w$®qæy«"JÄfIY‚ý¬9Öh³:ßÎ&<ùüסÇùüN°x}V KµOÒ‚zÏY?B|»½ÏJV¦0±/4YœÛ È*ŽÅzL÷[úskï7mK©m=/X?}]v$U%”9 ê—ζE¤(OÕí'®“(ö×l(—².âE5²ï¼åQÞ>_ÈÀÁãø0&N¸j‰H ¾õJ>6ÌKÌ;Júv_º¾¼'ó£³3ªá“&Õ®œÒÕšG$Ô'^8h¸8*ö(¯Í )8g^Ðô6)#«éòF~©€j:¬Ì‚ŸŸ'/†³#Mh5U¸Íåæˆèb]Aj$PÉ?¬+ù å`5Èû>õ´b4 å5DñïxkÊ`˜÷Øä~› éÛ§[ÒI¤d•,è\!÷êüæ^¸ÈyÔŸÆÛ½BÏ  )*|[¡b>Ãø_ PÖ<ŒÐ…Ü£:K´à¾}ìXù­‚øÁZ|~ƒW$D$xgKî[4T±~Ì…‡dâ\;‚N1e¼i$ð9ÙÛí-¦œÉ*zY7ôö¹´21Ëgj:Rp ˆ‰Òl{ˆ¶â­O²ÀÇ@w$;°\}„Œ¢¸£$_2 ãÑóÔËŽߨ ^à³¹º¨ø7i¾ªY°™æJ1×u¹K–© 2·ÑqäÙròPŸì']sGº`Êp ƒ}Ãñ©Ôk:ò4K›º¨cz †>µÓžY¡+Uü”¼¡cùõÕ“ó¨Kz; ›´¦”ái Ç—•B jb¥Fè\=‰¼D$ÓÛÆ‚h$17\…\äëVqY\R®÷&‰­ŽóAxΧ¥AcBCͰ4_ÚT× ’{5dëÕŸóÖý:QR½™*Í1`ƒ/j5a1³Ž<}01¡3ž‰ïCy¦òËdÞu e‰GU­D´ï 5"ÒÓ hò”ðúú}ˆ¥LXík·Mêâ%í'«îmm´’¿o(èÌ&Ρ³Ž~6Ý¢Çò†D1šM$°bõ²Ú6WÖŽ¸j7»A•ö³M$^!£'û(Mt–ÂTÔ½Ps‹éçéÀ4¿XRc^ ƒ!å—p?HÓø¾¯0ïÆO±‰Y„µv‰izc^ÃDâ5T HóS^¡ i>Š£#¤ºay¢¢©£bJ+á­0[ò—JÒ¯¹Æ·ÞV®‘’\Õ¸ªJڳЭ¶¦pæW29RGˆòc:CIÃńʨb°ïÖÇCn×7È¿;6âýÊ£È Ò}”žèfº9{› Ke¤‡¶Vå þPÿÚ'Ëõ,„©b¹?"aäõ¤/e=qç-"N’f8ž›Ñjȼ«g'&píaQýn"Ë©e¿hzòñF´?|˜y£ãT7è’’B’Í<Թ밋ë8ò¥ËÈ^Âóá*Ø J >Qt,AŒ™nÑðÇ…[¦kð÷ùX:ªg«$ñý¹Üø"Ú´û¶G¨._5ÏB®u¹:½0Dÿ`ò5QnËö °Ð9Æß‹~;mÖcHTÚäíl>*B@Ë»üÚ5”š×epxZ•{yb˜ÇváZ‹‰Ç´æØVo¿î?üÑ tŸUõv%¸56MÏ”QðfÕ’·ÊƵ/ÈÛ^1Ëa—MÞEvƒ`qXÉ4-êq˜ Û‚ºôĶƓüw·¹lQh7ó•C@޲­ŒO=õÙU7é&©¼ÅõÁós„ì,ؽ‰¼ø7Îfš÷™CâLø9e)¦¯yýül%=Ú>Hkƒr¹ O]¸°0Œ7·ëÌ#¹¥ÞN j¼*`§òu7-¤ÁŸ>–):Õ—ù±õ~쇹ÀÇÕ¹NfHÅ\ Uï¨_H÷óRhHÛ÷p\Ì65*¸¶R¯Wz ¶ÞŒÃàõù4E U˜`ÒlÛ»‘×K4–n$Lg¨æÃÛ‡ÃäóQÖ&&ŸwѦõ¡°9Kn(–¿ZTÈØh?bíÍÒ¯¦X£p€R½†æ©L]ÈÚôqC¹?¦nó¶quеº ³nä'Ùw!Lå‚PÒõHõÔÄy›âó©4­]•ö‚òÌ; š¸£KêlÀ„UEá!]«„´ÔìY2PYTä}E-bЦƨ±È·oçzÙv”q=HЦž¦Pd£ ÜÓ“4`•÷ÆcÈÖ5ŽÃhG_|9ßI¤–æýLº½.æ#ysÛ>2¬µrÓuµ–ÁVLå“b#ÚÜj1îá…÷Ãd¯Á‘Éšúů³09¶! /H1­) Šó룺όì cá/Œ`Ò×ûSV9»îíryV=f‡-Ÿi¨-¿?¸¥¼þä32ÜZQ¶:Vyx”˜ôx_À”»rd“Ùá„(¨—¹©¼…õaºv¸’H·/ÆÜ?IzÔù*g|ÚŸ$QþêÇÎ+F52({˜§|ý)^7C¬f6Ó±ý4‚/jâE‰„ÞqF#`~)M­[¿½Ët'ì+3ä ºûe«A_ÚO-¨&‹ìâ¼\ä]®AYl_Ö=rd1¦„©1ûÎôÃÌKÆäÍm ·Í^åÀw bDµúúBÞoNùݦÆú¢uœÀµí« `0ÖnÐI5ó Gz~‘E«ÐD!Ÿfr÷ªBŽÇš'^Ë#ÎÒ„ž;áv uy‚+ .w¢‡GÖUE£‘©zkË<}[o4^Yâ»ßRËVÚ­î5èU¹_Á†!D.ã*jbÝ`~D±e<ðm<0³.£êZH‹Âiá̺2nÞdtxX`m‹ hÉ_pƒ~µA?€\Ky_ Ò² ›¹ãùc™P¶òûc¿†)¼b ôS8ÿÉ•Nî¡LO@êܽ HCê†c™*™C¼ŽÕaìÆ;¾™”&š(&ß„Ñá+à´0|Ë´’ó*’Ý¡"“Æ^ˆe4"FDhxÏîIž¥Ôêb3ãQŒ.KS§…A€yz©Àas›ÚÈ.ÀÁ³Ä¨{ÞÄ­í%“?æá&> ë´i"š2…C-3XW!_H%kE—s¦å®eh!»ß¶!{ÖÑ’¸µÝ¦º ¯fȪµ†M!¸_Ù¸•ºyÙÔU² T‡ÇÄ{WñƒÄÔÔ ƒÇìl|#Mþd<÷&HeS¯…#ýCrb=ÔÞ,XE±!‚â³ðSŠ_Ò·"ÁžÎúgãí.vQ/õ¤Z*ÿŠåÏÍ‹ý¯d:ëÊ€^%˜¹ù‡Ù{¿àü4:÷ß:ú/£Å—Œi쨄,к¥z\~áÝ ?l ŠÒ6Ø0ZÃÐýî/\BÔYà3Ï-²Îæ(LÿÄöY²†“눲t‚êŸs·F7 m|='s.º¢…‹ê£ˆ/ÛNÿѸ0• ¿Ã‰¥Õ‚O7Öý¬Åö#ÕºWiF²†×¼ôŽä«Ì¸øŠzÈnobÇžæ Á\ãÖBôÄ{#FMÓ~tlD§û•ºçu äúo9ä—<öÛ@ ~ü˜ÇT}IMªYÛ]ïX±æ„P~Œs=#䯬"šÅsOäþ%ïÛ_âdåÐá?4Ç>±Z ‡JF*iÆe t½Ù;;ýÁ€e†9ƒ|;h<ù‰Ÿ3Êð~í×”ie"?­gPI,ÍRþÕDühsëÔz¯úœoÓ¿[XÀf6)Ó+–Óñœ’E©ÏÙ^*•ünïknôº9£1 Ð!~–OÔ¡%0Á¹õ‘˜ˆ¾ÄÀˆã‰aHkÏÈöìèzÕ·ñQZ¸ñÔoO˜®j àØ1€†ÿî<¬µT†áÔ>È€T_$å–ÿì(³!“Ó¥¯ñ^Df{9€×(ò ÇqoœpãZo3…¦òþ±ÕibÈrKv5ÅÈè€ö6ÛÑ6vsb»[}p¾kdF‰œP³š‹ú¥‘^\ UTáð£Cžýêøgø’}Mx­ûë¨`óVþLˆÚWr„¤Câ«wsŸU7°7-¸~]¡Z›N.m•l éÓɶ|òvlÍ׺̞§0ïçþòÜ5”òž§L×ý¸xÀ^k™h¨n›¶×žý3m̬oX°Íf õÈ$Þœ˜p•’;Å<ä±"ì(ÇmŠ0–œ”0Ÿ‘­âkqä*C’=-%ؾ´™ ú;÷ÈEÌ«­¢ûVCuÞðµ'n»_^~²DüJ&¯ì¯2ý¾4¢Ò|àCÈN"0Ñ ×ã)À+'LQ-=ÿÚ  ç¢\oê‚–´lªúÅNøZÙ8j8?RÆig0é×#†i€·Gå!kxìÇw™Xõã^æF Ve·&h“j?#|µÉOVÑï9$5¸ÂçGpÖÝ#Q€ÛYxãÇr|cKÄuW_;D“ÛâÞè¾én†ñࡇšºâ™küžëÛ o~„…€ž‡Ê•mº¢™êÙ<>°Œ¢ ±æ~†ójŸžBÈXWomnÿš"÷•ª¼m Ž=óPâ—ªD<ý硦}ÍçZÎMí=²ñÓ-…‘f¹ÙÆ~£_ø÷RÔYsˆ)7ðP6F2x›_k¸)G‚ÎѾ2ÓQÇ’PŒË·zèŠ+W¸$Êiáw`ñqSˆ<fC—ŽÕrÉFKêÖ ³ ôìyô²öä`3ï…Ó‹Ç·ÿ ²IÚÍ— ˆåxϦ«4݇áã̡ԜWÚß_µO¶eÛòk­“…M¦Ùb™÷ªõm“Ì¥PÝ =7K|"†»{PÔ‡Vh0¡ZpóeçFÐ5°kdaå—Üó倹ÏŠBnjܾòÔT­8øþ3!ý\ÂQ LÒ2€”„CçÂW(f±Ø'`·€XA¨ð„rj¶ÒRiu=Ðo0’–$Ž8¬@u}gÀ³WÈ_ÆQ@0Úd‹âC›5ôNƒ!r•y5]¼‚¥r sP’êþ—šÊí]»fÅñ·ü@":"ßÀî€â`íõZÙÀÔ‘á_“à/žò“–°®­ý¤Ö! ]…pKéØ4Å=I‰8\;.Äû »L)ñ™ý+ñÈZ²W#œ]o?Ü”…”Ú"@]2#J ƒ)_29á‹éÍ5ZœÄ@Îþ¶æ7]#ó¬qˆJŽe@ÒpmÃeµ¼èaªp%íwÅh^_‚k¿?/I"jÕqr<_^·¾²í` ÓúŽÖ×ÅÕmEÃÎÀ2:sü´“˜ù œ®s6ÞZ=ÉÛ½9z¦ÉK}mö&Á‹wç"QÔe¿Ž›˜+°¾ñz¼ºë•Æmð…y ÊlC%bŸ6iJ ü"ï7‘=™m`)<õxöŒ:z:7 Xy;ÿ5±ÜÝ-tÕ\†<…¥°"tÿ5ñ0AÉøDíxf4>Äm|¤Åäæ­ªýŽXå­ß4Q‚1á^­O~7eMÆlà·£ä¨cKÛí„i ðÊ‘ ¹Êù'U5yôô+±ã0 $ß¾kò†á-ŒëÌ;@>^» r}#3»m(„ëE²5ú€Û*dd9˜5½€ÓšÃbï!Èv`(j¿C£ûqåe.§1*Ífº¦_#–š⤘ܢ4lOHÎÄ3͆¿ã¥òÄæ÷FKОÚÕaÇ 1âÜ": ü8Ï>^]GE'd"§m0 “{>F^Ó˜j›w8Ê&ú9+iÚ3ÅŸ×#Z?ç2K!ÒÇ;±>úº€¤0.žŒüÇÚˆ}OM›‚“i¾äœi•®ŸÌ#q©€³¾W{1aßtª¤ü|Ïû—š½‡ÂVDKÙüfÞU%§ïЕ2T<Ž ö.§ÙŠ‚Û¬Â×XÍX~Ÿ‰Â;%#:øÏŸAtÅS“ãïݽ–› K›)…R³„¯* ßIàI_*ûªt2¿v¸Û©eˆúL‘„¾å¿YæÃŒè5©¢ 莣¯JP™°ÛW˜º,áV6ÇB3 ªÎdW1÷zÌœ O@ކèÃl–¼S™×c|ÏsŒÃ‡Ê¬ë™Øw~²ßb ðÕHö›2ï„Eàîû5Jžj¸†æKï ¢€|½Sñdª¦ì_®Ù?\¤À¸\@ÔCóá#£v˜HÿUrä©8œlœZ­ˆÄ;™wݵŸ¸9µár7¯ÉÙ·Ü'ô'{ž¼V¸=(eÂÌ~vqނЛޭËÿĪچB†67_²Í1{Ýo_¥z€ÄŽl‚ð!¸Mm¸hõ8±ËÜ[–®Âß—¼M¿^AIÑ>4¦çª?ßpÜCšé WÀl¨º á¹ú¡1G†­o=̉Ô)œã0QÎÅq— tºgY8ѤHȇö!@æ:ò|›wÂl|!ÊJbË—±’Õ™B[-áÉ•“$Þ„ |î@RкüJîVÉWŽ‘˜t’à{LŠ5 â^ž Ž¡µØ4 :ïê³ìm3UmZ à¾³Ž~ª™l®ù’ŠVb„f§{[R$6­Ì2?óÈé{¢æÏY$ŸvžØ»ð`É\¼ÃŠ}Âìû'q'p¡sà=š÷+Okzš–ô±>Ö+}í¥uZ˜„CŸjÕÞivª#*®+Û ì mº|>O²³Æ—ZýªÁ'½,a=9DA”<9`í¼›}tû5c¶¯5ôÜâcDÉ×OЄ.,ÂåªJW·xh=Pý³`G¼S¨´æÛ9"¼)fY-IÈv­ÑwË¡ –—¢÷ØÔBÒØ*{¤§–v(úr{nIÊÂlÓðÏzÅ€{Ó7}Ø&÷d4òGú a&E1è·0ÑÄžoËæX¶UñcÖÝK‚kšÝ_èÎ]B Jr†Pb[Ç)ªñ°<Ÿ§?kGQƒÃtÉ„u<¼ƒÓEü¸ÊÇyƒ£Qv­}²ð…Hì%¸ÖŽÄv˜Í?¿¿/’צu=zclA,‰A—&Ü^§”"§ ‘HшFp‘÷¡”î1½¦‰GŽˆ ¯Di +As©‰+•_à{ŸYÿäÆzÀL6_÷ÅN ‚IÏ¢d»Š/ÚøÓ‡Ä_D"ýëcÎëΕ§¾a !™ÅL(ðí€!ÞÕ€‹õÙæÁ~¸"Dzé>„Ú r©ÿ¦‘áôv]øfÁݨå; êÎv<|—ŸL5¯}vHÄSEM¯~þæŒþñ8ƼröƒŽd—yŒm ‡¿šËdù˜R63§N廫N×xuGW¾ÎO|šºéôo`•¸0“@›˜J8i7ê@![â`î÷ğ⓺ïLÌJ0"•kL5TfÇðeí9|cT{“2S]vYc}Ô«IØŽ0¹ƒ¨9ˆhJ©¿Í5±ö¶wo*ÇW|«1ö3Ìehg±$},§ý êˆ>oйë!—k»Ý®&oW„[ú¬°Ò„Gt”T¨g½7 Ãb©mV‹Ž#É(™}Âäº̳ãÝ—+Ðû±þIÚc;$>(U§U`#o—§ðLa«§pL‘rK™»]ÜËr E—/µ?ú(ýÍg­ :ÙûDÔ©ßú‚í„8…wçôn=»êË÷b2Í&ÍÕç.}ƒµE&ˆJ„`*†:]Pë‹™ˆ½”¤árPO¬áQõ®O¿þÊÎdÚ°ðÇ.ñ $ºæ†pwrªdÛ”·? Ë[ ®YûÚ‘]äÜPã°¥´Ø»QU‚ Q.,ÄP<ÁÁ¾Þá–ƒï9|SCÍ—-Ñëê·A f&õ.Nûòf¿Ð`—(Éð^­SzÒ…;õ“¶,j¹^e”zû¦b3iÛð šÙÃtÒˆ–Ù[}Ñ‹.Ï6pųR¦ÄM žÏèxޏmålêpõy\P_é¾9ŽNÇ ˜"¶‘•-Eå̤9lˆR+&ýšŸqŸ¡­ÚHŒÎT¹EÕ¶Õ´²äì¾Of£ö”áÿåF*qcíZé±„ÎÆ, %ØH9.ÞÃbvª¹ùnxÖ£”r2ã„ô‘œ÷&»aÍZª€/ñ4zŽ9󪨪¨:ñ]æ½{D7óˆu¤VR‰¸Zp©?%Gø…%1‡¿ôé¶f¶…Õ¬›v¾”•)•ï/ä%Š ˜_Ò>ËñÏögiÑß ß[…V'cØêÀ‡â*J·³lºð,³xÓLzëÓ½åû¹%Ô[`bvçˆöqò°j~H8 ’æžÁ?–Žp¸Ä9Hšð5rçtÀ­×‡‡ì$!ô»ZtòÑ¡€xªŠ$®¼ÁGìµ¶Ê¡×y̪8”b31¤ùmÈhÊ+êþ¦Zs6 SÕÕ­f…9ýðîo»'¡ #zK†§ J ´ s®>óFâL /s•x€ÌšÊ»«Ç?”È¢¦wXº..P¯’cno=äö•"Ó²V2MŽÆDÖVbþb[]äæï…÷oƒ1{ß_c©}´©ž$þÞyl¶›™ïEÀÛªCªNÅßç’V•àˆ†²‡‹Ú¶qÓÛó6D`$K¨çµþÜ‹wåY ÛqÏ©Àœ»8ï GR•ìaLƒ<+Е7«Û 2l˜–>({¦^¾ /¿ mÈú®Ë9šéÎöƒÿ€ž¬úþP.%7vD7ÄÒYY£Ì˜ï4ž(ÍãY¯~ä6D©"T>·ãAEk!ÕccrBö«ölLœ¼‹–àa)ÚŽq)úˆV¬m ³1íB©Ã›°ƒ’ø} Ї &Ú Ûx½jÿàÿ&7Åiÿ;õ7- ›ÅÒׂpP†ÃDɲ³î«ÎI}.м‘‚åÓÄ>˜w¹ò¡cåòú…â¦Ê¼Hp w£*õ7³4× øq^*ðVE2õhbŠK4·šÁe@Ì_Û[ÍÁÄ7— ßùR„âŠ_׫ê¹D{üH$p’¨Ó@öÙΊø1;/°¼&½¤F ™Ïãmy¼ŠV ß[Чø.eeø˜3úVb%§K®ì{¸·O®²"™cíç›i &[•ü´Œèù?¦Ç¾” endstream endobj 114 0 obj << /Length1 1473 /Length2 7404 /Length3 0 /Length 8400 /Filter /FlateDecode >> stream xÚtT”ÝÚ6 "!Ò=tÃ Ý ÒÝÒ0À3ÄÐ]’’Ò Ò%!!Ý HƒÒ)Ò|¨ï9ïyÏÿ¯õ}kÖzf_wíûÚûº7†6‡”5Ì,ƒÂ9@œ@a€Œªª¢äá¹1t pGð_fL=°«þW°üÁ&kˆS…AJîŽÄ/ Ü@ Ð¿a®ÂY ˆ5@• ƒ‚Ý0d`ÎÞ®[;øÃ6ÿZ˜­X !!ößé)'°+ÄÊ Pµ€Ûv´²phì `¸÷?J0‹ÚÁáÎÂ\\žžžœNnœ0W[qv€'nл]=ÀÖ€_„jNà?Ì81:v·?vm˜ ÜÓ x08B¬ÀP·‡ w¨5Øð°9@[Q î †þ VùÀøël NпËý•ý«ú;ÙÂÊ æälõ†@m6G0@]^…îgX@­Z8ºÁò-<, Ž–¿;·ÈKi,þEÏÍÊâ wãtƒ8þ¢Èõ«ÌÃ)ËA­e`NN`(Ü óW²W°Õñ{sý¹Y(Ìêû°@­m~‘°vwæÒ…B\ÜÁв…<˜0ÿ¶Ù‚á>   7ì{YÙqý*¯ãí þíý2?0ð÷u†9lH€ý!6à‡?L_7 0îêö÷ýOÇ?&°†XÁ–`[óïêf°Íüpù®/Àsàƒö@à¯ß¿W&ò²†A½ÿÿ}¿\zF*RlÿÛ'- óør€Ü|@$<,üÿYEÃòWÀ¿S¡60ø§Û‡cúWÇ €ù¯á`ü³˜ìAµ`óß"7ò­> ÿ³Ô§üÿþ«Êÿ&òÿnHÞÝÑñ·›ù·ÿÿq[8A½ÿ x­;üaTacýïP}ðŸ¡U[CÜþÛ«·x)¨íƒ˜9@¼œ@Þ?vˆ›<Ä l­[Ùý‘Ì»î¯Qs„@Á07ȯ·å! ü/ßÃ|Y9<¼nºüã²p{6øïkü…ÁãôÏ>ä V0ë_sÇÍǰpuµðÆ|¸úÄð= ¨5Øë·²\œPü!ðÀÙ`sÅüuÍB.‹_¦?HÀeùoò¸ ÿù\öõpAÿ†ÜÐë? Àåýþ£_+wW×B¿eö@æ_ø÷£{­0çg`V"aöµa­ÕRäžc¢¨‡éÜc…¦ð^¹I³Õ$íœìåwòó= ySû5i—‹×_gO}×ë¨ë½yÏ9¨å¿ÛR[&ÌÜŸ#N%ûþ¤ ÁmBÈÓO•¦.víEРŒyòñ‘„µm¯6®Sm÷\²'#A‰¼€Rx«ZûÇê’l" !½½5-x³å€Îß SîšS|è·Xã¨4µLZeÑöKÌ$Ϫ'+ýCKx=”1ÁJ!Gô/àxr"²¼èUzKù87¹Å»™O}-ŸáK+°<ŸdI.IØÈêÕßE Œ¨rÚ|¹é^ Òd¿ûî&[êKX=%?®s¶¹æH߯A]Íið’Òõý r0Zk|%Ï‘äkª½Â…V E•cO@wBLû >Ë|4Kí£ËGS>;T…¹1ÒLÙøvéq߀ÆúÕów1ݶÉ_ª'/ßF§ÙîÝéXKÔû³’DIß8|.`š¶ ሔÊWUk)D3{IÐÌ%$¤š£ÕHýØñئ †ãÌÚ$çQùír…œn/ùmÙq€Íêœ]Ö+ûŸ—‰Øo¢Ì[˜Ý$¿3cd&*¼ÿ^ÚÙî»]*þÑmj®¤0W¨îëÏñ4M¦W ]…¦±ÇK¢˜*žn »¼Ö!|4¥òC:‘!¼=r¬ïHxØ&ÂÞW¨"Ú£a šæªz1zù(‰ðë-ýÞi @­¡U(Ìô¹Pt¹+*I,µGÞògµœ7#K­ßWñÁ  ÷œhè@Ë‹—Ø0¶Rq)†­†À{À ’ŽÑÔb„•7…Z—¿3ÎmXö•mró äcµÊ„õCͦM-ÿ¤•¹0¤`Xcù†ÅR߇ÖíÆèT¨j@ ñ§&ú{B2F¤»ÍqŠ‹.³dn$ßk ž… Òýá/Q/ð8™ºÍ“`‚£Ø¡û÷Æ,¢Ç«O£ýÞñœÈ¢ó®é]Ww{Ò/ºähäºY5vmoçDç2È•”ÙR¨ûøp»~¡ÔœYÿ,Ýmue›>)ö:éžTò›ñÓ8[SÀý…ï)Â3!’MîÌÄe©Ï çõ`ÅT]DO>;Ša6]sµe²ëÒãQ*ß¹õ¾Ë “â¸à}®ÔHЧ„( a)Ê×·»‚=ÞC;s´ }ºywزúS„+ÚÂóŸH Üàeû :‰ˆ.«r-ÌØZ$îbÃì²13„õ=Fê—hïËkqYìÓó&5[·_Þ”Ny6dæÑ€›£bDêÐçä5øjUÑ_:=32¸Òô@²v¹Ûy^Ê;ýZß„6ß2m¥v­xËÅÀqðšbáZ§®9‹qøü}kKöóÑäkd•â äzÃÑÁ4¸*œí8r«`³|™×®V§Š´ t|ÎŽ/èqZ×;#èôoº‰"voÏf{+óõXñɲM9ŒìL.o#U»­Ç«=m`¡ë Fuf^ïÕó>_<ƒé%¯2@f}Ì_ˆö¿h}¯½BÜäËl?Ω¬eû£ã†ÎýÅAJs×·WEiP­±é™W‘=*à÷^»Ó[¹wayOô©ÉÛ¸Õº/59Ý|×B ¹]wFœåµ?VÙc!ýÌŸbÆ)®*á³ä ánñ§?¦ &éÂÃD–!t!"4ýlŽ0ªWïeƱ‚²œælÜ»ðöþeÜUø§#þi‡&ÜÏr5/õWv‘Š[@c^{gÐKhÆ1²A}žDµ•ôbùê›ô-‡È$G¼jžq$­«p^¯WêÊ~œd]J i £üœö?à (ïnòÄmïæ=«‹#çü^ðÉ蓳äǦ…¼ ¾:‰åÏðð?#(âå–ŽÇAê-™9u)g8ø&ZQá5Êk>$ëËs¬êHÑšSC›Í!&ýÞЭpËFÔÉÀQ”ü"íù^Τ+NLiž>«5 ´ž=]±ºIF"kZ¡DÎjÛu½#Y,ƒb×Td@?q╪¶´"b¤TÑÇ)ig”&¨Ùå¯ÞTa÷YÏ÷g"¥ȰGqÑãÇSS9´a Éóõ0Km|\ ùÑ(PÜ2¸2ÕX㌳!™·Z¿Ì6WUÐqŠóÍ”û;qúm]:”¦¡íÇÛaÅvzÖA[× êáf²F"~’p½BÉ&Õ' è.åŽ:@¼ÁT ©ð9$S¢äÑPOU-Í#ÌéÛÑ·t¹gãÃñú‚ä­K4ï&.E°¬Î‰dù¾)JšÆZ•°»MYy9¦^kæÒ8ÿ ǹÐ.Q–ex)b¿&&®gsH¤ ƒ}•èª ò¤œŒ=}V„âH:DCl¨èÙȯð+^¢Q†.>òô…ÄÞ³%kbäæ–S®AµWõ¦/ñ£….šÀ!ª{,‘tw+ñO»Ö§NvØÊœÜ6…ßm†!3uu‰‘ÛúÃ)8›“¢ý¥L[ Dáˆ|кÄá·0‹eþL/à¶(ʸrádxï£2جq趺t!n½•8„²«Ql¿Ç‰Zm^»]¸IU´{J8Wv•BŒžQMs a’þÁÓÆÿóÙ|¥ñÆUÂTÛR¬ )‰(ííw<ò·îØYóŸRîšÄÚª÷4“iD%U‹žÜ4 ˆb° 0IŸãž?y±°‘ª å?<­¼Ѫþ,‘½7íáâþ˜ÀOªq¶Ù§¥_mS¶š€Ü” äú|T±9ḙ́ٛð FwýJ¨yjÕlú8INä>:Dø-åYÛ¢?r4_Ç«ÍØRŒÑwŸEO‘°sgµpŽ„÷?$·P²k Ë™“Ásš ·ÎQÐÀ˜zïdZ¤÷óVóÛqˆñÄŽ½Çõ <»uqYTGe{4µ ±êÜMüÍXrçyI€EÌú.ÐhoŽîƒeFÌ•s+©-O˜=•ZS0h‡HªNÎÂZO2yèkŽ ƒ"ømàŒnØ“¨k:9(ŽÉöñ­•¼u2É8C{]tåÈ–°ØÀw[9Õ˜u„÷{Í$g½`"gFçB.‹xš0Ńۛ½T”xUn‹žøK@'3uÅÍjЭ_Í<ך|¼ë»KŒW¸Zz7‰¦g§(G•ÏGüzJ9^9Ïy=Û¿=D.Ã}™ƒ(Á„¾cÛá3GäX[’qq´Ãþfƒ|¬Ž®©(³Y꽌|EFª¡ÓëpÓÇ{’±œøEsn3- ‡âä64&s³Jxo&?Ë¸Ë  öWßdyè‘HÙƒGE„Y Š3‚(ye¤Ñ—U‰/œ5¾hº6ÈtAÊ3æL\¤¨߆DVÞ¾~eܨ¡£oìÏÔ‡ӷóп “ë“=dnþBø•ÂÍ!¿ð;ì½^ˆ&ìbN‚À+l"mM®áUÓŠçˆÝkI¯Ï›”ÄWh£¤CŽ‘h[eÎFŸ‘R ùòÉo8ÉꦶÚMm+‚TYúŽæ0X4Î18¸ñü໨MéwVm×ÄÉ«:Xfv—íj_:œ¤Et´.%R¾”i¨qœ­X@P˜€m‡é i{Xñ‡Õ†‘0!Æ¡9žó:‚J>î9ƒ~A×›ÑÀmþ-«1R*rA„CVâb¿5š9‡›þ·úDómãɦ¾»íáý6š5ùúé‰ ›A馛ùðž¥bf„ºª ZÍ—+ –’$½.lI¦üRŸÖÝ©ßõø¯ „i?cFAµ]P`Uò· 5×Z˜2Ëm€ã ö¶Gù¯YºÔLMëÞ~›Crçøó<ä7”5†ò°7æ]&În˜ÑØQ) ­gƒ>‹²Øíüˆ…ŸËÓ÷V^!}4ö­mÙ•åpV›h ÿâŸñI™â~@“Q«p}`€ «yZÄ»0¥à¶gLæ#¯’îÍðêl+VåðÒ¶Rm!çÃ[âk(* !JQ›2É9ÝN{ÙåÙŒY‡0~$Î3ÓÔ5m¼§‚­CFt¥õRv,5;¢d•Æ3Ä1¤›ÆŒI ©Ú-çw äÊiš;ÑkL€Í‚Àô[2^¡—ômÓ/ 0d†Þv,ÌC["ÇÏERKÒ›«'n¦ð¶¼ÙåVŽ/W¦õ®{? (FáŒþì=E¿ZWçXbƒ0:¢Á© ðxú¹Ú±»ðGä$yDSì‘þ›Çµ¢+WÏÇ×é½)ûsJÙbX˜“P½\€Ê?Öƒ·{n—&fÛàQoàYÉ E­´O¸àa\ªÁÉ3O‡=?,ü¸ÄR °Y£PèSäÿ°dæ·2³Ï¿Â4YlÓ›¶ãÈa¾1ë7}K-lî;*Qt/Ý¡{>‹Î˜×‚ˆ¶±tv>u÷h^H¡ÇE—ûä’c”fUÔj}$ûþq!©ÌÆG­ >åM¹+ˆÞWš«¦­Ëæú—Ü$*\ŒMxÂ:ƒ€¾OòiÚ¾}@Mס®­¡KkØÆþV|œv'Ejýò‘þ(¨ÍôD½ud_ü­rœÊ!7m¯¸P}T¥ð—£ ‘ohóL9>lùêND i{Ç,´Ô0ãJœ/Þ•X uOnÞßV("[¨›žÛÌN¢µägV‹»÷·Öc„œ“¯’1°2ð•°snlÆ” ë%ÁlÎí8E ;?4E?¦°¸äŠ©rfØ t,ys¿øˆÕ–DuÄî’?}ý¦ˆ<Š€¿÷ë[Mq{›3-¼âd:*[û½Å 8õøS¾n8Ô½HÅöñÌ›¥eÉÄï¹¶½!œ¤‰æ°:_µ–sRð‘»-þûïDñÉÒLkÄW–4a,¢©a4’¬B€«Âyö4L\¾+Qô*ß0×)[f$aÌŒvˆAž£ TÑU[©¥ƒþŠÁEÁfzÉåDC`Öº³ãŸGΖ Éf±Á^'Ãõíw‚!‘GìtYÆ'Ï*Gæ@|˜Kbt8[•!Ý,ÜóÏzP·›°¡ ÙЂŸ£¢f‹>d‘Vnkñ)™w,´9E5""„çøÉ~5Hö•mà $”+=n5þwù³-“ö_³3î¶ #hy|ev}‘Nm{ßi4CfDžêä©Òš‰"q*¨éʧÏ%GGöôD¦,Õ2Tظ›Ÿ~ÓÞ«pi7 ˜Å¬=Ìò<›5Õßõì¹9z§)kB’Õ )ÀüŠöÎhòV7‡¯3S™q’OVçî’–îNæJóÂQžÝþH´*ЀDÓÆKæ[kŠðãÓl†ÏŽA)ƒ\†›æï&ö yO’1ÉwÚ›:,ND­;zLÇ÷\èÑIq[šìHŸ÷Æ¥§ ¤øa\!5Å1æŸZ}»ëuª~Ó¤‡4vb9YÚŸG6ò/¸Ž@=|ü‚ûœhª,AG ¿¢àmëØÐ%U. ÔGB%]Sü–QhäGmÕíµ‹ƒ‹KÁ^Š^Z‡ [•©xÌÏs×´%ãÉoâ©Æ è²wòÑ…ˆ’¥ƒTíÛ ‚?îðLV,TœïBåH[ÍuvÝJž7¼Ç]ÈýDQ«Vµ<¶_ã”ý>üÔ½û1·ºfؘi•vº5]Iý%ì¹É>mçÑ®RCpw"ªðnø!ë>Aƒ7{·Ãÿ }wí®TÖ„ý!³õÛJš©œð¾ª“¶E?‚.c%þFPqòƒÝúE—MhBÔe™¤So;øyu7N(Ó Êv#RòèÍÖ÷M…I5|½Ö=Í«ŽX !KAÄ Õ¦ %gJçÀþ'vÙØ(ÞC¶µ×;´í¯$…f2Œ¿Øœ ,¦)E^ŠÏgŠ“#½0¾¶MH?œ«i˜Š“ô™CÉr™âþ4wY›Ú1•&ä«÷Ó¡“Ûœã|è} 9–¾ Í—ý™Ùenl¾"é8BO­›²;âNÆë*ö*¾†=Úï’!*Jc5 NÛØú¾)‚—,YUôºø>G³v³­Ø¾ŸëM48öš[r$ð^g¿Ö>Øw¦ oçQ@C¬­†Ý¬©éž[}aùXËÁíå'®ffÀ…ê`)Ê=ÈWÏŸRîÛ6WžÒê9ïé=løƒ¡×Ôlb$9“`$¹£BcÃìæj<[ì›qÒÇMMÉã§I›ÓŒäèôìÔÂJy®…ü޾  My¾X*á\­~1ä‘”Ùyå‹ÈͲtS+B‚\¿TÉ=4ý¬UWQ°ýUP²eÚ¼”Ÿ‘p¶–öÙÞ?aÝÀ"g‡³Éî­E±˜˜gÑhºé–·ü™ì‚û61Ò¡.”–)-vŒ¢^®¨ý£ˆ2M6gý†b‚3BI6R˜(~0¸8M—BŽ× švB{ç‰b­¶¸ÛA‚Fƒ#ˆ- É¾1vê}wù¸…ˆÞe[dãð=KÍs{,héPÊh|Úê`C€+ÇÇãO¬-lãÎL¤)¾}­¾qõTÖiÇBõ¦P·aÜêjëƒ&±x~=èm¦Xíè|-êŒ=.+´K·¡ˆw³ $´—{kÎ(•îõ&Cf},8»ëý ñæ Ý+qT Áp2ɶÉzýonuù'·@€:é7†jþŠ¥ée †%˱JñEfg¨ê£+˜ÉTásßúëBtÅ3Ä?n޾"¶.:©ÌM\”v묊ã²Qµ²„”œÜaVo÷4‘«Þvy)yoKL‚ãÍxø¼”4((Øm]ÎS´Ø{ÚÖ̬+ó³6Š»ì)ï’èÉÐ*hµ¤P"%w‚y¸îXu r[¼Ï’ÕYuF…—BÎ϶#5vùî2éò—I\VçÀÚØ—{ë.ÿáKkno7ó¤c6)ú*â52L熆P³÷%(¤H4q)}Œ”ÉŒL!Û5¹›ÏÛAå!eS R²W#9ì Ê‚™-ÔØôuØ€gK÷ËÁ(y¤Ý86•FO”ƒ}êü8è+›X.Õžaá²ßA2Û@éX ¤'¬;t&ö.|‰¹M˜ÂBÇYÖmøc°„ì»{0‹uÁ¤¨DäÞ$e:ócÀÆãh€JÖ@¡'‘Ëž]~Y¼™©áò.ÞÔ€-Å{Eš0ŠJu옎n¤þäP ‰pt‚oËwòRÞŽëY<¤ò…_yèÐhÒLÉ*"«'þ¨uJ`·Ý\„¦Whç]}ä™°‡Çà4.ÎsyMà³HÃí”q›®å¡ôg·~ <î_¿Ö‡l~š÷"KeºV–ͪ)wÉ9 *?PÔÖi&Ècìu!5íÂ> stream xÚŒöP\ ׊BpÁ=@ãîîîî\ îî‚;!xpw'¸;—àîîp;3óM2ÿ{U÷UM¯í²ö9MF¤¨B'dbk·µq¢c¢gäˆÈ)31Yè™áÉÈT-œ¬€ÿˆáÉÔŽ¶6܈8 @2QC'œ­ @ÚÙ ÀÄ`bçfâàfd032rýÏÐÖ jèba£HÛÚáÉDlíÜ,ÌÌ@iþ÷@iL`âââ ýË d t°06´È:™­A ­*¶Æ@'÷ÿ„ ä5wr²ãf`puu¥7´v¤·u0ã§¢¸Z8™”Ž@  àWÃyCkàßÑÓTÍ-ÿ–«Øš:¹: •…1ÐÆäálct€’T¤d v@›¿eÿ6 ü3=Ó¿áþñþÈÂæ/gCcc[k;Cw 3€©…  .KïäæD 0´1ùehhåh ò7t1´°24üU¹!@\H `jðŸö,ìœé-¬~µÈð+ hÊb6&"¶ÖÖ@'Gø_õ‰Z8Acwgø{³ml]m<ÿ¦6&¦¿š0q¶cP³±°wJ‰þcÁÿ–™lŒŒŒ\, =èflÎð+¼ª»ð/%Ó/1¨oO;[;€)¨  ·…)ôÞÓÑÐprpz{þ©ø/‚gb˜X;Œ€f6𿣃Ä@Ó¿1hùnmF÷˜Œ¿þþý¦ ¢—‰­•ûoó¿öË &-+%©NówÇÿê„…mÝžt¬Œ:f6FÓ/’q€¾xÿ7Œ¢¡Å?eüá+ecj àú»ZИþW±Ë? üç8¨ÿ%o b-@ù›ä:ŒlŒÆ ¦ÿÏTÿËåÿÃEù#ùÿ-HÜÙÊê/5å_úÿµ¡µ…•û? Ò:;@Ît6ÿ×Tø÷ÑÊM,œ­ÿ¯VÊÉtB6fVÿŽÑÂQÜ h¢hádlþ7[þ–«ýº2+  ¢­£Å¯Ç €´šÿ£–ñGУÃDÉ¿T@Ðåü7¥˜±­É¯cfc:8ºÃƒ– BlO&Ð-šÝþ"1€ÞÆÖ äµç 0µu€ÿµQv6ƒÐ/Ñ߈À üqD~#NƒèoÄ`ûq0Ä#&ƒÄoÄ `üX R¿+€Aú7Õ"ój‘ý@µÈýF Zä#P- ÿ"NP-Š¿(»òoÊ®ò²«þF ìj¿(»úoÊ®ñòiý‹¸@:ÃßT™Ñoš„‘ƒ¡ñG èÝbêô[Îò¯üïûøW mü 4¶p0v¶6µ­ñb6Pc[+eþ'aýezþ®ã—Lþ€ J€¿#€ºþ'13(ÐÚÄÐÑü¨Lãþ”±ÿŠcï ºÓß¡A#6ý A¦@Ö_Ð☠ü²±ü‚.¿+cú%øœí—¹­³ÃÙ@f@PüßÕ±‚vhîng´ùÃ$û#?#¨uË? h{ÿ€ ÑþÙhÖ´šéïÈl WБþ¡õnû»³íÔ fì~«AÁì@ï^›ÿ0ƒ•ééyÁ ªÚô´´ý½RVР쬜ÿˆ’ØÿÞÔ/ä tüëÙò/£˜ m€&FVÿÉËÂú[ñßÔ,\ÿhþ+fúµÙ?öÂóïZØ@NŽ@k‹ÿÒ”í— Ðåí°‚8Zü¦6+h¦ŽVÿ!!¨õßiAo'sà\ÍÑÉÕöP ç? h¥.@Pe®Ðäíö…wÿ‚Æåñ»8P$ Ãß©þó6vv­Ìé¯÷$è`þ‡ÿúÕºáfmy‚,«ƒZï*…ð\é¶Çø~mk|¡¢ó\pøîüð&‘ª"-`ÕáF(q° yySŒòZp‘ðÙó°©&¤9^©åÑëI?Vyr»~~³o<÷P¨¦î=ªàŽ×³½—ºÿGˆ&ðvi²,{gÎwŠßÐî\{$Üjz‹—F>Ín+íT°Ë <OÑEªEèøL“e¥Ï`C;ÑáÃR£ž¹!M_ßü@Í%”Ž¥÷>ŠdÉóü°Æu?ã±RªÊìØCŠóâud’ÜSx/Ikγ0o¹oÞ­‰70‘6y™™~9µÂB9ܦ¡»Êed¡i++Dׇ¶_UÔ€®ï@¬€QÑ¢ŽæTÅòˆ¿×f*¼Òz£Þij™ü~‘kªæ0¨e~èרéùXk¿28ÔGwû)¹ùn°ah³Ó[£@ Wཙ+µ˜¹vØòw*~2T±Óè›  :2í¢K"ç”a0¯gÀ¹ð.ÓF.#ãN¨nð‘÷'lY^çQÞeugòmkÓ(sV®¨º¯ìò¯FíÉgg¹8æ,biŸ(³SÅ:?gÿŒ¦Pâ©ÖM3œ­•aÒ‹¹ÊÆm°ÍŸ÷“æ±JItoÏ•†é¸[ÞsåП¨—©µÄ°å(m…ÓîÕù÷pݘìmÜ””ëaì۪ߟ•¹† F­«renSöËìpTH‘ “»9Ó gDr¬*ìBdݤ¡Ê÷°9Ú‘ÿäJ[,%JF‘· ×+³Ïâµ ;/š×Sé'ˆùùºÁ¹ú»Â%ØÛ4ä•(²´%ýïƒ êç/¸Âx*ªwßH<ÖÀºç¦F7‰†'7I=­Êt X{õ¼éLŒE^°)¯¼-ûÖ§µ ÷ói?ÍÏ~f­–íûÁÖÕUV¦ â\r$b"èdAi'¶]rº)ò²2Íà_ò9ßI‚-"!ò°§45z;È83í³<~Uƒ²øŠY+éTV=ùÃûÆ›`öÅǘ€LgÕþÔO§¹y‡UÕ…H;UÿVªù[åiMÅFߎq8.ã*~É…œô½\¦céH´‹'û*v¬Î]7àC¦ýàWb¾[ˆ„tÕ)-úeìƒAªNZ,‰!OÃP‘Âßá ðÝ—(ß…ÉP|êfV`ü¡ž\Î.¥HJjõ¸ÿPÚHµ¦Ý}8  ¿ëÇ…Å‘™#g&3K0ªð¹•ÁI¡u¶õ‘+eîÁöøé—’2ÍNýµ…:±· ±dò•«}¬pU 'G&Ó˜ {xüv]çÌ,Ó©Œ\ h3j¼çêÑZõÐõ{üN+i–‰¼ŽHcjîØ¢ÂÍì¸`ž³á§=‘¬ÉTù&ží¡Ï“:CÄ€0Ÿ`ÕÕÃ1c\§V¶­Ç=éñýÄm¿YOYûä †ëúÏuf]ÛâîU@¹þ³€”ù0’ó^¶°õ‰84wÓ;Øù$Ø¢wöÛ€ŽÅŸ|qÄ lY6• Wò"ºÃ•w…\Ø|q[”#Ï­ROæòµ³ž[ ¨€w_˜ d]Œg¬1 ,êò;Ȉ厬{4f>•aç–Y/‘1.|¢~0øzÓ“¿Ï`zÝnõLQŒ9››@]ˆJEX–a‡·ó„ ­X$C(gõ6ÝŠ§Üs¸’¤y^ÊF:Ž6ì X§§ò¼mJg*å–¾ÆÙ#¡_/[9}´ÙÉ(«/ïc¿#ºoÉí½²û•dUé}¿5tÊ „T`:ÌfH?'L¨gq' IÙ4F’“››èýð¼¢ a]úÚì1!î ‡jU|_BÜ%Í_„œWŽÖ~ォN¹¬2°dC›}êÿ³àT³3ï{‹xd?DñwÅtú½ï²“~nwùØúÚcšê¡(Xý—WJYˆªŠ¯×.Y÷ðÀ!Ú8»—EÜ@_󸇯xgÌó˜ +O\Ø[ ÒílŒ¾ ); ®äª¢¡Ë¤ŽÚ(†~eæ(z߇&êâ­þHÔŠh9š~#;¿O<ž+Å#pþeJ,˜{êê<óÙ­£¡?Þ!¢–+Ð+d¬Yжrr–Ìu 6ËäÓá[$_{¿SÍ6züÛ¦îeEieVÞ™¾h4U¹BÔ¸W<“43¬³þ|oȪĄU9â(áÚ°WÏk,ÉÄ9ê}<þæh•jóÎ#¶¦,g7—{ö½l†ŽnÊY±BXÞ·â@yѶp9 .R)Y‹òx¡y3¼u+vwði¸hq…º ^¸íCÅÑ\…(!!ì!—Oñ¾?§¬¾‘ïÖÝimÏÕR,Œi,Nl’w|cô—¼à`|e°€³X˜r†3ÊÀíçìïñ’Ì›Éd‡w§¿ÐÎrkÚXqbr.+Nk'4N¯Íš£2Ïläš@c p*Ê=‘âb›¿©^Aè%N!"ðÙ*á¡á°ÓÉuuÃAÕÚ€×[a+]Þ‹Ç@}Ÿ©¿Ü”$Qw»~¶ïGI ôÖªmò„É`™Ó™þÒ™ædsøá’ŸçŒÖ×c°v’ Þ¶¥b5Ë b€ñ‹cÊ쪓¸ÛøÉô^ò*ÀìÅ:6²ÎMÝýºne2X—ÄÃ;¹ÀÎå¢1ÿSlÊÍ|o!½ƒ0×gR ›F-‘2¦‡§bA’ÛBN°‰ò!Óá2•àY?xr:¦ã­üÅ(¡æ#ä/ÃòÁyÖÖóL^J»ÁãÊŸV©[Ãxûò³7{тЊ!;ò¹xë$¢EÄ ‚Õ÷¿™¯}ì!ÃPŠϳUüÞ³1‰èKZóx’…¥õV‘kŽëèC¤#W8…Áfâ‘âÆ=·|BÞÑ€ãëþ„BAhÓÀ·izø+Áä̬®¨EV;¤Ó̧hÕ®+Á}G \F¯9ÛÄ ù™hC£ÝÔ⨺+ ùîÅJUp¡ƒ :J‰]xâÔÅ˪˜ç‘{zò€ý9ƒÀÜO*dª5òÍ2Ѱ4Ê)³GÚy©OZ×½hÇZö@ïÖªù÷oóÂoçµB®àÇÄÁÕľ]¾Dœý ì˜A’Œ ¨®ãÿ $8†$µ°æD–³õš”Ö¡]HÅÑCÞö”e>f“þ¶ g_‹bzɰ«^µûœBÓÁwz5…ÁFß&BZ6–2I¾z7kxâ+|Y<¾§ŒxÝêÒ™ÞÇT£Ÿ]6>˜Ç²9º°K†¹jÙàM½žO¡¨.§²«ËÍ;ßX㯘¾ú¢9X ½ž8&¢wõ]^Ø|X… Niá+ºr¼>³ME7ôŒuŸE€%! ÷Ä2†¥×ðýPtJ°Ãˆeƒ°fdlæ¨øÅ„”nRç¦bl:•\–×®µÉ í­W“Oj-çÞý`OR=éX¿‡{¡K áº~µ°GùPHæ§+f—éVXè7—­×s!Ýšà†9Dœ83¹ÖðIK!Øf® D0ð°wÛâpZ‚î*º>çÁ™oRÊî­l…g÷Kãá“Ò]ˆï÷ÂÄÞ®¬>œ‰­j‡˜Þ)º±úIgaxÀh<Õò,IÌ¢#k¡³_±-\>íÜ­Kêÿ(ц¾cJK96f“¿ã*¶ãgæn~¾¬sd€8 «7£¼*rÃP¢}çį]¾Á9/áØÛèÏM¨LʥˎNú`í^NeQ‡æ2¸oÙu£Q.Û£,¬‡¯,lhÕ~èV£Ÿ5§•Î]Í&WP¹ºs²„~ƒÕR†T‡ç[øÈ`™¼Ö»MäýÓ áäP”\ã½ß@ñÖ¬’f)´äjÁ.Òˆ“TnY+œïÀ ý‚ÖûsÁyŒ‡$dý«#›eÿ.XÄ6…§M'!y(:YD›¤ðd(ýŸ˜zúÁKfèqu>˜}Ñ<‘•Ç…2Â!?ÏØ=õË„±ðü {VíJv±ŸpK¾ùþ êøTŸ~_—wÁÉ£‚CñV¯éš{Ë RºÊRðÝ­¤&PŒ’Qbˆg¬cIÉþMTQÂGUЦ³ dž Þ{<›ù-g'+Y¦xÍÛ(n2¼}ì\ýTž¿ÀVø„“ˆ MÇûE¦nààæQ–é$¹Å¡ D+Êóu¤°ÍÀA¥mk;y6pg`˜U÷ÒüOÃ0ɤ²µM?*X#Õ¼Û{{v»¯ ¡ÑÕ“DÃIZ‰G`÷DÓàR°ÓZÛ…?2qdÈöŒóÄ*Sù„F¤tñüT ™n$—?šQÌßh+}’5/Ö¢ÛðQqxq7dÈ)jIÍLðpAF¾×…,šÄÒà dó‹[Y¤Ä…¿K‹åGHïl•´ ù†¼éˆá€à¶œ¿CßÅ¿81[Q‘=þ1¹|Ѫ‡‡<©‚„wwñkå0†ÊtrKÜ#Õ ¡¿AàÛ¦”1˜ Š$yï+TkÜ $ÐÅŒÍ?]<à½Î¦zU1Kï¥a™‘»{ë&÷ùô c¢·3¨¤£q¹—ÙÏë ¦Þ,«I©‡Ãùý›ÄEI(e»¦rŽ“0Ó„šjÏÞO7u Z=u‘z~Ósd–£ýD’m§á ’¯°ƒ£Q„ú÷õá<{!Õc¾±Ò.Ùïªýu—IàI`Š‘–(DÌüÙRxƒT°Ÿñ[އ+;Ïã˰Óá¾–ÖúÑ¡§ù‡}Ú·²Õ¯•£¼ˆ†vk( Y2˜›°Ñò´\2`ñ²zã‚_nÐL!e•õì»VE´]û”}ýC±kèÈ3á´XÅ—S¾1;Ã==ÿyóC…é '©›vwoË8Ý—I.’V.áM½í»iØ:Ý}ˆžWtgÒðî:ŽÞ©Ñ–·9eQíXpK^dµ)÷,Q–ëü÷ñÅÕÛ^ì' 1ùK÷Özè$¸C×Ï{<3‚S%?èE«»Ìw€ Nxlêa¯ Gº“ùÉ«n4Ö³ða—k® ´Z£KÇÝaÒý` ºÅ·Øœ“\Žñ7|þبL˜zýìBá×oMJ1ª²Ù%Ú2²`åþDˆÍùí­Öõ¬HMY¯õ~^}…„3›¾D*Ì]ÝSþ#’CÄ4ÂËZäÈÆüëç*¦2›PýGQ~o;hšÓb3.sRü‡Â^p]ÁS¹{ƒy½©& ™¶è\×þÃÈ-)ûS¡BS¡€U- çR¿®•­î‹ï“§GS¨ZÈûø¢×7ÜÑ‘‹&0Êy+€x!'”·‡tÅ1´èT͆ŹƒÍæã\ÚÓί°*»Ø\2q8A(=ª2E†š¤[®fƒñõ ÚoÜÂñìûsÜ!¥(“^[-‘Ùd Š¥:Œë¼½Ì :Hc=D7ÐÔÆ»b\[´"i¾?—~à;ÝíÏíMcj¿¨³ò]vàõƒ8ß ¾Áõ‚,="Ę]Ý«ýÚ§·ÈŽwÂá>ùh`x–š?€¦]1†l0Õ6"–‘ÓåŠÛ udH€÷6ÛcÇâBÖ0 ÕÛr¨rwPð1'lÛ»×× içT£ &eÛ&Ä1ê £ õ;ÏwVŠ<.ÇPÃùw9 íèd'Ér!Ne øµ…d]IßNVÚ‹š]†[úôtž>SÇaÌ>+ ­Ê™Ó,µ¶ý ʰ%†‹\(Pƒkõ˜¼4;05ÜŠŠq®ÏšLáíFÓ|p_i,.xó@ÝúfÀìæ•U@“Y·+†µPòëè·Ô¹‹¯zö²@Ûê´/jÇ—>ooóââ&8ø¨úr/S$mb2Þ4– qï{Š~Ræe`vz–ëí¿ºwÜÎ÷{üÈ%¥ygšS”6 ±ñ:þüHƒ¶¯)vT„<@°NÔ1ÑML-½¤Âñ®cQ‹ öýÔ©å">ùԂОô[š’Ðö¦XÔET¾ë$ùìmRv—j\U-”Ï$KØå²É¯¬c'»©`ã7G·Ý÷¾âX&ê²³´4»˜Ž¥/¹kz EöµÝƒ7àæ½H¥÷÷J=‚D‹œß²ÜQ¿¦fîÉÍ ò[Rñj˜lɵ†ò¿Î}|õY®«‹JÏx%77k"yOˆ8„ `õ© ì!˜b?¿ù’— èÍFü£UææÉX¬jVÃ;ñÛ]Üç[½éx|\ž¸¯e€¨NO¢¤ó4û«RïóÄŠt%–#7’Æ(B–KB•îbK#”ã%²F'éXþ¡l…ד4|õŸþ]8nº•MЭüT§™uº~Vé÷l¶mÈÚ»Ùâ<È´òä…hEa:UòJR’Ó£W„ªÜÇ‚óâ§X»ò¯0*š+ŒU¼¥T-æk³ÐþßYM›ÄEÌ£—èçkTßPé©@MÒÛ¸z?Ó"„~oØ¿ª¸EÐBˆT†ÖytMßœ±´NéÀ×Ï;¿¼h­³Dc‰û觺uFB¨ex…ShÆÕõ‡I"©Í"³K!è¦í.ßð?qªë?¾äŸÉ碖bôÆüQ§Cì9{Ê¢¶èÑw>è¼%žf 1²|­¸Z8D%ʉ𤖗öàJU~f†6Œa?ͽfbI’×T±Œjcß—Öêh‹H×$/!Á½I\æ¥4òf§øaðáÂÃÑ+8À;§Gv¦V-,ÛÏ´xƺµ Kˆå4zöL¹‡'vV»Æ¤a>þI:Mg¹“ ìý¦ñÑ"¶ßÓ=’ô°S›%Ód_ªÐ®ÃKFyÇdù Έ´K­ ¡8ÜEmðx¢úϘ˜4ø/O©JAµÚË?yÕ:5¹ßC,. ÓÜ­UÁË·, «°q}º ì¬,Î îžíI«1ÛSÝo]ÙÒ3*Òè……^¢¬¦&D¸B—ÞíQa„EÄoë¡Ë9”ukyäñæ}"ÇrHæ2‘Á3`õ÷†§³€³{è [] <‡¥É°âRúËÐáÌ­hä©l+†– KPö`ö,?`ÕLLˆ2ÏOH*rtbUkmi ÒU‹¢ŠÉÅÎé~þ¼‘IŠ ¦{ÎLƫԴ³á³a®·N°¹?rTé›ÓO²Øïi’oç:„fñ`q@h Ëå?ªæiã1ìÍ®¢{ɧ¨¿yŒéÿ¹NЪ¤j§”'¯¬]v«`›û¬¡À^LoÒ·^†+H´;—¼'¤‡[޵+ƒP¾,ÒÀCæ´<2ܵ£BӨщ¨Ýˆ– @<|ûqLR˜Äè#<¡Ä=‚OT1Á@ ¤|ò”x+FÇÕ–‰íݽy¯è¼;¸Hƒ$‹’ÍÆ6üˆßíÈ;smLrD¸úÞL0‹L¯——Kà~­ÓjàgVºp’òÐu‚ŠÐâYáHý“4é–x‘=ü¤Ò÷’–§ßÎNêfF&o~,vC'á…«n Z6æÒX)E(rj´ãC õ»D4|yó¡†zäû÷º|æäÊ´ò¾]- ää^ú‡–—+Ò:rWÊ€ÁˆØÖ%°wÒ ×îm‚2ßlØhÛӳȗ=¦2#Í™ˆ·7÷‘E£[+ÂÂvgŽ‘ü‡Mz\$o?#&ªŽ§·$Õaè8™CAŸ4\gîÁSQãyÓîÝï”4Y€Œø5V—:úÀƒ™µÈøö¦_–•ôœyI¼ ºäЕwÞ`£pƒê]i‰~÷Â[Æ,t©‰ËÓù-V¦M_*VØÚN×töŽN|Ôù‡ZÉ—ñ¢s^Ð7ªYÔS_1fµÞ„oºˆípïs¸­>‚~ÙžîºÇ!¯¾­å÷Îèi~øÞS¶K>»lsöPüÎêÙ¼{|œƒ«5ù# åòðv¾ ü»E;õl¶™H»ú«%'“á R—DÙ ve,öªŠ PóanCƒϧ†C€cYF¡p ­`Ýv6q´ÊwUÁ\ ñNh’w6š™MkɽÀ4X+ú„Ÿ=ŠL tUˆ¨‚¸ø¤‰ñ@ž_jåÃr|‹þcº1Ò4W¢*ïsÂÇ ôÒÐvôaÑ.ävQô÷T-˜˜Þ»_뉬µ‡ŠCíôÞ¬ѾR‹ÖVéêhi´ê|ĉs î¦=–RB¬ûpÄ$µ¶’ D—b«šQËdˆÚj7±y¤p#Çkuyëk&YÏóÖZ…-…˜ìARDÄJ+°–øGÑ8±»r\Ý'ᢹt›¼gêôBËî·s±;üT¥‡†vò^îˆ#½'ìükÎ:Ĥ”­+B%ä^ †rS4œõôߦ>^›”nR(ñ¢~Ôx5ÕæÑØBŒ¼DËñ Ñ£þfÅ­â¾îê ¹Ò¾ý~­Íé-}¨Ò7áúÒZxkòõ¢äUàq@)|¥¶uÒ.# #˜†€9Ùí¿NDt«˜\¹]#"8êÙõÈ-+'?}ì[tGˆ|iǽôâëYE.¼ËHv•d †á€+ “ÕÀª%´Öä#užP!;»$uŸ³0WßH¶·gkUúÌ Š¨lÃÆ»OFè2kýä¸ÝÖí”ïߌèh e¡6ûÂf–*+Qð2Ô‰Cp¢¢þþèÆÇSæAʞ̤ÐüG¡bÝèOòîùÖiCp“Œ÷/ <ñ˜Of/=à"’Íáxçdµ°Û¬¼õ»M<޲ïóŒTdˆÀ;  §ˆBdIÍ«NYÁ&où>C¥ÁTQ–úŽoÉ·¾mOR/g-ÚÞ¢»"”¥Pt!ÎZê@ ’ø CI~€HPõµ ö"T/ìR"¥¡mB^È€Œï«„¡Å¡>™£Kr u† •j²×ç©m@áõ½Ø©Y¦„Ü]w.1¿Ž¯+vúÂ`›þ âWÆÓ²mëËO©×B  ‚º<î}×*¦5‰çðDT^)àj3ñÐÃbyÝòÖ}IG Öû˜tE³zˇo@9´‰§žíeúh~væðÑ?W+‡ôMµ£ñ$vŽpjž/:)Ék²ÿ¶;òƒm)íý¬ÝùËËɇT¶ØYª ,œqYŠØ_ß9çf¹83èϧ†Çi‰7÷Í&Oh?P¶Ç®uléêa\tê|†ˆŒø$aÑB|Î&40L¦ß›;¶Õ‡å1CS¼=YP¯†øñÃs…¾¨¼7=Óý„æZW‚†ó͉°ê š÷ÈÈ¡í½M⇠¬*_ý|ADLA\Z*K kK7™“ƒ6˃»!âRˆžøÍ™!ª>§o ;Ö¯áþeØôçE`ö3]·± ,U–”=ù®¯Œ º‘l}Ù5ÌÙ½ à}ªùÔ®w×$P¯\|N«ã3'”ÕÍàE»$#ÍÊrŸ»S‘O¶)ZäéHa!N.špà >—Ã~Ô Öycé¸M¢ÔM4,8¹ø8ŸP¯†BÛ±E¾‰"w0Ûg«ÐŠôóŒÌŽŒQRØæ©´ëƉ×;s~þP:$Z{8®}`òM›F¯èul’ïv”£¡d8îzRÙ²ظ!ÎöðÔšZDRÁÚ%.ûì¾…‘O¤iÀ¶Z7 ®Qj-÷þ4XÌéƒ(’¢ˆüEÂÒ–þ²ÓUH}¥¿åÌûÝÌÐvÎs/”Z]Bdò|´Y^¹·±/*²y”ÛùÆévÁÜ#ÖVñb¢?¾€Ý»{(ÄùOk;»&AM0ܧDÀoñ^JÔ3*SDñ *¾[³É\NŒ°£á‘ŒmpH,ó“ÊÂÅŒê’K‹y!x‡!B&‘?꣔BÔ‹ïV²­|*69.^¦ìèì.ŽÏÈ5a>ATK 0´<]Ú§·šðò;ý2ýd©j‡¢£ç€{Õ=8}¥ãgÔ7»YÂþ^]~Õ ~Ð{{}‘ýcs—ÅWô¦÷ ¸‘¬UºZÉAeExŒ“.¬Ë9Î@e[œi¸Hž©5UÚã/.fûÒ‹uÛz%Š1ï±µ´¶ÎfdåCHßÔt÷ªƒß§Ô¡‚ÓȪüÐà® p,ôæ2)¾€…µ!¼«•8U$ût}ãYh×Ð\Ó\ûÚÍ/ŤΈÕ@qi0Ê„˜ZGú9Û\9bËådcÚ`Χpÿ¹e®Ø ž/°ë„\`oÍH¦HƒÔ˜Ò®/DiJ’šËVÃE Ùà=¼þX+:íš~>T³ŽÉ’(OAŒÍ=rMK–y²¶Éøyu«ÖjNgJÉ”ŽÎÐ Ë G:qc%C¤²¶ööͬÆCÛû:(Œ"Wk|VtYqý„G`î’ËbLj!¢íJ{x—Q^þ@’{q>.£g’ÚuuK ·@.4ÖÔ3óç"Œ-ÿgE»¡RýНä‹Z˜šš?¾RŸ¥*™¹ÄÉÜ÷ûC_æ›Å¿+Äó¨x ®Ëßí—/äp§l±ßXÊ÷ÕÕœßäz­à:‰¨ˆ½@ŽÂÂåÖÁ•RøA¿Lù-¤-ýu¹ÿµ‹ÜÎÂŒ •¦Ëíij05q³ñ ·i•"uˆûŸ4€Â}zeðŒ½'Ô”Ÿ[kRЭÖqjfHSY"tŽ+§°I¦‹™f˜¶p¢iŸ’',•ÅW‘ö²YQ†8ŽNr‹ožäM¹S˜ÈCPVïÆYD¡ýúeñ¡=ïÚý› $à)ûέ®©æïIxˆïkà£5™óáÐ¥y iÇgЭ‘ÍW™Píú9ìU Æ×É`ø™Cr<%1r½›ÞtÈšèÅf-“ƒ?)Ä@ ªÈ°;´¿¸·X§Ð-0‹ño"ç¹~B„õËË^†®4 B±ØqÚ2m4RÒ;ÆI<Û™ÊÛ…Ãl\ßu_Ó£ß6va”¬ÅšÂì‚S³sr#ÎÀgΡ—ÿY†Bw–1l^:õjȇF '9'5ƒ°3œVa#ã6ür&Ñ„Meàݹ€h†ag7ï‚dž£¿Ñ _کܼKË6ùY.ºŠÎ鵡[Ý»ø…‘ þ(îk~T`UÛÏnE#=šûȪ믚ÎÒ¬EY ;aݰƒ‹„ð¾‰þ%‹Ü¡Ð–lç$îU(|82:ú“çã+3‚uÂ(.·±d­i6S¥¯¢Î‡Ù¯êÏ6MÁñØ E0}Î]!1QÚ¯‚É©B¨Ndò’ÞHËD3ØC1Úcši2’wt;ƒ¤|qýû¢ŒE%xm´æòFµ0²óÝ;™ž5¨¬ôã ~6,ÂÖ€gÇûÝp€Ÿ,)¿6 ø732c޲X¹ RvJ¾YcHM q"ññÈxèÞ)‹éÅ‚mÂéìàÉÕiû’IÆÓJ7·0¯!ùîßfÙ1é>Š”HÃ[$‘%SäpdÝ?ˆ=È‘/,=YÔæ®Œø%Í ‡¯Iéˆwp H~ƒâÊU{öŽª»6™_>³j¹”-|Ëj ¬4x‘ø'4ÁúöËDÉ3bNKú\&Z6®÷۪콘ü1LÄ X>´jÏ×kwתå´Á X¡ /L>Ýá`Èœ›ôDtÞuÂ`K³à¸›$ç™ç¯ò fUìwk†yfõ‹ôl¬¾¬½‹Ú¦£zïˆÞÕký¬¶"™=º|á5º”N í8¼»Þ :íÀp#;¯Zçö?¸Ì„V‰ÙÁ&4ñè6EeŠØ}W\¾5.»ùƒïʨÒxaé„åpÚí®PežK¦ëÍzüC9L¶ ùþ'¿ó6½hû!ohë ÅÎûúO ƒ¡:Ÿ±ó3vÜRÚó›ŠÌ´’‹âÖÔí\ˆò¦4RÔôþfÒë¤÷4*pêæ§2;P¸¾!¸ân5oÈ:iÒ‚Jɤ˜~BÌCŽ›©5pàv-w²Hšî&OR®Òd7]o-|÷Íö¦8+¿Žûúkxû ëÈ¢;{ɸů|±;o‚ *¨G, -VšßŒ‚SÓm½¶ÞBàm,ô‚ãºÆ}| ãóÖÅ~¸ fÒŠÇ&,þkÄ Ý{CðÄæªp]Æä!Œ·ÌÉLk p+¯éà¡]-F #N-ÑæÂäênµe JRwôüš£X†³Ò®,IÙ諬P"à:ɼîðzç€äè‡`Þ£.JÍ'e"T`útIŒœ†àbœ öó§<0¯LÑ¢fðºÖ­[š}h_ÈšdòçÑlÑß ’tâiHçˆô³¶=’?@ré¼|ÜÑŠ›w׃òwž×>xÔ_“C¿(Žh|U9Öj]Ë´á„1EéÀ4lšüV.e8 ŸóV#Ù6iXK…Š  Ð/âڜljNm›"h(=‚¡FõÓˆÒ'P³Ðn´)2ÊøJ›¸°š‹GVótP€œòöPjT”ÜV­šÁ™Ldy$•kѳ%ÚæÔŽ]_jpY%°´—äΣOå6¿ Me³ÄC½Ç3Aè˜òå;ÓE½ìHï(;0’ÒöÔ~°°cŽS…¨ÿëpÈkKdpy +\Åãügδp¬Í9¥÷c\´=÷»¨×‡r±•ê‘™Ko?bÎØ5¡VÞù5™|#×4u“àà”ïvQåÃõtnÔÄŠÐU¾je3ª³ÅÃAQR:¢sÎíUôƒ7‰“p¤Ð&‚)âúu½IZYw\4ä‚í‚Ò” Úáó'ëvSi‚žfh×÷Ê:wXfN„"„,×x]A/‡8rlZ€˜<ó$C:Y ïömŸÎÄÇö“#òlÀiÙÆÄka¥?óôK ªâM^oc„¼©hýOdee!ßÎà¢èÄšÊÞ°Å”§uè´ÁÁŒÇ¬*ÙS&˜ž³.–ÊÞ⛓“ zK•ò‚ W|%ôÆn ¬‡S+ëûˆ4Ä5ÄIÌÊ1ÑBá(=R>lräÊÓ¥––êýÄâ=9àqW`Rø8*):¥ëmÞÛJǰ™å?`ÉJ޼F¦o³ÖLi &o8˜ÄÚ*ØŽLhð§Cm®Àö~/U Äk|ÅÆÈwÀº’À¦ï‘ðƒ´FG\«ßY{ÝÕiX])ÝÆäjø¡Xo_‘.;DÔB/Ú̼Ѓ7«T‹ÀÔ9B°Sãʇv:$‚£Y ÝÁý`(â0š ƒqgÅ™fº$oZ«àÎ%²Õag'}xމ“q+ÌzùwN¼¨À· ’Z´—ûìHÛåÉÓBY´ÐìÜ(½9ÕjÝvŒ“ ä ?Ýé Ž÷ðÊje\:§ù\˹é×ëDáù‚m#EKÄ’­#¬Ìb)¡ò…ÍMŽ%SîC˜2Œ¤¸‹”ÐC–/e¦ã"碠Ö^þÊn¥¦d“]b!˜’Ä4C¿Ì¤9Äø\ò½L¸§ TtÐýÍÖé£á«gAa³ª¢/‚xÏ–Š ÉIÈg(k"×d'É„hì4ÑP*°‡øÞÍɬú²3bü͵ϧôφÐU8×ìÉ¿‰ýü¬àgÕõHñ5„ɶ–ð&ú“þ—½,ê‹S æmK‚‡Ú±æ¼³éûY¢‰VH'ã>øFüçžõx·˜ÕÔs1»«ŽÖ4²oöûÛˆLK)ïŠ6$Pð´Àv>“jc5~,àû$oŠôƦP9dv¸s×U2cXvܓ鳮¥3 &¼tH€‚QÀ4ö<vâQ,:¶N€&“@Ï*¸÷íCº4¼¬¼ääùÌU'‡qHkb†ŽË!N¡}Z á-¾•/1Îq_`Zøíàž~D¡”–cUÒ]ìûY›ïÝ& 36Ø•ð4h/Víu…U£ññãQÞìò7ïŽ0J㑺 Syæò`©€Ñ<˜Ðra×Oåú{ñgŠ»`c@{ØÕS´”û;’P!?¤»›(nu+:å_›·Œó³îÙ h÷ãBËtÑÐíÄ_RL%rjÒ9¹>DÔ!üh> |Ô1o¯,åPv~± –Å¥¸è{ˆ.ᦜ?ª&ÊpdíFGQºhJ,;Û¨<ùÜaìÁvHðT(ÐF¼˜Ã³Y¿ÄU3oôuVCG BR>O h‰úÔx0ÆßµZÿÐjZ˜¾:§)ô52Ùn6àð`$9 |Ç$m§C2ÔKïR{ m…;]­çm¨œs¬·™ãßgÅ `X»Ô!øBß1,"˜@¢^Ì|Û囯<à'ž2ù~ÓÒD0Uk]11ŽÂlÖÓ“Lå®k021X6¶x¾ã^ZŽ}gUÙ¦À¤¸]_ð”N¦PÀ%Ôy¾Sâí]ïS.>‘áE£ßoïâ(OTñ&€õ=îQ‹µ.¢}ëÜäHLBÀw*îøK\òFx&à4‡diN~`]8ÈϲìàEO>óZé\GWÒ{Ê|Í™üfŒ±I—[RÚ—l̃&eøs¨ÍîGæ^óEÛy—†Œª»Õ&êoùIw˜áuûwÖFTY™Mï{e¾"J B^È£`’S²º²•!ج&ŒYOêÔZ¦?rU©°êƒW³ZPï oÏžºþB†§BÆ>Z±»ü_\(­#¨Ñ ˜~ZÄœ¹iü^ÑŽkgär+›Ôó‹7 —掲"-Lިˤ†Ej$¡ðöÒ‡[þ†™ËÅ'¶h–ÚHW&\ÚQQß—ˆ1\ê6n£¡$ßÞ•Lùq‚¼À; Ç30j¦õšUFªŸH{æ_\”ž;úRŒ\2Ï4»×¢Ó´Ê«ïêz¾§[.¾~òa›±u]•ÙPÐÑ•Æ×* 1–ŸÎ} ( F´ÚV‹öžä¾>QT¯=†^Ób¶®T]33Þçb“DßÜk.ïRëÙ¶4œû¢ÓOb#Ý‘¼žv |X6ï-SZÖܳ«O]lsxÊ<Õ³ÔbØ‘™dj{óßL‚…t«xL¯îz06Á½˜"õ ѰSŽtR Òô ‹UëN5B•ó¾çUÅ%ՙǔ<)•Ã|~Ó™¦¢êÈKxôm~­ÛåËÄ =õÇa‡ìRíáe! !(©sHîK¾ :8[W‰/Ú ¢lÉ#kaŠÝ âO%w úŒÙÈô—‘œ3d5QLîˆzï°W€ß tÁ&Ÿ—×4íHšnœ‡q࡞‰Ì8=[0–¿âÅŠ}BAÄPÜκÑL&ÅåÁ%.¾Í0½FtoÚÍçóÖk°\$Bd®fÚ±ªO1/pÆ^4ZÄh Œ¥Üª×çÀs Qê‚»zú4ʪ i[£ŸÑéB͵‰'½C0AêAêËòÞ M#\<¡Ø~1÷IFN]HiøtvºÎ?!æÇ!]ùésüž íb(OOzˆ¤Ö-JF³…a¨Ör™Ù£&áÃé#Ïaœ’ºñQNö‚ËØRn5¯BY]½æX?œ§D†»iïž$tq«Rw­ý €ÄP=†…,#×Áè‹BœÀ1}ò#¦–déaœÁ%£\r­¤8žD®~½W~m{Š[xv|¿aB›4¯Œ{˹\tÀ±µŸíË ÑM¨ÁÕíLŸÊ‹¼ƒ%|žs=±"t0êy‹2©2S¦sn*ŒƒÖ²N:¹Ô›ÎÅ×ãáùz]yÔŽ¡Ïñ½oœyf=Ê·jìå~J!Ø$FŠboX}ËSسŠq ñ¿ax¼ïÊAråg£ d6úüÊÛCè8oL÷YG¸f.1¹÷ae{ê9";÷ *pjûá£ݼo‘ÏÕèbÅ'kÁ…ŒÓÌPÎP•/¯É‡PQÂËêf,³uõ(jëU i'—{“}³J³¹ÕhÆ0kp¥8âûš fµJRæÞVK¨·¦ (üýSxóà 1ûÇïvÁÆ[*‡9MqïxP¾09£FýpXLGQßßUCßÈë,ÿ̀ߗ°Ä¥ MÍ„XX=µbs@È©ù€Ê¢L F Q8¦ ßáùaÝù݉âË-òY±të”k¥z«~ƒ)R«‘ðÁl$ß`¢˜Ü×=]á“ãF-ô¹µ—mŒÞèBjÕŒ!óù9•R>uµÙ†ÝÎ6¥Ð‡´lé ÑT¬Íô½ŸUäÄs`Ô`oi`]öWTé³w· U4Ê/낊uVlrzÓðOßàE}CÍ­’@i)¸a¿e¡šÿÒ­)ÌÓŠÙ -w%ËP¬h³2ЈßÌsw5ê¿<¸yv0}gb}¿ŒÃ³$áD•Dõ¨†Û!~ß›c¤˜#ÉòøžYêÀ#nŽÕp¯æ¢.à&=ž*E;'Ê›ÙIÅ7¬GìAqN?¢s”£¼Ÿ½¹¡Ù–Á±À£½‘ V«ì‹Š²œ®ŠòÑAbõžÈtÍAo "l/Ö\¦ØÊtîÓ4©AóöøÊö¾'Ñ\[€wj\y‹)GâÛ£œ«e´Ó•Ž;B(¾ÒÅrŠÂwîROý¡MÈàƒ÷¹ù–†c ]dd}±¹ç9áù²Ÿtº[§uŒìy`-CZð}ÞºJ6ÎüüYPué|³þÆ£ïy]9«ð¥ ë“ç¸êiÇÆ·Y™†ƒóÌùFÊ ¹Š²]åYãuìòÚËâÊ`ÒþñVB-+·íK‡Ç#6´¤ßm ôˆK“”ƽ#ÜÍV@ºrÆÒ‘žr\t]#Õ;Šv?CÁÃk'àîÏÈ͘pIdýB.‘³V¯s2ó¡Ùß(M°UÏ)¶³2—…fò˹eòï Ø+¥—8>¬µÏï5¾Ÿ|­ƒˆ.6øÙ¥µPd×ÞJBß}Èh–X(‡vÿ¤•9F†ï–[ƒ*•È(JŽœ¤_3‘×^£RM™ëÊJEkÑç'¿aÊE‹˜W°"lxåìawA˜î? æ{ÀmkÑ‹—›9™ «)œþ]¨ÓVÉϯýu[ÁwãÑ¥ã&bü‹ÇB’µúÞ÷šhìgFÆÀ(çÍH©,qj–S߆—åÀ±·uM /Î'U pþ´èU×ÖŸÁ+g] ©õ´Zí«•l8B6à˜w¶¡û¦ÅXq,S¹3,~íÞŸ8†â "X¢‚l¶0ƒUJÝa’¹Ç¼.†¼|0zÇE:?¹z—jÌÝ|@Hœ{™ò`ûšk‡6ÑaŒ´û#FçCKL[00‹^íb8¾¼2ós¨ž~HËPÇ#Ð̱$Û†Ù4Ezý2¯²ÑK~W—­ºJ­EnqsÏC' ž ƒiŠîTcËupWŸtpÐ3þ.ž×-âk Ñó»c¾tUÂî1&2ó#¦ë¥½söÞ·”ÆIEÍØL¾Nï§æJ’›48 yƒ¼Qæg]¬>¯?ï@CñêOÞ6˜a"º2ÒÈvA ¥ï×veQòˆV [PÁ;ç}˜65,l[ã¾Áq Óí6b³zÆr:P9Ë$‡I ÌJpbÐz—òÉK+ápá»÷Å7—ñœ&HÔ{%6÷R÷ƒ³ÇLˆí1%àൽ.ßï"ôtaÅft¿`írÄq(äµ §RY-ù^"Dw"¤«ïnÖ8N nPšÌÊär®˜eP03Ëø…ÚNŸàöðn»ÿUÎæÉÌe/ý×Ë«AÏPZ£l ׉J€îE æ1}]‹žm½ØÅXKÏV0Uñ’¿ÿ­N.›ß¡žØÏþÙ¸¥Dó[:TL¥ûÖ¢œ¼Q ¶­i+ücúä|4¤±™È8u¨ÙÅ‹f>刣¾I—±`8ÏDnnÉíÞî÷m9½ ‰/3º*×7ÅZ ß!GÔD°ør¯äË*%Þ¢bæÇpH%àãq+Ègf¨åÊH~Ä1²Ýw[±’AÕÈ/—)m`A´…s9—Ë{köü5æÉÊYã³p¹[ŠƒvÕ  £v¸Ý„†UEÃvÓqPtúUñ\)Þ„oiûÅ&¿ãE!Ò&߯Gr ð§âÑA|™¶ÝG”ÊÅu’žöÆ„€<^Ö‚—(ý:ˆå"²²óX÷Ü$ù`G,‰Ý¬þ")†08°³.̪W‰›j0ÉÔvAО…áND»‰oî—Ý‹ZÌÑ,Û ÓüØoÚÂv›LZ[¾Ç±m‹KBbU«?óWKÀ€_ùšòfà`õ*Nˆï´!½<Ñ„GÛ—“Ü”2^– ¨bàâ ¶OU+ó}ä7¦ã—S2 ìYÅ寰ùn £ Ç¿àá]ãLñ.¾kÍX¤ËIÊš“Q€ù+m}£>Æw×o.öK1]mÌŽo¥…pñMÀ|¢µYmHðÞ,Xžà'ïRÎd€Ø|úÖbrNG%H =fû¬šKpAöÙ?zš§PmÈ—ÌSv û*o)n'òþ"¬Wo ‚?xÑôoÙgØêMð‘Ø·aHÇ FdŠ—ÂŒä¿H…æ/¶s¯üG]ïR*g"¼] 8§\íôçTË ø—Uì:T40Ö¹úÞ}’£§yȳ2âgcEʾ{X[£ŒÐyÁs‰oíþe0†`»jk¾òãŽ<þ„–Ätöð n0š&IõàFXRvhÚø^ÁæVÞÇ-,ìôïRËvª–—Ç[½L@¸ Õf‡©\SÀ†¼b:/UÐwõ„TL±ÁWDÆ+_ÊFS(±må’2;§®÷ó™î æ“:ü©F&lŒ>*“i5ik®¼n^åù¢gŸÓÒûD8!zû§÷?ªe&ƒÝaøn äûqºê´xêH¨ƒÊ4¼ºÊÖxÉ•{^³o;[uÝ%#q$ÞÒÐùª""ì’âË"…ÇeÙ{ø^Equ™P å²”ßÙsÑ:¾5î· «¿®làü8G§©L¯ ]šh1ÆEÔ‰+ºéií)Ì™®ô ŒùRÏwË…½ú%+q‘½ðÛg‹•ÐçNæÍ¾TNÔŽ´X¹Pí2g™—?pÍì•>'@ýúvˆ¯™ÀÚQ aR= g¼ …Ù7ZfÎÅ!EF™ŸTA«è%nà›Š^œÇó×8³l]IÖûiDpÕ†6¬ùÖ aúØUÖ’ùt´iŽ^Xç”É· &Õ¡n[„}ZïÌF©Ày†-›EÎ nŠsæ¨n<.äÁÏàªM™ô‘ôáp»šIL cÕ“3Çõ5Â6œfó7ÖÁDcüú¤áàûb__³¸ƒÆHóÀ…¢=„Y\¥ê[-bäð;æ©Æ2 GäÏ´ñÕÝ :Ef&6O¶NàQ°æ6á2VXVøÞX¾î¹`4”âÎ9æ_ÁÚ7úÅð©L¾ vß.x÷îK²àFÅ•qyøxN]®~@Ú|k]£pÆœ”NNcöÐÖýõ½ÝÉÑÁö@Ózó‡ÚÇ<¹¢J¹âdx„bK’uÆûÓÜÆmx‚sCrµgtûפÜð¾·“ÔÂyõL³¤l=!·˜9o\V†ô·‚n±-6» áÌpe‚C v$ëç±LY9’ߎÌíO|ŽÕz_Æv¥=`ÝJ+H”äõ­iMÿ†Š£÷ý,ÌS{?ÀqÕ¾îã«*bf‰ Õø°ÒªÒÞÝ:ûÀ¯¸êÔhZö¸‘Õ¾ú°¨ÖÁ]G3Þ?Äg˜“„üæž¶®P¿‡Mgh¸ŸÊç\Á\(~ƒþöÿ©Vâ%ÛÈ.öÇ9˜ÒBÒöƃ³<Ä"b‚#н,ãNÐ#Ú¥žIA=Ç“_ÎÙǸðSÃN>Nͺ…î—¥ër)æö¼Vé/ÞS¢o4‰‹‡°‡L‚#ʳ·’Ÿ=·G+ ’WGM6ÿ˦r'“íæO•PÀkIWÚQÌé03~´îªâÉßpV½{³çׇï)O¦–ÄÛV Jí¹i¢"˨o8HÕ€ÏÚ 3<Ëóc¢W3K$ØÒb¡9ˆ¯¼‚x‹÷,ösNkÊ0¤cÅœä¸] À;F*×@´Ë`pP R/p@{=CðûàÍ™v¶û9XX:c2¨ò¥Ô¸€¯·‰^ Ñ´%¯Q¾RžÚâAd=ÅeÈ0µ5ã }ŽÌ3nÆÍYض>GŸ¤¸ÛÐ’ð&Ú’^Â=b“°ñ TÞÑ.î?Ž/¯jÖCA%Ū R·hnüKp#ó~ìHŸ[®¿aœ¹òXàxÊw NÕ­3Rü‚ l=CWI¹õ@EU×aêÑë«9í,¿ßZ&9™CeãôÇêà ø…eºWØW5s¾Ñîo¿ä4Yù”®[oÄI â®N<ë!–¡JModÌTå# ­™LOGâ¾(ïPŒˆ(>4Ò¥\%h·$Šg¾!\äön›$u·—(q¡“¯•åê}z„kóI ð$Š‹°•(”æ—ü>¼A qi:¿âp-µN ­½þ{Ç sŸ©Ë }1MÎï&9Iï K¾û€Ñä7WrÂí»,€–³m¸6åLÕY\K‹[ÕW¡†[SÌ»+¸dÞ}™<y³ ˜hê^ ¶ºÆPW Øÿ´P÷¦Ð¹qø‘ô§CÃH`¬‘Ðjå,K¾¶T¸ìRñz´âeÕ7Ò1 ¤ %d/”‹^pfî´µÓïÖ›Çié‡"6BˆSÑ@ñÏëöå´k¾ÿI9T¨UâsDiërÚTdˆo¤œk‰)˜¹t³×U€ä)xYÈ\ì¦?KÊ 9¢]ÓECiRžü…‡2—>ÊöÊD5‚bdYBßkT¸p óÀÞM:ªo°9_áñ#â{+|Vt×Ì‹“ÛÂòŸU6³š”1ÕW™ zf÷Ú‰ÖO¥æ`¶‰ Í(×vDD7üР `òr•²+Ë+ÁƒJóÛ·0à<êð(¹Þ‡çn³¹Óˆ.v!‹æí¯¯Q¿êSÄÊÛHªõk|b´£é>²Sû¡ù8È’ÕY¢³ÉlT£g9‡Áá4 ŠäÄ­10’æ¯éy;sª?¤`± ž-]â47þåÍ&}’^œPeùºp‰èQ¬(UÄ=²pp‘óOÞÉÝ _Á–\©M/æt8÷2G™ýÚäçÕÅûuUSaYïŒ\°8n.Ø•öÚã7·þÔ¸V–ÚKŽ«Â”Ú{ÎMü÷2k‹œÜKm¼¦H>$©\}Á›4;øîÎ08—±Æ­ºÊÖr1=U†¨³«Ù-­éœ¸œ£ 9ñDù¬_ð¥G>Q(º·© –|‹»c%Þ_ ¦Ÿvݽî…èÕñ«è¼ÃLŸ)§úVL:V|QÓ ]e}->È ¾SYº}÷hë_ŨDÏ7ÿëw‡­ß#˜Ðzšá›öÍûØ %m'Ð4Í”3WÞýŽÇ<©4vBJ*æ€\¤WM?¬“ cÙ–ñ¹Ó+÷‘:èÉe%ãy´®åŸ¤G¹ ù|‘ÞßÏL¿×¾ÌMµèžad2‡Z’ÀêðúŸö}­²±^×™›¹ßæä*ÇÝC´äc?ÑYÈUÄÌâÀÁÖD¾ }Ó)ðœž#9”¥_5è;zБÜjÜ·ýõ<™šßœ$´*4¡óm— é|à_r&—g£Ô®f q9àÜ!¡]]¯ðLò¶éìþîT½âUG×'·ê ÃÁOu; ;#;Æb‘ïR´’‚€S0+z…!VQ è6–ÅÜLꔺÂöÓ¿Y™é$Äãè„€’,Î.-I"“ºþá”ö{d)Hþ–ãS/nQè±·Í;µàfiS]ß(¤´ßƬ@ büÁ…‰”,ì¬ç»ä5‡z©‘ã'lÖßö}ö1—–ïå ¹¥ wIÎônïçk­VG³œÌϪŠ6…/pQÝWsvéÂcñM~0±rÀµ2Äío(˜dgˆûßz•2BÏlº¾ã“‘‰£ÕÚqã@b yZ¨$äÄ>­•HÝ®&‡Ÿò­ÕÞïx!^¨¤YqÕ’¯1ž²GD›ßs3åÓ`!š^^í¨0é‹ ™‡d •Zèàk)CV=ÒÚã<À¿Êdy뺠ºÛ‰WôMUŽišK7òo ¥Õ©'ß@N^ª¬°îqøb`tɸC¤Ýý«Ó’é=b'f)iŒÆ¶‡,*±âë¶s%÷AÙ~O0âPT ÔCÆk—z׸ٓsÿ^u¹a*O¦ªË½ ¸Fe¥‘¸X¡¾?ŠÇô샙ÏFU&> ùb+0ù2F¹΀G†Û¾„RåVqgAèÀZ„áWIʪVÖ_cCââO3™ÅP «JfúÈŽF Ò_{0ø\RÈ·|• 7tmDEÅ↙#Lj¿œÎU•%ïöû«÷1”-¹_œœ!–=œÞ®(u±†N"Å9YÝ_b_Êc‹êû§òEr‹ Ó ˜\_·ÔDo¨3J->ì0ϤK¾ï/\;¡¦Š£6´Ò⥿†½]y82DÐ[õÓZ«ûÛ|œCTòÖ2l>5 &,ËæËÞââ·Ýj¯ë!>™¨XÄPœ…2[6£f=„•¢n¥ÚÔ<®ØF²kh2Äâ€H¥ë 7‹Šþ4ìôoÙýˆäÓ*=P óëßXn~O-×|%ä4_]q°(ÈFF™±aÌy[ì“øõ5#ÿThõðþ™‰¼>.’˜áÝPœóOæ;ltÍð°]×'¾6-q]uš *³+R $ޟ܃c»~èë¦ü\iúçQÑ$ikâ3 k¬¹¤¦*ž–Œ°ÍÉ´Æ‚@A2ë‘j¨÷ÁÁL$yFé§±Ö]íÏcÔW N‰ôÍÍùà· søam‘c‚ñ9èù ³4ãæ-½jÖ}¹‘uÑ|ƒ}3–FÏø$¦I9¶RÙþa¥Uq‚–GÓm\HK­(š—þøC9Á¤×>£ÌëìAX‘º»êp ³€-hÝKÞø·¬…e#Ôçs‚ÐŒ V"Í›ÑÝö¾õÔ¬C~dãô%ݯ {|!¿vŽ†Ñ Ã;bÖ4Q¤½iº2ƒu™àâÚF‹ ô·Ãu2å\dÜyµâÕ²«yQ¥z¡‘6FHÉYè¯#W€@sžfpeŠxÿY04N Î_”µ¡väV¦åJЍ¤ŒNéD„°0/ÐÊ^iÅmšC8Kifþ‚“Uìô³ªºÅ1q€°É!THB´ §KÞúß®Yl-†TË*AXQñè;@q1ÄÖßN˜Zú÷Aà•nÉ  ÀòÅ>&i5\/¥¸Sâ+PèVRºãf›¢”×2_êfQǤ‹’ê½ÊZ滆ÕÖÎD•œ Ü{‚½±íDÊ٤ª¹*ÜGÆ'´ØBÇCó^Œ³bûÁ±Õ甆ìB¬¼tÈ:;™ƒ`büŸ{)ƒ¤Æ]ô —ÏS‚–cf“ÐFsrä¨N øÕ#Àr ðñÁÒC`g¹áõY7ß Û3äy ¸©šÌçT¦L×½(Ã"íí±ÖfT¡†ÁÎ]KÙ$M๭ÝcÞð²Ë`šìeªï›”A¬Ûsjª|5äpúÜÒ÷c,§{]H+K|G«.›NGÄ95 ™¥’'¦Õd;fEŸ‰í ˆuÞÞçY¢»Êæ;µP=@“ TI Mxrm"ÍD,ŸYé*„2átø,Î5•£³ èzÔSAlêÚ)ÍÁÑÌà¿Õ‰”Û¸bÆŽÆnÉÖBä$?`¹éR°NÇdIñ?Í&—}™uð~„€Õ¾¶ßÊ.ˆÛº;Ê$}ÀeÙ®3iæ›tñ³·…“#´šWšRŽ^4\62Qt_pÜKѶœbò1 "y¥ðØ à™B@Ì[ÄFäÜ{¿RI´ÃJ§%JGùž­"Ú¢PÐ3è—Q_в©$lºì?Œ´s·ŒuK_ã[ŠN˜õ=ô„×ý ·–‘-Ö 8CY××ÇȥɎÍp0ð…*~¦´>é2´Û“ªl¨ØLö¹^Ñ ÍRN½‡™¦Žczˈ–…9mõîÊlHæh^‡Pªh%èÍξúNzV–U7 ÿer® +yTB-¥ÆÔYy@ª y“ß~ ||ìg“G`e‘µÐŸ ˜^}Ä@Ù\å˜þÍ{ü'Ã'Û—rÇÝ"ŒÀv hu§Y¾FýàÖ`@êÛE'ŽDô¯u‚HúÂ!ûÀ?átÚêhÕ ›ËFQ–tÿZ¶ '®Ó7»i☫K¢‰þJÌM§Në|²!Cþß›]ÃCKç=Øõ¿ðY}YÚîwAÜS„ÂÊRh_Ï[~8”¢ÅðNI2#»/Wq€™U„¿ŽU³PÔf´Òá•/>"ÐÄ–œp! CAtaîQŒF‚Òot(á9ÖÎ%ºdMýü’NÄݯ›ï}\2jµ9)%ïÄFAò92£å‰3þ™*/˜X· çE/ã<×ü@jÌùuy²"Þ–no'N]Ã{:g³¥ƒš¾nƒ£•R=f‚'æ†MiwþyŽSuáyXÚ,öRÊ2Á“õ– g ¾±Ü)ïi©Š- ÄQ¾Æ˜¸ÃX‘ÖíNœÖ;œz‚{b܃—Böá•z>°Ö¾íp*ç+(B]up(HçÉåžkSÑʳ0Îïkê¡TsCæM½A›W—A4ðòÃâìîêʼw3®^Äd¨˜-°¯®©±4üVÙ)ͯo»¬p‹ëD~нlœ—½^sC ÊO‡Ì{ÎZ 7ÿ'1Å÷šbn ¢ãeƨ&¢³Æ²(s§ÎO³%W`»Põd㚣W¨ñÏÞ1ò3CX/>Blµwø5ðJìEXxx^‹Y ¹<΄ „Ÿo·×•ƒ†öç¶„ñ]„£‹ÈÈÐ×Þ85òƒ¡7–\£ëà׿’Î nÌ’»l#ÉIpÎo,ñ"—óÒœº¨ˆØÏzç€óæ‹ûiQ–¼4ißqÍŒ>G÷4ßô€·#&íG—½:u¢öp.å->ëÞÀH“ r²ø¦×RM”9*–´ò+ÿøVZЧ| û2нˆ,Ю@Îý9µßgzÀiRþ{šîݸ,03OÆóÎÃ>é¢+½›ÇîÀöX«OàmÅåq›–Ô^}¦ jº®b·õáÍ(š[áÍ4ý}m{à–Ó»’ùØ1†"jŠ©îÑu5²r±ÑT>îÕŸgL¬§†üs£hbkÚ<åÁ@ˆaîB¤‚Æ‘½mV7ÖÁ ÷~ï7¬Ç[àÛpû.¡ö)üÞΗõ¾¾|È¢^ Å'©¿Ò¥4ËŸBÞ}ƒdŒ„uÔÄ%)2N„lo•ßÙC›B„ÓóÒ´5^˜BÄdï-ôB×4×g%°/­)4Y5?WNBºû˜ï¶Ä?<ÉT(ô1&Y]¬g)[¼š wÕcë¨X9þ€­M³vAâwUªçcåõQ6Ôn™UÜ®€)û­M,§gŒ‚D‘p`©GÕ¾<ËýjYù1.1û"L è‹€E|… `å¸÷K-§S·H¡uh¿+†ÇB•’ÆKÓ:-ïDuÐj"åîìPª·•Ê$¤‘nϽáPT¸1£¸uJ2ã~/eoRÇÓøeà[Ê1re>^CåæcÌÎsc0Mpg±n>z"ˆÑ͘«6îuñÎDsl¤™t¬âDùà’ ŽX[á¶Ë­XžÊ4ú)Oµ~£Hî™]Êþe–Å”¯ °ÎñÓ{ý°>О5\ñ}ñàä‚:y¬O¬~4™0^£ iŸl¬bK¤ ˜+Ç…Š ÿÏm¨ê×ÈÓð³(I™jž†íÈßšfán+o]{i:'uótEˆð¯‚…?ÊèfäÅEÎx^h_ß+i³µ9©¼Þõ³ÖLÓrîðÈŠ^‹ÐÀ’œmòï¨ÇAæûë Õ\«``äœþëKKmºþo5Ê‚ý~ÅñÒd7=1Ô›R?v­^dûÚ’°:|oÇþbÏJ×™?@©Ø™Z¨ 2èÞßÀ œsj —)Öçoƒë'´,@ÁyQ•ÆÕ"²¼ÝJ™ðfFx¬|Yñ’e¥úó5z_Α!e+ý7†¯,%?e‰±ë¿M1?¨ïÕ Îôíà€W฀Å΋mO(>cOÆ"eJV< ÆnK‘‰”ÅÍ7b!FfÍV].(ÿùÁý«[ñºž'~;*uJÝ”ÕCÎÛgvAcUz톯]ŠÅ‘NÚ$1å½ó@?7^î…¢L hì8ŠD˜°š@–†ØP'cúÈ»r½7¼×¯‡Îƒá…Îy}K¨!¡N÷=…UL躢m:„ÏŠ^‡\Ÿžñ ðm‹iHg¥{æÜƒëË”£“`rê¨VkS»cô}D¾<š¡'‘ný2>}5&$1dw%*® ÙÞÁŒRØ 1š\ÃoòSßÛÌ܃èžÙV¿AzÞ‡3ÊñY,&Pµ²›mZ6i“s‘Ý?¡xc÷ź¿NMy©“^vüfÛnZä dÜòÔ÷U‹Ó˜1|Bg»/©ù¿z¦¶a¿Õ+FÊt;ˆÅ#ü°Å°óN±´%NØêÁ½í×ц‹uU2ª®÷ÿôRBã21žI~{Ñ\ª6#û“7hǹÎÌ0C†2Eàè»ÄÃØ,5Ï¥A;âuJŸ‹A‘.n|ûÍá L³u#'‹ÓF®‹ãP-ˆÎ-}ÉÞQûô,ýðr.W¶²/'ŸŸq¿išJ ÓQ(’>cÙÌõ‡ÎöÕ,ïHp¹r;«5nŸK:¬¹Û27ÇÀ%—ù>G7þ 8,MÎQ¹–<ŠC3ƒ ]¾ôX ª8kÖMë΀ѫ…å8D(ogúÐ,Û8ÎhUö«•:¢˜"hk^UW—9 âC",Æå6·»üc8ÊeTŒèQ?½j^R°z_Ǻj}¶=#-â\’kƒû~’)dc/Á£¬â‹‚¹¢?|ó¼dN6¥‡ ½AK ä cüƒK#=>ýôêYû¡ø¡6¸·a×”ª¡T÷n±™A?°ÎÓ8íô,O“éãðV¾ZP03´óL¸Œf9LÄ¿Êß³hDYÑ0鯌*†ã]Çè!¹ÿuŸCÏ\äÌŽo}ôQafa‰vn¬Õu3y!:¨8²Zã‘:ÝïÑ{Âù˜:ÿn”úh5cï U »qYÈÀ1ö±êÖ šî‚‘œ¤S'!ÑÒ7†¡dÃI¾@²ô—.y TQ{t7Ðí~ú°­¢XZDRíéèðyè¢VeB%‰´ê.ÒÜÓa §ÏÔV÷‰è‘KÊ)Ùº gsÈcœùÔæªYùÓ¬REq6í¨ŠÍW†hž®›ÁÈÍ# Órp¹€²|~*kÎCBûCmÀUíìž*Šøa>è>9ÎXi¶‘=¥ 6PCYu˜rèáï X{8Vô.WNBh'S ¥øj¾.= "ÞIûuG¯Qkä^\lR$wÙˆÿ‰àNù“Û8/Ì%@ñªeÚœE5í‘«RëõgGKË(ãs¥È¤ endstream endobj 118 0 obj << /Length1 1740 /Length2 10110 /Length3 0 /Length 11218 /Filter /FlateDecode >> stream xÚ´TØ.ŒS¼¸C Å-¸»Š/V’ Á¡¸‡âÅݽ@q ¥¸wiq+…GgæÎ̽ÿ¿Ö{+k%ùöÞß–s¾}è4´8¤-`f`ÎÁÍ Ȫjró€@^N “A·ÿeÆdÐ;9C`P‘È:AðG›þ§ ƒ”]ìܼnnA À ÿ'æ$¹B,ªœeìŒÉ sðp‚XYÃËüç/€ÙœÀ-,,Èþ mv‚˜ƒ UÜlÿXÑdЂ™CÀpÿJÁ,f ‡;ˆpq¹¹¹q‚ì9aNV,ì7Ü  v;¹‚-¿¨ìÁNƉÉж†8ÿiׂYÂÝ@N`À£Áb†:?2\ `'Àcq€–’ @Ý ý3XåÏvÀ_gàæäþ;Ý_ì߉ Ð?È ss˜½êZ,!v`€º‚ 'ÜÎA-~‚ìœa|+b2{ ø£s@Aúô8à_ã9›;AàΜλß#rýNóxÊòP Y˜½= wÆüÝŸÄ lþxì\Þ¬-æõú XB –¿‡°pqàÒB]ÀJr…<š0ÿ±Yá~ ((Ì;ÀîæÖ\¿Ók{8€ÿprÿ6?NàãåsX>öX‚0½œA®`ÜÉìãõoÇ#Lnn€Ä0[A ˜ÿd4ƒ-ÿÄ—ïqµÇ þþüýÏøQ^0¨Ç?áÜ/—º´š¼¼:ÛŸÿí“‘¹¼8xù<üÜa!!€ ?àóßY4@¿ºþCU‚ZÂÂ6ûxJÿiØõ¯ûgþk7XÿK ö(Z0€ùùæ_ÜÿÏJÿƒòÿ'ðßYþoÿ߆\ììþp3ÿáÿÿ¸Aö;¿5ëÔ¿*ìq  ÿªþsgUÁûÿõ*ÁA{ µ²ûû!Î w°…nný§Xþ´ëü^2;¬s†ü~UÜ@àÿø7ËÜöñåp~Tä.ðãâüwIy¨9Ìâ÷†ñð @NN Là£xøù^Ü«hvÿCÃ.N( þH<Žç°„9aþ¾Q~—ôoÓŸHÀ%÷pÉÿ„ø\Ú#aAèôÈ3û=òÌÿF|¼Ç‡ÀþŸhîGsÿ#¬ÿ[‚ü >V²ý|,e÷/øXËþÈ pAÿ†üTèã1þËÿXöOkdع;qú|ìÄù_PÀÿ'ùc)¸ì_îÇj.ÿ@žÇRÿ‚<.Ï*?Ná vú“ý_jîâäôø¤ý±r·ýüÇû »ƒÍ1çg`æ¢A6µAí×ÕÒ”n[_Ä'¶ôRX8¼æ:\nqÑYª2Vœ.¥‡>=]Úg¾Z ýåuÐRÚšðªí§÷Ý›8Íñ­6̹¯$ýc¤ëú¨1¨8´¥¶½9zëúÛ"· v*3ä8ºájä^»õ*º×õ•.Ž„Ìl½Ú®x‰uW:Á¥iä_4Åk–9MFç ~ÂJpìŽ7uq9I=ö@«džésÅ[àe°Ê}3íù­\›Ç¹‹ü9¹5òÁÈ8£—Ìn’2é¬WqÁŠÓHò4IÇèšý{n»]fÏ-5Ík§½SF†1fr2.d"¥ˆÈ•ÖñöEtñh|™ÇKÊ+îJ§‚-fÎìêñu;Á:~M,á­îÛì:Ï]tfâZ}ÖPMkâÄ:Zh(5bv#nXþ–ÕÀ]é²Ñ€ù·áoD ͸¦òÔ-~ëVµnþ{ߴ醖Ü•¦N”='Â\÷6X툎ÏÍÓaýÛ£Îöä&ˆ‰ â»Õ­‰ÙrXl”$u™Ô.—Â-”¨QÏ3ÒrZx4°Þ×n`±¤Wí¶õ¹a^‡õío•ê”>HWUäeàÀx}Ó„º6êB¢øuMDn™ tM9,úž9$ïL¯âÓÙèdzÆù@1ÎR+-ø»9¥¤pø%vw*Þ^²àÒ'ÉW)Œ$é|H½½S,É÷Ø(Âí_õ2 ¬Í) ¢å„¶˜ä2Æéiõù'ÃÍi7lûcߌeö’ˆ&p$â­Š@?¤ kÇM6›JMÑb.„IÒø9÷ ‰l‘•QÝ«°Eºó·—Æ~¼öÑܳØ~[õu¾g§sKìIWjÌê$ùS’Õ’våÚ;vúrœ9Oþ\±»¿S µ j›þÖs|´ð®/_ýR¢gyC9+²N:›%ëKJY¨a/Z[9QµNxø/TQdüÄï›5³u®šO €í­Å„±LI«é%µB„‰ãp¥iwÖ‘üçktKV´šÈd/ü´¨ÊD5»uŽtVý%éì £TçËÇy¬Õw9‰‚µ{ÈnÝÆ|Y$[ dŸ¬ä$éš š¬Û¦g•\(‹–›ã`ªu½g=ÙR¤ê*ü°:ï?ÕC¦óáÁ|´r%ow¨ØnÊw-A`Â:MÕƒg~¥ákv, ­Áª«ÎyÚº]»†7‹î@3®ýqëlY&58c;s§œä\9ºÇ9%è uþHm|*ªG´ï<…·—f@^”@o}Öp²LrŒ Òº?i¨ß` O2ů:Qø]öCŠ” –Ôñ>sÔ±Ȉâã£ä2«T{8d¢H½D~¹ø‰w«ÿät¯Æ¿LÝzLYz 5­®]¤ˆ@Ø5{2Öƒ•IÉÞ9 BÛ¹Šx³çÕ·º'!¥&ð$>k~pÜò µ0§ÞJìêMèL«äkcøvyu´!é˜A!jêûd ÏÜAÃêÚYOt·8Ú˜›è”š >zè¯`tÓWyÎ.IÍr6ú•Ücó…#ŒqÄ$È©Ôó¿qš±µWáhPTÅEã´Sðt×j´Jƒ!!ÂPn±ß™Ôåž3%ýËü /e¸u,7ïîµÅ7æ V‘¬kX”…iX^ž´ê­†YPdôC\è^%ÞøYCAx¿ãÐ$¸8¹o7Ɍ߂pœU]ƒ?§FGÛú–ü›k§påÄ›)ò‘ç²éiýÔOÙF˜›U£1¦Û4~êFÄ«;äÀÍeM[§sÖéѽµ~•Bü寥™û˜öâø•Ó°X°)ªßOŠC%墣×@Žøynö™X>¿á›§þèóòun[ƒÅŒ„‰ù²n„@?PÞ Î>ø‹ˆœ¥r‰ ö¨ÓÖULfóCñ )!B2ü÷¬ÛýAÉî«Ð)ÚnùŸHr­9àçDJ‹‡&ÍÐù.ÖëR âëÜ<Ûg«•n’Ý=kõ£ =¿Öà ™$Ô‹]to¸퓽Nµ^wØñì R§Ælsqïdñ<[. ø^({@ÍCÊΗ'‘TìŒÓþ {”´ÕFý±K›_ó¸UdªËÆž)oÖ"6wÝ÷œ4S;’‰GD_ôƒ• ðã^ ¨ÈуòÏ-·•¸‹©$§là=LCB"\Ì‘JYŠ¹Ù èhà ïPÈCSpÄÙrkKœ.×îYs6þŸÅÃê}«Ú„;·<{”>Ò¡ö7:áƒÕ:õդÓøÐtœÍD­âi¢8TDv"¯¸ˆË*GAsIOðD6¾r»ß ¼?Ü4CÓíJ]¯Õ3¨ÅX¨a‚þf?”9Èb>:6£½*z|øƃ»!ö­­)¬†j§‰&Ô]5V©Ó³ã¼Âð¹…œö¾ÁÌÓ쉛ަՀˆ·:玼°›™R«sŸ ºgìÚLÚ`=]CÕ1Ò‡™;"â§«‹£fèæN)´-§‹qzܸ¾Òô+Pý¼‘îÄ6¾`hœÿKênuY5é’5qaR+~ñ#=÷ÑfTwÿúÞ‡…,y_šêî¸éSµìó¥h¹á ÷ñ)áei´tþ±dCH˨~ôÆ>ˆ D}]qóòÚ„<ƒöš1ŒÂON¼ àÀAåzüÀ.jÛ;­ F=b/]Ê„J´Å78¥¸«½E \É©zæ˜þ8[Ü süÙqBu”\Ø­3hº­UEçóE-=§þ™OYM|(hŸIbkPnG7ûq Ýýx›DaßóÖæø}FüW*Ý~møËã9ΧèFL¯ó.û£Ï ÞeFQ‡‡Íxo3¢gtôá.[: â­5ú½j mâ¨ð‡¿"Ø:â2|‡ÔAEf˜à§®é."½“ØRìÃ*ðD¸­²Ñø\Ån£·ãÿžDs¡ÒE°Þç°íÚÆÞ3ä]o6ÝÒ1¹°S|ÐEcï©©K¯]-ÿsŠ:s”âÔ;õaÑ·>‹ÅxÍø×Aï)ž ãŽ$ÝàÐZµ~DGE´Ó¹ƒ¹üz—͆_GÿŠÁS¼÷y±¢‹X±²€¦bòåpýÒH¨«ýòf)ÃÅMO[vÝ‘q¹¸†¬OÐÝÒž¥)Û_D„ŒýHX{¢àEÁÙxÔ¥¤ëÈà+Ën®Ö¸KŒw?iÉW~¤gé´Ö½y¢¾ŠFÍÄB‰ýxE.mbC¯XÞÚ&¦Ì«2IG-jJÈRµ®¨šøÜ‡X¨È¸43»¥ ö1¦•Yñ~L}ÔŠzíʺ÷Ã: j‘~/¥Ô¤R"ˆR®,«z7¿Ýò,Wø™qÊG a Ê#t7>ÊW q$ô¹é(ȯ&t0ßöí´È}G¦œ›}™¨ÍIµ4ÊmÆS-M£Æ×(¸5œnj«¤¿dkâl·<ËÞ.»¼x¶Ç,„;¦&XpÅ[áR"¥Á²ÝMªZRxÍÅÿTà¥ÆHˆ Ôr{uð‘«¡ßœ{\l‚,?úgHóJÊ_Fsj>Í–ÁE\AÝòOF5ÓñV?-fkÑ¡~^ï4.>[I ýU¿Ão:’˜Ï¾ºÆ5ulâ$Ê/I!<k,æ`ÄJ«¾·í˜B9f¢g÷ƒ;F‰¤®™}ÓÉî·I´3д±T“3‚4*jL8L…åšzFzÝ3¥g„¹c‡ÿ fK‹ÇüL*ö] >/¬–6ß=²b§ô‚:ç›sføg0^õÈú é¥ïnå/¥%¬Q³Õ%*†©M½QάæVRsoím-]‹e…¾ …ààk;HŘàŽô#å@šÊx^©”Õ Ö~pèÂi"±ÚaÑ4î~°–\0´v|v螟 dGqÛ–„yÖ¦7-=QZwQ“yÇtˆXwMÚ§«WJI§/0NÓo;ãòõq¾öÍL;b^ôæ?êvm:ϧ„õ¢]¹ †oŸ“îT;ä+âx„} •=UFÈañg\é²W g DÙÈéDO3B‘îìþ:r*è [ž“¯RDP ,Ó¼¸Ä¿H×|{“oÿ ]᪱ÎB¨Xu·±¥AÆ€WkiÌ£÷÷iÙÚ ³³l—¶E_Ï%šÉ^k õi” {3ÖT»ñ€Zr¦GĸSÌ‚úìæË¬_uZäÌO¶\ÒçC±<Û7©%2™ž®(?L©Œe÷ŒÍÙvýüÇ#[ƒêQY‡o*·T)-í!W¹³F£ƒ÷h°~Úųè3ûV]ÌömÃö3´üùPЦ>§è…óM_ÄÙr8÷ào&Ø™ü ?i°,œ}-ÊrbÄ_ãÓ v˜}žƒE¥ãEÍÙX< NyÈŽ ¡p\ÈIÍÙªx;n„[¤ æ.¯}áÝ£@žìi}¾¶Ïuæ=¡ªyÛÄaI¹Z…]"*°­zëÝ—ÝcõöÔïê5À¥Ô°Æî”Ö>ÿ€6åoE‘j'wè–ÐÔÜ=Äæéëpn±P§oG#§ïBK”—¥ˆÕBcÆ£Š®ÀÙ gÏÎ^¯@4õÝ…Z¤w“å¡Z‰FšÄ¹h9Éò“kxþéŸS?RÚŒÝi s“ýÐH(rªjœ?7Ööîw¦z®ê©¾ÓÚ¯ŽM@>ƒR"~£œ°M¿I¿ïzžŠbß꾦•ΟQÈœ³­ç23ºØØ­uUúvµ=„Ô„…œûŠ`™à,Q®fjÿì§íµsRžµDcšip\6(ªD£šù­ ƒFeHóàfƒ¢ž]¢Šÿ¸$RjfèfÃñMá%Ê·¸ÆîwÖ.Œ4Òˆ!ÏŸFDM1ÜF ›i`Ó+2Ó/c÷­—ÞüºhY;Dêê&JœxŠàŒB™ÌFŸ°éGÙL´ÐXª»þâ]jüÅyC·âBöÕ ÷wë¯ñÚ÷´kG'ʆc9z´"ÑʺeëjsE0……ÝÁæhÆš“^ž²5È¡­’ê­Z3œÛl«ÚÏLïLéçþý¶q¶<Òé[ŒT&µßvÉ5=ÇÅ-ñÃ÷’X®­l¤¿%0¹‡šÉhXˆUm˜LD³OÒáõäºNoÙÏa)ÓÅÕ°ŠUÖpiÕ" ~BWöѧ6\Ôä]»•æaS ´8 _wEPÀ¿ˆ7üÁ‰—ûeÒ@M-@Ž’zãÓ­5qd¾7-ÁñË þ‰N~æ—k·Ä“lè!l|mÓRÅÄ˨™Ñ_e¦¿¾¦mnQNÍaz‡™þ>îd4Ž® ˆÃ»äBSWÕIÃâ9¾MÔU™[%˜"»µ"ꈙӔóòÞ•€iJv2è–µ{YåÞ²àA=ÇÁš™«~Ï 7ö›DËêÕH÷ó!dnŸÜÔ]XÕ®qmÜÍße¦>èæOu —¿øä(TÍ3ôa Ÿ÷$ïËéé¬ïtúy^ §¿VÛ ©#^Ç»8£Þqã®L3½•\º<µå‡ybPÏw`¼eL»]Ì7hÛ$¦¼\v½ú®¬“ÈIõ5þÖÔá«§(âù›q»Dë#™z ”È$B^4qö²:sM¢M¯à÷”™†•ï VJ ðmúÓê½_#¿â£Ü–#6Í}'…mnÝÊùÑ`™¤É«ø°Ã—†«,JG¬°™þÙWBS½w€&¾•q§2‹oƒ/ž$RsŠ#¯M¢žÌFgqÜÅŸ vžhò>•V'Äñ.½E7|¡#3çŽÀ}¯|Gã;ƒ?A«uнrc9#(‹¦Íq†d| 8ÊF4Iö’ÓqIðSZiŸžJš¡åB¦ÏÄŽ*Ä€hW˜Pä8Ý«ŽHæ=÷8.¡uô­ØP/ª†xãäö猃)\`Ö,Ïý±5"Íh¡:Œ¬‚!GX°ØøNü »ê”„öeÝ,‘ŽºÿîožñœU1Ÿ/Æ/ë‡åæekÔëéÂß¾ÔøîõÓÆ;™úµwÞµQÒÊ„!ÏÑc%†eÒ`r·;½eÙtYŠ=-°‘‡Ý¤ÓTno-'ÅPÎâÓý¦(òÐrMêj¯ßi“.Î&!B{ÅJŸ4Y„Jâ»Q«WÓ¯¸KˆûÜh¾,×bŒEtêÖ³Óò3ltSã¬W8\Ù߈OÄ…ñ)åOSö(PêJü±Q^Ë™*eûÙYÖ”o˜Ìö+_üL«?s”€!ƒ'4±ˆ£Ÿ˜Ø •`މtq× o³DX‰”J•}±Ò‘@KroõkªØOµ&bßz©ëWð<ÞÑC~;´„‡ßø@¨v˜ã+?H'O`n|A8\ 'Al ÷µ¯w×{ñfsÄ_ÕZîâUótž³¶‡úèB3¶Ž©„Ùq<êÅFÉíñ} ±S\Ì(“`´­”·MO~³Uþ±…irÓ %ÿîh2”)¤óÓ5Û¨8µ›õ¦>µ…‹æÆ‹-ii˜¸ŽÉ{Ìùie¸ËN‹ÎòBYïæ™2¢ü|¥·$¬á“PÔ·Ðm:£ëПJœRŸw×âSUþpëdUc¸t3ëAžÓÎ÷f7¡¸°š+RÔ“èWhi\/ãîDˆK„ñ6»#:IÂ:Ô7Ì0÷üaÄ\˜ƒ®ÿ$_ó¢¦.2€?mRªà¤®Û«êRcóHsfô®¢ì¨,;)ˆÃÈá‰f{'¯º›Va³j\ûKÊõP…r·ë5ÛDc!RS6êz7“‘tV†·ÅC–ÃO‰3N‰°W‹#r+T¥v("<é=hB»wyÁ_÷~¾?Hê#Ï2^“ø¢o îtŽÏlç2lœðB³Ê¿æëY@3Š­Wu󟡾–Ù¾?&9µ¢I½:ÁéζDZ5u#•žmð/S!ÑœÂ΀"L76áŠú%z·³äeêd¨w÷äüÛsZ[%ÙaG?‰éñ3z¾!ÑQmÕÎiK{†~åö,.[Zžü©N€BÞ1ÐÅG_xv*÷ºtþ3+¹‚­šéû/gLqãÏöb–Eñ:––¢øÜ[v°/õ"_¨Ñ¯×HO?Ôn)írSb”d°,]ÑHãà™åë'áà‰›}ë% E”ÁÕAãþ¼ñ>ö'J$œžÇ&Áºº+úu×ó:‹Û›^s!1C¿Iµ:›+W¢½Œ„¶´œó5‘wzÈYÞ'.}ýgáøÞ GñÊK[Ów%DTÞ“>5³P’²Ã¢±BµuÎe÷xþmÄS.jã•{›<纽³Ô»€hÁð <Ãjx+.âCÎ0+Íý&r² ³Ú]ª¿ ·§+°ò›þqD(J€ø˜xÕjÍ@¼íðÓHA¼Ñ²¸›»Ä†Ý‘•œÌ˜Œ—Òs¬ø¢äm&0üÈ[åЯœÚŽðac`1“ù©Œ¯Czr«Û2jä¢)¢yËDº_üùÿül]rÿ^Û¸ü/]¸6æ¹DA,ŸÛ"_&Œ—%$mÐì«™PæÓ°Ý”oˆRßë ŠÆGúŠû³mWª+jöŠmèxclK÷šò»¨¿ÇØ×¿Ç ¶XjþŒÜ“VÀvÍH@Y†›dZ A r°õë6µV™”G[]¯²¶Vý,ÊÓh“/¢ô¸D ¤Z…_O#œº»r#lßj™K ÔN¾ušDG]„‰y£Oèg„aýõʨ·Ù.½ì‰eÄûÄ'ûªYZ¯un§Qž§ZPÕ=¹ÞP|¶ÊFIבûy S½¾ÏZ· D#Eö]«µ!÷j¡˜;â„ò¹&,É:ä|BjÁÕ•ƒ)¡NuÙ°.ÚðLz¹iL°Æ\IGnFžØÅ¤Éœ„²ÖŠb7+x¼w¶˜±/[6œ)}p'©J]..¿1*¬BÓOŒýðÄaÜêI²`a®&³Ûâ{óþ¬®@!÷vºo§ e9Îë/ÛÍ¥Qù#Üë|Ìø¢XÖx£w-2ÓŸw5Ó\žÇŸgÉ0û(Š›÷è3¾æŽ1yžö7ôÎiÒpNza—ùKaú\¬Õ4ýÙ Ÿã¡±RȪ„YhÍÅýe›ØLÿRK1¨¥,’žö4½Î‚¶mݹ]4ô—•™ëB-6 •G;†·ïJw_|$×!?S¡Nj~¥¿©éqøTM¢þ±^{äÛ`¹H¥^êÎ¥ð`­7ÕJá´°«ÈpÅ=l2UϘÎ1änP½IÎæ·´kÞw„Ê2M\"A1jQ2w>ër„Ò»vXã„)c˜hC$”^õ±àPº$Ó›“U"‡%¹U÷NÜùžù‘D¸ÃÇTKN/´I©1ܺÊõîGMdá̶\uÊdƒã—þǧ›‹J\œµ¾‰’\}±aÎ w”¸áíÏO„.P¦«pöMaÞ¶Õ< É㇂˜®L0Ï™¯ožxßy«^x”~¶ëŒÊèPl8¯ü²mI5€ÏTJ ÷ ™d)DœlÖàÚ­ï¿Zm¬èÛÿ^!(®¬Äp&† ånWþéµ\us¡<)(•Z2ŠãìVž¢À׃ŒƒðÕÚÉdYu÷Šö¸¸¯?€t¢©Ñì|˜ïÛ}ËHN¢‚Ψ:M1ªZZ¦pƒ&iò‹3oÀ@Œ¼÷l¥žŸYº™ÂÂKR‰þ`n4~Ä7ôêSölžwÜBÔšz¢3[–£jV:éð¾›XºÊ Ò]ðótKE©¶·TE7ë 4hÁ™Ñ«!|Ž;§‡¬–HššD`#픪1ºF¼¼ˆ1£¸ ¸îˆª KåÿÃ…ÝŽÁ+Š¢6ßõÚ°°JW œjO-/ªÁÙ'%‡ëBK|™·Ø—ö9Ä©Á×´¤VÀwS¸Äþº¼¿lU„¿q*:¿Þ„ü¶^œ¤’ÔgH7JéxTEo7ñ¸ üF~èg( ^œÐ)Þ®ÚÄÒç Õ±i7êïm0_­*7ÿ_¯|mI?|y>®º ri.ÜúòÙ§R¾Ø|a/¸t‰Ž¬§»§3>6ˆ·åšP!Erô+Ó´ÚJ,Ž(ÙiF­À ¤Ì1]¥Êš>ÍÈQ¥ÍsUµÄ+‰#I×NÅpU¼8“6¼rÉÚÞH»_ÄÐPg~{¢õK)°SÉõYï‰n€¯o\G…̧ȮáB÷n0ªrZøÊuäèÖ ?l*ªÈÑdZ2¹ÚcÍâIÌEB·0Uê*™7E^jmÆR¼„¹ÙQ_˜nñ-l ¤‡÷õg‡†$³_¯SÎ6çr&Ÿ|,óâË»8TØÉcI§î9º™ÓöüìØ¨iÖYGÚÂN}‡I†¶ÈÑ‚WKäê\¤õÖ‹µ ñL…Öóh£7bÏÍ«>v3üaᾡ$}ÁŸìGVœ2âÚ ˜ mù´{ß²¸æ½0½6O†‹¿n€¤•Ý3 ¿èf,¯}*Ñòf¼‹ÐbÍ ÕÓlÌ,â“°Ô­ýÀí£¯­³Øn«fúCVä²Gó5¼ëSs£ð ךn  Joß•þ Å¡ÞÉg¨em˜$ÕZýî€íl?ecåËÅ «ŸdBr .S…ÌU„Wƒn´OãøWs«ÌJŸs;HE_õ¬2饸q{‹+ÍÐê˶™t…‡O¹z«ûö¨—p&'¥A^1.¶'™d«ºÐ ùDì¼=ÝÁÃ^‰¿œ“&ÇS×­áoʧÎQ©YÍBœ|›€òI’ÄYÜÜÒ™Nƒí9_ ]nÉ1‚bEÍ{Jœ±qép,%Õ*š«j˯JZÑS•c‚vA^§¯TŠ]}ì_oZ(±`JοÈW¯I”¹6 Ü}JI¯ósš[ô˜]vèW !T4dYëݹNN=–táqw9ë@4™ªœZ}¶Žcs¯w»Ë ­•¶.ÿt>{¨-‹_¥à%GKË™.vªNZ Y®úPp*_ [¨Í÷Úõ~–nĹÖ>.&Ÿ²œT×Þ÷eäY—žîÌd(ÕÚu @“Ú¼c´!oÿKÈaqÙ3U®U-¼²° Gâuóõ#ü–D¤çý%Œ ɺë=_¸äGh h*Þn÷Ê8W=y½#¿Bi'·\&-¥-Ùš\úgÉé±Á*ËÐkO»m] ´*Ãèêº!¶´Lüêžé2 pĪV“úá¼8תQ‚D†ïͽDd›)Äå{;¢‘ÿ|n¸¸’buÄ×ö+÷Úoòô¬Âßakpù]”e!SÕ_°k&ær1ê•|®C¯º²ô!gÈãJTÑbZÁ ~Y®Z…|'ÀZ-Ú ÈÒã7Ï© nyq/¤TxYLòTjÁ¶_=ôé|¨¥9N³ZX¡mEÙ1 6su@U©ã~ùÎ>™4™ü†ee)„à¶»«ÔZ‡mdz‹HÂüí+ˆ¨žv1íæ£S[czíò+é•Ù#y‚¢«øT;+^Ši?ÞêÛ¾·ügxg1E¤{ÏEîXˆLüñæÐ!â÷(þŸ±ä?wC°‘ä»òKµåög•ÌJ?ÂûL[ÛQUѪ H)t‰iÃÀÒ&»b{IìÍ8º(êøjÃcIúÊøV‰F“&¡L\Œð´-¹Ð)Á>†Õ$‰ ljÎ(óûf£î·#³T3’Ë#”‘•»bW1 º 7MĪïýŒ¾DK”ÚºõèD%ù$f§o9´h޶'ú»ÈÎaN©¾¨“G|Y¤Øù1܋ՠ…¶ºo6sưÿ{Š–†÷1‚[1]³Hg ½uמ±yêž«vK,1‹išê´ÓwJ/­Ÿtã*Ƚ¯S3ä_Ã7•Ùô³RãÖ¬Ö³»’b.}Ž‹óJWƒÌ¦YfÁµ›^•HÚ8é£AžOlBŸ5¿ömÔsàí†z—¯°»†ÊÕ÷ˆ–Ó2È·&oGpÆF÷Eš#ÙÌ“7¬æ­ž&`”à;·?«ïÜq‹—邇ïi7èñ°ZŒ–ÎØåo%ÜO° râyoÞ§ñ”¸WÆç‚vˆ¤‰†&f5½/T€€l¥VZ¶%TœO¦¹{ˆì.-]e|«9»9%øg'UOtrê«'vÈI‘ò1‹r‡Ì O5èÚ®´RØÚÅŸÛ©½'Üð®Ý»fYp§*à€»Ž5‡Ö\8®m:ž»áDc´BÐ’;žI‚2KÒþãf° endstream endobj 120 0 obj << /Length1 1465 /Length2 7044 /Length3 0 /Length 8031 /Filter /FlateDecode >> stream xÚvT”]×6ÒÒC) 1”t78t#1Àà ÝÝ)!Hƒ€HK7H#’’ÒŠt# êó¾Ïû¼ÿ¿Ö÷­{­¹ïkïkï³÷9×>k˜éÕµ8¤,æyÜ…ƒ›( ir €@^N ‹™YêƒüeÆbÖ…89Cpáÿ È8AÀ.÷6Y°Ë=„€”]an^÷3ana À ý‹ˆpȂݠ–'@‡8c1Ë < Ö6.÷ËüëÀbÁ à`ÿ²‡8A-Àpìb±¿_Ñ h!, Ï¤`µqqqæârwwçÛ;s"œ¬ÅYÙîP€&Äâä±üj  ¶‡ü錋 muþc×BX¹¸ƒ €{ j;ßG¸Â-!N€ûÅZJÏjøòó?vÀ_{àæäþwº¿¢%‚ƒ-,ö`¸'n °‚ 5ùçœ..ì0Üò sFÜǃÝÀPØüžð»r0@^J¾oð¯öœ-œ .ΜÎPد¹~¥¹ße9¸¥ ÂÞwqÆúUŸ,Ô bq¿íž\NÖŽp‡{ÿ¬ pK«_MXº:péÀ¡Ž®%Ù¿(÷&¬¿mÖ?â@ ®_éµ= ¿Ü¿Ì÷øz; V÷M@|¡Vû–·3Ø pqr…øzÿ§ãŸ‹›` µp˜C¬¡p¬¿³ß›!Vðýá;A=FÀ{íq€¿žßˡyþMÿ}¾\z2òŠÊšOÿtüoŸ´4ÂàÍÁË ààá„øø|BßfQCÿªøw¨Ü úSìý.ý«`·¿ÎŸå¯Ù`ü3—*â^´ËßäZÜÿpÿŸ•þ;äÿ'ð_Yþ7ÿwAò®0Øo7ËoÿÿãÛCažî5ëêr¯â~ àÿMÕƒü™YÄêjÿß^%ðýHÁ­aÿÞF¨³<Ôb©u±°ù#–?v_CƒÂ!êgè¯[ÀÁ þ—ï~²,ìîoç{EþvAîçŸKÊÁ-–¿&Œ‡ÿìäöÄÞ ‰‡ŸàÍ}?Š–ßpqÂ.÷!€ûö|V'¬_'úLÀ%óËô Ý#ðßHÀeñoô«:.Ëÿ€Ü.ÈßûÞ ÿxïEüäp9ý†ÿ¨ÞÂÕÉé~~ëë¾µáß—â±ÀšFXˆ„ØV‡´^VJQ¹slŽˆM0oꥲrxÏ:µ¹þÀÅHf­È Zv:—JþÔ…¿°.Çr&9Gwëý½©#¼ù•F˵Ïi‚æØf ÖÌgҾѷߥjziRshKnùÜ:úèÚ¡4=hWf~ãè*ˆ«žGtéÞ£àQÓ[2?6½©±UñLû¦dœ#V'æE`á$s®yÖ9º  &á¡ÞäÙùaÎèrÂS,ßÝXÞoÞ—WS^‹eÚ<ÎL†ä4(g„Cc½¥¿¾V&ûâ]ô.¿‘s'ïV9Ëx7kF™žÅd3 ÛÛvD¥Cv÷|%ê±$¬mpë"ÀóÐK¾U¦3zK/Ô@Á£S¬Ù^ƒ‘ô‰€Óßð¼ÝçrÊuOy¬0jðhøa©)ê%‰S 1‹°®avI¼/»«‡ÖÌÛ·Öyr½‘NÝ‚uÒ¸;ËêÉ syoðÑæÕÓ>à-ftn¥ˆ›E›b·¶PÆŠàÚ‰^ÆLËkƒÖ®Gu Š@ŠÈ«Œ_Æ< Ú’,Žbèµ+õWS.|­í…² Év‘&œy—ßrIyG\Š_†i†î]¿îz¼®7µsÆøõœÍcÍf¼u™/¼ŽFÉýµÃ£DÑlYÁéC^]²¯néÇÞß*ÑrÞ„Þ >/FèTƒä»ëÙo–w>6ë}ˆ >b×®™¢3ÿˆi¶Ä9 m…Nõì‹åj%M!$IQÖ’é›üŸì!ÔZ1¯.jŸæXƒGæ4÷^‰Ú+d±úSO¬ÖàQ–u™J!aõzTÈAi^pÊYï×îog Dª;o‹ Ø[WU´föíÏyÈiÅ¥%vøæ1YÇKZ5©Âgp3ÖÀïÈMì]™<ˆÊ@$æV“Î&¥5ߪþ7:﹈ó[/·¬·iÛÔw#œG£ý£Ä¼ŠéÊQ§`' /ú°o ^%xG)ô_ D]ቹÍrˆz$DLøñ†ÐO²#Ú?ÍxØX™r™|ðe[­ØC>¬7G3îÐÃ/´Š ÏÒyHU;ÃÁgr–VáÑQyÎäYS²K˜Dø£Þž&ÉÍÄIëöÔxtîñ ¸rþ+8Âm_³°|(…;LHÎä½L•Üß ÌXH^o­ø—ß0‹¦ÄéUÈ·‡)UŽžöR]=#‹qv§MR$'Tc Œ3 WåºIÅœ½ï]gµ*| 7öµ‹‹”ž«¡„þlƒçð&M)ÚŠ$Ÿ¸RK©†hù’l„úç‘›¼}ÐBè-˜f-3U©4å•£åËŠd¯›ÄöD‰Ûå½Ô©ñ;}›‹0û¸èêåu@1ÓF»–-œãß4´oFMCÀóNDýF¶7ãHÒÇE1rœú³‹1±]§Ždv¶€¯Ã ì>&î¨Ñ]^I‡áˆýwEnI*y5qlìí'ÆU ûãÀ׃ssuBšÓD8k¦_:£¦¤ÚÎ÷qñò >µ$¹êhw-õ¯ì»ÐûLŽØô?Å`c»ÂÓ·ñä/õ·àe. °IߣZ°eWó˜o8[HÕvhœû Ò­¡‘ìûäD_I§)ÎÁ¬èQ@âtrgñmßx3¢åÜaa” ´è–t /Yè›ÚÕ ·lu$­E㘌)›#[Ãsõ ù˜Qæ?øj €64¦H©’f¿¢KÞNçB“†zN±ìë Ÿø=êÆÅC÷Ç€M¶¼¾`½L Ê l˜vZ)vÍ\ˆÂçÁ“í©àƒ” »Kt/Ý“¹ï~v ü¬S³Êf­BÑ“±’ä¬y¤¤ô^Zû¨0ùn?4éëÃ:"骋¨áPi"M F›–EtÜö5Óåð³vÐéù¬ŽlÔRZéT4Ûð[ïìa縺‡ý‡ìJ'Ú’ÕhÁQ.ým 6Íi.Wb÷K}žÀ ?½Ýè*@s°É…,t縶³’I§-Rdô5ŸûíÔº”Ò•" î£ÊkÔ¥ óÝ3”ÁI¨æêA]ßO¿üÁ¡ ”¡;Æ'Tè/ гqç°FvÊ”ùùK+Ñ­½Pâ­Ë#FeX_ÎN\ÏÕ†rrä*Š®P`SàE ¶È*/ÍšÏÔø+Lz©=nÙG ýÔkз.¶BÐwóEjç‘'F#5d^×DÞ~!R,?„.ðÇKô˜Ât»!ÎóƒëMÙw,À"òE>I}±€1^‹ã–»EÁêÁÚML;†®Kkùé7-ÄDî^mwÉ/ž ä³%¬ é’#i¶¯ñ^¿93|òÍ5Vcƒ w'ìN…T“i‰e>”ÖÖ)Tõ ÑõU¤³¶ÁRþŠ?­}¨±åb—è{>bB¢òÏg%gqÑb?ó›Î³]›ôGÄ4'“f…ÛKYïu¯¦( ̘ˆ¸Ä½êÍf³oŸØn+Q ³G2A7_ù®ÇÖ»>pÎM ñ¼e•Ô+Ï¢ªSºÊ,2u2—ú(&ÇZÂÆªž2k”o-«e›ÖZD:¹úèÞšiHšÓЛôd»…°2x ×ÜÏQüÌŽž+_¿hCøÉتØì-ú¥5gŽÇ¯Ø“9 ÈO©Ÿš©öÅÏVJ¡–<ÝåÊǽÅñ“ês Fâê¥4ÒÈM¸ ¨ ztù‡¶'…Xˆ$¹Qº)‹Ý·uWú4mÜ\¢—mõ›xúw2é9 ýpýçë âÅ©‹¹(\òСþz ;¿©ÁXãÛ¤6º+ ÙR{¨­y³æX˨ٛ”R†_còx:‚Ä(·ZOfyÔ2úPþÃF%}ùë«">–ç=4ûI;åÑ)D9œ…e dÀXŠ­îhDóx5DéšÝc SUÀ¿{^7ÕãÞbcR|èt`¿Ó¢*^•-ÂU*¢¾¹.n ñiTôJèk´(1‘Kí_±ú¢©ÖRØ“|âÎ;¦ýfUg•Gu°_i›NÍñÌ 8y¶|Á,ûRw,F™™&PðÌ”$¦GöXÅŸÉçó—'-ó%ûâH™šUA‚‡‡Pz[´§ 휨͢UÙ(5¾cÍ»N#4ź•>ó—5éØïòl]¸Åp]%é§D…}KSrÓx•FÈ‘gR·ÍÙÁÚúJì…µzæÛ²¤†#OÖÝ:|²‡õl8F¬Û™?¿šfˆ<ÌùáDÁFæË½ž¥Ž_;Z´È¡o¦ˆõzbù Þ©Q<]y?´Á&ÉK7eÌwõMEZ²Y-ÒH%̾¿Ã¿a¢V™PŒ °:`hw-›åûðè¸Ý àÕ?“ÔÒb‹«ì’†DÃÒ>ùïѬ: Âê›á¾‰Žò4‡k9HtÉê3Â;¡á‰b r·ypu ½²”«ŸØžœ›Èø“V”ºùS”è+Ü…X(Ay³Ì«´9z „Þ@,Ë)&Ét†—Âl½jqÀoʹ¢W A]ªYTv+¥;aú9˜°æsO‰¬•¢ÁÙ ’b 7Žõ9“ %HÁ8J`CŠ„D­.N,¬TÁˆ!kXF„©Ã?·½Äm—¥Nc¼€+qœ¿>lI»ô¤Ãjôªñ4ÝbH6\H©Us"ïˆK&á–PM‚‰>ATWÑêèÍþs1–íYE*ûÙ-¢Yž©¥#ÏŠg¥NêÜì2êmŒ–çØ„ëp+Ôç<Ç>Ší/–_¸U•Øùøé‰…)J½Ñ”Û£+ wm‘a/Ûaýˆz¨5›)Ý~0IÃWxt3z´¹õ0Õ®\§VÒ°!õ#!4 ¿™§9qïe…CKCƒCÝBYÚ¤YFílùw1Ô1•õÕFi“Är8º¨gb+}¿ÀòátÏ3“]sÒMÈWýÊ"O¡+ÆÌc_í#Ñ©ªËäT ¦Õ…odÊÝ9,HþO¤–^ ² c_»2N 8߸¨tç?EéO¹êc•ßcF£½~-9…ïQ’Ìœú©×Ýn˜f»¤x™0©0<Éõ}y=ú) ¦T­xÏT –&I^pº_¿P[\˜ŒV ¨£ªùl[(d÷+š²"q qÿ˜(¥‚šŸ­eyk¥à'YêÍê«ÐΆRÞ5áõú”~Õ\” dëÒ’ÞrÍjþ*˜ãkÊfºž³˜ƒ‰©É/“«ÈÞˆñUÚµŸ˜ÂM öáΤ†~vÝyÿˆÞÁT"»ÓÂM?€ýá°Ÿm$té ]ÁGÑwÓDìd4ƒÆG:>i§âÒåÁø{ZrÁîËAbóhL¶wK:ûO€ž?6dѺsa±è¶f¹Æ4¤¸úÚõXC-°›NÔw†âÐsÒU1–áî™ÞH1ܧàwï‚]Õ¡e~ü;ÉÏã™|:¯x¯×^{Š-Ÿö·ÅåNݸ¾’SCAoŽüd½ú@‰üžUÌ·ý1žµ÷\ŽBõvµ+Õ»*K÷*6 ‹°RÙÆð““µN­GdÀSÕÌ¢1t‰º¦U?œ@9šè:KyQÑ>PÂê×3ŸVlm×+s½¢(K‹õ»ÞÀ¨Â½ù¨ÝGêœI“‹ 2ozHaùIMì0 H7ü+R}–ŒŸåKÝmêbç}úE®8kÁÏO†Ð,¿È6²%Ê^¨£-$zÌ#ë`£Õñ"j_‚pR²¾³Ž|t¥êP~WzpÂÎx:õ\s…ë]a8–mçbÝAÈil‡îŒ8å5R­X{w¼Û½¢õÇþìSø6uuˆ¤qφZcÃK(Êsöüúb¼a»`)P×ê™À^Ô ;‚P¡ç)Ÿn¶¤^æ4Hž+»±nd;jÆ™L§<š^jyqõm0¹÷¦ÈÅ–D¬âÂú¾_楥ø­ÙÄ2Do'V·ë¾W 6šÒÑ9+QÆýp½)?ŠÂm{e / ƒîƒƒ« ÜÆ;‚–Nd®”gv+ÃÐ/·~™#žõšj}Xëü¤„ÿIéÈa: «–.+]7wž:aW9|„imvjë\º?b³AÅü\MÃ%“BÓûAñýÜ%¶/MKovsĺ—ÿÁê.P aÿÎ-òÏ6²¶.üò-»`Â~n¿¼Ù”7d"2P&£b×s3Z‚®O‹w¬áa€–pL¾ôû[EÛQÝØ^Ú\–êãy0ùpº§]ºvÂ7ÃéIoD ²>"sIŸ›‰TGd4\šÙ¯¹‰QÒ6Î?Êa×@«DT!”ñÍo¤™ô÷¢ãývб@æDZ!RûÑò䂜—‹1¹-$Â3È裤ÅЫNö­Í“Ý~ @S„ÿ¨•uLZûŽ~Ê'*™ÔØU6ÇIo¢1Q‡Ómkuü²dÀtVØö„{ÿ9#À)¯!–$URÍq>9œ5>°Mä‘{M¦ø’­¼‹<Šõm=ËNŽ‘†^ RQ»”}-W øšgR6ÑÁì"ÁvÐáöfžÕLÝåˆ_PçpIú„4¬Ê€[¨/gꇛ?ž}éRõÕQËSÉ¥’s¡‹sC@Ð$¶¶ Áãˆ7)ÅÂ1a…B! ßë½ÓÖ£¥Zѵìõj¶RŒù¢oäÜf7#°PÏÙåföhwÀ´ñ•õë›…ÒÚh”#ýR~ðIG9ö?Mõ´Ë·¢èŸc ÚóË®p¤× 9pq Roép=Â>S^ôÞ©Hì°§íŽqïß@ÁÝ%RQ‘bß'=Í šÊ… jô\gR =18š\ 7žUŒgj‚õ9ÊV®'a÷eË`C2V[Ÿ™<Ε%¿’¥kpPyK–òž Y«ÓŒÐ¨D–/ÂRÃØ;øl$€üÃÆúÁZêÍaµÖ#ï@ã–¤ÕaB3¡þz©Sºç’T¥Œœ#!»˜àæ¼L úÂí¨¹‡À’/Ì)‚ ¤Y©´'7‰ †½[-e"Gòcû$½ÊÔLIƱ™„Ÿ†¡^êÄR%˜¨a9›}Æõµ¡.ñF¨–£„3.ÊÃwõ÷}½7OåðÐ/ì¾ÐÆš`M GŒ3ß„‰jZÑ+Jî9+¶Ëôœ·Ó}@å+˜ÿùÊ5÷JnÒõLiŒvfzŽ„N%ì'ÖAØÞHb)vX é`H×[(ÿ£ÄÓçC.óã\j¤Ÿk ‘îÒ·x<‹tø0‚†޽Ü¿ÿV&Ó£V’šnYBðÞaÉ9mËÛ@ ¾öT–)>Þ‘—‰Â^ymV¥J·†Äw'ӑмpnöP<ÙDåáéJV¶J¡(£lî"¸øÝšêš.P¸^´†½~ká„ÞÆà <øpá ­¦ýÁ$µÍãO[ ùHCÉ“,½Zx5(ÌâØ‡_;ÜE5 À'Ó-ú9#í;P.l'¶c¢š;–=wðׯåÚØHo©äSˆMùÏÁ¸œ5&&Š]®?«Ò?Ô²Ðï5æaó­¢_é%¥I™‘•GùcuXÎóªdOV áõØï¿}5'^Ùú…ê\!êш@þIHÈ÷qþšö—\` Ç'ä÷…¡¬Y×/\üú¾uéiçpùñøqŽJÉäQ “n _ÏK-ÌÑÆ³þE1“*uÞaÇŠ@yªÁ¹8BU±Ë+;Ÿ¶½tV»\˵3©ÆOÏÊÆ¦½_ Im<%ã±’Qè%Mt00"© bžsqUÏ…Ð fÚ-¾ÇÀœu%„*(wA4Iù9÷ˆcüº'j³†øx õî©@×D¶CÖÛgU£èÎ"ðúÀ¯×`bYY »d©z"ï‚#Ù”9}‚a…yd™/e™j°)sJ%ÕwÂiÄa.‹‹çsRD:~†ñˆð‘gwÍÛ¬1C»Û#ü§kïŸ^kû´š'œEÙT@rjT.¨êÓB®' …L¾yžÀäuðskJ^ªasÇvsèk…‡SÁùø‚ 2pÑêÙ­½4&’ÞUn ýtçÁGŸVWþ»þãM‹'!ö…'çt¡(j¦« ‚ýo¾IõJ"eÁ™1ÔQD:"Ũräî¨þ¸~&Žø%¼qÑ¡ŒÂSZ£Y’êD”鵜u@†¹DI¹Õ¢]ºáYÙG ß«~ûÉHép 0Hÿ²t¤Ñ‡ïØ¢£`ÓŸ,šÛâåß¾`‚)cýpO®ü ^ª`a+ ÏÔň~ýUŠ—–1ù×l•1eÁå5ëËÇez¨L—#$–³ä®.ôŽ U»é–™µn§•ÒV¼Š‚¯ÔÍRñÕ^tÝÛø3E-Î1ÎË;V=””yÛ¦–°1š˜ X’Á¹öCÝÔ¸•dÐuŸO¾×Û*Éúê}ÑÌáµá|© ²/óØ­CCN¥çÁn ç˜G_Š {Zß5a+¿0Y)I~Tà3Iuö _:¢ÔèÓV¬c§Ž.÷•¯3éøo¢„_¯Ƭ»lâû"Çc'I ÑÁå<5^úC´¹[æ|Ǩ¸¸ íCŠÇÃÆ*:A¹HÔÒÒUºÐÜþÖxfµJÊHCáõq%­CIk~ë¾Á@–¾¼wÅôi”áJ cÝv"£25e{’Ôî¸a ‰Q‘QzécÿUœ§†Ž:,"äQζ>m½ÜcÖ!3²³hñ]~ôàñ'Vv´Ù=$F¶\N‹Î懷ÛO!6êÐ>º´›³j#-àà ^Ë KAΖ¾þh„¨éÏúAäô>GW-Ê £Š±E”€#žëu¯nÆõnZÙOôDíÙïe¤ìÑÄHH± ®iLDÒJðÞq¤»®ùQ;G\ªr¿b=Y› ñºúM”§½å}åñN¤M_B±tX#õ¡;~ØD±µŠ½‡É!ÊrÓÃ,EqÜ _1j*§i´¬qtŸ'b˜ìÜـȽÞDý8 S<#N«:,׬˜ g¹SPΓÜ8‰gkÛ¯ yT ÁjÎ8ŒXú{h Mñ€ö*˜Žgw~üõ]Fe)瑾¤q‘O×6tË›oùÙ­¶SÝ‹(™3ßy¾!U’Îø•Ú_žfÎ÷‚”ŸŸïm‘}oð>Å–³.TðÀkÆJÚ{ѶõW1Eêš\E€*Ã$¶,]žåþ”Hª3UôëWƒNMYFËT{1ŸÛ}Nu ©ý ffÒσÖN¥ì&N|q/¹ÇëðDP}ÂJ²?é}·{Ëx´F¡ï]–$Ÿésqà·«BOæ:†{¢ß1¥a"¶®€ËŸ‘_ ¼¤Zˆ÷´uW¡.Ñz?K©ŠE«'¹úÞ£¢þ0¶ OSþzÃä;|ts‡]YL“ÁBKsЈOf¬aœ³r墧êø,ﱤ]èœ"3Ÿ._lì*ûë„õ}¯¤/~#ɘó‘ýÊŽ+÷’p?ü@ ÐÜI%1nâ¬6÷¿ÇVvâ{-ŸÊP5$£Ä¶3ÎÀùÿÈ1ظ4—'ˆw½ ûÁ) Ê ží`jÊ ’G;6Tß2¯‡î^šþä÷’M`·:È ±Ì-÷ò‡@mËä› Q;KÄ’[dˆÆÚ9E9½…\qãÒuNµœ·`lv ¤Ãôv’…1á\,áÜàg—¤2î²:Þ§w½z™á)“¢³W ¬ÙÿúB¥š endstream endobj 122 0 obj << /Length1 1408 /Length2 6330 /Length3 0 /Length 7292 /Filter /FlateDecode >> stream xÚvTZÓ-RB/J‡HQzª ôÞ{•B¡$B ‚TAA¤H•®"]:H—"Eº¥Š€Tù£ÞïÞÿ~ï­õÞÊZÉ9{ÏÌ™™³ç¬ð]34QrB;ÂÕÑ(¬D, TÑ3–‚Áâ¢`°€Ï‰u‡ÿA|æpŒ7’ý_¼ Åâ1U(o¦‡Fµ}Üq DJ"- ÅÀ`™ÿ¢1²@U¨/Ò ¨' ÔF£àÞ>´géì‚ÅŸòŸ%&„ÈÈH ÿv*yÀ1HÔƒb]àøaPw  †„cþ‚ÿ¶ ë) ùùù‰B=¼EÑgya ë4†{Ã1¾p'à¯rúPøïÂD|@S¤÷ØÀúA1p pGÂà(o¼ƒÊ ŽâÏšhé <á¨?ƺ „µ…üî/ï_¨ßÎP íá E QÎ@Ò4P×Åúc…P”Ó/C¨»7ïõ…"Ý¡Žxƒß‰CêJF@(¾¾¿ªó†ažXoQo¤û¯ A¿Âà›¬†rRA{xÀQXoÀ¯üT‘8 ßõÐïkuC¡ýP¸?k儸U‚“'È …ôòk©þe‡ÿ`Îp,P KË€p/ ÜæúÜ4Àþ›„ü‚ñùã<Ñž@¾x0ÇÿpÞP_8‹ñãþ7ñï:!aX #܉üÃöø›Ç ýwÀxáA€à_Ÿ¿W¶xm9¡Qîÿ˜ÿ¾\žŽ…²†¡Ðï‚ÿ¦”•Ñþ@œˆ˜4PDL „@ÄÄ€ÒøEð¿£B‘eþÇW …@eþ$‹ïÒöýëöùÿ à¿cé£ñŠ…ùÿ¸ X ÃAþ¿eþÛåÿ¦î_Qþÿï|Ô}Üݳü¿èÿƒ…z ÝþâñzõÁⵯ‡ÆOê¿M-àÆUî„ôñøoV ÅÏ€ÊÙýï&"½Õ‘þp'C$æòG*p³_æŽDÁ ÑÞÈ_ Pÿ‡Ÿ*˜þÑðÆëñ7ÇÍ¿TCÁÐN¿¦KLR Å` üãw’@?†Npÿß ‚DQh,Þˆ//ˆ@c¿îS Á½|ð]Çÿ  ÿPý½ÇŸ Âú¡ÿáoApÌà_¹À|0ü$þÖ >Ñÿì=&а[÷]_ß{T¡Äæ'²2(7Ê·b‘& ‚›Â4ùœP“& ¼Ê ›Ç*%÷¶Ó~ZVã?Pœæ:ÇmÔ¿!jH2j< :³O4YiL_}7ô|C©ª‹ƒœ]ÄTq5èÜ+ÈüžQý¥m¾/Ÿ›Ô†y G~þU]¥3ý‘+F«¯¤t(ÎJ?ˆÄ›ÅÙÜ+ãËu|6ÎÌM‚á ¤ßõ§;8¥ÏºàÒNoÆ‹à¬Äξ0óneáe±fæ : ï¹ŽS^OÑfúˆ+.˜Ë³ñ)ŒÿÔJ`«2±D.};™x³R¡‡èÚªóâÍŠº>”°FtùtÊóÕs᲻垄’«kgàƒìž»´Û¸ ŽRúš×Ü-gÏ¥UŽÞ<½²$ªÍsUNîàÆ®]̃i_.ùi.}–”òk‘ *.#*uj½7!]'›`.ò÷5dI[6@'T’Až²+ÿŒÜ)IXÛ®¬:‚…XxwÈ6Ì.¸ÆÄÄúA|¯Z(ÚÍ¥d”ÐÕÀo½é“×&!ù®Ûuá¤U{…Чý?{£aœÜI(…ÃÂÁq‹è$¬¤”ñ\ ­¬ƒD…äñn)«±É[ñÖ/kŸt€ö™ÐSQ¤($W“Ü…‘~~²bÑåŒnNÜN<g}_þÚ± yÓî}Ô\aDƒ<¹ßÛ ! ž›xÌà[÷þ0=ÔÒ|{¥øêdB«'Ò-±ÎÁug|÷³CkFu›Z™™šlûkµÅ.…«²>âAÛLk]¸a¯iÜ$ICá¨=ïÎÚ—T½>ªNŒ‘“âÈS•Y¬M>”ëYÅþí … ‹ó#úÇ·fÇA&Ù>,åZ.º%K3jeÔËó±­ÞLÞ˜Y1}z!Pr…W‹oðÂkᱡO•ˆ}Òк¹¿Û u»צâÜÛ±™Lëym)—ЗKÓr.JÓóƒý$²´-< hÇ ß†9F0¼ÙæœkŸ&wëR{n8©wýòÌð•r ®‹5A 7Tã‰ý:«‘~×ùتè4¨`‰iNV-7°N(VëJø$·‘ÄÏgWÜ3o­c¨kf}öõCW÷gþùÝ-D éezvã‡b`f‡¹˜ZS]}Ð¥ÃÏF u¿g£ Ô™Ôãð¨ä(¨,ÈÜ=›$²ûR7á«Tõ€Vëû©áÏUê˾¹eY«å¯DØûÝâMösÒž“qyÿi•öÒ– Éâð'û;×ürGí¾$Q3NvLú>á'ڑɃ·{;Ú˜O¦2ŽYÞLUx¨Zå÷jKi§{_ÆNV%’›SL毶µ ä=ø”5!OPýv±<-ÌjLŒÒ=9¯í’ŠŽ¾!—s¯¶[Kû”½€°íRáööD…U䈅AÈqâ'rjgÓ®å„cÖúïůtBýî5(ü¼´õùú6OÊ›œHb™RÖ[û€7ÄJ—Ò ¨)¤£ƒ?ÙU{ø°©ogNv‹Äæ>yQáâ!ÕNrÛÜNLjk0ÐüQÀòçÜj7i4hrW»>wÖv6+G»6Q¯½í0IsH°±£a½H?*°Íâ…vYÞ0Tq}2­AªÈXñ²8ž–Ö|NNÛ¡¦Éþ¸Á®¹êüqFÓ!$WJ°sq»Òןi›$þå'ÅS³àaôi®bù÷;Ô³¶þù=’2¯Ók‚‘žEÐ}ÒÓœ£î÷-Ài§.r:{Û¬x2.Ï4Ù>z1ÈÎj?¸›X(u½ÕR„u³S9˜|$ÿ¹Œ†Kâ:™F—¦À&H*£˜úi®Ü¯½9ñSGš²fL9¶6“•#Ñæ ÈH]¸öæ…,çâ àìÈVâ$q Æy‰[Ø)”Üx6ËÎÀlU@Ðã‚OXt¯?2YT ð¡?&˜î¤<'ÜLµî⪨IŽ~„LD½Y/7ÕT7Ó&°‘„«ö~%·îav/,¹Å‡ÎÝNÃE¿‡k’DñtcŸ=5Á›ÊŸ¸ñDêJÒ{%±ã‰^Ô½ô‚_Éjn•vI­(|^Ù@µ(åÔã2³*žr 7>…Dã2Ô£7E'Œý=ô%XÜæWù ü2êÝÅÁzÇ´¥D-Ù3«‹6j±,UÀÅ:á›y²§žç[Ø­€YrÖyôü1à®è'Ô>õU­Éak[)àŽêÓ2Ñ”mìˆ]³ÚhÓö¥>ŠÛ{ñˆ®“5ó¯åãIes®ÒæP{hoë÷nÏÖèÓj›È½“+€CÙ5vGƒÔ™;ßè¶5_¾%S²$œVÛh|ÒyQôÃÌ9û¶[µW.KG•rÙêÄ{A×£ t.ÔZq7(y/7+NËzˆŠF‚¼RùJ=ÝÊ¡ 6*Ä—mgjµNöÊnºË“x_[Â'’”[k‚Ü˜í£”Ú–¸[67w$}B¶WîÈr i¨„Êî¿VâÖ§ ²Þ݈²Nó`IUÂ*š me{ÌÉU”šw2h’Xä/ˆïæxz<s74›9I¯Õ|lfé¹cn™µ“,Zˆmz¥þ¾93^Po’“ÿ†1]Ý4<Îw¥'ü(ë BCoÁ(dLî¡aߎê;Áç}]:SÏn«wžÚˇ”,Ñö°9£g²Ûó®I_–‹çeÇO€ƒeY91´ë}6’²2–f#@×XBãŒygÛB ¯êÌëºâÄåÆÐô¶>ÔèhŽ Ñ³õ׮»év›õ¶o¤Åx"_¶Dí¾øK3®Ôš¨]m”¬ÈO6ÈšÞ1{/«€~éEYEkaCóóý•o+\Ù^±„…LL†óï±·®¸\Z®nïX4ö}%ý€FÍ‘ ¬kµÁZ’QŽõ@¾#ã8•ôén×D&ãQ>Ï•Fzc¥ªMy±Î9’p2ƒqwn¯9~šÕ¯‘Q>nDöÁ\3ÝY<%”ú-Ñ'`ý2Ò0ÚF{••SÊ·—äÊœ7t ¨! hÓµ­kQcIüÚ}/?²ÈˆFuç÷@H]I ¿¹£Ru«~8œ އ®†–†1¿œ(õiŒÕ®tõSb†ÈìöèØYHë^\â¯þÐ⦹~Óu—iSwµ›Äž,¢ìËÈò5ʦû‘çg`íÇo—k|RÈkN—ÌЦõöej¼‘E‘Àz]k•{Ž_©h%0 ñøü„ç¯Ï.® ÞΣõ é f#¹à Žypû®õ›Zõ‹ý£d[éšÔeÔzÄyòj µ­TÌá,„“Çá%1ZÏ¡Nkáóc •XXׂV¼q;?‚îÒJÂRòy!R+R6kƾÒ'ÞŒž†~Ìùï^h0©t¹¯{J5C·TR¢Pþz¨8S›ÞÝá.²ÄçOÍPm±à³öN—°Õ45'%Zš3 Xaéùã(·„>yxµ®Ÿý XÅZyÕÔr0´#Ø®dOŠ›Á ³Œ¤\“úÐnÇ\«¦J,ÄÞ]±ÒæQûúÓ7¼oâ¼î¦B(âðí/t %;÷Ó—ÚëÎG[¬¶S™Z¥ÇíÌÀQÝßôš§,…§zÑ„…éä”3ú¶‘Å??’P«˜ìæy:Nô¶ô\Øô ᢻ˜Å„!óù¦×µwT|®“ŸƒTãy*à̓IA}§ÁœÚ§÷¿,Š Ÿ1g Z™¦¨Ø®"ǺA'゙uXìª £ŒH =*œÈ\\É­K‹ÏKèIï;EmÝ(VY¨Ìöýp‹³Ò\ }’ Á»¡=Õy0–”jP-¯#tŠ]H}æ»(ŸÎ§­¼‹Ó4ÔÓ_æ,¬/S&ûÀØhóNÇ2&¬™>‡dU?ÎÊï`ÖÃ3R¶bãn©sjL}»qÞÌ!ûº«$ßéÊæU˨!TÖÛÛâ|/Ð3„,ê¬ÁY¨Ïëè™úÁ³ö¶™ã˜§7±DS}c÷¸êF÷§KVL^õ õåæw^}ÖnZxãfc¯gòs_ wrˆàžL§‰Ò9± ÙØ Gk©LáÏÔu^·®2Ü÷HüZR䢿À$''c tüšÍV+×°Kó¥úýT #Ñì49¹õŒ^3±¯Êkû¼Ÿ ÓHôðU qÜý‹”Å’¹®¶ ¿CÑá8ï®vãE‘ŽèHëpÅÜ,âvŸ€„o‘S1WÂ\K›:IÜTêæî­Ýf‡)À‚ø¸oëQÜ­p\Ê&s÷Ó äØ)ØÜƳ¦›óbÚ·9Pߢ*ÚGÀ{ÝÛNÐþáñzèËŒÍìÕ^&ëÖ.ú÷Ho‘VÕð¼QÒRV¨áêêÑ_Àí®1^/$:Ûб/ÙJ¥žRjºÔ¦Yضmz—fHÛ©^å°Ö\î œöd æŒ—©Å CK`3E¤“SÆ_äM»ú-Î8EéN§$W)ú±‹yÓ›î}k>fÅ0,cl‡¨«OYÒ›‚]\8e°R6¹:Ɔ~Û½Êy.©4BÀþ(Y¨Bhªv…²' ÒC´p¸£ ¢´ëX}…ÜßòÞ/µT:*c¤»–{Ùj¨î úÐ6š48ëÊ’õÄ×/Ýô +¼Eí÷¥n@¿Œ»ñÎõ2Ÿ<Ù^A¢g˜tŸm‘òX¹´âjnŒŠ2ÊÛyœíðþnæ€óèÑêuI©ZàômÇ׃ePŠïSQKlBô¯ñÿq.‡žÍ€Ô%’Ö·#åê¥^ +‹_0í?§.ç@Œ Ø'%Xm´-5Kø$*„ôf4‰°~[ÌÀḶãdüÁÇî¡ß;§ßBC”óÏíüa‰â(œP1.Íqè{2¸£8½ùH‹òÙµpÙæ*-=‘K=¹Ùˆ+y楾ΒGO´tÃŒ&Îâs]ÖïêÏ\].Õ‘§Wc í—© ŠÈd%ßRÄèmf¥/'­Xë7šuÿx¸qgžÊèCJEJ–V  >dÍöƒ”E»Ä«a@uùËd6DoË<_$ÝÃA ª/3é0t#$ÌÂàG gÏb› "R´fƒ=Ì΄_iÓD×4œòÖ©„r±*i¯]á“ ¿=3Rì>:Á`/Ö·õÄ¢Úµ´ÑIÏ £…ë3AìŠÉŒ¼„­»£ižbH.ÏãR©LR,ì;¢×1("Jažr%¹`ÅaD¢ØNh›qð†ÅPÌ¥ôÑb#LÀò›ïLK’ ÷ŒhoJ¨5éJ's^¦N÷^C\¹ c™CƒH<„2T¨’¨m/5c‡¹Üµk¸Fsï»Ö&îÇö»á=Víp„;ËæJó†ÒÓ=Ä>B*©ªBË["U¿äîœÐ|ž\#(±ÊdHc_æÕ[`++üé±äÄKZ•TÌKŽ#†¯N¸KC¡ŸÎÊ£©øÙ¶ýÄ£m¾<µ±ÌZVêiɸ+‘áÐoûj+%(É7r9|Z Ò"ðˆ"ë<"Û©IŠXTZ½ÁMe´@™Ô–tÊXe†gjtTÆœ°†{…•§Ô‡r-ø†™²Í·Îgéw­)Ú4ñ½#„«ØoÊw0ðZÜ„)ïÕÝ@à( ²QÙFœ¯­õßaÈ«¡² ƒ› s¤ÊT«_ž2ÙgÆ}L_k_¡%SË?ps]Úøärã~ÌöQ²Èõ$òbÙñÁ£µò™ïÑåññ¾-±ìH+|ÙC0¸Ôóe{„~"®±Ÿ£­ˆÐÏYp¦Îåppâg.~¡XZ¡›dõÆ4HH²Ä™ˆt˜1öÒ2Ùû§.\8ô«óPϯ´$à Ý6›+6+ð†ßäFWêtŒÌò»9T„žTÖz„UÈ-‡ƒ».»Ïã>Y—‰bp/S`º·;nOH9~©ëÍ÷ë±ÑïõZ¢&zOm á•;Lè'U¬Ÿ·Öyö>Ìç<¹{Râ)zçó¶Y%kÈŠ_–Èvb|^’÷äS Oßv”WêÆÜšï-’6²yÚqxÒ®P¨W])26èÛXª^Wþáòlaë Ý™+•K¯/¿`³#ölDÏ;¶Šª'@S!lßg¨2N€'Ÿthò8ß<…Ø››ŸMD‘ äOïø :·Ý¶ôÑó/'ÿÈY9¿ å,äezCêxqHa‚KëÉ58º‘kÉFY•îö¢v̶–ÉÒ¾d›Ù/‡yù¶õ nwQÓ”$mª+\ÓSvð†W ͳT… Îy)çs2 ûYÄŽt}-ÙÜŸ®D\ ¹wî’ê)Ð…íu¢x¶Øƒ(FÓÑÏäÀ@‚ Á$ÃtÆ’àÈ÷öÞXûC}_RÙ'ÙWæRyÝÚ½‹2öÎ-¢‰JoiÊ>¬ÙÁ)" >·ç5»n˜„, #hl1¨¤Þ´ô|CÕ»÷Q©í‡¨¡¹ÝÝÏïG”¦`QA´Ï·/c…¯¾¨„Ú "ŒˆÐâkeŸðúHÓ‡ë/Úsš­ì<ïLhgT™ jDOV9xr:—"éK’VC]Á•[Ž4‘¬ý²”wäÀ<™±rŒzžQnÃÔæ‰æ.ÆŽºsr;‹C{Ž·»ëálòñŸC³fgýgó‡¯L~)ó~n&V ð.ï bàϨ2€Ú­ñ——ÄñKrˆ>·•£VéO#ïïñKMiªíÒÔv:ç;œußzAD6§.âÃö]çÞ¦ai„$‚˜iXäV—ýX!bàUµ-´ÐL\&TAׇÖë?Jü!»KîgM›öÍ¿' ‘¢z­Í6KëÇ5,ìí8C.©>*N¾—€x÷@ Ô¢ièÀšø²¾/”Hóú#³à«ê…ß.-Ôu1”>¿=nÀ?ö2üIw endstream endobj 124 0 obj << /Length1 1442 /Length2 6469 /Length3 0 /Length 7455 /Filter /FlateDecode >> stream xÚxT“ÛÒ6ÒAzï¤×¤÷Þ;ˆ€!  ’ÐAz•Þ› H/Ò»‚€R¥ ‚¥#*à=ž{ï¹ÿ¿Ö÷­¬•¼û™gfÏìyf'+<œÆf"*P”#L…Ĉ€D²53Jˆâ¤<<æp ö7NÊc óDÃQHÙÿ`¨yÂÀ,¦Æ`‰($@× I@R² iY  ÊüMDyÊÔÁÞp(À@ ‹BÂФÀȆü‹¬ÿAðçp QпÂýñþŽüí †@Pî`¤é p‚#`#M}QŒ/FFBÁ4 ëöÃ`G,áwê`€¦Š Œ­ðO}hˆ'܃Eÿjû{ÌH¨Ê݆ĠIå§÷„A°çî'ö§¹nH”2àï• uúUÔËCÌ ¿ïÓQÿÃÁB¤ÿÆœa€$PFJJ€ÝÀ|!.b¿60÷ó€ý6þ†±5x <NØ2`Ap'öƒ4 ö†0ž^° €ÿ4üsE  pàs†#Iÿ ÜþZcûï ÷رò€¿^ÿz²Ã* ŠB"üþMÿÝb1u£;ÚææBJþ—QUå —ˆÈH H -- úgc0üOÿ᫃tBdþJ{N§ìýGüDðÏX†(¬raþ ý.PÁ¾þÏrÿíòÿSù¯(ÿ«Ðÿ;#M/â·ÿ/Âÿc»Ã~Xåza°S`€ÂÎò¿©V°¿F×…{¹ÿ·UÆNƒ Ò«hÐ-Qà­¿p8Zî ƒÃ1—¿TónñkÞp$Ì…†ÿºa°^@àÙ°CqÃÞ"h¬4›`Øúç¾H úkØÄ%¥`OO°)¶×Ø•$ „J(Ì÷·˜b¢HëÀÖpBy’þj¬¸$@ ìáá‰ò…Ý÷Â6küƒ€R1G°ç¿q @ ÍäŸ4,èGz¡ÿH âåé‰Òß Âfý÷ú÷•ƒù ¤ ³(ˆ\„볈®ózV‘oWV{b“mb$1¼s\ô‰rµ¦î«ÞƒÖ2dÏWFMβ œùÞ}‘ºœ©]ˆÁÑXW=)zýíø…3ŒŠbq—Ί]§þœbÂNyÏß–/Íjö"RºObóé§’Ëôæ™]€; ì”Š3““ Rг‹ûІ“{3ls—*‘ÆÓ6ÛË\Çbü÷!<ñLµ+žù›ßºmbÎðû÷¯ò²$ŽŠõúë¤j£h™éüu9 FR‡˜éSòu[Ñ8¼ª’§j•É\Ì¥îQ¼Ëx÷¤—Lv¦ Ix5;ª…^7z0ÚâÕˆ’œU(è[>bsØÈ3ÿ&FÎÔ–ë"\ŸÅ­ÊSÅ9Îþ\'(ìÇgà6ö,þ4˜F•WœÙèã¾k‰'z.aÿi‚éü^Bn HÜ.Cq{èÃU)c‡Çˆ“Õ» ù - ­±ž!§ëª×ÈMaѯOàÕÖ7Ò'[m¯º†û¢QÜìôS¡ÉÖݹ»/wRZu$OßR[ jHaôæP½IIÓÁ¦…øÆ=Zrw”eæ'¸’,%(‹Ì©çÌõ7q² Ild#UB¦©(hÝ*ÙŸ¾«‘}¬Ö¦q;ø`qâðšºÉ^UÃúu“¾oöÉŽž‡bâÄöz…=w\î•òébn%Ã[v“/¶Tm¦B¥g— U¯,‚h+Ü-tJø‘øuó¤ùs¡µJcÌDlzïTðºÃ“Qöî;ƒ‰lÙÏ'öú»ù26}µ›¿ŸâÒ:kÉqE”"ª[’$;ÔÞÒÇZØ‚õ»NÚˆ=ûFZN¾‘lÏänm„zØo5~öøQu_U@CÉ7)#±^kÂ+€Oc¬Nþõ6 9x¢9L|)ŠãâÔBºPÒ{ÇP¼kËý°-Žºñ»–Çái?Û{ÚŽ61Ý!È^i˜æíÞÆKĬ¤^ù© zìnÚYÝgU3h'Œ±¹µR~ÕF]l“43Zlm¬q¨)¾î Þ~½¶½¥@ bôb¦{½Ã×ÛåÅ؉"??ýnexƒÝ4W#ý¨l?§=i÷äoúz6â†æO†»ÁúÔ¸¦. §šŽ_Êjǃ„¢äjçv€²ÒÅ>~â6o§T¸Ó8S¾ÁîþÆ 3„Dp9†ë Ö>Ø´æ“]•{ÔÕ[xy„^•Ñë©DNëñϦŸýØdújJ}候¶’Ëéý’=ä¥Ì³ #8ZN;}Ýâq~@àúׯ&A`‰š¼ŒžãÛ¾ø5¬D%S˜Tm+•оÚ5¹FÎw–ËWäjÃtᖨƬE½T¥¾Æôréù #KŠÂƒëåÕ=w¹ª¿µdä2Nšîx›ªeÌ—â盨»2SL+; 1ŒäSv»Ñ0$8:!6UtÎíq«s|riË :¯µýÝø!gá¾?’9â^‡î™ [ë4:èU¾A³D’¼±©ë*ÚÛó~‘4n[Ôþcž£MŸÇ¨Hy7G;<*F~Ù˜/Q÷ÉÈb°wÊŒð w—‹E¹ÒIã®Òjš‡àl„´7ţ¢1´®E™¦\b˜*i(‘kþ±ñ¶SG€ÅϤ,:¼ÝH ¢‰¼(=ýiЇ"’$B‹¬ä{ª©ÿÚãc§í€è {ju—¥ù“œ5ÕŒ‘Ù ïÏ ÐâN|jÇ~ËkõCO§Ÿ*ÛA8n§5 Y¤ïó…3º¦sqËÍHqÿªZyÖZ±„~oŒÒx¸ÌøÉ ÷mŽ …4ñ}<Ûwœ„{gß[Çæ·¦ï¢:Ãìç¸[yã?ÙQßFd$m´¢Ûy#"^ˆ%¯­Ù ärš|&?Æ]­9X˜h\eí6ã*’KÚʸð²Ç1‹%U‘<Ê‘RU ^,öF.是׿$5ŒwqENžUÒÚ‰¾  ˆ™|­\8)ô-Nqí²ó@¾^\ošþ0PEnX†óÙ…ý­jû°€Ó>·jX¶ñ±ÆòÝÆØPx/¸2×îdKiF˜ wÿÈS„HËv¡’JùiãÝçPNhº=Ú(“l°Ç3Þç4ñ8#y‘ÌzÖî)uÖõB®´ñNæVïà†÷<‡Œ™u"C³vªŸ‡‹úë¹u@š+ó>(BöÐ4®æ}ž£¿–šOX ì}©çVCæ©„‘RSã-îO­í²?»ß ¼îNÔ¸9¿U å«éÿØË*ÒÞBöJGŒuÀó%1(z¡—5~~‰‘Ì}$²îÎËËb}ŠÛãÏO #ÇÍã(ºÜš¸<}íÒ·zK'Ç-Ù_‰îÍ-Blü2Þt–æ]#¥u0¿¼'¢ÜH¤±$¼då;Éo˜8­Ä˜U¼.¡„*½o°¦Ç§å· |yæfhÕló|_s^~K5¨1sÛ­q±ŸhÅtŸÿÝ̸½ø<WåârÏ=¢'~Œr莚~µWy‹Ùäc}mD‘ß#ÚÀ´¤wÞ7h> =H.)äx™®Ñ I|ûl/Õ`pwN¬ö”a3‰w¡ ËZ0VkÚö6<ØäÒ’ "+Û#? *,°k©0&?O ܬçßh·œù²§UQƒÓsbµ¢ó_ö,tØWø¡ÅÀWuk$ÊÚPÆßËÔŸÑõ™Ù_l©±eÁJ¿ÿND`{¬ú5ŽÁ["”ßVû-q,w̾·« ­F×Ç4¾ZežoSÙHoÑAô4Œi_Ù☇ú¢Ç ŠÙ#c›Ã`•IeNe=8>n8εAÒÄIp®„‰þÏaÜ@öù«Ð¦ê~K%x/ M¬ÿñæíÁÀÞREèOW?óÜ„ÐþfK÷¡OY«Ì÷ËGÕ†™SŽS>Ï?ïȽ&ãOÐùÑ&Îï<òAö´a¢³q1ÆúvÈô-cœ¼úyqîNN‡‘ÛñÐí‰r•ÝKî¬txjÒ g fÙðx~:È1LD„NÅ•ôµOÂc›zóTàË'¶bó¢}œ²S(H¯°Ø­ºz4Îõ}pu11+èÏX¥õ”}õÆýØÖ¤]p¥•É6Ä4“î³öyë–â> ŒŽðeÏQüé›±¶i7KØÃÕoj¼ Kõð¨Ó¬®øÚ°œíýÙÓh:†”F^/¡žÂs’ ¬cݳ–ýÚ³©8Ô•++øfYŸÝ ÷M}¿L*/8ÕUNˆ=€¾M"0ñN%Õ¹¿^Op'ÔZ¯wѲ…ÏáÎñ¨ û;äÁéøõÆó®têþœäEý± ÝÝÏGÛöêðŠKÛ²CY´ü£¥6ñ>Î/tËÑßóp2o~“´ŒØuš´ˆÛ¹otv1¨ð3>û{¦OÒ(иŸp +ó¥œ#1hãcš )»³‡Jˆp½ð …@×jqIjµ×aÒy_gÈR?gÖ5gͳQ‹n‹iV°²¾ngbLóW;âpE¹Ø|`d.,̽Æ!a³îGºÑ¨&åú†µÌП‡;*SÁåk&ôÛ½ª–'¸e4Š;’]HÚ)ª·øÔ9PJJœ•j8O÷6Þz¤š³µ‘·§RQM³Ú}ÿÙøáå•çË“·š‰â8¢K’'@O˜Þ’Ô Ïš J¬w°=ö,)·MyÿÂûÞ²®æ† Œ'½Á¾gZÜ? Y#JwÆEƒŠÚÇ®¦·V0.÷h¾ÉI‡Ô7䦄)0Õ¾pâd¼vCp¤»J”PlÓ‡ðe¬éí~å……‡¹þä¶nå~C^÷¬‚÷O­9_¹gÀ¾ +!(¬~rMYªio?ºýÖq&…@Þï<ßЋœN´SZÑ= Z6øcØTú2!þŒªÍMEÇ.Z€Ñàœ2¸Å¬øÓO›Ìd3KX!aNÒ o… }"ûP ßD‡ré‚·õu üÊØ@IÖYÇ$Ë~=ÍÏ…*¡tEmH‹|Ñ?>÷=´|ŽÅv¨Œ§Cn¹I×»¯|e†yZMŸW ²)p*ÞåÄâ;®VЋy_k>~Ìfžv¿Gsò6¾ÃÕŒ uj/r—Öä-ÑÏbw½Ä^9ù™ÞÂP÷£u[¸ôè8CÓnþ“/|‚ —÷­C̯!0ò¬3ñnGbÄJ•âîÌ#ãN'íuû«kÅç~7ù×ëîñ¼ ¨b¥*çì2áÈò¢W|ÛOœ6U«…jf<~ÖXùl‹™|çl¤Ç–`ò„û;÷3:–asùJ;Pe ˆ•DK&ÅÎ Û  A6[?KÎviœôÉj6ÁkOnæzëe¡&5 Uo $ÍŽÉØ×â;[S»›Ùá!€_+pJx•ïp#—ºX a†¿ý{^ióuƒÒæÆòûƒÞ¼-uÃgj+% qZôï }̽RÐ]ãõçÆ…DÕVY<ÌjÐüjqnÌÕ©7%TÝ5eÓ“¦UVógœᬬ¹úMrÎnD2/hømtD’ã÷ž~=»7C¿ùIe‚X[¶ééãUmvGPZóZ§öP@›Oø©½Íd.3…0écnÍŠ·™Úê G–,JGD~“YítÆË<š a}CƒªÑ„§ §EZzóÆ. ›lÛðu†vbBÔˆÍü—§œH6Iä§3Óã/B¯Ý»…ýVÖÍêòu]®¾ç¾dJBHFô.ønEõ𡏛S1øå¥+-ñ(˜j§éÈ{u§÷$XoÑ* ß`zYBi.)¡ÒàÈ³µ÷äHªlë59‚Õ©$±åÖ´I¢Æ«:rJ…œæ%1Ñë­h†=¼S »§á© “ÖqW×/S%›žÇ…x†`ýê¢×CÕðzØ“wcXU<Š|-çeÇ×;fÓÅÝ /2Nã•Æ`(qO½´üåôœo½;žLàkõàÚn”û¾d–‘ÙçÝ=rxñUíA£R¯nx§Xª&—”…h=Pq“÷DhIÏd:ÈÌ5<]=©°ú½½¼î‹Òµ[«âõ¹2z/ô° ³;,I}Xl¹6RÙ(TC]ÚZSûü‚]:®Ñ–ût¶rÐoóãðË4"óÂx5É -Oç5 —T’£ÜIÑYñ¼õIͽqÄ2ÞkUmÌß.ÈÚ!/ª#4ðþ¸Âïʈ)__/F~Ùϳ³0ÁµbŠ4šOa‰q§’X{HbjÛÃ8‘2”w½ù‰øŠ/lóe¨–vžâ¹\Ð ÊÃÈ»Á ³ü²ó°¤¥ÓȨuÚ;9·8ôbœ£ñ+¶Jú*7)i•ãóÍkÒ3|àS.žA½À{&zAŠ_­y©Gå§ÅRó†\¾¼-#z9[Þ¹éÈâ­  ÖèR"{-YË9±n7Vœ@:ŸèhnÊ*õaÒç“ Í,ŒÆ ƒ®âjî¶¥ª¤Cݬ¾»•WvãŽX×ñ…?;`/cȧ¤ï“·(6g¸x[u]DÏQHPE+’åÜdeù’9‰á³Î€ÒËiH7nç@ão ØÅ»·?‹f¾>ø…ª s.‘¾ÊâÍüÐ7ŠÐ&óôê†ʃöd;‡3Gã¥ñ#iM%ÓøKWcJ™µ£Z®¼ÎiªqâÇŒOäTíM’Œ*Ó$¾õ ª^—h ÷Bvâq·®è Rìü,t0"„]Ý{Kz#›ûùʽ° z±—¥ a!Jó/†^ïLÕ7_ã ÚsÙÀ³‹+s<ì%¹ÜîÜ©vØ—Ÿ<“9(„Oµ‡a뫪·ÏoˆaÖ-ºª4R.á1HÑ [Þ&Ç”5Ï{†GÍÜeis\Ÿì?2°Ô¤JþrÓù(n%£è”TÙ  š8Ùr"‰n©þÙQäZUÖÈUÞôéä y–´pèµ-ý´~œK!n¢ }£Àj#ªdc¹Ï$WŒ7"|ú&b5€qœz˱#\ö'¿9ß¿’68i òËyp)\ ;AæDóÜ´Ðû3j#»¡ëq$Fß¾ìÞ£&.÷HÍh[©Ð‘bTËÔ»TÃó©äNGT½4lö–û©ÉŽI5ý“âã”6ßl’=e쑚mËy¼ä¸"64ÒßD¶ÈÝç óþÁs~ã]¹í>d–Ðîs 7ŽK+Ë‚Å5a¥š0Â/îãí;#ë5Iaðºãç@÷ÌÊ•VõÄQhó…Q”Ý<¢Î÷Ÿ”ÏѺ”õ35ª^u=#"æÑNyüÎÊ>vNe–9#}¶;ÁvãAšß¶9ì)U$¼kH†ÖŒò¼§êØZįy“‘úÿhÞ¶ü}¸ðžÎñæiÞ5Û<¿ñÔn|¨fÑmF2 jª²w R9 YÀÏJ±÷0fCñ{JݦŸò§Ÿí«ß‰ÿ¥Ð¯-7 È<”÷Su”®Dpòú&u(WF¿ýœA,-Â_ìöÚØ¹‹Ó÷÷WvðŸ×Áp =§â¢Ä`Sc×û™§éL39"­FIíõF³ßÅ©L+úš(}_mí߈1 >ñQužHYëº4»ì,Èãš«Bä9žú˵7dëøÍÜÕ˜#x1²ëáYáf@ÖªL¨Üã}þX"#Ñ?‹1;ûô’‡=t_`KÌÃtè|yáy“x³i¶,Uò\èåB=ºüÎ 1]C{ù×웎1&ÏXNëÍ4…®§€df"ofªåµ<¢´zþw éŠâ"6/ÖÏ4vˆ„×a–âSÔ Œ(Z:‘P]Èå‡Ù)‹ñÉ6Å× ˜¹Wi\”½&VÃ.¿N¦Ü4òÿÑ! i;v…¤WÛð^¬,ÍÏÓ&íí(ìJÓ¤Û0å4ž¿:ÜV‘Dë¬hÆeˆå+]ŒÆå¬’ÛÑ¢M†bWj3¸Æ¥KíH-I oŒÝQ†8ËŒ™÷[~ ñv(ð£gχjÝrí‚Ð\ÃÚ»½Jö·øò·+_wŽßxÎ'«7uÏÇ2nN›™Ä¹´èð“ìT;›µþ<®=á}\TÊñ{@æÃ» +í^÷;Tú‡äåéáêž•”B“‚¡ÖžG¸âRþ£’rŽÇqiШæL/BÊÍU}=ðÖ…C×Ä›X•åî#¼Æ7t<£R}Ï$¶êtˆTœŸ ™÷ÅV=?(?ÇéŠNðD®P®ëï¥å¼0LNWnÖðßÔö䮄òvœ½h$ôYÂÀ5{ðȈfbò:x«g¯ªã¦%=ÍmëØÕÎÈ0QòÅÈPðCÚ¦üϳ«™ÝIüç-îúŽŽ“l|Ò®ÓÛÎðÉ[ÿHñSÊÈÝUþ oaÛÓw A³—áT†ó•Ëx°ÛÉÍé,þzPwÜÂO¹§9 (#¸\İëJèâÃÈ@guáü›C»gö¹ø@ª&U«…0§™]sö2°;9ò¾ùwk "Ë€ô6µ5²–ZÍw^>-/`&Ãäÿ-RÃwtñ.Ù–ýüg¾ž:¼Dîm£Ï#ò[d“Ö”¦w5 ³w@4)Jú’·ÕؾgšbÛ¿¡¬Øâ°dÑ5i9Ó>4všìa#fšù¨˜DÐWr¾áœ"Y DL;3/¸ÛŸ\õ¼ŸlV@c>Èz›5ƒ¡óÆ!ëØÞ’~´-¾ï ü$N¬ÝY¯|€®¡ec’:p…‰!;<³#{å©6f¯ Žè‰×6¡¦ž_1B¤Š½ô,qÓùÕ.‰’ùrP®[+7-Agûþý"¯R”#¿W§z]‰”W½;ŠÜ~¿-+§~™Ðâö.Ú¹¯Ða©W£øøqËúÙ]»éyû¦ t0! Ú²F¨Ä ÖtA|ès+nœÀo/!í'ž;ÃFO½²Dr нêMÚ£9‡{K囿éRÂ(„ZÓÙžF<æxb~³üMd†JI%r¨*W˜"*£Ô µÉB5£Ç$ú?D:l¼ endstream endobj 126 0 obj << /Length1 1733 /Length2 12207 /Length3 0 /Length 13312 /Filter /FlateDecode >> stream xÚöP\ÛÖ ãîî4®ÁÝ]‚;$84ÐHc»[€`!Xàî4 Ü݃»?ŽÜ{Îýþ¿ê½êªÝ{LŸk޹jÓQ©k½‘´t4Ê9‚!o8Ù8„Ò*ÚŠœn6.::mÄø9 .ÐÅäú—…´ Ð ò*“1ƒ¼ª8‚oÝìœÜN>!N~!‡à ]„2fî K€ à­#èŠB'íèäå²¶¼æùÏ+€Ñ‚ À)(ÈÏú§;@Òè²0TÌ 6@‡×Œfö-G âõ?!El '!vv63W6Gk1&V€bк]Ü–€?Z¨š9ÿn … mrýK¡åhñ0s^ö ØõÕÅ l t¼fh)*Ôœ€à¿Œ•ÿ2`ü}8N6Îÿ†ûÛû@ ðŸÎfŽNf`/Ø`²Ôä”Ù žV€ØòC3{WÇW3w3½™ù«ÁŸ¥›ä$5f¯þÝŸ«… È âÊæ ²ÿ£Gö?¼³,ØRÚÑÁ†¸¢üQŸ Èhñzî^ì×ìèöù²-­þhÃÒ͉] rv*Êümó*BùGf „x988¸@gÐÓ†ýÚ^NÀ?•œˆ_{ðóqrtX½¶ôY_ÿP|\Í܈‹ÐÏçߊÿE(œœK`´Qþ‰þ*Zý…_çïò¼çx¥'€ãßߌ^fé¶÷úÇüÏ¿öª"©%ÅòwËÿUJI9z|ÞpóÞpñr89¹xü¯/~ÿGÝ ôwÿòU[9ÿ*÷õœþS²ûß`ü{A˜ÿKÕñ•¹@ã?D7äàå°x}pþ¦ûŸ.ÿÿXþG”ÿW¢ÿߊäÜìíÿÔ3þeðÿ£7sÙ{ýmñÊ\7Èë¨8¾îøÿšêÿZ] %ÈÍáÿj!f¯Û ¶~eôN6ž¿ä W9'ÐR±°ù‹5ÉuþØ7{¨îè úã†yõâàø?º×%³°{½E\_©ù§ øºCÿ›WláhùDzqñòÌ\\̼P^gýŠx>œ¯[i ôü“Ìv6°#äÕðÚ£ÀÊÑåÁòñØ%ÿý…øìRÿEü<ö·ÿ ~»Ê‘€]óÄ `×ú/|µ4û ØÍÿA‚v‹ÿ¢?:f·üä°ÿ¯ù­¬@ÿR¿ lþ_kÿ·ö5‘ý¿àk&‡àëf°ƒÿ_39þ ¾¶ãô_Èóz N¯uüWiãò/øšÛõ_ðÕò/øšÛãÈõšÌëOø?³³psqy½Èþ\²×Áþÿykž@ ”ùG áPÛÚжÛjIR7Û£\<è}çÑ—Hz[²Äî»ÁÒ"wÜ_cæ$»¦vbîÖp¹Š_šìô 8ìŒW}Ób„æëÛà­Ì7Y}ÇqDï]•ݸv”:;ß™rƒ-­ Nš5<.%&™Y϶§3÷åEè›+o*lN³¡ÁŒÆÆ  p£Á„¶Kf¶WJÕHNNu(ÒºžKŒ%‘Ëíߥõqñnô-”²BƒÖÓHД.3Ä>ïuó‘(™Ž&鶺e‰>2_¶…1š»k‰Óg)nŸ+œoÅ*jZ7+ô¯Áö¦ÂJ¯}¤>]C–Ìö4gØ0fî”)þ=Ÿ¢]àÍÍËPÚ]V&+*‡ŒÚ3‡,7ñ;´–-[ÉW¹fp"ÑXÛ5%k2­€u(·Q]ëÂg–sÂy(&Ä%Ä*ÕN¾ õ%ÑvÖÞd9x R£“ßöS•Ž 3úìâ&X7ŸÌ—oìxX^”‹Ÿ:üÀÞÆÀÞ2€“È~UsLÜÿÃò>Çq†ó¢¯Go(ÆD>²g¥;êKš»2µ“¬Öý§7ÅEDyÖ»~óÖu bú”’qƒÉ«,Ó(E”ßÅ9P¶IЊ.O1‰ÖtXò{+(wŠZ‰ò+)ÎÂ}viÀL1ÍPµŽ¹cïT#gñˆO¸Gž‡ ‡˜ã#íèþ´¾; ³ÞרCu¸çyp%²þ³Ž0I[¯%¿~ÿ/^D•4ï]…>ÔNíuÌ”+ÛÂñ@žòõtc”ie›ŠÊÂE9pq¾c—UR½ñSóêô·ª— PPe}s|wOÚ +ZÓÚBäCÒª¿ªME4ljéB„LÅöKDœóñÙM8ýìZ¿!§8SêšÇ;Ëj÷I·nLÚ5 -#ï4†/[²æÍqœéœüû2|ϱ92AWúÆ~~"g:$fÑÙÆKº¤§lL$ïįo¹å$é%>ÚåÄý¢\»øeÉSfôÅú¢'(˜k躿PÄð!Šn5 <¦Ç‚Çë¦H°JÿkÅò«"r¾•^u¤Ì(õξ〛‹ò Æü|¿ä ¼.LÄ– ÚUIeú}²éӾ͚¾«¼$uÝ&Ý.fBßH*õ„Íq«ÈKCœ.??N¥ MN i¢öØXt. NYšÂ:kꛦæwÞ¢ŸŠ…Ÿi÷ù§„ü§ 4ù’*Cv› °‹ÑŒg tˆÐÖ/a¼—ö.{«½¿óÚ²d\wݨ²±ä«A±Ø)sчDžÑ ˜!S!kR ëôü]3DˆêÚ§Aêšhæ3ÚþÒ¶Lœ //Ã\@± T¾,–õÇ, IKö³‰BP ëLê·ô¯P||¼BqâZX.4\MWPÐaÈØq,FG½?Ý ÊÃk?¬Îõ|Ö5BÓÁ ðÝZÅ,žßòDPÃòî “_t¶ÛÎm¾ yf¹kqÌ¢ŠÙ--bòJd3ÁEš8È~™2¶Vµ×:;U@]ºgÌÇ»§œ°¥eûx—€+½H8(öëÖÒe »Ë ×»›;yD†Ä˜š’ña¹Ô+±D¼´jñÞµ *ÜU&”RÉCÁK†¨Dv{;õèlQW¤[ð¹éÐo¥¿G}qH‘áYSÖfé[?ìYk 4˜Êéø«¨µóƒ½³C~¢X4 ×ýƧN¤ÚIµ1û¤P®2@U>MÒ=ÚûVÒ¡t×.JÇ<4d¨o2ó‡}³-%òÀÑ€T!¿y¬vAv•y#«£Výy{«ó¯oîåF}ç? ¨’œçDá})˜Õì\Ï-üýôíÖ’vãÔIK])4¤÷fƒØùo½ëš’9âݲ¶ðkƵš?°˜"2X3ñâý,Ý2¬¶ÁÌ6Hv‘o§JiñÖL»ü°¶ÈÚ«7k°ö.­\u$ûL+i$€šWž­¹Û({©~Y¦gSß57Òîm$‡…¯8—Ûé½X··£<êK--[íá'µ“ÙÛ^°_ÉQÉMïtáÆ£!äÖ¯ôÙ£ý’,=åïÞy=q„úR,”jVÇŠîLiˆHl@$pÜ® pÝ®ý~:6VEàOh9Ô…Ò–ÐíT( þ)Ž Ãx†–°%*Ö°?á=ï«Êû‰ŒC’†ñë‚uˆ–‹ú ïÂ* (›/—’ŽI“î§ù²À¼mINb"¥Ã ~Fƒ3Ò¬ÆiJô×OJMS/2Aç †åÁ¢šÜ„ƒø÷–bT‹£q‡‚­*‘µ£)ìºÓ–uë•ÐHËÝ,ÏR»K0øUwzÄô!Šg'ÁKdŠWNY’WE¸6Ì-%€¬zðÕ?ö°IϯM0ó«±uìŠõ¸fäé·c!v…,6º"´%&ÚÖEʇsnOp—Þ‚â'Æõ“^5ŒÂå¹\5KG—Ãoænýù+{°®‚F\*Šè5Rf9ÞwdLHª}±šÖßoô4¢ˆµÜ¦íœ‚uÄîO‚ò–è~6?1Nti‹'‡¤°á¡›q*ñÕ{4ƒÌÂÃV*Êž÷oh¤cߘZ‹’"VZ-3¡h'ÕÊʇÀQi‡‘ÅYw­öõíɱ8¸$sÏÔ–0ãA úJ¤nš°Ê”9ð3X‡ÁCŽRS<ÐÛpqÃêXY=6Q@û­çÎ÷æ‚?›WîT5K\B[‘è8”HÖNúÙ6Ûâ~› ôhç¥IûD³ªã» ¢ÂÑQ£tôepâŒôÌ}þ4VÒÁV\ôn)Ξ߲º[¯uÝ%€êd(I“yÈÓsý4/ –ÑǼW½é„uŸš >GÓOå ?'"í¢_§†¹wèpŸ:ç¶tÚ­½K4§àº 8mqP°âôs~j-3Qç"ð]6ø]0è94lW«¾~ÍãxWhr¸õ›lCTt?ù"­À=c*!â"ë¢lpuqDàV‡÷}‹É$Æê÷ ¦ýK ‚¨ÃÏõûŸÁB/OÍœS±XæM0è2…‚O„~Cr¦°37»M[à<Í¥.ÅëH§z/–ø°7¯30©NËÒùüx Š~A×Èz«Ë·žŸ&æyä¥ç:;;Ì#hkz§7FûÜ©¢!¤>Ö6ÜexÜ5êQxÝÊ~á.aÛ,:ú²f¢œ"^pSêñCõW3B¨ŸÜ’¥¾0RKÂÏèc˜þ“Qºof*Å?rÙóŽÉÎÌÍ)”Xð32¸œWʬ¬°5‚ãB±¾›ÂÃQ£€÷ð”1g٣óz¾ëõŽGÜ)¬¢ã¤JɇêÏi¬® ×£vr{$;\šiºp¯nº<>VãJHG0¢g5¡C×_49 ÃcF” 8'>Ó˜ÖRuÔÓ«E7'2V·Tk«¢¾1‰%³(°›BgIŒÈï£øËcǺºSؤýL²+SGµ&Ûd?%ªE˜Á¼¸þhb¤E‘Óø=Åû€2 Mû„•V·dBÛväxñÝjÃeü ùK.ïFÇjS$tzHÃy¸òh>í—¼Åèõú±O~²o‘æ·;˜'eh,Ô=Â>#LFÞ\/A1CIÇLΡÛ|ŒêÒ¨¨\­Ÿjh’îââ1©É9«­Ó0›- ºv®¢öîæ+c_¡a}k~¶›Ðùœþ*®£§÷&SDÄϼªÆÐ»×m׺éHÆžè~eY†šL¤ñKDk»’¿zÜËŠZ)ûböXŽ˜Ö±b²ŒeM¯›J›ö—Ýq¶HùO­°•ÚêX\[se¼s¸\ÏzዟxX¾ïttDm ‰I‚œîµÙgæ›éõ_⦠–sµãX%´C„=ÊPŸoJ¦ˆ³«K½Ú&‹ÖƼÓ7H°Ëv‰¢Þý§Wf[w ¦Ó¦´„Ÿ®yz°ï1QÆbÖpæå3Ù Hz/zO?wGÝÈx™Í{a‰U7acë駪üšh²˜‘–PføïÃEw#Ø}ï¤ ô¹2§†ôº¨<$S“Ú 2h«ˆHhM‡ÆV¶Û© X—µˆ‰—í]T„ ¶µ¡¸•ØÖw;•: ÑÅVÉciS§æ£gçŽj”µTÑy»åDW˜¢ú¨hf ¾ƒs#ISÖ5)&ª•30͸WKB$¹ÅYEð™I‹†:’qð–"&„?ë—+OQÖuC…UrVFy½!Ï0*'Ÿ@}Ïío#gçjŒ=@ß÷~(å^¯[ª4M䨉%*(V`‹\ÉLªjL N¡Øóñ–NéƬ¢’ŒLpШÃÖ¡gx?²ÊŽÿÂáÒîAnØ‘®?Sky^7[9y‹~þ ÊúN4BäTb­ŽK™§Ï¸¶cº c+°†ÇÖuZöyãºPÄ«ÉóÐrûQ»)"—ÑóÉÕ jÛ¼o¹w˰l0ë1©ÿe¶-mä¨ö}6øS‡¨¸ÜæUÆ?Šæs”±ÿÚý3âqÛPCC™ÿðw¾õ\ à´•k4^€™8Óq«ðã÷C€$ÝþïfÈ ìïâú²ÁëÕÓ~Ø3OæŒöÅj:îEQÜÅV=*bî¸ê»ÎVkÃ&£øüå̵w©ò$¿;¿„«ZØb߯µ}Í=".õÝÝêÛÀ¿Òû¡H 5É?¦ãß^qeò^ó„aÀôfI¶ÜM¡/OáD¹oÌò~ ÝžèüáøíøÜå"à›)˾ã;Çn"(y?noÚc 15é²Ú÷+ªÞ/DiÆ#âð‘Ö´bK.ˆXÁ’‡·RaÞZMРƒ¥Ô0¯«x5äw=9òâY°åÊýÇ/»³göêUAØ'‹¥N`V¯€n2ž‚×"èŸB½žª Y„û!Júf\4÷(Hq°nÆÆÇ9@D/nmýæpÁÞì†XkßB8î-«Ü øÂËÈJÁäÉXXÃKA'ž}™†š‰búÒŒpÂV2XÒE5–òˆòü’LLîp€æ%}¹Œ&mî3ÞATŠÕÔš&\³™Âk÷=)9+ëEéP‹ó¼ýóÖ[3Áïe½.ׯCÉc–2ÕðHú ÷8™†–‹Y‰¶LÜžKtà'{T~€’ZÑ}•ƒ&žá²"¯_ÍŸWlÜZÂ`‘w+……d¢[ði£y¶)‰c°¾ÎN@ã1ªj-캚Ãù“ä`wÒŒÌaTË>ªT©ÒyצsÜÛÈ©¼e (™º î›x÷pâDÕû’ýÒ{ûeúÌ]<œ(Mÿx=)ª¯—‰7`£>E^#wÜ¥ÚvaêþÏ”—!kT‰‰¾/Áã´œòœg„-3/#ô\‰ú¼Ëú­ÃïÈ¢L7²,úT} øBßZç>‚íæWæìZÜU̪±Q-W%®Ù!ï`– ßy»Z#Ùþ"î…æõxhâ9n¥C¨ü1^[ã&_3\gé _%pq¾å‹"A]_ ä”JÏŠØ£ï¸ÉARu¸-Pyýr³öéÝ´Á„ò¢ÚYaþ×Ûr$&².uhX.(Zýþ6id5Šj¸qbŒÌcÊ—:Ið{„‰p¡®„x~ÀI¾]Š5.xìLq˜ Y†b#ÅwRglÛ²¿@æùaRÌ\<¸V±üÛz—¶wæÈ?«Õ´ú„§üå-hn Ë,,R‰¿Í¤uX*÷ç›sô}êÄŽI_±é}7{Z«‚÷¶¨ Æ<%_Š*?O¼é#,Í´W´Ðw`³fÎEðåͤÑoäÉ:¤^€‰ábÙ4å7_F$õ¥¡Pý½ùû\izä¾(J©5ˆ%€Jt1XÏõTwøyqýhè¨*#’WiSÂU7sýÑ~æ/›Üèyì\‹ñ‘®LLƸÅKp× ë’O+1™œøš½sWÆ1¢ÞO}•ýdñ Í{”Ö<”µ<öìß{õ5aYÆ}­ÌC}rmFÑds#ƒxCÞƒY3|Œ(ª¤sX Û¤¦¡u©™Uƒ ÞM5õ¦Z'W­0›Ö‹?.~DÌ*P–F•mýr~Á¤<-+³€Õ½ôë„DKkÊ‘¢f…\j˜Ž¨-Ê>ÿpùè:0Ñ{ÕÛEsÝ)—.¬S·’#,ºNB^b3;úÄ(M5· -cþý ‰l8A¶Ä“dÞ–î¨yÂ਷ûDIï)‘ó<#våÓn.»D¢#‡M0€÷üÎCä‡ õ…l€ïsZ°T•›ŽIü°EqÏ b:&D…ïÂåB'Ò iÄ Ü2­åy¤ÝI/cŒðS2>= 5ÄADÆP[_°Å0&ä:,zTeð¥OWf`@”û®I§›¡)Dµ‘0cUïp$ù’“•Þ©Ø~r½‘wÒÿ2•s½™c"ÜJ²åFNÈ1¡ïDm«­4Ü NÍÉË|é ÊHz¶*õ 57ó5}y$K”sÝ•¿i”Y˜ÊòÙòÏ!hqŠŸ&: à%œp´0&qúÐN¹s½Ñ€o«Švej¾áDþ×grÆ­·Ó¥I÷ vù,›ƒaf…1hÈäcÚÚ m…Ý»pÄh÷1ìËX$D ÿX¼î _ªó—Hnâ£]ëýýG<•´"ŠEW€¸kÚè„냰QsŠ"§Ñ„É€ÿ:æWâ70õ•#↣i·sybû›ËÝ7uIWoøæBÒ΀ŠoÜä$”}ñI«ÚÒF?‹å›/vg=c¤†çœ4ì+&=sæàÀ~Æ>èrÒkÁŽ}=i-wôŽv˜Ô¥¹ñ¹CŸ w9"Ùì6ÏCPÙ ü%œö&ÀMÆk„/•˜É@2ý(G–iŸ ¶>]z {Z溆*äƒyž¿œ>+±7ª%ÏØ…ûµ3ZCËÿþMêDžÅЧÚÅâ¥(ômÁXùö—…äÉV:Ê BÆuVêwÀ¼0‘ÜN2íÚxÞ„ïÕïÆDåRXãóé,2N”àHf]è ê=†ŸÕÞöÝÿ¼ ÇþõD@Ãäª ÆÉºðÝ>ǪLñëÊŠ)|¶jBVà›¾KVåZk²þ{@\d…¥Ä ý|K\ŒÂpüš&J`q«Wª§Ú<Í—C`’Ð(iÛU4»`F[7âX~äEÉæð»uL°µ‹0BevNÄ­®üÀ¦«¸ÛX–ö賸nê‰#Ì`¬ØÜybt­›/G˜fs·} YšXô$¥N3jEh‰z!-(¦r³÷g÷r7fúabñG »`pêcBNžIÊ{i…ŠUßU¬Æ®£šH«Ýl‰$´–žæØŠ,´ÒÐvëìÕ–z0þ`£©Æ53™$õ‡}\xaok#Lx↦«ÞEPp&¹:1)šAÌÑUã~^@„”‰«¯ðçDàG€>•¢®!¬ã6á6ƒõ“‹Ïh] ™;ª•çÑýÔ€LÏ«Vd—gEåµóc,Š¢|öϲlE9ÞyÐý»$_nó’ŸRÞ8Áõ,î3ÁÙ£Bp<ƒYðFžÝ:4U"KKæñÇâ¹ëä‡Ê¡zùkòŽUè³~k"B‚ è^>ågZ÷ÏYYS,“4W‰2¹ÔD,² ‘EHujßiɽÑpR¤¤\}*ÔzI8£Ç‚Jnñ=ò3ðx ý¼ªZ¢Ù›¬ß=Õf®øÍ÷¤”ÜÔbB¯€•˜‘ÞÅþàØ¬PN†ò£Óè™Å4²Ðþ­uÊÏs-ÈÔYTâ9‘¹·Õïàbý½H»Ä¨uh‡Û{œb ±YØ—»i1¹.C¾†3^›ÒgVç´­™¡MÁ\‘ä‹>Ã/£ÆH¬³/‰ŒðÝ$®_kã-„³°4UX‡»˜÷+zˆ„úè½=쫪èè¿X^XÖ§ÎÐ+P}ïFïiʼU…boü­­AN³´k„ÜÎÒyõA¸éùs–üe"…WY ©˜ä—’5®HåÉØuqÃo„âyè]ÈÉ׉^¿PÒE1UŘU‹< Ú4Ÿ( .æ‹ëOVÔKÒµHB0fy¨oì·¡-±‰šòMóVd>Ÿ¿ ZäCk©ˆÄg*®xÁàòDÍx_ò)Š&!‹ÉprÁÉQÄîçRѳtpœˆâ8U ß,ËÀùØgÅùþ3´ã“§íl6ã9þÏÄÙQÆ9òŠØä+“Üs’)…;©Õuåº}éU¼X¢WVàýJ˜|5J(ÞSJgÌ„³µ­/NÏtÏ­á è'Sêh&S¼t% ÔëÅ/ç­S*Ãuš·æŽÏ) $ßy¬ê÷1ãÍòWô’º´eTɵ7ß<Šá“âL;@üxOå›3OBQƒtßo†k6¬>ùºñì0abAÁlB”è´Ì 01NÅ`ÿúîÖ¸®¼^øvÁAŠ-Gáûü=ãÄü1%–•0á9’®›(*nÉUþ7ÝìA:î>mÓsUUÌ+y^„Õ¨¯qÂQ§›‹+ÁÒÂÞ>ïß’>ƒë JïjIݲ¬dÞ걉|R"px»‹ükɺûêh%@Œ¹Æˆû$²|‹€Öˆ-DÅøQæ#ŒT3«LE¼ ÌÄÈ9ròFP¢sþŒEÇ ÌSïém¼‰ö^^ì·}·ÒâÙ߸¤+ræ9bÒRúב¸®ðXÎü`Ôê6ám³éCüƒqåýz:¦Pò÷±„,y8Ÿ«F¾)L8L\wu¦êÀEºÖ•ÿÆ`+Ÿc+u òpÇ~ §ÜR1ùÆëJ’•\Ñy4„†c»üö·ÜwµVW…ÎÜý:x5j‡LéÎf…¾>ä¾Pxðj=•í¼ëdô”C_)·Ô‹Û5‘¿hÞ¶5f™$#SZµ¬åa¹%µž\Ô´ñµj“àµ+FPq ²b@3cFƒ¶‘A#%ã_šÃÆP§bÉÐ'»>s½‰íízG§UœÉ»ÑX¶ŠTþ`OÕÓ¨…YaV);PUGͶ;„Ú,í£Ã50‚ÈÏ^‚zd:þÁÂKåñœ'Eñá y:“€›°=œ—ϯi„Ìqó¯$Ìc>©k8øû÷<4oº™tCO¶¦ˆd&éÈ#(±èÜ ÿŠÊÏÐê(vë7†x9๓Z)M„•æ$VG†ï5©ZŽ)˜¨‘š[?Z\XÔNfwª5g×Û“¨³•¦m¡ oáoÑÓ; FùIDì³mELè·gqAÛæESäu–by­„{5À¬¼Ÿ‰LMKÌ¥žk ë~œéþ‡Eäq‚6æÌxhEVå}‰•ƒ‚Ý_®FÆÕÙI“´síåqÜØêì¯\jߊ¼ñ|ÝÓ¼R]ÒGrÝ’Ž3!ÍKª7Û"d2‡àJÝe¸;˜Èô‘åM ªÜhå]BÓ[œÕ²Ùï&ÞB›…Yßv b¥ŠØV£!²C`²ÙíÚ´G`ðŒj<&™àf†ƒ©÷œË¬››ÓoSÝMÁì—ZÙ ÉÈiÔMŸæ§ã}•†Àj¨ŸމV"4 ¬øßæ‘¡ÖˆµzB\ï4/ü\ný˜^½Á’öÀY¹xÎ{`ê¤q•‰T=iPC¦Œ“÷åþ˜cUw3­!ÈYþ) _×Ú0ƒ@ÚЙ:,B«úê+ÎrJQœ%Ü]´Ð÷¾irŒü"¶þ Ë’#ƒ:»ÚC·-}^n'Â»Š›ÜuÃ¥Ëvö£øîäMrÐW7w"ÅQ(¼{kþòS%çü{2šÆ(UN›,¶ÞÃ7GE“ß1Ÿ„§|ŒýËkKÚ[x|4Ž•¦ßž±J R‰O¾[f¼^˜%ÐÎvAù\-·Ã Qñ¸å9‡“+5TNSx0À*¶›Š™\¶Ò1/uñdò `´.œ*„5\Ëg º¬< VÃ-eR£¬1©”<”Õ¨73tlò?«*£ïU» “Ù g6†µ2Ýf¾YðôÌ+í²eÖЇi̺÷¼úlÅÓ}kþ~')¥9g‚º5¯\£ˆ‘e‚}*ïÇz3Ø|Z†¬Ó¥²Nq‰c︓i&;OYxGïßÇFžÇVùò‚B)ŒOMã>¨q$úÛ+bûpG‚ÚÕâ=ÈâLÏl~½´XDÅ‚0QæÊ>’÷ïOyLS8–9‚SÍÒo¾sÏe6ûF Ô}ÙXþŒ5œã»Z E­%„ÿN¡SÛ©<§ ­‹ðóŽòP¼á>  f `¢Gf­$Ôlœ½)¾·+›°LÊAkD`Céõ™6“k0)ùÁÎw–“ «¥]?ù‹¼Éó‚ĻgŒ©´‘;ͯn NE2Ã:Êè\]²<{eD‰b¢¥ª AùU®UÜOlìvq_íöô˜6ôS—<Œd¼‰|b6Ò¯ô©ê3òd&†ÖR`åÆN‚EÖ$èѦx>È:XZjU½ÔŽÞü>YyjÜwvw'þå“y%Š¿*Np}Uñ0eû›6ÐÃ8fä ê$çÒÎïÔ;H)-â>´SÞDhÏIÕ9øñ úºzòãÆÒX5ò\W‹wÔ¹k™å¼Ìv/lu|A W™Ñ%ì].ÚuâÔd©¹VÒQұ)§ðÒ§^D[¦ìbz”H®lÏ‘b®?,}Èv~â%Þ*\ë$oÁH0 uç$¾ý”¯Iׂ¿²­3+Bý¹bã:@Ip÷´S.ÈJÊðà`§!‘-³¯Q_÷[>à~*MOÑñ½zŸã­tç³ÄüÞÖÈ17î¡yªaɶì€Ùecêí÷ˆ*}67Â1×Ý"¨G7ÏÚï_÷޽~á ‘Ÿ¹)e[öŽ%ç^Ÿ¶ß_ƒ‰€YW=$ÛÙÁ ŒšïûŸ“®œŽN‰Þã|ÇŸ§>ã%i<\¬ÉÊ©_ËGóá¾]4 …‚gãêt–lôeö®ÄëÚk v8²ÖŠ -|Öl‡ö¥ª:²(À $ôyÑ!?yDf:M"Ú3¿ë?åÊ™¸šôˆkôƒß!— 4— ý(Ô¥ŽÁÝî²Ô™$L î?]õÇÉ(¶hïÇØw€Ê´m[’Åz$¤‡eîµW³%SýŠ†É¿¶B™n™×{IÍúL…’~ö&>ÂJ×õû(¶Ú¸ð‰˜¸lý(+ʬ7Ùºez õ«³Ycž'?xðáj¯Pº¦;ÓÖ0ÊšÀ)%R];|£´™9èÒh7a÷ÏdÞÓ7‚ìÈBgr|ìZÕü<ÎÙpw½Q¯5îÛ§®L’}d¿ ÷nÍ6²ÀB­9iDEö0ï¤ÚyŠ×„©kÔ/†K|Ñ1øùmc;æ[W,Xh;Q6uý[PEèU¨]ùÁÊÂMTÓ9´‡òå^$Í-óÅî×g¡PÔäé÷â m¹×8ø'‚Êô?ÃzI5ˆÐKæiOÔs7ÍL•.üåªéÆŠñ,® koz›ñ4JnÞ*ʢØ·ãç¿ÿ@%l¯5Bçc²æ[E³óP“cØÍÍ6÷fHÉ2¿í×êÎ>b©Ÿ=X¬8|^vJÈ6‰Oõ^[íHÂ1œ£†×—‡«T¼¡_…—«F£ÐBUa²á2M—;Èv¸ífÉNùòúÙz¾äX›œ ƒ¬tä÷ƒøâÐjûCÐõ²ÑU²D–çŠ02”ßÿ2ºG:¾‡õ¯ªh²`]2î%ȶt¾5›þ¦DNÅËðp²M+}cm ]Iσg¨×¯yH¤çZ݆#¾%ùå&AaŽ3 §"RÒ„ß~<Á¸ŽxxZ[a@˜ƒµM×J…õµù·µ¨`¢DŒ¢ )ž;Å¡eqR·A„té›é÷}¸oÐiû˜ÈîpñõŒôÈbM­I/ êuYï;+g·ö6]µoëøY«ÔÝ­}ç(™°Øg2nB°û$QÂLðøðX×ú)ÌØ~Úi8J&Ò÷*°àpߙ˱Ú&Pó6OcöÂj ð¤ÏV  Ead3“D?“55júuœØÏ98ÔXUx†kØŽ¾ûêònï†[ÿ¤kþ—íÔ•b ÉB ÏF¬\,¶_8RŒ-Ÿ6ŠÖCYxᨳ¶+YÖS8Ô{·¡dG:gÃB’ëyï ¹:¤8ì¥>ëKuò¹‚Å›Ë?ƒ«òØÄú¾=Hüg0ОE¡Ýí«¨ˆoÚk1ñëó@¹ºŸ?ŽíÄ—S‰íDfUÜñ˜á„°ôËÅrŽ~*ûÙÌúáŒ~v F˜,•m+… »ëlxD*@=ð[ÃÉìè*­ZOR ]r÷l˜ªKÞ³nƒé.Î𷜎EƑּ籯B2º…î‡Ëê ?R~½GêŠ_ºôeu4Â)z)Í §îd„˜†ÕÎ\ÒÃ!ß)Ún7v*Œ°ŠŽG-ðÅ7XÍmh–¶&Åv—t"œ+aDönJÊ.Tf-=ÞE1­C¤d4—gúJ T‰kŒÎyåîºÛä-ŽGW¶Z®h\rØ¢’µÝ¿þpüÍ|CqG(´Æ±wè-„tÆÙz#°£Í—JÁ"¤Í{Þ[§²`¹[œo«»Ÿ)¾ý.‘˜_{iµ0csaA DZøàò"Ô…ýÁí 3¶ÐãÁŽBÂ6¥ù¡¸–?wgx?g½Ù\¾†¾Òîc²› ‡à©ñµXÖJ®ëçÄù„1æéò7·Öskr{`œ\”Â×!.Ÿíz<ðñš²–¿qÔ—ª94vvÅ]N£N"§»0éP×(#™ÅMã¦8Wñ®±b¯ƒvd @š@UüJwÀö;‡^;–ˆõÇ÷Ô¡„V›\ŸÕ‰ŸüXËÜϺÔ*?“ø¥à°òû.)û­ÎÂåˆR0 ~çZü´»2~áR6þµ­Gð³<“”ýMe²Ä8®ò}Xó”*[­Ânµ ˜èñ&¿M„,… ŸqHH:!tþKGÝ#/z"'Ì7¼¬X3”ÃĶ‚ÇäèOŒÜïû¯%Çä ÒUòž§BëMÕµE«Ïsïy§¼SO‘ê×gôì*3é%åöMIfïȶ ¦·úӲЎê2B…Ec`¹=œA§™§Œã–ù–}V‹ÀôÓZ¶Véy§¥ÖgkÀO*ä@  Á¸l¢B–œUÆß.(*|ÐÕÏÅùÊ6ÿ!d<ñZÉ?.…~ˆâåý+ô”ª˜i[øºF£Ý”¹-.Z°zœfÀ¯ÉžÝÙés¡L(Ÿyu oöÅ~&„8ƒ“ÔÇÌJå=i<ì­Ks_Ñ)†ñ;BÎì7{Gȹ¡?…øß\É}MŸNØŽ/• [•GÈÿ O3*v¢`¸¹ˆ"ÔûÈ/*Œ—•Œ(çè15ÉŽˆÂ+Þ¿µK¦•…ù‹Ùmxd‘Y®6dòt›ø'BÆRW7úHl«QŸîg‚\×Ûûö° êÓrÛe2ïž0óò·â´1°tP¿.j g³§¹Á šª:ò)Ô"®Y5íxsûAõ°øíÝ5Ý ¾~—Ës –2¤¥„­ÆÖ¢†WÍ:'–ORk®•/ús¦Ž§ÃÖ2}Òr¤ãbIÔüäžØ”t›ˆjÃÒtÚP|.ŒaK^õÛw|k¯­°”ljŸ Âðù𳪣qû:µ¥–|Ršcßäy`ÛÑì9ÛÁê+™d™m.•òècnŸãÅ.k —Wîn˜¿5O¢+øÖ¨ÏÜ=Aå¸)i Í Q«'Â:5JIVŠUïÓ·ê{“_ͦûžØÅãþ×2ßä2‚Ì@§V^6Ñ gjÙ*tȈ}¹Iw„b^d]ðK¡Bu<Œ Dñ7éO<¼r$cî&Η'Kn¶K|WU•Ëu·—vàn‚MñãoÓ y•úêÝ¥qÔu'äQÿÌÒ÷8}¸w;vi)?DÖ{‘¡bùzPº¹³0kÜ2 ò†teWÆCІl‹Iüþ¬@éª ,æ!ÇP¯^s cÄ]ßiÖMÑŒ8˜-"dÊf|á—vñƒUÙEíÒ‘C¦p´ñ»–Z¸ö´.úÀïRÝù•pÏ‚ò{©S îGò¬´gsÊKh-x“®ÿeަ­@ßJ2šK‘VíhÛÓÆ Ý7ó²‹C’¾F.» ð:Èsï #éÌ€å?¼1VE›j`qÄä"E¯ah],sQy5õ<sóÉD™:JõÛ}Eä8³Å½—H2)íôã¡4#Xç°¦ƒþ¤9±ýNö¾`^†è=° ô̹$~ô‰n¹Ux†I/© Ž$"zÞ«|à[ØìFOåîZ›¬Jý£¥ñê@—×™ûYj÷ò³oÒ~Tt¯µ´™ úˆˆ¦¬zÀW¿áë¯Ë,óã˜éÑ´p?m÷¼›XçòY,-ÙŽCaÖ–E!fùLîZ ‘ÚÍÜ¢†43µeˆ þ\Æ >xÿ¼ˆ,ׄ·eå’¶=Ô¸ð.ÇiÕH8õçCKCæÖG¶êRzÇÉ—FÞådKÆ&Ç“&Ò=H „o ÜàÀv¶ÏItk” Š5Æ‘Ý]Âïþˆºóø K¹3!’t±IG§öñz-i¦ì±X¬–­•Lø:&½€ý$|r/¸:×láÛ¾LÒ)GðìÿfWñ_ endstream endobj 128 0 obj << /Length1 2454 /Length2 17426 /Length3 0 /Length 18887 /Filter /FlateDecode >> stream xÚŒúPœÛÖŠâîî4„àîÜ=¸m  îîîîÜ . Á%¸»Cp·ËÞgŸœÿ½ª{««èÓçXs®¯»Š÷dJ* Â&6F@ kGFf^€¨¼ª* 3€™™‘™™áý{U£%ð¿r„÷ê@{5ï¢ö@CÇ7™˜¡ã›¡¼5@ÆÉÀÂ`áäeáâef°23óü×ÐÆž fè 2È3dl¬ïEmlÝìAfæŽoyþû@mL`ááá¢ÿÛ l´Zä ÍVo -*6Æ  £Ûÿ„ æ7wt´åebrqqa4´r`´±7 ¡¸€ÍÊ@ ½3ÐðWËC+à?­1"¼¨šƒþ£P±1ut1´Þ– c µÃ›‹“µ Ðð– "-P´ZÿÇXî?ô€È°0²üî↓ÿv646¶±²5´vY›LA–@€¢„££«#=ÀÐÚä/CCK›7CgC¥¡Ñ›Áߥ$„? ß:ü§?c{­££Èò¯™þ óF³¸µ‰¨•ÐÚÑá¯úÄ@ö@ã7Þݘþ9ÜÏÖ6.ÖÿE¦ kÓ¿Ú0q²eR³Ù9¥Åþ±y!ü–™ÌÌÌÜl¬ èjlÎôWU7[àßJ–¿Äo=xyØÚØLßÚzLoo†Î@€£½ÐËãOÅÿ"€ ÈØ`4Y#üŽþ&šþ¿¿=È Ãü6~,æ¿^ÿ~Ò{›0kK·ßæ1“¤Œ¼¸†<Ý?-ÿ«±qx0°XÙØl\NN€×ÿFQ2ýSÅžÒÖ¦6žÿûÆÒ vþg¨ÿYÀÿÆR°y›[ €ú÷˜ë2s0¿ýaùÿ<ì»üÿ›ñ¿¢ü¿Žùÿ­HÂÉÒòo=õ þô†V K·,ÞæÖÉñmämÞ6Áúÿšjÿ³¸ò@“ÕÿÕJ;¾í‚°µ™å¿D‚$@®@%£±ùß³ñ±Ú_{f ²*Ù8€þºY ,ÌÌÿG÷¶\ÆŸßn‡·‘ü[|ÛÿÍ(nmlcò×’±rp íí ݘß&‰•ƒàÁò¶&@׿‡ÀÄhmãøæxëÎ `jcðבrr˜„ÿýq˜D#“ø¿ˆ‹À$ñ±¼ÍÛoÄ`’þ8Lrÿ"nV“òoôf©ò±˜T£·ZÔ~£·Z4~£·Z´þE¶=z>éÇ)Oî´!ÌOàô ×õÃ1¨ íz>Ûyªû}†lïyŸkçÄ¢ôóÎ¥WÒµ®¯li$xvçãn5§,âSÙO†(µH]¿âé÷yFY3xä0Ž Äp´g®¨Ó×7S9㯤2qt^ÇQl…Úë¬Ñ÷3î+ª¬øøÚxÄ×#“”"ûÉ2¸s%E‘kæ²™iÁÖFúH=‡;ÈNxuä¤1p™-íx$G(¼Úê˜ü4{à3wT likmPæðèL]\$$¿(6õ~Ú¿ µ§3‘wŽUpóØÝX€ºÖ:º–=:©×qÒ1Ý„GØÄ^nY{±óÂ’‡!ºÚåîô,°È(¥øêÑc1~l;åºëªò½¿\ü— lAR*fAz#×ûÁ¸ë¯˜ìºðÕZ¨3SÐü*-¼Ù(sã…v‚ÂÁ¤¿Ð œ „”Æë‡FîŸ{^J]ê©6yÚ_ziŠ s_Ž)ÖPàx‡6m’Ò]œû¡"#“côò›acÁ/ ®®÷G ¡×œMÌt|ðÉÐaU&° »Pµå ‰ƒ¯·±-,‰Žâãþ?›V¾!O~ñÅeÁïɯ•ø¤,˜Ì•”uÑ]d‡û)“ì1‚–ÅÌåvµ3©(7§™­C¨|S·†Ë}ÉÐýp’…è€&¬‰q=íìÒ/BÜÕ_‹ªu ìö#T寍ĵE;ëæ÷˜Yc¬ýX¤¨§»‘}6_£i½Ìð.·æZÞè‘mdÓÙ¼ÒåÈ„Ãó¢ÇS³ã÷¶yü sREj*Ò˜™Úa—ò•]`·Øëùð$áfëøXç®É­D¥¯ÈL‰ÍTTkÜ æ'¨€®”_ÚE90ˆG ¯TI±•Á(àŠ“©a=†~wã|+™JVÂÓt¹êsCî+CùñÆ8¤!xlŸTQr”œ( jj¶º+âôn••3ÊD E¡>Us<ó¼»>Ù ü!rD±·üƒæP(¾–·˜Zƒj—2ìE¤O² ŸÁ>~D5/8iG ä …(Bÿ9 ²dÍg¬\œ<Ãé¼mAký¡ÔàT}ò“ X=uRåŒUÚ1¢,ªìæ2•@z¦øº’=¯ü¾G¸ ›$«2Чnκ ÃÙÌ'Í(*ߥýk F;óÔè[-œ‹GKò—‘…*5ÛÑbƒÊÊ«Ítyž¯0ÛúX2f?\È6SF¾9ôú ©þL«ë„4òäÕ°#Óóõç¹´%¼î”BÁFRít¬›‚éFRU‘.·– Zn7~Aÿ>}Û“k€±r3»å—ê{3· *!± ]C¡þU®ÅÒ²{S–«Ö1YQÂt¬ø­ŠðÞ€ò˜È#O¶—Qô4*Ëó¥ÃUªÓySüišÝUŸƒ$t'&w¡õ)<½—þ*»ØdÓ’ƒÊhØhÅŽ>Yꆠ˜P³ÏÝ·¯ `}«Ý+y kç4JÒôãë¬|"DûU—ÙãÁ´ $#¬Í‰7mï÷dŒÖvÔ¡ –íÝp˯Z/T_Y°cêäSa‚ ù-bA:Rvð>š'ÆE&FɧŸ‹ÅÔ‹,Î9òàšOó±dêP—Ÿ9>öSfhåƒH\.ƒ‡=qKð²‚E«#”€î[P_W£ $6e`É:Ë_Üûó~ôä‹3Òpç g:Ð¥ŒÙ.&ÂUU"û¸cì’y¾øTÒVšì©!ÆBÁÒ0:J™ÛÅͽ„’Ð2CæÚýòmýê[-°¨€ýC ¾­Ÿt f µ×—GѱQ‡Í3êŒÃžò²Å¶þåqžv-I#•ÈNL®ïû·håƒZ¬„—DBϹ@dI™Ww¦¦Ì})ªvmŠÀ°°´yù±õè˜~m´‘Ðhð8~®5j9ÛUôž[uš÷˜ûŸ‡–ÙÓTm žD­½Øš´_íj<Úìq»Ô´_yÄËrf§%«6œâØyÖ lðíÚG™ü 6¼P\7“cT‚<3MyHç*;5ÏD\M%ÄŸ]4øƒÒlè;áq Eä>–mð€å1…33{¢·<ð,§üFèûE~À6šâ&Œ¸ÃùÝr£À1—Ú±ñÏhO#l9UVˆu³êDÚKdú^‘Æjù lÉ«ú2Riª‚ Ïë"*;z„›$*õd÷ËÚr‰rwg8y¥ûÐ&Šb·~¢g…±ö ‘»HÁn€P“¶¯0éJûýºa>Ð5y‡ÐH0vO€| ; üuV«3èôWæ,nØj‘™H½%æBڳġLµ 9†Ž­^7â"ôí˜yä|WîXg|Éy°·ïøL‚{ÞÞj»\°`ïDî/‰l_ÕõCžÆëûÍÄÀk(Šù^\£AÛ­z‰O&é"c$³2ÊÔàœ: ª´'ìd™Q“nZ`Tò ÏÔˆ•pÕ'Cò˜åJÂïúMã|UÉM‰"É¡·)/šÅ”ñÊí½â?ŽõJXå|ƒ{Á8¡ÎÍi¸)G°™D ÑLn’Èp[™CÎÑšäùû" 5™ÁÝ¿³¬QpR`7y=úið¯±Xì€6¹8÷ž)ÚÙ¿Ákêë{¥r;ôÎcyªN÷mZxW.>œ{7ˆ×—Po© 23&tTG³¬Ò š<âD¼»’†åkóUÒÃÅø>ØpÞ‚£ Þñ’ô´ŸÔ* IŸH> ˜‘•àw³e$’3>6ð4Çí¹¼$9ž½ºrªË×*…„`Ý¿c̺VíJª9ƒ•ËB&È»Ž½Þ’¼ƒ†ãøŽ¤gGð}Ëäm’Y`¸JPÇ==8 äZ3§Iy;F‚´`x‚ ì=V ät¾vw*ˆ2 €èƒ¹Ö÷¯Ø/aPÚwî!£HÂ`ÄàÇ,¶è  Ãù!³¨ª˜@_áíhQü 2 )讼žìÅ›ã…ÇùÕ‘„®‡x§Œ¡7!!]¥úÙõ,ÃÂÌ([*ÁŽ‘š¡kó´<“ˆ1r"å}­]GÙ•ŽO…À§wWúEOñ£Æzö›œ6UMÁ -×y«ŽR ªË¢Ïãs€$E¾ »M?=î{ ,·æ&‘P9{d_¦T‰»>/Úë€÷÷´(eŽ&_p2DÁÜÛÒ‹ý9$½G}æ»›³€CÖâi“r" ðð-=#wªŽÞqC áú²4v<:„gˆ"§µ2$ª• R¡ØàÜ%ZM8Ö͘ãO_üP¿Ý=Àe;¾þôRz:NtìÅþR,ãZ—Ä=70¥L´´Áˆ«ë1dà´òªƒJHÚP|õþ …­+4æ)ˆ«[wÆÞÚ?XA†´áð%bü"í9W¢òsE-bôE»¢EGÊw‚ªµÅ]ºzX ÁÌ„C©üŒzJMÙ]jòe×:l™Ì¹–úùpwýq'K×3ŒÉ;9ALùúALò¾ £â‘](D§í-¦ÆMS9öõß«ùÍ,½£NSâ8´ªeÇ?ø©ìœë™ …øêÃrÌH9¬û?^/c÷2]l¶FŒ|V'ZqÚ5ÛöI|΋˜ý…æEÅn™4‘¸#t_Ý¡¯(½ÖÂ…Ÿ1Îäû ÊÝÁÄ~ÏÙ”0ïûé—ÌÚäìù]àÜTçm½JVéU¡»~Ë‘QCá”ñg%#8ï~?°y漯Ý=wE£î„[ÒS•dȪÍÊeSô…$þ%ÇL¹û"`Ç›~”â©0Ü]ui?žäá]Ôn3ÙSæ{é3×AE!Zk-´Ày=-º(»+ù¸Ú¦,ïVÂN÷åVþU7?µ]Ñ ¡à­ü`Â1½Öá5+§¬à1ÎG/Å|qFU£mô™ïtt}¶põ/õ¿ðsaê Ù•Ècˆq j'Ï6PPKm‚eR¢5º(;°[<5´©ï'¤äà…vCƸL{òw‡í4"‚ ã.ð«—+q³ypßÃ:“Ð’ËóÀ¤ºÌmZð(HëB§ösD™Ï¬ 2è&„ßoË‘McwÑW›)ZSqc> ”UV‘áˆOSñ¿±àB¶‚3‡|¨ð/ µû–{D%S7\÷äycF¾ª?…’É?&ºØŽYd`'̘k²ÜÖñQ]—L@×*²Cå§>½ôyèâìD r£éÇŽ}B$$Õ‡7I¡³,W%÷ qÖè;Û«+.á| †5…IÞËñ/3X3cJsmË«Q˜<éŸRc¼0ý…õѯë-‚—–4¬¬Žÿ}_(}ûÔ­pꩲÒ)¬Ògÿ­†*øNBA,òú‘A¨ã˜bh¼RºåH̪­.³*â(Éû‘Å\…\¤ZAhæÄ[üד¹³úDÍú¯È‹«÷b‰† 0;†~öߨçf„ðïMÚËRº÷œ«9°ê [39€Ø½b¦ÊtMÆ”@¯åKšqÜÄ/éÓVV¾éK|â•Õr‡½z™Rž•* Ý5_Cšï®:`;ŠÏë‹wöj:ÛúQË,÷P®k ïÓ¶·%*œ(8÷á»gÀ‚_]dlà¾p"Zªfh©P0‹0_½pTóT SÇBýCsÊÇ!L±3¦ÍrŠÚ¦_Î4‹ôéYòXi„gQ<ÖJîN·ŒæjrãÊKÜ•h?—¦¨Ì)ï˜Ð’îY*œàÎÇaZ †”bA¸|wÒï+†Ä#b^Ãc+Ôï°êùÉ´¿æóñüªÎÉôjó Â9•4¼Ô—¶MÁAL;‹²ó4„¡è£ô©ZºìÆ6Oá8w‰ -ö Øy"©¡T™âìïW¬÷™ÅF:节=ç}|Ø9Ê.!k-?Ä+9òɳ5v<}ùfª¤9EA$jBPéš„ïËÞ_9x±Fâ{|¦q!9t„Õ\Ʊ9E*c°A¨fØqÄy’x=Äó°>vrá {ùå¤ÊiN+rî=2¡QAð’ŽOŸ‡¨ï¨+!iÇ>ç6‹”§¸–¤Oz‘7pó’<,ÊĤ1Ž_†^½LNåÚE$ãúm >ȸŒasM2ŽÓ0ãêŒ Û¨"8ʬÍ_FüíBþS¶8ÄÆìi"2¿f¨‰!Pù“÷õ&_:x2”öu~+Éç(73fâzr–ƒ¢ÝJàX…t#’Šú ˆ´jSäÌ´óÆp¿!^¹í³³%…g%èö˜ÙÎöì;ÂGW°I{›-©‡¡uiÎîç{}gÀÐ…söƒ’#ÀR£ÛÔVÁruªjC×3l¤nÚQøyàmÞò;¢¢W_ª¯™’Û§:dŒ©ˆVíB|èþé6„ô¨3ý8ý‰ŸŒ¡ˆ…¢†C.qU]šAàg&QúKˆÉ»L ž_”iÒ1Aï¾ÆûÌ¢×iÛDÐÁéJ*±—%4¬M‚彯•µœÒŒ” ›ü+Ó÷ŒõÍä?shÛôÚ¬`m•äÔü4Í †ôÆ];‘ì˜~šo8 ¥ÏAË­HÝ2û<¨!ÎÙ$™š3o`ªÀd` SŒº7¶yÀÊ ‚,yp†§fÒéÚòä-ZÓ3´çܚѼFÔh¦‡ø&¦ˆsöñ8LË dÏ@F_¤zļxÚîü“‰Œoñbüamo‡œümÅÓ½ £ŽÄ"yYüC#Ù é]ëIµ@›fB—3â ¶ø®™(Ï8åv;bAô³rª‡RÔ]p•‡YéYuÝ^Ø%=ЬªÙ@D”Žþšvƒþ±E0QUþK"GAu •· ª|è{X:q^çH„ð!ò@Èæ©²ÓRŸÃ"W¾q-¤hƒ:+¤Û¯cýÀ¨‹ÓÓRr#‡u}/¶õqOIÛnw$pb„ºð«Yÿ¼Ícö7ÀŠcåû¦×œ†—åŠèê*ÈM^c‹2¶"SV…ø^6QÑX>E´!gr~œ:aAžÓ!†ñSxXòÃmá7”^r»ÖNYE>x…ìK9ê:#ëtŒ_ôƒŒK(oÊcY½gLuO>U{l—óóg8ß.7¯áŒ¸Ï^…ð? Ž‚'L䯀ñŒØÃ¬â5ø‘gù;6¦ ¥R¸L”Íæ©ô4’ñºgN ä¯l1Cf£_û*ˆÄ7iÐk‹ög„+fªøùÂ1×øÎÆà¶úÍv¶Âì¨~åKºeðâ ó‡›îÇY`èÊ Åm–­Šñ`h O]Óî«Û†­Â·WŒ£–„C$°NÅàÜ"Åúó…´Å±f„.ö¬p[KJBå"׌ ¾CQkAžt¦á\ç&?fdêœÑRpODI?,[€6ÙøMRÇß4褛2¡T©Óµ¹žR/=íõ¨ ôu8%wß×_Ç Nqø 0 5©WŸ·'mé\å¦tµðd9¥CéïˆÞê>é²Í7if\È“\} ‰¤Â}Œá‘‡2“¥U!Ãþۡ匊ž.Ã1ý9d—‹&fÍŠ2BNcäã4ò–WMeÙo“_ðÜeÜh\#9chç·WS@(šxÆ3í&j ®üÐ?/QõµUF*$RYUT[‹+V/!¿Ž=à×v9Ô¯°\ü#ëØ•Oi­ƒ¼9ŸRä=zxÄúš°&‰ F¸'WD¶ù5ÞÕi8,Á³Å{u£ùízë+?OzŸFŒAíiç—S»1«Æ nQT)µxo¥Û­JiK™>¦»›=‰0>¯‡VâoõñLôE¨C‚3sr_üÑ iTä ²(-ô9bG”¿êË…ùüg¾Î°ïþ×u]Ô¤i§ PDÜê©]ËÔAPØ Õ]¢ðaÃrÂÍá_2ØÊ§ ¬½ŽïÅœÉ:»z.¦~«×ECÝü¬¨7†Ô¾LpнÑÚ¸÷ëØ2·è—3=ÏèôùvñqPÉgݘwVWõû¿ÎAMAå< m8sÎk‘ÀÙ%‰ÖTõ¼ÏŽ?ä¹Jl‡Ïe–Ù#Е¶°às(ë/jÔa†® ÛÄrðÛ…#„o2:ñpXx´.Ç”XU®i ¡ð“pR R}˜eµŽU†,-Iµ¢dr;b{Ï £%U›@md#x÷)ÓcÇ!¥qÎfY+uòñÓ×uT`XdMŒ~DÅI¬$Ú\D×aGyÔFgÏ£BŸzæ+ÉìAEˆu¨Œ‡2̺· ï4Ÿ•G´ðù Vtˆsà.œÛ™ó3„°- ]Œq¥W¶>¹(t£R¬=-\Œü Ú¼¬íÒõöØ53’*¦/ ’4¯Sæ4:ìMò®K<›+˜jÓg~][ËàýEÂîuS‹È¤ðÎoºOŠÝ&Ê×H ý­Ø¸84 íôt>åœ1çùEï2—ÀÀF‹ð4¸ž:IGggc´Ôý¤ï,‚EO~q8¯%' #” Èj€5DIÛ>ØJ—ª]<äb¢"Éžícd*jŸçç&u\!‰8¸Ù.¯ßç75äÙµ¼ýyûñò\r£¸ƒtÊDP&zn8–za?)…G±Ÿªkæ+e›¥íÂöE„~ˆiO"›{°*¸xtá³^j•"“Kê¶h/Öê>|EÇ{ùþUƒÿ{¥-7Ç É¢«HšY†$€-¨lœfØ€„`¬ä¾Ìþ˜/S‘?m'º’ìMC/÷û7 ªw¾.Ë€`6G4,𲏶®”áíŸ;埀#dHÒ½0ŸD”K`ÝšÓ7üLì–•:‡–sm  *«`bTjš8×2rÕéù_ˆ_¯Úã@måmŸ(?…æð6(š!B3Æ(瀳3­‡X„°f'‘Õÿ°"ˈf¢ª^lO–‹<§È¦/½H÷‚ù|¬\ólÿñ•Ÿ4|‰iR¼WG`&{í‡s9ä"¦þ϶ÉÅç'35ï:%UüýmN‹-rF4ƦÊl‡ÜåÉ™ÚLë(øbƒU á‘5Ûá³ÔHnå£úBWЇ¦šÙ ®“Ð@”a;~9©†äët´&÷aEs +É$òœ-ŽÛ~9{:#:¡bÞ4(ºé% ‹{vóØ¦ &FRšÓVô+§c4²Fä]þƒü:$nï’cá@µ… ;%Ë I(Î:¦Œ{HΨÊf•u)Åæò1Ó9Hÿm[ ³ªâRÙÚ´Ëó®§Uûã±—–Zi™~úïoÁ¦ò†Èe_+q-騹|΢¸&AóÌgšVatßÕ>F}vžô‘ÂB'•õªÂˆVzÌàƒúñ@“$ç©¿OÉb >ŸV%»É 5:Õ9¹^òšëfú5?à[÷ó·K> uDŠVów'$™è”7ïqVÝrôá'ÝHã*jBT™¢¶³¶>Ϥ>¦Õ\}×€ìFØ\Rt¾ ·‘‹0 ß#Fݬ®<†;•éE¶IM`YDÔ´ÍzÀ9ŸïÍ*ù^^´|«ò®®Þ÷ÔO:Õ^챊-`·oVIÚî‹­õ2ðù1°D6 t3ÀáÓ…ªâ—èx\Ùø wIIs^l¡˜ I+ÝœŒS`Ô”rç/ˆ$íå’{Fȱà¡x»¯×,Â'²Ï½ÄO‰~¸x›©n »BŒTôce‹1µˆRs{¢Zo]qŸ^ÒÜ¡q`J[îðtò·^0†réœ2¥{GOZÇŒ ZßyªËž;e¿òʆFúSšd›ûÙ±:"¥½³¯ßÓãÑXÀ@–¤RrÔZØhð© å¼=c‹O¾Q¡OœàøÓ«áÔ‘EéÅuKSyAùúlQ™ ^¬—&é#2YÙB©ßVšGGcy–úu– >Üvi©¶œ‹9Q¹ÁÂWCbXph-Í{Õ ¨Îc&@±u'† Ö;jùŠ_Îïf6Wyk£HOf„ÄJy†Ái„E–Yg_²Ð…àô‰Uy¡êÃJ¦G\'§ ]=ÑP…ås5…á@4ôɘø!àd¡¼ô’*Ñ¢CCÆóñ@ (?ªŸUæ!Úl‘®æšA%‹5aéÞó§õÒPç•S€dÎòNØ•<Òú„æ‚õv›Iâêʲ žYÕû¥š¹ƒ,é­»¼ì„Kä«êùo:n —µ&"É®²K|PV%¿/íCt$¨›DÚåm]§vI}Øsé¡ô•™›.߃»oø áÀ%-EÒ##퇇ìÚ4È(>Ù ìÖÞ/»•¶éšêúù\èøÚ¾c,L¤ ­²Ë๙e(³G|_*ŽWcNÁK¬È…ÇÏõî±¼Cñ¬®_?f¢Z'a">Ñÿ(ª«ägy H3È Z£ÀÜcáò>«³9S$úƒu%ÌRó9™¨—ùp,0Eî¶î.— ùÆg~ùG«c½©8'kÝðöþ,k^ ,›qc<=2#EÞý|#«ïšð6Q˜,øøX•)FúˆDÙ;kõŽ<œm¹wy sÔ0¾ °Uê\ôQ-ìd+²TÊ…¶¿Ð K¢|ÈÀÁ®Ó“²{%i­¾í½Œƒ ³7S˜½²½ÞûÆ®Gæ “À!ûD÷&xE.Ì“#¹GÛqÒ(çÐ? <»TËùhá¤:ÙÇQ^k$D6@uMG%Ó´¸>¬"”c_:¹r´Ž1Æ¡Ÿ©3È3ÝEª_;ÒMÃàvÉåq8v¹ùX–:ëÕïN/B›;ª¬|¸çª‰¥>å/è\œ7/„+J)«!ãN äcù•±2M¦Zî[ Úlºõ8 –NØrwµÑTÀbÌOLS5 w×®2¹ôJÓ×2¿”œîO†¨Ì±ÆYCöxîÔGùS>=C‘†âÒú¸HžøÍ}n‘¨+ÀßJ8[­8¶ûÒÛÞ@3¸3eq_û&8»b~8p†–^n!ñ1rq±ãÿ˜j ݽÄ8Â?FCºG°÷È`ð ¡/rꘂ ŠÁx˜Òmöá‚eøxƶºGû Ž@/T÷—h(…[£ •;!SªkV6Ù]üüdÊwx†ßýdÈqNCúVd¯y,·×-âvàWbîö-¥Š š‘ m'µ-wúçç_,Û˜’_óÌ7”t¯Á¦î[L”ˆõŽJVÃzôõR¦xô™— v1UÕ”z£Ù—GõnL>uúuf_¯GæÙ'®è¿ ›Y)ªÑð¹Ô?¹TÚöÝ)g} µa¤}µ@-Æùˆ¿âІS‰ ¾6g<6;}䩲Åì×ÿVþR†(!ð|‘€ƒx\;ô™£sØ?¾~(b¤cöË´ž±žþ­"Jç#Ö”¬zyú:Ýô±ÔØ>?t¼¿8§›]Áº`¸eÞ. ¸~‚Þ·3‘¼«T•Ï·gêº ™Ë\©§&é·:¬CÖuû E.±t›Deyß¹÷àgàŽucwW€rP ø%;Òã Jïã]ëz­¢È¹CÞ™.å‹ÈŠ8.Zîäh÷âÕsCþ„˜Çz÷ìªÖWØUÙàlÀ`¬œ=xN©Š#iL—Õö±å‹tï=.û)á†ÎKƒÄø<µ[7ɲ ÆÒâyìˆÆGÔ:{õë>ûÝæ,Âc1VʉuPkàÕ°°0¤‡(œýÖÁ„p¶\ƒ½±0á×^O/ß$ð‘yFµ!”u¼Ð a.´Pù ‚M„_⑈3ÊËW}_cµìÑ\¸±"UìêZ®L!Õw_äŸ!‹OÁ’ †œ4HT¿ð?UI k× ÕB9‘Dâƒ|¸3%Iþ¾ZÒøph^râ5¯ȩã%Ê ãßœiw v¬›þÙÌ]*¥ÍS×åÖ€¿a+¤³Ž…Dú:á~¤žfð{V¥úš.­»z9\]Ñ*Ž8(}ƒV¥ GÈ(?i5IXTO£lŠ!;‰+œ—¶lÑM{'Ä´ÔÈ$fiù©#nýÕ¥¹‡8kàyÓ:àLö¹ÃʼnÎÈm®± ºŸÊ\rïîK´­ºÆ=¾§½úžþÜlT¥%QzV|º~4 bqV–ú¦mq›–aªŠdb!©‡iÖª¬÷TÆ9Ù%ÈG»ïQTD8Fð‹JM .˜ƒ®œvï¸î9ë oròkŒ,I_¥Ë16®¤\: `£±«öKÂ:E#Xé£E¯žÏ\Z„Ò\’… šó=æ5.íÍnp"iuñ0óøgûŒ>2Œ +Ìûô¢_‡íwÍJÝ(JÍßj‚¢"ݪCvÖu´‡Ó@}-G)ša1œ@–+!‘:¾jÍ‘&gÙÀG#cèÛÙ}î9%¤Þ MìhÜ"¾Ší<Ët&pìd§QAJ”~Có¤4z–¤/î37ÙËóöˆ™®¯¼"׋ùÎ]eÍ pA^R›Iˆ(µêS¤ÁU̹óQCgq¦³”(ØÞR"œúûŠÉM‘ÝxJ׿—àñ…¯ôBŽ] ¤BªVM†¢p@H&È|p²“âB9O_-ÔJ“ójm{–­­E•›÷‘Djõx…¦ë,g\Ën‹ý*x¨2©´̱@ŸLû4SN ô<ƒ œäïZ ÎzçT>Þjjœ‚’# b†…€ òêS«UËÉ bÍ~ ©—{3åúèÜ câÜb€™åÍJ™bçx(ó¾Ø#ÊD0|j&v`ƒ‰ ’x+oG€åãº`-n;v<^ŽgÄ[ƒÞ¤‡R¶Ä-µbåæ*WL@“N;ï°{ñð†ƒ«Û7S¶±äy"ôbŸLý Eö™Â”Ç¥y¥%SVÇsèxá‡ÚÚ¥‘ú—XÑ„Øç ·²(ùò%ÿ%˜…§óB>ã9XR~‘fÁ€8Ç7lEEXÛœ§î© nËà{LüyÞ‚6»6§!=7*ͲÏó} ¸5 ï‹ôõ¨´[},lê #\öئ'?—Ó0)šßÕ ø®L@¯^¸Ø 6÷´GÆx6~£©i°EÜ­¹ÐîŽâ ,­Á4ýBh†u¶L.=æ– â…þÈõ-BTAÕä¸]Xáa\ÉTã=gPŠ‹¬àeþzj]ñ•À»Û ÆóÒÉ¢ýlt+Ïʦ£œ²Cz Y 36>x¤nJ]ô81ÈaT,Ò‹“x0c»TfɤW8Ù³ºg::þkÀwÞË1íì‰èp6')°y#¯xGòA©Þéîƒ`©8ÁQΑÔG¤+ ˜CPPKŠ=a A= cSwƒCŒ·Yylb’?½TNñøñÑ{éÕw{s#“¥4>Œ—Ð4±ƒßº‡8Õ–kB¶4ã|n )b¬óQc3P„ךaÔñí‚pèCiîúzíù §Ú¡ûóÚÜÄ)pt °Km(f&+WtLJû¹õµÔë…"&WšÌÆQ˜ˆ¢²ÇŽgîˆbü/A,ÎûìÙ§¶2ê UÎ8ÏCgDž{$SHRê—üݽSªãèË‘¢ ˃øÆµó½shš½NsÐ/bBòºyšU7§”Yè˜.w,2x§Pâ³ê7Q8k¤XqX˜²h“ÐOÁÃ~µñe°T„µCáu…€ùY;€—`²´qf¶¹|³¤]?ŽWÜKœ?c”|žríÖô ãÐkª|:¥_§ßGkºp›0I„Û }£ÌlŽÀèEœíg^ÊRÎ?Ôq¯¿#ïþ¡§Ê ŸQ0Ua¾Ë å² o3·ÇY©|f ˜³¢µùÜ9{Ñ2Q(i:a‚k´VÞWœï¬Ï±¾—úy<'^•P9sûÝÊuCz…éHÑØ'II'á0Ÿ]‡±ÛG¥ž‰Â5&¡~büÏMú5„ÏåÙìrx¸{ût† „Tv- (Öømï©¥œ‡r+æâg™OZEýF2ÅR§*1o‰ÁÕ¤ÔŒŽŒl¦/5Úæ®‚ í0‡¸8½(ß%Z38Fé]ZtÐ ðû ‘Lc 9aB‚FEé¾@BžU‰ùÙð`µ éOü¼Å´TYæ/ƾz~G3†F@Ê¥‘B(–k¾™ösF®K2®]Ò÷5šèxÚœê¨ÿÁªÚ̲«‡EÜl baÉùÔ ÔGÎTüÚœüh7ùĵq°Äv£ê~˜£i„i¯„¯ƒÝžÇB^ŸGG¾™0k3óP§éÛª’Ù0û”¿í÷- ›á–U µ‚Kvì.D‚ÊíØj—&“lUrŒ]t›jë’Êük,X{ËÓ¨}Ý…q$âÈ«[¹ö†f‚'у|°X¸|µ<|“RΤANâb˜T8\I;5t”p‹.ñq#t´à4~rÌü9Å<ƒì¨üVrEå-ø-“‹†•nc ¾·lÖç´ÆOÏ{¾ŽÍbŠMÐŒ‚34ÝÀ/9‘';zD¥×Áv#Y¸[0å.…×ç5ûÝà/=$ß}zu¹ ["$§áÓ펗âÐ÷ _Z×}@Á Qļú€ÜÝøáˆòñu!ì:©ÁŠÑª>r£Œ2µG*&îÑË-‹n^Fˆ¬ü]g;ü™cU•Ã;p«aÅÊ_Ù-Q­ú4º'xrA•«Üí~ÈQ~¥X}QÍ4ŒßúÆl¶ìö•ÙDÃ+¬„(¢}N3*8 ògéïxMö(ðY-«Ó;¤ô?Pš‰Ð•…—ØzºôØ+ôwM>Tœmð\¯+Ðá= k{”„w^-*šÚå»>¹?޵yxÌM¹5~Cõ 8˜×Y1J¨´˜”Ræ{ûJ9ó±—‡¶üˆ)L´D³5M2£.²ð;ô U1û Ù˨ ͳQÀ_ÿi¿‹<]IQ{·Ê¤šÏÅ%É ð˜Tá9b—sÌÌçù±°r\/¨¤ØU«2¢«÷~,ôò|-¥ã%+ÃÀmÉ·¦íqåg>St€Jh‰è%S êq…S4’ŒùrˆJjQ þÏBŽ°Ú€³6ßé)3GÅ›NÜd0”/øi8–œ©æ%é‘‘ÊÍ«Ké–Þ½·"p¶¯'Þ5Ó †x—t˜EÑ¥Wœ²ÙjÁ˜;蔩È_×ÇM.Øaù¹>ÌÞ¿šïìD¯Úål¸ÄïáÞºÐα1þÕÓ‘¹(R´ÉÀ·Ìÿ'îy;ô}Ô–ñÔðœ†ziêªwê¾Z}‹ø½WNóCîbküTÚD½Òú(†éÆr ÷iX]§bØçÛe³Ó˜ÍtМ“Á²·'ª2RŠ–3óhZ×ÚÍ›ÂÔ·ji¤aÃ/NK*C³Ù<ŒkµƒÉêÁ¹ƒÉ½Æš)êÎý%[c˜D±©Èõ;Îõ7 Ñ-åó¬[ }ʇ§\ ,ÎNw,¦êÒšvˆš¾*qÇÜnË÷–Ô“žx³(’{–€G8lõÔï7ÁÀK{hU 5¹_\] ª(hh½Îkv©ý\w¥ä¯¥0¦!F. ‰×ªóxwÏ ÎK;ÙºŽUƒ&À®&²'àdÈ¥4·%^üuU·zóMƧtNqÍ?GƺþMvK"*¬„š.U£uK°¤Uß²‡aÎ,PêLNì?`Y{Ô»•ƒsR”O¢Œ¿^êïŒ(íÛÄSH€0ý̰cÖæ±¸¿a“›ë®†CÆ …s„ç=DsW¥mD¨ÁêiÉ_æÜ9®z{[&õ»\ê0œ]@6€°äóõ)…¥%Ø5_P­è¥0 xbô§ðWâ®ÆcëÓï‹ìzDÝí¢K?‰÷Vvûî˜(é£úÒYÎ~[ýQ/ÇE·QðX¯áþ$ãBµåÍ   1ÞÉ3‡²ÁXâ÷X\B6Jiz˜«Aë|ö(È‘‹AÿÙÒýN<ãÕD“îÕžCCðª/VÌ1SÔ §r¸pyÑ]cš'Ì0ÀkÞ; ðUŽ-$ýŒ([w«1“ÏQ&¥Î-¶Âu‘U@VŽ Ãžœ–²GǨ£0rÅ&®)×bŒ'Ý Bk ŒUeÞ›×Ì?\ˆÄU²sÒùèº M~Õµ™)†ó¤Vâxã²{ýêEkÍ?]ŠâlÏ*áIýË â=žâXó¬…-c¯±ò aŠY‚AUʈåeç }3àA—/kº¢ærdsI,)Ü廇~®X;&-H$¯ýÆ=‚C‰ß…};)þCÆGæY Äž6”††éçs•G@ÿÑa^åÊ&•±Må]ÕdŠCªH]‚Üm>âEyxØ‹G{V»Äc5à‹TÆž•HÊcÅØ›x|u*³VøÞêrî´UJoÛ¬w/„Ñ{Vã"Cœ3}ÏWÝôs±*g<ï!»bµ`ÍOIÌÕ«žáÄ’Ó On3às?C8PrÜr–:Ó s¬3óPúP9= í:>%•·J7¶}D¾ÔB.“Ž|Çõ îZBbá™»Q;%FRF`P¸Ñ” ñg°&µm×÷%!Ë"‚wm Çq«§ä$à鉸p6Jµœ—8æd?Æé3¯»é¥Óê…®T»^Îö 8Å×­zMÏÙÁÍ{7ŲX‘p·u² ü³½®Ì‘f( bZ>û‘_9Ö 2‡i¸Æàâ‰ÀeŽéÃoU®7kÕk÷ôN·ÎĤκٺ]÷F~ýn\?›”6‰* ý=¶·¥ü¸ŽP:ûþ`ÒΟUËà]nÂ^é ‹ï-{äûµˆQW«‹ì ùÒ§Ì¥J˜Ï/“® ["ÓdôšyÒ§9 ÆéJ“Õm–Oß ›u ³Ãž‰p¨´+ é…X|鈔í–Y}Ü•¢&ùQVëF¶ºm’ I*à3µè+åýuâá_N·OžÑ¾¯‡fœ‹ŽÍºL"#ˆ¢PÕaAƒ†Ñ#^¶›HñkL åRÊ¢HÈž™BëïbŒôzX‘‡wgÖ>r~ò·ZƒýeM_[C{0ѾÁš-1³UÿÜI=_édÿçÆF zT}®‹¥¡µ—Øê ´`½lßFš²ÞN6€§Õ >W’®,´WSÖ#bí° EÀ§##ˆáµacìïD³Ÿ*½`¿ƒœpâ¹ÐƒnPIe§Î3 2™ÜÖ‰ŸÐÓ¥ùØôA;'}_s*%iãé¾ù*{s¢;FQå?8™„øºõ¯ ùuì§:†Sm”cŽp$j–À|vQAïfN€W^ü S˜ºX?Ì^9 «ˆÓê›5·•XËxx?þ²;qÓéU©Ÿ£òªnþ†-:â_\€™]§(ž½_PÈúpÈ£I¸D­emjÉêRJIÎu çÙÏu“ÔFKÛ‘çÛ¨ã<žýDŒi¼zÓïXؘcc€iÄÍœ-’ÚÞ5Ì }d> ¬µ¸x—Þ ‡Û¼¬âÉ[ÓYw#šil+FAÅÓ§Ìô²m[ú©&¶ ¥”îÔÛ²mTju>¿&;½ÁÈÈí~dXìĦ5ïõ{é¼¾ÝȰªëÍÕ÷‡ ºIî¨Ùª©xóŠhgo“ްâ%5ª–•‰²r%svѰ,Pœ.fņ±Ð†w•ó0:3¸Ìru»¶õD/6“@×nÅDÝâU–<‹Ûùø%@i^Š“N¸„x%žaŸK4Ø¿o:ØŽ>¡7ýúãýåÅÆ\ ]ÄOå Ô ”]‹âSVpûRÉ>(mON'¨n85¸/ßG¡ï(rä~jbŸŸ.jjšå>šØ$ɬäÌ$í¥ÆÿúuÎÞrw6ÖAuÂ)ûHCøavDe Oîk+1UòÖ1wO VêDãÇ0ì§-j³¥ý˜lA`Kø‘¸7)|ûë»k,~¹ài&™î¸ÀÒÛ„é&®g¾<.çvñ„å00mxÈ ROxÁW=ƒ´Y~`ª¢·¤_ÌÈ!ùØ2÷1Ň4âëî’uõâÿ' ö÷š8b7Eüç (Õ^m¸Uå_¯M}»¼#n¦¡||{RñmÈD§’VÓvÕl²ªð ¼–3ŽþE»ïm`d mƒhɪÇP´%ž·*”5›‘yˆMÞîÎù· i”“J†¥“ FÅ]œò.Löw“XE>û0™~ÍIç? § iêS‘ßÁð”ÞÌÝPa°¤^9AþÛƒïöKm¯¶–íZMð¿L §áF›Ùe$¤‡­+‚} H2Ôbpn×Pöó±´Å)Ì–*0«™‘£‹Ä WXÐ8rÐÑta*âßq#Pe(q;ý²ÄVཿÏÙ §y(O–EÎË~o¢ˆ'˜`[)\ ® f/wj:9šøe‰Àèϳ–,í#YîDíĈ‹SE„(q©ºùìÿÊšç; m\.q7y¢g))Ї`×=ý:Šhk€:lí`!\åá¬XS!“­¹†Ò×fËÒ û6@Iž@ò2ŒXÜ:.'ñÀH©æ8„æ4aN”ŠGá)+½D{rbðýUV`°vÖšT=OÍ3oà£þc};ïËöÓ´®-ÅehmrT6*(\‡a=Èr•ÊÄØY!P™ï¡„¦4¸f]9%Ø\ë—þúÙ×HXÈ×µÉÐý@å¢î'ÂR½GÖƒQ††ÔÅ~T=ÙwÏÍU¶Û“(*)Þ×20{øå2˦~v>ÜP…9ØýƒÒUhUÂ^=Ë'!·š×'×L ÀñaŠ((ÈÌãJúádz"³Ö<«vãÎEJ¹@Çm"í«Œb%ùVá—Tx\!¢­¶ 2 u'>n¸šñ°yèSãö¦ÖëuŽUlDe9¹-²ßej²<„&ƒ}a$b/Bœqƒm® ³37‰ëù.w÷ŽTt˜€ݬK¸¿ê½Ó…-Õ%§wñÁÌç1,䡱+e³:ÉÁ„ß~Æs×§/*•JuÃåܹvƇ-š÷£S Kt¹É¹Ô˜aI™æsjÚüî Ü·þÔœQ슪Ægë´Ô2&u ߸è‹I9_PwAê¬(c‡·ÏŸ×AÙŠûªbÓakÁû;àÖj›qÍ7^â;w»hÎã|Kêm%L‡ØqRfúIº6b—iìvB ËÃPOÛúî¦Ôe«.(ô·t™É܃Û)°žÍþ‡c¶hÕyÿ‚T9>“¸ôS$«ˆa*$[&XV˜¢;³y :rŒN$Ô„'ê²y¸™˜Kù.šå/ý@Ÿp(µ39«ËÎ8õYdQbо{ ŠM¸P‹"ј9ç¼ÌWŠ¢ÈÁ¡&ÕZ\l<¹”ù†¸M¦ÑŒ] 7÷(Çš ßRVëÃí¡D¢Ì˜<›¸†Ù×BEf½›tÀDQºì`q@ÁØÈ˜¼Ü5TŸá«å‹Æ)ëÄ*÷˜N*WðhÊ À|ì1Ø5%ØÐYBrY*s¢Pöû‰jqkY”;ˆ^™Ä©;åPíè•? )Ã2¬±¹±ªø~û>5CÄ @Ü®£Á¨òÍ!„IŒ;rì®}";™Óhß§*;´|;©TD§Òž··œ=Pˆ½ŠµJ†i®ëÔ’Üߎ+­Šòe‘·¶„P¾*MÓ“ü–< T)š¡RdAâU}Þbqe˜©>ЋÍ;Ê­˜ RÀĹŽz²< ñLK, ”eªŠ+Öø0ˆØnÿÝ…(í]'¼^ص¹yç|XßF…ÄÀe”׈½’pòð¼Uä®Ü6‘‘»é²wÙÑăm^¿}ºt+ZÝ‚˜c5!ÙWÄÔ¼ûŸÚ.ˆÛ³Èš;R,€´ØËÇ79øÅ•h°y—/ªcÖë6Ÿêݶ³³¥)ÉÃ*oø¶«·.VFbí0yÉ,}ݲr•A¤Ü|¤`ÁÂWÇoL|ç’þjÌT]F¢´Wì0÷ž±ö¼åì@€~`‹Ù(à ’ôkf.vøÎåZh"þ€œŽìíH¡ 2ØôØ9P¶æÁW=7‰)¤>2I8eªnëiÙþ[3gƒ¼Äº€á£7 w·RÕ”'™™ÅsÄ`Yr‚½ÎÄC;ož´w(A‚³`ødòÓ° * uQÎZ´‡]ìÈ»Ó}ÕÎñJ›Íù@Á>ø¿ö=k%£ÝKE¾H”C¯‰ß}3™b[ÕÕN„‡5Ibó`¯ˆb#ìú°·‰•£eЄ\Æ®° ºµ¾­©óècǃ‹[GoÇÈÈ•íÌ)¤þÀ[ÕPÀ¢áŠN8ºlÓÀœ­ê4¸“†sª„ŸKðm¸¥¤h´FV”åæ0›b¨ IÓ4T¯fh &QAŒ¸¼#©'¤¹ðYÞh^ýþð~e¿°MÔmÕÿ;ÄŸ\´Ûaëʪÿ#8w+”·‡lI ¤aâ¬PuwÃï|¢¤/òœÌ5Ú¼³:ˆ „°`†­ ²?X22=QÔ 7ýÏ)s’®;q †L˜¦ñ> endobj 13 0 obj << /Type /ObjStm /N 94 /First 776 /Length 3901 /Filter /FlateDecode >> stream xÚí[[oÇ’~篘Çc,¬¾_fÀ–ìX޶ûÄÐÈIsB‘ />N~ý~U=$›CÒ)ïb–›==Ýuýºªš3Ô…,TQ¢ñ…6ºP®0ÚZÖ˜BËÂiWàÏKYèPøR:Q•….‹CÏÈ¢ôea@$ÆK•V¶0®P ®-¨˜”ˆ‚ƒ·Ä ‚,,îG ‹ù¥–=ëñ‰ÉÒʻ‚Q˜O¤¥+d²‘¤‚PA.@*i ‡y¡ôriSxU)]Ïk|B(ç¡–“…ǧÁbO¢9Iî‚* Šñ Ž®ñ  Ö&–±ø,cY„PXU/@T-1^âVƒ(ÖHÜ·PJGˆêµ/¢.lP0”‡èÐ'’*°H9 Ëa©ó.ô`G,lUJQúÄ}ˆ&¡GI–Ç}‘,|SÂrC4Oò–%>Ñ(¸ÇƒaOIå ®’RA^%¡–×4ÇB."CÆ“(éÁ¼• ­èx—à¢øBCóc…V=”ŒÀ…R4CÂ+ `v€ßÑ‹äI®´ô4FWš¤xpE´HœD!`¡1Aõ0ÍX¨† Æc)–˜Ô˜H'“„:7,Ó‘/ø“´²†øàÏ:I3ñçì9º R¤[‘$7´,âO7Kc{?üÐgÞÖ…x[]Õ=q<ÍêÑlZlw=ñ®žŽç“~=Åná×õ ©žŽ¿Ÿ$<J}ÞÃò Ö{šöÏ2åç VüðC!žÒwÐ%ß·]BbÛ¶÷—EÈXt-iÝöÉt©KNs,ÅÛɸÿ¾žŸ ÎÉóBœÕ_fÅùBš­zª°¡¨{¦w)’é «Å 8S•QDë®"Z~#Er9—J*¦ßÓ æñ¤®fÍxtRÍêâ'ÿ­¥*±÷°}.ü#PvÞ;kfCÜyWü8©n¯›þ´x3ŸÝÎgX£Á¼_Oè®=’GòQËkLCÖU#[õÄûùÅŒ/iPõÄÏÕ ÝCïi5­Ùžâ·êöò¤]]T³é4tNãE=ü\Ïš~ÕÏFýñä(ý´Fù$NiòŸÏ3&‹ù‰ÜrµøÐŒžŒ¦ÍêöIsyYÃÜä—Oíâ¦ͧÈtâùxVëKr„ƒ1,86âjR}®EÕŸÏjÑo&ýùÍå°þ"fÍpP‹›ª?ÄŤÆ,©ú}xR °˜6Sq4Ïõ¥˜€·èÃýÃaµ¼ž®ªÉüfXÍgb|5Õ¿‹~Eô¦·U¿>¿çÎÛ½Ç>¾¹øwÝOkOoîCpm6pm샶߱q{@Ì"M „ѵÂêY¹¡^ü{Ûºm­ß²mmøÞ·-J3«î›uÚª8˂ѡúÅ ýüúýÿ@w¯·oþÎù[rþf8ÀAÓ=‡~ã¼àÝ÷‰Ã°­ö ß}íù5ð!ŒÚ‡€/l™Á~Ÿà‹r ø¢ú>Á—§ê¼ŒXŸ+ƒ ¡¸QaćUwž×òLVn-Uj#œÇû…ó÷Q*/l³i©É×¥ÿ£: E,í‘-Œôè£4,«ŽÔÎ6uDßËÊÂZ”;òmÛΈú(%TžfhG÷§ˆ[T3‚/ivÛgþ<ÇÊxT¶m¢˜ß5Žæ/¨}MÒû´-ͬM¼ò9i$X½ƒ4ªÕ9߇ˆQïHã ò<Ùôµ«'=¼°l,3JL5­o9èòˆ¾\'´ÒLnË’èä#^1§Ì®¹UrÒùŒý¶¼jí½Ë×Ðhò\òP’+· ÓÓjé±=f±Ú{’Éz²˜%{œ÷>9øÜ‡µFÒ1kcç_þfüNêu5›4´ÿŽ$2Eü[õÏÓ¬§¼Gé{\Í8öœçû™vewkÞ <-Îyß=o&ÓÙñu5)LÙ¯ªìâC3˜]Oé)‡„eþ(ÛoÇi"ÑžÒƒ‹E>‚Ç]YlÏBkiÆ”¢2å2>¡_”«šŠù÷ÿÿÓÿ÷F¨q ,è[B¤´Cñ©ŒÏÊW „†.BãBËBÕï’; ¢B³Â(.P-)¡$²GŽŸkQàá „R‘bÎ×>Ê-«¤¤§S|csÄ X©ušWm´>…ini-bX`‰Mê;ÐìöîÓ²0®ýÿe÷ ÊÍöÑ¿ÕH6yuíÙ¦©Ý:U×ÎÌL#e‚Ôn“ÑS›f°ªšs\j3!·€L‡Ìê<;Á£‚¢ÌÈ *T-à“Ë­Ot<=Ž.ÉYZJš¢%@â…2eJg,¨ ´H²x ñ´cRñ’Xqšõœ¢µ]*¹³ÍLF³[Ú…õ ›(µ %Ë«’ ¤iž"¹IMŒXàeâ6I‘tm‹^p–4n<•fJBlTÈâXÆÙ×1§©>qFySÒbÔrP<8aG؛ΓŒå€z„svªíåõ¤ ̆œnÈ„¶$YOµ‹qÌ-0çÈÆƒ2(S‘ÈÒl¨Ö-7ÃL+èI=›N€:Žîzàƒ({¾›¤‹\} Fñä&ïÈtr£³=ê2Ðß翾c“Q‰9Œ9BjPä¤tbÔÄ#z»ÀŽ#IÞÖ˰7íBj´%Y&JŒ”AR Œª’*EÖÉÒ™@r}Y¶UY“ìî¹²N–-ÙdX•iÑ]¿¬Ô®¬búk<½qÁ`мI,ûÙF’Ô†ÐúѤP P§y¾ÐØŸT{Ez…hD©4 {Â…ÿ0Î0%PÂg}É3©¶-„øž0Æ:åÑ"ÃÖ£6ù¤ͺÅcä‹ÕöÊã ]—RsdS\ºgÎ]Á#±YõòY¹)]ýø^&Þ¡Ë–g¤60ÌdŠ@<Ê:§=v$£:¹0u¦'½÷Q²Ó™Nãµ-uã9ªða#ÑwÉœJê%{·È+E»½ÌL¬õFÖϼǣk>Õ+­+Üúì4ÔtÚ0éÄš’ÝM äÉ{…‰6u¥ù8ñÐ6Ñi[KÛ.zŸJñˆZº¦N¹§$µxnÄjÃA«|$„÷óÀ›Ž^b‰t€–ä§àxóz üiå»’O”®íGCgh~½'RÚˆÞò.ôçÑ’Ú4Rr¨çu˹é¾u$‡ÅŠØ&„Õ½d¡Ôo[ö™Bœ–¨×†§´Deñ?xJ€Ök>¨R›F‚¡·ÙÌÒKÁ.jAw“\`x¥ÓT¥ËYéžaè™È‘Ÿû«{IÜÔO-ó£Âõ\qPÅ1PS$C<:p^Qœ1ù›Ž¤Rláû4ÛÕm?r ¤(Û&ifjKÎ¥ùÕ:ˆQ–]í(Çmöó‘DÙJß–[‹> [Ò-›Ó®MãnÓHš.¯Íiò U÷ôwROû“æv6ž¤c\:ûÿòþý›ÿuüúéGEßS ««iaóƒÞcgŠÇš^¿S†‹÷žLé `h™ÇÕ틺¹ºÆeÄ ŽØÐ½ÇŠnžÎªaÓ2ºÖ…ÄùsVßüJo'öÄÇv"e:ÖÑñâXœˆgâµx'Îį⃨D_ D-.Åeó8eŠ+q-17b$Æb<ªÅ­¸­'Íx &b*¦õçz$¦Í1³ëI]‹ÙÆb.¾ˆ¿%Åž7Gɵ¯<ï4ÔO¯^¼=…¡ž}Tr»¡´…¡Jz_Ò:K.ZYÊÊÜP23*™f²!³’Q¹•&Õ éWËæJLç77üôcÐLo‡ÕŸk**¹Š/>ùø *¾>Ý¥¢Ñ„Êj6Þó5,m;r¹mÃaz¯ }òæ·ggÐìý¿væï²xÌé›6En¥=,LSÞߦoo'ã/IÇ‹jÂÙ*]ñ³úuU÷ ÜHDOÞ?…ªg»ó¸[ºÑ~£ŒäãWc÷K.êÞ·›•K:ÄѼ[+âfˆXëÉKï¨~|ùúÙ‡×dƒ³Ù &À&u†~å3 (µfº\Z@k}Hî:nóÖ)2Ö"S¥6¥÷Çæ”øV¿r1í¯~jÓâSzé=Š„³"~!ÌezUñâ6½jïÒË|.½n毨Gsuµ‹zôw.5‹¹éxܾß×¾×Yy\!õ¯z‰Ä’æüßü¢i endstream endobj 133 0 obj << /Type /XRef /Index [0 134] /Size 134 /W [1 3 1] /Root 131 0 R /Info 132 0 R /ID [ ] /Length 368 /Filter /FlateDecode >> stream xÚ%ѹ/„Qð{¾Ï>‹e0fìËØËØûn¬c߉F$ ‘(Ì?¡P Ð ‘¨ ‰F¡¨”Z‰‚^Âw®æ—sÞ½/¯x""¿†ˆD ’(La2CÆÉ4™$SdŽL&˜^·ÞX$&1 öm=[ u$šDAÜ—Ö>S§vÉ›ÖKâH’9{ÕšO H!)‚\»¬åûBVbÈí©ÖRJÊH9äýEU¤ò½ªÕOª9ѺLjH-`¿Õ³z ¤pìè ™´VÒFÚI ’NÒEºIà ëÝ^ §ZS°æ×Ônhn®4 Âpk‚Ñù¥iÆú£¦wšFaÿÿùŒç'M!²BVazl³ìAþ«ü9 endstream endobj startxref 207299 %%EOF survival/inst/doc/validate.R0000644000176200001440000001457713570775574015625 0ustar liggesusers### R code from vignette source 'validate.Rnw' ################################################### ### code chunk number 1: init ################################################### options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text library(survival, quietly=TRUE) ################################################### ### code chunk number 2: breslow1 ################################################### breslow1 <- function(beta) { # first test data set, Breslow approximation r = exp(beta) lpl = 2*beta - (log(3*r +3) + 2*log(r+3)) U = (6+ 3*r - r^2)/((r+1)*(r+3)) H = r/(r+1)^2 + 6*r/(r+3)^2 c(beta=beta, loglik=lpl, U=U, H=H) } beta <- log((3 + sqrt(33))/2) temp <- rbind(breslow1(0), breslow1(beta)) dimnames(temp)[[1]] <- c("beta=0", "beta=solution") temp ################################################### ### code chunk number 3: validate.Rnw:188-211 ################################################### iter <- matrix(0, nrow=6, ncol=4, dimnames=list(paste("iter", 0:5), c("beta", "loglik", "U", "H"))) # Exact Newton-Raphson beta <- 0 for (i in 1:6) { iter[i,] <- breslow1(beta) beta <- beta + iter[i,"U"]/iter[i,"H"] } print(iter, digits=10) # coxph fits test1 <- data.frame(time= c(1, 1, 6, 6, 8, 9), status=c(1, 0, 1, 1, 0, 1), x= c(1, 1, 1, 0, 0, 0)) temp <- matrix(0, nrow=6, ncol=4, dimnames=list(1:6, c("iter", "beta", "loglik", "H"))) for (i in 0:5) { tfit <- coxph(Surv(time, status) ~ x, data=test1, ties="breslow", iter.max=i) temp[i+1,] <- c(tfit$iter, coef(tfit), tfit$loglik[2], 1/vcov(tfit)) } temp ################################################### ### code chunk number 4: mresid1 ################################################### mresid1 <- function(r) { status <- c(1,0,1,1,0,1) xbeta <- c(r,r,r,1,1,1) temp1 <- 1/(3*r +3) temp2 <- 2/(r+3) + temp1 status - xbeta*c(temp1, temp1, temp2, temp2, temp2, 1+ temp2) } r0 <- mresid1(1) r1 <- round(mresid1((3 + sqrt(33))/2), 6) ################################################### ### code chunk number 5: iter ################################################### temp <- matrix(0, 8, 3) dimnames(temp) <- list(paste0("iteration ", 0:7, ':'), c("beta", "loglik", "H")) bhat <- 0 for (i in 1:8) { r <- exp(bhat) temp[i,] <- c(bhat, 2*(bhat - log(3*r +3)), 2*r/(r+1)^2) bhat <- bhat + (r+1)/r } round(temp,3) ################################################### ### code chunk number 6: breslow2 ################################################### ufun <- function(r) { 4 - (r/(r+1) + r/(r+2) + 3*r/(3*r+2) + 6*r/(3*r+1) + 6*r/(3*r+2)) } rhat <- uniroot(ufun, c(.5, 1.5), tol=1e-8)$root bhat <- log(rhat) c(rhat=rhat, bhat=bhat) ################################################### ### code chunk number 7: temp ################################################### true2 <- function(beta, newx=0) { r <- exp(beta) loglik <- 4*beta - log(r+1) - log(r+2) - 3*log(3*r+2) - 2*log(3*r+1) u <- 1/(r+1) + 1/(3*r+1) + 4/(3*r+2) - ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) imat <- r/(r+1)^2 + 2*r/(r+2)^2 + 6*r/(3*r+2)^2 + 3*r/(3*r+1)^2 + 3*r/(3*r+1)^2 + 12*r/(3*r+2)^2 hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 2/(3*r+2) ) xbar <- c(r/(r+1), r/(r+2), 3*r/(3*r+2), 3*r/(3*r+1), 3*r/(3*r+1), 3*r/(3*r+2)) # The matrix of weights, one row per obs, one col per time # deaths at 2,3,6,7,8,9 wtmat <- matrix(c(1,0,0,0,1,0,0,0,0,0, 0,1,0,1,1,0,0,0,0,0, 0,0,1,1,1,0,1,1,0,0, 0,0,0,1,1,0,1,1,0,0, 0,0,0,0,1,1,1,1,0,0, 0,0,0,0,0,1,1,1,1,1), ncol=6) wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat x <- c(1,0,0,1,0,1,1,1,0,0) status <- c(1,1,1,1,1,1,1,0,0,0) xbar <- colSums(wtmat*x)/ colSums(wtmat) n <- length(x) # Table of sums for score and Schoenfeld resids hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time dM <- -hazmat #Expected part for (i in 1:6) dM[i,i] <- dM[i,i] +1 #observed dM[7,6] <- dM[7,6] +1 # observed mart <- rowSums(dM) # Table of sums for score and Schoenfeld resids # Looks like the last table of appendix E.2.1 of the book resid <- dM * outer(x, xbar, '-') score <- rowSums(resid) scho <- colSums(resid) # We need to split the two tied times up, to match coxph scho <- c(scho[1:5], scho[6]/2, scho[6]/2) var.g <- cumsum(hazard*hazard /c(1,1,1,1,1,2)) var.d <- cumsum( (xbar-newx)*hazard) surv <- exp(-cumsum(hazard) * exp(beta*newx)) varhaz <- (var.g + var.d^2/imat)* exp(2*beta*newx) list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard, mart=mart, score=score, rmat=resid, scho=scho, surv=surv, var=varhaz) } val2 <- true2(bhat) rtemp <- round(val2$mart, 6) ################################################### ### code chunk number 8: wt1 ################################################### ufun <- function(r) { xbar <- c( (2*r^2 + 11*r)/(r^2 + 11*r +7), 11*r/(11*r + 5), 2*r/(2*r +1)) 11- (xbar[1] + 10* xbar[2] + 2* xbar[3]) } rhat <- uniroot(ufun, c(1,3), tol= 1e-9)$root bhat <- log(rhat) c(rhat=rhat, bhat=bhat) ################################################### ### code chunk number 9: wt2 ################################################### wfun <- function(r) { beta <- log(r) pl <- 11*beta - (log(r^2 + 11*r + 7) + 10*log(11*r +5) + 2*log(2*r +1)) xbar <- c((2*r^2 + 11*r)/(r^2 + 11*r +7), 11*r/(11*r +5), 2*r/(2*r +1)) U <- 11 - (xbar[1] + 10*xbar[2] + 2*xbar[3]) H <- ((4*r^2 + 11*r)/(r^2 + 11*r +7)- xbar[1]^2) + 10*(xbar[2] - xbar[2]^2) + 2*(xbar[3]- xbar[3]^2) c(loglik=pl, U=U, H=H) } temp <- matrix(c(wfun(1), wfun(rhat)), ncol=2, dimnames=list(c("loglik", "U", "H"), c("beta=0", "beta-hat"))) round(temp, 6) ################################################### ### code chunk number 10: mstate1 ################################################### getOption("SweaveHooks")[["fig"]]() states <- c("Entry", "a", "b", "c") smat <- matrix(0, 4, 4, dimnames=list(states, states)) smat[1,2:3] <- 1 smat[2,3] <- smat[3,2] <- smat[3,4] <- smat[2,4] <- 1 statefig(c(1,2,1), smat) survival/inst/doc/compete.pdf0000644000176200001440000111007113570775544016020 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 4 0 obj << /Length 2870 /Filter /FlateDecode >> stream xÚ­ZK“Û¸¾ûWèHUYX‚_‡ï:eWù6—T6ŽÄ™‘-‰Qš±óëÓO”(Ç®ä0 4F÷×Í_ïÞüöÁ5 [›Â–~q÷°°Ukl^/*[׋»ÍâÙçóÒf;ø;mWð9âSwê—+—çÙ~X®Š*ÛÀ`d#wxÙðó‡ý3ЕDsÚâä#O·Èò+ñýçݧß>Øva­i˲@VEm\SÀwcšÖ²@wËv;ÂüûŒ€óÝÓR‘{ßÁÇ·´Möþ;Mv‚¤ÃM;\WeïqÉ€“¯ã@t¼èÐýYÝÓ){^Oû½[5ñû*t¸í8ðp‚ƔւØÎ¸ºd±G¹Öý÷~tÃÂã[æ\ÀcŽï-kÄ— ëókÄV…ñU³XùÂ4M˼íre-¬ýŒÇÞ¡XÛ_~Ðå¬@lO‡]9¸œ~•Þ,ZÓVE…ä µ5MÞ0çw@íXÇ †@üq9>uʟȈ?ÐnÈp´Î¶#ŸQ¤~Ã/'WÉœ•%Ï<£†xͨIfšz .{ãÜ[úì ©ú¤Ä¼Ù‘ŒrÜêpÿ/}[öü>¦lOñŒÁÉzºrPÛ-«|“­Ìråmž}X6>à çØdF!ètº·h{ÏŽ¬\v$x8np¸ÈF¼…㋜àeYVY·ã볜ãm¬—ÁîÀjsôB’HÿøÄžAÃÃw£|‹(¸ÕþY®_XLM)®L‚Ȧ—‹GxÕ;xšS݉œ™£– Ÿ²yäϼÌql´Ô=ÏègÚ´ÃOXa¯ç‡ƒ,:‰ân˜PÜÓ)¿‚|}Ï€¡ž†QÌ„€âiöëÔ`4 Ÿ“ÁäFQéñØí™ÁVT‹gµ”cwJðæq^ ÉVlø<ƒS®iç1òE´'Aø'<© ÙÇ×ᙩÈH4z_€¢á^õgn= L*²¤›}LUH·UØdÞÏAù"0³… áç~T +ïÖ¸V°š-ŸÎ÷íêìÝœ§À–ƒ‹6üpΦ4 ±òxP™ç cðõÌŒdY÷Ñp.šÊ¿MìŽÃilcò]ÜLTrdÁvøüpâ—KsÂ!œÆÁŒx.æºF¶Ý8ʲµŒû‰òI¶k»«XgxˆíHqåÊ–}©Û}—œa«×SUØ´;‰ðL‡8^ ŽËÎ(q•g3'¦'…ïÔNn'ŽöpJÄÙðsr‰77¤)O|Øw_S‰—ˆüp÷ý!”ÜpWDˆÖǰӊã´.süzR…íuO}$˜ #™ òh2­èN" 9`y±B@Ú‰C1ÝHÈF&72QÇl{ÒûSñ@Ù‘VÎ:q[7˜[ÄÚ .06áwrßøJp¹Sø¡DaÅø/Y¢í~šœàºWõ:!9âÜš6å0ÊI&„nPm]5Æ€;EgšÓ†´ìRªó³xPEHL”ŽDÞŠCG±^o:M2Øq±ú_*8(IvºUK©9ùæ#1+uȦdXã¢'¦E%ã7m/ò‡Øµá9RÂCê¢[²à1™æÇÔ5áõýß~ljì¸õF\Ö9ǃdUwâ÷5a”ð¾R—7¦hýfNa gs}ª‘˜0ŽšäÕšäIÜò€™úÐ&â$Eñœ®R4${%ôªÉdÈ e¯E‰2®=ÅdT÷>otM¥ÙQÎÒ)^<ô ý!¼Œ’yoð §FÖÕ‡ßÞ´º51Û )Ar—h«òâ‹æZ¿(–]Ý‚á:Ê›Öûi˜y‡©iSq)aßcz /Ó„&™Žá“í¶LnWRÖF.†-Ÿ„Ëu„>º‹KŇ`Š£’²MM5%ÿM•úI;É™Q‰UJ{£tÁi2(l¾£ÕDmrS!üAˆRQ(øˆKìÚ¨àúiìÝÆÈ¸£ŠU/š‘p^®U¾ÄÄ!†eáAó„Ó$¨>kFuOjÝóäC(Ï0‡[W€/œµ4ê_%–ð}”8ÞmÔ' ~qÆÆ)ˆ¬·ËˆÓä¼E5ÍŒ¯“.Íé€! íGÍ—¡'e›éÇd•¤Û ¤ÕcÌi+†z ö¾MD û¤ ª8x YzÉQ†j¼.i©P”¤ƒ2æ4Ôi&g§Po}êë8JÉÓ¶2ŽgYw»È-XªõSΡ¢8é¡-ØžA“3ÖlsÅ?Z¼$xûG4b]ov³@ò¢Uœ«m#‡¾q«pëSH° ŸÁ‡±†f³‚§µBÚË`§W£‘VÜšc§½|9«…mÌ\Ç ¤t…i‹š¥,~²Õ´>s'ÂI½YÇö^N2é4xqÜÈòÙ»Ž=.dõixê´[Òb.C:Úî ®`ë~¶—eãC‡Ë .z4s>&X@Ž 3­·1“¢uÁá95Üi±ƒÖ¡ .YeÞЄE¡2äþÏ^ö9†6P²™b&ÐjJÒ"鱺L[3ƒ,ލ°Ÿ˜Lïq£Õ&Šr¨©´ 0RÔóµ*K“ÛBç)ØábšºTšÓ5gʶNxXÑÐëS¨; -(ˆ¹&7+§." ôŽ.Ñ;Mh)¯Á«Á¡5ƒ•d&@pqš¥;ɲ,Ì»{õ¾6`òirÂ,¤ ”¡@Äâßt™:7>O[ÏsŠ„%3öÎØx7tÜèNeàL‚:©ÌbµûÊÔvªuJcÈý†cl=M3ûÃŒ´UmŠÊÿÀ¨Sû`‚I\U’µB…ÐI†Ù€Ô½»{‚¡‹R’—žø;¸ÁœBm@çÜZ§ó¸·b)ò•Ÿ)ÆËªßKòÇþ u}'ÜÖÝØ‡l{UøÚTu=Í€_µÛ‰à jÛŠ4ðN½ÃiïWˆßq´ÅÙÕ'TÞShEÔbn>“ì’m(ÍêŽQÃe诨 SZFÉ[88XÂTvµkSnMS……Hx>\Õ0FÕ€¢\3µÛÏzdôû`!ë¤rgžæãu•—ôÐ8#j-®Mˆ[±Ç/|:­ªq É¿…: R«d÷˜4Çp€øó&E I[­”ô±ÞØËáv櫃ÛMH¸_Õfßfü¨®M ö™ë/t3nTäÕOÄÿ³Ø&µëôç’¶—ÂÁÆF“:í¡÷ÑCfC"þ†ç]Ü­(…(_T¦­ÁÖ(*6€Æ+k|ë%B}™;{n«EBôÿŠŸx¹Mö—Äï£êoZÝzz›ƒ†!m›øìKŸö…Q§Üô ŒãHê v=g ÀèÔ hwL€‹¶™Ä»ëSÄE«ÇÚ^»2ÞF­H•vu[¦)‚íÌÞAT‹‘åú/¡ÖXßü¬5R&Ù÷~ -ÚØ‘°i…n¢Ð1šÛ¹mLt¥y}ämƒ¾+°"çèÿ\£I¡s 3uz ?ê ª/”0E)Èèt-~âÊ_)‘fþû‚¶™èÚ–>=]«êZ¬|n ü/.®Ðÿ™7ܽùN„p endstream endobj 18 0 obj << /Length 424 /Filter /FlateDecode >> stream xÚu’Moƒ0 †ïüŠƒ4Ò&;N[¥í6‰Û´*i©ÆG m·Ÿ?Û ÐUšP(±_¿yìF²5<’å©HMÆTš‰DålÛ§@äFé˜7Ÿ”’¾ÌV¯­dÏ}ðÏ”Š¼etãùT«MÆr´3¬ØÍÇ&F)YQ±¾ %?ÀÚ_xÛ0Òë”ËÇ0е„dóþ‰Á%ÚP¥÷ ¬3–Fðñ«ÐlêPe ü,Þ`Ø‘”"O7¾…eë'‚,yÎG{‚ :ÚÎU;€²qy{Å(vÕáL©b™8$ß(›ß$|èvD°?,ç–÷‡ÐOÙbGÍâÕïÜ/Âö­ouBëö.98;É¿n Ê®rÙ{:tò€é 8L·êÿÉýý[µž›ÐŠ—.²Ü¶ 1ý”çÛæ £é0†ŠoeeIW;Ëû+)ˆI­¡Md±Z‡¦0¼Á/»ÌÜ9 endstream endobj 1 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-sfig1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 19 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 20 0 R>> /ExtGState << >>/ColorSpace << /sRGB 21 0 R >>>> /Length 922 /Filter /FlateDecode >> stream xœµVËn7¼ÏWð(]h²›Ï£I `k  {[˜଑ü~ªùÎŒÛB¬ÃÅ⣫»iÕ•²êF}™^©/Êjc”u^~È:m,ÉÏßGõFÝNÏÓ“óëßž©çÉ€eÔúûüávzò+Að𗲤Û@ýªØY<´­ŽINêíÅÓùó?—мº8^¾S‡«é—CYæÛ:ÖEmÃJèâÅñýÇKu¸‘ùuϯïÙãõó?ñoôêßéí;eÔÇɪ+|n&[äÿ˜8hOŠ ~¢:M‘´‹Î’׎y;ùz*×熚MFç0wÎßã¡£ö²Û“²X2Sdz’l´•;fí,¹eŒñ¤](’z²ñуOÎhgKв)A3=bß8eÖÙ®#n|2Ã.ŽÖ“é¾Éä·“+f¬œ¸ÜI¨“µÖ?ÅjÄ^Sî OšÌˆvÇÝ ¿ÇÔ’Ž+E6^G;/ ¿ÇC‘áõÙgMkņ—hü=^íÑGÍ<,L‰uˆk S âÅÂ;Æ_,̸ҴÒdF}Øh27ó5ÍcŒÍà6ûä”%Öš gs+Í-cŒoR­VÙÇK3o´7*DrqëÓÏë‹Õ­…ñ¹–ÕdY›=V~qo–}s2©¯e2ÿ”CAã¨U÷‰šJ¶:µ2·¨3¥’'Ék²”!”ÕèÄ× Ï &ÐJeoü=îüE±o­ ôìÛiä¼»=^í®ÀEŒa·> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 26 0 obj << /Length 4202 /Filter /FlateDecode >> stream xÚÅ[Û’·}×W0~1·J„·¹ÄåTdÇNÉŽoÅ•X®Êˆäjiñ²æp½Z}ú @‚«U,9»Î`€F£Ñ}ú ùùå“O¾j'êjSO.¯&]£šºÔ¾QÆúÉåbòÃôîúBO—{üwñãåן|¥uò†iUÓšIÅmo¸EÚ¥W•¶áù‹ÊWüÓ3kít|y€Kh|²…¿ÞÇ/ý˜é¿ðìñÉKø» Ív[n¶»â~°åíË‹™wÓŸ°÷ù†ÔS…’NfºU­×ð©UçeÂ[b£E¶¶šÞ]˜fºC ¼æAØ•4ØÝ’@t}…Rì“vK¾ÆAWøw³–iRÓJ÷³0©þžÓ¬y^¿`à—êßTªr.(ø§  ­j|l€ú[ö<a³»˜ÁøtMŠ™ù¶%8§ Þjeº¸ ÛÒ‚wmºÞ…>¬j›(Ñá´ «|Ö‡fmÀ:šzTݨÛ-jçvƒÿ_ÒlPø=¯°uV¹¶É—8šÇ-ÐÌ{1Y2J7 K‚+°ìüê~%–ôš¿‡û¡ý¦´[´õÊ=4óZu&*·Ç°(uÓ)['KZXÝÖ`@'Gu‹Æ‹ZÜà…¬ÐžŸ-'67œ*ëšmþXyôý†VsÇÞV÷Àê\=}†Æº>Ýå¸ô²Ëy‡7NÙÖçë?ÐFÛË®…UåJžèx ò€ÙFE«Ø.ø‚ß ¥µsL }‹Ç4išvúà]]ZS§Úº ï~zÚ·SÎıO,¦VR9ZœîvMRO»éC¼û&uì§òÍ\¥¼naWÂ$e1.OÅ„ðSùGØol3”¦Z7¹ù²¹§tE¥};AGjÄ>hUs›yvÑMfƨ 6ºlÛ™5¾›êÓMî!œ50åìS]ÚãÏ #™Z‚ªÁi5à´´8­à!]—¢8¾Þpw‘ðN°ÜëAƒ¼núB[—‡ hBk‹à Ñi3 B‰GšôwÜx»iÇAºÓAÌQ'<µ1”f:ß¡,ÿÏÌóE¥ÝV¢Ãpužã(“;–ÉMabÚøéSìÏ”ú£Võ`ðÃÕ-–áñ5Ù•žò* :Œ«ê T ÜQl‡®dYе ‡{š/6°ÂÚ“u÷¤ÁÝxy=JvÕÏì"äl2™ÝÀ—ý¶¤ÀS ”—!qzuTþˆ¸é$ºß`ðÞaÔË* Zéû<™êOà\!!Ñm Û¸{8!1H ¯š€¦Q«‚Èk¹×"â}z¸Æë+uKˆ îfɲ¡Îî1iZÅ”°QVÀX³˜ß_´Ž!&Qòîö‚¿¨ÛÍ—ãX1I<…[hßòÖ Ý^á›woCc±óËQNt»Nä¦ôóþt’a#J¤%^äéù®„fM§PWà…[XôÒ¦þœI€ ß8t›vMÚ<øI\üL‡7\-Aá_…`5«”†ø03š‰4fÁ¯4h÷6ôu8ƒYÑ™J” ŒÓüöü°óé>”Ó¶°™CWï3M}„¨?–8 e«(Çg•é*•ô=Ir1Óœ ug‚N4,€=Y­j­’¼ú(püü¸6¸ö´ç9½Úb»_%Ê£~àÏÄ‘à×oÐK܈ì·3øÿ-:’•8Ka9ÄŒ;ÄL¼» ¼zOÎ98i_ƒËÆh ¢}…Nq']>†¯˜@¥Q[ôë1¥žÅ¸¼àÖ™ÈJ±/ļHÿèfúŒ‚ÈÙìk|÷::Èå–›Høöõèý5‡S à“kT*^Þo‚§.ü$õÛðõ›o™›ÀëçÛb“ùnsÃÉqÑm ÃkñºøB?”X$[·ªjšw!]ßÿr’nE>#ÈÁ)û'G%!êw¼MÙ’+Â*-¯EÍ%Ä÷)-,:¨«,ðÔൣ›ŠŸdð‡•Ø-Ž VKêÆf+Â/üÍ›@ªf,¸#ªOO¿x>¢ ß·Û@4Iü-°°Nˆ À¨‰¯£î¾¸˜5fú¼Ä%e´á()_—¼L¾,ió{DIäG¶ùZÜÕ¿ âã %aYl6j fL@Í ÄÔ&%[N"‡ïjøfª/ êU«õûTYÜ·¥]ÕT®Ïöñ]‰à­[û.ÑùŒö]äX:Ѿ:²p;Æ(WÕu˜]Ã.kÍ£‚6 ñ¿/W«êªK—+€ô&G؉>t¾ 1„¶¸<-nSx¢ÉÑŸÜP\-ö5,ØHv½.-F\ª§rhs޶eZý€m ±mÌœÎÏš<%ÇÎ} Ö<:ÐØ…k~k>s!²EEÁ]MÙõ!œR-¬xØÏ`ô'±SZßâ\AÌ}ÃxÁ!.pöc’íu7ý‡T „}Œ„¯¸Ãtªðuèé(:O’©72ÜqäûyŒÍüVL¯N;cpHB †‡ã™þÃå¬9ýV؈·)r.ºœ>V@ o+ÐdÄDí6=\Q†‡"¡ì8󞬚³9zm„ˆH=Ezh?ðãTðü‹ç|;Äb9² ØIG,zdC’æÁ*MÍv7ìø~Ï÷Q.­YžažḎfivÙ*áWPmf„†¬$fè&Jg ÆU—tÂ;kæ0hxX7–,šÌ~Lƒ£Á…]€¯®FÖ†²õ°›HÀ`ËÝV^aÁI›ùÞf·¿ 2·lˆ'Ûw'íKé™Mñã1]{Úáøt-û­cÅÌLe˜F‘iQÓ˜ZÀõ–-@ܙ޾e…Óõ‚©**écn©GlN6ý+Q‹¤ÉÀŸ«x–GþKRqœ¯–DD­“ßoÙu##µ‰'{Gj’20 UæA¢áºüH*’5‡tzW€JºSà#cÅýÍã¡gÙ®°Íuÿk y*fs°µ¤ d$$ò2ž5o+‡K—ìé{~ëE¥}\ñ—ìú¶gkXzV7][®ü~kTc»œË|‰²KÊo2²‘ƒÀCª4b¦cã–Áë99ͽ˜Þ!²Q3Ù¨y‡[±£û ˜š´®Ç£ûüÌ—{í·<~N²c¯WcR¤'Îð!héâPÑs˜Cõ/øÅŒPÜ §&œòÓ˜ 8³§ÙuÆ堢ƒülzd·­KÂm<^w£>mNƒ:È‘GZ› Û7´¯•ËwqTÁÃ\ÅHwš>t0#wsi‰ð››2 ;$"?nœ[˜ù µé¦w+éu-PEת‚<%S4»•Eb§áHP¶Ë`ag ¢=ìÆÜºŒ«|SO~Ô ôÖÎ@ºQ \ÎV• îö±‹‡®¨ìi_<^ðª¶1v_ØSN9ïÕ]7„Ùë–k´ûW䉨›B™ Ü$ á'0,÷¹' (²n >Á­wÍôùU68!"røñÁ³²«§G‰ø{TÉMŒ"Ë1Me?´\wíqÞ %š$CЧí)òl“.±}“Àøä- ¿ t\ô”{ˆ]ŒË5r§îX†Á³+l„ŠcÉAÃXƒ`2!q§41RX9 2² ²,”Ï—ŸeHˆæv¦›f›—Aë-BH™FEN2[Œ 2µ~¤7[W*>Õ ÀZ?î¥U‰¿7u}¤ÀããÏ)§ä(Õå¨ß°)/§b5ܽP­‘–{İrÈ@rœ˜0-[jÂ¥îÏé_Nx/ï°íj,ªn,Õ dº§=3d Þjd§™Vj²%ůC¿¿PÛW„åV¡ÝF Å×iÁ‰úaþ„nùëp$€¢¦±Kþø‚–â ~ IÐxÒ"_~É/¤©å“ë£òº8¹ü·‘7+Ff«£óþSqG{]ç?ïÀšLfÎÚÆß¬ÀÝyÈs3T­_KGÝ裠ÝsâféýR¶Þ0Gjϯ>Ї|¹ÈÜ.q˜½H~Øq³ì,¤ë¡鯅Bè‘€ Ñ£ø+¿0Z¬UÿL•&·ùøHç?†Ð>hØVlÆœ–?n~®¼‚ŸŸ×â¾GØf{ÚH¼y,…ˆ[¤ùó©>Sù©t7ÃFÑï®cqÅX§ÂÄY $RíR)gàëŸÆûÀ©I5êèÓ¤61xô_b\Ï*¸ÌïgɸSJ<òg?*ÂÏV [)¯¢ €ÁÞ‹}íé~¿t.&¢ÐB…•ªTgÜÿ¡`ƒvj˜R.>õlQÿ!ß0j®wk‚]în¥ Sñçw}òÜlsöâXV‡±û!–hÐ×^^é·@Éû‘Å÷å]””Ö8z!(*¡ä¼+sœu3cÐ*ëíQ°B¦¥åüÔlÛ8¡N¸K]ò2ÞñghX%LguËälœJ‰;®•Fw¡²vÍÜ@8Z9) ödóפÛa´¥ŒÏ1ÞCš=²/{¬bõ‚ÿ\‹ãÐNº„+ ZX§ëÓ‚‡Y`²,¥Î¸Ûû‚ER ¾{˜ŠˆyÂÝ[‘¶ƒœå˜Å!õ]Eî ~wº÷só?ì4•W¶ÆÂÔ¦&¿Ã°áÿœÐ endstream endobj 33 0 obj << /Length 1889 /Filter /FlateDecode >> stream xÚ½XIoÛF¾ûWè ¨Îp²E.Eë"-¤ˆ‹šeDJb,‰Ž(Æp}ß6 %6Î¥…!k–7oÞþ¾‘Z$𧕉MQ.Ò*‰“,[¬7ŸnâªÐiFÁ¶”“…—¯zñCó+üÙ­•°\<¿¿»yy[.*dW,î6 ”q©áÞ¢Œ•6‹»fñGt»TQŸíx‚ÿír•¦i¤¿]®²,îv°Fë²q€q¿\i5- ÷ðxgƒ;'Ÿa¼óÜÞÀð'øüöŽç Œk¤©ãåŸw?ƒðE¬TÂ+O±\¯ Bn¢³0Êò®bYxw+K]FK©ª³å/Ç®„¦Õ·¢Úû$Oê½pþŒÌZXR̼c‘>P §#îà¿Zøýã7|ŠÖ‘÷gæ™Be¢u@VÝÁIù l•UTaÒ0é#7á¥5Î?ó"˜ìå­RcW*‹+púJ©¸Ês6àšEW&-‘.•UœUB¤˜(Œ’,ΊjРf.MãÒä|Ds¾æ“Æyeì>[T›2zÅ_r±ÊÂøÌb­µ?’Ì][Åeª,ÍWé¨ÿGÁ•)8‰b‹xR|\ÇVªs´Dª‹Hñ×*8)Q‰á€[7tHE1f¥"dÚŸ%ýàø†raîÁT3[u6-pk]~2ô‡6ŒÌVø®1æv.ú¡õ×ôr”·5F-¥saÀ@jÏ[$Á hx0+J&ÖÁ*ÒÖ Ï¬uÒ"ú] €ˆôt¶?ж0–´ÆáHF{û ÛGEGÞ%û?ê´Úøƒ½Ôüe¯¤êÓ£ÝZªn?¢TT»äô†¿½»Ðt‰­`£ámÉç\U²/½HëÎZ” áÓw`¥Á¹(Bƒ›=ÅÊö OÑGœP­?ÒÁ—]ù†qw´zPIZ·¼ü Æc'n‘µ©Á`a ½ˆå–Ý}Äÿgë6:D†ŠæÞz9n™M繯]a%VÃÄh¹MS°(Äù*Í3¢%¯´OàÀ–§ „¶áÐxÆX}ž3׆.Âî¤Ê¨á4>ÚÚK»TÛe:‰¤›I4@éH¹ £RU¬²Ô–FTЋ§ˆGÒuiNb£ÝAºqtvz!-dÚ]$º¤¶ª 6µ*Öc·É(-/jÖè²Fâ¥ð t¿YÊ’ 9±tØTU}ª(¦¦¶ >M’s¨lA¢„~gOJ…{5Ó¢Ê2Ö*ýº†˜}EÓÏžmˆÙ3 ±¼lˆI=TŽA•ï•ã÷ZL?ð^±dë,“GiÊU"¥ô‚j&n˜5«z`*FH{&“¸çÄåëE$l’Ovt’Ǫ0SG¯mÝD5"¶!Z¨™4Lõ%b¶‚dŽ¡Yw=‚ [ÊÜQ‚™xÝ`â÷@噡öP¼]–×þ nòøZÄ©2N_›»isnmp䑪S†XÕ-n ¨„G®Ê¬R•:@[Α°Ü9Ä{älX‡°KÀÆ€pÉã独Ü|DU¬àÈ}%^Í(ÍÚœnÚ¶\åŸÐ¸‚ qa<3øó] &;¢íÄ“©(`ÛÆÃ;·Ë †í©Ê ›ìlÔ7t˜C8ÅvÙÕ544³Ï8¯î;Ï‚*OÁ…¥¨ÊïlÁ.“G,.pÀgtPy›Ò=Cf¬‘Çùô!† ë“g~´Æœ˜éØ{hó9$;>ÇrŠƒéµ­®$—wÆ!hl]‘Q„·zp¶:Öå…µOcM6As5¾š¹ûXŒ#o„ K^Ê%/)¨Ç÷¨'ø¸9 yo;”™Ôk˜®}”²‹R_ÓÛô¤¸èì3d™$XlžsCê‡3ïZh|}Cc›ÍöT<ØNìO3HðD­®õ­NW•“tkc#o%]•ön$ îÆ)tõì(Jáü!|¯’tôÎ1ngy\XtàUjD ç!£ŒÜ'Š·±¹÷GÛ³ˆ>ð7)ÛŒ¶VÖîi"B† ìhpµu;gÄ'7xÞ(ã_›†ÛÖXï<¡¦¾lºw/¾³g0mE­¾^:ÊÏJãÓÆCë9¹,QükZÏÃnz—뛋‚—x5eê³?Hðè^~¬šQes‘%½ô„?õÃÌM’l^Ew,ù¿Äg{¨ÃÜ¡…ŠÖ)"65Œ j–úr²}.Óñ€{z»]™ø#Lª“•úá´ܱƒ/ëA)´.m©*3NIë@«óÜOÁÆÇ‘£‚ðßÞÿfsïñæ#ÉLóÂ#Ï^P'9î@ñ¯|·ÓqÓ"§ßu xJÐ}nÝüxwó¸k_ñ endstream endobj 30 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-crfig2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 34 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 35 0 R>> /ExtGState << >>/ColorSpace << /sRGB 36 0 R >>>> /Length 761 /Filter /FlateDecode >> stream xœ­UMOÛ@½ûWÌ ;û½WRZ ‰ªH= ˆ†š@!®Pÿ}gí{ã¶(ˆpxÞçÝ73ÏÏ'@pÍ<¡VýÅê„^Ž.ÿ<-á3Ü7‡›óG0›7 •RP_ç³|78xn..AÁ—†à„ÿîÊ8m¬Eò !iX71äßWó©‘a!O ç Þ5Îón *+x%xx¢ð§xàÏ›ä0øÄk MhPô-¬€$‹Öðˆ:æ#·¼žPP2èC-²T1ˆªìxG[‰œbá"‰ ~©­Áä‹Hæ2ÃT4ŠFW„3Œ5u[-ÊX¯7ëæš§þ^³E7ÐOr¼ôØŒ<9Ò#,Öp±w|ß>íÃQ°÷kÿ'Íñ¢;çåÈpŸÎ;í½[^µßöaq·ãV¡u\œBº >ÍNwœ§ax~Îeä§gëËööþ+œßn¾ËFy<©2²áRådÁ25áOñhfÃöŽ•™ ¿ ±2sÁã =Š+3®ÈUn6Æ£Þr³a9ºró„ÁØfUn–SÅÍ¢Jê,îþn•b碡²sVa+;O]æ;¿F>*ŒñÈäñTîRnÛŽe]Ü;$·õ‘é¥Ú†R³ CýQ™báúxÝVßrhmߤb^¿1…!ñM棛š¾„ãÐr‰6i¡`i±ð§xl¹Ö6÷ª´pÍyÔ½lUÓu¶dÔYp›1®'±Ù.!csòVEöݺºi—O¯ìï8$|ŽŠé ©eŸ³æ7 Æú` endstream endobj 38 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 42 0 obj << /Length 1386 /Filter /FlateDecode >> stream xÚÅWKoã6¾çWA•X)J²Šfv‘hwñŠnŠ%;Þµ$Cr¾ô·w^”([ÞæÖƒ$’3¿ùfHý²¸¸¾3ÑD)?"=Y¬&iâ'ñ|G‰¯Ãh²È'yÚŸ*OOgJiãݾB'ƒ§Ümá]´Ó¿¿]ßÍ'©ŸÆ:FÁd¦æ~8W<ýÔöYƒïé,4¡÷ÍÍ^ÜÏøÓnÈ*¼¶,¡]ÃÈL'^Aóa"<Õšå vÚoøâœÜÔh}+Å>I MÝÊóÔŠ½&Ã7ZÏY{Sñ—Du¿ÊàZÚ„ör´–­q(+Ù~½êUaxýÔôÓÙIboV Æ,JŽ@£00h%@?isÿ Ì0ŽaéçèÇÔ:öZ‹Ú˺šê9í&#ìZw¶§^ mYôâšE;,kK±¿DûÛ-v"¯Ì¶2w]e|–ÖúDtÿ€çÃ'xA_±„Ôòëºá.ú^dBXáâ"TáܰÃÓÃtï+ÎXî Àe2c,¢ÕM¶Æ¥êVâkB3`Ÿ C¯¬+Ùkâ-q+Ô‡M‘t•e½#pi (X‚ÑÆïm""aÌK{9ë´ à„ü@jgÕ’€n ZÔ¯Ÿï-\ÊóÙÂ=m?£…çiw.2š„É8ˆ£¢GnÀöfƤƒˆc?k¤ÁÎS³ìÉóز3Iz !މÎQ/—ù"ˆ[AP"^/<¼lº0ƒ3¼¤,S£(· Q©8°äwìS¡¡]ΞbÃ8³U$ႎŠšQ4ЯºEf¹ìRãÎ6X#‚Èk çg‘v8‡AÏJlwÙÓÎ<$g$ä”òÒ^\Ÿú5OÙˆø‘ûÙÕ}m ®-°N¶.dÊž¿'ÁE}æ”ê• 8‚ D¡ÁPd§ùµ¯¡4‹"ý<•BÝð`°òÁŽg ³è´ü)hBk¦Á55g×ÞœMê:¶“çaÑOJnöes kèJ†Ðfþ ¨^3ìŠÊk—pôJ¼yì á09k ëµò~—ÖrÀ\±…J\ØŠ¸•] á zÕRTljÜ0r±v‘KߤÆïÞ¡ø&š[1þêøð ë_Âó³ãò¥ œê à¡—x€Ë‹¸i3ã;¸Èú{Y{'Ï–Ò¾›9‚\+Ý×!B…hW#A c?2!xú©IØã;È•b­¥]u*N°á†/1ÑÒçqZ9†f**±ˆiGpÙ!-+-Xê„Ê­àÅem¨-àÜ©ÈðJ†»Ú>Ä/wÀrâ$üsäÜ™“ SÆû©sºó”>Èö¢öã›1YIš7âÝSÇo²pßÿ9×ïâgÜÂ’€‘[tÅÓ q»¾óh ]çsEð4%n*ï#ÞÉè;*þ܉)A¬7nÖ»{E:ÜõI2©uFž‘…ÒW’$s<‹UÚõ§¯Ôpht¼æ'^3¯íØ6ŽÍ9¯*ú©´SJZ—‚É€®¶&Õ§•~Èâ.ÚKÑÞ¾é qÊp+Ê–ø…PÊY:gÜ7‰Ù1a9\Å?J¥¸íMlåÌE•­*¥åsGÄŸN:4=w²¹ØØ8Õ¼rTì1zÙ»w8³àqÖnäkžScý}¿ÿÂ9Yìå]Âti/_r&5ö×Fr~?tw9œ¹£åQ(—gÄCNIQ!pa<$zGgn !”•8ŽºÃÈ…!òµN­B5bÔ›-8¡ Sþ•Gc3r…¿ûõ±þ«yä›0ÅßA¸ð¤r¢Ða|q»¸ø+7Íþ endstream endobj 46 0 obj << /Length 1856 /Filter /FlateDecode >> stream xÚÍXKoã6¾çW9ÉÅš+ŠÔ«h ´Û.° ´Û=t{PlÅvc[®do’K{çE‰TäÝ=ôPŽ(9œùæIéY zVæ*ÏŠ™)c[;[î¯þ¾Re–K ¼!‘´l“‰×ïöföCsõ+ü9ÒBX.<žßß^½~[ÌJd—ÍnïgZ'*×ÉÌä…Š‹rv»šýÝnæ:ªç “ÆÑSãeµfªŒW<~†aR[¯Ï{œ9Ì“":á¤i6ó?ozý6Í}!ÒRe9M§aÕŽVòE tt†2ÿ¿{øm‰NÜ|²LiÓ3«>ÄÚԨ d°eÔ÷3 ‹ì=]«§­6&ª»ù"É¢ÇÝ+œ·jßœ&÷¯*œ¨ 5[$6Vy vÐZ•iÊò¼6:·¢ímas ‡¯VÐë$Ê5‘&Ž:êàP w"PR–Q‹ª®e3‘;„m9OrØÃçtS(µŠëPc{'y²Å_@m´2Iâ6½šà›ªBç>×­p«Iµ0^ìq‰³¨i§$ÎUVô¬OÂòiÚ'£Še3Ú¶ÅÐ8:,À=-r¡itÄãš5þ¯öûÊyÂ’©ÕjÕû=<{ÿRhf\Û÷Ö2sh߃©%†ÇDlÍÂ:—úÉ!‚"Š¿i2-¢G§äNVì«ÏÒkÂ'a"Hë ×VK§‹‘Óy&¹¨´1œ–(ò†'HiÜïdŸ59ðŠ ]³ÇW¹:ñÜŽ|QvvxÐÞ¥ 1®¶ª„ühðl°ÆâQøè(Ç4’qfØ(<ä˜2Ñ=x :¶–í¨ $È/I¶"-‘ö(`ð Ø‘tÄèܱa¶lȳèÔÚÁÅ z»•Dú Œ?Äi ¯oà÷ÆšMJLjsô¼Áu?‹Æ}6D|d2F†4®ØÅFgÑ£3Þ¦9ÓˆfQXO÷iaMvXJz†%•H`tÄ¥Fç-ÑôÍ@'‰÷Îñ(VaiwbcS”±×ê’]©rsävà™íÁœx>è¶­áù‹ ‰•×͇-u—€<iz/ö¹ íXSgÊi‹L•y1¡1Û ÒŽµÐS(˜x@Á„)À½#FzsÝ2ñ¶&)£‡CÐ¹Ú hAa`m"aä%Ÿ€õYf¼‹"3â󗮈¹þc^*‘ûв·ùäóTðä±Jû|AfMJeÊ¡~]2\4º~%#ì |Ž€è®m݃۟À =\•»w¨)8@«›Ú ™få¾eo‰9Mýª»á8ˆeq˜éúÚJÕ‚Y'c/ÓŒƒìF~ñÀå3a:•¯¤çw‘:îª<•C7ø¿¨Œ ¿’&µ·t3,Ñÿ¡š÷r„»¨6Û"ôK½Hþ:D`'ÌîF(ÜÈÂôZ^ÓÎ;÷zàv- -öi  ë/Fæä‰º 5¥sÀͨ8Ë?‘NÆGNëºH Qò\èØæZÑ]=UY6úèfÅoJá„Jã/•÷Æ­áî×±@鳋}ðí-:ö’Ë_*{Ô~-ñÀ¼½q&ê?ÃÉî˜ì[yðTâ]Saù8аÛðxä! ýá­§G%;od‰ #¹ÓVž‹Ýˆ‘’‹Í„.ReM‰ßÞTQ,r†ë®~¼½ú÷ÝjŒ endstream endobj 39 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-mgus1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 47 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 48 0 R>> /ExtGState << >>/ColorSpace << /sRGB 49 0 R >>>> /Length 3653 /Filter /FlateDecode >> stream xœµ›[ņï¿_1—ö“>. ‘)±¥(B\X`hm‚ˆòïSÇ™ùºŠÅ ä‚õ>TwMOª«ßžÛg[ܾÛ~¸ýmûa {ü#ÅFÿŒÿ¼{½ýc{{ûøåíïÿþç·/ßß°—ÕŸï¿|{ûç ܽüz‹§+úÁcßcØòÞÂöòÍöìß¼~¾½üîö§—ä[+_j|ï| øYòUÿôÝë~|ýöËÿªxiá'/œ¾øä¯ð{Ýþsûü‹-l_Ýâöü÷ÝŸò—[k{/[™{ Û›-Žº§&ø°½XÌBY­£íeV¡ÃCÛS=} žöD=~ØO{©ØôÃ.xÚ[Ýk<í‚§ýú2ç»öß<¸-⸤®ƒ›ƒ7¶~Ýö™/uËêÆö6/•ëS*§°—r©ÜžR¹„=^ŸÜŸR¹Î}ÖKåñ”Ê}î=\*Ï£2píûŒ0ÌL©ô= æÅœO:­¦Ö<¬L§5fX¿í0 ^ì=î5ŸvÆÓžÂÜËùpÁ‹{ØÏ¶@ŒÈcD­{ÌÔ/nŸ>Zw†=qÝôôÊ1 p??…¯ kvöG¦á£µSÈû¨L¥Çkç±ÏBµaA]ªL!ÛJ±;åŠ$ÛÂoЏž>ef\gx~q«cÅ7µ„¿^L1c4c…e·Z§Há›ÊÞîjÁ¬ìb{½«U÷6Ø4Ò^ËϘ(þ_›Ø÷PØ6)è\l…F[ÙK¸³5 äl{®w6è‡Ä¶Òžï+\Xb¤Ýæb„ÅU¥Ã"ŒEº« £Ôm,{¼« ëy5iº_Œ¸«hMh\¸« ¯=ƒi{»v´_‡0&ŠWk‚&ÉPaÄ™÷u <*«µã2¸³Ö}h£J¤q±ÂËfõÌ›êÝ ÁP©çBA÷ÚÃ0¦]Æ›–Æ}Ý6pvˆ•BõÕ:þÃVØ;a4îê b¥­ü®7Ê>µÍ fê}Ý8q&°µgœwýÜpXÄÚ÷|W·S°qÄ=ßU…µ:µ9}ð§p,îjB{›Öœ¿5b¸I­þB¼ùÍY^‚Ag¦VbÜ{¿¤y‹]ñH•ÒŒ{8S-ÅÞÁa<óDÅÓžãžúi<í5â”<ì‚§·ÔtÚO;4¨]ž/xØï^ø|ÿß/L0óc¼¤'OHmðÈ‘®¹`ýðº9ÀJ¹æ ñ Î æþµÑñ)OÆsmµŸ<üLeÜ÷ÛµòSž MøµywÁ}áúÎùx²¬C͈ÆÙàZ ^2Ë‹=†ˆ;éQ@øZú¶›³óµ̉:.%˜/%RN˜ò%„¯%¸åg‰óM> IJ•ŸðŠfôþ”KªÃÞ •«§§W£….õ˯¨½I^¼·§×O°Bäè ü+êCXè’cžÝwðß@pXV¢±b”=£¹°—=„Õ ~öÿEÉH°{§y(Ÿ?ûçs<nÏ^¿z÷~û×÷ïÿ½}õí«oÞ~ÿþÛ÷Ï¿Ø^~ö¡=y‰‰<¿øñÝóí#ØÐŸýôíOÏ¡/·g¯Ÿ¶eþÂv ûGøÅíRpÄ$OÐÁ8ºÊÍX†ò]x‡ v)r¢ÀpÂÇ0×î0¤v]˜ü­pF†®X†¸0‚0ú3 ÉÒ†g¹iög9aÜ¥  .ÌäÏr‹Ä“yËÓ3fò·rÚǃåˆç-䆹Çe ÃÈrÀMŸÕœ•ËÀà r'†;ž˜[p¸aZËLþV®Úó)ËYçÃ`–Q¨ †£°å¤ï;ÙßÊÐUl9ÐAL9ñÂyJŒ€Š‡å!ý ٴ厇fò·2 #rÄ…e¹Hà6‘Θâ '.¿r’õ ÛŒÇÜÀ˜î8iä0¸üÊ™ã5ri.W-Oþ,ž/µ Ëuaò·räxƒL·I+^6ò·0^HfaØ8=æùÊz¦åÇ$f0X¦‹fò·råxac¤ò+Α!ðZ–|=ÃÆ«Ã‰ã%2$î–#ç{Èäoå€i>rÁÄÃp‘ó"2ús˜×$58Ü9ßF†ƒ—Ç2^ ÞrÃc:3l–+†!fò·2-säÎåWN¸Ì˜Gu8hù2‘a8ÏL~ÞÄÛò8ÎrãójN/žW®Ø fè83µÛZÖõœ"—_9s>˜!q®Õå”…Çp8a7 g.¿rä|yL—9ž¦âsÀ×@®¨·ÆKµ.<ƒË…ß·aÃ-”1˜gtXòÉœºÏMæ V¬WÙO©»–3ƒ˜abXN˜¦ Oög9a8˜XŽF™ÉßÊó½ ۂ˱ Ïl•L/ø]ŽY6.Ë]â~qnò¾™„#˧rÃÕr–x /G‡Iû· »5—sÆ_,Ö#ð®$W˰ Ž& çË]Ö¾îpã|9£xZ®|^DÆ|ßp–ñàû6ËIæC¥Ài9È~QéV|eÈ¢yºÀ¾ éÈŠE‚d%Ъå(”;i ŽÁB"ŒèŠE– ~ÇÐ y <ä†Q9Å)R0­¾¸EWGþ`¥xrä=”á•UYRexå 'WU†®23T6\yeª2l¸¨2+ÊðʉWΡ ¯,‘áP†.‡2ÎÊ°áÆ™•*Æ ¯LU† gUFY6œxgVå×0 Ãáür²åweØÙ«*Ǩ̪l³òë°Ü °òk¸«òÏʯá¦ó•_Ã…#—*¿ç«òk8qf¥Ê¯áÈ‘W•_‡£*äÌ.œ¦*›¬üªÜ²òk¸«rÊÊ¯áÆ™‰*¿†+ >‡òk8K úÈò¡<²2l8Ê̓(ÆeçTexeØEÙfeØp—õ&ʰáÆ'sU† WQÖD6\P|8”_Ù3;U~ 'UVYù5¬óA”_ÃA”Q~W¢œ¨òk¸éû°òk˜µ‡Cù5œEå×pÂñÃM.]-GU¶Y6pC8”á…Q™kì”aË]â!+ÖŸLEöX”1R†-WUÖû[¹H<š”XÎÒŸ¬[Nªì‘rl9°²!ʱÇ<Y96<¦ô+Ç–‡*{¤{,ïCʱå¦Ê_f+WÎ2D9¶\øä&ʱå,ãÍʱÇ9 “¿•u?fåØãªÊ0*»+C˜æýP”cÃCǃ•c‡ÛU96Üu>°rløè/VŽ ½`åØpæÌZ•c‡e9‰²lX•Q– ÓôáP–NÜ^V–W†#IU.Ùá.'wQ– 7UVYY6\ø¡Ê²Ã¬,ˆ²l8«òÌʲaU¦DY69ŸQeÙaQþJ,–Uùåyå"ù®*φ‡*Ǭ<;,í¥#¾å.Ê•(Ó†›ÞL°2m¸êÍ+Ó†‹(¢LVåE”i‡e¼X™6œôf€•iÃ:¢LÖù \ºe8oŒ«²lxÈzƒÄ •a‡sFåÙpWe’•g‡ï”g‡EyfåØpeN”c‡++¿¬;•Gq¸Ü+džNÓ‡C96UÙgåØp›7ü{¿aµ&Œþæx#ʲÃÒ_CýÝóùIBò˜oEy6ÜU9Ÿ\~åÆ_©òl¸òy•k‡³–GeÙ°|yƒÊ3ù³\®Êµa½ùåÚa¾Y…ƒYŠÊ4+׆õf)Qb`9ˆr&ʶù £r½rró…pv¸óy•g˜x–›(§¢L®ª¬w LGeTž }+׆³ÎV¦æ›]Qž 'YO¢<;ÌùŠ(φ£Ü,ªò¼²äcò——(LÊó¦Y9NTÞaÖ'3}Âiyh{«Ïz³ŒÊ´aÍÇD¹v˜÷kQ® Wþ²¹U‡åãâŒWTÓa9ïªòmXoðï’‚ÃQ´_`¹ÆÆ£TÚé#ü#žzaúƒíGëµp_ùwùë ÇmrI÷Sô ú×Ï7üýõ›W¯ÝÏÙ÷ƒÌžž‘ýãÒÛÿð?¢Á endstream endobj 51 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 55 0 obj << /Length 872 /Filter /FlateDecode >> stream xÚµWëoÓ0ÿÞ¿"š(ñ|¶ã$HCb°J @ë|`i7*úí€î ;~œsšî„¦“ßÝïÞ—ìd<8eV³Z /2€’éZeº(™E6ždŸ†/ŸÀð«¡9Ò³'y!äpc~þ4´6ôËÐ…¡™¡kCŸyÁñj…" Ÿ;4‡pì³*Ok†Êöù©×˜¢¤=—­IðÜ?­V`ÛêM0’ë¬KôÃ*Š€øeü&++&¹Îr!Y >'K¯¶D©3¹àuƒž¢QË;txy`uY¦îµncB¬‘WåP›GiÈ‘55Dt’ôö¶{-ãšm¼q;ä1&³TåczÞ®º­þ#âVØ "3Ã¥éï­©Y¡djàÚI9û‘MrzV¾…]ÁHKßRfLIC6Ú†¬qŸ<²3¥:Ý¿2û²À±ªb§ä j?:ÜuLOÏ’Ü òö4žÛ³G©'Lg¹_9áìó ß^«ô%×WcìÄ¥ç8dM«N*H§Ï._dޏ7» bP¤ƒHbBÓÛª~ÇÁí¾oÃrzaè­!ûª>M]û q܆î*½ÅhÈ×C€„(ÛS°müH€á9*úH ¹và±*«8í±³g(y‰=¼"S¶ADŒâfÁ÷d†Î †ò³X˜îr:ëYNthÒ™ÕI›…D]’ œ¤5S‚„w-é:>@Ýtì'œïÙ)Y~sâ("ݦ~‡Z;«²ÖUëO:[iVWÎþßc=ÊûAzIJÎ|ÊÑH ò).„bª¬Ìt¸˜{‘äk½`BÔA`ÙƒaàÞ¡;§ãÕâduÉJ]e €™,7‹ÁU–ÊñÉOÇ Zxqôz¡²W«ÁóX9"æ-ä‰ý7¤"^I.H™U5“kZÏþÇ«p endstream endobj 52 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-mgus2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 57 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 58 0 R>> /ExtGState << >>/ColorSpace << /sRGB 59 0 R >>>> /Length 3608 /Filter /FlateDecode >> stream xœ­›K·…÷÷WôRZ¤Ý|“YÚHHGŒ@ðb,ɉ„‘ähù÷©â9¼#yà,4¸Ÿúv7ÅzòºíÙæ¶wÛ¿NßË¿oþö§o·ïžŸŽý8Žíúïóïþ"ÿ[ÒöïÓË·c{}rÛ3ù÷îäô ÛŸOÙïµm±íþØÞoñp{­Äûíùt™ÆUçÜüùòÀËõÔö/׉çëþ¨»+çë/×SÞóq¹N<_GÚp¾>ðr=…=¦ËuâùúMw/½?_ÿö÷ÕÃbp^}8}óG/3ñâç ãyùÎÇîÜæ‹6ûÅûíÉñt{ñîô‡ýÉ_¾ÕÉ`¤xuozĽ)î®^Ýëñbø=_7Ú=âÍ>¹ý¸nµÌ›[Ûc¹¾ùo±¨q^nxshY-÷êæó›a©ìÍ©‰tòÉï1Än/‡ ]®º#ï)/¯®§¤Óu¾¼\÷GØ«?_'^]GsÎ×/­»îùUww5 !îUš|ì-ÃD÷å¸}ñn™·aà»ôÝ.ÖÝÞ»Ì]-¼=?úvÓžo¯·³NÇpŠ®êWéú÷سp‹ãËÏ»þÍžÄU¤¶ôË'*wlOÞÜ}zØ~ùøðy{ýöî>>¼}xúãöâÙ¯ù¨cèÅä|„¿~úøÓÝOoïß~þÏööÃöüóÝç7cT¤'ÛuïBîïCRúôfûaûðµpäöth8Ú¢~(òçK‰ ë”û·¹°Õ=W¥¬mŸ¨íGQ*{ –tyœŠ8ç4‘8l1ÅN² e}{q{)39mµPØCµš’8åf©hËJÖ§Mäw×[Öö-© 9UiE²Ô´ÕÕi´›(ìE[]Åß3ÅýЖµ°§l)ê趸‡2“̾¾½UµC9*‰½¸™²Fë{™qyUZ`tÄšXŽuo‡Á¢c{?ò‹ èÕT,¶Ú1h²2cÕUl:KG/‰„3ØØ /Ö/ÍðQnÂrÀ¢œ7PXcǦ ÌŒn÷j9.ˆy´æþ¢àÕfìc¢(^2,°Û b@qºuîf º¾5ZUƒÝ²£N¨Å ”Hê ¦ñeI'Ãko†.¨b0cu:±(qi3]C‚2J5¬œ”Ô]XÄ„êb«[ù'×$úÂê&”UûÂÑ%× ºÝi3<\üŒ^Ó5Á˜ÕµÎð( mÒÁ¼qpQÝÈŒMê`({0(-ïÆÄµ4£fH=xéL;.,%Å2¨LÁBï/ÁTáÊe]…d©ÛÜüD ãjÛÅR gWn¨ªm¨}iUpåægŠíâægÒ¼o¸ë[’yÕ™«Eç×Pq:ÞRénþØC˜Ékõ"ÔŸf(FPK–оAfUž6Q¸øñ#-°Œ ^~BùN¦——Ødk•1À`u#L˜ôíˆ--ÒË‹)ƒÉ…“¬0Õ¢ƒtëûØ8Ÿ{äž°ÐÛJ]"Sf‘^¾Ç€+,•žÚbê”Õ¨f°õîG§nhƾf€­-°Ä‹—ŸPÖ"„$ÝÞ//’j¤ƒ2S}pr¿kF¯O€—I±˜á©c—X¶+¥ç¤18â:¥ Ÿ1ÒTÄýÉÿ[LùÊO˜h*ÍëÜY̽¼ØùŒYÓUñÅGÑq°Ø ‰ŠÊŒK˧ÎÁ ¬¦ÚQœn\`=^²–rdÖâ5N·5öh½Ì]‹ƒ)ŸŽ¤ã?ðkuª‡)mÌ9tÒÜS-µÃD ¹®®l7‘XaÏYQWLäa¡1ÍFÍ1QR³ê¡œÏ¡i¢ ›G­2QÓìf„-C­‡­^_Ü’DXßÎ!ÍP¯©PÇLäü ÜMäY%M& ðž…†®êŸ‰’:j¡¢Kg¢¬áA¨êªŸHì×#„Jy1QÃZFÝtK­ب› õdUz&©ôD@Z/«ÙBvP‡6QDz,¹•ŒòD ëWz-éÀDiÒ€‰ŠþiÀDM—s'Y%·äŽËZ†«x‹}½Ž,Á`@†‰–ûƒÒÇòЇdâÊŠë(º¬o™A™åÑŠÑ_™˜cÁ’÷dG¹†%Gô§vo8 ª×Wo8±½©G5Ë™þT&FãáJÍoÅ(Sw¬–T˜cÍÅ“5Ì,É1ÆK&N>Xv†ï‡®hÙçuÇb9°•‰•…³bÈØ·) Äµ„@ãЧh8"Ð!ÐpB îkË-x¡ B‹B¡áÊýG …†Ûx„™Ó8þC¡Ð°c!N¡pÁ/ …†çƒB¡áÈBˆB¡áD! НåL!—Bâ‚!DPH4\)äRH4ܰ£6„Ä™¥~¦!qÁ($)$vR($ö¡ðˆ Ž¡±®˜»“<`9Ó(4.Ü…¦Ðh¸Žñ„Ðh˜…ÂŒBœBãÌZChƒ¸`J¡+––G¡K¡qÁ8ðE¡ÑpÀ> O;XNCh„¹`l„Pˆ4œ)TQˆ4\8ß" Wúk †Çz§Ð8³$/}'o†= y †×;…FÑãS+n`‘†Ó­i8s½Rˆ4\F‹:VË•ñ†Bå‚!S¨4Ü(„S¨\0„^œ<1,)Ö#…LÃÃÞ)d.B0…LÞñžB¦á€bc™ F)dN’)dÎ8ó1„ÌCH‘JËÃÞ)D®Œ—" 7¾Bä‚)$Bˆ\0NQhœ¸ I…\ý’a¯-³ˆ Ð¸blAh´y B£eîðSh´œ‡ÐÙÏ/Y.C(íB¤åJ¡BäŠ)4v!rÅ í©šØXnC(íBåŠá/¤F+Á²£PB¡rÅ}÷^[X±§?ÇæÒ’ëÕÑ\Ëa|?Bè™92Ÿƒºb¶§WA– ô!„ñ¼â‡&†ya¥ F<¤Pj¸¡Xábú‘ÞíB¦aÇx‚#Æ+†Ð­õΊ9Þ*„RøºåÀi:ÜýÙ* G i* ãVg¡rÁïëçå,¡Vë¶àB¡Wkä¸ä!´h½d™ù˜*ŠyÅÜèBæÌ’†Ý™ î9Ê-,˜Ç€‡ÐiØc£ÊK¾¥¿Û3ÌzAY ß27²ô‡CyÅ\ª(ú°à Qp¥†„:¯;† –4‰Ü‡å@.½0°œ;w–Ë`¯·ÜpºË‹¿ŠÁ²¤ ½áQHÃz*Pçãô¹ußo¾†+î¿Ìýâ}*¬]ßÖû÷›®ñ<„ÕËóÀ_oGJ·÷ÿ/¿ÌõÍ#Õ¿=|ùäõ›»ÏÿüýÏO· ?«{wÿfùCº/?OKü–ëyÄ/`ñ”Ï­úåÕûßÚ&1¶IvÝ¢ïOÿ+)= endstream endobj 61 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 65 0 obj << /Length 3358 /Filter /FlateDecode >> stream xÚZ[oÛÈ~ϯ0ò°hÎð*´Y $EÚ¤]lÅî¥%ÊR#ŠIÅÎK{ÏufHÊÙMdçræÌ¹~sèož]¿-/VÑ*·ùÅÍöÂÆ^äYÙ$»¸Ù\ü²¸Ù]šE}ùÛÍ_¯ßfE0ÛÆQ^˜‹˜§50k ¿=üøY^’·«(·….XW˜v¸\&YB«znkhW~õƒdâxiK"¾_ãY‹-6Sjîªû‘›¶ãvuägÛm„ÇcÕùþ†äh˸۞ÎmÝN*z´ßwWs»~„dªF*Îl(‹ežE6µKc¢U&2m·°,±‹áIÙ–QZ$**äâ‹ps$&ÎÉ6‘ù_.³|AçÛW·$dX1;iq ìÀZ+ì˜èr™®Vªêe’ç‹ú [EN]Y”×íÁÏ~¸´Å¢êù倳ê ETo¸—G³EÅÌçqhxEå¹;/j®B*èo~Ô,JâTç¢rŠtñ@¬ó®Â†Ó?´ÛNlh$ëÕÃH¯wÁqzdœ¹÷³N¨aOÏ,c „#‰%|M™ƒ¾³±¾=½z ,ï}³v¦EÇñµáF+7?£”?½)×o/ÁY¯ÞÄ·HÆÅ ±ýklRQlN]± /H¥fß#ò[~²iÓ‘ñ••0ˆ±§A[8õÄ*uÜ^.m®ó×d=Íß‹¡Þ]‘Pâ±4HW{rà¼)Í ' h†ŒÀë\xй‡Å?mKl‚…Òò¶÷#£72‹Ã‚PxX"á{YZ‹Ìƒˆl#„œšÚ“Hu5›+E‰Tø(IõÃH¹xöQìòžŽÓ²à$ÊZs“-^GEÓ.W|Vl¢JV1{]S©øéyÇC½°^Ñ{î¤0zä¶S&¾0ÚÆa÷¯üÂ~DR"îR3`ÕÂÓ9ø]œ#*Ã5·/ëÏÙ ¹)ÎM-©þ؉:ha§y@‚Œ¡P¦4#BD¾/”P›xG’R¸vÃÎ(è&=[šCvAipläÉš~`Ö-¯¿&_üj’4ô‰ç—Æfìª10ÅÐûN¨’až +^=3ëmýâ`ï‹¢Ûsâ“ÎUP‡”SÉS%²ïýû“xýBÄ䩬!&Ö‹kn;¥KPA©ÃñŒ„C@ÖŽÓ•tó ‘,z<|s¯yŠ;ï5͸”6SÄÛIÚ4q™ä;1Iæòf Çñ<Çzà½ú‹=s1²¥$t îPßæN #]À=µ×h×S”ìÀæ èÞ‹H `zÆ+윲~©ÔS÷jl7vIã§ø&(€Ô,À…Æj%“)ôR*O¼ÉC¿ {ì/m_Ÿ±G5¯ðW z9ûXB –¬Ûƒ2&£.ˆ$c .9£zòÿ¹õIÈMÆ`gnDIÅiþ}6dK󤙎ã‚:ç^úçê7+>êå’ f9 lJ/Whâ'û¬…ð!© gÜjè†6åJ꧃ŸÒóøº“5aÒ Ž‘e«|A–ïã ðñ– z"ƒm Ùl¯Ëlú&Ð&ç0')%D×Ä$r9ñÀ°c¸“#¢]IÄ‹£§CR:AÀЇ:2Ê^•ÏîA  Xi6`N¨¾©:U•jÉì…+RÐéÀ=• CDEF $mW¸Ôõjj}fÈâU©£\ì·²—Çn=ÁŠkŠ7ºŠÉI)Ц¦ÝŠRÚ~0ìb‹cmÃR߸ Àn4~z íßðÑLÔñaU‰l ,£îÇÞe/Øop| üt/7DZÂyìX#èÁ†³Oš&ñh-Ë%ˆ\x.;“-“o\Ü’8Jã•·b“Îðg$I#“¹›1ïÝ©]yQ"°ÿ?wÜK¹È@žm£ò–Äm3•i:AZêB…\uDÊd\ƒD¦"÷ˆ¬ ûœa•4”ŠÌ©¸(Gx »#ãÀµGîœDèß¼`*Ý×Å>Ðñ‚ñ§>& ÁFÊ %jÐepݶ:IÐÆ$é…ew}"pǪ¶$PIÕpº·) ‚xc†a0f ‡ÑØàm—:§ ‰{ 6µškãr€•h€G6Æ! Ã^DņáR‘¢dÞÏ=Oæ»1Ah·îî·ÅΦí5(f¥@ð(IÄä>£ŽçÄó³Ï½íÑcb_¢ „–;èPîR¢GÒ"‡ ˯%ØòIº“z¼ÚLñÆÑ b­GÈ?aˆŒÛ¼ó8X ¾\ã¬ÈñF²JN2l„šçx­Öqx†^Œ³‹Koõ§Àö9Q‚ZÍ fì¼’{BŦ:x‚¡¿:ÌÔÆ ’çÝ; <º “¨‰¨;5R”¿«eB‰ò,dò–ÉïI¦ñì:Ã6æé M«ÎO–œÙ j0€T]8’ðO·º#pÑë>6w~`soܾÕjiÇæ“+/Á£k]fa¸=aîé~‚öëUçð6ðh›É'LžD¥”è,²‚„c‹Ùnžæ¦Ö¨²“]}˜‰Î¹ã»-ª–°-Ø*Od\ ›„‡‚0Cïš5 ¹ÞZ¸—Þ!ìÜ;(ÍüÑbaÛó¨:!7è}ÀʽÁwï¤MAõ‘Ø¡ªRÃÝím¯îÉlÎó®q‚Ž,FŽí) ¾ât=­8`p1JmÊÆÃöÝäÞ4¾ˆ‹)ô¢¤‘qOƒAQr騥§’Íž?dY#ï´ ûÌ%ØÆ€¨\1µ—™V/ýefCÒ8JL:Æ.ž•+ -ÄÕ_à÷8æú^£ç-•ž)…˜¬’£j:®?b\* ”uüqvôÐÆY´‚‹Ø¸Ô.tÓ˜½‚.–„­ŽØÆÄŽ;F®¶ÌÓTV‹㸂 l.vGIÙ8°÷„—Ü¥C€@C4ËoÅKÍ’ýZÊ—gn¬&;seŒû?:M”X·ˆ3‰rŸ^mÂúQǨgv’–‘ÍÓùA«{SÛö•Q*G:“”ä1H3Y&ÈSÖIô£’XדZâÊgJÒôáWœ¿ÀïÓÇ êjºRœ$»…ç™$b×,…us=¾Î”+qËÞsÎPØsÓrÓœ+ûR>GtxäR½Üù¸K`/ jrwÏpÉp^ë”.¨kúÏ´z²‰€Åg ˜~üÒboVš&xñ8xèè̱(=]IÁ¨äÒG5úX„üný‰vlåRHQNòÊù»ËØž» üÙ‡Y":¶¹j9ºîÿç´\î^KÍàV Ø†‡þŒÆÁͧýÜEÝ“) TÝÈû•ßzŠàáèýÎ$~¿nÌÇçK!}ç>¾ãàûÞD”ÁÉÃx& ŸˆYü"TóŒàê~)Ã2´^Ž2ôÜý[Cø2Ü/KÖÂËQä¾?™·ð{¿÷"ð7~ù£œ|-7ŒAÐùÄ0¾a3M çÏbS×ù#ømhæ*ùLRµèU­wã¥{"9R6æI&>…öÙû™¡¥K™×ƒu êy¸=ÂàSíû÷ÕýQtÆ$á´.0îÏ¡í©¯¥pç-“±ù)íCà¿oS› ÄjÄ*m¸;-º-âi³abÈò(7® óâLîÈ"kWuÎià„?L@ mŒ !«Eew€|IÉSKœ÷ìÍͳÿí²ÑS endstream endobj 68 0 obj << /Length 2440 /Filter /FlateDecode >> stream xÚYYãÆ~Ÿ_!ä‰V\6›'ò”8Ycp’ ò`û#Q‡-‰2[òìä×§ÎîævŒ`0Ã>««ëøªªÇ¬2ø1«¶NëªYÙ6K³¢Xm/O??¥m•Û‚DMš2²M>~¾”«¿ O‡ÚÉMDóÏÏO?5«ÉU«çýʘ<­M¾²u“fM»zÞ­¾Kžk“ô#þYoŠ,O:ß¶É}7É+þxàsãðϸêϼBót‡?Gì›äNt×?<ÿíã§²Ž¹(³´±È8·ð‹¤n¿;ÞónËÔZ«›¾ÏLëð¸t½©Ê\®Á7ÀY¼„»3+'å2§ÇNÇåÛÝ…V¹I+Z.7ï™ S»Ð–>¢I7]mò̤&=“¶eÉÜö_`Åm½É«¤ßêQ;Ü\#õ¼N¶8ü@žIøW”I/ öü½‰Ì;wéxd‹,ÏØ©€£³ðv¸v´ÿ'¾ÏÊ ºß~õ ü…Žáá“¥mBc¸‹-PoÛ=ðʽ›ò±Ã%Wt…æQGT¡5 Pº4É&› éœ^ˆ8 YZ¿c­E–|¾®76¯½&qèˆkßXªƒ¨€E‹‹¶@–ænÏdU4‚Z§o …M”Ù®Íè™x«ß̳ÑÉþ ˆYà)4ßaìyÊ=Ș7e™üˆ»Ié.fè1tÃS†Iй%Y‰Dó6K¾…&¨r“7­ªV…Óó(]fKìŒþpžòVö ZÖ;þª|$ÈQ¬å[“g>ˆJC¤/ ÷vgXDIrbÇÑ‚˜ð޽4‘ ³Faâ Ú>„üëIvž¹ßóê„9 ׯ;t/ŠDé’,Ÿc;*áà‡Šøƒ‘(ó‚þÕñ€XµYKáç΃l?Ô¼ [-Ê÷8ßíº‹´¼·qƒÐéäÀófL.è°;\Ï("ô Ô~Y—UBv¤ö 4cĆ˜2ø’$f_N Ô^T‹ªïbˆ"?}C$Ãc{ôPSxÜÍ‹ °Y&Fw†œÞà ã)vñ¤^ „üOï:>Ä2*ˆªÿ^7Å2ô³)¢Ÿh¤mÈ4;ShÂAú>DT¤‰óIü¬168ÿËZºÌpÜRZpæUîzeÇ3|‰IxµY›ü¬óËYŒ„üpA¼lÕFéG3×4nò$rŠ|?…ë“£1¬òŠœLò×$ˆ†F‚j¬øÈì‚5 ËÂq¼6Fèî…‹n«7%Aרói˜E|ý¯rg1ΉÙÀ2«s¹*‹’¹¼¶i[šÍ ¼oÊŒ¨b€ç¤©ý(&spƒ„¯ŸçˆU–¦Rª)?0§sô›Ú¤Î&-Ú©´)Ô#É¥—+ZK*¼JîÂ1 Æm®)0)ÞïßQ¢…#ùÚOâ²0Ð †âN%¡2wT›{GÅ“IŸU1”•J漕ʂq 4EÚBå0 j×6/$û¤ì‡Óá/ú9,á¸7¸0"© 65ƒîÜÑIv<ÌFåXN4A¶'´Žña“lƉøò¦ŽwŒaiÙˆ°O ð7€#…†ŽnL™š±Å]Ýþ  ÉÄm³D »)|àŠ?ð®‰B²ÒË·“>ÝÞ«øi 8;ø¸‹÷­7>·çëô1޺ߓš!öFÍzv^$ïÆ6¥@dÛhäH·æ¶Qö¾-ê´m '¡IÕÞCÄ mŠ,­rÝ7 É’*pYZçÉ'ŒÃø¿yEó5‡DåèÔÆùT(ˆc†ÃN…£vwŒã)nÓ¤•yW’2«‚ܯ*¥´UýÂs¯'_gP?öDØ3h¦Æ¦ß+Eùz„ö4G¤ïï[=õ&,m–n‡³èçrÕ3Æ0­>X¡ÈwšûV{Á{¶Ð$9“l¶.Mžæ¹×}/¶Ò‹w-ØJ^¥&ó(&qÕ2ü#‘E¨Èõ:ö(.Ži^]ÛÃcä2Ðiz݆h@ý{ÊÓKÕEšÕÊã]žbBže´ÞœßWæ9O«¢T’X1ԨО‘GœÑI!U¨-‡D¶S–½™”úÅç/Åôí¥.Ó̾‹ÝTV[xÓÙSiLÑwÇï?OŒÏ¬°M,ŽœNÓ§V²Í”#&Ì™æ¤Çá #$-<óŠÀ‚÷ô}ß4>òã2΋ÎÊ$?¥ðËÕuñ(zN¹(;£²7Ê3—[*òäo!F3œ–>a8s'«xQ±P<“¤nÑaš´¬üóÝe‚¬&Éá÷;ù~€_¿?ÌÍ©,Ó*@®gl ¾l"ñEÉíÀâç1¶šZ 9çç0\ê®bZ)CW_\°­&¿“3ª#ˆŒ6DX£ÀnxQN ó«zS7ÎSF§EŠ$„qr…ðð®HIáUrÐè2°ž*.ÉiÀW£Â½UÓÑ’ÂJÿXÈå>Âw…(ç…ÉR<¶›ØXÉ0î8îE[Ãü7_C›*’í¸cLⵣȤ£w5¨èY¾ü†âþŽXJ˦NJ„®ÂþIz²ÄqEƒéþ5L^ßóÿ«Y"2r“zEk$÷÷ ƒ#$lcµ ËÑ×l|–c<ƒ`?æ.®á 'ØðY®ÚhjËùµg9qêF¬Uá†æ«Óg¸Éë²A‚5ùì`~€Æ€óì‰J:z} ºÛVõMåÐŽí–]þ}PW–šý®Ï©ï_Š”ö=4e %¦ôïGŒ$¸`â®Kw“XëÀ7^0+ê–ž]ô0ðÄäÿ.HMÍA¨-Í@HXAö-ƒ=UaÙԘߡ9ÔÙUéSæÓò?lŒMଗèyŠNYÌ®Ê*µmûdä¶JËŸùG.ìôUÔ$Z6Á¹‹ÿÌ‘Z0“z3›Ö›Ù¼Þ¤QÆ @NtO‚›0à|Q¶ëưŽþ[2ÊrL¶&5„ÉV˜[œyúëóÓG@¸& endstream endobj 62 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-mgus3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 69 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 70 0 R>> /ExtGState << >>/ColorSpace << /sRGB 71 0 R >>>> /Length 1370 /Filter /FlateDecode >> stream xœ­˜Ko7 Çïó)t´D‘¨÷5FSÀ@ж6AÆÆM×õ#õºÍ×/)q¤iâdѼðo©'Eò/­çB‹ñ×ô þ½:üúãkqv1)©”ËÏ‹³ŸðÛàÄ—éý¡ÄÇI‹sü»™45o'2&a“%î„UZÆÈx+.:3“™­Zki šglv—d°ÍÎXí ¢Ô¡Úglvç¥WÍÎXíF9©LµÏØìÎHëš±ÚWÛm»¯ö×—ìÜÝaù‡Ýýôê àI\þ.Š?ÛGa¯¤Ö-ûòNœ¨Sqy3ýp™G~¾«Fg8»èëŽèë¬ÔqÑW11(~¹h}ÄÌà´TËUÃ13§$mXv>bfcgëlŽ˜Ù$O‘»è\g.Áá‚LšB$Ø(ƒ.!´6›FÍŠƒ«P­…šU+ÁT3ãÂ@šÔì›p ÎU;ãÂ^[ímíK¿,œñrá#\LÄŒ‹N9€ñË-·>Û=¢síÜ}óHŸí®ÁJÇù#·#ùùþX¶¼Ÿû??(%#pÿíx~¾¿‰2Íîƒ.°¸öLVÇìéRyg„h¥Í\Žrsã‹,ÿ¹Xé%$a8ÞŸüv*4Nwr}õxŸOâãþêÓýÃa8ý .Ï¿Ó øo>EŒ{]~óˆ#ãÀW»§ýýø²úCü|ö¶ŠÛË-ŸhQ`Ñãµx'î¿%{šbæ²Çi;y/Ìi;S’ ˆ’4®#¯%D¤ dò=´–¤ =¡oi”€å9õ„±B³GÞê(»ÉSeî(HÈ”d´=Ei±”L”€ª'Ôbš=Ì©Ž‚.»I:è (™o§¤¤1=᎑–Úöäʪ‘’ë W”[zRO‰î·xr‹GQIŸ£$@Æ(UÐo &5 +©Æ—šƒT>#ÈdÄ[C)ô˜ØgsÜÅ1rcÈ:У§ !¾ë´Ë¤õ=jvȾƒHÿŒl¥Ésaž9³Á8I^© tj#'Ò~d«I/F×¹ÀœÒÏ{µXæô'r±£ƒГÙ+NØ`l–×ã³Dl45#:§‘û 3¶8Ñ6‰ŸI€stFMW»‘G/:f`4 2f›… žÛcHaöŒGçø§+ˆßàHO…[¼–:ø1ióx|Oó+Òyœ7#ã2“ÍìÉñ#§|ó™.¨ã òxx½ÅxØr{¬X8ðÀóz-¾òµœù¢Š…È7 :­"ß!‘>«L¬Ã*¹& kÒRUÖt_¨Â°&C[­Â°&·׋4aXS gS†5E*³U&Ö”JÕ+°&Ü¥ŠMÖ¤©üVaX”ŠÆÂ°&ŒWÓ„aMŽkËD‡ž3±èB,š¬ =Æ…¬ =r ².tˆzT*ëB‡šë+ËD‡F:Ýt¡GŒÔÔt¡GG Su¡G_.¬ =ò9²*tˆ'¨SÓ„ç-EèZ½×qÀY‹ôèf-ÉZÐ#¦¬oJÐ#Þ¥MÓ5^ïKdØ?,[¾’° ìèòÚd`àùòÀ20pd?± ô¬Ë<ËÀÀZ†°M¹Î20°£Äl20pÈÚ*ó5`–žA—|›e``S®^³, ìXFŠ lT)Ø,#ZF•…ÊÝ›Ó Æ—ç4&FÃük×WD„ûaf.ûü_~e¢€.ò§¡<°Þ^Ý^ðåÄÉ zY½ûûÝÃããõîIìþÆ××K,í'ÿœ À×›¹g§Â#úúT»‡»Ï×OûûO‚&"Ãþðg{ÛMÿ˜í endstream endobj 73 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 76 0 obj << /Length 2596 /Filter /FlateDecode >> stream xÚÍYKoÜȾûWBP —Í7hkD@‚5Ö@äÍ"9Æ3Ã9cY—üöÔ³Ùäp$y‘Cò4«õ®úºýóý»ïò«Â/Ò0½º__™Ÿ¥ùUšd~%W÷õÕ?½‡›U˜zÝqs³Š’Ô«oŒ×ˆÖìa\3¹ÛóïH›þàÏ¿Y%&ñ~…á þz^²ë`wÆm™´…1S»/´¨Qñ¨/7aî5rþ·ñ綸åhá°¢SK’✮q×üû[`âG’MÎ4ÌúAD>2õ©¥1FÆûÍDñçðýéúæ_÷» ®VÆøE"&+Q8—,oœy§Œ$N#æê€«Hâ†w•jV˜ÜwBëiZ v?1qßrJɤ¾AO=Ù…æÖ´qÇdÀò¸È;£­ÂrƒG•[U|ç¹wcY¼Çþ3 $à3Ók:´ÍqÉDdÑ­:$$3•¨ÛWëìÃø ©F L°&€1Ø –£ H„ÞƒÐMïߨ^¥Î4ÞÓ¦sx:‘ÍŽ¬ D«pØŠ°Ì{ub?Óµìiz>½dúçŸäÛ&I¨sC+1û¸Õ`§ÎE¾ ÖRh©ÍÐ(6¾ú1áâ8ª3nX°ý!–€q+¹¹\õ6qššIœøÍÖ ~PyÖà‘ c”ƒ¼?Þ%™SPÂdÏ#Ђ¤Ç¥;ÉDdø8nsËPûInt¹ÍU¥ tøõ¹Cxl„X¡Œ½­j­DIMº×£î{Y¥IS¶[²ù*LR?Iã©éuG±S]ó5ô¾âŠG*FG Ÿ4±_Äz\ÊÇýã&ÉùaÀÌ Ø4„a­ÑÛÖ,@|BΔĦ˜/–¡[²ôÈÍxBÁ?h›¦I,ir”€sɲrÚfš›@ù “ã°ÒƸÊk 0L’u+Œ"ª]¸Ç‘~Ó°Ù'f«åN¤.r(æ”㪠„{PÄ“¾þNUŽVf\à §ã)TQ-ú°¸"*ÍzXRQihÄ@@µZФn´D/¡\óR Ž+Obúî0PUÌ#Õ œ%†*J"=óòAŠK«í!e#’ZTN›‹e”VuÚ®0™;´Ù®cqJH°mm6ä‘mk3’2£";Ž}J³Nó½—ïA[5ÐÈ€åöYÒ,õ'NPˆ ®v[éÀø‰*ì^*’›0.#-³NÑÄ(%º½”ªZ*Ü‚…l½Kr.5%`\x6›ÛJ r1Iùl5Ø„¡÷‹ƒY¬à°ÑCIõè 3+E€Ù™•ƒM°œ¥±ƒo ï U²µM® ‡|£”8lƒ(Dln4µÃŽ‚¸aÂrWDŸ]B1aÌ#ö‡½ÅZ¶S×1Þ_ɟшAún˜žêÈ ŒH';CáEÁºO“8¡M·  ¥سÃ>€Û†sÏǨ¹)77LlGBÉPªsŸ>lÜç:ݪÔ~k<Ò®Âv5œßË»0»‚À=eW’ráþ%‡·ŠšæoP±ñSó]½&÷³,w­\¡§o!HÑ'ry F“°ÐúHB$y$Á1½‰ðmâ½HøQ‘œ¿8ùüŠDæö½68wRHš —z¡‘ 7R, £wͯúR#ü“Ñ×°”žm†Åžå~˜|ÿÃÔ0ݤX{/ÌJ±ã\ƒŠ›ÂWѴ䆾¥ ´)½ oà`xZ¨Î# òÓÔ>[ž½1"ãA[ ]žÙp÷Ãx–è•s'4M²&Ù‡l˜lJû–)¤ã'^ûðqåÛL>a±ÂP˜ïìËôžçNƒÞªO[ ¬#ÁFKêw§WÇ àéRŸÁŸðmú­ÐÆxXÄsuײC: {§¥-ôxœú0E@[§¹–¸öÈkùT‰‡çõxÚµðS3̦–lzýfkíÄaêæs€1Øÿçcû¹«7ZwÉ+ÀiÙƒcêÃp, -iwÿ£‡³Ëæöõh£ÑWìå¾ÞÍpà¹)-£Þ)¤¥ì¼•˜Á~LUh¥Ö¶ŽuùD>„&’Ðåh½ëx³÷ÖNØíd9G° €ÿO}슸ìé3¸å´áz²ÿ,’Ì‡Ö …ìl oÛóÚý劲ä츑@w‚tö”í¨ˆN¾U!lºG!Ú+ˆ¼ŠLºDº¢Å\0F¸øx>ãøé-s!  c¾ž¾ãÝRgìêh¦¦ÜK<àHÈ¡¿G«9GË#¡ðȾSÜdW<^Ñ}tÁaéÒ­èÕ.°u5D¶‰-4#ÛHþF‹šðÑ,M~8‹f›Ø³'Žvœßy›i)lœªÐ[6.­'Á¸“ƒ¾]ä|;ÂQR¶ë [õr®rû£û¬æôæÖyjè,ý eš<6”ªŽ”gCw²w¹÷_/M"§ endstream endobj 80 0 obj << /Length 1727 /Filter /FlateDecode >> stream xÚ•X[oÛ6~ϯ0ò2¨Uñ¢Û†X·fèÐæ= mY±½ØR&9M ôÇïÜHQ¶Óu“Ô¹ñã¹1/ϯÓ|VÆe¦³Ùâv¦Rk“ϲ4‡ßt¶XÎÞGû+uW¿Íæ&‹Skfs¥â2•Ï·ð¹'í®æ:)Óèæ5¯Sm¢%L ”¶æíIš!~ma "¨—=ä2EêU[;U."-q¤s•ØË5×bþ60UM¸“SÆ­0ÝBòWpE= ÷€w¢kÏ[oaú+Œ? ïÑa^‰ï:®ü^ŽG=96Ùxþz—Í~é.~‡?÷i."çÌ—X ŠÀ.§JÑšÍ[¬½Ï)Æì´Çu~ú¦A†jxÛ·D™¦÷Þ¦ó(ÑòÔù{|’é°¦‹¶Ç! nxN%©šTËê»[áGënÀ lô7QïÉr¾¾$@A—&Εq÷SË©úþ*Õlû~KD¬!~VÇE‘9Æãc‰¥ÃoŦ=Ÿ̉%`1bËršÏÞtPCò¨»“£µ+`×)£¤mÔ‘}<ß!B¸Þ: æ>M¸KVŸÍV}µcN2Ò]'ø©í‡ù-e¯z3ÚpË¿Ã%¼yš Ì¢<*ûµ3ÇF÷TÁð”Íx–©Wë+]DrÒw„Ln°ª²;|¦Šv¦ ,œ‚RG5Aô EÉΪóêÞ#è÷‘øZñÔOWQðuè¨dví(hÉDØèGq4˜O̥ɞxî¾[QXà= ‚©kl´âÔLó%G€ ;ªÄõ×[_ð€Ir(±eÙ8'YKVŽáË’ªá £ÈßU ½H9¢z‚ˆ}áÓUšEÕ¿Z°ÔU“úÔà\8 {‰pØXÒm¤­˜Ó£ NÚ'+޼¥îEÕòÀ_˜~× £¦¯9i1G³œ %õóÑå·µ8³M° Á”ªž7ÑFÜu!{_x«j—¼vçÃù=5Õ÷ì+}aøµ–,4I œŒL±i™ ôT½ŽŽsîª}ÊâM‚U„ŒÜØ…îëó 5ÒÒ•Õƒ9V•…Æ×>°™õÏArljô´šf*Ö‰¯·÷Ò_97úÚUßi"ϲê¤I¦ðy«­tzÐNhîÉ¿35Ÿ'ù«vÝØ’è’hKGbßz7¼ªÖ%ºÌ÷€DîQPº?b ‹Ç<5iôº¬yg@Q²Êž>v(Ð üNÕ6VÖ—±cÔô)\ºŒUQxN¬ôÚ TÊ|5æTÂy¬ãùÄ]\êMJ>=XœT5`¤›¢.Óá›>z!æÛ.9îs "©>ÿ€bÆ.Å1¹œk_ BmÆ?5±1GðS6ÜÐnüN¢ÎMS‘ŸÉ攨Â-[k¢×ÔÁ…%ZÉ£¨[ê¸um˜‘7=qÔH³æK€Ù] Žèϸ„†žÕjwÅûàÓo écÆ·W“ÐJâ܆r*lÉ· Ûà{¦ |¼{ØK­D$öÏx×iÝQO*V㮋4. =kGù½ÚK!Å ¸g|Nx[;ïH±Ó/yRÏáCÞ7Rj{_H7®’%A%ó p¤)J‰=²Êéò%|9JÁkL²±þúpŽTÖä9>” î'ü‘¬Ëoí¹‚·ëzW,cRê+DP±Ç:vNนÍ(=¡çhWYä‰?ˆ iúI’ú–GˆŸèä‰aÕYChÙ&šEÑØ·õ‡Qß´<&q6VÒÄ¡øÔ‚*ù†UÎÝ lŒ-Ä›O­Ãs,þåÔvã9~|Cè1®MØÀI®˜¾ÞL8­D𓥋ë´NàQ“§ô¯+TþÁú/†ª endstream endobj 77 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-mgus4g.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 81 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 82 0 R>> /ExtGState << >>/ColorSpace << /sRGB 83 0 R >>>> /Length 1866 /Filter /FlateDecode >> stream xœ¥™MUE†÷÷Wœ%,l»«¿·5!Áˆ3Æ‚ *De&ñïûVUŸsÏí:o\0ÌCW×ÇÛ‡°<[Âò~ùûô¾¾ÿñ»'ËÓ›“wÞûeÿóæé÷ø×š—N/_-~ùõ–gøóþØ`y~*äZ_Rwä—KòÁµ6ðÏåfj×Ö‚‹´5¯xnÏÝÕtn¸µ“o.Ô­}Ås{.®øsûÀ­=úì|ÜÚW<·çèR>·ÜÚ/¶{ÞýÖþävî›ûƒÃ½swúú[ÂMÜþ¶èyž(ïBX¨ò²o?,üãåöýé›[ùó]#§]ß|Eßœ\h»¾áЉɓ+ûE‡+f¦œß¯š®™¹w—ê¾ó3ÇTÙ9Ïã3Ç^Øsw·™Õ9ru=°‹Qé.Gu¡Ëæx¦skÀ$¶æ»ö]ݵ+žÛ)ÀïãÖ>p×®ËÙÚÏ«Ûï|·Ý¯v§“kˆ©Æ#.Š<:¸Ïvˆß×þáúþˆÌ¾õ§«û“/®ûµ¼¾?2SÛú§Ë»éá”B“£Òä¸"µä’°ÞÅ%®Æ7’©ÿw> 5ð>ãpÓ—~y¼L÷èíëO÷Ë_ï–çßýt³üúîõïwïßÝ?~µÜ>ûGÁn©Þ™’Žþí' Ñ_¿yx÷ñnyw·<üñvùáéóåþáõÃÛmpìmÙï7±BŠ™éÓÛåçåîKe*¸ì¿T¦F˜JbãfƒjrU¨¸@µÈiT]u™øÏSEªÎqŽ{1ˆ8¬‚ÁÕjyš]lÙ82"Swƒ”]HŒY.fB6,œ¨gdãÌ—NÙ˜±yW²A6®Œ åŒ)p£óÕ`Œ.7ÆìR7ÈC >ÂÙ˜‡êø»LÄÛ&GÝ`†¿ÅX‘‡¥A„0; ƒp⃠ž“’åÕ< b"d,É‚OÎçn|%Ê­0ìu¼ÆÙÕ0 FV0 û,öªË,w”‰£Ä0HÜ£e¬W®)„È Gì›pc_0á’U¸»ØØó_`ò3¶!ëÅ/-²W{b)e¹»ž:`¿2<-p÷ oöé€ý¸O*]ãZnš&æùV¦zÀ¢µ˜;ëVÃ8/*Ìø¥ô†N‰¤Q8qZý9JÆ4%i(w²ŒõdåÌŽgö]çCH–“g7ñk·ƒ ²Ÿ”8æ #AUñ·Txᆱͤöˆ÷lnÜd¾Œ†vÀ™Ã˜9I¼Í 7Ðó»%“å8’/Fˆ–YÑÊ|Ž],Ç:ÆCu Õ2¶áe?%K<͇1³TIÃy70ùšâê!%Ë8o)¬ZZ¶ ÑGA8sb0ŒûPæŠ-#M”6XêñÄ|Ÿrž\ešå”µœ‡.‰Ù0®!Êyáuà‹e¸™ƒ[µÌרöMjàÌ•T0ê ”ŒaO9°š1Œ0/E¸Š?ÌŒ|Â*õfbTW âbL3†ô¶n™,÷¬u–LXì„ìëUÖ’%iÍ %©xÏiÆUÙ±˜†£L(yR5žóÈÄ«y "'”ä¢\רÛófŽhŠaFòp=¾ƒˆ} ̼™ã ×óŒÇ.Az bãÈßωâE%.~¨<žäpá¼¹Éa!ˆb©UPâ(—ľ •±5u*b'Z-Q> ­–"`/ á&q¡òõ’6Ë̾yI;Ëæ'Ú,Eô^Òf)’÷’àå’CàJÈ—´Zª(½$¶¡\ù¾/Iô (a) «Ê*dȓװB„ô9ä(:@ÑÉÄ…cFžˆ/Ùˆ«å„(Æ"†ž%•©:3¦¢ºœ¥êÌ,Å” Ò1 { ºUÊÎ û´—²†¿ ÎRö€µ”©:s,£âÔºåõÈÜë!k*RÖ0i0®Ruæ8Þ?«Ôœ™ê(U«Ôœ˜íu<•’3c>•ÒܱXF)Ò§Ä’3s…×õtyÜÍœåãäYJ–o ÌAKßÄX¯J¹U NŒóL:Þ‚“|ìc®Z^&†éx³“alS¥ kÊ#ößX³´C*è#øˆ»JÍ$Q>3ŽI¾OlÒuæ0¤4 Ñ!÷ é:1Eýž _8ñ50Wñ®O•!u'îëK¡x–ôrÈ÷ŠU¨Îìûð–!T ûUˆ’DÛÌÁ³~S!É­™¡ŠØWIK†‘$t¾Ê%Õ2n«È~øÃG±ÌB´æ‡äÌÆi¶¬Þ61 Q‰Æ!4gFPoD&—o8óûJ…jtå€ùý®ö*TgÆmËCœ­¹ÊÌŒ‡Ž¿’#É$¢ò6†DR ;nÌѦB4ñÅF´G‘ƒxQ¥d󑌇lLŒ L*eEQÎ]ï‹ÍB±Œó”lEXx:`þ¯a~èuËœíe½ðWÊ–y›b]Vªá¶n‡%V𑽥Ém@}P5ܳ: Á™°ª W•˜¼TŒoN/Nÿ„‰r endstream endobj 85 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 89 0 obj << /Length 1406 /Filter /FlateDecode >> stream xÚ­XmoãDþž_ ©v½/¶‰œÄÑ«T¢è*!tÜÇqÚpI—\ùÀogfgÖÞuZ:¹Ù™—g^vuoïGW7Óñ,š¥2߯ÆBÈ(rœ&Y$U2¾_Ž??O¦:('¡šéàq"‚|"³àücˆ*¨V Køv$µ‚eõ´ƒ¿K" ÿÑÈxÛºìhÅàs5/×@8À·ßXÃÏÄ9àù G6º˜„2 ÊMK'2ª= ®6D\[_ùb}@#ÞT+È;Ÿëc:¬ÛhÁL3ùxÿÝ8:ši ¿"š% ÜÏä›h¦³ipÛLB-² ¨¶x|ãMi"ÖÔE ·J‰ ˜+—+ä€#U˜õž@h¬Ö’¬ ŽŸh³5…`|Y$H}B å’6ùÂð+Îô”\ú¦BÈäµ’³Ä%²A»¨8ýHù5Úˆ"T±’9 …*Ndô#ç0‘h¼ÌÙŽŠÓ _±Ý²&‰»oaó3ùTN[ãÌ>¯»L™5¸4ÔZ#œŽÑGÚqm™º®K¢í úmvLYT»KàŠØ–|u“ÆN‹©TD1´VLác2ž°f<r¹7yƒV”$©p›4´*<·œRt«<•TÁ©²ð?µì†)Œ]Áš•²éoPÍ‘Æðvt¬yì­Ä &·hÔµVÁ³tló •‘Ùå5{Ô‹D1(JzéPœ-“*æ±ù- :ÊÙüɪ+gˆS"6ùÞL)SoIæÞ °„UÈ¿¸7Y©‚/èçšg\Þ $ã¶íUcÆï`ɉÄí‘ýÛÐ0B’f¶@ø°¹˜Î³E9Z\.r"Õ|àH•çš#?j¢ MÄ:ãIOÓwK¬9ýÈ.JÇ¡ÒÜa¢=×xg–'H÷eÙÆ×f8 ø/ »“ØXwƒ‚ï’N¬9 %ƒ|à5Ÿôà)}lúËsaYIšqÒ))gÜuvÆ}5PSIBV`”¾Î4±|µJ]w(äyÔ ×Ö?¢Tø¨ôã–èý˜Ë_¦i$“é`ËÁ$®8Z;m±;É”ë–^ô’8÷]¾à­uùà(¾è´]p# @µîe,»«®×N BC–2áñJÏ ˆ¾òÀí0à[Öi{DŸ€oßR5§Ø•f(ß÷D˜Ü¸7³›>—]1Ê—np †òWç 2?w²ýVž¿ÜÞK³ë*;Yü±ÝÞî~Ô}èÐám)Šà£_’¹ÀNÊP°´ì2GÕ¡Ò(ÑÊOÚg†¬à¸6 Çœ9]°u@ÿÄl_[çØ |ßÀ÷=çñïõÑK¶¾Å§n¹]7çJüũ㺻Sì½tèæý’=ËÍ{™Ҋ؇†ÓyÏg Þ±¡Šé–o/Ìu›‡¶v´|ïT‹í¯ ¯‹†òñ¦ʾìå{¦Ht¯H´_(ÿCÖìk`ãem° Åkr­E”¥½¸ çe±b7×½«nÈÅMOkz‚fÉuP¶¯…Qô,æGó‰€3ä¯_5¢»gÖÉŒw/·úœ´豎t<=èÿõÅç ô3ù˜%ƒ3å¥A${‡E …ü¨ð¢®ckáÙ:}£$Y¤¥~á¢,7¤Þ0ÿöS87ÈœKwêbjFïîGÎÅc1žeP¨S¸«“(Ób\lG¿Ð€ÒFÀY–=Æ„«Ûm6¾®F?Á?Ë Yeèè|Ûÿ¿%ÇQ ãf:‹TÊX iû:þn endstream endobj 86 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-mgus5.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 90 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 91 0 R>> /ExtGState << >>/ColorSpace << /sRGB 92 0 R >>>> /Length 2531 /Filter /FlateDecode >> stream xœ¥šIo\7Çïý)ÞQ:„&‹û5ÎðÀ  ‚äD™‘áØ‰%Œ‘o?µñu7‹#O#þ™o!kùW±Ãöj Û»íÃøçÅãß¿ÿz{ysðÎ{¿þ}óòoø¿5oŸ?þ´ùí—CØ^áŸw‡@l¯\ë[êüöÛ–|p­)¾ßn¦a¥8FC.Â><ð8ž»«é8®¸ƒo.Ô}|àq<Wüq\q>;÷ñÇñ]ÊÇqÅ}üìs_¿}«‹ûóãbqþpxñàNÜþºÉzÿ.Þ…°A¥×¾ým»ò×Ûí»Ã··|çç§\ŒœNææ ææäB;™.x0xpåô¥ÃO†œ?}k¸äɽ»TO'_ðä˜*çqr¼àɱ²Ü“Éû“Å8ru=‰0A—Š˜Ðùp<Òq4øârÞ‡OÆs¦íÚÇãà£k°+žŒËëìãÇ·;ýò“Ïýêdbr _Ù»^ÄDÝrÝžû6 ÜÁųCj¢NO—OǽkU§—‹§CÊ.ÞÎw]Ã!…F—jX-¹Ä,»pŽãâŽÑ9’„†‹Ô·¨ ýãÕ?¯qáüvu÷éqûýããÓöËÃÝ¿>|||x¼þi»}õ.þ“ÖÐä€áͧoïÞ>¼xús{ø°Ý<Ý=ÝUÁ/ÙN¿.Þxˆ™èÓýöí×ÒQpÙ)©;Jq†; bcAê.fK¿ß*[óDº\®–2Ý¥bØì–Z&Êì'gDὊ˜†R'ÂÉ9ð¡aÔñ3QuaA䨇†o–*=¡{ãL@i‰ïf(%¡ž-UzzÞm"Ì¥t—à“óy5*¶b¯)ŒÍù¾ÀØ»_`剨˜1ÓÓ Áõ¸ÀØÑ”ªÁâ|eÄÌÛ(‰LÎ"¯MÜül°’wVÚ2‹-1¢1WƒM,5 “¡YZÌü’±ò†ìüù)PF™‘}F°÷V~”èK'DŸÊr1º>,P„iCóŒ¸S¼8…gÍtB M±XøVèœ`1Še‡Z)ÊX”Åi”ÕŒIM¥eú‹™_*Á¬¦ÒöÎbá-CÇA;Ÿ±¸@_i,²!©4ž±Šk@H®DƒèM±8H ¬Œ€ní bLá[¡’Dc˜WŒ#àÞõd0ºHËžPŽãú¼ÙCÿ–x;ð/ISÐô{Ðg"?&+(<óœð¡¼bäÍa¦D³9u˜©RHi圚D_ĸ5†O¾’õùD‘Š­‘Ž&Êbçè Á OØSÕ9¡‰­~Y­3I’Æ&ŠÊÑÎ1ÊM¤R…,ÕϤ1SRÜDEV^Rœ¡Î)®’KLTÉ ‘y³¡^$5bñ6Q•´yNÁ{ ¸= âÆpv Tó-°Ñ'ãöA±˜è¥#9²Á,)±-°HE5XšÅJQ 1“0ØéñC Ì4ÈŠ0H0¢ãѨ"+XL(EIÌ’êDK,’DEM¬b¢' 6ù|Œ“u¢ b¤`;#Šbˆ(ªE ‡æˆ[ÅÈJÆ`–ôܹ4XÄz#§Y §I4UtSƒ•–›¤Œ'Ï1i|á¶f^‚àyå‘Ò<Ë8ËYÅV\d!TÄY®\UÆYÖ$B>QªåäUD W¤‡!õªƒ¶`®BÑr¤ ±KEËø"R;M´œÉ¤Iòyª -c ã÷±i¹Jª#ÿ +n*WDŽZîãy‘Æpæ*‰8‘ï[*áÐGãše½ÐK1ZŽº"ˆ-c ”÷©”},g\"™-©fÈ—qcWÌa)€§ÒËr£äL¤Í5s'(Ü‚eT˜Q®ʰ+.r}$¯¶$á©è· jï3|ZpR™ŒÜVœ%ñkÙ`¹¨=Há`¹ªh•ÒÁrëÙ9“î*¶‘±t^qæï‰¸0Ý2Šñ·œ±œ¤xaenHÐ ãÆ®¸Iy“8oŽ$DöâÈr¦TIŒ —–œä{*g/Ã…Âä^^Y®ºßøÊ‚›Æk |”¥ —Í0Š—è·½D³ ‰3™á¨þž¸d9ézK‘·â.Ìeže•BýŠ‹úkâÄb¹Žï­X-7Í78ÓšY@Pà¤|f¸kÁO³,™»&Z¨FÉ#þˆ³¬xØ;u`Û’“‘»eÐ|Õ¯8J±ALùlÁò½™Þr‘D•”á"%bÀê+®¹Ëó=Øò°÷Â5½å¦ùRŠyË]ŸGU_[rf{¢ÀÙ—, |Á0 L’|@=X²Ø+V^¸0–µˆàÀ¶f)í‘[^pÒ¦õ-Ê‚³¶0pÑAˆá¢ùHÚ–«ÆcªäÚ‚½¦0•,Xü*º5wyŸFÂÆrW=€+À’%^`†•´a’Q|½´dVÜx½0°ÅƒÆC lVÜã‹[ŽãúDzÆrR='M¡ëûpd9KN ãµå‘Ï›0®Ú*ÃÀDGt –|(m)Ë]Š=21Œ2+³=P­Ó4Ÿt+.Òë¸,ëzÖ3X•ZŽÚÀBÇÁx´bŽgä8˜8-'©wÈ1°F´,k£¹¶â*Ïãöše-ö€ê¾à*lÚØ”–Ì !Þ˜²`Õc€z¹¬¸Ëi‡.¼a”a\Ï€Ô¬+n]·e=5 ²wà m|@½E絆µ^ F÷œ´}‰z¬¬XýPOA\p‘¦ $þ‡å.:@a[Œ2I™‡å¨\¹0°œÊw–ë` ·ŒñŽí ãUŠ–Q&p=¢SÃÔ:¦ý Vê—ÏÖ¦¶ªœ¶êÙé™4 q‹[š‚†ädMÎÄÎIOÖ¤áeHÚ0Ü2Ä'kÒ:§q²&!Cœ£¤3‘žžiÁb’9:2(ÚO‡&Užz8dPt‰Ô­›qÕ9c<Ö\X“YÔ®¸,ŠCÇM“ª-©vfÌÚ+ˆÜeµ¨Jž+•ÇQ™,L£Š¡ƒ%ƒí¤Æ˜±Ê^k…aQò“è{‹R]ˆzŸ±iní>c×OånQt»èZ‹m¨ÚPg)¹kF‹²)z(5aP½¯ÇNê¹.É~œ5£†Q® +,‚\ò̘ôPJò˜E®b)¡ž±H h*Éb•7àâà–ͨǙ@¶Z vQ7€ê ÒŠqîêfü_gTÏÿha>¹¢ ©B?À¡DDÇ Âü¸³<®§ð'× Ëõ«çy’0Žó4\öSµvþû’&¿Ûâ8u”p¿éw ßÜß=ý{ûüâãöæåëÕ¯jž» Ö“¶ùw*÷×:ÖÕ®qp»ºÿÄ·[ý@å¹ûa" áäµî~}Ò;_¦þ + É endstream endobj 94 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 97 0 obj << /Length 3039 /Filter /FlateDecode >> stream xÚÝÉ’Û¸õî¯Ð-T• IIå0Y\™9fº*©Š} ––8–ÄÙrOÏ×ç­ ¨fÛ®)Ÿrp ËðöþËÝ›wï‹re­iÊ2_Ýݯo|U¯ªÒ›Ü•«»Ýê?InÖ6qëÔÚ¼HÞ¯—\‡GX:î‡uê|‘\zœîÇõÇ»ŸÞ½¯Wiª¼Âë²UjkãjË7ÝnMžüОpr?éOð§Ç½§#,ˆMÎ{˜ÑKý:Í}²ãå+ÁÈd³Îëä™_.}ô´õÎdu(ÐÓãšðï3ü»‡]ÿ隢pzp‡¸Ñó@ aŽ8Åô|»…ɶǛ/k€‘e¼½xÜ]Eâ?^V ÐN{[¤ð2tGwØäðv–Î&ÄŸ±GüVin SæØI²bÔ>቟}¢³iáê¤ù÷AٹǷp¯EZ¸½¨ :qÄׇ=o·|lDR6€A™ü‚‡‘¾Ç? & ¶%&,:¢‹–GºûQÄ ÷tz¤&–Ó==ŽvøèNpÕÓýy:ù!³Å¯4 p"¬³€0·øü1lÊæüA’|ÐÝ;¹bK¬÷@HD‰†V? ØÈºkU²¹êس6 ®0m·¢Wzí„êÈ ýý´1ïD³ñ·¿h;L7_ìFÀfÖ€ÏÏøÞW »SÞ ÁtͱŽeŒÒX`*êuP3#}]¯p”4áüp‹(mnÈ za .Éù0fRQPÝtœ·†`R$„Qne€a!š"rÑ+{Þ;«3`Õ3ïèôUÞög¦œ–‰ó;>ql•½”y¿À¢-)çy«_QÝÊäÔ‘p@wö'!îhô@X¾,Ôå-ø'ëŒoJu3gÂþÒå™É¬U@²k’þ'ò$‡=Yt>ùW%êKØ,/ÄfûkO#>©"yΪÔò„T~i?4ÎÉçSØ/ˆ¨-“ɳ²M‹þÝúVÃÔ:g꬚³z`™2GÛ Žž!Ä4) “&¢(8D‚¿tò€ïÚ!†Zp½#凉ÜÌqÊú…W€;rûAüs’ЪdOÌx"]X¼‰Øå¢ç“GKàÏI¸/(m[¹AîfpR ŠøïíLG+fÜCôÁÐvê  ù5µsµ)òú´Î6Æf’É^Õ’/B\Q1Áéµ’ÀV™<ÒÒI?1ûƒCàÊ(΂Pª²YL÷&s!¦÷ëa™“zH`‚Ùÿì;’×ÃOGU‹};.1Ê›ÚÖ¿#}p0 |›Øsrdv¦Ç“º2‡Ô£™Å"Û\þ*Û`Ó±º)]36…ñSZÔoDöq¯ñÏU&ÏÃQ#—»¯LV嘰˜ØGr›½¼ GÁ«ýKÃðzTU;ðÂ9@ö­lH•µšv¸&Ÿ…BœKÜÀ¶,ëlRPÉ?'ŽJßQK~€7šæ‹%D|è'0Müa:¶çhÇ<„nÛÓŸEzP^àÓ÷"Ñ…/h‚\‡üÆ÷&Ä^…ŽÛ¢ 0F€°áK¸ôFºW7o—L¾G‚CHš7NDhiÕã²LŒÍ²h-"ºåŸ1²[ÊâôI3s˜:$tKp@°7Ó”Sz•Ÿ‰ ¬ çè_;ãyȇ”; —µ`-.Ê)I€áüVX(0âe6ùG¤/“_A4KvèK»íp‰SX攜ÕAn¥ˆXRd´ö‚c€àuœP µ!ŠërË…)D©“Ǭ¸¹ð[ ¥šÇo©hæž 53e@†¦Õ%ãdVdRÜÜñFð#8™^úWáþ#ýÔž+ñÊíPÞwñË](g¹ð¹@!ZŠJÅœÜYôF§ÝxvC—…rf·ä‰;®gÕFN/mGIG¢mzV¼î׳ÎÔÙ rjÛ«z¶cUK5-ð'Èðp’³Ã䨢XàæŽàÄðaD¾Dü7¶‚ µ µ‚Ó¼0 ÔK©ËÁƒ C¸ \&ÿŒÍÄ—”,"rN˽`( êLŠ‚÷kîó0%lBI‡,+Êões ÕX5UÙ-Þ¿¿G~å‰vöS!ubÝ_°™.‰ú,I£݃öØÞ½·6.Z«ÚT¿)‰²¼|É¢JÎ\#!ÉìåuÎÔ>Ô`Kå§)›:ºÃ"½uòç%̼±¥Ÿ`%¿ªLã]=¡”ZS4Ã-DðÂU³Š`¾€{ùÜý ÷¯Ü!›E¦r üµVù÷:õÜV^èrxo«4‚c)œ+M‘a]^™2"ÌÜ+tÚÌøÆý!Á§›_JÌ1óÕÿ³(*SÔ~Iå+`,˜C ~«) -4^Ü]™jêy|oÃ"™‡€Rø†áúâ¦yRºé|¶ mµ#ÒÈÓ3ÆBß²îæl_¥¾1%vÔâìM“<Ë]àæM.ÚG¿PxxñA¿í:Ŷ—­'íòë§%\<ÜÒ—éaù¤-e¿J£áúíñ5ý•Ëã`·¤@µiêjf¶v&c’î,ç±S̲£9h¢ X‰)D’®à5›v£MVn/éÇe´‘ÆX0ª™(¿Š“Ín'ÿ!I¦aÀ¼fá Cï©çìuJÈŸCÖ"9r¸BûP ;RùU¥ :TÙ,Ê­0sÓ¨SŸÎ ›}V“¦U=ïáIŽÍ™šê×– tâÑré…F²èòBýAßËNøÚø'l§Zég³‘ôÃÌŽÈÌ|skÓ#¯îúðJV¸£á…ÍX–à›¸KÒ;oÂC ªZBžTùéÜ‚£Ë¬ûþá‘ÝŠÓ±­ó™— ¸n¢¾åŸû«x„]{žÕàL$htÕ˜ª¼ñ,¤¿üiL»?«d]øB{›`·—–«iù¡=F~W mñ&j»:Fì?‡ÿh°Së2ÁÁFÖ“ ò$ºŽÿ7Éd¹Ü,ÇŽ‹íáV[$ú¶ÃDÑÈÉ®åçm“A™»J]fšL2qKeÌ›¿ß½ùÃyH endstream endobj 102 0 obj << /Length 2282 /Filter /FlateDecode >> stream xÚÍXKãÆ¾ï¯(dD³›ï…Evã1ا#‡ÄÙ +Š )yvA~{êÕJœØ¾ù ‘ÝU]]]¯ªùþñÍ×÷ÕªŽëB«ÇíJé"®êzUäe¬Ó|õØ­þý+É“µŠxªõ&«ëè0Üíá¯]ë2Ú­7:‡÷¿¬ó"jF !½9øŸAÃV ø?À¯ãÉ'x‘áAsþ¬"Ó±tœð5LÀ@´‘Öáô;ÐO•Ñ2÷æ,Zô ?^S–äí=;-?‘ŽÃHš׺m~~üûJ•qQg«Rq‹±¶¸õ¸Þ¤i GR‹ÞqíÈëAø^ΉÏáx‡,h ]ÎüŽ\ƒ¼oYè~p™eŤÅFU±Î<ó¸NÔÌg(’Ý–'It¿®2R.Kóèe'û[Kâ¤×rê™Ud‹ ˄놋¸g†£‘Ý#œ&·^ôNæ–­kdŒŠ2rÜ´½Ó ¹Æï/¡‘¥E´kX0¸È°‹¬mÐEÛÆÙ¬š¥–MOŠ Þí¦Š•ÃÁåž%ÂJýZ„¡9((+2_öò»ÇAÃJ<Ù`@¾áyß2u´†a/4«¶öf·ä¨Å¨ ³‘aðJ‘Y’yÐ’m/dQ9/ú¡¨1Zé‰SÿFÜ„ýFª cZÃ<{¿LtCú¨¨8â!‘ØŸ™M Fn.“„ Ì¿¬ÅùðŽŽ J“ Jò;Lôœ–"OrüH^C>`{9†gê–lÐRfº¼«3À˜–¼ÜóV R$ç>Œza?Øúh"ù÷(^!÷šÏB†>m$|› èiH¬¨Ô»ƒwFl)‡­@Š‘u˜5„T6c–ÍFÙ%„5(ö…!kÆ=ÅNÓÎpË#‰è'‹6šÊX¥…@“žAS{UNPj‹êìËh¿ÅgAˆ[‚~ÎD©R#´¢ GÆWèÉV–9xÑ ™wœKÙOd¿Àà‰Üb"öè—ìš/H;Á‡¼Œ~&2Ñoõ•êÁ¶ üà‰³íÎQA<¿ÊË"(ÕŠÑ >8?M Xßd°Xh‚A'ʦä`ã"ê×+O7«<rgz `’â  ÛBœÙQ2ÙXul Nw˜ Š’šÖ Â[~~R¥Ã ²ô‰…!¸áTƒ°tB%|÷A¢#½%(#%Y<‰"#Zµµ8JÌïn+¸ùo’Æ)WŸÝ­Á9'ÊÔQTÄbË„…º,J«ž—>šid:þh{) 4!ŽIß;ß½¦PÍÉJq¦IÓð¼8Ž–µgša”㣄_–\9gn6Àü*òèG1Ã'9VšÖ|,cÝ0ñäÂÿO<Ü<ÏÙ–²Ž7={(Å\®ÔÑLðlF2@PY32ƒZ}±e:‰þÃη™–€ø*ѹÖ4< Ê(½àM9DÒëçÌP™–FÆaøDö£ÌM³¸ÀÎµŽ«JüÆŒÆï/bÛCgÛNyž(=8If]ÛëJ[¨Hd¯’÷Êd¯{jÂù+4wå¶A^È´ïÄÝM¿=žÏ^+(/lŸÀø¥ï)€÷R˦šaó](ïªÈW&éBÕ uÀ <¸¾ Uz^¬L'îooÃÓøÄ{¡¬em6t\j=JAÚô3_/#ûºÂÈrȬ3@ä’žU¼A˜îcpŸIó*Rø€¾mâáG’ñ™6òzvú"°·=.ð›¸ÆGç0‚çr­ ¾CíƉè/²59’æÑ¼h¿Ëè·Òü°`bõÚÙ=?ù쳕Ù¹† ³, ÎA½,Ÿ‡ÍžìbÃf±Uâ› LB'£/=7Q¸±·Ÿ$™Ôö8Å¡Hk9˲°ç$êýÖJ¾c‚³Iš…Ý?g÷ g–Ëäb+é#6°ÂE©˜Uуà3§áƇ%ëq{jÄßóNCÙw{iv.>Ò´ç³KŸãÛ5 ð> £û0ÿë®uð¸e\Ÿ|°Iôõ}–¯ø ¿À‰tWyæàRa )¥¹}ÿü=€È2·¡‰:~fI¨uJ+$&lR4^€¤Ýñ8HA&ÜÞ²p‹f²p^à`ªb‡/!•á÷Ó“;Û·x{PÜ;$Ðúôìe)%g ½ÏL·e`úhk²Ÿ(^ÚÂËIäxg aëOXÚ5“m䓉 €ûBîè$©å¯Û‰š!" ÁÌ”'OøïQ“èa{ ÎÛ1œi}o€ß°ìgݶ•â’>Ðaä%Ä_VòÛ/+.®ó2üä¯ð¶IU\%)[ö/ˆÛŠ‚‰.wÄùrÏKäu'¤ÚAn_#ÌÎ-¹§Qœùöwú–Øü~?P&)*ù|‰PIVFb.çÔ².ŠH¶!j}`±Ëªd„Þ¾†ôrúVԶݶâéo¨D;ŽAº’“Bìò\~ñÓ&°f/ã;f„ÓêË ¨ÿåGãÎ@Ã?óc’eŸf³}`"Üïã|¿^D]„M{Ò^Bÿ[Yéîr¿ÇX*úJŒÜ‹N´>/ãLcë™BÜÕ,¹ß’$ÌSîeÜŠYî“=ß‹è)ðµï]ðä%C5>õÒ)æv­s¶øµÌ™[Šn²Rå¨9-È—,{b“E‰¥“na`1nØp¡‘ˆ}¯í~7O“ç€<‰WõµGqSi?ˆMmÞ¼]üZözèo…4Šë/.EÃTÿã'H'v8ß辜:h%Àçê²Ï®¿É©]—æqU7IA!fMnø ‡5‰õ@ž+´Ðäsâÿ3ŽBy ŽxepÄ~Á*®jIk•ÄÙõgŽÀÄ™HH$P±Ôe@KêBVý›öÞ¬o÷Ïé9ß¿–ŸÐfz+ÑyIï–°Þ~»¹Þ5±Ý4“ªÔqžTDxÁ–$V„\o¾{|ó?=øtÚ endstream endobj 105 0 obj << /Length 2944 /Filter /FlateDecode >> stream xÚ•ÙŽãÆñÝ_1p²µqÙÝl‰½@¼È&²€áÀ¶8G£µ$ŽIi¯‡|{º®>8œ]äAÃ>««ë®êùáæ›¯m}Õæm¥««›»+¥›\™òª²u®½ºÙ^ý’W*›ÜïÁýöî÷»ûõ«µ*Ê:+\;w¿†¥û©ÕZ­Í4ÏÁ´ \³V¶V~Ÿr¿Êý,®¡}ó9€kVk« .ËCW#&*[3ôzõÛÍ¿®fyY^­Í›Šï°þBËZÙlãÚï¾#`ÐüÈ×üµ°/]…ÊO<úÕ…#Ïܺ߅ yŽaÐ?¯ÖF•Æ7à (•·–/йÅ;ÞP©Ö©X  šÍÕÈ„”ðÿ ®I ÏÕ„«b0ÄOúŽÙ* vúEŠºÐ ˆûfv”‰d§¡_ò™ö ô+ÜöÍçèGrj½œ†~,9m‚xõEÁ‡ËË>9Ï2.f†KÉ¿}âæ w ½ñGÎÎɈ‚os­¯ÖÚä­¢¼EiS(=g¾ò„ª@dxßx–ä‰G VÙuP4^÷Àâ~ ³&Ìnù9ðþ ÄþTeîß³ºÀo4HÀíq ‡ã뜱>HM¼@9Ñò*àw0à_—e‰S¸ªòB_ybE?²ÒÈ‘¦†ÔؼçÙß` °[/Þhl^U*U*f—"{+Ðo JG¤´£ã¦”[þ M·aúdþˆdxÿö wÇß>šCIr×xñº‰< XgÛÔîRMÞº/^êæÞÃ]—¥Îº[°vîP÷çýJ7€IY:ùëˆ5v~-Ty{x Ž ·¨Ç8µ?¨hKw&H ¾éóÕº® B¦§@Ë.s9DÔ<íhö'ú îh[fï`í†A¢cpçÕ¤†û@<˜>“'ß/H—Ý ÅÇ%›:892¶É6Ž!8¹"UÁq{’)>r"É4UIúØ+¯ßè¼Ô­;A‹rwH±GŒÓe^ZãG&lMä뙸ˆÝ–$ÆÍmP%f˜ášÂó LÜÓà.\ —µÙXÅLÅmÐL·Õp¸^as8 ';'¸uGÜoiÁ-,þ$!D•7N•Ÿ ¸6u–cô’ϧÔU6—XBx5«4صëN0ý9šfió°0 êp9£¥_[wÄÏ«¦”¥S?ÑAöN:Œ&à‰ä&º¯èN¤øÝ5á{¢ïiÅ ²þñ:ò©<âåPÒÅ Ÿ‰¨ë²(¼fÚ“o¸CzáÙNLKµÀYÜŠûháp¦vGŸé°„SO3»ýJTéD#U {ì·¼¥ã"?ΕNÛñ& |kíøQ•mö“XÂßi" 1-IQ\°6¦Èî†SÝuHn{ç,ŒnÉ6oº-óÐÍ#ËÜ ±Ì x–¹¶—MØÚ“ ²¸ÉQú½ˇ»ƒ·Ö8³MÄÓB;ã-íø»CãˆrÈM>"nÜy øÜ …zFb{©É:~æÒÀTÙ9^ Þîr¤#Ê)žƒÈ­;’–ƒ¨PìAï ïšlÚ0i„aAsÆ®ÛP øœ¢E¤îÏ«7‚ÈSúà4ØIOi«ìo°´';PhÝYPáô9ò؉¾q\]±úM®¬MBœî$ÕÚ³ŸYRÀ*¯•ßFDÌ®»ÝG©²·åzÞù¸1‘<7,Q FË2ïê&ØOg6ƒñ„@Óe2? ߺ ‡TIÐ÷œL¢mó¦¨R’ žïÉ8c âñÏA$È3T–`£{8ðòDä]ÿkþÃýþó6š?€_¯XˆÜ`ç½0’6»ñÉ'*œâ(ºú±Òp–XÁ |B’ ùú™¾‰]sý;JÕ°ÍrHºœ)Z¨%x5iŠe¤Ý8ÓÕjNaåmn¹Øý*|è2v\yÀö®_%ÁN&Ϋ¡ÎþñÕ’èÜ| ÓÑ[½Ä;o”•à¼i è‚’´ÿ‚&Ãfê}Q€ìzļê5P W!uX°OáÖó%§xÓ‡û½¯€Ph[ûŠBÞîcÀ¡¡Í¶˜:ìP½&oé«rÀhjùŒP"¸O¡xeY “9gõÝqÐå™Äå Ì8Öq)¡,éÈk±›Ál zÆÓóÐ(ø:6Ö‡=ÚúDÚÜÌè³¥|1bÉ[ †¤Îmõ—¡VwçmŸ/{}‡%;¿âST€C jeo9š’Â?Ä*Á»£òà4+¡†ÒþÓ§€aß‘KaRð×ajâòi•ݾçBžŽªesf¿LŸ|Òî¡¢Êýó§H¦²?ó¡óêã &ÅÒú§{*¡D¬ºþ‰FÑ‘!œ—qû€^TMO˜ÜÅñó‡„'I^s…ýMò”$ßþmÉcNõô…ã^¦…f.tÍdnŠÊ½Çˆ<ŸcŽ T½D9F×>±4|½) d©Ý~;§¶š£üSdÉD*ÃA ö¢û¨f|@’Xåÿ—Ì”‚$R¢R·‘ü‚„Qþ±*à¿-ˆ aTnàM!f˜dB¹‘јBe>Øô1Ž} D\®ÔãÔs^¹@ØçQ!ž©°Äkµ¿Ïg ¯ùíO‹{ÔŸÏã+‘<@™èÕGÆ89-]ªˆûH9¾òŠ÷=¿äÁaòBg™¨?ŸGd,^DÈhF8§GDÆz俸k³ðtФ¼®Dµ;rç•8üÔ?úÒЖâ7Zû, R( }TÊF~ÃÖ GÐF÷Éaô%Â@hÃmRí‡3 sÛðjÁÒt¯'„~å8“\B|"@À’Há¡ËÙÀ“U‹P?ÔTn 5CŵôPÜOêÑ×RxâuÓ0FåR™ê&_Ò³üÒYÄn/séC­qH÷pè0øþHK}nÂ9¾ÉþÙ}î"µ÷˜pXB%äÉ6Xgzõz*YFzZD¿ô ‘ ®‹ìg èÑÀÎT/i5ÅÙ¥wQÐc\úÔšð=’x›JË<Ú“ÇPLÞÔ¾js^È*sÛÖ u Œm0—ë܇Ëg¹ÍHT Û÷a£D ›ƒìN4pÑGf! ËÀ "ÔI²ý-±W”Fˆ^Êãܵdœ:7uý¸tƤð¬kžz©¤LS7r¡@•^Î\ó"A¬JnSïbÁǯ¹ ÑkéU¨ø%-uü_ÓÚ\›J6„÷Î(Åá2uxõáÿ^½Â2¦L5.šEo¹0‹p#…ÿLŸ?HûÂ{ª,xÕ÷$9G9bC]:üglÀ~ í•IŠÎÈö…QIFÚI¯3OŽ˜teaß|ó?í~`o endstream endobj 109 0 obj << /Length 1080 /Filter /FlateDecode >> stream xÚÅWKÛ6¾ï¯z©\¬‘”(©èhƒn ÔE¤9в¼v£‡ai³ö¿ïJ¤¬&.zèaV493ŸF³?¯ï^=¦YPB0¬w¥Eˆ4#Œ§Áz|\E)ãávEÃgåb¶€ed–,Ï G Ò‚(+òr9àÞŸqã±f åtô È#>ïMµ|‹[ E§‰!ªk?$ž4süéÛ7ˆåˆ?9¾(^Y«ë7AD”’"ýZŽ”.I’€>'E’ýéÞ3ø_@£\EÖ—›®"šf*YpšdxáˆÅEê`_ÍÐðí¿5䳈ù­†É,â— |a~KLÌ3²é3úqHèÓp‡9&F”³m‡-Öåi*QE"® |'¨î˜ãô¼Ì˜2 Þ„ƤÑG8^p¶+Jùe‚И]Q‡Ó„«ºè'Wš¯s§%D‰ 1˃ˆEPë½!+S ¬Ò·©1æßý'£ÐWzÖIØíÌÞO²FpmôþvÊ¡TF}ÕUܺkä`Âè£R¢Î¸#,v«_¬JWKkÉÞ((*N÷ü´7'‡ ÙËŠeau²÷JB# åiÌ>h\Vy4ž`NãË9«ÿA§òÇÃNáªMÓLƒß•Yôci‡‘YÚ™b!Wf÷u§0œ­"T ÈÌk³»5V¯UÔn0뽆ÿyÅòp1¶œboãNçé„¶Êꢒ רlyJ‰Ñ5 *iþ¥Ê©Žne;¡ãKIÓ äÈ\éLgã ªêB§jŽ5£Â¦\w-æ[ýæÑkŠ<ÕÖ ç¿1H9- i@c_¡F¥rך«ŠmÔýJûq;樱ùÙOeB0u­·`ç¥wî"µ%Ò~7«ótÚ-%k¢?Ž5¶Ÿéìmñ*œ…»îduÑRþ¤{,4»·½9/»æ8òA)ê±M"%Ä4 x€%¬¼F=ðˆôï®ñ¼~и•è‚9²œðX@´ïo0¤„±Â*1D³àЦDz³«Ó'⌽\:c‹ RïðkÂ|õHLƒ;Y0{× ÉóY‡>£‰2Ý ™Þ£‰©ë§Abç´þ“ÙVCÓ¯ €üî–ìèÑbyzÜïýÑëò8~yíŒe÷K<-ÑwíÜû{?MöÛq¹à(2Â>™óô§¸Úùr?Ì'¶ˆ ’&‘ Ÿ¶(v„lý)•ú#$Á­dÚêÅSÞ=’;#í5šfc®l>÷ÞØ«K“X×Évâ}½Î#q†ÅaÔÎÏ3€ÿÙoîøõn¥^<êßÉþGÑ;)¾Ÿž gå‡k˜žçH7ìÿ!çÆs²Ô‘(ỹ%µ >LênõpÃ[3›9…2…_Ĥˆ "…Ò¼ûe}÷7è³'‚ endstream endobj 112 0 obj << /Length 1600 /Filter /FlateDecode >> stream xÚXYoÛF~÷¯zTaÒpa 4H=UZQÞíÞàðù¬Ä Wh9®ŠŒËðXƒ4Üóœ ÁÍ-a‘Ä ´' €%Øõ<®øÕR2‰âýÀo\9PM‘6-O® q©bÒÕ9Å¢jEU%ª6gûmPëdSEïZ8UµŸúiRxÿÌ‹„À'ù¸`—ÙDNÎ W+ª…N#2±w´‰„ÝœL”{@~ekä§µÉi 2ès£G®æ‚à×ÉÛ× )j‚1êæV`L ’ìJ8>DC¿cy2a?bq†tæ›Q¬»TÏ1. pwØRö Å…8Ð1{ T‡ˆ„¶¬q!ĉå ÚdæßT‘k+rzy÷¬Ë­sä‹-ÈÚPec½SpNîïøìëz½Y:{h~ ¨ã„#/¨‹ß'-Õýâò»à204#””'T/~9J·!F¾ˆ½§ØÚ&<ô"Ì9¢® ”¯·…Z$“*+'é·1B¥R Ñáö~µsœœݑ㗑SEõRÓ ‡¢óÄ’tƒ£ÎÔ{oêÀrUý¹{ €€“Cñ‚§ÚNÅ9d«OÀƒ~’†næT­À^,‰§î¯ðüõ'“ÉÕ–NøA³丶 NL$`¬qTÒô´~·B Ú u‚ƒW3(sØ“¨”˜>‰¦³•ë%§pG@ö ¹`i‰Ç‡—emÓpºnon³Üm a#?á-ûü1„´ÿ’_¯%fÚ­™ÜIç#ÓŠ_èëxnyª©;ˆp3¦/²ëc†<<É¢J6¾XJ‚Q ©åfIßÃÐç¡nÛÊ£Ot£g¡œ¹*¦íõ¨{/+qàa˜‘÷ <‘ÌA¿"¬í(›m/y~MU8úv=[Ÿa?À¨là¹#PÖÑ‘3E‘@VØS—EÞRÌšónÜ(­£uka@ÍGä©|C ¢ñyŒê–«§­øäAì¼gV¦¹c w6¢Û¹¥#ÌrJ(Z±à<‰Ã2#x¡¶hcKºàôXtÝý?]¡²Kº’3\Åe]–‡óô’¢ô Ô)ZÈ<âBv?î|h ‹xZÇö¶Í³ó®¦P:eêªQÁÔí¤‡QÄ^® 1í'ˆTõ²š/«µ„ºÖ~YÜHÆv«Ú_‘áMZdL.{ÀÃéqÈs¾ *‘æ;}k?¸{Y^¾}6ö€Æ[F º6·;‡bİžigí>65GyÛ&“ž(-5!F¿I‘¤ tôN÷,üõ‹»æVÅ"ÄK»Lù°kèä…›{§ †¥èæiµÃ17Ú\_HM #6gö Ö~­ZSc Cb;¢ªípLê\¿Ê Šä^­ÒEˆ-à#†s‘{o£$]ñwñýTĶà0>Tr²ì⸶¯£×%ÿ¦ý.§Ãžÿ!àn§Á×äž8Œƒ"Ï ÈÊ ( 9 rä]ý²¼ú h%à endstream endobj 106 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-PCMcurve2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 113 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 114 0 R>> /ExtGState << >>/ColorSpace << /sRGB 115 0 R >>>> /Length 3006 /Filter /FlateDecode >> stream xœ­›ËŽ·@÷÷+z)N»ù&·bÄÑA`x1°%¤ ùýT±ªØdUC£q¼Ð@gxÙ·›âa±Çm/7·½Ûþsûþ}ýðï¾Ù^¼¾ûqÛüóõ‹¿ÁoKÚþ{ûñ§íØ~¹¹í%ü{wsøíÕ-û½¶-¶ÝÛ‡-y÷™ñýöZ3)uÁí)bÁQîc÷q” žå¹îÍ匣<„²§:ÊGùr»çÝòoî¸q~~¸hœ‡Ÿ?Þ¾þÖCK޽ݨ=ÎÄùØÛ|Ùó±Ý}؞Ϸ»w·¿Þõ+¾ªóu/uª›žP·Å=ÏuݾØç°‡4W~Â7‡à÷ÃO•ý¾9Bÿ–c®<¾™º(ìßÜa¾ä½&êȵ8œt–Ö¶»6J‰ÎRç=–QÌ8•'·—x–Nå5àƒr³ܻ¸‡c”3Nå1íéü~Æ©œv”ŸÏ>·ëÔ˜™Ú8ĽBóÖÝU†ðË«nùlõÒö˜¥ºru¿ãúñéõ#Œ,'õóÓëh¸&õë“ëû#bPýëùôùú!íUžß=½ý|.PMêÇubp»EW{OSüô5î±3 ¥åïûbð‡Q6-Š Ê!®AEË}ª#7Œ…–!öïƒXSÜ2„‘>^!Ád3Ž ûb»`—}<@ìia¹a3ÃTÏÉ2¸gè׃xAÆrÀ0ŒS¶\0„Ñ>Ï[ÂÈeú«?Ľ–.¸áºú¶g¦áÌãÕ×Ëà¶ôy0wÁo¹aP1ŒK_¿¬ìñ¸àˆA.(—epçþ}Ö;Á泇å¢e\b箄–#E; ç»á²ú|íó]3DéÛÛC<€a9Ñ|÷0p ã,W\ªi“¢»‰¹O\ˇrÂŽ· ãµt ø‰açhéçý¸e^Æ}ékµåÆ\¾Õìš0r÷Ë…ï4èÃ׋à{¼· ÚÕâ=xŠaÜHáó†Ôã…aP»Ÿ7”8 î¯Öše\ÃÉÈÝ¥¤~™†âN = ųËåÐЉ>À¬¡yÚ'œ:Æ.$ž+%L MZ M]XECgª¸ØM:S£34t"OdÑЙ<ͤ¡¡+µ.¥$ž+EŠ,ž+eê=Ï• ͬ¡¡3±< M‹†ö§:“§hvjh\5”ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 120 0 obj << /Length 1975 /Filter /FlateDecode >> stream xÚÝXIoÛF¾çWî….*†3nE ]\´@€qOI´DÉj(Q %;nþö¾m†CŠvìœÒdÎòæ-ß[æ¼|öü"Ÿa‘êtv¹šY˜¥ù,M²PÇÉìr9{ìÏUÐ6ë>Uº üivçó8‰`s®Ó jyvw®ó ‚íR¾Å Tk/mâä(q¥ã•fÅß–6«ž‡p=ÀøÚ[¯¶(²FÁÝw¸l‚+06Å€œŒAVë–ÈÑ  „+Ü)HïÛxsž¤é¸a >\þ>‹fs¥Â"º#l¡ÐO—»s–O‰¶àïøÅÈ`SÆksDµBäûüÂ$3eÂØ¤bbfš¥˜sª“à9ïЀù¯my|]f\øFÁ²ª™™ï[`¥U˜G9óº8Ï !ªãœ!b°qºhQômFî$KvðgÍû톦‚BVvÕ$¯ AAÔEüK@Çi ³%¨yiO˜ Íœ]V Ȱåo-ŠUHŽÊ•‡^ê-÷å`\áFM¼QdóqdœŸ2`iY—á”ç_¡^%IÄ#yBÐð[ž—W”&b“€ ‘ª 3¤hîv/qHŒIsø–L°çô§ òÇZ2©"ÄY Ç F:›8~)ƒ–5Ïù4r=2ðKJyÁ«8LL `oNÃMEaªrK°(E.#!Ê ö YKÉû©G¥º±¥dG C˜P¥fˆ=‡õBéà âØÆT%y‡¥EÅ} Ar[`|]þE.-©†‰ìµ–a¸qZÕw¼ß ÄÛ}Mò1çâíÒÓgo±%—ÈÑ Å|É*{ £ 8uɃKœ<6´„K¹w%­\àúõ HÓ¨®·¦bÝjÑ7Å@8no‘ÝQì'óç®Àz2'ÿªæZL¼Xk©‚"¯äy½¶x Ê-nS¼“6Zò¸™w¢/·!P:Â; ~›¶Õß÷—R3Ö×ÈýÀ+èˆMI¥¸ÜNå8yÇp¢¬ ±Š^7B­õ2>6 šŠŸÅFÀYÔâT8T¶ òØ-eÊ×YP2Ãõä ¶sŒÂ"e bYí bàâÚ Î€lWíx©BÌ–®¶7⥜'X\qŸ7öÞ*÷]¯‹Sm©±Ûã8&,àÓ¹rk±€E¼g*ò¬çc›F 9ic=@ξ†!¦ÄoyÞjž ˜(¹ó R•Æ~­2aÅl®rXÊØ’÷ZE§U Gʵ×î.‘RCZ*øT¨¡ÎU#9ù÷dÍÌ,si%ž¥®<†ØbüžñyU÷‚¥™'Ið'^ [Ï®é‘é¬|§µ}£BÝA”ïUl¸XñAÚ”K£µn;cZ¿<œâ0' ç* ÀøléÄ„Í|,ä:ý$@¼šŸ^Oøªd˜gÅû/v®þœs³ÿ¢s¼¯Ñ¯?KÑ+.î’æ·Ñ ÜQˆ! ©”4àþ\ ÝÿŠ.‹"ðÊŸô‘U7nw¬ìäaÐio)iÝõš›Î[§ŽÒN*#¾²ÌM ú¦8/ùb³¢™KZ¹;1§Ú ®h®å¿Ö(œèn b z5 çf¾ÑIFgnTGýÖ¢uUÀ^Dºàr ªx ɳ‡¶—®&ä«$èa|‹®ÛØË@ÃÈeÛˆ[CW¥vJ»¸,[n¾m<‰?—Iæ… NbãÚRJrî<÷$ý$huƹkt!kN™* ­©+íªàwC *ãq8åa®ïÑSÈ"ÒxàPã' @aÂ\eCo]zU`|7:?ÀxÁ/V»H´žÇ—œcGû?€Ýz\p& IóÐÎÄ•ßÏR‚ÙŽëÒ >& £Ü˯Ò-÷(á„0Èñ8LHv¹7óK¨™:¾áT«G+ïØïZKZQ¯âåz¤uÇË¥£¤éFZ«J(m_»ûê^FÓ3Øñ°¢VZ®0jy»³Í²Ç·9®ÔZ±—=g{dÛkû¾Æyxë”­Œ¶âŸ£`¤ùufM]‰JµlWýɽC•Âï ùE=—•0jç¶÷[dë„Éé‰É7O|-&#Ão½8)=„D=`fòD3W"†M#&JŸ2pZDtk ¨…ÙÕ…"@˜žÉÔ2í<¹g=·3m!°¶¦:{42>ã¥ã2…ÎýÅÈôvTÏ=ðî‰Ü)\IcÚý‡?aO¿ô -ÑéPD“UT„©Î‡†[mîÖJØLÁÜ÷F“¬ÄPïà§$:Loƒv7µ]VrP\ùAŒ ©ÙˆÃÌþƒ’ë©+”ë¾vÙÜûÔÃ7ŒçÞõ(-Û>ÆÛ ¿Šï;yp¾äB×Iñ÷ªÈdî›uã$SðŒ…kU¸§iéÅs„(æLX&&Z?’©‚VY˜Ñš!`?±0sŒ³‡›'2Îe-¡ 3öâáå}Þþ?æ840QZ<>Ǭ—±–é ¦ÖFïB›JÿAåõ¼cËÂæhdšÉã2*ZK>ãÝ‘&;üÑ)¸åèË5šòÛ´ˆ)ê)¥(+¸8ž¾–s /0p¼@ò\Ø© Ÿýrùì_AIL3 endstream endobj 124 0 obj << /Length 1972 /Filter /FlateDecode >> stream xÚíX[«ÛF~ϯ0ô¡2D­vu M MIh yh Õ‘åcSÛ2’ç„ÒßÞËJ«ËqÒ†4ôAöjwvfvæÛ¹èû«{ž¥‹Ldq/®Ö‹,Iœ.â(¡ŠW«Å/ÞÕf)½rùÛÕ‹Ï¢Ä!¥ˆµˆlm¨¶æ9 µônÌS›'7Ï-ív%éX„™Ý[T{CµÏaïjéëH{›¼¡ÁõÒc¯,‘5Μ̰)‘Ny­y©`yHº¼E¸]†‰w^†©¥ZY‚œÞ …÷æáÒÓØ«ýn8TU[NÒÛðüÏfüô%iP¢ÖGT³" ‘-yálj9±ZøRŠ,bƒvÇL‚^Xœyk”d$3uKÔwCw‰“žXú©ÑçùX£% XÞ_úQ ŒŒúY€äLÔo–Qìåà°m~m~w ·!ºM\Þ€Y+pJ‚ÊÍä èªìOÞ¨:Ýr í±$9Ú(Z§91pÞÀRk×û&÷shŒC!³¿Q`(× DprË`¬y  Õ„¤2ÏñîåœÿOèÛ: È@»œál0!ÆAJÑÁnŒUÆ!ï®ñ ²!ÿJ°sÇšíÃC¯íM…·•~W4Ws”Î:S[£Û#o¦µ= v͓ـ¤:aŒÊ ™ÉW*ôòã‘WÙЄóˆý¦µJ’Š «6¸Áp´ªž‰2Ó"Ò©½| {ÊšÜ&ª–n/„‰W#ž.­ÙôÎa¡dÊ’ÃZkC®þÅÁVßÞ$Lr¢.d‰™£øJC’…;› ¥$Q>&)ßÐß•õ½bj2ÏKz-FG+É›°T¡1pØyìyÓÎ1€?òŠ£X‰Ûfî+}y ¤éïP?Þ_Ÿ)Ú³‹;e­—ïã±3e¼— ϾrXÁÿ#–Z0°ÜuÖäÌŒ·¬Ñ†—9ç<»ÀÃ?'ü"Z¬Ëò>c|‰¨Y}í¨‘:H‡±t6S‡}2ø £“/CmBކžç¨©ú,%í–Š_%&8oÐ8”ÛÍL‘¼%Š.”ãØd8L³ÛzÆnL,þ`!·ùƵ}Õp‚1<·+ªI g ÁS+Ë®µXcÍ„P~ÃDÙtA?o{ðþkL™Ð{¡9ö d-ïД5OPC,Ùý mqh¸p’²±VÜ£x'‚s&·)“®°ÜOîÅÄa,d:u±$”¨@SaÒ¨:Çá:/ÈœðBÞ9í¨¬‡.îà%Åm«ÒíA¶ÕÀæÈxí0â£mræ•W ì®’lÛ2ú ƒNšÖ4 õ¨gØY¨oÕ{N_E)UÖr©¨Tbi¸Z ò гÊ ,ex¿óÖú¿>0Ì  öïsÛ'Á›m쀎Pòr¿•CÎ5¨pKSÔ8õÑÔçÆSBªÐ­gZ§¹¶Ñy¿¿îˆ¥iÙÙ[en<‡W¼lQ2¾Š#£É¨%H¯œòlÅ<¦%Üôp‰Jêýˆ‰ •îæªÞƒ¾ˆØ¼a´ †N „i†1ö \åÄ{ŠQë-¼D&¢P©LYÉLÅm£Lß $‰IbnyÑ?5‡ÿÂhEän«ï¶Uí·|ørÇ6l6è%Þ3×Fþ…¸S1Œ¬þ–WCÓk pq÷õÆf™€,¥E¦õ´†áb¶è™ÍÕ©6߸JNxÁyõ-çÖÍ—Ÿ¸»ÒäÃk;0ošŠD'ãnó®|=PtZñÍ1{<,‰ö6·°}n§&ºÆá¹M Ëø)sÙñóp.ÿ]päš—jÖÈV‹9)̇ý¹ÛUû²ÓÃ@¤©ü0§7¾wû^BkÃ34U?_¹C;Lø‰úCd\Û 7)ïçzܦç/™„ʘºD…Šu‘C$”Cžì×!•ëkþ‹„&{(ï]ßûÖý†ÇæùÓ<ïø¿·œéª“ñgY×ÙÜ> stream xÚÅX_oÛ6÷§’‡ÙƒÅˆ¤DIÃV Ý–bÅ l˜_†®Š-ׯl)³Ò6éÃ>û޼£HÉtcd†€0Å;ïïǼ\L®n²<*Y©„Šëˆg%KaEe92‹«èít9ãÓF c=‹3!ÍôÆŒ?’,Ÿ!—YæÈÜÑê…âåôó,Ny©Å¾[¼Ž`Îr%£˜sVf¤Œ¦OƒòµPCÀ4Rå,æYΧܣ+ú-‰ž¤y¿?!zAôÅK"K"åÃSoäý¯Ö?‰b!YÉQñŸa} ãO2`Gßr‡+}€iãžXZ\¾§‘¾›¡mÖ¾ •36ii n£(¬ÈÝsü¼#!3”gŠ´¦øAhÌf’îÊi¡¹>ÀØÃ¸%ÝHj‡©ô‘¨ YÖ9ùé“ôzH–¤%êñyödÚ–¶ \þ¦±KÁæx<Ì禴ümÄB˵‡=}ÏOkî²þïaò?¸}+/¼…A‹~OtäR'ë’ôª©ä¤ ï“cã>¯aú:º.ü;Ê:Ï ÇžäÓ·Fsuu£„‡9¢È@¾‘ûr Ð$ ±ô;ªü}@ϘRü I¢´ ïœ+-–ì¼rø†ôž#ˆ(Â9A¡ÍþÉÔnCv¬œòë’¢³#¿[ñNôȳV—†|șӑ ¥syæ¬áÃOAŸ&øôë§x m+ª7}ÐŒßéðŠ2§s)ÐöpÒgæ–8ß“)–ÅæÛ…SðñÄ7tPE–:ëAé“—d\ú¦ßTG)ÆlB©X–Ê`7EWOãÒW£ðX÷ÃÛɯ×Q¤¬iž.Æúzj‡ oM®#fYa>‰xlþêÙ[©ñvtرæýk"5^2„PÒóàŽ–‡¥hI*}ªî,TGÖdŠÕi5 ò=I¿óÊ}¬z 5jJ(8æ‘ýåÆDZ£4¶!zã%aζÿ\ºöVY2^ä8ì›QÂèC_yåõx¶ çJ¢:#xÏIFâð­L;/–(Üý ï·?Û¹ ÝkœÉRœ}±5šáü«Ña¦à)K²4Xä—Çmfí:©– Â6©ÝIĶ·ÝÎø`ÔîœÆ˜å±GÐghŸ›ÿ£M µdDÚz¨´uøñ%Ø9P’ùº×ÏÁücï ð¾ö@sÜd>ã>¸ô^*;!lÕéž±„÷ÊÏNçÝ4Ê3zFEè÷ya^—. *ïÙÖÛía;Ýs´îñ¶$µŸÎ«²•V~òãb¢ÍI"•9<|‹ˆ§’qx/÷“¿&Ú,™ojHv-\ý´/£ÚɯðgI1‰Œ=™/õó¿ð]Ê˹ˆ¸äªznAf¦²ˆ`²™#TÄ"Ÿ®)̪i&+÷R5‹ÆY°ùt_í†ÔM5!µh:¦ÂÃ×F âé*À7žÚø¶·ÞÅæ21èÜ¡)gŠ+»Õôoæ¨Ý­Vãq †.¶jiÂyÀ•vÌ +ô6%§U³Â%k*b°JX–0Øp`3KY÷g}ÀŸÿ2M—½·¿^³`jò·±ÿ¨í½{”Õzž4¸ªù{X¬M÷ ú¦ÓëæhÃÁ6óÛÒúœ¶Â×Nå„^nZÓkÜ#*ƒ½–¶Kd¹Æ>Ó˜nĘP›;¢)X‘Ã5.JV”y"±uñga ã endstream endobj 126 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-fg2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 130 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 131 0 R>> /ExtGState << >>/ColorSpace << /sRGB 132 0 R >>>> /Length 2820 /Filter /FlateDecode >> stream xœ­š[o·†ï¿_±—6P3<.£`ÀES (Š ‚£42d¹µ ý÷á OÃlµ¹°¬Gû-¹$‡3/ßýÌñú0Çûãß—àß7ûþ»ãåÛ‹VZëcþùöå_à¯)¿]~üéÐÇÏs¼†ï/?p¼¹D«r9|QV¯Ê™ñîx+.3¹vÕ£œí—Žë¡¨äÇuÆ~Ýê¬Lê׎ë!ª¨ÇuÆ~Ýé ´ë׎ëÁ)ÆuÆ~}î}¿þÝO“É}xwùæ•…•¸úå ù?ˆ£VÆ6ác_}8žéçÇÕûËŸ¯jËßj`2‚Ÿî O¸7xeòt¯yBÇV[ç‡6OèÙ£ôüÔö)=—¢|šo~BÏÎ' Îq³{BÏ®DŒÜéæÞ3GHª ‘J6-…ÐzÙ W‹W9ö«DãªquãfÆézÌ*¥qp\·õÉöëŒÓuë9îgœ®Ó`úõ1¶yÞ¦Éz1Í¡ƒÁÀŽÌn5ÀágÓþèí9(ãÚí§KþèíÆZ¥[÷ç‘þøý– fùþÿ¡ÿT)|ÿy¼?z¿uV•ÖÿyÈ?~,ùtÿˆzZ]Îmor])Êì möÊW¦PX±}øm-3ÿw249+[Ç{ìÇgÿx~èîÙÍõ§‡ã_>?ß^ÿóþãÃíÃóŸŽ«×_9 ðk‚¨´¡†_}‚–¡áëwŸo?Þ¿Ý~þõøëË7½QÎ1ÑÁ F\ˆ€ôéæøûqÿ¥²jTÐ_*«œ.Ñã‡9-0Ai°)*c%åRRÉI²ø¨w—„±*É«ˆJ”T[2˜>%ˆ$§\–”1'AI)’`Új+ÆJÐk®=@pzIgéî’5Þ!È¡2X«°•ñ E•°•âTˆ’Öu ¯\½ZœÝ’1ôÚP—¬‘dUÀVŒö´6t¨º!ÛK„•q³*zȢᮩ+‰ "Z\B‰™æÄ‡RKbÁB,ʉES¼[+D‹9Ñb}ʪvd=N D¯b¬ m˜(Í[pa$ÂJDáQ6„!ÔÇ€ A Ѐ ÓÄ+î„-bÈŸ°£02£9á¨|I°ÊçN˜Ù‘=®ìÎ xˆ#.ÔÆNJªœ±Dîly}!À>ÙÙóxa¿£vØ8aF†<à gîrÈÆVs\ãÌ' ÏS‚ b纑£Êé„¡ú|]ö3vsw±6`ôo Zªngë#æÞ¥3,|8^É ‰jjr0qÉì ŠºGœƒmxÂÉS.Ö ’-¤ƒš2ä¢ÃÑ BÁÔ¬VP:2B|³vC™‡-Š[[ÏNÄPÐp†êáÈâ¾Å9ƒ˜ÃÓqÊEúÃцч©;žúð˜z¦>R­´ÄÔ‡¦8è}Ô­Í<õAÞû˜ÇA}Ðs>æqPôÜ£i§Z”`x";J0QÆOÕ¾V‚‚Œ*½Ï• 1 ˆæ$Ér¡£¹’áü_§ÌÅ¥t%Pô±OA{+‚‚åw¨f£Œ T0c*˜Z¡Ðœt‚`b-žF/ÉP^Â8Z Ê>lìT$ye¯Ã@X‰‘ÖN]6L*”QY%fFª¬ 7áåY Šª¬S¢DËu&ȉM Pu”è)fpA2ðÉ–‰0ê4*«ÄBbŠ«Ÿ@\ßÚä.Ü¢ eFã ~‰t¦¬G!‰“y¯š#¦JÄ€iEbÂgʧñ.‰ãë™ÆÂ"Ë=•s؇°*;[ ûš—ÏØc!'”ì;üËA¯fgJ¥ÀsÃΙ?ÏåP2ž&êçaBa¯ïlxžaÒt¦qpôÜ£yÔ=÷ècŒãñóíQO«ïtÒýòÉ6Z:cn”¦¼lÚz”ás®¤bçâ<“å³l;Ïä¨.Ü+yË|^)p+TÔ%¥Jt>^)R„sÁ_‰sü•ªžï¥Â­PÁ_FR[á³óJ†Zá³óJÏ7ýì¼’ÃjBA¯±ËBa£*>X(¬¨ ’ŠBa¥H½÷SýL Wx:ÕÏ”é Àc¥B‡:㯔5·Bg|IýG|†s;ñžC—ì˜ÒÐ%!æ¡K$Æ*Æ»°av“j˜0†= °©Ö49›¦Ù̃î4Ì1AfIw4<¶6Ìdµ ÐÑŠ±ZÚ‘ô©%‰ª[³%¦¦¥šK!¬¶%frŽšK!°pS¬ÃV4Z³—Ò< Ɇý!jgœÉ³¨RmgË¢ƒÄÚ΃ÿnö@VŽl²öˆÒÞ,þ¥ä溲ôÜØ²ôþ¦ä4KÏ=G#KϦ#ïðGWüúrø£+Gò &T2Ic–ž³4ëþ©äv4`é¹qaÿ¶ù­‚Qú×ù~ëʆÊÐä·®Ìå»IÏ•Í&=O˜¤ãðkWæwÝŸ•h=º?+9Òk¥î×JNTöšôÜ8ãÆÒS²ÕëëÕ-KßæïJö$ºß+9ÑѪIOÉÌü,=7æŠØ¤§d|Ìú:–¥§düF ÆS“¢¿î«·°Éë÷ë,ÖñXžþþkL¾ 2À|áï»·­çâèÀLË3ø¼´FøÅg€éšï"üC¾'›*c¼ÑW¸ž¿öáúîæ9Žg:¾…ßï_¼þøëõýÃÍýéWÄmrpkþÍØ,œÇžúÕíýÍ‹ïÛ7Òèÿyz/Ξ>üã­ÿpù/:ý endstream endobj 134 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 137 0 obj << /Length 3649 /Filter /FlateDecode >> stream xÚåÙŽãÆñÝ_1y²¶h²Ù$›Ùl€x‘ÝØ€Àl?p$j$¯$*¢´3ã‡|{êêKlíq€±R3»¼=â1êÐlÀG—0¶ª®³Fik3D“bö„ša%*6²ª¡½‘u¢‰ë{I¤ïΓ‚ÐwR}"(+ÃÑZ ¢»jëL çåtÊ?±]RÞ¶•ñHÉ 9 k9ú=ªÍ‰ÇXÖË«3K%Ù½áaNò€ÄËðO=[„bv]w¬uÓ`3«$åÙuÎB¢ ëÇ6ûÖÌW283À?°c »UÕøÎ¹Yô '¶ÃÌ‘¡E~/0ç² àÞšc'€# ¸­ÀÕ–MVêÚŠÁk’ßÔYÛ”‡óH”éVó¨·Si:æÅM0†ÂƒÄz™i*»ZÊõgUÛ\xþJÍ^&@©<«UaǘWY^”¿æ_² è¼Íò¦‰e쑸Eö,µ3“­/v®e²²u;w:xÏÒHpª»ßH$Àj úóÌã­-‚WkÖœµ†¶ÕY$6”#êqjÈë’×½·f«4>úöúTÒǹ®+G%L‹,Çæ·6‰¸œÖl ˆÎ%Ǻ™Ñ¤kp¼ÝÈÏPOà3¶çˆ~³8,iÏ‘¯³GÍÞ¯ápÚ×ÁÆ–g!ŽÜÍ&iiãNhwI¾ÒÇl ±hs0Ù­åû )‰äˆb]TVó2%?u ŒK)PÒäNä¿™‚©²¢.‘Ï{íQ NbtYâÐ1-(vO­XƒÆ6νM­XEÆ!­¦ú‚DQj”µ¥[á‹@®2–¤ÿàîyIB‚…ŒUO—Êm_’MyVÍ'M_#Z‘$Zíò1ÔÔ2Ê zmØÍ.ù=ŒÃ¨,ÝŠm5°çNm¦ÉLÝ|¤?ª®îYhn‚1Ý(hr€?žIÛ)ªÛX‹d#Ö{›K8“WÞ¸!Å7û€œ¤><‡û¤%År\NA•&HG—‡! ™“÷s…ñºœO¨Ÿ¢I “ÆØÆ«iÒª8䯀pÅì ›s؃èÙ²Júà¢2âú`rë=>XÀ›8zPqZŠ|Ñb¿ÎSë5Y£½]N׫ÁO;c²n!јý˜Ò0¥2SX.R³k¢_ÿfÄü9e±³Z+g– 0…6™jB „e£ÆZ"´·*kÛV¤ÉˆºÚPºq)Û‰‹­ —%8¡S°Öÿ˜H¾HЙVNŸRÖ»nõEDܤÝ'0oÛw÷M0ÊÝ¢yŠ:‘£Î'†ûä”ýÓá @¥3¯"¿ƒvSê:;Øg ŒuÓ2ÖºÊÑ ()N0.Ã_’;²²âÔ§*Ý‚)ÚH¥÷ß%Rmðкñvkt6{ƒuvì#\±ãË”ž)Øw9e­‰•»e$fæêX?Ú ¹Íti®T–T>;“ª‘Û/Œj»_)ûDÏ®Štj™ uVú8ë§\U)É6EE-»RUDé¼â"WGà#®Ž¨<¨ŽÀÇÀ^”FîwTɴ؆±öÉÃEu«'†»ÄD­EÕ”Xµ_Ì.Rñ“j³2w[ÝuK¿²ß¨0¨Õ*.—RX¿¿zê Èé*4“‡0xQµöRué’ìp»Å‰[0gÂç®ÛúacOÅ$7eä%%º¡VŠ£dsÝØ Ë{,MØBù¾D: ÷Øà{Ç‹­Kªb' ¤\¿S3Pôb¦ –ÛêÖ‰TË'c®É…êuá Du9åbÅJÏ~é­è.Y7ôw2ªXg¤Ìgí¸c‡œ9l¨%•gh½(‡ ÂNÐëë%#{a8\ŒpÞõ®š*&£<@( „_ P:C1R:ôU\¯*²eÔƒ*±m!08#6.BóŠƒ eÝ©>%Ó“$ ï›¶¸< rUmD¤ãÚÍž¬{'•C¢4øÜ«¢± ËŒ‹ÊøôetnHfî#˜²ºÉg_¾–?/Àðª¦|ß‘“)U›‰‡¨ŠlûV9m|Ï“T•(YÙÊÙê-’X­gWé`Aé¿¶J~Bf¢ñªo¸6â–æ co˻莓3W¾(“³¹£L«OÉ.m—DK…ÈÚ»•·ÜÖ± ètìž—sšzUιì¶òÊÍBJ죓C:²ªå”g !gFˆ, Ui‚—5¥t. Äø^gšb­ô†4Ž6œ$ÑUW Tà Tdé”*/“Aa­=ô.ØôJñž¬àïcb˜äÝ–›ÈéÆÙ*ëDÃñ|’!£È†Ö,·dÝù’@5¥csDæá†c”¼ËEûÚÐI—ªˆÁëa+z†üÔ9,8ˆ;Ü€U>Zkît W•<Ê.Û£b±DzmpÈ1ŠŒ£½p;¼é fïΈì©ÛûhŠ;ò©Þ/_b ³¹-œtde7‘¸™Ú3Þßsâ§Ì”(#ÏZß"ÂvÑ^i™Ãp± ´Ýθ›ý ,ÇHåûŽì†yE¡ ¾“]íQ²Ú€(ÏÜIç0"¸:ž'È”¯Ëh1¬¶¬ìÙWX· <Íõƒª¿ú‹eàè6ÎL Ž{§bɱp•8¦…áÁi "³çVŒsX¡qìŸü‡«ýa…ÉZ¼óN*Ló‹è'KÄÔ°=£ð^EÖ*ÙÞAÁÀ,¬ÈÄ!¶¢@ˆºÿ€¢Ä¯ÓCÏ–þvqùÄ^^Ø.û“!$„ËÛ!ƒ¿ÒÝÉó,m›àÈò£“ =~ÁQ<àSÔº Ùú[ç'Q$Ú6+ÌE q €Ï—2{qËifØ/;x Al-Ý/ú?üopî(Ô:»£lG÷£Žm¦]tK ~ßÑÒ‘&ö‚Éó¦ª,º­¥(ðRäøß{À1ü2$‰®Áø`h^‚µõGÏô¢jŠ€Ý¸Ñ÷ðšKšb@cO&†ˆqANq?»†!‡]JºJQÛnÜ/áp¦ä‹'㳂_{ÑŽd©¹ýB¦$Jmlµë¸€ëîˆõ.?”EEçd¯$U³qmcÁG†@a>tÈÉDÙ/Ä=AÎE¦â¨)ué¹!L7|¦&öÁ$ÿ‰çC0ãèÒ˜1ãkßIE¶UslÜ?KEî0²ÊùúJ ¢?×­/õámΞ;)d1ûÑœ´bã÷"tøî¯«pP%ó¢ê 68ŽïŒÑÚšu€ /(|Û5'%âÀJV•Û¥DÀ÷£]bÛû•á±æeSÔ¢ éh -0vk0òtÕn8¾Vhó¡Š.àçppÉî0nÜ @ê³×Rú.× ÏÛàj$Œ~e™ø$ÈMã[ÞE”…îûŸTj‘„+"²­ÉQÛžŸÁã©hÃÎçIÕKõ~8Ûp{R¥3R„§½¬ Õ Ը·èù›Kz0"â öì("kiyCÐ÷<ÞU Íe9:Ñ=Àý/vDi’jK:ëE0Ù§r=+&÷ºoXù:º6j˜;¬FymU4Å×Mžä³aáAžšbzi–tüx ôš7|ô¥µÞx«DŠorŸ×á;_[ÛÚ,“VÓÌ~¸êêën)Ë®ÃU=ë‘T¯¹«á­Ìäâ†å”ʹâu8SI,¦(ÎýìÏwŸý ¯ÄP endstream endobj 141 0 obj << /Length 1518 /Filter /FlateDecode >> stream xÚíkkãFð»…h?Ônmvõ>šB¯mŽ-J¹»²-?ˆ-ù¬8qòë;¯•V²Ü¤´”+fñjgvvÞ3»o¦ƒW×aì¤néÈ™.¥b7J' cWû¡3]8ï†ß&¡ö‡åH ·00ö02} Ó Oˆ¾÷Bþv0–²„D`\Á˜7( Ɔæ%eþ>Lq\ž w®¥Z°“€ç"ï¶c Ý Î…øÖ¿n£låìÇËa`‡C',,"â¼WmúK¤ èâÕu¤­÷µïFQ"Í|Å(­4ºZ§!·t[ïç4uä*O?CÒ7ð1YhBŒ$~ÛP'Qêy&Âatý!˜ÜRµññ¶kñ™B¶O`¼Y“6ö–«-dË\ìdÖø4Û·¢†åÐ;uÜâkùÏY5AÐñ+3¸B(ìÉŠ?rÃÀïõrãŸ+Ëj‹®—0¾˜ðrK@C[°M.ëɉÏbÿõ¯ÛÙñeØØuÀ º‚ÈM»®ÖÕ õhÜ_Ÿþ£hžµè÷DžÜ N^ÍE DP/¦Ð¸ NbW'ÑÎ{í;K-þ‡IUÑŒÿr&»µI6’Í*ùÎêtõ2ZøÉd´èsFûœÑ>µŒÖ¹Øô߈—ü4 ž£œ4vã(q´ Ü.XóÝàã¹ñB°¦2ÛdáÕÏ;å9?–ƒßàg`¡9±ˆ¾Á+]ÒºÑi7VÚÑžvS?e‘¦kN~à5‰¢Î&»”E(~:ÌÌ?ïXšîÒÂdH¹ÄUΓõòǽ,šc?J:Û4i — ï=åç„^ŒtD[ÛòÀsÜ´–c¨Ë£ú;nîtŒÝ‚wp¹€/¤o9ƒ099)4˜Ãÿ ànFاrªøzA µ,èçúãKPí}ƒ Ü”ù¥A?ð‚!“­ŠÒÜx—YšÎ@¢hX’x…§5Oå¶á +šù#ª³$ ®º’-µ±¸¨Œq5>¬… NL=ÕB,AÍtàyµjOu¼«.@ Æ”‹""(G @$58kYÞ¡©¶* •¿»æPpž@NrG“îžS‹yÆ=ªŒÄÇ]è¼ß’°4'‡;øƒ.›Üµàæªaµb ä$ý¶Ñ†ðßso¨2¹û ñÿìŸ#kþæÐ ©¦¬yœÚõa¾Ú–¦é“\±Ü³w¬ø4(ì$Ù±¹ßÂó+êË£}+¬ÖL÷Ükäò-ÏÛñEKËò ¥#—ÿìq¡yÓJŒPÊ©ŸpJnD5uƒ|ùšsîAì%±íù¾pþ}”¨mÅÃ9„L¢¡(6ÏѨ· ¶b ?ɉk¥šþ«V*ÒYgOÄŒhw]Ò(¢£Fëƒr^ëf)!ƒš©6¯mæÎË^©U›Âfú“<=I¡ZóV»Nø©«½úQ€Þº)^Õ÷8vuµÕkÀ‚3çuP)åàXJCÒJSð9/%¿›kºxy¬xßý( 9£PRœmëWÚ/•&irÌéíŒÎn)Ryufqs¬LÅX1° ù&[û¹ ;0ò].ι“C«#ù¶„©¦î³Eœº*ªû˜½õ ×:æÜ³µ¥`ð¼óC º‡*lZ!yþêôžªy}ú†ÚŠ‚a¶XXuxs_ˆºefŠ)Ìó“%Dy0b £u*æääÚöŸ ÒqUþ{I±t¼)¤°»$ÝþQŒ ˵mñ´ƒŠYÝ ±Â¼ÞÞ1¶¹å{s:u ‰/Úth:U)ôP©›$ kHkÓ½ý jÏ L endstream endobj 138 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-finegray2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 142 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 143 0 R>> /ExtGState << >>/ColorSpace << /sRGB 144 0 R >>>> /Length 5484 /Filter /FlateDecode >> stream xœµœ]Ïä6rFïß_Ñ—6÷Š_¢˜Ë]d0à‰X‹½0ì `Ã6ÛAŸ*>O©Åªö|ï…g|¦»ÕEŠÅN·/oéöÃí¿_þMþûïÿþ—?ÞþôõËvß¶ívýóë?ý«üko·ÿ}ùÛßoÛí»—tûRþûá%én_½´z?Æ­Ž{Þn?ÝÒè÷føãík÷2©Ø«G¹×r¾J:_M)ÝG›øx½n÷–¯¯ïã¾µÇëÄÇëד}œûùú_±i¾ýõIÓüúíÏ/øs–v|õŸ7´ÆãpË÷”n¹ß÷íöê§ÛgÛç·W?¼üË«yä7ôØî{»|´½ûGÓ¶ßëõkÓ{|o*õ>®_œÞç›w¹ƒãòáü>ß<ò}+ןߌ;Ôú}$¹O ÜÛ}ó>¹—˃¯¦"c;_&>^Ï[¹§ÇëÄËëøºóõÇ·_¯ìr9_\®RÚôØnõ¸§ý@þñYüñã)Ë@ìöù§wåÍŸå^ìóÏ»Ä?Ÿ÷v»}ÞÝŽ¡—¼åy©ÿ†ù¨÷ªÌ¶\ÑÞüµ£K·ÈiŸ‡þõËëÛ_o?ü˜L©Ü÷z+ìeûì?>×Èqûìõ7¿üúùßo¯¾|ÇV‘ÿw%Ý[Ç‘þüýϯ¿øË/r<9Ü7ŸßŠüõ·ÿúåõwßûÛëï΃ëe"¢—¦šï9Ëõö{?ìBß”“vß·eŽˆ—ÖîGµAÚ7Bû½OIcP¿çî)ßÇêÕS•~¡tèØp´ó(㞺§Áwýו:¿]Î0eOüv!¹™Žøírö[÷ÔÐý„ZóÔy”¬ ìˆg¦W}8:ì̤åÉ·ïJí^𧆖:Š'Þ±]Zðp4äŽe¥¡Gs$ßÞ…ú¦ó™#9[}§´ä¶{ª &µê©éÜ,$A:yÚõŒ&I€p$g]•df¨ŽÒ&§­Í$·çèç¥1rÄzÏÚ}¿çQNp^ô¼Iå4pϦ†¹‰­DL…3¢‰Ãz/óÍSeîÚ&Ž-⡃AP>tD÷º=`ž’&(ø JäŸo–aš"Vt‰³iDlÚ½¥qRÄ~/ÚìÒ·ñÀ0.¸Õ€%Ý‹v>é„rsfœ†vѱi£íø¥q&Vñ<Š& (0 Äbí¢ÒÅ5¼{,ÚE¥éžà®ÝZpÞº€]o• tÂqhÇýQBxR ÜxK•¥?Fžsˆ²´Py†s³‘y`ت=J,,áq6„މç‘çL¯îe÷=² Yœ¯˜±ŽÎÀUo£ršã3ðn<53òiOYÆ›ç,Á?ãý°ÍÀáAÇ«>&¶öÀS`ä+Õª1*ò`{ÕvÏ{défÛ<_˜Ò_#WfÂmΑ9õé3R©‘¥´>ùÐþy> wÑá#r™ÁMXBbQ` d;”¼h` ܦWµn‰ì¥¿íïY"qyÆÓÒÕâÓSa}»’JÄ™- ]I¤n¶%t%ž %t%J%t¥Š@ ]©ãj¨¤+ H&¡+õ £šºRÒôÃ)¡+±7QBWª:™žºR›©¦¤+uXLB«„®tlJèJQ‘JºRÅŒ u$ƒhªÝ”PG»ÞE“PG³ $Ôѹ‚„:ˆЕ$²•‹’®”!PPG’ uÔ0ÕC?íP5ȧ£Qê¹’úp›žóô˜´ñNóôXàZ4O~óô¸cê¦yzìð%š§ÇCšæé0qÒ£yzÌè¾4O…> óôXÑ¥hžn2ÍÓ£LåóôxÐñ`žev?æ¡`žù EóôØhË0Of0OÓÍÓãÀ“ÍÓa™—}š§Ç̉—â¸PÜ(ž+'&Šg`Ú¸‰§g™¯;Äâ8áiÍÄ3p¡¸P<×{›Lñ ÜL!ž;Å—âxà™ÚÄÓsKp&ž³‰-Ä30ŸuL<s¸šx>x¾ÏÀC»ÐC<=«øC,!ž³Þ¦‡x®|°¡xnB&ž&cOÏ}C¨3ñ ,A½Ü"¸RÌ™6 Ü4”â¹ãI•âyp<@<KxG{C<#ÞOˆgä‘âùÐf>Å3°†½ÙŸ ž‘wŠ5ÄÓ³Šù ½&žçi>ÄÓs¦p˜xz–ñ>ŒL<=wöç,_bâÉoˤÞê*ù9ÕwV]xë…DùfT9…õJ -z ë•2´ýÖ+Õ33 a½R£CQW’#SCUXWâtEu40BQWê–q„¢®ÄƒŠºRYu¥Êl+u¥­Ka]©C} ¨Žs¡¨+ÉÈJ“ ¨+eh6ÕÓ †n»§¢½æTÔ•ªöŒSQWÂz’ ëJ;®ŠêèÀì E]i𚊺RÂã9u¥ŒG*êJE[õÖ•%s ª£ò:õÔSÓ•ÔzóÕM&•¹©ÃŒË27uXðfªêÏïtS©[¸©ÇÍB7õØqãé¦L'tS‡â(³c˜›:LK’ÔcA ¦›zœÑõtSýÄ£F<ˆpScI’:Ì Ó©ªÃŒÉnê±P-¨¦«å ¡¦›“‡šz.–ƒ2UõœðÌij8ÃÙMMª'Õ4påõPM7SK¨iàŽðjjxèrýCM=Wv/SÓÀÉÔj¸jx~¨ià†®`jxGø45 |0GK5 <4ì>ÔÔ³ѸæHçUMªÕ4ðÎö¤šîÈG™šæ"©©g̓áû ¦3¦lSÓÀ•kTÓÀ ¹4SÓÀ9jªi`*‘©©çNu35 lêM5 Ü9ž¨¦žuJŸíEU lj 5 ,3_ÔÔóTÛ©žTSÏÌ®jê¹q<˜ªTuáTÒ íDûTÒ•æ$D ])!+E ]É2ªÐ•¸ÂC ]©!kD ]iG.ƒºRG„¥’®t0;%ÔÑÀ0$t%‘º|‘Е–…|G:A õ4§|JèJ Q„JºÒŽL$ÔQǃ$ÔÑA¹›‹îSB L ]éØ(“Е²É”Е¸²@%]©"³ 4ggH¨£¦‚I¨£Ž•BH¨£­ u4í ¡+‰Œõ©ŠPÒ•¸²  4‹öŽ ¼ ŸŽ*‹ ¦|:Ú¯YÒ@Ç#Gêˆ9Ah§£‘ÒéHZõ‘]Iý{6Ó#ƒÓ#‡Ó#o*ÓãΔ-ŒÓcG`§qFœK;4NƒU 0N‡bZsʦqzL8 ÎÀ\ 1á \„M8ÓÂM8w.RR8¨Ó1á <¸HHáô,†EV gàÄÜ*…3p^s£+ž¹M87)P8ïœÐ)œYCcÂx˜0B8=>mšpNHÙ›pΨç2á \ÐÉM8Wææ(œ&jÎÀ…ŸÂxð…Âé¹n< g`V?™p.XZ0á \)lÎÀÎÀ¹o gàƒDNÏâ™hO gà3÷ á ÌÉÛ„3ðÁx@áô¼gˆˆ gàŽpcêY«/¹ÑÀZû7ßáôœ%L115F)îµÛhYASú5ª"Qe¿eiÉYW-óîguþÓcòS--Ÿê§Þ/ÇË£•± øÖsÈ}ùð“ìÛ4ÛBë´YZŒjâ×?}óãëÏåfÜ>û'±ô§åÊotWKéãÃwµÔíø½]-ìͶo…xÙYâßÐ.û\.¯Ÿ[[ø†ËÞ;¦mná;.»[Öo}¼ã½ö·ä¶}Ô~þÃw¸Ø>x‹ ð;{\–¸ó“Œ±ãºÉ…xîj±&u¼nsáæ–í·Ñ¥ˆÌ~’.9ïvwDþ´m¾úŸûþ‹_ûæ·×—í-l¬yu‹ÿ¨í-ËáL×L˜!“Ù¹gæÂ®(skæ¿äz˜"2`çZP +µ¯lxBš¬Ü‘0È}g&lÁ®i ra (ØÎ½3¶ SßuË¥Åò,ö/m[ÀŒôŽ¢æÄ,šäccVlA®j½hiwž† fÆÒ–u$inlE-Lœ·L¦À´LÚbŠs¹ÔcfÍf‹ö€©CE,â:ÄMÑášrPqìYK”13e;*]òØf®Ìá@r'‹2i¶lÅÁ”msÂcÒ¡§Øæ"®Ã‚Š\Ô½"k ²fJ@–Ææ1ƒ—G&¨A5 ‚ü·0WsWÎXï(Ûfë¹+,…+sEwåŠìT‘ögÜñ8Zäƒ==á¹½²U¬ëzxœ/[ÃÊ®c]žÅûw”!zNxœ-øâÈ=¾ÈÏõ]Ï K¸Ê£>a9ß2y`×±(ÕL§9±ÒŸ0Óʳ$ÑsÅX/zâÛÞ‘î)b¡ýä‹\ë‘©8Ÿ†ÒDÏŒ¼E¦–í¤”­Tq኱[¤aXª¸pM˜J(Môœ±©nÚ뮼߹ 4ÑóŽtEѼVzÂ\Ï,ÒpL_,,Ò‚ö½Ôt[à„õ˜’™n Ü0ƒ¨*Ôí ÷ý 3•’Pšèx/ˆo¥ÌÂôÈ;ÏWž%5ݘ5ݥ̼e`-í›÷[÷p¥'Ì’Ž‚]\‘öðy>Jã ˜”5ÝæY7éÏñ.7NÇk`kÏÚçx |`¾+uæ]ëÃq!Ï=3ž+âi1ýõÜÙžm.xÖ=63̧ÌÈ…ñHô¨<ãŽ2ž²'ì™qœl¼ˆæÌ=2žœ¬è"ßö„ÛKë¶jd³¤{dËxÆùHÃp̵떰GÆñ¾¡ì«¦¹/ð‘ojÉxòï%ŽÞÙ[!n§·^pßLOo½bÒ뺊ªCèÆÃ[¯XL Í[lÔ«Ó[ÜÑ1Þº`gÖñôÖ%<¼uA®H<¼õŠXà¼z«C6ìÁµÜ ãOo]°™lš·.¸s¡ÿôÖYÆaÞêp`Q—¢êðØL!ªñLT2;m¢êuúo]°beçá­ rÃÎÃ[ì|<:½uÁõ‘歹͋¢êpl¨«3Qu˜ÙÍ(ª+(ª›!DÕá©ÞðV‡ƒ šêP×D,Ž–ê9c…ú´TÏ…QÚ,Õs3‹+V‹¸òÎYÂ,Õsg”7kõ|p¤¥fYªçÄ §¥zæÎÓR=Û,lÖêyðý´TÏ™• §¥zN´³TÏÙ,––ê™?~pZ«çVÌR³2Å,5ð ÒR=îü>­Õ³Y$-5p§¥ÑRöZªçº±=ÌR=ÛSšY«çJ‹¢¥nl/Zj`{J ¥zÖñÇíb©ž3-ìÕsc¥¥6 ¦¥|ʤ¥zÖTåm¶¡fåb K Ìâp³ÔÀý–Ø,Š–êY«ì®–˜³YjàƒOY´TÏ«HÍRÆCZkàÆñ K|À‰h©«•h©‘ êCh©‘Y]BKõ<-új©éf©žg9³ÔÀÜ9o–êY†ÑÌÞ™¥z®´³Vã÷]<}'›Ue^õuAd^Ò®WäÎ!ÓW‡…Jvêë‚Í4ÒôuÁŽÓW‡Ü.iúºbßIYìñ^0ã“úê±`ÏŽé«Ã†@kúêpÇ4cúêðXõuÅÃÒÐW‰}õX-9Z¹Ë{ÁÝTúê°3¡G}uÈÀ`úêp Ùdúºâ`*úê1!äR_=f»üÁ=ß 2 D}õÈmô–vuÈÂKÓW‡üIÓ×5û‰ë‡¿Ffv“™ÅAtØÈ;7ÊYöÕó°Ü-=ÖqâÓ¯yl`n 2 œ‡é±+Š_Ìc7Ä)óØÀ;Š_Îì«çŽâ¤3ûêù Ç˜Ç:Î|š6 œízá±ù‹göÕ³y¬çƒÙ3óXÇZó„ÇNÌÑcódf_=WËþ2ûê™ÅGgöÕ3ûÛ鱞ù‹(§Ç:ýixÿ™}]¹ ¿ŸÙWÏÅM—lìÊæy汞mž7õ|˜'Óc=Tõ^ÌÃá±Íó鱞ûÆç,zlàÄÕzlàl Ì_d2 ܸzE ¼#·f^¸3; ÌâJzl`±Ž9ûÓc#'lu¤ÇFæfazldÓkOþ¨l¬ +íô×+^ \Ùü;×O]° ùþº  äᯠ²ÎõᯠüŽâÃ_¯Ø7+„0]%û&¬óZ6à°RH(¬¹¹Ï„Õa§¬Ð_rcŠ¥_WÔHCübÑ‚™…V‡ü™0V‡|´4auÈØ&¬>Ì_Zš›éW‡Ü dé×í×>MXfv «CN &¬ùR&¬ù“|毻$ ýêp`k«¥_W<úótUÏœ NWõ\˜c7wõ\‘Á=s°ž›U0ëy·Êæ`=œ‹.• ³òáR9à™9Ò³’`aUaôºjàñ€®ú„/骭r‚®ú„§+›«>á™3W}Â3Þ›»ýŽû>®œVMü²G'ÝwÙ‹cŸ³Í8ö¹Ýcdzí8v¼·íDZÏÙ†ûÜ'Ü‘£óè§Þ’cÇü{rìXŸfSŽívå¼ü?"üõ endstream endobj 146 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 150 0 obj << /Length 1252 /Filter /FlateDecode >> stream xÚµVYoÛF~ׯ Ð Úæ.%‹¦€ÖFƒM½¥y (êh(Q!Ûê¯ï\+.e%NŠŠ{Ì|sîìÜÌ&W·¹W„E¦3o¶ô š,÷²Ô„:N½ÙÂ{ëo¦Êßõðw€Qî*ø¯_Lƒ8Ö´³®y¾ï`Ñî§Îü¶ÃdlwÈÔ0ɺüWÝþ{ÜŠýûð·Ý‹ˆ ðùù;¡[‰˜~»Smü@…Tªì˜äžãV9¨rÂé»Ù««ÛÔ8+˜Â,Ð*LLÎÿ< Rû¨,*µ&VEú¬ä»e5JaòŸ`ð´"•ÿ(œ.ÒŸQ}ŒHªêE^ TX¤é¿Ô 1’,,ò€â0O ª„{CPþ^Hg™Èœ¸QŒ¹K‘ÑQ‘’¬Ht12Šã+FO…D+úŠÙ²K¦öBôˆù¤Š¾ì”Gø–$2\«OáoÅò½xá=ÛCx¿¹È2—e‘WÈ÷¢¬;8øÆ0n`\Óšp\×N*âⱸÈІÁÍFI²—[ÑJBHÚ}yî(ÿ­Hy÷|J"ù\$R½ð‰T”ö†½µHüÒ»0ÖåËl„ò(àz8²rçÈZ0ùu6Q`Fä)[î4dy¢c¯ÚN>L°2Ä 8S:²l²qõÛV)ï—vò~ö,ÌÀ½9/³JéÐ(íz˜dRu®ñæ‰Å°ÛÖ5-èà‹®Ë÷äÞ^ª(µKþÄ×5/oÑŸD‹wí®#—È‘î¸_î1º¶¬¦:>âÙ ¨ ª(­{ WÕņ´ly£Fâ…< œš¹DBÙ ÜÛ–èhaƒ ®@* ‹$W Ï÷ÄM%¾n(ò 6jx˜²Äï$áè•iNÒ*w-Ow-Ù³½¨å={›6B5' ¶¢§­·%ôP»ö…‡±¡Û^7§‹7ƒ%V]Éw’VLzrmBW–ì@7•d¬èt)§eå<».ëÃZ,VùC|©<•@Õq qRBÙkJ:vÂMásŠxn=’Ĥ$©ôÛGpjšø¡€ÊÎÈ]®²í锌pÎ LòˆÜd„å­[‰‚;ë!›þJΣþ’ËÈñ$~#õ å›t|9`½¥f¥>;ÜñZEÑw<{@µ*M°N.8ˆl´Û‰î{Þ&·©"’æèß#ïÇè “Áöjº½ä¢‰ü×CþXWŸ40§nŒ² ÅíVîÒç\—Màb±Í=oR/&5±ÌJrØ_´Ü¼Q|¶=”|ÌÉ:8=ŒúÚÚ°C qêg::ø¦&=SKq‰-±÷ô6œwoçî³ôÌ‹5Þ … leíÄ/û7LeðåÚ­vxÄ;yËV¶ˆ ½ %ùéÙs¯?•ÕâŽGÛqp\¶þ8˜Kïñ½¼ÆúÜ&KBÌGQ¡•>§ÊQŸöÒÒqÅÆzÕbDZ9¡â26˜I_J¯~~&ÍÇ·O{÷NXN—ËÖg.[6’!?ïƒùÿãý_û‘¾Â 'ìÅîùhîô„í í+Ç1q¼&¾8K­Îý$…kçR¯eÝq¡5q¹†Î¤€N¯ó\š8Ûó³€qu endstream endobj 147 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-finegray-check.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 151 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 152 0 R/F2 153 0 R>> /ExtGState << >>/ColorSpace << /sRGB 154 0 R >>>> /Length 2209 /Filter /FlateDecode >> stream xœ¥ZɎǼ¿¯è#yP«2³Ö+Û9€’‚L&H&ø÷‘Uýº% ¾äKNMt×¹TËöz“íÝößÛ·øóêéöõ§¿ÿåÕöÓ§[ÚSJÛõïO?ýrûúÏŠßúyþl;ÿš¶ªî}l¶×´=}Ø^<ýûÃÛ—ÛÓ»ÛŸžüáúùJ~óŽ¿-ïcÿÝ‹Woýñû¿~ÿrûùåfi{ñŸÛÿzûò‡íé5ÊYÏ)óæ™)¿ùæoøi+Ûÿnßý°¥íŸ7Ù^ãÏ»Û|ë_o=ïZ·®"{=Çó/e—Ëø2Ïñæs|™÷qËy¯z®n™çøu¹çêïã_̇Öv“MÛÁ‡±ççèðnÜWiþØþïËýÀKy/÷o÷<>)Пz< fÐÄð§ãUmowüãï×Òw« /¿#ïR¹[–î§55þ0ڞݞtø­yüòœíú3«ƒî¢Vh}|»ýcûåË"’¯V–£nO7ø´á7ÓüÜ*+BÅlï¹LŒ>}¼ïÕg¡k]èTD@÷½fß©žG7Ù­ƒ¢‰!êq4¤M=ÀFf¾Ð&¡]k“!˜9/ŠÛGàݽì ÁFhÝ •Zø0zà¨êŒ¥´íFEè»j]¡@×=öÁ£ W£Èž/t3& £%!Él›d¡€#¨ïzÄO\†”ÀÒE”aUÊZ€oÁ½E&?…IŠ+óãp…0#qË1‘Xpf92ypU1 ­é‘sŸp÷—ÈÛ¡mÌ;S§×à—9¬3bm—>Y Â×RÝ•!âq8ô iâür‰À \-è2¹#ÙÃäkÇ0Ñ%TVŠ1(#‰YyW-ˆì# ‰Òúª÷„£ÄëPÊ‘ƒp¯†Ýc"¤[p¿FH×s i±w_ðár€N^å¶ÈÚqbLÆf…Ó_%²uÝÜÝâBJ9á$mljq~÷8|(–R"-·¸v<%@:Sa‹NJ¬‚5Í,œE|$©4m,B¤§P”0÷WÊuÀÝͲ'•ЪH—񡏮 ¸mèí n1—ÉsòÃx…€7ÞDø¹GÞ^„%s“Y;ØÊ¤kˆä&VšgF"¡iˆÏ™)m¬ClqîqêÚ²ŠÜ½q¾)»ìwFúeÆêŸ;o¡~™!Àêl×ÈÖ1ÀßùHÏÉ€C Šä.Dº‘ÛäÑÈËGvE”°ˆZ ²ÖêéxÄÝsR¶Ûà®Ï¦UÕ¿½Q¨1ꜷ&³«)ìv¼¿A^Ù¡EtÕJsx»X*Ïðý…ýð*3qTPj#’ð¾ . q Lc Í[û›¨_¿{ Fh›Ÿ)³žêvö«2Å„'Q™wÉÿ¡=Ø3=néolÆ0aæ¿@Hçæ5Ž÷â1bø5/lü§ˆ ¿¸1ÑÕáiSãü¼X¯^´µNõo'Þÿ¡=8Qv"z£*͆weº?'„ôÍý“ûÁZ‚îî™ãWzÞóz^36ØZ®_»r›Y0OAÈÔh> ¯Œ°Låz™>¦¼F5‚ ϶ê)°q~†ò‘ÉÍü€6?‘bee̸`ÕëðRip½VfXüî 6ÔN³Kµúó˜[‹7çû›§|Ôbáz G*àu®ß†/\Ìáý-3Ù¿5(ó^ü¸ÓÞ”Oı”y»½H‰‰ ½“rÞ…ÞI‰Ù79IÉ ØORÚA¢EJísQ)ÕoLNRªò,OR²÷Q.¤„ ˜]H)g}'%}b´“”Ìé&©')ÝIÊIJ¿v“”ìÍù¦,R²í1I:I©©-RLR²Êjí$%¨]HIÛ}‘’õù,RÒöùß«6ì—ž¤d :ç³H9ÆT„ƒ”ØæÚ/¤k?RÎÎÇIÊÞ& R‚ôîD)q¨©_HٖƤĴ&~‘œÈãBÊ:SORâÜ©RV׿“”Õ?X:I ÛÏÿÍ"Ÿ·\åN>t'Ÿ/÷$¬ù$ÍÒNòùeƒœäãÃr>ÉÇÍÒ|’ϯ´úI>çL?É犡EìK¡ED¬õÃ?±y¦*bóv䩈üµrQDؾه"ÂöÃ<©À$ÃRÄ–§ÇŠÈ[ì|QÄ&sóEÄa»("6_ÚEùc»¯.g9ÈW–Âä+‹Œùð?̃|àÐòaýyùòzÿA>æ8WòYŸè ŸÙŒxùðØ9¾ÈÇjôªˆü‚$]È—¼Áv'ßXZñæ&Ï~ú³>VcÙ¿”›-›_›}{û?àô¡ endstream endobj 156 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 160 0 obj << /Length 1785 /Filter /FlateDecode >> stream xÚ­X[›F~ß_ö¥¬T³0ÜS¥I»Q+Ej%¿TM0Æ6]Û8€w¨?¾ç6¼4JÕÊBÀÌ™sÿ¾üfysÿæ^”™Ê¼åÆ‹¢<ÈÊÄËÒÀõŽÊBb¬ÆŒîÄ—ÞN¡‘µ$ºÑ£ˆßê²PÔ© T˜Lƒ–vÓ.ì-ûÎi–è£Ø5ÎًҭܵçbäV|Ðm>ÊóAòÞÊҜ㌣åA hiÃ"Ác8U€ï¿FúˤbÅ¿2àJ a“,(‹xšÊë´Ï`SÍ`tŠÍÿà¨äY*øzJ «‰þÜ«$Hòâ«Q{üϸ×yóãòW…^ä•yg…«(!Íõáæã ®ŽpiJ/“ûŸ‘ò~èn~…Ÿž[ˆÎ…£ô ò~1¡}ä°6Ë R;¸dd/’(÷OºÛUOY¤Ña4ˆ›-³Ít¾ŽìЖP¼@6é©õT®•¨0°n¨›hôÙÒ ½÷87œ@.ó›šyŽ ñê$*XZl¾íÐÂ_2ÿðR}…EÁuU¢b†©‘(*J‚2¹¢(2Qé8Ù Þ CT›ÆÝœ, [ ,Ìè±b ô¤Ÿ¤'?Âãs6hÝ‘»6 *òé°|L‹¯Æ¡]%V·¨ëéNX<9k—Jí’Þ$§½UZ×ü ·–­õme¨d†r+t|xÆ,Ë~'‰.œ~Dï)±I̱S½mì¯p*ô?Dq²ACDwdr`%;ÝVV|‹"zÆÕݞȬ£hvÆ9 ª'jŸÔf¨ž˜ŸG~džG5¿ÀÐÛ÷R!¯6£ÝÉLÛŸÙ mr€(l[7g猼ĕ)DµEÛiȉ\ó *iЙó'‹AvÞö‘3@4®R?€Ö.s†u;°ôÀåu¶Ùš+?±ˆîÔT#[`vg†!¹Æ‚¦—¡ ¦"M)ÃGÓO¶8a ågÚyöÃ,œÝÞ€ôºÓz‘cës¬èLÝ‘q£EKSAÒ ÏÐDDù„ 3M:]ëÂ(18ã!Êç`Z; €£"…(€“•DQÁJ‡‡ „GO™ØÆŽY«&?qúÜ[Þ­xiÝÑÂÊEX]RÏ4Q7ì/Ä ß4·{«øéëµ× %Ì) ¶ÄïÃÉ,dEº¡ÇH·ñíº%;¹R3¬É¢Lý5ÑH-ËÌVfqøÒÚ£1ŽmXð@r”­äà!»L¯-‘ïûÙ‰yªLÅ/C3Š)(aí´”- '©ï$׆éa¼Bùá¬ñ8®«íQäæ:þ€ÞŸÆÄUPœŒ[±å, ‚2ÿ­Æá…§w ”ØóÁ MÀä>ÁÍqµg‘]õõ÷¸|@ g¡=²Ó7J?e­=僣A ŸñAêÜéd$ Šv—Ʊc¹ÒÚÍñgëbœ˜¦ª'a °i0« _·§ìoyéb Ì+8Ê ó²2›0‰=`ïxü:¯ÊÙ¯‘§ãP#Q¨Âì†ð¸3»“²°A%ØdªäìQÝWæ`µf‰“j¢ÏY–ü Û;q©Neð•y¹Œê^O$T5Ðg>ÞÎÛI6Y²7 7Ø%ÏQGè“Î ¯mÐe¦ Fž/ñX¿ãÅ®5^ Lp¬;ÓBå]1ù¥’8;'6}”ºÎj £™¤­¨£5¬ˆ9'j’r(\]Q8ò?C|ºÝSPˆ“£Þ`÷1Ó)WûÚJ¨^êÎfÍg­4_`bB/$±xI]ÝCO¶i_ÀëÉÐkÇ÷ñ -ÒæÜ//Oö8Šˆ¢‡š5Ñ3 ¨2<Àÿ|G]ó˜†=-æ]M þêŠ"çã&†X³,Ñß]')&ßea;ße᜖ ÈŽñ¥Ž8HËÂý¶ŽREjØBfHbÀç“Î_Í{ÜÝLÔÕ@ÔÝJ³_»wþxi5ÂÊ÷2U”~cÁÚÊ4ý«R¨ÿI {õÜ|]jÈtòå¥E(x¦íð3‘æšGúÊ´€¸„ß /Óˆÿ¯eIù…bäAšDj^F…t`n°!Î{Þù`>™ZÙüq Ũ„l¦Eé-’0Hôš*ÑÞùŸÜË endstream endobj 157 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-finegray3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 161 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 162 0 R>> /ExtGState << >>/ColorSpace << /sRGB 163 0 R >>>> /Length 7694 /Filter /FlateDecode >> stream xœ­œ[$·q…ß÷WÌ£$ã!Ùì&ýh#6`À Æ­$2$ù"ùû©sNUW±¾lì­ö[Î¥‡Í®f‡Ýíñ“G{üæñûÿöøýãØÏþò?ǹŸçëÑÇýáËÇ<¾ýð½ïþýÇ?xüðg^Ï×ëõ¨þì‡ÿjÿzÍÇÿ~øù/¯Ç¯?´ÇOì¿ß|hxÁã§Îþ\û1¯çno>œã¹ŽÇùz¶×ãëçñ¼öãlx…Ñ|^ÖÖŸÛÎçimÃézžÖv<ZÏimóÙh?ç:£ëõ<¬í|¨á_í݃mýy¼öî~‚ÆsLÐ…o¿Žç°¶ýøÌË~ÿ] t¢7ì“íߌ®g›}ÑÂo1ÚØÎk?_ÖÖž'¾}±ì[_]´'ˆß¾Þa´ð}ËþomãÙñ}ËzÉÚŽgãût°ÑÉ÷Môˆm_ö,ë¥ šè—uaç-üÚe½t>°íü륚Øêm[omÖ/xß¶^²¶¥íÜý9N{pôˆÑæûl½ýʃ¯œøl#µÏv>ìWN¾ïÂÞ±_ù·oûìÄý°7þ=ÐEÛÚúóÄ+Ûë…¡b¸'ÑF‡µýÞöb‡Y—¼„6>.à<ˆÖUýa]ô:‰ûÁ¿¹½¬³¬ÕºàE¼°¥†W'ZwYë…Üøý†›ŸlÃÙ~òâk€öK. 6²Y—YëÖnoÍöãõ°>îBë´<õQ¶ï¬µ©·[;±› ‡>êz¾¬µ«ßZãNٸ½€—Z­ëÆ»ˆ?°¿žËZmÜ ¢uÝN~rïͶÏ7£[× àâ'w_Ö꣥uëºÜìnf­F"ð€ÃNÕ÷ÚXYÀ©ïÝ8L±“ùÞñzŽ\|ïhtØÍúý£cЃ9jÛ°ÎC{Ã1¶Ÿ³É§ÞÏ€péãOlF‚vë°<È{9o´ÞÁca—bl4}ÿFùÁàà±×nxŠ xsoe £g‰ †ÏØÏàKÌá‡ñôÒç¬`mïq¡€·çX(Yp'{Ó ³í{Œ8 ùù³þ´ÙP¸0yܵÙQ¦8õúŽk`χ˜•§Í‰†AªïŸ'¾£ôâ÷[é~¡Ý*êtÞ“¬#c.2Œ[VÀ6¹£1Rµ}VìÚã÷Z¹¿&YûOcWãÁJ¾íh°†­ýí x¢¬Õ?Vê­°atkZ±?N²~Ÿøí‡(x£#8ü¹ýVºÚ­[¸¬x÷“¬ñƒ‚öéýkEº¡ýôšƒ2ÝȬ‚íbõñC|âPŸËy«Ý_ÏS#š—>¡àýó7~XãÉ ¬ýG•ʉ•Q+``ª(¤ho^O­tž½ò‚ÃîOÔ4vŸ‹§N0k|³xôÊè…7:¬ñ ²‡Ã¶ó÷mî8¶z½¯†vî6ðÀŽÃaÚõþ^ü=V¡^h_ñþ‰ƒÃVÇjÔ kB=\>߸°GûÐx˜˜¾Þy¿µwÖÃäÁz˜|°.Ÿ_LX“©Ú Ÿ¨‡¸lPý´Baõ°ðB=|ãýÖ¾Q“±ãkûfá-ÜQ S‰>P OÜä)|¡^¨‡…7êá͇ýeœ•êaaN$ ÔÃÂêaajÛ›ýPÌØß<ü „_?~ö'ÍN#ZÝ¡Es`¶ëzýnw¼Ûýz Ú³]ó»Ýñn÷zíwûÛÏÉ_w·ÿà ï¼_}÷‘ÎûîWß~øÞ¬<>¾ø¯‡ú+ÿCÆÛþ :þâ›Çg¯Ï_üæÃ¿|ÁOþËo…ô±c#ß;?á½Pó¯òÞö _Œ‹<;èË›?á›1ô œoîŸðÍ8½ÍÚ]ý¾ÇÖ¬ý5îoÖþõ˜Ä÷6.MìTÅQðÞ<’²Õäëu·Š²‚df³ci·ºiÌ»]˜í¸Že»ciׯÞí¹íµ_Jgüsé£Á9àä̇cðùÑ]òß½éõîþÉñöãÓߎ0éð·ŸŸüvH™o_Ÿþv\3Ï?R^8>6O^_âê‹É‚ïÄwŒ«FÿÝ•s SÃGÿÏ?ûÏÏááŸ}ùË?|÷øÝo¿ûãã×_ýò¿¿ýíw_}÷ù/_üäoì„&ÃÜYyÑ ?úñ÷_~õÇÿùò/¿ýõï~ûÕ·ŒNù´À³ý£Ï&¹ë§«.<] zà9¥Ñ=ðÑYJ¸}2TœÉìÝ52 D5}>Õ;øäïSü‰T¥ü¬¤=ÊÄ!Pˆ~¿' -2_O@[$4ž€¶íJ@[$,ž€Z7÷Hô~% ˜¼éû•€¶;ÁTÚîS ¨u»ö¶' Ö힘*í/OÃ=í~ Fj|Õ´{" h÷ƒ3Ð>¼=퇞€v/A‘€ÚnSæ h÷3Ð;¡ó´_žðzÚ}%H$ ¶•ðzj»ÑS% ¶%¤J@µ3Ý1O@G‡ž€ŽÃEO@$(!Uj»YÛç ¨íæCïW:"‘öÔv³'¬J@m7«ÿ=Ån¯ èØJp"=¢äxj¬í÷ôh‘`*="aõôð“G$ HÀ8<=âxôôˆBä ¨ “S‰¨Ð#yO@_Ó èq)q‹ôˆDÞÐcùözš¬ô ˆÉt¾üøðt¾¼>xš¬4Y èŒñî h$`‘€Ú0lb% 6 •¨{ŠK¬tž‘`*§ÖBE:ï„T ¨ áU (Ä“X (‚mŸPˆ¨š€BD)ÑTŠ©& 6L•(y 1¥v% gW" ¨ c®òŠS¡š€žG°P$4L<5VBä ¨&H™€ž—NØ‘€ž—êU$ ±–+ÐÊû­] ¨ñÒç)MVª`&Ð+8O@/¯‘€^nÐ#½¼žGŠàF‰¥Ð˧#‘€^^/"½¼^DŠ`G ªP;ìOO@/?•Gz2.‘€^ž¸Gš¬ôºü÷xŠ5`JH•€"A¸™€&+MVzíH`•€Úa<”*Åa]Л=]MÇO$ «yzŠÄB‰¨Ðå+B"]Ñßž€®¡ÉL$ ˜„*Uš¬4Y èò3‘€&+]¾F/Ðd% •· %О€J,fš¬4Y h²Ðd% 7{º|> hrãßjš|„ñ× O@×öþôSX½^ h²Pc%vž€Þì h²Ðd% •÷ª¬ÔÊ,/ "Ý=R% ÉJ@“•€&+MVjeW+<MVš¬4Y h²Ðd% ÉJ@·Ï_"MVš¬tûÅU$ ÉJ@±^ïõÈ4Y h²Ðd% ÉJ@“•€&+MVš¬48Ðd% ÉJ@ím§M% ÉJ@“™€öXaè (Nk<<Åi­+eŠÓ瞀â´ÖKŠÓš¶G èï·ö.ãóñ¿Y_ÃDF háSÆÿæKÆÿæ%ãó–ñVZ˜ h†ž€fZ˜ (N»³$ …™€fZ˜ ha& ÉJ@ßx¿µ3-Ì´0ÐÂL@ 3-Ì´0ÐÂL@ óB6Y ha& …™€fZ˜ ha& …™€¦3)̈ 0Ð7¶z˜¬´0Õla& …™€fZ˜ ha& …yaU˜ haN¼1Mã +O@ s"içsž€fZ˜æ¦0ÐÂL@ 3-ÌÓ¸;Ý»2'.ÉJ@ 3-Ì´0ÐÂL@ 3-Ì´0ÐÂL@ 3MVZ˜ ha& …™€fZ˜•ÂJ@Q6X<MVZy¿µ+½ÙÐd% ÉJ@“•€&+MVš¬4Y h²Ðd% Á‘€&+MVš¬4Y h²Ðà¿z>¨3ì7O ç æCîó›' f\¾S>óúé:4‹—`ÆÔç@ ækiF-Á¬a‚Ù)˜mÈÐíI0+P Á¼N7$˜mpèþ æµê5Ë×@J0o_á(ÁŒAÁ6 æí®H‚ŠÖﯱ…Ëå¼£;?降û$˜mGóŠQ‚YR63t䑆ö‘¿^в‘‹rÌp4®’ÌP‹ì8YfšE"¯P ya%M oXî¬áÂ"M3-!¥4U3$áÊ›kèóî •‘l3Œ ûZ¿Œp=Â7Ó÷ÉôR8S³êŽg°‹á®ç¾â×sÓ´á–Îðuò'²Îðu~c µ3|œî(w†sKMñÌðrÚQÔ¦ò½/­8ù#rÏðmòA’Ï\Á.<´âÜW”º~nÊÆÒ?wÍÈ?ÓW„»¶i@«þy,÷5îŸ}{v¬8_Õ?Íý‘ûg›H‡»>b…½ûçãÐõ~øghRùjùg;í÷ró µ¨Þ/ÿ|l¿ÃÃýó±ãfùçé±HøçwX¹Æe¨ü°ü3VT‹åŸçŒ;täŸoåþþIwÔÈ?O¯áŸuZOÿl¬ýíþùôùwøçs¸ÿsÿ|îßÝ?ÃÉ/Ë?ŸáCÝ?C{Ö;ppZ—_–>=^ ÿ|ºÿ ÿ~'ü34¨¾Oþùjq‡Œü³Õ>ùD÷Ïð3Õ?_Óûßýóå×s១AuGüóy‚ûçõò<Äýóº}³üóê~G‹ûç5Ð…^‡ï_÷ÏkÊg…^‘w¸Æpº#GþyyÜþÙJß’O–^Ûï«sÿ¼_ª®áŸwl¯ûgÜÓ&_-ÿl¬ãÓý³ÕC¿cFþ§uùiùgTvùcùçí>#üóö3MøgœÖ«ö·Þ0ºæŠ$}?ý34hõÏ`}žü3µ¨î€¡Æõ£Æü3®•¯È?¦È+Æõ ö—ü3¯Ë8…éŸ Ó?S«ÊÓ?ƒµ¿åŸqý§¼Eþ×w»Üƒù¹ŽOùghUoùgÌÏu|É?C£ºß>u}1ßü3XÛ'ÿÌù¶îÚº¾ð{QÝ?C³êŽ ùghV¿£¦ëúb]_lÍHÜ?C»êùgð!¿Lÿ +ß+ÿŒù·×ý34ì«ÜÖòÏвZñ/ÿ vßLÿ M«;\䟡iW¹ç÷[;ý³kÜÛ?¦Óg¸˧Ê?sMTñÏÔ¾òÅôÏ`÷ÃôÏÐÀî£éŸ¡_ºC‡þìwÐÐ?ƒwñÏÐĽøghb÷ÕôÏà©íበ¬;P䟡uüsaúghdåòÏÐȯð͸¾§ß‘"ÿ\˜þ¹0;ÿ““Æÿ´ÿåŸÁÊ䟓åŸñ2ùSùgð(wà€ýõôÏ`ùBùgÿØÛ?ãc5ÞäŸÁÊcäŸ Ó?¦ÆfŒâŸ Ó?s3ÅôÏ…éŸß¾%ò<÷Ïý¾ÃMþ¹0ýsaúçÂôυ韓åŸÑ-ºãMþ¹0ýsažÂôÏ`õ§ü3ºÕïÈ¡_åœÂôÏèv_ùçdM Ó?¦~cÔÃdúgìÆ£ÜƒÝø’Ÿæ‰¸0ýsaúçÂôυ韱ÛåOåŸ Ó?æD½0ýsaúçÂ,d…éŸ9¬xüÉ?¦.Lÿ Öþ‘.LÿŒa©üPþ¹0ýsaNì Ó?扥0ýsaÈ…éŸ s"s³ûçÂôÏ…yáÑ5­»ýsaúçÂòÏÓ¯SÃ?OÏûÃ?Ï©;Ã?lj៧_F†žË?ÏýsåýÖ.ÿœ,ÿœì‹wÜá#ÿœ,ÿœ,ÿœ,ÿœ,ÿ|³ûçdùçó¥úþ9Yþ9Yþe‚ýåþ9Yþ9Yþ9Yþ9Yþùf÷Ï•÷[»üs²üs²üs²üs²üs²üs²üs²üs²üóÍ埓埓埓埓埓埓埓埓åŸ+£Þìþ9Yþ9Yþ9Yþ9Yþ9Yþ9Yþ9Yþ9Yþ9Yþùì~ü¹N–>Í7Ã?'Ë?'Ë?'Ë?'Ë?'Ë?'Ë?ãz¶úçdùç›Ý?'Ë?'Ë?'Ë?'Ë?'Ë?'Ë?'Ë?'Ë?'Ë?ßìþ9Yþ9Yþ9Yþ9Yþ9Yþ9Yþùôë·ðÏÉòÏ•÷[»üóÍ埓埓埓埓埓埓埓埓埃Ã?'Ë?'Ë?'Ë?'Ë?'Ë?ÿ¹eÎõÌîT䙯CÚ=óÒçÉ3¯¦´Užy¹Ë‘gŽ•òÌñŒyæíϱgÞžÉÊ3o¿‚”g¶nìù䦽ªgæbS¾‘’¯½|­–Lóý0©fO^éÊ5Ão²P,_]îëd›a7õÈ&êfÈL^UÉ7ó±.ÔÆCO=ér22ÎÔ·\ -åÜ|”+çvj‚ìÊÙN³|¬+ç¶4}uåÜÝV¹rÆ5Õo‹§Ðõ¹rîSSgWαÒ•s_®œ»?•óðG[¹ríM9_”êÊyxMsåŒ3Ÿ±”3.Á¤ˆ¥œ±dQJXÊylW ®œíÌÖôz)çÃ-|(g]i¥rÆ•””²”3šAåáÊùˆÊ®œçËhäÊÙÎDR‚®œ¥H\9Ï#”±”s* Wθ²’B–r>ü,Êùð»‹B9¡D]9o)k)çcøCz\9G,¡–rŽH0”óáýÊ9–ȇrÆ•ZUÎ0‡Z’,å\y¿µK9k‰­+çd)gã!h®œÏ—êo(çó¯—rN^¡XtË‚+ç›]9'·P,Î=ËÍ®XœG(ÕWΧŸ_C9'K9'K9'K9'K9ŸþОPÎÉRÎÉRÎÉRÎÉRÎÉRÎÉg(}¿+çäŠÅy‡b‘âwåœ,å|Æ’{WÎÉRÎÉRÎÉRÎÉRÎÉRÎÉRÎÉRÎÉRÎÁ¡œ“¥œ“¥œÏéKr]9'K9'ÏP,MJù Å2õ))çóŠ%ÐRÎç¥ëŸPΧÏ÷B9ãòAqå\y¿µK9'K9'¡Xñ Åâ|†bq¾B±8¯P,Î;‹Ø•sr Å¢‡ì„r¾y„bq–r¾â¡(®œ“¥œ“¥œ“¥œ“¥œovå\y¿µK9'K9'K9'K9'K9'K9'K9'K9'K9ßìÊ9YÊ9YÊ9YÊ9YÊ9YÊ9YÊ9YÊ9YÊ9Yʹ2êáÍ®œ“¥œ“¥œ“¥œ“¥œ“¥œ“¥œ“¥œ“¥œ“¥œ­¬_z¨’”s²”óÕCùJ9'K9'K9'K9'K9'K9'K9ãzþx¤rN–r¾Ù•s²”s²”s²”s²”s²”s²”s²”s²”s²”óÍ®œ“¥œ“¥œ“¥œ“¥œ“¥œ“¥œ/Ÿ‡rN–r®¼ßÚ¥œovåœ,åœ,åœ,åœ,åœ,åœ,åœ,åœ,åœ,åÊ9YÊ9YÊ9YÊ9YÊ9YÊ98—Yæãë¦óÜ‚R§G—ëùJs&òùNý ךoïþõo~P ãvì·m¸ÆÛ§]ãoÚ†³½½KøyòÓУG6]1Èò£ÏÏcùæ—_ùùÃŽ€Ïþéq¾>ú,–¿ø‘«ÝùÓ¿ó£ð|–lÝ÷ëÿñaV¦?¶]å£þíÃÿ,»N² endstream endobj 165 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 168 0 obj << /Length 2122 /Filter /FlateDecode >> stream xÚÕYÍÛD¿÷¯È G×3Ûã QRqNâlÂ&qˆ³´Ë¿÷9'^Ú8dmϼy¿÷9í—w/^¾ö³:­K[Îî63cmZVŬ,ªÔæÅìn=û9¹ÌM²…_;_ØÊ%ëšt¾pÖ%?ͽ ;°ÞáÏG\ÈéT3·Uòþ*<ÝákÒíᵿZuÉ[$îΰðÀ Kd³ÂÕx£í·×=‹ÙàGw`âEò–vðCuÚÅ7ð÷¬Ê<1á/™q°t¹‘eï‰tm‰CØ'fÇ…\DXþëÝw³l¶0&­  øSÕ5IJD cÓÊZxöVHBZ×ÉÏó ¿·|ÛIq”ýðç›8úI›+ô?eÀx)J]¡—©°Öøs”™@„‡š½øñIvøqÐ(£ˆqY²êpé„” ç(¨q¡äX¸²¼áP0a‡9¨$,w"o§Ö’Z ïËׯDuÍæUZº¬ íOLW¾"ÍL®û¿dE6Á%O}唿rË#O‹ÚG< ›À&Ž?î£ \ŒÓì< ‘Ûîy©9Ëž8`eØãÛJ¡§ ·E–šÜ†Y{fwá*ÕèD›sœÛQíÓOÊïfÏtëÝIÓ»QN´ûVÊ<¾³Aç8Š‘B]µ}¾Î}Òw‡–Ч{»åÀDéëi"Jº$º5[Þ4Mi !"ú7LuÅÔö‰'Ö¨TaÙ G*žÚSÈp èB ,¼Äðá:eÝ*ê´L`óG—óEá’ßÐL"ìyoŠ¿øê{|!Á´`3|æàpÀ¡%{¸¿,Š,O¾¨P§H¡ÐQwÅPŠPÖMT›þYpêÒ–Éo(m%èÂVûsý™X% îq¡)5gaªî.ëq¹Gy(D\;G=#ÊÕŒÊáÇ^²Œú9î«{(±V‡án…Øn™j?Œ-ƒá’¤kþZ>vï´ì¤×º¸=m¤eµu©6›:Ü·ŒKkw•СP‚~8Μ¹ÏòC¿‚Ý€ˆ¸K›2§ÒN+8AàND°N²ÚèÀ JÍQ —Ñ„A…tüx>”¹ËOÀM|u¡xà뇜!ržpªÅn”›2Ò˜±êd$ÂŽÛNÚ˜Ÿ`N˜R~r|Þ#x™åVKäN‘S$Ÿ¡>1ź "|ií­ŽØ^ÕlD·qùYIWýfÜžHpt4ðÈ( z!€£At¯ã¿L“›Nç#œCOÐ/_»ƒ:w¥Åæ äv˜ÈŠ9èc‹ä XÇã6µ˜ìWز¤o–hÕ’?çxéo{2°µ&õ™—Œ™{š s—S8`²8›œwR>xkž2êœÃŽÛ=m]aeŠÆ îhäÆ<åÉ’’ Ý±MËñ%b8º-¼?ê\êr®%ð¤Ê{ÑêHcž¨µ‘Ó)¤™ªSˆ\KáµYÓZ… ƒ î~¯ƒ0Œù´_BÑòƒ\Ú3'ÃÅ–O5LCùAÜLŸãÈ] RíPä|¸âû’C™XTõH‹àgyS((›‹ÆÅuâÀ ÓA\eù²àÏê&ù‚®:tÕh®*“MdeÃÒµ Œ[°xVg.XQ•¯¯ÁÝ^^šû6…eõoó@.˜Xj#õçs cNè{iòRûqùSleüz›7FMÕê 7DY~#W·3uê°ßóòý Ëh…²•V}Q[h÷/~4¢jËŸó£—cïF«Ñê$ò‚<š` Ú{w•¶_ÁÏŽéj>REQ[òçË1Rùub Y¢²!8SHñì5•>¶»afŸ †Ü ž=i@ÛqDÄ; R ƒÙÂû´rÕXسž×¸Ïa`‘(ùJÓþùj*9þ!B6²uHÂmm¤÷ÿ5Žl–zoþ02CæýD§þ³`Qsò"õeykNU1Þ’sèêzqјJ}`2Wœÿ‘Ùžegt‰}µÈ LrFgéõŒ¹Ù–¦N2ªÔ†žF~ø^Ò“•34F€Tb>øó²ó¹¦)åg‰~,K÷ê©Ô¢Ò$ز2˜˜•92ÀvZɯŒ”4MAÌYxNßc%ìg#£ni|DWNR0& ™N¤1ƒ˜y%Æ©+4.2V šR¶ÚZ”2ÏД‘‡+¡)"YæŸÓ¥W¢|ì™\؉Ð𑹜Í'ÂÇD`dÏ„¡z'~§ÉBަÜ’AòÅB©7æ&ÓKo ÿÓä{‹20Ö¤@0ÇY©p¹ ã‡Úé®l¤{xä‰ ÅµïÔá…R°«ÿ›‚{E‘ÁøPøÔÃ4M<-¾øúîÅß—µà endstream endobj 172 0 obj << /Length 2014 /Filter /FlateDecode >> stream xÚ¥XKÛ6¾çW‹‘µbR"%-ÚMÑ-š¢@}kzÐú±6bK Ë›MzÈoï¼ø²µÍ9’Èápæãpæ£^/^¼zcªI“7VÛÉb3QªÊmSN¬©r]˜Éb5ù;SS•Ý@+¦3SÙ"[Â{m m}º ×Ð››95g¶4Ò¯<îã>YÓ¢ë)-zª°?3QïÜb˜GÜÚJœÝÊÞľÄöYç܆:ÚŸÂÇË¥ÊÛç¾Çeâ¸6Á—*ZŽ·}™ÉÁÑEÞ(uqä­®+دgœ0ôü{^MKÀ:í3¢Z™*ÀmÎ_MÉñP*ÏØ3óÄÊ’ɵN1ú‹’‘"N2i ÜÂáûáD7ÈQ‚SÙuÀJäî%ÂhFW²ˆ[p{aö{‡Êöò½•lŠm¬S·£!êŽÝ9‘álÔþ@°›¨­ãiU°s<¸Qhär¾"]ð^E¹¥ Ú;) )¨òÈC}ZŸ>Èh'N AwãÏ…¹É­U©!²ƒ:$W—¿(/‘ÂÉË éîåé`^…á‡Oa?¢o¶½wò\Gc\àÆ«7uTØg…ÉM]SM®tÃNýÑ;C—XJç–ê=ERfás‹«ú;´¾¿eh` VêJ*º²À;zI—ÉvËâ´U4(Ë#n{–ØôÇ‘å«ìOxýù-µ£†ï¤­ea<0n ~åÀòé¬,Êì'–X’ ƒ„ *Ùû9ýû±8$H´ÎNÎ 9;kDüaÏ´>d èq`1ç«(·àó<„c àÔN㇩ /) ŽÜ»íý†¿÷< BÂ!Áçm·âïEm}Oƒ XcëüA Ç6 Nœ{‹&}:wâ,aESæuøn.™µ”¥G¢’¥¬—ý¤i7ºÌ³øÞb‹àˆ`8"fKé?õÔÿ‘{ö>'‚ªõ#&惯 XùŠ]ùˆ“pˆx› [&³ä£êÊÊFDC¾» ¹bFçzŽå´È‹ºqu—)¶–§£Ü¥<¥•6ojW‰-O=ç*â¹Mà5 _PQ^¯"~È<å’o9®s#7ƒ3 7N{ø»¡-—tÜÑ>ô8qXâÄ &Õ&&ÅdŒ#O„žE?kO§¢¢‹[×<{û“ƒ0V©ËD‡c]:T¼_•f~ÂeYz-š‡³Šß…‹–ò‹Ÿz4Í64^Ø<ƒ¾••248Á~]+¬­ˆMàÄê TÌ*E¸É(%DNËܯ^ÿ ŽŸäÂ4qºê£«ìör]ç•ö6”’˜/¨ ´¸RéñNLTt%ålÍ–@¦Ç0<Ê}»hÛ¨ÂúìÝ’œð5V@Lo‘0ìIXSéÄ0ƒÄù Q =n}¥¥LOJ( î©Ñ72a›É íý½ $©ΆžU¶Ñ̤ Lf¶Èç…N÷ð$©íˆÀx†Ô¹ò¬êlá<„¬NÕyIÃ+BPùUpÞqå…Uq`I: RR%<$e4 ¹€ú{Š^DiÕãуN¦Å§Ò; ~ Z"º#«EK3>¹œ’Ÿ»˜vÃ:#1ïwNÕ;U”žmD…‘V»š*(ãXÍKˆQ9ψ›­‚3³ìÙäP0Orü@ô"Œîï;~:cðý(ößmƒCä­ÍÞLë’ù HQöqd¢íð`­ÅÆÓr”zdnÞ[¿gkñg=Å#µ!³=[ïÊøLÔC•o¹/Az$`|ã8¼Æ‡P˜¹ÉçÑ1³­ b‹g¯Á”“eÙ3èó‰[¬î7#9KWu@ºtV5>Kµ9&·Å‹ ½Žeï¢~°³ÎÓvE´)¸ÝtÈ U JÁ_ºpžÂŸZ5’X†Þ+©–Žã\…Ûù• œä·‹„ß¼ŸSîÄe>{êEó!ºS_„…ÍMy…î@¸¿lß ~žîÍ0òË'aü7ÏUx½I~iÏフ'.ýÆæ¥­ÓÆ;pi³—häK|7át¹¿ÝV…zbøb®õœÊ'êO2ÉÁr  T­ ¤×ÅÓu_–ïøŸnYï’Í íÉ•$W=?;ºÜ–¥\å—ˆ ñqlKñÙž‚v9ØcŒ×¦@-|y€ºv×9ìÖÂNðx®åRq—_³ÜYA‡ûˆ´/wò;dÕzn±¹HÄp¢ä—à³ÌÑr–ï™áÜ®ç:¯+3™é&¯ëš×Äé_ü²xñ-ùÅ endstream endobj 14 0 obj << /Type /ObjStm /N 100 /First 835 /Length 1503 /Filter /FlateDecode >> stream xÚíZMoÛF½óWì±¾dwö{ #@c×mm‚$@‹>Ðí°•EW¢‚äß÷ c9”È¸Ž¨A¤CÂõîìîÌ›7³_2B -’„6FPF;¡•°N MÂ+´Ρ͋’@st¶"Ù”-H%+ F½0N!#ŒÇ79a‚ Kh'ô·ß‚@â Ó`Nç…ÅˆÊÆÌFÌœ°˜Hcýt@;Ôp Šà땬Oh‡|„.òIyá!Ÿ "ô5ä(ó– ²ÂãocÑ *”ÅÔÆiX¤ *„AU(4¾,SRT‚UQíª—«M‘„50*j¨% bŒŠsP&D˜¾I)†Ø¦¨)eV”%ƒ/àŽ0ÅB¿äµ'èëE BŠ((›n¶v20²¤¢ðdY&¯­Îˆjà o ½àŒ—Pp0Ns Ðð– JøèY8 O @š‘ñð:Ÿ‘F“àdŽE¸(Yö7d¼æôòð é SH'ØN€8*ð„+ Å D£LFÖ=ŒJðutPœ,SYÉ€ J4Fø®1qcúò€+ëŒI3ïœCÁ…Œ¡I"tHl"FØæ$º·ð‚ )Æ–¥"% NŽe¨[[ϰ´pgeµÍŽ3ùæÃm)äËüºÌäI=kÊY³±õ*“¯ÊE½œåÖVüVNªüYý^œ+Tx8'$}‘¡ûý0o+öôi;òFÇÇBžaÒ¶EöÓ]…»"H¸j‡uwEǪ¯ªÙ³«2œ³*2ÀmsÊ—óºx]6âöœž ù¦|߈‹•:ƒ†RÜ´”ü¦žÌ˼©êÙiÞ”â‡Ó‰ð¨ /a´zòÙ¶7U3EË+ñË<¿}[ ñbÙÜ.›£Ö¢É²(çÜjŸ¨'êèn®š«ŽÖMc¼3ùzyÙ´r%eò÷ü†Ût&Ÿå‹²õ‰üµœ¾+›ªÈ3ùó¬¨'Õìš3åAçòùÉ OW¹ò¢3ÉJþãp÷½åÕì§Ù¢úÔ|Z]]•€Š1=Gb‘7Õl¹uå¿Ëº)§åUÃá"'5¬_,*y=Ïß•2/–M)‹j^,o®¦å{ÙTÓI)oòb^Ïä弄 ºäE/ÈI…)ÕB>™Õͤ¼’sÌ- ¸n:Íï+ß.g×ù|y3Í—¬¯ëYù,roq›åEŸ°+>2«þ|qùwY|lx~òá›ö½È²£Bk0r0uˆ–Na н ’gíÔ‹¿-5fÓXCû\& —‰û\k”íò±ÃÞá5 –ØúŒ¢ªÕ›TµjT\.n]k°zÛQK—í¥k÷3ºœˆ.Gû]kl»ÏëýØÁñ"!¢s›DtæQDtþ;#¢"¢ßS"'»‡öV8ê1Dô="úmˆøøXÚA÷½ˆ÷ûh<˜‹í¹Ø~3¹˜È$c¢pØGwƒx=ëòkÙ¨´ "ôwŸ‰:Iµ›kÛWNÚY¶Ò½ç?Ò|Ôî«H÷ó’Û¨÷=„»Ú{‘±‡Á—ŸøÕ\0½íÿj`瑳þØ×ÝRužòºÏ(÷;°m ³Ô7,í<æÜ1羘³n(æ>¾Çbîÿïy™±f]½µñûä#uùøW~{u ¿]æÍb§œvƒœvþ°müü¶i—츬ïóØÅ}Í«~èr“üávó3{™µþ55ˆ4’š?{äoã|ú‚+íô¢%ôo‚úR¥ÿD5K¿ endstream endobj 176 0 obj << /Length 2788 /Filter /FlateDecode >> stream xÚÝkoÇñ»…0Ùˆgîî½XÔ# ©ÑªŸ’9‘'R1_½£,+úÛ3Ï}O’ ôCÑÔÝîÎÎÌÎÌÎëôÍÕ‹Wïê‹E¶(myqusaŒÍ*c/ʢʬ+.®V?MÞMë|rè¦3WÍ'§©™làצîMçºfû[øƒC|ö¼¼Ã÷éÌV“nÚòì5¼6=N¬x‚ÀËÅdÕ ‚Æ]âôbHÿ‘m·„0Þ#!¤¼æåŸç&Ç}"s8sbô0%!æ-¯Ü+óqÂhÓ#ÐlúËÕ÷3“g‹<‡§É…Èk+Þ#µ#v›ß›ŽÎƼÀl³ÇƒÖvRâ#Ÿ,½XZ`³„Ñ‘´û©­‰>›ÎŠE>¹ÒãbeyØ‹Ø`FŽxbÜMßßÁh×Ftù±<ìvªŠø=ëĦù×:áö† ^H2sBïñÏÄ2Or™7{ä÷62æÊ99ð+é Q=gˆðÕ»¢Š­^ámFO¡ñ7Žu"E3ù?‡$yú¯ð:;‡8 ‘ŸçÅÿ„ßðú1L³ñ³‘e|¿d„ñòAÊR+ˆZ鉑^ý?2W’7¿æG/Û>l+¡¯|¸°t+¶õZD»RB#ÚxDR×_")µ“>ê[€(—µÎ"’¥a`ù/$‚x³Mg…¾Je³“ßA$æ”àÌ–™™ÛTüC-¾þå&C¯ßY]gU^}¦–ÍäOè[„ï†äXÀãç=™V§Â±áü‘T‚ˆ âB ࡤ:IÝŒªÔ•™èÓúçˆ §_øMNžÅØ¦Ø ~˜ÎòÊžJ.Ï’½Mgêm,à2õ0$Õä´ñ·Æ5«’õHcŠj'†Mã̈k›—™­ à蜫ïŒ?»ÈÊ²Ö »æºá6pó‘Æx嘅­úà“h¢ÖÚ•œcÙlyŠ8'§Ýbø-GtTÛRvQ o4L½NÇmÏÍÍI$/òzÿöÙK§ã8ê ДK5†t(89#ˆ2ŽÝáÄ’äÓá4S†?;L®£3JEmz™ ü¡ã­ÇF#St,ÊþîÄ^< ¦ßÉÌR™Ú2à®Q‹_ï)1Z> A@Ïsö’WMú¦YŠÁÀ€ˆc„UÜc!#° 6|˜å¤YË<ÞrnÄDZ@åsصz Òéš7¬$ Àª\õæE# ÓaØ5ïV#÷PÓ3ÕsXþnÏëŸÒuÂBtˆÛÖǘVOyé[(Ij–z—XpâóUévQ‹€ø=Ê-uøDÚ¢ ~•‹°ÁQWhÏ/×"N&&“˜á9„_*Ò*V€J}„!3q–œ¨âa}¢ v)¿h*D‚ Æë /÷´ìå…¼ äÅJ±4Kœõ¹^ÅùšŠI3þÝY/XdÎ9º_œ°Âk*kyˆèš]48y×¶ …fIwî¨P×[ñ9—².X›AVâô†_zÒÈ »¡tèªD´ân÷ñAªÊË ªÒú]éI™qÚ:Rb¾ÙK}§ Sxõf%¥â&zö‰ ÏkÕU»Äî1óOúPß„ójqRø5-:¨~C8¶pŠgDyXo×\8ôqý^[-V{ÒžÆ%’V#»V>ÓªÙIPT£Ry>¹šb|y¼RïÔgt;Mnªø$ç™Z™gÆUšwm$#½ñ.p,Q«ó‰Ú@•a™W‰ÌÙêádËN”®?K§râ–¸ƒ£óŠ—“<´r*¢•67,§Ù¯Þ3<·YîSÑýù‰ ó\èò3­¾åÊ3pñ{QHiCï¢òFÓõA\ y3wY™›'èÏòù"«œI£{ç›A”/”!FÖE”3ÁtH…ƒ ÷>Ç)Åÿ߉ŸYñ$™ª`ñÉR DnwJ´ôY¼¾‡WLŒ|‚…R8t9Ä$ÎÓœ¥#Äg9¶m1ù»Ò¦ÎG%­fîŸ8(;§”{Ðÿ x¤t\Ej]VÏ Í8«Ì9%3€±à›î=KËdŽ|Ùšji#·qf€h½uæj¡ñµdòP9˜œ|·Ã¿!îx:9&Ozq¬j˜ü:àÿôvHBN+š€&jÁ|j}[– bµ§@Õ·¡<“r¶úÁá~%W G{à1i{¿’’&4—cÒ, *\á5°ó±ÎÌGÝTxç†Ï~µ±œ‹Z3hcT.q‰; §¥œ5Úe[ò÷ ý^ãQ ûF»üÒy^·ÔR_¨¾lê‚”™¸»(§inEaÛ>zK=ô†Ð–˜åæËï'¸Ä߸6“jb(Iß¹ƒçïùIGXç¡Ñ6—ÊÎ74[–@Ž E ‚Q˜swØË…(çq^YV™³Ñ7ÇÂr·›H†êÒàÔgÊA9Täº;úÆã¸9OSÉŒ)}'l2Oã÷Ö¡ïÉãðˆsþ‘H+eÑþì?•î:9æRŠz`!W¿a+\{ñíÕ‹?z,£™ endstream endobj 179 0 obj << /Length 3330 /Filter /FlateDecode >> stream xÚZK“㶾ﯘÊÅRÕŠæ$¨ä´q²)Ûår*ž*¼>`DÎHŠTHigÇ•Ÿ~ ÄÙÊaWÄ«ÑhôãëÆüõþÝ·ë»m²­òêîþñnk[ÕwUi“¼(ïî›»ßVçu¶Ú·ëMa¶«£ÃÖÿ_¸gx„ß2]Ö›¼Z Ó„cðÿZÓ5®×Qì9 =ü?ñ‡ß _°» cÄlLûacàþfjŸ×yïã¹] Ý–øõYÔ… ãÍéÛu¯ðÿáŽ&$åvk þÌ{âºßï¸Kï6Y–lK‘YƒóΰÊäx  sÆï”vî¹[FÃÈûPßE„3°¤yzD’ÓÞ .YolZ¯~]׆W§«Oifú°‚M#²žùp–-º°íw…Jƒë€TµƒßKˆˆhqÁe ‹Y¼½nÒøöci#¥*êmR¥[ÉfGd²Õøwµ¼$VÃ.™ õÈ÷вm;¸¸€U¦=·ñžrPS¼¡‹œ‘tm’‘*Í }Q6 ðy]–+§šåDIÜÆä —2…Öý>¡‹Ùy9óBû0ƒÈ‰Lì„質+ô ² š;àÜ—ž¤d{ÕÕ†;ÈÈZfœzH!†‹*³Ì‘-ëUO²^PÐé"6yÒ£’އÅ[Ø—Y!>Ù¸FÒ‰2Iç?“&“òzK·z…hÛ¯I0R³>!Ë®áVha8èžZG‚¿êgðÛ³÷™í—ugþ&MdÐj¸-,‰ ‡Ù)¼rãVªØ;\ÎâHêYwhD`?UpÕr¢¬Z¼Ã©¢#CÍADþÄì9aï83aìiÑzÝñäé‚ëP¬ŠLlzFrökO=#VB47jc_ÓGËU¼O{î”øŽkv´¥‡…DÙ›áð3O´Ä;]'¾ú0?¸G£8¶£`6I'a-öÉ‚—ذñ³—(ÿo/ñË›ášà”ßRcì4°'Ö|n‹’Àêáa ç 0,Öi^%ò H¸þKEë”ĸGT} v_FŽS° ¨˜»QŸr¡²Eî 8¢‹íø’cz qòä‘w«Z¡hè:uc¬ “d<ÈtU†B¬úÞ…óŠáE¡™||ËtÚI”ÙúšÃaBc0 O\¸&…ɲ8Ù¶6±µÉ§[*“4ó¸“0„Æù–F‘”Û:¢‘yIÑõ™´Lò,ŸÛ˜ :·3ï‚ÍF£ÂAñ™Ì;)Rgrì¸H0h6üñDR:í%îáÐØòÇ!tD€0á\~¤âû”¾Õ¹ÌÌŽ°ñI9p¹úéˆÚRh´’Ë^Ña#%þžŸ>ä¬JÙꟖü“c8Ú·¾¬„hÔã?ë½5`’V«k.ìܨ™Ž;¶—Ë`f£¡¾Q­% Wø˜·/…u…©\€K¤™8ÎF3‹§Œý%_`Û¸NŸû€Åµ2ßá‚´Ž­V…‚3 ½Ju<%zè´ÂàTÍ¥Sr}dðe £°ØbfW)M²T™ÿ ÙßÄǺJq# ìÞ‡XE.òUÛ$н—:,WÍqÍ!†˜¹!0=ÕØ >Ú«°ÊŽùõ&@òãÛ•þï©d´%c(Ò”áܱ—xˆ‹N—£Fâ4¿ÒEí–›§Qó‘VŸH°›œ üÒ¦Ü{;÷õœ¬ÑÅ=«_þ+ pª¾-ü:¦ˆ»üòH©’ÚT!3O”úWsÏ)JDZ'ÿ¨<"ÑÍ?4á e¤M‘Õ@·þê{+*L_¤>`úÎj‹0íä‹a…ñÐ…YÁOð£Ï‡Û¨WíI‹ý!7©) ɸ¬®[È'¿ˆaÙ—l“«þs­©}¢ƒsoNjÈ{‰„¨=<ž}£-«-ø)¾ŠGaµ“z¸h½¾ˆëõC¯ÀÑx³©b³é°N×Þm˜½Þ“ð8< ½Y—+ºp²³Ó,×1×凃<•*É ÌõaOK7N6¼yòüJÝÜ-¾E·"c½`Œ$²xùd„_ùa‚"çúÝ ÁAÁ cC ¾¯ÞËå‹~ަxC2‚#Œ„~œ²cg®8âNæ.ÿE ÞImɪç­ÃkÙ[g_]pŸ• EÅeÖ‹D'zPgþ$Ap t†î׈;óªB6e¹ÿAQQ¦ò¸æ„ÒZÁ8åQS`ñÑ~‰áYø­ê㸼•<ñ®ˆÁwÃ>~! ²G 5<üÖð:Œ¯Ü1›¤¯åêI`¶¯¸^æËï^Q|giêŸJJrW‡qÄרOÁÑEÛÊWºä©€LßG²†çÌ_ŸË˜GP±Ñ‰R>ûÊ™5’`ÈɳǷþzI©ÎÙ:zṨÓðçJEŠ'ªD´&^âˆ-zt«ÓèõaçÔ²rppŸ²Â|ÏT¸ÖpÇ´:cÅTuñ@™KÍJ}×AÆ B¨ˆ[…ÌpõCj‘ýkšZþž%dÀ>Ʋ%—Ep³ ¾»ˆ1”8HPš=KÇÕ€½rÞþi)<ã<Í©üº±yJÏ;æ5޽ûûý»ÿ„d endstream endobj 183 0 obj << /Length 149 /Filter /FlateDecode >> stream xÚ31Ô35R0P0Bc3cs…C®B.c46K$çr9yré‡+pé{E¹ô=}JŠJS¹ôœ ¹ô]¢  b¹<]ä00üÿÃÀøÿûÿÿ üÿÿÿÿÿýÿÿ@¸þÿÿ0üÿÿÿ?Ä`d=0s@f‚ÌÙ² d'Èn.WO®@.Æsud endstream endobj 187 0 obj << /Length 104 /Filter /FlateDecode >> stream xÚ31Ö3µT0P04W0#S#…C®B. ‚‘)T&9—ËÉ“K?\Á’Kß(Ì¥ïé«PRTšÊ¥ïà¬`È¥ï¢m¨`Ëåé¢`ÇP„ÿþ7Ô3`‡v(P†ËÕ“+ L5* endstream endobj 203 0 obj << /Length1 1375 /Length2 5860 /Length3 0 /Length 6796 /Filter /FlateDecode >> stream xÚtTTm×6aЀÔi†îî”ébf†né•$¥CBJZ)iD@¥Ëoôñyß÷yÿ­ï[g­sî{ïkï{ï{_×aeÒ5à‘·‡ÛBTà0?/HPÔV0å /$€ÇÊjE¹Bþ¶ã±CH(&ñEŒBÛ”À(4P4<]~A€_D‚_T@ ñ¿p„ ö‚ÚÚ¼€Aâ±*ÂÝ}PG'úœ¿—»À/..Êý;wƒ  v`  F9AÜÐ'Ú]¸‚òýG v)'Ê]‚ÏÛÛ›ì†ä…#e8¸o(Ê Ð‡ !/ˆ=ð«e@ìùÓ/+`èEþå0€; ¼Á€6¸Bí 0$:ÄfAèÓu-à;öXë/7ðçr~^þ¥ûý+ö;lgwsÃ|¡0GÀê ¨hñ¢|PÜfÿ vEÂÑñ`/0Ôl‹ü. ¨Èë`t‡úCÚ! î($/êú«G¾_iÐ׬ ³W„»¹A`($Þ¯ú” ˆúÞ}ùþ ×÷†ùÿ½s€Âì~µaïéÎgƒzxBÔ•þ`Ð&¼Û!(@‰ŠˆâcçÄ÷ëC_wÈo'ÿ/3º‡@w¸;à€nu€ ?xþH°@!ŽÝé-ø"_ÛCKÇc(·på`ê‚݄ٮÁšëá)F¤›O~êÝ­êSÛS:?ôdzCo³RDÿ²t‚'Î(Ö"´èkžmÖ5ó-='Ùñ‡£ãI²œÑŸŒI\x»q‚…þfËñgS~‹å†Èš{4fÔôØGdCãlþ [O5¨fü‹_Å.IÏd‹F%ôÏ=îNžÒ4¦aÒ¥F<.á‘~¢ÕN~¯#ÇÛî9ÂÕØnT`»ÏX‹ãÎZ¬êRÁ2PlE >»b¡7H6Å´çzÛÉб»gÔΜ@-Á÷yÄáXš|µ-+Häòì_x\UëfšÆ'–9w&† ò•õquþæ=?óx_ð8c;G¼B¹Y|’èÆ÷£Ò¹°Õ­ÛJÙÿzUØžè4`^_EqD6FbÝ&¹6†¸Liýö˜[]€JèkY–X¿FÆhŠÂ Ig„e2¦wnoºËD7Þ#K4y•ÕöµTv^olWè+D?F-ßr2š7Ó=Øzl˜NöEèºØ^¶|[¢Ñè®gRŠ™¹[¦_?¸~ra3xZ(§ÞõP¨?yêÎJK*ˆÑäYx¹·XÜ‘L§ÓÃiE/äÙHîg¯ŠqŽð}Kdµ‡>óÕXe_8Ëe"d¯ƒ¾1íìꦙf°®ÚABå¹Ô‰²F~ÍÅ3IÚåq^ /%!Æ“U8Z\Öã8Γu«x¨ë‡^š³ùŒo!ž8™ZzñRÆÉêòÓáwwÎÄÁ­·­?ÝgÛQQjWe1n)<“ór‰@½áU¦ ð+k7ˇ>—ÌÖ©&x ÉÈ'vNÃ|€3NR¢&?'Ú6-+Ã\–ý2‹ µûtÀ[’s|#ÒU¿_E…PÁdýœ?܀麫@€³~—öÖ‡aÚX1 ÓÄæÐï®Fewo¿y¬ž(kî]†uwuÈ—Íì³MÍxINÛ§*¤½DåUúý;o8‘›[„c¡†öâÀË1$ÂçÌã‡ÀI÷ž:Öð·\:ß¶ØJ» ÚÆýÊÖµ"ev©EåLÊòžÉÍû“@ K ì=bå^@ÌÏqC²¯Z·SS,ÇüËL‹l~ž õðª¦y“7”¯Ïèž (ì8.Ôyÿ°uéP©ÊÆÇÕ)/rp–Œ·—eIteæÙ-£ïrÄÚLð?;"å<û´÷5fŸœÛ@oHàUKþE9ÛýbØk ›K½˜Ça[D«‹M]"®40­ø7ËÖƒoÜ_øæŠ -Þ¹kÎj¤ÍÒû&V;ïÁ.;áh ¯ÒåŠVåj)µÅçŠÜ©Ÿàý¢Wlci"¯¤/ÜŠng½ÉÅžvøÌ%Ħ†Zi隯¦+Í…l 9>Á%ƒÄ½’eslµ­ðî<‚zuªÚB-4hç!¹õqÉûäºkJœ r;Öâ v ¦9< ¯$q`FŸ¸Ç´÷æØ²ÿZ®È²ŠäH ©öãLÜS6=žwî>ßb‹ÎÔf«­#m"}Š2[º¸a NÓ.z#Ì\ûˆ³­’¸~wnGª*v$M)>¶–»E뇃3WjÒî`ÛÛö÷˜Ç_r²˜}@]'N,ØeKžærs+[³ÌÓaxöêIÊœ¸Ü€sû¦åfo'ʧ ‡²w?ÙE¹ó¡k~å«@û^ˆþçÚ¾#ÅÄ´ÛÁ¯¤K4×îÔ+:Ã*Õ™})L#h ”NÙZó"ß¹ÈlA³Z»fwI0(È}ªb¿Ø6yvÉÒ¾z2^Üpgî7!³ü:Ò.7äíƒ[U& ò{¥ì\Kz÷Gü Õí±«µâŠEnd=Bõt0Z`-XŽ™æö»:~À|ë’lùcúböè¦Øýýf™¥eQµœÜÌîøÛ­Á÷»8HxÍ« ñµ9ªÓ•X…ùØfAÏ?§ãÅñÞ TŽQlY̹8í=í.ZU&O*g: U¼4÷ö©€u)z°Ô³B›yI¡§&3|ß œa²š6sÙyÝ$³W´?·%GÚ“jˆËSä ÞÆÊL«U†”w~¹8Û/™wƒ‰ñgžóDœlä^P–˜“$ca–í!|Gðå,Š#Ø£½è»ê÷êñ&÷ЬÙA£Üæ¹>…®TæÇúØ—ÂýÝy¯Hc•) y'—jxFCÅÍe’b7oaeÞØßç¼ÕÞK¥£~WÏ«H\˯åg”Ð̉[(1ã WÊÚY²µì›Í¾ýSj؈ÝqãèãÙ'ö›é1MWÔó~¶‚7Akøïx¨ «ü[+qO­Õöc¬"ÌÛ ä® }««„éñô—B±:ßÂõŽóÈ;M22íÒœ"A½”1žg÷A¾ãK_K¨sâYŽ4pLÎÒb$­¨ÅE8ê@¸bF0.Uš1þÝH+ÍÇæTÅÄ]ÓæúÏVªe„CÕãÈ—f!|Hœ*œ|™Ö\ŒßôWˆF¨ãŸ:õƒ SŽ(á_BOdzW˜Ø#ÔO¥÷-Ï'3I´&o>K²×8µxXªOT¦êBÜ(dÏN²¤“°F÷ÆŸùŽë™E4`éÒ_!fŒ—yй ¿/-=zŠ8Œ×­‚97Ü|ŽØ!'åtߥ-z«˜Î®sß)4dÛŠ…Œ5›Ngj—T½­‹}Mö±h• Šç¿œÃчØ/!È Z_äÿñ ¿k&áÙm)É`{îJ«I‘ ‡,nÝ÷‘  —V}±fÑúC(~ä­È†j`Õþ¸öE–ÎD>\K•ÙV–M¥¹‚JDÛ'n-ÖnFt/Z·Èë !­œ÷ªapŸAM€ä¨ë‡ñ½6ó|óÎØ«ð #I¡ë˜¸šl½[ÎM?’Ï×&Eßrl‰`tL_‚Z db¥7ºKÑÑêUXÒ²Àþ! 8ÚjšÉ©m¯Ë/âVê–3ß> 6‹L±¶7A½—êç“lŠ#¨gÞÔ§{í¶ØU‘óœ£â¸„â¹r¼¢ß„Ÿ sr<žZ8FŽá»65Ë¡0}`Ñ&7çº;ª!ë({x̦>>²š\%nWÊi _Š‹¬¼éó=Pôœ¬ÌŒ©ÎÚ†1ç:›À¹ßâùè9uö:ÝlóÇè<Á -ELÇ < ˜­nä¹Vs·GÂÝÔ>Ägga«nqìR}ãZ âϯE!”Ëßa5¬»+£Uä{Ó<ûQÓÁOæoDR õ¾‰Y“ò`6A)XHæÉŸÞ´¼|ùò&CÍ­õ€·¯o€EžÿΣ ;R®íCàkíoô730ÚBH÷ó3M—‰­Ç[»/F¦dTFbºÓ£½’õ"œ‰s®Iïb%ŸWd‰P²fÛ…`³ôÕ'â§G¿°y“‚5•qÄ"RMŸ°w˜Y%sç«)IUDÀ‚ïè¾gІ©S™K»—ñíÉ‚\LÊm2M“æ‘,±oÅ©Á]‚äñ˜¤S/­>&ñ|Õ™eÌ ÄŸJáý‘d-£L<¦•Æô+’¥+»4ô [¨ØÛ«ß×!–ñ‘üD4€WùÂŽ/Wmk´Œ‹!~ˆUÁm»GtŒàN¶Á3ý«'œßz”Sûà ’í‘S-£|›¤ñÍ";æÅZ$Ó{$ð7´†ßpJòT¢Rkd¤[I¾};hˆ¾—˜c¿ÃÆb‡Ÿ¦¢<Íë&õ†‡.”ú˜è¨{Þ[0~JD’{+ÿüqZ^9»+Ò\f2‡ÿ„\O —ðk­«+[(mÞôák’½ §Uée•ºü%f‹&KîõàÉj9„½˜ÈUå3gOôCÑËÙ¸¹6øÕo ïcÎPæ8'wl¥ÎhEµ¥Ï^LˆR!Æ`õw‘4Œ—z }"™ ï°ç³ÝS 2ç¨<»í(T”'¸uµ¨Ê†Áç®ÖÅJœF?+ùº•²Iˆ™.Kí¾µC°CqÖè­ýŒ’”÷p´<ä%ˆ×¶$}Í™Él-^N*¦`“ðÑñµŸï´ëŽŸWÌ5ÀüÁ‘fùèZXÇ¢‘|"sgV Ã+=#$kí³_ʲiõÉþÑüc•3FÜ\x×AOIIöú–ª±ï áœèw)åùýÕë(“ źü3·‡4?¤?CÖxíYÏ 6A2?_I.‘·'46Þ[ÿf5‚•+Ãýð/½ÊÅBjæ³VÌTÕwTÍÎmÜl{wŒØF ÊKAÄ;™´±e¯‡Û,ÖÞt]Dg~Y¿Áå$ÆAÁ4PT'›ôS(ð&WÏÐÀa^ƾ½âÐtžäñÕ—!½=f,òuÉÔy%µû$å&b¬v}­RÜG×!šåîÌ*™¼ÎŒ™<äÓÕ©½e5–&È Ò^»ºMˆxX¨? ^Nm^Ànß-`Ž” rtãåâcêˆniˆÖ2Þø°Â/Z²1­YçÇ©,I½t68LMjgE2è˲±Þ¡òí¤Š,55I×6ž­ T,>c~ŸåؾUâÀÆÝoñqzÿDz”_÷nÈ|i>åkY‘døèÞ»UëëO!¹—Ón)ôÇÕ-»:®L쓳YO÷õ/>(Mµf[òD`ž¬ëþp฿ëu)=ZÖ©¬a¦vVA­Xm*ûõ5,mÈ8ØÄÞwq^Xƒ8±v|Ëeá èËø)¾As‹“Á¢fÓzÇÊ›! !3ç¥w£Òê]ߨ® h«®ý1¿H¨û×Ù°î×Sj0ó3’*~r,–/9HÃLa/g(½—aDŒs’ÄMiÀ¶œü¹&î3YÇø®:IOvÒoaÔˆ‘pt'ãöØat-gè4jK|qzùƒbÁçiତ ÔÓùÁz©tÀÀÈ k$&î~HR÷ÓYXN>7ó›­Å¦%Ýq›É4§ñƒíר¹inƒGkkËú\PxtÅê éÔ©_í—j@2Nžƒu2ÂRY5i~ ì1ÿ"Þ1±È wʲ^öòg:Ž{•R _Ý᜖miðvÌŒýêþ¬þkÉyÕç²²`wƆÄ+×¾V[ó¯6:¾t Z~fSc&»µ2ssÌ]^Ã.]Oÿ´€ÀfÏþ‰xþ…oæ÷Æc¸Ò°a©†bÂ…j~úà…þIzÝËš«—3©$3;Qƒ>½/åZ®cS´ÝG¤Ìâ@£²ÅW>I,3Ãîð}ó|—SǞѢ¸Ÿ”aãT©à›áíÌ¥DVÕ¶ÓUmK³ý¸œk—Á4×»ˆ“ÝÙo$Æ7utù ,¨Ù€U+•Ôˆ*¿Þ¹'„Òj­'©Ô°Å¬ÇkUßÓQ§Vœ~áQæÕÌ$åî}M ¢˜ì‹çš†#z?ÛÍ!Ÿ­>Èß³R"¾ ½ž/!Ýð¤¯!të\„茆`ædbÉñK »”{fìy¨huÉ;0e¢ÖqlJݼ/|±?–×,·[¦jp<à+3_û€ÌÃÙýe¡õEcE…ЭÏ>ÃüHë’rv Á5³õ63ÞÉòÑÒÎ7†’Ÿ÷’/ˆ%)S-•”ª=A‹X·_Lè]šKû…\êæqj*y$»äb¤&{‡|ü K€aÄh<zôÀè,v£Çèðær‡3ÑHÛòm9”[î&wâÐTÝ Jè9)pêD-ü”+¹Ïi`a/.“Äð-ô wA:±_˜ëµ)ŽyúÆ^Lüñ Q¨!Ç.,Ig,2†=Fjc«–¢Ê³>TáêV–bªÁš!Æ—ÝEáQÒ:/Û lA3¾E åðHšVGoÖ_5éÁn_ëXß ¿hdn¦¿§ÌžôÂav‚2k†š:ä~@mõ Â•²¢ÞH7] ©d!û{œñµo©Íê/t,¦¹ËÞúõY,`ª$b ®=+:œTØÅÞÓ¦ ¹ï×9íc §1Ûl½¦MÅøÊ endstream endobj 205 0 obj << /Length1 2023 /Length2 13968 /Length3 0 /Length 15204 /Filter /FlateDecode >> stream xÚõPœ[Ó ãÜ%Øàîîî0¸`pw î ¸{ÐàÜÝ‚;Á=ØåœWrÞïÿ«î­©š™Õ½zu÷~º÷CE¦¢Î$fæ`–v°webcfåH(‰ë°±XY9˜YYÙ©¨4¬\mÁÿ±#Ri]¬ìùÿÁpƒ\ßl’ ×7¢’ƒ=@ÞÍÀÆ`ãægãáge°³²òý‡èà̹[™”˜òö`D* G/g+ K×·<ÿù  5¥°ñññ0þ³;[™‚ìJ WK°Ý[FS-@ÝÁÔ ìêõ?´‚–®®Žü,,Ì ;fg a:F€‡•«%@ ìvv›þjÙÿÝ3"@ÃÒÊå_usW3ðf°µ2Û»¼…¸Ù›oÙêrŠeG°ý¿ÈŠÿ"0þ}86f¶ÿÊý;ú/!+û¿ƒA¦¦vŽ {/+{ €¹•- ,­ÈìêéÊÙ›ýEÙº8¼ÅƒÜAV¶ “7ÂߥƒÒbªÐ[‡ÿîÏÅÔÙÊÑÕ…ÙÅÊö¯Yþ’y;f){3 ;;°½« â_õIZ9ƒMßÎÝ‹åßׯÞÁÃÞç?ÈÜÊÞÌü¯6ÌÜY4í­œÜÀr’ÿæ¼™ÿØ,À®.VVVn>Ø ö4µdù+†—#øo'Û_æ·|}æom€}­ÌÁo?ˆ>. w0ÀÕÙ ìëóOÇÿ"D66€™•©+ÀlaeøGýÍ 6ÿ~{þÎVž=Ö·ñc°þõùï?ƒ· 3s°·õúCÿû³hJkj¥þÝòââž&.;€ƒÀÃÅ ðý_Õ¿ë`ý+goîàûW¹oçôŸ’Ýÿ=´ÿ^:ÀÿjÞ&  ý3èú¬\¬¦o_lÿŸÇýïÿSþ—Êÿë ÿߊ¤ÝlmÿöÓþ‹ðÿãÙYÙzý›ñ6¹n®o[ äð¶ öÿ—ª þ×êŠ;Øšý_Ÿœ+èmÄì-lÿ{ŒV.ÒVž`3+WSËË¿ìš-š­•=XÅÁÅ꯫ÀÄÆÊú|oÛejóv}¸¼Íäß.ðÛòüoJ){S³¿¶Œ‹rvy!²¾;À‡ímÍÀžO1€…ÙÞÁõ-ðÖœ/ÀÜÁñ¯'ÊÍ`ûËô/Ä`‘øƒø,RÿE<¬é?ˆ À"óqXäÿ 7¥?èMEù¿ˆ—À¢öqXÔÿ 7?è­2Íÿ"¾7MÐô¦iú_ô×¹±˜ý¾Õþ|Kiþ¾%17·ú/~Û s+÷?|®¿ènÎÿx£Xü¾)Xþr¾•iéåhùvQþa¼Ù¬þßj·ùä°Øþ¾õb÷²½õò©·Ë‚ÅáO²7îÛëäî·bÿ¸¹ßÐÛN9üã0þê÷½°½•æò§×¿Øýµs½Ñ]Þ®ž?oš®Üoå¸Z:ƒÿq\oõºz8ü#à­[·À·nÝÿß:ðøÙߢÿ‘ŒýMÞëoø?CnêæìüvÕÿ} ½mÀðßï0ØlЏ4ï`*b]ÒvÿMŒÐƒiw\h†jWû “Ï’s»ÛoTødºê¯AëηbÉC=è«ÛR´7¢Ë¤Ï>ÇÍõðá-‰ª­ŸŒ>«Mí¶".NâöO‹Õý ~GĤ!º÷ñÙé£V  t3d§áÕ_ôó"»I®«^·È夊çþÂwbBÆ!KïZãɰÆ$Ñh˜Í’,[Îø$K{°¿ óÕF’°4v JÁz´f]¾Óõµ˜ul,²l(¸÷ Š µ±à¤±ë²hV¦žú”nÍ/ßm3¢ðEÁ®ž÷M/éøG¦¸ ¦Èh…dCH-Ou T™Gó¾)ÜâºøN…˜¼~ªt:éЬZÜ,áã”\Ùäi¨¬¡G„ZUù˜BRòŒ-³œC;1¿+’ytòªSž—{¡j–Xð‹ÒÐ/òág|Z‚ `ÐNV òV0E†ðw]ëî[˼¡†/š/Õ¯ÛˆOõ”ñ;½“[ú›Ú@f‰BZ­iý3àÞQN{O*쬘ȥ­ºKw©R˜Ê÷»2¤ŽO^æê^%›ó&c½Æ|nÄŽŸúoU¶ã¿Ýœçé…Ü,K?ÍMJŽ/å¶t«ÌFûâo"…íêšEÜa*÷Ö¤[!á¨Ø÷»Ý–-ôÀ öÞU凚‚o%EßcNšÂ1õl)ÃÍwÇO-{O›„)¨+Ž˜Î¥°2›^9Ãàý„!ÓžË I×åïü¡"1Š¡{È4W¥4—GNk.ðv~7Gûµ9CÍ¥á+_¬®n±ÝGS<‡ðšøÀ¡ 9}»0 D˜Ÿ}ZÒÑî òm«>Á³¹"r†3ÌâÍkjÌõÓp»+<ŸW>®cÃù\AöHäÊ æá,Þ‡9\îüÏ(ÔÂ0R¦%gºÇñƒãÛÁ¯Í$Ë_F°'p¶­8ûböñë ô݆ ï·À®”ÙNþóÜb½4ʱl3þI+Sœù4ëg‰G%öãQ.ç*Ÿ+þ|üº‚Áß•c~/¦9˜ JÆïJ6"±ÈÌùŒ„UŽª}¤ Jo+…a÷¾`%7~ßEàLl#æõCi"0ÈãŸÀ>Ø` 3ÊúU–Bj Wûa`®ùÑÁðá¥Èd3a…0L̆å²ß·ÅÛ¥[í=Œg²A8×$—þºþ!¬[~:º&2ñiŒwKEÒî ŽÂ,©r=•^ÁÝBø9é¯È]ÈRªËH‡¶ß+> xÿž–ï}ñ>ž×¼`Þšgl+YÜ9²ŽDÜ7)ùÛOåßÑõg tr±ñ[RHê«2ž–lé›fG ù?50 9ñÜ&7)¶<Ö,êf HøÕ ØÞ<ÜTDa¶š¥±Œñ³þX1b ¶¯úÆæ¢ªŽ3œÃóqhù:’Ucmçeª·Px ÈH¡ ½œ6÷Ê/P¦åë“ýÅŽaáÞí¹ßY³8OÎ- Ö%VA§ãüf>Ï ì¨cáêàJÑ‹SÓ¥´Ì‘XóøÒNzñÈ©"†•äaiÒé/ûÀa%åÔ ‡Vh÷Ëû.Y çž’xæ ZO*‡Ó+´ÏÑ[Eûá•é]k` ÈHv¯!ÑÎ2± l~IÓÖ°¯ç”ñ½9s^‚ÕH3ïŽøW;uÙî £ØÔ;&rÎ:ʵBáéæ‚/BU`Qzm¨6©ÈjW£!&ùö¤$âñüðü+]³¸óRËð”øÚè¸>aOàIiÞšãvœ tQf³ŒbÀ’r¡¥ðUöŒCìõÌqNIæû.ˆeysy};ÄqR"y‚Gnüá¬Oóv|äp@d€±ät·^û9àÀ’ÛÃG ÍTPh­ÊÝ7cMB¢paš>꣋ØBê/s…~†ëJ6²ÀÊØâDuû‡‚Û~±þFôaÄY úVçd8òcV_‡F¾ØÉêæí9^ô꨾·‘V2ZÜ ïx›”vµaî‚èÞºª„†Šsû¬À#5§ô[²zž!7Eå¶q!ÿ1¿Ó'£Ÿòïž%‚äD¹. a‘4½]ŠëO|ÝS”Ê:Èy²:f Oïö[/wÂ~òz)¢}./ã >æ¸Ó‘ô0K†qä.í%+P&`ç¼Kk0rø×¦§LÿtéÍ”ÄkݘQ{L,ìÑ@i 5­/gÿõ9˜*ðÉKR_©COvñ\5¶m.ÓÙüZ¦ØðIŸ‹+<™b{ÉG/ôÃD=Î>®ÂŽz¡!Q½Ÿ}sZ¥Ò{GF^ê|J¿åKêÏd$CWmÌÀE¯‰NÿÎ>üb„« Î&Uº%¡1ˆPmÉ63áV‡÷à£eÝ Ç¥ä÷V!L`4Q•ÅW“¸·ްäÜ ±¨Š¤*:#ëÞ&¨EÙºa¦Ów¾¯'tTxŠ‹ æÊìh?«·6´ÀÙzÍøj¦zðk»³vÌ¥²Zy³WŒ†-®p ÍF­ìÉ òßTSÝCç£[ b—¶m½ÙÍgÃa“w©©¢Kx"<œ?l…ûøû§Ð½íHà}´} Ê7 ¬ÕÙ©¢ù•¹ô,K±R>Äh’úø¨hŒ,geKüÈÕàÆ;H¿/¶b-I%Í™³àøàWéwI îDÆ‚´‡ÿà˜‹æ“Á¥½n—ʉã ä§……Æ"çj‘A•xPÈÚ¸b" 4áÄ SŒ²èÕ;ßB H‚}šôåÜ8û.ŠACa¨¸éœyš¦Œ&˜€µ€Uéû%eøjIù/#ª„-õ¿»ƒ}àß=¶k¬u|¿f¯Ò"ø\tYŸþôx‰æßA%¼ls¹BI´À¸y%œ½þþÊáP!u™\6s¢u-ÐTÎ>.Ž^¢9ÆC#_CÛxÖJ<1uYiʦ"÷3~óŽÙ6GuÒzHšÊ:»D¥‘í´ÕÛ„}¨ªF;`M‰ÁNá{Hsÿ€9#ù* ‡_~_µÀãm O Ow¥ÐˆÓ¾U@ÔÞ†} ‘¼x#‘¨ýä+·ëae¶š4ß·lydŸxÚ<ê/ç”ë¡ñþü#×–ïï^oâ”^­»öáK²‘ QÅKCái…¼.GÈl º‚1Vçß8æ—;ªõ6¡Ýûoñe”CÄäŒüüp§g?˜ÚXy=°õé{f£cs>˜÷ˆòw'9aRsΆ‰øÂ|Í<$7%.&{© ³4¨YŃPª¯øf‚ز,˜÷\òAn­Ûªãý¬äü~ñHªºþWæœâùÙ/zs|† 2HM±ÈÏÃPÈŒ"˜]Ûž<)Ü„¯ ²«(¡ˆmŠA¬Çg¤¡ä!·B¼h“¼&–Äu™ÎºU €¬Ê~©¾±Éæöå­³PݘH9¾Ö65±'›Å^ñq…Ó›d¡”°_1L]¶¶°Øê¶Ÿ²zgUé;Ò èuwÑé|«ÃFýi/Šg³ôW¨ž‘³0t*—áu¿ }hðCäýŒí§³eDþÝK{KÈÖêªOhÎî¶Lö|‚h-®mÅï. =Þƒ¥™–i­(óÖkyŒ¶ÜÕŽãÂQ9HAãæÓOL"§7LWǸp2¾ê”$ Èw›È 6n4gèÏÕ©^ÒG_BÖ{ëÙI°›û|åè×êñÄ%&„½DÒ•† aÛ8S1Ÿø·’kL¤ös´ BاµÎLƒÉäYÍLâAï[~¼Žf¯™sÊŽVØ$Ðúì÷Žñ¯""¤5¼¬0å¿/š¼O1 œÁ©É~µºsaÀÏóúÝoÔà’‘Õ¯^‹—y@Ìr-ñ²‚¬¹˜u~i¦ª¿”æ x²@/Ì.\‹¦ÎSò]\)äÈ–´´4ŽÕÏvv3^¿¸³j#4ê8ÄAt6šJ3µ¹fÌFß“Úçýv_À™£cOO^IKØ¡¤8Aá~˜òy9Cx*ßߪjÔ—v¿Ñü¥MŒÔ`{ŠHå «gQ?‹~jÍíWˆ)4‹³Jž`hc+Q{æ…Ö²JEôBJ7Ieߨ='ýU™[ =Í«Ò{vßïJשý¤t™ÔJ./4²([bD#ƒÞ3¸ì‡ÁcÙ~ Ý5©U6$¤+§nFŠĬÝnd Ö ÄçeåÇÄÀ€ª›6: «—fÄK*&(yÍþ=óo:<³,ÌïCMÃq£4a"ï,yÎx•ò8'ŽˆÞyðñoÖmZ¿Ø9»ßd¨\¢@NÈA0 ð¼lÝ6ºk-QìmêËFò*+K þv=Á…6¥&Êâc~¬*qá[n6Ü…0¸pë·¸í\wHV ÍÙúœ=Óc®’ïðý$ Si†Á†ñ ê)·ËжåâØÐÙKäTúѨõ~ºïôˉ|¸7Ò”KXÔ\ãNÔæ¼5Þ»’µ:?ï E'1}µiKJºh~o º¼âO/"k쾤âÈø~"ºiI¿I]h1œß*¬°qApò*¸~´Â~|[Ô½…kîÝ[†¯äÁ°tíá:\û„B–ÐÀé }±¶”*– vkÞŽmÕÂ]d?€“»Ž'Pöö3î1ÙËUðú¹Û:oK™“¸¤{©ÃäçënAs,¤k®ô¥×å^ÝîÍõ™Ï•‡ªƒn”|BžS"Có¦(ÒÙ¶=㺵’½”¹²R‰š qµ&LeýÔjÞžô{`(^Iþk¦z?¡A_8YÙ< H€Í‚ó­M— Ê`OªÈ.%‹IÞ6•©Z}`ئ} }ðöez.66oé*ÍÍH#ó(­™”ú”\4¤.v“ûxóÂð:ÏZÚ@ŽÄo†§^YÞÃ]¥éq£L.µðèOíWnšnç‡uÁ2°ØŠçLùaC{‡Þ1íå ua¿jã`i›¶:ÇMb†Fâňø÷h1š@êS U¸i¨uQa+ñvKþòošTÌvùà)YOÁ‰t,é*Õ·øNi_ˆn6œM36¦ …œB㘸‹ š!¹]5’ÀÀƒd›7CE}~II¡®r’w ê UøÂòðP-¶¤íذ°Ë5ÚDÒT{@›ŽŠ'cÞ~ø°õ©ªÓ¶KÚg±Œçöë^!" £p°í1Q¾®““è7cÜH|l‰èo§Œ¨ÜË/5 jõØJ}î›Fw÷|®êˆ¢Þ†Û6³M¯‹öæËªTÅvhüWêz2fV×CºŠÂxtóó›¹Ù+žd¸O¶SöéJ»:‚_‘>¡tÞç6¯yà³S´ó™lã^Ë]à”}øV8kã|á'!õ©Ðîzö"ݽ2²Ú„±G/ݳ,(psýC¨è÷/ÎDŠxß»h~“rŒðŠñHÄùé0í}éP£ÙÓês5ˆ’\3Cé¨'{7ϰEè¶»â}m²ƒ÷-èË7ÂãrçS'EµÀ¨oÙTWS—ƒï5u¨-Ç"¸ã•;ö¯~oÌj³×.ãßÇC¢zËTŸ<¬€9ÓãåÏÏ^æíFê¯äKÂÌÆ·ïŹeöŸÅ“IžÍtNã°o>5ëHùBÔ|= Ýkc¶dÛÚª–bq?ÃY9”„&H ÖÅ¿ç˜M{Ò…~ù¹¤Â]S…3ôÇÿÝë“A-Ußg#@‹<$¼H'/©ù.÷±01Ûon9£Ú\¡ÔÊÆ³wêÝm×Ð@šáø½Tçgwbƒ¨–ÏTèÿ}Û¹U¶æØ%e9rùI·x·¢ŒÆà¥Û/O¬Ç’nÐû1Ã\O§Ìv5Œc%pXo=Ü»õ ®ø,øÃsqk ãÙT¸þU'·Cì—“êÙÅ®ƒæ÷R=¼2szèÓX¨æõÅ^¢<:z9ÈèÑð‡f˜Ú4Ü­òb%27ò,gH”~ÄŸÈê·|sP¶`”êľëòßætt£|þìà‹=Z%­š»Æ­ƒ›ø]ÅRw|oÙ½ù9]3ߪ’·ù¬žÛÀð.é\n´·­"1Ø -”>]M°{ýr«‘üŒŸúØo<íºò1l©Aã]„"!¯NÆOˆ4ÞÊeù½ÖJ[øŠØ =<óêÌWfÙ41¸G¼•oß>M…¤à'¸:âùeËÍ ¤¸P5Åã´ LÑ3* ê©lyñ‹ÔÔëV2Û?9VíH{Y3¯„Ÿlðàÿù“b•Úà@©E ƒþ;÷ç›§-C¥ži¯G³æE¢bn²Z*…5ÇÏŒéÛöŽÝ¸$Š~Ú’ ]†Í´e¸«j½ØàMʱáu8ad k)úNy¦ö9昜qÑÑ?s’Û£Œ‹¥È_-aÂ%o’â0ûAÆI*ÌAެ:éM ä{˜x^µã“=…ôh³Ø%÷ wö¦Jm´±¹žábK๠rD+Í3rß-NÜYfýè «W÷—ÛPÔh* úÍîÄd‰€_6[Í\a`Råî,оÉy]³ÕâOØr¨¼óµ¡Ù½mò˜#Û‰–A™˜©ä:&$mášî8Ãû1Ò%%šë $¢‰m`º’¡ž-NSÀXBh/h·†.¿Ï—eoE~ÈãÁv›…\<²Ê‰6©QÝÝu/ùò‡¡–˜]Ùh—ªêÌ º™‰É:ˆ=Ö¢ÍçhÑk`§˜Cý\QQ8pdœo˜Í£I“)é.èw÷`éÏÁv4²9sN­ö•Z ûuïãéE±iŸv¼n%¥0°xÚ›ÀY'þ˜êzéUW Ê`5º0(—”R'‡*E)ÚTç¿ÜŒÂÐkç`ôˆÑÚp¸òýŒ9ŽÙ„×O@Ç•ÖfãGiÔ‹òzƒ/ß~êˆtRSHóZm¿3äËhLŒ ñ˜‚3ä2Û~oÏ5ûšáŽu&¼#^ Ïî¸I¢Gއ{…o½ê¯þR»<v± ~ád…ê B»®4^XpÈÊÇœú¬h8ŽLÃCRž\UXìCÉoë^ɹèÙ^ßDxÉEz?M¬yö-©T(ëân¥>à¹=X`É=ÁÅl¸¦Íí£ÀàgáôH½zñW‚ û³bGŸ-â…ÅL ‡ê”Π䚘cæ’±ÿù˜Öþ“îþµûÜjKo9_¶y5€^H¦xçáæ\/ºÐ"å°OÌýup*Ÿy ×f­¾þT zŽxÝ$ieXÄ ­Ì!OÊÀãð›ÃÖ ü¡W{øSÁÕ{É ¸L‘¬4áÂu böá©ß£?’zœP½Ã‚éf…íWäa—ykÚ¾|<ÚAš9ûµP[†-~ÈìÌ<}ûqÊ»NøˆQ#—¶¸ß‚BçÞ¾É%Áå tÔCKE×£É;Fqš÷êD¥#¸¸~ðt#9²žKþÑaߘHWpÆn½&rM`“ýCfG‰òSsŽCGÜù:oæ‡Lõ,ú+ï˜`Ç`²Í§ÇB´™ ÚÓË‚›žƒânÓ½([ìêå<×ER­1Ü~šO‰p;¾‰9ו3À'¥x+Kðgï;}š÷ê!êãÍ]Ÿˆ¡Æ9€O¼Ù%t©é7¤®%ˆ‘yïmj4yÊv ?ñ(rª'408‹ÈÔG QOZßV|»ú œÙò Ì9ŒÕ¤òI]»ˆ°T:n3niJ‡^Ýp‰³Eyb…Z¾øhÇ\Ó4σ­2iº°pxŽ4³«…6;q$)¨Y̰'¦ÑðžtɿϦn$ìà*ßí©‘²_äK"rÒŒ]ó#QìW]¿K³qí3"êxƒÖ Æ·Šmû-|žþ/Àtùî„X² Æ™K`æEk…íÉ·@ë®a_p³IÄ›¹Péqk! ¤R™Š  …BcV§á‡ï]&½V#}GÖŸ!9–6Ü·{f±1çŠêe“d÷îÙ•Q91t-2#bAû ùЧ®]=ë˜$zA[„O ¨dÒÈs !-úŒ ×È d!m$g·agìV» 2;BgÅèZûïѹ fŠD Ä4½'j?-ޱ£ZHAï©Ë·c}Õ…»‹dÆ+`M‡©o•uˆÁ`´ÎbÑNÿˆ3Ayá» Ù¢¯Ðtõ[ÅâW){ûÊôS¨ýHYh%Jn^‰öXÇÈ&?µŒ#äZ¦ÔíŒY/¶¶À‰oeà©3aTÿ¶í§t¤<Ô³‰D8q‰†LS˃»­™¤ûÉíÁÝ2;¶½šzÆÌAŒ<7Á’F8íÏidÀT©å^N’ ¡Dƒøaz\W@‰³aMÔgµØ•—¿(?C¤ËØ3Å£4êÙì\Ô\=§¹È(7˜ÒÀ6XzµŒ"Í#…Rèüä«&‰€E¨=&»{Ã?Òé"gr?Kš¬òÖ/ìÏR°KÕÊZné|©Ðsò}Ÿ ’ÏæL œ!Ú¿V†êÔ ä¬ß•yôSó&#éé#Ü{¼ñïYÕ)¿è¸Ð ” l„êcê‘Ü » üØ(1›W™ŒÐ3h¨GÔÔ%šzبړ9† ÍáfÁhBB¯÷éÎùxz©n£çóÂBvß=”1 ÐgYèVÀ9´klT‹ý•×½ÿ©–{ï+¯ªk"K1Ÿþ èqTõ{xRÔCÍÙU;Ü!NãÔâ#X¦CrWí˜Ý¸ë?E׃…Ýùq¬,Eý’WÎà|ÛÆ')Z/OÉ]L”™µ?ÖÊ%¥Ó’'a4~UËŠË«Ÿ;ùŒY]”dIë¼f­Ÿ©»´>œ,må—/e‡ïå!¤!Šm':V#b}ºò)àוe„¿r{Å ­·¥½œ¶D–rŒµ]©<Ž)¼cš£ÇÕ¿l£Š¡hàˆ©º“èÞ&h©þñËI«–ê¸EáÂ/@)Qi@èÌj¦qð peP¦aoV°¦»÷ª’·¥Áä¡?ãk}´Xãð†Dö…Ú€Lr†®¢ï㮌ç¤0¼'nªþN}9è¯ÃÆNÖL†Õ“)ç1¿Rj/ +‡Ÿòë^jåª×—ì˲¢˜Ÿ¢¤Hš™­°Ä•XèyÖ³}þ²Z.åaž³È:‹`MRò[*‰×7Ü”š«cùèÁõµ ïQ7-¨H >ÃßµäÄlzå: û¶ì½j “ÁUeZ?²¥î˜<Ö:WŸÊåØëΣýŸ‰êÁvˆÀ®ƒ÷hc`U§öBósIü´È²sÐù‘IÕ2@>dÅ…H«ÍÒ$öÚö—ßqÊ„Œx Z'(ýJ3=¹žSw4"› zlÕÃ`|äü¡°z÷JSÉdÁ5fƒ7È(ìØ®&¡?Ïö›+'ÅYöç»ö)ôäˆ:œ?U?³:s1'mTDªÂoÖf™,'ÜåÁÇÉK7 ÅQhäíöàØCÞN̉¬Z¶ŠÑ™þGæ‹Ïg¸‰ìcv„½0^Tïb¯,nèÓaÔ8?Ò±Á/µh½0$yŽ\Ï*h Û(Üõ!I< 8䢠}ÓC„µ{o`.jÜOL( ç¯ç-ÈÁ¯-=˜ŸZéYì/×æÆºõ³#©½½Å½T*áüœ‚̧ʷOà…{Äæ( l5&ºì†¬É¤g@ÄŠõ8YÞæÿøùg QüþÒ0’˜¹/9‡k4z‘ÌÅxI¶WFs*­/µXûÃÓ´½ÐØ(“Hqgûˆã>»½@2÷é:]*í+ÕŽ8gšÄ7Þ%ÒäN’uÇo"A§§3|÷ºjÛ›1i¸MƉX:de?ï$„rÔX¼®Ï÷+-œ:¿fýÉoÙÆ-ÖÜ‘~7RÕ hê{[I>OõÐÂsÝç±àe {üÎ.kÏÇA°äi¯R¹HUupE3Ì5}#,…K{UlbhOr½> N½ ñè)¹è9ðBé`!(—Ãí¤ð¦AǤ;·ÖN‚‘Š ŒG´ŽL#â¿Â¥‘N¨Z mÉbîRû0å[0˜ø“Ô~Bõp—¤p2\&•kæ.wêü;ùˆšüÀ º2`÷ÛPa³;Jðü>K®ÏsS?®s¯b#Ro-Ób–/å¥x"¬Ä+0»bÓµÚ¥¿´J/w–ƒ½tn IÜX#xŸ`¶GIw[ê4îòÝüç¤hbÚ¬»’tîgš0zðw½'À7àô‘ 1)l$&¶. »k)Úm¶¸Ûõ@]­SPêñ+·Ÿ²h>ºVä÷i-éHóÉOb™¨z× ¼it#F¸ù6œùðKßœn‹%Û‚h ~­hE[X•»Æ -›Q9âÓ(¹NÕ ërûð;âÈǵ)½ñÐ  j!ïÝËòÄ*U=ýÒÍY“>AW[áÄâoéÙø·”2´mç.­‘çÞ£ÇÄr³ÊVØi¤µ(ïÚÖž´4^j9M6Œ*ú/ùÁ˜’u‡žu̓ç'ã}É`6ÉBfAbv-úBftY«w<±pTÙ–ÍáÁnP‡V„0öâ&ï]égUfD!ÔUÄœö‚²üÅQRnøõ¯=fâ·cR'°°¬ñ›÷ ¾Û‚Ó)¤cZÏÂ:QØbôÔ ¼¿&q73€bÄ2—ñõg¸²¶¶Ù¬XÙýCóßôJíc¿{´«Ÿ¾nF‹Æ<à:Ýòð Mü8}ÚŠ­š¡u?óé•õ_M±NŸ"vi0£Pi1vlAÑeµ£¦rÒ ±Œ©ÿÖ;lÊhµèžsGÄÞ²2™s’ÍžŸ‹°I^šnèˆM€r]Bª±ã²6fgÃÇpÌvÜAƒ­¨®˜p·c†<Ç·$ê¹› \ЍúÐèúË$Ÿƒç—œûžCÎ×DþXêŸÚ,6&¤Îw,rq³¸¿x]Õ¥1Y—Ó|q£üáK®ÙVžè&nó¬´Ø eÒö¿³V°*¥û{áPõ}Så'@VÔ×"1·–t‰CòñZcž§T4tQ݄Ƙ— 0(7`YØzÊœ¬óý¤[wû´3Ï ÎÙþ£³–´p²HÝöb~³e÷ظÜë5«>«@üñ%¸µË(=ê…ggsilÙEhqå«£NÂÄôçÈ1m…wBàhÕ‰h ƒÕJý~1O[ÐàÊ|ÿ´°7ÇùâÖL«Îͯpî@!%Ý8&†ßh4ˆŸ €`Cj¦iz¦‹¯äoéU&ä9ï$±tq¬yUî…DÈc½Í2+8È!ˆ¬"TrNÊ7œ’–¾ýB;Õ¨ì©gÂ;ÂëOa8oBO:#4ꤩT;³w(l§JŠ*lÊ-þz½Ð‹œˆÂd ‡\o›aA²6ÈDìd€õV×>ÎT0£h4®K$âø‡3^¯âõæm¦†J{ãR$mõ‚íÚbDnÕ¯’~¿üî æ’æ§i\óŠv¬l©ç´DRïò`lŠgVˆóÜŽ­¹9S=f)B¡ ºÈÎusOo‚J¶”øÖ§´¶#”‰šÍˆ/7‡ãœH`Ò¯¼.8Yò²õŒ>‰N@á!Ôž[³2Õ2¹…ÄÔ÷kÎPjåj¦Qb7™-{Òo ª€/iq(N8õÝ^,´çúl¯*î¼Ô©“ƒPzHG{H>êz”™­á¦´‡é|u£  Ä'÷’t:GHŠ ¨Ô›€a¥?™¬Õî…þôši9]©ÓWƒE‚òž7àqZR˜mÉTbž1}{cÃ'9œ5,»ÖFA|š³€ÿÒàáÜê¢1ô±Š2åôúÛoüz÷Ò‚±æç_Î<ä_,ïwH·%y„Ña Ñ8ç½-9~=t|G™>”e¨¹=²žbÀüpû«`{Eµwã¼,(l¼ý ÊF×£¶Íáì¶9=IQ_·Ÿ gÎUV¾vE=PP¾ȉÂéÝK™¡Ç(Ñ Dv=ôø5S5U¦»ˆf¿/6u€ÅRóÜ5[äylj{f '±(ÿÚ¦/Ñ oO\8œû%½’GTa}„(®.ðˈü$LÍǯÓžF"]±‰Ëîw¡ö!^H/'Ú͵Œ*feTûõ%Ü;øˆUÿd¼Âðo@ùyÎzçt'ßó'Éi}ÆÏ´/FÊÙêñ(·‘If¡ÐÓ`ÓéÁß}27íÇá% òªßŠOð!©[Z0‡Ä-¤_¼•Ò¨ÚÑõ<»mUë¥kVËE?IF‹mJc(n…m%^•iø ì8f>³aL6«¸F§Av>±lÊWI0áê Š§ãÄß{l؆WH\Á¡Çå¼d} ?:#ŸÚã{Ú7”> ÜŠ úÀ|zºr±¹’ÕZwëøYù8!Õ` Å"EÂCtQ¹ ±§BG§C'òU¨—÷°¤¬E&t7Ë¥ Qƒà5¨Åg”ãh‡qÂŽ„LHy-Ô?XËj ™*Š £Í ‡JsfÍuïRIòfÖø›ÙÑZs$oF:Ï5Ó®]xSGÛï§|‡áÂÈN U´ôÆ*(×X¸N÷0ßËÎRü>W.\xš-Ù×™V߈gõ²L«ŸžÀP˜Ñì:® ;ºú´ðŒÖçÜ7¹åý8=Lé‰ïÑDpY@¾hû¼ŽÌ?ÎtÛí!¹@Æ|^äì®»èÁxÿÃFÅ–¿{»AsÃ7©&|>ñŒ}×…÷au‚â"žópk%Cì5šßŸa4y]¹–uýXØüL= •‡O‡Û{ó&¶Ý—L”6¯>1Vxo$yàçÂgZŽ—»Ž²9b+Åg*¬“^tõçZÆúUy|x÷OüÔ: Y,·ÇÛ ï˜x§ø5È2±iBG~×{ ÷L›šÎ\ŠøÆ›i¨¶©böâñ"ýö–Yp¨Ò­laå–ô†åX»\_ò¯,26à› cêª`«7Æâœnø¦7²_ö„7<_­ôÅIG±ŠÎ)ïÅ©:’„ÒVh ™µs÷9(#+¦æK`v,ù£gÕȊ穆`ž…ÅçüZè"gRHmþs¨é fŒ5O#î˜qqïðìÒ)ZÇÑŽ ®Pÿ/G¬8gƒ)?tWN6ßí’6É\.KÛ›j…)Ïfœ¾Oxk'à '£db*Ùа Ç&-êøbˆ‰Ì›…ù HhuN®c.3¢+¨ƒ#²€ë4„:Ÿ¾öÂÇQ–‹Àã-~.·ƒž÷»¡.PfˆKâËêD6ÿ.ûpòÛs3ëRñ€æ‹¡p—öŒ}*$T?ÇS–%ï­ƒŸôïÄácªtI¡À×_CËlìdWŽL­é „½…^+&A7³Í‰ûçƒÅ§fÝR¬æßTƒö8>-'zµšüÆq iº[ÁüPki¹É•øýN›K µàw›7·¶·C|þXv=§Ñ§Ú›ŽßÛî¨ÐëÐDŸèŠˆº>-åa`¨ ¤lXZûd¦?•DÈFè÷ú0rõ‰’àÙï-‡fc—fã\¾N|Ž(ò-]1²ÜMÈáãÂyÙ˜¶ãY·^܃(Ö&Õ†´z<kñÕŸ[}¤gú)’´Óæ]7¨¹=cÛ‹]5m øpÁb¨¾ü®!ZbÅu=w¯­˜+Aãccn¥ÕLqµ­Ä‡¹@ï-/äɯ|Rñ¥ÌµNà˜w© î`¯È:¤†P¹=u5ŸCÊeLÄãM¥£—˜§¾’OðJïÔ§”ŽœdÔ[ŸcîCìm¾ ~GrGqЭ01TXéøÙ®¦„,Ö¥åþÈ0ðž?Œy^«냶Ö²[P¥Ób*NˆÜ5JfÚ¢&»‹’©nABœíB VRçsh3!h  Y1¥¬`ˆ~éMOQÎØb7Pjêèsº­wºVïˆ[n½6†§‰@¶X+1Ap~V]ª?I`Ev”ó"ýJqÝlär3µ\¥¹86ŽIdŦñQÓ åZ?* ð%˜ÈiȲü.ãž0@"(*?V'5X–•»/Í܃¯y ÔBèÄæu5а«™ :ÍxÁw”˜ÂS;©÷<·ÜbL?»ÁK¨ò¨ä#Ÿç¤^5áuLÙø§D#ŽÀ°«ó²öÛá£UpN:)ìžh݈kU?ÛÁª>-v£c-|Ö#*”M N0$D).Ö9Âr·bÁ—–õéïo EˆÂk†w%6þÈ“,w¯µ'I²|w”’„Nw¡`%JÑ"´ÓZַ闣Ƅ¨ÀÅøàH³kóµ^ó@²Ï£où»½ÝO½,É”E‡eÍú‘™¬Yˆ…kT¹*!×H„ßSe +T.=#2ØÏ@nP…á“K?¨‰/iVãIt·Ž¬×óÞI™Ü} •ã¥mP“oÖm%ÕÛo;ôÙá&Ac›I%“$Ó …§¢Bp®qx ðÇûŽ%äç áó &.yÀÏÞ¦QÎ%.lEÌyÈÆÁ¬ñÍ ë°vèZÉ=PêŽwŠ­‰Ó[8Œée¥ÅåÕû>6+Ú–Ó–à©d ”ñJ )Õat«¶â±o¯žÏNsz@;t<Ô‚7âU<È¢'<î‘Á[>«6c3¯ým€²Ì$/¸ËÇNPöô¥ÍÁ¾ùH¡«Àº†3ëà7Òˆ sçD¸UFBy¿m@}غmWãg¤–‘9óc¸4‰$A5eĨg4íŠÓzœˆ‚¤ÝÊž{LÛfÛ×u^‚nGá€y!±®¨×.HËóôŒæÉ—©¸1Í¿!‰Ôï>eÞU{$ǯ‰½,Êö‘Ýð¦QÕW ìm%Þ+¹U¿tô z¬°Iª¢’Õ¬ò‰C±ý"”/÷KðÙJ閭y¥>4‡ÓßYƒF>ý±†çÛ¸WFU(QÌ7kùéÀ‘ëþ¸9Ñ 9Ôžoá"tl>r&¤H"—NQ])R… "MYE[ /GŸM‚Î&;†Er`Àé²Ó::Œ$z>8äyð)¼´¸ÞÃê(Ù45AÊ ÚA^Ùc"K™ ±5þÇK?) R\)^|9ïÕ¾7º ¾ÃvÖLK0i*ŸÈlÎïgb\9äa»ÏÉëÌb|šÿ¨(ˆÈ endstream endobj 207 0 obj << /Length1 1511 /Length2 6668 /Length3 0 /Length 7676 /Filter /FlateDecode >> stream xÚ´Tê6LJ#-(1€H Ò%ÒÝ1Ì 0Ä CÝ-"¡Ò%’R"- H‡´„´ ¡H}èñÜ{Îýÿµ¾oÍZ3óîýìxÞýì—ƒU×€_Š´ƒ©"h~PP  ¤¥b  …ˆ98 áhØßvbcÊŽDHý¡„‚Ñ×6e0ú¨…Dzº@˜H\JP $((ù7‰’(ƒ½àP€ð‰€ys(!Ý|QpGôu¿ÿ¸ ܤ¤8ßïp€‚+ ‡€-0Úæz]v !pÚ÷_)¸î;¢ÑnRÞÞÞ@°«‰råæxÃÑŽ}˜ åƒ~Qhƒ]a¨‰9†Žp¿H{´7\\àÂã:Ä…¡×Õêš7â/°æ_>ÀŸË€€ ÿ¤ûý+ñ; ]ÝÀ_8Â`wtT5h4Œ€þ‚]<×ñ`/0Ülw øÝ: ª _3üÃÏ‚‚»¡=€p—_~¥¹¾fT éê C =ˆõ§ GÁ ×÷î+ðg¸Î¤7ó÷ÉŽ€Úÿ¢õt0BÀÝ=aêÊ0×&âÿÚ`h€¨ ¤¸˜æ€ù@~0ôuƒýv‚~™¯9`Ünûk°¸=ìú‡ãö‚Ð(OX柎ŸˆA Aì`pñ³_›aö¯ç‚û,¯åþúüçŸÕµÂ H„‹ïá¿G,  hª¢£Àû‡òœŠŠH†_HÀ/$)&‰ˆŠÄÅ…ÿN¤ †ÿiäÁê{$@ò¯~¯/êïž½þˆ€ëφpþKy-]€ë¿J·„\þŸõþ;äÿO濲ü_•þ¿©zº¸üösýøÿøÁ®pß?ˆkéz¢¯×@ y½ ˆÿ…šÀþÚ]-îéú¿^u4øz.ÿ¹H¸‡*ÜÕ…£!Ž)æ/»Ñ¯]s#`ºHø¯×Àüßõ‚Aœ¯_kYþvÁ®÷çß%U$ô×¢ ‰ŠÀ(Ø—øzÌ×'Qt½‘P˜Ïo!€$ú:pM/`Dÿ𩤠@àzô0Ø ÷psûþüö‰‰Ü®ß„ Ìm‡þ]Dâv´Ûñ¢ì¿§þÏÉ:þ!ñËBB=!èÿCˆ'ê:ý[…×ôÿ>ÿ~W`0„xf ‘wª oùQ¥pÇ›mHfŒcÍä)7?fÕêù“œ •ûUfè"êD!µ¯ƒbnE…ëXþËf»±– ªé‰^ó™ÿ¹Ícý‘µfâéaºž…Û ¯»™ˆù å×ý/ÜýCœq±Ûräº{JëæSÿðîRóyÝ]:û!rrMoý•˜Éyé(‚Q¼eHñ8Gž]Ö=Û 4?!Õ¾ÏÍñã“1ªœW,óì$aÌ—„O'üæË …<Þ1Üe0§gÂ=¦ú0r£¸‘öðÖæeÑBÁ8k¢½Û•šœÅ‰aÚÙ3“S”N‡Tú6h¬TìSLÝQD ¦ ’}0Fî«I‡|óÎÙ¾s\®¤Õ `ļgifˆa÷*'sí´ÜPoR \Ì#å ¶è.Šx./ÜE'uÏS;ÏJq•è!Œ’¤pèÒ묃‹ês4ŽøC,urU|gsn%œÎ!OüÊžñˆ™zzy?ï"‹/ž‰üápo2®Üè|†W¹ÂD¡¨{iqü5ó.Ójï„n–t‡*‹R¾p ›à*1‡2O µr)xw-ÐþçC‘ðm‰éSŒWŠªÖQþ ŸØ2Ë¿à'oy?÷*ÿÜ;uI ªÛ¾ìÚVÇÂ"u}hê|›È/‘fb³[D«œ½@ßc1`‚tsY±æÚý*M;êº|ßäBÇtŽ‚è%[°Ùs@øY:ï¼Þ©eù'¸ôNuÚ‘Ý”ŸmTù¾ !ÕÝÜ ¶žê” ©#È‚cDÚÚ#vŽsznMÝW•BtÑoìŠmvè­ÒÆ|ã?¿S3†µ:YŒÓ>¨m¡•ìd'Q4¨4ˆ>6W\{Îõc¾\dŸÉßRg¡K¤VÈÝüCφøkÂ’ŸþÈÛuÎ~'YrKÕ“Gê~ßD”TùÞMÏ¿‹Â'­½3¨öq”Π 8žÝ[– ó“½½ÞzSò»öH¦ÿ§o^KÜ熆Ê[¼kñHÁ:íãÅ Yt¯EºÀÍ5ýAé÷ú› Ò)äl=b\Ý%¯5îÈ)±ÊJ;8r¿ U7~%’Dè•°Ì¿»*k}?2‹‹šåþ'ì脌;þ¼‘ܺ=Q4B÷Jª¡Ìiî®óEöurÇšúÎ5Õ˜ú´Ák<¦ìÒpÄê—þ˜"K´½¯W‚ˆ`åYǶ•—N”ÜÁ|œ9Õǘ~mvõ½JNlKÉ9ï¾³ÎÝJ\·G‡—øM¶[­ðŠ<®U¡m|l?û¢üo¯âZú[È=:í¿ HמåîæGsZ—©¨sYÏ%kYÜ\Œ¶¾Ù6´iñv»í΀ßü&&wŽE¡4)TÙfvù¬Ô]Ø‹_Ô]Î\sj¿vqëÔkQa¸ç`¨è0cmß®CShRNAñVXcÞáËk¸çþÆô˜ì“SíÆˆ¤©ÔTå/X¾»¿M&óyµ¾ º¿ü½ØªþƒWvå¤+ù÷½¢Ü>ÒŒW,g2­&ÆŽf7ïé_b*X…‚fçZ68·µQbL}Õìr mÂè?•Œ¬nV]ÒåÜzWr{py›ó|4¨‡vY¸C¾¯¥1Ÿlsrf3Ó¥ž7lSÀµÃî4©ˆY-Ì#ƒN®µÞzx’V¹*{×#ŒÒ(_Æ{:õ(‰pdúV»!…ôûª ^ ‘$ÅC,ÆÔ6Bw‘@iñÜ×ÊQÜ9ƒïÍ÷¦„S_Ž,Xh®íž–ì[sbâÏu¹?Ôæ)òe€Í­˜ Ï&”„h`Ò2òcâ ˆŸ¯ÄˆýrŽ'˜çøT(Crë~†òö7s¼:´!W$jçâ&‰<‹ð¡Õ{–rîÞÑ©w±Oí2/u«’èEŸ­ûî¸ïWxΡNÁ[<ñMšÏZ¬m¢U\[ôö÷ûU ›x/˜oË:Ôw >¸QD§bÑŽ“d]“– ‘ÿ´øL*øcù½-þG\Êa‚‚ û/÷하h,Br*Óæ|âç9e|"ÛM‚|+!{ÇRÑ^”{G&$¼Ö)l 6ÞªŒŽ€gŒ?ŒÔ\¢ûÉ‘œÊ€™ðŠ£ŠÅpÎ&E\9 ²˜»ìüšuÓ‚ 1éË^¶âW^¦}{š Aß³ISê¾›½’¥n¥<ý´§¬”3ÿQøã¡¯'ÊjQ7ºôaß)o#»õåGU Á>›òf›ÃD6ˆf‰9Ž'À+qX²,;g–ÕŠsÛ4“·òãðVUÅÉhÄÛ˜·íRö·ÊL)µÚçvÈóB¹¨ŠÑ7}â»6Ž /yKm@¯zѰeòã²®;¬$â2¹PÐKs8o 5’±‡Æ?÷Úa# }Ã1«UÒ§,6© ŠxÏÑ”j•@¯|Vc+½.«¾Ýòz½ gÍ¡ž53Oɾ1Ýùi?Üëp+Ö…ÞS )œë›Æd´?Ÿ?µo ÎÁ§k—Æßá|²c_&¿œñÌkúsyì¥ùÅ+'mÅ«°"š} ïø±‰pç‘(&:þý]6,jé;›SfçVe‰¶¹¬pÐ漦Ú<¼ qÓÿ«<ÜØ€Ïë•Ø\÷g`/Øõ®ÿ ÍŒìÈèç]nà ¥¶/iãÎl…YhV5ò<úFS|‰“bÑ«÷ï°‹tˆÚÆû(÷ìwa#¥T&ѳÌ­p1v©¨ôÈÊçVÞ_²3”J³S9¬òdÎÎ4D¢ñ˜öT:e «‡¤´tÆÁ=£¼Æ¦}+/ìøæ™\Á3<±ôɃb’éæ±UVý…Í-Ñaþ¯l™û?ÊÑÐÅ¡½T7ò½§‡PBÜ=ÃL,1Ì“«ü+¸:^Õ¢¸Ý”íò¾A%q¡’«&öá+ì©‘÷§‡Ø>‘¬¯¬D~}÷Í±Ž‘‰@´]¯¢}Óí}½ú¥ÀìþŽü*ŽÑrýhKRE¸6Ç~à6yÆfôžÝL¶=ê>ã* 'ôî°½~Ò“Þ®Ÿ5Ÿˆcoäe·IˆIØYß4¡†]L¶ƒéZšLð/¤ƒ«Î²_Ë=HоՀYêÝ]Çu¼“Ó£ž>Çî¯ýºáûúÉ­»W(êÅûµh†ŒX¸)6¸3w÷#Í ¡œû¯Ó’a½³ÏCƒc©¯FŒ•,MÑÆÇ¯YÝ`úD_Õ·«zø]ªêAÞtò¤‹™jÚƒ =Z8ãûÇ·cß1H¥ªÑ˜­]„7}S{í·‹ƒ11Ç2Y¬vÕ™²½¤ 7üÔO[÷S Úö¦šÖ¨•:µûªÿ•—&ž!É ªÔ6KÊÕà$_¬Í¹Ã-c÷I¤‰Ÿ9äs hëÆ3Cº¦Æ×ÚuD„*É¥‰$ÆnÏ’¶‡\øW‰–rS£î¬ÞR‰ª¯Lš «Ö\Id¦ àÈgK©6™v±k!-Ì¡²×gÈê—`0Ž—£5Ô²”6²i_ÓLêÞ!q²BÎD80åw¡nì}å)ôÿÑÖâDôÜ!…4D:ÎËåk¿D½çh®ŒEе iLkÜgÛ]o&õ,È‚ò=öÐýôÒžÛaO>*GMGÃï8•8xuý]#‘A¾õ~Êñh2‹þ„}ÒNý¥J‡eFåU»ŠÍ«Ä(}@Zjí«…ÞþØšä4£3ômä©÷»Ô~«/poêI†Ï⌠ÝÖ‹jvèSm觺wråâ¡UŠþéç[i_ÇûB½[<=ßËb »•­Ä›®¶ûö¡Ë;˜'§„£ +&hÚoaZnÔ‘¹ðO!\Ôyßy-ùn‘¹™[I4´uæ7VxC\lTnïLŸ¿{3¬†Ã~çtj|¬º½£žj«â¹Œ•™8Ofâ$*LïÀj¢77Žê>.=qÀ^‚jI2¿CÜæiÖ­Ô¾eLÄÉ\е[/ÛTlòÁ» £ =‘é;ê8áÿˆ #Œ8µüþtPÑâMþÔ.‹¼§ß @««{0%—Ô½IUK”j”JHã¶ùA%”ñæÆê Z`¹sP¯ú“Ê%ˆˆÃýÉÍæ[«³Š[M§æÛ–m8Š´Ìe¢Ž¡Y¨úÈ› *¹á´PkênïÒŽXœx]ƒ+ _šàXˆ”žM®{‹ØÊÖ¦š®Ä@O ¡ËŒm¹9täý4“;„1L’C2—òÖa4Ü@,hœÁ4A. 2žw%[³ÏìåÃÖ¾ò Óþ rÀ6—#ƨæöù0¬†Áµl—OUºú”)vœ‰íøm¹'ÒLã€Ð“4!âubZ;.U3‰A5ÊŸ‹Õ»"UÀn2˜9!VÕËûÕ5É4vò˜}… ,Ø@ƒh²>{Ùxä»Í‚ž<±tù/m)ÝÔ:*a Ë…Qx½GCìRN{kĵâ$EïÄên2š­¾¶Ö÷bBÕnÊá×ÞÒþ1i<ª>2ãª{ác¥«°94qµX¾þ#[#‹ßlpõØÖVeS1Òx•í]¸¤û·Z×À»õOõ}#sÈfÍ?IM$tºr7—ÂsZ©~±‰6Ñ¢o­Ò(•î‘xÕóB!“Ôcçžû¹%ÒýeS¢±¾€^)ì’Œuq|xLÏIÓ)¯ÂÎÓIlblLÚš«¾¤«'±M|´r+;¾'¡·s%ê ,t…Ÿ­=ï;Ôµ­1á:Œ\ŸœÃò:óvZÁâ\ž ‡í2Î3u³Vš¥§ûeL² \„©.:ë>«ŸZã«xnë¼Ì÷TÝÓ|ް¼ÔÿåIeXÀ'”BÏÉ5T혽0Hüy–'`bêB§³ùˆ¼ÒªóÒ)‰ø]µ}zj´MŒ›ÊÚ–Œ¹NF/×WÞÒ ÛíDÄM¢dÏ3G˜£Ä¡Ž„ïqÚ&ˬŒgAµãá;™Bù”ÃÊ\C&4h5b@ WÙŽ_nŽÆ¼W“ í”¥Âæ¬qL²G‰šÅq‹&S`rÕbéÊPï|Á…UHÛë &…´ª”¹ÐÁ9MJHH³ Xz¥Šô>jÚÀü^ ñÜ$˜ÏöuNLåÓHÉBËúŽRêõŒÛã8¹q2^ACüß87•U)ìd\ÞŸé0®y÷ûI?º¯±ûÂÔšx8üó½GfNz™ËX/c/{cª¡­"ºZñtÙÚeq‚¸ëÑÉŒ¿‘rì³£ð@²£½ºŒ °ÕŠm`ƒ”óÝý¬¨fߤ^t”e(XŒç ’ÎVò—œX`©©äõE}#Ñ9r/ èóv'iE—\‘£4éêÏ©ÉùE“Û=Žk ·õË„2{^ó >Ö-ú:'L©¯ŠÀ6»üHà|%’*òLƒ¦p´”{Hßø,ª6.'­þî2@‚e ¹âß“k‡08S‘/ëŠ=k ’°e¹ú(ÓÃâÈ~ÿæ4oÕvz¸¹·ÛXh ·s°_ÏEõr=¥Jòü¾CäÖÉÏÆô¨FF­¿Z^D/zè GÚ_Ü+X~„Í¿VÚJöã5‹`ëtÔ‚¸H‹æ¥Ö×ô%,Oˆ²Zhð ÓÑ{=oÓ{¿ç9ø‘ž—Ü1°*}gkÕƒ«"]Wqæ-À©ƒæˆ}ø¨¹“¨“Þsë„|(u~p”=Fvu¶²æÁìñJ¥°gMü!•çÙ¥îV†W O‘³¡è –ò™Øz‚\¹Ïºðf–£aø•ÊáË:¸ñÕ»Ü+§ž±—¯‹St ˜µ},žŸ|.AQêN}1±› {e(H,´‰åAýž¼ÉÒÜ=@«íÙ‰êžgyó³Z±;4ß(‹ˆ¿V•šy·‡»/r!åI­hü]̨³–*Tä÷ÁÚNbëÖì`è W›¿L™—!³ÛôÛò.l-L3“/K¨ÀŒÅHž+î‰ÝíO/¾Ï›¸[¿²Ô+“"½FoÉÒQX7]¬8SÓyw0ø4À¯¸I†ËÙKv8N¶¬Ÿ!"CÇîÿÒñ"ðt!Uä›þ ™W£kˆ{o±“œ,E‘¼TßyÔ†õÞ T;ê‰-OÝ5†9=Ù¡€[†6ÙË– ÕNlÍšV¦q›‚c¿3ÃÑ+bãx±º»iÑ`XC?–h—åñlQjŽ*`Ö°~/Va}^-æŠÖ"6ánàka<¶Y•Žðì×¹-È'“N |õ‹ÅiÓË>#øMpÖ/ ëä½³'EõÞ }qÉAµ¥–ÏZ€vë˨wì:w!oÞôEVF'Û†ûT²v Sp»’ 2!JjVV“9úz§³²È Îx ØÑÖ-è;ó[öø ð,:|ëœúä12ý’è·®í ÎÌÚßÏË hÛ{Aoî¶±7+LXú;[d u’3\@!ËŒ|QÈÅÍÀu‰(<äCEß©¨:`å§ôaUŽ @ë§ü´íÅeþC ñ©”r~ñ,wsΈh·!3ƒ¾]˜œ–ýEg n¦RŠd%Vzéïf–)Nk—ô šk6¼…ŠL¸ªV‰ý= 1rl¦Ïùc,ÛB·v(> stream xÚ·Pœé-Š»&@Ú îî.Á‚6иwãîNpwOp ‚[pww î¸dfÎÌœó^Õ½ÕUÝÿÚ¾¿½öWS’)©2ˆ˜Ø$íl! ,ŒÌ¼1yyf33#33+ %¥šÄô9 ¥ÈlagËû/ 1Gò"B^ åílœ¬,lN^.^ff+33Ï íyâ@g €<#àƒ-ŒB)fgïæhafyÉóŸGµ1 €…‡‡‹þw€ˆ ÈÑÂh BÌA6/ÖU;c Äí¿BPó›C ö¼LL...Œ@0££™ =ÀÅbPAŽÎ Àï– @Ð_­1¢PÔÌ-À*TíL!.@GàE`ma ²¿¸8Ùš€/Ùª2rE{íŸÆrÐþ: #ËßáþòþÈÂög ±±=ÐÖÍÂÖ `ja (JÊ1B\!ô ­ÉoC 5ØîÅè ´°½üQ: )¢ ¾tøW`cG {˜laý»G¦ßa^ŽYÂÖDÌÎÆd £ü®OÜÂdürînL ×ÊÖÎÅÖã?ÈÔÂÖÄôw&NöLê¶N ñ¿l^D(ÿÈÌ@377ä¹›3ýN æfúCÉò[üÒƒ—‡½=Àô¥ —…)èåÅ t ŽN /+þ¡°°L,Œ!#™…-Ê?Ñ_Ä Ó?ñËü-\:Ì/ôc0ÿþüý¤÷Â0;[k·Ìÿ1“º˜¤ÒGiº¿Zþ[)*jç ð``c0°r0X˜Ù¹\/^ÿG hñWÿò•±5µüö»Þ—ƒúOÍΑ€ú¯ ¡üw0»ê‚Ôÿ0]—™ƒÙøå‹åÿ™ï¸üÿÑüw”ÿ+Óÿ·"I'kë?ôÔüô@ k·¿,^¨ëyYy»—e°ý_SMП»+2±p²ù_­ ø²"¶f/”f`agdfÿSn–´p™(Y@ŒÍÿ¤ÍŸrõß gma R²[ü¾b^¼˜™ÿG÷²eÆV/×ø…›ª€à—•ƒü1Èßô²Tÿ]‡„­±Éïícåàn(/ÃA–—55¹þÁn£­äÅðÒ³ÀÔÎå÷ 9¹Lb¿E"n“øßˆ‹À$ùb0Éü¸_tJÿ ê?ˆÀ¤öâ0iüƒ^òiþƒ^òiýXXLF ðo€éå~±ùGòûȘLþYL àKfÀÛs¾„4û}U¿Lù'“Å¿àK–ÿ‚/Zý Y_XmŒLþUÃË¢0Ùþ ¾ä°ÿ|‰þ§€°5lþ/ƒ—|Á—|Nÿ‚/=»üëH^r¹þÿkìÆNŽŽ/¼øc__8ñüÇ ¹‚ŒQægìŒù-k[n«D]¶GøáORnµXF ô‘ =ëqª™ ²_$ç»Y$õ-ÛDn³Vf/<¶jIëÜØ¯H%÷ÌHbfž¯¡§â=nˆÞÍ`6Båj&‰’ð;ö@)G`µ# ™˜õ¨Rbz¾¯éš‹w¡Â)‘äúÔ¢ÐÚ^U’!‡GÄ£q´¡i2êWÛæ¸ÄŸ½aó)`3R7,Y!í,ëJœK%ÖZß@ÿv7qG„ßgÿíSŠ`¶_?‘8;b¥ÆRƯìbçôWFR¯…MzJWi’nkÎÍ·ÎõȨÚ¹Ì L#YŽÜí—pDSsòwÂM³BHaúãoÀ]©Ò+åÄVB‚dݦºÆ×~9É&ËèŒöRÓËÇ <•my}¥üål Óü¾* {K‚/ƒæÀË4 ¯—Â:séš:hJ“U‡;żEM°h‰'°ÙW › ÝÙ"¥Bƒéënb¡öµ‡;ûSÞEk«(Õ‚Ce„mÔ«H÷µÚ%Ï´‚Üû¦uƩՑbî.6ëמ•®ëzr}6v…^åî-6?×f±£#íx¤YŸÚ£ð›ÃÞ•/nv‡^‘”ÁĘ@•(ä”Þ_úá ÷Úµ@±¡8—øEÞº?¤PìëÜá¿(áòiL´™qöåõ ÂÎÓ?Ÿ 6'+ú~`·azTa«Ÿi¢Åé÷h¥ËÃkÞzѽdá´=*Ÿ°¥(ŒiîÅðz‘:ÝG¹?`?îSd‹ÈÚeSvÍd5áÔO´–?$FžÏ»‡—lf„¤:­¤ÏFÏv¸§¢D«÷½þƒˆõçšïH¾…ÙªÏLï\žïÛ}”+ÆÒ&Pž˜°ž7¹D*|+Ÿ”¼÷º:EZÌŒíÑNÄhùYWÍbù±"À¬¡Å¨µ)ãà§a«yT±‘M‡‹vÀ‰±³eÂi—Û­Êëó·ª AyTð>^¯ìŸ&LgôÀ‡”Bkvwý‹=[•‹µ6bƒ(pe--Œ»gRl¢¦cÏMt_jºh°jô*˜môÓ'«zýH£¸´S÷Á&$ ê`»(ÂæÁkøWK½#÷,'tã Ø“ИGš_kXìí2Ä2JÃ`[]Lg¥kïuHõÔ$®;,ÓTúý™èP·¶ði)XËÖÜ[îZKqö5—Ùé™Òd7K~&õdõ¾|&ìyùj…˜ó¼ô›÷Î8䯲Ÿh—føèÜGqµ"+_¹£[Þ(O®ºôz8·Y¢dî›Fd±¨‚„@cÓ7±¡¦Mõü§–²¿¢')¬­¯W( .m(ô°Ry6ºr¶ßXå}–îRÔF•X<Æü^àØæ„EOgI.x©}j1EÞø™Sî&7qHÚÞŽ2 •ɳ9P´vsüuUPÈïõÂVZÎ\¿Ý±ŠKÚä:/JI:¨é…é9¬y˜¨Ïíág#†W`NdgA+/ ù—ï¹$pÍôÞ«ýÕÎxMU07œªÊ¤V¢Û›Wüà:VËDEý–õ€f,Êv´Oê™ÍAk‚SQL9e•ŸÅlìV·™G(˼ríߘìz˜ã± †¿ GÔw/:)_š`tÃ-L´Çõׄ۾ !Ù£Y°ñÕø‰ö4‰ƒHú.¯Ð`Çß•Ëïï  \ þúñKÍn\ €–èuãÁ{·ßyrûשê#DÀ"ßßLeÖl¼ø™ „ýüÚRã,·ÏÆ2o«`9© åß݆A‚L|}–¿(³ê[ׯÙ/žNˆ‡S¿9»-VšëÓvHËÎW{ê^Îi‡¹¼þJ ˜ÏFOûµ;ܙËñK!OÑ›ªìwœÀ–:l ö~šW ,çgV/Ùæc*¼‘o‘ˆ‹CLÅœíÞƒaÌçV¢q¡½OÖÇ‚.q+ZüÒÚQU½p®Î¯¾¿öòÝ’d H—n„CFýÕÝJ\YÅÂWÛ‡±oYÐØi…º¥ðöš½|ý.õrµvéÙR„6ÝÐl"DùKu 2uÑ.ß _•2º:i ˜½ÑÞ°0ßm—hŸJR‡:%ïWÐ]Ì]‘Ð~”#TøÏ”–fƒËŠ Dì SE$Í•1˜Í’ì§;æå›Ø(+¦¸ ªJŽ+´%w_§çýªVå´5>~1:b×ÊÒbv²Ä”˜²ªñ­!Óêi—‹i­¿Íí‹UO®ºNßȇXß«IõÛN<¹¥wƒÔ{{ŸƒDà–2Âí‚ØHG<õH•z©[;„îM~Ë T‰ RÓê,Â_ƒ™x`øúÆe F%Ý(ŠZ}Õç˜da`­gM9]Örˆ‘ÝPj\¼ªý¥¥™ji)ï­â+iW»Ù¹ŽÕ[V'»æ×¨~OÕuûJcûF¨9KcÏÿCý[’;:Ò~B+`PŽžûÒiJµï«äYSÚeÓ·0ò¯ðØ&i([Î>W`Å;|©¨W¤†oÓeøHù–$ëðCŠ4 ‘£òuÌWbeŽë|5|#9/&Á«WGø7Ê.yŠO\x¿BÉ ygéóÔ ð䔄b¿ö ¼Q«ØQ•¿ž¶8™F_LÄÀî½ ÝFÛ>c£µ$×ìÊ?àÞ‹ 8Ÿô<Ï"k _ o|"Ø_‹ç3ðA1QNú CQߜԥÝO=‡g£â°÷ú&ÿƒ~œ·é ,}R)gíÆ–ûüIoê·ÃÏDªôðB,Ÿ„P/fD¦zVݬ©ý7å ›F!ßrHaOÔc^í!·¿-µž Å{ˆQÃá‰Y”h‚)ÔT4cXHšéˆÄ¬’Þ·ßÁÇJ#¼CÒu/xìÄbš˜$ ”°Ô€÷Èd »` P«NÔ{œàpÓ”õt÷¸ØL>õ\¨‡ XŠšìiT¸Ï³-´«Í|ðnÙÑ©iýú4Íføèœódoë Ž&¯¡ù%ýšq÷µ6d/5e¿ª¼†Õ=sú,6°*…_•ÂòÕº{Ùð›QÚN8Tv3”Ì!Þ8±MæÇÔ‹)–†*½PݘãhXl]8Âß®‡«ÏUN|¸M$%¼Þç±G¡ˆxL ñ3ô×u‡Uœ:ÉÈ6§fa&cÑb)êËèøçH0z×|KTÀÆ=£ã R,É…„Îgزdž£+Œ½€?÷ïIÛŸ+à1Ö&( E¿ ÊÁ0…Çìò6Šâ]fVf©|¥³&FXœ8™õÀ†~(q—‰žiÍñÔÕxìÙ«ÅÔû§¢5 ØV-ßš²z“¬ ×/¾É’TØD, ¯ˆ¼ß™mÿØ<Ùþ ‰žB„l3%®[Õeï=xZq†Š µ/òÈm#â>µ›gÒªÀ÷n+Õa<®¤Õ~µå:·ñ­˜T†o¼ÂXvUt÷ª'@ñ˜«]dõfªÏÐp«Õ’— æ ÔÇÚO¾ÏOêE”´÷œ„ºsõ¢;ëñ ±üÛJ‘ö°–å¾í½û.] :‹’‹Š‚_¦²~M¾«ö ž‚÷´›3-ƒ¼òPt;!Òbˆ'w$©L(âëÛ€oÈ îM´TØ2þÜJÂÖƒÑGÏNFdãªë[æèüPêb¼1¤ºãa¢F¢ùOöª3,`1f…Ä—8Ié((šÕ7+lðeU•m‹tk fJW+²G±T^_žý]ƒ†o^VÞrã»?Ë:Ñ¥ºõKÍçh¬*Ó›,¹&co…Áúon]¥žcƒ‘0ño‚Ó>F[VnJâ¨-µŒ¡ÓSOT«îÁ¦ uùsº6¾ÆV,vÕt;>H!C;«p¾!F'ôb]TÁZ¯eòÓ{§Rà¿ë.ÖwúÿxÞxPÙ:Ç­7;š¼±:ª¨Ì0ÁE¨þ<Ó¤ mE:mgìÕ}¿¹#æY2)¨ŒooÃwB³‡±ÄÄûFê‰Y"e}ª`E˜e«¾0ÊÕ¢*\ã‹ZìPceiB9ÖŒý®Y´‹›ÞêŒnƘÕÁæøI(‹q®P¶þþšÏãêJ­‰Ý+¸=»óS±BÞÉÖB«ÕáZ·Éšk‡Œ¹„@_@qh¡^œž#@-®Ý ½ùXÆÿág:ëòÛ rô¸ԧƒäªd”é8c§G·&u?«5ؘ—7’¯a„¥Ã~mÁž-ZJS9ß{¨÷ÝWÆl<œ¿Gw)@h³‡ÎÒŒ± ÄS«‡âP ø VS+ é™ìÄ”ÅÅõð’%w'©oÑn—Ö@Ê(fSWƒ˜VSR/=؈/J¿c¥‚Oa°G•=ñ® 3Ú¼d#p’¸PÞOHF¢>ç竵¬êh¸_—Ù¾cãçÕ¯>ˆÔ™KÅ+¨ö…÷²Nýjžu|ż¼É5-­/&š³±W…#°ì3n˜tŽ“aíPNͪ·Ü–ª"Ì”ÝK`®%>*ž°gIº9CÕJ9ÇÀÁÅ6TòV}&]~’¸Û‘%LO§ª¥»ËwÔ¥`E¦Ð™dr±gk…:ÜÐVÏ-s€ÿJ c˜ãø|#‚Z¯ÎÝÛ×cCkF#ºC—(¼¶¶*6¶U¦»âS‰´ÍŠ cu ®Ä œ¯÷"ù¶'»?'«¡@^ÊM°™•h/ÁÛê2™5Ž'aü 5>»«¬K@æj?¬øCŸáé-ד•¸ýØnWdŽqÆór¤fqé·ÙóÌý0Æ_½;šð>¢m7žøò:Àáõö›»É.×=Iòñk?gýòîò‚þz„Ûj€Ä"oßè.1#» e3?”Ž„O=NjÑÇÇ‹KÕÑž*¸†"ÌêjkXxékQJPÞ7´3é ù@ Èó!åÒ¨rƒ$ "Â=^Íœ<ê9:yЪHB³ê0¶%™ANR̆Ép­)lîX@Ÿ+2ØéxŽÇz¤K®œPäÙñÂÏÕE]wÓǤp5ˆì(U‡ÿö©}5—S)ÄRta“[(H(pw[þ[T,‘Nô¥›xÂ|¢f‘yœQð9ÉÓ…[Æp ³¼Ëôö‚¿30~ÈT³ÇÖ/"Lµã&üý'ÞÆ¤?BL{’Óõ'È8ª+jâÅÝ-Wý‰ô¨Á­2ÿ%>‹3XÑ·)@ ºvÑjš#ÙD |Ÿ$]`b¥iϵíà¦2ÁßG²îŠ*pÉá ÷KjÇ«J»éØÝ8uê²r”ÆæÌFcf•ºL.-iSÓ,â3ô“ãˆS5f‹¤š—„ÞY [îj±*%•|£[T¾¶XA²ÑÝfcQ²ˆ ®l>ÊÍwQylr¾ç±µ¦c?ûÓ­ü€žZhª÷ûçJâ!e7˵ ±¬‚õŸÔO†*c9,¸ÀË:58ììcwï~ll˜ŒgB¹{‚`®©Âr)ºíƒÙ¢‘Õ«ámH´TC~j\¥ÜÞ>!1ä)k½m։ܤ¸õ¤5=ßÍ?<4uäåQ[F=mÓâ xB" é'â™_õ0[7œTÕ ƒù5š] ÊúX&nrIiI?I¾ 8Of(éZ¬½Ãöq·ãè/\*­5)ƒÅ’ð‰ êÂñŸCè-.¸õ‘kbb®[f˜Þ\P5Cƒòçr©¥àó¢ÚÛCjV&ª jšŠ†ÁD§ìŒŠ®®q®»ØgÑ·ZosÊ͸e¥p Ž™kÉüfì.Ý‹4N‡-xû4[èÎá’ek[Ú~ͨÁ¹ì~;„¨•µšûs:.œËÅSñjj‡w·¤Æ6;|•3Œ ‘ELG~`›Ö=VUàåÎÍÇ{o·_´Š¤.´B³5¥bD9þ°`Ùà›²'Ή¾ÙÝçM“‚¬‡Rú¹OË…c˜éÝວUj 5è-þʇÒV)ÔÆµx’¾«Ž,"fù+;rsûqµ}Êîómh•jÁBÚ‘{䉒£~VŽP󖽓fOF§Ce¥ü›óÏÉÊÊ}õûÔ¿oØã9ðkõ‹VýqäW+íB‰‘8¤h …†U$åKÐ׺|Ÿ¦‡Ì6£ìÛMValaŸ Z9zY0MÊ šbÊv¾Ò‘Cqkt@®m¯§è~ÿ6t€sŸLóp e$æ^·¾W¦é„ó–þAF­ƒ"$êiÄ-}>ä8Z:ÉÞ¢içYÃØ—J…¢âÞÙ÷šWZÝÝ;·SÓb‹cˆ³°FAeÓïíù£o×P~7haÍ‹óŽ?ŒI¿èSþ í{ØMûf¬Ä*:‹_ª™òƒÖ°º%ÂËuÜ"1—Mx;*|ýÄÅý3è9îè³ 2?8'ßùoHiC8îñ1Ëñ‹>¶-ÏFe]yê¾E€>Þl¶¡.Î…óGne4]  ûQät£r®Y¯JXõf/Ž<ŒMt¸À×Ɖæ+‹n\pT#íærtqzÁãFÍ’•ž…;û¶ÆñíåIk h“†ØÜ•¶LZ¨b>rKHˆê¬ ¹»Í[3\{¤,Kל5ƒ³!@ oÏeÆh9{D³«0”ܶžò¨ó.ÒxÙdC¬~ñP±ZxºùË›^ü"5½KM‰Œ¬Œs P+™©ðð­ ^2pŠŠós0·Wt’9dúêQöÎ'HU2í«¢¡†9ܪ Eî™\§Yrlî±06úv]ëGDiÐÑUT꺉¤£ú£÷Nr8uÅbå>* %·2}êú;.÷=ûŸCMTy^†ïŽ¥€3060W>ø£5¯R´q|>ê„{»tf9f1Èb|ÔöÀ¦ô6WÍ [¼Èüéþ -—ªu¦®ÖÅ#6™Ÿd8ÇjvZrtÔK—Q?¶'T €ú^“¤sÅç³i›öîI½ã“ªHSmË • àr—È™:ï]ù¼0IÛtµâyý7ûåûXÛ6‹÷u&øðÒ hiÕ.ðn«ïwÚXjÞ_ä~Pl?•Vð{¦Ngµ¥¤x"rR\^½]å#)ŠÍ;5¨]JÞrá·>¡<Ë @h<Á6ÊŽj Âï;Œ|!çÂ]ůöÅ~¤ÅkYRq¡D3«ÛÆÛÆ‚¬xÒó5”Œr†Š1 É$å-F[sýÆŒ1„/zŸÍ«DÑäy‰øBGvç¨X#íJKw½:õ¦ù?½)…È[:­¥}|¦ª|Ì7UBƒl-Oú_ç,"L™²Ô–v·›™‰6ÆF㲓üDoyô‡ýR¤ç‡·¼b-¡=þѤzŠ|ÔèM§ñÈ-ð‹&l²d hN:ëó©!•{ì}ëÅv"êxíIBtk³é@^NŠHÕsÚv}*ѩЫˆ¡`³bÌó~ðž‘·¹?~?‚CΧ_Ó¶è…ÊB?¾2hP_¬Š{áÌÉj9^+R0Ômºi±D|+ÈÝ“.|L‚M.”fœëìà@«V§|ˆµ´t|ø%¼;7ê*¤Uò têôòÑ\ÍŒ<§z’¢‰G¸ò\™jÀÖaȹ’‚­îBÏã*=_•äˆéôp`Þ£NÑ,Ja!ÜI››•™Î’®gÈÉXu2íÖQ¢ÎŒMéâí„Ø¸îûÝwAÓoȱnx £a¿ZyÔûeÀ; :a…)ɹ0- Ù#ñRè) 9ôŒVîPÞ‰çOlj>³1hTÝ«õ -Qu)¦àîèíß6‰ª‡+3Óµ9ÖÚ¶@ÓÕ]·ÕÅQ2–ôâ®øŠEeÆÈ2fM«+AZÇn«¿¬Yíú3B§„-L¤SÃ-誤Ï=Tž^lÀá÷}‘—¡In¾)r¯ 7µöDUuÛfÆÑž‡`ã…§|mº¢ImåÑÚòUó©÷‰s}àŒ™ZãG/:á2žßsí£ßÜí´Ò¯ó} ¡C‰<¯OßÔRÏ¢˜´øÊ{PxHqçüÒ{sPsªu$ úÄžªÌÁ`($;Q F\üºƒÖÏü4d‹íÒîç …‘‚Ïì×ýØÛŒBìol§È‘D4èã=–gÊ:Ob|…Aò‡Ù ³¨®º©‡ô¡+Û}7Æ'†–gH ñ=ÐÊÍ6P}¨ “„Г¥ÅOuÔ¼€µ´Æ^4„âHbPì$½P^ú¬QV¿äÄä#™f7r<ž‘Ž&” ½sdn 5[¨yßý%þÑ {±ÑàzßÿnÉG¿ÇºË²‘Ž[ÜøJ 3|k`Ϥ„›]Ç,F5D^óÛ³“i(üJ.†G:2Mè"#úUíl"#sëVÐz´SÑÚ¬P¬ìÈ%S¥È04Ÿ®<ÃCNSü}pd\ÂÖª°48Á§:ÝE-ùý5s{A2`z}u<"Ò^ݱô3ð~ƒgúcnf%ZìjÍ÷Jg[§f ÈñXùV4 ”}§ÃêjŸŠ!žå'ß²Ÿ÷ê$ötK2×RzW±b‚2&F™ÑZ^Ì뙪‘5tQ4v¹\Nè¹Á<Ò‡sy¶ÿ«=ÛÍ¿söŒK7³—§ÝØåG()ÔCú÷ʉ”P sÿÑÁwñ_úäQN¥P“àÐz`/MѶ٩ÒVš˜ó ëWBç0@j¢Bmœ4²™ ׬Jõ™WÍùTßÎT(6¯gBm‰FI\WÞŽ²îéùLÙ¾a‚Öaé Ž6ÍG¯´‰sÕ„íöuCÀ”Ÿ‚šùuqÀ\Wïé9û¦M±Â£OcŠÞÊPº'ëci¤£»&׸³­Ú ~¢ð =`›Ü¬9,dŒ¾ÁupçÙµÜ3Ã¥.ïáù¥Žà`u˜÷C¤…]'{æ§ž(¸ª‹î)àè$>QÔ†b'‘/ñsr%H϶ É!áÌÛZÌv!°÷ŽrÄá$¹;«Ä‹]FbUäJg<»XËÙtE›\:‡LÐW5¹×µ$p9p|sWçAárÝû«n½uk o´"§ò¢Õª†³•ÃÀíÈvëªDr[Ð{Ìãfê“T$š˜Kk9ÂO?QnØzÄù «ÐÇÃlÇìzÇÐË´Éý èx›Ø\ž†ï[p†mÜȽ2GzMì$ÇÛŽGg(gX•[bؽa¡³ë[M^HS¨—Ec™Ü ¯£ŸZ†-þzÙ5ªüLX5¹$GþêÈžˆööœVz=¡þ€©ž²‡qs|i}[WlA7™äbwžJúgÞBðxLg’ÝG€ÿ+úî= ÉÛ\Õ¸ÌWÙG¸xf-™ë”‹Œ7ÃÏñµ›änwlï¿CÃg/Ôù„’–"“₱ë]Y[~°y«`C³"ÚL7ñ§Ö¨gq¨’R§ue]•lQkb; ÅãÆ§›:Wá'÷|܉2±¹C+"‡X.È©œ  Þ“ £ò f¢ï²CKv‹› ¿ÎžåKPUÄ”?áòéä?5¹Û9·˜¸Ý, •a&”Q᣺Sµ¬Û×lk´¹ytwMˆ)øSŒêÙæ)uF¥ç…PÒ“åZŸÓ7wôÐA‘WüŒ¿”ÑPqüÁm(tø+Ë®: ®šýàªhŒöú²•Q’™!A•E¼8­á5kk­—œž$Ö[­ÑÕ|$1™«¼ÑÝaú±{PñÛ=ˆ¢£¼#­Ä7ÿ즖âÎ tf³ÀÙø¿Ao Ù "u–n®$5†ö÷Rvdg]Gí"Q}˜ab§GXôŽn&Ü-V^Ìàb&-Ï©³ —Ï c}’…ªàf9ɦë¶¶î¦Ò;š1+yEWe"Ö™!t¯SÉ]}m€ø²&"·F§º„ØÌ)†Ò”pi;ÌŽú«8½‚V*Wª’o_¡NÝ-ÂeòÉm[V'Z áÝ¢qYf<4S)º¯§äàOÀçjbgâÚšóqΈ2ÄœÎÅ&iJáx”Ê ñŠöÏÚO[:'v°8É þíõßÞ\ª9¾+= ¾ô60³Á`YÕ;¯à˜£€†Ô£ñ•öäq›Ò˜aÜ jÞäßãQ|±…U×’dÒ¹M)ÍævÌo_3)‹uÂ6Ý&öüÄJ-? /“ÏýÜâ:SYL^=²\aO­[D(±4*ò©>–ênƒzf™~I.ä¹Ñ/Ã{¥‹Õ[Š)Ú¹,xàX–_bP¾;lZõe JæW á•]o#þÅŒzαˆÀN$ß; æðÙC9ẽ¸wô»õ´‡6øÄªo!Ê>‰´û^³¡"³ª¹™ÖbÕ -è²A[^®ÌÚ¾¡GÏ– =è‡Z«óû÷ÏŸØ:€ù$< ËkíYtîh_¹PÕÖcD4=¾û­Wøùí©83ä#~ “ë·¢gèg¹„V‚÷Š™f²]Õrܳx[ﲄq]õÊÌD­\1ãºÊ+š†7!ÑIöÂsA†r蕘±ž}SQÊÌÇØ°bÔN&‡i¹=%]‰+Çÿ4 ?=¤ví‡2*ýÍ6ÜØ#ðkìzÐìuµZ×Ó ˆ, 6óÞÀè¢×몵@×E­ëµÃª)ìTÑ> å$=c÷ùÉ|Rêú^’ÒëBÅ:í£HtR>Ô6WOºK×Ú´–šé @þfØpçÛ¹w„žl:Ëq¹*zòO$¢„çg芫lâ_T<æ2˜“—íôR èTüåæ›hä]|õ,›1µÀ€Õ î+æ‰L1Ð;ô2Ìm]ß›\§ê›©ÀZÎŽ›Ë²»z³>Gxùn^~çìT}èúr6D— ݸV ?æ8P÷6xdü¯ã' JÇ´–LËŽ¤ÖÒ ‡²§Ø²ôžÌ O°¹.ÊýŒvîX‰Þ(6Ýh†MWÜtëÈ‚ÑN1 }O1t¼ï"LoÊüËÍ J7|–)ŒH‹•f½ \+±ìÛl(²Ü)R„‰X8%e=¼qgÆ \W‰cÈöh¯WzX™Ä–b<Ôψ¶ªˆŸ«A6}érblÙ®]š6¥UÐijÞÖ¿âubP¨ 8Ò¼v·;׃‹¤ÃÞ ÏôGÕ¨½Õh‚sÅéìo"§y:^ß»ýTŸ~ Ûe˜Ûi„YV¦ãña¾oøÒi‡½Ãú½ç}È(Q|máÊñwx?ͮ͹æ‹àÐB>êñ×2Òz4­‚«_Ý Ú]ºuË(j^Ov`ÆËcâHC}Ìµê ƒEX(Ðø|º§b‹Š÷^ðu3…•ºaâ}dÞηƫjÉŸ oÓ˳3–øC†¹à{ÆwUòs›”ºÖê{ÚêU¾•ÜD„†¿†uC´1'4K;戉¡*¹ùaÏ;C3·AK48®2ÙC¡iäÞêdo†ëa$tÜO‰§¡$Én'›Î—d <_‘´¯ñôâ˺[2M”æ¥Hòö«—¥È»¥èy÷ßÒ±ª7ê1~i]R,M½§ä,Öµ6ÇAÊßBúuÆÓ92[Ë¡¸¶§Î¹T;ß)`_4ÁªªKÐÀz²Ö’n?n£zËXx¼¸_6iuT9S˘Þ†óxdoK¶=ïHpþº ‹u¿FQç5|&·ÖtÌÍi®+o”íXNœB M¡Ü§’”áë… •zÄÇ…ž¾¯¨©"yˆ†}‘øÑèuøÂÄ—„¦¾$rt‹ô#J“óñsäÛMH²-hÕÛ+œÄ³ÂgöPfÌ YrÜy˜}^îï× 65V3B°h%å‘7üô&aÒ:oo'˜dл™°=–ÜÜA`‚bèÛö„ñv™C”Ý6ù)íz½©ð5â“ÂtŸ·Q–Ä6ÔÍBä(ù™ÒF)ˆê¤Kr„«jÚ Â%Òu扬¹Þckš,˜b¼Oš÷êe~ÇBÆË:UiŒ®ÔÖ¼7€ÿ¡?Bò)7}ÎçbÃn=$.ÛîÒCjŽÃÄ ”ìû+l%UôÑ‚'¿¨ÃC*)29’6@5 ¼à´ãÀWì᰷曆gÜ-h2ã«Óœ4º÷-LÅ :“²`&K…Ý@ˆ/Ä÷Ay~:õX>V @}ŒþMQc‘–\Û: qÞ‚…Ô—_©ìôV¨U+FÀõ/Mb endstream endobj 211 0 obj << /Length1 1506 /Length2 8011 /Length3 0 /Length 9017 /Filter /FlateDecode >> stream xÚtTÔ[û. ¢t—ŒÀÐÝÝÝŠôà 1t—¤¤tww—HIIˆ4(‚„tŠ4ÔóýÏ9ß½kÝ»f­ßìç­ý>{?ï>ÓÔa“²‚Y€äaP8;§0@FMMIÀÉÉÃÎÉÉ ê‚áÐ_fL >ÈÙ ƒ ÿ#@Æd°ÉšÃâÔ`P€²+ÀÅàâææäpsr ý'æ, 5w[ÔØÊ0(È(sôtÛØÂ¶ùÏÀhÉà`ýr9ƒ-Í¡5s¸-ÈáaGKs@f Á=ÿU‚QÔwæàpwwg7wpa‡9Ûˆ3±ÜÁp[€6Èäì²ü" P7wýaÆŽ èÚ‚]þØu`ÖpwsgàÁ[‚ .®P+3àas€Ž’*@Ãý¬ú'€ð×ٸعþ·Ü_Ù¿ ¡¿“Í--aŽæPO0Ô` †€òªìp8+Àjõ+Ðâ{È7w3CÌ-~wn—Ò˜?ü‹ž‹¥3ØîÂî†ü¢Èñ«ÌÃ)ËA­d` (ÜóW²`gåñ{rü¹Y{(Ìêý°C­¬‘°ruäЃ‚\AJ²…<˜0ÿ¶Ù€à>NAAnÈ ò°´åøU^×ÓôÛÉõËüÀÀ×Ûæ°~ ò[ƒþ0½]ÌÝ@¸³+È×ûŸŽ#L..€Ø°Ù€¡˜W0ƒ¬ÿà‡Ëw{^p>h Àùë÷¿«—ò²‚A!ž‡ÿ¾_5u#]–?Œÿ×'- óx³qظù8\\\‡…ï¿«hšƒÿê‚óïT%¨5 ÀÅù§Û‡cúOÇn €ñ¯á`ü»˜:ìAµ ãß"7æäã´|øpýKýwÊÿMῪü¿Dþß É»B ¿ÝŒ¿ýÿ‡ÛÜ ñü+àA´®ð‡Pƒ=Œô¿C @†V dvuøo¯Üüa¤ 6bfãâeçäýc»Èƒ=@Vš`¸¥íÉü±ëý5 Ò„¹€½-Yœœÿå{˜/Kû‡÷ÃåA—\æ.Ãÿ}¿0èaœþ݇Ôfõkî¸ùøæÎÎæž˜Wÿ€øÞ\jòø­l;HÞEò;#Fzœ‘bó÷²¦ð·ÞÛeâï\¦çK s„¾üœHÑbxì-4‰~4/ÓÜWÖã0Ù¥æMiun¿¾)›voJÏ{j‹ˆi@Ÿ—×$äW¬WCí ðÜð^HË ÉÊénK@æEïPf¶ÁKš|‹D®ÈLKõ›H¥[ ÛA6å µ8vC[ýèysg{拱ÄkdÕ’ äF£±áwϺqTÙßbË­‚Lóe²‡œ-O•hiù!¯è°;×{Âh núˆÃvoÏæªóõ™ È3MØž+Ú¾Œ»¼ W볚 ¯u·†¯7=o0õHkÖÈoút¡ÓO\‚ç½Ì² E_u¾"ÐùJ2xäÍh7Á®¢mý£û†ˆÖõÕAR[ï·7Å)Píñ™Ù7áýª fÝî™­œ;Œ<\jŠ.nõÞÇË­Ä÷ïµ`#nçŽò:ïj¬Kž ýÌŸfÄ.©)å³à án÷¥;¦$!íÅÃD–!r"&2ùd†0ƒªßèaʶ„²’âh<°Xtÿ:æ*tòÈšhƾç“\ÝkƒÕÅ]¤’v®q½3è%4íÙp°À.O¢ÖRz©r57õGû!2鯺{ i窜—Íㆊ;y¯²b p,ŸÝîg¨"¥üö(Obs@·à^[|:íóŠOÆ€‚)?:%¨(ðê$|lŽ?ÍÍ÷Œ°˜—[:\i têéS%ðØï›hU•ǯو¬o<RÓ¤=¯Ž6—EBö½©Oñ–…¸ÈVœø*¥ã\?kÊ;ª,Ï€Ù ZÏœ©ZÝ$'•µ åúJ…œÑµë|GºT*Ū«JƒN²ã•©µw"b$ÕÐÅ(ë¤•Å©Ûæ¯ÞÔ`½·ZLGJ92”aà #ˆ¥¦>²'íz2!$Ï7Þ¤Úx÷5èKX·¿@Iûð×é–:Gì ɼՊ0øýc–阒˜ˆ ¿îSìo&¼X¬$©ã4!´©ÐgM]?ŠFu”ÞÊÐ1× b Ü:_P¶‘·ó“†êJ¶úªÝ8pŠîRíhT@ %à*ߨCre*MdliQÖû §{>lÏHžzÄ .âR„+ìHÍ­ÒϬԈúºTTæóž5jÏ^çã² ígˆP…–!ja⸷…«íjDW­‘§à䬩s"”GÒAšb#Å ¦y¥8¿àEð(=OÓ#@ž¹ØSX¶"qC^d|Gi1íPÕhòš R袤¶ÇN{÷5¶ ¿w}úd‡¥ÂÁeS¸|3‰3]O¹k0”’½-!ÒgIʤJŠÈmˆíw Q4_1z‡éÁ¹-Š2¡R8:°G¯‚%5m¹­-[ŒYï$ ¢êmÛïw V_ЩBn5@훎Ć]%p¡ FΪ¥æ^ƒ¤ðtñÃ;ò¢>™}m¹±g–0ѱkEJ Î_+úŽGQÔqgÏÊ$˜OýipdêÉV£»©L *™z¬ðÔ¦‘_Ð €À }ŽsŽûjq#“€«!˜ÿð´úBèƒví'‰Ì½7'×Ç„>R-sm^íƒê›²µ„|D&„¥×çcJmAH ¹é[‹ aRŒ¾Æ¯ÁfÉ5s©¤YïÁ÷‘AÂETg]K^üÈ‘|Ýo6£Ë0ÆÊ'[DO‘ì±ræ´q†Ž„÷;¿›+Û‰µ„ŽgÍËà9|¤°Êø ¨‰1Ýì`\¬ÿóVëÛq±lËÚïŒ Ïì\ZÕdÚK®@¬9wÏOì9/õ³¤ŒZßå|¾7OÛa‘uåXçLfÃb÷T=å)C ¡h·H²nÖâZ"Ep6ÛGÃbø­ÿ¬ü³èз‹˜Fó_pS¿÷eaÓ|L}ýc{OuIH~óé{ä5kýÏ1? ßò¾>áúwÇÕ25L³ Û°¡Œ.Ž.Ô1G8¬ú2&èaÇ¡½0ê×3™ÇdyW¤üTÞ*‘tø¶!²‚êÖ°ØÐw9µ¨u„:×{­Gý@bGzBNKxZ0¥ƒÛ›&ýd”X5î—æý±—€FꪛՀ[Ÿ:ëŽ5ùXçòKŒ78Úún7ñ&g§(GÕÏ?øô—±½qœ÷PØ¿=D®Ày…î/Á€¾eÓí5O ©/M »8ÚaÍÝ o m-No“j–‘¯JK6rÈ5y¼'ÍNP<ï2Ûw(Naýì%åüœ2^îÔ'\…ÛZWÒöí-â˜)O™ØÎj—âoX}µkôõJºxòcÊûoA£§8ß_Ó³Õƒèôs'ì$õú—‰÷“Ý ´ç üÇ£/£°WÞJÍ d¼¬Ï…ãñ€Œ0=F?¬o„sx’Y¿<ÂÜ¿@t2Ù0K8 ¼ªïEÀÛôchÈòE6;å¹CéÙ>™fÜ\窘]¢öëÝöšÖ¶“r¿p­6¤…«Ô:å¢~Ä. *¤ÃEü’L¯£‘9©A”¿#_ÕÕÔA±î‰Gå͵/?Pñ=¹/˜)ÒD^%0ÀW™ýbR’j„× ge‘ëí›o²J’8±$˜h¶ðKM®»R—÷û~E ÑV`DAµ ^TdVö5§1Ó^œ6Íi‚c´+ œQfcìz«­RË2×k³^¬Ù*îªñ´g¿Ìú›Näkz h}°ßXAqB›VcÒ‡ ÞšlïüĪ7†¨Äæ¼Fª ‚ о\ßÍ/Ç÷PO’Ò—Õ´ƒ‡i5IÕÆâé.N›…§c`•K“ÊͶ…n˜ZV£jÇàfp»©ã¿‡ÈÉУfh]÷ôÙ‘C(8'Xࡸ¡ª3’‡åšõ¾ttÁŒÄŠHvž ox-Éb½åG +üT9œº÷õÍs¤wÆÞõí»²lŽâ1ÛCC?û¦MªPÞiÑë=)\"FãxÒ6#âY˜TpÛÿDî%¯šê |s¶­zxiS­¾˜ÕQDr E%%B)îR!=§Ýy[qy6kÚ-LŽ­`RÇ„º¦ƒ‡/8Ô9òœ¶¬QÊ–©nG”¼Úx–$ŠlÓ¸€>a1YÇ­ýüH¡’¢µ¹ÆØ,ð¯C¿%çzM×5óšHCv˜ÓÈÓ–‰qdKäø…Hrij[íÇ›i¼-OV¹¯Ç—_gô¯&‡”ý#°Ç~œ¢_­k°-³€é!hð§`x,Ý|ýø]è# Ò<âiÖpßÍãzѯW/&Öé<©sËX¢˜P=œ8U~¬n÷ß.œë‚WEäÂ3ãŠ;ip9à!j‰U³ø£î‹?.1AÃT,V(”Ô~ù?,ù'Ã%,MÇíò¯0_.uéÏØŠ±å1Þ˜š”GS ›yIßKwë]£Ï¡Óçµ#¢m,ŸOß=ZRìwÒã>¹dÛFàJ±,è´:’m~\H&³ñNû‚ÏMeSî ¬ÿåÙUëÖe[cˆSNÂSŒMxÜPÀÀ+ñ4eßί®÷PÏÆÈ©3dc+6F§‡2¹qåÈ`ŒPÔzf ¬Ñùa_¼ÈP%Fõ›f@\¨†."‹JøóQ•È7´4€Yœ=¦–|m"%©´$ÏG6pîJ´Üµñ­Ê"Å!ÙØ ¢  ;ÉmG»É<û.ïäO³L²Í72^ ~#ÖÐÈ#§/*—xz‘½é† ôÚý®KÓÀ3ì¼´c¯Ç›éÅÈâMèÖÿ\bEÝ:Šþ(6Ö[Z‘Ž/“El’¿f‡u½ùU~ͦþ¸ÕÛhäÒšuãp_qxåýãh|×l¢Ã·##•—§‰Z¾§¾‡q…Õò4‘B‰f¼B"§@ÌüHrùU£Õû9JߌךZÌÚÌtsÓ–•7=‹ Xx½JaóOØâú3öO5?~ A…ÓôˆÎå$)·y&m½g7QKż4[ª9›–Œý¶(l wꈲ¶÷„«VïY¸Öáäq†š*±Ä<#}’VÚ‚3$RúâsõÔ â^”óê^„øÄ•86™ƒJ ¡ Ñ‚1²6ž¿{VYYtP€¹ôïÉ­bzÌhÛ©–pÁp6á“-²_¸ÖÖT„ÐYÄnÏæÃwB âbU4Öñ|›g3óÑ@ŠkûÍ犢Á ^j½û—öÆœ.jø>TP÷¨…Ñi9 ‰‹&AïØ æÏ¡}‘†XõYÅ„)o6ɹ‚XW”{OÊÂ5®´+O_·uVrãM ŸPb“žc¿Í˜n£Ù!êó|Ëk6r8¦u¥m‹T5[nÑ@,‘*? cRIÙß«ð’ì7—©‘¶Û[j8]DÓD R”Ð3)-î$H&TæFa:0Š•¾àåujñwzþÔudƒSÓ”#~¡dWb‘Æ5±m?´¹«PD2ºP3>3¿™™AcÁϨsïk¥O>§X%2ù* XÙ7¶ü£JGõ`Öç¡–ì"…=“­‘)Í/9¢jC[þÒÜû¥GÌ®4¤jl/ùSY×oŠ)"ù¾i‰ÛYŸiã•ü ×í9PÝÚ(YÄn$˜öÆpÁ¦@*±‹E`ìÙ,«H$iænr±“Å›Á¼ÕƒP˜ÎÉ@G®6Í߉c¥ÖH®,ž…0‰&‡„=“b\.°¦`â°ñ]‰¢×x‡x9¿KÚ2% a¤²E pãB]µ‘Z>¬^ì0ÕH¬$1ïОÿÔe÷%3ín›(Œf˜è-³ëtj3P®IÚžÁ×ÍS£1EbWTדOO ;žïïOZæTOSeဴáÓÝ«rzkH8‡Y˜á~öqÌÄ`×½ÿæ¨\Kö%iFŸŸ¤ ãš»çS·zYD|=é*4ˆS|²ºw§˜à”TWrçg¯ ò¬vG¢5þ†¤ZÖ2ß:“ …Ÿf?A’†;œF[î>îAóp1)vÞ¶v›ŸˆZu÷›Lì9Ñ¡“á´·Ú’½ˆIMHòÁ¸B nå_X-Úõ|rªq3 O€4~d1UÁµ¿€üRÈ·à: õØÿñ+îsâéŠ8])‚ª‚¢Îñ‘Ë'OsP ^ªÉèZ⯞<§£¶½Öm~pq)8@9@cŸf#£:‹ùiþš¦t"17öé„6s']ˆ8Q:@Í®Ë0ðÿÏTÕbíÐù.TެÝßLw×¥ôES3ÁØbÎ$%F½zÍÊL Èn]öû(¾k Öcn ­qs²œ3;KT+ÚÒÆKØ‹—û4=G»¾ M}ñ¨Â»¡‡ÌûÄ„MžœX»Ý¾©»ûhwe²/Y2;¿}M1‘ÞWs0Ô D@У¯¦$Ø(É@Þão²]¿èµŽ‹¸ì"—thp½¨íÃŽàòg7¬±Ù—<ÊÝú^j¯¥8¥N ß¹§uÕm®;b!ˆ¸¡ÖZ¥ìëHåè?ˆÛ±ËÂBYDÞÖYïÖ±»’šM3þlCx*°”¢~u(>K’.Nôê9Öõ¨¹l\êá|]ÓtŒ¤×ïÏέpcñKǹkßTÜ‘ôÐ_×°Öùv€{4ß%ƒT”Çëâ¶± Ò¼“/{˜2jèô$¼Žælç ;±¼?5 Ä¿ÔdÛ·okÏ’ÀËÎÌÖ9Øœp¤ }Ë£ˆ†þXG«MKË5§ö6Ìâ±¶‚ËëIŽ6FÀ…Úp-Ê=—޾/•Ü·mŽ<åÕsÞÓ{Øh‡‘Çô\|81ðCbw•æ†éÍÔX–èÜ ²Ç­­‰==ݧ ›3ôèt¬ÔÂe<×BH>GßFýЦÝ_-—²¯Ö*„¸€%evÞx#ró-ß”F‹"7.WsÌ(tê) ²¾ H´HYòy.œ©ÿDçl×GXÏ¿èh6ÕWª½$¥‰ i/âOgÜ·ŽJ“v¢²Hj·• õpF¥CäÉ}Nšze¤ÄºøÑ%Ïzè¨vK||)A%0¶÷¢àHWö¹!Yµµ%ä± u{üÆfÝ–_ëÝ—õ‹ÝÎ;#wící…oq3ÖÎß‹– Ÿ1ºfÏoYGL}äé(#Ÿ}ó²ÀðÄ·…JQh”x”’DdÑ :5Â¥²ðîGJÈ·ð¥RN~vª´¿8~ŽFüaëªìô¦QnîC\´v+ ß÷ÇÖÈØ…•§ßË)¸niÜ?|²iézK;¾ÝÑrÝR&¦~´,ŽEkB•à…¥­[Ì2F[r‡]ò¬;¸´›|­ØÑr«Çâ s·&mªŒ´…"30µ7á++­ˆÐ”w –$Z íåpÝø 7<ߣ3º˜¢ŸáG¤NµÏ¢ÕnîL_=˜gÂdµwß—IDj¦/;ÝàÒô(2®¼12…ÒÏ`qYî pp˜9ø°² Æd€Ìø‰7¢"Ùòì¥é3ƆªàyºŒzw³5:uAÖñÙh¨ìUe(˜Tóã™*ªÕäôky?“¬çEf¤½7Ïêûj‘3|’ÄÑ0ÁÂ/ŸD¤.Ê£×ú?YÈ«ó#à§•‰ÉAÑiSs´dIR`¨HëKµé ó­#ͬQjé.ªÈ$*¹{¯“ˆ•&Û†„yG?µÂô[å=•Tô±ƒÂÈð`P'W·r¡n€±ˆ£o Å­£÷±ƒQøs• m`‰ƒl”ê•XÍẕ̌9-âhÂØÒ£÷ tð±**¶L÷†lϧ …;™@ŠI¼%k{WT¹py¸©L`tôÄ00‘q¡òâÛ&ULÈ<ÃÄ€rXfx§3›W˜G^ÀSVÕn¥è@|)_jÛA £8œl#ÚL- @13ñCEãéGuµSéŸ RÒ„KÅüQ"×µ‘jרL+hVÌ+¤ßVðk2øÇžcHû!èå§Îñ¨( ¢Õ¿ËSt3Oh€ŸvÙωæir°:`ìÈð<¢@-h/̶ž§v v÷àW‘xX‚ æ¨Ñ s±ÅS#}’™Ï{ÈŸVTˆ¤qaù¼ü“Öeëµ¹ΛŸwúÑ’$÷KÖ¶X¨’e·ŽÀÇW9}éÌÛ—ãm±¿œÐÍ;BIDû~ërù¶pùÝxÊ;³ãhmQÔšÞ¥6ûz ÜŽB Õ|²Q"/UÉTiЬé$>ß°uâò–’:Ñã^†!5Å2ÚPºß19$cí}˜‘ŠÓ ª¾öPvcœO'éozB±yââ£9p½2T}+î&7§Îb‘’öiB7'7]ËèaôÕ³U䥪æê%´è´çSXºÈ6ÐØý)ƒïm»Éj™÷½»a4ßÀÍ(%gc ƒŸmX˜¥5¼ ¬MÃ÷2_d$l†#îUþÞÁ–êÝ×Â{fãdz“&4±iYûÅE]¸ õ;ÇYïþã—Vþ Ô2Ö¡ ò‘À*¸·€{´êQ º´õAFÁbp6WT¥'ƒ$OKf/’Ž6TL2Â/µ±góÌ4’UÏÛ¤ÖêNÇaàµWŸ…ÈNÏ»ÇcŠW”–V*CJÇÍçÏ}Õéë#ƶžó¹9Ý[êgo‹ýý¢´ ©JçéL`2âE> stream xÚŒ¶TU Ø.LHÒ݇îîîîîæÐÝ-­tƒtw—€¤twJw·„€p3óÎ÷ÿkÝ»\ ÏóæóÖÞ›œXI•^ØÌÁ(á`ïJÏÌÀÄ•Waf01±201±À‘“«Y¹ÚÿÑk]¬ìyþ0u»‚dbÆ® ;y{€Œ›-€™ÀÌÁÃÌÉÃÄ`abâþCg€˜±»•@ž ã`t#upôr¶²°t¥ùŸŸ*Sj377'Ý_îa; ³•©±=@ÞØÕhÊhjl Pu0µºzý'Ÿ¥««##£‡‡ƒ± ƒƒ³…5ÀÃÊÕ t:»Í¿ (Ûÿ®ŒŽ fiåò·\ÕÁÜÕÃØ l­Lö. 7{3 3” *-PtÚÿm,÷·àŸÞ˜˜ÿ ÷÷¯@Vö9›š:Ø9Û{YÙ[Ì­lE 9WOW:€±½Ù/Cc[¿±»±•­± Èà/æÆ ae€1¨ÀÊs1u¶rtuap±²ýU"ã¯0 .‹Û›‰:ØÙí]]à~ñ³rš‚ÚîÅø÷dmì<ì}þæVöf濊0ssdT··rrJ‹ýcÁý–Y]ìLLLœÜ¬ èijÉø+¼š—#ð/%ó/1¨?GG€9¨ Ÿ•9ôœ‹±;àêìôóùSñ_ÇÌ 0³2u˜-¬ìá~G‰æcÐð­<ºL Ýc0ýú÷ï/}Ðz™9ØÛzý6ÿk¾Œ¢Z":2ò´Wü¯NDÄÁàCÏÆ gag0ÿZ2Nпÿ†Q2¶ú‡Æ¾Òöæî¿Ù‚Úô?ŒÝÿYªŽƒðßX  ­¨~/¹;“)èóÿóªÿåòÿ·á¿¢üß–ü’p³µýKMõ—þÿ£6¶³²õúÇ´´n® wýÿ6Õþ}´ò@3+7»ÿ­•v5‚°½…í¿m´r‘°òš)Y¹šZþ½-ËÕ]™­•=PÉÁÅê×c@ÍÿÒNËÔôèp­ä_* èrþ›RÜÞÔÁì׉±°sŒ½à@C!v€3èÍ€ž-1€‘ÁÞÁä•ç0wp†û5Qv£ð/Ñ߈À(òq‚vê7â0ŠýFÜFñ'€Qâ7b0JþF,F©ßˆÀ(ý±e~#ÙßÄEî_r“3¶313þ­±“ÿ@ì~#;ňÒoâ£ò«þF >j¿ˆúoâ£ñ²kþF |Úÿ"nî7O6P>cÐFY¹Øü6Ñ5ù@ 3q66µ‚^A殿å¬ÿÊÿ>£ |¦ÿ"vP0S[Ð ý›“í—ÄÎî7‹_»Åhö¥þŽª øŸ Ì, @;3cËß3ÿåãäºÑßa@Å™ÿ† ó? Û/hõGLþ ÙYA÷ß,˜ ~gÿeîàæüG6Åÿ7;6д,½-öX€däg•iýÍÉæj㟥zl÷Gi þýŽÌrµèzPí¿É€œþ£ãø[ æzïÚÿgÜlÌÿHÿ;lVP.G 3èýú‡)Ç_2+‡ß#e5ÇÑÖÍåœ ‰ÓïéýBn@—¿ž5ÿ.Ë/¡ƒ+ÐÌÄö?\XÙ~+þ×îqü£ù¯=÷?Òÿ3ÿÚ?&È Èo†ì ' Õ——ý— Ðý9²ƒ‚¸€^‡ÿ– ꈋퟫÉÌ bõ;-è=Ãèjé ücÃAwõpøÃÃí¾ûÄÌãÅy{þAá½þ€ &zÿ&Šä tþ;ÕžÕ¦nΠáºþõ6=ÈÿÿõmzMá–LyC¬ëCÚj…ñ<è÷&øgÉ÷4?QÓû,;w¸="Â$S×dm8ß '÷ ¯îˆSÝ }#úésÒÚóáK¢rÛ“ï³a¼Êô^ÜÒæÀdá‰pC?Á[|z5¡}ߟN¾6­à]2ä¹Nn\ˆJùh}’ž ýå+ca {Êû5²ðÏå3ôÑêQz%säy&YóØ$Юô°4¨—žHs·w³¨9“¯D2ñ´p~§Ñ¬E>:›,1?æ½×*ÕX\ºqÈpt° oQǦ)|DSd°}J‹V–<[ùŠˆrèRWé‘Y2j¬T"í›{ëÜÇ–;™ws“!”xh»‰ueÍè†Î$Š5m†‘h®u¬6@‚ÃNs‘µö;¯æÖ©øß¸g^sÚ–'-_}žÖ†GèïÃR¿< 7ì|õÓ,ìÄ·ð`¦·ÔX]áÉ H…*w‡èÖJ£#Ó}sOæz†2åó ºyÄeÞ.dbÒá‚êÃ?gÏõ½Šñ«jºTèÜœCY´õ@Õ~ æPx5éJ½¼,ıd7Ê £ÊËÿž·K©Ì[lš .g¼Ü¬Âd+ó"’KØf_º$+b“–ìÝ[¬ŽÐ ò²þÁ]Àp®Q¥ÞÇ^ L¼{I?~Ø8$ÚÇ}gv¸}WQ!b€qä ñã²Êã£ÈpÌ–gH^x§J@N·‹bš¤p$DñýÎ|ï[Ò35wb»æX$M5þÇñîâgºri1rÊ¢eù~Ù#¾¾ËúKbE½8µB˜á·Í,õŠT`ï2‘×bÈ3÷W I ;†›5®^pEðTÕòI½7ÁzgÆwˆG§wÈ|l«ôJØúZ¼ìQi¶ñÄ‹;é7üTQ/æ-ëêÂßðë2性CcoDHa:X™Ð&N¥…e”™ërE´è¯ ‰ÙÖÛÞYBD±-üÕ.zõëè·|¡üzÝÚàdb‚ÕßNí?s$çÌxJæ)ÛVà¥GàìZÕ/$e/NÃɱ€aÕéf§£|ß)zOMeªkzˆ ¶Ã7O‰>T›r¥‚¦Ä*žGBÏS‡B‰²ù2%Œ(ƒTõÜW/*3&ãZFÑëà ÇQG¨1Õ;Õ}2¿ 5—xÉX6‚(±háA"Ážëq¥ú‘Ì·æ5ÐA™oâ`"~ÚÈÿ3_!3S™/lÚ+_Û‘ÝEcó¥ÌõaËËõܪ£Ø¦¦ÚÚ Áa#ÁΔLxñ\(ÝäÎ.O%>6æy‚~×É)°oH¼i­-~βnÌG¬Oéê¢`PVé˜R®UõÓ³~w^Ø„ /þ¦„äzNz_¾ì³)²¹ëfÞKɯ½h¨yÆØ7ÄeÚ ¨¸–—ù!Ÿ£ÍT9ëîñ´ ÷Ð €pÎqN'aÅῇLÊR›Ñ–eX•Å>¦þJ‡%9"ëcüQTGD2»ŽÀk… 1B–2¬—E‘iV#µšCZ‰ŒÌöéè±²…>kS·ûd8>ù0ˆ ‹#;¶HÁBn‘dRãýá^f 'ÎÍÁ_¾’¥Û{Ý-!-÷ÃMzM1BBÅô+w×Dé†`_l¦)5öèäý–Þ¥EŽk…`ÙNÌdß÷'{hµŽÄýv²\3=Ñ–ŒÂ‰oŠw “BEš,žD‡\NÄrf3Õ;x'þ»ÌŒQC"üBußψ™¾jç9xÿ ;û1u?@ÞWÕ5=Œá±µ¾Å¢ïPÞ»¨6ü)(m9Šäv˜'bw.ÅÓÄŒ»”b[6äÅqÔým@ P‚-gÏ®zíAQF2[[“-éýPÊ}ŒÍ?D™°K5ö³]úÙRá±qÁgW€ø‰RÎÝtÞʪ©¸›bˆDþôØ®O¨Ys>¬ »°ÊnÕ„œiùÍ£Qú L_^âF"£ùmo–m¹’8K¡†0µªˆã>_9æ9;Z¹h¶pÁÆ}–-oµÏh7<é—%-({ èØH°O`!\>*K (_ûÔ°¨v 5/!L„_ÞËú:Èâ-̦j¢l¼àÇw xíʾrTäÖtÜ»fÁ )2Ÿä1fI\%}fõ"$MÛ1E’—_œ’ì×ù¹¦ iWùúÅ{2Jâ=ô[TÛò$=2ÕÀ7K"±š"ø~ÔqoVU‡V¬pèò.×K.TP1[0‹:Ú$¢!Ë;”²;äÞLx>¼)Æ6ÔÐÒøˆ‚5xó]9·AMéõÖ=8÷p„.Áñån°ó{ËÄÇ–D7Ì«¸(#Z[\Ø{ òýBœ¡9+®Ô†’±û´7Žú8†amÎ8ú€N3!Mùî`4jM¬<í ‰c@¯ÏZùØÛÀ*eVÌC Þ¥¼öñ³ˆ¨ÕŠ ŠÙ›Vtí\\ „Á§½a¡9üzü›B$›²jy&OŸâ;5cl©l-ª¿f}3™©Š^#n9,ŸO™ÕÛúùØM™«vÌPÁ½í¤QÔR2VHp1°9Ëw1‹É°GôŽÿ SUpPȳ€/—í£ƒrYî Q”_ì® Ö)/ÉÉM&-gõB‘(¼d·eoËáþAæm¬„bÓ5ŸìÛ½¥ñBÅaaì÷°Ä÷ë3¶ùMÚ{‹”Ë`šß¦ö‚)ºó™e/8éŒVo­–gÜÞšdãöˆÂq öy KÍç°‚Ãy1\ëæz¶n¯¹2 »U•g½sždÐe+P]b1ñH¢5¸–ž+q±-ñÅÆê×àûIÒˆ ýw+xi9õ =w˜º°x±‹nòÔðºmú†2E¢OêíZâè~ý!‹ ,>ín©¿”ÁY„;œ þE[´J”ù±ÏµÜLˆô¾” lÊFáÃ\¤l-xî,oA÷ñ\¢m Ä#4üR”ÂMD18ïæV‘ÙKeÏÓxBòóM{ß@q^òN?ZZ9¤Kw17_“d,‚¨¸Q¨ÆQ¾åfÇp9†râ„D‘ƒRGßö4Jð{²ò¸’iVÖö{%îEîShîà”F;U„§Îß4ð($¹ÌÞ&5 A›¿Ë4 Ð\ ¥`aó@-³õ†ß'›cѼ@«÷X 8Uä6y-Ø#Q,ÎA×쥑@Õ_c,6ò*R®{ûq8IO9¹O‚¦|ÕJ ó*úÐ@pgfX o\¦J®Ö ðE–3¶–V%máT×¹(ãyHû¶íLÛ è×^·„ÿ®(ò~IûƒÒãw¸ puñüÓ›—¨ËYÙàîy$©(Êú&pe¡ $éåMWò‚Ý×”ÌnÝRjÎ>ŠÎç\Ë û¬wu8GÚ”s+Æ=ŸÕz¯(µœßÏm¤1ÚÚ'CÊÈåaÂÃR¥ÁÕäŽN¥ÃU5)øÈJ4m¬\Ød˜¬÷ØûcžÉÕèîªç·öû<Duß¾ÛXý²ŸÏ–øùÙ{4g;á×s—dôž›k{ Hš´6þ²û—ÛK‡ t!Ÿx¯xXbQQ¢H,SXÍ÷:ŸO/÷™°ìá7MC-\”>™‘ÑOëÝÕLÌePÈñ9v½AmA²E{çÛêŸÑÈuøÈ0Ü—ò™Ö|bÐÛ«Ô=˜h˰^Ä»zäCNØwA÷¹vXhˆã›öÛŽZàÆÄ\8ó…vp)+°-<–‰aà`8÷$Þj y©êû_…æ@¤Uý°uY8ªL|K”’åNÌôã°9B")èÝÚÆãy™ø†±îÇ ó%O¶©Ð\ ßcÍçFÞIÂtdm4V‘ïìË7Ïû[Rz$³ºÐÌ)ig¦ì ÜåŽ,œ2m"?oš\!Ï#>[P}/óÄP¦CtÐ­ÞæO”téo ä!R!ãÖç@§øøhçUMmÕ„á>|dÝs§Y)×§"b@ "blÛuâÙ`˜»¨ÅSÏ._Rófcÿ|ý"-¦­ © ï}é£uaèfÿr±ßºQÒù‰…&~ÀPùV+´ÔFÉÒ˜«taUûÛ÷Có ËÚøWBKöÎ)ȆßOíW{`:Ÿw\… èåìS"S¡ ×1 CW,Кü³1by£k§ÎJeE>¬_rû>]%ª‰oH:´íRvŒíÈ?KÝö9ëGSÑ5c4/Œ*å;ƒÖ[ž]×72uÖBÇèž ÁâTL’#¼_0V” bÊ“lÔ([/³‘y³ùâœðì—vÝ]måD™µúì㸩pNñ‹}N3E‚»‘SÞÌ¢ª´ÝøJ̽þ„ÀaU–qxÖ ™ùo#!ɶTW³Md°„_€ÃÊ{ŒvŽ ì²œàš?¾Ô½+KëÆR)U›:­³5lnÑê~]ý}½ßK¡ÑÕÓÄ£)ÚɧÇ`?ˆçÀ¥aç´÷JgspdÉM‹ÄkZN Ÿ2øE–ǤõñT¡™ï¤7³_P,Çt•Ãä,˵é÷‚üU_¼ŒÙòJÚ’eóS¼„Üo¢ñõß”MciƒaF† ±$¬mLSáÂ=dÆ Àgõ7‹IYÈGÞqÁpÆò\MÛgèø6µPS“7i“ZýͶ—"¥†”ïà[zí50ŽÚ|zWÂ;èy°Y0GÚLHUŠ"…ïª=áü ÐÝŒ -0K"_oG£®œµÿƸJ˜ØË«}‡çj–=Û”¸Àó*%ÈdRþe!|‹ÑÜu#%ãd´xp‡D²,¥ê€Ò\ÞefŽHKSý§ßó]Ss‹v_S´|ÀÜ"¹õø ±TçE¤¢Ô+ìðx ‘áÏ‘¼‡ê'®ßÇoË´¸ç!Öꯒ‘-Ô#­PŠZ ²§ñ…¨bÿ$h;­ýz%”X…õ6ݸ²1€=Mø½iDØ‘­ƒ&x£<Õu,´3Xs éŠÑ┽¶õŠ«¯-„;AµÑJiÛÜŸï7ëˆ÷Ÿóng•zFN}’ò¡Åk>]ðO8À.Yž(Ú@e5Ÿgì8><¾«âróZ%s¾NY»Ivƒ3÷3uê¥eÿêåOüsM>ëï¡ûQ® ¼Ó5—zߊGê:·S1´o…ªÚ¨xD ¡Ñùâ4)Pév¸ÙG/ÉóqëªÏ;8;4CJG×Hº±JfÀ<4-3?!¹2FÍÁ¿lFm_Âm²…×1WÙ4|ðs„¦Ý7/·à¶$#x,í׺ÿa´d0Ó*){ÇË^]è1xÒöfWÚÙéB¸”Õ\8hCÅÊ­2 gm·÷ºcúâtUÛùˆ@ìöŽ'6ú›!ŒJä QØåÝ }y:õöãòÂá/–ۓܺs%n¯°ªØÜ² 8!(}j²eÆZd»ÉŸƒu·!<#ñœƒ ¼ÞHS¥¼¶[#³Ë•”Kw›6ùùZv“Å{‹m£©OöÄy´iGÓvü¬Ôᙸ8è›,ìÏdîºn²}¿ ìÆ7r{‚Àõ}SyJ„±°úñ°1}ÀàÞ9c¶×ô“‘ñejñB„nÍD²ÑLç˜xvAîW¨ScB¼wyÞûV×rÆ!X¨~Ö#µÃBO{~ýï=‘ö/4?CÁ¤íÙp‰ùÄdOƒèƒXc+¨Sæ}™<‚)ÐrÀuFäH/7M1Tðy!k$0j,%ï1JÉ?_ëv)üâ>Ú6` ÷N“€±ðSyd«TÁÄ<”v¥½s=$Ûämôr‰úÛvïé‹c‹qãݘ8·F‰Üé4¾^4­G¯µ–òÊ)ˆGšvˆ!‹»W6A-ýž8¶R©ôñüŒÅëtƒ¯SNr@‡úÌOêg7þï8N© oÒ¤ìã²!¾”V s’ùˆ…©ð1²¸þ”ïüþÃe¯8àɆ[Zë{‚yAYæ4äöëäÏ'Z´åb-ñÓ’ä!†ã-âî©^™UNÄîoÚ„5°ø‡PÖ+3ˇ2ïh+ö?vµ¶Á¢~Cå¿MQÈÛ#ãp¯WÅUÓF ']Á®–K}e›(9?Ì›¤¼;½ïýñ^ËLCRnŽöÓ£Rò¥pÓ€±¥Ì©±÷Íð¸eT?Rå:„•Þ!be®BïXï¨é9‡òKBÖÔ|š–F»òí^ó‡_ý·€›gb2ó¾©_¾h!ùM—ˆ:G a ¨ ›cÿ„øT¤äÇ A2Û.{7K:¯–ÛŒ(qÿ¨w€ûóÞ`.’ž7ím·ï± @L¯/AÊmŽãU¹ÿçÔ'Ê,eÖ!^OÒ–"Ö"Õ1žrk”³òW™xF‘<Å×óLgõÀOýÚVèvê틜¯Mú¶Y? Ù:‘uò¦$x‘é(J)ѬÊ"ôꔿJ_KÍŸ"êTã9Z’¸À:Px…‡QÕúºÆTÇWIÝf¹©¹ØÁfÞ*!Öl»Â°Ô Am  5MOjïá÷“þ£ŽB‹8Æ”(ø÷š{xmøh(`“wÏÜÝ%kûŒÜç%׳—í-v£X, à ϯÑÁêÙ¾‘”Z MƒB$…Ô9¤áõˆÒBVïžy†5 Ÿ †拹i¤™ü0g›ôH|–0`/XÕ¿y\ »íJdšCŽ-†Þ*m”ŽP‹Ç}äB zV/Ê|ô ®¾´@‹ÅpšãÙ4³&-j­YÅøh ã4_”Ùîâ€@ß*”' )É»CRå«<õb¿üq sííâäWÐ'7ߨŠQÄ`^>o×^Ò#Ìz»p© ÏÒÇ¿ Û`Ö¼”ø,“©·Ú€IX…izú ;àù’/ô¨k§5óô@†ðóKFu÷tõ ΘŒ{,‘/øÛëÆÐÉdõ¸¸L¸OÏÊ!º«ë|ê_µxðß}[4¥½#߬{{¦Ð¶*¢ÊÎöüµ<º<›¤w¡/³ÁâPí¨}m×À¤L³z…ªž† å]ùpH•¸j€®@ì\Õ«í]ÄWFåœÊ+l&-ŠgÄø1ÐŽÞÎá­7j{4ö3"S– —f¤¥ÁáÎÑØiíû‚AÒoƒ>fÅŽÓ!`VVÇD°ÜΉãê>öÞ£~ªú7üJ†;g˜áMj€ve5Gå"Ý’ˆ{E‡ÂŸšŠå f[U¸BÄ‹©‡Â¸ÕX²ðÕ«¢Í¼ä®«c ¡mŒPûª´-š_t[Ðò'ïl&¤DHMf™àˆü%À‹óÆ”¥½QH‘hÇèþ¾kæððò_lÉ \´YŠUÙ~{n,`—n ÑRS”áíçþ0«ß——àQ£ëFp8)}$iõÇ-šÛå "цç™2m‰¢‡)QdøRÖù—çMócÓwH³ßz¡Sð"Õv„¬[ él•£”¸4» …Ý£š?Aè4ÐŒut4³¤Öž£Uˆj¹ßLãeé´½|'[Öl¢ð@¡ jŠŠo_C”i¾õê’Í·g§ëÊÊ¥XõžÈŽ}ÉA¸¿û]6¾»&"âxé-pÒjÀMú.!Ym2«k,¥ CÏíÓÂ" ú´ñKžª:/D3¸ß GHÊt 2Bz¼>Mì±7 [™éýÝ ÙËŠDtʼnß’Ñvé&'5be…aïò;¦\té©›‹%à6[óÖO5kì›z‡g®çþü#í«x±/èÛõ¬¯ Ú‘;îâûܦGœžO /Û‹¯äw~Ù}ÍÀލ޾ªŠ…UûËÇ&`›Ï—ƒ³¡¸ÚÓ³¹(ÇoNî—J";¬ 8hò,D»4^­¹˜ç‘z$«†ukã±7”QÔÁZ‹Ûš”xþ œ‚œ«²Šm€\€Gðx ÇÇ=73ÛbUÌeÚ@‘¤ö©I7“ù…̶ÂkL£Í2‚ÂÈØqœD`‘‡bTäu˜ä#Eq¥­ëqê=úì\K´y1®d]Qx’ÍîѬ1E‚ÆMj>‹®lìëÍUÙ¬ä1¥&ûפ*Oêi,9 ̯ËMßržü‚#l¼³KaǸ«;Ц'‘Ú;]-S†cjÝ»Rp˜~\‰/úÝ+gÙç‚ÍK{ØQ?ê"=*4åŽ*Jñ_»tæë3jÎ  ­axªÜ vV[c€}–b/Øîe#¸B]+ñ¬Û‹¼b&'c=ÑÃWb—ê¼{Ü¡Ÿw`<6íF$š–ù‘¼¸1¶Êï÷åøð´>Sä»sÇè~r˜?ô‡RÎÜ㛸)Í×ã‹Pï˜T1ÌôC­ÙT•AbÄŒ¥þY«ž¨Ì8 ¢ò}®‹ 'RUƒY±ûV7/•˜r²--û¨„'Êm81a‡L;RDYz2tn#}Èl» ÇB„4Ç0U,Ô}–ˆw(ä[˜5Õ©œM=šoÒÐá"ü`¥aèÅ¢ ÜmlzB¦þêp¨c^mÃþØ ÆªZ¢œ»f*ü°@?¯¼îïi/H’>ŸböJlðüÀߪ:99ر¤Yıuœ½œX³­õÒ Î!¢õ¨mçÛ‹oëÁbW{ñ—ùdéxezŸ©F;¼°™øNµ(¥x` ÂcÄ:ƒ´¦'x~Eo°;b"öçC²ºÓê,WÉèƒF¿‹I¼c”¯õú}†’.CÆXöí[Écü{}q· …9Ìp»¢’s5A¢Þ Õ,™K°Ö²†xG< >¬ŸI­È·‹IL4èê^ÝݬZ£u¬½&z‚Z믣äÂíÒY!שpÖ•!J]z•’NcôÒÑÜãNeJŽe/C[UwÅÃßv‡lPõŠ6øMn’x;¢j:NP~’%׋áJ¥J™Þ ’I|ùa¨†^‘<ÜkwÅÛ¥ X;Z[H°dlþªñæÞD䔩õø\YÓjûеΠÕpš tÏ/ý "Ç$í sä©Aû;'±£§¼PmT«Q\A4õ²¼’¼Ÿ¿zÈ –=$¾Ãbƒ3´.‹C&^'(¤HaËá5ôÿè]³ß›@ÖL·ñF®¼u²˜žöu»wgvžÈ¸†£akŒaÈH$ÔÃ/ù Æ·ë+£ÁúKyybËÒ÷’œ„ÚèÑr3ƒ)óÖ‰¿P‹u)YÎø‘´ØB¢¨p¯Lß[›ªšß:w{Ȭw¹ŸÐT ^…ÓÆ’äÎ3wÂꙟî×’Ôv8xI4ü‚~a:‡tôÄYÜ)ïCI“a6JBÐv'¾•\•ÇÀoóåÐóÍ.ÂÇ©ÐÉá»ÐÊDïlc–ã碭€ÀùAÝëuTß %Ãru«>€ôZVîUêW+Ú“Ï;|yª'N½šYñd{ÀPgÙ—XéMLÁE$%Iì6Ý/´· Ò%fýi8"p‚冦¶Ø/4•׳{NW{®hÄ߈mcã§0ß@ÕNbÛ¿P´—>=æa‡bìŒßTn–mÞ¦ƒ.¿Ò÷ÙÌØVø¡màìäýSÊ—FT¼2ÑÔÆ‰ºð°ÇñÌÌ=ñ¸¡“¯Â m%#þ5g–TdG–Àn:9)L›†é¤BJ‘RÅ•ªŠºy€;Çð–/ U™­Ò%?qÆŠ!†]åâZ^¶#dvW ±B§›¡3'“í²¿¸ÁsEÃb/寉Z³<ÞnY(“ÿóm2MñJ9Òô‘kMå™Ý<ýsÖ¬UÞ%]ù«¯?-¨Á¥€ŸËXŸyÍòKr#a–ÔŒ`më;^òõ» öÎ¥ÔèÂ]e²£=›ãÕHËÑVz8¤Ö$G‹ßLœ&ïÙ’$H¯\Øaá|ˆ¢J Þpg-Q3ž65 j~:bqV3D’ø.Œ¾tSÀpí+¬s9¥:‰,®:ìeµPIiÈ8Í¢«6$ÅHäA<öÃß‘Ûïî¶Ýe¨Öe¤&ÓLÃb-í•8y«û ©\^©ék5åÉô YÙcá6éÉÂüô ÜJ!Ù-ãÕ ùñ,æô®wî‹<w¸ ¦w²†1Ûh1ãAU¸Ó×½X„ª×G˜lú$]‡:ä‹ÛcÜ=6Êýyj53<ü Ò?_ŽÞ&—ÁBšµŽsßÄ3¦õ‹™m5*Ð[Y³g¿náÊ-±4¬¨qº¾‚§Ýˆf·f” k¢¿äÏáˆê~›‘ngMD–÷f39Çë*чôÄÁ¥/Ü®Í š~ü`C0êKoúPÄÕq—•_§€lBÞó[ÚûØ ã’•K3)YÜÓjÙôRuÿõòà j‡š¾*3¬ÁˆóÙ•oæGïB0fð;øâgÃ)J SÀ䓈4Ëh"Â)l÷ê_Þyšö.}o›Ê?ŠöfÚ$Ä×JtêoÝ’I5«MúvÄz"”:xŠ\XQÞq¤.í(µ7›_‹ ÂF‘úfø„.{õ vŽwû6r¼»‡E|ç¥EÐgå>º·tiBCKÁ³ ‚äþÏß[ÕPR`y©ªÁ™{GÔm´ÞÆÝ6ûa×oo㼰˘ñBzΜÿ|Œû >º×O‰ØÔ<ŸT÷¾yXw¯‡j«ýî}AÍO?:Uؘ@^oú.zöD+ ¢Ë™Ø)ê ¼ü •OÒ ê­\ñn Í÷“׋ÞÌQöÍ jJ|;è>Œ^Ÿ³£ú6¿¸L>.Z¹øß§ûpÞÿÈëåo‹5kè+sóI¤îKÁ;¹‹ON§† ¶Áåñt ð.éd ¤4Eó¸Ó¹&ËUC«÷Àà.C}µtª…šKŸ··½AË9}Я/,¦Ä‚‡'ôÏ– ü¡¨/ÎI>ìàø³²n±Šƒ%Cl•Ùr4èìSòÜd¦TOjÊõç×ãÖ¼¦R¾uJk–fñ†10¬Aºf\ÄØ2â»Ó)™I#¹á%Jï†Qœ=ȺK”>½x5ÇÌ×°¦`è…<®/‰| _D7‹†áš‰ö%>bïRkjÎå’™hæ ›ÂcçØh@"5Ðz W^Yvg@-J-‰Ëa݃ƒ¾ÿHí®ÐŽî½ ;Á*,16LECÔüÝî ˆ~¿°e¶É“º`yÒ%¸g˜/㹘Tñä$™$òy†AN|u4-ö`Nþ&É|›c©Óõ¬ìÍ>ä—n¯ÏÃhàKSÁz‹?DÏެi•dnÙ\áðî¬^œØ†¿ …#‚ùbî‰n¾I‹¯}­ïÚ·iaéz0UR¬ŽòéB«ÊŠÝ¢¦Ýê]wÈu`©Yi~œÕ)¸Ë¯È³ùª„8mZå&äy+×(*dƒÎ¾·2À’RúT—trV€hˆ=™JítøôÒ’ÑCY»OPùŠÁó¸o9½ñJ‹­Ó·«kE¿QÀ$¸ÆáHEx‹ 8ÊqÈ=´K§‹R„'9ÊÉ)îhwC1ià|êzStâ;O‚§æþ Î0r(%‡vß¿.€ÿÅ´ŸHo]Þö´ðNË2‹Ã`qŠË>¨C+s€V\ªëõ¨Tn ºkYq¤™ntË=cÅC :÷½°ŠãE±¦»>2¯“ùMuaíÇœ~nD7ÈÚÊìÆÒiùÁD†+ý²tؾNRtWîÚn‚>SùnAýﲊ.“ж´™úÜVX âuUýAyÖÙ@j+9ž ­VË ëëi[',FèÙ4vG {nª‰Þ¿XÏcòÇlrC›oQ©·›]aÊrÅž|Gî>ˆ·mþ.e·¨²§‚íÈï… ûÊŸ®{‚Ùn? }L‡¸#ùð–ZrãÉ>Â3Ÿü¦\5 NøF§0·P¥fŸ;Ø4À²7æbEüV`‚îƒÉl¬…Kã=+ÎgYpD‰ƒZ¶„Ž<g9kÛ yh0÷¸'`©E U#ŒA*nEb²*·jŒ0†ÚÉÍÏdÜħ+jpóŠ~¨YïÑh;?¼?¤ÒòA€.OBŒç¥a¼V†$¼uÑ"kª¡Í¥&°c™9aøn„뉘ûδ۳Ès©`ÚüÜJ(­¼‹ q8ŽíÜ穈ÃêfAxë^™ùn­’÷ËøÙšöµº5p¿Ó}›t–UÝöû¢ÊmW‰çÆ8KÄ’½$ÞX*B¬âú~E'ã—„r¤Ýì._ê¼í`·ª Á眸ªF–®‡ ñw¸bzØ>1 ŒQô½ðŽ8RÂÖêÜ”S½üa#GþÕxÛx>·^3REßÉÔ¾7_ÓÇ<ê!¸Lž‰<„«7Ó‰þÁúmzXÿ~~˽ “MS«Ï“Œuñý,ó~¨?ÓÓ’¼Ô§e8uÙ­F( 8´¼øŸŠÑ#ÉD+ÒJ”\Æ`sWÏD÷}òÂ=,hÕIk•ã{¤,÷¶â¹˜(³û’ŽUô%`@‚pÑY˜v¼æµ7Çï):ØáèZ“‘øÏɸܰÀ.ŸaÆ’} +åNÀ€_3Æü𹞱W!÷ŽJpœß³7»Í÷¡&[ÌÄ÷h˜Õª@õ±™§–©3¿žE-+™„¡Óá"2þb–8îb€ã#¥ÁWÕ?¯\Ÿ’{™Ž}PkiQ¡µçqð©sÞºöÑHp»«°à$Y˲áÓ;Áëçd_=óå{…-©æ·çH¾ª_š…üž/ fጬƒ‹Züqré*µ(ÓÈMT‘]©uclð£w–E ;»G7îÞSGUwvìŸ÷Hû; 1ÏDéE¡¦ï¯ ,@‘évGÂ\[¹ðk±,ŸŽÀͬ\øî¾CI*ÄÑÝ9æ[×}EQ6G ‘*µ3d0àt>)ƺ{·÷ Ðå®%èI#¬6ŒP8ùD£ldc­ñV:¢=¢¸— ›R}°ÀLb^Ìl]Ž*5XŸè Õƒ˜gÇ{¦$ªôöASî²ï·{EÃàÛñÆÍcù›þf#ê>úqØì ùžOÇu»³_Û6{ÏÙ¶V‚U?Ji`sÄýjà@dm¿Ý!â†HxÚÏzâc*žoV!D„áô:ܔ쮈.Gcq‹É-€Ü“ðÛŠÜðÙþäѳɎ´]ä™#ˆ¡R#S'ƒãôãSß|ÍJG½(äbÁ}ó„^*T ¼î`í4ºsóÔaã14 ’õ9ž$Ý£;Mõi[®³Æ~¼žÙkMNØžSðJK›7±»ÜÎQ°·‚tš-·3~]±GƒœV[ºÜ(~I»¹«|Y¹qÙëì3åÁù‰Ç1’-û0ÌŸÔ—0'1üêUUøò¶Eøeß•­Ãpæ›~šCžòŸðcr…ë%E2~^‚•¦±¢:!ÓäßÔFõ•H8ÞˆßÕ|ÄÓ@¾$è…ÀcýEïSƒzxT•ÁH‡fu0Vð©"¹`Õ4š2¬hü¸:'"Ö¨èJ(%¬°¶FÅœyZðeíl‘ÔM9_òR«ßÞçšîíbæ˜X´ÉL›tØ’Š®›ÆÓ:¡T 猅9ÉB+«œ®õá®—f£Êœ%ðßú6Jb¬Î:Wu»3DwÎDà \%çõ¾T{ŠM&®YL¡èLtŸ~k$òÅ0ÊØ»i‹åHZç·Þ,R k¥#ãL‘„Û»|±ò Ü’ò³ù³ù`°˜ô ,|D{ÌéêÏ^ °LW1=}0lJ™QÊ™ ´ºòŠ‚â«/‹_äà¶Âäß)† {ÕԖ·s”ÌšÖ(–ffÞÍ…=nõõ,u0̽}YÐÓÈEL¨º3¥Jl=ùB@1ZJQ>?®“öyžÇ€?MF8ÑÀ?;FvÇÛ'ÝI@y'a#šçá[ó=š¥16ÔþL6Gbpäœ9bNÖckxá#Lêý9kχm]ñ…ÞdûûRqT°¾eqÅ@N!¥êÊ[úæ7×1~þ°SƒŒ^ä™èau„ŽwQò| ÖA.Hˆu¨I£—ß© Ùˆú¢|%~^’Úo´Ä@M¸2Ñb§A÷ž›°$=3À"‹.>TZ†h±™°uWiMù„‘%èA›ß”*ÓOŠÂÍ(úka>´½ÕI¥Aç³l:Ûæ3¼U‘^»ŒÅk|ç ÉŠjÝÃ3RëóTéî°íûW#­’x¸É$ ®Åþfc¼)JE IQ†üºÐ© ™èj‹Š(Çœ™îÃ’÷œˆ ô¸fÙé–¨!nûõ>”Û/ïv‚7C|8¹J•ª#~?99f—- HOÎÙÖºkQc­áç|𳏙Ôá: µ×ª ³š õWu>W%ìpÅb-Ý'§ck× _í;e· -ñGu@CïÚ%gΚ£QvHL3¡O9ó{Ð Œ7‰ï³¼âîð]U\û=¬½|PdÈftD¶Õ¥¯6ª7lp³Óì¦Î©ÁÇ ÂU_{ŽƒÈë¢(&µåܬš÷îÄ0ßÁÕJ“¯y GR—½ñ)4/H_B‰OqUÎ‒íß&Í——nû Î\H’ÓÈu]Io.‚Œ9¤òu\®iv±»‘Ešý»ëÙèÇ¡26¸]eS¹’ë‚^¤ÉIZJtÒ4kSݨ¼È;ÊYÞæòjSb÷ä20³•Û™i$¥”ào*¥¾ûDò‘ˆô‘AW*(ÁE”ÈÝÖw$’WJë¬ð¦õ¦”§Äôî(,)WFâe§µß¥Š-¥º6¥‹Ù²3ÚW&ÃFPiLI7,ž·÷0VÖ6¿Rà‡â—µHZe˜Ó²NábŒHòÀûw¡fÉÂäWç|`¢²ï®Í¦R2憩‡r¹Àm´•{Jýïéì#˜ætæ#܈ ÓÑfko h™'äøÓQSJj•Ï0¡›Ú —F‰ü¥Þ}½ -¡M,ΨÎ>/“ŒVwÊXs×£÷[7»Eà¡ÏQU]Ùõ¹Â 12LÞ»Š¥GÕÕ}ê!V¥´m, có|²¬Ð}hjÀ;èܽß©_`ð\‡Ï%°q1T+€¼?¤Ó •Ç:~aÄÌ4•}ÕytepAh=µºæÅûyù¾ V“Ù‡*˜OßÍ—ôyLáz¯÷Ík ª-oà®óm1¶’ÓCøa¬ÚÖÔB™ÌÓRNp¶±- –¨Àεº&ºS³p^U‰öÁ½ÏÜaÙt6Ÿ4<­Ú~Äz×θ,|µÂô "ñÔMÄãüªk»§b]ÄE s]=° LD—dl}÷JãK å-$$ãv·¼ˆªóÖ²"3üâÌC{‡Ë¬Wd‡5á‚»«ìÐÓŠ¿K¯Ä L?HpèÕ5˜Ž}™ ‚_¼ôr´S¿‡ƒ ~Fþ¬xt‰ªCÁ¥Ñ·: Ç8 ÆG¸ˆB#©¼\ÁJ²Á"2l?ƒÍÕPíÌ—±Ø„e7ì+]Q¨ê[T%r‘Y;ß½,4*à ƒB;²šãÝó¡©ŠŠ/¬J©ªqbyÂkñÝ팣V£tœýá‡ì¨…ÐSþ]så¸éLü‹º–øÀÏÛˆ’Ìí Â.i¥JøÍþ7²¬ÀÕAóÆ…tSyH—O¶ÔòÃË—jøBR£¼HÒÜ/ó#u¦Éò¶¡ß…»(,ŠÖ…ùuî|ïJšQ:ÂOA z {Ɇ(Šu;nüÙ@#q;Êz-ëS„AŸQ›5/š:Ñb]îƒ<>/¢q’ý~Flé÷89l›Žà÷ eR“Û7%+-¸UÏa ú+We[ÚùʺsÞHGÜIQ'm4o¬ãÒ[“ì@ÛVªYè-lY­§4y#ï!V}_OY…:‹Øy«jajÿaëÔ‚0Å9ùYï‹!¿ɈÔ\DÄ„R¨Ö*[ Á~™â}ø©åšÜûJÆÖeu>ƒÀ}Ö4ýH„u…ó '"ûcB³èù2|ÕÏRõ×ÑÜêwÒ©QKCæ>‘Ÿ“oæZ™¬Oa˜îµuo?0ô‚Ùî…—îLhØPXh@“ÿt si0]¼)te®è¯×„ÁàÛqÿ©Ô’&Bƒ/7áRÕ_„H ‰\Æ—õ€q²Eq£¥Ó­¤-°t‹qÞaýè0Ò[_±+ÖçÑæko¥q*7ê4n:ÔŸUé$U! ­‹øÞ•X´{B_ïz¨²ŽÁGìŽV!ˆƒ4<`y:K÷x¨;!cm-aµÇSf`ýQ3F9ÊSCzcL˜/–IëDï½P:Âz¡,9â¬ÀÇ£0xwñBÔ^z±ËòHš‹ÆnçYbšµÔB˜Î^*›•Å+ngj•ªÃ ¡ÜæZ/Øù§XLã×[áŽõÊk”uG³¸PÛ]Ëk0!äÓ„\áºGt€ÌۜЛm`í›=' 4áNå|E¨ž W®õwðâ•Ik?¢Ö`ô4q_ Ññ*p±^q³šIßÀUú°{ÜéAì(Z6¦M—F÷¸ —§d»xuÓSðž_Ž7\¦i`š\ …¼šÄT‘[ǹ<â;Ëò1ÝYÅ]œkÊQ‹’¦Ëh4-?»§zHÏ×£´JþZÞI’øöš>h½á›ãêINfVBkî£?Žƒ QþâëCžÓ*\ò„DÂMœÆ[8Úœyηɔf.¸I™Óݹb„6}sÇ3´IϳêK`+J…û óFU×èøéi,I`Ka:”e<~ õxmÞÿ  éßLf«•Ù”_07“!Ö»ë9ÏRþdGPnèÝé1œr"ò^ÕMUòVsøÁþzÙ®#Ä‹‰Ì{z×Âþ;Êçp;œ²ä êO¯!£ñŒzä_åë,«Ò5Téî!WÉ‹ °y(ü5þ¾¢ÂovŽäîAlËaÀ·wë1UNýy[Y—ôPÄFuÄ”`Pô;s#Çþ«E´„LF#mÅ”Sc ã _]à˜×÷€ÛfJ7Ïσ4åW‹@ð±;]Ê1Þu_y`ÞÔ§¯ ÂrþïTr»¨A†„ µeªÓÕ5ͺÝ(N’æ²{œ×÷ÛW¾*Zjܨ꽽“æÁI³5Òt€)A—TRiýöb?*÷Í@5–n ¥×woaÃNgd3o\ÙùÉÅŒp÷O0ê½9;æ¾üÛÂ\»Õj?‰oÎÀ™ªL yeË5”pæÐ£êžè „°/Ì ÿ¼¾ÞP/}–HlkÞRåd*pBœt’Ÿµ¯!Ì}ߟD¹O­Ž¤ §… ËSí„/´n[’nN²µ|µ°´95º<ü=ìÅØí´¦1ˆ¬É¬ÛŒ Ð¢¯-QéÛVѲ–ë˜7?Ö½Pjº8(‹‡ùÉs©« w†$<3Q÷gµ‡ýÞº æ6ø‘„VB’^’Ÿ"{íÉjÔðæ±‹zVÚ|B¡öøÆÈawYŠ#‡Ìq1D1Éèñø/r` x¶ª3´D‰ðlÕ‰çGC& ¡5³«#ÕÊÛSå×K[7·Ê`ûCZûŠöCÎÄä:lrõãä2]±Y­RqÈ2Sk/ Lt(\šŠr"$\óú^ú[Pv씇¹`¸ÖSõõ9(`å™LƒÑÉ}N߀Úx–l1lsÉâÀÈŠÊã—²²B·Ž§KÍ(2^šì_xPŒîmöx6Ç¡¿Ý¬WøqÀ(ÐEw,µìç&¶OÑölÌüEiôgÕˆŽ.á¼*É(²Ô»H"‰‰Ït^.ô-Ž»eΖ»‰Øð†Žš­æO›@bõ¨¾uêòÕÖ²îÄ?¤ÑjÜॶ~ѽVÑ;í)‚» ”Ý|ÌÌ»–PY•)Ø/^:Ÿø]¶­¯TÄú'àN-³9·.™²ÿ^zže!zïËJFÌ FFz›»2Ê]ÜÕÇ—ÿÁ™äOºoî>E‹fŒ áø— —;SºËf\Ðú·=¬o¢L&ÏpáàJ,)|sÑýh<$F»(+ä¨èÎÕ\µu×Pl8’H(ð‹¬ *T$«7¬×¯­æ{»æ6Ì“ò328sŒAí) ÈšÈÉe”øõüMˆ4ऊÍûPB¸Bذ ¼ZtvÖž§-‰6I™%{š 2Yµ“ÉËc9°»J¬‹Ä;lËgÃQeù·‰øÐV_KbØÌ,r¸FÎÏ‘Äk¨ ·Âíä¦EÓêN~ É:$£¯ª3 ââ¦JvX“(/•Lé…3è(º‡f(ügé÷Q»'Eçú§hÍ‹¹Â½ ˜øa=üOŽÁS÷ÿÆè­9zJæmá~øç)7O¶•^8ºvõ’í^cR@G:‹Ãn³’¿®‘ô¡Gy™="’Í&ãW]û)ì­4%ecKVG»Ê¾á0åü^ŠÆåX Ë+›$ Ž`^kûõas qq¬•‰¯›Æøöæ/›è4áôãÛ·è?.{¨ê× TÉæPv 6ºlU[hÏlÌ}f­µ7O§Ý#ÿߦ„%š”/Þµ–!÷sn†èâÍNépÓæòîGÿhæ‡ç£E°«±rê-†f{~˜ÙqˬòêÜ6L·²UQù÷–h2ñˆ+¿î¦sAËs¯› ¢Æ]Ó†PÐÕ*î–ð‘õ½AÛ*aïú±ª–‚µßµÚ )¾ GNŽ Öo¥¬Ý5šA­yÎkÞÿ«Àê0û—{ssÓ5ý?¡¿hÍ$AìKw6­Õ¹o!ÏÙÇ=ºøÌ¨—b7¬U¥Úüá*{iÓÄi>Aš¨íC¹[˜æb)!?ç/Œ2t¦q6Eg7H˜ñŸãSͤjñ¨ÿ^€´Åæg<8Od¤ÞÊû»´Æ‰òw¹w ŒÖ6þç¾ör(³R ÷,ð´œÙ ¥Í?¿Ü†Ô àì/¬ô£…½FMy*?ÒÉŸw•qµ æ“)èóA ûYE zÐ6ÆÓg Hyœøm6 ÍÉë¿PVˆE›LfÏÍÌÉ-ÛKa›7´lUH&7å@«¬WMóªd ÙËü^KD%ŒÔó’q)½êâ›^c£YÝE|—8ñ$:ó7i½avœ¶q‹3«®ggu‹îr»…4!]0ýùZ8jy¹msç€z<¤[ rgÐâ7Lβö懘 ”§mùx†ŸóÌ\Ò}ŒÝÓKgÕòrø2Îå x-ާ6DS?“W»ÜS¤'°öÓ/ÊoôT!jïjÙƒ¡üóÌÞ5@ŒÛ†¡³3˜º³•аõ\Cèm럶Gr.Õ–E,MòÚ¸A}iÚžÖýA7lTá¦Kó‰í #Œ2}=X‚Òi’sˆˆœ‚˜wƒÏýŽ·eFjùÅ&zpàÆ£Et¸Á"3´à«¯[SΪÛî3†kl~*dC0’-}`í rÅ+yˈõ%6"Hòý»!\|ÝÁNÅ’§n'‘ÃÓÇÔžg9Jìd7tÁÁºÞíÀüg—§´„Ò¥ÓíqÊ…çÈkKØùî3èUí¡ØžYUßq›35D x[³ û¦j ®fÓ’´-\-ÇâèPƒ?¯›ÞÛ£Ê\µ+'oÆu†Ð¢@¿pxBW‚-ÿ—8¢òF“ónå2ýA•œ4¦+yWæìž^dwÆD-bõ·N¤DI–ØÎ$Òµ&æg˘Þ~:®óÚÔÂðyíá#•£¹b«e¹ 1ü¶lü©Î=±ÝßwD®êߨWG}'Ýw)ÆŸo;‘Wä©>gþ·Jhé÷CªºÂÔ$^ls/oUR 0H‡4qÂ1S­@gæöõ1*Ëx#íLº¢šX¨X§ä‡…)ä®bXæë%ó™ˆ}ª«xkªó£õ@­kEb_„”ôª´B^|<úå$(>l ©ôQñs6ÊŒ`ŸÊËò½m~$??„àŠe<¶Yú ªRþÌ X±§ ë¥B»Xâ¹®Æ?fJšœÝežèÒ¯ZÖiÚüî{×þ°ÈäDÍ¢]7»£øJ4®•d=¯Ê#9·G§Áï|Fú¦m ¬&õ­4rÃkP cD¢ß‰h«Ç™!ÎîË^œ¨Zªø²4žŸ#!hù]âa¢‚ž¸S×o;â­+ÓôÛúñŸ …öúûÕ çÊ'„¸É~¥0† ®¶ó^òTÞ³:yY¯Êxôx¦w¦©@é"}<Ö¦ÂþØ?k`ÁásápKü¾.ïV ‡Õº;˜/ÏÈh†ƒ7^®„¾…À%u”Bÿà«y*…Ä[ãvŒ>(÷ë 83SLˆ'ƒóXãC|TŲތɫ`MoÐ0ŽQš9Úh.êe×ó )âpà¤)°À­†?.äZÑTÉêÃÙ¬xåOÇÝ'|ÒpðBbAŒÕ CÍÕ³*p†ŒÓ á‚‚Hx3±ýïçùåÂB#Þø1ŽŽÎïî°Œ™ÕÚ®VŸ•à)ñˆotÉfó-S<á…ÂÜëñJ½Ì6ª“(è›L@ÑZ_ì?& +2˜äƒ;ûpÌ¥í±O@”„Ž'U]¾&žGUšŸÚxUŒ´ª§D 2?EÕõ¾•5."'"Ë;÷Æ\e% Šbþ¤Ô._xmÄ4?Ñ2íy×÷êõÈ®ðGz)÷•D°l¾²z"^ÊF…Æ©OÃ}¥=îiwoC‚Ðq'0„7~4 ñSƒÉÛ®·yßÔN#צÚ=`5ôR« wãB°¸UýÖHû>ýCׇ„R|Ú¾Æt±5,€Ž÷¹„(\‹: …¬- «/I‘¾LѼª–µ®-b˜k Ú@U †cÎxi÷…™ná¬ö2Ù@e„d$dúnÌxìƒ|àÊs×ñ±W/ p3ÑF¦Jû#£.!Ò£†vßœá°}MK IazéAä$XíÕRm6¥ Ô:?¾QàÖ1 »ÆÏùi7,Ÿlœ¶‹æOþ½GPåÿr´±ó=?SQvg³öÓ)ñi²^4&ï¤fÛ²š˜ïè,*û ü¦’Vd]'c$ª¬šË[Hf®¿”Jb©Ó³â{uÒ…ëø&Dä•” uN/®f„>Z† ©Q†K |/¡^-´l5~È=Sp°_îÿ„’‘GœÆ`âå/”QÝo è.Íh\@(Y‚ÎÃEiÁ’ª„±‹¨zj‰8~¬˜PJ÷µ¢ü„wu§Ïïp铇+GyCƒx¯ †¦ ¤v4t1î^™W‚O¼’—¶ }]€"aw ÂÂH xàW3:1’úÓ­)£DKÖŒø3ãWÖ)0‹•©ò¦ü…þíRç’¼™ŒXþÙÿLdþÌźsø6²Z&•å¡àMBòj‘NãõixGpÖ{Á?¦$¾ ŒÕYw v£AsµD¡t­º¢üc¢G¢Ä1í=H£Ñr5Ì®ãâgK<ªøÎ°¬ „;w. ¯Í‹¿xM=è%¤Uó(¼Kú>/'‹¦eVD¤ºw9<Á‰üµ¥Ë|æ~[8ùÌ,»/Ê6»Õ~É#Á¤£ø±ÿÙu;eL¤{‹[MÛÑÚ“/¤Ài*ý%ý‚SïÇXÛ;uuø#,w¦…S`³RÝIGE6à3ú"jôÓúNø»e'J(ÊçŽ;¼¬¶¢Ø©œ"EÜ'‹íÏÌc5ï3oš'¾mô—NïäªßôÁ”µO’­­ÍëR×3vÈ; ú=+´=áæÿçÓB¡µ9q?u0btWð òN9ÙòAØ‹dµµ ¶uëñ‚wャ+™ãøeÕH„&“`=Ή;‰™L´Œ˜ßÓØ-VD6”¹³Õ7Ýæ|㺖V¨÷Ò"X·r1)ñ[ œÈÀ’D|-ÿ+RX…x*#Ûí2´ššlA6—泉¢’Ý%ÑË’í`D09Ô•‰ç¡:ï½û#®MQ 3çr(øV þWáaW+…蟨Ås—ûõ‚&yï!÷:¼-±ØËá©^b¹qÀˆÖLcÛ ´þ«fþYžÞëˆÅ "è V!3Àf5ƒÏ´ƒëìRW"྆WAê áþÏ8Š*™’Èx#jiÓAÎYBŽ‹t»@ïÖoÀ¯ùCqµâk‡dÙÄgŸeA%ûæ=J©·Xý6sþ÷Võž+~S2Vh;( }úcù,íoöhŠœ*Þz{"šžÕúÅÁ(FOÍ:k£//aº‘G²TµÃ ÅU©A‘4BPGAøœùåøî]l›®ñðÓb¡>7(žiöAsªlÔPû@GËȹ®ã¢zzõ—ÍAæO@b¾Õ •Õ jËÙ-!GV[Ó)ñÃdB§ù,h"·¥Îˆ]D¾¹ºÑŒýl—mØt¶œÊ@ (¡5û§îNŽó^E†è‚XGñ¿êÛÅ: `ÄoEGešH£„ˆ*ïV€— jå^Ç]Ì .[0Ë;ÌZò•_tÂòð·oHEëæRwNøßµ;öŒÅ3A7NW¹-‹ÚR  VÖè-êPWÛôôB&ÓLøe¯+óൺnMɧÅùŸD…‘íÿtžø™HæÆ$‘2án›æ -¤¯æLé5jò «VmÊb,uÁ§aëoǵDüQ±}å™îPA1=ý·¡OˆžsÐyåÖ/Ä·Áê#Ìd4(`C ¢}Ì{3jˆÏA™§Tí|›1õ†I¥7'φ×Ká¼9>ÜuüU £pX†ú‚^‘Ö£ƒ*ù}‘ÀqsˆÀ„ºÁøbƒaõð”@¸Š™„òVvïaÐæ}D´îFœèƒ´Ñ+êÆîù"âåÀÎã rêkûrÄ[†<œ%LؾZñ–¸]§$Qä0ñµO­]ÜÉ«ð…Yø2y½3ßHQ—®ð· Z6_åä}§-ÛF,rHøšÍ·—~ã­æ—×ùàþÎõqûŽË¡b¾TëfÑr:Æ¥Âÿ@sRÖ&6Ï„R7½c-)¤ÎùC”µ…Æ=ñ(¹IŠrÃeœXÒ›-Œ–Rã(«¶ü4sb1vg¼Õέ‡gžg/‘Ê“¢Ì措¸$° ¨ãsÂdW¦™ˆl‚2ëµWæQ¹h¹òú‹UœR†^ëö–/3ZeŸ•ª}„)[iÇ…‘¯xÕÁ*ÁëÄ}à‡Gã÷^i¤j8qf !¨ô}Ý÷Á­QÚ«npºýåµÙ™Þ0ŽíÏÉðaƹš‹Wßbù*4ã©ÍÎzÇkÙ&°”ÿu?.Nýär Pþ¬è5ÓÞÚ@Ç¡sسt…‡ÍÒ¼cKa-Ù¸#{%=CÒ*x8Í¡ØÈ²Ð¥»Àx’Ò Š}ÒX¾žÀ÷#êUÚiÄ}#‡ö©o$#¶FK \ p^m6ª‡w´Ô.~²ù]eoÂ2Å Ï×UD{ëçOCÆFëéIaÛþOÖê>¸°Ìœ=HYrJ½ÓÆKú¸Jxkå—áxÎ~W½ÄÞblÈñßg–1R;{ö˜ëÊž+ ÆŽòÇ ’Y ^¶“O1¨­AÐÚ2I#÷ÑÍÈhg°Ü0EÄYÎ÷¼·Ý‚ܯJ_}B¿kŽ%æ0¬§Ê£e8]œÃ¯<Ï7ƒ¬Édãá‡âþ–†˜:SLÂ{R¦ÔLáb±-' ›)ÜÌe9h™££ûš˜jÞ 17ü8!!K?½VI¸7¬‡¡×æÃg'’’~»9[NÊ<‡6÷tmÈðÔ=Ä›ì)nÚ4Pø«¦g…H^›%?÷„d2ý•ó×ZÝ|V挈›ÌÁ•6»,m˜Þ¹ÉÊocÜEiãÊÃéy1z‘'*'¯–¿ÿ©Výd˜¿ÐcªžßóÎÜh&jnïÒëŠâsègÜ­fc§üØG@ }à-O&Žá¢úÊKCŽ8ÄŸOñ‹¥™ e3ós nì¸WMuXÇs¸­}\BŒI9#·bµžî‚-Ò†ØôãÒ*ÛOþþ';£òw¾¾Ù9j•RY¡AœŒ‰§ØËKÐzp^o+lg%ÍÍ î·Xùª»2qpÑÙ£-ì›\ì)"¬JXWè Ô3l"ÝIƒJÌ…!íXLlø©“ú8›n3Ș“Ï‚i.byYFr¢x¾=Á;¥û^º½ø=žÂ~EÕ@ŽñVÃne«k^w©„Ÿ Hž(!¿If¼½ ï3fsáú'?øfÔ¬<³D£¼=Þ­–yKx0};ÒÛùV¿?ÑŽô^:®aÓ¿ÀMmF®ZlEkâ&Z%Õ‰»æÂz8ä h¾LÞT€<»ïó*æþKU³ÔvCêý( lr²O¼ýÎÐOIvœŠ…sÀì,$ÿSñ£SïœôäîvH}û1z?|Ÿ:© N·=xš8ð\3,©hÝZFâo˜–ÐÜ„tMt'Ž‡ì ·LO/ófa¼ì0ÑRjoãî"XõƾrDöˆÈ&Ë­¨ëVåvow“;‹MW¶ÍÉ~ÀM&Õ¢âÿ øÈð­öùgê3×ëÙ;EË~¿J• £$<+ײ¡²º€¿f³aq˜IçÔ¾šçÑ'‰×<ßnÎ}­¼ÂÎ^ÚÕ÷ÑK[ˆ…oŽ1)pVüG”<‡ñ’ƒ¬ØÛã„èÚª/*Zµžç4à­ ^×@Àï¶¥MWò¡ŸClÀjV÷—ÜÔ_KsÂ;‘d;.™pŠcm-ô·® Iï[æ ´‘þp6ñ§L‚u.,èóùWBß3çíú_8döò œAÑYmÊŒîx0;f3W&‡à8§ŸÁSÉMŒÎÆg@ˆÙÃâÙFîÒ¿ œPdƒ&„¥E%.r)KKämwSD[¤ {ͯ°É»Ð‰fÃäíŸ7 l¬UVK¤iâ¼ï•¥œpŒBS‚aÜšåàÓú3‹‚&$”¸¥;)ÎB Ö9Ô?‘Sb/Dç»ÛÎ\}áê{! üQr‡,Á‡åÓßÇ-|Èvõ(Êä^±$áKnqõ†¬”У¥gÜd|s²‡9qÒ¿F–·‘¯òZÙ[[ÚnÕ»ª„ ›g| æ¨È ƒÕµŒ’ÍðïlîÖŒæZ¿1jdÏ-¾«¤#Y‡<ˆcŠÏX²›®øí´å—<Ú„Í‘"­aÃÆvT-9ò¼­›·oˆ5ܘ˜fsýÇÊn:l`È$éO¥R„ÐùˆÁ«‰eÃ#ìVK:ÍfØNà ÆäüH…á'»Ë׫‚ga'Íg2ç =I!ÂJ&Ã*TW"–,ìŽE‡$¬@V^áÍ̆‹ŠFR|(¥ëNèÈnÝ ^Ï¿/ýHõ\1ª‰“=%g>ÙÆªF-Õ}5WTÿ„Ð %-B2‚¯Y”1—¯Æ;…â{bQ†× 2¬Pæ<ò,/ê©1n /:‘G•ê¥aW¯¸ %Ÿ¾®ò O8j3mÁߘ­’ú{·1.æ÷“øÇåï&_Å Ð5‡Kʳâ¼H9¬óÿu)ºIéÞU3¹ôD—Õêè9[^€t;#tiòmNr‰`Q®¿¤¶9ƒXƒø3Éñ Ÿý(ö@>^v«g>šÿ¦ÀXl^”½Æ& ÜŽN¼ù„“-h¹î¡a?#§7FäxsŸÀiW­aBÔF‚JûE…dït»;éð!R€Ÿýž÷Mâ[>qÒ‘ ÅÔ„Œ©¯Ÿ„ë|FQb5¼˜l†ïIQ‹>ËÆËMå;u‚÷‹Á·ï„ëÑPHª‰ ÏÜWãÀàæ(jFùp;+ ÃMr ›·.+gb 怈=ú}n@ÔÑn¼ØŠFÜ7ù¬Žþ"+?6µq–µ‚E¿ëš.QI‚ÓÈ‚Êäž„#ݬGOšv^÷-¦”ôf¶8ÊcÀVºg¤jsåæ~„ÍõPòà@ãÛèY­Õîœà2O¢?ÞŠÈÍ=¸#ã×¥5ìÑ|ƒLs"Gi«i£¸d¾PXâX*\W3”rƒg†ú¢ß9ã÷ÐÌàAîv†Œ¹Yn1?C%Ù?œÂ?ÔéÇZ‚OR°q­8VÖ x¿]«èŽœò«À‚—ÌWõæÒk¿±Æ=©eW*`òTï¾û¢È–9¯äÓƒsD=I.7†í©Ýõ%DÖ1‹€%'Î,¨òr€4äo—9­—Ð÷\í Þÿ{Þcå‘ëjÖÃ9÷´!˜>aPûîÓUÂËíg‰™ H´m—Ž{˜pgÉæ%GPràr‹zÉRõà‚à  ÍœRõÐÕý«GArC#ÂÑàD‡¸+_×!Ø:Ð:+j?^lS‰¨BÛK¤ý±#Ì=F¿cLáó.^Ï%2Å4ͬ“ó7ªèˆRÉ endstream endobj 215 0 obj << /Length1 1769 /Length2 10560 /Length3 0 /Length 11680 /Filter /FlateDecode >> stream xÚºePZÓ-Œ$HpÜap Üapg€ÁÜ]‚w w ®ÁÝ „à—#ïsÎó~_Õ½5U̬î^-{¯Þ¿ ¥TUg7w0…H;@]Y9Ø€‚ %'äb9Qii5¬]í ›Qiµ Î.ÖPÁH8CÀ®/6I°ëKœ’ ïfààpð rð N Pàœ’`wks€@Þ qA¥•ppôr¶¶´r})ó?? fŒ>–?éq{ˆ³µ P»ZAì_*šíêfÖW¯ÿJÁ låêê(ÈÎîááÁ¶wasp¶adxX»Z@ˆ³;ÄðÇÀe°=ä¯ÉØPiVÖ.ÙÕ,\=ÀÎÀ‹ÁÎÚ uya¸AÍ!΀—âu9E€Š#úW°â_,€¿ÏÀÁÆñŸt³ÿHd ý“ 63s°wC½¬¡– k;@EZ‘ÍÕÓ•†šÿ¶sqxáƒÝÁÖv`Ó—€?;¤ÅÕà—ÿÏÅÌÙÚÑÕ…ÍÅÚîÙÿHórÊRPs {{ÔÕõþ$­!f/ÇîÅþ×ÍÚB< > k¨¹ÅC˜»9²kB­Ü r’‡¼˜Pÿ±YB\<@ O€q@<ͬØÿH¯áåùÓÉñ‡ùe?GG€ÅË?k È˪ ØpuvƒøùüÛñß•ƒ`nmæ 0…XZCQÿÉþb†Xü…_.ßÙÚ |ÑøÇç?¿ _äeîµóú'üÏûeW{§¬¦bþkâÿøÞ½sðø°rqX9y8üü> À￳¨‚­ÿîøUjáø«Ù—SúŸ†Ýÿ¾†¿wƒðß¹”^D 0ü£q ÐìåÇÿ³Òÿ¤üÿ ü,ÿ7ÿÝììþt3üéÿÿ¸ÁöÖv^¼hÖÍõEÿJ/[ýߡڿvV bnífÿ¿½r®à—=‡ZÚýç­]¤­=!æªÖ®fV‰å/»æKfg …¨:¸XÿñªX9€Àÿå{Ù,3Û——ÃåE‘º /‹óß%¥ fæl'/ìì öB¾‰“‡àÃñ²ŠæÏ?5 `gƒ:¸¾P/ãù,œQÿ¸Q^»ø¦¿€]âÄ`—ü Ø¥þƒø¹ìÿA/<ð?è…gúzá™ýq¿ð^žû¢9^TÍù|‰°ú|iÐú_ð¥’í¿àK)»Á—Zöÿ@ €úÈóB…¾ê¿ü/•þií…ìð_î—Nœÿ_:qùä°»þ“ü¥”«‡Ã¿Ü/ÕÜþ_’{ü9_*{ý rؽÿiäe(oˆó_Éþë¶ÍÜœ_Þ»?÷ñE ÿƒÿ|\!OˆêÒ¼ƒ™P¨MmhûMµ8‰ëîøÛÚ]ítFVŸ%ç·; äƪìà ç+ñ”á¬Õm)†K±eŠGŸ£–zäðÖ$µ¶{ßãÐÔnêâ$þÀDÑ‘x]? )«†Øžï£“¯V-| l§²Ýš}XˆÈKoXõÒµa»_ä¹fqÕqŸœ#H]«Ö/nPðS×zøÜhÕ·à l4Çéñs47õ. ï½%Ï€?|pêÐ êm)‰€L°U`´ÿÄÏóYFa.õ)Â×ïÍ;Ëáä{aæ ɘ>\vÒ’¼ßö çÈs :7R–t/lŒþˆ•Í&ÓW¯m÷Ô;ùU”ˆï=“uÏ–£þ!Ié‚‚1lEx¸)ú—û£êŒU µ0‡µŠñ®ËZQ[ßôµ¥[uïöO|Óï6+Ì®Ha7ÏI‰ù¿ï_çÚ«–3zÒßmÇÑqòú˜8ZÌ[aF\O<`!ÇX#ÜYô^”É‚bãÆ7~îjŠ¡@êB¦{ S ± j›åï}ù¹Õ_¨r%Ò»¾-ÿ1ºN<—ñãxzy¸~ RÛÜL2ÍÈÞ·ˆ^'1„<—xŽÉ¿›A¹š×Íg8tƒÀöÖRœø`úTÖïYŸkùqR¦\åžÅ=™F i6)W-)@ð„²ê0¤åB n-˜ŸšßE)í>Å(-}™â´ÄQ9XaÃ}¯ÑÇ—Dx×è1‘À(Ú_,ñj#/UË—ÏhË6ëãçKy¡/f¯Q•»’™Î_/ÅÈv}*ú¾ä›•8ÛK¡Yôl6V¹Qp€1\j7°™Ä;m•É‹¨Â¹´Ñ0™ON¡÷Ý]ó"sË®]Õ—–Qk°ÃþwëByÙ›7oéÚÁ¨û_ð/äc{]ÒCÉ Gk3½b–ˆ}}@Á1¼}õGÒÞ¥ÅñÙÈ]#„¥s¦?Öq#JhÑŸÓÅø¸ÑÄžað~p3$’¶³½…ý£0ù8mEïøez›Ù3Å}LÇ/¬VôÃ(¶Ì<¶$™`Z°Qc\CþLn<] ÷©ã¢ó–gÌÃ&ž%]"N<én?M€ïܵ=-œˆFÇ„mõæ«Cg·÷ÕºbJШ&·qmZQbL5~² .K²À'¡v4ób¤æU»”1âÎGô$ÍÍóK·.Þ­t‰ù´Äýº—ô ‹èAb›i˜\‡y2¥2¨ŸâS3Ìï$A•§öQ“k±ý™Ü™Ø]<¼aîæØúryTŒÐwèF‡hÊuÁsÕ²x(â –@|9µd¢sáu!¤´{w_៼ȳ2K;b®1N:aÑ"›ÃqŽr´Õ ä:î)#{|~õ°våâU Ë•°¼ÅدRS “º±˜3ï¾×Ø%\óâÓ§Mr­šØ2i 72T~6üØ‹ÉËZdÕïfª8—§ärD„0‰üX-EGÔ{*’r©WžŠ¶¯7›,;ec[¹A9ËQë §k!Iô¬Ü=mñ†¦ctF„ÙJ”V[8i³.¥<†ð:E: 3¥;2³]YÚØéå9“[¹’Ä‹r r»..yÑ‘HgPz_9Qœ`ü¬n“fSšÁð!ü¼)”)„Þ™&VŠº÷áè*3˧ lWáôóÒåÑgÝÇ £y½ùAíˆy=Q %¹°©fÓØIAƒ¹ '< +ÇçßÍõ®éÏ‘qˆè¥2"¨¸ aáx†ûêQõc~õ/XÔLÿn²¶ÎŽáæ&a7­T~>¦'θ‚WXéáÚíÀ>=;¬ *W±šÌȬk1*y#àž;ïÅD‚L/gïÚ‡)«ü \¦öàŒ¨h||¥µËÚÆÐD)ßФ÷ÕKg¥£”Ò°Ê{aUl­1ðó-:ÏÏH˜ Ö¸$IÅzcç%ÙÝà 'Ëà’*vrçý’`¬˱*UÚ¤ž€/æ?:S»<ófÅÍŽúÓGZ'ò tÍ×B™?Þ8Ę›Dˆ+Ý©š†F‡±B‹Â«\ ©Š#ì,é†g ¥i˜©¦<æ8SL*R(<ñ¯k45¬îˆÖìÜ;ÚHŒaog‰Fi%²2ŽÈ°˜Gš•bQæÚ—Uïµ>$ª8æ ºšI˜´Îåm³bûj+ùy¾èŠ3ôÓ&FpÈg¢1¢Wá$ϼŠJ9ÆÆn‚° ¢ ªnÐ3~3æ^"ûê§ ›_ÅÜ`>/bd¶®õwà PJoÀ•e臈ñ‹õ<$ BQW1“ËÅþDbÍÿŽç‰io 4Íó;´CŒ¢[êNRõY¤5Bƒ+w¹rlÔ ]ê£é–‰àÝäØR¯ôívìݬKê}ÜtmÈÁ'[é¢4æ´Ïô™;×ú?˜£'n³$M‹2/6&tDI¬`z·\B±} cÍÊN…ÓhRº¹ åCŠjâŠøÕÉÅwÕåo¨åwja~w?õž6“9ñƸ0ã:ïåß`'(ðé)JR S.,öä8JIEgm\{é‡ùÙ¢å>Êäç.##ÁŒ4ðF "…§¿aίýì|¸Éöü¸hôímD}@U›@ç®w¯ÜWJ„OÎØåNeGñÈTn$MCS!ËXòVEÁýèkv¼/Ë•£Ž8àÅÔW˜‚Û“ž·ƒÉgC;& HZ])§tRRp¹A¢fX„ó7¸è+iƒ||µ¬&ƒK4UJîÈ?È~àûÖ½§sé‹G¯äա쳤†šO„ë'y`ï„ABÍ—bÓf(®KŒß';pbl ¯µ•¡ÀEÔ¾îÆ„#÷TŠ—ë4Bí¸¨Ð§1—Ôø¡7u‹>ÝkÓ×ô=8ÉÚW…m_JÀÃT®Õ¥ÿ²wüæ|æP=eC&§åo¸¢ù\ÞR¬ï+c¦ÈfÎé-g+ ÚÄâTP‚ÑSŽØ6î÷Є ²n V|eñÏ›o,yÞþÔ6òe@ô ªï{^þ(@^ݽìÊO€å§œ{1/+9šœ˜ÙYžYLÑIO8 ·ŽHeèÛ(ÛÙß•°$¥Ã9d²FùÔãÌÆõS’[l% ¶E©gÓiãùh‘ÌÃT"­?¿.ÃøÞWÒÀž–¡m†ôz—#i‘'×+¿Ž„½uI«u»ªäb©¤¥÷,(8‹ÉHÚ˜‚Z]•d/¶9éáÄ?•ؾ×ßæwrvâ+iwR­E¤ÂïE6,dzÝ‚«Ø ½à¨\œ²Èˆyß½7tÈÙýëÎ|˜›jíþÐ&V€"O¤Ú›ÝŸìúQp¤„úIÁ* 7H ÁƒÈ®LßZ±7Ì]•ê·*íý d|Ðr¥_½Óëã¶{;Ô°¨L®\ÊÕßDΉ¡GÄ1Ö(‡X&n}ü”µ<4Äuf¥·šš*#Bþ~+¥˜ÍØ7æ"¡QCįF0FSo_SX¶~EF„µÓ|pp/~ŒÊeÆ®£R£õ~ÛGSª ë&Ü„'Ï ’I»©_ w·_ß©# ½¼ímË­›Æ5üòVUÂ/ôaÕ˜supÖöñ‡îhíPR#÷ˆX,—zÝT³èfoM¸B‰º§ Ú8Éú¡TßòåŒM’žŠ™‡âr ^ÊØÄ‡_3úÛ¦dŽ.)Ñ‹(Y‰H¶n(ù݆™+¾skfðHê§ÌÉÈ3ažÌ~UúâHx8t[+G*ˆ)‹¥Gá¦_[Tõí¬Ý†p®WõXÏ;çóM!†Ñ’àxFMqó}øÉÿ­égh`MøP­ÿœàSGޤ‡#U¹Íiµ8Â]ʸ‰:È Q£†mÚCù;Á£DM‚í®N¹ÿº›,õ!?Æ„2_Àsƒ]Ž€ÍRè ¨dA쳘x/ÍE†’¢î! uô“¬þD¾;ºðºÜ[…–f‹s‰J]Ų°rßaÀn î¥!šMhúªœ•2·h’ÑÔ;O½] Œ¯$Æ?Öï󘌦²|ßdŸýmä,Ä#J,0²øSD-[yAFÏ9äËÆuv‚eZ˜ã[Ÿ°cÌ¡ à¬ì˜÷z7펙boß,Ñúm-9¥í* ¦ÂPÞ<äQ³ýÊe#á´lϘ;«G%Ó®æb\Äíy*G°VÁ'tëpÑ‚`ùwïóˆrŽÈ@Ÿà­}vd©ë¹­ÐÞÃæ‘Xöû·£òe]øñ¾c Wì†Áï8‹ð!r_#IM)-;Tµ¢&ØäÄq6"ßÄ;Úç‰>+;Â=ò93õð/a×…DåÌ¥îÑ ;9Y²¼5—œÞ·'.ÌêÑ­Q‚«€"ùñ²ÏL1 ÕŸõ3šúb\˜Ì,/Åýím-ÜK%ø×FqBÃ^¿ÐpÔ‹3€/ ͳæsl*çlL VS,¯ã«-rìzÝ„o.¶Ï2ì~¶]Ö·ï(J}ìY˜dAðØuð®;ËjZ}%·å¦üN“þ¶îw,A¿–v^4¥ï,$S§íœ=ÀÏåÆk,'ó'ÊŸGäÏ`׎ËRzDÒµbäÞÁ~µË`¡Ìk¯ƒ"‰3y˜<Æ º.{¥HZ„í¼ÑNäLñÎîÉÑ3>G‰/y…Š%oŠåßµ/¯°/³@þ·…öϼB!±(îª[Œ82UÛ»ª„´˜µ†´q*®Aq-»Û„víâ¶È[ùoD†çsßo6Pø5ŠEO4Õn?#~>ׯ¥Û/eD¤¾_¬ÎŒž¿gÎ' Žçܳ6Îøü.ÇÛáÄ„ÔPâpÐÐŒù 0h*º5´‘)dä¶¡rW‰ØÒv¿`06ô„ä0@±r{nߪ…ú™¥XC¿ý©pizBßï»üu©iü-sÛ¡«qÃ4 }à§UÆåóÉ’ÎL3Ø›ÜÚïhòÐH5}ÈX£K§‚ßE’œr£Ãˆ–ó2 PÁ&*£¾NÛ‘æéˆùë›ã\‡Äð3½­4›?ØÏ}§•@wM¬&Ñ$ß«Ð? ñî)ÝùöçöZúŸ^ëÜÊôkìÎÚ—ž‘fƒ,‰3ì¤0=’šš»çC™£/Ì—ëtìpã$uÜ(p >Ê µ›r*ÁA*^ïF2An6¬A+:žü-âiRPõ7) ¼|¤<¯4©™MÌ ¬øŒž›‰ ÂÕ¤çªÆ¥ C ß¾)7`†÷wm¥(õý·ÕñIðçPØ5âiÛ¬Û¬§¾˜WÙ–ƒ˜¾¹ ñÂyéœEÛzvSƒËíƒZw¹µë½a¸&4ø|µ7ëoÎs`%kfœßÛÞ¸¤X‰4fš¼OÈÇ|V­fð·¡U­ kÁDmѶKQ š…ËÈ ßiø}ûé a-á3]w”•Û% ]¹8l VtpÌ,í]¬€™*:• Õ:zÿVÙíãeCØæ1âpW7nÊ4Œ÷{ÒèÜ4fª¤@’fÜåæ2­-Ù¨ŒÄËe¢†™åÜkYϨ-]ÌöCÚ±éòaX—xÖ^Gõh¤òn‰ºÚ<'AÔ`xOˆ’!hÆÇ[¢>¼UÔK¥U}žmù»µÉƒ Õ" eÀ6!Û–S…!^t¡/Å›ß û"<ÓØx6ïðfD˜‘ÃB˜¹Û¼æÄJñÖsb'ßÍýÒ×¥hnO¾DùBÆjò€™œp:–@Y\Âêûù¤¥äÌ‹bNƒms]îQ !Îm­ˆùÉ@ËfÂvuöÚµ+ Õ„ðt( âãÁU}”c× € õžZ€r¾RCoíwp×Uªáž–Â=zQT^^°5’ã˜áíŠ"bo–Òº,éS» uø¶ýî„ÿªú¸©k1¢9°†bJ~éÚ?6ÅÔ~œmQ²Wð-¯2( ÄÙÖmSÐÖäsPàn,¦ÎKõ·&µˆå­ÇA‚ö¥}´Ì5$¸„‘®ú%éL1Ï&SQޱêwåO“©ùt¶½ÐÈ«=pD²oPe¾“ôÄ,ûDâIa»›¶¹…´»ë}‚y1|:÷#=ð¼uæ£:Þ0Èû­¾ é\5¾¨oE»˜’XÚND%’-ÍTùÈDÜ”ñlž¡UŽ.ä(¦eï¤ì„´jê¾]WÍ’×…ÄÓUþŸwr§ùÜRnï:ƒG¦ìö8è¡ÉÞ ù­´yN9¡Ì}^·'û3˜JÌ¿”v+‰%,Çgà[×íÎÂ2ëÈ’GñU³ˆ]|l"ðwÇøi±E‘+HLp?ù54L>Ô°€Aˆë¹æVÖké8ƒEóg±2YÈţͫ½a>Émïs²|g÷Ôì¯ai|$`áÆÆæjéWü§Ñ»ªñÞ”š¼Oì!¼»!е¶Gh–º&ò¯•¥ç¹ÑÚ:"u#ƒó¼&;ªˆöx&ŸR6Â}žžvy.®¼êà©ÍšÆÜéIsvã\ál’)h#EÞW„p™“†XzVàÉ”ÜV‹ Å'!Ëë s=ž®_ázÅÈ®E¤²ï¥p=qÊo÷`Øào*¨1NHó5®¿ï—° Ùøç 6 ð2Ì6ÉÛA5Úœ9Äñ9Î\®ÅNBMFäžâÔj¦²*Ò܇))„2ÓmâQdß2‹Ðkq3ö¿ m4™ Þ](GušÂLÔ]ù½Q˜æ¥àð’²Áôj%p‘77$‡liª+œâö3Ó„‹RÆWÝÓÌÚñQ´3…à^)Sµb7«/r<½õ&¢„•/ºŽSد+d=¦Ã(G¤…`è)Pè|‰møÌ ¥he~z+_/¼ Çme†ú[—Pr‰k‚×Ä|á#%A)f²°H •-‘â·3xGg6@Ô©5Ô¼“:®…¶û9 àxƒ5 ÕËœäõRì\Nb}½î‚®Ê_QÒ9Q²x”‡4Ü%D *õÇ–ÏwØ Ž4•tÚ2¬ˆºà©Ÿ–±õOêvá®°Jf沄˜¾Ü¥Ñá?½jŸ¢S<7|Ã,ürt…¿ãpz„Ðæ¹ß–¢ÙœÐ:9ûh¹—!'”wßËÞ¾·˜—¥‰éÈq¨È:Ƴéæ `\Þ-Û‚÷ñæ{VÍØ¿J«rý…ÓB¦ò‰5Ôìõ¡€ ?º»Ÿ¯1Öpn )Ï¥•æCk:Eý«è;WíŸ1§$>(.ÉŒºþÉ:_•ŽzUÓ:‹11ÍlEúEE6¼¾ƒWxƒ “°hì~1ê•&‚À~€Z™ÝVŒo¿„hñwú¡õ§•$ñøÞO5>$2¯C¾Ô|‹Õ}„ÿ¦F}c°‰úüC]O"ì“¡òî¶“‰÷ÀµÃ¿$ †Ð_™Š?bhi±`k“?-O…ˆsîØDù ’}õ.«*¬ÔÑ+b×Òž#ö@tÇô–›Ép(!')먼@\]:VÖ›{Àœ†}µ…Ö•èH¡rÜWqp/ƒþApîQJaOýÐMä\ÊP›Å—t)VIÅo…)Léð$ªÏÅm—±›áîß?F@ w¨ @4¾ùP›^ÿxûÚª"éÐø5úèöÑ|Ö“g2£1?¾~•Q8IµìÛ~ÍõyÍJ䌥J²^\ÖÈ(töìÃ%K¨µ¹).Ro¸ä²Vª¢=W„¡à°<Üêò<0±ÝT+†æ¹®™Yì<àF µðèxTáÎEñ‡ÞÊ)`=o¯Q˜w9®¯|¥¼²V;ç5…$§ud/¯#šØöæíwE¬Áò$·¼j‘àœ• rÚñú‚ƒ!LøÞø7ÓøW cUÑçûBtšœ‰áøÈ6’·Sv¡²ZO¶x˜N¦|ËðûK“L¸M”Ê 7e¤èûǰa¼2]º;Ue ë’êep©6Á÷D—[pí´=߆̀é*®Z@š%iŽïΛ÷V­Ã>w? ZË„çÚTD£,Æ—>ð??ð°S­zVy B„ao!¿}é$—Gò’3Æ¿ØÇѨ4¨-™üksäƒÆšˆ¹MNÝÖ˵E¼ÍÓ GN]õ„S¸<þ‘—2‚7›ùà“Þ¦(MF•°Ñ(ÝR!”BÖê-ÅKô"•åO£×¢A»,p5ïûiøÕï§Â‰ m͆ SOr¢zO~LmþTh°nøºžÐ> cð:'Ê!“':µI+¥±h•¡o¡È€ói©HRáìkÄ#•ÒÁÖ,,IÊ+„ G-¥‹Aìënþ9“Ð^A݉ñš%ÇÒiZýˆGšøô‹Þ¶Znucǯ6ηò#Å<ød¾¾­ðH7ÉHWž‚Cµ$Žï8?n§‚¨Yºõ¬táÄQÇËÆ~ ôºªØr>ù„é~#¨¸ÓãtÝx†¿_Õ”•%d@ýZ?^,N¶ÚâMþKzÇP÷ÃxPNÚ?ß5è`Üì“$tªÕ}Ëv,ªuÝŒ zd–Ή'"‰'¢ºtª±gB¢Ó³"Ç€ ìʇ Æöúô“jz‰~À¹‰ˆ¤zpä !ãlÑA£®ã.%®O3ë ql“òíÊÍ˨ûU-ÜËrµaÅ­®Ø7ì«’‘kIKŒoÔÅ€Â7\Ød¸7Õ$1änè”òüÌ;Ô#%O5ûoÚî0à%ó“|Ñ(÷£rŸ)ÆÑÎŽœØM‘­iè¢ÓÅ™ªÒ¿éµçë牢Ž5.Q7Iø¸·¸’–@‡ÊKòñ“C¤5‡63l àBÇ<îÀ+,E´|éH¶‰ŠÉ¥ÌÀ…|ÊÛ]}Ëà¥F5Üàq}PääpAÏ ÷73*³ÖÃÖ‡¸Èwã#‹â {aáNµ$“8L_ËtˆÑJ˜ËÄ0½~õ-å¦+¬;McM9¬,iˆÕŒú>èÇþaSMEdÿ(ÊîYÜ$õÆÕõÔ° üwg®†Ð÷ ­3*ÈVDÇ«†¹M‚¹0Ò›hŒÓA5Æ”ÝÚR8mv‘ÎÔ¹E*Eo¢r¶Ž{a´ÓÚìà¾óq.}Z,JOGø†Å³Q)ÝØþ¨¿»½ eõÇs's‡%/ì)•KÕ<´‡Š<ƒ¡€Æf5ß–ïHÝ_QZæï‹¤à^I3a¹AŒQYmKLfäR?VÖ\¢aaSäpùŒPÊ݈SÅKð¢!1R[HÇiZ>L+®c-Eú£†¹rŠ<e­‘f|/×¹Œý#1šðñ <²B}YÙæ’\Û@!Ç̇¢¬ Ë¥Ghö¹àclà; 5óP1-no;î7º(¼7Q æ©îšÛþÒ!Œû'ÚyÔ%õi´ªÎRuÚ(÷ïi’¿vW…š_•Lì+|\vš…hÎêK"å¨qd¡Eò•£e„¸9;9²K.@¢ùy­º›¬=C¬=ãäÒ^è¹+£NsíßÝ<ÛèE«Ö³‘?«ý^–³SÎG÷_©òwRÙ§éô×¹È"zÜì—”'CØ×›§­5„çŸmÕŠQeœ uÚ-b‘‹ .RVw÷wÃw°“7l;1³‹Ï^žKvÉÆvêÔ¾/&\TÒ$¡ÜÔÊ\ß[щs›¦[«pÆ*Ž,½ÕêB®0ךâÆZ*¬ÍlŸàD·ˆpjlRzl¢ŒïVdœø$)^0ø´q¯JJ%*÷6ï‡_°³xÝÀ–r‹Þ4﵎qÝj`{íKåT_KªÕÜÇ6ºÚ¸bæd «ß©Ùx¿¬Éãi¼ÖŽ,ùê1á¥T×ÁT¦ï›Xý¿âë>ai h&þ*R-œ¬jJ‘›úz7ΙoBñµ^ÿ.ë°øâ,!P/f«vry¯g³Õt îŠ ‡™3Q;®Od0ß%aÐPß¼ÄÞÈZ–üÆ¡éœ A}>Li–ºíí¶SÏ¡±Š¦ôaü “Øg’8Á] '`Lç³qbqnÚò`òãEÎU¥CkcMÆD¯î¸–{àhãQ¢]άeË“TsUˆß…rÈEîéIEåsÑAxòÏû˜['CY½W^šòR¿XϾ ’ÛOSGÔÚûe’«áĶ0Õàh÷¢ÐvÀŠxe›ìi¤ÎfGß/Žìæv¡ò5?îwÿ¢Œñäø0áà]ÐUu|΄+€ÿK(ݾí}ôë+Ö Œ›Àh‚\•ŒòµôwÕŒn^A¨ú>±J5½:Ÿ+=ÑNüö±ƒn§©6/ôI}%*æÑ*ιœNGš2ìr2¼ƒõÞ(µåü–„*JÙÖ¤%¹#r¶°æ»l Î[¦¦j­‰™GÐZÏ0qøûê‡_Aàèw f¾í2ôÔÌ‚°Ðùç/»3ÒÏdr‰µ0¾]©êR¡$¹!¤†´™áçÒR5ñK64ø9Íçd‡ß Õ­5ƒVµ*5½|þü?*æˆÙ$âÓÍ@‘­±€“’fíhiw+¤´E·8É-Šõne™aŒ2aÀÿ9™aD endstream endobj 217 0 obj << /Length1 1619 /Length2 9041 /Length3 0 /Length 10094 /Filter /FlateDecode >> stream xÚ¶P\[.Œ»CлCp‚»»{tãî®Á$ÜÁ݃[.Áí‘Ü;3wæÿ«Þ«SÕç|Ë×ÚßÚÕ4ª,b–s 4ìÊÂÁÊ.PRçà°³s±²³s¢ÐÐh‚\í‹Qh´Î. XàÎ@3×™¤™ë‹ w³pp8Þpð °³8ÙÙùÿeqHš¹ƒ,J¬yè‚B#qôrYÛ¸¾¤ù×'€Þ‚ÀÁÏÏËüÇ ætY˜Jf®6@‡—Œfö ˆèêõ_!è…l\]ØØ<<I3Ðâeì^l¬âöùXÀ–V¿›°tsdÓƒœÜ€r’›¼ˆPþ#³ºxØÙÙyùy@'ÐÓ†íwxM/Gà%ÇoñK~>ŽG€ÕK@?ðå…âãbæ¸:»ý|þ©øo„ÂÁ°Y¸ÌÖ 0Ê¢¿ˆVá—Ãwy Ø_¸Ç`ÿýüûËè…^–°½×Ìÿœ/›žœ˜ºŽ$Ó_ÿ['.ñø°pqX8yØüÜ<^n~€ßGQ5ý]û\åÀVÿ_žLé_»ÿ}þôïà¿c)C^H Ðÿ‡ã†ì<ì/?ÿÏLÿãòÿGðßQþoÿß‚¤Ýìíÿ¨éÿèÿ?j3½×ß/œus}á¿äe Àÿkªükg•€– 7‡ÿÕʹš½ìØÚþßc¹Hƒ<–ª W ›¿Èò—\ë÷’ÙƒÀ@Uˆ è÷­`á`gÿÝËfYؽÜ./Œü£¾,Χ”[@,o'Ï€™³³™ û ‘8yx>/«h ôüÃa+âúâxiÏ`qFù}¢¼¼6¥ß¢?ˆÿ™ýñØ,þ~WÇfùÈ`þrجÿ _8ÆfãåhóruüÇâEú|Ée÷È`³ÿ|ÉíðÈñ’û¡^ˆ òÈ `süä°9ÿ¾äuù|`sý|)Ãíü¯¹Z¸9;¿Ü,˜ÿ2ôá?×è ´@YœƒX†ÚÖ„¶ÝT‰‘x°ìŒ OÓìè¤1°ø,:·»Ýa ~`¨Ì ^s¾û0؃µ¼%E)ºDþèsÐ\‡Ñ’¤Özïû`’¨>¹Óв0ß?þñ@¬¶ù5‹¦è®ï£“¯vl3t§úëœïng½WÊ59]ºˆ¨‰ô Ia/qF&i}Ä÷Rä æ}J>Å`5±s<ÊgF¡,ÈSÐï~õ±SèF”<¼Z¦õ†·ï^ú! zK·IÔ!Åìê„éÉxv ·8¨½†$b³ZÀ`é_uúÞ̺ÉOgàƒÌÑGØ;V›£ß½rNÅC¡ÐÖÏ)KðcvóÔXøØÝqj] Õåü•¯^\[cMuú홥‚<,øïªé¼˜+™Ý»©"¦1&Hçm­D8q‚ÁB7±sÒšJ›÷ãÚE%J²0TÛó“^ú2íÉg±šUº©×~ÖvNüÙ²8‡èø‰—>lb>‘7"7áêaG·x)=´[:³û—ÜA{WŒž›6SmkÜõ¤r)ŽèCï…r$ùæNõ¸´ öÜ3¾M~y”#c}{€L¬DjÕ)Im`~XÛÿÖ¢ÓrƬY;Knþ Ét•uHÓ äÍ6½åÝk9u~(Q!†²¹‡Â'æÐ×]±I×uL¹ÖfcKêÇ”IB§2Ù ¯§7j1‰Ë{LÄ qû<+¥@¤†¬RÖ‡çSuÇ?2‡¢T]~Â:XWW¶eõ/yJiħ'ÿêò+ ¶NµjV/`dnš}"43ëõdqBª‚ hÚŒ»Ç¨å6ýªò´¾°áÀ´ÝìZÿ kW=¤…¸ŒÇ4ùG {—‘WÀ®ÌÚ_$ö£>%%úDË \Eßb »/²ˆ ¢óãá|{ÀñmBŒ±ÀJ75’'^#~×^'ŒÌ’w¶à:'“E/¾ÌàÄWîŽ0»”²´:‰ˆ‰.p!Ìž•\EÂÅgññ2þ Ö‚—¼åð“<Ð#AC*`M }/Å—X ËxùÕ¥´·‰œGÞЂU èýîz`@ÅPj¼N¥t»Q¸\Õø¯>’Û7Ø“1c.ãɲ„8*ŒüJCS”0Õùî⸱—_ú6D¬ŠSÀF~–“ñQâKµÄ §vp.Wò®¬­`r¬«Ûk1åP ¿WÛa¥„Æ¡[q|øRÍhÆËMªL¹ÄÌà %³Œ¶Œãz# Dì ÞiÕú ÿú˜1‰ÿ¶âæí}B¸ÐN„±™#Ы›ßdf>‡%ï!×ãŠW_G†‰ãª9RÙ´® `cìwn*˜¬E\v*ýºZôÕ’Œ^Mÿ<Ã8zÄØ·xÚ=¥êéБSåL¶ÿj#†oœMwH“èo»z¨8›šÇ.gе¿ÎvL5 %ÄøÚF´^×Ý Ì"×,1Ø+äè ›Ý“ëP(ÂUã8«º‡[ 6oÕ¾„ž©oœÔ÷?ùlÃÆò?SÑ‘ 7–æ`,¡:Ží—'Êóð|®B°ö†åM²–‘­ˆ— z·8}¿TÆÊ’/+´N„4J„Å×*)¿º¨o¾P 3ãI BÛz 6ا׿%¼ŽÝÿ0/¶î…Øôø]ÛXÚa9J¸ð8”<èîî!¶8Ãn„õêä~Gò={ á ·¨®pà$—Åyëó _ÍpÝ’eϵô\^«®‡w;KÓóC:ØBÆÄu(mB(õÎM®û¼K}ºŸnpqjÛØ}ûáÏ „JµY–(æ#éíÝüÕÐMnIQ.šz6r…ëdaF–+=B_иñpp+&.Ë.ãc„Ÿ ›¯rÜšuÇ„Õ!3¦Åˆ?V³¿hßΙR㲉x7˜ó.æ<ÒÙþ#B`Ž¢í@ö¸ï'·z:X—¦G8?2ˆêTÒ)k}Þ £оXzÆÄ.,ÅPÆÈ šºhPh-l_Ç8§±uqûÍ£-Kï=þ{{5/ÆG  ŠtÏ‘©ëoz¦(oØñ—°U°9ZñOoÉšJXw p’žUýeªÜŸ°X%W„ÍtÈ(Vˆñˆæ/ÖïÅÖ7®”ÚH'42fÁQêžÚ^£@’µ–„Èg-¶?Ößê’¶s° Ý´{6ì`ê>Kdä6)Gè*nQv‰”¦­äòIƒF•&·“ßZ@V;ÃlÍ[Ô'[ÇMóR?SŽù&c¿öüØ¥A·Èé•{‚w:OÓ ^âÜqm³…| ðvp\èVÝÏ`…7s:ÿu@å†as°¸÷Ã…פfÞ†Ö§ .ÜtÀð€Ür§K½‹˦a¨7‚“öÄYé¼EoL8•„uh¨}'æéXZGËŽE ²Ô«!®|ØÈ§ [Gx¦íÆNV¸¡êœbµ”öž_‘êÂ_å&xÊ šµ9·K®ÝcÙn tS£Ã¦Ë¹«%¥ã°×ÿ`íbhK6´VÍúXžÜxæÅpXE€ÜÀˆù֠ú“f"é{ eÔ9`É-Ú~ì{…·"nÚ˜À½K±Eû‰ÂNªpŸŠ/”þ³ Óú—‘mF `A† UŽˆ›_ÿ2¿ÍF)¿ZNÎËþ ®Ú˜Xoœ—ÁQ³gÍ´ tÔ— [Ëýa³á¨†c|U80Æ>}"8àˆtÅϾ°á÷ÞIšôt3 € Zs‰³ýÌ?:]JDèþ]+BU'øh™ õö Õ‹u§kÆŠX»p–¡i£6(¸`‘fƒ,W'Ñ1LJÝÅr–Z4ƒòcŸJ<ûOyàRIRcpO·r¶‰ÝúçýpÝ\¤@û–+=¯·Ùë%ËJexDî,[KÆ•rÀ¢)DØ ÆÔ·oë´Ñâì?ËPfJRwä— ”¹ÂÒ׫Má ¼Ÿâi_Õü|Ñe5~Ûô+ÃbD2‚_®NiºàÚ€M"ñÚGå-5E&·¾² Îɇùi%ǾÕ«_rÂ=²…‚ºµ«ÀŠs*fçÕ’¾¹— ;”—Ü7eLõ¦8Ìþ¬˜ë“«Ù¹ŽMÎ"#!§K8oj³3·/K`°}F‚ÙÃ.[³hk‰R’µCýËǦºô,—‰”e“‘ÝÑÓÜEèÇ+´ðhòq˜^'wïôôuóÅH&°ì€µ8drQÏ¢ÇJ¥—•ßxKjÛ`0ëŽ~ká¡)8êm;ªÙ²f”Á'?yÕ¸ŽiAˆµ´¦ÙUhÕ‰ê7‘Ã}Ã%cµp¶¼?zWéØÚØèX¿\ž>cš™H¶Xq 7©°µÑ$Žsñ¾ŒÀ¯Ô;½›q\d‰<×ûÆøÐ¸§[UâÅK•=¹ç…@RS.¥4©)Γ(|Íe©¤‡  _^}‡ ÉÖKq£šãuypUøZÈ;zÛÏ }Ä OvŸ’#ºåYú&m°ÏÃn”ôG æ«Ò5œäâˆd ¸/ ¿`‘ÄêDzgSQÔ_„døð·Ç‡Kh´*uU·\þà]ÂØƒ‡——ÅKŘ"–QÑâ¶µ¬h«µä”|½c¨ºênü̵)ªÚ: œÏ›z Ãiý¹¬¯B½†§ÚÞ)…¸…¼÷2ö$ôíìÌüÌŒdjƒló I yÙ!‚y!-lÂmÿ :…£ÉÛœn wÝ@fäQÛ(ÐjyÑ7¡O‘s¸Ì¤ÃFgZ¾é¿DÄ+B°Ž4¤B<Ö‚…¿ÃSÛ>¯jÓ±{=nKÂÍ·C°5Í7"ÅÇÐõÔl@i½¶膃~Ö]áÑ+ ÓB{dù@ÅrLÿ2û¤÷)ÄMTîϳÿA1Ú·û–ë~3ÅKxí×@{|þ샻~’” ,BKÔ õ´áOL«ØŸº“œ›_ØœøìêÖk$ô–ÕŒoÕ,Â?K6šÑ]lv£i G°ÿRÎ*™Dx[ß¼®ìD/ESo)-$Ô¯”¸±wéۆʫé6de®Smi±UüÜ]|ô=ú]µ‰5yhæºrEF"¯ß¾0™W­™Ùž]I;â%Ju˜Œ‹~¾þ1íÏå˜b… m³+DMñbÞr^²ó¶ÜP~ù½çw<-¤øz.HÝ;%(´T¨ìzÀ™¯¶e=òô3Õ¯ÙhEõu¶OÅ(¶‰¬+õ'¡ws¨Ž_3ã=×6=?kÄ9x`ŽÙ•lÑ0ÏbÙÔ×C’{E¼ëŒôo@°ŠØÌëX ¥h˜£v!bJ=ÈÕ A}pjvØahüŠ©ƒ»bïrE‡¯äÝ/™’]µSÔ&³žÍï4¼Ùú·©=úR¥âÊ¢ñô60ìe ún ÒSý7mâ(c~¼¯éÔþ¢b0«¥%xY¦ú†y«¹0šÈýÇúP#w2"y‡#¥›="ØÆ'ˆu™k.W`z’/A9 X°u“+’‚C²5ªquQÆCW‚?všè©#ÏÎÐÎàZ§MÛUž!Y›þ²uù|ÿÜÚ§BqX%"»\¶I„7Hï´Ó8`ÍÜö–ƒzfNi56sönøhŠ‘Böø&ïó›Ä×3`‰“Þµ.|“žä~¦×µÂ×êõˆm¹ëX5ï9¢çåæ_B¦ýr“Á­Òáñr.»"GnåÕhEXkð°ÎœªþвûZöG{W/hqBeèxQ;ûTpñ€!¶‚_äyþÂS¨çuå5¥ÅÛÐ/g+¾@Å`»î\zhn¶Y‡¡‡»Aèm`<ÑÞJŸìX@¸Ñ{­Rf öíH¦Ü>ÉWýQk¿ˆò3ü_­W¦Ÿ Fw<%MëœÔ<¬JSڥ˾7Ý–QÑËljÒÁúMô‹“Q˜>œ1vX=©°A>¹G]`ÚFÕÕ€&€?sЦ–Ž+`L¸B§£‚$2+Ç0¼vbÞ’÷kPaL6"jè Äúƒ>ÊÚŽkÇõ‘åÓלߨKG3õhÛ <Œ²ðf4%wç êeƒa¿2¬‰Ìl¼1uØ(q&1sLß¾úV,…Z ªT'´ä‰SëÅ$øïÃS¡(™ãj„Š_ÇHò±Þ¬ÄÒrX¼ §Ê$ ˆ^F¨þõÔ¿¹hDð8!0/þ«“tJÞ<@xP*Ä-›Q;”7ÇËøb¬™9]öÕÖê|¸ªG}YÜNÇq¬H0‚*hÌ´O+«a¹šŽÍÉžúAì™O ÛAÌ _ÑCÍð±~?×@M'H®¤SÌ¡Ž­ÖìžsFò½£é3ð-ãI—{ÞwSU×3>­ÓUñ üðj=þ¯˜¹³w¾ŸWknïÆm,‰®–]ñ__é‚gP5%°i#óRKbËùC|Ò·bÄÚ4tjwSx(c¥Üw"©îè_/ÙœågõjvÙkbÉë6´ð§·“ÊGù§Þq‹Gž9 ”2¥yÙZ ,1ùçT:Q¨½:quâ Vmír;C½”_ñݯ|?`N?œ f-=~™}-›‹Ž>˜AgÊžÍó©AáóR…ï½;äv܆Gµiéw+L¢:]iÍðf¼)À²WšY0Z”M n¶ïw’¬ÚJFíÏ‘@Äfn´½1~3Z'Ix+IÞè¨ð‘ õ #0ªN«¢V#]‚8¢‚xt2aÀ sgc ½™öpZ£îdÔš¼1ŠcÊ?Ð ö‹\Q”ä3ëXè!’Ù~KA–E1t'\þ){Ùå³OÍÁ1‹NU“&µƒÁ¨ÍÐ÷i`fÖžÀÒˆ žv}Kq9yŽnâÏdX °F9tÁÞœÙNÿˆnéZóÚÇÚº—jgÄ”%‘NÅ3á¹2Ã`­56–íq{ªÎ訣§8j*@å^çC¸Æ)ïÃ'M]”†[B{fp\+ð®äÌTócö:LZ’Ѝj›'¹’‰FÓbHÓ…†ŠðÔv¾cÓ3cg„ùRÆ}oè}<±{ãepróíœ6W¡læ,ÈY#–»÷ÒxÓåÀаqµ*רSe4ÉðR<޲ðÍ­©o»a¹•À!ÛZÝBšÓeùäœOÒˆØ6²ÒLæa"äé.J*(•a¤+zBçE]Ì ºOᯪÉŠš“/Ù#¿ÅŠû£&×ÉU­_[ˆðRPìEy$‚N˜ã‰øb¿Y4Vív§¸É¯-ÅàyF’[­T±“?HãC[Cë|ð®Úó0pûŠG(7´Œc+¦2%'ŒT*–ÿâ’­˜+ MBÖZë@/i6Ëq^+î§ÞÔd'0‰4Š c Pb²I»Wß›Ãh:ƒZNE@Î5a…·q lHÖ)Be׎ÎìÏ—H\ƒÊßž.n¼ŽÿB¾zcg6í=K»¢ÁïCä ƒ-æIÚu³#ÆrJÐwh\£+¥^äÇíÉÀÜkòëøåUdÝRë.¼äY9åípˆµEZ>=›4½i))y­‘c]Ò¥9‰½·ó ›žvã9€{t5\Uò;¯.VN¡/•?Pª!u~’-©c°}R"K™’ kº^0& þ¬»”¿Wq€otΠ\öæYA€pœªÎM-:·7æYy•ð0p­Ì¼›©l_5ÝÖìÉ`èw_Dã–=kµ¤Ÿ ó´u‡¡³ù—*>î«\ä`eðõPšûpÜX›×ìDzÝÇ}šx`WÇ:¢?È ]±åê*„ñ6Ç$sN¿t˘羚cM'©O"WDe:(zí#)î¸ÛvY2À§“ðÐ#¹!5_·/4(“q”¨4…–o=‘g½W¾g]¹'XêÀóãèäM*±ç³ØbXóXí푼}6A¤¿7›3Z]B?žè‚[5ÊëE„Õê¡WWº‘–)°Šc\èÊoÆ·¾&÷[¬íbÃéËq[³µ‚¥¢ºZ~i>zO\¤¾‚yØ{ŘýyÆ•tÂ8Ô&ê–‰êð³ù¼MœÌkRä+z£xßáŽÉ‡h,‰Ÿíõ"_¬|ÅëFˆ­—tÚKqÆ-à}Uj4ñîß ó¦E˜E)ˆ@^å}DÀ!Õþ¯LZE"Ÿd?™ß­Tt:ð)D¯—IRúDú5ãÛ¯þ;Ì™ H„ˆ·âmþ—Òá¥Ú쀻þŸÄfúq‡vß»¹9¥+ûH;2²°Ë·’ê*ß„O‰›tE6‚( ÊXØëûr^­¥ú_AÿLà3°XŠ5^±ÍÓï¹Åže oâTü–µI©ð<ß׎T1æfOô(‰R¤À«,2E³ð7˜ûÒC1µžaª²·¦ë¥„±M÷J‘Ž¥ô纑h»¦¶ K÷H”A› Y»T7ކÂðuɸØ#z<þD@ûÔ £8¯OГé3¨Çá éìxk?þ˜ÌÖ‹OfÕ³¤’NÆ¡‡ hù59%·&Å·ç†-Ëˤ>Nö (½é¾Sz$å  ×i–|¦ÑÎInêMª¢÷Ï© k?D®ÕYõÏe?0’1 »áÓÂ, ©O(꺸ƒú½\Šr¿$4{ˆ‘ ÏZ¦·a­¡Ó£,}ÃaƒâC†\“ÿVñrY.=–t©¡íõ6.l㺮³ƒ(4 “xÆaËH¶•´ZÑnpزâ¹Ñ:ÁåuИ/3ã Bmv)A×ÂA[ùv *„êNÙï¾n¯ÊDúÓ.ÒÀš1öF¾½«=%ꔄ‰Û?ñÊ'ºòvaè]—ª“¢Pцhn5ò©n ï}"F½©„uÑûÏö¦ Ê «–#Zû2xTwŸè¹(ä ëK¢‘ð¬ªÙZ·ûP (BûlÊ_+Ú +¦E O´í›2ÖTœÜ»”ßËC ZŸ &óßC6~ö}°+FÞ®šWáÕ®’Éjí¤8œð{U™ÎÛh;Ž»›: eóûÂèé.àVèñ}¿ôyÞW«Þ$—ìoy~5oä7ÒÞNc¬g¨ëÔnD©ôs}éVß-Ó ýö™êñƒ¾{:c¿驇ši'ìs„þðI÷x)µwÉ[¦È¡¡ L‚B6$UC õt,{´³y“§–ÿiÚ8Öš÷Á}y eþ\.aÜKÁµ`ó¶Ëú³UðO?¤ò½É†ÛxÚÏ·ƒr"z1õ=)ï º»(¹-¿€ƒ€íÏ%+ÓRîÃSØ[:m>ã¥hkÏ2Þ”Agš½!ŽÊ°Y?l®ÛˆïèX"Ô®š]EÅR[t?ÒÂMJ#Â÷”feǨi‘õâÐÃrÙñ?&Ð"òK“qCJ·›Rd¿çÊûørµJ_RsŒ®²§¦g=x!¡Kífu _MLÔtS[awdЍÅK;7eŠaA'~J¹ë…Êéæ ËßmJŸ§^«XÁKáºiZ>ÅIfâD“Vsø:ÕŒ$ó=Z6½sPÆ›?nÙµ™sA¤cB°ã#&¢d7Žq>þ&€¦Rç¼ÓþOq¾ ¡ïxjô‘ìòˆu#°“便e"næíqÅLPÎÆÊäpK]t-G1žŠDÔN(/Kæixþns,$­_Q瑽±6åV‚ØÅŸd7+ͪÇê·Þ±¥ýI¥~.rR GÞ%½¸R²ÿHø‰XõR µ ÿ—v$Á‘£,޽ãšÜ‚ÛYB‹úÒò˜BTIû´mžŸ µî’bXê¾€ kU~@“ù¨ú‘õƒ‰bŸ÷© äó»È hrÙÎ»ó¹Æˆ~.—¶h%¿I¡¦§O+coÛiÚeýH—î /Cáü]eŠ` >Å>A’Á;¼ 26TF®U¦Òeƒùct*ÍÖ¤;[ò}qõV¦5‡‹kõÄUØÎ#Ĉ2ž»dPžþ7ÄßåTéøÌ fê†4óRèQô¢> Ií±´ 1y. yÏ%8¹& ­ _fI![-åPóØÇ}óÊ4óÖÇtB7B±IÂâfLfÎ$áv°œ²rQyþØÊ+©‚JHsçí˶ˆ©Aü0ç|¬Æïow¯jDãY*QŽ#¥'¯-¼Û—ýÙ CÈ÷ôR¹Ç{¿zLŽÀ4ÿB°ÉÐ+ÙðqµóQz9#wµ¨å~‡RS"Uã÷ùy›à³œñO-rbÍ$^.“Êã°¸b a eîLn t ê&Ê¥Uñ&šŠ÷s•ÙëÕDwz–ð“½=C:Óæ¥<=oö÷¶únƒd²<Æî¼¿WçWÈ9@|ZçœÄ¤%µëû]ø¯ Ë¯E‰Õ"˜m eëƒÄ¾©8Mðñ Œž gw~Þj¹÷ÊÀ‘87D#¤¶=Õèç|¬EÑÇ G´k+]2 ŸWo,цšùâNÓË|·Açf%ø*,o,.žp61/Ã'Ú {.~¾Y]gµ¤¥Ð율7ð•%‘;âßšˆËlûØ|÷|Uðéܨê ÛÙ/§3®z“.8­TXÑŸ> stream xÚvTZÓ-MЋÒ%4¥'¡ƒÒ{•Þ¤… @ !Ô"(M®H•®ˆ"E"E)R”*MªÒûõÞïþ÷{o­÷VÖJÎÙ{fÎÌ™=gE€ÇØLLÕí ×B£pbq°PÝÐTKŠƒÁsÎ þX±>4JáñêX8GÀ4 8‚™!ÔóõB$ˆ¬ ”ƒåÿ6Dc€P?„ ÐP¨‡FÁ}êhL áæŽ#œò÷(BäåeE»U‘p,E ¡8w8’p" ê4CÃp\à¿BÞpÇá0 ¿¿¿8é#ŽÆº) ‰ý8w )ÜŽõƒ»• 4‚"á¿ ÍÝ>`3´+Ί… €Gù|Q.p,p6ÐL×xGý16øc üëj€qÈÂýåý+õÛ ƒ¡‘(*rº"¼àÀ›Z⸜(ŠrùeõòAü¡~P„Ô™`ð;q(PKÕ%Ô÷Wu>0,ƒó÷Axýªô+ á’5Q.êh$ŽÂù~å§ÀÂa„[ýn«' íÂÿY»"P.®¿JpñÅ€,Po_¸®Æ_ðæÇ¥Á`°¬<÷Â`î _ÁÍ1ðß$äLÈ?Ac€®„à!W8á€÷úÁ8¬/<ÿ¿‰ïÐÃánàŸèîúgOè<¼&ÿúügeOЖ åøùïæ‚Œ5l4­ôE~üJM Ä‹IÈÅ$¤Á@DB(KX„ü;Š1ñWà|uQ®h üŸd ·ôwÂ~u_ð¯Áþ;–š X8PðÛ¥Á0Âäÿ[æ¿]þoêþåÿ!ðÿÎGË×Ëë7+ø‹þ?X(áøOЫ/Ž }C4aPÿmjÿ3®†p„/ò¿Y]”0ª(7¯ÿ\"ÂG w1Fà`î¤ò·ø5`^Üíƒøõ Å `ðq„©‚y ‚SpÂÐüûHM íòkº$¤e€P, ´˜°“â!„1tüV0$ŽBã.@By!@W4ð«ŸRò@áYúþÙƒ á1@yÁ]qÿ ¿Ð?½ü&$Âù£ÿ1“‚‚àØ?À¿Ò„ùb Þ¸ß2"Ôð÷þ÷‹‡Àa€ñQ4ìú]WwßTªrø‹-ô+ ,Xe‰áDZ¾G´©B/²Â§±{ª©=mô_æ5wU&¸Oñ«o^SDÕ'›4Ÿ8&™~\hŒ ^~7ðtUµª“‹’SÌ\e1øÔ;ØòŽ'éâf=\o_9Zã|¦ÿ퀪βÉ‘£ &‹/dô©NÊ>‰Å[ÄÙÝ)Ès~2ÂÊKŽãº(̸@7¼»7Ę3pέ—$Y‹—,ÄÛÎH<8 úúÌ\§…ŸÍ–•‹t—ñÃÇ«xµå4=–Ïø’©‚a;ߢÉ/-DöÚ¡£s”²7Ir/•»IyÝf÷ך©êzQ¢ÚÑiOOEËoW`H¤—NÀ»9Ý·é7ð£\eŒ5¯x›OžÊª¼Î¼4'¦ÇÇ{-…{ {Â[i‚[{‡-­‚'DÃmB£Ekø:´Ó„¼Â!œ‡¸/˜Í˃(mÍè‡I3)QwœPº$‹ê9”Wßã`#ݰwÈ-±°°æ üY-íé^:DâqÓ¹ñ‹÷ å–çUÑäEGå°Ìg=Ѱ+¼É(å½¢þ«èd¡ìä´‘ûÜL-ìý\¤E”ñžíi‹±©Nëñ¶ÏkSÚA; fŒ4TiÂ}Ê©Õä·aÁßR¬:ÝÐMII§#ìï+^9·"äÜá>M•&tˆ£»=õRBZyI‡L~uï÷…S[n,”\KlÁ <“êœ<6G¶¾9µ<®nÕ,·B_Üø^mµEå¡fäz¿u²¥.¸ÇÍåYÏz¦Ê² é>~£$Àq²2t0vmrÁ<ó\¨4ô¿®@ÿ¹÷ÌCc]¾*1CÆäeËÏ~Ú¶€Î5•©·Ã“YL¶Óz2îa›Ïç&ÝU'*§û?+Ð7ó%¢Gý꧘Áð&»Suâ¶¼N.prÏò…]˜ñ µ |'{¾+‘âôA $öûWíG×ðíÏ-*.ý¡ÖئTŠ›¶‰%š=â‰_W“JA–-u,BuMìO¾êìú&8½µŽÜ¬gs­g£¸ÀÈiú@Ìê4Skn€Üï}3az`ðð=g8Mþ˜!ò%w_áˬ­“1J‡•ºQ?Õª·´fï™vw™çÚºu­n€*I϶Õ뜧ÝG#JêmeÍ«ÒÉ"Rv6yüó†V’©™Ç: ÇüRIw>J‰Š„ÃÛ~¼j(¸¨ 2™_KW~ Qå ÷nMkcx_Îy±J,/·äb€æú÷KFüåÄ|aIôÛÙŠŒp›a0^ÄHüè´:¬Si :úšbîÚ.]½cÎv€«ý‡(u^ *¼2W"B‰—Ãóú™ïËf¸Òž?¨z…bÒ#ï-iå FTzíÉWÁS&V›B¢nwxÔªÃt9ÁlV™È—ñh¢ƒú”d-ݶ“»²&5:‘„z=?ò^q¼±n"·+Ch5_íóBqi~'<µÙ—ÁËAÛݨ›{Œ\åxuF3=ч&€¬áHæRò8çK2ç#è;×…¿_¬¹FZVÔ)³ ümaÕ¬šûŸ•]™É-Ú ‰Æ?ÖÜ‹^5 @I±Õ{N/ 2ù3=~ã% 6<¤/#mΙ\œµÓ$Še«ÂΗI^O_ÌÜÅœ®÷áÖ¿R²O£×é”Äøâ3¨cú‹Z³½–Ö2À-Ìrñ´ ÜG]† VÍ¡Æ â^ªû;ñ®GK–ß+F’˧7±uß²´ÎÞL/Â5¾Ðzß‚© |cš[ðšÕu¢ºqpDàRwÄA÷î=mÓÐaÅƽ›^Dßv Ì1]6ï0zó{ÔlÑŽ°)“' ÓDÉ+ó%Ó #GÀþòìÜúå^;iyk‹@XÓÇÓn|ö›$VÞÕY›¶u%Ió aZ{QCC¹ê¤O–7y³c.®¾òàéšëê¶ËÅ'÷¥ÜL]*Kµl¤»yPÄ>é¯ ˆ¹hy¼} ||¢koëòl) \]nZt±ÔãW©Þ¼¥1’%ŽJø{ {Óã@ÿ­Ë§ô Ôú9t*]¦¯Åë6>#Qbúxa)üzPýõ×µnU ŵCå‚·­¼¦Ñ •€V7ÇÑКã}oqÍ` ýa Ý\æ:BÙ:ÖùƒTÄ×Ü><»åŒ”•dxâ¼Ö`ºz5ÙÀŶ/dG"Òjû1ƒøªTñƒñ>áÂA®ªË½ãÁ›¶ÊUëweï>°‚l?§¦Ñ¸a<éõ°?Œ™¡ Òkb:HÍýJþý¡×f öecÇóMÜ :¯o[?65Ñ ö¬,v·–‹hwŠò çtTî}$+³¹s«Ø“¸1¾à¤Ô×o÷ÏÝ2….LäßOuÚT«¨ kúQîœ[oŇ;-G¿j‰ôúK2}ÍIÿ&djMÇÇUWt˜/_è$õÃ:†÷Ÿó?©>F©fôœˆhÖãâµÇïârMb‡“poö8%8>›O B7Ä×Ë#€w›{9RƒË;¯0m±N'Öy>×:GPórÂÙ'œ6D’‡¼ânD¡+’fjcÏxúÒöùLɽ¥éŸÿI“–ŠÈ¨_Ñ}ÓsYã¤á°b›oáÅîd ZóØÐ<Æ”¢Ê>Ü×´»Ó1^q,2Æ%›öÞ‘ªÁdÿbP„iG Í+B­ö0K187ÅO*á|ɲýq“÷Îf5³é–ïÖ#‡µ7ö¯e%ø"Ÿ7Gm=È2/Ôši^n®,H½™=6¸iñ^AýÜ›ºŠÞÊŽîìý¥ Ü9Þ±$E,,ÆÓDïq7v/¹ÏW·uõÍšŠú½½O§éLÞ¹Xo+ͬȾ«Ôþø0"s«s4‹ù €ïRƒ»£©jÕš’DÇyÄÅ›#Ê^t¼ÞS‚t5¾ßŒŒÚõõÜ%•r ážìÊæ+¥&*t2jŽ>•S„Ó78ª/<W»1§X“:‚6ò¬óD ' :éõ>ÿÌ&/ÕeZÐ[¡ð (úá…J7¨Úw:r=¸VÎú|4´¯Ì·!V磊¿Æ+D~«[ßÁJÖàœX°úS³§Î²¶ó6Ëš:(îr¹ãÅ{å+çy˜¨ïFBÜÚÝœ€µŸœ\¨ñM£¬9ž³tA›¿q,×ä,Ž~d4°U_½ãüv†¾?!‘U¨˜Ï÷ ^°üu†bYøF>=’¼3„ƒüüJHÌý·m_×BhŸí¤ÚË֤ϣ–ï¦.6Ó*ÒËÄì­ÂB¯ð9='C:ÕéÎ|{¨­ËëœÑ7mte ~M ¡SžK]Q¡°Ñ§àP·e¾'P–âÃ,„ù4°?°µw®s“EÃô³û]ƒc’˜¸¨I†¹ÒRe€–è÷=•ÉÚÄG]í^bs´LÕV3¾Kï HZÌÓsÓ¢e¡¹}Ò€…lÝg1Ίsèƒ.וÀâ³b g€E¬±wM-S›+Ç¥œ1I xQ¶‰ŒÇC _úžjš¤"ÜíQ>Íïg~½£§urÊat*ƒ7VΑʥ›íw͵Õ5Ûl¤³´ÈŽ8X€£º~:5[‹Ž÷ì¡I‚ŠQROÙG–œ}9&§U7ÛÊÇ8ö5wŸÛuà£;Y%D!ÓæWõL7Õ}¯Rž‚4âù*áMýÉÁ½Ç!WôŽï®Ì ‰¡Ÿ°>ºÙocž¦n¿ˆî½û~ Ôgs¨.Š2!‡v«_AäáãȯÏ>-e¤¸ëTµ~ Re¥þµwß3FÂFg†>%Q›Uo¼cw89ýfµ’¾ÈN­Émq*ý/ëù短&èh'V¦¬l/P§úÂ8MèóGL0%.™?…dW?~UÚÄ.Gì=N[»®5xE{´øÇµÓ&.…W¥.—Ö.[G  ‚ußîÚ÷•xƒ–X!£Nê}EFüΘ´°O˜Úλ`¾ž¤R­Õ­Ãªk]_ˆmX^tŠ÷æt\~Þf^tM®¡“úÔè“Z "º#ß¡H®zJ&qøÚ¨º³-ˆB¾è,u•ß³³Â4åó1~)9r6@hì †¹:Âc·ÞÂ=èÞDüf§/Ý ËLúõš†’Ò×vÒ°‰ÌOý•cþÈ<=xYÌJ÷i÷õò&? òª­»ÑŠëU5|¯UµeÔ”k¸;»@Œçpæ«E¤';"1Ž¥ké´ãªÄ­:E­æ·é~é;´ªœ~†×§V`€&Ú+ñòµ8Qh)l²8bìaÚȳü ÿyÀÉq†ãñ>éEª¸Ù|dßÄšWï’¯E ÇÛ.êìU“ö¡â”Më© [æ@¿mÇ]f‹<•VýHÄ™Ä*R)2 Õ¼DÝ é&ÙÛTVWÝr®¾D`} ÿ 3W6$ob°”wÁ j¬å¤ñÀ>š"$ûÒœí~Ò+¡g r˜ð¢[Q´þ+u}Â‚å¼ ·®–ûæ+ô“>Á>òÝ료UÌ(©æÅª«¡|ÜF8öîneõ¹   ^•–iMÜp~Õ_¥Ú šãa|Eøs4ðdx¤%•œ¸¼©øFæúeÉ3–Ÿ‡OGh+¸\‡û“mV[ÁÖ:¥R•"†“:¤8ÿuVà`\ëý‘‹‚!‡^aÛo¡¡j§°$I^¤Ÿá<° n/yTLÐe‚|ó(š·»LÏHêþ†Òâ£e¡qoGiBŠ®A¸ÉèI|ž»Ðòm£þþ’ÉËóeúJTàj\‘ã<°ÓÍâ‹ Òo©b ײ͇$,Ø5Xtí?Xåᛦ1ùÔH§^™–­Û xºˆæØ§g“ÅÎñëC˜P]ÁòYõÑë#òOg)~â¡Æ‰ÕÎXôY@® È䬢àåWyL R.QL&ˆÞ¢¿›Õä;}†ø’¶Kþ2íý0nvU½¥KR”7&CK¼†F™%z×S¬ª=Ê\ o¶7s#Š]0›DÂK9ÚxÛ§©ó‘Äeòɱ°m×çà{QÊÓÔ ©5.r•–ûÇ»¯ÙŒ%Ü AŸ­VÃ…¬øM6'ÛzNHŽ‹´$_GégMË×ÜieŠ«f.wª‹‡P‡‰¼$mý™þx“µÂ£sðäÎÏm+œ]ÜþÆ»ÁŸÚ-z®^lk M«ª™?]w\• Òêôü¥2oæ¼Ü›NSk„¥6AyÂLœóü†3åEgÈ9~Šªä~Fp|qÔK ýrRM#ȱá/m·’ig=¯ÚÝüø¶Ôc§ö/ÖÓ‚“ý"ç#&$ ÍB TÙ§÷r\eÈÄeµê=ÕA3D1=i—Ç‹¬ð,íö—1GìÞáio¸g‰üÂÍ9¦[¦³º–ƒUìHßQDÂÕ×”Ú™ø­wå`j?뮹⩠sP9&W^Ù½ÃRšV% rŠBL!SjA4‹+™,ŽƒYqŸ-µ-‰Ñ ]Ô,ØõôXXý‚Dyò>äø,]ì±’ˆ }6ï|?aW³âžüv4_«VÒf²t)4ØHó<ÝœÓ\ÆVàÇñ %Œþ¤çQö3H2'kÂîP8…¾ ®ç,”7åºõø]¾dûh¶"5>Z¶žD¤?uò¡ê6Õ¬¤ó¦€» ™¡KÍ¿œàªOò}ã÷V°"›ó-‰ÔFWz3õ}‘ÊØMäÏ”XÚøUµ½Ó©!Ãb gÓÆR‰('”—Êô|SšóÁo]­­(U¡±b þvüŠï[£ŽŽˆ†@œŸm¨ÕÍxeË‹’’¤FTZ÷†îdÉSänñRó6Tc‘ÏàYÑ髽ø±á3InvÙ„%·¬']UéoWMÉœLôå^rÛlmL¤†¹‚Ýws_ÃnTœË1çÝ£ Œ{îµ{k<}¸¦ùÆáyÄ` òá®Ý=~"úJõ&-çÍm/Câ xqîúÞ¹¼-ÝÉD•ru®~Ôåbãý3$Ù…7ï ©™[>$cÑ)´aiÁè…˜¦{^!1Mzl’‘%=6÷N¡ù>Ô_sÚȪ…ÍLl êÕŒo…ëX‘©1v˜¸¹.¶š8C9J¬Ý ø0Iš"# ÄÌ’ürTuJƒØÞ3Žu-øöb:šT2ù|ýoHÍ;Ó‹^@ ‡”až·Ý3JÂ7¸îäj†E«¸åÎ¸Ñæ‰s9¹ðvVG0²–<ÃRÍ-0Œ±û`륤ÙâÌÄÚ-˜{èY‘Ìœ;}Ðâ£^hNÄ÷%ܰ˜*±(ôßæD¿Ôoÿ8Y$èéTvô²JZ©p0î¼à52Û')#ÅäU>¬Ìrgk<Â>ž„z„¸óõöÕØhÈö›>]q3ÃL»›Ið—›,H*tJû·õe¾ŸŸ&MsSn•bÄo}Û°xÉçÊG§ ²T µ™–æ?úÃ×»Ñ å—9€±¶øˆe|\;°æÎ……gœÊh^“›VÅãØê‡"=ú:¹…¨ÃùÈÊta bpZ’ý¬; nIýïø–$1·Ò‡67hw}éšã9 öï®™‚ü[ï?ß5zÓ¨.üž4âáÝ:ùd”&ŸL ûm";¸[\e»Jß·þÜwCá:w{½f1÷'¹úÈŸR0ÕÖŠeåó-Æg°jq¼ý‰ôZsˈ 7Y™KL]ŽVÙŸ¨2\YeïL2Y´H{påýâʘºg÷O@³!™Îƒ®‡v«Û¤ å‚Ö´ ’WAmz7Y3È´ŽAåÄ0Ïj$âzN=ù\_)O0xZæY“­š_j–åÝ™áK¨Lù0Û‡^/–}ÆeßBbhÕ÷‡‰Ù+ÄDjù”¿q©éoš.‹ }CU¯‘3”³ 8KX]ãÿ¤­G® g$;ÃÅËu¸æ²;Q£"ËŠ¶DŸT^$\ÏsîÖ*M¢ßÆëù> stream xÚxT“ÛÒ6ÒEzï¤÷€€ôÞ{‘B$t^¥7i‚ ½HGŠR¥7é R”ÞPÚõœ{ï¹ÿ¿Ö÷­¬•¼{æ™Ù3{žg'+¬Lº¼rvp[°2†äò ˆ´ Ì€!>AîG$jŸ¿ NPLL”çw8@ÎìÙÀZ6HG° jG `AÀHŸ¤àtD"]Åùù½¼¼øl\|pwiN€éÐ#Àîž`;À¯–Ú6.à¿ZãÃc:Bp{¤—;€2@! 0 ñ€ÙݨÝjšW0ìXó€ð×á€|À¥û+úW"ìw° wqµù@`{ ÐQÖäCz#y60»_@(ŽŠ·ñ´@mlQ€ß¥Û”åô6¨ÿêr‡¸"|ôWü¿Ò ŽY f§wqü_õ)BÜÁ Ô¹ûðÿ5\gÜ æ÷÷ʳ³ÿÕ†‡+¿ âæVSü ƒ2áýÛæF„ÄDD„°ì räÿµ¡+ø·ó·ÕC€Ÿ+Ü`j±£>ðü6ž`ÒÝà÷ŸŽ®ð€@€„Ø‚ 0¼gG™ÁöÖ¨ù»C¼æ(ú¿^ÿz²@1̃úüþ{Äüf¦ºº¦Jܵü/§¼<ÜàÇ+(à@€¨¨0 àŸytm Õñ±j0{8@ìO¹¨sú»dÏ¿8Àñ—@8ÿÌ¥ G1 àø7ÑŸ €PoÀÿ3݇üÿXþ+ËÿJôÿ®HÙ ýíçøøü6.¨Ï_s=(hÁQZ€ý7ÔüGºZ`;ˆ‡Ë{Õ6(5ÈÁPŒæ>äxøÇA(C¼Ávº$ÈñkþØ~é uáȯ% ð_>”È@Ψ[¢æo¥¡î«Áí~‰MPX`ãînデš5j% ð¢TiöþMf? ŽD…P=ìáîx¿+$àGEÁ½þŒ åûm~(à‡ÀPê ò·QÀïy þe~à‡~_¨ Âñ·çõ<ÜÝQbýM$Tñ¯ß `°7„7?I„9½ k»¨‘£óâý:‚½¼ÒhÖ%Œd›}é稉“¥2é&omWE=ô\w®,bbÆŸŽkÿbÔûÉûœà¥tÕ<$šRïšü!oþÀ“÷`F;8­Ã˜èóè5’ƒ$="ksLsö“™«pÑ.¡×ß ¯;Åv.€â3b¦t:dœ\nÇú33&–ä ÙâxRwó C5£±kôgøsù¶Xš>kæñ™ƒŸ?Èéë}.t\ Ñ]-RAFCî«Î”;”ÜOC‘”£Þ„@c“>S(KKd¦)r‰`[°]ºœ*è{›Ô/äÑà ­|Oçép£G\xF*·ké˜Þj=Ûð?usr´#OÍsyÖj;´³ÁŒƒj!h^7&%#»®cñVk ^Rzn¦‰¾Ð‹ó4TÈòÛ8õ…u\VPÐ"M ú¨ÿË+y](£ë½É•d€Œ–•LW C›ÉiÅcèß÷W½ Óû)°ÓÍæmƒ]‘‡p–}ŠÉàDÓö¬ží¤&5á³$Æ\J"ÈZYx§gBnÂT ~^.¦îۉDzbsãÌ ÆBDù†$³†šhÚwÍÄÃ傦ˆ Éœ÷Ë^/TŠ ¿” i–J{$ðtqüðŽ¢ÞnqíÚ=½®X–‰¶î‡ü‚¸–y­K´ÙÕ‘!;‰W›òf“Á‡¢3Kyò7FVd¥OŸäÙÇ]Æß8m8È3•«‹z Níœ \³z5ÌÐþ¸/ž>ãÝønw;{Ú†·jÃÏ3ÌC2ÛAñ~æ°"hEc‚p«Âç>Šh#ó>ͶÓf\÷®aûÆÓø@ós‰‡ëÁ®–› Ú®—ånòŠR"ö¹p1¡µ*­ 61?Lü(ã@E‚ïH lÆBg`|hŽöxëPÊ‚s–gÍ1$u?U\Ϻé?“µÖÒó«÷û‚Î1ŠB”]zê }úÂoª#òÁGÞY»ÿtgÃÂÄN1D«;ÊìárÉID3IYÂôp©®Ò¡æµàš•`˽ª–2¸jšÊ{’†|`›½³ÍƒÆÿ-œàâ짉ö}ý,¥Ôãâ½Ì–„)ôÓK¶Ôµ è}å[Ê'š$èúŽÀ׌ʹ¶GÅUcÜ‘P… @qÑbn½§ý4<”Û~Œ:Gkgï~]À9T†ĵż_e¨_ùÍ¢Ü%bø#¤$L£\g`2žIí^웩7—ÔßõIn¬S&™ÃGý²Ê‘\Ã%dS÷Œ^æøù¯}ÿ®`#ôU¹Š‘Öqòȳ’§p™¬j"WÚUµ*QÇ´`¼4~C Ð:Hj ¯{¾èÙš»›,ÓU—z_"5§Vjè“4OXßZIEÇæŠiYTú{Xžú isE˜9zŠŽx4„S²V<¹ý”C9DíΤ”q¶öÐ 9µ ]KôòºL¯ù,²b;µU_gйP¨÷e"cÌ@ð®Á ‘®Z½ŸÆhÙ‚6Ĭº-×ó}˜y~Ëåc³&«N¾ìN¦jhD ©ä’.{¼ú«¡Å@Ϥiž>–zfG£-™Óº™•W®™0QOÂY*©E] "`M…(E¶P;YØòP(-ÚðkÝ#ûÖ­^qdh‹gX=A¥€èÔ·IVÂð»a*ø…?“õ}_‘œØoùEŽ[’(:~:•\/ðËÌ\•OÚž øù®o>!hÏ®pâ³´ZcÕÿz구ˆñQJ-ŒVÔ=”æÛ¨«‡Î:RT{7²3F€äÒOPžÏºp¥gKTßœÑ?frŠâºa˜/0aïžÿlÛœzb9ËÒÄûõ䨂ä4-a½ ÑÂöž?quÕ’3‹ÉðkO Á úJåþüxÝ ep»s¾DÂfÚ•‡%šA4žœðq¦ˆ¼Éb'l1Óp ·*3¡v¬9|⼌̂{„70À/j¢o@6o*û}„ðÎuÈfÔ6°¸V?õeÚ¯œ@»,íÀ‘ñ£|ë0€Ö2»¢]H²þµÒxa}´?´Ó¦,ËâtSfš}ïØ™MÉp$IºÕ‰òì²*ÁÖß®K4Xbèî1鹞ß}ŸHwÞâ.rÞö^¢¨îqúfgߺ磘3¾IQá» …W?¾¢í)Ð$|4öît>4tÒ0'ŸG¯ŒÉÖT-úتñéô¤1—3ã;Ž[.÷ì"ÈÌ'­wämQ^ö<2+­áØkk^Ù:Rcìk:öÓœ±Úñ³2¤Aé@!‘ÌçZS L2ŽP³Ððžsgm“³w{Ês’›òué[Îu‹Ý8Ëú{ Óc–‚s¬ÄèrW×».aoÑbG‰¶ þ.¡ð©»eiô¾¶RT…åû¼ óOIXð¼OzÀý4±0±'U©ÿñÍ6­ö,îTm´§qFæí”ßÊw—{ä‚ÛX3óæ¿[-ª¨y ÷C(ø¼Q—?m;ng—7k_Æóîù/cóDƒc¹”„<·‹<*„ǧûY(”K³Ü`(ßõu`âzoE›ÂrŠùÈ«}¼7R4R?~”Ыá¥çð9Î5‡ hIFÂ7õb´k§_Ó8úéé‡Û« r¨Í(+ù.s±uâÛ2«×zMú@Úu×wg½ñŒƒ88ˆdta>ÓÐ úɑלGßè ó÷ЊÏì€yÎÃ1NŸ+ pé`¾Tå*¯Vî»E7%ìØ”™èm±ú†MQ«¿i™3-¤-èBªùôt¼âÜzÝkžò !TñÒÇdW×je®ŠÒïµKžî:Sv£0QؽB’I {±P®jº]SñïÒýmYâ\#Kš öè#qÝbÉl6ÉNÜ ~o"ïrŽ/È%;t×hpm›jt¡/7²ûÎ?>–cX༠Û?»W7mØ–JÒ™¸¨9ºL¨¾sp¼e©)½6/>GH¾øÔ,ØÅtD¾dùÓ?-ýöaã°û £˜m7Ýà€ó«I©ÛØ,Ôï™.aÝnìMD–ØQ c|Àú×.<nW¹ žž÷RþN‚Â$ !¢Ùß§ñ“Ò«žÏÑòmñ+—ÒÑ ´ ¤#õsVZcÐù˜é½ÀøŽ´4„ºA/Áë3.®Çûê‘ðzÙšÚÕôà[«Ãm¹É@¡’U=Š­NyFãÓ§,‡bJ­”‰NRxÏ,d›/ü¼°ª­ˆ„…΋”÷¦:ë¾ÏÜ\ÏÞ•+­ ]iw{3v8DtùÝÒÄÜÆÈÂÄñ}àk]{êw+Oxf zóDN×Ú°è_º–˜'}~ïiý¿­¡ö2Žê´3Ðû\…å6.¬h{Œ/ ¿eôÞpjS)Õ§±å‘ÌTPMmVRˆuÕ{{&ª;÷¹†ÚËù°ù7¼°{¢õµrÈÎÏ?Ëò%5·Ëvk³©¹<ÏýüJÚ”éƒKøhPvJIhrËBðÕ˜ ´O€ “hÕµ.‚E¯Õ– ‹Â üvºDŠ»—~JɃEÝϼ‚çiV2IøX(ŒW6i‘9g¾Î,ÎÎ,wª)0AöÍù?«‰ß*`š¤Ë\ ½8{îzªWý2Eï[f4¦íJ)¿ëɆ“—ô†)nÊ0­n¦åH’;a;dzqn \4âýØ|%$§;s±ƒ]Ž×Ì!¢Ãc”õ;9¯ŽØ¹(¯ÝLƒ ïÀŽ‘’tÓ±ÎÇü¸2e‚.4œ¹Ccö§-Õ{i+«>8Öª­YüÊéˆK˜ÚôsøØËÞ-§öòÜ•ÓîÏ”–Ì‘ :ôqz¯X~²¼‘"§ý2›#³m'+â$¶*§M'Üž¦ŸFcåÒ P¥ï¦ÍÜ*Ê•P°{µ’5àîÚNS$wºÎS&¡%#i{*ìç« OÒ[]91«8ϰor¬îg‘pÖNs´üÌ.j¸§¥ÕŠ×PFàÖçÉÖX=x®°üUH­Qó1¢ÎËP×Ã/‰ÑÖ:Vs¡›ûŒ›÷EUY¾Ñ³çµÊß.t™ßjŒFDpW´Mšu€EÉd*8ÒÎp!vttYšõÎ8bïI9ÌÔxc¡Ö¯¿ïKXOSl|“ÇU¯ýrÅL•Á˜Ò°úVµß¯Ù+´_ßÒl"‹†ï%‹réÇtUÅùccZ×cŸ‰ç-äºK¬ÊRoCºúûä#±ÏæÏòU4ætëžj×›7cª ZmG)àRú.MÚßݸ+9•ž{|Çú!ê[Y 8£ÎÞv½ò™Å:@ÿ.6QÎBà“Ò ’UmAgû›¸‡º¨Ð‹@âíúcÏ•íÎÓ@E¿­©%!™Ù„¸2­c‹â&4ä$ž÷É3°LW%°Âäï'ß.1%KàÓ]Q“Éc2,ŒðÝkBPîbœY¬¿M–š0¹¹w,\ÿ.&È=H )í#UÁµl«€ÑñÔ’ ÙK'ç^›eo¼è-N»:¹óäô|.o€^3}'4_7…M‰$B?óPñ•Ðpx¸p2Ç(ÑäÁɼU'ñó“AZz—gûÐáÕw…§u2ê¡où“•™EŒøj¤7°ÑO¹?ièM… Ð0NULHí!¶–öB½áê+³åLÃ^W":Ÿùžå!w†…I ŒW‡Êê¸+IŠš*«Þ]1ˆÆÔ!B²^Ï”õùl|ìIÁ1Ì‹U¾RqwX5Âî!fIˆ|Ëæ_“ÐЃû4í³JùúÜ£ÜçÛùÕØZž_—9œ¨%¡kË‚£±ØÑ^¶Å¨E¯ú° u¸Î\m” !_ì«øªÃ»úæTãpmI§ßpoØC6zÚ€Uds„ï$î†?Ñ |šáŸ'ÔÊœ…G¬‘=Î|Ȩå‰YÖ»YØU¶AD&›cX™ ˜f·9cfíÓð·ÖÓøRðaíØC1"'%š0à„-èºç‘ßõLÉÛ [ZOyw R'· þ€pqTìÔ´EWzæpzWMyC\¦ ™:—ˆm`¤3 ê#tTp1/úR¡#*ìlòÓ¹¨ ¬}È´š=ôÍ>C1eE—¤QÉ›YíÅGšp;§EÄ,¡q¤4~æ:Ú£ô $»iš…·’hí¡ö:6n¦]ì#¿^‹ãX—–ü‘4÷úŽˆsßÎÆSÙÑzÒ<3CÀ6K?»¹ïw%;ÝÊdÊTêÑ}!ª,§ëqÒ%[=®bÎ~ï"ó"v´w^w?þTBÞR/A§,EèG'—ü=¡ºPØ[ –¦eµ>ÂíÛ<+lðõG¼û,ï–­CxÅ(ôø{оjÕƒreæÞ÷lOÖ4Üa$Þu\ǰˆ)¶=ì¼{½õv»Âj[Prâb$½“xIßU^c>–SE£žS¦#[Ȫ•¤²´E€,n˜óĘ~BÛÂo»6Ñ}¬e¬L1( |;Êí¬öUÐDLÚ>= ¬ @<~ÑÓx*„Œl¬¸mÍw*(îög.©ÿvºŸ8ƒ—×?`N1¥㘇oFJQÇ9u¦X¾IyÀˆ£šü§Ò{ÔÿQðÞ+RÍ•TÖ Y[œÃÙs,¹×òXdœ:Í…giÂÑ€×ä1i!ƨ:5{SÍù Téú'/í¯/êl åâÑ,:Â˺ëa^ÝVãÑJ1LKBÑãCÌ–_'~8¸Ýˆ ÔÚ+õqH¸2KÝ Úƒfù²U{Ó C;Ák1wu~íX“â–¸&gø5/—ª‰P)¤k\+`ð{Õ¼p!Ç©ø4hð‘åµÞ%ã„‚æiÁIR3¥w†×Ý/Å áÊÍKÙXlO™ÃÖ•R¤G"ü%¬1‰zñ=/Y/î/Tšïf°-BÀè1Ì*Ïhâ–+°Ã|b‘žÞÓâvzI”}¬ÈßÚ1§”¿²åÞx¯a1­öþÂ.âu¼&búF¸SQƒQ‡æ}¤}6‡ƒ¬—…}±qæP—ùvàÓX ò-FK"9!ÏÊ»ý«:Ùž“Õô‚w<ññ|~5l^ú9$0ÿ™ÜöÁYöól_Ÿ±äiL0°rÑyZø¹¾Ü®5Go¸¬_¢–‰tçaÔºôϤê Ùo½·-F+?qÿ¥Ð­*ÑòK?”ô‘·-ƒ2±y'´bÉ–E~Žª»í•åôëTjÎéL^¿&„–™Ÿ‚Äú¥]õDÞ6wpïGéõâžzÉ;Œ'­¶]\¿ÍÍfž-‡fÛžùJ´Ôf¨ùL?QšÅz?´íê^ꬅß$‹-Ûf{÷R(-Ú=48ÿÖÃʼǹÉïªß±4ÿ®œ™Z°Á/C œ,|ÁÝ3_ƒ(y|ÌN‹K^ÛRò=ãˆm”ÞÚÓÃ(ižSï ‘†ÖÇ“x)hõ)+™†ïmòü˜°«µsJ¥mž5°±à$‰”œŒ“œ7XÔoü¥P|’Öh^p¢Yz5û!…™¨SϤõe¨Îõ÷‰¤‡\:¾—­| æ'Pj…ÛÕò§¹¹1²„Ým©QÒT3êÌú³‹‡ÛTȽPë¶v&©½8…ùxygÓì‡ö¶ wöÄOñ~œ€’aÔø¼¸Éø‰a@ŠEóøÇVògwNšZÉ]‚ïz7’iàrÁ©ZGeX 3º‡BßZnHñ§;ß4d£JÖï UåøÌËEMçÛx·škN.³ÉS(%ô9/Wî9»ÖP–pí’Ìå5ß;`X:EÍNl15œs‚±WõqÆã“qÄr²Ÿ‰j«ylIwnt‘­Jµ5’> stream xÚtTTmÛ.Ý %ƒ„„03ÀPÒ-)Ò0  1à ÝJƒ€Ò%R¢4"¥”4‚tJw¨ À?êû~ïÿ~ç¬uÎÚkí½ŸëŽç¾Ÿûº^.}#aE{”\ …ăE@2e]#3I$&‰’ñò#0®ð¿`2^8ÚBÊü/e4ŠÁb*P ÖO…hy¹Àb°„ XRˆ‚@Ò;¢Ð2è„=@W …BÂ=Éx•Qî¾h„£»Íß¿~˜,--yëw8@Ñ ŽFÀ H€.ãwÃŒP0ãû¯ü²NŒ» èíí-uóA¡ån¼'€!ÜŽ~·üjpêÿÓ™/ÀØ áù7B9`¼¡h8 ¸"`p¤'6 iG°›Œ4uzîpäg?· ,þOº¿¢%B Ca0”›;é‹@:®p€žšŽÆs EÚÿr„ºz¢°ñÐP„+Ôëð»r(@MÑÅ6øW{ž04Âã)â‰pýÕ"ðWì)«"í•Qnnp$Æ“ìW}*4†=v_àŸÉº QÞHÿ¿¤½Ã¯&ì½Ü÷/¸¦Ê_.XˆìÌŽ@@ÒâR¸îsþJoìëÿmÿ‚±ú»£ÜØ&à8öCæï }`Ð^ð@ÿÿmø÷Š Ø#`€Ü$û';†;üYc‡Fø,@Xî _Ïþ¬°ô²G!]}ÿqÿ=_ ª‘º–©ºÐŸŽÿcSRBùü…Á€°4 ‹b_’R¢€À§Ñ‡"þ*ôO¬&ÒþS-ö˜þ®øÁ_àÿK€纋²àÿ‡ä– †}ÿ¿©þ;äÿÆð_Yþ_$ÿï‚Ô¼\]›ùÛÿ3Ô áêû—–´^¬tQX ÿÛõ>ühuáö/·ÿ¶jb X!("±d‹‹€ÄÿàO5„Ü^9ý¡ÌüÞ/©¹"p}”'â×Ý‚þˆÕÌ{xbyùÛÇÊçßûª"a(û_:…H h4Ô— „¥“(ðci÷ùÍdP‰Â`CØ(4Ù¯±Š€POlÏOìœ~㢠л1Üà ;˜¿Q,è†@zyþÀ*èŽF`Oïò¯Ê`^h4V¡¿ „-ûïõïë÷ÃȦ&P°Ûk6¯Rdõþ2H´°ÔhÖÁðM>ówÒ!ÎTõP²µ/gêOÓÿ\12À*¸÷}ÈÇò}vè|ªFGµkEé@8¿÷ìø½#œÃÅâ8,™½B³ŸdÀ~ÍÖ‚Àâæ“û?I¶‹­W¬^´z®›KoÜÅ_©¹RY1ñй­Ûx±f\3KêZ´Eº—±æ½á ¼XDÂ7¥æ8æ3ß‹„Œ¾¹¹žìî®4±£çÚ•åtÌô~Z\¹ýɘ¯'ek5xâð)A¾*—¦$Þ`.r‹à›Çw«³±ñ$t2ƒÜ%lÎýŠˆ(Üd´Þ5­áº¦æ‘Q¾Y®Ÿ~¾DÏxå©šÑÆ)zPš§ÄlÛ÷³+o⨮[,éÚœkèEõwH” Áè–ì¦ÝsÌíêU?Ò´çî÷[£fÅWë6‡úžQÄ©W-‚f-/­³ÇÔXYžëd¡€Ä·EYaoå£$EÖv•ìZ ãðªý翼 QÅ­!7¢ï©“f$¦í›Æ{¿9bR‘eá®ßÌZŒeˆn*qökñóXá¸Å I”RTß6]Àà·Ué³tIŠk—.üã®ÆcZÆ' }û´ÐeÁ¢Xê¹`œŸ/xu)·.onUy¥e])”ðoøÒÒ%½©];ò¸ï<ÊñìšEGq)Ÿ¡øÞ\ë¬R2ïçèN ŠYÔj^a5):½& Ñ[ûýԚš®ð¿ýö$)gBb±ó¼šçå\RÑ4í 7ùýÐò LKä<%Éыܺòfùª> ᫃Š~ÓrM9ÁtIC'Íá‡å%¢ºÖËçN·Êe û&uó^³{~Öè½ôý£,D4˜Ls)ø²êáÆ­'£åL4—œÙ ;5ÿ8\?}Â#®Ñ¬ÿ €DøÀÄ‚Ÿy*ùaâOÕŸ©nµñq\‡EX¿Ðù0oC*©Ûi ç/tÞt;K`ëúDZÁ~Ÿ,¿±ÓÖo+qèãPÔ›M²Uôa%õëw¥x?+ñlö¡OàÝÙê¹ÛÓ©°ëÖ‡DŽnà]ÂÀÞðÌsg\eMìß΄Òðˆ·œ–ÄÓŠ§ù,ž.´P\õã¼$+yHSÊ_Ÿþz¶k80ƒ”pwúœiÎìàçw¤£ÝÇJN?Å|ÎevV¯…Æxõ P·=Ý ˆ[$9Ú9;¶}{û2'Y‹^‰fÌû¦ø›×¡ Ô*GÀ ¾`Ї=ær&i©)Å˃/W$TƒeáþoÁðŽs@ÏrˆÞˆÁò|ñkË—QDO Òk5 âÓâBt€xÿª‰©4w„ (H„=ã$ÿ»kY¦!¹6¬¸ê COœ?òÃæ½·n„‰Ÿ©$I<´/ão“äÒð' ÓGH‰ÉàJÈÊvf´›qæž]´ÈÔ0Ôn« OÕ02Ü„}]Ò9|ïòX”Fdz½)ÈŒ cî'ì²t–ž«B$u—3íFŸY¬ F6yŸr•ƒÇV¿/˜Ýv]¶áf¡wH_õæ"Qþ¹ãc Ý«Ðo~˜"«¹ðäôÐV!ˆ åˆo*?]úA ¯ºëy-‡Dž{-SwÀT¢\u€‹&IãB²É§ú.Âæ Þç›ÌRe(M¡oþÂhA3nD1Šœ Iãú¾@¤¿ï­‘ÕšL¦YªÍzéôЦd¶¬±¥£ÏÂÒ7pÆBŒçèÊ=ó¤Pl9OL ÜË? ôêÉ<‰—)Œø¼dpwÜ‚ì\¢—sâ¯pŒ2¾Ü(£ó1Ò=*Vï·g-8 {/5ÙLõô=‹H<¥k¤4ídà÷±ï¶äéÚ.Žéóþk;õè!pqÔ¹ÏéÕdåûðKÝO!ÍÏLm.¨k4GjŠôÜ3‹ ïò¡/(#”¶y»?K¿øQ`µeÎ5ýóômÀƒ‹àg¹4U¡Ú±âÌúnÄv£xxgŠ»ü‰ØI=ëÒ–=5ž–ŸâÇæßw~ú`„©×ïÛ΂ÿ̆p¤‹†õ>aÕÂÅýÁ⫘#½uQ†}ß8ù 2~¹ùiq"ÂQv~—VB¥ãóë”áè×Ýù `P5›r°èEÍÑþ.¯ ©n}ø¢B½{øg&¶‡eŸ‚×!wàÞ ql gìÍß²¦ôÞÔÜ^ mM}÷!bÑWmfg |ð’òà.p’õÈ©ØÔ9lÛÕÉû ‹±nýrC»õuöœŒ>ëÇGnpßq½wc˜ËüsKÇCya9Vâgš½tZkÂ†Š‚úw¸¼Ú¢êwúf:&XÁŸ¼¾¸àñûaó(½-±âöýŸEè²ìËÈZÙï×ûU)H»dtä¼öTH×4NA­)Õ¡?7•9»³Wý¦?´m¼š> Ž›î=X1d±°m¬ãˆûùmºK ^¨I&àüq)’-4CRÃê™à;Œ. ò" 0ÊÍ6ë!AØnNù¡Õ:üÕU­ïkľ” å/t LÔg0®©ü~fïA?Tm±Óa=L5E½ÚŒœòedìL¢œ¹iœ\¨’5{ZO³ÚÖ³©<,Ýêiß×ô‰<ÿ¼ò$9º5Ž_o?A1ÂTKÜxÝ,ëå >¶pv3ÿ¯èç–Êåin4_Ë2UÉ£·:¨mÍ2ÖfÝì ³®·¥ð2ÜùS„š_¢öûEk(vòjaåÑÑ ‹¿Mf#Ùʨ“¡fÿƧ»ÄÃŒ·=ŒžD†¿Œ‰oý)òíZ1‡ƒŸMÖ#¦ïå_´ÔÊüôMÖ¡AlÁ5_³Ì©]ù¸œ¦ÜªGèÞ}q¸~ {–IÔÏêx¿v…N;Y–ã’ú°åùÕÖ½Îr=4ûÆááïûÏ1d¹°nÞÇ¡÷ñ $õ hÛ¿ˆ_d¼6$Œ%Õ=“+l™â÷ÃyÄ^;nMÀ¯ð~ùõ]f-wÄþÏÊ„Qàk£µÓ…UÂ’£Iêd;4AkI§7óèRîBnÐíQôD™¯'¿>Ò¸.8u–¿’ð…H¼²ë–k³8ƒåƒè‰TGøû£™ú¬‹lá<)8x0‡rª£9ÏOç¾Ý†?œé¶ü)܇S­>xHáòŽKò€zã8—„þíTÝÝÂBý.óm—ŸÖÞø_a„À¹%¥½®ó³©ëó°lT6Ùd¦‹²´„n{ùǺGïÀ!~Ì"ííç±¶§Êçy—íº.ÒÌÔv:|ò…a„qû¡>áָ͵¡vUЄÞÏø# = ™Øë8g­ü÷1m’.#ÞI©&aÛô*rg%œ”¸ßÚ5û_t =ì¤nè|¨ÔpvùöGnÑSê'”'Å•ið-­ÙõF!ÆœmfÉø0×Dó|ÝÑã¢éZIEñ÷ÆOô³Ý«²su‡JᆱJí$q؉"žjJIjIiû Øä=ô*¬ß—jÐ{Ò› ¤f(B`‰"Й^‘Ë£cºòA?·Õì ~®g8ÈÍê£p _€i$‡*Éj4s}žåe@"p¶l•-Oþ‘%kQCˆ“±s‡ÒûH Sª#ô•Ý6KB:ÝÆ/°«!à(·ñÞáûÈë¼F+Õ ãàú2þÓËÃ)Ó(Ú›u1¶ÆçmËK}i/ ntö(Þa†J…ñ­/ ¯Ü+lîà%ÛŽFp­¾;/Ð7ñM3§§§Ù$ôœ Kö¢1\zx±6ÅOÇŽI|˼U¬…°Ù˜…2×VÄ<,'ÿäTÏøhƺ±âT‹ê¸FøsíŽíŸj•Ÿe|x¶îûälBÇ€cªÎêeg=Ỳ3B\“j5õÖ•œ–”¶Ë’”Á`홑–\VEªvO)—Ø] Mk`+èËÇVÔƒé{? ø"Ëb¹¦¡Ï{L+0åÙ§-‡èLm6ÃÐFñú©.ÃQrÿ‚'\œyÅhçDÃÈ&…•ú„tÌg\­<ýј¾åîúÞ(«+ù:d*¢Çõiûîø°²˜ç*ާÌ@`n`K§Ø€€/’è±ñK)ñ&:ü²Õ ±.c ê%%×\¿fQ‰¢ê¹ò„*ɺm<âøh:ô¨³»ÞlêGÖ‘^²±’Päq(™”e¿—^tNf :‚d)Ý…pH…Ðg¡•V;SÌgd}ëêš6#ShåS.Á{ÚGë‚·¾jkõ×ZýWmYÂÉÛT”O¼mèœOÞ«ÜÅà@ÍlÅ—½ˆƒvîoî‘[áÛ–ó¡˜ø\ÄZ䉠ã®Íq„é;ßGä¢Ã´ ZÈ€{bwê?Ôâ© Í+Ånæ®L†SŠéM*®(½qmñ_ót½A7tþ& Xrée±I‚¯ŽÓ^%DÜ-S3È ùÄŒ›Eöt/õ ^ÑÚ)·Ù€>«&µ#X“O¿È+§[Îê†ñ΢d0ß O²A#,¸9ÖCôŠ þ´˜ÒKz¢º‚ƳǨÊO^×m’š«5¦tøÆ¹ÖËBvŸF‘;ß~|½ÚrÕZ¾&ÓÑœdt2NRfˆÇ¿yyH°»·GË“€ <”å Ó <Dù6˜É;ˆ¤| N>,5ü°ü¨Œþ-§s)iàËëBÔ‰ú‡Îª"!ŵ%ãßMß0?+ëw”ÒV§·ÙÕr…N NüŠï‡ÿ·òigßé|¹Žû¾–t{JÌí°Eâù7zÃ9¿q0}ÝëÁKyWûÞElúw=r¾¨ÏÇ{‰ž^>Ý»r¿=—è×I¡YëTT(·£ùN«–œlîØðgö»ì5SBF¡zVœœ ÞxµÎ Cð‰_ɨJ ã²cMì‘•ÙQ XØ­üùžÄþÜ:y·vÚÓ©+©ˆ/™Œð{†t?,:›ûn•h[U–PHq”}òþ0è­¿¹]³Î-Á/ߘ¶òt}å{{B‡Ë³•ꥒ¶ÅRË^ŽÖPŸçíȹð™Ý”ï.Œ’Y€rž„!ŸR“²¬÷90›¨™fÏrYïõ;l¼âý™\󆊔®Ðžü­“=;ð~‚9Ók7·| í–­a⎺+äxP¸³´&XHjîSŸŠyvQÑÃ&¬ðDòghç[G¬¡!uš_E`ÌJþ;X½NW¦ÃçÙ^£Q³‡±Ã1yÃËíŸÔð ©/*ðuˆãÜ+¬0kòô¹EÎO9t·%˜\xÝ}JvÌÞñ˜]µ:Ø»)fH1Æ$|IU˜lñY¤¢âÍm“0'„Þòµyk©}ëŽðöë‹æäµ@££dÛówŒî±–æf\pDN¿²Üfxá©òÊ-ÅeÀQªàŒÏ/»ðXíe MWe3Óœí©ûÌ~vÝ^Øû‚xòM½HMh¼õÖ¸ïé½£ ‘²F°çå&gâ<½N/Þ^ÿ•>UŽèÚÏ;cÅÀ'6V•AÜsogURü¶´iøØ¸qœV#f¬îÓgÍñq ?¯pv‰µÇ§U)Þ²WÇûÉ_©’R©é )ÎÌ2_A4ù ¢­{aè(]žá É-v”4ƒñ¨ÞË¥r÷ém\d0±ØrŠú‚”R¦¹ˆ]¢Ÿ¹tO èdŠŽÆÒ´|wðé“_Þ]“‘À¼¢_Ãy3Iv›NAƒ'ŽQÛGÎø•^~º=PP)¢Õu—¢?­=S<î›wÂr…uÖ¶UÂÊµËæ){ÌFûÁLÿÜóÉ’E]‚Ãø'ܽ/lG›£ŒÈ<éAL2¢QÛ?d+1ä&½KƒFîLÇÃ.x"±~Ú§¨^žU ÑÆ€^ ç†vŠá Áœ­7ãþ/q&¦#dÊ?„éßåXy‰ø:&oHtzkësoGHëC ÛìÕ8W_3Fÿ n{Lñ|b@·èëÊs]Ó7NµŠÑö·,?Óèˆ×÷ ”Þâ1}¬È|;& ¬ÑDÎL~5é^a8¥ÿüs •4iþ¶\{:RZªô ànãÚ³VZwÃ`þ<²"CæU[*º•!2‰©G|ÁÇöß•ËHÚéFO>‹×¸7fXã^Ö̇ºßTd‘_¼G½K¹/žÚjÉÖžP@lœ§à»AzDõñ¡Ÿ2˜Ì½9AzÒ‚T-£¥Õñn¤Λi'D×ÈuÈ#ÿõ endstream endobj 225 0 obj << /Length1 1739 /Length2 11740 /Length3 0 /Length 12845 /Filter /FlateDecode >> stream xÚ·PL-ŒwN`pwÁÝ` Ìà܃ÜÝ îÁ=@pÁ‚»?>ÙÝo÷ÿ«Þ«©šés­Ïí>·«†–RM“UÜl’;BY9Ù8’ÊZòœn6.TZZ-¨=è_vTZ Äì(øIúb“B_•ÁŽW{'7€ó­ 'Ÿ €‹ƒCà_`A€ÐÍÆ ÌP;‚ ¨´’`'O+kèË>ÿZÌœ|,¦Ä@.6æ@G€2j rxÙÑhЛۀ žÿU‚AØ udgwwwg:@ØÀ.V¢Œ,w¨5@¹¸,´ P:€þn • emùË¡ ¶„º]@€ƒ½9Èò’âêhr¼ìДW¨:ÿ Vú+€ð÷á8Ù8ÿ]îïì? Ù8þ™ 47;8=m­–6ö €ªŒÔÊ:Zü´‡€_òn@{ ÙKÀŸÔquð¥Ã¿ûƒ˜»Ø8A!lû?zdÿ£ÌË1K;ZH‚@ŽPêü¤l\@æ/çîÉþ÷åÚ9‚ݽÿ…,m-,ÿhÃÂÕ‰]ÛÑÆÙ$/õwÌ‹ õ?6+ÀËÁÁÁÏÅ9@æÖìl åéúÓÉù‡ù¥_o'°Àò¥ ¯%èåÕt .® _ï:þ¡rr,lÌ¡3•#꪿˜A–á—ûw±ñ¼çx‘'€ãÏ¿WF/ ³;Ú{þ'üÏ+fW5PR‘‘eþ»å;%$ÀoVn^+/€““‹À÷²ðýï:j@›¿yü#WÞÑ ø‹îË9ý‹²Ûß`ø{@ÿ]Kü¢\€á?B7äàå0ùâü–ûŸ)ÿ*ÿ£ÊÿUèÿËHÆÕÞþO?Ã_ÿ?ÐÁÆÞóïˆåºB_¦@ü2 Žÿª úkt•A6®ÿ땇_¦AÜÑêEѬœ­Ìw"Ç9ÆØœ%ä]y²wxÝÈÛ¿ã5±HÍÎÚÒ¾:·Kš¤º ›:*šÓZÕhÔÜÏ_tÕãÅ`Vv‘¹`ÎÊʹߖºæÃŒ›úâÖºúåÕ¶Ál’Wlå}¸ìÜî­¡S)F²d3Ã=›ùV¶Eâߊ!K>ƒÞtPòû燜Y*EŠ#£Î)YWTÞËC |±ß€¦¶^Óuì°ˆ«5Þ`i\žüVñ(olMîìJZbGª{P™ G'þXóS±®ˆ¤å86ý&U±½Îë|túÃ](žýôJ¯!»8Cæ+ º»Eµ ÷qNTÚ/*fÞ9L¶$ë£XÓÙ÷eø dʺÆA>"gZd&‘ùÆ ÚÄÇ/XÈ^ y Ü2â´ïâì²c§)Öϧ-ØàÊŒ²¬Îû>r\  ÞGЮ%:Nè2½æu•'X£›^µÈ“GÉ·Ô­nƒ–¥Ü!tìssQ\™í•d!è`Â5Liú¨^–T6`ìÒ%™>îY¯ëAdÅ©ê¶hw°âÆR¨¦¬Z…Ÿbuøøp+­©³“©IÓ´&&"s è¯”$aÉ­2g¿jh4ŒÁÎ+‹’I £ÊÆ’<ýbѦ¢èžñt¸kSA+Ru«Ïù;@$¨Êú§oT-Ô°RL§4ƒ¥m¸›žž†9€bU˜|iloOª¸Luq÷ öÓ©B›l–ï)_?çÁ4¾}Ë++¦€íBÍÕt ‚‚Ë|ntØÑ?ìFPZ½v°Ð×ý¤#b„®IÈï7:þs#æ5`éì†'Œ !€wGèÍ9Ag‹í–BÐóÍB 8“2j§´ˆÑ3ÍXyjÿË󬱕нŽàé~°ÚòCþë;Š)[¶¸Ûx<É%Â!Ñé —Ÿ8]ú9^=ÜIcR$ÆT ÷+¥ž %b¥UKw2˜PˆT0´’‡œ— I‘ìæföÁÙ¼ ·H§ µéÀwu°OmiDžþICÚzùë ü=9Yk¬#¥ÓQž¯Mkg´½³}~‚h$×Ý%æ§NäÚâªö‰Á\e€ª|êÄ;Dô÷­¤#Ÿ!]à\t˜¯÷Rгû=àOÅ7ãþ)‚¾‹ØíìÊ‹F–‡­ˆz‹ö–gy¬w2ã> €^}š8çQ¨ú@2V5;×?@ïóvkÉ>»qÊŒ…Ž:ò{àN¾‚W]³\ÇG×ÌŸø5“šMKàhv}S$z+FÞ×Ã¥{‚†ÕÖX_ô“\dÛ)“[<5s.½Ö°æ™»õÀ+¯ÒÊ50ñD*Í»p#~´Üò/;Òjõ§ºÖõ}0 cí^F2Øøò 9^Ku»¿”Æ}¨$¥«Ý}%~eô·ìUrTrÓ9»…𨠺*¦º·_0;JÎú¹u^}‡‚a²êS€u,ž†HÄúDüGíJÈvm÷ÉÄD¡ÅH^P[|S¡ˆã°¢Ã)züOÑ.ÿ½)‡ˆØE¯Þ‡p\’|tÌés–.vªC¬×ç–þE_ÞæPÐ2jЛ­ð/Ú–d½EJ p8ÆOopF‘Vg•¤Àƒ|Rlš}–úPqÖ`X(¢ÁM8„g!J©¿4{ Ъ®^‹8žÌ®3gQ·Q ‹¼ÒÃü$±³ ‡_u«KL$z¸L&é”)~Y„gÍÔRèeÑE¨îÝÅ!=»2ÁʯÆÑ¶+Öåú.K·µ+d¶Ö¦)1Ѳ*R:Xht}|uaî% vl\?ãùPà TžÃU³|¸1ʺpãÇWAØo„}ùalߥ¢ˆN=yžã}Gú”¸²Q–åœÞ/±F#ò(›–›´_'ŽÚ¢wÇr—i‡›¦º´Äâ‰ƒÒÆØ^c9•^±Õ»7ŽÚCCVå*Êžö®©%cXM­DH‘*-WQµk¥eCýïÃAéò®Ò¯ƒÀb2¤Vh3¼iÝÒøõ˜”“²ú.½4ßs~Ž¿œ+ýìê¿yÝΟh-x`ûÆ%CjÛœ,ŒßŽŒíæÈþ°ªËÇÞ'½¤Ž½ìfù³}—š‘0ʆãõLÍì ª½aŸäÃBÀº`^òFt½ë $Ð3ÿ;/,hkDª(‰„s/11VËý#³ 0—,ù¦#—7Ù‘âkI€[…èG&J "ìƒS#3ܨßúñD§Ë£‚PËç©ðu®†ýiO#6Î[ä-zPn4=ÇÎŒañ>®r;Tìã«®µ]f‡À}—$îïµ%L¯¡P=ERW x%Šl„ïØ#Åý³<°Û¯bGÕ°3û¬#@ö?Ÿ:ßW˜ 7¯Þªh”¸·"Ór(’¬²mµÅþ6ãïÓÊM“ôŽdQÃw=@{EK…Ú1Ή;Ö·ðçÂ8PQG~É«¥øËâOËÛZÈL'}IšŒ»,×°Y±”°ÞG¬ËI¹ñëNx·Ù™À34Q½žÐ3"ÒþYº *¨‘[‡6÷ÙsNKOÈnÝ ÁŒœëÖÿ¤ÅAÎ6‚Ó×ù±µÌD‹ÀgÈÿ»`È/|dÔ®VmãŠ|[hr°†ý›lSDd?å<­À-}6>ì<û¼lhmiŒÿF›÷}‹É æ>Z÷ãÞQÄaxãn8Pðù±™s6Û¬ CªPà‘ÐwDÆ4 þ{gǵùNÓOÇ\å .ù«p§zOM±Q/^gPb¦…óÙ3èÂ&òC=SAçmìF~š(úÀKÇuzzKÐÖd ;AóÔ©¬.¨6Ñ6ÚexÔ5î^xÕÊ~îöζYdüyÝD)ù]hÁu©{¯Êt3b°¯Ì²…žrKüpä‘{Ôà¯ãqÚ¯@åbóÞlÿöÜ#²S33rEfüôt.çÕ2KKõÀØ`ìnS„WT¨Ž»¯•°æÁì‘¡ôî1;hÈåÆLºx¹IÀÚ₌ðpãé}äÆÌä$,û#.bÆz:Þ~óB}Èu‡ÕS^z8Úãsð~e­U=F½e¯˜s{kt>C1×`îz}I‡0—Í"L óȸ©ŸÊâ•zÛï5Ùƒ€ô«°Š–“29f0»±º.T—ÊÉuâäpÔpá,^Ûryx¨Æ{'Æ€fœÙ„mÜxÖ0æ( S„â{ÏubYIÔÝSÍ­]KYÞP®¯‰øD%”¨Ï£Âo >œ&2t¢¼ìõ+–ʼn¸‘Ûú§ 'Ú•©¡Y‘m±ŸÕ‰ ~Ç:¿Š31Ò†!ÏnìNöÚ§HD×:f¡Ñ)™À±;Z2Xk¸øøŒýæÙw³c­©<7¢î~µq䟉âS¤ñõîQ m—pÀèµ›¤¸õ.Íoާ€(ÿ8??x‹sä&³ºô[DDŽæ°ê7tq71±¨”¤ìµÖ9¸­–x;ˆˆ½›ÙêD,ÿOí·^ÃvZï“éâ:Q::/2y$üŒËjLÝ;vÍ;mñ˜c<昙šoR¾ èm—²—»™ K%¬ó!ã:;*ÓXÚôª©´ioYÞ-÷'éßq€%Žb[3¤5GÊ+› rÚPüÔ¸ÏÃܽçßѱ-(*îèït§Åþ}±™Nï9vv¨`%gI+–åVPˆ{ÚÓuÉ,ñ—£êR¯om3Eëû^ ¹kdø»s¯Á“KàÏ[9Ó9SÂOW<}8wX¨Që¸r‹²ÆìôPdÝgÝÇ©á‡qW2^&³~x$"•Í!ø˜zºÙ*ßMÔ™LÈ˨ßùîBEvÂØ}î$ ô¸2fGt º(ÝÅS~“Ú}¢×R~§9SÙn§ÆoI\Ö"*V¶{^2 ØÖ‚á PdoØØéTì4Ä]{C“2»89¿pX£¤©‚ÁÛ##²Ê1@I=Ï òZKœµªIF4Q©ü®׌w¹,H’SœY„‘¸d¨-þЋ`!ü΄p¸~¥òuC'XH9{uœ× ú§ìpü©Áfà©]!|~¡ÆèÀÝÆ¡{·Wi¤(çjüP¹i*ÛN4AN¾_!3©ª1¹ß×?aϽ,wB+7l‘häo‚‹N²û7ŽY@zr—K«i´ùÛ/Éú“XÕ–÷¡usx•37gÓ0V·"aÂ'ïÖ블xŒ;á;æŠáŒcø×_s‡t”¥n^ {6yXl?h5…å0xasXzYómicû ÕîùÀO"b2[ë”é |¨O0Æ~ëwOHGm÷ uu%¾ƒc¼ÅÖ3 €ÓLŽÑdV|Â÷޹Þß÷þâ´{¿›y Ñ<æ8ÝbzÒÕnàßi½öL3Ùã1àÝrþÛ˜ªyl›[®úž§kµ!3oýd€ Z;”¹ˆâÝÎ C¯ª~üdq¼&mËË9$.õÙù9°‰©Û+O ‡=Ã7¡í×^qiÒ qLÿÍô nYºÜUn WîXi`Ââá@«= ê=:s9÷ÿjʼ6÷!ÂÈúr{ÑôNüˆªù,­u·ªâõL”f<öM A?ÜŠFtÙ ;PüàF"ÄK³ Öf9%Äó2A[Å /[V,Ó~ª\iðèygþÑ^Í¡êN#âñR©Ó;GOÿ2žïc"ØaÁ~•ô†L½ E= õ*r,¼+Ô¡ñaÆÖW[¿5Z°;¿‰)Ú:ð#ï†EfÕñÜÓÈRÎäÑXHÓSN;}…šŠ‘|îÚŒxÌV2PÒE9‘nãá‘•DüÆÛÝSòb]ÒÌ'j²ƒ¨ »©5M¨f+™Ï®;1)ÿgæ³â&çY{êO @ƒ×Šn$o$iÂBªYOî7ÃÐb)3Á¶ÃŸ‘Ûc™Öñ‘ÞÓﯨZtWå ñÚpEž×É_ÕWtÒêþïÏdf’©ÇÍæù¦DŽ¡úºWvüï0"ª†ÐC®ªY0?‰õ$.ÃID´ìñ¨H”º"ŸumyB±&½ŒœÊ[¾%QÄ~bëM˜ªše_¶_~o¿B—±óš7BÃ»eÞEÂõ½£Ñ?³<¯»¾‘œÞrm»6Õ`*ÅEÐz´ 1Q÷2nË ÏYzèÄ Ó bߥˆ·Aæoí·ÁÌJ´c+"Õ7€,ºÖ:·¡ Wß2gHu`W1‹úfµL•˜F‡¬0¡ófÙfd;KÌÝóáÀ,ÈcÒR›P)î£.Žúuþ;¬PíeÖ·• ¥½Å–¯ÌòuÉÐJ]Kb÷£&q•Ѷ¥‹­øGƒ9ý)¥%ÕÓÂükO…rõDF².5Xx.a½Á6kzIUòêW“ĘGÏuâŽï§B»â?òŽóí’­ð9:“¤ „—¡ZK¼=®3¶mÙûAæ=#j&X+_ž ÂF_½ØTU(>¹Î¿ª{Ú‰qI™‘‚ ä'·kyâ #ÒJ{uÄr§^¨¿ƒ"ßr¿\'!½‡ ÐAçÒf`†B0\­ª9 4ëç,#`þú¦°ÌÜ<…øë÷´ ¥Á|3ŽO#8QŸW­û æOj5‚^+ D™feKÑd>.oy IÒƒìåÍõ8, aos¿§ÑmæJ;¤œ;¿ŠaÓÝzÕ–à öçïq¥é¾ñAUJ©A*™TbˆÂ{ÄÕßSÞâçÆ¢c )‰_¦Í U]/ Fúbš=oqctä²s-} ‡02ã/¿º²¹*ù´•Á‰¯Ñ¿p `˜ êÿ4P9Hö1¾y—Їbª–Çž½»_OžyÒGÞÒ,Ø;Çz]:'<Ј7è½#Kº¿y•d6 a›Ä¬Î“J`ÁlÓàPŠURÕ*“i½ØÃRRfZh¤$šdpkÖÙ9£Òœ´ÔìžåécMÍq0 TÕ,¥Ôð3’–ûâýÅ}äÛTÿeEÔU#´LL²°NÍR†°èêóÊ2ððƒ$嬔Y÷%2Ùh:¢t‰É¢-íaó”þaϱ¢îcçYzÌê§v};軎l6Þ³[wá^u «¹&¼¿ÏSZ /:L•«¶ÉÇQóâ¾Þ bjZF$¹îs¡rÁýcI¹4âÆn©Öò\Ò‡ÄgÌ †{„Y)ï¾5ĈŒ§`~fùãˆbÊÍìËt˜÷ýP‘—g¿ËI·'æAdü¸µìé0£=N}í}‹±êrH²Õc–‹¨ü+`Z(ÕßUÊsìm 1£øçÃliÆ=2øúϰë8sRWýp”_l¼±ÎòW>Ï¿Û×D`èÂËëŒT×ô»cE;‡Ê2z7 Áº˜?+L”ogýHši¥¥H'dØ`¡2Õ¼Îé$ÓªýÈß]m0!"“Ì,ÿ1_€Ö<ýXñɼ A½û蓪ÂÀÝðe(Îô#5#DN”“åG·}¶e™|Þêª)•øÌÖ ¥^Íui¿]ŠÜrÂ~½| <ÌÂPüš& Pq«gš‡ê"uÖ= Ip„¤íº] ƒ²­+q Ê’xsèí–£•‹bÅ—ì°[[YVÀ–DÌu"SküI_L'å —Š]8Kˆ¬uõáÑh`êã¶ K€¡ÐnF«.Q+ä¡a³‰ªÜêîY©ã¦Çú|Pgnè˜òŸk2˜ü^R®bÍg »±ë°¦ÚêI;_"«ˆ­«1±*ý Vqä§õ~^”€ò§Z þP£©z´*P*QmÌaAÈËÊ ¸¡é²„wÉ&0ã(ˆ*!1–^ Á¼[ä&ec¢œ¢m¦ƒV¥ŠõP˜t‘k-ÞWõ¯‘P/Þ-]›ÉÇÈÖ­‰‚ƒ‰óŽÓÇkr>ݾ#A—5zó ‚¨è'ÔíÚ›×JÏ×»üõ:x>ƒ+\d÷s·E?÷ñ%'«¾ºÞ¡°ÔE¸ðGí¼Ø¤ n‡w…˜bvÜd³TPÔˆÚÙ÷¹C !üÊîy%n9 ÷u-²œbH¯²žÜÀ‰·XX饘å"$N²vA^7> Ýž1[@Ù-ë»`,¦ÓM¿eépÓDÆ k e×^8ÿ^íÛRÞi z¬Fµ*Jïc'Zbá}úÁfÃ#ÂÓY`~K¸÷äR;mÿ'Êí/¦Tš«®í^1ŸCº}Óߊ)º·‚ÕëUåGQù÷%²X·µw…Ÿ›ùá/Ÿ?ZY÷ûs 5N‰è¬ˆå'm×SÉ©Y)¦[וÆn$,raºØCÐS.•ñKf‡ËÔ•—->ý²gµ…ÉI†o§,lq²ŽÈ])0WEöüð}’ët0°Ð”‹y‡¿ÎíØvñ4¶ .Á œ@ôþ¢£s¸éX⢳òWïYqRˆ@~ÖIV¨š+:‹ñ`ƒ~XhަB T¥ÑÂ,–°ùÌ0!h"Ñøp¹#¾µX=ÔÒ ï¸,¯£Í¦³I“2œÓ¸¤†• c&ùä»y˜.`R•®-C·H-ºçw(Tmðïæ½þ¦|9ÑAâØ:C g?Á¬€ˆ„[H*†|˜ ­.±ävŽö¤¸Hª±Ãz…˼Û>ü°bC`eÞƒé[¿C¢æùÜ¥ö¬Xt=´cwòZ;ÃÏþŽrnýËì kòk^˜]`âÌ»Ð"ösrš Ü0Ënya¡G¤ì„”îæG–ã~òõ TIXÒ3ÇÛµAO /ÁÖƒ×þjŠDÁ¯ƒIÁR²š®}©Äî&´T-€HúÅqÔɶàëCýik š¡AŒþ…¯håÞï0ói—õåâ1éúÛrÉvI—üùhy\}5™EkÝü++µ™»i~lš!£¢y]9†ø¨²b“·£Ñ$qñMËzqÌæÎâC½w ïI ([|ŽÜ-—ÇÒ9NW~ Ôk…7ÇÛUõ°ZE¢¤|bǯF€Ã÷Þ«&Ì ¡°•º¹ÊÈoÁàI}%ùëçCóÍÅ[‰Ô9„c™ïŒ5$¦[Õ:JIÊSÓýu·ôH§wš$ BÅÂuãúÔù›™2:ZÜñ1´éXŒ3ÏjÇÒ9ø‰(·eKK¼Ú,Cma¦bÎ%Ô¡2ÏÓcEö‹Ð mRíDY)GÓ²cBFé( T]ç·ëóåMÍÉUÄoƒÙÉcnÞª›¤¤Ã›aýª‡(ã¯Iý!­$œÕ£5õ»[ç^=‚‹ªÛc(ÊÝ:ZÙèˆä3’nÈGo *øj>ñ‰$Îu&±û «©ôšHÕ°à#ïyÄÔå¿IXÙát÷þþ8‹Âb¾:éчž4Æeó*°æÕßF®St¥µÎ+™qån°©{eˆSþηK§¡ÜLv([’H#3´½ÞLÿ:‰ÏÝ¡òÆk¢EQTÙ)?Ïv‹^a ºÒÅQì\åÐ7²†¬ø~B›9 ¨S“ämý⌦‚3@£Ö‚€#¿’ŸŠ¬Á¢X̪¯Ö!´fTÒ÷¬w ÃVÓ> •ttÁேBµ(µ!%SËDä;ø|aòÎó|`BýÕ[•£„‡R_È0C¼ú—<¡É8â)\c¶¤½’Ã¥³ác­nÞÆ ý6ås˜lAΞÙÖö ÇKjeâˆòÒäÓ¯œÏYÏ!JæW©¼»CàCQ‡Zo{!î³îQ®÷ð‡…6ñÛ?Ö´âxWªî"Ž÷k}žUšqÊ×…û×áêXÑ[¢Ã%">æî´¾)‡Ò]d ÓS<¦av‚¤Ï››õî˜t&£éç9SCî¿Oõ1,Hž[àâL´+-Œ°þdÑ™—_o¨?Râ§à­3kæñfñ4|F)ÏéÜ6<¢N›V£¸ï ÇJvíg™<ÞÚ\ÅHVðáXçöžc/j3¯w|ˆH³IËà ϓù„‚ Áv®UÿCG·kô†ùµ( B@_ÊTTCäµfVøF‰>‡ô@ÇXÕ‡‡Ì6:‹êUü‘ãN½]Ã^SÇËøSïqÂ<˜Bò¤@iãx*N{ú8©‘£ßy]|û5¢ÆZ¸‰–QÌÚû©zØmã®è¥)+<М[ú…o£žõÕÖ{ÕÀÁ°)Ï5XéõmöÖÑÊ-¯!ô’oªÈ=×|¬÷GöHoÃô³a"0Þ²T‘¬ €Û”)!Zdfް@2`®%ª·_v %gµÖºaÇ/¢h“ pY¤$.^S°|/\ò¤O%Ÿ¡#°Öàg0JO%çÉ‹2 XÉ›ÏåÊ VÂdÈ$­-s'Ç“v—§Mî `Û*h¾!À¤Ù÷ç#¯dF"¾Ožf ƒÂï}±e={(éÍ ôG<5´+3v¹x³®c‚\¯ÈÁd•q\Òö‰¾Ç.ó«JÞ›®€ã]òœË³Ü€'&j«9lYC¹3Äg‡t¶)Ú"|b2¯ ÏMRLóÝû^Uôç*ö䦩–nî'–¢"Ûãn#3-ttêjt·ò%ƒ‘Ÿ®vɨšó¢é*7H¯Ú=ãma]‰*úZHûvÑô)#ÚÚh”T1ÍxnÞ»}Ä’Wò1zoÚ˜pøvmX­ºäÕª›SU_-ŽÂõJí ]A›-'Å=“-9Ç{ôªE>¼™@v,/ç™ Ó¬£´¡Zrtö­³B’;Õµ}Ϊ æ`µVW™vÏarËÕãé(K]šLøÚs ‹W¤|¶¼û±1t+›¢p¨y×׎ÓN_bÂìšËæ%Áæíµ½¼Ú2î1øI\‹Vôæ­h®¨29Âþ”bº”‰‡¹Ë˜9Õñ¸¯3 Ly#Éݳ]"À™"•tV¦¦î¯Ÿö8~vb•r¬,ã“§•|@U¹Ç†ºG€¾Ü~pˆ ï™@»ÄÞþñÕvRI hÞ„AÁQ‡j:,e¤è1v"‰ëi5?)KoSfF"Å9?TÖ:ÕKÁïMç‡êóYí tÜ$)èbÏÁÏQ½Õƒò'çãáÿXôRBΙÒ0Eôÿø¨Ñ™âg"ÁæõPƒœëô­Î3xº›©E0ˆ{/F¹¦A.ÊŒªúÁu›šÕR*÷¾Qp£ÄQ±utùÛ—½O”ä< ãR·•§e²9>#mÒøxóMº`½ê›TÈÈŒqº ¡ Zü¥„=¼gÁ¸Ø›Œ:Ÿ 6øetL]Ö¿ôó6ëÓDè/7™˜}W¿ðBÖÅv Ü“Dµ”ûäuX̕ל¶ŒGGÆ"d-ÏÑhž¡Uöû—²ÝÆ~ú%£îubÚ0²,ë§DPÊ‚Z¤††›[kÕúVÇŽX©1eò¸¿àÿàÙ2¶,gM'm-ýýàõVùàô;O‹Œ¯®zqºqq9È`ì½!ƒ¦ïzöFó›8šv}ÀÁ¬ã· –]óîr»o§}ÉÀ£Æbn+Ëè½’CZ[j‚¬Ä¢HÅZz\Ü¿” ä'%m QH“¾gCÑ?½Ðešžë‚ße}ȱùnIsEãAéV]‰±ñƒ´ùai.×.î}ù XÞ7 ô®¨ZAÙx®V5ýt srŽÙV—Ñê r˜òɃÜLùCþ‡(LíÑYÖL!»¡ÂÓ ECêéDoe«¹RfFƒ«¢°r¬;õ!Ê…9ˤÿjðH,аÝ_”ã^}¸—ºÈŽÜ>/_½[¿ž‘`ÒÑö·ÈKÌf暪eÆÔE“²l+”£o‡C;¥§.Íy¥.Ï1'ñ ÿbvŸË…õþ3Â]èTãTðd§¦RÏÌ“bXdɦ¡ ȯ–WìêÁî5ÌjLy¼È›·J cŒu3¿H½Iv%'=БKC³G?0Ï.^$Å;‡éíŠyye’,ذôñÜZ™ï„ŠG~–¸µý4|?㟠S«F(—·UÚÏê¬ÎeÎÏ®42ÎhäàÙŽO»Â_޾5¿ÑÌáÉmÖ'NØYÚ󽉗½ó—K‹RF ùã&5ª¥éOD4š[údíjÈV 1G©Ê»ûóÐ>™ë¢”PÄN«a=¡Ü6¸õÍ©&ÝÊÖ Z¸æÅbéý>ÿgãÆ¥sÎn]ª^y¶*>”º§¡ˆ “4$´W?ëY¦g6M´wâôÔIµýöT‹/ÓÙéi½ës™(ü†/j7ý«å@(|§Ù{-øbéܬ˜Ô¼¾Ò£6†Ì  /éju×¥[s‰Žá“P‰Hd…úDt‹÷˜«?Ý}EY“$±>YýBëâ ¥®ßïù~…€HQ·Ì3 ýhÓ‚æ¿y”Â,>ájW`\ÖFû·ô]´/wúÆ ¢å»ÏOä‹!ÔénºÇÆš“¬6'àŒús®M«s*©~ÞŒ— ãÖD€W„ÍÕƒ¿^ýŒDºò)Y ذ'¨fdü0gœ½ Ï©–‹¬¨FHÚºó€)_1ÏFÐÀ -T­á¥p[êV¥òr,ß%}U6¹ïv–€ 4=ÖCÿ}4Y}= º!%çÈOŽ©uQðd–XÕWÛVEdO_Ù$¸ ⌯HoÃÈûn•3ètƒ¨ëãÎVí:2 Tx#3p­ü„nÔòê¨%›§Ò/_ØqÅwÑ•v?©Öšô`>pPðŸf_Ÿõï8ëý,:¿7ÕR¡íYQøçCûÁn_÷Ä;Ü)ÆwÁêëÈ¥ô$‚,]€o"›W óS˜+¢¯ ìÎôwT)üB> Üå´s²#pï5X¥ghý¼L¥# 0]šä/ë©öáîd¢1Xõ:F«º°Ç7§zÀÖʹ1¸•‡»Eàªì%”rÊ|O+õÕîêîz2Ø[›_õA{?Ä&F“6Õ#^¶^”ÈDT‡•G ‹ç×ÅüÛÁ!¦.ÊãÍ–©‚qTÒ|ØÊ±¥"#Š;jEY •øEñÒ>Åcê<¥SX1‡0ô,ã«O@n?<®|‰’Neé¡§¿ç9[ýbâžxÇŠ¦Öâ/öGþW¨ôâŸ/6Шf{$“¢_1%"BrsIˆå¼*µ«èÐÑnW˺³jžG{ NØ#Ü-¾{LŽ‹~Ë!×—ë¶çó4E(«;DšÐ÷c-·§¦.z²òtà)0eÈå&M­ðù~YÿùÚžÞ¿0묡‘¥;hÑ[ûbÜOü<.DœFßlN³¼N ƒ£0¥â­]æ1ZBNxEï©Ì ‘ú[ÛÏøÙ`aVyªmùǺ¼¬öýÙêà;xqË|ElACÿ_¨äËäÙ|_ÎUö,)}5¢ËœõQé¤õŠó‰ Ü­Ÿà¢ß}#1?Äê¢ê\R^EoWž_îmÔy¬‰ r!/E¢ Co‰$ˆ«Ï*z0úÃ@óÁÓ%ZøD—ukO89:7r†ò?œ©à†Ã"H„Ö‰@"‘Zm'ôÀ”ôî“Ë B|èÛ®_kUê§Kh|&„Û@r––c‘ÏM’s{¯£Ú†¿ïNas½êõöƒ›¯?yó¨^öå*ÜTÿQ¶XûÖ®/Óz(¯ˆX™Y·>ÂÅø‹Daµ|3؃(Û#ëTœzÓŒ#ø£‡Î_fzu~h;¹nÈ–üDžÆì/PÞËà þ2©ÕÉ¢ÃÂ7ÃpTVÒìöVQ€Å=ÖTy°ùĺÃõ¶R¤7Ÿ…ûy{—€çJÉŒHPóóä½ñ¶ö¦‡{@ìš×Ò#&$ ø;.ý×Yðz&þqÇÃÌÍÔ(É®vD»®ÁÁ¤×·–ËÔÓ)ŠéTvq°ô2ðœh¤Lù›ÏÕ>½L= þ Ò›šž ÐúüÜ\åí5°É㔣¦$‡ÅÄE3;ÓÁ0Rœ*¡Àˆ°ú>¾ÿ‡‚M§D•›½kTýB¬í®íÕ¬vdÆÔXßË_+çðÐ5œS>鿯s5Sý»Y0%›ªã»Îsˆ7zíÕ©hO&¦"9JÛõÈ–aö%Ý!ú·È{;1@X¬ÇQuióÆéï‰ý¹Mã¶ÞáWak#·sbÓgdxKæyJAÝáî"Æ¡¹Ô%¸¶*¿Ìè9 tËöOÉ¡B_K0ež(Ä‘×|‰R_ i|J zÐcÆ#윪æèeÁÚ-Z‡ àÀBÇ8Nq YˆÆÃËÄdqÜyP&çð¿ßåüî Â|¶-åå¦\ÆpÁsä4–â˜ØÇK WáÙØú2ËUbûàß9ÀGg.^-wN¾þÊÐ7ö‘U[‡7?w™Š(²SzÏ„…}õd¿ T „ÈÏÄ%Òç‘”ÐÙ[†k{ÊÚÀ‹ Ü’>›º€5TÕ[ß"Í‚¹S&ˆ:=œdH)ªdv 81 xù»Ç9Ã×/<èù£¸~Í/b²wX„(ºŠš’ (M]vZ®ð±SŸWtmZ3è™a0“ňërxpÚ§D:©ƒâNeËy}sÕ£%Ä80\|,î‚/»tösän4F9ìXH‘eºõ½4;:)…kÉv§­öbâBߌø`γg´H0h¾Ü—?{Á#—ÒX·²?ŒË´Û­ve ¿-s8ƒ26©¬¥‹kYC⇼Þ`­v ªMI7ý f;¨ö½dŒ=·ÿýÓªä1«ÂYÿx¶í¤Ú²ÃDoZ±È*_Ïê ‘êkL "È+0g½L«â(¢[ ëÝÊ60a€$ÖvØ?+ÚÔÒØ/î*z~ÎÔØ³®ar0¶µº½=ØBŸ‘pò nš–ñLÂcÓ±m£Rª$¼ˆmRs'þÿ4ÞD endstream endobj 227 0 obj << /Length1 2553 /Length2 18232 /Length3 0 /Length 19727 /Filter /FlateDecode >> stream xÚŒ÷P|û Ó ÒÒ,ÒÝÝÝ%Ý,Kw7H‡”€tw·tww#‚ÒuÖ7}ÿß7sÎ0{ÝÝ¿…’LYAÄÌÁ(é`ïÂÀÂÈÌ SPWga03³123³"QRª[¹ØÿKG¢ü9[9Øóþ%!»€iâÆ.`A{€¬«-€… ÀÂÉËÂÅËÌ `efæù¯ ˆ nìfeP`È:Ø‘(Å=AV–.`?ÿý 6¥°ððpÑÿK bY™ÛŒ],v`¦Æ¶5S+ ‹çÿ˜ æ·tqqäebrwwg4¶sftYÒÐÜ­\,ª@g È hø2@ÑØøŸÔ‘(ê–VÎÿf¨9˜»¸ƒ€0ÁÖÊhï Vqµ7‚`ï5y€’#ÐþßÂòÿ ü§8F–ÌýGû·!+û)›š:Ø9Û{ZÙ[Ì­l%IyFz€±½ÙoAc[g°¾±›±•­± Xà_¡$ETÆà ÿ“Ÿ³)ÈÊÑÅ™ÑÙÊöwŽL¿Í€Ë,ao&æ`g´wqFúŸ¸h ®»'Óškcïànïý_dneofþ; 3WG& {+'W ŒødÀ$¤?4   €ƒ™™™›t=L-™~;P÷tþ‹Éò› ÎÁ×ÛÑÁ`NèkeÿAòv6v\@®@_ï¿ÿ‹XXfV¦. …•=Òë`2ÐüßÜ•@—<~,æß?ÿ|ÒO˜™ƒ½­çñµ˜IVAUóƒ4ÝRþ‡)*êàðf`0°²±8ظœ<œßÿµ¢llõŸ(þÒ”±7wðü;Xp•þ°Û&€ú?ëAø_[Šà¹¨ÿŒ¹3³)øËÿçaÿ—Êÿ¿ÿmåÿuÌÿoD’®¶¶ÿâSÿ[àÿ‡olgeëù ðܺº€w@Á¼ öÿWTøïÅUšY¹Úý_®Œ‹1xDì-lÿ)¤•³¤•ÐLÙÊÅÔò_³ño²Æï=³µ²*;8[ý¾,fæÿÃ/—© øz8ƒGò_, xwþ×£„½©ƒÙï%cåàƒ@ÆžHÌàIbåàx³€·Ñ èñ¯!01Ú;¸€Uàì|æ ¤ß-åä0‰ü&ýq˜Dÿ .“ØÄ `ÿƒxLÿ .f“äÄ`’úƒØÁ“ù=ÈÿA` ئÒ?ˆlSùb0©þAl&µ?ìAýg¤ñ=hþA`Úÿ 0ÏøÄÎÏØÎ<Û¿Ô©,¬à€M­À=²5þCggýM‰•³Íƒ`&©‚ã21ýaƒëb26µ‚_s—?t¶èÿ^—àpMÿA`릶àIù'öß;»?Iü!¦?ѳƒ7s°µý+ðaú“xh˜€ÿã”ó7ßɼŠTÀÉšÿQ‡knåö—ßl׿}€E,þXó-~?‹À¿EÀ±[þÉÜ4KOGK ý_`šÕ_Ü-›¿ ¸Bä§mû{OþðÁµ³ûÁ‘ém°-{ð~ý)Ø—½«ÉïËfñW àSÍäð'J°M‡¿´XXÀ™9þaƒ}8‚ßSûÿé.;˨ÿÛ[vpáÁÃfåð§[ìàª9Úºþ•øû“ÓŸ Á%srupš™üÕ0õ¯º²€3ùcã7ºýUV°¸3øiùÇ)¸ζÆÎ–™‡ö'PðÑfr±ÿê78Ow‡¿À6\ÿ‚àÖ¸ýÁUsÿk+ÀÚA°yÏ¿ ¸¢^‚[ò‚þíêîž©+\R—=Mà£ø_ü¯o@ ÐiyÁÁ”/ĺ6¤ý®Z„ÐaB`–r_3†Á{Ôáú€ŸLS•´ ºIîE_Û• ¾^!}ö>m©‡oMTi{ôy2LPÞoCZšÂœ,8© F$bP>ðyvòùhÝÙ%K™ëäʦœuçÞ/åQ7Pº:¶°¯rPÅ)‡üT:ë£øuŽ2Ïäó<9œ 1-æ7s×7³˜9“¯¤² tH¾g±l…Þ:[¬ïç½ÖËÕY»ñ)ðuðˆ¡¯1Ǧß{‹¥È¾]ô..ŠÙXÌf¦a„Ø õí";çÕ•—Á|Ël Zæ‘£ðm«c ÔêCAÌÚW3r¤­u‘+§`a¸T®†÷î°ìªY¥ðt›ää¸BøámaiÞ£Æ; ºÚ‡S¦#ÁÓ(˜9ÏáÆþÍM©šDQŠ×ØQÒÚL+»ü:µƒGyቸ„ã…º£ïsce{ÙæooPcöàRÞàY:Ú˜7E(êVdQâŠ> \UIö Y¨¦Ë•ÔéGŽÇó«Í*5w¿¾‰+/¸.ÝÑ#êK\Ö¯~ç—6¦3Û£³ä9â1TS^ó-Pó½¸nÂì1Dæ{̆ýÖy>r¢¶Peß{ß΄ͮ¾iãëkFÃç‰ØÜ•QiÒ†uûƒXƒ“»A÷¸áY…¦YZ»æyÜíÊTì1Á³5TFÐ>Vy¼£¹7³x·§pÙaÎñg>ý¦ªNKŸÉ)Æ»¯ª"0ÃÕrsÐvY¶7kï5×ÞF¯ó&iÊÿñl'ÙO°~QFü¹>µ‹pe>}˜-^RÎO7¬KWKdMáQI-Š‘ïãz|ŒôU˜VM6Ÿoí§»lìëm­k‰E×2Òö/ßÚWãEeÚ‹¶ó¢Ô¸O%¹\Ž*±ì̦Òésóì?\uÏPݵ;úR2²÷?³¶ëºLÍ ¤¬|‰©Ï²ü•Õl’µýB»L E€d6XhEPE ÍŒä D'ʽ,¡ùXâ£1}1Xrcþî¾ K¼¡Àå}Î,µ÷k®@yfÇøÏv:ÂÆ‚ïÖ\=”§V¯©¸;XC4øÓ£êLSNkS’Ç5·ñ-,I.“A3Mëù¨ÓùoYðû¾ÔJ¨ ¥0|Nþ|Õ[ä„oEöEËbá~{ÈÚÇÎT”›ÓÌÖ%\¶£WÍåµjìu2ÍBtLÙĸ•þãg`´„G6UëPéí G„¤©¿€½u'ëNÇ<Ü‚)öQ¼; JìÓÝØ[€IŽŒ~xVTgs-ïDZ=Tó…¼’µ“èÄý“Ë¢Çbs‹3Ê.ǼG~«KR%j*ï’¸ùÚQ4÷²µ5`&·øëåè4áNëäD÷/É­dE€è|±ÃllkÂ9–LpOêw¢8äÓåWªäøŠ04H%ïiÉ´È>ãíLÍ¡ÀÇ»I>Žõ¬e;‘¹!ºÜ‹#^ë#_>ešâ’†ã±¨£!å(»!½'¨®Þí9)OпUUÍ,+ƒ1¨âxæy÷Kä|›Nè›è)ÅáÚ7šáOµ¼_©5©è¡Ã!^D¤JQð@ŸÆÔóÂ’çqµ­`Þ„ˆÒÛ|†.>|î?Q&AžézÙ¶¬½õPbt!ˆ1m`DQO\1Kg—þ@Œ,GõFng•J0#KbKY‘žWáÈ;JMŠUM˜S/gKˆáǼ®V,UÀêѵ¿$.£“eZì­6aÎÕ£mqi±ûزb¥†ãøW£ŠŠ_; <5p{†Ø²3&îd;©(cíÎý#ê3IâÝÐ&AüšNdúþVƒyîm‰F¯G%0ð1Tû½F[–p½(êêq2eöÒ‘@Û½Æ|ŒŽñOWoûr0×ovÓn×TÅ$Ž›hÔ0eÚ,-7e‘¹]ÓåÅLgJ°êH”Fïψ¼C¨ñäxÅάÆåxò»<¤°Üv$žæØ= 9H"öãr—[Ÿ¢2úée5Û±å 25Yw¢O‘¾a(%Vql#**ÚßêôK]ÁÂ;¹Ž“4}«YPH‚êüÕcñxñ²ŸkÓ»JÞq£ïö %æö‘ÍÈ[pÈYººCÁ“˜½/»`“Î+h¨Ú» ô¶GCç•G¢4gaNªrÛ5gEpËÈß©sœ)¨`ÛïÍc'%N-Ô'Ëœ‡t±\¨[ë’ÑuHÔÃ\ÊDâ‰Ñ]“ï14ݾñm¡¨¼\ƒ7<9‚…Å=¤í±OÙûv€<4…!cÚ/s7‘Ä]nïÖϸ4ÎLýÇûáË ¨š °Ãí›ßL¥O°Ädin –½À/¿~XC)ISt…£ãy]yÃÎ…í)õ†zº÷esµ8µ·;мÂkdÍA©×0ɧÜTç…ÈK´à X¸I'@„t½ó~KØø Ð#eŸÐD(þP|'òu^»;ôâ{ÖÂÛÈcõ" Ñz[¬åXgÉÙ*!rL]Gý^äØÇ ˘¥žÜ‰îOÅ—aPÜ“ó‰^y‡òaBuP‰oŸxIä¢ù*¯ò4_)Ç´’B®a(–Âyßš ó8îÖK˜eˆN,ȪRCrê2¨Óž³“eÅN{jCQ)4ˆŸ¡@[3<„"„ôŸ)…pº]{¹Ä ›#F ZyÔ›®V1߃º‰PÑdÎNà0ãðãVZ 1QYÔNÔÌ`AàíkS|5¢)è­¸žîÇ[ä…ÂýÞ•Œ¡|§Š©?%)S©nãñ#ÓÚÂ$[:Ñ ‘š©gç¢,‹ˆ1f *•²ÀÑ©«ô— ®¹ Á±—ýŠ·Á§qS}Pæ§CeSXCËuÞÐF¹‹t¢úšØóä" Y‰oÊi'PŸûžÛ³¹I4ÂA„à-`ÞÝXNA¼ð¥½¦¼§FÃ|(}p1sÎÇ̓Tô2mlËøúÄ!å7î¿ÔÛœ œ°FÏ™•aBFíê›8{Qu ñîOkŠÔ—¦ ²ãÑ!=Cq¸n È’¨_=T$JGà@rko7áÚ7cMMz?Õ0¾i¿{@ÈvyñU~:KréÇÉÿ*ëQ—̽84«J´ºÍøVÏ{ÄÈuýU'‚´áë/Êã¶žˆ¸§P®^½y}P˜¢,iÃÉKôäUús®d…My-rìU§’uWjAåæÊ]=¼&`~ʹDaþCj4Mé]ZÊÏž-øRÙKí—£™ÜõgÝ,=ÏpfïdåYp…°ꇄ°È2M¾Ž©ô ]t¶˜›6MÍæ€ê;ªù-lýb/R8´«ä&Õö/õOÍ„#  á9楷‚¯×pO˜®vZ£Çl>­»Xìù'=çE/|G÷¥b·MžJÚ¾¯ê2T’ÙláÂÏœdòŽ7€ñòd0ãy šæuŒ‘>`rÉnN/\Þ…,ÎvßÖ«}.Ù¥Ê! ôòÆo95i(œ5µQ6Að „XBbΫéí»+÷"Ü•™­ AUnŽV-¥˜¥/$ *>cÊ=…(8Û |/‘ÇÝS—þíIÑ]ã6ëŒ=ui¥Ÿ>k˪(\Ûh³…¸¤¯MëôK!¡€¶é³_+a·×Z+ÿ†g ÆØ”pXªö—0ÂqýÖÑM;×Ïaœ¾JÇøŒê& :ó-~†lQòë¿ãçÂÕ²«“ÇãÔN5œüØFCC-q“Mý¨Ùó¾ §ÅGS‡ú>ädJZqXø |‚ËL©ïËÁHˆ“ft˜qÂ~ÕZÅÛl^ç·”ðn$´ä ücp$ižÇ‹;Ö<Š2z°iƒ±–óëoô£î÷äILæpzè«,”쩸q†Ÿ†J+*ÉÞHÌ…Qñ¿„²àÂwòFü©ðë l‰ŠgËo¸îÉó&LÔg„SÈU“Ü'¬3qç-µXnëø¨®‹§`ë ŠœÞðOR_üôèáêFr£ÆO ’"š¥ÒÙ–©“{“XqVº>(­âæ‡!@ƛåæ•ZoZ0¥{´åU+NŸÎj° ]Yˆ}ÇV ,Ã~çˆä«-/§t?Aß9{+’v¡ªñ§Pž 6W+Óçñ=Ùw$SŸÆlX ±!Ýi«¨Eà`äò[ˆÇÚ­ÎA>6‘/ÉmmöMø%5"é‘4Ùí¯ÙÇ4~¯Ø”Y_Mt»0”„ú.øprTÝÃ7[¾ITp|"ÏÖÜ÷ à›¯”áü •¤E¥gu$wÿËÙ—5ß[E„Æ@öÄ^kë#Ž›kŒ*&”z¦G‚‰‰ßéÃ'þcÖÇn.|ßÐÀœt‚By­9%ÎÃG&t*(#^Òɹ˨ú®ú„b’VHœKn‹HŠk)úä×1#O_©“¢¬·#B4¦ŸÖ`7~¦d¼rmË!“q‹Žt|´…f\Cr¸&™Äm˜wpC’k QgÖá/%n¿R0Èv€Ú^¸HBå׊03Ê¡ø}Ûj  C$CëÜâ·“jq‹õ´`æüZONÂr\t®Wœ(—iDQsÆ•QoŠ™Ÿs»Â\5ä‘"ª¶Ù¸ÙRøTXÝž1;9þè@Rñ€˜9ìJ?¨DÔ¥»y]fÿF,_²Ç–˜Ü¦µ •} ª2öøC‚ÒK»=Ž‹ø-²Í/Za_LìW~deÒ5ó 9(ƒÐ9sBM¬òJ wÆsåQwîq΀ŸŒ¡ˆ…¢šC>iCC†Aðw>Iæ;K¸Ù»,LYžïïÓeâ CßÕ&,>n6šÒ¶‰b@ÒWà¬IjÚ›…)øNªj»¦›(C7U¸eš Z(Øpè8ô;¬cïçÔϘç†Aû½Ý<—êœ{Zj8 ÏAÏ-OÛµ°Ö‡’àÆj‚NËY22ŽPd2r„ûúæpbç˜•Õ ºøÁe‘šI·_xׇO¬hBßĹ;¯u¢ÙLÕ.¡„{©r©mT|h$k(ZµEbùuÎéò‹…Œo˜ñjòam—¼Âmù·‹ÃL“®¤"9üTco¹L™ûi‡fB÷y â+¶O=ó±> ªNÄB?ʨJÞ@ª=,8È,|Ðë‡_Õ·ZP·ŠŽÕ5ÜÔi0<³#ªüò’ÄQPUL¥ÈíþF!‚žN‚×-)j„<ºy¶ô¢Ä;ѸÈ—oRå£QÊmÍÄ 0öê⢄ÜÄyËÊI¾Ÿ@Ç~„¸¯8“í 785F]Xc1¸äðX„Ó 8S½ozÍixY+€­Ê¡‚Þ‘å5µ.e+ 2gERüÔÀË&&ϧ„>âFÎï;T'"Ä#Ð5nüioÈûáAa´-ªñ潯ü½ëç"¼BöÕœºc[tŒù†¡&'Å.7eñ,'Œ¾Ã ßf{L§Ÿª¼÷Êøù3ÝÎnך7qǼ~…ó? C\¦ M}Y‡àÁmà5’g™¹4¦¤QxO•.ä}8èk¦àõ.ÌÌ ~Yße†ÎƸö'U.ýÔ¤IK¬#6<˜¥”}¢€xÊ\w0o÷¶5hb¡»n_-¤†c"ù–Á—+2anw™¡'“öm³ŒXeœ7ËPK˜HTÚ¦Î@Ý|%>H)Z ™À> “s—»=.ŸÇj—cÓCüYñ¶–”„Ê]¾rŸ³Öš<ùBÓ­ÎSaÂÄÜ-³¥àžè=ý|˜4|eX0útc»”nyèy?ÎûÄånæú÷2˜x鯧qVÔoFSs¼xƒt}'‚ 0Óúõy‡2¶n•žÊ¿–ŸÌbfuI ƒ\0Z½¦Ý÷ø¦-!L yRªŽµPÔ¸Ï0½?' ÍÖ.—e·ÁqnùAE¢ËtÉx?ࢠ¡Ù´{-¯9¦2‡º+Ï•HSQgqжø3a<¡‘œ1¢»ýÕ.‘ùL»ƒô¦ú­ÂÈM/QÕµ5]f4J)YUL6[‹v?!¿.ð}¯ æ{d.þ©}üºAºsë0oŽAª‚wDâ@ö4Ô÷ôºè® ÿŠæ»Ó:MçUD¶O¾½è~ú“Š"ÏÓ~‡%Ûºm^§§ÇØœ"(g™½ÎBW û~â*’øM¹-Ùf‰Ú«•ÈÀÿ(é¸ß£'Ó’2$ÙOt?ÇÑËj™–´aÁa> UI=(Ê+ÒêS›£ü¤”"<’E*Džê¡Ó8#kY¦’ˆ—éÎXÔ¡šŸý°±ÒÙ¡à—o|ð+lF1oýK=rª¿™ÌéDt,F²~W³ÆÁçMVæ{4yÈÀ3õþ­~:]ó…©‚dÀ$…2r“áÑ›œI"9nù0#…ÃûI6Sl\¨¾"M*áU”!k/tvgÝf_Ü1-ÔäHcZ‚‚þ Z¥O(I87üé"Î[d(êõ’Pþ2¤C}nkaéþ6“ì½®nHÅîùPöןMm ¿ùèûšoî±H2±+\òø/‹†Â7ªÁ+þÐÐ\aÏúT;{<£]]Æîƒü•^%:»øKäȶÖq1Ôñ«Óö¢Âl÷@õZ$3ßR^ÓÐꩈ65Jéjsƒj8…$ˆ0''$A°“ZÆ¥—¡Í‰Z±o"\döÒH¤ÒH¯¥ÁíW®ÏR|¸×ì0eé³½:OÓ'„øWaCGͼ¿ˆß'óIrò+>%æˆÃƒÜúP™¨QLªø>N9µ1ñÛ ÜÑEÒ+÷vz½êïé±2&4ã—á³§‘&—ôÑ‹ƒìT~ˆ½w©AqfÃ↑ø¢Œ‹ÞDWd„m¢÷Åø+ó¯,—løº#;‚®ë2{¨IÓ/aˆ ¸?X§õ¬Q‡Âà,Wõˆ!FŽÊ‹4_EQäg²• ÍBÙûžÝ»ˆ» ‘u÷÷]ÍÍ´×ë¡¿Ù±QÒŸ@é\#¸ÀÙnm<ü~f›[ôÝžgüörïëYh¨™Þ9Ü;#;É_õGß/­šBËx¬ö,9¯ECV%[Ó>äÙ¸Ì4(p;Ž%~k/DÈ­Ü dž_è2ÒHМUÉ`-37—}ž,‚¾üªuˆÂ,Ò¸p c0”›é˜_û¨ÇbF[ÿ#å5jJdˆL°­Í6tMh.NnbéÉYÅ‹ôÀê9Ç3VËÂìc w‘€13Ѝ3ij?ŸBÎÍâåûëIi¤ÍìÏÑïìÛe9W3°Û(1·é‡…Só?T{„±ä°ZÈ£ác…ü²½¦YºÇG~?}EALo A[c{ZÙר|¬”§9~òèš¼©f¼ÖO2œ­èîq|\¨.IšAUÊí*ÅÑ#û­wgù»¥ ™ Å,½FCÝÒjA¢·n‘Xýœ®cPîû†Hr„Å$áyOæPÆ 7E-0#«¿»û ƒÛ>-ãíÏçg¬Ý_ÞF°Ý󹕨cºâãåÑj Qٯ洃é²CצóÎQœÕSJåÍ}ÓÇ}aE ¯Ã…ò¤lÑuw_I%JÐåRxõñÛ^țƖ¹¶,—~§¤RÁÂîN÷WA/Ä~qøGêóbViœžÕÖµ[y4ú®cå•C…R­­}ß•õûšlŸ«c£œµaOͧq$‹t°2z{¥íŠ¥á6Õö©~ d‘ùI§Ò± n²7êЃ¨Ûd'uí§ û†2dVaZuM 8Écìtù-†²QrU)H!l;Ñ„ÈgO0y׆û€ùË}ióˆ!ò]â˜ñõÛ°­ûÖ{ý$…8õõŸÊcH\"ƒüÈÄQôBý‡äxÛ±ôž“ÐÌALd?vÔ÷ßy·DÇU‡‚r\5»ŒK™/” )ÈÞñMÆt ÀzaѨ…ØÁR÷\¹øôfEýº…Ÿm-~NÁ-Tþ¶nêÞ4’Þ+P;'i÷À!ü苽vR/¨Æ÷'SŽ]$þ:6»M‚0ƒAŒ6Ê5)‹ ±jÀ¬úv].¢ï'>Ò›J´ÆÏø®¶±·óD2°Õí6 Žþ„w/Œ™èžôÄU³†+èÝÛ ˜zÎHk­cô]3;hÛŇâñ‰Ï-é½Õtî™#~šv°#|¢fÁ=æ©Y‰š¼7pÍÂïm[’NS>1"ÐTaž‚r"ºŠ G!Op°«îØÝ°‘ +˜«5øXeZÃôÉ7ìZÒM–¯.VÞWТË?&kÀpÆçWÜ|à†h˜½îÿX¯BØ|:AwåO"›³ SÍ*€é’Ãú²;y˜|+!öKù4¾âS>ßRÿÂêöñcs«æ}•ÚÙÓ|—tmè5Q¢J,:¼³;FhAÖí}£Í8~˯$,¤‚§¯2¹f(B™3ó—é¥JqÆc7På0Glæ ¤š¾‘ŧ›ÍÆÊŸx5ׄ…ÆŠ2…?9ëZ‡½žp¼)b”ÏÔ¸·¼1ûq•¿¼ÃË…JŠE.„ùŠj ‹ZuAG‡? é¿åÏñâÙˆ¦_¯<ÊdviÙ"ÔFô4´°êiV˜[_êÊ_[¡eRôÅ¢14Æ`„fŠ’zWSÍ5@+£ðËYÀüæVI@iÒçoî¦öíHÎ5Zÿûg+4r­bª‘¾Ò™˜õúÍ!ä‰À4ùi;ZJRè EIsÒöV(JIË¡i¯Eêëàï÷·v“­mA\ð2C… ¤7Á¸sÝ‘ðÓ()úUØÆvktøY·¶ssrÕv“hÑ ÃRÚQk¼®‰1&š— øÞå4ÊõÛÚ J‘¬êu(Ï©§àöm¯ ïÒ½~J,¢ÂU–æ+· ϶»""±/ZÉ ådh8Ágµ]ßål6ؾÈhÞVTÙÏk-TÃMŸ€èÀÖÅe*osíw±¾*3¾çAz‰<ºkŒ". ²kÛcÉãÆeå?ŽËði&©å’ù‘AݘOHààóÙ*€¡å´¾~Æ5$ûW8WdÓ ME±¨0ë£ꄇ’© ‹ñÃüwkŒ ÙñålÅ7ÜÀ;æ5F¨tÝ‹Èþí)øC¤ÇŸÜB›ÁkW‡mºm?‰"9êü¦ ‘Û‘?È íÔ&3@°J ˆ ÄɰwÇo^éÃa'³Z [Hu¦ ÕèÊ“~¨ðCÖƒFlõY‡©¥Š«%æñµKÃuI-á"ÌÄwj×FFêjƨ˜:ëM/ëÊn4u‡tšq‘¾þb]#XòdGÖn€ZC%Ï›zï´.Îðqèc‚R#Óòªú«kúÁ`ÿ‘£uC?-Y4 ÅFŒ!ÀÄ^qopìXZ©·ÍÊa‡>&QbTˆó@‹¥Ê»„&±ö´WƒÉ[EÒX˜½=ûŒ¡«yÂvÚÏçR,íT‚¯ÊúÙ£”+Ô~hñ_àñÞÅ£?Íñ·A ˜ç„ÉmÑd8G³ÿúÊpɺhÊÔÈ?Û©aù\ÇTôQœ°'Õ®37¦˜ZÐØ|Ùª;=R*m]¤³„O|invæ?¾ýK{•Ñ:”Cð=Uýõè@ú“HìSuüÍ*_$â,Ý MÁàsö7Á<*-ô“—,”&†Ì7œY+â«‹Ñ/âG8þF›ýìaµD\÷Ãl×ÍÔ]B+ÃñVâûj±),1uß—ålªŸI£#ç¿£Ø:†Ä•ñÈÑÇ…kŠÆ}²¨Rã#L`ûŒuãûµMÜyú ‰ä FÚ ‘%…Ó{ŽîÑ~8 ¬m«ÄÚ»ãÏši_®ƒߪs`¬ôt½CÛ “™ Xå 5rFcXQ¿$ß«êÒ=`O<ÏÞ\A1el¥8Ô¬J )F‘Ë ª¦‹œ¨º–øÛ'P(2‘9ÀD¥§wÜÅ(Å9¯öHtðQ3‡ÿöÓ̽ ™ž/uÊ9¹N•opÙÛÏòU¤¶&‘šú ·¬êãõžJïòk¹JœÉ‰‰kÖ zt‡¾-iÄšÅøÆ­¢_奉M¾BÊ,âêàD¸Ãö >^˜ cl¡:h!Ü bô×+MÔ¹XÈò£g”ªjã*ñßΪ¼¦™åy"•Î&kÊÊ»!Vèùd¦t>)ª%¶¬µ†ê,YE½+ Ü ‹ïKzžVÚÉÚKf0HR®B±%x¶Mád*üt&ÚÎ}ÂTFŸýXïøº¯,zåwä­i9Y½P©™(4›g}C[î¨ý(ÿ\± h§«© ­ñ³kú#y£ðÂÈ«¶m·µÚãW9„ì"ô½…(öÌtd¬( UéûU}$s¡¼¢ewkY÷l7Ö¥§ÀöáÚœÛY®=8ÙÁ»PµrS†3ö°4IÜ;õ Z÷€új&ïi–•^ͺŠf½œ=¸þ€‚Y ·×¡›lñ‹åH¨à”Éè“Êea‚ÌLÈ‘h•+rk^!¶?…jäAí·s²ª-§º]'»IÒ‹„ÕÉóÙºý\‰µe™¼–FÑEuÍ+!³‰ƒdècoÒÛð .ºuçêšÌé.çˆLÒ½—Ðzg¦©¶ÖﵬæÚ-–\T‡š* ¥C.š®¦ÄCë=½É3Ÿ¸Ÿ€”psO»dQÊZÑ„kbç÷ú‹VÚ#¾C­ïH4O„•2ŽŽY»Dd¾)Ò_H¢Q]â¾±èfÑ÷X:†Š¾·„Î¤Ãø\œ3–מFØü¸›­%5‚lòø¾=—?'uÎÔ‘+áešî•L¢{A Î<ú²o‚‹“ðÎú+°Ü^Oñ’ðŒ»>åc» ÐìÜî\´ŠšGFVñ„·õ©« ÖFJ ÙPÄÒ~—Q2_º‚Î+Ÿ) Aä¾H½Rm쵊óFå:âôÕ3бÿvO~{lçbûÄD"°<åPªP0yÑâ´Ï5̶ XT; øÙjIÇ&S¾™!—Þ—ËÉ[8B"ñ žs—qÛÝ Z R5¤ºgŠ€ iU3Á nG¯OÙ2)`›§½tgly“rvñjÓt¸lÏ«Blêó[„”©sÙñð*qƒKdYjf‚‡ß$Jl±UüÜñûI½êQ\)¹ø‚³† DeLt¨@îÈò5ÃqªëxÎ>âøŸö)­|gs»Ž¤Òò<ºt"ÜööYGÖ‹‰ïú©(å~ŸwCÂÊæ¸yK¾š XèƒÁ½QÖ˜T¿mÒol‰öý”@nÐ/1ä§¾â =>CÇ®vFÅW·§ŠÒ­‡sEN´Lj®ò2žq2,&Ò;r.N÷ËQêÏ&£bÝêCy™Þd«‚f,“fMbáaÉR °çšrïÊËNÕ[ŽIõ-¯‘ë j=—vÊ—¶ˆË´¯NòÖ6¨  í¾C“ÇUï-D>ÅŸõîèÃ4OÒñçú ýq.ô_¡ °eúØpùä'É½í©‹ï¦35¨Ìé°Zò˜È»ZÏÛl»RÆ }ÃF%ŒbC¹T–3Ú—¿ÈUûϾQG"yëí`ÀÛH³­Þ~´Y‡/r nËš2æ·Šõ J®ÎZBãÖËýFWÑ´i+¹‚Õ?ÎÕ*®Áñþ`<€¥’Â"ø=—'´çŠÖ‘ö¤!øôZ!EsŒ­Q¼‰)É œš(Ñ1^gÊÖ¡"[]À±³ËZki[×r#s¬öËoAÜ8BNâ=Ù'°ÓêŸ3s <ÎUÕ)gÊ/)w™Þvo¦8‚}ÛÆYó¬ªùíiî±,OÀà  íuÄöJ-=Á(0ºÏ/›Z˜áåÓÛ–‘ ä#+öv}£#¿›ñîä3h!£Å‘R£\.õ†í59ò˜õ3^@³ÎæÉ°6 Z¨š;ÏFM…6ë¢Çñ†îZ@0&¹È‡IS±fˉ¤rN$…Yס½§ÞT£šKoãŠyj+×üŠÄÔÊ…§±ˆÊoy¦a¿šûb¿ºeD®„œËœànâÛŒJã·zËÄ?_¦Œ‘[ãnáìǃ½è…™î¶êª‚¬~ñþ8íú¾\êu%%ð䇆?I®x–üS©¿?¨y©áñªU؇‡ýS̹x†™Õ†ZÂ"o´N:Jܹ¥r<†Ý¤dævðäÍ›3ë“dæzBßõel|«rªmSŠïylÔ{'ˆîËxøvTºG}TTJaö¢›)^Ó+à ïZÓ—{ˆD%6Iè(óí„ÙTMqÉÓ:‘YÐæ+¤Žm¿½͉ۛ®,½ %‚Íõ=”¥ûÃï é¼{ñK¶È/Г}aÓŠ!ƒ:w‡B³RFñ?Ô^[»:¡ƒ¥´¬ð„»ßJ8 BDÃ'Û/2}ººŸl¶Ø½÷$ ‹0Ôó-·VÕöú¹0ÌùsÖÐÞlF³”ŸÅ歹½_‘³'q·\úí,DgÒÚO}Ä/p4¬|ÂOD¡Ðñ{ñ¦Ñ¤=å\°!†ç…Cc[D#lG‡2¹Cæ-ÄètvÑѹš¥°â…•鬊Q,½2Þ£³åV[|•øÑzæ 5³Cçcpyº‚ôŧ륔š*ؽGŒ…±^u ª^Á^/;Ë †øRþ˜b'{CPAÚ¸ÐÒqûÿ‰NfsáXRÀ€f–7DáÇ€¾Qœˆ¤œÍGú~˜Ú:g©>åòÙGU†«¯ÎAù« á9Ó?A¨<æ´ÙŒ VÔÄ4§[ˆ¼sù+hÓ‚¸OÅ3ŸBmh Y¾$ ÔŽÐßMZƒ Õr~@¿Ãc;U飨ÛVá‹Ò!~Ê_òÓ†®FœþRÍÑÚì,ÂÇ'5ÀÖãͰ²PäåñÊ–ò¥pp²D.`Pž¶„˜˜Òºé¤ÍPª²MÚŠß8á)#1¦ª¥Ìp¹PMX\åHïv¥Tùu =ê$ëî§ 4Çž=ëýb…dš@ »Rµ€–8ÖOLÉyÒ«%Ê(·ux¨¦ÛYˆ6¦ 5¡¾6ìã9°l oòÇ–º'ÒãM¢üÈ<ñX²éä!éœ*] Gò2÷í5ù#îçUˆý+ý Ÿó6œžÈkõœ GVp¨¬Å¶Î*‘_QLÉEïãºÂy=¥ÖÈ]!X@ÆšL6Õ©äšÅ²Š ‘¨íÇϧݢEÐIꦘ!P‰÷9GoäpËm¶*v)ñÙíªÔ>;l]gWEng)9£USRbAfQ^u7û\# >tE_)6U¿~ÛNj,ªÏ¡×Oæ‰füHávz/Õ¹C«>,h™½¥ÍDƒ·v/A‡+‡åJMèhꨠ듣'Ïž™;y{ª¶~²qGcº(\YHµ'×f)ˆøò¾Q×™m72vè”QŽýÍÞí^­b°Å+âö—Á¯=îeì’¾d{äÉYaº¡º‡×<úg´ORXÀcÃÅ£Pµü˜e9±WÛ÷ŒÓÆzCÕG½Qi µiÈGó:–@C =Ó‡ÒÅ”Ï#OKË‹lU'lÛ†còDgͨ_’®DôË-Vۂ;ôÙÓ=U­ß©ß5¹0Ê 'rñA0Ž l …ŸŠ‹¾ïhxŽGÒó3üÆ<úÉDµøóxƒ¼jœ÷r¸·“1ˆ*~s±&ã¦ã81ý§I¯ñ.¬/s ƒ±,6Žp™ ¨«Ÿe 6×}mZ¿21Q¿¬QÝr+û¹Áf¬ÅmO5'“lG±€7VÔAN–&kjHñIÙyÎ2¡®1†;Ë !7^5ÓŠÉÁ—>° t›$:Á¯l“2,Ü¢¶ßÓ("J‰“GÄÒaò „𾿧‡„ÀŠS\*ÇWV{P+£·ˆQ¶tfÔØï¬Õ±=O㦦°,’6Ž¡-Ë19Gë`i åÕ…íØwg%qT}0Z'Æ`­ßïÔ 5Ú¡ ªo¿ÙíåŽã”EOÿ³Ï9ZLë,o\âÌÅÈps•H%]”š°,@˜ lÝ—äòiûú‹#µüÊ{/l~{ËzÜÇËü–­À›©?Cêå{Gá§weÖ«…벋_\CÄü)OÑiŽø@¬.Þb ¤bc )T;®OÌëlºš ”4é›ÈaG/ÝoªÔþ$ß:(7˜ø©…Ó¢Ÿ~ZßTMÉdç Vð¹&Êõ<,´;P@$AIAåDè,÷-u®9ylÄeQ©ä”…Lãu;fÝ@³®=ààò;3~¶{óÇV´ÕŇ}‰/äc`‚k¿ŽG=šh­4•œ)æ`zK2SŸ¶Y¨¨á…ÚÆE ·Ôƒ³¨ÿP‡^fþ4¥\c•ž#FÔ­plfU[0bÄ à<´aò-ÎvÐyb¬ˆšÝ1-Ë¢I/§¡È?hd-u}1N³8rÀézÉKlœºDáô~sh‘~î&[¡Ý$)f£ê@ß”˜à4ߛܺûóÔ-µÂjO{S›V&w2È8-Gù³Ù˯Á§ëŒú(DUHÇÂ6¦ñ²ú«¶Åïf1÷D6$&˜¢€­Åª4f'}´UiçD‘G7š2ñ®:lu³°Òñs‰öÆxë@ç@Ã[ë]2|ß…Ù›Ã0GE´q¾%¿+«ž¥˜²/~´/Ž¡åÌçyÓH7l©%‘ؽ=‹Fß…ÍWh-6.ØÆK¦Ó8é‹‹aÐ9…ÕR…t3fR%°òë\5ßÄ?¦k¢YëaÎÁÒKo:©%û´&ò~àϘÄÈmì"].§§1‚qsf{´ß¹¬J瀰¯ÎêûµJº¹ü"w9f­5Ôí`À abÐf¼‘Ûøå“E!ºØŸÐ×é‰Ó'ïT 7Û¯º!<1í eY®R”ò¦¥Œy¼Æn…B.öy(ãæfUM~hÌÙjVs©£”tã/ÏÂù0Þ›äwŒur™õEAJo‡•¯¾2àEè:¾T¿Ú&²Õ‹ïØ1›A¯~ìDÉû59–0Cjô‚Œwàb0úQê²³ô“ÂÁ±²&1ïÉK¸©"‹Ôo{ÄHbV,&¯dk|Áî€=d×Y !q¨ö{ CêÎÛ­Î_ ý°&.nÞSðÜ žŒ¾çY  ¥Ýï/•õYà[œíðf®Â]ýVµÐvëð¬å$: (—†S›!dò^Ì4ߌqV©ïaGóƒ[õ˽¸d)ŠÉÅf¯<,ÜŸ—‘V®$¯¼¨£*|qcp»>D¡?.Îgb®óL®ÑWOE3¼¯&ðë cÛ»¼ªÞâÑK¸”·“òÍV5x±~º<ðÄÉüaÜùÓ³Wu…ãèX‘°ÖÑ&[YðìsmKñµú5 ¬b.`Ä'J–r†p¨IH>!¼Év{²&"º}XCFþI½,ˆ—gù¾"tåÚÈ…`n8µ)\ÿøÞ .ç‰ÕxF¼‚ãð„eÁ²MXÈ ÍH·”}¾­dÓ™€ùü|òæ=Ôu íÈ.ûKa–räfîžçÖ¢À8~› ®PºëÍíÀÔÃ2ÞÆòQi–Ì,îTÅçÞ‹,ÿ[é¡Ûb»Ã‹-x+}D »oói r—$8.ÁR>Äu½kGG[<šÔ“Û ÒË” «q'̬¬þã z“V-«nªÇùpÇ|¸ï1*·\,t½Þ8/ø¶Üï(îmgw®9(ÓÕd¯ŠEé }ºØhÇ<”X¨Ï7xBh¬ZÈn¿‡7Þ:ätÔîÒWCj ï%òe=ÿŠ?³OuDë˜Hóµ)ñ[Eq%ÿ}íòfmS>?uߺٻHÙÒ„9Òï½rƒWç¿pÛÛx YÙÞÛɋßG eåàSìûa³Ås‡³èߪÊ5³Çnè‹ð2Ú ¦ÝŠV¾{ŸI¬:?åHÓHTQ|7·Ñpà¿ãQu||7_ û)iÜJ£ÝôÙXKyï¡vLe“¡toÇ¥2½ ƒ§hc2(,QH_/$")F—(Q+çÆâÁö1Õhà;šžBAIl°<÷»»Mq>›a\)gMoæX<î*,h1 ²ŽÚ䟴½—Ý<•ûØrÂÎjÿŸF ¹ô cÀÛ€X|Ù¨þ/Aœ….7úŒe)Ô÷TJæ@}‘™°ö¥,A´Ô¯Œ×µ|ìßÓƒn‰zèB^¤{´½-Í=?y2í6"›¸©pž>=³¹3!È×% !§h ,#] ƒˆäp†6'2Eðh§:ËÐêr¸"o*úÛ¿±¥½zàæAÀ»Ⱥ‡¸BM'âáò÷á:¾ ë›íÖ“¹‹™<%cŸU“ gÞž<;‡X Kvºßlìڸر4æo|·˜¨êÝÐàÇãëo~íø¢p[UCS<4ÖÉê´T8bkå·K§b¯"Ÿ #²éšÈŠžä H@) ~g¡â¢{+n‚ÔKö–G")úÍ^þ!ñ„–b/zä ÷ÃÝ\nø¤‰Ê¹¸çr7…?!Šjˆeуÿýñ¢ˆh“ ;èqô¹Mƒ~â !tÚÁk|´µE/¿Ûv¡7iN/’1u8ÜNÍ„ ¦ˆAA÷ª¦uŽ4"#«Cõ¬.G½b&8(.ÉÕ8•¶#Ì—h¯(¨Zi‰£¾"§K"Ê[‰æ¦ MÁxMJÉ»%H7uÈøÜ‘âž¤0ÕQ޽a=¸ŽËC‚n=„[a}>¹~Öi¥Ü¤r6æÜ°Õ}F&R‰=ÇÇ• I ×ðCYòqÞ¶;[ÌÇñL»©’Àù”Ë]•àF%àyN‚»j¢·u\KÎ-Ã9/“!±ÛI¾×N­7¿Ñp™ÐÓn'оá¾% ê¯@>N›3„ÿû"7LA N³“5,c¶Ü%ªXÖ‘‰Ò!1ˆLi™âæ‚õ{q]L1QõhS…ò¤ò1PkV»ñÓB›ª ‹pb»’l9øž±ï1²;©“Zº³¸£¼ª>R [öS~"(äZ„°ÿún¨¸,Ê/=ƨ}p#’KH3^­h¼_—-T†ë·†Q³@|[{‰G™³UׂW‡€Ø9ÊBQ)qµnîô·ÜùkYjwâ/À!¥ÒJQ£®îÌjÖãËø`0±$aw¾AFQ'®ƒé&1O3üRªº×ĶÅpe[ãÍcUÙ~aŸÊA¼¨§Þdv]ë5~¦5ÊÆ¡Q#wéÿͰ\ú/$óœTw¨Êúz È¥2{Ûè¥ “ÑÔKÔ3™¹!6N)PÒZžQ¤)l|îcå¥èö ¹~ò¡¨ Ù{™c±{èïŸÅ˜l¸Ó;©Ð(b'_ÁlY‘†(X!©8VNÞij,ƒ’M,ž¾…!j4ñõކʢÂà‹RšgùïŽÂ>áaÔŒÊëP¹@U0uUè…¶w”´€çs£w œ(vŵ”Âc¬ÇNò=°‰= ­ºÞZMÎ5[ :|"B®¾ˆ Ê d®R€áoh!-ˆíÚ[Ñþö$¬²30ÙBðPËxx­ßÐtÊl)YY‹.Æý/U²ÝÜ/ÃŽëuºcs9Ú+¹£q¼^ú9ìÅ>õ~Áõèá;`Xlc  ¾q±…bùÿÏË[Z.¯ô„°EâoƒÎJ?Y*,:$ÛËgü€Ì3’3ú˜«MHfD~>È+ÛS…–”é+i1žVPþð‰~q¬(œ¹a°Ô÷79‘A¥´N¬fv“[—²Ÿ¢Q`þéØÐê1ž…-º?Cn`˜a°Ñ=–¤# ´Ÿ ÷D2i° á<ÿøýö¶è1‡R³ÎŸ—ôsQ{yûT]/ÕIœØä%Y@ø¢ D;ͯ2}ž*ÆxK0É]Jà —Çú‡ë‹ŽJâÎhN·íÿoTš‡ì²Çhçâ)0% ;e·j¾˜ûV0ïÌSÂF¯ïæVVÁÛ·5àƒQ% b¤ )ÆÁk'î’šY­¶a³þÌÇhX#ÝóŽ"1u×£W>;Ø)\ö¡ñ >ñ ¶ÍbRÈW#îêô›u#oÅ5ˆ„/¼aæž6´Ý®ºeHëpàDèÊäÛ\l¯rÖ”+Ĩ!ÄÂæà«ìTú²Ž€à#§1,€ƒÌI{düõ5 .Þ|d,ë¤&îMÚù2nÞ¿€NÙÖl£óÑ‹h£Ð{~,ºZ.÷Téõ/9ø&ùT‰Îk ¡÷»¸ÔùŒ¥'YÆÛË^ˆÇð*Û¬·ª@¢ˆ³ Uß]{ʯò³sQ³7ª·¸×ÛV "un^oRï¸áW-nheá0ºZËn…¥øÌÞàŒŽÎÀ2õí2zE”‡L«éê|V‡dû ³”Ô WÔ"lN½BCeu\þZý7Ôþ'Ð2Ý޾eGOÐÉ“Q3Åv2­#¶H”F†•ºpKDS<¸"í0…Ô(å²Ã)+ž$ 4h­ÔÿYû$r„ÅŽTó©iŽ ŒxJ¿’ËˤP3eà+ÿ­Ð…¦tœÂe&È”¦ ^ªMIêû›Ò¢–âT­o R6Šz¼¤¦Wxdñ"yÐ t%¼eó(ˆç f=Û8—#{þèíd#W.'yk;ÊúX¸^6Š·9ôu* €Ú¸‡b'9"*Sas?ª¨g5úð9?³6â˜A%7$=‡¸9ÇÝeö]$UÏ4 ¥óËÉ®6 H94¯ø-CüŸIœ„À}Ò@ºb¾ôH°EwÞ&Ž}­¬ëŽÍs½€ CÿüòîNÂEƒþ´$KŒ­íŒ»+_ñ…§/‹!Ö¡mnY&»®ÑH#oo‰¦¯ÄwØ¥ö·q+GGÐ!"&£µq˜ ÿ!8Yé'ðç¿ñÞ5¹Mì_@6EgzOJ5cEßwδ M·=n=ò¹ëqsÔîæôw¤a¸‰ ³»ªÂîüªW[³Á1y¬W¦¿Ô+§ŠzøßÔÒ.Ö1þÃÓX¦lQŽkµ¯–b Ûç/å2a$åM½™ŠûG”Žˆ,b0ÒQP8€™ÞUQ€Û®$zÃSƈú«‡"Y—Ë tù endstream endobj 229 0 obj << /Length1 1384 /Length2 1411 /Length3 0 /Length 2296 /Filter /FlateDecode >> stream xÚT TYU§1H«¨€Ø4_²D4,AöUDµR©@IR*QQlhq\è¦E…Vq›£¨ ¢¸·`·(‹(".l"" Äp™J@m9gæäœJ½÷îÛþ¿·¬f‡Ùó„¸áã˜ÜžEgº€ðp0™:“ɦXY…£r1òÑO±Š@Šc.Ax$'}žœàðUˆ‹XŽ.,'&°™Lç@œpž‚:ðÅ1DF±òÀ¥j““}>¾*l XÎÎN4]:àI…! @ò8DBv„!1Ãa‘«¿(Au“Ë¥. †J¥¢C'bÝli@…Êã@("C%"Ú•A $AFW£S¬@x* „á"¹ "@:Ä(Œ`22E ÝA˜?’"ØØ@£‡XtÖ§r£ÙÚB(¦K†`—H!Lb±@„ŠÄ÷§Ëå4aB-Ëp2RB¨ÝèàóBDn8ºŸ &P©\F—¡bíŽ mò˜½0¡.‘ ˜\FÑÎç‰Lž»š1z¹ñ®Â’>Z"Š´kRÆ MP >ž£ÒEùì‹Eä€Ëd2çq8IH"ÇÐ6WK]¥u“;$'Iq)‘k ɨ!ÿ(I2H‰9¡@’“þøÒ¢°X@ˆÂr @bQŒò¹:éFD#6yÿš–3Iú±SûûôC2Lˆcbõg¸îŠÞþ‘~>sGWþtwÇA’= س9€ËvŽÎ\üe•`‚ù9ÓáÀydXò”>¬euT¶àËZ8É[P?Ó<šÉeÂäƒõ“]—òß8®­ò?iþõD|…X¬‹SGÿ‡$¨X=Š y«“ÀI%`_C—"# @„¨BòuÔG‘Zàa±âO‰Êøh"" FåpœŽ#î%Z‰Q Æe¨öËìYLæW1R\p<ùõ‘”Ô…R;_vôÂ`\¨›ë ‚€Ô&É$6— ’X¤…H¢ŽÄ€AÇp9™Èí’'(Ú+e‘Áh}#&‹ 2ùEXA¤ÖtL gøhë„ ‰L¹_ÃóSWŸJ=ÿ¦ˆ7Seß^Åv0¬èߢÑ_úÄk†²3d£‡ëàç`FïòŽŒÁf£nö??œ‰4fƯhZ»;ÃÅø~ñùñ"AmmÑ‚¡n™¿‚ÝáwéRÔ*&Œ5î- ý]¥YTgkBKèk¿›Óåíj]ZðúD\ï76%ÏéÇUý#ãÓyó8Ç¥^àå\(p?É«»sÑgެQUÏOæü®ÁÝå•lnkEã1ÚX´e÷ÌgÏ ¥~šœgnÙO¯:šù­ªuVO®z™ï nÔœOM¡ d7ƒwv0…÷Ÿé>¬²LM!J{N=Y\}<ŸÝv{¡&<ô¹Sª]ìòíôIþîúçZ v‰þŽ`êy×eö^é5ëÜc n½:¼pö2Ù¢ý>I‘—úl¾¯ª¿·¤†jËIf¥LåÆ÷„Þ…-Òу™}šyEãÓ·¶ô5¬: ]”ëë}º¤íƤ’ëý/ûg_¾Ñ²ø1õvbëxÁ²l¦¨×b{äë¼¼‡QvEÏDG× nv²%Ñ”_õÝskaVnýÆOÂÒ.;Hµ`ëJ×-…¡ÓX× ÿ©ºÚìž•2§tà‘Ý0>Pgè}lê—÷äªv>è»›|\CT®|TúÊü:«Ò†g×<ÌÒè–_¾‘ñt¶íUÈ:Ú‚Ëå³4—èÍNžõ}¦™|1½Wo–ÿ”’¡ÜÖ¢½‘…3ÓªMLHHû%nMBÔêÃS÷EŸöPŒ ªÍkÛÖ7­"ºy Îdü>¨™/2´‹.²,ʶéx±«þ}­[ÑlÞ?VðXùb`sªhOj‚Á†{pz^Øcç§“\¢^Ùì={´îÛZ¸iڄ΋ýÿz§9A¼|خЯ7óßç¼ÔUóÞö›§xLÈõkó²Þ›mqn:[/Óðu;ýæÞ2îÝs&-Õž Ö8þqýi«òÊ®R^ ß´ÿP±×É¢¬y¹eã³×·±þ•&p8vP²ÑYv…‘;nÏÖK?ælˆB5í_Sì`½i•µÏðK%Ò¦×Wâ×õ…¬Ø\>Å(ÒÃ>Æäýœ…+îþÖ(V¯=‘Pá§7Cù¡fKKŒÜÖç\û9“n­\ÖãÈéŒýÞ*Ó&&¯÷¥º–ÿ¤ðz—•ºTYè>a:Å7wCé †û Ï¦ •Š% à†ËŽïì–[]‚U5üa“æ¡j¬:ê:xÄO­4ËsÙ×¶V1Ù`Ïß*éúcïkúûm 3ñäïsxÞ…-Kz(U|Ù±[F–eÓ+÷í(?ºÅ¾ï\gºèNÓ+ó3™úÌÜçLß-æ€Þ“÷ÃÕàc‘úoèˆ endstream endobj 233 0 obj << /Producer (pdfTeX-1.40.18) /Creator (TeX) /CreationDate (D:20191201114155-06'00') /ModDate (D:20191201114155-06'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) kpathsea version 6.2.3) >> endobj 173 0 obj << /Type /ObjStm /N 62 /First 543 /Length 3669 /Filter /FlateDecode >> stream xÚí[[S9~÷¯èÇÝÚ jÝ¥ªÔT2¹a“¤x0Ðï›Øf’̯ßóɶº †ì>mU¬V«¥st¾sUÓ‘¾®êJz[9CúÙH×P)‡«¯4ƃ¬LðtU•Õ²Š.¸5•Ç´`+ïCOWe*£«`°*T²öŽ:4§¦I2+©è.Jêz8Òä¨+é=çîØJÑ.ztW)«ˆ_¤íHKiÚj̉•‘šž×ue<=Wµ¬¬©#uh¯A‘ µ©œ")TíHH¯©*ç£í)YW¾&Ù•T•×ÄTI‰–Q‡d‘#¡ šø(UWÁitT‚§9$k”’·YEm1ªè¤ê)l®–D_*µÖRW$@m ݑȵu4“®âbF yÀ+_‘„ퟮ•¨J©•éi€¡%-d!"ÒEЦЗ½h‰(­Wµ S’’’6‹[<ÓŽZ(PGhhìÍ’PÓ•Sº÷øqOìŽG³êñãJìZfSWÔ'T¸÷Ë/=±?Ÿ¾mfÕ§Jì?Ý­ÄaómV÷èÖ~¿jèAÿ¼é‰¢ÕŒfS2-‡å=qÐLÇדÓfÊÖÇC{ÍÙ ¿=þV}3ÝDuLlúZË;ƼL~¹½ù–Ú%tcî:ÛL}C6;®ツ‰«Âøÿ†0Ë­¶$ '†Úó í»dŸ¬4[®ºC{Ls½=.°À–{âíõÉŒo1¨{âMÿ²á½$™öú³ÉlÕ‰½ýã4k›q"³·v*Š0Ç%¤€¥+‹KÒÄvuÌòí&ÓÙÎEBîázâu¿¼{?8›]L9f±^žNÇgƒÑ9G/Á\ÐÇ$7WÊ'#·È±Kç+{âéàóç†ÔˆÝ}".¢OÍÂTpC¤t©ß»@¦î™¤ÈÇÿx¯÷MÇ3Ü, +ÅÈb½„LoQ¹d:оŽKÀ4r‰_ÐÑÖoQ ¯ÝÉ%å–|P›è”­w]ÊiÄ“®k½+/-™¾·”} QgíÉ{Qž§fX ¨ÞZá”ߢ JL5­ÏTÜ2–ÍÌÒLncrÄI攑0´¶D¥”)Šø-ïÒÓåX¹£ÊbAñ´¯¦§$æÖ؛օ¨X/‘ì$õ-éá¦þ]Zª6ÂbÙ¦‹ïD:_Ö?)y·Ÿ´–¶Ç|Í>Æí-‹4Ü y¥m»®-¿½Íó3íBÍAkÞ`ò-ϾÄþ—‡dòº[ïj^!‡I$Õu-•˜*“;1;B€êaºsuÍ®ã1Þå>Í"y(´ÑBÚ¦BàsâP<{§ÒO=ÆÓ|zZYB˜‘HÊaLqS ?¡rÔÓ| V­ ‘žE[絆F),Z¹enVb¾$cOmi-iKšëÜÈI lDK!—çQÖmà°CH㜠(Ôj A’B^ô »4¥F< œ?<å04ÁÕÈ 5Õ ºá ˆ!ú‡+Ãô­ó˜„ÇÄ š,Ú6r&I:¨‚0ÉD—4J#æèa[I:7´EÅ–F«1®åZBOâÑ2ΖÝÀ*äH:¥<«Ôh™ HÊ•ÿÿýO@ݱR†'3œ¯k cÐ!„êj¬‘ŽÖПg®?ÈHÍ1y¶õ¨#ÈT<œc §n¸Q´pzea&ìÂŽ(;~Š:•sˆÁË*¦ÕÉ}ܨ¢°EJ½ËOý z€e’·QØ¡?\GÂøyjvª½¨& Žƒ(Œ¡‰0´ìÜAÂxhô¨bDÈ2ôØ{mÌÐî.pÈdd#kˆªL OéðÃ>T¶KTŒäJO!8•<‹)ªš‘†žMÀN÷Y:% Êiž£s$BEð)üÀÎ_Cæ\»‘þhœÝÎ.9ØÛ<ukd €u!˜œúSŵmB¥ŸdO9/µeªJ:Óu ›«šýdÁ|WPÇ}¬×W’Ë÷–f”Ø,{å¬r[Ô`ü¬ØÞ}M±4È”·S›át©ˆIbq@MF– |š—URÈInWE¹PAãµ™ºæÜ΀gú6Á)kµ`oç5éRÐn¯€€‰emýB{<ÚÒ©ZÒȪ°íÙi†Ž8qh¶¬¬âi¶$î§vip2ÊÈÁ*µZÂtµA²ÂÇ®máØ6mÆsF畨áÒs2-x«”8çòøœ6×™9¦Ù©¿œ•Ãm1£ °èݾû´™b±3–@K>¸¡åÊ”eõÕ[–“ë@ƒw£˜GG®é9 ÈȲ*Ô–“C±&ƒJ'a›ûA£P‚iú€R#8Ãó"cHubê¦Ö…¥®À§D£”È®yTÒ_Ó¹Ð/F[ZhÓHÒ ¯[ÌMÏÅ>ŒA¥j–³øYB(õ¹%Sž‚«B¸D/‡Ý´ 2ÿyòpÇœÉmñšBmÔ ùTÅ;z¼¡üšg!•+u^©Ø±IÓ‘Wé9½´2Óæä@5ÿœ6fÑ\Ê-n,玥ÀíÞòd •¿ªè©ÈkñœW𘕎ã ê¼v1+=Ólv:pFãþòYÚnê§–ù‘Š4ÕϱR†A¶ám¢S¶ž?ÈÁ6·i*Ò\Ý ˆö\É;À­¸º "ÌûÊ£Ê+çäµiœSTÆÆ+NR¼¶¤És´E€Õ6Uf>³ûzùi3= ®fãIzé™Þ”¾ÿx´½óë¿vö¶dM†ýóieÊ×¢è¤ùH!½I‡¿ëà¥é“é)Þ»S½Ò;ý«_›ÁùÅ çÓž<{$ñðŬ?œ>›ŠÈ¿5—ïô{â(/¢|“^âåê?D3:ëO/þ™6°; eª^óò÷fþØýãÝ›gI µF ð2@ÇŸ#P× ôDìˆgbW</ÅžøMˆ·âPü!úâTœ‰F|Ÿ?ÄçÁ_Ô_OŸ߯.š‘ˆ?ÅP\Š‘‹ñ¨W⪙ Ægb"¦bÚüES¦ƒob&f“¦³¯cq-þ_Å7ñ½ ÝÁ'ÛGÏ~{B>[kÊ‚ü÷Ec Ìs ¡©Kë?ª×àg|Ÿ–%|ƒÑ¬9Ÿô‡gƒéÕ°ÿ]\á/>Ãæóìd¶ìÏ®R ó|ƒ'“ñÙõé,hãâ7²¬Ýýp•½ëpÑ*»JmÂ,KßfYà! ¯Öb³#ž’a½ûlRïÄ{q$NšYÖøò²ÏÖuÞGï|ÒôgÍ„ êß0©þåÉYŸ¬ê f4$w#º†Ù´Á‰›€ó|ï͇CÇߌœG/4A®…&q–E&G³–tRn"ÝÎÑöÇ—{$ÝÁ:Í›z®ù:>D¼…O¸¸V¸'b›uŸÂʯd/Å+ñZ¼NŠÝo(Îì/" ãÅ›þ”l`0ýSœˆ“IÿôÏfß™÷Ù](&އãQaA¼Ñ\",‹æËuÈ!+G­¸†7Ä®/¢×h@ÁkÂæN[x)âð˜Ç·«áõT|_®›él@»ùr=ž5g'C^6¿I+ùn9žS|¼$Y–‘rnì7ÄKñ·ø»™ŒÛ6²Qâù}ûÍï{l#kòŽ6)ïÄ~މØ[L$È!éý„µ }6¤ŸÁMj`³ È×5`l”C>¼xrðþ)ƒ±&h&â/ð&Þ » «K0ꌽE²=¿)µ^eñ¯Ûòn”öŸ~xöþä]#®òóð§ÔOQ¾_ØÑnr3(xU±ÅùGûûG(¯Þ~X[Äê×T0Rm`—¢’Ü÷‹ô(*ÖÛŸLÆ_“xƒÑçÁh0û..# £æ¼ðÁ^ßYmüŸ½}þòè9‹¼.µY’Øò‡?xÕ©~†ÄëÕ;ã—ýÙ…6ÓiŠÊIè«Éà²i »Qûíãë7»öp}‘c¦l~R&wa½´¿R¥ÜÊ/K÷ýÒŠ_7Àj£àõrïàý;z‡‡kÓ=A@ ð¹è ¤l!€ÛJ©‡&û—”æ÷ZÙ=çöKJÓþ茬ãt0˜ †gM+á÷'wOúgãáæ/rÿ<ég”yEÙ9«À—¹et}yB»œ~˜ý[Y?å÷Î)gÃÜ­6 ßÏ_¿;zõ"i\­/_ñÒFá­‘}¸Æ×çîK1m‹ïôñÑØîOþømåXß’¼J_?´>öRºüØ w‹/—Ôæü»§ð.·Âß´ØË{|”º1ûî¶Ë>tÙ›P°õRøhï!|ç Øáž¾Clƒß¾d6gß9Šu¹«Û¹Ëâ3¿è6çÞ9*u¹¯^ÛìLÁüfß©Á»ÌW¬Î´­NV'7çÞ)z»ÜWζ€÷÷{¸\»í0W+6‡’jÁÜ–&wÞݪ°Ë}ÅæZÌK¥ëÍ™wê³.osoøý‚·Ùœw·\ê2w·ë¼ˆsøšcöÝJ¥Ë~ÅätÛàK_÷÷ˆ4´Ùa¯W][&o‹,sƒøøB|ŠOį‘hŸ{ã{&üjp†`ùÛìt^«R¥Wi¶¸ÊÈtáÁãû·lø|IL|b’>X¯Ò—½÷¢ž,þš¯&_Ó§çRæñtF» ©2>*ÓÔ™§©ó5Iÿ²òf-Œ ^í¥«Í×B£Â‚HZcÓöbÞUÖgþ¿Ci§O¥Õø¼—H.vEsþ»Ù£Â endstream endobj 234 0 obj << /Type /XRef /Index [0 235] /Size 235 /W [1 3 1] /Root 232 0 R /Info 233 0 R /ID [ ] /Length 654 /Filter /FlateDecode >> stream xÚ%ÓIH–Qàó~ÿŸšæ§™SγfÎcƒfše™ –šei&EQئEÖ**’$šQ-"âBD”´ÉU A` ÁjÓJZÙ÷¾nιçÞóÿßÌÌa±ãæ™ù ³8¦®ŠT’RRAÊH=)'kI-ð{^+Ù ’x°˜[j"a²ŒDÀî«°œDÁ2 ´¶†T“:Xý„¦Ä‘hXù7¥1d‰%>lýbðw»?«º’ÄÃÚ¯ªŸ&§Xg›¦¬"‰$‰$Æo Î|R5“¤ÂN¥¨Á:¦«II'°KƒÁЇåZ‘M²`×~(-$9°Û½JsIÉ'°'ÿT(&E°W‚VSÑãvú%°É?J×n»Ï-öË`ÓÓÁäÙ|UkIìëÒñŒ|ž–Ïýók`?ÇTàAùÁv.Dè‹x2n=ÇtP °ÅzÍÓØ: ê¬ÙÛH6‰­J[IúAi3ÙDZÈf ìŽ [HИ§ŸÔwl%í@K©Æ‚¦]5y'ÙtT*í ÛÉÒ ô/íÆ.ÒŒ\þßù>í'»Q–¿‡ì%Ýd0ÑL~`ª"=ÀÝJ{I9@úÉAàiU°âmXSŽ’à奇É2H†€™›*#ÃÀ|º¾»æT~½2„Ǿ«àë”òA¸¼ÈJ߇‹€—8©±(ÂGâ¢á%=Ò/¿ãåw>áûpñ„—ß%ÞqÇ;îxÇ]2á3p©„÷Ù¥ÁKÖ!»txÕCŠ2ànR” ïúsEYðÞ=V” o®GQBíSŠrU”‡Ð½÷ŠòzÝ©¨¡/Ç"´°Ô¹áÂ9EÅŸ;©¨„4‘f„/Ì6þÌþÀm‘ò endstream endobj startxref 298155 %%EOF survival/inst/doc/concordance.R0000644000176200001440000001332313570775545016274 0ustar liggesusers### R code from vignette source 'concordance.Rnw' ################################################### ### code chunk number 1: concordance.Rnw:23-32 ################################################### options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=10) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #ensure default #require("survival") #library(survival) library(survival) library(splines) ################################################### ### code chunk number 2: examples1 ################################################### # logistic regression using Fisher's iris data fit1 <- glm(Species=="versicolor" ~ ., family=binomial, data=iris) concordance(fit1) # this gives the AUC # linear regression fit2 <- lm(karno ~ age + trt, data=veteran) concordance(fit2) # 2*concordance-1 = somers' d ################################################### ### code chunk number 3: examples2 ################################################### # parametric survival regression fit3 <- survreg(Surv(time, status) ~ karno + age + trt, data=veteran) concordance(fit3) # 3 Cox models fit4 <- coxph(Surv(time, status) ~ karno + age + trt, data=veteran) fit5 <- update(fit4, . ~ . + celltype) fit6 <- update(fit5, . ~ . + prior) ctest <- concordance(fit4, fit5, fit6) ctest ################################################### ### code chunk number 4: rplot ################################################### getOption("SweaveHooks")[["fig"]]() par(mfrow=c(1,2)) c3 <- concordance(fit3, ranks=TRUE) c4 <- concordance(fit3, ranks=TRUE, timewt="S/G") # For technical reasons the code returns ranks on Somers' d scale, # from -1 to 1. Transform them to 0-1 d.to.c <- function(x) (x+1)/2 plot(d.to.c(rank) ~ time, data=c3$ranks, log='x', ylab="Rank") lfit <- with(c3$ranks, lowess(log(time), d.to.c(rank))) lines(exp(lfit$x), lfit$y, col=2, lwd=2) abline(.5,0, lty=2) matplot(c3$ranks$time, cbind(c3$ranks$timewt, c4$ranks$timewt), type="l", col=c("black", "red"), lwd=2, xlab="Time", ylab="Weight", log="x") legend("topright", legend=c("n(t)","S(t)/G(t)"), lty=1:2, col=c("black","red"), bty="n") ################################################### ### code chunk number 5: varest ################################################### getOption("SweaveHooks")[["fig"]]() plot(variance ~ time, c3$ranks, ylim=c(0, .34), log="x") abline(h=1/3, col=2) ################################################### ### code chunk number 6: test ################################################### ctest <- concordance(fit4, fit5, fit6) ctest # compare concordance values of fit4 and fit5 contr <- c(-1, 1, 0) dtest <- contr %*% coef(ctest) dvar <- contr %*% vcov(ctest) %*% contr c(contrast=dtest, sd=sqrt(dvar), z=dtest/sqrt(dvar)) ################################################### ### code chunk number 7: lungcompare ################################################### colSums(is.na(lung)) # count missing values/variable # First attempt fit6 <- coxph(Surv(time, status) ~ age + ph.ecog, data=lung) fit7 <- coxph(Surv(time, status) ~ meal.cal + pat.karno, data=lung) #tryCatch(concordance(fit6,fit7)) # produces an error # Second attempt lung2 <- na.omit(subset(lung, select= -c(inst, wt.loss))) fit6b <- coxph(Surv(time, status) ~ age + ph.ecog, data=lung2) fit7b <- coxph(Surv(time, status) ~ meal.cal + pat.karno, data=lung2) concordance(fit6b,fit7b) ################################################### ### code chunk number 8: tmwt ################################################### getOption("SweaveHooks")[["fig"]]() colonfit <- coxph(Surv(time, status) ~ rx + nodes + extent, data=colon, subset=(etype==2)) # death only cord1 <- concordance(colonfit, timewt="n", ranks=TRUE) cord2 <- concordance(colonfit, timewt="S", ranks=TRUE) cord3 <- concordance(colonfit, timewt="S/G", ranks=TRUE) cord4 <- concordance(colonfit, timewt="n/G2", ranks=TRUE) c(n= coef(cord1), S=coef(cord2), "S/G"= coef(cord3), "n/G2"= coef(cord4)) matplot(cord1$ranks$time/365.25, cbind(cord1$ranks$timewt, cord2$ranks$timewt, cord3$ranks$timewt, cord4$ranks$timewt), type= "l", ylim= c(0, 6000), xlab="Years since enrollment", ylab="Weight") legend("left", c("n(t)", "S(t)", "S(t)/G(t)", "n(t)/G^2(t)"), lwd=2, col=1:4, lty=1:4, bty="n") ################################################### ### code chunk number 9: mgus1 ################################################### getOption("SweaveHooks")[["fig"]]() fit6 <- coxph(Surv(futime/12, death) ~ hgb, data=mgus2) zp <- cox.zph(fit6, transform="identity") plot(zp, df=4, resid=FALSE, ylim=c(-.4, .1), xlab="Years") abline(0,0, lty=3, col=2) ################################################### ### code chunk number 10: mgus2 ################################################### getOption("SweaveHooks")[["fig"]]() c6a <- concordance(fit6, timewt="n", ranks=TRUE) c6b <- concordance(fit6, timewt="S", ranks=TRUE) c6c <- concordance(fit6, timewt="S/G", ranks=TRUE) c6d <- concordance(fit6, timewt="n/G2", ranks=TRUE) c(n= coef(c6a), S=coef(c6b), "S/G"= coef(c6c), "n/G2"= coef(c6d)) par(mfrow=c(1,2)) rfit <- lm(rank ~ ns(time,3), data=c6a$ranks) termplot(rfit, se=TRUE, col.se=1, col.term=1, xlab="Years", ylab="Smoothed rank") matplot(c6a$ranks$time, cbind(c6a$ranks$timewt, c6b$ranks$timewt, c6c$ranks$timewt, c6d$ranks$timewt), type= "l", xlab="Years since enrollment", ylab="Weight") # distribution of death times quantile(c6a$ranks$time) survival/inst/doc/splines.R0000644000176200001440000001333313570775563015474 0ustar liggesusers### R code from vignette source 'splines.Rnw' ################################################### ### code chunk number 1: splines.Rnw:21-25 ################################################### options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #reset default ################################################### ### code chunk number 2: mplot ################################################### getOption("SweaveHooks")[["fig"]]() require(survival) mfit <- coxph(Surv(futime, death) ~ sex + pspline(age, df=4), data=mgus) mfit termplot(mfit, term=2, se=TRUE, col.term=1, col.se=1) ################################################### ### code chunk number 3: mplot2 ################################################### ptemp <- termplot(mfit, se=TRUE, plot=FALSE) attributes(ptemp) ptemp$age[1:4,] ################################################### ### code chunk number 4: mplot3 ################################################### getOption("SweaveHooks")[["fig"]]() ageterm <- ptemp$age # this will be a data frame center <- with(ageterm, y[x==50]) ytemp <- ageterm$y + outer(ageterm$se, c(0, -1.96, 1.96), '*') matplot(ageterm$x, exp(ytemp - center), log='y', type='l', lty=c(1,2,2), col=1, xlab="Age at diagnosis", ylab="Relative death rate") ################################################### ### code chunk number 5: hgb ################################################### getOption("SweaveHooks")[["fig"]]() fit <- coxph(Surv(futime, death) ~ age + pspline(hgb, 4), mgus2) fit termplot(fit, se=TRUE, term=2, col.term=1, col.se=1, xlab="Hemoglobin level") ################################################### ### code chunk number 6: df ################################################### getOption("SweaveHooks")[["fig"]]() termplot(fit, se=TRUE, col.term=1, col.se=1, term=2, xlab="Hemoglobin level", ylim=c(-.4, 1.3)) df <- c(3, 2.5, 2) for (i in 1:3) { tfit <- coxph(Surv(futime, death) ~ age + pspline(hgb, df[i], nterm=8), mgus2) temp <- termplot(tfit, se=FALSE, plot=FALSE, term=2) lines(temp$hgb$x, temp$hgb$y, col=i+1, lwd=2) } legend(14, 1, paste("df=", c(4, df)), lty=1, col=1:4, lwd=2) ################################################### ### code chunk number 7: fit2a ################################################### getOption("SweaveHooks")[["fig"]]() fit2a <- coxph(Surv(futime, death) ~ age + pspline(hgb, 2.5, nterm=8), mgus2) coef(fit2a) plot(1:10, coef(fit2a)[-1]) ################################################### ### code chunk number 8: fit2b ################################################### getOption("SweaveHooks")[["fig"]]() temp <- c(1:7, 8,8,8) fit2b <- coxph(Surv(futime, death) ~ age + pspline(hgb, 2.5, nterm=8, combine=temp), data= mgus2) temp2 <- c(1:6, 7,7,7,7) fit2c <- coxph(Surv(futime, death) ~ age + pspline(hgb, 2.5, nterm=8, combine=temp2), data= mgus2) matplot(1:10, cbind(coef(fit2a)[-1], coef(fit2b)[temp+1], coef(fit2c)[temp2+1]), type='b', pch='abc', xlab="Term", ylab="Pspline coef") ################################################### ### code chunk number 9: fit1 ################################################### getOption("SweaveHooks")[["fig"]]() options(show.signif.stars=FALSE) # display intelligence fit1 <- coxph(Surv(futime, death) ~ sex + pspline(age, 3), data=flchain) fit1 termplot(fit1, term=2, se=TRUE, col.term=1, col.se=1, ylab="log hazard") ################################################### ### code chunk number 10: nfit ################################################### options(show.signif.stars=FALSE) # display statistical intellegence require(splines, quietly=TRUE) nfit1 <- coxph(Surv(futime, death) ~ sex + age, flchain) nfit2 <- coxph(Surv(futime, death) ~ sex + ns(age, df=3), flchain) nfit3 <- coxph(Surv(futime, death) ~ sex * ns(age, df=3), flchain) anova(nfit1, nfit2, nfit3) ################################################### ### code chunk number 11: nfit2 ################################################### getOption("SweaveHooks")[["fig"]]() pdata <- expand.grid(age= 50:99, sex=c("F", "M")) pdata[1:5,] ypred <- predict(nfit3, newdata=pdata, se=TRUE) yy <- ypred$fit + outer(ypred$se, c(0, -1.96, 1.96), '*') matplot(50:99, exp(matrix(yy, ncol=6)), type='l', lty=c(1,1,2,2,2,2), lwd=2, col=1:2, log='y', xlab="Age", ylab="Relative risk") legend(55, 20, c("Female", "Male"), lty=1, lwd=2, col=1:2, bty='n') abline(h=1) ################################################### ### code chunk number 12: fit2 ################################################### agem <- with(flchain, ifelse(sex=="M", age, 60)) agef <- with(flchain, ifelse(sex=="F", age, 60)) fit2 <- coxph(Surv(futime, death) ~ sex + pspline(agef, df=3) + pspline(agem, df=3), data=flchain) anova(fit2, fit1) ################################################### ### code chunk number 13: plot2 ################################################### getOption("SweaveHooks")[["fig"]]() # predictions pdata2 <- pdata pdata2$agem <- with(pdata2, ifelse(sex=="M", age, 60)) pdata2$agef <- with(pdata2, ifelse(sex=="F", age, 60)) ypred2 <- predict(fit2, pdata2, se=TRUE) yy <- ypred2$fit + outer(ypred2$se, c(0, -1.96, 1.96), '*') # reference refdata <- data.frame(sex='F', agef=65, agem=60) ref <- predict(fit2, newdata=refdata, type="lp") # plot matplot(50:99, exp(matrix(yy-ref, ncol=6)), type='l', lty=c(1,1,2,2,2,2), lwd=2, col=1:2, log='y', xlab="Age", ylab="Relative risk") legend(55, 20, c("Female", "Male"), lty=1, lwd=2, col=1:2, bty='n') abline(h=1) survival/inst/doc/tiedtimes.Rnw0000644000176200001440000001235713537676563016363 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \newcommand{\code}[1]{\texttt{#1}} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{prefix.string=adjcurve,width=6,height=4} \setkeys{Gin}{width=\textwidth} %\VignetteIndexEntry{Roundoff error and tied times} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text library(survival, quietly=TRUE) @ \title{Roundoff error and Tied Times} \author{Terry M Therneau} \date{Oct 2016} \begin{document} \maketitle \section{Round off error} The heart of the issue can be shown with a simple example. Calculate the following set of intervals for subjects with the same birth date who were enrolled in a study from September 14 through October 23, and then followed for 2--3 months. <>= birth <- as.Date("1973/03/10") start <- as.Date("1998/09/13") + 1:40 end <- as.Date("1998/12/03") + rep(1:10, 4) interval <- (end-start) table(interval) @ Each interval has a different start and end date, but there are only 4 unique interval lengths, each of which appears 10 times. Now convert this to an age scale. <>= start.age <- as.numeric(start-birth)/365.25 end.age <- as.numeric(end -birth)/365.25 age.interval <- end.age - start.age length(unique(age.interval)) table(match(age.interval, sort(unique(age.interval)))) @ There are now eight different age intervals instead of 4, and the 8 unique values appear between 1 and 9 times each. We have become a victim of floating point precision. The exact results above, i.e. how many 'unique' time intervals are found, may depend on your computer system. Some users prefer to use time in days and some prefer time in years, and those users reasonably expect survival analysis results to be identical on the two scales. Both the coxph and survfit routines treat tied event times in a special way, however, and this roundoff can make actual ties appear as non-tied values. In that case results will differ. Parametric survival routines such as \code{survreg} are not affected by the problem since they do not treat ties differently than other values. In survival version 2.40 this issue has been addressed for the coxph and survfit routines; input times are subjected to the same logic found in the all.equal routine in order to determine actual ties. This may change the results for some data sets. For the following test case cox1 and cox2 have identical results in in version 2.40 but different results in prior versions of the survival package. <<>>= ndata <- data.frame(id=1:30, birth.dt = rep(as.Date("1953/03/10"), 30), enroll.dt= as.Date("1993/03/10") + 1:30, end.dt = as.Date("1996/10/21") + 1:30 + rep(1:10, 3), status= rep(0:1, length=30), x = 1:30) ndata$enroll.age <- with(ndata, as.numeric(enroll.dt - birth.dt))/365.25 ndata$end.age <- with(ndata, as.numeric(end.dt - birth.dt))/365.25 fudays <- with(ndata, as.numeric(end.dt - enroll.dt)) fuyrs <- with(ndata, as.numeric(end.age- enroll.age)) cox1 <- coxph(Surv(fudays, status) ~ x, data=ndata) cox2 <- coxph(Surv(fuyrs, status) ~ x, data=ndata) @ A downside to the new procedure is that the code will now give an error message for some constructed data sets. An example sent by one user had several time intervals of length 1e-9, which is less than the roundoff precision used by the \code{all.equal} routine and consequently turned them into illegal intervals of zero length. The \code{timefix} argument of \code{coxph.control} can be used to address this. This general issue of floating point precision arises often enough in R that it is part of the frequently asked questions, see FAQ 7.31 on CRAN. The author of the survival routines (me) has always used days as the scale for analysis -- just by habit, not for any particluarly scientific reason -- so the issue had never appeared in my work nor in the survival package's test suite. Due to user input, near ties had been addressed earlier in the survfit routine, but only when the status variable was 0/1, not when it is a factor. The new code uses a single routine \code{aeqSurv} to deal with ties in a uniform way for all the affected functions. As a final footnote, the simple data set above also gives different results when using the SAS phreg procedure and I suspect the problem exists in other software as well --- the R routines are not alone.\footnote{I have reported this to SAS as of November 2016 and was told that they plan to address the problem.} As a consequence, the maintainer expects to get new emails that ``we have found a bug in your code: it gives a different answer than SAS''. (This is an actual quote.) \end{document} survival/inst/doc/splines.pdf0000644000176200001440000047467313570775563016066 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 4 0 obj << /Length 1340 /Filter /FlateDecode >> stream xÚÕWKsä4¾çWøh±×’ü¤UÝ@( (2{ÞOv<žíMrá·Ó/Ù–gRÀ¥8h,©¥î¯¿î–4_¯Î^]™ÌSy¤Ušx«­§ã9Ô"` jÏG÷›ëßzKÓrnX÷Ü2#ZEE\°‘o)°Zæcq•Ìt8ÕÐá$kP÷S…Ê»i'EÂBà ª2þð ôßÞð`Ãù? ðqÍó‡9w4s a&\·D‰ŒPZ‘¸·•ÊnŒ·X8®'$d°v´ëD*l©Î¥>1ìöà½ó®í%®idóg±e¯•ÎIrE*^äèÊ>Œ›‘ Y' rCE©~JËkÑp;{³Ôü€´ŽIT¶‹AØLb¾i8g¢.–¹5†9A.jâ{¡þýøo˜Çwb­å7}…¹Ñr€t"ºKùáwE”¦ûRa.w_ˆÅs÷‚Æé•¤ó[ho¦%öÒÞ Ã§4ª——Ï-¨ÙÂý_¤Š4JLé…9œêFÙ¿`°îìÍêìO¢cì endstream endobj 14 0 obj << /Length 1405 /Filter /FlateDecode >> stream xÚ…WÛnÛF}×WFR€Es¯${RÔR-Ú¨Oih‰–…J¢#Jqœ¯ïÜ–\‰Lc¡Ýå\Μ™]«ijZæiî‹©)³4³vºÜM>LÒÒkcI šÒ'%j²qóz§¦¿5“¿à/|š‹Éydó×Åäæ®˜–hÎOÛ¼H³¢œ.VÓwÉÍq¦’z6‡Ý§Õ9/êÙûÅï7w.‹Ìx›*eÀ-`u•`ì`ü C³VìÛ¸4+;¥æ ¤PsÓìÙõ-Oñ[Õ¶hwÅ;+”Dèh‰z[/üñAœ7;\—Œ›@ ¡+§SÙ/aË ¡Ä`]êL§L>OG¶Xlø·à|ª´&žÄ7b1.…™3—ÁσlãÖ5„;“fÞOçJ¥¥s}(/B-iø^ôâ[Ùójaž¥EVxËj+„¤³¹5*¹›6i³¹.mf:O>¡ÛGÞÜÑævWèuÛì¹Éô—ëIé,u…û6)â*S[ø ˆTö¡BP ‹ QuqÞç–w‰â%ÚhxzO1Ô¼h‰WÞë¢OYHuHÑ#Û¤V"~i‘t«ÖTÉ:#¾°©Q¾5º¢*ð¬\ê}WµbšrÔSÓì™B¿Ž(¬…XcÑý â’r_ ›–Õ0ë•Ò%bä¾c޽>„¯D¿*!€\ŸóO½eƒ6¡¼nöR^hÚÙÎ|Þa®Nm¿Qc¥WgýŪ#™áGÞ9«tóˆ­3ëÿ!¤ìXÏœö†nÓÒúËI^¸ëÐÉñIÃÈ¡=ÑV ŸÂ\sˆUÈËaH¡ƒ­„m."ÑМÎ& k¾.êUÏvf/ªýÒ:1HžBdÏhÚ‡Ò`Ža $šS4°ùÌ—’ÑQs'SX÷m8 ±ÒñâšôŽË?t»©B>­ ôŒ’jŽ®–š£ÿ€„NQßHZ!æÐ‹=èÔÓnŒ–Ë“´³3©_o»Ë¦Tƒë½øÁ¶"U¯ù…æM²§c5߯ç¼:àiÌÁ%·¶¯`øˆÜ ,kNgÞ_ÜØ8­1_’Õ®8 =ÆA¡†Ä ó%`˜ÔUètÛÞé®Û#¯7òÛˆFøÂiõ™2°b §¥§¾uo1Ò°®’a{Û¬yòX}&E¼%úU É•—‡@ÀüH>[ºàdžq3V:€©ðr]äL`ûLù8T —ÎVœO¿;®ûkK0¢u ¾ÁN—ÂýVä—:M”Ay†¸ÓôÜë+€S’ɯ»™R:yõæí-íß| i„=êàxÊ» •H#Ár+èž} ŠE¡ÓAZMúÁY»XQs©xÁ-¢ÙÄåßF]&´*fºa·Ry&tÜ:XêêX…¦Hª÷] ÿõ`šQ\}½¦a ³¹¦TÁLýµ©Ùs8¶ü€¥íŸ°OðôëOÜ<5I»^“ ÃøÆm/riPRŸ¼‚ñÆ[ïZðEÎ%’JÔ‚àý~Š"l{¼ÃÀ/<è[ÂÕwrÃ7]m°n%ëуü>(ïž‘‹ÄÈÀ.Ã(i-úœªÞç¾{Pø±?êçJð¡<¾6®úíŠnPþtugþšP'Ö^P® ]øÔSç~‚'Z®¶&«Êï‡ Q§zÊ,Oçô?!3h;ÖBF¿$–‰ˆõ24‰Ž$J÷ÞÜЛu'Þ}x3^Ey3½7?ô¦E=Så0¶P8Z<ö…4|u.µ¦„øLê ¹Éíbò?Š;· endstream endobj 1 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/splines-mplot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 16 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 17 0 R>> /ExtGState << >>/ColorSpace << /sRGB 18 0 R >>>> /Length 1810 /Filter /FlateDecode >> stream xœÝ›Io7…ïý+x”€˜æ¾r±‘0 Žä`û`Ør`Crl+@þ~^±Š³HÍÖ=3òÁc}âpºÙ$«ê½¡¬z¡¬ú¤¾/ÕWå«ö©¿§MQ.D“úv¥þTŸ‡§·üòL=¿Œ6ƨÅ×‹ç¿ V[§þ^½QF½¬zŸKoP¿ÑëhU)ô¦›%ºbÕÅ«ê´- ”´ª&í(;’²ÆhW ‹Î´÷÷±Dm °hïîcµ:8e­ÓŽ®S³ÎˆËe Åú¬¬ó:ùÆI§ Î|“ÖUúë=ÝÐì£Nœør{s°ºâIø¢K݉‹v~íÍ&ƒŽÀTùSàdtµàH¿ž‚³vX!ÓÒÜ3nó*¯Åñ»ó-íÌpI´mtº˜SdÄ‹ˆÝMËÄÂØ(X1Éú_ÃÎ º`þc¡ÿ¾¶\u­'ÁˆÏˆGÉê’wah!Ûä)…MÀÞè€õ“¦ãIpÒùa)º)Ø`½¤Jiò?`½dËeÃÞñ ±~PpÔô Çæ ³YÉ…—͈_åŒIXO(ÙLØ… ò5ò!ÒT¶aäwä°váŠüù)žë·Ãs¥ÂÏ¢vùì UäG<†0 £nG¢¶¥•)S0ò;æ¿:®ßGg‡|‹õQ# ›ÑÙcá!?¡Lqv'ÎTX9ƒú?lÂ!hkÁõÒÞ‘Ï<û=­d䣨¨LHv#1› Ž´ ‰+‡i¨´|Žsœ¿×2I`N:–•\èA´4Vp0™$« "k/Hd¯ÓІ†ô¿š,+ô%`¼Vwš…PÝr«è©ÞÜqÖ.õSoï8oçø8kœµË|öö޳ö¥Ûßý¬ýÙ¥<œw·+Îí»ÏÃÓŸ‘ÔåU´üž_BTÌ~³-.oÔY0çêòÓðÓeûà‡zZ,4ºÆ»:ëIóÏ»¦Í»"/†ºÐ5oÜÕã¦Å±–»ã((Í»ÖYWž˜`(šßÈ4¹äHƒ¶é]nnÓÆ4oÍm‡ôV¦y«5žVTo\h÷‘ò¬q¡w™·3.´#!™…þŒóvÚ™¹ÎÚÚy°³öùØŸêüY>™?`—é©â†Q9ÐS}VMÈ]1$‰ÖÕoÙÃtrU·eW‹G€MÓúÚmûBw˜Øú®\}u­‰”4uÝöªÎšêºí`]2ÚóUýòš—4×J7 ¨¹ˆ$€d•,c3G÷=c˜sž,IlQÞœoÿºÚx¥™…¦ÒPÑ÷ÕÙïçØŸøŒoçê ýðÏÇ·×êùBM~ö÷7õåöËõÇÏW¯ù"6ª³ÔûêG^ŸŸ¿Q—/èªcØÂ=¥aX.* 0>d[T5ýÍ2v‹¸!%Wöˆ-r±£¹“m²+ŒµÒ*;(®°«ºšû(&1Š£v!1‰L3Ä$ö…´ñÜ$–j±¹ L¦bÞ„Åä Øÿv ÓÚÖš˜M`¤Dß:“6Ч~tS7Ò:›„Ùô…ö6uSµk0“°˜¸™"츛²OŽÅäMVöïÞÌ&0jƒfº­ãn²¦°l?Z“ñ—M™£³˜¾YW· wS·Ò6Ÿ€Å¤ÍÝ”>:³©‹°‘Ý,&mæÚýXL^É{s7]%¾<:S¸X1 ï1›¶¥y)G`1}Kv[i€¿$˜œÅô-ÚÖ]XLÛj¸=<³‰K&¥?wS·þwtSe{˜†›©ëLÓ’0›ºÎøf‹Ïlú:“¹ÝžÙ† *n“×b†1XLa2uW3›ÂÒѬb1‰¡›Æl{¯Ó¢ILr×lÂb Cϱ)~ÙŽ–eì]î&1ÂX»Ÿ ѽÒÎÍu 8a ŒW¹Mg™g–¼V¾Þ#¼%±¢Y&V¿Ø­-›³øEIÛ®Þµ¯)r`B´¯õr`D´­³òþu,Ú•–è(,Zs›ÊNÌÚÖËܬeÑž>4óø,Z[0øI˜µ,Ö~Ûk[s?ÐäxŎϬM2üAX´fHdl ‹v òÚþÌÚ%qð쀑ýN¸Pòºú“`Ö²(ñ‹Û…E«ÆL%ô,ÚY‹Då@“å•£s? äµ3'Á¬]SBû²hITÍ»~t,Z’ÓÚ•ÌZ%áÒ©ƒq?ðdE[nËý“§/æÁ¬eé6ê.,Z”ˆù£0kÓÜçbžh2|àvtîšo|æM%È›±Y4ÑI?˧RùÏA¶ç¦m-4[Ǭ]É›ˆn f­K^D;PtŸ›ˆ£sÙ¯bѾÆñw}]ûšÀÞ_×¶F¾T]Ë¢u!aËjf­ ½Øtßå®}Ô‹ÃËá?Ü@£ endstream endobj 20 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 24 0 obj << /Length 1912 /Filter /FlateDecode >> stream xÚ¥ÛŽÛDô}¿"”Ju`íÚžñM¢H¨T„ +xhûàMœmhb§¹l²ýzÎu<ÎzË 9Ïœ9÷ÛÌË«‹ç¯²xREUžæ“«Å$IŠ(¯ì$ÏŠ(5Ùäj>yØi˜¥&0Ó$(xÂ0…'‚''†§‚'“§b°X@¬€ãw) =ï¯~yþªômT•é$L“¨J ¦õ`›ihlìq¸…¿õþVðt{^YÀøO;ƒ¿ýWZ\I‚y›i˜ŽÚ9üíxƒ¤AÍ/ÜZ¯V¼ Iu<¿AŠ îC¼³=ñ¡>(oiÜ ­coC+ÎYÿ"ýœWo§Y1'"ɵ3 ?+o:foÔ×f=|ÝrèÑÇ ®2d5Ê1Iâ%™Ô¤Q–' qºŸ†ªÈ·î±(¢®IÖ;‘{#ñNŽ«¸ØëØõÃ8Ü‹릗SvÔZ™a^5®ÑÙr[@®G<×\4VšöŽž0Vù˜2)kiÚÒ.âÞÉvðîû)Õ™DøJ³$çáKFFÁqƒš·F"-0#,‘ð #î5’RdäÎcavÑ7㎠ 4ɲ aÄÉ‚~ÏLjšÈ²Û Ó/-G1 7„&ç§”‘C˜Ä¶¾fp5šDNåsEM]óFæ„^sAÉU†¦.÷1åfÌp"ÏL8lòœË¢œ(“+ƒòîÄ#È[qóòdrüzïYàöîî)ñœµ/ñð”# Á¾åW7èyòÂ<%£ðÜe¯8Ù÷³¡B#9YæýÒù4IŽ«ì¹ç&1QšZ-ÕÏÆ8ëú7#(`=ý—ýi¥Î¡I˨ŠÍ¨-Öž§ ;GëðÔ«Csߦßý€±Ã/yª§G‚R¦nÈ×îë%µq”˜êѪ¹û¿º½”Æ96Qž˜ûä;ÑAóÃy”Ä'·úoüšž]§Fåî…œ”ÄJ¬l¾DÑ÷Ð3±ÁJ6;7Ÿ„p|(Êdè^'Eç¹–-Oàù¡O”èû>ç-=wk…àÎåOÆàå 1ˆÚWžcs¯âˆÎ¤î›@œÞzS`Ó ºøùêkñŽyETäå$ɲ¨€¨š­/>] Ú%oHKºM&ž¿^§“Ÿº‹ßá§K¡  =œ/ñê¬Üœ¥Q‘¤“Äš¨°RÀþœ–ÿ´žÔ_aaµÁ_ÓÒj³ßöµßp“Ö¤”ókpÝ…u_åô¡­àxÅwgžúÚ;‡ì Ï4Ô?îä4;“¡ûnÀô7'ïüD›Ï›ïh¬Î¸û<8Öå°Ã[Ž’Xyï@Ú‹N› ò½¥‘ 5àˆË¿Þ•yނſژÉýÄÎ?b¶ÞƒéYîÙº‰`~`ÀHÝR#ì¯è˜Sà1GÎ8.T[ Ž6¶²(¾ê“^àÀÇQ{w=“n=óuKº[jÏ'8LËieÁ'½ŒÙy7ƒH7MJ¹qÛMÍÛIÑm¨ uw‚r#´ð Cç\¼˜ªŒœ-w¤œ4ÎàÈAiŒ#[VŽÑ@ÿµ¦:` endstream endobj 21 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/splines-mplot3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 27 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 28 0 R>> /ExtGState << >>/ColorSpace << /sRGB 29 0 R >>>> /Length 1537 /Filter /FlateDecode >> stream xœ­WËn7 Ý߯ÐÒ^T©÷² ÚZ ±.‚,Œø6µa§Hl´¿ßCRš‘ð›.<×%ñq¨Cro¹k÷ùð›ûìb÷±Ìgcšã”}-îËÑýî>¾¿{ûó+÷úì|Á­Ï³×¿âmÍîŸÃ»÷.¸Ë¹7ø»>|à~9äè3¹VƒœõÈ”Øw¹à9û ë•êçI8­xFAÀúXF¡Š0`ý<×Cx°eD ˆÜqpx‹mHýAPÖÏÙ÷ ™¢õsõM왎 ¹ûj2âóòE왓d•JôEÖçd#*ð7ª\|E> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 35 0 obj << /Length 1138 /Filter /FlateDecode >> stream xÚÕWKsÛ6¾ûWpz‚¦&L™¸‡&qÓôЪ§&Ú‚dO%Q5%çqèov± JŽ/M:=€ ÝÅ·ß.à÷󳋫&ky[É*›/³¶æuÕd•®¹T:›/²?™y˜É†™™`ÛY®je;ÁÌ <ûº{ûüS’-û{÷²·c·¶Ý„SÛØ×~–Ëš-ÀØÚ ¾)tB{÷9ÊK¶íÁˆ¶;·cd=®íæoú˜Y¸/aÜv…x˜Šq0Ö ³rï}u5³/÷A¥w"hsúÝà>KÁðÛùÏY‘åBðVk?€‰ÍÎú[1Ë|í(T’™7…PÀÂÍÞ ôK×w+0®xŠ›”÷ÝšÈÜ̳¦d–½¸*u&J®ÊJB- %y ÑrfAIÍ^šmúðØ¢šAüvë;œ¹8¬1)xS4ÎØ dYX€Û÷!Ò`Üû²_ch) ïÐôÊyt"þVãîÀ0‰%¬^\é"$jÅ˺¶Àе;`Òëí‘ ²å¥ôò€ºû[j0ðÁO,”‹Æ²X ûb%Åô»Y®¥bË1øùܾæîõ]ì=ðJ~@‚Ûîw Ñ|ÃKÞ“MLE—ï`pAŸ‰Üú³ÿ¸®#ŒûüÖu;"eGÁP9Zü–¯Ã‚e²å`ä˜d’ˆ“¾z„ /£x[Ö”EäŽO”g§vÏgˆ\ÒÔ=±u ;[ûÒuÿGºYð¦)«‹Qêågc#TÁµ°¶¤e_¤¼ä"EY£b„2ñþ«ª ’¸Ï,F-¸je¹ˆ!­*+p‹¹^Û¦lkm+­€®Óù‚æ¡ÕOÌW§òæßJú©n‡©äøÊg” ¦08v Z X×Ë'ç¿ S[Šì6±ƒ©RV\Ô“´{‘á‚ýMØ_Ú÷+ʈeB¢"DQ(ÌNMÎrŠ"ÀkÆì@˜" 8•Xì$9¬ýG)  <ª ró¨Þïvâ†úúAwnxò9Á¯ \… P]EnTnhº!æ$7°ÞPÁù‰ê–¡ZÜEÅ×Ãð аë£2í5ϯ$õ+;#IoxýÖò‡Ç0Îc•µéZL ×|¼wøJ+|™-¢À•¡þ²ò’,¬µ¡6Ç–áŒ%„p¦Ý1‡Ÿ1òçršic ¸Òt"«~!êÿ"s>#niµ ãh%@šº9A˜WŽh×Çù³ ƒå<œ`ä9yrƒoS×%î$çDÔõHÜ4†®†ÒfŸÒÚŽe+¤æU5)p´ EØ-=-8DÑzx4ë“+Ç:J=¢° WL`¿g¿/ÍCT VQ¡ðsã ý€Y“ÜÚ¦)¶oòUt…º£!âÛ» aœÓæûöWAdjü’¢}ž^œ×”.§ÄÅãâ1€p—²?±¥,Ó˜½o‹.R ñm?’… Y^EÎ_‡²é†8wÖd“œþ€ÙðBhø“*¹Ôt .AðìÕüìð›` endstream endobj 39 0 obj << /Length 1636 /Filter /FlateDecode >> stream xÚXY“ÓF~ß_áJñ Xh4ºLRP/ NåxeÉvaY‹%c6×oO_sÈ6KjK+ÍtO_÷|3»jÁšÌó0ÏŠ‰žGa”$“ª½ùtγX'¤à}’HÉ2™xüs«'?v7¿ÂÍÄä̳ùbqóøU1™£¹l²h¬Û¼£b>Y¬&ï‚7Ý4΃Ót¦³$ØLUP·Ýzïn ¿¶ðìYÖð­ƒr_Ãd‹’’%øÙó§ÌÐN…FÖ{”þ‰KV,kqááã4.œ=ˆõ†­7¸´Ä5ÀZwÎËž•:”­¼Õå`C(O0E ¹˜¶½{öœ >²¨ÁÈÓ‹_Û™Rá÷æ¥ HÐbn{l°H§ vÀJ2ôñwÎøIÀC¸ì UÜ U ¼®¼˨G#åJMêè­ƒç,k;î-z‰þûH%´mF«KG„ PKFÍÒêˆ]i+/ÒŽ?M¥IsCvh_ƒó˜ÄÚ¡fC»¶<†€à¬Ih•iO?b©ÐnÚ±»ÓV6¼[îi'­ã "@Ä.‘ľ2ݨƒ%µÖ Ý=b}¢ œlÏkf7oOÅøËŒAÔÓÁ•YO­x¿1VÕÖZ¡ƒòPI8²æd2Nfá*Žt^ò1X‰âl…pÂÐOÆu}nKЈ.‡Ïî‘C¾‘žzüµ3ô$‚æhÐ$6¡Ô€¸R K\™Å3è^¹uÑÜ2ì<&(Ó²wn†û&²å¦Öð½d$z½ÒÈG–î9Ø4=Hë˜ÖšcHâ½ÒIdþË.‹d2ᎠD÷¦ïp­½õXûDð½Þ~6—µ=»ô #àQ+Ù4V°êZfˆ$‰ƒ?¦EBµUaˆ/<ÚJ§ Ã×Ä[¥.×.özQÈ…'ŽnÒ¦¢½T4_,jâ$-è%µÛ%k]9ÐuáÝ|yjqGVˆËÁ4º³ñþÒr§&žº|ßI¯Ð˜ÎéH󓣄™3±dm¹µÇv^%®p_³L©œM=Cž×®!…ÈÌëiÞÆ]Ëqe/+ŸÂ³€ç7x~‡ç¥S1 ¹£®QÎp©úººïÁS»f%&1"–æaŸ"_Äh)Lý”6‰ ^‹¥V¯½ä½¿–ÐéNT?Ë{'&$¦;—LL•ƒo&%n…’)ÍZʼˆ£GId£‚­¨ôù=Y¶Ð‰/í|Äâ#OY?gÛR<4‚À‡bvË# ù‰ŸÍþE–µ u_^ê\]Ë ³·kÞ]âú­ÁAð÷zÒp¼Á½v™®dXNÝMÀ…ù/¿J©zÍÇ|®áÏélü­ôãèÏFl-Ç1`˜ïdÅ'Úe?®D³»G aTÂÙµ`¯¯o/þŸ[~øö¶ÏsxÞH‘¼­nôê_ÛÓ­š¹¿Ûýôã¸k/µg¥y Mvæù>õ»ëõT‚x8æ'¦|¾ÈNæ°(ÎvÆ?rŽÂóûï³1û¬í€ÍKÊê’Z¼2”‚Ï0n×ïÄFã⣠6I.›Ùg«QÒƒ@u­Ñ“±éû ߤU‘†‰žãÿÅÂ,-¥õn^.nþ 6z endstream endobj 32 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/splines-hgb.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 40 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 41 0 R>> /ExtGState << >>/ColorSpace << /sRGB 42 0 R >>>> /Length 3326 /Filter /FlateDecode >> stream xœíIÜÆ€ïý+xÔQ¹öåjÃI Aœ ÛÛÛF’-ÉßÏÛØ»ÕÍé¤ÞÁãùTÃn²X¬õÕG×½ê\÷¦û}ñM÷{š ¹ÿY½±µó1™’»Ý¿ºw‹/>þó/_v_Ý/¬±Övë?ï¿úûÂç»ÿ-¾ý¾³Ý¿®{ÿ½Y8üƒîo‹LrkÍd×½]¤jjÌ&¦îi‘³i˜êL)€ðí­uþWܬ&¤Î•fjØEø «‰nü Wб~&â_;/:Ó2p”ûµÃÑdü|oª»ðüúò16†͵s±ïÏ k+>DÏaøò/fSÓ% Zë‡j*—«pÀ‚ŽÅ"ÙIpÆjÜÅ€Åä®Xß»è‹Sd¨¸#–kZºGlä4’%Ž‚áA€û ÚõÏâf"ÜÿPŒ/ç`h¢¡âw!aƒ=ަÂý «µ)rÁ…ÍbcàfÇòÍn|CCŠåÅšØnÂÉ$(¾ïž+õ—|ánòØÙ[Ký7ìNƒõ/}Äb:GÎÆCù÷»ùsäJýÆÐ¸QùDvŽÆ;®rû9~Ž4þa¯+ÊGpÁ†§¨¿¯<”]ÀaÁ*FÃc’Â,8Ñxß6lÖ¦À…æ láù2å‘3 àù¶2¿£|*šOÂnhU~Óz‹³Žç¿•‡rņ°5^NQ¼FZûkP¹&Å+bÀÙÜ–xqJQq 3ÎÌ·À ­Š›Øp™ QŒƒâ 09\7iÖ§ø`Äe©ZMö3Å‚øµë§‰ Wk’… Åñcö¸øZ#†ü)Ž.8W͢⥰àH¡:™ßP‹«,Õ*^Æ\`x}Tœ& útVñvX1”÷¥4Åë!´&Á#R€¥âô1â/¥à]Vœ?f\* MqŽHûO‹l(Q¼ âÂJ$LŠ1bˆ–gű`p`ÊŠ“À`-.ÈÖ¢¸ƒƒÕ ãê«â@LoX­âY±bDnãuŠÛè,æRµu÷[ÉB‘&§ UtŠ}r«tÖ‰-Ó—é²=½Oïq•ÎKüËtÁeº´˳\¥¯_Îêê–é_>HæýôqOæ}üéÝâ‹?ûÎu?w´:j—?¡´ÂcáiÏÄÃÛîE¾ëÞ,¾~ ÏýÔX Úú‘õè#¡„·v¤³ÇŠî…¶q¨?úÐâ0¤wíÐxì¡Á'œX;ôè\ ¥âôõÚ¡Ëlâ;ŠrE‡÷•Èc$Häû¾™L÷›i•Ú(®OeZ¥¢Áϯ’×ÒùI]¦3®Òq#r]¥ ®¥óÉ.ÓW羞+«¼x¹Ê _pP#V˜+/­Iû²ô7zÎð`øÇÇ¢›.÷ýbôÉAÍF7sð7{_q5úͳ•¸ùÕ7¯+zß.¢';¡Ô~=úJ%ø©¿s›Øÿ1WÅ'V(hómðØÎ™~ûâ¯oßÿòôþÇ×ﺧǻ.ØîÅï:h ^<>Ý}ß=¼:**;~(ècÿq×Eø¨>Üu/ñ—ÿ¼þá©û™?ÿý‡î·¿=½~÷øÝ‹_ù‘ÿòO]üînù…ç÷­RGðô)ͱ‡†6﴾į#6ð¬9öÐ?¡ì5öÐÎά†ÆÌƒY[ #÷ԞŬ)NV4ñ§²h†¡g-ýÍ™µÁ1‹ÆrÌšaèÑ<ÊÍY´Å0Š*ÏcÖGÓ3·`ÖG+íÓè™5ºUãç^#ŒÝ¶i0kQ+Þfɬ^4j³cÖô+Aðʧ±h„qW'Á¬ñõ™Çþʇ˜µ½>rÿHy(³VØ{~­ÓèX4ÁÞrmúÌaWeûÅè™5º¹¥<M¯“פ)ŸÊ¬í…fše‹ÊY´½Í¤¢ü &ý..Ûðk ”oËìåÅ8šQ¾5“ ã®(NYy“.ØY»!SVþCfo5Õ+ÎÅ·›9ÎUqîHöá–8"ÅQ x~ á(^ ÉÆ[³¼²UqòHÛüjÿLÅÛ m´YñzÈ6ÞåÅEŠ“GòíVÙÚ¢8w$ý. ‰ög‡´åuu»oì¤ýHŠC¤À€´USñ$W/ôÜ8ˆVqô(á*û”7‘ÁÐÞQPœâ$ p-zeÅ3 „QÒg·Q  ÛwÅm$ƒp³bëQÜ@r·Þ³§8«(´ŠW< Ù j’)n"é†Ñ¹Ù>$U1t×iõa"HËñ­‰€uÈÖcT¬ÒÖÞË39‰ ÒSž“¿·J°|j̦cÜzÓü(™Œ‘¨ÔåzqtLf4òqÀ®d4ðy fû2üHý³Ë¤cÆ­Ñ|¿Ù¸Œ†>ndV2CÍGq£½‚j•R÷2+˜q‡¢ÝˬX™·z fQ.ÇÀªÅÃÌJædYõÕ+™S4ŽtÕ¢dN_tþ¢`FÙßÇ¢d.–%ܽ’¹É»îÅX‰VÓÒX‰ª R7²±Ò…„zÉ^Q‰>BZýÝFRT¢†ˆÎu YQ‰¸&°\!)*ëc%f–zc%¦¯+ñÓÊ9XŒ•xîdTCe”·”ì2)coØ<Äb¤„ÚƒÞÕq˜ÙP l÷3*C㘔]fce ½¡˜;Ì†Ê Åd—ÙX2ï˜ê •PN¨ÙÞe6LBkÄßvfC$°-cd1NBo#Ù³0(á¶•ç1&á1çûwn£$0=û—g6BBµê$˜”¾Š!ö ³åÐmŠ,†I`6üžÙ ­Xp£`6Pzy3Ãpfã¤Ü:žÌbŒ„fc$ÌHïåz'ÇlŒôŽ»y7g1Pú¾>ÌltUŒœWg6B:yÍûø™.o,Çʽº­6M‚ÙðèϽÎÙðà 6€ÍŽÙ¸è,?ßÊ'²!a˜§Áld´…ßü¤|ˆÙÀÍ7(e6Dâ4Q#‹ñÑÊZâô™Øl‡I0[ãá¢â(µŠ­à â0$£"J Ù[·‘â§Ì†¨ð°Š×C6+;ó¯„äý«U:5ŠŠ+$Ça-¼ð­¸‰¤ ¬ øg€,¬Ad Š3GZÄ÷ນ"Ù«DQ)NI&X*x)NÙ-XЉ^q¬Hb¾’yÝ_Qñ2Hñð%Is¬8da‰c¡x%$] þ г@2;-o†]o¼R¼².‡iŠ“GÛß_Åy#ù í/Sœ!’y_¡xd‰anòÐ)@²–¬x’LÑ+NEq˜i7ºâ6’ÄêXV3(@Ò²•BñlHŠÃbûçWq Yq#Mê)n")sRÜA’QÇ(A²f«x²â°vì(n"ùKài‡ÏÉ¥Èòñi ¹Kä Ïi i {I$3bIXyÎÉ•XR¯Îœ²?±ôZÕ± Y1š¥Ž ÉÝÈ/‡`µ" ­‡^Ùш˜÷!ñ¬(ëXÈXD„tÉÖHÛ DÎX’t·‘ÔŒËÒ¾$^„§;ÕÁÈF¨6Ù6~ÉÐXÄä'‚Fh³¯‘üŒ¹ò¾~Ñ1æÄÛ·‘åŒp!7c’Ma÷‹oÿZï<Ê endstream endobj 44 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 48 0 obj << /Length 1094 /Filter /FlateDecode >> stream xÚWKÛ6¾ûWè(#‘V|é${(Ú-zhQ=$9hmyåIJ[Þí^úÛ;/Jtl N° 8"çñÍ7Cj­¢ þTTi‘—‘©²4³6Zv³¯³´Êµ±¤ˆ´¥ÄLî~ílôs?ûþüV".“ÀçO‹ÙÝû2ªÐ]-Ö‘R:-”ŽLQ¦YYE‹Uô!^´so`ç‰uEÜÖ"`­YÁã´ôÒkØ)ËøÔÊã]/B³?>v0ê¡çŠŒŠx¹m&רõØÎ5F£Õ¹ÆQ,êgò‚pøµùäý<Ѩ÷k1ã ¡5GÉëˆ.ê~Zü%ʦ0–(•VÎ1+UêªoÓïæ‰Q9ÁÁÙ'…òÓ’¨·'Fg£À¡M/X¢Þ½wYX[¦ÆaÉ):Þ#•0$ôŽü’iXSS¥E¦¼a¿-ë‘võ—¹.ㆠŒ¨NÂî2Bâ §½dÝ#¥4 ÕÏÓþ#Ah¹`’7D^¹µ°w˜ìzX>cûÙ÷àû¡ó"7Gž)î_$DQQ'DüÄIÒâ3zÚÒ ›I†^ºöSÖPͶ¾Q&Môó"jëëú‘¬™ÊÒ¦!&4÷«äQ®CP1t‡+\ü÷¼4æ€ _Ùe[¶ì<1ÎLµtšjK\:ÆÔoe ïçšÎñ™xý‰zzKg¥ƒ 75®>ÒÊÆ'Üñ©²xD,_±g£Ûz°ªk`ÙðÂhZû›cl5€¶](x¾Á0wÙbFC~8›©Ÿaíù@åyägÔ®ññ2/-VÊZÿ.ô~ajN˜ß`ÈG˜€"J ¼ ègžÍHËcrv–Xa\9Ú-ïêdÇ2–·y¤ »™\ÓiËõ¸z}—^»€@)Ñ@™*™²{hKÍ}l…åå· &,úëŠ/cÎácæ2˜þÂË­ò4-¯eÙ7KGYÓ®äµS&KÅ»ÿòTS•ˆ-|}ÅÓ^®›½tßt'Á[1|˜j:…È縴“Ø Gˆï`”˨ى¿“„Ö^ãJÞŸ3Ö-çTž¬‚/¼w>WR¢€UnÌþJ¦‚ÙܬioÖt7kæü0yê¬9g&“dR£’œ+’‰½DÔR¡)—m+êVÖÊKu'&™¨ÙÀ,¿T/dXTʨÈͨ®ìÞ£W5ÕQê*K­Uç™ÿ?mÅÍ—7k—ÊêME™}¶’o½KóÜ'›s²!]ž%Ôåò^—Zµ«¾aXïê¾+´˜Ag˜ëÞ}ýŠÀ»¾^j”7ºÂ‘‹±Ôß[iÌì]Ú‡ÂÆWD¸ýÕÜ÷Ó¹•ëg˜° é› ¯ì¢Rñú.°£OÁýõÍO‘Ò¥ÖT˜^ÿùÊoºf¿,fÿÆæc endstream endobj 36 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/splines-df.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 49 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 50 0 R>> /ExtGState << >>/ColorSpace << /sRGB 51 0 R >>>> /Length 5299 /Filter /FlateDecode >> stream xœíK“ãÆ•F÷üXvGXP¾‹ÙHa{Bã»+b²¶Ô²¥¨–lõÄøïϽ÷»‹´ªXO°:ªÖ)Hä—™È<ðÓW“Ÿ~œþ¹ûãôÏ)ö9ûÙÂìÚRžk™~y?ýÏôÓîóúýÓ—ïvnvÎMëŸï¾üÃÎÏ>LÿÚ}ýÍä¦ïv~úŠþûqçù¦ÿÚå8g?…æ¦»ÜæVéýëœët½+eîôjrsÉ„´÷Þ§êê lsÌ„‘ßù»Ÿ]$ts'0Εväi÷å½Ks¢¿¦ݪp=½îÚÜ£pŸ+}úµóÁ>̉ƒË¼fúú..Î!œä:7ú|ÎÏ1Ý…ékÓQ÷½Ï©Ý‰ãì;qK<É™Œï™¿Æ)nsÎÄqî|}ô|º}\6NqäÓâ»›£;Ée.nòtŠ“¼òs/Äin§9Í…Þ¿ÑÇvOÂuŽôùšç6Èty•6ùZõ|<˜3×¾¾ˆîÃmvtüjšC .n®ôýkàb÷çDå±Rýà/‚ Wã¾tþç.ܸ¾÷¥jýqi\ýœ¨|”<çö$œ¸ââÃÜÜ&¸ðÿøâ9 ïÃRñs1÷é1˜’ÚÓù Ë4äM0¿\æè/’©}Dç;'­ß_š)˜•nÅ•{q˜•—Lå%¾Ó…Låƒb³‡‹à&í%j†—tœ4³}Šh©oŸ£´/©ßÑÒ«ä2*ÿ‘ºHñUr“ö”nêà³÷Òß¡n˜Ô—Ûg &Ýœòà;påA*wkŸÏ]úÇ!Í=m‘CþwÐñ•Ëç,ý}úšÈëͳï©ýÞoŸ¹b¤ëÛÇ9•ÁÀQÆ“¼›s|–†ßvÈ}ð=¸ÉxKs)ƒ_ž“ÜôÎÏ5ÞËÀq§^Ÿ8ð å÷‚[±ó…çØ¾Ìž‡H»›kø `âY­i?ýbå;m-ke>ðò°ó½ÊçR^–À·k›ŸK¸UÌ|‹ºö¹¦Ÿ eÊFm³+·‚ÕñtˆZ0{oàsaäY5c÷ÀËÇÌÓDxÖµørØxò š8ð‹+x @ø*0ñ¤B—~XxŽT¥þ`øQV¬f7ðŰž Çë¥ÚÀ31ñ¤´jVï•§£ÊjíÛÇèÏ€£°–Û²1ðô¶ªfƒç`æ™h„rÿwàãaã)eUgø <@‡87“¦éÀCŒÜàá%èiàžžTæ› <CVÔÂàeN‘Ó¶ÙÀL2]' ×ö `‘¹. jª Á.s?2ô(—1°¬„Må‰1qIæq›öZ°ÎÅOÝÏ!^ &Ç+Ø7ƒaîuêcæ›ÁÌ>À®¶¼˜DûÀ úÓbö¼G϶Ó¹Iëu6Ù×S‰3´g·sç/ÈËÖdžJ,~®qb; ë'9͉öï=–Eså?äe˜8›çr ì`{๲_ÌS@:i¼RF¦.˶»´#Ø—WeYºhùbk¼¾‘퀥b¾8¼h ¤¦Jt`¨p²ÝOúœïØOy›~Òñ§«Ÿ¤#š³Ê-?Lú×Ó»/+%ù4ôªjíeÃýëÐ-¯+.¯ë²v{Ýpÿ:nô/¯+.¯kb,Ÿ^qÿúúëì¿ÝòúWzð¾ýxâà}üö§Ýç¿ “Ÿ®¾ŸÚ¬¿ÇA*­‘š<4uõazSÞNW?î~{%ïûk²Þ²¯·lwÞ’Jxô«-½»ë¦ìl蛆;oÊw36MwÝ4†Ì×âjÓ;¥H™z°ér˜pF½ üwôó¢×¦'þÆërÆW¯Ñ—.¯÷¯ëÚë«÷_ôýþlÿ-B•U…Gˆø£Ó/O}í_Ù–]vT7bã|æÆ¼þ<:´ýž×"Û»Äá§×ºahYëN‚C´?FÅóÀˇíªöÈ Uú¤_¿ùÏ÷~þÛõÏýá§éúýÛ‰¾À›ÿ{;QKíÍûë·ßLW_ÝéÈ$¾&¼í¿½Õ_~y;}Æÿó¿?üåzúïÿó/Ó?>þãú‡ŸÞÿùÍßÿöWüåo¦ôç·ËCluð$ ÏHtº6¦ *Q‰oòm>˜Á·jÜ@5øÖˆ~ØM„Á·h“ðšÐ7G\ªÐ7™ðV…¼© ‰Ì*ô¥v *ð¥C*c`Ç ao,ü±ïÀö²7 …;±|Côh©³|%1ÃG,B_öœˆàA¾œ`5ždø²nÙfúr9ÙUàè°w’EÀœ¯Ggè²9¤-2„¼ªtÌ"èež/÷bx»Ë'`î²Ñ= C˜Ëý t a¯­k¼!Èå*µ]"Wx[ÑúêÑB]^Ñ•6ÁôòŒEw/†—²SzbfêÒnÊ6‚\:lñ2B]›œøâ¬‚Þbyx6C°[ê¡à÷ùÂ\ê.¢}´y†0·ÐñÀ&ÌÍíÁí3¸<à_%C€Kýé ¾>†6;ý?U˜ËÝ w a-uÓ¤~|CPKÝæ߃!Ðmöm‹¬BܘÑÿ»|†07Rû¢^C´?4xã¬BÚ $üP† –.ãaíà»2µÞú'ƒÏde}ÆL‚Á/Ì*”õ»¥ƒ_žÅáÊ·!!´<ø,Í­Ç0ÌàÛY,²<óã+ƒ_7C#Ë3?áü‰³Xw{ÃÄ×׈"¥ís¯^ Š£¶Gž6ð"ÊÚînÅ÷Úº>ÙfàÀ'A1ضʷqná·m…g­|> mËfsxé( ÛZäZ_ e顸Œ m :ÓmàÅ£xfé—½ üP´³„­ |(Ë^÷§{àK ܸ\Çúg¢Èp [ø0Gm³áÙ›G5ç6™?ð&Š·e,*xŠý–š ¡|Ts.¯Guo"̹­©?kàŠ9·;õT<@qãRËWÙÀ3Pd¸Ô”¥¶ï0çö2ç:ðE³Û;VØ(Š^ï<'—ÇV=qn^ ÃÌæ3tžœÅÑë)´e˜üõ±ø|YžŠžç¥1Ì¿žÂO–ømÅ"Ë&»à7É"%f“üÝpûPµ~jVqôXbxÌǬÏ$Qùpì*罕!'N‰»k׋Œ8u,‰>fȈi·x’ÅC6œg³Ê‡Kãjù. 9q휺׋œ¸™TZåĬH“Ï1+òŠ?ųYCηʉy¥€”‡w»,W°š§;úà­Š‚CfT—·ÝÙà"c‹-°CÚ—Œ½ßDQ_²ÞHR7êKÆîN ¨/ù8ÄxŒjÂd–b¡&Ly½ ‹ÉRÞ­<ÄÉ,1¤æKÔÕ|’EÈGBnÜÊ0]2ÃŒw+‹ù’ML0G±˜/EG›O²˜0ÙŒ$—…š/}Ñù¡Ç,æKÊe{ÌfŸŽb¦æKŸ+V³˜+¹I±~|–üfá#Î×Ö&K®Vĉþp³¥§Ú³û{1Ì•Y«‘Gg5UR5Sܳ0L“”60…nžaºäbr7†Y2éøãűš+“T›OÁ0Q&ª¦¶Á0[¦€e-ç3L–TÊÝѳš(©™Sí‹3Ì’±qïë&JŠÁܶÀj¶¤ÞÌÙg3Ì”Q§û=?Ã4IÍ´w6Ï0M†®åaãl¦É ÃÛg˜#©ó«d˜#©Ù/¯Žar ^MpƒÆjšôf Û<Ãôè 6 ¾av¤_˜ß•až¤bXÝYM’®ã©¯—Ï0MRµ/OVÙ>ôH1 3ààm³šÇ3û?”ÅìH½‚Þ†bq¤Ÿ å üUÃbºæyàó DŠÝéšØÏ„Q§rêY8pAq-¶Œ; в°4žÜ$fà9(öÃ’T4ðÞU"ßÙìP¼ŠE|("Æ¢‚† A‘/–ª•êE Ž„í©QLŠlë¯Å­Xœg—ð-–Îz¶ ¡X »ÛŠë±:¬‘VcÕÑž'D8«uÃo¢«`@àH(b³ÛPìŽôËJæHèý)•ãRÚo¢ˆégŽg#¤TÕÇz£#¦Õ]›Ð‘:ÚÐÁÃçÈßKº‡Ð7æ„© 72Ç ET—cÔçd¼ÛÑqvnr«Ÿï¾üý–úÿÚ}ýÍä¦ïT÷Èó»}Zt!U3èyÙ“oøÕ¸b¡€Ð‘×V‹TÇ"ÊÆ@±å ”ê GÙ›"ªåb ¤~Uåb ?“#£ŠÅ@ýç…b ·u+…"›.e¶’*Ù$ÀP öó­){9T ö„“jŠÃT)§ŠÃîPØLiØÔôj B˜¡®å?†Gþ^•}µáj4›¾ ðƒ2¯&<ÁË”vUﳚ2ŽÊ>“ª„[˜ªXãð–ý«‹¹ìO•dTð‚|?UŒÑnа¬ùfŠ®¬³VLyE&€¡œÊºÎRtíãïUé”Ê¡2)E=ߪ$¢Ã(ÊJSþĦK¾U‘UgJ:-u­D‰¶½*G‚šVM©AMšT, ”$P2[­JjÃc¢‚*¨wäÖKÒÙ<,û×%Õ^¯ ]5ìéc¹…ƒ•±¬€²K6eI»ìk yI¶œ]?Æ¢qy;¬˜ê*ZÕõ6=éM¬Ç CŒ›vX½Ðl‚:¾I¿¶iÖ\PeG¨zètêÓ¡ñÈîˆJÄ­C0öc­¬u&h60¥†Š4!¦zP‡oŒ‰TÎâê „´I]Ýw$ÄéÁ 0.ý‚¸©C˜W7u¥²ÖQoFŒNÊ8/aZ]–ÕØ%¡Ô:ÆTÕÄ©£*UW¦é8BÕ‹HûÆô¤†Ó^mZ;£KÃW´*Züµ«ºéæìUi§ÒU‘á,Ó2ê%ӲûZ¦%\,šiTH5l™Vqä-Ó2.jË´¨uœeZÆõ°dZT ¥f×uiÍ2L3­ Œ¬2 ²Ï´ºÒürUYnd´«L뇙mè>Ó áÜgš\±K¦ÑÕÖ™ù<®2Íëþ-ÓªfªeZF©^2Í´~–iî0ÓŠÖ™K¦é _2-i¦[¦y=^šiY€–iÙ4©–išš%Ó‚eœfš>oÆ2® Í,Í´ŒÌY2-ªÆ×2Í£@Z¦QU“eZ±ŒÓL‹h,™æ±ÿEóe!`™VP—LKz÷Ï2Í£<-š¡®û·LSåö’iŸwÉ´ ™d™æL|Cã¶Ê´x˜iØÿ>Óúa¦á¡¤šiU¿½fZ>XcHeß]3M‹ªf¤¯fZCAµL«5šiÅÄ2ÍÂD3-¢ahuª2Òç‹ë)µç^kÃ2­£d™¦_Ë4ú‚y•iu­eZÑW5ÓôZµL+Ú;ÓLÓªÎ2ÍbJ3-ë˜í’ièk¦iËeŸiëqÄ•U¦i3Ô2­ò1ÙgZU½<2­ªöT3PªÍ4¾èÂ*Óœªõ5Óì–¢fš×Ûši'Å2-¢q¯™f}×L£ƒ_W]H:ÝxÆ 2­Y†#Ó¨l¤¼Ï4®çWÂ>Sni|ݯzv]'¿i qû<£ìÜ>κ¤V|f„YW±¿eUõ’Ëû,ãŸþ(Ë Ä}–y4ú-Ë2>Ð*ËüA–¥Ã,Õÿ>ËP7[–%íX–­ÛVý³´Î²ŠºfÕ?KeeÑ”ôše–…ª¬·²dYQå±eYÒºÙ², d.Yæ´ÿ§YFç¹dYD«pÉ2í/X–ÕŽ'),Y¦£÷K–ÍË2§Y¤YÆuK^g™¶o—,‹¦øÖ,³ýk–qéŒë,³þ¤eYÂuºdY@÷~É2ûþšeôµÚºÆ’[g™=À²Ì£«¿(m›öW-ËŠv9,Ë´‰ºdYмe™ÃÕ°dYEa\²L¯Ò%Ëôø¬² ¤ßgY¸‘e~­tóÙtKÿÌd™7Ö,3eeYÕÕM–eYcÁ²,ø=äIJnfz9X˜5[~Œ0+¨t,Ì’öª4Ì,ft}"…ft¾à¾Õ0[¢aVµ›©aVPY˜iÌÂÌ2UÃ,¢Èk˜µ`Ùfˆ÷«0kú¤ 35ì[˜éc -Ì4,̪uÁfÍ* ³¢ÏtÑ0+S"jF9ÜwдG†0˸Š,Ì´´0Óãla–P¥X˜éea¦Œ…™Tƒû0[<%aV;hŒ«aèš´c„0³ªÄ^jÕF¾‡&< ÄÆCõI6â™ÑÓ0ãÞkÛ‡aY…º²3n”}˜qƒc5¹?¬êÈŸ†Yµç`!̸P÷aÆáUÇŒk(w”eû~™Œ\-#Z6ù:¤O›å£~–äy?½»1NøóÐ_iJ˜¸„å…¯§7ÚiÛy)lûíÀ¼Ýé>¤mGßÌ­·¯·;ÌkÝÎó°ÚN™·ûâj÷ùÇ?ýþ‹éÛ'ŽÓÇoÚ}þ;ªw¦«ï'9nù!´z8·)—®>Lo¾ûþ?¦ôvºúq÷Û+y÷»lîŬh›Çs7§ü~sª¯Î|f]½mþÇÝÿŸ†É endstream endobj 53 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 57 0 obj << /Length 650 /Filter /FlateDecode >> stream xÚÕVMsÓ0½ûWhrÁžbÅZË–ÍP t ¾µ=8ŽÓ0SÇi“B{á·£•Ö±’^˜ÌFÒj÷íÛÇ,ÒÁrÅUš±8x$%«ïÎãy ±4ÎÖ\ r#ÅôC“°w­÷Eº« CómáM/2–#\ÊŠ¸Àb•ñ(ËY1g—þ§6åÿÂ8ŽýE üö¾ÒßµUlõvÙoõ¶Ülñ~Ü›´v; BH;ÛZëïн^Zƒ‡7«ãø’|Ê•ÖέÁmk«_ºÌ; oZ6VUá5ê ÀM½ y ©O¨åÁuñqz‘DNÍ$Ï3`!ž‹ÌVìM&`q0“FËÚª^ëmh·Xë(‰ô"´¼Ò¢lð63[1Xµµ@ºŸ¡Ðá’dnAÉaXÐ2 Ùjy4„l’Dá«lŽ–ï½zAê-a7”±œÓ±$“eÇÒÜþ´ ^ÞØrâñ̤e\I5Ìcm:c©ÝRÀE >KšõÀôEøI¯ZšBÖç»bJјëÜqoˆÉ ½Gê?w*P¢!®”¸- Ç 0:7èxÂì¤}nŠffl}æ UÿÍ ¥ÿþ Á_ž£ÆÁëêÑÒyozp†™¹Í{.éš:ë4Ùœ²ÏõÒ qý{õŽÍ†@û5=cE„<“ù°"'«þ öîš¹{lŸÈÒŽ€}Y¤î V¦\(|'Z/FÞ' È;ƒÙœŽ@äÖ”Ýò±XðàjÜÝ—Ô˜j,Å„§ésø™1‘sÈaصGÚ.>T-ÅÞs9é›ðtÀåóÁß…Ñaœ8ÏØð/’Šx‚Ã%‡Ž§B3ï}áýºí endstream endobj 45 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/splines-fit2a.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 59 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 60 0 R/F2 61 0 R>> /ExtGState << >>/ColorSpace << /sRGB 62 0 R >>>> /Length 567 /Filter /FlateDecode >> stream xœ¥”MkÛ@†ïúsLžìÌÎ~õ˜Ð-¤ôäPÜjœ–Ø…þýÎJZI.Ʊ”ƒ×½z¼»ï|ÜÁ^«{x›Ðú²FFÅað°{†oð«ºÚýt 7ËÊ 1Æëòæ‹> þVO`àGEp§ŸMEùø\]×ÕÕ-évõ:/;LIß4íGè8r‚ú.¶—PoT­wÕÇú-:ŒØô3hRŽP ˜ì Ü'$Œ6NÇÙD ¡¹ÂŒÍYbN”¤lÀtZ¯lˆÇ0coËÊðÌØÛz† :´2£œÊú•Â\ ú}õš#wÝð¢Û…\˜m¸…år ºV¥@(ÒË%ìuvº‹ëõöºåˆ>ôz {ýà8Ãéz=›×\~µ?rùýJ{ù–[o#vÏÛ¥ µ½nF@¶–³µ}RN€¹˜F¤œK²„\ÿéÏ%sŠ‘ñ\RŒ¦MF$™‚¶ÎjZ¼Ëþ7;ÎåÞäçPn|o£A‚–{µ•¨9B‘»p¤ë@Ô”÷zŽôÜ7Ãæ]8èL Ͱ}Žôö2½>ÜmìÚàÕb0CvM§]h»~¡G;fù 8hÊlÖÈ ˜´EÉúhmž¢Åbˆ…6Sér±5´ì‰4!ÙBO5E0šBËa©v£ Mžm Y˃4ý%ù‡ayyÙLÍwÎÖvò ÚY]O} óMÖ1§Ûk=ëßÏëÇ‹õÏ?üýñòaAOåŸî«8ǘ endstream endobj 64 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 67 0 obj << /Length 1437 /Filter /FlateDecode >> stream xÚÕWIoäD¾÷¯°ÄÅ­‰W¹¼AÂDÄ¡´Ä88îêÚmÝd.üvÞV^:åŠ"·ËUoýÞVQ^Ê+²0Ks/.¢02Æ«êÅçEX¤:6D0YÒ‘6Ù¸þX§ÞÍâøsGˆ &2¿_-®ïr¯@q©·ÚxJé0SÚ‹³<ŒòÂ[­½ßü_—¹ñí20*õû¥ò-­ÿë]yâ >š#ãvO¹?ÂïžãVvÈÍëRô¼Aæs7е( †§gµåÄÃÏ–7žö¢iÇL%o¯-’tøk{>i6¢£cÓ•¿nêùÑþBQݰ¬~ôeÂÐ ” ‹$aDì‘ F] ?Žc2¥á%9ÓUì*nÔd{sr.ì+Áå´Ô¹ÿå¤Ò²A˺\êÌÿÂË@§NT:TêD€% ãħ¸±a.BÛ\ôLXŠ4‚Öµg­æu#–°/L½•} ?12#$œ^ƒiµs, ! %º_¡¢„Ë|ëpxBŸ£P£MÛ!j"c†Üóp*ÿ ·sŸà8×ø;Êïæ¬c‚õ##™¶f‹\.)‡çÁŽå/¯Ka#CZRKvÁù×> /ExtGState << >>/ColorSpace << /sRGB 70 0 R >>>> /Length 1132 /Filter /FlateDecode >> stream xœ¥WMo$5½÷¯¨crˆq•¿¯YR$KFâ°Ú„¬D”,ìæÀßç•?º;0ŒÆÉ!U—Ÿ].×+?3ÝÓ}YÞÓrŸ8~³›I|0)Ò×{ú…>/ß<ÿüý5½»]¬±ÖÒþ÷öÝøšý½|øH–~_˜nð÷°° –Mò$‰ gz¢\L´$Λâé‘n—ë‚’LŽð³d“qãJÀ.Á—Œ^GÄl¤ûdĶÉkìŒ-¤„b1™ff©„½.’s[C¿|D»Þ†d; -³8–è4ÿÕte´²z>/Ý5ïÍÚ¼¨g´äámÖæeNšãáîæÎ>gËæoæÎßúöêoææÎJáïæÎ CØüÍÜùÛfWÿ¶÷}V·\^m Öë -Dô.Ô¬^±9z˜'À)ŽžðÑ:f[ôJê裵{ íá2ÐvÈc+¦+kŽVâ ´ ùpèÙ¤ "Ç%ÜѳY“„ÎïZ^¡7šÅË®¯=S‹C‹{W:;s ¾­=ùItEÝäšä‡KÜΖ.î¿^Ò•ºxºüH‡›³6žUB°·:£îû§ç¿ÿø|OwÞÚÝ#¢‘O^4B/…ÿ—±ÊÇØå#4—@–0ä#ksÍ¦ÈØ@ñZ4«|„\Ä%^¹_å#äd«|„;+»«| TÐ}vòÑUÑ‘‡|L*lò1¨ ‹~ÈǤ½¯w•hdAtÂ&½SµØ÷àœÓXT"—.¡C›9äcÊ«_[´/;ÿ¾~þ›í õèm=óßæÕcœD®ê±¦z:Ô£S}0ÝÔcI“ÈU=ZžDvõ˜ôʘBõ˜Ë“Ȧ_ìêñr”T¶þë8Ûh Úf®5\§­€¶I½ÓVôÊuÐ6‚%ëøA[„À¤âN[‚1q¿ó•¶‚[Ï´Ú”¶è¬ìp·NŸeèe<ûðþ uØþÙçuíõÙ?§ÎÛÚEB=:å­Ó§i3w¼]ý·;ãíðwÞnþëcY=‡®AS‹½µ«én‚®Y“.Ú¸¦ì¬^„\VÎ]qr{E@C}vÏ!AW•±a:Z¥kL¯B‚®%¿©tEï>‚|¿üH˜½ endstream endobj 72 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 76 0 obj << /Length 1325 /Filter /FlateDecode >> stream xÚ½ÛnãDô=_aí“ µë¹ø”‡Uw¥E€ âxp'©6¶‹ã´»|=ç6c;5b‹UÓŸûmΙ¼^¯®Þ¦IPÆe¦³`½ ”Ê㬴A–æ±6i°Þ¿„*<ÂÂýëV «†õk’&°U°vº¼ˆRmBÃX5BÎy‘©gRŰpׂŽ`%#-$ZÀSób’V)$Ÿ{’ßÖßI)—é¿ì<òtÂ;ʉ”ÍråÝO¬Rd•2iœ›¹i7€}{e ˜‡TÑÙQ~€õhLl^Î4&láWg±G’ì¿ É'ÔËÌËþ—ŒM«ˆóE df± -¬Â™§M\*¶îÀQÝ‹)ƒHwÚÐú/XlÎbNgœ—£-¢ïû$”N†ëGÑ…QÙ‹Æ£:‹U¢çi^ e-ÒûzîlINâNÕ·$åF$ìÄêZÖqtlËÇíÅF,lFt7VÈ4øs}^<>³±¿Hgµü­„þ½ˆs‰Þ‹¶Ž !9ϳ53ä(¨k©ÓLö’¯œ›XìóòÙP|RDÐ'};ºŸKRr©ÂI9Ÿ$X·>xçI@è£`[ñhZímpIG; ºmÎv|½œw;)÷p+¡Dìå2· © ]CCðZJû'XoF’;ÑuH/ITM>ÕÀdè*ÌD«í¼~> W%QEŽWgw¬`/$ø6ÇõýÊu¿z³^)ˆg¨ Ìã<+”qš¨à®Yý¾Â!m,LŽ„rl¸z×äÁM·úþ*‘ÑDækœÿÅlüë8W:P@œZ)­Ÿ/ шli¨€Žõ?48VŸ= R ±)@ãß´b✪¶*¶iî)_œ,ÒKw{)[rO«vÁB'¥“Ç]õ™R•ÄÖ*G„Å`tx¬.t‰¯ b ±ÐÚ«¤:qmŒÔŒ‡ÞûÜÔ}¹avÛõ.f°YÌ,*"²•ï;jF¥¯&*NÁ™ùX§®ÚÓ M -U—¥KÍŸ `~ÏÀªå¾†gšs4&–Iw"ˆç§2ê 1Ø [K„ùÑÞó5׋ðþÈ{Û |xD$å\(~ìjH‚IÒ°†»®y`ó@ôf©§ó苌3dÀÌÑ t !”×®÷½å–€¸[ÉžŽà@‹$7t“©P˜d塨ºçž‡®wã³E‡˜ŸsZæY+q÷ÌÙJ¦:p¢xð³ #Å0ç+w²Ó ìIBÕ;n8·r€Zñ ¨©œ}@«¡ê(ÀdŸzš ¨õÈhªg#…¾ž¦:HÎôMI¶X žŽƒ­K2‚ ïÎ5ÍBˆ¼¨2 +¾•úùè"RÎܪ¦zïíF¦–÷'Ù1p-1É!'Êà¤0Gú«aòÁ÷Œ5‘WWþZ>ã›×}Ç€n˦n¨YΜÒÙû4­:øvU¶ðð±±´°†NyHƤrB,çVno‘…kç`|k*¹ˆ•ÕÝä:7ŒÀ;Œ»oÄNn®‰Œ>ñ˜$ÀóŽ­¡eíšñø«…ègã»èo{7Zç]¿Ä9îG ?3)¬âõ°«ÐäEœÃãfV†|;{y6~‰]ÐŽÃ Iä=Dø¹M@ ái˜6|€Þó[Ô ;…ÚõD‚Ò“ŒzÂN$Êå·‰{,ÓqjˆË'pÐMôl{gÆŽaÖ5•³†ÝáÀU€’Íçy3y«¬ü3?R¹‰‹.¹É`ú3éÞB¥Z½ endstream endobj 73 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/splines-fit1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 77 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 78 0 R>> /ExtGState << >>/ColorSpace << /sRGB 79 0 R >>>> /Length 2724 /Filter /FlateDecode >> stream xœíÝÏoæ¶™à»ÿ w}Ëߤ® v hvôPôP´Ý.‚$‹6‡ûׯd{Æ3‹4iÇ~þü=z?Ú’(‘Ô'Š,é穤/Ó_n~•þ’Úm¾~Ý5òNµX3ýõOé7é››Ÿ~ûëŸ}–>u“#çœÞ~}õù/oJ”šþvóÛߥœþxSÒÏÏŸ/oÊõô‹›Ñb”4zÌœ¾~G_½xÍ}¤±bÑG׊¶Ó,‘ }€VVÓìQ;Ñ‹Ð.Qgš+úADDDDDDDô¡ÚQsZùœˆˆˆˆˆˆˆèåéQZZ=ò """"""¢'£’kä•Öípˆˆˆˆˆˆˆˆø<®¡9wŽÕñcqô´{DDDDDDDħÊZcï´WŒˆˆˆˆˆˆŸØ5åz@ñ}Øf¬‘޳ """"""âËÞbéØQ+""""""">*GŽÙRÉåê~ÍÌÌÌÌÌü)yاGÌÌÌÌÌÌÌÌÏ׳ÇÈéšäænRaffffffæ§àU¢÷TJ»ïÉÌÌÌÌÌÌüÞÑÖé¥033333?'ï­¤RKäÁÌÌÌÌÌÌOÇG:NÈ™™™™™ùYùˆ²Ó5}ÞÌÌÌÌÌ/Ì5Ï(5•Ö¢ fffffæ§äÒ"ÏÓ+êdffffæOÜGG*½Ü¿ÌÌÌÌÌü¨®3ŽvzĨÌÌÌü2ÝZìuúˆ¹˜™™™ùé»çØ%•q.®ÌÌÌüB½bõÓ+ŽÍÌÌÌü1OÄžÊQbÌOÝ%GY§g”Îüѽ¢”TsŽÁüè®=ò8ݯaùÙ»åëÁ‰šûö?3¯8jªåÌöúÝ{ìyzÇ8ø¦Û†i­-Êóð¾nTÖºîžvžã§¶}þ3^5f>½®iú>†«â¯ýõõпê£E?Ïïó0(×öõ³aÑÎúfŒØãÖ+êy|Ì|u£úêæÕͯÒ_n~úí¯öYúüÕMŽœszûõÕç¿<—®‘þvóÛߥœþxSÒÏÏŸ/oÊõô‹›Ñb”Ôn¿ü:ÝÿÃ;~•^ý¿ð½zŒ»h©5ö~~͇øQ£Ž‡ø=ßÄïûË¾Ž¿æ›ø}yü:þšoâï¬îÃÚ¿‰öÅýÎù÷߱s¾ýÃ77?ýÏšJúâ¿ÒŽûåw/·ìÇ5;̹Qy§/¾Nÿ6ò¿§/¾¼ù/nÿð÷¥,g‰ÔÛ[Içû'ÝçÉ‘ßJºÞ;iëºzHºß;i«óöH|“ôxÿ¤çA;÷[IK~“ö.gÖùávåß­®›r×ÕÚ•¿ï†oóíNÑ’Ç5úëð=ߊ÷|•)oâw|+¾fäã!~LJx-%z¿ç[ñ>¯“óMüŽoÅï6çMüaëÞÞq»ë'ûð*{:Ë´¾nwÜOÊwíóïIZr» Š+íwf×÷%mû:—oóëC“®vÕºWÒúI¯–U½û¯íC“öÛý{%íšô,fÏfÓí)üî‘y_rÜôz›ë÷åÞkÖ=îËùûœ~‡¯?|Wÿ‹EÍUå_5ãU~^ëùû?ÿé½7rÇ<3¥·×»ç«ÿùsúïßÿïïÿúÇ×â\ÁôöJ·}{²Ö>bÍô×?¥ß¤oÞ·Iweø©ï«PÎê:©ÞÑWDDDDDDDDD/^×ï‘f•‰ˆˆˆˆˆˆˆˆèck]ýQ爼ˆˆˆˆˆˆˆˆˆè´z´šÎec½íõv„¼:ˆˆˆˆˆˆˆˆ>T;jN«ÝŽODDDDDDDôâtŒ(-­y7ý= •\¯!$Ö­ """""""â‡ðˆ\Ò®1ñ‡cqô´g䆈ˆˆˆˆˆˆøDYkìöc""""""â§Æ#vMG‹‚ˆˆˆˆˆˆø~l3ÖHǼ"""""""âÊÞb©ä£03333333 ³îQ+33333ó'åu=K[òŠc333333óóõì1r*¥ÄÎÌÌÌÌÌÌÌOÅ«DïéšÜenffffffæ¿ëm>®n°ÌÌÌÌÌÌÏÈ{D+©Ô³233333óÓñQ£ŽÓëþú™™™™™ùÙøˆ²Siå¾3333ó rÍ3J==b-fffffæ§äÒ"ÏÓG…™™™™™?qŸoŽTz¼™™™™™ÛuÆÑN廓™™™_¦[‹½R5údfffæ§ïžc—Ó3fgffæê«§2ÏÅ™™™ùcxôk`–2GäÁÌÌÌÏó\¯”yDËÌÌü#zÇ©¬c13óƒ×ˆ~œ^±'33ócy×è-•óWYÌÌüŒ}D›§gŒÊÌÌ>æõÅu9òõØ93?¦[nQûéó2µ2?u—|5¬kΑ3óG÷ŠRN÷˜“ù±]ûÕÑ®æã¾|äçív6Üvª¥G=øzÅQÓ5,kÝOѽ_7²êyXöÌ7m”XÇéãîùêOß;VKµûöÍsó1Ïö[ÏÑÇ?ãUcæÓ3rù(>bôTÏl›ë‡ðÑ®Š¥Îv×´Ÿ ÛvÖ7ó<ßÇ­×U0]·±oÏÿW7£Å(©Ÿ»u¤¯ßÑWDDDDDDDDD/^óö›ÄQcDDDDDDDDDô±µ¢í4fƒˆˆˆˆˆˆˆˆˆ>@«G«iæ82Ñ‹Ð.Qgšý²Œˆˆˆˆˆˆˆèµ£æ4÷Ý,DDDDDDDD/MLjÒÒ*×TŒDDDDDDDôTTr¼Ò×P­ˆˆˆˆˆˆˆˆø<"—´vì…ˆˆˆˆˆˆˆˆ?ˈ£§]£vDDDDDDDÄ'ÊZcï´GÌŒˆˆˆˆˆˆŸØ5í}?ä""""""â?d›±F:jô‚ˆˆˆˆˆˆˆ?.{‹y¤cÄQñQ9rÌ–Ž#FCDDDDÄÀc¦’[ÔÊÌÌÌÌÌÌÏ׳Çȧg“™™™™™™ù©x•è=•’¯Ç ™™™™™™™ÿžw´uú¼¬ÜÌÌÌÌÌÌÏÉ{D+§wtffffff~B>jÔ‘J­Ñ33333ó³òeŸž¯¯˜™™™™_ŽkžQj*-ÇèÌÌÌÌÌÌOÉ¥Ež§{ÌÂÌÌÌÌÌŸ¸8ŽÓ;æfffff~l×GK¥×X‹™™™_¦[‹½NÏØ›™™™™Ÿ¾{Ž]R%raffæê«ŸQ:333óÇðèWÇ“2ލ“™™™Ÿ‡g‰YS™íš6“™™<ïãôºï’™™ï¼Fô#•u›™™™ù±¼kôvzÄÌÌüŒ}D›§Ø33?ø˜Ñr*»GnÌü¨n¹Eí§w”ÅüÔ]òõævšëƒù£{E)§gôÊüØ®gE>RÍ9Æäçï–ãØ§ûÝxüܼ⨧w¬ùÝ{ì™j©±6ß´Qb§çõXÓsð™Ñ-Õšc>KÏsîÑ×?ãU¯¹µîë²äcø¸&¬­ÄQ~íjHÔvD¾Úý¬hÚYßô}Þz] ÝÚGì+þêæW7ÿe[Ðþ endstream endobj 81 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 85 0 obj << /Length 1809 /Filter /FlateDecode >> stream xÚÍXYÛF ~ϯ0Ò‘Ó•"ÍèL»ÒES‰û”äAkkíE´¶cyA{É!G¢{m€æa¤98ò‡œß'ž¼NG™—Å*MÎGYâ%q:Š£ÄS:Mf£ÎÅ8p–c•8[¨P6ù¾ØÂ¡Õ²‚¯7vã8r>ú‘­·c•:Åj‹| ßjì†~ìT«Ë‚jçÐy…®w^׳*bLÝ7Ø(M1í³±«bÇÌI\ûê£ÄðŸ"a±D.[ž²£)mJÄÞyC´*ö$Õ–¦Î@ŒÀyÔt,P´rFN^%ÆŸ&Œü‘^1tg¤]àä¸ÀÐ VH„^†múç”Ö@N?Ð+D­®µ–:‹vß rÍ’xáØUeöÍŒ!¸ÅÜ|+‰3ŽaÇÚâ²4$'Ä;¼ÂHn`2Ôk‹"‘¥Q3gY§9KWïX-ÂÚS­­™±ÈV¶åÜ‚¹C˜!ƹ!62hçÒ€½aEn-àO^G¾°ôªPs° RbõlìFJ;+BZ8ã±cuÁC7 LeMŠÉ±~.Æ]Î’aûÊk(Ï¡ü å=”W´D0v?LœŸH s«X°’9íhX2ß R[ŸòXIäv{íq¶Ç¡`Ù Ÿšú€U3L¦ýÂæ‚u+Ú0­Åi[òpEv„\äì‚¥¢“KM ¼ƒò·Dg¿PKý‚YÔýT]ªNyÛnY¶E#î{ë \7ÝçµG ¾—,êI³;…€Qï!ŽþÓìQaV5Í_è— È™Û9ë?eN¹€îuW?´î5ÅŒ×G3Жñý€Š¥L ÿ@µ-*g²ëš7bôZ½`ß÷é® <{ãç¼J.¤¡”ƒüÇ|ŽÖf+?‹Ÿi|fƒ%ZNï_Ž% ™UhXÐß.§;Ë)f£¬ví4ÆŠî& Žƒc8¤&ª¯Ãs¼64d¢9†¦m#˘CÒ¹í0:7¡‡¯@¡.§Xߊ9L£`O[A|{¥åjKIUSþ"¿f"|šKœmÐVñ¤:  :&&¥9 ¦§±H̲]WXUu˜ ìžñ;˜r)œ ÌZ+ê(d°IÑ7ò8„ø\‘»ÃU+êE‡·Ú å:ðÀýû´hÿ²èm´Š½À×vfp¡¦Ã¾¦œCfª˜Lœ¤„Ê·šQª¨ÚÙ¶›lùÚ$.+Tþ¶­0ÎØËunö·Ž«KÚÊÄϬ ö5wH¹£T÷a·{~)bé•Ѫ‡Fz‰_Ç“Vu¦H¡·«²ØÚ™‚ó´¤7õÜÜ‹5Ø2°:+HÓ¸¹¨o!Ó¾D¢„œpÙð­!VYÄëšíÎ,µ¤ÿO –|&VçÍÁ6mŽÙŽêA…Í¢$è‚Ü%ÓÂ6§lѲٰ¥…iÎy$­|Žÿ_±O‰<[S’ZPq+“çé…MØé\mèDÀ`­%ÝŠ°ç§Èg6Á†¥”»j ZPä¸f7ÔüÊ3r4ûUíÆix0ó忌÷Ö|ŸæuFÙ Œ ÛkÆNy.ÒîÙðÕÊiÄ7ÆSvõYsë6·5ųӆÑCN˜6ÔX}Ã]õÞÒöU œ|›<å éÊ'z¤á{ÃÒÄÚU§#ï‹ÙÜa¤4tTcøF® ƒC„ZªC„¡ Ô‡#AöEPÎ(îØl<ëJ{´yˆØîO!t;O(øm¥»[§¼v·¿c@÷x<Ø5o*B“¾®ósKtæ®D0o]7ë»QÕŽ;…ÅûM¯ œ<>.q3Ôí®Ó?:û±¼/ÓÄ nå+âÑ€{À¸6³x Ap4‡&fÕ¾òR?DþRìeû’«±8à3¤SbjÉP>Š­ØµÍͦü%ÛNÜq)5ñVl%ÚÎaäé(;¥ò?ãÌ•¬ó®ï>ölö¯ü¥ Aí§^ª;n­Çó´åw¡´¾UÈ\i@ðF^ØÄ2wª¿û’W¾ç§IÛJoÅ£ë+õŸníÕ&n¥ÝòwâA>Ö^7×ÉF䈟åÅf„‹”§üpð ½àÎÚ§'j$Tmç2pÉâ•}íÅÛn•®5v†îo>g-Æý­×:ó´JŽÞüå󹛋"Ï÷£½ïigïáŒýB(l¶#ü Upg#7 ¼¸0|$|ðjòà_Ì@(G endstream endobj 88 0 obj << /Length 1850 /Filter /FlateDecode >> stream xÚÅXKãD¾Ï¯ˆ89bâu·Û/Ár@° ˆ‘@b9x'6‰³v²³sá·SÏv;ñÂ$4JÒ®®.WUõ³HàÏ,ª".òr‘VIœ8·hwïïâ*·©#†`I[FŽ áÕw‡rñMw÷üéÖJD®™_?ܽzS.*—/6þµE'eµxX/~‹ž–&j—¿?|ÿêM–Ì6‰KW‚pb;×À\¡DãbãReÚÓ9›3|íàÓ—«´0ѶErÛÃW{íÀôšë±ÛðïÅàë°´EôÂÄË,ê^ä×û@JîxÙ·°>õ¼ _Ç¥-aß³±Õðh#Ü?íE ©ye=?!¥Á“O|ò {úð3*Öá[Þ¡oÀû.®*¸ câ*ËØ+õöÏÝAmß5¸Ú‹$0ËÁ øÝ°,d r|úOŒ.E…ã媀cr{$¢aëá`û61y#übúÀÂÕvЄžÉOÃE”bÝ·¼8vDÉÁë(uy™(Y²’½w6 ©E:ÒeIôxe“„7@ÍÄO|Y*ij iðÝȰ³aØ0‰Ç;î #âLbWˆ»º‚$€?K½?UÜ€¾¾´ã;jù%gP«š\¸eŠx4dPHmg,M\lM¦Áão›oÈâ=‰CgÜDžË †®{bÀ`ZÄÆ ÛŠs XUÑ/ËÒ‘N°®Ê»0Ê¿t“;’ݳny§»ô²ÀÝgÆ,Š¢;ËÞFÄL®L!܉¸£Œ£à¢ Ôn‡1вÈHÄØtbSq×ÖÜsSçî_8×d>÷q”+0×âåœ/€!œ‡¡NШ5^›0Ô=0ÚŽO²Z…}*°·Ä{D)ï‡D¬·‚Ðú¨ÈÃÓyÁàß{ÜÆ¬¯±qaíV@ñá¤)p;¦IJØ Úÿnš›'9TÎá=ƒ*„gÙ˜¢0ÕÎG1œßŽ>ÓiåÐ#œÙÖÈÔh<’ƒø‚øÐj ¢Ü<ðNëmyšÚ²p·lÕ-š¼ó‚tuôŠŠ„·I–²ÐºZ ©yËÜ‚,·qRäd»¥zuåò+£Ë‹1«®wj“D,îw-uˆŠ ”²;³ý¸Μ a“Ò…°P‘!ý=á;¶¼5Q(>éTèL$øœñÌZ€soý¸›'޼õØ«l›Äª«Xy•ŒµÏd`Ÿ¤ $\KyÐ%–XãÀÔ5§~Ú0‚°=Ô{mÐi¦1*‡³H8¤j &šTIH·ß‚äÝY~Ã’Þ1c-âê“ ¦ïë;î‘8pÅö‰Ë8»h“Àç܉Ic‹X+Üã“”þ(ÎeIf©d‡±&f]}ÐŽ`zƒ-ÇQ9í[ÆêG‡9©¹èìÂ)nÏb!uŠHº…~G¸_eÙ‹Hª—Ü¥”Ò1mE¾œ>IˆìëIgŠ ·Æ~tÂPKƒÂRq^8ÅâÛÄ΄v WæY^ÏHþ2“ì*~…¦®‘ÆÍ„´õE ®&‰’/ ÇZn‚b´#ØV‰/-.«Ð;Epwä¤K‘×ÞŽ‰AjwyB¥ýòïqÑHm4¥«†”ž±kmuëQDËh[•Vº,LØßåDãÝö½f·#§~V|#ÁÁ^™x1,M¥xZ@´ÜÝ_áµÄkiÃ^y®$à|äsR#•à£D×ÓÌ VqYUz`=vë+ºQè•ÒZ£Õ¯(ÎyüQÈ{p`Á,„E·„¢»,S ‘ÒjmØ«“pw nE|Åý, äÉÇD+ÉYîj°á€Byy©å …ÀxÐn€ªðT,~ÇHÃçî‘ÆAR»ÃŸ¬~¸+åé2ò{ª(²2瘚QäMØ¡á ¼¥  ¾½‚5³-‘Èý§i±»ÞK½¤åie¥ìMô0ƒ4è­±_¨¼Ã“Ø93H¾4 æ©›fu ›E ÷Ïgq Í&þ‡Ç¡>ÈŠ’DÆ¥wƒÚ2iëBU:-jÚxûYûÖ–´Š‹Òwî\ –fLS¿}'e}‘Çå±õ â@HƦÛ:žmÐdé#¯L–5Íèûà%õqÍç7Hô½».&¯®R¸Î‡Ó¾>¾¼Ïef¤(?È`ïœÃkrzt=7°ÊªRŸG<¢á‚š±#?ð¿Rœ&tLÈnþ2 YJÔÜï§J_ÍÊû?‹x" Ë•ÿ™’ý÷´”zÁ­ˆ:0éKÊF´|±ª„䞨ØhÞpvÏ'wÂÖ ë k‘ ˜¶^Ëç3øü(¿÷·Ú )‡e¢Énìø¯³ÂŒy›ÿß¼7ÿ±y›À{cÞm©ô þ,µžã}bù%€ÓaªÜZc`ê3ûòÏh;=~Î?ŸNKþåÓ»š¼t#>L?9ã™ÒÆ•« ß3q^ Æ 1Þ}ûp÷*Ÿ, endstream endobj 82 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/splines-nfit2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 89 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 90 0 R>> /ExtGState << >>/ColorSpace << /sRGB 91 0 R >>>> /Length 2277 /Filter /FlateDecode >> stream xœ­YM]· Ý¿_¡¥½ˆ*ê[Ë&h HÄtd¤Ó"®] qÑþýФ.ǰ=3I~u¯HòCáU ð&ürû6üÊŠ¥ÛçÌ1Ík‹£‡_ïÃ_ÿnxÿÝŸ¿ _½¾¥˜R þóõW¹Ql)ü÷öý!…¿Ý(¼Â¿77â/„on­ÄF¡§8)¼»áÿQB¯±Px{ë#®ð93¤Ñ"0(–ð"e…QE7WìÆÝêq–0‰Ï|‹'Õ˜Z˜M%¢˜G˜3޵Åë +ÇßxUnÍ’¦Ï¶ÎhþK’<ÿëF±W­$Ï·F“¤l‹@LKà­¢ðÔjÜÄŒ>CÒ`$éˆöeé&¿³fæ\¡ècâ§?þãþÉì&# ?°ýþÅw÷oü÷Ïÿy ×…÷á×—á Щ?¿ÿçËÂÝ+>ôyŒ“~3ãı­ÆÉ¼¤Æ9;³cœ '›ìã\J„q¢¶S=ŒŬ׋q‚Ìpí1ÆI`-Ê@7åäoí‡j›¥4…E)éd³AŽuRÖ`¬“ö+\¬‘ݱNäÙZŽuã¸Ê:‹²&cxÌŽuÖM./Ö‰ö)¬RY§8òb(]ݳN¼Æ(Žu¢›mÖl¬¯5“c£¨^Y'j·Ø+뜤ç+ëDÖ·âX'BR¦cN&Ç:q e™›uf Nž'¬3s<ÊÅ:3â‘»cˆÇêŽu"½yÖ¹$¾Æ:ÑAåûÆ:»ÄÏX'Xæ~¿Ã:‹²Rc#Öôu®Xçfñ‡uN«Ê:á¯éYgm¬³MrÜBå>PwÒ ün• tÅi f·õQß³„ŽlEr\„Àmn#ñç5²U±TüÌñ>HÚ•ÜÈV…Â+xâÔýÄFì"7±5É5Ã&¸î±ƒèÃa‡4×ÏÄFŠ%›ØZ¬Óa'[nÚÄVdB1ì Ö;×ÎÄFâÁ3±5ø;œB;ðÿÈ;Í&*›Ø²Ô"ÃN^sMl¤X±‰­ÉýÏĆ\M~b«ú<ØÍì°ÃØÛzÅákÛþLlYügØAJîPŸ‰ØìÂií8Û~í ;Y'\Ã&æá±ÃI1vŠM”†’xv¸Ýd‡&$¥Û`ÂnM&L!Šƒ 8[ò0Û·þS-FaR8Š&º,Q˜t)\ºýÓ2¢0I¢S˜dÉ=ÝþuNÈ«•,¹¸ÁD˯Ád(ó2˜$­îM»³ÿºÏ3˜$a2&U—íÿ†ÂÎ`’„9œý_•}Òé&C»Â„ÃÐLýL¬3³ý_Ñ}Ÿu“Áÿ]03öÝö}"tp±·n2ù5Üþ¯è~кɮ~`XNßMºê &º¯;0iZ­ &IºóI³}Ÿ21ŒÙÃD+íabêïÃħˆcb¤û> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 97 0 obj << /Length 1574 /Filter /FlateDecode >> stream xÚÅ]oÛ6ð=¿ÂhÌÞb•¢DÉê– m×P`輇aÛƒbËNYÎ,;‰b¿}Ç»£Hʲã4öp EïûŽG½Ÿ¼ºP¢—Y"“ÞxÖ“" ¤ì%* d¤zãiïþ·ƒ¡’Qÿvök=–×@ð§P†`ÎK €S:9…é à "ìÐßÕ×<ž1¶æ1¸âuÃOÿ5þ¹7E±‡adŠ…='¢9#/î˜ 9cZšŸ´b¸Ë¡ËFƒ(Èâ1xÔsqËf¹ÆI-‘ NdkÜ1†‘k‚ëˆ2æåK&X W¥ÝàiöŽÕy c þœ2}ô5m­xÉxkÉLkË”¥ Eœö…ù`År:vÚ°A®Ù¡…ï¶ÂqÝUÛfŽèvdE¡ùjF`?/òfíÈÃé Mü=ƒÁâ(ÇÛAþ7v8íh7¬J–iî½áÈxÇ~½fƆ2 3ŒjÖúËûà€{ê“—°¡âØgÏŽrÖ¥ŠÁ7aBør?~L[zŒ8¿C„ÆÐfKñN"S}Á{]Ï3€DKðêbäÈas]t$¦$Ôïƒdýf0ŒÂ¤¿Ðzϯry+÷™69ZÒZ^ߘMm-@Øêoeqoƒq0¥Dè1…“L†©ÎÑÅB³ÛÒÊÝ@Án¹¡l×+Ë)â—zÞHÁ¾¨‚ß;jË8p0²Î°åŠhcî3½^,ò²©?¸zµgmêÅ´‘ GñÃ`G£þO3£†ŠLã@ å;Ÿ5Ó…IsŒc¢£¶M¬LYÓS­~]`²5[kBfñ¡ 5­4JÀ³ SÌæR0±š˜ª¸¬ìñ%!é½ê¹¶'st…ÏëFƘä[;"äüa8OJæ9-¬f¹ #sÊ2BïÝ®): ê•O;È3äÀ\ë »×ÇŠ¢¢M¡‡¸ŸWSš(õ$–p¼"£êÅ)) …f[Q¸RêOÌű¬j¦µfÒßi—gÆêè'D(Ñ@dý­™W4×Â&ýb²¤{×*-6ÆÁܯñhKÌ6Môåþ +vë`‘á«¹ŽÆ¨ñ,L‘ÅÊ„NM‹”Ò: 71&kÚò‚Zù¤ÿ¶`EÍñz‡ã­±¤Vó†0sÚjel`¨,kþr¨Ø•d§¼:uRW#n \õª©#(8ÛfŸÑîMÇtEF‘´ a¾B~sþBô²¤ŒmŒ8ê_`]9çµê5}ߢfk&aÊcCŽ“!ŠLÊã^NK‰¢q‹±3‡eÉu!ŠüšEGkÚqs+â® ±q†Þ.ðÒØ­­Þ%1ò:Ó—ö.7}Z“1N·e{¶³Ÿ[íî™ïÇïa:܇õTŠaÿ«¨ÍåÞiŸ¯lO°à©mCgN[ûÝŒmƒèY áÀOm³ßjz¾Åù©±¯!{¢Ú³ÿWí‹g«xjoYR7»ãg_¤~R=b£¦VO?‚>üðþq‡mñáÕ–´[r£Ñí¨—ÎÇ\!¬Ó!bµoõ‰=%ìªiQƒ¦™l¶ÚË̓˜*Iâ6^Y¨$2××ÅF÷ô™Aø¦ƒ†F¦`Ûu¸=ËN¼ôŸš3Ç€…÷ÆÝïD÷¬&mǶƒ(àS+þ^ÊŸ]{„q„éñ¹x¶M;2ÖüIø-Ò²pP„ÿJÂ`¤±ê—KdóȼïHè3‡ê¬cŸI¬”*œšVòڋǓ޹9Í£u} º-Aü3ºŠ ûšs1³òšø¹µØ.ÁêÁ/[´¶odž¡të–êÖê¨ IÙy| –{¢ø©A\² ¶¬„SýH;Ê£[ó Q’Y†j·%7!wæGdÛ’!{ÑAqltV±­þö TJ^)1J}]Xó'Ðäǧ8wÿvúG§«ÈvòÎþú[9?tnÚ™qgþ™gýÜ©ñS?™œB&ýÛЉÓÊNN•»*šF¯½ígJ;[[Ÿ>—á]×GQD2=ÚùÕsÓϹ—• „P{|_îÿ?xå(lúz‘ ²8Óo—B/¡Ô˜'ïÇ'ÿT endstream endobj 100 0 obj << /Length 850 /Filter /FlateDecode >> stream xÚuUKoÛ0 ¾çWø(µkI~^‡­@wä¶íàÚJâ¡¶RÛ]°?ñ¡ÈÉ6 ’âã#ùEF™û“QS¥UYGºÉÒ,Ï£nܽíÒ¦T:G‡ˆ&ÉÏXñø<6ÑG»ûêþ¼)áÉ&æ‡ýîñ©ŽWFûC$¥J+©"]ÕiV7Ѿ¾‰ý)–Âĉ.¤øžÉ|r_ÛWúÞ9ùÝýÏ¿bU ³öà4v&y$oy5¶ð¾gGãä‘Ìlƒ<Ù„L¼A–Á}¬Áx†¸3>Åçðñ¦BŒvA_ô³ŠOOü¶w2„sÝhC ]¶.|­ëæ1šì?G‰ÌÓÆ!˜H™6EA(y8ž¨QÊ.+Ññ¦(„U%.ðIya^ªÔé Y¯ ®PÖ''ö øMs!#¤‰“"?AÝA4P¦q’ëZ|™B ß&`39¹Ÿ¾“ϲåÖzl&úz>ÝYHszm¡M.nÀü€cv‹ fGÄUÒêL,8ë«rÿP˜–â…r#Ö®‚Iö03 ¶LovÐîvPCɉ*…¥|Šð_ÈÝK~½]8"— ¾'Ä9p8³ö\ÑQ uÄ¥'¤ï7î)3ëÊ“Â5Ñ•ÄMšs³×_W×x³ñ}V$÷$w›+öíÖxÚgr¹áÒOÜNQ‰ç•,ƒ[ñõêRtm;“zs\µ㲆R-'íûÛò‡%äôÄtl=vú^7“„-‹+€ì÷šÚq'ø×92Xߘã̲ɂmª²D€1FÌäE”d˜—ðFrõ‚û‚ËC›fƒw üpîxßl ê£w 6@ª†#½PŒòÐb‰ÏŽ“e¦ßa%š é sb‡¿Ž³$ÑŽSm¸ÔËX숗nÙåà—XueÐÐr=!ÅLìI°—…x> :µ£±ÌO º\‰Ž(¶ý†²@ë—£aIÑ¿óÏÔÀçþˆDI¿PÜNï®3À&ÌÿHË¢¯ÛI}K8šˆÏ3¢VÄ:$0þy3Ñ©ƒOH=!›…ê_{ÒðÄ)^ yÎP©ihN®ŒëU™J몈%Ë´i4•íjvÆÝ§ýîÞé© endstream endobj 94 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/splines-plot2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 102 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 103 0 R>> /ExtGState << >>/ColorSpace << /sRGB 104 0 R >>>> /Length 2283 /Filter /FlateDecode >> stream xœ­YK^· Ý¿BËñ"ªD½—MÐ0‰è"È"H§E\OÄEû÷{øÒÕŽ=Óvá±9ºâÕyxé^‡Þ†_n߆_BY±tÿ9)¦¨¶8zøõ!ü9üãö»÷ßýñËðÕ›[Š)¥pþ|óÕŸn9¶þ}ûþ‡Â_n9¼ÆŸ··Ì„on­Ä–C‘jx¼õG øÙzxwë#®z‰sÀ-æð»Ìk8HYa¤X+[+öF‰#ÁZ=ÎF‹×rª1µ0SÌÍœ#0K,EÌë ³ó1`¾,ö7Ù,W ‹âä—æ*Nà?©9baájøµ¹ÕØVȉb“Í=Ç™a·¸Äw_1Øx^lœZÈ™âçq¦:`÷Xä¤+Å„«"±;Ê„Ï\° Ž3üÑÐÃac.9ö*öŠ þJ³uê¼1#”ò>*¸ø«%.öO7uÆ$þñ "Éó Žà¯u>&ìŽk?„Ký#þzå_³=øŽå³Åž¸øC˜Hì•ã€?<¦þÖŒ þ&ÎÏß_îþfãpÂθø[vƒóª‘Ôœ)nª<Ç‹ ñèì¿Tâ‹§d‰Q*î§â„ýø°Ñ`7þ5ldÞ¯qÊyFŽþ¨Æ<ÅÆ‹àfl²íð‡œ™²ÎiE’ûÝ­&þpÍ=‰=ø"L‹ŸÃpûšñ3hR¬>†šëe¾ o>X6« ذj¹ïËn^ëš{Ý̽nñ÷u7÷ºÝ¿¯»¹×Ÿ÷:ý^ÿòÞ.ç§÷¹œ÷?¡}M(\÷ 3Úïõ‡˜ˆ6PKRÀîÃ]K¯ÂýÛÛîÅñ§vfB†œ[ûó·.äì¹u<{+u¤Ó¹u>{kAÊÍsëzöVNÊY­9í½™†ªF?±E EZâûtYâ¦ÖµŠ²Ý¯Uµ®U+•¾ì•óZ§)]ëjëmqÙëjë8,JÙ^WóZçÒЮu3õ"¯«y¬s)ì׺šÇº^Ö^¿îî ËŒ/®‘„¥vNDKŠô±~b/Êlò½í…{‘L-’ñ£¹ô©Í ,o¦—o©¢š `_¾šâCÓøå»A$àK9÷Ëw’³y¥yùî!©¡ï>¶ŸbìñVQ˜ ¬À»Ià¡,„dI÷Äô‡•mþÇšJ$Âã³þþoÏþÐÉIÁŠJ#ôýÝwï~üçÏÿz Šî¯¯Â[w?¿ÿû«Âýkvú2=šÿk=:D‰¹…N£z¬?ÚÖ£+"^TBáPÛzt&@×£KØëQC.—Å3*"U.‘n[²¦T1«‚4£2UºiÖãoIš!•ú:4i,å.MªŒviR²qM M³NMZH5kÒÒÍ¿iRc>4i­ªq]“²¦œ‡&e^(‡&…´lõФ¨ÜtjR–šãФ½s/MÊZƒMÊ­@>4)KÑthRtóÔ¤ø«žštNŽkÒ%×viÒeçÝšÔPeš”RQÍgš”Xê¥C“rÐó¡I¡9EoMº4¾®I¹„æC“²ÛrhRÄGRÔ5)âSÆ¡I«itפLJ§&ÅùéФ­hñ¹¦.TþÇÀ…“‡ƒÔ7|Ð?H¡ðáV¯\íà“6| xÊÚðAjÒŸá¨ðÞ$)|ÆRPz;Wø™«ëz»†¸¯óhç¬?ðvÎÛ5…βSìnnwwÖÍuNØ 9èî$3w7W ö†tw£žÝ\â<º¹jÝ!H4Ûº92¤y7×µ›ØÝ\²Ì÷n®j7âÈa<În®ðý]ÈA|j?»¹,íêæ¤Ô^ÈÁ5¬tvsU»3GÎ0$ínŽ8a/äplžtsÉâÝ\å<ÙÈaRV6ónެ4äàµ[3ä r?»›+Z¢9ˆÇLg7—ô>9Œ¼r ×.•ÑS§Á…œRt8ð[ô£AŒ[Û©9aCZ«!L>e#dXêÁV%EÈ4šòÇÒàC6Ò0‚é6TP„ Ëk>ùÅzXç—d=ÿæ—¤QÜüR %YTÌÁ/YG3›_šŽx%KµžüRlFb()6öÙü’âê'¿Tõï(A²K%ÙüB•Í/øê“_À72ÚüBƆðúó™Ç2T9¿­ÿŽ|¦|ÿæ—düãüRìý>ó–ÕÎ/Ƨ›_lF³Q2Œ/œ_’ñƒÏ<Š¡ÀQ2´Jm~Á±Ó¼&?A‰Uµ’ùJ²òåFIÕªr ¤3ÖOPbúã·øÅP"Iz D*ƒ¡$i5”ú7”4=mŸ¡$+ž%Å„•»Þ³óÈÒ4s”x-·±`W’wYZ9#Í$Ü•N•‹Iðât´*]ãa­ÊRPŒàÊëѪT“OÖªå9“,HŠ‘ŒZ“ÙùÅÎ%"ïUŠÖ†Í%C¿ÛqB¦Íw¯R¹œK¦Îg'xr—÷*ÝzÃIõÆË{•¢qÞ\2dJ³qÒòSÅ…ô›K–ÖFÇ Òý — jÕ|àd÷&Þ«ãïU†)@à *””•Ý«T­›K¦ÖÇ ÒI{'ïUºÕfÅ sC;pBªÖrïU–)2à Ó¼õ^eªâuœ î¨?à YCì8Áµä³WA«ÞOœ ÷ÐÞÄpÒŒ '͹Íp7‚3Ç Ò@®ãd˜”yÞ@q2g¹¤Å“¾¬˜Ù2æþ¨Ûž.ç6µÿÓiSV¹›uòõ«€z{÷ðøã»‡=ùìÀÙüLžóLæÞnC™çüŸÂ£X*³Øooÿ,¬…: endstream endobj 106 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 107 0 obj << /Length 104 /Filter /FlateDecode >> stream xÚ31Ö3µT0P04W0#S#…C®B. ‚‘)T&9—ËÉ“K?\Á’Kß(Ì¥ïé«PRTšÊ¥ïà¬`È¥ï¢m¨`Ëåé¢`ÇP„ÿþ7Ô3`‡v(P†ËÕ“+ L5* endstream endobj 118 0 obj << /Length1 1655 /Length2 9260 /Length3 0 /Length 10333 /Filter /FlateDecode >> stream xÚ·PØ-Š \Cãîîî‚7t4Ð4ÜwÁ‚Ü!Xp÷‚n!@xdfîÌÜûÕ{ÕUt¯½×¶sÖ>U0ÐhérÈ€œ­ÀŠÎP8'·(@NCÖˆ‡ÀÍÍÇÉÍÍ‹ÁÀ ;‚ÿcÇ`0ÃÜ ÎPÑ1ä`` üÑ&„?5œ¡UwG€GP”GH”›ÀËÍ-ò¢3L ô€€œUg(Ø ƒAÎÙűµƒ?ÖùÏO³5 €GDDˆýp€Œ±B@¸Øé±¢5Рël ýÿ+³¸î"ÊÅåééÉ trãt†ÙJ²°€7Àï¿óh!õÁýO¬ ÔÆ òg»çôŸ–=þÒó_ Âøï\šÎʘÿº)··õãžÿg¹ÿòÿ§òßYþ¯BÿߎÝÿð3ÿIøÿøNGï¿Êu‡?n†óã.@ÿ—jþsueAÿëSwAjëø÷1BÜ!^`nm÷§\þ´ëÿ^4G¬åìùý´8x¸¹ÿÇ÷¸]Öχۣ&ÿp—ç¿K*@­A¿·ŒW@„Á€ÞÜRâøò<®#ìõ‡Š\œPgøcàq8?€3 ã÷ ¸4~›þ@ÂÜ.­€K÷o$òÈþƒD\Ö#žGmrÿ#mÿù\vÿ‚.È¿ 0€Ëñ_ð1³Ó?ç±%è¿àc!ç¿!ÿ#÷ñyý—›Àåò/øXö/øXØí_PÀÿ>j“ nÿ“íñ̹àžVû¯C·v‡ÁŸž?ÖâñFþƒÿxçÀ`/°5Æâ¼³µX¨}mhûj OŽ­q‰†-ÃtßEØG÷Ÿ8h),Uoƒ¿Â®dR†zð–7˜/¥—¨ï}ZêÑ"Z“´Ûn_ÝY$èLmµa,L÷O¼?©ë£zJÉ¡'½ýêÞõ•Ar b§*C®«»0ŽV>ÁÏ^%¯º¾²/£áó[ÚÛU‚j˜weÓ1úoLƒŠgò¬²çHiQáTè¬ø'^¸³—W3ø9Ôª l~ßcø }×xcoæ|V*ôxݺÈèÉŒI©/ñG§}ewSUI>û–Å©†GÙP™Ï7I~ĺò×Ðt.Š—L¬îYÉ•ánN…ÇYko0Èí9êætâçÖ OßóX`¸iwìÜûD˜} ‘êw€jñFd|Jt|zÉ,…Ú±±›úYp,¿¿OÄš©>ñ!@:a×*nÒí ôÂ>ì@úqê71¡Egr¡÷òPRorˆ8ÌcG“#†jyøÎp°¿ÿÁA‘¢4f IÍ~´æ«j§ÎÃ'ÍwÖ!RKæâÛ7ÒXHkŸ]õ¶ÜC@e&à©ØL{QÕn蓵Û(:^Ýüj“䃾lY+|©Ñ Ä`çÐZ¡ª ð}jd>ys„íEñµ•èxýTéôkÌ=P•,(ñÕ”JÙäQ˜²¹çk ÜÊò 0¼ü1Ov9ŸaRAW$çèäy§*'±àçÊY*ñt=2¡ï´ ’¡0Rf² Íà¢w©X!tY’MÆöÝWvùC léú¿<«N71îêéã¿}šÜ0]7Ôä”+d6˜6=ÖÜÞ¦ÌýØÓÌ÷ eVFêÌÑÏ­»T#\«éº ³#ÖÛF×»d}¾ÓjíÙØ'Kw*—Øþ+­ÁøjMwØ<‹º„»]iì\ðô üøb^k·Öl´y±iS35JW×,Æ7Ž’q}Ö±/Ïù*vü¯6• =IB|¶´E‘æ†ÐÚ¨qæ×Ç8“§ˆ¬½Zˈ ©{£2>ó+}»oÆvà#5@3É~JŽêÔÀÑÁúu³k¿ˆ~1Ù@Þ˜£*µ»2cÖpI-Õ¥¡ ë(¿¹1Ï_ÏýºðdþÅAQBÍM¥?0‹Qˆÿ}ÈÊ›½åéÎ>4v‰V¶‘2Eëm¾>¾ê²a‡>L»ï(‡¨ŽmD;2Pôø¯ÀÌ­†à¦+Í®ìÙNÑ“¼b“ ú±è$Äšh>Ãþ^îVƒ÷›å¨¬R=î\´€ô[ÝûÁŸk:Æü×~YçâÖ°|Z²I@c#b!©µ_凮ø¾ôêƒ$ÊÂv:AJc:Ú:R;•°IM•ôå†Ìá–¸$»²¥yù ¢¾d•ÿ3üU–'"$©J9„¡l³¨i¼?Úã2!Û7ãÙ<°š”Òï}’ÆåG£«R±cÂZƈN»ñ¨tN`y­‹©Ì’ׂ­ É7"Ev ]FÌýÞñáš?ÒјEÈ‹wH@óâù«Füe(m4q'XFrY¨Õ ÏU¯bË;šðLfÍŒòI[SŸ×WfÝ-:²6ÏŽRˆ¾¤là¤tºJiVo½­X0~7 ç_7àxysY…ßÊày?&Êô`KÃN8€ñqÙ/&G{œíM„ÏÀБ¢ã8 TÙи-„@#F„èíʶ¾]~Š=­ZŸ s€‚útÛãÚž 69·ô6ĘJ …¿Úfží…‹‘Åk¸?@ Õ$Nǘ^Ü.WnÕ3ý#õé-¿– A²§Ug€ò DÁ/4¸Á·Ðé»ÏuŠÑzª™;d…\~_‚°^.Û=ާmA%@ ”í†$'»¤2°ÍS{sàŽ‰kVS1:gö¼·;¥~þ5Õ÷Œe[_Øe¦žzrвñ×ѯJN·¼O— «K«±"µ+DVÁŸX q¨~LÀ´¢/ˆ(87Å”ÚE¤Æ×FÇõJzi–毺lƹ!e·(©.¾(´“<Ï™q޹˜9È-É&ïBXR;Qe3u§¦T%»$îq #ˆw ¡EÕÄXÊOw›|<ìÚ zúÊàZ‹K¬Vzøeâj!È~EŸfzå&ó9í»Z?ÛÅš 1ÅIºÐ›÷}›þt1ÏXÃͨÞ5˜BNhˆnTÇ o‡]GÒTju›¹¯½Yuoqü®"!J‚žÀ&D’uz§Úpq<cm sõ¹nÍ}×Ì+š/¬BCîê/ÚÇ%¬Æüî,VTŸÞË«H‰ œ¢`êaù¸×ú¹«[¦j,–uÐ ½Së˜ÁD>ºÞi;û¾"ìýí{vÿþU®‡%ËóNùpJJ¾¼Åí5ú2‚ݧív¾€ÚÌÔé·OÙò$mk3:‘I…=zØ£Ö5hå¼ßB‚î¼åM5êŸéŠ(/œhÇ´ÏeÃl.”ŠÍïL"Rè6=ˆLÂ^NÔ³í«}Ó-4§¬÷‡¶d|Ð 7ºef,b÷ƒè¥­¤`šÃ¹ ñƒ¼'::{I‹ÑÏ+ø›µÕ|Y%Æ åÛA’mÎäàý%ã,—ÅrH(WZ+QýÁ*îUÅ ­`§Z Ž:µ–ÑÈW+œ¢ãpëék¿‡ Cõ5›¼¸+•AkfÍÙzýø*ŽzðÃGX@Λ3w,òï7zŽÄ’­LkµÊ‡3X«"SÁÉ,7·î5]îl„Žõ Ëoü {Í>¥ÖênIÄ?ôTQMDQ*<ÆÉï¶ßHFjþˆÖ bmÅ®ÖD©ÛœÛ(ÎrKa Œ&;ãZÇhr—±7d÷áf—>Á¦I²P*V“u¸2`üïvˆ5~–¤Ï!d}Vô < 0ÅšÔwi=wDŒýü¹±V%5¨ ÂWObâ@¦èذ&zV½|ͧäW¨‡H¶Ã”¹”í¢4—DŠ›ÎgÊåÈj~¸¸¬ø£ÃSã…^|•¼›júˆ6EkýÏî_´§·AõV;š.x+ È*5ݾNÇÞžát0Ȇ,Ù½9ûBOù™}ý\2g;‚üÜyO-m‰V9{¢ g7Ð\Î;.‹W¢?&ĤZÃÜxÜF55uöÁšGKe%~ýšÓ1W{Ñ~H‘Á>§D«ƒç¨ÍÇŠw¨²Æ0pUƒÍI­)´¥À†v™‹Ï¿ ·Jìö*U(ŸK¨ûƒÄˆ3ÇŽC`Ôö4•RU¶‘Rºø (ý×c×E¨£(R£7åϜϘ~Bÿ5,>@t䮓üúá2NãÁ¾k­$kâ;C¼"‰AèÃÒk¥A¦`T)K]ѵQU°‹Nÿhãî€ ‘¬r„7¹#+â/¯M ƒi.V‘bÐ gÖ:ÖçC„÷évÒÑ‚Ñ'%ðç¨0©NmVmBóRãÞäŒ`Vâ—×ciyR(4ˆ_NÐk¶….‰çß—<¼¦µ7Bi3rC¾×€‘/ì+TÕÏžS¿£Ý¥ùÎjCÊ–Eƒ¨/™01Œ„Å.Ňߵé%”z*HGÑù¤9’x½I7Hp{9”2ä^Hm•ßÌ•ôU©³n™ ¬umZjjiµ¾9G“è`“Šç*"¿‰Ïr&ÕÇÛ?XªäÌ(Ý$•mÜÔQdÔŠiI h6©¼žñØnT¸¦;¤H¤†Ã0æi©j_Q69®Ìü¦DnÕõž.€ì5zîL{Ó݃2zFŽÃñ܆¿úg™"ƒo"̘1Ç/aˆny[ßKM,/û†ånm*åÌ¿C—®íÏs¬øÙçÜÞ]ìPj6ˆ²i»P}Öž·ÜqP8ª‚(nÙrË!uti&Æq~@Œªä§Kÿø ëzÝës£ƒ;Ó±gÞ}Ušw‚â~zèªË§zÞç„-I½~*¬«õ$²r’ÞR™/,†QÚùÓðïD7Rj¬vr ÌBy§ Nn¬ØCh#Ôœ¹AVñ@òÖïd£9«6üJ棉̾;ŸÆD—1Ð3~­šq€U›¬ÈSF¬ƒæ¤ˆjrîFí†®ÝØðÇó¢~ö[4¸e½ë×­%ÉÞ¥bÂK¼!ˆ5§S£°_- õgŠ|dw¶x…9…«ÑŒù~ _Jùräí,cLs`î ɯ§b× ‹Ž£H" gE‹© k‡KͬÙèÔPËüŸŸ‰æXx3S¾d$~£§;ļ™òýuŒ~W¾³QÙhªèq©ÿÝ ³3ÐñƒÁ ÅĶ~ï0Ì^п_s–h™61ÑÜÁQ®öØ·u™ò5Ë$´ÑpNñí .B ¼ ïC„³;þçÆ®K—¨!*ùaAôE9r#zY¬^!e}f·e;©,ÔDD8¿qVª¬™ÓVdÁ BÂÒ‹Û¤ ÀÊËv[ȯŒ3$Uýþ\›j=#¡Y.Nò0ëâè tý'¯Ù¯í„Ž…5òù'ö)Ÿú슈nŽÖ­Ûÿr‚y\fi]ÄÒaK&æ¢[zµmZ\·¨jîÍÁô./K ©¾˜ÀÒ‘æòµ9Ж;õ+ w¡~¾ò_Ø„ÕíÑT!ó·ÝçLÅ_¶½±Ñ*pn: ìÔ˜a3gbOÇ9´àúbèk·06t<Ä9•¹?j¿S§ë7ýëP5ÂsÊ- ùuÞ yqßmŸ¿ñ‚Ÿªä#áb‡ÕÊÃÖû–Dxžâ™÷ÙvÝÖå)ã±ï¹§¶ ›q”jb¾k3[˺4æñ¦”ý«½TÁFË ³DG‰ªJÿɇú—8UÂ=™?4ÃHJ ²Õð¢D)ÌzßËÒ”õ‘hJªEï0}–á¼rèò×ìI“Ú¢ç²Êßd°Ö© _‡¶ÓágˆWùÑÚÙáùWì*€Iðäé’£dãÝ·uëÍ‚ð.6.GÙÜ)BdŸ°kŽí\ÌM”·†D†Öm°¸I‚½°H’7R=ì @DSz±¢ 8¥žN¡†p·ü÷€æIõ·—¾‘òõtü˜?Bä}¥¦öbMôÐB<ÐpÓØ˜šV*“KÒpæùÕ²…Ü3DžyÎÝðPAg™Ÿ¶³HÜd¨ÂE(Pˆa¡5c'ЋW¥Ñ!’éC±'²•ø¨l þÕ«±— ˜•Ž]о eìDWo· E0˜Ø%C( Œ]]¥«-‰#I 墫ØqÉ–^é“íÖšð”úþhÝÚö½°¨£Œz·cv»Ióeú²BÅfXü[Æz5NnøKEa<žÍÉåÜì¹P j¬ã4SÃsËHü-æ«!ìÎyÍ'«ž¤¼tmâ¯F&ÛWó>ó+ßTÎ:ÀNýUBb .fO3=>DVY±÷˜dz•­â½ “nJ_ƒQª“4u1ý¤æµ,”’‹ó7b³ØNïСSú&cÐ 7‹’_awÔÓ<çÜ` rÿŠòÅçÂêIupz5ÅA9ìåÔaQ­fTuN#Ãù™-:ÂÙ ¹¾£ÝØkÁø…;ç?×f ÇykÌ—HÄ#âø(UÞ š¹Óãå÷÷Þ6-th%o9m-¯Èe•v0îdSžß ‚ŒŽâ/c[ŒüjÞ†…mƒ ñÛ,vsµK ïQ!Î%¡A‰Šâuñä|³wÆÈ¿V64ˆWµQÍ=ÇIWB¢?ùf1*|x#šï ÀÜ£8ͤ”-©iRyU˜‚‘ã?·”Ue£V qð*Äùt;540gø~.Öù;:`èp4mÂÚ”kÜR—"—·*Ê8Ÿ˜ýê6#ɧi$²c|z•ec¢LTæ¸Î÷%hØäk„O?Nµø8äå}q[*û.h*Âô¼SÐ9&ý°jv¡k·…\¡GAiÎošÇ¦¾Ø[:PÈÈ$ /m„oÈ$ئ*Sr«t©ÊuŒIï/GKS¿á—‹½øDC­S¦ÉXô*—¬£;!ÁÙp´RQ;oU4Z÷ qR“–.ñøö’GË}¦~¤Q¸œté¸^ÐÌü:ùDeôS{ERˆ;nk¦Žx÷׳FÚcQNäÿñŒèŒnÃôž&#¨ShŠÔ)ùK°Ç?ó¸~~oc®ÇxÀèDžy€‰”Ù5O nSm@?N3`ªù‹/x¥o¸{5éNµ­I„'¡7ô©&EÁ=Zy†Gê›tk€v´;2~­ÚÔG¢M6xŠ®¬Ðà0šíj´Še±6 &\Þm˜kôL{ß*Z.Õ)‹ijž«­º¬%°gnB]º‰Ÿ«ûʳ½r* VÖzó Y•¢ñ£¨)ÖÒõ MíðÍqÀˆñðøi¡Øã2©ªç‹ø¨)ëÔDbœþˆqòjsˆ#ËÎÁÆE“bžV^çíÄ!4w¡=†\N)=Ãýi kí<ðcbB93 ¾h¹6sÁë…‰k»w}4õº*kêzÍE$Á?y½ƒ9ìÐ ÐÊf«8ëž¼6³ªô€‰}\ˆ¼¨Ùhõ‰‹§hÝ{ñímC‹^ûä_Ž+3Û *^Ì’‹7¡Ÿ/X²Ìo#ݰS£ÒŸ Ⲩ[9ej˜›85Ž%†}~#îxBZÐëǵýňmÈóÆq“‹V6²Ò“9¹Q×¾rÖgn ãT¶ Üb¨<6«jáà0Ó $œ?nŒÇ6q±ýd椞Ëx_Qˆû0­6¦ñ‚"vèóI)Áfã†l%Ú3­Å5Áo€ÿxò k® -âhr@Š# g—ïëºZ«îôƒ—xÅô‚ ©%~kÀÂ| WxZŽmˆT*Õ'ÿhÆ=¼Àáâ|aè·vÉ‹3îµæÙ0{ê~¢¹—§'pÁŒc~ X&ÅÁDà)Þ„½³4Y öG椗–L•ö1¯çÂná²Ië ¢JÂrŒ8üËÊÀh?Ò­Š_à‚”«øŒ»R_š ÞÛø4§8´ª™é¿()wZßÈšFÃüÉ% 9r˜§0·‰U(%yå êSµº^ºÁ؈¡z[ŸÑô÷39d *¥®'¢mÝW“¢*%âc«£t‡ÇSXŠ…ViÉ_4›¿Q*»^÷°îé÷8àQå0ípÕ¼ƒ¿²\•ãÄ”`·VçÝr¯¬˜!±ÚH„ø}l™}÷¬ò‰Cè3•ËÐàk¯“¥g#1¾À"J7_å´¹ØðAQ„)؈ ­+Þ3îCš"ÜãG#ÕyÌ™˜qK™Vëœ_kèYf.+úkFæë;B:–»ër«n3|ß ã7nj ï¶´Ìû¥0>÷F~KhGlZQÛ£hîÝGŽÕ¡ØÙ]—Ly:Lƒ¾?¯ª¹ƒy€ýžu,‚ètð_¨•{–>U~Wn wÕpe—ýZ«•m‡˜Òòc›×6±å!1d5[Ž™xi=¼oªâ~p¿G¾ˆ«v‹U¢øÁõ¼ë ¥l-û{\êJ ^í,ár:öâ„Æ_§äkVg|öª–ƒM#›™Ìá—·:߉÷0ÐÝ(bgtHKjú ˆí™R0¼H>‘Äò$÷~Z«¥L‚,P-°Yº¶×£êåð˜9j «•lº©Íð üL1¬Ÿn¥ð]Ÿ€¤èxs9±h÷`KuÛÕ¸)n¥=Þ0ÀŒˆÿbfIt¶ÅmhF˜ð ‰$£¶ÎçTrQ$BuÖÎ3f_”ˆÝkfßé¹/hœxQk¬><žRš™0 2ÌæÀT{è?(ëÑ4‘húåò›ëDÒç7s"ï ”2& .9ÒÍR%5ºò}ißGÒ+FP྆d)rÊ•öéS„Ýp1-©‡Â¤ÞQ“> [dM¿.’"®hV–â …~ûÑÅêà”ÁŸ ((/rÿµn„zH&q’°ÏL^Ü4{Ó bÕEã1ü·B”è§ Ó(Èa}.ßóý·é­¾eë½ï<õÜ¥«ä#§ïLGI6Ý—± Ô 2_Õ wH³‘.P—LOèÜyOn!hP¼* ”n¼õ¥¥bš²Ø˜7|pÛ¬šX˜…¥w4U§T­Ùìtï¢ ÒڱΖ‹¹/ ¿üÈh¿W¦ û"g€Â(ßøð ?l}—˜¥¦ïØÂΚx´ˆ^'¶Y¦7¢”ÑÛéüJF=mtßaÂÿ òtÕJ€„q§¯EÅûS !€a½KÁÐFîvjV˜5³tõµ'¸ûý€Þëä}<áºD"¦ø$»–š º;™ ˆbÍnÈ֯龌7E»LN?©¶tV¿H.3õ;)® %/¸zߊG®ª¨xžªˆ˜¶wÈõ/Xq4ó½/z1¡£D@P‘ƒb²"ÀK×f[åÝÑÇ\ç|?ý¥~w±Îý Ô`¨%Ù=sLµñµÃº’J ÕŠí¶>ïFt¤Dã$“úWBJóçü„þ˜†S—Í^Ý>Cô=Ý@o¿Ôå¸W¡ãeƉLRÃ6 ïzò”鹓¢ÄØ8€°òâs™è®£ïWE˜°c—zCŠmX Ó¢.½•»OƒÎZ‹ÑdUàù9ûVË ²«û³twåæc|ßóNç Û!zWÖXQRç> ÙÇ%)7Ézú¦EÏÏÞàuò:!2ÇJ,}£Kˆø’§a¸ƒH]}¥×úCôhÛDookpPaˆ4TÄ'í Ã;†áS?ï¾¾ØPqômWòCÔ£¦¤†Q HyÚkáÚî&H†Æ9’>ˆ S$Ü?‚,@‰âéÝÔï5$ä@¶r¤¶· 1zb„>ÀÞjF2O¶ÌÌ wÈÖ›˜ÍÅoäÔxÒúìË^ÞÈ‹ˆï"ǘž¾º©œ,0é¡o´-¯^R\n[—§ŠÛMŸ‘~ƒI¯j,ÅÉøTªÉ3äà*±G߇ˆŒ_s«gWA-ÓÅ+Ó•#UL™#<·ºï–¸“$¼+ŒÉœo)"¶‘Úc%jJ ˆ"싞Ԫõ¤æc6éá1ñ»nÓtñ¾´O~y¼Ë…ŽþV{kì§™Y˜^9aô{ |¥+abQ[“¨ÄøÐÁU0IáuµÐ-Fé¯à5Z÷||ˆ Y[ êkÌ8bd´#ËZëËò±†úµÑwÊûœå·zJ:Ѷ_Ë©g2—].´ÓCWüË» ¶¹Éq„ôÁxmÊ:›r_“>¿f¶ˆq½FÊí¬ ºÈ®ý²WráYiÐ^0Zì‹9/Hõ^[§ÂeÒiùyï»ùgòª¤Rƒ½xÓ‹@VÓ,„©b?ÅSݬ°¸U4FœT.Ì£’nÅ÷¾¸íɵ{)”°/»¦ýŠú=îk.ƒ1 d‹3¿'Ž.±ÜO›«’ Y¡Ç_^ìÅ\ÆÈc,/„OÜ™‚%OõÝü5ËIå)Eº TYÞ5‚##º¯w¶Í­ß˜t¦ÓKÄÉß}X2–ð|ÿ>­8¬OÚME&ÎŽn¡ko(ZiÍ›ùUî(¼y… ùdñYq…+<'qæEgk÷p‹h ÎÍ.Q¾- ÕMnå™xnn&7ˆKÛm§•Jè8éžÅ”6·Ÿf*' w-r<Ê®r÷œ~ös1v # s’)+d_ê$ú•9¹³YàþÏP8iÝ@5±ãíÚÚçÛa—ó¤`Ùjö”<¢êG?ÔŒ 0ÏTº(_Å̰þU¾‹<‰0hy GîÁPŸ,Ê[nÌà™¦Jn³(khšm 3U«×ôÃø\½ç}|÷;ê¨×Ô™_£ÑèѨQŽçkx2Å*K‰µÎÁMmó³…òãŽîc‚ÈüY™íÙXZ꜅ɤ Œ¥0ÚŽÚaì“r1ÊÌ>ÅɃ0[¸¶lžëø\Иð™–r–ÈäpþøUâÓ¶Ÿ·—¬® X®l’Ë«ŸØ{ÎHƒŽT:4Éä‡$Õ«]«žNT¥ HJ˶½b J¤ÛtÝ{0v½ÉR­¡^^vÝÛxƒEžS‹ƒôŒñÉÆˆÈ)­eIÜåI¨Á1U|¢þ6{¦·¨ìBw¯Ø¥[ð~úˆ?Iâî¯Þ°1ë$eíâ_‰’Å Ãzéî†[”æÇ¥UFâÇI_[ôíϼs•öž&MVê^ZzR©H‰X'£lG‡/öÿÊ6»ôß´—U=GÕA0 †.S%Þ»·y9j<ï‚Õ7<£ŸÔ6ñ–‚àZxÆPÕ-ÞÃã8Ƕ‹Œ€t­…è)iÏU^z1¾ü*‚½4~îN[*Ô߯]À%ññSžÄÛ  ¹îîÚ#_ñ…¢}IlãzÎ_'"YŒàœ7J|{{Jm3äåãaû;ïXãñ? ÇѸ\œJn•€Ã|eúrN¡²Âwñðgà—Ÿoy«ë(P›Ú¢t3½¾¸/3u¾Ç_ÅÑÅ8Hãáß?Ó8f  ùQŒ·‰£ZµŸ°Ká6ÄF¡AÿÐ.SÉw¾”î1ËoφoJ|²ˆ©Æ^}¹ö†ìø(Q+µ*ZkFH!9ã¡ùŒ»IŸÐ,(^~"*›”ˆñfÞp'=$Ò;²²&¾:f"AÌXæú§‡T½æä÷'lé©âæaî`‰ó'~:aP«!Îf*è/û\ö»ÌÿÜ­ endstream endobj 120 0 obj << /Length1 1441 /Length2 6965 /Length3 0 /Length 7948 /Filter /FlateDecode >> stream xÚwT”mÓ?R’’Ò±" !ì.%Ò-Ý¥ä ,µËîÒ-ÝÝ) JHƒ”’¢´ÒHH£t|èãó¾ïóþÿç|ß¹ÏÙûš™ßÌ5sÍo®s/Û=Mi+¸Tî„æó‚D²jjJ`âçøØØtahèßz6}(ƒ;‰üB … otrô P îPvq€ù`!ð#À=þGŠä ®0+€/@îE°ÉÂH˜-úfŸ¿—KNøñãG»¤¡H˜%Ä  AÛBov´„8tà–0(Úã!8ÄlÑh„èææÆ qDñ‘6œn0´-@Š‚"]¡V€_%Ô!ŽÐ?¥ñ°tma¨¿ :pk´ Ü(`–P'Ô‹‹“ ¸Ù £¤ Ð@@þ«þxøs80/ø_áþxÿ súí ±´„;" N0'€5Ì ÐPPåE»£ NV¿€üÆâ 9@,n¿S‡¤µ› ÿÔ‡²DÂh/ æð«Fà¯07Ç,ïd% wt„:¡Q¿ò“ƒ!¡–7çîüÓ\{'¸›“×ß’5ÌÉÊúWV. žÌÙª$÷s£"ø·ÎŠ‚„ñ  Î¨»¥-ð׺èo#ø—ú¦/°¾)곆޼¼PW(túxý§áŸ °‚Y¢P˜Á¿£ß¨¡ÖÉ7ýGÂÜF ú _Ï¿V&7 ³‚;9xüþ»Å@9eMî?%ÿË(#wxñðóxøA0H@ðèfáóÏ8šØŸ<þÃWÉÉøìW¾7õwήHÀñgB8ÿ ¦¿¡.Àño¦ƒA–7?àÿ3ß»üÿhþ+ÊÿÊôÿÎHÁÅÁá·ã/Àÿc‡8Â<þ n¨ë‚¾5øÍ08ý7Ôú×ìªA­`.ŽÿmUBCnÆAÚÉæ†Ò<`^À_zJæµÒ„¡-mÿ¢Í_z½_çs‚jÂQ°_WÌô_¶›)³´¿¹FP7ÜüËAÝŒúw#ÉЛ¡úgòN–p«_ÓÇ'(€ ‘‚›æßH‚/ð͘ZAݳäu‚£o\75û¬áH‚_ ©~K`>ÐІü[ñü‡ÌÝ‹ÿHÃÒ‰¼Éó7nrü[þ}#@¡îPK‚/“pKÑ »š ÖÓjiz7žÕa1œ½´SC>žáBSÖù½¬Ù³ÇÁã|FÂi¶­ºųƒZü Éøù‰]ai•zw€õßún==öò¸Ê?ho—aŸv®ŠtŠ&ò\¬õÎ(|q¾¾¯³L%ë鿏tì]å¾d¢Úç/ò©ðluÜYœ"‹‰‚‹˜sÊ6;"‚¢ix[ÂY*f–»ÃŽ˜^aÆYa”ªç½x»a߀…y‡s¥!;óÝ"dþL¥Ï”TȶgÅ·ßì¥þ¦bLQâHÎçè;ÞLv|ÏÓä;­;u¯ÁvÏ*mJïàv€-Ú›³”Ë!Þæí¶Ñ%~œoÝžîY±ƒì’¾×b<ò8µ! H³¥Õi ÎgÇñó!G\ñŒnZOš “f=ôžúëNÚ‹ŒfÑP©ªZ.LOï”ødoãã!Θ¾ôL™˜ÿÇØXû¼‡¦Q ß=›ñ „ƒÁf2¸Ë›8ä³½Ãçà=î‘i²±[$Ûõ5|x–ÜEÖËp¬vw‰ë)ÅÚs#f]ùã·vÚý¾@î •ªM@F霃ðЧál¢æ073[ñžþÉl€UýQ+üÝ"’/‚"—Ï])ï[ªÄrÍNŠr{~¼{Û0ªŠÜ“Ø@]¨5¶àÖ#qîµZG+7«²KB?MœÄ‹‡mZ77ˆ}·Sù3Æjßäp<ÏfvèÈjBšþx™§;0o•Ú¢:èG7{–¦ûQìõ)€‚ŽÒ)/ã¼æYP}ªÿ¬Üb[À0Çhä2dG%!?n_ã_sϰ§S5®½áôE_¼^jõqæ2@-Ôá\W‘¡ßiôÊ#³ª×Û{ý,=›ægö6aT™¤¯¬Ñ{6Ì©W²'Ó%=™ÐKÕ‡ðcŠö(ÝÚü¨à™ÄZÜî¯÷¨‚‰å0e-äLjïAPãæóú¹¢"°–‹í|Æ"Ù>±êçÓ×p÷O v•»©î5:miXÆõœNÔ’-9úëÏ•h™Îp¹™ûéí!ÁyFTž³CÖi¯ýÉS§¬•¸æŒ¬iÅ1ÕÈ©øÇ8ÙZ”U’&:—W6hpàtó<»EË”³¥ÜE ÈÉ€Ô:Ž«gÔ<.ðÓ¥±PõJ Ú“oÓœˆk¹åk\=¢üvŸ^$yêa¾ž•ª¦d|}ßµºl嚎Úñlo‚xZ"ùYïÇ“°U¢Õü\Sv÷ º²å6…×#Y÷Ǽ÷sî5*D, E4]ÑmL«&ŠšùXi¥(+±6´¤t=íçøLCå¨í¼NqR lD“àk=IŠõøaÊK¡Ú¯Ôfàó‚1_7á›­2‡8’àXÉ@<ƒIéñžŽç˪·š?¢ßä1cíéÅ‘ïn¯ãwÒ¾t”墺ˆÓ¥|7#ߌYd aÃ32ù6ФZq±Fs¢ˆËÄ‚gìYxùŽ8:Æ$o§ã• ?ê¾NÖW½ô0Pñöô=XNýî=Ý€¾]h'cµ¬/^éù…ºSwRÙ·uͨ¦½þj‚ßüÒ5ï á„ Ô#RÓ7(Ï<æýFñ”½žž¶Q]QÃç™=ñ#>¨#”@LG ®wèž3c‘±‘Û‚¡´E5ÂhÆ™ý,ý`Ü J*GM\¤g)¸ýAvI*ò9¼G´Ï]UîC‡tZDƒßez1ã'm<€jäN–u¯ûŸGÊó!§¼šéɬØltùÇ‘²(q×—ÖèÀ¯ç¼Èy¼j,¦y£2¬W—ÛGwÖK<ÛRVc‘•8$›‹£¬E2優˜Àˆ¸o"M2TG€Éù)vÿ'ô9£Ã`! Ê<€ á0Ù;£%‘ã5•@îB ÇÆw™šK2ûÖ7Í9½)öEK‡oT˜*#ç¤æÍ ¥¬Mu>kë$Ç{Ȫ Åw—3ªˆîŒFø~¯üNˆk8›(})ì(íùåè[¶U»º(ËJº/ îHBi;b¡õ8õn­ì“â;þ‰êŸr«cº¼E*·w…H;¥NÆûÌÍWÚíD€„˜ÔÏjcý¯¯ôŠÙ¸Î…è?4Ȭ-%NÇ‹ l®jF±"°ì*ü;{7ܺÐÁܰÒyXe¡rùxNãÏq@›^QÏàwÔúÓ–l»`Ÿ|ãwhEÙÍÛ{gLé@¹¥UÀ›|/´{™(ë•Ø‹*úöÍ—Þïx½R-«CNA1a%TÓ~²xiܻ𾔭t>èb¹4¤ØR*ÈìOÃF¶Ï4¼{þþúë…6nîš°Ô‚´¢FHn¯¬Ê²ž¾‹ûºl²Ùç2~`›8Ü/ÇLÊñÅDm…vŠŒŸ”òx6Î4 bdB#ùµÃÜÇOâ ‡¥¦ž‚òQ´ž¬WÏ-wæAƒö:ˆØ6é%Hap[˜9Žò‡Ä+ûÈÖæ¡'ò¶ãìë’wƒ‹•ôæÉÙËR#ï¥Á¥T!º©&ÚhÂmÏŽªt\oOôDCxäGèVƒáot-¾Îu®T5vülãKj—x¹­âîÌßU´øÞ ]ÂX‘¹÷É{Ä`Š- T0$¾&/UÕ’Ä»Çgºˆ¬-Éå`T”x]ŸÖš«­:ùÜ7õ"ÈÇÑ kƒçG½Ú’ô°'Êeá—õå² Õ$Ei–ˆjb¦æ,+„u‘h$È¿{™ê°9oküÄÜâÖ1„I¸0£‘•c~¿ßTŸ¢Ê9£nühoù@‡ååµkGdÓ‘ÝF´dZîùì 4ãXãš o)J¤Ý¤^T‘¯2¸­FÒ¡£®Æ’’|å C³èäð¯`f“ Žù ¤öÅ[ˆ…$'Î^Ú_W½p7F’à™ÃyA±z±–·‹„Ÿ°‘…#†[ßoõ6ªýK>wº|Çj©ã¿E/x¯3ô•èúàÿQƒÞR+ß“'W ù´¥a|ŒÂy)ðJCQ´;¬:B¿Ü™(~¨©êeRé$â›M¡ú-7“…Iã¬YŸ³ãî•dïç"•†ócQ¯£#Ýfç¤!¹ïbKÔó÷ÆIqÛí·»­Ýß*ÙÊ‹÷–„™$˜ º >Ä-»JÏ/v2ùæh+ï…b§_möáW§L$Xº\z4ëiØ/bÅÝ|‘Ô„Ó¿üÐäÝj¨9ž§ßÖñá9?²éèåÚӥ޿Êú‘aIŠ!—þzˆ.ÐLm?>Ï“™½)ÀÈVRÒ€£Pz¶—NKt:·SCw KZ#—£2õÞú5ÇìbXnF‘…'A¨²ç[n±|ÈOÜEþ@k#)cKNL´Ö®º{ ñ|á‹Òꊒ1¿aáBºÎ&äIâu¾Ë^¾ñŸ-SHrÞ¹åG²1¦²2yK‘ëÕ”âsȸó”}Ê,ç >“¹Žtu(}¶Êz¨–q[²dN9ùAh¶‡ò.™¹¦¯Î5³¸Êܵ¤üÙš }f&{-÷AxÒ˜•ŸÕh* è>‰àoÇØúúTïÅ+ç@œz.Ló<$ ìDš°"QO¸·¯Ç…@1œË;Ø—XH9iq ‰jÇG9å$„óy| ©¢ úÒàÃôf]e㳊¾nàý—ÂtKQ9Éy‘v·ìœ*yKrÂÄÜ®W]âJGá%Ê}æßß'rj»ïÍ'lÄau»ã ŽðNÛ–ÞÇk‘S¤ÝÌýêÇ´¬÷}ÛL¥\D´Ò´P$âŒMÕÛoë¡2Ww¥ *öô:÷SðOß.ïý— øãd‡º@dÇe1sÕžt·Åfk_AÝÅŠÃ+6ÏCPÄõ-QNSV]@ŸanMRþþm§Ñ“d–Í%ûûs¹‡ R:yçÞÊ„œ×‡ŠÆØô¸”>“F]õ$åÄ8ýSöL 3/ w“ß|Oxõu~ãɧ>²·‰8º¬ëJjÇK‘ÂT@5FïêÆŽû¹âæBt½8˜8ñhbŠaaû&Xþ:®˜ÅYrVnó-‚å\š0n&QqâLì'3~~žÂ¤töÖpû£•RËxõÅi‘5ÿ°w)Ô”÷j Þi‡U_™Ò ‰Ðª¡Â#¯A©aÞÇ6Û5˜8œ?­’*$£ñS4r1 ÄÝkŠZzp"§‰?›­õˆ_'’^r§Vj<^ ‘ö¢yaL¸äaJòPÜÝ,êíK=œ7± /„4ðBíd¦—…%ƒ%ƒ¾­ÊἉƈg0Š9ôKúÒqÛÑ Øì~‚E$ä:ÅÛ“LÉ|‘¤¢ xCzQm<¼ÊÙºþ~i)ö5©¶ª¯cϸ¸Á˜)pàq,z„ŽÐ0ùàˆ{ˆŠëQÞâG³S-±C°+Jÿ9P÷VíŒý„`ª•!ê û襰¯_hÜý´ÑÅÞ‡äwÂÌw˜kzÚšl•/‹ßæ1äsØE_[¬rQ‰{££èZŽ&‚È{@{ÕuPbú-n¯úÀ£I'/˜¹˜ch÷SyJ»fjÏÈü<á‚ýE³/k­^a‘Êû%^ °wQ>ÿŒÛ[Rxê§ÚÌ+ ª›ã™XžÖ1—%ÂxþȪ›QHU"fQDˆ@ kçG«Ñºæ! £ßx5ÜYÝÜ¿‘ýˆ95l¢Í{5h#¬ò„ÒlT{/`~èYlø}h&Ò‡kÐʽªRÛÚñsRÛí[Ê9T÷U»ís!äôæ¾j"»ˆÁÓˆîÖôxÀ²Mya½ª•DTx(¦ÊíLb© þ ã]uáTl°7Šðô$ç9WƵ-ØF.¦áQþiëBÄËÝ}¾œiø /Ëú Ý?Y—¼íÓK9 ´¬@šyå—íO›™úŽÞæ0€ÔŽà÷m#ºlÝû«·x´ó8$Џ†ÏñGK·ûùÃl[×÷Z¼•x]ÞškiœL>ç4ÿQ–ª¥Õ×°Áñóö‰@¢ Mr­iIà|ÐsJµ…*x#žà.sÉÚ j¥Ä‹]þWC6Ë1›ˆNëéL'¬+ŒvÁ^0‰Õ«Âæø•î-r#U&gü:™ÎÖ.©´aB÷ ¶ †ãÎåï6ô*5ï >¼PÒ}Ë}5ì‘ù%t7ñ–b Ö¼v­oi›cBãÀ>³ðB¡kN¤ù©Fáëýþ¼{r"¥‘dÁlœ˜·)!4Ë™jý},fª©ç’ ï¬È¹ÎEB'A{|&Ü9¶[„•šÂ­\ ¼Ø®‚Œ9¨A ±£˜ZU­Ð×iƒÊNòw£””—g^>»~%K[IK‚ò¢×ßa€t¯wÄØ—V›û.«k‡$}wþ#Ýìr¢c6U O:\ ϱ:1¸HÜ„N›“o5ÌÍ[“Wmâ"ò®,¤"“ý¬~j´&Ôõ¶º—×Û4QÔrOwn39/\Ša§ÁT•8ç–7Y±e¬§j›OVG N;ú…—9ÑÄçK¦ÕÈOg'Ú—G‹ª(K^Ú‡TÆ =ª{l`±©ŽL"ebäL1wùñÐGó¨{1µ%ÎB îb,³F•;«˜Z,Íz¥.ÛT;eÛarƒvÏ”w"½_½•Lìÿ¤}‰•/cUNì#×ܬøÑ¢XQÊ™¯„ÿj° ŸO(Ö\¬a"t´é¦iÓ›@WÔUkvÎüã=[§Å3î™ÒÙÀŸ¶_ Ùý£ey:‡Miœ6Q¸_0æÔ]ä&¨±—Ø~TM•±6|œÛ!Y“lJê°Ù›Xr©ö“Ó…Á÷± „á&SÏa‡}þh +`ÒýBBnš“öLw{æ*ë¡›öÅÔ¶æL,Ëy}êmi5_ ÿ´¦;B³8êS\ÆŠ(ÞÆŒ¼ûJ'îZ²*­ž1Æ’V§5 b¬.Ý@Ç«`ñú¶]‘MƒwVx–¦9sž9ŸW±ÉÅE7Ä”©}TøFh‡Œ;Mö$Fêƒ]‚âéÓ?cr`»[£xŸS%Œ­F ‹îÃËZa›ä?&4¸®kß?hk”¾  §:1º{lÇ}/×xF÷µ{çIóx]¦è-lòwXì÷5¿éïºg]Ò¨âuQZ?#_͸³†Ùç˼PfÐIÑ»¶&–Ç(¼ØÛˆzÚqšÖrA–cæ¶v«}2¹¨§;ûѶ‘Ö»s·òX;·èK¡ë˜Ž`ö&<<Ú)–»»vs¹IÃoŠÔ”Qù…gŒ§ë¯^ìì(èkrÖ½±˜ÒTR¡#òÃUáòUIÃZ¥á+møÆ˜âS»(_ÿXèÒJF¼^Íþ„6ä£Ýr̽£zûv_ÝDSƒ{ß¼­îƃQÓ¾„’P˜p'Æ]³ïÚ|Â*Hû0ÇÔ¦KÜæ£SˆU­çʬPÚ‰ J¬üZ¿ÓM_Öx'”Ûtî0}½`5ú <¬ÍÊR¬íÂíòóÁØŠüs=Åzm[Ní܃†ðW®^îÓž*ï;–¥ÄÝWŸQ*÷RJT ìñÁÔxC2·Ã‰É°vj/“V….6ýÊ7xý =KAX g9”‹…üT‰eûǰYÓs X;Ý–á£ý…Jœ¸WÅM–S Ï0l­4>”øÙ}­(†=»ç·ÞJJëÐß@ À¢Œ|ƒ»ß²@h3Ùßš¤»ÚËÌ}(å!IÝZr‰ˆkÄ`æ™)å¢D@©CÞ@Ôm³¬¯Qœ$KßçIH’ÄòkzÝšÕ÷ؤ즉·ãyÈ ïfHô˜å0{S¼ÏÕR^Æ’¢w/kµ[0¬Ç 5Wù´c{o'?,ã9±P#SÔÊ’µþvÉûEÑ –OjD%UíOxÚR.Tˆ&7ûs’]ßÏpò×ݽ|$y¾­„dlV#C›¼oåT»'‹“Ã’"AóÐwé¾¹_üðÒÒ‚RŒ´®JûÍ—•]^ ½óä¾ë; #èbŸzÐ÷'²–å„гùeŽ˜}£¹€Œ4?Ð%,ê‚°BëJ?Ó‡ùØeu—˜ïݱ—q‘ …Ž?fP¤×‹JæÛ#åB®Ÿnç·Mb6#¥º ®­«ŒñsRG{,z’#§Vºö¤.7ƒÒ¼›–š…ÆdØÇ*jí™ï ìãiÜ2½ªêÅrú?eœvö endstream endobj 122 0 obj << /Length1 2525 /Length2 21773 /Length3 0 /Length 23222 /Filter /FlateDecode >> stream xÚŒ¶P•kØ. "Ý J,ºcÑÝÝÒ±(énéFRn¤C:EºCº»»¤á,÷ÞßÖýýÿÌ9㌮ë®ëÎç•‚DI•AØÔÎ$agëÌddæˆÊ«™Ì̬ŒÌÌ,j–ÎÖ Ä G'K;[ž? DAFÎ`™˜‘3ØNÞÎ ãb ²€<@Nff 33÷ÿÚ9òÄŒ\-MòŒ;[…¨½‡£¥¹…3˜æ~¨Mh@nnNú¿ÜÂ6 GK#[€¼‘³ÈÌhbd Pµ3±9{ü'5Ÿ…³³=“››£‘££¹ =ÀÍÒÙ r9º‚L¿ (Ù€þ®Œ faéô·\ÕÎÌÙÍÈ ¬-M@¶N`[S#LP•–(Úƒlÿ6–ûÛ€ðOo@Fà¿áþñþÈÒö/g#;{#[K[s€™¥5 (!ÇèìîL0²5ýehdídö7r5²´62ü•¹@BX`.ðŸòœL-í,­•Èô+ ¸Ëⶦ¢v66 [g'„_ù‰Y:‚LÀm÷`ú{²ïmíÜl½þf–¶¦f¿Š0u±gR·µtpI‹ýc!ü–™ƒœìÌÌ̜ܬänbÁô+¼š‡=è/%ð—\—½=À \ÈÇÒ þÁËÉÈpvtùxý©ø/B¦–&Îc¹¥-Âïè`1Èìo ¾£¥;@‡¼{@ó¯?ÿþÒ¯—©­µÇoó¿æË$'£ "¢L÷wÅÿêDDìÜ^ lÌvfð×’q‚øü7Œ’‘å?iüá+mkfàþ;[p›þ'c×€úŸã ü7–‚xkAêßK®ËÌÎlþ øÿ¼ê¹üÿmø¯(ÿ·%ÿß I¸X[ÿ¥¦þKÿÿQÙXZ{üc^ZgðÈÛÏÀö›j‚þ>Zy©¥‹ÍÿÖJ;AØÖÜúß6Z:IXºƒL•,M,þÞ–¿åê¿®ÌÚÒ¤dçdùëY0€Gó¿tàÓ2y~:œÀ+ù— ¾œÿRŠÛšØ™þ:1v€‘££‘xÈ`Äð‚oÑäþטmíœÁ.py>3;G„_å`0 ÿý8L"¿'€Iô7â0‰ÿ‹8™L¿À$ù±˜¤~#V“ôoæ“ýÀ|r¿˜Oþ7â0)üF`vŘ]é73¨þFl&µß̧þù4~#0ŸæofÐþqƒuF¿8ãßliò/bó_:›ßÖ¿æÈdúwô/‰éï%ú×€dcjädñ»Û¿|\À÷ð?Vp•àAZÙüÜi³ßìcödû-ÿ ãßõtý#±_z;Ç?ƒMÌÿ€à€¿3dwÖÂÃÞüyøm–ýAÈ .Õêîéû? ¸©Ö@pWÿ( ü„1ýŽÌvµÄzp±v¿“;ÛýG .Æþ·Ìü³µ™ýî;ð©ãÆÁÎÚü2Ùý1BðWžÉá÷p~!Ó_gûïV°üÚ9ƒL­ÿCÃÊö[ñ_&Vî4ÿMî1Á]uúÝ °“ÈÆÒÄÎúvö_6 ×?†Áâþ†ü[¸…NÖî®ô7-øqfr¶pý±à¶9»ÙýáŽáòOÐõÎÌíu{»ÿÁá=þ€àvyþNÉäø7Õ8Gð„œÿú_¿ÿÁý‡r™ ÌÏØ™ðY} j½­~ëÆ°=Ê?I±­ù™†ÁkÞ±ÍåöMezÀªãOáOhK›âÔ×B ÄO^‡Mµ°¡Í Ê-Þq*Û-sã8½cù‡Â5=„ð jB;ÞOÞþ ¿ÉPd;¸p¡(åbÞºuKº×ô”,‡Ìl+ïTrÈ">–ü`ˆVÒõÿ2E‘cœ1G ãÌ@G‹qæŽ:uýs#kì…X&ŽÁç(šµÀëÝËÇ»iÏå25§|rüwx„P×Ô^"{I2¸³^EK½sîM|ÄYÈôÉK hŒ{,i•–*‘¶ ]Õ®ÃóíÀ­ìO€ ª·½˜[ ÕÅ XޤШ•-‘˜ÎÕ¬ïA„{íf"Ë­?5¾›Y%,pÿ¨yL!k[ú5~÷z¨uXìe¸ In¾hÜüî£ùE°GÀÜ H+n¡±´È“F˜ ]â<òªC$…F¿àú‰ëÚ(˜Ï+à\äþ p#Ÿ™ùtä0Á {¶÷ùGŸòº3…öµ)ôYk7 ½À—@…ãoÉggùø¬â†é!Ô9iâßÃsVb¨”y¿‚ê¦K˜ÎÖÊqÅŠ=ˆåâ7ØçÎûÈ Ø¤%»¶g+"t<¬î¸óO4ÊÕ[bÙó”I¶Ž"FöêüûEƒ»¹šîmü,-ÑÇÞ·Ó¸;+w ø¸®Æ”Þ®â—Õᤘ")ùªðfsº Þ˜ìXMĕĦ!USÿ~s¤£ðѾDZŒ‚ª`^¾GvŸ/Ô{^oN¬  ¿ÊO'üºÁåk›â-5R:ÚòGŠôE(2ƒ¶óç7"oUÕnsÉ<× ºfŒl’ Ml’{Y—ë~aënð²G¥@YÇQ’Ìnú¥^®òSGE<›E4®¨» ×.T§Mõ‚Vú‡_‹Á¶±2c ŒIò‹©ÒWä è°^f2­6<3„î‰cù+œt¿®`]ó—òëvhC’¯Š †©À.À}Ö‡TuQhËTœZ)çò¯“>?=ðˆfž}Mˆ(tWNýt››wØÙ\ItÒ n¤›s«Nk*±{wL"ß0¯–^ÈËÜÉgi3— Ǹzq¬â%ÎèÞv^9f9 ¤’²âóß@%f¨ýЖe\’Å; ùN+9(ëe&úND2³ ˆÐc‘%B–*¤‹E‘yR#¹‚CZ‰œÜúaÿ¾¬‘!wM§ïp 42yÛ÷_vx–’…Â<ѸÒ3ôFf?…ÞÅÎW¾Œ¥ÏsÅ%>%;tŠƒ6µ…¶¹§¹tâ…ûÛhѪ`wžl"Ž ÞÐØÍºî™y–s9¥`ñæÇ±î«[µC·¶„VòlS]ÑÆ´üÑÅŸ3cBš,îÄ{\$r¦?*6ßÚún5˜¢úEø…ª¯îI˜ã¿kçØyÞ‘ßßôùQt—›Àv[_Ygѳ+éZT< J[ ¡ºìåˆØœHÀàòÔQàæ’LáŠû=8n:V„ÈEAxr¶ìªn”Å ‡“U•™’ž·EÜxüýTñ[ÔÃO­Ò ÷µ3^[Š”Ï@(9W“ilh˺ÂÊ~Rù£›n¡Íér¼ür›%c æùÏд÷†©‡°Ý9 « Lf×]ÖmJâ,9}ΩÿÊ—S œFœ‚¶‰è>¨’6¥ ƽ6¹×~î·¯ ñ tFµ4ÂÐqû.¯”³+‘Õ”^®]³ï@ƒôñöÏ o?X$Ü7&¸àœÇEÒY{½»)ßÌÄ™ár°¾‘ZU2rðÄWÁ6¨ÊÁê}W $¢-Ùê‹Æ¨Œ‘§ë3¶÷ áõZ.†÷/WfÅÙÓÐàËi ›DAƨPdTÌ\³¤oåâ*! <ê 6Ïâ×å_"•X»—•¸UË1~ø×®áÿÑšÚÚ¼â{Æ‚ñòèe’ƽ’é¤é!Ýõ§;#6e nÕ°/ ”{ÃA£ ñËp ÞIÿýq®“éÇ4[ϸïp°åy»ù<3r™žøzÑÏJ# rK]ÄÚ#å%9¹É¥å,Ÿ)„çÌß®ÛZsx@†ÊÀÇH(Ö]ðÉÂo*ä+~Æt Iø°òÃ:—r·îV{{¶–j~Bsa|;²#—Ù_ðŒÊd o9ÿÃÞ8óM§(W_·§°TÁt+$‚ã…N¶{ÓÆ²3PØ¥¼$É^xŒQ‡-OuŽÅØ-‘Îà\œ¢zƒgA 6üu±‡4…„Èw«”—ŽÓ^7ßÍC{CA™]¼bdi/ƒ Ë`©)I²îfýlßšHɺsâh¸ÄåÂxéBw²9Oz)À{FÿÁs v‚Á®¥r5ÛªŸù³SúL?>†&PÂ}ìdj/y`þl]ç®áq]·€>‘AªGæé‹—üÅÞõâ;raH\ÊϹž"FGîprlÛFmÑrQà}·s‰©ÙMÄø{…ЩHÙ*ÈìIÞ¼Žƒ©k‰{jĹ(…ˈBHÞµõÓç²Î‡cÈør´ÇUÚÖ¾ÞœO›=˜A˜%PN…Ü|u’1È¢â†Áû¹kmÝØÊ £vJmÝèÈKbÛH'XY[o”¸g¹ÞE;q‡BRn–!9.hÞñ($õ;M^÷%6 Á˜"¥ëj.S²°¹a[{"îO±hžb~u[î=Rä6~ÉÛ&U,ÌÂÑ좕ÀÐ[f*4ô(‰R®†HÔUþÔùV‚¶dÉR 硊ˆ‘õ·C÷ƒìYí ž¯ìò_*_¯îœ,bFÀb~l)G­{û¡èÉ*?x­g>‡ÄgÅ0ñäPŒR“À¯¿dkFY«‰FjõË.ê°³t~y+ü‡þiÆym‚s¡9[ìRÇ$4ƒ«#Û%ÿN8ävÅÇMgah9dÛ¤ÈdAhƒ}ƒàEs¬ø:ßLœÞÞhC¢ªñã"Y‘Е3Pwý÷%âʸFÄ=ëoÊöq!oJs?LÒt„ÔgÜÕ\0EóªâS!é7]ól9¿–©¶:Àr/­ §f–ämÆ^Tvxõ±¸/ñ½UÓY&o&_¬Ã[Û¹-gk9Q`‚V7€}äM2‚CÜl·ÃÁ­ÈqO ¨*]Až°Ë—4ðJ•e‘µT&I~a0è“5õùd9Q3h@y›ÉÆ^]–Ró áMÓµ8·b!•T¾ö®i²’Í%ZÝç[O÷n×U –:`‚d(IûÓÑÄɤ4Ü”övÑd¾,ÅžIxeãÑC¿Èü°´Þ[?Uà €ìr²ÝeXG9D΢D›a;ÀWÕñÙÈ ¯¤-Y<=ÎKÄý:š@ïuñ®6Nd°»_üòêõ„Ûô8ÄŒ®À†1)«Ð\´M'lGì÷¥$„ÆN…ñ™ÊÊœ±÷É Öݼ”I•d|» ©U X³‰- Ï4ƾÁÜMi!U)Ê$¾èÖø“× W[.Lÿ ‰ÝMêÖžK£raÖMžóI:¬L’<÷3è¤ã1ùç™ðu&3ÖÕ¤´Ã¡Â¾MRÉâ$ôò]*3y§ Ø)b-Mõ'ŸÇŸu ÚÝuÑúˆ~S³V#}$Rí§‘ŠR/p#‰ îê#y÷B¿Ž^|ˆÛitÍAù꯷D†@>[‚ºH%j!èϞ¤Š÷DØrÕ¨¬Ö+EøƒIDȾµ&d­<õE Œ#DòEÃÙq[m/«ECVoëW®„†ÍTÒÖÙOÖªI¶ks®'•:¼saÄ+?ŸòÚíé#úÏY*¾‡2Ìh8IÛ´¿½G*çrñX"w¼HZ¾üä‚`æcâÐEÇþÝ×äiYo:ãþímÇŠ:}9d»s6ÍŽ%ÔEv»bp÷"u…HÑŸPB£ýÙaG Ìeo­›A’'lý¼Û3038Mê.EŒú±ë\ò¸ç¦>ÞÚH´…Ÿ‚ÚFc=+?^…Öáš`« –Lü-Ã$kÐ ¡å欔ÐR¬¿ÙXàÓûFÆÃ´ë'W*¿>F ªÕÍN±–áykGb<Μ\$íëÑšò›ý:ýúJIvÉ4ØÛºy`áª3SÔâóZôðÆÂ[x5°Ü6ÌàALÀdžnǬĜۂœð¾¨ROèTþÎpNÿG“¤ìO^öR˜|·¾Ã–×[ÒŽ§ÂE¬f«Úè–.e~Ë[]m§G?0´Ñö Å®òÄD/˜Áª@-„Ñ‘Jbé±h6šJòš-6Ƹu¦¾¸¼À©îâqËÆã¡w«Éi‘o¹™$Ô+êl¼r|ëИçñZš:é¥Õ ]îK‰t‡I·Qyœ§Ø¦úXg¬[‹v4]ÛSÙ;žÑÓÝî±üžtà·‹:ëó Ž·}†.·B¯Þx¿.;"ÆžY Û«MíÕ_àx{”é1ñ`ht–ƒQØ¡S9fø£}X<3¯ÓíÍwè##¢·H9ž;–rFA¸>VƒU»ByÛ>=ÜQwN5ë¡aS¶mC>~f¶¥EñB©´|Wìyùi#R q—ë˜ØžAn‚²?ïêTÖP`X[DÑi˜”{²ümÀ©D°Ùu¨¥W_÷1œ6{æIyp½HÁØ,˜n±µ}%(ÓŽ>zþ‹:|«çÄ¥ùùˆÑÖÇX—Z‰ì‰¾.L­{寒²ñW÷´­¯ú;° j±èuƲI¥Žä¦Í^¤êwÙ}Mÿ¬~|é‹tS?Î)pDÓ›™"e›ùª¹¨\˜“tßK,D…‰ÅùI¾§ïêÎi»Ðïá=·´ÖU¼Y^qúÔÆËØÓæ|¡–øÑ—$´~ƃu’Žñ.RZ™EUN”Žm¢J8‚=èS«EdBÊóÂ{2Ht¥;aßšZà00ø¯“r¶É9\¿ª¾QÓF'[Ä«K~aýr²+˜1Fõóè¦ë©†¤Ü =Ý.Žv™äsþš>Sc±Cm×ëŸQ=¨ewwïˆÊ<ƒÄŠ…Xo@©iY{òsBV4|š†[ò­a/³¹/¾ë µc 1™iïäæf-TŸ‰/¢Žý¸½jýÂý{ˆfxO¯>çÅ'*ùðBGN¶Êþœ$SËn@‘¸¹×Ý}ót£?•Eø ‘7¾Ãû@ ¦Û€,å2Åñ¢Üó4þ™*C™µß˜×¬ñ#1ë%±ê0O‰•1úñ"E£³L,“À`ŽâËI:¡£ÆŠ'¾»^UL«ÍÆiÖ÷:=?ëŒ;(v»v4Ýœq ^4zÊ"*LËâÝjåïÒRS#WãÄ‚j<ÇBs§¸» /ˆ°ªZß—™«ùÊhZ,Ö4g`üÛØÌš$Ä,bçjÔ^Ñè«BO0Ûºù<Ñ#†½ShÇ…¼ª¼AÔFŒVÕyvNýÄ‚ôV';d†&¡xY(IΘMÒroåñÐW;%÷Û€wžNÞÁ>yÝrÓµª˜<~f%Ó6­_:…YOcfÎTYºùñãftjLæeÒu—jpˆÊ .pLŽðüïP½a†œÛ­€½i»ŽÏØÏøÃ2®ô²ÄÞðµÁcŸ4VbcÓ>?¦)Õê,­ð©×â!x°°(hB÷“b­þX¡eID•;ä6ð{ dtI&i×LwzùžÚ~ëò–¾q±fÌ"õWZr@”LÙí vDTÂf°>–‰cy—¶g_A%®c2¯°©´è[C¦0+$‡§îõêðSDº,ÛÚYüÙeÍÕm¥È‘ áIªÀnœî¥{ÜšñÃâ§,sãRJœßq+‰Žµ·4¾J `ˆËÇÍê¥ö‹„od‘c@è³Pð)7íløî@Yè¯mîU}Èë#[èó2-´w›"„°¼·< ¶ƒãvLQ÷²õòáPÕ»äW2Ø<Æñ¯S´*«Ù+(¨è|‰¸Q´ËÒTä(a4í]/#D²;›¼'¬ÿ¦wW±bI´—Âyix&¸… zG•®Qó;²N#fùéý¨”™ñ$3±¯ä¢8ïÇ¢þ”× É?$Z±;®¶Línï,zÄæ< E¤X•m7¶†ý¶è‡Q,tpD)‘áë{² ,³¼ŸŸ/AûµNüì’oD»Ëœx›èLá ¡ý×Ú¹ÐÚ¼L…? ¥ô§Lúm,ý_£RÀ$ ¿Öá(u¨í |Ð|*ž³! ‹ ¤ƒê—j€¸šr¢EEãÍ~jmîRL±Â´³.ë’åF¶Ÿ©6E\÷9ŸuMkQ…¿¼½kÿjôqðu¢Æ»úEÿ ÚÞro7÷^ÊϲrÙØ;äÓ6î™,èaNw+R~CWÒ“]ÓùÊŒYWÜtb#„O½Í7 ƒK”(O…~‘U6ßå=je AcQŒM¦/M ŽÉ?3!ÌŸ=xˆ2”v+dt×íÁv‹¢_•!Å&Æ1§b³O¬¢ý¥çsXµ?ÙûJ :6õ$2AÙ$æ*„ÅT´ÞÈ7 ‰{)¿­þé=™«óƒ¿JG£µ`.å\SŸqN #4¥×_5³½Vwêûí5l衬}«å:þ7Ê 5ô©á¬è(VþÇÄõ™ï냆sK°”ðwßÉ&„dYÆrRãª_ZñÜî†@Ú–æôÄ-Nú9¸Ÿl Á^Žž[ù´9 ö"x7Hðu®§€@ÜŽl‡.1_pH 3îÊ,é­I¶ÌõŸòg°2šøªA‡åŸ©3 36Nöágïßa¹&ÑjÓ~{ò9¥Ø½ "[Í¿Ez뵑SDÁð¬Tc¡XÁ^LUHgJi€ü€épáW”ír•@Øc´ÁÃÊHWä ºML‹tï7Švꇴg&â¼Í¯êéaM”àaRxSR7Éc‹¯InOus»vÞ§|“JÝò^è˜eúº_KÞë¢Y›.``oÐÔ:,·½8ˆšŒTBZXVNéÏÇXwüZÖÜã}}PŒ Ý•¿9¾«g¶.rQ¹ýSvÞ܇RA!te“#ºõàŠ¬ÊåAû-wýþ§½ÜXѵ]‹j‡¬f‡xWêâ÷úˆÈÅ3Åœ&>ü+*:~ú:Š®P©ð£†#Uè[…„™êTˆ¨-.?çS‚•¡Œòb êÊi–|l±£·íuâºZß„­À†„C‚;E2¦®€Dv’ ˜“ñr&å4ŒIM•]~i’Q…†z…^­VpŠ:“Pmm…kg-uø‰+Ý+ n_W̃òM|œlxLf‰éCržn3#©[:æ ©†u [YÔOþÉ{O¼ÁQ²©ù¤Ý¦èds׬ÓÛOŽŒËô U¤SA_$×3,T´<ȯÑÊ—6Y¿A{éжËùÔ½rlEÛë³!lþDøT—E~Zx•”ÛBåT%ˆ;ò£fL)Ö–ÑäÛ™±é…8«ë·sd™ã‡±äµõë÷. 'gŽ[´Á¬×ï]¼ ?=k\Hp–ì΄©¡ß¤›ç­±àØk‰¸ªUUHÒŒɸHÒ£vfBçU ¯ÍVS%$[zü{Ð×w²ÞÄ®t,@3ímy6âšæE—ŠÄ»5ø—XÃFãô µ®væ¾:×Ñ×FÙ)¢‹YÕ¦uú†øñp/ÇxùB>æM™‡è$ñY×w6wÅ ÐÖ,PÙøPœ|â}9r· .Ü-QÓ &ùz¥{G©Ö™wÝÞgYh_l'±ÚG–ætt;OÃpjYF|Íߦô.q—¯-<)ÑJ~ N*¦Þ6su$…0¬VÏuÐqè2ˆå e^ûDâ“àŠ\|Žçüz}ì,Ùô£mÏàm’ó·TõÅa1Äc‘8ã´—Û? Úeîû¬Šz©œÈÖZLH°bhåoœFwàm†]„N‡[ž~ØhC imšÂ{â.8êò\!·Ö¨¾]Éÿal…0#\I¢û“yÞJ*€’ýÁ6[ÏÍçý[!í°»C-»Ò¶©SäÛW˜ˆ°Ã@ÒºFÚQ=*ª›œކȽh™ü*ùy"ñhã- Ë­ž¶ÜCSú¨{ŠÑL½¬€85»âTç4|¦ÐÚ¡P_ñP¾ÉeÿYlgN$öîåÊF~—í©X汯ڛRXºº©ÊnüH.5{ŽÖ÷ÅŽ,dC•ê C[ÉL‘B1OªÈ«]EÚ%;Oq²ß a±wk(½±!ìÐÔƒ%n èùjœªùj—×:,Hp€›—RÉDÎ FའùÑÖ‰µÜ ÆŽ2¤3\~í¡ ®®þz{Z`oèݺâŽTĨ _tæO¼2!HRæe„º·˜y U¿˜q5ø½HsÔøV ÿ¨áÝ€ƒÖ—Øa«ºâ©®À wýrŽ+ çÄ—”:[ù> ^{´˜¥žŸÔ&ý“‹´x{sz\@yÜïO›ôæ?^Š`7ë†<915råtã;bp"–X°†’ÆØñ?²¿*˜[7Ó£Ì2?"2¬`"pst+‰˜ÆÜ”sßó"Ýœ$öà|‘ÿh„:ûÈ{ lw Êëá˃-jKŒ<߀QŠ —í/µX•êæÅ€xvÔxÅYHdW¶Wú¸gÝ;¸TçíºW^%—;I¿¬zÆŒ‰4LƒAë‰XƒNŠòÆq›TÓÙ1ÎêªÆɕޒŸÄÀé2˜–Ö†¦*º!ÀžF}O}’ñ ’ê>Ñ;FÉOžÅ…ØÒïzˆîQóRêóï¡?‡†Q­„ÖŸšws/ˆÝl<t-íÓ¦;Õb“¸¾^Z•†w®';ÜŒ+ –Tã-Úú6їѲ$}zŽD)[u+?ª@¡–vˆ¢‹K^6àqòÃJ·p¾ /ˆƒSè°}ílH=o|0d‡¼ªÌ³'*#‹F˜0V“_1è²ki #=˜t ðZ^W ±óüv³šuÜä¬Çç‚ÃÛ¢]>ðÀ2ÃYˆõAøþ‚±ò€45‰8ß›kæZ-n¢:É$ž¡;ÛâR'óã}u)FšW/ÍT¢j9o¼†ØU-…Åc—Š¢]ø~°2MmKø“#í™Ô å†ûÇGñ븗ý:×½'ªŠ®Ò¾j¸âù3w4µ<ÁäTSXO£¦Ï¼‹ï|wñ8ª²úÓ ¼Ær§ç=’$°m±â°¹Ò·»q_Ðr1׆Ùb¿Ü²5Ñák'ä¹Ç÷1H™{“‘×µä$«÷«:<µïÀ@T7‰]è}%öÍÙ O-ãòÜš(']Ñ|ünpRÙV¨´û˜³/}9¶Î!á&ÉÜSâA©M@ˆb,\<¦Û[óü"²Š™‰¡УD¡v:åÓ/àlCžm„B>ƒ4ßÄÅSËÊþÙX·÷XÕ]…¤¶Aeù6‹eîFùp4LºÕñ!{]KŸõMLä;ÃõÃ&çû[­Œª®uï¶Ùëeù”:ʧløYXlû H$£Ä.{}ÜE–!Ũò@¡Dþ × ¿ÿ¹a6«<Œ—[|UŠp©÷ˆù %ø¸ÃÜ<2!'!ë%´Ö)—Ÿ°´…50 «hN«Nf¯“óu Òcœpª¢ÄÌ'u?½‰=6$Bc—!ÌM ôáŒTXÒVhWnLщ±u蘩jÀgQb6^™Ïß¹þ¸2Ò ûÚ{ÍRåCDy%˺NµÎÖÈ…F ÊÊ^3éÍgM‡”>ží¥žvK²4α@Ã+R»]Þì7Ñ3f*3Tu³žjïµP™,9°ˆßodIسœÊf<ÑÀ“MZ’› #K…lÕ ‰Ž£Uö‡§T'˜û½-ÀÞdI©¸ÙÏ0>“çrŸ,2qO³òÍ5ý"ÒþÉÇÄÏ<:t=;8±Øl=Šo¦ƒ_š¡ ìé}ˆL÷·ŒúÖQ]¼P‰¡ï1MY®ßP¿0«Ú«vá}Œ÷m({ýB^¦˜¨-(/ñÊ=p\ÔŒË&>Q›ýǽ-IþzjÔ«‰6Wäí*ƒÕIÍÂ=£f±àý¯§Lø)âªþý"}jìÁqLqþÐwCk)§Š§w7ý£|-„Û99ºX…®§BgÕO †B%O¥Q¥›J1Æ'LcsYõœÔJmï)Ó[xÑþ"‘£ÂÛ±XÄõ"$£ØEµÔÖ½—¸¦Ü¬ã‹U ;g K™ÃÜî3÷&a˜©Hº3oöìPMTÄêYP>ÿF ú•‚’Ik Ëv'î–² £Ê'NBGbZáÀê]ÊùÅä@Âë=æY-6í {qzª#‘žE0ÍJ !ëmäÞ%8‹ï–ŽM(«)5Ý:åØõ´+lƒc¹ð[•ýü–ÅYá©I8j¼áK.¿êÂ@ƒÎòÒYEhö®J7oRa+¯´®¾Ñ@îù³m‹KZLÞ¸s¤è“ø^ Ü€[ª(æèvpÐRݼ¢o† ùÒC~B:ÐV)…©/ž ]lÌÙ8jf}¹Ð¡« ü1EEzc÷Öï1Ô™.?`¥–Õ@!>ÁäèLþã$#k ³i*#d3°)±ñ8`cõ6››êsê"—ÎbщºG¯¦Â4 áÎå±Ûır»ïY|¾|Ä>âØÙiÕa”® ëé÷Þ:3JK>Êè̘”LG9¾¥M«¸Äª|‘+lv¾NY…þú6±†ŒëΙEfBÞ¬Hæž%EërBÎp¤g' ªá¦fºƒ³–—…Ú˜ïâ|Öܺy ½¥,*Š`ÄãíôÌ#š';fø¶áhi²ÔÜ$Ð 6¨ÆeXL0áv·”#CCе)sTº}=FmI<5f¼*9‡A¹š{†ÍøÅ!2·éت"×û˜xN\`g.Q:ël¢cFÔh³k˜áeO¯>V’ÿáG«x2®ƒ˸ñÂ×rŽ1*}»sÐúj½¬ªúŸ5 ;$´˜Û-¾Æˆ|ÓÅAÎ £Í9!RMQë|Úö2KZ ú‰àkˆ³Ô¼–WÚŽ¶:ÀJbQIŽ3‘F-ª¨ÂŸ%Ž~Œõ^r÷|°vvDkzþº?÷îèˤå‡þùGôxz˜â4¡“50n¤êÇ;‰s9ñþŠ\ÌÁNË=ätBÞ}q­´?éä~¬—}æÄÛDŽf¼“ΩúüæÙ°‹¶Z_ÔÝüS$³çRäü$QYùóÜâÔËÆîC߆ÔÌÆ$úµÿV"´ä½šsEÈ•™ÃíŽ>Ä–"MÉ]½ÄÀc~ÝC¤¦DHº´™¬x®b<¼Òí @ù’Ã<‚~¸Î`ñ#Á»ó¸©ÄÚ#c”,ÒAûgÕF ²‡RPÄ(ÊwS¢ƒïz)ÐøC×SÒŸž¿ÑR%I­$IK¦¼ú"™‹(;ˆ2“{GƒB˜Û6 yÍÛô¨¾ûŠ«ÚT½’—iXçØl[‹³÷Î:ûÙç6D’‹¥­Ÿu~ J\#2Cؾ2Ķ$ÅýñjÉ |(0Œ¡Ô‹=LéƒÂŸî^ `?y÷K} ©ÎžJ¦Þa-H›YZo#U¯Ò4áûiU* j'ç®Pk’:ãFλïþ¯C+ï\a£;.èî6û<À®ïŽ«CÙ£ŸîxsyΟ¤f@;=Kû™T\í]Ù¨+h!G'ð˜ƒKÁpkÚ]ø6F(ݯëL ÂD๯æH7šõ3çްš/û^ëäiO´xŸŸ+oþ}×ò)½³ŒàÚv>z¹Ô]ÐùXÛ6$3>S#·&*ŠØ' /© d4AEÍwP[vœ‡•ûVßLm(º‹›üéÃüEû‡O6JíÄëš,S0ëé°)­vsFKªuÅvÉ0cœ­·‡œBp#ÜôaýCñTîÊy§X ö$.>…n5¨`´—Òv¦ÃwMgDzv­†]âð6–´uÖÆ75¿ ‚îÔ¹d¼J !„{èI\_õèD0’ìoù”¨lÛƒò¬^¡ëf×Z6 É;ò»ø1å¤[Õ0¯0²*ê5"Ažá?t6!{pô~»ÀÆ–Óÿ–T”S9ê&›sk·BøöÎ_ì4Ýt)fŒžê<ƶy'×(F4ÇÛN͈t´ .”r›~6M(%î+uû(ä9{ûCó_³ØÔI¼úz£‘Ìmä9fû|æ,ÛiwQö©›6dP¢mÅdz¦¼¹þ¹éz¼Gµ€Jñô®¦(õȉf‰Æîj5:;DÕ½ÓÈldÿG‡VQÚX!3fÞÖ7±7(ÎÃFücßVZ»rH–ö\_§Ù ØËËvņ›Š7Ãï£ä˜0:ÖðBz»µ‰³FÈw_ÛxYˆà7®Î7G|·¾k¦#×ëžÔ+Ч9û$¢Ñom*‹Æ\“®$¯£ÝñûKT!7È-Â~F“)¹e³CFj@G‹DB.©Áq|päâí‡Ù8Bžg+ &Ûz0Rù4ÂÐ2€¬Ï˜w’zšþ]JWO\=ÿ(Ö¹U!ªÌ·p½\!Aìr@e΢õXMh¢ªÇ] ó³ëâÂ&5»Þ2WðF© _í=߇Q›z¥çqbËŠù©Y{÷‚‘ɱ-K³hÕx±ß4èë†T:œ²Þ˜ë¸7ù¤Ðê(……[ÌÑ%·\çSÏOü˜p‘Îë1-è`9³†`üv}CkØ {K2+4XÝh†àfF]œ;HùÈ3ÌÆ99O3ªŽöÁcL%(Cæ^Êwò›Õ#“´AÃ㹨moóEõ»o×¹`ÃaÝG—ãšW¶ ò WÐÈý @gΠ/7¬eä…gR+J ¸iGj=(s¸(|¹å@’ jƬÜi¨Î~²˜8Åäqë&#™HÂ^u¬®P˜E榾‹í”ý¶“:ÁÀ»Â¯pmÏûïiñh P01*ÎS­•‹àWP‚P^‹õ!Úo‰…לN½§Àmfé ZŠÇ¹¯O¿V·‘ü©#XÅÄV5œòc -ß „ïG~Bû½!¤®Š ý´ð¢ßßR±8;Bfk³3óÄ™)_>"MD(²¯e?©•¸ ;n´½ÍÉ\Že)¨ÚKiäž2H\•ÄšÅiÕ<g>û½£<4¶2íR2Šb]‰_'ŸíÛh@wÖÙë²²óù1b¾:žþ&šÂÓ¡o9¯ŸŸ+/É*1/ì-7¤y§· ‚‹# ]‡xì_ߨ_•ÒÒ_F}«X l«–¹§­A÷ e“Õä@kZñ¤=|ímÃ[¿±ÞÈzÍûÙ£õÅq‘ “¤ýµði½IL¢ r'#vö‡ç5.½£Ún}CÐPãZMG|»äàTH[¸^Y?Öð×R5Œé}Æ]»¶æ£xú™(ýÏà BÓ.ðâPægƱ€Ö‘s,ËÉ%`tî±\ÔØ¥ô‡Xe¿ö7Bano<äa"Aü1‚Ë©âƒëO–m“qÊK)º‚KGU¼{X¦Èáš+:_‹k¼ª‘¸»:-ŠEoâõ!mx<Ü‚èÆ÷žͼô'^—T.~Ü¿Ð!ÅŒ¶¼~<}àËj ÷d¿&û“?@Ÿ µˆ£¬F ÜVðLW—Bˆ”Õ}1×"TË>XÍ85à¸9ùv‚~ptŒ_:Ÿj¤”Ë£RFš}Z4˜·>²ŠF¦Uœ“3h©CÃnZ”`tU¬Z$D²…°ºûP0Lô ïéô¿v­9fÌv1/p@w½-,ŸÕîäÐ*>çgÆãF½Æ Z ëü‘Po’Bìl Ò̬©˜²»eGk’Îàp¿ª@ÙaÇŽö|÷•ÜÇk^Ðj"þbX¥·}‰ 5…¹ìþÀ×¹ªáÑCuä$¶d_6uâ3&ÔN:×XQÕ×þý…¦ì@ ˜ »@¥Bö5‚P\$‡>ôE¾-öñФ ÛYw Ó…Ç·ë&VEYÕUNˆCC€ˆö8¤âXršiSs–# ýRå*†¿žœƒ]ÃÝ„`(…§¼H€|Ü;Z£/5ª¸,’ É&Ý:­iæc»kÀ¡ïèìª*>{¢ïe/Õñ–¾Þe ó®÷ÀÇÔ=Ÿ{ø±05Aç5¼^ÇÕþJ2ñ¸uh´àæè­aégl’‰’KÅÈe ˜Äç!ò&¬V&IüIÆ[W»;# ?s C뱫Cn­Ë[ÉÁš`MWc07ù3úÁp3uoÔJßÏfðØíò‹LáÛö„apq/™ „c³TØšzï’õ…c]áñXw[I ¬Ê‹­ƒVKu¢ƒÕöÓ:®+3y_ Yš!ÜÅ9CÎÜÊäXïkÙ…êë<#êúû_O?8›íòÝXcS]¨wažqDù’ e#]ÅF65ßÚÓŠ2I'6ì|‘±v°F–Às›ˆâA– ¦’½±º)µ/0ì ÅƒÒ÷˜ ‡,]B¥`°Ûfy®(.n¾È[ž¢²ï’LÈŠ§èÊ&Ÿï¿.Äj>î£kKهǵ@t–ˆGÂìq¤t5àÆ&+ÉÄñÊmSçá~äÇ6…')C$ºÆ>TŸÂ]Ç×F²äc?˜ ÁœÐ×¼ÇÀÝ·5†=OÁt,:‰5娯ëeeÉŸ4ÑO0V¼TÂ¥Ѽñîy¿(-¬ŽÕLô:Dàcúâ‘T âŒS%–&”J¾·„‰Ê²<µZ݃ªF»Ñ®10‚a¼CT¼ùágέ-'z3‹¸6Aît/d; åO2s¸>ŒDÅ òe*Dd"?Eã"%Hòg;Q`?£øùoÐá£ðÀ)ïAÀ+_Iïb˜Óºl\)ù˜G «_é’«­Óð"I­šª)÷N!B×:}<‡e¾ÍÅ0×¹ þ¬xs5ª®™vÂDÄ·3‹}>‰D2†äƒf‡*NŽÙ Éüq£ì$gbH'Z‡}mƒøÃg¡ê% ¼S:czäÝ)¢åϪmpäuXÐò¨¼…À~£Òë¼qi]=l¥7|‹¢YÓóõ¸Áõ ª)Ý5ÍwdRéŠyú ýËÔîÙ }@bÉn4‹Î«µÃ£‡º•naQx!ò%µp.Æš÷FÒd+*&Ü'êôQ)¦ç¨ £~ŸMP×?Y÷µ_¿mFÂNÓYÅâz{îÈ„“Íɱðs¨Öâ’8MÈ­Ù»1Gç\GäHaév{‰ˆK—”ç¡ùRÄV6Ï´ÂüvÄ,UƒÊ¿Eä{ ³T~Ù>¡={¦c5¼&ÞÝQý¸¢™‹ˆíÑ ™וwIIWÈØ`EõÉ&6:+…ºžZnp9oØzYhxSâUÜšNÑÞn­éQæ(jsu[ýZ´˜Gµo€`[³È3m­)z@¢ªU{},ü±® ýXZ ¬üç®f˜oÊ:®øåbÕGÞ ˜d.;=_bö6¢ì}RtѽzÈp(Ü8ü·a$0”.ÌÉ#j‡OÒïåÕ©Ä ôHö§ùç²Mža~8£³ œ`lês¼N+œå—Äèˆ1º†^kJ¸œoPôÖXòR¥¶ø+®ã‹Ë½^ñ'’;íËG'rQWÜ$]O­¢WMz:p+ìK´žç`Ë›æ.Œ¾#Á¬ß´ÅÙÚèªgQ$§°ú¦t| HÁµy4èáp‡‡–š"Tz>y½á¥ö]J]úL9ì•=¦¡¢ÎñÅ›n=‡€èc~tT é×ç2kñXV¦Äñç ßzÎ\ŠÒmþf˜Z4"YØ÷o/¬àBb}_/Ÿ$¶< x8)´8ŸÕ»¬š˜å\ÎÊiŽÈ|Û¸±pý²Ö5}~ÀB]´Éæ.37åéZmV?¿õ‘Ý7¬]¢œŸH£™X ðÇ©* #¢øé‡1¬õy³ôÃ$,¨Õ}‰±vŠŒðX™¡G°}ÇGM®›4s†fäÚc¨ÛD2ˆÆtí ­ ÓÆ~/I†Q„>ibÅ–JÐ…qr¡0"k%n“¶ßìÓB~ñÑ ö}7…qjòææJÖH x0¦s°‘À&~{›“hS\s|¶óÔb¸›{½„“vžàmVòÌOd§(ŦˆDp ÷C‰û¤2ŠÄM¤ù¦ïòyW“Jæ°Ü`-î|ß룚(^¡Ï÷:ÙEå6 —%׳ ºä®'ç¶WwÐë8¸S³nl÷Á©úéòwÔ€†Mœš¢Öãw,’J¬×]”*Ì33ÞOW)[Wq~‡…èÙW*PzFòÃ*…³º…2í§ÒæCÕòêb8÷i݉O³B×Ô£yZÒoÒÓ™ù«˜íXxeùVO–“ˆÞëÍ Ñ+ t2-4çeuûú;VÿP:R“+*•¡‡–N‹Å Hµû¾‘€³µÕ' ~ÿ^Ý(|äóúç°qm¢ïfDëXy§ˆƒwº»ˆ0×äl³Ã—°@¤CC8Öá£Z·áoò¨ÈœPfþ x²K•ò¸ÅË7A…añ¶UŽ¿fÀƒ8â=oîvUC›¶N¤O 'èø1Y?M­R?ÌÝצ0}øñ\$ˆÇ u?qÎêÆ–¬‚Íògñ2ft<>„ `KA%ky×Ð:]ˆ é$ú@þÌ–‡R†õè˜òy½¯ëßÔåü• ÄZ$d.Aš‘Úü\À b¼µ’ëoÿí"ß ¸ÂQ™µãÅnºÑ¼·…1t³4—Ø:¿WáÔ0H¤©ÞwM}‹@i[­r,(˜vùAm:i»É Ž=°¹p`–"3n,É1×Ð%06þÔ¿M§rïN0¦ù¸Ý âî>ÇRP¸^u°K˜®ft_„V±[†îˆZ~‡$üuåÇkÛNí†vÍÌ$¨›Ún=Æîj;xSYg€&y*¼~Üj‡6p‹{dý˦¨AgÓ0 $ ›2‚¤‰ýaÂv *9₳z!:ôæ°-]j¹¾ çY-½³0£Sg›NxנdžäCÝD'.ÉM‡Æ2–PâFôA¶.GÝ:ʉ¬ºüÛĈ†} `D…E"[›Á¿‰”*sN‚j¤\×QqéªûÝ깉XQNƒäÙχʵŸÿÝÔoHØ­\ç£Ô­óp ã·kt 梔'¶Þ‡–“0|ȬK¨ŒÇÅÂGf ›À˜»s°;×o}l&¼x…q°íNÃPà[†IcDµ†n‘N v-ò­9€#´Ò0Z\±Ëª³r]ºño‘4Eɽqë#âòWE®æžç¥Ä¥rtÙ%A_r5ØäªhOФèóJê3\•vŠQ×Ë~·;Ižì(äì©Y¦ôhŒ¸ñ_‘DãnØwñ< .Ä{jº†i$ÒR?Ê Ð|bëÔLý³Ïʆócøïý»lÂã¥ìâÄóÅ\®Žœ¿ ‹øŒ\sÌåšb¤$?#%£Öfaµ±³fŽªƒŒäWêE2Û”ý‹'ÕaÇA‰ãÛf$Ëh‘DóhÙÝ€zí˜$¢ïI¾5,¨Kíû—$,·‰OÙV–$8Ð8“× Ù“>2´Q&<Ÿo”u¬²–ô‹;P½z>ÿƒRÖ£óÁ4Þ÷½'ëÜî¯iÆ™x-äÔ²é*äxlh™w²¹‘*愵Üp¸÷ +p„àèúôW‰zõÀÌ)–„ŸÕ¦Ø;уþ"ùÄ&»Ë Ô  üy¢qÊ…Å JŸ—"à\d=ÿìôñ*抃íbí?Hu±—ht‡l†U'ITVé²)±bªÛ÷äÀo|Ä…o ëÝ^à î:X0€§žã½2òmmù”ËÜAx$¡[?ÝRXéIü uöW÷fzÉH§í\ ‘Þý™(È—µ×ðUîYRé"³[Dž(2#!k U½s÷1åè4 ORMç9aÑl}Ì©R”õe„ĪI9¨×gçî>Ä.XÇ=º³í¦‰ëÞ£EÍTRü¸€rûeÞˆAˆ¢Ä,òù>Y2_{­l§˜„$µ`¿ yÆ‹ šÝuc¯7¶®#ýL¢s¬r'ˆ‰ÏÛÖ¨kA©sxŠ“€‰…ìsØUé”öUEñ6ÿ:¿&G”~Ÿ‹ ðz9¯¸õŰ[ÍëÄ Ý­$×LLÞ苬¸+qÆrãꤒ֣kkXŽÐí8`<د!ðÏÈÆý«©¾OJ¤ïü g*ˆLê^þØÑ8Ê$áJ  å¡½j·?„$«Åþ~Ê{ë>¾àoÞ’'£ü DhFàtÞ{s™V¨: VRd¢/®­/2ÄfGsQzZ´My¢êÝ6}M·G4úÑPn™´Îwû‡“¥üW$öl*Þá¢f¿ Ÿ:nÌÓ>Ùñ]â%ßñÉ/Û ¤ëðjÚQÕóÐà§‚F¼’›%0w.½L_‘Ç´Wð\.…¬e~c€™÷ÄÐÐ?½| Ð`¼ëa ?P?¤L:›”~.XŸdéºØ]X2e“&7Ñ·ÌôEÖm±ãøÁÌóéÉ‹8ÂÅ¥uØ¢ELtâÌÙG™"PÉ¥¦„£ÂäyÛXºóžh&nøêÊŸìæ]Ìôè«:¯ãרÒnL€Øü—0¨5!ÒæÜ\‘Í9Ο?tª——á÷@ÉùÔvÃ_A9Õ÷§`)†í*8@A܈=VJ‘Ì4’w[+rÚ¥§Lx®?Ó &™…ŒÃXÍ8[uœï‚}O £ÊF•ô­©Œö¤ÊØLË¡;·2Ý6ÓŠaã$¤¿/¾Ò)”5dVfCÿèUl𬱃øÑMÌ›‰¨dG…{JS¹£‘¼ãÞqfªÐ;&ÑM0Ç4˜ ØæçÌVWý VÝ×õÁŒ°êàk*'/Ç,4™Àãr2«yï“ýn}òßö?îAùñ­[Ül JQÚÒu)ÐÒœ®ØduÃçöÚe$ºˆm°‹GЦïU€Nû4ºàPñšäÆ~O‚—ïæX830eÕ¡Ï­ÄCf!€4&7ªÖHaî"çºÉûˆl6Îmq]=¨R€û_‹F˜ ¯SºÆKM7·!,=qÁ„\f'~I˜ Æ’ÿ¥?T·KÄO€øèöoqEˆ)‰èí0õÊŠ³ëb[çsEù(a“V¡^+±n¶~&©|›jB< ¥¤î3Š^@|f…ÎÆ~^|bW(PÑ¡“§Ú ÜàÛ…èùDH\üc„¸…R B,ŽPÒ3#9‘°¢Ë@Å^ó☶&¿'ˆY½ñü%g¤ZÇÆ(¸ uuØÍƒŽÝ•}»%™>1ãúó÷ǤPþÞí“÷ jÅÀÌH~k]÷ªš-°7‹Píæ£4¬m~de«Ý~Ý e E›\ {Kü%0 *$ÛùeR„úJrfÄH¡ Ë€­øs¹ë?bk\<Ö3Ó(;ÕÛ9Hè!c…Ÿv,DZ,fKœŒò$({>içî|õ}þ!~ì3ƒ¸Xº›ÒƒR~‡­‰Ä=6Üæ©'_^ܺ[ÌêO¯å„e3¨oM?))wÙä5§‚A^}¿4~EŽ&ÕB¡ÿ ¿¨ØÌî ªY¾%¹E\ðâ2Úi4)eÌá0[Sã¬5L`Eë<¸6ßÖ`‡©ióÇâüF“o“Ê%ßrSKÀaį5ê´g)òþŠRŒI>ð4)³ûÆBD­õ'RW3úðu®Êø7 Ðø–)#Þ6úlV;Óéì Þ#–ÖÒïæÊ«XOÎ êhO3á@£Ùy$¼ìGŸ[²·-‡“Š"-Ï>hŒ^L ®{0êå( ±3Ì? Guå~±£ÇŒÝ]wïûÍYìPÎrçî¸ÛÀ5{  –9ü&Aª·³œòüU†ƒé w«Á‘®îÖ7}1Z!Z˜Ñ¾•1äÖ¬Ó ÑŽùq~û6¢ƒ+—!¨osQGÅÌ+FÝÍ£±»°ê÷ó‡BSØ”Å#.ûi¬tˆ5ÑtÁùc¿²ôØrÆg°Z×§§¾5‹ë×a Sܻٴöp% šU¶¾£FdéîŒ!¢VÜo|]¸¼¥,¯êCv£Õ´ž´X=xl¥z=bS ròô{r úùœGO–›;”âŠ.nxŠ5ÐØ©Ø:ð”‚ùµö§ì±Œ!0<›7@þ.¡Š&± ªQ mÞ·Î7AÛÕä]‰Öj;bZ,Òdcq'Gƒ´!Eûµ‡0G­œÊØÆ€mÀ !ßÛ£Zž­ïg!Ó?z¾Éèǽœ·@£ƒþgj°ú3›5R†Á³TŠÏèOÿÖ–~õ4¼ ûŽÖr‚ÀÒ‰Œ¿Ôi¯â›bGz‹1rwd èŒm“Ìr–d.ê`¯!Íóº`<åX‹“0®ôŠ+ùü\´¬UL?Y)³$µeŽåã"«'@“ÂDºå"Øü¾~m©ò…MDxþÔ±;SøPŽ>j@ɽ%!î0ÜøpjÔƒ-ªÑ½˜y“½ðIjn†‘2h-ÒRG 6 <©C¥7E§ì$ϋñÑè ­MìS.r M$xöuÆœ7$‰‘ ³¨J¤ÃÛ=)'¼˜o”Ågå  ­ÄøÈbñùƒÚÜ$–•jbÏw[ÑÐÓ>°3¹¸o\_œƒ¬£‹Phýªzã9RMùksÌÜŸ›)ÍáYqÃ@¨ÃSoöz<ßðÙXû{"ŽÏƒvâN½î5%Q',ÍŸhä$ÃzL° jêúå&Á8âï gjlBÖÞÅÜãLßáÁÿÀaꈹùtÊ /ç]¼‘¤xh°óÊ1<þ%¥¦,T38De¤øÇr`ñÅœ\Ÿ¬²Üüv‹Í¼ÉšXþ"ƒ ýG©Ü´Õ`ø†Vä0ÓtšG„±kY°9 ¸Û@%Fþ¼™O¹£X„ÓÇ”Åtø¸×Y{‚«õ'ðø9ݧˆù^Y²™r¢ŠWàíP!Âàâ™Í`¼ÕH„‡ àW•IY4i¿Ä4/÷ax$ù+™ªàÛI˜ÅóXdC!¨Ìp;jƒ3©q'ë‡åœýy¨‰.ˆŽCœ¿â(võ²68cw´–bµóõ™@B¢úÚ›sU b¶÷}’jM­àÓK¦#€„Ôèž3,ã-õç너l̈™Ô‘~bK©à\F•¢1s@ëäC×)Ô˜$7þ*½ßÑé;ÀOEÜDÓM»’LÄû\wjVïéí JO Þ‰ì÷ÉàƒgÀƒÛ=%N–÷¢®³˜æ-ÂØÿÜ‹çíN¨ªw`ñcdÌ”}éYÈæ6‘@é+ÚM¸”"«àçg'ûÂgäóßZËñ,ï¨DÛ°AË­ŽÈìøLµõéÒ©ºá:⻚հ×ËDvˆ~_R› G6ºŸªÏ殣ÁR@&€¹,б#!iÌÅb1ikY˜a,‘ø´T‹'$CR‘%Æó|w]Q7hfÞr“¡÷TÆs%>KhwàœçþvQ#<Ék–ëÍFEøÿ^¦bs^p>·z²¾ïÀ…iÚc§[–ÑKòAÍ?£^IÍ nÆ-ô§¯ ¨ÌKÕ³-~õR ¤5Õf 7_¤å0{ä/Ä+46¤wƒØï×zÁ¹Ø;%Xí×P#íŠ _Oz;L@€2JI£Õb _¯imkEiÄ2 ÔØÛbžÛ¹µR™ 0ëغs~Ájð¦ë'/³:œÈ³ã4Ø¿ð¹ñDVnÖ¤wè^c6ò}|úÍ螸ÏX¼= ½Ø¶ÌØ÷¨¶‹3rvY{ÕwW™zI´Ñ'´°iؽO2@É€¯p4ÀÔ›Á•â¡E²¶ˆµ[!ßÂÆ« üû¸PgÎt8ÔÇ|_9þÆ9¶O“_à)©+Y>±ßžÝŽ/Mæ´Î¶w0cžÎŸo[Mhh) mÄÿâ ]'Òíçå~‰Ô™9T£`¬J@j¤pÇíÍè1×èØna•Ûàêàm²ÑýÞ U†§¼ìÍßL‚/$O–uÛuk\–EÀïÒÁçc åcQí|똩ª:h*ŽVäÌFþl=eW*q%J´ êŠé…”ª}½»¸T@KìÎ?æbmšêæëyHa¹ÈH|ÙÊlŽ¡Ù(ÔÄe{C_åSèÏ#xÄUÿwðø"<šñ([”mE°$IÎ9¡F—€QáXŠšG«ù÷ß‘ û$iÔØná“ØYð„Ï‘!/ñ/?®¸1 úí 3JZ5?¾¢x=zÙ¨!x#ÿ»;|ó¹$ ˜ŸÁ$ß°UõC=×6=è°`Á¶Cã×F™«œmC8ºàè-Ÿ¸¬º :‰° 9éŠàÌæég˜p¾ÖjwÈj,› zMj‰ øÉ•lãËQ‹[¤Ðô]èߎœëk$¤²³Œïϳ±á×Z‰mØ ÞI_þÎÝQ3žû¼­é±³wC²âw2¾&9qí(&a}]§-3ÊSòtW¸¸³{W…€éA‰‚z"l›T­=ê£U©ãRM\ìûØ?½ÖÄ’ßù@ŠÏÞܺðß pz{nèö V`d°Qæ­3Íó„#°`J‘ü²+i“¶g4ª>´ƒ›Ùôâ|I£ž¾úý š2› Z4KôÌÈ`èÓ´!îíô²5]¢–Šœ3x„ÜVÀ¸,Ec©£ìz™&ø"€Ø÷*Q襹š…¨fo&׎ º9µoŠ!/ylæ£Ã?PD\OÇ"{HÁÛÏlX{Õâoc3¯´‘…™§áYcå0YІÅeí Ç@4öG=f ñTE‰÷hKKÖßcLÞ ôÒA>ØìgðhzìX±ãXN#4í¡=‡RV  1 6Ðâ¯hhMÒà{¾Z{ç¨5l†w”@Ÿ©‘°Bþ:öKÇMVZoÒÐgV±êû>íÉsÿè!Nփ݂u6Ûjå Õ]NU!ã·vϰ—&M£w%Ê¥ÅGüÕŸäFŒÜ¼Ky¯y,‡µAÁbl`£ÄBv×Pü¦‘Ì.¹;/Èl”¿ÅŽ“ý*lUªÅåfÊØäãµe5v·Æ©èyá&Û3/üp¿½ü°ÆIkÍŒSA ÍfOŽÜ4úÎSL>M^ì•N³8óÝփњ͌7¯5Eã\(Æ€VüÙ…c(Y-ð 8­2·Î)5÷Æ×qAr'S£öW÷ '~âî]÷¦¼b³jDàX·l™2O®¨8™@7IÀä®Ï´ƒÏ»UŒ®§·Ú;Wi1 “œË+cIõ" ,ñ‹n‰¤Ó-iÌHpaÔ½üƒZøâ—Yç¡¥ ºÏ å3Ïe³V=þçkOά-×ûžâ> RU“IºËϲ£™9œª´62_÷YµŠŽ‰å1Æü|ogîjZ`n‹G7}²¿FÄüÇZÛÒýEu„ ®û¶#™ÑˆúþE’ÈÞi‘µ{p92ÁȬí=\rŒH#VUК;˜Øúèwm{¡YÏK%VúNØÆÎŸrÁ«¯/s„`žUËÚN’„I·ãëœÄS1¬¿u¥!Cý¦\÷¥à–xLÿéAäó™Fl+ì›2Xòõ áÓßNÀtš ‚.Ö½ØtÙÝP5†7 z'OÞ`¡}Q[&IqHÞE.”ý± jN½›Œ3P¿ÃZ­4/ºß©ï_E«”á#³of˜.§WN›TD膠ˆá­‹}cØ10£ÿå›á€¾¤îú¾æ9;Ó‚¡|ÁÊË^ÈIqÔZŒ6“k·‘Ÿ´b0 ĽW ÿƒborà*Cý¼xäbþä½lá3”þ\„ JýãÌE†k°÷Øs R«€«}{”>é¶Î”þ ù˜W€„ÏäV{NîùpJCú¢9Í£`ÈÀýÜDû¾ó›Q ¸¯ISF§Í4M` V—¤2µªçÁ{ï"ïô‹µi×4LSå^uk´¬– endstream endobj 124 0 obj << /Length1 1607 /Length2 8680 /Length3 0 /Length 9736 /Filter /FlateDecode >> stream xÚ·P›k6Œw§h ¸w‡"ŵ8)„‚»kâP(…âî(ÚJqwo¡@qŠ|ôœóžsÞ÷ÿg¾o2“<×îµ{ïî}í3fm=n9ø ðS8Ì›(PÐÐåã<@ ?63³>Ä þËŒÍlF¸Bà0ñ`ÛƒMäöÀÓ€ÃjîPŸ€OXœODðbÿ!ÂâEÄ ÁPƒÃÀ®ØÌ pgoÄÎÞíá˜ÿ<جÙ|bb"\„äœÀˆ5йكN´AzpkØÍû¿R°IÚ»¹9‹óòzzzò€œ\yà;iv.€'ÄÍ  v#<À6€ß 4ANà?;ãÁfèÛC\ÿ´ëÁmݾ¿Óýý;öG0ÈÚîä ‚yC`v[ ÐzªÎãæåÆÁl~APWøC<È‚^<þ¨x*§=4øW{®Öˆ³›++ú»EÞßi¦¬³Q€;9an®Ø¿ëS„ ÀÖc÷æýófapO˜ï_À³±ýÝ„»3¯ ââVUü‹ò`ÂþÇfv@1AØö²¶çý^ßÛü‡“ï·ù¡_g¸3Àö¡ °?Äüðƒíë òÜî`ß;þaóñl Ön€`; ûŸìf°íŸøáò/€)ðA{|àïÏßOæò²Ã ÞÿÐÿ¸_^Eu5cÎ?;þÛ'/÷ør ¸ù…øb¢¢! Àÿ¿³hƒ Uü'Tf ˆýYìÔþS°Ç_÷Ïö×n°þ;—&üA´`Û?7 ­¾øþŸ•þGÈÿŸÀgù¿iü zê…þáfûÃÿÿqƒœ Pᅳuw{пüa `ÿK5ÿ¹³`ˆ»ÓÿzUÝ@{ ³ƒþ=FˆëSˆØFâfmÿ§Xþ´ü^2(Ö†»B~¿UÜ|@àÿø6ËÚñáÍáú È?\à‡Åùï#•`Öp›ßÆ/$ ! olàƒø…„¾|«höúCÃ^Üí!ðО?ÀŽÀþ}£Â¢²ùmú‰ xõÿFb"^Ð?èùâ$àµþ >Ä=,»Ó?l¾­ò‚ÿöÿ‚áNÿ@> €ö7z8öÐý?éØða>¾‡lˆøÑnžð¹¸ÿùJñþ'ÙC>`ÄŸôÿš¥µ;ñð6ùCíƒþþãÕ{­±ç¦áÖaua—5rÔžÜ[_¤&˜·Œ2ع}çî×ø©ìÕoBVçr©?.n(±ÉÎÓßú~omÀˆlKÖiÿåwc™¨;¶ÕŽ=û•|`´è»\}?- ·¾ì¶ß­‹Ÿa°#j+r—sž‹»(¾vÉ¥gŸ²W}ÙÂpÄô–Îvµð3œ›²qî8ƒX³à’IæüÙS”ŒènÜ´˜ÄG^“gçĹ£÷ôj‰œØþûqž&«üñWS>Kúü®Ý™›PÒ¢ž±øÊ囹QÌø–¯ †Ó§È;GÖœRø »l>[šº—ˆ½Ÿ,Ì£âl)yQIU_Æ®´©$9•0$¡ f-ª­x©þi}áÊ¥•¹×‚ŠÔ éâˆmõ\çÖûìb°‘Õ=çˆÔµ'K­§‡õ EÒ"çÖ³àGnÙ ÞÄQ,› Z/}Z"ml÷R¢mí Z·{Sç¼·¤ÏðqÑkHuòXÍg<ÊcoƒJztjèÚqµqzlœÊÜØ"µ[Ó–š«ˆÃIý’¼>›Öý\¬•*îIê›Ì¼VFmœAKóº­ï8ìYÕ»íýžØ—Qýß6HË Êîåª+óDßa©`¼Š¿jF‰\q'Wþº&®¸L¹¦ÇQpbTùádäýÉ¡y!7P’§ÌNOžWšBb’£• ~8‘/Dm!ÖÐKz'^ò¬ÍïÇSì°{ßÞhÀ|dPÙ´×Êãœ_.(Ò@‹t¯ïiu:ýw¬Ï{÷÷£; q?J<ö6ù¨}æÖòh£…\ú¾vvÑy‡Ž/XϰÙÿÕ øÛîå2Љ оoÆ70PÒ }Šßó`87í:‚,ÜNh 5$mè û*”†ZL9Ä>(6`ôàd’]R@oŒ/ܦ«E­išBÎ…ãåY3uø†¤'+_žkð‰…¦¢GaSláå¾=X‡—Éá¢$rŸ‰¬_<Ùz/“5NéÙ#$?6Çþð¸Õž°z"ɧúDËrËu©¨½oèé…{MïÆù‹U‡N7ôˆËûä¤ü£_x¹NÚåì^¬×¯Xø…}­œm§í ¢).Fo1â níŽi5ÊGÍÚ51*Nðéje 3KÇ)¼Æ³žƒXS;CÞ~z†Ûóš`/]dñƒŒN y– JŸIß${ú]'U´“N+‰˜ðÚ¬ªzHt‹Uñ Ê#ýs`áñ§–Ì+Îo£6Kæò{i¤ãx2ƒIv% ï¦C¹·uc›ÍeVè¯ÎÄÈ3…xö ©œ¡±ïÕмªqÅ{ ·GýuwFí·Äª¿î¹íA ®É|ÊÌY#2¿d8léW.ý¦ÎÇØ ”N•{ºdÑÚq‰`ŽY>»àƒù˜þB­séÞå µœØz¹\öœ/呦}Xèí¤™´ѽR·hÞ‡q”BgdÎ)G-º¹-?IXm¥$ !¬iÜ«YïêDIRÇÜTïå¼8† ™ÖíèuQ)U‚ôhÊ%t{ ‘ Vƒöe oã4æ*ÆøíH´vxHÃõûD’)¯›ý•ˆƒêF0EdÐP:Õm=ˆ4ú¦„÷>CVDGö‰ì› [MòÀ½Uθ=«sÅø§WªÇÈsÿˆ:™—ÃDÊÓDŠ´âé!M¯ó'r8XZgë^q7kB`Tº¼WöY޲Çz–Ãñ[ô P ôaÿù&n1Ù¶±ðý2–lmûÝ[Œ¼f¿OD²5©ØŠ6Ûfޤ£h;FµDj™È  ora³`ºî¼ e»Ðûʉ ôé-ƒF²®§4~#‹¡±a¨$1 ú-çh|ÊPM=ܯ¦ ,•h$ 4[ýL~SNÌ(Òú£Ž5k˜{÷ðcY XL³û#+f*QÚSOe;Ú ;‰›bô–Eè'8ÖU+ÿ-n²ÁÚÉ™{·ðz†ÂôKfª~cý3VÝÓØA*‡q¤\ø4­FÌ_ýî'ÒQ²¸Ö]#ï°Õ…lèÎDîDüÙGÁ–ø†r5lü0yÜ—ÃCL寠©2,¹Ä@; ¹ªNÊãÉe ôô_~’“Ês›²nq.Ï#b¥×>¾rV¥¨d®a£{~ê‘úi[ÄŸ¯A Z.Wýl¾*™^¸˜3-Í<¹‡3ózµšxj)LvšöøûWE+G}Ü&¶ªwæ9½ÂBº³Ü¦=lJ•ûrj ®âh`¹‚o‹…øh&weCJ® šc±N Ö_ËŽyx®¤q#?DMü|#­ÓÉÒJ6èUµõ}¸Õ–ßá¨PZcëbÄ=—z*ì ÇàÈpæä9·s€šä!èìݨ_}‘ç/v›;žóf¡~úšÁSòÜ…þÿ ¦ý)ƾ/å»5‰L9 ìúER•ŒG‰±æNµôj’~a–<¦ý¬_ ’8ÞÄßž8\ŒÖ Â¨BOjxô7SqÎ")wYʉ"E·&s}jû³•áQbÝÓŒ•WAº„E$^‘~& ýï=•@3¶µã?>6CœîßÄ Ró¾¨Ò¼ßg¥z}ŽúláƒÀV'ÑñϽÚàr-ûQ5¹Á×™õÒ%Äb¹ ÞÔ¬ªNn-Uâ6šOÓC SÔ'¨·Aº^y½ á76 º8È)YQ™ÇyèÁ]›bÛyzUýŠ6$޳½TI/˜j® #Ê,ÜÒýí…À‰Ë*šQˆ>•JÕb.­f aÖÕâÇk£DЂzúˆ,ì°ûM­o”óO¼@HXŸ´ôs0 ·¸ÛÙšÔ›MÞ{?_Áê,e0¯ö™Y”ái zwE†+t4Êý*YQ½AÈ1§²µWébRRÍK‡Ø) !ܵ©ÖfN~騰ùÖ•Öí•7)wký½?ãSÛh~Á±Í[‡xÎ%<ÎÆ*ª @NãZûEXl7¬(1r¯ÚíQ’ù“Æâè¨ËÇ piz%ÁnÚ !’1-%,¡¼Z}ûëÇKP.±vjKvä«ÉÇÃLÎ Y™ßi 9‡ÙZ4ⱦ:æµ¾LÒrÎÿ4èf­`Õ6•·ÌŠï« ªª0–cëgÝKŠâSËÄaÇ¥ª&I™ú“QrŽ_¹ĘU_}ceÿl)8GûÞÿ™q~5g£Í´´…õ²áKáb ’É€×Ð-)Écö È9*8 E__9‘+#zK •ºãØK÷Z…uÊÒ÷(ýBQÔ¾—nË3‘ªž-ì[´ÀæºA8ÆeÒd—ùŽOV«­g0"ßG{@Ý}ƒª®gDZ4\,SÁó{Ôô5fT• ‹›_ øÔåkÊG‰Ÿ¨mÖ!7uŸÜõ·Ð:SPÉF¤H_ž‡«%>1QWd¦žÚn«ò•ÒÈL:¸õ²~çe‹UÍQÎÏÇ@GúÔ(3øèqdžd(g~Ý;Ä9àòWάCðg©¨†Àêv±®-Ÿ^Õ÷ Þ4!ˆÀÊš]Ï5å¢ÓÑ \Í_HØ%"ÓÅq«‹ïÄ^ð’UÌW ;“€fÓ0 Ä7¾òy] ¦üÚ´JD7ìN=fQRBÉ –i²&¤ÄŸ¾$ÅUXH|-"RÇm58Çô¨ºRÃcãí7r¿úp×¾Ø/¸UÂÏúìžÀlF#M“=‰6Âala6sñéðI8ýE‰eø~ œCr©½ %ª–f¯‡….ÒK#AµË»ó´Ò”ÉFQÿ›É4áîx¯C_ójH2ÄO‹gGIÌó…J›k¿<†OÂÚtæPCc&¿ÝJÑô ©p)áêÂÈ kD}ëÏ…D#*>ü@9ÆØó‚ác¾FävÁpXbð3Ú-nrM¹wkRbvBRF^#Ãlh^Á }÷ó9Jt5=ón¢„þš¹§ÓªñŠŸÂR’2¢»Ê3‹é»‚(?¢,£1šû#7=%íêïNœSÒ'árÒ…Hb½ý€‘¿÷3ÐÙ®' Çè½a1"ó5¤žFªB_°¼Ç+Ã_í+iäMmdŒ·Å—<+”ë(ZOÍ‹Û6nضQ]r:WÒÚû38$›Ãâ©?ý\mêíø– nô›Ã€4*§Þ‡£”7I˜O=h ôÑÏŽfy1ÌX ÎâOMBbrIâh££¦ý¶‰ÅX0Þtöã/Û"DÖš‚t:`ÍÜu¡hâ­^Ó”NJÓä -]wp Åô–rß(N±Òuµƒöçj.£àrÝù*w‘¼ýöK'(vDL¦@.ÃâÑc1DRØwª8Ö¡•{Ÿ(CU½õ£Ò+ƒ×7ZŸ$üJ Zˆ.m¤Ãb†¨0?á§]áÑÛµ½Ç@C†ÜÀ=Šocr9‰êu˜}¤ú˜J Ý%›ÉÔ„u•ÓÏ?5,Gz8-oÖS0Ÿ]õ¶çÖ“šWHi+ø‡Ý,Zò/N:Þž‘’°|@ÁÙ“×*‹Ì$¡«¦]Ævul{xÛϱb~Ñ?^9ÌÊ3è­ûñÇ'?ý*7# ?SvHˆ¼`pLÍžÓ`•{Y² +­@Ó¶¢aáma£.ïÞÂæ™1ÔϘRVã 8œ|¯ô#ÝUð€wC4cƒžÉjÊfÄ~'͸°­îÛ\º å_®)ú™F䋌¡E0ÓxÅŒ‹¼<ýÜ|T9T ä0%~×™­èéÌX.áp\#÷èºë‹•ž®Y“ñ#üZžqOÍUŠ[…ÚDÇ-o’ò€ew•'{l¢ø£š"õ‚^U :;‰Ýd †-•ïlÒ¯§´XÉq¡zž*0gÅZàÆõ÷Sï³MmQhPé9¥óx]Â\y|ä´­àt4ëQ?­Ÿ¥œ­´L ˆ1©¹Èè„*jXÂmÃŽÕpj!×êïä‘BBH†JìÓì´ÎÍeFhÅÊÅ›D»ôg)߈ K‚¡×ÀI•i¶Ï îFÅ>~Yúà †ªÕ¶+…aÂÈ0†­wªæ-$Óßè xp{VqliÌ¾Šº:Iã 1,x‹ ‰”Ù,Q“· Ï{œýV÷- ÄwSåIƒ =[8rµ]@¶è{îéø™oá#¤²—lþûY”7ÑÛäúoÐõq4Òß„iWÖ†X:OFå[ùÄúÞ±f½‰òÂ>$ãÌLÂþL!ùCÒm&IL3s®gxªªB›·äšÝ+uè &¨^~DqXħö¥ìGÜLM×;uÓ×Í}q®Övg²³N޶¥ ¢KŸIÂ"ððÄôMd_Y… –„åADœ›Ëù›RCtÔËëEꊜ»ñšÉmdwØuÍ{îíeæMÂežì{¦¹ynËÀ}êf5/bª®»kÊ«°î#×ÅSô•‘Å2<žg>o?á ôw½ôÉÎ<`[ðã‹>èvoºÎeDõ¡_¸£EoŸRìÔ¸*ãyG™Q(üTCÊcfYévÒˆf¦~´‘7Ü…‘iöH®«çëðOg…мBõâb5ùVàÙ9ÑY–nÀU¡Ó½°Dh|%–‡ö:;‰rõÍÆ–6%3A­9ó+-·àÀW­[”PÛ9GŒõ|béÓ¹ákôþM²Q–£Íu÷hïNŒHYvJÙÑž\}™ ªÉŒþÅ™OÁô1bùú|¶Ç£C+s…½AskÎÝ à±Ø¶°4ŽÐOWU[ÔÀÖŽˆ‹ü³‘¡;tøýÂIü‰S›!ö;®b}ÓŽô¹iPØ!k?"~þý\ó)Î<ž=7ËÆq.Ö ·´ÙçO¾–ä 8&ˆÖÂg˜òph |i¹c›JÇB䣩O¹±T.óy¯ °AVZÃ~.Ñ6hùËk_ö¨P'zÛ˜Ö¾ñžøkè^7s[ÅR¯V㾓ÞÖ¸öëÏíµ øta p/3­…þdƒwÌÝ£OÛQ½†*ì{&7·ôL‡qÅ:ŸÚÌ×?‡’¾R|îNOZ£ŒÓJ÷‚_\‰·Íž™¹\è.<÷m•ÛMW‚é§šé’å£çy§+M¬g}@}ý!”ÚaôF_ŒòP;¹QÝ4wj®ï×7æ|í³j¤£·#U“Œz£F^¢ w̺ʺë‹ÃOÆqíÆõM]ÒËN?Ížulà}av¶±[硺t±ý¥5_‡x™ø$Y±vòÛÉ/ÇK×´{é¦L«ðÄ\PÜ;í¶fíªˆ–¡ÒØÊFÐTõà1”×Ù‘›GWoÏ-%¾c鉱w?Cb餓CŽ`"Œ ‰›d¾Ž³6ÓÆeTfc\Æí_/»º=kŒXÛGûØÝCš:Nˆäþˆ&67“1y3ˆº…t¾%´Ìp]%æuÒÙüãÆ8>åùÜ ¯˜uc‚Ž=ýº‘ñòÈ® ܽÎz±èå= õuy.âØ!¨bb^`ktsÝ _…ZÔÈ6o­6½ižmÎUý'V7VŒ³€`¬ÇÄ7ŽürYÒ[,4¡uK»u}Ƥl‰¢÷ÒØ/íä–’Y½"_ÈkÛHVo[ŒÇsM0ôæ{Lm9Íâ¨1$ÖrHVÕòêÕ¡ }@‘ÒóNkº +°v-ÇÏ©jóqÝé©0–ÒY’é!Aþ— MÍEjÚ;ôö”d±…~ôÄGÏv¤…Æ_ò±=[»&›æÄˆål÷ž’-%[FËŽÿ*?õÃÔ˜¾¥#å «‚–Ûê†(65:%ñx$‘¡¸„ÛïÝ™®¡Bˆ‰È!î¢Ü³ L•ÛVwÀÆÌcÅsþÏ­;ÛŠòx(0*g÷¼áŒoË@ó[ëf¯=]9m’.kÕ ÜÍEPz~ðÔrçмÄwDò²ŽÉ~}oX8Ù#V¡òÁE´†ÿcÑ(‘ÀqÁ—Ÿ?g§²N By‚õ2Ñ9‡(dY:cÍúÆÌ»³_­ä3h.;Ï‘z“l_u@_-ÁÚ'°•ãpœ1vâÇ5'´D[“û:„¤ 7‘wIׇ³©QÉE}é f›%šuÜî¨7²M«bLVʈ‰2üŒQu釶$ÉLÀ£³?(à›[׊AtLœYI¥™¤rè O»:¦±KÏêÞÇ2ÌÔ²­báî¿Üðí¿å*–lc5ò-n;# J¸mé?Èr Ùcc&oÂ)Ýï ¤ã-3|ÛÂøä+‰•ð^Œ7 ™Ype Q®n³4ô,3•–G umíx&>‡û&éD¤kÿXW€PBN+F”;&ÜdX€É7+n] èGôŽÅíÏ ævc\îpQoÏúŽ™LS¥ø»½©é/’2ß2&Ÿ|bR‡%”ÍŽq²ŽÑdnB ôgœ>Dœ¥xª³‘xwvÕåi9»TB¹Ô̯¹‰‘ßsغª–¹Ú¦wØé Dç™h~H½b¯g«lP`ß@O¯­cÑ¢Ɔ[T³ |•7Ê Û彟Ѻ1nÀ+q÷Pxw0»Í† «ã{Â6‚ÖMøÇ{†éPòyûsñgÜÓœÊ÷^ÉÏ0ט2ê¨YÐÒýtÑɘ9°ó\!Íe…©ÊÆ<üížÛÔØþ)R¤ccٿ̱þY7’Ç2K~†NÎôæI§dlÁ“(–¹Ô'¾ƒþ‘Zh”A››i”²ïPKZy¤gëæ\<¯Í¹„¡Ë:cTÜî%J$RxCϰOu8޶ ŸÈ…QÆÐwºC»|Ðêè^gwí,îÄ! jUk@²÷‹XßÞ"Ú= ¿µ½çJH"p1ò!Þ-3ßuÅçèAµ4-ËOÝ>KÚ]«s§d=¸ùå dåÝæÈ-rîNÇ-üvºQùùMkÊé[@ÑÛ,¨òkŠ)ÞÅ:òï«Ê·¹ãé¢4z©üô ˆ[ø~•ì%OŘ|æHdÌP[?M'9/CÈ㑃Þg¬F{ÙèÒrz„^`»´f;[ÚPêâ c¥ý,û $²mÈ©8·Ò¹´q©0ØfˤÃO³µÌÐê…;=»KœÛZ¼3mÿ‰0ÕÉBB¡œ2{ÕÚ4GÛtT´Ñn±JÆö”±¢TìTqwµÈ+”ÎÁ*ƒPì’²ãbøbæ%qÍêèE¼M"zEp@ù糉ͱqãõ¤óå 9\K<“!.νæ,†œó°«]†Ã¹`ÖuÕÃøLñzaœÛB—o9™:ŧ§õù‚d1®%tŽ+Ÿ½NÌÁ,áR”Rä Ui!bsØE„Y¹ *öÒÞDªy*qŠÍþD×WÂ:¼ñ> †òfãcôÉÖ ÜÉ®«ÀD¾"!\(þȦtŸÚµxa+JìAuÖ:Àg9ø«Ã}̲wà‘Ùý8:ÉxkÖ¨úÏXæ=z1úC2¢D=}¯ r ‚œ£˜~׺\– ®õ÷*ûÇ‘abuŒ×-öÄ4•àuV²]Ýn6ئژ ¥Ð˜é‰Òlu³³!',ÙG6¸€@ÂQ¸<“äE’¯™Q­Ê×F["ª2£˜âRþÃÅ¢b¢ýÕÔMx>ÄyH¯9{o%…ˆC›ˆu¼@ëôZÖz}áâ±°,ã'&ÑûÉÑiO–)Ëåm ´lÃLßÊÒeK¾ ='œ¼lŸðÚ|ndÆÎ3 !ó‡êÛM„ª¹”<7•¢~íö÷ÂgI—6')gÃüRÛ<íWÀ^Ušêv[·”Ma§ôìd20p^/Çxç­i¶¥“ó™WÃÜm£è6ÿ)ñ.Ò€'‰õëÐÑ"£¬‡9ûžõ-ÏÍ‹ÜêóM|<Ÿx|Æ\t{XþåóÔRET€á/‡½mЦ"5+•”!ýù²¾–ÂáÝDzP[Î ™‚œI¿qªdwkæÕK°nû{LÝsÏaƒ{W¹O~}¾N@zè e­nÞb¿Ç4R~oϧ¡²Ä¡¨Ú%¨¯ý•©áà “µ<Û™ò}VÀÕ=”‹8¶q¬álôšÖÄ(A mêkEš§¤n¼×£l»~ŒÔƒ68=Ç…²š}k{xîdü¶i-ðô¾MðzÌ0Ý:IÎ%5¯Á ˜pÖÌÜ}Ë…£N }u:ÈççV % …C«È°ƒãø˜ ¹;tõHÄY=_*5e=q*ûÞžÉÖ+è.)ŸY’)(³“÷ñvÐÿ³oöôSͨ® bÕ…[’¥ª Æ·ß_kêÀB¤*ç—a?âó¸uXÛ0 =y¦ßÛEì_Ô Q$2~]((«(dAÐʯx×ûY{‘‹¹ý !5ÙÆ²Þ"ÈÀpÞ$­.±*”üó$Gî´´ðÒ’íjÑö+¤§0×úq¬“€îøÚõm× : i›³e¢yRÅ¥Þ9µËÄ(o”Ù†–:µ>›õi<…2g¸ß4ÓR\²¸T?”oÌ-9pÂõbm…S½ÃÓ¼g‰`šF ÃC>§Yâ~[#DÚ"únŠ#ß7ž¾¹É^œbÕ»Ô‡° Í—ò¹¶}§ .·@©þ~Fh<ï¾o<ïAo«{"Ç×&ˆ6‡écðkK•5~¥U²íÜQF$£Ÿ3gxÑç#¸çÄ—Ùx)tÕKß÷^:$·*ŒËÙd¤—!];ØK-,‘ˆ²ÿë dqWö’ +ð¹xåIJò5LR¨´ªÈ"F½ŨֶÉË[é«ðæ´8ÃæìÉAe@ !ªR"ÇêÊÔÆ:€nõ}¾£W 2xVÐtÂ? Ù¨KÉ‘ËØv¤|0_ë ÍôN©—äU$q5žÏV”†õìÁ÷¡þ$ti¦Õµ>;–3I'úþˆ®Óo%Z·|À¾åQìŠ;Z"?X;Ê/þO–sfùõWIŒºz±Jepezú˜*j(s¹yê/!¡xVõ`Êk=³T^‰vLü8×¾@MÓh×L¬êÏ´;ñèšàTølÄ—Ž¡µ¨ˆ ã¡e~,ã_ì •ú-̺Üô ~Ò{”N`â>öõ©ßõ;¢X8ô˜ÊêsI;©VMaåøÅÕD®‰néAcùa0ž!yø›_Çyk¶ãgÆ­TOgf¢ò‚CøØÅ\µ¯‘ð¾‡Lß1~Izt󽜵úÆÄÖV}}ö ¥9 q«‰o+µ®‘I<52ºc¡ãã.ê+TØ·a€D¶?P¢6ñ»Þ7­±׬ãYI´wÚfJž,\gçBmnêyBhÞO‰øk WyEpɶ_¯,Λzývô˜o0ɉ¡o³GœùÝ:3•‡ÊÜkH/mí(ÐS«±•/ üjF+˜œÎ³×”îÌ„g†šA1çNŠíÄÍÁ>(j汪’ÓÛ¨«Š_÷O”»™‹bE#RoÊÊ;¡m>;¸ËæØ”aèüÝ`JGîZxÆóéÊç Iš>iA0¥xfÇ5¬Ï5ßÏ"e¨è."ˆÆ»/œ•rXê=Aߘ6ï™åçJ*¢Œ]–F[7c«>Iì4yj;'ÁtòX… ªŠ§„‹>h}I¹ÇG¾Je1!ê%‡Žt…iÌÕl1;µî7<¹ë†œlW+ÕšËT´Á5’å Ó¤¼1y5Sž,Êø<ó$f5§ñ÷MÁŠ8)(–›¨2ÕVTÚÊŸc:\$JàÙD7säæþ™õ‘Í™*9Øvb—á«í—MrÜÆT"#¸á}lo@îüÝômB…zM ³>[âìINùòëð^K`5œç;E Ç„ÎJ˜Ðv¦£Jæ¡v´ze÷ÿ¦ö£g endstream endobj 126 0 obj << /Length1 1570 /Length2 8653 /Length3 0 /Length 9685 /Filter /FlateDecode >> stream xÚ¶PZ-J‚» Ö¸»»»» 4ÐH7îNp î$@àîNÐà\4¸‡GrïÌÜ™ÿ«Þ«®¢{mYgï}Ö> …º‹„Ô $ …¸°p°² ¤T49øìì\¬ììœ(44Ú`;Ðßf]“3 üG€”èòl“º<Ç©@!EW;€ƒWƒOÀÉÎ.ð¯@¨“ @趨°¡3 ÔÁÓ leíò|Ì¿~èÍ|ÌÒö '°9PºXƒìŸO4Ú´ æ`‹çQÐ [»¸8²±¹»»³íY¡NV¢ Ìw°‹5@ä rrY~7 PÚƒþꌅ m vþË®µtq:Ï;°9âüœá ±9žh)(Ô@¿‚•ÿ `ü=+Ç¿éþÎþM†üIš›Cí€O0Ä ` ¶Ôd•Y]<\˜@ˆÅï@ 3ô9èÛÍžþTÈJh€Ï þÝž³¹ØÁÅ™Õl÷»E¶ß4ÏS–XHAííAg”ßõIƒ@æÏc÷dûëfm!Pwˆ÷ßÀ ±°üÝ„…«›ìè Rþ;äÙ„ò›ÈÀÃÎÎÎ'À9@æÖl¿éµ=@œ¿ÍÏøz;@–ÏM€|Á– ç/og àâä òõþ§ã¿ Àlî0Y!(ÿa6ƒ,ÿÂÏ—ïö¼aÖ€ý÷çß¿ŒŸåe…Øyþ'üÏý²i((JHé1ýÕñ¿}’’P€7 €…“‡ ÀÍàãøþ7‹:üwìÿIU€XBû<¥ìö÷ýÓÿ½ €ÿæR…>‹ ÿÆØyØÍŸÿpü?+ýOÊÿŸÀ³üß4þ¿ɺÚÙýqÓÿñÿÜ@{°çßÏšuuyÖ¿ ôy ÿªúkgU@`Wûÿõ*¸Ÿ÷@be÷ï1‚eÁ u°‹¹õ_bùË®ó{ÉìÀ:ÔüûU°p°³ÿïy³ÌmŸ_çgEþqžç¿”˜C-~o'/èäôDa'À›ãy-@4 `c…@]žSÏíù,¡N(¿o”—À&õÛôñsØ´þž}À£ßÕ±YürØ@ÿ€<6ð? ?€ÍîPÀfÿÈñLù|¦‚þrØþ¹lNÿ€Ï9ÿòØ\þ9Ÿ™=þÀÿ“¹«“ÓóCñGÈÏ3üþó*@ s”Å9¨¹Ð;›šwm7UÄî,;ã"Ó4;zi ,Þ‹Ní®wˆÉ •YAkNWÉ_z°–·dè/ŗȽšëÃZ5Zï}ÞÆkNî´¢,|Ř(<¨í'E&aÑßõytôÑ ´…m~Ñ©HóÁÑ•C=÷ƽOΣ¶¿ôÛhèÜŽÆn%¯êCéKŒN´Q`ñ MžYö,!%‚ )#ÎO̙˫iœÜ‰'rÅx&ßîކ뜱·³^+åÚœÎ]DÔD†„¤°—8£“´Þ’ßS æ½KŠ¢°šXG8ó³#P)èMvz½mÆ•º¥¯Ö#i=@¡í#»×¾H?½dÛ¤ê¢võB ä<ºEZì5H I_°YÍ_b^uúÜ̺)NgàƒÍÐGÙ;V›#c_9¥â¡Ð êæ”Æù2»zh-vwü´Ê—épê寗4À6ÀØ_SŸK–[Êÿ€ÿM=¯s%³{7UÔ4ê-ÒY[+NŒ†}ðMôœ¬¶Êæý„îÇù—TÛ󓞆ríIæ§ÑÚUú©×¾V¶ŽÙò8‡èøñ—ÞlÞá7¢7¡š!G·x)=´[z³û—Ü߯=6­§ÚÖ¸ÃêIÜSЇ„s¤ùç~pé|wËœüü¨@Æúòýº®Sc¬"ÛÛÀü°¶?Ø¢×|ʬ];Kn6ˆdºÊ:¬m‰@Ì{‡MoqG¢ )#.ÌP:÷Pð‹ùI—Vtâu@S®p|Ió˜2Qø§½\@6ƒ?ÉôF-æëòž·0ˆ¸ý•2`R#V«Ã³©ºã½Ìáuç=!X{«êʶ¬ã%­÷éI]¾ùÔVqâ–ͪŒÌM`! ™Ù '‹ZCÓfÒ=N­°é[=ôAç3^þ˶›]«=²võCZ¨óDT“_àY¤ˆ×'cò Ø•Y»óx£ÔljñÞ‘rC×Ñ·˜"n‹,¢_ÐðppüÄ›£Ì±ÒÇŒ_¯ŽÄ¶×‰ s£|8]pÿœ'“G/¾ÌàÄWí^ÊXXž„EEæ;fÏJ¯"ábM°x{š$k´à%mÙ“`’¸ÇÉaÈø¯£ ¶ÏFñy-Øe²üêRÖë­‚û‡áËñûÝõÿŠáÔ÷z•²íÆ¡ UýÄ·¼Ø“QãÎîIò„8jŒ*ÃS”/«óÜ$q£/?÷oˆ2X§@Œ}-&ßGH.Õ¾ÿj‡är%ÍáÊÛ%E»¸’H¨¾Óò}µâÿ)ŸÐ¤ðE+Ž7*f¢ü­RÕÛE. $ |´P–ñ–IL_8¨m~¬N­ÈEaôíûÁW/¯ Ä…v"ŒÍÁ\ÿö ÑÃ8SRlÎ"!õéF®ÌSqùø×S$_]Œñl»uÄsrø,¹ŒT¤‘0&dÈß<Ùa–V³ŽÛHÉsˆ˪‰¢¢žkÓW7O±§Œ,-Õ hÎá¢m¾ïŽŠŸ•“h¿:ÆÀŒ/øø¥5¹Ä½XÏ@»gu x+àØ…âÌgfÜzˆ ‘‘yòqASßÚ“§Ìßœ‹æ#¶uÆñ*Ÿ ³šÇtXãårš¶kxÓR‡R¯†F²/ݹ¾‚ÎG˜÷~%è sÉÝŸ¦Z ­WËÄ*ûnI÷ÒåÙC½°0‹6Gü:x–™èò%‚MLWÏwƒ™åþ#‰ÃÌd!Ñ% U¤Ç•=²¶Bhך¤âjpœVÝ홵ê^ÂŽÌ€57Nê~ùŒŒnÃF cZŒ¸·šýY÷vöõGSj\6Q¯3¾ÅœG:›="æjðô;÷ýäVOëÒô(g!ƒ¸^EªNÙVÐpäùRB»ˆ C)#ƒzêâ›+»:Æ9­˜óÛA÷¶,ƒü; ½OÆG †|Ï‘© ëgzª¬xoÔõ“²Q²>ZñKoÉšŠ[·'p–U¿0Uˆ[¬’€+Äf:ä(ÀxDó“p †aëŸPIm¤›°á(õÈ ~Úœ£@“t–„ÉgÍ· ëoõIÛ9Ø„oÚ=v0õŸ¤2r›TŽÃô•·(»D?¥­äÁ²É‚G‡UÜyÞL9&µ“ßšC V;ClÌZ4'['L?¤–QŽûÆ‘c'¼‹ô(ìÒ¢[äôÌ=Áû9OÕYâÜqi³8Ó(Öš;:ª;¥?Q¬–šé]9SðUîz¡õ¦£âÎZ)cí{b 7½réqÒ~ET*n.kq9%{®]ªîDxËT HážÙc¸[•Ï¿÷›nšÇÌ•¦¤¸¹À!§UÌj¨-œDxCK}:ù@ìË„ð­&»ï›¾Ìé<ÿÊ £æ:wPq_ò¹;פö‡ N9\¸iÿ‘!…=r5ÇKƒàäÅŠeÓÔ!ŒÉ »×Yé|yßrªˆèÐ*ùSû|§ci[,=…ÉÒ¬†ºðc#ÿSØ8À3m7v²ÂµWçt¼Ö8@Y`ï¹×éUøÊSú¦YÇþs»äÚ-ší6þ~jdèt7Ät–|“ú=Ö.†¶D#+õ¬Âò¤ÆSO†Ãz,äF´p±7V4_¿EQFœ–üÐ"íÆ¿Ux)㦠Þ;›·ŸÈ 줊ô{¢øÀ>©1­Ýf”åg¼¥ÊuõMƒX°Þø$ ‘†“óü†ÿ@‚«6ym0ÁÇà€¨Ý³fšÿi̇ [Çía³W\K‹ñ}U$(Ê.ýkÿé†3¿]`'Ì7ÁQ–ôçf. A¼ægûI`lú¡Û70u!œ £e‚ÔÛ_¨ž¬;Ý/±f,_ë̾FhZç(F Ê_¤Ù ËÕ‹wÇñfw@±˜¥Ï ŒdìW{ÏþC´T’ØÔÓ­š­Al»^¶ªŸ‹`×reà)–½^2²Ø¡Rú€G䯲µdR©ú8ÅBŒؘ*&V§‹cW&÷†2{LJˆºË?¯¡Ôþ¾^cê#JÂOCèªvÙy—åÄmÓE†ù¨t˜€B+œ$Òtþõ6©øk51jŠL(n}eœ£7󯕻TÏj|é¯ná-üÔ­]ù–œSQ;¯– Í<…(Øa<õ–15›b0fx°¢®ƒß^ÍÎulr&‹Ž>ÿ\Âá­ÍÎܾ,y‰í=ÄrÙšmL[K”’¤ûί||ªËÀb™HU>©1Ù =ÍM”~¢B&‡‰$©{§çMç”tËD‡C®!Wõ4rbè“ìò£ªØþà:s1Ò·° ofÝÐoÍݵ…ƼlÆôÃÀVŒrøäÇÁ¯¿C¢ZÂÁ-m?Ól+têÄ ÉáqÀIX-œ- G±•­õËåé3¦™ñd‹"p“J[M’8ç •¾éÝŒãÈs}¼&‡fø; ïúU%ž·TY/&¿ÛG ×”Ë(ÞÖ*ôæ²TÒÃøÓI.¯ÆbC³ cR\©æøœ\”z ˜`‡RodáÉîSrÄ#±<ªÞ%Ó¤}éw·#Ý«Á|õi '©8,ÉîsEÂ,’Dhßl*Šæ«üà ¿!ö÷¡RZ­*]Õ-—{ï–0¾ÃÃ+Êã¥â M ¿–SÓá¶±¨h«µàÿ"M²c¤¾în,ãÚLUoHRÍãK½~ÉiUVÚ_¡YÃSmç˜òº…¼ï2úäØìÌüÌÆKoèÔÙæ/$Áæeû0Zä…´¯®ûŸÑ)ÞŠåt›»é0#ùÙD€W?. ŸÃe& 1>ÕñI¿•¬Æ:Ò’ v_ ùOmó´ªsLÇîù+`[¾7Ï.ÁÆ4ϘCßC»e´õÚî¡îÅ“¡(ø ˜^U„~ì…{–7L4Çô°È (ØU\îdzŸ¬GíÓ}Ëu¿™â)²v1Ôþ>oöÁÍ0QF ¡%â‹ÕÆ Â˜–Ñ?Îõ'97?³9 4ØÖ­×‚ˆé-Ü«Å4ÌCˤ›€tç›ÝhZèáìªY%“RbõÍëª~hô2¤Qõ²ÂÂ*ñß/}ÚPù´]‡-ÍôJ"-Ì·ŠŸú#‹¾E¢«7±& Ï\W®ÈI}è÷+HâÓhf¶cWÑ {@‰P!#ÀÆ¢Ÿ¯L»Ãs>¦Xa{¶Ù¬¡|> o1/Ý È+7R‡_NðøöO)¾ž Z«ƒ– “}@8õÑ• ¬‡C>PxqÎLu1©¬¹ÎVT†bϺRòînÕ¡7ó½ÇÚ¦G™VŒ½;æ¸ÍQÉ­?ó,–u}=4©OÔ³±ÎØð «ŒÍ¼ŽÕð sÌ6XB¥¹z!°îAÃ;Í_@9õËîDln£øÈ•¢Û%3àAº«vŠúí¬Gs¬–ÛÀ6µ{ªLLi$žÁ†ÌÀÁM~zªß¦u eÔ^BM§îg¥à7³::B—¥ê¼È[Í‘Dn{ëÃÜIˆä”®Jôˆkï@Öe®™B¾éIžåh@þÖM®hv ñÖ˜ÖÕy)] þøÏ @Oyv†n×2$mÚ¶jìÉÊôÂÆ¹ìxÜz›˜FYMÃ%‰HÓõ*í¤¾Ž$»pÝ•Ä AÛH3I…ª€Æo“êGÒ˵ŸGA’Ÿz _·Äf˜ ^t½A5]“I.Å_AO¶ø"ƒÉ´ÉJÖÞS;É  L!Ü3ç0˜ §é.‰£kø; #öQxQ-Œ_ž~líS¡Ø¯‘].[ÇÛ=¤wÚj°fn{)À<±‰¤´š¼ M1RÈy?”ñÆ“Ì@¤NúÖºðßö$ 0‘ÔŠ\kÖ?"Ú´å®cÕœ'pD΃*ÊÍ>Oûæ&AZeCß+8?–W^(ÃZAFôæÔ¥ðWTÝÖ² í\<_H ª¾x/nk— )2ÂVò ?Ë[8gzçq]y Aiñ2òÍÙzŸ¯öf»îLvxn¶Y¡‡»AX,à=Ñ÷•~ùqÿP¢OÌæ ìÛáL¹ýÒ¯"Ö.ˆò2ü^­W¦Ÿ ‚ǾìxH›Ö9j¸[–8¤´Ë–~kº-¥¢WŒ§ƒõýÚ#r,IFaúpÊpTÐaù¨Æµ/r‹8Ç´‰¨«~ýÈù8m¿t\Ñðò-×»éˆ@©ÌÊq Ï(1ò-*ŒÉFä-Áè?ðA¡¼Í„nL?Y}ÍÙ]¾l9S®­àà _FSR÷!ƒìÁ—l’W¦B5á™7¦ö%n"Ä@‡ôí«ÁbÔZpµ*èu\ËIjý£¨8¿}x*3\­wÇ×Q²„ü¬7+Ñ´æb¡T™‘Ë’"Õ¿6 çÇáåø!wuÒŽI›*¸¥3‡ŠfXãŸM´3§ëÑzm,Ͼ‚V ¨/‹Ûé8Ž•©Æ0ù™vI¥5,WÓc9ÙSÃ{¤Ay÷ò¯™á+z# è÷sßhè*”tJØ×±Õï9g¤LŸ@bŒ']n¾1˜ª»œòðëü\•<Ç­6àèÅ̽sóÇôñ±/[­¹½›°¶¸_-½¸¾2Í jKaÓ†Hý$Z,ð.þ Á;}+J¢ AË^¯v75À˜‡2êÑIÆmq'œêŽždÉú4/«O»ËNKQ¿¡E ½T1Â/õŽ[2üÔqèSš§m%ÑÐcБ_N¥#…Æ«Gþ õÖ.×SÔKÅϱýÊ„!súáTë§ã0°·tZ"2Bä`);h6¯ñâ3¿§:|÷ØÝ)&µÃ6<ªuË€kA"Õ1øJg†/#!8ËNef5ÌxQ>ŽºÙnÀQºj+ u G ”¹ÑÆkÂ;V#Mx+MÞè THú™Q§ÓÕ¨z)[‚8ª†xtòõ ßË;k«›i?k´Ð½[“6ÆpL†$.ȕʼn˨XÇß"÷[ò³Ì)Š_tÂåýd/§IõàÇÏN#s8HP¡y׳è}`¢j’ÁD¸¶3Oc‚2;>Eó*¬i\lI!/~ä¬8Ñ9&ÕwÕIÞÇýñÛ¯D×¼[™×K…I²…¹¥WäJ¡¿PNBÆÊPC[ñGÞõ‚yÐ.”G]¾M±©á­3ÀyÊØåô,ÑáFZðf:ösþù·2™® ß,pׄYøEÆiOÖôñ{_U¹<í¾¬ôB$êzŠiµ*ù& ëû'©®´—ËW†¡È¢É&JÈë}Z9Jé8ˆ Äò¥ëàOE›ªó¤=*}¢zQönXmÅÓzwTÁAùr±LœMû“kÚ/»*²F0£É3ôýZ˜™µ'°4¢¨?»SœOž"›ø 3æC¬ö]°7§6Ó{Ñ‘-]kžûX[÷2íŒøòIJ©xoy®€¬µ&&ò=®¿ª3:êè)ŽšòQ¹×ù®q>Í÷㓦.HËÂ-¡Œ?18¬å{Urfª0ûì —dÂªÚæ‰¯ä"ÑÇu²tïÞˆòÔvƲÙY¾¼ü\Â}oäúâ.èkØî§­ÿÉÍàm®RéÌi “F4w_¬ÒDÓåЊˆIµ:טce ,ñÈÒ{U‘›[[RŸv£~rKÁC¶µº…4c¦ËòÉ9ïÄQ‰md•dLæ"½¤é.J*µ¤+zâl諞`¹ÈÉ·²V|Û¶õáŽbM0DÆå ¬¨cýj3Q×z’ ƒÊç¾|ù˜þBCÒwqÙÂózƒB¸å=‹È3)áWëUîþþ|Ûܨ^ï<‹!ÂC¿ŸÏ‹¬YÄÃQ"$NZKdzÒ`ôÅEmê–­“BƸ¼4ùÀE’±ÎìÈmïÈ&ôÈ2UÉUbꛥcF‚ƒjO|öð]nN[ê>Ç —V±f—ê)ke¡Ôóîõä§ŸÈ$k¾ÒÄ^óŒÜÁ6+/}Ö4-±Ó–³“g§”•léÄtXÉÜjúâ‹Eø¢¤¥¦°H®r¯j‚eR0íÑ¢œ‘…Y¾£….ÒJíüЋ)o„J}”äÝDûÁ=˜¢ÜêGž‡­¬#_^“²ù~yEзԴn±._ºâ`b¶.rnòì»n’«šŒuO«ó•u:²€´½‰fü“¥ØýoÈ4F:¢SÚ™’­H ˜“:ÍåPNs˜È;òò»hQãPâÎ9‡GPôe¿Óý½•4QÑæO®lqBTÞ~Ä î|¢zr½²™É-š‹ ƒäÓ°Û÷ËÑ>Üðµ>핆‘€¡ zhúh…”ˆÃ/B/F0 -:î³òL–&f…aJ‹eÝüÛŠ9ç+G¥OzÊ:û•-€9MrM‰«ØÏYÖQš”^ŠFq^1Tòƒ‚ôyýì"J|%EÍüû¡˜5ºfŽ‚(µè@fJ‹9 |wžÄi4.-îÙt»±³Ñ!ë,™MòÀüËâK”S îøñGΛü7*‹R5x@^kßœâÊè÷{µ8åIŽŒ[xQ7kœ_UkøŒ×>ìL¦óÞV'¾Y Z)W†åpÖÌi·ËñÕ¨^ª¢Åg<]¸ÙÊhz¿ec|8ZgñÆ‚IQÒ'éõß­I³rmÅ|:ÃÓã+=Õ«}Ô'KPŽ«ñròyÄŽT3hFúU¼²ãÁh«z“ŽËxœüØA¸XSòù)´ÖîZ8î©G(,ó•Gîši?ã¶6Ni«–SFö [ë®àÄäfÁR<™±åSøn©<ŸÁüÛ,$Ÿ.u™N˜³ü @VÊÔÔ`+CN‚ÏjèK³˜ÉÔdóÙ²øGÖœ«d$4fAí_ÎÚÚ¼¯™v# ÄX9E/ q~ Úr|iêÉ­L»ÊªºIîõEãаàUŠgÓ1N¡t8†½2g?½IÌृð¨Ûæ•ã[†r˜óölÄiÝV}H¹èˆ¿/¦ð~ÕMíŠ9QÆ»õö×®ÙÖfOYù¥¹ü©­…¯¢´XÝ.¿6Ðu’ÑÈ{S¸áH9„åwS?ÎX½èÖ§Ž‘w†I-j‡û›ÿücoŒF ÖE™ÃçÛÝéëoXøÎa1ó86<幜¸ d¶‘jô£6 UêôÅpØ™¨'µaÃw”CÍÉf×*®›‰¯ŠDú©NN÷Ö÷Û |€ùÛ·B{o[®3 K”-V†”‘’[[ÙÃÎÖ?_„/ïAÑ0QQNÙªÉOms¥öcéá:òub‡O󃕽{ˆ ^aò‡È°•ƒ°^gÉék*±êÀò¶²Û› F â¶ø8.¸|Þ>ôÑqŠaçWŠºFu1=WOäæõf|á. nzúüQíº®lÚd~Qx5¶S…é záN†Ä÷¶Kó"Y$¨ù R¡Ì~Ýöoœ?ë"´0÷‰·»Õ6$1Î+ ë|åU?•µÜV´»‚~¡|ùí±Qs\ûVÎYLÅÉô!+qá—7áFbST ¨W)„2SÔÐdƒ³?ŽCïeø±ÂH8`b4V£'µÛâìµ–æc#Ý-’:ëÙž©zBéEêg%z€Ð¬F åÓê ©Ô<ŽGn¼öàc±P _v@tÜý³xɃ 'Þp¢ìwøöYRè0aVRQ;®Ñ7òLj¤Ú{?do¾—Â%ƒEL›ª£¨ŠUJÀ«Pà; ÜÜëx1Däzæ°«*k1çÍ0éâp·'^Ö¶ãC`WçO1ÜóåyËelˆÕ.œ}Íäáç4áXn²Ì‚y,#òšÜZŸÜ9nR-¶NF ,¤ Ævº›-;6nvì$[Ž©©˜ q×ëI˜€niü:µ.$Ô%ßà€ð<™VðÒŠrœC]<$ïÃ_þ4jTÝH[Y¤²2§Ý'¢!M1cuò NtfÉ”ªÍågD.†”º­™QŽí•q»¿òU·^ÇFñö÷B¡ÈGàAÀ«†ÉQ%3æNB¯Ù78€µÞ ÊùEç9<8Y%¹r„UÉ©4&Ûq £,]?Ûr˜•GµAëO’®Acñó³öGuѪË€¢¸3 ŸMÙOž tYÅ˹/–¶Šü³=þÙŒ,¯;/!än¢}…ÈE}–?¾q%°ˆé; ïào,!á-?[Sµ™.u_ì’ÿ¥ûˆp›ÒIÏžV7gsƒH#\æüþˆŠ-‹¯8ßþûYx DÞ _/jY{S³Iwÿ÷íWÒc»Ñ!ž#ü”}¸ÄºÔ‹©X›p‡&%­©JM¡¨{Ê¿,¼ÄJ«¨^b-ê[ŠÞf޳c{©«f‹ÏQFjŸ ö¦+}_ u¸ç+’«!e*+‚v#ðºR¿4zã˜KÈí~“Ʀ÷†Ä ´õOîИ-$hCê'e2û:Æ®î ßCÐ½×øj×üà˜9év× Úz!y.Å´&9VÔ,8ñÆÓ…8¤>§} žƒ“gYôÞ—F`Už4úÌdïúõ-鯛×pÞ'°HVÁsêàtæY‡î%ÚáÞ‡§=«™ž@0Ü76dêÜÁêÜš ¢Æ*&g³ðáË’`}„B‰Œ¼ºVOŸ8eÕbØ[xŽe!ÛTyDT"ÈÞ1 1A}Þáß’¬”Ñðêy«®àOžE6Jÿ¨¼HÖeCñ»;4EæýÞg¸gÈ‘òt7ÌêÞªàþ¼š6êcclØ~cð·1bá8Ýûu;ÖûJä-nç½R«”/j´ ÆþøçÊXHý±i-SCuï…zKƒÙMÚv¾Xe>+¿nøå\ߪV¢CþéлÈúó‘3R?Iã)¼jCñŽA6Ì’ð!gM"™6ÇÙP¬v&¶ ^ÀAºÌŽc³QÌÒu¸kÛ\ ¦áS¤¾éåÚNžÒÂÑHá,º¥ø k¯5(¤ã—F]ÉO "sõu+]"Y×÷³}Z+µÐF9^üAF›Zvö•­¯Á'ñ“h‘Ö!¿b¬©n=r©W9¥Ó/`[¥YŒGLØßlØ¥iŠmF'˜AãHÆ€åã3ìÞ×óA¹Œ3³AÉæuqJW#Yï"»A"NÿÑa}@Ì#œÃR¥Ò½X·‡ð`´0üò3¯ âv¨‰D¯Ûá|cÅ¢\ÑzÇØlÌþ¾¢ëðÅWN^"%¿ž^½B Vze/b s‚Ùѳu¿ØúABCýKªÇgÍjÄ­±7ð÷æœôDÅ/oHÍüzÍoŠP^0OÎ c÷¨†Þ©Û;~ÍôCzAI+Ð.‚«;UßuÄ-L1³{HT碊÷"Ãì!nL…Vƒ™ü©¶öñ&r®Eÿ½£Ûy[ôWÏÜåOHKl.Ü0‚šµ'™,-CöL ¾K«ÜjŠ®/êXàèØ×zï¢wͪæ;oءޥI{E@ëä˜ ”U¼‹×Øü RȾÅxSñ ¥•Jβ<Õ¾tÙ¡Afu}gô¥¬5ÌÎôÇ j}þå‡ÝN¼,ãžÜù»šÄZ£ŽøVsb‡=dÄñmX=ÅÂÉWD¼{YnLDפÉþX?Ù endstream endobj 128 0 obj << /Length1 1467 /Length2 8191 /Length3 0 /Length 9175 /Filter /FlateDecode >> stream xÚtTÔ]÷.!Ý‚Œt7H‡´„t(5  1ÌÐ)RÒÝt‹t·¤" tçßøïûݻֽkÖúÍyö~ö>{ŸóìÃôTS‡KÖfV„A\|ܼb9u]>^/¯7//?6“.aþێͤv†C`P±0äœÁ@ăMˆx ªÃ €.ö>Ÿ°ß31^^?/¯èßD˜³@è ±¨s^À `86“ÌÑÃbmƒxØçï%€Äà}ÆùG8@Öì ¡u Âìð°#hÐ `„Ç¿R°JØ Žb<vãú6Â/ˆ×wq‚i°©@庥 'qy,9'Û1õ=òr•x—¿ð¾ÁΜ×ÎtÅ;%RŒ|¾¶ÍÊbƒÓ{ŒXòj®æÂÿ]µ½ý•¹ÔÒš|¿Qû³Û‰Ì$§Óá·é´m% æÆòó2›} –úŸÜ¸(#Q‘”""¸(A­²i­åÏ«d'§ÚTáG2#¿âi·/Szù…ÖûŠ9‘!k)wvðUOÒv¤’t S«š&™6»(¯ß±œ´½aµ€éH3ˆ§«lŽ)mF©h[7*÷¯¢ö&¡Ê­¾£?XÅ’ýènÁ²n*ÎÞ._ø)b>Q7ÏS@ˆ¥¸«¤D‰DR §gKqügP5÷G"Uoµªñ8S]xbúdJç`*I½¦Î±×,ß8k02Ð9Âù¼•vÃO;)# ÃvÖÞl9`Q¥—ÛÒM ŒÃô” âðúÉ.C€~.·ðèÞ’($‹,ièš§……§é3qÏ.RÕU·åU&l†ï¸¯Ç`0ÒL)¬g»+<£ ˆëªFïDÕ¹zÏUX@™m½Uêƒ8j^“ñ¢bN,3š„´àqŒ Ræ¶-NYÍú íÓƒŸQõµ±­rV„Zîô ‰·ñ +¾6eL¼ûæ ¡òeßV9B£ö ¸â±<‡g†u™…iêHŸpÝ^YVBö»ô#S¾Ós0² Mã{s'hŸïE›Ï)½.!s£Q…3×÷?£tbÂd—œ­?aŠ¿ýH€é—óB@Q–iWæ]fôÝêñ„%?J‰I†õqÏ›þÁ³þ| ãëp¦•xè¨k ©‹ ù óÄWˬ\+ƒÊD‰IÒ¥ ZÛŽ?Ý)ŠÅÑvQš>>JÝ¸Ž¯ÿËÓ¢ò:¼Ì æ·Û6«†p%Yúš ¦-‚ؾá$úq›½f‰ûºhýgψËm2§`莎Fd!p©É!?±NŸú¤­}+½è£ò1ï:z›{û&E©¨Â˜Çfêl2ã^#Ê€œ¡°õ‰ëe¼ü¸Ùƒƒ×ß~fY4¦¿fR^_”cT(uÀ^ð6Np$eÐÆ\Ìú±–õ‡Ü- BcõýgQú&†:\-°„Ÿ—ŸM“xÑÛ-”¥ûTäïZ&ÃþÔ€‡Ž|ãXÏÁ2仺?Úî<À&þB¼éÃxØê þº n¾KÌ $pö[Þ­-$ãÂbõV„MÌ뎕¾¾Š;Î 3äÕE줄¡êcmT5ºL´ÂÝ€Á¼ÞçS‚ÈßEi:¦÷Ø„ƒí7ïÚ_—Yˆ~iüz©¡]äÔŒÉÄ«J½ºßϽÑýÓB¤G7;EÎ+‚S“Ìå—(Î#&zì¶¾T>âáž¹OD'¦ªzD*‹žM…ç7­.תá[äHí,E)Š7%fþ/yTò†1§cÊ#çí¨®S“G8R†I‚!G”{§˜×è&®mzGNYM]ïÀv«¯â,žð_ú49(Û†óù8Ý6—˜iò“{/E~æ ø† ÙUk® Â.óÍv·B Ò¬KJ~#"‹Â:NÉsMŠ =Ž"<.XY¹ÐzÝd6‰¿ƒÓ9ζ}F—tø²võ%@ìþ¶‘o*ŠÐ¢O>_ô–ÂgPÑ<u¦½Œ÷´Õ° ÍÖ^ ìP9 s¬õ€èHy 9ãkt,ŽîÁ'ˆ{<­ôúÂÑk¹)R0Ä3ÿáán6yKÃ+ƒQÆ»vu-1ÍÑ–¡㽎·ü³fžcWÛFÉ‘ûU3µD™¼ób·n‰Fô Å%KCq̦Ø/{n‘ýß÷G˜>Õ AÝ™~»<Ù{4‡OüT9ÈRSù¾–XYiDvš£=¢Ç†þ U#˜…ñD„°¸Emá`–š²d'« óÒÂÂaõ‡×k´ø‰ ö{üTlµÌ`’+²@޹Úàó6뻜Ô0œÛû ¶§ÕÖµxþ,VÝÒN5nÍáˆÙ4ÕìWÓ׈óSf´q”LN ¤[¶u£dNÏäË^Ïȱö(4ŒïùL|Os‘ú3ë+kB è]Fo '@mg¾Â• ç››J¹PVÓôîU{~n™,X%ÝñOŸc¢.ÛÅ$=ûN›—ÊæÓæŒïÏ{ˆ®°G#W‰•ç•LÓxX˜÷·ã_n¶F\h„Ø-zQ1(Eo4ÖP£j™§*|ÒÙ1—°gž]…Hn…òx_ÕÉåò§ùO wžŒÝ£ ±‘Ut¯¾jxÞS¦˜–F3 ³f”ZrÆ Ý½xì©Ó€ ÙYJ ö8 DÓ{‰õª'SI:Ýu¼T­ï~köÝ^Ó¡â Q=úþb±£ ”Óï‹Fp†|^€üE¬×]#µ.b;PÕÈÏp…ê‚pc­¿™¤< í%©®ÝÊû1»Ž/ÕÜ·BrÁ©øzìab¥lvk*®ï¡¬‡Æ³Ì@Ïödúш¾Ï]4è_Ôñt4âîž‘@Eëå·ƒë!w²Œ+gá9ÖFY†CØÐœ"^µ‘øŒÄ®3>!w3ý^uW‡ï¨5yóP´ÎsÙ ž3˜0j)_‰†i¨|Eœfl¹˜gÛæÇ&à¾Ä½e± µ‘ù©¾,¸ªpÐ&5^Vr„½ô’³–1ZÚLä ï½]oœmˆç¨­yd'"ƒ^1€|Vɉïô^v +~ E~7¼i[Pãy± æQdž‚`ÌÓı´ésA}^ô{n鮡¸ñŠ)ž%û¥×öËÌi[¤ÔÄáÚ¾1nÏŸæœÄ_CMúD8T„ÜŒL”]I–ª[Åõèû“éNWßjPQv.¡7¥†Œ.³/£÷œJz½Jÿ©'ãPc^–¼­¼d07׸¹ø”8Á+: 9µÖ++¤µÛ”€ihíKUêoÒ¸7»îcVzjïb ˆ´ÎseBô–¸„ËÁ‹ÛóMŸ8TÈkúO ¬¨Üúöd5†ZüÕÖN6šPo_M«-¾<ÌÏ=÷xQªÏFÓ¡‰ŒÊÄ(aØßbÃ"‡õòIå£1*ü´=ºûrYèkôñ±ŽØ˜g€ý\»Dkèw¨Ó“Ý$´°l›çÂû5¦¶MÛ 4îo'¥,¤ªUJã^ Âp¿ž¬¿|Qxpž{Vs·åœ45).Ò/òÄ®éŽ_:”R7åÑç•V¾Ñ–JÓõvPÍs…m´mÌÎ-¯,°È¿T¾ÔéŸòuR}f¸È/’¨>ͤ´YªõçZðö½l'ŠüðÕ¦÷ÕìAµv é‹‚~€û”R1ŽbÌ<Õ†—¸ Ø^dè âL› ΞIa^ÏVpH:†R=ŠâÖVÚ¸– W!õ÷ænó§Ðzc«Š'UaÊñ¤PÝßÕ^?½$ËŽîÇÅÃQ–=M™¯8ŸëðÁ·¸ßÀkËæá_Œ ƒ³±™’.=:ƒœ½ÿ™ÆG¦Ý;w `¥ì}ßWÞOÛøƒÎZn¼ZО§³×P•cÌ[ÅÊ"È+ËfW!+,ÀD(ð5”3Õ[ÄäI…\&'EËóidýzv€¼WS ýIÖ _ÙÍk¥oßa¤çi†DÈáÈ5g³©M+È/v-MìSëèŒ Á¨/-±Š?`èJòÌ_Ÿ\ûÃ?÷žövÐEžÕ#J¤åòk4­) Î> b-q½g•{:·‚,oÑyŠI3”Š®PäN=oËô«qÜèWo×¾ªÁmßQjÔ×÷[Yò‘›@ùùÈ»K< ­Ô¼ÄÏŸj¾D5råÓ÷x ^îï]ì׃ï]^î@3%hC¥±=u‰}{¾æ/¢|_“¢&þúP^iô¦\†Ë»E&­º|™ËO¹Äµn‚ŸWÛ¢z^A¥R¿ÆØuøõTíU 'B`ŒF¹~EYÂÒ"XÆ%Í'C÷ß2ò{¢rëqfÞ³üøüӣƣŠB¯dä¦]jäW­.W翎}n*G£yã+püGfÔ}îÐø<>ÎwÎÙå4u̺ ñO˜R™y$ËèDݤRZ=ï¼JŠ|µ‡¯`c12QMO\ñ΋vÖ³è=""à5ŒÎ@½š™G^Ê®ÿ4 ¿ûvbè\–»·#áî8{'·AoŒ,euþRµ¥ýåI†05LQ»\˜Ýú €sžûÍI?Õ¿‚Jöl¡bW#Ì>»æ&sÁ€õ´–„uh‰Í-›·1Õw¾3ÿ¼@‘øÍ”yR¿>…@gÿ;™×.J6äáÑÓB´‚a¾Ö18"²óïr­,F™ÛÅåæœˆ„Ã;]¨ ¬Þ¿™C{ãq†P)Õ‰äÐ'¶=S.¢Ã&ËŠUü6ÞÀ6ÆMâ¥Iïqp ïÚÉ3"€yømEG΃@Ê׊¡Ÿ ˆ>æ"B¹1ƒkþQkO”Çíʽ!„öX´Þ°gœë†Ÿ½à¼ó±±w 骛Åd+kвn¼î*%Ýó1‘½‚å;¶VªONƒÁ‚øDŒÅ„Ïm¶z0Næ±…Þ¡ª;MüPé<¸²u Õ›œ+´9Þ"Vá×`*dé°ƒ¿·qV¿±s £(žÅ™RÑÝžhõIJê~bŸPŠ ÅÜß²)m Ó4qEOúŠÚ,ºŒ=ÿ€†õH‹2Yœ¤W¨­2ÿêqNiElŒà‘ÌÏCÚÉ09ãäoûÂMQõSû=‡"Ú%§+si³tK˺4³3{öIîÍÂäu¯%‘³¿]$pò$# Œ¯¬Ž˜GöÒ`œ “¢Ú Ñ#¬h'*qêšüYg”Vs¦*»ß±*!¥Þ›îËÆe„ ÌËÑl/²âf¥üØJ U÷Ò0Å–‘05á e´'šcqÅ[Á»P»à÷²#ï™”-ŒY †‘'Á^{ƒs‘úŠEçš'R};×_šñ-£—^aÏñ¦™íñ)Ù0¥\—ÃæyP 9;óì‚à'ŠGØ ¥°ïíçdÊ­»]|_+ü˜†@ÕEË'~T5ª7¡:–½íV@:%Z ÏøÑ5¬oE뚎!‘_x³I™½í ¤¿6ÛmûD¨Ù:ò5¶kVçáfÛ½ƒ½ñ¡*~lÓ¡AW¡œžžýN=†`<š {YĂǷŠÐÝSˆî—$3N÷Ûö·ŠÔ5 UÚxÖó^·|>MªêÔ2z)Z½©æž+¦äšjÚŹ£J«ã«n™ì¸ ¸­Ù»¦eäáCÏðS¥]j_£å,“)CY̡ИþìµËÙð¤Ð7‚:vBÔCeåœ ,ˆî'–ô‘CmØÍÝ“6Œ¬êY[EÏî|‚Ì*2&’\!!›«ÌI,Ö–Ñ\‡{D·ªžDúé§Ï6f¡r×}Ó—…ÍF…$$¸Å¢Ò¾¹-ÈI†E ÈÒôÂ317¶Œ™±ýBm «èsi7…ºΙþaÞL´(ÃÖ§rYP–Å»Z@›PbsæÌ´ÒÜËfCþKö†ØûßRÕ=Ç;ô¤x¹HìïÉú¡–n"fT5&æÉkR¼¾Dáˆ-ûZÖ'¸ôTk\èõë*Hû|Ù&¼\kÏkÎõQC®g L°ó÷ý‚f’dJÕNðâwÈ¥·?m&ö†*t7=£Gµ™–Æp¶)J*MŸs£á´ýÚbŸ2r­uÁ®"6<ëcmÕ'²Ž¬EEtCáë »ÛåáãôCO-£¡Š ›Lö‚Ç? UÑÕ¥®òØ€u¢æ5O†Â€ ù«Ød€ÿK‚ âÌúõ©®ñÄ6mmF”òƒÜÄKÏ´Ì‘;-ÆÔR’åúÛ¸±æ?÷}·Ûד(e£Œ¨³úpFTfÊH„è>nI#nMq>j{ÇJœÙ´šï€±UükŸÙåQùõ³‡'§úi'˜†›Tþш endstream endobj 130 0 obj << /Length1 2541 /Length2 17842 /Length3 0 /Length 19312 /Filter /FlateDecode >> stream xÚŒ÷tÜ‹ú GMۚضÛ6'¶í&iœÆjl5vc»Q£ÆvóÎÞgŸÝžÿ÷­uïšµfæyíß ‰’*ƒ°™ƒ PÂÁÞ•…‘™ *¯¦ÆÂ `ffcdff…£ P³rµþ—G¡tv±r°çýCBÔhì ¢‰»‚åì2n¶6 '/ /33€•™™ç¿‚μ1cw+3€<#@ÆÁèG!êàèåleaé òó߯jS ýßêa; ³•©±=@ÞØÕhòhjl Pu0µºzý j~KWWG^&&Fc;Fg Az€‡•«%@ètvšþJ `lü'5F8 €š¥•Ëªæ®ÆÎ@ˆ`ke ´w©¸Ù› ïUi9€¢#Ðþ?Ârÿ üS #Ë¿æþÑþË•ýßÊÆ¦¦vŽÆö^Vös+[ @QBŽÑÕÓ•`loö— ±­‹HßØÝØÊÖØ$ðwèÆ ae€1(Ãòs1u¶rtuat±²ý+G¦¿Ì€Ê,no&ê`g´wuû+>1+g )¨î^Lÿ4ׯÞÁÃÞç¿ÈÜÊÞÌü¯4ÌÜ™Ôí­œÜ€ÒbÿÈ€Hp¿i@W3337+èzšZ2ýå@ÍËø7“å/2(?GG€9(  Ÿ•9ôçãbì¸:»ý|þdü/‚ca˜Y™ºL€Vöp¿­ƒÈ@óÿ`Pÿ­<ºÌ ñc0ÿõú÷›>hÂÌìm½~‹ÿÝb&eq9ºRþ—)"âà ða`0°²±8ظœ<œ¿ÿµ¢dlõOhJÛ›;xþ,¨Jÿ ØýŸ  þg=hÿkKÁ4·@õï1×cæ`6½±üö¿UþÿÍø_Vþ_ÇüÿF$áfkû7Ÿú?ÿ?|c;+[¯$@sëæ ÚyÐ&Øÿ_QMàWhfåf÷¹Ò®Æ ]¶·°ý·V.Vž@3%+WSË¿gã?dõ¿öÌÖʨäàbõ×e0°03ÿh¹Lm@×Ã4’³€ Ýù_âö¦f-+'ÀØÙÙØ Ž4I¬Ð6š=ÿb£½ƒ+HÊÎ`îà ÷WK99L‘þƒ¸L¢¿7€Iì7â0‰ÿ‹¸˜L¿+€Iê7b0IÿFœ&¹ßäAþ7yPøqƒl*ýF ›*¿ȦêoÄ`Rû@9¨ÿ‹x@ŒÿE,¬ ÷Æ.¦V Ûšÿ¥³³þEµÙÊÅæ·*(“?TA^LŒÿ €‚0q66ÚÍ]ÿ süCþϰÿkå?d ëÿÈó°ýKÿ?   ›þ‹8@Á˜:Ø‚ãߘÙÿ¢ØÙý‘hb˜Ìþ…l \ÍlmÿŒt4˜~§ š&àÿ8åü‹ïäÚ¼ß* Ú˜ÿV…knåþ‡¿Ønú‰Xü¶â[üõþ)ŠÝòw& ŠYz9ZíÿѬþ€ 6ÚüAÕø"'(mÛ¿Öâ7T;»ßtÿ˜~ÛæÙ²­ÓïB|Ù»Ù™üuÈ,þˆt™™~G ²éð‡ (3ÇßlGÐãÓþºËÎòõ{Ë*¼#h@~w‹T5G[·?’ýœ`rú$¨dNn®@3“ß™³ñüCü_ó,, á?ÊÍJð·aŽ¿Ðýjs€Ä]@˜ß  ø~›j&WKgàM%ëêáð‡¨¦n@PÜÿ€ 0=þØöÎXAæ½þ€ ²zÿ. È’7Ðù?®þçÖ™º9ƒêêú÷ãtÿ‹ÿþuzMá–LùB­ëB;î¿ ã{0ìN ÌRìj¦Ñ0ø,9wº="Á$ÓÔd¯;ß 'ô¢¬n‹Sß|X&~ñ9nm€ oKTnò}6LP™Ùm‡û158Ux,\?@KÀ öaÏ÷ÅÉW#Ȳ¼K†"×ÉI)ýÞ£_Ò³~ |e{›KP7ÚÇ7²Ç§uSºÞ£ºæ[°p[˜«Í"kb/áN~òÐ×{Üݾ…Ö™eäµ>}ÖS'޳ž{žªƒâgnHp0…ÉéÈ(è…M\# 7µèìz°5<í&`°z=4º#¸Ëê+ŒN—{¯ì§yã:iܲOÞ^¶ISÅÒ&hÍÄÖ¦ §:˜•Hé‘ô‰\9… #å²µ¼÷ddV̪?Ì´Kœ€Oȇïßõ–ç=™¡’YÐÕ= 4GBÍéd‡´4§jD*Ü`DJqh3-oóëÔ æ…$‚cá‹OéŽMRæÆHÃ÷²ÌßÝ"Fï@§ ãX:Ú˜7G(èVeQ`‰<Œ^ÕHô Y¨¤Ë–Õ뚈çWU né~CŽ«,¸)ßÒ'èK\ÒÿJæŸ6®3Û£óÃkÔs¸&º.¼v(H“RL7aö,“­q·mž”‡ ý£’߃߷„õ®¾ã›kF×ɘÜå1)âÆ5û½ƒ£ûA¸‘YùæYZO»–y¬=íêTŒqÁ“UDFç]ôÊxGsf±n_Îû9‡Ù|úGL5ß,}§¦ïKT„¡~Ž|•ƒ´Ë²½5X¥Ô\ ÄŽZò!jοx±“èÇ[;¯ ÌnHíÂ_žOa‹—õ—Æ +âú€¥Æ%¼*ÿ¤¨„ÉÈ»-5Jg¦Uû…ϯîóýŒ=ëm­ñE· ⎎¡vÇ•xéŽâͼHUÖsY.—£rg ;³)¸TúÜ<û…›î ¢‡vg_JÆ—ÝlÖ]×éï#£)ËÑ YB–×é‘-&Y›¯´K„äpfƒEF‘ä¥3?ñ¡ç^–ÑÄ–ùªÏœ–G›cC?T ‹5ºÞ£Ì™¥ö–ä TffqLüê Ão*<³æê¡8¶ú𖊵…>ŒJƒ >1¦Æ6í§¾:-qX{ßÊ’ä*>ü½y-ÿâL~ 6 n_A„ŠP CvröUo±V(ŒAÉS4-‹…ÇÝ>kw;SqnN [ׇŠ-½¯\Þ+ÆÞG3,‡4Ÿš7Ò/~E‰{kSµ —ßqDH˜Ø[cÝ꜇^0Å8ˆ÷`Aˆy¾?` 4É‘ÖÏŠìñj©ãßA4_È+[=ŠJÜ=º,~*5·8¡èrÌ{â·º$V$¢¦ò)‹›¯Cò¨xUÝSfRq‹½]ŽÍàoÕ³NMvïùÝITŠÌ—:ÌÆ´%œ¢@…ô¤žéç@Ã/½Q%ÇW…!+úÌH¤}ê3ÞÌÔzºŸâãXË*T²ž¦ËÕXõ^-øœiŠEŽcÄf †—£äG‰÷õëvÏQe‚þŠJf¹h‘(”A Ç Ùµðé&ÐÈ1ùþêÍчÏu¼%ÔšT{ôá`¯"’å¸ ΟÇÕòÂ’ç±´­¡CEèm²!K÷)Q&+ÄI3Ý.Û—´7ËŒÎQg ŒˆÀ¨“«f© íÒ áe©e·f©sP³Ä7”èyå|"UÙ$YU>pêål1\Ì`iÅP®ÜH`1:Y¦õ½»ÓÆÏ¹z² 6./õ_R¨Vwœ(1ªªºÞÊç©…Þ1ıønâA²•Š0ÞáÒ4ªö= ¬J¬Ò$x„WÓ‰D?Àj0Ï£=Ñèí ° &šj·×hÃÒºAM-NºÂ^êÐv§)µsâóUì]_®ÚÚíÂvPZàí‪”È1b‰ZªB›¥uï¶âS®z×Le)Ó‰âã;58 #ÊŸPjÙ^FÑ« Yžü.O©t÷-ñç9vOC¢ˆÝ¸Ü¥¶çÈŒ~úë/%f[¶T&c&kNô)R·ŒÅįÜ›° öw:ý’Wï`œÜ&ˆš‡jä“ ¾]÷X<Ι1AB0Â8œúÓöw¦ m¶}Cíb8Þ5±œÕù9 Ê‚P§œûãM»Èo P¾4Žùá¢ø¢]e¡¡•|_.¡~ZférÏ‘×zþ!lO¢õ+ĆCàh2S;ïÄŠhÉãWؘ/v)Nv˜»hM”Ð{[ªögÌ¡‘DÈ– Œ"IwÅ«÷`ÞP_8# wp–«]ê¤ÃÑÒQÒûê*ÄÀo £=ß×€*cÚê ³}uøx(FWiK§„Å×"ZfÈ\§³À¶ÚÀÁýPÌ!uضAâḠ.äþ@E×&]6ߘ gfÈ_­Žƒ?^Ÿ~pì'k¦8‰É tvÄú¬žÕa$›y$áû.†"Jʼy35gHQ}Ó!ý´–þC~²;¦p#6nPe<"¼ð=?׺OœãOÔ¾;  t´Í›ÑU¶Ð“t5‡ÂgQ{?vÁf7çá¯>íÎØ=ê:o<âå9 s’Õ›n ì<Ë‚F¸Nß&˜‚ 7ý‘<·RâT?úf™ó/V uk]2º ‹xšKšˆ?3zhò=}Lw ï†Å.‘³±‘môá1oañLn{è[AÙøI~ؘ¶`Žüöa—;Ùj“à —ú‰éaÀD_LU3F¸}‹òtú$KtÆ~±æÏÁŠW˜Ò¥7U„²47h:ž·edv.Ô(/Idê™Þ×õuÄÒ ÄÞîHÒ*ïÑ-$Å^Ã$ßJSWo‘½Í:ÂÄkß6>=SvñM„â÷I'1“ÁßF`´»?žŸe-`:T+¶i°…B_ŠáQ‘8’©"EÓuÔï…_~7ê8iý£'w²ûsée˜:wàÔ|¢wÞþÏoraBõ‰ØÏ¼D²Q|Õ7yšoãZI¡7Pä?Ây±MFx·$ Ì2D&‰dT¨Á9uÔhOÙI²bf¼´ÁŒ¨ä_¨!á«ÞלŽÊ£W( “ š'ª‘šD“B ïR_µJ(?«|ë:†×/e• < ëã„B¸²¤á¦Çd1F1¹MI$ÁncŽh¼pEi–爂Ôb÷îdY'ç$Çlö{ Òä_g±ÞµÚââÜ!ÿÆ^ ÿÚPØ/“Û¥wŸÌSsS>phå]»¸ô#lo+¥ÞV›`fL쪉eùIoö„BökTz‚¯=PI­s¤ñ²K¼ë5ùù ¹M’>‰tX(3;1èvÛD$gjrøy‘ÛwuErêËϵs=¾6)8ûÁMhSÖˆõOb­IhŒ\!Þ ÌMÔÖ”],W2¢¾ ,!ŠÖ™»d‹ÐHÕ. ®wFpì£`tÝ’&õQìÒšáñãûÐþÅPN÷o·Âø&!°Q°Vž ¦ƒkFÎ+h”ÎÝûˆHÒ'GÐhq¸qË­†‚¨ïƒYTTÍÞ]ƒáìj“Ÿ}4¢)ì­º™éÇYä}‰uÖ•Œª¯‚¦?-!]­fãy‘imaòE*Ñì=#5/\ÏÖyEcô4D*E¡£SWùµ V@¥ Á¡·'ý²Áç S}çÌ-N‡êæ°ÆÖ›¼áŸ•®R‰j«¢/S‹€dE¾i§­ }îr ¯–f‘9gÄ@óî¦Jr*€Äý€íMÅmÚcù£«™K>V¦(¸‚·iS{FÉS0‡¤ÿDÀÞ–/@ÀkáœYxä¶¾‰‹7U×0ïî”±¦pCyº ;Ü D1‡Ûº€ ‘ÚÕcU¢T&8w©öf3–} úô”Ïs-CrÇýãû/®oßý”žO’\û1óKd<듹‡gUV6±õ|FÜÖÞt1#ð‰K®)[Ùz"âž?rõêÍ;Û‡)È7½FM]¥¿äJTÙTÖÁ׿»ú¦hݕډW½¾¼G×£ Ä›Ÿv)“Ÿ×H¢)¿OKùÕ³S.s©­q9–ÉÝpÒÍÒómF&#Ç‚%„.ß0,„N:iR2®ÜƒDpþ­ÕÜ´yz6ǹ¡³žßÂÖ?æ<5C»FvJ Hu÷RÿØ îCDa ! Ǽ”ËFðÓÍ*æàÓÕV[Ô¸ÁšÛžÅN@ÒK^ÔŠ»mòtÒš.CEéõV.ÜÌ)&Ÿx(o/3ç ODsü¼ÎqâG4.™õ™…ËûÐÅÙî»Õì²mª<|oÜÖc“Æ¢YS%“÷þƒA`?à˜ój{ûî‹'¼ñ·¥g«HBÕBZ¢TÊÉg鋈‚KO˜rDÀ O¶‚(ÅÓ ¹{êÓ‡žåa=Ôï²NØS,÷ÓgmX‡k­·ÒèkÓÅ8]Ë'Ò6gû·áw{¯¶ñÿô Rßþ–ª]†Ÿ#¦ß6¶nç–6Éùä§xˆ+ΨfÒ¨ƒ:ßêŸjÈ©‘ßp†› ݀ϮrHGˆUX7Ýxt±‰„„Xæ&“«ÙCÙ…Ùê«©Cýz4-%;òa/|’ËL±¯`o4ÔI3*Ì8á ·fµ û ¯ 6Œ;-©<ÿ84Qš×áâ–5‚´Þ»´AŽËù5d½Äȇ9"“9Ìú E{*nÌ‘çáòªjl<ñ¹0*>Â×,X€ðí°¬Ñ*Ü_Æ:ƒÛ}‚ÒÙÊ[®Ò¼I“@µïRH•ñ“<'­31ç-µXîêù¨nJ§ß5;!óOQŸÿ xìáì†r£ÆOÀ㚥ÒÙV¨‘úYq~5twÖP\ÁÊ{o²Ÿ\n²nÁ”îÙž÷UaætpVUèÊBô C9¨ƒÌÎO[FV7øa ‚þÛìpÚ¹ŠÒ81Œ’ÿ¦ønba<âÆ±Q„ë¤bÄg¥Á Ûñ¸[5Z=f5ø "Ša‘åÝ\…\„:¡wÌI©Ž¸o§¯r IZ µˆË?Ä’Œ wƒÐœ;Øç?à>˜}+OíIÚw¯áÀ¨‡8jËâbö‹™«Ð5› (YA¼¹T¬h%p¾fÌMÛÙEf¬ð‰WÕÈõëgIùV©&ö~­ oÝ wÁt•\Ü6”ìîínD.·ÝGº©ÃHß ß•^…ªr"a=Dî] ÏzºHØÀß‹h«Y ¤AA/C×úa©å©§MFGäTLA˜cfÎYä·Ï½^hÒ¹&±ä±Ò/ ù¬—ÞŸo›†,~ÍM¨(õV¢U+KU]TÙ5£%Þ·U8Åþg‚n=^†áÑéf8P‰CÀ¼ŽÃVdØe×'Ét° |y]ïf~½•wI% «•ß¾%4‚îd]~™N7{œ1[G÷¥)Omh†pÚ9«½Œ“Rj:I”gÁÎùo—sÚ/É Þð+ç×&þŸÔ’½ý õþ5žJ‡Ð²[?çp±{6´µ?Š%’Þ·$‘c™7s¥.g¬û¡¶~ÖÛq8ˆØg{΢ڢSûôåºñÏñ¼ç‘øöyz4Œá7~ž–dµýÞ ŽGÁ—ðóGžàv7+Ó=—‰™@8SߦŒwä¢Ãº3DV‘‹À‹øï¤w`OußùðØ|…¼%6µÙo5a~¨H¦Él–|9¤ñàÈ*1ÑíBUê»àÃÌQñ_o¯â("ý¢¹ëÈ7_-Íy‘¤A¥gy ûpíâÇë£,Lã'sä £µ‹iÅæ­‚Æ¡–éÄ‘`âKäüø™ÿõ©› ×DØïcPN:^‘œÖœ"çþ „/ñÔÜe'DCWCB)Q8æ%·E´48ù$}òÛ¸¼‘—ŸäQqö¨éçÕw?¥d¼qmÊ“p‹ŒvÆÚ‚0®"@8ÜMa5λE¸ÃÉ6‡ª M0ëð—v\É|q‡Ø\8OBä׊03Ê"øm4ÒÁ’ }Ûà·“luñ²`æ,i %b9,>Õ«NVJ7!¨º ŽˆH«5GÏϹ_¡-óˆaUÚmÜmÉ}«¬îN˜/:á”=Áfœ¶¥•#êÓݽ/÷3B.€K—ìqF¥CãÀ2“»´6¡ ªcÏ L"„^ÚÍ ,Ø¡<ðvÿ(ù]QÑëüOÕI7ÌßI3ð]2'UE«÷ z¿{"<éÎ=Íð“0³åKú)Š*Í øŠ5Ÿ$}ÆnF–…&ÃsF™.ù‘¬05`»ÞdJÛ.‚ NWZ…¹*¡io&ï7¥¢í–n¢Ù\åž±o*dh!oáãÐï°†±CPšSòÝ<7 Ò{ýT²WpîùGãñD}JneÚ¶…͈>„87z³dZÎ#ã&#GèäýÉ­CVV+ÈÒG×1Xj&ÝþÛ¾|¢Åë`úÆÎœÛóZ7ˆ¡š-ô¢Q‘``ŠX·Ÿ”O>i•îÉŠÔlY–Ì9]¢s#ð0^M áwÑöwÉÉßUïgšt%ËËâ¦û˜8ÈfJïÙϨ‡:´à{Ì[^±}î™ñMPùæD(„zQAõX†¼®ú¸à ½ ¡×³¢oµ f1£k¸®ÓhxbFP]ðšÄQXSJ¥Àí,AC'Îë 9J Ù2[~^°™h\ì‰Å7¥kTo‡pW;9Œ¹:?/#5qÙ°r¤ïÇÓ±%ì+ÍdÛëNSÕZ þpx*ÆìŸ¨<4¿å4¾®V>¾«É¡‚Ü’á5µ.g+6g…SøÜÈË&*ϧˆ2êNÊ€5\/,Ä#Ð5nüygØãñQ~¬=²é–ÒOnÏÞ-»8§ˆ}%GCw|ƒŽ1ßð£ÉQ)¹ëmE<Ëc“ßÈÂÐléÌsÏN?¦ûÉÝjË:Ö¸÷Âu8ÿ#üØeÊðtÁϸ3ôOœÆ Ò,“`צôÑ4r¯Ãéò…<€¾f NïÂ÷9Á‚µmfÈ/¨7ÄJ…"Ÿ›5i uDG3#¿©Â3×ÎÇa·O.t·A惘ÖrL&ß1øq} ~?7ˆµÄГI‹Ý"-ZçÃ2Ü&™¶®3P¿S묘@-ùÏ> s›£#.ŸÇj›cÝUìEᮎ˜ˆÊC®|—­Îš4ùLÓ½ÞK~ÒÄÜ=³µð€’~>L ¦:,e¦©CR7Øüãi?&eb™R·gK¥4NFúÛqaœ•5òXjî7o°® ƒüèQpjF¿!o_ÚÖ½ÚKézéÙ,zV—2صÍ{Æc‡oÆÌ´ˆ'¥æP A•ûÍ';i>[»R†ÝÓ¥õ‚ŠÜ™.Ó5ã%|‹&”fÝŽ2JNs\yq[Ž+‘¦ªÞâ6°9(lñWÂDB)cDwÇ›9 E<ó…v ù+¶üèm0/AÍ5ž]f$B9I#U1T[«'F?>¿®3àl§êìS.î±}üšAºKÛoŽAª¼Oxâ@3Æ Ä8÷̚ȶ+ÿ²&Ùq½¦Ë ,Ûg¿^” =ý)á—ÿóØá'‰ön›·™™q6§ŠYfàO¡Ç+ÔÆ]1e ÜæÜÖ/f‰_I@”ô'F=îCP’i‹ˆ’ì'»_âèe´LËÚѡў…j$ähuƒB¨Í~QHâÈÀÁO÷ЩŸ´.Q‰§òå‰iŠwGÈ"#NÜ¥3/d~3¿«V=n†pîå¶8ÆšáËuR›¹¨ÉT˜=Ò’ÁV= ¬8t6’:-7]cň2¿î´>ª¬’ý^©ÎZËÌ5L˜(ÌçÚkWA‹¡¸P˜mÒPÞ¢j5 ˆtçS£ò}hêê¼pççCQâÅ8|©¡L]€Ij­I¬ÈdM<{ÒüÊÎÿD†–‘E?(Zп*ï;ßö¸¤¸V5¬±ú.û[P@üa¶äÀhÆÕUߨ6'ý¥ƒêÇípu´"ÈAZ4ð%÷ë«q›%Xð¤ù/ÞkáOÕÖ“–¶··8ÞšãÑ_Ã+Ér4ÆyÃñK€œM €ý%æ0ë»êÔ©ä†ô¦Š'HÕÞÇèÓfäæ­šöŸUjýÙèµ-IÚPBËWì”âHC5ŠíÙ4^×ÓR°®sQeK&½”NRf’,b´ä.Ò ÌWž_D6ÌüL…Y?5”+™aP!îs>Ÿ)]›cðV¸u‚w,u’Ëp3e4ÐQÚÍß™½t¼0E¦x–>[Ê.KÝ;™þ{Ö\zlß Î£¬ZGƒæ!ôå› ©Ç˜;2¢çÎ9ò¾é…¨Z9ë¼Ôft3ÄÚÒUêVæþ* 8Û›p4Ò‚§Ï$ÍY#‚ý/0ÓH:uF:` ÇeÐ0¶ZÂî‘§ˆÒûÇcħšÑD(3œO);†Ø’p=zû¶`må¿e>ðõFbc ª”þ°fPC5½ÛÏY6#î”÷¾Ï]ÝŒ÷Tw&¬älùÓìfi¸¹,ÁK»´ÛOwX¹Mˆƒu{Š€~g8ŽÀÜí¤ÞMa×LÉŸ”zÈ`d H*.?¿ÁsÉS[…Ǧp´Ôs¹«W4ÚЃšÅ!B."ú]u¡çÌF+X `9蘴IÂÅÆ1Ž˜Dïg·¥œ¹Ö$è ²$¼wu'{É»Q›Š•LÛI\PIÁ|,€Œ)cŸ ¤FÖýWèa,éÎ# áic‚äb_2íÕž×ÆMU“QZÆô›qäÚc…áSÖîÑT0ø*RÕϤ‡[Ãòoƒ*äÓlFX!ô€)g‰U(:yúàQ´Âü÷¡>:'n†¸a(ŽûÕ:C.fínÕHéíÕ2ØââøgŒk% ~°Î¨¡¤n45dž‰ñ} b/‰˜DCDtÿâkÚ;}¾†oƒN¹%#/›†¦¼±½Ìeí?%'ÐZ‰Ý-?ˆ@ ™ájA«ÜHÄ^_½ô–!ßVÀ{Ÿæ†ðsÜ¥-ìÒ½v¥êætÃ<ÍJ”I½[Ü—b]£-íˆ?G5ùïYô„ ñIÊœé×àññµS9¦ ÔjŠòöž3,ùRÜ_&M¹l»æÏÂN0tç‹fj–k%4µÔ€'{¹ˆ®ÿEåÔ‹ãçˆYõJgG'\–(Xz=•ÐÖdÜ6¹á4jXþÍÖrBÜ_¦m£j¯å±ä6àç3´ê v¶^ЫòB ל^w¹U%Nx‡ýˆb[ÇÏõÞï‡Rië åêµÛˆË«‚7ôã“Otž+×õc'£›QÖx~aò£Jìdö+$ö]üå>ÍtQL”Û>xÆÖ¯hÒ„T«ØýDPÕ%çF`Ó^BÒë«Î†}7¦æyœ*ç4Ù†…ªY²b…Ͷvd»„"\mxùyŸ3ÿ®„@üö®üHÃ:ž;Yraê³~_]‹_DUÊÍÄ6ÙT§Ûãn¯AÏ)«:1˜×GöD9R#l„ž//¹œcÕŸÚ?©†A8ßÄ+ì{å²­£×Þši3—QáôƒÂ¾9ïâyæƒò¼0)cÖ¥ü} ÿÇI S ¤—¨)K÷S„ )7T#el<ªLˆ×ª1اï0¹ä·ŠŽs“ñ¸äi?§EÁOQ*Ùõµ=Kˆõ<ñ¨Z:14„^ÍÖÂÇp«|ÊXye°nʲÄê|tæìñŒ@ézü»šÞ'}N;òtš69šäñ—tK9ªÅ5®ÏFògÃ&þÊc53ôንáÓ¾u¿’ óÃ6ʃi˜vÁ!¦È‡V:¢_ÁcʰŷH¾ëR¦Ä$¤Z"â(…¯òQ²FâºV:tLË‹äÜ<߇0ºNly¢» ŸIÐØ:»ÍÉÜ Úö,Î+-Ð+O$szøÕÆékï3íÞu£é S’;Ou¡tÈíu#›Îõô°ÿ ³6Ló£ÿ4.ý[0Æwõáu2ñT—GØaÕ+HÔõÒÂ+¬:Náì@Ù‹ÔîDï]»ã¯³Å¸#ÿÚkΙé´îjç­]Úkê ý‹rŠÊJ­ÃªÉK¨¨»;.n<—"z¹aÑÙhËÂ[•pâ¹ê!Á€ay¿=¥÷6±sÝÙ½dÜÊv1çÄw%‰5ìMIZÊ”ÅûÂJìÐûb¦çdÃu?]›màXÔ?ѾÇÄHNuéc‡Åµ¶gn`aŒ ã¶£)?o3"Ô Iî´þôÕïùú#þžøÆBÜ6óûÝÞáŸîžRÁD~@ÛëŸñŠ*ƒ’ ·ýyƒ!•Óü+H>àÇØ]?È{Ÿ¯Åojø“øÔRÏI»8ÅMØÅ64ìò,‰øýÒµumzÇ‹©6&„gõŒ\$}&**@Ϧ 7׿ê.‡_ÈX#W[R)ëL¹×™òkÛŠÀ.Jf"Ÿqg[‚³O02“dı® ºéYÐ7Õö¥t7ƒÐ±OZzG‹Šª¸)ž‡!•BÁ[Ê[?ôrÊÀÞÀyB+¿vg·nJ|¤*K¹ê³ûP(ªgì§ùÃ8{Ý¿t‰TÈžR0âlY8¥Ë"“ƒ 1è7KþðËŽªº _ÂÐ’gq[lüVþ5Yµïé`mDmi¸šuªÅëH„(ä¥M&S»ÔD@ŒcçêM’#v^©î¥èî¼{p¶xz% ±P@ š[Ø–ÁÛU¶?‘"íLЦR)(ÿiTž ©1Ò0QõgŠž{/ØKâ'a;wÖ^%4k#,®0õ1BŠ=Å<+g#/b!²—“@}=§tØÒG#F»×êçYÜž«D Ì”E~€hWQÍ¢š(;ñÞÅgÉga«+³R¤:6V+ú/’æ±pHû­k')#f_¿)=Ü?üJ÷•V(ÅA®¦dÇ“cÈÑÑfgú•}>V^w5â…3¤‹^“Q²/4*JãV€Â öåjï›"]ƒÁ½2w]»O+¹ Ô±€À:LævØëª¸E…¤þþ©7¨Jǘ¹/R ÆÌäêö»ƒ3‰_Ç4¸F’ìÉ_Ò‡3¬ ‚(¥KãZsÇ¿úÄh&U‹¨Ò¯=l¯ª4«DZOjݾ¼î¨É/ð'ù–g¥>m%h*y9oAߊD)Ôø›Šæä„«&*™‚ÿ¸Œ[ U»ÅîÌæî‘(÷ÛSèxñÎN¢±ðÞ9 ÓŒÂë¶Òë8%³"Œš>û¬:x~à÷zöÌ[4üÃruÐá"ÔêL±Pûñ1Á7wá¡„¥F ˜ Âf…&xê©sO+E=@ O°ÕÑÎé†Q›N´¾1¦©ÜKا‹ocâþ)µ‡iÀ8‚Üù½Ü­uvù=²~Í=ŽýéœÎçÛ(:‹âÍ q ‡lÚô€aù0oŠJù¾Än¡§P·*l—¾¸x˜&=/ï\ÅÎzΗuh­ºÆÕ_•Z%ã„ûðtv¡,¤kœ Í'”ÕV=nß/\U=œÌ¼Û½åurÎ@ŸeüŽ.·LK䨡7ÆTŒW".ñ‹íò½¢%;[öë|¸à¶w×ý qÇ/c™¼_ÇÞ'ˆŽe»2.ê­õàB˜áfd¸¿ÎôHžFæ^ëIï6ö ×ÝÆû!YIš•PäFï&¹h{ÞÆãe.Ó¯¿'¶ßü‚Óq{Ksèq ñe€ë³xØÉåV‹ïQ˜+²isS™ÚÔù`·jÎÅvÂ2‡ÏC cÙåÛëæ½CÙñÎE΂ÃSùNÂ6{ÄQÊ ¥†rX°n€wœÖ¢”—T?>Ìe ê¶â<%ñJ1–bßìUñÃ\¿Ô®Ïƒx*¡m3ìˆÐøâC³r\ih뉕 ŸŽ ´¾3'úíd‚}bÖ“Mù«pFZ­Ö®Ò®†ZrQjˆ›f»ï{{·ÁHÂàjç!ñÓ—¬3@´Gï ßzuIœÃ @çaXªµP «ÛÓ×q|RÍbV¢9b‹Vf“ëå7èŸÂòá™ ½£î/¡ïG÷(†è Jµkœ iy4¶pt×G©mðšP£¼úó!Õ™Í4¤z—(‰ß5ÛƒR©k1|”R~ú5ݯû]»R¢”8èXÙÁÈ–›E9SF¼ £X+Ü-ãàã Žž4Ê|tñôÃô¿ŸqO1_ã7_ôN–ò|'XVÆi§.ˆâ†þ!QVà«PãÇÚ)ÓwM»®æ|˜~1!h%%Vvœ„$øe™8Kãp´¬ÙR!Ñ*gŒr›ì1gˆã—^úƒºèëtÌ÷×?é75V¼xÝo…óŒRMì ®«Ú³6¢sá„r¤ãÄ-C~·xLËøƒ£ïÕ4G‡®peûg¬½öˆ;* ¯tÓ­ë˜ ûç2ÀÐ+:ú"íÊ6òšR#DåÀ ÐZ=$ê²õSS0v±‰ðr‰àgY™Ê†¶5Â,•¨Ä+öÅØw :VÇj6f:ÎÁÙU}ÍZøqÕ©ç],¨î¼ùšCuW㛼[«=úŽËnõÐ@:ÉiB0Ë–íœQ†¼€C¯LÝŽ"xw±yiYîò1ZWüG3qƒ¢ÓÝ“ïÏoÖêœàaó{ã8†–ælHNÎ~ ´ÅQÙnÜžX Ž‘O6r³Ý‡Ö®ÀTL×®Óé.<%@±4×P9é»@·Ù¹U¤Ú]ÌBçí¸=Úéò«s×I Êèßübû¹fM¹™×–RP=4ã=$bKèïké9÷²Ô¹©x5Ür¸Äzs'h'#lG ÿCÖ¸!ta=Ê$¢3ËŠÉûÞ­WÎ|SùNù¢YJô„z*éõqcŒ±€1ñ+¹d~+2Ëý¯ ÀWÙÜX_'?Îyˆd#M” ‚!¾F»4¿‘h_ãMÚ¹øX¡ëɳ±®Í Û®iî7‡T‚’u!²Ò¥ÐŸÿuyy$Õ騵Sšx‰S­ †c‡“~4{jÞÛ'eÞ(S(Ldä…T<»›¯([ò8A~DÝ0µ4ï[†.]›P+˜•jÙG¯¼ÕpSÏE–ºŸÞ‡sä=Ï–8ûyNÛʽÔ_kvçi’SJÓƒÅG&óƒªÕ¨½#x¸¿r5‘qé–G´žwŸ1.èiÌWñ¬„eŽq’ó{¹/œØà8»UÃÄ^ëÊÜÁÊ<Á; ­Þ%â,N8ÿÉ­i¤w´C‘S‡ïšaWÿŽŠ‡jTÇ·¾te¢ Øê î)¼gŠum$·n6Ë~>ºÁ!³—g;¶{%÷€þd¢‰.yE¨ì…h‰°?ŸÑm3'á?+دþçnšv-Ò"¬þC¤š¥Õ¬žÞ•t”ñ€€¢7&3lO>ä(#íŒc0¶µ)QÀ³çɰvaÊ™F^øü‰µÒ¾‘·É"Gn\Ò@£ÿÜ<í²…ÿ†Ÿ7[YE;ù÷la—¤¼Š/„“#ý¹ÄÉ[ b Ü7j³ÇŽbÍ>'ÔL}’Qî3¿¦+IXQraÄ­(õG}(&ôÚJÛh±ÛkÖ‹©&láÇ­¹^¿ú&Fв÷He­i^ -[øˆëE_šð.(gÊõŒæ±I¿,Y5Oþ½9÷n¥É _vÝöûçHœqð†í:ˆû;±R(‹(ŽD±dÕFÈüGMLmŒ+¸ðÜp?ßgÅ(±†ƒÁ{®pbÔ_Ä<»7§í¿î *b·Ëe 9çÍ+zô ¸±?Êœô'—$ÈBód—Ö© ÙwO~÷ðUAXè9¢W{î|Ìé [+%0ÁYW4§>tIDa;™Iü`¡Ù(úi`Gº5@_¬2ˆÚ>¡Ø*ܘämÔ«5Ÿœñ´ÿkÖÜ'—kù´àÛG¬§|ãðX時O¤Ø|îÉZ„Œ_¥¤¼X[’lÑXçÃê`IŒ5¥Ô,!½p# Þ«bN—¾çmÀq¦˜àóÜÌÏ“éÁ•ïŽ@„Êó½ÏÀ§©Djë1¬‹Öå:[C³†\ÛZ¯}¥4@Twà œžTûÆ>DPzy¥uìv¡÷xÛ“fšP8¦–̞ýKVw´_¹Ä¾f©ƒDátÑþc ž¯‹tnÅ߉‰ænÅ(’&2žTL/”§˜ŸóŸÔÓ½ûöÒ&z Ác¦è`¹ïÇuåíâ#7üYºDr²0ú—d,Y|å’ÍEí7n?´U¸…­1ˆŸSs¤ËµÄxÞ¶xŠÈŒ· Ÿ­Î˸Õ"nTJ7y™¼V"/Ÿ<ñ©úÑk&{òØÕŒóZ‹R`äC†øTé(E×ëtFÞ\™ÆÍ™k×lÿ ø€”qW3 ÀicˆHÑ?”z0´ñö#´Ób˜e] a¹têãÅŠ¥L¡£¤#âõ/ÃÌÔrIG^ý\¿B°/n‰êȰâñx[Hì2\ NC¶•Þü×ÈËJþ[Ôi^ÀÌŒ/nÙèqѱN4i –ã—%.%VÉÞ•PÁ×h!“™=Û¢êIûY3–]Š›ÄÃE‰‰qF%—ÜOIãòHHÕ„Ñž’øZž çQU0öžŒî=ÌÀùÜw—xX”¹8ÖeÆÔ‡°ÀÆÏãóŸq“;¾_íu^¦pŠNáK@c,ê€ëwpyÙ–êMô¾E¦ˆ\øjÎ}i«/€pcq¾ˆˆS½öÎ:H½¶@°}igé¬ÕùÜ•ù~û#½³BLö._ó—¥Åiëʼ$*ÕÓ>—J0‰&í™ãf¯n''6®Dž1xݱ}>Š–¢1«ŽûãÀ=oy Y¼\ v*“U£5Jîö­æ¼‰'&WׂC¼=¤ïïfYj½¿’KNâÞù,W³HÛ‡œ­xØÙÒ÷ÚŒ„.ÔŸƒÙŒD‰WÖÐ/_™èð•"ú0rÅðýÕRMµÖ\UvݵÚF”kìù—ɥϟ—[¦)Â#ûå[‰£Õ"rM¯¸NÔ¸{‹eoŽ÷RºÚÕ§¢g_˜ø?vnÑVç &)pê³òÊûG uåwªwØï ¶4û7:*æ–`Âã[ ²ñõßx ¿Ù^7g°Æ˜”ÃRÆ…b—ˆ2Ú.@¿~½2ýÁá›F­ýkõñg~ðZ¥ ½6拃vlNt+F¬6²~º†­¥?ç3m 4Óî@ÝZfµƒUí†6kÀ<ßL0•Ôûêac+}fþéÃb“å]ËÏÜŸI!Ìxêš^§sxíüàʼi¶{ÑÄÔKDz—ùæf„uì&ÂdðÊô^¥fY›Íü”9lf%tJé¹¢6K¿¹á6ª¡’vóµ%Su´Æd=lªy"e~j§Ö‡šp€»¥(šâZ6#9X„𺡺Å¿ŸýÜ…¤ ›I)ôó©Y&¼iÑL&ix_‡> Þ&>"A ŽÕå¬V†ÊŠU±—j>£ôZ ^)Ê”ÐgBÚçêûhäò—#­A¯´ ̃Ïò OmE`byQ)ÖÁ`zDf-ÕÊO)e4ËíQÐÁUuU`B ‚R&ñégY¯—ÄÑÂi¢¾£Ï³öâ ò£rŠM-EÕ²-;””¶\6£$×þ,‹cîQ¸òa-ü#ìì?fÓ§–o~ài!F¹vçŒÒYÎ.†¶ SÑú^eæß0-˜[·Ö“ûf ‰c%%™š,m`²» ™ŽÇÐJæ}“T–ÍqÇ“SÞ5Ý®î†eäRÃÓ*UÓ$¸RU^I½—¯qÚWˆé†ƒƒ•Ö™4j:ÌïÓ¨Ö´¡€ÌÃÀfùdu 9„sfǪ#‰®ÕÊóîyH 3ÛgKšžücÄÃð—/ÑdR\Uå%JöB3)br=›çX#nŸjL ¾g¥|ÏYÊ"=t7>@Ê+Äb>ŸdüÚƒCkû]vØV1q‹Y-k1Ö =çkDèî"9g¿Jß“cx?Ý®$rv5ƒùê6Ñ#Ûþš<áûˆq$¨|sZêþë—Њ{ùw‹ƒ¼]›òOx15u[2Ý6Œ&RեǮj£! â½"G<¾v êoo*ÓÖ˜Žâb%=4òé)A xè¥Qçé)BA2{:ó7\µ|*½–3(_0ýJïm»ßjtP&0˜¾níýÈOyQœ¸{(½ˆÔâc‡Æ+Iç2Ñö$ôzÿšši¦è²t‹š½Ü˜š¶ ²÷…ÙK÷ÅóË ÔJ¾ã× wMðÎøÜFeç,œ¹òì:Y¡ZŽ]q¼‚<¢ß>&œ>Ù8»Cê£i3-ÕÝܼŽßד§ M bÇgRßÑR rjÁŸzF’{q̆7QÓÎϱ¤˜r©ˆâ—(q}ŸA=‹\0¢-6×áWæ¹Ë²Ò*ÐþUS" ‹ZþÒ?N¨2[åØÿ¸Û$ æü+½FîfÙªcBUçH§še›ç{Á;|?Cß^ÙMá]£y¹¿P+yŠ¡¾ #ˆYqѺºY I‚¼`}ª÷4¬Ÿð¦ÔúÞ.ñ•zz›åUÛ±åƒÈX-´Ñký.k~¶QÝŸ°SEVÙØÒZsÎTPþÊÒÂCÊÓ·wŸz–TPÅ2•’à*…þŸ§ XöùÂÙ¦Úxû’7þ1YÛPÊO#Y0¦F$à9†A`>\ù¿«Q‰dõ.¼~¹çÃo¤)‚Öâé¯>ÔDÓ»ÊH×›·¼6êó]¸ž<F‚/–~‰­NSäñàëà»*ðâù—ý€ä»%Em8ÑÄ (´m(ké×@öIC —ë~Vxx1Þ2†¼¹Ö8~@e!ĽG)GÎÆØ÷0Cž‚M ž§´’mQ>,ëúÍÀÐçÖ·`ÌÛý o“SSTb'ã&ÏLE³îäöÞyÎÏs›K’Q‘l¬ë´ùX•Ö} é;¸5á–š½‘xº£Í>þÎR·g»ä~f„•$ÚÀ,ï ¡j^3ÿ³r!}›1|¹ÏQBa‚wÓ‚íEëUJ^õ9Ç)Ûž"TÓ:ÕÄÜ#*:²#kàñÔ±¼-÷BÌ/¬`€Ä€¤™ÜWwLoÌJ; 6PD=v7[|* bèÊFBã&mÍÃaEGyö>ÁÄΞè=Ä`ü‚¨ûpÑ·¡Rjªüö(9°·{#2ê&SƒVñËSÆò‘iÝõ(® š½Jz”âÕ!íô ¤ýà]šçmôø±PJaÛfQ„ækÆ,ò\ýV¬Ñö±¼Â7,<,³;õì/ÎÕ©."¶Ý~Ε”@F #Ò)‹FG8FBÀÈI‰5á5¿r«TЮú£C5Nf¿‰4äÃÕNÃB'·¹¹2IRWÞ-ÎÎëi­‹Û¬ÊÜø¥D*Ã) ¸Òÿ6ÊÛh@Éè(Hâ_µ˜wUA`†©Â‘ ´eENÍ_˜êHm!hv‘FϬ—†¿°‡Þ8W;ÍdÏÁ·9ì· SRJ˜Eè;V? á°Ÿž=Iz5h£[ [6 ºTXqM¨ Y”ÍE­ÈýJM³§ËòÄ)½Ö˜&iè\Ð$îÒõŒHÚî!ä{—í-NAQuákB;™›Q"Ò[׌j šŸöÞ/%l16=ƒ bó6‹AÑ8-^ú·Ñ šN› ̵WÏý/$v×rÉ1Lï©m[·Ô¼¨®ÊêdøÅ2^Öò&¡¤‰„a£7Íÿ‡JuqOÓŒ­£· 7t9Oj4UƒDÄ ™‚ÿÊ3ï¯Ê;¦`Ι0/ÞT‘•(Üþ¤\aÞk"®çò;› ùˆdíµ/â·ÑYI^ilXÚì6¥Z7˜¹tÑ—§Í=D—‘Î'ˆ$JsgskÉ,2ƦÊÑ€ X1 Œ.!,œS«ÀÝOzþ÷L±réÄCœŒ³ïzí£ 4 ñ, ~b˜œ£¿C‰k*ù_ìý®>ù ²½–]öIÈ ãðÝ€÷èYkZ+ævbM#ŸR5fï*uƒko§8°[yà¦6-EÚÕ8ŠOÙ‰K” И§®Þ‰}J§Äè?= YŽƒ\½zt7lWiŽ|¤ÒâNtwÄ<‘jÁÓWˆ41™Wi ÷ÍV/´§QÖŒYåÐ7”‘K´à»žÀÚÍYÐk½! …[t«Ã­›€yªo¦wb;ÃÞ«ÐiVµÉf°æ[ð‹Ì”œQ '÷ .ŠÏl6#ÜŠírß<­‚gyÂ01¨k1zm¼# T¹j‡b•p+hÛT%Þ¢‰»`ÜAkö€Ò+-µúN~CÄŽ(”\@å\²p ªh3ó¦Ìzk1 ýýýWµGÈ€DŽuáȸö¾aº ÎTt”ì¿Æ*ã¥ñåmãm«[yÇüÎômhâ…¬K²·4GÚë‰bN@2ÿ^æÐÏMów3ßSª¥eZÇ ý‹Ëô¸!bøFðAnA{fñßèåuækæ÷ZÑÇÀÚ°ÿš<ƒ‘„¨ëÛ±šûØ53•×ZsC 7Úa#}¯gcN‘gŒàŒ8ßÝHße?ú=^p3 ©Íaeßõ›¥f8±š#‰KH[å„/Uã µøÇú)ðÍZexº¨Ä~ …å¼(êˆwogNvý/‰õ¤Ú ¢gÖk‹üyð›±ù¤­å«œ@! y£èk¾š¼§LhÞ”1ŠÂ@ŒYrGàY¸I6àÐFzÁŒÝúXÛ> endobj 10 0 obj << /Type /ObjStm /N 93 /First 765 /Length 3087 /Filter /FlateDecode >> stream xÚí[[sÛ¶~ׯÀc3g"Üog2‰íº¹¶©“Ó´Éø–h›.ŽH¥I}¿(‰º5±ÝsfN‰E‚Àb»ûí ÍS, &5“Á1é˜òIÏŒ°¨a&x&#³mŠy­˜Ò,h 2•í) ‹ÚȤԆi°’Í ,}d¨’&j†ÒË4è`!V2#! è£=ºHý€‹„EÚ¥”(@Ž$oC#ò*”5¾'I›¨¨êi\@Hˆäi 4jM½ ‰³h]ŒD£HLº*KCÂÀ%°ƒ1‚ÁFxÛ“š+¨ €È ÈÍĤÄDX(E\aWKLIc* ’8ZGÀCÁ‘eɶ ª'HÐ=Á~*FÕ{ð Ç_}º*Q\”=~84天™ATœôøIYOç³AY#DRÅórXÓì­`)E9í¡û ýH>‘}ûmâ| nìÁÆáK-(Â>®-Sm æmH©&üÅl:xY6ì-xtÌø«òcÃNüwŽ\n ]Þd쇳²hªéä¨hJöÍÑ¿•›:Œ’â¸M‡{Û^UÍ-'ìûYquY jöã¼¹š7÷’FÃù œQ«é‹>‘'YSªº·®°Ç_ÎÏšôH•²Ç(ÆÔ¦zü ¨Ëddþ¨}(›jPôøw“ÁtXM.(iµ ½å‰xÈé~rÚ² Ïì–½ùëjòpRW«æ£êü¼„©È¦oã|\Mæ5ÐÎßϧM9*ÏaDcøp íëºâ³âCÉ‹Á¼)ù š æãóQù‘7ÕhXòq1˜M'ülV‚]ŠÁ^àà "êªæýÉ´–ç|Ù|×FŲòr>¹(fóñ¨˜7|z1”ïø  ~õU1(O·¸ÂÚ`(* ¡Ø~ùñì·ré6·¡ÚŽ ; C-vÀPË» ÃøVˆ”4“/ éh’Ú IÌ_·Â¤¶›˜ÄDp›´þ_Ià:nÒßÍÈ1zGäó5w¶!XÒªÛ`Ï„Mìw7±gÕìYý{{±‡Ÿ» ö¬ßÄžµ_„=þ¿°'»Ø{S\ÁKgESÿøu»r§ûš;;‹ß¿Xi`kooƒe·…e÷ÏÄògqèåzu×q¸o½¸CǬ¹ ½Û„¡7w†a×&,|Ý„-¹=ϼ¾ öÂÖf+è`ïZIü&ÃÜZñw7C$îZñƯ+ÞØVï)¶Ã%°p«WÜZ1D{«pÙù¦åÖá"…Øgø²¢øÇ½_vGÄHáîvÈlÇFdñz˘~ÑK¿X—¥>/šYEhë €ƒàߪ|š©"é8S¥?ìëO»è¥néñ ?`§i¼ÇÕ¬n/‹ӱǟ‡×Õ°¹¬ÓaZŠ€2ÚwxDJÜët¾¶‹Ñ}Ùn„¬A@G^è¸4Ê`í—|¬³},¥ï{fŒé:²íGf´ïÓy©£«‹¨×V£Þz×WtxØ×Ì …¾ŽÉÔÖ â„»ìç::~ ´ÑöéÔÔBгÔê”Jœ]j¥š B_¦þÚ)¢¶¦O'“Èå=ÚóÕâù:¿n_¿ä°*Y- ¥Gæó6`„^Œ9(Oµ:`D¦—ÌyÐW£#ÙãÅŠÜD²L¨‰^€2M|²N†2µy›è¤NÖ$»»@Ù²1y‚,BµDO­Žéúqíº²Š‘®OØ äÁ×èÄQ‰diò³ 4Rã}ëGmhÌFÊ–ŽŽ½Iö΃‰G ý­ qäWøõ. v’|æ“/¥—6¡Döí)Ð%©ÝÐñ¹ ÑQ)×åçU­²4¾ “`+ÕÒ­8 o­HºC3Eü1—~ýýOduGþ¾îUËÎÕšƒ·ô¹ù:]é™âÑ#pm@obÏ0/(§ ±ç–éë l¢„¾G°)&œ§ÀKG躂“Êá*)!ˆÝ™DG‚¥tª-æ« ~9j’Ó–¶4²ˆ˜˜RIwI‘¬‘-|KOµ ýSm¤k®‰)ƒ¦~KÚÜn,àGÈy–<²„M1“¯Aë”èš³›©uG¤ì–s}zRm« e ,µ(ÝûNº\%Ü,fUêRu“Ó*µ¶máÝ4iwS·ñ4ô|Í5)q#Eè…ZŽ´ÈéØYRÌç4º6yuô$£Ç”FŸ\—ú¶Üµ£Éà-›Í)…ZŠOß ë•¢›¥Ž ³ÖrÇ{©vͧjÅ£u…]§Î:RÆÔ1ñËé´fr9_W˜  0SS„¢¤O¥vò¸Å•¸,~ÖG½£Ì×\ã5¦BìÞ$/8š®œÎ‘¬-HMM©§JF‡Abê¥ürÏ–wšâ¬Yò&*ú¶Œ>}Z<Ø4®^/­žˆÑ6­q%Ó¼»lO=R¬Bz²í»¤Êm:e0Ò¼œÊ«¶<Ü\NW8Ç!ÉÑ—eŽ”Tie‚ÈÅÊDÑÊ„LH'y>Í÷2­dh‡yŸBhj§ºÐönËV VÒ*(KÈ”ùÓ§[c­ ”IN¶´öØ.wk2g#Tݲò´BìÒ´}s} Ú\ã½Ja›úvy&"KÛ¼b5+ÊÔš5JåÓ½ÂQYfÕöxyÑŸw ^>üþÉ£>?øEb3w<*.jfºÛ‚ûV³û*â–ŽØ<¬i— ò°¸zTV—x Øuj»/©ñqSŒªÁÃɶ¢»•¦ÿL+ì~ÚNˆÉ¼ ÍÅ7ü9Á_ò‚xÉ/ø%¯øˆù„O9vWüŠÏxÍÞ\ÎÊ’7¿Oïå‘Wà/åÚ.ÿsš=yzüâ%4þXŠÝškEšS¶0á3šë¿Òü¾4 ݽꨮeWõ_øYÙœ~×ôRâ:z={òÃÉÁOÐëdŸZF,Ôñ6j-êâ^¥ò~È¿ãÇü{þˆ?æOù3øøþcòó+þþ3Í…ÇÏàóÁt<.ø¾OÌx9õ%/ßÏ‹/?FŘŸósú«xúîý»Ô„•ËOW—åù¿ka3©€šv®è% ½È¥YqUΪé¿çïçeM/[òk„áÙ(Q.2qzÊEb]Ž«ÁtDûýò$×ÕG^hĈò9ÿÀçù'þÿ£œ­cV©kaöÙ“7o~M¾Ý¬Èï)Xckí^×Á}]·•pÁÊæøÍZõ?íPÛ\GíŸ?yxø:©í÷¨­3¤£Á<`â«m÷¨muWmÑUû0å'Âè*7-òÒFܺëå£gOŸCÉWûó‘m—ì÷÷ä#öú7«8IÊ5ëŠ]+ÑþtðÝÉ›g¤Ø«½ zÁ…Vc‹®£–”kjÑãR-¥ÔMòÑ!€Kùˆ²QÎE/øI›‹ ^ÔƒªÊ¯‹šb½~ˆŸ3~6+éíb.å,@Åwe³¬F97PPPbXd´át4“ebKí|-]ÐØrÖMd”Æè%æ*®&óñY9««‹É¥µ«Ñ¼N¹-g±í¶H[_œ°ôžÉhûqçÅðÆ"c *ékøô"põÑtß"b˺z(ÍõÅoÎôâó÷’]ñ4È•x%:âåõÅoLÈ›Òõ–t¹&Ýt¤Û(¿>elJ·[¦7kÒeGº»¾ô̽)ÝoJw~¯åýM¿žR7Åoá+¢½ÀS7Ð~#ómÈ×[ÀÓëÆïŠ×Ûâ騩¦s§9¥ÊÕ!’n?"Z éýx:UÈýYFýw£tËŸWŸcnÀÜæƒ2—o>ü…Ì=䣎è>Ç]îããg»êmŽÌö¤oq¶Ñõ°Àl1½èeKi ùE³U« endstream endobj 135 0 obj << /Type /XRef /Index [0 136] /Size 136 /W [1 3 1] /Root 133 0 R /Info 134 0 R /ID [<852A8A9ACA04C081F95D04095F861DE6> <852A8A9ACA04C081F95D04095F861DE6>] /Length 390 /Filter /FlateDecode >> stream xÚ%Ð=L“Qàs>ZèX´ ¨´‚HA°bÅb*•*B‹ŠJÁÄÁ˜XVãĤƒ£ Ñ8‘¨a#ack7&èÀ$‰‘ï¼,OÞsßsïpà?\€(@ dñ¡x fDNÌÒyñöEpï';{$ª„GxE5®¸Æ2V©>"ºd1/…_DP#â¿ÜkÃ?­ljÔ{öÿ}×¶WÄ%bõ¥ÅNÑ%.‹8±îqË壺*º‰Í{E‚ØÚ³xMôˆë"Il—Ý»ûol›7ˆgo‰›D¥dñ©èýb@¤‰¿Aúæ­’·Å#bTÜcb\Lþ¨]Ë’‰}›î’¹¢M÷Èo_lš$K1›î“_Û4E'²aÓ´˜:‹_A§˜Ä!]]?… endstream endobj startxref 161589 %%EOF survival/inst/doc/population.Rnw0000644000176200001440000013313313537676563016562 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} %\VignetteIndexEntry{Population contrasts} \SweaveOpts{prefix.string=tests,width=6,height=4, keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{width=6,height=4} \setkeys{Gin}{width=\textwidth} <>= options(continue=" ", width=70) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #reset default library(survival) library(splines) @ \title{Population contrasts} \author{Terry M Therneau \\ \emph{Mayo Clinic}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {tests-#1.pdf}} \newcommand{\ybar}{\overline{y}} \begin{document} \maketitle \ \tableofcontents \section{Introduction} Statisticians and their clients have always been fond of single number summaries for a data set, perhaps too much so. Consider the hypothetical data shown in figure \ref{fig1} comparing treatments A and B with age as a confounder. What is a succinct but useful summary of the difference between treatment arms A and B? One approach is to select a fixed \emph{population} for the age distribution, and then compute the mean effect over that population. \begin{figure} <>= plot(c(50,85), c(2,4.5), type='n', xlab="Age", ylab="Effect") #abline(.645, .042, lty=1, col=1, lwd=2) #abline(.9, .027, lty=1, col=2, lwd=2) abline(.35, .045, lty=1, col=1, lwd=2) abline(1.1, .026, lty=1, col=2, lwd=2) legend(50, 4.2, c("Treatment A", "Treatment B"), col=c(1,2), lty=1, lwd=2, cex=1.3, bty='n') @ \caption{Treatment effects for a hypothetical study.} \label{fig1} \end{figure} More formally, assume we have a fitted model. We want to compute the conditional expectation \begin{equation*} m_A = E_F\left( \hat y | trt=A \right) \end{equation*} where $F$ is some chosen population for the covariates other than treatment. Important follow-up questions are: what population should be used, what statistic should be averaged, what computational algorithm should be used, and what are the statistical properties of the resulting estimate? Neither the statistic nor population questions should be taken lightly, and both need to be closely linked to the scientific question. If, for instance, the model of figure 1 were used to inform a nursing home formulary, then the distribution $F$ might be focused on higher ages. Four common populations are \begin{itemize} \item Empirical: The data set itself. For the simple example above, this would be the distribution of all $n$ ages in the data set, irrespective of treatment. \item Factorial or Yates: This is only applicable if the adjusting variables are all categorical, and consists of all unique combinations of them. That is, the data set one would envision for a balanced factorial experiment. \item External: An external reference such as the age/sex distribution of the US census. This is common in epidemiology. \item SAS type 3: A factorial distribution for the categorical predictors and the data distribution for the others. More will be said about this in section \ref{sect:SAS}. \end{itemize} The \code{yates} function is designed to compute such population averages from a fitted model, along with desired contrasts on the resultant estimates, e.g., whether the population average effects for treatment A and treatment B are equal. The function has been tested with the results of \code{lm}, \code{glm}, and \code{coxph} fits, and can easily be extended to any R model that includes a standard set of objects in the result, i.e., \code{terms}, \code{contrasts}, \code{xlevels}, and \code{assign}. The routine's name is a nod to the 1934 paper by Yates \cite{Yates34} \emph{The analysis of multiple classifications with unequal numbers in different classes}. In dealing with an unbalanced 2-way layout he states that \begin{quote}\ldots in the absence of any further assumptions the efficient estimates of the average A effects are obtained by taking the means of the observed sub-class means for like A over all B sub-classes. \end{quote} In his example these sub-class means are the predicted values for each A*B combination, thus his estimate for each level of A is the mean predicted value over B, i.e., the mean prediction for A over a factorial population for B. Yates then develops formulas for calculating these quantities and testing their equality that are practical for the manual methods of the time; these are now easily accomplished directly using matrix computations. (It is interesting that Yates' paper focuses far more on estimands than tests, while later references to his work focus almost exclusively on the latter, e.g., the ``Yates sum of squares''. Reflecting, again, our profession's singular focus on p values.) This concept of population averages is actually a common one in statistics. Taking an average is, after all, nearly the first thing a statistician will do. Yates' weighted means analysis, the g-estimates of causal models, direct adjusted survival curves, and least squares means are but a small sample of the idea's continual rediscovery. Searle et. al. \cite{Searle80} use the term population marginal mean (PMM), which we will adopt as the acronym, though they deal only with linear models, assume a factorial population, and spend most of their energy writing out explicit formulas for particular cases. They also use a separate acronym to distinguish the estimated PMM based on a model fit from the ideal, which we will not do. \section{Solder Example} \subsection{Data} In 1988 an experiment was designed and implemented at one of AT\&T's factories to investigate alternatives in the wave soldering procedure for mounting electronic components to printed circuit boards. The experiment varied a number of factors relevant to the process. The response, measured by eye, is the number of visible solder skips. The data set was used in the book Statistical Models in S \cite{Chambers93} and is included in the \code{survival} package. <>= summary(solder) length(unique(solder$PadType)) @ A perfectly balanced experiment would have 3*2*10*3 = 180 observations for each Mask, corresponding to all combinations of Opening, Solder Thickness, PadType and Panel. The A3 Mask has extra replicates for a subset of the Opening*Thickness combinations, however, while Mask A6 lacks observations for these sets. Essentially, one extra run of 180 was done with a mixture of Masks. Figure \ref{fig:solder} gives an overview of univariate results for each factor. \begin{figure} <>= # reproduce their figure 1.1 temp <- lapply(1:5, function(x) tapply(solder$skips, solder[[x]], mean)) plot(c(0.5, 5.5), range(unlist(temp)), type='n', xaxt='n', xlab="Factors", ylab ="mean number of skips") axis(1, 1:5, names(solder)[1:5]) for (i in 1:5) { y <- temp[[i]] x <- rep(i, length(y)) text(x-.1, y, names(y), adj=1) segments(i, min(y), i, max(y)) segments(x-.05, y, x+.05, y) } @ \caption{Overview of the solder data.} \label{fig:solder} \end{figure} \subsection{Linear model} A subset of the solder data that excludes Mask A6 is exactly the type of data set considered in Yates' paper: a factorial design whose data set is not quite balanced. Start with a simple fit and then obtain the Yates predictions. <>= with(solder[solder$Mask!='A6',], ftable(Opening, Solder, PadType)) fit1 <- lm(skips ~ Opening + Solder + Mask + PadType + Panel, data=solder, subset= (Mask != 'A6')) y1 <- yates(fit1, ~Opening, population = "factorial") print(y1, digits=2) # (less digits, for vignette page width) @ The printout has two parts: the left hand columns are population marginal mean (PMM) values and the right hand columns are tests on those predicted values. The default is a single global test that these PMM are all equal. Under a factorial population these are the Yates' weighted means \cite{Yates34} and the corresponding test is the Yates' sum of squares for that term. These would be labeled as ``least squares means'' and ``type III SS'', respectively, by the glm procedure of SAS. More on this correspondence appears in the section on the SGTT algorithm. Now we repeat this using the default population, which is the set of all 810 combinations for Solder, Mask, PadType and Panel found in the non-A6 data. The \code{pairwise} option requests tests on all pairs of openings. <>= y2 <- yates(fit1, "Opening", population = "data", test="pairwise") print(y2, digits=2) # # compare the two results temp <- rbind(diff(y1$estimate[,"pmm"]), diff(y2$estimate[,"pmm"])) dimnames(temp) <- list(c("factorial", "empirical"), c("2 vs 1", "3 vs 2")) round(temp,5) @ Although the PMM values shift with the new population, the difference in PMM values between any two pairs is unchanged. This is because we have fit a model with no interactions. Referring to figure \ref{fig1}, this is a model where all of the predictions are parallel lines; shifting the population left or right will change the PMM, but has no effect on the difference between two lines. For a linear model with no interactions, the test statistics created by the \code{yates} function are thus not very interesting, since they will be no different than simple comparisons of the model coefficients. Here are results from a more interesting fit that includes interactions. <>= fit2 <- lm(skips ~ Opening + Mask*PadType + Panel, solder, subset= (Mask != "A6")) temp <- yates(fit2, ~Opening, population="factorial") print(temp, digits=2) @ This solder data set is close to being balanced, and the means change only a small amount. (One hallmark of a completely balanced experiment is that any PMM values are unaffected by the addition of interaction terms.) \subsection{Missing cells} Models that involve factors and interactions can have an issue with missing cells as shown by the example below using the full version of the solder data. <>= fit3 <- lm(skips ~ Opening * Mask + Solder + PadType + Panel, solder) temp <- yates(fit3, ~Mask, test="pairwise") print(temp, digits=2) @ The population predictions for each Mask include all combinations of Opening, Solder, PadType, and Panel that are found in the data. The above call implicity uses the default value of \code{population=`data'}, which is the option that users will normally select. The underlying algorithm amounts to: \begin{enumerate} \item Make a copy of the data set (900 obs), and set Mask to A1.5 for all observations \item Get the 900 resulting predicted values from the model, and take their average \item Repeat 1 and 2 for each mask type. \end{enumerate} However, there were no observations in the data set with Mask = A6 and Opening = Large. Formally, predictions for the A6/Large combination are \emph{not estimable}, and as a consequence neither are any population averages that include those predicted values, nor any tests that involve those population averages. This lack of estimability is entirely due to the inclusion of a Mask by Opening interaction term in the model, which states that each Mask/Opening combination has a unique effect, which in turn implies that we need an estimate for all Mask*Opening pairs to compute population predictions for all levels of the Mask variable. If you do the above steps `by hand' using the R \code{predict} function, it will return a value for all 900 observations along with a warning message that the results may not be reliable, and the warning is correct in this case. The result of \code{coef(fit2)} reveals that the fit generated an NA as one of the coefficients. The presence of a missing value shows that some preditions will not be estimable, but it is not possible to determine \emph{which} ones are estimable from the coefficients alone. The predict function knows that some predictions will be wrong, but not which ones. A formal definition of estimability for a given prediction is that it can be written as a linear combination of the rows of $X$, the design matrix for the fit. The \code{yates} function performs the necessary calculations to verify formal estimability of each predicted value, and thus is able to correctly identify the deficient terms. \section{Generalized linear models} \label{sect:glm} Since the solder response is a count of the number of skips, Poisson regression is a more natural modeling approach than linear regression. In a glm model we need to consider more carefully both the population and the statistic to be averaged. <>= gfit2 <- glm(skips ~ Opening * Mask + PadType + Solder, data=solder, family=poisson) y1 <- yates(gfit2, ~ Mask, predict = "link") print(y1, digits =2) print( yates(gfit2, ~ Mask, predict = "response"), digits=2) @ Mean predicted values for the number of skips using \code{type=`response'} in \code{predict.glm} are similar to estimates when the linear regression model was used. Prediction of type `link' yields a population average of the linear predictor $X\beta$. Though perfectly legal (you can, after all, take the mean of anything you want), the linear predictor PMM values can be more difficult to interpret. Since the default link function for Poisson regression is log(), the PMM of the linear predictor equals the mean of the log(predicted values). Since $\exp({\rm mean}(\log(x)))$ defines the geometric mean of a random variable $x$, one can view the exponentiated version of the link estimate as a geometric mean of predicted values over the population. Given the skewness of Poisson counts, this may actually be an advantageous summary. Arguments for other links are much less clear, however: the authors have for instance never been able to come to a working understanding of what an ``average log odds'' would represent, i.e., the link from logistic regression. One computational advantage of the linear predictor lies in creating the variance. Since \code{mean(Z \%*\% b) = colMeans(Z) \%*\%b} the computation can be done in 3 steps: first create $Z$ with one row for each observation in the population, obtain the vector of column means $d= 1'Z/m$, and then the PMM estimate is $d'\hat\beta$ and its variance is $d'Vd$ where $V$ is the variance matrix of $\hat\beta$. For other PMM quantities the routine samples \code{nsim} vectors from $b \sim N(\hat\beta, V)$, then computes PMM estimates separately for each vector $b$ and forms an empirical variance of the PMM estimates from the results. For nonlinear predictors such as the response, the population choice matters even for an additive model. The two results below have different estimates for the ``between PMM differences'' and tests. <>= gfit1 <- glm(skips ~ Opening + Mask +PadType + Solder, data=solder, family=poisson) yates(gfit1, ~ Opening, test="pairwise", predict = "response", population='data') yates(gfit1, ~ Opening, test="pairwise", predict = "response", population="yates") @ \section{Free Light Chain} As an example for the more usual case, a data set which does \emph{not} arise from a balanced factorial experiment, we will look at the free light chain data set. In 2012, Dispenzieri and colleagues examined the distribution and consequences of the free light chain value, a laboratory test, on a large fraction of the 1995 population of Olmsted County, Minnesota aged 50 or older \cite{Kyle06, Dispenzieri12}. The R data set \code{flchain} contains a 50\% random sample of this larger study and is included as a part of the \code{survival} package. The primary purpose of the study was to measure the amount of plasma immunoglobulin and its components. Intact immunoglobulins are composed of a heavy chain and light chain portion. In normal subjects there is overproduction of the light chain component by the immune cells leading to a small amount of \emph{free light chain} in the circulation. Excessive amounts of free light chain (FLC) are thought to be a marker of disregulation in the immune system. An important medical question is whether high levels of FLC have an impact on survival, which will be explored using a Cox model. Free light chains have two major forms denoted as kappa and lambda; we will use the sum of the two. A confounding factor is that FLC values rise with age, in part because it is eliminated by the kidneys and renal function declines with age. The age distribution of males and females differs, so we will adjust any comparisons for both age and sex. The impact of age on mortality is dominatingly large and so correction for the age imbalance is critical when exploring the impact of FLC on survival. Figure \ref{fig:flc} shows the trend in FLC values as a function of age. For illustration of linear models using factors, we have also created a categorical age value using deciles of age. \begin{figure} <>= male <- (flchain$sex=='M') flchain$flc <- flchain$kappa + flchain$lambda mlow <- with(flchain[male,], smooth.spline(age, flc)) flow <- with(flchain[!male,], smooth.spline(age, flc)) plot(flow, type='l', ylim=range(flow$y, mlow$y), xlab="Age", ylab="FLC") lines(mlow, col=2, lwd=2) legend(60, 6, c("Female", "Male"), lty=1, col=1:2, lwd=2, bty='n') @ \caption{Free light chain values as a function of age.} \label{fig:flc} \end{figure} The table of counts shows that the sex distribution becomes increasingly unbalanced at the older ages, from about 1/2 females in the youngest group to a 4:1 ratio in the oldest. <>= flchain$flc <- flchain$kappa + flchain$lambda age2 <- cut(flchain$age, c(49, 59, 69, 79, 89, 120), labels=c("50-59", "60-69", "70-79", "80-89", "90+")) fgroup <- cut(flchain$flc, quantile(flchain$flc, c(0, .5, .75, .9, 1)), include.lowest=TRUE, labels=c("<50", "50-75", "75-90", ">90")) counts <- with(flchain, table(sex, age2)) counts # # Mean FLC in each age/sex group cellmean <- with(flchain, tapply(flc, list(sex, age2), mean)) round(cellmean,1) @ Notice that the male/female difference in FLC varies with age, \Sexpr{round(cellmean[1,1],1)} versus \Sexpr{round(cellmean[2,1],1)} at age 50--59 years and \Sexpr{round(cellmean[1,5],1)} versus \Sexpr{round(cellmean[2,5],1)} at age 90 years, and as shown in figure \ref{fig:flc}. The data does not fit a simple additive model; there are ``interactions'' to use statistical parlance. Men and women simply do not age in quite the same way. \subsection{Linear models} Compare the mean FLC for males to females, with and without adjusting for age. <>= library(splines) flc1 <- lm(flc ~ sex, flchain) flc2a <- lm(flc ~ sex + ns(age, 3), flchain) flc2b <- lm(flc ~ sex + age2, flchain) flc3a <- lm(flc ~ sex * ns(age, 3), flchain) flc3b <- lm(flc ~ sex * age2, flchain) # # prediction at age 65 (which is near the mean) tdata <- data.frame(sex=c("F", "M"), age=65, age2="60-69") temp <- rbind("unadjusted" = predict(flc1, tdata), "additive, continuous age" = predict(flc2a, tdata), "additive, discrete age" = predict(flc2b, tdata), "interaction, cont age" = predict(flc3a, tdata), "interaction, discrete" = predict(flc3b, tdata)) temp <- cbind(temp, temp[,2]- temp[,1]) colnames(temp) <- c("Female", "Male", "M - F") round(temp,2) @ The between sex difference is underestimated without adjustment for age. The females are over-represented at the high ages, which inflates their estimate. For this particular data set, both continuous and categorical age adjustment are able to recover the true size of the increment for males. Now look at population adjustment. <>= yates(flc3a, ~sex) # additive, continuous age # yates(flc3b, ~sex) # interaction, categorical age # yates(flc3b, ~sex, population="factorial") @ The population average values are just a bit higher than the prediction at the mean due to the upward curvature of the age vs FLC curve. The average for a factorial population is larger yet, however. This is because it is the average for an unusual population which has as many 90+ year old subjects as 50--59 year old; i.e., it is the correct answer to a rather odd question, since this is a population that will never be encountered in real life. We can also reverse the question and examine age effects after adjusting for sex. For the continuous model the age values for the PMM need to be specified using the \code{levels} argument; otherwise the routine will not know which ages are ``of interest'' to the reader. (With a factor the routine will assume that you want all the levels, but a subset can be chosen using the \code{levels} argument.) <>= yates(flc3a, ~ age, levels=c(65, 75, 85)) yates(flc3b, ~ age2) @ Not surprisingly the predicton at age 65 years for a continuous model is quite close to that for the 60--69 year age group from a dicrete model. \section{Cox Models} Finally we come to Cox models which are, after all, the point of this vignette, and the question that prompted creation of the \code{yates} function. Here the question of what to predict is more serious. To get a feel for the data look at three simple models. <>= options(show.signif.stars=FALSE) # show statistical intelligence coxfit1 <- coxph(Surv(futime, death) ~ sex, flchain) coxfit2 <- coxph(Surv(futime, death) ~ sex + age, flchain) coxfit3 <- coxph(Surv(futime, death) ~ sex * age, flchain) anova(coxfit1, coxfit2, coxfit3) # exp(c(coef(coxfit1), coef(coxfit2)[1])) # sex estimate without and with age @ The model with an age*sex interaction does not fit substantially better than the additive model. This is actually not a surprise: in a plot of log(US death rate) the curves for males and females are essentially parallel after age 50 years. (See the \code{survexp.us} data set, for instance.) The sex coefficients for models 1 and 2 differ substantially. Males in this data set have almost 1.5 the death rate of females at any given age, but when age is ignored the fact that females dominate the oldest ages almost completely cancels this out and males appear to have the same `overall' mortality. Adjustment for both age and sex is critical to understanding the potential effect of FLC on survival. Dispenzieri \cite{Dispenzieri12} looked at the impact of FLC by dividing the sample into those above and below the 90th percentile of FLC; for illustration we will use 4 groups consisting of the lowest 50\%, 50 to 75th percentile, 75 to 90th percentile and above the 90th percentile. <>= coxfit4 <- coxph(Surv(futime, death) ~ fgroup*age + sex, flchain) yates(coxfit4, ~ fgroup, predict="linear") yates(coxfit4, ~ fgroup, predict="risk") @ We see that after adjustment for age and sex, FLC is a strong predictor of survival. Since the Cox model is a model of relative risk, any constant term is arbitrary: one could add 100 to all of the log rates (type `linear' above) and have as valid an answer. To keep the coefficients on a sensible scale, the \code{yates} function centers the mean linear predictor of the original data at zero. This centers the linear predictor at 0 but does not precisely center the risks at exp(0) = 1 due to Jensen's inequality, but suffices to keep values in a sensible range for display. A similar argument to that found in section \ref{sect:glm} about the arithmetic versus geometric mean can be made here, but a more fundamental issue is that the overall hazard function for a population is not the average of the hazards for each of its members, and in fact will change over time as higher risk members of the population die. Though computable, the mean hazard ratio only applies to the study at time 0, before selective death begins to change the structure of the remaining population, and likewise for the average linear predictor = mean log hazard ratio. A PMM based on either of these estimates is hard to interpret. Survival curves, however, do lead to a proper average: the survival curve of a population is the mean of the individual survival curves of its members. Functions computed from the survival curve, such as the mean time until event, will also be proper and interpretable. The longest death time for the FLC data set is at \Sexpr{round(with(flchain, max(futime[death==1])/365.25),1)} years; as a one number summary of each PMM curve we will use a restricted mean survival with a threshold of 13 years. <>= # longest time to death round(max(flchain$futime[flchain$death==1]) / 365.25, 1) #compute naive survival curve flkm <- survfit(Surv(futime, death) ~ fgroup, data=flchain) print(flkm, rmean= 13*365.25, scale=365.25) @ Straightforward survival prediction takes longer than recommended for a CRAN vignette: there are \Sexpr{nrow(flchain)} subjects in the study and 4 FLC groups, which leads to just over 30 thousand predicted survival curves when using the default \code{population=`data'}, and each curve has over 2000 time points (the number of unique death times). To compute a variance, this is then repeated the default \code{nsim = 200} times. We can use this as an opportunity to demonstrate a user supplied population, i.e., a data set containing a population of values for the control variables. We'll use every 20th observation in the \code{flchain} data as the population and also reduce the number of simulations to limit the run time. <>= mypop <- flchain[seq(1, nrow(flchain), by=20), c("age", "sex")] ysurv <- yates(coxfit4, ~fgroup, predict="survival", nsim=50, population = mypop, options=list(rmean=365.25*13)) ysurv # display side by side temp <- rbind("simple KM" = summary(flkm, rmean=13*365.25)$table[, "*rmean"], "population adjusted" = ysurv$estimate[,"pmm"]) round(temp/365.25, 2) @ The spread in restricted mean values between the different FLC groups is considerably less in the marginal (i.e., PMM) survival curves than in the unadjusted Kaplan-Meier, with the biggest change for those above the 90th percentile of FLC. Males dominate the highest FLC values. Without adjustment for sex, the survival for the high FLC group is biased downward by the male predominance. The \code{ysurv} object also contains an optional \code{summary} component, which in this case is the set of 4 PMM survival curves. Plot these along with the unadjusted curves, with solid lines for the PMM estimates and dashed for the unadjusted curves. This shows the difference between adjusted and unadjusted even more clearly. Adjustment for age and sex has pulled the curves together, though the $>90$th percentile group still stands apart from the rest. (It is not a 1 number summary with a simple p value, however, and so spurned by users and journals ;-). <>= plot(flkm, xscale=365.25, fun="event", col=1:4, lty=2, xlab="Years", ylab="Death") lines(ysurv$summary, fun="event", col=1:4, lty=1, lwd=2) legend(0, .65, levels(fgroup), lty=1, lwd=2, col=1:4, bty='n') @ \section{Mathematics} The underlying code uses a simple brute force algorithm. It first builds a population data set for the control variables that includes a placeholder for the variable of interest. Then one at a time, it places each level of variable(s) of interest in all rows of the data (e.g., sex=F for all rows). It computes the model's prediction for all rows, and then comptes the mean prediction. Since predicted values are independent of how the variables in a model are coded, the result is also independent of coding. When the prediction is the simple linear predictor $X\beta$, we take advantage of the fact that $\mbox{\rm mean}(X \beta) = [\mbox{\rm column means}(X)] \beta = c\beta$. If $C$ is the matrix of said column means, one row for each of the groups of interest, then $C\beta$ is the vector of PMM values and $CVC'$ is the variance covariance matrix of those values, where $V$ is the variance matrix of $\hat \beta$. The lion's share of the work is building the individual $X$ matrices, and that is unchanged. For other than the linear case, the variance is obtained by simulation. Assume that $\hat\beta \sim N(\beta, V)$, and draw \code{nsim} independent samples $b$ from $N(\hat\beta, V)$. PMM values are computed for each instance of $b$, and an empirical variance matrix for the PMM values is then computed. \section{SAS glim type III (SGTT) algorithm} \label{sect:SAS} Earlier in this document reference was made to the SAS ``type 3'' estimates, and we now delve into that topic. It is placed at the end because it is a side issue with respect to population averages. However, whatever one's opinion on the wisdom or folly of the SAS estimator, one cannot ignore its ubiquity, and showing how it fits into this framework is an important part of the picture. As groundwork we start with some compuational facts about ANOVA. Assume an $X$ matrix for the model in standard order: the intercept, then main effects, then first order interactions, second order interactions, etc. as one proceeds from the leftmost column. \begin{itemize} \item Let $LDL' = (X'X)$ be the generalized Cholesky decomposition of the $X'X$ matrix, where $L$ is lower triangular with $L_{ii}=1$ and $D$ is diagonal. $D_{ii}$ will be zero if column $i$ of $X$ can be written as a linear combination of prior columns and will be positive otherwise. \item Let $L'_k$ refer to the rows of $L'$ that correspond to the $k$th term in the model, e.g., a main effect. Then the test statistics for $L'_1\beta= 0$, $L'_2 \beta=0$, \ldots, are the sums of squares for the standard ANOVA table, often referred to as type I or sequential sums of squares. \item If $X$ corresponds to a balanced factorial design, then $L_{ij} \ne 0$ only if $i>= options(contrasts = c("contr.treatment", "contr.poly")) # default nfit1 <- lm(skips ~ Solder*Opening + PadType, solder) drop1(nfit1, ~Solder) @ This shows a type III sum of squares of 389.88. However, if a different coding is used then we get a very different SS: it increases by over 25 fold. <>= options(contrasts = c("contr.SAS", "contr.poly")) nfit2 <- lm(skips ~ Solder*Opening + PadType, solder) drop1(nfit2, ~Solder) @ The example shows a primary problem with the NSTT: the answer that you get depends on how the contrasts were coded. For a simple 2 way interaction like the above, it turns out that the NSTT actually tests the effect of Solder within the reference cell for Opening, the NSTT is not a global test at all. <>= with(solder, tapply(skips, list(Solder, Opening), mean)) @ Looking at the simple cell means shown above, it is no surprise that the \code{contr.SAS} fit, which uses Opening=S as the reference will yield a large NSTT SS since it is a comparison of 17.4 and 5.5, while the \code{contr.treatment} version using Opening=L as reference has a much smaller NSTT. In fact, re-running a particular analysis with different reference levels for one or more of the adjusting variables is a quick way to diagnose probable use of the NSTT algorithm by a program. Several R libraries that advertise type 3 computations actually use the NSTT. The biggest problem with the NSTT is that it sometimes gives the correct answer. If one uses summation constraints, a form of the model that most of us have not seen since graduate school: \begin{align*} y_{ijk} &= \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon \\ \sum_i \alpha_i & = 0 \\ \sum_j \beta_j & = 0 \\ \sum_{ij} \gamma_{ij} &=0 \end{align*} then the `reference cell' for Opening is the mean Opening effect, and the NSTT for Solder will correspond to an PMM using the factorial population, the PMM is invariant to the chosen coding. <>= options(contrasts = c("contr.sum", "contr.poly")) nfit3 <- lm(skips ~ Solder*Opening + PadType, solder) drop1(nfit3, ~Solder ) yates(nfit1, ~Solder, population='factorial') @ Thus our acronym for this method of not-safe-type-three (NSTT), since the method does work if one is particularly careful. Given the number of incorrect analyses that have arisen from this approach `nonsense type 3' would also be valid interpretation, however. <>= options(contrasts = c("contr.treatment", "contr.poly")) # restore @ \section{Conclusion} The population average predicted value or marginal estimate is a very useful statistical concept. The \code{yates} function computes these using a direct approach: create the relevant population, get \emph{all} the predicted values, and average them. An advantage of this simple approach is that because predicted values do not depend on how a model is parameterized, the results are naturally invariant to how categorical variables are represented. But like many good ideas in statistics, proper application of the idea requires some thought with respect to the choice of a statistic to be averaged, and the population over which take the expectation. For linear models the simple linear predictor $X\beta$ is an obvious choice as a statistic, but for other models the choice is more nuanced. For a Cox model we prefer the restricted mean, but this is an area that needs more research for a firm recommendation. In terms of the population choice, the population should match the research question at hand. The factorial population in particular has been badly overused. This population is appropriate for the use cases described in Yates \cite{Yates34} and Goodnight \cite{Goodnight78} that relate to designed experiments, the solder data is a good example. But in observational or clinical data the factorial population result will too often be the ``answer to a question that nobody asked''. In the FLC data set, for instance, the factorial population has equal numbers of subjects in every age group: a a population that no one will ever observe. Using the result from such computations to inform medical decisions begins to resemble medieval debates of angels dancing on the head of a pin. This suboptimal population choice is the primary damming criticism for ``type III'' estimates. Because the detailed algorithm and criteria for type III tests is not well documented, many psuedo type 3 estimates have arisen of which the NSTT is perhaps the most common. Statistical software that claims to produce a ``type III'' estimate while doing something else is indisputably wrong, even dangerous, and should not be tolerated. \appendix \section{Miscellaneous notes.} None of the material below is presented with proof. Comments to the authors that fill in any of these gaps are welcome. \subsection{Subsampling} One reaction that I have seen to the solder data is to instead analyse a balanced subset of the data, throwing away extra observations, because then ``the result is simple to understand''. Let's take this desire at face value, but then add statistics to it: rerun the two steps of ``select a subset'' and ``compute the balanced 2-way solution'' multiple times, with different random subsets each time. In fact, we could be more compuslive and tabulate the solution for \emph{all} the possible balanced subsets, and then take an average. This will give the Yates estimate. \subsection{Type 3} Based on the $L$ matrix argument above, one natural defintion of type III contrasts would be an upper triangular matrix, with appropriate zeros, whose terms were orthogonal with respect to $(Z'Z)^-$, the design matrix for a balanced data set. The SAS algorithm creates contrasts in an expanded basis, and these contrasts are instead made orthogonal with respect to the identity matrix $I$. Why does this work? Multiple example cases have shown that in data with no missing cells the resulting sum of squares agrees with the Yates' SS, but a formal proof of equivalence has been elusive. It would be preferable to use an algorithm that does not require rebuilding the $X$ matrix in the extended basis set used by the SAS approach, but instead directly used the $X$ matrix of the user, as it would be simpler and more portable code. For the case of no missing cells the Cholesky decompostion of $Z'Z$, for instance, satisfies this requirement. The original fit may use treatment, SAS, Helmert, or any other dummy variable coding for the factors without affecting the computation or result. We have not been able to discover an approach that replicates the SAS algorithm when there are missing cells, however. Is there a unique set of contrasts that fullfill the type III requirements for any given model and data set pair, or many? How might they be constructed? Since tests of $L'\beta =0$ and $cL'\beta=0$ are equivalent for any constant $c$, wlog we can assume that the diagonal of $L$ is 0 or 1. \subsection{Additive models} Consider the free light chain data and a linear model containing age group and sex as predictors. We have spoken of factorial, data, and external populations, each of which leads to a global test comparing the PMM estimates for males versus females. What population would give the smallest variance for that comparison? (A question that perhaps only an academic statistician could love.) Here are the sample sizes of each cell. <>= with(flchain, table(sex, age2)) @ The optimal population for comparing male to female will have population sizes in each age group that are proportional to the harmonic means in each column: $(1/n_{11} + 1/n_{21})^{-1}$ for age group 1, and etc. These are the familiar denominators found in the t-test. A PMM built using these population weights will yield the same sex difference and test as a simple additive model with sex and age group. Linear regression is, after all, the UMVE. \bibliographystyle{plain} \bibliography{refer} \end{document} survival/inst/doc/survival.pdf0000644000176200001440000207175113570775571016253 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 3 0 obj << /Length 213 /Filter /FlateDecode >> stream xÚ-O±n1 Ýï+<ÚRÎÎ…&#UËбÊVu ZT 'øûÚ—ì¼??ÛO¥[¬ƒ?zá8@Ù'ñ,C|Î ÊÞqE.ôŒÄ¸ÑØ’,ñ‡b˜ØWµjû_%—¦¯†oš7Š2IM¹9ÏFÇ»¦ÑTc«Îí}£òºXsfŸc[-/Á Á§°l›JŒõ2Mf¼k·D,ß4Ú j“®f.zfp’|ÊÜ žM±­'’„Ÿäô°:Ÿ¡>4OQØÏæÔ½”îÚ›Gó endstream endobj 10 0 obj << /Length 1177 /Filter /FlateDecode >> stream xÚíšMs£F†ïþ¡*æ{æ˜x×ɦÊIU¤ä’äÀ"²V" —`{}ºçC„X¯S•/áƒe@0HÏôûv÷ /—Ÿ_qžP^(­H²ü51ªPR'B©B0ž,WÉOée›‘t—1’ö°Ñ¸­.ûeù \mSI%^\&¹$öz{ÉrCEú. i¿‡kÛ,geº‚­÷ðW÷k72Œ”ðÆ1 ư×27¼ŽFÏ™E 7Ì )Œþ& w"%eé×kØéðS¶x»ø†¦E–‹²ÄܘÉŸpÊßqæ¿;Ñ¢t¬qòF\©çºÀéB¢wø.2­60—0¯8™U_e¹¢å™Áù«§X¨|UFP™‡úEIUÚ Ü;xA¸Í´„Ï×3ÁÊÉhåìu…pƒ0·6:m[>f¿m{{y·;4‰óf ÜHªNvNxa äXoÛÔÙö»ô!2ï2ÉBÍÒúàhîMG‰1:5cß÷ˆç‹Æ®BØ5njP„Ư½;ÔãöÃm–S™6Ÿ¹c0k0»¸Í¬|:ÚᆿÐ_²w{~Ÿ·€§¿56û€g=Íî?1¹6ðÍ©À§±Mßø¯lC¿äj$J˜h]ÎÏFTª |’jðéËvë±ö^ |ïÙ½­8àïwKSÍœ¦5™„Rp“SŠgAö„Ëtè-I7C1ßWhÛ·á¨&çÂècg¿2ð;ªÑQîÚúTÓ äzã²Øcz{ÕEºímH€7¨z(ˆ57ÿßp´AFËiÉÝ"¤3ÈS•h…xj &>Ciå 4êjþ|R©‡Zê½×gð¾¼ëCHù”½²;sFθæ¨NCíïúÁV:V½ëª#šŠ°•ýNÙü‰¨>*ßì~.‰ðjs7àÛZ|Vô÷‘œÎ;"™šôJéY¾BaN†(÷O[ bNv%+¢:¿ K1›ÍÌdŽVa¹äØ";›†k_ãlޤeé9+)æ·@óœÔ¼ŠMó szh=mYcOW[YêTrfb2299Õâ3Uh¡‡->s-þ¥-"!>ï]S¿,ÑBjr ³¼ Š‡…YnËЋ³ÚŒ ç½tùÏ–§§›M·ùG éëZë-œyW»\O2}iòŸÝ 2iØlÔä_;?,°ós؇¤‡˜ORœlÀn7#S[)¶ú$XcçW;ßblñýÁ°'aN.¿õÏ,ÜÙ±åâh¹Bª»c*Ç)c¤q`¾ }§ôå¹ÕXärÒ2y¼uµö1Ñ¡%}y^5ŽJý„ÒCS»ÄÚ¶é"©ï|þAyî[§æ6T¾ëÁšßMõ÷ðÍU窻s‚(éÇsŽˆ¥}ÙîŽûÁðiˆk[÷rõvã[-ùYåÉ&5,b /jûƒ‰&d¤á%MÊRžKôÜãŸÚMq§·/êÚvMv¥êŒ6M¡e5mëMèZ×k-1ü¶ûÛAãeáSÊ!P%ìèqÃEKQ0)øÌ…&,üâλx½¼ø“Ê. endstream endobj 16 0 obj << /Length 827 /Filter /FlateDecode >> stream xÚí˜;oÛ0Ç÷| Ô U|Scš6CAâNm5Vl~’m´ùô½#‰ÜȪ ¤@cwЃ)?ÞÝÿÈ·£³7—ªLʼ4Â$£»¤´¹5.1ÚæBêd4N>3f¥Ðl”r6«Çi&`õ6•p‡ªe*9[‡Úõl5u ¥Â(É ”ÊôëèÛKׄ«¼T*É8ÏKÉ¡-O3^É.V©°ì;üY¬Ò Jcüó¢¡Ì£c•µëGïÜmM-Ág~¶ò Oî 5¤:®´·šjQÙÆÛ`ày]Ošû€%Ö¯–@T™c‰‚C-» …ÈKÞ'(ªÂʧ¶š€!Z#^}ìy„Å>z‚èÝxã‹ ±Èˆ“ðÕƒÝY s”Äñ*È$NÕœåCGM|ˆ4"ÛáÉC†Øéav*ÚཇS£äÎîàöƒ.';¥º6;û†µ £¤´æ4Øibw]{…@4›ŠÄ×î$ÌÇÿaúlí~ Æ›‰NÛ“R~ó5ÀZªÎœÀÆÃºa³³DîrF^·þÅU±<©!Ä=Ì^ºÙa&œ9þ$ÐÃa|WÇHìmw‡F»ðÓôa'†–¡W„níE!’\-)&*}ÔÞÛ#!N†3š“ PÈÜi—d¨r¨žCÚ†vA¾ë7±“xäãâ~ÕŸ7@Y²pJÔ´^uýa‘o&R4VÔu¯íþèhž?AÆ.ÎÐù|ÐÒ9¥úÖÂ9LnBãËŒF—2|€´Okï¿@ަK{ ž³³ü¦ÏÎ)ùGž7Š>Û/WÞ…2eù)8È‹D(»°$ƒ¥3Îî§àb¼øö@´! áe‘+Á!h)‘[N„½0œ½ý³¬“ñ endstream endobj 19 0 obj << /Length 2264 /Filter /FlateDecode >> stream xÚ­Û’ë4òý|EÞÖ©:1–|‰ Oì,Pgv÷¶ íLÂ$q°3g€ß¾Êr’¡Øª}±¥VßÔênuëï÷o>ú"Ë6‰‹Âæ‹ûÍ¢ZÇë¢\ä¥sS,î›ÅÑÝÖ-MtáÓöËUºÎ"³üÏý×L›Åërm6Y¬²*.MÆd_þq™šhìaÔa5çzÜáìè˜,N³Â ƒä—)301`šåÊ›E_"Ù€:tÈî…éËEW…-„Úš¸LJ¦þ÷²Ì÷ äš ®R ºí7‚Ó$Î0îßÃÙ¿_æEäö¼trõÒ–ÑÓ2Ï#÷(øË•-¢öÑy¾£=ÒÐTeÎ2` raÒ§EŠªò,óq˸3ÕLä”Á½ÂÎiû¼Òm˜à€È r©• hv@‰‡°‰5°k¡Œ‰«ÿÉdn,Ilî^]f‰Žä°ZëU­Ö‘ß6 –0Â!™M"çxnØ·ÐTpÄñ’ü*òq Á¿ œu ¡ãŸà ¸g^º 6zf­¨òÿ^Ù® v톻öSb2= Ž*#䎇÷DBxvÄ÷aŒŠ*²÷Þ¾XÛ ;šÄÆI^Hu’#`#£¸«|j«8Is%8´âoێܲ™‹¤`ã™9F‘&¤èEµœô„Gßaø]ûÌ“wxpW(hË·x›@ÒR,Gëê–®n‡+%Ñê+“š8©²¹ñÉ!Å Õ´)Ä<åÔöÜë“¢>æ¸Þî5íx jØ»“Еb¢4j/Óå×½b[TSôŸ(íQpùÈ£I½¿fBú#ÿß­öý^D dÀ’{ÃË:žÃ-¯õ!›¦©$ZJÆÒµ;´ sŒE×5Ýc  áÕM„œ.3øÿ“l¨ªìâd¾BËO…¼þ$éŸ\®`ýØÿÖì­Œ7ü÷—ŒÉïQû¥È†jÆuÑ,pÃ9w⡬KbãÈéô¦AW—ŠŠš||Pnëh7Ì9©Ær½ª1jq>^È•]ù†½®s\VÇÔò¬ñ?޲}Z¨4çàõïöÓý@„d-,7pâŽW5 ‚=sŽäœÁZË’?/"'¿„³z!Éž‰ñy׉bšŽ†O–«<)&/íú6Zƒ·iJÕJ]eLp7¡›$j?·ómxåy+öB:r¹Z÷;h¬#ÞƒR8ö.$kWÇ„@*õ2!ˆòÂé_” Sào¯ÎÛh2ä2æ—(=ѧ³Âa K¸Á›lÇQ{#øÊ–C~øCü‹„ |Y*ö§¢µžråQL@6›½–¢fBì•xÃGÍ (‚QY†`(´¥ÐìG qeF¸¾†¶êã´“†KÿœSU-õ÷aÚƒÚµý—òW çÃò†ÙP.f þþ2ìö3ˆ)@RЉü¬á3ÌMÝë•§ ñø¡¤éq«%%ŒÄ’‚¬Ù‘Æ›@Ú&J!Bo~4°J¯P^”ÞƒÏUÜ!mf{?ik2ªÑÎ{Ý0tA”^pK”D«èWº³V¶NP°yü¢‘-s§©oh…ÌßçØ*¶2Øð_] Ç”ÑÎKöµ&$ˆná–)×ôäh¾×Ì©gCä× ÁŸwZ°‹Þþ°“yþ(ow,lõ˜#æ…<›\-ƒd¥áj òtjR÷¤Ž>…ñ7g>éÝE•æÕuµL\/ƒg™âytÂø—Í·xpÆFÊ¿*Ñ„›È8åðQý¸ù“g•–ë?9§´,n¨õkz-r˜…6ÌvªFöµË2ÎÓ¥ot)ô˜b¶Òøò9 ‘ÙlØv–’ðD‚;û&¤gRj#(Û;ÍÒRü">ñy¯×fÏÀ¶Ò-{ÿs „S´åƒ1¥Òñh*¼J¼æW—ÏXÓÖÀœüOAöãÊy¸*°I¯áõò8¼2ðxòÜGÚú¨¾+–²'þéòôÕþ •ªµˆ¢V6÷7&Kšø©ß…•4&"jŸ5¨©<¹adÍžÜâúñ¦L2~ÈâšÈŒ/íâÉË|µ,¾nÑ¥ò[G&þ€ƒ‚Í€QÃ ÆØ…®¦Î‰Ä‡ê¨r ~€[y³Døï(ËWèN»=nçüàá.€”¦Öa~š;`:(ÚÿðÍfþË)ÿ¶N4Ín¹ìe9î÷عý@õ½&|T@3À@VRÂOÖ$× 82ú–€/Iþ1#;a)–ô:_iëàÄ­ö®£8ðµ±i WõäÁÔËëºü¹Ç{a\Mp™là¦ôîIsJ¾´¦øÇåàä´×w…{jwúDÎôìÀã®C…?Ü´ø…Ʒ̼bë±™ó¿læÏg;Kî½4æè{'ßJw½¤šMpîó”CÔWNOŒ6ëñú4öÝLJª¯µÛ)m‘ þôüs«Ù=÷ .ò]®;ptCʶfµäÿ²¿îõwü¸tœ”>±lΪVw–+âèaC'—¿‡°ù¸(ÑS”Iz…"_D³˜L7¡ô²G+·O™ÄY^. ‡¸7¼­—Þ|~ÿæ¿[ÄQ5 endstream endobj 25 0 obj << /Length 3549 /Filter /FlateDecode >> stream xÚ­Z[oëÆ~ϯpó =fÈårI&H¤Ò—=FûÐÓZ¤,Å’¨’’÷×w®»K‰>H>Ø"÷2;;;—ofùãÃWßþ\ß5i㌻{ØÜå¹I«Üܹ²JMQÞ=twÿLþ±Ê“ü·«ûÂæÉ°2Uò‚ÿzh±Ñ$.Ëø¡ÃÆÓê^ºüë+S'gp‚†vÓŸW¥KÚ§~â\ãÈ&Ë›øh¡V”©k|¾1fêøÄ]?âË@Ë®œÓ]àN8#üjÎÛ"KÂ÷ÓEu¼|žÁ"ÙKûÓYÅiÓê_¹»ÏmÚX ¿yÚ”"¢a“ ƒ"Òø\ÀÚÀæ¶%’=w·c4¾ýÙå±Ð‘ ‚Mjó‚ ~6yÆCããÁ§ü.Óc©mX dzüwË+u, ìë_‘…ðF@ñ^aÈç¬Ìpƒ2ƒ&ÇÔpΈ“a`?éÂ.î™9Ü…sÍïÞÅG”ó~%Zõ ë¹ëSrÅ‚ÎÐyPßyàßGhºì„ZÇmÃQƽÝäÛxºº/ ›œd ýVîÊDÚm —–u©úM.K¬MŸGÚ,Š0´÷·vR6i]+ ¡«õò:µýß—Ë“úõÛ¥«"Íj§D¿gÇWÔušÙr~>ÞRQ Ñ${@Ó5UF&gª|>0}ùe£Š|d_K{Þ1 hÝ"•}«ª!¡ÅLÅEøY2¥¥˜€ºÐî¹å­xŸåÐM‘üu­$T\Ó»ph”}OKJ|Ð@ÂA°²¸f%j+-j-UÉ,’%O“tj\ç½xJvêÜ„½ìæ÷ÜÂ^ÉfCü«ÍÕeòº•ó÷ÆïW>©¥h€…®HòøŠÖçøŒZvY°ú/Îþ¥¤cí_c ˆFU,'§Ú ci žx"Óÿ1ÖüÄ*–'ßH\#'N2.Œ˜ÀËŠÏû¬øH¤˜ÇçL¶UêîÝÐ[œwÎýÔËÓKuqŽj%Ž^ã’ã(‡Ó!‡ÿ4‹7Ô~lâÆV;qëg2ò!Q2 Äg6Lä÷õäAçk8¬§[܆ ÿÆ4>¦ðœ¿€&\ô@ÎxÄiÿÑ}„¦)8îÂKÐJ‡¶ @Ê+ªî‰¡Tà!bÁ(@Í43S8°4N­jx$ ÜÞÒîÔç4Ž5Ü0ÈA²‚†“²¤Ð9HÓµLSrÔćó ƒ`ž‚#Æ$ Î#\#:^¢ã É亀ړ÷ H#4Mláû°»=ãƬ´»#Gºû"+â8½¨q€™Vñ{&Ø$œ>a&ÐMöW wvÓˆZ™øÈÚK:<#v­eŒP•ÝO¦%ÖÓ‚RÆŽû怪šûµjÑÍc;IÈLÜp Ó•½²6e K!`á¬z8.wœb1'¹ SðúÈ›–­£m†¾ö$®˜Å}äШìÂPÏB·£øšó9¬Ãi„ÐÝO‘š\d/£ƒÚ^ÃÆƒ¯;B &6³z§>ŽA»XÞ˜©EËÙ¤6 ²äFÆÛòÏÞ›¼ É—*_xÆ#zCY0m‰9_Õ¥IõÑoþ gƘmj>⢖Ä>s—˜"ØÆo‘ŸeèÀgò³ŒŽU#8ÏRé°èu¦ÁÉ\³@ùÆ3Ï¡†i8ô!Ÿq<…áÃå¬)ÃÁ'×;wŒp\\Là‰›³G- ¶+EkfN _[ßÔø&î!ÌUT—Y£±©Smk¿CÏ ¾…ô=P¥Tb8ðè€'qIâ+ÃUåk¤Û·‘G’‹çHÛ\K@´6¿ÞS§Ð>ªÕî8^rm®6µüóë¢6·šp~Ÿ×¨ªå„K]{œWÜØP.¾VVð™ltÎy§°xŠºù‘PÝ£G3ý:*N@÷L5á}M'yöp?g¹E*”àñ1Ûó”e°ÉÞZQ&[v¹&#£" cäÍYH…[­tÚ Dì)Uky† Zk8ûz¼±P|Ô©;Ý·G¾Îs öþa¦ô®É3ŽZ¡QÇH[¢‚žú½dîBOõ}!›ºÅÍnŽ,àõª–«‘¡(È­%êË;¡N`ås^Øéç4êæòäkâÞ1m\ªÃãÎã5õJ°ÎGñLíoü¢I•lÖ;IËöÿþõŒÃót¹Úó¤PRsš^¸‰Ó|„£_j®ë¸ëݼ"ÚúÀ#‰E~u”T‡ÇI}ÏKÂÂŒ¯W¹)ùPÍrÆ£f)Óè$Š2êæœ ú¥+ÄÊ\:©›?´êÚ Ü'K—œW^N©½Ê‹s¬ 4Mò ØJe‚2mV'šo¸PƒÄ®e 8›!tœ>9ðNÑ"£jŠü^iºjÐ/ÍqŒÄK.kcõçè¿jMdÏc·‚PùÔpÄ›N>ó;‰¨fˆÂ»cæjöÈwl«ä!ë6ãºþ¶ø“KaíÀm¼åLR¬^óÌã*ŒkÓØ‰ÙÃQð'Gf ÞNRX´q!Óic¢Bfi˜ñIk]±Ï!’ÍSW:ñ;D´ Þ̶4ç~í Ã#ZŽ=dŸ¦.Sl&ZÆŽdR ˆãU·ãoF»ùŠ.Ö½qƒá>ævT³‚ OYh¹q±qä¤ÄáäJuÄ’ í10é}¯¯¢ÿ”I3t\]ùÉ™™Þ Ôû°8%åà¬é¸–k…w wGùÔN*y_vw×xTÜ—¨Y>»ýªj Y¢-ºU§{9òûÆOˆ Ö]Ô7òsùGü­¯NŽ¡I~d õÔ¥L%¯ª{øÎxCV´äSÔfs>¿¿6¬_"ƒG„¯ZGš¶,ÀkórÑÍÌAU¹NÕÊûu ¾úò~¿ÄŒKMV^mjv—šf Er÷ð[ž}$…÷ù'.{n”ûP¯dóJ_Rã/a¨I‘ReÒ²psÛø{ñ|¨8'öO¶2³»æÙ^]•Ve£› âžß¸á‡CóýZÖ ÜeßæüÎA`dû’:+×j8Íùv–7œy"¯óO`LÐX{cæRuÇtÚóžLQ¤µ5_8@VJé‡ ·Ðâ•• ýœ Ù±ðˆzÃ> stream xÚMNÉ Â0½ç+æ˜2:Y¢‚Þ„ÞÄ“V¬u©~¿“š‚ ^ÞÆLyRÄ*0! ­xLÁX7þà Q‰b²n ØòŒ’.•ú¯s^‹Éª‚”ëÔ'0”bãÏÔvr¥H^xÏï'¿ÒÖZIȘfJ;gÙQ9ٱ̒‘­2Q¾Y¾òö9|/Ÿ’m~²)ƒ[ý˜$Ù)Íı)‘ª}½Êbò4y&Ñï0Ÿ%±¬Å> /ExtGState << >>/ColorSpace << /sRGB 34 0 R >>>> /Length 966 /Filter /FlateDecode >> stream xœµVËn7¼ÏWð¸{H›l¾‘â$‰ðÁðaam` £EìläïSÍÇÎÆ-ÒAZÔt³ØCVwQWʨ[õqøK}T†´VÆyùaãH –ŸOõZ‡‹Ýðâô÷oêÝiÐÈÒjþÿôî8¼ø•A¸ûG%jÏë¿Áœ-˜-™¬vwêÍæçñÃç­b¯6‡í[µ»^îÊ&ßc1ÞPv3šÍ/‡ýÍVíneu­ïòúõ]_þ‰§Ñ«/Û·J«›Á¨+üݦ°ÿ18MÉ(ÖIÞùnIvhpì-å Ø’W°'_ÆJ<±™Ȥ)£ãNÐó×xbŒ–,¶0Aª½ÃÝŠºãQaKëú {'[.3¦x" ¥\;›øÌϨÃs©‹C¹2ÝïëG·ÍUÍE³1]j]"¿XÊ]ê´¦,{ò©,%¢'‘Û@NOª`¨YÏDÖqWAÏ_ãIœ2å£ÕŽüŒ±ã3CË_ã‰Ñ:KnÖÖCù³ŒŽ;CÏ_ãY>ϤËÉQLsérD2OÒ]eLñ³t­Îyâ´6/8­=Ë®p®2¦øÄ Ð9gÖâ‚3á%ÍŒs™1Å-V'ë3ÎUíTÀ5¦:V_ï?mÕOV«ÍŸ«¸5c•Á4à6žw[e$ Ã}oöÇÓ¿ãþxÿJ#ÒBe}à¿þpÿþ¦Óaòãç  `?>Â0k¥±)ùn÷=m–¾®@&й‰¼d.QÏ”I\+5†l™ÄÉÏðxÆÉÚ2™Ó7qÏÆ ÑK3)ˆRûŽ örZò Îʃd"TD»bMØV78vh™B(FT’W°'Öáú ‰+!/%\0⮺^*d<1¼ì¶Ì@Ü‹K †&ÆÈÍçЦعÂJè(e‘Uu¹E¼GÁѰ²IgûâšZÆ¡µRC5M+ÖhËY,âˆúM”âWŽùl~‰›ÝÔ7›ßûqRø/à$#ÔɹËúWãx<œN!@ƒá B~âco嫦˘S” ®Ì»n[ò N2¶ÁÈäËBñ©ŒÙ;4bâe4×ì5îé•Êæ$ñJ‡6¨pìÐAW¹­Fò öäëb’1«Èq<|ÇàN"Ô䫑ࣽËA,∲ÈýÙåUp¸ Œ G¡}¹bÕÏE1]¼ zA<{‘€°—i)¸ 0f–÷ÁiFWƒè¾Zw%ÌdË.§±ˆj‘(6-m‚t ¼zv²t‚#4ºX\ ,6 Ý"˜å®j´´Ùð?§¹†í endstream endobj 36 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 39 0 obj << /Length 2812 /Filter /FlateDecode >> stream xÚµZIo䯾ëW4r¶ã®a‹’b#Ø€1H, T“½xzs³[9>o«…¥d<òAM²XËÛß÷õÍíÍÛwÕ¬VuaŠÙíjV—ª,ªY‘—Êdùì¶ý”ô×¹NÎðw¿ÅŸy^$Ín¾°Ú$0°½ÀφŸ/sSÁ üq Kz|ÙàO=Ï:®ø »Àò{œÞÉÈFZ¾oqEÓ~=_di‘|Й]âü¦Ç’åŸæ S•Bß=î5¦ö£c{yß«ù¢¨Lr‹T˱Gfˆ<;>øùÜå4v¢Íºññóí÷³t¶ÐZÕ¹.8ÎM XdYF"ëN@c‘t^-¿ëˆR˜‹7¼¹°|²Œåƒ“•ncô…Ïœ×ÁªVÜ@SâÄm×|ª;›^QÐÚ;K\Œªü~A±ó×)°!ó ¹_®ŒmáÐòG‡¡ùœ¸ê…Ç'ÙŠÙp~×n›f„„2@]¨ŒuÜ=Èë_ãSéq½¢É™+¯¾èÀM}"E¨Ç‡"> 17wQ‚÷l©v‰ŽÞ†õ'ÄWUò‘vX“ØÒšQ4ž?DÊDÙ!ìuä[r•Xpˆ.ãtâêw¼oÂwË(ó´®þ]º2õŽP’ê'¡¤4J~”ÔLåb®1Š|%x‹s–¿O¸pa­w§Ó°ƒ)©Y;§X?ÝÙæªðëˆË‘«ÀÏ_Њ k:R<º:´Âþ]H"ùÞˆ¯ÕU\$‹¨ÙÚë:qq çÇæ¼žBX‹ÂjˆÂÛ0ÑßBÅH.Òò¸W%»ñH~QÔ*/õPûQ„’ÛÆµßà m7ìH5.`dfÜâƒC Ûôb …ª­¦\«ÊJBû`t*6q+¼Ùˆ ‹.>t°‘‚£H ݹ^ŠOÛZ]*SycûOhÞ¹&LéÄ­‘Þ©°QµüŸ²»Ð)lnK¸ÉaÙ?ŠáN"~+X÷e\ò7ù{#sºH8ŸŽÎ\è*’ ò§Ò€ Ò! —š” ç†ÊˆÂ˜æ"Û•±¦Î|Š÷¡ãqà[p$u‡6w»°Ö§d1“:¬YY¾ž§]š¥ 6n¹®š¥ˆF&tÉúaM毢I4ˆæ÷Z0ZYiŠ‘ /×К}RW¦Ÿ¥¢ó Íà›Ë´1ëbgõªÆ‰`q$•G±é.²a—”\÷ûÍj•Új$šqä‹; ©)XØNÿÑºØlOø‚"£è?dkVî _Ü{TøÛ¤!t}-µÇ°û8'dû…Î2Uõ0Â7ŒÊ'²q†U†ö‰žò …‘7ÑÉhmܺòÈÇ}eYŸ½{”Hòp)¹íâVÓH«¹Jɱâ'~]=§Ñ[Ÿ\Gz´cO'c »à8…L 7Y€4„h€v‡ñ@M ¼6|ñ*w 9ô}Ax°J#'Þ>#mKMlçWû·fÐ/„™Ô ƒ«ï½Wc 9¯zé;Y:¡ŒãðS×KM§¸T/¸tûèaç¾J^†ÖßHSÿ\j 9]CWz§jÄûF*Ú»±VUõÈÞ—G,±?IàÚ¼ˆtm¦tæãÓ·þ‹Ã›aS•ª3©›Ïƒ.n#"~Q¡¡±Ð§ŒQ(SæŸÈ–3Æ\ÂåµÁšlúˆñ!ͦ(…t¼ÈœOá¬6:§‘|ÒI»gsH‘ÇŒK¬å8IùÊ“‘ë¿'=‘ÿ„ì¶JWÙ烊ß'ýÿo|‰ðµÛ:Lâïxä@äŠxޟñŽÖu! :ù*Ð{–}®Íï>GH÷i;«°Iñ¡â$z­‡–cE l8UjŠñ×òPì{ˆJør²ÀÈÏ@,‡¿ÂÆ ¾}UE;/Øã„aX(ñ‹ì³ ÃQrù¤œ²¾Ñ# _N:¢0¶¨i;»Da¼yÙRÊ8@éœ}ÊÓJf#£¨´µ÷t30½å6nóÁsJ *—.&%ø…ø•­G)󶆈sGUõ ã×¹IØ:,{qyð:H’zC± wïfѪAÓ “¬œ³Ü’øHËðÿ,0’u˨Ÿ1ê,‘Â>…Ï}y>IꪒîPáÚéÿ/—œ endstream endobj 44 0 obj << /Length 2475 /Filter /FlateDecode >> stream xÚÝZKsÛȾûWð¶`ecïJ|HvãÍ&ålª¤Ôâ i‹ í•óçÓÏÁ€WÒ:¾ä@a0˜WwýýéúÕë·¹YTQ•Û|q}»0Iå‰YäYÙ$[\¯ÿ Þ[/ÿ}ý××o ë¥Ö"æ1ÍÒ=ü~ß~kø½³<פÞÜÔDEžèä÷q2·±Ð¬t®~+¿~-üŽã.¸±áW³ 3›¿ã~°ú6)½=Ê"ŠKGÅ–a’´EhhêØ@s‡Í<¨¹çžzf[ŸvÜy”c¶ðç[èËmði#ç\÷'jÑ*í ½ZS W¼ã…dfj;´x¤¿ 0¯n†ÆDU¦2ŠM C\¥Ý-mI;%6¸íÜÐsDÌ„´ò¸¦yTÚ –„>+K6ý¦!û¢Ï,ÒGÜKm”ÅF¹÷]ÄìO²Ð'D <”9ƒ¬¿åçþ€Tî̘®œè‘¹uÇSLõç®HúÔËRâEŽkô +ŽzŒùŽDõ ¿l™­¸ZÛL™èB˜*”Sž H™á„Á?ô¨é+J¿ÏÆ2.$6Áïy!œÔÉHO>ÏMzJâ9Ÿ|À?m}‹;9±£óˆ²…2´Âê 1©èEŠh sC_f# OXrµ>ŠØ7 Ødƒeì¬ÄO¨E„Xv_qõ5jh'Xî# uxö8e|ÆŒÛõ8ãm'8޲†ð÷/õáà4øÈë°ÍóñdJgzÒdH¼È£ª Á"*“d‘D¹qjØÇ$ØgàÚ8%^Ó‰˜Ùeà SÁHRƒ½§•j xFX×ß!Ä´{¶46¯¢´*¦–Æqÿ§¯uVø32¡sFuëw¬pµ b ¸“ISsÅZnƒ¦ØjÌ«#!¹:ŽÐ(ûPò|‰èÍÕÙ0éV{´Þ}Ëʧ滖çIœÒ¨mwg@ÛLažáï ÿØ-ߙ儭·÷¼cËÓ¨vŽÍZ´[45/A] ð5å1íeJ èO{Æ ~» <ÓÊ8±IT9œˆ1¹AÕz¥ÞŠéõñãÈ!¸mÉ©ÚB}Áh‹7ª^õè .%dñ‡&‹ªôÿ'O„E{0«Ñ‡Ìc¦0‘ƒ¡eô“D:m8‘Q¿ÓznÉœ1ì¶("“–-;ºÛuÀT’Îè "6b_ŽLR˜¦@¸“Ȇ–Å8­ãO%` ÇÏ»V;tQ5lo c ÂwííÑôkZꈯ1¹·õ H; > +áÿHó2¸ã¡›ÑÝña Ò5íÛm”ÅàUQlË©ÕåC©—Á“–Ÿ¡ÌƒûI$Š_&õ4Îİ 'Q`ˆ p”„aÃu~dÚïÀŸTq¼ÃŒápj«QìKÖ„|Œ,¨¦Ûÿ¼âY[²¤‡)d)öxJ5AFu­°ÍvœÄD|Z’+¡öºÆæµÄhEÏï§Á ;]7ê‚x¿Î¯^ø¬š|èï½ |®>Ãmå¿Ýµ^r%ºÝ lR®¤OlÚNeúz~Øàm2o „I2õ)Uð=ΣøãÔ)öùËQ M=>?áþš¶°³M«Àñó®åÁdþ×è)EÏ? Aªç3.ÀUd«òÅN`j.Ïc÷ß(“_‘à ï¥ëVöºàX޲ö^ºßÀïu’ž÷R^­d¹Zû›‹RNl©ËÍ¿W„ƒÙ²‰qBM„VIJuÖ#õm½ôS|»SGÉ ûÝèN<ÓŽ:)fª‘ §›õÁOž“iÀ¯SŒ]HãÖŸžgjN)G%3Ñï…‰l]ÂðìŒz’Ò¸4õ±Š(u1ÀÛ1“¤èIØ4«Ìù„φGq”¥Å—¤³$ó]´AiÙ¼ô 6ÀŽ+­¤ì½Èäo¸¶F+õµw­P9g52X<ùâÈñërf.jŒAçÌ‹ªi‡G©ÅÓö?‹£d¬öëß.KÈ•O‡3Õr‰þ”ÃÖ¤b¾œÅÏ«§œÕQ¾Œé—˜åvÛ¯Àl` 8ج4S#ú tù]BM']ÃtäAö|#ÕÒÿ󯝗^²ÈdgP˜‰ÑùC3Ú½¹©-ÎJQSIùn¶ôcK3©GÕªñ´.Zn$|›ÏæjÃ…b`jÊ/¯>hpq÷µaš€™™Ið‚Õz4ºÐzãÝYÛ«²¿aSFf´á¡’9G×õTa£Íî6n‘êÊm¬A@¨•+åéYåJò¯ÀülÏÍQž©m9r»‘òŦ§øf&þ“(-Ç«ŽË˜1—0s%¦­szÂ4ߨ"Ö÷Ï‹XâæÑÐvÅ\èFÁƒ~èå³»q`éàá‹5^Ñ?ÁÝÎúa "(µ„cž¯mGO_‚Ív¶ŽU–ÆÔŽ-Â?÷ŒÓñ ?ù|ʀ̡s|¯{xüH(ÂxÕNÊŸ»•[ƒÃ›žs!ÜQ!í²v\¿Öàþ5†Á8…êc.õÚ(V¤– ¤Nô •Ù“êðõêh ǹ}ÿz¢Ñ+ H-ÐrY£¥Ö½^2ø)úe¿š`[„ÞE¤BEI 4ÙEÄ”ftGæt l´iðŽlïºÝª&“Ç™U˜Yðw„üÑÿª>Õ1º¾¨ŒKÞâg ¤0ó-ãÑÈcµÉåV¶¨‚¡ß¶ÜâÂ1f[ûöIÇ75•²î%4cØÑ­Äb{ÇçXGLÏ«˜oF\pý «R¡ˆª]5WUøäbÁqÈ'½Žè&SxÜi)E7Ù¿ýcFsÅ ?.Ã4Ž.¿ *ª*Ø+“ð…ŒKUiŠÚ W¼5“fõš—Ûpž {§"nP§nP‹ø×Ú,*'™G0À©qfâ±%ú*ç £e˜§ip½æ“Ò^´ ÖM®×ÐxÏ€:š{þÔj²+&¼›¹„øeØÙrZ·Çò¤]Ú\¸òtºbg| }Æ: ™ŠÇƒ-øîD/'gù<»¿ø”6› p©ÒT|63w‰$Ù4Ööp=ˆ¦°ˆ³àŠêL²¤–…-C`çTn'÷þºÌºV"™3ÈtEÎXÿU€X/4µÃq¬(¥1ˆqÇO¯P3÷Ÿþ=ëLJóa£µ¦f\ ¾ÕÂÚçÕÜߨZk‡ üWî^o6«¹;Ùàü ¾ûÂ5i=ò§(äÍÝl6΢$‡+IÁÀVÌÂ?½úóõ«ÿŸKp endstream endobj 47 0 obj << /Length 1367 /Filter /FlateDecode >> stream xÚÍWKoÛF¾ëW=Q€µá¾¹ r Ð Ú¢Euhç Kt¤V"UQªëüúÎìÌòa3v[H¶ö1;;o¿¾^Î^¼)³ ‚S.[ÞfÁ ïÊÌY/”¶Ùr“½Ë¿ŸË|uZÏU™oç mC. þ G«zƒƒ2¿mö ŽÍ\ùüÿU0Û܆5®a°‹’ñتNzð²ý=üoQ¢¥íÍ å+’iniñ-,]ê~][s·cö4ߢR¼õOt¢;qŸL\â­ƒ;B~œ/”Ë›x{‡£Ý«ýüýòmVd )E°§[tzß»¾@ûŽðï ”„ß óg“sÍ¡jØ|\ºÛÆ“0V9ZR­wqS¢Õ]QmØVý8JǪ>¾°]ä»šÄ S–¯ÄçM“{š< ÃïãR ®¬Îíá¢Ê–SÜNkƒbg4WÌV«ü»*FD_¼‘rIcD(œç~e‰"s"x]¢„¾4 ^˜`HjGRCdk¡¥Ï2×…-&®Ó¢ô&ÝvžÒcC™öA‡|NÇK@’ÖS&I%¼ï<{rù)}ÒBÊBé|þ5þ8úñéç%-ÖvKáuRqaÁ©ü¼å7cÌW½áÄ­#¦š‹Ígšcz/ Èšü·שäI]mTºw"^F÷ûôA}ºæ”Pô;Î%3 l\’©Õ‰vš›–føb¬Ë£õ»¦æsѼ üF$”c4&6:Dn(âpi‚\Nùe•0ºsë‡ P–¢(,Ò> J— dž¥}”~JpCÒle—?v±œv¤Ém¢ÒuŠD îÄôsHÇw4'U$TIÉî`µˆ¤®xà´_:2mêYw$0Lïì›Ä¬”ͯ¥6³Ô ¤ )_Q¢½ 8AѠɤx Ê º€×¡ –ÁLTr¸sì4ýpw x¤9 ÆÏ/· †¼wÀ|Ø’Ç´28¸åˆ×ÚaüÐ  ë#Žãú‘ªRU'e ø²ŸËÆÇýذ]* |Côv1ÛŽ¸ÙQ”Vñ ª+±*µGÖrŽìŽ£d!½0J·÷L!Õ·ä ùG[c y<Î5çä"ë^ÝDבªÊ‘q!™½©’i[¬-àï²c8º¾!7h!"ñƒxÓÝÈnÚ&j×$î&9rXO}âØ&Þ‚Y]£ §æ ±ÔåØ+jú!#m‚_ΕOP4rEWcFèN§fß,gÌ$H™Ìta„u2³A _øl}˜½{_dØ„p %ð.Šàª"à±}öóì§Ùkì(ÇÜ•T•VØÂŒsÔz²žÏ̓ëW¬j¸RH¨K^¯HüÇ©ð*!½.éÅžáú/Ѐ\Vcçµàáöi|+js±–'ú2x_ˆ©pz¨yîAá> stream xÚíXÝoÛ6Ï_!  o5Ç/QbÑ Xƒuغn’= m8¶»õ×,»A_ö·ïŽw”([é2Åö°Ey<þx¿;çéÕÙWϬʹÎé"»ºÉ|)JWeE¥E¡\v5Ë^æóÉHåÛ=ü©w£±)m®G¯¯~ ½V”U©p¯ÌÆÖ‹JYÚvyؽƒ- xÞœÎQÉ’¶OqÉè¼nZ=Ê cf=À¨ éÑ6ªÑX)móŸ×5©¨IÁzdT¾§©=Žß#Tø¬hzC[мHpÝÆ"ÊÃìŽ&®Gc@ýo=ÝÎ*óÂ;í¥V¢’¡¼š£ lwU¾Ú4¨Ù•ùt³‚éÕfM 3”Ù²Q¦{ÄÕÍ ½›C@`Év…Ë'ËNÁ÷Mè{ÑЧÏQb»Ä¿kø3~K‹è?˜âÃ#]±¥\~7ÐFº}t|ó)áPŸoÞf4±Ùîî WC¡m”¾(È6÷]tm®éõ"!ˆ¶©›ÇA£²¤½èU¤÷wòŠR‰[ÆJ¸Jo@œ]sÉb2s—¦B1'”DmÂzù|4.eþâÔÑÊ £Dô•,äÀÑFTew2cDá˸:Ú¯ÊÏYUzd)´Ç ë8™~¸ÃX e \U ¯Ù$Í“pðÙ·Wgœ)8Lf*3ôi“YS §}6]½|-³,‚¯„ñUvDWY)<|Él™]žýrö ¢ǨJ8]öÀ¥wzn¯æTI%´ëŒ”ØDœS%É¡ƒpd¢ÌìôœB¨ªø'`°Zq õ/h8¯¬>ä…ˆÒ­Ú¯P‡ ˜?Æ“Q0¯\{'ËO`œ#€ÆB~ïKùÇ©Q§ ÓC£¸@D½ÙØøBè²[;¡# |‡D3Ù2O.'H6Ë÷£Êæ@€Öz¢QàP«s(Js(Õ ”!bëª.M[Î ‹“%éƒjëõdGÄæÚ4¡Ï† JE˜¾A¶^— \¹‹\9ï)˜E†fP2»žLÍ|ˆ¤Cm µe. ò©2¿¨ñÌf³ãCñëhÛë–žW5WÆÚq‚ñæ&^aMX'»·d ‡‘XX•­ÝqnËU`³§5´v.¥Œýò37XåWX¤®ƒ17¸¡ °©ø½ ½©Êü¬Ó;ŒÇ ÂõÌmLÄâ´ÔiÀcgຌÿµHTð'i:Í)ªŽ«¯r¸hi]~£ êhôñ ˆ!c(7гš¾§dpoh‹bœ6´ÌÅ’›½Wá®5鞆ˆ¯oÛ ŸRgâ8›w‹ÐšpLÖ¬6^c²§ïÔN¸­½ˆ´0ë ´q2›ë†²@µu­‹ù º_n3’·!Ï[NkMþ n«CφA4Ý.#͹Ù gMôÌQ….C8›0¸‘Ü,¡ãje;ièö§ðn.ÉÍš Úz:[1acø5 44BØþTFÓ±_Cìi“$Xøå€SO0/hx:ªXR.Dxú†§[úc²xÔ{Î#‘I§”QüI¯È8M"‚ßM§o–èÀ÷yB4at ¯ã91ÂVÙ&[Öýûö ÖØ%wŒ‡œÓR C<>ZÃÍèo[òóøÁö¿á›FÖ0! Œá¿è¥߃|å€maŒíÙmMÛkÞ^'þjhé‹Ä6sÚ¥†§Ù Cnìn»j+^Š0,I¾±‡§€çGx.Â{pù×v9°{¼Ù1»Ȧç]Æ*”f ðH_äæèŸ›ð{ÓðɨÂbqR>ÿ ÆßðØq”V¬‡ÖÒqÇ¥;\ëóŒË2.ø\'êH&â4,ãO°!£áoØÔp_œÆä> «é(m]z~Müy—dÚœ¦#j¹¶]g‹ÓË$whG l%m™dðt “¿Ç91×WüÄTxÿ·Üsœ½MÇ=¼QJQÁ°!œU~üÝÙ¿èt6l©HJ5{Ö°kŠÿÉìãȬ2¢€úœ’ÙÃ2>„QY ]s/îû÷HÖ¬!¢@-oûK§Ô9è¬Er§e'²O`Ö,žäZ⮟.‘?§OŒ•ï?˜_ƒÐðÓU÷©)²¬dÞˆ¼ˆ<#™[T+ÊSy2Öà—¶ÚãtUæƒ-„l“é_¡,!DdÙ´&Ib×§{É âZÉN±K@ud…O@wVb-ÔG\˃}Š!Òë°]½ìõù¥ÞãW<>ÿwÅÇwýDScr endstream endobj 54 0 obj << /Length 3276 /Filter /FlateDecode >> stream xÚ½MÛ¸õ¾¿bP ˆˆµ¢H}m‘öØ)šK2E›=hlyÆXÛ2$;“Ù_ß÷IR–<m¶Dòññññ}S½ûáÇ÷evS'u‘7w››,5I–Ý.O²êæn}ó뢿5‹~ü¶ð[Ã/‘'ö½ƒ_vûÛÝßo–e•Ø´¸Y“ÔyÎÓO2mOh–yfÁÐËbù}<„ ~•'öx!Ï2ó«ÌÆg¿]9Ed¶Þóð^;ø=ù!ê®á5‡ßŸ¹ù7xýÀ¯¸ÜQ~¯M@&äÈ¿R¡$½]f…©†¦.mQ”Ô—Ö9õ1Œþ–&/M4×÷;S›9ø+ýHS:OP” AVR˜ê AFú­,¬ýáÂñï!¨`‚Ì ‡Ò+/”Ñø˜ ?<¬ò¢¿<å‡Là5Î.Üb,! ¸ 16:–¸¿žé/¾š#& Ü“þ?ˆùñ}™@œ8”ï è3b îYµ3ëkT‘Ms&}$µÅ^Ô~KªœU¤ÝY†Xÿéõ+¶¨«ÏÜq¯Óé[èÌí¢;ìDwKc÷6jáQªÊbÇ*X ”ŽLÆc‡OŠã§äDj´»œɘÁË=J+̤lä‰T´ì×Û¼X4j»Ã@K’¥4.©Ÿ31ç|Úš‚P[$3‡< ßf)›V´wÛæÀd'ÇFIÙáЯæ°f¸î(Ö’ lvrnÏ<mßšŠ=ÚW:˜•4ZÁ·Ç}{"<¿# br -·¿¤9Jß§ð÷ùþ Ãð‹ÍŒZ´Í ñ`eÎ<*‹ÉÐ|èIØÐ~$Þ˼Ì<‰€[~o˜ç$" Ô¿j†€î‰€ßÏtÎëS€ÓͲ·’N‚ÍÔ²@ß3!lzÖ}ÇÚX†X7HÌsh†Ù?Ä~†k4Ë»tœßíhÙbÓõüØbŸàýãgø»{+ƒ~Mo³åQ>°Q¹åtƒ î ¸xŒÈ8Š`‰l<… à9±̓,MÀâ½!¤Ÿ×ØèrGqFû­¶ùòüâ`¤ÙÐ÷Ü¢…äLÕg¯:Jã,Á„)>3h’.%Xy¾­, hZ/î"²h—û}#†»6g ‹VAwãsY¥´òÀ¾ëú¨¶Ý9¿kUƒçüòšÎe¥Ú>6€ª¶|àu$з Ö ÁqiéÙÊ1þ4Ç«4žTÿ*y’ÿàW`¶ÜsË$@ä‘ÜÛŽÜ öøpdE;²ðJž¶Á~L¹ò%5¹ÃFqV¾`1ÚR\d#…Çö)[£"›pºWŠH- sÕá À·±« ŠU6·äÜ/‚›˜ÔÀÄ]‹Å'q-’ÜY(ÆZuÊþ½l2Ú\ÌKhz÷WÑ~¼ëÆ1Þ’áð‚<ê£le{à§0‡œkf뤸ô®~”"íÞ=£Á°™²0œWËæˆO,a0„§hY ¶’Ñ`ûȾc;vÍ0S<*½wB#ïʲž0ƒÕa`°¾%ÿgò–\(¼²Ë e`¬=‡€ÊûÞˆö˜? 1r.Hù%÷ŽŒu–-ÉÆfšl§¿ò¶œX™ržš1!bVbMÏë€Ê뼓Æ?`ÄŒ0Û4qe®2¹–,ñDωgiRU™¿ÁW$)¼ Ùã–BEÞ,ûkªq s©šáÞK^Ü^Q8—äE¡“šù)jSCoc…nD©›(zÛJN|˜ ømQ%eV… ™Ô÷ýÞcæ-5$È{~ù"ÞE6BnÈ=íÕªápƒöÑÙzñ3cبWñÒÕó\bÓ‰ C}S ÅîÀØcO\Й-Öò|Úú•ü"$;’¤^>‰J{‰Iº^ôY'hüA´€AR.š2¤Ög*êÂ8w 0Rä§Yº3\ªkùEÑú­êù æ9l¡89ñÇ€…­D5Äb”°R<°_©âPõ‰Wíu­–Û+áS¿R»=0Q¨Oí0'Ý^eI•íð0k¬çwˆ#$½ZX‹œç0f•±ÀÄfd[Õw±ýCqÚK>Ä%:+¾û´W”Œ£\&QªODJz,‰ÎÛMöO¹lE¼¦˜¸cBÿŠêÌxwQ›Ì³îý­1fñó?0©ùE”CÖx ËÀ ©, ø¡“ýqœ¼ÕLfý=ŒÍÿÆRxò,Y^¡›ö¾ÃÙ=¼™²™ä˜*bj/ä"A@¨ñõŸMð=‡b9;¿.×c«Ç&µåÒê±M÷™Üð?cã.d Qœ)‚úF<°†ÀØ1;§Eš»÷&¸Ý•×?e²J³cà}×ùð²í½µžaˆ̈vlßßVŽd<ËFá"6'c&É“ùhiå#á˜ìøÙÂ'¼vubj@÷—QP š»Ö,bh{Eç2uæ>qd# jàåÚoÇ_wH¢qQ¢cÌ(Ú+“Ú‡\ÇéfrɲQ:ÃH\‚%UéLZLÑ”Iéj13„€_­¼€þ4–&eáƒÎºZÜÐ+›³URÛ×67ÊÕð÷ –Ks,/½Þ']ZM-R/bèˆâvË͵·†+©çõl”G%©Î\ìÄ8 ¢..¶2:„<)Kûò!TInþ‹g€\§s0ׄ ^CÀÿ=üÇ2téOªïíܱ– ÄO/ a+½°½›cg œðÜü<ÅP$EIô¼tÅR?—˜$y] (ZæWAiY Bf8ªà!˜Ö»ûæ^Æ)iÆ.¡{‹ÅGBêåôR–ª¸¸„#ËGEªN‹­iÊW|³ºIëhbíšÈâàìØÍASJçV6DJ†_æL|q„óEoˆ‘LZpù‘6<çü)×Fw<Â6wEéó;úÔŸE¼ƒæ4WþÓ“r©n­×ª„{™X?©ÃWö$L åq*†cÞ#ï$ts¦”¤EÏ"ïvÉuÎ=´ÜI”×Õì »Œ {Ò*ÛNÕ**Îï¢l“ØFð½N\-ç"þr¤èû^HlAZ [-þ…èøêD./êJЍãû–Ó!à‰ì–ã%)I† îѶœ4–QŸ•ºe%c[©½Ô¥WÈÂGcÈ®ÊúŸx„Âìp¡pXGfI^s.W…½ ¸9p-}†k|ÊX­¼‡è™˜a;ñ'k?Iàæ‹éhW«ÜŸ.ùP¢tªø(°Jls¿ÓqËÞŒã=ášD»>hn„Šr”Dº{r™Ó`]+üžÍãKSè]u½¿‘ÉòpíƒâÏrLMaé@sQÝ(õ§Þcs ÷˜ãk%l6gíèà±Yó‹Þ"5kbtI5ÈqÁÑË{™ú­Ë5³¿¼(ašÅ_ÐÂå8(_êöQ‡wíåpŽ[='šLVûÄyÈžlüc”¶F—)’üIž¾ÓÒ_€æ}ýÐN’©Q¨«¨ä·Ç()Ñhs¶ú*Wís¥{ðË/†ïÓ_¦I‘£L‚Øwr·•{;©pQ "Ö;ï5·}1Þé ¶9rÍž¯`‹jñH#€†¬¿kEjAІí€RL…Öˆ´èïA{HV†NrΚLRæÙØÇÉu}ð]—×õK[ðÝæ•Ì|zÇwÞFöÁ‹K^ÅÞuÔ–á£w§dŒÃ5^É»˜Î±È^CrJÌaèÚ?Ò­ÊyÐ]T«pc­a:QÓ >•—±óä~plu0 kø1ìý7hPœaÊšýQ +õàÈÎA@ÀEôA¼k©b0Ä¡£_XswTre"è+uéàcS‹5!$-wã t¦Å”PhñM©¬™eO2Çœ»ø.Ï™K}‚m?mãzˆ€ÅG0ɳ/œ¸ôÅ-—¾p£ƒÑEZXÖWéöÊe!ç ë§…—z[wI¼Ä†s·”0«9]³Ì[þ•/KÕ G%&SM0c“ìó§%Ù¾~uaD•Ìøs SNd¾e¨ía.qª È­¢{Ñ™”.$=tkQ‰©Öj!¢äk<ÃÝóhƒÿ6Bv!Q‚|¨#~rEØšÁ³B¿’)ôïèCãÈ©ðG5ä±¹¹¨Loâ_ªœOÁí›ß#(–>*f]\ç'¯9/FÚ©1¢Ò.𳽍ç–xÁ¼ÙÉC¨UBÙ¢îòZu¯÷µÃüŠUé ¥CÙhU‚Ó¾æ5Ȉ~ÏH™ó¿ÜýðoÂ0) endstream endobj 58 0 obj << /Length 1997 /Filter /FlateDecode >> stream xÚ¥XÝoÛ6Ï_aô%2³"E}­hvKƵÙðîA‘ب-¹’Äÿýî‹e»m€ÁL‘wÇã}üî¨w7/ßçfRª23Ùäæn¢u®²ÒN²4W&I'7óÉ?Ñ›é,5I´êh O ÏžÏqÃß<+™Òð\1u-”ÈñZ–~‚Ç $O0ìáAÒJHBžÀ“Á“£„-X‘ôž¹R7"­ƒç‹pïDÇM°Ã <áù žkbÿ÷æ×I’©Ô&“™ÖªLåüO¢J½îðü-ÒÜn=+ÐËfm1L£{QûÀÓ ¡Ü‰ƒ—Ó¾±÷'‘„,²áC`Çì M‡š;Õ›Á’¨Ã½ü7¢žx7»ÇƒJhÐrìh!ÆM'¿ÓJ'"Aæ¢3ëH$sYêSºq`…â«ÿ) â>×.` ¥÷NÑ{˜Kâ O£DëXÙ" £¤&ò“èÐ…*­§vëŠ\‹á§ƒâ†®nWµ(L²û"q!ÓRˆjW`œqØfÖD7.äì-½®\‘ei%…ıԓ­9z)Bµ)!EŽ"´i"ó¥]¯ƒ„ËsÉù4þžeóBÅ©Æ÷'Oc•ÅG÷§ÍŒ>eÜ’ÕÁ ÂWüG0ƒ Sµ_s& ëÃ4Í8¾ö ž!Óýû)àfôö·O×à«Ï±¶xLZKï]-¨ö`? s{‡8 ¯›Êù¨¿Â™rëš•Ys?… ÕEi68ËÆª8¶Ï‹s½ãI¬ä4Ï>‹W¢áš-oãX{æÕžáV <ô þì4' óg "qíøŸ”¢ßêECÀå«Íý oEgz…i=~Õ #à :ö&XRb'¥²âðÎë0Ôœu-à ”z Ó߉¿hú¥|ËíQ'4À:qŒ€*>†¿î~ÁÍš)m´lQ¯GÊ ÎΕ…"TÝœÅ|”Uß«SÔ!çù™;®ýž“ wWD’³uý¬¡ЕÂ݀鋳]|hòÄšS&w¸U5sA´1ñê °Ì0YÒg#‹k¦ äÖop¹6Í0s¨Î› \3­Ô_3Îg|SžUüÒó‰D8§¹çÎÆ×âKýÍòˆ^†þ¶ÞXlÝ¢Z›¶9}®$ÝÆ¤ê•”)— õø˜ctÉ‚|+¡Ô%*›qDe¾!« ^áÒ­¿ë·R‚åª ›$MáJ9Û2ÏÜ ìÉTÙà@X}¢¯™Õz˜žƒûhî rJ ¼ä Á ¹ØuÚs#(úº~ªà‹`Û%”Þ}+Æ[nSß#öCwsýUîva q_ÿHGßQK7"çÁÖÇ!´*Ë£¥É½»êÏÏÝq‹LùÞøø3fðMy¦÷~ùã/Ãî3k|n탡G]¤MT^ذl¤¯ ² ÐáÚ=TÒÈëÔ(«3ú¼jÅøÚpû/k¿ endstream endobj 55 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-survfit2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 60 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 61 0 R>> /ExtGState << >>/ColorSpace << /sRGB 62 0 R >>>> /Length 987 /Filter /FlateDecode >> stream xœ­VMo9½÷¯ð1sÀ¸ªüyÁJ‘ f$„‡(™•… Ò„ÿ~Ëßîéh±‡LæM¹^•íªWq.@܈¯Ó[þ{>¿ûë…x¹Ÿ”TJ‰ñsÿò ÿêŒøwúøI(q58ç¿› âñ÷dQú t¨ÄgAÖK£ ¼ûsAT­$=6s…Ýnµt¶Û lv#jö »ÝZi©Û lv'ëÙØíãvúîšýÅ¡ÞåüÈáÍ—wÓó×È'}øGäóê#ƒè¤UâðYœñ;q¸™^÷ÓΠ¬ônám6x'= Þ°%6*ËbôÞMÖÞ¸%6ñ?‹ ï ±ÉrªcæÔcç‹æƒ À×:#mH×}b¦ŽºHíš¹ÀÁ®TØívÏ5æ»=ÃnGB Ôìöœn³÷ìÇ£ÎãÙpL¤¥ç-)ìSåø¤wÐÒ`ñÆÍÞ@^*WÜõvw±Ã³»ÝìŽh$øâî·»³>8}ÚLù^ІL|\Z²BôZê„ó%.a]¼OrýÇ¢ž&* ðñìÃŽëP‰³ãÅý,æë»Ë£˜¿=\ýÇ»o÷;ñŒØöc÷IÎó8øk¼ Î[•û‡JôýúûŽ@œ]Ü6JÞ–·J6ÄäLD÷Gñ^ÜýjLA”æ_Œ©Ú×Û‰U9îãj~™Xþ9·.Ãeâi©×˜ßK"6::®0oTj/³:Åu¸q¡&à ;”Û JzÇçSŠ ÕS>ЉËŠéxÕŽ|‰¼±6{c|Æá \ü‹É—Z1÷¿HÓ Îɵ±C¼Ô3­0±0€JaT¬±r —„ÎŘ‘9Ó´³Ö°/9´[rx:å°fÉqç –a7p±QçbM GÅG°Qe‡V(õ’£ÞJå(¸süŽÒ#|Žƒò³ CðÏ›©úaXúeü¿¼îI¥Ç ò›†ò“èÍžfóõÕÃÅ­¸ºžóqÃ˵С­tï~Âõvú9uˈ endstream endobj 64 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 68 0 obj << /Length 2347 /Filter /FlateDecode >> stream xÚµXIãÆ¾Ï¯ÐÅG4ká6‰Ø H€¸çäñMQ-¥%R )ûâßž·U±¨æŒg`ù Õöªê{û+~{ÿê«7ŪŒËLg«ûÝJigyºÊÒ<Ö&]ÝoW?Euu\«è¸Þ¥£ºvMTc·]ë<úe­‹¨a?2U¸£»@·¹s}̳Û\õüÇë5yt¿‡~ÃÄ—ÁõMÔíÖ?ßÿó«7¹`ëDÅV›U€‘ÁU·Ò–Q]ÆZnÈZ¾ëÜCŸÇÀ¡…ƒÚ-¯ÈÂéD`Ÿ…ÕFÛPJå±5™»ãW û`ÆÂ¦r ˆVSè8UÙj£T\¦¢š3Ô!J£‰xàn…‰ö4E²vl¡2‰ät@cõä43žL€6ØUp-´Z®}§Uò: òá¸ËÃz“Úèxt= ºÜDï÷¢ýÜFïQÌd: /¶ÄN®£]w1uHÄ[&ræÝ-™Î¸çQÕObÍm¨úÖk£^§š®m– áoû’/›ÄeaÝÎjœ 8>F‘ïIØ;¥ñWƒì™<É«ZL>Í21ùÁ1°Úh¼ÙÌ5^¡ÊÏëH øÝXW`›D_rs"9<É$\Ií(x±_£%÷ì¸pžäÑÛÁ-«€»Ã.M¬ o£'1hº‘¸Q“4–0C*z<²ì“¹Ð-üðß8‰®TôÌ1K<˜Öç3÷_Šg[‡;Qx{‰ÏaR¸ n¢þùè7êE¾p^óhhØž(RÈ}ç,s¸aؼ[V¶±ytð bšqžE´¶˜ý–âý©rô™¨‰¤¢3(kñF9àÌñ„e c a6¼é:íÚ<Î2¦ÝIÅ(v6®q1¤&Jû`ìqbò/ÊèñÁLØXðÌ¿œTÍ `RB•$© @”_%Ér·F”y:H´!)l%_މ¸ÁK7e Æ'}6XÔÔ¶™&(ä;‹í< Ï¿c‡Èdw}¢04ß,&qzñÞzÛvÕîvê?ìÎTGùR¤04Êà§›÷"‹£8Ì»$M ù‹ 9Å»T¨>bG¼¶«—¼ª*§Äg¥X "KãÔ˜¹ºÚR—ËI2Up-Ûj·,‹õ”»>ÃæMÛ<»¶y¸ê=]èM„êjFW½½ëR™œ0+‡7Hˆ]ÜJêÙ]Ü5–뮦å;»V®¡ÂªòÁE¬Ët–H:íU¼”@Â:‰³²¸J´ÄÁÝPål3U¨.|™2ƒ{hýàJC$süe„—ÚËê ­÷|¥Â,=ȇ…›‚=ïy? …­óU¡ îÝ'4>ÈñTÝLïÖ~2³–`» 謬Á4þO•ÂÑïýcßIŠ¢å ª8ždG5pæª_4ÇÏÍ,B“û$Ñ7'¼üAØ8Vþs ²¨Sùø¶MÂ>Ï´¡9Ÿaë}¶ ÍQÜ öExí Åp>«á™± ®ñ:ÅÜw3ãj4R Þu~ j&ŠMÅ@½=Ï,A¢Í¬žå$átöìáYÂCš|!Eõ.Pcõ$_ú EÎÑS°½™ö h/ƒ˜~7׈4Ô¶â°60r_þcéoåÕx­.ÌŸi!Ÿkð1†Ü¸$lüç'k|Å& ôMÃ)å\zLÊŒ—¢ÛÏ_,xL‚ÄÓt²öêÉ?¨—¼÷O«•œr×MYpt ^â‡Ì÷–£¸ )|”×.`¼È-ákcpσÓû¤m iOSâa²cQ7fÒ ?ºœnˆ6}/:ô õý’q‚Óe\KåëMªÍì!¢yêïÐÝp÷cÏyñüxE"Óó¯e4Ý£|\sQvð%Rü¶ÞÀ³'—ÏF*ú•§¿äæ,VËj-ï¬ÇéŠmp<¶_‹.Þð¦çÖµý- ÅѨhDxwÁï#U@Ÿ*®îE6>Uò _só'ÕÞ@¦!ÒJV¥q†ÎªAlJêÞÒ¹ç“ÿœÀLV‡írw7>J cßpË”8WÁîÉÕtò;0[9dp¡f•±I²y ld£¼yÜ †Ï¯&܉ˆ´„_ ¿aIOíâò[¿L/ÏÄöâ ¯W[µšô1"iÂdºFU‚a«¨€~Ïa# Œ¬Ú2SY/–œæÀ‹È¹ë¯²K”ÑaåÌŒhn K¡¾ºÚIKɵN’J`¥3ÚÛKËHhÄÇ ‚4¢<ŠñÑü¿¡ÿͬ¿P]ãПmLš5A×”%¿…3¬äƒpÒ? GŒÈ²â^hËN<$@ÌD[ùaF¤CÉ>`ÛJb> RQ¹Úd*Î3IIŠÕ«ïî_ýég*„ endstream endobj 72 0 obj << /Length 1875 /Filter /FlateDecode >> stream xÚµXÛnÛF}÷W°y© ˜›½/Y yÒm‘^Eš¤mʶQtE)¶óõÙ%—e»¨ ca^†³særfV¯ç'/ß:™•¬´ÒfóËLÇl©3k“Êdó:û8{uš©f7§b¶‚ÕÂÚÂúÄ ‡—°–ôHÂúKÀú–‚õÖYа"±{Xßï‰%"·°j‘ë;¸ì`]ÀªÈ–‰¡ ËÀbô™>Ew°Ö^üóü'€mØÒYf ™ñø[I=c˜”eÀm¿ÐökjB§e‚?]å d¹´–ISf¹¬4€;B‹¨Ï ñ XÈ|¾ñÞñh+ŠÊ–^oÂãhì†b¸¢ÕŒ€Íä·û#¿'nÈKúÃò"¤‡˜´ee¡Æ^ áÆ½¯ê!· ->˜Ä(ÒgCRV”/}ŒFüÖ» ¸¤¥ë†>[S>-‚¶÷tÅcwpÊ×$);’º9–Y€~8 gÚD)˜'OÎ#ïvѧ“1¬ÅØ÷ÿ­ ÏG_Z+¸fš—O6xý,ˆ=Zaãn2ÑbnÜÉKSrí%X9¦Lw{¬ÓSã"Ñ ;ùa~"ÀZž‰¬tÌÙ"SR0SÊì¢9ùûa)í’Kÿ*~F^þبìM{ò;üÅW9©Ì¯‘Ø‹Äaq[^2«\ðÌü:$¾€ ³ý KºY¬OeÑ3Zêu &c]tû˜SÄILð¢ˆñK­±`¨è¡UìðܾóEUãîU\/ÂuíÉÎ? â›x¿›1êe%㲯¬7‡v */×¼˜ Ò¤S¹’Y ùÆùÔvPÆ…ˆBï'vã̹õÖÓŒGq~ ´#ÑwÙmd´Ú÷´Ü:7 Ù†éºEê½X„üWm0ã í[¿=•n¶Ñn ïáÞߢd‹ˆ3=avAbÚ ^6m·%cïÓ›°•oE-Æ¿Z… ®6;ßy@^Ü6´©Ï½EÕ ¯v½¦Õ:@õ -¿Y†mr©Køïm¯Å}mêý9è÷-cPz]G$Q·Á-àµkúhµŠõ+%gUè[p­Bà¼O7áe·ó]T\“t$}²£)5ªl½•W÷AæÆ;å2Q“„ ?^|A¨!” z„’‚ðR„-¸9´óʧ©.“<åØ6 0DpÂ;È…Áˆ@ Í ˜œËj}˜í%ÔŒê³ýíi¡1‘ EÍ ÜþŒ6û0yí¹ßp9Ì.(ãwKš€ð _•³m¢jJŒ †·§u¸9šðVÇ4GAÏqsñ‰ Mĸ}ÅÊ56`]úY¾Uc¤¡«V†ŠËY‹´óakÂæa¤{¨»¬}YmJÐá_Ñ"ÒßÅ4Ú%º|¢£vq¿:HSŽFOé†ÄNxÙoØã_‘™QhÒñûšzžÃ›¯q÷vªòHôÞSx?‡ ½´&ì]‰/Úó.jK\é±£—¤™ÍÑÖÈ]ðùUˆ8V=Á¼ÀÿSHê𪉕€71´Õ6Ü'ÊÏéëª[DËÛžX«M=H~õáo‘! 70d¢>hÊE6C™¯ÉÉH*mC4ç{4e}ÞV«ô\°ŽlAÞ ôA4ˆÔRÓ}?!Eò²V³?’£àõX˲#-a@zȆL=›ä¹¡hÕPJ=Tꈳó.x®Ó â Žûk¢yçЛ 7txi­`C÷¦Áw¯ÿa3¡X$‚?Iˆgprªð´òp’Lÿ0†Ñ¤•å0Aü‘K΄£pó‰B3®aGûìØ„?ÛžNǦ<ëd¤žq+œ˜½,öÇò‡tÔJr©LñÒ­àdñí^1€Œ„Ù.Átºx :f >Ð7N£ØZâì ×u)”YÄSè²Iú0N®Ô7'¦F#Y©û!t>a -Ì#Ö5Õ],,c?ȇ7#nD¾«ÃóËØ+Výt“û1aP¾lÜ/×ɦ} C53ZŒ™É—%êªï±í9Ì“¢,½‰<¹¾^µ— ,Âuæ¸ ð}is¬!œy™-©”H­ÏÞÜ•“)!œ/½+Ý2ÎÕ(!‹É¢wL÷üE¯GE/ÆgeÿuI¨h¡ö‚Ô X®˜vX#­ ¸±Û#¬cë˜ÿZzÈ:ê ¬ÓçÿîP‡an/Z±În’½ hO®Èwßƈ,·ä 9µxH•Y^0©$mŽôÊJf‚§àX ÇöŸyVÃKèõL“ÞzÑTó?[eïáàï÷ã £*¡·”_&frÆËãì#ïö½LáA¬‘%“ÐæÀ"3 ›Òá€çÕƒ:Xé›ÎQçDUþç:Ô|8Dõ> /ExtGState << >>/ColorSpace << /sRGB 76 0 R >>>> /Length 1502 /Filter /FlateDecode >> stream xœ­˜Mo7 †ïó+tô¢HÔ÷¡—m)š® r0Ü Ð`í všþý¾¤4;;ÒÔɶ=øãY‰’†"_rÖªWʪêé ~ž?þòã õr?mŒQç¿÷/§)¨¿¦wï•Q¿MV½ÂÏÇÉòõzФsQ¾h2êN¹˜u jß 7ró¨%¯? ϸŒç íb>ãiœ|Ô.œÆg<;“t0Ëé.ãçÇ]NqÝœsû¸áœÇÛûéùO^PÕ˯Ê!èâ%º¾SWøp§®?Nß_ËÚO[›´)+ëpuÊšÎ÷¶—ìM®hoVÖìí Žά钽]´:™•õiïzU!ébqa•(‹\X7ìZF­±Ú§Ópóq´¡e¼âÙxÎ:äe¼â2NŽ´u§ñ†gãõ¸§ñåôç®9ódz379¯3ÉèŸ ¨'­‹×š5]lm]Ö&5s¹y¶:ºf/6'‚äfž/7G†'ß§C½—¦“·™§6 ›‘²ç„8Η¸Æyò^õ?Ë ®ÈµxwõëqhÔÕáæáQÝ|ø|xP‡û‡OÇãÝáþó~õnÀ¿| 8¯iKïÿ|Ø©g‹ùýËNQPW7ÇÓ’xuþˆ.>¹ÀôpPoÕý× ˆeÑýJi);ŨCšS¶Qtí ùtM «ðÌ„\J=EmxfF ùŽ2’’gâ¡øemy¦µòq‡Èâ¹–¬ÎÔ£…ò‘̦È:2J”̇¬```l‚eÀ´3 ÿËüµ£‘±M2cÙ9pô\+ö¶—}é7 ä„gÒÀ!ÖLàq†ÉKëÏ;øuøáÃNñ«ë'~‡åW×»›ûÛƒÚß~«éwfóÍøéM¸»½hû/6AÂ^¶ mnBÝ&Ô¾ø3UüSþªãõÍñð8ÙñfúC1[T endstream endobj 78 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 81 0 obj << /Length 2798 /Filter /FlateDecode >> stream xÚµZYãÆ~÷¯Py €ÝÙ$7Y ÎCd'†í\‰3#ïHšˆÒŽ7ùí©«ÒŒcûaG}TWWW}utsÿ|ûÅ—_׋&oœq‹Û»ESå•«®¬rcËÅífñ]öü°ÔYwÄ?Ënÿº°:w®Z˜¼Ô S|¯ŒÃ©/¿Ö:a¶2y]—ø(ÿÆdé–ZçuY/¼>)‚õnQåEe˜èï3›i“ëªZ¬2ÙL«…Ë›ÊÖHVçJH:/š‚©¶S‘\îl±Ðè¬_®¬µÙ š¤Ø=àŸöL¶>œ¡·_šŠæ¶ÔÑÙ=“?¡ËÌ®;dÚóªv¿!Ýê¢ÊáX¯Ð­ÎKUtûíŒn˜³ü-tûíŒn˼ªíkt[¾N· Ä:;ïðïRjìÈsí‰w÷áON:\™²å8DçM)(¾õŒ« ¶{ížàï#¸l‡¬7ȨÝóˆ È7¸ò{¥ ´%2I+ó©ØÐÊ#îrbJ„´2þŒ+qb‡| ñM‰6µ„šeÿ×<\­Bö~VÛ`å¡TªN6¯«€‘Ó”‡Í˦JxháQ$4Un«dSÌ¡H禎þvº‘°†Ê|¹*«2û'šéi`~Tý^lðHþ“Ïø§“é5ŽîÅ+F…U:·à+TiÑ?×h™¢É¶º“xŸ–¥C×f,”*»CÎG¦=y£C{×mÄÆ  lqvƒ¢£8¸U·‘­(40'¿ßN¶9ÜÅ ¿ Î5”f™áŒø=3ÙgP6¹²Ú«þ%½]®Šìaw {Oh(‡{³Ê„ÀÉ@åëÃ^”g@Åì×Â¥®/éŸçÄ u=Ø»n‚Ë!ºV-Áw“ËÁ/e3q¹ xLÙAÌñ˜sŒ(º¢y‘,„|‚i"x•ݱÖ¶¨!×ý:ž‘» &aÕLý’¨Š—³(^ðË:õK§ˆ§aO0tmò¢žú(6éúàÃdü X±Ðš“'6 ©ôز#kD¥LœiùçÁ˶ûÏa‚ FFI¦ídÙ‰§Tc%Áª°ïC$½G¶í 2ÝÝ,žą̂äí‚‘‘x}f»ƒ\Ý YÅQ çpª¥êL‰²\4àA¸[·^²[Ò‚ß5\Dí¶ç~ÐBÇýçíÒŸÖ¥(‡î:eæÁv/ù ÖoO~Ï©KÀÇ`ÙwƒÝØc~û|àHIXÀĽ*K}³ŸTä|¨NpFÖ;-”_[Á™cןü>k! Þ |Çod³þ,‹ÉÀÑ…‘oœòʲ´”Šh·qèpL1êkC`".pôF% Ér‘ù.Y#jö3xc›9Ã$¿ÇñL{ŠS2 ÛÏ),ÔUÕUbQU2°”c ÃTYd?"—µ‚r ÐÞ³ÿZU‘µ)$öÁI÷÷L%{pöéx§:Õ¨öÒ\aÐD°Î^a_Q¨ˆÀhﻸ&TZÐç#•‰Ù¡ó0$dŸ5õÈù~׉Wvô)Øs.'ô…á 3!h)®t]ÏKÙ¸C‹Ï„ 3*0·ct+:…æ)莪VÙ†ý\¶7PASy4L~“›R§©EÄ8'Ž–¦jÏÐÒsæùD¹-œ¡Œf-ä!¼AX¸Vò "×,Aç¦ÈþÑsX`×Êñ‰/Ôp(óaCËãýT\°©VuRé‹ЦI›i@‡îºíc‡‚~SS¾.‡ëûGOPG•2pè„(ü##øai›hj¦aÔb[@ïÓFÁ­Û'dü™ Y(+ÉUH<=F‘»B¨‘ƒÆHÜ(®¡?—ÙiVÉç`O–ÀÅ­OE˜Ä :§QEUÏ3¾ÔÅö¿ØÃ2¶>`!¶£ô[úL4a‹3—n:\è(­–R?xµ¶Ë˜íƒÂJ.É<WhàO^6ÚIeÝOé¥BfQ+©Fɹ_Ъ9Íðè à£;qƒ}t˜´ ÷“ÜO"m»îvì6>”4I¤ê…ѯô ªšºGž$»ÙÝ4ÉÕä¥]/–WDŸ†%ª÷E±G.Ï\ᮟD ÷@®gŸh Ÿî“àä½üzžqÕ•g3¹øTIG¤ ‹å¨¿rø½¿P¤ŸM¢QÖ†P2"æÃb 8GIþ.-ÿô"/éá,{ó Ìfši8°Ö¯›—v æ%Ù7ÜP \mLdþl"ß3Bi…¢ ôR¼Võå› OY\Å™˜«jˆ2ý¯/IÞuU/dÐìCUCÛaiÁÞé+Õ•]Ì…! E–ûPÆcMXÔÙí²¶Td`Źö‘„Ž|¾›«¨©¾9‹…Ho®W«Iôì1ì…[2‘ qlè}8ò,>‡mÒÛHízàÕGöíÔE‚i‡ˆ‚í>„Ç#õ>M 㢕»PœBˆ—ç ®KŒÍ¾^ÖŸÈ5=\S2¿™ƒÙ(à8•ÙÆ`ƒ¡ÙnxÎøÔúª»g Æ!‡²ÖçH™3eÍxÕÞf2((SòÄÊØUÙsf?<ðþj7yM†¶ªD®(Ô #2æÙ'™Ù²PÊY~† a€ôÐwã[ÜF^+å™— ÏU!\}n²…€N*~uÃàC*“9ªÅy—P¨Òòºœ’Á¤'«ªHÒI‘׿Ëe^Ö¹›ÜÕM FÀ»46*]Ž®ç‡ Êï9>&è2wN•.Ì,P5ÌÄ8Ý`lÕe…}¼é A¤)hÏÎLxŒ×Rß.ylž—;Ï+Yúýc^j&#‚:ã†jýf‹2… °x¥îïý5•Ý¿?"Ì}è»çïÚ¿Il¬K¼ć@6 Ë0}*rÝ„‡£ÃäÂHˆ…N|d"™åŸ4Ã{_‘$è_úCÔ¶áq—P—ÊÊQLê6‚« <~LCFx €2¨õ±# aF%ZL‡aƒúk¿¿ä(f|­âçâ+Ϙ!àÄ<¨8ùPÂý(Lè³Ò9‰a÷!Eîw;så…züáÂ%U¬hs6b„\? Ø$¥[; Ä0õÉ(’ìÓ©ÿˆVÇ{Ê©â6pósƲ(_±W~’â° 1††ÿHߨùn¬‰‹¯)jo˜Ã?Ѝ©r8J߇;áìëÕwIûæR€d²ñøÍµÀÉK.ÍI®ðßnƵÝɆÇÀi¬¶ß‰äôÔŸ\ÄÖÉžÐ$*ëê÷‰^éÒò É&‘u+éDÎ~héaƒ†7µ*øYËçÞHñZ©¾#q¸žå¿š wE7bª^mµð=Ës‚¸3€H¬õð²….¨øaíg©ÁÌÂýŸvf­ÎŸõ6>ù¯Ìy%¾®hÉ/®yaÛ•ˆö[ìçâ;áùVjñ‰ÄSÞ$þý&R¼¹ Ü $fJr)νIˆþ;…/%m^JVrïŒÏŽÿ¢¢Õ˜ZŠB•@H1 êщ:’©X3^¨e=ksu)eê«X'¥­áÒuŽ5©©¡RwÊwÖ1Š)ß <̉Fª×Š]Ù×—5âIÜ‹’KŒrÖWØxáK™ÎE÷Í5ÝT³;\`“NÙ«gHPÿUDpú‘k*@nŒ^ü~D*Ãs|¥’y¡jáË'Rü—vWj¦qLzw-›N?×&oŠjÇT‰³Ò—ñ/þrûÅÿ½«ìè endstream endobj 85 0 obj << /Length 1973 /Filter /FlateDecode >> stream xڽˮã4t?_QfÕJ4;o``˜‘†BPÄXø¦ém˜6©šv.—ßÎyÙ±sSf 7®}|Þ/ûëͳo ½¨¢*×ùb³[(UDy•.ò¬ˆt’-6ÛÅ/ËW+µ402>[ý¶ùv/ÖJEU&@l\aœa¼‡QÃØÃhdþƯqÃg£У;u¦“åKþü8A(‡/0Z9ˆ¸ŒOùÄtK[ƒœ4òEÄ#U ñd Ù wñ*EÇQYªP3-Aûç[9OÔñØÚžÓIT)>–’pŽ{äøÆïžN/$Ñ’d~'ó†ÁFÕ»SgÝGQKK_ßÊ93µƒØƒت¾wëÎ"!Ö{%Z‡ŠºÒÇÜöNh÷dbPY•Y‰oÔBÂrf¬™ê[ÅQš†Ø‹Ç@/JWë´PyG1çýJøñyNâ=²®˜÷;±éQÔÓŒVé)F>Öòž ö¼NìùsSÎ6ÿÒ”=O9U§ñå:²4 µU ú«¸ˆÑg@Ÿ"fEÇV<±}þ¤·lŒVÊU%f$ØŠ?%2‹nÆÄâ V]“|ÆoJ/Õ®U¥è㈨RR-¹«q6èVëDgË~‡ßÜwRRÊùÂû.ó5lîDÛé>³Œk- ¢KV+gÙ,[šÛÜ‚ LÙð§îÑ_–¯­‘äˆ{¸c: Ç¥äz>N1ß㟒뉸.nŽJ@d= ÌÎ1VV&)ôHœ³À£ß7dævÄè1g˜æ\g^ü@lÉkÑ?n± Ù …þ*P§««$“Ìícªb’ó#ý1îà w¨aÁPÅ?¤EÌù'«Èš7ÈÖÜÉ@GÌ€ê ÜR]Iª; ò‹ˆ€óá⎠µ½Õò¬0•1=#–±Õ6r%)/ŠåÛî)%Ãh<#Îé‹ZÛ‹¡:’¸óÐqM¹o¥6¯Ö½íà·¼ÐwÜLÂP9§Ó¥hI¤ÜÚ ±Œã³AÛIÏ60\µ,Ô—ÍJ7PÇ.R.w+GFf7õÔ뛑S"î#2Þðl2§"醒¤¢ê—ÆÜgž¬§ŸmšÉa©«´Ýç‹7*õ²R¡#È“6+}ò4m©$‚Œl” E·Cò®+>òÿ¾kxbÃó$ Ñ¢Ï7*£ë: µFẖ«€ßTâ7¹Å¯e˸ª‹®Wë‘¥E°þp †òaùú$‰ ×^¡€ª€ûBVLZG*}'Ö¶õÆ»áb<‡½Acö²s•(Î#õêPF©WØ{³˜§ë8õ3=2¥ ^oP,ŽÄf„&H6ÜŽÂyéùëû ñ ¹·sßðÛœ'’¢ÀMºhxð 6-t6О4Mì÷‚W*LÔäëøsr©¼¿Žll­û˜ˆo`3½ûÏ«2%£f…µZ0ï\œË]4NWïÚ—WdÜ%\màµÞ vs2Åàn>ì×Ôd–À…àéÔË‚¹ñæ|Ë %”§1‹ €ç‹ìÿAÃ=0Ðxí@šó׎›—aq&ål³ ¿,Í¥ä,w)Ùs¼:/S‰ó*Å>B\5¨çÁpT&܉¹ËèÛ§' î{é6ðw;BQS(0èâµ Š]·=Š—ªÄ3‹ܯDÐ>GY椪W™fw<Ìh@ç‘.\•u=-R\!IpÌw í%’Ølù}f†C¸&ÅPýuãÂj#¯³÷t*#Ñ#ý8.šñ‰ÇÅ÷ˆâÊÕRBܾÛQ"»gj®V׫%:¼°t OÆ4i£˜Ôxw°¶¼·³©÷ÁfÁ#Æ—ã+éÎ=*ÑÒ0]‡/[6|wÞó“xÖÿþ¬n?ÿªåKáâéÃoð¦ûRXÞ'Ý£(ȺYŠ=Õ†¨½ýÐþSâ…è?Áx=ùcòŒ Ïa|#kö¹÷ùxäñÆ‘Wõ«sq™×½1ûÌ1ßVÐŒ^¤§RC«@IeéJÇ Ÿ½Þ<û ´» endstream endobj 89 0 obj << /Length 1795 /Filter /FlateDecode >> stream xÚ¥XmoÛ6þž_!ô“ Ô¬(¾ˆÚÖëÚë¶[=`[ÛŠ¥$Fc)µì¦é‡ýöÝñŽeÙéº!`D‘ǻ㽙ͨYÂWÔñ#¶YØø775§2äTä £VÁTMpèùÜdþèöˆGsat_âÉshÚ\Xh\ÆÝßQtéñ¬ðÞk·4/éáÁ±ÇA×_ ¶ûµâB×X× mµç]ÀF’ZÑú‰Dœ_®#ÍH‰M»ô$Ž|0@}¶fv{$Õ¤L̼ H a7¬§Ñ–íõjjmèLtÞ'ÁÐ~Á(—öàüÆWˆs4ÖùšsŸ, —¾cú+ HÿRâCŽ\€ËÁܸçç­§´´¥Êëkœv?ÆÙÙ2¨ñ9ò"€(ú‘+×ÑÃ;mÚmßl/Ø*#ã5ž€ü>ÀlxÎ(9[ÇV¹ƒPjÁh¬£GSØZspþþèAÙ}]ÝW̳ËgY|ÊëLÜHæKxy}ç¯-9ù‹¾#à)¯–Ô‰ÐË;”Õ¢Z·,²ì!áHΙïr9¤|`cº— Ù6ìŒÛ£ýàÉ5G8úâ3z߬B|¶Í4–oˆ>–‰ÊáóvÔu,÷Ÿ%8›âî°YpJf!_fy: K؆fª éY<…Ó#H< Üxî³*ø^CÁø®TýXz¹×GÔt}iÀeâ…öòi²­£Oeܾ 'çØ"´»Úg e|jö¦3CµkÐõ*‚жÁŒÂ&µ¡'3í¢²Õ–j²ß½]óÙ+|WH ØëA¥á3+Ú¹ÜöfhhMYbµf× V†â²‡`à Áž»ØXÃûZ%¡502nE.ƒYà>{ò¾XUÁ¡% ïê/ûS ì*mªý—D‘±q¿ÅW‘> /ExtGState << >>/ColorSpace << /sRGB 93 0 R >>>> /Length 1432 /Filter /FlateDecode >> stream xœ­—Ko]E €÷çWÌ2Y0÷cÛð"Tn$UQ[QS‰†‚à×c=gNìKD€EÓ|™;÷xþìã͵ñæÎü²½‚/¾ÿ楹:mÎ:çÌñçéê;økÍæ÷íõã̻͛køw·yü€ùv+Á¶nR·Á™{c°Õ3~0'1Ìç¨Ïð‡¸OÜÇC‚¯«ûøÄ}üÑãÖÓ÷ñ—7¼¸·g÷ðöãöâë;qó£¡õ¬ÄÅYïM¨¶8sso.Ü¥¹¹Û¾ºßüôTŸ’Mý07¸gÌfÇÃìôœÙ1$ëavY³i³rµ¹Á–…Tñ`pËÄp\´F½ËÖç}˜ñ0çXã'\ã°6ú}œñ0Náìã+ºãÒëýâ° °q Bv¶D:2{vãžœÝ>—fçgÏö)ÛÚÆtÿ/î{´±ðôç?=$g{¢gÅ©s¢lÉ7ü(§éÄÐàÎ ¦SxŒóçáŒÿœY!À¥(&ò }}ñåí¥‰Î\üñpùÆÜ\ÿÃ5ï¸e!ÛÈßsõùþþl.>¸ýõçß.MÈæâ½ùéöÏÛOïö¯†5˜ãºbéIˆéÓ{óƒùøˆ‘iëpÅÃL¤IÝvÜÑ^­«‚`v@r£…Éæ4ŽØ+,¶•Ɇ¢°[ßÛV¸r…÷0++Œ¶0p¿»Âb}b„‹#±Ù4ˆ°À.±ÁfvFX‹ÄˆÌM"1£*³Í+`M¸á$`·+~§Ä€ëBl¶kLXml{QëaÀáP$vG½à± ôÎÛ‚q×p5GÛûàŽEFsÁ  ·1žãfK û{†ác½ †ÀÚ17f¨Øš3f0” ~Žá¿Tìt†ƒ³aÄE4×3lŸO æŒIˆ\m8Ç—\H¹Š;Ê N:žasÜíÐÊØOÅ&Þ…9‡û¡¸ŒŠœqã4w 6ÎWÍ îC\ðÂjNtÛ"œˆCs±iÄ‹û©¸Qþa#á‹æìm 5'Lj`Z¸fÈ~<¯´Šá܈œÎq§û¡ÎW§¹fLPäˆîQ  c?rA¿(†ÜÜßsp£¿‚Òˆ­_|Ú‹‚cg(o5SyØ Äq?•_)*¦†]Ãîx‰2„/°xÊéxGå L\[Èñ3þÜ/t1öU"VZŽX9§ÙñÝv¼Dö;^bæÊCŽ—X¹zÐ/ûÄáxÍNw:^"ß"v¼Ä¡®Ýñóè§á%VÚ:ö»ÄÎv%» ìd\n—ÍfZf—˜fÝ^—Xè¸Ùê¡©ôËé¹Ýa£ ï(tÅ‘n ]qF,¡+®ÔØL¡+î¼RºdïуK芣uá tʼn…ÄBW\0Œ%tŲe ]q§õN¡K\°¦Ð'" ]1ŸõºbÈ›~ºäèéöO¡+®¼^ºdxÉIG¡+®\pXà’± ¹§¸PCÀ‚ßùÄ"〔§È‰¦ÈÁ7£Ø³¹%6*åln³“Í-1R™csK,¶¦en‰ ŠºÌ-°6™[b¥ö‡Í-æÃR·æ€–Úå­r&-}kît¸,pÅ|%.…kŽ\´Hâš wý¤qÍóŒHäŠ!y¨tq÷®¸RÁÝ»bHΰt®’c¼³Ìî]q¦xf÷®¸âåYÝ»dÈIwкf¸g±k†¦ -µ+†œo7SîŠãc¹+.Æ’»âYZXî’¡êé wÅ™×ËrWܬ˹K†·d—rWÌíÉ”»âJñL¹KžoÃSîŠü)wÅ…Þˆ§Üw*úSî’;¿]M¹+îSÞ$wÁxMK_r×\¦|‡ÜC%.¹+ŽqvÿÔK†¯qñ Cxf7?ù´½Úþ2‘†6 endstream endobj 95 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 98 0 obj << /Length 1398 /Filter /FlateDecode >> stream xÚ•WKoÛF¾ûW>-“æîòÙ6ú°Ñ¹´VÑC’EQ¶bItI)Ž/ýí×’KINQgg†3³ßâ»·=’›3üÉ ¥æhjn$¼… ´‘ý›il—²t;î½\Žð]е#Öâ”U KœÄž Ôý«ááFí„~šÜx©èè6 C –ßñ©×åX<ïñ2Ï\ž:ºµÂK¯¢œéOμŒL¿†¦-°ŸÇ¡Ž“ܯý×OîaÇwG*¯´lþ¿J—o<¨ùψÖÕùFtµrÚÂÃ'#Žz =Ñk‰}M6`Oòí Û³Ãhút¶ëÂDe²p¸ÅbTç¨xq3¿ø÷­–( endstream endobj 86 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-cgd1d.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 99 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 100 0 R>> /ExtGState << >>/ColorSpace << /sRGB 101 0 R >>>> /Length 1340 /Filter /FlateDecode >> stream xœ­˜Ko^5†÷߯ð2YàÚ3¾n[.R%J"±¨ºˆÚ"%©h(ˆþzÞû\bU °Èåù||<×דxóÒxsc~?½Â׳‡Ÿxn^\œœuΙý÷‹?áÓÍ_§×oŒ3ïNÞ¼Ä×ÍÉËæÇS"[ª Õ’3w†s°Ùw¼5Ãr'^V}p¶„uyÁu|±Å­ë në5‰qëzÇuý‘9›uëúóËîüÛ‡çÞÞŸž}OˆÔ實ù»}kœœõÞP¶É™Ë;sæÎÍåÍé»K}ó—·z&Ýn¯wOØMøÒn7=iw)6ìíæ§ìæ”,çÝî°ín¡ŽÙf x#ŠØFða™7ÚV½‹6—u¹ãn=²-i[o¸­“ó¶†u½ãn½™³®oÖí]ßùûÍ. ¤£ö„&Üî‹»+ª˜ûîøäÝ>$[}«˜q¸¯ÁÖÚ·?ýtBÐ\ng‡¬÷6;…}×Þ.H%ؠܲð—‡/T‘þs_úŒ %ýB_Ÿ}{unØ™³¿ÌÃõýÛ÷æã95gW÷ï>Ü]¾úãúÃýùsùò+£_%˜-÷^|ºk¯üt‹·ýyŽÂ2gïÍoWŸ¯>¾[_ ïÌÞcNUl$ŽBß›_Ìýÿ!ȽÅNhUç—[¨Z_„²y ZJBø”G"ëÑH§ìEzB¨Iˆ%.EëåtÉ ”l”Ó³Z8P±NN/ð,ŒTmäF…‚EðÄÖ§‘Ȇ òŽmà ÙÖ¬˜-ӄц(èÙÆ4!üaE8Hªà™¥ùG¬’³[½áä€&E–¢‘º‘1‰ #õa”ù sË“´ >"²®¯Â‰\F¬(C}¸$¹´G$Kúp…ƒqB–< ›xÂ(׋`µì'ì%òR€#–VADHhW¬ô«p–—Î Q‹ÊE^;³4˜«Èà̱Ÿ‘Æ¥4s–¤€å9bˆ‚>ƒtÞÄÞK 'KtÀÜíE~E¥&=Z¢å€S˵ÁfæbsPö6噩 ¡Ëã“$X¸ØT8,\mÈœlÒx qc=àÒªŠfb\bÔ8H`gÎ".`”3eb4$i¯&ìbðêô±™Ž? endstream endobj 103 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 107 0 obj << /Length 1704 /Filter /FlateDecode >> stream xÚ­XIo7¾çW>I@Äp›áL÷¢ÒS€è¡éa,É‘RYHv\£@{ßFg‘Ò9PâpyüÞþÈ77/^½ vV«º´åìænfLPeíge”uÅìf=û}~Z˜ù´#´FúÍbYX—¦âðÚiñÇͯ3[*£íliŒª !dKg¼›{Z±LKœª}ÅK~êè>B»—ÖÈñÏÐ>êBËqwÐvÒ‡aCtµP LñgÙ¾—öºRý:&¥e¨•%÷²|ßñ~Í„2x;ÙˆRyÉ«±{€¶†öEèïd,qA+ÿá?Óí]å/Vr~EÚ¸£©|ÃN¿d]iUU¦¯«ir¨Ý!)ý'E,M¡ÊèZP‡1L·/"„¼+á ý³?µán’¨hú}'ïM&ÄÌR@˜¦&_Ùœ¹íf´ùÌ*ç+²50m[ššÔ…f^–Æt]̵0QCÓôOàã°¾<Õµ3SÑæ346C£Ï ©)þ÷èšóSÿ·¯Ï Ð,ý’oŠlI!HÂ$¥ q}šVcߤd$¥ )‰ ñÂxÙ§éI=ž22ì/)nB&!åi$V6W?IG ¼z[e©gé! éÑÀI7[6Tó#%—„bÔü„³õ¼½…“üü3.Z=0ù^j« ëkà>…¡.äÀ@Ä‚¯ÚÃÂVèèØ#jüOÀR`k:ÌíÓ†è—%Y FÚïLJª8-ñ‡¨7y„…Ðn+Æ´•Ã0Ÿ[ b þìö‰?ÿœÑÿ-Fˆùf DþdžšnÛòW~>çn­Ê¾)Á‚¥ >Û‹_$˜û¸u ‹¢RÈ$­Œ„áTQ'E¨ @Àù Ò€…I 8¿®S(Âc}qâ/yŠu€0Ð6Ü9R¶aþĨ@8f<‡Ïh ²³9¬#-6ÜŽI¥ÝS™sàÙóQo‘ðv“­~<²B*«´$¥¾Õ Û¾ž7¯¤ÃuªrþÑ8Ÿ,x¿ÇU´ì¦c}´…ãÀ‘bvÞÕÂØôµôµ™¿¡|LK°èØ|ÔÆËÎ]<´•“2¶á«'qØ>éOüÉ»Ë&`;o¦rêk™¶!´vþÛ¢ò¤"{Š~$"i°jYäÎXUV¡/s$~¢Ý&“3Û>4»cF‚W^›ˆó˘‘Bic{¡aBª Åu(®vœ·ÄéÍä8å¦Ju. /4åÐÉ€lÃÜÅx°Y=Dû†¡§¨ý-'Ï€þż¹çš´qÅk8‚Ù²ÐÈ œÐÏ&nTe‹|£g¥ªƒ«¢dhRùZùy̤WD—­ù±*Hbë[ºù±YÅ;;J¼5°!º‚ ð¬ó!Z¯ BŒ>O%¡*$S£ÀnõåPî<°å¾ÁvÕ…ò¥wuJðÎÂ}hO>ÂGI‚ÚçÖœ¶iàÄ#MtOØäyhE÷1¶9”©œ%¹ôCŒZ+9—`<3Ý\Ë]Ü °s× …tXŠì|!D 'žÜñÍx´rÖ÷µ…‹7ãí°˧[œ­ ú_Ìkž8Å骿ïÉf$’Üøs/tšS¶41!¡%+”(q(69è]Ÿ­qç §tYvnÌ•`+<(¹:NßêÇõf$׫Ëï¢ Vyb²Uè¸= Ë0…§e˜’ã'²¢¨—17ÆA˜èÒÖA8ru íª»ˆž¤€&±áÌØqµ 6E—§­°³j„MfFy8A‡úN\)·d\ëì÷b0äHY»8JE•¸*~s>”bRCèäQñø…»HJ²×5)ÜÚÌßaI[;ˆ” ïÿš;r õO$Þ˜BV;#U"›õ”‚ £´TŽÃçŽqóy­ 꺫ܰ®ãVœk' A•&™Èw7ä뢳- P#õP†šÇ½8wÍ.ܤÈKR½#=×}o¯9$vÙCðÃÊ µòCmöµ³¬¬–Î^óȶÁ! Ú4r›tEO.Sõ~T©~uÎQ€4âþÚý®£Ÿ[rÀ@MȲh0HcKªî¡rÑ07RÃÈ9ëœ0)èB¯wÅ•ϡߟyå|Ù=øµ²ãZ®Ü¯åÊ-Kö²ãùò’'I7×r;—©çôÖÉÏb1 ½!¶2ç£wïÒ©éðpþ©ø*{V”ìpŸÁGaˆ: ½¼øåæÅ¿Wo endstream endobj 111 0 obj << /Length 1598 /Filter /FlateDecode >> stream xÚÍXKoÛF¾ûWAP­÷Íe‹MÒhntKr %ÚVb‰Ž$Çñ¿Ï¼–¤$iÚKaÐÎÎÎÌÎ~3;+Shø3E]©*¦ÂÕZiï‹åæâÓ…ª£užF$ ™&ŒË¿6±ø£»øþòÐ\TÎG:_..._§¢Fu±X\ÆXU[¸*)êb±*Þ–‹Û™)ÛÙÜk[îZ ÷ðïžÃþmá¹™½_¼¹|]Ù‘®h `›”ìA §íàù Ï5<ÔÅ3ÇNx­Bðybw5›_~@ÃË{ÑÜÃÇýlncÙ6;Ò|W6{çצ9ˆÅõ䘲ٮxh9æÁ€­òimW¨rIɬÍËÜl…D—3˜‹ú˜V—8 ÍÞfW`}Åܘ¤|tH¨:^Ú²»“¨lÀE¥Û! +CE= îQ--©e­ ô´CÉǽèa%á\É É>ܳÇ.šs‘‡­,üz'¶–ÝE®dhK® Õ‰ëÝ5¿?ÏÀ÷æWÕŠ7Y„ÂÒ.ãô›[T{ (éãðÜÎdÃ\òå…W-­$ %‰W¨…¡ ¬#H çf×=0ˆð‹Â…V2`(ͣ֜̚#›æãÌ&^L‘ Ê×ëû»Á­í‘«¬ã× §O¬DÜbø¡šöð­µN„j9¤A™3"8Š…n{ÃŒ{ Lwào\¹–xë­l2`Ã7² "‘´JÌl ´ylû‰ù{ Ç€Tä1dˆÌ @ §A÷3…”eÞiãE ¦Ur}b ÊŒäRË–ÄÀiÊé0äôD¬höydÐ6"ÍÙòq-¦o§ŠZTÆ™\›ú`ÊŒw:h!¯e§‘~Kë0¥ç=‹™ó²W9(¹1«VÆaµ²5Ôr¨&uŒ,ùÔGëzhm¾íG¶KqÊ…j¨Í=ðóî±Ö~3åÝæ’]Xˆ„¶Ç¡5Aã]é¹èõ"#[âí©k?‘ÞoÙ:ñ÷mKÒõLd·£e<ÁólnøÓFSÓ÷ÕÉ÷’¾Ï¶dîU¬„;Ÿ†rr2íp€¥,Ômî¥ÌÓªVÌ2“ÎOàÅq=C‘ U˜¿A˜qEÜ3“DÚœ´õ”rTžF©\ Âõà׈l¶kÃg)Í”¤¢¼þsŠaÆpFò‰±.‚÷_ HÉHiÄÈé˜|äè 4úÈé–«'݃W|´ßõÇeCqd2CŽVGÛb í£ãê†e©Pë >´D3„Åôå éãó9\¤–¢–A1fÜB%§’C‰8CUPZ,ÇTÕ”˜P°Rùœ_È5ÊW)Öy“‚mÏãzB"ÚüWö; ª^® j3­²åàqvE°šÜ±ý°+Ûó]ÁÃa×— b:#%¥ÇGUW'ý–E¬@yz!èF¨ò‰-øDo3Ÿz O,¢X;Ë`È8:V&ZrGBsÆÝŠÃ"I¯+œÿÄâ~ÜQ.ís}ì;-×·µÈú2±A¶N*è€ 9H Hb&‹UMùÚçÂ}®gnô¬&ÀÁ¢ÇêŽ.es„Ü1žYñØ¿øwôÒn„3ªò• Nvëefp¼:áEå*ñè÷sà°ˆu]XØ{#3Í–‘rÙóçSX%‹% íàT°,ˆêê‡Uéÿ™*ÊÚ«èÃqêhÜ΀kXµüžè°²p2?"jlœ Ê{è$ñ­ýÉE?U¹ßq¬8ºe²ÜLÎÝ«`Ò‰{§Å"LD®øúo¾æ6žï3©×ÐY÷7.$7@bîÖ÷üô1‡Ûù^Êq'Nìúæ³2…o?ˆt'þÄ ]¤-^[Q$k™¼¥Ét­ÐV¥ š<[C&Apc..¾¿«d¥ endstream endobj 104 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-011.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 112 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 113 0 R>> /ExtGState << >>/ColorSpace << /sRGB 114 0 R >>>> /Length 606 /Filter /FlateDecode >> stream xœ•UMo1½ï¯˜#˜zÆß×V€T DI$ˆC[Š”( ¢‰„ø÷ØëÏl¶I{ˆµoŸßzæÍxBp kø3Ü„ßÅîëÇK¸Z …Я‹«Ïá­Õðwøþü®Ão=PÜŸÃè<(,à”ÐH”á:#YXR•ªt•g©â)…/°ò’Û§åŽÐÈ,Ÿm‰“ræpµ\–»×ËC«F95çR]òí¹¸5Ï–Ù)T#NE<„eóbt¯¸îÏD£W!Y¯Çh¿<ý¾»½[mVû°ÚÂn»(á‡#¡Cï KÑÓ|ƒí¹áK¨Å¹á[7¼¶vnÅZÇm›2n°4(FìÓX™â018b¶itL0yÙ”q|„ã1±ÇÇÉÄš¥ù\q4Åi vH+GSÜ) âƒ K²'Ù‘§LÉ>™­EK-÷ ôácÔ2›@b1ŽŒšØ+FÛ'RpL„„ )ŽÕU!ƒDÒŸIXfIe¨‰$X"ÏgO ‰`šê=Í8†¢´AȸÚ0CçCIî>T®] ê|)o†ÿã®A endstream endobj 116 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 119 0 obj << /Length 2817 /Filter /FlateDecode >> stream xÚÍZÝÛ¸Ï_±È“|ˆ‘¢¾®MkдÉaŸ²÷t¹Æ–×¾[[†äÍ&(п½óIQ¶6·iE´¢Èápf8ó›!½½yöòM}Õ¤MiË«›ÍUS¥UY_•E•Ú¼¸ºY_ýœt‡…IÚÅ2wY²ƒæšy“œ ¹•øìNôÑãWäL> ‘?•I†ÒÛñ»‡¾na«äa`öŸŽ¾oÇEÚÕÂÖÉ¥ÀåWþþâó…iîQ¦5~ÈŒÃ\lý'\ÄÒè Ü<¿Ö8¾ñ÷Âæ´XZã’&w,/Šô…õØÍ+;ø}»øåæÝUvµ4&m 1ÕTßçÀ8·IÏ:ÂÌ¢L¶¤i„=±õ· ¿ºÓª-·×8ÏßÒfÒŲ0Eò!+²÷bšÃJD2®² Ýí'\¥ë¹Yµ¤ra´Í¸yÜéqK›|„.jæI׳„«±+6Lú†(ÁCÈØ Ö~Îv4§—ÕÈÎù¹‡ÀZœúò1‘ÓMZƒ³fÌç†)b¯6YZØ\ v²ñwÈÓ&+°hŽëï¨u? p+Bs‰&’Ä;± PlEÞ§ð6ƞˢHqSmsØ>çòädzùíöãâv”a;öŠ“÷»n>ñ0ø`õD7¶|˜Yd0Ö¼4Ù Ö·‰ºPni{tœõŒÅ­«ÀäµZôxiò"ÍŒÕq\Ø’=–¶ª“WsK˜à¾…¡QŸq26­ò¯8 [V~«dùïH–Ç ³?J²ÿFÅâBÅ”½1¯\ZeÍÔ_?ä‘›ƒ7ݤwÜ{¨eHñÉÇpdN G~û–‚ÀŒAƒ~\4Ä|Bv1òt^›hç41À7¡!ö •„·/xl¸g®t²"ᢅ݋™ X—6NCº|*ðàr¦5å$BÏB}GdF­ÇêBë ‡çžÀYUûÌûëRgÍtsߢ½²"Ñ=ÌJNT8Ócçív!&F²ú^äÌÊ€„8y`yÛræ£ïÎ[\*Dãm/ºAŸÚ¼q_XJÒM%ËÉ.ûS;*‰€¨)î*ÃÈrf¿r›Y*݈¿ÌîTÕè8Ùܯ%Ÿ£‰ºdîê´²ö ª«2m*€ÈK“ºÆ1‘¹ö­l®"BëUÒº 8yºä“§ESG±/9ÈCÔy5u Ú‚#Úž‹­](ÜX~@ûG¿õ‡%ü½nÅí¨â‚U‡As¼›%ãÝ‚‹Áˆ™:|þ@°BX¾C½Hà¤e ˆ/‚SÞ1GYèÚ“EZî¿¥‰„€Äœ‚£âc¼H„ÇËN¬nÇ­:ˆ~¸ sQ$¿ò!‰ËAZùÜSoõl#½tYÉþNwRÝIFC– ÕwcL³’H²é¹¢§øütØl"ÇaPßÁöìÈÇî$¤×|¼„„ÄSÆåq=Íö»xùhÿÔñ›S›Ìÿ$*îízb;Éí-yß݈yè¨P°‘-†*L³PW<Ëâ9 GZ(åð¹î”Õ@çuõr ©`‹i{ FÉmŽØ_αš¹@”®NóÚHå±ÕЀÄcãÚ5Kë,¤½=Y–M»a/ÛÎÿyœô–5ž£ÙÉJ.®°häºÁëÎ ÇžáBt[ÎKŽ-#v©¼Y6VÔc®öjгjå†Â6 úwa—xgvÑ­ POTÅž³íã莳ö|–À( ÿÚ{L:&{$·„Õ8Öú‘ÅšÞÊE mÍÂlæNªÿ\õ5 ê5´ù%c@# ·À´@o4ÄçÕÙÝ—5ÓHQüö’Á ;fp Ù·œj˜76¸¯|œø­<ýí¡›øt96‹¤Ì¹‹-KSõCtó)µ^®0°±0‘"Aé:“ŽV^®5yQgéÈ.~œ‰Ž•N”rR¨¹ë5‡5¬BMŽ£Q6Æ%ô I•9Ú¯l’7‚p¤sìÆÐ…zµÜÕ}4w~Zp<ŵQlxV Ð=–ÿ06¨'ÐerÝN[¹Ðäu3š±›6bñ«é›Ã¡&¢ú9ŒúŽ×7åðHâ\ šÎ¢ê±ŽÞ9Knh –Ç“Á€Öµ:|bâ±gUZ•·¢€r ³ïˆ”Oôq`, ʲ^†œ~&›º%Ù¹>kL‰ÄY#¶7“öÙ˜=K{<|F°úýaOƒ=ŸºNÁ*N¤¢4[D‡4|×±¼{¼Á\7’S·4=Ö¡}IÙ‘sÐa™äØCyªbÒv”Ë:Ð0å–Mö0i:ž‘!mËAÌål¢™ÕIXBêåÝVÑB¹¶î 2̦†£´ßtÔ‹Ôf ïªƒŠ!ɱ‘aa#fÏefØàÙÀì]Gô¥ØVcˆÄ$6þo+ðEÞq×°ÊLƒh-‚ÃŽOEMþÎÃÍxŸÀ)¼\—Öóo·oê‰Ü¿‘ —[jw}ìÔ‚$PbË.ÒÚ͆¨_qžSuk[":7~ÛˆÍË6Î3R–/úö»êÛ[ŠßÙñKA9ܪvC#Ã\lbg|>v<ú;Œ´òQe üÀÞ9êFÜ‚h†Ú†)f~ʯì~v´¡¼g3w&¸k7#²³=™C÷”íý9Í}ÌQœWFúàá#Œ† gP'Æ0Øi-YTçJùc!Y…O9N¨îø0{siËB®¸ M‡~Â,ÇôÅßóc Ö§Êöv¼ÇÞ«I£Í¸+çÚ$ cáY¸Ÿ½ý~÷crÛî’µ‚ä4‹íðHV0„Q€}úèmTñõñ‚¯‹ü4ûÖ:ÇôÖ;žŸÇÛÚ¯ ©ZN¥hç—ÚÛ#7yÊvõïI²„©s.}/™õ5#­¥)?ý*öŸóü7âì]eþgÅsT:ÿ84£epë㿚ÂãØ¿zDŠåOü»ðañšÿ8w÷1¥Ÿå#ÿ~©Ïˆ}/Š\Cª/¼ ‰ÂDþqÓã{çK\_ endstream endobj 120 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-mgus2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 124 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 125 0 R>> /ExtGState << >>/ColorSpace << /sRGB 126 0 R >>>> /Length 5856 /Filter /FlateDecode >> stream xœ­Q¯$·q…ßﯘÇŒ›d³›|µ0à ‰凅¤8Vrâä߇Åsj¦‡§,iáÛîÛ¶Ý®~þ›ÿzÖÛÿ¼ýá·íöõ[ºýnü÷Ý[²¸ýþíÈ÷Öo{¿çíöýmßÒ½5â‡ÛçËä⦔î%?v|>^ûýÜŸç­ÝÓùxÜñùx=îÇö|œøx¼lõ¾•ÇãŽÏÇk¹ïõù8ññøËÇ}~úÇã¿þ‚'÷«ÁÉýøÕo¿úmWâ‹ÿ¸á|>ÿÛ=¥[>í°¿øþönûìöÅwoÿðÅ|åŸ~j'£î—çÖOxnÝï©]ž›>áó–ïÇõ Ó'¼s®é¾]:Ê;÷~ßÏë“?áË~Úà|>¹|Â;—~ØÈ½<ùñÎõ¼÷dCdR>ëýèB¯—'=Mc\Ïå/ïcÜæçãÀËãm …ö|ø|<—|Oåñ8ñò8÷ñøóè¯gær:þþr–Ê~oã#m÷~`ßÃóú“Ïîû½f>;ò³Si÷íäÓ÷OzK÷£ðéÇ'?=çj÷žÞ>ýéG³9oÞGÏ3‡ëÂyçmOÍ~”³®cnû}ŸŒ‹øŠþßÏ%àož¨lLå~+ÿx÷ïŸq¸ÝÞ}óþ/oÿõç?Þ¾þöýŸ~øóÇo?~öÇÛ¿û…'aüÕ.Á8Ú‚럿|÷ñÇ÷?~óåg~.Æñß®Ÿ©ÝŽ"—jô—onÿvûáçÖ¸t¯›­qxÓcüñS«ßoG¹ŸÏûÁÑ®ØÄÝ^Up¿÷fXï%)Î38𸧬˜l(MìŽsµž÷³Öq‡!–Å=Ž]íŒ <ÇrànóýÄq –9Ù¼é~žŠÙVÌù^C¬öÎr/Mq^µc±êŠséX±®¼â*ól!Ž cà1W²Ï{™‡qÚ“«}ìã†p·K5°[¤!8NNŽK`²ÔÆ4T>à˜­ö7|„–ïù,óíûgÁ†8°xÚ­9p\ö¦x`0´zß»b Ý[;ìI‚»½ÁÀóžŽ' & ï1-Yq³ÿ}xëÛ½ÁÜíÐ&{ÉKöªØîÝ.JÏ58ONöP<íb ÜïåTf!ç¾\ñAÓVì‰Ê;¦æ´í÷-æ}'·#ä„ã+ÀpÁ’›¶c¦ÂÙ¦Wãq­[È~~D0=àd·>¸oo6(û\™ÆùFâ%<~lN¸i¼qЏÙÿÀ½|Ú$o\,ˆQ>0•¤qâj ˜Óc®D\l1ëãð…ÜÏ€ÇÇ<&ÏSÞ8^ÇÀ-]8uQiŒûñ¸IÚä4ƒ™€q¾·ðaAñH©rÀ‹i²{6â‹@w|.gŽ—1_Œ¬K9Ùe·ˆ7;Lã±ö!Ïe&™.ŸÊ–ˆ€ç 1Ïg·¸@ùäý8fð)sAIcþß#Þy?Œ§li¯Wlà)ûqžï±6'†i¬lc%׳̯¼!HcUMÀ`.kÆãÆVn,(Ÿ÷ ï×íÄ+6Ìx¡D\y¾÷‰*ïOƒÇ:¨\lš5Î6ñ*gÎ÷ûŒƒ•–ª4⨱*)o¶LW[-#Îø<‡­GÂ#8N•<åZ7ûàʾYfRž‹÷ànGÀ;„4bÛ±ž(gÞ/#2‹r²iÞ¸Xvñ 1Ì÷lÏe<ÖáÚ9ßÖz?SÈÛ#c ¼òÉûiü¥D|p=ùH*!Ïà˸ï3 ¢8Tޜۛr™"äÍNÌX”³]ãl.âœÈ=b?Ÿ–96å1Lú¼^–;ö€RXSü¬ÌpÛ渱#æç9í•+ïW»1ö€w„{vãm1c¾ÜjÀÅyœ¸#àdÃȸX¼¤¼9W›x…Ç4öà‘·+Ÿ¼^6±ÅŒûqL¬caV>8 îÏÛhð˜ØGà¤ìóÝXXÆÀSΜïÇÂ4⑈±^…­FìñžeT-ä™öÚÂiñÊʶÌvr¸A1¤Öm`EŒùªÏV>9ߎÀÃâ áƒãm.cbëí|ÆÄ¥\y?ŒÀi‹ØãÉ>'æˆ1ŸX.Ô.–Ö·O<ǃŽ#1PN&ÏñŒ,pµùRxÃx±Àw˜p¢Ö°ÀÙâáfÓ ¸Ç<“j ÌG†ª|Nýf}‰ø02xä#ñ‰xÆ»–ØŒ‰Q™ñ„%N6 ïHÜóxãñÁ• Ö³lñv8#^˜Ž6¼!_™†àTùP›¯7â•-âÓ–°Å«Ââ‘<&Þ˜*ù:Î<ll)'$ëÙÖƒ.Ü;Ò½<¦»qÝW¬<˜1ÙŒÉzÅ‚—*vΓà3YÒ\‘lÞ¨Øxo‚ ‹`1•”V<+¦˜2–È1—-hÖ|£)•ÒÑ´o«éfQk™Ž·MíûËt. ûÛ ”ÂÓß¾à† Ëýí+Ž(þvEú.÷· ,eîoÌèîoÜf¹¿}ÅDä‹¿]±ÒîÂß®¸[Þýð·+2ý¦¿]1Ù˜~ø[Å<,ýí‚.™ûÛW,Ôô·+6{û‡¿]ñÄ”E«XçLJ¿]ñ 7†¿]±"™¥¿]±Xýð·+f,ÄîoL˜&Ýß.¸™[zúÛWÌ)ýíŠ ‰þvÅú‹þvEô·+îHèoW,H<éoW̘^FÔQÜ”¹Ý}ÅÔ‘2Ñî®xÒ”Âî®x \¤Ý]±b¨ÐC%Ñî®X ŠhwWÌ–=üíŠ?üí‚c‰ºú[ŹÓß®øÐ¯Ð·Â•á+õ­ðŽðÀõ­p¡~ ¾výD}+¼1¼¦¾]Øô\MävÌ ˜úVùðã™úV¹2|†¾UÞý|M}«\˜~@ß*g¦×зʮ욧€7¦wлÂã†É½«Ü°/D½«|úëM½«|0}ÞU®~¼SïFŒó ½«\pãSï*'¦?лS?Ï åzŸúweÓoózPÿ ŸÔgÔ¿SïBÿ 69|xè߀q¿Qÿ W„Ÿ®…‹EvúW˜a„ë_áÄôyšòÆí êá•Gx²áõ ‡…Oê=êaa¦®‡Æ|C=,ìúúWxgzk›)à‚ðßõpÀÔ·ÐÃÂÙzX8¹¾…Þx½¨‡æç^ÙvýñóÐÃÂ' ׿ãzQÿ ϬòÃCÿ „ë®…³ëeè_áäúúWxsý ý»òÞrºþöíê߀±½²Ÿ¶š+Ÿ-] »Þ x†j®‡…}{Ã<âðÎûú8`lQŒù„úX¸¸ž†>Î\¯©…“ô±ðfVðÃC¯<{~^è〡稅ú»þöùšúWøàýF½0¶¿¨w…+õ)õnÀyÞïԷ¾½G}+\\Bߌõ†úV8ó|Rß û|O}+¼QÏQß®<¦é ½ºÏù^¸q¼Qï ŸÜž¥Þ z‘zWøàöåXxëržnvb”+j¹\Œù¤ÍDyç祦d±}Æñf¦>N5äšÉ¦—Æõ ^N\/¨—…7?^èå•-LC 7ާ6 •OTÓ¸^ë)õ²°ßOÔËc{†zX˜zÑõ°pq†˜zzX8ó~´|+bn[bcz0àý =,Ìõî¡w•ô2õîÂ×C×»ÂÍõï¬ÃWf¥ÜÌI{Àõ¥eÃ%dèsx`åŠëm™xŽxÇöÙÌã3ާÍùJ˜µ‹®…Y½hâÜBNW½,Ìòc˧„7žo×ϯ¼Ò±ÁƒÃü ͉fw¡4›èu…ʳÐVèd©ì8¡ e$p§Bû³v¡r5”B(ƒœ¾Nh&ö°u Ñ\¨ ÁNŸ¶P¥¬€¬RÄRU¥Ø.¢hE–ŠRó(¢f ’G±_Ί'PEV“M}±b£¼¼P¤Ú˜jB‘âbн i¿b»$ý Z$Œ”w¦üЍBB¾"Ç2ÓqEÔ~"]1ó¢ ÕR<.‰ÒŠ·Lƒë%ÉYÑ+ÞP±¢¸£fÖ“¬X~"üWD­ ‚˦– Q‡ƒÀmÅó¹‹?®ÝŠÍkfP¥x´ç’»bG@Ì¥kA‹Òç‚Ð3–=x ”ôMÍWñç9ÜÅ\Ðâ€'pWóÁ?½­ùX,ævâc±±‚B³€“þ+y'ÄÜÐ*Ï ;¡9b±!'ÔŸÛq¯t° ÓüJõÙ- 4Í6—JØÀöÐÌø±9$t<·†„æÅÆÐB,ZÄöŒPóy|«‚^nÆY^» s÷@¹×€ý>ç ˆ¼^_‘EâÓª¯X}u™Î\'çqAøTøâl&Ó+Òõb Xðda5fjÅýR6«ˆ—‚Å\ñQ:¦"v˜0˯ØíSpÿ¨XQì8íâµTqÁ“-4O+²7ˆ^E«""8‰³gôÓ(¢¼‘óø‚…6Ù¸"K«f.¾¢gjÈDOäÉ«Ú Væ È2;rЙC®ÈÒfx+žØ˜e®³"£æ 6ºMæ Ž?—7„Ù¬cy,“Žér‡…N\SÔ°,Ô¡‘W¼ÒÉéKŒÐTñÈ9bmjW„ÚsiZˆ,r¡þ¬ZYèÄUB®"4s#,i ±zyŒr£¹Ü½Ò¸vs›µ*Bç³ñp¡tm;\ˆ•j¨RY¨`ÞDÊB;,g…ÊB«9fÞ´Uò¦…¼!pn.Ô1 P{òJÞ ‚Ê“…¼}qÖa9ŸU' eƒò†É,ÄÊOÔ›,Ä®T›,D……a!n D:Ÿ•$ u„¬¨#š¢yè+™ÚŸƒΛE$‚Œ)ao‘"j¤C‰‰àŽ]¤À‚ì%F fPa¢ì ¨0Qöè&ÊK=*L„ML¢ánV˜('6ıBD8³‚‚"Â…3+DfÃdóÖ•aÀY!"¼³‚"ã|²D¸2KeˆðÁóÅ €±ƒÂ á“;¼¬î¯ +{1—W€û"+@„3³V€·!¨ðÞ¹É áÊDVxLs áÓÞPá0vXá!Üé Xá±rÙ¼á‰á;+<î— \9³áˆÂ嵂#`$D¬àÞ¹Cà asÞð'Ìk¯ðø¸6ü 7Ž'Vp÷× €«W`¤€w¯a…†pò†FThVÀ±¡/`¸1Vpï¬@c‡påýÎ áóµ¡/àvmèn¼Ÿ¼BceˆKÅÆ ×ôÚ°0Î7+0„3“jV`³ ß+0Æ|Ì áƒó+,„O&¹¬°ø¸VX7o¸cÞ2Ò7oØ[™Û¥ï…ŸoYa!Ìo(ñ†¼€q?±!OØ+DX!¼{…*0†B`†ðÁ”›Â'Ç +0„›î„»7ä¡B#`ìгBcå‘°ì׆;áÄñÈ €»s«gw¶¨Ð.´¶¬ÐÞQ!\ŸlÂL.½C¸±Â‹Â¯±ánåæò‚Â>žXá \¼Â~¿³a.`ÌW¬p®3¬`fæ £Â” Â' æFæ„Ï+ „;÷Xáð£BÁÞVîÖ+oxNÜÁgƒpö†54¼ —׆7áÝæPðŒW¼B¸â|z„ðùÖÞžZÖÞ„OÄÛÞð&ܼa oÂŒ'¼Baa» ³‚‰ûÊ ó!+ ”3wäÑ𦼳á oÊ~¾°Ã¢Ì†e6¼)ŸÔqhxSf³Þ„ã¶¼)WœO6®)7Œ¶® g6npçæÁ¿pç&w³¦ê!î®DðPuz¶ž-DÑNU÷J¬¦ª{%6 RÕ½éªù“SÕ-ľ¨º…vÌ0Pu ˆþ¡êjÐÅPu ±ªî•ú­·ë§ ãʸ“¡ã„ §Ž[ˆ#:NèdƒØVVª×½/¡öl[ˆ5pPu ±>ªn!ÖvQÕ½Ù•9MÁÕ &H Ø:ÁŒ¾NŒ Šàì¼X;A.ðv‚ bÛ€‚Ó.¼ÞЉeŽ0{‚¬TÛÌp°{‚táô{+ºIƒß[±b)¤ß[ñÀBOƒ·bÃ2Nƒ·bç“Áà)ΊoÁ¼q£ŸO¸°¤‚OØ| <áÊ‹OØwþ(ð„[ÆnÎV2¸òXËU goIƒ ˜-_€Â´ù.…w,À.…+ ðAAÁ–1aoY   ¡pgÉ0aÀ'^‚peóWA(œ¸KJApw˜Ž€ËS ö3`¨„C€±eL¸ºà„@öóM(ü(„‚@ øpÁhQ¸{ËbÀHÀ(W®^E(Ìn}ˆÂ^²N(¼ûçA˘°·üQ0Ì"3FaNt.…OŽ Æ€ûU0 w R Ä€ëµelåãñ _lSfK[ÆVö÷Ù2öÊ–2¶Œ­\(˜½eLßã-d+W¨ÂkI(~|CXj7o9ƒ`fDz Æ•ÏÍ[ºø b+'V<¿Qle*ÿ±•3¿AпQleÜ·k˘ðNAAA)\ýx!(fé ¥ðÁõ€-c£%šSØ[~)0†£Àö–r LáÎû3`æÊ#(Æx¥ÀöoФÀvAÆ–1áÂõŒ2à~Âþ C³’R¸>[¾¶ðñlk9dlR0 ŸŒW(Þ¯ßð%삈‚q御FÆ£pâxbKXÀýÚ&ì÷#dÀçõÀ„½¥œ-_CÀSP ?Øò%ì-ï”cƒ-_‡-_×–/á“( ÷kË—póoCË—0Œ Ѐ!0Ùòµ° *l B*'n@*»àE±°²—GC`*{Ë+ʉ#æÏw§•ù ­lÙR>p?PpF|¸Àì{ÀÜ ¢ Œ˜s Je笋¸A0NS¢Ü)Ñ’%l_¤Áy┕Ô×Í>åDG)œQ]å3`/Zª”™oºàæW–°©JÙ&Úª”Ù²ÍÆ*e~&[«”ùmL.HWÎüÒ6P)g~´P)ïäh¢Rfá:Û¨”êwØ*¥Ü!eØ,%lù°½Ë…G1×Ë¿V™GÀiq\;ñSr+¶_Y‹Wž51\ŸÆó>¥_Ë_ï(¯¯ž¿Ûè¯üÊ fM¯Ï¬_úò7ÿ²ŽlßóŒ¯7n ¿®ã·ŸÝŠý¶Žïßøæ³ñf·wwûú›÷?þgøË:~úeÏôxÙßÿ?¼\í|¹wãà¾ýÓïøê?åwåGe^åËw·Ëoyû?Ì5ÏR endstream endobj 128 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 132 0 obj << /Length 2245 /Filter /FlateDecode >> stream xÚ•YKã6¾÷¯0rY50V$Š¢¤CrÈìf‘Hv;È!›ƒlËm'–åHöôt~}êIRmm6AC-ªH‹õüHõôðùוY5iãŒ[=íWy^¥®±+WV©)ÊÕÓnõcòåãº4ErzÌ“žgyŸáÙÁó߬Ìà…Ï;™BÓÀSÒ6 ü žð´ð(Ï)ŒüšïeˆŽ²2àåé„v kܤë£t¸üõuu½ž‹Ì¸Â£ò<ó°QHÈìYöš£Ÿžþµ².mêbµÎó´)E©Ê%ùž<,‹¤Qî¢Ê¨ %x•®H­Ì€GûÕiÒf6 £»Øè¥K]^¬2–ìo2$ö‹25¦Ñç8àO3 ñ`ÌÃ?žr f«|ÕTiåêU²4¶Ymû‡_pvai@Ô¤.&„Ï¿éëÕ߇‡ïàO»ÖÂrñü =¾ž9¼I«Ü¬ kÓ¦)X¾§›=lm3“´¾]€&M æÐ3Æa£^Õ“'Pñˆš?à7ø.h'/³´.rÕÏE,‹¬6â±;žË^”iQA©¹C§kWÙï{qÓ•E9ª”†fZ¥Ë»½ ¯®¿H+.;ï˜!sëiJñ¤®Ö&ËÓ<«çîß}¢˜Z—t[]j‡“+änªdKáìCâ¿“{~_DçíÔ·LÙ¢H§~8è$²=Ÿ[šÿÊ1ß¾ÿ ±B䣰¥iÂc¸Š/Ð×¶Åü2uÓ\ Ô®õ†vèUä@UPZ ¥M“n²¹RϳK0 ò´nÇVµ6K¾9?® #*ö™‡HûÊZÄ!cm+ ËYºa<‘W­NïÀKsÜ®Ë蚣dÙ.£•ù=¨Eà.tßaì¸kº‘3¯Ë2ùg“ѧX [$ÐWžIƒÓ´¤+Ѩi2ÎÜ ]7jZUNÇTÚ eÜqô‹s—÷²¤h?ñ[õûLŠÅ[Þá²Eæ¸Ô¤@z³qn{š‚ˆ¨ÉAVlù%VÞ1Ñk™¡2+T&ö ¯!ñ&ì_Ž2óÄßo¡JXÒ°mÜC»ÑL”.éò)ö£†ß"‚ˆ@Ì’G©€/ÄÁ¨Í†B…p…""»5{Tîm‹ÿ÷³§¶‡‚+‡ ŸVlYº K¦ÃE'üd)T1õPàHª)]B€ŒöšqÆH˜ ÂoCšÜÈBóXu¬³VÂŒs,Ö× ÊÓa¨æÖ'`c$ Áá,¶ÊEä6R7€Z²ëÁ;x‚~tÜÞ”‘ÕDíU7{´–Ÿ¡Þßv%͹’Ö|jàœCbQ{©=—è¼M‘ƒr3mëºäU8mQ—>£b{šw€šö$¢±ÿ^#„UÔŽáæÎ¸›<„ÆhF~GßI‰Q¬ÚùYÄECÁˆȃ®¢Ö Rìz9x%ÁÒ‡°À¤{£<‡…?q¥Nr ¢îu¼‰g8(¯?<Öv¹°+ÂJ7-¹5¹f‹4ÍQH„ì@Š,AÁÓz,Â#(0ÉÔý£Tvéᦼ`ͳG·†‹V§œ§7À×fMò«*Ìg5R € âf]áúÞÒ8ɳ¬K+–ío¨—Y`÷"E»Õ’‹`hìy5„ÿüþ?ü±XðÄm`¹Õ XÐF¨ÎTEÚTVaäùu™Q9ÎôŒžJ±ÏSTåùu÷`ÑUi™;åÊ%óKÚ²DhMBr…ÍSÀÑ3mOdPŸIúNËHA&< ˆ‘JPH27Š…‰¦0mÿ† )Ö~‘B+9gRR.÷Z˜PÕ`e²ÀÍÃ+NeÄeC¨Î{˜,ÄWÌŽÖ.”M‚7V`(Á ÆÅŸ¨¦]NaW¿a Á0ØT(;\ù;ζȲe2;ÕÄz¢ò=áuˆ›Á9ç¦Dƒiàâ4‹<ÄØcA‹kH½`aÏuàwHŽTvJ]ç5@¶¼°W ûg5H&a›YP1̦òq¦Ó;Íš$+½~[ù¦Ý{¿2‘La£ƒ—ë}l½òºo§‹óíôg0æÞ¨¹Ó(Àpl Û(T¢@ºÜåÜ&:¬½=–Ú ŵ&éÍýÊÞ§ˆ»lc³Ôùû€³ M~¨ÀçÓÊ$_cÆÿ/+*è™r~•ôZOÚµž< jàšáëð¤ÊQ¿;Äõ”·®S—¿9¦’1¥ðs¥œqÕG?qßËÑ£eúŽ#æ ŠÔØõ;å(oŸ¡=LjDññ¾ÕU/¢Á²¨C‚¡Ûá$öéϺƺ5ª|§Ø×YŽ‚·bsBs".ø$L]p“špÔEwqçe_1.Í3?jRE⦜~s¥‘ʬMvzÙF¡×rDñ)™ú5°=ÜFn í¨•¦ê6Tú¾FEy¶©Ê¦Y¥2^åNfÝ$ÊÁó~¿¹¿îzSMêl©,ñÄP¡A;DnsÆIŽSV}"$òè*8šÉ¨Ÿ<~±óK˜ªL³âMí¦óõp»„Ë=ø°úîø"(ä“Ü#+l“þ˜††V2m:ªD̘‘æì`Žäž3$ <ñˆ ‚ôc?¯}åÇaŒ‹N*$ß©ðÖyq)ºWéUœQÅå¾kÑÁ9É_œF7œBie+0`81ŠŠÁ*^4,œžHS·i1`ê´tþ¯ŸeV¾ÏýÑßóû§{w*ËÔ…”+‡3=•˱‰ÔÛ7Ä÷dì5•:²á{1ꗭ昸òW/Øö¿ È3:G›c­rv-ä‹rÞßeopã=dœô"€0‡Q Œ Ï‚AãcÁ'.Á‡Dð'‚QÓ}¡®£GŠBtü;]2.4¡µ6°»¼šýž¢÷}È[1Zlÿåì‘׆î´H¤¶’{kcôVýwˆ endstream endobj 129 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-mgus3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 133 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 134 0 R>> /ExtGState << >>/ColorSpace << /sRGB 135 0 R >>>> /Length 1370 /Filter /FlateDecode >> stream xœ­˜Ko7 Çïó)t´D‘¨÷5FSÀ@ж6AÆÆM×õ#õºÍ×/)q¤iâdѼðo©'Eò/­çB‹ñ×ô þ½:üúãkqv1)©”ËÏ‹³ŸðÛàÄ—éý¡ÄÇI‹sü»™45o'2&a“%î„UZÆÈx+.:3“™­Zki šglv—d°ÍÎXí ¢Ô¡Úglvç¥WÍÎXíF9©LµÏØìÎHëš±ÚWÛm»¯ö×—ìÜÝaù‡Ýýôê àI\þ.Š?ÛGa¯¤Ö-ûòNœ¨Sqy3ýp™G~¾«Fg8»èëŽèë¬ÔqÑW11(~¹h}ÄÌà´TËUÃ13§$mXv>bfcgëlŽ˜Ù$O‘»è\g.Áá‚LšB$Ø(ƒ.!´6›FÍŠƒ«P­…šU+ÁT3ãÂ@šÔì›p ÎU;ãÂ^[ímíK¿,œñrá#\LÄŒ‹N9€ñË-·>Û=¢síÜ}óHŸí®ÁJÇù#·#ùùþX¶¼Ÿû??(%#pÿíx~¾¿‰2Íîƒ.°¸öLVÇìéRyg„h¥Í\Žrsã‹,ÿ¹Xé%$a8ÞŸüv*4Nwr}õxŸOâãþêÓýÃa8ý .Ï¿Ó øo>EŒ{]~óˆ#ãÀW»§ýýø²úCü|ö¶ŠÛË-ŸhQ`Ñãµx'î¿%{šbæ²Çi;y/Ìi;S’ ˆ’4®#¯%D¤ dò=´–¤ =¡oi”€å9õ„±B³GÞê(»ÉSeî(HÈ”d´=Ei±”L”€ª'Ôbš=Ì©Ž‚.»I:è (™o§¤¤1=᎑–Úöäʪ‘’ë W”[zRO‰î·xr‹GQIŸ£$@Æ(UÐo &5 +©Æ—šƒT>#ÈdÄ[C)ô˜ØgsÜÅ1rcÈ:У§ !¾ë´Ë¤õ=jvȾƒHÿŒl¥Ésaž9³Á8I^© tj#'Ò~d«I/F×¹ÀœÒÏ{µXæô'r±£ƒГÙ+NØ`l–×ã³Dl45#:§‘û 3¶8Ñ6‰ŸI€stFMW»‘G/:f`4 2f›… žÛcHaöŒGçø§+ˆßàHO…[¼–:ø1ióx|Oó+Òyœ7#ã2“ÍìÉñ#§|ó™.¨ã òxx½ÅxØr{¬X8ðÀóz-¾òµœù¢Š…È7 :­"ß!‘>«L¬Ã*¹& kÒRUÖt_¨Â°&C[­Â°&·׋4aXS gS†5E*³U&Ö”JÕ+°&Ü¥ŠMÖ¤©üVaX”ŠÆÂ°&ŒWÓ„aMŽkËD‡ž3±èB,š¬ =Æ…¬ =r ².tˆzT*ëB‡šë+ËD‡F:Ýt¡GŒÔÔt¡GG Su¡G_.¬ =ò9²*tˆ'¨SÓ„ç-EèZ½×qÀY‹ôèf-ÉZÐ#¦¬oJÐ#Þ¥MÓ5^ïKdØ?,[¾’° ìèòÚd`àùòÀ20pd?± ô¬Ë<ËÀÀZ†°M¹Î20°£Äl20pÈÚ*ó5`–žA—|›e``S®^³, ìXFŠ lT)Ø,#ZF•…ÊÝ›Ó Æ—ç4&FÃük×WD„ûaf.ûü_~e¢€.ò§¡<°Þ^Ý^ðåÄÉ zY½ûûÝÃããõîIìþÆ××K,í'ÿœ À×›¹g§Â#úúT»‡»Ï×OûûO‚&"Ãþðg{ÛMÿ˜í endstream endobj 137 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 140 0 obj << /Length 3242 /Filter /FlateDecode >> stream xÚµÙŽÇñ]_±0˜ÄñtÏ!äÄ V€ ÙäÅYr–¤–äl8¤VÒ×§Î>†Ãµü’}VW×]ÕüñîÕï*{Ó$MiË›»‡cª¤lò›²¨›7w«›_fÃÜÌNð9§•v;_6sS:ÜÁg˜¸{cËĤöfaLÒÈΙɳYF+nI–MÆKþÌp—rÜ|¶û{ „– œÜãŒÈ|†ÏŸàóÎãÿL{MšäùUCŸj¾0Ee‚>¡®;‚¿óKJ¥1~ Ÿ ï;hþš©€H¹‹ ¾›/rÓZñ$§öðYK»“-ƒ`‚sÞ§€W²L‘ÚÐ4 õû:ŠEž450ʦ‰ÉkFóï­2;ÎräÓQζrØWd³vxš¿gÝ’N¢]ýÿîç¶š!„`±] "SŠ–­Z‘;„Ggð8áÝLl|ÅEÇ•Ÿ_¶nÜ3  Ó#ÒžÏYñ:E}Õa€¶D¬ÃÜÖt$"ûE„È3–ŸV/³éñjë ˆ~•y>Ý·÷røN¥»×1Òpdã ð«Ìg·$Tå "p©³#Ö"–ý#oFbàŒr´ã.’þ»Õc?Íé’´Û“º îv0á=ÐEöã³Hz"£’Õy’Õ :‘i€¸ ¼{¾Õ„Ð鶈®¿¦&gÊêzÖ2Oû9|}B¢t<~ŽDð5ð5µ³‡þˆ³Õl{pò…­%r÷õÞÆ6IaC´w¢F'¯”S·Y@gÎ2½‘é¯b|îàóøü >?©^_ÐÁdH‡†ç=Üóy+Hí¸Ô!Ñå®2¥rm=åD´I²~@)P‘X¶;¤Wƒ%ÍØ¨Ó!HwÔ5¾ê…ˆ9Þd±|eWå T-è‘äKµ\ |왵¤‰´ÔIiK.æï½xCD&´FÎL ÄvÝ2Hš~Þ:sH³éñFŸ¹³g]#c€ ‡„Y€©b‘i`Óm•e)Þ$•}?16Ÿý{Þd$ Ç­HÅaÙ]2}C ì7 çNÕÙÔ ïEáo¢’LShYñ74Ð}ûž¯fˆ`ð»$ÍFÑ>«¯ZñÌY½ÉaÍh]i+Ž ÛÐɱ…Ýñ²xâéù­GQÑíƒÇAôêö½j:L‰^ŸYÁ2kfÏXºq5Ðeï¬6³=CÙǼÈ݇KxsR‰¥Ÿ'U°ëhå4@’œÁÁš8¹DgT€ƒ;çt²y¬=ûyø¶›œdžúûvçœÌ¾£³ÝE9R3\ 1ö)"P/ÌHNŠ•ô¾swD›I.ïX Å›Ù÷ÞŽ,[R'XüLîdË~O(zY¦ Äau6SCÜòF¶ÔëÈŽ(žFƒç#Ý8¼¹˜©¥Ÿõ~ÀÅxYÂu̘Ð?Ù:©…}¼TÃ&ÉÊZçÏ*áÿe)!à¬;±öÄeu;ÌR2 YV%µ5Bs1"’²Ä¡p×ÍìäÜw A¿,4ÄýÏ<òŒm5oÐg?c+uë—769„ùþƇ©W 2Ï‘%Àz¦ð¤ak³šœgIfÊ)i+wÙ+Áöä’åÖýA®|äC¹ã#±##ªI –êL6Af°¼ŸŒ"l‹"Œi¹fe4&kƒi «º#S8=æ×Ncº×lªîé/¼‡4U­"‚SÕïbÂØ„Š}-b“]ˆˆ{#¿ôS$ÖpDë7’Êt<Ìä =å%·lc“¢pÙé’]eReŽ]‘…#î…#ÔqÚ_Ú Œ*p‚I߀44ù8Àó?¡£Iíåæv¾†¾Ÿˆ•LR‚#N(‰§*¸HSeµBÊá»4.Õ»€“'y ",¢°" ̗͈ò¶pÎRÅózHpõÇ­$aÜâ@hÙíyTè7…ebS¯3ùåö¶fžkýÈ3áa>n®¼½„ñˆÃ6¿ôœ²/>Ö’)Üm’§UB_æÁøCÀ[±Ô±Z\ŠÅ"kJ°Í#š°;uâØœWB›³ãöHŽaDŒ9µ£8ÜÕNjÂs‰Oº£¿ilˆë$ö%ƒ"®A;œåãá†ãvyKš{ä9²z°þÒiÁäi+™‰Ü÷ÒfÀyop.‹h~û^íh•ä€rćpÉqb.ÆìØªÌ A±$[Éì ac/›®ˆ¤“Úx7¨š²"=£ˆ ;OúQ$Y^‡VµûVŽ 0t!°ñÅ–ÃZM eÒB>Åñ ß_èWÎZU1¸½DM0úLЍQgbB<Ì T3FNéo²:1¥‰é/î#N0Oë5ºlŸ-;`–Õsž aæ(;{<8:ðÈßðâ«P(U É—Ò5v¥"äVç¥æV™MJkƒÜ*—´êçóŽ+H¤‹ÞÆ€ç/f«¨bx‘hY“Ôi=J´õ}?œ¸µî¸è%õÇÌ»|W±_Ä–—Õ$ÞZÂÊì(j³UµÕºiíó.ð*."FÒžebÙï;‘Är #YôX´˜óÕ|/{¶Å]Ö¥pÍ© ‚C1ø«œ”*OEnµn}Ñ*Œ’U`0u1iä…p%YdªÎ ˜ž×%ƒÇv˜ËAW’È (bÊmZN1ò'^ @ =NP&TS"eÒ©lÏÝõ.@Áó{èÔO;bIè?¨=+ 3ë°ÒYOSqB´×Ša{ä. ­âRL9G…ËB3oª@ ¿ D)ÓâÌRÕzT\8©¬¼¼å_θ>òG,ªAxXŽBÕr|EF2‡œ¥ 9'/’]Wµ¿LEHÅ®¸HZ¼ >MEŒESÃaI®µ~3…bÆ`‘8  €u’Ú"8ƒV!¸|‡ç;H q¤%yF/Ù=r'癥3hï„6'^ÓV<±ÔêæÐ­®oWy…N)­<œ–ÖAU™Å%µ¾†F£p3yÇMhɳ•9kTt|Ѭٚ›ZÐAÉÅ1tݶ5ý>PìG¶£4é³qŠïV<Ê[Ío*®•‰»žAp»+iâºÃ'E›/°ÛFû´34¥t¢( fã»þå½8]‰î臭‘CYSQã k%9K™$Nñ\ §¢0ÂÌ.¼bfb»[È´²ß¿¶p½âa]Ø‘‰Ü¶ª’ڗͯ¨uõ{µò@ †¾s¯ltÖµSÒzÀ%ÏÜ>jQÈeLZ@ÛR¡Uä2Jnle’4ͨ\¤Ä«Ö¤Su•öÊeßèiðJe_ʘ!ࢠ$ ¹Oûþe¬ÀÐÛÔ;b>ç°r'!¶V8rt™ö¨¦j¢ a{ ¥G¦v/à$·Ùie£bã¤lBÔ'L9ïܼ<°åuýâkV•%¶ŠR²‰Ç+)Fê¢îú¼é†jˆÓ¨½Y¶ôU_X² <+ïo‡ßôØøä£'ÜÄ.0ë3_î÷rß06«åu}QƒÖ##LqÍ]Nynëê².'~Â6…Të%\­©] <àÌ ÅøCÉÙdΠ圩„g jØtj,}d$98Û¤‰gè]Ég®ßxˆ䉸î)ÈÁíÕÚù¤Î³"/L“XS}³Æÿs*(¥ä1Ÿ­zÎ4‰Œ'ÛÄ™ŒPê¿" ïÃH+{âjA1K%}×eARë¶„¹jA’AºŒ( §Ü¶šÝ‹#&DœäâjæÅà§OÇ8_:ês¢ríH<ê2|ÔÊä_!ë}`)‰o”êËÛ#c*‹ÕçCdg˜4Ñò¨|Òñ“„> D¸Ò>@“‰÷yT#Œ^§ÂWðòIæâ×7“>̺rGñáµWOƒÜº6ß Î¤‚7UAÛíHWºø¤¬gpV]Ô¿[Úߢ­¯&ãI çäÏ"î¸2 cxhM¶!P8[Áַĸ/G#½°dq’DaÐ_h¥¡} Ÿ½hd£ù8á,pV²œ,°­bXIúæ ФD» ë|p”A/¥Û,é<µÎóÀxPT¥ ¯9Ç$¡vÏê¸þá,d^¯‹¼Jÿ€E‡^ŽlyŠ<)ÿá¸:ïŠCI*"¹ «'÷Wœ~àHp‚ÿ‰2þÅoþ…çû@—ŠY6~TdA ÿ¨ñµÝøoW(¥NDF[ðkõO S¯®ƒ(;çgú? Š^ÚÅУÃG*„ó}h}G–’ûü—›ŒÓB4´/yÂ!{SÖø0¡»Tâ,ýYðÕOw¯þD™„ endstream endobj 144 0 obj << /Length 2923 /Filter /FlateDecode >> stream xÚ¥ÉrÛÈõ>_Áè2d"bÐ ¶$ž*Û5S5©Ä©òè’û‘ɘYiY—|{ÞÖ @Èr2 î·õë×oƒÞÜ}÷ÃÏå¬Jª\ç³»‡™R:)”žåY‘h“Íîֳ߿wÛ…š7‹wûáçBGÐZ%©5³”ÁvÕÃï ¿Zž‚³0Y¢µÃ©;Ú\Ú.t HKS©ù i´<¾_,u”è傚5¾¤ÄáˆC=_ã4®¡›¶fæ„Ró£¿,ˆVfçÿn`¸BïIf^'¹c¼sà² Ó ×ÑiâøÀpM½ÂlyËJÅ{Ö&©‚¦Î¢ËYžT…) "ɪb¶T‰­,© :6±Å,‚ùËb©òbŠ^™¤:ÐÓ×G±´J%Új€K›+'kñ¶ZÓ˜ÏÕ†ÿ¼È²y½‡Q²XJÍÿŽ0ŸFp"%át}ö +:Уa¤Z|}8"õÃBs<,dPßÂ’µ„tøBŠŒÎb…H[± «Ñ¢Á®å'ñš²bJPEág™o}­3%iY}Å~E)zþ ‚ÈéìliLžè<í«¤Êä²µhÓhY:›Ÿ:gÕø-.ó†ŽAÝÃ#äEL‘VBG4†Ãº' ¢­yÊÝ"¸dCÛFÌVÐx¯åñp8Êl Qœƒ{H¨ø]8£¡Hù|³ã½”HÏK´ P%õ¡a¥¡ÁfC•}PÆ~H³I¦0P0¸Y( 'aMéØÒ¨r~r; ÂoÉ8G°ØÈ ågãmëÈ$ðÂ+ð9ß_Z„áMƒ6POÍIŒ%ºaŒ¬™Ð^nZÛ°P4y`F@nÝÐ%aÖ<èYX~døˆV}Oxm™BX¬Ùø&ÔˆòvDù³ÈµvVb3𜠭'Ç篌¸éè˜xªs6°eŸ1@#Å^“YBgV¦áÌpEäé©íЧ\D¿;2Gðäˆ-_ƒsí£çI¼—^,Û Dc»k`ó±`Reš±Q{©h.gÍ5l½ì' âf?ŠïÎäÓÜ_™†¥\3@ÝÄm„ÔîÜNQ?{^X‚±í‘NŒt}`&'ÞÓŰh¶µ:¢ÕÒ£c¸edrËîÚÚ]v€¤ Ú9{a¯¿/¥è¤Éjb‰µïéÒum ¹1óÇ­Lx·a¼ïÇõé»ç%D¸M†Ž^Ý‘² ±q.H²£‡'Xd¼Â¾s!_Y "ïA‡“„qGŠwqíÜS  ðbíŒ5£1À€žt‘”…Díà,þQàB”¶ó<- [öþˆòá¾ ¼=ÏÇ,T}™˜R½Ï©*)KëbÛŽYXÑnÅ+LätU¢zAYØ IÃ×N,\s@§‰0cœò)F’9ôª{‡G–—ü5p’càp2ﮚvbèÄY\$váå"Od¤Þ?áîE5—Oîòvì¿(NeU¢ò‘‡½[”†|»5â4“BÃDl~ò× ö&¸‚ŠSÎn×Ѫw JÒ ’˜p"£G–¬ãš_(«ÚN[ÖŒQø~Óòî~‹¨”î~¢¹À»‚ãp›–Qz'äfëdß³/!‚žÇ9YßN9’{>²¥Í5ûÔpÇ$QÌ u„húa:ź)àÒÆÙdo›fÍY]i2ÊêZ&zv‰0áìˆ W ý0ãc ÄGA¢s];C(®vÃ0´­x"qz˜Wq¨šPÍŠÄgr+;Š”s çßáre“W”KjG:ëÄå]Ïðñ<»k‡!â×'ïù¡†±qp¾úõ7Q&É3À±éä®Û¹a|jÌfslEá oAò²·ð{O)áµ *-“ÊØo„Ô| ½Él8:‘8‰›ƒKì«$Óf˜$¬œ¥Î—³£êO®Ø éƒßÁ¯¸…»g¶PeInó¯í@CEèKºœŸ»#äÜCn*z‡Jì½b OK°½Z2I—¦tÙé Üçöõ‰Â;/“y¥R¤×Îd)1ówTíÀjãËN0Ü© ‘±RDá)æ^×Y(a·>WÐ!™%C5&º·±ø¹::¿Ó7Étˆ¬`´ÔÀM•ÌíG¸)Ú|%^ªùoÀÕüÏðËH­jþ‘q¨¼-H ‚"4RÖLÓ¶3¿öBþ ¿>ÄY0UΤ-\Z d29GïË4ÆÊ³ºZê"‡–Dý,~¤|LTR[Ð3ƒ«øFž aVÙ\¶!=,u®*„£ç;˜{-c rVà•èÎL¥ÞZ˜iaòZž‡ˆY ¿Zæ3ªùºù4u•|Õ—¦”ët¾§HShðÍ#»ÈЗ:é •D‡Tw&ÒÚ2æ$Uåjf©{Ñû_ÒQÆ$}ò\FK^µu5Þ°mˆ¢Ü×ò±ˆJ1å¬c$æÂíâ;G£ƒ«¥àÜsò¥\ú@‘*b‰îâ­u<öËPÒóeªç@°=yäM\&šÅ§ìõºòu¥uTù֔Ĝ\Ô+Ìõ~ŠÜôuD8)8Æ“IÁdj$|VÇL ž¬›¢dŠ$¥h0[?¸þvÇàoßó‚íö×d)àeE5ÿuªKW¿Dkqÿ8öÍ@' ŠÜ„~™Hï$¬·²âê`£{Àù,Nú(^Q·t¬¹w¯9„†bÿÒ˜õ¦ 7È[R&Ó„%ÍÐ~¯0Õe­öÙ7ÕA~§°ôö=WWÊB´´ÃHðÏAú€9ýÒfETÁÄ X*)â]:Öó¬»8ŽûÓðºv>_œ[ÁqÔ”kyÆ5¹³ÒÕl›K„@e½Â’B§Pr—€XȶÉ4Ò¦Ä3çUùŠW]áNÏÛ(,Ç Š’¢Ðt:Ä&vØëî ¥ŒÍ0RჺŽ8xÃ]€Áå“¡ òßÊÔ‘ÙIå–ÛQ6jýEë¶ÞKÕGÓÑP܈µyP„ MWÂãn×|5ƒpdeÆ“ž”´ªwøNûœ­‚–ÞÆÝYßã‘FІÀ›.n€_÷ž% u²B‘-vèºJý¸§µ÷wöLN{úJ¶”§ÿ Ãe€ˆ«ýÚÕ"#™žNCÉ%L§¢ÜçÕÿŒ]÷µ|ÚÕCã”Ýž"”Hþk%xf_dy%‚ºró•dX¹$î‰$AÙµ–xÕ ŸLŸLQЗ8)ľŸ8<ü,ê¿+u4âï¦/¸ IýQ¶ó*ªAt—E­¯ü{‘,‡Úªªø‹‹-äÜç~ÿŠŽ™Ó6ÇÅáT#µg ·ì¦•ã¹ B>=Ãtl‘;yº#¼‰meiò$³fÒbÜyo"ÖÁrôÐZɯ#- à e×,ÐW_·2ñ&–ÔißæIUŽ{ÿïqÒÒ½èõé9#MmbÓê›m¬ý½FºàÐIšiñcŨ20R÷ºV øÇÁcòBËÅøƒ¾1Ã,Þ]_šêþºúZž}¤©Á·‘ÐâŸøçc•ëðÍ?xç íº“n“Ü/Ç}qn•b˔ۇP¨“RûŠjÜ”~ÑûýiÁ¼A¿ÔÕ¸™áÇosà·Rlî"S¯MŽWÁ…|¹‹ßܽ« (¶: Ľ,ÄtŸ%âµ\¾‘ätf$ü(v‘ök*‹|“ôÛ˜Nw~<ÓàZ§´öc0°FpOWæ÷ÅãíÐì†v;¥µ?ñíîQ?‹ɲ•å´!Ð¥@?k(ϧç(Bí‡×h¨õŒëS¥†¼½ÂÌI¬–—E¸ï~ºûî¿­$ endstream endobj 148 0 obj << /Length 222 /Filter /FlateDecode >> stream xÚMMOÃ0 †ïù>&‡xØùæˆ`\RoˆÃ4:@Z©X¡ü}œ¦S뵟×vBp%‡ $L1Lj!yØêKa‰ìüb¸ ¢µm-l£z’sFvi/fÞtj³ÍPê¸Ý(etAöz1HéžõÖþûös’ØëœÓŒ¢éÚXï~=κ¯ŽÝñX=¬'I–žy0›7ºÿ§µsjÕÃxjâ[È{Öâø5œôضW¸> /ExtGState << >>/ColorSpace << /sRGB 151 0 R >>>> /Length 2653 /Filter /FlateDecode >> stream xœ­ÚMÇ àûüŠ>J·‹õ]GËHH€D áƒá(@„]9Ñ:Îß_’=3j2²„ä`Yz{¦»ºŠE²—¶×mï¶^þÈÿ}ýü§ß½Ú¾}sI{Ji»ÿóÍ·àmû÷å»ï·´ýõBÛkþïÝ…ðÛï/=ïsmuí9mO[y_Åø¸½96•ã(QÝ[¿>x;ÞûžËí¸ñz<ÓØ]¼ïkoóvÜx=^2í¹Ý®Þx;~;·»»õ`ƒ÷ãs0xÏ?¾¿|ýÛÌ#ýð·MÇëö‡º§hËcïi{xÚ^¤—ÛûËoä“?}*ícÞK_pn/{mwçæÏ?7SÛ©Ü[¾à\~€3Ý[?ÿÜBs¯ãîÜöççûûíǹúh›Ì›'{Ðy´½/yÀ§Ãå¦ÛQJ„ ;ïŽ×¶§|;®¼;>'fåõ¸òv<—Œ?ŽïŽëå^ß®þ~`îFã«»A*¤¥}u€{8?yöâU›íìp"}òl*sOÃNççOŸ´÷b§÷/>=gžÍÓNŸ_~zŸû¨ºün#§ÏŢƥòÄæY÷*Ö‡ø1~#ú34;ƸØôÿîÅ_^òùÍ¿>¼Ü¾*üÙ¿üý——‡Ó?<^?’ïf»¿Ã¹cN7èÃÛíÏÛû_Ûhoé×ö£cM\zÝG¹®‰;& ooN¬{1ÖêYö¶”#{ò×Oåìi€}§êIÊÂ<=“„ pc× Îæ9ðõLþçüõþÈIž}¯’Nøy`ñE|+izÖ}áxE̸ ÷ä-j)ëôÌûÀ-Œ¾—Q‡‰Ép&ïòòQ²8& sÊyb[û”âÿˆ 5u»9sîÅ {á™üõYY³g׉4ùF“gÓ‡2yèžE‡9‹gÆ€2+öG¾8ù(^É“þP®æÈK¼a"qðiä9ñ˜…«zÔ^g§¥Û=Ì_ìÍSµŠ ÜÈ”ÌX%ÎC·*˜/Ü»#ˆ=J=_fà†íQ•˜t<vLo ÒpË-LÃX/Î’ª±»ÖõÄ«ôÀ² Õ¨¹O&,c½Þ‰ù™ôzvWï¡é)å„óîºeü0"KȇùƼ›}â…Ëï]‘D‘ݻ ´Â1/²¤n”%“öÎR‹[LºíÀk–ú¨’"g2÷éÍÛw=~ž/Ü{÷;±¼Çñ}3²~ï'ؼ»Åâõ’sæKqãm‰3Ì;²>ïb-„³Ëñ}Rízçãû:ò oÒ„¦˜+÷bÕ{,Ûo8¿àxê-ËDÍõYdI¥ˆsª‡Ï0×JÞä~9¯ª9p³xÀ9ÛŒMr?œònî]u;'Î&9^y‹‡ì\gM%`,‘“^ÔñÞdûçØˆβ°[•õt6WáSÆ«éz œäysÍÂÏ{b˜Ù\K•Èaλक©wÓÔ<(pÕ¢7Î5†w±xÂO)p¶õ4t<k¾3¤*ó&›ï¨ÖjàdóvkÞmÙ|çÀ‡õX÷#Þ88±ñžH_/Øø)òÐ|‰ðîÚȼ_Ø’ ñÃ~äÜPâÀCâ¹sÕݪo~C¼$8gLS6¯×’BK¼E¥Ÿs`ÒNž’8yÛ~‘9ðÕæÍËHî·ðýb>8-nJÑxàÜ´¨œ·q3Z\“‹a¾ sè`Miqù&õšXFíÝzZ÷,öÃ×6Õ‰G÷HzK'fdåÂZ A-ø³6ÜΞְËòÊÌ{XÁÄ.šŽ†b¯s·‚C›5³ÆÐÀÚ0Ó¶¯÷ÑÍráÞGA¢ …Èú¼´¡àm)éÂñ&{^¼ððúÌùh¨ð­#´6TKÓ†éÉ׆#ñÄyê›™m`k˜Loç£`äÀŽ|ιã]–{³%VÐ{ÛûÒ=+²Æë*y¥w±†¤¾Æòκ}ÃxÛïLšêÊ›ô8éF‹ÊdTgi8jÁ^µáæ­ !ÎŒÖ <-ž58ïaû%çlhˆ–·¨lQ0:w}Û…Ê -g+^PÙËýœ]5…AC Qàb/L¸*°äÇ>^htmÖC&¶7Y¼a÷8Ù|ãjhõКO –ZÞsYÃ`ÈÆà=5±DçŒo:KùùuLI÷ñ‘²üä÷™¾Á¯3á·˜ž¶oÂߌúô'q¢|Ò«Û/D]þº° endstream endobj 153 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 156 0 obj << /Length 1744 /Filter /FlateDecode >> stream xÚ½XKÛ6¾çW¸iQH‰åˆz;èh Ð^ d}ÛîAki׎eË´»É¥¿½œEêe;@Ѓ-‰œùæÉ!9W¯Þ}нÙr±Œ¼h¶z˜ /¢e0‹Âxáùál•Ín­ÆV.{ù;Úw«¿fÂ]ÁÌb± ™ÈµÆÂüôøéó3àg‚΂o—°BÛ =_2À+À'ÌF¶Æ4ì1S¤©àÓ)ï>%†iN°X&ÞÌñ¤H‘È¿%éSe;¾ZkÛK¬ Ø)ßbkG£µüÞ”0ðRÓxc“6ðXÍ|S¡ƒpv+_‘0²ÊƒŽæé^êX_`tÍü/ù6iF/ןé™x ÖîG¨5|ò¯ÐúT)Ȫ8*$/(Ì"¤ȇzkEëtŸs(¤cú±È@¾ÙNà&Ö?nèÊ!Teb® rTÈçÂv"‘•Hi@¿$Þgðh¹Í¢`3¤ ºD^;u£Üùl‡‘•à·¹¤ÿdNl÷ƒ¥;@È\¿oÉPÀÖJ¹¢”ëS5kGb!xÉîH™Ç:ï8âú3Úþs»žCü#pFV~àlðÉ( £#*‘»¡'ùËrrEŒÊ"¯oíU(àãž  µ~bÌcÅV×ÑlC¦#!ØÄL˜,å>-”£X ~ï 9  ¿tN5J.“$~#hLùg‚ÅHÞ‘})ÕN+b$ ÿa¾r®‘­%…aGœò“tÊ™¸F—úÖŸð¾gU˜ }d–'µÊ74‹6â͵×Ñ?˜uì~=Ó5HSeC¿œÊWùÖ©9¨R5&P‰´Oiø7ùêÐëÝJy^`$)\2¸Â bëg ¤«3‘U \Qd€ìŘÚ1D둦×<}DŽ‘¸joYb6Pù…gÕB3ÊF×V\ÕÀÁ?©ìÅ•Aš¥`ÍŠ+é{ÖÝŽ8¿Òã ð½gJàÿNñã´ûþøå„™·ÆXμwçÿ@Tdž Ö4 ê°?›¼!¨Â4k4•·˜ XXïy¿Ó™2‘D¸¶Œ•ì ‹è~ºˆ~y«Åo8Lœr¸Þê³õ¶úDd™:aêɤŸ.JÑ{Ò+æ¾ÕA’¾ âpû8qëˆNÞ:‚î­#8Ûèë=Y*©*—K?˜zÍœ*M'ügäS¸FA³ªs4†žI ß]„¢ëYï5«Zò3ç1– ¯×ò÷y8|ÃS«áÔt HÇòïõØÒëØ Ç­±éÄ£ž|mì+=¥£xŒLÕ†œ ÈÔ¬G2V[{$Óõò"RUÖ Þu›‘Ù[}öÓÖ·ŸC‹Sd%­Ì‰up¦üO›0Õ]\U…ø(òBÞdåðÜeˆ‹"à1ÊbÇ¢æù9Rå¼!¨‰¥ã’D?îcœ(¹(GŒÊk[$Cy ¼!ƒËŸÀâò÷på\ ,`aª–þ®=Ö ¡2CFëE~Ês ÁÑ´’PÅ=i‰ÛZ4",baþÐê£KcÏ ñÝÀ`'a-ÙŸ…u+èHη­nŒn6¬ ÕùR ®ªQ€7^9ÔZR?HΘ-ø¸äÇ\‘1=mb“lBøÈçéÐ4R§eÑôr õCÒ»™ÝfDp(Ù¼¿¯áoû¬šhÑdתÓ*±dV}2·¥j¼UF ?±VªG&YtÓ@~<”кQÛk‚AÕÕ¡ÊÖÊ٨ɰá ¹ý×–}œ¦Û=59xè‘¿ñ?Óê]oˆ_úcG”[-º|Ò渚Þ6,®Ð¦íK*D#E ÀiÄ{ÜØH©Ã™G÷èSóªâ¿n;ô¾ÓìMÔ8ãŒí ó©=¥š¸ð-ÿßöT4y(ੱ›åà¤ÊËòšY þ½+ßá”csÛ3[¡oÛ|Gùß]‡ѽ ÷W§ü NñÜE’ôNšÆ±âªë|}²S|žt»ªºÓ‘6êf\9¾Žåõ$)[˜rP‹Á-¥=€—úÌ‘ý¤‚{suÛo õÊèÄ âÆ8¸´Vcw%J¡ ’{€?ì“–ä”±é–]r5„Ý…7•4¼WŸ9”Œw;ÌÞÝÚÈ•ÚHÙ¼½î¾&O®œ¥ åR†”Wá«?V¯þæ'ÛL endstream endobj 160 0 obj << /Length 2311 /Filter /FlateDecode >> stream xÚÅYK“Û6¾ûW¨\{ *#šßNj«6®øCÎÜh‰)‘È)Rš‰ÿ}ú €åØå¤ö !4î¯èùñþÅ«·¥]Ôq]Øbq¿][Å&ÍE^Æ6Í÷›Åûè·$O–&á‡Ox5Ë•Mê<Êàér•Û42BQ,W©Éø=ÒÆùr••&,Œëå‡ûŸÉbeL\ç²ÓXxD¦FFŽgNô+[˜šÞ øUÂßKùÇ,à ï_aùßÂÁ9L^Ò^4—±4gäluÀ<§g˜°ÐÂï¿~¢¯Öo`’¬fÄ0-Šçè2ç43»ÁF6@æ'øíDIpe*ó ½ZT›ÇY¶XÙ4®aŽ¿—3üŽðû(ÜÖyÃ-G¡BŠß…j-2ŒLò ý §wÞ~2ŒaÈ?z=ц|¤Nô¥|ðÙ»yGÞóP±ö;Žò¡êI^ÓÙ³"®«tªÍµ°?Ë'ÖÒé5c§h ?­D&ËÔ„èù;\“åBŽg*þòe<‹¿…³Êi—ÎE­¼_#ö  EŽ™Š/[}9o X ¬OÓ ÅÑÇIžpP¬–¬«0ôHt«4j½z[!ä‰3kÁ¹’¸ªJ–à~ÇÚ²E-Á %Ùð áéã! Ù m=ždלð%‹º^Èör¢‡ð[vÏUž³ƒ²wÒrmdÏc?øo˜{Ç/$™,¼ywÇBÕýï?8,< pº¬"àH´dʆh¢ï%âdq} }"²¤Œø(pbõV÷²gml±eêðËñ$ž»ùÄÏøe3ò&pHj?_œ%ʾ;®xþ–˜ õ3*¡ìÛ6kd¾ g«HÚª62[ÐÆµ[ßsôÂO‚!K ¼ÿ$ÏUrTUElâ[nÞ>áYZ š`’VÞúYô»ã2òÚŠFÕvà ÍìIã-)ià1 Ÿö9¶aÐHô£]Onbä€^ €^–]dïÜî{uÑ“8 –ÀcðYs º>âLØzf«´æk<Çn/J}ZŠš7¸œÐÙ“Ë,på*‰ÓÊWâÖ jNœ¯¼ÞæqR*娦;2óu+ NKke~T7¬ÓzÓ‰HDÓ *)ã¬I <ïz¯[Ñ,CBYðƒôÿ™-?:Ðm%*H‘‘,·SÜ©ðní“ º±å€äYˆø<ÃÞbÙ*{J×êJ6j$áxâ&ðñm‘´?ò‹:­-Ái¡RÝ“I1þà)_r`zTtîO¨¡GŸ–V!«"7Ñ/ä«émBÉ 4>€XòçVN“WiêjÖeß‚Y:“IêºÒK A²‡žLÈ7šßЩꘉ½o—UF?w~ÎèUíΔeä;/ÞFÅmø5ÄâѸ?ÄÉ`‡û?h žõ±"á4¶œ·pŒÈ¡¥ƒ®ADjN©¥túÈ ›ä’Ñ©aeã2¯A ul©z ˜?«k— ¡–‹Öýq‰OÆq}ÐPþ¾ç,%K^o$µãxš ïÐß2V-Ùu[îŽÙü*²æ™iÕö@²—çy”žJFï™g«%ëþ‚ Vú% {áí„ïF ü=¦a2íÎÎ%!6QfyAÍŸªe) )µA +ƒ“uÏNßzû9 ë87)Kh/ ˆ;Ì0@ðÄ€©|¥Räþ)¤€ÄF¼ó®÷Ðõõwô§‰?ãÑgòੜà(näˆf 8ê1T’\zމ—žiJê‘Kùåp[ïHDžœlŽñ5øT"õ–j„A<ïWºlx ™*ŸºØOKã²ÆÄ}Ù$¬ÖMç÷)Õš?1éAO¼S¬5ÅrÆêdsa“-Æôá2ÖögQðž–P57jU­G\” •æÒQGÜ‹ˆ•žäy/Ù÷0—-$!%•à­Gà©WßAï"l>´$û =ÒU]=À! ¥ŒÇË– a4¹¾ü—o<W<ùëàÈÉ&‘ÎÁ&¸Âáó?Ÿt²FùI•Æefy§÷Ò²ùÀ;¾”OôîßJRÇ{ÛK¹è¾ã9º@㜿3-^‚_Jžž¿Änw}ÅåPT3QНõ˜¥‘þÐ0^ÍuD>«/iì©ã2Õrë¿|”ãh[dæÇà9-—µÿgtaü»>­/Þß°ÜO21bPw‹fnáA%¶Rè“@iÛ ©s Î)'¹Vûäè¯å0×*˜‡”£œ¢j2=ŒÛÚÈ?‹û røóKqr /߈“ü‹p¢’þ£8±_ƒ“up¦1à}ŒiÄù1“J8û&ÌüÓf&¦ßñãs€ûFØoµ|zmyž¢âîHUV_·…ÿe48¾òíì¯gÐH8Mûö—Œ.@wÙ·„Ì_¥F2%ÿèµ Xãí<Ë}› Æg.ÐiL×{]×KÅEmQ×q‘§Ú&¹Å®„Ë’¸ö®`®Ñ$ò‰ûŽŸ¤(ì≽¤üŸ)‰“¬RÎó©éJœÔÄ©uçÀvWeø¢}=TÈù$¢ú§.ëK¾9µ î²8Ê…µ, ô•p«-¸*çžì(W†nÔ…‚Û‹øä‡4°À-¨2¤¾a5¹g ÜžwÒo¨¨GŸr)É\¤å:tüù±m´C#«tIÁ¥Nú UI½*Å‘&hPMþãÓ¼Þ í\ä¾¥ö ©÷ ]„mà înÜD¦7Â7ïnwJB»¦­æÔðËÈf€qÒ„E9¼¢¡›1Xçé20‹°ïŒï!{º6="ê<¸Vß(w¬¢8²›t‰à3í¬‘´¾©Úy™;^oy8Xüÿ]±ËàŠ t}ïO·{û´‹ïOsÑ÷´ á»SÌkÏ ôHËyæz’äqí\Oÿ9HfÚºl8BŒ !k‡ñ563ñ€N³Ð ½ñÑk[¬èÃÔ-/£³ëŽï} }Ú.ÈŠL[zróúV˃øPjg=¡šó"NÒ‚Bíó-qéÅO÷/þ^¯0ã endstream endobj 163 0 obj << /Length 598 /Filter /FlateDecode >> stream xÚuTK“”0¾ó+8†*aI&¼<ª»Uz±´¸¹É,X¬0ý÷ö+ ºZS:ýuúëW¢Ã~:¬Š¤ÈËДU’é2l‡àGT¹ÙY2؈i9&Š»÷ƒNÃwSð ~‹Åg¼qú¦îʰByXVÞ¼H`¿¿¨‡H«þOçVÅ»T+“˜×QlM¡>‚ò™R9„›#,G¶YÎ Ï9~‰²a‚Z‚Ö“‹ø:‰í ,¸ŸP4jÜ *ºW¨)n ÛÍÍëòLüÈ‘CÀSõ˜f)è꟰€¬ÅØ¿ jQÈ‘‹qŒpˆ%6¹šÆ…_ëPàXë¤Ê2.š0¾ýŒt $p *Ô}ÓbÂîJµtD q^ÖP~̇[·?`JÉž¡ƒ°i}Ѧ‘‘é ÞAwþÅ™Ußñ  Ïy&–‘¯Á .¸xæMW)òÙšt›0þ ø©_Ï·(NkðP»3ªÆSÿ¬Ûm’|Z-ÏLF]EÅèxßœøkø3@þFZXÕsÂ(¦™j!ÏùfŽí™Uuç»Óœ7CÊ®\%ù#®¡÷òg`)W·Œ†¶3E¦•¤`Kf¸r:~¾u5Lóÿ†®=JJÍŒÒ/H)µÄÓñ”±Â5³\±pœ ÖÂs/<³yVùf‘åìß‚Nn*;¾nt•pÿLw|IOùX)”„lnûKÜ´8§?âû‡ ¥à7sÉô¨è…˰-”> /ExtGState << >>/ColorSpace << /sRGB 166 0 R >>>> /Length 6047 /Filter /FlateDecode >> stream xœµKïdIqÅ÷ÿOQKXPÜ|g. –°dz$/ c ¨»3-a{GÄ9YU7âZÓãatϯëuoÞÈxœŒLÒí7·tûëí¿Þþ]þ÷óo÷¯_Ü~ùîí¸Çq{ýóÝ/ÿMþu´Û?Þ~ÿ‡Ûqûó[ºýFþ÷×·¤o¸ýö­ä{·ºî¹Þ>Ü@9§ûj·÷·wîå<ï-‘ž¯¦£ßgz¼L|y½×{™Ï×Ï×ùsûõ—_ÿâKÞÜŸ¾½¸¹oÿôñíç¿Î2_þ§ýÓmè?³?s¾/¹zû½/?Ü~"ÿøÓÛ—}ûÕ—öÕŸñÙtÈÅT~8ß·¥7„×ïùáœä_öe÷ýa>ã^ÖíÃ[žãžñýÆ<ä)sxϸßüNm?ˆ_ó寿uûÛÇïóž×ÿ¼©”˽vÄ{9ìN~ûÍÇO_{ûÛ7ß~º}õñïß¼ÿ᫟>{dÆ=•[Jë>íë~ÿ“_ÿý§òí·ŸüñOŸþòÍÇÛ?þòéëÛ§¯¿’ïþóß¾ù‹|ón_þF¿ZïµÊ£ÜÖ›K»O˜^~ÜíwL¤to‡N$\K—?®§Ôëï|x«Možs†ÔŠ•‘ £~Ô³§q$Ÿ8S?îÍÞÙï2"ŽäÒ (OòˆHò÷™F¹O~K[ަXS‰q$jd$­ûa$u8ZóÞP.Ž’oÖ#b¿÷l= L©B”!óXŽûÊ@¹Á€õ>ìÖdbÔ€µÜ Q ) ÜzÊ\zÓ†ò@<¶©Ü°¯€òëαè .¤€òà;0€ãP¿cXJÄlÎYQ~0 ˜2hæˆb¸fDyjzͼEÀuïØs@1¿vÇŠØï%åbN5/ÁtO)à*03A™,Í‹Êt 80yeÂ8Ì& QÌÍ£˜w¶[È:ü³^œ¡˜w@q8rD1k}Üâv4Xx*@13Ù’ C1³€ ©U¤€ùÞ'P¦HÀvoØŽˆƒ´ê´8Õq 6¤g, “]\© RÀLcèêlÊ ØEš1¬˜825ˈØhHËnÐc×á6ì#â„£œ%âÒ8h¸V@ ðf $LL˜Îâ0RŽ(æ¥TR´ãÅøõ‡ºTX5ü v¤ \úC2é{ŽØèFôÙOÖP<%… ®ñuZ(þŒ{`PTÏ”AUÃ虪N¡8-†8Ï„á}„Ñ3­ûHÀy¦™ôjóLí>ú3pžHœIiÏÀy"ÍÀsFN‡g‘ó3ŸÌŽœg,skGÎ3êôgät(^Âf-#§ÃGV‚Èé±ñ29ޤ±é9=6ÈépŠgmÏÈé13@äô8õÑ?"§Ãu0¯Cäô˜àY9=¶GÄpò‘!®z\ð茫ġäùWvõ!†ò`d€ˆº%Fµöˆº ýŸEÝ€ ™¢nÀ¥ž|G]šÃ7àh ãªÇjµªÆF­ <.M Ö0&á4ñ3`Æ4œÕj¥· Ö0+¤O1u­%vpk¼°<–ަÙS`­“‡q·û œQ$)ŽÇ¸à‚šJyÕ ®H@Ô‡I$ŠÜ°˜§~J¥ÀtŒê©Ô税ÕW©_ <‘È(k4¼6[fX’@«ë•Wºà´Y¢\¾à ×­l+ž „Rõˆ¶xá¹>Yï7pƒóWVu$pGB¦~QcGà±y™\x"|¨oT¯x¡^S.#²$5䬕@d æô÷gu‰Ê ßç¹<ÙÄ1Ïms× ÜŸÜŽ ›‡ù¹ÀsóÔŒ2òÚl+ƒ%•‹§Vo8m.æ/ïñPµ¾]páx ·qÁõÉG"7>/ÕûówÚƒøtõ—Y•ù+ž´7•zÓ/²8&•‚=/.$¥fŽ;râ|Çc+\žófËH"WÎW™Ø’‰Gæ2ˆNì>.¸ÓŸ@~ˆ<6¼ßó¤?“‰qô ^›³ùsÇY˜iÖj¸ù¸àDªUϼà¼yj¦™KHzá*ç®ðçYüý¼bú{kÜ/T$ù‚Òj•:Ó¸à‰¤\ÅN”/¤ô*,æ9í^áu\pB±¡Ò£Š;©ý© Tæ,ìg1\ɱ#7¤ÑY ³ö îÈwJ1{‰Ì"±¨ZsÁ™û^©Úü™+UEƒôC@2RÉÈÖrÒ %hp”…Δ¹|yçL®i©¢,¥ôs&J#XGr40“±Šäh¢´Á’£EiËþ´ÒpÔ®ÓØz‰£„§‚5 G…Ë¿¶¢á¨ÂZ¡†;j”pLívÔuÄ·Öíh`Tîº]Vl­ÐÑÔ ¹—mqPîºG’Xº¯-ÕSšô^G…¼$ªŽ ¼D·– G•ÕÔ«pÄÙ%W(wÈÖ†­…:êÔ–Íi8T–MnqD ~@ö:¥Iù%)ÏBhhí(ÁCÉ'Ä8Êð®Ã$G#!$³Ø‹ùaå«#êêÓ2;GTÕ…Ä’QÚ‚äáháIkãËr$ŽÑ*¹ÂcxJYL qÄÈ.W/‰££/%$wä¨RŒ°5Ú@ë)T8Ú‚€Ýµ#J~Óœ®£¹2ƒ£‰ê"ƒ£…ÊPFdfGZÍšk!±W‡\b\¶ä)岞¸€f¬¦0h¾qçŠX¡´RðØd莱?Ô 6éžp@ÇÔ,ÊãDNíÂã‚(C¯¶Cí\R#ÖDë3¦† ‰WÌõ ż.¸bÉ.a;rƒëTÖôô‹­eɱ¦ö{òÁT/8q¼4g=.8³|o¦ƒE.X«Óÿ0ùÍ3çþ‡ÉmžB€épã‚Ù?®:œÚ[àAØm/ò„.­:›úúÀ[>ÖÅØY&y• NôÝÚ_#g” Êz=Ë.Ï“Ù[àÊñ–¼u\qC©¢:WîÜ‘Î[×X½ä…ßëæo³EJ¹µ žŒW³ 5Û±¦÷6_%·²¾gÏ ê¾êL*¯f'´ê@š›æúºÊ:Þ+åíeÀ‘å…ÃtúÈ”oT‡hW< )ëxf)©-ú</øó\-_,©³Íí)jë’Í_iÍ1/8ãyk¯ŒæX üa9àïc¯Ó[Mfø% ²çÉÞ–çk«Ò6hô­„†X™å/ ±* .¬HvĨ‰¦8G»·ÜšÏU¬J¢vÄM4€IÛcÓm÷o;Êì)·æ$G…å&€8ªì'oê˜5Œ*Ê1ãc‡É™›ºÐar¦ÉnkU>“ÌB4°Y¹£Ì†K\µG÷¹ógêHœÑ™îˆ¶êÝ»'®…£!îL“ÝJh‡sTÐTŠ.G]$ÍÊGíÑb'&Ðbÿ¼”3Ž&[>­ÎÑ⾊©Iϙ۷Ñuï¨Ðz¬ðsÄLWhvOÌ" Ô8ˆ€BI±±­Yîh7šŽz&­/a>¦þLº4fúOj3Ô A«ÆRÿBGz@ö êâ«Çg͹­Ê“ÇÄu=46¬PÐtQ GdîÖy°³§1[ÅìqrSB¶å}‹›¬mÇc6'j¨¹‘ÇŒÐ-¨µ¸G&®hÈ ÈžsMOrDn„B‡§Ç¯îîˆXp Úò¾C¶Aé Ø¨Z£XÀŽT ¥œÉ<Öƒ­æÂ²?ÚcÀLõ±©’°"¨¡I-`ƒJ¥ mŽÈíwØ’p²¥®£‘ÀábS]GÝrF]¨@5QlîDóÜ¢íÎúŠ4ªv|D¬ØÚ…öº€<-—óØiÀȤ²aµXÄך×#SÖ¼ÙÜ[%NÈÕ,43\TKÖc§Ä V†în ¶7êe\åœ5"OÎ`½q²‘ÊÔ‡T–XM{¤‚p·î¯u䌘‘JksØŠX¨Tì’pÈÝ-»—<î ±Ûñ^'ê8Ö­¹—‹u«Cuц¨[#.¶iÝê‘Í–û¢Z>ûz3ÎE}~´ÎýÑæù4ßuꬵ†-+Å«|@v06«%\KŒûsRúŽöò90>÷}:‘ö÷&¯<¿ü×±lŸÈãcÀハÓocOèã;¸Eô»~YwŸ”ç§€ÿ„¤yLCkµD95_Ü~ù»Ï¶i~:Yã~ú‹ÿǧÕÃòÈä_Ü>íC“?~û·÷|9$ù3¿MÓ܉/ûâÙ°ý•?õÇO_Ï[SÅ4s\NŸ×Z¯ßôXýT•9ðn&†iC,G‹+' ÚgßpДjøºÆ­š³ý¼&]×ÖiÙ%á$5l´ñýÕGߟàÿùì‘-Óö´k £xšÏ7˜2mÅK¤+ÖyÔvÔ|²ý1¹šƒÿðV¸¨~ÿàÝ£¼ßïy¿ÿÝ[Ñã…² vØ7.ÛE~ÿ`-Wù~ÏûýòcâŒ=ëîùðVu…on~ÿàÊ“@öû=ï÷¿{ZœByøïR¬ÂÍX&ù`#_q ›fz:þ°#pôð¸TôîÎï×mŸžã†ùaú¶ÅâÅÔï÷¿û?-ÍTµ<š>ÈVEjÐôÛãÿ9b˜éŸÞaS£âôŒ|¼š¾m x1}ÕGϦ¯jë«éïwlÓl9™~I?®åë–éføf¼Í´ËÅvÑý0ÝVO–ÛëÉPî7?Œlmj¿N||ovøòexæZ1Íç#î'^&åñÀùú~µó€yÜoÿ ä¦Ô£ endstream endobj 168 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 171 0 obj << /Length 2683 /Filter /FlateDecode >> stream xÚÍYIÛȾûW“¡‹æ¾éžÉ˜ ¾8}›™M²¥Îˆb‡”¬Ö%¿=o­*RTÜãIjkyõê«ïmìoï_½y_¬J¿Ì¢luÿ°*s?ÏŠU–æ~§«ûfõ£×¬C¯­Žðw·ÞÄqêU£<ñ‘y5ŒôÝÓze^‹Óáw€ß–Çé?¯eé¡áÎÇ Õa„¿OðÛW‡uTÀŸq±³÷¿V&õê¾#9›(÷Zh‘>F™ÔŒ&þz“¤÷~]Ä^?àh’ë5,ÜñÛOA˜¹y^“<±«ðå3*Ù®¾ÿó*XmÂÐ/SÁkÜ! 8ç|€=âÀëQ–Û#jµÇ÷úH½!œ‰GðŽÖ¾]o²¸ðø˜fé…pñ½HGˆv=·'ºQO#è· £Ÿ¤‰ Ò»RA¨Ëçµ7pß%5¿ûˆË£’/ÒË»%*àøDGBhÌŽÏÔ>òö¤y\5*„n|Ì9 Ê‚Wó ¢ŸQ„ášËºHð²³ ô>à¾#Þ)ôõvŸìùÝG~ZýÍŽ#à}TO²Ýû>ñÂѳFt´ˆG»^ ÛˆŸ‚4rîìü­žä.€Æ* JjøÕÕV† aC7…«AxÈÝ^ÃmªF„G÷„*µ]Mp¨QÚÐVÄ_Ý b0”Mÿ€ç&½æMû„Ú^¬ôÁnçÀ ñ÷- ëÉhQd}b²kÊ ‘ ‘%ÐøÝØðâR=NáhøYä}èGJ£Ö ºUFîÈs®n„UjÄO’ÝT+\3"W±Sº6ãc vŒ¼¦&˜GêQ©&˜z~4”1:ëárCÞCn F¶'id*0ß*³Fé¸bµ7vÅ@O9ëÀoDÛ¹wo,(óFº»ÏÆ ÓŒõ@ ¿²Ðj++ÄlHÒŒ)l ªBNL–[:ð8ï^  ¬Nøa¬–dÜEוDáÆˆtÞ©Ù™û‹À¢ÝväW’PùåQùÁݞą cuü¢ (,T£]öT¹æÎ{‘y)[ .iÿNtÜZY³“SÅZY:µn’À\‰ØºI,p| Þ9b&~™$S€îwvßš=<¬kZ«Aσ ÑŒ"$w`¤ÅÛ< VBäC;â¶±ÜÞÄX4ç$ö~P¤™¶× FOä+'òªxcí¢cÊ{ã[:ø&ò󴄃CÒÉÁCÔ¡,!—dtMÀ£)³±íÆrxñ‘1ºÉXú‰&"¥dÍ(·Õ‘mJ§²Ùìwr:4z‡6Êa[àØÓ@Wi‰408gRFŒŸe7LÏ›÷yä$qù`0µŠà*zÒ²b²Ê7¬‹ä×Â7qž@Nš^'Ï/Ø#ñ³D·`çCÙhõI“°QÍXXúÀù]ܨùj¶/†_°á3Á«ÓhdÄà­`ô´wÌjã¤tÂNñŽ’\ÈJ‡vÊnÛƒ†VÒûÛ$¹|ÌCñà‘ðP qᦀ¼¡Á|/À]h{p7A ³ü‹~Q°ŸDöp-&¦AfØB {Çb¨Hù’Zn3Ä ¿Pجm˜™>²¥k`«?âx­—Ž©;~q/G4Á|V7ÞÙ­ˆ: ×jS†~šäSŠš0“¦Þ”ØA*Õò¦î¸ÚU'´®âæ8ìzx%owê%¡Y ùMj0¢™äãðTºÓLTÕQ\2YF*Y1 1ãoªüIË=hoæ­fÏN¨ £hêBc¡îŸ(é×ЀçÂGÈiÅ'â‘HQxšÈíóÊ0Ž ¼sQµ–¦O“²TIAÂ;ž¾dÖøb®öå¤C¦¸VÕ`Lÿ†ÊÔÒgRHÖH}¥9KÏÛ ¯ ^¨¸áȹXÄ5pÁ9<ºJÓ¨Çgì ¥Ô‰f —**™f–0­?´ÜL”Å÷ØIÕ"®• ]²ˆIOüæÔ7ÄÁ«¼ßT)¨µÉÇœ)Ø£ÈîÀ=²÷Bâj5I‚̵5ŒZYbò’$È)¿™ÍâI1pŽªáuÔ µ§ºæÖý^Ü%*§« N1Šr¿Èbuv(êÁɽ¢kïe~M7ì”E˜}¤@ àêÅSBó#7-!q=™j5J&“ưí,²6ŽJæ\Ά¸(¸Né´0¿p§ÍÀëŠÊýš CsÇd-œ²»ö–´£{Ù`ï³fÐÃß¶-âDö¦ŽL-¨Kôòò>ðxmìT]ÖÈ3«†Ë# msvÒÂì°µÛÉv÷ŽûÐt€?‹I`³q{Éù%Žóc¦qŠª_T¢2'Ƨ†mEŸÎ‰9Z‡ÀÁ g!Hß5d³ñÔ¨›8[·á ß("WôA¦ê¸êÙd’ïâõä;ÉÈÄdíÆ2 É Šh”ð&Y jxŠ~.Û3ß¹T’¤Ù}ÌO§osÃíC©„x)ó†¯ÁM”ؼìcï7üøgÉõl¹Ø% ›;ýÌêéèξk¥ÅÝrš uæÑ6e½)—ôòýR3SQ]ò³Ñ…‹_x- aäF³Úi05‰žt²ïÎ ff·¢ekVÒ9µtïíûeIs\y[û£ø¥Ê)¡~+ñéäd;ÝñD©¯]ý{~„\Öcó 4cøeðKÉÈpÛ·Õînl|œUƒƒÅÐQû+Vÿ÷ÔîÙã§~¥Î²ôßÑ7›è;ÏTÂ+(G¹éAlÛ-ùß_gS¤{™#Æš›‰°±p¶HÈüÃP?ͼ¾ÍI^èø¬¹Úòdãº}שÛeöMÎ5½h3´ü­Å=ö"\x̲ôCpëWÉŸ‹ÞÝm:®·áæÛ³€<'¥\//ì}çøÿçåïMÿ+œÃÛ ãÉèû §¾üõÇ`Õ9z &>šáÚ6CÒòúÉ3–g¢úšCÅÎÌéÈÙ9£ðïdö[Ù‡VÝ6ÚÞ|t/RsB=9t˜~=ãªu´M®»Âë.ßÕù‹ªw¢:;ÈM˜æ¡«³£P0U¤X¢…æ Åå`K7µªPἘ¦©Y#{Òãâxíá ©Ç<ᓃ\»ØÐûQ(òðú£´¶‡~ž Å÷ÕÍúØÓ܇jzª’~عÈÊØ ÞÌž;Ch¿’ëNîõítʳ€ñ,ÜIйŸB¨ösSíÿn! Oý(*uÂaANx±€×R1PÄá ű¢2„Ï…PXL¾ÍEöS:´2spÚ;A^¥|c‘ºÜØø½þCR ДÄ6s>;tÙ-²¶5̺3=Œ)nâÌO“ø¦¿45¾œùq£wÉ/âæyÏœõüþ"Ñëû¯áwúyOoÕT©7(Pݽœ@­©ä‘“OX/àäKMjÉ íÝA¬‹‚tÑáüŠ»‹gNÇÔ¯t> stream xÚíZËnÛFÝó+fYo2sç=… ±ë6‹¶A  /ŠvØÊ¢+QAú÷=W~„©X•å4šç9÷9i¡‰˜D䌈B[ƒ’0õVX"AQØàá|@»ðÎ mD°!3JÄ Ñ[$o„ÁP•”0VqµÃw"¡1¹Åxñð°Ö䥯¢±ˆò™Å*É9aÐÊb=%4a›„Ö¿ Öu$œ v€ã,¡Ÿ7^x,€Ã£=Z—¡¨£·À- ã|£AÇã·!%á;%0dà àíѶ&(´3TB;(%Ì ¿]C2Ð ðE#¬¾I9òSY¯¢H’C{B{ÿ„þ8#Só:ƒ(œ†@ÁŒ#¬é˜)tšk4 Kò` ‘’B!²:”.ˆW‘†œËˆX![È…µàPˆŽÕö¬TC`…—¬9áiU°`¬Ñ¤D}mbF ´ã&HË‚?tIüªÃ#/æ!&®ÁðD\€¹T“DÔPA4NgÖÑBWcˆÎ±Å@ @Æ&‰, {ˆ ¼É±ÉF®á)Åfi¶;Çâ&î¹ZRa®d×@#º$ÏæŠé ë¥ÀÖ¥è±(L#%Ç5PWbè Ž„5x(ä §2ÁeÇÇ™|ÿßM)ä›üªÌäI=kÊY³~õ6“oËE½œåN¶ªø­œTù«ú³8W¨ðPYHú"Ãð9Ɖ°êõòåjâ3L&Ž…<ƒYnAæçVEt’oæuñ®lÄ9Ö?=ò}ù¹÷ã‘ZGÇ ³ìêwР'Œº-C\fLß …sŸØR[Ø— °É3ŸVweŽl4³v똵ƒ¹…ó ¶.æ6-DXíï-˜£ô}‘;Žáe¨Ç+};¯“y™7U=;Í›Rüpú£†Ã>@ç0Y=ÙØö¾j¦hy+~™ç7«b!þX67ËæhEh²,Ê9·Úê…:º[«æª£.3n&ß-?4«Ÿ\I™ü=¿æ6ÉWù¢\)@þZN?•MUä™üyVÔ“jvŹöŽÐ¹|}rÂ'Èf\yÑZä¾ÿít£åŸÕì§Ù¢úÒ|Z]^–‹ôiM^W³åqSþ»¬›rZ^6pI+'5Ø/•¼šçŸJ™˦”E5/–×—Óò³lªé¤”×y1¯gòüD É‹J“ K,ª…|1«›Iy)çX[ÐÜtš?T~\ήòùòzš/Y_Õ³òYä<ßâ&/Ê‹¯X'[Õ_|ø»,n[^_Ãøô(ƒë9¿ÙÎù-=êI›<¦¼6yo£ÔbÖ®³z±Ç‘vÉ·H‡ˆMÚ•pèvûÒä&ØŽ w®îl…yCîyW_Ô»+¯žñ¹qÆ×6¸ ¹ªÃq¬÷¸Ø#àw ð‘7‰ÈÛÃLDm3ġͥ¯»Zw›×M\|c¡¾g¡~; õéÑp7¼UÝCŒztP;€~n€[…øìV[¸U;Uu¶­lÖJrA„M»G#ü('Œ½üÒ¾œ°Ãx˜YGí½ÔØü{ÇËhFñÚ¿;›Ž±Á%ö¶ò1fpIv ¸$wà‡ÇµcË[b#’Z"ë†Ú (VÄQÇÑÔËêɦ óUy߈I™Ã´âG/û¶èDôã®–{'j~¥ØÆIÅoËû¼C$¢>î´ î§àF4t‘H䟓Á†dЊôë®sñ‹g¥ýg‡-ß6z×j1Úë.‘tÿYLÓ¡:š:Ñ‘~>Ò éú. ­qöhz× üD} öxûX´n·¯Ïö8pÅðµ}=ÿE"²M«ú¶¿Ëfªã7¤ÑïÏÔ^¢-ߗȺoº€Ü"“u®”»3µØ§æw¡ö¢ˆ<…9óü½!Vÿ‰ew®ÿgǹÔ`„Øù/<ýæâwÀ·‡«@òý©§Cõa?¸3õñÙ‡×ÿL¢`Òa”á…þ݃Oß%/n›èþ«éq endstream endobj 175 0 obj << /Length 2706 /Filter /FlateDecode >> stream xÚ½ZÝã¶¿¿b±AQ-°ÖéÛRÑ pIshZ¤(šú܃,Ëkçlé"É»kèßÞù$)YÞÝCÛ<¢Èáp8œùÍÔ7woÞ~XFW…_dQvu·¹ óÀãâ*K—~§Ww뫟¼ýMè ðœàyOÏíÍ"bjz„gí4ý¤áÍÇ»¿\-²ÈÏ’ôj†~‘ ³¯¹ã“ðÜÁs€§æê?BqÁÅŠYð 쀙-†cQ°˜ØÏŠ1¶ä®pÁ¬X%<‰X½ ´ŒÎ¶‰Æ£Ö¯àkÌžªRÝÁóÉVcßáÑ‘î©ú$U܃ª:ùÄ‘·¦5i67Vi¹¥Û¹F7ƒ0Ç~ŸÏ– 9…“ -ÚsVòž÷ò­añ©"m™–I¿oáùÇyßA+e*=‰’i–Îô&ÝÖŽ&uöc Y§R¸îš¾VO¡÷žéìšÆt9e#N{át/ïF䥠ŧvV>cû9'F55iõ –ðÖpPW²õ©¼3§^tõqŒ.T8Æ“â±ëº²D\}ëˆé¾Í¡æ’Ì/òx¼•Xöþ\Šé´ƒ3«[¦CDfD1sX1ê÷Bá‚hêGQ¡Í $x5ƒW!m˜f~}.aÚJ´±+ª­FæQýàOU¿ì_Y1ÖôŒ°I€_ý«4~fªÕ+[½–©”âêÿ‡ ì³¶2}'¶¢.à?o‡/L¿æR>]Æï´êDýÔº€zÌt¦K;»~Ùÿowÿgˆ~›_#æ rÌXŸºÒÚ±óîeNÛNÂB¯rÊáí‡ÜA–Eh]-"Hóáy'n˜,AÃ}O,ÑÒ«ÈÃ4¡i¦XA[æÕÃM”꣖ƒ_4œÆ°÷\Í‘W¡¸ÝrÐa9²Qy'séù“§Cf5ƒŠÖj$Ü5„DÙ*¯p%ú²²Ô£¼'´8ØÑzÁPÐM’L"‰Úª¡*÷„‹$‰¼÷ cª.ïdI÷üBÔÒ&ºÛ“Š¡Ëã-×`þ Œ)¸ý„qݱv¡uÀÖÜ;ðâPú²g5a§²“1>Ó-Û#—'L$jÆ2OÊ… w/‚ l X¼¯eøŠT¿9Š+ÕkÒÆŒ¥¾Ç Šê~¡ìdÂÜk7ø.Ðnðµ&‹3ëcªH •ðÚŸ¸¯JDµò§†‘yvÄQ³bÚG¬×uÛˆvP^Z™µlêʪîy€¦ñ©s…dä6e§k/"®h©„ýš|¾O”ΨŒf´pèI˜3‘F*cƒ"X'ÞŠ](%¤ÖÜËÄSõ¬#¿¬Šm{4D•%§0ºµç±]þØ´´$´ƒ ·‡Èò¥÷ý†ÛQ1­¤ñQh`“uäÇÙv4Ö#Sìì|rP¨¹àÔª—`îq±!ÁûsÉö~C߯âcV6súª5ÅVXM.´6gØÚ:wÇs «Ü3ÕãV°?Jjƒ§¢dPòk]rDä\Ãù$tgÓ½ñ¼9àú ÃÜ;‘4…XÉ[*óò³âÙýSwi>Éô‚RÂpã¾i0õ4a¢”{„^Ôk'3H9‰Ýñ@Äd2fCäà¯PóÃX¾R ]…¬®çªþHéî"M¼_°µ¬dÐí"Ò¯ÍêlÝÁH8.Šú¢<òv=¿ ‘yÌðD@­0Õ°ƒr‡†ßα“.ÿNmíé»;7æb}ÙsGw`+.Ï+· ª>¬<éò F¨ˆÑ“æÆ¤b9¸eTDVf¤‡Ù&bä367rЪâÀN¸îçŠMIÍ~¾á¨Â,5ë©Úƒ¸ëJpˇ¶³Û2j ƒß‰ïD~˜ãUîgْ碅IŒ0î}"5øC!¹]íÍ&›w&1¤o% VCN` _ Ò»ƒƒÔØb"²° {ƸSï7& -áM;Î"„cE3G1j#EÇMgVƒ•¥Œn×`¡úZÂæu²æ°:¥1+Œ r£½"óLúvÜ ä)c)4Vê6=­˜† lý±~á[õEšO‘1ð˜S7£Dhaþ©Y„h ®ÆÉæ, ¶ÂËè˨kæc£¹0í\ÅÏêD} mGÜä;^,¼ÙLÍwâ ˆ1ÐÇG(™Q«{þ~«BÀv%J9•5ÚõV®žÇ“øÍ¬¸ª«¨ðƒ’¨¶Ûk\м_qqí|w'´y"1ja §ð£Bbx$Žö=ê?C×h‹¦™&*gb>ƒ­–Cm)¶*9|#:UJIÙÉ -¿ðe%¤6“fr¥Ð´h.—=K Ôì•Âl„1ø=ÙĨ¦T%OÂ% §x©)öV˜èkš›ÔÀµ÷†uo´‰Î]XçFâºìlÚ«ƒ7J!KÉDmNx"Š’_6•9qÅùÆÈBªGÒô=“ó&sÓÁ`²¡ç½d¼ôþFê]¨¸ìþ‡rjÈÐÍzl*9BŽGÝ!©©g‚µxhYQ°‡Â¢¦$¼£—2õÛhú‹Qn%Ÿm˜Hí cO‰Ž“).D@háD;^ còfgÝýMJ29 ƒnâ-(þ-!­ëß³pf{Nìî‚ð¡fwdvfV€6šq~aÉ Éî¾j~÷E-ü¢íÉ É-ó0ø» XÕè4"Î`ÏíŽ?hmesTJÄ"[£gÔ ÜŸmœÉ]áÝ<gìœSp š4±DŒ¾?jÂ<§6Þ¨ Ö¤K:2¤mmÀ&ÕS™ý ëJ~Ñ®è^ÏhˆBŽÃœ5 ½·›ÒìAùr)q‰ÙBîÒ¢€àá&Íd£ï36)Â)Üäp¢ŸŸ†K=ÞÿQøs.~v`'N)Ä|ú$³£¡Ëµ•MáŠIÕÒÊîÄ.G¡ŸD“Oo†g Á Ê–dzx6a2»Ïé2¡4‘¯íÅŠ^lŒGNïÄú‘>\Js¼ùã„ÄYf÷¡“²s¦Í­·Þž_¶êñï;y®eÀoåðúzt©ûoËÛGÑ<`•ÏáX¯o´|kïb×ÎÁri›T!+=rs”™v¸[G”'gÁÌ1õbNÊ×1auè§Ùsõ¹›÷νp÷Çå¸åÑÑ Í!ì…À&‡àn6æOß§ùe—FéèÂÈü{0© Ï«ü/ºU2ç@ãe™÷13†fcÜsÆ=þ©áàüºðN–*“hópáÖ4¼?]þ×צá—Þ›N/,C1×]wÎݺފ﹓›ç'çǃ•£äfÿµ0kÒIóÁâQãTïå9\^¦Ó…ÿnmãüŠÕÛõbPIüþóüE—{gݧãšx,ÿ8(b|ü"~¥™\¼¿,þ ?p$à˜ùm¦³62óÍ„bþ§š©±‡¯0öqJæ‘_$l ?Ïsžp á›ïîÞü ç­= endstream endobj 180 0 obj << /Length 269 /Filter /FlateDecode >> stream xÚUPMSà ½ó+8Â!4‰G?:£7grSiÓZ¤Ñ„øûÝ]¨6ð,ïí¾· yKóÚ+_VÜ”¥ª\Á÷ûfª.Ma©à*%J§¶l­ùýÈža]¸,ifW¢· Ûl+^£^ɛ㟯µª.o:þ"¶R‹ØïËñ 3c½0 òâFf6×âòq"v!Ä’×Üåp›‘ìQ ƒ  Žt{&ˆrdÏÒTâG:'Ú>9v+!lo纬•èRÏК‰ñDø”¦'¯«¥ñb`T™Ö-8ú¬³â“þe•ëøŒù Bß’l¸ ¨ä[óÄMnTåÏ´sÊùø¥…FŽ=4ìêroç endstream endobj 172 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-badfit.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 181 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 182 0 R>> /ExtGState << >>/ColorSpace << /sRGB 183 0 R >>>> /Length 4744 /Filter /FlateDecode >> stream xœµœK¯ÝÈu…ç÷Wp¨˜f½«†nÇ Ð€ƒ8àíAÑa4$uÒäßgïZ«xȽOÒ’eZ­O<ä=,VíǪŶﶰý°ý×Ëïä¿_~ü÷ùvûõë—c?Žc»þùú×ÿ*ÿÚÊöß/øÓvlÿñ¶ïä¿^‚~`ûíKŠ{n[{ÌÛû [ܺ½Û^›Ã±ï%G{Øv=ކ÷qœ‡‰—ã9ïíqqâåx«{y\žø8¾çÇõ‰—ãùØcz^ŽãfÏã{ÿö ‡öÏŸ íÇ?xùå?Gyoþ2ÿikúÇ/染£Ü©Œ]ÞSÛÞ¼ß^É?~³½ùáå7oæ¥?ã\¹×xnøÂsƒ Ä‘yrüÒ“ÓØûúÖéKOnaoOÎ_xr<Ò^Ö×._zr*Á®_zrm{\_»­“¹dÆöþ%ö¦Oønal²"”׌ºáúðk]¬øø©½_þ÷ÓÛí÷Û‡/™sïÿ¸©Ó~työ{ÂüöÇŸþúqûËO?¾ßÞ~øéÇwïÞ¿ýðé³G¦í!É’l{órÿöÇW?}ÿéí¿Y—Ð{Êa+,è#™cÐÁä]ýL„ {94BmYÿ"?ìx«®?çýK.{+‘ŠÜxPûpö¬$ÿÉRÜKR’ÉW,I@êJ²ÉP%P‰†jÜkÕn)Ï øRŠÞ™¡Ê«”=TKò@ (EK}”‡¥1ƒ¢’|‹;µƒw+.X {­ Gw*3P¾”ª“Äü9@² M“r5Ôeå%P–‚N¬Iò É´ ‘-¬Fy:á°Ô÷@±Z’XAò ï4‚>©I’\ E>•¦³ÕPáÝvM’†ªž=IÔÂqèrš(ÎaØS–ê1ñ±õ½wyïQqhºp(ºãáqƇ‰%yìjºâQ&¡Þ`=ôaY”%_04’`*0eÎ#PnÅaAÀ”[qX¬kØCö80égesGI#®ÉcÑ…?Q•êƒ2q2Aæ-D]ÔÓ¡¡hb΃£‰õðX^eVL³:‡Ða×ð(ˆœcq`ñ ÆâP’âÀÒ<²‰-y: &öá°¬Û—Ý=„7A©2FAYìç,ú`¶=' ü@‡]CØD-b- ¶ks(Ã:°'IKÁª ÂaáÒ¨š"V^s÷غkv¸…žT=>nT×’lºèf]lGòXÜ4ÁU!U0G ÁMP®C yó‡Nd‹’ŒfB•ÕÀh1胜¨ÑbBØ”aÐàf±h91%QP”Ŧ¥¶`œÊbÇlÝá`Ñá/PÖéKCPSŒÅ¤‚`Ñ!tX4L”uX1‘5‰X”Gvëð84ôÖ™î%iΩ¢“âðÈâF&E #YCÏi0#µ ÊäwX¼š, è±ê´ž(ÊaGz’É8cöÂ/2êP’æ,+%ô9L×2U%@9ÌZÆÙ£X”D¨6~ ´U;», #—• LQ‡‰@<:‡ eXŸËÚaFÁ/8ºÇ‚;fÉé°aØe"÷ÃcÇ¢³ü·(éx.g­Ù$yfñdN¥ö„“örʳnó,&OÎs¶9f £µ›Î(Ç N«·’ŸðÐ)®<4î;–¦l#Z…IEíYš©Ná 3¼™²†=—© ÏÊÔsC‚2Ïdµ{î>!͊DZ3tX™ž£&Cå¢]¤çŒ&S«#Ç•÷#“Ç!'] žJA­7Fö¬äüy3ÙqÂòÓx÷” Yoü7,ý(Y²EÏ’â²Þê:žŽ“†iÂcVBV1 K’”h$KL;ü>Å€{“/_âÔß‘ ƒ‚oH -l„$P K‘mÑœ†[⨳ËPÆÉ¿JX5T0„$ª(µ…ä‰jš(/2•:D™+ùNÒ¦4¶î*Ü)"R¸S¬¡p§ŒBm½¡¢“lµî†ÛÞÙººøW{~§Æ†öÜË´Ò†:Gi¶Ò†Gi¶Òwê\h¥ e¶õ³‘64KÙÕF”;æ"¸“C1m«Á6T}Ñ@Zw;4ðj((ÑZHƒB0ï¤Z@ãef×m0²Ó`n0±¿E×m‘Z»n‹Mëâ‰åp(µH¼öä#{¶ ¡ÔaFbçl±hÖ:{c‹•:zc‹ƒÃþÖ` ìŽÐßZLìÉÑßZ,ìfNqÈú‰Ý¯Å†jR¦VÏ¥œÈÄ=,v¿#ûjt¿‚‹,ú#z¬¨&ÙßZlH²ìo-N†™A-æ@•¬Eyìoµƒµ˜8UÐÁZÌìÉÑÁZ,XT‚8®Ný­Å5U(˜(Ékp( lu¿­yŒ«ì~-&t8ì~-f*#è~-²ïÒ<ž=Ví>g÷{4M/1QÕI‹]ùÙ9”E^°7 Pìœ-FÕ<&–è1aèØW[¬ZLìµlao\£Ç¨SD0é”q˜P’¶™:2i¶¹7媊jäÝã`oŒ†Ö`¿u°#:X‡,ÃÑÁ:äbTíÒbFš@ë°\;X‡LmV‡».òÙßÊÃq8°ØûL¥W›E›n@'Tú Ì8Œ˜„º«=f<²>K‡‹N†¡ ½qÖ2ÅaÇ#“AjÑã@êSw5¨õûÜQÒ]‹á1 ü“A ÁcDò3µ:ÌÐñ玺Á‚‚MºßÜ=V”ÀªêT ;fê°£ÀÍÕ¡îeI: ˜ sk¤=á¸ÚÖ™='èñʽ?aîÑižqÕUžþÏM—,Úê)ÎXîh»æ¶}zÂpµÕ–¥™%¨VKG{Â\«š^Ÿp‚"âQÃrF0uOzÂ,ZtÛCb”g–¬ZIýí¹#ˆh}ÏRØÌI¨LåÎÔ'µŠ™²†åˆ}Ûfíã9óy±­w\Ðöè#ž+¿ož™Ês‡j¯KzÆ¥ÙÜìžu‡dÞO†¨è˜í¬V:ÞŽe¥qÐqAq FŠO¸R¶‘:A׋cîI)«,àx.bÈ*·Z.T'µ  sçÈõR§¹Äsâó¬pU8.œÂ'=Wè½Aê•=w´°š¡u=:šÀ„ûì­×€ÏOa9=a–Qk©ã g<ÏgUq2\%W§‰*P-Ï6NÆWûÄ(ËÀ³Å6oŸÖ–íµ9 ’%á´’Kþ¶Ž‚G5DË\^‡‰—ãu~‡ó8ðq\cáñ8Ÿx9~ý²çwÿJϬT]€SÖ›æ¡gîšg'ª £_N|jXzvâ@Ê8O Oí]OýAe¦¥Ç©ñ©?ëÙ©1L‘éqjúìïuÓ踜šûÕ>ô³“÷3íC_ašõiºR@yš†®i!Z¦¡+el§œ¦¡+Uè§ièF²ìg=|š†®”‘2NÓЕؽQ ¼S¥ %ðN lBwêÑT ï4®6¡;IïT©<ªMèN‰ª$lBwʧ¥GmBwꨪiºÓ ÅfÚ„îÔ©,Ñ&t§@C lBwJÐhºS¥• 6¡;5Ív§ièNw;ÕLC´’@ͼ“TÖÇÅ&t'öô4 Ýi=Í©fZOsª™wÒ¼äÓé2P/‡Áˆºb9„ &4ìË!d0òÄIƒqŠ“wë)N쨗8ipPb‚üh0pÑ/‡ÁHéƒ!ƒY|† 6 ?ï–CÈ` p±-‡Áˆi°Bçe2X°EEÙÓbÅ BY×Ð!dPªòÊè1ÒoA‡ÁD ‘†!ƒ™"DQ‹”è2(µ0DQ† ¦›(j1ó‘AµXn!‹5(BËA)!ƒRBé*\†!ƒ-9BËÍ!d±ÑAÕbçㆠjqPʃ jP¦fç¥T&²馂dj1aó…!‹…2DQ‹U}§(j±q±CµH-B½G6ï¸6Bé²H…M‹T(]Z̪tY,—é²X)ŠÂ!d±#ÈÐ!dqP2…CÈ`?|è²(]Â!d‘jBJ+:„,f,g:„,r;›!‹LÞKP5ØàZ[‚ªÁ~ÊžSP580— zÇqÐÉÔbDò‚CÈaBò¢ j1Ó=6Bé~†CÈ!C=B;¶Òàr8 Á!dPÅÉ) Ó!d1 0Ò!d1bS–!‹‰b,B T:„,VôàtYl(°é²8ÃÇé²8 NÐ!dPZ“Y$Ð!d‘¡`„G”cË ä˜bý29Î(3–AÈqÁc„W^Ë ä¸C˜]!ÇÅÈEɼ±z¾Êö09T~hr©ÌÑ ä8¡YY!Ç™Ê' BŽËÝ ä¸R™¥rè¸QÙ¢AÈq×= B–¥¨:  ä8,å!ÇSu„'¤±erœ¡¬.ƒãål„Ó(² BŽX²Þxzð׆f›q†. OÃЕ"ß²X†¡+%¶ßË0t¥Õ†-ÃЕ¸õ†®DkØiºÒz·b†®Ô¡UŸ†¡ UÎŽÓ0t%&–Ó0t¥Déa†®”FOÃЕÊùî CWª7‹Ðß,aèFZºÐv¤¡;­w§`ºSEä¢EèN-6 Cw¢Åmô:›Z„î”ÙÒÃ"t§ªÛù§aèNÆh°ï´œÕ´݉‘¡;eÊJ°݉Ú6 CwêhpÐt¢µ-÷¦J@Ïì¸ Fv ì¸ &º)h2Xùb Ûsƒ/ÀdPrk¹tÍ t\}"ÝA—ïˆf!ƒëõô¶;Uô¶#w®—;È`à+ItŒìÖi2XΗatÇÜbE"eçk±Ñ‚Î×b§†wAIA‘Ýët\ºƒ &¤§e2¸^ßB÷j±"Ô³{µÈ½xv¯ûé;ÒîÕâàË]pÌ_Ñ¡;È`¤CwÁÄ^žf!ƒ—aZóX¨k¡óµxï|-6¤ v¾¹ÝEwE¾hAwÁÂúå2Èêe2ÈÄCwÅŒ×ÕØ5[dµOwÅÊÞ=µÅ†¢‹î ƒ•)ˆî ‹ËwwEªštY¬ìá²HGÝAùŠ*»WƒrÛÐнZ tR¡{µÈ4ÇîÕb:;ßš<2 ²·µXÐ|°{µHÅŒî ‹ I”î ‹ªÝA|etÔÙÛj²NìÙc‚J@wÅŒºƒ,–GðX‘ü鲨ˆ0 YäK)p9Äé²8Ø­Ãä0 ´€;Èa$&x¥ Rׂ;Èa&NwÃBïÐ48¬'꒴ظ¹sç¾8à}6Ë:ÍA–O/Ö29(«–9Èq\Œ^Çi1ÌŽ3J³ÕR;.‹ar\ÙòÒä¸ÝÍAŽùÎÂ29‹a²¸g¸ÌAŽÃb˜ƒGËä˜æ29΋ar\h~aKïx™chrÜÈ49îüy49‹a²×xÑäxÍAŽ—¤Dsãe£9Èñ’LhrÌ}°er¼Ì749¦op™ƒw„™er<(ÙÐd9ñO,sc†üerÌ]Ïer¼ÌI49f’\æ Ç x™ƒW9A~]ü:(X{jù¬¿*IsZ‹Õ#ó\zYç©v=ü…Þš~wŽLÔDÅž UµŽüáÕ¯~úfû…LÒWï·_}ó§íÍwÖòÿ]'NñØ^çÛó:jG‰tÐÆ™æ còßòKzž}™æv¬ZàÖ—ù͇Oúudm¿úŸÏ¾©¤Û2 ×ɸŽ^Eà«ï?|üÏwßøt^ëë~G˜ü¥µéù“eüþ%©äW¿;YU)]ëó–×ç_¿¤6-ÃyŦLp~bñy~ÞòãŠë¶™Ad=ÜKJ~¼™™ßo©"‚ç¯Ó½úGâ¼»û'Î㪵A‡¼ÌÍ(ÿÐY2ÍÄßa–èR?7K~þZ3Ñh3<ðk¶þéí÷ŸþºÌ\I¦)æ:ÉÈç$ pVœ“Êñúü9É´Åj—IF>'™6ñ2©¯Ïëçö° e^Q / s‹fqæ[ ëó–×ç_¯é©;é=?¦§îa«K‹Ó³cû¼¤Çô\Ÿ>ð{@*ÄœË5ù‹÷R›/h¨X0¯‰Y›ç>º\óþ 9>æ| ïêþîå\"º endstream endobj 185 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 189 0 obj << /Length 1378 /Filter /FlateDecode >> stream xÚ­WKoÛF¾ëWnS€Is—o·Ð81Ò=4QOq€Ò"m©‘H—¤ì¸‡þöÎkÉ¥L§.ZÔ.wf¾×ÎÕ܇Ÿšg‰—Äé<È|ÏÃùj7ûcæe±Bb°¦DR"& §?¿©g¿ÀÏÐ\Át-Ð×ËÙée:Ï/ž/oú}ãÔS:™/‹ùGçr¡œ <·ûþË…¤ÊÑÌó…™ó3Ìë…«§(aº…§e¶¤48÷ßv¿Ð©SÊ ¢VÌxñæÇ¼œW…HÀÚj í\¡l'< DÅãÅûcXüŽ_g=èZW¶Œr 1èÊWêÔà_µ6ƒ¹àç(T ¡iBÍ·‹OËŸÀ¿®R^Åì1dAóªEæ‘„·pÃ0p^׬¤³;ðîhvzU¯ãŒÞ!oÞ{ÅCUN/mÅ3޽ÌÏ æ¾Ek·¢ÝØ#çð(xÎàÑðœ@@uà\‹Ä°± ›xiƒÙx<±qäi†j^ jqˆ”óÅÒÜͯüHQ,\…ÆBòrH"FxÅè²\œ> ;k AW)$ðJæöH{Z[¤Á«Aëfa²J9Ÿ‡ ¬½ŽàyKçAõa~”u1ÿÈ"劀wÌÜ?Ôé\¸†¸ŽBþ"ßú“Ný? TÿÚ:Ë)oD÷\ÈëIü 'ÒÆœ BT´È_C2–< Ä^TT;ƕ٠½,Õ€™zq”1æE½3Þ);©‰Ô3¨®Ž¡æ´† ûº– ´r[C£…ú†WìÚ)"•Ä–ê˜áïù(^wX„±üf>ÖÕðv/þ¾/x¾íË]ýÙh¤¹6bŠxÚÒ*ܨt'{¯M¶A5bßù¡•£N‚›mäø‡l”ã& bUw’/\“¸pÓZXΛO^ó°6tÀ¸A§¬“xm)xT÷»Åºa¹ÆmÞ ;ç9y„Ò¾ÛÂP;ËõÀ\¯¦®ÆÀÏ`±Âäé‰ÄÌ麮ѳIn¶,§Ü)è~€‹^“#¡ãYo7âÍ$¦#F]_ó-¯¶k 8hôÀr0ì3*ÅÀsMyK-ÈrZÒEÎï(¹’|lMÈ%[Ê1ÝLŸuò Þî‰tÀHÉRÊ–¥Q1挧OøŒ)%I#¹–éæij‚òÆ:0Ä—ßÉ2½*åW¤ *Ñ JZ+q5(y¥‚°d7K†Eº7¦&5Çuàˆ…W&î’¢t’|²M6}rˆÓ dË+£Ö*²«Ç„§9XP*B§¤g²²«û†f-ñÍ¢Þ0˜Ò1-Œ#A¢ãrd±ÉÄ7îjXêÞTŒ=wmüögÉT;!áµ05ߘv%T>5F{£~Ä­TÅÚ+QsÙ£[ ¾dmÙõÃù€¥zßX9a:åAÛ9Ò$6CW›Æ;¨¾ÃЊZ;2$oXæÎTÎðJÚÒwÒsÿ)[ôêÃ|%}ê¸'­yºê3¿Óô8©¦VS˜¹Ú÷‚`ºÍÐüú=L]žî$#Ìýã·ÿ{¹uøç&»Ò¹˜÷sy°§øÏ>NwB3·H•¿kM¶˜~ñ\¢_¨¿Jk}mLéø²fog©kúç/“½óáLJ–1xÒäj‹cLy°¬ªëðpöÕöS¥Z+ø’Ô™—¦)›hdœ½]Îþ`ªÌ endstream endobj 186 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-cr2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 190 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 191 0 R>> /ExtGState << >>/ColorSpace << /sRGB 192 0 R >>>> /Length 3744 /Filter /FlateDecode >> stream xœíœK¯Å†÷çW|KX0ôý²…HHD ¶”bBÇN‚‘¢üûÔ[U=ß|U1‚HYxác?gz.Ý]]UýÖŒãíó[¼ýpû×Ó_èÏÇo¾üÓ'·O_<…#„p»þ|ñéŸé·½ÞþýôÕ×·pûÛS¼}N~xŠhpûâ©ÌcÖ[ Ç·W·ÔÇŠâóí…9,Tê1ý˜ý<*t?S=æ8+^Ž·‚g8 Þ§ŽïÏ&x9^¨ù~\ðrüÚ™³o÷㟼ԡûöÍfèÞ|ûúéã?&ç—¿C/?K?z¾åtŒ~{ùêöAøðöò‡§Ï^òußvâ¨G/—Ó»žS>z»œYÞùÌÞ/g¶w>sΣÏË™ã]ÏL¹u\ÎŒïRÑ +aö‘†¸Q ¬D.6^Âì# M8°>-w ÈX‰,»" ¬Ä–/‘õÉ.K¸DÖG¤UÝó%²>bŽbüY bÆÇ=²¤ø'7’ÈjqH¶£‘Õ "Ü%²¤GO—Èj±Ê‚ÖÈj‘<`¾GVƒax1idµØpû3²$[Â=²Z̘Œ3²Z,ðšgdµ8Äœ ÑÁGD¤áüFâ®Ã„ø³â®ÃŠŽ­¸ëpÊÀÒ0„ê9p=£²Ã„}ãŠÊ«Ä‰Ê;oó4*[L‹zEe‡ sެxH‹U¦Lã®EŽlwñ3yŽ££Å$ªq×b‘ ¥q×bHÓŽg±ËtOƒäÞk¿Çl‹”9Å{̶Xdº5f[¬âœ(oG\µ8Ä4¢[œb Ñ Ö(ÆCäçpœà*ï!Ý1…ì¡!›Û[.·À:”ç*y,!×q?*‡DXüØðl<Æ'"B2û<ÇAÜ>±´cvïð·d½ž£†|Ê]ÈŽ<ÓîÇ+=glo’þá¹HVéÁ!«8®Úĸá& R$Èu˼8à_iâ=wÑ!Ú—¶a6£ç§, ºgÍùW ±Xt«Öì"ÊʧÜä×iï÷ŠÀÿ±"€ ¹(üE@7ÛK0Xuî€A–"`pmÅã™z]ðT0˜ÄÅKîápmãU 0¨æ%ìš/©^`PóC Îu) 6q[K/0Øe_&AÎÄøRªœØŠAÚ¨Jþ Á"Îa õ!—^`p‰ ’]lKþy\:Å%°8%kþ`0ét/À`tê–+rÑÜ«$¶ôƒŸç ÛðœÅù¯äıŠ=Kpœeÿ¸ôÇë~ª?8^ýQýaÃSô‰ÁúÀ†C¹Ýõ Ç ²Ã]ŸpܹÊwêއ8'l=óŽW{Õ/ŸíE¿pîXÓíin8ð; Ä}ËH£ùz…_ñ ï¾TÇ aÌ"­gÝâg¬‡°á"õËBö²ažÏBþ2Ä g‘=T¬;ù}½ï}½ï}½ï××ûjÏ`ç¹ |»êHZï38$1ÔŸAÊ9l¯ŸÁ,Aoø V «Þgpê»A"Õ<ËZà3˜Eµ^>ƒE5F­÷ªAIÏ –ƵÀgp•ÿ¸ÜºAN!WùÏ`cXå?ƒ«t¨Õ@ƒCœ*rÏâ –ÿ ªð´ÊWéPËWqPË›¤¤«hP‹ƒ«ú·a”T°³L³Ku0KuÑð½}3×k¦ú¨ÕÁ·0W-ŸÕG­ZÖwŸÎê gVµÐr]‚™Z޵n^×à¬~Üë+‘2ÊLíI«§ž"h‰àåXK爘snX—K”—Õ=kðX‚™c =KÛ°ZÝݰ*ˆmXÚ#cÚqRAP-ÇQ_ÐSAkÇr½Á‚’å¼]ìÜò†‡®´wI6°sD6Ì®nU¯7¬íEÐÚ°¬ÇÞÏóX_p[ÕoÇ«½ VŽ›®g­Ž;îêoT°r|¶ïPþ=W]Ï3Èõ,]Ï¿êØpÖõ¬˜ã$ä9ÜÞrÔ$ç”öžùL}åÖs¬‚˜cÚ‡ˆ Eñ¢ö ¬([iÃZ«‚²ÙÆ›l˜Upó\e>¡¼Æ¹á"öA,´ '¼YÏŽ*˜‰àå9,AŒßÿq ‰$÷s0Nð,ëkI*˜yV¤‚ÙŽE°£¬ù‚ã7q bžõÝtÄ<l*¥ݰ#ðÖ¼á!þšwÛp—í?žwÜòâ5šV7Üd—ÈŸµ²á¢‚-e§((9Î’bæÀʬç$›¦*Ç+Çq B &ÁGò~ËXæ\¿Îd=mX7ã9±rí¹KÒŸðܤ`É1ÌW‰ç™ù»³` AjîX f™òì-ç%8Eø;ÏKPB`Ö|4“=ä´aÍg2”³éyh>´© s>µ)ÇZÈ-ðýwÙg|UÚ6ÜDÐóõ,WÉ73T²á¢‚æAËqVAkyYÄr’x¢oyÎRðÉ0¬=ó&«àÃŒ´á$‚—’憣ŒGIlXžUð_Ùby› 21ÿ6ó“d“´ãÂ^ñ÷úP/“?„§Õ2ùƒÅ¯>øìõO?~xûˆ6öüçïo/?—/Iózvë“Ëû'{¿xnœ ’k¢sÿðÝ7?}¿NÿMŸ]gù.ÑŽv ¯xÙ†´øùä•v­ö–Wû¬œ6Iäi!ÓÉãp"­•ƒÅ´>8Эö–W{\±È7F¬Ç½z*_kV~>9f]ÚÞòjÿâä|~à˜);Ι“@r’¯hä²qlz‚|y Ýi—¼^@½{lÁºs”m\”—.×5Éž¬K§H`F Á5[Y¡Ÿó>™²Ô3§ÚLÛ°ÿ¥å‹Hõ› ?R\þõ†ß¸ˆJ;­Ôïvÿñ—ß=óÏ7ßýžöO^åjþ‚§õÏü`ìWãÓô!I_M_ù4}¼½y5uÇ«ý ‰BñF±J,ŸL€²[Áç…xÁ÷ YÑâj|ZâLÆ !èѸ!=]{µXÆÍÒуqÃi³mÓT‘Óî\ä+VŽb‹EtÁ‡ã\$¢=e@Šž¨ª" • |¹TètëœD¾zz> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 198 0 obj << /Length 2725 /Filter /FlateDecode >> stream xÚµËrÛÈñ®¯`ùjׄ1¼œx«bg·j·*‡¬•ÊÁö&!Y>´iI{È·§§3Ô£R9@Ìôô{zº›zuñæ§BϪ¤Êu>»ºž)U$yegyV$Úd³«ÕìÓü‡ËE¦Í|©æxVðÜÂSÃÓÑÒ_`¸ aXQóÏi–ÂkM½ƒg–2xx<¯ =R§Sò xüëËÕ/³t¶P*©²!ë·Ìºá¨÷ð\ÃÓò´†çÒ ñ—@oà ,ƒ.ݱ^ÞñN^Z2Í /9VßAî#ÝG`âD2y’Y3”ëž‘º]_y×+xþÎwÌ|>œÙúž_yìÕ¹˜"þC»eZ ÓaÅ.ÙÚnêÈãoÏW®úŸ•û x¾“ÚS·‹3žsÆ|@\”Ó²‚~J~•é:Kü³c½b-Ž­Æœ¸áߨ&u䯇 Y³öÆŽý„özÞ"È›°-jîq <·/â ƒ6‘ß²"›¡/÷é÷$&áãQ‡Q&æåÍOem6©J 8aJ3Ϋ5J²Ð ý ïpŸo—º”ùåçWréØlj±ÆŠfÜÆ¹!|Î{TeCÁÛÍ6„zçþ2à·Ë,Ÿ×â¤õ×M ÔïWOï;À›Ý¾ hp$éŒÓÛžfD#È>@¯ãŽðÎí¼Eý2{”èÍÚ¡-zôHQ@r¹°¦`e>\.Œ2s§Ì|Þ,÷[âÑ( fÃ×NøZ°2ÐgAyòH£ uˆIxu㾎Ðݹ=µûóAcøÝÜG'‰û8JA”µÞçqƒ!vM08>:Ò(ÊÖÆœ'Þoì’]Õ{7HOèÝm >‚ãš^8l»§ï-ûø7rœýœ*Ë*IP„)ೃçlÖè41Eb“«Œn¥œœPS%`âËzùà9q8¶þJ\n˜ÌŠO¤[˜bR¥&IM%ÄÏ5¥#krÇ!¶á€}ÅñŸkO$(òÄ(/:Z忏 G&u×ìºEì Òš¤\ÖÞuú±A\°ŽËäŽÈßRä›Áa¶‰µÙÐJÈC'§D—…e%‡Ô}”(f½qºW´§Þñ kØ/Ž$#+Žºšÿ| ¨åÞ‹[#Ë= ®«Â;¥#‰÷(ÀM ³W™ÿÛá^dcNª¨™BÄ„j‘eèéþÄápÓ.ƒø¸ÈøÆ‘ ºÅÃéÔB=Ð8Ž€8±­QªqO“-àç¼ÕäˆVtI¬xŒþŽ.~Ç6qÅ&r²:ñ7uåäb¯ñ¼"%t¦‡·R¡?³mÞÇÒ-Ù7&t¶E›îœCX3ÿ×ei A™Z9Ò¾P']»]ˆrBzZj„#YðÑŽæ{裸dêÔ»»?ŽË¶œd(]”džN°9{ê8¡•ìiDZ…Ð2€­ùMTõQ¢=È{ ñ÷ÑnøyòÂé¸êù¾æI<ú41¼£×Ç"Þ,ì¢Ô줉—÷œÁ½¦Ü^(œýOØ7BµŠ²Î!k[¾öêˆ*ÓàŽ)K5t½–\;Úßòþ×áóñ o†úÈ>y‘”98‘6I¥ˆô޶Hqö-B|8ç$ƒì~?åNœdG¾,“§±Jôê<ê¯Aì¨þN½ItZeó>+¬'\Þb`y¡²BÍ ßXXUÑ6÷] GŸÉibêïŸC½àJ¦Q—6E>¢žc ãLœ>#;;„?’ékf è¨ÔX:äLË0í¸bžCûý4íHVO›âÑÖ—–ž ­_(÷G.ô®Ü ¯ª³–ݦ#]§ø¼LÞ1Ísö}>ÍüI9»³Õ).M®˜LŬؑ¹…• ]áeâ?ÁÊØ[¶y}6áõê…Ö_ÔòDcJsï…é#^øR8ÇÇ”.,›ENâ8 ¨ÈKH*Kò|t|7f}&ìÑžá¸Å22jU’-_QýºÐ^®`ŽZ屄—“IvC°F®´nkÔé¤6dº£ààÖŠ–)8¸–ÒÝ7O͵“Ç51_ŠÔ륂[=PóKN‰#Üò5ØqˉCa8~¼Ç¤´šk6jùYô9q8÷mK‚Ç šeS ph»t‚£4÷Y&šWešdÚ÷…© Ç¿g©çW„Óñ^A +­'Í9ÿŸ]ç'uá~"ª²ÄåéìKåÒà/MÔWùk‹nKKduC¡\.µšæ2÷²t’}CV”[Zß”-CnËàíÍÚ;´a—§ò CÚš½)õ|·çuôš![Ü>uß\Å£fåýÓsWß0<¬pR'ÒÇÚ5§ŠèÎÜ1"tž6,ÃtŽ^éÞrDš;!û»`7’(0®'# Ç[œj{zKDd&Ê?ðûN"PŠld-æÈŸ¾ºkFù0Ç$§Îõ‘n¡|y¢1¹4á*ê|ÛÛ*oü¨éEg¹ÜúèG±¶³rXáä?° ÀU‘ÂñæÓø‘4œº¶ *éî<ÄÁµé¸©.Ÿ÷t¹º¥èr…¿ò F^…ÐjUÜ4CNv»0êR ¶Ì»©•›\´nB‚¬ä04ëì„ŵ7NîVñäkn‡KÛPóï=, “c?x V<^ }¶bΤ•OTz×KÝ·Þ°yÜh]FýKGË7§'¤z,ÿà#²;ù•cükKñpÕÂåî&ø;Ÿ<â%ç®±ÍÐÃÉJ{>b×2ðÙ/ÿºw6Us`W ØÊÆ—c]æ³21©– À.~¼ºøýBðéLÍlªÁHe –l¶Ü^|ú’ÎV°úILUÎît;³y’áO'›ÙÇ‹\¼wÿ2_•5‰Ê ‘ä«D©0©J%7ÉÛÓ»F'E^Ê:#(fyR¦ ûuRÂUƒ0úGžä%T'Ð÷`G­'â$þÿËQ™¸ž`óŽ’ÊI†Š$-žRQ!ë9†üœSad|6È4êÇ© 6«îuÉ•[¨L¨-LH¤¥¾®¹óm`²¯ƒ—SHxÍÀ¡¡¾æ»8*{hýlÙñèï?3W!¶ÛšþÝ¡Ë"©Œ³D•”%›Â9ÿš^ endstream endobj 201 0 obj << /Length 278 /Filter /FlateDecode >> stream xÚMMSà †ïü Ž0#´àÑÎèM‡›ã¡Í‡­ÚF›d:þ{wj‡ÙÍæ}v_’Ut GÑफ=ÕNIë-möä›ÈPëʤ†‹2!UÆŠ°xØ«ŠÞ ä Ι‰â).Lo"Y¬< èWÓØÿÝk‚¬kGcK_ØŠ+¶ƒx›;.t˜–ö𠣋ÜW Éú0BþúL%מM¹uœPÁ4CŒYúüœ¶ÿž#ò Ö²wTH86^÷€ð–á­»CiQáÚ±S6øò“ëÀmWLRqÌ`—¾ÌÃ$,ƒ5Íœö´g#d(ôÃÅÅbÝ£oö|°a¡” ÖæÝ>Ë$륖ÞY€ÆËÊ”V!¹ä/±q endstream endobj 195 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-txsurv.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 202 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 203 0 R>> /ExtGState << >>/ColorSpace << /sRGB 204 0 R >>>> /Length 3146 /Filter /FlateDecode >> stream xœ­›Ë®Ç †÷ó½´€¸]÷Ë26œ ‘€, / _à’œX Œ¼}ø“¬ži²E^茿ééê®*ù“UŽÛ[Ü~Úþuû+ýûäÍßþüéöÙó[ØCÛãßçŸý…¾íuûõöÕ×[ؾ»Åí ú÷Ó-âÛ—·œöÒ·2÷Ô·W›P*ci{¹=7—ÓØkTº_cŸí¸*t¿©±VËŠ×醜ï×ï×õeÖõ‡wûô…výÛ7]óíëÛ'J4N/~௶Ž?ó_æ”öI}+{ Û‹WÛGôå³íÅO·Ï_pÓO¸w–=L½7¾ç½±ä½½9½ïÍ3cläæüž7'zrlzsY7ëLSss{uK£ï)*¾\˜53ˆujθ~üV)”§ŽñðñË÷Ûß·×ï3y÷÷¿w f”ÛFVœeò¾üùõÛßcë'^Žqd‡™¦Š'´a¡;¤ðç–}p Þ!-IîàÄÒv8öˆ í‘ÍÌâ”eFnffœ'O!-^‡Y¦ n£x,2e½a8$W‘kðHƒÓûž£ÃÊˉp°[Œ{Çà Ž6Yâ)!ŒÁb•Ø‹¾À¾“ëºIp… pŽXR…g;¡kТ§I 2 ]çàD9táK%ú;ØeE¸.CIŒ“>I1â¥ÀD!ËPÓ#êÅRSW— LS†à⊄¸Q,E ›âÎD†ž„hŠ éÒÔðw&ráðÎÔeáI3´F—ÃØ™ú]G†ÖèrX1´Fw@õjx#&rç†Ö„Ï35JBº¥5Jr -wК¡Žæ°@ËÈÐÄâYAáLSG‚f‡‚Ž! q®†t$ˆH"«SçH™‡!NJ–Ó=S dZê‘‘ÙX¤šâ7[ñ¨C¥^Õâ,ѱÕÄÔçZ\ƒÉþÓ¡'™Ýd‘”êHâ‘¡,&hrö¹-yÔA%Ÿ‹Èg±ÁÇ^Õâ€R…sëÜËI‡¶$imñ»tøVð$Oƒ(r£À+ÔÇ¡À™ ¹ƒ¸5Rý†–v>ôøq¤9ø™ªê@Ö܆º˜Ü{°41¡Ë J­Q„5´´¥¸ 3™pq%†*4ÚÒ¹†ºDEyCCS4ÑŒ†hú9^Š–5ÔÕŠ{:Óä2¨6C¤ãÛ¸»§3u‡m¨qi4ª¥.±™F’T¥!vuL¤Î4£ê.^*†ŠDtÑ͆î.%–3MŒSˆXn«'suØqï‚Ú`“#K)ÆÞ<Òƒêv—Û9…{TИ¸Ë’ù„I½8{c‡E“€Aï%ë£d>á”8¦Ù`^ „Hf‹ fqÅ‹8(B2h‡ g,Ãca«‘À ¹(NDÕ×[L¹:†ßáJk:Ü•Ã•Ö ˜ŒCþã '|<ljPVŽÛG±X0 G±¨i !-q‡šÖPŒAúhqJbÚ¹£±˜0ݽ"X8̲4ºÈc‹EŒŸ”ŒÃ&Zš°M”Öp:'Ä't(#"›Aê6)0Ò³Dzr‡˜‹EJš@Xl®H¿A»Xb äLQ}³8%¼ ^š© 6†!¥K‹Y´aöX$!\,uØÄTèÅ@‹Cô9kr¶§ê~B$—£˜ } d1KI:1x¬RÒ §²Ç&…ÈAŠž‡ ª*¹;N§ œ='q­ðüóгL{ >ßs]Ïë𯞻„7HÃvÅSÊ\ ž¡«2ÅÏZ¸„@¤ÕâY%" Í£ç†äÜ‘{Ö’’ZšfçgRBD‹ðL(c+j)iF,Eæ3鑈hC]z¤"úLO]•‚3Á‹¦»Âv˜¥SRHpXTiÒù„M•´Ÿ Níšè]ƒä›–¢Õjó «vA«Í‡êl•Îg¤L—Ý)¨‹EŠbwK¶Cï† G¹bN‡yiô£D|B͹–Þ5¨ûHK﬚u4ަ»vP«Í‡Võ;rZ‹%èNç5£ä³K ÌZ©V5l°j^7§9lÂhé‡îqh.Ä;E§h­¬œ{±’®ÉcQ}ëV ¼„Ã#.‡-ÞXÌÒ…ÎÁÁa•bé](‹C&)Ì8GãŒZPÃzçs€Wç®nl|äæ~c{êSBÂqc¼<òxyÔÇ¿âí©<õÖ¹p¿5?ù}ކ„‡[ËX·>Éx?è PÃV-«ÐW|Æ{˜ÿëZ‹Þ7õĬÞ6³ï·ºZ 0½{kŒï|Ùq¿Kðw°\ûB œjðÑÍ?þa{kŽmn¿þãí?ÿûíöÙߎó›ï´3iyòæ7üé³ GB׿‡öß|ïo~xûý/ÿG³óÂw¼µk\,™ï <™'oéw9 u·åu68ÿÙy™d}ÇÏ_ãå>&‘ðÑžÜÕL†ŒSÇ£3Ö$uå‰Ë9gŽýPç¥þÏ¿OšJT~P{b“vRGqžj¼ºe©Â)¿<)DÙõ{Ëë÷Ïo™r3è ç“Ï;àÄF^üòàX¤0´~oyýGöùøÛÑ"¦JsýbñÑ‚þÞòC‹ƒ-Å‹ÀïHÚ›;Â/ÆîhäQÈkÏíÄë÷h‘O¤¥Âaå™UgµeO ÿãe…IòJ“¨ç_sùŸ™¥;°Ñ™ÚD±>ŸÚD]z¬{¨Íó/ˆ'¬IŸ‰6 ¹8TqÈê¼ùbzT–ÿÁ¢àX®T'bÂØœA,µ:¹Îºëö_TÁåÒ endstream endobj 206 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 210 0 obj << /Length 2832 /Filter /FlateDecode >> stream xÚÍÙŽÛÈñÝ_1q² XvóÞ\ðñÛ›y³ý@‘ÔˆY‰ÒŠ’5ƒùö­«JÔxÖ‹ò0Ã>ª«ë®ênÝÝ¿º}Ÿ©›2,3ÝÜ/o”Òa®’›,ÍC§7÷Í͇à£VÑìÓýw·ï [ê&b·û™ 6³y¬óà?YP5 Œ <¶†fu€-OÖÛ tv8ÜzÈ¥v³9´·=.ožù¥âXÀ\lÐ>ðLò Ì)èÿûE€èVˆgïðV{iè(»UÎDuЀ 7îxê3‘®‚p6O褸u‰BŽçJ…e*Â1H∠}G‹Ih#ÏYlsU†i¿X¾÷+aP£XqבЙI”TM³Ú§'áÏÓ ¤Òq4\qÕgAóy–¦Aµv«áfÁj0¢†¡ì›ß‚«½cÍn¯ƒj·ƒÎ~;m< ©1!¬ŸJó:4&°5Ú&Ö<¡‚‡Vø¯f¤^ø‡xpïêÁ,‰†¶éx)Íl—¼øÝÜk4ÃI!&H²aiÄ$ )fV’,À·´7B"'.7-Ù Iަw†ÿöU°D>÷S™5ÜuÕì^ö¢´&Ê* à«ôuÂMòq©N‘§ogóTk/½bi2aM’ZH“à?(úpQ罃¦&'“ü ]3ÇÔ–´7>µ3U‘^4jr¨].Øæqi_•.Ì7VD\©$,“dÌÚ;ÚG1lh´ºˆ¬›X UÂ-N j@Ù ÷ xÅ "©›q‘r\ŸsƒÊÁ%^|Çá–Ë–Ü/jÀJ)÷‚¥’ÈKLTNöæ£ó¯«Ááol½Í߆yâU(#]ªq¦¤õ|õWrdÏX0ÐùÅٖǸ€Œ€j: HçØ:Ø{`øsÐpJ^Žª›‚KF>¹µÆ%…öƒ’üÆvÖâK¶ÜÛ÷ÆÚÆâF0¡sU¶êŽÃµÚ†6Î g²Ø¶N:'Ó¶y™uc“Zœ•BU“)ž;'[*ÒsíWé šcmÊt#bTÚ¦.êû8 Ó$6 AiªÌá⎼½:Ò)˜©2\ \|¶BùÑ”ÊýƒG=™ »©X‚Kãå0‰™€¸â9ª#ɯ œÙ0s8Óäé8ŽÛê!—R#ŽýÌUðVm8@¥O1Êâa.­.§ ^GµDoí·8q»©l•Á0;«‘½Ûaëš×< ×Öt^Ki ˆ2ïøBƒ-†R´ÚXF¼L*Y^ÝÉuCÇ)ÛeCÓ¸$i9צ,Ð\ @8fú§Â1ç4ÈÎÞaFôáŽÁ!×Ëo{Áº1SÆèÝͶ'‚¼Q™c€¹HÑ®ÆD.6t\Y¿¢Õ\NP‡ÝwÉÑŽL$ífJZv¹Ž³à£Š§:˺ ŠY4¶òíGÓ’ë¦LÂÐ9”I¬0ŸóôȘp Bš¦Âƒw?¼FšRO¢XÞÀŽyRjør F7æœã@zÙPè$ì-¹Ô„tü²DjȪ¹çh½[*ioXXr™Âá›ìpaS ÷“¤évð’©½dññÔ\uh{ÖåRcø‘¼¥!Ú(Ì©©` Mh͵ #¥™±¿a­‹Éš[֘橿`ãæÉ [«™ § –•‰h측—æbI<±u+§¶ý«ü½†¿ã‘þî©OÿÈŸë™ÀaPŽŽŒš¨Ø¢ó$?;Ù+I&ãhKN·Iý<ÕrKå(ªOm÷‹d¾Ö3º˜¦ghÑŽoEÅ”þiÈcd}†Àhè½þáyþe±îh¨K8X¹Ò0جísáiDlˆàQ=Š0>_ˆm<Ë[wŽÖHôAdø ¸ Ç{i¿qÛž.vnêš.ˆ!‚øŸÃq†ö >ÔˆI›6Û²Š’0‰Š³S°µðÜÍø•°8å<,VÚÐøO4eГ{ŠjL¾KóR[¾L~ÏßïcÙ’þ¬ZÝIÝˆŠ¦\ýr\•g•îz&ó,w½²éu: Utv—Їz•`4"QZÜë%FÎî7½§/ËÊìf<û5¼8úÉ9¶hv[„ç$W)A8§ž§x#8ÊKß{±§Û4fûz* [ÙEÀW^nBzT©¾*MÈAôb¨|Ï9ŽCÊÆ#Â8Ø£›öB/Ë˯>ûF~lUAìMCîÉ‹YK˜Œ®cÞÚr\#œ|¼èºóbãë&{¼¦’Z=j“Ë!ÃbèúEzMI¾+âšÿ|M<êŒH3·ç§q¶4215Å·ãk ú§KΟÓîX}k:`¹@ïáô¤û(Ó(¿Âæ9ëŽäóè­àðÏaæ„€äŒü§‰’1 µ. @?^ŒÀcÈ8Ò«ö¾Y÷g&üÚÉâéÊÒ{/<÷²lçÁöž»7~¹A8/B8NÚ—a7.ÔX=/ñµÏO}ÁžMIöàÕÍxßÔm`|%ž,ïÉ·ãÊåË2š,ô]¨»(Ú¼Šïî·ß W–¡*Šqmøõ¬¾ .ýÕ,¾¼öea6ÔQ:6ÿƒH´á¿ ªÈÃ2Nu@Q/Æà|X§Q˜–Ó'­©j'q²áZ ÛÜP•ðß8UËê4:{RëÄu¶²y>u%Ñéìëèý+Îy–…Ÿç/_²óˆ_²3nŸ½dç£Ëzì.Í5Øšo,‡öà_‘^܆GÞÓ^}¤‡Lzÿ|bh~ü£—…EçÝ\Ú'ÌÁmk~ qFQ½]ñ¤2wÈÛ³_šL­’_ ì·,¹þ`ÉÃoÄtcg5Ìð½0÷äŸë½ë·n|Q×ñs¤»¸s×|$¤½ýyÆ ;ØûŸ'x¶vI§ýˆFË£˜ÖæÉ^´ì}©l`_i÷£‡cú¹VçôÛ‹FOÛüܤ#xO­Ë°€8Lâ‹Sœ{õûW?õæëP endstream endobj 213 0 obj << /Length 232 /Filter /FlateDecode >> stream xÚMOËNÃ0¼û+öhìvýJÌA%¸!ù†8T%¤šˆ&ßg×IÕÈòhvggÖFØÓAHib 6F§"~„IÑ:_6´J¸ÚÖÆî© ‡‡A¼Ð¹jzÍÔ›Ðû,v‡çEÈ=`H¦õ´Ø{µÞáUÊ/ºó…°SÚ9'­!ï”öÞÉüyz¢ó™à̵•EÙFεF9q”&™§›íÄ6ÎÿU¶•ݸ˜ûᲞÜ,™x蓇ke}]Í,Á7ËÓb?²VF£Þò3 ß›&Ђ± —ºÈ¢xÌâ¯V× endstream endobj 207 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-sfit4.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 215 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 216 0 R>> /ExtGState << >>/ColorSpace << /sRGB 217 0 R >>>> /Length 11081 /Filter /FlateDecode >> stream xœ¥Kï%GrÝ÷ý)îrf¡ÿT>*ÛK x!h1SlÚ")ØþöΈs¢nUD6§i/ØÍ_ߺuë™'"Óë¯ôúëë?>ýóúïw?ýéÿúÃ7ŸŽã8^÷?¿ùÃ]ÿÚÏ×ÿúô/ÿú:^ÿýSzýqý÷×OI6xýÓ§:?òñjó#µ×ç(÷ôÑ×÷¯oüÇåMïOçø8æõ)èýiÊýãÈ×ÇÄÛççù1ß;'Þ>õc¼wO|žSùåúœxû¼æþÞ?ñö9Nöúü}î¿ÿ–—ö/?m.íOùáÓïþ!¯ûðí¿é?½pIÿéeëº^ù#¯­>¿~³þñ·¯oÿúéï¿ÕÕ·gúH•ßN¿úÛ)/èüzþõ__×è°c/¿þë½L;øú«¿žö1¿~þú¯—ócØÁ·_ÿõVåÍÁ×»}/D’??Ê£éVüÞ0÷&»ùþzÂh#/ïëý«yŒÛ_?~÷úo¯~Í3x;Ûy¥3}4ùKþ”sù§ÿñÃÏÿþÓ¯¸ëåV–)ï…ìáÿùãßýðóë§Ÿÿüów¶#9—SÍCÎøòjÖëʳù-Uú8/·T÷½þ´®âú›M©y\”JöÔ>zÕî©4nÙ²§µeõîiÊEUšÙÑXO¬Y–÷ÏQ–_UÊÙÑÌs€Jw”Žu…ˆgŽØ> ¤õˆã#ógF˜ºü¥8{À¼Ü)X>R¸^3d‘]z¬ëR%`ÍÏÕ¬ש¬é®Ûåq\ça¬°}4½Uõã(oÈÚ娫úQJÀ‘>ˆYû/ÁV"®&‰÷q|ô œ%àL|ÀÎcDÌ<…ó£lðü¨x–ˆí£rWëpyçŒØ?ŠÞ”&ý”Ã|¬^§×#°Êë XkDýÅs\ÍB'®W2`‘‡^q̈U^í…]nǼÜ,\'V€uF\Ô œgÀ’tìòi=n鈈‘‹àyFÔNIql°ð…Ú‡l0ÓùKXŽ-À¶Á“ ┾2`Ó±”à<¾ˆýñQÀÿÂsƒÚ7+¶±¡ _c¹”"V4þ sû%¬)bá%y½fy{ŠhgS´³vŸ.ûÂõ¨<ð¨,\ÝRÀ„ºpæ€yà!\ÝeÞ`“œâê€vxÏñݧëÃPâ…U:‘€åãhÀÜ#V4¹ kŽXÐŒ,\HÀSç‚ëÆî‡1FÄÆõŸž<ŒS:‘€lÜÖ 5 ¶1£‘Y87˜Ð-®ÁIÓ”×Iq5õ;·®¯HÀÕLàœOtÖkÀ”7X0üXXkÄ5 ™@mÌê˦¨¹Ã—tË3àØÔ l5âÄ`k ÖêqÈT±opu–²ñÌI³é±¢;^X7xb¨¶°ß÷s‹ 8ˆ†œ× a¥Ù|bšÍõÐ&!àЙ²àÂìèp×'¥ˆ ÌÂÜ"žh †RVéÒ{Џš½ìEÆ€Í×ÂÕ0LrÉViÜÒ *Ê`Ûá˜hú¶ v zÎ 6 ]ÖpOÌÙȬ¿eÀì±b±PÌÙ¸-”!±Ç,CCÅ1"&v,l:$öxÈÁ)–ˆë•Hzú:Y 8Эìj v §®7àPuà˜µ1]8¥q X/,,Ò@(Ö1¡a”{F<äùþÓz(ê‘Sú©M¯Ç5ÜÁÆY_+Câ©…€«1• ;u°]XSÄõ@y­0äHk„/ï¡ç¬¯‰ðÔÞ!ðÀ Dv,óþÀÃ=°7L²…×(#²u…«¾o«ñ©­j`|„ëŽ×TI¯çº±ò>Nò.–·nø€„ /f¼Ö:É”_ž÷ÀC¯Ô©¸yî˜þŠèû†„3™9¬†)2'È2s”¾0påöë|ÊŽ)‘äÕ?ÉõÌ÷µ¬†CúÀ¦hu˜ÜOão.Y÷UåÖku@àý A÷ | ÷I™â¤Ø'U¼ÛfŸ4.Iu •ž$nRΞ88†û$é#ÊS˜} ¾áo%ö‰‰ Í[‰½ãzMLÖ·ô‰¥¡3%ö‰« 76÷€«ÜX•Ø'®‘FãÆÒú8\c'¨šPbÊ8“»²açOJ¬Ã5f‚j%Ö£iÚPbŸ(ꢩ©2§öXÐ C‰ ¸FSBc%6`FW%6`£ªyÊÈ. gUÐiÏp5aÐZU§ ¨ê€é´o7tZ“7:­ÃÕ¢èø–:­ÇJU:­Çn:­ÃÕ©#*Ñu.ïÑ´t(± æ‰ò¨npðÕÐyªÇÕF«’C%Öc¦":d0až¸°;´]gÄ÷®ú±0V×cçë ×ãdÃ×!šÉKãõ˜©–OÕ.<ž|é ûqPÓ¦<`§ruÈ—~Ûß»š´¡Óz´“4Ì+õ%è´3†Ôi=V ²®.+à‰‡°kW°ažH×㉹U\ƒÿ®z@À‚¡+5^bTqÊcF\EÀzíJ4^C>j¼Ù…SÅõ˜xPq=×á¡%¢¨¸O*®Ç“§×##G]oÝ/` O¯G6#â;<ˆeƒÔj¨ñ:,Ô¨ñzäœZT™‘“ê´3:í p̈‰š6TÜ/£4æ×T¯T\ªþ(J“ëqðu†Æë±c’¶PšÜ/ 5^Œ…QãõX18¡Æë±P]„Æñ N+ £ÇL-NuÚ€ ”Ø€.”XkJS‰Ïò8xúY›MºtÑfÓ#ãà ¥aôXyúEƈ±o0óµ) XxqTÅ øÞxn0ñ⨊Q‰¡J¿Çcòâ¨ðä ª»ÃØ6X ò-ì#"‡ˆ£kCáñ€ä°ð,¦CçwFC&¢0”È‚!æ¡ZŒÇáÇÂu°9‘^ØúCª.&ö€3GìòÐ«Š›7Ø0m§ìÑ”çS§´+^êà ^ñ¤äˆ“81ŽˆÌÔ‡J#N<78y8í¸ã† ×7ÄL>\M>V¿iäK>͈)xΔ×'Ê_”—èŽL^ö¼ìòð)-täÎ]äߣoù0 $pUò-n˜T ËSøDÜ@äå´ãjòzWµ#p1y¹Càðœ)Ÿ.¦ÙìɉòßjÙåi |`ª.òtÝð91='4ë¢#Š5lÃÚ͉)&­ÀC$Ñ9ÓÜ0' ¢£–cÕᅬ:äBù|k¤Å œ)g5áFf$Z­S|YÚÏu¢yyZµ.Ï ”ÈÓ’ܰʓ"?‹o-0£’&OnhÄ„%0øD3&ò²´Û9”8D˦<Å8HdNé$Žr옓:ù@îwàLy~˜„?ÃÿI.Œ„Óo'7FÃKŽ×´Bãò&¶çy=¢ìmXECy°rÙ°µ§^˜È ]®šFë†OÄ,åÁo;¶ðßÙ¤aÌŽHƒmÙ×{½ør?Ó½) ‹¨¢†VÃ$º¨çõ˜ë IN¹_Ûë‹gàÎþl¨~¹ñ}áŸÈhodÔT7|ÂMW{)æÕÀq}Qñ4<ä¹ þ^W{%á3cñŽõkf²šI±†w<„Ö%¿…š=®ër8Jh ,:Êtûªç¨\"Ûº—ŽNÊ‚*„=I&ØÖ=p”1h+ÒQA› ÌQEø ~IG ­A:sÔÐ,ZÍ´£Ž!D5GœîÁcù¤5 Õ± –Ž2'ëêñrd‚˜ÊtŽú{x+uÈÆð Lâ ß=IÇvoÓeÀ‚&ê]ÀŠG–Ì€'í~ªÞlˆlA½ ÈÔ»€ó2]J»ë0et‹0l¤Fm/àI“iA`ÊaÃc*yØ1ܶpÐT[-4úÀy)2óØùCªí4Õ¢•ò8ùCªíyÌœ@Û ˜h"Ö×%`áKtêèÌ#-{0llZ®)BÞà@ÇmÏãê6*ÍžÚë9ÌÔ}UÛ Xh«Ô™mÀ(”˜=N¾rjöô(Qú2Õ0 £IP Ò´Õ0 ;¨†ìo K (‘™ÔñyÀIé<#2%6¸#¢mY‡SL$¶¬×®úñä)@õÈä?Úf=ÚÆ°Ízl<}Øf=ökWcƒL U‡—/Lµ'¢…S‡Š ëõ ›¾’lÀÜ#ò…¥Âêp<Œ/ϯa×Ýà L#âà í–sù@ºá¦Ú£64_SGy“Tä±¢#˜¯¤Ã]Œ©Â+'ÝôÿÏsÃ'EÁ#áÍóÌd»KÔõœ7q`¦ò™(8›¨ pàòf™Î-}v#'Š>ôðfz†ð¨Npa‰hÚv|`Àc_Ïmšhšµí Ì©”°Œ¶O Õ̼áÇS1>ñl¢Õâœ6Ü):&x8LÍCØ‚knv¶-CôÓYÚð‰²pí®Í0»‹|R”_³°ã \ÈmÇ•¢i&Ò?9#2&3µ46\(úK(zÇ™¢¶˜qˆ³5Q=ðAÑ/'ôæž“q†È¿áI–÷=ða¢zÁó¸aå#ò<_<7,ÛCô?‘Mâ97í¯_ÛwŒ8ËïõÁüžäx2¢n–[Ú×ÊH,p{³ôOcˆò-¨QNÌ\<ãf9OÎÌÑ(]Gó-&›Èƒ~U—‘“qA†‹çl\1Kõœ˜ãROÌ&=gžOm˜õy.ÌÑX&í}àÌSMb‘ s(Öÿèýò\™Ã±n\:6|ýÞÐç5pfPT^̼áDQ¾exœ=3zn¢{`z¤aâýxp¶¿ê„çÁç­5S žCÛp†ä«EÒ†ÒÃÄÆ$Ï{àý…f[Ÿ‘å5”÷Ql}DZá¤8á¶ãŽþJÌŠª¨yè,‡"ðDOîx^^¯Ñ‘ãäyòzŒ‰ãñÜ1ÊAÀ bbž 9HžOŒ'J‚5%0ƒæ–óaüÕ9êE¿3JW–‡ã4IuzJtûë¥q”™­¡~nGÌ‚_ÛQeŽ€ºµè«à·vÔX"¡Ÿ-áÌ :5uœáhbì‹Γe2†ižÄÀ-3ObPáG…‰ónqÄL„TY ©™Ñ{™Ȩ*0}]VÈ$0ë2 Ï[¡wãÉ×öÚJGît¾¦óz¾LÇÄ”ðlA3­ÌÔº[áÉŒé™ó>0#¾WPÁ3§WPÁ3£ÍÂsÇô^ÈÜgÎ ³Òçtð\ÌùžÐ'{¦£è Jx.HÊ )ÎH?®;¦kP+»§ 3 Ô‚釲 @àÌç]*ÚìØ‚¢,4³a´‡ýWf”‚Q‹çÂçI vîØ‚¦¥`\ãÙ‚–¥bìAO¼_,TØ‚ªÌ,̉‘ZèÓ†ï—Xíʆ锲 DàÄó]ø¼±Ô†aJ`æÇ†¹}³ à“Y‚G 5Î ³h‰zʱakÏt líÙ€Ý}Ã0M h¯žñ˜~e¦x–íõ|Æ´öåÁç ©aÒúê™å"$›V3Û<3¿@sqwÜÔÂj‘Y§P²À{Ýpƒ!æýØð‰  ð87\!õI}êO.2Œº‘Y¶‚•O"³PÔ ÑBŠž­PØA¥Ê3%Ð"A·3²eîÕIž3M7W¦Y2…Öá%5Ye¢®‡å+2…æ#Sh"Sè] ÊQÁX¡+Ozœ¨9ïˆ% .zRcÁ$-Õãˆ.mêqÄ /†™žÄäf„}ždeÎãˆ2"CBOÊWet =‰ÞMdÎ8²- ׸“ý‚¾ÚŽ˜aˆPˆ#ÛRÃŽòŽXÃuGVtEà ŽlKÍÃpDo9²0QÆDÂÑ{Ë6'æ³@Æú©+ÑQǘóaG „©ŒåÈŽLkã:²3Òʸ&©vGv7ábtdRÕ%Ý(³¸ƒš¿"ÑÝiìNœSðzWàBñG ÂÍNqÀË2@)¸“ýº¾%ŽlKÈ_O²-Mƺ“ýúätóNÙÊÒjY]ÕŠÞjQ]ç»d®ÌF²} ÍÑãµ1$­/cÝ¢ Y¥îŽ×©½Ñãµ1”¦/£(MÙŠ²®Çnr¡C}EGu8¬ø.T*‡l‰X÷‹¥É![*š!=Z½IsŠh‡’º¯Z j£Œ8Íd)ÊiÀðπשÒ#ÛÚ'=6«@ Ë¡å×Â:éѲŸQÂãij‘Ú&=VŽÝÖˆÅ4;þyÌVºX…¦~Âéñ fG‡ƒ,¬§àð¾ñ,‡Ù|PÐØáµqNTßïøÞ8[§{Ù¬”0.‡fÏ‚½Ñá{W•ÝäßkcìÑæ¢”´šž›O꛼m=2[å­=Z„âÖÍЊÒÖ íö(líÑ~˜M=FzN]«Þ£E‰PÛ#ç‰,ˆíñªä¡’¢G[ÛVVŠ¥´=Z!tØ[=ÚæVåQ„Û£Ez`lõhîakõÈ•½X9Ä£­5 ˪G«:êG[˜:£Ç̘Ê~{´z)°ªz¼6ž”Âx$Ÿæ:¸£­~Š5¶ÖÕ*}%à b ƒ©GšÚh/õØXá æQMŠ˜{ì4‡•&x൱ú=6 ‡>3™éGËé—†Òˆ,œ™( S«\F¼]¨gTªöXqùÀ4×aAMªuÏbîÕÎHƒ©ÇŠ¡š,Z&éæXÞcÅ-“åßDrXÐäʲs­¤É„¶V´íÐtê±À[@‹©¡8Lë:,©Š%ö5‹ø[ÓS_sARüC®=Ê9Jô”jÅŸ@ðj­bG,¥Ç…tŸTXEË9â5e•ü'±þ,—Î}—ƒÆb¹Ž”À¯OÚ`,êˆK€£À‹£ŒÖ x:bØPžÄÀ9«Ö?‰ktÐßú$JK¨öú¼Ö«X‰xŸ4FùŽ'ÍãZ–ïÄP*¤rG ¤Â7ê¨à©ƒoÔQei õx:bà’·#®;ƒºÑO&ªxL¬o /[À|iÛçY̓u<ž4—+¾ÿ@æ83gß#J0`Ts‘Ñï0q‘–$öhÑ”$ö˜/³eÛ ½@ò͈•fL5U<…ƒ=2‘¥=ö«¼¯äzš1ïÞã„Ì{¥Ç5×f`=¢ÇY£€%z=r1ÒõÈ¡óÐ=RaºÇÆõÅiîq )a!]r‹á:,¬Éb¸Yy’Åp=fêÚ(†ë±pý8ßdµ$–ÊõHŸ Kåzäê®Ì4÷8LDÔ¢=‘§-yv |ãjþ VË œÐY5ÜÀ¥-‰˜ËhXµÜÀŽ8#“# ʳDž–(_Ó†-Ñ‘‰êžOKtb5ÝÀ™ƒ=.i¸¾¥V­–éù´%רØ–ìa5ÞÀV–ÕxÛ’cLT|ɪ¨ÆëùJD³j¼‘Ym7#Òs²j½¬ÆëÙ-‘ݳyR¬Z¯çjÕ‚Y­×óiÕ†Y×s³jÅÍ #¼çùæ¾áËÝÃ%é'cuþE6 ‡‰ìË›KÞ0S@èÿ‹l… ˜Ø i0>p·DnTË <ŒQ-7ð|³ôž/Ÿ7å›L¿_äüæ¹ã+Õt[! xó"·7ÏwcTã ÌÁ›Uã lK^ÂÁçYÖše¢ûE}=_‰ð*ˆF¶BpÛE.L”E5ßÈV~¼È'Û;8ò"w¶ÇðÕE¦S‚Õ~#OúQ­7p:lI>­Ö™‰ž¬Ö™Õþ(¢Eæ†Õx#sÕ]VÓܺC5ÝÈî°šnd.FŸ^ds%é8¬Fñ*²U#‡—/rfxxptÏ…Õ~QÍ72EJVë|%kµÝÈ r"«íF¦ŸÕv#‡+0òÄdƒÎ¿À…Ó+VëÌP%«õFfHw`ä‚÷‰Õx#³&«íFn˜–°šnäŽñ]‚+ka–u<²üz`öG´^üµ¾Â5+)ª@Šª¯»0u#n¸ä¦;QN£Pô$QxÑžDëDS“¬#:ÃšŽ‰±Zã¹”#! [•hG\¢”©Ý|¶š.±åˆb!tÄÜ’vRݼó0ÚíèD["…¢5´ƒHívÔYº´§IBJÁ˜.Žj°ŽÞËäUO“‹0!-ÚQâRu“!¾;q¡G8%Y@UÀ±J \ŽN¸D‘âëˆs8M¦Î–â©Óµ©"£AG„ŽØVÁÙ÷$-5¬³lµèd‘z÷ó˜©  ¸ŸÇÂ¥ÕQŸÛc…•”¥ÿ<2>ÀÒ­\!JÿyäЊ:‰Ç÷ÚE3âœÌðÔÇÓÝÖåal h§}™6Â|­´#´Žˆ“%øÆŒØl¬õ¸¿—ñ‘‰L`æV›Px2"ʵÜ=烩r¬àØ–ù`¿À|¨¬B_`^H«Ð¸r F!#0Ëe›±áKè JùðY¿ÀÝÒWQÁ/ðu=!„¾®çDiÇ…Q «àØ®+ì¶ëÁ yízÀ½µãiÜwlÏü]‘íy£Ð˜¹ïVA/ð´ v¨ç¹–È ¡!0W¶ xYtÕ*àæZÒV/pãDn°O*¸–û“-öË xm" oVdÖ1¯öÈ'KÍë¢ÛyÃv=lÏÙ–â2:ž- “ðW¦²Â]à“i`¬P˜Eöé]Úñ4oSÛqgôî¦È–BÎ u§ù¸LŽãf©YV‘Îs¦gñȶ–»U ól ´ðE>ÙZ:ÏϳU ólkÙ[Å9σy«0癩 ôñîVánœÈ—ÿæsxoâsõc«ð¸2IÞ7sÀ [`VȲ k¹L ½*‘'…VXó,+äb¢ k ¬°¶aÑpÃD¶tGøa"[MVP l˹™+ÁÒ»Ù*²ÂZàÎöî–ȃã V` lË|±Âšç+Õ›Ôg -¬ ¸P‚ &2AtºDfJ¯Kä†@‡U`Ûð¼W` lËì°[àñð¼D¦[¾Ï"4êûNgKäL?*´E.<_Th‹Ì‰+´E>!Ô°[`Šh—¹ø›Oÿüú×jÄòñjšJ.š‡H%IkÚþøÝ뿽~>ýî§?ýãï_‡ÍqHõ¶÷Ÿâ°Ñb+—Ã&½þ¸þûëŸÉyþ“Éú Ÿ_tÀï_߸AçiŸJþZ¾>½?ÕØR½>&Þ>o:¹¸>¾?n=‚×±oŸßö:ö÷ç¿ÿ–—æ/?m.ÍOùáÓïþa½¡¯oÿí…«ñþ|jõ¢bÁ·Ÿ_¿9~ûúö¯Ÿþþ[Ýó/u¨úýÕöõ_ÕL’qûnÊ¿âËMãûï/çúõ_Õvõï/—_qعë€éýå:ìË_õ$?ï–·Š}ÅÝ2)T¦®Ià¿|÷çŸÿývÿOA–\U}`µ—²Û?üé±Ï±^[Y‹°è·ÆWís þ+Êû®Îtíó_~óíoeîùúÍëïõןøé~ÿç~þí¿¾¾ýãõS¾DãWý”–øijR£ÿÓwùÏü|w¿=¢Ã^÷G&ãþüâ…ÏQ,§Nlr¼Œÿò›¿ÿáçu¶·zéßüŸûyþò~yaåðp;þÆ1œ¶ê<¿ûíÿþÚïÖ—Í>.ä÷_ýÃU››•·ûùdþµß⺬YùõÔþT`‰#qe¥VÛÞ³mÿÍê¹’-ˆÚt¹X-XÙK•FÝÃq-þ`Û~íqÝûZo{l÷ÁöH¾öÀí=ßöˆµË®=ЬÏEWu ãkÜÞómµ²XÎ˨÷Ù’]‰"úL\5ØÛærÊ~d]eøó«ä„5Á±2Ïêä2Z¤9ëe~l±XóeÀiû\·ªpÁC÷9P´RÙgÑ„r›M÷ùØâú¼Q_ßhl;í8Á÷ã\õâÊq®^éó'·Åb]H”Ÿë>¿ºöù8nç@¹h=ŽÏî̾¿>Çyà†X…×ö‰5íïû ë|Û¹?·¸>¿Ÿ»¦õ¼ÏN®Û¹#3…÷`íó¹…>F£Ù=ĹsµáSøÏ¸‹·U•JÑr&êoÒ§`¡»Ê…>J鶺hCü*I(GfÛ3óA›XíS‡‘¥êÚﺚ'^ ˆŒ„ß;ââ´Ìî^azaiåò“ás¿¼¿ÏiÞµÿŽiñõû]Oý}|C—}?Ýž×ù­W¤ÜÏeûÞ×G^ÌëúáÎß·»ôØ‚wé„””ºÞ¥ç>ô7±bïàÓôx6dŸ÷§ O îÛúÜâúüö„žz> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 222 0 obj << /Length 2842 /Filter /FlateDecode >> stream xÚÍÛnã¸õ=_a,ZT­HŠº´¢ÝÙÐ-ÚlÞvöÁ±•‰fl)µìq‚ýöž/²™Ì] }HDòž;ÉCw{ñí»fÑæm¥«Åíý¢­óºj•­smìâv½ø1»}¸TYwy­«2ÛCsÄË ˜ìˆÀ‘ËC4Y?ðqOæ#Ör˜àÿ#üm–Ã¥n@èÑÞ:ð©¡£Ÿàß$+ úò¿Ùx µŒ±…,,? òuàƒØ6ר^!s´ÔÔ¹9òpXÌÚì£CÝ??ÝþyQ,®•Ê[+ #5lÎãÄ’˜”´ã/.Õãðo°oc !xu}¾$Áip's¦Žu€cGáþ}FQ;¢_dÓ¸E¬qˆæ¿]ÏTUH,ùCF!íLd²®¾gŠNqˆûadƒLA˜Qƒp…ÒàúCd@&zN‘­q`éKÕÐÚÝgyFq8Òv#/É/¯«¶Íþ ì"ÔTü]€ÕF¤ØIqþ–ÈÞ‡0rà-·¿ãÏûÂ(ýrr‚­aH!°&²K¡»ÄOK°B‚è¿'%;¿é7"q|Sª!Ê¢ò]7ì9Ä 4í,¸NNºû,¾B wÃ|lÖmˆš=Ã:ÿ™)F7BOyn·G|/#…Q-º§°¹ÃÈíX¦Æ!¤¼s-,3ÆIÊpÞÙ8†–Ã:¥Á+ pŒzl'²éž¡³ÄƒýÄß%ã#‹ã–£ %’€³Fyó$DÄ{hló@2G&1ÞóØž}ŒÚÇ-µ“¹»°î#q"êׂXeä²*ƒ`)M ½›i¬b%<Ô´š$?ìÄ)§U”è-JzN0úOü’¹5‘)¥Ã‘ç6³{Iz0B®[û„Cö—ü½§ îŠþ “(¬1Shíw3$ü¾P%ô>vaÍqÛ¿–Û½‰L%©Úy³15©ÙÐ t®LIõbŽ ã`wàfœú G’7ÙŽÃ׉ôòÍ¥Ò–ì;Ñ­cD6-²tÉuáKäq«ÄŽÿÒ BY\–YC !@ضKòKùfËmraœÁmJÎmÉüw¢šîLPÁŠ(6SLñ_ŒkÉ…qiÙ‰0róNŽDPvIÞDw²“”Ö ჸLã¦xc-Tg¶ŸØ‡&-€éûÀ[i›WÎ.ë×ý <|Çž¨‘°™9™ ê9¯& _ï^&›„ <BΘS¼C»Ì‰KÅ^Û¹ÝÕ35|ày¬=í¢€y¿}Wëèü©  ­køUÉ*ø»4³yï÷"••<ü[h^Œ`Œ9¶dâNPd˜Ã]Ô `± ŽÁ£œ[Ô !Ž]²-AÿæŸÜ:?ˆVP/ 7ÂþÚ‘L¸Ç‹ºQÙ/¤½êƒápzf𩮬ò¶1°€ÉM]ÿãʵGëßË£d‚ªª³·Ð¾a¾PÝØ½å®sްô(,u ^»“™pøÀÃb£U¤åI–tg*RE^–s6…N+¼tÑZÒþ^K F…›jÉ}#¨Ú’D­l¦¡Ý¦ "ÂÃQ yš–ð!óÁÆ­ˆ¾Ê¡‹ýZ¦`›yHÐŽ´é™9”­i-+™IS"[·´ðK—–´mܪ(k FÉÒ…H c^3Mêx‘°.©£ˆ$pDe´×Š*®UÑ7«™ó;ŽŸÅ)óßFkº{ÔS£R~ šûWÒ—c“Äå1ŠÇp©à8ÕBE¥buÎî(J^‹’9ßœæ²Ç(²“5Wdépç˜'åù-ýbnq§Éq®ÖTÊ‘uV‚½Fk=žk½–œc¬D¯o’Ø\òsaD ½8Á›3³ÊS¤Ã'A+É[g(¼'Þ¢ªh‹2¦Í®A[¤¥_%v1›kÝ:„!A¾šÀœÿó²Òs=E{'2Á1ûK”Üc_ý&ÈúüÂԷѹ›íl~«ÙG!ÕÉ4ïEŹ-MÒ—œn{a'ò†ÈþØ)ä_}ÁwƒOsß"§”„EÍ—»s¯Œ¨å‹Ô›™™¹oæBYÅÔQ®™2%‘D ¢æ¿?K¬3;;›Þœß&Ž‘[8ï9™v# ®^ð”Õ©[¼˜N qš¯DQ§‰ê5û¯g2iÎ _—7SbÃÊ_‘uOÄHoÒ¼’{]ÂiMÏOÒ¡’{ZVé£K…TYe]ÑpÌÕŽfµ©ªÉ¦_øšxÄZž±î{¬ö 9/øóè “éª3n™Bê^LtFY®$Îõ©6Æär¾×ù±—«¸DGjÙ|Üõž"¥þƸ}m\INŸ|)ˆª½ \¬G‰? °"Ö3OÄÛ‘Sùƒ,1ú«ÒŽæ7-ߺ{ejæ¾2ÔûËÞ$ò+ÛòÚ¾jíòõGù-÷ßÞ–å•R\“Åmé&^sN1•(>Sù\Ô™RŒëø3…&þpŒøCæ°3w¡ù;‚ƒË¼·7D¼Àš%Ä>ÕÀtöW¡îë¸*êÖ±;Þ¹z»«ðp <&1ç4‡D)ÌÏJ]n¡õ…¡"¸¶×îjN…Âå®p ÂS†»²Ã”˜mZº¯õ ¬mj®eƒ]`Ê'!Ò»tÞþö£âêÁ'$F‚6Q¡¥eJ—eî\½Çè¸Y̪Ùg,F…‹çtU‰=cžR!Ä.„°Á$CÀ6:/l :—[’Òeö'ó}¡ì¡HÔÚ†;]žÎ³+Ô*oІ ¾»lJ~à±îå÷ü³QA5ȪdbÅñcÔÞ9ÓÓ®;pðŸ/!yeB\Ÿ}dýåÎoûT l Ûv.F·$oxàÞçK[eËÍ!ZCÜÕêÓÕ·K×Õ) Û*¯€þÛ¹vÁ²º)Â)?uÞÖêÜî; Õå+±Ÿrn5*0ª¤ˆªü*VFX§1~i(¢Ò0f”ä¶Èøƒl‡\>š“ËGä!Æ8ïŒêˆCBk¶Íkh½ìu^7ŒÞYç›~¥‚«”MŠ"·Ú·uáÌT¾Ä ÒÖ¦AÄ&×ehyÙÊ©ÿ˜â¥PÕ"B¢-áØyS{CïÏé˜Ü¶ÞQ¤U7î’9— …n œÖ²äïÁŽ„º]è ºxÑÝ,~¸øûÅwøs„9;Êä äT®Äeëâ˜Ò…†¦TÐâ9䶪Zçuí ªJ·­X Q§‡›¯>áÉäFCÖªòÒyâ1qZ×%ä<ƒla+zH˜J7@ÙgÉ—Ü»ýŸºwS»¬…Íø½Z ƒÛ¥ÜV¤qS…äôjV ÜvÊW“°nƒ©”D•E‡‘ 4 zÒ3m¾g?³2ñßZ÷Ltî ecÿ™ÿ’'tî²ÜoýCÔšíÿH'ë—wxœîŸ]›Ùb‚ókmUnm=ßÈ’AѶʉ°Ü‡·+yM(¥Ì›P´û’VdO£9?rêøÑ ë4ÈïHä¹ØÈ›¦ž½ º“–Ow'íÜa{»”÷À¼Uú$gzÞ wOÛŽr;¥çºýƒûÝ l.ý•.6“ÿA=¸XHnöQ‰¿šÚí ÿ÷‡Æ. endstream endobj 225 0 obj << /Length 2193 /Filter /FlateDecode >> stream xÚÅYK#5¾ï¯ˆvW¢MLÛî'°HÃjW‚‚p‚EêMzf²$éžsá·cW•íjw'3#VâÅíG¹_•Ëåï/¾z_ªY-êB³ÅåLÊRu6+òR(Ï«ÙoÉwgó\édy&“ƒùõæwKí;úÖ4çØŽÊäÒüÖæwc~¿§yjþ~‰¦P÷ Ѷÿ Ûö9æÃùíÃãL!1‰½ÿ„uÔ‡Å3™f"K«Ù\JQç$äŠvu»¿ÁÕ[ÓŒ‡h×5 ½! Wá ¿!i[ê[RÛ.[˜ßÏæ÷«ù½sÌ[ç“<2CpýYj#CL›K&¿™ŸVeòáÌnT&¯‚íZb¹%Vo†Zl™.¶L*švܧ“l¯HOÛ`òiIœUZ玵Ÿ‚9Üö¢÷7].ÇncZ‹¢ÐÈtÏv Æ÷jº‰Èö@CB¦j(½DËL'9ÖOa{´«L^GŽ1Ü3âÛ™÷Ò|”mI¤N¹ÒŒ ‚팷„×ÄëKòÒ·„Q;·5ôHòCœ—aÓU¤ûkž`øùèxÍvu‚Èá Î(0kèÚrÖH›œ9ÌêN lÒl™—’pðY”ð”0â᫧ƦÏàiOõ²HWš>Ëç«Î™æ#‹_¤BËÌCmÇök&â À2Y&‡[]ß»MS˜·Gh’ ¶+¾z_±£vž‰º2@*5­~VeIgôš*èµñÝ©ÊêÓ7è…öEXaý¬Es„iÔÖ²ÄF ššçyòÉ/=êqÍ´íL8`“ˆímLH:„“*ùzì3Mrý¥—’‰¯µ2ËŒ5AòŸÆ ’JèÊOØ6$гy¥Ódâ¢9t^‰¬Œ¢/°ò{*s‡t€¹AWê¼àÁvæÉuÓccZI0„SŠ pü4ûXÈú0sµ¶3ú±_ÝÎ]W^Ív)øÔ×´ÍÒòs±‘%ŸàP&Êë°‰gÙPjnÓæŠ8ë.qÂQsDGö”9¤(LF8mÜeÙ@ÍÎë PW¤+«¨æ? ) %“/Aº*}²–™­#)AOê©4Á17…ˆÖ-ì&dU…6Ž[ž€^)ÊÊ cei ÄqŽK©³=Øk¿ê)¡9db+0!ñR)¡êœÓ%ð!ük)´±ßá_(Š|ÊÐ/iÚ”¥ÙEõi–~\Xê*Ä7Káä1û¬fÙï¾%„›¹íµ4ĵÛêv-ñ !~Ù•`<ñè<<Éoܶ­uËÒôÝfòTÈR:yöcys‘JåÆíÉ“âÑkz3`ÍUfBêèôˆˆ.’CgcÁ½ý(­ÅÆÀË¥¨Ê"p6•¸Õ™(FšT žm°•eååAvîécÌœVß–ÝÔÇ**ø?UbSëq6_¹‚ßÓê‡Iù{¢¹ªÄ¡Éq¾aÜLx‚6b–¹®|jë ŸuQ O3“$jŸô~1•¬ ¥ü„þY™ž†×¾ ŠY.tQ Oþïbʱ¡›‘r?[ʼn Ïn61ªN@ã üó!ÉKç™mîÈæ÷NüÓ¥=èþ@çÊ:éc 8Q;„ùŽEÁ†)–‰`ÿÁ4 Pí£saº49©-<‘°.èQâm߇ [?â£IùÅØS)eˆŽ;òò@ØÌHv»cמ™AqBøÞÏ‘OˆŽµÃð ëàátô8à®òœzÌŽ8?ؾñhh(‹Üi‘=[4[q³BÔ•mÏCálíúT(æº.=îÊ&Væ®ü1›ûM™n&LÏ%ÉżSBÉ»5ì†SÓø!DN©[Á n"¼=G£Ä$䓌A=äÄMÏ©ÆOOOÔ»÷ þ»!8ðócY†Ý(Õsùá{ÀíiªŠAÌø{ËN_ûûúÉïÂá] ç6P ÙÿóõØ+&z<ùX ƒ©¨*9®Í­ëŸýŠÌ}KÖRhe¼IiQKÜzÅ–„½Ö¸Sá#q‡Ê—èι*ÍâJ×øM}£€çðx‹LéÑ%8ú<“µŒ|m\®®”¹ð×FìÚ¨¾¢×˜øâÝâÅ¿ÅZ¢ endstream endobj 228 0 obj << /Length 2966 /Filter /FlateDecode >> stream xÚµÙ’ÛÆñ]_±ØD„0ƒÁ ”’J+qªb»¢Mò`9UÉå®Dk^íK¾=}Î HìJ.[,sô5Ý=}ðÏWÏ^¼ö¢+;oýÅÕõ…1¡ô»ðM(mÝ\\-.¾/^]šâŸ—³Ú¸ºððÞÁ¯¾œÙªk ïüüåÌT.†ÞMQòg:Ccømh쇫¿_T3cÊ®o`‘\Poº !­xQIpúÆßàL,á·†_¿;øíilÖØsfŒÀêŸ;aDñ5Ää¾…àC\øÝ )D$ÂRS)"p;!5fÎ4¥÷fŒñ70»É°n™3D~§hè6Íî…<%7?ç)•˜.Ù  y¶tÁKßVM%(ÐÇG1¿äJ³[ ²ôâu›)Ȧô®†'0hZfðê†ÕµãcÜð£.ÖÌLîyö§KÛK%øú—Ñ1ô‡ìã–Ø£-Ù+2ö±W6×ùnÁŽs=’0?âŠ^9¶<¿à÷Hí»K …Ã\Ë#ƒ³ZgA‘ˆÛ»Lä[¡¥”ã8ÊÜOȬ9ˆ¤÷çÒlMéëVã†#BœÏH—fuW—mpcmJ,ýé¶¢ÄÂ’hѲä{ž Ùlùd„‹þ~J‚-®dc»à/ÑÉ(éG„dÚªtÆ(/ªºïIJ—çÌÛ6tºa>lÈø‘>¡-êʉØ-…—ãN5JÈ“œ ¨jJëœÂ×ÓÙd怰~ÁéµepA”rf0Ú†0>³¯Q€]W¬–DúNµô9úÏ:0aÂà}Y¹(ÓÉŠê—]½Áe[5šÒu‚ëöœPTßî"[ƒÇíñ¸]UåúƒŸªÖo+Óù@#—ÌÀpÍÏý‘ÎvÖ¸â=Í|Šz>ÂU‘ü ÂêÒÕ6 pæ+^_¶®v‚Ut#ȯI-ÕüŬÏÑvï“Qam`^§ÉAžÃ@»‹k¾›’h]ðìT<'"U1¼ëß åkÖ-Ððћ짵ñ*12=×ùbOu˜0°és×ÿqÂB áA—{­ó;åüDLYÛZ7á…S‡;€šÈBõ“‰‚“("ø³4Ät¥ñÍÒ–uˆòþV¼Éšq¨Oœ_S6­Odü„í¸ÒÙ–mÇ=A@k.²%/§ØI;ûË5Î=¡q UüvR˜eÕÔŸröS ×emBÎq Œ™€ÉM ª#É~qSlO,T£Çë _Fw˜Y° Ç÷¬ íÄõÝjµ§(©GuóuñB0Ø0öa«! ª½çÐdãªh¨0Cá1ôi€,5Øžü˜,éµw'z_™pg¶ õP:0õ\"£s6UÙ<‚K`4?é‘hìà.ÛîÔPÂÈNÚªsðFü’=?°%ßxÓ"pç-øŽèΑ1 Õð}¯ÂBÏ´–AŠQö#ÉA°²Xh¸µâ™#… t ¶qú‰œb~à€Ç«5ÇD€ 6ø/k¹]Y%S† ¼ûÌKþi»õŸa·Mi>e¶#‚¾ŒPέֆvÚ¹‚£iÚ_‘š_Ù3ÎlÛr×çjŠ£°ñ•œŒŸ|Ä\ÃsZS Ë‚8µ™SÖ ×±¥kvxZÝ›dIˆ*÷&¸-`åýú]X þåA£Z໩KSŸxÅ$ŽCÎ%zJÑKDÙÆ•µóÅùv >Ū³(¥ô`¬+þr .¦¦xIÁ%†²<ŒCÃa8Åà·ˆ{ÊUÎŽ¢¢´­F èN#.·çg†z›<^Kø’"J 'ÏÊ-µ §y„æ zæ×ô;÷‹M:ŸgEc?hšv`Jq?¹Ix_Ürü]£ŒDP’Dã´&k@Þc´\J¬ó–1(´Í°KL'ù Ý|-­y)eÍ;NÒQ;$§1ÔÃÖãàôkLÍš6óáˆeÃtØ3ϦU·n—ÿ6.z£¿Nf(ÛºÎïž·Um§¢4[ùÑõƒòì7·Z'*(8‡çëHkÔ œèø®XðûßÈ2cš¿:h|/ZßåZ×P*üqÊK¹*rú%³ÆšâOŒïLCq0:~³Ôd7å¯D».ùÀi ëS²-ɵä%ëü ²`É»ÒÚ·Àê†ä®n*&¼®X¡P{PE žTC!½Ö–h ­R͆US ‘ª‘b>Ÿº(ZHø}÷´:ðÞqÉK]{*UR"´¹Ø'´±À;Ž«ÈöC𗨾E‡&¨smÙÕæçSg˜ºœï.£ýEZ,BÞµãÃú¦›s:Øö‘¹DØuñm`}®9)ÒÅŠhW© `y\£ò‚×å"ýÜÆÖ¢PbÝÍÁÎÕçã#“}(ªÝ°á™ž¯D3hÁ& 8ÖÜe¢Š(ôNŸkŽiHÕ©“?2õÄÒClÚ.u±-(YKgAæÍøÖ5Çwç¾A.jãÄáH…_Ä2Ä\HÕçIÿ ³iã"oÍbOÚ’ÂX‚Îu,Ói¼Ô‚útƒ y[Ôô„o¾ÃpåµBU©¤ £U|ë5ôz]sx=ÙbÝÆœÄ¬»ã܆YÆÞ¤4i+ðùAyqµ¡‰F¸Eïšf@÷Cÿ•@‰“(— e’&ŠÀ…¿%÷èSA”„¦‡ ¯5y;0Tæ`j§Qj+°€óµp¾±Îi+n;fÛÔ$Þ39Zd‘9´ûl—ÔNñ{1ðî<Å2âôåܲƛX­#£O8…¾G‰³Ḭ‰mþª°&jBÌRI‰ž„ÕÃ]*åfûðXjèÿb³^°[VvAn•ºÃ¹g_]=û?àä" endstream endobj 231 0 obj << /Length 1937 /Filter /FlateDecode >> stream xÚÕËrÛ6ðž¯PÓC©‹& "3MgÚ4™q©{Jr )ÊV"‘QJìvúïÝð¡X±·=P‹}cwþrþäôU:ÉüLGzr¾œ„Œ5ÑÉÜT29_LÞx‘?ÅYæý<}wþÛé«0tDÊ×é$`ÄŒàLý,Õfþb¥Þí•PùY¦%SÔÕ4ôð)‹ü®àÐLÅ™·É²èͯ4òc+ò‹!¯0ôU˜„OWÈ –cêƒ`ɱr£D ˆ™ I„ùµBÃìá}3æ`¦ü–¤)U/­®$ˆÜ{gð²3j˜úa6ïiígs•"ÊÜ£p2 } #2¾´¸~ õÄAÓCUÃè9h/èi*Ê+†ç[ñS*Bz“™BNJD!Ø5éš-̼…¬Éi R SoIT6ŒÑ5јûç~)ë’Ú×Aëý h)$«´%í²÷C²±¯ç-[ôœÊ¼s´MÉZ8¦ võ–áE½†Š Ñ·Ê7ä~~£Ø|7¢ì샆ä[;»GeÊ¿8:"«Ü†ßš½ªüw½Ò‰`°Žctp(˜D¡U0I‰öª2’'éè6Æ·K¦¸sÖö¨3B°ŠÇ(³ö\l “Õåî¬ÃɤÈx/ó§¢èâftì5¥Õ¨§ Q‡k&ò6c4‘ð\¢·d¯ k(QE^yƒm®É®@Ëgãb„`Àg~Íyʰ,›-Ç5€æÞ…üÄÓ®a€æ…à–Yå—dŽMÃ>‘Þ[‹Tкf#¶¾¸äI“L›¼zSS€,ŒAš|8S"b䯙# ’Öë6èçG=k£L[‰ÄØÏâ^ ¢å÷¸Ô­¡G¨½³»//È&hýƆ Ä1BÊBòÅ@i[ÁÇÀ¨È¥è­´½)U˼6ðÚóŸK^Lr3+ܦ±mgè°ŸãX™jÑçïÆ¢f[‘Ë7¹¡·05Â3'`Њãkòt \t±Ž0WïwäkŒœ²!‹SÒ›Gnå€!Œ:áýzFÑÊ6´àùÀàa8ãáR_%|Zÿ ìm´Xã\PNxõ•`:+w‚¾fÔçü‡Ùê5<ÀóÒòI7~€eÈпȾ z…(êd5u\$ÿå@¹µ$3ökØúí€RÄx$»ŽV•d[õnj¶?jVáqŽ˜Fù2hå ½ê¹v2—q)”žK*X9”?ïÜQó8Vš‰qØV¡÷žè£Áxün`Cð}Äsï{~͉P;´ åg´aÐа’bŒÃR Ò•@5µz-â•]^;!T Óf,¬, 1ñqÅý1ï/eõ¥õ]a‡áÝác¬.®<SÎi‡6èÈ>)E‰ÆšìH-îØ7UÒ`=ײ†X÷µÄ, ü4í%©¿‡ê,L IG#½ˆ)RˆZŠú;~ost› é$–EÞÂ6ê C°àÂyåã4ÑÜ®LkQÙÍ:ѯ+1 >$AÓÌLýÊ—ðú­ 4Ìr&ÂRÆEráHµpåT—|ÍÝ* Žƒ9®:؈@㠂ը؅[±•êuªÝzwd9©wË¥•äÏŠ Q@uš = ˜T}í–ÆŠÄW¢Zçd„M¹pÍ^¥ûâ2>åê_)å¼oZĦÉûlZÿIFC5šFkês[JOáùÝÉË{a¾àU6ƒ©Ã.h„Ð7ïŠ~ Ñÿ—êv甋ÒM|JfÔÿ¡ÉxÄúŠÂ<ƒ'zxx¬j9"òc?}â'IrS›#$×¢F=¯)%ÜÈqh9<> Ò~çtÎu€Ž‡—û­¹eW¹ ¸(ð8äêCg.(Mitt®N¾r®þÒÓR3Ø®}yŠnj|él´Ú­À…?_H èÏ%{à×b‰õpêW™Ê|ÿô‘OcÉèðÙ®Yrb¤?ÕÏzÁ}UDýð¹jÐD÷ÿÛJa‰£'ê–•g´Ži ‚º¯qT7Á ¿HTå?±^;’Þƒo<ÊWò£SØ] ¿ÑYÊÊö"ñK C!àÙèÀô[š^MÓX.ðç½ϰÈçÌ‹×ïg ¢;Ù¼2×ÕÉùÏäÕ–{@„u?Èõ©9Ù¥ _ã®-c{¨‘]¯¢€:Ê=1Õ”Wêê)u,WJrÍ=A!>¹¼tKàåààA7ìôÉcަQ梼{ŠÒÎwsà 4™þȵ¥X ÐíG Ûö¸T2„¾¢áY*HÄLOHpÝHPݶ5Šè0I¼ðÜšôZY²‰·¶É”ä•åÊr_›sï-þÔ{³ Ò¿mowæ³"&¡šuˆ{k R 6BÑ|«Ù’æ6üÇþìê&î&ÚÃdøN}ñ};‰ÿ`›°VæÇ|µÉªXv¨^Ü[çè·ÕôÂù,°°šß˜ íA2=¿Óa!ë\¬6í¢Ü©ò‰Žð·£¼!¡‡Œ¢£@z؃ô>ئ~e±3ÈØ)ˈ÷äåù“ä˜WÄ endstream endobj 234 0 obj << /Length 2431 /Filter /FlateDecode >> stream xÚYK“Ü6¾ûWLíeÕUnEõÜÚœÚõîæ”J¦j±ênZ±±Ûcò߃'EõhlWšæør~¸õÝÛ"¹«Â*Oò»û‡»8­Â(Îïò¬“ÝÝŸî~ Ž»8˜àåkàñËnŸ%&ø'4÷Ü YÓLÌðuð}‚ï]”EðƒßkøÒÕ/­< õ {ÔÒÆ½,|ßÃ× •„«ÝX"\·¦`U¬?ï+îöqVÙW•ƒ_á‹î 4ÿŸïý3[ü%î‰g™od©ÖP»#˱T»X©’Ï"ÁUÈE—/ æLµO¢°,“õþàÔwoKÏ‹öq¦ ÒÁ!Ýý™Øî“ŽŒ&ißEqJ’ÂDB‚£d#í*L#/yÚ%eP[&{BÿêD.) ¯<‰'“¬ºz–•ˆŸ$# ÝE‹!¡Ã$ü?;¥7BU‚8 mÈôÊGO:ý¨%ûŒåÁáªíÂAsÃÝúx¿R¶‹¨–jÝÄì\\s)g\!UÔÁöÉnpºy~ñiOj{Q˜Øü.‚u|Æ/9åÿYÃŒü@Æ’' ·‚ÒäÓ»‡<Ã$eêi‹gÕ-˜úqvQEç`…1Çq`g‘£Ñ&žØ»7öŸ´Ü:NC#)†]„çZµQ¦/bûqZ’ö'ô¸,è;:EßN¶_Õ=p^E–*êm@Tl¢Êi©­‡çu`ÇJÈE’Ÿ§)¨“vL(œpdR}Çd‚uo™ðI}ñÌ}ö¦š;ä½FJÓØ'Ø£04rQjüÀ•ÃZ\ðN¬T`Æ„e”¯M=ó™J¶>Hýbªœ+fD숣`Ai%•‹=¦ë…j}-Ï;§oúØ-\݈dšY ‰-ɮɜ‰79‘¹ ¦˜x¥T´`Ÿ^¬/"qyƒVŸHNnQ÷’½_oùhƒ©º ù†aRÐù%·3%\Êoð:¸MÄQ¥„²WäQ”KsÖÃá^-µLe|£R/O2yÏtŒ­³Š°`áÓUZ/Âȸ´>í2ÄÂ,!÷ܽÿœ6r;R¡‹ŸÎêMm· …P\þ… Â@ÓÙm1Ïàr¤es\¼K8ÏÞd TÕ:Ñoš Šº—̶”†N/߆UKe4ÄO¹—ìgò0IÜR© óxuó0ʬYÂ*–Bò]GϹaË¡Úÿ5Q€­­ºZ˃VĽšaïîâZEWÉ*b_òr¸)¹aäy*%è"ŸŸ“œ"i”±x ;ÉXW.Ýx¹&ulc¡Ìƒ==2øa,GÝ“´ŒWïyétÈ+H[8ñ‘ІGZº8Yî(0æhEïN"_ß0‚;N:°â+/ö#h’)èCDs°ÜÈ<9ÕT*¼Äº³‹ð¨PjÎŽÄVX¦w-%²6<0¬—d2æ ñȧD˜±Qó«¶Óà7º¸©f~uÎÛi>Ù°‰_cä?H CÕB}틈›’Âé‚IÎúH©u2zmäŠb3Î9xùÉ)ûæ(ÿãc­1K”FK€[’¬’ÚG?ó@7ò¯>Ôà*KÎ'–³Ô#÷&/TسaÐUºÝ2¶\:5:.?¸G®ü2VY‰á%í&Ô9NܯžWUM³è͉nëTÏËã­nÏrçÂ³á ³”Uðr @“,–‚6ß ÖZÈ‹D¼¸ÃRx³ÖpOüåYlÔ»œó™¯zIþÍ^òö¨ª/Þ"*°Ã´ií][^gõÄ‹‰ð·îo õÁóXoä ÛP¾à Âíû-ÄÀBËã÷â QFn¢È¤an(t®¬6 ¾Ô-qH†”Ô¯Œ4€ˆÄroFQ¤ÄŽ&Ž¢j½G uÍ?Ö‹[*ä/Lú$Ï3HÓ.ï$ÄÅaÌ­T5ø¾0î$ëý"[êh®¹Â@ŠI/Šƒÿzþ²à Š™1¦g ÏÖóèW/0Ì×P«V¸RRÌ(9ÊÛ\#2º¹Î‹(îzF‚âøE¸ŒüKYJq ãÚòÝo+›j)OOîeéþ¹q½xÿÝXž¦˜hPHÆÎêžI©óÄG°ã^ÖËâö)’ (~Ê‚/ã%Ü¸Ý ¿ówîÜ–ïÞôt].ÿë(`çöžE{tú Ûˆ™»Ñœ¶¬Ôñ•VñÐeú'•ŠÄ›¦mu¿^p±Î¤Ï¿ÇIݳ~´^BV/5ôn?î Û^ÖÎ °y¹À¬è$ð¡EXBøM¬*/ÁEõ{"`CÿzõïûWësÐ endstream endobj 237 0 obj << /Length 1937 /Filter /FlateDecode >> stream xÚíYKÛ6¾çWèEFbU|ˆ’Mt‘Š)ÐzhzÐÚÚGk¯·’½úÛ;/J”Í}!›4zLq†3ç%qüÃÑ‹oßY;ÑYêœÎ'G'“ªH WNòR§¹r“£Åä·ä𬞪är·¦ÎLa3ýýèG^kÓ¢,®Í&3[¥¥²²l=5:¹á«5üfÉ¢YòÊrR¥•ÓNÖå*-³œ×¡¢éÌ:XÃu·Á“Ì×ø¸Z_À}yËs[w ÜÁ‚éL  ÙÌ”¤´¼ªÃeíÜÎẚæ.©—LZԸϚ×Ôí§ÏNÜ4Q ¶=½KÀÞÖˆ½C¥Q»!rKz´D©´ÊÅþˆ¼…½ÏLžÃn`­ðÒĆ5 í̸Œ4¤øŒ7™ó pm°% ýºãÙõ ÿ~È”=Ý ‡¬P( nà2%®ºE KX~žê2Y£ê®Ãí!±E«œÒ½Ã-œ{‡,Ï É„‘Š£<ôo_;2“ÄÍ%™éœàCLLÑBÎÍrò_ý‘6½èx*â¸,'TðDÀ4£ir߂Ǧ0~Sc 5µ@®ÐÉWháZâqHÌ`"« ¹ Y®Éùuœ 66^ÄH‡½!7W¢±/yêœÆCaW·<]_,d@q‚7Ýòlï,ŠùŠ#qúe»da3kMòF”Pî¢á¼ò ž÷ÙÖð#rýµõÑÍyÓt+ÆbúœÅñ\JÀšÔ,mËûõ©² TT•” Ê’REêì–¤eaØ|2ï°ŠžK 8l_ ±žg³/äyU2bµUò:"ËB‘‡ s#ÙÄ¥UaJâH©@¦Sâ÷ãfS3ŸbU*C[´Ä1ËÒª’b#Ø‹@@/ÚÀó2¢Ñ¥ Þ=~e÷µYx¥#e*"µU¡¶›'H*îôl°õ°ËGÀ.c’>ÍÚûñ¤¬J­s¾C„µ„Ëí~lAA€°G˜•µÿFÜçùq_Ö>)îïviùä°v8ö¼©ãŽåd*Ü`ÌŸUªuõp–Êž§‡¡ú’I¯Ÿ-éõs$}4{f¥I‹Ì@”)D#sÆBReôœí¦Iˆ ÓD¨ÔVvm¡F›Úb°<[:= ã³èÿzþë¹Áˆ¼£žë¯·ž«,Ë¢ÉgG“›}o“Ç™üÉãªGfOþøb ^kÝ{l”ø.úS±«¯'ño¢xÅx]êJŽYGOv¬þ’Ž}@Æ£¬£ŸÃ: ®à—Ä2ÞAE1ÎËÑy3Sf©Q€OÃiÒ=ä=š–p„º‘é1Ëèè·þSÎ{8ƒG/͆mK§Ö¾?’Ó©Òp‰$„ÎRe#¯ÂÏ^a^EM\Vaš˜«¬ú ¯`IiD èÌzg1û úž“?[ƒ k‰€í†ŸépN÷>¾ôM¡K’vÔ¯êü)Þ÷üVžwü{!M)Ps*‘&­ V­TZ¸|Üš ƒûévÅ ]&ÒFð;îC ÎñEZÒ^л“ë‹ußEh¥±ÌÇȲaOï» aÛ7úDg'»¯[îºQ ;+çÜy ×áü-5ñ¶B9—FŠt‰N›4‡Z Ÿð…a¬ÓÒÓ5:­´|óð‘JœÒ6yO~+lÒ\a‡œM® © Žo±Ý ÏÒÇ„ivuÁ±z…< ų_˜{~1~!e ,îtòúe¾‰vž5vž¥\þ‚ÅÐ=]ú.D#X”Õ}›˜rK*hØ´‚•}óiØŠZ¯V\dw1O(Ò`04ç …V»mlɹ_§¥õ®°÷ËŽÔšY¾Ï%ÏW›1ÞÚc\ËaŠìÐÅÚÑa³¯óÝá«Q#IÔD†ØÑºäÁeؾkzM]b}®@.X˜7’q¸Õ-9Hú{BÒŃweðZª( ùµXð¾ŸÎrìŸR˜¥BJQäÈ›³óµ®k ùNØO…Ç'͈ðù5\ïàz×Opa”½õ©ǶH¾a@‹¾ 0°¥Hºer(|°úñ\hKf?|¾j-åòØ¡ÏïúßAÌ4—ýy)žþ†³-t#¸Ïâfû¦=ä•àxßávð†hý›ê~ôørXÞŽpöZ„¥¾,B»Aï"ÐY‹Ë–¢ÿBTõŸZ;u±’g†V—Íîp¤ØûÓ}̘]¥ÎoR©{WóuCv[N„ÔŠ¶}´¬×üó_t^ˆÿN::‹ßÊ`R56VCÖ¡åM`»À•W¸7ÿ^FíT•|Ä7•ň¡o!eô)4XˆX3±þjùÅ«‚ú‘Q»t-t¬/áz^§GÓu@/y?áŒÄ‚®H”~£íÍd.·ê1Þ^‰‚J¾B¼J[áÉÛLĦ²¬Ú‡ì-PÆ ÛÝA7W&0\ÄÜ»ôØz'[©"ÛÓcìU€ÝF΂¥¦"@WF¶céúâíÑ‹gÁ.H endstream endobj 242 0 obj << /Length 1849 /Filter /FlateDecode >> stream xÚÕXKÛ6¾çW=yÑX)R n›CE㢇nZY»ëÆk9–ÍE{‡3Cjô°› )ŠIäpøÍ{Äo–Ož½Ìô¬ˆŠT§³åÍL©,J 3Kt>[®f¿Î_]¨ùÆ5Œ ßÁhx¬.V'ó=¼–0LÒÐôw¶¼ô5 ÃÀˆ`d › 9miKBÌÜÀxJŸ;ÞóÆ˜‡f†úâ·å÷³x¶P**¬%ü[Ü„ûµ8˜YºÕ#Œ{׌sOK ޝnö¯nYжãëxÚp¾²Qšª>ˆ«ØÆáðÀýšÙСtD_t\ÛiÃ[ f²ºÓþŠE©;­³î™_ËcÍ|oùY‹5@ªPŒE#‰ ÃÎðœ¶Bk÷ Ú ðH œ¨›nÍ@U§óOߊå–M›HqÿðK>iÃã«)sW¬·÷0vì¦ é†—öŒúÈ|J‚ÅÆ|Í+Þ ¼ÙÛäžõõ´ÓÄA˜í(ÕˆÒ£dÙ:_vÛkD+g˜YÄa¡Ã2œ-ño…7pЦŠ#cf UÿQh@VÑÿÿȰYd´×¤ê»]MšÁ|V 7QÑ‘y7Q6ëÄ=K™(“Ì?öY7¼á9Œ?`|àgÈYŹí«]¸#ò”)U‹ÔšóÐ,“š sÏ‚m˜0Ý0E»õ”‡![#tÒ‘6äþ„ײ©x¤SUÌ¢>XQ<#ŇH–&üô`Ì€N…y¢µüΑ¾àã"fCºËãu–OÉs:ö§ë±Ú ä±¡¦èŠüÒ #’qJš -+„`3*ÊÒ¤—p>:"|f/Înðêzè'+ÎÒç‘YîNQaÌxðhšt3Fj2vÃxà”ã:.ìÈ4êÄZöŸ÷{3íËÆ3MLBމú}†… Aúk¹ð÷âvR☠5å‡(D&Ê&x*{pÂç.E¹¨Dà+¨Ÿ¯»¢ })‘üØ Û®” 6xOÈhº×ÈGú7ZêPmÿQ5†ñéÖzÂÜ¿ˆFl5h‘ê<“ ’ž!ÿ)¨d Ôë}ë`ƒXxå-¯zË¿éeÂÂR³Z¤ÅÏ!ĸ¿öèÑúœé«G sFÜ^0o«GÑå´£Nî[þSôƒI–<}z-ßÕõmqšðÐe5ruhÞƒ{ïz]8T ýŒ½9fyœCs)šÎûîà’ѯú¥OÂoCƒÙ5ÁëÁßÊcϽ ÷}o­é†÷{)j“FEÞ¯«Ò»7!¹‡^rbñmîÛÎÚ7gI¹±ßPzÒä?ÅÏ0^á ½5Ç»rª†ˆê¹4t~þ¦Ó‡mE0j^JBï3nº´I¨óÑL¦yÇ,% Å v¦"»©3Ÿ 5x¢8œ©¥¾É<)TEKå|’lÙl¨¼éÙË\\ - XÂDHå3  IâÌÇf§ó#^ ”úrR¬èAøýÑS&Xèl¾ÂDÐýoáòÿq­B½ÛòOo¢@-wüÇ qÿMéÿá„»w›¥uå™#æ»ù:éHT]DÊ~ƒ#nޱ¥&˜·kÌ?:Ÿ×,|I -VðýÁ}Ùy‹Ï÷%ÝŒÝvE!¤SÐjfú¦G}Õ’¨,²qäôíËH C†KÏ ”Å?-æ›mQïé¿êËBê¿óù~êΰ;c\º¦´œÁÿ(o¨”£ÜRZu“/ÀKZ ó¨nÆéÊÊ‘ßÑRSÇo’VJzÏNè7è`d•ØF*ɉ ?g}æó¶ù~ëœZvy>7^ £54Jð^Ó®/\;<ºiýÙ´^:Щšuw–wy÷Žb`=ßò A[ËþpK+»„€ÿú+•˜/ÛÜÆõU¬\²ªJNòø:¹wo_¸ÆW" Ê"b†‰QD eÑÉ£¢©|úâÖ9˜Ad]x¿­·^¡{^å~ͽ£…ÑQ··4³ÃUiˆ™¡Ù³À²“7ÊÆ`ýîÂB´m8w€ÿº–åèÓä>ÎèlLIG¯ÉÏ­„™qöãUzçLÆ<1U·m Éæ%`4¦Ôƒj“ØîD:U)Œéï\úL˜$t­‰ÞG!ã¶ûœÊËÇANeíÁªóxÑ 0¯g‰R½¢ö7_¿gWÁº:Á·º´7溚r*?CÌrÁèæv*sÀÏ®ßÐfkæ¿×^¸ˆv¤JV/]˜HÇîÖ&5gÚ+­â DîM ñÐEˉTÑaÙO¥F $fš_×Vüìß ŽÎKu”š5¡}6&é<TLÉÇNyíW”îjð5×;Tëž³µSjSq ©Í~ºÚþþ{$"^¬ž±BתšÀo[uq€™£ôNØ‚z»(ÙwíYö+N¹$Iñª ƒ°:ÝDE9ÿ¢üq{òÝòÉ_’ïó½ endstream endobj 245 0 obj << /Length 2439 /Filter /FlateDecode >> stream xÚíKoãÆù¾¿Â‡¡ÑÙá³èH‹.Рh1Ù(‘¶¸‘Hƒ”Ö»—þö~¯ÎPÔÚr*zH¿™ïýä_ïÞ|û>W7U\å:¿¹»¿QJÇ…Joò¬ˆµÉnîš›Ÿ£Z%·¿Ü}ÿíûB{°x§n†¹¿UQ¿“üZø5¼©ôö­í¦?ÝnÒÔü¾½Ý££‰JÃ3`ÙDŸn³<ª°pÆÕé-CÓÊ40̯pßÃo¸ÕEôÔób=1$vø¶­G^y„‡‘P Ý;Á9ŒSˆe“ªX—æf£`M™—‹å@ô¨è~ÿýúÄòT3x°ÍLñqºŒÚƒ¼Ú H€ÿ›g¹I_ÎÍQ¸iD9ˆ4†*é«áw¤w‚=¥:û ‡GK¯bfè\:ô(Ã=«ô$l¶üˆ;êa§çó„ïÞÓ‘M¬mCC#‘®È'/bSæ¯×ö5ùE6'‘RõùRF¹ŽóôŠŒXùTê46ª´Ðÿ¾<\ÙdÆÑV‡ØI<¡¬z¾^ºãŠˆTRź(^/£^d´EϽ$Z'qY~Ízôî3 n¶`4yÔŽ¾…ÀuK|!³8NÈóÐÏ(Cf Mƒ?<ŠD[ÑùH.=<³Ô,øªmpCÞqøäêiísÈã"|]—øb=¦IIúz ZŽ'á¸,µXüŠVUU¦/ç^x$þ&‡£>\S`çƒç¼ZŸDaYÊë‘Åž¯6"ÖÎÞ\Å«o¼ÛçñƒUÊ)´¶QN Né¥Rý,ïáÓ´<¦k°/Ǩ_‡åeL¥ò nƒÐxçj¾ÔÏ%¯Pnæºó$/:›"ƒj\³j"ØN¨†³V”¤½bî©s<¬ÓÔ9!Ћåt‰Wï]Ý ua/¥™]8ãÌÍÎf[8(ójþ÷^èP\çFûŽŒëìj£¥±HÙ€œÊ•4˜ÄI‘û½ÙZцZ,\ªƒõ³ÄÆL¤ÂÛyÏp ÷·ü8³æœæ Ê€ Ÿl)rXKë*ÚÌ éç¹l‘èÜÏ„Ö|“’¤N*&©Ö¿¤~r3§ŒHKy8Ùú,”,ÉC%aQ™ªÂ? ÉFºkm8¶KU5<®zË•™×ŽÔ4¡$ð>á_ßñÕÚâ’c0wmÇU ‚)æUý´wó °Û=oê&¾>’@ïí eôÎ¥Žk. û†…M„ôköKÚ®±ÞR¾ §Ð—ÁCÊcM󜯜xx‰½Í)çuÖŠz9[õ"æ2S wެï”Ç¿ÓÉëÕW¬Ï”q2OÕlJ¯EƒWBó¢Éb“¸6ÑÖÅ@ìd«„ǃía¬óäéÁ{ä²{”„#bœ=h¶†¥)t±Ñ¡&½šá43³¬ þ°h[¯}|˜ËŒe²Xø§*c•K!®kºYÒ^\Dë°e§žaG•x#'v¾Z›°Òà í4ÚÐÛy”hÐ|uª£¿Q˜þÌË‘óÄË5¶.x3lÙ)E8ö iƶi<íéÔp»`yÍ6D+ö½oâc“7#žK¸ËÁ‰‹ÔØÉºéQè/ÒÞ4ç’[Z’¨"³T4‚C-âÕUzæþÕ_ª©“Iµf_š¥í‰øp‰\É}-ÏÐ+1ijÈ^êÑ;Ä|øÂÂ1ÑäÕ.âO Æf}GxáITÇvH'Ûvš X<yõž3ñ2Ô g¯d&«(瘅÷è\õèËÁÕƒû:|Î ¿å÷é*åÖxgKƒ<ã£kÛ{Gͳ8¿HaëÑîKY7Ç£5| ¤sy6® JÒª±êßñÙ< ¼—h³ZëàÖóAB_žs†ÎmƼ øßò[ÌVx¥·”aà¡æË¢ÛrµÁÛPÔ¤¸¥‘½£“3Ú¦îäáŠFí=-WGƒIè}h{ë¿ôU/Ï%/âßL_o×$EìÅ$‹Ò}èì¤ÖH‚p¥¯.²g/e¶u.ƒ‹ŠFb@ õd“W±áq~ýሠs/,þÐÏû(ƒ àÏNá‘.ö¹oy‚GpØÚnEô6!ÂK‡ÌçÐÈ)¤âj…ŠÖƒØ½Ë¹ðv® :¯]§g"Aìôºâ/•5­¼6TWÌãå‘-oÔÁˆR7&UòuºZŸÚå:úé¶4Q;ÒÊýlò¦ô £u—l+ÓÛŽ£ ¥±jâhbÅÒA^RêÎ- ýü¥ÕKñ‡ð‹ÀÚüÌöˆ4êW_Õèÿ™1ÍrïeºwwÞÓ ¹ìì¦,¡XÌQ^2ù™'1Á ùÅDdð66á¬cë罚<?ºâTÙY‘ÕX+ºýÊðÄqzUL·Ë~}}çªÏ Ñ3’Wz½¢-5´œÕÍÆè8©*–WJÓ–7¿{ó_7ý1ô endstream endobj 249 0 obj << /Length 942 /Filter /FlateDecode >> stream xÚÍWKoÛ0 ¾÷W=9@­ZOÛöÆÃNšË°íà:N ‰‹8}ýû‘"•ر³vE ì X¥HêãÇGÔOÓ£Ó³LE…(œrÑtIg„˲ÈÙL(m£é,ú·/`-aÝÀº†UO«´?ÚÀZÃ*yªsþÖ°f“ßÓoQbœ(r%RŠÂ²g4¹$oZ§°°ð«ø+'‰r²œiXÖ»NûN[¾÷ 6Þ€Œ¥—%*-ìàÏœ—8¿ç óÐÀjýJdj²ʰò‘‹Òmt2Îð¢Ó³¼“‡ÄY*J\-sºú;òì Ef+Bô&Z›¸½Åã;æýnb]\^ÓQu˺›¨ÌSÓÒÁ…Í’þ(ñcãÏ *=lÙô ®F½3—ëšÎš DPâm+> stream xÚ…UMoÛ0 ½çWø(µ*YŠmÛ€uk‡ †a¹u=¸¶ÓMâ4v?Ò__’’l¹Í0´i‰|$)EF~229ϳ"RFp¡uTmf÷3n²Ti2TÚ’ÎÍ-œ~ßÈyôµý†ŸßKf€ž-f§Ed/‹ËHÊ”ç2T^pQ˜hQG—lqKÖÄIšç¬[¾ÙÁc ²ZÂ〠ÈöÆš”Ý”Œ5,ö]l—öÝÃZ÷¥Óœ=Û ¬·¨²º¡£GÙãGÆ6å]œÞ{åÀ;ïX°P;ô^>Œå~ŒØ<ƒ^V½«à0M«íšé‚ !h—0ëøjñ#J¤æXL¤äf>·L]ÛÂãDç‚=ÚL%Û#;…Ô˜E “8™ Ŷ%Vܸ4tfòºo-}-&Ý;nÛm¹¶&”Ô U„PÃ*ñ£^.îÝ#ǸÐ>ìÚ÷ ƒЪÇTC›rKøqM„!Ê]À^âŒÈmÈ QonWC9 ¢¼iˆ61%Ì•º"$̼ãà®Õ0sJ)OÂt=.¥¬‚ؤ Œ£!%IŽâÙQ©­á“çæÖÚŽƒi^äix Š”°"l’—d89ädGîäžex‘y?<Hd5¶‘ ÞGLR!E °# ð š‘ª!ž´Ÿ@M¬úïÌpàæcãYFAhKëÆ»xh£3n † æ½ñ ÇÃwokе˜9Ð)¼ƒ0%މ;‘™4L¸ìç ¨ç$‰:÷5{œƒâXêáIºJ3 0­“dæ8¦J}ƒùä(ãî®h]µÝÔ_8 Mr4„!³0DfC|ƒŸ ¿@Î@>Ó·ÅP¾p¥Èao‚¯(†ÇÇFå“Žî‚ úq6ÆFKv ‚¤]¹û ¼öŽÓÎuÛûäbHT²? çÿ)lùµÿÓðwÏtH[·´—Îm˜*aŸ8~\ÖkçppÙª »7vpÌ6x•+ž:Æt††³óÅìF¬· endstream endobj 246 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-cox13.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 254 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 255 0 R>> /ExtGState << >>/ColorSpace << /sRGB 256 0 R >>>> /Length 2341 /Filter /FlateDecode >> stream xœ­™K«$ÇF÷ý+j9³P*ß­„mØ ß Æ-„,ƒ‡–À3Xþûþ"#²ª;"t‘ó8·ªº³òsÃñÍŽÇ¿oßâÏ—Ÿþú§¯Ž¯_nÞyïÇ¿_¾þ ~ÚÊñßÛwßþøÇ-ßàχ[ Ž?ßjt}y¸èŸT»«Eð~¼¨ËBi] 1;ŸÏË ¯ë½¸p=¾ð¼su©œ×ž×“o®økt‚×õÇá^£?¯õ*“óã§Íä|úñ—Û—Œ˜É×<×_Ì¥¸‘Ø\õÇëÏÇ;üðýñúáö‡×ùÙŸ8„æüxzº¼áéÖ]|üîð–ïŽi¸ìŸž~Ãw'¡–‡§ã[¾;Õàšzúün^ªÒÜX0¦ØŠ«c.˜ºœ.º®\nçeÁ‡ë¹8¯ëŒ×{w¥_ׯë1EÒy]ðá:÷¼~þqjæã‹‡iJÙu¼’w£~nC}öé‘]‰òt|óÓ!uç›<žßþx®&y¼¾ùñº<Þßþ8NxËú8ðºH¸åÐéV‰a cÏt îkŸqÝü2êï1b’ò‘ä|÷îïï±ýñî§>~zÿýñúÍo|kü—æÃóòI/ÿùøþø"á³~ýׯïXŽw?ÜÏÄèÇ7JuÐb*D:þvüòÿÈë Ü*öb=ÏÀ‰ÙµFX]i£‰{ƒž–¢6 ½ …qÞüŒxÛˆPqka¾µFÔN8¿Ð`s)âT7‹•·K÷´°牜8šÅD¯ Œ” âŸÈ8ºE¬ÆÄäR4XO,>J#6þ¼9o±¹>o®®V‹XŒyó i0XèÅî·MvH÷6¢KÕb¦ðL3IhL.Ì›ñãd¡¸1Λ"Òf&Icî4eÀ±ÅFƒ»ß(›´´aYðàãÌ«†‹Ëi2ç|ÃÉå1¹ï9ò– 8g9o8PB&.„ {ÞTÄó~ÅiÆâ8ï7Ü)ªgšqË6 q¡lh¹Ð7ÊÆ–#oÍ€h¼åè˜{°oÞÆžq׀ȋ –Ûb¼oÝp½¸§ gù¾˜ø~͉†Á\ü†±ºðü<Í^æŒ=m¯Ùæ~ÄÀ?-w ^¬lëÅ߇‰©®v&¶¤  ì`, Jxˉ¶ó¼_3ÿü>,<¥_ÃÁ¥ \ò†=…âD1ݰ ˆ{ßð¤‰ÙqáB&ßr”x‚…A`µì) g \†±M|Fà¶¼âeoôÅ–“¬6~îŽfˆgb±,ûOÉ–QîÏB8úJñÐrãõ$ž÷k–Žâ¥åÌñš/&Æ2òù˜(Z|Þ)1à‹ SÌ“ Um–¯1Å;Õó%®-gާ”xQõ[ޝ#ò} Æxé¼F|0WÍH“‰y&Ëë=*¬è<N\~Sa‡Ài9rM…)GÃÒE,<7ͨâ¼ í庸ЋYÎÜ SÀcYâuU¨‡,{*àÁèÅz¶ìg™BÜha,K<ŽdÅü†±æzQ`íÜìEôUx1Í”.'ŽÙ j¬T£ÎŽ^cæR9¢Ñ@LÕ¹QˆøLü\£çiN~¶] {çÞ—¼'ª…SHB­ƒ-¦1Qg D¥ˆH¥1ðñM؇ˆÓ sy(޲ÅÊ¥k*³´Ñ˜øæŒÂÆXH²¡cE-·È%ô)~«N˜Å楞0r'wùƒ' TŸ^þà±;Ù=ˆ?PØxJ—?PX¹„[þ@aá³üB).ð„‘“ûò =‡æåžõÊÜœâ46«Ë(¬2 ñ ÷ÓË(Ì2Hñ £ RüÂÀƒ\þ@¡çͰüÁ3"¾ÍÍ þ@cç6\üFl‚qœþ@cá`ù…‘øò ÃtÊ—>Ðì¥=Zú@1Ò_d=ÀúÀpãP°ôáB]ÝýÔ†ñгü}`8)} 9RÕu¿ôf ¯§>ÐŒô4ßwéÅÔµòxY΢WDŽœþN} 9È|-} ˜þáö›õá.ó%úÀp=#úÀp‘òNôáLYý~êÃAÚц—þYú@1rDæñ²>0Ü×xXnÔ5ÜO}`¸,}ÂúÀ°$É¥ GNK\þ,} ˜Úßþ ,wÑ_¬,7iïXX®K/L}`íÕ\oÖ–“¬ëËQô ëËͶèìÜÞ²>°ÜE?ˆ>0\¥½}`xé ц“è ц£ŒWôáÕ~‰>ÐŒ’¤<êÆq?õáº>õá"í¥èój¾ŸúÀpXúƒõf´¿ãQîÔuÜO}`¸q³ôá"ã}`8K>}`XÚŸ¥4SYñ¨ wÑ{¢ £8›çMôá"z]ôá$úMôá•DörEhÎK‰>0\EŠ>0\D¿‰>0¼ò‘èÃ^ô¬èÍ©=ëÕ۳¥ g.¢–>0œx¼K”†.} 9^¥ Ëo_–>0<—ùÒ†‹´·¢ K¼YúÀp`ý¹ôa/í»èÍ¡ó¯?–>0\©Ü¾ôáBÇüÒ†Ÿ÷¥ Ñ¢4ûÎúpéÕãÁÒ†¥Ø]úÀpâz`éÃAÚ\ÑŠÇûÄö@c“Åfw ±H÷Íæ@c’‰`o 1È2°5Ðè9ɉ3PØ»6«, 8õszÙh”_ùŠ1Ð(¿ c ° öb 46.»Åh‡/Æ@£„T1%a/c Ðóv]Æàkçd!Æ@£t"¾Ü¾½ý™•€ endstream endobj 258 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 261 0 obj << /Length 1046 /Filter /FlateDecode >> stream xÚÝWQ“Ó6~ϯð£ gW¶l‹!ÌÇ t:L[ÂSÛßÅÉ1œã'@_úÛ+iW–ä$od­´úöÛÕjQ¦þ ’«Ê:ÊeƲ¢ˆn»Ù§“%Ï ³ÀÐ6š¸|ÓA]õ³ßÕŸ•¥¤3õ”¾XÌ.¯ëHj}e´XEœUÀ£¼ªYVËh±ŒþŒßö›â6IóºŒûö{5uç¦÷fñ°×ßB÷7úßœÅÁí€âU¿ÃÁojòµVq³³êD¼Óº:3ó1"nnÔè^ËY’–Ÿã±ƒVÚm­'o^!65ª•‚ðH½òƒ±Èè×özÝ?(¶6kRg @Ù¾Oþ^ü¥P0©L˜Y2è ’æ–°äy@}jÓvþæñsú~4¸fèÔ\Ÿ¤ÊˆÞl×k4Þ5É­¹hÓ.¯+î»Q Õ(…ŠAðž%©ày¬¡­F«!Îqú©¦nE¯ÚWÕ¶„þ¯Ldª{§ÚA£Wí³›¶Îíȸ T4¨¡þ`x4»Wü‹Ý–£]doëŽhŒùãíìj bö ËHkO§ á=¡Úv£Y;8#×–w[2ÝâÛ;|Ç´Ž‡,izí‰5†¹j|zhθ<ô%™}OíI€Œ‚îg­H´#ÏHOƒ°æØý\ªéá«k9Zz€CãÏú2ÉJ.£”çL„\·†Ü¦n…5+‡Â­äê^gRïÞÙì¨Ú§$…¬¨â+5¾VkJŠ®1Ð`Ün>}m¨åÄø).6ä²M°9ÊIù„Œr$ÄìµbÁãŽ`½À–E®“.ŒÅh%*Nõ|Eë ÃÛy9 §F.'r 3Å79?kÆù›˜VµGJ2‚Už “’`ÉoÈë3òÚÉ0I’kk’½ßI-eÃÆKƒ6B“‡Î»žRˆ¿óÂà8|KRK›Õ§½ÿeÓ÷0ÊMB+d<$1Ö.ÏCKÑÂôÔî+Ú¹&´­­ÜœA”ÝV“KBÖ91>0æÓg ß8â*¸(ï¸Ïö+yà#i·wôŽï .£çØi.ûvÍ'¡„\›¥eˆsIiü½isﺺØ<{ã¬çÞ•ö²Îxºy›òßÒ›Üzõ†Ç*Р‚•%„u e?<|Ô~CjZïÙ?ì# íX`»H_:ñ \Ë6ßyÏÛàååµ—Ÿ¿€À×ÎÚá•BÏNGØÖK>ßW‹M5ØX¸Ÿs=½ «ù^µW§jCñ`]]ÕÕBì—#íyÔ,”V,(‰ü—í‘çØ¯äÉO¼š«/º¶‘ªVªÑŠ¢Ò g¯³ÿ ˆ endstream endobj 250 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-lung2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 262 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 263 0 R>> /ExtGState << >>/ColorSpace << /sRGB 264 0 R >>>> /Length 1266 /Filter /FlateDecode >> stream xœ¥—Ko\7 …÷÷Whi/¢ˆ¤žÛm-ÐÚ@IEê œ´?¿‡”t¥FÑIÏÎуúDÞ!÷‘{çþ:~Æß³ÛãéÃ/?wûÞ]ÝþñþîÚݾ;¾»µÁ§{³<¡Ï©x•ä‹ù_^=»ûôÛ««O¯®ÝÛk'Á]ýùÑ=Üõ·ÿ\¿v·/th]{_øó›G~óü'|Z’ûûxùÚ÷ûAîþÞ}î='›çàÞ;¬4ä½»ù"<”Ì(qóq…§\ñôíòŒ3‘otƧ\ñ”<­ñ§\ñ†H[ñ!ϸHÕÍŸ»rÅ÷í®ÝŸño¦¢TŸ›ã2©Hù1&÷“'ÚÌ”ÂîL¾æÍÍá7ñ©ìîz‰;fÍãrË%+ç|K›;^â >îs§r‰»d÷}9Ý’”}b°ÒƒèDÆÊaYjEkñ¡Ñ®V”Óæ3<äÕ³¬x—[´Õ°â]®8‡æ¥œñ!·¸4ßâŠw¹ÅûfÏøÚûÿ(pu1#'KìöžËÚKñÌÝN>]l§P|iÓùô„ú!¹ûÃ×Ì_p'ûöÃWLÏ}äa¿|vö­ïþk6Ï%!{úüRŒzD2äFû˜’QV£éŽÑçr~ùF{™Û?“Üô2š"ÔÇ;÷«ûðmÍ.[&ξà8\0Âm‡éþ¨¨MBTbd=­€ò£Í¡¼ ¢ßcH ³`Œ¢š’Op#ÉY#Ž^`<°j¼ ê>™?Z}ÖŽŸìû «?Û¥‚nZÇHŠYu®žš!-ŽJÕÔK\UW<:Àƒ]êƒZÔtÑù´¢£7Rä>. ü¸Ë¶f<¨?úRM#ùêÏú5he_ýE„ÆÊV„ªùÑ›Q-tQçç5o”Ø“é">Ÿ¢teÏðwt”ê¯#Ž^ŽB9hË¿?$T](á AuÄ]$FOKp¨.ú‰nêÇ6,Žâ਌õH²DP‰Ê4ú%ÃcùT·?  ›Õµƒ°ìjqTo\M»Ÿ´ìþZõØwHÚ½I·U c}ˆ¨進%儲âx낲´¾ì%v‘ã‚›n²A™“uƒZv(ñý6(ó`|B‰áSØ Ô$µ J°GuƒÚ–3¡Ô.Ê”%ù*”Ð\7(¡m¼ ¥~¿nPâP,ÉJ=Ù ¬Ò¡ŸPjòhƒ²K1¡lÒ!šP"÷5mP"­Õ„,„J«òV±?}6=Ë ‰©wùã_Äà ¥ endstream endobj 266 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 270 0 obj << /Length 1458 /Filter /FlateDecode >> stream xÚµWKoã6¾ûWè(£kE$%Q*вÍî¢ ôá[·Y’-y-9iŠE{çE‰J²‡Š€9Îó›!ýn½¸ù`uPDE¦³`½ ”²QV$A–ÚH›4X×ÁïáÛå*Õ&,—*lat0`àúSœÆð©`la` 0Œ7|êùV§ÔòõA¬”‰ŠÄ²¢[Ñ€’0ž`ôr¶gq‰£éL±å §Z1¦a–µ7"°!­i¤5(VQ‘f¬ø{që/>v’e-ðè·¼ušu¶VÖ¢T¬UqbÃß`~…q;%^ƒ˜|i«^¶Jù^Eð,^h¶$æ§v’5™ûÏ”ºÝdá7“ºfòZ¨¢<Ç;1¢ÿèÿÉŸk’ˆº”' íTq”$jn¬“µ¹˜{I"`?BM…Ÿ'Œ Ü~žÒ÷Æþ¡/~žV*²ì™zÅrVÀ˜Á°0Œxí•øê—g´œÉiÐv,$#õÅ¢Ù1Ъã"yRoXT¹x¿^(Ð*(ld³<йè%AuZ|^`o0 1xSÚrÇ„póÃIÙà®[üno%2WžÐwØwòYÛÑ‘U:ÐVEI^°ïë=ãÅdYXîh’R†?ÅÊ4„håù NfaS^%H¤B-û®]êœëÿ 7’ðx’eöB˜èð¶SŸ:xme@O,´*[žlX!Ǩƒ²=‘è†$ ›¶îl9jh ƒìW;1‹žB ¤Úc2E/%cŒFaÀŒÕÒ 7eåZK×r_A¦²­e²+Ù{X §Ô×f¢È(8÷ËlÜ¥´"´éæØf™$Ó˜;@¬ÑQ¡¥•šˆ0 ë$üµÌ µkz-:n“ðýÃT5íÒðFÏ¢}P€`­¢<Î¥G»J;ÖÒPôû…»[ö¼®0$û‹ ¡bòŽDñºÙ_øwê®`¡ôôŒP±ê±Ô?Þ¹2óâXj× B)ü©pš´0—»<®–f%e®fNÌ-îx‰ôŒ»6Ï„bôû†d¡êðj9S •½Ce‡‡]=`•ñJÔžnÛAL> /ExtGState << >>/ColorSpace << /sRGB 274 0 R >>>> /Length 1659 /Filter /FlateDecode >> stream xœÕšKÛ6…÷þ\Î,ÂòýØ&h hÑ–t‘d¤I‘@J“LþýžKR–L+3–íXÎ"3ù.‡EñqÏ‘${Î$ûÀ>o~gŸ™‰\‰úS»È`J[¢/oÙŸìãæ‡û?~~Êž¥àÁJ&¸ö?…,=ûu#¹Tì¿Í‹WL°¿6’=Ç¿IÀ~Ù8ÅCdRK.ëw±Ûxjh¹Ô„ D_ƒãÞ1i4× ÷ è¹¶@)wI+¹6ç`tÙ0î]e4Ò¢SŽX9nÑÜ‚Ì×׆[ôÇã1l7¸¾ó\ͲÜhpäÂÀ©‰ô35×}Œº3Œœ£Á¥ˆ·Ô‚7\˹ÆÚW>³ôÇp4µhDÊ/äÔD0B1p‰1tùW·˜SYÞ¢ŽK“çpj"ýâöX.±Rœ¥Õ¼+Å…Ë++¯Ô‹³´Ëc85‘þä÷ÙóH{‹z|£ÇÆòhò„¦ïp÷(£«y9âèhØåîúØIºyšuNóiJ«T­ÁÞsïó>åí85̘`9R‘|:Hª±S9 Å¨¹£Sq¯µÜÑùmhê®Ï©‰ô`d˜t¢;m®qe,=·”1Ý%XÙœYÎÒoÎZç,3èr2´œšHH #¹ÁÞŽÅb(ƒÙånŽÜ`ç ¶ØY‘úų0¶hgA£ì‡H©¥YeU·=I%%-þncô“;ʪƒ®›Ê6G?ýI²-gø_•mE˜QسڂKMq%=”VÝ1¸-¯ÙÉP>à¶¼®ÉíÕ+ŽåÓۖ?½«7ÿæ~ææïß@Òþ„áfwïX¹ßñGa<$÷Ê“þ»ëÙ·ìîÃæÇ»ÜôÃu¥AVè'•í‚ÊJnܤ²[PY äVvRÙ/©ŒåŒ´a¬¶•Ë8“ƒ¨¬£®pÊ££4ÚM±i,•Ș)É«Å'å˜Bt< åÇr%ñˆÃ¶¼â¤¼tg[>önzç“Û}2èr,$PÿtçOÔܰ=XYbéEUjËåµIʕڳOìÁÊ´êMyd˯¬(¹ ¹²Ú}ÜuqmŒ ô‡u騂¡‹vÃðïâðÇe:y5*aÎ1=ÌÌ׿]p£øo}@hÕ_ÜüvËÐÙ›×_nÙúÏ¿ï_wìÝ-Ö»ùç ûtÿ©{ÿñíKºÎËÛÛWìî9]j™U&ë-:ãgö\¦h£× ‡L3%²!ÕïâÖ4Ãi¡³‡VL³² nM3: ©´šfXÝù(L/¤Ðsgàjš\L³ x$2˜f4A¦&z™eàb®&Yð´bf¸Z^à àÔDú™Å$C2 à ¦ÕðÓ,ä)×­ÏÕÃ3ˆGqµ¼‚®¶áBNMd´¸0kL¶Rrj"Ë[,,¹Õpj"ýâö¸šX¤iWájbAøX¹W‹Ê[áÔDú“[Üçbz­9¦":NL³ÂÝ£<šf>[Ÿ}ÃÝõq5¥H^Çï‚‹‰…C5'4çjqa—(ωœšÈhqa'´Ù¦[È©‰Ðb5©°û{s…Å.Ÿ¶œÈ£âBʼnâ*Ü=ʣ⯢Ùv¸»>®Š³>ŸN×ÏEa§rv ®úé†gàÔDF}dcy)¾”S9 Åªph¨íò oœ¦Ôf}NMdT\ô1bÝõqUDô¢K\‚«"¢OoÜ%¸ê%Z¬a†Sé©Q—åóØ]îVàò™Hù4ãT®Ÿ€óIp2×Ï|Í»÷¸(,zfÓÏF.Š‹ælî_U\Ò Hùõàæ­c# endstream endobj 276 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 279 0 obj << /Length 1673 /Filter /FlateDecode >> stream xÚíYKãD¾ï¯È GL<î‡Û60+b$B+1$–ƒ“8CÏÆó`öÀo§ëÑ'ÞìhWbÙ§í®êªêªêê¯;ß^=;¿,'UZi&W«IU¤…)'&/R©òÉÕrò[²œŠ¤}™ eÛf?»©,“ÛéLå…mìû£í½™Îd‘4ÔÛ­ -“ÞîæÓY®“?`äâÖþ¦ö[”É7 …ïìÏ5 ú8é^»þ˜€RoHüÞ¡£¹îÀ¢Gê®{Uå·{ÇÊV„Hàé¦ÖÜÑÃzÖ$êÆuw7n’Àï-ªñ~¦[O¿úq’MfB¤Uþv¿)™ô((8Ív¡Ó”Jæ@é¶½ÓǼ®÷ì¸Ôž_2Š °¯ömf[%$YòÜ:\*ôÚ $‚_ì#¨ûkû: }þÂxR$^fyf›_ ’öÝ÷¡äôÜÖL†÷3“;ʤxÔ- ïI0öwîóÌØý50™Oâl¸œ2ÇÑ1ו2'ÄPdUjd9Œdù‰Q‘¹&QϬYM”³Ì†sôžX¸`îk6¹Á¸Ù¨uÝ›hò» 'caÃÀt·¬«â 6ÈX7$·J‹Š•~ǶºÕôåØ 8‘N+&Å[Žþ†V)˜uAÍG›tà ™¥e)†yRbó¯æ\ìóÑÌ+ÊTe¶ªH•VbÜ£‰C›(ÖQê®ØÑ=÷žd”Y•'¯mkDeÅâ"¨ªT”ûÕ1Çá¢ïìsiŸŸ±ÆÑ.#´ÂwÁNü(V“q¿â%P²®úŒ} šˆÒž„]Š-ŒÊÇÇ›sˆ¦pepÏíÖ¯:[ táMÒlnÆSpS˹¿™BNü(Çñr¡­ÆŒ{#œ²’S‘qbĸû0hŒ Î=2N-B©Ü‡! ‚ƒ]qPõ1™‡`Kïôc{¤³ ¯”ŸØ9²Ã6üíVk‡ŽCùñºn t¸jÔDUí‚g!Ø„s YuXß«°Üo¢A)Æb˜¡fÌ;„ãeä:¹ã…œœûT@R7, ÷LÝ ö$N÷†ÎŠ‘"9»ñrZêäÎÕú5¡ª™%Ptê­[Q÷ÚnGDжö`O²7×–)|P²H©mÙš ¹ä:ßÁm¯ÝÂ×l½žE`Ý«éTt`Ôæ‘>ñÖƒO!KêX6\·œ˽÷RcÔ hõ÷©Âfœ.m Ÿ°@±Žºƒ˜_p¢ˆã ˆ<5F:g c;B¦Ó€cÑöàH"sqÜ¿sI5ÜOs“Ô{`¬çì‰f äêTý$Œ+?mŒ+Fa«ù4a«|تÿ‡­ï[?D&}¼`40šñæ\€Ñ7!93Ä'ÚãZŒfÄŠÁhÆ õp š¦<£æ@®À±ïˆ÷Ôð^ñt¼§>,Þ“>ðž:‰÷Œ÷åïé´*åî½ù fÙòмmÈqZIïëk‹8lˆTï¸`œw{êYÝ¡øzg0…<ƒ«µ0ŠJ8b„‚H°ðÅcGþžC’9ÝÜ­ºÁc©+ȶ‘ â1c·%oŸÖ;Z+ò¶Ã›C˜f³á;U‹ ^¸Ò³$he–µQI.}±loO”øêÕ(Úc8ÈŽÜ©®{mhZ¬hú#ƒ5WfEš—¹ŽŒ%€ |¦Œc‰TÝŒNè+K, ‡¹cã±ÃÐ_£"ÝãSxo=Àož)¾kjÖÀînµMÒÍ(R–Ȉãr¿n"W/03=~ûÝ âí‚b# ¿Mt`Ú9Í»1 +wì†ú}³yÛÄ#ì¢Õ’5°Ö×MP]@“»u‚]2£ö?ÌÖ–N¦BzZâ+®µ×âÙ80bÓÐäErB1†¯‚Ñljj–ñ}½ý^a‰ÜòÑâ¡õÇ?¤jjöÑ}þékñ¸Â<¥Ó¶-ý™ppdˆ¡DÍ…mÉ•õ:Ú-—A„=)c& m3ò Ú‰/xb&^9ÒbëÊŸû>™{žZ&Çð+ï›s»j9"_‹´0êÉâϸd‘Ú%ÿÖ;º —@Ѷ± à6;8R|¡©æNF'‹b3Sž8ŽãM'¨kltXˆpîº'à³È‹1Ëøô“úêÍ–aÈ¢Ó1ñú†å.˜4Ǭ?>§—Òîvî63ʲ$¯ñž}õìl*J endstream endobj 284 0 obj << /Length 1239 /Filter /FlateDecode >> stream xÚÍWÛŽÛ6}÷WûR¨“ºMÙéC.Z Ƀ,Ë—Æ–·’v7Î×wn”HÛ›:@P ®$rfxfæÌ~1Ÿ<{•i¯‹T§Þ|å)•…i{i’…:J¼ùÒ{çëi fqæ«©Â÷DGþŸðÀØÁØÂh`|„QÃX²È,—0*YZÀ8L?Ìñf^ TX$²E[$™òÓ«ÌšÞ_Ãxãȯ/ÙŽ¿þö£°ˆs¶ÿÛD;÷0P÷§$UzuW•¿’Ý{ïgÉLeOkß³v#ø #ǵ—çs™Cë{G¶ª.…D /e§½ à§cÅr¼­ƒ†é"De†j¦ÏR©8‚'Jƒn’9P ›çñ:…û†¢¸)ÿÿ•ˆ5¯‰çƒ<±|3ªT²áNTÐênVv¢u‘jÄf0˜§¶žRüD¿£4LâH"“²ÛŸ¬êYXˆ_ÊÜ‘'?0¬?—"eùs|Âè[‰'ÉRräOS#+‰U%ûl%@²½xucqfr;Ÿ( ÎÌS^‘…Yš’PÚ«ö“¿'Øy¢˜¬WZ2j2ñìõ^åÞËÃäWø3kØ ,£/°«åNSÓa¦´§“(Œ"áÕ|C¾Z§ä{ÝÝKtŒcÍšW ð.ñÿB!vœ¦§:÷ËŽ?Hyá¯ZQ¿ëdž‚"C¶ˆ2Ëš¢N=Å‘^÷åG4,ÈJ|d#û‡½aTÚàw⯸1€dÝòLEñÀ¦€*À M A„ˆ+dVào èÖNí¡!ŠQaª 2vk¹ŽQù …≟ïg*Ju=NiB_3œÏVhûäüÉáøÉ ³´ÃFØ…a½àÕÐWHÙNs¬€ ‘Q§A åiX]=B4ˆKÁ×› ”ø¶¯„*k[®5T«Áµh –Úg WRzÆæÍŠT:ýà>=˵([» ÃûC¶ %8/Ü ¼¥­1Ê›òN´¨{J ZMb+Ž(¬»‚£‚0_MX¶£¹nk5•ÒPƒR6à³þD9ƒ²45KK^#D|Ra,Ô²EŠÊI1±«¡Õ4Ó6Jg|êpˆEyÈió4kIA*æT{À¤•øo»^xd¤4ÛE¼vð`¤¸<‰?L(d`”…¥f`-K™ÂbÍå"Griµ\]X l'ª!’¦•./Òã3ηK‰žJüÇ ;mxƒíPî3÷(""v¦&‘¨·NÜÆ`$þ Æ‘üç%^(h©)Ó§ïDgõaž*£ˆ ‡ûÞºÀÕá…ÝÀê N .©o}©¨¬K×FZÓg9Yç0~ƒñ;ŒÛÿôR11wÅçƒäÿâ¾qëÜ5+† !};nµºö 2¼p ñÇi÷lJwmÝ—cÈ1p³Ñ)%'Qâ¦T„qÓŸ[´šžç¾±nΆ VÜ.Q.CþÝ:]À=ŽSÇç/\K¶ÌˆÒ ~?¤gLDkAù*¾Á^Î5:ˆÓ°ÈOúýJIŸ”]Zn)–ì…zÔêòšz¤¥…’›Xj51­áôÏrÓú¾»Ðçàö« #Ð\°êj ¦nÜŒ?ŒCU( u¬"–…8ÈEÿkĈ endstream endobj 280 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-cgd3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 285 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 286 0 R>> /ExtGState << >>/ColorSpace << /sRGB 287 0 R >>>> /Length 934 /Filter /FlateDecode >> stream xœ­—Mo9@ïý+|Ì0®*^ÉR$V»›‘8ˆ”h™Õ2 ÿ~Ëm»í)#‡D<ª«»\~®î€ºR îÕ¿ËŸüóøø×ó'êòz1Ú£Æß×—¿óÿ§þ[^½QF½[@]ñÏýùõbñ¨cR6i4ꃲàt0ÿV×"\‰ZhÓà ·8Gz¼á' ÚöxÃ-~RN¯n‹?Ù×Åß¿²øãÍayü ¹Sû[UÖÛöF(~¬7jÿA]˜Úß/O÷ë¿ sc{.˜3²‘ŒNc6ž“M4ŒÙtN¶5A“²mÏ.­vA'È _ =7Ü– 9 S§“òå-\qˆsÓ]ìñ‚=Žãí+ñRÎïÕKÖûhhY¹dn¾/®¿Ú¸ofƒÁ¬qIÇóÓiO5ÝžŽÆöâýùéÎ÷âãé¶×sÆÇ.æKëhˆÑj»rÙ†Sl_¯#é§&rmPT}uñÛÛ"£.¾Õ?uüôùݗݵ¿úÎÅó?sëÙùèÊ ÿøøúB½=ìx?ø®êîp[ðþæÓ?áõn»=/H‹$ŸrYH.ÓÇ÷ê¥:üŠ!\Õ⣆؎U¥à5e üh'(‘&>@7ùyÄ;bã̶nÅ”61·¹Ô“@Ç8spÚçz¬qåeT9«°DhU)®*}‡,¤ï²œPäÙÝüÓFYƒÍoè.‡d\_-]Éü`aC2—áã ‡dqCr€¼']ÉŠÜMÉ|x‚ïrHFÞ#9$óJÂAɼ̀ƒ’í:¤»’]Ò! ²4~hî(.ßñ8 ®L ‡%òVc׿”¿¸l·F¢/=¯ÎŒXžR‘È6ƒ/“+£«Ú" Ô««,û²Mɰ~ÑuY&ŽÚ¹AÉèËajòH&ÊŽl²Ll¡N¦"ËĹ½Ôe™˜7iüU–‰×;Lš|Òð·ô‘ ˜eجÈS©`•D`ílµB`¤"}“D`̋ݬÈ:Eb,ǽ! •iØ„˜8æ¿Oº’y¬Ó® !!7¼ 11÷ÁBH&Î BHæïƒ’yš&iÌuËÿ)©Ú endstream endobj 289 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 292 0 obj << /Length 1292 /Filter /FlateDecode >> stream xÚVKÛ6¾ûWè(+­HêÙC6í¦-°H‹8§4®,[îZ–+ÛÝì¿ï¼(Ñ^- YÃáÌð›'¥‚~*¨Ë¤,ªÀÔi’fYÐô‹¿I]h“‘€GÒ–5aÜÿÚ«:øiXü?·‹ÍØ3úãrqÿ¤Ê“:X®§“ó2Qª –«àsh’H…&Š•ÒYøn€Eˆb£Âöôv¿E™…ãVGxžÑ—åo÷UP#Òí¦A¬UR¥bòˆÇ(Ö• ÑH‡º#<+äé°±ÈmáÙ È~e6Ÿ@d?À»yÛÍì—#)ƒ¬_ñ.Ì\ËÚ=ÃöÂEÿDº Û=þŸœ,Я°u (tT­Ã'ôíÄFZÛ \Ç:Ç3l=Eqž…¡B#R Ÿ© ¨ÀŸ‡aÄÈ)•ÔyΑö ³ƒx£yÑ"m<úb÷˜t‘²C"Ig™ —h{d] ‚SífKÇV”Ï9fÍ ð̽.$÷ð ý ïs—ÚsÚä´!¶09ÝS¨¹„:úm˜t‘¨T;…;´_qS # ¤£²ŠM•%Z™Ëêj©qÀFÉÅ0gž×BS´iÑz`ÒòË¥Á{q˜ µéŽmôv'V6²}ÃMŽ{¦yú;,ß=Â,·nÑë³Ý‰}Q˜ÓŒÉÝROÎuG÷ûL”¡·d®À⡉ã¼èfÏI¿ ÓärεaO«­‡‘ áåCòeÓsãòíœ'¹o¸óq,¿š C9ìyëYúq@ÕaZ9ŒŠq³ZaªÝ®6;´ñÊÞÐ!‚ßK«H®š³½ -ÎóZq{nö[ʨÊ"žyðßò>æÓýžO%ïw¼÷D•ÔÊåPÓÔ£ ‹/Cɶ£›wèÙyÇ,’"P®íqšT¡Ü`‘ÒòBº‘”i ‹•ÝHé^½ ‚ÃÅ`GFy#>"tí4ô4Â)*€CN¹x{W…xíä9Ÿ{f/ˆ;Ù…n¾˜*ÙìÊ!2"Ö#uÀ¬ÁIk¼ë‚ä8ãÊküÔÞtµP=‰ ¿´R²ãŒÊòK®> xн¹ÖÖ|Õœ¼{hx’9G5űð*~º¾(@ƒw½ÄŽ-Z¹Ô\h;僚¾ Œqõ¹93út„."@¯8ÞÉÑ­€ ¿zj÷!õ=LmnŒq~†'‡§€ç;¡k|*üBSyRð§LRgÕ\U+6jÅhËË£ »¯¼\©èƒüPiVRmoäƒDó•7Š–¥¸L`2Rñ¸çùŒƒWý%{ ìlh-ßÐX]«Ü 5yìÕ Çˆ´„$_J + óR…¼­$‚²åX)MþžEi#ëº8­s’IH•×ZèBÕø‘Bo¬lâݨæœÎP–ÊZÎ}¸DYñ7c9T…H«õJ·®> /ExtGState << >>/ColorSpace << /sRGB 295 0 R >>>> /Length 1053 /Filter /FlateDecode >> stream xœ­—Ko7€ïû+x”€”ápø<6iRÀ@ ¤Ѓ“ƒëÈA KB%Aþ}‡KrIͺ–•ô`ÙŸg‡áG.âB€¸ÿ ïéçåáÏß_‰×—ƒ’J)Ñ^¾þƒþë­ø6\}J|@\ÐÏÝéñnpZ†(L”Z‰0`¥WïÅ%  RµpÅ)®‘"-^qŠ£öÒ´xÅ)~4œ6º)þjU&sxdò‡›íðò­¦J­nEžoûÈì”Ô­Sbµ µ«»áÍjlùéT0:¶å‚:#[£’±ÏÖçd#D }6ž“m”—èºlÓ²s©­—RÁGÒHË yAŽÃبEVɵpÁ.îQbÏØâ¥»ïzï§ÖÍç—nšhd !Qq]^PùhažÌ¤«éöütçRyG%~ w­T5ݯKÙ´/Bz´lÓŠ:iFÎu<ÆúðåxfüôÎÑJK㇮¿]/*±ø~»­8<|ýô}ùQ¬.ž9yú3Õ´´&7øæÃBl—‹¯›¿×{±»_¶·¹—õÍ×Ýö >,§NhZ¢Ÿ*º˜§Ñ&Ú¯Å_b{ê¬¤Š«Sge±pAB¨ö¢¥§ì~ðÔµeä­TÈN &ç©ë8F”ÊŒèdô!­…&Ö4RˆsHÅ%¦=pÎÒà‰½‘ÖÏ™+ëFŽ2¸9%—6cš"¦ñ ¢çíœIÃ$Öz<8û¶1Ò™çéW/Òj˜0ãT:ª‰™s6 ]/F*L˜3­•Kã1Êæ÷Eá¤Q°@¡ÇQ£0jô QŒŒØD9"éÕÐDad Í †Tpg› £Éu/^0LÚ¨^‹Óð|§g ÷Šé´à¬má¢gDi¡Ó‚³1©™¦gëRšœ©ôÚvšp:WºhÁYÓ{AëN Îèò–®šT>uÚ“þðô‘Ïgè£ò.úf9‹/´/£ôØ|aèÇqM¾p¤ÙÚf ǘע¸Â*ÝÂÑf‹‹'ãx?¨–0¤£Ò…æÇ Ñ6C‚ÊW“IÇò|†3]Óò9“™1]mÆ*a&þ‰s…Ù÷bô¤¥3 mÞìÕ†¾z’Å8FOøÎ†:ϺšÀЖwEƒ!ÍN75^-'b¶¨ŠÁÐçw\1!-Ð8ý*C›Ý.0¤/åéªçö{Ó€3›¡;G&þ¯s„šµé­ó½è~ß8]œ·©¤ÑÓGi™sÚé;RnR ºF ŸêhMŽÒ2ÿ/_í\®‚Mw¡tþõóZ¸âf·}ØïîÏø¦WZ¢ÝßµúÇ›ZèÜÔUÕçëÍæšî·ë}½âîwÛGoÐO7M;£o: óDÛï‡)=C  endstream endobj 297 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 301 0 obj << /Length 1471 /Filter /FlateDecode >> stream xÚµXKÛ6¾ûWE ÈÅZ‘¨¥´é!O¤@´qOMŠ-ÛJ-ɱ¼»Í¿ï¼HQ¶¼»—bÁÉ9ß<8ôËåìÙ[­¼"(2•yËE:ÈŠÄËR¨8õ–kï/ÿ—ù"U±ßÏ#¿…VBk U<ý3tÜ]A÷S˜†ðùÚoÐÞAûÚG™»aNCFY{h5´­#¿(íÛå²×´5³ í„6Žæ/õBoEA‘^ž¾±ËÎOÞ8ržmÅB:Íù—„D“\:°åˆÏ»¨Jž:Ñc}Ör¼æÂ(I^ðÇÛ‹b¢A?±ð暉í1-¼‹©C9 Ÿ(qýÆ1ï%œuÈØ`Ãfo–³Œz‘Wè@g¹Ç*H‹È[5³¯3ôå8!§K$³L&ž½oTè½îf¿ÃŸ¡-DæÂúã$…‰ t¤¼X…AgŒÁûv¾ˆSÍNɸÃ8'ƒ•Œ ûŠ]yû[è…Sÿ âµ2¤ÜO3þÞÏUî—Ž¬ºÜ¢:’³6L0ÏÑ@re«¯(Ψ¯ þ"¦];WÚFÈ.7ÆjG²®ÌÄê$FìDÇnÃklˆd߈’ H’±o”-Ÿ3‰•uÞŠÆ„ }“„é‡ æ þuÏì¶Äÿ‚‡\‰˜¢Ü£çTÂIb0¢»ÛíNöÜSÒÈó'4<ƒubR}´¿ptf"5ƒsÏíÝÐ}'Rr´’;üâu+÷h”$†cÇШ“¸ JþöA#î–l•¨ŒD¢Ã‘•-çY"¦Â¾I…%ZãÿU2ŽG]ËP3¬ÚÉ\y”®¾ïBŸIý(Œ™>íüÚV’/ÚõÕ¡ßï¬àÖd D¼+ž@+ÖÉ}w4 jÚSe~…þÞ9Ü•$ýEÛZ’T·”Æ,omn †DWw®°§ÊÉ2x *ôûoíLY õ‘5“ŵñ§)·Î,yÐHŽ $&4~e‚»éz:$ØÁÉÁÇÓ,÷—Æx:!èºf€Âd€vËô£qïzžh:â]³»Ñ÷µ\ï{fa§ Ow‘>9\Û'·)ÈãL ŽÓ ?^}ÄtÜ¥FîžOù”Ýbú„ÐÞ£?áâ866rÌ0“Ä “ÆãT˜ûŸ¢8iJ[ÒŒ# ¶ùlÝX@¡Vå É*!7@G“P—ƒ$¸§QÀÊ{ËÆ˜¥„R©S)Z’ÏëAèÆ9àFl_ï´Ú½%“$HÁe12Þ¶œ¬˪<”…ºkNÝF X¥ cS•síp´XT¼¬§‚è Þf&[YáÈXn%zO•†*BA’‘E¾²å]+’¸£„êœÑ›œ«çˆ[è"H¨ªGë}&A€¥qr3sè-› c1Ib*˜+ñÍÆu•Zj4öŸ¦ʼn¥Óº¾:‡T}ÝÞÎóó"äèÌ_q€”e€DC¢¹R¦ Á°k—+Œ£K¸V≡åu¥ÌQÐË`¸aôyz0)‰Xnøªë»u7¬`0¶í°7×_FªUTUõ†ZMÔ5Ù`^¾€WçÚø¯ÜoÁ•@ƒ„{×˨¨6¿v"¯œ|Ál¥zè© ¾þš–ùßKLŸœ'Æå+ï ã NQMèáB¨-óZ¶}Η>òÔ{L½;s©O>kÙØf?lú5Ïsä iÑùcºøìùñ©ë‰ïÿŠÀF¸¿v"í \ ·ªâÒçòÒ»™ü½`å,ì}Ï~øí•ü~pFZ?ôÛÀ£¨}5Å·søÚÞ)OÒ¿”(tܼ§YÖˆC`±õ‡ü:òÆ=\”jbxZ|@Üö‡ù" !{!~©3Nåç3ÖÝ8[hY&”GyðúŠR¨!3èÇÒ×d«¡_H¿˜#ßÅeix.‡d°"Èóœe§Ê¼ØÿÝ0M endstream endobj 298 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-survfit-mgus1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 302 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 303 0 R>> /ExtGState << >>/ColorSpace << /sRGB 304 0 R >>>> /Length 373 /Filter /FlateDecode >> stream xœ•’MKÃ@†ïû+樗qfv³×ú‚‚¦âA<”úYÒ‚Vÿ½3IÖ ‚‡nûlÞ<›7†`XÁ³;‡g…ÆÕÇ‚‘@|côrW°q³¹ÛÛ^Ï`¹u„Dß×írãöŽD…ó{`Ûƒ¯e`–hVŽEckØ9=¾lwa¾r‡ó^ÿ÷ýž™AÄÛWÿ¢{zØ,6Ë÷XØ#E…€!÷–ƒ»Åëc ÷Û_*¶ûgº›xs×7@pëNô³rƒùÔ1',¸ ØX;Žú¥r÷É© ±ñ˜ŸrÍ·NŠ`( úÐÞŒ>z®Ü}²O˜ÍPóS®ùÖy+ 4˜zaÈèãˆ]E²ÿ¨«é)×xë8yÌVHHk¬œô@é+VHYw(aÔ„›$ôºŽÅÀž8›ˆ ™SÓ6övbœ9›Ìv™ógB™lFXôŒ±¶ŸFEŸ?EuŽÌ’1‡Þéu®ŠVÕ¡æœ$”õG¬×Íyî>ÂW§ï endstream endobj 306 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 309 0 obj << /Length 2167 /Filter /FlateDecode >> stream xÚÕYÝÛ6Ï_±Èµ€Ü[+")QRÛ-Ц pE.[ô!×­-{ÝÚ–k­³iîoï|ñC²œ¤¸—öA&EŽÈáo~3ÒßÜ>yö¢ÔWuZ[m¯nWWJ•©­ó+[”©6ÅÕíòêuòÕl^h“<ÌTÒÀsÏžžÿfEÅž#°tTáSX~–—‰–U¹w¬ÇýeèÇé•t³!W¤ZËD¿LÆpïVÞ•¼ëÑ{!ïÆOpŽ6¸˜¸éK¨ÎCo'D@0ïþ¯ÄLà›ÐÜFÛ aoE² KSïÿ¸øW M´ùgÄ!Æ,|óO.]ãÖË$@D*“à?Ì7D'úø†‹ì:À1Å9O”ù`X;@ú o†Ëw\FðÓ-¥iuõÂUå sÿcÈì£÷B®ïaÑJºœždœf`†¿9×t–V•b2¤P¼ØK$»Ž)9EÒÀB7¡)ÒÊÊ„Š¬C£(mpí–¬àAs6Š˜¤b<úóp<-èxx'FìÃúÀÇw³¹¶ª†¹ã€yÑGk.…L•ä2¼ŠÚ1,WОÕEn±-ÈÇí8NÍÚêÑ4;Aýx'}9›•ˆ­jðaÆa{0_-O1ÒO‰~ÕH>jGýÆ»FM]úMw8v5ÂDK{N‹¦½ýLG;±&×.:JFÈ¡Rr b°2ØÐ‡õ_‰Áö;±ï9…‹ÿ‡Â% ­"{ê Šæ"7jsYG6øv6ÌG°×Ú –ao¨•O0“mz®V)Ë´QÒó þ3tEúÝÊŽ&­/ºõ¹r–šO°ÛÄ •6i­XµWQ¨~µôÄØ IÀô±Í}|×AîßP}NÐû^z—2‰›ðþL1Ñì‡Ñ¦´•÷{¡uv”c4Þ†º|îÐzâs’ qjY_G;-‰Û à*¨~?š}û°V%„+¥Œù“lþw2ä‘»ºaPç}»ö¡Ü¶€äf´W‹½T8ǸhÐûIyŠ!v<]?4×6J\Ú€üR–ÒÄ»[ld®>ÊØÖR¶QŸKž½¨¢"FÑ¢*)/ÈkYÔ­$ƒ¦($ *Ó.8²a[·Â2Ošµ5{Öûö-Wº=—û{çÄØ—Ü´ëŽÎ%¶œ?ê*ùûx=4,%¢å§}H·Í’Ç{Yîb¦K +ÉûOqÒÑ‘»z—#\fÛ·,°Þ¼ÁÙ™$Òá©0C†Á`ÑóÜ@œ§u#óîר#ø †e©ÓÙ¼Ìmò-ßðDÔCÞEvï¥aã9DcÙ²’3¾&[ß¼DZ(…&k–#D©Ü I\žéÆŠM¡Az¶*Ù5[Ñße²é¹UÉÉë>!o¥³áõ±åõG­•·ƒk'Ãz»#Ѥ€kÁ;0·Jzœê]xgÖVñi‡ÄÚ£¼â+xk£w{˜„ôìÃæB”!ù{ÐwRl×õ¨¼Ñ‰Œi 'å;©YH'¹ \š.¸J•ÃŽ3ÏaoúšU\ŸÈ?ßàûâèö"½Á _£â+È£™pï”Ðwçë&!QBúô§)‡Ç<­ÇiM°Œ?ž+É Y»ç:9.‡8<É/l{ÛH‚”îäÚ1¡z»=†Â&÷†‹GüáЊà_`XÑ R)š`…bMþ¹ãéǰÅ]àe¤›ž³ÕIW)õ„@˜Eðf‰N%YƒúJ|\9c{<¡“çUÜvqô×cÇáʼnƒÂðÎ@{Á𺰪Ó,3Àä÷dTg[ˆÉS« ÷‘‹Á0G–Jh”PzúŽK犛>èH .ºŽÙÛôÕË —±ìi3h¶ž›|Ú…dǪêü.gdz#¤À4Ç‚9`†w?MÄVL}ÞÙ'¨Œc‹‘›”ŽÖÞÒ>ÌdäÎòCX蹺C}Nì¤Ü²õCÈÈGÉm Ú–®Y­ÇÏûH¸§ç˜&;ºÅõlÚ@¢‰Æ®.~®žåÃE6cV䘗#Ä*§˜Ûµ·-7¸}ë4ê㣢 ÜË¥JZ¿Y-tGí(RvQŽ%Œ2¤µ#Ðî\ v9¤áíoïw2¿g›Ò²ÂPúUA … as·‰2l]Af³ç’rhO hX4Òs'û;¼”œéù•ÉtDÝN.}\róÉaÃiá¹Ï› ÖVYç¾ýè:mßðüÞ¦EîƒnÀe‘|-P (:³‹‰WB\OóÒŒ+f'e[Nô´åœf 7».2N»Z©oéFÆhðçw‘Êk&(V–< bäÂ_,ŠTÏ98ÕѤø ßÀ°of˜ïº@åÌÏ‘CÙä'd»(ôˆBh¬“dXÏYäÞi*áH˜#©ä‚=‰•:ѹ‚6Â`ÀëÉ,µÙ†Àâ³sôÕ–`Œz‡Á‚bZûœÙ²ñ8&©²tj*]qWi ‡ŠøŠ{ÇvLÛÑ ñûƒg)'ëut%½ W%ñ%ÄÜÓH×Sx^H)G§r^~zv°Ž¯\FãX9‰‹d5y0¿tÇënãS9×úkØ‘¹¢?\†Èçç¤Ëþù¡ ÜyðqâþøFÚ†ú ¾qœî\±ž¯I~‰ŸƒboeÂ&2¤˜?õP¼—YšèÐ|3=‹VªÒËkH ê´ª*^GA76O¾»}ò1€„ endstream endobj 313 0 obj << /Length 1694 /Filter /FlateDecode >> stream xÚ½X[Ü4~ß_!2Ф±s¯©¥´Ô Q23™™Ðd2dº;}à·snŽÝ©¨@B+OìãããÏçæã}~sõäe®½2,3y7O¥I¨ãÜËÒ¾©w³ö~÷ïÊo¡UЖо‚öÚoÐj¡¡ ‹ Õ1 7ÐF™>2ùºßAûÚ+&­¡Ûˆ€-´=´ž1}3ûù8~’ý_GiŸ°œZ[8ü]ó4.þÚ5ᬜ WMHþ¸ùÁ‹¼@©°LE?+Ý &d~ M[è­ˆ; ËÊÂUÄe¿ÚùÊÎŽ[BÎB&ÄÄY˜&ñÙ×va-:6êXÏDÒd«P†‰%á O÷ô(œÓ<ã#G'z4Û?ž›óÑE–@EINsÓáñxJGa”•ïìûÏî4ùçh»¬frê{ ÿ³Ü‘;;Uj­æg:LÞûÀyMaå²*û]p9p d³ü¡Â¸Ô!ë3aqS ž¹4 û 2X)+á#bãêÛ›+yÊ+ó0Ï /ŽÊPéÂ[uWo¯PpœƒÓ¥)³LO¾ïÚ‹þêgø3sÈ ¡Ï1³®b”s¥= Ì*û3c“]‘µÝ-‚¸dÓ×wØü]50‘ŽºõëHÅè«‘™ú=OŒ’ýjQZ2³LæÉ¤¶ã"Õ~5 §‹Tƒ£Øðõ}0¹wà¢&ª[š!&šÂq³E¸þ¬Î‹"A+%QJÑ2rÄüûƒ”q˜À%i;“qÆFrJ-9±@Þ{Iñ@gï—¤¥ÄpKÐÎÕ‘a’¤3uèˆokîK ˆµidò{„I²Œ F^èœ~ë»….˜!åÄ¥ÿL„ äÌ‹"‰¸Dî3K¶Ú¡á@‡&Õ0÷„k •­cÿ©ëZ,Ô%P2¶!ï(Xi ‘†«Ñ*U42Ë?¨Y½è´ô›¿Õ’¶íùò ’ú”Ù4#EΤ”ÊhE•þ&D.ÒaLoXÞÑ*”üo`>£¨jä1j¶jÖ²FÎ4ÇÚ’žÁ¹êÑ¢ÃÈÎ âEéŠ÷³¨Ð ûÖª2À óp©`Åé:Ôp–š4ªx*Jâý`ò®eyŠˆï™æz {J]ïP ¥EG©8=Äqr¼[LY´àèªoEäæÞNÝ%Ü6bÌu±f·ŸÑb“ÿxPŸaW/” ºÐ à’,U1+²Ñ#Rý6¶üºw·²wg+¯ƒSé9õã_ö1‚j¸ãa@%u¿°5ùFša­ôVªÂí|Ã)æåå¼Ò[; JŠªNdd;§º<ÈVæÙ6Èxï¾Q¢‹¯>!Cs½ ÛXòCÏÁ“¸Ïù£_ Ò\ùŸ0é8{×M°7êyö¢EÈ1TCZî8,1¸5‹ò_bîÊòíZгÔ9rD‰‚_Êi9´ZJo.ÂrŸÕ|3iš¾ê• ËBÏ=ôxy‘r¡@   eY¶»š™ $K䢆YzZÆ´~ßrX¢7ëãä(etTül)Ð#ã'%©˜îtÍ"÷ieœtºbŸBÔtñf§~I®É« Kʯ(¡NS7‘§“RF²’äÞ£²ŸŠÐE¶j¦G3PMñ OT¬O˜°’Ì_7Ì›š¯6ÕrR‘9ô-/àÄä£ —7øƒåN‘ù7µ‘-»[%›Vôè\ñè ë:j4…"À¢< |B?‰Z¨F¦²ÆÔI}hªúµžk¾ÅßÓU½.þ„nå8÷—‚l·;ónà«kÍ3,ôÐ5E0YįìÔÕ aïxD¾AŠ¡qRX¿Çû?ƒD.Õ%ŠwõmÃgì½;ZÆ è9(Öfô#œÙÒy–U;ùø]žŽtXä)>ÃļòÒÄ> /ExtGState << >>/ColorSpace << /sRGB 317 0 R >>>> /Length 2937 /Filter /FlateDecode >> stream xœ­š]¯Þ¶ €ïß_áËØ\ë[ºm°(С]R CÛ‹ƒæ¤kdXN€ýý‘")K¤‘ät¹hš'~ý%‘ÔcÚnûvsÛëí?·࿯þþÍ×Û³ç·c?Žc›ÿ|þìoð¯%mÿ½ýôËvl/onûþ{}søƒí»[ö{m[l»?¶·[<Òîã›í¹ÚÌd«‹uqlÛ}ˆxÙ.8¶×ö”ÇvÁ±}¹œóêÆö¯_ðÍÿúpqó¿¾»}õW#õâÕF÷{þAœ< /{>¶o·'ÇÓíÅëÛ_^ô#|WÓžó´oúü}½ïuîëqâàú(N;?âÌ¡Á§ig?ÎL£œÊÞŽu'_üžÍź9œtnma/çV¢s«ópîs3ã´=§=çvÂs»?ÜîÎíŒÓö÷6m'œ¶ÓÍŒíç½Íã6 ÖŸ§1„Эºuw•"þñjØ?º{ {»ûGïî ?ÊØ?>~ÿ”öTdÿüøý›ÛÃØ¿>zaçdÿëÿøþPZ–ýý¸\$nÑÕ>STÂ}{ìL¡°¢üøy¯§ÿwUqÆ)msì§'ÿ| åâØžÜß½Øî^}¸¿}÷ÍÏ·—¿ßýöîß¿?<ýe{ñígŽüçâ({ˆ},¾ÿó“Ý=l÷ïàÀ÷/·ïŸ}·=|¸ûpÿóS"¸-.Þ”²!úÝûÍ»‚õþ~ûÇöîSëˆÛÓñ©u„Ëà R·D)Bm¯ ©î©)‚:Ü©`^hr{ÍHk¦"8kAŠX*Žy$8»×¥¡!A@&M b©b²¬WäPíw­Èam‚+ š`¸#’Ç;S1©€àÊM ï¨à™¹7·G1Ô PÜ}VW[;%,ŠÂ~àQÜñ5BA®áÇÅ`ÞSèØö –^loÎõ¢±ÒÌ9ç{\±aµë1j5:ü±ìG1è÷è:VŒ_PW:zC¤±ð¡<Ü`0Xi6Tµ#lh€~ì4ºB N(x3–ã^úø@¢–+Î(.ÈKªåŠ?{#†f†=öëÒCm¾ÿ>9Ì%Ë‘Ç"yÌ'Ëý6‘+Æ¿eø_ŸaÈg_/‚¦ät9,{GõÛaîÖ îå¹â„[æú¥rÂrÙcmȹ/˜Ë‚+—$ÃÁãm ×=´ î¥êd–å¾j!{Ì-Ãñàù‚$Lþ‚=ÒÁ2ÌGŸ/Hˆœ.¸pnC]HÇ·ÝáùPÂüC˜¾³Ç\±ìiið¸ððb¯pÁp¼Üs&{ ÌÃ=L{MµÜ(žÑÔ1Þ5C˜¤~¼àp`-Z¦<ä;Æ»áJãíab1Þ5Côxò¡õx7pšaâ0ž ÷å ”ãMss´yX‡1ž ÷g `”ð+ÎT¡Q¢1 7¾_Ȩ¤š1 Z?¬M–3Õx7ž/¸á4"ƒ‘7ËXoúõbÁÏ\1M‘+îhêEh®«–)J€ Ç'9ÃmáÀ°Væ›y-\ÆÃfò¹×«;B`[f¥ (zš!ßúxH\˜/Ë…â)Àx ùÒã!â•-—Dë{„Â×V™Q.+dÊQº\Ö.—Ÿ§§>ž„ˆ£sêãD Œ]ü†>N䙆>NYBEgÊ$MCgª´R±>®Ô(ÊHW‚«í3ĸ bMÑÇ™`ÁÇ«ú8S¢Yú8Ø ÒÐÇ™EÓÐljàjûJ=ôq¦^ÜO_TÙ!ئ½õŠ}Qaáõuèã‚•žßN}\°á’1|Qaã;_TèØ[ØŠPñE…yõŬm²WñE…Û4§>®èŽƒ–«¡‹šk®è¢æˆ«ü¤‹š =Ù }ÔÜXßY5;¹ÑEÍžÂmè¢æ@ËÕÐEÍ™–«¡‹š •û¡š¹Ü‹.jö>\Oº¨Ù±N‹.jŽ{ZtQ3/gC5Ãõôûe]Ô U>öù]Ôi9ú¨9¯ºh¸R9]ÔÁrúñD5{ÑEÍ$“>jΫ..8§.jNÏ¢‹†3•4ÑEÕt]tQ3ö»ˆ.jö4C5GÊ'ÑEÙu†uQ3,t=¢šYD Gœ†S WZ E5e]4ø|¬‹†=Ί.®˜F§>j†*Ý;¬‹–Ãúõ’.ZN¬«¤‹š1 /¬‹†¾T9uÑpæñd]4ܨމ.j†zØãAtÑp¢.‘è¢áJ+¯è¢fÏñ(ºh8Q»BtÑp£z&º¨9ª·¢‹†{˜œº¨ò=Îú(ü©ÞäÖã\õ .å§µ2·_ùÉ™÷ E$g ‘,’+EºÛ!’3hõ^#‰äJªüèCN„/+ú¨¹<œá±H®”¨²²H®”iÕf‘\©‘°H.G.gR¯D$’Š2É)‹äJ…V É… »{s=R£'5gÔÙÉ#5&ö*òH™›F܆TX¹eÇ©3BJÃ2’,”†EÑ¥©„«ÎBi˜[è"”†ß/ ¥a"Jà Œ³P®ô|6ú‘Š¡ÎöD¡4ìHXD( œ¦S( 'ZðD( ÎéGjnýÝè)”ŠašHHY( 'NîGjÎÜI—~¤æJÂ4„Rq:XxY( {ZðD( ÂÜtéGjægáÑÔœ)_‡P*†iöª¹r wô#5'šÏ!”šEÎþäÊ…ûe"”šõk‡P*†EŒ„îÊ• µ¥æDýä!”š3åÛJͳ‡`*®\‡Pjöô?„RsÀ4Ÿ„Rs¢7[C05g¾JÃÜ¡4¼ö# C˜ê7v¡´ÌoÞX(-Ç=öû!¡´œhQf¡´Ì JË•ò™…Òr£|b¡ÔÜ¿ÍèÂÈBiØÓÛAJÃÚ?"”† ‰¥áBã%Bi¸’%ˆ` ÿñþ$ªãòB{&yi½¾Ð‘t‹HºE${×xˆäL…º€C$gj”mC$'*¬úC$gâ6«ãJ‘Þ°°:®ÄÍ:VÇ•*½9c‘\©Íê¸ìíñ(¬Ž+Eú%«ãJ‰V É•ä-7$W¯¤·ÎlŽ =·Ùn`±9*ŒÜ^asT˜Ø-ØfªÌ"’ {7$WD­ ÔsdmÔìùµŸh£f~®Ú¨9Rë{h¤fN»Ñ—ÔÜøµ¨ô%;¸^z-ÍÚ¨ÙÓk·¡‘š9LG_Rs¢²;ú’š³¼ö澤æBÏ„£/©ØÔ·Ú¨Ùá$¾™_k¯ìùµþùZ{åÀ}7éKjŽ´ìL}É•3iËÔ—\¹ðCô%57JËѧT<^{K_Rs çßÑ—Ô…¹/©9ññ¤O©¹ðck£áÊ-¬†ùÃ0ÑFÍñ`푾¤fúDñìSjެ]¬†9E gꛈ6.¸ZŸÚh¸Ò’"Úh¸qߌµQ3h¹#­$m4쨈6†0§¾'i£aîû‹6N¬Ý¬†3õBD/˜Æ“µÑ0ö!Úh¸òg¬LZÈÚh¸Q_K´Qsæ/ÌD ; ƒS/˜´™µÑ°_ú’–Y;E/8ÏÚh˜Û¢Ü×ÑHÜϬWÜ?‹am´œiá'¯¢ºe/Â/òi¿‡ZÛ‡#à’Ü?Ã}õt øîÛ»7÷O!Ù¶':?ÁÝî>lw¿Ýƒ¹_~Œûñ“nœd>øöeº…úÎQÊçÞÁtônÿ3Ðë® endstream endobj 319 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 323 0 obj << /Length 1124 /Filter /FlateDecode >> stream xÚÍW[o«F~÷¯@©ªâ6 †£¦§í‘R©R«ú¥Jó@0N¢‚q}’ô¡¿½3;ßÂBH|ŽúRE›ÝË7—ÅïW³‹©“ùY&ÎjãdK™¤N/ý0ŠÕÚ¹vÿâ`®ÜÕ=ý+ç^„nÙÒú@ãFóª\ó‘r‹#“æáÒåE•®ó05â¬)ÿ;ßÓ´¦Ñ uCË}SˆÅ,ƒ–~d­j:£%Ö%ÛiÅºÖ ™¼bÝàgšsËJ ¨‚Tä ¢…?÷Q䮨r)ê¶ÌÔ°R­¸Ðnk…¼<î{ÇnV?9ã)åg1÷ ¾…iàæ2}œÇ‰›?h„=suxŒ«Þ‰n¦àIô‘f%ÒrbEˆ·;½; “eZ¶ÒÀ̾¤Íã}ç=…âDÛc¥S¢)Ý~j md©c™ mŸùò·Z6sÙ5L·‚œ˜ý©È]q£Ðåð7z¹ì—Ô~‡l<´P¶½cµÏ"R²Ìº•Íq'sÞŠ #!œÈ#©/åh¸¬[<ϱÏ÷ãŇehÝEKZy!ÁV©ÀþnîÅ¡ ÝÛAHßÒÒ“¥';äWì7ã¢.«Ž\Ú— ûsQV‚S*[Ø.1ÎhüBã{?c¯K]Kþ#ÓUo&§q]4øN™ozÿJíM­uµ‹OŒôÏ!Ò~­aé€YkŸ(Ä’EnMž!¼­EfÜ•”8K]C]"!–`Ÿ@`  c¡¨FC,5òRu‰ðT°Xž0SL›¹FhßшhÜØAðb? Éxäg Õ'gh±T±•NºYüJf´¹(ñãÅÈÛ7âè6)†ài„ eÂæ—9[Cc±ÅPsбËûÉy-/ÿ˜VQÊ_ 9n’Z£Lö¨¢G\ߢg‘ê ¨¢צEÊûn2nCí¨×Œ*uêžà&oQb·ù´#«uc> w‡$6/Œq^#9ïý›a‹i éÒºeaÏb*å,ÖÑŒp¥‚›FÓˆµÛÓˆåkÌÁШ ÖÈèÞm­ž=ÕÓϺþ4ucŸ7G³4š~‡SqmoÔT[-¤5Òl:ÌǦ´Íþü &›Ǫî{pµý{e|*ÍW•|3ðqÿ\u5z°*¬ìëÿlÐ5AI¥UYݬ„'Vƒ>U^p8üÏ•¦Þ®‡ÄãUÖS8*8$ N?íÀ[aÀò m,èÓÜ×O§§êV.Ëù°N>[߯é<Õ*¤×2ÆkäŒÉ¼IØÞª¹bp·:¼§X;]çÊQG£ôûi¾Dù™õS ³}nÍÊš‡èÞè<·ýò}›Øß·éÒÏè'` ˆ¿šøæo•Ì0l'tè™OU`nÀìÇÕL1p”ù9ªå'©rŠzö׌¥£…f°–úȈpqU“ýšÙ¯ôgÎ<èô,¥ïÇ?ƒ£ ðj(iæG rÇÝ¿ÌPKÆ endstream endobj 320 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-msingle.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 324 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 325 0 R>> /ExtGState << >>/ColorSpace << /sRGB 326 0 R >>>> /Length 2889 /Filter /FlateDecode >> stream xœ­š[o·€ßϯØG h7ËÛ’|Ñ0"©E’Ö[’ŒJŠþûÎ\rf¡Hu,ëÓž½?η¼YÜòyù÷å'ø÷Ýãßþòýòúíe[·m[ÆŸo_ÿþšÓòŸËÏ¿.Ûòáâ–7ðïóÅá–.»_K]b]ý¶Ü-qK«s‚·Ë[uX(´£.–5Æ~¸a?îCÄ»´ã ûñàêšö~¼a?>=Îñtýø÷×Òø÷'|ùîÏzêúãÂí=~0ï^Ðçuß–ë»åÕvµ\¾üéš®üô©.¦u߇sÓóÏõž:ê8×½àÆÁQ/'¿àΡB§ádßï̽œòZö5‘‡Fn;Å|8tu[\óÖ Ç“[c=Ž3ÇkY}>Ž3ÇåqÚñá鯖ÍýãÐ |‚¯¬®ðXÃÏ:îÉÓk\kn§Ÿöû“§»èÖ¼Ëùçƒþôù¥¬)¶ó_~Ò‚œ¯‡^¦Ù%ºB=ÅI ¡/qÄ<3¶¿¥ŒôÍóÒ•¼æ¸‰ÒŸ_ýã ún[^ݼ{x\>>|¹[>|z÷Ïû/Ÿ¯~]®ß<³àWìÅ-¯{ñLJ_^ýëÝãrsÿõæáæÃòãë–ǯï¾ÞürÕ:$‰Ã=D¿z¿xX–‡›åïËýoå`·¦ sðñ— ?žÊÆ2É.{ÂNIÖ¨®!#A TE˜Íƒ +-€s¹Â*ãè oíΠ_cÆ>Ô¥ 0_³Å„φW— fLó·MpºmÃD®kÉ' ÃA÷‚.l'ì1‹#{œG–ÚiäRÁ¸·¼¯Ž>sÕ—†üF­|’·.ØõÈûZË WN9æÌ[Ãn4eÌ%˜ –vr†YNø1äç›åBë:pÁŽ3 pº9qèxËÐ_t?r˜S–á~ÔÞBóÖòŽÃ\Î ËUf„Üž,'ý aÁnÙc7ß^<†?cI5ÆòÎñäaàa` ƒ%¾^ÁåÞr’ÏCÇw™×vïÎË0KwâDóA3„ùΟ/ï†÷—‡ŽµÂò¾nô<0Ï1Þ5Ãò•#q¡x7ð2È•âÝpâ …‰ñ¬–Dý¨c,òRàJñdxç¥×Ã…ÃWaXo04C˜†@¼cZ²œ0Ì+ŃáÊ˦‡ùÇ0„i¤ëA2võ„«ŒØ {ÈG¤âÁræùäq·Q-;Çã žqd8q> °Fö_O6Œ–áó/!l˜O ÔB À³¼ó* Põ4Ã|ÚqÅñ²\9ßèÏí„Q±p>Fh/$>Ã9ñZ!1ÐVOõ²$br ½,¤—ÏÓFŒðCâMð¨QÏÚ8c 8´q Þ£Ú8PäÞèÚ8ÒΑԵq¤ŒÁ5hãL´B‹(ÎTÖŒ½×µq EÌ®9Žº®#yè®#Eζ]GJ<Óº6Ž”yÚ8aA<´qDè#^ÿº6Nèšë5mœ–Zûº6NÄõº6NmgmÚ8áν}hã„°TPó»6NX9#Ú8"x"û@ׯ =oFmœ°=dׯ gÂC'ÌÒ±]³ÒÆžòÐÆ™‡ô 3Ë20hãÌAôøÐÆ™ÓZéi›&jÎM#»6Î\šFvmœ¹òÎqÐÆ‰a—Ë›™¦‰šƒôæ¡3GÖ¤®‰š3WmTì)›NÚ83ô=Ï¡3G鯦‰šEÃmœ4‰ÆóÐÆ‰Á~8mœYæÞ 3Sê´qæ—©A'†e̱fvmœYú»k¢æ]¸i¢æÊí´qbsÇÙµqæÀËÖ 3'ÞÆtmT Ë—çÏwmœÙs¼vMÔœÖ4ëÐÆ‰qÉ$ =´qf˜Fô> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 176 0 obj << /Type /ObjStm /N 100 /First 891 /Length 1500 /Filter /FlateDecode >> stream xÚíZKoÜ6¾ëWðX_Br†ÏÂÐØu›C› ІŠVvÔ®wÓ]mþû~£ØñÚ’ÍÊR{öŽÈápßPCR6:e”¬²ÇOÆ)›¬¢ñKгÃ/+åÙ)—ñ“ŠÄxN*ŒËFec ›­²†À!ÄZÎಠ"¡•}@ Пñà}TdÐ:­Ñ‘ eÈ8ᣂºY’ŒB+™„.!0q÷ÀÉ+²éR/6X€gÌYZ0'Eì9*øI KøI–"°*yXÊÀO ^Z<±øI ÿ^ïtE€º0ð“­0ÃÚŒ8Œi²Ä‹r˜%< Dª!ž ‰Øä FF`¬1Núqc=’Æ:¡$G8r±¿_è7ÿ¾¯•~YžÕ…>˜ÏÚzÖ.%“¯ ýª^ÎW‹ª^v Ú5ýVOšòÙü£:6hP9f:) b±à‹ßÓ§ø#ˆTûûJEÉ*é ÉtBVv$Fè—‹yõºnÕ1T:/«Å|¦ß.jð`HYU„ž4˜bÙ,õ“Ù¼Ô§z¹u…èM§åçÆw«ÙY¹XOËU«çgóYý·®J‘·|_VõIs×°õç‹·ÕÕ§žççÈyÑŒ^î/ÅÇ ¼ÌCÀËî‘ï¶uoRõ„Q€Ì©ÈîoÕ^3 EŠ»l–Z&^¨â¨ÅÀî›iNIÉÙÏ)2a·˜ßÌTëÙžíURÕŽÊ Eþݹsûâ°• ܳÁÚl]ÇK›†’Çæ]òÜLì‘L<¢ðÈl¼¯xƒê#ìo¬x !•)]ÒØÁŽ3Í÷Mãq¦ÝöN]Ž^ (õõß\ïk®_¯.ðV"\ ËÊŽ*ljmßâ|o ÜÄÊ+mmƒëÙÀôM¢¶îû(‡5ôÕKkkbß¿™ œ‡mXWvƒ˜È×ÜÆ‡Çõ×9gÆ™vKxƇÁõ.Çãt]/h¾¸l­wî뿉¯`¿­®¾_py»®¡àòq¨àòiwpmݹQ|ÉQü8†þ{ÏçÇ Â0¸ea»@(W<ãÞŒ±¿}›mŸ)Ú‡Â8ÂøHAøÅt±»ýÈ~ã6€üò–t­z¿oKý@¢{O$º#‘èûI¤4x†“ò.‘Ö±x×¥‚|l0neÏý=O6×)7™ããä-Ûò;K ùØbÔÆ–ûWD´áÑÃ$^±Ù•wxƒ‡rÂ^yÁfdyq«òÛè׿ â ¯‚ø+®‚þ'I2xÄvWF ˆuódìFòÈ׊£J ¦>8éþÁÉw€“¿pÒбÓîØlÓgº/7äg^J³ endstream endobj 332 0 obj << /Length 1723 /Filter /FlateDecode >> stream xÚ•XYoÛF~÷¯ ¥‹æ^<Šh’H‘¤(* I(’²ˆ¤+J‰ýï;×’”D§ ‹»síì7³³C>[_ݼ´v¡lhl¬ëí"KÂ$N±KBmÜb].Þ&\ªÀ.WJi¼9î0­ïwð[-W&qAõiitPµK£‚’,<`ü"÷0ÁžÉ9PÚ’µTú_k*U1´g¡ÇÍrëà#ª‡å‡õ7/ÓEf±Žq/Ñb¥U˜F)oãmׂä*Ç¥Šî~»]c°h£` Ã×;,u ®eQæÓR'àŸ öL/‘Ž>Ty/žõ}ä"˜½ýíåëð„©†ÉÈnÃ*Ò¬ÞGÊ"8.Yw3Y½@ÿöÕh»Ø‹+Ȭh’ÿ¸\Y—2肌òm1*u[~Þ;Ur‰ÖÈ[D R*ÌœÄÛ}vUâqL+·LöÞU<@”’u$úðn׋\O°¨à$Mä¡(*VF¯Ñr7¬´Ÿ8QŠ‚Ìâ¨k{æo;¾]/áð¬c®ß1![Õ¥¢ÚŸ&Á b'9ø¦ ÌpKý~š{ ;Ë|t•ä(–ÈÍc¤6ÕÜ6Ñ Â0NJÎ7È $ë[yN!DÂE´8“Íi¼ãe³É‘2N‡™Ò°Ú÷¯—‡Î…6Ê<ÿX áF‰ 0Ëi@WÆ¥¡ÑêÍâ( Mùß"ê¸ tˆ×8Û¡"èX`A›)"(A©€ MÓA&ÒTÝd„Fƒ72â@Þ"Tœp‘z„2>8öçò‡‘]ûÀç…,]L:nìs-u૳$¨/¥Ñ±.¥R…ŠWŽ™T¤ A—@IA|Cå%Zƒ-WÎ !”û™"‡*<)î‡ã³ënYó~/û“TøA¥nù99ˆ8-:\¿¦ý²?TQ1/Ef.ít…qf¿œvê,ë¬Jƒ5/N≞ZÌB“yÚ*Š*ÞŽÂz±€NÃØ¥^¡ôh¬Ty²w‰h–Ž´AŸíÖ†Êùl'µc‡Á׃\“Ï“Ìï™ûÙ§ÙÏqíÌàÉ.$úº‘ß¶ÓZ‡, <ÿ”]6½¿NJf<ïŽã²t¥ë´‰¢àØm[ÞâÚ">Hª‘ÖgŸF•¬§²,a1Ÿœ@Ôx‘è8'fzºkcLp”¦z1‡Ômw”ÛèùmÅÔ¡J˜*Û 4»½ów0±fË!§ºë™NÅt‡ˆkä}Å£Ù´¡ZjõMiK‰¢ôLNø£‡$NŸ81ëŽj%›¦G4¸Lú4ùŠ@Æy³4)^T^‡ëIò‚”ñÄv^¢½HÖóbÏEæ6äq·Š©õþާ4ö8 ®ÚëĬ_ñeHpAÿšA{‚Ö%0{8\±ÕpW×Ò”ú,‰¡>ÒØšòŒ+qµ†\£7$µÌÄRì*¶s$õwCÑo™² ún`AárVã.Ô¾Dúf8æ’œ£¼Ü\DDCõÉ…kDä° ”8®eq}ª‘ÙqF>7ÔJ3Ò·@k*Ÿ—ÑD>§ ¥Ð†pôúׇ3µYÁF+•„ÖWÉ_ ͇ø ÅÚgcÖOØÜó°àæ;ÐïàŸX¾žËüš¥p¨žfé§YæiV)NåCÑbjzg—}¡h3¨ï§™ô—õøGü=ºáf‡þ^h$gsW’ï?KÖ2?ŒöçA,?Å–>ÿbçñv® ŽrT®%.ИÓТa¾ZÈ†ÕøúX±µÕ ?¿Íâ‚[‰Åí:Fþ–\–•µÕˆûõ¼·>W¿¯¯ðê‰Ê¿ô«$†.K/Šæêß+<Æ’ÀdH,¯&„›W6‹ÝÕ_ðçy+±¹š}æ?7ÓÏ Êf¡ƒvlò¹!¤Ýð7‡ä|>û†¯à"U¬¹öQӮȨÓ~ j›ïŠŒ¼9ßû °?¹Ë*iñA,qÃÎ öþ^ë ú™†3R¡²æéŽSqŠœnИ0ÖC×IU_üÀ[—ïöþÓýé›& w Íü‡g‡'@¦½¿ˆŽ—·$ƆIrö¦¶!‡|Ù@¬à-þæÄ!äKÎb—ÆŸbí»3™ –Ex’ÎH'ÜÞGÊ•tê邇åkÖæ§ã`/T¹oƒQf7¶Ýžßyöü$Ù¡&÷+êÝ,nàt¤Ã4q€Z¦©|r±?wÿôƒ endstream endobj 329 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-state5.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 334 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 335 0 R>> /ExtGState << >>/ColorSpace << /sRGB 336 0 R >>>> /Length 488 /Filter /FlateDecode >> stream xœ•”Ok1Åïúsl/ÍŒþ^cÚB …Ô†J!I)ÆH]è×ïH»òJK)ø`á'½ùiöiµw@p„7óoà2²]F ƒ_Ô¯ø ¯æö`nÎ_>ÝÂÓÙX´ÖB?žŸ^ÍÍGVàáP™ƒu˜ur˜03ZuMðÎÞïÞÃáh>*üÿÕ#²ïËéšr.4”ó5å´n(—«vgB—U8t©–?¿<þþÙs®»ý?rÝï>ëlôðÇ|ûž ÁþŽf&ß›˜%ÃdˆúÔôé¢%b"Õ‹}#›{o($ mÀÜñšn€æßê•ÈÐöÄœQz⢡ù·z%ŠtQ2aìˆM7Bóou×#1¦Ùc¬-z$‹<5Il‘kG³{«›]Cd)7‡Ù—{4…å5¨úêÐXtF\9¶Ñ±®'´ai±.]˜ìÝÀd§;æÆ±®_˜bS·ëâôŽLutÌc]¿0‰r ƒõ]¡ôiõxƒ†•Êõ¯}Z.Å$„Rûªk¤Ÿ»ä©Ñf阺}™z¹Ô¸›2GGÕ^LZ7ç s蘎çC^™:#Ôj&³q¨Ö«`Ûž5OG¦OèâÀ,מ­œÑàÐu_`K6…ù`þœ'm endstream endobj 338 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 341 0 obj << /Length 2753 /Filter /FlateDecode >> stream xÚíËŽãÆñ¾_1ÀX\6›O'cíxA‹uó%Q#”¨ˆÒÎÎß§žÍ¦DÍŒíäbä0£~TWU׫««ùÝâÝûÅ]–YœÝ-6weæYq—¥yÛôn±¾û)XÎLÐv³yœü=›'E`üußÃÿ35áïëÙ<Ó ÚC[ ÷էȤÔ7ű<ØB³ê¹Ý@Á7"ÙU'øcÝž×ëïó,.€̼ßwÃæ×<æé»ä´«/‚LfɸŽ<1ì“ü°fF¨ÁV…Å"èÎí0¿$¬Oñ|jãÀ'3™'à45P˜ R}„á,w¼‹ÐÏ8Œ°-ŠRpÔ³ÅaðÚ¦…Ôºf„€CF:Y¢gÕíbµÊ¦7^7Gs:5¶j J‰AÄãs_“iø‚ÉX0߃à—&ðX=¹¦ið Å/qp4ï<”Ì;ÝÜ ©nÕ© ±}PÉØ¦ÈõE̶ŒGsÎ& ]W+dmË=§ˆFäŽÐ·¤„ÉŸ;ɬHâõ°•n2Ò )°˜ü¶‚½ÅÎÑ£‚4Ãβ6IX&Éùåqiá¨a{ÅlN†ÁŠ9r¦éž­„Úä¬xŒa‡–õõW,[(ß,¢‘ðޤů±{‰ØDæý§%à“¨¸ep¢×óΑö<Ÿó0  ? ÓñQHó))ñÁãi=öÀçjb‹`¡Ö@Û¤/ò ÓÕzÍV,複–¬¿ M1X)£Lè ¼lH˜(þp¶RÑ!Ù¯ÀNZ"(>6î¼–ì§N. \5i¯œ­Vœ ÎÁ:t¨£¬$Và‡ „¨ëþæƒZD¬§!‚-ãûÜH^C[G[wòº¢æðŒQ$ 4+#Í´*Xº!“Þé²áÄ€n_톻kw¾Šk<½UÎE4¨É x«eö$¾ÝÈ*rÅžÌ*³Âcåm8Éì”æŠ´±2UxŠ›fX%Ö#{hX’jyâiF‚TËmÔÝC¿q™öñy–fÔ˜¿êèÁ5j®E™qÚ#ÏÚŽ ¿_ƒnúÏlú{6I›8A0q³Y4Ö¤…ÔÎÇý y h“Ó!/t"³ÕEC<­œ䀎…3hô”[‡| øq2 Ð*>•²È¥ˆ>÷z¼dÑõúX/0sjÌ«ýeN¦/—È‚_Cd‰ËÌ"v§£M5“V&æ‡|*PÏMŒÆq™³Ù,Õ›ž‡W[–¨k‚Š‹Q!1U_yŒ‹f²Ñd”ýz˜Êè+î?”2‚™LHŽãáUˆÅüŒ§øÂnbfflÎQS­JEáÍF¶ˆP²Rn¸ŸŸÙãÅ‘2d´â­„O€£žw!ŒµÜ’7ÊáÊ»GáèÎO¯x›Û+?ÔS€|èQ7E>)Ê¡â+ªèñVZò#²Ê§¯Ó+µÏ¢ÊVÃë“fkùŒ·’ÃUí³ž=¯Öe/0qÖû˜"ݬK¶ìä‘X¡ÉY%#Cð1õ.{ÿ1½Rl¿ˆïæ± aoÿ¯4,»-q,a…‡ÿ‚%7qtçÎ!¼bÕÚÀsqiýüÁ«Iñk´÷šÇܶ }³N?i ¬b´…¬4¿Í’(v¶€mcù—rüÜ“˜„@ËÍPƒD ÿ•6ª5ìTï‰Å‡Jª$„¥0c7^êFâµC ]IŠ ŸÃ/Ü3qp”Æd廟2z‰êzùdáªpèíbc°ÔÚ+ÂÂìÓ(5Þ3PÅŸðW?ôP‹YZïáÂò÷6X»Ÿ˜^ªe¬á/¨ïÌ_lÄÖB£`øD#BŽøJ“u¶ÃÞ„€ôMݤñ+ß”˜ÔR¢B‘[ù#·o#ê÷½äãwÝ©„/qª–°ð@ü÷.ì‹ãœ‡97Æè'²ˆ" M’«¯Lß|¯Óˆ$ŒŠTñ1W11-T+=7 ÿ8£Çë(Œ³ž2,Š‚±¥9N¾ûañî?>©ï endstream endobj 344 0 obj << /Length 2549 /Filter /FlateDecode >> stream xÚÍYKsãÆ¾ï¯PÉ9@e‹<$Ù¤òÚ*§RöaU•C6ˆEØ$ "È•µÿv÷s0C‚’\ÞJå až==ýøº{ø×Û7oß—WU\¶¸º]_kãb™_ù2¶i~uÛ\ý'ª×7&:À_»¿Y¤IJíMËíz…½#üÕ[é¡=:ø¿Â=8˜EÚ'¿ûË{ü×ßáßdùÀßA¨šh/[î =ò€‰>ÝäyTã¤<à!#¯ÛàÙ7v Kl©ç1Y,놉I‰älT7 2ˆÿ>&¹O|³ÈÒ,ºÝ(ã|×nGýÿÞþó*¹ZW¹ˆ†<Ü,lµÈRƒìöÈ žQåÑj`Îò"ªñ]h½}¿´žè+g6‡ˆpO—2Š~‹„y‡¯«4‰“ÜúZ–ʯ*"Õ Û<¶–þ°Ãþ2J¦¥Y8ìùN+cË3#Ò¼»YäYôŽ“þG\‘¦(ǺÿÞ #O¼áQ˜b‘ÊiJeº0î¾\†¢9g‘š\Ì‹Û{œØ “òoIÖ[Ñ? FïpÝ·w ©@ù&Íj¡¸%6Aö£ ,ñS¢ÉÈžF'ƒ†ïzØÊQÄÆãÙ~öŽ2Õþ «Ãj ¯™¯À¸9”Òžˆs–‡š$ÔGÒhKNÑòP+'Ò¯É:±m£q±fئ+ µŽL˜V:G‡vC–[ËÖJ÷ ð¶ý½z0®ºo=:uH”u#+,ðQxùI¬¾IÖ_ÏüØ4 øZÊGk’sGá…â'6­RP†h¿zIl7ÂV}çÄB|Œ'Ó÷ý0zãªÊŒ¬Lw¢¹ávR*ü=Ý”iô ENc½¬Œ^wz‚ÏðƒlbÈØä$š_‘-·ê¢U}ߟY1YWCk8³|‰È7Z!©ã^Ïkd®ç¯â-²•—ž»È²5O¥@ƒ ¡èˆ[2ņÐD÷×0“+>£tÊŒYNìÄÌ·ÜWlÀö£2óƒ¼Gw¸r_Ë k^Å@>Œ¸d1çt„ñ„ŸtèΗ6.Ç!ÓM¡€8'Q?G?ØLî:8ùíyrMUVŠ?º)nå)0ñˆ‡µ­º/ãE†…-,ªdd‚†”dÉÐ'<Ì¢[üåÜño vŸ\Œ [Ý‚d¤íÂF9ºÄ’.s”x€‚⸃s…Ü\$ƒ)·|?Z؉H6LT┃ûƒ„€~œ’ ZŒ GÎIŠôBªXd¸3 ìÒăO“5ž‘«Ôj¿Ý¹­ÇsÈddñix€µ•3 ꬒÕE¸ W &c_\Ã,¥ {¶lè )t`ÚÈÝ û¶—!ÍtϨBà -ån¨]u%iœç@v ‰@Uªqà^{n@&‰³ÌYÐ 6O"ÌfÒÃ$SzDegFMä¶L㜠æ$½}†îŒ”ßAÿ’é¯ùŒ…}=/©×ü%ãsܾ`Þ öR­3X~-«W.Á`ž½.j.¸ã8óeœÙ“ja5Ѻv?xH†à×Ê®'ú×d|ôê|Ê^žJ/OÍ™Åõœ°çîòE°äÿ:âgÊH2LšÄ¹ ‘âDÉe9}ÁŸI5`êuR­)VޤgüŽÞÏrŸD:Ù…í'+þp²T†C›q&Š)t!Hjƒ³?Ob n b½/­wùeRÅ…-σN#[»zwÁñß= žÃÍvQªµ4®²RòEÏ4·23ªý[{·“m[~ˆáXJŸÿC½úì]Ö®Mâ²s[ð½ xNãLXÍK\÷æ·o~kŒïÊ endstream endobj 347 0 obj << /Length 2619 /Filter /FlateDecode >> stream xÚ­Ër¹ñî¯P¹’ʰV órÖ©J*ëªä°—U*ÛŠJòr8*>Vö%ßž~r赜(`@w£ßô·ÛW7ïj{Õæme««Ûõ•±Mnœ¿ªÊ:·®¼º]]½ÏŠ™Ézø-gsSÖ&3Ðoàgá× ¬†~1›Û¢-3/0¯àçfsWUuVÎtžþÇÛ^Wscò¶B&rÆ;DXZèyÆp7Iß't<ágÚõ{N‡Oè‚Si`ß>¦ás‰†»LCÛ€˜‘3b+‚µÄÄâ tð[ÀᅦsÄ¡­L+›jÙܹ÷WsëòÖÆø3`9 »w‚}Ç¢ »æî^fáŒO2k)<ìyÊ3t#[B9^G±J7‡.ÿèó@yK[Bñ`;x˜>pW±Œ÷²PåƒSÞÐÞ]•—Þ¥¹ôG!q`)MM=GÌS›`ŽÜ¢©ÍQŠÜ/˜{ð+õVÿÈüSw+’i¿cæ#üì“Øü­˜·û&üÕ™‰ü•˜sÅ̦îÔÌÆx—ÿ KW|Õ,†¡2‚]ààd>e‘ßøÈD¬VtâX@v!¼P+3š±Öd”]¨ß¼k’x ìåÞZðG“›RüñöAììÝú&vk`’ ;™°œÙš ­lœô±ïØ©²çÄq¥Œoˆâ¾ã¯-¢á; Y·ã±aÍmðÑíÈ;òË7³¹/ p$XþÛÌ6aµ¹ñL÷x ÃÂŒ0¹!-ïBqËÎ…ýާoñï㇭<0±’hæó6¸•˜%í¶vÑI @žö¹Y#äûE¶çÀ6/KmI\éÏq°Y„‰E SDyÿÀÐÅfÃ’‘<‘ˆİGwex!5R€Ù3D Ô' ,¶º4ÄH‚áR\õÎeÿBØF&üŠÒOˆƒVí¦<¢ûŒ,ôO²ºÛ³äåÐ|DIùìe“iÈ_în‡vÀ`7„„€Qh8*ª¢Q ¯Ç9!ÁÉ'©«‚ÕÙ‹>ùˆ"û3²i³ñp6Œÿ#O}¡rthIMçÐÅM-ÉOHK5УͶŽ=¦µÙŽäƒ¶rTEõmÈÖj̨Œ5ëÖÒ†C¢Ù¢v¤Ì"ûy¤C4¶±ß/‚á*ÝÓ‡Â8ò¢»Œk’½¢(žÉ6˜9Ç©ÇúèFs‡Ž·‰¾H6gâ¡ï®§$µ%³ê6¬`[› UŠÉwÇŸÀ?&“%Úc]mSù›lNIƒý«Cz«Dä0½Ý—ÄQ¹X8Ê¢ô?Ön‡Å¼‹ÒÓoB…8_Å]o¦dÙkÌÞhîŠê(…¹9ޤ~gD8sOhÇ|ÂR’ÙS0‘íjle¶”HO’TÿÑ…v‰²èQͫ䬒W¿ ‹\’ý›ì¯ÉZâˆF¢’ =,nÚ±tv4åB©1ð†Ñï!v¢íPsöt7È•tÉç߳Ƴ r•Nú nˆÑc£ îxŒŒ«i§­jÏs°Â†ÍÍMUfà †NDÍ=½f yÊB¥ˆ ¶mC}¬·ïs@±ð¨¾MØÕ#úš’WÏXÚ¶F ndÀrÃ^> †;µ] rJ™<ªMk™ó„­…µ(Ü2£¨Ø»Å.…¯þ‘—÷ÜR¼ ­Š‚©´ ÚãQR'3òžõN6¿ajBjdGø1µÒGšO]í“’ÎÖ>/­ cË’„RÚpZ‚”ØY1èš¼²µ.\=Eô; ­±BÅ<…ÐóÃI%ˆlÒ1l£ìÁaÆ¸Üøf,ôa­‰Žüªš¨ÐH¶˜:ê'*ŸÔ"+­Ð"žG>2b7æðy ±d4AÑ “g- 82Ü‘ȰלœãbŽû nR±†MpîáWF¶‘‚(ìó„SÌ;÷ÇPBN )’5Æš‰ æ«õƒ›wpöNL¦â_õþã¹aÔyíƒA͹YJUøzfl ÅW+ýyü¦S1Wȇ„ºnÒÞ&ÖÙ¯T¡O¬uÓk'ª<'–ÿÇH¤  º—Œ½,òÆ•'‡üž50!ù2o›—ˆÞ{,¸ô€<~æóbQ‡j‡òϤ|‚ôÞâ&{O#'Ø0à¡Î½ Ãà'b$`§T&weýB çˆ÷ÚMa.QÎí÷cvȳ¿„¹ú_d1SîI4îÿ!²2olîÚ“ÜŸìÊ^Ü•‡ìоHM‘™œ¯k|Ãv¿ˆûš¤RyLAßADãF¿åsÖ^Œ³W;µäÂåÞ—/$MgT=YÑ9˜o!JÔ7âfu›N—Sý2¬r¦QA—s=8·Þä¾¾8âv'#ü/šÆðœà|›-‘bt€…‘¥wZµÐÒšàWÂ= B©"6E"8ù2bt0Èe)®xÖc?ôO¿‘ÔQx/)\© La5$„e‘È÷÷¦æ² õªÖYÈûöréÇ‚r|¬\.ô;•üƒÞ8+åÞ–?´pÃñM2qìž…µ»œ­µ€wËÖ”™–òÅɪ§›ýäPWKMY¬Ì½`C9öSæIwt•“¬¦Z? ^v9ÃC«ås.Éq‰ÁÜÙr†OåÇ ˜ð ³•urõ5¾yâô¼–)Ä4|n¾VËB!-ÎÒ âFUw£ƒ']Úõ>9£ÂÄQ±h<õÔf »–i=§[®“hàI÷r¿c a³xÖÁEõ‰òûèÈb´I˜Ê9WƒCƒ¥SùÀ¢1@µnéwzµ³”3*EôŠÔ‰È©?ÇÕ‚YžgX÷‹^zëA\ŽƒÓ^ø5›3„Ê*iêq§¯Ð…Þèòû/|_¾ñ ­ÒëøñЇ»úr󙮘ˆ÷M0•QFùEÞyøĤÿ÷’P’7ªl#¸“Å]x0JŸ þ¹_È6ä¤þ›^F7‚†3—k|;v¹×òvÒËÍÚkzÌ2“\ñ@¼,ñ·ðþZ¶raÈ }öÌôžt3ÖS/?}Ìã]—9¾~œ¾Z½‰'?Ä÷“7ÉËÎwúÛ™:ñâ‚h1?KQDHäôrºro­öÜŠe•PÄö­¬<…‹>55¼M.“¡)ûy+ª¿`[r¾j¨ßê1o}Öd¸€píò iÂó^}ŒÂ?ëþÜÂ#Ü^€» ðie¦¼÷¸;y/NJJÕm'bð”T‚ºÃcb°…ókcÆr1ò”o¥uÒziKi+ikiiÛðBm’×jd…K_%™¨´C}.ãs~þ"<ñ*¸ ˜1؆GáØpSÜþ·¾Zc°‹/ã§œ8ާàòœÁ"¼ºŸWLc¡j@J-H©aé”-N|õÓí«ÿ%Xìü endstream endobj 350 0 obj << /Length 2336 /Filter /FlateDecode >> stream xÚµYY#·~ß_!LX‚GÚæÕG5°6vyàòÍCÔZ ѵ´ãÙùí&«Šd‘¢œA(6É"«ê«ƒ‡¾zóöc#'Ý¢«e=yZO„hu§'µiR™ÉÓjò·éw³¹‘jz˜‰éÚ–­-[„-¿·eiËÞ–Þ–ÓìïO?Nìd-õd.Ô¢Ó .â¨ÿ`‹ÄÅ|SaS¦M?ªÓQjª´é‰MJlRbjêÐt‚΃¤bÑ™%ýT™ÊR|O*¶ ¶ìHõµ-™˜Í…iXKªÕšjCuMuCuKugëJ7 I‚U$Yà@²¬IŽÕl®E‹ŒqÞ6ã”aü%æÞ¶;P|®a‚¦2Ó4o×™¦·µeøöcË\p®]+'siE-ŠðÞ²­›`‚<ÐvÕÓM?âÇól.ëé0€… ç –[aÓ9ÇÝ øíÐ<ž÷3ÙN¯;P»gF JƒI ÈJ‚ÇT( ‹£-?C ¸i7z©jÑ&ô;‚t1›·ZOŸ6¯eü©úìô%Ít膃“–tG(}t"÷Î[Výü¼\êvQ[Þ‰Yo´œÍU«ìt ™jÔôeKî\[{„qðBâºï•}Ý_‰ü‚ä¸>Rôl™ãšVèB·kžAúÑç÷s< ’aÅëýß-ᦳÕöG+lcé‚gA6ŸÞ÷è'–äâ×·™ãŸ:ˆXˆï:ªj§;憪ꦀö€ßÎþ£[ÿº¯˜+Qy4\¦´L=Týè@k'ûv錱ÁUƽ$4֯ȹ§áá‚m€ÓuPVîÝÏ0bçñ€5GÇ6‚µ—¾%“ÛåÑI÷eflÀœ·a5‚èþ‚@ûyƒ¾)¦%øÀއÏv†¬Ð¹phpí÷ñDcèý»÷ˆ¦3ëò¯pÉ|8¢ShµÐªõÁö–v©#íT{ú>¢´^­üDë6ZuÓ÷#J0n`¢•àåjÚ^æÈÞ,eϾÑâ;¦“ÓoG£/n´w?¯3¡áG¢“@kg†å–vWâ‰À!Dçw.«U+n}˜EY™xk›l‚e †ÎggÚWü†Íh?`ãX$p92ËsüìÐÒM4´%DGsÈ\©§ÂjÅAÌÌrzþvµ´*J÷ÄÐŽhʃà»3! ²­Ü>â&~#¾A:pgÛABq¯¥Ã€c¼ž=Gœ¦Ø·+²´Aëø³¥m\}J ‰—#ö‡¬°p §…Žû=š…Ör©"B‘#ˆó•r=¬ '3x1+dXW£í@]‘"V„ã¡È$MzškË wNHªŒ·–ãí˜m“øq²£þ‚mÀò p¡L„|hµãžM¥±Ñ{'4¢`‡ß2éÓIc±>yªþyi_|„lH©Mû²ÀÏ%x`±³W’—’h¸8XÀŒ[RóeµG$IÆý _ü¤3‡P eô›+±ú6|±tq×Ir9’%pc‡9lžbß?§4Ë ð`“oíw&:“Œ°Í:@„=Ái¢ò'ŸuwKÝdnê׸MŽØrÛ›«Ù†ãš§sð>ÚÃWr*wž2jú×Y«=ïªû­?8Þ,xðR¼çT†wÈË×!Éc²»øm“Vp{ðm!¦tGL×ÐVð%ˆNκ§þóà!Ï·?ûi¿’#4]âŽdú~#Þh*úÜÐÐ pÀ>PÈý6´Ç ¼#œ1¾§wX}´=ïmù³-?Ùò!\Üèï°Z±ƒ½wÌw97Ì9\’;~/à È÷ŒôJBù”óZ YÂæÄhDÏ0¹²Óƒ×õ5’”®Ç©zŸÙp@IÀ ¡ÊKènÏd½ØlWØ‚·— Üš†Î$8€&¶ÚeØÒ䟎_bwO ©²¼[Æî&)¸äÿŽO Ù=×u›ÚuGËà1SV‹6?æ<À½Uu¨<Э?w¤!jó@Zð)$úirgHeCÿ£V÷«köZòmÄA¦8d'ÿ/y*bó‹á´>œï]?gÿ[PX<Ò=–«XÇÙ³ro>4=3: ¼Z¿ã= Á­³ð Ëûî$(£W ­­cJÇ"¾ã¼‹6t¥ž¹Wô¢Ç(¸O6Ïq#ñé{}? Æ¸~MþÜî Lû.ë…FJÅ|Lcè>á™FžI5º:Ç5ìÕE«éWìú %Zö;[þeËWª#ÄJ,”Ì|^Ð{VEÛSG@趪ÂqM4†ê6›_ÑŠó½. ñ1ôý4_d@¥°I©LÃ&4³øbèõáñ¡ï>&ÈZ6¡Òb*„ù+6ï¿¶ é¢3Y$agþ©.’ÙNÝq5M4Õ,¾¦æã]pkœ¯™«Ëh›–AX1}ê‚>&“GÌpm]°×¹ú•ÐÑ,´î…NËæ7Ì—u|»ïØ´Ü>ª¤O]ˆ/KEOßyìÔ‰\÷Saóóq¾q¾döGÞ7±#YÈ›¿(äòÔlÍ® OKØ6¤·,ø«d¹"×G2Ÿíð¼‘èÓûsaé¢èo¹¿(¦*ä6•Ø®œÛ óÛöN.ðùÏϯ3CÔ1…{˜»,~º’>]!·)â§füŸ÷ÅþŠáþÊõQ™>ÜŸ–ø¾ƒÂßÍÕ*¤Æ‚>âÖW}j!\nUR,%—B°béØTªæ>%™ ö¿!×ô?¦¸;[W“DCªRÅ"¨+DQÅ"P²¬_/eÉ&Îãbi–LÚðá}Å,êÚ,é$÷›Žmâù¯Nرçv]D#¹æ•–<Ý£Âc1IŸÙàü—ŸÉj÷#ºü²êL˜#X“4O²D¨ïy¹$æù *gîwm> stream xÚíYMo9½çWŒæ4™Ž?Úv7‚=,‚Ãjµ‰p21“Di`W{Øß¾þxn—=FQ”ƒÕÛåzõê¹Úîü¾8:}aĤoz-ôdq>áÜ4ºo'Z™FH5Y¬&ofúx.y+gü˜ÏÛÜSûç\hÞÏú»±ß=ç‚õj´qsÆ ìâ˜DünñÇ„Mæœ7½‚sS8ïüi‘è\a!Qq.€ûg°ëa§jλ¹„+œ›1>k+Î[ïŠÈÆLÍy_87ˆBW"ïHJJçf‘G.FPç”* Pµ À€,´mˆ^ÑQ§tÀ q¡@Ì!#¨(;€á1š{!›žÿÏlÿµmW¶áï[ÛV¶-IÿÚ¶§Çs%dƇö°æœµfö–)74øÙ~faÀÐÚÐmçóZNþ´S.mû·ü¾¼kÏ/q ”Ÿ0å:t‚å€!àh‰DCÒ𿟂t¸?ç¶ØYÊðÙ_ˆÏž@SÎÁ|,•8^Ü&áÍ͵è 'Áhíw÷ªÈ÷zÌ d7ò£Q .%>mµhHÆ©Fß:˜4ï%P¾·ísGª”qk‡éâ¬i[ìlpó¼Æè'2.‘›{‹8rŽYC=a¥Ô‡d< 9j¶Éâr\7XÞàIûÒ®÷&×>AžÕh-r)Å 0vè¾ìļ¿ÑI»LºX†Ç8ûLb‹‹ŸT¯l·‚ÂÛýz¹»«”¥+¢¿3œÐS¶7œ9ª¬„Ú.Põ[0º—˜ 3ü<'ìðï ÝÈðåŠGVR_“ª|äfã5[) 1þ Š‹„êœP³{¿&ÝmQãCÒ+D] {‰PÖy”´[¤î5Œ×9e¨ ÿ¥d,—ÈàQxl k¿²#A°¦ëxþRž¢tm¡Š©§,¶$‚D4SDAM}ŠHö ÉbèžQ%oÑâîƒWpd\h䡨Ùqbû}ñ0¸™’ ´$Õaš¹¿‹ìÈìÈJˆ+â+Wó9ŤŸ¤ºÊ&_b2™°+jp¶_Nœ µÂ”ªé49->ïS©µã^ûtŒ%î`h3ŸE6ä"Þ?ñ@é\ãÄù/pÝÐw(¥{vè ——…pÂäˆÝã]Îp 'K=Þò“q3IÈÛ.]+|÷“´=žŸr†S#~C®Pô¢ÀDÑŽ‘ìFÏ®ñ4%³kYõ¨î£^SȈ—”Ê%%9IéIýœ’?±¤÷­RôvÓÉÐ T†øw’me%*×NO®ïòrÒ‡å?Ö¨=_‘ ¢h÷ÈÉ–c}ø$ï´qŠÐÕžblü4ôµÕ>¼ó Ô= ”Þ9×>¨_ Ô/[ N_tô¿F4ŠõV[¦é®øÚËîèùâèo]üù endstream endobj 357 0 obj << /Length 1691 /Filter /FlateDecode >> stream xÚåYKsÛF ¾çWè(M+fßËõ4‡ô‘™v2¹D·¦Z’-O-J#Êyýúb,¹iÙi}hÝMj^»ýãâÅË7^MBœr“ÅÕDJ_¸`&NëB+;Y¬&¿OõLN/à2³¹vÎO—ð¼ƒk ×Õln•ÆÇÏpíáú ¬€[Ÿ —%17¼ú ã)—pÝÁ_<æ2æJ;ý w'(ÿcñÛDŠÂ˜É\Ê"X6 报ßµ"QyvÉiÉ÷À2%Ó\Ši€JZ/Û÷Ó->Ó{§4O2£:Ï$I®ŒKÍžó²F Dý–Ñß’ÉRߪ‘-ì‚ÌhŽ¡ø{ +„?ݒɧb’ê¬É¹^úœ½¯mQ:Gø%§ý÷¦âú»éãZÇ Ó§äðó^ Tëÿî½SZ–>)UöÓ@ðe‘þ9¤3üú¿nsk<ýíIÙŒÑ<áwIÓ’ÌLJe PÚ}¹¤žy.Yö¹‰…ÏjSŸÄBfþ.Ob‘ï ©óÃzm˜¢¶gœNúN–S@¤“nSn˜Nâž­I¶G 9Qíeao·r'±xž»Ûaþ³éä•N)ìj$D{Ê¡¿±'1£É¾:?ÂnžUÙB©É\é"H²â=Ž,9ò; fYå½ê¼´å¬ø¾+ºWâªî¨jH5U©¶£®V‚¸¹Ç”·@»ëOæ¿åßÎÕ]—_‡LÜ ’p9wÀ»ùC‡D)ug²ì0^uè÷üòœyËÝ?ß²:È\¥x#+9_XlÍÕ¶åÊ‹bDÚõ+þ#Sk¶¤éä;ÆQ&,/ß”Ù@67E(£cô„îW(m#ÈUM|TøXÏT9=P×$oF¥×ÙÀˆtL¸»ÞHݱÀ&Zsس„›&  ·Kz»bæ$jÝ!ØÆW«%3ì®èþîõ›·?óRMwÌ¡Š$) Ýc’T‡kŒ:‹‰qÜxÏoœîY(eÇÛœÖzúé¦ÍLø­¦b»¤‡ª^ÑC³­nÓVÁ[e\¾5øÐz©I"£'2‘z»ÄÂÆp À¥S1`IZA¥ƒŽa@¬Ìt1 :iõ5Hófº?ìðD˜k´¨X5mgȲ©¾V–U3Ì RŠ’”.67ð8ˆª[ÂþÓn¦<œAøc ¥¿0LÏ܇z¤ì}Pç ¢¢ýJYhÈKTõqf•“ £>@pgÅÏY>ÅŸöX]#0Ta¸&ØäBÙ!8›e OÑ¡,]”Þ$žãP†.l(32z¬„òå i3ÞÉO\¼.$ \˜`ˆO ušÂøIÆòdбf‘6…ÓþJÙ‚‘†øÜ$îNR›…ýi.Š|šû‡Â@[&ÓçoäÏ únD›Ю³ÿq°Õ=°ËGÀ.Ç$ùs‚„}qq1ã BâøËÃYË÷£Ñ—¥±<œµ|d_€ã:*Q­ˆo´ˆˆsËHýÈк^¥Ä J­Ÿ1ÿû¥Ö—#DÈKm,*qï çcÙ-Ïæ£{L>º³eÔôʨ¯L=lõ°ï-£ò ʨ÷|¹³eäÇ$õÊHy e•…:âáç5œ™F@« àúK<@ôi;2ì¼ãyú¥m舿jRs°Ý·½wM¯Çî-òäÇ2ü4 !µ¡-su¤uî±ÎI[’4šq¥[Þ´}2¬;¹ij^®÷ØœŒcÆÁÁj‡±êŸ½N»‡Î^_”p†Ÿ¾Ü­ÉœKôÜ:4õšÚSíD¡aè ¦Øã|ÅþgEíƒ1Šú¡Ø: ^¨©ßFj≇»§Ó­`cÇuìȽ˜~Ú0„eäÝ6Óp?à‡‚4à¯i<Ò«¦[¢ÈÛLæå`çÒm!ì3 èö3{Ò¯B°-c³Šm|äëVtË0%²´ª‰¾¼‹VåIÈíutª.œò}§¾Ã¤]ãw;ƒJH¹=Z9ìªetÜfÝ“ÑeÙ:u¤."9Îñ~ÎQ¨ÍŒÇ`Ì ©óÑ0þ]$IÀeü—ÕtM¹Žl{´eëqî€Xá˜éiŽŽ8„l²XÌ­)GMœž7iăyö·_‡âXñ{È­Tv9¼qÙVìºÎ1µŠ²V7ù,_­ˆüVµZ1DZ8&ðà‡®:ÍI‡ˆm™>¬˜åÞÑ"V†qÓf¹;¤tž(¡ Íµøµ.v–ÃåÅ/‹H³T+ endstream endobj 361 0 obj << /Length 2221 /Filter /FlateDecode >> stream xÚÕZKsÛF¾ûW°j÷®Eƒy"µÚª]W|Ø«usr€HÊdB‘ IY±ùíÛ¯ HðQµJÅ9€=Ó=_¿GúÏÝ›ïÞ‡QS6®v£»‡QãKïÂÈY_ÖÚŽîf£Å~¬Šù~p°»O´nŠv 3&ÀoDÀïîaØîæÑfw_LŸáÝã¸öV-ÎYÂõy\X…hqò6~ANŸÚÕœçïhþ®OŒ Åíç-„ÇÓàÌI$ .;ÁpµÍ×hW(\_øKûc¼VKÙP¶¿MÜÅ|üÓÝGÕh¢TÙXhºÁ }[r‹Ø-ÃÓ4Žá^-?Æ=ÎK\í»÷ÆŒx¹•‹×¾ ž×Ö%PZüQc`Z›âÝQ!´·ÏSbƒ’z 8`†ïI¸îW :â‘«Å¥ŠY¼ƒ L´k<ÝWÅ7¿Žêß"úÓ}†Ì}Ë{ÁtΟÚ't»5¡ñx†ÁZœ÷9JÈ#ñ•çV?Êç<‚¾@#³9‰ÃÓXñ¹Ä¨†Lb‚I© 'SÙÒšxN¿1‰¹²ñ: …-]cÍÒÀˆÔ1ÜÚ­M tUiœ ÎFyÌhªJGž?VÊ ²÷$¶ö$[¼šQFóce«†lÍD~ûãuti›ÐÉcÕ¥5ÎãtV`ŸË{Ã^ó²ë[tî³èœkÊî êžXn*Î5_£É‰ã-ZvP‰(ŸÚE·|Š 3W1ÍÛ-¿aCz¡®uéa ¯¢:ÿ‡h` ÅíÕùRÙDÛ¯åËÎÞ,@£Hp¿Z ã·ÑÅÝ‚5u¼ÜD9Wú l¦†È¨Â%HÝ%'ì¼Á|KÞpZ`LÁ>øv8XXå’ÚxEsWº s^§4œâÒýµw2Õk"Óˇº¼VO£‰ƒèª5p0ec¾I`¿¯¢œ)+£{Ø*® L·5ÝØ²îy Å8ʬ D7 qUM勌ˆä¡-hM]L·ìbõÒpÕD»'ˆ®˜S€mWü­+eàg2ÃIBF✂gí)ãâ«»Z)+”©…ì Pv=€K(ƒN:Ô¢-¾Š½ù+Ì-E~¸I‘èuãºXŠ:ö›Ä…€=#8"äˆÌžtF®C1Ñõ‹Ï®Ï2ÚšsÕó.+BåÝf;‹yJ /‚JÝÃM—ºŽÕ¦@®Çû¯›Ò¨¦—ú`ƒ%Ë­ žõ¡éËýnƒ‚ï–$=H¹Å’Þ&0pÌMÁž¿*Þé?9*Ùž%—ã3›ð4[(!‰Ÿ3$'&8°~à‚¬§h žAE¨¬¿y¢¡Ä÷\bdoÜY'ö†§.¥¢\=Ǧh›õHAMþLF=x¸pfg¢Š—\f‘óQUó•:%„o'õßdg©oÊÌ"5AuçÊËlµKMLš¯Y~)­~EEÄ -šZäÃåTÖd_¶qV'í€%°F‹ç;Aó¯ñÄÖš ±¸DͯþI˜ÒðØfU œÄv¶Ôw¦×)–I{sà ÅÞ§•;i•g)¦øoQÓ{~|{øVÿ8â’SN…oìK÷äœ,}Ÿòg+ÀmRˆh4 çû–4Ë„oy[¾}ޱ¡Û å:n︕ÁÈ- w©õRb·©«¢>­ÂÌC÷˜ŽŽÝ(( \Wxå(GŒÈ)»GËt*¡¸-£Èû¸¢]‚­‰2A”¡t(¸ÀfÅÇô‚ ´ÛÀœÇ-Çñ9¿p %¹E:Ý ·ÅvÆ…¬ë`L¾/íÊ*Ø<Œ®[‚ò]› njJV«˜^_&ÈþIêoAeªoY↴b¨«¦Á<©à5ê°Mˆp?£ÌS¶oüÔ®g<8·!UÈÀ¾K$ÐzO€âÒ›ç® Îwg«²>²u7mO6ìP1h{¦zw¥é*<< -ÿ*nÝÆK¯Ë,E} à{·ˆ²lb"êMs«ƒÍ‡ÞvÞ+y §ë jÄp¬¶2O±æ)%Ÿ.d;úä%-…¾• 7¡2yÁü.§ñ¡Špœ¦£±Ô-ÃÛý¢£ âOô»Ûu6Nß(-O{ `³Æb¤ŸÊ:ù>ß‘åþÆ©©ïÎp° šEsIGp.v¬mº³È-Æã“ß›ŒŒãÞ~ËþéÅ"1ÖLLÕ³qìT,àÛgÙÊ2,=K ^t|—Ç0ØJr}‹‘ËÈÁ&`ÄãÇT8ï´ :1–­pN¥#.7ï¸ôP"ÉÎ2wíc—«?IÙk©ÜÀýPÌü‚ç†å™¤7"’´gÃ)0KÜ ØEe»âŽçrÖß²øÇ+æœJñ·r¡çÿÔKù;'kÊû¹»!°”µÐ¼H-|­3pv¥Ë‡xfÕBF•󵋪¡7w͹â…ÕqN7<1*ß ª‡;ï:çAΙn¶"çËuf˜FmCAfÄ>&S¢•q¨áò=Z ÷Ós5w Ãÿ´@÷ú*»úf«ìÿ×þ®.‡OxpŽ’z%”rHbq3\¾'º´µ»ìÃWYðdhµ?°ûûK!._@wC”*¾§rç¤í¿²>"Ú;Y-îõû¡2îŒÞäÓV6• ’^Kû—Ó.‚é'„ƒí¤Â¾ ÝÓGWé]UÐoWx² úT}MQ÷0ž‰ïšŽø>Y„NYÏHÎ/Qjetñº.Õຒ®mY'f*:pvÅÎÍÁäN‡Ô”Çø¯é(s¤SBg„î­ÐUBW ]%4áÄz•ÐòÌðý÷FxU’ýÍà?œµ†îñÀŸús˜i¦\Õ ¡ëL8K%Éy¼ÐžU ]hû T‰žïîT,8BOŽ;!kÉ5ÚˆC›É…lDç6AT6݈ö-{˜;À,ŸjþÖjªÁ&º.Õ …ÓHøæ‡»7ÿTß endstream endobj 364 0 obj << /Length 2923 /Filter /FlateDecode >> stream xÚíË’ã¶ñ¾_1GwÄ%@$]vª’T¶â8.»Ês‹sàè]#‘³¢´³ãC¾=ý@‰3ÙTå˜KÐh4úÝMýéþ݇•½i²Æ[s¿¾1¦Ê|SÞxWe¶p7÷˛̷f¶‚g/Ï žxž’ùž#<š›¦,f%¼gðäðð”?—9s;7yYÁ/ÃázO%pï.8+pµà+¾Ÿ¥_žÏe׬óï?ïÿv“ßÌÉ'—~L.ÕÁÓßÎ}mø°ôbŠ,%ÄÊÀy™÷¯ì®H.—·sg *¨^^*’«¥§ÂðU×3³oE¶;x,Dz2.ðÓ„còÊ ¾çÉ3%Ç2aK-OŠÏ]È»ØæBŽÊþJp9Ú"k ßóïrŸÇDWq¼•;ã³d…%Ê‚ž§O²s¥ï…•D“¼'nÒ6Ï?K˜YÃsÇÃ'A ¬ª.´Ç²T^žïÑÑFÂáäPýÔqÉ=Ê#/õD½âìgYíäFCÄmDµê@°²¬˜†?0ÌZøsØžþŽ®@¯ aìqÈìßr‡òúU¨< 2}J¬jyŠwke˜NwœñÀHÅ.þ÷3J¾d¾î×RÈ gÀ«È¥ºÈxÏ‘y©.u¢zÉ5Ó{¡lxS™H¡ŸIWãu[ÅT|øX'n|^×™Ëk° ÉÔLÓýVlº¬a›)™ç4ÜìH¶Öõ–žom5k‰¤ÐµÁ•†o€¼ÚîE°~ÖŸO8®ˆÄ­¬‘dV<߯yNÖ‰øQ²¥ËšÊ€úÝc¦]ÝÕº¬(kþ|ë‘ÆÎêH{”ŒÎÒm«pÛB¬†.Ì^±ôÛx^¤Ý©fàÌï8—l;Œ“ý)Ì>wSî }ÆYz+®©È +MÅ[Ã1¹µ;f„Y“5±)ÑÄ ¡ÕR‰¿Þ…Äí‚Wx$|C²,ì쇎aô†;¹=L=㔳(«3å4B£H„aIr+]èø·mºþÁR>ò.0cwA¯ŠBôc"N«eÛ?µ8`)®N¼Àf:ð`AÚ¿Z‹bî÷äÕx©Gõ†¸¼ ð¶äuÜÓÿ%›ðÈ'²”Þ§Û=o{"‡Î‹ý þ¹Ì«ÙÙ}.íâ++ ±Xî8,‰yòA”šDóJ žàËéܪ?¹­Kˆ²iJcåüêóɼº`Á¬†ÁÝ„‡ò6óΪϹw×NªÉ*œÞŸÄåk Õç]æìia±š­ÏªD‰¯Ý‡ø t¾0•V{âÏ»×â)¸O™î£Æ÷•ÒÞvKU˜æh3×pC¨‚â!}ª0^\üûJ“WYá/øÍ~wEJ¥Ö]ÛH¼ ÊKVŒ ï¢#ˆ ÌžºQ%¬Ñõa0uZ H®û×Dû Ám8Pú¿ç k»A𠺂áfÏ4Ùj&ç/R'NèùTR90·¬üÕä(@6bǰ§: r·äBAÎ+Ê#®UÕÀ+e'üûz"÷ÿ$î2‰; :¹ÞT†& Ü]LöcrFSß ðkùÛÝkjpÒýATgAµÕ(<'$~sûNª }"Kð›x½·RHR—¦jEÁJ(ï%ÿìD~ÃYӘīï4)ìHÑߌJ¬í˜ÒEUOާäwõííoK7å|-«\3Ö{ƒ©@Ó„L¸°9p¼è¶×À/ ¦1coïB6Šîáš[>3>B¸|K‘Õ•‹9í PÀ¦JpˆLL9:Æ—6Âf⓵˜öú *³qýý†&óMˆU¤‚®æ.@ÄìÃ4¬êU(q;J†,¬™ýBÁõ¨áêI¶}wRs9ð€µkâÖpõ¿»ö5(JŠ€`ßC gÊׄm|V•Å%mÒF±cR2qÌÂØ«D9øR÷ê 뫱#¡ø&4ô1¶~”€‰ggbD¬ÈÚ±°VT:Îî$JçáÀ,!êAC‹M&JÇæ‡ 5ÎK®@1è ·xk$u³ ê<Ÿý ;Ól'Ùͪåå)Ró§¬2WÛúyJêêkl¼T˜n9i9Æû±Ü‘È´Ì›@[C‰ðN Õ­]—ŒÑÆ*„uÄ»¬jš±ŽtÄÖ ï!ä÷¢È;Ôš³.ŸÔ.arÅjHûOÑ­sq:HŒNš3¸ #q•çÕ÷¬hs 5¦DJ…{éJP˜Qdz8®…3ißÁü5†¸&+Ü…þ—úŸ7IÂfiüBø ÌaäMH˜Ëœ{,2ÕRÀÓ…WSÃ!‹'Ú÷PìŠ9P¨Õ„Œ+¯caE³Ä?ò¡Ý`ý ƒ¦ê NªZ<ü¨M ó>¤Tm©×H:”‡ =šÒÒ¦ÍÙ²`¯³ƒüƒ‘¼¢“ôi·PÒS³€ÖêèÒ²ö¼Ò ºÌ\$Xbo:¿R„ÿ3Þú”4”Éx)šù™Vpð:j×Å÷.‚ÇŒ‰e=»ÑkcX¼Ò *[­ˆ‡MfF5Ž©Ôò5š¨‘Nɽ±Z ê¶FhN®uˆWGq%xáXÓ4X e¤™Tú: v-/?µÇ$±]P´;ˆCƒv}¨ ÑŸ›”bg!ÊG1xª"É$h0bÀ «SLå±ì+mLaýϤ›_xóAê:¶7šR§3h²Ž©ü0•ì“ýí_¸Ú%shüHaÈ"˜ã’õGëÉ—ι©"—ץߞ‰³’B3Þiín†÷®?…2&ƺÌsl›Yž:í0Ù󳘻IØ’nRésv{ž$Xz­·)3Š®Sso"s†8—ê‹` ˆ—ô4íJâäY}ÐY&v¡þ2î¬îƒÌSØ‚„Oºÿ«¹¦"±qË ‘×DuÑPŒ0£ŽƒMZwðþcJÔõ …ë ÷i¥ó4‹ÁÉU.„G¢«ž}Ç?ßN4´ ð<7Œ^-ÎÆ6 å¯0Ö¯ÂÒJ[Ø#ÞrùÅa Õœ¤?t€¹Ø)s¬Â[+}t­Ûn³bbÈRŸ˜½|™gµ©Ç*(í_Ì5÷±ï²<ǘ¡ BÊþCbè»$%¹ˆH>‡"ˆ>ž¤™Vg²ßi&=hDúð’@¦ÒR‰n9AÞ’3s™|“4ÀŽ_¡/]9Ž Ã)VQ©PQå Õ¬ÍèƒÑÄšòÍrªý‰ÿþzXס”¦¤£Ór§ß@œUX©KzE€•' €=[NŸÆŒ¾£Ž´+AÈ¿«—²1ˆc q.¨hh6ÀRôõ0¸ôõ0µÜ T›œ’.1¸ü> stream xÚÕWKoÛF¾ûWèVª(Î.wI6M€¦h -z¨€âd‰²èáˆrl§èï¼–\Ê´j¤½ô@rw9;o¾™%ßÌÎ^¼õ0©³Ú?™­&&+¡˜xWfƺÉl9y—œȧïg?¿x[E¢4‚I."³«)$Í4µ•M4l41IK³9Ý®ñjÃ`!¢¼&ËyKû–2Ûmå9—G»Øí àßàZí“»«N³)“+\â|7Mq¡Q+[Z9Ș5~ÄÛ­nÝ«þ…Œƒß´ç’Þl0Š´¹Çñ n—â<¢„¤Yí½ePD±XŒ¥¡I&€ÀOÒðižý¯ÂZá 8ÒÇaš:—Ì÷ºÎ^4âéņ±˜¨Û<\˜·"©n¯HÁ‚¶a*X <[B`M¶’ÙÎhâà‚t>ȘQbMê0¯’RN†:ÉRM]ŠÛ¸\‡(LÒœç`iÃâ?Æ´ã³µ'œ&6êÊaÏ< B¯$|' ˃.Žãrè®Êv"± @^oèö¹÷cw«9&/®­ímlûÔªgЉ `/!þN\f–ÜÑF L¥Æ'Í:°çN–%“8؇ºëØÖÊ‹SÌ >pú‰´4*Û@ºeP`¹5¿’šÒD¹1¦Ìò܇ì¬4BÚ?’Ic³ºïwEbÔâPï²iZØ2™‘óêyË%ç^Ó71š…&FÑKºgã]V~تØÔ#eöFiL‹‡Ì ÍMBmåë˜`´xž»|Èš²#îgíHðp™ïŽê@¬/8áÜ}iô «ŽW‚”5»Úg˜œúcŠ]q¾–’¥…PÁÔÿI^Áé÷jÈ«[%òºÇŒWÅ\(7BÈ-«˜*QÅXùElãV¤8 `ð³f˜©MfÁQËŒP«Èê¼£l©0 Ò‚<ƆZäEh4ä—0N,–ï”4Þl–²HZï‹Ðë^gëž§]̈í2Bêélâ·äPöUw@Ê] îã3{'k‡&œßW,Ýæku÷Aзøé`Š!øóKnÚÉâC7:“‘zã*œ3?0Î÷2Ù‡U¸íûÿ0»ÒñRƒÎ@%μž¦ÎØ®Tr™~G'§ åü®Ã ¯ IpqÂQ bôig8ÊæÚÄ[ÝuÉ+uÓÇn–&3¥ Äúj$‡¨vÌ»%¡v‘;#ú ÈJ_<[=7ihÈø¢vÃl>D½É|A‚Ø} Ez¡ …¶ùQ6.•Ôz_¢¶Óí>ê›{=qI4×täzxÕxÙi yQbÏcíA¬V‘BÅÍØ×ÙBA %®Fô+ÕYpk%“¢Ô´šÎ£‹Dý˜éÊ“½æí¡Fá^‰S{^x:f¹T±[±-=ì¿àõ^oðúžç)¸’pN)(u^±]±éžŽ¯ÄGÉ/GYÿÃ2[«ÎË1]tœš/()¨«ÌÖödI‰¨CoóâKKªÛýŒ’2J"7Î1¯Ô7Jûê_”’UîˆbO”UQ;Fë±ÊkÇvbE%ûýdùä]ô¡™…öOåQ{pQ[8Q6žÝzºlvÝ7€þbr˜Ç%t %³ÑZØ+w︀ӣ"†+IžÌKèéy„°zÓOUϵÌôß#$ø[Íš|aÒêŸC(§CïJOxHÞ)­ß÷n½âEøó ?š½’\ã‰:DLÀW±Cü5–á×=ž'¼ÌÕK{yZÛQvÆÓÚk:úd¯ £¦c¸Ì ´ïHòìÇÙÙßùKø° endstream endobj 371 0 obj << /Length 2452 /Filter /FlateDecode >> stream xÚ•YK“㶾ϯБªq ¾Y9%e»j“ò!Éܰ%1+‘2©ÙÙ™_Ÿ~ DÛ嚉šF?¾î†Ì&?³iª¸*ëMÖ$q’ç›öòôëSÜ”i–AðHKF^“‰OŸ/i¾ùa|ú'üéÚNxî¦{yúôS½i_¹y9lŒIãʤ›¬ªã¤n6/ûÍ¢¿nwY’G·­‰:øŸo8΢<?àÂ4ò`>ãÊu»K+zá§¢ŸÆ ÓX扔áS˜Î¿Âó+üÛ‰öâYz>ò ÷ãÀ H9÷ð1 óÜãÛ7˼æä?Ñhåbq¢Ý‚8K„G^ºÒD"{…Áu¤ý»í//ßìL7 Ç1qS¬+dÜ;”=ËÛfy„â·ãä'µš(Þîò¼Œþ› Œ>ÌâÛ6­£n"}ðáY3°4<· œÀ¶øÎ×mQDö¨“h€^­&¢^¬WÜáîðm[”‘E-d1|$ÏÁQ„™½»P-ý…4w45.¼ó†”`mÔ^²Ô²Û]SF܆2‰º=ó,ÂÖ…ƒÞÆWÙ–ì°÷¯w³Î¢Æš …eâÙð?U›í®ÌŠèó è\ä¾e4ê.7§xàd?ÈMe¯ÓˆìöbÞ§"Eè3‰ÈD4‰FÿÎÛt-m±¢Õ@n x…ÉE:Ùž§Ïª!«æ&¾0wœØòLü1²Þè@`ÞîÈ 1hAšO?¢C™ÆY"’h$…RƦ4žüø‘O×U®4·GY\4uÀÃðzV.ž±å ñÝA xÊ:‰þE^HÁ0!uÑèèÕù¤>ûÆl­×®S-[‰´«è"Z  —*ªÎ--hÑ'ö(7˜Âò×±c{£¡;åiÍ6: ïA”­Kt[´TÞ€ä@Ð3|ÕŽ”N¬N8Ú•lø}ÝÍŸ‚”ÖðÚO‹<6ÆÙaþòh¥´ˆóªT2"Ü UEÆÙ=ÄÑ2†HRC`:[MV>°>Óª‰‹º}–a1¤«,꾋7ÆÌìEYD/ …U®Q3iæª<$“b:ž»Z2òY¸h­–ü®¢ÜQ˜á¶'õ'œh1Î'Ö·rË}¶|ä¸&NK‡5fí­ ¤øÛ2’è(yã¦`ÜQð¬ÀÊܲ€„RNý[Q¤ Ü" Ì]@TfÎÜ­D‰â(nùN.çÞ}%‡TYú²r–Rðá×Á¶Âdœ0Ù¤A²å…Îaèœøq¡¾ÉQ.2FïêhéNPƒð à&™À0Í‘õï«/ëdƒ–E&ßm글 Zh=@jôzx Ò³¦ÑÅê½x•j£™q×zà¼iv:á8Z²Ê™7<$›E‹±¿À DH`Š?R$Y)oªÄ-&)Ø:‘gâØ6â]xl™~»û5_ ó[ñÀNÉtÏ3.Íáà´žãxq©­’…¨0ÚT? OÙö"ë€.vcAÉÈ@kcLî1Øtä=ˆÇwÄÿ`Csh̯ïL2û*¹ŠƒÚIuËçb©Úñ¢u¯*°æ@Z Ìwä›F Ùƒêz ³VÞ5¬c`¢’\¼RO3ûSZ\²!™‚Y?ó¸]Ýqc¨\™Ñ„pDð…ÿ‰îèäHƒ ®;‘”{J¨ÉVIÏâX¼ã˜QlÒ:ÆéLr5)Kêè¡,ÊCÏH ȹ¬g*#gB°ÒÏü=ŒÌŽj Ü>ñ̤:ìñ}µ’gAªJ8ÀÇiÒª™ƒvTÈê]S…Jé{œÊƒ&LŸ%)qïàäAêãɃë];(˜?¯ùXP2¡Cú~±Ú4aM…:1eú¦ðRÁ‚êRX©®ä NZ8®8„`¾i~Ø[Üà]Â&¨ª›™kœ#OØkZÁA¯ŒýäB,¼È†y繦´†4A69NڪͽV9ñšº°a.’eûc:Tom+ÉDq*á£}8ØMXVa|â^‹ÆÔSr6ç‰ ŠþªlI‹˜Fp5€KæEç²ÚS ý'ªW/*:oƒØÉ‘œ?ÂàuöýôoàùxäŽPêê9”-©ý«ïp]±4ûö–H9ÑÌ,¸÷Ë\³€ÔßngA˨qU³R¢ø"E ¾Öàk¼¦MÍ…ÄTs|kªEù¡ã‰`k>(^˜‰_È™×`¯[R&!5«Ýϸw¯@®ÛÐ2*Jºåg¾ú襩ëb½Ž ’3¾ÌHÇ8ø.yþε‡6 ð–|³(sqúFJÑ1T®¾z_³L)û g1·–/ „›` >£n~f&a¥¨d#/9·§Íùk³Ov‹øæY!—*ä´Ë;aÓPnau”æ>÷Lµæ ©¶+yÉeÕÜ]Á„Þfp»ƒVläBÈáP¹ö¨‰Üu™d­û²iŽ|×6-éŽî®dK4Á¸ Ä3ѳ,4äv ZòП½¸Ãs~‡’áà ôª‡Èã¥ÂÊ|?>v!&‰ë$ÿS—ýe¥›I“87exAñÌ—o'õY¹ø!°®‚•‘8x}D vœîHUE —«È‰îþËrS¾fãdYçt-’•Ñ‹ËÈ — ósp£!¯¶îbïùøê ’Õ5l>`Å5µ„SW ;⤹à ™ÊÐuÍÖyªš}¹ ͢Ϸ”4a9¾Z&›¼ûØÏ;Á6†ÿð`x»)édåp•’eaª¾¬ÌÒ‡+XÜu Ã&ï )¾×©"•…Óήˆë¦^M;myjâ,«Ã¶|Ä{EüiÉO+-yW¾ŸG-¿cÚÜæií}oD—XÆiW­ëÝÙ¯:Ë„ Ãù›þ~€u|füA{ãøî]Oî6—+Žƒmö éså²0M|z¿ˆúóLH×ÎzJ“’G°WÅe)9½,qíéÇ—§ÿƒÂ­P endstream endobj 365 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-zph2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 373 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 374 0 R/F2 375 0 R>> /ExtGState << >>/ColorSpace << /sRGB 376 0 R >>>> /Length 7397 /Filter /FlateDecode >> stream xœ½]Ë®GrÜ߯8KiÁ3õ~l5° °±x13‹¬,S[`øï‘™ÕU‡º¤xã½Åbwœ®GTÖ+::Þ¾¾ÅÛ÷·ÿ~úƒü÷»ŸÿõŸ¾ºýþ›§p!ÜÎ?¿ùý¿È¿özûŸ§?þùnÿþo_Ëß?EÜpûç§Òî3Ýâ(÷Qn?Üâ÷9VúÝí›÷oðdŸ÷ÑôúH÷\÷uOîë³ß[Ü×=¹¯Çœï¡9ðôqG÷Ž;<}Ü1ò½çãOw<”k—sßñÕ[¯Èo~¦"þöǧßý£üöö¯·q÷·?4YʽÍ[lR=rÏ·/â—··ß?ýÃ[ýá!G¸Çt"ë§"g¾ÇöðÌð©Ð˜Æ½>ä·~:¶÷{¨Ø \*8Ž ]4™z»‡itz¼ž+êß“ûz ù>âuÝ“Çõ8î©ïë–<®çtïi_·äq½ô{ûº%ë-Þ[Þ×-y\·]×wùÎÊÛUöf×£Tü0"ö©•÷&?WñÁ¦(ì¶Šó,Ë>†Íá^ƒbŸmïA…â³~˜ÛƒÖy/–ãôRh—¦ï ÍïsÌúòS õˆ ïV: ùŸf5ÙcòºûÄP{b”âÁ±©Ÿ¾»ýÛíÇ׆‡‹ö„Okö·ÿñÃwŸ\¬Àòt/à?~ñÕw¿üåO_üò§/oýò&Áð‹¿ýtûå§/ooŠüý—/ÿ|{û5~E{(olåž$þ†Â{Ù^5€hÞ£å]þøéVï±ËÁþ"•(Í—ª„#À;Z®¾ýé*ùo£%Óùåè&…ÌÒyìËÑ-–Bº·ðrt¯÷ ®aN…A´¡£¾=ïµÛ³–!‰Èy ñž³Â™js¸Ï…—{Áè”ÖÀÆÁǽ5e˜’ÖFˆ¨ábÉ£4@ jÞáý5OGl-Dlabºœ$B3nÁk_¡—ÁeìIË>˜ÌÜ'…<ÞÇÔà^& GœŠ ieœª@•]Fäl5O=Ýà’ùÀt™X±®ÓGµ»Áåéå5O—²3]&vômw¦ÃFíèèq̨x/út*T¡’ê2)Ü‹ ‰¡Á±ŒL»§¨+€:¨)MLÒÕŠÎ#ÓpïMcUó©££c‰<™p!ðÖuRT™`%«°xæÆ8ãé­Þ Óî²Z•uuꑚE^±˜oÔt2戋ÙhgzœÃ%ó¯yzXÌRð©tÁÎ ïéȲ.5Ï==¡§¦ÖÑñ(xZvjŒ[p–´:¼€6TËÓŠ$“ŒÌô¸\±~AÕeêé #s ;|¢Ê1§eÍ€gã<mŠ-:¨¼q3j¯:†u%a û]Ìê5–ŒÔ 2AÁ'Ê>°ŸIÀ‹f^fHÔä¤TlÑ`cs0cœÃ¥áÓaKÃð’l[›‡jñ¸Ì‰°¹G ØQ”i¡¬ˆ2õô®=ц"í@€O¡sóyc€–[ɧWÛŒçzÜÐ9­<=S¬›ØóH²¤™Ì¬rÁ;7ÊË@i÷ÊÔ|•ÙhÒÌSã{µP)OÔӥʛ>ZþWå ŽZ„Êd{‘Û£…}R[Ú± VRuƒ «îË"ÒRËÿZ­¿w?Jx9¼Em8jJ,«œÌrÏJà8†K¯€rã¥êl“j^'«Ïa‘– ²öQ9?˜)q‹`+ÊN ÐØëJ:ŸïLÕµŒ£ËÞ "4æóÔô!25jÇå¼j îä|^ê ë8ŒïTÙû=  ©vˆ‘Úe¨§O„]ˆ1=NàÅâ<Å:Y:—¢³‹ÈDZi±8-ó\"mSødj¾W¤"7!¸ÆºÎMÌdNmN­&îÃÕãd*›ë$¦ìÄtUeP¤Ù6Øw¬3*ŽÈ“,¤© ·ÙtV)pjzªª&åò<ÜôW©´ëOÕŽ"dÝÜúíÝSUTÊÚé%9t´Îݤ-é Kü‰›˜,³$e\ËVlHqžz±ZÐÝIt¢”3N ßAõ…Íhlu$õ( 2›‰›‡Ìm,YñSv8ˆdÇ•–ŒÈñª§³¦+~Toošž÷4í×ôþhÝšîºI(yiÈ 6‹çÔœKë°q {’}j¹³â±Ý3µ–Šþ¾\¨S+±èýRרÏÁÞ„^—µnÚAó'ˈdéªù—Ùi´´ü,Ò¶¥RTyƒôDÆñ{S¯Ëà8,-­ç x¾Ì%-{¨’­aéŠ#;-¥%Èv+¿æoè vÂ\Ô´v£”LêögÔÞ•:& HW$¥ Þ¾3©ÒC>2KrKX©JcV“‚8…)è..bó&n.6g›sÇëus;úcsG÷asõ¾¹h¸¸(õ^Òæ¢ä&ÏÍEi¥Þ7‹ÿ”s±$L`/.§æâbIÞ¶ÎE¤ÓÁE¤ÇÁEàÓÁEìåœ\”´µsQr£Z¤ÅEäîä"¶SÒÁÅRQ[›‹RÖžN.voÛÅÅR\œ^žÅÅá÷;«K÷ç;‹î¬l.J:öƒ‹¥y}8Ëê[ÎEù½.^ùu."?óàbÕMïÍEYnjû,9*æ±RÀ‹saXý:çd²TÓæzysÎÖ¼çlÏê✴ …Cã\X(]œ‹Ó‚sçRis.E«çœ$5Î9œB…Í9IZÿwÎ¥äýß9'i‹Î9éV‡Î9+Õƒs V<8—¦»›s8šçÒŠ7+þéÛÿ¢·áŠM±9—“sÆ9—“ÇWçÒéàÜïWü‹oVü þûÎ9ÉŸÅsçœä¿ŒƒsI76ç¤ØÆ!ç\l¿çpnÞÎBýà\ˆÿsøçYãŸJÞÐ ÿµ¦Kw¸Å¦ß!¦ý†þîÕ"n ?ˆ´±'õ â~ÿŽ•Þúç4ǃ{¥÷9æ)÷Jw ÎZî•>îÀRîÐr¯ôqÇœZî•Þw<–n—öï¦åÖ£ZNÌdúFª¹s˜´œ;KŸdåÜYÂÓåÜ‹½PAíi¬jª ž}GTI·¥;°»_˾ÃÓ癤'î;,}Þ!iíÇ–>墨½ï°ôy‡å}ß±ËrVÕóšä¢Ç+Ð1[™¼)ÏÕóÇÀ˜hùÎß $ØŽ-×6À „ÔŽ•ÁÑO^žgYÈ»*²½O%Ã.ýaµ§/Ýõªþ÷Òï ±ÅןCŠ!*à¥Øw0% ¬yû!1ö·ß½{÷Ëÿþ×wRìO >§qmt•’ b7gÁ%^0g„8¦ cb]­¼©:Ud6¾“Œúy®YÊ‹á9d[YgJÿtÀ+±—´à5S{ 9èô퉚w8&íØ½à‰Ú~]ðZ©³¢,Ӿʋ£ކcÞ@Ð)’m„1¤ÍѦº2P1rŠ—‰#æÈQ5$è°i7<1OOºìP¡*CZƒûÚ€GÛÑ ”*>cqt ÃÈâ\–HŒ"aÁqPI•½šººRb͉„7ÛÒŒØBæá•’ŽåÔm³0q‘vÁ35Æe™ðNË<£ªÇÌêjìT2Ow8¨™ªÃ‚>ë¶;sNæp”9+Zð"]†83ÈØÉ¶š§X'8Ýo”˜p?3àÚ½.m7#LÏÈu³ p†ó¯“:©Êv:]æ Œmó¢;œ Ô‡8»J‘‹ìxÝ-0U'ðf[UŒ”«~=2ªÔ€7ÓvSUWô¥gìÕ†u‡x ›7 ml‹¤¥8¿áŒdÁ…ó\»w•Gãéð:©ÓÙÇ^6vžÄ Ó‡C5#Ö¼àÒ;bG²ØÓ…q†lÎ)jR Ù\×MjZ“í¤J´—eB§âìJ‰·²KÇZàÆ¸jË’¹Ù…Ã…óÔ¬RàºqW¹¥ŒÅ3)I®ÓŽáfÆâlì•3™G‹ùÑ+*X„ Љ´—žÓ™voIÕÕ5q´Yp))8ÄÙ©Pª;Àõ\“Oe´XR8¨[1qv£á q¶ú x”ðnRÑF5œ‰ö ²f:¬Ã!#Ÿ®âìJ½hš›]¢ËpUg¡2JÀ”ÛPqv”DpèÞ°ÑJq~ÚÞ9£x³÷Ö¨ÅHW3&¬ß©Ì S#©ùÄ„‹µ¿ i#Só8(ün!Þõ+ºñBq]®É¾.´a^ñÍÝÞÑ…v™൩¤Û}Ôy¯&Îæ^ Ƚ/aµo#p„‹È½”%×ÉôvÌ;u“ùí-šD©lóH¶ Œ\ù’¾03+˜€USº0ÁjTÕøÆ†cD ^L[E8{rnv¥Û}LÍÏ â옹õûŒ6HJU¸úRnJ<“5Üà§n*ŠcX7u}µÙ8Uû§ò-†uÓÞ[+KšÃKˆ&KæfEâD7‰ãzøôcÜçªÎUUjÐ7áL×ì0"Vô‘wO®EÍMÓÅŠÝDÖxý¶šèpBú–†½œ‚IùÒhªQLÿ,iô‚¨RA•g¦YT¥˜²É+¡áRÉB5Åcvª%MŸ²¦« »Iý AR¥â0é¡_†-ÅÑ^µS1•L┬Ø9US¼<È¥Ú*GÏÉ;¹K‰±ËLš­RilO *—Í%Øñ‰F4¤Ë’j«O7Lªmù©iIµµ~rm&U~½“*4Û;UŸ%“Z«NsÕx¦ûµÁ25¿×ÏßëÓ¤ŠÃ¤Œˆÿ*Õî&tGL\RmM#ÌXÚê;µ&ÝŽZ?sšT»˜|¸„¬óGœ6›Ua·¾–¬|%F•*f×™ªò­iû¨”ôÃRíÅÌ\M7»˜‰œ¤ƒ™Yud›™Y µ™™³‰»31Qž3³¾…¾™™³ã™9›èt1Ç.õ`fÎ&â\ÌÌÅ™èÌÄaò8˜™õ5—ƒ™Ý[r1³[Í\Ì&6º˜9­¼‹™BÀ”fJZ…Ö‹™%úóœ™%:3œ™9ă™%9Þ™YT›º™‰×îëÁÌR,2,fB>fâúÉL{m3SÒ*â]̄мÌ”üXý:3—}1øx0«r0³,q—3³TÑ.f}Ap3[Í]™¹§S߇º¨êÛƒPß:#Ák|1PÖVñŒ°[(±aPÆ´i Œ{!î%öÖqÆÆ`¯¡\±QÏؘ­†“®ý6…xùŒ©™”10u¥Î@ØžÖ36;®Ø=?+6êHxÄFý™#6æ+=6f{íãŠÙZèŠÙTêWlÌ^?+6fÏÿŠÙó³bc²—4®Ø˜¼~Vlô—8Q á``òö\ LŹ˜L­y1íuÆÆèõ½“ñéÃ2î÷Õ§K¸¸Õ§ÛFÕÍT?‹ŠÛ^m°'\Õ–ÜFÜë²¥Ì~xÛp¯«–ÚWÍu{]µÔ¾ê–Ûד-y\7Ãíëº%ëf·}]·äqý,ÊU²}³®W[o§D:ooà ·'¾ÔwûxæKm·Oè{®ÛUß(Y¦Ûpþª§)öºlo©}µkxYW-µ¯Êj­o¿lKvÞAm¾.;oK×-+×õ³³Ðq.q½<ýFÚìÙvúZ"“KJÞ@úûB´ZßÙÞ‰>ãÁåAí½õ²¤†åðœ~L®›êð¹DÏî?x÷é–ü¸÷y½óþîÓ2çüâÇ¿=c?ý‘¸ùùݧk§l ,Óæ¤Ø¼§Ç v±Ízzp3æ<=#ecìÆÓÛÿ6tãlY ,¡…7oܹºÉ÷üÝð:Wjë×Ñ!R<1Ûh¯hð˜”ÜÎ-§er̨kÝ4:äWXNcºO›ãtÌœ-ƒÁ{æÜõÌ1zFJpåh ”Û•ÙMw¶ÚtK¨‘††Æ‹›”϶¢é›k^Ѵϵ¢%6P-fNÑ=sVOŽœ÷ŠùDïïŒ0h¸ÆR.ѶÖÜðç.Ñà;å}bp¼¢M•\]ž±š¦l– Ÿ$ªÅÿQ>Çî06±¸ÚruN]¶ ¦fxƒi]:0OwƒéT¨£´ >¹¸nÓÓk¸¿ôà>záöÒbêáf/u˜äöÒ“­7u—žœ@ÉÍ¥wfïÞÒ…ô4kéÊ^º·³ŒIÔXlhìZ½âÙ•3G2cgtSÎXá³P+GÉY¡™©ôà^ŽqSh ÊÖÉáRo…Ê»zJ#ÎpŽÖêâd‚Z-¥1]§¼ÄÌRZ†ãW8JÉM‚ÌPzf®ÖͺÎäÔÐmpƒ±¹I·ÈÙ=š™4&Œ4ÄͤÇà¦!v(5IÓ~³’Æ$†+yUò冇̀2õU/hÀ9mƒ§@?=Uì)Pß'1'iå Ewu*Ô),ï$­æFTæÕ ZFTjcèA~ØÅ|¤±T¤¨f ÆR³‡'n·Ð}¤càÞÎwiÝbZÝ|¤%Ðpvª»CÑ9#gµ‘F¤¡ŒÛÍFEç,´³mý5n"f6Ò˜‡R_Z0éJ.—ìU ‘ÈfSiœÇSWiÝ¢fÆ3g¨ý ‡Gr‰mÒ8ûmU ÊŠ‡Ú»´ùfÑTw1 iÄ)êNf!O}Æ,¤e‘̼lêÒ“{‰È ¤•rTÖUtÕ+õR÷ÆfÕUÍ?[CÔèbþÑ“{EØí£±EÁy_«}ôìÜZÓÜ£;'®vóh=7¥®æÑØV¡¾hæÑºHg«y4¤¶ _Í;Û+TŒ3ïè΢Õ:zVn½gÎѨ7j¥ëÎÑüT›9GÂ}GÆŒ£çà¾Ñæeùk´É…†~©t¹¦ûhº›¦Úäwy¦Â3*+³L®g5ÇÔÑL³i†©’Rý–ù¥J ½’jÛ¡WRu›EãíµëU32\SohµJõtJÅ£hI¶Ã'ÚÜ=/›Tœ¸μcßšI*4Š5Ô—e´Z¤BÖcWÕ!uºƒ°¤N/¶û£ÎaJO·GÓÝUÍy5÷fsGÅüútGõöËUÏBíºº£êÙ‡þ¼¹£êÙßáÈ‹´6»£*ÞÜPë:[57SsGÅó­0掊üMKkýé ôᎊ.GÞ¹êÑÌQM;ùÛÞÐ8Û'Zåbèª#rΡAUºg¤C4 Æ:ähnŸÞ9M6j´Ã/ÚMS–9íf1ɲÑnºÀØh7Ý¿Üh7³±Ãh7³¹;í¦ë v˜½ÎM»Y¬‡8í¦Îp7íÚ`Ón9;í\Á¸h7ݧÖh§sŰy‡jqf™AV(&V¿˜·¼šóÆòÝuæMï‹ynÁ½˜ýeƒÅ¼èØÅ<ûÅfÌ–_^œ“œyñò!7æÙ+›y1/ò¸b·ymótª=7õP¥Z·Ki/ /Š Y4·Æ0d¹]“é„Êê_=Øï½¤0*;5vu—©»z±»º³ÔØ…ÁnµÞ²Æ®î!ÕØ%h•~»$eýÝØÕ]‡¾‚ZðháA-z0ð –ÌWÚÙ5ŠuFg—äÄ|¡]£»¸±kø—VP‹n2íA-[0_A­, |¥#s3k6{ëÁ‰e§¯"Ò¦•$ËÁªé*k'Õ\þãÆ©Ù½ë¥fu£P‡Ñ½!Þâ2X]ðŽ\Ûl’št²)™Ð&ï½8ñ¬Çó%p\¾­p<|=?§8òùÞ·üßЇ:ø½ëžÜÛ„à¶5¾žÜ×sÒ7;ÖuO×ÍAáºnÉ㺰°íß÷ä¾þá+ÿ7 °~I¼âØO–Õâ½zŠySøtëdtÀ|`Ë °ÅßXØölWEãÆŽOÇSœâå_Ù=/¥ðò«ÝzÝ_ݵÄ~}‰‰ýúVûõ%'öë[O¼žxõ7w“Þýí1OûŽ—hŠÍÔ˜œV»‡ôó²â‡Pr™*/©ðòX^BâU凌Ů'þlÚb7Tæ´Ån§Ìª‹;òþ?*“úbG“ãÔô,˜TÑ‘;4:gVc t¿–@,œT;š”-ÓDRgìhRhìhVi¼à¤Ô ™0ZcG“bc ešÆª¯•–;œÔëD,Ðzc‡“zcX~aÌéMꎕÕ-ëRoìhRoìhRo t‹¬ÞØÑ¤ÞhYï’zã…æôÆ@c‹‘Ó;šÔÃ/tZo¬ÆzÖ;œÔ]i½±£I½±£Y½1àªÓæCá(3«7:MZo|ÁÙz¯ØÃcõÆœÓͪ#­7Æ›÷x½ŒÓ­7VK½DëO´Þhh_9½1ЕÖÃO/dVoœìm|Ro¬^~“Õ;šÔ¯gszc [¡õÆ'õÆŽ&õÆ@Û†+£7ÓuRo¼à¤Þß{J•Ö.¹&õÆp ‘Ö'?—äôÆøX›¬ÞX¿ö\X½1\+g`õÆŽ&õÆðmL‘ÕëÇÑ#­7|vVo §˜Bëî™Ö'Èz&­7^pRo ø´ÞxÁI½1à“Öã{`K£Nѽé2©7N]?'Êê—‘˜Ô;šÔÝ­7V#¥BëœÔÞx½1,Vs õÆ€ËDêÓÐä°zcÀç õÆiè+¹¬Þ~Y×µ3©7\ÖY¤Þ8ÁQˆÖ'gVo t´ÞŸ-,Ö/8©7¼Zoœ†îC‘zã4ÔÆ„Õã‹>²2zcýàc¡õÆ8 ª’zã3³Êꞑ֧©ß õÆðÅÓ)×Usæ¯Á­5ñ¥ËÐY½1Р9½q†È®°zã ›ŠÊês´—QH½q6=«7ÎQ-ÝX½qFM¬ÞhŒ‹¤ÞX¿ôXX½1„.8ʬÜ:²‰H½1<g§õÆøQ¬¬Þ†‰Xérzc·BþÞØÝ>‡Jh/³Ï¹ìÑÌësºtØ­>ç4/SwúÄQÕgîôyI\Ý骛“g°cÿjN“îô‰tT×eS«"¯YM›ó§/¢ª;wšÓ§âÕÙÒœ>õ÷ÍùS•;x¾9ušÓ§FLsþô­å²œ?§­ñŠ{ÓšE'Ê£:6wúÔpoΞa½’7¯Y¤ëáô‰´åÇœ>UIxxͪ`Ö\Žƒ CƒIˆÝé½ÕŒ@u¿aNw¾5ŸÏ9Ü×l>gwWNsùœ.ºv“OÛP½<>g}0™EßÒ|˜Ã'D…f†¬ ™­Ýßs&3ìu{Ï™¬ÍÜÝsF3usO¬<ÛGeÈÎC|â><¬&™]ž³¨©¸‰ˆ–îídâ0âb"$±õ`bt—àÅDI“‰1ºK²31&÷hu&B%Ý&ÆåÙêL”Òs‰±˜Ëîb"–Ðá`bÔïÎl&Jº®Çš>\5}xÎ"mþÜÎDxªžLÄ`“&¢5?n¤Í3Ö™(ér¸#&jùʦ¢¦óæâ¾ßȨ¿77µ>×ã?㣖glBb6×c¤Í¥Ù(©“—¹9etŒy“iå³Ò½k.Zb‰æeç_× {ño\ü²8Má¼â`1v8ûfó¤‘ov«[çž0ê ‚sº[²1ÏT®ñæpwgãÝú)§Ýlîl¬›Ë´ÜH7W´4ÎÉï»±Rn.×`cÜtºNzq9<ާ‹pn6Ͽ؆ïÇd.Ow® / Sm¸¨Ú™6ºÈ6šGDãÖRGÄÅ]æe#yñdÃû¬sLþ´.g³CË‹a}ÖÁúê¯Æ/ù}ëžF¯îŽÎή֭ó;¹š‹¬[-[µ;µšGªožþðô+®2ù endstream endobj 378 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 381 0 obj << /Length 156 /Filter /FlateDecode >> stream xÚ-Ž1! …÷ûaïà °šèà̦èÉ£‰`¢ÿÞ6ÜЗ¾×Òmê6ûQGo<¤DÔèx‡ÚXi‚£(9ˆ‹Tn÷™ðZ¥²Öˆ…¸0ZÁíRXŸÒ ¨ìæ ׯMÔ71§reÚp.ÍÍíyê‡ñ»æÖÄ‹z–¿˜y³–çtÓÐr Ú©Ùëv©ûÌH2Þ endstream endobj 384 0 obj << /Length 163 /Filter /FlateDecode >> stream xÚ%;Â0 „÷þ ÉP“‡óÑ9b@m•Z üb²œ-Ÿï¾Cîv…Þù)`ð\4è´‡<ÁE7©ÅëS¥l²·Ék>·,aˆAsVAO £¦Ûc©‘…eã†ÁÄN 2YÁÇy©òÝØjNžë¾–ÆYŸu*1•å݈&o<óŒ2ƒ«T²hmhXù³;åî­“4; endstream endobj 387 0 obj << /Length 2820 /Filter /FlateDecode >> stream xÚYYoãF~Ÿ_aÌK(ì˜Ë>x-2AÌ»/1° dò@K”ÅD R{þ}êìnJš`löQÝ]]]ÇW¥ïþþ³÷w¶È«Ê–wû»¶Î몹+›—¦º{ØÝýšýxè6&{>ÿ~ÞÜ»Úgåæ·‡ñZŸ×MmpmqwïÛ¼1ž—= ¸`‡ ʬ‡ö—3Ô8aã̸ë0"åö4>w¾²²g ,5Ž÷,s 4›{c¬Ï~œ6Îfo¼n1AÓd;<â(Ç.Àkœõœæ®ÍÛÊVrŠ5yS4ÂùùÙÜÛÆÒâî8Íðï+î¹ "=0ekdÊ6&#è)G8¤ÝÂíîW¤ïðßWèÉÌ#|ª¬gaÑ‘llCrÅáé….H§í™%£<Á–Γδg‚ítÂMH0ÔÂ]¦—%ÞßnÄã?ÀX Çdp‹|P„(5cò¶,Yj´äoJÏ—ñ>J¨;cßD‘Î=¼$’.ÛóäiŠ»¨Fáxÿ…ä@–do~·4±è»Á-Mö´Þhì¦XÊ)«=wwÌ5jõ—^Ô)ßÜ×u‘ý·â5´ÓLzü,ìɧ[2KÙd6ˆMW4+6éœq¬1¨ÛEM©„Â3v‘úe&sƒ ¾lÊ WÑŠ£lùˆÓè3®A%™Æ±ÃãwüpºóÜËËáÛ)iÊnK:M\‘Æo·Ê‘i\öÙ8ÿ;N°U}·?‹¶Ìï™*Þ'˜ø"’ð–Ø©{©Lª²Ð·?Á4Dí 7+]‘=ˆqಹӅ^…¤+; "†j­¿¸ §ö<Õñ‡dZ[úìwbPîW©yËNG2F™™ñº9½Ðõt-ÞYKÔœKZJzÉ.ƒúÖTª%NdDùá–ÎóÃÍ\å=+4F²íD³•(õ Î5ìˆ(Ú¢¬DÒ\>p{DÎÐ× \E–^Óí`V}õÌ~:GQQ |RE” Cg:_n"€ö í?oO~‡÷êF6¯8)Üt|ôñÄhoH.‹Ê b oŠÔ„åýp¸;_9S ;Æ$q´k8K^æ*2U¹7­Î ypè j³ƒIœzV[äVµ×jp‘ÈœºL­uùC‚œF¸ŽBÄW¦êS] ¶%\¥–BñFœÁ‹(¹r¨Gþ¥p@ümîšêR{¯däò²mTF9=¬±^©QÝÕ-ßsy‰¯ƒ(ßûi´qu£.asE2J¨ ûrs$µ“í·âgò/obAm‘‰Ã Û„œ´ #öŠÿº9™xÁ+n>ÇUø¤…B¿C†>Æ‘ îgµ·VR"3yâh¤;Ž(ÁàH#°ÁîḎL*£W%¡`Ä ÓG@╼+³gŠG*SŒX¸ž =MíPCÍŽ)á±ã½IP#a $fT#ú#.øÔ_ÜŒœÌ Œ#áçt¸Ö\9G_¬7"" ×ð}=ŒjxÆJô}Ö˜Œ°„vU}…6©*ú¨r`h?A¾­€Ë·SXК+n•\s<ëÏk¾o¸IV½È+Un}¹Ö)Œû[BªGÑw[d‡•_rÖDîa6X´×¬›ìýÆØ2û?´’S¨}ê[=øëÔ/w[H›î/ùŠ$ÅkW€Œ&88§ÞÃâMç³Â†#óJ «'XO¤ê¬ â%Úà—r”ƒå“âÈt{èç8¿N(Œ J*UÝ{S£l×oq­Á¶iVøÉ6Ñ—ô³f6mõZd?èfzÈ×eë7—þ(ÂÞÊqdw4u œ„ &Xí:Áj¯/ 9J¤= cyn=h;%·‘èÖ°ÌÈ/ú6èßž?eq+¢·yÑ–ª;ÿŠâx[»)šÜ–èssßz ë×û¸Ü™ú.!'îoÁSM– 5v K‚Tä(ê×TÙaâg¢Îc:¸A´OÒ’»[²î÷8o/|,î(J‰ÏP †öpâoêZF–³¢’WÎÀĪcC/ÛO{Ò}µ¸EÙ6Ò1‰gxMRzWå­o ÞYdB`Óíȳö›QWªn"bwLs! X aNÏ‹.]±³iDÌМº èòú´0Ó<˜uôM-;MuÈYD ®mªÁ¶Î+WELª¼³=}ßÑë ¤“qfÃøîZQk—Mu¡©À„äÞä¼Ô9RöfŸNSˆŠ!𶈓þ´× U‰…rÃψ_.²Xq¬)óªªÖñ>´ª‘Çx‰Z-9Ys‘“Õ™) DyuµÊÉ8ù¨«x åПbUÀs.°R¦õ짨Ÿ³+¤L“QgQ<œ€" Ǩ3ªqUs!ÓJ‚çˆ ¥×7å/×î¢o 2§3Ž\û4ôÑà»Ûu4>h€äWÌà@³NÚ½ÈäYJ3'Eö¾(È7dTäü“LL9CÿÛÌJuŬ¾·_g×ßJÐiOç¿Á7L(ßZÈyèåÂeМ½ú.³Œ@?ižl²>VùÀ65ïŽ!÷”}€,š‚¢38öNrZu¸ñÇdœPïbpÐRÍþ+ŒAò§½\ü_Ž ·Ý‰ãpP*§s¨a ï¬ù3²Ÿ±URì•¢óÎ}x‹k`l}››:¶›õR²ÅÅ')Ü]yr_å¶ ž_¶¸À±zf¥fe¹TF—MJÏŠá¸úœÄpS@âÄ—mR¡³•ϵô]IEFƧ“h*NL‹:¸PšŽ?GÁäÔyÖˆ¶‚h"”;fÕw¾ë:~‡XöQB ç(ßï"jáQÊù¨j4Hý†Øéqó<Ç5#C6Óù,ÛßÈT鬗>ÆAªØ®]Wµ]«Umh¯Ý&ö9­nBˆ¢tƒê2'šNð#d©Ý“æÂUI˜àüx@Ô!ÀŽp²Õ_Núk¤½*4ê•“~ö†=Ï#oêÑN;»›…xux„*§øX1eï2p3ˆ˜ÿ¬¬*̲ÞïBšÊPs%gá!èg±w¹× Bê„?hI´#öÉ@wXI¡jwKÍv˜x|¯LC.ðR^f­(L³ÖÔq¾Ì YÑ„úÛ„MŠYFÀ¿IP´Oäaï釸!ìÀ2SËÊ%îIn™[ ÒpSj–Ưôc¹É~Ûܛ“†›²6áÛ$_œGZ›´+øû3a¡éd Ûµ´1}.’¶Òø‹vy $ƒäµm!Üy«eŽªEÂw?=¼ûÁâ»# endstream endobj 390 0 obj << /Length 3897 /Filter /FlateDecode >> stream xÚÕ[Ýoܸ¿¿Â@_Ö­WI}^š—"צ¸÷à ôú ¯µkµ+wµǽ¾óIR²ì$@_ú°EÉáp8ó›¡üöÃ7¯¾¯.ê¤.lqña{aŒMJc/мL¬Ë/>Ü\üsõC{º\»<].Íê¶Å²Y¡ÜðçŽßÇ ”‡c G®i?Ýÿœæéå¿>üõÕ÷ÆÄ³¤6©²ò"åñÿq¹.«ÕϩɘvÂPž˜ºPJÏààvµ¥Ùx¢˜-c…3T^_®ó|õ ”Zäî$ŒAµ-Ví"cE’ZíÈåE‘Ô¥« K²:¿XxdLdžò DåEDòëÂLYRWæë&²Ogª’,‹gºÂ«æ«½áÅ6#nÒyB`Ñ‘¸àל"ñÅͶZ=àŸADÝtÐÚã(ð“V.@ŠyRU°i’:mi6'!mzé÷¯xB|î‡ÏóRMŽ»jŽÌV¢f¥ëZ^6@gûÚ9öJ~+¤2Úe&ÜâÔ/mI…°HÚÖfõp+sm°¤øׯ¬¤«N$£ô‰ç;J÷ñŽ$šNE9¶Ì†KÝê¡»Ô­‚÷Ì+1½ˆ¤‰¶5?[ý‚ýi;Fn3¿ÒùÀ‡®ò‡Ê7´Äa/Lš“ž2h¶ÒAuÊ÷´c*ï¦ç±{y¿#IèÛ-¨ȈÿF“·8Äžß»QŽJ¤ãMQV\”pª,ËåÇ¥£kSëˆLŽ•I_ì°Âyö÷÷ä†#q$ÔäwGÁÄo‹}w·êþGЪ œx·B“öð÷;*w3µi•ØÊCÉ»§zöÏdÚ®jÓÞðà æxŒXázÂÏ0ç•1ÛgÝcÏ­vã˜MÑ—š©Î¶ÍiÐÉâs ñ5ÃøŒ Š4)êúEë´Ý#ã9>€y|d"rîVI(¤°ž!ƒH³Œ°ãëI‰> j)f«¦ÒCAK³9« O&|&’°¹I\1_;ìw )“ÚT!€HÓE“&Ni EKƱ ÆñÍÝâ0 ÌJAJ§z„Âò'Y]#Æ+¯’Â̬WØ=/„Q ¶NŸH–Ãró—äQdÏ^–è‹óúb_GþUâ°5›¡Ó†M]æÒÕð4²þh ÉúC[ªyÖúaY QBPÖŸúƒX2lºÆºËr?hàQkt(`õîNíC‹|t¨ß;Y Žp–d—i7+@ ’“Í !jxMýýYs´Ð@A# 4ÊÑÊóáóÀ® `ñê»AÈâZ Ìzt"@ÙÈ{™ËØ2Ë–ù5jhEŒ%9RE­íä|C×Vgßè*>zÐÿØhîT™Gž?Z„ !þùŒ¤œ„zÎPÞ¦ïÒüÖ°½BŠnù ‘‹"÷ló?ø)2ž;%‡:Õ̱»dÅ£˜H£“úW ‡í ã’UÅØšØ]¼Ü$ðbiSÅ-Ëz{1êÖ9bzàâŸüú¯¸‚C\ï•„šö¬9ÍØ•áÎt(ž<².xØ@gd"Åbê›÷„g8ÝpØÎ ¯,«=µ§@qT-AäôÞøer•×` ‚/pŠ?E.M»7wŠÝv<‘ßeaéc'8è!jo…Ý(ªžÁ?+ÐrMÎÎêfsœîvù¥a¶+Æ”HÛUAÑCîšNü¾é3`a’ꮽâ†ë³WòYñ ‘iÃÃï±áò"ÔÖ“ÒȨ[ˆÌÁû-·z¿yl…¡ç  +¡üOUx?´ˆøØ W@èì,›Å±ûBüW%uU‡åY³Ï.[Õ’«ã\ä—Ê(WT“{üñ.Óx{.wa¨é~ÐàœZà¿Ìk‹ÅæPðù-Q¯qq'LbBZ÷s2Y´Š²Ö0]‡®ª•ó™ÙzõþÀ$q¾^¿û›ˆ† %9Ž>¤g(Bh6Û\õõ,5¶™¨æÖ{fÓ§:³v†÷ ['>Þs~P®ï™öš¤& ?t±Îmœ4ÒÝÚÈÞð \Z‹Øp,Þm7dl{½ªÃÝ ”ôŒØÜnG™4PóíIÃ7q¸tËm{ÝLƒ ”ª¦wW'¹P™Ä敽bø‡“ÛL$o9À r¢9okH#‘ëÒY`’[Í` > V ã‰_ÝëjWaŽFzÌŽ¡rÆ–˜ >^dO;—ªØÓæ}TÑÖ7͸èfÉM ”w@1)¼Kú–˸—¦ i ¬ŒŸ#ë=… Ûø~ê(íó+NM­ˆ™à0š‡H¸œ$sŸ¿=*¸ë…¿âdT¹µ„¥½û*Xr>#nÅÀM >¯­¨C [ §T#xì¥Ö!†:¹\Å‹ãñ®‹LÔÏR§!Ù­²2[úË Ë–û,Ù9Dç6L#TlåBV‹ÃRŒ¸îí­ô£„ㆄé¥ãô*©hõp0npÓ¸ý°}C¡¶õ¢f>{_QññT+X”b¿ñÚ[qï_ý‰Ë›ÀÐm‚?ÊHFxTè-“Efz¹ógQùÔ™oUfm¨ ¹²ý$†,$©±—Õø)ÊøÚ`ÁÈ‘Çîû©åæÎY!Ç 9?I7X^ƒ$ÑB¨Á+¦IT}GKSÈ­–dÔ¨MGæ¬üÎÛo13IR”*RkF@'U`3Þ„?Á߇”²"¼Äg‰eíÏ)Îf3ápzJ*Bô 8ðñ' rA49:ýš¨âkÃç8ðàÄs „¬sIîD»õ"%|ëN\³!ÖÍÁ§0›þ5&ˈ{Ë0™°G%7iÀÜÜ>-Hn×Ôo3¨ÅúKV=`„Gnè56ÛI¢ýÙtƒåî[J]dÎg^)†r6˜iÇÉàVÊ>w©¹ÝgšŠI~ m+~UV!¹5‹·]uHz gðÝVñó+–. öþb‚©ø¢©ã<È)Œº›…<4ð‰Ÿ|Üú™c/¦:+Êé‰)m½ŽÎô&OS>³>溡ãæYÐÒYOÌÓ+•‘Ϊ¼lBr¢…B'h½WG%ÇáüÇÎ#ÑOâv¦™}ŠGuñýêÓaå|š’ðß.ÄzÄ#SêBÍ÷¾M”jͺÂJU|½RáT€¼±%£+¨°A¨]O¯:3i<¯;IŸðfËN ûöAPæÔ”«‹ ­¼™<½â„»ÇŠÎF—LøÆ¸ ›óØ÷‹®–L2Ý‚I{!#â$9ìywÒÏîÅ×p'ðÚ_¡êÎ6>Z,‚B¸ yäŠqﱦD–?Å`(&Ÿ¹R"ª—5òŠ9z ¡‡ÏÖޖо÷[nßRf0\µQed’eì.ø±ùî´c´Õû`ù!bŸÞ4sôï¿ Â„[yŸ‚…*¼0N%ÃðpÛg5á«NŒñ²-’÷1ÊNð7¨Oº/ÙJª¼dŠÒ©aˆÙ­ ¼õ6 ñD”!YŒÄÅòé^mO‘3Š4;²/ãäþzœ†¢Þ¸r—½ˆ×ÞiL#' ´ñ ÀÈáØš¾Â&Þþ€ðŽ­ C.,WÿQGñNׂê[¡”€˜-¹)–ë÷TÊGù8ßßÈÏhÚjmòÒ¬~Ã=‚]CGcB\q>GãIˆ|`ÃâP6Þý-쇬y#8içëÝG£hªýSXoÖW†b¡ËYÀà2ëVx?êXTÛéÃ/ %ó-üJ/!¬¥ À{3g>^Ü2‘°Ø-ÊY÷r#ë“CVÄ~ßz¿ÛŸï8Ÿ{ÏkV¿…ŸƒÊ(ÇHKš—>©ÍM‚ŵ˓ª–d©¿y÷á›ÿܬìÔ endstream endobj 394 0 obj << /Length 1401 /Filter /FlateDecode >> stream xÚåX[oãD~ϯ°VHë@2õŒo1$ŠB@Þ¶}˜&NÕ±³qÒnà·sncÓ´”•xUÓ¹ûùæÌ8ïæ£‹rªÈLÌWN é,ÈÒ\™8 æËà}xë°„¶…¶OS‡_ÁpÊà +h´=´«( CÆ%4+cì?“ñF¢à h-´…ÐT²bôøzþSS­U‘z­DÆa`Ž’œÄ %É^Þöýí(FÞ í=Ôá„…¶žÝál]Dñ'wµh\Šœ„—¿à®[œ–ZÆ¢å\”^ç¹Í“tüœŸçùLÅQöÔýB[¾FJ€pæAØdJGGo…ÂyªŒ)ÁĉtP~8#:ÎTšÄ¯Ý%qªS­’¨x9—ñÿ$—Ù¿–KgŸ•ZrxNä'å0‰€ä$‡ ‰µsù½85v}6Ÿ’(—ÚR@àåox¾%I]_ÉøILqÏØûm"5›™¡ÛHH"•$ÃoX¡“wª½rÔò%´|hæi4',k"¦bŸö&_÷‚XÏaK±Ò`ök‘PŸ‘# ƒš˜¶nŸ1+Ö*6ÿ¬|•$òŒ‡©Ê2ýjQÉ·NT”ëaZ?J1¨7d¹ß@›nrrp)K÷Ò·Þ»àMŸ¢Çg$~wU‡Ï…W.êþÞ_uÒŸ©_,µ‡sj”‰ÎƒÖ!fÓWÇrDñ fŸ¾ð(r22¦ü\Àœ ˜/„ÄœœÅÞ‡Ñå|„Y¹Ê³Y`’™ÒE,¶£#Ìnœ7¤-Ç& ?nM|ߌ~…?·7™SOè;|(Î|hi£rmW¢I4‡ñÓ¹G·ÇSS¤aSs¿¡œÑð Ð/qšÑi°‹±Éûqš…v]zd2¦\Rú[IŽ“û€Œ¶åÉÖ.=æÆ-ÞÍÌi(OÃË•dÆÉ³;´gß X„­=œh=qÌCIoÕ w•»1TqZç§?;lÛÔ¢ ^ózçNœÏÛ6NglF†+îdð–Ÿ©"ꎷG6̤J»±mö½yv±p ën|€wœe4¼§ÀÖL»¡“JCr§³ÄpWy÷Ì¡òÅAÜë%y¡%Ö£0Ü’]oÉÚ)í¾Ó±Îà.Ò'·ó‡.®÷ÍQЍ3ð¡àp ýÁím¹wÇV¸¨D[=JYØ´²¼_#C¹äi{èÑʪG^v`¶¢w%&ÿ±<Ú9¶‚'ûð‚é tpÎJ¡;RóJQqO‡jãJí Å]û°p¸L"0ŠN[ƒIÁ©ÀTdã C †¦³Áˆ[žõ8]4[4øx`’ÎDŒ§£àÇéP0Lþ=ÐišfIþì6+î½%XÊpÅÆý_Û;aØqo¹ÓÌ‹•ëÈA=›EÓ°Xª€ñ*?¯7TP•­îÛQ–Ý9é¸ÈÈõ-óÊ7,ÑÙMEqÝxàW±á“Gžpr„ NÙ¨×e/ÞYÎß Þ2å§ä'qþ‚«Â¸t{@º ¾úÑÉüº2óÂ+Kù ¬çÅF"Eºqag%!®àdz¨{5,=IîÆHý¯vé¬_3¯1Zfç˜ï¥Áø‰§“GSäàŠjY˜á¢zñŽtëýHáxæ8ù ‚”&ᕎ“õ¦+†í9ôgW‘ÆKžL*EÛ4N"Î_ëP‹:[x¯˜”R’åá·LæIœº˜'zpÝ– )`v9¤mx¸r¥½;°{fòòî¢ÀÛ2ãÎU¹õÞRL»› ˜­(rÙlt@[)“ξú\œè%WUz?É1œ1zåöIi»{ÖDFÍò4˜fð /XXÞ½”þIÞR] endstream endobj 391 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/surv-coarsen.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 395 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 396 0 R>> /ExtGState << >>/ColorSpace << /sRGB 397 0 R >>>> /Length 698 /Filter /FlateDecode >> stream xœ­VËnÛ0¼ë+ö˜ºá.ß×m-Z@A.ulÀAl#qÑþ~—)Ê­„h–0 û’àà©»'0Yå§vÖ6¡ç|‡]wÙw‡oŸ/ayè*¥`þ<,wÝÅ'–û5PúêcÄN!·èô[8ûqýC÷±†~]Kä‘,5ÚÅÞ  ­‘©UÌšå –Wó̲@¨¸U¬„?B h›µF1j .£Žµ’ëœÇ«Å‰<.®¾Ê¿ÞÂïîöÜw×ò{èÆ¿tc‰H…Ã6 ËËx„Åß´®¨²¤,Rœè g¼‘`ÛÊpÆ{š*?ÂÊ3iÔaâ3œñãr'¾®¾¡ÈgÑþ0K‚– U`#ê8^‚NåíUy´h\–Õ,'©Ù\3¢çv½óhCÑ›f=+νk×눞Š~ ßÜ¢¶¡¾ác†’,™>†åãÅÐÿíh¬<*:™eZl¿Ù®à~óksØ?7lšÔt–×°éÛ³«ýj½Þ,7«ÝOXŸƒVp¶†Ýþ~eÎï ¿ÎÜjÚÁ’̨½æ -¦íS¥=®ÚM[ìW©fq6m?Øo£¸˜¶Œl³8›¶ÄÓR«8›6‡Q·Š³k“ ’¤Ä’ )6…Ž“È8ÿÆü‰¥ü…q9˶üYN$$×,–Ø‹‡%+È'vƒ8åÏÊ‹m‰b‹XògŒáЉ6ˆSþ¬ö•o§ü9¶\aùnÇ®c ±˜ŸÌdS_f?“ƒë˜ÎH–(¦@ºÀÊ{)WWù 'žõÐÂ…/°òR"ÊT>É×&¤p¾À‰?ÚNÝÝÄ¿ÓÝ“}É µtIÝXµúäüRP:ªØ5ˆ™Cº—TqlX6F?ŸYn° mN`=Wۓ׈ÔÑ¡Ÿ‡Œê%ä¦ûRºƒ‡ endstream endobj 399 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 402 0 obj << /Length 3778 /Filter /FlateDecode >> stream xÚåZYÇ~ׯ üâYDMsÁЃeX°“Øpà âÄv€9«e´ä¬9¤Vö¯OÝ=äP—$@vÙÓGuuuuÕWÕýìúÑ“çÞ/ŒÏ¯ìâúfÑÖy]5‹ª¬sëÊÅõzñcVæW&³WKc¬Ï¾8n¯œÍŽwT6ðï5~÷WKW—Ù-Öþ†ÿök®ÁòNÊ#”{Âã*KÍwW?_ÿñÉófÑæme+d£X,­É›¢a®o¡Lám•­†IŒ=†¿ þ{ÉmÝþå¾¶Üfëì€õe¶êv\èîpèÀ½_\-á¿íîï‰ ˆs­¹öå!S6h"œã(ã:‘†m´vï~#v…ÞOEá~*Ê‚WlL²dç\Þ-,–|8ŠË˶Ñv bò«em]ö=Nƒœü:å´“ÕÓ7Šdß#ÑÅÒ¹:/‹z;š·¥ìòR^°[.sü³Æ5wJsäÊ\*×Ñ·)øwDa€\Ë2ûŽ[I7†áï^Ä<¾‚°Š²òa±Ûv8;ö“ítµÕ]Áž‡dÔ·Øï•lØ-áÿç´ÛýŽ[‘è.ìΑwKxxÍë&·Ýoغ‹r*¦êGYÌf«ãq(?‰n =@MwFØÚñêY­}ÝSÀнwÙ×7Ò™÷‡š×JºÃoÇû¸æ6ÑW–Õ /§~ôNznb—‰ƒ…g¤e@ìŽÜG[¶ýcæèvÀA#˜6Îò8¸Õ™û9a%"aí·mË‹Á=$X9]•mT JÄNeû”Ížµm^·Nv¡âùŸ‹ŠöÛ°Ëùɉ øÊ\æd'ÕtÙÊdB'E!–ß`Ó†Ï t(32ѹ**fÅÓ.Óf¢MõbSLH¬ vQ ‚Õÿ–€m–vD,Œå;¶ÁÞ´Ù×;¦7°òPY•¿ÛÞ«‚?FƒV&*â˜Ëð‚ø˜Z'[Lmœ5ìLîèÚišN:«­·¡ûÄéª ï7‰÷^w ¤²XÍ8hFs‚¿5™,u»„‡[¡²‚Ú(d&ØSkΘ¬¤ÝKùfÎ,<0Y l ‡¢Ô4OÚiEý¤Á ܲÈniéÈ8eëЉn%>ƺ";Z<îyÑfŸï¤·Š“6lÓ™KfÒ¶Á®˜’'åyv ¬6ug ŸÃ>6¯Ê`D¾?7U^5.Á>³*ojÿ!ø ոɞòOÿæ>¡ëÓqUnËdò¢8§ °Ù·I—K(œ?š ·3Y§L2УCæ‹2·…›ê˳nLP0€öà7hLœ'žÖ÷ü‰–ï+.^ÚàR6ØŸ@YlyÀîrj±ÇvØÇa+9™¡»_¹ËA\R·ÂSó*V&\¡ýü†[n¤Ì'³D÷Šô‘½ˆ[ä¼Îµˆ{F9€D‚1o€ÖF1(»"ª”ÓÇŒU¤†=í˜3æî /ðã#?±tšùƒ5r ¾¹|ššä|c÷rzÁä˜`ꦑ®cï‹ÎÜUEîì[¼¹ÉÐ÷š½m1†ÔõœL¹Í+¨š8áKóØy¼âÂ)'¼¾uQñ#Íoµ.z½hW{|µ]R8ð Q%èx܃Â5lê;E¥XRDÎôiž¯ÈZðC°ÇÅE);°|6ÑôÒ9‚$šè¢™%;ÄI¯ † ÌiyÕ.\åÄÌ«{ˆ Â|N¢PàÖE8qÂs[ä•/ß² u^Ô#>‡¥©ÞSåhíæ°rã) ÿ8œ3•‰rž9®h?Ï l÷"é"Y¡˜I©cŒåK&è$9T§Zmj—ýdœ'`„ªò ×Íç,iô ç{$#”$Ī HA‡{Ňèn7«$ v—¸©Íïh¤_vã&¥CÁx¥8óoW'?ÉW}* –äZ[Æb¨Y’St  / âÏ}äú4ÛƒÍaáqÄ‹.$fhWzžï’ôJ3EðýBº=PU³8»„i^‡+M— Á^sÀ}@þšî©0Á¯ùqÚÞÐ^#*îÆÈ´à¨jš›ÿäÊd,)l=û«žÉm(FÅ‚Çb`…Ÿ‡n¸ω7Š#°!qðyfWiÄpÉÞÊäëG8§Ò’qò£æL5£6#<º Á,nß)æÄòÉ19»§ÐÆ”Cç!ÖÁÜõµ&¬ç²â’…>¹"I“2 §ÃÝI\‰£èŽZØÐ c½ŒIR6“¼5ÙLSÚ>RÖ®²¹79Û \a“˜ÅŲ#Ô %,µá?¿k’i¥¤êÜ”ÍÜ‘š…ÌXOì|ç¾r“Ië¤Ó‘Å5¹©e›‹™a©\,8Bu ßÍL)nh ¿lê'²ð0¢^@шY;GÍå¦5û?ëΩRð–OùAâ‡.¾¼~ôË#ôbÅÂ,\ޏ©)éT@çÕöÑ?‹54ÂY?Ô,¨ëvá€HDw‹ïýåÑ3¼/pH¹õå;DZ„Hÿ>C ?Á ^‹ÚáJØÖê½"÷6<Öæ tDB\‘[*Ë›wªY6!ÂGUUŽ „iP…‘eÌËR²T$Gm,´_ÄYQB¥TWÊdkrú–ªS—ó-ùs¹ù‘K^½ðts©ÊL^¾¾ùš°¢™d"á5Š8ÝK3;MÕ”fÅÔÎ.…MMŽùNð¯a¸C@¶²¬›º;Îì#GG½×ù»Û%œ"Ø‹œÎ]Uc×a~­3¯–—/vÎnW\®ÎÑ‘£ú{wŽ˜±_ÀÇ•d;·<~šï‚Ïx?b2½Ÿ áæèë™óMÞ‚?Oâ›ßµy“›OYÈt_ùì¯iþ=¬`F,Ü:ÿ—®¼;h*¥¢üÏ4½G#8 îã•S*5k$«2–r©†ß¯4J·)‚¥¬!užÑtºûêR ¤+¹]¼[ÛJº{¯™h¸Ôâóª=÷tÇañž-.‚1¡YºùM.é¶Ý>‘âËF›«¨tühÎ>š<ú°íŒw²’×9ü.¨`;Ð#‡ÇœvÞu[ ”ðANaO6ö4mvLÎl8ŸÚki.„3,@—­(î°Î2$ö\F…Þ‹½æ¸,”tÊ»Tß«6§qìw'ÊÕÄñL¹äËÔ€f‹rÏïÙûÛá.†ü ¼†˜¿wÝÌ£Ï×Ì9}L³äŒ dF(vì”V=rÝCzû„á˜C™èPôw¼S×ç/Ý”œJÅß1¼Ò˜Ü#¡÷ZÆî’ù#?h"¡Ëƒñ o¸P°tÁ—¾Éš—ÅÂóZ%Ͼ„Su¨P›M=’ `b`G7Õ¢Î}m§AŒ™š@ÑÉ2év9âûoÇ'~‚Z‹fæþ~b…aß›÷@5ÀÿQ|6Çñ;g{:wÑ6væ)ljÿÑÝøàôÃÛh\Ú ÿq»Á™31!Z›Ö ªxN‰ˆ‰ o©fßQIÊ®!R äÖÑøÔ’·«“Ûúš¼Á ª$k7³©•Ë«ê}õmkÙd×Ñó¤oä_G!máil ¿pDÆ9¦èbV¶WÐQGkÚ¤ykmc´Ö³×eG[Õ¹-›©S¡ rŸ'–m†¸(#­o•š¾¸…Æˆ»ôîú¨×´H#8& ½“hó?gîÛXPÐFÚ ,hÓfôðAiò{ß mÚü´š°?J‚}ÝéÝ Gû­$¶S|?—Ó×Q/)–"„¢Ó×ЃrEBYhyæ„=õÙàE¨—IJiмñ¨9uÉ7rÖ @i…+Ikû‰[ŽÚeÓ)õ¡3Hf“À×N*U?;Ô5ç¡=} j«éËú4§ü endstream endobj 406 0 obj << /Length 3109 /Filter /FlateDecode >> stream xÚÝËŽãÆñî¯r‰¯hv7ŸF6Àƈݱˆ'p€]8õÈJ¢"J;;òï©gw“âdC.9hØì®®®wWç_|õm5«“º°Åìa33)Œs7+ò2±.Ÿ=¬gïæ6Y,³ºž?ìfÞ¸tóõÆ|_ÁŸ+O¶0ì¯ðÍ5€w|ÚùwÍ&á÷>5y+ ýjaËùŽAšÓšo =üN¸ªhW‚±ÁÉ [Í;œ^#^AÈ¡}µXæiIÇÝ®Œt¨Å-Ýb hÚžO@µŸ Ž?n·[üüðç™±Iiíli K„„ØZdŽ{FÂZØèœE$ð†Û/Ï‹*›¿âé#Þ`w]‘°¥ÊOEçœ0%sÂ8ô¼»»ðrGì"øENƒñ§«Š®G±u'–ÁoÌoãi”QÓ“€§Mˆó¥g½NœÍ˜u7²Üþ ßòpÚ*† .ýWHÕÂÙ^eQI ´ÔwŒrDü*¦Õã†Ýey<‹ÐIÍÄØWßfÙÌd‰Ë ‹~€|š*Ÿ-MŠ¢b>óÀ³¨Ýfóïo"m‰¾6J3Sæ*ܽðÚ…{†ôÀžOgòE!‡ŸÖþx®%¼5ÆBò˜ŒM£@ŠÃꆘ=òËU• ã5±Ðð‹g5’ Љ×GT×r7ý ×»£ P3zZß°Yq ¤¶3®R¼®²ÁÅN¯± `"JñB~ò† 3]ÉVZ?ÝÍf aøu¢4â¾æÄÏ’Çe®Ü 'w5­¿e(Íu  /qm'?.r T{RßJÖ9›Û 0цÈ<»š@²oQu4錋oÚQXG¡ÜWÿfþõbYdµ\è(–O;3FÝ®}‰É‘PÇ¥3!k5[ÚJy *¹åÊ®â>îùÈ<£áÒh¨Úÿ@ÓÛ6ÄôæÃ€¼®¦ Õ(}¨Ä•oû$‘K]ÆOš.¶AZÎiDñªÕÀÃBTÇÚÿŠˆØ·gmP0]#ôoÚÆ7<`!V+e­pV"Á=Ñ íÔÚ+ÁB±*î!»¹hYÜÈõ9Ñ8#þ¤ŒÔM±È-¢J_‰Â'še©´ÉʨM–K›ìíÂáõŠ·ž¤D\ªk§±Ìçi·z¸á"ýëAÖ%Ujâƒð‘ÓþÚ/ø´m;Ùq3Uâ*Ù-ÝJ+mgÓ¤¬€s^-•ÊEó A|ê ÛÞjÒJù¨·ö?©þì#÷Të+þ¬Lú¥òI*»(5‡eº}Ÿ g~ü„Ékëï íûºû/"ÍøC³ö ±i«mA) ¹®vü¾CŠéu+™»Ó šs­Û ¯€¡Ï\¤k©”Ldª¡V%¥u,®ßƒ‰[–”øú; ˜4|9£õŸ~È´w?Ùñ* ¼Jâ}•½ÿº„ÿÄ7ãT7Z­åw|ÿbèFˆiùõËp ·ÛãÙ³89V„†‹½] q‘‡Ï×Qþ{’ã^‘âµ?Îh×Qöx¥Ý¬‹"ÛEbBFúÛ mA¢h}Ì~n¼Iú¯÷¨]‘ä!ûú,jßG2¸KÊ!3wö1Qg#bÒFÅ×Sµæ¯°£há"Fã¿ 2 ¯ùñnm1«÷6ç7#3„{¼™¡àøð4m>†Öƒ ("(˜j´Û ‚üô“ÇÞ7–oʱöÑÆÌ ýèÁk7w%c½K¼vêXà®(ÊXÔ6­óÏ™n‰<)Š-¹ìpð³ð+dœñÿì àðß«RKåWÁ¯¦¿[™³¼%°–bd\Ñ)0ÅZˆ¨„©¼ª2T¦-m ™¤ü7PI€_üñá‹[kVS endstream endobj 409 0 obj << /Length 2266 /Filter /FlateDecode >> stream xÚÍYK“ÛÆ¾ëW°r ‹0f ÛÊ!ª¨J©äí-NU@K2æcM€’¬C~{ú93 a­å*°æÑ¯{º{zÿòðâË7•]4iã¬[<<.š*­\½pE™Úzñ°Yü+y·4IO ÏžžWËUió$ƒ×ž žRO.ïÅòß[d‹•ÍÓÆ0¹¿Ãøž­ÛÃó<ßf%’;ÊôF8xʦ+a¢Œj/ÄÊ”•yŽ~žà…ÁEÔÃ÷''.gY†~ø¬ …’Ò¨paÄb±2&mÊ’Õ~ ³;a?Àó} f&LÒÄÐkÎ?ŠÉVÄîå†G~}¼Y±LÝ—¼äéÞŒYô”„.j³šSçD»Mb婘’`l‚@kÑW¡~/ž4 Šó0UQmô øé+ ÑçHèõa;DfÞªí@•/ßÔ‘«›"m T †pÕzØ1ñ"o’(ÛJ$¢‘Çó_êdŒ–¡Rçë±ìžÁE­¼_qbC lϧ°{¸*FH¡=--PGBíY]zm¯ZÁvÚº&ñ$Øõa‰_=; æqlñ.à§È¡ŠC%ÿœÙÞ˜ÈÞ(Ýe®³ 0érU×Uòº=3äRµŒ¾*^ðy>èé¾0¹÷(}0^=n/Âît…/ÎÑo[k}T? 8̉w³<ôzÍ Ò!ßá°í9¦&ÿÔ]E–I(‹Q‘¥hQ'O›DÕÜ¥.«`7íĉõ8\¢cÊ‘`î|Ö™´®•rò«nŒ]dÙs$( Ç>GÀ^4€žEU&vû¥¢ÀÛH‚–\y` Þô°BŒGãíe‹ZÙå,"@ã¹ãþÓF ë+GX\wô¬Ü¢·X5uZÔÕ}ÈéÙË 4Ø×$Çö£è~Ä?ŸÚ)ÓS,1|¶jlòì]&ÿÅÅB­Åe›}ž…Æî•º9¡†@ªçðD^÷©WŒ@¼ˆ;¾âÓ~ñžL£µ "² ””t·§8f f<ã‹Dz/aåáÁìóÜúßç8Ïì4ÁQ7dä³ãþŽOzä´?X8‹n‹@•Ö•”%eº”Rè`‹äÝÀ¸÷zÔ´NóZ¶¿EÎe+éçõ}â#L‡!§ÁúþTÖMjÊ<>•Þ*ò>#K^À ,ý¦QÅîé(püfQ8Ñ+lj Hh$ (J‘üx„ÏS{ dixÝêBäˆ2Læ­Þ(·šâz4ÑC@{n9O=Ñ2ó¶H³¼žzÅʲ™ÄJøÜ?m2ˆ"Ç!¬¸h¶æØÒïªpºt(AB9”p SçVì8æEUË#œÎ^¶‹§ÄÞ/KŒI(™7ˆPj;R~O8ÔÖ&o–uŽüfŽ¥œK{ÔðHL:ö®¹ž;¨v¾2‰™HŧOö…GÙŠN=|@„ñΗªóƒ|Ý Û à*‚ùìd¿Ö Û £Â9µx=ƒI»eC#‰êkÌá仑ås¯ 1žpPWàðæP•}„Ž8u{P^æ±Iq6ön°g™UhÏB.|ôÖ* |®ɧ¥Ic´RåmGþŽ0§QIP&µE9Eä[“k*ùÂ9ÅÍ€WC5Ø~R*”ÚI”Ì ‹òµäõÆ3°ÉYz¡áC¹¬êâ ŒœQÝé56|´€Øòw'È#9ô<7¨?¥X,VÉÛG¯C­ôˆ¼êýIQãå¦%%f™}lqB¤SÜGMYIQÁÛqxà,kŸbn’ ñ½pÃTâ‹æO|?°I1«wþ^¦I³ØË| ?ˆ<Ú¸Âõ9ÿPY²¥"¿—¼*@Ú[è Ó# iKì]òp•=Ÿú=é™x«×#Mê?¿Bí0¡ãK†è<ðo' %_láþólMáø‡ ³õ®$õ‚{oÁàY_¾ÝS¥&Ž4«îk ôBŠáqK.îUê%BÚž~ëäû«OgRé5ÜÓ€ú:ç A¸mѬž ¾Ç]Ø)…yÞw‚´iXYS«}î«Ó˜4·õÏ¿Z—YþìÕïO3LË*hdweæAŽ:²ÿ§wì —6u¡¾N6²Ö%@²H´„ŠßÊÅ:/Ê&oîK¸Æ%ÿ¡«#èq¬Œ5=NMã¢òÞqÖó]3šå:2#75>ÓÄÜ…†¡eÓ‹ç)~]syÌÒuïVÑ-’š‡øµ%¸7ŠUÊíë=Â"M{œ¡ZÞ´g¢Â‰U\åUÁg·*iŒ*±^Æyؗ꾡Àíy)ª*¾KR«ƒª0q^‡†~”Ãqïs63iiíóÝ{oËR[ù–ðš[¦¬Æf£IyË2²¬,OQïÔ«b&@²sÆíºªôöƒcÔpµ˜ÅšŸå°uDÙ(Dµ_Í;©t£ì÷“o%æ×^I„ò/¹™øæO‘?õjrÿϤ¦J]™/VD¾LþsZÑÿ?_üõáÅÿã³ÍŠ endstream endobj 412 0 obj << /Length 2469 /Filter /FlateDecode >> stream xÚµYIÛȾûW(ÉE²[eV±¸%™Ë6‚ '`H0K¶DÉŠµEToä¿ÏÛªX$«å¶ã(’µ¼zË÷6êÛ›Woß[;ÑZUYf&7«IU¨"/'yV(“f“›åä§i¦fšÒÙ\kc§ßÏR=mö5 máÚüÚÀïr6O‹lº;À=™.›m;û忝oß—“JU¹É‘|2™ëR¥¥fÊ×Íy6·‰™žaÿ¸|M™(\{¤[ŸxðÏ'\³ÄÙüஃ̮ü³™Ö|pa‚“ujTUXà€Nnaù¼w„áZy¶‰Ê²ÒmDñL1Eš-w #9ì¦Z‡[­Ê´?óçÄè1ù ]¹%ßDˆ€uò2s+þ1›%ÒvLJª, ·òMŒV¢lêü¤Ìôw:V% Czc"N öN#òê¯Yš Î i,+¥ÁÚ UUò²BóÉAz@ÑT*KtÏ.cS$JWž{ñ²©|²¸ %DbåÙ¯O.šfìtôl§wHqÀßö,q¯ö¡vÉà4Åý.ȶR%[ñÑÅYBÀ=¹"zåÓ¬´2"žRi•d¦‹c1O ÂÎ 5ñc„ŽÀ|J‹Ã ‚Äý,Ëyɦ>;ábÜ—V•iqè•J¬)ª¤å3kŽt6®“AäÁœÅqzÃP˜;#¬€#z‰Ä'9þÎÞ’nLòá€#‹†ùÁaÉ“û ˆúÅ~xżÕû¨‰2H3ö²G–ÊtÆÞt Ö|cD…YG+Ѥï= LùçdËz×È>ÒL«$Û «‡÷lðñJ…Cn¸æh2÷¤[„~e úÌúë†×®ÖôÛ¶ùˆNË÷[$Ó:Ï‚·À#1˜—Î`>Å´js•'ÕEVV_LWFåE>6Œî™9Ê‚y$AF ipÂy°LSªHK‡˜â{®EÛî¸$X4OTš©\™D¢ê¿b¼4ÅÄ@ŒK]€žg ¨ i  vF§99D|Ì¥\¡¢#[¾kÊcß )D ª”#?4Éþ¾–-£ÊÞÓáESµ4ïÍyïÔ´8È̘½3s f¦¹h öM‘0*c%mRBy¢¿ ¤M¡è4H ·ëDÜ¡˜g©±„?\ЊºøÜгÑË"¨Œ™ñº ¶ PŽÆÊE ¾A€f| ÛµBü$§ì(4Ê õG‡[!Ðìj‡¥ÏKnðòÔçŽü'YhCTTs*åë;z Ž!X j°/Z  AYÞ6Ã&À¿ø‰Áu×ìÕ§lD~¢¹r=^Ç5—%¬ðÃŽGЈXÄH¡±}Çû–Ük툶‡­¯aZ‘nÏSß]¿‹é¡ù·8[Ý9,ÂϦÓïœM0B„Øã& ž’×Òg¨³— h˜p½ˆÉî‡ûý§ÏšA%€5®/[*v›~›â˜Be6;|¸”•ÿWØã/6+2(r…,–4Ü–J”„ü[ÂÂæÐª M¿ ŠÖ’ìYò­7¿Eß…£²Ú•UðHú߸,ÏckÊ¡¤P‚":Y^R‰Bó V2=× *ŠŽˆ KÍ­ø›„2¾Ü† „JçGVS0<ÖûŽGQ+Á¸ÞòK/Äàõ|‘–©¢ò…Õߣ]@Ñ…Ð+fþ¹9Th>44+ó2›—NxÝ—fîQÙ¡G$p–þºe]ß!ۇNjMCl;°©¥U±ø=.ç1³/åÀû¨×èÏDêSÇr++Ý_6M75t¬öóê?—ÈýŽCç±ÈÊOtfÇõAx ¸ƒþÚƒë±f®!‚³+n+’4ÝqNQ©|¥Â_ÀcÙStHD f9€£¾¤ïäØkDEî{äé¢2õˆ³±ž˜%ó\C׈á´èÿ¢T¢ÔÍ|àŸq^½6e³é¡òrâ½ÀˆiÐTÝ%A—¸ä°¤GÂùv+W-‹›—¨)©)ržÜÆ*æØ¦ûˆ¹°úMõs๠$:m;¦pÀ ĵÂcÐ÷¶ä/e¹Ò…ç寳±­Æ®(qÞg'節Q ¥ŸñOfá¹¹«1@õ²µo¹¯•DöBѵÉO_Rv=þÏ¥ÌÊ‘@ðø‰ x´ÌË~üœG‹³<ŒÂ‡~éÂOStŇlÎû _t^ Èë¾\sñ©NÕožØüB,‰øï\°7Þ±¿°Œ¿ˆ§Hd9Ž…wð¹»zóð+Å> stream xÚ½Ë’ÛÆñ®¯`én•aƒWªtI"%J%·µ/Q ra‘ ,µ’óóé×<@Œ¹´-û°K`¦gº§ß݃¿Ü¿xý®P‹:© ],î· ¥tR*³(ò2ÑY¾¸ß,þ³ü Uz÷ßû¾~W ø¤)ƒ|WeËf¸SËþšãþ·w+SÕK|ìwº\>âÎáoäY{°ÀÕòó]ž‡ûÀ¿µLõ[þ¥2¶AÀþáà€K>ÂßùQÖ÷¸>¹[Õ*]¾C û!X‡DÐ:yùx–xéÈ OŒ>ð;ÐÄäœ&Xš=rرR*©sáÜ g†æ€Dððg™^Žˆj[÷W‰üyþu·rä`“n ‡GÏ£«Ëéat~%®Ûg^?¬²9dž³4—¡BNj’:-17Í0G­RÇéfÄŒ$+!W¡Ëúâx^›ºíx-çj=<¢ÚY¶”_‰wŠ)J'6BûÆB¬.“ì¹ žC_ ±S”6§,k—ás<‹#ÎD“n¤Ø ªtŽ6(dÒØ¾“Ó![{ÚFÞz0ÆŒÉÈ-ÉNÕe’šršD==pY ªú£³" =÷Š l¡’¨f98åò£¨\®‡àQAf™§)kd7ò‚`3k/Ý£]S88Y»a@gð<n€q5%škž½­þf[_g•Dè~ð(ÿŽVs¦¼\ê6šRØˆÈ æÓº‘ÓU:J’ÍmÁ×^ Ër®ô̦)‘ IkçÁ~ëì]¬X̘d« ‡5aT~a…sT:…[߀iu[y{æ’>çºÐË—ä†BGÏ#¯_unñ¼?2 ]KƲÓ:V ò®3¥¸}ôü%¦#ÈiäµýVü¥®Àј©ÍuaíßLŒ_Õ¯*"¹v-¿‘?ùÀÚ ä d‘¾<³kttÔH­¼§¸†Ð†ûO þëö¡ãR•DíýY”VP°†™ŸˆM=>Ùµ{ž\7¢zô¶µaÀÛÃÏõ˜2Ï×Û^! "’¹`ð?Ú [qQOSÇ ‡ZѪæp²F³œqÌÒ2¶ …Ñ‹“ãp­ØíëŸ#º¿r×I‘+¦ØRt38ÚL'p$ ³2×Ùò ÿì­ó(ë…ѾªJO™r”-|4¡Àîó†ÞÞL"øW1im&ÍpØSZþ´Žœ+{Žäl=òÖ²@Ad§Çè2‹£ñ]Ú€s[‰GÙܧ]<&ná«Õ4Çîžò•9À†Ì)Q¿‰ DöšÝÃüôÅÔÅü6¼_&xC‚Ë£Ç]öÊ©&j@Š™ê2åXz7´VÙ`ר¨É–qœ¨b[$ ì8s%P)Pd!æø{ÙÎÜððGq¢“…Â!IV-¡v¢Ï‡–G¹ù¿.·¼ä™T¡—m-8³l@ú·»ªìþ·ÔJ=L#KVKPºHÑÊ:ÉTicè×Xަ ÕØº+2ÿ½MraçMè…¢·&b꜓ä Äg¹&sgWKÖËc/V§É!#/¶<þQÂ=½4¼‹Å4 áÃBãæÂãÁ›2ÒØÂ†ye’<¯§Fv!{2Ì\ü8øü ¹pe|B$*à›ñG1Ë_†Ƶ-âdœc•¡lÙ€ƒö¥ª!¼·t‡{îS–›Ýu=MT3W1ž¨«xÓ‹È 5 Ñ®äˆ»ÖùU’J2íô—’žÂ1Yç6æà®àžÇÜÿ”å…6¾°ÓÌ*¹/£÷}¿[Iˆê>ÙfƾvEËÁDL!Çàõ`HË ’R1ºdûäé裫åf„ÝaªgÕàO–Q‹U5\®.â­×T]—©OŠ]¿fý,Ƀ2ÊQ “ ?©:L U´ «è[¤jíë ;€רÐUp]Á–3´AÚŽÀ'›„ÿZÛˆ³áYIsQZ€oZ¦¾‡É>w¶¥A¡†G¹:"fr^Ie.r3g‚Eµ ‡â/ÊåpÛE0À=x „~%èÙ¢g¿c:q®“ß©«@KýÚº®M+»ñü‘ïшʂXÕî“ C¶*3Ç÷’Ç!øÎc¶0(’ÐÓyõ453¹¥¹DE˜Xbw÷X‚]¼‚ÿu¶õÄäð$¤%©#öòòÔ)¼÷B HOç%“AÍ6KÏ•þœÛÏAb„ã…7ñìV4˜£øn©Ør_±aNÖM+(l¸èŠ8Ù^níÌv_»è´$Чî:àNå¸s B“tl»‰³aö¼K2¯ÖЉòGºPÞûžßæ¢Øy#EÓpÇETa1*ó®U™‰×îöíÅsÜAG?)(’Ô¸îÃt6?õÍ.Ò$I“Üw?â—¹ˆy=HäÅþIö¶4þÄUò)È+›G™Üû¬ÞsB7ôÛžª”š'“¶±AGrçÙ%¤zϪBmj …û †¨„–Ôx©—ßíÀ8Èšl4E×MƒNÔC(ÛéG-GßÒ&oâŒpPš6 ¶<º¦_ ¾Ø»D'I0`XÚ*VŸž¥&:í¥T#³ÃØ™{f¢áµdO–u®‹óQa‚0ã “O†LSægta?ËQ¬å‹o²dR‡A´«R§ôõÈ-ÒŠ‹{rOÆØ aTØ…Ú[wV黎èRj¬«©÷¯–³ìfðsôÈ.´d¾mBcÔòý–¡¨éøÈ@>µƒÀèb:†î'ß`ŠÂ¥%Ì¥‘•“ݧi£ÑÑÝóãÖ}8"§-mkÁÝ =$·1ÆÇ£Mú3Q&NÇDl¾–È‚‹-Îx×^\óÌJ‹Ž%üóîú¯ä×ÞÙóÚoÂN߇IɢŰ¯­F½:{¥:¹K“46n¸‹£ôyäC¤©§·8ZUÓ ¾ÿEï‘ËÉm‡rjÆ?ÊÝÐý6ìqQƒKÚ‹—EᜒáÀ[×*Ín"$zipeW}Ó®ÿêwNHŽk •C¼Ë!fÔIeùT8õâíý‹ÿàGÊ endstream endobj 418 0 obj << /Length 3372 /Filter /FlateDecode >> stream xÚ­ÙŽÇñ}¿‚o&±Ý×LÏ$0+±r€8 äAV€9ËeB.e)iíŸO} Ù$¥XËí飺ºîªî—÷w_oÛI+ÚZדû‡‰2F4­™Ô•ÚT“ûåäõô×Ù›û¿}ý½RùD)ÜDòøÇ›l؈ªãóåLM×ð7àgï?Þá;Ö»'PçÌM%¬«'s}Úcò“Vò|3l©„ oÑ= ðû°Ãö¶;øMa+@ƒAŒ®„VÍx·_Ï·Êý€úøn6×5ƒíŸfºáu›ÂsZ9§޶Î44A4 î'lë·+pŒ~£'Ùœ·dÞà2‚ÜÓëép$w6Òý»Y/"Rùv=w/ØgG¿¾&Û<>9Kw(Y£ÌQe<7êkBÔ c¢!ˆroL5]A†<ˆ ¾ÆíHxð;',Or'fsk°òÄpbëÁ3V=°oµèEéÿUƒƒöø±zÌ0Yàl”\w¿ôK¤1Z_ ájaÚè ¾aé×Ò# 1mÉsðÌ)ðhKz‘€þâY|ÊB£+vn=»þ€ØŽH&Ç´ú…¶Ü½à:àïƒ4ˆ~ïöS`yÒwžà÷ !ú3îµÈž§fF1m×s{Ë0–i6Q g=¦¾e$£,xæYQ:=Þa_v‚ί,DúvL„ï1ÄÙy¿ì##ïu ÊŠ4zÈ:’êé˜8¢ÅsSï¸ \;wÓ#Û9\¢´´¹Ñû Q”©ó(ê›rY°OŠ“ñã(«óT8d¢„ãÝ»¨ø}H#†´ÔCwlP‘C¶þDËžCX§Rõ˜›Ãd)ð€ÂÓÚi nÎ]>%‘ ü5ÈQ õiH”T²µE•„%×b0Ö&Xû@’¸åŽÿ ÏèbÀIµ`˜Ë+õ ‚ °ÎÅÆ8'¤»%6ö–Ø4BWíXlk¯»ÄÓÊŒ un…G–Íóòá<€=ut¸tÅCXÁFX|ƒà§Ü±‚õ ûccðìæÝºÁ(¾Ñh?% Ϥ6ùg£TÚjŽ@ž‘oÛ>gÑ‚'Ýä]Éš DÝž” ƒK¦²båA#u؇0×$Ú{&P¥Üô[bðç„T¤&×ôÄý› bf‚ë0V'Û[yÓ|áÅ&ˆ~\P¬kÑøÎCc’Ìc )·‚xÖ&’=>”*NIFö:¹'RhwR€0 A7Ê}]‚˜õÀ°|ª¸5ާE Ûº¨€ªÑ¤ Ÿ¤€öªÝv“lÎ'Ûm%³½ØpQ+O·M!Æ­„‹1Ïf]ª·4uLm7;ÐTe¹öU@­.¹Œ·ß” é*Æü¯KP¸T é?¾+DÞ•0¶Jqm­M¹Ô+´«3ªH¡¶½U‹jR-J½A8/X`¸Ž³O5·q­S›kè9·YêóE„àX8¢FÛ B0ÚotÒÏ‘¹“„ùnë¤bcÅMSX¦©ÿ&XîUÌu³Ð1 0/Úh)‹åS]Q*DûüW½§2:]6M+¨½HQì…@$D®ûÂLŸ/ÅpÆøÂ+ÅÁhÚŽ Âò¡tˆ°uð­Ö6æá1ö¢= µ¹r=GS{ü—jW!Ê~ŒAÛi bº DzQ¬õ‚D@$;×À@å », Ž ­ BQ Öó³ ã°^¡w ¹ñÈ‚´Bµús,Ⱦ€¸¥8éâF5²è™­9Û¬RzQ'»w÷ÝýÝÏwXˆ5Ñ®U­&FâÎn²ØÞ½~#'KG ¥™| ©[ ~#²œl&ÿ¼ûÇÝK¼f›YL·Ì&¾ïxU •Uý9¤z.’ª)óøÌ ­þPÊI”R7«ÿæ·:b pÝP[qaus½ r[Ýð2(Ú7sb}¡o¥.qI} 6Ùÿ‡MsU;¬0©ÐV÷ùjòé &¨­Ee+o‹Üø¦Ëj9]ötM§ì“·y±ÄbUËuQÛ4EyƒÀ¯2_ óª«&ϼ(A«d"Tc {r7>JÌ/ZL<!jë…\¨Tù”îFÍ^ºrIÎ)âðßt*VÊ:»q—Rö°fòRøŽ'‘n\×Ë&˜ã›*«Ídú!\ý¸ë•µ¡âMA㸼‡‚Y•ó8#…ÒÕoõšQ´’ ÌÍI  Ðsg`¤?ÑPUc1«t¸ÝØc›+þ=6— ˆ×ÍÑao»?¡:²EÉÅ›±ÇXÃð%ˆÆKD·ô"á‘ÝÃ;'Tn÷0Ôz ×<9Å Øjl}›dªÒ¥ÏŽŸÈŒnb¥TçÀÆW)µ å[<Ëï µ£Û¹Â=k£cÆ¥ÀåÖ…o¼©Yúü¥‚T·® L0TŽ—tSš›¶(åì úp»¿fóÎwÇ H~n$棘?Dù'1ÿYÀ¯SYn;N¼äåb{ô±¦’TñqbjÖ­ü½N Ga2ýzîH)Ô2¸›ÍÀC¸þ]xˆs´ TÑïî €‹vT…Š—{î%¯DKo5iý>œ¤á«b¯@Òòð4¦[ÿ¹ä¥ñ‚hS ¾cXüé[ U  ¢wU✮Ìôï´çÒ#£¯¡íÞxã©Üô¯Áѳ£ùz]ƒ' uÓ5ó›¡üåÕÜÈ/f6¾~G+[îK.S€°ºœáâh,©VæÊ Ÿ{æÜš×!…D‚>R…°C©øÜÛTwïý •Jhl‹€#ußðUkA„½Ãĕ۾{J_ì.ý®8k¼W¼Ã-º¬}… ¸¼`pUöx¤àäNÊÁTS±Ií¡Í/¹íïøif¸½%ÇŽm äH²74ÏL¿ €—üýòÿ1˜ýŒ÷ªÔYý¿6)¤ÀGoIµ‡ÂxZÆC”¥G®ÔYtþ<ë”pc‘‡£¥3"³gáBâè)™ª&ÐŽG€vt Ð.€|É ³‡q#·oŒšw<í ¯! ¥—:úµ>’gãó•ß|ô8†ø8n¸‰¦d¬þ+yÜ–€†¯ÕlãCP©²¦ "Ǧ¯iDS©Âõ]7Phêü  ‹s£ûuø\½Bí³»&¦¤Õ€jˆKb®qPÁºE]{랪ñ[ŽðE×§±ä[‚K¹ØÈærÀa‹–Z4˜VÈK|:Êoÿ¾yþì endstream endobj 421 0 obj << /Length 3616 /Filter /FlateDecode >> stream xÚÍZ[o#·~÷¯ú$+fH93š4Ib´‰‘<ì¦ÀXÛÊÚ’×’v½Oýë=7rÈe{›-Ð[3^Ïõ;‡üöüì«ênÖ©Î?;¿šuj|;ó®QƺÙùåìÍü»…ž_],–¶š{xî¿ÿí«ÚdX5[êVÙVóˆóè6p·Æ$ýŒV¶n¡;u»Ä‰áï‚zëù‰É­Sθ0è;ïÖð‡ú[ø¿[,kcé>˜‡~îpJœ÷Gðó~Ë÷¨=;b܇…ó,m\ äpÌ'ëkÕYÿRF½‚5lGÓ)$ ÿ½bñØÎ* ,ÏäC[C½A&4´Ï~s-MÌî=,ègFyÓñШ]jUà I¯·•®iÖ•jš:ý‘˜»á%·;æ)J5²§È›Vg)°¦UU°ŽíÎÛyr¹Ä aOÚÁßø‡èfs¢.z"êRHÜHW´•ÛSd‹Hã¢(öƒÌ7jTÁ2l­Lë>Ë4ÄëÊ*çšÓ&˜û¶J¹¶yÚ·!õÇëÃckOø7v [¶µ›#KVÄ¥†ž-ßÄÙ 1n¸e{…¿5oJ†íl¬b(ÜxS}âçÄDia¢ž|y«KY'!OðPXOÆò~Ðg€çkhÌ*˜(›83Ûû&¬.x´Cb`µ üÞ²åq¿.:úĽ“…È=¶¾!ö—n¢SÜpËZ~wÑï‹:R«C·@ÿl0$ÐÉ߯i^a»Mø¢ç?E-¶›åO¸Ó{\v& 1Š6:5ZáœÞ%÷‹ÃO;Ra-Œ¢ÕØ’P·€>jZõ²¤Mò¨rQ|õh".l!Îîäwÿe²™¤ëw{ÈæÂ.×7ø‚ ÌNºÞƒúÁlø}°Q*êƒZò@Q€zßqkã‰>þ¡}K Þ¯µá•i ö6„zšsàvTmS5ó·ÚÖ«ƒXÏC2ºÀ´ûÐå§ËÕhYâ¥ö-™‘ öÏzþ§…6ô}YƒêœÂâÛGDý¾æ/ÑØÈ°ó¹·¢ ÂóŠæà•3“~$ûÜkünÃHÆëÑÆJþ£4[fþš]0¶_ w¨h9èô3ñ£ç+{̉Ý~½V¤=z"hýæ’þŽüÞ‘þÉ·7ТÃgÏú Á Q ÅŸæ:â7òp0îVØõ.*6¾Ý°q£$ûݽ¨'ly ›6-mzŠ#Z\æ*8WxN}2êèjÅ6,¨±M§ Š8Q¿ñ!àd „ßä=÷èn—-H0¨vÁ¹1VëýÔLz)ø0hXC;~ìùeO&Þ'NcnÎêFU Â'§Eÿ]‚O œ–I·oŽ•©Ô“¾®ž£k^”ìÅ€E[e¯aöXH¼Ó]Î}’6dÀØ‹ˆÿ­u‚ß16âF÷ýè È|=;‹M´ð!ztΰœˆ{Ï<S&aòSº,¨q úZX±Î¥÷F«è¡*ö½CXlÃÐÓ:Þþá"Ú;îuÇá,1Alûh+† Ä[鑷𠙞ʆ¼“ºo’)ÆK)•m:œ8A`äXp’+þzIPîþ>)ð¹gÅÖ8Õά˜3¨{ÚÏ_û‚hk­hÑýRL^ÜXâˈ—ðY³×oV¼]ü”¸ˆGla‘Ç ’Žçö k)X®¯*)}Ly§le³Ä¡”€h¯–…n›RZåÆi…¦±@MÌÎîK~̉íÂÇí§Ö‰ïCÄL މ7[’][ÇäæÏ‹%C8¢«$³m‰Jt¹–×®Î2®< WàÂgI§¯yÊ1½Ígõªv]6ëïÇ ¨•‘ô‘L½¢:‡™:°Pwi’üp*iì”®¦¢ÏHò ÀOa›)AÐÛÙYÖ‡°Ï3,x}!žð5€6ÁL$NÐt"“ÎV)(”ë@cºÏ¬ÑìO:Rð0-D¢!V;ºNù¶¦pÝ=®-Gëîd´¦RG´–¯KûÒªŠéþë_€wÆDÚD„©]ë`—^KÜ©Ž×3ªé<„õ±SÜß(½v§9;ãºS•·Çhì°I3á»B­à€sn   HM¬àž¥Ð]HŒ8îeN_§®A‡ãÇí~HÖëKÞÜ4•2#ÿ_—üy«´‰=†÷9–ŸPt\F©eùÜq­|WP¦ÒÊÁ !·ªõ$’ý””(o1ÃLõBp“LŽ1?†²-e"º‹):–‹Cÿ¬LŠM$3è¬K¼7µjêÈÙ·•µ¥˜dF›FR7k º‹XÎT±J.ëÐ6)Ûð6îÇ¡øöº(®’þ°hkÄeS’’2.#ηÍü¯È½Ã. B,ÔVr*" ³8l)ÄërÓtÈì÷‡XipIcŽ…3­¶ÉQæ™|ü„ï!^î¸1–rÆNlÛ©6Œ q:!?§Sˆ9Mó²’1b·Úú™¬ò>¤¦MUs/º~1µÜñn ¨v؉M\5í¶Ä6ÂPðÛóϤœM¢NÓɨìuO’~ß­‚; †®| Â}CQŸ5÷N”:pk’>œ,ÑêNµ£o¹“’ìQ~9ñ-Vu]÷Ty–QäžHÅMo.âð]†K±_/'0ø2jða8Ñï¹íðá"]ðêêL9Mži´€aì@Qz7 Ì¥7|ÞÆ¯bѾUw¹J¾þn¬úm@\AÜBÀ™d=ÁeÔõü< l\F8ˆîyl@L\a,ôF™=oбk'蚦ö#ui™G‡ô2Z=¹¥±Ìu»älOH¼bï7Å5V- Ð^ðßúó1e¾ãZÕƒ¤ÁØú¿EãgߟŸ½?C|[Í4à «šªЋ'Žn¶º;{ó[5»„`ZÊû>R×;ÀŒà–àévöóÙ?ϾÅããÉ1$bãf¦…lÄ锾·•Ñ%ϵíÝ»ö€ÕZ\¿òm˜– <™Ì©2­«™RB üËÝËE1á[mTU™—ðÍTª®º§W×4àIÆ¥[+Ô°„è:ßkº%á`#Œ¤=Í]Ó*ßYÊTÝ‹tÊ<Ë›° @²ð°›nžbM˜*gM)ÿÁ- ]ó\UV§g‘”OÒ˜¦ˆÈ`Mа˜ø‹#ÖMû"c´-ƒÞSŒ‹Sý_0.U^K[3ã‚)çà¦iÐAøÎ=iòö&ï»/bó¶1ÀÓÙ|í¨Èñ„|Â\'l2•’¸ ¿òî..Ÿè ù‹žÏg FÇxî ±TkSÏÿAþrMy-U€†î@\@S>éS¬zTªõQÒ…r‡;ªÉR\VíȪJ±"/²5¶¹ Ä€?|oÅ+íuZÕwí3…9 F5Þ{,쀷ù,K(d}äÌ­ÎÏÙæqI~<ÞåŽRÐ…«D/Ê·ÅJxΧõD1–^¢#"PѵîKÝ!ÂÝôrO8XÒ`®¦øNYÿì½¥é*6NÊN#観3VÓL§K·Mh4Voe.J,;eR­wÃ`l¼™ùpȾ•¯§ \³úrÕ=W 7Ê…¸#5Ë’v#T×Ýsê=–×]´-ÓuÏÙ±ª{ú¤K:¹Ž„‹$‚RyC깯Á‹”O*’Dj†ÅS£¿”Šgî&T[ÈÍÚâ/rG÷£âÏî§8Iðc¡o7‹Ôrr¬­å} 5A7VHð¹ƒÚÒm’ènZâ][À­ïÇÕO¬pH|¨ôBÔ_ñY}²ÃxgcY8ôãÑ ðBÒÿ¤2J7ŸŽnPÂÔù¡eíù¤:LÅGRËI-Dr‰X9Ês0€‡ã#×ZË”ÔïÉí×RùÛ¥:9oÙq?*®—ñ¼U(÷Å2x°_‘Ž!eÛm8“ìÚJ°'™í:ÌŽ-ÏÁ>:ÆŒO¥ãt3žIêK|!-q%{ÞÞñ'ª7u| %5ÈÍüV…¹%êÎÉê¸ÝýÍ8¬àëS ?%Do…ÈÉ¥ ù·ïŽeqRôÉ˔تcøœênc&~ ”Ê›xÉ¥0d,0Þ¼xØ_‹Ä¡ú·ÌuÇPÄñxB lÕ²¯_Ž@ë'ã‰O2YcPö;½ <³j“ÀC=Oî9¯“ò,æžbU&™ÈeÀ¤·:öÉÑÖÈ5d;›Ð]ÈDÂõ¸’ÇN+6;n+]}µ6ž¥ä”RX€Ë#ªú#I@)¤‡£:‚SîxÚ'wÛv¡¦jäÖÐ:¿Η4›(—ÊbZ˜‰å˜ã³4Ó&VvÉ âC*†É0%k5Ea¢IÓ†´û?—F⯠endstream endobj 425 0 obj << /Length 2749 /Filter /FlateDecode >> stream xÚåZY¹~ß_!l DŠ=\^}!ñ b#›H°Ê"€í‡–Ô3Ó]VKOòÛSU,²Ù‡fFö<$ȃ¦ÙÍ"«ø±ªXUœßÍ¿ùî­-&…(RNæ×“"YšOÒ$Ú$“ùjòn:Ÿé´:ÌÔtÓÌ>ÌÿøÝÛ<!'W*&WŽø¯@v¨àϪ†?Kø±±ÛŸfveµœî®á©Šéq¦óé=|ßÏ®4ppsg:š<ÏEhæ#PâÄ$Í6ÅH¡së”AR¦ën²š”FÃ:Ö^ão®˜ÞÕ¼S̶ä¹v{¿ƒD ãÜ´Ø>FÄ¢"°GFÈ+^Bv›„Л|ú‡êÐ®Š‘FÊQœØ"m2Æ8Óq¸Á·=J±_³„¼áÔƒ&cŒî ŸU‘K×ú1Èï¶eåèi1ÇrÄ …Þ}?»J´¡ÁUzý ª k’"³}âgE¢«é{™HxüØ#áÏÞì7<âU;!v•ü$@Ü(å(þí{î–à±iY”,H4ýŠ¡x ?Ó™ö¥{ Ïd\œ#/çÒDŠÛk8óžóXͼɹY^3âi„¸N…’Ú»Ñ_ŽìI"´.<Áš¸av‘“. Š! ›Š¢õÔ² LœGÔ‰02ï.êû¨¡>ì#ð«_òêyWZe (cóž÷²:ƒ“2‰ÈŒzò*Μ`_ƒ}¤yÜîbP§æ^§~™à6Gñ»§5÷ñC¬‘6¯ºƒ¿=¶ïG5UðûÐÅôqr"½âW\P¿~¿êq<·è!w\¹ß¬ÎÂ/èå3JmGGª´³›Èçx—²ë*îS|Á‹q·sÏ ~‰¾g™°…½À1 ç@u©zû@çžUzÙ" Z= ÞÊ…*3“+mD¡: ??°Ozæ´‰½é¨s†ÃP'ù“!¼?³ ìA„¡îÚÏgF¯dñ §Éo¢# ˜ˆ4½X{îŸ ¤IEbÍ“gþ=Ow΋K‘çúKõZÑSuÔ¨±){¿¡æ§Jäéøqû—~¸Ò<‹)T¾:§Â³y·Ã±MyÐÃãË«1¬-D铱^²øÛ‘¥Ç" ¢Ìe‘J؈gñ_Ý’žL$¹êFÅskËò\Zã#k™¸0}wt}{Ž_{Ãtx}/•=ºa»(mI=‹åŒÓþ@ÙIˆCzLŠT›0¶\!Õ<±>5Á©Iûko³‡–`ñÞí)óªÚùví nN!äƒo`Í1’÷¼AîËÝÂó#iW®ñœõøŸ3â‡SÇ;õS\“2üuÛKÇ ®T›x2ï<|èéGÞru ´B|J½¸Óâ¿Jè(o*‚5ia…¯Qš ”'6§ôÖÆå×>ÕÇïhËÝÁ{Ý>>|cúiÝÆ‰„90B³N_;%%˜ bö4çàæo~ÅÛ¦‰õÚ%Õ•~@3…‹æ»õ¥Š€^‚fÖy8^×£Ýå¡r ÊØ›Ú«ÉŠsw+§GZÝÖ‘uV[¸Òѵw^ʹIuuäH¹¸E4®ô²>E+U*ö`E*r\È~Qê? É’ÃÔ «,`ÁÅ4â|SB9*Þ@+ƒùÕUÝÐþ©ü×Ñ‚óyÔ@\+Á3yqÑŸPK—QYÍYNaḿ2‰Œk>Xï°ð©€°ˆís!lúik¬»ÆqacÎk5Dáùƒ`‹öqõ&ôS\ÖÄÉë¶éa¢j¾l 4T±ÄLïÈ<›jD¥µhc¥úç¡ °#I(*_ÅÛT¬ô„]$J«ÂCn©V¥½U+9ÜÑ £M* ù`õ¬#"Y¡Š|Ñ8žX™ £²n~3f¥le:q–¥m{”@{Ì´öŠT­\Wã1ÆBNͦæºB­#èÖÂA ©d—R\X6Þ“èÄÕ±zR,I™z…Ô£/~E¢S 1±ÓŸ+'ð}“X!ó=RÎÖ3B{ûßúÍEJ–rÁ§!anTѵ޻CF½S˼#öŠL†Êû?fWY>fBÚ /Çl6Lõ¯%³"…e’’Y¯ #" ;‰HÞKcÆÌ_µU%²³êpFùurå_$WÌ ¢ˆ&ö¶ã`»¼Þ̳þ8fQ¹ìÜ{ܺ 0ÅÚçÙúÏ`;¥wGÑÁWãŽÏ&.´/NQRºÛRd“µ%ÌÄš_Ï8š[ò÷!cÎ=ŒÈ‹^î1~BS ¸òáx½ †å i€lÇܧ’"Í‚,³ÐN)Gj¢ÍU©Hm&–*–L÷2WtÑ£:•µißO£ÞÛ´iæØ²ÜkäcZ¤¢ÁÕ•ܯ]'ec ˜¸JIf|ÇЯg°CéCBxL7©!^gOP t”dŠÌBÿkôWùY‰­hyƒóÑ,l6j¦à0uÄNî#Q»Ë\TtÔôJ6$¸|º9£üï@$Ì[JÒ”]9}äm’®ÊàjÜ4.ì—2ÊTû‡L+tÃ'$/|Ƀ7%ßçáË¢M€T›]{õ,Þ²dôIÈV> ‹Òß­»Jj{hŠö6‰íÙN½ëwÝ“pØìÚ§`Ý¡¹ömèÐ’(D?“èéÛYnÝ%IÒÍ1r5èuÀSô¾ò YG„Ôå%Gí¼ \×›Ú¿µ‘zâRVP5® ÐPg^ÉôO^äìyâó½&äQ@ÚZG?… ×â½öfõáäƒøŸ¾üò—®÷D·[e4Çk&ñõV_Ijⲕ­W}¤rÉó\ïôÅòû¿oº×výŽæÊéÖÝ.¨¥ëDŠ ª¸ÁW„JU|üŸ©ZÙKk¼T[ÎFò¾‡+‘¢{AéoHº <ýŠ*7"ÑÙè•È’ªKn©>²´/ÆUa¼›o¡B¥µí:·´Ç¼ü:Ì*2émO±£o jlÖ¶ëÞq4î+"þ-üÞD êèö؛޷íHlþ™}Ç]¸Sí(HúïlûóÔýÒù8¤f{ªÙFœ…/†åƳ+%6®Žš®Èóëv¯ »HHÖ„wǸ:¡NUAï’û2¦Õ\Îyz &Ï ‰üÃA6bœ1Ó"¢·ÌÄrŸé0I»LŠheÓÉG$öŒüªS¦M#f2¼üHSüž9§™ºüܹìÿ:ü¹£-Uþ‹ÎdôÜÑ—ž;úásGѹ£Ÿ~îè/:wô×;çѹl‰ý飤ͦ¿à.U÷)úß™c{¼é_ž‡½_†ÿB Þ•Ó!lî¢tú&ÚF7‚oeɤ–Zä'é|lîŸHøÍ›ù7ÿR"¾7 endstream endobj 428 0 obj << /Length 3407 /Filter /FlateDecode >> stream xÚÍk·ñûý 5(Pb1Ë7·©ƒ&i pq¶‰ ¬ïöÎjô²¤óùò¡¿½3Ã!Å•(œ8h?,v—’ó~í~öüâ£/½µ¢uʞߌZ/¼ #g½PÚŽž_~r9±J¯/åx ×®\?÷pmàú±± Ü®LÅ!ÿ Þ&ñqƸf;\Ç. ד¸_íðµM›çÑbùp}Qîø½g^‰ÏàZÂuÏÓëݦÓCèïàZñuš‘£Û‹ç5£‰”¢µC–®ùØ;féõ 6â.ª!¨áV§)¥cNRG')“'µ£w²‚éÖ’Ì,KGÓón¼á1Cóq\ñ»ÍðV¥Cl±¨åKÒ»CpÌÁŠñt€ÉÈ•‡¸á!m±È›ùâp_PÒðxkxœÄõÑ—¡°,<1ˆ&„xâw›) ýörb”'y½êñÙ‘ .ô7(LÔŽÙ6›|̸Ç^¢ú IÍâÌ| (yÒ¤~ÕÖØ&î5Âðt·%M¡÷é&,Í6>.ñ^â5[²ÒD% ¥,HTÞŠÐ* •H|8d‚ÊäùDŽoPÑ:D·—¯ìøy:òj¹ Ê¥!’ð劧^vd3VÐ …Ôf¨ùÛ=>b¥Amyåf«þ'ÞvÆH¯îF>©w3Õ¨þFB–½ª®÷Òâ÷ ü¥ñ/ dRŠ8«aœhƒ9ûˆB¼Ê ÝÔÅû{} ÚU!ÎDýÕÐqîô"syÁ+îyUWpýi¡¢{åE)·§¬®dËÖ¸Ê+j¢Qçû׬lI=’~ÎŽ¸'R’ÇœˆÞó«Ê9ðçí0»]Õ­ÿìk'dÖŽšŒËº#É`qXîóýI©!ƒ°•dpÄϨ⾇ç^bR†kξ¿YrydçÆ¦½¶Ý¥»0±ŠÚ:e‹KÎÓwb#8NDc^bœŒ¹3nVd:ˆùÊí]V{ëÖü³¾oý“ÒL |»x»žÆÄX÷iØÚÅYÈ|'ÖŒÿ“WۂИÞ{¶àĨB¸»ô)$&\q®åbüKI8 4D¸N;÷ñy³*5‚yÇ­@y;NjãÔ,Õ&Û”‘%æÀ"Ké9У Y!ÀÝ"Ii]¤üĘëz7‡è%LRÉ|‡û\SÏ>L4 »’fçlܸñºOy¶çÀ¸”j§ÇW Lge%êÖm£æ­—k²×‰šË"X‘IU' Š&édB9˜5N(‘Èîø:V/;~àlO¹¾Áüç®ðc¤ô‰LÆ{W+´7w”6 TS·L÷¾»B‚^Å·Û)…tNÎQ· Öînû8›<û†6õ4‚-–ñ™HåU˜¦­ÌNàù5±É\wÛâ‰nJ'².À )ÔÞFó¾[ Š‘M®‰€u¶¹=Z§ª½ÛÖë³| FqßnÍ»ëØ¦ëß0²])œ]Y¤Êª‡£§[®î²Òâ:²}.À1DL73”Æ3ޖ⇈)¡žý’Ö–xñ;]Ãç9“„>ev¬W¢ƒŒÛŸ²T 沜3êÞ¯";Ï:øñŠÞº]%žÄ”J¦$1j–uX6Ç}Ø1âs*ƒé´ûuò¿©yÈP›e¼w›xOr‚ÇìTè­ðE `Ú~]J-«>G„$jïÓBݾJ> ?æ™f¹£€†ßîä@ºuÐ0bƺž#ªw³}õÁew›äšD-ü*q†p—¼ýÏÉõȳœ`Žë¿Þö‰Fƃ\C\}ž”’0b $·Uì²™ëÈ>ÁÞ¿§éœ‡°Â‚& ÊŽvS-Òy•Üܪd‚ ~ªUƒøŽã›¤vw«pƒNn©s¥;‹ÀWÞÆ >Éw?á`ŸÞ¸÷”;P¸çÕr¾â0°íöQ,°"©R‹™NñþÕ:5@5_LÔ¹ 2ª¥Ï€…‡½"´]}ª ØŠÆú4Ÿû`:.(pkܡĉ7ÄŽ1Ø—†ö]›M JÉXBtskRœ½¡PJ¾ázçžÉ%瘾ßÒ”p*×Co¤A"ìuˆY¸k‘-ÂÀ ¦‡{!µ0‡T³3È´RN„’ß(s´õè¸H=»í΄qíMæŽæw{„ÁéVøý\¾‚¹Fç*#îHdùr“4б_AùŠ1zü)Çæ¾ˆ:]Ue%±nÁš‰ðç ·p€N…ÛÒÛ9HõmÉî¡R« 5 8áÍ@Y÷Ž °ÙcGZaõðĦÖ#Ç'½¯Nú@´p29D ,ê¼& Ñ‘±iéGJØV'| $ÜÅÏ/^_`ÙÚŒäH… ‚i¡˜m…‘£«ùÅ/šÑ5Ì;º £{‚œ4hái6úöâoŸá—Ãá†Ãp§˜ïÒ¡ZWx¥ •¶N±Ó5n ›Ê7‡Ú9QP&Ã’‰l…6!Á± èØ”YÎû]nôh[‘™FÙXX° ¢û†ª~ÿ*YGÍú4è”mOxÈÌÎóù³n¼s:~ £È²YæÔ]¤~L”ìaë½_ÖÈ–Iqæ§äcgSö{QdæÖdJÎ¥iºëuý’l,øJ7‚äP4ʤü¥Æs5ƒû3Õ‘^4Ú'%3M e¨3~4ñÂzçþQ±²‰¦þ ~ûlÃõo»«šÃ-pv6ÖŸ¥(G>¢i|Ž7Ç<à£ñÍß Ý‘•GNË=-̵䤗¤œü±±Ö iS[¥Éi„é°iÿ9±ã¨Úë‡Í½Ì“5¯©N˜báÆ¯¶‡øëU£G ”ajÿYq¬Ñó Æ1²†Úz ™ËTÞ°Z`}`ÏÈ7Ä£uÇ0è WoM¢ú=(Å]m ßèýžì)Q_ßUål1¶ÊÚḩ((GFåÄ ñƒwvòQéC®eôPú,;üŽeå¸"|üˆã]UøÍI៪ µÔ£IŠ ° »`_Í/œÐÊc¾ëµS°ïAþæ=Ë?ĪÀîûW »1û×9‡Ê{ºØöÑâßÁw³CD!2(ð%çÈ\=&s#È´hWp•@AÞ mÛ¡.45]BuòŽÒ4ªˆgÅ!ÎÛ^D ‹Ù¬é¬ßΉ˜_­Dø­²= i0†ŽI öq%»Ó-lÆHÉ€dA”©Ô±nü£Ô&þD@Åá—RYÊÃd ¹õA£ädÆUÔÍ`K˜ÔhHMËÔîHm$\`Ü¢¹IíÕ䶯RñW¯ZÚÆÇ®ˆhìä+9>NL[س8{·jXþ¹²üÛp]íMl:oø;Jj)Os-?{Àÿ˜öx ®5iɉœÈ‚ƒ•eÑ” Ì@¥VÚ«p!ˆ¥Ò“ €Ô;¡p÷(´B QHŸÕ»¯Ž?é‚°îË_V`¢”(êØ*¼")’¯¹U2ø&ëÈ¿hÚà+=é$ÂÔ©4'ƒN¥Ï®üR±£ªuÑíó—zlÌ"Ø¡ŽWz nØ–& 8^Ðà¯jxòyý4\Rü’tÍŸ›LêirñÓÕJ É6ˆÃX“zgÏžU>Db2N•,ý‚ö@%î8¬ý½ž#ëöT%¬}·ü!yPQx«bEa™q‰=äÅ®0ç¤*tpìÉúÅï&4zÂ.f=ÞrÁæk3^ÞVÄ£…lü»ÄÐ]¹†(Ùá/Ž üþ‡qCÒ@Éácân|*‰ü©’è &ŠŸl‚>)x9…ª ÞŸ)wóÉý(‘×ò1B%üÕªb¯¬î,þ GÿÎ1*ˆWúqô1,”<š§Wõwæ¢ù_p±Ò>-€>]q>ï8l,˜³})s3³Ñõò–SëÝQB!è(ZŽdâØo΄Vrg …q–üV?mµLð#€néÏl‚ MêÿTo endstream endobj 431 0 obj << /Length 3571 /Filter /FlateDecode >> stream xÚÕ[[s·~ׯàô%ÔÄÜX`mêL›:î$£d¦±2Ó™$®IŠRLrRŠì<ô·÷\p[$%[yèC¬%ö88×ïl¾¼<û쥵UÛ¨fty5jme7jŒ­TmF—³Ñãûës9žoðŸóŸ/¿ù쥔٠å*ëÔH0í‚)쨩Z[;$Е5j4‘•n5I&Ê÷Åíì(£y~>QÖ—ýâ|"õø'aDis˜gÚ°ùÕþº¦ju|‹Èg…UàÉ<îêÃNà.u6¯Ö•6:±(D™Ã&rø²´¹Ý9央Õx~ J›VHì×u%žCÂy½n_ÕÞÀ¿›fÜ᜛ßΕuËñWªÇý¯xK¶Àcü÷'à¬k¦!KÙÂ?oQ´ÊôÖO‡çžgÑ„¹Ÿ4 ž·õÌôk¦{ Ïݦ[áËÛÀí–çu4ñÏI-*mëÑD©ª^#=ŸÀ/`ÊN9ûêòì×3 r#9RÅcFt•Vv4]ýø³Íàå7#QÕ­Ýéj$ÛJ‹—£Wgÿ<ûhh–ÆTBƒ‰¶’Bå»ÿ$¤öüŠÌÄ@'Úºý²¯f F¦F®ª• 6¶¿œXk=’ŠìŠÈÖž,[jF]£|ªÖµLõ¯Âb¢²©d¥¤'»ÙwU9é‚ý=—%}˜J5õeÛ´±Ø×D TtöMhosDq­’&”,iŽ É5qS8P¯k<–hÜG¬ºsòÄ$äƒNnªÆ=yXë‰mpÒ€ÉåèÊ5ÿofÜ´xPxzWØ D èê—bPF•:ˆû'-º†µ ê:©Û³è°–…Ü&õm¯hЃÐbDå†Á…r®› þ©1«dV`*í$›ƒ6=Ýx[ꪑfB«A*l€ÓŒê¢©uSÕÖŒ DìôxDšªƒ9©ÃZZÃÁÛò’£Hà##:°Øà¬|µ7å4fJq˜,q 3t$¹³’medá¶r€y¸Ö›¢7 ÐÔÀ›žÊˆJ úv ïØFZyÔ#ÃZ% i‡&$uçеž#—ÛØ0â-„ñöp"²UãjøÝÀ(}^°±J5BŒŽ­ƒcƒÄZChzÀâãÁ:m¾¹«„$ÏK6)*##sÁjëL`à$™F‹µD93Ð{r¹A‰þÁòM‚¸Œ`#ºe<…­›!^z”ºž•#ïI>=ÐA«/@=*Šð¥¾¤ÿˆñëõîÛbÜOÀ×ndùø€®õôCzÏ06ˆœhuQ)½€ø„(šÔ·&ñtHXæC…U¶g¬‹´>uJõ¨°#' PFW­NídÙ¡N8HÍ5ˆ‰,Â(óxãRž¿I®}Rì/ až™ÉN1¯¹à`ʆuäá²ñ¸flå\» “ @ådj; BÀÜîØ: âWüxÏA„žoCZðW tÑž†Ü2Òt~»€£ R@|Ö²fô›˜V{îüL$øõnp#°Ö6¶ñüëï/^ùcÝøp~ÉIÇ×<=nÓ_°2¢jÝb›æ0¶wÄ;ɨ<¨!öºÙ/ðã.ä÷ù̗ȰáîÊÌWXHÑqA"f)n ¾öiõoÛ$†ÍC&jܾã d¦˜ ú€¤À6”•’NTÖÏKk¡%¶òñ˜ —qjü·Lb2€ˆ¨xC‘Ý ¬Þ3ô<Á´sm’¦¬‚]:Þµ¥9ïöï­?ˆgþ»$"íòs@gŽúWÉ‹-jÈ..ô¾$@¥cDüœíRKEw˜»Œöì4õœÉ|2œl›H6^j ŠGÛm”¼ËšîÚê#ƒ«Ùø~ÃÞÂ^ÐM©‰²(Å㚊»£Ù£…ª;F‹EÖòx– þ rMªù:ÜùG²EOºî}O¤äñÝ&€SfÞ”ë–_qׯÅ{MÎ ovz!L2/ÉB½ø¦ÉËsX‹Öóë¼ÁߤÀâ-Üh&›Ò·}ÐäÌǘ×Û°]Ö*¹ÄÝ6E¦Ü±=kƒÙÄØÅÎqfyapî‹&ØÒD)=ÙàÅûO|‡ºctöïúX€VR‹ˆuWH¦uÃÊôµ57çöÊðáùM.óP~6¬o?ÃþÚŸ9Êsæ¦ÎÚoël¿¬”ôwÓØS2éî»á¼Â¢Ëõ º‹æÈ%¹)§‘ ÁæˆcÖ ^ôë¢oWM*×K…¸i*@<À3 ¯’u©_£%€S²µû›{CÐ@úuÐyÀ²çã]ðcœ„~Œ¯òPZ Pt³J·ÜŸ »–F)-ôv×ÁYÈܲoZ¨G‘Uõ4ØñŸU»¾á…ïfübIc2èKµ{ÔDòqAc#‰€_ü´fãœÞÛKô&[t6c<ç~f9<êñ?æ!¶lºj~ÏH/Bhšwžñm&ŽeÚÛëî[DJÇ —!¯¼ ŠÔ(ŒÕì@DßÑrþê(1þžíÏ)5<ÃaGæ å{ËùŠ4ýfË3l‹µÔŠ}ŸÑϽu!¹>æ*üÍfš'Øw·ôÑÂCö6©p1¹‚—è¯ÂT¿KnŠ$wþÓ¥.ê‰Nc;È€STUʈ_£AІ„Ç›P¦ºNòo3qñÀ¯¾®ñ(™Æ¨sˆƒ¬p ë“sö¯ îN] ‹^#¨LÖzˆ¨þä_@9J ¥4ȳðÏf§F$²itÝ~° 0tËÀÛUŽlãv:wdz$å8§ñÁ–r¶¨R—¶â ÿ c™y7xÈÅ&Ü”Ò7 80õ:¤ü¼`®-u?=©Ø+ãx*D"(½s©Sê0à'y«5WL&ø ˆ­/µ@jLöWÁâ×þ|oýºM:t´5~ÍoùG’(gièB}à$«~ë/±Ý£áOQ(d#ïyøPy: Äþõð!4!` ì·lÚB6SJ¨üa=lzš%˵qŒgΡ|Å×ó€ïÞ\º›d²¢:Ù}[w|ÃYsšL±,1‹eè[µ†á—òûBì5ª¦ã;–<ôxœðã6(—x”©ƒÁè¡É«?|凣9¤¶½ó·n„Îü_IþËTßjÎ??å?F²¥–~õUÈœ~¢'™ew|¸‹/bl3øê¿ ŒîùIA‚àŸ*æ¤{¿%®ûÚŸ†ózaí¦2©sréìƒ!‡Õƒ&ЂæÔjnIÖ5 <¤Ì Oê”(£ÖY¶BG:“'Tsue”ÝïŸÒ¾jèÞ‡jhˆ3†æO§ü +ü(¡©‡.â§¶‚µ¶˜„`ö&´!ià:ŒTelyuÕt“ºQ8‚˜Czmå0ˆ †k_Xà¯qÓ÷üÜñÄrYÊJÜfÂoäæUËâ-nD芟‹ }ø(‚¶ ðÊ鈈NdiÙЇÐHÒ§.£ŸÏ «(ìäëô¿Õð7\,û!æÂšÛÌ{ }6ÑNð{jÄ¡„!ïQ¥‡´Óy(Š»P¼ºÝìÂ7"a}ß½óx ‡âzÜ:»ñõæ] Yx1þˆY·ë×<˜z»Ò´®jí1à„÷"&"hN¦oc7‰×³;àõé¿€›†~ËÜCU'*üŸ´¨¤ö_‘:>šýšÄlX endstream endobj 434 0 obj << /Length 3274 /Filter /FlateDecode >> stream xÚí\Ko9¾ûWè(a"ߨ vrXd‹õž’KNŒµ­Ä²3I~ýT‘ì)QlÊ’Xä`«[b³ëùU±øxuzòëk)GŒ§žœ!FÛ‘V†p¡F§óÑÛ±"þÙÉ”1.ÇÿXÜÀÝÅ׉ã\Ý^À¿¯ÁÆ ¸XMÞŸþó××väˆÓ\c·t4e–ËB§Ÿðqßtʵ„xò¬ëhyߊu}s;ö/ý¾XáWøïþf7áÛ[|:t‰—ø–Eøeöù3^Œ×ðÝŸû~Xž‡Ï?ðeHÂòC×ÛÌ· ×ÿ®ÿódÀelñ.ÙûpctèõeÂ7À|þc gyIý¾æ-²¹¼‹½Ý! ‹ž,¢—›WNÛåºcÞ¢h2c‰”™&F xÈ7~G…ØÖ„&T­[(6™ jÇ(Ù™YäNPDBØ~‘rDiW‘#Œé®Él•t¹××þ…wþ}ðöËðí癿»B:ðw¯t2™J¡Æo·%®'RôÔœ—H¡ )A«…~€bÚ7{½Ý £Ä*Ó5˜#qØ×ò6˜Ê1±:¼íÛxs½EëùØìl ¯½á¬n£ ðæÃ]ä>ºš˜'ÖéÜ"ÎQ„Ø×YÒz›‚o¼?FÓ?ë:ýÚ™ñå÷‰•ãØ=?{Áõ i«¨)ÆÿõL^Ä'E0Ñ<tè AˆLPpë¾#£×\$ÜtÄmkLpÐ,gF>n«LJ{Ë`….$q–w ~çÒfü7üÐáÃt¿…/ ïà•Òv}ÈÀПnÆQˆŸfx…¾M”;ApÁS:ôó÷ÉTõ¯3à¶Î­P9 V@$|¬;ùãôäË ƒŽØˆJ8W#eÁUÁ9ήNÞ¾§£9ü¨B„³£?}Ó«S„j ——£ÿœüûä…Ü1 'Ì è úd*¥ïˆ¿ Ió€f+"…/#ß2ë–ÆÖ BiÉs¥qБv±Ê¹-‹V#øíbtÝSÂèÝÒ¦4¦G¡‹i YЮ&Rj <ÈŠ‰D© A ËBÀ¶H…%Ró‘‚Í*]ªpÄê\¦ç%ª\—v1&÷e,Wh²› µ©’S:J°9j ¶M>©:Øí“ÞïØq|R¡üÍ“ø¤vÉaN[]2åó@—´„£²Ð%ͱí‘ÑÌ«Ñ Ñc£QÜ•ÞÃ!BM“F‰åÊ”W©µ‡åâ´º*xVÅ].ø‡K¬x=±2êwø»ÌJèkÊ$¡ÒÔÓŒñZ¯gg*ËÎÊCA •4zY˧˜&ŒÛm¡¤/™¸$Œ‰Ý5eŠb‚ Ct?˜Æ?Õ‚ªÿ*¹j‡Fª£àà-“~Fð×À\#ü¥¼=*ú™ôS-ƒJuŒäa8×µ™ë>#öÊŠc”6O-ˆ2¢%§€ÄÔ>+}ÜmÏ*'V{%úäĈïÇ‘|÷®`#ÝpŒ”Ã1ÒqðˆZ,H»ã”HqŽ ðSPŒ¬¹’m- ô}i<\fA<7IpêN 8›S˜†qæV˜ñ~tÏbNîC©ÞÒìž ÷,û‘8f2GÄÞƒë™ÔSÔ¢jM´ÐUDÅœC檾Þ­+h:Ÿ+xLáMð1abAó“ ²âA‹²ãx€–Æ<¢‰'ô ZyMgQ4Ÿ] õ#ûtKS7¦7QtYä«Ï´^>¼@­3RÃÞ0&ÜPq@X•{ÓÏbèC.PmÕPKMS5T4TCµk)‡òÁ\IBX„À)ý"‰já ,®>sÕuE1 &ZÜöäµïš—Y(*Òí®8€F¸õ•‡ŒíˆqH805´k*z?‹Rhž¸L9çã_Êk–à÷u_ 9å3™#wÖŒ·¸„á~ê»×ùB¨Ü'žl’\0ãΤr×@Õ>þ@UV‹¹f”´yY@„e+Ï%Ûà%‚ee˱ð)x¬ó'Á~¹û…£²Ž€ýÂ"§Ï úm ôë&è7›Ðo«È´ô³^tÕÃrxPs P?¨Z’σ¦¥Ž?l¸ŸÞ´{tÅU+«’hz§Ø³SI›z,n€(FK[ÅÀ£É êçÀé¦8áÒZî.™oÉ€?äœq9ÏP y†Že™ÍUÒjé²à÷)ûW³)õTÙTž) ye~Åôº–ù°K†šÆÈT„æ„©ê¬pÞ¬ëyv¥ÀCÛš1Ÿ UJ› Òê!K£É—£&™gßkèvèàóб[œµoÐ>««8ÈK²\W^°S¡Kc8ðJÙâdtèJÔx4@”-€(ﳈæXv?BïÜGÀ4N¹_錘f´yœu@|pPD"}A—Ç5.‰àâé@Mîjí«ºwÍШg´DåéV£ï³”|×\Žú\ìÓ…¢aƒ‰³õÅhŽŒ´©‹ #ÒÛØz ¢?Ç?8þy_š$gnµ°¶Ï°F)ì‘£øž„>Úø‹…}¹‚ Â}êªý’í°Ã}bnE—Ô—â–ÙÙÅ5~“mÆónŸóÅ× ˆcÖm~ [FWá™óåMqó3ƒ4Ïll­] ÎÍrù x'7¸)4'ãàÏþoê·¹ú-ãø^^Ïã/z¼†9²[ ´¢Ù¯BtWªÇq+RÒÃOâÄq¾±Øæ&@EOPÜ Lmh yür×m˜ï¶AWtä†$ºÇŽ9¬"2™jÃ:C –è$ä/.ß!¬oùÙÜà½ø÷àfÂæñ°…·–—mŽbl³¹H…(2”ûn܇ާ$,΃ááýYØA¿DYÌã¾ôŽâÙ‹@¬?Aâ6áo½·üÒØiØ“}O-Õ€¥zùxcí;)™§Œh—­ bÅt3Y8D¢z°ZaD®žß=§ i;¾B*Q#gxñ ¿ª¿mxèê*.Àœ$ú‘(ÊdzП?!à&"ЧäEóîЋU²Ùñ‚ÂúžžÙ<Ú¾¶Ý 8ÿx¼LEQ†Óü ¯ãݯýÁ³ÛW‡g½¸À”¹´ú¯ü,ZŸ'c(E˜Ùsæà`À\<Šß´ÞÌ¿¼˜¯¿^ŸlÁÆøÝu&6‹—àogËþ’ìŒê…á?tL._láň΀7<ý²‡ÛÅ<¡¥;…‚•$Þ½r•™Õb$¯™ÊÉÇbL ÛñЇ«Ù‡p†„@ÕÁ\kßíòjn:+X݆†g3ï¬+/_΂‰M£ÉCÏ×Q¶±‡åúÒ‹;ZzÊçëç㩠ϽðM®—ñ¥ÝÉ0¦ë裇/ Oˆ¿ŠJêÞ’‘eÇŸz…on"jz¬*A$.ã±(BGlVÀ{ó¦0`êÌŒ g‚lO´Ž²ï ²êXu¥<<'òãj7X,ÜXGzáÁéVÝ“Q-b.Î ï’`˜wo (¤·‘°©aÒš0Ÿ Zfâ÷©ÅM@ÀMñíå€)ö®#«|Ò[›bçSìòi§Ø‡ ©°Ñj`C¼Lãn,ÍÍÁÊÕnP»8DPV6¨·}^µ^\*ä6œšïÖn:‹«yêÒ‡¤FÈTú¿ 13/Vm^¬p5j‹†b”åU1€÷rèÕz/V¾ð@ŠÆÍÆàöIM´bÕKû¾î ÔÇ.˜¶»ÜØŠ)3‰Æ2võ¤ ~Ck°ØwUfîEvsq´§hSÝvëßC– ¹×:3ÁëÕò2&·ë¼6×ÂœÍ !`Rl]k)ÑVCe¯Þ—˜ÑØ1õ'Ð9Ÿrmò³ï0YÅ¢‚3øLò,Ry5Köúïõ¡9 U·›šC~ŸÁ±~¬ºqËçËŽ<ÖÙ,¹ËS@ÿU8¢o‹­›0ä‹GÈ]'ù+—àvc¼Åm2Æ ãÎúBC\•rß!Dð,@±°¦[DÓ±½½ÿÜ­-Ì endstream endobj 437 0 obj << /Length 3483 /Filter /FlateDecode >> stream xÚ½[Is#·¾ëWðªbv°7:®9x;å²T&•TyœªI-.2›Ióëó n‚¢äY#v£±>¼å{0oß]üáGc&RVµjòîzÒÔUíüÄÙºRÚNÞ-&?Omu)ùOs9“R™éŸî:xÛÿÝü¹:ìñg»é.y÷è²™4Uã”ÃÅd&}¥½äÎþÜ *6ï°M»á&þt‹ Ú‡KUO—8ÞÓ¥ò0<.GÍtÝL¯±+¬ó>Ó¬pzKþ¼€G,êhÊáåê*ÝQwÕåÌz5}w›šÍiQØí>´Ù`÷‡v…ßýtrºJÓÀj[~|/¤à§5Mì)¼àDÿ‡½„1x¦ôˆBYm±òÀØ<®|ƒŸ·;|\¤Uµ8dû ‘äF;Ér»¥ÉPo(<’ÌrÇ+­­˜¾Å®æ¼0£-ÍŸÖ¿c!`Ù/7¼<|œãª·]˜ –\ÓôÖù >› 9ý^-. ›>ñ·ýmûúõ׊ª]C_¤&Rfz¢•­¤†eÓro¸F=qUSkLU[ B©Lc¸’<Ö6_yá&YÒKܧûU˜Çu˜-®j·]dE²Ÿií+çëáÜ,7Qš¤3Z%1áËÍï i”è dô±[Î3¥"ŕګ˙r¼¹½eT Ic*§Ìd¦`}>Lê½P®$†ºŽ¢|݃ډBª†ÕÉXñ[ØWªô^h},~TÕvAÊ Zu<.ú7™e•Âè²0úÌÉÊÖ¸¥¦jL¨ÿc©Óº‰s|/li!ºòµu>wa+Qˬ KBàìèµúD×FUNúWõ]Zªª,lÙL:®w]ê§±_x™ËÇû¬g“·•3:5¥áa#L3>W7_4d(ÏÊÔ¬!:jÈÑ:@|¿uB¦`êÖ%%?^÷¦ ‚ ®tã'TuqU"¬&ÿ¼øÇÅ[ ·ù¤û®ÀL¥6ÏI ñ*‰ZKö9R‚|¡ÆÀ‚ž€¬r1ƒ¢d&&ލÀdìÀ?»FË[ƒ9ÿ:šS²”µ’ŸÝ †Y7•°ôz¡‹â€ú²RîªÜ­­ŒÒ/2БzæÛè òéÑ*J«Å§~0ù#-;=Ó|‰}†(i sá‡áòÇKoË( ÐÃ3†e ìÝ–pÒ‚¿åp "˜Î}'ðÙb»E»cÜ„Å7+‚ôLÝu‡*÷Œ¼ðC» Ì÷eft…â)ŒWçF L0—q…Œ(i(-á@ í ¥Î)ŽäY’ÅKQYé^oñoÄX=€®ºw ¡×‡£L–¿´ êw²YÐrŸd“3ÈtfÆÙ” ŠöÁ_Ð:-"²»£üĺ0‡î¡Nîæûˆ±4 j|L˜—à!dÛŒó®)†Uþ§àkšJ€ì5à7ððCìÆ.>«µ+á@ézÓxÈ’Bhª½ÚìJáž ·  Nûϧ èžÎ•!H¹åŸŽóµ˜AA ÛÛHÊë(Mц-çvÉ›r¸'¼½h÷ ï+š¬Fx¿Û‡þïKâB8ÜGñŸŠeûcÇ"É­ÑUJõX]–“kx£CGÿ*L#ë±´¬™FW±à…ÌB~±Y°ÛF °zº½æ™ŸÃ×eÎ:š]ø²½.æ(u¥•ÉÐMakÁAõІy${Òâ hÜGžÌþÀ¿ÄŒŽ3ðøv»¥Uòß/n¼Še¿æ’}ÖPz%Ý”Ó!©ÀHóÝ-fC àÇ|çî’¿2Ì|¬rIO!cŒ+Õas°¬÷=u_YñÃòÁÁ@èúŒžþ• –aOœ«wé «ÔiØxÜ,ãÖ¯žò¼—Ÿ‰ž¹¹ª%ó<ž¦SH­ÊÌ’²½ëÄ=Á³\‡Iz .ØXÜ!ù°g¨¦ŸŠ» ÈÒõvûT‚5Îù‘!pSÿFä°$ª ÷€¹"’/‹rÃ/«í €4s Ëx€›)›|*eÔúáèÙDwrÛ÷ÜNhÀ N¢Ùµ‹LÙæ†›†HQÓð™æ‘HäÓØ¸…‘!Ä—uhÇq›BÉjŽX *¦;à › þ!‚}‡NK1w¶ïÝ ª(ñ$uÏ“p(þ†`DK3£HŹ'×UìrÏêvÄ›­R­v—ž™!¤%ÇÕ$šð‰;¸j~M”f{EÉ]0»CìO{èRy¤ UŠëáº⠈{ÚÜ,K !{\ðó$tý«¤Ù—ª$ú¥§ßa‡ê„QàP¤ C^9ji>£‡ˆko¹ÃeÃk7Î,œXdð2±‡-?Jþ¹aL‡‚í¸¤ £/CPt0¡eŽ7ïŠÃZëJ$™7W¨ÆÜr sŽš“gpÔ+A5h¿- d˜~Sr…ƒþXd’+´µRed}ÖÉLºš\|û6z™"­èxùi4NFФÑ3ë‰ÄÊm èéÎ 56“"·"Å©¬à¡È(וÈ(ƒè­ÿzl¡ùDÞª¤‰CŽý„ú ø¦²úœQž‘ôµ”¦¤Ã`x°9_Ÿs4_šs|8ö¸lÕŸ‘sìÝ‘>Ç­?Ñ}â^~vªÔIîr Ÿ´òkØ0áH…Fxâ,S-} ,¤Ë¬LɳA<~k°•6Ÿ}á!-°(t=L zîòªŒq e´2e4ø|œ‡\Eî´?•*U‡¤  +r“yÁþ 6<ï|æØS‹ªIíÞ,‹Jªr~DÖLóL¯)ëÆ)‡%„mç{~Û^uQG‰Áv/¡$8’á‡v™—Alë Ž·´×Ç7ZÊI›éËæÖõL^á 2?Pe¥šæ™‰…l¤gøµé–Ç~(–U¸R *¼Èˆ ~Ï rA¦QêiLEvƒQ"5IWkÎDiìîª`Î,(-îªï¼r/ßÇÊ`#Ì(äCÁmlÃ3ý¬Ö‰ ®CÙüÑx*ou¼,Mp&M ‘ùÝ:Ùf3Š–­;œà¤M[k±ˆf|‹Ÿ!ƒfÞ;.í݉`ÒpÛíÓKÛuüBJ²A)„zVõ„ì­Ÿ[n±^ñÙñLIM!IÍ4> LÕˆÊÙÞqµ%˃\lt?ä q¥ ³½2]½)y-eëÜÓ…Ag TâÕ6¹"eÑypc’´s¹‹Öfp@ÿ¡F‰:’ά2uMÎä${|š™5ä6iïnf/d¤µÊ˜`È”+£‘ Ó€è’?³ÒA.Õï`)Ó0t“¥°/I4BG '·šÍ±öh“¢hÓÈCÀ³º’ê,‚Wç&Ý|¹I»Ao}‚G]@ê.›gUTâm´|ÍçsŽÇ2SÆÁ¶cF[W®ëþ;ÝMc·4T´èebP ·Ìº¤†DE&ž<Œf ¿•ƒûü.\$F?Òù'â0D YËÀPz„æýt~ÈjVýý¿þ(ê÷ûα¤?Qð>Mž™aÌÜ =¨¯SXõSâUbJvÙ¹ù>pôø¡ Í@»ô)åE•Ȉ})LÙÆÓ%]S¶¤k9=í÷|ߨݯ/:]p|¹ò³Fe‡J÷%ítÂNž9ÑL¿ß®ïéø(]!Q4#µêï@ÖµBñìNì>»[»ìOkˆÊNBÌ;¤’>ò†;²ËeŠé· ¼JÇŠ¾2é"É}Irxç9…4mm}ƒçL®ãÔѳ¤ßü%Æ]AŽ–|D{ê2êpN§94È ´7¯áÐR 7ÅZØafEw¡Ã)ÏßÂÔ(ò þ‘E†ÍI#õð,‚îSÃFÞæQ»ÅÜ7 æ5ÆU ÅËÏH0}ˆWq ëµà›g젌˾‡ó­æ\a§­y™yc¯-¦‹ŽDб B$܈¥)w¢f|Aàkt‘Xœûâþx¬?NÄ{è~'G£ze ë8ldznùç>¬eË—!(÷KAxŽæÀG¯Ðv¸PVyë+gFÇøù©[ÏÃõ÷pªÙ#x°JÊ¡ÊÙiÅPFÄJ’+=ý£ìK9÷[‡m ¦Ó<[þ)üႆ2¢¢Ûp¯äH¹œ&Ð3°x1彎€Éà8®ãz,,Å“0ÓïcÂôÈŸ Û#- a Û§¬¢Ñ,Ã1óý}¾£¢·1³_…CßáU¯åmK¤›v•”¯<Í3 s}2:ælüÊ\9L¥xÌ=ß®óM®IÝÖáÐ;·jÀ@¬Lÿ%£ ø‹SÙèúKˆï ‘1¿¾K×íöì Áÿ–¦:Œ!TÿÏD¸pwÓû/È !´(èÛ‡,Éëx£ûÿ<¯<¾ endstream endobj 440 0 obj << /Length 2962 /Filter /FlateDecode >> stream xÚåÉrãÆõ®¯`å¨<„Ñ €Æ¤æ'ž±Sq¥«Ê ‰Œ¹Èeôõ~[7DSšqÊNUr!^^¿½ß‚/®.>ëfMÞTºš]ÝÌš:¯+7«Ê:צœ]-gßg‡K•uï Uâÿâ¿ýå\k—µü·¸Ôu¶‚ávwÛñÐÞvüxUÖ!^žðŒ`pÕϸ¹ƒ‡×—sÓ¨x'o€"ö¸»Îö‡h÷~×npœß>!‡å€ÞvOp¤ÛŒ0f<öýÚƒ,\Öyr.íD¢«…ÕípÍQÖĘ~³<.ûË®þ6+fs¥ò¦¦© `ÿ3¡*[”Átñ =â¾Õ0³DFµÁ³…‘H„1Œ‚ŒÑ,«CR¬ƘÀ|x$2aßzà<ñ£ãiÏXT®op×µmÇ3Âã[FOˆ^çHÈçom™¥ËÜÕŽÉú;aûlOlXð.7Þ¤\nœâMW+AH²ÊfKz>ŠâËõýÈ,xY´ƒùŒ«yY·Ù‹Úူɪ2V;œy‡<ºÇ¥d1­@GÖ} u¹£³Ã‘»`¥û Û·Ñ©A­zÐU rb@z4È®ppK¨A4ø'•5óÎ3§Ëq}•}µG%z ß3p溗õ{Ñf]Ò£öØòKïõ¡çw\×"G~_0ïI?…,ôe¥Îz²˜ŸƒÓ+«Œ‘ïY²Ôv)0v·“å~ lÈ•é>–à˜GºAMW–¹¯t*ä¼È®ïµ»O’¬;~Þìowd—HQÙ Ò,e§nçüÔ|êXíy e÷€ØÝ×r"qT®X°íJ¤|ø|Y¸5Äáa `Ãk[þc­GÉaÖ'¸5°ýG¬è*ÚM?øžkqg쀼§1ÙOâO»>2_”—x”¹µ&ûóm»Ž<H\†R‘ÏPu‘+ fS§¢`.wYðñÍÿpGœÂÓM^Á€,šÂ+ó¢óˆož€èç ø±¹¶)çëj Ïåu}‚] /Uæ¶ ÿ„ ²Ñ^[Ϫ¼©£¥&×¶šÙ\)ÃËõôX ujÀsXô&uj‘—ª¨5jz\•&uÚÍmÕ¤Žs£E ¢4)¶*Uƒ4ílnTî„­oSÄÕM$¢? \N姈ùr®Š¢Hr )­tU>AžÒp·é/…•Î>Ké¡¶šgôºÎí½·¹®+`¬µ¼ö&EjSþ/pK?Ï­BMùë1Òh_ÒãycòF;ài“e=â)ì S#`Å' ZZŽlâwçþï§ U-2dp6–t•WE¤ÌEêL|úÏÌa„õï£~c};ñf¦Î+ç’ú¼2I¦7úÿL›’zb‹æD0±•³`Vk$(¤3'¼Lñ|¤”6yíE:õP© ·Ÿ±¾©3ê©‘SÍY?ÆaÆ`À¹ƒ Ô ˜ã„8³Ã Ð¹ª‰ÝµÄ†GŸÕWû¬wô’{o»8\ðlË!ûþþÈ L¯ ؼçùŽÒiŽ2cç8©kÓÂÄþº÷ÅN[(Jõ¸ø¸Ÿ{)‘"k©BÜÇ)©ß@Ç7QˆŽµ·üQxMEŸ5µ»…ð ˆ:z¤¶ø^bn8UÞÚæZWSwêÎY ¤.`R–TÆrD Ñ¥‚ÀÊYfE¬Â#‡bĈAž¦k×ûLˆŠ(0ü ?aöÁ—¤VüÞßIÂ/©[XCx­]¿N©o©Ã|"Ék¤l1Bë'ÎuúkášÖ.¯¬‹9æŠsNLÕÁ1üúÕ>C!H¹®7ÌØÎ}ÊÅúñ¨Ús¨ž9ÀØæSÈaOéeE51áÆG—yY©˜Qaëf¥tÆF@,\禅¬*"ŸfóÊ4@P¥Êª'lÕ0=V}Äõ@ò¹øòêâ§ TÌb¦fÆ–9$Ã3ÓX¸FÕl±½øþ‡b¶„IȹsÓ¸Ù-ÝÎt b@Qnfß^üóâ ,aÕÅÃr%`W½D¡js aÑ"7M%Ñ0G© “@ÓXòxAT¯•C04“—¥¡O—rþ?ÐDWRü‚¼€¯ ª$n—”˜ûë‹ß¢—ÚJtó+R.§*Ú† )Á£Ã¬¯¼sñ›Ë²¾Î:ªy`­ä—?Ðùì‡mTãÄ¡M¨Ã/ÚQedÞã=@%Á/²CKU;ªL‘ÃýQjßp\¿÷ÅÛ€ÙŽ¨¤‚˜ŒÊkm)“Ñ•䯓Ë8Ue5¶ÑÙWí“?Õkm@‚ @à3z­,ÞVc½åH®*ˆk*Ð’ßá½Ô©oH@ FÕ—sZY&«CNÛOqÅ瘼QSñ~1‰—ÐkˆyÞ%B}¸ØŠzêKÇ­ë‘[9‰¹äÎ 0Øfáï¬/1Æ*уùûX #J5Í(S™°Ém9äPCùiÄREÞ'$cݔƉŽD3æ)FŸážŸòÓäEÑ$î¦âCA¾*…)Ëåár†9s¥Á«ªàæ«û—”OÙÑfß®^Ôè6´»!›xᮿNhñ¼Ñ 1ZâQQÓwä'£–&jÑÓ‹ø]/<‚[ØÕ± ¤5S®‰³þ½ßÔµ ®ëö·çϯÆ´‰âë¹ísfœóX¥1ÜNX14L„y¯J#5“±ö<úUq£‚÷kî©ù°ã‘mhO ÿ8M©H¨ë¨KB ¤õñˆ{¤»HãtÝ„ÔDÀù‚>C i˜lD¯_ÏxV>;èΔäËçÄ ¾7„޾û§±)AÜŸê=/|'Õêâ ‹¨“Ó«ZrÇ£|7›:Ôw¡q»[Æs܃MÜ7µ<ÒÉ’ü<³–:? ’ÒfÿÆCZDÜÂ^{dB†Ö ×áÏ>æúŠìšè 1vP÷û¾!Cš{Yø·çáµï˜ÁÑ,õê¶ü>nŒsœã„w¬ÓœÓl$Ñ<ÉáÔ‡%õ¾E">/AxWg1xr®C¿³½¥qÃI?™õ»æç>a¢î–[Poß²­©ìB–õöõY¼Þ¬ è@À¶f£ÂãìÂܨéGÐ<¹„Êq8‚H†çnç!(wÞB)U·ƒö¢Ùí1=ÊÑÔÜÛlø-¬ˆÓþ@ûþæ9R,êÊ 9òH_eÀ3Ž=U_¬ Jx›ðô0 ‡e' ÖÃ0‡8­§Ð7‰q*H¨B 9É',Çäñnø¤¢p]†^åAظyÊ©·@°«˜Ö%?·Ç£ª“"EE¥ívpÇÛØàW-DuêP@vÇC†á ¤Tz)©ì—J—Ø]-ëË;†Ë;j¿ñàÀ ÀLúdåâ÷!`N:ã”'Þ˜òßÏ¸ÝøÒ‹Ïgj—’sŠZ#q ß¹ø› .ÛXL=N^ëÍ"ʽ$>ãpƒûäÛLÿpù†“¿!¡š^lá/Bé#³«Š9Z@€ª) k´uµ:SMau¨ Â}𿽣t&L”#Ÿ¯N²¨ü–(ea…E‡Jñ]ª­†pÿ ûV͘ë±cƒ:ÊRr3îÚ'[ÓnXñ:Ù^«BT_ÊEVš “åèc|íÛíðÒÊš–ÿÒ1:³y-æu ó”ÍÜ ¼Ÿc3Ü\å4õ‰Â¦¸]{ú½€|/ñuThz}“rŠ«èn ¢†ùc° ¼º{xK1y‡V,€Ëè[~!Å/Íø/Í«`'Pc°‡´4ÒõrÖ—~­? endstream endobj 444 0 obj << /Length 1471 /Filter /FlateDecode >> stream xÚÝXKo7¾ûWè¸*†oî"MhÒ´(P´¾Õ=¬d=‘´®$ÇŽ}çAîC¢\ ´=H»$‡Ãáð›™ûýõÕ«w^M*Qyí'׫‰RZe'Þ¡›\ßNþ(n´’Ó?¯zõ®ˆâ›šH¹ÞLU±œÎŒ—ðPÅ#üNð;`c>M/ê-ôÜ÷ÒõÞoáÝUÅûv»éLÒr@OnÜHeO¬˜!·‰ËFá†,öh!õ„oŸyx¡‹ÈýÈ]«ûØâš-ëÀ°yš³ìw9€{¿¯%9LŽÑºì‚­ÚñÞ­q÷n÷؉¦7_ˆg1'‹[4îÿ–ÒG;ˆkÐEzqò'·dFì­ù1'ÿ·É·5Ê|æ1Ç$’¶Ð,¢uÍИ«\Ø[/*ÓEÒêoü4€n.Œ(C09¾êÆ_gSƒÕåE4½† àÃ3©H9J=Ž©äÅèºÁC–ÒÂCÖéÜá|uå†É>ö|9ƒ“Øpؾ£Cª  ØM‡ÌÅ|é„Sf䀋 —B».£ÅÚ“SY6¼œÅ=äë$iQưŒû$]yUŒéˆ½æ|ßíj0/ºì¹¬AîäµÀÉa ™JÃJ™ʳ•ÍsŽ3•„+a¼eÙuJV_a÷/À0×zdëŽÒ b¿Í¨„Μœ¦™ÒP‘Ç~þ_øî™šÚé_d’œ’ÀlÔ#ÍåÂ@”&œâ»,ÑÖƒ ÂÎ+¡‚8”0Í"›”µ–™Uu)¼ /p° d¨Î–‹´ëEö¤ÿgÙ£Å(GµŸCÎM¢ ª©ÇTi±AY/UH”ÙaÈÇv  ¨T攜²wØ:Ÿâ»³f ”JrƒC^VÓ²¾Pk^Èùé± _í¯JØþÜš~¹ÑEØë ] ž+kÂ+}Æÿ¡®èR÷~ÅRá«Qi ’ýyH·­¹KÒ¿‹SÝÒÆ;Ö‰ƒ»DñoWG‘tIë_Æ~žÛÆËV(b¬s'n½¸`ÍuËÔŒþãJõ?Ø-ðMÛÕ¹¶¬§wM†¡¾'‡GÖ~ˆø{‚3w¦*Þncì»E˜qn ¾¥¥R4,MI Ôù>î ³wÄq1ÒƒåOH Ué Â}$Em$P¿%œf2#@¤öˆ—ƒ§MŸ`FËZ)lŸÖOë®tWîùCKý—K;QvI™by}¿\>Ø„–ŸÍ>^MˆAÇpc”C±”@¬Få2Å:_(qÆ{Ãíü˜Î„)ebä4šâ .&‘îèeâïËxY%ûèfå²ùP-´TçµÇ>W{Tþ£È¨Î¤«%0oÎ飉-CñKý‘p¶a®K}=a>ÄÓ¹ Ì(†Ÿ+êí62vèå¼–ûRÔâûºÞíèØ¡UB>J1¿Å›Pé¹pƒeájõùrZ@Ãð\䬨÷3™€Bä;œ›LOG‰R=Ý?k²vì_S ëŒoR‰ß~¿ðýÔtxØòÐÛ}Í1 1.N*N6ì<ÎJ|¡$<-yßõ®¿ºÓõc¿ŽC‡ñ1w›¾‹ƒí|ƒyÇ0ÐRÇ›Y)EUEü—¯~¸¾ú‡Ó[ endstream endobj 447 0 obj << /Length 2661 /Filter /FlateDecode >> stream xÚYKÛF¾ûW rY ˆhv³ù àƒmÄØ$ØÝ ‡õ85ÒZµ¤äñä×o=»›'ÞìaFý¨®®®®úªªùîþÕëÎÝÙ,-K[ÜÝoîš*­Êú®¨mZ˜òî~}÷Ïäíé´Xæ&é&9®w_¡S¹äíâ_÷?ór—Vuepyv·tMZÇ+ßo[\óÿº‘—m =ôðï€ý"ù²ÈmÒ 00ÂßgŽÆ—´œóéX‘ñ<Š&È­óäÞût·mÜ«ß)ð<£†Ô"ÊÔ¶Ol >È1ÿ]Ʀ¦.@(0+Bܯi’Ÿ6 'Þ2Å¢qL­ÛåMr&ðd—À¹.ö†#6ÎB(Ú¦ QIeIƒ½,&ÞS®Dàî¶ýñËïyÑp‚öü(2âë•n¿ÅùÇ-º3ö7dw¤SÏ „Ü‘ÐñoL/ʪ¬Þ`¿™XQ_ȘXëd‹ÖÓu 'G•b”;~}Í &úÈÎü;ˆÇÏd‰sÞB ” A~#θ¢CÓéb  9ñEjÇ ·Îß\'Q¦2ErïçsVýá$Hgž±uï†[ñ/ø_W|lÖ çHžôtäIöKòÛž®Ù?ó\+«"Q±û÷iF6Û”ÉÛvÏ7)#Uò•Ð)CÞRˆ)x!ÿ{:”²-ò†Ì6ª+÷ ¨HÛ€m‹7£2Äç“JŒƒƒ-õ:²u©)›–a;Õäé-Sá b7ç´;üePEO0°oÅ@÷‚=èõ6Kþq 4~1 )c|Õ>ŽËn+Åñ¡›†—1>Là¶“û»q¢‰)‘1H’šÕtçø«aûƒZÝÁ+dù×VÍœΚh"N)/Ðw¹‹Ÿä^ Sq®FqgvjÊÜãö%þa\56$W‚ÿ(ño€ gì#l˜¶‡ÎN’STÄþpúÀˆêC'GK^Ô[zõåÜÙ«¤/d|NRÇ!äD”nåPÐg5ßøx›”i 5C¦á0ï–IžÖ•Sš™¤&O‹¦Žx|E·°dÝ8£Ì“s~»fºµŒÓ”ÁI4Z\O–çL¸@hw_¥¨(© ðÁŽÙ©ÒЉ®W~#פûjê´¨Šk̈óO—¡]Š=¹,²Ð™ÕDc`-ÐJŠHY”xŽÚá²ÏQ=(ã|+“qŒ€á_ZÅÿö¸„ÿÓ|’òŒO¦a ¢èÆ%Èu’|5Œ¯v ¾œNj»ÙŠ¢æûŸB´¥ù3ÊÏ%Û‡J±èáû›EHµTôyÖò×AÔ;¹åUÇærÙ…Ž 9AA”§Ê™Ö°˜à_…›°8k€²‘êÔDŸAÍvœàŸÀF.>ÞÑ9§Ç{I ¶ÅIØdε”HòØz¼²ŒH¡¦;®ã 8Ï…gÐÅB¼,yKÄ| c¿…Êe™—„vQùŠ–C}i®IME<†­|r -§^t|¶LC Þ“³Œ¼–Ü]öÚÎsÄY]þÅœÍ=xÒ\TïÇpœmä–4É5·;»´¨ÆÏÈiL0ØÈa}}Ë%aQyÐï‡fàØeZçWpvSQ$éÉáoñ¾HËÜ(2ßÇKœœCânãÛx$(è>Ó\;¼Á…ØÝ Ç·aÉ×32†JÎiNKLDÀ¦—„€dÙ\I0ª’Åç! Ý(uª_Äe‚fÁ0ÅÅ7+b¢C~ùQÞÿ \„’@æ {e®È½U`»å ™”ßì}‡ÈG‘èÅ¥àŒwëO“*öjK5Í“S·¡bÀ·:ùdr§|ð(¹$A‡ÄúŽ—1å­Ñ]? ½èi\ÄoÄIpõ᪽µÈÚ¤¦j¼ Ÿ}Æ5)mè´Øðù3£Æ}ÃÁ?‹ÓT¾èæ·Ÿ8©F/óÕÅMY‚i¾‚Œç_FÈþ䨓ˆóBàË+C×¹ÁÍ-^ÔÖ1$ï$%¡œ¨ÆpeTn.émeZ²ªgbE4M£¼æ¼•ÍUÊTº‰Š°¯ñ–¡Zb[Ó6ê|ÑO‰=¬ €¥ÿRxæ ü*L¬zÊ_¡;z9¬À „ãøâ77ärjɬ>“pÝ_ômµäâpÓ††4º šgÕ•„»0>›Ú̦5>œ@¹äUW—8÷êÇûWÿûÿŠC endstream endobj 450 0 obj << /Length 3023 /Filter /FlateDecode >> stream xÚ­ZIoãȾ÷¯ðQZV—â9tÝ@I3äÉ–hKiItH«æÇç­UEж‘É$±ö·Õ÷ê·ï¾ûTÛ›&k*[ÝÜÞß4uVWþ¦*ë̺òævwó÷ÕvmVOðùŸGøtëÜþé»O>Yf}ÖÕMÎ úGYqèÏëõåêû|m×¶^í±³XÚ§ØÛŽ<;©›‡¾d¸¤øèæý=ï÷´ÄM˜2¾Érã”<䧇Ͽ…Ÿý[ülÛ#L;ò)íÎ5«a y†Z!¨ã7¶‘ô3ò¨d·G™…?ä”äŠý;<‰†ÆŒ vPZ7•ë8½ñDiG–qÞaOM[Ø}é’~<¡$PG%â‘,„­¶ëïprǪBE£•-×Ô¢sîÖ›²Xý“(Áùï£œÌ ™¡y$}<ü™ÏQÁôcBäé±eÝROzŸ`ñxBr/8’–Ê`ÿÅTP·{™)º%nÛ]ìx"ÚèÑñŸuÂ‹Šªi‡”Ùir%óïÙò*“^Ú‚®àÆ@—~±&¿6R|2j£¤øïá.˜Zî#tvg´Í'lþ’›‚-f䫃ÌDÊÚˆQ ½TÞÐf¬1S²´;I²}R6«gVº™Àˆî8&[uÉqµís@E£Â ì\ÁÊ=Ýdš­wš['#, J€ìXÓË·êVa/òÌ>¯U¶aMü¯*Û"eECº3 Àº¬çŠCN…ÍÂ7«mâ"ô9ªü»E½ ‘V³F¶¸¨£hrâiß«œd!ð«:=Dy§@ÓÉQ¶ÎÊú >ÀÈ) ŽÜE´\ûPÛ²Û¡çÇ:©ŒŸÇã4Ûn¥—Â![Ï)àÜ<`àÞE-½gî¢ÇÚßÁ>ÅåÆúXUƒÇ³Ö8É–Ê{©Ä„r„©E­²QF –4Äᘦâª"5œø+SIZÀ볺qoa\\óà‰jíð(&Å7¿pY1ϧH¨Tw£íðsàsRð• ðùº”qþ#EX”T7´æGåÅè0´ìW^…]\ö[ªh¥Xí !a;ôØÂ-ç¥5H7¯ÞFZ_Vo‰»ãò&=³Z<²ôþ·…bMöÃÒ»K›Ùƾf]ï ±¡ ûâ5> ±´£o¥‚~»('ñt¼… .·uD³ðb—åÞNuª…PçÍÌ÷:/ÅO ƒ?GM*ÌÈx¨a<ÅvÏTÙ†·ÜË¿Oü¶†¸ƒCç‘•g™rtÇt#ô¥ÌĬ½Y*ÓK6èäu M¤ëv¸S˜Äš÷1g×À²[ÊRÛAkA–¸Ù=Pè¹õœfþØ€ŽÉÀ=ÿ†8šžñ Ê©ç“^È–”ˆ«×Rë²±Òi̬=üzR3¬ÓU®¿£@½LßsâìB¦*)A…Éã‚3‰˜¡l`Ãæ‹I ¥«ªßv…kg^ͦÐĨavpU¥ðÿ¥Q•±)î)»£M'*—eì?ß3i‰™4ˉ&ˆæ÷Jô _ÕaVÌgÞááþapÖoâ/®ÿ)0+§Ê²‹6”¡Á¤[}1¨o¶%sœü !‡Èí‰ûÓPŠ`(šÏ»YK‡~Ï•E™ä£Çêú‡ &Ú5ðl‹ÕOú›¾ª^ÀxXiMæsŸ¾. ×ß'÷0ýTLÆs%Zþõ —¼¿ÈôŽOu½D¡ÎĺîLª;¤àºÿȉ©è¡9EÙ¼Nþ¿"ïàå€SþËÀ*ÕVý꯽LjG~xTUìeÛ=%²&ÍÁæ°«mXþOÿ£_ éS‚é\àw‰ÅŦ»jááQÆì¥ÿ6”¤ÀÆø·^߆+óCÁ³ùñ JC–«·ÅTx&T›¾ggY#åE+ƒÁ£Éëÿ«W)üöê,bÙNÆ«ãÕ5°hQdbÄ×8öîãí»ÿz!+ó endstream endobj 453 0 obj << /Length 2274 /Filter /FlateDecode >> stream xÚ­YIÛF¾ûW>Q€E³Š{€#A2ƒ™KúçP¦¨n%¢(RÜíùóóÖbQb·äÐ"YÛ«zË÷¾zýãÝ«·?gõªŽë«»Ýʤi\ÕéªÈËØ¦ùên»ú=úßú»½ý¹ Ç%q¹J¸û×Ýz“E4®Mt^Û*z:­7¶ˆÚï¡Ápß^Zø9ξý¼Ë?Ãßžžy¹öæQsîµe$S~ƒï÷IžDz98}ä×Îëa'e´E ð×´[îÛŠ$\·mp‰ü=­«,z#ÊŒzõ\|(hÎe±¯¤agÞè^ä6º®ÃuA"(Tµ1&®sѨñiÊjÀQü‰ zD9r¶Í/r²ÔFy¬ÝrÃ/<‡Ä§×(¼“Î:Ô¾h#¬X8ˆÈÂåÜ'‡;EmÄlã™3lÈÊ“ÇuöåžPƒÍ–4†ç¨Ëøÿ¶²—‰úãæwyäÛ‡ùI¸G­ K\FV²AÃeÎt¤…+,ì©$AjÈ:pÐAöæe‘Hmh5vq¼=m}ÉÂ^´XG¶ã?¥è;uš‚{ÄŽCû”xsCãŽ6S$tø~×£Rù£ÃÍr¤´ ÓÂ{²‡‰î¹íþ Cd` Pƒ;‘v)ìhq>vÇÀc|€ú¶oð‡Œ˜Õ¤=ØðŸ™¶iiX¨ò‚•B‚ëÚÛèù#ùü7Ù÷pßÔì:\þ<ÈØ† øoxýOÐýC«ìß¼á#G&4pj⪬a¿ÐfÅEÞ[“ÜšßÌm J½^wlu# 5þ‘Gž†Éžè "L} xìwh°W¼·c ¡Sü¢®@œÌ·Áj“¸VMú‡' ` Cÿ¦`̃û„@¸¢„]¢}^=¬ó‘ ù!ðΠOmí@ž:LƆøZ‹afê;Ü|žDÍdi99ÝÊ( ­8Eq»Zb+^öÛ”æ ×ƒŽôâ®çJîuqÏ Ð`Jh/øìÁ?À¬NGÍ3Ëa@×Ð@a©!Gr¬¢Ò:Jó:Î*«Z¢‘­0^8´·šÝè´Yœ¿OLŽbï't¥<‚ûÐ|ÃNHÔ&Ë2 Üq"#M+·ØòA=èp*ï¸ó¹LIe6ÀÆ&eôÞ¤ÙƒÛNî×ó¸¿p‹x½66^BosÁ ·ï™‘8æ*£×ÏAñ¸àÌñ»½“šþ8Ÿî‰ SÞS°Ïdâ32õè½0æ´D8°Yˆœ'jú—ÏUsrH‡‘÷~w{:ægϳ€t:Ž#†ÐdÐ=>qc/XÁÐ¥ >ª·¤,?Àw¾6hö' “1¤qB®ƒæ%ù–Éš¸ºö¨–¥nrv’tµ±p6SñÙ~€‰Iy_=È B ³Œv‰ÚfNd®·¬â*÷q; ‘ÖD°ó ›hÁ-³,®R?YS§ìlÔLß‚yëÃûIU.`Cüp!‰tpîÆéîŠ@@xuÛI®ã‡§|h3Œ˜*¥Hö)¬å ÉkÖ½I«¸°Õܳ 3œ.Š+p¡ :æi`ë'Ž”G¡¡‰ {’ob% [ÄDàæ é¸X\3@Á»qBÿC6~•puž†K€QHÞ§å=óè)<ó00öqj¯víDÓǧ¥xlz @ &é½'ó™7¡¼ª2äÓ[¾…?ˆkÓºx9HjoÚ‘’ÿY)þÍŠ7TZÓ€„nåÞDƒ[Ù·p òÏkN” ëŽr§ÙH$vg`eHîñÁA!zààK 6][S˜NÜ3•õ®‘­L§Ya1(a‰ÔBB)+0ÿ¦àꘌޑŽaÇÓÃm8'„2UR]‘Sð¤‰Å©16>¨Î2F…·ÌÈíd”Fðï¢d òô‘0Y[8~H$DžíÄæÂ§Y\f…Nbÿ ês¤Y|AÈBEÜ8“»5<?z»“Þ0 Eu<Ëwü Ý)SÇ9O Gב£#!)sÕäíi€â$1W¡²æ+›£8¹9¬Mã¬öWŦïæáYÄVDS ÁWL„Ú$C`ð=D 4›0Ò¹å£"ÿOìÑËÐEü¦»'ÎhP1jV{ñš|:Õ^Q!~v•>ø S ²ìihÓ“#uÓZr$ÈíÌJûb« ¡4ÒÇýìªO 2¥«¯? ]&ˆ‚tm˜ªRëñf«•Vò½ã—Gú+!2÷¸H%äNј›¢Ùû¢É$6pð  áó&ÀÛ›fW½XÓ°N}uP®³ÄMPjˆ¨¯å¦ïØ6hq´MÍAï>ø3Fn¦½µüŽQeë¹KÔ\Ò`Ï>ó—ࣾaþ4|˾o4[•3-Í6'VÚ‚D¼w j«RýýNÅ/ý±H ©œà ÏÄež~N‚}FL.üäåÚD]ƨ-‹/¶%Vû²¼D⃠(ª¹æ"€­ÔM{ƒá·„ºv!¡À÷­zŸ£RÓ/w§|Íþ9NØfÛ ‘LãG$„ð!Ý}ô»[i·…/lÕêÓg熥”ü‚'5)¹5x H‚¢…R-¼œœfõJ7¼|ëxN(5-x/˜¤b\¤‘éÄsËŠ÷ÅK!ïƒVKaÕ³Nä¾èI7¾Üµ;{+ôô. ݾڎläÞÏÿ©›•Æ®#ß—§wñ¥(­+ŒXºé÷Þ‹HæŠp\i0e ÚÅËnn㬒[@Ua竟î^ýÅ/¯( endstream endobj 456 0 obj << /Length 1540 /Filter /FlateDecode >> stream xÚuW]sÚ:}ï¯àÑÌ×’%Ù¾o$MÚK“ÜÞ„™Î¶8ÀljCÓ4þî—l¾ò€ÖîJ:çì®8¿{eLO›0IÕ?ö²$L\Ú³IÚØôÆÓ޷༯‚Åߢ/2’‰;ô1wDØ“7ð#êàûñmðz³KD™R‘ÏLÅUŠ<-V•S6…$°û”%øFÒú˜ù,vx‡^G¼/¥¢¼ ›Â#ÈÄ_ \c}œrNx¼@°ã„AÇïjí[4’óg!ª€o`5ôÖùÖwÿB¬>ÉÔ}gíõY0ßÇá.»! §–êýÔ­íoh²ãx[¡4¨|V¯É€ÃE¾î/²rõÉóS'¢b½$ƒ·ÚÁøà8ÇÅŸ%›@74‘B0_õWyÙMߊŸ?> stream xÚ31Ö3µT0P04W0#S#…C®B. ‚‘)T&9—ËÉ“K?\Á’Kß(Ì¥ïé«PRTšÊ¥ïà¬`È¥ï¢m¨`Ëåé¢`ÇP„ÿþ7Ô3`‡v(P†ËÕ“+ L5* endstream endobj 470 0 obj << /Length 149 /Filter /FlateDecode >> stream xÚ31Ô35R0P0Bc3cs…C®B.c46K$çr9yré‡+pé{E¹ô=}JŠJS¹ôœ ¹ô]¢  b¹<]ä00üÿÃÀøÿûÿÿ üÿÿÿÿÿýÿÿ@¸þÿÿ0üÿÿÿ?Ä`d=0s@f‚ÌÙ² d'Èn.WO®@.Æsud endstream endobj 333 0 obj << /Type /ObjStm /N 100 /First 895 /Length 3153 /Filter /FlateDecode >> stream xÚí[[[·~ׯàcó¢ÃËðVj»i4MàHQcd­l«Ý‹+i÷ß÷›!%Q{¤ÝcÝ hj[9ÎåãpH;g”VΑÊ_^Ykñ”Óü•³ü­•÷F9Ò*„Œç¬b <;•¼Ã·U™ÒÄQPFó òÊN”•±–‡&eœ_ЗÐâ­2¹£CDÍÊE4™[ü„0q$fQb€ÔĨÙ•4ˆ›˜x8`sb𤒆ù hI!à0Y8—eJðÕ„<©Dp5ù8z6$FiÉ –ƒð˜8k` ™=@!ËsBìL3Й •‘ÃYfØŒŽ†É#›ç mFLal€¤¹–$‚»¸uÆf6)BM 8‡?“/&ÝOÿþ´Pݳ‹I÷êöf³¸Ù¬7‹uùfÒ½Y¬oïVóÅZV¡4}·¸\Î^Þ~Vo¹!@ö˜íÅ,V “Ð}ýµ°µZÌ6Ëۛ׳ÍBýîõï­ðPCÖ¸¯ÀîöòdßOËÍzÞ¨?­fŸ>.çkõýÝæÓÝ]?¬n/ïæ‹÷ÒTOõWu®[núj;}Ñîè5é~¼{·‘Gn4“kîål½`ÕýyqõËb³œÏ&Ýoæ·—Ë›‡ªFo»o_½bêK´&n½h¦ÙŽ( w㻟—7¸Y/÷ݯ—ïß/`-¶ë[À¤»^ÞÜ­UÝ¿în7‹«Åû ‚u—·Ð½^vV³_Ýl~·Ytóåj~wýþjñ¹Û,¯.Ýõl¾º½éÞ­ ÁÙ|Gt—KL±^®»éÍíærñ¾[aînï]]Ívïn>ÌVw×W³»MwûáöfñÏn>c~ëO³ùâbkH1Ï‹°Gµß ÎQµV%ÔÖzä()uŒîþöý»,æeô·×µ°„·ðãüÇÅfè~xý |³ø¼Q‡î»N2}pæsÀ¹WªQd/ü¡R¥ÖŒ“›zr“}¹÷²¶þ:[îØ—Û“»¶ÕwÌZ‡Ð6Ž’Ûë¾Üi˜ÜÞ|ÜgË×ǃ·ÿMòõýîý3ÈwSö~9vïm3Ò«´…7gZµŽȧ|ÎU9ôC‹ÏãTþ25[=:}„û,lÕÁ¢'}Dåñ4¤¾>aœ>m¨<M‘Øúq;VìÃ* „U´ƒÓ)ÿ@:å­tÊ´éÔßgŸÞ¿FÚñn¶Y?iJ¦dñ7š’X‡ínú`J†Ókð£žúgüˆRgËÔ~ÉŽ“éhî{¶|ýí5ùgï4(Ú=õ çè“ûéVJO„Ói¢tD›v j#ühÙGU¶ÿ›¡üñ0œÓ±0œóo3 ÏNpŽ„a¾°•‘î]Ûð…ÞpòeÔÙ!¥Ñ»]x§BM³fw+ùlC_c§ñ‰„ý@Ë6Ûu*ëGBÐè ’tîëÇéùèYì\YM…æyPxÒ'í¡íÞqr칄ŒïkìÆi|â\2dݵˆÜß`­[êëFz³¹Vkjô<~ƒuoUwgëð“ð9–°¦o‰aI.Yû¸%†àºU³ñrc‰ñË×öÁlݳ«Ùn˜«|¶n}0Û0N·"­n`>±]l){4\uÝ8]Ìv$˜d뭒Ǘ쬟ò†\/s'gGâz@rtBûãïr¶–±¯¥:-O¬ä!ŸÈ“ZT·»ãã5é¾)†H‰\æžØÄZõ[•O8ÿIóþ/L4ð¦“ÈCöäñ^ëxà¯M'uø¢ìñ\¹û¿6DÛ‰­åàB£ÉpÆoýÞõt¨÷æçÛþxÀ8~)ó$:ôO„žž?Ÿy#MIç¦NʨG—§Q…ˆO“ÖÓÀï• ô B™ÒÒù4åX¡§üâDB5ÜrYX€„_ˆ1Ì:jûàО(LÍÅä­Ñàšøf€Ëh§¶ÖCâ9{%†¤l§ò–X–ºOþh}HiŒK»a_:xëúuº§û°ç`èa[Ô ä¥|`³ìÎÒÛÌNª”>ä©W)ò[lÏ.‘ p»¾1eåÙ”˜éâá«=·»Ú‹¡àû»Ùfµäõ0ÕÆÊÅ þîë…ꥬeø¥5þç-€Ý,0^$÷áÿí5ÖåKu!kã›åj½yõq¶R.Oº¿Ìš‡Ÿ——›ky#JÖèîr_’&eîkyIj{ßHnŠ|ðø%ãÁ-¢ËÝÌå]Ð@|v ý­“Ué½çUy­Ô2G¬•RF‡ÅTK/ë©–IÆöʈ½ ýMêWÌ ´”í¨ °ê—I³lýÒX´~%c ]-£—OCăeJ2Ç€²ÒWÞ»9dÆR&±¥1òP‚M1lm2¾|=ô¤e@†¥|eQ¸ž* iµÂát|å#£´Ö[vý–;‹R-š²µ+½àÐÏešR÷ày¿6¤a|ý 6€©Ç[·óí[âýs ‚£¤–ß9ÊÐãÀS¡”…BTµlòZ6B–ÙbNpNðAœPØ ©:$šÄ\2ÞT+e(|sBâ]”ߤd«™Aæu²¬4#‚RäA²ê˜ij^Dà4§2•¬á »†¥G×]k2’¸Ð/·Öwb¢RÚtüÎð\«Q€×`HL¤%!0¼“S µž$»(š>õ r—‘3Ib!·zôˆVd·bf´9ÞþB ¼WBwX™W4lN_R˜6«ìuKhåœÆì6Ìã_%ó(e»u)[ž§rš`ØZÉg.‘Dñ+¿¼¹gGÛJìYĽTÚ:Hì¶Ð”õÉÉê/$Z$¡"yB6M œpEm‹$˜æ„ëv$_Ì.ÔÔÎK7ñ&ÉžlÊCËQaR|€,ø=m}fV¬rfH5®ÁcšÛ]àdÒhÊD¨g%§Ì”VT§™½¸”œaØDÏ-²ú’娀ÐG¶„',¦@Ã1‰ ‹x,®Ì·j3¯c <Îy™9Še›„b4T©}ÔÌ©ÎÌm $N™}–EŠ¥Êy2÷€9é-’&Y‘ߌbjÏæ¸ä°M$÷Mhò±ìlÍ\ÓŽgÑ°Ãø@À﯋S‘ï Ú¥ ;ˆ—GK$1°KŸå´c>E'~Õ= â¼Ð'Ö”CI²»D&‹'Ø"°j=°­ÛðSʽUH¤·PÈ4G ¥$~¦Ä’RŒÕ®l¨]….(›“$°%dGÀj'ÁQRjøß„gÈ2@(_)£ñ‚#èѲ<¼œ| [BtJœr¥ÌZ:Ír;'½%ˆž(«µ{)Ô¹B-+E*ÛÛ›)¬ì`eoĦ¦ì7Zj]æÒ²x¥,Û^ç™~Ëí!I‡”•gS–¹ZšÒIRYí$À‹Îž£opÁË 4r$(t.‰=,Û@’EËë0å†SÙöd|AÎNÅCu†B)eÎ5›– [lk×Ö*­N¥Eþ¿ûm÷Tí½kkÇpkñ\ñPENcágÍÎc=n;:‰d+Iì!tƒeÁœq(ÃRUü€âÙG2ãBs&“§í¡lûÞâþPVßaieÑíeX€vÈ¡ ³t3ûcÀJïX1”þÿùÕ?¼EK€,YªlImêÝ«×l“º·§³²å¹’9Ù™ÿ>×m¹ós–›*ÉD²jORû]¸L³¯µTíŽå›£ˆô5⻓·ûy{<¬æaÓ•K¤¢–Ä…zÕVâgÙ»@Ww´FOd-*› J›Œ­ÜËe„¼òß]6ØÝô~{BØ+z¿Ö˜@˜Uo4õÆ{ÒzàS»ç‘Ú›”u¡prÛáÊÖ[ÒôV$5'é=&Ž¡žÏÔÿ»†OT endstream endobj 481 0 obj << /Length1 2177 /Length2 17453 /Length3 0 /Length 18747 /Filter /FlateDecode >> stream xÚŒ÷pjÛ 'il+¶mÛ¶m›í4f“Æ¶ÑØhl“½_t¿ßÿÏœ3™IÖuûºñ¬ )¡‚2­ ‰½‘©˜½ -#@XVHƒ‘ÀÀÀLÇÀÀMJªbébcú94©š©“³¥½×?,„L ]>e"†.Ÿ†²öv)W#3€‘‹‘‹ÀÄÀÀùC{'.€ˆ¡›¥ @– eogê M*lïàédináò™ç?Æ”FNNvš¿Ý‚¶¦N–ƆvYC SÛόƆ6e{cKSÏÿ AÁcáââÀEOïîîNghëLgïdÎGIp·t±(™:›:¹™šþ¢ 3´5ý75:hR€Š…¥ó¿Êöf.î†N¦€O¥±©ó§‹«‰©à3;@YR ï`j÷/c™ÐþÝ#ãÃýÛû¯@–v;ÛÛ:ÚyZÚ™Ì,mLòb2t..4C;“¿ mœí?ý Ý -m > þ.Ý &¨0üdøo~ÎÆN–.ÎtΖ6q¤ÿ+Ìg›EíL„ímmMí\œ¡ÿªOÄÒÉÔø³ïžôÿ®µ½»÷™¥‰Ù_4L\èUí,]M%Eþmó)‚þ#37u°200°³qL¦Æô%Pñt0ý[Éø—ø“ƒ¯·ƒ½À쓆©¯¥™éçhogC7S€‹“«©¯÷?ÿ‹ &–Æ.#SsK;è?Ñ?ŦfÿŸów²ôh3|®#€á¯Ÿÿ~ÒýÜ0{;Ï?æ˜^SLFJLžúß”ÿ«²÷xÓ²²h™XŒŒl,öϾÿGÁÐòßuüÃWÒÎÌÀù¯r?ûôŸ’Ýþ½ÿ>JÀÿÆ’³ÿÜ\SÅŸE×a`e0þüÅøÿyÝÿvùÿ·åEù]ôÿ[‘˜«ÍßzŠüÿè m-m<ÿmñ¹¹®.ŸW kÿy vÿ×TÝô_§+docòu’.†Ÿ· hgnóß6Z:‹Yz˜š(Xº[ük]þ%WýëÐl,íLì-ÿzZ´Œ ÿG÷y]ÆÖŸÏ‡óçNþ­2ý<žÿM)jgloòו1}NØÐÉÉÐúsÈŸˆàÍøyŽ&¦o1€žÎÎÞåÓðIÎ`fïý×DÙXô‚‰þ…Øô€^äâЋþ±3èÅþ F½øÄ  —üƒØô2ÐgÙ?è3¦üÇgÅ?ˆ @¯ô}ÆTþƒXô*ÐgLõÿ"ÎOdø}r0úƒ>óÿýÕoz“ÀÏü¦ÿ…Ÿí¤ÿרÿkÀôYÄç -þáôY¦ÙøÂìð/¥åŸÌA·äøKoïêôpŸ&æÿ€ŸDÿ™ìsZ–ÿ€ŸT­ÿ?¹Úü~’µýGeŸdíþdþtµûܰè?K·ÿ/dùt¶ÿõg©ÔŸÁ>¿;ìlLÍþ4ˆ…ñßR§ÿéËg'>OÝþO¯Ù>i~>¸Î/þŸŸlÿÑ ÆO¶Î*þT:>ŠÔŸaÿ$ù|Zè],œLÿÑÜÏ]ÜíÿáðÉÙõð³]nÿÕ§ù?¢3}Æóüü¤ïõ7üŸó3vuú¤ëò÷ù¹ÿÁ㙚z˜C//Øs[Õw<Öâ¸ÓîOòΑQÒz/;uº>ÃC¤PVgn:Ý ¦Œô!®íŠRÜ ¬¼yŸ¶6@„µ%)¶¿ø¼ê'(Íì·C/M£Nž ÖàAáÒªø¼9ú¨}µþÒ Ü-EšçèʯP€òèÞ/îQ?P¶:º°¯xPÍ& óZ6K£­óµøi¾Qö<&¸ -$ò•¯»û9äÜ©©jhß³æ"o­-¦Ø§y¯õ &ç,,-L¼/wÈã3dÞBGߤ0½K~Doò.æ°GÄ ¯÷'ÎK«aù)`:—ÒòfÈt£ôäºg:Ù¨OÉÈÈ ê!½CHKÄÍ’ªˆGJô³q-ýŸÞˆñ”5€M¨;{ñ{Î.T»©|ã0¹c'mñïyQvº²ýØ^ŸÀéË gÄeÀRÌ€6ˆWääÑg'”ó}E•Fœc ½µ>òé~<ÐZ}± óùáb«³ÁÕãÁ¡0ùb¤Ðp”tyþVÔo1¢ÝXƒz‡4¨ßž;íÂôΜÔÄþ;˜F’ Cþ¼<›cX*m“aÕÖWD}ZñÙDãŒwf€~î-»ë¼ŒUñùŒåÜT)J"Fw.’.ÝÁ_z—?ëëÇE—ý1W³*¶k¡H’–¶mºý°aãÜÚÿK*d£Í-Ëpâ<ú¾‹ zFH…»Œ!§9²d¯£Å¶b@Ædz•[Õ eÈ¥®s­£ÑÛtõPñk¼éE^sÊÓ˜–´¿‚ÄU‚“X&σ¨TAÝK7ÎÖ œßii€Ú\#¤Œµþ ¤Õ\ô˻¦›ôrA§©Ž+dºÌ•¢c,Z¢¤àBöɧa„þ9Ù‰˜H3§8±Z{Ñ“€›uäˆK (®Wy·Ve&wŽ\-¬¼4=Ç3Ñä b©„à {×?QyÎ÷l —³o#îÜT3ûá6¬0Ý0bbpBê{ÏŒ!Êø„ï …LTg8à¿& p¢9¸4âÛ¾^Û¨–cC´KÜòk»—ƒ`ïŒC‘icÍ”ævmÔÀ:›H˜ŠýH%Go¡r>8‚›þªbÂùKÈp«0 10dE;vÜ0ä›ycû«„ÎQ Ã1û9¾¡Ò”EÆ« †ñ¡­ûS;q»Ý˜Ó6‰OÔÇŒ ò¹ Dr’î´w¹F±ÁÇ3ËxŠ;JSÅÞªÂ#“ЉùZƒû‘uXM ÌW¹Šb3+îX~âx"j¶³r¼>sƒ8ï§;$ª§‹óT¬eÅ=x¦í/dä%v•X:uºŠQÁA\Gð;ë­}l6Xv Fœ¡¶ºW¿iNéWJŠt4Iذµ©¿ªŠF¶DËæËŸQÀMÕщ¼nËTï”aêÜQm ¬)²Å-¬DõT]ÕÝxg+'<5Ñ“)"±Ñõ4í27fVÔÉ g£]ÝcÀ÷§¹#ÙD }Ä_Ê7]µV|·–‰‚ GL$D© hVݺnt½.­h¥P—‰Ö¢½š6Õ?|MÂèhM¥`ë‡î„ãS üð”Jï¢7ŠÀYÙUKy¢j„áÀ®‰4ù<’uä‡ÿ¼³æ;²Ìîè[>CBEñ¨‰>5juíãÇù:S›8  I¿TkuÎöêIyÝ4†óo‡ÇŸƒ-ä1¶)¼œjÂ÷R–h6ùR+SšýmÜe ‡@dMwZ#oØÆü×—ÑNëD]MÊP§å;0òË6¾Í-v‰Ü¼vàþXˆòþ&J$'è¶¦ÙØú\ñ‘…j¢‚/Z~™Â‡©ÐQªt p¢QÂíÛ̹`¾ ¦vßú‹wDQ*Ÿ¾ ¿j{ŒOxTÙõ ;7«X¶Ñ!ÞZ>ª/Òÿ¶Ü§ â—6XÉÉïG\~Ãùð=6çžìN¨C¨H(ìŒæ[¨¨è=}yº,]µµãgL¦ {ØÏ{A+ÕFL®8€û {èbÅÉ< »î¹ãõ#ø€f›_ëªYààY UAÈ’ïfoú´èòlÕ-\Ml^GкÖ>­© l 1‹”$ôò’ ¼{/BN[Ñ­˜“Ä«ý#‚eñÁö+ÀŽƒO$ûdÓHwh9âƒçrB•Â|ÿnéiƒ¢Ð@ž)5ªõ­sÕˈŒafìŽSE­Æ»£êQ_â2>J/L»ËÅFhhg.5ï•%Zîw`¯ç9½•¯›×4·˜Y1iš6ƒœÁsfó¼37–øN RÀ¹¹ŽÃ®ó‚ìrÅZµ†Å“ÌKûs²k© £¡oÁG[)c»–õ«d JpY¶Só¬¢E•…'᮵ژòp{˜$Ì£ŠÅ°¡JÒêºýéÈׇàXŠ*XugUÉGÞKÝç¹tDYŸ9°Œ©GÍ2%ørqÏ„f ÄM¹¸]Üo"t›'H€®õp‡tú#ðå•à%/ïÔ£Ó@mOÏÿžjßÖãŽÂô¡÷šWgp´†ðé=ï§PSŽGÀtëŒÜBºliMgCt%òRñ²%´CìVZåÓe)lžßÞ:ãMLßb\·¿ MµÞ[ѾY6BÃd‰ÏU•u‡G{ã->Ÿ%L8xxS­)@¯;¸>+[n¶W ½Æù(Û Z[H,¬kƒF†ô—­*nVÇJƒi@I ½Ç6³4ñ®ïF¤K»@»7ú-$ÍL•‹å=*¦.Kܪõ&ñ9¸>!ܼ=ŒÀ Íeg$þ,ÓÖï‡<äthŪ×Ïù¥LNI­^ á°’Ýmë:Þ®Žôl{ªEs0ÅuØeÁÿþ*h8Ë`KÔ.#‘º‹w¾`É#˜îë÷ï`øuw8f˜#îžž>¨ùÞ'¡ª~è<6Ýã†ï²¿ñÀÒ`º.œW[—¶ôg:ú_&çùÄ&£úS#ÝÃF¬rß‘°AŸ«²ÙÐHsŒ¾ù5ÆÃ¤FŽÉ€Á}1™H#7\Vf̸ž2 ô‰Á¸Â9ëYaŸ„x6¸ÇÓ$7ùA _%úí( &tÐà¼YQ/WH[ÇÀ)²bDdJ•Y½Š†þ6R¡¼@¨FÈ#Š ­çkt?^w{©ßö!Á c9I¢˜sæ_…¶| Ÿrj0ØÑq‚Šá„,ÿ¹¥ÅóäF]6 ^-#¼×ž2I]‚·Ê‡ú ÷É3ŠÎCxvy0—,°[µ$ÅwYGr;܉ {ôyCÊ6»g›ë`U„»tA‘yÔK÷í 5FC Ö€~õ¹³Ä‚Ó Šc !.j§E Y„L&pÜGþn¤"/ÑÍðdKy?•›]•tÜšûË® ¬Á…‹u¡/”hß>Bc€N¸„Üà‘XúɹbM˜ÏšçÔ¥«ß¾"’E¹u·‹Ä\a0Ú1²´zÛd6Çï’dÿ>f”Xà¤yÍW½¥Ús¹e ß4<_˜ù$º›uËr4ÃÂÙ`^`÷ b~Ürl¿ñ,­/,€‹‹ÆK9Ä >î øèb¿ð,cú<‰£©rjüØqR!Ûã&ZöiXôå ¦Ë·Pªß¢ÉCöŽøÜÝáóíSôH±ml'Ú%°2ˆ ˆö-½8Í*°×k¥ùbÉu|¼ˆ¿—8®š"IâsrMö£Èˆfì“]\µæ'Æ_DU‡q1Æt6âQÜE?n+ª—ÏØÚÊÕc`BQ9 àÎëy`I=lȾâC/ÜV"^ø Yìðn‰5l1é´êÒìùÏÕ 8™R”ÀÛˆR Dj²¿.Ǭ,ÂÔ:(ó“¶XúŒE=¹øiC> ñ<á°Ëò>eͲc8LÛ5bN#6Í”¹3±l .†ô˜Ð]ˆøiSV?A˜³ç3½­‹“Ñ;Èõ‘"¤à-sWv¸$À§rGc:Àž >õùºËf !ÑyCMU|g 3*Mݵ"ÔÚà‰*<€ ¼÷ò\°ùEùñFTX½º“ÎG™Ú êYWµµŸM¿€\f*2Iõ¥ ÈÞ=ôJÚâÂâAª}¸¼[ {"€Ê³ï»B,ÍÙ;—AðUYa¿æ]½ÜyïqŒP÷n(x²Õĺá=4Ý¥3!}†=`àûøÁ½‰Ò×ÜL²÷[o$F3‹Oìe-¹8#—8Yü'FªU к*Ù¤rEÂI:Ntyšrå„y—ÎnKßKdúéú (µ]*áHq‹/õÀøÈm~Ú¥‰ðøB>÷ý)¾xWÍ÷€ÂÁ-bÁ†DÌüÒúËYDSGÑV>n%™2¨À÷é%ŸeõÊô¨¹[z¹zp½éf*黽¯ÇýokƒÍ”¾s_ª¤Že͉fIXŸ9~ëw™— ;3 7²ÓHgç"ÌçðCN¶ONQ椄³lÀ>ï1÷Ù·•kmÆ@“$Ð0ÎVxXò‹hf|?†4¼ÜÓ+`yCaÛK¦´Â“ÿ±bˆè7„Ó³÷|‹ÑË+Ÿ%ãDÙL¸ƒ<*'-èæáqß)áµæOžü²ún%P¡àƒk}îÏò]ìý,ÔÙ—Jãíç’ô«âôc]¿tžÝøÞ4æ¦ïV­ûLÙa¤)Àœìr“W$^~ñz}½‘ |¶2?eäv9<#Në{±BÏ †‹”àSª¯”"tü @ œÙÕf,J÷Le—±3­­ãpîÄøúJ^8Zã®”ŽÛ[Þ€g”{ø;Hf‹]å³ÍÌC´-$‘ÑDpJȹ³~È$Ò…Ô¾ýxE]ž_öýãfÓQ~ f™¼ŽYͨRýå"„Z«]óÒ"8#³Æ½'û<˜Cñ˜tÙGÓÇ­pÌèáC@!¥Rqw}_ØSˆÇð㔨[ŒU·ËñTT¶)r( š^E¥õLVIzˆ®ß•£è¤ÊrÉ|ØÃÜçÅß°–2ŸsH¶Ô"fäò»–ÞmlgÙ™t$Cý·R£ÛÖ€&ºÏ ‰Â ™)û¡ó`€åؤØë @m3²—î/H7xQ‰rcn>N`"Ø“:㣌(ñ“‘¢cxöb„—i¨§Êª-×ø —N<LŒe›w•š‘Ñ ë,-\ÞlñèÐ÷Ÿ¬6h Uò³%ÚO]üÜ×ßÈ{]°½J»¯m?“³!¤˜[Îþv©ôòKd¾#G—6 øaOáÆŒ’üÌí•%rª¼WTJÍR›³Û¶ˆ$üÌ)Þ „0Æôl⌻ÁCoö"hM.(m<ý¸"ÁŠ]ýÇ qfýl"øDòâhýÈP›š8…ÿ–å†öžd±º @ËÑn&o Û=5ʱ9R4 œÊ¨xé)rþW9gÖ»e Éã‚×HÚX`¶s}·gh™û"Ñê–Á?IÊiBfß“îÈ0@2ŠûÈÞ½i.“¦Ét8÷ƃ:´Å‚¹‚i½ä@̲#(>ëu»ë¦…¥·µÎh(zÒŒi/žTæôÉ—ý%+ì'ÊXKTm«ádãþ7u7é"(¬áÕJ AbIûö(˜Øžû5¤ùm˜)ã®jeüî vp @ꑃañ&(ÑÙ°³.YjõêŽn–õÍyŸrƒÌ¥çÙ†þ»ÕãXšÒbÏå.àz¼uÒ‰¾¹¼#Ó¢wÍowCú; Z|Ÿ=*«²±t.†6ìbæÁ­ñlØ57O¦I+"èϺÍAÁeòcj\OOEåS×Q¤Ëä) ¯÷ÛãefÅÛKi˜JgרéD“¨úe^'LáZ þ›Ž ”q5uÏõUV)„øú™#ëµS†Ó™Gå¶v åuéÖ½Ê4°ü€Åç2숔F›£mç+œšwoàS.Iï2€²Ãûü/Ø:à‚´„*Í óâ/|œ¥ÓÄ5§ 3 ®ï‹hî[vð+Ü­)€cÁgi¨ ~óØ>P¹ÇГTP :DÊþ8•¢ ¨c äõ’4%åÖ)éÑ ®Sk–ï7¨kÊß|—¹™y¾­žŒ6òœ¤”Uõ@&£âìn>̈X£  ~9¢žëâÞw©/P©ÉÇáËVº¬,Ð(_™ëCêë6æ1„DVЊjÌ?zÕQ‹û$Bæ›é':銊'¬n:®fÅšÇÛBÍë6ÊÚ}ÿH…t£¨©£o¸]‘1*Gò?ŽZ4Ù¹\Vªä^Ïäç7”ú©¦‚°ýî©w´ZùÑlþÝÖo+àN‹)úh{:Ü' lÚ{OPÊ8UQé±ÖÑ΄ba5Ë3ýºùÞ^dÂ@¥LJ8tíF"ÌKÉpívhOáµîíûb2ââIĨÇ`–°@û{t’¬Ã$v\ ÃÉ›é7ˆ–ÊÉmuH©’võ£ùÀTqÌ*ZÐ F²!XH7Q™#¼^­ÑÂUM׿ò0Õî«?Öû™ÓÃÙòoŸ*.®fD50¹x!ù^U/ø‘5 £+Cñj øês6™ŽFÄj)#àFèÉ 9ILá…,ÇFC:ét$šÁJX¾áDOh›Hvò[³$²ûQÆíR®Ë÷ÙR¤}W¼:8ÛÞuS¹©àÜtFn€ÐËÚ…¯Eþ/ æ`>³ˆ=Hƒ²[[÷Ï/Ku[ݺI¾2 ŽöÛR‹çC€ôÛåË-,–½u5a!¡¯¥2‡/ŒÎú¥X:L£»Z{]ZtskÐâüë;8_OL±³£\›š8Žá˜·¾½r ‰8Ò$ v‘=®#h3ËÂÞn;ƒ÷»,УL•õ¶¨Àr^$¾4!s£%늈Ժ2¬ƒ@|‡/T|Õæõ x-Rȧ’VuL´ÎJÚ%žBå?´n­£”…ú}þ"Ž«„_3¤. G@¤¤É~U¬þÞ¾6 4w²0Xsq™¾Ë@-0Y?¯².§2Ä‹]¸zñÕ°]ªÜÃÓ¯•kØÕ¡±À®Ÿõ²ëƒD›ÒùM΄'›8¶zzëXµ\öÇ4~º‘h·â©ò>8¢ ]ŸÛ!öÙBþOUÔñ%Ø¡\ªý|]ÿ©\yËÅxƒf'zcû©e®qbP‘¯¼Ò÷‚ûL¹ÈÍ?örŽa+áÍeð$lå—ÓÊËòŒà9!âóº°!Z^ìû†Rf SFV‚§åQ-W%Kú9r”T•K<Ñ™Nv©íb“’H«n7®£ô‡â2ɶ‘4xç|ãÞÞ\F„Ž¢Ò»ã‡ æÙ‹î‹h3@"Ìä~Ð9ÓHÏýærtå8°§mø62¾¾1m±‹·¼‘ÙŒù[þ7¢£(¶äå ‘»Ê3N|7í0h¬™Ã7*gÄñA©†@¬óŽ‚¬.3ìy*cGxy_œ¥¿ŸMȺÔÍ†Ò 4n&"DU˜é¹ïìiH=¶É è*ûìÑ1(~\aäÊã«\ùŠ…ôk»YªvJ¬ª¾yªù6LeD20åQFbn¶º_‚Æ5kWôÑc^Sf°S® /K]CÁP½!n‘žŠ!Y’{ÒÓ^0jyÜg€øÜÜ0ÃùÖ鼬À»™“ù‹US¨|²Ž–èÆ<7xiõ`*¥ƒ¢'YƒÌ¤.·rV@óÅ_‰¼´jú.s ÙÀ6·ùšw«]£œ¨mŠê @ÂÕùÊ'ßí ] èǾŒÒÁZ¬´×ÖÄ „  §!zøCB‹UÔuv˜A‘ È;=b´ä¤ÑrÖ"¸SÙ• êÄçâ½]¿1õ8uГY-¢J¿Q\"qf:ñ ›‹üÿÊm!•ëYê+šwN{'ëÏÛÆ'Ã)tåÜT•šÒÌ,4¸;Þ#ýÁkQYO«mÜÐÀ3½žû‹*ñKÏ%Ã'g½-Ï ”_d¦šéCÍ[„8î#ºi‘<èû Û=׋øW(q¥Šñþ\ª·.Á"¬˜}å†ãB±’½1`Q޶©o}Ë*ÍðK™ÝP°žúº{@YÚî‘×YÏÁEñ¡­8ˆÂ>¿H¨µ+Vk ’½é‘AÛ)¶Ô…&¼ÌãÓ_ ?Ô¢:Ÿ’Frz¡—ñ%°½§R7NqÅÛĦ’Þüsø¾ó¤„tîAkAyO®”=¬¢"6SžºOU!qõ¬ÁÚñ=„ãKy$Tÿ«.k’éQH8ÈÅ!âÁb!/”Øöh0ó0òä-Š "ݹ9öѵVƒGœDÀK#”ÐR»³,-¨úfÀþÓ>wÔ7ÍÅ€[ü HÒ¬áclÝoJ~ñ®i#Í:µ lÈ{Š4N=ïË„¯ÕÐ*ˆÌ»Š9èв¤Øƒé•±³êîËXÌH,ábuÂôÕ\‹ÉÿÈK3>£¹Ä×ÓºTœé”Bé³ýÁÞ½V`(4ž£M“ŽØ8(×ÝÚš§ÌÍPfÌ$ƒX=ÑØÆ—¯dz·Hˆc ûˆå4Á éZ~_ñHùÄ}ͲDý¸·öh>ä¾ô`Ôâô½6õXº ~9¶8úÆ/q =œŒìîŠN Êñ¬I²îädP7BEß?ÐÔã¢u ÃP Xgôfüí'Þ iX2ï[Ã`èx*Õ¬À©žcö(‰C8ÒW.‹j¹¤-Tß6Üßr¥'j·¿ø3í¨4[ösLybáûdDÞÁ{äº[¨ƒn§21çL¢n¹úưðSÑaDpÍÞÊÖúüýê›ÃöË‘µ™ëµ¡F“Ì5¡³·ªïË}ÞÙ‹í‘|•êåÈ¥¥Ù÷ÄúÓ$4 ½ ä=ìh¸ÞWõ€<¼(eï¹£¦üüÕÐÚVèÀ¦4ÛwCÀçP´Wö=ù±Þ!:EÎÝZȘMÀ¹á%Ù?8ÕØ!µí={ 71ºÙ®å²£º5{¸VJ÷}y 1†õûfÂ}/-Ÿ„ ˜± WG£¢ÞQ»k+ päzGR27ßRòìx©["’‹PÚÔÖ+Å_qÛº²s½¦—'Q ÷V±.Q¬òâ“!·G#` »Ð‘ýˆ3¼»¼Â —¹,`X‰«Q.¬\¾¨l1ôé¯,‹-%Î'(±òO ¾±]߸"ˆÇô%ì!bøf`0墰b’<í E 7œôºg3¤Î·I.]Cî„ëˆÆpùŒÆ­Sn¬5ØÊ&šJ•£CÚø–]™î¨mØ·ÊïÏ#¸.£aä˜=+Z¿€µ."¿¸EsJÏJ×ô’£%Ãy±BOË1›oÈ6£ µh­ÎWÇ^Þb¹%«ßP׉ª˜Ïb¸{÷ÈWõÏf„ ´D53aBðé‹h #.È+ éJœ–ùÜmtrûTCéô/]Þd´åÍ%ÙoÎ}£§ xìt¢j†‘ñï†0QvH‡+ßùÍ7É­p…‘ ̸Aè]™€–.š¢H䟹N–à<Ÿd¨#¢ùu Ïy› D¿¹ÞEP:¬%«?ù(ÊAõ1^.úáÐÀ[ì&ttÞpÃ÷âMÊÚóòBÊ* \ˆ29+"È Ã6çáAqþ+l3j#;¾žh5 :R¨ý—õ®Å5Î#q4o-kbº<šh±b*÷oõ˜ˆù BgލüŠN®Þ¬_îFEÃç…á–“ù\PfÈ/Ó)PI™ïgj .·M'b¤î¶ƒ°X¥Õ$KªS¥‹üž ×]N¤íf‡ÿ0¬DóII•±Qðæ8àE›]x„€vá‰ú‰©sQ3»Ý²…dËms«ìölt%ýã;'ày¹øáÇ8Æ— p`ñA¤ŒuÀ‰.b§¤.’âm; ëÃÀ†àÍÈdüœ)Ž“tÎ ‹zeòÜËzP8ùŽ’ýyˆ?µÞvw,ÔÄ/åjbà{q¶:w;¤ƒ9~ž ¥UäÝç;Oë Íí:2‘Ÿ9ð 5ô‚Ë.¾6_hÁÇôç÷pì2a¨êU¤ Í!nèB?€‡ ½ Ao(“ŸM)‚_†muß¹Hð!µ“œÈ=:×õ“K‹%üB-wÎ_.¢b‰!L”̃*¸±2\¦]Í®ÖWÈ59žLmf]×>DÊ0IÕaB/E¾"0–ËwúN/9ä¦Yxf£Ýz:Œ¡ YgÛ7Ž~úꛡkñ3TY‡#˜o7°‚tÞä×+ŠÞ„dòIì«uÍeÒƒÀúO‘Ë+*pµíæP¥ª)v¬ç{=°TIÌB4©±L«a¶H 341Z(Á^§ô€¡»áË÷¸Ña?PîfÏoƒöÜ ãHßUxöÄDç`¯ÖгCSÄi®ÇZ í ù$¦MäXŨö3³Ù´;2«€šÜ+š·ËRaÆ,jiÍ›ÙHQ;i~ãpæ:Á ýUÂ9¼ˆõèi~.uN#6¼§–Ȥ•/#€çLÓÚ$UYÕfTn Ð’«y–R2×m–«DÞlºq3Pv+È „tÊÔ¿˜@ë4ºõ¨‹HøÊ*…ß^ãi) ÓЭê´6LÏ‹ÇÚYqë´µó|žt$Ø) f•OÌ\±ÖŒñê‘›®ÏÜM$ÎñEXÉgpßCÓp/ý*ä;„Èëô=sW”cã¬uS/;ño!Ýùîr>ÒFc"B"ƒ†Â,¤«6Õ8©ÏAýçJˆQÚi”¸ÙrÚ‘tá¿ 38xD‡÷~CšÛ§Ú™Toü°NãÃõÁTûÍÛ7v$#†] ÃbÒ#¸ŒªfG娦©?$9{¥ÎR:¬.Þz}›=óu®ÔÙë´Â,ç«©€â^¥9·Bö#ý‰Úò‘có2>|à9s¡Dj$â¼û‚HÃÉá–Õ×]™üD·§Ø¢Š ôÞ!ÂÍûÛó1GÀøÂ#ÆÝ‚0‘"È /îÆY°³PeVQÓ s4Ì7ßíó:Z:*c‹+›ÎBK™6ÅÎјÙg“û•×Õ9ÂYÇ'á•—œ}ÕVz¬¡¶úßoh‡Œ—:·eWc‹ŠY~Õ›zîsŒf¯ù¼ògû„[°rñàÉøZ¯x0‹>¹MtuØŒrß­1wóí ý’ã·~þÕ<öpLxTšg좽8ÓåÙ" TJ(N°•ÅÅ÷vÏ£•¾«Öm(cŸÝ_ùf\þ³¦3„ûvÄŽ~YÕºÍS‘H)L]Ú·ö9ø1J‘à‘ƒÐ!0ù=í‚z¨5Íbic«‚£èKD}¦r=®n×’ï“lDìuXíÔãŽÂ«?XÞìØ»ˆ|$¶EžÙÅ[Í}Nx1“9ËAu­K¦¡lÙ\[ô9CE„¨øæFJQwY7ø\GÜóÊ+·´õ)òå*[:l‡tóT½>ä{|; éš-)¨ÝÚ­è乩Ñ* À÷Hß_nGù¤ÚäozEvÄNPñÍxÕP°âƈIªu·Á›šj‡?lŸRéeÊë¿Ùõêп\ZUÁCÞË}}™Ø‘Ø`ÜËfKZO^ÑÎ×dhÜT£ŠúÞ†%Ä~rpÑ·½›9ÒjŠr!ç‡B^ecE§hMlHûZažÀP¼u|Óб-‘Û×Ks\jZ“ÅyñÈT3êòãp8*{¾"-Å6o {Á†áèy9/Õtáf¥’¯v ‘îÉɶÑ|U v çU[!&˜h–ÂSExL›¿¿Û‹޼Eà.zã”?•§Ê°ý¶çòRAaçaI¥ÒŸ‰‚T¢u|]™±’ÈÁ[,¤þ2ÆüøZ]»’a”Çß±|Þép«’¤¥•ôx€¼5½ —Zø|í Sß”Ÿ2ë*¤Sß ×AGY¨“Àè|aLe¤àmhïLüªz¢ÀÍJyì°g)óú`Òã „}ðí½*+Çù5~ÔÅÜe&Á”VI ^A¨¸*ŽŸL*ož]M…ŽÀ*n${øn„Sâ2Þ~¨Ò—ÌO‘©{rtŸ¯˜WÌëó»!C¦I\Õ‚ &¶_†ÅKëÖ—üÁå``wiç㞟çTúÙø;ä#“8ÄÙq9„ôD®Z0ÛÛœ†v|VæÄ[73,¸k3mg„~i¦ô™¿i½ewk·­`ܸ/;qq¸ü¦ÞnmO’½ƒÆ!Ý"©âó×GD€m ©Ï»"ju«_¿‘ÚLzݵ'Ȫ¶äO1ƒTêwv²{C›œ›¤–QÙi'S5Æ"sï­?Tpö¹™+Å(BÅ>¡äŒý Z†4ŽqhvåNåía )ÔPa+ê;µîÂ^¢XÃdåBùúí­h*Q2À®¨¢Èô'ÞH@‰!ØŒÞhÄ5ümΞo ¢MQ8\L®Š‘oDh¥è°™yúŠ;yìÀ°ÞPÈê`½¹£j—84ÌâÇ/Ú·Üü–Ì~ý(ŠeZ}½;:,£úRÌùâ“»‚ˆ€–CYA^Oâìé™ä#È‘÷¶aõ}¶K´u‘~~ìÃù„œç¦¹!T#VE>ðŠGúZ){»üL:VÇš´EŸ‹ÉŸŒµ‘³(6Gô˜Ü4¦9õòÈöp-–§ó´u5¼<ಎˆ`â{ÈE€+^ ¶àÞ!ˆ¬î¦“®[×@Í aMŒ»$»ÁÞ¯#Ȧnããu~ó¢í`š%GUžYWf^¹Ö§c|d oÆuìßã4© îM¶; «~ÿÐEf¯ô ¬g+³’´D"™=¡ ¸GG™ªD´ oœÄII½¬A)?‚.ÎV£w‡RYâT[€ä‰MÓ®ôôÓc¼qщˆ,ë tìð‡©ƒ#Úˆ¯Ù¤ƒfBª3òØÖwŒ#˳+¼ŸQÌïÿ–N0±÷ø îÒ¦K Q¿`zÆÃîôýìâ§éÆœP:ÙÛGoø"L¤ M¾?Ÿ4æ²®ý$pv3AåQ%–xPUpìu,(k£Â4WpÆh:ú€ÿ,»[6ÈâBûÖi×ëÖJœÔúSœ–âow6ÑtõsH"’æ¥[Ú·ÍcÐ'jP]gö$TäIÚØ9›äˆ…°÷ž ‡7Œ½i)ª¢t_'eÈa ·pF€RiòVãø Êú7„æ`"ò†o óŠ2U„¢ƒÖ7‹G©V6P Dr˜ù^š¼l«ÅÞÒ~6 öŠ­l13[ÝJ)ÅÏnMã\±Åòek¤a¸ôƒfÕ;«N8Œ†—Ô/•“Oe¿ê0±oÇ÷>˜ ;³Ã#‚{B?´ãÔá›voþÈ’ÿN›Ä™°’LÁÞÙ—^Ÿ4@r<êßߨÊ^¬Mµbq:rvIYFB«?LףߋŒ[;H†±0×?ØS"¯Œ.Ûô®c €õ(.kp8Ø#{Ü[…NÄ6j/%{!ؘ’†ü¦œ¼s4-./vŒß[àeÏÔѵJª3÷èÎ »¯# ÕJjJZ1X±#Ù.͆å°&`ó®£-¸ âP§g1{£ÈAñVÇì~d27u²žõ˜µ5ëžÕ”·û-'vlØõà>@#Á N¹.è±G}•g/'ú¹ÉÃK¦ÝY|<ýý_¿èêU†mO·¬Ðø­fʨ|ùY‘<2bøö¬þ-÷‰+{Ääl×Bó@‹ï …]øCJ°R½Ù¶ WÂÞMF+ÉjêY]A}¬Roé$F|t.€÷d"ãEPdWŸ×2I_2@?6&KGžº2wë´õÜ4ItmÜŸ±F0r³<º¹Þ´ð©ˆP“úê·)ƒf^‡¬×32Ã˨kJdÈÜ(†‹Ø{j˜®îfÖ‹<LJˆüV¡ãthT ­uŸcg— o ÙÝÔ_OãoÍfîÍó~_ú–]m,˜Š?à)šË9Ó´5‚B€ 'ò2¨‚Â¡Óæè{Øö{“a3`ûª@˺•`­·{;ÈÌßmtßBF÷jJë^‰…o/8Ü[`âITRZá·naÙÃèpM|™þØJ$£Ö¨IÔe[s™ « Ì^ öLÏh<à’z¶e:¼÷ÞŒ ¸Ù&õá {A‰!ÖXøU¤3¯Wqu`Žk\í©“á&µgÏ®1nlº%XR)ѬzšÆh0‡éÁý©;'d'ÂÑÜx›…ßPØèó³X! ¬|Ì%Wîd£6°†–Ìn62VUÛJä41ö9êרW}+'ý%˜µe}™ç)U³Z,—%ÛòßdéÝP¸(ò0Ïß'÷Еù¿ÍvÍ zOáœH -§" _°­TeV´a%Œì›èJ™}Åù ’äj×ùÅÛdÉ35¿iCåv@Nj·ãQzSi#ôA‚êðKДÖxÚ€©¤JÖSífI7vOÔ'é9³í¹‹¹X¦Sì˜R‹Nx„N ýÊWÓ±q­ÔóxúеàDÛˆ6tWR)͆˭_ZxhßÒ;‡w¸—B•ì?¼¾§Â&³÷wYôš«fè(k,s3ˆi¹t(LõÜ<îét°Y`ŽŠ¹3éòU¦¸áy£ÎcÅp}ˆã†D½uF¯ß­°;èâ £]ü2!.] ¦ˆÖ½9ZN¸‘–È··‹,·K"ÀüÛo ºy¼!ßÉÿe?}¾œKö{« ÀM$\õ`+ô)vù:ôR#t ²Ã÷ª Bbã^ošy˜röjé|è™íy"É庹AVÎ9Ž Áã@T®NØ®L8oÊV/x ÔèˆÅXÉJ¨6‘Ckxq[k•ëy }ùº/2—3?L‚<5”µ»½‘¼¬G‹™u´œ)7÷ÝM ¬èï-Ü;o¬%Ù¥Éö¹¸»t×êÆÚ‹µàE*l<Ó²_ˆF^ï{’Oa~‘¨+ë ¿9Š5™ü”Áš“ZEÌÇ\ˆ IÎD«Á‚þI7_ßì#¿=k¬nª¶zíoW)p ã®Ô޼-š&[ClaYpv¬&ž%ÏÎ1 Â)št >×;ÿçQ•ÓKÃ{Tà)ËS/ 2 ×ÖP8Ùç°OÃÜÏØPÈê@›Γ B/i“ˆÏ¸»£FÈ'ú`í°{²0Á¬— OíS™KƒœiݱFÁB—!šŽ±¡ù\¤XãuêÌ"„5ÔT~Wª¤Så=™áÕˆ¤Y7ÿc¿ƒ˜Ê¹µÁ¨F3ÅÉKñd~áR õ”ü{(ÝTTa8‰Ãå0¤Fßû@~¨ˆ 0Çêo·¹HMp|¦ÛÜ#”S°OC–¿S.¦Ó Iõå7•¹íW­ÆÍkùð¢ó)gÓ#–|ýׯãZ)³å>1¨X<ñFƈñ9Üø1˜èà~…FSØô&bpÖäà ÍÅä.t§M…;îL³‚a†È?j‰·yÊWôe­:AJ>®ø[ÑàŸ#Sð/°@¶JàÏ[4[÷oƶ§± iÛ: ¤k½‹GÊ-Yí]½N|ê÷rÚLòyòP¡3añréFe­=¥(.¤Çj×à „\Êã’Ê™sŒq³DëUB/­¦¥ò=Ø•QËÃí€q½R}÷|ù £F^Š…•ÝÝÁ ‰ÿxȹB|ž½Û0ïÞóØa ßÊ&êG%¡õ|*³«î„ë Ñ,k{å:Ñ'šÏ6wBEÆ`7ó°Þ ¥œ(™\eàå/ÓÕš×ÞÔËkƒôYûÀ»ÂQ®.òBm¾¶ã³;\4¼¬s=„«”n‡.9.°·o=Õ¾v@QšH8’uÐÈ@‚"GÍÝ¡¥‰nTdWN"“ÿÁé¨B/òÌ*F–.‘rboKÁýᢤÓ,ñNX¢GrºÒ¢ðÌÌp¤öüľxo&äqàNŽØcuO„ÎÀ˜;ßözƒ‹Ä¾Xª;f3€´6DÇÁ×$Âçý½úhù ⲫ:R …áÉ|t%ˆjãuñ ;‹ ¼óF4–¦"iVÏ*Àô¸ç+„L…§yºÞϸzê¢Ç— ÛKÒáWKH«“¤{˯úJëb÷`DJ’í•9Ì Š{|ÞÍjÎÓÞý}¢íùò]¦Fýé†lñ¾(1m@ón2t཰PMÌŒ…<—3ñ¤É?é[ÿÙu_ʽŒê–a E ¸Æ …†nˆ¢¢¡MøÛ刉~ó‡â vg:¾H SòÙ ©ˆ,“úÎ`xzö½§?\mVçÀN†„ÆÌ[Èë¿;޹B«øÈÚžé—ûeƒ( ¦œá«¸ÆÙ³Å³ž½N 7F¬îf÷€¤åŸc¯Ù?ì—!ë‘`U$¡ó¡‘é‰ÊG>$µùi#¢@²ïEmÁÎK"ºk¥Ü)ÀÚ5¿}ØVÖ§Q¡²N&Á]‚fõiÙþð¸>@¼¬D~oArÉÓ³2=À‡vt4z>Ž©Z#µÊX^åkÙ *3+¢¬ÒúÖØ:3 •Ñ pAW¨ƒü="ð–B¶º‡Åîe%e’fiOü!ê‹—³:UòÏÿWñ€Á´¯²æaâlcšwäoš_u¾ìõ´¢PbÌ“h5¼—Û5xB?Ðãy˜’~ó¿êõ)¸=Ôaµ–evSþ6ce"Kßü}J}ï[¡ŒsM8EÆõÁÝ´¯˜C­ #â˜ïm“®0÷Éã™âiCl£6ië–6MC“ÐW}eÊká›þ´©^¾‹šTƒß¢ ßÕB8Р¸Ðƒ²¼Û(&EÊYQè§+Kƒ¹½8ÔZT¸!ÿ–j7~¸¶Ë{FD¹ wa`+†Þó5L .—ùÓ,W®>ª‰ñÖâql‚t(P€¶ðwhzo94™OÓ^®[ ÅüZØMWÇJ)ó8-ÁÞÉx©™“R°ûð»×Õ•ÖY¬åAäݬz2ioíS¼lmx…^³Ù%÷Þµ>ÇHŠ´ê°ØÊÙj¼iòžz­ð;”tþñ1"¦/ü¶Råǽ¸…¹|·ÁIéþÅCTÆkââç¡l8 Žã !Ͼ:øz.9R¶“dsElÂþ‚¨ a8ÐË|p s,ã9㈪`°dó_Šñ÷¨â£s,ö^šñÂ+ÜÉ,ëZùéÜÈý~q*4°s@¤¥øBd ¥í‰4Ž;XÜbÏxw±×W&eØÞ"ŸV~Ç®ñ7µ×6~ ^9ú«ab»,&’˜%Š0³)Ð2>¶;Ö·Dåó¨Ô¶Î¹mé{‹ú|È%­l‰-<ò~Â<óq{sä_Ôu±Ù¬®ìD•Ú¨xO™µuÑÒcÚàäÕÕÜú®õ>ÁËl¥ßòph¦i"̉XÒ÷Ë•mòÒ7–Kþ’yÚØ(žå¾wÖ:\X1b¿„ê§ í5FïýPõ¯3ï2:Ê*Í?"ßiûð šÞõ%ìÄ<Ý|“y9#¼ýl ;@$$”gô #wÚHÔsHþŸµJøïÖY^¥0EqÛŠ–hÚò³}Ë#ûL{æ^;µ‹(›¬3tÌÂ~˜p<—G‚ËkUÿ3NH ¢t² ú6/ˆØ3d¤A¶oŸ¥™ß¤>ñÜ6.nÐÔ&pÞEÎû¥Óq˜èG\'8q²ŽÜqrsL„¼Ë–¹l™Š»§dŸU‹eT¬I‘$ß>†nž,”2¼cãŸ=`†çláçµO¥ØKKß|åäafž´—3Þ4nñ8›à³‚V¼:@ c‹,N†ÃËçÇÒÃEä\eCÙT{Ð7~ÞÏÝÊkK6” ºSßÌèX8À%FD YIQÖl©nI³ @÷µo ÒÚºƒe±ê2*DìÊD¡ª?Õ3?BMzZ±ßx˜Ñ²‡»*>+óõ"ór̵ñ@Wº ÒÎä ÄLyKÚ%oV­ _R‰`@i€,œþ}åF@óN²TÇPoÚdã ‰¼þ,fŸ›D0?yg µ»ÐnÒ)Iðô¤n«!!„t+2b=]5ËXÚÁN#QbElhd¶Ç³àÛ‚ºKùÕåDضÌá–½û‘hfw æ®u§V;T^‹Ù¼og·Ø ÞzæwÇ¡TW¨¥¿Ì(G c>ß¹¢†LµŒ' ú…,&TŠÂ/ `'lö ˆk¾yntpìÌ9Éí›3GAàˆa¡çln¿Xá¶®Fxë‰ËQËÚ7/½^^Ÿ¡Â3O.bIÏøy¾ö¥…k!63îUÉöÄ”xQ9§nÖa2…É>ŽDæÖöa|™™±ÏIoméÒ"Æ´Ñ\‰bY*©ã½Ú_é8'waïâGðþò¢Õβ©v$Õfÿ> ŒøM_£&ÚÐð|YÐçŽ/h1§Äû†{²è¡BAT¿H³¹¼šúQéìS U±`(æó÷…&´Í°zm§\dûµŽ*kv„#LbanÍŠù &žºJ3æt}âÔ­à‘cqò÷ó|£î¿{B ߟš†)ùDªÒ¿™w(df!¸ã£mMY ã¶š}ïÏ(´Q¥%Í’áÓ>°&:Qˆ~WmïeoóG{WíDCGå˜þ~1·™á ¸É ú E"V•B©Œ„Oö\ÍOóJ@UýõÛ뻸¥>ÌdõŒM'¤MÝh,7Ë/·Ä±›Çöž%qŽâäü  d‰ñU?€ÆD¡éÉC'*vÔ*(³(íödÒ2KÀ¡2Ú=P­›I9® ¡·§ÄpJ"m©óÈæj,K6í:ë*®Ï ¥= ; ÝÅ«ä-$Ëû¨Žád÷ Ô2lê\é1l Î gb«­å /„2‰\ġֻ£»h¹, §;]2BˆU‘w£%Ù~‰÷¬aŒ÷¥‹7JË ÊO@Ý(ûÚ#„îxúöæM÷œãP >5Ã/{VÑöDì»x¾–¢À€“dÓZh4|HFŸ{¢vØÿˆÐj=/‡–*™%'xuÁ?Û®¨"”¬GQ€V|(‰UØ6‹ìSÙÄL¤ïÕì•ü…ø=㺈ònA.äƒ t\/ñoymÈ •¶­Qi[óBÁO –± y¦'ud DYVÚ…‘‰mDZ42l²Ôt¨Æ´p^iëLQ¼w¹[ñ¶¥¶ùUÎIèþÞ“šgîØòÅk2*¯ '$GÚäosäX• £|Y~vh;é¶´Sºz·µ•CunÙ ›žQC¢çÜ]N÷=Qà Stî‹Øk›â où endstream endobj 483 0 obj << /Length1 2233 /Length2 16310 /Length3 0 /Length 17622 /Filter /FlateDecode >> stream xÚŒöT%zû ×L¶mÛ¶›¬&ÛÆd»&Nöd×dÛ˜lÛ½ó`Îóÿ¾µÞwµVíëöuã·##RT¡2±5ŠÛÚ8Ñ1Ñ3rDä„5™˜ŒŒ,ôŒŒÌ0ddªNVÀÿÈaÈÔŽ¶6Üÿ°q:}ÈD > ålmÒÎV&;77##€™‘‘ë?†¶ÜQC €=@ÚÖèC&bkçî`afîô‘ç?”ÆT&..Ú¿ÝBÖ@ cC€œ¡“9Ðú#£±¡@ÅÖØèäþ?!(yÍœì¸\]]é ­émÌø©h®Næe #ÐÁhø‹2@ÞÐøojô0dUs Ç)TlM\ €€•…1ÐÆñÃÅÙÆèøÈP‘’(Ømþe,û/ZÀ¿›`¢gúo¸{ÿÈÂæogCcc[k;Cw 3€©…  .KïäæD 0´1ùËÐÐÊÑöÃßÐÅÐÂÊÐèÃàïÒ âBJÆÿæçhì`açäHïhaõG†¿Â|´YÌÆDÄÖÚhãäóW}¢@ã¾»3ü{¸–6¶®6žÿA¦6&¦Ñ0q¶cP³±°wJ‰þÛæCóGft°122r°s€ö ›±9Ã_ TÝí€+™þpðö´³µ˜~Ðz[˜?þÀx:ºNÎ@oÏ*þÁ01L,ŒF@3 ˜?Ñ?Ä@Óáù;X¸´?Ö Àø×Ï?é~l˜‰­•ûó¿GÌ ¤¢¥©)OóoÊÿU Ûº<éØXtÌlL&&.#Àûã(Zü»Æ?¾R6¦¶®•ûѧÿ”ìòï ü÷Pþ7–¼íÇæ”]‡‘ÑøãÓÿçuÿÛåÿß–ÿåÿuÑÿoEâÎVVë)ÿeðÿ£7´¶°rÿ·ÅÇæ:;}\œíÇ-Øü_S à¿NWØÖÊäÿꤜ ?nAÈÆÌê¿m´p·pš(Z8›ÿk]þ%WûëЬ,l€Š¶Ž=-:&FÆÿ£û¸.cËçÃñc'ÿV?ŽçSŠÙÛšüueÌlìCCwÆUbfcx2}œ£ Ðíï-0ÐÛØ:}¸>ÈyLm`þš(;ÛÇâü%úb0ÿA‘?ˆÀ úqÄþ‹8 â€Aâb0HþA,©?è#ƒÜô‘AþúÈ ð_Äù‘Añúˆ©ü}ÄTùƒX ªÐ?µ?胟ú×GvÃ?è#»Ñô‘Ýø¿ˆõ#æÇƒfýÇú¯Y1˜ü~pþ~Œ‚á_kòÇà£dÓ?ðÃÜôð/¥Åw–¿ ËŸxL ¬þèÿ2·uvøGô³ÀzÍÿTÿÑsw;ó·üŇÌâð£à¯ÿ€±üühÕ?àGo¬ÿAå£"³}¸Ú|¬î?ô\mÿóálû?ê2vÔ…Ø}< ¶ÿè-Ó›peú(ÝñO¾¿ÐåÜØ>Ì?^Ï?1ÿLâã bp2wþcZœ\mÿáðÁÁùðƒ¾Ë?à׌îÃûɘ?»ÿ~°óøþÏÙ;;8||yýý°~Üôðßß”@ ÐfiÞÖ˜'èëÏ ¶‡j!\WºÝq¾²]T*:Ï%‡vç'È$ªªÌ€ßwBIC¿V·Å(o— _=›ë ¿µ$(µ>{½èÇ)Oí¶Â,NbôOü8ªíÇƣSÜózµ÷R÷·üÜ Ú)M–cï̉ ˜‡úàÚ+áVÛWº22¿«´WÅ.ûR:M¥©ã_4K–kô}‹‰Šå qöön%{âP:ŽÆû$Š¥ÀSkƒ9úqÎc­\•Ù± ›[ ÿó-Êè¹§ðA²4æ‚gqaŒtHD¡)¾Þ|#;¢¡=k QçoéÈÄæÖ¡¾¿H)âöTHŒ±Ò™ðС•JvJN-GÑô+“~>Œ£RÇþ+†GDÅl¦C @¿¥Ó©"ó·´žx+‚ [JˆŽƒoÉ ì‹Øyý}\>Óuñツq‹ÌF¹NÚÝž†nð§Ÿ8.½'&$l ²´oT¿œò«N‚à ‘3™eó@œfi öW¢¼[òƒâ–DM}’ù:Zó[ºÓá½G>ëØ8P`YwïQîÓÆ‚½ê®sТI©6p*:ý+·t· ؈Ìs8 ³J^µvâqßwa#Ñr9ÐÛ ŸUņ†?’Ãò(pš¾™ÝÝ+âs×M•L‡ÂšT ›Ä{MI•NžK깆Ê!V–MIDEÏ™¾—±h$äw…ÑN^wJÓc°/TÎâó¦ªbË ×ó9`Qb—Ë  g%Ãm’dð7j}í¾3Ϫ§IU{s­z¿Ü†y©#Ýé™ÜÒÙÔ§) TŸÖ9—ßÛÃËiÿÕÄ‚Œ>+$pe¥äØ]"¢Øx_ Ûínªâ^¼9ßi´<ÖcÀåŒoݧ¸5[-ïì0O%Ëçl^=0=(:¾”ÛÒ­8¡WäÕØDÞÕ5 ³CW<î¡F=¶BÀR¾ïs·-YàŠ豫Äýin²•a~sŒ>q ÝØ­¥#ß+¥‡2=…W‹7œ}1Mfe6½t†ÆãY¢=—”ªË×áKyB8÷BÚq(†0|I.‡”úœÿ+øünŽÆ{s†².|}&W/¸–V¾µ—1¦mзšXÿ¡)ëy›´Ä£ÝS¸»lFìWSY¸ °Åy°¤6…Þw¨åµ±Ó茊.DÐÏ< A”ÃË{„þ)ݦ5ð/ Æ)¢©¯ØÅœ ÃOÊý”:ˆÅA-ã¨y`½KÓé/¤v¨ D“Äø«×\µ‘Ê>­+ï’ÌÕX]šc`0–:¤vÚ04„u=]õïí® ÖB4Ò¥DuQ-ºªäîÊ´Ye™d»ú*¸³¼¦†\Uçû‚‹y…ãZ&ô¸r¢G<à rÖûà‘‡«Ó}´|-4#¥êâ˜Æ{,},Õ#Øœ–}°æ'úà§V­èûB6P±¿ Ówëïä»àg;¹/r‹´ÓHDzM¸'-ŒÑçÓ¾¾Š<Ë19TÊÆ\sçcíÔþ|Ú¨èóÙx3ÎAY3€.ÞC%2åÒçW<ªò†ÿQrWÁ¾¸—ŠšÔ ¹ ŚІÏéü¤E#u þˆm‰Œ ÇËO+éS©W6ªÆ_僌²îCÆ…™,‘M‡¦D31û "…ù¡-Ö:Ýbïqü;ˆCMRÉÉM¿VÙÙèºÀDôç–¢¨õA,‰5PTñf*½8”½7.ñ‘«Ð…Ï\¬K_“²ß=6Dþ!’’ §hÓ„mž7o]“µ¼• •(æNS$¢ZŒ@ú.º¬£IgqVW3 «%™ ®2ãeÉŠºiv—û ^=?žÝÇ]R“lËsÝÀ¢VÖ€ˆOí€Õíãmy8J«IÓ1nÿ'€-ÚLûªwT.‚Ò8Í$‹º' #I)ÊjþX¢²¾a ž„ˆ‡ð¨»=Íæ^Ù%ü´t]’¯Ð18ôžËýW‡É¹åÌ@-|E$*ÖjÓy;MýP'[²vŒ²)¯yŽÈºkj;áå3«¢j¢«¹Q§¯ä#‹…˜wP@½6bõ‰Ç}’2ú)þÌËgm±VOÔà^;eÇC:èVÿbC})ð½úkó„R éE[“ß¾¶}Fcý÷yFg<µ¼{ü“vòÒÝZ¡)hW:bÖZÒõþéæ©|$•@AjOmbaUN`úCtÒ퉰Føãùßò¯µLb.JÌ¿%ÇþŒˆéåw“?-É[·ÛŽqü\ø½YBÖoI¡Àœÿ:{Æ6êfæ8§ø;NȲ4Ï…4Ž5Ì8!ž4ö3;Öð/KlÔèyk.by8€èt·vûàÀœÝÕSј—o½ÒÅ;cQD¤à7Ô4u¸—£ÐBʉ©L?ÍM‘ETQ‚ŠÍã¾m’(_}dê]ü¬z‹ "ôGé1‹Ìaû‘Tki€L-À´='ÔZåÁû.ÌBBÝÕ°s“Ôúgˆ /’‡–®žìÜ>£ü‘²}úÑ 5dz¬BÛ8Ÿ‘ï˜ÏÙ‹þš4ô«H€”/Ûe8¬*œ‡cQÝ©·³¬A²Ü¢_i1G–LÇ ìç³ûýÖ«5Nw@„çÕUì¯*‚_ô¢!xx,¹K{I2¤IØhùÐimZߟéÉÓkŽ=ßE1[7f”ßà ~©Â7ø×@–1ŸÄ’ù¿¸‹êÈÕ!«pI.^(EµÍ}w0½‘(Ò{Ñacû–D²½ä‚®üe¢Ž }CfG¥@¯ÎǦ9­BGó™–“<ŸÃ¾ß„ô-e- VωAÅÑ}¢Ó·³«꺜µIIÆ“j‰o $XC´Í„¿Õx´¬•a·”„cDDTŒ—}7Šñ*¿#±'fB%TÔùía„P˜­b<}ïýîJE†)»(cªÀŒ¸V鿵 ”Ÿ­S‹­¢«¾·;øfG^9Ã)—5»GªZZað·Plü”<[çš  K¤zì|v®ér¦A³ª3¹Ýa­?lò(1–uü–€ñ * ¡Í ^î2Žó¼) &ÿ!‡NÝ_-nq~&kzm*>ËP$›2šh‹4>ªo8F”³ ¿%|ä¤{ë ÓŽ™^¾ž¨ÌæÀúãøàCî©8c$cAÜÕwðÈF­{å[§Õ¥8F`7½°ÐPèP%0¨k4„8.›@A÷·f¹4bõžE»@{Ÿ"}97Ʀ‹dPÿSÌtÎ,þ¥éºiPnrLdöl%JI@œ¢+®X=WÑí©|kÐ2oÞkñ{(ñWMðVMÇϯr8‹GbUu'ßçd_ˆˆN¨M±h2ˆ@Õ„Ââ&†?ÁÑ ° tm»q$_²“àv¾]‡ó…n“ ¢>¿Â% 9`Få51$ü–è¬]%H*Þë”èmnÏ‘Þ9ðuP Ä2âÜsEófØ¢ «!/qTÒç°•lc 7l+KÒj ¸ ‰±Ô‰P·ÉñÝ™ÌöŠŽËíS-“ø’CN"éZLm!QUmk’Úç•é;↟[T\§ó-\÷§ÝI^MÒß?ý9A"sþí“¡óøö0£K}¾ ý{eÈÜòC` uuÕ38gw["{> Jð'w®UùSŸ£áçÁR‡DË´z¸ië4r[îjÇqÁ¨(¯AóY4ÀÙ­.Ýõ1„„· )¡Üý¦-ÜBƒ¥3ŹkÒkUŠ»?ˆøQjк]O3ZsB¯·õz¦°È¿»@º‚þ(xk Ê ÷VR‘Ø~ŽºnSôúÅ£m ñ7[qF£XCœ–ì÷ÑìuSV ½ÑrËxJÏýž1îU¨´ú·u]: tã¢NÒˆ±ÿœzMö˨ùн# ÊxžoøS¿~½cFV¿ÊOÌïø´†NÅî 5—S£oÍduWâ,Ø/fHÙëäyrÞ‹+Ń,Ù¢–ƒæQ:ÙÎ&ü¿/yî-š…põ;ÎÂÐalÅõ§ÒŒ-oå3f#m òž\Ð稘ӓVÒâwHINáÙ§<ßΡ^Êö·*tÄ]nÕN4ða;ý¬Î`ÈÜÀµÍêf‘Nƒ¿²û ˆÀ΢¯ÇÇëYZ‰ü³8ÿý» R87®nïa¢Ò>Ly?iôðó}Š!ú;Ë.O^ÅÁ_)»¤ FyÛdÆÊuþ!›6mD`ÔÛWé¹\hhœá„«òˆÎúªßÒ™àÉϨÁ?äõÈ‹œ¥¼nƒhÞçKê‰a¹aAcM0U /*Ê~±Wª¹Þ*‹-<ûâO^\ó‰Çôðöæ Ni»1¢ o¿Â¦ÝjyzDõܬÒaÁrŽ P4hA×ué’™™Àû´úÆmÈhÌ–«åx„\ÞåE ËÉ»£•LÏ, ÷?Yñ7¼ìWloç‡tÓ0X çLù }ö¾§ÛËíÏÔ@GÕ0nuˆ™D= ÃŒðý¥NkâªCÊSXî„§ªÜE†&ÇÙ-zâÛ4)›íøÅ3L´Ž„ö!PÔÓ°Dç+O#©M’Ép6ÅØ˜Œ\2…]Â.œá Áݪ¾2&(Ó¼ ÂËð‹¡˜Â*+qg!¯öÑP¹78‡ÙbKÚ¾Ÿ%³TƒeEE‘ëg#ÞQá$”;¯ž/[q°•V]âž‹¥´èw™{\0¨´üVÇxùZöö‚ÕaXh"Õg´ìØË^WjØ?µ™J<šFw÷š4ú{©Ê$;Bê½Nºá¢ë&ðuDÐóŒ~[ÔþοÁW¿­mÉ“a¬+A蹎c­Fôxf‹UDrçYòÃq/Óñ„‹k¥¼ ’`²}æ–3ªLeJ,,Ý 1gÝÖõMØ–§¥ZëSKå|º߯m‡VÉšcÇäå°å­¢ÝòRz0Ý·n]Ì<^¢tsªQ@W†©¶$z©ÕjËŠÿ°öïoý} ˆ¢óÀ/¯E­É´&Sßt®;Ùm£RO«f»šqÄ~q‚HÌi#M£"˜Ö¹ úqhjçÀ!E€Bš hP°·J ?KÜJ3œÃ’úˆàGÕmyçÀoûÉÉÔ 5jqßå`wtÃÇÅÙz£VŠ+å®sG¨Db$4*š«@bŒï-»4¿¦«å[Ô‚r–a-Ÿ×±ëêÝ'^Hö´•':#S§+óvÿ¾Új >ç¦ÿ|ì3žöE^ñ²T¯ "‹+ÏU+áÃGc8Þn˜Ëð´ÒJYóÓùyxæÝ«Ô¼ibp+ߦ}š VƇwuÄ-uËÙÝPžäRÉ“sÒæ‘4Y[¿0àWEË›kH˜šv·œÉþé±RGÚÛºi]äd½+÷Úɹî\ Ou#{ÜíË–žÜ¯i÷g “æ[Y¼"v¢Ÿd2ëvq´éÛ6vݲ>¢4^ŽÃ&ì•?Ý™ ÊÐ 5YÁe$ ~’ôžqLí³ÌÑ9` !űÛÀ %K_/¡àB$m¢óÐû€ÆˆÊÌŽ¬ÚhNò仹]·c½ýÒ`°Nú5ÜÙ›"¶ÑÆätŽ&‚é¢ Ã!7wA£Ç~¿8qožÕ×AT§â+µ!«ÚTˆðÄì@g… Y:[E_ ªkTéâÀÓ¾ÉvS³Õâ‹Ûr¨°“YßlÔ6yÌ’mOI£€Ï [|”¶pCuœ¡‹öæŸÁ– ŠH%kdåŸ.§§m…Þä7Üc¸ƒÑF‘ßëͰ·¢‰ 9äúhµÍ@,Vé K™Ø ââ´—tÕ§§.d]z`¸KVy®[ÕLG§+<ˆ6Þ ¯ÁegÖ£k-›CþZ^w R0åwd¯—Í¡Fñ]$Ì¿Ïý£¹/ ÓÑÈæÌ¹²ñgžî÷=¯)ÂË"gÂ^{´ H­ R!yÿ¢ilQôØc²›¥w-õOº«¹„¤š9dÉr¦!: éXñÔµÊѾÁxΦ-þRXæá¾A_NÏc¼U³ˆ~05PÉ,(ÒÃñË¡YO¥:¸µa]nÕÜ?vy’]œ8ëc‡ ÙýœÓÆG‚©oCgË÷1`9fâ·û}jx\ñõÙÄVu|à(|Qw£JZ{ð­zMûÀOp “œDœÓbZ+£7!4Èu H“KWdÕØ.œk’™á‚zο#\Ël·I MŒ‰qõuvsV|K%~̶øÛ˜á÷é×p®Ü'b¦Æ¹Õì ©|‘b.ÞD!…;i7'Å™,’{¤xD«wŸ!]úïrìn8‹Ùg……¬žÒ•Ÿ;‚§¶²]‘ !%ø?ÿúé&!Hû£!8ÀÉfã¦};}½7æÁùÚöáó’I²!9\€ô‹Ü ÏOÛM‹ãçlÃl¾•`Ù÷¢‰ÇÚÌBí™=Ç1GnQ5G|ß8V bÕ…¨Ú·Pu#¥ ùßüv›šÈh‡è7ÏqÖïHm¾£fŸ4¬§Þˆr•,"2…gS·€ý|?ædïgɯ¿RW$¦­‡7«±P¢häFxZNT;|w-Ž!%#!šâWFÏã³ Ðæwæ ' 6p:XÌ^Òƒ±U!y¤TÓÛL,pS¶XHß|"ŒÏ…eîoåK8ü âÈ^Äðw‹Wùdlv ®ƒŒuIåØz2ìûÄHp¨£?‡Ò¢oz‰ ͪmÃ^€Q¢kæ…š ^ÍA~‰Wvüú]HcW×·ÏÑV¹QÇÃ\T•Ûs½k]­Ýòr6þxð¸z¤0¥ŸnK^43Ï4DèÊ‚ÓdèÒû™ó“ÈšÀŒ¸¶ü8Ä® LÎ ºÅC÷ ï¾ÂOØö;Ïý°8±öŒ(/áÆ"ø§Œ½ÄY>IÐô°q ¥xò0üZMO¾¹bEƒ¾Bi³ß:=®¸‡Œ1mm· 13¬þpÒÏœŸ]HQ@6lû)ÌçOåôãËC-œöÅ#}Ú®»@ñiC£òâiÎM¿" NxÍhŒzèM$g±€p5~Å…Æf#»eÕ•hÇýu·œ;[MÜ Ã‰¯cy]‹þ`«‘馔‰t´¤Æ”û³Hj‰0Š„ÏöÍôÓf’*™[B¢]•'”ðÜRg9Yµ?%MÒ£ûtiß–)DéÒÜ·Wëra;ÏÒÓõÞM_ª©µ+žéqý=üd6_Ц6•Ž~¨=Â皺‹E½u è¦GlÕë]o \÷OÊúÚ)Åê6rP2®_*Ð~°`S²ÜMáOô^tŤ~¬Yü|­G@2 '&C*ˆìMIž¨€=©Ãµ lXÃ-]©Á,ß•{û§]âžôE—£§qtòËÉdc6óÚ(|·ýV=‹¹Ù{’á(YíGE—­÷ô¦ý«àMm¡+‰|’y@awÒ~Ú…VL«ñ/þUÞ²—y×ðè§LÚ¥ß>»[ê™ø ‚½áG -#}Ñ¢g¹Ÿ ³fͤ¶íUô",ÌÈ“†LÄ×CÙ:G¦ËTœ$öê¡pð#u,‚¯F7R;ä£ïo(Y¶0ÚQ¼0ö:£Lá‰\ö¢²Ò›u˜IµYÎbÿ|j[ÎkO»:ÐzÐs†‰ô@7 4‰Ü EÒØg>Å=Åôɺ·\M—´uŒ›"Ù ÖâGó½ñ¦?c q¾#’ 4øÁëvÊrj>äS;ŠZ†31JfƒìOž„i;&¾EÙÇYŒ6ùjûÍš®â8$ÆC¹q6)$—“€mEëøGsÈهÂî5b5£­ô΢NŽ¿â)¶M…êB‹†ô9«C2¡íÀ”âç‹Ø#·°Ñ"ÙA9¼}~ 2_ÍÔ*)œŸÈb鸟ïótyõß‚^p™BßèŒÈ6ÝC'Ûoæ“€§6­&û½gÀÿ,¼°•VŒ’‡^øÄŠû%…d;–¢SK¿×nK<ü¨6+]LƒüWjk©ÊÚò\Ü‹VÈjÒÖ¡ß7ÚžÞ|‡¢¾ÀS¢„öÄÀ±nñ ‰u Á°ÆKôï”uißr™¶RÈð¬D›Ï°mu݇òëŸhÑkà§Ž‡ ]žz*.™áAÍ“Þ3¯í"zø²m ëæ©,w Q®›B³^#öù,¾ÍN%q¯ßÆ!ÒI˜qYìS¼æ(þº¢ç¼ɳ¥—NÝŠSfnPΟ¡çEäê×­@‚4•©%ˆú°Ô܇âùI¹Ì|,9±yl!‚Cú‚)EdDqÄLñ¤Œš˜ß,ŽÂÁØïy†ÊØ éºU ¦=7I1_É#”\QÝ­ZÆa,ÙÀº&“‹ƒŠôVµà–r!½ü»Ó}0ËÖÈ6L醔Æ–Å£âWtèvZ!¸¾­é5¿ÁÞD¼:òÀñÜè§Š™,f^}ا€D,‘cŸ.þÚö™³?×ÁÀêúômˆ×KEÈU)šÁë…ÊWüò9ÓÈ¢•ȉÍ=ŸàH˜8™6ub+U;Ì~Ù‚ôà\Qâù^Ò¸÷Ížc²m__¸u¯ÚŸÁ:÷¿c²'Òa«·eA£ú»•{Õ6 L¸„RÑî~÷Ûåá³}âŒÓb¥Sæãp¿liN¼"c‘ʾ!lçËëG¬‹ùÙðo»2‡‰óød¨SY†”€}“ þ^n.æ¿ï¯nZàpýLKú™ S 6α®N“W¦²“SÔÎ¤Š§Ý×P+MLíï ‹í à>z$8B³“J-ºP3Ê&JØZS ÛÆýª¼”̉1f‡)qMc("䥓ua¤ÚóK 95S…eÔ«Sï—9! #É’¾=îÖ] ÈKò[󺤉>é©p<BT±cÌ\ƒƒÖªžÑËM¥Ø3â Ór>±N´ž¦¤ $é}?{{ ýFi°Õr —z€'õ)`E•àl/™m×gðInÀT¿€¶Ë/Ew×Ä·ÓutÊÄy¯ôêÒ´jŸ±Õúòü…I§V@¯¹1:ͶpiZØd“†ñU…Îò Z?F!n]€›?§,/e q"™˜‰ìi²7Ãb´úíq^—«¬Á) œ®¸Ü ÍèDnTAÍ™ÕW…I¡‹ MRÕînó.ºÂ/ãß ÇÂÍÛñ‡³`§ã«¦”C±:Såz‹Ã½—F?1èãj bdšM9+÷bûˆ‘MÊɆ…Dó ddñ2*,QÆ©®Üœøð ˆ"ºfLGjÆ’Ý É˜Ñ% ï ±)Þ^áhùï)‘»@Íü`Κ.««&3x­TóeP¾"vqïìz§Ø;L£%,–´aGïˆLÂ.JÓ@ô¾—òYBål|ãyZ9a=ìzhcfbGÓ†‰EkuO-¦YÆY¢³à¤éÃAnÒ‘C®‹ü¹|‚à2BLËÅ‘DgRLù™9"pÃD)õÌìÐ’,NþöK(žÎ·çå+Æ›°ÜŸóÊ«’ ÙžŸ~¢†·xÈL¬ƒùŽA¥ùNR©ý#§EqNm̈¸S}jÂïQÃF‘F‡S¹9 ö$Æd>².V>ª4àì½þlÔ‚9‘ïl¶fº”5Ì5ôÛÆD$·ÂZqÑö¦â$¹|å¹#±Ï¶#¸~¬´Nf$[aòÊwóRQ –’ˆú¼Ø3Fëqw¢:û˜%V¤Jœ†8-Ö`lrÑnÎ`Üæ3#Úåé6Þ¢ ÑP¨sni¥âÒ"_ðqÁ¹Ë½6ÎvzOwŒ79áu?3,‹±œÈut墔¤ nbãq1r/¿ÖŸð;ˆ?¸5›Í ¡Í€og Îo%¡»Ôƒ ’K#ð¡IÙ^¾®Ìu0\Ó±¡ â…$¼?2i¥1&•»~Š?Žú|•ãëË­Ë¢§ ¦Œ-íz>»û›éL^ÐllÍëluNz³—Jå”?Í»(í2fERÂQ]¼«íY¾V"Ú+Ä1É•B¾%®i}À¾pl©?µ2ØÙø—iùM­†ž¡§ˆæƒ¸Çm¶åÑ;ðH0üY> Š™3à9ö3@Ñ!XŒ<Õî DNØïÉÏ70¾ZÚ;gdíHwoïÃBð»¸Dék³Ñ-xå•#¬Ó&üŽ2£(ªbZW„ZŠ’D\? a¯òöP1“[·¢±¬ºpÀšÎe£S–'-is_zšRôͼ3ñ–cH%qpn4F,:ïcIIgEª"".Ç0—ܨxå `½pÅÇôú6L'‘Où‰Qú{Óè‡ÔdaC6@=€(ð&a­°xæƒP¦«F“×z)¥á(:¶Kùª ÊÏõ¬ìÔK’:2^-mY¹<aÓJG34^MÇ’}ëÙ㸉ֻPw—ÈrÈãY™ÿûVpQŸ=í,ò–ÚO(wœö>|´±ýµÇo§\{‰±MT4‹`é U)RJöiª úãh›—¸mi='W¯6™Ír%¶B)pÕs´5¡‡i ²1ï!a,_Ðzg#šoÖ¬riFŒD*c Aíè“ç—3ÚwÞ1)-«©÷ÕO ý“7+kÈâ$HÃa]¿¶¥¦¦çgc·ƒ\nÀȦùn˜t£ƒTd îL2BH²Áíh{‡¾‹˜Ö•ìÏ©žŽBûF"¢f"Þš[ߋɵ¯˜åa/ׯ™²Eæ»Ï!AC|™št²u)ù™ŸCŒi Ú‘ÿ§ØhWy9]jv‰ŸüšÁ‰)” þ9]£‹D"„¦à¯*K2üë¹°w)c=S{æ+ß½"P˜¡žg²WXDÔ‰§›¿”…\샾°|[¦8ØùRº¸É0Ï;¥˜`:N[AÍ—“¯Ø‘«‘’²‘{Z¿×`’¢¿“S3ê>›‰£-•%‘‡Ì‰^sMi÷VŒŒ1$ÈÌs†8tcW`³À;øaX—×dÅ}1󨻴¶Å.~.sBçuSÀ´‘}p÷áæm“¼8'Y9¿^MY˜«å_1ç“%ëMÊ~¶0˜¯i¢ùô{™Ä:JÞS²Ä'ì-$ÜKoÃÄ]ß_Iùí`Wîá(ûK\ö‰ÉZ ô±K”,‹†­¾Neˆ3£\YÄþUÈOt-J4– …fú"I ITíòZ³—÷QdsƒãǯÝÚ¬"·xq'çÜ´Fé)—×Jáá_Ä-TóLßý˜ÊQ(ÕKξÓAcÆo1Ãi-x7ã’áÓIØ%¤ûrvS‡ZÖ­rñ²¶,8²më?yymÔÛÊêËWî7ÉÚÆ½4çAkÍo X•„ZqØ”ÝÍõ•'Eÿ{+–(•{( ü‘Ôa¨*™s”Ú¹¾ÎMÅσ>eÄ@5¢­†2é™,â@ú#æß‘‚óò‰+üßʹRxÛ¸€ŒCyP²=só¨n<·<ôx†¼•÷KÈF×8[sõŸj‡eG``_³lÊ΂z„2a\· ûØž–'ê-¨ô=KZîµG¤s¢‚J$>wÃ0Ȧ?J <‰½f,£©«([€ú|ªs*«®Ø"ñõø¶HS»^u™­ÎÕIFH˜R2\}@WÜä!ðdƒÛ­‰*MáÁÇ=4LîœTÇÈ:¸#¨«|^2€z‰· ¶] :lkÜÙë/^õz‰ÝØ-§F ü¶ÿEÉà²\8}Ÿ¹©sÿ*éò­FÚpkQã ²VÔ&®ú–—d7?”ñ0’ñØŒˆáÂë&y'{‰ôb6ž’Pa"·ªë} «½Äωw¯–‚çT”0‰ùÁXŸ ýë°GEw¼¥tIîÎwq“ãÌWâÇhM‰_hF-ÄìÀ`\ògF–¨Û¢ )tYY¯ Ä*,ÐÛ‡#kËYÖ¦n ñûjZ†Cô¥/o˜+›?j(µ°™•±ÒÏvôž‡sËÕò²y¸f~\rz“ü¹cß8g¿Yõ‹¶Òx€"MJöEƒÒ+J—€13°ÖtìÉû¦ˆUsd2ñjCN’¤zB«š}‹'X“qŒ.HnC Œ=ÑPòê7rÀ™i΂HÖ/¢§é¯ŒQT/ô餴8ðâfp$$׈ mÿ¢‚Yº¡…KÉÈäM첦̛* ™6ØÈPË“RŠÈy3—¿éÊÅÎ7³7^ß šî Œ:bà©Ø >u¸²æl¡¥Wpˆ¥Tw:à¼tuéBhÂ|*¡°ª=2â^§O°a¦â…+Aô( v¶¢õ$GZØ=º5!~Ö‰;/Çs#NÛ£ÉcX‹ÇF±þtè‘Ê¿éá°¾¹¤‡Ïºd@ö}'¹üé¬zrͶõ|èØ Ü`}@õ÷1JD>™z2 ¿5ç1~GzÝSœ+ÿ ²c4¨sZˆA5EI÷ .Ýø7…·¤}ÿNêºcB8âïno?¢À~ÝCË[vÈ=~úßY­4·ó¬<ÊLDõßgïÙ|Ðû9šjX´næŽ"3 ¿:í/ñøFºóÐß*ƒùã¸Q%d:5Ÿ_*‰*V¥Ü {KÛæA„…ø7~mQÎS‰YÐzÝв#?Ç¡Joc÷øì·YÒúëÛNx¯¿ý’Ôþm÷£îm¤T« ¯žýíË­óˆ9Ô¯Qµ<3:ÖbU«Úô%¤%™£ ¸µúk=·àÄÁOÌ9CþÚÎÖôŒ)~C̯Íâº:Ð7¸«0,À¬Þóñ—z¼×±mç—gi؈Eî¾hƒ ¸GðZ€ÐçMîU¹IÆ~Q4˜?Á ±—ŸÁo¼*Öd~WYš—ÀÀðÇ öàÙ T2Ðä #Ù.ã[§O¼Úܸ½f’F;´î…G£u,žª&»p^`o,ƒQè_…— 4ëÌ·ªÛÿé/ §ø›‘«5‘'¸vx¥JÍ>r]Pî׊,ê;¾ÌfþBóèeí¸T1_ ™nâ• P(<ªUM¤·kÉoi·±‹ÂĈ P€ÜPgHWšpÛE3”5BFšŠ4ÛÞàR¤F y£]TRÿ"¢ÍYýè“xœ? “¾å¸Þ˜;¸/Úê”vcïL©œã7¼Àtß +íÉã-øQý ÐѤ›ûÀ¡ÎL!þCâ!ïIšѳ|GwlBošŽœùÛÀ¶Y+ä[¾ƒç;ÅAk§¥f „Q_ÿ›¡ž,f]Õd^ ÇÚøuüI&Nžër‡6{ 'øÕ1Ün‚D ®]òóB…ãH$ æ^üÏòÆTâQ’üã¹ç\[q?UÔøça‡®›€UÄ‹0÷/“+}R5š« Èóaíç^•|MÊ`r¾Pÿ#†Â>¦sö^-0BÓÓœ7ƒ=Ô…ÀdþØ,«3I¢-íÏ ßå^ é "©g÷úWªAÃ4Pkøõ’!²ÂSЫ½l€›&‡,®¤¹;oÑL jqÚló*Z}¢\ÆcgŸ±n0]YÅÌU©/&+àw¤-{r³ \E'¦†c+‰2^y›†s¸„=¤šaĄ̊• ìVèë뜮“#–ËúÐV87£ç%,+a[Ç 6¨îÚ¹øU”’¼é¹ÀF&ŽãçAWw­»7õö¸¨w(7l[µ¯?åA‰˜¥’ò¤òNøƒPoqŒ¤`bsÌ²Ž \èÔý.²_&ÍÆ&‚õðl*<@ÕzeâëóÏFaA殩&=JÄ‚ŒÍƯJC*} JœPmVGŸŽm“–ª¬ã\ǧÚá«pÌäc³ñ†¢(èoð¼E̘>þGZUDÇMLVÞfìšögªe<ÌnõF2›1Àùn’{šh|~+tǨҴ™V~‰Êam‹®þùJZöË!xiø—d §s5èµÃyú‘°K®¢Œu/¯’{þ­ÛÜêú_’]£9Ú~{>Bq&º…À4Èz¬Žíp Az‰xší? ~‹(ÙOµBft7¼uK죳w®çøbüîÏÔ\ áX½VbŽKò{7±šy&3=a,yŽT¼œÍ5rÎ…ÇT£sTˆéyW"²S]ÞBŒ‰/Äøõ"¥Ã^$4|…`¼&ùêÆ ïÎþ½nÚV_9ÊÌ(©®rÌÅt>õj¤R N¢/«¿P6Éç¶}æ¥1о¿> ª@Œî,Šq÷;H,ô¬•°¾kUXñ0?ÙÃË]ÖÏ%.Ipè;1ÏÊv³Ó1ã„mÓ3&„°¨ÝAèì›­{þ4Æ-‹^ÍêBþIHãÓ-’YŸòU²—ç"ˈ€˜ÍZvÅŸYfXò¨ã[Ày,W¹!˜TByq¼â[Þê<ÔÖX’­‡ø-Ëáédžn™Ê´ïQyµ9ÈŸC° ¶ÏÒ³ïÃ<7#Ø™0;®ÉVZ2ø®þ{hb°Óvl¶U ™ï°ÑùìË(µÎŠÈ˜UTXÈ€ÏUUH£´'2´è×ìî¸[?Meé%ö>ÿS3 Ãp#VP¾ÏüÉc_í\õèÃUžCì]8nî¨] ø ªŸ øï–ylžY³89òÚZ®›ß•—T 0Ë †[~~*Ü"ß–«95â–`íåô|ðS•ê-xs‹«veËó¨Â–Þ¶/ˆãÈ›£Ù~þb,ñ ±ù$ÐÀ"\Ly=.¸Ú¶ñšG뼃܂¿ñ{ˆ¹&üš÷]3÷pjì¤IŒƒÞma¥uö;…¤~j„ÍM!W#©/’³‹•ªˆW¶sß0ùŸ75A =ücŽ†ã¨„Ñƒ¾xõÆ•^We¤vœ‚›‰¿'ÛØ¥¸ifYäc{º%ôêã»,“ÚO¿xf¬n‹@?i´“h¬¶3PmŸí¢Ä•Ùœ'ÜxŽ,Õ±ˆÏt&“síµßÞ>f±ß>:Ωâ yc؇U)Üðô:›Ùб¿O>¹œÃÎËF"©o²¡ŒO#H?9Zíœ÷1fÆ•C“³zA–rÙÍ#tÃÈA„âN(¶dˆ.¹󟪼àp#Äå§€™ò)x.ƒÿ&½Ÿoõ“G \ŸÒEÈ‚TÉôƒ (²~Ë y¥Þ®fE`÷C&<³EKâðÙo¸¹î«ˆô!øÞ-ÍŒŽ÷¢q:àÓ¯3Y÷ ½ªÕvn‹Öf0í¢E{D‰Ý/ ’ÅÕ ƒ5%ªÝ9á†M‰ƒõã¼×J@¥ëýÕFê_m Œ:LnL®Ís§‚ô<äbÜéÌtÉ­vgIí\•Áô¢¢ }F&«å˜8úM²üñT<­Ü{Àƒ­«CPE±xj!ÀÚRhé˜ëåaQ›çYK°ã©NXsƒëz`ÒcýŸ^“Pí¤&2h;CÒ¼_ˆ#‡Œ,87Jóìêßç$çÒÓÓqzùKOeN³ÎÓ€v"ÆmL{íEŽÎúg$ÏU‹ŒË(·÷Ì|É¿£Ü}BZÙUXkp0~„õõb,ç.“õ)t.†{EŸ“åZ×hoé!T×Ϩ€ã’øê-è¨ÝyKð—×mOœLÖ2§Wöüå@NÙÛà Rj’E@o83‘õ¬b¤)úUÄ\®{ѬXŸ^Ãݽ'=5_¯ëDp_ìpCNréJ•ºŽÍÝÂAÆ[v¹Õ¹^RÛ¶”‚@5jü%¤@aÃ3IYÁÝç£6Ó'ð¾m_Ò´W†þr 8KÇ“²ÉÏ7¦P‡+nûÂù“Y¦ -i þWËà$¥¢º¿`GÿÉá¡Î^Qšò³~%Œ ÿ¹ñbö1yíîKhì¯×V­ílCSS”ó„pêLCˆ&ú£jå 6 ’—XÑTžÈh=h3^0}Ü>Y^RWåúÝh –; DP>ÈC7éŠJ=4åaKG矨¯ˆ-¹aÓ›L#ÊαYéfÞÐ §Nmˆ‰ªõðǸ:iôëˆôªYdS6×/[£³€+3òf;¾ 1ט/îóò¸ÆÐÒytI?²ÇðÕ4me³Íh*Îh˾çCY„zp Ô3»úi[ÛûÐn…K'…Ï´ Ve@´k€Ì¤»µÚnÓC†ÕR…žï÷5åΓ¡4òê—¿–dhÌÃfb¢æ~½=ä ¯ «Ø’Ú–52½:÷@r€I±ñ jxí¡A'AC©ëé9ù~Öj;ÏE"š.~xɳ ‹éZ3ï\ù<–Â2"ÍiÇA[ÖØM3xÅxOb‹»?wGTè¿<Æ3ØMÿÔRž·ÑE>ÑJù,/KÖäÀgµ7Šm Vï  Æ¯xÿŽ£sà I88ýÌgw—•„äjR«£}ïƒ6&ÒßВѤGÇàô½Çfv\û‰ââ|»yüÿ{® ¿Ë+“=å‚ÌÙAŠ\B endstream endobj 485 0 obj << /Length1 1828 /Length2 8272 /Length3 0 /Length 9393 /Filter /FlateDecode >> stream xÚµTj-Lw7J Ý]Ò-ÝÒ 0À30 ÝÝ!-)¥tƒÒ‚€t#!-HK]ôœï;žïÿ׺wÍZ̼ÏÞO¾ûya¤ÓÒå”±Z¡8'/@N]á9/€‡‡Ÿ‹‡‡‹‘Q wýÇŽÅh‚¹¡±?r0þ`“ˆêPà™»€—À+$Æ+,ÆÃàãáý È=À6u.À3(ä†Å(uñ†íìáyþóÀbÍ àæøíqÁÀÖ@@·9?d´:t¡Ö`Üû_!XžÚÃá.bÜÜžžž\@g7.(ÌN’•à †Ût@n ˜Èð«e€Ðôwk\XŒ={°Û_€.Ôî „'°5âöàâ±ÁÙº*jMä/²Ú_ÀßÃðrñþ7ÜßÞ¿!¿ÖÖPg Ä ±Ø‚@ME5.¸œ„Øü"Ü þ@ Ø hõ@ø]: (£ >tøwnÖ0° ÜË ìô«Gî_aƬ±‘ƒ:;ƒ p7¬_õɃa 뇹{sÿ}¹Ž¨'Ä÷?'[0ÄÆöW6î.Üú°«;HEþo΃ ë›äå€\ /k{î_ ô¼]@¿AÞ_æ‡ü}] .Û‡6@þ`[Ð֯ЀÃÜAþ¾ÿ>añòlÀÖp€È Áú'úƒdû×ùáþa`/€ σüx<¿>ÿýeö 0(ÄÉûúï+æÖÒÔ—ÓÖbÿ»åÿ‚²²P/€/'Ÿ€“OTˆÀ+ (æøÿ;üw!8«@l¡Ñ¿ê}Ôjöø[,o+àß±4 ÒXþQº) õÃÞÿg½ÿvùÿ“ù¯(ÿW¥ÿoEŠîNN¿q–¿ÿè vòþ›ñ ]wøÃ¨C–ò¿TCÐ_»«²»;ÿ/ª>¬ƒ ÄÎ鿃»)‚½@6Z`¸µý_ŠùË®ÿkלÀÔ üëupòòðüö°`ÖŽ/ˆÛƒ,C ‡ýùwJˆ5Ôæ×¢ñ €0ÐëášN‚_Þ‡´yý2€› …?¸ÚóØBaX¿î”ÀmZ;‚^A[¸ØÎîá/Œ÷¿Øï{ü(úàø  èdvsqzÿãçp»<<._!eÿôâùùW!Ÿ°@ =­z5è`3Àöç3°=‘Ù+_TEõÓÂËÀ˯oé³*¿¡&ïzfyT~˜Œ¼#åmÚ»û°§‚€€ãüì¹ã#LG”’©>A^Rù¼ø¨eŠ~“aC¨‹Óº9ËÁwqÒ Ïµ§†·šÏ 0KÉ\‚Œ²ah dž3kÒ)ÈÖeÌ*¤ã©?»ˆ ½ß×õ±.[º«ʤ£ÛA÷ÑÏ é›‰ Œ7¬jZ5Õ|dQï¬ÞXìS˜e@ 8&^S…v8˜L’*×O6„«';X‰”ŒhÎÀÏŒe7³X.·Ák%¶9œíÁM&Z˜JŬïƒ.%P,°¾Ç¯úèŒwn1Ñ:ÈHâ™*¢MŸ«ø\(‡—Õz?É(|CÅi|<ÇÅ]çå0"ŸM€~¶p¸&ê#ùh«_ôBc<ǃsþ‡GÑ*ëž^‘<u›Šš~³+Uí×Ò+¯É‹sjw<ÿޤj¦±Ñ= '³)šý—ãP±·o#w‹Rb«À oLeÌÓ?ßžãF ˜dpão*茈<ÖÙ‰OÅ£ïbé+kP},%G7")ngÏÚ9…£lùŽ) Ñ.£]ê~"M¾u‘ËBLût1*>û±{«ÿ”Vÿp$ SY Mº«³õÍ Ãº ž}}óvï¦â9Håš3J·…:o'Œ²ñ퓟o‰5m”­·G¼OõuÏž™‡f¤ÔñR¬1Ñçè! •ÃjfDSÑEÏÁëÞp­jd—Ä“;ÔVËÝpÕ> Ëß°*%¢mIáš8™ö¡&R/¯†îý3¿k,°öqÂÏX‹Í+TXÌ“ÕMðWïöôlKM:÷ºû,íø¾ZĆÈMóUwX•ë+@-髤©Bº²Ý¼%¿ò†TéÚéÉÚ͙۶†i’Vb‡tò«.Ù}k»mϦ€$Ÿ_i´„'ͤ]U¾¦½p-åÕåž.dOlçùøtíâYó'¼êigtã‹Ã’Wƒ8Ù5´×†öFøL:w¾Ut| ‹íÛÌ{0!êÁºD«øWŽÅ¡óeãë;µwdùäÝeFÖö˜»¥£(yûI×ø›|ñŽÔU—’‚,ί-æ>(—ôºd­‡bFxŒKe}7Š pm¦7;Ðøž§WoH^„u¾`DªV Ç­¡dÎ$&aŒÏ’¿×#ÿX»½_Ån"${†@•Ö…á* .üªA ˆn(…¤{ÑÆ4ßV:¾|l¢¶ypUq~dÎìw£Åjð©1 @–#›—ÇØŒZï:~JŽ$.!ýExò³FË2ÿlŠf‘C0øUÓÏö¡6Æš RàÁhSö\6Þ“´k|óaD­„L›—V#V”nS\[z~å¥XÐçJ¦]ÎDùPž·G¥G¶ŽrÔè$&ÁùÕé‹^”qKÌ^ï •”aƒ°ÜðÞÄ‘ÞVzF^ÅÇ5hwìVG…ƒ³'ŸE¨­R|ùɘœFé;å½”‰¤ˆ@yC/†U=Ëk²x×û=ß2íÊ[3ã”ßäJÿ‘™c g²H—ë{’·ž«b&?›Ù_QÎ\˜öbôû¹¼R¤.Úí'A.ˆË§ÂºÐ…žÞ»¬ @?¢—ßé²›Êã%Y%ƒN¢p³‹œT¯I.åv„ =zžÃ^ýyl·¶ê|"¼3ºó½˜-yÅsBõ÷‹ûx!,Doàh^q¶O­KÙË-•­_lxÐç°!ÓmÙ­' S;Pˆ3:n¶à2„ÄeyìÓc†¼c\P/ëA‘IšŽÐð ÿÈØšfO!]o)¾%©²×Þ°UÔ¿i×L—S § Þží̈́ڎ Ø‘Ç8Q¸‹Aù_y§Së-ΙóQÉÞ‹£î3§¬FÛVH¯e¿ô˜ýZsg|[〭![oZBrÄåý|fÈß{)è÷ñ =±øã£³ŠËWt`Þcß›ú:ã°Z¾ß Be˜.‡GÐbßW® ó¿uF’9Éñ‰¯¬zr]ßÒ'é‹^ðÓ’¬Cë¥Ùtôg8¦…¢6ž>fèÀ°Œó’ï?ú€S˜†/Ðøª‡ 1ˆEfDTg™y~[Î;Ë–“)ÏKcv0+¸¾VˆB=¥>Té•(®VלöO°<4YműDí œck‰¡HÍ0Ž©5*nk õ«±¤ú,EB ÷8VÜ.ôœ…ñ±öQÓFÓLsop®#kzÔ "÷¾—ö,‹ ˜µ2ŒÝ#ÎŒ¼:Aô ˆðEøN‡9\ä3øÔá šÀ·µm}t¤Ý¼7ÔSXË8Q©ågŠ# VeÓ`< أƫðµ˜`²šË³…=¥Ú€!…´7–GÀA8² nIoå9¢?ØjÃq/ʵáxá¦5_jËjw(‚¤¤©ês–†´±ÕÝ‚©[h~”z6‘ÌA«3e›´ß|§Ðcš]}_F¬¥÷(ÓÏÛün¢}¬óeSt–ÊÁ¦3âʳ;mÈìØ“xšò«0¯VÇmƒM¦†Í|Óp·T¥pHQ­¬_ÆÍnú÷ÉÁÏvw÷’¾z}òf­÷{ƒG6kû¾)WU”ë†pÒ¡ê.įÀóÁ,Äì¦ä¸.Æf"o»z [ª<­,íÏÞt¿ RBbx|53ù¥î}O3ÑnU–„™‘0[NÂ4,Tû@g¨½ø% ÖwV~n‡¸j£.JÓýòˆ­M«ÐØI•€”³cµÂV±#Ûê…‚"À9—æÕ±×t@½ 'ÿ2½È‘õ¶öÄËô!ËÅër€šš¾|Qž‘JêÛ!jÄLÓOà qÙù¤B…¿½ñš”«Ò1p@%¥zÕZÀîéôNùÆ‚ìnë•ñži’,)ME¸ }H.¬9ŸR¡èU©9qŸgyO Ò¸é­3 PýŒ‡‚^ªoËÌÒ¢Ž¬Ì@.¢Eƒhº3zê™™ÃL*Ê(úŠü$Û&LW(p’òy¼”DûzžÚ Qé³ÏæÞÒ¼WCÛx´€={_ýúG7c zJçŠEn›Lê˜IjzeáGR=89þ!çé|X[NXšNV,ŠF"#J„?Wêj¹úpAºxõf¥Oëê“I¬¤}? ËÐ"réFáÚJÆA»ÏÕŠú „2¸—¾u¥öök*WƒdÖŠ#QNGÄ7±…±Kº…šð©Œ6ºÇÌu<¨a;R¨ä—Ó*ãs>¼M¯½ÌsµdvF§îW*·.óTsiQÝáɺ÷/,CW•t,iôÒìø÷•ß ¬åÎ0ƒTup-˃sÙßV,S®-:ø­µ/BWÛ”5´Ð\‰¢“ŸÙ¡ Lì¬ù^ÑÇ}CÒÀ8F_zö}~–kçøùtuŒV jrîMìQ÷‚K%W·=i@”€ÔaT¿Q͆=ª)ÅÖ=µ}¸äC€³vA-M¯›Ò±ú¨Õ뮎ßÚÉjo>›h ”w¡£”múøiÇ( ƒ½Ù›-"ÒlOÙ¤š6¶èΓ¸ö½óÍ´ìÈ5¦Ç*Æy‰?¹õ~ß‚ÛÖת'4ê |åŽÅ#Ú}ujñ|pvt£­sæÎ,³ââ"f~di„.é0üñ\©]Èæ{ÔE§1A2n×1Y7g“8ò#$õìøgŽ^ËeáàÁw‹ÈðóXέqfH1Ä›TÓ¸HLsãnRJ?!µ<ðMR'¿¸" ¸VN€òÆ?‰Û7›suL>ŸZOG¥¹¡Í;T§6z.‰S6ËE§ï5ö#¤ã ¡/1Z"ïºU§úz%™)Ï]tçeÄ5{Tþ©Ø  ©&–pMͪƒ‹¿ýø>0Ìzã•qÞˬb&Z¥ºêýdœ#òŽMàAs¦ŽwD>î‚ñ¼ØT|¯Ó‹„Îsóà+ÈŒÝ07ìF?î5ÒÔëCÖ>{Í·Éêèê6FZ¶’ï¦qöxιŸ_G¿uÖRðТÈTìU6 œ`/ך“e5ðc^ÁòErÇ—j¾À¼Ecícû¤v­íçòÒé~†ÑZc‘¡|‹ ׌#èXøi]Lt¶èïŠß)ˆšŸ‘nÚü3¥Õ{ŠŽ,ñöµù×¹=dµ7ÍØ¼‚üs‘>§ö1TS;¢;oS«c¶2 OŸÉ£!nÆ7µ|Ò|¿Z.ÆA÷6ùVŸ$\î Û¼½‰Rp#¢@ü¶fÄi'{±wJºý˜¤Ž'¡Ãàs5Æ.£<Ò¤Aùh›Š*“e´›ÊêêHÅB½ÝWÅÁQvÃÏ­CÆêº:ÄŠ)¡¢‘i¦¾‡aUG÷íöŒ¢gÌp2ô%}Y’’Æí¾4¦ÐŸŠ÷.}“% “"†±›{Íç{Š-Ÿóƒ3Sº9µ‹ ÛÇäê}ÆÝò¸ôÐäy tx–b*ëÄ®Ÿ,ù³‡ÂØvª Só²ÏQƒ–«õ­ºrLÍJ=ÜÐýz¥Ô¡õÅ šÕÅ“wàÅøè¯´‘hÞµ+R›ÐÞŸ"žè˜\¹Ž¬‚èsjU1ÌÁ‚á½¢ïåü.̨Ÿ}Û@"(p;ôÅô¾KÍü™;‚õ¡êѤ-h;z“›@ƒÌðƒsEšHªNaõC¡Žç¸ê}6Òº¾T)`ÍʨøKÇ^ä…Jh±óPÆÑ€¥åöYâ>Wc1‡õº×;pCuŠŽZÕrñ~‘šþ×298nûL®7¦P×ÒÖTm#¸šß18á äì䌂™¤W"N­ËÐÀ§ã•ʪ–¶ÈEÐéú-²ääj gJ€Âʳ‡°Ø|¸™5Ô9Î¥eYoÈ32ÎÌwÁ³5½ˆ0êqíéÄeŠuz9x@}µDÝGWm”‘á“=M?|ª¸â¨3ò²yjt“£*ËÒq16SÅÝ x1½Ó™t§°¡\FŃ/J½­Ý7z­›ðóº€Ûð¹™æN"^µÙ{ßR‡$¬î:ÛŒ´(‹h¿ÔÍ] cÍì–ïìå·–{ʘX­‚¸Y9ã4‘Â6ö‘º¦+Ì x§&Ãösø ÇäYF Mz¹IàJX†€T–&Ü}ŸWùª—(5ÓñÛï Ëùéb©%OÔÞÄ®Îñ߈W‡xò,oXw5lSˤצ.†ì,ªZ·)Å×kqžÂfuÍQð^¢”a-N9,’¢?fFˆ›î7÷”oe?šDzÕ+á8ÊùƒyG^‘ÀÎJ‰òãµ&Õ¦çxâSÕƒ×ÏͱÆð¾2%)_qPÑTÐÝÅÜõ»+~Þ/_ïA<Á¯4¡écÅV‰ÿ,›È‰$Ãd•à+ëÖ͵ƒº¸lÙÛ㫜»ìÍ@Ð>uø¦êóûE®é+—¤Îæ{ÄóÏÜ)z2ù¨Áœ¼rÇrï÷{b=üG›ú/âß îžc’m7 ûÂ+6ïÞÄ ;ŸžÏùéËÇ,¿ ~=p«8=lÊŽš­[¼s|r”ÙæÔÎ4 !j!“Œ˜âyr~¢S[ʦjrßT¶#C¹¼:÷c fOð4 ùrÓÎ~ÌjÌßÔX]c™6‘;¾-ŸZæ->Ôn›CE §hrð-÷VàÞcXÊ'„E\«’!dó®¾:¡hyÙ›W^8 c#<·¾ç<”zoMéH„·¦%ô²=PÄ’öþ³H1ï㻫‚ ËÙ±¶>).]íýã£fÚHb„Ò­ÔZE묧v»Ï¦¾VPÀ.Ç'Ìì/æ×Và+nZüPË7·øBEËü‰ˆœ›å¸— ´<³C‘ËÂíjwêß3V)yÙ$ق啚ƒ” žO0õ»½{Aáù‘íø2£ ¹gxCüñî†KU<ƒ–ì\'Àª gŒy–ØÖ‹ÙKá>ŽpŽ·Ì%vs|šµŠ{ÏZßt£q«Q(îßä~Jc{y§µ›í‘ÊVâh†!xŽ -´/UéµÅ¿ê»Àøv¬Fᤴ lpßýêÞ¡ÿKiMË›T­¢P /“¬sìïceÓ@B­™y^jCô1’l‘å.¡Ÿ”w¹jÇp¥C+A­›\O®ÜŽD»6´Šð¸»1E±¹îCä#[1wbYƒ i •æf¦™9UlÇüDmuµÅE+h¡4õœS3ã’¿µ÷žÁçÉΔf(o²ŽE<"Áè£Ò—¾­-ÍÅÄó>è;DD-ìI‚}æpú‘ wÓO2{T ÖºžV9U ú˜b,"õáÖ¨Á¸ØùnËâAƼ-9œÕ”î½ÕMNé㉠¬¶m¹)WCªÓzeNE“ç vY¼¹ 醤¹²Äò±Ù ¤×TõÍ¡/56Uç8“æ½  ˆÏ|ý6ÆcÖd^Ð,¶@§òº`,øsh_CÈ9b¯ÒfmÐn;›¸ƒ!·­9Ú”¼1ßd 06kÞ/æ¸S~R4s'ª'U³¸:8YÁ_Ô§°&)¶þO̱'3:YÕN¶ðåNÄ‹³S½rl'¢ûçE" ÅR:1ü0¨F>¥aS¼eœ¼nMC‘tS¥}$lœtxÓ?æÆõ‘y“,Ç'Èý›.Sãñ×½]0wOÂX ©õýˆ“D7Ò‘}ܶMí®+.m áÔ×mXyY×Í>TÌS]Øne³ž}zƒýElfð®‰nû%&‚l*Ý@JÝA·6¥˜7—\wƒ’ï!Ér™CX7¾iý¢þ¹R¶s8Ú'~øî•ùP^нŸ4”1ÌÜx4«9Š„ ˜òÛ¸—OwöÜÊá°r”«îs¯£ÒŽzúººhT•®tÃöщqU!Æ¡ ÁçNÇÊ:ˆ"˜› ©bÎtYᣠJ¾âDB¹ç&ùvÙz/Ñ4Eüs‹ŸÝ¨ë@#Éø>Íkùʼ)!Õ8™ìŽˆd³£/sþò‰+åq¡í‰\—‡àÝvBítSO‡ÂÑ<÷}B’‘tÞóûDü„ƒ·ºtuÆ»ú­z#ÁùOë¯ÜýÆéNänYB i9Äb¡YESÑ/¿¼ÍK)Õm*#Ñ£«ˆ!âép‰½ÛL¯Rn%ù°¬}|@B¿Ç0Ór†–ƒØ[ƒrÔ9ò%M[À‰-AñQòÖ÷7gϱY žQÙµÓ„>7$XÉ¡½¶™¢,tœX $NQT °{zŽK G¨’°NH‹°&?yi…mÉÒ(²Ý™³f…ýx—ÅØ¼aT2gßË¿Í=9ý˜Ut´îJÏ“¤dJ©Ôz×á8”¸(º‹ð81‹14œ®ëGS§³bŒd`¥’‚:,äƒÝ†¤Ô´üf®+aío!ñ-ë²?»´ß ¦»S^2Ÿ8F³@8¢3N®n2l†²*ù_k/Õå@,0ÊÚݶYkæ•öT6äßK:Ìʬ½m碇PæHÈ<Ëú4ù‚ãc’ÿ¡,Ÿ4˜³ÜÊå¿AˆWÞ15˸|‚nɧoÐêÚþ°ÊÇ÷6ÅN`'ÕªLoÌ(FËà Þ»›gQ##¶•¹I.&ámÞ…÷ÌFÐJÏ]Œâ혗_½GOÜ·+ù«gå°¨g:v:ɕŠm©ß¥!oW·ò=åÉÿÚQf݆é™SЛ™ûÕpþä+TÝ…ví¼ÍËãÒN‡…ŒRr‹A> H»ÓLÁ®ÈÆÞ'ˆM¿Kºk`}w@ß<"ª'è±Õ6îò„ºÝò—¾ª³‰G f…ÄS (fcßÓ6f©4Øo¨-ŸÉÍ~G pnÔ­õGæ˜/oc„¿ÏÇ|n;ÚÚµ…‹s^‹œiÕ<Å´üÐ5€BLËï…­¥Ís•zþ4ÞN6M¦Dà (:~ö–{°¦}ÄÅ{¾w1òCzbc¡õ¹J5õãæÙšDß$Ä ä· ×ÏöÅÃõ‰?ªÊ4’Þ¿6…þÔT*ÇÜz‰â $àU JbdW­çN}Ç5eИT΋FxçoŽ“¯ä­¦R`kó)ëe¶9j€ÍI@J=ýN{wæ=?Xsæ¢|œ, Ñ í–pí–üLÐ ¿š[´Ù†MÅ2’€÷< "²’âé²xxÙv…l&ëÞ|L—kهDZM^Ô4cϯ ½r¹wk5·ïé‚A]7.¯¯ªÏU“ªÏÓ[|Þ¼ŽE5ÙOÌpÅWñ­°*ìÉÝD†V#3Ïø|ë8¯ÚNítº‘ ö¹)ÅøêSØÚOÌêñrOÁs­s•‹¯³yˆÌeJ"jaãÎI-ÀS?§nÔ~„g@äû£–ŸOð©é;nƒöª©ØÊˆúÆ5ÕwXS!êÏ%¾ÁËÊÊ:³_~aŽç¾i&Cb!=Ï­éwþ|Ó—¿×Úm«'Öã~ÐMPá0##µjâ4Ší8vlÌ\°cvÄv#1±SÍe®Á8ËS¯{üe AÉ‚Ûí Ѷ®°)(é†jô3Ï4¨]ÒIÉÿ¾³²êTåÑenôD 0òì“@&¬­m.¦zûB1b*îö1íÇa:H íGmÆá¼­ÍÁâ½LK•ÐViÚ°V¯WÜÙA›¶WQ“Ë@{ëÆk5:â³%R«Ú˜hün€æ»àŸ©Ö'÷µøšCáýô¤W4/´Ë È;ו‡ÅÇŽnªFܤ„kýœ|Ñ ”†l­‚Ñü5”ñ¦Ï©%¨Å©ß >ÎÂÅÍß3wLÍ@†¥ºâl§†álûÚQÎû‰™eÚ^I´'ä”lg£h.I]ñDž>òèÏ)cFj¤äÜÞZ˯×sû°®-ášÕ ~ÆÏöÛ7Ú±\µ}K¡Åü6õ‹æ°•ÑAŒ°à»=Öñty½s4ò¢µÍ>©Á¦¶Ú±oy…oxÎo¹¿™Çœ*;w’^aÇí}Úu_z jQ½üð"…0‹õ%²¤?+‹-^“>žÉéh¿VMx‘Å'8 Ò 3ÍÉ–¢øÞÎ ø?S½gÉ endstream endobj 487 0 obj << /Length1 2339 /Length2 18330 /Length3 0 /Length 19709 /Filter /FlateDecode >> stream xÚŒöT%l÷À gÛM:“&Û¶íš\'Û¶mÛæd›S“mL®I¦z›ûÁÌóÿ¾µÞwµVßµ½¯½¯ÙGeZAc[C ˜­-#@XVV’‘ÀÀÀLÇÀÀGF¦bîdüÏ9™ÐÁÑÜÖ†ë/ a Óû™ˆÓ»¢¬­ @ÊÙ ÀÈ `dãbdçb`010pþGÑÖ bàbn ¥HÙÚáÈ„míÜÌMÍœÞãüç#€ÂˆÀÈÉÉNó9@Ðè`nd`5p2Z¿G42°(Û™ÜÿÇ™““=½««+µ#­ƒ)% ÀÕÜÉ  t:¸¿KÈXÿ]@ÅÌÜñ_e['W àýÀÊÜhãønâlc t¼G(KÊäí€6ÿR–ù— àßÍ0Ò1þ×Ý¿­;2·ùÇØÀÈÈÖÚÎÀÆÝÜÆ`bnÈ‹ÉÐ9¹9Ñ lŒ+X9Ú¾Û¸˜[¾+ü“º@LP`ð^á¿ës4r0·sr¤s4·ú]#ýo7ïmµ1¶µ¶Ú89ÂýÎOÄÜhôÞwwú_®¥­«çÈÄÜÆØäwÆÎvôª6æöÎ@I‘ë¼Áý93:X8Ø™9X@{ÐÍÈŒþww;à?BÆßÇï5x{ÚÙÚLÞËz››ßÿÀy:¸NÎ@oÏ¿ÿKpŒŒcs#'€!ÐÔÜî÷÷c É¿øýþÌÝŸÞÇÀðû翟tÞ'ÌØÖÆÊýú?WL¯,"*-¦Nýï’ÿ+²uxÒ23h™XŒ ,ö÷ÞÿëGÁÀüßyüe+icb øíìw¾ïúOÎ.ÿŠo%àÉÙ¾.@ñgÒµXŒÞ1þž÷Lþÿùo/ÿ¯“þ3s¶²úGNñ/…ÿ¹µ¹•û¿5ÞG×Ùé} dmß—Áæÿªªÿµ»²@csgëÿ+•t2x_AÓ÷‘¦ed¡c`ù×¹¹£˜¹ÐXÁÜÉÈì_có¯sÕß genT°u4ÿýļ[10üÙû–Y¾?#Žï³ù/‘ãûÊ9ýs‘¿ø¾Tÿ›‡¨‘­ñïícbe88¸Ã½_þ;±<ß×ÔèöÏtèéllÞMï5{Llà~_4+€^ð÷Ñ¿ˆ@/ü‡8ô"ÿ%v½ØbЋÿ!f½äbÐKý!6½Ìz÷)÷‡8ôòÿ%Ž÷ èݧòz÷©ò‡Þ³VýCïÔþÐ{ êè=žÆz§ù_â|§õ‡Þí þKïËKo`egöç„óÝ“á9Ó;þ¿»6ú/±þ¦÷‡ë/‡ï—Moüßë1Z9ý­ðøßÓþø=¢É_øÞÓ?ø› þŽÇö®núûKê}¾ÿ½G5û ßÛhþ¾÷Ñâ/|ÏÀò/|¯ßê¿Èôž¬•µ¡ñ_ß ´ú=»LÞ»`ýÇä=#kç¿:ü®oó¾{´ý/2¿dk 4ýûFÞííþD{/ÅÎÀÁÉÜÀÊØÜäOcXßÓ´{nlÿôšé½L»¿êüÝ,û¿ðÝÓŸ1½7ÁÁÌö/ñ»õŸš˜Þ›âhnúw£ßóv´2pü«¯Œï>œþà{FïÏÞßwùûrÿîÄ{Ÿ\ÿ­÷Ƹý…ïÜÿÂ÷6xüƒÿó9;8¼¿ÿ¼àï¯ÄøŸïd Ð h·²hkÄdÑÔùP'ˆçJ{0Åy™ö ÁD;U¤ ã4$:«·“ œµ*]!¶2È(¦kÑ#'dÿ³¹tã¹ßHôÅåž–HìÈ”È0nñít>Ñó'>ñ"r+H¾zŠ!W©ÃˆA$J/,¿±é2²×§†åDWrŒ21v©àN¹îÞº²,,|Nµ³]%§6ÃQ•Ö[œO¹»Ö±{QÚá©rÄÒ<Ýp ®µ(Û#ã£ë¨ƒ}‘þR.W¤!N¨¢Ü£ø",еjëH¿rK]N3Ð< ÅÑN‡*·(Sä®Íö¯Ou>R$õ²›é'™D1žy< Ú­c¥9äF¯å„·Œð%þtTH7—è߬Þ%°” –v_˜Ùþå,*ùyz8ˆ‚F6÷µjÿÌ»‰¬+ÚÅ$¬ýS] ê¾(5V剷I`Á0©Uöú=Eð¼:ÓgŽ4³N¾’uΠv? TffDó´U$ú¦ï#ÐÅš÷ž,¯7ÝÝBä«öµ‘6ÑhQÛë^EùO—Œôc_ŒÒ룄=\­wî½jÝvtdF¬m‹½«=:­YÏ·—Pc¢l¹D9å'=AÑ8tíáÄÕk{ƒaw„U`qÆ ery•O·þX_‡m;A˜á\Êü£žN=^NÁ2rpv_< +0¹Õf{LÙF †àÁøVhÞ~ðµ§ÊûI±X 2L¾(17/¶QaŒzvS`µï£q¢î›;LË&íË ›yÓ¢¯QÄ `(Ž'ÄFu nß¶åFRÎÕãÍŸ#t–ñúÃÐq–Ï:½e6Åûp“Å‹Dô¹[èÍðÍVóJ_­hëi8`ºùZ˜èl¿9;³ÛàúØVKÌQ>ž2(©ˆìÒ˜éºÍ5J®£zN‚ïNÄûî f-;~H3©óüK=£…VM iT£aw[–T…—~·Yt©¡/eŸ«fà¥Ñgr‹¤« v÷S8ô43\å–àrH_o4»WÚÙ“E]€Áó¢Üž‹‡ÚñÍ‘ÒÍv^4P ¶‘ ÌÃ+%>YÝœ®…s’2f$=S(D9fË‘y:6Ö2F7Ê0!ãÊc¢ Æ~"˜EOjïmýyxê‰ñ’zfuùL½©iÜÎ6Kä9«2¼ÛoÜdI¢ñé3‘ŽŠè}ŸE†Òh„=õ3üþ>Ö # eÊcßCc=Á®á673[â£ÚÏuãæÍ~ÜÆ,…*ÅÈ+¬\4{O.$FÒ±Të‹ÜÔÓ˜ÐQµhˆ–ì"Ź-×!>ûaC¶Æhɧ¶)iò`~à·…Ÿñ¼a'&mÍR4yXŠ(*:q7Ž [µf[ÂïËáÞ³TÏA±<¦ßn5®¿YReê›Î†*VÔ7ÀR”|çžð¯SDT% ¶3<ú*Àý0  <&ûL Wð+ø1 'Ú$â<­³]ï¶&uÖDF}óØ^Yn™ó#ÃÆÏøhKú„òZÖ;„±Ù²Ç¦…eXÿzÚ-M5­ Ã3œÏ“ ΓX|¢ó– ~ 5†ze⺛òGâUSëî3÷²¡VO*ø£6³¯î™ƒ@Õáá·_ŽÁ‚ëY¶ÁÌDS^:D€ZôýC<6ÿ ¹òäIâ ªŒM!tôœ`Ü#3’ 'ÓbI¤%Ý~ªËôÒ`àVK&lnöÛy°îp ®ÞõôTdOk†É–‰µ¿4ëÝmݾ5[Ô\¤º6(w¥k»7QÚ`ó·ç¨H5ã>BQâYç}ÆòXŸ4I«÷CK]2‘¤Úøl‚Ë &‹†ÅYMæe–Õ]]ÚËÃoöf/õÊkµÙ ºÈBÈø8X·Æc…yµWeQʧóðsCwÓë³þ‹KÞ«C *‚¬šzEæ=ÝwtMZ§£ô´ãºê&ì…ñAÅ ¡p<ÊlNŒMVƒú†‡ ¹í ’§X3z”ÙZé7óz@Q$e'ÄbU#Ö³¯Â;‘¶C¬(#n2"_{Ó"š}_†äJ¾)Ád"ϳL†Ý™D(R&mòV³ÖÌ×£+¦gÊ£V:£wŸè6aêÀ oD?—Ó‚W½´œÝ!–ù{t¥Ä:Ô@"ŸlÏ’ UÀË€ÑGÄ}çjº,n.‘û‰ãåÌN1:³1è8êûÃ%Ü&{e´'RÔc±än•R_ 5¼Ð¢Zvv´å §XïÜ>wHÖXGnlê ~:\êÕjŸëEƒ¡!UÂZÏ‹|¯Žî¶ó™¸ª¹ ‡‡ÒXO|á°ôX¹ûžaÜ-ÇM¼Ÿîƒ5“PÖm·ÕyŸŠÙŠ+,^‚ä—(÷-·.fpË‹ }Á†Ò+¸õs~D_¿Û‚‹ D«1ÖïíUµ„Œê‰ O{ù¦Yèp'q5žgüä@!ŠÔÜ¢Ú¯wøØuÀ)˜Ú¼lÓ¼¦Hªb>§å×< KµxhâÊñH³=Û"Ø»N»ßIBøúrü‘0NdçÐ1ëiÜCH¯âɯÅë>™~ñê§óL5ª µz`ˆ) £(ÅZõ†I£¾øŠßŠ¿¢ÕújG ÿbPŠü…T´"AL"Ú„r {³ˆ²ÊiKéÀ<ÓŠ”ÌÍòã‹p:—çñw½)ÚoK™ïçUýˆ⼃º•fË'”–µ™mæ°†sñŽºØnâotñ!0ȧ8ò?C2´"/,j÷Ä0TÖ;¿!Ò\~PZ«{r4IúRX´¬mígdÉh[O}è :y¸á×'zjxI#\c3@ò¢~*Y˜9<ŸáÐ¥½ÖÜ0ö¶û¬´ÕwIØiw0ƶã?›ž¯©Í2YžÂ„ª/_lS‡¼· ™¿±„*œÌ#B¡XÑ‘ÝÇ]BE†EÁ¸_Óõ¯žYO®·Ú˜þæÎ‹[¦ëÁ*åëAú0at¾É0a©aÛ%xfVêàܦ)õ5ñÕ2²³mR\Ôlžüˆ30Pˆ¾]ƒ§Ÿœ½'Àù1ÍV[@&Ñ@%UGÉ þ Ù£§öÓª¾ŸªÜ!´¢3‚m;T w7zX÷k[z~u1%uóUžI»Ù3oé9•TgÇ}óšQ_" c(œä=¨mO¢»dÒÝvh,æÊ¥ à«­*Ln4Îs×þ\YÊò¶VÏ:¦ýÑ$»#8åá¨ïhè—µò2àØ*€¡—èØI–š³'Ö„,Ÿ Ú_™ju¹i¦-®ozo@ÈQ”ÑBJ±y=ª«ÊŒ^kŸñeþîrïF’¸òÍ¥'²õÎâ$š?-÷i}B`®å•®Ì‘«[g[‚©&¸«ßªçKƒÚþ+ˆBñÏÛ@˜ÂµZ'Ƙeúô#ñ†R‹´ÒìMØq$}¼,­¦HRÉña'*'ÙN”«Ûu<;gKÔ >1w j€Wòî8¼TjDÿj,IƒRÉír3á8|Ð –u†nÕ¬Œ¦]D÷$w…ąɧ¯ Kªa/¤õÒ¿˜ËkxÔÌ]zãË«7æ[î·à_>^ו-[°ó¨è·*ô=/%Dµ—‚ƒ†'#…_ž÷­ªÈ¬À»Á'ßÜQObQ±7_JLë=(òÜâ0º8Êûµª€6®Y.°¦k8>¥HÄÔ[ªÛ±Ø»+ÍòŒî¸ÁóÞÒf¹„AüŸÆð®Ól»ð0JŸ¿­¦¥4ûa­¶¸EQ%“‘²§nYúê0ÅK_ÜCÎ(¦â-ªó£“9«T™ Ÿ\¶Õ=ºPS¸( Öðq¯µ$šVÐSºîg¿:> ¶P”mŸÀJÝ!”ŠåõAv\JXºÏ§4—Z‚g~Ew8‹íào9E;I¾}ði^´uF2(A·_T Ps/<|FQQÁ²Þðdž>„°ÏW‹SkõNä EÕoEôœð¶ÂP‘Oú«°Wrøø†Æ‘¤Ín÷X%÷sa65 uµšI=·”ôåáPXD¿Pañz9EáÑÍ&2  1Xµ\Ö}ùêÈ£Öî R5Â8›ô3ŸˆŠ(V 7ð:•¶l`­ñÕ×Ö5p´x½²Ñ¸ EÔ7ñyœ|#`j¸´èÁW¦ŽŸáËíÂÞª²¾0H»=P%£«”ǰÞÎΩ¡es¶ÎIE]^?öŠ…NÞÔ-Áí;ê˜Vܼª Siq ½ †Æþ‹¶·%êW“æ\#PêÔשÒ=¿U \¿—;Ú‡ªTu›°9¬ž\Ë$’s©kF v¦ÇöL+ŠšdŒù¢ÂCÁ¤¡3ž™´/”å¸8ò ±>™B—lÁ¨òoRîÏ+’Í<¯ÚFµø¥ñE°!î ŽøP¦ÁÊ'ÀU–h¸²~¥'žØñ²L/£â’ÒãlJUv‹Ã·n'ŽÜõåà3ÈÞÙ’˜Ùͨ“ ^€Ò*åQðSM=ÁΖ2±†™u]¶{IÒ±:÷é+*þ\  ÔÿQžª¨8Ò|Lñ ú'K"+Nr£niàfP†ìV­m «8•>ÿW%1Ù2Äí¿×…IÓ½˜»^“Õ-0ðWnÖaFd㪢¶øséÁS´Ï2pî­ö°_„z›I>ᆳT?݆›Š{Ål–l»d{ y–Té# ~rÏ\ ½H•H±3o;|S32ËÑÁ±"_ÛÊØàjëG‘/:&%€ù(ÂU‰ LF a€³—)ë–ø2:B¬'“úÄßoŒFõĺÈpɤÃîFqÖÎb_£ÀÑI…OáÂJã8aÈsÓ¨#£ÂpIõÐ,}ž¼DÝ"À¤£]µ­˜‹=zÆ­ÁE†HÉö³G¹žÑöÁU¢Æ$u°M)N_5 Ù‚yu÷<É;2@_ó²ÉM¤äcLɯ#,/„Ö{ô2s‰am ÆTp"ùtrÐÝN*^ z£,5­>‘€0ËîÆˆ<9 TRʆ·‹¾@ÚsæmÊnò óâ§_žjãJ䦶H-’iÜk/û3Ëcßwm$»õv 3Òûà¾z!º™øõ t5Ívç×>­ÜŠŸ.Þ±»Á[¨ÞsÔ"( Ïõð &ûÂjpöGÿÚè&éêT|Ÿ²¹%¯æÞÅ:í(u¸Ø%í"˜Øg?–yz,¥t Ò0Ës't>^¢Š[Eƽî)‰èª7¿N}@BDÕA•|š:L&¹NêÁ’GŒB©ü&«§ü@ÎDŽﰱbÁgÃôí­†ž¾rlÛ<;Ô]÷pÆ€rr¥Ím´±)Kœ¹¾5Á&®yÀ(•ª¢7”ÎÏ/m ]ÝQ>1ç*寳i“±Î5Ô¥>trA~Úñ.é1Âä‹ÙˆTñèëäKo°{þ<Œ¦©ëòòYAUûé0ˆ-}ß‹Á—à’>ëèGx_¥gaË Tf²dŒè…lC¾p?äV5`ÿ…A@=ôÔÍ8ÓS T>±ueÖ1©ø>ã—±¬Y«¸Ém¢öbRm|+ úèwX”c ÏÍoEúKÃã{ÊøxèY|°Çx§j™ƒõÆñ¤,Á½{Á½'äf¬R­óú‚SüáögYoz‘ ÃÁš×Ã;éñ.]èº1Mœ/oÒð)Ai}‰©ZSTIxÀ…z#ø¾KÜÓ´„¼›6UÇqVÅã’Ô>[ðašokv“Ÿ;1Z Þ¼~‰/(3¸FU›|mÍ=x¦ÁŽv! -暤ÂëM÷˜ä_C@63 !JÇRl§•¼p^Yi%k?ZÆÄ&Ü ™ô>S¶Ô‘ð<1dÖ´k‡\Œä;€?^ªOi’¨<µ®’3^vN}[X´sMÿÊ\œ°9²°¢t}Miý,ÆMÒæk¤6 “£yTYq!i¦‚Å´Nþ²ÆÑN…iÚž¢9d¯¦‘mCÙÒÒØ8Ýÿ—W%§QwàžF­± Ò°¾Ü#ÝÞÚlŠgƒZ{'ùt\·>îú䍨z¹D-¡—œÝåÕžxâWù0æÁp*Š“þs¾c˜Ér$ŸÒI¿Cj­ªêËØ”Ã9XÜ(BpüXs_ „µ%QÊ!•1ûµýÓ~J´ý<Ø×r¿ššše) u ¶,_]ü>¦ó­–è3m?4„€¸²Ð ΧäQôKs§ì0(ÖX#Íß(Õâ­U!Ãí®q-»IbO(|—XØü%Bâ/?RØÎìo!~%V)lÕ`–´¤ó`ìt² nñ™cÕuçXÐâæÏ[Ól­£|õìÒ{Ô²% ;AÙóÀNk}Öˆçšé1ÏѬPumã®”…„FqÆ¡Ó~HLa Ó§È1šÆƒ­-ŽhÕF¤¢¿ú¢ŠuUüšž1í:`Fñ°‹†? ¬ÒHÅÂ~0Fc±¼„‹ý$Ì‘*ímÒâùµ9韨 áý¤ÎgywMjoQ¥ÇƒÆ8ðtnwĉÙP"+¼É¨dVL0íÎt™¡À®®GZɯÑéC½ÿÕ*EC๗±SãVlö× Åž£1žKã€Eb4{wgü×Xã'9f!¢¼¤o}~ çóÅççÕŸFЊÄÕ•A—:mìIX­ã [NÆyõõs ™¬HøQ×´!ƒËyeÝÚÿP’¡\[⸎ã"úŠÛ×â(@nÜÍÓ:'¦-ŠÓC° ‰þ¢„L¡^ÀG'y[LQ)œÞ•A¤Ÿ´™”˜¬É—˜i8½Ä| ßêÙÚ©ü¨âô+øc¹!ª¤v)ü¹Y¯Ä²hö nÇ+ûçñ—@U¶‘ äk9\±iE› nêl*®éémʧ®ù>6(æØsJ6ËìOŽ$-á¨Iãýaë<¦„œêÊu¥kÄÈܵbá¬ßîî<§YàK¢l¼±üyT'PЂGœã“á`îq¹ÂPÃ'æ¹Í2w=Õ¸6ÛpñÙ{¶Áq4?ß–¢¨ÂéÅ(‹Åz.«7³eÅÏhÖ¸ƒVaM>I슄2-’ªŸ?Ûì&ä/‘æH9;ÏöB‘9ÈQ³³¸¨5aåîu• I}cœ«‰Ã[È¥!ܦesäùÜ"¬´LŠA€†´üñH‰ÇŽºU;iš(VdüzSÖ¿äK‹~é8k,Yj¦5Ë'!L–í†Xéy˜omßÉAcÜF|¸Cø)‰Ãð·+꺡âpOÑwrÒ+­ëSAŠÆG¡F7u¡Îsðê†û†û(Y~Ýj=®ãYa[„ÜŽ±—ñ‰äu}ÇM›Ü)F§ö3cD))?qqÝÎÉKc–1׌þÆK¯K±­2+EÕ“TL}í¶1fb;8]¾Å`MX©©‰dBf^ój˜É>B±ñuPi“¢ É{ÉÞ+§%ʇŽqë?tE:äñ;þ‡þOš7Â’¢ŸÞ.Y¿¼ØÔ  ®oÞô¿{-d:~W[l›½ö÷C²¹–?“÷ïRÒûâñ}±¹ §»JÆÕT„¦VM çMdìËðÜâò Y"W|D.¤G,Q°˜FÓLÖ¹›´ÅMðö‰‘ÓH4öe­ÇÏïAužFí² Îä¥gK»i¨9Ä Èß¼œ¾ÿš«êL–ÃÙµu¤iyXiu{Lé¬mð£@ Ŷ¾Áã©ã%u–Â$;ÁuÈ©ómûFã"£‚0*#RA=Ô(΋’[¤ÝÈŠÓnz%\ÉFrÌÑ  .qzð8"£Jq­”j¨™NùHÕ~¬ͬbŠ¡U>p1!Gɦ9ÚqêËuågZ\ýh•u£WäôYâ¾Ý¤pBÕ¤ƒ'IQÓ¨;¥Óó¢'›‰[% {es{TÛ.•LÑxªO††€Bœ¤§>vÓî`"Rb³áXË«bq¯óö>ET4nȺã»ÙÛæP(V┊÷¦BSÖOüÅAAŸÎª¤Ý»¦AÌ˾l Ës1F¸üpvÑa}b­·^^/vÞ 0ä-¼Ô=·ºÜd(Cqè~V`ˆl¼Ü&2Ôg~ƒÂ€|3ާÅv~ít,;Ç·‰ÃƒñŠÕPËI<¼e[ýš)µÂšçoCרòÀ^[c¨U/vI½‹è\0>óu ¬z,Iýø4“0ßAKn!ÝÉä é·<í,!pÛÕkÞ+‡„ˆKÇ‘Ìë^hA*Ñ*탠šGxhú“8LÂÞ'835ý‘Û~€ ­I\êw×0 [抩O(ºFƒZ'ø3¡ùcÚ>MÄ­±WkÛÅøÔl4"Uµ['¯²H6R`Yè+qÏçAÞ¾~iL§ª`¤Dý& <ø2X!UGØZ'C½œ­]—?äªóbù-=–µ \S§{{¢#b¼ëwáž,ª¥ +~Æ•´ƒŽ¾NI ³ ãŠ0S :¿U¼‚‹9·"c̯r?‹·*Ð"螃½^”3F(”ÝsõOø‹GH1=´ûÈÔà°ì°ŒÉG·-¹}q‘y›¶†ÿRüÐó”¾ÁÁ–M²ý¹z}šê;ŒÂ%t¤çÃÍnRY¹Íæ7%¥ˆ6´¥@‡!‡%KÊ”¹K­-[¢ ½ìÿ !Ihÿëg–æµiZ—Ÿ²P˜êïÈõ”oÏ%ûY}U öªÖϬqÊ1|(+‡Û¥öƤ¿IªÀ:ø¸ 8f€~Õ>ñjŽ€;…¤¦q´ oñÔBÈô΃1°N\ߺ›a¢I³ùnöØCƒš\Ó]°­Î»X¨¾`÷êùf«ï•Ë6@Ýn¿´ŠÇÜÚ¦Œ6àQû îrÏ`¼™‡~ù º‚3µM“ÊZó\ûçxwVã §”úžW0­Ç8¬ëN7%ñQæ¹zGMš¢Â ‘/ðeìgÎ~èÕJ’ ]:Î ±ydŠCc[oŒÉƒ3þ•^¸má°|±Ñ‡dZ©rY†oåñ0AºMbºGºCsú° n"»ÉÍXäø.áÃÒkÛé^_­Î€ÞI›Z>^ÝfÚº`$E32S‡G­IYL!+î/Y¯j7ã0ùÊ?‚C öü:krÆ#…9¼+ì¯hìë[Ôñyà_&p/´2Æ'óÃSïÔsÃM³ã /_Cä»÷@ÖÃ;ó×N’0½aиù‡³hHuûÁö§QZ¬Niå-½Ä^Õ y$ÖM&]3?áCϨN-l•ÞGІÀö·Ì M¾Õ¶ó;?ª³Èèøú)£_>a÷žãtñº~“2 ˆ¡½LÞFO:…â/ÛHáZ2~Bþ„U~ñ̤ª›2V$³rufˆßé¥"©3õU‰Ä)Šë \i«càr-”¦z½¥©™„8†ñèGÛòkaÊ¢?©qž;…K2·þÖ$K& ï™mnJ˜BPú°Mmf?§t%9¨@ýÄ*£u÷›°iÿ=ù¼'Θå†cƒQ<¶ýf>1ÝôÓm—Pâ‹ÓÝl9EdR˜)L²ðãÚ,ª¾CÊ‚e–™#HñŒõ¥Ÿ«êR¦´à¾n¢N,4• e{Ô£<Œô FóŸü²Qó×b?ˆŒ‰Ýe-çlIšªc´›;ÃU›³˜ꄦ…Ü’òµ#—êç;™ÞC­ü, ›hõ÷^”É>%£ùâÊ4y"›—=3í›´„Xäâ‚' ­ÉHü ›¾?TÛ6Dq×Í´®j —5 C\>bý#r—~0¸ `VŠº2(Ðsõ,À“æÂüÛ÷ÎD{((‘WŠùGÐlJNn¤?ªb8ÂCþÁ2hÞ„>õÚÉ…4¯D¥&üONKàD÷@þ¦% J:Q/¨‚£¹þ‚âϯæe•­+åó ¤þ…}„ÌXŠƒ!ñqií8çRÐËJ” ôå>Ëü‚{WöÕ[w=vï¯~mÏ/vÒ€Ô©<=—-Xs ¿ý†49à ÏH~Ÿ–ëÀ½ý·³æØ‚m:ðëLXEˆáô3Y1ՂޱÚ,Aö…ë䨓ÙêåÃlÔ¸»Ÿ•j—´À·¢ÐŽÞ‹/$AŸöÛªão&08¦—Ë?¤Ç¬êÚ¶©pŽdÝÂìB‹Ý<ð)Tô’í±ž&v}F(Qa\Õ½¸Î‹JëgÞØÍ˜§D׃’ÀÂ{ÖP^Ù¾õ²û8ɨ“ÆÔ€ÖyTq’gy>×c½‰cÅ\=ÉSá;Þ-X´z¾Â|mÇ9–pé98ífÊ•—±ÙCìQëñ’]BT¯”UÓÄ*vøGVƒŸˆB?îݦ  ÷zò;ãgÊž‡àhÜy ð1ÊÅyuÄkRÃV4¹ÔkG ‘‘A>o)…MF>ð'wïHÜø8qÉ Z¯ºÜ Ú'÷ÙÅç.×ü”œIÅJz“c]Öý¢ÿP‹E:ðCu6ÇÙúTkÚœ^¶:õ¾ÌÕG1Ózª­ÌŽVnÅ.‚0Ýi–a%´udßCèÇ@ÂÿdéÇT1ÔJ†EUYGyÁÈBÜÉ"ƒŠm¢S°ÉÇá¯ä fØFñ ëÐŽM¨šB_·‹žÞŒ´‘ºÓÍu§ŠN«Î“.ÏÊv-ë[hGU‰Ä8š0Ãâ6<òûD`zø·ÜNCÝí¨«oWmt†x;}¾îÄÊÜ…üªªE!HFü†™²„1™¾Wqy1‹1ÅJ7N0Ö™XQGfÈp[œ‚9ƒpODï»ßGS+H®@ÔÖh®³i¿®äꉳtQKáŒØÀ³¬¢D3Dº5»ÕXO‚˜ºI²•æçÄÝðD×çr3{ÄU³j}ª/c"Ž\âùt£hrÇ!T‘ þè#£œÒ™õk#<Ò@ϧéËÚç[@ Sâþ÷ ž£Û#Ñ íB<8þƒGè€Ig^½å©Š¢ fÑñKÇŸúÅ7ˆÆ,¡h2 cÙ †Z¿ 6M¸<žn‡Ž´W¢°!¦ƒJ]Ì‘g&¦}bš«¼3›{J§®Ý Œ`äHJǾƒ`wš˜¾Û¸!™¦øvÖŽ*ðõܼë’ùqée)ˆ»¯¸¾T ©n ·¤Ñ]ô¬V­š¦ Ê¡)¢7§œî„S.ͱ˜l‹Ô8„Êé’ÆÆ`êgEȺápmËÅ– Õe"àgœbØÜÁI²i(ŽÐÀ°L$XÊXªÁNíB1â1hâEm4Ò?9†‚>ërš,hë©'Q¿å!ç gà=ÆÛèÍjÜËn /ÅýyIׇ¤¥ n|Uá”ß–ÇøÕ¼$†,.òÔ-ÅAGƒ@ËæzÆ]HBº³É憶µ#P÷i1µEŬt:ñ#Kž±ÄY[<ÞúîË'-Â5Wk}ý|UÓØˆ°½À°G“ÎK‘ÈÍJ:BqÔk‰âT÷å®9Ë™ÜÆ(ÊO”HÌöÊqG‰%n÷0t’ûž<2ÿDð…vqiÅAé"ñïb÷Yþ:Ík„7?â³cÓ·ž–Æ>¯]ÅÑ =1o‡Æ"€#,þŒGM:]imæŽã´2;lY´¤çæ"8åY¦ë¬hR–ñAÎ^Ð4àQž âjh¡,.v,ö šW_‘˜SÊþLö¦Ø•±ÿáÎýÁu6˜A6>­¦>¥žÈÂkEÚ?>ÐìQOàŒ°œ"õÜÉ ØH1±h”YTŒ·I ¡§ˆ´âOM‚¥îúÊ‹âÍÍÚrAHªØ¬6ørÙ ûá@óm‰±àd7*æ9xZëÎ4G޲.QÏûu#wâ‡öãÞùÑÖ]¦KƯӌюhÂCÕ>¢µ 4?<±¸M°GOµ™övéG“m!3iô£å¾›Ívbˆÿ&Ô1áñƒ{Žù ‰‘f†RÁÖúYÞ%¤ˆƒuÂa”JÆ©,ôz«Qå">ð å‹x% ®­5–aAøWøp2%ÿyxƒ<å/Í¥ˆšº ˜¬IãsÓä=˜˜i½gòvðA×ÝGUç½Ñ7›Í]"ôE‘šRqëåeÇX­€›OëmCf×7C$¯=mæB†$ÎB§í]€Á’(Qàpó;Jf½6‚)_KG©’²µ+84ÓšÚØ^æ¿ Žù‘«Ú}\\—2Æ7ۇ„ßqÉAd?QéíPxÅ’˜¿/ÿÌ·àeô¡Ñ[»›ß|øfbÕ°ÿé xÒSÊ $*-pË[–°·¾™pBû»+j;ˆ÷”‹NÿÖížJØÌ0JŽ7¯?è"µS›Î±½¬bW¬=¦kb„pÐ_…G~º0˜Ç/ ¾Þ^ÍE‹Cg•6ˆÍЊÏ+8»êUœà!²ã4x˾$ÅbÛ†÷È'I_u^ TÍš«Öá½>“¼–-øvG›Zó §;ž¶ñ” ›‹G‰Úðs¡ÎVá3ìþ ~bÚ²‚¥¢‰ªóÍ‚²×Ýö£Ð Ã"ÈÇ•}§/^AF‘:<ˆûù¯NîäÕ_7ΑÁšý^ÔÝÒ5<|‹sÛ8ÐDg|öS¡ta,Y=¨ÅÓ35ŠïVK±¯¶c”ƒ…éÔ¦«f“³Z…­iš‰Ï*Îw!s½5ÆZ ®Œ w2h8zÍø‹_Y_Aú…ÕSo½s ?€ÓèŒ'Ø–fت)£¨ý÷17}xu-1N㣠rV$à·âëSÍ‹»W²­}¯Ãxßv©®ùô}ÍK°–•…àØJzÉ\•ÝßJ<2¡WIèwžnÁÑc¦“Ûñ:yæåLt˜m,g™i®Iä6E0¹[ ªSZ'5EuäÛùÔZØú]„ו˰?»ëkÙuŠq ^AãtŽŒâ ²j×·§ A\"nDN2‰ZÕwh[†U8O•£9|yY?­Zq ŒgŒ¾š}+ïñvëG‡ŠÞ w(%0måâúÅî¡FtAQRp»Ð fÇNØ7°¦˜HÓV%›šÎèþ1i <ÛS¿e*Êz{{ˆàÎCÛì[„GGó‰ÁŒlßd\?¢°|šk[ø ¹EEÝÃÞÏã®O«á×UL å.*×À‘5Á¤ƒ,é{­`Qs_C}+^Ïúé$D¹·(YÂÊÇ\Ý(âtјPÔþ¿tÀ}4*’nÍ›3ÆxVŒ8v-`½4,2KÂñu’¤«©O‹‹-àYkdÑÈ™‰ÜÃE£`¨wÎqC›… -™¤ØDœ¥Ž·ªšÆÂý_ÚÚ˜i\Æó$МR –m:§w uBÄN}DHÛ¿à\¤*Á¯‚|<À¬ep¥¸.«Dp ¬Ä|&•€¾ ¬AÛê€`r½rB ‚ø‰ã™ÝE?šKLÓŒ°) rìFÁºêœ¾m,\ÏpÔ0“&½Ž)~1‚6¤ó‚‡Òßð“oËYm{ì¸zN Z?¢¬ÛQ­Ú¡Çð`Åä–ëJfò×¶Ù'd;·ØãYPÈùãh\¶ëóNÛíÍáUý<)”œŸª}Y¿¾Ì…Ì‘1~ï‹{ð…ßÜ[¿¤Kâ?‘{}ÐÖ×IÃæò-×>{3§Êà~;ëož‘¢SBŠóH<“¢ýµÿcyO;¥¢jèè[¶²>qãˆzèÛuAá´i¹n¦ŽxЦyººj·QÕ=·Ñ•}9DºF™ËÃA´˜ ¦Ç@H½BöD„½Ðþ^¨%Ï Cdry\G4ÇDü{k—™RÑPجz;ÊN"Úòæ}Ò»‹ý§X1Cón0z¨““Œq\Àd¡Am $:4ö§›v– ÞÖ¨j‰š‘‡óç®ëÄ¢«m#î<¯4¥bí*É?ÁlОÛ£¢/BG±!˜2SJ&-cÝfŸÓ3ffíS¡CL§V6ßÌØ|êjó‹àå2M¾ýJ(djÈÂÝ•ªŠœ=²(BÏ?q% q Ð…$)¨óÕW&‚?!.*)|À7á{¿4‚1а2K-%@Í^òNUU’†TÏš÷ÓZ)9tIY•·lèI7íà Ä^6”ž”v@&ð³(BlùÒ å-¸¹(åon^u:e_D…N3^ue?×0öbõÅ¡¸–Ç …­’lR¹Àói~/v°NôÊ(Þwav¦qo|?×õ.1ÁîíŠSÒ#Ú)›¤‚ÍËß^ bç\1¬ v~yÑ5¢jÚVÏ‘X9 a°ŸCß(GláK…±e$b%B¦]*þçIbÍ&"‹ghö3̸1²,tLGd e/vÅ œ¡ â˜Mç_Mo/) ±îOUz†M­1Ä*vPжsZ"Ç÷= RÂãrúdäÓ ¢b|‹#½ùèî\·¶±lÈ1€‰ D?ö°?a¾<ëðÛƒYù• ¦šàsîá‰3þ\e+-vY°tÃu0£m3Ù[ÓˆeÀ-Ú ð3KŽÚá]²l8ÀáÏaO&ÔOÚ-‘=ù œí”¼²ƒ/;ð­­—R±ÁÅÌU ïsÜì'­Sd»üì'½+ØomQìF™çмI°½Ä¤ôîtáXÛœ(î Ý<ÑÏUâTƒ‚ö‘CRÆŒ,‡M_,ã-Áý}›¹äV…ð yÇVfàà÷ìÎÉοþPØO¼1ì¿x–Æ‘òø<òàG‡ëœ 9Ž÷ÉqÒõ$ˆƒy0̆øî²O÷öè“ÂçOÕhm˜H•ƒõ´ê]ÚÌ„ëvëEšÖwæƒs§¡$}{U`Om÷ÄÀfÓ¶Ý¥³1 žzY@ -}¿îdGL(H¬ée 0-•1îç^{î;ã² ƒ¤2å6Ãʤ^®CPPâ9e9×'&ë󊌡O]ë·®öGÝ–Š÷kj%7@Üshf*02oªqs´ ×2õØÏH)Oy]»"TFõ÷¾m†kÖhG M»|RçRÛÙt,ÁäW;š^È>¶‹ %ÆØðµéÚ÷ö²vÖ‚&§[à]RƒëdŒkš¦Ps͆£ÍyxºÂÙ«<ìð·Q׉& <Ç•"iåæ˜5ðkù¸é¤ôƒôÅÝ`—‡ ¢²>S [Õ§ÔBðU­´¡ŒJY0Rª;{Òô ß­”z:ÓTAw¿ŽRñ>˜‡¯ˆ×"Á‚3;ÞJ0oÕ,©EÆŽàMŸJÕ)6ój ¥ØÉÄZFŽ1ÊÙŸ¶zaË¥Jê©<<É3îÜÚ°+£…Z™ë/Ò:Z¹®uÜO7‘XŽÃ¶·2äO.h`mydàD:q»s}á.ú{»»5¦9?¬ÒÞ ÔøM<§ €.K|’Ax¤døõà`pñ³n–¨þ¯«±½TZAûKmÍ0§ìñ7WŸCó{¹R±™É&Á¤á:›s\VŒ‹@(SgL,~•&ž-ÖîO"*¬î™¢æÝ`WP _M̯t¼$¢ 8ó¾Ä9'6dÍ”ž¥Ž_ˆ˜õßð¤®7B³þ ý.˜‡+"âA_¿/Öwe=“Û!¼²µˆõ2½…][‡½ÛøºõœêÖn,¯ÀhŠ’Ó˜k«B<¸æ†!Ôü&B¬Ô„¬Rylá4l§¿u0¨”›‘ËÈ ç³(ø-$°D%ባü•¶Ÿ„±Ã¹ç-ô¾“uáìhc\Љ[ÈbWLE·1ÁµH܉0iæ+zC,ÆkX¼N½eby­êÃ×^wÁQ©¹©ñËäü×õ—>©Eö·M¤! £Ù.yçÊ´®ךòÛ#d?“­´,7Ø"GT†+kè=cq°÷˜Tå5 À÷Áx.„UL¹¦âWŽ…µ%VËÈ\Ê¿Øh=ëäÂ$|ñm¼×OëÞŽxN¹ŽžŽÒ?µ!_([tžf³Û *æié¤#õèMòÛC~Ê”Èo±¥V£YaÍqpHHlI>¾=¯ç†xüÚ ÈÉ{Y tp¾¸‡;!¹ìÛe’™¶ªÕ2åÏN™”läb±¨O(]Ö¾ûy©V¢ç¦Q¤†f/Åý¢y}½ï,ãßt¯ÿº:¤|~,Wo~×͉ñÎÂyh9ûü6Q;ÏÁ°„ jÔ Âm?v¦²Ë²Ÿ´±ËóPv-VÍ\ÃõùÅ`ßf7€å._&´R3Yз¼ÁüËô[Ç36Áa(Ž›ñ¹ë©++Å .} *ÂÆÜ;»/þ¬œ¨nåÌ˘8îuøœzØFáËË4èº<§Où„P‰Êlj¿p% (Ä=¼©œ‚br¦H?﯒]'oRZ÷.vq‚âÃ’¿§¢z&ò-Àî™›hZ·í×8‡m;.W9€º“¹ÒSG^×?«ÇŠY+õWã÷‚¥®õÀ2R±÷@Ò#w@øg>žÓx«wø‰xÐr´ÏuΘˆs(!…´C½çœ.í’É÷BmÌÎÙf“<`ñ"…;-†;œ’_¬ã‰®w¿ž¿ú’€‹¤oá5Éñ±}òR Ðq±:ŠÈlnžQã ˆF÷ Ø@lùÆ ^eQ~™ |*^O¡|ôM5pYÿT_‚ÿa;° ~MˆÅý^|u† ¿~,ÇB;¥íÛIc§fSŸ„UEë£Ñúº{U!h:²ŽSïá3ŸÃ3®$>ïÑ5]JzÎ×ívŽÉMt·I ªGYÙ Ö/¢’)ã½â°:±¼Ó½}ì‚zoñjUŸÆÅõʃˆ۫~Zb&Ò¦O;öA&Q8³f2I+¯X˜1$^-_½SWÊnAJg†W^ªNçs“ »X €\iÀÀ@©›5çMÈiB½cTph]®è:ì Seóu÷6içxçí¯_ÁœÂ–§UÜ~|hĆÀ?Ó“sÙäiVRvm œ­Tûkuúü?Z ¥ôK¹*|€–³¹iAÀo àÀʧ†Ç@¹Q¾íÙ¼áWä(—ž€P؆Àè›A®XÖ— …³µ¨z(Âüö†ÉLˆŸ´¿>OÜ˺ ÷Ù95À‚=æ{• ÈÎXv&6‰Œ­·¶ôò@“扡ûá7uúž ¬ýˆå3sl7Å.l¯|’é­Ï%‘+ ?–Rj2ÔtGpóî)KÖMséŽF#ëÿÁ¹?šAú$JÇzšÚ¼Õz×À¢I³’qzè™ /…»”r0GÎÄ<øÐ°èc©ÝÁ–ý CFQ,$Œ=2RˆÐTSŒ@* ðGH*i›Ë&ÙÑ/qÝ>|#4¯Ý¹0)¡—†º;c¹Ó¬þáZç£1 '«k€D~pêôq½eÆ0í—d&Ó …4/fŽRRå,ŠáÐ^§ÁË1迈ˆ†@WÆ-ë.½ Šn!³Îq?-6¶,Ó¦@A}€/î[ûë¶a«FÖKÛvé7`0Y§C¨~ÿºÒæùMð¬Ï–w£°uH]|ÉU7 )8S)z P޸ǀ»}Õ/[6®Tâ~!³=QÄ1½=¬k_fùh?jLö¥Å¾O*d§£m øÎ}"At¹£±a…Ü•nÀ›õÈiÀ)Q,¼z*`p8ؘÍíxtˆ-ÝaDëø%:F˜ÉªV1u¦ çÈH7±ìK1ïc¹cX{¶FÅ:`½KHl u?“…)À_%„UuY@ƒ~ïùD$mø‘¨؉EŽº¤GÏ‚·ŽØ|ІM+qY/üÆEÝl ¤Š”07Ûøƒ½ŽYÉw!(×d4‚ÑR‘¹–ĸx@I*MnÀNÑ;XP»•‡—tKæ¸JNÁj7«¥) ßuUóaì|áOI}HÈÇòhcàÚ¯”•{~>•* ðÁ©¹ª`q€H¢Zä‰bÉø½ü¯? ¢jîS Ëû—ùß4áîGgg›s-n4ÛØÛZÁL*a°õãôª…Ú(9™ÕZ8AŽôNô¿âÏ›_õ¿–f]õý:ŒzÃMB…ÇÓÒ£ÜNÅzô%H,Ïô`ÌLM¶¥’³Ïü()@5W“Ð#wô¸¾#JjUîMÞØû 94PTDò÷HsðP˜Es>“£ùÄ’eŸœ£¤4¿j–~mħ?ºC8m¦š¨°®"b3#Ïèªê,Í´(“Þ»™¹ý Ñ4ƒ[­hɸ¯DþP…žoÝü8¢Ñ¡,«ÖݨzÕ€`â:1ø´g|²Å’ÚaÏÉÑ1æ\4췋΋/]g©øÕˆ°B3h"Ï7s\&ÅlM¹ÇT³¼Et;ìáQmïçm£¸T{³ó„¡"ÝÈ´¿ÕÇ7qd¹¡úï‹^ôNCúRÍF ­@äT}wAêö“ª[øéÿÒ1;3Oð§g‚üÏ‘¸GpÇZqÖ,kÆÝ:7‚í–P“šæ¹ÔÀŸÑZ‘[öƒÐVæ‡Û!Øg¤QΘ@ ;gÙŽôõñBÛX/eHm#üf7d`hùªôŽm2•ªSU! ð ûkL^&LK™Î`¸¬8³‘ •Ô½í;Æ^kæ‡S Zn˜!*×›-äP$à.c^7OÄj0¼<`ú1LÚ¼ùqRÞšdê…2D®Ï&-C±—¢ÒÊËë6œ”Ê1=ÕÄ|Ï|ÈDOøâ÷1Ry¾Fœx¯7!ĉßß°|‘?ó7âÑåDŒâaRkÓéU.ïŸú±ÉgùæÙpó’8TøÝƒ²ø4G祪ºøSÓá<ÊÛ?œ8%.ÈÅÆzdp”s°ÚTí(%É\Ï|†»¹¥hŒs)9à“›}–†•öé˜ìÒ”"U@¢ÐZ Þ¼µ !±Ü§ï¦8§$Öý©×RÕ¶õh BŠUå<¯Ç6‘#”TŽQCÅ2w+üÞwfŦè,ÉaåPxØ }Áè8j Zs6¿a¤TßkŠä ½ÆsÎÈiÑ6-ò}%È—ŽxÇyc:ynÆöÀnäd7ÞäåY˜„"[¨îz“>Ü»]º/;Pêwo.®áðu„̱€uw†‹™ å%Èãp9T˜zœÎ,k Çk-@¯Ç¬X[ |~õO/Dö£6èy§GÈI¨ù ·úw²(ñiS”8b=¶å*ì¦ò(áìÌ‘bÖ)`‡ˆO—ã‹\}Å£Uo„WØB_D™ù˜‹¹µæn¤ýÝŒ‘h£©QÍ‘d¿ë6ž´—>žH™)XzÆ£‘†þz¬Ëð‹ äÔ¤#UÙí(¥ðãjü'åMñr ÀpCMÁfï˜`ý¸%Tq$Ÿ/©oSC‰äޏšË½¦Ð\TþÒª+ïËŽÌÛi}ñç‰òuL"°SMá±ôr·;ಃ§šMVšžc ²~Ùþ˳¶ùÍýèŽí!ëÛ*zŒPøÛ!±£¨H©Ž{³3ø€¦²ãŒÿayª/ \—ãì]šÐø#21Ö5jGbŒÔ@ Ñ…9öËš6ßT¯[{)Й5Ä/9ïp‡Î»`Y²á•s!)io®¾‚u`¹dC𨳃µ›ëÕ‰Lp$ë e²¹ÅÛ”wß.|Ôë´Oþ#¡2ÓW ~l¼Z“ÓO<ŸVÕ/Â?ÅÖ×L+]z»hcÔ¸´iÛË…}ãL‘“•H¿™HcõXh)mê÷ª¤ S‘Œp“W{{û‡tÇ«°ÅÛ»‰º²^Ÿü7þzû÷…Y§˜5ûTîA²Ò¼‚fWíq yóaã‹oüÅ£‡2=àLÊÒm‹š¤ª»®Æ|ÜŲ̀dPXM85ü|šøCé2hI+··´úfˆ6ÕºêÄl½Qíkvšýöµûl­° üŒ*]ªqm+ãØ„FÙ glØÚg…tõHá/¹J÷Ãÿ^3ô“¦†›’‰îÓwãÕ è­¤ÐæðÉ”øËZ¨ ÞìJY?L½ûö§šAIxœ0]´C¶A»ØAwÔ-+l½¾!&/p¹Y9IMä²')ºyvºåp,‘¤ŽÀäb’è t®Õi^€¨N©ùKyL@¡¯±ZhçÁ)¤»2GˆYXÄàˆõ,pžh·jœ™äytXvq__‰T‘áÕ_v³‹rÇ®WmÓàòN'ŠÜ¡IĪ7ð ¬;⯟9jWæTN±æ‡p™ÐFoCaË13àí´‹ù Š2¹ _ŸY•~oila·®ýèJ„KÛï)N39Ï]íµêaƦ ”÷"fEÁ‰7‹GÂT×ÈÌÂ_ÄœFTƒ¾$3¢Ïv¥ê"–Œ&àÿç*°±ðŸ;8—ít$?åk­‰¦|ýñ„§lÑDƒ«ð'mIšá¹€c’õ(1V‰=:7¶‚óÔ6‹ºÑ¸ÅÖH$ØÔBïF–Æ×þ­§Qðç7\«“ ÍI:a› ô/ ˜áOYÏtÝ Ïhr+?cðaR;°°áJs[ ÍÓ}–NƒuW: FôÇ( aøö€äÎ[L¹WáÛhÜY¤ÉÃô,º}åÍ Þ&öAó6È´¢k_º[…\xiûÐØ³ü5ÁÀÛË—:‡;2˜ò˜Wb#VÚÈ1ãÇ‹ÜZÌɃ!šåHç jZ!P¯÷S2{d^õô#bpéJ{•ÚØ…¸w»qœL9E‹¼Œº)ꋞ2> Úœ-!Š*Û±oSb0¶ÆÞõ1'}¦.óGÓ/ù}›ßñÎ:iäPŽo?阉Ƌ¨cÕã, endstream endobj 489 0 obj << /Length1 1458 /Length2 7222 /Length3 0 /Length 8206 /Filter /FlateDecode >> stream xÚtT”ÝÚ6Ý)) ÝÝÝÝ ) 0Ä 1tJwJ"Ò"H§J#)ÒÝ¥t}£¾ç¼ç=ÿ¿Ö÷­Yë™}ݵï{ïëÚ ´Úz26P+"ãàáäÈih¨¸¹ù8¹¹y±ôÁ0'Ð_f,C›; ý97·Éað8 ( êáàáðŠò‰rsx¹¹EþuÈ=Á6 N€*rÇbƒºø¸íìaðmþµ0[³xDD„اdœAn`k  „Ùƒœá;ZzPk0æóÌâö0˜‹(———'ÐÙêf'ÉÂðÃìº w›'Èðk`€&Ðôg2N,€¾=Øý]j óºpƒØq‡gx@l@nøæ=u€– ò'XýO;௳ðpòü»Ü_Ù¿ !¿“ÖÖPg Ä ±Ø‚@-EuN˜7Œ„Øü :¹Cáù@O Ø høÝ9 (£ÂükA€Ÿ Ô` ¶Áÿ°üÜž ÌÍà÷ŸŽ",€ ذÙ!XW‡›A¶0üòÝÀÞSn8÷xÜ¿~ÿ^™Ãée…8ùüþû~¹tõÕTõeÙþLüoŸ¬,ÔàÇ'ààà†Ó•_ _ü³Š6üWܧª@l¡î?ÝÂé_{þEæ¿ÄÁøg1M(œµ óß$7ãආxþÏTÿòÿcø¯*ÿÉÿ»!E'§ßnæßþÿÇ t;ùü'­ . (\ÿ5ý­Èìáüß^.ˆœÌ<üœÜüì`wE°7ÈF ³¶ÿC™?vƒ_RsC@ÚPw𯷞ÅÍý_>¸¾¬áï‡;œ—\@w¸Ø`¿¯ñÁåôÏ> ÖP›_ºãÝÜ€>Xð«‡#€\ 6 ïßÌpqB 0x >sÀê†õëšE„\À_¦?HÀeõoÄÃ-àÿ„{þ†<¼.—ÿ€ðJ¿á?´öpsƒOð›Wðîÿ…¿ 7Èkv j-æPÖzY%Céű1,Žz”yùŒ—c¸ÐÖ­0ö|%E/çõœÚ{ÅÙ.E ‡Ïš²®—o§ø­×ÐÔúðŸsÐ(nÛÑX%M=œ#N¤ú]<¡›ÂoDÈ3J—¥-qëFЦŠ%ø‚)ec×­Ç€ïÏTÝ9“êÅHüNQH5¼UóÓ—ªw¯ÕIŸˆî¯êš¬úô7~’3å®:'†®Å™EghfÑ©‰ºÂJñª$Xîíï›'ì¢j}¡ê²qü4F¨ Ö÷Dž½Òp>ï6·Äs/둟•‘ôžMwÙKúeµæ©ýúéž9-«k×›ò.Œý"u¥”À¬¼„þé¡äªÉfSå‘EbožáÏRAÚѱ~1ÂM ¤@ìöïcqüGíyçeÓ§‡¢ï &Ñ¢ÃÂB´”î™Ñ_Õ¼ã+¬,8 $ŒÉp@íïl}Àp›+›Xs:6’X3rè–H)à?2ž?Ú· â-yYÔsù-¦¬³³N&Í’åë²ÐÍÿ˜‹™‘˜œ¿Öòn߀y¯jôjÌ…)Ý—Ì¡FÇ…R¼óUk±QQà M¾‚ç³þ˜1ÜMíþc™÷"*f‡ÈAé)wIäÏQ‘éχ›o0 Nã9±Ë:«@ûä™ÝÂÄÑ ~6yUîô¢ËhìE¼‘‘š–>rQà5;´Ž}^Ï(Œ=5ÅÚQvªñ ôWRSëÆ(Nù’옻Ev…bÊH€t8ìÊȽ'ýÅø§Âp•Òi¯R¬ÖÔIrÝ@µ4_øšÓ°D~˜ ™â+òÝœ9Ã!ñ5YýŒ!ÃôžB„eˆ’'ZvåУa…Á¯™›éýKvGy€jlšxëZ/ 5š3îh¢Þ ñ{ô‡‡^a_”8Êm—ÂÁ/t [ä«Û·Ì˜V‹V ¯È.×6F cɵFZy)I£HRž…)2þ¼çT÷§°Þñ5*z"`¹cÀô‰E³¸˜Ê„cKŒáJùâ*& u·tÉk_v†)T¨ R·©Ÿ2+Ø>XÆw ¥“ô¬ÍåÝ”nÉÕe¤·P‘­£9†ŸhŠáb>ûÄÑêêÔTw. g;1gÉ–ôr*½qŠØÿVTÿ­q‰Å.áEæªäeöë«Õ6Z×ÓõÂíÊà<˺‹­T‹09ÄÜչޡ‘€-r À{vŽ“†Å.±æ;ʧEIrsÝׇ3F殜ªÁˆvÅ †¦+´´Qˆ}rHõÍm€X,%!k÷EcØ<Œ’ÖiÅ@yË*q’0â/\”HÌ}Ç峊—”jžèi|£rØ3¡÷Ö1á ¤o*®DÙm?^—ñß…dÓG¼Æ©œA¶ ±ÝGhGŸY/¨5rO{óB+eh_çMWqín77ÂYƒiƒœ‰XôñnñIc¤W0Z8û[qgÔü,èv>!²z½¸i3Y®(¢ûd¯´ÊNéˆpZæ&3¬ H1Æ3¾ZQ˜üfá©Ü‚,¤eebì¸HÞ_Í; ¡c<˜À0s¢ç®‰_Ô½üÚËçØ¿ôB„à9{Ž}DÀdýù{ú>£¡ËóûÍÏ“Ûa¦åæ÷©:·ŽÐ–ÒéŽû“+ËäVŠ0ÿ~†äþ”$w9ѬB ñ#."ŽQ^2úÏ®5É‹Äû‹¸„Y¨6ªÞÍòé!EË `ª”ÍtPïöÄo¯EZ4哽î ííYî¤Ä`–æW!0€åK &ÔàFB£Y2i¥C¿F›*E¤`#œ­q+Ða1¬BUóσ@<$T—2VmxË „ºB1]¨OJ æ_]h¢°øR°ížO2¾"ʈzf…§ÙÑÝnqYÚü:81¥¦¥¦¼Êe¶ÃŠžó³þÇð¾3ålæI¹‘³¡QL.ú¦eý ëÖáíÙÄžC)W›!€:ö;­-¾Ÿ~dڵʖ¾ß³v¸J)öZöq‡l3ñÀõ 脦O×ñõª³sÂ0dw{’kÏ’/m—˜ l`µáO z n*™JÙ¤½˜"aÅÊZÂ. :> CI›Êí-1öÀ éÛ«iÓL5m̺AOœO,.²Ò V2„vØ.|QÐÍ[¼èžÚ¾D¥É8í7J.}» j"‚¨_ê»ìCû ^zÈÖßòQŸ9ûO)]¯s¦ƒB;RDÞ]ZñdzX~ôÊTsL t—¨ó@4Lž%–kù(ÎQj™‘ŸÁ7T&{ù:¼¤DŽ/.g¼¥ëPï—½ZŠÑóim/¹Ô§ç¹ÚŸ|$Wš^»“ålJß²×õƒ’ã¬Ôg¨mM9õ•mFy¹«ž¹úÄ»§lôä¾k bЧDR?¼K·¦ĵñzÉf €•ùaN¸P’Š4—i"âeë—^* Y_Fñì]k5*…ù7%ò .¿=³Tø^×m¨KaÚ4×|G±é§º^¸Õuƒjs¯w&S2œªÎ®ÆËŒY£W´)Öì÷£až"|×{,²£Mª™·ªE1í65èìív&`Øy+µãã!Á¦²n»#És:\l2ã“êöÉôÝ> œ±àñA¼àŽ£ØÏ³–ˆùŒ÷î„GµõA²j¾‘î>y¦ýúÞø8cƒoQšjr2Ÿ8°Þ1 V ’_gm΋O?Ž q¶jJáâ Ð6‘övkKÞÐ3L8 n‚½îÐPÏÛŸžê#Ê0´ÇRG.Šåƒ ÷<G´¬P¶.H‰¦¬{ý ©E’²°º~3¦žj/üÊB<);ÖvÐtLú„)—àS|žKoRöØuËä’žŠÜ=Ñ|ŠÕÀ};låaŒm† $†º0(„¼Ý„3c 3% `-˜³ðíôž‘•?‘…š1ê•GÆ y~÷ ”7fÌd”¦ŸZkS(›º4Ñ%O¹qËÌ*Û[fåÀ»*>÷íÈ5_:xÿÔ%’)î&œ{Q,'oõ©¡*à“Z3°|¢Ç îËû ¦Eaªû~NÇÊùxd›ýZöÊ ¶Rq4?.¤Ñ~þ ÿyEo_µ_dCºsA5}¢ÞèŠÔj¢ÁCJ‰v/NvòjFºu`@ˆ—xzîEu¤I¦3_°0ëƒóÊ%˱ò†§ÍlWùµbXýKQ›2C£)Q}Ô£‰‘ѽⰧ’$˜âév>~µždõ–ú‡H]4÷]fíÍÛ «py¥¨˜äפ+ÀÌH™‚Ç 5Qši1Óµr‘ ãÊÖµGmK¬Ï˜Uô UŸD4€ä»ÏÊ—–§Ÿ}0yr{u7yÕYý*ÎP1q’ãòв'ÕD‚Žº¢×USŒ›Èµwám•èSRúD6¥æñün¤'QÎgOÀ&W}¾jÊb5÷ØúúuÙ ogòÆ ;´lfë,H;q‰@_©‘ƒ=Ä ¾DDFMža§ê}£ó^ù$ø*–‘î‹Gö”㺼¬ö³Ü×[¶3MÒ^8õiÈ; 5fûÌîcóª,ô7¾BdõY̓h>*©LÌÛÙ‡ý¥Tk•ÙÇ.M_¸¯ã° ú„ãÞs¡’$›en½MkÉL ®š¯,µâÔäÄûÜk?ƒ^¾Äƒí‹—V”ç”(ù9ÎÎg˜k¢êŸ©ß™ìFʧ”¸Ë.ðŸÿš²l úŠáíœD‡J¢Ë¨ÿŒ©€u´Ê¤Q¿9¬Ý®Ääû@ƒ?Ò  ¦ð§”yubÙáI[–¿p2\oP³Ï˸ü‘.²û*ÑWWæØjCutiê€Qék–ܬ}ÔdŸÿ)ü ÄD˜?ñŠ{;ÂøÖÏUZ'çŠe¼žá¡v¥ú >ÿL Q)ˆÓáJ2e¼W™‰<¬a]4Ö•1ÄŸLQ%SÈçt@üþšÙâD!}ïù¤z¹¤3BëÅ›‹ªpZe.ƒ!7×{äc΢({›Ù™}ºâ8zŒ7Ç6a32Ô—õwâ¦K&}…+¢ÔÜß\—“vFšÊØ+¿ý’p@‚g­­=Ûë!Š‚PåÊ#KW¨ZõCaqà,Ù–Anþ<+÷´üÛ¬M½åöÑÄ:†´ÍÈ“öG.^Û UdFv[+ߣûñ”jaàÆ}líÁ0æÜJie{æÐh­¹ìЕ$iKÈøóê7*hé×Õeº)‰ñS¯ÂÐi:}‹uoBU17ÚRE¯W€Äx°=jÉÄ–[ÙÏÛ…6 ÔgúKÅø¦[;«”zoÇwnO¡WòT³m›ñ^Üt¾8¶dÑ"£¼‰bê?>u<â;7,N¢7?ì¡ÔɺYd]6åzãOϰàbg[ª ֱܑˊlM¢ߘÇtê ±(v'N?–Å™&ѵ_#¯I%Jg?M¦hü<ùùn„QÜ;7MÒõK2n²’bjpÃ-õ^äÄðôÏàF,ð+ÅmYò•wÓ®Q'©Ñ¡²¶º€Ùv꽸/¬Gæ{‚–¹iäëîƒñSšˆ çcýG.v‹乨ÆyMøs­K‡@YAÌ™¨Ã»Ÿy‚®,é´=:³ÊO¾Ç™1xeØì<ü&[QÁø¢G:ÁX¢·¿“ÿ`çi–·)w~4mŠÄ} œ×B[ª®Û¦…W:¹%ؘ+'c„ ‚û7 ²õqΈ+»ÈÖÞ3w³#3¹Áù2»G×2>šùf[mÚÌŠì¦z¡jªG±ÇM[=û‹åûQ‘I…¾©çö¥˜Ïó±ã™ÂVéœ@<‘=#3Á>d!(ôs’í‹ï‘ðO™qäót1¹¤Ú½ì=¸ãvÇÃ]·>Gå2*¼Ì µ´À–OäKn%éèÒ/E>EÕœ›E=ó!¿ÅîÑJ×QS»˜Ï.yã)N÷Õë¨ø—ñ>¯¹¤ù”èÑE<)CIÂS¿ë÷g´Ò1 ë%»9kxázâ@Ïè+£g7ìþ"œ¯Yr×l£í—»æ×UTµ›«ZatïÖ»|t‘bwùŒw¼ö‰«ª$åéƒæðcpœ3Z„/ž…D“8%—¢:ýºïÖDÌøã¨”Êž’ÛâR¼–%/½Tçvqf›„¬"*½šÆôÐÜŒŠ…(þÖ"ñ*$Šš™ ÎË·/1EÏ ›¬sµc¤Id«ìirVJû‡,ô’‰eoIúõø<(>¯ö'æÍó±ÝÿTÝÏ[?IÝןb$ -N;+H‰ð5:ˆQߎÍßt›Sòx"~]Ú9ÝU´"x(E}wi:›ùŠr÷ÙÒèÐY6†³ìà&ïܱL²_d²È2iÕÂ^˜b3bPß¡‰€ß”]Uèss¤€ŽÉàvÇàšof_ÙQ@ýË^n¹X$Õs·Ñóã*5—T¨¤=Œ{fë&1áÓ¤‡7YÕˆwþÑ6>¤˜É€ç7À'÷<¹¥tuÀ³7§ªø#›õÈN¯qéT¾ÌlªtÎ~x âãÌ_ÿ:$8#/ÙwÌTÿä(¥§¸c¢¼yt¥´àìô5) ïeûWѺK‚Fgp‰2¾2ÔêR9ö°WâD¬‰­Û{{ˆûSqk\}Â4÷™ú¢åó‡é†í8ß-ûãÄä.×6P‘쎳ÍÇÝ“ÜÚz9Œ®8Ž>m*aÙwu`tÏ)¢•?X0ùó· 33 ú˯-ƒïü“C<9µ×ðuóI—¨584¹ÄWæ?òh¾s°™>oÛeÅ8¹Üëb˟ᢣièa€_žúò†iˆ+C‹f2¥€úL4¦¦ÀÞÿ䍨ŠyE SÎI¾ïqÎeT…bŠyKɈ¨N¢U­@¾†ySõÞJŸeÅ=u‹‰Ø™óàä×zýËv:˜Ü¾dQð­ÜHÊ£Q>[xëÉÛ=³9©—OCv}Üm ].©úâõLSx¥/ù–JŒßœ³* j_çÕ'L t.¯  ð¾µ雯Ë´ Ži¢Ÿ¶sW(¡ßã`÷ü-l¹¨Ñ+@= #H0œMOç‡yl×ÂmÙéëɵEÂM¹Æ`X'»Ó=†m*¢ÇK!¨>fHZ0lëDX\:]÷ükNAî¶0µG+õ@jÙy¾ Ž¡Îw™pÛ2ü9²èÊ™ˆJ±٦Ј‹Vb5¤ÅÆ—¸€â4.YùÝVí¾$4-*$ߨòÎEˆ¡êKÊÈ“®G\ {Ä öþ5„ìS=ûJ‡I%h›ØC†ñ‘¢äÙVAÃgSÖOxQDiXyÁá‘¥ ´ß<(&I¶™)зÍc0ä“Zª.6aï…c ˆl$x20Ñ£”Ú*0¶ EŸ%EÝ;é‡1%‰Ä‘:©¿j˜Hï‡bìWq], ì æ¿‡MlDž`IþPÙf>϶âÂMÎÕ8}½rÁ(†}‰(B~DQùì6vßE|ÜrYäÐëù± C ›_xä™y1ÔŽTIÀ¹é{²¢§^d‰ÌO}h.Ú+9°$oÙbÚ˜ðŠ–;1BW{Ú.¯ü¢w)fžhïíL†ÂQjÒ-`ˆÐ‚ËfUV0¢Xy‡Íæ¦y|šzþ,ˆø¤j‚Æ’“Œ 4þÊãß>ı¼Y(Ö®ìrÿù[ÔaŒgpU9Þ™·–Aý€*}QÐÛ Öb²±30:ŽÕ>À²ô§ þSruè†Ì”qÜÇÎTjÁ÷á¶RÛõô+»î¡IÃ7}ä'.«YNÑ_íg£G²x6Ï,¾z ;É>Nùà#SAz„¾AOø¨Y(—uûeæ´c«-(lÌ$ü•kЛ+ ‡‡Oª)ŸìBKîUvã^^d}gÆ3ëLp8¾õl¥¤™¤ù ^Ý.L{#ôÃqF$Æä;Yß(’?Hw%U»ç »q÷ÆO6cFͲ“g¿üPŠ–<óãÍmž|°Vlcé••*%çõâM~dKâJ_ü¹õ©bÅð·‘Æ÷"yêø¡¼7çUdeRþÁXD‰Ù),ݯæÍë$ØF%£PHˆíðÑ–£ˆL”(«¸°©b}x>-Ù1}"h=?Àç=,ÛÁYO}y»Â·üNj@ކƒÃIè'ƒD³Wæ]AdaT‡óíád…êà÷êIºž`YY«*f¢µ.~×´»®vÀ~r¥AŽ´B¼ú§þ¥æ™Q¢4ÊM¹È^—Þ%ÒƒóG®øãʶªO‚SÎó3?œDíŽñ?¶Ê&ÔëÅcK?$Äe°`ÇWFöúÒÁ!E®ýÎ^;«¾}„ûÂù¤)WJe~uäÌŠ¤=ÚRY`£òHR×ÞH© òáÅƒŽ¤3:õÆóÑ‚¤«ézX¥c©éÖÿ«)¬e¯¾óZT}j*ýl¨B)îBXÌÖp†ø<.@]˜‘,䊦"ç—™rê5Ì ÔEèÚ¡àÏÞÊWŠqŠ·Õ¡JJ+ÉŠw:ã ;%‚,îêtg³ ‹Ú6C„ 0¸>CÞ ëšùQ[s}s%ä¼N<þ‘ëX½í JÑXq3î‚[vàõ¢©­XiÈò]zòËgð×5â8Ás:1õt>DÙ,¨j³4Tr:¥®ù€Á’UQ7[m4~¤ÎÑ·¦æŽÎ ç«Ôrñu-‰3¡KÖªmrÛ{*R9ƒ~Õ‚é[2U‰@zé} çhÉD‘½W)Úï;*r†xªÙïÉJ•(l8uöŒ¬Ëÿñû.?åì0tq:S¬ÑJ¿ÂÐÎ÷5°úõ˜  :_¼Ê¤þ°Ì_ÖX+Çw¶»ÂPêÚÞ¼Õ븽€X&¬·Äjy↑†¹vñ‡\rô‘Í\ƒ5¼éö¤Æ1ûÎÜ5ï—¥iuu˜Q>":é¦s2Ì›£mÈ×+Í|Þ0Q¼^Ë'³sHΰ >1fø„ͽ€WSì)Ÿ•@¦•êŽÂW'´7œÚsñ¨0íîŽÐW)ÖëÈ ·0¬—n^d½¸¶"Õ|3^­›Ÿ¯€ÞZ?”Lªdï> ÆEzó”}UCýgrO|Ù¢?­›¥È€h·üÑÒªÖè·~ßC'.: s¤ç•Ƶìt>ƒ™5Ióæªm±n*¿2%0©ÿD6–¨Ø—³&c-~Wî|²Y sb>[y„wª"38_‡ôô‡¶VØîcÙµ÷ˆþ÷¯‘¹ R#?ôA½¯¿|ñ‹i¦^¸“štNÄ’Á®UÒTŒEú* „¯øSÎøç¦JÇ—l¨†I߲݃Eж¤éøêYÁÓJ2¹çÛ=úòOÌ._HxCíPfÅ`‘ƒ\X3šo(.ß0 ™p•Þ$öWËì™Ú†Ÿ~[pc&\›ð÷κîY¹§´$íköªFÌzÞÔ?±;вãQ­å"»@ #n/_ àŒ¿ltü–ÞØøp›v™ãm…Àù¾í•È”2˜Dm8xGö°?ZdrìUm?™Ëàì»ÈRF“ µMn %¤ˆ¤9óФ-ñNø›ðûˆ endstream endobj 491 0 obj << /Length1 1860 /Length2 12288 /Length3 0 /Length 13453 /Filter /FlateDecode >> stream xÚµPÊ-Š'!Á‚ûàîîîîî 0¸œàîîî<¸»ww‚—Ç‘{Nîý¿ê½šª™^Ûzíîµ{Hä•hŒm ¢6ÖŽ4 ´ôœ! 6==-==#, ‰2ÈÑø·–Dhï²±æü-@Èhàøf6p|‹“±±H:Y˜ ¬œ lœôôFzzŽÿÚØs„ œAÆZ€¤5ЖDÈÆÖÕdjæø¶Í–r# õŸé+ =ÈÈÀ càh´zÛÑÈÀ dc:ºþW rn3GG[N::Z+Z{S^ j€ ÈÑ  tÚ;4 5°þÕ-, @Ù äð—]ÉÆÄÑÅÀx3X‚Œ€ÖoNÖÆ@{ÀÛæ% i€œ-Ðú¯`鿨Ÿ €–áŸrgÿQdýg²‘‘•­µ+ÈÚ`²äD¥i¿8R ¬ÿ4°t°yË7p6Y¾üÉÜ * 0xkðïöŒìA¶Ž´ Ë?Z¤û£ÌÛ)‹X ÙXY­`ÿà' ²½»+Ý_7kamãbíþ70Y›üÑ„±“-Š5ÈÎ (!üwÈ› ö_›)ÐÀBÏÎÆÄÎÚ€_ŒÌèþ(¯ìj üÓÉð‡ù­Ow[[€É[@O ðíÖÝÁÀp´wzºÿîøoËÀ09 ¦ kØ«¿™&á·Ë·}hÑ¿i@ÿÇ矕Λ¼Œm¬-]ÿ ÿó~éÄå¥Eå¨þêøŸ  Í€; €†‘…ÀÀÀÆ`{[xþwyÐß,èÿM•°6±0ÐÿÅöí˜þÃØùoÿ=€ÿ.&kó¦Z €ü_‘kӳн}1ü?KýÏ”ÿ?…ÿQåÿ&òÿ%$êdiù§›üOÿÿÇm`²tý;àM´NŽo có6Öÿªükhe€Æ '«ÿõJ8¼ ‚€µé›˜i˜ié™ÿ²ƒDA_€Æò G#³¿$ó—]åQ³Yåm@¼-oYôôÿã{›/#‹·÷ÃáM—¹ Þ†ÍñÏkü߯é¿yˆXÙÿ1wŒ,¬{{WØ·«C,w†·5~ùSÙ:ZkÇ·À[Ïž{Ø?®™@'õ‡é/Ä “ù±3è”ÿAo>ƒ;€ÎðÄÀø†€Ž¿¹9tFÿºßäLü¾Uú=˜þ-Ýä7È 3ý ¾Ñ0û ¾1ýYtæ¿Á·Ú¿Á7š–ÿ@Vú7ôÇéþãS<õoðˆí?å-ÙöM·6Æ¿E¼q³û ¾q³ÿ2¾q±7³ùÍýÆõßÝ߸9€L­þíœõí\, ~ká­†ãoð-Çé7øFÉù7øvÌ.¿ÝÂ[7_~ƒoݸý ÿK2FNööošúsÒßôôüç» ~Á.ÎÙqù›×ú·ÞU `»ÐìŽsCŸ%ß©3ÒŒçë¾wì™ÖÛŒUÊH_’*]ìeÕ5ï´»Ë\›¿rßù†_çÊ|Cƒ/z`Šo=÷z>ç~‹C8‡Ð–£–(ˆÇYdß&†ØùÏØ´O‰Áƒ¬¶g!Î…¥X”M2 U¶½³º8] ‡CõdKѱÙpPy—åƒ,kË*Êo;\;$I6•PŠ»ý6Ö¥ qc`xp©·+쫤³ïî9q #’× Ž0ó»*Õ•\ø§¬"çãÔÏî†bÈ‚âZÓqÅÑ»i}jÇPÞAUÃV{{Ny\Ý>æÇ¥Oé«þu¸¬¶éú £ý»?¿Õ\}]‘¼ÆÆ€ü ÓUÉtΟ‰w’)ÞJSeÙ[PÙÂáQz°fà¼Ný0ï¦ÂIP>?\»;ÚŒ;^p‚ĺrFzªN`¯UêÖc·Z=}_šdz¬ù¢lŒÎWçI‰"ødñ£x„×gJhÄ(`”&X WFf¡%ŸF/¥™ŽƒC:C±ÿ£å…I^ ͵±Ž/ü‡òçõ •>ìç^½)t/“UüŒcÊó[”Šû¸ì/ýr‹þò÷©Ñâ %õÁíî‡%¼3 ÅùYßÖn'’ÈâIºóuÃ?N”Ô‡U|Þ…´ËTFý0#ýK0†$ ú]0èBÍõ¬‹º?_š»W^€6ÊW8vŸIÏ òè+9èRg×WÌç$ûÑ‹|‚ʽÞË“Ø/jx¿YΜõ>MvÀ]âÌ ª…6üSQû3ºFx¥ÄJU ŠÜ:€œA0LA‘Ô¦¼ÉßÛ¸¼T;ů~Ý]¸ÉÁ ž— ·f”ûáÓ/Y“6ÙÜËVò|ß¼Ž÷{O†jn„OšWUƒlѤ· ïP±H!^ö&œqîžèôâ!Üq˜–|JNGVC‘hÉzôcm؃ÆàüN;^µ)¸/6?‡z”2] Cq2o©>V÷¸/ÛeÈg95vfe‘ˆ—™âÈyütc´_ÅU˜Ûù!Øcô`š<Í“ûŠÉ¿­ý9ÒTð:Ž#Â|&Ʊǘº¾N ðcé¦(‘ƦîÂb†3B¥¢/»ŽõXrÍgç¾°ÓïsYùõ”.1ç3*T´?J‚Ôãó1{¯ëðÑáR¿JÎ˪´„%Ί6ï\->°'¤t!+.îuº¥9Sƒ˜“38³tØN5çѺ¡Â×òZ óäœi…Öȧ’—úÔ`sH×·w ¢ò(¬âµ2ï"¬Ä4Õ_9œ!Œí^öÙ„´J˜Ó3Õts ãBÓdŸB%žéHh~f⬃=òÂkN#¹ihmI׋{„”.ºƒ¬Óê$è@¦m‡Ùêå eÚ]I.±ØZ÷ît©=õ ?_Ï÷UæªR"c¥ëÒhŠ›éDß?ËôOV»˜ØøíÔk~Óû’Ò —[ÿãNÌF5n“4Ï‰Â=؈¬´>pîNn>A+¥¨þ«ã •È)ðgBs÷v|a’µâøì\|p¯4°áËqÇì~ÖË{ÿD5|ì6FÙî+MVh¯÷-? Fû£Q[Q¥Î*“¢O·¹3äðEUÅ,†Ì\Œ-žÄ8èÝH°B¨vh¨º?ôÁf¡Uë¾èѬøB­'Ùj÷-¼FD>Lž›°ÎZ4A!ü©‰PÛ\:†(jaÿrrm}or©>g‚ÄWm$¸\¾™ü«å ãœYÖ%£u“Í‘™æK¼œ”-V·¤xÉX +­ùm€8ªôù<‡×Òô'éË¢KuáYpÀŒG ‹6Enx’oÁׇËà±yÖgÏk”BfFÁ`^xˆ¾âéÑ+»r’ ¯m/cÌúÃ6=ã9–U Š ²0óè˜õ=âÏTh]$4…qIßoT3¦íáÃJrÔ(¡¬KÓg+6÷°0„Í6p!ÓÚŽí_0–‹y¬áj*R¬'i‘JdZZÁß'TGJ*¥”DËšån>UÁõ/¤B$Ý ª Q‡Ð#GáãŸ[`´}šàeï%ÁØíÜð] êðf+jÚ˜i¬±…ßåÏÙ, r|ýH5YRæÕq¿­Ë ÷=yœÐŸ(Ùš ¾íWÁˆ²D»1e ;<Û³ýþH3V#+F€j>“§Ì“=÷1î‘@ ¸KVªð ;Ã’Äe’—K”Ëd²AÍè?R3´{¥bÿ² ᪂¶èÀ+€².G aØÐ"H`,ƒÚÓ&%5™CP§8w¯‹HsÃqŒ–Æ…P> ‹àÒì,Mb^Ži9måˆE<Ï…s.è+Ï3\(6:Ã,@¿†Â$¡™¢‚ 9{Çw"¶bŒî ¹DÞ‰c8cäSûP§Êq×ô•9¡&zÙˆªøÜ½3syDUfå°ÇYºçAŸª¢‚Ù6€CÛê±, ÛbÎbý-f¤×Á_Ü`]£?ö ý!7Ô„Tþt@ß ©˜5òˆ^ãðsuÉRäN+º/nw#Ïi¯¾ì¢RÅ;Î&5hîžÎPN›‡XöÐ9™äìG™à/¦6VÇï9a?ô7Ÿ,(ùt• yš bÑr· ° ¾¿XPS°ç~Æÿ10<ýi¿ÎEO¨S6ŠszOÃ+„ÄF&xƒpƒ¸´›ŽÌðÍõìªòŽcT±ú_úɬ³ÓGÆùf·–Ù=ájTl]”âÇ›1‰f_±ìÔý%àÆûžº ?ýĪùä ŒŒ~Ðk¨/gîuÛ²+d(KGü^xÉû±ÒÉFî+ ¸¬yE„ÁsÎÓïq’æ<ã BHVSØÆi£âòïg¬Œü UoŸ¶/|¹@ॠ3ê^{DÇôÖåunevŠÃ±Ä2ðªÞìñ¸®›b/#œ°czÍ“¢ï†)a¶5ö˜¦Lþæx²Ixd_Q¸;¸•3–¶zã°ý2i¦Ô Ÿ½çD ÂÚÁ–`ù>Œäj1â÷{RÑÈÄüux"½Ì!º‡×¹e¢ºy›ßÎÜ?tÉ P÷¦ø6yAõΔjdcd±†2ÄjÓ“¦}B£7FEwzˆ–ª³@OÔ8c‚¤ý[hîè>'ÏੈLØXÓ«B¬­êW4[R6-»e$‰ŸÏOõª‰PQ2Œ:½Q÷€.r0üЧMŸg“Eº-Ñ(ûÒû÷ñŠªÎO1º×WPç•ÀoF=zKhâm¾ˆ>ŸA–!Dd¼óæ#{·fÚá¶€fY[tw~D½‹=þ¨©0µY AH´"%QÃ*3@÷ã 8-rá‚Ã\Kô/¶ μ$Röô!D±çj'Œ–ÃY´ÈiW¡¨ÖJ5‡E´m¸žê-ÒÚ¯ÊØH¢c>’§íÀ‘+„ƒRšZ ±jö„ zí‡Þ´ÓDgK¢2Ö‹´aߨïâÂàÄ×Û|ØÒòtªAóÁHL@÷K_FFwvƒé\1MtÎaxïÀítwõc/¿>Ôvƒ!íy‘}Ëð„Ô¿bzê:¼œ!ßÛa(›[Æ÷ê>t›Q4p¹sª4`'r”®¶Ë9ƒž‚/òÍ'F_KðC‰Q’KŸ”CÍ=â©è«ÿŽ½ãŠ„ëÎp*ÚW6ú.±Ç"TWTê«§$íÝ$?î0³ÂúC{ü¶01„&õWúóBÔ®´z ƒ9v¨œ2ÌÐû*œ˜@[ùUûz¡nPyÊà‚…Ž >iJpåsf¼v£¼²š¶'Y |ÿ"``I(Ë-# È}FÞ¼ŠÚ ã`‘›`sñ®ŽƒÀÿnå‹ÿTÒ–H}|=b…VxÏVlæM“$/éaˆ ïÅ %£ÔùÐkL¼aOo᯻VÂ*‰­f3‡RÞ 2ýç ï)äoÞ“ÐÐY"y8C7%¿µ=¢{Çm*Ò3ë\7«¿ˆ°¸L êh]‰Ámª¯±\o€ H-ÈèÛÎ’ë“N>EU;kÛXp/0Ý|C©da\P`·ó>ÔaÝg A‡H„Ì R·ðÿ³<` £Oã ¶]£¥=FÖÿr8rÚF°%Z7;•bRÃ.Ø4g²лRDNö­*…P!bƒÄpŠ£ÏŽ*VW¾‘U`rÇ ¿´×sÊ_žSŒ ÚÜoIœRÒÓ€P_qiF/«Þ~¨¯E ì'½ðý±»Ì:;¾0e­"õÝ MÙK%’âÜÚœ·ÞD®¼[ŸÂ¨Åî:”ÌŒ …ª#; ]wíè®VÛR**+¢ÂבHgç8·ôóÙUaysÇ …zê($åEöƒóàÔñ÷p¥‚"sÍ»zF•Њ‘ˆiŒÎ²Ÿû-E×ÒTðÉšv\=ö†EÀòn™°Ÿpk4Dm²õ»ul`CáBHZ¯‡vÝ–…áÚYÁƒò”%ŸlÄkBtj»×¶ ÓØÊ qGNµ¬z¦LJá¼*ª|ÊßDƒ¡ûÔ<Ë嚟÷Ü;Är•Nv%‰¿Þ—>»7­”]Êø^€þh UØ&…qCtÔ^v=§×Á‰ /¦[C½¥„ô™}°uX“¨¤NÀŒ¢æˆ«R{= sO;4v)Qɹ必[*Iá(t‹ °—ç]óî‹™#‚¸m6Uü½ð½†«ùð>×…WbqrsõÔÓ Ò¾+µÈÆÅýƬêcßä ¤wüØmßÕ»‡9š*©%Œ#È1Šx¡vü%à6FÚ u°çÞE-÷ƃÖı+î@ÖR Uy,ô;z©_;_{ŸW¦æÛ+B²Ó⢠[ éýéd¾ÆUÌ}qù¾ôë8„ËFe …£†ï•ûËœub ˜oÑHoÜ<÷Vg¹MuÖŒ‡&×—üIo@·4ŸSß}Œ¯ðU°CåñÝü;Òœp˜Ý•ë›™—‹â½v*Œ—÷4‡` IF…>­Æç ó1…v;ïXœ¥öD@ªkMû÷Íu5\v ±xï÷£ŸäHØÔÜâ®’NͽjºÏTL5ìZýwO÷£"•ºpëÖÏÕÆP¸Mf÷Ar­£§¼êR‘ÒgŒ„}¼UÄ!¸œ«ç\ÛÞ0)ýh X8Ñê.p AsË4$á¯óÜ¥NuíRKØg˜'„Emt‡-A8^Æ—•ÇcpοXgÜ?,‚ã™!¢@©HI+A²Ù5a¿ŸVW&ö^¹êz†?j d˜ÿ Ëî{˜‰…«£t剡ƒz B}€^¾8êÅ U$^4Ƨ”âF„Té°5<;K—‚¬ÀW.´K'j’±É,h4KlBНÔu7åå?óÀÒ—? }zOi¾RàÌÊÄEùt@?÷³QxakKгïÏùõBð‘¿ú-"\Y] Óö6ˆ…в°º×`¾ Dæ&ÓÆwúþÞ¢O›ÞAæ³®µKØâÈŒß]=»{Tåj@O¨:\mF!JRüƒ/õºd÷eI°Üƒb]ùUDcAk9}!Ò$ç%<Æ%'|{6@?ÿÆ\•i;§AÃê‚ȉ¨9TZ¥Q¼H ”÷È ‹;&`ñ*;ÌŒ~ÚP";†vŽÑba$gwNêËŽ]DJ!±tË[ž^kEÎS¬ÅÌl×èm§‰ç4¼K/¯G³XtÌ·Dè×|ÐЖÏÅ^¨Ÿ]ØË M !4d%—|õ4V%Ý`ob‘P’°”¡äQÓîî{‡¨ÆÚ˜ÜÑråwMþl ýˆcpOVeK2¸ïmYœýºüÒ‰CfÔìž5™zç©;…µo­@×ÜäZ©è–r×OéýÓ¾¢%ø:ä÷÷ðø}EæQ`ä]{%eqè Œ$‡gô}¾´˜1ú6ßÜe}¡(n0çN¦È hQq‚d[è†þ܉þAüƒ”€‡üEê$X–îwUîþnö ûzþ䤃fà>.c ÐÜ›¦+?*†–ٿ멲ŕ£ )ˆ®/nåÏm+ iÄãô¿~¹©kAa÷ >§&JÓ¾«]`` Ú]á!¢ß¯ôí¡`\ë…>l‚Ó¶föË»ãÖ[và 6jtØŠ JH}¡ ̘*¬áâBݽAŽó`z)•÷§5÷©Û»epÿù$‘ @º‰´%‰C0âÉ/ËAiH'"éÚÖ+óËaö¿L×ñ»R3ƒQR¶Êk0~(ÝÊH©ô¿qÝ2]Pæ-»¾#¾ÓªHü¬ç.ÌpèˆzÎ'Uéü ¨qÉo™6_KOy9D "b&q:v‡¸2í+•ÇhÍq}VΑ!Ôㆠ—UM^ˆ º˜îí NX¡—M‘¦¢³lþ¼­0rRa×®Ž2[{–ær=5¦«vìÒût^ª ¬ƒ‘ÖãÅÏîEOø¢9ý¬’ÊÒ•*E>Í"¬ür JJv²'´¥6?ç®òVÇP0ù"´Ýš Îùñ*䇥OÂÐw»‘¦Å—©ëÄ8Xì£ö¦ƒKnãŽ^݉;âw˜-Mf˜Z}‘ÉÉl ïÀК"I4r}6 Ž]?]É= ø¨"CŒ_úN—1œ.Bêpxæ=A_x d¼A›)‹V@®È+h¾ÿ„—eíÆ'øN7ð“¦_p§’ÌáV‡ÁÏ»{ö>œ>B‹S!é™(Ø „ÅqÙQx–(DéG¹ï8Ðâ}dÌÛÔ¿vz1MW,UÞ[‹`¶xë+;kÕ7 -eM⼯•­ZŸMšoÑ Œ|v*‚ûÈ(§à?n€™umn¤”lLT\wo£¥sJØu~ì[ÿµ'šó8àŒò ¥Þ•î¸Ãógòñ)ÌK‰°õ[fëöF’®穌•ºÎ˜ i%ò®OQä k½ÙÎ]·‰_tÈ}¿Uß7' Vu|ƒ7­z•én0ÿyöþA±…‚ø´,²jë‰ÂCG¸ò°!;ø®LS…¤§-®­÷â÷c**œtСÒN‡’ù?Ç\Šöª)ÊÛr’dðÃïz*/6D &ÜãˆptòÙBMýL$¿ÛTšÝ ãäÂ}MxbÇL‡»ê­E£>ÍÍpC6Ë'5!‚ÕÓ¹ùuF8–BÁHTŧ²ô.ÒÇ*ê*–#’Â~_韒ã5ÑV‡pj)î ì÷]iUÄ*|Ènçófóê­pî?¾ÅèÈÓœZ4·dð!e¦g*ý<ý:aKèÐÎ$ó,\³‚‚SVõsáGE;0‡ˆIºfrÀÌP Ô+ƒ‚ª'®Èö!]Žäæ óÕ«ÍÈw/3ó1) ¸T”Ñ¸Ž ù]½§xè(ªðì ÌMMq]]|W±{³¤Øïˆ©óð9¿—0=r@xœoxÁ̸®ÓnV‹ ;€ø…ŽâÝÁY|WžŠÃ¹0 ëV*‡gÅZU$Øó©ã}â “<49ÓU?)]Ÿ zpªx’ØZ\O÷+.ó„…‰…ˆf[ XS©ÙOMÂRýìp ZÌøH¹¿ØCã Œ3ekb$?“àÀÝýê…ãu‘S¥>³•yFõ»¸çC±FÖ¶pæK•ôxBãÚ43Ca2 p‰þoºcƪй+{twÜú¢á¢x¡¸¸=kbPØ·ì“O@°oLë)˜Ë]˪{™j2|?,´|©¹%°ÌÅm•ojkfÏ‚—ó6¿Ú汦ʭÌõuº˜SC!ß¼¬è d×:ÿ]º ÓLÖ 7v‡ñ£òÅ¢­±kñ°Uë»Smâ½ììÇu§ò»‘Óò¬‘ü>UN‘3޵£¢åÀÝ. L¢Ë€ 2Ý—ù8l{¤JÏ€úiAcįìÅx“,öñx%F†e¤Da‹¯X ±™óu ±7¯V)ÂËgÌéç …¸VÊ#›4h—[ÖÖ=¹|@Ñ Âoÿ (aÙrÇÇL*Ã×P™’ºãZ¸«ÔPd㥟¯ÓÄPÇÚùVjl†NÉÉ9(+f¤C$b~¬qF®^,ƒ_=´GèÒ–Š4«¢ óý¬¤€*b7x£Àˆ¾qné– X懻Ä0Í€$ÃLŒŸsý·\L¥6üh\Ô´=ÀÐæg¦—f ÏbÙ¾þ¹±‡ 9”úNùüaõÞi¿ã²ï¶ƒßÇ4~yjôQ]×’À×Ý›bч,ê±ÖKTx͉¨Ïö#]ä˜Á$ÔŽà¿U ›×ú^{ì«:Œ×ã(Ó€<%#:*´ÿÕ‘ó@㙢[¯éxïI„ îRžeý »8mƒ˜b€V80o*cãó¬zâºCuxdç‡géYÇD¯ïðõ'Ÿ)~zVº?÷4¥Û«ä‹Eæ'ò«‚ƒº„Y›¨Èéö¢‚ò·®§/â=zð`, ¿‹¾o¸1‰¿bMW段ȷ•¬â'uZj”\JÇ ™‘5ž'Ì­öÞº(ºdq?xl䵈òd<MtŒÛ.aÉH‚¶ Vb—ªu+íÕ<ù\ºÎÙpOOj™¦6i«ý·§OÆ·ÁßÓÛ»º§Ófäê=Íl}¦WÕ‹q¶‹ú¸sP¿ÛªVsÕ|ÖïˆHgØð¼w5‘ÚbhYáB¤ÜÔËë šl¾j{kÉËõø¦UXŸÞv»‰Îo…p"ý&ôhC-ðÔÑGöoaªØV|U1“LQ&¹õQÊÙsÅCV¥Ì°Ølr²ÇŠ’±©ÝjÛd§–Â%ωBÚáÂèáG&Ó±fº˜óTH…™*'í][ÁäÞ@dô?0~úµã™lWFˆ˜ìp»^˜¥óÊ]5ÂÈD¤²k»Ù–C‘ë+[m£ŠîÏ>NÿF8G…m(”»¥!õÿ\< “ųп@ã¶ÅíaÆ|ŸÖ {z¸Ð::_²“ïàL]„¨]&a±3ãü&¦,¥Ø‡ug}ù]›„vÝŒ`oøƒˆå¥—®‹ß½o{/£}8ø÷Gäx=E(ÄJÎIÝãùj¡+¶°þÖ|Ó&´ÆÈ=\:¨  Gت°4¯)˧S?Ÿ +úPξ´µµeà©71ÞÔu5;Ø1cÇ·è0kÆ]‹ÃÑ(·%ã/µ`‚vŒ©ì¸$•Ù˜¾ÔOÄ¡O\Ôl~K´:IãÐèá²<{:irÄóÒá±4]ñu›œÏŽª]bü‡R >&èÐU”!Ö€eÏBÔ®”@¢¥ÉÖ”R‰=®Í»PÛÌÑß(:_ê àšK&÷F3Îò»ÀŒ,IEý€ïXP ×xîc£ñéw­CX©³ÊÞ2…ÖƒúRÜÕ[à9 µµžÂc_Ûü¬ Ái«grôÒW¼·G Ž´AÛ)Bäü°–ï ¯Ú½¸Ø0ïßéà3ÉüTÏ€C„–ˆÍf:@"tJ”<³ /Ÿ'Îý°_[ñ=9.B[i¡§ífä5N-§;Z‡¦¦«‡NÞºjD Î÷ñµ³)«·i„–°i¦+©)Mê+v)žÔfာš¦¡UŒpÇ{Ûj`À5•ÐTÀ>cH…¶ýÅ™aâ,vmg'.jYl~;KÆ6Ž-ßu§Ð%¯Ä ·—f¹„g…l½Èñ½—Ð:â”0Äñéëý}9äU›Tк´z0>—,æ&_c7«o¹ƒs&¯g[þ!û°j“ âŠÏLÊb`P°žk õµ:¤þK{úìá,ûýéúKš„£Îk‰ƒý3l…Òæa–äaº$¾Ác¿”'u^F¬²‹KoK.Ö%üÒÇø¾W} Uêÿ°ùìyëS’ ¯áŽŽví0PÓ 1nÁw´oENzHnB¿ç¬b¼ ¤‡—)0ðoOtAš@Ú"š¶2d2’(üÙΔæ’qì½^(&ðë5kƒ[ƒ> ½‘åéW¹Oþ^XÙÐ)üi™ãëkUÇ9ïeù%´®íã÷dùÜ/{©“·È!•ðP…ÛO]1qñ“Û¤Áã ÄÂgÞC|î´ƒÊ%M®9—Q¶²bx31czùè}qÓd‰â“CN¼|9­B2:&óÍ©›úe™ 0åªj²œh¥")7êÛÅ©nrUjZp°ó˜eçïv •æ¡,«Wœ?›?ÂÜì!}ø¤‹&9>Å9¨•š¨ÓéT”g”C ä@wäõQ_M°x%Ó ˆÔ²W´“Ô,ÑÆ+]äÂéhœf‘·ÐÝ5]T}Ð9Ö×9Mæ,ƒYùpïN^Õàö)4ïFŸm¤¿‰woÇ‹Êûì8œ.¸'b Ü…–C/ðVôkÞˆ7…›0߇2 éȰÞÖòQ¶ùeA‰¥¢šæÃžäž VÊ^½ƒƒ­¿™v$µò=§ýzÌXš·B¼¿lÉ/rïm­ë§‚•zÕ´¼-SÆ J‹"J"èñ#Âê®ã¡·œB­©ù®²)ŸäåeÚøìDw¨eØý·^J¸É·ÀêC§ur*»¢üM$â¢ñk j8s¥tßó˜ãL†ãg{^?]¤|©HÃÁ„®V‡b1Î1gˆ£²‰s×wmÓ¡UW+R¼‹ˆ,TZ ™ow'צ™­ ÞFÔD¿ÆIÅŠ}¡ª¦‚uÛý,*‰v×a0+»P /;‹ƒô<¥3vÚÏdWyˆ(£9éëÌqdõJj1ä' {ÙC¾*\O2@õB0CßÎrSÀë@üdGXܱìñ«0ì[Üüú±°^84`¨ƒ\2¬L);T;¾©Úš”anÎæÊ¨³uêΆ‘<ô«ÞÌà]i)ÎË Í ,îêHÞ»Ò Iç4¯CÞì3?¾A™–¯¬ñ}´£†çÞÕoM÷%„ñGB&’7$®QÞ(}DæóËúpR‰‡¸¨(kmA-¡GU°ø€7ŽWXùO³×Há»Ñ·¶èw²¯nf&Öe zg¤œ NsX~:È3ùS‚Ô“¨Rúk¨F 꾊<دïY¹J:a¢«Læ.Årðò^Ñä£Âe£^ªÞAqÈ­ÊqQíŒõŽMD8ßRº[sIל9ÅMm_ Ó[‰~Ô!}"L4ó'_ƤÑ@ðfVâ]•¸2Q€(ÙDó‘LêÂî»â”øìz0ÚâÓÊ| Ž®rï0äunõCHT¿D‰,V‹dÕû)Ýnø­|aìñƒÆ<’n=–Ò^aâòÈø+ñ–YËçe X° ˜1CÀU\Ξö‰Øã|óAÛÖª"â17Ä 7øƒ1*UšDQ9@‘(Hó:¬š&äèýÎp»ƒ¹¼l}0­É?A éЯ”Xà‚ĘƒÚjõ­ 7¸´& ƒ%Áº€!/½g•FÞîÿø„@ØÓˆO(jØÈ éÍ–0¸ìä666†~rx•à ]l{Ûúµzï¡ñxrpDQnbìNërÙ5X¹CšÌÖÙÓRÑ"ñ–wñÖHkþ²ìv01`ÒÏîÇ PÕ^2£‹O´à´ø–I)ly;ߦÖL®‚r¾ÔtXÿ0¯r0ºz87Ûj¡Qi­K“¨‹ ÚÃóœ%OÇÞy`_òw€»EÑRI5j¦œ$„ùµ 5•šh–}HêM¸ ÖÆRšÂülv•)DǾ¨/2ÍÛûh´r–QÒ\úL¸¡ñ©-‚v‹°|Xë—î×ÝZÃ૜}~Ưe¦£Dùx°úeÌwu±Ø×†×TYB¦ kzØq‹EÑÉÉâjRä>, ±´ýF2†xèpgØ@UWˆŒx>†¶ðNÙôõé¬ÈƒÉ¢×G}̰ú:|CÎE„JÚ0\á鎺w:ôg:ÎÍüAÎ'hÄeb¨Ì¯ïrcpVYAÌg˜œP¨-jÚ/ÞâÒvç2f#ªÍ–€(£—g”aþ+E-^YA¹pú¸ŒK˜ÖÈÌêXÒíq^Ïî$°MÇ%áqmahëÔÀ6šA ~ð:™à o<ž•TquNU÷ vò]ÇGúäšwÂ,ÝŸh¼KB_ý·n^+#QáÛ]¦fŽÁ¦•`;ý×$v¼}uƒT\fÛ­Ù.G^Ú’)„Í®Žˆñ®̱lŒ ™Äª4,ojII¼ˆÜ9¡8Üý²¹äœ; –™õ K&ãӈͰ{6ºŠî¼ãëÆš„” °®!gÆ#¶ÐŸj©|‚ÞÑn:0ž#ï|žô^•nphå‚ë¨á"K2Í“˜g‚¿{9‚CG÷òËç(’~¨,X·Þ½oö©;ª}0ê²D™X‡!G']ÖO©•­ ɺP„eµKˆv(Dàà)¸g±Ç³É;¬Ò$Œ6~‚FOþ‰í¿ÀŒƒJØDæô:Ö ‚„¿64 aZVçœòÔÌàtýdFÒÀ|"‡¶Í˜¦qkºw%½®DNŽj‘Ÿêm-ƒ-F”nõãR¸åUò w?ÏΧ%ÉŒœ c±6z’xÀÞÚ2Ø©¶>ˆÎ¡œÖo?oÛaŸjÙÈ·¨•BÏ_{o‹'ƪ ™MÎ: ô™R$tˆÙ {e¢I ƒA)ÄRCËr©¤ÖB®[ªŸàæ\2 TßÊ1Nûº/_y"£@Ã÷uaèX?Wuýê/…Ó8n#ú99Æa7 2…p®œ‡s‰)k0ܘ1}¨é ª€ãöΞèýjrÛ[ê@ö—ÏÜ[¿è4ÙH9”ø•ùr …nú*ÂL  TÃ`ÆÈ,QÞ¬C·á€<•ã-–¶ÖR~–cs#÷Ç£ð7bE[îæ…–·P¤ƒ|`l%Ù\Ð[Nƒ?\·³çË’qÐ+«ôÏuœÿ*Y®˜©é~LhË,ImïèQ'ñ6š/‘B¿!DªT­"ôòúfØÀ_y f=…¥f2=¥|0ž;éX¢®°5Ø®Ðü?c{ž#,@C¬Íé!YgCë8Vêá* ”Ê„&èƒák!Ôµ˜^JMâ/övúøŸŸ(EÔj>Ö%¼Ï^ˆ·ýä?7¥}%ÿÞz7Çšù…&ZK—ö†DZ%£ÉщÌDuÄ:öxë[oN#ö÷oŒ­„7‹ŒB‚ E Äåê~—ö£x2(—öfÜ=âl籟Ñú°5+’‡… ­°¬M˜ñïœ÷ydjà·ó>Õ8/ÞzëŠÃÈ5-­·“]`=9Ê›j`äLhxÓèÙ~ÑK¥¼j¶P€Ž7Ù‰wÚJ;*érVA»¿jàíf*ƒR?=n¡»Oª ÉÁÊPпҥ1@/ÆÂ{Å¿›%MÉÈ™>1]Ìc9ï(!çjx £ì’¡Öp(óJ6·°‘§Ú ìOµ©’ÕHL€ƒ $&ð¶+ÖBßÕyhÖÌáNèƒ W¿0lX,ùq¸âØë©« £ØI"æß ç©/ó dB ÿÒeÂsY!ÖlëËöŒœÓ Ài}7ƒŽŒä×5À šTç<\™QômýBsÚÇæ>ß(ú%ŸÝ{ªIH.SmŸï»®„ŽZÒÂLÑëkÓhrxóã†Ì[¯±×;ßÞp-‹l<97RDãáô»‘“^ó/[ÏïKs’0ŽDQeïÄè÷0k—IÒÀW[d¯¶úSy©˜µ×–b½ƒ¿É®+ôPUºðÃ@ø$‘]o]u[†q‰nõÍÏ«=vm!»îÙŸÿ*®éúgA< endstream endobj 493 0 obj << /Length1 2874 /Length2 24786 /Length3 0 /Length 26387 /Filter /FlateDecode >> stream xÚŒ·P]YÐ-Œw׋»»»»kð‹»KHð`Á!‚[pw .Áƒ»;w{73ó ™ïÿ«Þ+ªà¬îÞÝk÷^½Ï’TEQÔÜÑ(åèàÆÈÊÄÂWTce°°°3±°°ÁSRjX»Ùÿ1ÃSj]\­øþwš¸l&n 8EG€œ»€•ÀÊÅÇÊÍÇÂ`caáýŸ@G>€„‰‡µ9@‘ çèt…§wtòv±¶´r•ùŸG-€•——›á¯åQ{ ‹µ™‰@ÑÄÍ hªhfbPw4³ºyÿ'€•››3³§§'“‰½+“£‹¥-ÀÓÚÍ  tºxÍ¿7 P2±þ½3&xJ€†•µëßvuG 7O d°³6:¸‚V¸;˜] âuY€²Ðáï`…¿ÿôÀÊÄúoºVÿNdíð×b33G{'okK€…µ ,¥ÀäæåÆ0q0ÿhbçêZoâabmgb ø‹¹ @JT`Úà?Ûs5s±vrserµ¶û½Eæßi@]–t0w´·:¸¹Âÿæ'aí4µÝ›ùupôtðýXX;˜[üÞ„¹»³¦ƒµ³;PV⟠þÕf tp²°°pó²€Î —™óïôÞNÀ¿œ¬¿Í øù:9:,@›úY[Aà}]M<€7w ŸïŸŽÿ"xVV€¹µ™ÀhiíÿšdZüA‡ïbíÐgiÀòûçß§· y™;:Øy¿†ÿu¾ÌjÊ*º zôïø_Ÿ˜˜£À—‘ƒÀÈÆÉ`ý-2nЃßÓ¨˜XÿCãµ²ŽÞ¿Ù‚Úô?Œ=þÍ?ÃA øo.%GjšW‘°p²˜~±þ?Ký¯%ÿ ÿåÿ&òÿMHÊÝÎî/7Í_þÿÛÄÞÚÎûŸhÝÝ@ è‡ÿª ü{hæÖîöÿÛ+ëfQK»Ûhí*eí4W±v3³ú[-Û5O™µPÅÑÕú÷µ`ÍÿòFËÌtu¸‚$ù— šœÿ–”t0s4ÿ=blœ\oxÐ!ƒ'À—4‹æ@¯¿D `frpt-€¶ç°ptÿ}¢\œfÑߦ¿€Yìq˜Å_€Yâñ˜%ÿEÜ,f©WÄ `–~Elf™WÄ`–}Ef¹Wâ"ÿŠ@\þE e &ö¦æ&¯~;ÅWb§ôŠ@ì”ÿE< v*¯¬¬_!ˆ¬ê+‘U{E ªê¯DVãÈj¾"Y­W¢¦ýŠ@u^ˆšî¿ˆùº%PuWø¬]m_C@ËM_ˆ®©‹‰™-ô¶²p{µ³ÿkÿ{âþu€ê™½"Ð̬]ÌÜí-ì@Âø3'¨†™£H„ÿRùº^_ÉýV'³ù+dQ7·º]AWùkˆð5/¨-ÀÿÐae%Ú››¸Zýa‘)ûO×ï<Îî ûà_üò2³3±ÿ£¨a¯´ÆâÈñZÿQ„_!'ûoèñJ–õ·áµçïpGw—?ª,ÿ€ ü¯„9@z°òv²:ü²ýQŸÔ ›? ¨¶@ÐØýAçöºS6{3—?NˆtÉ3¿BNP6Еñ‡ÔÇW~ |ŽÿqƒR:½ºAÉœ@_ÿQë?ÖÿjŠTË èzãÿÊõ—ÍÚñU" ~9Ù¹ÿ¡Žß-v~=ãßÈèú×í÷¯BÙ~Ý€æ¦vÿáÂÎñêø_çúÇóßxÞ¬ÿ fý-‹?•tF¯ 9A‹\öÖÿÎß1@?Ž–”ÄÕúu€8@qµû¨YA¬^Ë‚Þ|ÌnV.À?fÔq7OÇ?€r¸ÿAzðø‚˜yþ¡eÐj¯? (½÷ÔDŸWr L>@—¿Kýçíaæî:\·¿Þï üü××è4ƒŸŸq4ã¶©n½­%ðdÜœ¤ÜÖN¡eôwis¿G~“D[ñ5pÕåZ4i° uiS’æJdäÉ÷°©öÍÇæÕ–‡wFqjÛ-ðsãØ}cy‡¢5½Dp„Œ";ïžœßiØB6—£ÌrvçAVÉÁ¸õì‘öªé-^ÙVÝ©à’Gx,þÉøI3Ê  pŠ2Û4}— Æ‘–ýÔ eêêz=sì…D.ŽÞïè{¾¯Þ[ôÝ´Ïr©›kž.äúð•¯Ø^²άï·ü¥¾9¯&|’L$†ÏKŒ¨L{liÖj‘ ÝUÃóí¬[YI€`j‚>Œ­„ª¢L#2e¬Š£H ·*v[ Ñ^»…ØrëµV§…ÍgÂÞŸ5/€)$]«CÿÆN߇ZçåÁ}Œ7¡Ÿ›o~lvúi ÷ Zz²ÒIZéG,-ò¥}†.vèÐÊb¢2,x$ñ=æËLB†Í†OºÈ=IL£`¹«Aõ æ•@H‰ A‡.8Ū„p˜æÜøÎ#WRæO/élU‡þ‚/x[Ö”3‰¤³ð l`8Uú_Ð.7ó?Ð’FY„èší¡E‚m LScTÇ$Ÿ©a¨°Kf“3òU¡Q£­=‹"Ë¡T0AÏ÷T‹Ë‚ɹƒQuûrÃÄrUÁ“hwwNÏÈL$\D2ý@–šµô$“âLŒññ7hnÞáPæð ÕO3º‘mΩ<©©xÄêÛ1‹ÄgY%*9W”»SÌÔe)ŽñðåZÅMœ1¸í@¸d:~!cǼLL×ø©+Ï´${0HÛÉ€#ýCÞ×$L\OL:£ ž˜È{‘9Bž:´›M™eRës9—¬ …ÝÃþ}i#cΚ~îápd0ò¶O~x–ŠÒ2Ñ´ÂçãÜ0^*ƒ»ã{ÅR¶\Ÿ÷øÔ¬S\t_Zè z»J&^x¿~[îÉ•OÄ6£Å»Y78µÌt+£.ÚŒë¹|p€Ñ8ôlKØi¥È2W2oLË]P¾žÉ×fó"Ùãq&U0ÿY¾Iàxø~‹U‹9j@LP¤êòþ˜”%¾S7ÛÑçŽâønü¦ßŸ²§ìûÄ –çúÊ:Û[ÇâîU@¹Ñ“°¬ÕŠû^¶˜ý/)¾:VdعdsØ¢o®›ÀŽ…‘Ò·`\NõsOª"ÆÃÉÊŠ iŸÛo¼¸‚Ôñ[4ÃO­²VJ÷µ3¾[ÊèäVH³i{,h뺂ª2Å£û‘íéÐ2ܼ2û%SJ–ùhº{ã/‡oz²V˜-®ºÓíÚ(U$Ù²ùˆµDiÕŘwбqb‹gˆæ®Þ¤Ûñ—ûu Ð7Ïé@;HÁÄ“ÁF‚¥€óøªÍ9Æ£uöhàÐliŸB˜Š>稈`„13ùYmõ™0® É{Kqï…Ë¿$«Ê°íÆÄ-ƒVD™õ0›9LêŒ$±žÝ›˜q°oÊrwóøf2|ðÞF£» Däçy(I´G*JsóRÈ*X?S%ˆÎY¬;Øqyƒ”ƒ‹‘R®;‡Û>TÉSŽÅýášðaå§]ÕnÝ­îöl-õü(˜öÂøvUGK€<àë ³5œõüOw8Ó ü.qxžþQ™üéLvpxo¦sý,¯¦e7VQ÷²âtD'Ñ1&}Ž\õ96SÏDz3€[QÞ/% >®¡Äpõ2B/Y*)ñû­~zn'ƒø ÖNPÂ;¶T¬fyA°¤¸¢Í à¡k³JyýšÚû¼ °|¶ûTç¥å}U·€6‘Nö–Üç=îçB'óN¤t¢Ð¸Ôë¹ÞoL.b¼áXºâeâ¬÷=nÅæ"ä7ßxÀÆm•>NEÊW‚gMòçvL%ØHÝÓÀ ÌE)]D€ó¯­ç›?—v=ƒÇ—¡>®ÒµFôd'möbcCºvð ÔIÇ ‰K‡híçX­µ öPb©&ŒJå;ª´õlL } (Žm#›`go½Qáå=ÒûäÊûœÚx³ŒéÈeAûŽO)1ÿhÀuòª?±DÆ"ñ«!‘ör‡'z‘ÂÅ›ö FµçrHß‘2¯éKî6™rA&Æín:)ô·ËÌÆÞÅQªUpaƒ‰ªI]RtÅKÖØgŸö •׿F¹ŠÆAy¡ê”5JÍòÜ1°ôj©3Gú.ùiºW½ǺÎ@¿Öª9BÄüÈ›9Ý*÷—ð£Ràš’9GÏQ§“òAÓ(2QÔÕuBàzª"£(²ókn”¹[/É_;ô¿Ñr÷Pµ?fY:¤#VáíëRO-štÕktŸQë¸|˜ZMev0rH‚”SÈÆF€¥I¯ÞÍÿ_V§Dä+/U·ºxjh›fºÒåpðûØX¡"÷-ì¢Ižf6xS¯ïcºÇƉÂêRóNGÂ%k Å {Ñ—_®I˜]}çz«t©-‚E7?\¯NÓ0ME|ã¼g`IÅÅI"}qÌ`™´?èÕï°à8 ¬™:…Xºª¤˜S0N\WŒN¥Q)8}‡BoD±Ã@|×ô>­–gïži°'¹žÞb´ßÇû›GɺQµ˜Où™¡—lÂS­°0­W³»uÀMrIyð¦óìá“?âZzΓ¾‡½åÞ–‚ÓñVûþ,$"µìÎÎQlf¿4Ž$9݃”ån¯!B*1qyõþW‘䪉~X Å­Š‡¿LHÖ»ƒ7Úµü‹ÒÄ3˜¨ºdìb—œó;·ë2d“%ú0·¬É£©ÇfœJ·¼ÅNBlÜr-bOu®Ì¿"ê-i.‹¼°TÝ„ôË7xF¤]{øHÔ(xßraR…ÝÛ{—ÓZ×áEx îÛt]k‹TèQ3$R3±û~èUc”5«›ÎWÍ©XXµºókó$â FtKJÁ‡oÌ6y!k½óÙ¤~+Ɖ¿%¨´ ýŠ·fTuš(`dV wQ†ÝdóÊZá> L3Í랉Ì9`•¸$£]9,tÁ"µ+?nº‰*A3* 9$G~†6ZÁ64 Y´ÄŒ¯{ŸÝÃÿɘ¸rüø›¼ØÇ•S.`O}çIE\#¼PâžÝwU§¸Pü’œ“´¡õéwuùçÌŸøß¨ãQ#6]ñm¹AÉUÙˆ`z•ÔIÒ°HÿàmÆZTu†ˆ.êO´Õ n:Í@åψu&p˜Ûrp³SgMÐépŽà†wŽ›íqþ™ ¼9îÃ*®NßA˜«ÂÚýž8¡Î6‚À^"—¬¸ð#8ÉŽæl²Ž–¸8¨ºÍlï¤Ä)Ï ®ýŒxGÛ½8·b!“\¶¦×4YÁáþIÓï{oÏn÷å7LMÀéP²nÒÑØé¸,ì”îö·ÉLµUvž‰$”á¦Ã}1)­õgÄLý`ºoç¨ ^«HsãÖPH¾h<;î ëk³hÌþ΃¨Ü¸™ZÖ.ëéÃZévícöÕ¤J×#ßÄÉŠ”ÁQ'“=C„€9«Ce[Hãô†_i›N·÷ˆe<îÞK.çÉËIîð~fÎÝôœÞïIŸ–ßN§ßÜv!k2”·»eÑîXóÉœgµ+‡ô,Ò”•ö‰¤´ÚŸÇa°…JÝ÷Öz¥ùÂÖÏz|‚2BÒdô (c4=æ:Àˆ‘Æ}6 q׆Ä>ySú+il4Ö³ â–ë® ·ÚcÊÅßb3N²ßYoÎʈ,ÅXŒ=Ù6ª1¦]=yPû÷Û3¡S¨ovI´ ÏÛy?’àr'`ç ê^͈הõÚï×ÖWH»sI§½¹­›g-x@qcŽšBx^û4¼q ¿Æ^ÅZæfô !äçC¿cQlÉkEAtÿ­ü­È‰âñœáÏ&iùk~Θ<Ïþè-YçÑo좫ºhÖî¥þ]Ë[Ýçm'G?Ñu]P÷‰$®®ùb>-˜¿Qˇ\$ˆº¡!2Ç2`Òn4›ç 6[mŒñêOº¿ÀªïâòÊÇã£õhÈ™èPlyZ&Ô+éo@xE8÷åzCÉÒ$¿´Ú r*Ëv˜Õù½³"î ˆó‘ØÀÐëŠõlÑýDßöTªÇ7z²Û3–×û•õûy݇y`A?¸±û­þ;¨Ò#¬™¥°½Ú/}† \¿˜3¼'ŒMN³Ñ "ô+F#P¶KfävyâwB™ fûìXŸ+˜ã ûÙü¨ÜyÈØöëýà…²s¢]ý&uÛá£kt ‹²/r…°^‘ÏEdÒôH¡Æ]žc'F… ªÜÈyc!€qí7Ê.ãäœ_Ëß]‹…›=†Zú Ãéâ±fžT¬S2µ¡_lm_ Îp$ƒû4_¨ ×ê3qay`9b²ë^+•5‘*Сsï½ÜX\:qO× 1`yýÂ!¬Ãö¶+–ã›Ì—‘œ´Ùó/†ãÎ @Çê¯)šÇïoòããǹ…Žhûò.Reb3 š¿•‰r“íûJ„ª 0³¹=)öö_Þ¹nø?ØòÊê\Æ[ä}€Üx{z Ç˜/Б<*LF`:X'íï&£“[TçFîXÐ%®€%܃>±YD"¢ú9/º'‡H_²ö½©}]ð*Y){›‚Ë£Z_C-œ|·\áó Çhá¯]á4°1ê룛î»R8æZÒ 3 ô»Ø®X¥ÒÏyk†ÌEεÝPƒ×àVQ½(¥wwzÄ¥>ÁEn"ˆì7@ô/i™{Šs"B6´ÚVÆ[Š­aB/³9ƒ/ï×kÇZrÓï>77ë øMŠ»D àôi ˆì!Xà>A¤äÆ'ªøñCGM¶Ê_O’Æid5 KÝÜìâ?ÝN%@áC"ð§Âu¼;PHô"ɸOq½¨ö>§P§«²˜ò{‘7F“°_¨óÛ˜¢/R6ºÉŽaú‘­üòë+‘‹ÖJ@ž×ÛÊ&˜V!Ú“Ìκ·þvéwœŽí¨ú»ÙãRü¨ JTߨ1¬‹" ª”T;eÏe¦F.ÇI:„5øŽEæ¤Npv•^Þ¨ët.³T ”Ò¶X­iÏÀ´qX4II4XÅ,2ÍÕh@ЪCO0‡8xú=1 „é)5Jb‹ƒ_VÜ è"|RƒÖùtM]Ÿ²·þ4€¯Ÿs;~~Ö]ç4ŽÁ‘zo”æÕù)R3ã]$µN|]ÿÇ`iÍT.Y’ÔàÝ¥k¡G¾A-£ˆA¡é^:Y?ìÉ:2ß9,ØvÍŸ¾³A÷-©¯Ãóy!W*«ß~ÐJƆñ >jæ½÷¤-?µÄˆÂržâ[3·!ÏoªX ³zãÜÿµÕÕ‰±I$^Rš;f“¬ìêøGˆâûm€Þ¹ë»@¿Ü…éZuŒˆ|>‹âiûÖÂ.Qö“˜™Su¶A¼¸ý󆹄G¹¯K5ØÄe„çØfG ¸þw(ï`†ÜÚmX'úÒDw]ž#°Ê;&ÊŸñ†å<ºäIÞÃ׆Œ%i­ÄÆ~…OyLS ®Õ_ZÐìÔá#„ \X6£¿¦\«‚;VjYSçä ½ ê¬ÿTœAÖ=ÓóµÆrOc¿uyËдH»f‘¦šŽå Sz»G‹•°bˆ©DêRÖ­ë“/J…ãò™_Ô\VœÀ˜9,ÀžÑÎåc0dwŽ2üñUžŸn$@žovY;_}[%r¤\´Xš:¨»gé§füç°ä ÛܸŒ w'Nñ±î–ö cµÔ º¤bÜìÛ/bá™è`oÏØ(T›v6Þï@Z®oîU~Èí'_è÷5/pòœ&³¾·> q„åuIÑôuðòãR{!¨b´yŒ^§hUÕpRÍWRÓ/Œ¸QvÌ{ÒVæ*f2ï[/Ã!Ýý¼'jˆ_޳+P¾$ÞÀOé¶4<Ò ½£Nߨ݉¤ßˆ‘ @:D´•#7d'y/}‡ É]L< ¥ôù§T+VÇå–¹ãíU¯Äœ7¸xƒ »ªÃÆ6ü°ÿÃ0²•>¶8\}o&˜uæ»çç à~­ÛjP89c$yyØ:qEØFñŒØ'£__åZÄ÷ˆ’£(elNrNÕMO\£L.tÃ$DjlŠØ4æ1Û©F©ðh'‚í÷ˆjHЫ¡nk«+`û\ù £¼oW\È 5q@®×ò|I1¯]Gå‰FØ ׺†,×påÝ."ŸãÀÉð==‹jÉg ?Üœ‰ts}÷©hdkYLÌéÔõ“Ða“!/9b8R’ÆXú÷áä:,÷”™Y4Ì “u¶uM~ˆp¿~Ïàä‰BT¤/qoéb|Ø8ŠÌn®û8(ÎØ¥ª`J=æŒ7¾­qÓ"—–uÏ#²daÊŽ_œÌ鵨Y4¥T,s¶Ÿ¬ì»ýz¯%ˆô£•j‰ &÷s£š]+íkF"rÓCr‡×lŸÛkõôe{²ëºŠX+ä—ÑÓl‹jë)Û¥šYr8½¯¶±·»!RáOSìµ=qB _w჋†\_ áq›¥5IM8Þ\x1Òè7<oæÝÁ9}¶ ¬P_‹·” ácOS)9ö‘3äµÊ,‰¥q;¹é{*~L­*ÇzCd±,KàXåÕ7Óxû­|ìj “xÐv±á}4¡t#zãûnåÛ›&U„—c‹þjJ·ªE,ÝÚ¸4QGXák^QÓKDÂô)à6‡ÅÓ‰ƒœ0tí¦qšYݪ¶âˆnØÜ„Ö¥Lxúù°×g¸SùuY²–LÂs±‚{×,³¦Œµc 2h7êÝÅâØx*ý0³$C›#´µè¹üað›ZƒÕú.y9M²£`…ïŽLbïèd¸Ëb˜ÂKMØ¢ÖÛ’_žô·ô>‘w]—Ó™ÁŠš¨Ðü뽨¸¦™HæÍÎʘIj!«K…ž£®É~Š.Æa-f¨›a2Ü©˜ |F¨c²"÷O; xDYþRüÃ`„5Ö9Om´lvÇ,_÷Øe.¿úÇ$ÝaŠÅ!s}„flËtŸy±<­<îhŸ/ÉhÄ݇e؇?[fÛ‘ 9D†ŸÞ¬c ØP¬®C!Ñl@ø¤|Ç—«Dà=Œ '$¸5mT>:a‰ÙA•‰øÄÌ×N]!Ï ‰}ÁQtY ÖnOm„zknn6wƒ3Ä‚s¤×nÇ· “Ò'Äý­°Ñ•*šÆ*SÃ*zz‡š÷-Ψe£YcÌjŽXwDŠNî±@1‘ç0)^+6:áåéAÁ¢)ú‡Oºhd¤7%?’p˜²¶äò,.°º‚Îç<`Ò?Ñ ~îÁÚ5Y,±²3.B²[8~Þ£JxÈÿ0«£tc÷!ˆi­ÐTJE”b8^V*'6L7á'Á;ز²‰~ô”© ùg6‰#AdÜ-ý΂­ýYè»ü™ÏXö’XšR§H¨‘Ö,iÝñÕF”f-j]4{áÊ4t6¿#±ö•Cé|]ïWüéª.:Z0¹9ÅEšÊžd¸µ†#Èù[¦ñÐT0|B·ï«@ž)~ÚÞ;з²Id•^‹…œ}–I ¼&XðyIYøÈkJZô‰.G¶äi/j<ÂöÈW€H_nf vk”9#œ<0º ú¿tWßl^˜QŠq9![î'Ô­vdèçEXr@Á£úÅ«Ã$×á ÷f¼ïïíåÕõà¼C(¬ã‘(å†áÕH2Ó_½I©o$ÉÔö’Žx1íÞ䨂°„× ÷âœ}¯Í¥¥ÍlYj€ØNÃ?Õl Ò¡ÚðXW—Z§aêi5ÃýÒD+}2¤«¤62Tù=öÖXZQè©ÀâÝ“,Yy ‡í|X€á|r fí‚O¡i$#P†Pb>q20åVf·_¥†IÌ)¿«*,ÄòÊú§VcÍ£®®Û\»Ä{Ž.|¢~?L+/¡ ød>;"”1ˆ\¦g‘N]¡éõ£–îs—ŸÎUdºËg¡ÏUlöƱO?\m~¶ä¬)\Û±¶ÒûàÀWÄ$Õ]Ó[ÀØ[mŸÈ­ ÁõŽS“©(-¦PdÐ0÷m ¥ÛZ ¦Q­ð{ל9õsJŽCU}“ÓïiÒW×>UðvEðV9—ùëBÓu©ˆ¹ØÂ¨‰uæ`î¤êq |‹¾âž â<êÒ'¾ÔŽ`«¶ð>÷¢Ëg•/RQÙ]D¾é&t„î¶II—yÀº5Hb÷à Áõ)&¹~¤JE±y"ÓZ}ÞÒÏ>~î±ûíuð§¦þÆÆŸep¤Ç6O%{Ûòùt}”ðJpg?Ý£õ&ïáC œ £6\ d3¨Þh/ ”“Š•ZùMy+ºû¢ ürkŒ,ý® ìc E3þ²Õ¼Ã¶“ga;™)iLgԵɓ÷"è¾¥¾•ÏZN.sŸÔá¶ÉeD¹\%ýƒxŸ+Oÿ[_ˆƒ=½NzpŒÍ Kœ½šxø.á©vB"QÞ´óéÄPn8fðrU¡(¯zhaPäÆ÷*0ì‡,íȸYR’¢¤à^ÑSrjòXÕtc_½ž¾Ê@ý#åfÕ¤;k•n[™b[B«›»3§Ã'\G„a¢ô´›"ÃѰ/ðÐËY`ZšpÖ4Ù:ذÆ;òÓ%œQQO¬Ä†õM>6Xu©½ @’áðc{˜ T£i®Ö_ŒX?•CÔ2¤ôþÐyC_z®Ã3t gÔ »-Þ[³cls²˜P«ÞV.ï9²Z¦ HéËÖ;预›÷ÉÀâïL\ðMNtµçúhU™²Æt4À”k!MÝ(VD¬sŽ×—U$§¯åU!  ®AÇøîÖ½*¿Ñ£b|[z´µ=µâG! ”»í®ÙÐ!%÷¦Ñwü»YóYAO>ŸÄEž½Êm ȥ陀­!4Äi¶ÏÚ Î¨îƒØ_DÂW‡ÀCзŽÌhÎ]%{ÊÝ\‹ß†¿T$á=q5 sÏ=XÇ ¥7>€-fz‹!wjV€ †A3ƒ¹°ùä—SÕc6$ßýñÑé žl _ŒYµ5=ܲ+Á•üLÄKúë|su}2jÔÍì0MR…À™”ÄE·ÚæÈTQØt˜Îˆ z §—Ë$¿÷›“ûë3j s¡Ù‡Wh0ˆ)„lÝ,…æÇ.å JÒVu\ÃPã¹Ð<¹„Á3­<ÌÊr=6pe÷‹3#ÇMÚÓ¬[\b°>À™:\«€kBå«?;ƒyåÍùôÎ~%„cžå ¨˜Î(~Ày!Ž×áeò´DÐF¨ :̰³Õù6BÂMžç A½wÂnc³ s¯Šx%³Ù7†ñ-|¡NÕL“‚Lv1F½[ø¶CLßnJFü}õ ºíV0ƒ÷Ýñ;úÙ«¶0ĨÚ­!Åóx&Út,¶ÏÐàf·T”`,8Y0JãßÉd®}-”Á«Ðê;É©u™#óE Âi}F™áü¡b*,úƹ8Év´¾ïˆÖ(q;ºrb Ö®¾Úûظ|Ë•*¬ÕGØG„N±×Î7xã(~cmx¯Ë±,”|ãý3ù4ÍþíöÏw߸²ˆ€``ÂÕêänÙ¼ëêáݵ_×—È(|uJxjNõßN]çÂ42²ÇzÔ#—׿8¨pÌÎ5OáwHGµ‰ó¯¦gjï„!ëÑ)•5;~#^ vãÖ `Á»Ï_¬L{CÿpJD_$,`¢]Ây }f7 {9")53Ì;Ùh`£¼dÑçêD"H€#Þ ŽøIJSóLA9K+æRóÕx uS¼fÿ’üL½Kq¶Ðçx·G‚0«n26¸à²áè4…³Sh½¦'Ϊú!¾nQd`ˆÀ†ã—¾wo2¸Ò.0&—Ö²‘Ý?fôÑb9DN4l¾_ðO_04ÃS#ï¾( »rR3±Ó—Ÿ<¥…},µ19}2§ß²’üe7Od1à³Ô£ò½ᜠ;>—Iü^öê#̇+ âCƒdÇ·"¹¾Ö¡²¶íùËž¢Q{õðóKØ4³!.t]_ÚL+^n¡ÅkÉõ>H|-ÒwµI©¬©ZõÚ€›Iv ±h÷Ò¤]°À0×P¤þY%ÀÎ`Á›½ÅV„óy‚—Ýóº¢â ïÖÓ?ÉkËÒêyÞªN¼_¼ =3áÃÆ\N±Ë*ƒÄÓ¢RÓ©Ò»\Uê:ôC•áñ^.8jÁ«/)0LYÌ¿ !윛öû¹Ÿ Ä?:žkŒW&k¢~øe×ûȲ®wÖn…>>+Ÿø±t¾&înœM½¼›!©’Qª-Û—‘@Û„•qqe7+á¡xt8­œ•»·Ä‹D0’W»³‘úÀîc¶ôÜQøãŒ*6€½±âÐ.ø-½«‡BÞÑß'_Ëhwj,°Â7[G¾ ~ŽDmݨUMÓŒ»rÃæD`¾€Ìt¶«µ^/ßwüYŸ|^G³ v5Ö/ÎÇgOÓ¢œCFSª€ª“ «©ýÛ#Lö2f³^›5eÒ°}9ûŸ´Zäð!ï\Ô·ÊÒç·q&m[] éºÍî1Ôýu+ˆ¾^TP nx…P­ü6‹§ù#Å#äìN¢ NF-kCÜNϰàg:Ö?gI.E™°µ›êÓ«AûVB#v6%ÕRÒø‚a 8ðxxN7±«6vè‰ÇªÑ…fä£P>;ײ®`ÈMš^híÏiFGÍñƒ¶ªÉÓ%u¼×°<É„’é™w}WôðúÊ5ÚŽDðÄÌnÝ{›sW°‡&N{–ºAR²^Òû!:F6tÀ•:Í:„÷—³¤<ÚèŒî$Àr£2Ø7¤… :LEêÖ0x¨ñ lº:U he¨iÈ`Üòí{šŸqyà?lL•Ë~\²¥B²Î‹Æ2–iÓ¢à…­í¸ÃŸ$\4±0ö{»’ˆç½:°óÕ5è4ð·¦÷¦–Åìr(?=•ɲþŒ„Éã©ÏxÎzæ¢ 0Ø…H¦Ù§m[]âå9d^¦|ì‹»õ#Ú{ûú$&ðäïÔ‹ÂxfÄv4Ö{.ea6ÂðÅЩ¤5$Æzx‡e?»Spå&Œq0áÕ4Í’5Ò º­ÝI}ÌfÔ’Y¬’AK¾Û¦*WÛ2ß1(ƒF¬ž/ELv¿ÁÇF¦u°Ìý–ÇKƒuEPUJ׿_»£ÓFל07"wGÚ*)ðxs½Mzëy!T\tüzþc„£Ž6_3âÅ&¦CÜfYìU© Æ·A`‘JICW½"ƒI'ÃxN¤q¹p¯ÄMç\Újå ñ†ÌèJóîGÚÖʲøb”N¹_þC>ÄÍ ÁZÙ&›ò³”`¤³‚“Ñ ýuz ZüðwS€—µN:ñ·¬‘å¨bà_>AÃèmpù‘|05Ã}ƒ$zPxÝYT/W¾ú„ÝH±¼ãócq…´’÷š|ˆ°]­XŸMÁÓY ¥"7‚îA‹·›ÔŒã ¹¹qáWnüâÂwΦ VŠ¢çÊÎüãDÚODfd6ø61a¿Ñ’ Ñ¯I;z¶),“9‰Ž§àúþÈî7é÷‰;»ddžs~8š¾È‰GŒJ# X%Äé «$®­]jF¥Æj”¨o-Ô•¼”k-½å®™ÐzEüÇøÑ‘ºg¾Žë”f-€©—Òøh¤†ª}Þä à!v 6ı¨hË{ÌÕ.oZþ¹Fõ5^­åK/øÜvX)ÜãœïìE©ô Ù¤;qðò½ö,òã™fdušÏ­¬¦—šŽ¦——Nºƒ³§Éê°ö{J‚ hÁ¹ÞÌšç Šðœ_F^¼–êJ·L¶6-™'µþ¨½¸ð­ w?% ÛŒðKñp¹¿|Ÿ ñO †hüY‰ËSH+Pª|“f%öÍ Vô¥ìaf{™N/Ú¶¬™‹xœì€ Œ™tm6dW#cÐÞ)ú‰èÃjÞ0+¦±q€ö´@®}¢ÝƒÔ  rìÞùR£”ZH@ ½…{Ò>î…¸‘­hšQ¾b‘‚•_)6æPî1 ]V ¸Ÿ™ãµÒ3•” Z ÉADÑ‘Ð.!üƟߪ¨sñžËPÆvž•êtpý Ÿã˜æ¨£äÞ5Þß ÌWvj¶Pʼ¨Ùiqž5ͺâ G æT¹/þØ‘Åb5}Rh©ã_è±$¡!¿‚›¸ä PBY£”RŽl.èžÖr˜%'Ÿ‹Î6ÚÖŠý©@)D0HXÁ ®1$Ü8õqêÅ›R—uÓ²¿T+èèákdRiu,pd¹:ûÓÂîÏõ²áÀþ Ë̺`žRÔj¼ã¿áÓ¦äþ`"ÅœSʈ•+(ýôÕs>C@­Gb`6GX‡‘S½"x€f°ÉÂÏ,$ÄQºUá-µ'žœkünâTôà=j©[‰¦“:òªÝ;ø2ôÝ*ƒ}†_bä]%J‹øÇ€®8V}Ê3©ÚdË@ëÒº9–ÃM[žp¿©Äµ0¤[ôùšâ!3øÌ`åoœ]¥^ë‹=á*èS‘ ]~Ÿqàa1E çqB¥Qb‡˜)že(ÚüEec2¨ÞC–1¬¿Ó'ÙÝ=~Î\ûáÇe¶þϾè)š}#0‡kk§ÁÜ vö)Ö"f€³E‹Þm¹F¯N®£+Üœç¥dÅ™À™7X+l´é‡â »©_s÷sòb1,$íKudGªŸmQ û1j“#z 1Á%]Ÿa³Dp&"ÎÕ7«¬Ô ¬j?³}WŠ]95æ5ôV÷û­Z˜òBEâjŠQg¶åU™Qƒ£h^ÕýµxÝÚtŒiŠ(¬Z¡"7BØç´Üî„; ˜ Ë6lÕvMŸS*ÒY&ʾû¨ˆˆ¤uL8ÆT Ó‰ÞÁëafM)…ÕCÏ\?W?¿•—‘.†ŸÌi ·œ\^„•õ{#°f¨:–[®±ì¨ý¥4O{}pÖgèf“µ"nt樤ªû‰Ry!WeDÃð[+K—ë´.ÿ>ÙÂróÜžïvV‡:¡V-Q”í¾£lÞ ç•ÖøêR¡½ðÜ6¦çhNºÃ_¹yŽŒÞ€7vJ~ÌJ7· °Š·øöÄ×ÖIW!6ÚɧŸÅBœæ>è–¢ÊSú-{03gùr¤19lº'Û;1€/c6 î&)#'°÷þ žÎñ.¼Í­Kf¯9à‹{ƒRÚŒ€aàmáÁUŒàÆÏJA’öfä4v‡ö]dz¸è‘©(Ÿ%˜„ï²÷ù4 G÷£h S’hÖ=!±XÍKç B8_ÙïJeh9çõsíVp { ¢öÖM`RÓÑ• €kÖv«fЙìLLÕCÅ2RæQN rjÆr…•´HDk—J+ ÖÃUÉ$ÇuîöPµé;~ËTPÈÕpZ{áŸi´´ô•­ÍnÜCJZ¨$cñgÓ·½L…˜Ã9ûÕÔ‰ê ‹ª‰rÔ´ß.Ì/óÝÓL)bO—I…•Œ‡¥,5ö¹hA?”µnÚ¼wA¹ÁTí±èfúöøS÷k½+#NòUÑ8³ûOÝg˜m…F¯XI õ²‚[¿ý»‰ŽÃ"ä¨5žŒ tÕ1’_ø!öõŽ-ë°)2oŒÏ¢Ñ÷P›eÖpI—ÌÃÈ]+5uòîciµdôiøáÏCÖEð:öÀÁ¾µWtÉJoie’¬UÿÉ-k°9U¶³GSÀêÎ;›ëG½‰{_»îÕópüušÏ} Vó¹¬Áò[DbB¡Î7–î[;÷&&ºBH©æ3Tc‚N¡’û ú„i´¡|Í3ÖO8ËJŽª]:ÔÏtv`aƒŸ¶?_ôîæ¦y*wÊ~øxºÝ» pÌ-‡l!¦—ù°} ÿey$Ù¨r(E]‹RñÙêÉÙ¤”ÏÓípÓŠÄ"W„y!šétÆ„í†01ÐGY²@†×Tü¤Õþ+O;áÖT¢›Žˆ˜P0Û6A<„º# ýG /GX7]nâ²órf¡À¡IŸ®¿ÖÉÊGí6§¢ŠØ#MBB„8³&\Ÿ_g‚»—ÂhN½ïÁC^› ªÂ¬6¥·ž JmÓ­—Ð6-Zc &a¢ãõŠXI 8d—IjÃ*{]NÚ|íZÉOÕE0«R¦Ó”«dÚÐ&ÍäÛeðê+’2Þ1 V[Ä7NãoÜQ˜3Þehì3¹oÆ!^¬žFÐÚ]1hupЃåÃ=]„Ùïɶ„âOÖÐ))o í®A |ãª0jÖp¿h4dOáLG†kkØ>œU†ÁˆÑ*ŸG2_ðÒ³pðéGš ÆKÕ8|®'Øâ/ô h"¹S£[‘ד|Ÿ(‚¢ Å2£qº´À>E~<¼gŽGWuXÝî$J¥ ù`·óVÇ:¹ÿ)ÊèŠý+žÑ¼8Ú¸9òÒI’˜Lé°€¹Xi6^/›Ækø!ïÝS[ò²ùF„¸îc]лÈÄŸ¡¡N>D÷W,0¥¯7kÃ’‡ÞkìQ/=<š7óü*Ì]ù|÷‡§Wô¹ÄÀ Žc¤ý{‚PT2™€‚§›#)¶ì÷0?kk%êý† â*sž^ÃÇ€¿S­¢g(«ï'z‹ªùܲXR9B²_Ÿä[Ž\¥BÌÿðÔÔ½µ_²‡ '8Ué5öha¯?ä`“Ë]ûªu H8Çéyx]dL€¿yªÀŸ`qŸ„tàêÃAŸ4¤¯ù'‰P±åk~ùž%k´îЉ‹£‘@úMÅQªfwGãéÁD=Ò·þcÉŸ_-×!®ƒ¯gkSçu5¡rõÀ¢ª2ÁuŒï¿¢rX0§óP-&b^°Mʽ}¨@$Ú~˜„5Üâ2ã#Œ€ê„þÏá!-&&2U Väì`¢ŒX]5ÛØ!{T"ż?çsæG*eœX^*„´³äí8‰fCŠ„‹u\ô¹–eêÖÜC¢’ÃjÖ¡Î$a¼Ü£¡wÅ0ZÙㆯü‘@òÒ%ïD»Ý Ü“©•[eÜ[.تV†Ä„Ôóþ†SòÉ⦂tÑ©)ƒw‹±•]2|ï–µ@"(Ó÷Ôg~U?àFè*¨=èF¶ƒãÄ @<Ò™.ï6ó%ïü¨¾ÜhêrFk[ÏNšSÍXÐúK“ë@€ÜïÛ5Of·[p[cªÀO Õ¼i'I·vÜø9$g[ôc²Ü³'ÿXMB’0öÚ:u6p€\^©8¹ûj­×û |ÖåšBÐoÉ„ )ï„¶t ˜L{~ØEÈßõ¯Äl=cãXí2¤Bë Cé!øá ÚüIn+Dà6ú¨ºt/1Úøòµ¶0h²êdjЧBpýSR®©”žÏš™Ùí׋Q{°¤9ûðâ!z'ô ''a·Ê®öü¢ä).Têüº‡Òµ¬ñ²éö$ˆVåžÁŽÌK>ÍÛc,ì{ÖG‰28¶âK %O$%KÈÞ`gHÄšô… ¯JiUä^@ÿ‹ŸUe)h×tÃôÁ¹†fì^¾J5à¾Ý¹’Ï/ý Šê i§íöòÃH -fSçb¼õ5躸æF®ÞJVõ6-´Dìda&Sv}´ BöíâùF¼@«x ã¤ž§­U¾–RáÍ« ¾?£HºEW¬Ÿi'%œK)[ªé2‡fãC‘MÛ]þL8WºHÜü²Æ]  Bâ°]]ŽVngåÀF+x¯Ul'q†}:•(ìN÷îq±#^˜ßïåTléëùóÁèF¯3AKÿpå ‰„–éViÌMÖù4w%ÁíCäúR|ð(âÑ7 ñ}”¯{˜O䯱8¸ …nä3*¢rQ¨fnÚW®óT*PF¸-Vzõ®þC62©óÕñÛƒ6…Ù5{èç\YþF¬ÓTÙ3À?7;‰íóÓ=BdíÉŽ–-(~»°ã“t>¼;åS”Wy1/WV€<æ~ø0ÈÀ‘¶?˜RPå> ¦ ´8ŒFµµEZ,¹E½§ÅÑóÏJ«ot–q\†’ëNXÜìØ6–Ÿ•)·åŽêqñ\ù—áä^xLÏFÆîp6ÅÉÿÚHW¹]!X ¡©Õ󌛱üT¹Ü,Î^¸š°”ôЦHTjxE ÞzeKš‘¨G”RÀXÆ~VÏëå 4£}àÄ庌â;Χ lØÇ#„2·²)ë~®Â4`¼njÓ©žµNb»ú?ŸDkY qB*¸veÐCeèzdºº}µ¬ÍoéZ äDÊú { ¸©:ê !âxZ…Hè•`KwŽ¯å¿ˆº¨ ýƒ‹{Nñõã:r€¥áyf™Z%0(};è—‚ƒÿ…š î°­š-xg:?C²d.×>ö÷¬xg°;¬òíÊÎËDÿMTÈÜWu„Í£ßÍíÌçc¯Éɪpg¶B=°†c6¯Æ£S‘ G¢ÚÛ~”ÄÅÞuÆ##kxE8®‰£Ù³CôÌØ Vw4ï–8¢¾/úi€‰¯óæÒ$bZ0èëò ¶qO@~ç‹ïÐôÑ Ó²]ÒÂ+ôè®+\roüK}>˜8þ¦q4} öà"q æühFI~1I)ˆ¥#‘wZDVEÑuPÿÐ,ÚsúôÔ¹pE•ñr(ñKrF(O…ÓÝj'T¬/?¡¡º†2_ÓBÈ™Ÿw4Q@+0¶Ì­oЗâ3©€éa5¸ÎÍ2T>mÖJ#Óºð*dùYò‡BC>û”íïr¯íÈðÒ· ¥–!Ç%°¦“U` e«© ïÌpê ä^kð: ìu뮋â6éÈŸÃ@¼gU{s5Ùìùæ›ÿ¶ú6(±ëžbºŽ‡P¢CŠLäïkFQÕ;€pÝc?ï³­‘ÙGŸµ…¾Á«6[# óÙ¿9*[´ÊzÒi'=â@¡ºé8P/q¾´[r5sv¸æOÿ {ËN}v}#ü¶§‚ÌN{ÉrÁÏ}ŠÛþÂ,w½ÑÄ­˜ ˜êŠF0Þ¿ç¿éßt¶ºÊŽ‘º5/s˜ÛàY”’gûxf"ËÇÛšì ã·Ozõ¥ÆÑý$¹é2,P´ÔXðv „Ë „²6šƒõSŠÔï0j<)Â*n>Ækl {"­ Â3ÔRØç)Žœ1 ÿD(vAÌÈâ  ‚=K–í:27W¡DÙ¿¡ ü©Å°ìdÅvÈQ÷¹†ô‰æ¾9-žp–ôè‰'8¹HôÈv\x’”ƒ™¨Ö–N%Ö™®ðT&Z³Ÿ¤ÚÏ‘8ÀŽ Mq•øXŠu^¶,qËiš,É“ïžC¯©¡K·s*ºÐF?ºTÀ¢ö5œ8D ŸÎeœ €p® /²ÈàãEYñÞͤyðiº/V4«®™ÐÙZR¡G^dSoßo³Y´Ö+_#l©€AO.Eç®±‚Œ‡WÙ¸;K á›/uÃŽsúb83Záïu:ÿ-I|0Nx©!|Ó¯¯1Ðäpwñ>ëü¢F(’ 2µMBfâüvGØ™Uò˜ ã“»½ÝíKŒ,ðWÀS–§Vï>ØÔÒ)=»CVf‰@šr;–Ì/ì.‡§¡×‘“Ö‘Iò…³iìÖ$lâ¬©Ë @y"e:y²'j¡2½§äA†‰×o ,Ñ ’u€ LÂ2ÚVIÝ2=>ˆcSØ¥XøcÚ½”*–$§X”R]ð®: ýšÈOƒ)™8ä~xAÚÐ6Ú9•ÞÖ¢Ÿ<š½ãÎ ÉŠ úÏ’zÒ.åTT°c*+¨ámŸËšËë*LgOÄÖxVoĪ‹šæ‹Ù.¾Înó·íyö¼Ì @ìO`HãÅÉ9øZºY•g<¸,ˆó)s!ü›Þrœ}U“–eµ¡îYй¢Æjß”‡f?/$4¸Ùƒü7ï V™-ʺ:ëxªeÕÑò¼9–$°RŽ®õ^*$Ô…œQ ı šjPÁUŸ[XÛ#æ§ýæ©WràfE—µ+ †¬M‹#s s|ãÌ4¬H ‘C«îâkL(]ê®Ü9—‘Ø) ò sõ23ËxŸË‘6\‚Åwêó’¥c–û”ÀçC–TŽ5\·Ñ²£âfã<5öaÚ寚¸ÄQo»Ûm%H¯±PsicŽryÒÂJÈN}T9E©SÚî5 m60=Ë} † e? ’§µÐ"(êß[Úÿ™ª ùØ)?j%Ý®ª[þDêî­X€fyl|Žfu?JW q[ÝiU&ÿW4<ÃQ­±ó‘I¥tQ —|;Æ£¥½ÓYŠÓ² ¯ÞòdÕnSf^u£&“Šð±dx&CÐMãN¼§ðÜPKÝtžðCT½nп°ê ¥ºxè_BùGK~¶º8žú}KÇi…«˜q ×2ª–…„ÃruÞ… Tÿ1è»`ijÍé1M2­Ð# áöP8òÈÁÜÑòÖL!F kXl^ v_ d/m‰ãòXÇ¥ùÛ¹íÜ(¦Ø£PÀ¥/¡$-yºj½ø®^¥¸Ð ¤ª+åfä ¢°¨-ëέ¥JM-Ýyºª«{šOòŠ^hÚë~ÉXyŠZL¶½Ø#„6Ñ‰Ëø€ÖyBöDX•D±.Œb!2cÊèLˆaKÊF2Ž:Nà‹-Ìž>ËA.»²/ÅíTm°ˆ¶ŽÒ­Ï7^x Wò“±’ …“Šgg­˜ Uv@q §Ûs% $•ˆî2GŽv´põêÅÌ¡%Þj³Ý×ÕÓÑêÊ6&¤ËND‘Ž/~íÓ³%'Å*s(å¨"&$Ë1¿5€ýü™hÔy~&þò7Ƶ¾ÆÍ2$¦½+€™XI z*‰U%’C}Ý&›£IñØ] O£Ïá úà‹ôÔØï]Âl°ÆïT-„š(²¥2J ?T”‡ÎkJÂV8<Äi“TÎ9Ö`²ÛVÆËIãÞzØlåyñËž`xÓq9fµN ¼ ÓàõeÌʽ8é 8!~ÒŽ±Oû5cia÷È´y“"!°¢ gƒ­ôž­ö­ë?¤ÉŠéëë<ðp!:½Å°2ºçþ>—”¤Ð#šDPÖÑ×”>ñ3»è‰p‡)ÊœsÛy:œed¶fE½~3 J{BBUI×tæeÿZÓ*e {/6¯þÄʯgËG°†Ïmåd2.ÀNT­a÷fþ³mLç%¤°^$æBšF:þ«N2ÄDµB ìÿN QŠ÷0½žAéSOgmÈÞÿ^²í÷ðÈó2¿r%%,xy”-üOV;y×±:rÒI¸ÀqÇë¨pÚ $*xÝ ¢ÊȵDO6æüp>×p×o€®XÆ–ËÜJ¤Ö@W9ð·#ˆ²cˆ×·ÙŒïÅ3ðë€n0fÔ0µ™¼½ÞNUã¶Ät}¯ž¯µÊ]ø‡¾ÞºJƒ»)à‡r×Ù¿èd*Q0SV$ø«’·têô!>ïDËŒ¥ÄÌ䥡¿.œÊË’¤‹ÊÏt*ŠdÕooUœpg/\DYµWpŒ¤ˆ_™úоI…³ðjÀ]¸ ÒQ»¤6a›*Çíá"ž4à-Å8˜ Ä^[¥)U¦tÆ Wtp”ÂOÑu^Ê6D£ZÿA)Ï äð)€²VN|¥´*Ù"qz­wê{±~!^ßó¾ S­©c(p+àלY}‘bØZ›ÛÙPb¤(1Ö¡P3+(˜ØYèWnr¨epN ïL¶Mˆ¹ý€xÿÌ®£Ñv$æ=Ë_c[$ÛÌáS À°F“Ï«|€žÔÚZJ­ñ4³±ûG¿vGòš" h78ëãJì賃Šá¨½7i½åüŸGÚǵXˆkô–ï¿)Ž×øü¿þ²¶5çkæ~Âx?ÕYið¸f½P¤ÅŒöôçÕþ¦ú9h¡ [-ŽÞÊ´@Gb —ÆiÚÈep`“X8ätⷠᩳ(*í#ƒ ¤š®ˆ\UX¤¢‡[®T'=ëwnÝñÚœ”ÚܺDq¦ÀƒÅ°ŠÆãk˜Øüݤ·L¦ç:UÎAö‹´ˆó‹]Õ)ƒŠè×½K‹ñåPÏ%úi`Ý´z[z×aƯ˜²ÚÏeÕ¼³w"fZL‹6 Ǩ™3––¯è]úóH!+5$d=wƒ[‚JU‰×¾Ï»ÿ&ÂcCR“°°ëÐZôÀMÄʽ-Ø“É 9â‰JócýqX fnXô%qÃGß6YÛKmÚJÀYõl¶Ã¨¡Þ^RDk¢wAøNñgúõíß÷« Íž Kš™AÎéÍx¾ؽ‹ŽŽÉ°¹†ˆé¶c€Yú¸y¢<éö¸X$_÷Ž‹Io ¦Þøh]ìŠ_šøÞE¾’u²ûæÓì:l{øÏÎ #$YÉB,Yò3¿h’ ôzùI¿\HåË>é!b+°”é¸ gÎ1Åñ·ž†ŠJvg–R c>"ŽärJs,5x Ó~ /l0á)cyâ~ßÃÁzy,¼ßB5ŠÜÿGÇvz‚f)-”aJâ"²(ÚhOÞFhzpæo-û»pã£Rî²ÖÈEãÄvÙ Õ7hBñÖy­(Ö¹ Sô–¢,>~•I–•¿¤vˆ<*ßThv-œ‡]0GEòÚ«#r®¨ê»Ó¾Cúî¸2ÍׂÕrO1¨¨½$›˱-œKO ‘ Ãë}kh‹×zÞƒt´(QM ÞoÅ展{í'>*·DOþ]ÄeSŒŸÌ¶”M!­‚ÕyyŒh²ƒá¿×lQ÷4ÌÛ–ÿà^ÎîTãÀÇèvVNÏA. _†ŸŠ¤b³$©à1‘è-üfуûU ãGRPÙÊʳÙ?!¹1ïÓÆ;uû>Hb®â£Œl!ï4p¿HìÈ/ä7/€¦®³ËÏ ò6òÑÿh¦c'óc™CžC‰ATO{)»rRÒ]ÍDª¹¯Œ9ч@†…ro¬c8¬3Íüv°AQ0 .âÂ%©ý`ci7v-ÅÉr.”\Bne˜&<Ž„›\ýk‚*­§ ©}*Œh­Ë~)ˆ&0:×Ç*Õ Âžgè×Câ[L#¼6Ÿ:…@{æ;wà{ôº]`½7Û…ŸSmÓóÿÞ©ÖÚû ½v²K’u¡ítŒ<ñ%)É[n­qZ€<$PHEÿaL¶(¬i£T´èœÎCfœ\! s^(x]<@òþoÞ¸ÿöÅ'"G´°A¦¬ä¹¯Â³lÞ£‰êFUysÆþè%qò›8ûë¹ÃBó¼ûÈäþÄ{Uã‡bhŒ’m{ú}X 5„dŒ›mãÑÖÎ: 2Wó†ZÃ9´Iá”§¨à3Ùz ®0ºþ‚€w¾MPF˜NH2'ˆ§ÈÛï ¤ƒß› ~ ôêEà”/S¦x¤ŸãšM±ùŸ¸sjboy›–T.×ÐN.xH¿[Œ™­oÀÍ¥òãL0î!ßàx´R´Ñ …rYX¶}ȨbuˆÄ€¬ã¸QtÚëMGvéµf7_hÏK¦©ün›cãOJ˜xò÷Ð ©¦AÃ÷ýËé†,…¢¼¬p7–û ^°fªaï䱯«wÐ=vWfbÙA&áéöÂèÇ”ô+Í“n3Wç¦,IóyÕæ üèí¸õ uq`8zR¦EïOM ŸoØù$v4ÛÌ‹"&½òíÞ2;•uµÇÌ»g)ÌÌqÊ| ¢ TîÂãL3ûûŒè‡ãÈŠq€¿_å±L#²ºo¤€AtEª†@[U¾¡ï÷zùz×ÕEµ%!Ÿ½àvÆEɈ-Ë®mÎ4>ùzÜ÷7« +7)¥é‡Ï~¥M;ÂBã¹wiŒŠ·Å’þl«ŽSrâB]6Nù(?ðÊeʳý²×ßµ6Üy8G2Î÷b®á!Úâ’ìÿ;Ðc=Ö¾ =a—RÓ£VP‚h“lÓ™YÞºVôì¤àœåll‰Ê1ŒÉ‚ô¢?Ñ×;ÿ7`-Ì´3D–² ÍØéÀ¤!Á€`É›hÁlt‹U¿[ ®zЙ Þ9®ê'oeš²ÔMÑ«“x“&öI…ÛD\Ltˆn–ÃæEªÉNf§Ò¡˜ ,Ùùîºk!É­Ó’ò;»]kͶf‡¼¸éImÿ"RÓz"³t´µÍªÇ H¥R¶æšØ&󠯢qple‡|—íÑ–‘ÝØKH60˜TÂR6‘|z÷ôf¹Œ:¶Wâ¹ñ+£ &fßÕdÐÂ.ršu9øŠûC6Iêƒ_RNßèž°Öì68H(…T´!F7Ú*ð²…‘ÀiÉÓˆŽãæÔ¾ä­Çn%E˜„Àa¢ mñšë%~UK‹o#芹“ÚÄÁÁ Ó!ˆ^ãèèÍX”†¿ñXç_’¹qR6§ÌpÄ6YÑ+»ãÓ!̘Q]<´‡öm Ø‘ÇZ ³Ï&ŽÑ‰6|Võ xŸŠD?ã†ß¬"G¾œ¿É"UÑJßâ[Þe,ÚšŠG/–v\üôQH:Y1œG;/¼½ßЩP*6Q£é|’Å•<ÙSµNEŸ/]•€„„Ø=PÍÛÈj¬ µþÓ,DŠ}®´¬3X¥ï,î|T7w€°ý¨Äóñ9oÕc–ïïû‚®ç}Ùà ½ÞÁ ×\={ ”±mêξ.»ÃÖiã¾ô±1ὨQ^B4ˆ‡»è$ e¼ %šiÚ‹WP!tS܇Ÿ0?5+šnO0ø„¼û¶>®3¶çIÞƒm`_‘ïcp#-MùÑ̃ûÏYõwÖ”FDØ$Êa± ˆQФ«>pÑ·Ò⣱°)DÐD‹ØÚb7®ì‰º´ã—¼&ÑÊ‹‚{ÁŠÉoä2mv:ü]Wïr×/Ý¿Æ Œé2WHVǘ~Þ˜]ºã=éÒ Ê µvûâ2Šéÿ“€<)“íeŒl¤02q¹Íxr¼q Uˆ&Dô}·†žl/Xÿ¥<š ÷eý@Í?â3CÛvnÀø’°¢å[Ì"¢‰S3νü7Äc»¬³—ú4†-Ɖâоš”@^Qìày¼®ØÏÊʃ†úBûz ¼\L½_ õÔüÞÀ3ïÆâ]«¹.ŸPò]ªw©Hqv d®óLs^bòŸ‰ø¥j QÔ㣟nâ]Pì´P²°ÛéŒÿ˜C 3Dî Çù³Ô,.^ª”rÁ‚u~Xç¨jwf"x–›©¼›kG—¶3ˆÊ@O™‚^oN6F‰•:¼ÏBä°b¼iØ·< ¯€C¤"ÍiöAàs­2á^_ئOçèØÐ%ÃùØùÁx–l §¨a%0Ô-©ëùzyP¢cäZà–7÷k4DE-ã: §ä¤öJò•k *—´G;I¶ ™Ú *ÿG7²@ãÛÍ4#h¡3@¤C[~ø×$¢ Ìø ”zÄÌ€ÿ‚Öî8•­³ÌF¦Èñi Ý}¾úòSÁA|‚ùo©;”IH6»Tõ$~`|hüÖ‰Ü h ~²ò¤^8 &¤é@bÒ|JV œ’†“Ø÷EVâ^B¹<ÏN¡[ªœit’bò¢É̬´2~©½‰ ;ŒlºÒ lr½-ÒË„Jú‡œŽã±’Ô#Â,›±Lär+„m´2Vƒt2H˜ ™Ç›çŒ³˜ ÿñI“Kà•™ˆ½ò¯‰/ŒîžaÛñµ8GÌßIïÖUÿ;ÔÏiý]þ¦p‰-ø·$ÉÂÕ#xë™ÞwᔂvähN\$´ó{eÕßéûc›fc N«†ÝV SÇ!9‹çäˆbá&ÿ~†É#^i½0UYs ÀJºÅÎvT"¾ “°}ä諸3êÔRÉÞ¶ZPwÕ±í°UóŒ† î6€s²‡ã²¡—™– óÙÓ¤Ï|N´{ªðO ,²1V /WÉshŽä9GUNC§áJèí¨¥ãñ¹Ò|^v<òcò…I‚ß}~…õE† "ãÏ!±R´!èÚ3"œ|”°5•¬Ž%’xÞ¢R¥gÞÖ 7¡vK …¾èëestUþú%:|kÊ·üÙnù΋†S ëž‚Ï4[B‹ž@Ûñ42³c¥ÌXBˆAÙ€R,Ý÷ ìP ÖëIG%ÿkžÓ¯Š Ž!~¼*´Úá°$¡@îþ>àŠ1so.ò±n×­ÚzðåÓoù79¥@:.à0Ï™³m”Ž4“}$¬FÂG‡Wý³3“e†IÀ‚ÀœbËߦAŽ»cÏÛ¾we“·½ùePŠ{Ö h–zHˆ‘ú#ÀPAUœœÜ©‚%øÉ^ ´þöQà?ö˜¯«“‘R®q1jÓϨ9£òòKÞùvYøKgÈlœëûÌ£ð”À‘ãcÕIcÀ‡Ò^bWEðË—Ç@;òùÒÎZ…e‡ˆ€E›‡ìçUA>6¹ÎÊïgŽ‘L·G´*%Ä‚ 鬱u0ÿ¬0Iì¸"¢BDSלY@^PUâgTY1.0&Œ½mð0N^‰„ /X{9ˆ×Þ2;:é“p·¢µ%(ö§’ Ù 4¸T+êe‡VÈÆ(¾r&«ï¨††“€|%üâq¾Â¸²_MÁá‡rεâÂÛ\6ØÌI endstream endobj 495 0 obj << /Length1 1607 /Length2 8680 /Length3 0 /Length 9736 /Filter /FlateDecode >> stream xÚ·P›k6Œw§h ¸w‡"ŵ8)„‚»kâP(…âî(ÚJqwo¡@qŠ|ôœóžsÞ÷ÿg¾o2“<×îµ{ïî}í3fm=n9ø ðS8Ì›(PÐÐåã<@ ?63³>Ä þËŒÍlF¸Bà0ñ`ÛƒMäöÀÓ€ÃjîPŸ€OXœODðbÿ!ÂâEÄ ÁPƒÃÀ®ØÌ pgoÄÎÞíá˜ÿ<جÙ|bb"\„äœÀˆ5йكN´AzpkØÍû¿R°IÚ»¹9‹óòzzzò€œ\yà;iv.€'ÄÍ  v#<À6€ß 4ANà?;ãÁfèÛC\ÿ´ëÁmݾ¿Óýý;öG0ÈÚîä ‚yC`v[ ÐzªÎãæåÆÁl~APWøC<È‚^<þ¨x*§=4øW{®Öˆ³›++ú»EÞßi¦¬³Q€;9an®Ø¿ëS„ ÀÖc÷æýófapO˜ï_À³±ýÝ„»3¯ ââVUü‹ò`ÂþÇfv@1AØö²¶çý^ßÛü‡“ï·ù¡_g¸3Àö¡ °?Äüðƒíë òÜî`ß;þaóñl Ön€`; ûŸìf°íŸøáò/€)ðA{|àïÏßOæò²Ã ÞÿÐÿ¸_^Eu5cÎ?;þÛ'/÷ør ¸ù…øb¢¢! Àÿ¿³hƒ Uü'Tf ˆýYìÔþS°Ç_÷Ïö×n°þ;—&üA´`Û?7 ­¾øþŸ•þGÈÿŸÀgù¿iü zê…þáfûÃÿÿqƒœ Pᅳuw{пüa `ÿK5ÿ¹³`ˆ»ÓÿzUÝ@{ ³ƒþ=FˆëSˆØFâfmÿ§Xþ´ü^2(Ö†»B~¿UÜ|@àÿø6ËÚñáÍáú È?\à‡Åùï#•`Öp›ßÆ/$ ! olàƒø…„¾|«höúCÃ^Üí!ðО?ÀŽÀþ}£Â¢²ùmú‰ xõÿFb"^Ð?èùâ$àµþ >Ä=,»Ó?l¾­ò‚ÿöÿ‚áNÿ@> €ö7z8öÐý?éØða>¾‡lˆøÑnžð¹¸ÿùJñþ'ÙC>`ÄŸôÿš¥µ;ñð6ùCíƒþþãÕ{­±ç¦áÖaua—5rÔžÜ[_¤&˜·Œ2ع}çî×ø©ìÕoBVçr©?.n(±ÉÎÓßú~omÀˆlKÖiÿåwc™¨;¶ÕŽ=û•|`´è»\}?- ·¾ì¶ß­‹Ÿa°#j+r—sž‹»(¾vÉ¥gŸ²W}ÙÂpÄô–Îvµð3œ›²qî8ƒX³à’IæüÙS”ŒènÜ´˜ÄG^“gçĹ£÷ôj‰œØþûqž&«üñWS>Kúü®Ý™›PÒ¢ž±øÊ囹QÌø–¯ †Ó§È;GÖœRø »l>[šº—ˆ½Ÿ,Ì£âl)yQIU_Æ®´©$9•0$¡ f-ª­x©þi}áÊ¥•¹×‚ŠÔ éâˆmõ\çÖûìb°‘Õ=çˆÔµ'K­§‡õ EÒ"çÖ³àGnÙ ÞÄQ,› Z/}Z"ml÷R¢mí Z·{Sç¼·¤ÏðqÑkHuòXÍg<ÊcoƒJztjèÚqµqzlœÊÜØ"µ[Ó–š«ˆÃIý’¼>›Öý\¬•*îIê›Ì¼VFmœAKóº­ï8ìYÕ»íýžØ—Qýß6HË Êîåª+óDßa©`¼Š¿jF‰\q'Wþº&®¸L¹¦ÇQpbTùádäýÉ¡y!7P’§ÌNOžWšBb’£• ~8‘/Dm!ÖÐKz'^ò¬ÍïÇSì°{ßÞhÀ|dPÙ´×Êãœ_.(Ò@‹t¯ïiu:ýw¬Ï{÷÷£; q?J<ö6ù¨}æÖòh£…\ú¾vvÑy‡Ž/XϰÙÿÕ øÛîå2Љ оoÆ70PÒ }Šßó`87í:‚,ÜNh 5$mè û*”†ZL9Ä>(6`ôàd’]R@oŒ/ܦ«E­išBÎ…ãåY3uø†¤'+_žkð‰…¦¢GaSláå¾=X‡—Éá¢$rŸ‰¬_<Ùz/“5NéÙ#$?6Çþð¸Õž°z"ɧúDËrËu©¨½oèé…{MïÆù‹U‡N7ôˆËûä¤ü£_x¹NÚåì^¬×¯Xø…}­œm§í ¢).Fo1â níŽi5ÊGÍÚ51*Nðéje 3KÇ)¼Æ³žƒXS;CÞ~z†Ûóš`/]dñƒŒN y– JŸIß${ú]'U´“N+‰˜ðÚ¬ªzHt‹Uñ Ê#ýs`áñ§–Ì+Îo£6Kæò{i¤ãx2ƒIv% ï¦C¹·uc›ÍeVè¯ÎÄÈ3…xö ©œ¡±ïÕмªqÅ{ ·GýuwFí·Äª¿î¹íA ®É|ÊÌY#2¿d8léW.ý¦ÎÇØ ”N•{ºdÑÚq‰`ŽY>»àƒù˜þB­séÞå µœØz¹\öœ/呦}Xèí¤™´ѽR·hÞ‡q”BgdÎ)G-º¹-?IXm¥$ !¬iÜ«YïêDIRÇÜTïå¼8† ™ÖíèuQ)U‚ôhÊ%t{ ‘ Vƒöe oã4æ*ÆøíH´vxHÃõûD’)¯›ý•ˆƒêF0EdÐP:Õm=ˆ4ú¦„÷>CVDGö‰ì› [MòÀ½Uθ=«sÅø§WªÇÈsÿˆ:™—ÃDÊÓDŠ´âé!M¯ó'r8XZgë^q7kB`Tº¼WöY޲Çz–Ãñ[ô P ôaÿù&n1Ù¶±ðý2–lmûÝ[Œ¼f¿OD²5©ØŠ6Ûfޤ£h;FµDj™È  ora³`ºî¼ e»Ðûʉ ôé-ƒF²®§4~#‹¡±a¨$1 ú-çh|ÊPM=ܯ¦ ,•h$ 4[ýL~SNÌ(Òú£Ž5k˜{÷ðcY XL³û#+f*QÚSOe;Ú ;‰›bô–Eè'8ÖU+ÿ-n²ÁÚÉ™{·ðz†ÂôKfª~cý3VÝÓØA*‡q¤\ø4­FÌ_ýî'ÒQ²¸Ö]#ï°Õ…lèÎDîDüÙGÁ–ø†r5lü0yÜ—ÃCL寠©2,¹Ä@; ¹ªNÊãÉe ôô_~’“Ês›²nq.Ï#b¥×>¾rV¥¨d®a£{~ê‘úi[ÄŸ¯A Z.Wýl¾*™^¸˜3-Í<¹‡3ózµšxj)LvšöøûWE+G}Ü&¶ªwæ9½ÂBº³Ü¦=lJ•ûrj ®âh`¹‚o‹…øh&weCJ® šc±N Ö_ËŽyx®¤q#?DMü|#­ÓÉÒJ6èUµõ}¸Õ–ßá¨PZcëbÄ=—z*ì ÇàÈpæä9·s€šä!èìݨ_}‘ç/v›;žóf¡~úšÁSòÜ…þÿ ¦ý)ƾ/å»5‰L9 ìúER•ŒG‰±æNµôj’~a–<¦ý¬_ ’8ÞÄßž8\ŒÖ Â¨BOjxô7SqÎ")wYʉ"E·&s}jû³•áQbÝÓŒ•WAº„E$^‘~& ýï=•@3¶µã?>6CœîßÄ Ró¾¨Ò¼ßg¥z}ŽúláƒÀV'ÑñϽÚàr-ûQ5¹Á×™õÒ%Äb¹ ÞÔ¬ªNn-Uâ6šOÓC SÔ'¨·Aº^y½ á76 º8È)YQ™ÇyèÁ]›bÛyzUýŠ6$޳½TI/˜j® #Ê,ÜÒýí…À‰Ë*šQˆ>•JÕb.­f aÖÕâÇk£DЂzúˆ,ì°ûM­o”óO¼@HXŸ´ôs0 ·¸ÛÙšÔ›MÞ{?_Áê,e0¯ö™Y”ái zwE†+t4Êý*YQ½AÈ1§²µWébRRÍK‡Ø) !ܵ©ÖfN~騰ùÖ•Öí•7)wký½?ãSÛh~Á±Í[‡xÎ%<ÎÆ*ª @NãZûEXl7¬(1r¯ÚíQ’ù“Æâè¨ËÇ piz%ÁnÚ !’1-%,¡¼Z}ûëÇKP.±vjKvä«ÉÇÃLÎ Y™ßi 9‡ÙZ4ⱦ:æµ¾LÒrÎÿ4èf­`Õ6•·ÌŠï« ªª0–cëgÝKŠâSËÄaÇ¥ª&I™ú“QrŽ_¹ĘU_}ceÿl)8GûÞÿ™q~5g£Í´´…õ²áKáb ’É€×Ð-)Écö È9*8 E__9‘+#zK •ºãØK÷Z…uÊÒ÷(ýBQÔ¾—nË3‘ªž-ì[´ÀæºA8ÆeÒd—ùŽOV«­g0"ßG{@Ý}ƒª®gDZ4\,SÁó{Ôô5fT• ‹›_ øÔåkÊG‰Ÿ¨mÖ!7uŸÜõ·Ð:SPÉF¤H_ž‡«%>1QWd¦žÚn«ò•ÒÈL:¸õ²~çe‹UÍQÎÏÇ@GúÔ(3øèqdžd(g~Ý;Ä9àòWάCðg©¨†Àêv±®-Ÿ^Õ÷ Þ4!ˆÀÊš]Ï5å¢ÓÑ \Í_HØ%"ÓÅq«‹ïÄ^ð’UÌW ;“€fÓ0 Ä7¾òy] ¦üÚ´JD7ìN=fQRBÉ –i²&¤ÄŸ¾$ÅUXH|-"RÇm58Çô¨ºRÃcãí7r¿úp×¾Ø/¸UÂÏúìžÀlF#M“=‰6Âala6sñéðI8ýE‰eø~ œCr©½ %ª–f¯‡….ÒK#AµË»ó´Ò”ÉFQÿ›É4áîx¯C_ójH2ÄO‹gGIÌó…J›k¿<†OÂÚtæPCc&¿ÝJÑô ©p)áêÂÈ kD}ëÏ…D#*>ü@9ÆØó‚ác¾FävÁpXbð3Ú-nrM¹wkRbvBRF^#Ãlh^Á }÷ó9Jt5=ón¢„þš¹§ÓªñŠŸÂR’2¢»Ê3‹é»‚(?¢,£1šû#7=%íêïNœSÒ'árÒ…Hb½ý€‘¿÷3ÐÙ®' Çè½a1"ó5¤žFªB_°¼Ç+Ã_í+iäMmdŒ·Å—<+”ë(ZOÍ‹Û6nضQ]r:WÒÚû38$›Ãâ©?ý\mêíø– nô›Ã€4*§Þ‡£”7I˜O=h ôÑÏŽfy1ÌX ÎâOMBbrIâh££¦ý¶‰ÅX0Þtöã/Û"DÖš‚t:`ÍÜu¡hâ­^Ó”NJÓä -]wp Åô–rß(N±Òuµƒöçj.£àrÝù*w‘¼ýöK'(vDL¦@.ÃâÑc1DRØwª8Ö¡•{Ÿ(CU½õ£Ò+ƒ×7ZŸ$üJ Zˆ.m¤Ãb†¨0?á§]áÑÛµ½Ç@C†ÜÀ=Šocr9‰êu˜}¤ú˜J Ý%›ÉÔ„u•ÓÏ?5,Gz8-oÖS0Ÿ]õ¶çÖ“šWHi+ø‡Ý,Zò/N:Þž‘’°|@ÁÙ“×*‹Ì$¡«¦]Ævul{xÛϱb~Ñ?^9ÌÊ3è­ûñÇ'?ý*7# ?SvHˆ¼`pLÍžÓ`•{Y² +­@Ó¶¢aáma£.ïÞÂæ™1ÔϘRVã 8œ|¯ô#ÝUð€wC4cƒžÉjÊfÄ~'͸°­îÛ\º å_®)ú™F䋌¡E0ÓxÅŒ‹¼<ýÜ|T9T ä0%~×™­èéÌX.áp\#÷èºë‹•ž®Y“ñ#üZžqOÍUŠ[…ÚDÇ-o’ò€ew•'{l¢ø£š"õ‚^U :;‰Ýd †-•ïlÒ¯§´XÉq¡zž*0gÅZàÆõ÷Sï³MmQhPé9¥óx]Â\y|ä´­àt4ëQ?­Ÿ¥œ­´L ˆ1©¹Èè„*jXÂmÃŽÕpj!×êïä‘BBH†JìÓì´ÎÍeFhÅÊÅ›D»ôg)߈ K‚¡×ÀI•i¶Ï îFÅ>~Yúà †ªÕ¶+…aÂÈ0†­wªæ-$Óßè xp{VqliÌ¾Šº:Iã 1,x‹ ‰”Ù,Q“· Ï{œýV÷- ÄwSåIƒ =[8rµ]@¶è{îéø™oá#¤²—lþûY”7ÑÛäúoÐõq4Òß„iWÖ†X:OFå[ùÄúÞ±f½‰òÂ>$ãÌLÂþL!ùCÒm&IL3s®gxªªB›·äšÝ+uè &¨^~DqXħö¥ìGÜLM×;uÓ×Í}q®Övg²³N޶¥ ¢KŸIÂ"ððÄôMd_Y… –„åADœ›Ëù›RCtÔËëEꊜ»ñšÉmdwØuÍ{îíeæMÂežì{¦¹ynËÀ}êf5/bª®»kÊ«°î#×ÅSô•‘Å2<žg>o?á ôw½ôÉÎ<`[ðã‹>èvoºÎeDõ¡_¸£EoŸRìÔ¸*ãyG™Q(üTCÊcfYévÒˆf¦~´‘7Ü…‘iöH®«çëðOg…мBõâb5ùVàÙ9ÑY–nÀU¡Ó½°Dh|%–‡ö:;‰rõÍÆ–6%3A­9ó+-·àÀW­[”PÛ9GŒõ|béÓ¹ákôþM²Q–£Íu÷hïNŒHYvJÙÑž\}™ ªÉŒþÅ™OÁô1bùú|¶Ç£C+s…½AskÎÝ à±Ø¶°4ŽÐOWU[ÔÀÖŽˆ‹ü³‘¡;tøýÂIü‰S›!ö;®b}ÓŽô¹iPØ!k?"~þý\ó)Î<ž=7ËÆq.Ö ·´ÙçO¾–ä 8&ˆÖÂg˜òph |i¹c›JÇB䣩O¹±T.óy¯ °AVZÃ~.Ñ6hùËk_ö¨P'zÛ˜Ö¾ñžøkè^7s[ÅR¯V㾓ÞÖ¸öëÏíµ øta p/3­…þdƒwÌÝ£OÛQ½†*ì{&7·ôL‡qÅ:ŸÚÌ×?‡’¾R|îNOZ£ŒÓJ÷‚_\‰·Íž™¹\è.<÷m•ÛMW‚é§šé’å£çy§+M¬g}@}ý!”ÚaôF_ŒòP;¹QÝ4wj®ï×7æ|í³j¤£·#U“Œz£F^¢ w̺ʺë‹ÃOÆqíÆõM]ÒËN?Ížulà}av¶±[硺t±ý¥5_‡x™ø$Y±vòÛÉ/ÇK×´{é¦L«ðÄ\PÜ;í¶fíªˆ–¡ÒØÊFÐTõà1”×Ù‘›GWoÏ-%¾c鉱w?Cb餓CŽ`"Œ ‰›d¾Ž³6ÓÆeTfc\Æí_/»º=kŒXÛGûØÝCš:Nˆäþˆ&67“1y3ˆº…t¾%´Ìp]%æuÒÙüãÆ8>åùÜ ¯˜uc‚Ž=ýº‘ñòÈ® ܽÎz±èå= õuy.âØ!¨bb^`ktsÝ _…ZÔÈ6o­6½ižmÎUý'V7VŒ³€`¬ÇÄ7ŽürYÒ[,4¡uK»u}Ƥl‰¢÷ÒØ/íä–’Y½"_ÈkÛHVo[ŒÇsM0ôæ{Lm9Íâ¨1$ÖrHVÕòêÕ¡ }@‘ÒóNkº +°v-ÇÏ©jóqÝé©0–ÒY’é!Aþ— MÍEjÚ;ôö”d±…~ôÄGÏv¤…Æ_ò±=[»&›æÄˆål÷ž’-%[FËŽÿ*?õÃÔ˜¾¥#å «‚–Ûê†(65:%ñx$‘¡¸„ÛïÝ™®¡Bˆ‰È!î¢Ü³ L•ÛVwÀÆÌcÅsþÏ­;ÛŠòx(0*g÷¼áŒoË@ó[ëf¯=]9m’.kÕ ÜÍEPz~ðÔrçмÄwDò²ŽÉ~}oX8Ù#V¡òÁE´†ÿcÑ(‘ÀqÁ—Ÿ?g§²N By‚õ2Ñ9‡(dY:cÍúÆÌ»³_­ä3h.;Ï‘z“l_u@_-ÁÚ'°•ãpœ1vâÇ5'´D[“û:„¤ 7‘wIׇ³©QÉE}é f›%šuÜî¨7²M«bLVʈ‰2üŒQu釶$ÉLÀ£³?(à›[׊AtLœYI¥™¤rè O»:¦±KÏêÞÇ2ÌÔ²­báî¿Üðí¿å*–lc5ò-n;# J¸mé?Èr Ùcc&oÂ)Ýï ¤ã-3|ÛÂøä+‰•ð^Œ7 ™Ype Q®n³4ô,3•–G umíx&>‡û&éD¤kÿXW€PBN+F”;&ÜdX€É7+n] èGôŽÅíÏ ævc\îpQoÏúŽ™LS¥ø»½©é/’2ß2&Ÿ|bR‡%”ÍŽq²ŽÑdnB ôgœ>Dœ¥xª³‘xwvÕåi9»TB¹Ô̯¹‰‘ßsغª–¹Ú¦wØé Dç™h~H½b¯g«lP`ß@O¯­cÑ¢Ɔ[T³ |•7Ê Û彟Ѻ1nÀ+q÷Pxw0»Í† «ã{Â6‚ÖMøÇ{†éPòyûsñgÜÓœÊ÷^ÉÏ0ט2ê¨YÐÒýtÑɘ9°ó\!Íe…©ÊÆ<üížÛÔØþ)R¤ccٿ̱þY7’Ç2K~†NÎôæI§dlÁ“(–¹Ô'¾ƒþ‘Zh”A››i”²ïPKZy¤gëæ\<¯Í¹„¡Ë:cTÜî%J$RxCϰOu8޶ ŸÈ…QÆÐwºC»|Ðêè^gwí,îÄ! jUk@²÷‹XßÞ"Ú= ¿µ½çJH"p1ò!Þ-3ßuÅçèAµ4-ËOÝ>KÚ]«s§d=¸ùå dåÝæÈ-rîNÇ-üvºQùùMkÊé[@ÑÛ,¨òkŠ)ÞÅ:òï«Ê·¹ãé¢4z©üô ˆ[ø~•ì%OŘ|æHdÌP[?M'9/CÈ㑃Þg¬F{ÙèÒrz„^`»´f;[ÚPêâ c¥ý,û $²mÈ©8·Ò¹´q©0ØfˤÃO³µÌÐê…;=»KœÛZ¼3mÿ‰0ÕÉBB¡œ2{ÕÚ4GÛtT´Ñn±JÆö”±¢TìTqwµÈ+”ÎÁ*ƒPì’²ãbøbæ%qÍêèE¼M"zEp@ù糉ͱqãõ¤óå 9\K<“!.νæ,†œó°«]†Ã¹`ÖuÕÃøLñzaœÛB—o9™:ŧ§õù‚d1®%tŽ+Ÿ½NÌÁ,áR”Rä Ui!bsØE„Y¹ *öÒÞDªy*qŠÍþD×WÂ:¼ñ> †òfãcôÉÖ ÜÉ®«ÀD¾"!\(þȦtŸÚµxa+JìAuÖ:Àg9ø«Ã}̲wà‘Ùý8:ÉxkÖ¨úÏXæ=z1úC2¢D=}¯ r ‚œ£˜~׺\– ®õ÷*ûÇ‘abuŒ×-öÄ4•àuV²]Ýn6ئژ ¥Ð˜é‰Òlu³³!',ÙG6¸€@ÂQ¸<“äE’¯™Q­Ê×F["ª2£˜âRþÃÅ¢b¢ýÕÔMx>ÄyH¯9{o%…ˆC›ˆu¼@ëôZÖz}áâ±°,ã'&ÑûÉÑiO–)Ëåm ´lÃLßÊÒeK¾ ='œ¼lŸðÚ|ndÆÎ3 !ó‡êÛM„ª¹”<7•¢~íö÷ÂgI—6')gÃüRÛ<íWÀ^Ušêv[·”Ma§ôìd20p^/Çxç­i¶¥“ó™WÃÜm£è6ÿ)ñ.Ò€'‰õëÐÑ"£¬‡9ûžõ-ÏÍ‹ÜêóM|<Ÿx|Æ\t{XþåóÔRET€á/‡½mЦ"5+•”!ýù²¾–ÂáÝDzP[Î ™‚œI¿qªdwkæÕK°nû{LÝsÏaƒ{W¹O~}¾N@zè e­nÞb¿Ç4R~oϧ¡²Ä¡¨Ú%¨¯ý•©áà “µ<Û™ò}VÀÕ=”‹8¶q¬álôšÖÄ(A mêkEš§¤n¼×£l»~ŒÔƒ68=Ç…²š}k{xîdü¶i-ðô¾MðzÌ0Ý:IÎ%5¯Á ˜pÖÌÜ}Ë…£N }u:ÈççV % …C«È°ƒãø˜ ¹;tõHÄY=_*5e=q*ûÞžÉÖ+è.)ŸY’)(³“÷ñvÐÿ³oöôSͨ® bÕ…[’¥ª Æ·ß_kêÀB¤*ç—a?âó¸uXÛ0 =y¦ßÛEì_Ô Q$2~]((«(dAÐʯx×ûY{‘‹¹ý !5ÙÆ²Þ"ÈÀpÞ$­.±*”üó$Gî´´ðÒ’íjÑö+¤§0×úq¬“€îøÚõm× : i›³e¢yRÅ¥Þ9µËÄ(o”Ù†–:µ>›õi<…2g¸ß4ÓR\²¸T?”oÌ-9pÂõbm…S½ÃÓ¼g‰`šF ÃC>§Yâ~[#DÚ"únŠ#ß7ž¾¹É^œbÕ»Ô‡° Í—ò¹¶}§ .·@©þ~Fh<ï¾o<ïAo«{"Ç×&ˆ6‡écðkK•5~¥U²íÜQF$£Ÿ3gxÑç#¸çÄ—Ùx)tÕKß÷^:$·*ŒËÙd¤—!];ØK-,‘ˆ²ÿë dqWö’ +ð¹xåIJò5LR¨´ªÈ"F½ŨֶÉË[é«ðæ´8ÃæìÉAe@ !ªR"ÇêÊÔÆ:€nõ}¾£W 2xVÐtÂ? Ù¨KÉ‘ËØv¤|0_ë ÍôN©—äU$q5žÏV”†õìÁ÷¡þ$ti¦Õµ>;–3I'úþˆ®Óo%Z·|À¾åQìŠ;Z"?X;Ê/þO–sfùõWIŒºz±Jepezú˜*j(s¹yê/!¡xVõ`Êk=³T^‰vLü8×¾@MÓh×L¬êÏ´;ñèšàTølÄ—Ž¡µ¨ˆ ã¡e~,ã_ì •ú-̺Üô ~Ò{”N`â>öõ©ßõ;¢X8ô˜ÊêsI;©VMaåøÅÕD®‰néAcùa0ž!yø›_Çyk¶ãgÆ­TOgf¢ò‚CøØÅ\µ¯‘ð¾‡Lß1~Izt󽜵úÆÄÖV}}ö ¥9 q«‰o+µ®‘I<52ºc¡ãã.ê+TØ·a€D¶?P¢6ñ»Þ7­±׬ãYI´wÚfJž,\gçBmnêyBhÞO‰øk WyEpɶ_¯,Λzývô˜o0ɉ¡o³GœùÝ:3•‡ÊÜkH/mí(ÐS«±•/ üjF+˜œÎ³×”îÌ„g†šA1çNŠíÄÍÁ>(j汪’ÓÛ¨«Š_÷O”»™‹bE#RoÊÊ;¡m>;¸ËæØ”aèüÝ`JGîZxÆóéÊç Iš>iA0¥xfÇ5¬Ï5ßÏ"e¨è."ˆÆ»/œ•rXê=Aߘ6ï™åçJ*¢Œ]–F[7c«>Iì4yj;'ÁtòX… ªŠ§„‹>h}I¹ÇG¾Je1!ê%‡Žt…iÌÕl1;µî7<¹ë†œlW+ÕšËT´Á5’å Ó¤¼1y5Sž,Êø<ó$f5§ñ÷MÁŠ8)(–›¨2ÕVTÚÊŸc:\$JàÙD7säæþ™õ‘Í™*9Øvb—á«í—MrÜÆT"#¸á}lo@îüÝômB…zM ³>[âìINùòëð^K`5œç;E Ç„ÎJ˜Ðv¦£Jæ¡v´ze÷ÿ¦ö£g endstream endobj 497 0 obj << /Length1 1614 /Length2 9220 /Length3 0 /Length 10269 /Filter /FlateDecode >> stream xÚ¶P\[.LBpwÖ¸;w îîÒ@#ÝX#Á]@p‡àÁÝ ‚»»&¸CÐGrïÌÜ™ÿ¯z¯NUŸó-_kkWÓP¨j°ˆ[BÌ2°+ +»@RIƒÀÎÎÅÊÎΉLC£ rµþ-F¦Ñ:»€ `H:Í\ŸeRf®ÏvJ0@jààp¼àà`gp²³óÿËâ,2sY”Xò0ЙFâèé ²¶q}Nó¯O½€ƒŸŸ—ù;@Üè ²0”Ì\m€Ï-Ìì ÐÕó¿BÐ Ù¸º: °±¹»»³š9¸°Bœ­E˜î W€:Ðèì´ün læü«3Vd€¦ Èå/¹ÄÊÕÝÌx؃,€`—g(Øè xNÐS¨8Á+þeÀ ø{6VއûÛûw ø³™…ÄÁÑ ì [¬@ö@€ŠŒ"««‡+3À lùÛÐÌÞòìoæf²736øS¹@F\ `öÜàßí¹X8ƒ]]X]@ö¿[dûæyÊÒ`KIˆƒìê‚ü»>)3Ðâyìžl¬âöúXÀ–V¿›°„:²iANP œÔß&Ï"äÿȬ®vvv^~Ð ô°°aû^ÓÓøGÉñ[üÜ—#Ä`õÜÐd|~!{¹˜¹®ÎP ×?ÿ98– W€9ÐFþOôg1Ðê/ü|øÎ €û3÷8쿟=Ó˶÷üùŸóe“—Ó’”—dú«ãë$$ /.. ';€Ÿ›ÀËÍðùï(ªf ¿«`ÿ«Ø àÿ«Øç)ý«`·¿ÏŸþïÝ`üw,eÈ3iúÿp܇Ýâù‡ãÿ™é\þÿþ;Êÿãÿ[ ÔÞþšþþÿ£6sÙ{þmðÌY¨ë3ÿ• Ï[þ_Sà_;«´AþW+çjö¼â`kûä"òZª‚\-lþ"Ë_r­ßKfU!. ß· €…ƒýtÏ›ea÷|s¸<3ò ø¼8ÿRl±ü½aœ›ý ;€ üøœòøœÈñÀæüøœÈåð9ôð9‘Û çsdÏ?ð¿Fjuv~¾TþþyÞÿÂn0 Ðh¾Ý‚<7†ß7š¿/^ÓKŠD¢)¶ãýàä­`Ûô¢Cž&Û Ê‡®š‹sãÞ#ëQÓ[²8:³­¶SñFå¾d‚å½V´a@áMŽyÆ4!%¼+ )"#ö‰ÆÔåÕ$vÖè¹|²ÏÁ{®/ý5Θ_Óï–Ë49]:‰¨‰ô Ia/±‡Æi½$~|’'˜õ*ú…ÙÈ:È™û Ÿat<'OAo¼íÿÕËvD¡ Aêàj-’ÖÚ6¸síïxòN¦U²1jG'DOÖ£K¸ÙA’ð‹Õâ%¦þU‡÷Í4ôP~¼0dî6Ä޾҃眄‹L/ ­ŸYòÁ‡ê¡1—ßÕ~b+Ýáü•¯NBK}oUuR4Qv!7nQ5…·c9­k'IÄ4Êñ¬µ…û½ ºC ÐMôŒŒ¦ÒÆÝ¨vA‘ÒÛ—ëT[³ãžú²m §Ñš•ºëI×>ÖvNüo± Ððã.½ÊØÄ½ÂoDnBÕCá~ê¦ÝÔ™Þ»äøqÅè±a3ѺÊVG*çþÉm ^(SŠoæDK›à‡[ê·ñ/rd¬÷!÷±åp­j#%™¯õÌ÷«{ßšuÚ£ƒN™5k¦ÉÍ¿!š®°hZÁ¿¹Å¢·¼%‘Sç‡b(™¹Ï{d&éÔˆþxí_Ë”em6² ~DùQèÄAÖ?ƒÁdr½ãuY·‰8 N¯G…4ˆÔUÚúàl¢öh7m BÕeWÖÁºª¢5½ïhÁCZ#6%á¢Ó'—Úúƒ˜U“2x=mÃì3! ‰Y¯;RCÓjÜ5B-·áSÕŸ­õ… 7÷eëÍŽõ.Y›ê-Äe4ªÑ7à,Rø]±y9ìò´ýyœaÊCÁÇ8¯HÙþëÈ_Ânó,"ßÑøq±¿ÝcûŠ5"DY`¦ É¿^%Œi«FâFÎ>sÌ’½E+¼LåÄWî 3»”¶´:‹ŠÌu!̘–ZAÄÁeñò4NTkÆMØt Á ÷wÿ ‹.í·†*Ðö#Ùûµ@§ñÞ¥Ì;9÷ì9+±»5¿ò{¡¤X ™6£P¹ÊÑ‹^â_o°Æ£F\Ü)FÞb«0ò+ LP¾¬Êq“À‰¾üÒ».Â`Uø läc9!±PóôØÎâJ˜Áyk+˜í %WÖðÁÛ ñ+Î%4ÎÑ‚íÅ—dF3Zf¢Pi2Ï%Žh—'%˜n´iü¾'œ@Ä.7F«Æ[ø"?bûmúîÝ1Â\úF¦@–_[àÐÁSR,ÎÏ‚ª÷R \i§bÞ®oCà^OŒ¹áÚui‰efòZq9*I!¢J“<Ùb”T±è8ìK¾å#–QAA9פ3ªj8š`ÿ4¸°Pǯ>ƒƒºa2Û7-+Þvu„Ž—Wð½%±È½PGO³{¥/hÓÿÈ•âÌ{jĦŸ ‘yüaŽCׯ“§ÔÏ‚‹¦Ë&õx…×–YÅc2¬ár)Y޸ЮðUM-чî\WN«&ÖÑ— Í?~&±«ø¡o¢Òrå¸4J¬´à–p.Yê›>Ð ³lu¯…c™Š.[ ØÀ€zK+óü8àÏL]$WIzTÑ-c'ˆz­NÊ3³ð¶ì‡¡÷‡CÈ«_×{”_¿ùo3æö餳+ J…j¦”¢Ô,ËŽ ž/iN'mÙÝÀóÎ~bÉùüØ ûX§b•&ÁP«5.i%ÍÇZƒ&§Ãîµ²ñMvêóQH¤:‰ªëÈá u"G*›–ex,ô½Ž “Õ°Ë¥‹«yo-©È•”Òé(ÆáCÆÞù“® U‡öÌJg²=¼õ(¾Q6ÝM"<Þ6õ` 6(.ªû.gÀµ¯Î€vT 9ÈøÚF ´wVÛÕL'×,2ø‘ÇÑN6½).×®P€£ÆqZy÷j%мEûvp ¤¾~\×÷è›78´ÍÿDEG oXØPœ‰¾€â8²W'ÏÃSZ oý–÷C€µìÛòðQIú€˜ùÉ»…ÚV–œ·BkDˆÃD|-Rò+óúæs5~²S*´-G°!ß{õú6…×°úîgÅ÷Ð<I€‹ÚÆ2KÂyGÁä··7ðÑ…©vC¬WÇwÛRŸéÙ‹—¹Åt…ýǹ,ÎZž–ùªk·í(»o¬ef²[,pqÜßµ±4>%ÒÁæ1Æ­Áh¨wlpÝe_êÓý„¾z¯¶…Õ»ú¤@¨T“n‰l>”ÒÖÅ_õ¢ú1ÂESïÞF.oÍÌ!ÄÈr¹[è *7.6NùØeÉel”ðc^ÓU&´IwDXr>eZˆ°»’ñEû×ôëSj6‘wõæ¼ó™t¶»rDðÌÔ mÈî»ñÍîvÖ…É!Î|1ò<:e­ÒÍÁÈó…ø&vai†FÕ¤yƒžjÿ:=…·à §’°­‚µ÷Ø,KËð|É‘LºzÄ• éDaëÇ´ÕÐÁúªY¨*³ýµÚ>ò{÷E¸ºðW¹1žƒ&-‡έ¢k·h¶_qºI‘¡?SäÜÔ>¦`³ä×í²v2´~6´VMÏ/Kh8õd8¨Ã$@ªgD 5h·î û¸EqXðE´Y,§ˆ“<"pçRhÑv, ¿$Üë‰ì £ÿ¤BÄ´öeh‹Q˜›jB•)õI~Å¿Äo³^̯–Œù|‡ÿD|UeüZo”—ÁA³{Õ4·xØ› KËí~£þ˜†cle·0Ê>e,Ðït݅Ͼ°æï$Cz²‘€«¾ÄÞzâž,&"t[Ô SÄ<\"HúõˆâɺÝõsÊêµvÞôkøÆ5ŽBdØ€ÀÜyšu²,8Çpl/vGdËij±TÊÆ^•XöŸòÀ…¢ Ý]ÊjÄvk¥{¡ºYˆþöÍWzž¢kEƒóíJ%÷¸Dn,› ÆrÀ‚ bØ€†$QÑZmÔ÷ö¥²”Ã’‚Ô~9Eð%®pôujØÈñ<õ¡+š¥çV£¿/R-†¤ÂøåZ^I Næ^°IÆ]Ûb«ˆRS¤Apê*:_9y1?.gÚç¡xVáK¹…7óQP·tæZqNDmã-è›{ R°ÃxÊ}ÓYÂPo|Ñ7Ńudr5=Ó¾Á™(2ôt²€ý¦&#më²è%–×P {ÈeK†m ѧí`ß²‘‰N=Ë%"å· þHnhÉn"ô£åZ¸49ØL$ ]Ûݽƒ|QRX¶ÁZ²õYŠ(§‘£ýÅ2KÊ¢{ß¾ÓYˆ’šÀÖL»¡ý²p×~g;¬^²f”Å'? ÂkøŽj†5·ž$Û•kÕŠé7¿ú† JÀlælŽ?Œ©plihp¬[*K™2M‹#›/ß~5®°¹Þ(}_†çWê™ÜI=*°Dšéyc|`Ž¿ ü¡[YäÉÿ‹*ýÅø‡xâê2i Iua¶dàkK=ŒÄÒJ $Cÿý'(Õ ¯Ë½«Â×<&Øþ¤_} 2‡ pdwŸ2Åæ#1=*ƒi’¿÷ºÛ “îVcà¯b'†%X¼úR^‹(^+Ò3„¬Ž—”êÛÏß*©Ñ¢ÔYÕ|¹Ë¼€þNþ-nnÿ¸ÐkY-n[ËòÖK¾ïR$Û†ªë ®†R® $Õú¤~åޤ뗜֥%½åêÕy ¯^ô·ÅæLß»é”V…oŽøn½þBŽð'†UôÏsÝqÎ/lNüõvµkÕ@bzK÷*FQ5‹ÐR©F3ºó.T ´pö åô¢qxIѺ¦5e_ÔziÒ¨:K!¡>¥¸õ—Þ­(¼šÐ+s¢HK‹Í§ހÈÂÃÅÈ4ÕFÖ„©ëŠeYÉì|û¼^µ&f{v%í°{äÕA2,LúÙº‡ä[\—#Še¶¨AjŠçCp–³RM€LÑ2CU¸¥xÅ—¸ZˆApu\Ú%Ô$˜Œ}zÀ©·¶8eÝ+¤}¹çÌTÓ‘ŠêklŸ ÃmãX—뎃ogP¿¦Åz¬nx”j¼wpDZ=,Ú¤õcžÆ´©«ƒ$ôˆx6Ôé߀`±˜×0ë‹Q1†í‚Ä•º‘ªæz_Ý«Ùa… úñ+&}¿ßÉj¼’w»dÜKuÖLP›L{4Åh¼cëÛ¢vïM’~_‰«·Žn/ Ó·“›’ä»aóž2j7¾ºCû‹BÁ´––àe‰ê¤Í¦¼H"·ÝµîòvGJ¨=ØÆ+ˆy™Šc.—kzœ#IÙ/⟻y“%’ñ ›xsXã꼄‡®ä$Ð]Kž‘ªÊµNž´«>E´6½°u)=±Ù"¦QTQsý€H¤®‡r•¼®«}E’‘¿%±†Wå6TOP¢Ê£ñÝ úÙ…ør_åä00O¢ø«þëæ˜Tão(¦« 2‰…¸+Èñ&od™&YQ_üj,µS¿4jßüs&ƒ¹ Ù$Ý%at5_;xÐ! 7ª¹ñûÓÏÍ=*d‡"²Ë%›88óû”;}Ö´­wr0OlŸZŒÍœßÕ盢"{x“]ú&Žd ,yܳډoÒÐÇDR#|­^÷€à@Кµ†Y}Ï9 ,/3ÿ4é“•n‘ •syØ9„–U^(ÂZƒufT%ñ—•ÝV3òí]=_H*¿ˆ³³Oöb)ø„ŸåÌ3{\W\ƒ‘›ßúdnÆæªlÕžÉ ÌL7é0ts× ‰úÇýXî};âªD¯UÌlÁÀ¾ΔÕ+…×±zA”“ê‹·V‘r&þ¾í!eZë¤ænUäø©M¦d±ñW ½ü{1:XŸ±ná# 2 ÓûS†Ã¼v«§6ˆÃg·ˆs ÛˆÚj°ÀðgfÁ¤ÃÂQyýK®àɈɴŠtÏí(Qò> *ôñ$ =è<_Ð~þ[ÛQí÷½d9ôÕg·¹ö2aäLÝÚv÷Ã,¼© ]Ù‚zß^²I\™ V‡§5ܘ:¬¹ ›9¦l]}+”F©U *_hΖ Ö=Œúà»G…¬dŽ£,~t%CÈÇz³MËa!J•F@¹$! _uñØ·1oDð0&0'˾­•rJØØ‡¿WÊÃ)™R;7ÇIýb¬™6Y‡úÕÖêl ¸¢G}YØFÇq¤H0‚ÉmH³O/©f¹šŒÎ̘Ø% ôȹ#xÛþ𮼛0’!¿ž~/Ë@M'@®¨CÜ¡–­ÆìŽsJ*ÞÑô (ÊxÜé–½È`ªêzÊçu²"qŽZ¥ÇÁÿ#kúÖÍÃÛÛ¡t¥ú×í¨å…ØJÉÿõ•> p ES‹6<;©X :´?8n¿Þ+e3J¼^ÃA§f'É߈‡2êÁYÚm~;œê–ždÁæ4'½G³Ó^S^·¾™?¥T>Â7é–["üÔ©¿˜)ÙÓ.ÏŠ¨1ðÐ7³Â‰B ïØÕ‰/Pµ¥zŠr)¿ì9¼Wß`N9˜d->º™}-™ŒÞŸBcÊœÎó©½øÂç© ×5|{ŠAí¸‡bÓÜÍûHuºÒšâMÊÅ´WšZ 3šûºÉ¾ÏIªr3¥/S˜¶ÞúÆøÍpÞ{)Â_Rä Ž ùI_µZ͵ʗ2EC*‡Çc¼/om¬_l$ߟTk yµ$¬c›ò÷׋_+Š—R±Ž ší5ç¦[P¾èx•sÂ^2K“äÁ‡Ÿ‘Læx~¯Dyø«!ãDxæ S™œ.F5>÷¨òNW¼ñUhÖvŸQ}-€¿[¤¤á$ê‚»GùäU½Ä¢“ÍDÕ(í`0KöÞyz8|‚æ>THÝ¨ÐŠâ­Ø¡‹ühǰdÏUyû+î‚ÅÇМ_ÒSÐK¹q²¹™{ø7§uS¹k‹h³kÕ„7¢`Ò¹?÷Ú>ÒÓ ɪñ»õÙvFî Ûå—Þ«êVGXÉK‰ÓŠ vt¢Z¬dnÕ=qò…Âü¼QR’˜$WYWÕA2ŽŸ0P£\ɬ‚éD`'ó$5’:²›c0dc$î,/è\~¾EÝ„Îù´üp;ˆ6 ЉI©ÿLJÊÂ͉Ùà³nù±S«eÿu§Áò¡g’Q—A—ókV$ÎI 0²5¢Q!·ÑqགžqL4HŸí‹„ýÏö Äu•ÆÅAQÜf²PN~¸µÓ¸ÑökçEùÇ_ï †bÎY”Õ—>›ýð]|Ìw¡ÉÚ¶Q!Ë`m ÚÜ])¹øv¯×¼a°]H,f(P¢ù¤ŽO˜o«&Y$–žŒ´ê¶Ö2l8—ªÉa*þ¸žÝûP cP€eÂDMßÒdŸ¨Úî|(Š`‰î>Âû¬Ï~Ò˜îâ{¨ë’íŽB݉bž4 e}ÀK;Ï2dAÒHŸH)¾™Õ§‹mBP˜ÓÚ ÐË #ÄërsèûÊ®fÒ×›.(ez“¨ˆŽÂ˜Õ§ÊÐ[®>!šˆ·rŒlp4ÚvŠI;PR©Ÿ&Ã%šOò&û(E¥“Ÿ“I“‘.•+Û~¥ÄGu_/¿GÃ'U÷+€¢Á"xW~jIÖIQ8&m‘rrÈá&TÖt ~Ü]lÅ’fÄóz4©ÙÓ®à¦Dgà ?622/Qx˜hˆÊœDc ׫¼Ô¼_’‹Ô› žëj"ލViT—†AÍÐʦÄGaiö_]±Ùzåj§&u¢Á«£è&ÒãLË›íÀPõ¦*ÿÒíü¬Êz‘[1Ô]Õþ"ÿ§£)þ£¬WôV´oú™iTi´2–¡ŸÓWÛÂg˜ +´(}®‘ÈR_èzg¥Ü)LýÝO¨•|ÉR%wµuÑü€ ªÔÝJWì€L!Q´!X¸@œÔyþSûµýëBÿ“¼ª¨Œ¬7\—CëJ­§È6ðÆþ[ÿœoεnvä'õ¤¯d4R%×õµ‹‚³! X÷I@ÈûY—'þ² 0{Á:4Š!…Ÿw®'þ¾Îi Afåôäõ&oõ¬ÒjN–@ñ 'JlSy™×ÀO:*¦ŽwÅ¥/‡-kÌ(ÎÂûŽÃ.3[­œR+®?QÒ½J£ ðE|Ì=|„ËP!°ØOÉz™ŸL1o*ɼ=ï·1ÕÛçmŠ$V™Ò¨Ýƒ8ñÌ!)WÍ)%[ìƒÇ²âWkiXV¸/%lM0ýÆ0ìÍìµ³©®Û(³p‡RìûV)£Jáem—8¤Ã»æQt>O* Z£(ƒfؗØ+óæ—Ç-ù¨Rò™«¤ì–,E1Û”¿¨kªLäë›|Öœ’ 5óùr>jýj‚C•É"€Rù9fe!CyX7.(ŒdîD$KNŒi/¾= 7“܉}ßߤ͵`O[®ØLËsW`tr¢[Šl~Ÿ(7•é诺÷³‡«ˆÀ1眶wÇ„Pªžg5 cêÝ'7ÁÃEH­õ®¢K{¹¶R M ^HY™cE ·(!´¥–»1‡‡O ëøáºq‰³{Ì̶c¹>0I+…]AÅ™kdþãbU“?æ·z*´ˆÓïªvŒk¼åÌèµe8nHÐM M˜5ŠÃ'"<´ká0¹|ÄF³ìPgDï¬äÞÔªÕ“O‡bíÄ¥U £ÝòH·ÂÄ‚º&qËC< Ž+±Jɨ`æ"ÖPH¬¿ú·TnÊïÂõåÄžC\89jõ x4ê•kD¼ª^0&9_ÌíB8C!¨·N)iµ*L©Š[Ë_ f£VÖ”Lƒ«ÄX2C>&-šëB›Ã#A{¬í¨"¬Úb¥LÑíìawM|ú ª}ð\è »‹?¬ý‘?cîïPeÛ`Y'¢u£€êe½n«1;äbñ¦ŽøÝŒo©óÑ ‹oý¸4ZŽ÷wñO vý"D¾jGm)p#[xÚ<7û©GÓl,¾1#âð•o›Í‰”Ü·)G7iHTÉUgfcþOW¶½>¼Dù>ãA|½ÕVáÙ^œÁ,X̫ܽ+MÜ %Ð-G“ ªßûæÃmøSeËÙ åº+í5&²  S™ÕU ;B¯ŠN0œÙ·ìÉt 铤´‰4þӲ鸻èU Ì¡h/c5>_»v[bȱó}¯>~Ìè^=껑ˆÍLïpôès %¾{ x£¢ìFÖ-©æÐþØetU¿Üd&»DùÑ‹˜–[1ΖV§ ý˜Šø„Ú§?E¾"ì4´(•$+õ˞{§Òj,›0¯T“z݉ WRòK¨PmáÍ·!¦g·#š‹8¬Ô.¨öFš2mÚÙ$Z¥ŽÕéb]hÊ=ÊW¹¸_—s%J“JRŽ·ý 5´t=/wMø8ÇhÈOid§PˆµmÔý¸Å ~®VWz61窵o™Pq;Ìëð*Ò¬v¢Ó:„[á`|ex£®ÆT“ŒE‹J®J½4ý:]¶gJŸkй½[_›ˆ‹²ù£âT`P•Yó`¸«èöÁÝZée‘+Û"G#ŒøiJ1‡÷Ân#.@^ù¼ãu¸ÿ¦B¼2w•Hú^2ö`ƒvêKЬ6Çw÷¹]–”Iç¹æ¨ 3qÚÈ$Â:BðÉ&Æùú Ù§“t¾ˆÝb}Û;©ÍZb+a‰·Z˜¸zØ™,$`i”W™ûzŠñÚÉ}9ÏäˆMú¥q¨cË•Èÿ/Z×ZA3]xav1ùOC§³¼zt:ùÆ^Diáãˆ~€ýñ¹‡éÆÛÔ0×½{§ßõ4wÆáã8‘•\B ‰å›>=›Æ¯ Ëu|ê¤%Ý%½JkL™Ö{}ãQãsnpú\°k cá\ ìîn.vy!ºåSE#v¾: 󜪫q”þI7`Ý5¼S€CÐ0ç a!9ÓÉ¿Çë<{‹½goôm™>¯¼v?WÜ’oLwç€Q“WRû|øïxÚ˜L¸† ´Öã0™´Î´×Á )Àª,²»ð½Êp[qpáëÇôÉo.¬W:£ù_‘Þ­§Î OÔ„txôRu}âö|O7=6Ú¹ú®çÍ´‚hHP0üçÒ<‹N2\—év˜®¦‘S°¸?n³Øç] Suåj|lzÆ97"åêPR ZÕg¯!¦šarnìƒcËÇÝôJžØG‘‹’xö2t.»ÊñsAžÎŸÔl`N&——É1e lòßÃÆÙ¿< µÛ0”âtLÐË]¶ˆ'òŸMhÆH0›ÑËÛC:uãoÖ,Ì‹±ù  B$#«»ðI´ß°Q¥‘[[Äm{î™BQh_Š1« 6}ŽïBâ÷Gª]DÂ3ø”H¹ýhÔ¯Ob˜:áÍadË_ÃS~ÇúTܪ,å$IøQ/eS³^Wn ,{ˀᮡ/Ù'¢˜Œ:¸ ÚûØõ&YAÜzˆªœä_f¨Ö/ ÚÚÑqû¨š%E´ÛÔ¥{e@ªMÀ«&‚@)†shCJó(;Œ°é&Ê}ÑþÓ³ÀÏP‚Þ3»ù-é–)­ö.Òù¡¯GS‡(AŽt¯éjíÌ÷ñEÌ_S^ßuD_ëÔ¡iffÁ7õ y“`.Îjùœ¯AÍ䇩·Ëàw|䓨­…¿¶Ì¿5·ý4Ÿ"ŸüøãÌÛ.!ÐNä»NyÐ{)¤Í@¨Ï¼Ùlz¬±e.ZµÈÔàðlšùc: £Ë—úú ÄÄųw¬ÕOB»Ûô–³—àÁã~×±×S>ëÜù­¼u€÷â ¾ÿ=a1´3+cq(ÖkòÕ“gù’ÎE^´ ºüÛ„?¯æûE ŒÃ“‰íÊ›ßå¡}+R’£âmJ´Ðˆ&g¼_’ML&(–û˲ÃÈù%Ì}Á½(øhtMú„±õ3 endstream endobj 499 0 obj << /Length1 1407 /Length2 6345 /Length3 0 /Length 7311 /Filter /FlateDecode >> stream xÚwT”m×.ÝÝ!04H ÝÒH×CÌCƒ¤4Ò ˆt§4HHJ Ò¢´Ò0ü£¾ßûþïwÎZç¬Yk澯÷Þ÷¾®g=Ãʨ­Ç#g µ)A!0~^ ె®0äpXYõÁ0gЇÕäî†B$þ—ý±;È †À¬`7 ( êé àð‹Hð‹J Pü?ŽPw €‚•Ø Á P…B@8¬¡®¾î`{â”ÿ,6œ~qqQîßá9;ØÆ а‚9€\'ÚX9ô 6`Ì÷_)8¤`0W >>ooo^+^¨»ý#Nn€7æÐy€Ü½@¶€_í4­\@¿ãÅaè;€=þÀzP;˜·•;€œÁ6 ˆ"Àb r Î詨´\A?Îê¸] €Ÿ—ÿïtEÿJ†ü¶²±º¸ZA|Á{€ØÐRRç…ùÀ¸VÛ_ŽVÎPD¼•—ØÙÊáð»p+€’œÀ Ñß_Ýyظƒ]a¼`ç_òýJƒ¸dEˆíc¨‹ óÀùUŸØdƒ¸u_¾ßcu‚@½!þÖv`ˆ­Ý¯l=]ù `7OŠÂ_çÌ@Q11È ò±qàû•\ß×ôÛÈÿ FÔèï uØ!Z‚í@ˆ+/æî ôÿ߆ïpøù¶`Àd†àü“ƒìþì“wûL€âñ€¿>¯Ìܲ…Bœ}ÿqÿ=\>M-MM®ß ÿm’—‡úüyøa ‚«@!€(bøï,ÚV࿪þ«±ƒÄÿ‹¸¥ÿìõ×ô9þ'àß¹4¡Æ‚ÿÜ( ´A|ñÿÓüwÈÿÝ¿²ü?þßõ(y:;ÿ¶rü2ÿV+°³ï_v_=aîk@ €ü·ëSйj€lÁž.ÿmUY!4 ±wþûÁJ`­6fãð‡*pƒ_sC@ÚPð¯ 1 àÙª²qB<4<|üm!Dóï#!6PÛ_êX¹»[ùâ FŒØ üù2´ùüf0€…!BˆövPwœ_óð!K¿À?{AŸ«³§Çßâ`>˜7ô1ŸÈýð¯Rl<ÝÝBüMDÿÙÿV=ä²ÁY˜…ÚH†;Ö‡w\ÕÊÑzólKfÝ~úŠ“ÇÁ½ÓN€™ÆY“ºæ~!—6ÜK´¼¥Èq.»Èpë¿ßú3²-E§ý&à§E’îäv;Îü'ЉÂ}¹†~:ì<ú²_nÝ CœP[‘»TYóÜ<Å´óI¯¼û”}úË—F#f·u¾Öˆ¨áþ,Ÿâ‰7ˆ3 )™f}k3CÅ„ã¡ÃzHòÇpúüâ3É›‰{Õ$.œÀƒxÁ"ãu—×3~+•úÝÔ,ÔÆTt¨ç$£“lþò;骔sþ¥EËó>­RE oð¹3–yˆxw^×€uc!Íê¼FÞóÉK„³Ó~I©+k&³pgÒ"¯i·ˆ%…Õ :èvÞÛÉ/R˜êÎ2ò&ŸçíW ¿'EeÅIÔíOŒã{ø=Ñ…/âM¾Üøe¹àÌÕ^@u‰K‘OŽ_–A”îì;ª$Ðb^߆ýüª)”Á°ƒþyË«±ò¥6‰œÒùU+¼»¬móóéé͸—ß æÄ8N&H‘ÈÓA°õ=D<캔Ʈ«f^¯PU…þ‹Ñ%±ƒÄRi?,S$€Zk%iŽNDD¦U_îËö²ÖìtÎpà¨A 3nj׳1{íG]û”i?‘ÑFVÃØoE\ZÒ8”шi ÕÆå#$ï'cƇЅò‡sÔz<è]RôyëUÁ¡ÈŠõTô;És~{cïÌâ·ðä@9YÀ.¼tΡ'A¬@Ù“é§äƒuœmtwýjy¬yŸ¯ø´Ø4œfš£å+ëçrÍg]Ú]ás¢×&Äe··ïJÚ“ÃÔ.±Þ<¥KpGO|n]V¤Ë«9h "H5˜Á¬H"6Oª¬ðV|Šéùþl@ ä<9àÈͲž¢ÛyQº¢UN‡æâìY∂QüÃõ«IxýüV1±³ËG¥BŸÚ„•¤¦,/¶ì@Ó´IªÙ2)Ù`B'Oö[Žl2pæþ~Iw˜ÿ×Ï#ó¨Ü•ŽžvÊÂ9?TfY¡ö[FN†“¹Ò ûwHf#3Žh#’|Éæ3˜KJgÚÙÁ·NõÒgŠß~X{V.©œ5>öâÀßfÒõ56J_"íâ•c éžw–ÏH%¼Ž‘„z;M”|U’®kpŽ´¿¬7·d Mµ¶ÔÄ^§Öïêu$U¹šÑѰ½is¸=ÌóyǘgXŠ.á\5Û0i®!yèÔÐZz¼l~8m_Nèûƾ5s"æ1m‚éfC˜àd ¡úØ9×:æ<;êH§2¾P1Ãkžâ»„ò®Ž^±x<®íî‹ÕNê‚Òû£¯’½sk«$«*jÖÄNvÖŒzrðçÍYšÍÄ¿™ò9ôŒ6y}-:úxH:>2· èײIÞîÇ’vIe¾„«ë²Pª£¨¦Z‘jû™Æ´ÿ”€sÍâSoj§Ah’á%?ÁžcÂcDÍÓäT¥­(C«ÅŠL‡ÜóLzŠ/“_fq1ªß!}õ¬ŒFþÁª5\[iöi;»ƒi¡÷±Çu\­‰‹òæòHñ” È5Ùp@3¨1›Š°ê„)Od?d§!~wåî‚6;Ë¥½S_bx¿`pØåL²ºØ\!Œ“Zâ}fÄ·=*ÌÃLe_~‚\ƒÈ¶ð&Ü©„3ö½ìVWý±^M¼ðëçÈøÑg¢GÛ’»KœØÚ—3ñüc•&*ïÓë}ž«ßz›êS/b‹¯bè3žƒSS?¸#à¶u·JçDnÊöƒ°¬÷<¡¿-».³Q`ÃŽm8±§t(HÛVîºL':a¦f't»ˆ‘;ÒDqÃìWÀ‡€êz[î#ñt\úÆŒ åÑÖÅw¯Eé¼×ö…=–O^aå$ÖwbîâÀ#ïè·{=î$~ô¹¿òÂ[Iè!¸õÑ×3Ëe= bVÏ1eްˆwÂ} 5ñ 7"qLË&ò2§áqˆŸ¸Û]ª^TCr‹-îñð‡Ÿè`|t»Ÿty11£ôàd§¿fzû”ãËm„©Yi*¸·5©Ä\ øm½¯#§Űçî•JòX:M"ÿ+¾#rnòŒ•_ÅšÆõζnêx´%ðÑmeßµµ9”Ãj…"(ýÚÊs¢~u¯Â óô(ŒÖ§í,û¼Rí±ûë§ùAè¶Ê­î›c!Ix†*®_צù^çN)¨Ök ºZç`ÔHªªô³ ×>’xÓlÊ®±RkE  v-ȸIãI.ðT§)eÝ¡Á•‹ g~DÜTƒt^‘߇ji)¬x Q'ºS_ÕoÒ¿òˆokhñÓˆ oxqN)RÄvV–ë‡.w*šÆÝâERâêàC™"…ú%Ü{™œü2ËY˜ša¿r€Â¬É±fK‰Le_»2IÏ€YM.v÷“ð‰À§3¸¦wÒuåsb(AÕÜ%¤æ—O[…ãˆJƒLKéÝa.×xªŒ Qcq‹çq³¢9ÚL»¯z¦ÜÇdUµÙd<Ó\Ää}våÀÚt­0Iâ1†LÖA(ñi¢>‘£òAߦzG}1Íã“^dë€Üb=*“‹,‘ÆçɯĚj[Q§gEb¶˜üxSRI\o¬)Sö…n9=uÔÜpž_[ 3]©³&s¬6BHÔtê_+CO~ÚI Ÿ€ +-é´Ú>Ãò·´zØj«#¾¾¸sÝ2þ9CÞA`mŽlZârlq ¢ÝpšÌØ&%ÁÆ‚¾ÍØXaÜHw‰LÊ︡¦-ÿH´&øš›@’oñp‰p‚Ù{©`ÿšÌ´œ`omPh …Œ]ç`Œßeð;¾«o8~6gj7]ù¹yaEóî` EäÏʾ—Áªë²òò]»ìÎ¥‡,³©x`|ÝÉŽüL½ ­Y-YScÊ‘ûÂ+Ù–áfyþØò £5Z?¥ÐÃ>ÀOøCITôqªŸÎgÐW·¤KZ³SD ö‘ÏÌ ©< éÂâÈ{@žºú°8©¶ª¹( …rz1™| Ÿ$"¥Set¸H¦Í~K›ÛLí?Üá>ó*¹GÙ™>í2 ΡTÔ¿{Ôíñ‰¸«ÆÿÛ/ëi²¬:n—C5Ús‡IʼnZrêt¢è®Eeê”Á~ѶÍm¤Õ9¡SŽ'³tÛÍõN?ãÒ°qí—\Éï`‚ÔÂx%n:ÌŸô¿%n¶Î¬¤_Àƒ_iÑ#çz:Ù{Í{)E}¿³hËÎ÷ÍUžè%?º§r=ÒHÎË93ȳá›:þá|¤v—àvðsþ“ÊÀ9mí µK,Ï+©Ëýq#–¥Œèé'Ö3¡¯*pÃÈ@TÅÌÌWõnqÑÌÁ˜Wy.K_0ˆ>±G_OÂmœ½¾ß7.M­P–+x㟧LǼ@f6tÜ ®fù>§ò1 ¥(è3¿Ü81ç•äk²ïnt.$¸®K¼všëÇU6ÒEšÇ3Ó­yÅn3T”Èé6Së̇½7Ç÷Ôž5S·+ˆröä3rÝØìÈøtëK< ŽÞáÿ(U  _ª<"øX™ïRV–"7X3L%}Ÿ¦ÝŽ£o̵¿oƧ¼xlÖ¢ÎÞÙï‹©j›í`ë,\:¤kù oû4·Ð/BŸaÛAä'P¨))ÿu|ºÂ —•ÛxJОÈ+©1·=/³N?†›s8iÆ'œlãJ›Ä'KdvÁùÍT›œÄ&n–胔êД’01=’=gˆQ¼ü´Üä ‘t"§ŠÜ1Ræõ'5ŽF¸ð"#Λ¨Âu9õÝŒa›Zˆ_[h-QÅô!=ïÓºJÁ‡¥¥‚°KÞs3 Õ{WOìHý~t¨y+‡ª\—ÞO€)ù0z‹õÝX¯¿@ä8‹ugP«oÍ7êBoªÉj¦º>žñ-َɨÁb¢áߊ^ ¸õ:* ,vö H|'ü€§] ¶3oXQ@÷­ëÑ3¯ÿhÚäÏÝ}NPбQdßuB?u·ŠcÓ·©Ãhór|±ƒƒ¬8³iþËýPkG3¹´L&ç–_:î¢ïƒþd­fŽÉªF0ž5Ì=ºfáSÆ”ú ¢¹À·~6ø-íKü²—χfV(s Qæ¶AëܦÉü¬²sýõ)¡æiO¶(ÛfŒ´ ,e‹Ÿ»´¾ øaïÙ’{Ó s=o3~ây;¹ $3ÀAï#ÆêÛÌÚx7G°¬~¹¸—/mnѶm·1#¡ÇW5¤sÁMŠ11ðû* 8bpé|_ff…Š£S½ËWºtÕè›H\<²8/XA÷ ÀÞd:Y“/¤Þ¾»uµâm[íÕdmˆ60éwd/‘±¼A¶«\R;b ¶×å.æÆû\Áv›BÒæè”zì'²Á™‡‡‚ÖA"¥×ø(oq˜Aÿ´¤Î>.åÕ½7Èæè1-“·š–Ï[:3uq™xî^½þby”ãÙj>Õ[T©ÁýÕ¬è§S{Ñ…¯*Už’‡ø|Q¶bJ.“)?ɒؽ°Ýз?µŸ!Ç4K¢ù¶[Œ›.sàÄâ‹&ö7¸ ãpŒ£õéL•%"82íuèS-%•‰Q˜ø´Û0ŸZK5ÆdÛÔÄÛê>Íš«œX¼5Œé둈pØx@Ö²ÓЫâ(\”gYã!úì©ñfκ ÏG»,¤{sÀ±0ÍUbÛ) ¡÷º¾\ÉJ‡º8É>õÝbÖÜÔRI˜6³v*׺àhÑ™–ÃÄiD Wg…:›pï êÑÒ²HtôD/ƒ’c̺VO%¹„ÖÿÂ{1 :‡i!¤,I=M(óS"Yå¸Ý¡ËýUj¦õÊ×wbn3Ï(Ü®eôøÞCd¨Í¸½6²U: l„þvƯú"IEÅNX!ÕáFùzÍE­—¢<ÝNí. Dèxj÷4Ü‚AÏ»m´e.“?.+¼Åëç7b'ÁÕ«ºÚ!˜}“ï¿V;æx%ª“Ú:ã i$²îþjQ§LëÞvF°uÇø@Õrå×FÊÏUá!|@ö„œæIvÇž‡ƒ/¥Îô¥uÆN^ÂAµ’÷‡|ÐÑ@k.ª)ydoq¿Â7žðEQ¢Üó®‹y¢«°ÀÍ¡ Ò²x]­X”`9ÜÍ?ËjË2uIÕ¼PÃ:%çž³S%µµòý9AùÚÂÔö£”Æ#n-ê›OkM*ƒì®§y”%=æé² ÏÝ‘±Ì©7+`jynjàY'ÍÝÀ‹FWnÛPÔe¥×ƒ‘(‡›ô^&So:q¢Ø¦e5[›ßdÖª”ñÔvHòà]\ZŸ¬±EÊ«^t=d‹¬‰YXØÒ댚íf‹sÄŠ™ÓypÖæ oåìÌ œVšƒ™š˜MÔº¹]u2,*Ë)Æ ¢nõªOë},åyNSg²ÿL \éÍ¥n‡LÀ©œ¨eŘž»Í§;°±½5ü+ê*–?)ìö†¼ ®R£æ¼íØ~\l¤Êè¤åc~b?e?S^ôî6ˆe’i3¤¦«eL¾Jʉ¦æÛ`ÁT¢f´r‰r<û²%~ÔË@_c|ÛËîÓÑþ“8T¹7½-ŸØÄË›º_GIÚ`Ò~ > GŸ9‘zÝú¥ä¤ n}¤ƒ“ô0 çæ1cÌR>â6”>öQr†éDFl@°}¹JÅ1”MtÈî>³}‡5Öè]ç»Õæö?K:ô ]øƒGìd2Ñ ÁJO'ö¼Œ°Ž´§âëãNe¡üy\òpF¨Ñô…ñ/¥Éëw*?jÂR²Š,AÔŸ]γ‹Ÿ´“9ƒP(ªN=ÕåMÎñ·ëÔ5ò6ÝÀ‹~U¶\ëA]/)ÍÞÞ„1½j¯Zü°/aÆk¦¿F™$xVán¿|w+Z,Wox‰däß+~0ß#‰ñ}1[?r4rüãÙ{&é‡õòËF¥˜lcdBMÓ6¢«Óê¿ù|Æ{Ó††i)m±ƒ9]/X_·•“ÐŽã½ <£²(ÒÎ8ƒÉmÇŨսR*%O^îlZW- ¼ñ{˜z¹ygÀÚ½všPHÚµÖãâd“‘£mïƒèD ¹·߯””Ö•3Ò$\–]QµÒ«< mè·½&s¯ó ;·JîèJgUåý0ÇÓˆþw€Mù=¿î'•$’KÒ0½ó!'Q ebyøC€MòB) ¾®å»=¶rnö]'n`špû·üѲE¾“Šî„/+Ãí»\ÔŠËù!¯„Y‹’[ø¤G‘»kP”AXgY/WK[ä"ššéÚå‰&Lvvu~†Üf]®å›<ê„}S6Ñ<ë8ÝtÙ`•F­tŒ8€g,±Lm" %ÚÒe§û`+~ýpI¦º/”2áõš Ò^®B%+Ë–ìáýPwûR; Ûá‹ÝP„8ÇG¤ã[G©@Ý ,Ié$?JÀ B·¥×[u×£ÑzÖ¯ñÑ ,Ÿ5«á÷{§ãÅ®s„Å 2e‹ ¤¥7{7ÎyæÝìл‚ù”§k¯$t¥bÁ4ÕÕ¾`<§¦BäÉŒèRHåA«»Ïгü¢ >·‚Ù&vhÍ{¥i]ý½Üñ>qÀqAƒwœOfwÝûWúïu®ßOf±a;–ÄWvn¸rWÇȹd2.0™ƒ˜Û¾ Áš7i¾…ùꈢk[†eN°¶ ¤$²Ñ+8øKédÉ bä4‰ödÚi0Í•ú¨:È÷Ã^TWD‡ºŒñ²PëLT.¨‘ÚÂ¥½ÏP}8OÈåõ@hNY<íydåQþ~âƒwUEÆÓÜÞNª÷›¡³ÅîÓž¾­ù,fôjF÷i-Ë›­aZˆ¬«‚ÐÞW-qê~ý«÷Ëݳü£n?cÔ'ã†6Ñ^Û î"Ÿ÷öÝÌzÿðg2WŠ2eâÞþØÇ{ÌÖ**òâµñ*}÷q«…ŽÐå«þ‡JhmÒPyz§ßd¢¶ìŽdPæFßt$=ÛGixúãî.òž§'FR‘^vJÒÐŒ¦se7qÞì ÌA °©óÌÛì¬F6«öSäiÃIáz u…Y¿Ešó¨q)ç5ãòT‹"AˆxFK÷Wí¶UeûãÂÈN K̼OÚüþŸBHiÈ yÑ/gr•ý­õ;G;ì0"6ó¾Ê({9 eé/yÈ~u"ŸvYVœÕñéyÚu>; åXw*>•Ý#ÛÒÀ®ßLóìVš¬Å}ÀKAC‘…}sÆ?œ:3 ¾\!Kt)hGëñœN¾Te=”¿Xß§Ô• ¸ù䩸¦SoeaÈ·lÌèE9œ©]½Lñ4g!á¬Ý{¼M+ê^Kš<7pþÂq7X†ÅES§2½ûbJpUÉðËhgÔr’ñB.­Gªpø\Fþå{Çg©‚ej–åÑòÝÕpR¦ÅER•ƒ¾šJãóbo:²ÃÆÝ ƒEx9?zŸçö´Ç˜†ì(›;8ê}¾Óy ë4ò+ô$Ñ£¤² ŽÔõššÌýÀ'£©ý\Nô˜Ø;hn°å¦U#çÛÐXƒ8Õú<í¡ÞQGìçJÀP×!ƒ7èA6A—0`ëŠQ€4ÜѪ×rõ™¦=ÚRïÛè¬ÒîŠíŠl´ Ê̾Ň®a¸ÜíQ§yê#f:¼ß¿ížºJKÄk²à•#/“^('Ô5ÇŸRJLß}Ñ]4T,ã()ME¡]Üß§-ßeûL‰æF|‡"ÈÆ“¶%›'ðsU5ØçEÁy‰-îCPáÛÍ1ޝ'¥x¶"§¢…7ܶá]s$fø†«Ò±4èõ„z?½óž$ Aä«Ïc'›&VÖ˜…̉ˆ¾»;/R1+ºbÜ&3 ÄDFâ§ñ’Ø)] ÐE×?`vdø5Ú]Œ¡h2¡vÖùÙóƒx]à9/†GÐÈà‘vø¨Ô¥# &ÁþZ£Ix :ûTŽþš§ÓCiAŒÉ¾£Ä8–Ãø«|MCSF‰GSÁSÏx0Æ¢c.BRéß]ßVÁ¥[î>E·?øAÚ¦l£è•å;xòáLJèbº#\H¹J,EšÙM‚”¥m¢©3.:­8 ê·P_.®¸pµ^qS;àQ=v|uêéèÛTûÖþÔбC©'P™>xLµbAÒžÙþ ·þ¢Õh5ðù·!Â{‹LçME½ŽHm’fXWºþøë)Ž…gÃF„õ›†‘Óá†W‹hëæÒœäšÒìÅ«Üa‚9…˜'}ëè’°çÇÜç 1C'`¹i3ø¥H×''U…Õa  ßì ×Æ5ïÔžVUðZ¡ÆB!ðže4ë¨oÅ<ô9­ž XèÔÝ›S¡ÖÊË£%$? öƽŒó·Å¯wNëÐ;[«Ô­¦ÿÙ¿B| endstream endobj 501 0 obj << /Length1 1505 /Length2 7019 /Length3 0 /Length 8030 /Filter /FlateDecode >> stream xÚvTlû7%1:”†I(½¤»»¥Æ0bƒ1r€„¤¤H ’ÒŠ(ÒÒ RRÒ¥¤’òŸú¼ÏóÞï;çûÎÎÙîûwÅ}ÅïºÎx¯š+9¡áê($F"–ªèKÁ`10XÀËkŠÀxÀÿ ^s8ÚBÊü/¹ Åà0U(§¦‡Bµ}=€1 DR"%EÁ`éÿ(¢Ð2@U¨ ¨'ÔF!á>^”W áâŠÁ½òŸ#Æ„HKK ý6*yÂÑ Ôƒb\ីaP  †€cÿå‚OÖƒñ’üýýE ž>"(´‹<¿ÐqÃ}àh?¸ðWº@}¨'üwb"^ ©+Âçl‚rÆøCÑp ð@ÀàHœ/Ò ŽâÞšhé ¼àÈ?ʺ„€•üíî/ë_ŽÈ߯P åéE".@g„h ®+‚ À¡H§_ŠPÎêEx@q ¿‡Õ•Œ€P\~eçC#¼0>">_‚~¹ÁY 餂òô„#1>€_ñ©"Ðp®ê ßmuG¢ü‘Ø?ggÒÉùW N¾^ 3$ÂÛ®¥ú—üƒ¹À1@ 0,% ½ð˜+è—sÓ@/øo!䌋?ë…ò:ãR€‡ œá¸Öêbоðìÿüû€@€NèwA ÿxÇÁpç?w\çшà0Žx ø×çï“-Ž[N(¤Gà?ê¿› Ò³0´´Òüðß"eeT+,*•!QQ îòo/†PÄ_Q€ÿ±ÕB:£€Ò‚ÅUé?ûýÕ}¾¿ƒøo_ú(cá@¾n–Ãp_ÿošÿ6ù¿±û——ÿÁÿ;u_ßR¾_âÿC õDxþ%ÇñՃ㾠7ÈÿVµ€ÿW=¸Â×ó¿¥Z(n”.ᣎ€;"00×?Tùƒ›ý0nˆòAüZ(@aü_2ÜTÁÜqKÃÇÇß"8nhþý¤†rú5]¢’@( àZŒ»I±Ü:Á~3A¢08 .½ 3 øÕOI÷öÅUÿF$D g”/úo@\Âm®î` È ·/pgÌ?(ä/ôO»ÿ†Åp°‡¯Ï?îqzW4ü¸Ô@Ô?&·€  8úð¯da¾hܘßdÄUâ?÷ß{€Ã3S(Øí{n/ï½>®Qbõ^–ç]·ÈâÆÎ [}O©HÒùŸçF,¢”ÒºhæWÕøg9/°ÛM¯HbšÓŒZ΂ÏíSÇÖ[Ó£×ÞŒ<ÙVªíe'c6Uܾð6w'lÂo׿-ðö½EeXDìߣPÛ[9÷.zjÝh㹤ùyå{áD³›ð² ÞBÇÇ“L\ÄavRºƒê‰Ã£qºü‘KNíTA@ÈN¢X ÖzI4éd2èãSSQŸffk&vÂCºwc7°Ê[ÚŒ°å% Å6¾¥qbóx¶¡S+dR²ˆÔ[/ú ¯o¸,ÿØi'oD iÄVÏf<Ù¸ªº[íE ±±y>Ìï¿K³‡b¯¤«ÉÕ~þDJåøUöÕɸ0mîë,rr‡7r ïÏúqÊÏrj|gΨ¾ ¢ä4¢T§Ò{Úë òä`(DÜçË㺎¨èÌè„IÐËSôŸ“9¥ iÛUÕE±2 ŒØFØ‚6YÞ °’}­Œuw­'p3ðßj÷Þ! ;p¿!”¶a¯–ýîç@,Œƒ+ ©pT:Ýa7ÑúYÃÃnÐ÷d:Jò !…ô:â»°`’µ‡ë½.¨¶Ô½Ô‹I–·Õ/;·\á>Çm5FÔˆÓ{Íâüê…©'ô~o…R˜ï­—_›NéðB¸§6:¸íO¬9täÔuªU™ñ£H÷>×Y»)ë;ßïœëhŒ40M˜&n.}µçÙÿDóŒrÀWÕ‰!zZ,Ɉô(S™ÙÚÄ9ÐWœb+¯< k©´yyqLÿDög~dšõýJ¡å²{ºã¸VN“ý$Ï6 E*&}»C¥ñÑ6 ¸_Búå£ú„Wô;ÉYÁq(×Ûvà,½S/­½mÞ<[dšn;ç<ÌÆb?|Z*y£ÃR˜e½÷b8ýX~­ŠšSü©F¯ºÄ&X2§œ*»_—îßUÊ”:ߥ,ˆžPNmÎåˆEuúr2—®¿z*Æú2ë8º‹F•8HæÜB°ÞbvÊx7ä» g²*ÁëwE‚§,zŒ·’M–ð|éNðf{(.v2­{9kêÓc“©ÈW«“oåfZg ú²ø·Ó°u>Ïå¶¶ì'Ô>óyƒÉQGg%àŽjv•HÆfL‹6‹Im¼u<Î6<ѹ÷tÓüsõdZÕ‚›”9Ô:ÐñíK˽;¾Ë¸QÆ*~zp$³Éæh9wç ?ížæ³×$J–³jÛ-{.Ë~˜¹ä˺×y—áé2w×*WmL½p{:ÞLëJ5¥•p“‚çJ›â¬Œ§ˆH4È;“·Ò˨b¥´qþ´î« ãÈl¥ÒÉ_?xäú0Ñ/ÀÖ“à¡Åî¦zï8£¡=á¶Í­} ßнõ;2œ‚*a2ß_ª réÓFÇYînÇXgy2g*aMF‚wŽFò=çåj*Í{è5‰- G—ľŸxyfƒ¹ZJÚÌœ¤6ë?´1÷ß1·ÌÛO)Å´>WÛ‚ž¬l² -(~Åä<[×::É{µ?ò8ˆó0JCoÉ(tB.Épp_uÄoí».­©WŸÕ/íÕ# æX{Ø‚Ñc™½E<·´O«å‹2“§À᪼‚8š­A iK³1 […w]î¾ucyêjKØ£ÎAäøx áã­ý@®¼8Òí—nÜ‚}+}ý6ÙSØ´¡‡wÓ7+ÓmG[© ŽKYæüÕà¼HÍϾŸŸkÙZ;=ÝÌ×Õ¡Ú6œÌµy«ƒ÷ïs´F3& |.giË ô?¸vACK¡“O=rýkÑ$¸zk[ì˜ÐÛ(SD½ÚžÝR)£P=ä辄…r MH‚…üĸhAº÷QYÙ]ïšÈâV®<`ÔO´Ö@èÀ<'O™¼ÏÉÂîa1ñp•bùIs¹ÄiÅMV«5iš@žþ]à•͈—¨Q•Ww"9•Då:”OöŠ_wrÇÒÖ:]ì„BëÏ~x‹¨‘¨w#™¦’· –ñŽïÄ#?~Áü€çuü$d"˜˜½lЄnßHÓu² ù.mñ-‡Vd[¼,)Rd¯ÅŽwH d”½öÚ êLð¾µBíî=©{Iüg”ª²†«A7Û“¸%ò í6úãô‚ÄŸȳaPeÉW0´¿ÜÇŒ¢ ‡¾éħ§èÆß„UÆ6°ã.ͳ-ÆÜ÷db0!–gè~œ0ÍœšDqûîðÊcáúlÑýt‡ï€:EETý0òØ•íàµÈD¯ùÔGuÁA1úù™küÆ–ÔÜì¥'EÒ%>Aâ_,ã¸^r;®Pûêbó`xÑêaúÏðð–ÝHoæ¼I(0ŠŸHÅ4±ˆ²~0E†î‰ìVEïµ²¦WÚ÷rÐ0-¦4þtá{¦~é @®ÞÈ;g³Â;áqÁ ý$f¢<ýôúPæ×!Ÿ…[¯É‡W?FSf¤#²g>©J5 \S=o9©þƽþüp®¥v¦g{U +ßÝW³ >œf—ÊxkOÞbôƒ4(Ò¸'Žr„ ¡ŠR~+\P€ä!u¼jÞÓfÁù}¿ŽÁøÀ÷à‘ÝN“í+)Qîègí1OR ë &j×Z$jŠÓ ò¦G÷ÍÞÊ( žySÔÒXØPÿ|{õË:g¾wûÀ,-Óg\_ÝûvwÍ­[èÞ»Œ;* „k}Äö¤QUŸÆV¯ÓS´Þ‹†¸t»8Þ;~¹Rï›AV¶bî„2m²¯Rã‰.‹ŽÑéZ«l‡;~¦Z¢NNaâ/ãöý /Þú¸D²% [DãIÜÂJ|Éw_ö®õ«ÕÓïÇé¶Rõ™«È­¨‹ôv*9ɸ£mX(·Ã3"”žC£ÖÒÚ •xfXï’V¢qŸ3-þ+ µÂJú'yA+Vk†(Þʇ> ü^ïG~,]j0ªp½§{F—3G»RQ¡Pú|¤8×ò¨¯ÛCx…7€Š¾ÎbÉwó.A‡ifAF¬´`H°>ÆÜÿ3ÎQnu<–t­±–˜ý Ø@Zy×7°Ów9³^ÍŸ3ƒ—æIº= ñ¥Ù‹»^G™Zй»n¥+Ä­öù§_äàÔEã-…0jÅQÙO´—ž ûÝ÷­t5^Œ·[íe2vHMÚ™cú¾è9´ÍX Í ¡‚J‘QÌéÛF—ÿœ?#¦R19(òrœoï¿´éÁÆžô2‰ A‹Mohï«øÞ »©&r×ÀÛ†Ó‚ÏB8´Ïî}ZF=fÊ 2¶2ÍP±Ý@LôNß|>ê0ÛÕ•ÆCûU8…ØâÛøËO*èHî9”ÅìÞ(ÖZ¨|üá'j¥¹Dó0Eƒg[{¦çp"-Ó N^G0œ’MP}î›9¯ÎünÑå‹YjªÙO ÖW(Ò}alF4Eg“ÆI ¥)›¦O yuO€å÷Ñ[‘G9»ñ ·ÕG94¦Ê¾Ü¼hc—yÙ[QìtuçšeÌ2Xëõ¡íPyq€7h“ BsÞìƒ(ÕçqôÊ{ïÕ kæxæH­ÐTß>8©½Ù7oŘü¼T¨l°°¸çÚÛˆ.ÓÒ›·Z¼ÒŸø}ÒË@xáÒ=rÄJDÒ¤7§T­A$Ò¥?ã7xÜ{« ô >c‰›iÑËüÓ´^ õÐÉë6»œ£®møM߇2MÐ „¯¢(ÉÈ|­çôÚˆüT^Úý™F£F¯ [ˆaï]f,WÔËõvNù‰Œ&øôv/ g°ÇB:Fk>:Ëò‹û•9•s¦,´wª'ÌdîÜÙ=hs˜,‰Múu'ÜŽÄfì°2…reo#&~ÌÀ¶‡˜4Ý]–³¾ÌÉ—U)QŽX<ž>vöI'[µ û®s6¯íó0zÞ°vÕ'¹MR[ÏýJICRY¡ž³·Dw ·»Îp£”ðü»`œ}ÅÎH&ÕŒR+~§fiçžé]ê¯@šõZ‡¯ÍéÕ^ÀY/z*ŽD錴6WH2ý còiѬ›ÿ*àœC„ölfHbƒüf¹ÈshvÇcpÓ׬†aˆïõ*Kø³‰ e ¿Ð€MoL°¢^wc®1G_H(á±%1 Ö.CÕ®Rô§Aú —ŽöT”ë®’XÞ„ÀßI®”„Kén^ñ€ª;¨&ÙÆ’„ä]]±þ‘ú’ÿiò-¯ˆÒ;1TþŸ‡øª¸Zîܨò-’ |Œ~ä»'3U¹›Š§³pþÜ®ö.ù²˜ã>¯2‹"O¥žSýÏ-¾mŸ´û†o-`¥V—2¢écú7¾zÓ Í‹g¦ðÊÍ­üj»ÞhÖ71š#˜5Ðä‚ ÉU’kò+>؃ ÕŠ”–A´kg/¹×è45Uyü¬C- ÌIÅzÅõÉÕ£ÆÃs¥GñI w¸(¸ZêОOá¹±™ÛYƒØé‰Ÿbºœ,RÉ›.¹ûj3_o9éÜzÁis|°7›æ v=,x “­¾¼ÅPE9ý ;hóÚpñdG5ºÉîYDwòîžMMJ›ºãþ7=#ü DÎæÁ•­¹çx5·ý(ª„g†—xgóJ ÂÇ•MÍ1jVÌY1 vxi‡˜^zzµi3‹E—XE]@‹|(>æwÕ ˜Yé6+Ú߉д R¦ë1rqÞ:´±…²Ò–'íÜ x7G˜ ""ôZ¤ú Èås‚˜ÞÒM÷­ûŽzÙõ´)fsûúÊŠ¯:Ò]ñ©ôzÖ¥ŸŠmqþ^ «è¬_°äBU(ÂîàÄÕ[IÇTþM¾²N;Íâƒn—`N0î6c a´xD°téðN›jq½=;Œ—,k¶PnVâ¿+À9Šz¡Ó=6WÊçîPvú¢Á3”°Fæx5Ü{Åc›ôpyHLR8†Þ£jB1ü`&Ò6‘€b¿÷Õ·ñ±oMCZ"&zÙ6©ðûŒžä¨‡µ,k»[Ü_ßÏ<¼{Zá%rgmÏì·[(7µÈŠO†ÐvjrQ‚çt>Ž{p¯Ê#y cê(öÎÛ¹¾©QûF°X̧ñDšv<‚ÏF:#ì>;ò"§k§kÂÃzÿîa2‰q’A©}›eŒËB+'!ͱ3UÞ5šüÜö;—ûxÚÄtì&°ý/œ¶’^“’KK¥ÁÕ•½:µiÖÛ€óϬ¦Q]uºp§„¾íÇÖw<ÕcΩÒÏ®œQX½'ޱ»Ôv2½þ¢æläÚ:íÃô/0„ØÊPñ'Ô÷ÇŠ¨IŠº’jIûçý“Þèˆs¿Cu±;7iĆ7‰,Ÿ$71NÌÇ7è–…’$_+\9ÈÕ)ÌyÊ3~ývnKuÃ:“º:†üC ¼öøl8O¬™§ŽJóIv¢aå^ñ¿¶Ç•{_öhó5Vo´o»Ó6¿vÀsËùžònj‚­_/òí}©2NlÔÑiTN4…¦ŠÿµÓNYÏçÆGn—C⊓' ¬@ph6b‘òâüƒBvfå6çòmβ¾Ü•SòÏs½éÞΑ#<‰'æl=}Ïâ¢öïñ‘¿3¦|ª‘ yªÃuº·Vþè@ö#üÇuú²S¶%Ž»Ÿe(øä³ñˆÏLcaÂë×í¿bä™Ñ<Èd8%%Ù¡»ß>£¹êÁJBsQ¶0 ¾`³èð¶$6Û›YÇqNS2‰ObùFY¦.ùŽ¿#ÐæeEóŸ¢P3tzžµFÛ³xÙ„žž?åî®×B7º–ßûˆ¡äóO3T®¹Ð»ƒô)QÚ1ëTŒ‡¨Ü¥õ¯$ŽþêâWÕºcàsö)¯Dƒ˜*}/OªóÒŒS‹µxcQ„Qó­‹dµók”CVŽWï¥"Dn¯¾þ>?™–7y«µ¢}IUžó4>ZÅÜ›©Q¡€¢NRC‘5Fß‹™ øçH9‹½÷C¾0Éõ wŸò³Ï¼eɼi’öî­aºe&Á¢îŸp¼,e»óêWêPµ½™-ú†ÃSjÒ°Øü)«»SLåg©$5u×\ÃPï¿„£‹:Ì÷vjêݽSƒa@çבY‘íþ–\Cö?»ÛL—v³Oôk‰RnòÞ®~<Éí;òùÙõÏÍÉFæŸæ²b¼Ê(ÁyäÒf¾ƒ5…Ê!Â÷ó©ú®Òf­ZÙ…îò§Þ·8yÔU°ïÝxQÀFï+ÅÊ6«ó¼Z±–ÈfÏàåí;„£~4î/‡î%PÎ>6ÉrÇïžêEûB©·©pÑìê¬Z*ë\ðìWI£eª'oÖû½ÏO€Æ7( õ±(ߤ¨÷÷§ éÉE–kÏO‘ó ÷̘:{¥‡¿à?kš~ÜJaÁ¸`ùÆ8Ÿ‹)á\ªÜº÷ƈ9÷¸UÞƒ¶d±N4*ÿÆk)¦*°™?¿L§IÉE”/«ýò 5-A<d3ÙâÜ1ÒAâãà½ß Ÿ—zØÌ/['• :MöçÖ£Ëâ‡P98-6j‹EÒ3ni'…‘wY›×ð6ø‡­Å\1úx;SëÕšDvórjÚi߉(ûרÁ’  ŽNƒÛf2ZÀŒF<ÀÅÉ’ ß¹)¿ÄTö¾<9×øé †b_€'ëŠs娢Œ‡÷ ´^‚…4%j¸ÑTÎRŒ[c½½Ý ~ôlóRúŸtYoÖfG1Îû¹ÈZÄÁŠ ¨íC¹£Ã3.É%ˆ¸,'w½‹ là~:œèÿuSn endstream endobj 503 0 obj << /Length1 1606 /Length2 7502 /Length3 0 /Length 8587 /Filter /FlateDecode >> stream xÚxT“[Ó."U¤·€ôÒ{ï½I !@ $˜„Ò;Ho‚ H¤IWª€4‘ª‚ô.HAÿ¨çœï?ß½kÝ»²Vòîgž™½gÏ3“¬p² *:" jHF$$,PÖ5¶ „…E…„…Eˆ99M`8ôoœ˜Ó ŠBéÿÅPFAÁ,¦Æ`‰ºH@ˉ@âR )aa€ˆ°°äßD$J  ö‚9t…ZHMÌ©ŒôðEÁœ]0Ø}þ~ð@x II ßîEw( #º`Œ Ô»# #!0(Æ÷_!xd\0) ÐÛÛ[ìŽB¢œåxÞ0Œ ÀІ¢¼ Ž€_)ôÀîпR"昸ÀÐ ÆH'Œ7`8 E ±.žG( €Ý`¬©Ð÷€"þuþ]$ú'Ü_Þ¿Á¿ÁÒÝŒð…!œN08 ¯¦#„ñÁÀÇ_D0Äúƒ½À08ØKø}t0@MÑÆføW~h æA ¡að_9…Á^³*ÂQéîE`ÐĿΧCA!Ø{÷þU\7Òáÿ÷Ê †ptú•†£§Ð{à ÕTù‹ƒ…ˆÿƒ9C11aIqq1úõ¸m`âëýmü csô÷@zœ°i@aNPì±?ì`PžÐ@ÿÿmø÷Š8 €Ô† þOt, uú³ÆÖóX cåÿzýódƒU˜#÷ýýw‰ªª¦*ÊÊü¥üQI éð‘JŠ @ 8@BB øï8`Ø_çø_¾š'$@òÏq±÷ô÷‘½þÒÏ_  øw,=$V¹PÏ„~_XL‚}ýËý·ËÿMå¿¢ü?…þß'Ró„ÃÛyþþ;Ø÷ý‹U®'ÛºHl/ þ›jýÓººPG˜§û[51`l7("œ±ŠÝ¾û‡¡Õ`>PGâòG5pÓ_ý‡! H4ìׄÁz ÿ— Ûd7ìAc¥ùÛÅöп÷UE@Ž¿šMDLF¡À¾ÄØZcWb¶+¡>¿Å !¬ ›c À ‰"þUX1ìáBú@xb‹€5þÆEE±8 …ôþSÆ¿aˆ%¼Àp([é¿qèükBQÿŽsW„!°mÃVö¶0Çfõo*t‡!<Ñÿbw@Ôù÷üEÃÁh—,â Üýo:$¢ÀŽ¿ÅôÏVØh¶Æ`Ôoì_—ñD¡°“ä·Ê±7û÷ú÷Ø‚B} âÙ)$D:ÜõexÛY"£·àê0ÁÂbGL’eo´†kú©¿‹ácõ÷”ìŸÓ eÌ”GŽO0ò}=ñ¹ÿ&7d>C#ƒ£Ú»¬´/X0p~øÆÊâˆdp•ÈŒY¦ÜK6d&··Æ·æN5ŸºŒè]±VtÕ^·’ܸJN(Ø21 ŠyÛ¸q–l‹˜AËûn¡¬³êSë>°NÛÑ+"T×;§Æ£sõ©ôݕ۽=ï”T·È¹g"$E—ŸësIúã“D›©ß»E k™Bá¸85¯Àåµçh ·­9â^ÅRÖ]¨{ìŸt3}¦j©ejõûANñŠCÕî}÷2ýôh¡/þÖWÙYûõáöºùF•PÝf‚hË» ¥‡‘¯( -'ßZ¨îë\‰,Û‰4ß|Þ\ŽÔH÷'Ñú¼§¿=°ÅÝÙæIЊ$=;¹0×ce6z¬švP²›Ýœ8{ô+m9 Ϊö“æ~%®‘ è‹ZžÃ·’ç£üQpRå3@IñÇ.¢p&/§Id¿Ó(]®îö.k]à)\ž Â7Íþõ¹mQÕšM…{ä ÅXi¸v…þÀûGlš7ã_N¼ü¾NwlDùÃ3a.Ýùî[V¿§Ï ß»Rª‰›¦Osý– Á¢«jep¼ôŽÃ{>øUŒ„Eï1)æŠe]Ï—¤ëØæÌæÇ~*· Þ3CÖe~ôjÉÛI‘ïªKc•NË­•ú$'Þ·\ZÙqŸ½ò¼1ý1í¸Ñîu/#åô™bü\Cbz² ;¼~š¡\òv·[4 NðuEÍ3[ÜŠºlïÙÇT%Žš~nŽœ5P®ßôÒûºÎ®.HR²Cú•0?ϦT H›ô:>?`½†g¥ÙlòÛB¬zY\"TÛ‰Ñü¶ß<*ßnWö»:»?wÅÝ¡H ]@ O']wzmä½ðS]ã¬ß{n«ð€æ•k,}wÉÏ…Uw=c¬Œ/^*ö/FUE×½]¤Ÿy¥¸’Öü¦ï¨Ѹ*°Æ1 ñAè2GÄðÕ?…BËKœJ:p¼Ýæ¢èXÎ4@¼De‰0ö„±î½Paæ™!õ•Ýfò°Î[·bü×ïõõtË9þtõ5yœÒÝ`æÞ¿–¹Hÿ ô³ò }òaòÞÌë–Ç×$ý®·®šD+Ï{0[’{³"¯—"™ùv3%ãûP£“šqH×jÓ]í*ׂ¡Ãgü š©—ßHº5sà*:{†Vx¢!§‚äQÛA;·Ì˜eûTp<#‹Ï—‰çS»“éõ­ù(ÃßF¹BŽãžÚ ?g¶±h¾gÈœ‰ë®±õ¾‡ì?GÜKìÕö6tþœà‘˲¥" šŠ~2Òµ]K¢cóðèíÏË3wÒÛpð© çí!öû¤Ör»†M0¦ †×'½X Ñ)¸b¾Ba‰xLï‡_ð~[c*4)ØÅ)9qiçºUV¾‹uýTYHĈö£­PÁ¼Èú ¦)q\nn¸Éé>A§õ²yÆ¢ˆ¡°K£é+ÜÓñLâNL¯uê"æ0•;ªBS<<ªÕø*ËŽkç³¼öPúŽ# ÄÍ"Ê÷xN’a|ÕŒ;RÇërým¥ø†çu˜p‡¨»%S¸À)®ÒüÌþÔ­ÂQ7xÇæSœ»k´ù¶B,´»p?š5rûÍZ¾Sdžã½øz2z³nÒ¤-²;;é£ÎÈ™ÖöÞÁ¦­ ¬ìʺd_ -óäÓ+‘.¶o·çM£.rp2™…o;›Æn=0 <½| û3þ1ö÷L—˜~€A7Áú±ä·R–G+«©|ÄÌüΊÁ5od\+EÄ(•B%rŽ'IRö2ª2g˜(‚„6jeŒŒÍCÂ…£ÜÅ–X\!v&o(‰ }'™AðSèÊ”»ÇÁW­(d½BMíRFÈO»ý-Å÷A¢¥K†Ô›J,fG9ö%U [h’\e‰ãlä•Oü½¯WÛ‘‹‰ž«}užè¬»ûD){c%gG±¬òÖbûƒ—£ûCä¬ ¯çÇï6ƲD%}½0p¢ûp£êP`ʸ7_üh¹í:ÓSTQ©uòç7^ö_HÚj¿'ÐuùœªsüÌg /Þ ,h¹ù.­©ŒöÓh‡Úpv¤¦öqr¨,Ýó7Nl´×Xù†Ú+„€ëÞ=1F÷Zxfgãû‘B^µ+tëqiºgæ}~&gÁöÖ=úmPaNCfþ“ý½™²ÆÆÙ“{Üh'“¯Ëøžåêy’‚Ó·ŠËÚ{…Júöp1zõÅ=Ñp‘—¯Ü5m¢xiuÏȃ ×~ZfÌ"B²'¹Êøl1÷'s_BpÈ—è.¹šdFz‹2O;XÆvknýÜš­àOƒ=n”)xèËí¾ƒ–É6Ý ‘ô`³ëÀ-5l›;^á.ÑËQ¯ß[¼ž%G†Û[6üÚÕ¦þâPÔBN«ÀO~Ve7XVï,âZ»‚”9Áÿ­ƒ%ûì=¾¸Ža·2_Ñ3äRìÎ'@ðaŒÆri¢Š÷Ró™MQ0I;cõ¶ãSÕêÁâî8ïYúÅlJ!j³ÅuL‡›‡ÍÝíjjü}ˆÓ«‚‹jŠVe|ó …ƒ¡Ãï¢ON2=Xá†ÕOS ײcð˨‡×Ÿ2™¤>èP¿‡o÷cR‘2¥±Meøðg¡»ö#.?i™ÉÎ<‚÷ƒek˜Ä»QšúíÜg߸ùh®X›\C`d'ãÝ€Dòå"îô¼yC£NGÍÕ»é‹K…g¾wx–«í9çü+)JÙÚ YrÂ\èŸæ#§u¥JþªITÜžêž5f|ÎY_›)ÁðÇÇKÙÛ _B§så·D!¼6¢ d[“L“8œ|ºLÝ Ù›ÅyÒʎϳ® <Úék@·]¯òÕ((:£!hfLú®:÷é’òýŒ^üç¼'?ríXSòÖNò4_ä7ÜÔÕm!n¨ '}ÐçÅÕX=xª¼°*ª‡Ó¨c…®ó61ðôO¦A·µŒÖœäÅñ >y^^`—Y«vlzfÀÞª=É_ÙöÞ²*A%/\É“~Bsdd|¬S/íìF(ù楦`R<ÜþÅñWiûIêõ5Å1" ©úO-5˜@© K­ýþ¯¼Ãúl-ÇÓ“ ?åP+û¡¡2{`Æ ïq@è;žÙ|Û`žSM¶5´«¿O)Šàdö¤@]{ÆÀ¥î¡^½õ+|ÍA»­è`e¢}¿ù÷N7ÖoÈLd¤Å_†\³¿‹ýVVMiq·]-~æ°4ºA@J8t¿,˜rIOÄÍ©|ˆôÔ’}D±U൸Õy¤ýÑÜ?Wwb^T~:1¡\÷Àæ\Êœ^ú6¥kREÖu‹%éëáJ¬)7bJ-¨… 5¥åóÙLŠ¢B7›Ð4;x'¦6+/ÂRdÇ-bܼJ«Œ ÖÅÈùÊVGò-‡8(ãu<´%mÇô2*¢j àÜg½%é—‡×îÎä0é„àn‡¤rI`0ä¸'žê~ÒÚÎwçÇX¤›§gtyµí_+?¬“ïÔ k¦¨±‹› ÕË­àñÒ6œ¦gœ¨—Ýù†Þœß óAjÙ,NW°½ó¾×ÿ,—ŒÙ £Ü/4[*¯ã¯¢,nªzþú’Y"¶ÎúøÅTyŸïúê`O*¡I~¼²Ø¥:ÊyÉ” ‡BìGbTfÞÓA:º~DO“‰RDÉ‘dßadø–1Žá¶Hw¤–äW•¨Ý×[! ÊvŒ¿çßksïÞüE³ïE^ëô#êbG/ú8KÜHËŒ“¬ÞHª£Íl¶lÕƒ'jòHºÑWrÉ¥ƒçì9oœS•bŸÄôÎ|}t$­dk˜¨_ž*zÞɧtS´.ÌÑŠÇÑ´ ÙG¶õ3ßNŸúÃþ1kÇëûÐ@AIjC`Oñªn48O~æMÿÀÖûš†k,;.+x6±%û7®6[·*í¶DdÆÏ†3úøñ)v0L]5Ö£¹µÑôZ?ÊõŠ8u“5Cç7I1% 3^a‘“÷šËãݺfjÔƒÂb?GøÝ4WEÌ%åœ2Ë›cg=G¢˜¨ÆÊŸ-®‘%Ýì¥õkG_“¦ˆóû¬©'tb]òqYÞ¢®ãAŠI¸Q/üH½ÃD¨‘rG Êg$à]öÙ-ÖÈ“QÓ¦\^‰š¹>¼ëRz³ÙJ|Œ.Ç]`~ÜÅXÐÜêV"ÞˆwSÍé lÙÊ'o½Õ'u`x…T Ç™¾Ø‚ÁJ¸w·ÝXŒªp,›ö¼hÌØ»íêø¹óƒ’µNª}<Òì²? ÓB9nêèÝIå¡íåØúçß¶ío •z¤dù¿Z(Ó§UÎоRÆz×y/‰×wÎ3Ö¹jë]ÈÍ^(7–]=Ó”Á5a¡’ Ü7vãå3)åéh˜Lãiåkwû¥‰#{jÅ3þõ7ú‘63ðjŸ/ÜâÞËâ/•):U´Yô éßD9åð8+xÛ8•˜euYo=ÜŽ©o²Ø’+ŠzUÝè_ÒÏñz_ÍÔ(rÍ‹„ØïbÕäÕüÅðìçÛwNr®YçøùަLràCAUÝ&Å2wìyz#ü“d¯ûšËuîG¯È]$W¯û*¬õþl6]¼ úý—B·†t?Ä?c_ÆWÉA¢뮌ү²]¡<êÃ^:‘ cþÇvÏ•­û8]økìYA§Üž_¨Ùä>Š~®O ín{f;ù"Žw2[пI?±¹FêB„¨¬«žÜçíÆ6k´a/Ñ‘·’óXòRÛ•ñUk^ût<ÇaÿÄOº¹6KÓwò¾êôõ7C[1¨27]’&….(×ë§¢éYðîÁŒñéZ'sÈ.ïÐèÿl~öu;Hƒ'q–*4E쌿g¶]juÀÍ@t»¶¹ô8ë˺C´áK†£ýcø­|×Þ@=ƒ¡=Å|ðÒCN!*m¿ûz· bÃ×/—OiT·–¡f"ï)eui‘T¼·C´ ýf_ФÞ3˜ÎŠŒ¿’EO¿Me'ï44oy¦u<ž|—Oßï{‹äÕ¡+$­Ò’ëráÓÌÌ(UâΖì¶Ä­4Kºìú“³·û[ŠbˆA͵Øt`®ü廨ìER0Z¨^øCy²— CûéJ#B]LØ'Êì I”iLÏuž[E´"¼ŠêøR©UÊ¢œ|=äWïùýNyÛ»Ü_s7ÊZGY_sKi¿·÷ö€ŒšPe$²}úh÷“äD#‹±æ,¶9ásldòáfÿŒ^š¹ÀîVdÚ—¤ù-‰ÁÊŽ…ä|üþ¦ŽY˜Ü§\+ý¢R–§á±©Ž-Žj“1{eÖÍ€}*-C/"%n†ûOðê†os¾ïZy)ºQ­ÅK¨êLû’ß¤ë ¦âõ×Ò3œ¶ÈÁb|Yg'U?û^RšBƒªßºУܑ' åôM_ô' L­„p2:§…«rêGe¼ÿ„Ê冗Yù”T)SˆÇQÕãfÖ9TÒ»ßxˆ£ïžË¤(Ï–Û‡#TÇìæÃygë+4>õ ¥âa£PVi›‡pë˪»cˆ[.(:±Ù¤³=z…Gnß°ll·"~äsEö5ËkãIQéÏwŽ øy,™ìÕñ@’Ø+ÝÐ7‚½X…[4*ä‘;܉t!Û‹›šÛòv—’\ 0s@¥ÔûÛšÙðÜzŠýt«?ÈAܵg‹ÄІ3+ú<ÒìÞSP¤-¯¿¦?'¥#†÷Âã®;àËñÁî8×?Éë¶ùŒ<€´-¦t=¬hx'¡oxCÛ•¹8ñÕ›>vîxY2»Ï¬–s€½³¶fn·j÷¡ºTÛ›Œ{^>n%ç÷«ãÎoÚ¦*g½½ Ú¡ãÌÞÉí$2 ¹Øõ‰ÒØÉ¼ur xÛéæ½—›ã 3Ââf'’Cý/í²R/)ðbü ³uÁ‚çG|ÁxôÓs3çMÑ®³/dÚK3g£èVæ´¼ÄJ2íY„¹_öj­²{‰«ìC^úSp1À„ÇG´5N?ž3Ü¡X$¦­’áMc)«œ×®L¿ÒØ7é²™§úœ=¦\„¿ë¸Ý›­s-®ºú£ZñGG`øyZσ•á3ÕçÒ¹cóÓý'—¼ü,z»9õ^ʈ‚ÈB‚Tbš‰‹ë)<¾K ábJ0õºÄGãŽlä¯ /ìfÄŸÿ8y;¡;|Òix³Ì äk|v¬Ùº<-=Î,bx¡³Éa…úÞ%`Ѥé}Ml•Ÿ¶Ê)æ;xWàÀßc<•çU&àæò¤F”$\?ó<óP¿4;ÖóÆòV°uI9<‰±šWé}'¤"@×\ÊüÌB¤é­mW0Ÿ+…ëü«á–©°¼}Ë•ëÊ»Ú+'ŸR£2ˆøçFrâ§ÎÂê=êkUƒ÷¯SÔm^¸¹¶ã@éxÃtn¥—l^oy£Ôïá»ÄUÁ/52¯×ö:;v^ªpŠÇLé¿ÆíñjRy¸¦…±)!×òÞ‰œL¬70WðPÒ«f;±q$8óX‘έTFÈ”á»Ú™fšÂoîŪ֨à·Þµ.S˜ ÜPr| gž¦÷z¼Œ_³Ä¥FOÑÎÍ.`gf¦á„‚‰ˆÑyŒ×ЪZÐ3¡ŽKxžÄ¨•‹r¥½˜ãlÿw£NLZv™õTôæ/µCÝ ]óCkä"̆zîÑñÂû®Á©Cš¾DsÞr´ŠõÓj¯/,ÒéT kÞ0IŒr¦—<-õ³Ê2cªŒ¤T«mÇ“{ '”q£E7fxÝyø…¦ ^ô]¦b–ÇÔ·˜G­ iÀ“/a\Íú½3{îï·'¾ðœ|^€âsXüRä]‹~ßȲk§_–ßKO€¥+‹RìR“Åi)U™K)7»7´~¢¤%.2z†æf^M¼Aû Ç›€¥Žâ2'ïð ˆr»•ögÜû˜ëØ…Š^ìÜàa°[ïˆÌ’Ý%{H–b—ÚïàMåy¡g0^Íu'–ø³ÒÐ|-Ü)Mý˜àòå÷{kã.UÙ%£'[iL7r•ÎRpr!^4—ØÖŒÄC¥0Dð$T^›ë!3 ŒÍÉ¡Ryd@2McUÊvHç$"˜ªŽŒû¡eúp™,¶[»2qü§ÿíÎiÈʵoÝD'‚œ©ü$."50]-1–fÖgolÃûE¸Õ7r FÀ8¾—fr kÛéG3./žž‚Þ ›+'UúÒº¹Ç»å´‹‹¹Ý¸X4ÏvAZ­V|ë>¾ÃšDZ% ¹W–ªÌ¼¦Ükñ6ulp^!Héí¿5ãÜe$Mª­ÓñACÖÙ–"go&B„œÝ=J7ù˳L dõeq×d¡?EÂ|ùÄý–-Pާµß8kXLФñ<˜§V›4­÷xù"ÝWÞdù݆€öè—¯/ºÅœc95~N~#JkE¬*LDê©:“¬Ù$pBÁÉ SL2C¦odþjüB‡ò$?z{o«>×A¾+c£÷‹(Ò¾á¿óÄÄÈÉÓ×v‡°ÞCþEPÞÿdjš endstream endobj 505 0 obj << /Length1 1434 /Length2 6398 /Length3 0 /Length 7391 /Filter /FlateDecode >> stream xÚt4œk×¶Þ%z/#A”0ƒ¨ÑKt¢‡Œ1e†1zï]è-Q“(ÑBDï!ˆÞ£ ß$9ç=ßyÿ­ÿ_³Ö3Ï}íkï{ïû¾®‡‹C×@@Þi SA"Ð A!I€¢–©8@HHDPHH˜„‹ËŽv‚ý“pÁPnp$BòQ0ƒ)AОÐpw€D 1I¸¤@XHèÞßD$J ñ€Û´HÌ„Kéâ‚ÛÙ£1Ûüý àò@÷î‰ßýw†¡àP AÛÜ1;B!N$C{ÿ«´=í" zzz BœÝ‘(;YÞ»O8Ú sƒ¡<`6€_´!ΰ?“ ’p íánp¤-Ú‚‚0€ C¸a2Ü60³9À@] ãCü!kþ!Üüu6 è?åþÊþUŽø B‘Î.„7a°…;Á:*š‚h/ô]aó‹qrCbò!¸ÄCøÝ9 "¯€`ük<7( î‚vtƒ;ýø« 攕6ŠHggíFò«?%8 Å»7ðÏÍ:"žß¿¶p„í¯!lÜ]€pWw˜ºÒ_ DòfCÀB÷ÄÄD%0WÌ jüUÞÐÛö;úc&ð÷uAºl1CÀüá¶0̉¯Ä@£Üaþ¾ÿ;ðï °CÑk˜AòOu ³ý³Æ\> î0ÂhúõûÏÛ#Œ¼l'ïè¿ïh¨£ª­¡ÎÿgâÿÄ^_ p €„1q a€ÿ¿ËèBàµ!ôO®: ¸÷§[Ì1ýݱÇ_àù˼€×ÒFbT ðü#r !°óýKýwÊÿMῪü¿Dþß ©¸;9ýóüŽÿaˆ3ÜÉû/F´îhŒ´ þ›j ûcZ-˜ ÜÝù¿£êhÆò;Œ˜@¢‚B¢p¸› Ü f£ GCíÿHæþð—Õœà˜.Ò þëÛ‚Éú¯Æ_PGÌ÷à £Ëß!Æ>ÿÞWEÚüò™0X A¡ Þ$B9 ƒÁ_Æ60¯ßJH4&€™Ñ`‹D‘üºV↙îæˆ¹û_Á߸è=ŽÀx޹¿A!ÐŽpwû‡%º à˜Ãû…ü«1¨; …1èoý`ºþ{ýûkƒyÁ $Ó“H¨T˜CuXÓJyfOµa‚…¥–èDÓî(0š{깯½&a¦ê¸«Âc›r†Á4Ýϯ"Æ&ý˜ùö~ŒxY´gϧªå¡±”»W^ôŸ}k·ƒ±Ù ™ìFÅÓ¢W(÷“ôXo>6Ç3¿óÔxòg¸x‡ÈFÅzáe‹Û†Ù½m€3 ø;G*3:^>·e'Ö”ƒs =`jA‘@…2Ow7T8z‰ O8UhŠc<ó^1OȘ›ëËîéN9ÊÐùF¬<‚š‘ÆGƒ#w0¹—‘6)[£Þ ‹[ü]ñUJâ-Æ"çîy\çê  gB£3 „ÅaP…ŒÒ¹©1ZÛØ46$ÌÝ'ÍñÓÇ›à9—Ìð&”aŠÒ'/çny— $µ¬·F«Ö®-L¥xŒmCL9sb zw;xóæMb]ÔnhëœÇ,n´g$º4ÊÀG±ëU€•ÆÌf f5«ÉüôÄæ`q…Ÿì¿­[(2>¡¢bP¼åth²>•©z¸½<©à |FȲmœ…ÿæ–ò†ù’–Õ¹šÖQÔ`§Ø+~(õ’õŒKî‚™uòÊÖÀüýAKäÑÕÚ­‘çdqª•‹B_,®,_¾}8RafÊ×Ì@ #¤„™¡ïe£Ä×w¬[ôãpª|ç×^)cW“Ðt ÖÞ£Ç ¤˜Æz¾;bŽR“fº]·• 4ÿ˜!ú¹±ÄÁ§ÙÇuqŒí.:AJQÝ`ÈLÏ×7^KWÄØÖéÚjO¨èŸÒ ìSAJä(ùŠb)æ±~N¾„ãÔN¦Ü½ºóµÒ=ý(ëZ®„g»À›Š:é]ÍÂÇ3 §ËNxŽ[÷Ôh»â’ûíÇžáJ³A¶ž‚˜E¦f£¢“›¼jý5?N\!)Ìérm¸RSÄì ‰ÅïpªóË9$¢3(;êïðø d…ÐL‘÷qÄÇ/skË›d+Ðø¥ƒ&2“9Ch¾t(Q}åaïòAmËU¾ýÝ…òðŒQ冷›Öùg žK?>XCƒ„IäÑ‡à‚µUWçÛ:’sÉ9‘]г#u3Çœ¢jMºDFæ<Œ›ñÞy°-,Us"~¶ªQØÊËnaùRó“ß¼±¸t§9ôb¡ëŽóYÃDH÷'â Vc’5H@õÝÖW³¶lò:_’Ë{1ã û|t"kÿ"öüK˜—¿ö—ªÞÜ홡T¨‡ù†eÄa¸àÑ-œ³+(žôçüíŒë¬É}©L%§ÈyóI‰_<•hš×âÉB3Ùõ Ök’’0ÊW<ÅñéÏ ÷¡»úC³1ûÏ™fŒ¶>>Gr1˜Ii¦Ï9£LÏê4À×£!ŠÖgûxqëÃDG{‚ß@¶‡­§ïÃÈs’5h(?zÞ}÷6Xî’Â_é˜ÁHÖg&c”–šR¼<üzE¼^9Pæëgþë<ô-éŒé-Ï¿µxAð´ ½F ,Ú5#ºÉO ˆ÷­œœNskŠY3Ž_üp*ËÔ'}-®<ÈÐåÉ#ïÝzøÞ?±áß q"×À®×ñR¤x¹”Íyñ£B·¼¼FY@ÕóÊþø¸7þAóÙôß?+ÝŒîßÍû¾>e¾^ î}½=K¾ÕÕ:´Ã1irOLùŽô[Ê×g"nÞ½ŠaO:Q‘‘Úݲ¥á÷,¥‹¹5#xC£5áiF _5R×\ï†&<,7ë ›3ÏÒøÔ¬÷€‘8.—O3MâÍrxÍÇÆûBñ•©}´W3³v„~}•*U —Ö÷S¨Ÿ¤ §çŒg5NÅ÷D”ߎabËéßò²î~j|Ÿ¸´?ôÍøH׳ 9õ¸0'V…;ræôQU ñeï(>[ºÀÓUÞu»™ÃM${{=SkÈD¬\yˆƒ2IíL´Å­åÿ!ÈâÚçyŸÌT¥L×ì¥Á‚zܘ|)^£í>o¤¯÷ݱÕêL†/7¶êî¥W4&³d}|ùj|óyHúæÖÇ„ Ã9:êr·<¼{öHW–œ§FÛË8ÅT/gâU =. ̵í6ë$‡ðÕœh)–AÆÚ­2j/­£bÕAæ‚ãvþ¨©¦ÏÞÙ0 Æ ¡²´Œfìõ|>´àH‰Ÿ¬ïb™Œ0îྵVî ‚‰"ϽNÜ9ÍãÅÝ)‡M> “y”æÁÉ"Â…3£,:i+[eÄLB‡è—Uv¹glØ7³jÊT8Fï/ì3úû¿ŒqU¦»9ÌœRæm]1^䀟û¸µ<øÞ£|ëKÕÈÒD—Íë}?úfè2}˜5Õ-àoĹ)R¯é]8cWüé£IÁnóGZѹÉQ”êºyìÌþÊ·ãà 2&léNŠŠH¥8=ÚÂ*¢²è: ´ø*/&i¨8aïF^qf 0„'pßHx¦I›,«t¬ùÆ~Ð=S[<O2€«÷‰Ÿè• ‘>ðÓ‚É0•Þ?ždXW@FÈ(7±»±ƒ¿p)Vg¶v~¸qHaø UûÏ•LX´Q“;Ù¿0l4¸äÄõe­©âc³Ñ[n›M¤Þ]­-ñNt?mJþúð{Ñ„¢ŠRÑZäF¨¶_”¶q®æä[¬›@Mç¤g«ì†Îã[wº£n¹œÉ䑯S¯¬6xûp<ÿø›L¶“eéøÝÑ&?l!°·ÿ*ž °Ÿ–ÁRQ,Ý:¥ºa‰}ßi¨rŠéòžñ yëb)+Gõ£˜“ô*àOxƒãW׎‡i׫E£/vßµv¹¾ë£Šz«ú2$CµL/-ßp²=¥^ªí<`\½’oÊ€Ò¿Å*ÿ¢âjý9]™ÅOÄ\£0Œ’ƒû¨o“*j».šëƒ\©ñ2è[ìáà÷,ß(Îõø£›å³±Ùàà(¹ÁÉM& Ó4„|!®Ñ~°77amÜžšè='‹O~ì9ÐGÒ±Aà;C9˜¬­1@}UØœ.ÖÌrKîØ”´ªÄ~$ö9?S†¥ ’C÷w|:±Ò$ˆ¾)šƒÍGÁŪ)¯·÷UˆY×o65¡‘ùuÝ#u:“¥ÙÒO±dóÙ|ÄϺ­ðô¢ L¹pjµÁýË‘b;­vZŠmSpË"QæŒ.j /Ûü#CcÄFnoJƒº ÛNË7éô€ÝÞ0—Љ(þ³/‰àx!³úÅcñE7G‚bZl_P5x2j&™Ì*É«§6Ïçˆø½ý×C–—]Údå¹O©—ÆÈ;'ÓçØÊ4®Yª¶HÉ65íXµ‡u.µ¾Z×4å0/Û± òK'ûwÉ­8øI-gëø°³´ÕZ>³ïîYn‹Í(JùÜÈ)–.£`'gE+ñýÜ÷øÄÝþ³׸hÒ²_P+!›ÂÜzä1Á’<¼ÝáÝG.= óîó˜ëºaq²º»mCßqpœKÀG´*ͬçDõ‘°N©ñcѦ-C² ãÛ·Z' IÊ:…ØeA” /kH#çãtgñŸ–†Äªa[Kݳ~:8yóþ#õî¸C^ëêvçœ7 ° ì;–Ò ª“˱®JˆQ³©µš™º •£¯µ>á±5=7±º¤¨V«.ÒqÉ,·½€¼$PØæêù|ïåEÁ£¯fó´Ÿg¤—Ïs)ñ*ƒÄŠ2ê:Zã| ãš-îö%àe%v«M[vmP{V~‚ûB*Ôá™ÇC¿ïÞé΂ïì¦@¤#¿šÅ>~åÂ¥ñpñȗΤª0ݾwœl…kþÜüÁ=&QüqVÇ|…oç1–õHýñï»óCæÀ€*Å@á9²ê£MÜ].Gb­ºÐEß„:—ÐÏX ,aeŸ7À÷ažõq,rg¬M§YÓ:~瘟Vƒ[RÛz#½Ufw¾‚^“h§˜ì‹MB¶ì=Ÿ2jÕ-×wXÒ²æd Xö~;r†á¨=oKÇÙĆ„¾ïôðÖ(‡Ùç>ÇÎ0Y:fÂçêýÔëúò|º÷ë9Ü[£êvyf;'=ðÁž¼½¼äô¹° OoM¬2þY„*Ë¾Š¬‘þA;¨LFÜ-©)ãN·§D¼®¾p"Ô’RüsK‘½'{Õg¦·u³tR|ô(0n¦SÈcEŸÉüqC-[ÜÏÓ™nÞxþFI¿ó'¯,Á©h¢jf·ïQ\PI€;‰ŸAî‹hÓ>"øã­i”J§¯ƒª²¥±Zìkñ`žB;ÿD­ñé :#ê7|?Îl\iFªÌ¿ÆtZŽ’GMEQ¬6a§½éé»’Ègï&WÁ+¥M_"€–3̇ëX”Â^mó÷uì«{Ež^yšÝÇ£³¿À‰› a¢!j¸ašõú· K(«©ïwWT„Có›1Å™Û(îV¦å%áï5‘ÛêeÌMJZÙÇ@F-O w$Øó'pŸÄí‹–ôøÄü‘+ZS'4.^ŠÄBô5£BFR‚õ”[kƒžh ‹žB„¾‰o‰ý)xz³˜‹ÎÇ*+œá¢]öesäOïdMJøW˜ú[¦9•k/½“”»up-í—‡WÐç™4GƒÌvÆ5+Ô’¥Ù®(›ó¯¿>ì*×A±n® ÄüØÏG“äB{¸žãêˉëêQ…6­‰^f¼ÕÇ%Ö: )lžf›ðÁ g­™°Äã‘k_~«Í¨§öŒØÿù&aøÖ`ýdaÕ?‡èhŠâeÉeÀzÒÉ<¿Åúmð-êý²>€0#mòÛ#µàZ¾é³+ kD@²àµuL°˜É$@C d7Æ3Í08dYôvàáFÆFlj>”QÏÉ?™;•‚…ÍNöXüÀªR>$slãàÃ{Pl~Ë%¢y?ÝJ­]X¨ÛmVýÀñ§¥'îw(>pnIa¯žãülšvšÌ&™ÊtT¼'¦ÕQþ¡6¼ýTáÃ(ØÑqûøDñ<ïªCËÑVï#Eƒµ¿&·la¾Ü~°W¨%vSM°u%$¡ÿ3îX†ÐŽ‘Žšdl½eœƒÆ‹ö²VqÇ1ϤÔ£m%™É³vrìÓõÁ×~Ý#a]õýSa ]~g‡‘ï/º±‹žQ<%ï<.~“ûªñe£Ÿ>g›Q<>Ä)Ñì…Öø·¢™qyÑvçºÙ.•Ù¹Z#¯ê·U¦vÙîDÎò7¦$µÄÖRZ{ù=GJC½o {NÙÞÆ+©‰à]"ó7D¤Wärjš¬ôêb·˜>ÅÍ•`r~ôA ŽËK‹4ŽC–d5˜:åg¹›ûÝÂs°hù"]ž|‘%m^•±sŸÜóˆ·K¢3ø™Ýú…2ˆx¦•‡wW×Nf³ÝwáÇØÛ¼†Grʆue<'W‡Ó&QTwjcž·./ ¤½,¸ÕIÜ'Ÿ"dÀi°±$°ò°°©“‹d;αÚv^ jäfFCC¹…ï6IìN©¿Ôã¹6ÍCÍŠN|ÏøµX.5 nµùÂXóÆ/&¬œô“}}ø¬ïLCʼnÆoÕŸkv?õª2RúYÆ“ñØeŸ”…ÿàÛ®ªe&mpÙ>¶Q•ŠjËJNsJëÎUIJ _àƒÙ‹®‚H‹^ÇUÁÊÝò%V§B“èŠêê‰ù#Šáô½ =îȲXŽH~ŸIº<û¤ùЕù€E?¸ÁJ´nº[œÔ·à)û.ª9:AúPÿ’)…þ°¡ÎùŒë•g=ð™Ë`¶À΀O¡ ÒZâoƒ¦#úœžuìNŒ*Џ­b¹Iùçú7w‰ ñz#ž¾–m¤Æ-[ é6£xYRrÓé{öÇÂȺŽ<þ7$=V®qÜ”õ:vYÃÝíc[º‘µÄW,ÌDdyl FeÙí÷’énœ? ‚‹3½Ú³IÑd¡V»RÌf¥½kk·"S¨dS®ì‡{Ž6øî~Ú×Ôè:¬·ø®>f %mUR<ö´¢¶§?~¬t©Õ³å_÷óÂ:o_¼{Hú÷q97’á€gÈQ¤Y–2áÔ‡ŸÎ¶ócL&:ä^3ÉpOä~ü¿UþyC…Ø­ýõƒ©PrÉCù…wNc¾ënN·¨GA§â€•Çq&«$Øê˜Õu¢^„v™Š^VÐ'Fì,’g{©ñ|ð–.™­zœÐ/*;|Õ/h¹d´Ê™q"ÚÌK†_<¯W n}ì#(e=+¦ÔC“ž*¯ p,DÑʲS´êÂs5†ä¶Ÿ'¿Ej’ž*>½=fŸIâ©ðèfw©Mjô³ßZ߬>Ã5ð =äœpËnËvŽœnɆ3,êCXÀàhÙÚ#§êžÖþ£r‰×¢™X´4WÒ#8Ûª%c]÷}ˆZ›FËN,ƒÐÜûË!ÈJ³£ÚÚÚ/ˆ[Þ¨­öM»ØôRAG™õGÎ~Þ*áܲ"½f‰Ù6}¦Øµýo}J6Š&ãY$µ*Ý_Õ|†_Ñî- ¬FžØFUqéjèQ–͆²<}ÂÑk6‹}FÎ$ÄÔíóEÞŠéJìù ëf?‰1¥üí6U«–²…PÉΦ$ƒã ¢2}ž­«C¼Ý­¸=*δÿ¡4‰þ9 ªx„À»ÞTÖV0õ —"ùð•~ïrxÍ{v‡WÄþ¯iù)u+” ‚ŠkJ&~˜¼c|^6h'ñ@•ÆjO¨†#xyìSlú“Oô‘WëN×ë ìöâíiçÃf±üSjÓáEÃpú†»ÇkY'McÏ"]mל5Õùxwácâ«g{×.Rs‰>]dê5öE…2;êm5¤¬$sßôf·e¯›àÓó×1ÓaåTpÅSªtMꃎ}ÊHˆÆ•ú$qè—íªc|+MüEB®©dÏ÷Äöç6ÈH{¤èÙŸ8‘•|î¾~ZÌ–c^ÒØÁ½™'hi õ§et+)-b]´œÌV•½–;­ºÚ4ÖZ91“Ž¥ŽãÅùòm#z¼hÇ}ö^z´¥ÒW¬ç‹öyÏ–¢õ€‹G×^÷ZEŸlàLçö{¸>°ZÎi;“X,Ÿu|ç²T $°Ý…[üÊv&—›õ¤™‡5b2ö¡åÊÕ\£UD’šP aíÔØny:xýAºÕÑ zIýŽW|Z±dh"”&Ý&=R+Á~ã¡%öé>1QÀtXÆ¡ÓÉMÅ÷Ùš*¥ŠÇ `âWaþü÷ÿ éu[]°[’"zÎðDË–]ìPÂz‡ËmŸÜ»;´ÿfŠít*=y»q»N\k£Mþ5„Õu®¿´,î!! ÁRº8žòÝÍ`ß4Pþ²N¿ÄɵËFCŠLzÚKv™£GÄÀrðÝ{ѧŸ$Ú®ø¸ne¸¾—á9Üñ"ÁrzËuü°]wÿ¬-†(HÏ<†0ßõ}}øT–lTäx/ñÿ½3Nþ endstream endobj 507 0 obj << /Length1 1953 /Length2 15141 /Length3 0 /Length 16338 /Filter /FlateDecode >> stream xÚ÷PœÛ²Ç #ÁÝ‚Ãàœàîîî28ƒ»KÐ A‚»CpîîîÜÝ_ö9çž½ïý¾ª÷­©bž_¯î^ÿ^O÷š‚‚DQå‹©1PÜäü…™‰ "§*ÅÌ`bbe`bb§ Pµt¶þžBèèdiâþ‡‡ˆ#ÐÈùÃ&jäüá(gH»Ø˜YÌ_¹™9¸™˜,LL\ÿãhçÈ 5rµ4È1¤í@@'x ;{GKs ç}þç@mB`æââ ÿW8@ÈèhibÈ9[m?v41²¨Ø™X=þW j^ gg{nFF777#[';Gs~z€›¥³@èttšþ* od üOi ðU K§/¨Ø™9»9K Èé#Äd t|ìP‘’(ØAÿv–ý·=à?‡`f`þoºÿDÿ•Èô¯`#;[{#‡%È`fi(ˆË28»;ÓŒ@¦9Ù8Ù}ĹYÚ8üKº@\H `ôQáês2q´´wvbp²´ù«FÆ¿Ò|³ÈTÄÎÖrv‚ÿKŸ¨¥#ÐäãÜ=ÿór­Avn ¯ÿ!3K©Ù_e˜ºØ3ª,\€R¢ÿñù0Áÿm3:Ø™˜˜8Y8@ÐÝÄ‚ñ¯ T=ìÿZdþËüQƒ—½=Àì£  ¥ðã ÞËÉÈpvtúxýsá<33ÀÔÒÄ` 4·Áÿýà 4û7¼GKw€ÓGû1˜þúü÷Iï£ÃLí@6»ÿë3Ê(+‹«©Ñý§äÿ. Û¹¼¾°²¾°°3˜™YØ>ÿ;¢‘åtü#V dfàú·ÜsúÉ®ÿéêÿ  àç’·ûè\ €úïF×ebg2ùøÃüÿ¹Ýÿòÿ¯ËÿÊòÿÚèÿW‘¸‹Í¿Ö©ÿíðÿ³ndkiãñÎuqþ˜9»Yý_W à¿GWhjébûW¥œ>¦AdþÑÑ_˜Ù˜Øþm·t·tš*Z:›Xü»kþmWûkÞl,A@E;'Ë¿n˜(&¦ÿ³ö1d&Ö·ˆÓGkþk ø1Cÿ{_1‰é_ÃÆÂþ`äèhäÿñ®?ˆàÅü1•¦@÷53€‘dçüø¨Ñ`fçÿ׋ýÊ`úËôoú `þ›8Œ"'€Qô¿ÄÁ`ÿ›˜Œ€QúoúÈ)û7}ä”û›¸Œ ÿ%N£òßÄ `Tù›>rªþ—¸>²ýMÊŒÿ¦œ&ÿ%¶¸Éöoï¿N™Ñôø¡øüaö7þE–ÿXýeþüÈnñü8Ì:¨´þ~È´ù~è´ý?&—ôüPe÷üÐaÿwQGjÿ1Bvÿ(ƒùCŠã?ðCŠÓ?ð#Âùø¡Ìåø¡Ìõø¡ÌíGð¡Ìýø¡Ìãø¡Ìó_ø¿úÒÄÅÑñã’þ×òÑ´ÿÃÿúEÝ&ðKóv&<ÁV5Á­UBøn_öÆYØú¯"n`5vÅp]÷•Ex¯Yó"…:gÿD>n¢³¿7Zk~f²ÖßðN‰äþ¼T× ef¼Cï=‰Î÷tì$ëÂòG¦£CÛdjþù¼IyÐíFp†›Þáro.ýP‚—²©â¾Ü↪á„b<*‡““"¸M(½­B¸Zhf¶]ŠÜéJpü4žPüð1¥o„…}»¹”Ür+ÿèÉ^æ&ýˆ?ù û+žŒá$`†b·[ ç9–:ð¦58€ÚØiTE€Œ'CjwòJòj7JJÙ¼Ir`²/ Rd3–ôbN(Ëݘj[Ÿ‡¶C´øwÄR¢j'+;UiwY™Ÿ8Bï"œøÔIp CšŒ·lõÐTœ¾ªSbÆLJýHFƒ¢Êµ×ó” ÜHdc´%½p᎟rXfŒÕ‚ÁZà„sµZ~kŠ$ JÄå3Ñ1Y z>÷׉³Q .ˬ¤ÑgÆV*ÆæAô8Æc°ê3ÜÓ§l»yæëþ^‘H‰°ÞyøîðÌj#DWYR{#H•§Ÿ_Š‹prÍ÷B}œ¯Z¶½p)K&µfn3 Ã¥àƒ¼WrЦ,Íf^›wFBõÞƒky!Âp<_ªO,ßÓ~Úd\h$½#T«5ûPæ3‘ã¥oBÿMðW¢WXíÈ×nßó i•ŽšÒÞZ×[ò„ÚËZRòË…ïð¹©ÄYêKJ?ŽÁÖ`YÀ®Ê~±~-uÉ/7ôA¯qñÍ«iÛ&*ßÉûÉuÛ±×SM6&ÇW cÆ`Œ~53X¶ƒçׂ$A4ƒØx\r²3K*Cœ‡¾ü”Uš0’JÑ•¯¥m?¸PÊ^9¥…Ääé•`ÃFÅDÇeÒ¦&?œÓtÅ£Õøîu¬øém Tg¡ù¦ÆƒWÀÐgDÌ¡90Íáå #—â¹/ÙСº…’xkU˜(àÝûL¸• ­?'kQ^Qø,åüÙ•8³ƒIÙ¾O/¤Øð€¢|{q"ïÁ ðç’ÛÚ™Ü?1CPr'5áý¿¼á+oQAÁtn¸*Z¾·Iípv¹ BäùÁxy§YŸ]œ.ö ÑMÛ´Ê’õ¼[=2å)95û²7C‚òýY´á¢„N–ûÄ"—eÃŽ,-ßBà Eük ¬g\ž4«¸ű`¬uvô4ñæõ´)£?D™^¦ùuo@ ËÈÝ@!¯îs8ÅFÊþ±$Ò)‹³Þ÷úhuô ²ìD2üÕ‰‰ˆgÄO²"àD泿••_YsW|äL| »¯~þÈ H‘(©Ôe´˜9êÍ»×r‘gXb[ùü˜ì#ÌÚíE@è¸3-™TßÒ«h(ÉÓ*æ¿ -úÇ6ž1baÈmޝdžš¿oã,¿ùs‹´™¬\”ö’| ´5}ÛÃC7PÌ¥–/†êåA›¡$ävÃx9Uh™G?Ÿô;5¬áëWvîhTG2–Æ[0ðophÑt×z§í}Ô|ß8^ìízSçÓCTCÆæôß݊¬\=°…’Bù³ïó^îhæ±ZÜ‘z£{Xl¶Ë ‰Ü/-¢ñˆcÐçÅ€:ÊzŸÕ7—·Qç¾< –DX}¢ÎÇ|"ž²"gˆ}ü!²‚=Ä?ý`긋֩•ãÙÍš0&ЧOJLý¼VêW"PZ¹òäTâ$Œã\ÁFÄN#Cðð0ûâ`R[¤^Üxì³>Ы¸2"Eõ¦,f±ú{ò™ˆ ÅDb–çcÙÒñÝÆA’*?Ž?‚åéùglͲ„M|0K 2Ÿ,þ Q§$Õ©“Ø.ì÷³¨óÕó¡Ñ® ¡ÿ¸_·Ïj£Ü’žÙi ´æ’ÙUÞ—'ñqïE@Aˆù 'D©?¥Š‘å ‚u˜º×RrĨŸ4cª.Œ«c4„–/íYÛ$™Àã’±‹å_=©Ò¸b÷Qˆʜ†s¸ô[·*Ð%K+ÁQ¢$±ÙÀU=çØcn’qPgToîYZ±a‡;‘L.¦Ç‰û+Ky¿AìFñ¦îRâ®lq¬ÍSOKj1§Ãs¥öàì¸7©ˆX•›ðŸô¾¶‚à ¦ VJûk×olJÜ.2Énm7t ‘Y_׎»yg;°ÌÚ@î$£Zz$@b]\-γ6Y€Ó^M×ÅÄDåg_lÓ‘NŒ ÖÝö…| ahQêKÄ»|ü~‡S¶áþàKž9òì/apèxùˆÈÓ×ô#ä,Œ¤§`(˜×f~EY_sˆ)h”)†×8—¬J²ƒ¾ÂÄÛžc¥Õ;ÀŽˆ)}!Fsú)Ó8û.P~U¯û+O™{ëÉ”ŸDke<ú˜«E.L©z<‘Q}δv«v­›îMx«òQ—2HêòCè¶¶¹ÐC¯UÕs€†ug€’_…¦f]¬Á2/A¹ål]Hg¡ÎK^b j^${¼ØàòúéÆÄ“Kà\¿nÆã¥ššçWKõêéÑÍè—Å_Žrì>=ÔÛ€±#Çò"J¥Ä&ö´)!9½L³9Í? îzD‘–Í).@jüO繫ÃM¯ÔSª?pƒRÆ0‘Œ˜e?1Ô¹5ŒZ…|[—,/{;¼'‰úbh·‡ Sa¶F¯_#&â÷Š L“rà ²Ç7G˜aOérâ*ýS‡Lâ3)¡åØH>Ÿópžu-»ÛÙ÷€ÙÆoÁ}lEh —.ºgBÊiMÀðpfsZÙâmã†ö±¤–±ìa5•‡*…šEQn t?S=ûo£Û+ò²è¿É—¸õ=ÊûËŒS Ç7¬yvpàΈhQ1íY,|b¬†u9 ¹ 0— ñ¡—)—=Dü»Äßµœ?†–Ä€ þbß@Ç1ê»y>Ñá8DÃ#ÍÓœ:¶)ÍR4í¡ÇÀü»FÌýNÅ´¿¦[|„.׿ÌM`Þ¹Ñß Ngxä˜À:ÿ¹¦„ÓÙYSßER–8jõ8p¤¸ Ox– |ïSô¨¢-jF¯E8Ðf÷­C§Ü˜k¸iýQ^¹Ä1¸–‚Ioó|€a§5úƳW57EÄ+‚^Ëå” á)|{3úXïâo´ý@54©쾉´]³Ç­§ýÏ`T%)â–n”,ÃÆ¸¢¼š1(·“’ã÷®³3WüšIl!W8ø}³”[¤Îz®íj¬WC9Íݱ@ëMí8c"–G¿‹f[I«pf‡×–2E–ÏÞkFœ'C¾a#£Ö5Š[wlv…Çû¡¨'Û||{hXQp×)®i³?B¯£P¯Ë†6VÆ8ÔØuš fº¦ho€Ð|¶Ã[OÃÜï¯M̳Q¨ÆH¢…\¯Ø>#↡óåL÷&û» \åÕ N©»0û:KQOv`|­Š©ÃÕ;ðÆ2âI)CZýkôV~ ¿ó ;%ËååqîçÖFm ò·9%nʼnÖÑNݳÎq·Â»ÆkWA«&¾ñ÷MÙDÁ‚ûR·ùé&è`ñUSMØæÃgn‘ÎÇ)~É›ôdû3æž\ùÉÐa¥¥±8¬—™™¡)F£vB}"…`Ê¢,Ø1F„P¹Eí#ÀþÒ§ÕÀÈM0ª).H ·k¸|ŽØ"DNL@±9cÁ¥©£bj'©1¯Cò§2ëp¨uk w^H—ÉÕž{v¾¿¥„š‚Ȧç%{¥ÙÖJ¦÷L~ìóŒœìˆ‚‚ùSXIÁL’˜6ÝPU¢Ajï2ñH°½1Rvd.ÞØq|y©Â ¥FÐÏhDrnØzWÖg* ‰“qF?÷šë@1®}&Û(º?5{ ÙÜàóŽŒ+QZ€‡Üá~¹Œ§î€Ó‰èñ-–@‹rr%²òKŽ·.SD0'Øa¼À©åƒžG¹¾‹5ÐS#ÊnèJô<"ŽGT=§'W/™âB³;[ÑÞ¨¿‰yG%|÷Ã`ßnßh,ržQr­8]J™–°6¿Û:óÊÏ€ó.Rþýñ* ŽŠp€Ý¯‡é*"dq@ÞBÍžãÁÅÏy,ÄÉiw„Â<ò\U:ž£2¬0ˆ(ä* ™”½Ñ2±ÓüCÝÚ‰ÏÆÕx}"‚sÈ»f°G·Í€Âëbº¸–Ÿ’Ò“@ +ý¶ YãI½MåÉRM(ê\=n l&Ž|PÔ'±õVâöå Èg&ëÒ ;¥Ù´CÌÐ3¼k,m<\•rCßÅ?ã8÷7C“i­¥sjÉõÌfqºìƒ*~k8b£ë:ôkoßãæùÙ?©2Î/5Qj¾GϬ嬨FÓ ª}ãq+Cx»/™ÅÍ:«*õl)ÚüÎîéü!g{þ³Þ²ÿ­M:la±ZïØÍÒ¶ë Gv¤(çnˤP®q*Ûš?NRªYäD`PYmð|¤uƘ¹*yA!9k¯çg€ŽHúm |ž=–ŽKlrEµf´iðHÝE´B³NHíFÅÌÒÕ4˜ù#_(ï…àf-‹,[¿~dû\B?Šs“õ[çEYòö]!¯G£û±éÞ‹jchµû«“#@ÞªéÐt+újÍzÁ;tE3s¡5eì¨Ðµø³O@|g“$m‘^ù­Lßwóé æ¬õ¨¤$Ëq|ޱÔr% °_ËÑ›,@ù7ßþ Ùsòì'DqxÒÄæüÍ­K@S,p«ÊÕî$¥Ç†v&{¼?êXÙî œˆó1ªòE Õò‘¥®{ùr£æÛLøW_q£8Õ}’\h¡.é¡O•Ë»ô {üèÖ¼œSÜRïýÝþm¬[©Ïš¨3j¾må·]PÊçTƒ†W«b¿\$ûs%Ïeû'Lß¡–ªmqvÀ»ßgWŽ×~¿ éí´íºq Á$|X=É{&–DV§Š©>­Ë{¾ã¤è @i…™“ó¯:  ?óTi·­>û0HFÓˆ…ì 6ÒÅÙºáeÂÚ‡QS·3Zp°°ÌßÒ¿‚ñ@/¾ºöÐ3“4xÕç‘GöT‹ƒb\##¥!š{wn‚>g(ñ/é$™H³t wÏLÀ%ôò;Bô¹YC1öŽœlÇ)G@mlIá©ÞIäÀ°îŠOÈßÍx—9Va¾jKÞ•6âª÷\ÓètÊI˜0­‚‚Õ”|BO×5]Ɉ³j÷£au_¥½RÙÀÚ±üdŠž*m•1uפØí-±|Ùù'͵VØwé𦺹^·›㙆êj?Ys "¿„W!~»«¢Gvø)4Ô¿ !zÞ|È&/\ê{Õ¹ãáŒ2é©gÿ«y°(´ ú'ƒ@÷hÜTå,ãªÍªŽÍeú>&z¸²oŒ†›0IÞMÜý3H¯Ÿ“NŠÝMKOÒcµ¦Gt ™ø&hó»<.N×*zóÛUZÈÄítï-Ÿ—vƉÚ×;:Yб5¾×ª@&eK­ëPš‹O™ƒSU`g1½Òv•x¥€r»„­Q:TÇêå&Þ^¦€¢Ç˱qû¤™¶llŒšÒ}¾ JˆÚê—¯À•Ã¥æßtRŸkû/H4ÌpÝúÏm…äG[ýe·nvš!_µç´¦dW. óï=¤)ÅÓt*‚C²€‘ój´ZP‰À)U}šÄEN?#~¯ý,Òž áîüÃ8Ï·N4Çý9'A…•Á[=¯Õ·j>\&pÿ>Ão,X#õ+Ná›âúͶ‚tñÅ}þ]íÛ~”cÒìŒ(d8wÈ'‘uó‹@(Žjʧ3ú'¥B­}8©æçÃàZa±C(évJÇVmc¸ÏÃU *ý<³¾â\&ƒd…e&&I¸¿çSÚMeò™úŽt E¦®[ôi/\Ô(aJ øig%JÄc–pw¼xD¨€6R&š¶4úôÅЯ¹ó)”Û¹b¶I× ÜOQ Ê;ïcB!ÀšÒ`°¾üC– Boxž¤j˜’)@?¤{lÝ3É#Vnô"‚ܘÐmÊ,Oåýâ@„²ñû+R{.#ËJL˜ >Fñê§;Ë»’Ÿë‘éÌXÊ}‹·ê œ¾Ÿý1?šˆÍÙˆ§jØl»ú4•!é&½¥ÌŒƒ½r,ÆÅrÂõ؃t@ôiÞœzD•"ÙôØ­ÂsàêC¤´òÚ³CIæ •ë´†u/+±0Š!""Á-™W×4²sb¢Ë¨Ý«Óçx**ã`vxÎ Æáp¥º©0ª|ŒKÏ7ÏþNƒS}·}Ä‘w Îe"…µŠfâØEw©#p« F§?©EH7ÀE»na FÓ ÅJÜñ–¬(N›¦´NûºÏe4^㘯ҢÖîç0jY; ¶g3pù±_=ºñö(À¾˜¨@úy¿¥ú° ‚Uº¨ÄŒš÷ö”ã’QÐÀHv]óüâ>:±•LÁm¨gmù•‹ßmÿŽaI|è?u±܈S1Q©Î)ô5!AF[Îÿ§­Ø½„½fælöÝN¶O Þ® !6£³eBkM…îN`Rvú{;NZü›Y©¾±¿·áû Aêè¸Ó¾Ä}ƒèòl†×®çdöçV^û˜9|î ?vì);}<ûïmÄ«‘wÛõXVòˆ·†ÆÛö„ïŸú­"‚.Y5þt*czæ¿yËF6þf†<¤KãeØR¯j†Þ·æw@mó)æ[æD¸s0Ö™@íÑ€pÇ4oNÌ‹uËÓS,¦\JÑ ¯@À)e|Û™å;^S¢³Þ”Á ïÖg”<Ü/ucºã±ä{9lQM¿\‡vÔñ7~|å\ J¹J}q”õÆÂ¯lMOæÏ7^éÎx.FæL É>¯?” 8ŽÓ{cÎF‡LF;ê´×hF‹zá?oùeça;£6Nvïõˆ´âxŠ·Ómœ -÷Çš'募‹¨ÇØ×$\×ÏB©§Ùb4‡u©Êà›hs¢w}$Y–^(Wùk© ‚ã*ÜPÔyJ*¾O_¢®%èt½êÀÁMÞ‹‚¥ &~íe.'Ì´P§aSoÑ“j«1¿ñæt¨ÖİÿèªÒžàO¤“ŠÉç¢0I;—ù„·àHù¹ÎmôMAºÿiø6múõ3“$?3ýr—M¶Y™Tþ¿Ö‰'Þ Ãá·Ûv‰u­×ý"ÖŽiÚx…8¬\{¹Z?ÒM+W<£KzˆÌw«ÑĈ«ïï(`êí@hBöQ yÞˆ€V3ž†â›ÖˆAJʦnãëø7ÎâbTÒˆ©},Àæ®î£æ”.%÷1ŽWÎ*]6Fî‰Ú/¶fÇÄŽ|¸ ÌÌCÖ~*Ú[©VŒ­‚ÙZ –z±>¤ž_Øp3âÉ£M–J‰ñä'Ãüž®\&Y…ë•!õÇ bõñ; ìØ÷ýþ†’}cJjÌ„ö̾– M´q~²aM@í—ÿ-`B¡‘l›,¢^GSq_ul$ñ‹¬p_ÏŽË×ôŽÖ\+Þ@’’SšÉþ‹Q)«¨\åŽO& ’Ñ´”Ͻ',ðnŸ/mƒ(>»Ü+zFlhY%FîZè=Ëÿ.LÚK¥Ì/Z}u"kØsk»*,´Ð´êÕ`ý£}‰{+¨yÙ©1*æÇæIÅ#JÚOå ³ÿ¶Ë`KÔh*‹ZDšÉAœ÷%çxÛ„}‰¼ôê^\=¤q–­ 5F\¨Á¾’ÚN„”§ ØŠ? 4GÓ×…b7«Ý CrÅj¨àÎÍK­ÒÀ-0;by}=Ó>¡xàï4½*mâ(8ÔÊuy%B2#æo/tÑ_=ÞÅRçEJk÷˜Wû!ð¯²TŽç³|bž~Á•P¢Î‘´–ó“fAqÂ…è3Ýz©Ñ;û\àWEƒ¿³óœ!ܸ[è²B½—»ÿÓGïËѶ0$H:‡¬wœ”)0çD‡Ü’/ö|SmþäÖÖ| Ž®-”¸~ŽJ4¥Êí+¶¦.ÄBh¼´v¡s¾…¹ˆ–ò‡eš±^±Ñ†wIß4‡L`Ìl'e‰žù+—6ßìf´Ò­[þ`=Y­ã9•{ÅI0ži &}‡•Ÿa2È÷6]cßyÇ·™¡ÛuÏG΄¹ëé+;‘DJ ×E]¥ù8A­ì-§Ü¼®¼Ð<,쯑’ñéY0P·\m õo2Xå&as˜é>’E” Æã˜ËLöþøærJ^hÂ9v·÷ì™w$ÙW‘.¤Fë?×yƒ=›'îBí|Õ#óÖ­µ¤/Èú:/[JÕàˆ6±ÎÙ·-çî Å=7™‚ºÃªsM06Ù-Âuw¸:¿©«1^¸\£(¦„Á2Çt@)ì¬ÑYûA‰JP\£žØšÐæ>í¬gü¸#õPí‡i†ruXÜ]¯ò¼`¯"S¥Ü§9ÈB\ßzä©%TÚ(CË[ñöyv©•™«,§­9ÕiÖ”Œ°ëy¨Fü‡ü~²]«Üymï1É àÉa¿Œq&{¯ÉÎ]aÖ¸£;GsÆcG·VøéÐÞɯœÂø†$ênÊËCÎuÎu¾!€v¡Úø#£äq°6)‘²,§w©q·DÜ/˜'ˆ³¢Ã‚¨8jRT 7~Ù0Nœè‘r’Hßž¤™>4rL®¤jÎlíviùyy¬,zÊúºùº^põž:œÍ÷iLž:)w¨iE߆»õ`ì'ZHð‘ĸ²|“û,bP‘hmÁâmФîÚshMµ,‰¬5Á°”ÕøýLÕ”7&΀yºD1£5”RÑŒ$ú;€DmÎDµ†pÙâAmì%u¶ÌÇ–Ôê¼ò±‡Üñ›*ñ…‘÷žçµÑ²MÒÄ^SË@ö‰”­ƒ‘p–åY™Ãýë~”Ÿ–§6c×Fü/¾´J¦g/EŽÉÁOOy¬í¼:‡heŸÜç½åŒ¢z†¡âuÛrêR}ßâÅ¡Ò)Ðĵ0ó¢bÿÀÏ- ì³í ¸¸¿7%•?[üÖ¢Ò»v 8•QŽãüAˆiÓ­Í^z’~ÖoÞÞ %¼†¦I­d&üZ„«#Á…©íÿD7%‹|ùò@Ô !hƒ-Š’Gö½&_û芯ˆCÁ' á— ú¾b£Zyê2x2f§ùÍÓêåw—ñár)oÊ?ý…åÏX}ôäqèÕ[m.±ÛfV_Ôˆ¾‚Ú?q–Jû}sÊèÅÃîty‹ë¦ðB•Û_BïëÀ2Ëu§ l–‘¹ó¾ï’aéL°h“ Š:]ãÁ! ÏbìÿÍ2Òl| üµ *wM_~3ämÝv¦ —Ùýõm÷¨Õûh&Dz¡ƒÍ•Ê€O&[y×;KÈ^»z½¼ÏÙI™±ßYÈutýË*U^QŒŽˆÍ˜Rhi®9á™ûK×Ís,:nr½^ŽÐ ì¯ðƒh"—ƒtþ&OiA<[Ý/̺ººœ'‰®Ú´m³›GOÙîq“ìc’1Í^ 05+—§Þß+Œžm[ŠüO$Š0îûWͼª©44ž& vønΊ1{!Ÿ•e‡gâ0+?¹:¬G 7¯JÒîTç¥ëü'c)eù_ÊÍ¿%‹Ãuõ–ã@gò›ÃÒ‚Î…¡Š6]8ÆÂ÷ÉYY? ƒWÍû>Åë¿rûñ"QÕÔµz•Þ™YÊÇÿìf2ó€VøÑ/ª‰U°mÞ  º×Fâ6¾«UMw[]Ö¬«ä&`¥äe F1Y¢@4dã ‰ƒë¡R˜ZOÇ‹™–LÃ[á¿Ð{î@÷ Ÿ÷NtkouIôKím¨ ÇÀîíq²3¡p3>5{Yé4TŸXzÛÆ»˜5am‰b,ÌѦÑ·ŠÅµ.¯†|RwKù³É6ú#‰¢_) vS=„u¯ª[ä µœ§`eìdÙÓ7’lÌžg¦C>ZTçßññ¯~ÆäÔ "kDðè­+Y‰Tg²x™ÍqšÚ}i™-ÀµÄ].¸ãÑåwq@ÉAÖîRayZœb— tsM@¨\^/úýª.ƒª—;PÎ¥‚2bC­aÎí³®nÄ9\XTr~y?Sµ ­ìÀQåŸîË5YÆÈ=3j)Eß/ûF¡ë ñ5ï59}>q-‰œ¹L1zãÏ9Ü*Úãz]BFFÝæOgÝå@z@¤cäJ½ ²“»´./„©$9ö8½ƒ¸GÝÝØ@>ŠT|Èìžpìô„ú67;ífÙQ£Š]1™¼IO0†zæ%7è‘õîs¶ãÑ|Ñm³xžd^#,}4,"’?6i£Ô!9ceã4•‘x(Å Ü ¹83AÿRöEij³p.{¸£¢IògxïžÙkjIÆ(‡&ô¼E8”°\¨ËïŸçé:¡«£6[(@ŠÜxñƒ¬ÕeVp Î ¡”a/Ør #ð¾:Ûñ 0"iˆº›;9sf$¾ç^›äPβ'.ÃãµÐóáÞ.Röl¼»oLf†‹‘ÆÂ턾À²ûPB‚ ·aÿs&\7Â2NyÓ‘úÉݘVNÿïac²=2v~´Ñº`ÂèuÝ4€]çý.Uÿ ³›ºòµ¬Ò!P1`_ͺÀîëi.Eãñ ;ü^É¡´?‡ÞÁÍ.É ¯a̵GØÀºUž÷`‹‡tž‹tÐ8}%3xHïu­ÓxÖ=æúçÌ;#~—¶_„(¦†£0Ç>Vƒ±øËl€HžËƒsj=\ºŽÒìdApº™ˆRƒÍ°=sÁÂ.bÑB4±Æú †¦6•E|õÝ‘gÃX{ÑÈž}ò“·tÿc߯'a¤Ã ‹[m•_äž;÷ž“†Ž}w‡O-›Ck°÷báW×:$aoöûÓ¥«P‘û¥›–ö ‡FÖ`çÛ¢‡¾Wò§Ïíæ*Nãõ±´kÃáœì’yüx¥ð¹Æ^fôc'ŽÎ{þì ¢V?þlÃè†ñAQ}·z˜{‘>‡Ï%6KR Ø=p›ÕRO%¦¥ÙýdN%¥KÀô»Ñå"É„ïêæ:JÞµŸ%Vx…‰§ÄQ¸fÊëÁѾC•7ÍÊ>O#?A©srÚTþž~̪ÌY6Xš®þy2Ô¢Dë3%K¦|XQݺ •ñ9WÓ´¯¤=/¶I¸•”vöÏiØÀšá6'*—ÃÞ’ŠÂmÏè}–ÝE}, |,dò§YKo7“ñ}?l !†'È£Yí<Ã\î*Äz¶oÌ•ð9ÖÚT5ØëqÎ|š©®k¥:_ô›ü|¦ÒËd ‰—/òü[?A;šΞñ˜ds¤wA¯ÐMó‹¾Ðß§‹Wé‘Op¬¿ÁRBv0V¦ÃÐN£xUõk+L-“ 'äRàíý‘½Hýxx«y—÷d»uCÎ(fy³ˆÏ’(ǬƒÑ ×vÂì¢È©ÝÒë{ÂÆRÙ9ç#¾3m‚„dtëºu—Ü»žŒªëé­P%­(13ÍÂS7| ÃOÜHž5mI qÉׯäpùúÀê/¬ð& Ë¿oܼ¤Þ†FEÛ€ïÈå°rÄŠZÏ/Ü%—Ú ö eØš¡Màœ÷4e+ýZ|8¾¶*X=Rmlj錷՟Í’gâcd”2¬Å…ä„sÊêP‰¼WoMšÝÒ›»RÔMáÍe +Ls}•™ ±þvs9±ðnœTÐØŠ AŸ.óèz”ê"0¯†Œ3þ[üɘí³¦€4쀖Z%±ù½êù ~9¿¨?ãBvGÃææ‘ ‡DCopt‡¿~îg»¾K%üÈ]Ú_¢øR§?ŠXR&,š›v²×‹%¤«IöBvOü&q.`•׌2/ X–~zOW%m<®ÅPšE²©œ³`ü+)õ Uõ˜fP_áÏä¢2EÉ‹—¶¡ n‰'¦§'{GTb_åtú³8©pG ™[Ö7T¡§0í½MÂ?+PÒ†‹*ÐT_²”–&ä´‹ôTÂ5+ cñkT1ÞÆTÍ:Ø.0ɹ5/DA¸ŸÉ µ&¹.˜Ž.0\¾XLréQb·½ñø¸ÊØ×1^[ಟC/ºC}2åVºÉwŸ3Ì ¢ôž­×—™¹,ÅÓBYîê’3Ûž#wö“ÂDœã;,,"Ú~ʘCÏ ÐÒ$˜„­–Ça+ ìbØ.`6²~=£:hEÎø!Õ§!'ªÐ[Œ)ؼñg—ö*BÌ5¨ÊÒöÞD†Íôg°Wènæ‰i/ÝóYµ­¼•;¶¥€ìœå8¨5Ä•Ì&Šº†„RÐþTN#>Ü)Öi‘~?*ØÊQâ© ÷¨ç =µÄZþz"Ž’¸ghÀÕ´ü±áÑñåÑ|¢Ó?µ'fIØSÖK÷òÅâe!iOB7¶,óŒëû¥Ö‚7ãt¿% áJ­¾ê³  ¼EÞÐ×€®bz^§ßNþ8_oœPõÞ€me?eƒöù´•Ü[²ÞNP3ÇdÐ4¸×!¯‚sJsêÝÙ…ÌcŸÀ¿w'SÙJ6Túg¤­6¯Ì0Á¡r’ùÛ®1î^Æ­ßQvzºK9Š•%¸oæ´¬kÅ&ÿRgj%7Ìu+JÏoCŽ]9•@Iv¥k„Ý,{mh¶ Û<¹k±:‹#%m¥ï§¬ì ¯?W]bÛ»”Ï5?ôï¢\J‘‚:æ žƒ'„[v)‹¯ŸÚVl7È¿iž2—ƒW8ÿvþÚ½ËSQ€¨Êߤ*©ê»Oc%H‚Z7o³xŒ5o£t±õ%@:öŒ6,B?œ£ˆ(ºNá ·àFs!u"ÆCJœz—¤2³Üíqá:%Á o4€˜üü [Fd-ÎϘ(˜&ùµÊrÁÅ —ŒÇ–&¢:Ã8’•ïåÈ8lzéEj²¸S;4oFæ¡Tµ-%—Ž‘ŒíKþqÎèÌ”H2ïÌjx,¿ ê–/¯¼UÆ6î=c®iÞ_Ô×ÕÎ)+!Óq Nºoü†âÈ cI š9m3CÃÂR*Ö¤ªp°’…ÞéÜÊÄ ´šÐÌTà8³ÑnLñ`Ÿ0Àrõ9Uñ ?K;ð#ò“µ¯i][œžü<Â:†e=v׌ÇИaD‹ë?ÞU©ÊÊ1à'3b²ý·³‡}0̽ìâpТ”„g`™©Rä* ‚æBÒ=iF*~ðQªµÖÑ&nÎT ´i¼¸ûŠÐA2q™‘lÚÀÚÔc^š¬ë¬ŸÄÍ0 bfF[¬„|WÆ'.qæÍ€}B¢€L—M¶¾ÑÃÍPÕQgzò7²› ä·EKà LRµæ¶[uÒ^†¼uõñ9>jÆzdü¶""®àÒ#Y4&Z ® ¦/ÇV¬¨`5jʤ EjãmÛê ½ÝeRå·¬ÞÌaŒg·¿s¯O]ø#ÞšSl7 ð ¢° ¨yXÅ£«ÙS Ál7y ¸¦B®Ý”¹fBøc"'¾+ývD À”%põÐÅЄW[yn…9‘œCȆ¥\Ü(;þÉ?†ÊÁ*¡ŽL¶šغ†“¡p}òôiçvâ™xR]F“A_ôÊÐ]äc]:ÖÁmâíÀŠVÏËh´¢#Ím²ÓïÕ±7Y}È×­FÈLM¸_± ¤ª˜´ÓÅØz‹—µ-3'Î98A\ÅEÆùQZ¼¨K¬ãŸyL‹à têcrùQF×äŸ,^ÖM™¿æŒÃ0ó»*øÆŽ/fþfÕ4\;/²S‡öÏÛNoœK¦Ïˆ×Â'c¦\,…i Á~Ú?XäÂL³?¦­³µûárkæéùNú¼ûyÒ˜h:qlB.ß„÷f¨ªŠa…Ý‚— É[¡‘ºT“‹J±%˜î™‚i?7 @ñ´¦ü*ñ][ÃÓLÓ¸5ç< S/ŽT_ÕvKToò*“m‰Ä«bCß$Åù%ø‰ÙP»…G¶j€^àîÞ«Α%ç^jL„ÏŽ€÷ÇׯtºÇ=˜ìþ*ÝØN^¨ÅPÌ‚æ'¿Æ¾!z\ÅNÆUe(ÂÐW˜Ø œxVô ­³;H½ÖXµµv±&ÿTq7¸JWÇøŒ‡ß>+˜êö÷sãªí¾|·)3ªžšsù c|ûPÑá×zå·ng…¢Ø…Ïðu¢ÆÇwÃÎëâíɯ–—nÆ-=‚I×0æ3âa»dK3>ló×q9^> kôŒ¥w²œz©dôc†0ËqÙïmíãdh`ä§úyyËÐÁ»|dG«yõ³Ü5¬u-§hø@‹Ó1ºòM1nþKlMX±™ûä…Â…©ŸÃ&pÓáâ¯o^;SC¾Ïün¢»L±ñ»hXŸ0v1Š&N+Ò}Ÿâ„Êz¾DYRhàʹTÿÔtçŠd^Ïÿ͆Šw½Ù‹È>>Í•™?÷ÅabÔsÔ8,‚õ,O.Ëœ·¿/C½{'Nü°‡„ÙgãúcG'ïáØ±‹¥ÒK-¦9‰;i1­°oØŠ4°óñ–ò)¢ÊÚÐpë¤9äx¼… ¶„G¨`“v½!Ÿ²Ë޲f!ùøÒØœ$„ËiÝV]¹{ÿÉýËÏk‚/‘%ÆfÑ–æC#q“‰yÂY{ö,.‰Åe¡ç:øšA;+CÞš¥Jõ·d c¿ä1F¥‘IËÏ÷{S§shñzC˜‹FX+O^š©ÉŒÔ ÕJÊÀÍuÍ®¹Çùf­.öAnKvlÆ·Á¡¡~“T a.Û5WüX!ïÞˆ„©t˲sƒLé‰çKÈ»¼°ÞHïúN½ c·Éƒ÷TZ ðˆoZh’Kç OÖ-æ‹+öý«w…C]î÷`¬n4c5±ä<ˆ#ïü% 3ùgW[¢Ð:ž¿ žý(æ~µ¶Ö0óî­ê‰TEŽ.]ÖS6`7¡EtÑ]‚2‹ÉÄw>0R~wôr< ˜hm4wÍn²OÆð =÷nµˆÝQiÀô˜ •k(\ýEÛ¯P§QV¡1«,êVw7~1.›e”¥v{§wA=JÌ0´¿@©ð{ˆ¹ë~S qˆ5ÖÚÕX-\ˆ>Êæî«<`È ¿}Ά›×{$T=2ñR,KážìÒ(Ìð/µÛŽlXî—ÙtÁ‰xËñ>vez ŸÓ:òYì}QM{2Ax{Véég_¤ÉP-k~~gÉ ×ÓÁŒ1BÝ‚ )›œð g5¶H½H¨ÄÈ%ú}€\öѶGjÛ6æN$!-póðÉu“ž:Ã+ž¨@R€>§J·šB0]?½-E†“ ÷N!PÔ¡†`D^ú§´vê[£‹‡ù¥jéÌ-•[ÌUzÚ¯d É­‘§Ø‰{÷¨ùTMA¤›'î72£‰L“XhCq¢]û¡hó“ö»æý¡©.¯zc¢à!.׺ÆÁØ ƒEõq³²Y´X’óp¾ð@…0WˆVO¯T¾̈Yß{)ß&Î`«¦¯¨Zž€¹Fïâùuêïì™þÝ[Çz£†X¢ž&Àƒw‡ï©^ÎÆôFÝmjvűßoWÕ‰›·Ö§ŸiÿŽlJÙ™¶~= íÆï¬=°*ÑÝAg jŒÝs9à%‡róH$ÌØîAÉîuœÒ,¥ -%œÀh¦ ˆD¬Bˆyw2¾\áÇ!Íö<ýV…Be ºD—^Yº—ò+Qæ^ɃOÈf=÷&pH×Z©»‚K6,8³ÝU–8`\³y°”Ò¼dÆŸ ¤L>Ï_©2£ã¶ò†×Q’ýÒ‰¨(°Ú¢.YÈ2D7]+°H«ä­Û#oÿ®› - Æù¡*½±ëÅð“Ü\Mtù„I„ ËN;ȵ‘Êy6Ê? |áE[ÈË@Ch/=x¹/Y›;p ‰ú„û…t§ þ«‚4yŠºz§4´Öïí#ø?"GÙe« aa- ‰™_vsëÔœ?(™¯Ÿ&_¨úo}#9hƒ{kµ#4RoCE^%néi !Z.²Üç÷ê"Q‰¿]Y=ž7à¨6®ÇŸœ¯ ò†å®ÇZÒÍ 8’ªT°ß9Ï­íŸô°ê¨×¡?ˆÈ@¤ï=€ê5íKÀ“¬sÓä9¼™³¬S¼òý9ÕÍÆ!8`içÁ• ¿•ú)K™Þ~ þ.k¯À‹}b-ûàÛr#®ƒpäÀ–…`¬'vÆ3ÍÁbY6ÎÛÄ|cÖ±LÊxP½‡¼ç—„§ÕbLþ¹_=ñü¼ï#²P£—™–ršÛþï“TÛ®švÝÈLÓ¨­§G‚ÒÖ:¦Jɰ´õ‚ÇÚ`'§!UÚcRt‰Óæ£è´£øl÷×;ȱ%5cêYt —ô¼ˆÄ>p3žZJÉ)òyØï%ñ^ƒc«áñ­ªw׿Yì@äeƒ2iëg#ÕÛ¢’_¿Üá7&¬i$¬" ƒð‹Rrï2ÓÅ•á} IÉµÚ ĵ¡w¶…Omdiý@]!È|æ“W”B;Ïÿ4ön½D&ŒpóÉ:”•Î4‡íYA²pL>¹½\Ô‰5߉u·q‘öá „Ò›C´ÍOJáíc§¥Iä››Ûo]Qàœ-t&K¹êIy®’•>ÿ¦«‰îíqˆöIrskC¤òËS»Äg*(C¹‘º| û€ï§+ÿ®ý ×û®@³J;ËăàÀ-ßéŸÅYX‚“0ÅÖ¨0_ær7¼ï¶§y+Ë.Ÿ.­F ÚÊeV­J*‡#W•¾ënÞZ:|ú‘7)wãl.£Ï8,° êpNAOS!╤MÝ8¹o^Ô~;œ±B»0)–îfîJÏEd:ä´‚!"qQby[š Ki®ÁµNæ=ví¦Aˤx·,VP‹‰hG|¢ï;-:©î3mz*(Ã[˜Œh&7sÊ®£®+ö¾½Pâ“[°­ú†ýCx¡Ê ׺ w ƒÙô¤³Ix«W¿eâv-X £ =ô™“t‰vð9š‘”+?•¸AYiöÔž «Po2Kpmá„<Ñ ”mÖÓ† ¾Q¶Ÿ›»|#L2^*aÃ=ù&Ex§.¡ºÓB£4ð“œT§S–·ÅGí%VÙbøhß7EÔµéžXðù{;ެ2IegánËW–5)sô8ÄIöl”Hõ9û.Ýì9#À/ö÷"ОҺ2ÐíèjFD4"3\×)ý{㑎yÔ±¦ý€œêW ¤/ž^=Xåy¼+ËÁN)%H a• X£ð£:÷)sŠìñä,أ،*iðFçßËF½Ÿ Ëçt«ŸÂ>‚é%,K´T1^Ž»0Ýì>ÿ´Üì²¢Ù*å§-—ýv¼Wß9x•¢¬$4V c©¦´;Ü‚ „ί&xl/#=GÏOÔ±JÁ˜iº{4d œÝÐÁï˜!¹†-Þ]n£-Pœº›ËŠ|7ÜYP Eî§êºšç5g:ڲ͑² ´ pPW:{ 8¢½=ŒØ¹$š®9ÃÙ9_Ü©!´hRR6¹£ØrIimt毛T=_ð^¬\†÷ÒM2…ý¢lŒß*HõÛÕ¥{ØèAçþ”ŸsÌœzü|8°‡8èSî"Y¯ˆ¨½W{Cô1Ý쨈¿hI1~Ó— ­Û» ½4™‰†˜ÎˆúJ”ò]q|Ó釺”°ªæö<žÉ†±¤^q Ê=±ñ1îÉg¦©rÝU2ï±4ó¼g5™¸UñöWÈSÏjbFÉ{€à8#î¬.òQ ¨¦r»"óŠÎ‘®€WÎvÊzùmgc•ž1JXkGºŽqÑ[Ð.ïIþU]ø endstream endobj 509 0 obj << /Length1 2801 /Length2 20021 /Length3 0 /Length 21617 /Filter /FlateDecode >> stream xÚŒ÷PXÓ ãw·àîÜÝÝa€ÁÝ‚ ¸C‚;ÁÝÝ=wO€'p'»ûn²ßÿWÝ[TÁÅß̧ôù”ÿE¼`>•߈À¢öùÔ#0ŸÆo®Vó7³kýF`víßÌ®óÙuÿE|`KÓØÒÔÞ ¼¿.¶mÀ¼¦®æ 9ÈÅÜÝþ_9;÷? 7ð_9'û/1xì@®¶¿ƒ€C›ýF`3Ss[W;SWë?rþ»ü!7ÀÌÅÔh´tûCÌõøï•ü7*Ûßb[ Ûìù8þ•ÿp/ÌÿE\àÍíÀãûo%œ¿$öö¿;ôk®Y~·†Ü G;»?s_m,¿›ždàH¹éÝÁ÷ÿQÀùçÚÎôÞ²‚;dù; ØÂäñGØ_jG÷?iÁ&V¿IÀz«_Ï7ðOp9¿»Í n¢µ·“5Ðá ° ô'oó‹íܯßEpƒc÷k½ëÁÝý£"ð=Îò›Š Ë|-ün˜ÚÁÝÞì×…lõGJà†ÅñwÒà˜Žx±± uú­s8¿8üçü9Ùþ‘þ÷ôÁ¯ xÖÁÏý¦ÜÉ@Ž¿Ï˜ÜX';÷? UbqþÜUgwG7 …ÙGÊ÷ð¿”ll`ã?N„ \ôïÀ\`'W =è¿CÈõËèñÇ1qƒ¸‚ŸÔ3ò6‰ \ÇoZðcÅâfíüc~ÀrótüÃÃý>[? 83Ï?öìíõ‡÷þ‚ÄçwràH>@—¿©þsß›»»€ÏÄí¯'üüÿõ ôš#®,9š „Ù| 븫%òdÚŸz3Oµ¯NÇä»âÒéþ€ ŸBW“²ér#š2Ú‡¾¶+I{-ò…ì§ïik|D[’jû£ß“q¢Úì~;âçÜ¡éÂSÑúAb& ‘¿ŸÎ~ZÁ¶Ð­ÝrTùÎ*°î<¤½êËW'—öUj¸å‘žÊç˜â4c ‚K¨ Ìrñ)àܘH^Ñc^x¡-\ßÌcæM¿É%2 úŸÅqùêm±¿»_ôY¯Ô`wí! $ÐÃ'¾Æœ˜¥ö;J•Ã[ö--ŽÝ|³œËJÇ ±91Hæ7ÞM~ί¯ ‹‰Çjç²Â'=Aéß^Ϭӌ½¯nâDÿÉéuŸÁÒÓSJúƒrKñ€ÑÁHÂm¤ ƒ…¢G<¼’·ïÁö ̵îéµüéù§i}Ÿ1}ËÄœµf±u‰ŸÎþØŠpÄ?x{ü m²Ê(ë|ûm¦Ïœæ½¼Ô;‡*$¿º£"¦d ¡cf6ñP&^×aq Ôðµ›A ôÒé|‘Ò\ev¾“jg'«9¤LÆÂ"ç…»þЧngjfî~{‡¾ÛÌÜèXê—± ÙÂÖ?2¢[̲·ŸéWH (ƒ-†ŠL¢)*o‘ßfEñ£S„ä_–ѽ+óÓœý6Tvk‰w_%ÑXèv‡¾`‘ÖW’ÿ¦2+›kò{G QSáWž^ªSÈKîÖälä¸ ÄŒs$¡æÚŒÔqÝmB+[²›ätÈ\óú”ÙAxlý?I© §2å¤ä\õ;ã†Áe“?ÆBѳYyÞ²÷p²ççµpt‹TìÔòø¬šúœÌ²ÓE53oe\|Ž‘ô Ñ¥i)¿=ኔ2|ã`Óžӹ·dŽ}”àɆ÷t7qÄd–'k‘ÝëÝò‰ÿÝÄŠåRAÙÚILÒþÉeñc©¥ÕU·SÁ£ è’L™”–Æ·,~ñÓ8ªgųú:0‹†Wâår|–h§ž}zªçÀŸôVª*Hl±Ôq>®-ñË&´7í«^qÒéÊ MJBU8*¤²ï¬TzT¿év–öHðãÝ´×zv¡Š½èÂC¾Öò˜ÏúØÇ÷Yæ¸dø&F¨ˆy*ˆÔ„µµ»½'•‰†·jjYåâEâ0F5\?ù^ÿ=ßf;¥<\¦;yÿ‰¿„V›æ€:âYlPº™€Éåý„FAxÊ"®.(-LŒÑ6ºô=pªB’"Ëý²}Ewë¡Ìä›Ƭ‘ )DmJÕ< œ}Æ ’< šüÎ< PF¶ä–Š#¿â‘o´:‡4»ª·AÞ–0ÓÅ¢®NMÐêÑu .³³uz?ì­.QÞÕ£]ˆiy©çÄŠRµ¦Ód‰IUÕLE¾:¸=cl9«93Oò4ä‰×à1¹dˆ*‰h³Q~mgrÃ@ÐPg{’ÉËQa |,Í~ŸÉ–µ\²†F¼l…ƒLÐn¯éFçäû«w·ýù&˜ë7K»ÁéA7ËëšRR§ÈMTÚ70ºl­7QùšÝ³•¥,gʰˆT&Ôgľa´øòƒüÌâg Iy¾Ý^2ƒLX;’O œ^Æ\¤‘ûñù+mOÑ™Œ?rK,vì¸hÌÆÍÖSen˜ÊIµG¼ƒÛJJ·zÒW°ðÎÍÃuKŠÉP]?z­,X ¡˜áÏè:S1·ÛºÐƺØNwãˆl_?ù;¢ÉCœÑ¦~ó%œqUÜ%1` ç6Žû ûa^ecB`–Í})¡}üÂÖí‘§©óôYÔ&\ æ{¨-×›“!ê,Ý‚3éŠç÷ðq?¼Rüœpñš Ï®LÝFܱ‰T莼2yOųÏPÁpÿGIf:Þ¢Ùn& iSŽ'+'ɯª«P‚B}°MÈýž«Lé«'-5‘`àé˜Ýd‰­—Ÿ#IéY¡ó¿µÕÕ†)á k" r ‘Äoñ  ñ)»5ésøÅ]p¹°Bouúüüø™~3E;ØYBa°³ãïÚ¹É'ì¤ Ïd"¿å0i¹–æì#š.=ʰ¨ˆŒÏŠS…¼q…[ïâ‡ôÐ'"ßA¾äÙô­QpÚÀè¿Õ¢£ÂÂÜ>²[ã ;ËÐp,|wðçjÖ{q©õmwÁëÕÔ{á“,Ï[Z®ÞvOääû"´eâHàÜ5ÉR¸pŒêµ“¯þÖ/Û’l¹R¸Gç’Ù}DÌËRÚLò‰ÙS[àñm†#c^‘˜‚­­|£/<Ÿå++«'FH»c¿ ꢠ9|TÅSú ”7Q$ݯך„Îx4ÏÌ'û›à+ hš¡°#Z”Ðf2¦Øb3‹µ7†*žáKW^´ÖËÒ•Üáø^¾ qò`ÄxK£ÑÎö=on¢”£ôõDSTùŒí :*÷'ûUšë=ûˆ„Š4뉒­wÝo‰˜~z¥î™ ' QLá¤@¾ŒÂëö¼ýö5{ /êX£ØJ¬Ák%ŽOó§Ô‰\0¦¾“aÒØ1§)ëØÏ½ùS=ïK/Ã5¡xƒ¦“| 7ºÂ…냠’ðžøIåcª¯ ´_¨&t’îa(?Gðã™ò9í6HYdŠM‘.É©ÑBrë3iПs’gÇÍzëB˜Ð(6þ¤…FªzUs>¦ˆU¡"úzÈ21HƒÂ’8–Fx›ö¬SBý^­k@røɰ”]!è$|‚ùRØšŽ—z‡EÌÝ2ô&5‰¯5²ñ ½YQp0Z‡Ò§“m“’›§Ùÿ1X[p“Íf´ÃÃ}ø“²‹³YÛP8,SØgô˜*ÐpW=rlå_¿zséOÒ(Ù0^J»«>6>ÉÊœÔ]óŽmƒÉâ7&ôõ÷1Y¸Iö C<ÌÎÑÆËV\5Èîç”§£”6YhÆdŠᬜ¤à›]3±¼é©‘§e^¿µUééÜõom2ȈCÛpæì‘›5^d:SpØùläÂü[8Û­©ûè¸n¯Iû·p…©ZgoS¬Â¢Õ»ú>™yÀIˆ·þ€±Mkº´‰3dh¦‡·¯ÂΔø=®}Ü DÌBb@^ æCë&.«˜Ô.=‡Ä(¨²g'p˜ññ_Z…0^£°©Ÿ¨[Àþ€Àß×¥üúÖ„®°¯êzv™6÷kw †!Ҧጔlµ†­×E–•Y®L’Å+fZ~ÄÞoÙÄ̱3PiT…NÎÝå?„p+…ŒŽ}¼¿ø½Ÿ47tÉÚáv¬nol½.Ù¨t“IÒXÿ9½ HQ˜qÞ 6ä½§Äöni‹tTpA ò}cÙÓTIIºô§¿¥º§AÅ|(p³pý€›%©äcÞÔžYòÂ%0ø¹¯%8a!Y°¨ Æ„ŒÞ54sõ¡éáߟ6Õm(ÏâÄg@ü UÌå¾ùFŽTãê¡*I&’·Tw»סkfÚ÷©Ž)­ãîáU®ÛËœ¿ÊÓY²Û·9¯úÞå‘y5âÕmf<ß1÷õ}œH"²Æ’TÇ­½‘ñOoyú ]B•äÈOžc¦¯2~æKUÙV~Bª‡½êR¶éNë$¬ÞürÀЯ $\œq-S\ÔJ‹¡+¿KOýÞ»_.w©«u9žÅÛpÖÃÖûÎⵜ®0–bÈ0Å`–YÉ„j/*ñ·®VKóæ™ù<—†Î$A+»€¸oi‰\º5òÓo‚Õ÷/ O-E" ƒŒá¹e\·B¯×p†NX®vÚb&lµˆ×ݬö“Ä,}E÷§á´K™IÞ¹¯é6V–Ýlå!ÈšfñM0‚ññf²p™Ä÷B±$*èœ {Àä‘Ûœ]º¼ [žï¹mPÏ)Û¥É#$òñ%h=5k,š7·U1{0 ñ‘µ ®¯ÿ®xÒ‡hWv¾Š< E#´%F­œrž±ˆ4¤ôŒ%ÿH ¢ðl'˜Z2Ž··>cøIÁSó6ûŒ3íó—Æì-Pq„®Éf+=ð³¡.CœóÅÄBú最6¢Ÿµ6Á ï`Íñ‘ð4ÝáDy†mã›öî9áSÜþÊÇ’Ìfz‹­™ÆÑZ¾äÃ5qªSÄ“à~ši<¹ØFEE)s —K{§ÝKÝÓê§­G{v2#£€0*r1Åc¡Üÿñ`,ÌY;&Ü4ñŠ f­ /—ß Þƒ”žBQpŽ4ÝûxydžOIÖ6}ˆ+ÎzqÉ )ú~OÔl§—±ÆJÙ†gôi¤¼ªšPr!œF€äù-. b7<{,†à»©ÞÀî¸t¾ò†çž¢`Ê,HcN$•B•(ÙÓiÊ& 'iÑZ‡í¶^€æºt¶Á¨ØMpšöÛ÷À‡^.é¤0 /ºq‚é”™1‚Eƒ]……/)ˆ»ÖØÃEKy÷Cø+ÈK¸ÔürëÐM+– ¯ö‚Z¥Ùó¡yMvá++ñ¯ØªÁدýueáåõCî#»æoEÓ¿©©LÁ«Ø‚oµ5 ÷“ P¶NM"ݦ”#ß« eÚMÄßhøÒ°j M’Rˆ}ÙÏWÊGþ$ ËšœæDðrþ¬pѬÓP‡òeã^"ÙT n_È4Ó¥ƒs9iQ„àÞ¢«<­7ùУ† »ê¤-› ˆ3 a©ÆÐlþFõâZ±ª“ÈKòœ¹0co”¹* YU£p2`˜-ãW¥žÔW[Ñ x}=Ò ß]rq7NÒP²XÛÓ>„Vnwˆzý‰è>c0r[z¦ÎŠ{}p,üÚÛMÎôJLWà =î \?®F†iúTdHd^Å4”%NÖ‚U^qûÂó…N±1ƒ[2[;èªïféÝ·]óÐåÚüÄŠRzÕñ²4õeµ} z²C;¥s¼ÏñfX6£eØPžîƃ%ÐøÄ¬›øEÆÝöýo YŽ6U/Ô»[þØù€xI#‹ ó¡}GxËÙ¦ü2ƒqìÝiæü'†Ü¦QÌáY’—;íeÜÔ23Éâ|Kö.°~ý<.Ÿ0¿KßSñG\ɹ<7 nÐVXIõ 4ÔÔx©ÃÉïl,àõné>辕O¢¸kI¦Ä¶læ!Mû’¹éÑú^g|Ïñ(òã)›f‡Aã-Ðç: ÏëŽOªëýÜX Ûqâ[z2h÷•5"Ÿ’Éû·|!íî ó×É=¹ ODs=¿¦^lXJñýYRPô2ð"iŽââñÓV×!‡Ÿh¢Ô¶.ç6ügub™±t¹í’Ücº€lªì3ýn eáþËAœ<5ψÍÖaÉ*®Â¹Úû~A‹Õ²Ü_ã ’u h ,¢äï¸ú³ÇøªŠÒyʸÁël½Ãq¸Çªar@id9s%šù‘œ>¼¡’ R¶ãâsƒ*àT¥l²º+ƨ˜¬Fsìâ‚Çæ 𨱀 A­ÝÖÃŽÒ¯ t{Æêìtщ¨ê1ëâ¸+ó YŸáásy˜5zŒ\¹äŒ7)ž–™Ý¦· WhÑÔ˜z]à"÷ÑoOâ" @¶Ä(î‹‹ÿøU|Í:Gá’Iäš5¥.^}õ¦oÎ{ ùQáqÁHœ©˜²–K!yCC–Ièw1Yö+[„ÅëlL9¾¯Ô²ñÐo_צ­Þm6™Ó·‹a@2”Vá¬Ii;X„+úO«éºg˜©@7‡Tydš [)Úré98®cï—æÕ‡ÎYæ‡CàmžK÷ -<}n<ŒdÌCϯLßµ²5„’äÅj†NÏûlb©ÄbâW‚v8µsÌ΂.}pG eÑÙõ/Þ„04uáÞ]Ô¹F Óna„ꉆ€Pƽ‰R=‹Ò5)=4‘3«Ù"µ.Yp¾<ÆâE&e¾š&ê¦èVP¼­þv˜eÖ\¬(Ofêkæ(Ÿ%{à0«æØBä¹hErÅñ¾w1Î/Q­Ë™Dã¢‚æ¡ íRýaÉQvIË`~Õ´¤a5§o¼©×h|fN\ýñ9™«°¦”F‰×M1’ žA’ß#1zŒ" ºe¾ü[Yàv’i±®À´.ò;“z{äÛº©!`ÜÕ·oef®[ g!ÆB=‡1’þÒ,Žƒ¾XàÌmQÕÐgÇÇbœÀÊ3µûæ—¼ÆçµÊØš<è9~s›rŽâKvD¥÷üââ Êèc‚¸#õ¢Â|oº"LßÏãøb?<(Ž·G7ÝPû+8¸çâq®æiéOl100~kvRJévS‘ÀvÂÜä?º4<ßk>ûTã»W!(˜åqv»Ö²‰;á³ô#Bðiâ2udæã:ß„ Ü~c0E¶Yˆ[SÆX:¥÷ñLùRÖÀP;¿oinAèãú.+t.Æu ™J¡Øûfmz=ñÑ¡¬håÜõà „SÖúã EÓx¼¶©¥ž6¸}õ°:®©”[&ž¨W C¸+L½Yôx-²âÕñ¾l#­á¢Ñé›zƒõ{ðÕ.ʉ´Ò¯Ò1¹wɰ;â?ðv¹6Í0$~*Ý~"#¥ñTèCAÜgÄüdC‘r ¡íQï­8efé‘ÕZxOL͸._Š>ÛÔ!­bùö|‡:©L¥Ç«¥Z?3ãå´0ô†m<-ÿȇ?DßIyò ´3kØPp(kçQí­òcåÉ"v^Ÿ:Ä £ÍgÖsO`Ö¼ˆ/µæXY÷ Ó7'u1G·RŽÓǵõ‚†Ò…!Ë-ógÄ]ݦ=uŒ‚ö„êÊ®O]U½ÕMPspøò÷ÄÉÄ& æÈžŽK@$ºdÖOúD´Z<ű›~âškBû¬thäròFšb˜nlŽV/ì"A}À×½ ˜¯Qù§ ëF®m£üyFiоý|’IƒÍسÄP¼³ëb»n‚_´_ŸÖk»®"p¼÷ïC>0œVý9ðíÝÈ£T{íËìì‡ó`$Õ<«/pÃUøá £q?@BUŠ 9¿5×"I«£V™ü’áä˜ç](z }S²ÃTÏÏxF9ó²v,8Ì'áé%%zýàPZKäïTÒDGrˆEH3½ šgä­+4’iÚbÅ=‘òh(“·¬KY]&·Õê§ÍP.}¼V§¸³ùγ5YJó'Z²ÁrxêgAÇ.&2ßžËÍ×Ù±c,tÚœTVÉÏUEk²×±òŒ$‰ ¸õÙW#`+/æ˜5”·¨ƒf€ƒÑ4~÷MÝ‚\áè*¼a‘Ç?k¨Ó¾Â'·Ö$U±'}}Ô®„||M‘™Í8$þq`MÑo±íaEy½jD'r 6§+80á8Gzð3óÚšß»{gÕ£ê‡ÝMÌ"è!zLȽ÷ TIÛÈäÅÜ#Ÿõˆ·ç›É+»»;\/ÍA XIÏ•¯ó´&ø#ˆJ€ÜML€ÃÖp›%ûê´é”@¦Œ¦ŠG6hõTþ‡Øóf´æ#šö·juŒºÖämèaå«ö*ñaÚÈÅZϛ驸?ò1€Re+f}ÔÈÎ2ÒlÄô”®²‰‘¬W^¹b[þæ¢ìQ å*Ø4({÷»Ÿs¼‹S®dñ34X¯bÐât.Dï?¿­žB€M=À–^¿W×x­ ©à¿À2O ·Œ¿KPrçšö{CS ú(TYF“¡öÒ‚ý¬Ú8VöÖyWq£’·¾´ÌZ»iÏ…G#õ®óÜÞ¼BüΙªÝ:h&È#DnÝ•‘áÀ²(‘ 7)b*¶ÌòñÖ“Ÿµh2/‰Âw6›ßË‚.s˽ʀ ñ6Í/·bkyMàtieÅÕ}Ô¥VB {Ö]Øòœ?+!7$QguÇõta‘Êif@çYS/-8²«`핃™åžè4aŸ+mVnIô×V›¦Ú®ñѹ¡n åcÍLâçí0g‚-Öeã0t•¹ÄÑÆP [ÇkÕ‡µSŠ¡O¢1iIâ‘Äœ—tÐó3üaøQŒ¾oõµô %!ÅŠ‘l|á9T²²;m?ÛX Œ98•!Å’:0÷æÝ'ƒö Ç£71ѱ/Ôöi2éùâ_Ã6ÂrޏO9/ê{­»×~²e&¸-é\’ŠP­MJ^OÚØxDd Ð䯶æaf(õÞ%gÅXÇ'Ÿ­nvàŽÔ¡6â7wsŸåRáÙ}Ȯڊ>£]œƒ€jR–µv>„œ½uçµ=1Q]Raš­®aÐo"*f¦YlJºåžŸ©PXxË ZT­HÞÕ{o¬?ÌEf¹Ò oõ1z4†iIõ7Î÷M{§Í#(3 }§_Çé|>ï«0èqÚ§ê /é*åøü6Äù\R²Öç®`\·Ûâ,kXݹ ‰t:*J#(xvÄô‹èA\~žZóe]¿àÇTñ•?”gsÿ:‹N:y Ž¤âZ³K@µ‘…©—Ö‰â6ïgMv?8|Ä1Tòhì;´dj9‡B¬õÕ׈cpiW¯éÌoÅOW\3ãgKýÇŽ…¥N„¿·ªežH'ß· v“Ý_l$³öÍ"t™«ÑÚÓ„³ï~ØÈff°«Kw·ìHA¶…;·É‹mít”;¨l•<Ú%7Á´JLTI=’þÁX"ðú%Aƒáª–äRÖH}:lì _~’B‘´O¨Ãàï$üH¡*µÝÐ7õ¥ý휄ÚV¸àz¯Vnº%ÄßŽŠ·}~Ĺ²"½šéëÇ7ª_&ƒDØ×Š&ìI1Úž‡=V&Oá„•(®ã†Š— d–¿<O«?…ÅÀ´® ‰å5œ··‹ NhòÖn´ªj½RÕ ö¿¡h2•VØÊ}¾AÅeççL¬RK}'‘Ï"o+¼-Yõˆœÿõ§;dÄû1#Üz }J° üw) «–ng±DâMòWD.Óò{,¡ž|÷­;ÁM±‚/h†Õò5¨i²/ÂKRwr•EKl7I/ÆßbnâL-"¼¸ƒ³² ùÀSáÆ+ý.¥Ž}E†¹;!Ù­«ØøêŽ[Åæqɘž™Ú÷Ø7$á›~§±öÑ8ZÉ#ÛõäÞx 1?H†æ‘"$†â*aù­ù㽎4´ªÝÚ³¢OÈê} ÔãaE‹q¾„HšT¹TÅÈŸz™ÕŸñ,ÍHîÿ„~Û3L|¹§û!sn¯¨š¹\=pÁùWðð’¹sa Wu¨yÕæJ²¡£ÏHÔAKYr›l¶, vþ¼ /\$ÑDÑEˆJ”Š{ÊdÚØÄ?–±~šw¡~wÜ"k[5úî„DWóѼ#!9ú *ëžÔ@X Q‡}¥®{ÕþdÄ]n'×ÈÆ&ЬҀS®/ û`PÀ,QÛʤ7»´íë°LŸ ÈA³6ÆŠ#}”Øl¹: ­aaŠHx ÙÑ"Io±¬ƒWï¤ËsY¥Ýô‘Ê0=£cÇ¡– ÅIûNlG§ æN”qp–±°iE‹Aq¸_”dÐð‰+YCÑp¦;?7îhT4g[#·½¶„.vž‚€©†±Õ?&/(^@‰ÍèF16Ó ùЀXSûC6‚ósiÇ…«¨vá“+r´¿°Pb*|Íþ8Je|höP=Fqï–H°|¸F¾ZÍsö,¢[-¹†} ~”ÐãgtXÚd²«‡,çŠOWçÒsÞAï۸ʃ¾g¬êøõsC'‡ÓÏuxEçÂ7”»¹È†¶oQŽz,JǹZ™D7D^–‚? eùŒt’ý9s¶I)ºDØ%°\ôJ^*BÊåCF „¼ÌèíEŽËr£²ÆGůî½|‹ŽD÷& Ǫ6sš‡¼ÍÂ:5´nÐ@ö} L]sòáRV7xó*°DëJo…-•»¹f¹·çæ4Kª$÷¾Uï¶xÄVIßœéãhA?eZ%;¤Wئ‰ñ<# ¡öYÀgDÒŒ3µíê'3 •¡¼wyX¦kÐE¯ò™ð¸`oÅÊH4V&ÙåÕ¾Ñ v-õAˆçª]ÉOx7­o„9bÉ¡$R#ÊÎ?èÝvÙ¾`±•ì~®™GWD™ÃH%’¿62Å3Þœþ8e7È‚DJɨÅu5WZŠÁ½=ÌxÔ´ß°÷S¸„˜öü Ç»Œol÷6^ä¸PkšÏ‚k(Ðé”h“d”Ší;%zÝÏ%kíÞf¦ÞÃíÎEyÁ8 JËE%áa(H-z)ú6?‚ø½lêÆ\Xh°ßüK yô•…+Ò°¢Üpð®•~` ÇÏö ]:8§œÏkNó.ÓþˆºÞ±áFö©tšã¦ÚrJÂù㳈¿ ÀúlÁF]¤øFÊ#Ö;›³ñ•± u¥s”ÔXU0ð6)vr©Â‘¹Â/Kwß«sT«Òµ—BÓ ([óFè‹ÑðšéOýïGROlMHfE"oó3Wë[Xñç7QÃl}B ((}Ôo^ÕŽÄ)æUÇ—Gˆlìø¹$3`áiaôçrçë; úv™ÔÇ×Ð.Þ² ¡i=½"$ýQmÀ¸·;¡³]!,Ø´¶Ã@îYÿ)…S¶’EŬ-$ì'I¤†Ñ˜Ãnîç’ÔVkq¾Ñà<+”;êªÊ34Goq7B™ÙŒ‰J…Øn§Gýž Œ!õŸ²b«P6b•ã1ö¶^—C'G…aÂXW}a%ÜJ5Úþ kÞ}S”I¢ª˜c&q&¥ˆàþ§c­`#û¦Î–ÕñYƒ‡:SR—B[²½ ç #цsïhëóÌ8Ë£~HÛ"trBÄäpAB¿ªªËÈ1ÇqSÂÇÊÐm¹ÓÚg©»Ø°ãk|!Rìµy‹·ž+ÿ0¯}kk”ú Jµ†“…¡Klg”ÞR&b¿v>%kž>óüxñ:4$JdÎ(Qefµüi·ÂOâ”Ñ­×c–|ËžIȪøÓ)ÿ…ïóåªÄU@}[@öóˆÄI½ç÷½%XBŽfø«K|¬ò9øhë^•ÄÀ‚ühÐá*’ÔŽúûIGá^W>†ŸOá¨ðã'k¥‚)ò‘ÅÔÓ ~t½]—Ü¡ ‡iÕ[õŸm¦+¿1Dư8ï]ráÉè)Zw‘qYírþÐ3ÏHoš Ý;‰»7 UÛà F”)WEèdãïÐÒ0ä ߃qHâ\–×B?ä½ãÚrE†æÅ­/özÕžX !ãès½  ŸĽÌuÎ7!”ÆÁ]CœÑwJ‹—Ĥã;:bcù¦ ©Ì5[­Fç,+Cd§´sô,§sep¾N²¯+%F˜°4Ú2(wŽÒµÅàŠ]ÅÑ4é)o‰üK>RùÀjüpdžø>?‡“Î/‚ôí‹Q\nÇ÷ó¢ü³½%1Bìz’#ÌÒ‡ŒhQGéivÙn¢ªOMæIËúÜA¬ÈL˺6úµÃ×8Ú>mP¢ÓCYfe'¶?PUNE ÷ÃËÝÚ€OêÊtÂB h Ù¥©S¯D¾ÔPÖ±Çä÷ÀvOvÔßaLhê¬A&½ —ŽãÕ9ep²þ9ßizT:`©¡Jä/\*ÅGäå×€ï#Wspvðöß=XBc›hèƒjÕfjðÂnô*·E |cÏCñaë-é9çBÛ‡ê1Õ‚ŸÖcÖðGÄ (£Då-Ë1ºYF¶Î·…6/.h_Dº—÷¨21+,Ø8²èAÂïzø \h8ÊîT.Éã¾Ò”6©3%æãóÕ™ŸbÙÊú÷F€Ï_TÔ†W@Û“n~s8{ÉÓ“kMos‚®vÖôÏÃ3èœ{úô¿âp™M“Z±%T¡Ø,’=U<ý¸â©é_ó-11'ø2ÿÎÐñ’{ë³#Ž­¢Ô"¢°h@ƒ>$#GY>@ÁŒ¥W‚à'!²{Ê^ÇÚµKLÉaú ¡è4Èäs”,↙ðâ›ëÄŠˆ–oaB‚½µ;íw0Z@á'¿W+‰‰Ó²Ó«Ñ»Å9É£þÆ%(§dnßeŠ0äÆ4æ ©È§ÖÃr÷מ]ï1ÍP™1Ú;Ç©Láoh2i`7R‰reG+g%÷qr¼ÆE§ð©8ñ¨€irç·Õuñjr‘ó¡}þñÔú!Í¢uú‚RííÚל‚Æ„ç}›7! 0¼"¨¨^æhæïÌBJ#ü¶ý[‡­\€Ì%Á%,ሰvóØù)¡[­X·ä¹ÆŠp‰¹©Cq1(UÄ噜Ä%^ݯpÙÊnSf_­* ò_1Uày§”ÎòÎnªdêí£ÈZª£DÙ¬µ^Nâ$Š×¼^«ßØòœ¿Ô«w6}„ vËÊS¶[ríñÛÔ«Õ|H/DiIذ7ÇG²píÈññʾÚò¬.wW ãÆ.a8ÔÃ@R.MÝ:Ë–€Aª…“€)¾Æýjd‡7^›/`|»ñü‚ÄJ@áú^ºÉšDV6îÞ³ÐL_²Yß›HYLx™FW£L½²ÃÅtãžgtÚðZÅC#¢\7޲ZÔjž^Y^ u~‹ÙµKÚËGÆæö]×;„dçÑçŠ!6«À5=¤ô¸váb)ólä Qsë—¦ Cü7J±üºz|Rttï¿­wX‡¾fyž;z}€Tg8¬µøbùCeö†“1Ùeà µ¦J M}û¾$ìª>§q2 KÍ ÏOXÎÖVéYˆÒIp-ZßGï)ú¹ŽúëÚ„­±ù€æc‹‰ðz¶OQŸ´Nbsì,o›öÁpbßwÓ/ªÑG£» ?ýÅhyÃ̳&[£v!Éõïê£jȬ+í4y‘ø~´~ª#ÝÌ ë R‰õ{\¿} ¼‡MOÙKÔ€wZiKK" cZñsh¼1¯´^–Ž ñŒ¿\>æÃ€ÎoDh,Æëª ÂaÉâ|xÿ¡UÌfê]néÓÇhÔ'ïN«UÌ3_í‘Ë¡Õu=,'2ïlæjžßlíK§¹‹µÓ[~HžHcë´¨{¯ütEr Áòôwª j¬ýƒÿŽór`cA9f!¿ruœým›Ë-—O/˜ 1Ós æímì#6í ø?± ÚëS,JNL,t³ñòù"6,× toÆqņ”e{}\½a–õ+..’‰½Š-i†›{ØúÔÝMûÓ÷¯&£ÜR|p¯³K'ñ6??v¼Üˆl&{êt àß’ëÆðHtˆÿä4× „f!¨ïý|ÓP̆h8آߌ¬‡ Ï+ 9kþ¹Į=¥O(,Dµà+:¥»êSq¬àt1†€GãÚ1éŽëÿˆÚ»EljÓ‡©qÝ-.JTý˜†ŸÚ¹­ÖvOrõSŒ|I¯c½¦ø8³à¬÷)ƒ=Fª—¾‰>’â‹\š(nžâ‹«bv 3NÅ*ÿ„»y¿ Š]YWmDßS.äÖ¨ÖÇÜš7“Â…ïÞ UÉ=vnEU5FÄï("{g™7ubÚrHR 7f],‹Î^®ž—îBfˆ÷{ƒýƒWÞàÁ©Mðb¹ÌØgF–ýë…9u Ç%;²¡al,¸ª$í¸>kÞ36©ž&Kµ”E>ñ¤R´/|óÛÍçU©’GÅÍzscÊP¦Ÿc?~Î1ø>&òƒú²´[RÐj1Eðp$Œ|óó«™9˵§Í^ÞYî¼ìz26U¦·ä{jÕR=/=[œ¦êá’%J6s ï£Ñø£õ¸ ÐiÔ0Ä”ø©­€"iÛs?^Å©·wÎ!4K hÞíÉé„0T·€hÙĤþ°·?x³Ê[Šbàçàçwµ#Nt¡§Ô—iÀÀcœþÆãõÖo Htµ€×ªß•BìÂÑ\RÎ)ƒõV‚v)M¶h™§C€y4Û»@1ºÇä¼çü»ŸÿH|òô‚Ý¡ue¶+½ûk‰÷v_~D¦*p'bÙíÑ¬î ²²»ºE_Õ¬ œønÝ ;K“?™SE²ËgQ=+ ùù$ÙÒš,Y»ÇíoeÖÞX¼Pc­¨¬Y3¼K°ävi²u›éÞ ryð”0lY©º“ÜVL¡¨jÛrè_}{ÇDú/dÌ:ŠmÝaèŒ/Ö ëÀµ›zVí |Ù£“_I±Ü$Ngæw)žñìh~ÚÕÉT†üq^9÷0^¶íþV B™Â9H³¨„Sª[rmˆ)uƒw'i«[VD"‰Ô⬿›³±ÜÍVÁ‡H’+7œoyEWÂbUSb4ug×ÍzVe»IªŠgº6ØYZ¸ioÍ{ƒQ7£6‰Ž”+<•œMa‡J×§Pa>u%VÂz»ÌÉ ë’ ‚àžºj1jÕðRÓ[Dª¤EM!îƒê‰yš®M²À;æÏ±™<ê³ê°œwÍÎý±yïKçP/f2ÏìÊ#›û¾Õ"¹y5¦öÕŠ¿êMv[×n‡˜6^^`О'Ù¼•~'àÛŸâäûÂðnuC_¹ý}Kß}Y°Ÿ./£}D›S)éÝÙ÷ã8M"ü ¬(“––céUzGg ÇB¹ÇÇ™²—¯Ø+YtaŸKæ÷{>¾j`GþÎP$íÙ›Ôµ™Šƒúrí"¾ÀÅûÃÞà¦YŠæøÁgŸ4™;ÔÛÜ›‹3¢‰ƒÙPñP÷׃°¹áå5³F:ÕÑãüÉE¤ºµXe|Iz}&¢9¶ï{’¹}M—Íjª/˜8aÛ‰’b•),ø$k€¾gá`êâ'›÷EL"5ʳíéYи?—ìÞt|ã7† Ú_Íç€H,ÿða¦ÿ‹­Ð‰kÈJA s6†Éù :LˆÌ ÁsjìÇ+‘[Ýœ’{g“æ#W„)Þ¡ÔÞqÁ–m²82Õ‘Go¿5«µÀökaãhúK®%I U¾DNÞh-팔» ;srægöŠ—ÂEÓ-Ô¥áiÛóµ$†\ð’纓]z§·ET,Ù×Fð¤uþ%å§Î ¥x'ï‚ÖSî/ ê»H‡·[dê Òg-ßîÅ[ÛT)}ËéÞÔ¦BF§dPö®QFòŠÙÀÙm¬W3¥Sp}ˆK"&Z*†1Én_ÎyËO×…íhÙ§ù­zÒ‰«DQßçB ?Ú±ÿÉ¥Ä/Ô¹QûŽ>zöº\»¡Žw#5Þ1UÅåÄÕiFD,]ß‹ÊE,ßGw!Ì$¨ZX@H÷=®}ÛlúÓ³Ÿ§¦2D¼(ºWŽ+íº¹”¾‡5Ÿ³€+NXd¨qTüe´ùœÞ‡ÉMD$ÇÞV»4ÅM³×W²óWU%+ÖÈC¼Èºá™ÀȲYHÑÜPÛTùSÐ2\ ›ïÝŸkþk—š•IÅ4h‡¢ &htÒöë’–ì¼Øë°>Òcxƒî|Jô¶OGa÷‹*|ï©8v™OIú»Kê"y*5ø¶úé=?ÂnDÞ ….FpÛtÙr¦Ì ‘l+çáÁVXM0_ºv†ˆÍŽr¦}cŒS½©Í´{»ßB;ÙpÌœQfâ%2D¨³Îâ5Ä㑺pÓ¶úžQsùÃÉ!ÃéÀ‘\wÞ2Š,H äS‡íÅé&¹-S“Y67ñ•@9Å™ž £î@ž~¹Ó;ë]Œò@ê‡ ýÔ6ÉœI<Š€X>Ér?¥Äh‹d˜NËÓ³Hbdú1ûçe5’yŽI:UiìÕÛ|°H"̰ôy ×&ðåöyc²ÞÃ<'¼wf£ÍJsñ1ž>ë-ZRë‰ÉÈp/ÖsMÙ‡:Ý`˜Û,’,ÁøDK¦ê=^E:Ù»øªÇ7›F­6š´Ö5Ïjd´€¢»>¹lP~¡À"/¨—Ñ%“ìÌ:ºÞœE~Y‘îhÅe§/0!Ìðý‘Ó”hqdškÛ<ô:ºãi‘WgÕNÁOJôWlëÍ¢j¿ªá,è­ÅCÌD#èúj¬¾fµY59g+ މ”[@§PHÛ¨IU&¯J!m-ª)ôq,¶Á=ׯÛÄø±l§FÝÑñˤ°ðExLo} •ù òÉK°ÃsÇîŽVíkˆlFôõ›Í°ì„J±£ec˜’–‘¡ø ýybNÒ®«vͲ¥§IjÕN¬¹IõªV p_¦dcòÆ·˜pF¦xë¿YsŒâ.*bYš%ƒwuœ·S‹V¸‡ï½:R9õ²=FÑ=aaÔ¾Êù›Î¯ãIùEØä…óݵ(¾ê~̃Ô9äЉõð<_™½GC'YšòglGK"[ñÁÁÚ(-Ƥ>XRÝʆ¯·åAœ 6ì‘f¼åz|‹rÖÁkÖöö*Ëj äå×Û€(AàŽ6.“Y‘hCW Æ=Â빡'2ó®>z蛀–&R‹ÉOÞ«õgšÛ·Zçߊ`Ï>ò!eæ ßRûñHÅÉs—-¥ÔêGõ ›÷¹«k²\®TE· -°äNi)®ãß½Ñu¢}d‚ˆ5²òê â§‚uÐÉV£ëÌM„ðñþþ3á{þcúëþæÅ¾Ãê>ÊTM}ÊݽL=UBu‡GÛF¼Æ¤j¨Tk }vÙ9Ó8NJµ:yÔ£mSážH¤ÉÑù¯>3É~àPíªè4 3ð×)v Ù™]Õ™½6æv¨ëÍo^W#^fÞ Ñ럦FƒÂÿ:@Q…ê"/¼a\5c“´Iw§Ôçá:fE‰8ä¦-Â6s¥<mØÕWò(/Ë û¡{§ÓÂaM{¡a, á—Ë‘ÂðaŒŠ¾¯7l'N’lÖoH9Ÿ1—$‰ GÆë¡SXù‘»tÕl^´,VYN}uÁ ‘mðIÜRÀZ³„]–ý‡<Ï›®\âŽY¼ÈHîL· i¶—Œ¾B)ñ§ÓíOª»Ü˜ß„2ŠrK·côùã¾F E#y³ûÅê`Q‡3:\*Ÿ gÊ”àKU«¼ü€º©"#ðõÝ8×¼C—胇ÊW‹™xBD·–÷QÙù‰­/?'È3©æò†·³‰<9-¦{åÊà’ x#ærÍ Hì[OIõÜ•6§ÜÚÐ!Tn È2Ëk.F¯¤´ØóØ&9y-wïÛݾ^³®œž£1÷×ÁC¬×A¶iˈÍûç3^¡z ØD÷x,z£ŒzN]#iв©é›L;·*ŒÃ5õGœ?±])~A2 Oóï7þ¶‰"êÿꉰºÏ”ÐÛqgáelkÑ2ç°¬)&Û-ÝY碬è±ãŽ8ººšÜå öÀ¢#ÊW¡­,›×ló4úg¯+ÄÙ`•cÙLW6‡ã”öã(‰ ´Ükg°íkJ¢N%>C¿ÑâVÒÌ­ˆé¤\L‹Øu†ùéÏ*i#O Ÿë™3_¹nÙšµ¥"i즰Z*¸ã=‰M,ŸÏ$¥gÓØ«s óazø1´Qœ5V+Åf¬øÝ³ƒÆpo©Ðg÷ˆ—XŽŠPŨj|–áê'“`¿ÝÝ5»ÜÔ¯ ÚµÊêÂêy×OÙkD¿N½m¬%z{÷ó£z©YáÌä)cì›Àwšv agU˜žýóD iÕCä¹Ñrz‰¦‰¿~î ˜ö¢#-Ë ô=OÆ\¦ŽÐú3ÒøÔ‚ši†lÀDtI‹Aw‹Ã׃e"-›¤ëbãÍgKýºüµÑë²S£¢7¹Ãù¡ .+††Z{$µö†(“z§Q·wl¯h\—ZlÍ<'`ˆ~ª²VX—¸ÀuXR(¨‹²›ÏvfL˜ƒf®ê…ü_ý?‚}íÆ|?Øe°ý¼·l|·­ÖYq6’r-¹Íd5‰âó¤ ™Sãövû#ÚÜ3ˆ«_Wz×s'åýþ'ï“°* ,…f1Òÿá°úǨ€6ëbSï|Û½×ñ©g?†“¤q:õeÜ¡¼GS@¦ÉåÀ÷ªl¾%pá²FMËŠ?‡\È×~ÊÀÚ’½kþìyÛ#qË#A ¿Õ¡¡«¥M“½5]wZuFŽgþÑd &`‘7…Lz<ÅÖ¢ ôÏ1*W§[e¹§±ùô|6Ûë[IÝùœ%иûUFÌ{ít„ûʧÈ> réàÀ`©dp‚ɶ.–-‹; 4ø4ò`ûÝí|C†PIÃûêÕ¹Þ‹ÝÖùëÅÀ[Ykâ— ØÍ^P-õ!Œ”Ÿ¢5È~4ù „nkF­íæð¾÷*ó©z•`19ú§”fÑo$6H@T^ B(°”‹YÈ–=§©NŽ#™³-Ð &}õxÀ9ÝâOÐÚ<9— ½L ‡ŠÓ6,ñúBêSGÅ\Ñl,ÐÃ)VbQõ Ž~Žœ¿lÊÁáû‹>„w; ½Fâê%†¥ ùÓ# ¹!‘+Yy›Çž6>w¶z®°è~OÝ‹84'sKTgÁ<xÌDr¾B­Ðð15Z•cªÍÂÃ8Œ@8˜ ÆÇŠœ°–iãç`gçQÇÉ'*Ó²öS¨6'R­iØf!U—ƒÊ§®Ðÿ£ì9ý÷ì~Â!’‰'DM”› “ðmF@n*:)ôßcÜtû¦Ç›:Z{ëq <~£8É“{‚¤©œæ¨Ó§u»Û‘œï>Œªîc[¢œÞHYmçúõB0Dü5ñÜýyˆŽ‡›¡ Ž-ü\˜ _Wh—ÊcÎUâÌ´=ŠÄˆ^d0þM¡Þn/{GgµNrgÀŒå<99|P(=€ÁzqåÉR(«óþj•/XjE– .¾•ÒÛ š©¾ ªA¥ÅÝÿÌKJ—ò’c‡÷fu" µÚ6L˜l6Öx)× qdäS¦÷ `9˜õ+v3Úú!È díã®ß²Æz•xó< :¦%Ô=õúýr¾Sk¦m §o=§^k&ø-õ™a~¼I[ÁmÇôP†©_ºÇ÷™‰º8Ö\…˜3ÛERéÀâEh‹É?n¤?gg0òý¾?¢Ù¬Ç˜]泠Ükß8H WÏ4Ù‘•ÿ”©ÄA@‚h÷![³‘ ÀRÑ\&:ëßGÐV°ª˜onñáëè¾S ýÉbà°¡BeÿÀ†ªÝó·›î¬-•«½_q˜D°ÙžlYZ¹E\PÍH`…f¼‹tÕó‘hýtsΈ[9JbšžNë4ÞŠ§z ÛƒAƒ6Z}ÉÓnH5»4Mæ±¥ò>¯2pqñŸN~8”8ZÛC¬8Å·/Gíurïo×0M#ÿNf¯!„bóè‹SpúüAmõàGž¥îêbÿ·`?y¹„¾èyP¡Ø Vô•3 …(ÒŒ}£O^õ‚ÁbÛ@>¦ë¡º=lBá'Öf?²ªŒÞžýt3·(ϦèB W%·]L•‡È1 ‹Pñ62j‘è?¤‡·#ïÞýÀ *nñ± ñÌ×pï˜!aÉf<ÉÃåߊ{$å³.6M|õ²šK=¥ úßð¨d¤Ð‹ˆüÞ¢ÕmÌîú)¨°;’³ÜXª.¯c±oµð3“ Ë+éC±Q-ªäJžÁrJpë=dœ,ˆf‘1“6âˆ+Më‹tœ1ÿœµQB(„³‹µ(™º¡óï˜/ª‘k.Ƀ±Â°ö½ìÝꙵ|Ñ™ : ¡p »Ä0Z€;'f¾ò˜Ê7‚ð,ރȳ÷»Fj¬”œHáÕXê ÍsÉOŸ÷Ä÷a3oȧ)òûêö°Ÿ€™Šxð‹ÙKÚw&?3j¼Ú“¡ŒÕÐÀÝ-þÖPKkã¼Ô;{‰ç?,’AÏ;È®O>„ê`?ÈÍE¢éH;ã±OÆ-ƒçµà´gí%mQ³&n¤ïvô*Xš gÃ#÷'Ôvǧe/ â 3Ñ-Û†tj!+åy&CÎí¿Êåÿ²ûü¯ïï.ýM~;lÌz¦| ‰Ùz(ž‡¢m Ýw}.ÚŽVÌ‘œ·§ëÍŽ/׈I.{GÓt¤RßÑ5 wŸé;!#8’Ò@Ù8©¾Bþ ëítê*“†°H­óˆ™Çt|Îò{ŸxRÁROÁ-¿ÞÏWÑäý}ŽÕš ÀtÅŸ\‰ð•«”WxZØŽÞÇ' Є@Öɶã{·Ú²œðtr,,aë­sé‰åœ”RùZ]9’]L. ú-¦œÃ”Ùb²ææÕ…Öd®b¥Ÿæ‘NhWf»Øô²5êÁÏè°-},>uù¡{#Ɖèš1ªëÛŒ¬m6Dï÷Ò­D˜½>Å‚˜Gìœöú+òÍÆ;âå€*5m³@«{Æ/äûË">qrÀƒaZ²«¬ü¬fŠ;,ÕàJÒ^?AFGïGýÊYÚØZš>ch¹¬õþäbÇüB »˜¯À@àÁ¶¯XýëSÇW×MeDi>jxl«§2§ÿñ"uY­a¸nU¬xÄk®=¹U§|ê=9ãòÜêÄdcc**±+JˆÕl4—hö £…ü3`ï"W›WäžÂ´e-Œ¼þCîñŽcÊy/¼YQ}F*,p×Kõ/ÄÓë)à¨_o“ŒØD¡Kiœk,ÛÝÔ¶Àf Lp`×m™ÿ e¢Î‹ðŽ[ÃzÔàLqå¿Ñ¼'6Å€[{e«±RK9`"Œÿæ‘ZïFM‹MºÄܪF7¯DU†òi…Zsm«¦Æ`9Îè^˜¤Aý«ÜÍ-ò½jcU‘}‘¾;Å€‹éZȨvî­Ý­‡0l©ßULêñŸ19øM`£ qòìèŠ#Ývµ¿þr6#} HÅQ6–ã­‰KÚ妢FVËžéÿv/–E'§Õ âõ° €5  r8¶W ૊$ñcýJ#bMGº¬€ò"Ÿ AøKw36Š÷ŠìrT™M:Ü„yñ—ŸCªc ëú6<»âé’0âÊÁ „ñ#pö‘ÐÐéÈ‚”]®×#‘~‹ Ýl‰Ø¦˜`g€ WpÒ'ö òÄ ŒÕz#-B–dähêc îCÿaF #m)ùáÔ8޵z9â`XŠ*NVw Õø”£m°»oÇ%ã«Xbup‘ù`ò>„¦°·ôÛa a^ê3áŸrÔ"³@9‚0ûhv)ñ©8µ¤ˆò9£9ä6›ã“…‘·¹Tºóæ´Îì¥) u¡;‰íÜ j6x¬ÏÓ/g EÑû}Ϊ‹Ìy ²¦±–EÑÚ¡œ Òö˜±¿¥䃣wœ·Áu_MNéºSRø©[<F¬q=²þ)qî¹8²ÿuÍO3–¾Éx¹x;£^ÓP„+~§²|˜ld’EªPà}ø3 [n‘_ñK©ü *ÙAh²ÖH†‘(¹)‚ämñ=MOºGKàç‡=¹º:=Ó)eûÏž6¤™’«™®fLìBºW{´MôLlG½y…,ÅR´²(pÑ?C-GGø´‹I¬ ÙáMBõG¨ÔLÎþŠÕ²¼=Þ»SbVÔÿ É DSõ”ýwžÃ²D2÷Ò›µ=”Ëmɶ¥Ž.Z ú ojûûs·/)˜ÙOÖŽ6Ø`¶()ÏrmúÖ4þ”Q´?*–)Z ²]ó!Pk;]lƒî¢îˆT'ÁC9Ê“¼¸ûš%ôï_A0FöCf,°¢ ä|z·@*~NÚùÀ·þAÛ6F6‘%×ú¶éð^A˜ÒpGåÒ#CÈ­3»Zä++:Êç8ã}˦‡oÛsÕoð„QŠ›ë”ˆ üõÓï[±5N>”(qî$ÛÚý™n&&"ò^€„l¹ë+îu‹:Ëux>VKgèªê0ÄKt‡ñ^áK"üç©ÿè[–D–w@Ï‚,ƒ§^¸†Þx…m5Íqíf‡r!Áã«7{Ñ_ù€AÁ:*˜˜Œê‡Õ%¥¿ŽH[:ùÜÅ‚šZ“­·ÃUÖé‹'…Mf@ãý‹u”T °[×GÌ«û‡Á:Ç\“IÖ%ç'»aBÉæ\ôð5,’}ÄäfgVÏ“*g "8 á ŒÛhr® gß…&½ì/h0(™CÝ.yÏW{„Ó+DzvhÅšqk,ÔÒcÐÍuªVW ä¥ÿ¦…û% z®˜®€º}ñ–HGnêu÷ ¶pÛ¤o¡Ôj–H­Ð„V\µ˜0_ω+;I²ç4‘2çI §SÒ¿¶Ÿùƒ¥R”¥!ê}O|ËÝoÜ…´È œ/õi×HÓaa ì«t.¶ë®J>+þ×°4ºì¬…ÈV<-^7Â]{'†}²}?è*ž‹Ó ŸÍDÂÆ¾ÿh¨Û:‡|R/®‡Ç=M¼9òA˜tµhÀ ]}õAKóVbA&Ï/SR‹Eö?·ÚÉÇ«}­¬ùb§B£øŸv]1OÅ [ÜéÑjÖaøðr­ Üyã¼U‘ØÇÒ}Y,à8Ó§í%Üö`)PÔšÔ§ùpì©ÛkÇ”?4¿Ú)åzá–v„YØ™À^B<b£Ó7ˆ4Øâ«ØšØ{KïÇO÷Ùhõ¶¡€Z,~Àc¿¤ð? ¯î|oÎo‚A®ÐÔœŸâÑ刿'\"&^Ââèß•ý…_øBåq"´8ëÙ½9óÛ×¶'^*kìÀ [ÄËD"­ÀÚ{öxçß G­¼h–õo0êþWÕPÓžÖ N>Tzp·[#ؤì§a]Å?}5Êÿ£¦°r n3ÈœAæƒÁÔ¡J}ã¥P®)T…?™ˆÙˆ-Ä_È0Sÿ=ÍX\_´¨Û4à&éÝÑ̺ø¥8&Á¾¢U½ûã á`à±@×ç=o†þúvõì‹”oížA;EX1úâÞ9ðZìÙX¯á. ÿ´7p)»îM{ÊXÁëšâ]Ï.òw (ß×ÉÏPžÅüiÏ]E×Ûº]«y¼žÑuàÖ&œà^üŸKB ÂÆ¹ÀîOMúT¡Ûy KÒ€$Ü®€zï벇‹µ¥-˜·= ¢|±®såÉÿLá—jË?çÓß¡>|S²ED¥Úý¯°”Àš­k!*O¢ÞZ äþÅÙ›ìR"ø¾ž²·`¶|a endstream endobj 516 0 obj << /Producer (pdfTeX-1.40.18) /Creator (TeX) /CreationDate (D:20191201114216-06'00') /ModDate (D:20191201114216-06'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) kpathsea version 6.2.3) >> endobj 477 0 obj << /Type /ObjStm /N 54 /First 472 /Length 3022 /Filter /FlateDecode >> stream xÚ­Z[S¹~çWèñœ:4ºkª¶¶*°À²¹U{0sÖ·ŒÇÙ°¿~»ÕòÜ`öR…uW·úë‹Z6ÚY–0í<³ÒB2! 4|„µ)4$“I‚ ͤr8e™tÊCÃ3%RØ e¼ƒ†dÊ'ÉžN5Ó Ìë6Xo %™If„uЀŽª&U)4,3©1ЀãˆTÀ„Yä,$s‰{B0'”gNIaN‰ì™3pz µK Š9¯€s)ÊÃ|‚’À±½Lp3óJÉ=0¯a$ðXæCB0Ç|jAB+€ ’ m™©„ÍB–*l8ÇR­“=)4K ŒH(µØp°ÛACá”dž‘N­Z:QÐØ’8†Ä5° R7[HÞœ5 ð¸Ã‚Dè @€ƒ´œÝûb]²(*¿ŸÆ25~_Åô¶¯ñPgî|¼Åy`»¦n_\É>€“긎#ö"¬¤ñ UPZ";ñÂÕÔj¯Ò©R8¶)xUŸñ¾Ó }âîúñ´Z¡¡¤’Î #$—€3ÚNª}´ 'KÁZµ²Ü™&ˆ˜MƒèI¨p‰· ·{\Hmo徉À{\á5¬%ÆBø0L§¥ xÑÉm«Ý—ʘ6I7±-´mÒh[Ç6±õé"î¬WÓ íPvmBtÓž%¬¨Me´g¾‚Å‹ëÁ+ñ“*·¿)•@0hÌ63Tzbc„ÓfØéÝf\Äc%€ohK8™ñ"r¤ÕÔnVéÐ×­- uëá>¦Œ[' (¶J쓬.MAÛQNØ 1G‹^f~ãRÔ‡Hƒ„ÞÏvð‡€ª§^k´Bë:(,E#u8/ƒ±é°. Z›TZßè ù´ÑhKdtп$=…ZméG;ZO±¤ÒJØW¯¥ymðvø¨¥fŽ¢v,“¬NBUÒ‚pØÒ> õ/J¤²ù8+pÜ"tTÒˆST­%ž±Áþ©@…U < ï<vÂ,ø h;DTœ'z´3Ò–ècF×´q•ŸغcR߸ÛjzHF+ƒG¨[ ®=v„1¸–ápØ÷"î­WÑœ ¦§<—ÚÍ—Ú¡Ä¢aXƒFlÁRA °ô:¸ÏAyŠÑJ%qv#@°W¼PÂ<Žù¸;¶áh€ šdày†.b4¢Ö$ÀSê p„öžv{„(ëĆë°iKp?ßY÷Òxˆö4âJ÷¶i†5Êèº)Tëfe˜%‰¨ʯ{¿ü²Ç/o—9ãG‹yõ"_ÊbY-ʽЛÍ`æÓÑéÉÑÙÿß| LL³ÉŠiZqp°øÁ¾<ƒœç™\! €Ið$þ|5Êçà+³å«¼˜Ü@×Û=Žlpî™ÀÉã*›£çóÉ4g@þ]•ÏþÀ¼Ç?ÆMZ#›¬|—Wì?ü9?ä/øK~ÄãÇü”¿ágüw~ÁßñKþgüŠø˜çœÿºiµ Òçgï?¤_¶Ô€4æìškt¾jHŸ[H'-œ-¼YîÇY»ÌJ´a¾*³ÑŸy…VwUL&›~°½0PÌ«|RfÓq±ZN³ÛÆHp¶î]u{UÓÎ4íjÙ2í†@íÕm{Á†Fè ‘r1^ªÍ™Êl\Œ²)Pà«5:Êf®"ÿ¸æª@€º:4ÛèðÝ‹—¯>€ß鞉œ|ç=è-ê!oy†1‰ôèä ):Ql:èD®²q”ü#ÿÄ?ƒÃdÓå ºÍU^e-ßçSèƒAy Î2Ép|RæY•—!b‘ÏL³ÙÕ8ãÓ|µÿ™­Á…À{fù$£øUh)àÑ—–ÿUÞ,BØšÑÕ#º2[ßïPne\\¾>¹<Ê0÷ê𤠥Ó'REš ªá-«%_w…J·êÕùé˃³ ”»ßÀÄæòƒ§ùÓåÅ P¯!ü^ò–å4¶Ò²4‹yI‡T¿‰£]¥§[ÝWgçŸN?>C¨“&ÿJëuµéî׿­N²S~Jþ²¹ºÎoŠ:ghü¼rnV¬þDx›€Ü Æè¬E9ZÏ®§ G‹)äµ÷y™¯ŠU“}ÌBö“üÛ:›òüǼ7ÞŽáz|Ä 9ËF%0zd¢‚Öž?]¯Àê¼åÛzQåã«iضéÐÎÐkÆináYA’6÷q>ùßy¹èÕVWó‹Ó“ÏŸ?£È”¦(õþilÊ ÚÔ‹èp›(ƒ‚šœ>eÿö±·ºÍNŽßž±bRäK©†7N-¶Û¨¶ØIו.8 .”*ã-³ &ʾ튺Õ]ñöøøì-¦¹f ªn¢†J~ö¦H¥a?5‚7¡Ÿ ïêp«ûâ͇óŸ^¡`*”›KPHù$¦ë†£ˆÂJñÞx¯½¸/¾I¶º^¾|ÿâMøÝ§Á¤:eÏBN ÏEÈ©M ±Û…©È–¤þ ²²\üERÃ@ñ=›æóQ¾I¯hM1¿.æEu.Qšs€hÉFP |ˆǤ‚⬘fe»­¢ÞåÙooOŽvC©†èð凡ÏyùÐ [Ïæ6„¼ý¦Á…¤^–Å,ïʺU¨{}qqôþ=Èz9œ¸›ÚQô%VÖÿ4sÀ¼á$~­@ BÿuµÝ¯ÝWk5ôB5ÉVAòÃùéo¤ËÁä 0‚Kñ©mA$D"ìÖI)ÿmjuAêPgR3Àc•ÍÇ`E£¢ ”‰ÚU1çT ²+òª«¬ ÉV^§]1 y(ë¦`‹)8a“€õR®Ö×?Í£ª—mÅGU¼àçëÙHRL滥]”`=}Fe’k T¹¾ªBA‡Ù*Ç™»ßåu,/ü<‹$ùQQ®*Ôó;V‡ß¿¶¸‹÷\¾÷¦ès¿ctøºŸ»O¶çÞMó»Ìñ¿¾èmà1£©Mnƒïfâ}Þw,sÈš·mÉmw»Ÿ÷¹ß±¸d0Òìg{‰dŸ¹}ˆ9æƒ5ê;Ø[?±ë3÷[xúìû)S½¸crªëë¶åmú.ûól’¯ +Z¬1ÇÚƒ~‰þKM ûº¯Ø—`[,œž CU›É@“©pŒ¯»ÐVDH+ª‚.VªhâóNÔ)¸2y<£{™ÑÅÒÝ© 2=0ð$ÖD_¡V"Öéî<"2B»ˆT€‰ú°‘—Û]‚LhDšAØàÿ¸Åz+9ddž¨Ë¤±Ö±Ž ] /Length 1409 /Filter /FlateDecode >> stream xÚ%–mLÖUÆÏõyÞßDDÞD@yWT@DED!@AìCÎR?TN{YZ¹¢µ^l™N]m•¶2O}Èœ³Í\ÓÚÒV.Ålº¹j¶œ­Í,gÿëz¾üv®û¾ÏáœóÜ×ùcŒ1÷cB ŒI6ŽÁD6‘œ¼%YȬK80¨U,˜DLeÂ'<˜PŽá(L„`b«¸ @dLa‚²±D LÚeó‰ "“‰d"&ÿ?Ç D"‘SÒ®D*‘S]%˜ÎØ$" ¦)[u“‰t˜Ž ÕIN!2`ºN©DGÈ„é+ î`ãbÓˆ,˜ÑfN‹<@™Mä¹DÌæ‚㽚Q@äÃl¯×*¢,! avYÅ4M›TvQ óÚ-0“(…9P,úÙYÅfe0‡·±óÅŠUå0ÇÕ¢Úi1›¨$ª`N]Rñ\¢æÜˆd-QGÔs`.^V¾ù»²óˆ˜«cZYû[Ḣ¹½—D#ÑD4ÃÜŠ^â"¢æß$|­XÑ „öI.&–mD;0£ (n8­l„X T~(¹Œè$–]ÀÂ=J¬ ºÎÜ`b+‰` S/¦ VcUÒKôú-û-—•XM ;Æ‚õ^ޥرØù¬ä(1 Œÿ$¹–XG¬'F€÷÷+±>) –:€1KoÙ@~9dàî‰^,ÛÂÒ$Ö¾mV f=‚f²!àÚÁ`Úí+ʲùm ðG‰$-dãúÃ&Àqn8Sõ›[ZÈ&ÁIÜ!É–·)p2·JÒ86 Sl:œ’ýÁÜæ/”¥5lœš"Iv¬Í„Óô¼6^JI»Ø,‚†°9p6=£bv¢Íƒóxœ$ aóáì|L’}o áŒH²¹lœ7£ÇוÃ9”/I/ØR8‡£OP¡ aËàû^uì{[çøpp„sÛ£ìl8§ë‚Ø5_1v»­‚óU­$-dkÂÖÁù!] ¶·gâ$ÝcZ÷ók`DçŽÞ&Ë–·pnÿ£M–QÒ¶™ ql \ó§ŠÙü¶nüö ¦< üi%Øèv Ü4=#–Ö°íÝc—ÂÍÙ«ûÞvÂ-)¤+lAãØn¸5“‚E[*Ë·=pJÒvAØ>¸mï(A“Ø~¸=³‚¹ë¯)Æö¶ƒpÿÒ±tã4‰]CÐvîÃ?3žœ¬ì{»î6=2–®°#cÇà¾<2îÛ'õ”úD ÷3ðë á.áÁ}7[‰0‚ûñ{’±D ÜÇ%ã‰8¸gîI& pÏ¿¨—S&Ip/ÝUI*‘÷ççT2…’Ÿ±HÜë[U2™H‡{s³>¢˜ê2àÞ)“äÇ&’ ÷Þ­RA9•È"øùŒ°c#¹ðŠõIð#™¯jŸd!Q¯z·d1^ÍÉbb¼¦ Áz§+¦Ã”À‹¬–,%feÄ,xýJÌ&*àþ¢­IV•ð¶êÔÕðžÚ(YGÔÂÛý†ä¢Þ«ã’ Ä\x:%çóà}pVËWR6 à}Þ ’f¢ Þ™vÉb!¼ïnH¶‹à]Þäb1¼›m’íD¼»ÕZ^_JtÀ¥«¤“X?¡H²‹X?ãŠd7_ý¹{ˆðË+$W«ˆ^¢~Í.%ú‰bXM¬!†ˆab-üÚ*^OŒ£Ä±Û5ˆÕ±&ØÏìç ~ËuÅ<øã{5òá_ÐmL„àÿýŸ+ŒPkôAhC¼F±½•ªQB÷jpq®F wªQ"›Nh”„ðK¯h”ŒðÑ×5JAø›ß4JEL|FiD5Áf˜¨%ØõˆÉ ÎñÈCæEÂv[ endstream endobj startxref 552296 %%EOF survival/inst/doc/adjcurve.R0000644000176200001440000004156313570775537015631 0ustar liggesusers### R code from vignette source 'adjcurve.Rnw' ################################################### ### code chunk number 1: init ################################################### options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text library(survival, quietly=TRUE) fdata <- flchain[flchain$futime > 7,] fdata$age2 <- cut(fdata$age, c(0,54, 59,64, 69,74,79, 89, 110), labels = c(paste(c(50,55,60,65,70,75,80), c(54,59,64,69,74,79,89), sep='-'), "90+")) ################################################### ### code chunk number 2: adjcurve.Rnw:181-195 ################################################### group3 <- factor(1+ 1*(fdata$flc.grp >7) + 1*(fdata$flc.grp >9), levels=1:3, labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71")) age1 <- cut(fdata$age, c(49,59,69,79, 110)) levels(age1) <- c(paste(c(50,60,70), c(59,69,79), sep='-'), '80+') temp1 <- table(group3, age1) temp2 <- round(100* temp1/rowSums(temp1)) pfun <- function(x,y) { paste(ifelse(x<1000, "\\phantom{0}", ""), x, " (", ifelse(y<10, "\\phantom{0}", ""), y, ") ", sep="") } cat(paste(c("FLC $<$ 3.38", pfun(temp1[1,], temp2[1,])), collapse=" & "), "\\\\\n") cat(paste(c("FLC 3.38--4.71", pfun(temp1[2,], temp2[2,])), collapse=" & "), "\\\\\n") cat(paste(c("FLC $>$ 4.71", pfun(temp1[3,], temp2[3,])), collapse=" & "), "\n") ################################################### ### code chunk number 3: flc1 ################################################### getOption("SweaveHooks")[["fig"]]() fdata <- flchain[flchain$futime >=7,] fdata$age2 <- cut(fdata$age, c(0,54, 59,64, 69,74,79, 89, 110), labels = c(paste(c(50,55,60,65,70,75,80), c(54,59,64,69,74,79,89), sep='-'), "90+")) fdata$group <- factor(1+ 1*(fdata$flc.grp >7) + 1*(fdata$flc.grp >9), levels=1:3, labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71")) sfit1 <- survfit(Surv(futime, death) ~ group, fdata) plot(sfit1, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") text(c(11.1, 10.5, 7.5)*365.25, c(.88, .57, .4), c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71"), col=c(1,2,4)) ################################################### ### code chunk number 4: adjcurve.Rnw:271-276 ################################################### tab1 <- with(fdata, table(group, age2, sex)) cat("Low&", paste(tab1[1,,1], collapse=" &"), "\\\\\n") cat("Med&", paste(tab1[2,,1], collapse=" &"), "\\\\\n") cat("High&", paste(tab1[3,,1], collapse=" &"), "\\\\\n") ################################################### ### code chunk number 5: adjcurve.Rnw:281-284 ################################################### cat("Low&", paste(tab1[1,,2], collapse=" &"), "\\\\\n") cat("Med&", paste(tab1[2,,2], collapse=" &"), "\\\\\n") cat("High&", paste(tab1[3,,2], collapse=" &"), "\n") ################################################### ### code chunk number 6: flc2 ################################################### getOption("SweaveHooks")[["fig"]]() temp <- with(fdata, table(group, age2, sex)) dd <- dim(temp) # Select subjects set.seed(1978) select <- array(vector('list', length=prod(dd)), dim=dd) for (j in 1:dd[2]) { for (k in 1:dd[3]) { n <- temp[3,j,k] # how many to select for (i in 1:2) { indx <- which(as.numeric(fdata$group)==i & as.numeric(fdata$age2) ==j & as.numeric(fdata$sex) ==k) select[i,j,k] <- list(sample(indx, n, replace=(n> temp[i,j,k]))) } indx <- which(as.numeric(fdata$group)==3 & as.numeric(fdata$age2) ==j & as.numeric(fdata$sex) ==k) select[3,j,k] <- list(indx) #keep all the group 3 = high } } data2 <- fdata[unlist(select),] sfit2 <- survfit(Surv(futime, death) ~ group, data2) plot(sfit2,col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit1, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(730, .4, levels(fdata$group), lty=1, col=c(1,2,4), bty='n', lwd=2) ################################################### ### code chunk number 7: adjcurve.Rnw:390-396 ################################################### # I can't seem to put this all into an Sexpr z1 <- with(fdata,table(age, sex, group)) z2<- apply(z1, 1:2, min) ztemp <- 3*sum(z2) z1b <- with(fdata, table(age>64, sex, group)) ztemp2 <- sum(apply(z1b, 1:2, min)) ################################################### ### code chunk number 8: adjcurve.Rnw:414-415 ################################################### survdiff(Surv(futime, death) ~ group, data=data2) ################################################### ### code chunk number 9: adjcurve.Rnw:443-449 ################################################### refpop <- uspop2[as.character(50:100),c("female", "male"), "2000"] pi.us <- refpop/sum(refpop) age100 <- factor(ifelse(fdata$age >100, 100, fdata$age), levels=50:100) tab100 <- with(fdata, table(age100, sex, group))/ nrow(fdata) us.wt <- rep(pi.us, 3)/ tab100 #new weights by age,sex, group range(us.wt) ################################################### ### code chunk number 10: adjcurve.Rnw:460-469 ################################################### temp <- as.numeric(cut(50:100, c(49, 54, 59, 64, 69, 74, 79, 89, 110)+.5)) pi.us<- tapply(refpop, list(temp[row(refpop)], col(refpop)), sum)/sum(refpop) tab2 <- with(fdata, table(age2, sex, group))/ nrow(fdata) us.wt <- rep(pi.us, 3)/ tab2 range(us.wt) index <- with(fdata, cbind(as.numeric(age2), as.numeric(sex), as.numeric(group))) fdata$uswt <- us.wt[index] sfit3a <-survfit(Surv(futime, death) ~ group, data=fdata, weight=uswt) ################################################### ### code chunk number 11: flc3a ################################################### getOption("SweaveHooks")[["fig"]]() tab1 <- with(fdata, table(age2, sex))/ nrow(fdata) matplot(1:8, cbind(pi.us, tab1), pch="fmfm", col=c(2,2,1,1), xlab="Age group", ylab="Fraction of population", xaxt='n') axis(1, 1:8, levels(fdata$age2)) tab2 <- with(fdata, table(age2, sex, group))/nrow(fdata) tab3 <- with(fdata, table(group)) / nrow(fdata) rwt <- rep(tab1,3)/tab2 fdata$rwt <- rwt[index] # add per subject weights to the data set sfit3 <- survfit(Surv(futime, death) ~ group, data=fdata, weight=rwt) temp <- rwt[,1,] #show female data temp <- temp %*% diag(1/apply(temp,2,min)) round(temp, 1) #show female data ################################################### ### code chunk number 12: flc3 ################################################### getOption("SweaveHooks")[["fig"]]() plot(sfit3, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit3a, mark.time=F, col=c(1,2,4), lty=1, lwd=1, xscale=365.25) lines(sfit1, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(730, .4, levels(fdata$group), lty=1, col=c(1,2,4), bty='n', lwd=2) ################################################### ### code chunk number 13: adjcurve.Rnw:553-562 ################################################### id <- 1:nrow(fdata) cfit <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight=rwt) summary(cfit)$robscore if (exists("svykm")) { #true if the survey package is loaded sdes <- svydesign(id = ~0, weights=~rwt, data=fdata) dfit <- svykm(Surv(futime, death) ~ group, design=sdes, se=TRUE) } ################################################### ### code chunk number 14: ipw ################################################### options(na.action="na.exclude") gg <- as.numeric(fdata$group) lfit1 <- glm(I(gg==1) ~ factor(age2) * sex, data=fdata, family="binomial") lfit2 <- glm(I(gg==2) ~ factor(age2) * sex, data=fdata, family="binomial") lfit3 <- glm(I(gg==3) ~ factor(age2) * sex, data=fdata, family="binomial") temp <- ifelse(gg==1, predict(lfit1, type='response'), ifelse(gg==2, predict(lfit2, type='response'), predict(lfit3, type='response'))) all.equal(1/temp, fdata$rwt) ################################################### ### code chunk number 15: flc4 ################################################### getOption("SweaveHooks")[["fig"]]() lfit1b <-glm(I(gg==1) ~ age + sex, data=fdata, family="binomial") lfit2b <- glm(I(gg==2) ~ age +sex, data=fdata, family="binomial") lfit3b <- glm(I(gg==3) ~ age + sex, data=fdata, family="binomial") # weights for each group using simple logistic twt <- ifelse(gg==1, 1/predict(lfit1b, type="response"), ifelse(gg==2, 1/predict(lfit2b, type="response"), 1/predict(lfit3b, type="response"))) tdata <- data.frame(fdata, lwt=twt) #grouped plot for the females temp <- tdata[tdata$sex=='F',] temp$gg <- as.numeric(temp$group) c1 <- with(temp[temp$gg==1,], tapply(lwt, age2, sum)) c2 <- with(temp[temp$gg==2,], tapply(lwt, age2, sum)) c3 <- with(temp[temp$gg==3,], tapply(lwt, age2, sum)) xtemp <- outer(1:8, c(-.1, 0, .1), "+") #avoid overplotting ytemp <- 100* cbind(c1/sum(c1), c2/sum(c2), c3/sum(c3)) matplot(xtemp, ytemp, col=c(1,2,4), xlab="Age group", ylab="Weighted frequency (%)", xaxt='n') ztab <- table(fdata$age2) points(1:8, 100*ztab/sum(ztab), pch='+', cex=1.5, lty=2) # Add the unadjusted temp <- tab2[,1,] temp <- scale(temp, center=F, scale=colSums(temp)) matlines(1:8, 100*temp, pch='o', col=c(1,2,4), lty=2) axis(1, 1:8, levels(fdata$age2)) ################################################### ### code chunk number 16: adjcurve.Rnw:694-704 ################################################### # compute new weights wtscale <- table(fdata$group)/ tapply(fdata$rwt, fdata$group, sum) wt2 <- c(fdata$rwt * wtscale[fdata$group]) c("rescaled cv"= sd(wt2)/mean(wt2), "rwt cv"=sd(fdata$rwt)/mean(fdata$rwt)) cfit2a <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight= rwt) cfit2b <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight=wt2) round(c(cfit2a$rscore, cfit2b$rscore),1) ################################################### ### code chunk number 17: strata ################################################### allfit <- survfit(Surv(futime, death) ~ group + age2 + sex, fdata) temp <- summary(allfit)$table temp[1:6, c(1,4)] #abbrev printout to fit page ################################################### ### code chunk number 18: flc5 ################################################### getOption("SweaveHooks")[["fig"]]() xtime <- seq(0, 14, length=57)*365.25 #four points/year for 14 years smat <- matrix(0, nrow=57, ncol=3) # survival curves serr <- smat #matrix of standard errors pi <- with(fdata, table(age2, sex))/nrow(fdata) #overall dist for (i in 1:3) { temp <- allfit[1:16 + (i-1)*16] #curves for group i for (j in 1:16) { stemp <- summary(temp[j], times=xtime, extend=T) smat[,i] <- smat[,i] + pi[j]*stemp$surv serr[,i] <- serr[,i] + pi[i]*stemp$std.err^2 } } serr <- sqrt(serr) plot(sfit1, lty=2, col=c(1,2,4), xscale=365.25, xlab="Years from sample", ylab="Survival") matlines(xtime, smat, type='l', lwd=2, col=c(1,2,4),lty=1) ################################################### ### code chunk number 19: adjcurve.Rnw:829-830 ################################################### survdiff(Surv(futime, death) ~ group + strata(age2, sex), fdata) ################################################### ### code chunk number 20: flc8 ################################################### getOption("SweaveHooks")[["fig"]]() cfit4a <- coxph(Surv(futime, death) ~ age + sex + strata(group), data=fdata) surv4a <- survfit(cfit4a) plot(surv4a, col=c(1,2,4), mark.time=F, xscale=365.25, xlab="Years post sample", ylab="Survival") ################################################### ### code chunk number 21: flc6 ################################################### getOption("SweaveHooks")[["fig"]]() tab4a <- with(fdata, table(age, sex)) uage <- as.numeric(dimnames(tab4a)[[1]]) tdata <- data.frame(age = uage[row(tab4a)], sex = c("F","M")[col(tab4a)], count= c(tab4a)) tdata3 <- tdata[rep(1:nrow(tdata), 3),] #three copies tdata3$group <- factor(rep(1:3, each=nrow(tdata)), labels=levels(fdata$group)) sfit4a <- survexp(~group, data=tdata3, weight = count, ratetable=cfit4a) plot(sfit4a, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit3, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(730,.4, c("FLC low", "FLC med", "FLC high"), lty=1, col=c(1,2,4), bty='n', lwd=2) ################################################### ### code chunk number 22: adjcurve.Rnw:941-948 ################################################### tfit <- survfit(cfit4a, newdata=tdata, se.fit=FALSE) curves <- vector('list', 3) twt <- c(tab4a)/sum(tab4a) for (i in 1:3) { temp <- tfit[i,] curves[[i]] <- list(time=temp$time, surv= c(temp$surv %*% twt)) } ################################################### ### code chunk number 23: flc6b ################################################### getOption("SweaveHooks")[["fig"]]() par(mfrow=c(1,2)) cfit4b <- coxph(Surv(futime, death) ~ age*sex + strata(group), fdata) sfit4b <- survexp(~group, data=tdata3, ratetable=cfit4b, weights=count) plot(sfit4b, fun='event', xscale=365.25, xlab="Years from sample", ylab="Deaths") lines(sfit3, mark.time=FALSE, fun='event', xscale=365.25, lty=2) lines(sfit4a, fun='event', xscale=365.25, col=2) temp <- median(fdata$sample.yr) mrate <- survexp.mn[as.character(uage),, as.character(temp)] crate <- predict(cfit4b, newdata=tdata, reference='sample', type='lp') crate <- matrix(crate, ncol=2)[,2:1] # mrate has males then females, match it # crate contains estimated log(hazards) relative to a baseline, # and mrate absolute hazards, make both relative to a 70 year old for (i in 1:2) { mrate[,i] <- log(mrate[,i]/ mrate[21,2]) crate[,i] <- crate[,i] - crate[21,2] } matplot(mrate, crate, col=2:1, type='l') abline(0, 1, lty=2, col=4) ################################################### ### code chunk number 24: adjcurve.Rnw:1019-1027 ################################################### getOption("SweaveHooks")[["fig"]]() obs <- with(fdata, tapply(death, list(age2, sex, group), sum)) pred<- with(fdata, tapply(predict(cfit4b, type='expected'), list(age2, sex, group), sum)) excess <- matrix(obs/pred, nrow=8) #collapse 3 way array to 2 dimnames(excess) <- list(dimnames(obs)[[1]], c("low F", "low M", "med F", "med M", "high F", "high M")) round(excess, 1) ################################################### ### code chunk number 25: adjcurve.Rnw:1043-1052 ################################################### cfit5a <- coxph(Surv(futime, death) ~ strata(group):age +sex, fdata) cfit5b <- coxph(Surv(futime, death) ~ strata(group):(age +sex), fdata) cfit5c <- coxph(Surv(futime, death) ~ strata(group):(age *sex), fdata) options(show.signif.stars=FALSE) # see footnote anova(cfit4a, cfit5a, cfit5b, cfit5c) temp <- coef(cfit5a) names(temp) <- c("sex", "ageL", "ageM", "ageH") round(temp,3) ################################################### ### code chunk number 26: flc7 ################################################### getOption("SweaveHooks")[["fig"]]() pred5a <- with(fdata, tapply(predict(cfit5a, type='expected'), list(age2, sex, group), sum)) excess5a <- matrix(obs/pred5a, nrow=8, dimnames=dimnames(excess)) round(excess5a, 1) sfit5 <- survexp(~group, data=tdata3, ratetable=cfit5a, weights=count) plot(sfit3, fun='event', xscale=365.25, mark.time=FALSE, lty=2, col=c(1,2,4), xlab="Years from sample", ylab="Deaths") lines(sfit5, fun='event', xscale=365.25, col=c(1,2,4)) ################################################### ### code chunk number 27: flc8 ################################################### getOption("SweaveHooks")[["fig"]]() # there is a spurious warning from the model below: R creates 3 unneeded # columns in the X matrix cfit6 <- coxph(Surv(futime, death) ~ strata(group):age2 + sex, fdata) saspop <- with(fdata, expand.grid(age2= levels(age2), sex= levels(sex), group = levels(group))) sfit6 <- survexp(~group, data=saspop, ratetable=cfit6) plot(sfit6, fun='event', xscale=365.25, mark.time=FALSE, lty=1, col=c(1,2,4), xlab="Years from sample", ylab="Deaths") lines(sfit5, fun='event', xscale=365.25, lty=2, col=c(1,2,4)) survival/inst/doc/adjcurve.Rnw0000644000176200001440000014734513537676563016205 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{prefix.string=adjcurve,width=6,height=4} \setkeys{Gin}{width=\textwidth} %\VignetteIndexEntry{Adjusted Survival Curves} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text library(survival, quietly=TRUE) fdata <- flchain[flchain$futime > 7,] fdata$age2 <- cut(fdata$age, c(0,54, 59,64, 69,74,79, 89, 110), labels = c(paste(c(50,55,60,65,70,75,80), c(54,59,64,69,74,79,89), sep='-'), "90+")) @ \title{Adjusted Survival Curves} \author{Terry M Therneau, Cynthia S Crowson, Elizabeth J Atkinson} \date{Jan 2015} \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {adjcurve-#1.pdf}} \begin{document} \maketitle \section{Introduction} Suppose we want to investigate to what extent some factor influences survival, as an example we might compare the experience of diabetic patients who are using metformin versus those on injected insulin as their primary treatment modality. There is some evidence that metformin has a positive influence, particularly in cancers, but the ascertainment is confounded by the fact that it is a first line therapy: the patients on metformin will on average be younger and have had a diabetes diagnosis for a shorter amount of time than those using insulin. ``Young people live longer'' is not a particularly novel observation. The ideal way to test this is with a controlled clinical trial. This is of course not always possible, and assessments using available data that includes and adjusts for such confounders is also needed. There is extensive literature --- and debate --- on this topic in the areas of modeling and testing. The subtopic of how to create honest survival curve estimates in the presence of confounders is less well known, and is the focus of this note. Assume that we have an effect of interest, treatment say, and a set of possible confounding variables. Creation a pair of adjusted survival curves has two parts: definition of a reference population for the confounders, and then the computation of estimated curves for that population. There are important choices in both steps. The first, definition of a target, is often not explicitly stated but can be critical. If an outcome differs with age, myocardial infarction say, and two treatments also had age dependent efficacy, then the comparison will depend greatly on whether we are talking about a population of young, middle aged, or older subjects. The computational step has two main approaches. The first, sometimes known as \emph{marginal} analysis, first reweights the data such that each subgroup's weighted distribution matches that of our population target. An immediate consequence is that all subgroups will be balanced with respect to the confounding variables. We can then proceed with a simple analysis of survival using the reformulated data, ignoring the confounders. The second approach seeks to understand and model the effect of each confounder, with this we can then correct for them. From a comprehensive overall model we can obtain predicted survival curves for any configuration of variables, and from these get predicted overall curves for the reference population. This is often called the \emph{conditional} approach since we are using conditional survival curves given covariates $x$. A third but more minor choice is division of the covariates $x$ into effects of interest vs. confounders. For instance, we might want to see separate curves for two treatments, each adjusted for age and sex. The reference population will describe the age and sex distribution. For simplicity we will use $x$ to describe all the confounding variables and use $c$ for the control variable(s), e.g. treatment. The set $c$ might be empty, producing a single overall curve, but this is the uncommon case. As shown below, our two methods differ essentially in the \emph{order} in which the two necessary operations are done, balancing and survival curve creation. \begin{center} \begin{tabular}{rccc} Marginal: & balance data on $x$ & $\longrightarrow$ & form survival curves for each $c$\\ Conditional: & predicted curves for $\{x,c\}$ subset & $\longrightarrow$ & average the predictions for each $c$ \end{tabular} \end{center} We can think of them as ``balance and then model'' versus ``model then balance''. An analysis might use a combinations of these, of course, balancing on some factors and modeling others. All analyses are marginal analyses with respect to important predictors that are unknown to us, although in that case we have no assurance of balance on those factors. \begin{figure}[tb] \myfig{flc1} \caption{Survival of \Sexpr{nrow(flchain)} residents of Olmsted County, broken into three cohorts based on FLC value.} \label{flc1} \end{figure} \section{Free Light Chain} Our example data set for this comparison uses a particular assay of plasma immunoglobulins and is based on work of Dr Angela Dispenzieri and her colleagues at the Mayo Clinic \cite{Dispenzieri12}. In brief: plasma cells (PC) are responsible for the production of immunoglobulins, but PC comprise only a small portion ($<1$\%) of the total blood and marrow hematapoetic cell population in normal patients. The normal human repertoire is estimated to contain over $10^{8}$ unique immunoglobulins, conferring a broad range of immune protection. In multiple myeloma, the most common form of plasma cell malignancy, almost all of the circulating antigen will be identical, the product of a single malignant clone. An electrophoresis examination of circulating immunoglobulins will exhibit a ``spike'' corresponding to this unique molecule. This anomaly is used both as a diagnostic method and in monitoring the course of the disease under treatment. The presence of a similar, albeit much smaller, spike in normal patients has been a long term research interest of the Mayo Clinic hematology research group \cite{Kyle93}. In 1995 Dr Robert Kyle undertook a population based study of this, and collected serum samples on 19,261 of the 24,539 residents of Olmsted County, Minnesota, aged 50 years or more \cite{Kyle06}. In 2010 Dr. Angela Dispenzieri assayed a sub fraction of the immunoglobulins, the free light chain (FLC), on 15,748 of these subjects who had sufficient remaining sera from the original sample collection. All studies took place under the oversight of the appropriate Institutional Review Boards, which ensure rigorous safety and ethical standards in research. A subset of the Dispenzieri study is available in the survival package as data set \texttt{flchain}. Because the original study assayed nearly the entire population, there is concern that some portions of the anonymized data could be linked to actual subjects by a diligent searcher, and so only a subset of the study has been made available as a measure to strengthen anonymity. It was randomly selected from the whole within sex and age group strata so as to preserve the age/sex structure. The data set contains 3 subjects whose blood sample was obtained on the day of their death. It is rather odd to think of a sample obtained on the final day as ``predicting'' death, or indeed for any results obtained during a patient's final mortality cascade. There are also a few patients with no follow-up beyond the clinic visit at which the assay occurred. We have chosen in this analysis to exclude the handful of subjects with less than 7 days of follow-up, leaving \Sexpr{nrow(fdata)} observations. \begin{table} \centering \begin{tabular}{l|cccc} & 50--59 & 60--69 & 70--79 & 80+ \\ \hline <>= group3 <- factor(1+ 1*(fdata$flc.grp >7) + 1*(fdata$flc.grp >9), levels=1:3, labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71")) age1 <- cut(fdata$age, c(49,59,69,79, 110)) levels(age1) <- c(paste(c(50,60,70), c(59,69,79), sep='-'), '80+') temp1 <- table(group3, age1) temp2 <- round(100* temp1/rowSums(temp1)) pfun <- function(x,y) { paste(ifelse(x<1000, "\\phantom{0}", ""), x, " (", ifelse(y<10, "\\phantom{0}", ""), y, ") ", sep="") } cat(paste(c("FLC $<$ 3.38", pfun(temp1[1,], temp2[1,])), collapse=" & "), "\\\\\n") cat(paste(c("FLC 3.38--4.71", pfun(temp1[2,], temp2[2,])), collapse=" & "), "\\\\\n") cat(paste(c("FLC $>$ 4.71", pfun(temp1[3,], temp2[3,])), collapse=" & "), "\n") @ \end{tabular} \caption{Comparison of the age distributions (percents) for each of the three groups.} \label{tflc1} \end{table} Figure \ref{flc1} shows the survival curves for three subgroups of the patients: those whose total free light chain (FLC) is in the upper 10\% of all values found in the full study, those in the 70--89th percentile, and the remainder. There is a clear survival effect. Average free light chain amounts rise with age, however, at least in part because it is eliminated through the kidneys and renal function declines with age. Table \ref{tflc1} shows the age distribution for each of the three groups. In the highest decile of FLC (group 3) over half the subjects are age 70 or older compared to only 23\% in those below the 70th percentile. How much of the survival difference is truly associated with FLC and how much is simply an artifact of age? (The cut points are arbitrary, but we have chosen to mimic the original study and retain them. Division into three groups is a convenient number to illustrate the methods in this vignette, but we do not make any claim that such a categorization is optimal or even sensible statistical practice.) The R code for figure 1 is shown below. <>= fdata <- flchain[flchain$futime >=7,] fdata$age2 <- cut(fdata$age, c(0,54, 59,64, 69,74,79, 89, 110), labels = c(paste(c(50,55,60,65,70,75,80), c(54,59,64,69,74,79,89), sep='-'), "90+")) fdata$group <- factor(1+ 1*(fdata$flc.grp >7) + 1*(fdata$flc.grp >9), levels=1:3, labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71")) sfit1 <- survfit(Surv(futime, death) ~ group, fdata) plot(sfit1, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") text(c(11.1, 10.5, 7.5)*365.25, c(.88, .57, .4), c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71"), col=c(1,2,4)) @ \section{Reference populations} There are a few populations that are commonly used as the reference group. \begin{enumerate} \item Empirical. The overall distribution of confounders $x$ in the data set as a whole. For this study we would use the observed age/sex distribution, ignoring FLC group. This is also called the ``sample'' or ``data'' distribution. \item External reference. The distribution from some external study or standard. \item Internal reference. A particular subset of the data is chosen as the reference, and other subsets are then aligned with it. \end{enumerate} Method 2 is common in epidemiology, using a reference population based on a large external population such as the age/sex distribution of the 2000 United States census. Method 3 most often arises in the case-control setting, where one group is small and precious (a rare disease say) and the other group (the controls) from which we can sample is much larger. In each case the final result of the computation can be thought of as the expected answer we ``would obtain'' in a study that was perfectly balanced with respect to the list of confounders $x$. Population 1 is the most frequent. \section{Marginal approach} \begin{table} \centering \begin{tabular}{crrrrrrrr} \multicolumn{3}{c}{Females} \\ & \multicolumn{8}{c}{Age} \\ FLC group & 50--54& 55--59& 60--64 & 65--69 & 70--74 & 75--79 & 80--89& 90+ \\ \hline <>= tab1 <- with(fdata, table(group, age2, sex)) cat("Low&", paste(tab1[1,,1], collapse=" &"), "\\\\\n") cat("Med&", paste(tab1[2,,1], collapse=" &"), "\\\\\n") cat("High&", paste(tab1[3,,1], collapse=" &"), "\\\\\n") @ \\ \multicolumn{3}{c}{Males} \\ % & 50--54& 55--59& 60--64 & 65--69 & 70--74 & 75--79 & 80--89& 90+ \\ \hline <>= cat("Low&", paste(tab1[1,,2], collapse=" &"), "\\\\\n") cat("Med&", paste(tab1[2,,2], collapse=" &"), "\\\\\n") cat("High&", paste(tab1[3,,2], collapse=" &"), "\n") @ \end{tabular} \caption{Detailed age and sex distribution for the study population} \label{tab2} \end{table} \subsection{Selection} One approach for balancing is to select a subset of the data such that its distribution matches the referent for each level of $c$, i.e., for each curve that we wish to obtain. As an example we take a case-control like approach to the FLC data, with FLC high as the ``cases'' since it is the smallest group. Table \ref{tab2} shows a detailed distribution of the data with respect to age and sex. The balanced subset has all \Sexpr{tab1[3,1,1]} females aged 50--54 from the high FLC group, a random sample of \Sexpr{tab1[3,1,1]} out of the \Sexpr{tab1[1,1,1]} females in the age 50--54 low FLC group, and \Sexpr{tab1[3,1,1]} out of \Sexpr{tab1[2,1,1]} for the middle FLC. Continue this for all age/sex subsets. We cannot \emph{quite} compute a true case-control estimate for this data since there are not enough ``controls'' in the female 90+ category to be able to select one unique control for each case, and likewise in the male 80-89 and 90+ age groups. To get around this we will sample with replacement in these strata. \begin{figure}[tb] \myfig{flc2} \caption{Survival curves from a case-control sample are shown as solid lines, dashed lines are curves for the unweighted data set (as found in figure \ref{flc1}).} \label{flc2} \end{figure} <>= temp <- with(fdata, table(group, age2, sex)) dd <- dim(temp) # Select subjects set.seed(1978) select <- array(vector('list', length=prod(dd)), dim=dd) for (j in 1:dd[2]) { for (k in 1:dd[3]) { n <- temp[3,j,k] # how many to select for (i in 1:2) { indx <- which(as.numeric(fdata$group)==i & as.numeric(fdata$age2) ==j & as.numeric(fdata$sex) ==k) select[i,j,k] <- list(sample(indx, n, replace=(n> temp[i,j,k]))) } indx <- which(as.numeric(fdata$group)==3 & as.numeric(fdata$age2) ==j & as.numeric(fdata$sex) ==k) select[3,j,k] <- list(indx) #keep all the group 3 = high } } data2 <- fdata[unlist(select),] sfit2 <- survfit(Surv(futime, death) ~ group, data2) plot(sfit2,col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit1, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(730, .4, levels(fdata$group), lty=1, col=c(1,2,4), bty='n', lwd=2) @ %\begin{table}[tb] \centering % \begin{tabular}{ccccccc} % &\multicolumn{2}{c}{FLC low} & \multicolumn{2}{c}{FLC med}& % \multicolumn{2}{c}{FLC high} \\ % & Total & Subset & Total & Subset & Total & Subset \\ \hline %<>= %tab3 <- with(fdata, table(age2, group)) %tab3 <- round(100*scale(tab3, center=F, scale=colSums(tab3))) %tab4 <- with(data2, table(age2, group)) %tab4 <- round(100*scale(tab4, center=F, scale=colSums(tab4))) %tab5 <- cbind(tab3[,1], tab4[,1], tab3[,2], tab4[,2], tab3[,3], tab4[,3]) %pfun <- function(x) paste(ifelse(x<10, paste("\\phantom{0}", x), x), % collapse=" &") %dtemp <- dimnames(tab5)[[1]] %for (j in 1:7) % cat(dtemp[j], " &", pfun(tab5[j,]), "\\\\\n") %cat(dtemp[8], " & ", pfun(tab5[8,]), "\n") %@ %\end{tabular} %\caption{Age distributions (\%) of the original data set along with that of % the subset, for the three FLC groups.} %\label{tflc2} %\end{table} The survival curves for the subset data are shown in figure \ref{flc2}. The curve for the high risk group is unchanged, since by definition all of those subjects were retained. We see that adjustment for age and sex has reduced the apparent survival difference between the groups by about half, but a clinically important effect for high FLC values remains. The curve for group 1 has moved more than that for group 2 since the age/sex adjustment is more severe for that group. <>= # I can't seem to put this all into an Sexpr z1 <- with(fdata,table(age, sex, group)) z2<- apply(z1, 1:2, min) ztemp <- 3*sum(z2) z1b <- with(fdata, table(age>64, sex, group)) ztemp2 <- sum(apply(z1b, 1:2, min)) @ In actual practice, case-control designs arise when matching and selection can occur \emph{before} data collection, leading to a substantial decrease in the amount of data that needs to be gathered and a consequent cost or time savings. When a data set is already in hand it has two major disadvantages. The first is that the approach wastes data; throwing away information in order to achieve balance is always a bad idea. Second is that though it returns an unbiased comparison, the result is for a very odd reference population. One advantage of matched subsets is that standard variance calculations for the curves are correct; the values provided by the usual Kaplan-Meier program need no further processing. We can also use the usual statistical tests to check for differences between the curves. <<>>= survdiff(Surv(futime, death) ~ group, data=data2) @ \subsection{Reweighting} \label{sect:logistic} A more natural way to adjust the data distribution is by weighting. Let $\pi(a,s)$, $a$ = age group, $s$ = sex be a target population age/sex distribution for our graph, and $p(a,s,i)$ the observed probability of each age/sex/group combination in the data. Both $\pi$ and $p$ sum to 1. Then if each observation in the data set is given a case weight of \begin{equation} w_{asi} = \frac{\pi(a,s)}{p(a,s,i)} \label{wt1} \end{equation} the weighted age/sex distribution for each of the groups will equal the target distribution $\pi$. An obvious advantage of this approach is that the resulting curves represent a tangible and well defined group. As an example, we will first adjust our curves to match the age/sex distribution of the 2000 US population, a common reference target in epidemiology studies. The \texttt{uspop2} data set is found in later releases of the survival package in R. It is an array of counts with dimensions of age, sex, and calendar year. We only want ages of 50 and over, and the population data set has collapsed ages of 100 and over into a single category. We create a table \texttt{tab100} of observed age/sex counts within group for our own data, using the same upper age threshold. New weights are the values $\pi/p$ = \texttt{pi.us/tab100}. <<>>= refpop <- uspop2[as.character(50:100),c("female", "male"), "2000"] pi.us <- refpop/sum(refpop) age100 <- factor(ifelse(fdata$age >100, 100, fdata$age), levels=50:100) tab100 <- with(fdata, table(age100, sex, group))/ nrow(fdata) us.wt <- rep(pi.us, 3)/ tab100 #new weights by age,sex, group range(us.wt) @ There are infinite weights! This is because the US population has coverage at all ages, but our data set does not have representatives in every age/sex/FLC group combination; there are for instance no 95 year old males in in the data set. Let us repeat the process, collapsing the US population from single years into the 8 age groups used previously in table \ref{tab2}. Merging the per age/sex/group weights found in the 3-dimensional array \texttt{us.wt} into the data set as per-subject weights uses matrix subscripts, a useful but less known feature of R. <<>>= temp <- as.numeric(cut(50:100, c(49, 54, 59, 64, 69, 74, 79, 89, 110)+.5)) pi.us<- tapply(refpop, list(temp[row(refpop)], col(refpop)), sum)/sum(refpop) tab2 <- with(fdata, table(age2, sex, group))/ nrow(fdata) us.wt <- rep(pi.us, 3)/ tab2 range(us.wt) index <- with(fdata, cbind(as.numeric(age2), as.numeric(sex), as.numeric(group))) fdata$uswt <- us.wt[index] sfit3a <-survfit(Surv(futime, death) ~ group, data=fdata, weight=uswt) @ \begin{figure}[tb] \myfig{flc3a} \caption{Population totals for the US reference (red) and for the observed data set (black).} \label{flc3a} \end{figure} A more common choice is to use the overall age/sex distribution of the sample itself as our target distribution $\pi$, i.e., the empirical distribution. Since FLC data set is population based and has excellent coverage of the county, this will not differ greatly from the US population in this case, as is displayed in figure \ref{flc3a}. <>= tab1 <- with(fdata, table(age2, sex))/ nrow(fdata) matplot(1:8, cbind(pi.us, tab1), pch="fmfm", col=c(2,2,1,1), xlab="Age group", ylab="Fraction of population", xaxt='n') axis(1, 1:8, levels(fdata$age2)) tab2 <- with(fdata, table(age2, sex, group))/nrow(fdata) tab3 <- with(fdata, table(group)) / nrow(fdata) rwt <- rep(tab1,3)/tab2 fdata$rwt <- rwt[index] # add per subject weights to the data set sfit3 <- survfit(Surv(futime, death) ~ group, data=fdata, weight=rwt) temp <- rwt[,1,] #show female data temp <- temp %*% diag(1/apply(temp,2,min)) round(temp, 1) #show female data @ \begin{figure}[tb] \myfig{flc3} \caption{Survival curves for the three groups using reweighted data are shown with solid lines, the original unweighted analysis as dashed lines. The heavier solid line adjusts to the Olmsted population and the lighter one to the US population.} \label{flc3} \end{figure} <>= plot(sfit3, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit3a, mark.time=F, col=c(1,2,4), lty=1, lwd=1, xscale=365.25) lines(sfit1, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(730, .4, levels(fdata$group), lty=1, col=c(1,2,4), bty='n', lwd=2) @ The calculation of weights is shown above, and finishes with a table of the weights for the females. The table was scaled so as to have a minimum weight of 1 in each column for simpler reading. We see that for the low FLC group there are larger weights for the older ages, whereas the high FLC group requires substantial weights for the youngest ages in order to achieve balance. The resulting survival curve is shown in figure \ref{flc3}. The distance between the adjusted curves is similar to the results from subset selection, which is as expected since both approaches are correcting for the same bias, but results are now for an overall population distribution that matches Olmsted County. The curves estimate what the results would have looked like, had each of the FLC groups contained the full distribution of ages. Estimation based on reweighted data is a common theme in survey sampling. Correct standard errors for the curves are readily computed using methods from that literature, and are available in some software packages. In R the \texttt{svykm} routine in the \texttt{survey} package handles both this simple case and more complex sampling schemes. Tests of the curves can be done using a weighted Cox model; the robust variance produced by \texttt{coxph} is identical to the standard Horvitz-Thompsen variance estimate used in survey sampling \cite{Binder92}. The robust score test from \texttt{coxph} corresponds to a log-rank test corrected for weighting. (In the example below the svykm function is only run if the survey package is already loaded, as the variance calculation is very slow for this large data set.) <<>>= id <- 1:nrow(fdata) cfit <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight=rwt) summary(cfit)$robscore if (exists("svykm")) { #true if the survey package is loaded sdes <- svydesign(id = ~0, weights=~rwt, data=fdata) dfit <- svykm(Surv(futime, death) ~ group, design=sdes, se=TRUE) } @ Note: including the \texttt{cluster} term in the coxph call causes it to treat the weights as resampling values and thus use the proper survey sampling style variance. The default without that term would be to treat the case weights as replication counts. This same alternate variance estimate is also called for when there are correlated observations; many users will be more familiar with the cluster statement in that context. \paragraph{Inverse probability weighting} Notice that when using the overall population as the target distribution $\pi$ we can use Bayes rule to rewrite the weights as \begin{align*} \frac{1}{w_{asi}} &= \frac{{\rm Pr}({\rm age}=a, {\rm sex} =s, {\rm group}=i)} {{\rm Pr}({\rm age}=a, {\rm sex} =s)} \\ &= {\rm Pr}({\rm group}=i | {\rm age}=a, {\rm sex} =s) \end{align*} This last is precisely the probability estimated by a logistic regression model, leading to \emph{inverse probability weighting} as an alternate label for this approach. We can reproduce the weights calculated just above with three logistic regression models. <>= options(na.action="na.exclude") gg <- as.numeric(fdata$group) lfit1 <- glm(I(gg==1) ~ factor(age2) * sex, data=fdata, family="binomial") lfit2 <- glm(I(gg==2) ~ factor(age2) * sex, data=fdata, family="binomial") lfit3 <- glm(I(gg==3) ~ factor(age2) * sex, data=fdata, family="binomial") temp <- ifelse(gg==1, predict(lfit1, type='response'), ifelse(gg==2, predict(lfit2, type='response'), predict(lfit3, type='response'))) all.equal(1/temp, fdata$rwt) @ If there were only 2 groups then only a single regression model is needed since P(group 2) = 1 - P(group 1). Note the setting of na.action, which causes the predicted vector to have the same length as the original data even when there are missing values. This simplifies merging the derived weights with the original data set. An advantage of the regression framework is that one can easily accommodate more variables by using a model with additive terms and only a few selected interactions, and the model can contain continuous as well as categorical predictors. The disadvantage is that such models are often used without the necessary work to check their validity. For instance models with \texttt{age + sex} could have been used above. This makes the assumption that the odds of being a member of group 1 is linear in age and with the same slope for males and females; ditto for the models for group 2 and group 3. How well does this work? Since the goal of reweighting is to standardize the ages, a reasonable check is to compute and plot the reweighted age distribution for each flc group. \begin{figure}[tb] \myfig{flc4} \caption{The re-weighted age distribution using logistic regression with continuous age, for females, FLC groups 1--3. The target distribution is shown as a ``+''. The original unadjusted distribution is shown as dashed lines.} \label{flc4} \end{figure} Figure \ref{flc4} shows the result. The reweighted age distribution is not perfectly balanced, i.e., the `1', `2' and `3' symbols do no exactly overlay one another, but in this case the simple linear model has done an excellent job. We emphasize that whenever the reweighting is based on a simplified model then such a check is obligatory. It is quite common that a simple model is not sufficient and the resulting weight adjustment is inadequate. Like a duct tape auto repair, proceeding forward as though the underlying problem has been addressed is then most unwise. <>= lfit1b <-glm(I(gg==1) ~ age + sex, data=fdata, family="binomial") lfit2b <- glm(I(gg==2) ~ age +sex, data=fdata, family="binomial") lfit3b <- glm(I(gg==3) ~ age + sex, data=fdata, family="binomial") # weights for each group using simple logistic twt <- ifelse(gg==1, 1/predict(lfit1b, type="response"), ifelse(gg==2, 1/predict(lfit2b, type="response"), 1/predict(lfit3b, type="response"))) tdata <- data.frame(fdata, lwt=twt) #grouped plot for the females temp <- tdata[tdata$sex=='F',] temp$gg <- as.numeric(temp$group) c1 <- with(temp[temp$gg==1,], tapply(lwt, age2, sum)) c2 <- with(temp[temp$gg==2,], tapply(lwt, age2, sum)) c3 <- with(temp[temp$gg==3,], tapply(lwt, age2, sum)) xtemp <- outer(1:8, c(-.1, 0, .1), "+") #avoid overplotting ytemp <- 100* cbind(c1/sum(c1), c2/sum(c2), c3/sum(c3)) matplot(xtemp, ytemp, col=c(1,2,4), xlab="Age group", ylab="Weighted frequency (%)", xaxt='n') ztab <- table(fdata$age2) points(1:8, 100*ztab/sum(ztab), pch='+', cex=1.5, lty=2) # Add the unadjusted temp <- tab2[,1,] temp <- scale(temp, center=F, scale=colSums(temp)) matlines(1:8, 100*temp, pch='o', col=c(1,2,4), lty=2) axis(1, 1:8, levels(fdata$age2)) @ \paragraph{Rescaled weights} As the weights were defined in equation \ref{wt1}, the sum of weights for each of the groups is \Sexpr{nrow(fdata)}, the number of observations in the data set. Since the number of subjects in group 3 is one seventh of that in group 1, the average weight in group 3 is much larger. An alternative is to define weights in terms of the \emph{within} group distribution rather than the overall distribution, leading to the rescaled weights $w^*$ \begin{align} w^* &= \frac{\pi(a,s)}{p(a,s|i)} \label{wt2} \\ &= \frac{{\rm P}({\rm group}=i)} {{\rm P}({\rm group}=i | {\rm age}=a, {\rm sex}=s)} \label{wt2b} \end{align} Each group's weights are rescaled by the overall prevalence of the group. In its simplest form, the weights in each group are scaled to add up to the number of subjects in the group. <<>>= # compute new weights wtscale <- table(fdata$group)/ tapply(fdata$rwt, fdata$group, sum) wt2 <- c(fdata$rwt * wtscale[fdata$group]) c("rescaled cv"= sd(wt2)/mean(wt2), "rwt cv"=sd(fdata$rwt)/mean(fdata$rwt)) cfit2a <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight= rwt) cfit2b <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight=wt2) round(c(cfit2a$rscore, cfit2b$rscore),1) @ The rescaling results in weights that are much less variable across groups. This operation has no impact on the individual survival curves or their standard errors, since within group we have multiplied all weights by a constant. When comparing curves across groups, however, the rescaled weights reduce the standard error of the test statistic. This results in increased power for the robust score test, although in this particular data set the improvement is not very large. \section{Conditional method} In the marginal approach we first balance the data set and then compute results on the adjusted data. In the conditional approach we first compute a predicted survival curve for each subject that accounts for flc group, age and sex, and then take a weighted average of the curves to get an overall estimate for each flc group. For both methods a central consideration is the population of interest, which drives the weights. Modeling has not removed the question of \emph{who} these curves should represent, it has simply changed the order of operation between the weighting step and the survival curves step. \subsection{Stratification} Our first approach is to subset the data into homogeneous age/sex strata, compute survival curves within each strata, and then combine results. We will use the same age/sex combinations as before. The interpretation of these groups is different, however. In the marginal approach it was important to find age/sex groups for which the probability of membership within each FLC group was constant within the strata (independent of age and sex, within strata), in this case it is important that the survival for each FLC group is constant in each age/sex stratum. Homogeneity of membership within each stratum and homogeneity of survival within each stratum may lead to different partitions for some data sets. Computing curves for all the combinations is easy. <>= allfit <- survfit(Surv(futime, death) ~ group + age2 + sex, fdata) temp <- summary(allfit)$table temp[1:6, c(1,4)] #abbrev printout to fit page @ The resultant survival object has 48 curves: 8 age groups * 2 sexes * 3 FLC groups. To get a single curve for the first FLC group we need to take a weighted average over the 16 age/sex combinations that apply to that group, and similarly for the second and third FLC subset. Combining the curves is a bit of a nuisance computationally because each of them is reported on a different set of time points. A solution is to use the \texttt{summary} function for survfit objects along with the \texttt{times} argument of that function. This feature was originally designed to allow printout of curves at selected time points (6 months, 1 year, \ldots), but can also be used to select a common set of time points for averaging. We will arbitrarily use 4 per year, which is sufficient to create a visually smooth plot over the time span of interest. By default \texttt{summary} does not return data for times beyond the end of a curve, i.e., when there are no subjects left at risk; the \texttt{extend} argument causes a full set of times to always be reported. As seen in the printout above, the computed curves are in sex within age within group order. The overall curve is a weighted average chosen to match the original age/sex distribution of the population. <>= xtime <- seq(0, 14, length=57)*365.25 #four points/year for 14 years smat <- matrix(0, nrow=57, ncol=3) # survival curves serr <- smat #matrix of standard errors pi <- with(fdata, table(age2, sex))/nrow(fdata) #overall dist for (i in 1:3) { temp <- allfit[1:16 + (i-1)*16] #curves for group i for (j in 1:16) { stemp <- summary(temp[j], times=xtime, extend=T) smat[,i] <- smat[,i] + pi[j]*stemp$surv serr[,i] <- serr[,i] + pi[i]*stemp$std.err^2 } } serr <- sqrt(serr) plot(sfit1, lty=2, col=c(1,2,4), xscale=365.25, xlab="Years from sample", ylab="Survival") matlines(xtime, smat, type='l', lwd=2, col=c(1,2,4),lty=1) @ \begin{figure}[tb] \myfig{flc5} \caption{Estimated curves from a stratified model, along with those from the uncorrected fit as dashed lines.} \label{flc5} \end{figure} Figure \ref{flc5} shows the resulting averaged curves. Overlaid are the curves for the unadjusted model. Very careful comparison of these curves with the weighted estimate shows that they have almost identical spread, with just a tiny amount of downward shift. There are two major disadvantages to the stratified curves. The first is that when the original data set is small or the number of confounders is large, it is not always feasible to stratify into a large enough set of groups that each will be homogeneous. The second is a technical aspect of the standard error estimate. Since the curves are formed from disjoint sets of observations they are independent and the variance of the weighted average is then a weighted sum of variances. However, when a Kaplan-Meier curve drops to zero the usual standard error estimate at that point involves 0/0 and becomes undefined, leading to the NaN (not a number) value in R. Thus the overall standard error becomes undefined if any of the component curves falls to zero. In the above example this happens at about the half way point of the graph. (Other software packages carry forward the se value from the last no-zero point on the curve, but the statistical validity of this is uncertain.) To test for overall difference between the curves we can use a stratified test statistic, which is a sum of the test statistics computed within each subgroup. The most common choice is the stratified log-rank statistic which is shown below. The score test from a stratified Cox model would give the same result. <<>>= survdiff(Surv(futime, death) ~ group + strata(age2, sex), fdata) @ \subsection{Modeling} The other approach for conditional estimation is to model the risks due to the confounders. Though we have left it till last, this is usually the first (and most often the only) approach used by most data analysts. Let's start with the very simplest method: a stratified Cox model. <>= cfit4a <- coxph(Surv(futime, death) ~ age + sex + strata(group), data=fdata) surv4a <- survfit(cfit4a) plot(surv4a, col=c(1,2,4), mark.time=F, xscale=365.25, xlab="Years post sample", ylab="Survival") @ This is a very fast and easy way to produce a set of curves, but it has three problems. First is the assumption that this simple model adequately accounts for the effects of age and sex on survival. That is, it assumes that the effect of age on mortality is linear, the sex difference is constant across all ages, and that the coefficients for both are identical for the three FLC groups. The second problem with this approach is that it produces the predicted curve for a single hypothetical subject of age \Sexpr{round(cfit4a[['means']][1], 1)} years and sex \Sexpr{round(cfit4a[['means']][2],2)}, the means of the covariates, under each of the 3 FLC scenarios. However, we are interested in the adjusted survival of a \emph{cohort} of subjects in each range of FLC, and the survival of an ``average'' subject is not the average survival of a cohort. The third and most serious issue is that it is not clear exactly what these ``adjusted'' curves represent --- exactly who \emph{is} this subject with a sex of \Sexpr{round(cfit4a[['means']][2],2)}? Multiple authors have commented on this problem, see Thomsen et al \cite{Thomsen91}, Nieto and Coresh \cite{Nieto96} or chapter 10 of Therneau and Grambsh \cite{Therneau00} for examples. Even worse is a Cox model that treated the FLC group as a covariate, since that will impose an additional constraint of proportional hazards across the 3 FLC groups. \begin{figure} \myfig{flc6} \caption{Curves for the three groups, adjusted for age and sex via a risk model. Dotted lines show the curves from marginal adjustment. Solid curves are for the simple risk model \texttt{cfit4a}.} \label{flc6} \end{figure} We can address this last problem problem by doing a proper average. A Cox model fit can produce the predicted curves for any age/sex combination. The key idea is to produce a predicted survival curve for every subject of some hypothetical population, and then take the average of these curves. The most straightforward approach is to retrieve the predicted individual curves for all \Sexpr{nrow(fdata)} subjects in the data set, assuming each of the three FLC strata one by one, and take a simple average for each strata. For this particular data set that is a bit slow since it involves \Sexpr{nrow(fdata)} curves. However there are only 98 unique age/sex pairs in the data, it is sufficient to obtain the 98 * 3 FLC groups unique curves and take a weighted average. We will make use of the survexp function, which is designed for just this purpose. Start by creating a data set which has one row for each age/sex combination along with its count. Then replicate it into 3 copies, assigning one copy to each of the three FLC strata. <>= tab4a <- with(fdata, table(age, sex)) uage <- as.numeric(dimnames(tab4a)[[1]]) tdata <- data.frame(age = uage[row(tab4a)], sex = c("F","M")[col(tab4a)], count= c(tab4a)) tdata3 <- tdata[rep(1:nrow(tdata), 3),] #three copies tdata3$group <- factor(rep(1:3, each=nrow(tdata)), labels=levels(fdata$group)) sfit4a <- survexp(~group, data=tdata3, weight = count, ratetable=cfit4a) plot(sfit4a, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit3, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(730,.4, c("FLC low", "FLC med", "FLC high"), lty=1, col=c(1,2,4), bty='n', lwd=2) @ Figure \ref{flc6} shows the result. Comparing this to the prior 3 adjustments shown in figures \ref{flc3}, \ref{flc4}, and \ref{flc5} we see that this result is different. Why? Part of the reason is due to the fact that $E[f(X)] \ne f(E[X])$ for any non-linear operation $f$, so that averages of survival curves and survival curves of averages will never be exactly the same. This may explain the small difference between the stratified and the marginal approaches of figures \ref{flc3} and \ref{flc5}, which were based on the same subsets. The Cox based result is systematically higher than the stratified one, however, so something more is indicated. Aside: An alternate computational approach is to create the individual survival curves using the \texttt{survfit} function and then take averages. <<>>= tfit <- survfit(cfit4a, newdata=tdata, se.fit=FALSE) curves <- vector('list', 3) twt <- c(tab4a)/sum(tab4a) for (i in 1:3) { temp <- tfit[i,] curves[[i]] <- list(time=temp$time, surv= c(temp$surv %*% twt)) } @ The above code is a bit sneaky. I know that the result from the survfit function contains a matrix \texttt{tfit\$surv} of 104 columns, one for each row in the tdata data frame, each column containing the curves for the three strata one after the other. Sub setting \texttt{tfit} results in the matrix for a single flc group. Outside of R an approach like the above may be needed, however. \begin{figure} \myfig{flc6b} \caption{Left panel: comparison of Cox model based adjustment (solid) with the curves based on marginal adjustment (dashed). The Cox model curves without (black) and with (red) an age*sex interaction term overlay. Right panel: plot of the predicted relative risks from a Cox model \texttt{crate} versus population values from the Minnesota rate table.} \label{flc6b} \end{figure} So why are the modeling results so different than either reweighting or stratification? Suspicion first falls on the use of a simple linear model for age and sex, so start by fitting a slightly more refined model that allows for a different slope for the two sexes, but is still linear in age. In this particular data set an external check on the fit is also available via the Minnesota death rate tables, which are included with the survival package as \texttt{survexp.mn}. This is an array that contains daily death rates by age, sex, and calendar year. <>= par(mfrow=c(1,2)) cfit4b <- coxph(Surv(futime, death) ~ age*sex + strata(group), fdata) sfit4b <- survexp(~group, data=tdata3, ratetable=cfit4b, weights=count) plot(sfit4b, fun='event', xscale=365.25, xlab="Years from sample", ylab="Deaths") lines(sfit3, mark.time=FALSE, fun='event', xscale=365.25, lty=2) lines(sfit4a, fun='event', xscale=365.25, col=2) temp <- median(fdata$sample.yr) mrate <- survexp.mn[as.character(uage),, as.character(temp)] crate <- predict(cfit4b, newdata=tdata, reference='sample', type='lp') crate <- matrix(crate, ncol=2)[,2:1] # mrate has males then females, match it # crate contains estimated log(hazards) relative to a baseline, # and mrate absolute hazards, make both relative to a 70 year old for (i in 1:2) { mrate[,i] <- log(mrate[,i]/ mrate[21,2]) crate[,i] <- crate[,i] - crate[21,2] } matplot(mrate, crate, col=2:1, type='l') abline(0, 1, lty=2, col=4) @ The resulting curves are shown in the left panel of figure \ref{flc6b} and reveal that addition of an interaction term did not change the predictions, and that the Cox model result for the highest risk group is distinctly different predicted survival for the highest FLC group is distinctly different when using model based prediction. The right hand panel of the figure shows that though there are slight differences with the Minnesota values, linearity of the age effect is very well supported. So where exactly does the model go wrong? Since this is such a large data set we have the luxury of looking at subsets. This would be a very large number of curves to plot --- age by sex by FLC = 48 --- so an overlay of the observed and expected curves by group would be too confusing. Instead we will summarize each of the groups according to their observed and predicted number of events. <>= obs <- with(fdata, tapply(death, list(age2, sex, group), sum)) pred<- with(fdata, tapply(predict(cfit4b, type='expected'), list(age2, sex, group), sum)) excess <- matrix(obs/pred, nrow=8) #collapse 3 way array to 2 dimnames(excess) <- list(dimnames(obs)[[1]], c("low F", "low M", "med F", "med M", "high F", "high M")) round(excess, 1) @ The excess risks, defined as the observed/expected number of deaths, are mostly modest ranging from .8 to 1.2. The primary exception exception is the high FLC group for ages 50--59 which has values of 1.6 to 2.5; the Cox model fit has greatly overestimated the survival for the age 50--54 and 55--59 groups. Since this is also the age category with the highest count in the data set, this overestimation will have a large impact on the overall curve for high FLC subset, which is exactly where the the deviation in figure \ref{flc6b} is observed to lie. There is also mild evidence for a linear trend in age for the low FLC females, in the other direction. Altogether this suggests that the model might need to have a different age coefficient for each of the three FLC groups. <<>>= cfit5a <- coxph(Surv(futime, death) ~ strata(group):age +sex, fdata) cfit5b <- coxph(Surv(futime, death) ~ strata(group):(age +sex), fdata) cfit5c <- coxph(Surv(futime, death) ~ strata(group):(age *sex), fdata) options(show.signif.stars=FALSE) # see footnote anova(cfit4a, cfit5a, cfit5b, cfit5c) temp <- coef(cfit5a) names(temp) <- c("sex", "ageL", "ageM", "ageH") round(temp,3) @ The model with separate age coefficients for each FLC group gives a major improvement in goodness of fit, but adding separate sex coefficients per group or further interactions does not add importantly beyond that. \footnote{There are certain TV shows that make one dumber just by watching them; adding stars to the output has the same effect on statisticians.} \begin{figure} \myfig{flc7} \caption{Adjusted survival for the 3 FLC groups based on the improved Cox model fit. Dashed lines show the predictions from the marginal model.} \label{flc7} \end{figure} A recheck of the observed/expected values now shows a much more random pattern, though some excess remains in the upper right corner. The updated survival curves are shown in figure \ref{flc7} and now are in closer concordance with the marginal fit. <>= pred5a <- with(fdata, tapply(predict(cfit5a, type='expected'), list(age2, sex, group), sum)) excess5a <- matrix(obs/pred5a, nrow=8, dimnames=dimnames(excess)) round(excess5a, 1) sfit5 <- survexp(~group, data=tdata3, ratetable=cfit5a, weights=count) plot(sfit3, fun='event', xscale=365.25, mark.time=FALSE, lty=2, col=c(1,2,4), xlab="Years from sample", ylab="Deaths") lines(sfit5, fun='event', xscale=365.25, col=c(1,2,4)) @ One problem with the model based estimate is that standard errors for the curves are complex. Standard errors of the individual curves for each age/sex/FLC combination are a standard output of the survfit function, but the collection of curves is correlated since they all depend on a common estimate of the model's coefficient vector $\beta$. Curves with disparate ages are anti-correlated (an increase in the age coefficient of the model would raise one and lower the other) whereas those for close ages are positively correlated. A proper variance for the unweighted average has been derived by Gail and Byar \cite{Gail86}, but this has not been implemented in any of the standard packages, nor extended to the weighted case. A bootstrap estimate would appear to be the most feasible. \section{Conclusions} When two populations need to be adjusted and one is much larger than the other, the balanced subset method has been popular. It is most often seen in the context of a case-control study, with cases as the rarer group and a set of matched controls selected from the larger one. This method has the advantage that the usual standard error estimates from a standard package are appropriate, so no further work is required. However, in the general situation it leads to a correct answer but for the wrong problem, i.e., not for a population in which we are interested. The population reweighted estimate is flexible, has a readily available variance in some statistical packages (but not all), and the result is directly interpretable. It is the method we recommend in general. The approach can be extended to a large number of balancing factors by using a regression model to derive the weights. Exploration and checking of said model for adequacy is an important step in this case. The biggest downside to the method arises when there is a subset which is rare in the data sample but frequent in the adjusting population. In this case subjects in that subset will be assigned large weights, and the resulting curves will have high variance. The stratified method is closely related to reweighting (not shown). It does not do well if the sample size is small, however. Risk set modeling is a very flexible method, but is also the one where it is easiest to go wrong by using an inadequate model, and variance estimation is also difficult. To the extent that the fitted model is relevant, it allows for interpolation and extrapolation to a reference population with a different distribution of covariates than the one in the training data. It may be applicable in cases such as rare subsets where population reweighting is problematic, with the understanding that one is depending heavily on extrapolation in this case, which is always dangerous. \section{A note on type 3 tests} One particular software package (not R) and its proponents are very fond of something called ``type 3'' tests. Said tests are closely tied to a particular reference population: \begin{itemize} \item For all continuous covariates in the model, the empirical distribution is used as the reference. \item For all categorical adjusters, a uniform distribution over the categories is used. \end{itemize} Figure \ref{flc8} shows the fit from such a model. Not surprisingly, the predicted death rate is very high: 1/4 of our population is over 80 years old! The authors do not find such a prediction particularly useful since we don't ever expect to see a population like this (it's sort of like planning for the zombie apocalypse), but for those enamored of type 3 tests this shows how to create the corresponding curves. <>= # there is a spurious warning from the model below: R creates 3 unneeded # columns in the X matrix cfit6 <- coxph(Surv(futime, death) ~ strata(group):age2 + sex, fdata) saspop <- with(fdata, expand.grid(age2= levels(age2), sex= levels(sex), group = levels(group))) sfit6 <- survexp(~group, data=saspop, ratetable=cfit6) plot(sfit6, fun='event', xscale=365.25, mark.time=FALSE, lty=1, col=c(1,2,4), xlab="Years from sample", ylab="Deaths") lines(sfit5, fun='event', xscale=365.25, lty=2, col=c(1,2,4)) @ \begin{figure} \myfig{flc8} \caption{Adjusted survival for the 3 FLC groups based on a fit with categorical age, and predicting for a uniform age/sex population. Dashed lines show the predictions from the marginal model.} \label{flc8} \end{figure} \newpage \bibliographystyle{plain} \bibliography{refer} \end{document} survival/inst/doc/timedep.pdf0000644000176200001440000106124513570775573016025 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 3 0 obj << /Length 2248 /Filter /FlateDecode >> stream xÚ­XIã6¾÷¯0r‰ ´Õ&µON=•‚\`€éT’ªJ)Ë*héŠóëóVв]i Ї*“ù–ï­ä¿ï>üå“…Ö$ñæð°1Æ„I’nR“„Qa7‡zó¿à·qk‚öÿ·»h¿-Œ»†'?60yÙîlà·Õðל¶6 &Üc‚;Xè·°ãË6‰‚fC‹ÿ§fd"%cêÈ­C|øG"ƒ‰®©ÿ~øÏ¦0an³ÍΚ°09‹Ì U¦Ï{“ÂOÕ.'G¦Ý’ÄÄvzZXмYð'Ïé‰=q>"Ó?™À ‹$±ˆÛ.5ašä Dæ…a!Ûö¨-üÐ8›Aj…‰›<¸;ÓªÍA1à>¯Äsip7°Lyð:ö,5út”}!©{֙Ͽ ” ž·ª® ÆþÄZĉ¯…Ó°° …‰Â"(AÎ@”샻c{j«›P=6)@…Qóa²]Õt(÷½³ÇÀ*¾g)- ÷8/D®lcâ0ŠS¡Ú0N‹Í.¶ažLÛlwÆÀÙŸI©È– ºê¹ÂYËHÉ|S„EjS$¸'oÉ÷¢âA±F¯ˆ"ðRž>žPÚ‰¿Ø "¯ø‚ê G^Žø\ݲ³E¤$Gƒlº'SžFb 1¶ó’ÍYÒR­,ÑbE®ÿb}¢ØSÀ*bÀÞÀ’MX«ÏÖì¯UÇ‘hËGôý(_Ë‚‚ÔµˆË@¢óÉæ‰cK‡.Ta^k¨¦ªk 2‡_’å >á®ñ=“(½f˜½¶b€'ž½Ç­X¤xZ–»~T”ó Ba»ŽeÏ‚Ž¬¼£¼N@þ›2H¥|&ËâùðÊ;ïÿEò@0¨ýQœÆ˜àEx\‘íËÉ‹QDÀØ@—:iWk²Í–d»ÂØì×·Îc“8®ƒ~|Ò¨4f…&LkÚPòd¤Ì"ò£sŒäm9سÐ$R%98Cפ»o‰®+F,—øh­È5«Þ}ĪÀ%a•s¶¿HBblu&² Ÿ8•´ªYYâäˆ}ÝHz‚O1J“/ÛT !ÁK)¹-WýŠÂ"—"â€_ßd0'M&äGôuüÇw®ØÁ¤[â²,Ù •ã2-1¥µZ€&„ù¼ÐïyHBT}÷‚zŽr²Ò nšø©™ŽkËIÏÀ~Z µHô8ð2iýFd³“„Û]ï¥såy¬J—窵¶1CXŽšú`…D"ydâEæ?¦>Øî«¼ŽÌ‘7¼âÇ~ RM Z‘@Ê{Oƒ ¾±DÉʰ<;ÖHçx¾È'p€¸”øï¼ÂJN¢Ø¯ZxZôùÁtqœØ8ÇAöG¡†é‡g®[»8sÆœ#JŸ4.|ÙºÌ&ÈÅÆú– /Ô=’;^RwÞëS¦¯aX‡?±»ªQ’?o Å›0æFŒ•fdiHf¥ñ8sw–ÄÁ WUZ'{>G¾]óØ—6Í›ÜKfÈ ¿fô†^iúaéÑÇýRÆk1ɃšA…KÙ¢ð;´’?ŸÝú Ì\ Ù<[ÇF'(÷ë‰IÛœËwyâ±ßŸžùr$M´ü gþØñÍ€ýJ¢-DAU ª„+7Å:VJO¢r©{’NkReOO¨š<)¾z±©”ú[˜Qr¡ZU/™ë:>aáŸÅÏè¨aŠ"øl¢Ø±¿~xåñ“Ü®VÆö€xø´ TH2Ηá!/‰lå"SÕ£?_>ï)ìÆxÅÎEç®¶ÿw»Ër,Ôñu]„ª)RÝ ô ¯µg'tªs#™ôIÓð+Ï©z=ký8rR„º‡i–]׊Š3wð¥ªÅKS‰UßóJ˜7”›,¬øÃÁ®’#$KÙD±ý掇д¥ߊ~Á ›ÐôñÄYÉ«Ú ŒÏ¼> stream xÚYÛ¼ñ=¿b‘¶¨ d‘ºÓH‚Hâú-Ї¦ZI>¾ØÒV²“ìK{ç$)[Þ¶ÄápHç¦><¼zû©¼«ÖUnó»‡Í1v]{—gÅÚ&ÙÝC{÷÷èýê>)ªhÚ¯Lt|‚¿ü:~_Ù"ªñïet‚¾ûxBGë±±“¨tðwßâÿàäQ×Ã+µ{¤ubZ@ßVYÕ£ ­‘F71½3¼O8JÚ{Oç4ÑȃeØøuòRÖ«û¬4ÑÇ×@›¤…ŒŒ_Ëær~Ì4úi7§Õ?þ|woÒu•¦ð4ë*~}GHc«<Ú aíçûý™÷TE´¡™ çÈí€C46öà_iqõIh×'~š2“nìåó€Ý¼YݧÆFuß úD9Ê‘åó•0è@¥o§´¾­l©Àzy¡î0 b|O§Þã8æT<çÑí£Å›èKœÅÐj=öÑñò" DŽg{À6 åÄ Úk=…Ñ]Ë`«¨UáE`Œü²UTÅ‚Ô ¶± ÏÛ"_gJ¡„ás °JldÒðTj—ØsܾmEfP<Ó„”0§ã)½¾@%^‰ï ·- €3^-/4ZåeÍc6Ã`Ɉf 5?ËV;AÙOU¦|$–Ö_"ZÐê ®­Áþߊ*ÊÒ!}G=¹Â[`ÕÒyk¢ø¾Â“M¬…“½‡³¤F‚§zŠ#]|´¨W±ïøedeBd<à9ã"´™‹€ÝÕ ¢ ‘—–Çš&Uô@<_ yÄÁÛZC vp';|eœƒ0æ+«gÈœœ™ãN5±WfHi‹ß~ÊŠÐÄë45@ @V=‰H<ÂïÙPC"rŸ3Ý)I—Y[·Ò¬½:!¸Q- ºtNñÅòêY0$0E”¡S1ZOWYTÁ°ØÃRSaÛ°Š. • LVàÆp×Ì–&žà%×.i05D-Rè«c99ê¿­Ê4ab­l¹¡Z¹÷ QËs:ÍLë6P‹Ô Þþ‹Œ;™²z&¨µœHx†N¨çÚ,mU©ªŒó ц—mñEÙÀ(` M 0%‹¾˜$Í^ã{á½-âæ‘‹ÇAý¨'rIôµwÚÒ#$•з)Žè‰È¶ÃP d×ñIQCŽ;¯mCÈ<Ñî=)Zljߎξçg¶î̸›˜<+ÁĈ[…±gçšGYû³7Dbî?tþD¦ÿÇ›”žƒ ø ™€ep(Fؼaã‚hÀÀKCö‹b¾V %'–ÓˆBí§‰ÐÆ>±õ–lo޶ÞMøR ÎÃìÿQ7bœˆ…ÜD^Ô&é6©Ó;xeé[/±ð'œazTçièCmî¿r7¹%AS#‡ê_ga Öì ØÝ£ïHr·YC¿Ä)Ç Y´Ý‡BßÁD°L ÚÂØ.ìÜb4昄‰ÔžD“dÞQ˜A§Ò £Æåí÷h[àãBÇÆm!±)If²M:ãíe¯“/ýªe¶JÄ?cÃFãÙgLØIœÅ´£ïx)‚¦/ò) 5@ÄiôQ×î>ùØ1÷~ðUz‡@Ò;Dì(qè\„¶¯^úi7Áþµ>v ’ø*6qài wv:¶õþ(sìI6ßI RN°JñÄèbÎ3œñsê µœ: « Y‚è¨O7œ9€÷†¿œ6du\$ˉ]—y¢“‹UyÏ;x)ÁÁþ£7ñ\´5£,»un€mõÄi qÛÚb]BÄ6“M2]`;žÔ·‘ò†ikdŽÌc•„ “2)R:ˆóÉ[•£Ùäl2vSàu#Ae·Á»óù†‘MŒbÄóÜívíKò“FŸû¹ñ“£~$_¢!J&,Í<Ï| BêsÓ™…È‚VR÷Òò2›%>[ÎØsò¨u+;ÌØŽ’“殹ÇPê–ÙP´î¼a†¡öá„cx~5ɸ:e¼_ÆQnjîÖ`ƒ%½“íI€D‹e¯ @s3®UÏT ¹¸í2§­–%Io dÔabþØÞ¦ž;Fæzh2Ã4hÛÐç²tl˜8þ†Çâ“ËbîˆDó‹óð~-渼Šb¾ŠŒßwd¯`æ~->“…?q7KaÇöqG“t-ºÜÕØ$|„g,Aª—Š0B› D%y9‚k«ySãœuâÚáóä“€TâhÏÓyŽÍ¿xžµ¡05<Ť†²ew€0*‚àôÛ½—ÖUuôÇŸáï=ù{ŠÎx#7kjäÌiœ ¢A&ÜilÙoÒžÔ;Q¹'¶ [^ê*֗ؤõQ Ol‘!5ûÅŽ!3ÆÅ>èÀwŽn*Ÿ\)0"càù“,ð8ŠäµÏr„l÷iý­ØG¦gPTæIµsãx!e ÛÖcé¼îµuveÕë .UN­ }¨¼Jö •½!×9ªè7×]¹þZq}ãàç ¼cÛßUe t5¾Ç06ÂþP²>;©Zà)α c¹€CT-Ö#IETÝÿV˜%a}˜–Y'B˜€´rà÷¾sg(èOª8[ò Óä©È>?~ס’åÈ»aR7N™DW3¶²ƒ7 ˆÑØ{✰ÊZj™°~t1ñ¿HŸÓBÃ0g;_±3ŒÙÓ´ wÉI ãrõ7§AÕ°·øaÐtZÈ J¿7aÂTnñ],Ë;Ë"!â2š­ü™Iº¨çXaTj>Zïq ç/Øw¥¿."YjŽ8 ÛE´jÁy<Õ‡óA ™‹w¨ñ]ò¤6³—ް*톱gÝŒÚt’8bÛI`BÀ›ðlV{ÀöÎ×t²ÀùòØœÏJß¾±ÝÛFÜ‡æ™Ø[%¡>„#ÀJ‚ùx Ç %´Î6㋃Xl…x1¤ıxUG±F­7$A¨OÊËK‘¤^²‚:Âé&t8ÝÌWE3ò­rá;†W7x3‚ÍPÙ¦äÑš7 ß¹š–+\Ýb$”Œý “3¤15Øš{­Û·Z°Ï£Ï'ÆiÔ[²)¿OIûõúj†\$àšÝ£˜WŒ@ñ­‚Cߺd™z®g° ©Å Êˆâ‰K \™—OºJÄåÄï¥ò‡+_Y äm1/ë”,£àðÙ¨'ÀW$àJ­¡šLí+Ó2uWÖ.Ø,®<\ø>T=‚5€–!šZ[6F¾xôñô±ðé)Óµó;4w|‘¨£wÁõÄ“:1$x÷ÄÛ`Ñk’Qê*!ÜÝ[’ây­ŒÆwI @º£ƒç±Ökw¼U ´Ûú“ ÷W`»{(†”•Ö=wvõ<0—üÉÏçJüÉO}ܵà$$ˆ›vÊ v?¸g,‹Ø‚ >58’‚Z[p‹‡¹æ_DAV¢OÎ%‰A«ù“sjrT¨+@VwÎi{oÍ•J]Êà_D€@œ;0€ØÕ'JÂNœkâ'!OA1Uçí^Lè¶!K#g+¥–à>¯'FØÍîõSLöùŒ^ëPOã}Ž{Xš˜Wèü¨…Fl„vŽ5¡œ¸%\Ó׬BK‡Ôà’,ì»& ßÙ‘Mé5ÚÝ´Ÿ¥T\õl¡0UJ—Ed¶}r9GékFí¸3éàÓ5®»|(£'¢ï‚Æ#C¹bë>VˆçtSˇ,ŒÙ»Ê`É¡¤w˜_ñP}Nïäœç5Õ¼ÞoÊ ßáæÏ9ÒÆ[áí‚Ýòc!Õ.~÷Î3¦›6Ý'_Ó¼ <|Äsïù%-Tl{½ç‰ý'0qPÕ‰±$ƒ«º_xývжãÀ_ÝÈU²‘ æ³)+ãë¯b¸ÆEÀÝ…ý©ÜÇ ?Ô‘gØjæ5±Ù¸­ìÃRv…¶~®„0_'!;]&,¡&úÐÍ.ÿ{?ñ³–Áz#ñtð ¸.E!Ô§“-tQ˯[öY¦Ü°]T€Ó:‘ÜÆÕô) Õ¸L2«Þ"ÆÔ6¤·ï'ÍÉxè} ”,}¾Å^)ÖGýîH«±?.©ß‰×C°æ¿øn¬_ïs*ØÉß%\oº+¸ê•ðË‚3äJTKéŠ:]Ëè°éÔÕ$ºÿµqI–lIˆ[¯‡oö€Rö›ÛÁŸ»WÏ„_Aa§“«2Ú•ûâßö’ÈîO.¾ý”›…¯ääÿÈß}L¢“|î íN$Y"Cµi¬Ëš(qNØÄ}þŠ ÕüØ®øžg`EÐsðYɸ$„²”>Èr&—oR×ïÑÒðëÆiÿF¿È'ùÚEU?ø°à쬉~Tºô㘷²¯Ø}JBR‚ê#RÛ¢ÇíMŒ®ÈÀëdbñ›å«]ñ K’•÷ê3©6xsC¾–{›®{-»ÌÜ)"TV¿°³G9ÂvÅìåãÑo•4rÞ+åÿ|"à[G’Ëb×rÁѸklÍÙdË~_ÿúoNÅÑkZøüÃ-f_ÝHÚ8['yv¦w]–¥~Ëx¯þôðêß¶^” endstream endobj 22 0 obj << /Length 2220 /Filter /FlateDecode >> stream xÚXëã¶ÿ¾… ˆX+Eê¤WôÚHQÉe¢¸Þ­L?r²äZö^6ýç3OJZûÐ`Á•D‡3Ãß¼üöñîëïótQ%UnóÅãfQI‘—‹Ü‰Íüâq½x¿|s¿ò6[ïÓe £‡q†ñã <ž`Ô0Ö060ö²üÀ»²|‚ñF"ËH†kÆŸ`|ã/0þãgß,ZÙò"¤)Œo`X"ùðø÷E–&™Í«4M*/Rÿ*âÖ"#îüÆ¿åPjµë飩µˆ‰”[Ý„d/Ï/F1_>s js‘Þeë³ÐµB¶LI“Õ-UÞŒv"KyÖãE¤b]?Š„Ÿå|ª7àÁï„ê¢&P¾!Zh¦'¾þsBº²?ʆtÕ›s)àÍÍÕ}}ßVî;exš‘#€±À8/’2÷ à ¿Š)Ð}bm¥Ý Hþazwß=Þá.³HÕ—²Ì%Î勿p÷ß;Ü9"˜¼Ò’n“‰¯8¤‹¿õw?ÁŸ.­„åjÂó-úpy홵‰«Rï_`§] ¸Î¼]î|‚kövü¢Ç“Âÿu[^®ŸîW¶Xö—qÚ‡´Â.œ„Câ öxu‘6°}5‘ך*É]4µz×oB[ÎHÎ!”ýf"HàwŒ@u;ÐQtr Ä¥>›W’×ç+A¼§žt]‹ß6¸uðŒ‡EdíïâWvY€A’Gç,ÜadZØT1³Ñ¨•X…>ÉÆù’X?ßÛRç×$jÍäiG&<‰ ²Ÿ¤Ùoõ‰Ü/î©5èöE ¡c†(ÜsÄP×GÅ~_7x;ž'áe;BÇKy…¹ v¢~#vS²÷ºxÑ>ð\ùŸÇ^Ë«úue rõCï–‘H‡‹^wÇÄP¹ÊJÏøÁ½&6dŒp´º¦D²ÊMJp‡MC+ܶ»{‘tÂÅ»hDn9ÜÓ†,}àB<§jÂçØeú×ÁPsD~úsÌäè gƒÖžÐ’/ü^3o@ž2>° >J+—ü¢U…°?*:ÎóbsÝÅ÷J¯o{â°¦½Š6g¹Ä¢"C í{IbnQ³¢Llá4¤þù:æúdŒÍÄêVâ(\¸”Y’—7R9Âþ#lÍ)ˆ#o:L‡y¤–°â9ŒÉéRaaM¹+PT+¨½êA66dÙFÁ,<îõòèõnÏ·…›Ž1H‚ï´ÆVØÍ·ÆÇ°ûI9ýßkh“ëGñw*c˜!QÒÅ–½ö¨'úåS=ȕ㢟dúÍvâÙ™s‚Ï•*DØÍ£v 0êË^º[`ýøÎé´ø±Þ$ÞÅTüæ7©IÊ*«ô_bèËÍ2÷ÿƒÜìšu‘%E!÷íÿãœ33 0hŒh ¯0„ºÇÄë¥-¯wŒ1j³—"Vw‰ „õ„b¦£ôÅ%p-FÂ=¢5Ä2ëÒL€E¾‚ËŸ­Žiß ÕÇõô‚`е²ìuØ™…&£¶E³7<Ϭ&€¡é2®‰¨§ƒ ÊÚNe‚*øZéªnÆj±¡±–v\¡k~̲ÛÉ Î¸QõKn|§ž€¼®:_QÜ¶ì•øÉÅ™6´µD`¢À¨a5Ìè¯9ß`}SaFTa}“åS;vµó zYÄy¼NcЦWV×£ƒÀt²e¤ÞÒ$´_4?‹\Šqmû%-DÝ¿oþÍ`¤wõE’›j3Ѝ™ky¯OÛ ·î¦¹õUG_B›îã¯/úMÒq…ø»îéó$Ë %ž&ÁÌóïiƒ8K¢'Řƒ¶õ4‘Wûzø¾m7NÀ®¢æΈTnùK¬=a÷§¤, ¡N$‚Ø-ëÍYË/øŠEAúyIp/á–]‚{6“'îu’-8_,3ÃGI0I×á¸wãï°u+XLí”C _[i€¼¥Ÿ[©#…©Y”ĉAaÁÕ 1(pjMК)Æ+¦aÂÙY™?™Ú“¤ÍI ¦ɸ—‰ ÍE«kgy7B`¬Lœa†Ý_àß5±§F‚H(ßçÉo±¬õJóˆNÎdcÈçß÷ò«~k7f¢ØÌvl2xb½×àL8/ä.Ígc/j$ÊRýOݧ‰?QÅCjTÓÊç’Åí$c½?oþéuž%Ø,\Yp¾è†zòO'–ëðñ\ÝË3†#xo%´’up×Ui'¬âÎÏUÓ(މuíH|ä´i³¦õÄñVï`+E›5¢‘‡¸X%eY²!3ýa÷w{ ð• endstream endobj 19 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-fake.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 25 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 26 0 R>> /ExtGState << >>/ColorSpace << /sRGB 27 0 R >>>> /Length 1708 /Filter /FlateDecode >> stream xœ­˜ËnG†÷ó½´4}¿lAI$¤ -EbÀ‰@`Ÿ„¼~þªê™sN×Ù ÛúÜÓ=ÕÕuù{¼ya¼ùdþZ^áçéáõ/ÏÌó«ÅYçœ9ý}õü%þ[³ùwyóÖ8óañæ~>-ž0¿.9ÚìMì6óÅÄÒmq?›«ixP²YF½/¶ÆmxÅãxí¶çãøÀm<¤h}ÙÆWÜÆ£+6¶£uã§æ­ßÆŸ]ç¼?ì8çðþvyús€'¯ÿ0ÍŽÿË/ÆTÉܬkæú‹¹ÀÈ¥¹þ´ütÍ+oª÷Þúz67?xnM6ö“¹þáï ±’ Nç>ø½Ñ9ÛÂÉÜðð÷Æ’¬Kgs·÷Êñ¤fS¨Åº ‡x>̇'tíÑöº G=þ¤¶ <o™lÜÆã!:Šëu|àɸ»m?uËÑOŽ Õ¶dR°Ý}/„¾3·Á~Ì œë#<ÆäôØÉÈÖ”ÆäòÈÉ!$Ê™Ü;¹::þ)ôå,F®/)x²nTªŽÖãhÖƒ;Çõá+.›ÿ³8xDa‹&ØÆÿæâ÷Kã“37ïîæëÝáoóáã»?oï—oÍõ‹9 ÙÏ'þ¯zõÏý¥y±î·ß.MÈæâÝçm=ìÜî-6NÀ²­ÅÜߘßÌíèk,9Û¶ ØyÑ «A#w`© K³%cÏ^cáT%¬N#^„B°”ÀFΈn’#eŸBo«'L¼…a$-U=™3#LOôp 68ÙöFˆE02âEM£·¥ –¨fAÀ5H`a×Í3øa8¶k„ôps¼Áá:r{ód¬BG.F1ã#Ì ç´b“Óˆ!ÇvÇK͘¸ ,ÝS@)Œ´1`ä@šÑ‹c{’?¡“-t$JR†üpç‘úŒájNàÞ¶Dqƒñ.²-Š=©aŠò™}ãöNìCÅU’ÓC.¥ºÃYÒÄ»Êy¢ffȵ¤Ù5ÉY¤q(¿Û2sàý(Îd&qâØSÌMK˜jºâ`ÓÊµí°£D#μ߉=Žq<ŸIïh†ìóÌ…4œæd[ iŽã¼ÀÈÍ("ìoLw;ì¤My,ü­¸Äök–æ:â ÇjÎTñ‰#ù[3â•÷‹À¦ý*’Ä´_Åž–!.4Q1tEŽƒi¿ŠYv7ª š‹ Ù1šžS3Êï'ŠÍü>T5ã–Qù>OÅYZ¡Gï§óRG¼e=…©pßcH y¾r¼ÎLêGžïЇà¥–ëÁâ ßgC*I>C‰Ð~×±ôs²Wñš/ÔÑÛs"N|žŠýð7ßï0DpŒƒ)ŸgjCàÆŽÕ<!~~fÈyŽ×Ö9ßfF™‰´.œm‡³œ'^,¬9J>ô“°Ç^Dy@?¡xžý¤½´žâ"ùJ Ž×mêÌóA±“zKŠü=qå†0…Y‚‘Äœ5c  AبçNÿòA$1c&뀅ómF<ÃfTî–BŵÆX(EfD]vŒ|À3†á~ˆ=¬9!ô8‹›?àî;c–Özã‡'ô¢|#EPœ¾ÉqZñj»Þ#4O–«Étúr½Š¬ˆ`Ìrs?Ç2Z=µ<§±ÈÖ‡6qÈ4_ Î1&ÖÛ.–Q¢q­bå>qêrØ«dQŒÇ%ruÃHÒÂÓí°& ¥8‰†Š`Ó<ÂÍ'ÎuÅèÌb £ý(†r‹£ñ'¦™åÖÖ‚“²Z™%êÌaå&xb’¨\‹\³'Ñÿ¾TyþœI"vfh*aŠW Ür{ìåND\wé> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 32 0 obj << /Length 3046 /Filter /FlateDecode >> stream xڥˎã¸ñÞ_áÜdd¬©÷&`È‚í ‡9¨eu[;¶å•ìé È·§ž$eË9´)’EV±^¬*öß}¨Vu\¶X=>¯ê2.‹jUäelÓ|õ¸]ýí×&êš-üNëM–Øè}âNïIMºâd‘$Pª¢íi*0艵$M²èé"öUÑ4:U—ƒ­`:ßÖ]€“?p–õS,±ï‰|j†•›È&r³ KNëè£ öDü N²ÁÓ „:ä8&eéÓ^TÒç]­uaJ‡‚î[ñë–å ÍIoË?h¬•Ã`ÚŽÉdó:'AÈZ³gÚåÆiùŽp¯ºlì¼ôñÐH  œTD¤¦¨ãH¨êx-nÈQ  77Œ3tñ$뉷 *L£ÊOøüexy íª»nõ™¦iýuþ{‚îö¢Š2úLrÁ2q&‚[(/-ÇqS£J7Þ{¤ðs‰O/¢¾$h¶|áþ››'vóûÞ-¡WÎ+ D 7uÞÔèH’è0LMÕÀûÃÁ9/]ùÂÄq77~’…ºivvMOÎÄ[‰Ôñ&騰Ã`PîS‚Ñ3æÞT`ô✺™EW0õ)É\sV¿v'(T@Ãé3?«5îgïH9Úù ê áa'ÖsÆS„9ÊzV¶ù¨Šå@UDˆÝ?bPÏŸÌ ý&¹ÆŽÜ"æ'½ Èݰc·(«á“âf×SÖO¹pZÚ‹8ZØÔ0ĸiÈnèÌØý½'s”]›ðÒÚŽ°!GË4Nªâ6Mk"~:¿IVÎQ7ÙäÆm0ø£DÛ[wG¦|ØîÌ;äe˜G'q‘kBºŒýmšÅ…KbÁÉÅÐóL̲kzÙ©¾ÃÈ®ae×@Ûú˜¾ŸMrÉ&^%âÌÀ‡fäÑuÜÌúg6%¶äY)~X£=È€$ýiÔu`¬ vc“d«XdCòŠÂ£ F ôÕÎ’Æ^#CVÀ¹o€Ô‡??>üú€ƒdeV¦ÌAÕ*K«¸HóU{xøùs²ÚÂ$øËôê•@+›ƒòè -×EàƒlÊ1Ó$Wµ)_ÂÙ{øãVÉó‰LøÖIäìz¿÷7qVlQ=ÞêTÒD¿úZ—# À×~­ñ4õÃÂ.® +Øw9ÞåÄ Ø[®v'ôMé9: Ì«­DŠÊÇo<©¥7Ìè@¶kºo”ÁÛûQ<“Þ igI¤™ø±Uç_sa:¹Îsa⦆¬Xͦ1ñ7×T‘5‡“»àn¡Hʼ…õ:Œô'Í7ù»q˜=rå(j¹Žæ%÷¾Þ–}ÿ4,ªØÕƒ†³ü4›ùa^¹rïFsA ,ÍÂM'-Ùœ´FóMð*2Ð3TCY¨+5#—EÇ9ZønC7ôµº”¥‰Ú$Õ|Ú çÉnJÏôì"çõÅù#LȵBß»H;{—Û–Ög¨%¾ èiab >Z¸³Ì]ç vìŽ,&!@»YéÛ‘¬Q ~‹"àÀ> q.¸ô²Z*û-¤›Ã}UKRgÔæýEk5cÞæÞI§aÉëèjeô/|Ãrü¿ždü ݱF†8ÍJ]Í8ñxï7 V<)±—V%Ê,ÉïÕ“ÔRóŠMHïZØ{78ê\LŒê½Pz¦€âýM1sšv»PÚ<É3²âÚl¸TÎîÏÜ:59. Gÿ/©õ6m³à•eà9ºí‰M‘Y+yÑÜbekY@8%]X¶éÂÝEîxIf‡AmtþÐ’?¼÷p$™ÍÁw¼w”ä‘^ê_bá«ä²š×¶ù7÷¸Ë×–T[(&Û?‡™³uÅ*)ˆÒ ãÊà ~1)çfòëÉ,öQs¶´üˆG0.dljFF}üÂýþÈ­’Ü!Lg÷hÃŒEº«Šƒ•0+]½£’Š\ÿl¥7 l=³"Ü£Užÿ£ÃÖCˆ–†‡vaÊ’/ìÝS{pà†âÞ¥NTêö¦/¾ ¡ÿsÓ‡ú^=¨*·º\Rzfä÷²‰Åm“> stream xÚ­ZK“ÛÆ¾ëWlùlÕÁà ;IU$Ç*å²U9D:@ø°H‚!H­×¿>ýœ€õªR>,1ÀÌôôôtý˜}ûøæ?åÕÉã,/Ó»ÇÍ]SÅUYß•E§Yq÷ØÝý'ÊîWƤEôöÞD·=ü:ü=mïWYUDWhïðÓ¯ºþ ß …Ý]º‡öGåш߮#¿<᜷4ý²ÅßûOg®LÜq•Ü­Ò,®…†â)w=“Ø s§õ9NL¤¾kâ¦LK!aê8« ù+ÌJ’è6â’4÷Å™ü¬ikLp•6M´.Üø|“žü±4àoËó»çµüÂû†¿‘ß÷Ô$öŠÊãÏÔ&® ™08ƒ„"mEãï*3q–¦:é—(£§0·¾O+1r¼ùyn/Ľ fŠW`žo²êW$ôõ¾(£öÀ3p¿ûÏÒÝ^žïë<ŠïWy–ÂQ8 ¸z‡¯-ò §g²8Ék8:Tfw/RÉ2b`àæg«eD¾¥ÑíÌÏÖfãwZ †¤eÔã9t¤¸ù+ÏÃöP`‚ õ §ž<•É û …vòTÍ8ö¸ûá¤'n3‡¤ƒ(v ¬˜œqQ6Ñò¹¢{bSpÌ!õàˆô«ìÈF¤9ˆàBþ^áé$P€“|¹áH/¦“ÀZ ‘*áÕPlVÄDm8ñgŸ­ƒfW™.'mßaøfÜ:tNÛÊä=HCÌb¢ÓÇ•µnÏùò+'îŠÀû“ˆ»®£G_ŸjóŠ>Õ meÀwWá)ÖUqÆ´ç³ ñ3Sݤ G~·¾û^”>õÕäðèýå£âÅHG¡!Úì~R·õZ­gÉbQ *'ʺJ…¥TXJK|H=gG( OòÆ“2‹~H‚ïšx AšÉî±{æO uÁzU°žÓV¤Æ,&ªÉ&ÆÉ'!ê‚^ÝÂ%‘É?y<&ÖZÓÚAö‘*œ01§÷ðwA~kÕ’rª% ‡/ðœ|­ù|*‰znVÍÇö„s†›¦…'£}ÛÉ, ±j—Î’1 ‘WŒŸ¸ÛðÓgýIâ…Æ ²1ËW‡î/jCr6Ñ Iàîp ÈüÔãX©)¾  [‡÷Å'§0·ž‡?áh+CcS8| R8ü BÕæNƪ­‡“¸h¸8B¬Ùò0ÕµÜ$Ñ̳ÐáÐåÿ>“ òše^¨=É$‘ºŒaòo$ú \w9f9_æ8ÃÈQW9ßÝÌ£ú îä´ö¢g›ÄI‚l/<·L`H-µª¿l§“øWlìHÝ‚抛ËÅ#ëëÃÉXK#ǙӮÔuifú0çæ«ÁþYfStãÖ´j-Ó„ŠÎ¨ÜîmE>§Ö[Ó™ï|lýRpG0ÙâÏ3“puºFÊ/D!*~D<ØZkùaƒwh¯I:aÒ+çñ„?qÂ/{/å´Ú¤t_„·ÐV{éFŽ ÊÔD®N cÀÖz@è8“Ëÿ…-Öé§Áð4œ&‰ôˆŠ>dÃ?f‘BáÕ•;Ù4"–ŠÄ“ê–æÕ õÀ=,p“ÖÜ`;âþ³"ß~šPcïÓnà)­/÷{Áw<æ5¹þAhíð]´'«ûÏ¥Ÿ¨m¬Ÿxȶ=Û%‘8àØ?ý¨­ªš‚“ϦX–0w¹Âsï>H>,©Ü{ªß®0mòV%Z£`ò=[–€ŒQ¸-D1*}Xèô«)$RÉÝÜ-^WyE{ŸÕÏâ¸@ܦޕķiøªl#Bâ“öK!.Ðà-W©²|RV§‰R‹ÁuCBT.›Kɺ¢En²(Ol8Iãèa¼ò‹Sݰ@ŒÂ¯«èŸ'GyQËiŽ©Æ—²r‰¦%ƒ ›Ìì=ç,ï³üû®çÝx“ÚLÔ»œcõSx¯ƒ=¦‹#I@ÎåÒ>Aï¢|cÕŒOîÆÕºxÛX{›$Ï{ý– Ó¤ôgë÷o¹Z¤Ò ˆP.ØÞöžÆ€¼9/=7liÁ4”¤_8£wƒGŸ‚{þ¬Wj®ôjù§ £˜/N *­\^ë¼g¤}n·²*Þ/$EEÛÔo-‰4nsáº,-â¤,t°UÔ9µÔàëtÃleÍ´ÖJþ¢—{·øJšP¾”_%º[Õ¥û—„¼‚“S]×ܥåU&ÈC¥~‰ p„ç[ZôìøÍßGÅ¥ Iüc ´\f8¡òJÔû. T_ºÇ\$GÚqŸDKj¹(–Úeì§#å§>¾kPý¯¥»y^ãw;zØïc¡xÃÐ/ä ãt§Fúì<ŠMN ­%`l¿Äûz†nJ/5ÍœpVe€Do¬Ä'ÿ‰z "‰S5ª‰«‘|ƒ#>ÿNzBY`s×vîß2üB\šq¶z×µœc]oþöøæ3(, endstream endobj 38 0 obj << /Length 1765 /Filter /FlateDecode >> stream xÚíXKoã6¾ï¯ð­ kÅ—‹n¶ØEÑCE€vsPl9v‘Ä•Gƒþùr8Cr¨P‰³í±Y¤ø˜o†3ÃoüÓÙ»÷Ÿ›zÑ–]]ëÅÙf!ª¦µYÔ¦)¥2‹³õâK!N–FªBžˆ¢²Æ.4[ûHzãã†Âê ÞÔöiìSºí–¢ÒMQÓ>ô-ξ` ‘HêvØU$@œŸýº¨VDÙ™u‘oÕ¥JT1†7Ajª ×ÏäЋgº(/LãĺmJJbØÑ¶+C—i/ãdEk«Ä-C½jŒ.{°Ì]l6t Ü ;Ø&ï¼§‚èÌÑéY´IV¯¡¸¡œ Uô¹á1hÛZÑ*îMˆö(Gkb“ˆ!´æHÛŠ­J½¨Ž]34uºÄ¤º(:Ù ãi‰ q+4æø È$:‡¶y+ÚéQ'~ҤȂ廷yu¦«nÎÉÛo4µ‹L< –œôñȳ^Ñe=\ÄŠ4xÑÎMjçz‚¶eÞ¾J™‡³LèíŒN²Ôeݵ©‚{Û±ZL nRƒ«ŒÁ»ô6x-H1ZÌï?·‹Î^Ͳ†«Ù)ÐYºRÖ8ÛÚ¹ÃÉRéºXÛf?ÐoІî mŠm8 š7+ûseŸ{X4¬qR?¢PÓ0©BŠR·Êž½ /í³öWJŠQêR)á';Q(p1¬ã½mìó`ŸÝÉ©‹þ Q¬Ý ÷‡§“V[ã-u+‹_†CÜ‚©ä6pùïøéf¢|Ù¸ {IæØo²¨¾VBú‘¦mܲºÐ¦l…¶ aˆ˜‘ÓãÂ.þls;Ž%ÆR´L•ÜxÜ©9Eñ…¼è¹Ý©}Îs§R•Z‹ÅÒNÕ¶ÑÚë¸íà”NÇÁ™Ó 9«ÒHÝÛç‡îÈèM¹ÃÏ#}ú »=A°»¥Ñ}ÞÆ…óC;B° àpÚÙšÔã¦! –²ê §I®`·ªµvçÖ¯’, %íé(ΙÐPU× ËÒ Œ $ím`*$ÃÀF' ŸísCr~H½Ztnµ“à YÅŽ…Ÿw¬™ð8~³ígçÍ/ ˆ%G:×Î{èQÚ£ä$w~zþhÍüP=?Ôd¢qú×;x UœIŸ{dû¼èLøß#Óß²IÊU„.;­Ó;ô`À\_–9ô–?´Ž6(‰4¡y ~CC[OI”¿àÜÒ°¦Ç×:4¥"Ió{ôÔ|ÓqÒ}`Kîm &;sQЦ+Çuóñ—í%ŽÞb¦[ÚÑ8Ñ8ââÍ®‰¼(ÍÉKYU2%0_¥Èð?hú÷ TXŠ-ð)E)Öö±4L¥4 § Nç+æó7—8Š4·ÇN串8€2·žÀŒC0ÿˆsû(lw¥%$ÑÝŒŽJË \_w!ìÄ)’˃<Ç©[úÄuÞEû[pÈÂË8ôþ&në¹,¨?l"míoˆ©;ú¾wÏ-÷¤êrëÕ#ý³?ô#?¯¿‹TØÛoµa$Bl]$ŠÁ%A”ݱƓ¥=‡,É^1áVÄ!•l‚oÉc%â!²néâ¾zB_&Ö† ®°ÄFMp#Ëë›óÿ%ú5€éÔÑà«3©µó,ä3Š´.19€‹+¿@¡­¡1ð0‚Š!'\ð"C(S[£„úë>[ÃÔ’×g#Âø‚/”â=É·Ñ×±?c<„ë*‹;;Šà-îoÓiÐé´bô¹ë×®pÍžØÈ„Šbçܾ¤›Ï[pNŠâÄ…Ýj~G1$0 >y!lÜ_ísî.D¼r1ðÿ˜ÛI;ˆçï¦ÿŸWyTüÆ'T7”ü8nè{Û\Æ ùš•—Ô&=Ö¡&À7@ú˜Ñï ¾Gý•Dçqhº›œÙí4–ÔkšâÛ§¶¯‚|‰óÑEz®h‰öŸ¦ÝÿÒVùMä·+éYΆ6^ÅâìcdГFM¾F#Küo_™>3Èä߿ʔª66Àº²õVüwŸÎÞý†€u endstream endobj 42 0 obj << /Length 1081 /Filter /FlateDecode >> stream xÚíXMsÛ ½çWhr²'‘"@€”©{h§9tz«oiNl7šºq&vš´‡þö"x ñGi¦æÀHb—Ýåíò½œœ ’TY%¨H†Ó¤’™e"¸Ì(ãÉpœœ÷^÷SNYï¦OzÕT»Rí³jc#z¥^SóºT¯_¡y­æýSÎsõˆ!½c3ÚïÊÛî]ÕêpD £Sn,,h`Mï7Ho´ÔE3ÁgíÍŒ˜ØÇÅð}’')!YÅÿK@Š@B@ø ! â¹ñì€lwÀ°S¼‡ÏFÙï%Ô¯ZÿM×ÏB\î\c¼-²–Nθô6­Æn™ÉО+ÍÆï…±OQ¬Ÿ’¼Z$•`ë³Vä "ÎÉ)á8„„´€ÐmÁ>s M¯^."ó#yV$ ¯n e È'€¥»@×£ù¹ºÑŸS¤4,]go5+¢¹j·[PXNM¤n:^-—œ” Réo.‰J^›4õNóŠk@‰Þ˜RF ¦’kuM…~ýhñÑýêoÏ‘ÃBÖqLcŽÙ{Žô˜Ћ8.à€Â±…x޹ç˜yPæSn„ë?ÁQéA,bp®Y´!«ŽP¢veìÆ“‡q…â¾÷Èþp=û0‘ñ‚…«sâ-™j߇™[¡n±}FVÒ–c£q÷#ºì„5ö|xö­ë±ÝL4 ŠD³¸J +c³\Ýü¼ZZ³àmºuºlÚmí¦P Ré>&„lžöc"…»3bê'êŒD‰½œÙ¢ýã³ÒŽØs9¢ÏåˆüÕŽÂÍË Œ:°†%ØÍVaÃdeÌÙNÇËEš" '€Í>"°;œM·ÆŽ×íà[ŽÁà=­ñsãã(4síXë­…£A£1÷Žå «Ù¤$F?G-83 Ðµ4jÿä¸õD¼†áÓÅ¿Åägh§±Ú¾)Dw8|ÝÃÎ(¸xü³InÀ yV–4DdsÞ]˜co§ Ùáö¯ ßHÝIxRL •aʲŠ0y —;ÍÚ\"¡–ä"¼¥­W´8\q{6 Ãü0û± ™(xˆj$YšhR3Ü$‰:"22†ÿ<ØŒŒâî‚ïÊ8‚VšˆStg0É´h‹GJ(ðo/H¦Ùsg+«à¨ˆÄÍp;kâ.5.æXje­Š½m¥ý6éaÞ¡ðp-;±sô‹æv\ið°.-$*ó’eœÊp·¦Ž‘Ø\G¹WC¶qÄÀ7¹]°%¢fH&ßx?È Í&Úmïz“`â ÌÚãð5ÌÏÛ+öGGµ9ŽœxD3pK¨MU…ÏÛ“> stream xڽˎÛÈñî¯øÄF\vó½‰8‰7Ø\ä`ûÀ‘(6)“’'“¯O=»›ÇY/ì$6ûQ]U]ïæï_ýðSuSÇua‹›ûí16.½)ò2¶i~s¿¹yÝ?Þš¨ñïve«<:@s¿®…¿‘ûpø±¿µeôÄgìðkÖÐlº¾“¥ëæ€ý̆% þ=s®ëyÍÁ·ÜÁ ð·k¼]e¦ŽÚf}k+ØÇïÈø½Ù@{ãq¤ÝÞ±ô%‹¥3·û-?÷8y‹È ¸oƒìÂÇû¿Þ¬L×YO×¹°IOÓ”io±m£ ­lx€˜ˆï1Âùá§4 ™@ ZÄIQ3ÐÖ$<5<&l™›$<„ŸE“ D0у]Ì”ƒìßÒqQÚ ¯Ãò¸ªsÝâ¼Wîò¼Š†ÛÜÂiî¨ç »<Ù)u-³·óÇ…o#žïÃí*Ï¢_¯õÙs™ã¨-”8„4ôG~I”à<ÁCÆõÛæBgψñDöÜÄÁf”}¶ýAæ³Ü®pùI¹ˆMj§§üó%¯ÂÅÇAEä’:»3SÒÎÞ¸„‚H”^‘O†×ñg~Ft°Ñaã̰zÄî<ŠþÁÚ#ã@ï©©Èô¤µ9ËÊ£¬|Ã`W–_GÑA|YH ÙQÝ oñ)ªLÙCêÜë9m©5Á)Ú„Öî:Ö¾ 1›vsR ó™ˆ,`˱ilñ Ñ üN­ÒZ±ÄŽgžú€b'í ñxÄ@K¥¯£€èO¼¦é6ÜyëQLÎÂ1:"p0‰ ÖgO4²»Nuˆ­¹CÁ¬E]*>.Üé@t!Ú!]0£ùù´—þ¿zSEµ{ ³ã¦·RÓ/èºA>‡Q™Û¢4N«,ˆöpæi$»ŒÖt„#÷S˜‹ ÎÊ“r«¡LëÑÒ­2hð8ên‡FÒQ|¡¸¸ŒÃÄzZÎ~â%¿þv¤HPƒ9­/E©ø`±¡eý¢ÎûÌC¤+¤dñŸ¹—ìÓ†Û)?öá9‘€z]y 6<%°wð—Sø' ‚PéPŽC&‘Ôí6“µ&ÃY"«Q´’$zËs¨¾òÄí©^Ê(6j©q‡¼dk›3û y7Üdj²À% ÌÉ“fœPºñš{Ÿ5ÑhyMßµ »©¡‚÷<á]U{s 7±£“úO Œ~ÁØëD!"¶ ð?x‚ÿ9EK×6"¿¶¬I  ë3ù×·ÆæäÁ‚<š:å?¯–gÈ`[%(HøØká)\%ä}t!/õ7üK2eë$¨]%nãüj£¾ó(=úÌ¡}à)Tç*§áï‚X}QîTT ÄÇÃ’;x¦þÜS7ºx=´¤„¡ÃƒÉTØÉR8„Ðñ»xÔƒøˆç §éÆ^6ÇÄã(û.À±õí¡QÁ§É»%Vy”mêEÕÊþv¶?ôÃOå‘õ¨à*~ìš“TI²$ú¹Ha2 “&žÐfZg¤¹.„¶³(³ ZÚtàÈAËFç ×óÚJ:YâÒâGñ_%XDný³-‰iÄ»ëØ¶AºßHè¨õMÖÇB–‘îtBé;ƒôÚ oÚÄ£+¹¸0Íhw-ïÇ~1øõ'÷ ƒY,RB`1KmKð\\R•&(è±”¹;F€á´<æ º%û]èºftJAž^€Ñ-‹TK ¿šu(Rå4ñÁUÐÉkÐûÓÉL¾`'/aÊ‚àMCg[§lžõÞ ¶®8Dƒ¡)…×IÁ'¯{ç°HÚ¸ÊàxJ«”g ÒT 88@P:£e‹WµÂ#&"†5'Á¢NËà)ö åMõæÂj¢«UAiñŨÔµ3qO°AJ, pä5vrý’*î—cǾõìÍ Ç¼ /®¾ÃïýöìêÔZ]C&2HXÉÿKõ4¬Õ¿á%4™4Øžb>±¯8(¡…‹¬¢Å–B Êßv®JF·—FP•Mƒà~LMhª|Ù6G;©˜r]vãòàäÿ_qô`T.9IO#O7M/1fõ9^”+¸oh¯\NYÁMUÌoý¸Ó×7áÅ×oð…£/œ{¸Þt¬4P~±¤S]U6>E$¶¶(b[„å¾Î•¤® Y\¦Žê'2çyªÂ9u¥¦¤ó¤ä±óÑ÷+N#!>v›©f¾låW™É¦ )õ¨Â¶¿¨Ë ßí^¦uœªTõ¤¬sõ¶Û½Ë eS§8Úðã¢iËuš(ÜgÖûsÄùªÏ0ëиØÇŽ.­Ý´Y1ù 1…(’»:/³øÎÇñ.^8ø2¡’ÚâÁ›èüÌBU£Ž+/ú£"ڮݽ,x‚‰Iã½6ýÈ ö’ŠU\“·“»Ötr„n³å²üªß^ʬ¹*ªdÖΊ*Â+­â*Œò³é}¾n¼•6\‹kŽ2¤‘íyÒeäÙ2?b©&ñŸynèð3›x‡ƒts…GÁmd)!íÁ¥›¯Äž—d eÿ2\]®ØèØt{½pÑ„ª&•;EäÞNbáéýY:oú¬ÙµÜ­Ð7-”jÙËVX⎭¨µÜr$‡g½œ¦—0+­¯.ø¼uÃÉîØqªæ38àÒ]Øñ®ÞOjÂ>E¯ô²}ÁjgXŠ5×{W´›<.<ñ”Œ—Š•ÄJaýÚèƒüq΢QÒ-êæÏMªàK °çE'åìÃ?ýfüyá›w£;»ù¼pN¥7¡ÒoHv% ¾¬ãØõëU|ºx¢‘³n²^‰':}ç õéDÈ‚å&XŒÁ-ô~ °!Yd@ãJ=hñO²¡ŽÉF ?Í¬Û dëÆ3_Pø™høù^ìÄGrÍ¿Ãïð{·ô½U§EŽù/e,¢Ây¯ÞÝ¿ú/—„Šc endstream endobj 49 0 obj << /Length 2762 /Filter /FlateDecode >> stream xÚ•ZYÛÈ~÷¯8B#šÍ››ìNc‡,`yðú"©zuA”<;Ø?Ÿ:»›5³û`±»Y¬««¾ªîñ?WoÞ}H‹;cÂ*Ëâ»Õæ®*Â"/ïò¬ã$»[µwŸ‚$\˜ Y,‰Óà㹆Ù~?‡ü´‹eRdÁc‡Ë§3ÎÒàŒoˆn€Ÿã–†‹ÄçÅçÕï>”wUXåqŽ£»¥)ä4,lõ´“e…GGaå@Nd_DÀ@Ï+¦qæ©Qâ‰ÎD ê•ôQGªAƒ†ìqAOš"_zÛlÝ“ž¿ ÷\>ìx‚/Y{š~$†Èlã$¸  Ï‹2 îaµ,Y³Y¹,m‡N¹[¦Y˜Á/y‹ÙD¦,ã2">2¬Gä¢]×:‚=/§ÇZèOLyØðú¿È)èÒ§-Q£æô†Llyüý…¿ú”|†Åp±LÕÊcïï·NôDšzàÅþãÅ­îœ*7Rm¸À›õb™e9]£V›à ÂÔø‘ÜÖd?4@@xj*ß8]×X[‰‘½,7ê¯ O¾íÕ´N8Õ[*< #¢à‰÷ùA;ýOô,¶;$±ÚB¬¤©y)„6ß:I]퉆p‚g ß É੃(C¶[»íKŒØ#okxð? ÜŽÃù )F~¦ïhØœ¬ô9 0IF±Íkk—MZÜw°Î[›Aœ,#Í…I=°èZ”é)yŒªÛv ¦‚]Ýzf•_Ú^²? Þ‹ŒÞ!Ëa#ÜíAÏNhÑÄ)lÊ2¬Š|ìq?>’¼N¨DMZN›{çÞGÑ …çåa>tGðñ(Ø a]H7HúÄcŠ§Ã®Öˆï„”L©…åd'ø——v·a¸æu:uÄJ>œšøô¨Þ‚‰hÌÿzNœ™À¼ðæ%I‚ÊÂ3†' yFËÔ%°ÜZ­Œ_djâДp†ÂBΫª‚ÿh¦§ʤÁÔ¯9óz«þiyŽÕŸ>~¤xIÏB¶á§Ëç“^€¾çtÃ×ÝWú=ñ'¿DY´Ñ=þÀÄð²ØËùî–¶ ÓAª%‚XÖ[:ÔB=”VÊ£³h6s㰈㠬R$˜à7IÛÇ™:^…yYhªÌ]T·½&t%?`Ìd%ïÀ/‘É›N#7r'¥ƒ“½åÞÓ6`Ï{ÉDS¡Ï£ÑÞàz„=Q&ÒßïyQ¢Wœ´·Ý‚/LC.«|½ê¶å53/ŽI Ä%#OÊæc„<ãˆ*I÷7•VÐl'‘%èGØýÐ-`\&¡œ¤eãëˆsñÀãI’8G©ä+>&X¾S¾>g{v&ÕPkK9îµW§üœÆµ£Æ3%rÓá·)?«G9b!³Yp‘VÖÒ¼ÚB½¢Æ¤¯Aí¹Ç\ -ƒÇ¿c9NI_ëõ–ëêŒK¼„¶CäëBzí–ß®Qò3gîN:m> L0⦠Àh]ÿÊÔTÌyèmŽ á&$‚ +Û·O½»óÎ z ¤­ elr0¨°Õ¢KŠs½ÖrÊ/rÔû9j«@O>õРʽ—9âS"ª®'=p]ÂEм]ô’¡ ~¢´š¡œQ5cÆíM<øY=c3] \óOèÿÏ8ι"+ðÇ÷2Ûg~éb&‡µ;‘k¼Ä  ¾vôF¾ìàñÈ–{Õ†ìï<å$‰Ì%nÐ /¨î…„¸6· Ãn­¢4=; V¯¨‘tÝp³th;¦ï}‡Sù¨/*¸¶P¶»Y”pVòC/£F×pëg¬/²È ãƒ:÷¡ßëQTšÃ¶Éd6ÁÙè „Ó«¶…Z«äôßA¼Q?¼è¸žš²Òõg¥Úˆò«=?ÇEMD¾ãwIž…qÆã%?R¬ úÔkómÙ€›¥Rí€FOE8¶t4£k2°¥C?lÓ¼ó²ƒÞ÷úTýG鎜ˆúB÷±-÷#)*í; ³•ɇa2¦FÉÝUò­â¿kx½†xˆ*ß@YJl@’þ$… ±Jnyh²d>p*(Þ™èÑ-@çcèÑI ¶yþwÔ#o™ÁÌs÷á"‚ºÖ³Èƒ9> stream xÚÅZYã¸~ß_ÑØY÷f¬/“l€ì1À&A°@ú- µ¶wÜV$O§óßÖER²ì™—<É"Y¬*V}Uò·w_¼~[¨›:« ]ÜÜmoê2+‹ê¦pe¦»¹[ßü}ñ‡Û¥ÓfÑߪÅÚ?þý5ÿ>øgCd¿÷¯Ë_4cé_­ªÛÞýé&¿Y*•ÕîÓ6Áe¨Ý1½03óÏÑ?'ÿ<òŒÎ?{ÿ¬üóÜåLz‰ß?0õ‰Ç3¦äg›~Ÿ¬¶‰}éåŸÚ?…Jd™úr~Ϲý%MSñçµ Ït¼‘Æ÷ËòûýÀá[æø9PwA?0²¥W`xU$Ò¸Ç9¡{rÅ×?û×ßøç§+L¬x÷³ wQ"cí€V>Äîe9Óû«È– ·¼(­Ãâ^ŠFÿUõÀ„_3aúÛh{ÂÛCb=/#ª±% SdΚ±4¦&öÍeOιçõ{œAvqÏ{IÿåðœÚgãõ[W&—|)\iÏ•ªˆ«ïxË?oæyEƒ[êøŽx†ŽÀ‡üë›_ÇU?CÛ gU¥Ç²97€À`Ti*‹OVx:é—¨ýÆ*ïÍAÏÆëYU¸‰—}“h”2¦JEÚ]Ù<¡QÖ,þÿOÈ˲ÐYaÝXf‰b4gw&Îϱk+o—Ê•Ô77èH—*·åÙü’iòÉxÅc†Î$݆‡ô¥h”˜Ì¿–w_s¸ø˜Û Ïj2®â9S~+~êKü~Ę%ÎdM„ÚŽŽ ã"ê’íÌ$–Uø¶PÉÄòè9Ÿ€vMOQÌݬ¥Îk7b]%Ûç,Ý”uѶì[K™0’Ÿ³^‡ˆ}ƺ 66£€4¼G˜3t†™1 ·3Ž«íÔmœ¼‘ zôÄþ_ؽ xÚ;¾õ„%pÉ.ñd{ žl“¸ïoxÇ"a¼`fÛ'\tžÛèŸxôÔ9/VEϨáìJ¤Ì˦Ðð>Ü’)$ÚpÈÚ0˜B0ÆáRØë·Uk•ÍjkÇ¡önÇ2ò®Ýè"øßæxg¨®½kou¹xî©§á'ü,p½ûæv±jzž‡¸£÷ãÎQ€ªLVyG×–bã‡8-=±™+œL‚½N ŒUPû1Ù¹ˆ¹pV·xbÂݾ? ÆG¦Kî›Û¥5õb¿¥†P;a”í‚EahÑÆdÆMâñ Cd#èÍÔø?ܺbÑtÀA“ YcóÀ¥§jŽôK:÷* ¥û8‘©èxÔ‰„Üï°Ö#·ñf¸ÔË7«[]y a«?¡ý-[ü \­8Ѐ"kˆ¹a‘M'0`÷mé(÷d!¼c‡ò¥FNBYŸ¹5›ÀÝèè…NŽç•är1;ˆkXíE/{«ê,¯mjncHwfjºÎJ­dBsD%ÎØq®š[7"É93®­k£ÁŸÐüpæå]xìØmèÜÇ–€2–¿‡´tÆ.~dªÒ·´ÈcóEÙÓØ©g«óCí–÷¡ŸèžAÜ-Ù¶*Mf•GĆ—Æ6®Gjø•g´à‘k´pîÓεPd*’‚CænñHw\îÂ^ø{ÍáÊÀÏßúÕÜ’™1Áƒ­&þGVGpl?yõÑújÆÇ×™ªì§ª+ô·WÖö†ZÙ«þ¶'É?¢Á{¼P{‡ ¾ÁØÓAíx9ÉI{Ôª%Ö—ºªçº®0ÑØQñ„L@Wr³¥¹O!; Ö Ï@r8P#¸(˜@Bvî‰B|*ô‘Û†+uÚÐèœè”lÖ_ÑÊ_DߢlIÓéûÇØ¿¦ ÏRY'˜Ëˆ[3FÖ ÅU¬O~„›a4…°àÇ9 Ц{8QØHcN'uËÝ€º±q¢ ðŠ@ø“¬zÂE€‘ (˜%='£¤åK3\K3ý×2nWŠ#-ÙEÒBkJJ w¤_L‡Fy›3•N+R°^ðñÜ„#‚áÃñá_T§®ÅûA/ãý­Ó!…õ–áf±H¶®S‡€!ßó ˜ÎÒsÈö)IVö˜ž}ˇ#ß —ÑfEîγLÂNÖ^,E©%hè{þúGjâå þ?äQU}ªc‹Á¯9³˜ÎÌgø´²(¤†JNȯh™Nïè½—1ÀÂ`ê-öb؆1¹X~bÅud±$[¶Á²Xf+ÜsC5\ŠÁU‘åS—‰7ÂŽJ¥‰¾Îd—‡|$™™Í´O *2Îóúü"Hrω½—‹Mdu ×U{HÊhkq¤ž£ç}ø‚”X‚pe(íûÄ•xK¢ÂG©’Œ”p 1(„¦\’öO³çÓ”ôfô`³\âz`‚0.´†“Ç2Žß¿£Hã/ÿ!ÔÉv™¹–^äU™É¢‡¸ï•T]Ôb‰—‰ëdG‘tÕÊ^31¿"DŽoËÊçsU5©÷ŠzáfU…|%¹Û1dkNr+¡•>ÊÊÅ·eßü}J4Æb س j?l‰ø9Æør"ª9ÊxCzjàñ‡£hkkïòG•Q¢z“LI¤gYñäò;Š(3ˆ¥pê&)z…6ãf ´¸‰Êî8Ã'y@‹mškzTÇíºd Âmß@ßÖ'ǯ¤þ–$¡–äÛ\²tw-ä™Í]мåûÙér¡J®•N'E‡éí›°¾NÜ o!´£€çDe ª~°OOãÃz¡èÊ2mD B<œoL÷jŸ89ŠzŒ¬x=«q*Qv4FN àü&|)–|îKôÒ1j,ôç]øG%¬®NDGš”Î%öY€« u ÃïRÏ…6ð ¦2¡Ž~Ñ™ô5ÐÇ8s)@LJ} ³ñ¸sË›¥é$3²iÒ£¢/…ò±åò1K8ÿL¤Þ§ˆå,Ÿm¤Ÿª ÿ’éß‘O+òbq‡ŸšÑºFhÓûÉM*}÷‚ ›Q–æivÍûöÓ†`ÿ#¬ÓªVUb*ç‚W‚÷.î)6×§ UEFV'¸°›ÔªŠw.®”Å!óÖµ¥ðƘ¯Ô6Ö¦ü»Ôˆ=ìºb0|EGº6\«m*xhÎG dªOxå¾ÐQ”qÉyåõDðœ»ì*Sö²¥3ŒPGðˆ¸Xvä5óWÔ<4}tÅÛ‰Àb ë‰ÿ{À%³`k›Ô…$¥0=úþbæ/PFþØ–7t >’–>k㯤&ã/®ÊcñŸ ™ýª> stream xÚÍÙŽÛÈñÝ_1Ø<,X4&Ef3ì` x$2@â} DŽÄµ$ŽIɳùöÔÙ‡DùJäAb³»ººººîæë»g/ßT7u\—YyswS/ãeYÝ”Å2Îòâæ®½ùGt·}žFÝó…I³è]’xá7±+Úæo O*kh‡çÙ2"€þ“ÌÁŽ£ÌêÌÓÌ!9­ž/ ýÒA{ó'#, /Ó×;èânxâ¢ÍŽpÚØ{zrÈÒ¤äBn‰&A½Áv]ë de%pã统n’›EšÆu!|ºG¨ÝŽ`aÓø‡ä’<Ï£x—c3‹û Xj=à¬ÍÞ=ñòú|‘€M´*²è‚ÿ1îùå›2õÄ8¥q‘ÖÌ?Àœ,'„8o¿îú=4Üœä Vt ‰3Þ%EBxhÍÁ=o_ñÜr3‡f ¿Ì*º<ׂúVÚ²ãK£ßyübaþ¥ÑF†afªú ?V篬²8+$Â"—Ù‹ŽÂ¼NTÍ£"â-ÝWºu··ÞÎe¨• Ýr·0G> Ä!<¤£àR"g8w´ª6Ë=ÿì©k”y»ßÿ÷ÂÉ–v¿[IûðE\Ôó_ËžÃpó(“<9leËO_‚Ërñ1¦Êã"[ wJæÎJ&±~ýâá|oAKÚN˜t‹5þ¦mÎã:ÛæÙù?È‘2øõ4\Çumçïá‹meæôì~_¨.È„EpØ¡*Ü{‚’^¨ÂZ°þê­"týMX?Š–›fßÊ/ Ôû_üØÉê‡~VÄø·Wç|ùAù:l¹—|–oÙ‰o>“Fi{¶Y‡‡Ð>_áÿg¶fŸgíèt  59~ȼøÁ¤nÀC󿟉0Š8Ëjø´·=;×ËÕÊ,.Mñ©ÕÒ$6Æ.w ®xïøj^h·Î&6&´ÖŸÝíŒSYyðÜr¸èËÅ—yœTåçv]|ý¦³KSõòM±ô÷m–q’¤aøUâû-rK&sYÅyrf2¿J|YRQ"&º†œø^È{†©@Z¦’~…YÒœ=ù¦ƒ]¤‰Y’ ÅÂ{ãÀ)½3=¹Gs%t¡K”°ºÃÿýyeª<-0ÅŽ’a@‡Ú'_ôàZîxÄw‰$óÔP ’–Ìø©;ã7Np™ .×yahä…³V(J4ÑDˆáÞ£N|^”Lz߬4%˜ˆ3 “WÑÂöìÀÞk¶'GŸäh¸‰=æsOÁyŠ&sº‡™U4ŠƒØ4;æFVEO<öO|˜è-¿m›N$OÇŸ»žB˜Ýq‡ãàý3Ñ• 2X¦­w<¶ìKî²½=p¢+3z‡ìÀé)#â.€ñð©ýëH|H €Ò9x´tׄO¡ù)J€c'‘‰µ*ÆpÀ\8©%*²ÉôGæÌ•ñF3ã„ MLt"Όܧ{‚þ5Ís•‘‰'½×M Mt ³ôþAú=€a-‡L¢"A:Ó xÃåÚÂG®pÿAˆ^)Gw´‘Kš×&®r5Ρ'¾På…@ G3ÒÓÞ4Ö}ç¹Ý÷°¿V^8ÎU/¡™^uAPZÄ%8#ŒÙ4×U\.ëH­1e µk[逿¥¦B"j$kø\ù~cÔºBàQ•DkýÆqë6 ‹øðÖ2w2”Æ4Ì>ªŠaߎtlƒ²†¯’ )šmç¡$UY´"X@²^ˆ8“š¸¶a‚p†¶ÐìžÄoõXº*1‘ïEŠteªRyäA Õ‰¸ w |™7͈…-(UÌ:®ÿ,*`×[)À•.Z-îæ¤A.í™LêÝñrm¯þ=#~tk[Œ‰èSÓÉ3Æ—Žuàzݤ[¥2—a)Á'ÙR¶#÷ ï›ä8¹c²¦b•Oˆë$u-ïØúS»áG@õŒ|@lL©"Cv—S§@ ™µ÷äkß ‘l·¼-´$÷â\ªË=•÷â9K«:•g&Z5D–=fêF;Ôì$7ÔVôš<“æycçFUöXRܾg|­e@3¹Å9Œ t“¬{äßœZ@/uÊAUÎ`œŠ.P…ºÐ…¶OšÝá §tëE¹`ß5À¡5Y¦“E_TÑý0rC©&™ˆ¡ÐVfú2ŠKÉZxâÃØ1‚K­‘©ï­™ŠŽ:ËT󔪭#’-0U’™ `Ô–ˆ•LYÑ;·‰›¨ìXñ žÕU”Üâ 7YµiÐ}¶/°fžG)/­™vŠX³øPíï€CúÆrÆ­‹‡…2YˆN½!;þ,‘Õn_8#tº?Ál±¤ÈÕ‰­Û:ý(ó÷ì|ZU#E‚{ Ýé}˜cÍ&æn©®/mr{[è„¡‚Õ!gÙ‰ÌéAxßXÃÀ¬”dA¯¸ÛNSiÈC'†ÃDx^œƒýš¯ÿÈm-MœÔ˜Á4:-q9|Z–H=-‘%k~sL`„/%Ä\ª·Þñ̇+Òe£ÛÚº¦{ZwMátåDÚýQž: t³é…ðª²z\ÕTµ! öÈï>_2­_ÒMÙ›"úÅ „¬Ç­Ãj#¬Î‰xëÖÞ v6¢«ä^€ë£[½ÔÃÊÛ¿4ãý¦f¯ZÓQfÙ2?YºU“P¤G1#ÐÝb%’ê ã8…?ظg»,¸,„8°¦÷Rqkd–ô’Öz1œFånÕF(Æ ‹–Àq24X™Ñ6©5«£ÔsðÏÈ”M‰RqTêÛ(ï Ã’«ÀB›žr!Ì9À`/0j¥!Íœl\â&^i?LGnÔü€}u`.8Be¾¦â=…Ô«¦Æ9º8íDK Ç&vÐÞ‘mÝVgíX#†½Ý- ȃR{ N"çê99TÝQj¶03â¾F}.$&Q#šç2SÇÆd~…ìò¦ç" É!)Ê*„ŒÞ†Q]@¡\*N¡³ ÕЧÈ8Ub-<#*…MeK[bk½bn3Ÿ¨eu\&•¿ .w 4¿ 7LמDgòu ƒ(à$$aÚ{O­©3ÌÍ™É㤮®Ô§(T­"Bh<‹}gÙÚ0Wd{L˜TSñ ì¡ûÀø‚d\›­é¸µÄ+µE€Œ >Ú0™.­a|XM*œL›‹Ž'žøØ»kN|oø±×”Ä&I4È4ºÉþê….] ¤€[½ÕçÜ”A¸tó¼„8þ[iþ8b²U6()ª=ÍD§Ï£W§Â÷•uUPÄåŽ`„Ilj$/ÁáËÕ¤¨½„¬N›óbëãÖÏâ·¨ê3r Þ%¶ÏŒÊ`èº[±—êô±ÇOv)ç9_Š ÷C8EBÃÂ~Ñ3éÚ†ŸyðÑËÚð]¾#öí¿D'VBf+R¯$κ”ž,‹A€üCk¯T”ëx™X@=4ã¤ä ()d}B¥:ì¾ôñ8xô.áJl«\öºï¤"G-oȧA‡‹Ú®W£Éd$“ ÇuHàcuê83±²†u6ëN7JgM’hÒ¸*³ÐÍJìoo(6·á?ôhßÖ¸Ààcqå.¨⠎}> stream xÚ½ZKÛȾﯘ,,°´l¾™ÛˆMl€[œER#®%RKRÏ¿O=»›å89ä ýª®®®úêA½{úîÇiþPnË,Êžöe¾Í³â!Kóm§OÍÃ?ƒêÑüjøuð›á×Rß&6I„&y` /†ŸvšêÇ'ö'ò‹7‰)i,ÊL)óýþ=ýå!|س-Sa`'é¹Ir“ÞlZ¸M‰pJýü~ÅÀ·o\ɦÈÀ~'a¤¿sr _0PÂ/ýo8Ä~ƒˆ½&Úÿ*OðÛÂ:C“úÊý¯2ñŸ¯!ɶe‘'s¢ÇGÍkhÖf1MndJ%;Y–ß?ÝÍ–“}ƒ6þ/ÚsŸúWn|eQöm·–)/üñCá;P‰€ŠÉ™ÊÓA4+Ihëz¸·QM艱vºÈn³`L¯F·´ƒ‹rTyêIúç-Úo|x,’`ÝfÞÞC“Œr3³ÐÇkm:O&CÏ#Ã^fÐ=ÚK¾^!{¨ð$Ÿ½žØDBd7)»ŸÓ,¨Ü.B¶[•û&†s 0Zb‘ÏȽ¤¨Ï¸U3›Ð¹G¢8ÿ8 7/ׂN®ÆW×dâÉ¡TkÅxr“Qð Û\›ÐÕpÊè“Á”lkŠry–ŸQ´(ÛÐi'™Ì3UJB¾ï³F¦A«•„Ðâ6¬œÔµî¼p„†ÖÔº_­[>ÒÀ'¡¥F,3«±å—+}PuNÎj5$r ´):c¸ß·<‹ó FqêP…ïo1F<j½b­ïIžpãÄNÓªQ:›Õ°±òlYÈMAá`žÐ_ÅÈÇèÑð‚J†Äf½˜!‚ÀµRw¡ÛŸ$¹þžÇÏh¨‰9Ð’Æ>†©dâÆx©xœgÛp…ƒŽ?>nL–³—)»‰¶Y™éD f£ŒS¸‰…å6„™ åë¤Ü+-j@ïñÔ"S¸Åt W  ÐyGƒÏ–ΉV´ÅÞÁeÜ#±ˆ /?º‰¾1ãÈŽ·L\ªÂ°ãÄÏ걓ÜLM¦®ŠÝMlåË”|-å)xËÉh=^zAOuÞ¹K¾:qË6HR$æ{ÏïªP±·Äaz! s*þ‹DÏVëG*Ð]]G;ÙÍùäÜm§_ÙŠ”Ö¸Ðy‰Ë+‚xÌz‘X”ŒÉ˜¡±¯Á®Aà çÇ«¡/ê9eë&øiϬb( ^±}ãí°Ó¯(H³;¹ö°÷¦ “x9HÖž•Nó•ÑEÃJ[˜ÅmD`Ç“•§†Jv§j¾›ªušþ®:DèÏ]ð‹“Ȫà©î ¶-Òø W” åý2 S@•¤b« ^ ³Ò {uÃü/­Ûó¤ÙâI¡x" vª"EaË@Å¢Ü"ê–+‰5ÐW¬ÔÆW‚=”pÎü~ƒ'ÔYÑÌÈú,ìTƒÂw?ÎÅy”ÜâË"n¼Ú, †‡¸Zh5¹l.uyê´àðý±íÙr6,oG‡P÷ªsMV1¤Š¢•°:ÅQj¤=®r56ai¸¿sS¬—‡÷AUð™&pyõõÉäù4JÝÛYrýzÅÛ"Ouâ¢ÔÅšˆqÔ’„.Û>ꋌ CóüQ꨼îטÃZy랳Ϳ8\{¦÷Fãd›ÆÖakP{œ5Γtž ‡ ªG‹fìÉÓh—WqsÍÅ4ÏÔ‰ØwkÁ‘Rj«ÖT8h¸·¶µ…ÙOä`„ §Æù!@ªv²u, Žï'Ø? $YêŒÞk­o%YF€{=áï ñžÇý;Ŷ&×´F«ÅUz§²˜Á¡6khÛëÌ”"|~ê­'f>Òà„ª¾(κ_'c})ý›/@,e®WÿR©³\*DoÐHÌíý [Ì»xU¿LQ%{õÝ…ð³|E‘†ÞD¨hr\꧘¬T`Á™Ãjø…!Äi¯Zs¬FEl“1 S$y]47fY¶ÒK·ç+= ÈLJ†¾ÙªOä°Æ sñ½Ví;;å³HŠ EB(hH8c£ÕÆU0Éz³,ù#¾¿ÍÁ*V¯HÒÊ~l¹xÀ‘ ”{–›¯¢å_? IZ¤Å~ŒjwÇ«Aû Aö$Ȉbvš)Y“ϧî,TÝ×r/_ñ‰[ú«üš}ÃF;)‘øqµ|Ú=ç3\D a÷ÙàB_˜ 3]ów^6Ó µÎIyg«Êî VÆjØ¡e†Pón"§ ÿ‚Óß|»—Ù& ¿¦Zü5sÖ¯ñÄ./Ä¢=E¬Þw?þÒw¿ÎJõ¿óþÖí“|-vÄ*Ù"æ Wº‹ÂèNç«ü«á±»ßKÙ¤¢0¢ì\ǶÐIšǾûóÓwÿÞÍã endstream endobj 61 0 obj << /Length 2992 /Filter /FlateDecode >> stream xÚÝÉŽÛÈõî¯hÌÅbq¸/“8@Ø@æ2@ÐÁÆ9”HvKc‰Ô’ÛÊ×ç­UE‰Ší`€9Ø*Öò¶z{õ__}ÿ>+â8¬óDq_Ÿ5’âúH¸HAÊtÙ,†nO9•ùî .Ô#ö´<¹Y­zçðâtšèŸùëO ƒxH$ÉàFÞÓ"Pd ÷'Þùi• g»)äkL3ïã,¬³ø€©DøøÄÑíã(ÖGÜ-JÈ:Fö–^Ó ü{½€lÍ0¾ÙIåFz†ƒÞ¨ÙóŠYÖæ;¿HFñíd ǯ!výŽR i‡#ÙŽôñï¨kÿx÷ûa"mBµ1¨”ï~Ó bõO@m¢rYœÌ:©S²˜Q¬4©EiÉe"þZCœdÁŒŠ: ³2¨^fƒJî¶õ¨„ä'ì!sâ2ž=m§o±8þ@«˜Ðñƒ\ÀxE~fª´³êxò`háQäë̘^`O¢ (½H܆¨Þ"gÈLY/[œnïgJ'·JYËÛÅáâš•Lç“xöó‰gð!‚y÷Ô ‰!;D¾Ë‹GÕÛËGÏ—ˆx-Aé„‹ # É#6Ȇ ­U°£zGn“z.]¢ÁLl¢n² 0šŽéO»†h£e£ I$Õôψ0A„‚’ ¡Ï,Æ ò­‚DŠÍgAKQ±ž'ÒW=áß|)tplúã’ vBq\†XÀû8‰bVè¶!þòˆbÙN¹ ýAµysËñ.¡Qö$` ¦Úe±<âáåɆ]1nœ¼Ip’oµ…VÖ÷!’F‰ïŠABÇ™´‘!sVa m†Œû²$@áyfœU¤Y4g¢+ahÉHiƒif¸²Ì2 C5JσÉƈ³Ò7bIôqíŸQÈ-“µQ®aŒRÍrµºÏšw J¶¬;C!–ža žêYÊB ì}Áÿ;3­¡)'bhéÝdgôRÓÚ IEÖ•K1ñÜaàr¾Ò$ÌÜÞšq¯÷ÃNT¸¤Öèýtjä cÕ—üÞŒ ¢£Wë0+‹yñçÕ:O8vtrµGžú ×<œ$Û\xçÉYÓQ–+x‚ƒ…ó–‡) cø—¸ N“Peã­Œ…³< >Ï¡p\Àì7¿—Çú³pÓ¸O{røÕvqìHP:©YjîL+o=~d©•ÆU8-bë(‹çý\ô6Éò‚oH8UæI9—ÐFqaôíÈçç=„´z¿’µ&d+²¹´ž)Ê·bmÙÂů—˜»sý›ÿëÿƒ'Žÿ©*,rG-ôºæaÃÝçÇ]¬9§Ñœi$¯Ñ¸ÕMo5:–œ÷ –8JG©1êÖ3ÜP—Ôa^å6öÄü`Ø–¤÷àn¾W:,È­œì‡ãÕt’L”—«Ôt-ËC !½ÃÉ­R‚ÚW$:`™Ò¯½&}‚ª¡ÜoZð¬Tgdpq•„ErÕz1Z#¥Ôg1¶<øÕOH±.‹Y/BÎÔíœé5s‚óWœ,ç}Ødø‡<Œ¶ä›…Aq1ñ$¥‚ø;ò¯äB•EáË\Aɘd) ~µ ük¹»¨¸¹Ÿh^Vá7WcÃÎÏü”ûé^Þˬ@ZäWÒø½óó«ÑÞ>Þô¹q‘Ù6õrîŽ'N>C\†OÔ9sY ݰ۫¹F2ðœ/KøY™àØÞVºÈ2õ¿²9ßÖÔ99ça¤ÎäGº»a¤¬@»¸ŠøÜiûÇVxnZÈoã,£Â:„—-9µ[kÃ4³©íÐ;ÒÈßP"¿—š°–vè´åG­½e¿§SK1SsOÕ<󨏣V­ñ<™õ®¿Ê¯éÞù°V ¢Ù™Tý6‡*hôOÂUÉE™I¤‡3ÚŽRÛP†¡­º;}ÄÙÄvqhAéä(u~aÇØÙNîÈ% €Ãæé¤uåîÄÕ`•);ñyši8t~æØyTnGøºÙš9ñ·Yê5RÒ“ÀºÈ ¼a˜ˆµó(blyzb亳ôÂÓ“u2°‹nÒ¨#ƒ *ÏgsQ?G|íÎ+*¸ ®¸Ñr Ÿ5PTt¥Æ e¼Á:©ÒgB‚þ@ø¸NÆ%?¥—žÖزàߎ¯ØÙg5=~+xj¯\š–l£´%"¬ɽ=³ ™Dm³(ø /OŽvµ—Ú–U†:Þº`²•sóÞ§³Bim¸®Zïw%iƒg…Ñ—ÌÌ´ >Äi¶U·ði%M†8õZ,ªa±kÈ☞šk]Ü$]EÌý‡8ÓþCOµwœPýµÓ+?}·Š“œiA…{õÕ6Lœ8Õ³®dÎ"jº¥Ã-¡F–¶d¯à³ðZˆ²Yli°y5šž(ynj×Õ¬¶57¨ÈôÚ} öëòŠ}Ñ $Ãô¤}³šé­¨#õMT+¾œÄñ,ήՇ=µ¬ÝÌa—¾úÏ\#.ÉVàr#°.w¥ÉØ•„ÝEÍQe#ÑÒœ4×¹ðªú®I^¬˜˜¢ž›i¡iµ÷ì·AåÀÀÃVÚ´™èE‚,Ðprb‹ ~‡›ò๓Ûð(k\?X0©O(æéqQK?Ýð…¡>^'K¾µ‘˜¸Ž5LŸ¶n|ã†lŠQÄÒÙP¿ ¹PˆEQ©¥“mê#´çRÃ̶æ¨W"/xM{/à±³¬á`Nž¢;—ˆœ]ÔÁŸ»ªq§}ÝÛLÙ!âô€¥}Ñ"¾;HÁ‡.ºŒƒŸô-9ª\§O²uh8g½:òpö¨ŒGm8ç›wŒS;óùÂKœcPèÔ½SÃÜMâŠ;Ž6‚ï4§÷ŸžaÇî¤VÒ6]| a¥ÐÀòŸÓÛwsUY'à?¬áâ—O'ï‘ &794£Â™ÆÈañ‹ÈÁ™Op–‘­®8Ðd§IÓÆAëz{*ƒ÷«*姸*³myú˜½ZU¹54BÁ*!ŠoTŒ;‘%noä¯%X@ãYó™N+kÓ‚¼\~·Vp/'i}›¼Ùlÿ É+õü¸™^}’,ÒŠH¤w0˜óŸ!á“•n«– q WHÜÃCãÎèë\[·¶ÆÁ¹gü'~¯!ÿb¯§ŸÔ¶F>cZï—æ2®%“£Gë•d{¬5²Ø¥ó°ç£>]xÉ—Ÿ÷(ʆ wù³Ê¦w ÔHãtÁ&^˜¶Þû…6™çúZÿ|À½ôbÜF¢¯_ù02âó;GÃÎáò†’X/DëÞˆäßÔ?0o¸æ8[E³%¾Qç¥ žV5f"l,i%>Kƒ<,^[©_6¨9¨à¨*‹–ùÌèô‹½™¶/òÊ¥y*塀U®4—Ê\HŸv즭;|Õ|âÓTãäœÏÂÏ=ûžÁ£ä7AäÊ(•¥ì˜WN0áb¦×tfÜ/ûì€ÐÃ\×}\×Fžý±µò¤®q/—§aœ5]ä/ìx"I3žù‰™ãJ%aUæ`aZ•Œ)NqíÕ»ÇWÿDì1á endstream endobj 65 0 obj << /Length 2648 /Filter /FlateDecode >> stream xÚÍË’ÛÆñ¾_ÁòE`ÕÆÌ`ðp¢TE–UQªœ8öÞ@»„L€ÔFŸ~Í$W–U.W$3===ýîÆ«»›¯ßäåB©´¶V/îîu™–Eµ(l™jcwÛÅωI—*)–+¥tž|{ê—F'§}“Çþ>à{»\™Ò&-¿–amZ¾»ûû×oªEÖ….ð„l±RUj*ÅÈïv†»U™4‡s8àL‘ ÷¼‚¸ðÙ2BXV©²à%|ˆâ¿ž ‘:~õ%5yžÖZ»ÍÃãr¥‹¤¸Á3‡‘Ïïè.4ÜÂ_ÿ)ƒˆGÆ®‘H¢ÙÑÚ® ×XÆÀÜF²ý°´–lÄ,,ãHSyFg(m[&o–UÎê+èÜa§I¨w'²6{ûÂÃÑû†tJÎvÑè~NŒVyŠm UFè¦YDØLÎ"úæ…p@„ã™iŸóp"xeãÛWð÷qUh±i6-“u’Y4“8˜z-ÂŒ-ïéòD6»Å¾w&¯ÈD`}M*Èâ¡»íy~Ëþ€NiÉX`½­óä¯|èÈZß Ç鸇@('„ž#鬶ɭwÎv#«èvUÆÆð(^ú€>¸f7 kÁ›ÐkKžCöQ¨g#{º Ëz)0.'»þN¶QlâÐ8¼ÏCð3;F8vÎÒ]äPhM¿£CÚ«”_5á‡ç‹_³0‰ýyž|Oß²ùÓ]˜}4}l<#öäû rÜ2(]¬}µìÏ]Áã«C´…q|û‰a¢kê|ÑÉ^¾Û2Ûçt·.ä剿Bss%íוÖù—&‰+·}žÿlæñSó}€³ŽÂ“HÔƾA›µgê^.q”˜ÑðþÖL¢½!MFs_ŒˆîPäó¼üZUŠ…+–,\©¼J~D»ûáósö*KúÁqeî㜄› ”=„âŒbÏ•´8«Ò2óò9F² ‘Oýgy±Ml/Ô¦wǨä^vB®Iï ŸþH:éh¤(Güe™¶¬q¶å¹²’_í„þÕõqç"¼ø@>v5ÛžôƒÌøá£8¼Ü¤•Ös#þéÔÀÂ÷¸o#Ù$ù»f EÐÈúð É{+e¥hRœæ©¸/[öè¹OBT—ÿVô“s#[†ù–wQ-ÊÅ=è,ùÞá;8N64´|&@¥êÂòÈé° } X%®¤šÎÔù<àD n0ï %O"÷Â4>œ¥»F²h%;¤MPhÂ<[Oîrí„Ëi=U+óÁSŒŠ vç®ÕÿåÓ?ãÒ?)—Ml· bv^Px¬µ ¶Ze—æ€#_Z®)ón¿AÿoDI ÇY¼ë$§ƒûog„ ±ÏÖŠÏšÚÿò $ï†NéDÊÇ  ñîò6+&ò·Þ&„à}ä_ðv…!rÜÄd}ä.;¶ü2ú0:1Ô½Ôö¸Ø6ÛPdˆˆuˆhdÓ"S¢šóA¥›ó^®tãè°Û“¬tâ%qÇ?’ ¹‚ôÆññZärёꚜ+Kpã¾òèæ Hçó2¸4oœ…ûâ, ‡ªJî"¸YÞpäGÀg;kq&ï®1B±Eï`3ä˜bz½Fáø/¤ÿ„0–.×8† WíÁÞÛk^4Uc¤Š$*.ñQ]©Šqi„¿a>]okï)˜±Þ¹#Ù›– ?̲^‹‘õï‡'û¦ëé¦Oiš(E“œ†ö¾iÒ‡ô÷3ª¸#ƒ·@_ajîÄGVƒïÖ ®yý±ëL³`J‚$åY£(»cÜó3žpÞ#’Y½_â~²DšwšpŽ­e|®Õ 3v•—ž¦5O‚Û‡'¹‰—yn¹ rrI´»cÜu#@~|"Áe¾iÿè½S.ñ­‹vÆÁŠ›eÇ]¼R\ZÀò?š@>(à^¼=Ä‘Ÿ§¨€‰cçßÚÆu7v¦I(c1Ou)hGŽ2‚{ «NÇp¼> Ô‰’J]êøNëc¾t“…0¢Á”èÖ(Õvú¤s.wÏá½gʤV“ž0.@hÄ’Ëüe/._è(ÇÁ‚\!HB>ŸK`C>1¸CtIë} hÍ^°n£êoÚùfã¼Ô˜\ÜùÐÅõ®«Bºµ,7ãGÙJφÍ{;/)§@Ó%)[³þÐ8vlÄ5 °^»¶©ë¦q£Î à’Õ_ Fkö”¸ó‰Y€S†áŠ‡× å$M©Š+´¨RÉKjgóû$à·Œí\ ¸ÏN"Ùú%lwqã¥sˆTM+?hž¢Sœ£x)ïîж U&µº¼l:,ƒtŽA‡CˆÏ‘…ü)0+&ÿ«g®ðUh†:).V×Èû=¤7ß<»Š#r•þ‹$ÑGN¾=@K/ùqýŽ MéÑ3¶dC&!riô1ìú ~]öHwl¢:îœpeªv Æ‹+VlS­=€ §Pç(kçÃþ\¥%Ä–ÏE/,¿•X™I eælÿ4ÊÉù7ÊöVùÿ_ Çl窞ÈÏ\•r‘ÖUþÅR®ÒÊäóBéשøBIŸõ Ø)N•gͲZSbè?šÕØs_Ûjí{"8ì]†û ;›íVBlÅtËwIz÷±GÞ}Òã(Ù†·a=Ík—^P'm¤:D8Z‘L R©Bë¨;S‡\Í ü¼=¯ %ß…;…’ôgp™M¡¢Šâ ü ƒÌ‘¢yÚwvˆë…4è}C¹qM°‚{ röðè>•üåâ^Uá ¥úuÞd½P¢E;_´\ëO›¯ò—!éBÕt‘ªL_˜X^ðA|’²Uj ÐN^ÔeæÀwù”ö?u(íè endstream endobj 68 0 obj << /Length 3030 /Filter /FlateDecode >> stream xÚÕËŽãÆñ¾_1p¡Íf7_F6@bìÂ|Ë Ä9pDÎHY(“ÒÌÎÈ·§^ý©Ù5àC| HvWWW×»ŠúÛí›o?Ô7MÚ”yys{ÓTiUÖ7eQ¥¹.nn»›&»•J¦ÕÚh“làq8Lð{‚klqêWßἦÑA·ðØ®ò*yZåuÒóà€À{¸^¾åáÉâyÀ9ÅG‡Ÿ‡îýÈKûvƒˆ·<ƒ€BÃÓª(“WŸ{øIWëÊ”ÉÏY‘ÁÛ?pønµ.LòoÄ»9ÙÃéˆâŠ·ô"11…:¹kq¸w„Òv°‘Zýëöï7ÙÍZ©´)„‹ïû1ɺ”g¹# ¿ UøpÀ#x~CgØóKÛá'yÁ[ÁŒyæg>ô(”´wB%B‹L ·2ŒÛS+´ô'fUÑÔÉíÖ..èÜý†ÄÖ1èÞrBðlpÓ¾Åõ}L) ó³(ât‰EÏ[qlʳd7ñ‘æ0…|zÄù³¨áÛY-CÐÍp&½  ÷|w €çƒEBØ@'ò2éÇ~3<H÷nÑ u'¹Óqs~ßâögÖ%CMmGÿ<â¾ ÏÆ*Àڈʳ)Ýx)¸`בä°Àº@׺ԑT„ª’Sw€Gîä ¨øÐEªˆØ¬Ë™ ¡׉¨ƒc ÐʹHqp'¢ÛóûlM/£ $ÈÖIžÛÙŸÄ…qúïs oÕ@w~xÑ\eprÄÈ{9^¯oa8;+$x%1#Ù#OÀ`[ mFg0Õz„»GLr8²bé}¨Ö°îšÕ[jFs<ƒçãÈû*F¹‘aâ º»Qº/´}J‰Mʤ1«’yuk•ÉäÍëD#@èz¯LX¾¶²` anpÝyä!±V9¤8ä,”¾Ú8ÕŽ„©¦SâDËXœù þB¡'=%zŸái}>òG&2Ñ w˜æ‘¸µŽØ%ªÕñAÄ``AÍq\çC‹øë•†î¡N \7ðý0œà¸LX“tø4ǤgÆš=α†]hi Ú8&ôwç“§€,áE(_sTìc0‰B0çkÊvÁè^õ3™îI£›*¹?‹¨ÈÞd68©ëº7úž$ƒ±ÁIkòà[Ô1D(:¶’32³†[¾‘|è}ôd¡AÅJŒÈ£—¡G‡%N\;ʨڽŸÚ]x•[3=ÊëéÄÛUÕfäj¾?[kßʱóºvRE2ܳ°~^dD^y®Ø î;F@ðcØ(¾Ânï$,À”¨¢´9¢0vâËÞ¹øâú´óB‹@‚(@îå›kŽÓ£¢ âPÞˆ&XD¯_I/™kFÁžàžCÏ…8ºJ.öh:Ycwåt“´|;Zi“à€ÍZd˜ðvy’pÉ¢gl”²4ßáõ{:è§¥òhc»4œÞJå8±’L¦¤J9ð M_± U{„Úê0÷Ÿ‚tTÔÎwì]TLY¼JòUe–ECRnTÅÿœåÅ\Š´V9œM@ þÌÑé´®Œ…9Íqè´hê‡BÎÔÉ»%ʪT¬%©º)Ó¦Òµ%I³SÓˆƒÈæ{šMȃüf¤G/Y@°I¡š€_¥´E¤ Fôä§ùéH‡ÔÇCŒp]’]EóYÖÌÉO¦Š&-€Õëˆ.Ê/Ô•ƒ®s> X;©ò÷«6æËjcþŸÔÆj3;—<åWè‹~]_Ô¹WQü´ O%:gu2‘:å®Ã‘ÂXcOíí¿œãúšq¤4b«G.ð礞·³ÂÞ(\ïY ‹ÎŒEÌ%À#ÁÒ¹T~’Ÿ%/t]R;»íG®lärUAáç˜ÔHÎ~¬¯eC.í¨UÌeÉ8o›x¶å[Ô©¬Õ:•€c)Îöa:…%I]Idò˜/㞥c @¨÷n¿áÈÞ"è÷omRÌÍ£CŒ|y˜!/U'ÒÐÍ«*.&qÀÉ¥b.`~F€®½ÂïTµÖ˜ŸP (ݸ1ŠÂv1‰à3?áÐüv[¡ÅÒ?p/ƒö-õ˜`´„Ô÷3õD;~m'ê<#`FhÍq»ürç>z½¼š]›<*MNßœ i#t^M&±½5Ä&߀øÃƒ` ê’ÑoɪùÝ‚—Ì! †På“u¡ï)SUª¯ˆ6Å\vGì /E›YãT!¥šU™®þø ~ÉФÿ‘kZ¦• u“í—ѧ6Û”|pî$ù9¢BÜíÄ;½ãÛù+\?Ê¿ ÞÛB|­2S%`(Û ˜„¼½à{áé³LÉáqÈ2ѲÛvê,•½Ìo®õ …!OriáПQ«ø1tGáKø× 9ò“v “Ðð–…L²j&Ç „ø/ßN‚Rhùß¶êà™ ³îâ­?^°iÐCй Y‹œ™;×,Î3¿ÌVß-~ѺÎÏ{w4fžû?C¤N¿®wÁž1ý_%¢JM^`Aì×s Qõ… 1TdhÖ|^…ÔÊh‹àI~L!'i‰¹Lj„]yÖI&®@ÁUÕÉsW%¨†ÇUbà*àÒs‰G LIï1L#09sÃkÂ% êwE k!9•{&dÙK-lÝi–> stream xÚ•VIoÛF¾ëWh mIsnE F“¢ PÐ-É•)‹ˆDÚ¤¼õ×÷mCeæPc½™yë÷–áõvsõ!WA•T¹Îƒí>¨Š¤ÈË ÏŠD›,ØÞÃwQœiÞG*|€UÃê`aµ°Ž°XŸÒ,…ŸGÙžåwðDÞÀú"ûAÎzUÑçíïW²ÂsF¥‰µ*ˆµJ*U°3hâÛ(V©-B tæí‘öï‹ùPrÍ,`.HƒXî,gÝÌ«¬P¡õèÜ£Y'ÓU„‹ü^€¯9.(þ 2wLþdÌäN€x†•Àb.–¸îrÄö–<_@< [/ç'Xo™u/ D¶—À^ÎÄ;>ÍyU¬à(Ì·_c&®ïÔ3ÉÎù½|Éëü[Åh—0î•Vb½g7vlò¼`UAì¤}ƒ­së\Uäc"þbf•TŽì®s Ù,±úÁH›Ü‰îvBŸ«D{6\%­Ø@œŒçJ¶fãuó8]jálEŽ®ÚqàDVcù.þ„õ¬kX?Ó~ê¢\t•²lfÝTê‡tÑ+©¤·\TÄÌ•^JLªÍµÅGÁêóTž:­²ð®×tL ©q½s˜ ×°7¼}ô°n…þgšwÄÒRÖtͺ‚î;ç笰•„zƒ4¥&w¿‹1q¤¦æZyÕ[ÿËÈa—按^$öÀÅ'3_áÑ:»ë]¡‘—•H6ï·á¤rï‘*M’UU°;mî7X;ƃGÒ•“ƒ«ßN:ø¥ßü î*•±§óßÁÒy”N ¥U¨$·†ý‹` ¶C,Æ/älMŽ„ÂÀù·6•ñDw5ŸÙKÀý‰ðé£éÑc…—šžæNŠÍºô#锩h¡ÊVsNã§†æ žÉ»f\MOì› àyðÂõŽñeOà =JÈ»qtjµL‘£Ä×ãƒrž7X¤i6ëfQáf2çüsâ0 ;ŽEBsU¹Ðe܇’GjÂÛf`¦ÁõDóaït˜1ž*¢NuRY€'6“/•»7ë?§õ endstream endobj 71 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/compete-veteran1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 75 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 76 0 R/F2 77 0 R>> /ExtGState << >>/ColorSpace << /sRGB 78 0 R >>>> /Length 2288 /Filter /FlateDecode >> stream xœ¥ZM\·¼Ï¯xGíAÏìæ÷U†@@8»@¶†-Q$YÈßOU“oe,ìÞƒvÕË©áWu±»IÙÞn²½ßþ{ùÿÞ<\¾úüÏ¿½Ù~þ| {a[~þùÓå«oŸøukûüûøa¦ªìY6Ý[Û>n¯þýñÝÝöðþò̓}õ=¯Ûò %mã Áß¿zóî÷Ÿ~xõûwÛ¯w[ Û«ß·ÿüôx·½Ö¼½úôÛÝÛÃ[~5G>†ýõýþÿúøkÍÛÿ.ßÿ¸…í—‹loñïýE¬ã¿_jÞkØbg×·Ø`¦i~ØîÿÐ<­´çÑ*Òöv6æÙ^ð_=Û§ym×ÐöT¯í‡y¶ç´K;Û§y¶÷¼·|¶OóÚSXû?̳}î9ûkû 9QÃ. ÌØÃàDÙÛS”x *’ö˜¬ÆgCK è„fy.TCÚƒ.ОŸ MuÏaJ ÏÆ¶Î}]&Ûžðš¶.Tz~¿±ö=ÔÛ䊜¨m¯Æ ³4Ëò`Î—ÍÆ˜a­IhñÚ<Í¥îÐÃÙ>̳]CÝ{»¶Osiù¶Ÿ£ûKÁѺ·´ÓNü5˜úäVÿ ZDö*Wø“«þgp8sm<ÜÚ»ô٠οފNq×z ó—›>åà’°aé*†‡© QØs¾4ßS™·õo±Í4e²äñÝö¯íÓË¤Ûæ*c®øñ¸?Ÿ ã? CN[·As¢8K4><^ê¯ÀÒuÏÑÎÜZ$`ü·£;ýD°EÕ1òÉJ©W§¾ ]“í1È¥Žy´„¸‹ ùnâ@ÛbÓ«ºcͺ×]=‹f`Åøµ»Þê!7¡N,jQ`äàEç¸gÇ¢aÈ!n!£ž¾ûÞ¡TMv ntÖ3Þ††_WŒ\±ch”Š 1î 9Tѱj­ÅÅTc—qG<ï¹Ù¯àpðÎűiWxu‰²0~€£!LQõÃ1ˆî<ÉG²e î€ ý\×$<Ú ç†'æá‚œÐs¼JF0#[*<áèÎ ëV¦¹]”a˜@f“G¤Qhó¸Û켂¸Î í@·ŠƒÂåì.5º‚ÁÃ3“%£GèJÙ#Ý­ºÒž.êùb*ÍÞ=Q8EH ÂJOš,u”np6»t®K”‡Ë߇§H±ÂÕ R>øß#+ ,‚‡òŽmw‰EÏ<ØŽº"y¤º1YÅ9z<Þ£9Ž'¨âÑ’²ž2ƒ•iǯâÅ5+Õ∇ÔM¸@å‹cå- Û¿âXù gÒíÉ¡‘(øBÁô¤¦ïLùqJ8\F‘ W¾¸ c*¦q}¡"@L ÝniÜp$î¾¹÷=ÓiÏù¬j.£ˆ ³‡u/…GúŠ©† ž™9*¤R<¤E"¢ÙÊîÐybá0\ƵqH²w›«÷bwJˆÉ=$áy(¦z8I+~U¬¼kî×L½=j‘Ô2Ô]åE^R°”]Ô•ƒñ¦‘ò„ôÈ|‚»©KÊ¿Þ —]JÍÙ¢yÇSUä1ãyß칂P„<£ ÉCø9ëÊ]q™òêCFQÛ3xĤ™+öâqwä­…ðäã|OظîY:tËÂãàqDÄVsé¼S¾ÞíV‘IKlQÕA}_ï™÷ÃRÄ%ó‘u*†óȾçsä ̨vyÔ&Ž©ôpÜ)ßï¼ÊfÅÇS0Š*örÜõÈEDp!” çܯ,7fHx±Zܾ9ü=∳[¬èò÷˜•le6<ƒÏ1/=űq‰)๺‚‹4ÎFîû“½SBÅjbX¡–ˆšu†øùÃ¥Ž:_6Áûp`V5y)ÌÎOYk‡É »Ž¯J0í6%r[£ÐÞD»3‡M ÙƒÙ8G™«c±4ªj hä몽Žbˆòý?È`}Œvµw,oÙûÊ;§V;‹¶ÆvÞÚç1Þ2ne…ãããÎþiý«ã,¶=Z;KôÅä$´‘\ÎK‹fí/æ§Áî`³äÑ,¬k\Åx%›|$û<Æ‹ùÑÎöyŒWGØíóm>‘‘i³€íâ>Ûk Œ—óã48Þˆñr~½°¦ ãåüX„°Ïc¼s~•ë{Iæ~Í‹k멲㔌öù:¤ŒñÆFIM©Š´ûØ¿6?ßÛØ¿4Ö7a¼: ¨ãýÈñöc³À£ÉãÈä$N¶Ì:Æ•“<¼ëÉI–™ÒÉÉùÂàÊIVÀâÂÉj[qr’eÁ¶p²9œ¬¹ÑÉÉ69rp²ÍîNŽk´““íàüä$¯—óÂIìÙð™ÉIpÊötrÒ8ÓONòÏ©žœTÆWN2‘áû¾+'9ͼpynY9‰³Å8upRŽþ''¥õ:8 ¼¦…“üþzrR%3¾r’ã) '÷ {pÒ £ 'iÛ^ONr~]NNÒ¶ñONÒÎý䤵ËÉIÚæ“““´­¿ÉIögû{pÙì½¾à_£µ“{8^R8¹ÇkÈrrSj«2g‘…{)8¸‡è¤¤…{|bTî!vª«b‰êʽ\ÆàîQ_Ó½b/—NîÕÀ²ÁÉ=„vuá¹oþ|è!_sôE[úqè!üTÃÉ=ú‚éñäžém8¹G;¥“{´Gƒ{Ä·xrOÆ Ö+÷Ø?ß ^õ°Éø¾C1þ¡gS) aÑÃ2ϧC‹…*§b=uá×ß|éÐÃ$c÷=äçºè!cž´è¡”áˇòQ¦6L€rí…\{â…ÜÞM/ö·“|§X/Øì,d‡_"Ô3J­]ñëúu\£¶|Ý´ùuß]þYÜ”] endstream endobj 80 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 83 0 obj << /Length 2030 /Filter /FlateDecode >> stream xÚÕXK“ÛD¾çW¸ö‚\¬ÍC¯ŠTÁ…C¶ŠCÈAkËk“]k±¼›ÇßN¿f4²ÆÙ, ¶æÑÓÓÝ_¿¤ï.ž<}QÍê´.t1»XÏ”Òi©ô¬ÈËT›|v±š½J.6s•´ó…)êä†ûîv¾ÐEÒíar€ß¶ÛÁs$U²i>àl¿‚ÿžOÝtp Lp¥ª¶w‡áwÓà¨êfÇ$ÍÎÜÏ5ãM͕Ȁâ4\[ñJRÒYϹ=‡…²¤…MË›÷óK.ï¦ë Üw|)¹ƒ±æØ]ØQ%8ª[™JºÄ–¢cÃ|×R7”`ಃ`\0ßÓJ)ݳ`cÒ ¢ ó~‘ªB©äY„‘I«2w4‡)“æuðPˆ(õ ÂÑ ˆFkŠ%`lxÜxûN0o¢ÈÁª«F°Cu¥`‡¾þ†E²åŒG£P eÒ˜ØÄgÙ,z‰šƒY´M^04L™'ä¼»%§+ôþ~ª#³JM¥˜ÓÏHF^,žƒg×[ŒÛk®o ì÷ù„ÛûÙóöVžˆºÊW+ITXfQÑ;\Ã\I;àSè4ho‹œÏñû€T¡ c+K"¦\ÃØÙ•áÀQŒ ‚!þ@‘åR”“¶7S7®r¼x’/UrmUªÆùeèÐL²õ×PB‡n¡à:ÓƒGçEž|‹Æ.-]Úôïù»°+û°à<†«Ž8÷ui¤´Ã08`)ö"ÎÁ—‘§/ò2DÕèÔ*GT’{ø½œùKÈ®ÕÀe™FÚt9¹”tŠ; ‘¯†_6P*V²D²àÂ[שªª1Æ­XÃõ³÷S/Ü™Üzå› – ×:.Ën~æÄ ØÉ…Q%¯¨ªªäüʱ!DñãkÎLJ¹ Ž…ÐmŸ‚8Âåëœ —«øEo1wÂålÀïu$[«,µ*KªjH‚+æ7€ß ZúӾ쩧ÊÑÖ M§Jð»®BŽÝRfK|B97à« •—Œ³–55<‰¶ W_è¬ÎiœÅr–b}ĘcįM[a\žblƺPµc(Z¸ˆ_ s .@€)­[ udóI—HÆÌ…Ø<Â<†yÀîÅÀøÑæù¤ Êà‚˜y´dê„y¢—Lšñ0˜Üg*èðŽj%,eüqáÙˆÖîÁâß×ZŸÕ½ÜåG=VŒ¦"0§|”o—øiþ*›8Ѓ& d}½•YÑ3®µ ÀæN3š>`SU£dŸ‘,ò é> stream xÚÍYKoä6¾Ï¯0@¸Qõv$@ C ä°Ùƒ¬–mí¸%§Õ=Ž“?Ÿz’T·<{ÛÙÝT‘¬*Ö‹éonÞ|ñ«®š´)óòêæîª©Òª¬¯JW¥¹uW7»«%ï7&i¡ Ð&h_B›¡…ÞJË\&Ÿ÷2ŒKNОxØ|dø4³ÙºÜ&[èVÐRh54 ­ä¡BÈ%4ì÷ж´Ò$nóï›®²«­1iã>Ù&òÍÖdE•d‘ª9íd›gót';Ëþ?Ô¶Áö±†»åBó’v$šç6m +þÐhïÅ9òý "±íXT¼‡†ˆ|”•ºÕw"ÍŠôŒ\Ï6žÈ<´ÌñÏ(wЮù38%„“n+Ž|á„’÷2Òbâ“ XbÀ=´[awࡉ” .R?Èè(;š_ãƒäñ]i¢œDÚ´( Öæ+^щÿý)>|QðAl0ˆ¼\#€d,òÞdMZæH’àë„Ý ºþ›v›—¦‰h¯­_›Mãó¸Ù6дÇTl®É!™®eÄ5ÍZ.< ¿AvF®›¬òQsˆ®ñÍÄeæ•c¬ÅZ¨Ú¥fÖãŠfßÃ&ÒÏоö5}ok[[Z¤¼­ðv—Öt$š^¯Ä”úÜYg º)À[yÕÐî&¤òF(tiî·ÿ aÑsãÀ®e ÑÇ̉žWÉóÌeÓ—ß¶áhŒ¾ãAÚtÇ¿˜VíìËÈVýˆ#ä¸ #}F_¾ˆÐí¦C˜ËaÌÂfÕ}Dµò´"BXhÑÚkõ» û´æ1ÚÊ«r²&ÆÇ,Òq“×É3ŠDÛV6ÙO#’ÔsºÙàÁ6ÌJž›Ú¦±>C׋À…Çm“æ~Úê„fì|ÑYÃ3¿UVR‚º´ì°‰Bâ ûCÉÖw=)}.xX2zÙ)MÞ&‚aWƒˆs‡âò"EÆåi Åeað™LpèÉÛ¢Û‰¯­Íɉ­øÀÚÅ ER7$‘!&ˆ2Nü;Ó@\yæþZ†4;YC~•þ‰fîø#Št’ª¬îñÏAG³î©Î°÷x™èð„Ó:dþ }žÐOaglðià°æ¨‚ˆZ9Ñ ßM]$¿[PXk©{Ëô£æ©ÍjÒØï&ïSp`Ù þD“,BÃf  lób=1¦”Âàítb¹’³Pµ’¿ØÇ 4nqD!§çAr÷‘gßâ ¥Ko5Áµ^1V¿pÿ¸8ꈄ6éLj_«¯Ol NJf“v±ÐGòÜc máC‹k/åg=ãÀQ#$Oºö㦑}mŠ´)Š¥n¿hæ*o°´K(ôŒ#ueLÒÏL•pÒÔŠœØ=xëÃCÏ-þ”¾t¥=Êð^+2Nê4Ù{Ì]['7+0“jÈ]«†¹fêÍ6 žf¶7}#{äÆ÷Ò¨²q”r)´`¯»…€¤(˜1÷M–DñÛKøA©Œ™ªS?AÁGË5„À•¶}À|0F•~Ï}Pµ‚Zš;+µT!΃ÌEC=é!‚¥]¹cݰΣRè²ÂJ(q]ñéýc¿V­|¡3– ÄÁ"_¤éä¦b÷–GÏ\[p‘4ytúØ×.'8]N®ùtê[Ý¿²öþT³ ¾ZJ=ò²È*ç²:ð„ºËNcD8ª9¯XJ€Øäau{¡ÝÂXU°è„–ïyaBQgæÉßñÃûúσ¿rÐw|ÛÀïàUéGòÅÊú¯€¶²¤#ÛÉé/L£«hO”“˜?€­Ž°SÁž> stream xÚÅZYoÜÈ~ß_!8/£ØC³/ÙØÀf› @€è-›ŠÃ‘f53Tæ°å}ÈoO]}ðd;^øaÀfÕÕUÕ_œ?]}÷ú]¡.ê¬.tqqµ¾Ðy™™º¼(\™iã.®VÿZ/Õâ¿Fžgøaߛ˥Ófq€f¿{øýœ»ø{¿‚»½.•+ÕâwÐÞËŠVžGùáHí#ÏGâײ߉_7м ½ÌF «Ë_ýõ"¿X*•ÕNø>ÉäƒL> “óŒþ~&2 Ó#<²ÉT¹-‘8=¡>‘Ê É{!¹IùÙüÉÞ%öò{‚l›6ìB")¡éšÅÞNÈãº["Írœe©`–ZÑ nÿ^XxF€¨ýÉ»Ò7šuVèz(’·L¤% ŠÞà’×ï\™Ü •gÖª‹¥Î3åê¨ûôr¢¡žD;:uÍ_£0{j©a(¡;µ êžê6l(_‘Ÿ%…º\e è™ïiM:}ôT2O]¨ûu^;±îSs¦§ePˆ’~Q=ÕÌ&úK7121!L¹n´‘ùÒìÿ!*¾;ܧ箄û ¢z|9Añ•D5ÙhäNòá}y/ÂZlXÌúÐ\ÆÑÔfãÌ€ãî¼kù0¹ÒŒ íLÿ«è[VÉ´10,ÉgAäŽnûœæŸ£)Ò=DÀåcΘ¸£ÿåÇO‘Ôò¿Uç ÷ç=Éó «÷ÏËÑi+œ†ûïâòŠD¢?ŽÆf¶Bk+j™qÛDÙo²hTf´òù ÄpëkYñ~–¾“× Ù'Ý[ùyíåØ/"{Ùp¬ô<™ÿbà¼æŽò6ž“ÄTÇ(öãÈÞ>O¨'Ç›çåí}ý®J=¦Íjk‡puËþДÅb…ì®›³°râÞk„“EwK²Ðåâ=yº®“6ݬ¡øœ[4[u‹–„ûþRW"è-IÍ‘F"ÒïùÙð8‹vE;¹¿å±ûSè%Ž·Ü»ñT ’T/|ÔÒœº°C8q5ÔºÁ™Ø1‹ÈR‡Ð5-ž˜ÑUÅê’øÎª§&²q;è†3HìŒ}{ßÃÎ9‡·>*‡;¦ÈòJÁ='&6>Æ©ØdF~Rïa«–PžÍ5Õ#c§ÈoÏMžÂí5©·“™ýŸåb ]¨y{ÀöPNcQ«Ev¹´º^ü Y" ìqõñŽÌ\¤_Sò3¸fG²‰ƒ‘UeO•ˆºµãkö+n”±WcH‡¶»·ŒÀ›Çù­œ Wzdÿ©o?Jûè¯;&Ëç˜á«CÖOð}#ý(Õ¶?ĉ^‚D#!°õ7თŸLºm¶+3NÕ„"Ny×ã™°o ·óìmÅJŽ<Ì¢J–‘|á=°6%y¾ç™¥I]´’X ².¦wG™×žN X¶¤÷Ê.dz³gT –q«{’ÄÉûC™ÑGùŠh<“]lÃ}€v5”K7'92JÚ‰ØXþ·B^ñtÆhŽGyc" "ÞË=ÂAÒD‘ÔíÏImž“†úiãëŽsã¹ËlyÁGÐ>Ò+3WT"gäàÚ.~ìÉX ˆpã[çþLèi¹¶X®ÀÀÁ×-ºýª KÏ`óE÷s®Š–$#£hG\BñV™ü"n~Zó•ƦuVåÖCµS2E¦ §€S’1YU2§) “¹ºJhPžU÷ÍæèƒÄš—Qeð(0zÛ ´£ ñ‹6è›Èn:^¸F2û6ÁaÅ.ÇèÞïxõ‡„`Ûìý rs½,ðÝýa僌†Ë3Ôý£xJzÙ‰‡DVd9UCø³c„Õ&³f°âÁŒh³gsFB= Ýıێۤ-îBT‡%Ä0zß’ð¹õñEsàa¾4»UªÒf6×_Ç&Ü36QmB—„Ss_ìÂ(pð‘ø}W†ÔT„ªÕìýB×רäD»þ(;~¸õÑ"‹ñôØ×96Iio’êªX½VIh óF7ôDiI«úxq}5Iëp9¤TÈ$öÉî^ßqOsâÍ^j§'fÏ¡ý5R¤zWö7E³–…Y?gø‡˜ló~”4SíK%%V%hÉq¾r”SÕ Ø8®`›I½;ÅË{¹J¿m{ôìå“ßÉ^>ù¹ŒœÿEUÇ%)OÓiíïcy´—¯y³LÙÐÃúû° ?÷õâSJóC¼_†Ó$Ú¼Jˆµi£éÐM%™"Õ”;.‹6+šê|Ⱦç7Š[<:Óäu]‘ÀÚÈùj­³‘Oir>]gEÎȶϧAE|ö$I2ìž9Ú õQòÒ.ú:hsÔ¥uÍ^|›ƒRàÙß@ª`å"JY¸ïk?@É¿/]ÚÜ1^û{ÿ‘P²puÈtqæÆÿwâ<î£æ  ;¥E4Ügk” á¬Mœ÷ }®õˆˆ£Mëï'ƒõG!ãÁQbSÞó1A[]L#`Ö•&„2=—ü‡Að«X/máU]øê³©Ý°RÏ7¡æïu‘p´ 7#x ÇßxàsÇ9º„F¬DãÄPþ´‹_èO/ÂÀu"Bx£urQÈ«ÏIk¸±ÍcVmóX&Áö“bšý‹ƒ&²)nMo^žUU¨,|ºó€h%Ù€c6ìÍU±pí5ò‹A¾lȽPóC0H±á•œ‰JZGúg¨fóaK¢c_ÇXùëϾí?üÊš~-Ÿ´ÉJ7rs ©³\›ÏÀ,“C„o8ÄA):Û¼gz×Ûxv=»Iz¡#H@¹÷º ²v'"š»$D ‰nGQzI.¾†4‚¹7‚BA×=b„=k/|*jw¯|J—©¢ ÜžÖÆoiÐ&!ζ4jÿAr|Caè.Ú¢\J©?‚×v#¢Iª…,A Wéû(„¨…¯#J å2žÃÇWæs=çÚDªO½]63*T%ÿ½ƒA˜Ò 9EÏMŠë:_§%Œ±PÕÚÇ?˜²«T–»Ñÿ£Äë·M ùuBÔ˜§¾ÂÊÔ®YùÜÇÄ ¯ÉÒ˜!°…ñóèXž¹Ê*«>­T,'ð ¯ä¤DT•ÄFªÆ±ïþrõÝÿ~pX endstream endobj 94 0 obj << /Length 1516 /Filter /FlateDecode >> stream xÚÝXKoÛ8¾çWø(7±JRRŦÀîb{X,z©=´9(¶U¤ÀvŠ4‡ýí;/R”­¤½-°™9Î|óq8ôoË‹·ܬJ«Ò”³åf¦µI­6³²°©ÉŠÙr=ûœü:_d¥KŽsìá§¾wðÜ7 ø]7ðó0_›à[·FÁnnPŽÄWÐÑÏaøÛ¼(“zSëã ÇëŽßoEÏ0±;Ào°`Åó`UÁ¾*ìîÛ¶$s³üó퇢Š|4¶LóÊÌ{w$DzrÜÏ 0µá¢›~O¤(ƪ¬Rc3¯fB·mG6£GíŽ ¾£Š˜§R«ªÙBë´*â~vg&YBO%šŸòª¥Ž–U0¾ŒÌ|?_&P5™°˜2îþ…|Zh•[ €fí‚ÏU(h>¡ñ.<߆îaA犕úPÔÒúJ{»!±ú\ç“úuä¥ßWœÒhZÎÍZöýÕÚ½OºJ”øHñ†šˆTG“C”3á…¨î$ÍâYtò3 õãdæ³x'Æz™sg¥¥?w³ÜJ™ nb÷þÛ‘Ó ÖÝ%–Û:×ÝXöõ¡(ÿ¢t‰IrÇË2e²;°,aZ®Î×ú=¿úêœÌÖqmj°2 %1,—O”Í©†z6ˆÀF8ד¥Îæ¡@?ב¥Eå"˜æ•A`Ú‚©6›{É"Í2o¸³íï†S ‘a£äüJá4p6ù{îr¸\Tè 1˜RfcîÔk¹™d€f½>ü†èþö˜Báza‰«0g¡n(½»q}….=‡:ë¦*uy˜ˆBm§r“|ìb¤/·üùÁ—)<çÛïèúÕ`°ç"|î‰/¾Še4]Æë0a?òØXöQünËTF’|»œâY p»À÷ç®CŸt¸ ·ðnbª%)†ú|hdÔ—ð.7nÄ¡T«ÀŠŒñóògİ »Q7êã´Åhƾ¿çÁá~O[—÷-P †–BRãüVþ0Ðp‰Sæ¤ZÝù¿\$³«+2j*C5ÎðŠ&ðãÁwO(™qð´X±ûÆeq”pyG "í¿†xžB^Úòù#84¦æF\¬÷,ÔÿðÌmVbyß ëo¿0pÛøÄ Ã’5èû@ɺmâ[ÍÏþ¥òà 9.Ú|¾ý,eÁM|Ë9©"DS-eBpõ‡÷%¥Ã˜ÃáVå×~'ÅçÍPšxe­T?fäöh(Ç,^Éò"UNûT‰’,/þªÞmó endstream endobj 97 0 obj << /Length 1465 /Filter /FlateDecode >> stream xÚX[oãD~ϯˆ Ž”¸ž‹oˆ"±Õ‚ÛðDyp7-ÄqHÜÍö…ßιgܤ-ªœŒgΜëw¾™TøSã2ó¬›2‰kÇËfôÏ(.3m, CZR²M&.jÌøÇvôü¹¥™¨œ:˜.oŠq‰ê²ñü~¬”Žs¥Ç&/â¤(ÇóÕøhþ0QÑ#<‡ÉLYt¨šGi´lá;V¸¾…5 ¬Px9ÑEôÐv0l› H=óžú‹ÓÖy•ø¾åõÛë[ìÐìžz=…™2¨ò™wàf¨ùõˆ*6SØ(žÌ,È^£gwξ¼Ió `“˜Ø2D¡vâ[CšIOÒ,ªö(X-Ä…zŠkEttxÚˆÍ ¿²h'ºÚõ¾B2CUƒ”“åCFA²52…$¨ÂÉL8aY ’-OˆÄšàx e±Òÿ ›¤tÂÕ­Uü%Y Õb#5€¥#NºBKë\ï}œ½Ûd½ vˆ,"ñUM3ìPK»˜ÌRý…óKî7EÍ‘çÑœ«NˆT¹ŽMi‡I®]q¡Ê3£µã£ ×óàÞu´Áµ¿± 5.=ólݽDs Â/9TIÞi>¨Ð7^¯ƒ{-™©Wkz¨\0–€rZ –{<ГܛüòiêÅ(ƒ4g!(0Ô>±À²Â„oßÎÁ“J´;˜ ££#Õ]j©“<ºSÆnïØVƒÊR#©èÁ&:gÌ€ àõ„hЊƒTBBX£ÇG‚ž*—Ö: ¾FTô­@c¤ ›Ci¤+QuÓ¸æ_ã¢%¤R !JÿÔ¨q²â¯ç‰ãp¹õ; gÒ°g„7Ð/BÅÀõ™ 'ö\¥Ñľò†Û&t¦Cª·à† à GtlSîd<ù$ª ¼­‚ÝU$Ñ55Ç”dÚ­kc9ÆŒ’"ˆ:{Jã÷£=ys8O4àзà]V dÓ“í÷ œÚg M> /ExtGState << >>/ColorSpace << /sRGB 101 0 R >>>> /Length 2262 /Filter /FlateDecode >> stream xœ¥ZËn]7Ü߯8Kiáv󽵑0‰Ì"É"È8À8–ƒÈæ÷§ªÉóð@pt[ K¦xë²IV»›”åí"Ëûå¯Ëø÷úþòÕ§¿}½üöéÖÂrþùé·—¯¾Q|þþ÷¥­óïã‡5UeͲèÚÚrÿ°ÜÜÿçáÝírÿþòõ½}õ†=¯ÚéJZ$Æ5‚ºyýîï_¾ùûçÛå÷Û%†åæÏÇå_o—Wš—›Þþ²Ü¿åWÓòaö›»'̾{ó=þZóòßËO¿,aù÷E–·ø÷þ"6ðw—š×–Ø9ôÚi6?,wÿ×=[iÍ£W¤­íèÞšGÁõèŸÍ½_C[SÝû·æÑŸÓ*íèŸÍ£¿çµå£6÷þ˜Âyü­yôŸ§{Ì~ï!'jX%kœ(k{ŠOAEÒó «ñÙÐ: Yž ÕÖ 'hÏφ¦ºæp‚J ÏÆ¶Î}=M¶=á5í¼PéùãÆÚ×POØ&;vp¢¶µ3¬¥YÖs>ï6ÆŒÖÑ+„÷îÙ<õÃz8úGóè×P×ÞöþÙ<õsöþú­kKK1ÝáÄ_©OnõÐ"²VÙáO®ú—àpæÚ6x¸vt ³œ½âªuCçÏ7}ÊÁ%aÃÒ.†[S!¢hÏMø¼¹}øŽÊ¼œÿ›ÑLS&Kß-ÿZ>¾Lºm®2æŠ øÓñÉ0þ:ä´t3šýÀY¢óþq_¨K×5G:sk’û¯Gwú‰`‹ªÃòÉJ©»S_…®ÉöäRǼZB\ņ|7q m±éUݱæÝ몞E3°Â~ínÃ[Ýäà*tÉE- Œ¼è×ìX4˜â¢2껯JÕdÕàFg1ãuhøu…åŠs¸Ø@ ¤Tã;å]’/˜¡›w¦±Áç19ðHÖ LÁp¡Ÿ âšä‚G;áÜðÄ<\zŽWÉfdI…'¼ݹaÝÊ4×£‹2 Èlòˆô€# mw›ƒW×äVqP¸œ}À¥FW0øbxf²Dxô])k¤»UWÚ³ÁE}"_L¥9º' g¢©AXéI“¥ŽÒ Îf—ÎÕb‰òpùëáð)–B¸¢ä/BÊŸñ=²’ÁÀ"x(?áØv—Xỗá¨+’Gª“Uœ£Çc°á=šãx‚*-)ÛIá)3X™vü*ŽP\C±R-ŽqHÝ„ T¾8VÞÂ`±ý+Ž•Ÿp&ÝžJ‰‚/LO@júΔ§„Ãe™€på‹«0¦b§Ñ(2ÄÒí–Æ Gâî›{_C1öœÏªæ2ŠÈ0{X÷Rx¤¯˜j¸à™™£B*ÅCZ$"ší ì×(Ãe\‡T «q·¹F/v§„˜Ü“Až‡bª‡ó˜´âWÅÊ»æÞx]ÀÔÛ£I-HÝU^ä%KÙE]9oÙ(OHÌ'¸ûºä¡üKápiÑU¡Ôœ-šy<åQEƒ0ž÷Íž+EXÀ3 ¢‘<´Ÿ³®,Ñ—)¯>dµ=Æ#&Í\ù°»#o-„'çÛ¸xÂÆuÏÒaXË "¶šKçòõðn·ŠL \bƒˆªêûFϼ–".™¬S1œGöí8Ÿ#o`FµË£6qÔH¥‡íNùJxçU6+>ž‚QT±—à®G."‚ ¡\8çxe¹13@rÀ‹ÕÚàöÍáïGœÝbE—¿Ç¬d+³ä1>7FļôÇÆ%¦@€çê .Ò8¹ïOŽN «‰a….,5 ñó‡Ku¾l‚÷áÁ¬jMä¥hv~Êz;š ºëøª„¦Ý¦¤Qnkl#´7ÑîŒðÑÆ¦†áÌÁÚ8G™«Ã„ÎÁXUµ4òõÕ^G1Dùþ€d°>lD»Ú;–·ì}åS«ŠÅ¶ÆvÞÚçao·²Bûøø„³ƒÚø*Å8‹mÖÏ}±9 ÛH.ç¥E³~Ø‹ùi°{´YòhÖ5.Â^É&É>{1?¶³}öê»}¾Í'22Û,àD»¸Ïöör~œí°—óë…5]´a/çÇ"„}öÎùU®Gdì5J$™ûe4/v¬®_¤ÊŽS2ÚçëT2ì-Œ’šRÙîcÿÚü|ocÿÒXß{uPÇû‘ííÇb/¬ÉãÈä$ 'N¶Ì:ÆÎIÞõà$ËLéàd|a°s’°xâdµ­88ɲ`;q²9nœ¬¹ÑÁÉ69²q²Íá6NŽk´ƒ“mãüä$¯—󉓨³á3““à”íéä¤q¦œäŸS=8©"Œ vN2‘áû¾“œf>qyn9sg‹qjã¤lãONJëµqxM'NòûëÁI•Ì xç$í)'N2îíÁI+Œž8ɶíõä$ç×åà$Ûfÿä$Û¹œ´~98ɶùää$Û6Þä$dzý½Û¸ÇlöĽ>ã_£µƒ{8^R8¸ÇkÈrpSjg=dÎ"'î¥<üa㢓’NÜã£râb§zÖC,Q=s/—aÜÆ=êk:q¯ØË¥ƒ{5°lpp¡]=qÜ7Þô¯9úI[ú±é!üTÃÁ=ú‚éñäžém8¸ÇvJ÷Øã îßâÁ=/Xwîq|¾Üõ°Éø¾Maÿ㩇”†pÒÃ2ϧM‹…*‡b=õÄ=®¿ùÒ¦‡IÆîozÈ7Îõ¤‡ŒyÒI¥ _Þôˆ2õ°a”Ûh/äÚ/äæ»Êl7®Ëöboܤòaä—ÿóp„§ endstream endobj 103 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 106 0 obj << /Length 2582 /Filter /FlateDecode >> stream xÚÍËrä¶ñ®¯˜‹«F LAº¢­ŠSqžÄñªÊÛj†Òp=C*ÃÑj÷’oO¿‚í®¼±“‹`£Ñè7º1óõÍÅ—ßäzUª2OóÕÍݪtÊåÅ*·N¥Æ®nv«ŸÖ¯.765ë»K½nà9Ó2èÏ0Üðp Þwð<À³‡ççÄ&ðz Ï#<'xÞàs¤jgS†œÉB4¼o(þd™ÛyÚ¶¯Ž2Ú à‰PçÛFxh‘SaûAÆÐ{þ®NÕmw|§®½,‡÷l"¯¬ØDhÈvE=×D§ee¡96 o„ç´È× Jÿ8Л`·`Êlý·=Üñë it½,¢ >z"Î+ §v({uËÆ þeôñ ¥:wyWùœ€3ïy¢’­»vØ¡»vÞà:XH„؃çX÷ƒ¾mI‡ÉX{ÞÐ7ŒX¸–å'†-J„Ìä‹Ö² õ,Æ” #êäYæV¤e*@E"¿¼÷ÄßP*GIÁ?î¼'œF|ò⢑»´’¥±©n’+03-Ã&Q`|2z†¿5ŠvÐÆÝ vÊŒ‰M…ŸõÈNd—Ùàœ™É8‰“VÛ/j(µ‡aK“¨èSPªÐyíÏ(ÒT´¼¸Vî«#rq{›´÷ ßv;J)r e¶Ïe´È„·#êÈ,3)¡ wƪÊYUÜäöÀ%'÷2ʇ&a‹D¯6 ‡N_³š–J'Ú¯‰³ð†ÚêC: Î Lz¡ðã@ÆdÒ+N6™U:Õc;ÿè㵪3¨àe×»ŠËúèy+š÷öƒaí Þ…L$â·”CBÅS==E†0LýÜ=0Æw‡c%’‚MpfU,œ¢¥QNœHkÇdàèòXÕÆª ”!‹¨¸iãðîD1ô]{é­Ïð¤X“eµ›§ñš rfƒ<ù‚`Ïvd×?ùrf51:*LÑíà+0Órn^—.+bT7ÌëÁEÚÑT#+¯EM»ñªi{-{¾ çè¨vyi!ì+Ö¢P.[Ð{# oG•ëYøÜŽ…™7Ÿ™û¥RriÇWÇB§h=£çtªL~á3<_ÌJT–œK¯y*Hsœ'æðá÷Õ‚ø.SµUy>)S#Ö—7šMu\Ú-{J\q$[Çj‡^[ÇU Î°^åºØÊ¿“ÒÂ{!i§“ÅV ¼L@ L/šu’9,©S"Ë\DDô@„øÅ¸ˆ+ónæ©!6ÊB»jþ íêsžtõœ‘?˜fíÔ¯žKpQ<&ÿMݧ/2ÿƒNpcòÜ-…ÔÒŽP?L•”©Z"“A¬³[›N<‰Y §uj×ß‹ïÕ»fë½âö@ÝœÓÜ'lv5çƒýÓªTÃ1 @sgбsÃnìsæ¬?+8ºŠ$jf·híªçAª®ÐîÄmÕÙ=«¡·b&1©LV—úظîGjiJâ†o×@͹Â}”’¡R<‡®Kz¿»GÄž†.²:Éà5-»²¾o};;îGòØõRe Å-ã˜PšŽsßñ;”¹"ší¡òŠ ­¡É -º¯±ÿìË-;ªk[õ´I:Té΢]!{$ãÃB™'ü¾ãi †•§Ç7©UǼóçö‘j.é!Õ¸Wdœôß ‡i¤@ï„W¶Þ$߃¾m™¯¿½ã ½š6ôc|wà¯F2rÈ*õJä©Õ‰'¢#cø†²š-YÑä¸Î¦Œù…%q×L/ᤅÕÏýHÆŒ [µèUÍ2Ó÷­´­,»D±,>@þJ1õŽaG¹îp~ zÄ¡øk$› ’˜ZoŸ­/TO2Kbâbï0~ PÃîIÐ~ü®Q&3%¬¡õ»þKOW;Lj±=]X©AåÒ‡‹3§3=m$"õ5óŒç”¶Æ÷D>…gÐô÷þJù~™8½Í·.3•—fhÑ#Yåªt¦ ~LÙ²UVfÏòg”v+¹bwÂDØø xé‚Sž˜Ép)fE?dŠ>µJòÀçÁÈ"ŒzÍÐÕ§ $t¢’"øaAT§lž}LT§3µ}Ó±Õÿ:WþžO‡©1tPÒЇ.p•¶)=ÛÕœ¡B•Eîçwðà¨ç8nÑSîk¹v0øKÊ´gº‰.4èá4й¿ páWfŒ÷ÈR9,H^XðŠ1€‹mÅ<YºGiºq|ÇÚ4™R犺¬¢_9°•7ùúïÔ=ye~€Å£¶ò7 Ì½ü’¦P·›IWû±·ò ñoö(Óº–Þ!©œ5i\¾~K+ •†xÚ®Ýx{³³ÙïGfÊË ‹P«_ ãÞÛߌÕxð÷+þ äu\ª–%mçån¨ûãÂ7OT ^57äm‰þ4õ'ÒSL endstream endobj 113 0 obj << /Length 1975 /Filter /FlateDecode >> stream xÚåY[ÛD~ï¯oŽºq=3¾B‹D •@H<4o$o<Én›Ä!NÚ]üvæ\æbÇÙíÒ!ñàµ=sæ\¾suöùüÑ“—夊«\æ“ùr"„Œ !'yVÄRe“y3ù9z5ÑõÖüYèéLÉ<ªWü°˜Ê"º2;5l¯tÇËív*Ëèç̵ª£yhù»6×í´TÑPÑ{Øf†øÜ™ª¡EâÀòJ«ý-­€`­=qMLßz¢pøÕ{Ô’š˜ÕôÒéxM`FÍꇠ_ôÏ}J˜xÉöoù€Êy•ºñèücŒý„.oü(S&qYʾ¶Þ´¡ooNyb.øÒÊÍ•± ‰Ï#1´¼±å{Îgƒ÷‹ÓÀ•H†Ë# f¬Lâ}ó+á¥þ /¦Êl Å?{cQq6¥hL.E¬ŒeZÒɬ䚯/Ï¡}&—¼µç¬³¿Ô¤£ñ)Ò•ù9„ÿ½¤=Ý’ÇÈ¢Ÿ´!0ýÔ ªCHôÙR6ù/ekhñ½9sbÍ’¼ÃôŽ,ÎG²¸R&!KChd³j&’”Æ<›t¬QŸÌúTd±¾R óõ÷;©iµ}õÁ$“*‹»ÈRsU,ï1¯%lˆdº’Ã%=CW1]Êt*¨‰÷¼À9Ë‹®ôLHŸÉmB¡[1Ó1½Óå¬SvyÀ3Ô_0]Êt•3àÌ$}w} Â# ÄçÌzбËïp›Ü‘˜#æX—©»¦1dzVƒš”Ž˜”tçL’ÌO ø)¦KtÙÇzÈU˜³ôbD‹lUpÝOçÙ€Ÿ-‚TTΰªŠE9(;®#[«O}ǶJ Œ¨‡e¬ÌEÕC.XY||˜Y€ˆÈ?MdC²&˜ÄµÒOe=öIPû ïüÈ@¿ þkrmfç«!îƒ9†7hv›ý̰]ºÀ$lifá.ꆣeÿ 1üp6v¶~:TL4û-QVþ ¶Zê¹ð¨yDÕ<«Ü·¢ë<~ÎYœçƒ>Ï^z'árê{´„ë‘y®óÀh÷3°Ï„ÆoýhrðþØLí¯«tùß鮃=;‘ ~ê˜9Ëà[¡è}eÔ̦ L`£O?@B £ß!ÌûfZ»Ÿ!½î݉“¾uÿxâ­‚é˜ñ˜óò¥C–ÅRŠ~мp7¼–gTí>Š\ø[ìv=9©ºŸõ›çä¿¢*âüè»ù£¿iâ²á endstream endobj 116 0 obj << /Length 2702 /Filter /FlateDecode >> stream xÚ­kܶñ»Å.P]s+KÔ»H ¤)ж¨·hÇt+í£Ù•i×ç‚þör^äH«;ÛA?hE‘œápÞîïÖ/^}—7UXå&¿Yooª",òò&ÏŠÐ$Ùͺ¹y¬oã µÏ`Ÿ“}ÆÛUf’ ¶Í†Ÿߨ=òçOö¹p»³ÏÙ>ûØ‘ŸGù!Ê"ûµå®8 €=5 ?2> ß¾[ÿ鯒›šìfe’°Š‰ê#‚ÅÁŽ×Ì?Þ®LTeÁïm{Ï}#ÒŠèÿ€D`óoL“öÚ>?ÛGþ¬ X qV3î/vÆ?ìóg|VIœ&Áʶsû$ö©ìò»@4ÑÞSrϫ˖$yŘ2^!ä·ñòpÂÃð¤éí*ŽÒ" LUOˆÉ‰aü†W>³p­:ÄY»õõÎ"Ü'L›ôÜÒ/Œo!,¾õóa•ƒYàÒÙkCÄ ²c8âŽ#/ã'âe¨MKH*=š„Ä‘F﯉†§EaŒ,¶¾ú.•QYz¥7.‰Þׄá¥7£ŽåüÉç¼WFqfüw52~³@äKîöJŽP[Æ/ 4.±óµßàož¦†ÅhÌŒ4n‘ÔøYHÞF¼åEÞC'^jÆÐ·Œõ-+ —ÜÎ[LØÊd!{¤€@6-˜l‰tuíÁŽ4PïpF%–fG÷¦@Õ¨?^wä)¡-øN²Ð¨¤) ÌâyVö‰FâÔ«ÕÚ'ÕÊöö“l—´Ÿ ÀΦ£-×GÔ_ìx8Ì´¦ótîý´³_ÄzA^É^ú¿ VkA‘÷·¦Dþ¼@O„ãoC3aµC}IÐoi,ŽHÂøÑwô6ôjñ Ûväfu‘zAý‰†€ûØôÀ¢²¸íúL@øÁÔ×õ“]£Z0\‹±r$Øz`@ÎáÈÀÿüìwóïqºQRîÆiX¥é”Åÿ$"Ipy.DS$ò‚”±¥q$[Ú½O½š0Ý AxÌéÀÄîö Ó3ÍÙ#Õ }‡Zn»€(ZÌjÅW" ©&…a„Âÿ=|gÁ™°`,^âÍ,H¯L£2èÁ\rÚ&.ÜÖÎRf6ÓßÃŒuª>AWEDP2CS„×+Y‚ïËÙ£-‚ö‡Û,Ðü.E#ðÅÍ$ŠÔläs}ÏÚȶ :h ¯Ù€šì©ã"Jô­B³>ˆÝ±F=QÉ3…Țܷ–ÉI‚ù܈ á®iY?Q@.‰ ¶Žg›‰-°xI;‰ÜÎQ)߃“q«» ÒБR14Ú?:ñ$U^ežÛmØ.ÃÛøÁÄѵ¿‡Vlwìv*úgQoÐ (f‹R´¿%F ½N¶šäI°¶ß¥@h c©[Â&B Ð%Æ-»:éí’­!§;¥*Ðñ(ÆÒQCXåf ­SO6#4Î÷µÛwë¢Ìÿ_´V§$Å9xÏ> f[aýGÿ1 ƒÁóf´eXm–^ÑÏÂØeÔ®‰Pᇲڕ±!*¦fã’*%ïØHx<>º¤RR;#o@©ˆƒÙ`Ètºu?7ÒpMp£¤»£u¨R—†AS‘´˜OáÈÄ?ú•Ž’^îØ~c}îHL&•á}\nn¥Ïã¤ô^ˆÂ`T¹tö@ql¬…]Ìð$ÉÃ(.¦êÊ[V¤‰­öçØ½Å•xŠŽ_Ð1^ðÀk½B🖸‚ý˜”•%¥#8|ÿ"6ébêþÊrèòØßo §N-ãvΧRÎGàµó©¢ådCÖó UéÏ ~ÉALBwyA‰ß^ª¥ƒ&Ñæ&Ÿgjr8=Ñdb?ô˜vãVê¹§lˆÁà•ºÓÙˆP”IÃðR¬iHëëiƒ«!^_NÀQ !g˜.Lʤwc‘,ž:þ ¶tnØòùâ,'H¼ArsóVšóѬBN—ž"á?M'™¬ŠÇ@ËbüØ`âÅqú^Nxž±³¦×¶§’› u<¢P×Çã$²†X&b×_TEúÊÝž­©Ð\²{^2W®È:,u4ƒ9šLùë„ëz$èÓÉ*™²¼š(x­¿Sï•Q7EKÊjÕB§Þ eTý »ý®™­«ù¹¯r¦Dë¶ ¤±Œ>!~'&‡B½Ùà 8|Ž;©‰D{¡ßŸƒfJQdaU•Âß ëÄGv^ûD¡© xò¨¿*ì¡‚¥¼Võ¦ÔLš5½ €šÒåW4¥•r ̈û¢8?x,£ìÒKüz§ÆdaY á\ÿûˆÕ­ã}qTõ,¨&¤a\Ϊ»è ¿æi3•]KGåžœÃxíÁ¼£îT´é¬V§nv  5Ÿ¡þE¯S-ÈeºJôÒá÷[¬äD”CIÝvè4…v”ŠITm²F]ùbQ„Ǽ³ïÝ{¨šÔ¼Ÿø0ÛRÉÓ‘ ],Ò¨7dØB¬ Ð·¢¤µK×itro¿Ñ„Ï~L®ZÔX¾nôT”ˆTïž®4LhÄB°oôÊäxè>Ô0Ï¿ÐàLƱKµ}¾q©2”m·Š-’G YÈ8¸[MY+€ùÕ+J¿}&·ã)X–‰Ì¼v ]ª©5À~ÊA˜ÌjœL±¸ÊÃ8ª¦,fÁamê.RÙ`bBÞ‡òàþB2†áô9R³ëéíh@·îJ* C]_á¢ÈÁ¥¸)ça}¨ã9›«ôÞà㤼³c!³TŸ¢Î×ò·ê—Åf.ô±y¡Ã*uã¤W:éq…YžO¹+¼‰‹iQ)Î)“2ñ^Xe¨ÔE'\ŒPþDC˜PDqî Zq>7xèrkç’ãdPòZIb“„i‘JI’°ÈÊ%%¹¾wZÅ \ã¦Ó ¾ßiÔÆÉ_åÁÐ×xŸåns{¥%è%ñ?Ì.zyøA]÷ì§wH÷|ƒxçóLMÁ[u»[óûÂ}ßðC·Bî¢H¿døÚ/Ô(¤õâVÅ @ƒÞ¨sÝaºý7³©Ü=ßÌGü©ýø¤ú¿|s¥.úf<Û0Ž3Ã/Kr#Ù'8B÷r&À§ìsN=9ƒøêùÙs’_ñ…k®î‰ ¶Ýýµ¾¯}ɤŠ†É ÜÕên*‹Íì ­‚l<# õžfáüj3¹bÕuØÿ%Ò3øà¸d0ÜÝ2½7­Sîï_z|æÖ_ÍzBgè€h æ›)¿÷$\ÃÆÁ¿¯Ì‚ú ¸Äû„;ïê´ö}Ãíy¿ÿ7ÇÉ,óAqMr/EQÏ”lŸ¿:Ÿø™€Éµ·›e‘ Ë"ƒLÀ¾¢Û¤0ñÅ×/þ«ACk endstream endobj 119 0 obj << /Length 2922 /Filter /FlateDecode >> stream xÚÕÉŽãÖñî¯àÃδ8| 7'ã ld>x‚ì –8-e$±#RÓÓ>äÛSÛ[HQ=ÝY>PäÛªêÕ«ýé›·_¼ú./uZºX¼}¿PÚ¤U¹(ò2Õ&_¼]/~LvW*éๅç§,ÏàuÏž¼¡[]-UfˤfÏJ†xZê[æÚPs€Û: q׳¨D_½{û§ÅR©Êôb©TZç²a§_ÃóNˆÅv B¶ðTðò¶ŒßMÑðÔ2µPš§d”Bž\¦×²TOu‰Þµ'÷‘ï@ÿ²v`Š4·f¼ç¨á49Q¤n)¤2T en#J .¥?ñ¹˜åó ÷ÕwU¬Z6­­LÐ¥eo7,è¦.’ææ ä4M—ÉGü¡þô·r@ÐÁ ëºÚ†ÛA»æî{gS7Ünn×ӘŅI³:?×=„°G,EÜ¥cýºÊ½¼[áûŽi[ñ*fH´e& –éÛžß´U˜ÐÒ9ê y¤+bôv‚ˆÀ¡Ä?p¿Uü&™_ók@ÞLY};ð› Ù‰?zàÎâ\‘çé‰7aWÃ?ÝѦünÚ9£+p—Œ­ç|“ÂWr›üƒP ÜßÜŠ·ÃÆÛ|ëW¦ÈeÎ0¯]unËÐCâfÑéúÜ‚•­ƒˆå´Zä 1øMǹMj›¾ à[ñÔ~š\•É›ƒSž¶‘9ÈšíG'"—X{ªbeªLág/–ýS°ýkAH"éï^‰OqîÈy±ëZCÀRåÕk ß舤ÙÐ0p dSÑ4ÈA'ñf‰óŽ[¨˜;Yã{îEqÁ7«ˆçÀÀA¸rÊÔ*"øeS«•˜q4_³s™ã‚8æß’Oñnü+q5â‹ͯ‹,šÔ×!¤ZËa òáãC8y¬’ÐE_俘L•î醮Aád%ö½–GûhgÿKv$‹ƒö]+1Èúy^ Ìç²D%¿léy`Íc«'«^~~Å”üËZàC“œÂŽ¿’ݙ̭.‰ã«ˆaC(áV Æw™xPï#Q±g,[IRñIkó$Š¥ç(ß×£3òÖ xo±|ÑëÉNt‚ŸÉs^†m¦sR€¼›ËRÞÎתäog*"ˆž°ÎÃz O,¯å{N2½“«±%;Fœ; ¢Š-¢Ž,¢Ui¢¯363Oµ®Ý5¦ø›·"ìžÎ‘ä:ÕÙÓ‘¼Ëf+R,| õˆŸç¸Ë*5YñÜ >^–ð§m²Ï’ÿŸ6iÃ&LœüRUeZ—ãÄæV30¦Ïi­{޲è:-ì$$~Šd-U^ª_Xµà©u¹Ž øz¼7#D’Û0eº7í}SxêË{Ë…S1çjÚ)SùlSiF§?R<çô‘Cÿ]iṇ2-:”k´œž/:ŒT?ë¥Øé/ñÝ«±Ëó¡5üþñéc‡sɹ<¨þ¬QB‹7 ¶Ï=BÒ {¬ ¶Âm%VAGÊhf“´Ôf|½ª,¥ù™¦¸§•|2Å9ç¾ënÉ’¾Ù‡NbWeÁÍ)|S® Õ+¹ºƒ)èBE¡·a-3~nI—ÒªWQr£+J2ácß| ô‡88'±ùýÀ5I˜¶œg]¬QÊ ­q…'*«@"¿´6O¶~¯:äÁÝÉ; è-FÕ œõ¾;òÇŽÒ¾[éöûÅ5”wœ·…ÐÉ·•6«!Tp憄“óAlïñûDÖ>6 [rBÿ»«ÔHM…P3ÜÒ‹°`Ó2·ãR²ÓA\¹]sù¢ÛJMEü¥;•E%è½izWG‚!ª½(5_Æ€ñž·+ï­•]ñ’¢¬¼•»Û^“»Ђ‘B *J Raq¾º¾ D´»PÂpd†-rÊ »ìegÓÍÌUnfìD*ƸH(ÎAÐÆþìs‘3-6ujk× w$(ì(gË©ƒ«/ Ø‘Êušk°øâZ˜T¥´«žºõIJŒíÛÈ9¤CøöâÀXûöŸ’Cµ^6Xïvež[9Ö+–jñàÔ]%oÞ°=O‹ê¤Ç#ÐbìX½³qïl›±®E¥\W‚n·2WÐnvWÁðu§Û C E+žæUÛö<„>dë,,mX@ñ _9Uê¨íŲ9¸.® YÒHª­÷™¤^8I8‡¾6ìDF4Ï­¾ÑÉž6ãrX®EŸÓÞ5¤T\ZÌN—Pê䬞ˆ6´ëܺ•rf©XHR¶.ÛïydÅ•|24qé‰7%; ÀŇ‹àDØH1oÛÈ"_Ë…|•àä¹9¬ávìò {%·"£uCD04.z”8t¡–àwY÷B z£êʈ®rRT˜}wôœ“Z2÷ÇâŠë·Òïäqãë'¬€¬wdV”]-(H¦½aùþÜò”iUú,2äÒ#(xgë³ÜÃúާ”‹ò2SÈÙË &J¸¢ÏQÙÔõbMâ 7vv4G€M«Ì§ ‡sÐUZ*e 1[nöì“EÚwãD®gPWYZ©"\ÎÌ0°VÕµaƒ&àé€N{ü½¡ƒŽîPLž§e®Æò„2ªËâìRƒD$ç°ž!3¯SUG—Mgdæ)Ä<#2Cl€Ø˜L2ºQJÃLT~®)O¦Ñ¨k›ü;hDá÷3:‚-ðmw fT±‰Z…ícœÖ9wWúÛÆhHùaíb:V©ÝòŒ•(˰,lª§ùš¿þ1á&Ç$§^l~KdT7åÐàð¾uŽ%à€Tö?à›”Vñm–‰î¥ÌE[†k·bóA—XëÑšbLÞïyœë&…[<ljs¡›x§X— ¦LK[?ªß¹Þ—sv.KÍ#:š§*\Þ„”›1q¬@h¼Š§X¸" ÅÈ!ÊùK|nŽ—¦²^ì*áïÀßžöd¢nD°[k(&Á1nò‹ŽnfõþV…@j2ôálΊĀ㮑OF0Qàé)m(Àº¿fmÊuZ×ÅX"‚Ä«ÙpYÛ4«½ñä?nÌý±!³*žD:¾g°>ö+ä"ÛžГù+ØÆK·„€0æotƒJ#Ù´ÎêÒôIlsŒA×Áíñŵޒ?WÞjxq'gdSÉ4à]uð,ÊÂ+Zÿ{¾ÿ:‡‰ÿ*H33¹˜Õ¼È¯Ì©~=¦{ º!áÔ‚Ñ:B Ú»ë˜;gÍz¯©^ <|1‘å8´(}ë¤ó–OUgIHc[ÿ–‘ñ'àk„WG§UlU²t6¸¡Ûí÷My2ý]åf;ºØ"®@{(ªÁhŠÜ2Ù­«P€¼”Î<Àç÷”Ú«äbÅ™/ÜÏǧT+¿%äKOì C¹b"œ ö4]Ÿ|Tãýu©x'ìäÒÄ;g®$ïÂZëlP³ŠÌžŽþYƒ¨/E4Ø}kS1„Z!•ãp»*ÇÉ-´Gi2ÿ«_gøÂ,Óàò$¡iUUbæ©ìùÅ·o¿ø7aÔ>@ endstream endobj 123 0 obj << /Length 2009 /Filter /FlateDecode >> stream xÚíYIo7¾çWèVµè!gÚŽS·H$H}Kr˜H#Yˆ%¹³Øqü÷¾•3#Š( z‡ËãÛÉ÷‘~qõìì2›ä&O\2¹ZNòÔ¤I6IâÔ¸0ž\-&ï§Í‰Vð+¶5ü]î°½9™…Y6Ý-ñ›N×0„d535üùŒ+ÌÉ, ²éÕ5´×C¢rv'.Þ¸lZʲBêR¸#«áÓ–ðg;×ÉNd°…nDfYu‚±¿åE$H¤Ü’Bð[ Á§ÀÔW¯Î.­í¹(L“é$`ï|a’¾c“ä¡Î‹õ—'Y„ü:±ì X<™…©3Ñdf­Écqú¼¨ÙF—%Ó{ôµcÒ~µÝUÝlÏ[ØEîxÚéP­lÄáTT«–»C:ŠÜ‚™¡£wìnò/åBѨ´&G•X¡~»öVDnWu§ÃNX“ ¯K¤½‘ R’Ü3/rZ0ôWCŸ…¡›.[2Hb¸& G)é9ä&È"æðÓÉ,v!Iõ $‹ˆ‡Œ}â>_àwÊ+š®Yù‡Ü—o)L„ä^†(Žbp#¤ÀÛÂç‘ t‰±Z‰J|’í¸F[æû4gÿØ’H‹Dh`²lOhu €ö·0û<Âp$>BR<ì4î,>ë˜èÌ÷øRä¬Ä뎴êÌú]ÚSc–|h–ð zꦻ¦Òˆ­·òC²‡Ñ<ø†àÇÏ[±§½Ñþì2N{9<‹s–é1èédðHþÏà1ƒã§žÁn¸Õ¾ÖÊ@rWL€ÑEܨ,Dz:ÐLa‚s”4żáŽ:ºØë -A tFÛ0£‘b(œ­PvJϵœ|HSTs*Î äT•\Jqô“âÕF¨Gë5ªDmR Ÿ (&ˆchÔÁP»êB6r¼Õ@ƒLÀÃêÞ$à}¶W*yÆñF¬Õ˜*d¼à.º,Zɬ¦[¿äæVÜ—X_¥‘ :iÕnzÐb_ð­äYY‰¢Þ•ОJø"¡½–ÁB1Ä)¤”¾mÓ[­ø°Û\>°Öyõ-[BÞˆ¾0­ZÉ4ií ž¼+nxˆ  ,‹ZÔ¬€àDa¢iõ§ëçZ\Íbˆˆ(q"¨ì„ 5 ½ÕLœ¯yG ºîº(¦­8DÓ>_³ï½Úéâ÷>a¬‰LíÙsJFM }%ˆ’½_+S>,,œ¶¨R±*¹§¹†ÞÆPÎ=ØŠyÉ| ½(ø $r¿¡]+$¦åBÍ·:ÿNy„Õ—Y:…°(7º)†úv nμgž è<8ÿËÒ2R“û%eù¨ºO úC OÊÙÀ¢mßWz&$1¤ºÞ5©×è BJhcγKºà&—e’ÇG`÷gÉÊ˶MB¥‰^¤/„$ê“Æt¡£|c3¥yyè‚ÌÄ®ÇC½4¼ô›,”æÇC°µÁ‰2ïðØH![†•ee˜8µ{ÖõyBþD©WLnå#æå&édØg±‰w@Ñ‹fÓ‹óQ´sôÆßî5€!N!'8¾,66ÏöªçVPÈï*˜¯óájšÄ¬/ÖRðéÜu1'wÙ!/ààän…öÔBžæBv¤ba¹ÈsåæµÒãy.\«Ýf¨Xµ~l$¸³7* 7æÎÀ›s9¬gd²¥ Qóà Bö¨Lg©•w0aàKz>ÙÐ;0©§ª½õ\°Ââí‚Ù«°ÊÃЮ˜«ª’=uoƒ^Øá£L|M‰Bɹ`òR\ñ+ܾ¿¤êcšî*Ec „QxA~Àvð·‰BïZ i˜q.àâ70øü^ø+Ζ'TèKœÑÿ"Ž6 wîô¦â¡Ž"fÆïÑpàäñ¤Sñr£qÇj­°­¬K¢´„Sxàžf)®åš…þIŽ–@8æZzÌNw©Ò® ²C~DÑ{G\!r{i€Ý‘èâðÈQ¢ŽÓ”’H­B-SÖ2ÞÓräDèw§™¢9NÇ€ÇÒ ®ŸÌ ÿìú´ÛöPfïæ×”ã³Ë(EpF‰“‹oèLIüÞ•KïÉí¼Ô·áÃ˲5Yñš÷@e?‚ò öÂ?sÓ.ަ¯ÞÉFŽãéE¡Û:¿¡³.N™Š·8ŒþÂÕÙö˜÷’L$9g¯=ˆ¡ëš‡É@Ê{íNòöî$N(ùģˆ* 0à/y%úGC)2_1ï …NÛµ€;`MŽØDûpëþ“€Þw+‰¯}½Ô©ÍÚCÅ ùâ2óŒrqçb'.~ ÊåÙôE+à¬.yÀ¿—Cû-~Òé[=ìKºÌÕ†']!=Ý&nü¶§¬¬µšÜ2„£AÞëCJÈŒ¯#¿ñ*}i—&Ñ‘ßѸž¢#±Óõk}1Gþ{WMümmË^~z-Äãñs—æé£Ë¬óAÈ“± D]B dC„ÙPÉõ—®m´#Íel¼æÏ¯­zù'ZEçzwÞвB·,Æ´Ž )^4ÁÿÙ²ç%~úrù}@nQÞ—8E‡~SˆZbÍùF‹ÕÞbû >îß"ֲșçuÍh[Ë8Œ¥|þ&Þßi*qÌRæ!œ+9\ä\q Î=ûùêÙ_m…’û endstream endobj 126 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚ…UMOÜ0½ó+r«#‘tã|8áR…*‚•z L’eSm’U²P!þ|ýfììnUÄac{<_~3óöd~ðù<÷аÈdæÍ^¡B•å^–ªPÆ©7¯¼{qïG"yðƒ¤(ĵÄY!.°äâ›nÌÝÊüB|5ÛÞ¤õÈ’RFVAO—,Ú˜ý ;ó×ÖÜœŒ .4>Ðî;Ö^þ_‘䉣¯¬ÊÂüê/~¦‘8æ«¡†qÄ }[&ï6Ícï4üŒlw¹Õ"k8¨lœ²¡[#ñæW^”†I.½ ŠÂ"µ©ìÈÜçQDêиˆ¥ˆ %C2& ´ÜA5µ¨^™%ÊÄw䎤Í¢ñx,}™‹%«è®âÍ-/7@§î á€+k~(®çËš7€‚á%—öÔ”Ѻ¦Ã«½oF÷ ^¶nÝ3êGh˜ 5Åmm¨ÊUQ ’X‰ •=ÜWlR»–Ø)6r~ÝŸVmÃW?Oa 9›ýãl‹qf1þñÉNzÃEp"s%nP÷ÚfSŒžTzJ*E•ï»À|×Ô̺uÊäªde2f`é¼èÞhGž àÝìµ84þ8(–|¦ v0멟+WªÈú„<ü› 54’Ž4¤Lâ·wQ•élÛªù­ª,Œ·4­«¦,bqzÈë¹}Ö¸dIxbq6[WÅZï_ÜìBr«BÒB…ÑpdRñü?9¸V嘧†~«!M*) Î ñÀ\31Á‡«À‹+ýŠ‹ Ë~p ¾Ú%$Ã>ï!é²Å Sq¤Ô?Û©4¢”¦k‰€K—v¿Yº–Ókh¿²§.ØK²âÛ¦ãU£¿1/~Jó»GÕD´»ŽÁ·C¿™€-·Žœù^'ýЉ5·ï[8|jÖ‰^¦t‘ œ`³}¬4OnÙSݶÔE£ef;&’6MyJmB( ,™ã–~³kL—·õTb*àÆ’»‰•)ÌBo©Ì¦–Ïã˜#·-Ç^cÏQÛ,/[*ä°±L Ù.#ÂòÑžµÍÇv)T×K÷ôV—ýÔ ë†Ê6i¦¿¿'b>÷¸e_W|<[ÛîyæÍI!AZæ VhØÒ޹4´™«Ô ™‡q[BP¸<8›üÓ¤ée endstream endobj 135 0 obj << /Length 119 /Filter /FlateDecode >> stream xÚ31Ö3µT0P02Q02W06U05RH1ä*ä24PA#S¨Tr.—“'—~¸‚¡—¾PœKßÓW¡¤¨4•Kß)ÀYÁKßE!ÚPÁ –ËÓEŸÁ¾Ô¨o€B¬Â@ø €a—«'W $o&| endstream endobj 143 0 obj << /Length 149 /Filter /FlateDecode >> stream xÚ31Ô35R0P0Bc3cs…C®B.c46K$çr9yré‡+pé{E¹ô=}JŠJS¹ôœ ¹ô]¢  b¹<]ä00üÿÃÀøÿûÿÿ üÿÿÿÿÿýÿÿ@¸þÿÿ0üÿÿÿ?Ä`d=0s@f‚ÌÙ² d'Èn.WO®@.Æsud endstream endobj 152 0 obj << /Length1 1487 /Length2 8871 /Length3 0 /Length 9885 /Filter /FlateDecode >> stream xÚ¶TÚÒ6Œ»Kqî\‹»‡âI wZZ(Z¤@qiÑEK¡X¡¸w§¸»õ£çœ{ï{ßÿ_ëûVÖJöÌ<3{?{žÙ+¬Œº¼òö0[° ŠààJµL€ PˆÄae5„ \Áÿòã°ƒážTò á`âѧB<µaP€†—+@@ *) & @‰apI€ÈbÐæhÀ `OVE˜»âè„xÜç_K‡'@@BBŒç¯t€¼±AÚ „ØíqG;+Àf#üþ«‡´á.ÉÏïããÃróäƒÁe8y>„@ì †{ƒí(t@nà¨ñá° ž ` xt¸BìÀPÏÇ/¨=xÜ` ®xæ†þ ÖúÀøçr|ÿ.÷OöŸBè_É ;;˜›;ê: ®`À3->„/‚‚Úÿ‚\=aù oÄdûøëè €Š¼ôÈð~žvpˆ;“Ïâú‡#ÿŸ2׬ µW„¹¹¡Oœ?çS‚ÀÁv÷îÇÿOs] 0hÀ¿,ÔÞá {/w~#(Äà ¬®ôæÑ…óŸ#b¢â°ìkçÄÿgC?wð_A?îGAî0w€Ã# pÄüøƒà òp/pPÀÿ ü·…# °‡Ø!¶`Gç?ÕÝ`‡¿íÇþÃ!¾sà£üÀ?Ÿ¯,fƒºúýþW‹ùM ÔUÕžqÿCùßA˜/ €WDÀ+(ˆ ÄAÿ]Gùçÿ#WêHü}ÜÇ{úב½ÿÑÇ? øïZ:°Gå‚ÿºPh÷ø%ðÿ,÷¿RþÿTþ§ÊÿUèÿûD*^®®Å9þüâ 7ˆ«ß?ˆGåz!§@ö8 Ðÿ 5ÿ=º 0WûÿSG€gAêèúïk„xª@|Áöº„ÓßrùÛoôgÐ\!P°.Ìòçið ÿ+ö8]v.χç£&ÿ ‡ç¿·T†ÚÁìÿL™àc‡Ap8Èç±É– @àqíÁ¾©ÀÏ…!Sä‚08ÎŸŽŠJø•ÿ¸þ²Ä~ÝÿX‚~ý[ÂÈǧì?¶(€ßý±0û»D…ücäù9E„üžbþ·-àG8ÁÁWú/2v^pøãHÿ%·G¦ÿ²ÿz?À`_°ÎÌ$ÌNê¥sõËæ«*yÞ¡§c¬&iœ¼3ðo^7˜)œ•™áKð ù”Þ¢ù5eŽs¹Y†û€ÝÆZÌ×_“ôšnï¬ßên4áL<ù1\¸+_ÓE‡MËk(·xïhæ‚ڈܪÁšëá%N ›OzåÓ©ê[ÓU:7ðjrCo³RT÷®ô'o¬QŒEXÑ8kžmÖ%‚—‹‹äÈ—püübŒ$gø7ƒÆ[nœ ½X¡fË‚q×þ 冂žmT,Tf”t¨ç$£l [ï4(¦Š?Æ,=Ê‹Šï™}Ù™8¡iLŬK YÂû4#T«•”¥-ÇÇ.îjl7¬`cg¨Á ˆ`-VuHª`î-¶Î¢…„\ß3Ó$š"Ûsk§oÛ;0jå LŒ§”ˆý5äFñ”tµ%+Xô 4ªª…žâ€´È<«óìÉÏAƒ¼ eý^ÏØÚÂó®ßy|/yQ_~D¸Y,JvâúŠSèÝÚêÖn%îßhMpê5¯«";'1BdÝ"¹6‚|Jª;~É£.H¡@°_–%Þ£‘¶œ só¤5B1Ñ»±7Ýc¤í’%»ÏjÙ/•Ó; ÙÞëG«ÅâZ޽áKw±¤•Í [?È–„mK6Q{*%™™»¥[ñ÷€êÆæ7C&…S±ê\Ï„{'žl ´¤ƒÙLÞG”ûh$It±Ú=œVôBßå>isö®åŒ8´ôüì¡Ït?RÙÁ|—>h£kH¹¾G7Ó ÑU;z WɾTÖȯ¾}/E³<ʧ¼[j¦²?ùÂå¹¹…ÿs$ÌÐ^b\´\M1k7zËòαZ éÎÓb+¸-¶OÒ¶"æx§EáLÌÜÏèæ³(ØÄÜ퇯°Fÿ5$Ù×ÂLN² (3-²ù}#ÜŧšâCZ_¾>¨{%¨°ã8_ësjëÒ¦R•‹¦S^äà,g/ËœàÊÄ-ºWF×ሲp}NÌu½x°ŸJ5ŠKÊc ·N ø±)ÿ¶œ½ú‰Ê¦ÚR/úå É-‚Õ…ÆQW*(ÐVâ•›eóÑ1Ï.ÿlñ‹ç,¢ÔæÜaFÊo˜|‰ÑÎ{¶Ç?\ͧt·¢U¹ZJiqε"wå/Ä^ô‘m$EôãË#ÁÔyŒ7­¬èÜ)gï]Bmª)•–ø«{PR\8Hzãâ]ÒˆÜ+ 6VÛ ßo^S®N|¶P ÞyNj}QÒŸXû@ŽuKjÇÚFÌAÆ8‹£á=åI@”Ö-á1é³9²°–+úФbÈs(‰Xûe:ö›ïw÷ð_ìQloÒµÙªÅj‰‰ß!Ì–nÑ,àt!")ÚE_D˜j¹Z* [éöfw¤«b†R”âbjxš´Nœ¹“ßîõµ|kíG¾ØÍéÍbòv\:1£–-y™ËÍ­lÍ0M¾ÀéµW«Ì…ÍpnÝ´ÜìòækGø6b‘—`&º(·?wͯüdÿš¬û«¦û\1!3äãS†͵'uJøÎÐJu&?2Ó×4xóJõWlÍy‘ßÏ]d¶ YÍ3{DHd¤¾U1»¶^²4_~Nìð¤7zfù·¥ÜmÈÛá‡4á«Òáåÿ¶s-ùq8\Oïo ¨Ö`úY+¶X-ëÝ¢«ÁeÞrÄ4·ÇÕqµï›K¢åsÎI4øÌ9º8ûáW™¥e1µœÜ&äÎ8ÌæöÎzNb8Î×ÕúŸq59ª½“•(òQÍ‚3¥âDñ¡á+G+6­å M:¡ï:‹V•Iß–3^‡)Þ™û úV@;=˜ë˜ !_ùˆÎ W&SüÇ ®²š6³½ÙyD3÷4¿ƒ¶¥†ZßV–'É~‹‘™T« -oß½½>,™sƒJ ¤ßð¾¾ÜȽ%/1'JDA.ßïÂÿŽ÷ á,†‹%Ô¥½à·êÿñå&ÏŠ¬ÙQƒÜæ>™®Dæt}d÷ÃáÞœw¤±Ê„…¼“ËgXZ}ú2Q¦8J:Úá!Fëº(uj=ï" aÿ¦ßQÂS—na„¨8'RÖÎ’­e÷L6æoéÃA#ÇóéëEŽB›g‚©Ñ÷…”sþ¶BèÀ5Üþs^JC㪀æJì+kµÃ„h«×æ-`RW…îÕUüÔ8º;áãÀzÛMä“F™Ö§àœ"!½¤Þ÷ì@¿Ñ¥ýÊœ8æs ,ki!’FÌâ6‚q$R1O%›ü”!îûP3ÕôW4ŠbÂŽÉ@sý÷+ŸeDÂÔcI_–fÁÎñ|‰œ*œü×\Œû z*Ä^«ã^:õ€ “ÎÉ`»½a—/ã8*ðLì=Ô¯žZÞŒ¥iŽ¡¿k¯qeñ¼TŸ LÕ/”°AØžƒhI'~öKÓ×k‹7K—ž qcœô+äÃ#ùçO‡¯àçãu« ® 7ßsðe9íÉS‹}UŒ×¹ßê³mÅCGGMñ'ÓµKª¾ÕÆ|"™.Z%à¸Ç-§EsvÃKðrƒ×NßãvLſǔ– ±ç©´ý°áÅ£Ûæ>TxTáÒ¬/þU¬îŒ^‚‰Yÿ °j}Y“™¥ó3ŸV®©Ê‰d+˦Ò\AåuË"븛mfói­8´™‹¥Š ó]Òwœ³´˜ç›·ÇÜG¤9IQ ?DÇVgSéa87ž&Þ¼¬yûñé5ƒcêlqŸ‘•Έš¬­Ù)êCIÓ<Çx@ð|«q*§¦õó‹ü"ÀJírú·g”æ#‘‰CÖ²q&ˆ~éž~©ÆX¼:¦M}ÚOn 9œ%dÊqð¼ö±ÑDXò‡R$¿µÉ¨N…7G-r³ŽaÛ1òne™ä—gâÂV“£}«„­£J9õ´ ; 1¼µÂ/m#Ÿz‹2HÊÌk­mxá³®3ñ\‡MÈá”Ùë´3_§ßä!ðд‘âHBm5°#o´¾vzÄS'wÃ9‹XuJ –êè×hþú$&_>I€V³î­ W‘>ÿ‘âÕƒ˜ yG?‡I!üãKôš´“ BÁB*O¾ø Ýò® ¾úœÆ²×ÇÏ/P,/`ç•Qði×ÖЃö1zRK(ñçÜTãô2¡õhsçíЄŒÊPtgêïD½×½Î„9ÄÔ(‰7Y¢ä¬Ùv¡¨Ì…ÝÁu ¸©oúŸm¢ã£‚Q~F½}Íš1x2 ~ ØìPÁõÂ÷´‚0QnïDøÕú$ð$×½ÆV<ú¼ªÿ#Ѧ™‡æÞ™é÷LO¹¦K,¾žETfŸú‹Rçþ;åWǶ†œ„•„¹L±¯jdê|¶¼okVY(ø„w’¸äÆô ÞÐ#v*siõ6Æ+ÌE&ß&Ñ4ù:”%~\œÒ!D‡|K<ñüÎjú-ï¾Î GP]îDßé[H9¨ðçKš§È>/Šdi˨ƒ2ÍP…Ëu‡:Dƒ2¾R‹½8EÁ‘™vü¹j[ÃeÜôq¬ nÛõ¼b#xO² Þ Þ¿â:îRNî†yÐKµFN4 óoÇ}Ý1/ÆÓ"š< ‚}i§i0Ä;™Ç*ÉS‰J®–yÚLt<-~Tÿ†%!;Ç~#šÈ0 »JFx™×Žé Ü*u3ÒRvõ[0,&x’ú(ÿ>½*¯œÙýZf2‹ûŠTO¿FÕו-Œ¦gòìÑA°‚ÓêÓe•Úü%&A‹FKžõ±Ïrp0G1«Ê/®®7ÏÅîfbg§m q?»Ȳ~öG_#‘̱.ŸØJ_Óˆi?½Îü)FáÙ;­£!ª-õ^$šŠh³ç·=P 6笼Æt.ÊÚº_PeCâw×yÑÁJ˜B7#õ©‘´‰œ*‰Cé¾µƒ·CvÝä£ýžœ˜)ûÃpyh϶$uÍ™Ñl-NN:ºp?üâÁßoÒuœó÷=S5`îè\3txíEÛ‚‘ìgúÖŒ`!’JjghÖÚ/ÿ¤eI*iâÏ—‡çs/U®°saG]/ˆJ²×·Tµýú gÅN¤•çWÚ<¢L‚kó¯ÝžS>ý^ã³g½ÁÛÊüþ(µDÚßÐÀ²~l5„’+Ãó<“Nåv>¹ù}+r²êwНdÎ-Ìô„Öúþ4Xf^œ+Ë€Ò ‚s,!§5ƒ½¥Œ_ºäËÄJ}]‰¾œâXc{XI¬“© z–Òã°Î‡‘èàI‡Œ§™ßÈ4:ËÊ•ÍæZ&4•hzÚµ_îplHç›Rv'Pòem1Œ¨m7â ©=‰ìFŠ(ш?ï@Õ»JLaî§×çþbg´RFgh¸‚Ì‘ÍÉP§¬ie?ÇZÛÆtò`ͧÙUšÃ(æñÚgBõžj:ã&›eÙ8jT'¯eúÁÕí§¨‡ …ú«åÔ˜¯óHƒ­{…L‘r !ÎNœ\\d±- ±´ñ±’IÍZ.e)Ê¥ë¾AJb«'=i¯¾,ë ¿vŠÈRS“Tm㙪 Å’Ák†Áþ,ÇÖ­6ž‹éÉÃÓei þνйZÓ|òO²¢‰°áƒï+ªÖ‹¡¹w“nGItŸ›öt\9Æf²Þêߎ+M4g[ò¾F¾\×=uàdßó¾~3\Ö®¬a2d.ÑêöA %rž@GaŒï îIÕúZýG>­IH›°—4p¡zm\Xâ~öÙ“œÔJ\S íÖË‘?ù°³xV¬|Ç€' !3wîI¶ë¼7ñÖü€MÕ3÷É×Ôô3Š:,B,7®íbžxb·XÃnU²—Û€¾õE uËT´„Æ´×ãiÉ–Z9·j™érºßaP«uè··hýà|ÕŸ¦?U/}¸8hœÀ‚ó7”µSd8b¶ÏûÑ­-jð'tÀÈD Ôð™5s)ÌÙð¦Ê)7Ïìºðr©ÐO¤¤3ìˆÐ¾W/­þŸaßæ¦—óóÓ3Øõê#>L6õÈvÛžò:‹‚h2Æ~òôŠI´®™y §Tül*{êÚü"eÀ8ÄÄÞoaNDƒ0¡ftËe~¸;z…kðµÉÉ`A³q=–ó 9z(}èÔM)uTJëÛÏ#šª‡ä]Iõ€Z6€ûÃÄ8^5r~Úۊ狎E¨2%—#ƒ¢yø ã É‚)rŸe(ìac `[NþFû½¬c\šÎ[W;©hÂHÕâDœñ†±»ìÚHŠÓô ‡5û%w]„ NÉæ °ÞÍH I¿›Ûé«“ÞIY¡ EÇÃÜψj;0‰ÈÉGcçoÛzí [Ò^´˜Lr?‹§×þ„˜ä18r´Æ²¶¬ËF¼©ØáUí3¸ò¯ÙâV LÄÊs°N„[*«¾[yÌeÆ9&¹aOXÖiC ~§bysT)UóמÍjÙ–‡lGOÙ¯Îè’šSÍ•i|76$\yð³Úšûô»Á±À-xù½Mµ™`ÌÖÊHd`4úHÀº¼†]ªžþU!žÔžc‘p.Ó/ý¤á¦4hcXª¡6ªöÚ_4Ö=F§{W}_0•L4µÕçû#SQ®é!&IÛ}HÚ<>8,[|î–B13Ü9‹çŽ(Ñ7Ïw¹rì.ŠýMFþb”"„ÑÊTêA`õÙvò¨ªei¦›kí.„êa~¹7sX!)Ù@dŒ®“ ð¬ÝÈŸ w^Íö¤Z©¤FP¹Ï"Ê"ŒÐj®#ªÔ°E®ÃiV?ÐQ§TœÌô¨ñi¦óüø„'ª˜è‡ãš‚%Æžíæ„ËV ëèZ)‘ŒØ„<üŒ(!Þð¢«Æwk_ë ‡"ç¤£È Hn÷È‚Ì8òÆ)htI…Úe¢Ö±lJÏÜ|nýP§Ë«—[-“‚´€X°©ýn@úÙÌá2•ðú‚±¢‚BX‰Ö¯[ßAOë’r* Á¾5³õ3¾±yUÙË…Uš°0uVL­W}½ø6>¡Ð²û»;qb%ž¤-lW „æBÚxg+žˆI~ÒáÒö/†xR¿oë ¥È“-•”>{P0 ð& õîÌŸú‡>ô}ÐÍãÒT4òHtÉEJ~±Å­ÄÆylåžÐ[llªW¹Ê*œ1“´Ûá…çJfOŽRŽéEí·¡O>]¥e|—§¡ ³ßõß-7u\í<ï`’áÿµDޝ>«¤íOn“‹þÙL‚Œº^àä=é¼¶4° aý ëÅý/´w¡¤¿k]§¾ëŸŽLŠªËùL ~âѾÛéñwößÒ¡Þ€’r‘bœ&} :ò[ÄüE´°$Ió XJo€ŠíúumÖø¼~ˆá›—¢þû(5äÍÕ&QÄÑ)»8×[w1”©— ·½XžHÓØ –QÏü_isÙŽj™î®‹áß6r1§§n›¥F1Í!éOž¤’U|Le1ÿÑâ äG#®+»t`ë´¯€ú6ë¤&0Cˆr]¼ê‘ºk-nšÈ¼öä{7OðùB=Œ(ß´Î^ø³[Zþ~O(Ø‘¢å”Q¥ARôúÛñÖ õç~€1ÂA|pæÞi káÓ“´eOb_Á„Ü,q5ìa0?½ _ûÀl—(udÚí4+Ê\R'׮¸ì=Ób×q–îðqÏæ1ãj@»l ³µžÔç,‚‡I„ M°–çóÔµ€îŽúµýRtçOj4óÏa#˜>Ò¹ýe´>©8ÜVÈ2Ìý†°oyØZ̲óIý~ ª6l9>éBLtQu6@â½¢22)¾/"Ò”;r¿ªVÔ¿Ï˳ aî”Y…¢}©XC'Z¬ˆ5eÒÙãÀÑÓ}$ë_܆»xõé°Ï‘»‘ò†0¨í¢z” ¿÷~,²1k Yæ6ÿl7wù}ºÞž«uò›Ï¾awúøQw‘«¯ùª?$zbIÀª³®ør°®µôš‡-Ú™Qñ]šI+…ßú¶ܓÓY>©Oì·÷È•QöSìgY¿0åmÄÏY/ÀKhg×(;I4|'ÿКÅ7‘Såç¾@¼¥&ÛýÜTe;‡AIŨ°è¢b³P|€¯ g×ßùŒé—U®˜|gîädTfŠÅ”lÓ_2;Þñ…»Ò|¾Å¹}LC=ff9eŠšŽÎ™^CÖ_0»¾éùr#!/nºUÁ_ÇBmØà$Ša=ª*¸ÂÚJ5åï3ÚGfÝ…ßÜmUN›êKÜš×Mb0ïŸqƼ_5eÞ‡›È8·zñ­91%;”:|cf%|öau*†Ð\£ùÎÎõIðÇ”«&ïíoßáf 2‘а45¼‚Ælp‡ +ÍbgMq‡iÄñD®½`iú9ŽÆ'hÀÅJÊüòªû> 1cŒ‡ŒCjwÉX!å:"Üa?ºÒ»§ÚÅ÷.)d§95èµ`vJàêS‰z¤=\Ñ·÷¹f'¹ºhãhÛùÇHÌòåì^„yÃÔé:éÕ„dÜW11¡<‰„8¾ùYÑQ;‹Ôüá<^ý^1ªnò㾯ùM9ÔGRuIÀ¯Œ$E~j V'º]œÂÝÙÅg­©›ñô‘¡²!«×‰G⢫d}_vZyÝ¥ÖÂ[K¯ôà›ÆTiwt˜§mOÈx¨£…ü±1¯©xkß”Ù× ¿jR[üD½àFp³¼‡Lçã–ÛÒ¶<—©m¥ªb²æ)XÆ€Çø3ú*YHÁ)c¿_Ï;Ôíg¿#ÚnÕ¸x ®;M+Q]¸ÁæÕσvQSâÁKjèÁ"Ÿ'ïËRmûÈ´@„!ïGÆtüÂßyeÈï†q"ˆÂò!_æGì.ÓM€±Xt“ŸFJ– ¥\÷vN-yiQA’‰™8ÎCÐ –IÁç:ÇL”* 7Òªþ96bÖãkI52è}lƸá[Ëø–“sïí±õ–« åëÉ:eÍß²¥"3Vƒ…NMpHH>÷'¼Q¯ RÖ`ƒqH©ÇÙ&¾:àŠô'˜Èáûf“V\ø…s„D9 3É[tÿ·áq¾#y­DA\Ãõ †ñ$GŽ|5@¹“`¿–À†?ÖÓ¿Ö§ å{öt+J'h¿>¡!«¤SO0?ÚÐ9“•+ßçÓî›®~iO…ÎOlXœbúéUÇ"Êe;R»§ޏZ¯>ÁÂt 2N*ÖС®f'Ì?ÅÁ¬ƒïKEÑ!Ý™Çeï¹!ÓI8x‚ý˜R"ro&ks|ªøMÁ¬ê¥HóÝWü'ˆ§•™…Þí†Í݉˜P«¦ÎFî²[Å­ôîÍè"ŸlRtÉ$‚l«qTÃmËïBœ¬[ÀòÂáç,¥]sm5{ôÉvÚ“b—ß;Ìsô%`Øî"ОÑÈ´;žm_ñ^HPðJ̪lí£ËŒu(¿Ç lë‡Ý|Çg{§_ŽPo;—õ‚߸ºcj’QƒQâ³Ã«‚š½®éjòLB”CÉi‹”J׃öÕ?Ç»£—}DbüáÂK¥T¾ûLúª-Óíaƒ*jÏÆCZ—Øùw/N~¬ùWGC¦Ÿé[›/˜P©Cì¬ ªÎø"Þé1ø½@ÔÕ“OlÆ Ï.Í_r#wøJ¼ŸªôV±iò0ÿš‡_èÛAű‹?½tð$£F¾ &V€‡, š²K_c1A£DÍ‚ÔÑÔ>PS¼Ì7ú±;ðY“nÀøÉL·²ZB}·Y.²w¼ßF“-ö¥VÌ:ƒŠíCO ²SûI±Æ­Æø{*(‹A¹¶¯²1ê¢Ã››–Éhw>&è³(ê¨R=ËpX¡=²üqöÂ7,Âøˆ4.uíºÎæöhë$Wˆ£_&€ˆ”šÐŒ¯†¯ÞïžÒlï3~ÖåeÑþ¸È>»Y ’Í?Gt1Þ6cë‘|B·UlúdZIÉ÷Ïqâ õ[Ë$îØÆ!ô¿Kó†Í Mk;tO$gêjª5Ük”‘¾‘ް\,°ƒ4F…‡®sÊ;ù|ÌñmƒòÔÑPqyœü&¼m—é]¯äsÚº=ó>çB óùm3¿”º|àûtõ3¡"‘jS1*“T`gël×2÷•HÐ|+nî!ð™KU­ðLiʱ˻÷L¿Âë”j+{ö­4¢¶jEÑ_¿¶…0VvŠè·ÙqѧõûÖÝhj ·ÕËä4Nõ}磢¤¼rOÚR”‹1ÍÔN¬ˆƒìb;P²êadm°=­÷¿ žl ÄX„¿‡§’t»u{ƒå¯“hýæêÎgãÚŠ‰}²:r¦um©tå~=c û*àCØ6TøAË\3‘›øñƒJ¼…è™» ¢ŠïäÜöeóµ_ «¡¿~þØ~¬–F´ ªÙ¶B]”°hr¾ Wyúñ2zªjFGx8?¨CÆfpì«6-«,üãñ™¢Ð~tî¬áäB][h ©¹kEWi Kx7n…°±á3¥Êãþ[×?ÌǵTyÞst¶~µus"du†¯çºˆ -*lòÒXÕ |R¾!–-ÀNdÄüàì!Àƒ‚¦¸B¥Ÿ_ð©´OX¢øã·†!$-¹üïÙ(¾gN TÅ:o|„îDŒOvÉÆ—´ê‡óðÂ-–S2\?/>¯å}o°–”vMWÈ™IÆÅ'x7®ûÎׂ:šS´ >dÑv¿ˆX¡^nËï*†_€Ý…ÛÇ‹®QÖ“Þ6»/J”rqȼxŠ‘WíB/6kýëkØÜÿÁ\¢ endstream endobj 154 0 obj << /Length1 1947 /Length2 12689 /Length3 0 /Length 13886 /Filter /FlateDecode >> stream xÚ¶PÚ-ŠCpwÂàîîîî̓»Kp î‚ww îîn ÁÝGîɹ÷ÿª÷Š*˜Õ½Úö^½ e5;#¤­3 #3/@LAT›…ÀÌÌÆÈÌÌ OA¡nál úžBäèdagËû/†˜#èüf:¿ìl².Ö6 '/ /33€•™™ç?D;G^€8ÐÕ Àµ³9ÁSˆÙÙ{8Z˜™;¿ÕùÏGµ1 €…‡‡‹þÏp€ˆ ÈÑÂh P:›ƒlÞ*­jvÆ gÿJAÍoîìlÏËÄäææÆ´qb´s4¤¡¸Y8›TAN GW à‘Š@Ðߣ1ÂSÔÍ-œþr¨Ù™:»A€7ƒµ…1ÈÖé-ÄÅÖäx«P“‘(Ùƒlÿ"ËÿE ü}8F–ÒýýG" Û?ƒÆÆv6ö@[ [3€©…5 $)ÏèìîLÚšüAZ;Ù½Å]Ö@£7Ÿ­’"*àÛ„ÏçdìhaïìÄèdaýÇŒL¤y;f [1;­³üý‰[8‚ŒßÎ݃éï˵²µs³õú2µ°51ýc {& [ Œøßœ7üo›ÈÀÁÌÌÌÅÉ9@îÆæLP÷°ýédùÃü6ƒ·—½=Àôm ·…)èí¼—Ðpvty{ýÛñßž…`baì 0™YØÂÿÎþf™þ…ßîßÑ Ëü&?ó?ÿ|ÒS˜‰­µÇoúŸWÌ$¥)«(#C÷÷Èÿ8EEíÜ^ lV €‹ƒàýßy”÷Áü;VÆÖÔÀóW»oçôŸ–]ÿÖõß Bøï\Švoʨ ]™ƒÙøíËÿ³Üÿ ùÿSùYþ¯Bÿߎ$]¬­ÿôSÿEøÿø6Ö3Þ”ëâü¶ vo»`û¿T-Ð_«+jgmò¿>gàÛ.ˆØšYÿsŒN’î e gcó¿äò—]ãE³¶°)Û9Yüñ´X˜™ÿÇ÷¶]ÆVoχӛ&ÿtÞ–ç¿KJØÛ™ü±e¬œ £#ОùMJ¬/–·u4¹ÿ©b£­ó[àm8o€©#ü7ÊÉ `ýÃôâ0‰ýFÜ&ñË›Ä~#6“Ì?ˆ›À¤ü±˜T£7¦ÚoÄ`Rÿñ¼ÕþFoõŒ~#“ñ?è³a2ù|ëô/øVÒô7|+bjjñ~Ó>“©…ëo>Çt;Ç%x£˜ý ¾e0ÿ²s¼!{ó·Çð7ãÍfñ/øÖ»õ¿à[ó6¿!Ë[óÿŠ}{˜ì~gã¾}GüËýÖýo÷Û Ù¿-ŠÝ¿¦ÿcÀ5ÏòÖ‹ÓïáÞœNo¯Ço÷[çßî·âÎæŽ Æ[wÎnvÿ x»—Á·Ù\ÿßúuû Yßòyü ÿK˜Æ.ŽŽoÏóŸOÇ›jÿƒÿü.ÜAÆðKóvÆ|A–5AmwU"n {ã3{Z©4 ^KŽí.ȰI4•_6oD’†zPWw$¨¯…—‰Ÿ½Žšë`C[TZ?=Æ©NíµÂ/Nb÷Oä‰Ô~'zGÈ .¼ÿéÙᓦ¿d3x§,E¶ƒ 7²r.Æ[Ÿ”{í÷’•Ñù=•ýJN9„§’i†(H=ÿÂYŠ£Ì9\Rg"8Zô3w”Ùë›ô¬‰WbÙ8:xï_Ql^:›¬Ñ÷sžkeê¬N]xäx:¸D×è£S”^¢‡É²8 ^EßbdC"¾™Ì7 ¶£Ø«I:—øKF&¶Fpú‹• ìL…Ä«lSˆý°VËêÀEÏ®å*œ~f1̃wRé8xÆöŒ(Ÿýâ(Ôoå|¬ÌšÖoý>èšZ¦ã0ô0ys/·ÿ;Ï4U]ü«¯pÜ"«Q޳n·Ð鸂ëîÜ{bBÊî«î•ú‡cAõI0Â!2à0‹9IÌÇã¯Zƒýè¯V‚àÅQSr–£Õ²žÈ¯½Š_Œ…– ø÷ï…!6Ô÷\‚MJtASÑé–¼²Ý¶P#rád¬j¹Uº‰Gß3EÐ…FËÀì‚j¸*‹€Àüä°\*ü¦P³«Â[e"Þñº©âéÏ?L*EMâ?MÉ”LžK¸}V@©(‘‰‹Ÿ²d–²i%äu…1ŽN^vÊ2bs.TÌñ§ªã) ý"­ rÄ¥Æ+S ÀúšŒ¸H–!بcÙ}cž;TO—ªñâVùz¾ÿTG»Û;¹­·¥¥È(V@­9­wª¸¿O˜ÝÞÓƆ =+"tamˆêÔ]¬¢Üx[‚ÐíaªæQ´5ßi´‰6Öû‘Ç…È>ºÿFy{0¶JÑÅqžF^Àż8z.`zP||)§¥[y6 Ð·±‰º«k~—¡hÜSƒvlå=[ÙÏÍŽtN çž /ÄÜl+1òüÖcâ–±{K vž+nJ >uz:¿8çb:‡ÜÊlz-ø çšT{38M—¯ã‡²„pÞ…JÌ!ã\plQ¤â.Í9ÿgèù½l­×æ U}¤ú/<}Ð::D6ŸŒqì‚B«cý‡dôlBÁB|lÓî#Þdã1ëá=›Ê#f8B-ÎC%µù+õ½úÀ-¯Gg”w¡€CòQS-ïû§t›V"=1k¥Ч<ãqƒ?¨öS롵ŒcäBõ-Mw¦?‘ÛŸa$L’­^òÔFª¸t.¼‹¿¬ÆêÓy‚‚q5auÓ†ßáÃØÔ3tÐnìtm²Ã$_JÔ×a¨Lî®H›ÕZ–K¶¯¯D<ÉmjÈñQw¹-8›W:ªeÁŠ+#¹÷'ôfPr±ç@GþXîüK/ÐB7R¢)‰c¼Ïö­jo€Ûê;‚ù/CècëV¬[¸Ø `ú^}@ãb×Òl'ïYN¡nùX– 串1Ö|šå³Ø£ëîÇQÇ ù˜KÞ<ÜÝÚüÁ‡ÍòŽ1ŸÍãlô…ïŠ6Ã0HLy •VzÃIæß” B/î§b$5¤ÂîÁ±'´q{‚ 4àèdq¡ïñ¬Ððùé¥}* JÁ5+}ÐÐ×}h xp’¥²0 ƒè&fCaRXïÚbmÒ-öïÇ3YÀ«“Š]}Ô)=]šˆãÞVÖ·9Œ…!³‰+_M¥}æl!ˆK¼çùæ*`.Ñe¨MÝï¢x— K̓_x€cÂ1ÏŸ»®Í^ÝÊAs†¨-–S%ñ^ö&º´£UoqV_;·%ù}]EÆÓ’5mÓì(ïÂzABû!®›¤&ù–ǺE¯b>µÖ×÷×eáè­&i,ùc¼Lþ3zÌøöUï¨d•qº3X6M/@G’J”õü‘TE}Ã6 1¸‡ÝÖ~é9Ò´l]’¯È4Ì»}×[K&Çɹå/:Dʨ4ìU¦ótJöÚ†Ÿ}ɺ1ª:äüæÙbën©íÄçìÊ"‰næF¾Ò÷lÞAõº(6¿žA\ç™ `H¤¹ï|t©†ïr¡Ã´®3¹Þe¯ÿÑäYl,}§. £Ë ]æ:Žÿ¼)¤¦x¡€EÛ‚T¥mqz"ozi*9ËT(„6šh‡:>j#É^EÚýé¬í ×Ž“]¶ž¨Ê”æÈžtx„­ðP”Œ=–± éæ;x â ŠÖ¿ð­ÓéR{o?½°ÐðͱRhP94„2.Ÿ@ÅIð~ ­$bõ–MÊ»@ï€*}9'ƶ‹lÐ@"f:{ž*›!£ ÊoÝoUò®ÃMAI=¶RÜI6uD… ¥î¡;Ð öÝ£»úzGãk…&^\…¢ÓÆtôãŠo…hà²yäÅ 9áýÖ¥`Ö~(þ¥Ý¹”eRé̉JäY”l@S)ë¸(j‘Æ•l5uÃi+Ñ@ÆÔE¹1‹²ÌZìÖ-£u¶Ê,¸å$…eV‘r<ËI«§ëPEµ–ߺ\cPsÿ€)=é*›O^_%ßãM2W.Ww¹ÀˆÃ*…_øþ¦m2¡¬h¡°í>ø+§óó.LUIžª,õyD¯Xê\ÊÔ3òàX_Þ‘+óNüÛ×ë…Wˮآ,ÄE‚_±’8šA¯ËŸ¥¶]`„>ªñnñÊ‚ìUûG†Pî|·y2JÁ"³GÖø?ÜêÚ¦4”_ ¬CDÁaÎlvlÍrÿ$è$#ÁM  ÏY!›®›å$ÇDf T Ô!*»HÔó^O+¶-óç>½~&µÔ†nÕv‚|VpÄ_ü)QY÷+sNþ‰ôä­).] ¸†HXÜÄ0"½z׎;Wò9'Aç+ä2\àóÙ Æã3ÂPÒKN„QnS†Tgí*@ZùV¯Xï£ÑÖÎù£@͘P,Ó7ü[žhþ ; Q ÔŸGK\ŒÙÅ;¸¢ ;ª2€´Ú )®& Æ%‘;‹Ù~áQ™CªU’@rȯH€K[HTeÛš´îiEú®$²EÍUx:ÏâGƒÛÁ´Ù³Iú+DÏÈi*…Óð†O†$è>ìnFŸ:útžwïÈÚ’/4…±ºêœ½·#•5ÿN¸†·?Ǻìá»pŸûp©CªeZ3Ü´õJ­-gµã¨`TœÿcóI4ƒÐɵ>Ãå6Œ”·ù{à'ÄÛ-;Ä…+ªS· ÔçÊ0ÉŸ©Aëö½u¬ï1›ú¼eh×ëpDÅ&=„Ò• ‡À¡ÛØSПx·“ª$²5õƒX¦5ÏîèICåì$™MŒbø-¿ð^G³ÖMÙ¥ Fˬ⩽zÇxWááÒê_Öõ@²‹FøI#ÆþsBXÕYO£æC·Ntèã¹¾áý†õN_ûÕjp2‰èÎEàÕçS£Ž/Íu’lxOf¨Y딹 Þ‹+EƒlYâVƒæ£ô²]L7Îùn-šE ;N°àí$ §ÒŒ­®3f#îˆm?æ>¸.`ÍѰ¦'­¤Åï’“#qÞOy½œÂ=•lW4èIº^küÒ"Bèô³>§p‡Ö5«›E=¶äô)@C˜ÅZ%7°²«9õ@iY¥ |!¦™¤°mК“ü¢Ä†©€šæQî;„9{às©ãÐ~\¼Ll!“ìOþ-KlD=ƒÖ=°ä»þcÉA2ͱE8¸3»NF²&ج¾Í^˜¿æ XܲÒc‚¿_Åu˜ÅK3ü„¬F¶®i•º6×,#~°q(v„?œÔgú[s®Sn…\ö‰Ÿ„ï<yxwFk·,_l]¯3”¯¢Éã³áŒüÜ/Zw o[¿È÷6õe!x”†”$V]Mp L© 3y™©ˆ{—š wÁ .Üø,î8Öþ ©„do}ÎšŠ½n4Uγk<öëT˜¡3 ¢OE>á4dZÑò2_:b ›Jÿ9jyP«æ=ýr,ê‰0å>×°¾5o‰ó®h½ÖÇ3CÞËADLuÚœœ&‚×SQMV~̓ÐÒàk_â@˜žÁ· ûÙŠÐ_´°0´Œ[c&1~‡áD ùöhÒ›øë‘ó}+s&TWí¢ÀTàîÿåÛ4)ŸåôÁ+L¼ŽŒá.PÜ X¬gÉ×Hn[€j2œE56&'˜LeŸ°‡œy³j(††Î2o‚Œü4ü”@^e'íüƯûs¨ÌšË‹b±%íÀÏŠ‰U¦Á*Œª¼Ð ÒˆT4 ýæÓ߇í8„ŠNë.I¯Åz¬›/û<ðTô‚ÖG„y:ÂU±Ãp1Å"ªNè‘9ñ–?]hàÖè²{Ý5îí{]Ö†¿‰Û:³M·‹ú:uU¢l'8ö e #³óš²‚XTÓ³ë¹ÙK®$˜hë)Ût·=mþ/Ÿ†:ïršÎÖÝpYÉZ‡y?L¶q®ç,°KßWÌZ9žûÈIDØ\Íž§»–‡UÑ÷覻—øo ¢~nLÝt$”Çiì¢z fáýX Â%ã£Mg¸ŸÚ¡J&µ+¢Ùç¬.¾n‚ÔQGònžÙo›ÖßezÅóÊh§* µŠà¨ÔñÃÔñ·Å𪬊Ë)<38°‹A| mJó±Ïœ±‹J—›³Zã¬Õ˸w±àÈžR•ÇO ÅìéñÒçgÓvCµWÒ%ÁGF³7ø¢œRðσG¢IïŸM´Obë1¯£›µ%¼Áª¿Ð[ ³¬­UŠ18Ÿa,슂üã%ùkcñÙfÓžt _Ö¶)°×U` ÜÆq×#z½2(%Ê#ys­(a?ÎÓ E‹ªe>$ÁgùÌ-gTšÊ[X¹bN<»mê›3lKµ>6ÇVðªy ¾;Ž­ÒÕGNÉËaËO:…{e%ŒPú/Ýú8¹ü$ Xæ4£€ÞO¦ºÒX%Ö«!l+þú¡žýÈß™0…§ž [“éM¦Bõ.;9í¢R+g»›ñ%z¸Á¤ætQ§1Më =„ý¸´u³Q#Àa˜ kQq¶ÊŠ=J]Ë2"ûˆE“Ôm{g#íøA)ÈÕ"ˆ4êðÞdãut#ÅÅÙycŽVHªä¬óF¨Eb'4*›«Ábï/»6?§käYÔ‚s—â.ŸÖqêÜ&žÉŒö¶•%º Ó¦«òwo\l7žò2BùŒ§ÝÁQ–?†,Õ«¿K“'Pä©•ò Ž·s˜BZ©ëà_á;!‡g^yJÌ›&÷‰¶ólÛ§)ä|øWGÜS·]<€Šdç*Æ8Ü“¶÷äɺ†ßzÊ[^ÜBÂ4t»LŽT:Ò^ÖMëÂ`'ëÝx×ÖÈF)õZø2h9㮟¶ z¦=¥Lš¯å 9Ij(ÞË­ÛoÆÑ§ïØÚwc¿—÷ѧûä4l¢%ÅYQãÁkTŠ «Í-'UPCÖwÂ5uÀ6ÇàˆŠÇNj‹4.’,{¹„N“´EŒÅÇè#.7>²j óm’/ÏÍÈý²í;ä)¨G‹É&©g¸³Ÿ Eb³ÅùS ÇUž-BaîŒÎ€óvqâÖüë÷’:5_™Myõ¦o8¬ æp°%³•ŒµPŸõ*\ùÚ·8®ª·[—ÕƒLùýü˜gÅ¥A•)f*åïs{oîËÆòsdkæŒRõ2)$_÷ëþ§)âóBâ>Ì XrrEÿÂiOšØ©üL£\Ôßì„“Õ|©ZÓ=ôè¤$“ä¶ØygÀ“ÑÀŸ ä6 ¢Ëa(´nlÍ1ù’áŠq*¸+Z Ëj¿õ^—û×rØ_™Z³<r² |ag†Á( @¹*ÿ¸°`÷5}*NÞ`–†‚ 8¹¬0;€ÝU¹”qÒµ¾ºþì!ð™ØóibݽoI¹LI{GQâŽË½&ŒÈLä¦sŠ>áÜÑ^&v·”Ë_èT¨ Ú,! Åô PˆNÉ rމ9F)۵Ǵö5š»×î3‹mÝå<éæd?Þy©ÂÝûë3iœˆ³ä}"®¯ƒSyŒÛØVëuõ¤°'ª‰£l(Õòl% ÜÜ0”“'<åáþÆ IÁ,ÏÆ: Q± Ý÷ZzÉÙû-=]²Qçèß—lIAÖ„ð½šYÁØH¨†Áñ¿”¶ÁK@ÑÅ'€öÊ›ÿ1}Dè§?^ñ!ìµ ›Æž„Þmø¨‡Ù¢ÐÐ;ÊïvTú‹ô(¾‡ÍŒ3ê å_v­_¼JG‚X4Á{²Àµh!áùù°Â ˘¹5úYŽý_ ÷ E6L‘·ö݆…5\MjúáïÉ˾×>³V]Í|zÀ4Ôþy!¨G~Ř@Žô ” ï§YÕ.DÞI¹ÖÇ Kî¾xÑŽ¸˜!«8¯™ÏjyÖYt>µÔÝ»:‡5Wð• ßÞYGT¹oÑú*=ì}PÔ÷˜ì,¬Ä óIäã2®l¸"}|’üTrá‹—Œ´'p¥š2×#ÍdHÖK£~ëJ÷ëÈ Dwì÷jëáêR£_Û+øI‰q¶ß9EOåcŒ^ò×M¸3Qµè ´]¾¿ÞI¢ÿ:Ìô>çÎ.²õP/.¶ “šÉð|6&WgÅ{-]ÄÖ…ðXè>­Mªf88`ùÂ/]d&n«ÍBÈa”‘ÇǤ eËlÆ$¯–ÎüCTȃ¬~-1Fqmc^Ìþð©P¥Ýh¼gÃê%dcå:L÷¶ôøGqpXâ‹•nª8e_Ds÷>§âá¹Èùìén9 ÒÇ I^á$ßÓ?ªñ@«CÖAÒ¬ž®wvmóÛ;ØwŸ”æ‚ ùÂk¥y‘Ùfäµ~:Ì_!9 ’ž?EoлÊÒ-£X‡ùñPX¹üÔî¶·)ƒ qHvèÚuøJŸ>”d¸izÊñJ±å ¢s‘ñ€£ôí5©âðø®œŒ ¨1ŸËµÿ>ùQ+Se¸Jñ¡ÎˆÙaƒ!˜5Ñð ÙQ”pr` Ç©ÃÊ"ƒ+ÒEer™íòDÍŸ[%¦oWz–;s·”ŒºO n¡ŸÝðâš­^…í(¨jžÆ·FÞF ìë,ÖË5ŸÝÎ$ýV“l朦û«kŸe %$Åê=g§F'wŒýg• ýOëÄí ¼.š8JhæÌmF´Áî…k>Q?°gv«t¸TCÛzVø±9¡ºðBð_G° 5ÎL(âaSOÔ´iQÖlKë>§À2+¦cî ?xžÞŒå9éõEœ ðãìu6U[Q?Tò<>í¡ð"Ê•ÞèÑù´éÇHãŠ7ž¬¨ÁqÿH‘k?võÝÞfÎË}”ž¤öËŒ×ðJÄàbôËZÓ ªKôå4Ò7ÅþX6^0lÜš ,‡B~að”"J6•J+Ì8“`}è…3"èDÑ¢R0nUK,ÕXÄ3´ÂH¿0Õˆ—Óõg„ÁÏò²XÍ‘d¬äRT3Ì·ªõ¨Äœ¾:"Lµuõ*}‘·ç±[)Zç<„[5¿øZÜY¨iÀ=¤zštœ¦>W+#™,åeŽþäF§qnÇ@×û¬Ð¤A·ù!Vux»Šƒž$ÞîØ‘•øåúS¢bà¦ïD›Œrð“mÆ~æ’ ñ7Å êÝÎyÁ­áºIT:Áà½l­–û 1'þ¼œûÈ*½ H±;¦ÓØmޝèyã}`ÒVá.üþ+ EËǞϙˆ"]^z?1̵/[wí¨½)â1–ÓR~¿¿OJ(*3ÜÈgБƒD\B¸vú?ÿƒ9¢N²†];©lû1¬]ø|„fpÐøWZß8=vÄâUeŸÜ.Õ6RòHHX ½}þsßì€ÒRƒt?Õ®©Jä-†ÒRGRS 9‡x"꛲‚×f;µá]þ”Õ¾YŽ@ªËIí û‡¢j‚­}:¡ÀÚ¶ íÔ<9ãQß‘‘9¹…ŽÔð"c[eÑtL _jó¿è»BçC€Óíí¼È¯ê„¥ÐÞl¤óÅ—K²çuŠrÈÇ-xo¾Ós>Mß¼@ÖÈïX2ÌBGúà©~iƒ6XÑ?Æôõ¹[†ç õD¥í¡ï¤ö5tÌü ¦Z–Ž ªÓÉÂzr†ß­‰‚‘X÷ù1ŸËîrBbv¹Ä1DaOOråÖûÚ ä¾*Ž“l >î½…È¿D”Ò¸B·(.ÍÂÖzœ`rØ ’<&Ž™=Y›•Ú ¹:»ðãy†•¢s!-7À•†vBð= ó鯷8=—<æHjy·q8ø(ìëMø)„„‹˜¶ŒC‘*()|»`ÔÜ ©è[~jn×_É=TWºk4²hˆÏkÀÿ™ï=©•^ý^óGÖ_ö%³víWBœ;•ïÇ'9©¡`ÝÙ]#<ŒÍ%«2 5Oi®’òOã:AD¦¤ö.¨y¶Íc•ã¨_>åš )(åfîÔS x,“!­×àRÇ›y9né7øµS„Râsÿ䦖½»WH°`¸ÞM¼À)µ”)®"«[@欙kÀнÊ÷»Vo„êŽZãýŒ' •]Ï)"×}&ÆiÉö…•"cZ’@©ë‰{t\ ñsR¸ iÜžÕ'm샊%×rXë¼Lƒ=š‘.õ>C÷6íÒú?¬?¯2mRµ‡‹£bš™RÚGÙëMlû(^‰‚¯ß/ñÑïûÌŽìU]½ofd¨ºó6o1)ÅÞ a`\Ï/ÃR( °bdD<ê˜ÅBÙðoׯSDnÄ@®wBAb¤ù>ÍB¾½4²ª I ¥ÿÄsÃ{ähí¾ÀõËòK3Sf /E`A˜Kå‰ÝˆÞ2ž¬°Y‚v•¤iÖ‚M]¯úÆ| #tÝnüŠ£¦©²ÌÂèÚ£V˜É©àid¾'¿ë%úÃC[£V?–¼IØ #k.›G™ÏWˆW÷åÃà à]i½`£¥hudNrŒqèè)õt´2 UÚ\ŸCý•>^³ŸÃ5žðUÜ,VóÄr{©Ù?ëðƒ /…`Ó Gv!Ì…©OYƒïL—uUHB0d‚|%fIØæªpw,ôF>ü:‹Å‡%ç\io•R´áeX­ ¨Qÿ½‘»øÝ0aŸáx{ùÎú^5êð:Á™š¨\Z¥þ«T\åÒêhè´xq݉ˆñ2Ô3õøšÓ_"¹Äi‰õó²›³6ŽÝî÷K¥R|‚U<ž:ˆ%TóÓ2”°®ûtù©‘š…8ାч[Ì¥=è)-2(O Ô¨l¨¢$Û‡;ù“dùä¥ñ\ºŒËN­òrm˜²>jióÔù7í¦Á¿Öaåvƒ"î¨Y„“zgà蛌t=§œWvG}&¥«^Üj©H“ôQLßa*pK€MV˰\|ôàZù7Z!-»úµ– ž”à$‚~Vã‰3:1Zƒž}nùw¬ð[ 9$9e,Û>˜·âÀö ³.®ÔXèªzOwE[Q`ÇeøSfíœZÄ>><Ôz>£¹5j÷i¢T“à¶vu³Z|[£Þ¢CÝ9P@®¸…¡%.Ö Äå÷kÂóà}Õÿ‰áFqÑd8oQP*Æ •wïþ|´–1[ÉÝ öŽ‹Ã*öIòŠpú1ƒ ÃS %[ø¤ÙšÑáW±† §NƒóΈ¯öÁ‚M™³oèõògîö" Ï‘6I*§¾Á%GjÏy|þün·7Q+Õ¤73ÉdOx¼Ñ(v5XÕé£eOðÆBñôŽa>&¼‘Ò`z©ÿB‘:Ë÷E°öWÌ(ÚÐ t]*O=NdÒ|ìÀ¯BÏŽýñlÏ”5Ëz+™ ˜Jam£'sÖÏl««Í}Ø‚ý•q¢cNŠŸ=äÏmÐÖ„Ws÷¨‘°w¸Dïè”·‰f„L/æuëò% §©no<¨¼Ö,Rg@«¶™òÂöLqv< ñäwuTzj {OFpõ5Å­è<¢Ë !DkºÁé\vg•ËSü"ý\;¨GO™ëI‘\µ@¨Ôq.YÀK==z;N«ó“}ž×DSÝ:üöÅÎì TtÓΔ¨Ø×²8ºk^øû•kì¥Æ2-ª[>Ó˸À;j¶æ›íyË/£\kLÔnÇ·4² ©5ºSBU †´+gGÜXú‡,<[6ûÙm •æ—îNЫ¾&Û%V_¾†r̃Þe˜”j25\#=T´ÔK^âbGe¿úÂ8²zÞ¼êì’‰yýZ^¨üeE:z­Í)pY 4çÑùÈÿ‹¨«òãÀ1X tf’¡()ÁÁŽL>hóÄ 4Æv¥a#hÖaíR4 aJcE䫯›"ÚíÕ2¯+‘ Ž8üvZâšt•ÌPß+¶¶Ye¤Û¸áIÔÃÆz$‹_ƒ8—9Èx~yëßsŠMÁBgO¸”ÏLî±Ü­ÁÊ,%éy¦G"?ø,l¡6ÙÕƒŸÛÔÿ]~n³b”·åRãù"I‹ÒMÚ-W´XïGÛ,R<|sÙ«â,ÈlæM—7Â"±ÉZ”Üy›I“öèQÀ1æ÷XÌ€„ )v•¨ àºùÚiS76¾Ð“èI«SäD,ñÏD°­@¬›©• `Á0R:imÂcf˜§`mÍ+Z”I˜$¯/ã¿nÀïñƒ,M Öëh‘䚈~^5¯ýò«Nœòïc¶dœ±}ÆFí…]Ç“0ßYj…¢}]l÷‚S}éA¯¡.fkÑ“ì:æˆÏl½èÍ4APbUÍÛô|<.e¢¹?_é'زªê«$„b7A7’ï[|ml€‰æàÎm[æSñG‡ìÏ—ˆà$±Øo,jÁÎå ’Ž4xÇÛSéÞØ·Äˆ•ŰòÈ2¨ÖnŸ7b–§xÊÎ!V’Xš’kŸ¶7gõšÙb{H¥þpäõŽqÄ!æfÎŒ7µ¤bx£¿)ÕŒJ5Õšã[¢÷C-º½Cú€Õ¼¶Ím©|4œ”ô8Ö¾?ßdÛý-¡”ªççþwUQ5; ×µ"½¥­’‹ƒ¡173ár0òOE²È~mmmþ,ÒÉ+Z œ§ªZ¥e bÛ‹AU?‡â¸m*#¢\áïœ(À“2@=k(G醷ï"çÏ~¡7¸zùõYý’ KÖªMS®š„ôs¦™!ËÞ’· m–å‰.ùÜ`Çõ½ÚO<¿×n\ £oLýØ' s|tlm@?mŸ7Š&3*‘Cÿñ *ã=uÈa³XsQuò%þ·¨ó0%¾ŸOE•îöOkØV‹†ÓYV÷g®y_9 )ùUõ –+Ïœ¨4£Ìnˆ¦Bž‡K|ç_ Ø-]k¬4&×V¿2 %”) Ä*„Qi˜½ó½ÿÁƒÞmÂ‹ÄØei!¶ý±ÕÝìçbÑ|—ÀˆÚ~Ë-eΞն‡éfuöÊ2œâ‰líqtÅ žþ—£3Šæ×ÂvÕ­îjK/Éž;“^¨õæ. jþ‘ŸÒ^)qð3žûpö’-û:ã_Ëåø¤RóÚFMMiµ÷ݧ•üÑÕd‰Á'Öh‡Hœ„P$ïÞS‚5upUDdö‘dKRØê>ŸF=lÇ -P„·Búénüu£ÖÍ´½5“ÿ”ÎËÓíÛhÖúAÒŠööXî  •é>Óqö}é3Œn™Ò¶ô;;¨¸PGyÈÀ@3ʉ“hq"$¯`ô5Ïrü»P½è¶Ñ´én-É™St±¡—oWW§1®H„JBBx–ÆûÐ2PýÒ9Z/ Wï/ã°W%Þ™ôOOMOÅSË:ëµ=>Œ04\—¯Èr$ÌaOƒ¨Y†°›]¡â´…™èa¦^K‡Äa„´^òú`¹œ[Á7J•Ú–ç-$¾¼¤¢$# ¾*?ÁçJÝ6¬˜Èu¥¾4Tåß×#a ‹sÇx uVÀ¢F!á·@1•B H§0§D~×—Á÷¨¶Îh€Ÿ9òe ½$ÿܦ’ì×õKš‘Ý­ªQÎÓ%ºå˜­Íþ¹µ–äà0Ô)‡È.²a~¶$°ºiV Ø{ Ca giá^¯’s¥-»¡©•o>}Û ;æ1?ëÔ"S\‰ÁÄŸ‰v&VmaB¸ Ú¸|™ï,¹R£žV#²Â±Åï_s½Ž!]‰ž`êÚp}߆•Š˜%}~²ÏŸý"­kßâï}¤»T÷I¼æ¥%þ€“J«ïpeqÌÝÔr˃føËb¿ŽŒÃ­&w&¢¡=ªàn w «=}Æšµà©@”Ùн€qµ’¶`Ì%µì®W…cÕ½ù¦É3!Ö¶}kl cŒÃ+ZóHoÍóÓ„Þ’_úsCRÔ­ÔÎ}0Ø„LüE{ãôǤ?øàMØìw¤¶æå§: £cKL/‚t|ÎCÂxæ=M¨ÄñZä78»Nzf¤oˆ> ½ac0Î;«šä^‹DìÊdš#é÷/P¯6tã´H3ËÇËöÕbÂ4_vÛ?æEºr{’=؃‹- r -ªŽ¦ º¤W?‹ä}E·Eßq‹uŸl6Ä¢O±ŒO0ùB²V'+“Q|4nYzøšçoÚ Ï\µW­¤Gí1”‹=õŽZŠäI¿²ï-$‘Q‰Y¥LKtlQ™xІ]hM[uÁá#µ®SGþòë}OS‰IöYy-¡§Õg½™w‘á]Íãö\¸&8 ú(—òž®x1« ‘eÑÜÇ„5?äÄ„|yŸfRñU"õî3»[Có·zÇ”‚ö8f¾ê¡AÕ‡™Ôk—(‹;F—;MÕëEpiüë%Äþ2ð€í{ôpœ1qû{ó@ÜoL¹‚T¹O+Ü((Öн½<È û‡Âm„1ï±ê>}ß8˜¤ýök^Q­´•x&FöýsÎEÆ^ùè‹Tà0œ{œyV=Æ.?_àâ3Ð9±7ŶŒ‡Ñ3.GŒõ¼ßkxeÓu}­;¥SN¹j§]›3¥Ý?›ÿ£Ñ’«ó.ÒÇØEZªQ’ôZ½Y’c.Fî»dÌ?Ií²3 ‡xݦ»’Ðó ØŸVÞ¿\¥°ÏÄ©¡môûq²»O—‹§WgN¢I4ªÄØ'is…Pü<]ÝS¢V÷®è—*5ôÒ(ÖEM!G=9}¡ßOã%àW[ÝU5ªò °¶€±u#Á¹ãÙUß«Q”¸²Ù~Í+Þ\Jµ\³BÞœé6Q¢Ìy¼’ 1  ¢Œ,<Í—/Ù'ÿ•`{j×ù¸S@Ô{*ÙÀ|àZ½$±Ýß­Û…°ÇçÆëª‹·ö3¸I¢ACÝõ[[xBœÚ^oNÂ;…]#“ÇQŸœ gnvÀd†Ùþ,áš_©™a#)~ýæš/*â]&Ä*ºò"p°€I…#ŸyÜš-Ò"`ÖŸÓ+×ßm×®g”ýš:«,â`!þ¢=—€ü*ꕈ‰ú‘³€újq‰›¢÷7~vDšÉ‰Íæ$¬š/j< Y^™à|›ÖxB&$þ[ÿn”ûpÅ Ä&;ÿ9€Y­bй;ßÊWbõr8¾Š?&6òya™Úo9º¼ˆñq¿£ Éó=?X¨b2•Ïâ À9 *å©WôN/q®ç$‰d|AžSdz÷q¨—ŠÜ™Z ‚¡ñ`þø& ûºwPX†}= µ·kf+/$Á½Ù·£»9 “¯( D[53Uš–NövVŸ{àÌÔ‰¹’ÌÔ†|F¬úÅ‚ô^îÄJ¿ mc/²‚ýº¿¸•;½û"å؆€5QÁƒ/p}?ð#dçͼ|ÔéÓ:ÑØœj€k"ÙÊ‘Œn =uƒ©•®ŽÈ”ÛñüË£TQC[7 ªwÝ7-uâ8?‹bR;…?@ú?“¨, endstream endobj 156 0 obj << /Length1 1384 /Length2 5931 /Length3 0 /Length 6879 /Filter /FlateDecode >> stream xÚtT”ÝÚ6)t(1€Hà Ý"Ý­ ÃCÌÀ0äÐÝ"* H·ÒÒ ‚€´¤„tHK}èë{ÎyÏÿ¯õ}ëYëyž}ß×]{_×fgÑ5àS°EØ@Upˆ( PÒR1@ ?(HÈÎnC9Cÿ¶²C‘î0\ò?JH(ucS£n€Z8ࡇ3$‰J‚Ä$@€ (ñ7”(ƒ=a¶-~ÀCêNÈ®„põAÂìP7uþþpB¸ 1Þßá(ÃZ`”Ôå¦"ì 0@@`P”Ï?RpJ; P®’^^^ü`w~Ò^–‹àC9ô¡îP¤'Ôðkd€6Øúg4~Bv€¡Ìý/‡ÂåFB7g w¿ ñ€ÛB‘€›êuM€Ž+þXó//àÏæ@ü ¥ûý+ þ; \\ÁpÜ`s†tT5ùQÞ(^nû vvGÜă=Á0g°Í àwë`€ª‚|3áŸùÜ!H˜+ÊßæükF_in¶Yn«„pqÂQî„¿úS†!¡›}÷øs¸Np„ý÷Ê·µû5†­‡«€ææUWþƒ¹1þÛfED€‚b¢¢¨ê qøUÀÐÇúÛ úe¾™ÁíŠpØÝŒõ‡ÙAo>„hw°'€Bz@ýÑÿéøçŠØÂ (€ Ô'üwö3Ôî¯õÍù#aÞ à ý@à¯ç_V7 ³EÀ}þ ÿ}ÄšŠ&ŠÊ&<Fþ—SQá @ó ø%D°ˆ0@LLàÿÏDº`ØŸFþ#Xn‡HüÕïÍFýݳçpþQàŸ¹´7Ô…8ÿÍtK róýŸùþ;äÿGó_YþW¦ÿwGªÎοýœþ?ØæìóqC]Ô ´7b€ÿ7Ôú—vµ ¶0—ÿöª£À7rP€Û;ÿk#aîª0o¨­. qø‹1Ù~i͇ê"Üa¿nü/ßÀ N77ˆû -» 7úùgI8aûKh‚"¢0 ö!¼9曕 ºQ¤-Ôû7‘üpê&p3ž?À$üu¦â@€€»‡‹Ëï õFýrþ£Ä‰¼ÑÚoÜÔÿ{ý[ØP¨7B85Ž€H…9V‡5ŸV*Üõâ[”ù¾bòœ‹=…lñøIŠ—ÂU‘2CùU¿K7?ã`'ì̶‡ì9n⤺y”§^]jÞ5ÝÅ_?EŒ¯è­Vˆj]ðÅÅY޲çÚdŽÑ±ÞBñ1âsSìyß=:þB‘ýùšùáSBÿ­x¡´ù‚`ÂÙ˜ïl©¡ û{ú{ôætŒØGŸ†ï£×RÒN ‹ æ^²$ع^«ÉY£œ<28Dhtˆu üåŠS¶Àä’OÆü=5©àW?¼²7ï•*iÙjà1`GÜ·43D³y–’¸|4ßRkT ˜Ï%æ ²è.)'ÔI#yßC;×Jq™à!”œ(ðÊ󼃓â[–ØC uRU\'s.%¬×NÁÏ|K^p‹˜zxz½ì"‰+œŠ8µ¿?[jt±CÅ£\f¢Pн0?Zô͸Ü;¦›é-õŠÝ ™I.Ÿ¿€‰wMž«†—R¾´½`÷ó¡pئøäÚ3YUë0ï4ðôÛ[Öô€Òï¸I^/=K¿õŽF^Qƒê6¯º6Õ10ˆ]š:Ý!pÂI [ïQ+gÅGÍÑõXô› \—qnïJQx…,J›\ê˜ÎѸ™½„ÝúJã•Û;±(ÿ ’ö†Czx;ùgEžÏÛàªn®9kõWä )Ãxöˆ-v¼#xêÊ6ö :.MÝŠrAš¨w6…·è¬ÒàÆ¼£?O(B[-F©TÖ‡k%9Úˆ èN ŽÌW^rž®Á ì2øšƒë,t Ôò¹ÚƒNepîÆ/øê·®rô1;*È’ZªÞ?ìW÷=yþ¦Òç^ZÞ=$.qíÝ)~*oÇq¡t2¼£¯;‹²¡¾²wV[nKœhgxòMÿð|µÀuahøJ™›±I]Ó?»Þ¡ò[ÑWï Ù“cFRÿ–Äòûë’ƒ›2ÎVcL[/†’oßÖFnä«<‹-ƒ}-ܶx¢ð(õóå1IT¯EšÀíý©ûúëñRɤ¬=¢œÝoj4îÊ)± ÈJÙ;pµŽ«v $àzo˜gßK‡ÈÓ®îEdrR2KOcFŧßõã‰àòÓí餼ÿ¦Ê–)ÕÍr1϶¤NêP]¿Ö¹¢z U?ç‹2¨ÁaÌš"c†/ÿä‡.€0GÙùxÆ ËÏ;6­G÷i³©ï”s`ZJÌx}<ï ×-Çv}rp…Ûh½Ñ+ÛÂá\ìׯ¥Çôµ+ÈûQ§ÐÜ÷ÔBîiàYßµZà1í¯\Ý|¨#®üG%*êœf’´,nÏFZÞmÚY´n¶Ýí÷]GçÌ!É”ÆËÛÌ ß”ºó{q ºK™Ê°ÎìV.iÏ<ûáe†;ö†ŠöSìÃt¨òMJ‰ÂÉZ…4fí¿×À<öÖ&ŸAeïŸi7„'N¤œR”¾f>q+Mð÷çñî‚g~²Só‘8½‚ù\¦ÅÄØÁìö}ý+t‹`à×™æ5ŽMm¤(ãǪ'6ñ9NùCé¦ß /á¯W^ÑdÓ¾sg`q“ã½|=¨‡zQ¨Mº§¥1›ôøøüñT—xÖ°MÛ³/fh^¤ˆ^ÎÏ%±_i¹%øð8µ|Yö ¦ÿ?zP£T,nçùÄ“DüáIÚvC2©•k[e<‰ŠÜ )mønÂRb95Êìp9,ƒ“¦ûB)EÃsûš+Ûg%Ç{8Ðqº\ÆŸjryÓA@s+FÃóø1%A*¨”Œü±9øÏ QB?úì£1¦^òàœºŸ!<}MìIIÅ8¹ˆ"Îý©5D_$_¸utê]îQ:ÏJÒ–¼þhí¶=ê³ Ë>x¬óªGlê›–K›H%§ûtŸ ¿éלù¦¬}ma×Àƒ[4z fíX –)q"ùéù’AŸKïoð=áTßîíÙ9)1âQYg—§ÎxÓÇÍrÈxG´›>øñ†@èNZCA}YêyÿªF'¿%Èx£<*–>ú0BsîËOö¤zô˜Ïìs,U ú VIÂòIÅÌUçnæm ø¸{84kÑŠOy…?õÇó êþãT¥î{YK™êVÊ“Ï{JŠ9òž„=Ü=VV‹4¸Õ¥wo$ÈónñXXž¨ôõ÷Óʼ=Våõ6û±,Õ bG€Gü ¯¶–Z•Ußl®Y}Õ³b_Ï’‘«d[›ì|ްêµ§q¦óDåø¤2íÍæMìY‚³qiÚ¥p·8ž-DÛ•È/¦¿ðœüVse~YáH¤­XmZ@µÇïóvd"ÔyN ‚ŽŠûpƒRêîú„Ù…UI‚u ´¾¨®2«„ßö;À( 36àõ¬éþÆß v¹ç·ÄN5%;<òm›Ë0P©í{ê¨ë«§BÌTKˆjyn}£ Þ„qѨeé»lÂÂøÖqÞÊ={]˜I•qÔW&´V˜(›ddZDùK+¯ïsYGéJ ÅY)ŽV¹2ççÂQ¸‡Œ;* 2ùUƒ’ýZ:£àžcÓK¯mxg]ÀSÜ 1tI¢iæ1•V}ùMÍQ¡~ÖL}Ÿå¨hbQžûªky^“ƒHA®ž!Fæh¦qe¾%lÏ*ìnòvyŸÀ7±!«F¶¡k̉ág˜ÞhŒ]‚þW¾¥Í1Ž ü(›^E»Æ;{zõ Y}y•ì#¥úQ~–ÄŠ0 nmö½€MFÒôã‘û6SYvHi†e$VȽ»`;ýÄg½]?«§ cnåfµI‰Ø˜Þ5"‡œM6ƒhšM€ô¸—RA•çY5râµiߢz·W±îf÷¨§Í°9Ãjw×|jžÑNáß»FRÎK×¢èÓc`¦˜àΜíÏT·³¥/kR“ ½__† D?Q_&y³0A·bu‹qš®²[õàD²òAîdÒ¸³‰jêƒÀjǧwbÞÓK¦¨Q™-^†5þP«ÁôÝÆˆF›˜c€,–»ê LY‹Èà §û¨ë~JÚ¶½«b6he…LlWôUxj⽦§Hi³$_J¤÷ÀXŸ9Ø0vG˜øšC¾ˆø³¬½0¤il¨Ñ®#ÀWI*N#2v}‘¸9èrpÈ·L°ØŸ“w™V%²v4®L"qŒ¦J¸”ÀDáÏ+Çš\e23älÓLœŸMa§O/žÙ'No'Gm¨e)eô¸}E3-°{‹ÈÑ 1nϘׅ¼µóy„;ßï´­Ù‘à¥}2q°T6Œ‡ÓÇnrÇÁ\ƒcÏ6¸!µ¸Çº½ÚDìñ*Ó–÷©»ît‘—ýŽ|d–šŽ†ïQ aÐòêûƒ¼G{ÉG#I¼Ìúcv‰[õW*–éå×¹0ÌJVÏ7FiýR’+»zûú_V$&œ0l[#μާôY}‡yQŽÓcé¶\V±Ù>×¶®ë/W*òªRÑ/íb#uwôcˆW³‚‡ÇY´a·²•XãõæÇ=ÛÅ-ô³³2üú%õP-WʈØt0'eî %/-‰«¹•øÛ¶Î¼†2/ˆóc•;[“ïß ©a±Ý=›ýRÕÞQO±QöRÆÊLŒ‚;#aªw`1Ñ›ù†ì>*>¶Ç\°Õ’`zÿ~‡»I·PÛÊ€•±c3/V²®ØèsJF|,ÒwÐqÄ= §Á?³ èñ"}îK“IÚÓç ƒÖÕ}ùò`B.±{¢– Å(?€Êuý“JÃíµå×Ôü¥N½êÏÊ ÂöÒãëM´Ë_7ÏÌ7-Û°©™JÂEB2‘õ·éU^å„QÛ>¢ìö*îˆÁš‚Õ½uäIá Ó±ÊuoZY?®¢yc Ã×e´\<ôzžÁÌ*Á.‘CN{nf 8Jo/çdz”¥ùѬèáçG>ò ³¾5RfÀ&§Ú¨úÎÅ´šÞ¥d›WUÀvù9cÌ(#ë±;rŽÄÆþ!Ç©‚„«Î„:µÎ6œªfâjä?ç«¶…+ù»I ¤øÕVEÒUÕIT6òèOó˜1ù ¢H>ÚÉÆ!Þk¾êÉM˜ýÞ–ÜÙM©ó ª°˜‰Ó{8ÈF&鸳BX+FTð^´î6ƒÙòû¡GúžŒÈÚu9ÜZZíÓqãõá)_PÝkïG™º ëƒc×󥫧Y™Ì¸¨$ƒë§Öæ¡ júÖL†)öB[Ú…3'8†¡ú$ÖÅ3ÁN™6ý89¸ÜÔº‰ôàP˜wõ€Ròôß±6Óu‹˜ü0UkµÝ:i5'K"iÛ§)!…’d¬PF^ã‡$íÿÌ0l8Íû¸½û82¼ÃñQ,ßê0‡<îC­cþJRgùjTÎ(!¹8°0±UÈWJ ^,&Ã)ôOxL’η0¤œÍ¨faÐYÖãˆí«Ò<–Nüf’ŸÅÈ{èGÀm¨¾£Œ‘Ì`²Ûj•Æëù¤ûYëç8néƒÊҒ󀺊XòEM›~¡æýëÀ0Èò.û´·UÉD´NyY{6ñmË x»þ¹¾OD6ÉWóiɱøNç§ ­Ç‚Ïà¾d¤,ýÈ £¸×Xc¯w„¹ºtÞ&iáiÙv 5¬&^o‚„jLϣߺƒ+逬;8 %›¥u½GPä‹Åú$çlEíÛ19ÈlñÌáÙJ³ïH‰X‡Øn¹ ˆÃTV*ËÏ0f!•Î÷¸p8²–¯?!ùG3þn·[Ep³ÓR-ë¦r6úŒ±Ð<¹|ýèÛÔ&6§fa=HDhÊÑ3Ò÷Ð!f„al]býmryÌjÚ]±qJó#%³ã[˜+ñ5A ŸtÚŠ%yYÞ&]Q…+Ýãžv°P î`ÇŽ_Ó‰8leãÉ÷y–*Ê:$«¯ÏG.ÉöÑT“½Í,‹:/ñ£r´mI¯ÅÜ­‹ÒòòHÕ<Üüà(û~SHÈPU[‹d>=B¢72ŽV¶wÝìÀî)qÄ¢Á›5bR¤*¨-ÐëN¹úSõÚµ{´àë(¯¸IìÊfZýñ¦jÃgÕìàçÏÞóé嫘4)«Tû‹¸g±ñÞR‘éÃfcJ«$ÏïÍúó„"¹×ËL’³ÒqƒæÊlÚ2,­TŠ<Ýñü:å4Õù :åù£W°^Õøèï”Nñh_ÐâµmhçOq/<þÌ;{6A¬•ìø`"áíJ~'VŒ¿/cÑ çº¢»c:Ÿ*%?ÿ™;@ØUvgTº½"À ` fûAE0/ϦÖbްù¡RÜ/kOÇÁ3’«°,Ú˜åiÙŒ_©'ÒÛ¯M~»ÿÄìÁ™@/S ËUÌU‡êç­â¥̃ÛÕÌÝ\DêñŸŸða)Ü·I@+º¿ç_Ç™3‰ìì@?Èœó kÛ),ûÜ>Ã?~æšØZyüYàYWÇsAFØc>Ò¾RûV§ªJ¬g¯ÿ`]8ðiÜÎ[ÑÆƒÇ4kµbþ&¨’•«Âx1—Ãã)?#嘹Á¯G`î%‡;uéÑâ`«%뀷’N÷ö2#›|›yP‘–!4`m0|”@*KÉOblõ¥¦’çwõµ§ˆP~ïÖ­„Ý=Rmx¶Ò¸‹‡&ÇwM.·XŒì–ïs‡ò¬™;"zMS¸´tuŽèbM6ùá€ÙlrEĹ Tá.h!瀮áEdmlvJ |âÜO„a ¹æÛ‘k‡Ð;Q.ꊾh·f¾þ, ÕÃ`Ïúðî,wÙzr¨©·ÛXŽß@ok¯ž9’£h5¹RòRÚ>bãáØ·2c:äé“á+‡“éÅyÔ¼»®Ð ºðò¶è«9¡'˜|+Å-$§5ÌÀ–ɾÈ91áfÍ+­Ý´z·,w°²ZHÐ2Ó‘û=îïžÒy}àÞ?MËMêè_–º»±ìÎYϦ«8Õ p@è Øc>iê$è¤óÆ8&ã—¼Ø?LúJr}º´âÎä^¡’ß³"þ”ÂýâJw#Ý3™»ÀÉ _äCù\t5^®Ô{Uhý•ýíP…ÊAQÌøú}εcÏ—¢Š†ÂdÝW¡LÚÞ/‰v‡ÞÀÉu'¦AŒl&xCžé âsm¢¹¶¾ÏÞejnï£ÔvlDt/2½xù3[ž°Ù7Ý* »R•œz¿ƒ½'|)éA©h|"fÐYI,ð} gi'²vm²7ô‡©Íˆ]%ÏÊØ¬ûn¸å·ä§šÉ—Ä×ûccЊ;¢÷úÒF ¥Yb¶ë—ze’¥Bé  ™ƒ: ˳¦óeçj:ï÷žûã6Êc8yÊÅÊ–ôÑÀ…ehØüŠ.ÎæR„èßz,S1²ò‰€ÞbãR™¹ìÿ¢<³p¼qÑ¡Œä[‰·aG Q4T¸ ÝÇ&yyÝ]ƒ‘[!Fóì‘æ(¡‰Ñ‘kÔ´¹ÌáÒۦ݇¬QÒ]Ø]Sèž pÑ[­…ËïÏHØXÖ4çQ†–uPÝ\«mŒvÈÂã £•ãÎþSMõ£Ó„&µô¾~á‰D1sTÒ¤'ù²ù`ŽýçýT\´É6þ€ÃÝ«2ý;kÈÙÑTb-¾4ûìVU¬˜íÅE –ö‡Ž:QÊ+”FlA„Ÿ8¾ˆA¶D–ŸRï¾6bØ›ã0|GõUk]ò”O gÑ zö¦}´› í­“‘êqDÍIµ²2†ë*‡²ªø³n›ç…Nú è ÚSNãÖÍJ^ endstream endobj 158 0 obj << /Length1 1750 /Length2 10366 /Length3 0 /Length 11493 /Filter /FlateDecode >> stream xÚ·Pœé.Lp ‚3÷ÁÝÝ=Xl`˜`‚Kp×àÜÝ-X‚œ A‚w.Ùݳ»çüÕ½5U3ßÓý´½ÝýÖ7ô4š:ìRVP °<Ô ÎÎÅȨ©)q@ ÈIO¯ ;€ÿ#Ǥ †¹B NÂÿbÈÀÀ ø£L$ªAʯ\<.~a.a À  ý‡… dAn+€@êvŤ—:{ 6¶ðÇ8ÿy0Y2¸„„Øþ0H9‚aK@ ·;>F´9t –0Üó¿\0‰ÚÂáΜœîîî GW(ÌFœ™ àÛ´Á®`˜Ø ð»d€:ÈüWi˜ô][ˆëŸ ¨5ÜK°“ë£Ék'+0 𠣤 Ðp;ýIVý“Àøëp\\»ûËú·#ˆÓÆ KK¨£3ÈÉâd°†8€òªp8ädõ›rp…>ÚƒÜ@Å#áÔAy)-è±Â¿êsµ„Aœá®®‡ß5rþvóxÌrNV2PGG°Üów~²ØòñÜ=9ÿj®½ÔÝéÍ5ÄÉÊúwV¯9õœ .¯ÁJ²qE˜ÿÈlÀpPP€Gv€=,m9Ðõtÿ¡äú-~¬Áç3Ô`ýXØb ~üÁ|ã rà°×`Ÿ7ÿVü7ÂäâXA,á ° Ä óïb°õŸø±ÿ0ˆÀø8~\àïÏßO&furðü‡þG‹95u•UÔ•Yÿ*ùo¥´4Ôð†‡ÀÎÍpy>ÿíGù+Ù*9YC¿ýÎ÷ñ þ“³Û_CÀô׆0þÛ™:ôqtÁ¦&ýhùøÅõÿ<ï˜üÿùo/ÿ×Iÿߌä_;8ü¡gú“ðÿу!ž1G÷5üq Ô Ëàô¿T}🻫¶‚¼vü_­ô¸RN6#ÍÎÅËäýSq•‡x€­4!pKÛ?ÇæO¹Þï…s€85¡®ßWÌ£ø?ºÇ-³´¼F\góOÈõqåà4ò7?.Õç!çd µú½}Ü|ü òÄ|lþ#â¼áz\S+°ÇÓ àäp‚ÂM5û¬¡0ÌßæpÊüý‰œ²#!§ÆßHÀ©ýzdü„½€þA:‹¿×£þ/õ£[Ë¿ßoô¸âÿè §Õ¿ €üOŠîl~_¾}û‡Âà„ü ò8íþ†Üö G «Bð?Fpø}Ì›<?§Ó¿àcçÁGÿÿùº:€\mÿExŒÿWÉÞ<þ½yýÿ«w–¯a°Çæþ±týþãƒ=À–˜ßf¡–"AvµAí—ÕRäî웢(‡©—Üì¦èð¹)³µx÷™ó*eòßú¹äMíºÔ¥].³–çNÞlÔQ×{òž³SËoÛP[ÄÎ>œ?™IxsAñb·!W?YšJ¸6€ I×!ae3 CëÍXÛ÷5Á¨D^@9¸]½³»º$S•˜BèåÏïÚð‹aÝM¾SÆìïŽ1둯ÂSÔÓ_¨ˆv^aÆ»Wá­ /â÷SöDø+»lÑ…ÀñåD†)dyѪ^.æ=½Í.vÛK'xc¡@(¹g5ða…9ù²VýØvãxÏ„†)±[ÀÖ<Ñ:’ë§×%¾ó"‘t*,'ëÕBV(5RÓxÂ…ë˾4ˆbïrÅwJ{åÐ`Ïù™¾ÉÕÛ×*)JÆŸƒ˜ØÔâÅîË7~ú4ÐwD¹Y‡ ¶2V'ãoȱg2ïúXæ Ò9¼_盧SšaÞ¥*Â)Š ÒkµnÑ;½ ÷ú‹óc½eZM¤Œ—»ãÚ¹w•Çš‰ê#´Ð§Â«Ý‘ou?:*  Î*ÝízEÂÑþ¢ba½?쌪1Ö ¡D=çÃõ©?ñø ´Ó­Ä?òzÏën1 Žé\ï…R¦ùLäåT— ÿPÞ¢ø7¶‡_â­)~ʼŽRÀ±;mžÆÙ¢á7¬yÄ­BøkÁ×›ŸÔ74$qm}Ø ˜¢qˆ´†wâc"Û¥VO[²#˜§kÈgö±ÛKÄüÑ9„JdîòØ“dŠ=¥6î4£~°x€š=;’¦xY°r=0ŠÖx¬ÿ‚zŸq£ñ}Fï*èxj$ïªÇ”X@hÅ}Üâ©ÞV1­(~&ësv„¾ð>nÀ0éiû~} —Qe MÉSÔ..‹Î–Lå2·y§mT±Å[æwÃÀCKc ]âQ­‚€ç¥ &aª-©NSpÊ[ç{ö©]ëYSèfÖ s€Ü×ëåÎɶ“öÉj¥YX²ªŽÑË;9.IÂÑ$4Æ=”–!¢½âÊó)&Æ>‡Í4Ò">ýÈk´„5Ìk&º¾KˆB°x38qÍuÈ:9?ý÷§~C-÷ˆ34Sö&óC8R§‡øˆõœbݵ1µ‰®Üy]ºöð;_NÖ¬ â]@z*Þ’ƒà†—Áb¼síivÆ{Eš—‹þV4~"V¼yùº…¸ßø„Ù݈֯h-UbXgEX½>=C3ˆ¬"ð±R´z}qа".áO8¿Q¯›óuz íž>½&ŒJ•n9Ää<Æoݦ¤è!!ö¼Ùo~ê” ßš7È l}!àwìZµ¾öé&ØšLd®DÖÑž6Hò|N šéZÏm—¤aھ؊Gߣ÷¾5xõøLgNyU©Œ#te8A_î“ë¼ðÜêÇ^ñwïÐLÝe‹Ž$ÁZ§VOû‘vA+ÃIÓUÉ® tglE­¿ô@‹%øæ†jèô iòE…ŠåΖ&æ©øíÇ[]è¤X aóÇÑkÏ¿o´Î„¨tiz "¿Z¿÷|ZÜF<Â$ï›È‡E &ßp]>X¾T"­Fâg2ƒ©½¸ ‡[ùù.•©ï…p›XB@kç¼'b‡”ã°´67Ï…*[S–E•o5Þ¯N¿†»6©íåó°±4ô¿sãóá(+*z^ý‚Ô^ÿl¸“î‹Ä_Êí£<0{YM<щ¶0ÆYÌßí;<¶—޼w8w_6Øý®hU=ˆìáFÐAèã·!ÏN—ñ"ˆ†©ÁË^VKÛ.R7ôtÇ® ¹ÿ½=Ö†:é9oÅ4*ïUÚéJÝâƒK†¹ÍT¨VYM-SÑ‘Qÿj-=ê g‹íqI‘Ë>!ðƒ¼1SfÞmðUìU‘ÄI áÝ~j{«Ùie0þ”µºþògÄõ’ì’×WÀ¥‹¸({ÎøJ†*¾3ìS%W _¾bø×°¯¨¾4*³øÉke<|=fG,.7c_ëWKc0ЭÛÙx™;§—R}ž±P u¸ÖU¤všº÷Ìèë >ܺK!/f¾ƒóPOx›PªLÒ6¶È½Zü—Ô+’ȾèqI6„pp !Š M*=Ùý$ï•HWÔé§÷•SÉaΚßÃe5‡Ã³Öݧ&@Q‘³Ž…þzÁ"É>¡êÖ°Æêñ¹Ñ®ò Å#¿V§#é•g³Ós‰Ö¬—ÛʤTW¨¬ÔÃäö àcb¯Å1ëÔ?‚”9k%–%ckR1D5bžifúö_¥•x .e•L(]¯Øh"I©²ö”û0™)`Zç± ”Z|çùouI,T}8Å'øì ~’\ˆi¹çiÜ ó݆ђ 'ͱå陫jJÄ5 O}o/¿©“õ”#ïùF8Z´ÕNðK±J¯o<óݺ³Ê¾í[Ƶ ÷_xÌïÜrî`zØj/õË2Î9~²Ã·ÓRwª+j¹½ÞùTˆŠ)ªÃçjpè_2o³Hßz‡ÝŠ ´G>|¿ÑCÍÝâ×ZaVÏ%~~š©¬Ê´þ"3ñ µ¦t¶EåÜ9dæÄ5/pbX*‡雉Úé>.Ñùb¬©Å䤇¥OŸ=Å(NKL½øä"ýI½èîF-÷—£ö:ïœc:¤Žm‹a®XÁaæ(Êã ÷öí-c r¶3 Ûσù„«•äæIï×%…"hR¡¯$U@º)&Úp¬Ÿ¸^]UŒd,=z"!ìr“d›Á Ð6]‹ïK]|UM]·܉â~ªx¸ðô®~4ƒSVdìÄ~öžÔŸ£æ‰mÉÅIVµ&rr›®Âê …³™(ÅËÁÛóšcKu3"U_‡ærƒ|õ3wØ5¨­IMx¹š»ZøÄfE~»ësm–$2KpmçDLÉZ—ë ÂÕˆ—ëýâp±lûJÁÜâÉ9ˆJ° ½‰ŽiùxØT‡°Ê%½~æìpýDåŇ·®ˆæ3»{|„(‰ÔìëÅQ)Êé¦->ŽWáN“!rEîÊàŽZ ‡®úZK"‚{Í‹S0zþÂ.;œ+ú+'çPœ…hHRÂâý çæ›ÔÉDhÆDaPÌø ÒúÏBAzüpç‰ö{ƒMj¿„§“®îzé,uüöÈùhÊâ³ZIï¾ÏKÓ$7únÈbLÓ Š`¿Í=®8qE¦Ì6Ý­³‘9Ê‹«÷_’¸ÚÞ›óB‰23Ih‡ù>þŸVL¨ ç„ßbõlóË” (ØD·¤^}$ƽ’¢;Cû5´GB—ÁÒÄwv=l Ã=£ Ä —‹l>õ›Òà(±ò½P¸Ê¥®M` ,Krm4Fy@ªß½,sÁŽk®úX7ëüæ@ý‰»§ÉÊì«ÌEWnǃ{‰,ޝ…*×ç"oÎÎt[xðBº³{cŠÕógðVQ;í÷Vû­V=z”låĆ‹Ã MâM`ÝønœÖ¥€›ý î%ÒJZœÂPä´ûÝcŒêÌ/ñ–¯ï<[ô´ýíW‘bßHFÂÉ?Œûw…y·hÎä¼ì`ÚñZžÜu|ãÖݧgÉû•n‰‡ ›V3Fe&·ŸYfÏx¿ËKI_\܈"_ru˜FŠ}¹´_KöIJ#›©2Äõ£u =Óâó„ì‚â n”TvçwX*‡¾Õáë§<4b¯åN´vSЙödEEêìªûGš®W¾)m^q»Qæ5®ÜHÕÛ„($Œ«ë ½³äž¹mƒp„,­ |‘‰6•‘ÎY‹Ø®&[‚ÅNš'e:¸T0q›,u¥©ƒÉß«l'ë(JO9s%_üÂ2J=~Jô ß\ÓWçZLeéABîjK…<#ƒ¡Žõ$<öŠŽƒÎx.’ÓcÖ™§aﻡ^n¹K J ¢y Pz!…U‘ '884eqvŦ¸Â‘+&0k{.ÇïÄ"õ{`ðMrÌۖТ·Ê*’îf#Z6øö´+b¯‡4ú » Ûzª,ÕßË‹ˆ>d¾õíó>þд‚1ƒOxªË ëº+¢®:”ê·Ømʯ¿Ùp(§wð:¦ƒ|]$Èjʨóª¼j\:Þ’£ý¥í4u‘ôbwÍžv)û4^R'çÚ[‹ùáTñ29*‘[â”›ž„¬(³ßhò¡IAÆ]ÁARÛQ|ù÷å…ÏCø= (MéºtÛJjçkžé‚ļœj”ÞÕM]´Ùbæüdƒ(ˆ(qp Aû*HÞ6ª¨ÅURfvËÌõl’0V*1œ d……·o½ñt`Î !µtáögã’ëè E© 5¿°ÞäçD´#µ`ï›ÔS‹ªïTiXØpÕPÁÉ`ÊH˜÷§éÝN *æ—Ï›xòIpŒdlÄ|1ÚÂÖ”ˆyœ¯Ef[b xw¬)USB›!R>c$¹¯°Öè¡´Åt¯äòk ‡ÚIϯ JKýØ”Ei‹Bˆ£0Ž>õ”MüÖ…æ¨_dFozHövgÆW2_ŭ胀@Þ A×vå÷ºÎ/x†¥$¶<%;ö‰¿Op¢¢#v'C9Ïcà“dXXI'g¬cÄ,‡ŠŸÌ.µDOI¸Ü\5üZuŸÔ-ØáK±2p½NVŒ® ´²×wØtñÔž¢ZóÀ;eÏt C¾UøDäSmØràe™6sZõ‰‚øËñåì S¹jzòº¾MDé“{Ø„g n—¼®œÉ¯vžÜ•bz µfϨ|C™‚D ‹«õæ¢(V )÷g*ù˜ŠŠ¸LŒ|9þ J}X¨(*ïý¥Úˆ™‰nXš/cª[å„–'¦Ýjð笂µÄ·=X©ÞìÕ–ªxÈA§õºÈøÙ^¾Ãøøˆ™äª×d!3… ¬FÝ£ÙÒ‘5+ïºvÅšÑYÆüu>ú¾ ¥MZìrHê¤~ÖH];ÐÑl«|ÓTÔ“C‘Çdõ`±ÉB,æ $g³œJ š«ëÇ]E_¶º#”qM%^äR³PÇÈ“§°—ô-Ô]á¿õ‚ò.~¨³*G“{›p3ÂÐGðu°¸àò­j ‡°~‰ýËú¼Ž¹ 6B€€ X7½€¸XÔ¢ËÙ^Û´s‰qmyµœÕ>¿û/c6ëÑ»ÎÝÖó+ˆNH÷|ƒ\¸Vå-qû*ý{ƪ˜žÍ.õÒÝt}’Œ¤a#ü;4ú{«˜±×rÏ•Zù/Ùn”t{èB£î'<3¾…$£sëƒ&˦ÍÛ„¬ ß{ú_íælƒ¼²˜Å¹’s«©JóÑÌ®¼mÝ"dùj_<Ó„Ó2‡lv¶„söËcæd:Sçk5Þ€vé 2߃¾†ÍHЋ¥œûøž¿`Íd&€*ÓùÄ’!)ò‰’²“XgžŠ×³É‡ ̱zžYÆÉÛ7/G´l O›”@e©" w“}_?þøî¤Ôi¶†–žÖƒ…=îMçaíŸGÝ+ÙÑ0Õ™[uýÍŠòTaoöLÀËNï\° [[fºK¢@*é-†PoÔíR'-zG[ Öã”õMÏy7vÏV¿ŠÔÇŒ™Ã~ÕdÒW€sãÇ;ÃI¬¦Hf¿'t4é¦.;ÕbãZïœPŒ*ð›2ÄÇ"—o–k¤J" g3˜¤lÎyEkk,3ñ½ÑèË¢‰ÿ#Oƒ4å`îâ0py³](¸êt«>îŠ~"$œ:½Ô¯£x-ü¹#a±þ’¨X¹œÓB%7·¸9t~MŸ!”=Ød«,î¾ «š"É|p®ðþ¸Aã܃àCšó'é"TÿÁ€/¼AˆhÐlªÑƒ®²Ód‰ÑþXiõkX.¦A›5^7Ö‡Ô°3i‰Üïïv7ØÉîÛ•?»®>b »ÍÔP<Ƭü±Ô÷ s0ú½}ØA¢Ïì¸ùdbg¡ÔÙðrŒ:1´ ºîÞÒ½(WHÅ«Õ ;u¬/ôÔdAe0’'h}ÅÆÑ2jß’\¶J£ô+ÍÍïgÅ»™‡6Êm†È’â/ Lö¹•@ÎSÒSúŽ'¢zõzECÃ…rN ÎPµ^F/6 3‰eä1}Ä:B6cHÝG­áÌä¶þ½Â¯ba´'«ý 8ˆl´oã«DgK5'Ÿö¯£úSr¿Ç`Y°ªE‡hŠ`!¸—(OÖŒ»Ëj3¼“Û4*)8ÄÇÒŘPÄJ›QMh_D“ÜÖ?ÌÜy&T‰¾ë1ÕDi¿4úìôÂÁø…oQÍÁ‹FsU%âB$-B Žz˜‰Õ›^S祿ôÔÁŽ…l<óþia¦I†'…?N†‡­D.žØðwþô9Ûéü„ª_n… Üï>h+g—Q·YØsO© k<+9Œ‚ÜN¤$NïÐ"äat0}^ÿÒÙÛ·A Œ>ÿØN‚«B@"TÏŒéqÙ·°K@˃¨ (²Í´³u+÷c9®3Êç{–µ^’¿sð ‰ç·ËO‡ÀÞÑ)»1Ò!KÞìE)PíH.¨}Ê++‚a —F#I.ù%æÉq×c(’ì[k‹["hâˆtÄ Ê;g±‘œÝ] Õ=Iø’¿åEÚL“(ÇH«ìq6ïÞ€ûkxRÔµ¼v™íü¨’¹}Øü.Ó“|4'l6µÚ,€üõ5ù{&õ^çÒÆ(ñ±6ÑÌ×crܧµnŸÀÁŠ«ì_nÚ¬l’±uüì!LMŒwíYGQŒÕJ8Fúå;_®f‡ØO×ädY6{xŒ “•íÁY]YR˜ Zú1Þ¨Ð(!ù𣽛û­üòo¬Tc?tå¶œð+Òí.X>7„¿5CVó´V&8s(fÂ)üÝ…Ã5i„™²åùM$ÒgµÛZšó ÈO^‰W†¬ ¸þq½÷߉&æÿtxÄn]±­ÌL‰Ô»œ£d¨½Hw¬yýѶ²³ÞtÂÛñ G yDz)ÚÊrMr:¼Ë«¯õô›a†øÉt÷`_þº’C­Ö²l»KpºÁ¦å±kü‘nÈ^/½, Äÿ€k€zE¹æØl~€˜Ç#~W- IŸ&~ºùºaí«6ó±ÑwŒšÍI3³(ºÙº-Äz­cãsáYËÚ%Â×çzâ‡Z´4\OY¿³oŠû÷R•#Ç~`l§ ]ÑŽ‰ù6¿cú®…k¦rö§é:–1R§¬ûHReä*á +VøºÁ(œ4wÓ§><1„—½`DÎÆ2âÅ¢OF®hJMöûÒ|ÍÓ©µ6ßÿZ+‰²koì%YS¥å ]Â1§­¡ýÖéƒhåÝ’uô¥@ÿ( ‘ŽúѲØR4y´–/´åÔHÕúÛT7º¦Žî•Ãì½Ã®`«Ü©|äntÌÇ-.ÉÝù‘-› 凖%CD9_ÍUdˆÀƒ[š—9<€>èâtƒ;|s”$ñJ»÷é²4ûÄÇqoÉîç߈â½rîkî-ÔFiÉxæöà~KUå첑ՋôoBÊÊc$­×!È{p,˜ýæFH1º`·‹€7Ã#n”&ïOi¿þy|/~Š€Iw;ý²x!ŒvÐëÀ°gãz ÓKÜj‘Ëç,¶aêœU)ÈÍ™f½Hùy§´Ürôv ›5swÇQJéš—Ù6•žï4ꋜ¾‰T±®9½Ã+€P£îBy™?N•ÚðÆGÚ3‰™²q¹¾F»“xq3 Îátri, f;n)Þïõdqßj|q #f£%dÜËÁÉ\ }KinZz~çÙ×=î­ËþVô+6ýv·³”-M–‚ìäÑí—6gð.ÙÖ‹Óv„o;~XÅIì2çÓ‹]¢~ [a5œ Èn€«7÷)-¶Žê;û{j`ï²Â­öËf²IZhMÂ{Ðd’ìPt¨{y:,£Ô±ÐÇ\ª º•é¼[Šñ»]Íý);C.8’Þ^¾ÞùHĹ݆éëU/Æ4ÌSDîãe·òè…ØZl†6IPD<_0¬›î”?÷аúEËMU»5ù2°w˜âNóyO=ÊáÕ„R<Ç ÁÞ{¥ÚÁù,ƒaD7V¢@qùt´X6mn3Ù~Me³›û¼—Ï|ÔćÅÀÈRê'Õ;«ü³kzS`Œåg‘rNú&u;ýS/ò—†Y½˜Ð.wº3gwSq`ϨA+ržÎ|ƒŒÇÕê †ƒ$Ĉ¦ïùØÃ$΂\ìêë{àk%Íx¶ÎúwœWÁŸKÐF§ÀkÂ’b«:M.®É¥ÄrXûϹ‘0€Jª_|ÜÖ‘ß^(Pcwä‘oŠ‹ »uCoâÓ–€ê”|¿Ï³÷~­½à¥¬VOZ‘[²æ–åÓý1é˜X²Ì,§³™·Hg`r˜= œÿh™6•Ñè„Ï £@8¤Y´™ñô“A[¨Ÿ¯ a®<¯xNwŸU~ÁjÜ Q½Ûð8~b8AÊKEšB쪎’I„H¾O7¬—õÖkuÕ,©ÀÚ%>QüûûûθÍ_•:òX'Îoè2:±™É[´ ee=O€UTO¦ñÙù«*Ê›¿Ÿ¬ºè¯½¬R)æÀ§Äê1{ìíEz†0º}ØÚ1† º}9È6Éw‘kHMw¹¶ÏAÛg c¤ã{¼þKß{CoöÇ“¯ÕÐ/Ž^ìû—õu‡à˜&6Àó "¹ÞÃËØ<Ø•/Æß~jÃÅ‹ÿ씹e5púŽñ.é¤êŽV[Aˆ5p 2÷ÍTN;5•&“ƒUû I<̦ÅY/Ïÿ³NI@”V‡hŽz›×RugѬáé=²DÃH…ÃGam·wsùg6&7ÚO {ñ¯8qË=Ü\³X¸€´1üÌäuðhF ¢ëp„ì'¥œ‡ëfGEߢ¶•½·Øï´a~>R{ïhˆówÓÄ&K‘Teõªvre÷gS0szDß¼~V)̪ “n·fL=<£³¨˜Í»ì8œ ©DCÆ#’…¨ü2CÔ«Ü[úví ö›Å Ü´–ÑYœPIO;Ҿ¬6¶Ø5¥v'NЪ–Ò܈Œ 2|›/vdŽà\Ïeæ2æa¡/]¼˜YùÑnJ†Ûöò•|üÁZ´›Ì•W+šÙ§¥v¬ }¦ßATR\ñ»zƒ«Å,攲ö_‚›ž`Óç¤ý·‰c 2Ì|ä¡g™ðŽ\ŒC8tÑ÷ø+«hÉ~d›M–Òº®g¨g½©a 4:—¡ÄÍxmíT›uÛÛ_ƒ‡£WÄŒÖd¸{ª9d•é ¿m.0CÙ‡ —%Ñ7Sa"»/â­žvUrj:\”EWIsÑÜXuÇ€ÈÍ\ ü«‚å‹ä¶jÉ%tŸ(g¶‰”àþÜ |9_õƒQþ¸'‡µó‰î'zÉ5­¢Ëâ|ZÔ×2GÃ<“˜Î·Ô¼ùYåÓ<%^ÛÕsŒËwóÕUÁQÕ7)ø[ôñæ¶ÙÞlàaãb<ºå_Åím#dœF4®ÊÞ7¨æ²õ\šfa!^÷2þ·{Õ{éÌŒnÔóáÓ=£d@î¸ ,äH´OR{gë=K¾n¨Uý$ZrÎÐZ5¡Rô©=!¨‚ÌúEêöQ4ŒñSZ|~í±ÍOåÚVzæ<ô ™_K€ÐDÅÅH€µ§­^=õ¼éX½DOjµKÄ]Ъ@˜Å¬´£dK¯þq]PsyH¥:ò— ¦.~ú~ñ·8“¨ýó„K2˜Lˆý€…ÅaS‘• ÎòJOÆ™P™`i¼†Úˆ1Û—Ó[%2ò˜q àîÓu‹:æœãÊ Ø+0{¶kº¸({.£yŠxôD–Ö¬:ø4¾"¶óf’v_)f²rIþukóg·Ö¶9:·~ý¥–zNúœ”Ž®¯G’`D¡vfË„n¾M˜²B “‚„:¾ p?ÀØ ì&äZ1‡ªoèëêÙr\œ-Nïu6±câö9ËMqVÁ³¦‰æ‘Ì‘¾ÒV ùë m¼¶æo{"ùÞ-o‘qÞ}únûï¶ÏEhЏ/ÕüÝÜleMÅzʶ‡ú¤/ÁØH˜ç~(ÞÓ5œn«Ì=§3þ7_YŒy 2LÇ<1¬O€ÏN)vøéí§óhBèÇT1»«$´ŒÙÌËV”-îÎQèn%?Sº¤Œœ|ú‰Ÿ°gÙ0=ˆ³nÝé(D0¡ž ®–«þa°IˆÒ'cå¨ÃaÐïÆÛ0~7¯p»‹† ˆ>•+ݬ™·ôµZ›>{tê¾xwpÀú-×t‚ÅíùË2‰¨}^{^ —€jLâ¸wðbúÔ^ßê*dc¾ŒE/é€â8ìºH¯PáúõÅ€ÿKo¿§ö؆wDšï"ô'Q*x#÷iüˆ~.ßw>?:4bê°Ý+tg2±7SX9zâ÷ìY5)ùc»Ö¸YbŠ™5]’[;Â(]òCás‰Sƒ 2‹‚X¹…Öò”‰í·x 2ȵß[’Ïõ‘o9h²Kî„*Ny>ðÛµ•„ æ±Òû»Ž,ßÿ"œµ¼{0°ÚQÌCá–©It˜Üc»yrЫfòlg’3‡ðÙç-kìe‰ß®Ih‹1ÿÃÕú¸¹bÄŒL—ø–%A£l¬ºmòƒ7B;jœ¤N:‹ÌÄI\©®ÓœNeàÊ”Áù@„ÀÞÜÇqg9»ó†³±Íâ[uÔö"í›ý[èÓ”®©û™èÞ-šŽ@]Û\ÅR<·î­‡ˆK6Iœå‚Ar#¤å@FüN>*åÞëð_µz¢‹Zµ“\Ä¿ä ³ÖIeT³a£4œ®QU í1 énPø*{î¯E/ÙY,Ä_÷rŒW¡Uy–íýt´D^cM­ç=k5¥ÓR‚…™6AP Ûî|[” ïbœxŸKßè9˜×ȳŸêižuoË­5Ž»ê)Oök䔩IŠ4¿M% âé˰ê¡£‘oŠšæ¶}ç¨ÊŒÜNhÝÉôýOž²¾PÙg ­:`>kÁºÖzTqºó&W¤—Ø<uJ:¢Û*c÷(îàºgP•åÄ(@eqB=$å^{~‚2ãã îI˜¬ë0÷«¯»3˜ ÞŽòR²]Ù½o×Á:‡ñ!‘4®ùc„½T ŸºîgåÝ•¶?Ã}ùéÃ뵯üÞ]¤”Ôj ºLô1ïºÙ¬µáž üTdDF©Œ.àÎa¿Pó²zñl*A¿{J ›¦ Nº£>×/´Ä ±ý-*êcå»X§EyÏëéŸvºÓÎaZ¼hã³,ÎÿšÃ]´á* O.#øüµG³‡ŠÕß¿ LÝØš[HûÌP÷Jÿ&êòq@’Ue¶k@ ¸cV%%ûӿСÆ[å“'‘f“ïòtK[â&یΎ7eæ‹y3ºdšå”I7ÕžÅtî0&¯P4S…ŒÀ€EäÁzß÷©MÃêÿÄ9ŽÍ endstream endobj 160 0 obj << /Length1 1400 /Length2 6370 /Length3 0 /Length 7325 /Filter /FlateDecode >> stream xÚtTTïö6)]JI@º»SºI`€A˜!†Aº»i‘iTIé”îPá?ƽ÷ÿ»ß·Ö÷­YëÌÙ{?{¿{¿ûy#¶§¬ Ì ¬ƒÂ9y¹xÄ€Ç*‚?6#£>îþëÆf4»ºA`P±ÿxì Á>yÓ€AUwG€—àããáøxxDÿ„¹Šò ˆ  Á¨Â `7lÆÇ0goWˆ=qÌ¿^kV€WTT˜ãw: ëv…Xƒ €nvBœh rô`Ö0Üû%X$ìápg1nnOOO.“ÌÕNŠ•ð„Àí]°ØÕlüÐ9ÿLÆ…ÍèÛCÜþøõ`¶pO+@8!Ö`¨"Ãjv‡z*ꀖ3ú¬þÀü½€—‹÷ßåþfÿ*þNY[ÜœAPoÔ°…8‚-Eu.¸œAm~AŽn0D>ÈqY!¿;в:1àßñܬ]!Îp7.7ˆã¯¹•AܲÔæ1ÌÉ …»aÿêOâ ¶F\»7÷ŸÍ>ƒÂ<¡¾ [ÔÆö×6îÎÜPˆ‹;XEþ/áÂþÏ yD„ùEx° ö²¶çþU^ßÛü;Èû˘Àß׿ Ø"†ûClÁˆ?l_7€»ºƒý}ÿwàŸ6//`±†V`;û?Õn°í±|Wˆ`ʃà/Àóë÷ï7s½l`PGïÿÀï—[W^]ÙDŸýÏÄÿŽÉÉÁ¼_~a€“OAWQ@ñâÿÏ*Ú Èß.xþ“ªµ…¼<ºE\Ó¿:öøK–¿â`þYL†`-`ùÉÍxy¬ÞÿoªÿNù¿1üW•ÿÉÿ»!EwGÇßa–ßñÿ# r‚8zÿ HëG@†ô¿¡Fà?¢ÕÛ@Üþ;ª!„ µC™“W€‹Gàâ¦ñÛhCàÖö(óÇoðKjŽ(XæùõmAdñðüW ¡/ëgˆï‡‚—B 7„Øà¿×øË#äôÏ> Ö0›_ºã@®® olÄê– àË‹¨ Øë7³n.( ŽH3û¶0Wì_kæå¸!¿|M!€Ûá·ùc¬Ý]]}üf¢‡Ù¿µ{­±g§`Öâ!5!­U²”žœëÃè‡Oø8‡ ,0áÝ cOW’ô^¿šS{§8ÛÅ«háðQSÎå"{qú»ïZ-m·À'­â–­UÂÔÝòD²ï9ýA#R®QšX±k7’6u4á',i»n=F?æšÎ™dO&ⷊª¡­š>U½}¥NJ%j¸÷MÞdÕ§¿.øƒœ9ç›S|ðjŒYdºf&½šÄ‡Kì$ÏJÂåÞþ¾y¢.êöèªAëGÂàD â}Tò•†óyø79Å»™÷}­”ÈìÚt—.±¦]ÔhžØ¯ìšÓ±¹te7waîª+%=ÏÌëO’J¬úžh6U]$öâþ( D£»'ÚÐ@y®ãÓþu,f]àð¼}Â=÷¬túä@ìáÂÄâ½È¸† -¥[§¢xŒ—µoù *óOŸE¥»„¡G‡ƒ÷¶7Ë1]çJ'VŒ$Wº%“òŽ@Lg÷wb­øŠS {.¾D•vv¾—Mu¥dý¼,|}í7ælf$þØOk¹œÇç;0ïY£ƒQƒµ0¥›ÂltT Í7_µ©Ðä?&Œr:íÃÛÐîm,ûNTÅì5 -égùStT†³á¦ç×Xù'±\L8¥Uà=òŒn‘Nâ‡ù?š< A*?õ"KiíÅü½PQš–ª¹)ð›ZÇ>®¥FŸ˜bo+;Öºù)©©uc%}J|–³Iv‰fÊDˆr0ìÂij+óÉø‡Âp•ÊI¯R´ÖÔqâûþÐUÇaɼ2Å—ä;¯_¼Š­Í|Þ/É4ÌÀË|)åÑ~§k…[Q×Ñ:@²)Zd|¾Öí¸w‹UȈ&4~zú6~èL›²U.+.f–@ Ÿô‹Â¾#ÅÈte_mü„º6¶¹½£þ™øæ"íK—Õ oò²ëB)¼^¢7Ý1¦¬­¤UêtŽ4Us?²–(e ~ÊT…ªOLÍ~±ïk»æ÷F“Ý"ÀW³ Rò`¾—U9tXaðsÆFZXÿ’Ýa.Pc€Ck]物F{Êù ‡/`üãî®WÄ-†r˹`ð}ƒÂ&ù·­,«E+…—d«ë#†ÑäZ#­|”¤¤IOB~Ür©ûQXoûÞ²þdÄò޾gq>•7Æ‘Ã7”ö!ÂSLênéx ¯}Ñ¢P¡.R@Ó¦~LÊ¢` ”[Æv '“zÖæÆò®J7äê²2›è¨Ö‘œÃTšâxXO¾€°Dµº:5Õ ØÇY³¤<K®Ãö~„Öi\bµ‹{ñk ]ê¢ gˆíe”jËÉÚQ¾ve`®åûóÍíd‹ÜÇ*È×xßæ:†Fü7ÉA‚ïhÑ88»Ä›R>*Lx<×ÝyÕq?ãndîÂ¥ˆlWÄhhº‚DGÜWÍøšTßÜv „ÍZD¸z[8†Ã Å,nVü’·¬’ !þÄM‰ÂÒwT6«xA©æ‘Ê?ú'l&øÖ:*´4Û¿âj_ŒÙ¶úªTàgP=qØ[ÜÊT Û=¤vŒ™µü:#·ÔìZIC{:Ù]Eu;ÝCckÊ¥¯l3ÊÇSõÄÅð—èž²ñ×{üUÕ“!)œæîmš5Ås<Ïvk^Rpè‹5áLI*Ú\ª‰Z€Ÿ¥_\p¡0d}Á»{¥Õ¨â×/`0`lt²üæÔJHáëûnCõ€h"(ó†Ô[Š _ÕµäÍ®kì`›[½SÙâáø`u5>¬Z½Â ñfßï ó¡;Î8cámÒ},|U-Š©7ɧ‡÷nfü‡6“;ª7PuÛ=™HžÒã௘ԴO¦ÅéöaâŽn¿–Äì8Œþ8k‰œÇt»ïFtXW §fàîækÚ¯ïE€;6ø ©©öuÕ3¶ŸŒ÷Fk„ȯ27fˆ%¦F… È:[5% ðûk›Èx¹ˆ·%®ë™NÆ Ò´ Á_uh¨ŽçÄìMOõ=H7´ÇVG-Œæ‡÷<G¶¬P¶ÎOŽŠ¤|ÿêJ‹%eAMýFT=õn襅DBV´í7 é8(”Š9‡ðKbž[oRîÈeÛäB`žšÜ-Þ|ŠÍÀm+dånŒ}†0(Ц ˆ¼Ý„+} +É?=«àÍô®‘•ß ñ{Æè—îé3äy݃0¾¨1“QÚB­ á 8|êÂD—<éÚ5#³tw™ÿ6¢ȩ̀#Ç–Õf¯Ž£òœ½Dâž/7Êh¿Ÿ@…ß¼¢—>ƒzôV ‹LrUäj’¯$'ÈØh>žlSŠº§Ž7fÞî=ø0’òßjø–Qo0ߌ€]bê oxCšS~ C¼ÞèŠô·xƒ}‡¤bí^FܬÄoéiV4ÏSa>âé¹5á&Nü"lwN+¬GÊë6³]eÛ4Š!…„ )b*6¥†FS„búè‡#£»E!¤H°$Òì¼}ë<Èê-õPºho»ÌÚ›·Ê «ðø¤¨™å@W¤+ ŒpÙü‡Õ†šhÍtXiZ9(ùL1¥kÚ£¶ÅÖ§,*ú†ªTa `ùîÓ²¥åé'_ÃL¨n.oc&/;k^Æ*ÆOr^Xö$›HÒÓTôºhŠó‹ñÍLnãÀ¸a‡–Íì{ ÒN\äàÏ4¨îâùûŸÂÂ#&Oq’õ¾Ðû¯|zÍDÿÉ=kêÙš¼œö“œWû›¶3M2ž¸õ©¨ÛŒµfH{,nc󪬘 ×>Âdõ™þû̓÷¼U’™Y¶²úK¨W+³Žœ›>ñ\Å`ô‰Ä¼ãF'I4ËØx“Ú’‘æO\5_YbťɅÿ±×~=´l‰e¦°£þ€{óÝ÷uÂ)äB õ¥ÓQû¤+¿m—Ðf¼{S]@z$:›Ëˆ™JBÌ<õÜCµëHâéÕé‰i6‚©»©×ë%>.˜m'Š0Þæ>ªò÷yZ¾ÕæÑ};g‹6¾¸};N…db:+ž£22/98Ìn‡…fyÆÇLåbÔÖqdÚÏ™´ºa±g9èŽÖ{è/y5„ˆew8øÛ%WAëH4M×SãÔÈ—‰yR äøöl§XQž•+Q <ç<=N;°VÅÔ?Ò¼5Ù —O*v“[à?=ý.# z¢w˜ß‚4Á¹ÎwâX?ð‘Šz;Bø×ÎTZ'çŠd=Ÿà£w¥ø >ýH¨Q)„Ûáò lÊt9®2~P˶h¬+kH0™¤J¦Çå€üõ‹Å±BÚîêwhÍrqg˜Ö‹ìóªP:VNen4ƒ!W—[Ô#®Â{›Ù™=ú¢Ì슻#É}›™NÙ0š‹úŸ¦K&}‚œ+b4<_\–¶GšJ9*¿ü’°œ8W­½@Û«!ŠÂ`åÊCKo˜ZÍ]AÑóY²Mœ¼y6žiù7™zÅÊí£ñïSg4ÃÛ¯ŸqóÙ|Ceâ°µò9¼Oª­ï2D×ícÍ­ô˜V¶g Ö™Ë ]J‘¶? ¢ÉV¹÷<Í᪦T7)>vJðem§O‘îu°*Öz[²ØÕ ˆÞ£G#+ßr#÷q«À¦¦z¦¿Dœºµ³J©÷àf|ûæv)O=Û¶ëYîªóéYK&*ZvsÿÑɳCþ3âóƒ†AÌ« E¶XSŽÁô +^N–¥ê¡Ð{ÖŸär¢›“è 7p–±8÷ŠÆØ; 'Õ¥1¦ ôíW¨«Òñ2Y)?Ž@¼]#a’ðʉ¼'åò)¯UI19°á†f7|bxúG>h=ô™â¦4ß õÒ«éZר“Ôè@Y[]Ðl+ùV€Þ#ûµ IËÜ4üU÷þø mX€Ó‘þ}g»Å0òãÜ&‚¹Ö¥œÖLÄÁϹB.¬it„=:³ÊTû_cÌ= 3÷m¶Ÿ>ÿ"WQÁýüE®Lœ±d'^§Àþöó,_S<Þühê‰!Æ ’ŽßDW¢®Û¦…_>¾!\Ÿ+‘ c‚ ’Bú×arõ1NÈ+;¨ÖÃ3H?gGfródwÏ÷¯d½5óÌ6ÓÛ´Y58&Lõ‚ÕT£š6{öËö"ž‡'ø$ŸÙ—`Y<Í%r¸Ïo ÿFïÖà ï™ ô& Bc˜“j_|‡‚p‚+Ÿ«‹uÀ-Ýîiïγ3ê²ù1"‡å¹BJ:E°¥Ž,d"Oj3AG—a)üºæÜ,ú©7ù NVšŽšÚù|Vq¶‡ýgÏkb5ÓmnsqóɃû籤ŒÅq8á._ŸÐÉD5„­ï¼\ÅÕ“yD^=¹æðårÅúzpÕ6ÒÞi¹k~•IEEH»ù¡ªf÷N½sµ³4‡óGü£ÕÜUÅIî4‡‡žÕŠÄ8Ý óÁ·l’ äVTgXÓàåÛœÀ„ŠWJ«ì*¹..ÅÍkYò‘1H7|h—`±‰Ë,¤Ö;¦mL ÎI¯Xˆh-”¨B¡Ø¦Ù¶àºx“‚%vjØd£%C"WeOw÷z¥Xá6³»È"ŽP/‘X_ßâã·²ñøÜy~öÛªëykªä=ý)&’à¢ÔÓü¤0£Ó,8ÍÍØüí@·9Má ¯òç¥íýÑE+»ô·¦“Ñ/)wž,í›ea:É nðÍÍ{Ë&ú†'Š.“V-ì†(6#ô˜*ðOÙU?5Gñï˜ lXûÅì3¸ÙÓ5›¤fî&r~\¥ö‚´Ç€i׌pÍ$*tšô@ð:³ù§_dùzy’ ™,d¸m;ºå>^JSždŸ¨Œl<Ô#;¹Â£Wù4³¡Ò9[~÷€Ÿ+oíóÐŒ¼Tßs=ÕaROQçDYó ékIþéÉ+R^!|¾‹öÏbô„N¬bee˜Õ…rôA¯:űx{·×Öχ¢Ö˜ú¸ižSõ}d;˧ÅÓ [1>›öqÆñ‰].màB¹m'›ê㜺c†Ç˜]1œ}Pºd¢Ò¯ê Èžd+?ˆPâ[§/§fÍ©XTm ÀÑOuXdŲ¢ŒõØQ¾ÿaîED…b’yË{v’1x«;:Á< ó¦šÝC´>ËŠšñS§ÁÉMîµúÖ­4¹}ñ¢,P~¯ÌHÚ³Q>Kd“êٜͮtÊ£ o7["ç ê¾XýÓ$>iÅ þ¥b#ÂçÙglJƒÚW¹õq“‚Ë+‚|o,ÆEû¦qÄ3l£š‡Þ¥nÿ,Ôïq°{ú¾\Øèé/Š… Ê®§óÝ<ºká&ßìäÕäê"Qœ¶Lc_($€‹ÃñÓ6Ù•3E¦”ß<‘IÓ=ûü:?gG„žÆ½•f ¹ô¬Š@×Pç«l¨m© ÁYdåLPX¥ø€\SpØy+±Êbc PT{WN~§U;‰?áž5ŠOtYç¢ ÔP5…“2ü¸«øž†=r…7Gÿ*RÖ‰ž}-¥Ã¤¬Mü.ÝøPQêt3Ž°á£ ’)Ûüˆ©Ø˜¹¡á%qHt_Ü)&I¶˜ã)0Œ·Ì£0åZª.›wB"Ñ„l$y3±0"”Ú*07a…¥ÄÜ:†±$‰ã$P:i˜>k˜ÈìcîUqŸ/ í¢ç½™‡O¬‡cK}WÙb9Ë´âÆ…OÎÕî;~¾tÆ,† +DM‰=¤¨|r½ç,1n9d:ôzT·aʺy‡ŽáçCí(•ØU߃ #ù™Æ?—d6dJ¤þdüÖ^jFƒm‡‡Âó _?òÜ‹K9­YŒss+…Ÿx Qì âþ>àþqE“ãeß:Zƶ€go‹çΪí˜-7¿‘éöœ öаùÄæËdœô!ÙÇŸ°¯–(f¡í¥ÍËë´ÝQ(¦wBx/Ðøkϵ`X/½ûctÍäÄßõ"¯¼øÀYæWÍ.©äÃÙš²ªjùÕzÔ×Ç{&G´¦,&Fn‰ Òa›‘»·—½ÑVðESj¥x}H¯ ŒÐ|Š{)ÔìrÓÕ—¶’`@€ã ‹y`Ð-Y‰gŒ¥Š_*irõn”‡r͉«“5’:ÇI(Ìox¤ëvjðOÃJ‚£~@‰NdÙX“_p 'ã:¬È.Î}G)—Cfö ÉôBJ «-pŒ ÁÉ¥ñ#VkÿR´‰[Ô=[Lì9Ù¯ÑqB¶X}┴®·½1oO(.]«6ñ1Ý$9ý\¯Õp—Ò‘?Ç—d˜Fy]A%ÛÕÔa~ b”³ìL¤³@o¢¦Bx½Gœ©M?¢Ëe‰ºHW‚½ÞËRfñ ÞòÁ¿¨ãO±ŸJLݳÁ’.\Ñv™o1ÁT†4¨J <žž¨Cü¨ÕŠ:Ê«é'#1kÔRИ˜ÌÛ¶•K beÞæï—‘PоAwÊ%™ñãæš‹˜4¸çüjf6 endstream endobj 162 0 obj << /Length1 1474 /Length2 7665 /Length3 0 /Length 8669 /Filter /FlateDecode >> stream xÚtTÔÝÖ>%%)]2ÄÐ1C—tw‡ä 1C ÒÒ%Ý‚¤€4Ò!ÒHÒ) ~¨ï½ï}ïÿ¿Ö÷­Yë7çÙûÙûì}γA[[Æa UDÀ‘Ü`@NCCEñó€@|¸@ > é ýËŒ 4„º{Àp±ÿ ȹC!È;›<yÇÓ@ÀªžÎ0?,$| 迈w1€<Ä f Ðà¨"àP\ ÂÕ×fï€¼Ûæ_K› ;,**Ìõ; ãu‡Ù@à Òêr·£ Ä ‡°A‘¾ÿHÁ&á€DºŠñòz{{ó@\H.nû‹qö@ÜÅC¼ 0gˆõáw倢Œr×à_íyظÃ\‘<0ç_-òþJswÊ p[9„‹ ŽôÀýUŸ<Ìjswì¾¼nÖ Žð†ûÿì`p[»_MØzºòÀanžPù¿(w&Ü¿möP$@$"Ì/€º >6¼¿ÒëûºB;Á¿Ìwú»"\vwM@avл?\ˆ€t÷„úÿ§ãŸ ØÂlk¨= Žûwö;3Ôî¾»|w˜Àt§=0ôë÷ï•ù¼lpgß¿é¿ï—WMÖXS[óOÇÿöÉÊ"|þÜ`7Ÿ  ƒÂw‹ÀfцÀþªôw¨ ܃þT{wLÿªØë/°ý5ì€&ÓDÜ© `û[äf AÍÝü–úïÿŸÂeùßDþß)z:;ÿv³ýöÿ?nˆ ÌÙ÷/Âh=‘w ¸øS †Vj ótùo¯ r72pû;1sƒx@ì0E˜ÔV†´qø#™?vƒ_£æ ƒCµ°_oË]ô_¾»ù²qº{?<îtùÇñ¸6äïkü…¡wãôÏ:à6Û_sÇ'(€¸»C|qï®þ üÁwj õù­l/¼ Üõ°C¸ãþºæ;éóêþ2ýA"^ã#Qa/äß|Ç´†"ÿÃðÂþ xÿ†à;ˆü ÿQ°§»û]G¿uv×Í¿ðïW õÚà.Ì"lÄÃëÃÛÏkeh¼¹×Æ$îígžóq[`#¦,—Ÿéåå.ª½T\è+Z8viʺç™;ö_m oô8å¦WünOo4ûóu&ÅÿŒ–q–°¥Ð(]ö¡X™ûŠ6],Q7Ž”­ý€0€µ¾o>Å›…´\QX5¢]³³»¶RnÑÖ8÷W Vhé]ÂÁb'Ù8sô~| UsÃ5¸kï[éQKvˆ…>í³ì3ئš¾|ÛgŸò¹vê¢$&Ã~ûñ­¾-…Tc e´ìµÓtùP2xRnÄ&â=w”L‘†Æ|[±¦e¼§k†'@a÷JåS,giþ€ ,«£Ë‚¨j ²­zi–Ö´ä/ßâá@}Q„ÿŦ]‡fÑQ;[qè‹Qìuôkvk#?FëÇÇ¢5CÂI,g:XÍdÔ,h·ëã^´ç×¼–)|hþW´ü‹Á»#Ÿ_G?%æaí³z†‰ÅÛíúiÆ.q¸ü &à%ÿ‘<†˜ÀŠáUmŸ7óG·<í›×½››y‘e@…òJ{Z­€=?>÷Ït:³«Ó²}6—ö™SòŸý¤’þfö ÁÞðsŒVAàEI”r/{u‰Afzñ´ª’Ž"l€ê-è@;Âi`¥¹D}Uq˜$ñÐÍ~õíEðQYBÈ.ozí2Œ¤pÒ4µ«›m‘~ßá­yÆÅ·…·8œ9ƒi‹bÕáAE¦¤R(×Ĺï\Ä%–4xgí!É;ûø‡\Ü,1#¯÷ï>1þ¬ª'dwÌ,œÒiߌ¿®˜ñnÊ.d€¶FÇŠ7`Í+j“ )×k`Å»(=6þ)ªã…fëv»!,gZ!0”›odÎXdŽÉµÑ¼ŽQ¹árïåÓ.¡\I4´æ°Œœ6··åšŽ¦\¡«—£7šŒ¾ëfè"Tçé$PX†ZÉå¹Û«0.2 º:?e&h_í‰d2ºî#ܾ9™xUdÈABkÁýXÙÁ<éâ&J£Ïvœ¥ÖÛ¶Úô¸ÁÒ'«Y«¨iú\ a˜² „͉øYå“J >mJ¢÷•bðÀŸÍqœGM×$îG×5“çÓ½´ÖÞo©¥pݱ³©QýêÐfŸí®·Øá…DFô4|š½÷?µ¸ÿø¯„™ð¹o½wUÔë®±+ÃC;+ša#(«)´ˆçk d>¤¥ ì%ÆE—#s#'³˜¶BùpϰÑÇ’ûS(ÆR†«ÙÀbÉÏø„ˈ‰;¡¡N-„Ó uñFË‹Ûhemà1Ÿø<ëÝxð…c4±T­ìǪåç™?ÚöÑ)4½(Û—…‘Ü>©Zj<Ô½ªÊÀÑ,!dzeÆË›ƒBIgû=–ÛïÚÒý¨ˆ™€§‚rF4ìEq¡%!—GQ£sBY^'¤¥|²Q’håSïݪ€‡O¾ITWûŒ X Ë úÆ kºÒtç51çò(¨¾7õ)ßp’÷¹KSžf¼95Ì›r'ˆ­(4â°Å€W s?T/¯SSÊ;F€¿Ò¡çtl»ßR~,ǯ«Î‚OðWh´µ£b§Õ0'¨êeU$i:-_×࿵]ÌFË82–ãŠæe&I¤§?p¢ìÀUëÒȬu ýÙ$\ÖöîëÌë:W‚5éÂåÊHäÏûœ3 e Ñ•OºŽ ¾Yà¿á¢Èc gÊ„34uü(ÑwSé”cæ¨!¾q?§i¥~M.DaX,ݨqí’ئÛÒ¨A×XË`Õ±ûÔªtüÚZéZù²ü²¼·[FÖn?9 |>£ù/xHÊ.iñ Y7·DË2Øjõu¨©Í¡24êÎ^˜qŸŠn“çˆÓET êàz·†F©k$–íЧ\Ô\™sâ´²¡Ú†K•ÞÏÈ€¾Gó«<Î2 Aÿp.µ£ôÉ–Â }‘­›ÖzÆ=2¸þ²Ñ"ž$Fô¼ª±ÃÅtû5±úAïêÌÑg¥‹ÇºØËõp4P¶zÇ`-O볘€2mpòTAxCòH¿G¸2dÉäm®hSc\­x*b`‡E N2bùzø¦¶b1aµ"”®÷õ£Ý~zͽj,±£{}3b1„bˆËg`L‘˜YÌçW0VÙüBÈ7…±ÓV___;qHYèY?jA{F^´Rò˜¦äÍ­»HÑúéÁá)¼FoK¹×÷¨4ŦÖMžDm(¬²§„§DO×rIÀ aBûǯÎEßëÖNKåî|ðró¼O óz®Õ¯mPs]¾–TŒÆ‚´üêtT¥5MéyöÆ"ô%v_ã×0«ôš¹Ìqʼ·°Ÿ1¡b%t'ý„Ðc»R×ã*°G_N¼–8FsÂ/˜Ó%:Û}“ò¢êøèuÄXÞ¼±Ë$mÎ{emì™f›°Róo‡¡â0Ô—0®~w"dnûÇ% }öÍÑôJÔšSÉçc)=§åOlhcW·Awæ™ÞXgÅ^ºÖ¹SÙó‡;>ÔÌxÈB*Ñ%ž®Ÿ·¸ÒŸB–Ï=i\м šUdˆ‹èDYÄ•Â)2å£ÈÉ­}ŸþêÇæŽúGQÅõ‡oÑWì ?'œw ¼}w$0êJªeo˜8äIJçÆY Y¨ãˆvYd{f@„Ù9nÒŸl`1õN—³»Dõ¡¢m å8°³!¦’îý†Ø£¡ïö ±«(už?už¹†»²›Šº}$ÖA¨ìÝ\7¦c$jð™Cú/=l(ôÕ×ËÁ7uv ¼+Љî//°S u ½®“-NŽ1^á ž¾è¯àNu÷QÚ½ÙG¯$ŒÏà ’bÅÚˆµïò›'w®/O‰dÍEÞ ½ÝafS-¬Áîôö`›]ûÈÍëL€Ü¾×’ykÓqE”²¬géнäP‡zït”ÙÕþ)™®9ò\S3àä+†ÁâÄ êØÏlÊØÁKܯõ2‰B8‰² ÏóŸ6¾ä›7q¿ Ú4Ús(P ¥£¿ˆ4v ÇKþ8h‹iÅíaô­1ÙjÃl*–õííæÈnÊbã‡É,»:Ù–Y»…ˆþOelì( 5YŒ:ñ_Ö“Ò”nœÏ,´_ ÉL¬zÒ¿ìüŠ®-¦Ä†qÏ1lQ™C5Âh¥»8cYЄ$x7Ц„rB›[Š½í¯±$B/ÏQ¯Ëu¾ 䮼}E¬;ûe6Èr¼HÛo@ç½Óچ挻!RÐi±A¾u†_o欖XVŠf2_Ý.zùÀG3MÆP^Û©Ó$S›H¬¿ 29ˆÊÃÆ)K©0Û±fióêžnQŸ—惷Ί_r èY[V}Ö‡P^œ’,ðÓ\ÓÕ™("ž[õš»zàÆàG§ÛOÞ­ù}”ÇïB,ž®z—¹ó5õ1Z·™}Û¶<·«Ö;‰„ɶˆˆÏYj´?‡tX ðŠW‡†È1yñZ?ˆû§½¸éŸ„Rû)ªgúSO6âÔ÷/ì_i.æ½)¡¸‚ߣ$Ã(íP£T‹ ÂÌX%9á*â+Öö ÒRÊ::çȇÌ]J¼ôlìT[¤Ù§Úa|t*"ÂÉÃOqó¦Íbž˜g[`âŒÂ*—j=UÎïÙ“ÉèLꘙóªü½èþÌïH Úž\•gÁÖ>ð0>ÝkfyDí’„3®_ö‘ëÞÆAÜä£ÑÞòÊìryäE+ŽøWë_Wìë[üM†/œ› ³^¼ÞK®OýŒm[¿ |““)ÀßD¯ØSßÇÏ6ƒÁesœB£Â8V)Uðâä@úÓÓFÛ·Ã ´9ñÚÑ:ºÌs36U×=‹ øÄ½*‘óxÜIý9Á»ÇÚ“ïï!{$æ ÒT[}Ó6ÞòXhdâ^X}¬9™‘Nü ³.n v{kçä‹Tµcía\GXа,V&;âLx˜D‰—UþšpH¦û%àò¡›³wIÁÓŸâäGžÜ\Àщ‚{äÎ4Œ:ö®ÆÓn†ªª’½(¹qˆñn”³FZuÄ^¼Ë§#ÅûšÝ{-ÿ¼²¢&6€Åùèšíd>j+ÜøŒ¿²±ŽÿÛ<·Lѹ´¶2WcõÓè͑ڞp0yh< ƒ{Ç.ŒÌ(HI7‰ø'æp|Žè‹1ƯÏ+%ÍH]§‡r-©öUDi]ê6VÇ¿.i¯•OˆÑP‰t>Xob:¢ò+l6q9dòdjQ·úôZ µLæ¥ä T —nTÆé§æ°Åns…æ(ùe›“–ÛycL¨M »ÊâÖ3égUÏãJp]Ø•› ¸½r{üÐsx ¤mÉ›¼P¶-µÈè™ÒºÑÜQ,.רû0¿^“Íh-Ħ™ð3ÐÖvJ³L ä V’¾àâYÛŠ-1|†°;°á/î™Øk‰¹O ¹à­qm9—?ÿù‡Ã“‘Rã½Ã…P&×êu)M4©ÐÀ—IG»]â²Ôú={ê»e‹$3þØôheމ(l=ë•)Í|ÀÍ}Ð@(U²¢Á_3ƒý” zàiOÒü<1E–u…âÒš!œ]"=<’AzˆCpY¼À•KÈ-x)UãîçÞ¶aIÎÆ2ä€ì= ¾'±l/óio°úÝG‘7–†Â)UäÃPŽ-¦“Ã3í×jknå˸Ÿ£‘ÆÎ[R‘Ш.¦³#¥WïçÁ‚¸‘kŸ1ql¼ ícç[Pê¿·Ù‚oˇ½8•°üèGeóÚc%12-û–1o²´N\œlí”$%€ÿö¥v8cpãúØïZ%@|šàÊD›Bh# Óþ¨…a¢žNláZ}U\…¹!ë3Õ(íË%0†ÂÄÁÑ®m‡ór%/ëÕPðØ©ïŠý¼¾dåÉ9ó¹iuúãyð&’ì@Jí•×  nÄÿ¶h®mÊñKnÖí&Y$ã; ¿Ü¶?Ú±ýÀKmÊVجøýB FK 4eMÅÌù”ÈÃñ¨þþ¨´O Í,uN^çÖßtFvªÝ:Içpë÷s¼O&G-Œ¶½û¯^êÈ›Sæô=‘y–ÊxûxêÆ L°'[uJP^ÿö–‘éIíÎðÔY‘Ëñ@¢&ȘRÇÎGî[{š±Øýã\à´spÚ»7n#- ·“;ðB¢\š­Î–.È‘„mW¿ÅøŽ3a[‹•é@Bf¦pZö% yKФèûBðrɶ/Þ±Öõ`°! ÚØQ¨õT%xwÝ\4ðÅUä½Ã ûOùNÉg*“ôeHª_”´ _à=,À€ûI©§céH>Å{Õ­§±¹ÒÙ;¿ `tʲ—SŸIÄž¿b,OyžøpÜ™”)w«K”-ð1UÁ‰£^¦-SyãÂÔ|—±ç`;ðYSH_ò=±íˆ}Ž]rÒ&_þvWà^æö.æm…¼9×]dû·¯ b».Æz´ƒ((,¯hIÖ‚ËrÐw„šVÏ{íÂ’¢/:¨¥]<¡¦µ}Ñà ãûµ(éƒçßËt”§4I Ûwt.»â úÃÖ"¨k-Õª®t®AƒDo¶99iK(`›z«]zŽ—Ò¢³YfŸíI…?f¨F]îKÎRdKÒ =}Œ5‘OÊÜŸ¯kšIö›ÇÈq›á›˜¿¨‹KïšÉõ7nŽ¥Ä3’cø¼;;·Ä‡/X*›@æ­{]yKÑÃrUÃUÜî0~—UßS«KrÙÄ7ÊòO¹èaÏ©a6"ñ;˜s˜3nÇ÷Ÿn@I6׿ÞujmË“"ÎÏÍ×ÛÛ we ŽèäWÆÄº¯§‰ßª£ãYP{a&ö$û‚ï¤~³7ÈTO™¨*.ÃÚm/sð£ƒHÛ¦e´2sšIÆÙù:XÑ8a/;_œ~ë¿)Ü£$qÖ,ê+À¯<íÂg:Å^µ+bLW{œ`É|á†?E)»Ä—6¸Çâþ„Utp¶†ÔŠýrb*íôÖ>s€œW±ùM*¶XlÒÜ'á°çÊónLÔ䥓8¯WÒ«ï{ä¼ÏÛÁêWé8QÅK­!ôÎfí`˜È×–@ÙÈŒWR×Teнßèg; ¶êG{Ãa?¼´ù§Ð`?ŒÙ½uÑo4JùP.õ¸ßÕ=Ññ(z ›ÒzxÒ»I´©žocÉ7d(±ù@ Ä·òºÏôp(Ý-÷äÆxðãÎQÓm—¾Œ%‡ðÃÁBkçdIg×2Ï@ŠQ`Aê{ŒxŸáKú cL6Kªl]Öbêëá…ïëÌ1e€øSç­€Yägm ·?ýC®Giˆ˜/¢ûð$“¾Rå‘¬Çæ:ì GXqÓ ܦ;FJ¦®½Ùa²ê•³’š¬¡[ ý­%ÏÁ ifYýž^°M¶'È@ËB>CªéoHäNÔG¸…¥òb¤ý…æ¦ÀÈi·Käl„ È¨(‰w¿Un¥ž:tõ ]èGÊ´Hb VÔXÛc ­é©~wbÛ`ÁÕÙ)oé{ ÅiÐÛ—×Þv益ÇÎÁpnÚ^Lw˜)?韢¤ÚÌÀ‘Cy`&Ò›8”Ì+ý˜3}'DÖö’ óö\Ä„Q\䙺ìѲM¿C#Ù1Íý1ù¸ìVLJd>Ò Záf9{v^”¨X쇛q—|èç¦h ÝOL(S¯¾’ò·{¼t@Ö=‡4ÖÈ _·zÄÞXU«—üGM×kõH>»qÚa§ùÍߘ.ž1Ò“tðÕ´El”?Äi%Ö³–ûæt”¹R‰}¸ë –Ó2Qr}|=Gùµ§VÞïÞ˜Òøz–ŒòòÏI«p{µ,¹­©ˆÞ®Q>³ïQ¡ˆLð!™ê¼àn¹2ÓÝÈš†QZïl/YɶÃý±æVŠ€K )È9W=A]Ò–Ù*ŸÐn¾F§èìÉÖ}€E½5öøc½DÛà _Ä3Ú„ùÍÑ=0Ø!¤ðékªzXÁ½û ‰_:}SOí Ç?YóFáM¶ëfÞ½×ÅX¡J–MV§DÃ= £Žõ xK¸Ã†é0."lØq qRï8‰’RµŠtQÕ”)dÆ}å]?í—¯¿É㹚L×!]#…c–A¤ð`Ñ (Éevï]¦¿yïaœ¼c>t §B)ø>u¥ÛèòW-ܲm•ág’å+ÞÉç ¼VÈ÷Ň=± çP)ÓÕéwJ"E•¥܆dÅÕFXHÁ›ØÅªº”)~2ÿ3šã«ËRxo¤I‡H*š¨20‚‰SìšÏ›2 <;ü²ZwFò‹/9óó—B} ôÑ[@Àk f'"jhÔ:`4}g€-#€‡ Üá¤D×U“§'/G«q‰†ì~à@ÈXA—RÀ÷v1Qà2ëv%ŒòóKÌäf‰å›F‡x×ñG7®_÷Ö㽆Ž2t"ÒlÑ•})¢ceŽh¯rNæ nÆ lÒï\©zd12 ߃²ëal­ÄŒŸÛFNÄX®Ÿ'gui¹-Ÿª>ŽX§«:®p¶"ŽÊùêK@WBA=Û}Mg™Pt+K”¡ìù¸b«"C$r7Ícö69¢«w—#ÏŸŒÈ>6žnÿ9NÎã1Hó×:šÆT;”Ö„s‘UP1ù`fû³œZšFä„¶q ”ÂBÆ´2îŸðFúõn˜`Ìýˆ¥ ¢Œ 3-ç:%´T"•X 5­³9Sv6X)rXX_×ð¡]ôÒý…ó3‰›>­ÕÛÔÉòd|&"Üä¯ ò‡GAX¼©eF\fßm:™ ¸{Ú?A.͈ó„ä6µXh$†™Â•´èi »+;Ùúi• 4°tÀ¨n…è×# Ž ¬©Ã úàš#ªXû2ù=„˜ú¯°©¾WáâÇGíº}sEϯ^æ9EQ²è]ìoY›Õ¨G©pÒ„`ºéhr:1"7±Š%-¸g×\‚« .4˜ËÎÙ]nP¡i©¹kE¯H÷ùiós“þþ nK—ýiÒÅï´xs0§émêÊdSsD@*Œ@M}YV½ÂS‚!­{ñ Wý]Λ÷ØcÉÚÿ?¿s endstream endobj 164 0 obj << /Length1 2735 /Length2 23376 /Length3 0 /Length 24909 /Filter /FlateDecode >> stream xÚŒ·P\ ´-Š»[p—àîîîîÐXp×Á]ƒ{ ¸ Ü%œàîîð:3s'™ûÕ{EôÚ.kŸÓP’*«1ˆ˜;˜%ì]X™yb ª,Ìff6FffVJJukW[à?bJM ³‹µƒ=ïbÎ@WLÜÄd§à`u³°°X8yY¸x™™¬ÌÌ<ÿcèàÌ 7q·6(0dì.”bŽ^ÎÖ–V® 4ÿó@cF `ááá¢ÿË bt¶63±(˜¸Zí@ÍLljfÖ@W¯ÿ„ á·ruuäebòðð`4±satp¶¤¥xX»ZT.@gw 9àWÃE;àß1"PÔ­¬]þ–«9X¸z˜8 ­µÐÞäáfot€’ÔdäJŽ@û¿åÿ6 ü3 #Ë¿áþñþÈÚþ/g33;G{/k{K€…µ- $)ÏèêéJ0±7ÿehbëâò7q7±¶51üU¹ @RD`jðŸö\Ìœ­]]]¬mµÈô+ hÊöæbvv@{W„_õ‰[;Í@c÷bú{³ïì<ì}þÖö濚0wsdÒ°·vrʈÿc!ü–Y]ÌÌÌ\“ ŽÌþE `f¶ Šü›“ý—ÄÎîw¿¸Ãdþ¥þŽš%ð?XXA!€væ&.VÈ@õ€ö§ŒóW'7Ð]þ„í—‘§™­‰ÝÙ@3°ø A>@ö_Ðú4 ür°ý‚î¿‹eù%øã—¹ƒ›óÙ@–@Püß³ƒÖhååh´ÿÃ$û#?3h6@Ð:ßýAÓ¶ý‚VñG§ '+ÓïÈ W{Ðþ¡õîð»³ÃÔ f«AÁA¯_ûÿ°‚åé9ÁÊåt½fÿ0åüKfíð{óì á8Úº¹ü‘$qú½Ð_È èò×#ç_¾±þ:¸ÍMmÿS ûoÅÿ¢(ç?šÿÚóü#ý¯1Ë/ü±AÐB~WÈrrÚYÿ—ã¿l€îì‘ÄôVü·UÐD\lÿÃ`PU¿Ó‚^7L®VÎÀ?4qW‡?@1Üþ€ å»ÿA•yüA\·çÞë¢÷ïâ@‘¼Î§úÏ#ÛÌÍ´\׿^ª kûü×W$ Ðh†°0ë`ÆlSÜvW#BàÁ°=.0M¹­•FËà³àÜîö€û‘¶:ëêóÈÇ¡n´åM škáE’gŸÃ–zذ¯I*­¾OF ªSÛ­ó“8ý…‡"_úˆà Ô…w|Ÿ|5ßA¶€wÊRæ9¹q£(`ÞyôJy~é+[ ÝVÙ©æ”C|*ûΣ­X%EËýóž-üE$¹Èô©Ë hŒ{¬™ÕÖªQöM=µî£ ,[yÁÔý˜[Iµ¥MXFÎdJØÕ­FQ˜®µlï€D{¢+m7šß,lR y¾yÌ ëX4óy¬wZîg¸ Mýz7Ô4¼ùÍO«X¨OˆÐÒƒ…NÂJ/ry‰7“(ºÌu ¢K (ƒ…F¿èþ‘û Ú$„ßçùè>ËF!3³.7tø(á Gžïy¬_eÙbÇÚ úœ­†AÐk§â«igêÙY!ž›„qV(M~¦Ä·ˆüŸqÔ*|uÀ†™ 2¦³µJFñR/ùÄ ŽùóŠ"v©ží¹ª¡Hý^6÷<ŸO4+5Zã9>©nE1Œí5Š…ôòܘïmÜ”—‹bï;hÞŸUz„‹Å®«sçGt¨äv¹(¥K‰DA|¾ÝüÑoJ~¬.êNjׇª¥.ð°9ÖõùɃ¾LFœ’ºhA¡OnŸ?ÌwÁ`^¼¨¯&@'âº)€µ®]éŽ ) m%–2kg ’ܨ}¨Ióü_”@Mý®€Ü{ ¬gîûØ&éÈÔ&…m¥~1{o3€#:Ò6Štn3 ãrU€&:òÅ"²ù§†‡Hý"amæL?põhpJ”¶KpüHPXJõS¾è-ÖëlRŽÍ†w¶ðI\³@•‹~ÝO¬kþrý.pŠUq¡pøÉ'ιß=¥òUìÊ 2"ñ¶¬«)g“sHç¦äYÁÞÔêåd _mùÓ’F[„h€3ÛC‚ÛäÿA5X—r®Š©Ì&‘OÌÀ[‹N¾ö2)‚"‹ZͽÐ['&;&ëZFÕãÃÏY‹@¨9Ù3ÙuøcVúAÒeSé0Šäœ¥™$GrœÇ¹Z8…oõk ƒ ÿøîx*"â”ñûFþlbæR_¸ôWþÖ}»Óú¦ûù¬ŸCVg?ó‚W+÷àjj2…†ðŒ….¹RqFó õ>v\r{*ó³³ü ºp¸“[DEæãLoiös–scÙg{ÌЃ¶ÎÀ©—v­¬›šö»ñÂ%ž}yoFL©¿êt ÿõë»»;©^¦Ñ­ÌׂšÓ/ÕOØý;fQøÌ«Då ²÷ ¹:Ì£qî>œ«¸É³úw=ç\§¡ 26<[Èälõï:rŒËr¸C´ßèßH Ëù˜„‹éŠJå´#y-Ñ DÊQ‡ö°*1Ok¦VqÊ(SPØ>î?T43$½YÓëÂ=œŽ EÝ àÃáÉÎQ±RZ&›V{‡ÝÊŽâ¥Ó»9¼W¨`íÅõþé–˜ž6ÃI—ÑJ÷¹¯¹|ê•§s¼dU¨÷“\2Ž-îÈÄíºþ™e®k%•PéfìDïÕ£=Œú¡G{ÒNEž¹¢¾Xsfáø¢ÒÍì„p‘«'É·©¼ù÷ªM‡Ã÷[,šLу¢µWǤ̉ßtò¼ï)Žï'o({+;§†°=Ö®³8”õ¬ªŒž…d¬FPÝöòEíN$aÞð6° Àͧ˜Ã•zqÞ~èZü ’D. Æ•·çP»ð *e8œ®©Î‘ò¾+á9À¤NÜ¢}n“y²R|¨ŸõÙR ¤±@Ê»›ý°Ã†¶nøÜE5H¦pt`×+ܤõ#´·°ÒnÙ”’y! šîÁ8ã¶7?i5‰Éâº'Û¶RY‚5Ÿ—XS„VMTži‡¿ 焳L,GäÓêm¶-_•ÏH" ù×ymh{I˜D2¸(°4°`nÕy‡Dôo½êoh¶Œ´Î LE^üå|0g§SµÐW_Ú‘½¶ö^9Êój ÛoM\sHà„•Xó™²Á$ÏI’Ù¼ˆÉÓ7ÍPæ&¥útŸWô í*^¿zODKúÃÀcØ–Ý—“uË V¡æ5Eã´D ýv5iã¡–Õ—¬ñèóOŸªbà4ãµ·JÆ @–µ+g3îµËCMxÞA}Æ5Ò×Ö G3py¥’W¬®üzí”w¦Ot|YÄrö·JzhNrÃ9Ž6~këƒw T¹7¶xÃɆ/½ªlâ>å§1†mT“;†Õ¯[ÎBLW¶5ƒQ§ðvÀÔ1 ”Ïg¥l>°R… gOS“o>¿m,|£J‰Q)gÍš¾›»|–8è¨'4Ä2W@_`M˜LríANòN=ßô1-¡C30Ö–ÆÖ²ê[ö¢é÷ʘÒæ½²)?FôןïMØUXÞÔŒ¾”ól8i5] ߸˜ÇfÚ£x'|ƒƒ­ü´[È;K(Ÿãg‹~VæŒYTPä®(Þ¥ ÅÅC!#oýB•$2oI°noËé& '©ÔpÁ/¿}¨²tRâ÷[å|o¹õ =<ñ0t6¤ W8$ªÆ–÷’°1s–[R¤n×ÏöhˆEl›0§NXŒ—¹Ý/ÝÞžl.=\ òÑû{ÕOQ"8´V¯æyB2§¹|@ŸÄÃÐb‘ôœ8™ÙK]X¾Ø%Ä4xjz]7,¢Oe“{¿ÇM-vt¿ø†œMš~3ßWÂè,ÊAm߬#V)ÆòÐëZf.L~[ 6ùN1l&J®óð7HÅ!‹I‡hîX­µõRb«$K9(·÷nL¡ùS”Å·“M±±µÝ*óÌñ鯏ð„SoV#9/jÝó*& ºL_$7‘ÃX!ei­„P±²{`”Úz#îP̰jbÖy¬„ô)ñ˜¾~Ú&Súœ‹9<¦ÕC'‰a°ÂôÙØ«,Z¥>|(Y_åc7$]Ù²µ:ÎyÌž¡"àÆÜè“‚qPa¨¥úůr\qÕpoUÓgôœ‹2Ÿu®û0uœ€~mµó„HEQ·ó:aÊWã’àG—/ÑgÓrA]?P¥£©ëÁuU„ÇQeÖ\)?m½¦dué•ÐrõRu<åYÛg#ÕâíëPÏ,™t7ª÷œSk;ûϬ¦3ÙÙ„”•ÏÇA„£IF¨ÛÍ™Ì@¨lP$ò‘“lX]:3|—iú³Ûþà=α±|õ'¸%“B|ð–>Ÿ§p ÷SùÕå¯;ìIW,iþ˜Îv"¯'.±ºû//ìuW!éÒ[Jo‡]®Ï2±L…}¼fáHÅÄH¢|Þ˜Á1jùë6ï0¿±G\3u ±tQN3§`˜Ò¿©ŸÉ¤’çwì„ÂhFµÅDòmyŸYϽ÷À8Ô›ÒøÖb|ÀÛ«Ä=ˆdݨNÔ»j8,7ôŠUÈ}¦ âà²íz.¬GÜä)7ÞB;„”¥0\KRX¸;®mIxa/5ƒ÷ç!¹é•÷¶¢³ûIð$)Ùî¤Ì÷{M‘’ÉVVNJ%VMôÂ?XÜ){²H‡äaûÀj=Õó-IÏb¡é`’±‰^q,\>íÜ­Kë“M—ëÁܱ¤Œ§›q(Þñ”9 ²rɶŠ>_6¸0AžD6ZÒ\•zb«Ð£¸ êUmp%I¹ô5ò’¨RðpbQ…?ØyUÑZ7àEºíÛtßh•DÉ÷ªŠ©ŠšØvz~1Ê›ÓÉæ­ãP(®†ZÝ9YÂ:„ÅŒm­Dm ð/yd²) Yë[È'õûiœ|r(N¥E0X¶5«¢ÝB#½Z¼‹:ê*SXÙï?øƒqA‡ð\xÞ»Ü9ÍèêÈ~9°¹CéiÓUDšAÙ>%*UÚè'Ž¡QÈ’%VbÃûœþ8¾câšÉã9ѰŸgœÀÞÆoË$Õ Í‚É{¶*Ž ¡øåþÓ´]¡Ù÷ EL1|°jxÔH†-×¼[®P²µ6ÂXžå_‚$h˜¥†ùÆ¿b/©8AÄ–$¿S§n9ËAãËáw"°Ÿßr tµ•cIÒîpŒá§"8%Ìõ:}/ ÚŠšôfS{ÛEøI™¥ç=1pBu ‘­\6Eaq8ø£-ÍùtñWàÊ6“£"‡¸Ö30Ò—¶giþ§I¤tJåšnËt5»[Œ†_g_ïnÏU –`Št$EçãÑØ=é ¸ ÜŒÎvÉt.žåžY‘Duóñc¦€è¨ŒA€ Ë-€ürú+ºʨžJ¨¼U™Ãö‡÷jÎ/^&e©Ò“|ÄJ] Á29Ål굘•P G:°î3QëñHÍ·sá¤JÜlø “Šú¬t³ÈÐ}[-ðzš‹8g°¦bò%ã¹I{›%c6_[w¢*ã¯Ô2¶yÏþkµ¤ÛõOù×ÓÊÝÃG>É0Õi§ãŽ&{†ˆóV‡Jï ³›N27ï*¹Ý¼–)œ/RV.?º!Xø™9õ¼åøæõžôyÅàGöÁ]׊}%x‡kíŽ5¯ôE^‡RHïM•P)pŸHR³ãÅiG°Âmo­—AŠ7|ý¼×;('$SZWŸ2NãØ}¾ ŒyÒ{ÓwmD4Æ‹2@Q}£¹‘M·JûpM¨ÍK6ñ‡aš-ø–ÈzsNZx9>Ðb"èù]³*ãaæõ³;uÀ€#õ˜Úf·xëè‚­× .WN’Îõ¬Ø—Ê>»ýÃÆj)7#©LØ»†–Ϩ®LÑ3ˆ/k1£gkìµ,•öáFâ‚~Ž0ow,Ê,y¬(ˆJúÀ „Oîç ¿·HÉÝðq”Ãz ¶BmÉ8;Š”°Yˆ|XÕA·v«è^Ùê¹hŸ:=úŽ¡ãŒ¶O$~}óhN «Z¹HqEG:d(‹§Ç¢ÝøjRV8ôÕjc‚Go¦ØíNm—G./½W]®ÔD›bËÃr(©Q)HoÂ3ŠÀi è“” MÊk› ‡|q™L—YƒŸ¯qE‚·ø¦ÆDw¼G«NÌÛöç ]ÞñÓÝމ¾,–΋[ÿ`Á¸±Û0¾/TÅ öìrø^}F¿á"'Á SŽ×Ô£±ÉY>ÆçAäH½êñH4ãï£9Ÿº=ð¿A™ å{ïX_È›¿Áð³®Ù~ü¹í×çsªÕ ›¾mæ›ÆlO‡âƒRm+¤[ê}õq#J°y—û˜Ä‘A~ŠjðÓ#䩜± À¸¾„²Û8¥àd¥sÈ¥Lè«ûHk¿¡þS]"öì³Êðz‰¢©EÈÛ¥¶ŽŸÁ9dð1 ÅðmÞS—––c&[±ñnõ’ySéü=˜Ú^+Íe“tmƒ–7¯ìBÚ¬Ýñì%Òc™s†ß&äuYiÇ—ï‘n‹'¹hû /Ó¥íãs ¾–TŠp‘íûˆ‡ªò3±º>+ô \Ý»lx|Ç#£}•hñ©4k rãuâùñ-æÂgm‰£â´AƃuÒ®É2:Ù%5.”®Eâj8Â=èS›%d"ªï "{²HoËwÂ;[Zá01®Só·)8ÝëÔðÕuÐ#È—p«äS_ÙÇ‹Ov…2Á&¨oŽn{îý%ߘkJÉÏÒ¿ÝÅqÁ®z)\3dj.uªïº·ŠîC­¸¿×%®ð/uFb»bddæî)Ì ÚÐòkYo)´… ¾Î ½¾_®kŠËþðMýúUÕoªXÌ9rðM¿ú Èà¢î3DÚ§Äde?>èH²é6¹›iòñõ¼&ÉÛý]üç[Ù$H"|HD¾tø.ßU€¸~ïdi·ÎW•¾çÉ4êl¶AS>OòæX¶KµQÞ2Sôã%ÊfWÙX&Áá|¥×“,"gÍŸÝxž5-0m‚´§¹ß l³ï!9:Ðôvó'%ùÐè©J¨1­K#õkU¾É\HÏŒ]M’t ©ó ÏKž¾ÙU|E„UÓþ¶Â\Ë_AÛjµ¦5 ØÎnÑ")Þd·Ä8ÿE‚ÖP zŠ8ÄÞÃï™1\W±Y{R üªúQ1FØàÝ=ssÆÖö]¡qÞõøåEgÃ8îä{£LÏo1A9¾QÔÚ‰ aÁR¨³hœ2ˆú$éÁ»Ë7‚O¼CšFC‚?>óÐÉ0ûáL7è“ùÌcòi,z÷Ÿ¹mIfY@Ž.†\+¯– ÓJćs£~xÒ(Êzð ­:³ÄŒÁvšá]3·!/j©^Æ·‚u@,Êjsq@fhNDƒ”âŠÛ$«ôU™ ƒØ){Øè^x»ø†|ðûÔ+ÿ£^ 3²ˆ7À¢ì‡][q·ÛiÜì™"k¯^¬Þó¦ù¤'Ù,ýå/8Ä•„8fG‹¸O÷¨¾0#®6,Sý™"»Î/‘ØU]SU/x£²îÝôr$¾àðõ!5ÆÇg!¤=eª×ë-ÿä×ø¦ÍKõaqIÈìí åZ-ü±b벨Oè]з/à1e9d=³½Y_,÷Ô÷ÛV¶ MKµúà`–hêè(Ñ0w{´Ø‘ÑI›!†XŠ¤Î•=:ÞEüE¡ToœSùDÌeÄŒ™ÂýlàœÞú#¶¨£Ï‘Yrìøtcr xs+ZEjÛÊQcU"eRÔA½8½Ëo¾L~•8eŸ”Væúö¦šøXgKkˆ¡NrCB!aÎ cP4b#—Ìàœ•’_¥egãý¤•á:ñæþèQÿ§òÅóÏŽSÁD`ÖÖ$p<ÎIc>öÞ#~œj—ÊF›Ç8 ê€6uG•"EU½âÈ[%‡Âg-%Î2FóþõJ|aÒݹÔ=Cüª7»rˆUËbM|”®Ë£³!­LÐ;jo›µ¾!ë5cæ‘ÞK‹’›N3#¼—ºG”à‹-#L‡RLý.Ù†ÝuµeîpwoÕ'>ï.Ö$ͦb¿±0°E?Šb¥‡#F… ߨ— fëûòr ܯw] Š ggˆ"¯ _'®ß(›1:É’mM Û#J‰¦ ”¶9-8;iø1:uƒ:½Ø“B¥¾)lÓ\È`l«­Ì­ÕI#2àÝ”¡û…n´½½á3kjÍ fUÿ®˜jê€ [·õåŠbA«ÊæCS ptBÛŠlÓµW‡°\=}gvÕ²÷ @nôk.òíÍ}LéØÖЍ¨ã™KŒàa‹!9RòGõ‰ìÎÑ”l}·´Ù9t¬)“uÖ^5 >ˆ&p¿à”©b4䌺¸oVöR³Û›yvŠsÖ%ÉZ˜òCþyã’5.Z”Šr£ž$æ<,™ÉËÓyÝ V[‹–´êŽŽÓ5ý½cד÷šÈÃmTËqŸ^°6êØ43_±gu ¢6Ý%vxÌö¹µ—‚®ß4Î4+ [ÕRÓ ŸŸÒ¼’ŽÈ¾•ã¬3‰Ã9Ñ`DMÁÓxdÖÉVÖ»”]/u¿’+O´PЍ¼3X˜ð0ß"`2võ0SQUbInîšïPÎSÝ­Êœæ7¾ûš˜¥ãû.É›úm£y€®Mëd|“Åîg„«ÑŽ ,d¨€)E‘qþ¨ä·k¶Ù˜ªD”›‰B(ÇaÊSâk«úIÈòno"=7 ¨lÎѵTñ¸<ƒ˜ H”3.{±Ò{zѹв½ùýMj¶ú·¨ÄtBÏõ¯OG1CZ lÇq «Õç« ÆÏìÜc3 o`ß|)èYÒÔˆb‹ó¢—éÑX:øFŠùQ)ß›Ž;06A·Ñ4.o¶k+ŽF›·MÏ¿:t› zºÖÕ£ƒL)²” vé¾®—Û|:3ÿ0<ÙÖ7•1Bð†±*ž˜Ÿj.<ãåC¿J´»úç¤g—`Ñ`ʘÏe]¾˜+ýËG h§IªSØ/ $ÀõªMbëH-_¥^¬Æ-áÞ­rà&§„èÏìö"=Üwe“ÙZ)NÌ <Ęâ^€u¤§§˜~LêÕ]_o`"g›Úøà½-vÕµ7à}ß»’K)xIß;Zé?AVéèœë5ß¼dÊ ßP³Žkƒ3}ÏÍòzÿd~iùJÊh]ø¦™ÍÊ›—e‘ÜãIïÆ4‚­H}!Ãj#eE!ƒªb2ëvkçøãò=èáo4‰Úg#ˆùôÉ!txcy$Þpžm£à@|}·‚þd¸8æ%ä÷3”EaèCõÔÿ»ÜS-üü+±ÝŸˆ±Wïï÷;W\Šc¸s‚jJ–w)_Ÿ ‘Ì©ÖTÔ=ůP¿OœMèØvãá“SÍJ£2ŽXÕ?íÙö¯7-O#‹›ËëÊÅÛïb8m§­ìÍR@´·'Ó„âEÜøäã™nŽxFê+:³¿‰˜SÛåpº|$l½Œ·CqÜCfÈO‹h5b…‘Ýñ·ª¥)%kÁXh¯f5gw3ïðÊÏ{d/çnøÒ>TË ¯z˜w¶"G“Ǹö}bìj[#õ‚,/q×Áa³¿´DÑn‰º@ãÆaLúN|3ÑÙ8‘‰ìûGö3”Z@¦w A}}B¡oè2tp]šaÓÐgØ;†çº–-ú1©4õ„ÀŠÁÁ¨Ë‹jÎJ:Ê •ñÜu¿}ì4ˆ¤À5ãC7¥ØˆqÍBâú‡t ¸o öÐRW{4Öç‰á£]"LHíCº„XŠù{ÐäÙË ¸á/TÚÅ{¼N' ÷i÷ªz'U(çó#Å„\aµše2ž^Á½Ò¯ÑÑï,DE0ŽsXº2»àÍÍ<®òÆ íô£rUà 4?öcˆ)Ì’“ÑŽ\€›J˜M¡Ä À¼§@Ü«›öÜÞ<¨TÌ.£Iã:6Z¢-e,)˜ÿVfþPá¥:Æ>œã›ó¨ÙŽ™‹ö¡9h%€Uqˆ[#‡ÐÒñžpÉè“|#ËåMmÝöÔP'SZ{Oé{Ù4Ž=í‚í©¶üýi8§$À…ÃØ¾ M–GEµ/†GE1óZч¤cÜxrsÖ¿ón˜J1 ³6¿:lp„`ñÜÒ’·A  ±v‡åèg =5£Ø<ºLÖ£ «âeêyÆø{wW¸Ußàoó\¹ïla½M8ιYÇîUzýs*ä Ù-¤öy˜bÏ*GVã¾ú2¼oŒëúh<ÈË•Ê}œm°1PqN^†M¹ yÞ˜ÐÕûøx°ú…-šŽÜ #WçIÁ~îƒ÷Ì[–cý>Á͸@¤!®‹!ª¾‰•:æ/‰;0¯«É7V\©ßôѪ…„6î—Ï)ûŒå—sÒBÎU#Mφ¾~o5T!O™ÊÒÇpÏ8›MÒ°òEßÍç‘fYÓ)ö‰ÉBáÀÑ öY%xäÒüîƒ&ç²}<øÕZ¥¯_+&d¯˜Or³%›Œtu·Û#toS|Ü~3˜À+…RðÐÃ(n&ã#˜û&æ§é$.9B‰ö’P·è†-ÔÊ·“dfÃÉÓ, ô qjP¶†¹Èz‹3"Î*¶ýC$iŠ©Œ¦Ñ¸¨_ÔÆ ¤÷"Ï&òƒcÐדú³ 2Ãûuš†iW«ÓývÅýlÑLj¦ÞBÂún ©YÉîa·8µéé%.*1N¦+A:ú-4a3÷XËòóÑk`IC?Ì¢/ÉNjÉîÝÃJkðtá †…žP¨oâ^.kúF]Ía»¼ûøÚù*þg˜¢Rôƒ&äå"dþ3Û\žÓçb¼b܉¬¤ò.3ƒ¢oüÕq ÚQfGL²è˜o­ÜwwêëN}îùò3¶S~ŸMý˜—fÐÆ##Ep’žÊ²~M¤µ“Ç?¨[ÓlŽ.4å3‘‡Šä{ägƒ‘€|E3Tó Ù«Í0;¯—°:ÇM5]÷âÆ‘wnlQråõ_¦»ÝZœFSÜöQu3 Jz—Øz}òº½¤aоÃê–£ ‘ ÓÎø3 Fkž¿£’CÙ_× KlènW+ nùØâꣶ£ ¬a8”ÉH#dòîÑæH)à(|Lo£Áp½~³­bÔ!äó–ÊE¢zVŽ+×ã‘D#ëSýÑ*}ÕÉÿvÙk Ô@Ær§þŸ-&ŽmâŠHjXbtSPëÛá…õ9b{“G^gÄ_™pf‚ 3§CƒU’·ªs?XÂõˆLQ.ò¢¿NóIÛ{§W_ Bµ¹ ûê!¾9@"Ž…ÀH~¼ý>(¦yØÑ?ƒO/râ—¾=¾PµF4À!¿º Ó$xÁúÙζUEW~”†¨–e&XA@Ýõ…ߎwß®—ÃR€ýõ„úî'Þu3lšÞ„@rRå¨Xœ‰&µeJï7Ýôƪž·UiHØ#Œ¥‰Hob«ÙoQ6uÌqóÜ ŸÓ¾´$”Í-‰‡šèl79¢¼Vw:uLèÁ«ÎtùC®„¼²Ë—¢âEN?áà,cAŒ8}‹@çuƒMH†VŠF¯C& p‰¡¾x¼µäë,èV ŠÞ¡ ¢Ä•Qàìf¦ ¾›¾§æžÈúštFáûßW†ˆ¾"‹V¬a€òˆÈ˜úR*Æ‘fj|ó±8;¸·>|Íêsjó¼àD‰ ·Å†3!ÒMkÒæÆõiÉ€”üQ0èe6‘œ4Æ#VÚë©d+yÍ H÷âîÄ%9¦§ -oßUß@£,päêÎg¦¤Ž$1Ág½¼ Wš°…¼Z"AàÆ-%²Ä¶Ni^õÂrÙ“'ÉXŸKϼ‡b½1”mu«ê°œÒœTÚsw,Ê‚„Ï»N¿5ºßZŽsDï|ôø æ;¹œ;±ôÌvȯõ©ù‘Ý!Fƒ¹¯9Û¼Yh‡þ¤‘qiµá3î&œÐÀÒf©Û¢<ºBÇcÊTí1ýÂÊZĺïR.NXÃjȃäLÌ 3‡/¤D›&ƒ›¨Tað½"Y»ñ[à1GøÑ»l_,¢cý—x<à#jÌ5ÓÞF)+‡•ûHň9 ¿õ˜; êi£g{GôpŸ—T"ö¶}¨"ášU( Rõjñ«"%w~íÕÅ Úü*RzŽ0Zi个:ô9p)WêKS“ T§¶ bd¾´¼æ]!j‡%UDWäö¦ÊÐMýðTÉC®Ï~rõtôh{Eµ@”» çgýsÙPV¨XŸ;b²)‰ŽA· „«Þ tC|Öþ·ža#¦tÊw~“Çâ¤JžxƒÇ,gVÅ«ˆ»,ñ„ŒŒˆœð ãϧçUA_fXL=HY¥‚ù™ß2Örãe×’®c)oyãý‹!gåÕšp‹éw®7TœÍ+*ñ3ǃi ¼Š¿Îí*¿Ù¥À „—¯³˜:™úÀlG'=*?€°É‹ÙΪ”2;~÷Hds®»@‚,„«®m.g÷˜b»þ“Óì“e§Øi~”FU3øçàVŠËÇÖ…dŸ¾’ƒX>Æ ND?ܺ@&Û$s¤¥–¶¶À R©\¸×ìŽÉø6–xYïóä–R½¨7D¶²~Ó.L©c‰][­vˆ‚EíŽ|Bµ=NÞBÊÕ PÛb¥\T¢RǦÏìô—º+KžR¯8jd>³~xwú3Ì:?T8 g‘þúå+ÂhäCêÇTŸ–rÑŠçÅ_vb!ï'Q]̼º G@ô§²j¸Jtô´tA< †C.]À í°ªO®ìЪUíá‹Öh³ÀSê˜RþXt­Æ.0aµ²C§^øBnƒŽ~ø(?JòvvU;›1…¥TŒFJ#²Üˆá›ˆ¥yCR½Öfáå mbÑÒ„ba*ÍV!ÞôE6-±Ûq±ë¸:œ{æðÚ'* ü:ú rÌ\A’¿øæ„~ÚÀž‘ÃÝ2œhó²l bÐjÒ¾w7_Šs’`qw‹Dçì:I§H&]8»K:Éâ÷¡´x"] $F*Ë5O¸iN¯oå¦oä8ùWÖ/-!µÖóRc›ÚDÚóÎæ/g,å<¥áܵB…øªU‡D܃%µ‰erøtEµhüÆl+ìÛ· pf‘_¬]§i¼Â<èG9d  /ßÊ}x?ÿÃMX«`›6¯€‹gØý“ËÊ“îmuP‹9¯;+ÎpÏcgf¼‚o6àì¼C0µ©Íý|’wH­áôeÛ;Km?¥Ïòc§~Ë®Wá&§rYøˆ5Wzߤ »‘Ž"íøý“ü[-K^nŽW¹vì®8YÑi5ƒƾ¤ª*5%³¨Ê™6;e3“8 Ï݇~¼<Oфõá/_N¾¥€W g†äôHÄiB°v*–kÛjvDS¢8}Bk¹Òtf/b< q~&G•BÊÔa•K@I-³8ã,h‰·ßÖ=]ÛÞŠ·æ;µÍƒîã}F¡ß×`4uodp?“bQ) è8áMWòDÌ©î¾í%¡w"è¼ ÈŠ×Ë•[Å@oV ¬>ýQ·¤±ÄL~DÍjÇ'K ø~¶Ô,mdÃÁ‰[FF‡SÑ‘Òûu¾HtzOsM«Û2¸J úíø]˜§=!àâÊë¤æL+º~ob:¿ÖǧïÀTÏ-¬,”^ü¶ìõ… OÒÖ«þo™2š\½X®zä°+¯f\"ƒxjûCÖp5‹ HÊC0Ã+ßl9õ›¦÷91á©V*jL/bŽäš®oµ%^?š›MÔ˜§¦WÜ ÅË[P'Ò~YnE%ó)×lOÓ«žZµñÃÈ·g¯Œ·iÏÉïU8Ò†C@\MÔµ ¦'– öa~ª‘ Ëؼ²Ô›&Fž8}†ÓQÅÍMe[JÊxYx:‰‘X33„vniÆŠëPSëx]JÜZ}æ‹åÓEæ©Fa(Ö#n{hmV®7‡úöÌÛµíé š O¿ÀÏ¿‹. Ã9¢õ]E‚(#á­ý|L¦Z 1$®–¤‚ ˜ÞyÜ0ÕŽ‰› ø|ðW£ñ“ópØIç» •LK¡üwÊ­BÛùIªî÷«æ‡È¨vIAæ$éŒxðeµв mÏc œäð–v+ÄUªúæ×ý&“޽î~ )0Çô6:mŒ¹¸”²oÚæ^b­b¾>€•zz»»l7“e%úÊÙ<¤„À3S²N}9× E—Å4—$0¿ïép²h³v¨ƒ!ƒ2–\NnY7œžrÀQ×HÛ=oô´@I U€ML{BãåâŸF3hQ•@íÙ­Dlx?³大š…DΔƆNà}Ûò´áK&£pÆ<µúBU¨(ˆq,ÇHC ½ééÛÖé—&Z š3Í\>pѸÊ×Nhà3»C*ÆCV5¾7ÕA¶<ë‰欆56ÒݵóÒh&Nj~|½A˜Šn ¾áLâSÙ`g±ü˜*ÞDIJViÏ:pgÒ©ÞÎC–šz<·j.g²±(•ÀŸÀË-"ëø1§ ïÛýŠ„! <ÂIº71‰Œ¹³d²a ˆ$5¢[&‡.——é÷بÆì~ýuë5¼XË\.^3§ûHu\QxîLÄ)Áx¥([ly™6qÃE1I/è:²}ȵ s?œ ºÎ¨ëåVøƒ“[Îy ‹ˆe#ÑàbDÛ¢‹7=†å~JÕNžÜÈüû–„ñ§-÷$ò²Ÿáíªèº ¯A\Fú°+Êå6‹È1/a—кaN?†#|MMÞO Iê  ÜÅO¡S¨gSøçµzÛ@wÚ+f¾aê½¾„æhcTcÁêøän›¬üq§ ­ßÝ´8«èâaZg¯ (À¤ž_RÞç[Èòú"j˜„g…ƒYA¦šÂ”|p¢•‹…χ{N2«(ê~¸U¾=S4øšð–ࢪPBˆ<¶`:ìêºùƒ^œŠÖâ¦ÔwéÈÇNp©äHzÔ›þ£k‚n„Lë346s›ÁHdBêh ˱IqOÀ¦@)sªôýþ]AhÌÒòç'|?näÚ|ˆ¥ÈÔO\¶t§³É…µÆ„Øo®âXE‡çcé~è}BŽKþX~½Ì—5&/‡—>øÐî®Ô?0‡ÆIÉêñÛ#|Dk³Ž"ÊKKõi–‹¸¢¨C¾j‰þh©1¯D\‹Ñ×bÎybbÙ/fÓB™þF$ë³tJî(ñn.¯±½­"wi  Ñ†’y¤XGF–›HŸš-äëºêàåðU±‚)å3ìÄû@w6šG)ãûÚ:Ü¥Pû¾†ŸGé7ò»=ˆN7”ŸÉ¡Z{Ðטû#CÒý&Ó¯÷CqCƒìüd_‡ûº»˜:£Ù¬­<ý÷<Ó6<ê¶YÑ—.ÂW'­J_d>ç¿Ië| ɰ÷bI„ùÐÉ;k ýõg£¼Ø*äEx›ÆE~öú‚'ð®{MJ{šp8~­›ÕŸ)RÁ"Ù^ÛÓóÓ‰ÛÔ {ÿ ¶aFƒ·½‰RthmbƒïÊ{¯Þ™{1H­â£s„Žv2ÙKËšà^“ùïOR©lµ³Eˆ£°²] ðiv ÷í²m˦=¨»Ph n î!-ž¨ÙòTWÀ“ÅOeôâ“ëÔ†Ìx$«å¸__ÚK¥6Ž6öîFoøbÛ_ñHdNšC’+v¶‡‹õQQdDTàëj,뤴c +›§/ §™ì‹‰;ü%Qq¯_ü=s°ÖjGàãîkU£e,1Ž@õ`f×}¥ÎAûÇMSŸ£±>îå©!H×:ø#J'õ J£fc2ÐÊ@>´±Ã¥@$´fÄU†e¼ËwJùÄJàæŠŠÜ£71›é¶½Õ—OÜT.m±RÊu·ØûjÈž‰ð‚?Úi(,Ɇã1ßÚàR‡hÂoÒš¶èIΠ@ƒÜ´ƒhS7úGhÍ\&Ç9ƒîáM]sÑf6ƒ?˜$&£L¹£ÉI˜öô¿ªYÃWgf<ˆb]­ÌX$ã\õÂÈ2Š—À‚Ô_òòÔx­ƒ´Ã<üŸ‰Áû¦#Ýáßo¹ªC?-v¿¤)ßkû€ç$Š¡» ˆûÎhª´-ý7°ÃŸ:…@^C.6 s}G[ÍÌ ˜ zWZf'{é Y±ŠlBë:®h ¨Ç9Ð^½ÖÚYxj=FȇÚü™Û¿{”þ•ãR쬅!.ê–\J*Vóð”À,Ã’!$¿s:Û‰ä´×OÍF  ö Üæ%fkžœQ੦QXeâs€ LQ­Áºˆ|VÉ(É‹¹HH㯓`â^ 2.®ô¡Gccͳ^¬~ÃMÀèŽûí¡ÔìŒÍ÷¦Û8Ø¢H$ô$è^]_ý„|µCàÎÿLº‡NÚÍhÂHrâý©ŠÁS%ÏÅ1Úºkà1©Vco¿ïáùˆ=b¤C‚úæ Èém¸gB=;µRM ?;:xgîaÂump‡ 0ÀkXô¾mö¶Þ7ÍM±ÌSj»œÆ‰¹œ»Ô€y½¥§'@ŽYT;_(V*=º§á(>DP38õ÷Š×G:jå€P¨hIØò‚š¦A…“©¾„jS1éçW&mQïêï)ëÜm=fÀb"Í\â%ïöâ1Œ"/-A¹w+«¦ùªtÆV@Îߌ«9æ‰,Ö“1x\Úä¹(q#£3ôѸÄb9'Æ8þë¸:ÿ YVi޼ ½øà=å:8‘H%£—D7ú^UÞ÷7¡¢–'øµ”òœÏÚQ4 “µ¶¸“)<‹ê$vToüq­®®™Ât*`sN½BÚ{–Ú4Mð‹'òäèZ2_)!Õ@E»wg$MËÐ ¶O•«*ÂËú/áu_é ¬@}QæËJY,KQ*KJ¯ÍË”8|îoæ ,³·v>\Y*Õ…Ë ŽÌ\¹Xä¿kúdëÖ‚7X£1Yu¥9Þ;Îe©àjŽ?Ç!5ÏØnex\ìË⩊ۋ'a_w„îäý9…ý*Ìüí×®¦9¯k]_…ðø-Ìa¬Ùs_éHTó3:Ú†HƒVRŠ„4Fé$/ˆôJbœ6¨{”ï@”½› }j¡i™ø §œUh`ÞÌΑ÷®ÙHÕÀvŒ9@×ïÜÍ@rž¡Ù+£“¡ðÒ9É ñ°”ž×úF•ƒ~Á›%&+¾¾.—é5ü^_’ªOüÁã܉ø~yP)…â#@‚œùÙ3ˆ9-W_Ÿ˜þ6Ït¿p~eÙ«´mÎ?‘Û³¢Y@Û]Î¶Ýø‘ªgÈÌpÛjüjs˜•Û‡ÅÉ/ïTûk‹oúÝNr ëÀ!œÿ<½w£dÕ°z3]fiñ^Œ,í„ZA¸ã¬°Œ\tG‹oéróô”9‹ˆöXmLÈog-3ùß³m"ô„êYÉÆ§·Ñ.s:+ ­YÊà–RÊÈŸà`êϽ],ƒÖœE)ø‚jÛÎý˜JÕj… GëÂbÅä‹‹r—ÞQ‘.µ•lµÎ‡M£¾¡ ÊhlÑf8ÔÐÁMUôÔN’zŒqXîîŽÜ°ÍFæÇÿ&KœcKº†øH›-žúzKÀ䯘˜8Þ¯H¤ Ì<È=1ãx}jN´ËT¿°´Ë`¦të_¥ò‹åj¤dº:‡˜u;æøÓCo,xtVþ24›/XM{Œf¨LöÐÔÀ1~sÔØ3 –Íh~,^:ý7,E’$/¬ÆKå\½¼{X.±œE%¾Ñu› ýyÕ‘”ŒgÀÿý5Ì;±á L Âxˆõ¬ eäG¤£*(È}Œ“ÂkâãîÇÜÆŠì¡ÿõüŽ›ìåA­û(ö_Ò”_6n”àŸ“!—š;Š%M?Ø_^CFc…zïØ,.Ö7p™éàf(ÇV¸ù-ŸhS¯b)$©:Dò'{1E±ˆŸvÁG Í¤·._&pcÕ0Ǹh/¯ À™ºI4¶ ´R•­¢*qÛÈpî¼Ñ ä”êÂã¡¶aEe€&#“¶ïÞúð7á”Í-£23CIëJa±uÞ³r%‘c\àÏßvÃóätsMunÂÊDì礊nÙ1ö|öFMVÕšS¹yÍõ]TJLÝ¿+"ËCßHòƒ¾Hö¿‰ªôÈ‹Ìã|çpŽ„ûÓ©‰iÈŸès6Íx %,>7@ø¿Áj6‚úÓ‰“ùŠÜ€æ¦àe®OÐ*-æz^9¬« Á,U4øøExf÷ÐuMÎJÒ6¦tº/÷):K8¾²ˆ`ñòcL7¢Ês„À2RÔêšn›ÐíôÅtwpáĬ-§èòšïÊÏ-À|a¥ª7 ÉtoH¨¤Eñò ^xoçe@p¦ÌGþ•Å/bâ1ÑY~ë4N9d¤ðõjœTx'b»T.´Šwv¾† "-—–s‚Ü@ÞòéªÃ?v²¥ò†(A0 1õÀ}*šŠ&,êˆoÔyFy,¥’{þ׺ˎqE-ÒQ·Å… =ÙqO‚¬aU’ .Sb^rUª¼=³Jü‰»/çÖî<›Æ¡úYZ'µ&Òþ)XT†ÆøÐ%FÅsôØÜ€‡&@—'ªìõ¡‚|ªÃ}±?žó#¾SÄ2\¾öyxíMÏ2…Ÿ9OxfnS‡¡‹í|䔨p $®þJÔ·~:l=òO5E¡R3`‰m•iöþ¼ÏvW3µl*Åð/3Äoé¹··p¾”ui™0^õ,]±Yî6$¦ŸŸÃxÛ€ ¡Ä0jÇÖöÊ>´3¡|¤:.r—îv¡E†Ê/µÖÊfh `>e¬n癟3„us°è´ß ÝkƒO8µ=Í&+bC˜É³®a)µìwC"4G zȱã^ ê§çíQŠ"…ÅÝP†ô3S49Æú]$MÛ²Q" Š6‡‘S†;D ¾Ç?þßȹ…-ÄsâV„(•Úë2[gtxÄL+µõ~W**`ᑾ²ˆŒ°ÇeüIHodèöwšñÛ\!dÜ´P³×hÑ'Êågo_ìZÐ ]@ü3¹$ã./ÀÂi3êq 3p‰ÛªbØ4·†TèmD?Z,¡í”&©l~ón®uÝ<¬^»DᎤ ¸Þ͆(Ú®tø\ÏAm|¹ŸhEÊK¦ç§ÈIò€Ç¿FZ ÷â­ÿ’45 &–óBý:LK5•òµÂy]Õ ÿíZçN†#Rw¬„N´l€QFÌê¯ÿôæ^ÐV7*ˆYrˆ¾’à,Êè¿ùb§Î;R ¤ŠóÏn…‘_üEgúº_ür’Ÿêõð uªñf3$žhoQ~ÆéÄÄ}w9g¿@$m–˜Ë|hÈÛdÁJD?þ[N²”³Û³`ÊupŸØïêþ\MâæÅ…J‘*à7žn¤|¡ 4g|åµÿt`|ÀeÝ$ Ž8TÍœfP2OqôÝpºóð-{€—îqøV+Ú,ãK»¸iaˆdH½nƒýˆ’rçv4GSº=×ûê‘&b/Ô‰0éÂeñˆã.:N‰q÷y p«miWc!þ3˜q9Ê>úYD~=/Ëu–ü=™w•ÛgKŒ?ÆÆ$ON Ós\_(€®”âÞc$`ßóQŒ÷áS¥¡øM?’öeCü{c§ >dPè11šÅS(cîAŠäW6×u5oÆ:F=ÝxE ®Ö×Wr)Žò®Riz¹Îó¨è%2«Ú^ðÀïgÎCZÙ6wŠüEsv,0·©î’¦¾É•ZÍ~ÌÁ`ÛT–âóÉ~Æ)?ûÛû½ßªÇä«1ü}¬\6oSVÂãÜ×êG,i`é¢ù>KÄ“ûü¿é3Ò¿X†Áö3…Ιæsåo±¥W¹œyÄD’žÖH*À#Ëijv}vN\bƒ>ßõb݇܈žðÄAºi`ôˆ¬"3cÊœÀsˆ'BÞ Ø”ªÐ%EÏu ¢YÕ_ˆÞ—ˆû cïJe´¦G‰o}ø5:L;b"æËdmÓo‘± ¡Ô"FÐáóûÚ¨6¦oƒË#·îGžÌØ—¥Uò³e‘· ^VH†*>jz–‰ØP…ÉÔΠí–ë<ÑK ôIû:Ès;hE”iåÕÍãWüµi`ñè™ýa©x@tŽÈuÐS[ÂR⃃’õt/mN‡×`R8n2Ï7‚}Ðõ{êOP5•2ÐHžÚP Å–W.Aéh³8w ëhJ@N_«ê"·Ûß3;@}e¬CCr½Éy¿Ê/wß¶oã5|´ëf¶Æ2ïRŒ 4Gµ¶D´š5ÔÊÍ¢L±ÂkQÅï N,Wß.s-úkß´Á|íy«/qس 7ÌQÐP@Ë Æ–Å&åúœ…hÛ–LjûAt”_¯ÀG#z"EÂ}bÀõ–Þ¼üoÈ@¼ŠJ9$`@*»»¢¦O ž¥ìŠädÓo:Oßó!}Ãò“1K(jWꮩîî×hlCCfiæLš(f³œ+Ë{²KìÌAõ#|΢W+$.—Ù-R…w–Hk2šEìöK ó²top]%4ë*1÷¼ñ-[ëœ>ªÒ˜ßc·îq=A.'±%Óx¤Q£¯ôOy D '¼—óþ·ó–Švžý[fÊîu%-[ï ™ÛÀ-/ÚU×åÔÅ(èÃ3ßCœ9^œ4(ñWì•–âT9¾úè`æëÓ­÷d =‡„ÜŠo"aÛWÌx$C ÍÆW`ä[¿†÷W>ïßÝA…ì· Dþ®W$–[Põ’ªÄD¥ŸûØ«!/*½3Ì©ÎÊÖ`0÷VòáZ'c¾Tž[à&zŽ^1dBOò‘®¥‹•"†ò±R¾RŒ_Ùè bà•¬RM©<{aÑíKÀìSÄ„iÒ^‰‹;÷4:¶¸O$é”—E¸ËRn³Mœ úÊÕ9VíÊw=¤ðº²÷1çk+´?Xµõ7ÂxÖS:„Qy¹0L”’fé ÖysÕ¤ñ+#_C;wã%8v§A/{ &hž!ýÁƒÂ´ºõA€ƽm “@Ëé‘@:Pꀠ<¸ãåzñ´#&ÕóxÊ}¹´'eýòZZ7øåçëœ,7&®ƒtÕ¹U(EVÀÈÈî*Õb´sì%Í<¶«@¯ØŽÁÜ®ú¼ø ºé{Ð>kèi´­Æ0SˆzX9ädmÇõÎúKI`ñVÇt ã%Qþ'Q‘j[ ,¶(sA°_ Í®œžÃþ²V Õ‚Û7Õ3tž8æo'óÿü9êÔ–ªÝ14±PnžÑ[U>œfaÆËrâ1œ°´r—Ù^ùüLó"âÜJ.ØÙÍslÉ¥Ï~‚!{à-e¬=²?!F])Ëÿf{êQ½­Ê¿bTi¿d+΄råxòE‡hÓ¿&5%D“•|B_PR¼¼þ·a¨0<$B'ww˜Û×>a+ÌŠ~ZÔGíλ…{C=cíNÁ­ÄRš8ŽÐôDh²§|<ôZz£DäQáÇn¸5”:±º+L, £Ì]y>¾{#(¨­Ì 5»wSc !ØÙ BŸ%_[ß§Í­•7¡Š©žóŒ@’dñ±éÀ„ºVo8F‹þ6ïàOò®d hAéÆö\ð`rÊî÷8%… @¾æxÕˆ\96%}ê™L U„t0ߪ£ÈÀÀËÛ¾tU•ÔoØO*±²ºY áf؉þ¾…é×$,_jº—ž#šjÙJ. ™{­š¿çd'ƒäÚ] úÿ‡Çûg%™ ²È#~‘mAkîrð&m£ ¸ÑqJœVÓî@ÀÛ˜½~ jýgƒ,_¼Eú KáœðrÒm+GR©Ñ‘—ü*,XðMòY¹bncsJ޼ö‡+ä¹m¯úç⺫éÖ«+5B©(—-ߤ^QšDÑVH¬Ú8Ðs䀰°‰›‘ÓЊ[OÍ¿N¬÷2ž3ÐÎë³¥,JLM@!~ô~Éò<(„x[Ãä[¢À›Û×4õ²åÜ™&þ ä^>¸ýåGí®‚, HÄkv¹0#5™û'žúL¼‹¬kçf#žE%BZ÷QÉWßê“KÐϵlpi3Ú¾ÕñÒ~GACY³¬^´Ÿ=Ðóë:¢nׯ‡’4\Fôï9Å:éÜÄýHµØš,~Ý݈äîEŸdð×TÏ d|`~ì})ø2Q2ˆ,‡ö=‡)0À…¦'ᵘ}ʧ ë:Š389ð÷tJ‹ääÂ:x24¤èr…bB_-5©aÝ•jþô®ð²ùL}6W«ºAWZpÚë7hеJs8.¼YƒIë‰Heô-ìî@*Â޹¬³ìþ i㾜kýu‘*Oe»ÝywM k£vÛ‡à7¯ö[G‘SÃ*œ-œ*3Îèô/e#îÕ*FC^G¶„&›hÚ» Ý1åhª=+¡zhìšØµ”EÍV÷ß…ŸÇ ½‡oì 9êm­mƒ:Ã)t]'9Zë6=lä˜yñN¦'òÂýF §d¯ÃßQ*7‘ÓáˆúŒÍµ^Îëá-àIÍÆCï;ÎëÜ-Ö飵_^ѺæpGÁÄÄàçWQbºSÞ’¶áàþ›'Ù­X*²’ýø"D"µ©)z-J0EÂDû"2ë½3×5Y :sµ’rß1]4ŸÀÔÇwLÍ«Àmæð¼,ª{xB5e”R’­¨` ËÚi1%‰,§¾E†€H›<3`ûÏùåò­Šhjoú)Êæ®ñ˜aY»Öaðð­GQ°h…ÿX£\,E Y)x¨‹¶“æ ¤}…×[xwÏI¹‡9kî ‚¸°/û+V©†jJQe$eGV ¤S!'SC〤7ýé%º·rß­¼H,Õ8úKS\æ„W ÂsÿM¤#Ëäο#‰†<ö¢ÄÊGOTý §¬çÕ®pË&RGVR oˆLÏäi@Y†&p"âäN|e7t”¡‹¢Š$5¨ n9xšÖÇÂ1]àÔ›øo6릛žû _a¶Z™ZmÒÕ9J J\¶à]C&y[^ùú¹»Õ“Ük™È¿Òà‹(G‹‹•6Þ w—äL u;"àaËÓýµª ˜ýûïK—™›H¸{ÊéÌyEBÎÕÓß>õÒv bXœe²…àLÝTõ¥Âr¬Úg@ÚÔŒ1k²­)A [æðÒÂi̦y¡½7Ĭt”@ ²~Ø×? ÍnäN®TÇ•º½¿*é×-Ñ•`úWºòoØB鼸ÌÊ•¦‡ÿ¤eÌ_òüµã²Sã¾þ«œþ¥è[KfP[ö=.£Sã2”¿PpëC&*àÅ®†½(™8ÿ`Z»º³ã’N:[È! ÞØ{=×àk/ÝÜ  `̹—¾¨·ÜÉ«“ú“^y–Á–…–ˆõÿ,p™Âë5åN Z —xm’~˜Ž)Þ' » ¥½Üóø_âeFµFuÀþã°•Å7ú=IQ§±àgçšg;ùãÍ.Q«UÂh{”½Zøƒ)q»W†_“Ó ÁarºВ˜¼½¢>ߤ©¦Ê¢VºCÉ¢ø~0Þ8 ™Ô+¹AN?û\î;Ü‘ìj†šÑ­nvYÊöÇ4_Ã& ¨S:4PÞùÓ ¼/­N†Ãï4Hþ½>˜ í½4-ëo}Öãñë´ ®hZÙyM— œy½lºpÙðþ$Nµ Öò„/r¨nò'l ³¶Òwû)ý}QœzMd‘¦¡.(„Mb\Kâ–?Síµu#Î74‰e+šj1­ÑðÏ–nÜF3/áãü‘†LϘq4kÍMÅ2+ú}/´ä< ÁpÇ}؇úšºóEÂÜšÃÌù0s ‘ÔàØˆØ±ü|ÀW °E¤P\ôxWýID&çìÇ1ïß™øhøŒ1"²“Ûbÿ«ïÂNdv¯lÚ8UÐi-›ûrí»¦Æµ’Päîøï{úÀ~éDKÅ-«ætèBñßÀîkºKƒ”U‡THs8h¬Ç>Ãà:'®hïM/ž&C†8ÇÁL`9Q‹vÀOu;(UƒsN‰þPÀ C×ßD íñ¶WìH³AšnŸeIà'ø–g &>€ºa‰g*ß÷xË¿0ƒÏ , lÙm« fÔb¢ÕuigèØ‘is?ssYZìÿ9Ïééb^Mà‰$¸ŠÙ©SdÓž{Ä7ví}pîê¨È ³™7e±ËŽ‚<Ç¡B(½çt™žxm¸™*/ä¿^àÿýc˲$ûù[è{$@Óž‡‘ÖLÝ€F]ÉTÚöóe\ƯIÉ‘Ò$ã¿RÓ V$…–fN‚0 ±Iä7•póyϧøm™©s*dÁ·éèº=xºo óeRß øW2|¬aF ð•ß‚1~¨î×mI1:7¬†˜’?¨ºíâg —ÖÊòîú™úµÀ7N!dhã1WiœP£À«ÔUj @í*+bÜÿæºn òâ endstream endobj 11 0 obj << /Type /ObjStm /N 100 /First 845 /Length 3947 /Filter /FlateDecode >> stream xÚí[[s7–~ç¯À㸦BÜo[©©Š¤8V;^Û{Æå‡6Õ’˜P¤Â‹Çɯßï4ÙM‘”)R™}Ø”‹8Î ç|@·PB‹ŒÂ £²ÐVX¥…Ѧ,Œ.á)ˆ ’0QPš$"(ÙúžÕB«è0Jh‚°Nh¼°sù(lÄÔÏAhï¢p > úè•p^è„Æezë( º&°Œ'fr 5&%áÁ§MQx+Œ‹èx`Óg0 >1U“lîÐg‡v ‹ƒÔj<«|E´ÛE‹.dÑlÀà˜ ‚ÃsÆßà{Ñ›³É@„ìÔãt "AUErÂÑ|`Õ90 V‡Ù  dƸe` —lèeÐe¨4C~´RÙ@{0ƒ7 jS¨({Hï PñLë 7„Ó$‰T®1(›ØÓÚC(4 H‘Z' ̨¡Ý`ˆÁi2ôâ‰OÚ`TÔXœŒFÇ#f6Pf„4LGÀðh#UŒH Li°’T„‰-i®’ÅÂÚ’ªˆe8Fòpm“HA™ž¶Z¾‘2M {eçȃŒÈ ]™d&wQàœ‹j‰<˜t¡(MCYM;’×ÝÓ¬¦ sk¸D'myÍÎ •zrW“©FrxrgOì&°§=­¨ˆ:ЊJ!ÂÚîL+zÕûúëž|óûm-äËêªîÉÓÉx^ç3a±Ë^õä«z6YLõ [Žž×ÃêdòY¼Wh°bÌæCçÞ˜ìÿà™Ÿb6ñõ×B>KŽzPÕp›¦ E„eþÜT¡Ü¦Säå(Ú´\ÇÜòåt2x]ÏÅ{ð}öTÈ7õç¹ø°\v«@ÚoHd©e“´¾”ƒô¾„4ŸŽáÙ˜»<uϧӺš'ã³j^‹¿ý¢U†‡cç9£ãÌ6¹ØÙ÷f8¡ç•ønZÝ^3ñÓb~»˜?a‰.ƒzJ½®¯úêI³Ö„šž¬‹FŠëÉ׋s~¤FÝ“/ªê3=yRÍjV®|V>Õóá êÉoǃÉÅp|E¼è½Æ™ÓÆñ?éGÚ¢Ý}ÙÙ®ºÓ4Kî(öwáÞ#!dÚÀ`i? –Õ¡€fk„<ý¼ò²9ŠýØBÏÜàßÀÿ_!›ƒ.]únÆl­ìÿÏ ½Ïh=h[‘ ÚZm„=ºnÿsãÉÖÒz”ïB.ººW+"ze°œˆîÉW MèMìv¨VôæU¶Öÿ±0u0×›¶ÔÇÙòK9쑯ÛuÞ îy%¥rvÜuöÝz8T³éDF'Íî7×6α7Úlz—q#Îý,½×Êû~øÐ{ï­íáSêzJ¾o‡L?‹n}Ÿ;<­†=tð^S7v÷t×^ïYºÞUy)ïdMî»Õ˜û úŠ1öéõ6•¥î•Ú¨íSjE¯o›ßþÃö˜”‹í­ËõÚ–qû´îë¦ÜJj¢o(CèGè%8jJa„ךu14õÄÞŸs-΢ ©Ïo‰Ñ²£ÞHí…½ônºé³ð&P›%£„ÈÚ’p> –ûô†ŸÊ2ú²WÍX‡Vì"¯[3nýc-ñ[Ê®CSvçÜÜ]¥4i+ùLe°à5ir¹lIO ¼!Ü×÷"¥ÒîIO*ÐXk )É“íÓ;ìB¢ùo`—5‘$Õ¤ 04*ÉBtì\çWáŽç'݆HDÔí„ †,Ù)×5çÊ$ÅÊ`„‡LúwÔâ`;É <±RlîÀ"}ØÀÖUÔnƒîóG $H„xudv”†–U4=›ÔY̹͡@Lré±A¡(úôNØäxÛUßFIáÏ ¾ÿ#,›ÈÃÿ÷ý•Méé{R¶w–ÃeiI(’Nl|²WJšìHÖ$-dV^ÆÆs–·ÌŠ\R^ê+d!JWø×Ö?ªÎ]t‹i"½Ôó™§“è(YÝÍOç7È'â'¯§Ãél~z]M…Í=ùcÕyx;¼˜_Ïø‹ΕíÙÇ6ІHiö$²<A»@ŠÛÏ@k‡›eeó*yWôÝHób’æy ›üõ;þG[ÍSN±ˆ%œ‹Ž)Ë<Ý2†»3—–·!|À»Góæó6 /o8xÒf,t6qTבÃn@ØE$Ï™xÖ2¾Y¡…Çn4Ë %—9søî´Í+5š -ßÕJW¦Òâ‚â_ûTzÛ¶îj5d’fÃ|uõÂóŠ+N•ŒÉv9:ÇÙ‚4æXL÷á¯ó³s|`Ÿ„5aǶQžlc#’Ÿƒo¢ %!q¢œtûò8ì—]Cí#ù <+R’¡6P:EH'{ÂeÆ“w3Ê Àv4sà^jI&±Ñ'’Œû<%°;˜’ ÓAÖ¾U÷ù™/ r”HÑæ¡Mø$a§¢Õ2†áDL¹’¿>$¼¨zÆ_Žp\H””sdÔ†è@;žertVc€ås³[I›¤÷Õ²f3[‚4­ò\ÔAxOuÊV+Nó®6„Ÿ)à‡g4Š5Í{-§.ÆÆŽÖÏ;·Ða2¡¹ Bljñ™"™û¡á1ÍxÜ7”£2{yb4èûzo$aÝHJ¢iáÅÀ  ÁOK$±üd¤EÎo ‰æKFÝìƒ$°Š¬P´X‚P‹n_Ë¿/Îà9à–2YËnGeqb« Ôßtuþš‰Ÿ §•£geø §9wuvE»¯Ê2m­KÕõAß9ìq_‡½C÷fw‡Ò À4esX¥ýYÎæE,Î'e×5y·x#èíȉ8$2ïž§´ñØfö˜0Íóû¢N­Ìjy¿<ü¶‚Þ­uTÀ“5ÖèÔ;ÖãÖ5›švŽÆ~ºPX†ñ–ñ}cNo ÔKÙúÅ ä€ÌÑ»”VÓ^¶ŽX”ÝýÎ’"/ÌD>…òÈ—ýp- _Z´æöå܆o•t³b¡.õ–ªÉ?ŠÎ «ÚýîS63v8c ¬fÔB%=Yc¦‡FN>ãRFpðDÆqð8ú2Ÿ#,}A ¼Šî.¢¤Y–¿ˆ(øæÅ5ei‰–Žûv奱ܾÊþÁ´LEøÎP¦ç‘†ƒ¼=ó(»œ¯ŒlæfÄàÝjn¢¢ÿª£TX=x­Àëµö‰¦qÖ3d\ÖLf³êçÜæuàØHaÍØUé³¼õlb˜Ãõ¶¯°[ê¥äõÈM]9PQi\á’ «ó «v”¤`Uà·º®Œ|EYZÃáì4ƒ$joæç²ÐD¤8½VïRZOa¶” M·WéÏ÷s»OÙå­”,¶gÃИ/`Yvëv)5ô ËŠ¥0|É”ÖD† º™nÈè都¿™•G7õÄ…š€yY¡Y“Ḛ̈»ÛB7‚zM›õnK™¹X¯[ïZ¾´¯yŒF7l«flwN¦YÚ­¢\KɽE"®ßÉgõl0ÞÎ'Ó‚v D~ûúü»g?ýýôùÉ;­Ð1ª®fÂuñðW>ˆ¯(P!op¤*þf6à¯g2(O«ÛgõðêzNwä¥uéûJSçù¼ ߌ¯FµÀô¯çõÍÏ”Ä{ò]3ø¡`_ÂÕ“ßÊ—ò•œŒky[O‡“ ùÛ¢žÑÇr6ü,ç×Óº~R¸{:Ĝگ}Àó%i¿ûùûççEZ³CZKÒÒ i›GZ•wJ{"Oå™üNž³Ô¯åYÉr /d-/åååP^?¡Š#ˆ¼’×òú÷Ûëz,‡r$oäXNŠ¢–ªšÊYÑRÑ“œÿ{"ò“ü·ü}]gî!:ûñäíÉÙ[èìÛbt–ýÿ6Ì ÿm•æTWgª£1äÐs±£0«» ›-nnøÛ›yýy¾.TxˆP/ß|ÿËï!Ôóó]BYÓ¸½ré Ž`ïs„¯ÈÛ‹`ÑìŒüà'øÀ;ö€õ¼‚ &–áŠ>ª§°ü/rTÝ|¼¨$}¸%£ªÙ5ÌþYþ±®“ô¼:ûñÙ¿Þ°NüV•àD\4b]~$dµS#uM˜ "Ì'ï^¼|ÍÂÄíöÕ˨õ# “ôNaÃ’YÉ„ë®Þÿ÷?øù’½Úå¹N-=We§Õ† y§`ß41ì[ùqì"Ù÷òù£|._ÀŸ—Qíä[V@5ƒg¿’‹O«Á¯õœ¾éZÖ§´»ýñ¾u~^XÖ7äåõ¸üùmQdýy€ÝÀ¡²‰–MÀm‰™¿È_›¸9"l®‚'}çÀlp­0ˆÊ‹5‘õv´˜ÉßÚ\ÄŸ£]|ñ°åC¹úR­ÔJ#GæúfX$›ÕŸê’Ï–÷n¼þ,—È?êédÝQVû"™Øµ endstream endobj 166 0 obj << /Length1 1769 /Length2 10560 /Length3 0 /Length 11680 /Filter /FlateDecode >> stream xÚºePZÓ-Œ$HpÜap Üapg€ÁÜ]‚w w ®ÁÝ „à—#ïsÎó~_Õ½5U̬î^-{¯Þ¿ ¥TUg7w0…H;@]Y9Ø€‚ %'äb9Qii5¬]í ›Qiµ Î.ÖPÁH8CÀ®/6I°ëKœ’ ïfààpð rð N Pàœ’`wks€@Þ qA¥•ppôr¶¶´r})ó?? fŒ>–?éq{ˆ³µ P»ZAì_*šíêfÖW¯ÿJÁ låêê(ÈÎîááÁ¶wasp¶adxX»Z@ˆ³;ÄðÇÀe°=ä¯ÉØPiVÖ.ÙÕ,\=ÀÎÀ‹ÁÎÚ uya¸AÍ!΀—âu9E€Š#úW°â_,€¿ÏÀÁÆñŸt³ÿHd ý“ 63s°wC½¬¡– k;@EZ‘ÍÕÓ•†šÿ¶sqxáƒÝÁÖv`Ó—€?;¤ÅÕà—ÿÏÅÌÙÚÑÕ…ÍÅÚîÙÿHórÊRPs {{ÔÕõþ$­!f/ÇîÅþ×ÍÚB< > k¨¹ÅC˜»9²kB­Ü r’‡¼˜Pÿ±YB\<@ O€q@<ͬØÿH¯áåùÓÉñ‡ùe?GG€ÅË?k È˪ ØpuvƒøùüÛñß•ƒ`nmæ 0…XZCQÿÉþb†Xü…_.ßÙÚ |ÑøÇç?¿ _äeîµóú'üÏûeW{§¬¦bþkâÿøÞ½sðø°rqX9y8üü> À￳¨‚­ÿîøUjáø«Ù—SúŸ†Ýÿ¾†¿wƒðß¹”^D 0ü£q ÐìåÇÿ³Òÿ¤üÿ ü,ÿ7ÿÝììþt3üéÿÿ¸ÁöÖv^¼hÖÍõEÿJ/[ýߡڿvV bnífÿ¿½r®à—=‡ZÚýç­]¤­=!æªÖ®fV‰å/»æKfg …¨:¸XÿñªX9€Àÿå{Ù,3Û——ÃåE‘º /‹óß%¥ fæl'/ìì öB¾‰“‡àÃñ²ŠæÏ?5 `gƒ:¸¾P/ãù,œQÿ¸Q^»ø¦¿€]âÄ`—ü Ø¥þƒø¹ìÿA/<ð?è…gúzá™ýq¿ð^žû¢9^TÍù|‰°ú|iÐú_ð¥’í¿àK)»Á—Zöÿ@ €úÈóB…¾ê¿ü/•þií…ìð_î—Nœÿ_:qùä°»þ“ü¥”«‡Ã¿Ü/ÕÜþ_’{ü9_*{ý rؽÿiäe(oˆó_Éþë¶ÍÜœ_Þ»?÷ñE ÿƒÿ|\!OˆêÒ¼ƒ™P¨MmhûMµ8‰ëîøÛÚ]ítFVŸ%ç·; äƪìà ç+ñ”á¬Õm)†K±eŠGŸ£–zäðÖ$µ¶{ßãÐÔnêâ$þÀDÑ‘x]? )«†Øžï£“¯V-| l§²Ýš}XˆÈKoXõÒµa»_ä¹fqÕqŸœ#H]«Ö/nPðS×zøÜhÕ·à l4Çéñs47õ. ï½%Ï€?|pêÐ êm)‰€L°U`´ÿÄÏóYFa.õ)Â×ïÍ;Ëáä{aæ ɘ>\vÒ’¼ßö çÈs :7R–t/lŒþˆ•Í&ÓW¯m÷Ô;ùU”ˆï=“uÏ–£þ!Ié‚‚1lEx¸)ú—û£êŒU µ0‡µŠñ®ËZQ[ßôµ¥[uïöO|Óï6+Ì®Ha7ÏI‰ù¿ï_çÚ«–3zÒßmÇÑqòú˜8ZÌ[aF\O<`!ÇX#ÜYô^”É‚bãÆ7~îjŠ¡@êB¦{ S ± j›åï}ù¹Õ_¨r%Ò»¾-ÿ1ºN<—ñãxzy¸~ RÛÜL2ÍÈÞ·ˆ^'1„<—xŽÉ¿›A¹š×Íg8tƒÀöÖRœø`úTÖïYŸkùqR¦\åžÅ=™F i6)W-)@ð„²ê0¤åB n-˜ŸšßE)í>Å(-}™â´ÄQ9XaÃ}¯ÑÇ—Dx×è1‘À(Ú_,ñj#/UË—ÏhË6ëãçKy¡/f¯Q•»’™Î_/ÅÈv}*ú¾ä›•8ÛK¡Yôl6V¹Qp€1\j7°™Ä;m•É‹¨Â¹´Ñ0™ON¡÷Ý]ó"sË®]Õ—–Qk°ÃþwëByÙ›7oéÚÁ¨û_ð/äc{]ÒCÉ Gk3½b–ˆ}}@Á1¼}õGÒÞ¥ÅñÙÈ]#„¥s¦?Öq#JhÑŸÓÅø¸ÑÄžað~p3$’¶³½…ý£0ù8mEïøez›Ù3Å}LÇ/¬VôÃ(¶Ì<¶$™`Z°Qc\CþLn<] ÷©ã¢ó–gÌÃ&ž%]"N<én?M€ïܵ=-œˆFÇ„mõæ«Cg·÷ÕºbJШ&·qmZQbL5~² .K²À'¡v4ób¤æU»”1âÎGô$ÍÍóK·.Þ­t‰ù´Äýº—ô ‹èAb›i˜\‡y2¥2¨ŸâS3Ìï$A•§öQ“k±ý™Ü™Ø]<¼aîæØúryTŒÐwèF‡hÊuÁsÕ²x(â –@|9µd¢sáu!¤´{w_៼ȳ2K;b®1N:aÑ"›ÃqŽr´Õ ä:î)#{|~õ°våâU Ë•°¼ÅدRS “º±˜3ï¾×Ø%\óâÓ§Mr­šØ2i 72T~6üØ‹ÉËZdÕïfª8—§ärD„0‰üX-EGÔ{*’r©WžŠ¶¯7›,;ec[¹A9ËQë §k!Iô¬Ü=mñ†¦ctF„ÙJ”V[8i³.¥<†ð:E: 3¥;2³]YÚØéå9“[¹’Ä‹r r»..yÑ‘HgPz_9Qœ`ü¬n“fSšÁð!ü¼)”)„Þ™&VŠº÷áè*3˧ lWáôóÒåÑgÝÇ £y½ùAíˆy=Q %¹°©fÓØIAƒ¹ '< +ÇçßÍõ®éÏ‘qˆè¥2"¨¸ aáx†ûêQõc~õ/XÔLÿn²¶ÎŽáæ&a7­T~>¦'θ‚WXéáÚíÀ>=;¬ *W±šÌȬk1*y#àž;ïÅD‚L/gïÚ‡)«ü \¦öàŒ¨h||¥µËÚÆÐD)ßФ÷ÕKg¥£”Ò°Ê{aUl­1ðó-:ÏÏH˜ Ö¸$IÅzcç%ÙÝà 'Ëà’*vrçý’`¬˱*UÚ¤ž€/æ?:S»<ófÅÍŽúÓGZ'ò tÍ×B™?Þ8Ę›Dˆ+Ý©š†F‡±B‹Â«\ ©Š#ì,é†g ¥i˜©¦<æ8SL*R(<ñ¯k45¬îˆÖìÜ;ÚHŒaog‰Fi%²2ŽÈ°˜Gš•bQæÚ—Uïµ>$ª8æ ºšI˜´Îåm³bûj+ùy¾èŠ3ôÓ&FpÈg¢1¢Wá$ϼŠJ9ÆÆn‚° ¢ ªnÐ3~3æ^"ûê§ ›_ÅÜ`>/bd¶®õwà PJoÀ•e臈ñ‹õ<$ BQW1“ËÅþDbÍÿŽç‰io 4Íó;´CŒ¢[êNRõY¤5Bƒ+w¹rlÔ ]ê£é–‰àÝäØR¯ôívìݬKê}ÜtmÈÁ'[é¢4æ´Ïô™;×ú?˜£'n³$M‹2/6&tDI¬`z·\B±} cÍÊN…ÓhRº¹ åCŠjâŠøÕÉÅwÕåo¨åwja~w?õž6“9ñƸ0ã:ïåß`'(ðé)JR S.,öä8JIEgm\{é‡ùÙ¢å>Êäç.##ÁŒ4ðF "…§¿aίýì|¸Éöü¸hôímD}@U›@ç®w¯ÜWJ„OÎØåNeGñÈTn$MCS!ËXòVEÁýèkv¼/Ë•£Ž8àÅÔW˜‚Û“ž·ƒÉgC;& HZ])§tRRp¹A¢fX„ó7¸è+iƒ||µ¬&ƒK4UJîÈ?È~àûÖ½§sé‹G¯äա쳤†šO„ë'y`ï„ABÍ—bÓf(®KŒß';pbl ¯µ•¡ÀEÔ¾îÆ„#÷TŠ—ë4Bí¸¨Ð§1—Ôø¡7u‹>ÝkÓ×ô=8ÉÚW…m_JÀÃT®Õ¥ÿ²wüæ|æP=eC&§åo¸¢ù\ÞR¬ï+c¦ÈfÎé-g+ ÚÄâTP‚ÑSŽØ6î÷Є ²n V|eñÏ›o,yÞþÔ6òe@ô ªï{^þ(@^ݽìÊO€å§œ{1/+9šœ˜ÙYžYLÑIO8 ·ŽHeèÛ(ÛÙß•°$¥Ã9d²FùÔãÌÆõS’[l% ¶E©gÓiãùh‘ÌÃT"­?¿.ÃøÞWÒÀž–¡m†ôz—#i‘'×+¿Ž„½uI«u»ªäb©¤¥÷,(8‹ÉHÚ˜‚Z]•d/¶9éáÄ?•ؾ×ßæwrvâ+iwR­E¤ÂïE6,dzÝ‚«Ø ½à¨\œ²Èˆyß½7tÈÙýëÎ|˜›jíþÐ&V€"O¤Ú›ÝŸìúQp¤„úIÁ* 7H ÁƒÈ®LßZ±7Ì]•ê·*íý d|Ðr¥_½Óëã¶{;Ô°¨L®\ÊÕßDΉ¡GÄ1Ö(‡X&n}ü”µ<4Äuf¥·šš*#Bþ~+¥˜ÍØ7æ"¡QCįF0FSo_SX¶~EF„µÓ|pp/~ŒÊeÆ®£R£õ~ÛGSª ë&Ü„'Ï ’I»©_ w·_ß©# ½¼ímË­›Æ5üòVUÂ/ôaÕ˜supÖöñ‡îhíPR#÷ˆX,—zÝT³èfoM¸B‰º§ Ú8Éú¡TßòåŒM’žŠ™‡âr ^ÊØÄ‡_3úÛ¦dŽ.)Ñ‹(Y‰H¶n(ù݆™+¾skfðHê§ÌÉÈ3ažÌ~UúâHx8t[+G*ˆ)‹¥Gá¦_[Tõí¬Ý†p®WõXÏ;çóM!†Ñ’àxFMqó}øÉÿ­égh`MøP­ÿœàSGޤ‡#U¹Íiµ8Â]ʸ‰:È Q£†mÚCù;Á£DM‚í®N¹ÿº›,õ!?Æ„2_Àsƒ]Ž€ÍRè ¨dA쳘x/ÍE†’¢î! uô“¬þD¾;ºðºÜ[…–f‹s‰J]Ų°rßaÀn î¥!šMhúªœ•2·h’ÑÔ;O½] Œ¯$Æ?Öï󘌦²|ßdŸýmä,Ä#J,0²øSD-[yAFÏ9äËÆuv‚eZ˜ã[Ÿ°cÌ¡ à¬ì˜÷z7펙boß,Ñúm-9¥í* ¦ÂPÞ<äQ³ýÊe#á´lϘ;«G%Ó®æb\Äíy*G°VÁ'tëpÑ‚`ùwïóˆrŽÈ@Ÿà­}vd©ë¹­ÐÞÃæ‘Xöû·£òe]øñ¾c Wì†Áï8‹ð!r_#IM)-;Tµ¢&ØäÄq6"ßÄ;Úç‰>+;Â=ò93õð/a×…DåÌ¥îÑ ;9Y²¼5—œÞ·'.ÌêÑ­Q‚«€"ùñ²ÏL1 ÕŸõ3šúb\˜Ì,/Åýím-ÜK%ø×FqBÃ^¿ÐpÔ‹3€/ ͳæsl*çlL VS,¯ã«-rìzÝ„o.¶Ï2ì~¶]Ö·ï(J}ìY˜dAðØuð®;ËjZ}%·å¦üN“þ¶îw,A¿–v^4¥ï,$S§íœ=ÀÏåÆk,'ó'ÊŸGäÏ`׎ËRzDÒµbäÞÁ~µË`¡Ìk¯ƒ"‰3y˜<Æ º.{¥HZ„í¼ÑNäLñÎîÉÑ3>G‰/y…Š%oŠåßµ/¯°/³@þ·…öϼB!±(îª[Œ82UÛ»ª„´˜µ†´q*®Aq-»Û„víâ¶È[ùoD†çsßo6Pø5ŠEO4Õn?#~>ׯ¥Û/eD¤¾_¬ÎŒž¿gÎ' Žçܳ6Îøü.ÇÛáÄ„ÔPâpÐÐŒù 0h*º5´‘)dä¶¡rW‰ØÒv¿`06ô„ä0@±r{nߪ…ú™¥XC¿ý©pizBßï»üu©iü-sÛ¡«qÃ4 }à§UÆåóÉ’ÎL3Ø›ÜÚïhòÐH5}ÈX£K§‚ßE’œr£Ãˆ–ó2 PÁ&*£¾NÛ‘æéˆùë›ã\‡Äð3½­4›?ØÏ}§•@wM¬&Ñ$ß«Ð? ñî)ÝùöçöZúŸ^ëÜÊôkìÎÚ—ž‘fƒ,‰3ì¤0=’šš»çC™£/Ì—ëtìpã$uÜ(p >Ê µ›r*ÁA*^ïF2An6¬A+:žü-âiRPõ7) ¼|¤<¯4©™MÌ ¬øŒž›‰ ÂÕ¤çªÆ¥ C ß¾)7`†÷wm¥(õý·ÕñIðçPØ5âiÛ¬Û¬§¾˜WÙ–ƒ˜¾¹ ñÂyéœEÛzvSƒËíƒZw¹µë½a¸&4ø|µ7ëoÎs`%kfœßÛÞ¸¤X‰4fš¼OÈÇ|V­fð·¡U­ kÁDmѶKQ š…ËÈ ßiø}ûé a-á3]w”•Û% ]¹8l VtpÌ,í]¬€™*:• Õ:zÿVÙíãeCØæ1âpW7nÊ4Œ÷{ÒèÜ4fª¤@’fÜåæ2­-Ù¨ŒÄËe¢†™åÜkYϨ-]ÌöCÚ±éòaX—xÖ^Gõh¤òn‰ºÚ<'AÔ`xOˆ’!hÆÇ[¢>¼UÔK¥U}žmù»µÉƒ Õ" eÀ6!Û–S…!^t¡/Å›ß û"<ÓØx6ïðfD˜‘ÃB˜¹Û¼æÄJñÖsb'ßÍýÒ×¥hnO¾DùBÆjò€™œp:–@Y\Âêûù¤¥äÌ‹bNƒms]îQ !Îm­ˆùÉ@ËfÂvuöÚµ+ Õ„ðt( âãÁU}”c× € õžZ€r¾RCoíwp×Uªáž–Â=zQT^^°5’ã˜áíŠ"bo–Òº,éS» uø¶ýî„ÿªú¸©k1¢9°†bJ~éÚ?6ÅÔ~œmQ²Wð-¯2( ÄÙÖmSÐÖäsPàn,¦ÎKõ·&µˆå­ÇA‚ö¥}´Ì5$¸„‘®ú%éL1Ï&SQޱêwåO“©ùt¶½ÐÈ«=pD²oPe¾“ôÄ,ûDâIa»›¶¹…´»ë}‚y1|:÷#=ð¼uæ£:Þ0Èû­¾ é\5¾¨oE»˜’XÚND%’-ÍTùÈDÜ”ñlž¡UŽ.ä(¦eï¤ì„´jê¾]WÍ’×…ÄÓUþŸwr§ùÜRnï:ƒG¦ìö8è¡ÉÞ ù­´yN9¡Ì}^·'û3˜JÌ¿”v+‰%,Çgà[×íÎÂ2ëÈ’GñU³ˆ]|l"ðwÇøi±E‘+HLp?ù54L>Ô°€Aˆë¹æVÖké8ƒEóg±2YÈţͫ½a>Émïs²|g÷Ôì¯ai|$`áÆÆæjéWü§Ñ»ªñÞ”š¼Oì!¼»!е¶Gh–º&ò¯•¥ç¹ÑÚ:"u#ƒó¼&;ªˆöx&ŸR6Â}žžvy.®¼êà©ÍšÆÜéIsvã\ál’)h#EÞW„p™“†XzVàÉ”ÜV‹ Å'!Ëë s=ž®_ázÅÈ®E¤²ï¥p=qÊo÷`Øào*¨1NHó5®¿ï—° Ùøç 6 ð2Ì6ÉÛA5Úœ9Äñ9Î\®ÅNBMFäžâÔj¦²*Ò܇))„2ÓmâQdß2‹Ðkq3ö¿ m4™ Þ](GušÂLÔ]ù½Q˜æ¥àð’²Áôj%p‘77$‡liª+œâö3Ó„‹RÆWÝÓÌÚñQ´3…à^)Sµb7«/r<½õ&¢„•/ºŽSد+d=¦Ã(G¤…`è)Pè|‰møÌ ¥he~z+_/¼ Çme†ú[—Pr‰k‚×Ä|á#%A)f²°H •-‘â·3xGg6@Ô©5Ô¼“:®…¶û9 àxƒ5 ÕËœäõRì\Nb}½î‚®Ê_QÒ9Q²x”‡4Ü%D *õÇ–ÏwØ Ž4•tÚ2¬ˆºà©Ÿ–±õOêvá®°Jf沄˜¾Ü¥Ñá?½jŸ¢S<7|Ã,ürt…¿ãpz„Ðæ¹ß–¢ÙœÐ:9ûh¹—!'”wßËÞ¾·˜—¥‰éÈq¨È:Ƴéæ `\Þ-Û‚÷ñæ{VÍØ¿J«rý…ÓB¦ò‰5Ôìõ¡€ ?º»Ÿ¯1Öpn )Ï¥•æCk:Eý«è;WíŸ1§$>(.ÉŒºþÉ:_•ŽzUÓ:‹11ÍlEúEE6¼¾ƒWxƒ “°hì~1ê•&‚À~€Z™ÝVŒo¿„hñwú¡õ§•$ñøÞO5>$2¯C¾Ô|‹Õ}„ÿ¦F}c°‰úüC]O"ì“¡òî¶“‰÷ÀµÃ¿$ †Ð_™Š?bhi±`k“?-O…ˆsîØDù ’}õ.«*¬ÔÑ+b×Òž#ö@tÇô–›Ép(!')먼@\]:VÖ›{Àœ†}µ…Ö•èH¡rÜWqp/ƒþApîQJaOýÐMä\ÊP›Å—t)VIÅo…)Léð$ªÏÅm—±›áîß?F@ w¨ @4¾ùP›^ÿxûÚª"éÐø5úèöÑ|Ö“g2£1?¾~•Q8IµìÛ~ÍõyÍJ䌥J²^\ÖÈ(töìÃ%K¨µ¹).Ro¸ä²Vª¢=W„¡à°<Üêò<0±ÝT+†æ¹®™Yì<àF µðèxTáÎEñ‡ÞÊ)`=o¯Q˜w9®¯|¥¼²V;ç5…$§ud/¯#šØöæíwE¬Áò$·¼j‘àœ• rÚñú‚ƒ!LøÞø7ÓøW cUÑçûBtšœ‰áøÈ6’·Sv¡²ZO¶x˜N¦|ËðûK“L¸M”Ê 7e¤èûǰa¼2]º;Ue ë’êep©6Á÷D—[pí´=߆̀é*®Z@š%iŽïΛ÷V­Ã>w? ZË„çÚTD£,Æ—>ð??ð°S­zVy B„ao!¿}é$—Gò’3Æ¿ØÇѨ4¨-™üksäƒÆšˆ¹MNÝÖ˵E¼ÍÓ GN]õ„S¸<þ‘—2‚7›ùà“Þ¦(MF•°Ñ(ÝR!”BÖê-ÅKô"•åO£×¢A»,p5ïûiøÕï§Â‰ m͆ SOr¢zO~LmþTh°nøºžÐ> cð:'Ê!“':µI+¥±h•¡o¡È€ói©HRáìkÄ#•ÒÁÖ,,IÊ+„ G-¥‹Aìënþ9“Ð^A݉ñš%ÇÒiZýˆGšøô‹Þ¶Znucǯ6ηò#Å<ød¾¾­ðH7ÉHWž‚Cµ$Žï8?n§‚¨Yºõ¬táÄQÇËÆ~ ôºªØr>ù„é~#¨¸ÓãtÝx†¿_Õ”•%d@ýZ?^,N¶ÚâMþKzÇP÷ÃxPNÚ?ß5è`Üì“$tªÕ}Ëv,ªuÝŒ zd–Ή'"‰'¢ºtª±gB¢Ó³"Ç€ ìʇ Æöúô“jz‰~À¹‰ˆ¤zpä !ãlÑA£®ã.%®O3ë ql“òíÊÍ˨ûU-ÜËrµaÅ­®Ø7ì«’‘kIKŒoÔÅ€Â7\Ød¸7Õ$1änè”òüÌ;Ô#%O5ûoÚî0à%ó“|Ñ(÷£rŸ)ÆÑÎŽœØM‘­iè¢ÓÅ™ªÒ¿éµçë牢Ž5.Q7Iø¸·¸’–@‡ÊKòñ“C¤5‡63l àBÇ<îÀ+,E´|éH¶‰ŠÉ¥ÌÀ…|ÊÛ]}Ëà¥F5Üàq}PääpAÏ ÷73*³ÖÃÖ‡¸Èwã#‹â {aáNµ$“8L_ËtˆÑJ˜ËÄ0½~õ-å¦+¬;McM9¬,iˆÕŒú>èÇþaSMEdÿ(ÊîYÜ$õÆÕõÔ° üwg®†Ð÷ ­3*ÈVDÇ«†¹M‚¹0Ò›hŒÓA5Æ”ÝÚR8mv‘ÎÔ¹E*Eo¢r¶Ž{a´ÓÚìà¾óq.}Z,JOGø†Å³Q)ÝØþ¨¿»½ eõÇs's‡%/ì)•KÕ<´‡Š<ƒ¡€Æf5ß–ïHÝ_QZæï‹¤à^I3a¹AŒQYmKLfäR?VÖ\¢aaSäpùŒPÊ݈SÅKð¢!1R[HÇiZ>L+®c-Eú£†¹rŠ<e­‘f|/×¹Œý#1šðñ <²B}YÙæ’\Û@!Ç̇¢¬ Ë¥Ghö¹àclà; 5óP1-no;î7º(¼7Q æ©îšÛþÒ!Œû'ÚyÔ%õi´ªÎRuÚ(÷ïi’¿vW…š_•Lì+|\vš…hÎêK"å¨qd¡Eò•£e„¸9;9²K.@¢ùy­º›¬=C¬=ãäÒ^è¹+£NsíßÝ<ÛèE«Ö³‘?«ý^–³SÎG÷_©òwRÙ§éô×¹È"zÜì—”'CØ×›§­5„çŸmÕŠQeœ uÚ-b‘‹ .RVw÷wÃw°“7l;1³‹Ï^žKvÉÆvêÔ¾/&\TÒ$¡ÜÔÊ\ß[щs›¦[«pÆ*Ž,½ÕêB®0ךâÆZ*¬ÍlŸàD·ˆpjlRzl¢ŒïVdœø$)^0ø´q¯JJ%*÷6ï‡_°³xÝÀ–r‹Þ4﵎qÝj`{íKåT_KªÕÜÇ6ºÚ¸bæd «ß©Ùx¿¬Éãi¼ÖŽ,ùê1á¥T×ÁT¦ï›Xý¿âë>ai h&þ*R-œ¬jJ‘›úz7ΙoBñµ^ÿ.ë°øâ,!P/f«vry¯g³Õt îŠ ‡™3Q;®Od0ß%aÐPß¼ÄÞÈZ–üÆ¡éœ A}>Li–ºíí¶SÏ¡±Š¦ôaü “Øg’8Á] '`Lç³qbqnÚò`òãEÎU¥CkcMÆD¯î¸–{àhãQ¢]άeË“TsUˆß…rÈEîéIEåsÑAxòÏû˜['CY½W^šòR¿XϾ ’ÛOSGÔÚûe’«áĶ0Õàh÷¢ÐvÀŠxe›ìi¤ÎfGß/Žìæv¡ò5?îwÿ¢Œñäø0áà]ÐUu|΄+€ÿK(ݾí}ôë+Ö Œ›Àh‚\•ŒòµôwÕŒn^A¨ú>±J5½:Ÿ+=ÑNüö±ƒn§©6/ôI}%*æÑ*ιœNGš2ìr2¼ƒõÞ(µåü–„*JÙÖ¤%¹#r¶°æ»l Î[¦¦j­‰™GÐZÏ0qøûê‡_Aàèw f¾í2ôÔÌ‚°Ðùç/»3ÒÏdr‰µ0¾]©êR¡$¹!¤†´™áçÒR5ñK64ø9Íçd‡ß Õ­5ƒVµ*5½|þü?*æˆÙ$âÓÍ@‘­±€“’fíhiw+¤´E·8É-Šõne™aŒ2aÀÿ9™aD endstream endobj 169 0 obj << /Length1 1687 /Length2 10341 /Length3 0 /Length 11420 /Filter /FlateDecode >> stream xÚ·Pœé-ŠCÁ¥± ÁÝÝÝÝ¡Fºqw·$¸»w×àî–@pMÜ/™™33ç¼WuouU÷¿¶ïo¯ýÕßÔä*ꌢ3 ìÂÈÊÄÂWTcå°°°3±°°!SSk€\쀉‘©µ€NÎ ˜ï_âN@S—™„©Ë‹" sµ°²X¹øX¹ùXXl,,¼ÿ1„8ñ$LÝ@E&€ tF¦‡8x:¬¬]^Òüç@kN`åååføÃ jt™›‚Ц.Ö@û—Œæ¦vuˆ9èâù_!h¬]\ø˜™ÝÝÝ™Lí™ NVBt w‹5@ è trZ~7 P2µþÙ25@Ãäü§\béânê¼ì@æ@°ó‹‡+ØèxIP—U(;Á+üiÀøël¬L¬‡ûËûw øgSssˆ½ƒ)ضX‚ì€e)&€)Øâ·¡©3äÅßÔÍdgjöbðGå¦)QU€éKƒµçlîrpqfrÙýn‘ùw˜—S–[ˆCìí`gäßõI€œ€æ/ÇîÉüçdmÁw°÷_À¶°üÝ„…«³&äè ”•øËäE„üÌ èàdaaáæå@skæßá5<€(Y‹_:ðõv€8,_šú‚,/?ÈÞΦn@€‹“+Ð×ûߊÿFȬ¬ ¹ À h#ÿýE ´ü¿ ß äÐgyá+€å÷çï'ÃzY@Àvžÿ˜ÿ1_fIM-1qåwvü·NL âðfdg0²q²x98ܼßÿŽ¢b ú« –\eÁ–ïŸÅ¾œÒ vûkþ´íà¿c)A^H ÐþÃqNó—/Öÿg¦ÿáòÿGðßQþoÿß‚¤\íìþPÓþ¡ÿÿ¨MíAvž¼pÖÕå…ÿŠ—-ÿ¯©6ðÏUZ€\íÿW+ëbú²¢`+»¿ä,òZ¨€\Ì­ÿ$ËŸrÍßKfU Π߷ €‘•…åt/›enûrs8¿0òðeqþ;¥$Øbñ{ÃØ8¹¦NN¦žÈ,/Dbãäx³¾¬¢Ð㘙À—ÀK{¾Kˆòï‰rq˜Å‹þD<f‰¿÷‹NñoÄÃ`Öøq˜5ÿF¼/–¦ÿ ^³ùßèwWÌÿ‚¬fà?ð%ª¥%è_jv³Õ¿à‹Þú_ð%í¿_êµû|Ilÿd}I þ|I ùd0;ü ¾$rú|Iäü/È`vù|Éëöd{Iäñü¯Ù˜»:9½ÜNlÏËàþƒÿ¸ @ 9òÒ"Äœ?Ħ.¤ã¦F”ÈqwRpŽzW;•ŽÑ{É©Óõ 1‰®:3hÝéJ4i¤ce[’öRd™ìÑûgkbx[‚jû½ÏƒqœÚÌn;ò×iÜÁ©ÂŸ¢õ$¯ˆ5Dö|}´ma[¡?ËQç:ºò ©äc߸÷K{Ô”}[ÜUÝ«æ’ýP6Ëø^3Æ °xž:Ï,kŸÁ…‘‰ëÔ}þòj+gê™L.î²ïá{ö"o½ ¶· ^«lÎÝTzø$°—Xã3o½Å¾'Ëá}ñ.ùÑÂ4Æ–ÿ(—ex‰üUŽœÖh7 ÏÛfR¾Qâðj#ê­0¬slï:ÀéÔKªC¼)zO;TWÚ£G°Í^•’8‚Édƒ¡wõÙçfÁõHn¦8d€:ÎÒµÖõáS 2-Ÿ–^vY¬/ƒ«‡úמ®S«|ÉH§>žF1]L]´ƒu•9á$éåü\ øo*iÜ]è«={)B&ÑÆH¿:Ú °Þó£Ù ÜÄ,Ji(nÝOi•(ÊÀlRî|™ñÔ“îL4?‹!רÑÙL¹öµ²uäÍ’ÁÂ;DÅ»ô®|dõޏº S =ºÅIî}»­½ppÉøýŠÞcËz¶c#¼‘DÖ=Ùu4^ [‚gñT—] ï»[úÐLÕ£,)ÓCèdz5B³ÎPQª¯‰áaý`¨M»+&øŒA£~ÌlÉdiTÈë“ÖâŽXVJD€®lñ¡à‰!„¸[=&á: á]Ž•éä²Ú1E‚À©½t@?ñÜf=:aE¯±("ö€Gµ$ˆÄ€IÒêð×lÃñ~Æh¤Šó>?¬½UmuGæàñ²‡¤úÇ´Ä‹nß|*«XËV%ðW´Œ-ÓOø€VÝÞL6HM u‡QÏ$•ì–oíp®f3N>LÇÍžÕ>i§Êá[ˆóTt‹_à¯(A¯RC²JØÕ»ó8ƒÁ×E qÞQÒÃ×£Q·è‚nKŒB#¨¼8XCX~"-ˆÑæi††r„ëøc:_q çž}u~!•A-¾LgÃUê 7½”´°< ŽÊwÆÏZXCÂÆ˜bôö4JRmÃIܶ'F' p•F“ôß@áëüž…ìCÈ×m´òæRÊËXÖ=wô«e€ÈýÞF€åµ@ÊGíj©NÃ0Ùš©‹¢[.Ì™èIgwò©D|,ez^ÅÑY ˜Ú<71ì˜ËªM!:Ëâd°¡¯ÅÌÇH±åzBÐS'8‡=q[Ɔ?1ÆÅ•XT)DÝ÷ÍN¨i>¾Q!t;–7OŠ)õT…±|ñ»(’)|¦á¶Ñûþ‚…yãC«®^^'äˆ_; ж²ùrü;ƒÆcMˆI0Ù>ñ«:øá• Ä/&õ”>ζAÚ¯V¦ˆÝïÁe+ƒ ‡Úááޏ ðŒó1Ëx[讞!Cþc £ ¤¡1%²5$ÇÕ½R¶ü(×j$œ‹Ë2ß |b p·ˆ×}C»ôùƒÁÚ™,òcaiå¯ë—C¤§ÇÎW4‚ORvlo¸¿ôÍ3æ}zê†}jT¶Ì£«…Õœ·”äaªG•Õfñ^Û’žÿtšøýU#¶XíuÔD¨¶¥uû*&ÚÁç-yãõðËÏŠWK>šQkiå ÑôGôK§=³*ö]Ù5N¤o6£y¦˜uF5Þpwª…ˆ1»â ¸ßè°^ûijE×Ú‚®­%@¿z>3É4øKô¿°v‘.l‹ÊvÉa«²žÕÜ홵k]Ž̓Ô6OŸü ÆÆw`cxŸ)iˆ Š›K³Ñ–_;LTÄÉqr–× XyÁrÇZIËTFL‰Ó~Xš»_nebÌ“Ø @š @äi—[[Ò3ûZï/=ï§ü¶ý6(td@wp[psðá‹èª'b 1ð›–‘”ýJ¤`ÁqYàÝÝ BLqºí8ÓÕÉý®Ä'Z–üUÁ€vó_íÏ«$Ê£°[f‰Í3ççôËÛè~ð2Û®K‡ |À/ÕbõÅ££†3êɹZñù¾Õ_²¾ Ý#Õõ»*ï¬åÓ׿'”pÐ*ô“'TF§`ç0WPàq³äØ¥ØhME´ÍÖeï.Î+Û'†4—­Ï,wmƒ¥,LEžÁn¬î†sôfxZͶ+xíY‹+1íÑÆCNÕÞoÉ6½ûfYÏÌ“ŸœÊSvH{]­å=úà<'Fôu°ñÕÂb×[’Ðøcðé2W}VÆÎe ¦÷xKèe{–áÛz‚äD­¿ŠÉÙn]‹%™Äæ€Wn¨©nB´S•š8ÔyXïˆ{v{õ>ñDKÄ2î‚5Y¥›r^ŸEM —J­<*  И “Ã6é/¸¡Þš»kðOxÙLèD4¬è¥qÉŽƒß4G·!D€Ú:NSm+5DôšÉà†°@‰mlmñGªÚ››W*ÒæM2âH—* ÂÍÈoo¶ˆaÇW‚xûçöÒ‹,^-ösšáî¿ëÔ”xòÞRfBÏ|·D ª«”×çŠWúr«i¡üiÄVÖ>`B²ôÞ'»R.r;?¸È÷¼ƒN¹¤“:¢ãƒ'½OÎYŠÂð¨ I¢Np· Ù¯CSºŽ•XžhWUÙ„p‹$Ú Ô¿‚¬ö&?8Ýo˜·óc˜¸z»bwmÛå>oÈ2Úwxx9œœáBieM‹ÊŽz ž â]•MPOs9û_ŠJSʰRwÊ5 ›UyÙ@¥Zg­c2aYÿeÌIˆðÂü—ùMoÈì&éÖ_ëŠ}øÛW_SC§]ªPÉŒ…³{ÌÝt^MøÙD‚ÖrÉŠ†>E,b3à‘Œžiú¤]‰Uc©K»¯ ~ƒ§²y^Ó<¦añ| Ø‘€ï˳{`c’gH‚‹¦ã¡Ñ„<Þ~m÷Ðý¬'ºÂ¥U¤€vÏô†Ša»0ý¤û)ØUTáÇy¤KåÓsË~¿•ì)¸~1Üù1oáÁM/AR¡-rÄjZÿºeÌs¶­*fGÞ&Û†ºC ­…{-½°ªyX¹DK€)ÍùVŠ:jË…RfÉ ‚¸pc높J ­$It£…”€À bÜæ÷KŸŽ×Ü®£–fÚ%QæÛÅÏQÅGߢQUZ˜G篫W¥Åsûqí ¹U[ìXµÂ#UÆHñ01h¿4>¦Þá8“¯2C£lu«*œÃ[|‘hd W¨À¯Ä{|ƒÁÑD †od‡4|P„BIÊúI 8óÑ¥h„{õSúœòb!JAmƒùSq8²MÓjãIÈÝâk‡¾Œë[åêïíÝÑ'mŽJ¶ßú3,`X76Bû…<› õn@° ˜ M¥(è¶Á¢Š½¯j¿À=¨Úb†¢øó*¤Œ<ì‰~Èi»’s»d=¶éFCÝú¯MÖA¤bËqW“mî¨`R Ò’ÁøõTŽÃ’(ƒ³÷ Ùtfü¦s4—ø1u<]à1ûhœè¶fú‘çÛ”Èök¤—+ÖqðfiŸmÕ2eìxÉB=3 &·™:y5š %“>rå–sÅσÅOú×»q{ß× ^«5>"Úãuäl`ÔdzF}VV˜UÏùæ$‚Û¥Â>Ê:?î ¹VÔ `­ÀcÚ‹*⸫JnëY…v.žÐb|øJÐElíRÀÅØò¾¿ò¾ž¿ ñ¸®¾#·yøfoÌWÖßiø%5º¸ÐªM×ËÑ$ ð‘àûê€Ì¤˜"A¼f)ƒ9ËNÄ»œ‰7ƒ‘ëyé~o6ªÓ~ ‚&Fv=$LUÝ-K’;¥Ê¾µÜ–QÒʽ¡õî<#%7y8£;*è²|Tf†Ør‹Ë_ÓÀ5]ªËâNÖcJ€!T~s†]¢hYãÕ\äDvÖìè>IGÞ=žL!|e/~]aíA޾ªv lÉgQûæzÓ{¶y‰x“g 0ýI·[î7:—3NÍÓ5±sܰZ]VÞ>ôœ…;7tûòµºÛ»)k‹ ‘µ²+Þë+=@Ðük qÌ·¹)¥|1aż!q?›¼Ó¶£E;Ôíµë÷R 9)¢$Ý–v#(ïh‰—­Ïò2û5ºí40ätšÚxÓ:Iä"ýRî8Ä"·KߥzÚX /ÓùeW;’«¾9qqä Riïv={})·ê9qP? `H;œ b*=~™ö•͉FE þœG}—´æQ…®âñT;C§rØmÝ6èZ@y ºÒœçNÎǰSœ_ 7\’‰¥jµt”¨ÙN|=˜-ŽˆÌØìà2âš(x/+AÖì _ˆ—REŒlÐlƒ¨ÖÀH• Ž+#LësÃÜY[Ao¥>œÖ©£z¶'nN`™ð7‰^)ˆ•S2M†"™´ågš“C†Ë;e)ûBâÁ‡›•Jêpþ¯Hqô«.‡íˆÿË>Q»&5S„rækÜ“^¨— Žh\XÎî aS€·W¨¤î(ìŒ{@ñì]÷ó˜Q;÷e‹$:µ½þÒ÷FÈ ³Ôaj†Å–ä2"GÎrSŸ'Äû¯>“uÁq}{JpÍ»•œw½”!ýº¸ü†L>ì ù$ìh2¾üuX;îXHo!ˆ5þBaÜåÛ,³2îtƒ.Ôsú›g‰&Ò*€G/Ãq€•ï×Ê$r¸\³À= z¡>²¤Ó¾”5°è{M…ÌÛ)‰¯Q¯7’Mj•ȶ ˜>>‹w§Â¬\é…½J2’u±Ñ¯ž-Ÿ†%€D¬X¾.ý´¥ô…¤W±_H;ZÕÞ ££xNûŽ28(_<‘5f£f2OlývdOQÊjÝ|˜)Ò¾öæÌfn?&ª­{Ýócû^²“÷Q†H*ǘóÊ©ÞÈH¦×õ©6½«–ü¨%ÿ5ÇÂ5Vé—\’”¯RpËÈ“Ïtëù^5€ìùZ^ô~ûã„eÉðšŽ/DWÒQ¨“šô)šŸBœõŸ?0ëš²0ŽÀT‡ÒeݸBßM‡ïÝxÚúŸÜ ýz›#_6褎ÃÑÿAiªårxUШV…}±:PŠhlù#–’àÍ­-‰O§Á™%ß!ózÃ×TÃw—3‹Þ ã¢;¯“ÐÆð´çº)(¡”Ç®h‰²4± ozƒ¥£fŒ¥¬¸wl›#…[  +.€%ÇÆµV‚îDE4:Ŷ™Š ¯M‰ßE< ß›7ê­ì[œ€ïœIð§ØÛ¯r¾t,Žkø~aÔCxðóÞÅX@<'@b{kùŠ–$uiwIƒ˜ªíAý¤>6/U&p‰x"€-+jÇ;*þjT¹’ØÕÍò1=ÞÏZO\–ˆ=6[ª~ÇJ—váP—ÚYjkþ”󎟯žO_¯ûJym~é¢ç¶Y…ñYW³<ÆL]ÉJZ˜U·¥Öd"u«ë“+ä厖ŸÅ ¾Ê¹ª –rHF·G‰v~" · ¡å‚+WOùœÛö…†Uôéðô:”a×-ÀØ7›pdçPÀѺö3‹ë° wÏ'ΟÃ]eº‘Û§ZÙcƒ½“°bïÔ†÷ØuVB¦ïø–ò™)üƒPo ËÅ* ª@ðy㊠…n"'—Dø8Å·ÇexÄòOF]¯F™îÎ9ŸLÉŒ¢cìnªÄŸÙ;ïa­U5CóÛQ|J¦‚2f–½&¤Þ¾†ÿð“OòzŸ5Ý–y‘•úöô;=Ãþ ¿,jѱ© 1Ù-V;XÃù‡Êxg:êf|Ä\­_ Â1˜C¹‰õÀÃmA;™Mf%Ž0òÍaÄd[áÔ+Â÷àX/)מDUWüõV\a¾š,Ì‹æLñ&æTíOtf€I ";Zô«n噞h—ÐBX j­ŠqO1Áë¬4$úK³¼yD ÷šm Žq,µ=[‹[°öY­mµ{8öãFýÖϱtU–UzÏì¯@oÒ ´1鯏R–mçQÆDÓÓ¦¿ñn •µÁŠØÁc—sb/HŒw¬½a)ëq“Y7¯¼ $ sUt(¹“õi”`JŽ{Áí¡áþ<âµ½éÈvª_«ÈOÿÊ릛§U,l E™ºzwÁØ×ÄòxOðCyâ9V¹(æljz=ÆeN£ˆ¾²ŽÔÞ_š;á×Å9gœdhŽ@D• 1k²|nãI “F¨ÅªeMÞ!(·OÎ_{?;%j½M ¨ÿ¼ðYµr½vl/«kõ“´‘d6ÒÏŠWðÑçB“m1ÓZ9æÁõp&æ%y§¼u ±ã¶gjó‘U»á.†çOÔ…Ãß=VUo(¯ð¦2 dJZ3?*8Zg$kƺ_ v*ÉÅò˜›——&øî"j”¼Yi¦d•„¤¤…È$æV7†HÂ9\ÑMr|Áò’D#öÒ¦îD7b’t2ÕÙSiM¨ÍD˜s<^—ÎûvHD´åJ¨d„ô¾à.»/¥’÷±Í‚(ÿÞƒ“9Ì$Ø+Càae¬ešª!†H¶˜dæÙ # #oçvHùVÄúÅÑKŒ>½´\0æÙ c«&ÃR³ç7gi.£®có,‡xœ±)_b¢ÃaÆÑ])úvñ&À”16n&#®8™÷rÝïmùF9oª-£–m w'OûèÆµÑ”µ'«³µç¯ûªƒAv!åJÄïIZh_ÈBzÚ÷Ý$Av¯ç&¥cΣr-EˆÍ@»dÔMÅÉ3 j#ól`Ü ½Ö9IðfåÚGÓ¦mDM”iGõR¢·îŸÉ¿ Gð!iÁ © £’`±>e(ý0v¦Ôפ À×Ë¡>Â8oNR¸ó½â+|W»i Æ®DÖVì G'†¥Ì®Á)")R³}Øæ¿»,¤­[õäþ.˜9³v£$UŸ.Á!çBOl‹ÃmáÈ'~ VåÑÁ‘âÆŸ†œJ·-°”}·> ]ý^©¯Õw)ñ]ÞJ7ï“T©`ÄÛ›¨ $O<3À;&L £/É¡ùûzw SË3¡Ý‚‚jÙõ2Z¯`/ŠÞrß…Yu”ðˆ"[RjÉãB±ÂŠdFj„ú@Ù#ÍãJÍs¢¼ü„Wa^‚œ ‚þçTÚÈÀ}>¦¤cz¤‘È©ñygŸvs¤mÝÆŠ¹þD‚a÷~®§þNn‚Íy¬™~¹¾¼¸‡d§ì×"IpW8‡[bGsÜhgAÌ¢¦ê`)Æ ¨+–#üÚRe9+G†ÚyŸŸQK—›œj=PcÞâ’„ß])„r’èÑàë¨|Ž+³è×¾x.¬Ÿ-m)éÖ,¾³˜øÄDí,æÔMpfýh?0PZZŠW±¬u[KX½;ò1S $Äç™HôÞóx´­q‰æèǵ°‡y©É~©‚¨fÔ"9ψҀ,/ï Áºîw†€-vÀ¾cs‚FÓ6E†N(ï`~ ÁQÄ´]} ›<{T窭qGÆðÅyIJb-,«rM•òJªi¾4K(ñ¡â®?ÕFÅnrú)Aæ–qoôQ’J×gŽ•=IõbÌ…ƒmг"³þg¾²ŽØ²jC»)~^‹ü÷1Ý8+±ØA8FêGAŠt ´µ¥Õˆpà?|».¯£´ïPÍ¢vEý™á$eó‘ªPÈ¢hD{ä¶°;k÷˜ïD9„uünºá…\Sý܀¤wìÑüv!«¢¦Ybjt‰V˜ô‹tæâ £tò£˜ªZElùÍ<¸I°‹:ZÛ_êðR[ÉÚ d÷4y–7ÇÞGwÐeÙ–9õK#”xÇ]˜O¯Ö÷´“_–UµF5¹f”TzŒwÉÁ½€ïpƒn¯uԻĞuœ+w- mà÷÷–d‹À0q}¶ÍĈ5[O¼9×ÞŸv[+9>×\ógÝh§.ÅÎÀ“ãŸÖFêU¹¡4å+•6ïʆK[¾a1sËûsN¨}˜"|µïs×°¸>»×ÕÅdjÏã2ó“>ce&çv~ý)bã…{º_ÑÔʯC¬1Ø7Í‹쉑dâåỏ“Ö02²èB›Ydô!5$0i4ðÜ_µüáà°5˜&Q‡c;xoÓµ MÕý"Ó‚6òZ¹Xv‡!×C”7ðtRòl}ØbÈw"²^âWˆu"Á^öÝmñfÂ8Wq6„þkLåÇü \I?C½vÞÕîêb?K~{«w °U'”âè´ßÔÑ—šÝ,êíÄ»6áŽëÃOjBÐ[mþœ(¿~eðFce ŒDêŽu‰s-‹l]ú‚u(NŽ){ÇšI([›]ÔÌ‹PJFœl6;¨kÎÝF’`Žë’Oý ÄSÀ·x³Ÿäì®áÒ>€Gx?=6šUQFÍ|k+¤ö“¨ßá«™¹vi8è+UMcÒ©ïuêÝÌ’ÂUN÷!Ü¥µ ðŒB ue«Å ËDìOOõJ¤0¾o‹ó¥”ÒУ Ãý´ 1Tw€P)ƒ¿t­COºvѶVªÝy1º.ž8¢©©ÖîÎë$üÂvõ%Ìð"\ÍS %Ù<ÐRÇý¿ pž>I¤‘3ê:&}"Û¾Æ@ÑɶWÚ7Œe]0‰a^uCµîæ™~Móïƒ-ų };c¢nK:„Eô <éÒ)’s[IS"/.25tý‹Å *&B…;„j™™– d½j»n1oO¸‡iób{=òבÓU8“¯ºÏ®ñû~ÚQƒ}°\n+Ü{-GÌØÇjãì9Ù}Ĩ^5‹ß)x’íÍÔÓjåa)EUpL2pH”¯Iã]¹{–Äúª·˜>Îë°ÕOœoâÄR̆ˆ[ÁÇú¹â¢÷q©¨Ôœ{™g°$J¡yñŸ•: 4lzKò) Þ3ôq™‰Ë){ôÇK£P{,6O »®È¼í6û‰g©g !EH‘~Óü”iïíòãKœ‹7V ïºQÝÛD‰e¤Ã-’´¿'!,BÈßW„[ܶ%él¡‰L“Sï4‘©¥wݶ}òÆf›wí&ÆFB ;~÷èŠä°8dáV´ãvè:míE5¯þ¹„Øìöˆÿœ×P¦®‹$^Ff›¤Iš°±{-v8«òZéKƒ…n‚’VòhÑŠŠnjÈÞ¾ô)13’­âîªÿ½Œg0P¨ ¶7»ëÆO'l$¢’2|pyÀaÐùñ]å’pd&@? çÿK\6Ê endstream endobj 171 0 obj << /Length1 1436 /Length2 6439 /Length3 0 /Length 7414 /Filter /FlateDecode >> stream xÚvTZÓ-MJ@:Ò!4é$¡ Ò{—Þ¤… @J¨¤(MT.H•®ˆ"½7‘&EŠtiRU@öG½ß½ÿýÞ[뽕µ’söž™3sfÏYáã22UqF;Á5Ñ(Œ(D ,T30‘‚Áb`°8€Ï ñ„ÿA|p_%÷¿x58ƒÃÔ¡œ™ÔõóB$€i9ˆŒ ƒeÿcˆö‘ªCýÎ@1 .÷ð©¡½‚|®nÜ)ÿY`‚@ˆ¬¬ŒÈow  AQ@(Æ ŽÄƒzMÑ0ô¯ònŒ— EúŠ¡}\E€ŒÐî ÷ñ‡;• 4„"á¿ ðÍܾ`S´ &êâO ŽòÅ9ø¡œá>@ÜÙ@S}à-/8ê±þà_W„ˆAþ÷—÷¯@Ôog( †FzAQA”+Ðá ÞÒÔÃbD€P”ó/C¨§/çõ‡"<¡N8ƒß‰Cš*Æ@(®¾¿ªó…ù ¼0¾b¾Ï_‚~…Á]²ÊY DÂQ_À¯üÔ>pîÖƒ@¿ÛêB °Ö.”³Ë¯œý¼@æ(„·\Gý/ øs…c€R`0XF „{á07ЯàfA^ðß$äŒË?ë…öºàJ€‡"\à¸Öêb|üà¡ØÿMü{€@€ÎèwE ÿDÇÁp—?{\ç}ÀÛ`œð @ð¯Ïß+;œ¶œÑ(Ï Ì7d¢j¦gl ü»à¿)UUt +*.—!qq  núï(FPÄ_Y€ÿñÕA¹ ²’ÅÝÒöÿ«û † ðß± Ñ8ÅÂÿÜ,†á¾ ÿß2ÿíòS÷¯(ÿÿw>š~žž¿Y_ôÿÁB‘Ï ¿xœ^ý08í q€úoSKøŸq5€;#üÿÍê` ¸PA¹zþ}‰_MD ÜÙ¹ý‘ÊÜü×€y"Pp#´/â׃…€ÁÿÅᦠæ{4|qzüMÁqCóï#5P0´ó¯é—’B}| A\‹q;) ‚CgxàoAb(4çÄ• tAû~õS yá†å wÁü¢þ ¿Ð?½û–ÀÁž~¾¸¬@˜ô?7€ `¸Ïà_yÂü|pá0¿u„+â?ûßO‡¦'Ѱ›wÝ_ßm>®Ra ]Rã[µÌÅNû´øý¤$I|™¹às¤’ÚßIýiECàPy†ó»Õð†$¦1Ù¸é4äÌ!Édtµ 05rííð³-•êv26Q3åµsï‹Âü6]¾Áò®òµSâ†Ü÷¸µÊ˜ ñón£¤ f~Ò ý»£'áF»«¥×¦Û½IõŽî{ûŸÛ³j:4*ÌѤ»_j,÷ÉÝU ]îw̶×Gõ›%L7€:ðîmR¿¸Úï§îL=%ñИô(]•ÙÆÔ%ÈO’b#§4°s±¸qiaÔðDþ"72Åúa9ßjÉ#U†qL'«A‘õl#tì`ŠvÕ,óR°,ŒW‡oèÒ{ñ±‘Oµ¨mòð†E Çeg`϶ò|óøl6Í‚®´[øÞ‹å7•™ª…¡÷ÄrÔm<‰h§IÿÆyz0¼Õöœó€*¿3¿‡œÜ¿qåfôR5ÛÃRà‚§°p\ë ‰ÿ2§õ„ÛùØ®ì<¤dåÓšª^yË&±T£_l8ñ“ÂV²Ÿ}i HÜ¢½žQ°¾•åé—=½Ÿöw{Ì.Ì$WhÙLŠƒ™çãêÌô‘ ü£ÏÆtõ¿c‹¼¬7eÀŽ|Å9Xôª({ÿlŠLØ~³~Ò_¥º€Ö¸Ð ä,÷gÛÞ±ªÓ T!èÿnù&÷IßÏ ÅÀµÎò¶-©Q¢¨”ƒ=®€ü1ûÍdŠú©î¢)ÿƒQIÑÂHxç׿±¦BR%IÜÊvºÒCõjo¸wGZ'ÍÓl¤Õ¢ùy¥¤;»@ÞÃO®%I ›—*3"­Ç…ÁXaC±Ÿç5á=ŠÃ±±ü yu½:º§l]»÷1jܾ^¨Èª<ñHVâ§‚ÆÙŒ{åäá¸á;qÞËC½0¡€ˆF¥ üƒkÏ6vyÒÞäEÉ–³Ü<¼!R¹"øÄ(ˆ’\&6ô“} ÒUs7{ªWüg|~ÊóªÀ0¤t'±¼…½ž'!çP°Å£ •ϸ5ŠnPiQç¯õ|î®ënUuo¡\oŽï2ÍpL´µ§b¹|r*\d—à í±â7RsO™Ñ"Q d­y™NËk?¤fìQRå~ÜbÓ^sýèrFÕ%¬PN´wYxŸm—,±yAži:‚>ÍWN û~›RkÎ.°°OJöõ“ÚP„W ô€ä4ï8Œû]p†Î¹‡ŒÆÁ.gžŠ-0KuˆubcqÚO*–¾Þn%ʲç³÷j(õXñs§äuR­%Ÿ"Ûé¬RÊÌ>}Ax@g1SÒ§® UaŸqÕDØúlNžÄ½@Vú"×›çr`¬³>€£«`D…ƒdÖ=ë-ai¯ŠWÆÿtNàœŽÉº¯Ï ž´ì6Ùxdº¤„çG{‚7ÓMqN°nÓÃYU›û‘„z³2ñNaº¥~&¯7Cp+[ãûRai™ÚæGãi¯åfØÇ9E¬|ºµ(À–žè{5¨é§4Cò4Û+"§Ÿ1ü´B_Hkù Ë‹{¤W•>¯n¡ÚTò°Ù9U™œ"M™Xl–ÆQì¶Ø¤I ÒP’¹ÑcaM€/€.«ÁSlpB]NØ–;»¶d«Ï\í¸Ü x³@šyèu¾3ˆÙ š#cY@ïP)žð±%P‡ô—u¦Gíå€Ûê™bi»˜Qš &±–]üò8»ˆ.=?×-¾TN$WÌ»ËX@ ýíß¹E±<;c;Œk%¬¢?GrëlN·Ògo¤ÙÕ~ÑL2®bE0£±Õ”Ò}YòÃÜ5WޣƻOŸ¹«Zµbmòûó±F7ÊI~ Þ+­Ê3rH1±hw:_¹—'P5ÄzÕÖesÕOÆ‘ÞB©—»ºÿÄ-å ’ EŠbg]ˆÛg÷8­®-á¦í=)¿°ÝÕÛrœÂZjár¯5…¹ ©#c,w¶bl2Ìé*eÓáí£á\䬰BU¹E76±ežÑȢķS‚µA Öay…o˜\fjZF&øú¢Žƒ9ïi,‡+<4ØSöÄû| OcæÕkýÖKw刂9Ö6oüTnwÏ=ys¥tAnâ'p¨"'/ŽzcÀVJNÖÊ|èO`’µàÊc·G`é]“½gS_š´Òþ¤c56–§Føtc/ˆ;'Žtëµ;pïroŸmæ$6y0åNPêzyªÝH Õ­ãb–Ù øc/R‹Óï§!À—!g:v6ÎÏ׳Á55èÖ5g ]^åʽû-ÑŒ äB_JYZ³‚ö¯SÓPèåR s}+˜ WnlIzû¥‹iV:°[©¤åk†Ý—²T ²' M°T¾•ê½FTRrÇ»*ª0•;xïÂG§?¬ÿ'o‰¢ïÉüÎa!ñp•µréIc_©Ôϲ ê:¬NËÃ)Eº÷AWÖ#_£GÔÞÌmGqªˆ+´«ž(í6wp›ÄÒT:\úEÂjOx‹i„Qè÷ÃéfÒ7JVñNï%£æB1?à9í„Lã3—uúð­ëÉúÎ6ƒ¡âÑ–ß³hĶ$KF‰í6Ùó °W_PŸÙ³QªÞ¹+s÷¡%dÿ…ÐUuy£È€»ÝIÜ"y°n+ÝqjÞñ—ÇŠì_éÕYr•Œ.÷0#èüÁïzñ©‰úñü°òøÃ:v¼Ãy²Ol 1y÷‘Lô¦ÄŠô¢O¦xB’Rܼ3´|ÛB¸:Sp?ÕñP£¬Œ®B»±í7‹÷XLÎi HÐÍå¦4±¢âa¯/>)-ò –üjÇýšÇi™*€P›Ã‹Ö 7|‡·äNÊŸõ6!Ï8~< ÓpÄv"ÎúÑl¶+¶S¼Û6ÀšRîÐÃA·Ï´Xá1,ðBó @­ÜÊ9c³Æ“8ásÅ Û”0UzÎ5˜þmÐwþF3™ðÐÊ\ôÕ´TDFýô¦ºLCÿ5õ³¦“Êï<«/gÛѧFà1°Wªüý} ÛˆîéÊSá)v™´wäMÆ?Hƒ£Lºã®3!ÔѪ³BòòP¼„âN ]Y­–œ{5ô&û~ûOì·ìÞȈóD¿h‹Ù”¡_­3Õ¸Ö$UU˜z+gjdÏüœú…7E5µ¥-ÕÅ;†¯«œ¹ÞñÅŒŒF xï0ò‡ nø+5½ƒK&"þ/eîSi8áEö¬5ÚHÑ+°*ve¤“dî÷LfÓò04¹™Òš¨To+ŠwÏG‘ÞšPò¤âöž Uÿr+:æÐÏãPÒ!”s¶7‡§Œ¯ÈѰ-ö'ذ‚$’ºÉAmõù´ªü²B…ë–Þ-Jè'´…k‡+fpÿèRû£ºÉG·»ú§q 1³4ËeeJM‘/Gʳu‰Oz»Yî¬?k³ÞMgl—™°7Çô~5pl¶™î?B?!£˜5´‹.½øtJL©fº_àå490ÖÖwiÛ7Œ=éa,š]×5ÙSó»NvRÀSoJ8 åÐ=½»¹<&Š~Ê”|kÈÚ,MÍn 1Þ úùöË)PÙ¾¦8ƘÚ§ÆÈÇ&ßÄ_zVFKr×±$fç&@¹ÚRmnà‡Gœ¸µö"uJ¢ï–ît÷áxrú­E=ራlš³ßÅÈùô>í\~´œ¡¢œÙœ·´¹B‘êc3¦.80yH_œ¸nö ’Só 8§¸ç³u”•¶ŸpSs„Ck²ä+ÿy+»Üëž²Bg†íkV1èæC»ÁÒÂ@oÐ:„4æ¬ÑQlÈëä•þÁ«NÞÜéÌÓŸT¦­¹µRÍßû ßšñÑ˾‘’üÂîkï";ÍŠùo4õ{¥>óú¦–€ð"d»ˆUΉdIÇù'Õœl@$²Åq¨ë¼=ºyßÑëÉÑK‚S4^ôµÐ .ÛvηVü†ƒÁtSzÂ9ôU22?›YƒV"µ× ³hôÈ5QK ìÝË´¥²Z…žŽÉ€#±‘ßžN“%Ñ4öØ HûHÕüœ‹ü€ ¤‰s)gâ|[‡&qÂtúöþíýVÇiÀ¢Ä„ûqÂÍ(lÚ6+SwæbüÇ4l~kIÛÃu)ãë¬h`Iý*Ú ‹Ç{Ý×^ÈááÉF5è¾Û¬íܵ=^Fäu7Ã’›$Õµ¾KÔ3 *åKÎ&!’6ôJ 6µ6ΊnîÂ\cŽ>—RÅc{Ì$\%¼Õ` èK†ô.í)©©ì;Õ0ZñCà綾‹ÂÇdõ×ó¯xB4ÕÚÅ’„æ0,ÛüHz-øüÑ ¯ÈâÛ1”›õƒBÜM·¯WøÈõ >õyâ·+:H¯QZÃí£¦Šòu`=º»Ÿ=è:v<Œz]V®<#ïôz¨Jþ=(x:f™U˜ö5î?ÎeððÓñY¦drâÆn´Bƒôsô«ÒçŒßNžMPV²»Œ:$'Zou€­´Ëø$«„ fµ 1;LÀ‘„Žû¤¡'žáß»gš¡aª…çö°$ V¸›á4ü=ÜUú¤ýH‡òÙ½xÅö5-¡[™ù¨;Y‘6þ@wÙ£ýHãɳùn‚w ‡†Jg¯­”ë)’ƒk0Å+W…o•ÊI5“Çlç°“bYã^Þälp««ó3^üªé,^ÆÚÉÝÕ²@>¬P€Ä/—Mއ}wéw ¹£´@±šZ °f7&Vn"°Ë:|Ãl$îVúh¹)hõÕ¶-ÙÐFømZ¸=ù&J/{A¶^?¢ƒ.¡Rˆ¾Â±Qô„"\øaÇ·ô¬=¦J÷ž‘÷³Úß¾[bl~ì¾ù¦Õ®åâɼ½Úº¥’ùÍåÀE*¥®FÍ[&ݰìéšØzžZ+$¹Ê¢Ë`[á5Xd­(¾@.;ó’T'—òÒ‚ˆàk“ž2Pè§³ÊØ«¬»±¶›™¶V9+*}mYw$³ßÛ½ÜI Iö^‰š‡´ >"Ï9¿—ëÜ"M$&£Ùè¡¶ZăLéJ9g­1Á³µº^Åýd‰òެLkç\Âó4c]h_È1ìÞQ¶má#|K WsØVì¢ãµ:¼SýVÏï‚¥(ÊEås¼¶1|ëCfRý•[jÒ’™'Q ¾º¶™Éè0’ðñÉzçº(Õ©FᡇûÚðÖ'$ʃû1ëG©÷#xBØó§û5*ïÉ~åéÐLCZÏ–­‡…ª{½H7c3“¶áûz:¢M£>ëÁ¸— –ÈÍž±e ¥PWƒÀlE²&ì·³ÞHtM€a›’Ó“å;Ixzóg/í«ï/I8íñ©²(ó–8×nóÞØòM¾oôÎVl}¹/'ž:jxý›7 Ñà'ÉŒÃDÞ|@©…µuç[íZâFS`$³–¹°Ò£Š2éþϊ˾Øýëu•eÊW­‚i(>Ÿ¾æùH«­-¬Î—àofyë’©D¡!¹æ½±ˆlÙ|’<Àmn î¦äsxvlúVÆvjüBBŸ“EæÑºköÓÞêôæ-"Gc½¯8m÷wgRÃ]Àn‡y¯€áò•—7èóï] Ššz °m6Z8ÙVn°Ñ ÑŸ‡¼¿k{ºJ­UÓiï»§1~ð1ÎÆåü}Ù—xU7ê]ü)*D§‡ øfrŠnEŒ©šY<&bÔ.›µfn÷Ò 5,ô¿Fzµê2KD—ö[ß;‡øRÌåvÕ™[ë7ª9ÜŽÔ¶$R¥í6vuY:î·²…±Ò”>ܾø~–ðˆˆ Èk䟇 ¯WÌ f|G;Õ»ê72àeßݪœÉã0"/¹âD-r)Zîõ¢óža¶Éå O#ò½aPGÌÔ ÓöVüÕ#’RÍòygƒçÛ‡Y“¼”;?˼ÄnÞ5ÅãÆC¥²#´›œXâýù)Žg`·Ê+} cj/ôÍÝ>¶âÌ„FfœK« ðßXPÁÂc˜Ç¢Ý{8)"yˆÊuœ`öâDùHà”î¥ú?²#ä\“†Þò¬KxÝNÛÈSúQ3 Á²þ¸»5f 8hºÿâа¡EMèaÔã»õ²É( év–;x¶pׄr².ån.OžÏCyoÇ"µïx.yÝŸe$~FBWW'šÂ…·ö ƒI“½°ùÒsÛ5#.Òxs%*<1u#VùÇLµÁæKO’ñšyÚCŽwk›Sj}ßmDÚ{Ûn}7'”«°¢¼îÔ½ÅD›A¤y ªÀ‡yÔ 7s‰—˸BÀ ÒÏ[mTýS³-ŽmÇL ^A¥+"Âm{¾\§ º6áÿ—fh'Žé=e—¥ë¦åh©úS9ÓX1ôIX0ª/éêÍq¶OI@e8¬k n[BžyÆß°kŠ5sí ËðƒšÏü ¤Ÿ‹=dëÇ6œ­Jß•+§ŠffB],õ“t®j+FW CcNåó˜ ø‰¹gÞ|*Ø[Ѿ۴:þüJ–j&â¬xá‚F¸V*sèËÜ8šÑæ½Sœ¿í|K§‚£½ˆYüwŽË ¢snZyù“â-ïz\俊ƒ¼šœàËŸ)¼Îõ(ÏOÊMw…©™˜YüšT>ÁôçJÕ þ¢œºU˜ßCÊãrÑûÑ<_ú‰.î*ŽÇ3ÎÜ–V[Ý5ë._j ¿(b/}¢”åöâ»^5É(ÓÑ Àb>žôÉŽTýât»ùåYµ>eÓ:S*ÍDßàÛÓÌ’+hŠú-c£„äoõ¯ìOž¥…èÚÈVÌè ʼéÞÕmyÈCûàùæL|„pÿ×Ö7ij2d§¾Ô7ÜÛÒÚA1Кx*èF%X꘾04”Tý8‡±,©FQÖû;(Ÿ?Ûz§åÂýú]PÅö|­@[ÓÌ%)5—/6eLô¾Ùœüã许ÇM ·Ýø:S¯ùdÔ›ª8`ÕQÌ&·c¹Y·^jJ8ÿ#b>Ï endstream endobj 173 0 obj << /Length1 2607 /Length2 16915 /Length3 0 /Length 18425 /Filter /FlateDecode >> stream xÚŒwuX”ïÖ.ÝÒC#Ý)ÝÝÝ0Cww·tƒ„€tw£HI7ÒÒHsƽ÷÷Óýóǹ溘¹WÜ+žµž÷…š\EIèh’rtpcbcfåˆ+ª+hh°±XY9˜YYÙ‘¨©5¬Ýì@4HÔZ WkGþ¿lÄ]@¦n`™„©ØTÑÑ çn`ã°qó³ñð³²ØYYùþÇÐÑ… aêa (2ä@®HÔâŽNÞ.Ö–VnàHÿó@gþÀÆÇÇÃø/w€¨=ÈÅÚÜÔ hêf²G47µ¨;š[ƒÜ¼ÿ‹‚î•››? ‹§§'³©½+³£‹¥Ð[F€§µ›@ ä rñ¿Ë(™Úƒþ)މ aeíúo•º£…›§© ØY›ƒ\ÁNî@  .«Pv9üÛXáߌ€ÿ´ÀÆÌöݼY;üËÙÔÜÜÑÞÉÔÁÛÚÁ`am(K)0»y¹1L€¿ Mí\Áþ¦¦Öv¦f`ƒ%o U˜‚küO…®æ.ÖNn®Ì®Öv¿«dùMn´¤PÜÑÞäàæŠô;? k9¸óÞ,ÿ±­ƒ£§ƒïlaí´ø] Ð݉EÓÁÚÙ$+ñ+°éÌäàbeeå,Èò2·bùDÃÛ ô/%Ûo1¸_'G'€¸¿µü…äëj긹¸ƒü}ÿVü7Bbc­ÍÝf Kk¤?ì`1Èâß<.Ö^}Vð²Xþùež3 £ƒ÷ó4‹”𴢂 Ã?Eÿ£sôø2±³˜Ø98Ül<n>n€ÿ©˜Zÿ'‘¿\e,|ÿÎܨÿÉÙã?ƒ@÷Ÿ=y øo.%GðƒtæÝ€•‹Õü‡íÿ{êÿåòÿöß,ÿóþ¿s’r·³û—Ýÿ˜ü_¦öÖvÞÿ±°»xÁKáð¿MµAÿÞbEÐÚÝþkeÝLÁk!ê` m&>fNî‹­]¥¬½@@k7s«ɿŚ¿×ÎÎÚ¤âèjýûª0±±²þ/x×ÌmÁ׉+x:ÿ¥Wé¿£J:˜;ï;7ÀÔÅÅÔ‰’3ù€\þê¿.Fswp›Ýþõ ßšÿƒÿõfyÌ‘–ÍÂlºîêD‰<™v'8ú¸5o_ÝÉ8‘âì ·™¡¾*áÛ–qÜð¦åJ¨ŒZ ÕèC+BCF$IÆñxÚò‰u3Ãcb…cBÉDž07¾SâG9G ›º`í#LŠÅÏÈ?÷”9#¯¼Õ¥ÇTpÄ $¹ÓÛ?pV†#"­,ªFT>XxˇûòSYÆ.@•nn¸G‚Õ&$2YîsËô=­œrËÉ/¬ênL“ù…~±7\sÒHn çfDºå<ü=ãŸÙ¬ºåEz ¿0Ç|¤Ý¿b,þµ¤@I%裊ÛpÿšZ"!µp:ÎÞq#§lèä)49GÆ¿€’iƒhá|\l%ó3Þ'§üx8ˆ{V†î,sæ³õ̘ å.L¾Òûw¸²T‘â‹Ú1“–‡2á¢í­'·¯vI»RÜIFÆMˆºOó©Cn¨Hß‚4ä´*÷1NAŒÈ°.Ðʽ³&ò¦úEħ~ StÙ£ò› Ø’Rú¼]lí¦^©Û´KEóüæý3†zç½U{5Þ“ŠÓl Iå:>'ÓM¤“†!¢Õ/T‚É袆S‹ûs…¤³roAÕŸÉQÑq¬¢š·ú4ØŽOÏPfe ýÛõz!^+DÇè¼»`„jÍ3ª„÷îg`€?hiÌõ± «Ïчè:¡¼&“¬:Dåˬó·qYKžÎëÇÌ”¸~´I§? ‹¥j¡Ï &q«Þ 63ãÃÂïÍ`½ñ>Òð#¯«ò2Èl"ëe¢/&o¦%þå×´‹Î‡Þ‹Š:¬ÂD8Õí9€寯º“'ñD5מ©÷Nr˜Z 0V&âZ×XÂ<ÛÞ“-hXžóôç{o0‚´5ƒ­lß8ÔÚ³2«u£‚z_#kxä(˜†nþEó†Åpvî35¾:3pÎÎuH*³§'›•õ匇œ´rômÔMIæî†%–;×Y…%'¡“@²f2‘K_ùmÃUànF \©/4>bMëÉ‹ô@¿ž­Æƒª¡¸";êG_¸œŒbå9íií×ʵÛÀG˜zVW”«¯?ýìœzˆ£’ñ½•B~¤ôfû`¤u{H ¾ŒšÛH‘ѳŒ6ܯd!H=éë‡Ð8µ$Ò±aR›•<K¤×‰Sxˆ¨bÞd{3.¹]ɤ‘%gu4á߃¿ i†WÃPõ¯’ÙõL[§`Á+¨ÐÐ?4‡èB&i˜ÇZ„ÄE’æû0WæÊŠÈÂM7ôw–¹5rÖKw³»’u=m…*¼ˆ£Uñ¥s2Ÿ–Vÿ<0ÿ$ÚKÅ7¯–ä“´*ÙÝ Dø¦‚Ú…›_ÔÚ…j5ËýŽd$Àt‹ÕyÜÆ8œ Yèþ jÀ×I”=†šÐÀ!K5BŠv_›3‘«SÅœÿ"Ÿô0G!z|çùGm€/?Dõ’néeî·pR¤Ï?ú‰xB†ÎB¨XI_‚kžN•Ä£éfí?ÍÞA@|Í®gõ¹ >û4mŸ3Ý«/f]ÿ„¤ñ‰¹¡­“ǸXø ÎóýLÙ¡¤bOlÛUuÓÙü ˜ÝsFïloèNëú³žik §ðåø5£/{-Šƒ…4ŽÚ¯ò2ÊQ´Š©W¢•/KØ›,!Éï[0hüÞ{ÝK^NöVÇ }Ái”+-¼á ®Šfý4¿ÜÜïr¡j¸§Óì3í“S¹¨<…ŸI6@Ÿ7Þ““%D‘º.#!XÃþùÀŒO“qQ2˜|ó‹r%œÚ…1ßÊA2Vk×üÛo%—ä®ÒýôYןÒY"\룗Ž$7[Ð Ðu0Ê‚FI S,V£¡rb)ó„cµ¹?p̕Ŝ*öƒCËa&ÂãðQ ñÕ)’+Ð?ÃM 1s4ÑB]­Ám¢‰øµŸa˜¬´˜¶Š Íf/Yô¯'Ï4"KýŸ Nž{Àï4R›O.È&rЪ¯UrÚ­ÑÞ‹ƒQc<ÂYU[ó+,níoêVO™†~쪻1{W<¶Å?P|ó³´¹^·ÚðÏÓÞ–Ë;$ù$ >Éqß×b@ßLŽôŸ­2ÛÁ ›;OØ÷E7qàÝ™¤z]³û1B“JŸô¾ÝêÀ•Yò*ß×DþÂÉÜì§ÇE¥obÍ÷L&lÇŒƒ¼;㋇•+3ÿ9M õùlômÜIÀSî ’} }hÇÎ*C²Œ1çxe7ôP£Õ">Ѩ—¤)îë{}+#cgZ³ÊOŸÓÛ¥R¯W‰w†'91äà¥Éß,»”ïTªd™•«±ß„çVö¶å2 r’å-Ä̯êc°E°àÛüªTq@c(Úz˜YTÕ1WtCÎø-œdIÄÎÃÁƒ¤Í‘•Éj¹;²_zòæî28+(i\™%Æ:;Á¬7`p!Òµ‚H[b¸RœÚ-ÿ8 ,ÑB }çjö™kMš,¤Swöû­&Ó:ô¯©–ôV½ÏJôEÊ'rvX7‚°_^°¢ i˜ƒÍ‡_ÌnKÝHÚcQúBMÃå×ù+p¥ŽNVˆ“!wøl‚ETbß¼7Ë~ Ãݼ^1š“¦ÕKhœç éB*Ï‘¦‡þtóê.+×6KÑ& \‹€ ¶£G07™©3‰¿ƒªG>$_©ÍÊ(ôŸ“’謔!L9&|¶Í&Pæï6IJ¾âƒñ3ÎUƃQÅ©€ÎIד+Ô|É×t~ØÅs±ÁÑÈ€xƒ¨ýÊVò}G"2’Òk»h3 f*Ĭ áÛªdÖ/gŸÛ]œ(Á@ŠðôeJaêç {¸깯Kí k.´Ê?_pUɺMI^”&s|7f?w<eÂϼ%Æ,R5“d”EaŽàðsÊaäÜÖ¨zˆhæ<~%Ž]„ö]Õ$¹©q‘ÿ ÐüfUàõœ2~Šq&”¢úÐ[6ÕþZVp·)joüÏxžf•÷˜íYDÙ >3M(#(ü/nI?ÜžŒ³z½ºew‘SyS¾•%!«ã]…zfÁðt¹ïÔ „¤‘Ý^Ù‘]ÿè{B=ËðÃüé0š7ùEJÊ+.:éyØ*Ù1§Ö@Ìz¼‚Í—Nj¤¬ÿŽm‹‹Õ£P&¥3,äüÍ‘IžìÖ¡øÂ¶@xèÿ‰èÓâK¯ÑçË«;VØ<ß1ÐÎãqQiµ:̇±‰ñÓX-Ë× !ÄŽÚ70‚zƒ]ÈîèÈ7ߊ#µó4çOônà4Ž)ó”è1üõKˆÛ.œÖ¦úïD­ðtA‹­)% \a…„ý‡Í*›zH!ݶrŒC|\«É xAÈÇO¯¶„°Â1ÜË‹)²“ßû÷WƒÕ‡©fÓ(¨÷ÈÒU.R«ˆ2ÇŸõ.!CE|ŠìP=í£…åìß´º7ü*{/Æ©óºìš—o” ˼^aG2aÍÁEÅCrÃèÚ$î}ˆ™~Ôr–Z´X¨Ig‰FŽŽÔo2ÞöZF°sˆs Š|éÂÏÄYð'Óú!3_þ«euuLgØér9¾zÕZ”|EÓêØqçn½–ùº’É€¸y1»Uꙹñ– Î=i9”é‰@_Íø¥…Çk!ïªa_¿#éê1o Ç6¿°2Œ/è%0Ë”¼®Ϭ}lTÔuž úHuò• dþ†ÕcfäÆËG¼¹&»— ñòñð/¬ô=JêÑS€ƒì­þbÁEºŽéÕF5mí]‚e÷g4ñ÷Šãm²å%¤wt’e(ß×j­ÖÓtA‡ÅñÃî»jñém"íª'§Ž<ßí¯º~@Å-¸:âÑ%¯†^¡ñ)úN±‡¾ýÑ×€^ç‚Ïù*R…aÇóˆÒYô;‰A΢÷8Ž}í+ý…aÁq¯‹,¨CˆˆËÔ‡^^¢‘—J€¢‰Àåµ±±ÀÂy^yG2ÑÖ›[Ûµ'ùdciÄ×Àù|n"ÙEœI¯Þ#÷õ"…HñÊC>îÎ^øJÔÎ=«b=¹’´¾9ÎÅ™NQµâÛ!`G0fËmæ;b$=“l¼’nRr–-LU Ì.åªñåP_ûk-=>ñü÷ÐL&‰ÅéõYeé1Á,MJ˜Å ˜¨SL _[c»>7½Í¼71­Ÿuc ö^xÒï !¾}håè> Ÿf!‹ÉiÄÃTÙéu ›ê PqråÊ›"'és3§~?6ЬVZS¸trˆdéWgÞè½PêQ³ºù^#rÇzù˜Ò—ñ.Ræ39ßÒ",\Uî¡§¯8NëÁY6lÙó8Ðý÷67®fÑŸmàµ\e¦%h‹¼¹‹é¾9ùåF‰3ÌÆF<[EÓ7apM”…Ƕ®ó0 B’ubë·b<ß>ŸS~þÆö”­I/Ú'G¥¤TÔ}ì÷L¸¯¶âô}¹ δ¢qÞþ†‡•P‰€ i«¸ËT\RÞ>[:;ºGª_0îñˆ¶àÁ{,Pïe‹žåw˜¼a5õ¶þS‡S™€ }^SÉ>wkÎäû dÞæ²-Îç€ÞÌùY’Þþ¯ kr­ÍŽ‘+áü¯†¹¶KL@%Ü|¦î _+QYÁÚÑBE™sj}>&!» 9Y™æüºbaÑuˆ=•!íy}Vx¿h¯êmUvÕ×ÃåŸ(q@ݶ-„3…ÛT®ƒ¯ðby-<$JkÄÈc̸#/ Œp>Y&“d ƒ¹ì-!WŘÈ’ÁÉO £&¾£M±_xŒŒ=ùA^¦a6ê"ªvmW]Gd™SÞìj€Mû»gÚþ閞<•Yý>»“ÒŽ²ÁRõFô“ÉÌÈœKH ß´Öö¢Ñ4í4ÒÄÉ=çqñevë{}ÖxóØÒ£Ó¡2H#ª_ú` Èx\ÜMËLtžoÝâ§]yeN·â‚ç2XÇ8ƒ'Î÷¼“*'Ž”ñï ˜Ð&õðœ^n^ÕºÒ±TƒÚˆv~Âû&êg#o©Åϯ¯Œ.3aù!og}v³D]»¡†¯Eps[m(YžM÷’¡,×!žÃo WMŽ×;jg{"A9fîH½0.rçðé÷ò+g;OÊs4Qýru ºz1@ôív©Æà$‰@´–'re|-9‡NŸA²KpOotÚÞru$Ÿ/¯ÔGÿ‡•„Uj¶.£áhÁà-gͱ<ðÛee¨êÞ¸`.±ç¹*dÐz Óþg,ühø7žæ/Þ·Ï4'”\ܨ‘x@\Ráv ãJ Oœ QFèn“ZÙúëe­bVRÛihx)ËŒ;épUE1dÇžg‹]aÄ’´»{)CéÀj6C²‡Ë…±76öÔ—¶ˆm€dÚ%F ©1v-±bê¡ÇRu½$Cg-r÷Ì›ùÒ(/ ŒNÚ‚A57;uºž^ç8W:Çø”éÌÈëï:}'1·å6Œx׃uV.EÛížý§(qÈðîî›…—q|»yµ*’W}sÖÓrU¹çÅoz´óÞãÔ›[t±‚3VÜ´Ô~ª |ݯÅÏ#‰ì0€¡Þ<µ×ZÜcž¨êOï? †N°„õCçM[ÙŒIÏlÄHúDõˆñô}D‘­®†+u¿†úUL¾»,à๡Ãú¼ê™&¥EÇT½egÌM˜Û.²òãÛJˆÀTØíì¢i$_‡ åjµdØŒbøX¬øL>?¥l½<0áZPÆ»2Yß ]ƪ&Ú0Ÿ½QïŽÝ¿ˆÌ–¢Ü횥;ñÈ—WàK®E8ýP!FÏV—³í[ç aØ%b|ÉϼÉ?^DþŒið ›‹ iHÔg¸ø âšÐüê›+õ$Þäh¨3ŽFÕdÎqK³z_¨„Jõ… FQ$×Á©-D”Çrñ_UË—SÐÐJ÷?$öø¿™jý’Z!VZ®yr:²ç®Iý0®ùpfø3ú[[mWì‡DÎcïÔe~û)ªøwÈ®P”OŽS Ç=l¸ej"Ö]Ò,šîõÜ'–_æ´eU#d¬_ÌM*h|Üý«; ^BeŒ½åÓÌ&6[[ëÁ[^Ti5zÀíïWp°ºPÈ+ËÀ‡Þ”Ë6›ÕÈÑY©d[溲¨Ú-Q¹Óð·!K+ZƼó£ÒØWoJßÙ½éHiÔ‹jÔ´XÛ ¨2VÐÎ>ÁÌúÐQå§–%¿Z1„Ͷ>ŸÌ ÅïjªÇ^€+²ô”V×Kx1G^LMû£°Y÷¶±¯—Ìê‰5f{aù±Gz†™b«@óž*Åw 4^¸ø-bë#ÊõúÈÄ®ªP­P¢@%¯7jäÛ@†þôç÷yG˜*I—Ñ+s–Ni¨;£”ƒÓT³“šbúÒÍ#’”ã—þü‰!ІÿgC41(mq"Õxçˆh]ßãhåbÏ#Èäë1VíÉñ“Ïhú[9þ†÷‚g/[pñ=˜#E/2÷½»¥<ï.Q.õäŒSËùŸz .¼|äuZý*»ôÁñû…É¡Ñ÷Ã_4Ø¢Áž ¸T‹‚Fäkç>å 7cD(%úKãÓÅBÅŒUw=Í¢ Rê÷ˆûnªIÀZâ!õw ÒÌ%Æ©§ÒgÐí‘ ;èfl¼»®—®§õø Gu¾&ÞëƒÙGþ~©ÂeÓ!XCÉÍi1ØBW»§Ù«N.ÏqEͶCëF$¡íݯJe† ”Õ‰“xM/2Œ@iïÄË´x+6¶å— à—Œ*4¼ç– »Ä_bo@2jö,¸Ö„CLìÃç?Vd¢Ìï ÉļЀ˜9p•µ2ápŒŸIÓ#EWâ ”ç•ô²Cú¯•<¥du˜8'<‡è…xž DFSà ¢>×l é… MÝòܳ‡g½jŠ5yùòöÅcz½è,øe†$•€lçw¡à[œ¾Ù¶w${87ý‚‰¤„màí(Eë‘Í”O3y phƒ:Âé2 ¸Z÷39I“õ\9XF®¥Í¡$³ô0~Ô£¾{vöFy˜¿i Ó›ª8X-0ªÑ~pŽø¦©¢d¹Ì»ÉJdõgKñ¾äù;ÖT1!ùðdÿJ õuÊh&Î ˆj2Ñ€þ6=DËeµI@Ž#¦ûoG×·t©!ý¬ [~àÃÂÈNÑB!áN"²¾“½8FÅm£„És54´NÌ yðæ×BYUôw‘EF J”dÊÖ“ODiw¹­R{òƒ•û‡,)º×…§»”Õ5,Žj¤£†¸òNà'e!ZÞ;éGNr Ȧ} šú‡Lˆ}V|±8äih£ˆôQ€ˆÜ<þ:šŸÑ¥ïdv,Ñã¡#|½P·¶^Z;pWêÐÜG.눧…aòNnŒøœ'®;›}ÒþN™.Ýö]¤Øj™åçêÏ ¶o’rEÞš“¹ò7ˆsû4¯··Ó‰®°Z“Ü\ÐãTKw*˜âø5ôëKݰƒ¼Ž·…Ì(¯ÊhBÍ« ¿}&PZ•ˆlí!{ìÝì¹™ eoT¢Õ-æÃZ ©Óúk'(;g÷_Ùù›½BJEÍPæÖ)½êÐÇ~Vžž>ºo‹Y(“™&¼lú9 û.Ækcÿ–¬ó&^žíË]ð4L£•§ • ãököê‡w‘’$uäúS¾MÜøD£©Äù§óë­‘]ž…Y-û-ÓßZ$p eûÅ u<£²´o„ÆT î פ3¿p0Êdœƹ³ØËÇ.uÏÍ ÷싵ðT­Ž}„† –õ%R QN¯^‘ââ4¶÷T…*ÞEô0’¿úª>ï$ÚüZv%oß‹œž¿Þä=¯´ N¢=9°Á57†· ¦ã0§ܾˆÐN7î¿‘O¾ß4— çyôJkÕÉcÐöñ‡,œ‘’×: 6›ØùP<ã ’ã]ªY£üß^½ £iK+aEê·Àk+°„¶™ÿ<¯ ¸?ÑŒ‰ÂL“,:‡Ïî%˜ßòÊ©kh´õæ&Y:*iBKÜž·°ƒ¨ÌAHÄ…Äg›]î´ëCª›ÿUìÖ—äS·ñuíŠOÊ=I×êÁ®9b×¢CÌ;TE3¸Z2ÆOü› šZh°&ùÝPùÐ]*p4!­‚¶4eñëJN¢õ²MØ5lÔŠOðm¼F½ªŸPÝO×™^FÇ2\LèN‚& ì€óRw¦‚”Ø£IOîªËتޭîo¸ÎäTØn þ¨ãŸ*ö¨%lFô‚¨ßÒô®*—¢?jl¸:ä™l»‘Î]¨sAë›Æë½Ù›q1ŠR>Â¥QÈ77*0† /–Á@Ò…¯Üeáï‚kñ¯ª‡?â(9'¢ '½]:Þ¡üñ¹K”½!¢xŸ¶DœM¡bÚ¨Á“e¡ÜбQãÙØÂ”H¨0#7g.Œ óäð½¯&ÌöJ®½OìVn³" ‚ÒW|aþ ©“ä<rx ³ÝgK—sD,ãì¦~®Ö“çR–âÜÅÁZ¼Ê©]SÚ|kÚömëùBBâ#Ûjò6çÍä¡é Aˆ–îFÙ+^ÓpWíᯞIrÄåBùù™|äÅ}ri•5· 5®÷ZÕŠë 7ŸýÇ®lëß|ŽÃìW‘iÏc¿[±ŒESÜöP-ã¬D_šÁtndH@j÷<¸kÆ^Ì¿·îø üÕÿö«¢ZÓ~2Iy Ål‚h˾etpoXôGÓ#Ù!N­ãy~;óQJmÜÓ+6SÎ[ÖLáÞa§sç¶ÛGË:èœÔùÇê_Â(xò CSèËoÌ;ì¹Ôt”9CÖ¨ñ gi7ž[`½PØ8Íö¡|¨B‹2Ìl„RȾ¡JZ›a··•ì™Ù$æc«}‹ŠÄCj%¦/fó¦6—¬‡/qì÷'+4Žœ¤Éù Ñ›^žc!`4ÚÙ©‰eŽø+Éïý8°E<ï á³ûb¯¶ ž5¥äfDGƒh–MÜGÝÃô·¸/¾:ï "ù„X§´‘›T¢{«Ä'{‡lT1ø,·|ZYW÷s&ŽBÅÓz²háCSê_FrÈß]´òËøOˆ/4ÇB`^E•pígMÌËtΫý¬Ù.pã$E]ˆDжнãIÞw/`ôWwÖ€ÆvûEó~Ô 8Ex=ù¤(#ÇkýÔù}1(µ¬Û‹oÒ"èRTµvÕÏlõáœ1iÕø‘Ô1%+‚¦5Ö‰ÃÊÛ~[  ¼—x„ýÅm#`-ÜT"W‰ÅH0ƒCP²˜Áçu¨Ú0¸/Ÿ–—P1Nmè™­Bu¢  ‰?K¶üñ³HêµÒÈ댣•Vå·µ‹[©·§uE7lµ+ÛÕ-¥¸ó؈'n8̱½ƒ>·úL3ã êÆåxzòõ<|m#¨xdšus“ Nâ2¡?ƒynŠº`î;Âä¹(Z.ü„eí´>½ipy Ÿ>ÑÑ—¥„[‰D~9FoÜšm]:†¸~H̺±B[›&Ô`žî¦ÙRëØ)°‡{OŠ/0fâô*ݾâª3U“ ¸‹yˆ_JpËÛNC•@éø‰cì=7%[ÁnAA£”eœÐü ™…å,ðB ¸ÄÑ¢JPZOBƒ1û€±¥r”ý–à @ê1a¶w±yrÉ«uwy÷õg€ûtJDúÝÖDL¯°¦S'Ôš// D‡WÀ"ë6yt·ôñšÙµ–EaF¤Õ+B:Iî†Ùlñ{ÃÙƒ’2~o¿Û²ñíDQC¸Ét“‰ˆËi*ÕÌ—Ær*  ã‹PºS ’|œ +®—³¿Ò^«U³XTS;L·Ò5ÒÜäÒ˸÷Ç:jŠB\wHiM`–—ǘÔxTç –ûê£t-½»sâÃ:{/æFÙ«HùdAö§îuõÉÏLým¯sU3ŒRÁªÍ‘´³Âd“Nšf¿²Ø… Ƶ(Å’¦(ðƒÛ¶è5“•ÛTaöx¥T î5PwBŒG©5âÏõ™’âNw߬Èe‚Jýª¨dVjps² k¯¡É¨ >·þÈái? ó±í²X Vsšk‹·”£Àl'‚ÌMUð-æËÐC°Nã·sêäQ>–[ïîéªÁÐÈÚ*]¾ V†ž’ ¶lóäªÛ~»)üЄÁ/•Åh»c˜®N÷ ¼7JUCPÐLzq^ Ù”ùØWSãîˆÁ‹•;~¿æ#©àöÅ-ô…¥ô Ù”Ú³èf³êϾ ¬ú—ƒ™C~˜ Ð3û½Yè•°ËĈ-­P©pæ ]‹Ò¢. ¬Ú ßÀM7¾Ñ^ûy?Î|Å&v¹l»‡!XCÉêÂñ¦ üëE¤¥Ç­—³ªã XKꂱäaÍ_—<vŸPœPêQ5€3—ƒå­ÆK1”Ä’ÕŽöõÌK´¶…îCZ…õQÍ;dA-3¨Pva.¾hºå7C-‘‚Z𼤠¬qjqøÀçOt” zNâ]‚*‡Uk´ùNvºñ'ËXűà¼}ligB,zñ•ך'¾)4ö÷` Fx丠4¬1×5-Q\—Wþ˜É‘¶nh¾¤ L<{qjT±EÎ(/kÞMþ—qÎòôRørx¹Ç¡ìÞ¦z£(öe²“s–&’]T›ðÓêk½—Œ`Qj=•>Ñçàê«ðƒØu<ÇXM:ÊÂv¸U»ÊÈrƒª8%I tÖ^äã`VD.¤²÷¤ëÚµ¨§¦FæÿÞÄœ±'îF›¿úÃluF¥Ëî„ð­âvU®àIlYC,ƒÃâ·4.J/è­­ôÛÿ›Ýhaª%sÏ$¿aË™³Å§â¾Ú8Õ‘s’]Ü{ίCûÀÅ÷Z{÷5¹¹c\碙L¨[‰:·cܲ[ª>?á%©Êfß×»»œiˆô+Àû}5ª?1éÏ!æ:³Ñ)Õ»o§Xîã¦7Ð~¬«À½á ù>êßzMºO :ÄeÅV }ÐZkÞ3á›™J…j:N4ÙQˆG{•ÊKáe j&ö†Î^‡~ÅU+F¹¡&7†û­Âø2f_[sÙø.E”x.Ý&áæ‡r†èü|KŠŸßzø&{Ytº(ðá@ bp¶awKRkšÝ Ð7]U-_»mŠ|/XT½§É}ʯX¹¬\sóù›&öh –k2èƒC]Xcår{íˆÑå†8 ¯e ï|ßÜ0Ì‘9ï жÚ<)`(ÄÔüÌJyäp„œn¨¾\ÝËHy´"GÍm呺d¥Á4ɧ&äHSŽ ·ãDo8m³Ÿ)úV'å*ѵ—CjêF Î‡Üó‘ÞËdÀ\L¡2Ôaù¡’âž\3GŒòìÕ*vL¼®h3Êõ{ç0`ÖŸS,ø8’ó®ÝÞ/b[[éy4Ÿ)¨·hå§7ûkËÞ¯^«½ÑI–bç^öŽîº ŽgÁå‹Xˆ>ãOÛ'`0ZÀ£Ü€4Á×Ï´´¸Ûå—M2ºrø¤=î8:¥LÔ7§S½ðÛ=tÞl‚#åˆÓúcG©ÛbøªÌBØ_³m[Žˆ1 5ÿ©Cám=*bbTí¡7`1N^.£å»n#E×h$HKšÐê(}™”KÀFHa-~s=3ßvÇ‘«búzRöÃ"ŒBjÒ6È~mÅžõGø›5 \/l­Õä×Ì¿µìv.E³ºÄ?x‘Owc¾óÉò·ðÀSA’,qŸÂ3 f·äÀ&ºË¶&¼ßY²_¢¶Çr§P—Vš¢å>ëùmg)¥Ãì×ByÚÑ [Ñ„Õâ1N'¨¬­Ç±Ùáãki´V½¯%¬ÊÁO« #ô”N/W”Ä.VÜ,õM(²„Æ64ª µóÞ|5!®ÅÄÅô˜\)Æí®­ !kOÞõºÛ«?Ê`7rRâªr»ƒeØÎë—Ø±˜(ÄAd !LÇÓeùbüêÎ÷e ¹¯¢Ù¢Y¿¸Œ@òÝ¥¨Á!›}KÜo hÏ@Å= d³6 xgXòõëåš~U:—$<à7€\6½Ú¯ä 0ús¹'½LŽCoÏ„lVk‡:ÅÅn+¼f3Íp€Ó–´â{,¥ú~+›jÉ©ûN%¡\ËIºIŽ^UY³10 Ådzµ[²½LˆÖ(ÜP”_c5ýÞ¯ àWXÒ´ùaõ3t)p¶.¶m3 ´²Á=¤HóúM(É%ã˜ï(‡a0c+ç¬E¸É"Ï£åì£I¦qïld6§—:.×SøÛCêµ@ñÊêWjäZOB3¨NÌœå²#mRæ QûÍyèôDâžúvUw*`%Él–­D9?šKGÎm°øîxÓ %*/×Ý$³äD<|bçd]Ïwz® é7YÔQè_ÁÀ•»›¡rˆ ƒgà\­ÉñåÕ{KEq;ûLp‹°¹èÃ<îI¤¤­C¡æ¹p¾/5[žŠˆ¾íDÏ5òͽ‡9È¿Á);È>‘´s F£*HÕ¢,“±èj,Ì([¢Ÿ5vk8ïqõ'dOZve™ûö°"+ÏÀ9(6aë+ aŠç¤Eÿ:ÒÂ8‹à Àý©Š, Ÿ¼ÒCgU‚Ty`ÎJ¦¸ÁÍÀ,ÂDŒ6&¥ùÞKi Ê« H?#üíDèC`P ÷Öd²šÒ÷ŸGsÕ!ýxÛ¢¶rÛuѱ/ö;¾.3Üou¢f<vÛ”š¶ á÷‚ÝÉH(EiBf^¨úÄ‚®žÏò’¥‰t§Qßk™þ 6À¥>ï a$6#þiÕ s-¼¤àÕG lXô‹ÝµøÞ•Ǭ÷n¦ ɺÏ{òµ~ÿ厛2̃Ú+y]Š{g¡ü–²Z¶)*þ #M÷‚q= Åw˜¤¡%#†©T†ú ŸššVx‰½Z‹nÒ¼èò í¶ÞŠ`Ó “/`f2ø¼30µÄ¯µ±~pLŠE_uÕHû22I1BvÒ€Ÿ>Ë`€à”D4pê4óC uS±€/éÓì°CLÏéTÊe˜xKÕ…–êT>´Ð{$xGAx’Þí„2}ÉÀžóšNC´lÝÀ†¡/Õà ^‡ý‚Æ2Yñ+gdž>ü\³?ËЋ¬±¦É×dûè\ñ÷¼«õ~öçèãgÜNæ9óoˆ:Ñê2­œnõ¾—‹Ði¨9)I÷õdÙoæ’/eáÍ7³^ÁŠÎx®Î“$)ôµ¾Aê(Á<÷O.ñl Ê<æp×ÅîTÛ<Á¿âœûmÿ! Ó0"v E;lëJ %®Ùµ¹±ßZ3tºì³†VÊ$¦+9¶ôåuµ]³Øè]½EHÿbèòyñÙI‡BÑÌèFUW>„£5ËSþ°tÓLûòž.à”¸ÍeEéÃò§B$5¶˜Ô)[èõç<%ã1˜ÄLlÅjMÆ{!P÷‚©†e¬oŒºm `ŒVtv^2Ç™¬2x?—ÃшoŠE[Ñï!ÈÜ'“æîdÍ)ŠÜ S~¡öq•s¶nò0jn Ÿ©´2¯þUŠŸ†Ê3™ Y3.߇:n¿{Ìs³)çïìªÊÊѸg3;j›J¶È›Ô­:Ñ ì#õÆæúiqWs­É&ÿ.¢APËq ÝsÀ.¾ïÝÍ'¹ö„·÷â(šGKëѾÙnÚKèëÑÁ,"|FŒXÉ;ñxuw«Rý öœm’ëÕwŸí?3î/5Êëô¦ÓoZÔÿP¢()¬Y:ó˜Ý_ˆ+zù%ú¢P‹Ä òI>wL‡an\&4VäóeåÁ©' ÕêOÖ<“ƳL–¤D¦Æ ÆL˰È…'Þ#´3œN›r3÷Ò°¼ Ξ¸)¯ôÕ¼E‰¤sâÌF:ƒ!ÇÛ¥s= ÒÈØüSbçv>·ÃàÈàä+­3¶ëS0öq³¾2¥µÈËul65±”}%1$TáÒ&¡wðe_/SOÒbªZÖ €}¢í”öƧnÔÜ?çI.†¹vUÐÂ&%Ù ÖÛ Ì%,¦ lE ïjáŒVÍT¾Ëw¬ß\Lï._{๥m„Q¾©Ì'r+ýâÏ£q°#ŸôÉ6íèþzu´4ÕÚwC½ ½„`ðx¸‰{‰Àƒ78¨U—+œjá‚/Hg¦Ëí0ÌRŽŽÕ­ÍÝåçþÕ? £Q)²frÌ\Þþû5 ¹×´ÝýB[¡äׯòúOᆣl ¯ãÒÌÈLjœf˜¢šœ™@ݳåôý|_«YÑVµ$~½÷KŸw½4·/È”© $Õ6§Ž:rªM•]ƒ¯ýólªÇëzXzâȨ›7Ì|þO*Õùg›’òr J™ò’pªšð#{~p}BÓßá4¨®³+ÈâwÏBms#}²Ç^¡ùý“1Yà_ì~g‹©¢žÝmØñÚÒøß¾tv¦j¥ôwoI¿Ô#ÔjfïUðG¦TækþÀî§@‰„š²E«;\¦ ¬á·}ÎÛ~í”CæÆ­P`FŸ)šót‘k(¯÷[ qýZÿ!…fSTŒœŸQŠ‘2HŠ z…6ˆãªßBô;ðï6Ó©<‘ó®BÔØ)¤ð«?ˆ„›oR”V2XX'TÒÇcËUùüÿMÕ¢2W¿d*‚ºÌ³»Ëè í¨x(»½ëR«‚ÑJÄÈ$ãúÌ\/p›½M·¤q0vH2V³ `VIÓã÷òo¦")fqŽâõj%çt÷=xè g×?aß{G/ÌÄè¸#ÑFºµmê—Áöaæ0*ÀgË3¸˜u·n™fÍKÒnÖöf9,n'[Ó3š Rô [¯-šžÅùžÑÂñtÈÝœvœMžcÙq¢eશŽHû.þÆgQG±Ñ#“KTùCLÒØí†…ºOÑ·!Ž`4Ìn_šßî5^ëLÄà@–72îÏùHzI–ñ¥æ)d=3˜>KZr),´ ž‹Q9šëe„[E#MÇm¼öQ” Ûe'ÊA[ß½:?€•ŽAw®ð´MFa•ÿ\p}2Õe Á ÛçñÔÍ廑ê%5|2:P ^µ^^‡9¹NGT‰Ž"ƆfmÔØ7ö\¬¨hiè ‹u¨Äx‡?…ñ¤ž€j”»bLí+ï:×§*þ–f®Vrf”±Öñþ #dÙÈM!ˆ}=©\K$(â ²¯úJÙ€Ýæ'·,¿x¶`ÿ˜:%öD@-`Å4ö––“)‰Ü”÷†EÐÇRz9@gª[5Lí‘£‰~xñzÏÁô´mj ë¼’aàg »3ãÿµø:Î1w]#õ«t¸cüOF^½ŒåICÕ“yT\èº,ã\.UX›ÄŽ’¨'.¾Y>ÄÝ*¯Yˆ6 úé1Þ«(gĘ߬Õ8ð+Ï9‹ Þ&ê˜_$õ- àÙölBOà¤÷#=ùZò•?:ä&D Ã9Ùó>ðÅã` ¿0­ÂÈêÕ}ÊD}xo·éÜæØ.Ì)-*B=CÁ¦È÷§è—…ÕÖIEÊ{B%ÑNúta—q¼=T ‘ȪÖu.Ú´ ¾u!Õ‰¤¦')-‹/ž«êQ¦¬ztL,ÑðçjÁΈ¸¦C†m ÄÖ¾b †g> stream xÚxTTíÚ6Ò"t HçÒÝÝ ÃÌà 2Cƒ¤”H ÒÒ! ÝJJ—”(H("è7úúžsÞóÿk}ßšµöì羯»žçºöÌÚœlF¦‚ʤT‰@ Šeªú¦Ö"@(&ŠqršÁÐpèßv"N ¨ †DÈüBÕ Bclj 4¨Dt¼á1€ˆ„Œˆ¤ ¥ÿ"½dj  /ÐA" ("NU¤§¿ÌÅ©ó÷-€Ì ‘––øPö€zÁÀ @„v…z`*‚Ap€) ƒ¢ýÿ‘‚GÎö”öõõy „^. ¼_Ú`EA½| À¯‘ èŸÑ„ˆ8f®0Ô_S¤3Úä` pŠ@aB¼¨S`ª­0ô„"þëýüÙ€ˆÈ¿Òý‰þ•†ø ƒ‘ž „? áp†Á¡C =!´ZB@~ApòÁà ' àwë €†²1„™ðÏ|(°ÌBÁà¿fþ•³Íêˆ*ÒÊ@£ˆ~õ§ó‚‚1ûî/üçpÝH_Dàß+gâük ˆ·§°9vߪ­öƒ1ýÛæEÄÒâ"è}Ôì*ü«€™¿'ô·ó·3Cp 'ÒàŒ s†b¾ˆQ (íå üOÇ?WD"" Œ8A]`¢gǘ¡Î­1çïóØ1ô}þug‡a‰€ûÿþûˆ…µMõ,tÍøÿŒü/§Š Ò((* ”–DDD$’’â€àæ1Áþôñ±Úg$@ú¯v1ûôwË>8ÀóG ¼€æ2@b˜ ðü›è÷€â@0æ"ò¦ûïÿËeù_‰þßixÃá¿ý<þ?È÷ÿƒÀ0×Q>£ÄC-¡IW y{ü·W ¨Aá‚a´ È]!àÝ¿ì0”Ì 1‚¡Á®±æ/»ù/½Áa¨ûõ„ÁDÿåÈ ìŽyŠ 0Ôüí‚b4ôϺê0òKl¢â—ÈŸsÖ˜•8 P£JÔï7™ÂB$ÀÌ pFzý:XL^a(úKP¿¿m“ áúmøG5°·—ù›˜Vþ^ÿÖ9ê-Î!Á²‘n/#;.j•}?ᯬvÅ&Y÷Lj£¹æŸºêdiNßWq„TÓ<5Z(šš bä;¸÷»÷:'l9]+¥Þ¿®r$X0ôíäµ ”‚dp™|»Nq˜lÌLæh‹kËj9wõP²GlóÅç¢ë.Ô¦ô.ÀPrFΖΈ~¬œ×µ‹ýÈšc=l}<ÒË6ÃÛLÛ|âû,á\¥#žþ›ÿºmBæð‡orúŸŠêöÖHTGQÑßÐaËI¤§NÎÑiFaq©ˆŸ©–§%±Ó{Dq-ã8J.Ÿ)hOónt1P »eø`´É»)>'Ÿ×³|Ìä°‘möM˜„®%%ÖU ö)‡ g ël8ã°F žß‹KÃÀ¯ïZú©?ƒ,-;·ÖÃ~×Oð BÌþó$Ý…ãã¬dQ»4y¸ÔàÇç*FpÏgËwWri*N*#m6·Uï‘;B_Ÿ÷Ã*­XS§[-o:†{¢ÌÔÓaIVY»};ÉÍÚâgo),øÔ%ÐuºóÈnÞļę“ü<\£ö.MY%é…IöD 1²3Šy3½M¬ ƒ›Ö2•CgÈI©ÜÊ™_¼«’}&Þ"Ÿ& |°4ytCÍx/‘¼ný–qÏ7<û$'¯#aQB{Ýü.WÇRnôÝ$XÓnÒÕ–ŠõtØ‘äÜr¾Êóª²÷òOøºyÚx˜o¥\c}Ò=²îð|”¹Óf )ãÕä^o'wÚ¦ŸVãåî•Ó°¦Ì {d1¼²)Q¼MõÃu¬¹íH¯ã´…ЫgÔ¹éô±ˆí¹ìÝ0Oû­FƒCÏï÷UÔ”dÜ ¥ÅÖ«õC¹¤q‰c,BÔH¾JQ’€&ÃEçBX®ÎMDpEÝw4…»¶Zâ(ê/5=Îz™>PµÕ1 ë €ÏqŠÃ5¤¾û‰½ÿ(le(ñÆ_Ù]wð`wÓÎò>£Z¸~+~Œõݕғ¨ŠBëÄÙÑB+#õ#½kÑuÑÖ[Õ­åH­´@"Z¿iúÛC;ÜÝÞôAíH’‹³KKVf“,õ'Ç%û™­‰3ا߹ž¬gÀY5~ÒÜ Ñ£À6qyÁ¢‘çô¥¤z"˜?N¢za()^êá!ŒdòqžEFð;OÐåèïî³ÖŸÃ™À|Ë1ìÕö!&UŸí*<¢6ÈßÂJ#u+ ‡¦Ø´oÅ¿œyù}“î« ÅôŒ¥lf÷è—ŒAo%ž;h¾ÑRª™[æÏrƒÖ¿~5‰}Ò(ƒã¤uHùáV1M£S´,•Ëzª×dëÙÞY,Oþ Qm¾a¬ºäÓ–·—¢ØSÿ„UöINüÈ{ÈõÒÊ®{ì•ßšÒ²h§Löñ|LTÓŠqsŒÕ\‰èIg”òiFrÈ:Ý)i;9Ã7•µ/Œì±+ê3}³¨J ÚCZî<às±¿ïI,qCa{¦ÃæFÚõκãåc(†‡ÄcÖ5ûÂ{>¯'l Z¿/°´èq(ífjED¥RÊ-q'è<Y ñIžàh`w5/ÕW<­ßU\Mõ䛋”ô!§•_2A¯k’¥*¤ˆÛ‰¥Åš}ª—rn‹0ø—DG´òF6T%g>Os’>¼©I\t™bðœêäÄy;0zÒžBÍõý©ÜFa`fæšJÚÈÎ\ðå«Å<”¨3·ê‰ÿòZ­Ãà‹™Jv`©Ô:ƒä}îúÏ7tc®îºÊÓîÿ¨Tš3¤”½‡ |0Bª?Z¦ýìŽý6“T’ð>Ží;6ü½óËæñ…­™{ÈöpûyŽf®øO'ÇvRð´ÄfT+Wdäkᤵ5{Þ,6³O}¡ ’ìÕªƒÅÉúUš°NSöÙÄ­´+o{,ÓX"eñãL yŠ¥BÄR¦Ù:aufbÝDûéór*;aü1ÁàÀ˜©!¥ü™tþGLY0Ò×å`и'bhi½aæãl`‰Ay8Ö¡+'ê[ÅöQ«u~Õ ˆ&|ãS•Å»ñÁˆnPy–Ýé–â¬1öþ±ºžšáJ.‘üÓ0Ƨǡßd{´^:É`c´Ïfìy~óuãy«—ÄyÇkÙâz›ô­î ŸiwbŠšF­OYµ¡ùu@ªý¾HΤ̑I¤]Õ‡l§MUEvÎð è‡b_¶­ºô1‰Ç#Å&F[Ÿ›[e~v¾åêLP¿³°U á®êýÔÍ(ØÚDüFK˜±Àù%!8z±›1~á=-±ÇÈÛ+†¾B=R©‰W§‹Á#'ÈÛ‹ØUqÙzZÅoÛtߟž4åñf|%¸ŸÇ?¿¶öOëk/ÎϾADå ?í(¨TO¤´À¿fä>Í™¨›<+G›– ‘A?ÔYQãRñDXG<ì;w7°l´~µ¯± ·¥\Ÿ¾í^¿ÔK°b²ÏónvÂ^t“ˆ­|u½çÙŽ?N¶ òˆ@μÙ+¿Koü©º:²À?—*(5ñ+å!ÿƒ¤¢|–¾'êà„·/qRôv煫ϘivÑ q®´ YQ‹Fª Û>›ìšÁÄ%{$ùyv"Ê´I¯âŸðmÖòl´ZÌ~Y‰Ó,«‚K†ë:3ZÞXöÊwØ—ÿ®ÉÈ]qw$ÊJPÂÓM×›VuH ü¾¾i1`Z¯×&2¨5VíËÀ]A²o«@õ}Ϧ8ÓË–åÁÕè*˜ú7«ô -ÊOZ_w¢á]uãZ×¶Xfa~¨qýBæ‡F±| Ï ÐòÄç’.,_÷wÑt,Z"¼’„e‰0öÇ“½‡á@æ…a •½аnJÊØ€“M©þ îbÈO7³¬Ça½ƒŸŸ®Òß/uQ¦O>I>\xÕ–uC:¯ý“YŒêrˆpúA[rF^)’™oÿ©tü€×Ĭö£¤[ù¾î•Ÿ[A›ÐMü± ~'‘Ú¹—_ˆ{µ³ájz‡Æ68baçMF‚äiÇq'·Ü¤uç >TpODø‚4>_2,žO]üÎSHô—"dBz j…Ç›.l“1|Ï‘mX3xnqo ¾‡íU#¥ûu}]><öÌá±§" š‹‹ÉïÙ­#Ö³ˆ}púæçÕ…Ém8hœÄŽóöž{‰cR{¹Ã ãfSÆ竳þ–aT ¶¸¿UD"ÓôØ Þ/Ÿ™ Í ö±JÎ "ºù…î••£qnB* ÀÚ ÍÌ«¬÷c›wAå–ÆÛœ‘3t:/[¬Š {ÄÐÚþÀ¾®çB¸3wbûmSï1G¨ÝQžâéY£ÁWYöµn9ÃçÐËp2ŽDÜ*¢˜Æq–Žà«aܳ’ùÚµ©0Ø‘%Ã7¶¬ÇìŒ=ö˜ºW:… ”â&ËÏHÝŒ¾É;ùN9Å¥·V—o'ÌJ·{É¢‰;`ÑædT™ùïMÄÁÙÄ­úY³Ž'½™IKzã+¤:»‡ÇÛöj°²kÛ’#”\îûѶ/·—Í£/ƒ²±Òïà·ˆÜuž2Û¹o|~5$ÿ3> ó¦GÜ0Ȩ •%ý¥”%!xãS*3¿‹§r¨@­Àkù ·JQq Õ¡pÉ쯳Ä)‡é5O˜ÈC„¶…5ʇZG€…éh“œÕ¶8l!v&_(±+}7©Qè3èÆœ‡çñN4²A©¶n-=ì§ÃÑŽòtˆXéš1õv· ‹ÅéŽ#iõÂ6š$7y¢GvŠ€Ê­Ü@_¼2q±ób—™îú»¹*™[Ù{Êe•”«÷_N±®¼ZžºÛHÇ]”4y òÂÈ™îíͪ9Óþ|‰Óõ<¦g^E¥¶É^û8~$îh¬ûþ˜ö´;Äï\“ãg>cdñ΄PpAëø­Ñ'Íe´ï'º4Æ2Ÿ€kë²’Ãåéª_;³ÑÞ`åé¬ÂÞôÅï‹5‘jãQZ\|”@néTê5àÒöxš÷ṂÛ4è—a¥q8 ©åOöi U­­‹\©·î´³Éxrþ9Þ$ ';ÅeýB%‡Øhƒ†â¾¸èKòwem»h^Zý ²&ÓÂÏ?­Ó áññ3g¹Êøì˜“¹¯ÀJXdktW\ÍCAr+ãýEOÏ»X¦ök)î,Vð?“V‡6É<ðçöØCÉešo‡I{²9ta—w¼ûºÁ]b­Ùp¸Š—¡@ŠÝ_6öÊÍ®q"f¥ S ¸¨¶*opñðF§‚„ùqà}Z'köE)¾­G]Ccîeþbȵ¸ ¬÷€Ð“X­õ’D5ßµÖ »¢PâNÆ$ê]ȳ@õêáâÞG¾a‹ô«™BÔ«›® 蜳www»»»5Ô¸G`ç–‚ËòvU\Ët¥ã‘“ïb¹gO=YáÆ5ÏR?gÆâ:­–Q {žÜh_S½—ÞæÉ‹[Í{†ÿ#Ç5‹¢·n–§õ2»¸ñ–¾~Qc}$Éý®¦šásÕ•ObXMz6¨z_3#ïÀdTGÛDí…QÞ#~ÁÜêòóGOë4¾š_±·ëŽGEñWvL[wA%©•Y8Á»{e¡k¢îÎ… ¤·Ž¤XnùNñÏêN÷iˆî’e`Žþ̲˜â|âãrýc»o2–ô²·)|X“’gàY­ÉâEª°¦ÜŒ-µ¢J2ZÕ–UÌg3+ŠÝjFÑì᜙Ûm¼ˆH‘Ÿ²Šûqë:E¼áU\¨W¨>ZÁ_¾&Šo=ÌI§ë=I'ºŸQÙ«®ÎÝtÑ_’vurãÞéùBþ“^önDQ*—$M†}æ­ «ër÷ÝÉÔcÙfo^öízÙË÷¦ié=>#GW_UÔ+vëD´ §h°K˜ Õ6ñ±OùßëÏDéÙ‡g*§äwþ ¶—÷#ü:v«ól£¾W†„‚å…¢wGBÄ)Ž -ÖFÊëù«(Š›«ª_]1KÆÕ›£Â³^Ì•øo~îK%0ËW¿ÒôrY3Çï#åHŒ~ÏT›ØØGø íƒfÅÆ‚TÞÓ’‚|}ŸO+*`þõn~Eâ!ñ’.¸ô©U«‘Â$Âåô¦¶Æ¦ŒbúÉB¾©¹á8x€ÔMTÕöøc¥¡¤B˜»å¥{qay'öˆU wÄËæš2ê9óÒ—óKRzHˆÛjžTŒ•[bõÞˆvŽæíÒŸù†øÐŽo‰X38^­8† JS ÷Ò¯‡†æ).¼Ú™®m¼ÁB¾çºcWâtÔ}óz»}§ÒaGTnêb,}€—|ÍÔSQk;‘SC¯Sð£ÜP©ˆS?Y;|y›]Ò¸àƒ5{¡UØi}ª÷XßBƒz(þsœß]û“¨¥´‚szpy3€|ò¢¯éT ÝTù³­À­"ª¤7ˆ½´áóéAÒQþà-õŒ^œk>v‚5%u=ïR\ÒzåGêέ”{XU~ãA§¨”ß~±Vžœ†.ÅúFôÞØ¾ké­V‰Iº‡XËS®¦‚–6”‰¤8ã:tÜ͵çÃòeï} >åÖƒà2±†â+F‘¾½“±êÀ86Ýe±ØÉvûOSß\îÿÖ9«ðÈz²ËÿvÏ e»k¢ögUGvÃÖãn~û²ëH9LXê™’زR¦-A«š®{­Š#ì[›ëq› òý°é[ŽÆßY¦TõN O’[hü2|o~ì*a~¨Ñ²œÇEò€=rC=Ua,*¨IÖ—¬ŸØç;çë»3Û}ð¾Ýa8;Ž]ó©9ƒÛã•JüHÿ¸#´ß¬Œ7Ä8™ÆÛÆßáöK3{jÅs'þÍ׆Qv ð¿Ü¾ÇëV/UÉ»ÕtY è_G;gó¸(ùÚ9—XdŽôØî„<ØÑø¶ÍbO¦,æSuspÍ0Ûgº†©Iô†1QÀå'³–åËàâ‡ÛNwβoØføO¤ÌràBEª–ÜgÅŸBL”÷yú*&Éãù[*tÅl(\&×lú+}îÿÙj¾zIøû•B¯–ì 80ýHÎ_ÅI²ÎÆå—Øv„§Týö0PR€»Ôé½±s«g û3{FÈ9·÷Áp5›Â’Øw`ÃcÚÞŽçö³/žÐñÎf 6&¶ÖÎ]Š’›”õ4ù½ÙÚ%d1î'<õUq™L^ë¸6½nÏËfŸ¯€g;ȶÖehûÏÞSŸÇ{=²ëéUæ®Oܬ„¯ÔåzõL,-Þ;‹6=ÿÜÇɶϻ%ìi2x±¼øª‚N´Ñ›(Cš"~Áß·X‹*µ9æf ¼]×Zú5ãã¦SŒñK†Ó£ZS8e¾[ÿ ‰ž!€À‡‹|9tí§•nÀ=ƒÛq‘›Wëç4ê;ëP Ñi y}Z$ïmÁ0ð ÅÇ"™ióEÑ©…!‘˜ù7©ìdÝÆ–mÏ" ¯¿N%ßå3 øÞ&n9q?©´æºZy¿°0A•¸·#¿+IùÄš.³áìâÍÑŽ€²8bX{E#.M8Gñj4.s•Ä„j0àÛ|iÖV˜’Nú9Ö¤(oÆ2Íð‘}ËcÀRårã™Wű䃺oƒÇU@m97ûvCYÏ–јÿ&ªÕ GþíEKE$.D6´òSWÖ›Jå\í^GwŠº‹S„¿¯_6ýAD‡xwßã’Á·Sp*œZÿܗĦ”xô6ß¶S–ÒÄËéXGK2ÔÓ7p[²/HWÀF‚õMx'ª–†µWÓØ®nŽŸ°2ò^·¿<½÷z7ŸX´äƒ¹·R’ oø01·ï]Ȧ-àÁúªºð9—&‰Ìµð’^[ºƒmÞ„‚rPñÏ#¹š¥¿*ˆoáäð+w~0ÏM"NP6]7Ê“zIyu3ŽÄ0â{]OnU0Ð;üÛ,nb‹ ˆ´¡Gè˜7A«¤ÑJ°«‹ÜmÞ×$岟bd¯mk¤H_ÙÀU”žz¨D Ó‘eí )¦‹µÜÂÕ]1«~ ØæûÓõúxrŽÎ–§÷}Z~ü­&")%›æ\5ïY´Å™°L 쎒—9î¿Öµ/ð£z!¡‹—— y+¡t°ßjn¾S©³.Ù36Sv³^ýæ¸IyÞ±¸–áàVû ƒÿ¢t‹& endstream endobj 177 0 obj << /Length1 1398 /Length2 6193 /Length3 0 /Length 7151 /Filter /FlateDecode >> stream xÚtT”íÚ.Ý(¤ƒÂ04HHw#-8  1ÃÐÝ„t‰”( ‚€t·twI *(ð±÷þ¿}ÎZç¬Yë÷¹î~îëzÙX´õxd¬–PEÅâåÈiè‹øøxùøø‰ØØôa(è_˜ˆÍŠt!àâÿËA £Ð˜<…öÓ@Àª®$,çãðóñ‰ýËȃÝ`V ^€*u!b“C8y"a6¶(t™½8 œ˜˜ÈÃßáG(Ã`”-Ô]vè! 0(Êó)8$lQ('q ÐÝÝìè‹@ÚHq>¸ÃP¶]¨ éµü  v„þ™Œ—ˆ  o sùƒë!¬Qî`$€`(Üá ·‚"èâ=u€–þÇYýÃCÀß»€xAÿN÷7úW"üw0A8:áž0¸ Àæh)ªó¢ìaö1+p)E9…¡Ðµ.{Ì“×wñå£ ”Ù Ao3"’¹N~” Ãtû™)Žéƒ$韡"íÛå[W-.Û&bûG@ÑW2–T¬LNË>V´1 ë*ªßØŒ,Žišæª¯òdä +÷M¶9†îÂsÝ4.½q±7«»+Uàô•ZG…pY%•—*KÎ@buB–j½ »¬ÐW¹’äø{t…ŽaìKØŽÕ“ FFÖ¸N:>G@1£Ý€ ,3©u[u¤¶©ylŸ½W‚å§—'ÞK6É¡[ÍHýd-0¸WVÆÙõ,îOhÙj9‰TªÝ\žNvسfGéõßøÜÎ!—»dí|¬|KSë2jeûcz¼S“$løé]r!ù1“9½yõjáEhLÁ'Û/[frtÏ)(îÈÝs81ÚšÎP:Ù߯ œ’õ¿ÀgÜ7ÌÄ­x€¡°mºªaq©¬q1Ð!\ ¡\µœsÊY6±¬S%oõÏÆ=0G,nÔî÷¿$‰QªÔ[á[0»6.|=Ud ¥žå‡â‡=âg€¼—ŠáÝú,kÙ¢ƒUå½´ù&@³šXª“·VŒÇŸ¢‹ïÞpÊ¡4&A¿n7h:‘.8ÓTlçõÁËyeŒù! ^raÝ@Ð\>×^…Çê5!¦eÏMåç´I4ýGàbir9®Âh²EŒŸS¯aXµSɯìUº¦fÞHsìç{RP&4Ô,O\YB³]º#wõä.ì ÔÝC•²&ÌÝqxQ+ªÍë …ç·9•ûj¾Ÿ;ƒ“Ò¤Û°ÛMÞ‹/²kÀª~UÆ"™NÞ^ÿ€Ã )Ňò£Œ%+2~•S[Ö,UÙÂ}{\>`ä&9Õ”=ˆâJƒÔw2“Ÿô¬­âÕ¶\¿²}¸\š>â™ÐÍvÛòÕE£ûê÷QKH¿?‘ êD(sÃÙñ¾–¸ªÞbbvx'äÜdtØ¿nîŒUP¹YÛ-Ÿ€çØÀ”ƒn,Ò³$d MQŸŒ¯jâ·ð°Ù†„™¿Vÿä³dA(" 9øÊ[î|àxwg2¨ëa9“!Q^ `©¦ÝZ2oÝÏ,£µðLƃ‡ßkbÀäã‚ðË…_Í…ªžœý¹Áˆ›é¶yØI(ïé=¬‹kޤué~úMæÔÑ£ 09«Àå‡óbŸX ÁT•óå$7oˆŠCÈK8ŠbÓ^€C>ëÎÃ…lg2L謽¼N¥£Ôúˆ©fé.Y#Œ/êTÀ(çÓþA²ÖGa81[C§‡¼_@Ö'­ßÞ‡f'ªRÉ’O¸?lx(}Eæ+ Lg÷' é5‘4HMI.Zz³.R¯à/õö1}‚v\z×´ÆtÖ–ŠÞ™½‰ÃKÊO«QìœÜá¦ÄzWNͦ:ÁÔ…~¼LégyßJ3t‰Õ E•ÇéZ‚¹¤=»OÞ;âÆ7~âº%Bà¬ì|ûˆø'‡œ#‡*LT@SXBÒ™Þn|7çâêƒx5-N;<ü\%~·?¬K¬1›½-—^vL¼Ï„H?¿1Ê0î3}7nɾ‚ˆúŠÝZ†åøKsŸu˜´õØ.Û –2ÐÄÆ÷eãÇò4wè¤'×nÕ ½“ïGt†áÿ¸qápЉòßÀ÷¨7²Ï­(Ür¢B†€@ódÕ¢³QŽÙËm¼K¦¾ßÖE®Hçšbåñ¸Ô—Dü \rs›¤U/+ûbc*|–ú³h¿ÎÈߎìûœûuõáf#°çÍþÝc¾ØÊ”^ê×só6ø>½•ŠUÏôW7í’)Ÿ§ð§eg6MÇv‡—ݺ;ȜݷëaÙõ,Ø8ð1áÛ¾8Â;gr‚¦{üÍí‡,¾*Ôž5»—¢†+‰ÿ@îÅêm…Ï.·³Ù ¤îoeh  —) ²'(Ÿ ì²ËB¸¿ó2º€Ž8Þ'ÒWE芑h›¼Ö[V‰“‰ ÆiR¦>â ÷ö|8¶QqgáÖnXZyS"cæÄë’ñ—Ai;Çqú‹4”e.¹8b¶gÆì$ðýµ`*Ùtküu2-6Ô¹í>Ó ÿõ¢à[ ½ôÍ{¥”z§EJV ùgA¹#¦›o½h°¢çåCfjÜ‘³ÕñmÁz$r¾õÃh˜îû¥RdOTqéq~ìÊút 'æAtêIˆ‰ÛÛ\Éx(F„Yue«¤ð±Qð íj¼âg6ÿ9«»;™5¥Š,#—èñ}}_G9+ÐÜbH.õ´,®°À.½\ZÔ¾vË+8µi¯›{h²8 =j¯F*¯Ò†˜RŒP<¾¬;õêžs6EŸ&Œò/°?LP .N •¶L£çŽÖ¿øžôO’Ðc XIt•‡ËçÃhQfa•…7~Á­À’ܨ„Á¢¸Ã[¹Eþü`Ž\ü#þ¹fM!)ù3õïV´®š"¡8â~l=Ï}¯% tŸ––8Y1wT>¥®ñ#hMíý²ÙHÄ ÉQ<Æ*Úaca?È«H M°Ír¸Üµ þ©¡›É³û¯DñŽÅD…ñÀø«’ûؾëažWìåsn¹{™¤Œ±³Ô•Ù#ÙüÙ®A²ÚxR®m—mño{„Sê[ÞzÚÇo¿4zVŒÓeÄÔ\]ÀéêléjuȼÁ·¦§Yí å4–eÙ7"ÝxêcÐïøײÔdÆ/y;~§ôm»SpÂ(ýÛÇgSw¶da’ Íw î -°ÉUf´vŒÞ:!Ó/GÔ~ár&álRgOô-H2\±bºù27•p1™©ÏÌ÷M&SnÔ{Æ»~kNÜ{òµpRNQ¾p3üVÄÓ'BÓ‹0G}ê€9ÚŽ™§¦cʽUj[ëÙ½]÷œ.$s‰c)×7=½X^Näa’Hu0î ì¿ÚëCe†ÌxžPÄÑâù÷Qßq%—N³L®n\½{ä0Øvü 7Üé=]iëJ*1KõÓ¨ó´*àOX£ýžsû“Ôþ‘¼Ï ­Î ½ÑJ¯ƒÒ•Z„Èp%dÏ÷§UÞj:.ùV¯½2 ¾ƒÔ½Ç$“W~½õ””¦Ôì'|±‰JÎÂ~Ú»C±_É6j“oº ø}2ð5Ó{ɺ{z»l>:K(0Bz`j‡^Õ8.S€-Mðœ[È“¿6fGYôžÑëUô%ÐKܾ‘çë*Ra)kC€Ê¿žPN¨ðÆ›Rû怄 ù»§Â3¯2$i iT_ûÞ4ß¹…:^ämÁlL.2îk&pÃ=>~lŸù”¸&†7uOUhŒVƒæßnŠ&YÊâ"|Ñe£»™ŏU«)Ô·.|0aqÐRdŒ]Ž4¥sÒS-ìsޏT¼ è,hûV¶C£ìò„:OFpOLâ…bùLêW‚ÎDV\ìñЍ1½AÕBSs‰$ Nݵ¹^§„ ´¶{'Œ¯;5IÊr’(WÇH;ì'åÒ™KUo«v‰IvÔmW4‡´®4öÌøkš³é×l˜¸%};¥×í|Š­eiyÝel«5aÛÕ½Ö^˜0$0ÓÄ*œ&¥èg#mA-úõÒûìÜÕvƃm\0aÍ' ŸYvq+ü oUöÑ®a‚MGÔ´ë2ê¦nH„¤.Êf_ß{\(ÆÉï¹=J‰jÞ}2‚ò”_ë­á)]áŽõD#ºwï4Η—à%(h`–ǽ®!_ŠÑžÇMz­ŒiùèÓ§ãóŠ÷”Ÿ'I„Úe4®ïw,bUŒêaêÙ¶¯¦åW'–Ü¢›œyäá#Œ&ù6kæêÖ¿¼Ñø„ÃÐüÒÈ⊬Ze¬ºPË)£P¨-üš4LvŸ­{Fìõü§{&,KÔ3snWþ/sÈq*Õ¢é´ñ-DZFiØæ‹º¼ñ8™]jSל•_”cGç= ¶{á6v§ÏûðÛÁ²÷üO¸=·²Ùnåò•áPÑMÔ©Ö ¸?Í‘gŒT¹s)îâÒ±½ î8‡} ®ì—Ë(óz„îø×ÏKƒ¦@¿*F9þE’êÓìÏlö„uÁ+ÞquNÁ3wCJ?ùo =†º×Ç0J_05ËœÕòi¨~´Ø’ÒÖ¶â©8°:~Cz¬ œf8µ-2² Úw°uO¢×ר[«o7§fÊNï7ïùrêÅR~Ù–†µƒ yìðäÞ‹ÉL¯}Gˆ$þK•>JÕ-].íÇõ,®­‘ÇuŸ9ûç;¦ÜpžB“òß]]±zý°Mk/dø³Yšu^#ñz@„°K\]Ò•æPžpKeùœ¯%¹*ðç®ÜÝî¬ ¯¹žÖ·S"#§þ1s|nëºô¦Ïk™c~~›ëâŒån÷¹|^g LAT3¸ÄyŽ`ƒŠý\‰|ôrò"{ `Ïvg½ŠÞvJ æ†ÊÑoD9 l|ã5Æg'i xª+¸¾_X9S W™îEu˜FLGm4cg=ii;Hçè'VÁ*%Œ_Ãæs φêåCJö¹{ÛT<Â/gÖ“#[b8´Ž–Y±ãdÂŒTõ·3ßÜcçe f2öþêŒ ³ûP1&7wÉÞJ¿v«8ô½:b_¥”¡Y^#ë H§ánÆÓ@„¹tSôŠWû¸bCξƒMŸ:£Ôµ‚cbQ öÒË%Åyɘ¾±kÁ±P“­!‘Óðà×"Q±-Ñ?y¿Ý.bæÄ ñ²È ½óã£Ôë5â?=ÕÉa{P•wô‹Š7N:çÉë`š¯O¶¯!/3¨Nl kÖ)Õ%˜¯ÉN>¼ºÙ{ÒY¦…dÚÙä‰âù~ô E”éf{hˆ­+-¢­Cܼ)x•þN7šPãB8¨àÃ,ó¤FèàšIsékï4éTa”îaG?+âÆïô¶Î—7¬q³ N§É^—ûm%œ?È¥òY©OÖºGyäGÒ à§£N|wªFÍ5{‘··I$ñÞXvK¶‹èí@R~Txò6c‘wÍ ŸAÝ\H˜iXQ'’ ãٯο=‚†ÌOòv›ýäéǨR:!±ocáÂr#Ûù’C@õ~¶•R³ @»Ë¤ZÍþ§¹;öW.pqUö°žåòb–z ’…È"šÎ°—Öh/­ ýx (÷¢ãmo¿Œ~v.w™{Ý®ao­#FGÖhé«Î.U„ësèlŽÙ\hY Žë›ÁKç;0ÐR®7±SÍûEÒ*b?æžf´O%/9uQ|—ó[»ÊÀŸ®áN²ú¾éÙNŸ‹“ð÷?º0 _%‘vœU¤B÷T¶¹i³÷éDbƒâMò4Æ¿ÎÕˆÈ~ÔOÒÎrªÌÊÑ.y¢ÛV™Ò‰`}?ÏÝ”œÐÚLníájr~4àykÈ}Úú>Nqõpç*‰¯><­<‡UÝh½GÛ³Å8 ;Gôn0ŸãÓQž(6'-4\?QœÙhìð*ÓÕÔçŽYË‚DYâì Ój\ŒôƒÇ¤î§œ¢Lj¬Öò¹VÎÏÊœ6’;½—¿½Ëm|*­à§ï_WÊq~}2kAñ 6ê™þeëÚjêëü{„½2éÀ¢z¬zÛ«<ëO š;؈ö#a,m—ùÚÁž©&TT仸.S”‰®äº«mQ¾WG³”L¨ø÷t{EÒ)0‹0]M…OTHñ'Û:ÚÐyï¹ÆòsÕ[_ªyfjž%yTÈÿ,eÇJætDÌÈýðåVgÕ½¦Pé.¦A•¢RËzö‡äÖƒëâä(.µùùáf=ö¼•ŸÏIW™ Œjô ë>Èëç¦OɆÒè°‡—F³Ì_õ•£Ê²Î?œ˜"3Ôu-ëf»tlj½ó“X P,ÒðÒû.MóÈös‡ v,¥ß¬¿øÑ ›» döïðûÜ(¡!ò.`6¬×áEûçÉ9— ñAß߃œžp¼çúoD›(±K7üºô…É^ßvøš5q‹Q×È’Ë]AÔmáÃNÞQ¯Ef“9ÔõqlW;¼–ðš‘€$—YÖ 4ë£ØŠ]"ͭˤ˜}Ég!fѪL¤ìFg²É¼„gmmÓnx2…TòµíÀÿPít›ëáW mM¶ÝV‹÷Æ3ú`âVy¹3w J[Ú³`¥“T¨’%ó¦vÜnÿGÃâ§ØÏÊØwŽ9í>Há'šcpÓ˜¾IF©á| Z <®“õ©ÁRâ^Ò—ÞÍÖÝ:ž&К:‘Y—mphóÞrq¸G9|ú&X¶ï§·H€nŒñPÜÄë„i–*êd|¢ÃÌ$zq˜rËké”Ü­Ç ^P=àªÎ£Za“Ô(cpÄ k3-Ê{Š%R¯ ÜèÅ{Ë}QL®‡$$)¬#±ÌQ RÓÔ*üM¢‹5ú¤Ö3S_ÂÕ‰¿É%Ý³Í r—ýBp»ë­U:rdÆç{­w6F¯þ¦Pžb‘¿åsË~¶´vñ¶#4b4$gž—g`¤tó©Cuwkßi™hÞ`5յİ*Ö>RñXçc/‚Ö“æáÒãsó$çñZ"ˆÜä´¶¶v~ϹûqÇf:»šß^j9ÁÚÇYLÁŸSZ¨óAt>›Y—>zóèK¯¼•œÑx&Q­bמ²×P UÁá ÁPþ:~¸ÿ¹uD›¶ªyé|0cÒs–“yÌÈ Rz>ú.¯ úS@ ¡ûŒÛ}ôD†ä2÷ó¬&·«Ì6Ì¥ âÍ zg“¥ºX»×'8Ÿwc)XãP¾'ÌDʸ—€ˆ¢a<Ïzc)kÞ”ã²Ä“ÝžµÐRª÷wíJ}ßPs“Åk—ŸØ)ðæÕO~7j {Y:`#ª¦DeqÈWÃ8…8ó*2 þÉ%øÔ£é óÍ6æÇÂýYÇ“¯¾;vyCiÛ®no¤Ô Ý µ5³7•–b]ùϯ_Þ8=ZŒ÷ê$Q©±-,•¥$u#ý­êúpÀPupýÜzF<–2ŽãÍuºïö ÷:|íÖ–B[5¼õJ°×sþ-J¸rzãñì°Õ^ðù6ÖlNŸ›³šÅZvÛ…ÏJÙ¼}ƒwÐV@þ£žýNì¢ë¹4bøp«ò` äô)Òp¦ùò¹ôº2³›C¸1Ü&Eü¤ÜØõÅ’=Û9ý)ÃOŠ>+nš]SŒë÷%gSõu)\Ù üp%Ú«—á˜3"§ƒ¹ÈÆQöDj½vÀ|ñІÉÍ›Lè`ñ±ˆ¨¨…Cȹ…ÿfBï¥Õ§¢KKCiº:¡*á«Ø»A«18ë<@(¾ÉÞI´[ãº0¸ð(§žjT\`j…`†dèi \ç? òäJ]Vö¸° uR®&7vu´}:#ëýqI[õ˜AØPËᾕCµiþGŸ1ê–È ZŒÁ û›¤ þS/ÛWøëî–~ÍeûÐ2èB¤¦hXùbëŽñNÉXYöJ÷V/1뀅XÏ8UÁ›gŸJ?îõ‰¤%ÆT¡žêB;ŽñWm‘¾„p›«Ö{å«K ®‹ûtY'£Æ¡ îª›Ž°õ¦£v#ç„çèSH’âšû+ Ì[;•ÑKñHÈmP–ÿôtåîräÚôn gUO(h=$dn•F3i½³!«¸vC_ºãˆ(®¡/> stream xÚ´Pœ[-ŒCpwBãÜà\‚K5Ò¸—ÁCàîî.Á]‚ îî<®ÌÌùÿª÷ª«¾>kû>{íCC¡¢þNÜl ”ÛCÞ±³° $”4äØÙllœ,llÈ44 ˆ-ð_rd- “3l/ð '  äU&iy5TÛä]lìœvv^66ÿ¿ ÁNIW9@‰ ¶:#ÓH€<œ@–V×<ÿ:èÍìüü¼ÌºÄí€N 3{€’ Ä h÷šÑÌÄ 6!ÿ‚^È q`eussc1±sf;YŠ00Ü@+€Ðèä 4üÑ2@ÙÄøwk,È4 +ó_ u°ÄÍÄ x؂̀öί..öæ@'Àkv€ºœ"àƒÐþ/cÅ¿ ˜_€…ýßáþöþ#ÈþOg33°ƒ‰½ÈÞ`²>H+²@Ü!Ì{ó? MlÁ¯þ&®& [ÓWƒ?K7H‹«L^;ü»?g3'Ä™ÅdûG¬„y½f){s °ÐâŒüG}’ ' Ùë½{°þ=\{°›½×¿ÈÞÜâ6Ì]X5íAŽ.@9É¿m^EÈÿ‘Y!n666>>Ðt7³bý#†‡ðO%ûâ×|¼À‹×6€> àë²—³‰+qrúxýSñß™`2ƒL– {äÿD-þ¯ów¹ôØ^éÇ`ûã÷ï“Á+ÃÌÁö¶ÿ1ÿsĬò *Š>0ýÝò¿•ï߃Ý^ï8¹ï8¸Ùìì\Þ׃ÏÇQ1ý]Ç?|åì-Àþ¿Ê}½§•ìú7èÿ^ÀÇR¿2 ÿÑõÙ¸ÙÌ^?ìÿÏtÿÓåÿåDù¿ý+’v±µýSOÿ—ÁÿGob²õøÛ╹.×-P¿î‚ýÿšjÿZ]% 9ÈÅîµr“×m··|eô;v.6®¿ä gi;Ð\1³ú‹5É5ÿØ7[=Pì úã…yõbcûÝë’™Ù¼¾"ίÔüS|Ý¡ÿÎ+eo6ÿcÙ8¸y&NN&ȯ³~EÜ/ö×­4ºÿIf+‹=òêxíÑ`vBþc°ü¼V“?D!>«é?€Õì߈ý•†¬À@«Å? '€Õò ÀjõoÈÅýŠ<¬^•ÿX¼Ê@ÿ€¯…Øü¾VbûøZŠÝà+ÍYÿêu±XÁÿ€¯•9ü¾–âôøš×ùÀ ù|-Ãåð5¯Û Çk"À×DžÂÿš‰™‹“Óëõçò¼ì_øÏ×tš!ÿœ› YWµÞVŠ“¸½û=ÆÁ…Öq‰¤½%E亣 !twÁ™¹ Þ9³y·†}ÀQøÒ`£ƒÏfcøË;%Rÿgm+¼…é&³÷¶ðý³¢ ǶBGÇGcN{sKü“Fµn—bÓ ÌŽg¿gÓöd„hËoʬNéêYPaÆ¢" ùø8Qa‚ÚÄÓÚÊßW‰OÏ´ËQ;Ÿ‹Å“IïÝ¥ô spoô/3CƒÖSHö÷Ñ.ÓöE¾îvó+O¦i¶º¥¾Ð\¶}¢7uQ¥L—Ûš8—=ߊ’S³l”XƒíK†•XûByºöFü»»)݆¡ c‡dasÄÏDãYŽQ†fÌÁb¥‰^a5Ã<ݾ'¿D#äÕ;ª‹{k\¯¨j.A5”ÔgÕ>#g#ÿ®õS5Vôje‰꼤”“§Ø%ºpxÌØ»ÚÅ7§ºjãmÙfNÿUÇïž*ªQ%áBD Sìóé%›Ä~-h2o§QŠ·>eÍP*ç`/Þ/N˜È¥è+×0¶ïžªf.1Ââ öÊp#`âb±}¤§Û›Õq%fÔþìu ÷üÓ¾ü•γ¦ qKŸ 9¯ÎÀ7Œ—/¢RŠçŽl?J‡Æ:Fâ•u~¢¨?AïÙú7CäYE«²òü9¾&pq—¶}‡Y\¥þCíêôPÙCàϯ´¾9±³+a¡êNi&ô9~ñ—¯²UY Û‰ñb¨dÙï5¦ÐhÇã³E{TÁXÖ³kºÌÂ4%¨f(T·æ• Γn­È”mJ&jzîYto–µ›ãhã½<÷ñR%~gÚú^BG$FáùúKšø§ïHžq9òœÒâ4b_l2£§È×.¦ÌYýaJ 2,/z?p _ä é?„ÓüŠ·צÄåv‘ÃÿE;µjž#÷&×B»²Rb|gß¾ÏÉA~cz¾W”¯…S7©îëÿ᪨¼m—6ÁøiÏjMÇYFœ²f“f#¶4™rÒê¸Eè¥.Z‹—»ÜŠ*3‘Š$Qc|<" ‚ §(ýÖ2}¦YMí‰3{ÉGÉÌǸû<)6÷éSŠLQ…>«Õ¤½“Áœ{ ?t:ˆÀÚ'v¢úîûV/ Ú@ǵyфֺAy}QŽn¡È)cÁç8®±T˜a+cKUËo¹;&ˆ嵤ü”MTyÐ’ŒgÔÅ­iØúY€BþP¹R˜^”_ÒUÅÝ.YÏ&óA™ÄÌsÉÍßr êyx¸¢EÕý1¨8®  ƒß`E3]µ÷ ¹â—†Tþu°ÐÛõ¬%l€ª‰NÀç;2¶µ… X:¿å ¥„÷çÞ$»Àïh´^Ø”|fº]h§SDî0xı á Mî™1´T¶Õ8Û’EY¾§ÏŽ'Ÿ´¦fùr‹#±D0(2ukî´…Õ©›åÙÍ™0*IlHINÿ°RìW$Z\±tï\â,D)çzËMЍ@z{;óèh–—] •÷µáÀgu WeiXŽîYMÊj¹yöá-i‹?´=…Ãqލ¥ã³­£,]nœH ÇýzRRõ¢ø‡qÛø Ž@E.Uü=ª^ Éð7çNrp6ê¨æIÈùÞɖ™ÿ˜_²€ÏOÌ6~V¥ŸG-:?m-ÎsÞÝKy/zt(âìç„!ªý‰•¬Ï|u¼½o¿[ŠöY “§ÍµÞ£"é™ båÊ{Ö4Ê&°Å¸¤oáùWM¨7,?³ê#ÒY2pãï èWXa|×Mp’i£HlòðWÍ:õXA›¥ïÖšÔYz—ÿ¥ 3àCÉ.ý®¶S/u©rY{¦mUÛ µ0Úæi ‰'·Õá¹T³»­8æM)!Uéæó~;­¯-o¯œ­œ“ÖáÂ5˜KUÀe@á«[Û%“½ÄŒ¯kÇõ •Q lRÃŒæ@®H¤KÈwܦpþ]Ýu:>^ïK`>܉ØÛí/l?$Š I†»%,Òé·7iîýÓ3K™û1ì 6q.*úÔó05+åî……_Áwž,r5š!Ó¾ŸÖE™<ˆqäv'x©uŽHÃRªï$ÈÑF“f^$?•×é—«q âÝ›‹Pè.Eð·(…©V#Œ%²j͚׬—C#­t3=¿ßY†Á«¸Ó&¢ ”;; X&•»rH¿*À±bl*ô0kÃWöìb‘œ_aäVbiÚjsÌÉÐþŽ‚Øä3Yi QiX(,Ô»<Á]šyò‹žÖN{¶RD€4æ“eç¯þþ]i&»€}§Î9üê"F\DGÄE V‘<~ó `¸0¯ïý ôo¸è;Ìô^«p íÖs‡^™)ÿPãê²Z‘SP  ›ñÚÉËfkô¡)_¯FvŠ„W³ žË?  %r{*;öhïB3Ö¥a€‚&–Ü’gSá÷Ÿ[wëÕÎ;øPtE)Ò 7ZŽ!Ó<"I!Œ« Ù±›X×™é€sd®sB’¾ÚuJˆk»&çù cVS÷ ÍÚÇ8Ó·w~§Mv²Öáì>ŽO-%F*øÞ+&|‡yƒ¾aÃ#6Õ*ë×\à»|£ƒPÌCÒ aáßXxQo.Rò\SgbC/¢0/J-òÝjrë5M£ï£tM2ì]„í†Öï‡^žÙg¢0M`Ð$óùŸ|†¥Caç:ÊØnÌv¶ì³Õ–;å®Ãj=@ê¢#žÜŽÀøusÇóà%(âM5]^‹'z=7E yä¦å8;;ÈÆomø¨=NýÜ¡¤* 2Þ:Ò©Ü9æ–ÝÂzá*fÝ(<ö²f¤˜(’wSìÖ£<Õˆä#½l®#ˆÔ;qì9°}2FÓl¢ThÖ“éwÀš}LzfjúÖO /5•ÃqµÄÂK5 :³ËŽÙ~WcÌB絃‚TjȨ“`R]˜—®?{ˆX'COLÀ°=æ b¨¥âÜã2-Ôß´[>礆¡<½í·ST[Ö¢ùÓYôˆ:Ö¸µ„CæÓ²?Î>@n®há'a2™…¨ ž6t¿2{~½ëóŒœèˆ‚GÜί a§HÌ…Ȭ¯¬ Ѧtp$Ø]š¨9±þÚtz|¬Ä“¥G1Lo@ƒÔ¯¿¨²å‡DŽ*@°O¼f;0,ß×ô᪸«¨hdrB毖Y˜Í¦X-ga[WÓÕñh¾Aïê=úmF4^§S…5"´´ž¤rˆxiW•èÚ÷Zmê÷ Mñ¨­¦¨é8ê’>q¨­W2W»é@a EoŒ~ÓÃ32ÝPÊøº¡¸aoYÎ5{‹ä˜÷ÄßK¡µ†É¹%KÒ3“Ãù¬¾ð¹~Ÿ‹©kϯ½=ü·€ˆ¸½ŸÃ½ëÜÏFZ—è™Á¼•¬%hf1À`A·”盢¢ïǕŞ?Z§ ÖðÇ÷=³7H°+6qfž§W&[w²Æ³ÆÔI×\½X÷Èã‘kز?e ÓXé HÚ/ÚO“C;c.¤ÜŒ¦}°ˆ„üʃ°Qµ´3>‹ TéŒHËÈs¼÷!Â;¡¬Þ÷uy:iþ3ÃÚønâɇ$6?é4”„ÄÔ'‚¢ÊÛlTø,ˆJšDDKv/Ê‚G¿5 8üXëÖw::ôÑD~‘EQ'ÏüŒ˜_8ªRTWFãî–^eï§ šçƒz.ŒÆÏXV%")—Ï©Â4â\- g¦À§Å/ékŠ?vDÛ ‰ Õ®”Ÿ"¯k *e®Žq{Bža”ìN’ê@ýÏmòaó Un »®ÝÅႬëu³|¥†ÉL‘8Y¹2l3©QE•Ñþî)k.î²ì)ì8’Ex¼Ÿ6*eð:ô÷&~©‰)l^Ä‘ÆÛµ§ÑšôBjfqʧoÑΧ ,ï„C…NÅÖj8¹ú ;`Ûg ìa £øÖp9ƒ;OK¾n\ç y4¸˜ÿ~ÔhÍ¢wrv([7GßÒ­˜!Ì{‡ÎbèdÌ·¦Œî?tÍ$µ ‹Jo®Q¤.ð"«=çAú®Ý?#·>UUyNp~¶œ¿8,AeLäaÄÆÍµßÊö>ø‰Óì6rA>s™au‰êH¬Wº‚Szl§3Çú£ÔÀ»áoùî¢*å0AwµÝ‹g¿ªƒ§Ãy|¥Mâ4v(²Ä»åá*·˜íoH¢[s²ŽˆŠ½w¶ú7ð®´{äðu0§yÇ5}ÛÊ®ŒºàÕNè~ŸÃ,K•ºÈögËž(ö›¿À/4ÚâÀÀpóñ¹Ó…_³1Óø#¸›JƇӓºg|16²ê›”Æýª²ç aŠáèQxÝ0Kj‘e'DÌñƒÛ÷Ážê Рýåä`«@xÍo>öfʈ¦ÛÁN–*¿ìÌŸ!تØU|ªG8Y*v³göðë&åšÃu.€èsWN­K'Ø TÐ1á ºGFІu¸Ñ×?.RxCûpªk7Gòvç7ÐEZúCpn™¥Wí/< ,dž •Ñ=d5ãàYW¨(Þξ@NXІý‹:)ÆSAnáî Dd^~û¨—+¨¦Þ‘í„e(˜ -)‚U›‰¼86]ñ ¹[é/ êìçm_·äMøëa¡I ø%FKõ&W #DsùO9piïgS3“~M"ä”BÛ‚È­ÿ¸ÁN\y¤Õ_qýr³ öéã¬î¤âÒ‡³üÜùRÕxÒNhX(j!V+:‰7ÞVÂM¡§“¿Ôà‹Ûë!L†tÆÆðNrm-qì·íß$Ç• [½ç9©1´nÚ[$uÿ<-b*P-W÷!˜ Œºz¹ñA¾ðô&÷ºæy'Ê)yfZ6\ d€ï­MÓ3‡h(¡F Ü1ó½j¾î馇½ š÷R{ðòí´N­MßàU~Pïœñu”æ7ûAu›_bf–LÔ<—Òn®8kÊÖŸ4ÜùmÕªïãüiµZ ®|Á@„qF¦E:æ'Ѧ— ÐVÎLǀŜ¶Ê“=—B»‘-e—|aOÅ¢&³ù2*¬.‚èËÝãHÑ&óFVL®B,𔣉Àº©} ¸ÃËŽ@ECQ¿J™¬¸YˆðA7}ÙäDkÏfåXŠ sf`0Ä)\†»]%­F¦±ã©õ-\èÇ û’úËHcbwÉ-¹È'«¹lY»útÔ`™&¼å,Lƒ¼²¬ÆP¥²Â ¸õì™S½ù ÞVHd2´¾Ÿ…Ö¤dTÈû8Ó00˜l™P±Êh\+ú¸ô1=O%$BE"¨%ãü‚AqVJr³{yê„X]} L ù`þ¦Xÿ¢†0ëχËç“}W}ä‘×õQ‰ü i‚‚ëoÃo–YLŽ’è%(~AKšv]!‘ޤ"H¹ÿ´¦9jœÔ=êë>QÐ~Šc?OZMÚÉbÕµˆµg²ðûqŸß¹ õ¨ PÞ™©Ãúy?§øp BU¸hÅŒ˜öö”QÑ0 Êv]– ìŸHØÉ¦Õ×qJ¶”f“tÛÅ¿ Ó?ÀÏHzõ.V}"4œ„ÚÊðÃA—Þ—n7ë]T–Ä“8]ƒ‘ï9ÇOžnÕ'V‡ÁŒW|ÄæçIHPø¨dE’d'u#ã “1“y½™i$ØB¼åBFÀ 1¢í@i­.×ß HÎLI{i'L¶(v#15ñ6~y$ý62(í¼#sS/¹8“îµå9‘‰ß*ä3K"pêÇM0 63$vøÜF¾y½Q‡g­Œzelºá@ö×oxÆ©½Ý©F÷ rù,•‰nl>¨ÏàeÜR§aÝ·âwý‰Þ.18c<øïd£M–­Ö˹ÐϰzÊ`•0˜±îm.3ʰ£¹rºüG‹÷ßV§XǼCŽ,Võ9&ÑYÐmí"xn™G;5ç"Ë!Âò’ŒÃ2 ³´Zgm/¡öðT¼¸á^øÜ Ñc©ù*Ç÷Â?|+ìÇÒ"Ó­ª“ì¼,ç“à«Õ¤ °0×ëqŠ¿jÒÑò6Lì.¹ã-"\1lÖ§†3¶~ØŒ¸ðÁç0jŠK?þL/ ÑW(ºY¡YññªPp±Žƒ(•,ùeмuêœö.X|çòt¿@œYüÅ?Pn)zøR¸7‰nJ¥TÖæÊcÔo˜.À˸Ñþ×^^âQ¬‰Ø›ìy»„Ö½S°\þµþ ñ‡ÈL½§wé0há*¶“t¨("ÙÜm'›25 TPú°@¿"˜ÙÝ9nºÅhÄãŒ6ÛFhOºM¬rÓg¤öß1Lœe Oï èEnã ]Fc ¿c˜ç­™ ãÞ×åT¼¿<‘¸`v÷äÜA•ÉiA®í¿jy¯,ÙûyT—.>]6˧'²§eþY÷9¹Ú¨jÞªJS¦´>¬Ñu€§€7…ú#žãÞp½hõ®5î¦æœLÏ61y Ê“?¸´™Y˜}ÕÖ² ìâ‚ôX7§¾8) 0®T?¨÷Jçµçˆ!ø@¶èscC(„/;Õ`Ì^@#ÉUú$½µÖcZw¬ß´¤9>3ªâôâqY²o¨ ²XJNßšT=$üaÒœ @šX%¨:u12Uï·,>MÐÔ±Ò¡ï#*–¹ùTI⪉6<—‰óÏÒS¦;qC ¹ËY¯mJZ!ØÛÄ˸t&H à [T7è4:3Ü!»5Œ0-ŠW®/?—–ªÔŽ}þ¹HôRù–lŒ¯#Â~Äî×g òNuûµeû‰EEðKõ:±©lŸŸ‹ÐŒ3ï'ñÎÙmÒ ÑÝi.Wv5´“yèèyWò˜‹,¿ëûø¨‚ÿÀ¬ç_M©¬×³UÕÀÜŠÓ¼ ÙÚEZÓ0Ïå7²? Ô{W¿@q‹çšÒœ“0“÷±Kl¹õtÉæMØÃàËXü¦¦†Jý°@HCóÉ){0ò'â¶¼ôn.üàöÌíshrž–ñÈuÿ_…ÀJ~Ëêv½OîÛ¼MhÔ«¿Wq ÉP£ãsßµ1x~V ~0:òwôúÜIÃ9!½Þ³GÔ= –ÈŠíÊ-BëWÛ1wH¥À/‚‰0°wL´ ©µ Q•LSÊxÄë0k­xXýy¿q¼ÃŽÍæÞÏ6Р¿Åå;*â(Zt·Ç‡Mªµ†Íe8uÀÃÛ’‚ÉÏ…=ÞfŽ 5NÔ‘k†ô­¼¶Ðå›'H[³sD{Tœ18 ò¸¸Ãþ˜7kî±x˜Ã]Èð;Í?iøZ#cWûH+„—:ûF–Éò<&f©\|8‚Ö=éó‰ëÆÅ‡Ñ¿=uòë.Ðj¼Ýð°‹n‰:„lz}§…­„¨÷äyÇæxZŒ|g¡ÐS ¢>Û}߀SEÝA@öÔ$dÏ8^üß*Š=d9F¥?Â] b»uqê÷ç\×sw;¨Q*¼»ô!$ζ™sƒrCϺͼ–Å¡ è1ï¼[tJøÙ³†µ‘ÄÑýêû¾ˆøñü’–¿Qóõ/òJ`ƒ1zQ Û'Pú(;È(„¢pi­„ Ö{O‡KÉ>1»LÍÅÖ)$Í…êQy.]suð±ƒ"VïAbˆ!®$–Œ‹¾kµ •-²K¦1·h’ÁVTY¬‚'OAõç¡@çbL#l«ü>Ñ·ï±×œ¯ÖÍÏüDK¾gþ€)„N¼gÒìÜèªY¼`³¹ X ôfj)²]® 7†Uª­BÚ¼ó,Ì5™YrI´PÖùM™ÝŒ<±…Ì[ áAœ<\ø,C*ÞG¶aÛ¶ÒÝŸèd™¬¸íÈŸÅs kÞ%r§JÂV–Є–šÊ.ÃVQñNZ¢ûó^Ô^ŠŸK~ÖYIóδ–…^GÜÀ‡|ãñÃ÷o³üÌì3Û¿œ>L·ïGÇ|ÿÚ½êMߢjÀdGΤÁ´åysæ%í3n›/•Á‡‡å­µÂ>p ·U…*Î9Ì ,9;õƒ,Èr¹Ýì‚ÊžªÆ„nhçä8Í6©OÞ|å2fc$„“2v@lKXßõÑÃ’œdÞâeB¼n·¨ë*YÜŒñ(oé$GÑ2Ô-HÑ%80ƒG†O…ø(È]‰ª~«S¿šåÜýÈ.ÖØm.Ľ*ŠtNdžåC¡o/Þe$:qß B7S­>æ›)7;^äyÒzå§î¤©7jˆ€Eä,^zb;èvˆÜ¢âJÝ3Yæ•ú¡5„b=‹?£ßS#×t~3<–ÆDuXÛöJǵÈÓ)¹oOä0nŽ!ž ËóuÑ¥v_´c( š/êÞOu­«\©K­l5°ös—O[VcŽÐåÒt“W·„³/3¿s¥ä!u0£à™…X8&+d• i&·íŠ–NÛ›Ì\fF¬uáJnNÓuÏ’²Æý¶2™mIê|ÿXüÚÇØˆhãä‹B¥_Ð8˜Ž[kºy5ÖÚHæèUY$«PÍÓ¶n··˜zŠiž2„… ð¢SÒ²„ˆXJt‰áo-çä‡{3Ì ¾F‘KUECb˺kÌÍø`ž3î7mù:z #\Y’Ù¬:²³W¦8探l]ý9:¶Ø©<ñ[vb€Èï§;—ü&‡OÒïhA¸Èà°a™½ËöÞŸ8Ã}uc¸ò„vÖ¥àbñð›¯È''ñ2À•m¤]nvݵ{L×¾ˆ©ƒ$ï^ÞÁh¹“Æ^¡a^ÄF(l¯u÷ò¹Õn—•ãèL?Bcìñ`Q­‰÷ìB÷s_hè©æS¹ÒëNÚ†ç$Ò'~•AÁ¸Ñ5~÷2çu†÷V©õþœ´ïEäS¢FrnaÞWîèÍÒ—O)-ÿŸtÐI™—¬Ëåv¾YÖ“ähXÇqÔœXS¶¯¦‰Û0úl)l<õ¶ÜÀîÁ±ø“A±"ÑŽÑ6¦yf²Xû¼ Iíßu~N¤•.)üv pÔýåá̽ë@yúõœ¶ýèÑà‚_Bú@yò™ÄZ#z{Ô\~ùw3‡j²§€ì |­«&u6tàRh¶h…§í|úǨ çÙSC{´7ŸÑà³Ôº}SºlñïÑYy†¾­~†½Á’_Ÿ”í&¡»Þc–U.`Úº}Isà úêl›>ô~s«9“òwò ‚uèÁ°Ýû75ßÚ£l'4G¥ºÀkÐfQ,¼³3pˆÐnÕk©¹ aÏñi\qp¹á7¦Š!&·HúߨúpXàc£Ç2Ž·¾s.*¡u³ìÃ;&°Ám¤í€CD~™èÇÈ»|÷<׎œãÁäŒûñ€w-0Ý5KÀG1N¹aO!æÀþ=Ãø¡õò¶ØO 8Ūnü;ºm֦м ñ{k†å)3ë„éCªK}ñ!3”¶%,‘e£mE…—Sè/7¶ï1ÆßîÅJ&„%Î _­Šu9´ÎD•9´« ´ }="2?ý±/âX£™±”¸”pÙ*_+þµ—smpNÊGìZJ²µ™–Z¬¹áB° Ê•xÔ\QªNé‡a½_É:ýÈ·B1Àu7õ½ü:ékèÖllúU Ê†Üt6†"£÷èíã›~G0~¯oŽYVεÁ"ÏìÚSÞy(’Ä –Å4¹ÂªªaÚÃ|¯†K—X§ˆ;O/xˆ:_¤­Qr1“îÙïëµ:„éD»5`U í·±™o1mj»0O6ý–Õöe·¸ž|q6œ~›»CöH&´ž±\ä;a—J¡†(lš”GJ’ß«õS³Ìuâüi²„¯ä g¤Ö‘ñí™*<Ã8¼T7bÒ,Ëhð¾°Ë0užüͼeýþï©Ï0ë‘]}@$Žát<êÖ™ädâÙj¬.ø¢Ö»ÎÍ—É=øPvCµ$cAÛ±N5Àèè'FVÞă½¦ay–Oy6‚a18L+x4P¬2Ó\áÅãZuó\×m¸â}_-/ÃEŠæÑMiÛ'/⊜0dÓÒÆÌgˆü¢œL’ߎ b+>ëÇlÆPð­häÀ•)Œ:%êVyÜöñUÅ%È~¸„ÅeEHÜI£G1ºe'~[ع;ïo4)>´&àoWa,ŠÔ;Ñ.+ùÆ"*lã4uá<íšöҬLjÿ-¾‡o&2Å+rÆ`[°çq™~D¬àÙ‘š&rßȘ¡=ëÊGñ ÕFhÃ4Ûo`Kd 겎·Î‡ý±ƒË!2C™ÁÓƒê¨=e’ækü5Àv—ª€To<µ…ê²µ3î\Á[ž0„â×bRpéGÕvµÒš¶0RS •_Wîmìuωnü´/ð¡å\üKC?ÞתÇZY° óUâüØ>¬1ýp×;T¸ÿ'÷”X²ôÁš­5Ž@q9á±–md+œÊ/‹^“g+£´TL£9hX¿ßá†øÔ½3SNsJ@â½0ܤƒâÜ$þ™SÊ×<àyï°@‡4Á4ƒDÑIN«IÄñúœ¨Cð0‘áÍÖmò¯O#õå^«°ü!|åæM_då&SUz •ôÝE² ÅæÄì¯Qsœ³œ‘zgf]ó>‡ÅêŸHèDœ1˜Ö»QíÞÐÓŸKá66‹Ô/¼¶3YIÀZ½@„FÂæzï-ïg˺ï¼°]¦zú¨ËÏxþu)K}AsÙ , Ýbðü¶9ñ_Æl>xÇ@n•Ø òš¸Ç(UåxÞЀ¯tˆÁPfQFe8Æ^müÎQ °ÈˆµÃYo¤R$Ú3«\¶yi•ò%já~ÐÚôá#Ó‹è¸yF„é9Ä8fœ¨:*‹J1ºÈ±þ6$u!ÚCŠö^ðæîÂã…{$h¤Ë&¿(äV+ÜþãÆÿÍJdšßàqQR³Ž$£zLËÞ/18¥Ë–E2»‚j%5i8$OÿÖÆ’K;4ÕòjžÛ(lm·9¡ùï äÛ~i¼Xu‡nîŒ#f-yõg_¨6:å”ãûÝÃS=à‡¤WèX>b*V¾Ñ&9F‘ç‰ç?Â=éweÔUP¾Z cfñop}øÍ wM¥íŒäÞûÕôÇÔÚõ endstream endobj 181 0 obj << /Length1 1493 /Length2 7537 /Length3 0 /Length 8542 /Filter /FlateDecode >> stream xÚµT”í6 H—4Ò#=ä ÝH3twÃCÌC#ÝÝ Š4‚(! (JHKw7J ’ú¾ç¼çœÿ_ëûÖ¬5ó\{_{ß÷uß×~†å±–.·ŒÂªˆ€{rƒy@b9u=˜ñó€@|¸,,z0Oè¿â¸,P$ û†œÔÚó>&oíyOTGÀ*^.0?,$| 迈1€¼µ7Ì ÎPAÀ¡H\9„›ŸÌÁÑó~=Øm°¨¨0ןr€Œ+Ôfk ¨[{:B]ïW´µvè"laPO¿ÿjÁ.áèéé&ÆËëããÃcíŠäAx8H¹>0OG€ õð†Ú~KhX»Bÿ–ƃËÐs„!ÿJè"ì=}¬= €û€ Ì GÞ—xÁí €ûÕº5€¦þYí/àïÀyÀÿn÷wõïF0øŸbk[[„«›5ÜwØÃ\ ME5O_O.€5Üî7ÑÚ‰¸¯·ö¶†¹XÛÜþlÝ (£ °¾Wø·>¤­ÌÍɃ„¹üÖÈû»Íý1+Àíä®®P¸'÷÷þäaPÛûs÷ãýûráxÀ¿= ngÿ[†—¯>æî…Èÿ͹áþs€zA Ÿ(ê€úÚ:òþ^@ÏÏ ú' þ¾×à†pØßË€Âì¡÷?¸Hko(ÀÓà ðŸ‰ÿF¸`0Àfë °:Àà¸ÿt¿CíÿÂ÷÷ïó˜‚îí€~þýd~ï0;ÜÅïúŸ+æ5ÑВ׆pþ-ùßIYY„/ €›_ÀÍ'€Á ~€° øß}´¬aïôO-nˆþµÝûsú×–½ÿöûßüw/ Ľs¡öŒnÙÞÿŸíþ§äÿÏå¿»ü_þ¿;Rôrqù“gÿ‹ðÿÉ[»Â\üþfÜ;×Ëó~ Ô÷³ÿ_ª!ô¯ÑU‡ÚÁ¼\ÿ7 ñ´¾Ÿ¸Ã½£¹Á< ¿â0¤"Ìj§ó´uüË5ÅõÏ› ÕB a¿ß0÷U Ðÿäî‡ÌÖùþ-‚¼·æŸô~†þ{]¸-Âî÷°ñ ¬=<¬ýpA÷Žâ€ï§ÒêûÇÌ^8Âó¾p¯1`ðÀý}±BÂ^¹ß¡?Hø©ÿ‰Þ#ë(€×öß ðÂþŠx]þ`€þ àEüùî¡ßø_Zl½<<îûéî…þ ÿy‹@¡¾P[Ü™I„­x„SMDóEµ ÷ÆŸA÷qÜ)¶áº•÷–v˜œÄ¯þ¢øi™öñÍø_Ë${|ew ÎF g‹¥§Ùñb3uÍö6k\OGH$/÷j^|›ªmm&Vüp;Šƒ:½>§OÆ€”\îG9;J¬+Ï+°Øê÷yðц㱉ˆðã£E´Èä´Tʾ—o…0#Ÿ }O§SÜù•ý¥ŸOpµ{¶œ ¶’M³»Kà¦zš³+•µÝ)D­j5cYïTxt•ÂvÚÊnƒЕø¨£“Ì£–l×´ë´I sSæáLØz~”va>g-·:”ß ¬t;•ûEÂæ—^ó­ÐDýñîÉK‡C”·ª“ÕŽ˜Ù9 {«È®P®åÙBå/["Îy5>-JO-ºôŽ'‹uÉÜy-4¸î°ã<_‹Ýiû@f[HñSþ»®%ºJíH¤ÍôUT¨Ð í[éçÇ…ò/B¶â_˜Š=ØhMœÃÐsáÊßx(›è^¬¸¼Gìœ%‡U©Ðý&혅DÏ~û,óWè¶ãÐά8Nažr˾&–@Ü|À˜ë“ǯ§‹T"™we˜Œ:Rhòâ›k¨›Ûô±_¦“|`Äd$©{~…eK£ýNÖ]Œ=Tý›æ$°á)36uÝ_êÇ =2Â^˜¾ì=M݈]¥§…ªÔØ'ÚãɃôÆÉå]’¹ØyD¢ŒËß`aGó`†‹ÙE¬Œ‚¦k^:é#_´´Fˆˆ€òŽÇ6Úëù¡£—󾊱ÜÁ(¨‰”ºÒ·ÐU#džó5›Ý6 ¶l! DH"õw‚¥Ô¼p½…§"ÆsKôiê:<¯j~ Ý2Ó²Ü*þJ ¥„€–W-؆ñš_ÇüB:2j¼ÜGï['g0üñþ—sDû,J4wÆŽæÍÜZße·2ª>c|•¦ôL•FJTM’«âJŒúþŸì[{Øúêä!ÖªòSnõ¥¤‰ZX’O™ìg6 ÛÕÖ $n¨T˜Ç@"“Ý3žvfýò0v¢2£bÉhêOJÜãjHOÉüȺô“ÌψzŒ¢ó…©ÈÂG£[ÑÞñæ'b9¯×lNËÒ#óçûï?ÈcZ¤YòÒXéû™›Àuxs&H¾PÎÈTQÁ:Y¹ß¼s˜§?ì9|ˆbYjv8.ÝeYÕú¶;?¤ÅÅãÔoªOÁ•,6O£zN:Õ î8Œi‘ÿµ¸:p>{N7¹që ­ŽIšš“†ÎvíI„}"!ÚÆ£¤)Ôvõö:;S¶Ç,Ðkò†£›H}L¢+颰{Q2E¨0- s<Î|31ÚÈ÷¡°ÞX¸ žØ³µÃ·ò{"•…êx ò¨ kA¬Âp÷’²Áµb}O„yEbxž‰i|GV}ñÂ&Ä¿&€xfÜ”f¨%ø«‹û¡‡ò”_“ŒöUä*¶^wV/߉ãn†æÜ= ë³pqë.&_Œ[k¢”¥Û4G£ŠÆÅ±¡#‚KÖ?§H-Jº; Ž ç¬Â#ƵazcCŽl]PGèÛr/¥â¼U½Áb©\¦t¬Î@À²&µT·L{*Ÿ íTj<7î’,®|±«þµTÙ¤$ù æÀKZÍÞð"yôìµ™!bâl¹ôÇ"ñæ»õ\¶df:isËÒÉ?¾å6µ:uü’­ƒ¼£Ì—Q*KY5ÖjSU%ï+¹ûÔµ-{Œ´\5m“‰®’çƒ(,íßþTÕÈ{ÏÁ“añ #|ƒ‡Ž÷öSÂ¥‹©—U·ÑQ…ñä­`@$œº;þgY,‹x¤XìLU ¹LzrÄÎeC…> ÿB2úçM1Xèê¤7ÆÁšDh,9ü×Y´ÁØgÈn_LÂów³"©§Õ:xkhU¡®HسdQºCŠÊÆ0uP=êÕ]VB†(ñá;åšX`¹Ò¿žÌ0¿­„¸3à Àìšñe÷ac09n £hTþzº¡¬py€±‰W„ÔónÉLǹú°¯¨ª˜Úæ§>¤õh”öH‰P98:ÖµØ6 ´#ίñmFß ÁN29¡?$ÚÅÇë(–ã…;¼¨S~à fSDgy,áÝâÚ†¨öT·ø1”ÇI'™É³,q1Ÿ±Ù!¯ ©,}´ÒY­ËЈ N¶£¿ðvH)ºìÀmžœo[x$j5ðu7Êy(b§Žpóv/öIgS^†8Ésý¶ê[4'0Kòp½„FÐJZD!|Õ™ÚÞõ¼ïߨ"%hÈ$¢Þ”ˆÚ…þÃw ï7…S¼—ú.~rü—´€°®Ã&’”„]v=ÙãC“  NõÓÄJ;~ø Ž€Å®Ê´‘û\ÀÙ— P·ý2ciÏ— Zç¬N­¤LhäIÒÉ/JqÈâ·“Gø!þO6é÷稢tê?•ȬUL®·0åe”’ü æ?XÙ'Œh¦L¯~ˆí«KžD娨64ãÈö €X`ÛÔ礴o+\ªÄݬì®î y–Mã€Çeø0f[ã›…£#P¨Aý,ýÂášã–´Ö³9oʬ”7Ú‰F`×­>–­½šb¯õ,ïšœ·Ä$`lb>@й¤zíÛBÞåI$÷wwÁ¢nrµXð¥åF~’gÑâˆ.wÈœºùç¬ô)‘tABXLŒl+Up÷*<è|»I\9k\{Ø×ÙúP¯=¯h —-—Æ–-(Ãdeõ-™†[||›ïöír¯Ž´Xåá"+d|àØwzù‚eß–|F¾v€»ùVp=<ãPâ<»3±P$GZuÆöâÙ6ITû³³>Å·“˜­·ëþMݦ³:oWæ0Ì#é%+ã°æÛ V…™Cýƒ¹[‰eÆÇ*ç%öp±G†Eæ_ž;Á!LñNŒ;q²Q²Þ¡Þ3³]#Í^ŠçJâÜ$Dã.ªC!™0vä˜K`¡²R=¼þUÍ£çÕÓõC]N_Œ°5$5”?_Jl`êY~‘¢aKw¬~Ia}–+níÝY™Õ>™ùõ|ëØ‰Uv\´a^AÞñI?¥ó;WÖå¸ÍÙµ„'ù!CÃ/Y' ‡S©yðŒ-4¯â»ˆÚñ­àh­ÅRkpg –‰.BhtDŠûçÆðZxƒ‹›ðæqæ|` ËÓv}ùÄõâ« “ Þ®·]L¯ÁhkóÊsÉ<ÑrISêÑp`ñϥ…Ñj´…ÛGŸ”{ôe9OÙÚ3h¤ü˜Üë:¯7;Gôs?Zoƒ|-;eÒñ1c@“ëy¹»ê~pÉ`·rxuÅ|k~`’\"š^«—ö¥|zV¼ O>ùE044,\2ŽI§û€áçâ“¶!©"µ(óëðÙ/§'%ø#fqÒvè.¶v™ù²ó™§¯Ð\·)ÛñÂp“Ýë)*?>X(’q· /òú²•Ý/X){ôý qûVLÎ`Ï[ëQ Å·¶%ÉuS¶H{‚7:¯6Í/¢$Ð4V[ò)ü“GB'¦€LßAî ý‡M±Jü|ñ½lNQ€V‡Ù›èÙä\çOT™„Ë*8…uI:ä깙΃ò_‹^öˆüJ8¥ |µT‘þð¥×‹ˆe6϶øöPÀZ ³;Œñù•ÃÙ¸B¥85ddy >½ä®#g¥»‚P$Ö-?¦føkWm ЂÑc·ìÛ÷¯—£žº–¤üªŽ¢™Œ9û̯ã R¬3Ø\_•¶ðöEŠÒ_®¿/Þ™{6Œ”Å “½¾ŒË8ãàܳk] 5¢Ô‰è§…˜`‡%”~åWT,ÕØ¾u •‚9~íë”Öà:¹2Eÿ¬…Ðù‹ò³ŠykPëÅ÷}ƒ¹ÑOã»OQ 9Åù§mÛzë¥^R²Uiˆ!_õ8N”ލvo Fâ¤;Yv$£¢|éR¸˜M$ŠœÎÊÏôdþÈ;6¶KÖóCm6mÜŒõ0¤¾)÷g¡›¾+ ÆZcŸgï7«rŸ~¬å‡¯f:s§±2¨Ø¢6lUˆ¼WÝ4BeüDP©NÔë­’-šHˆöÑs•ó0oéyJ–é:)N[R¸) ¬nú/z„VÊž#zN4>ö søYXOsð¯©g4Aa¯³1º|ó‹d#†ÝˆåðSž¸à‘]´LÌ…‰‹§­£yílT€¸ÉZ©h›µÝù›ä¤{ú«Z_d½#Iæ– yÉ6—gA“oÙÏòL s¿žqõ§·š&ãúqTaH/Ô¦)|ËýÀkÙg¢±Uo—þZÁ–1>g'àMã š?Š ü`ô ðÊ©`j§3½×ÙwjµbqÓ l; vF7ujšaղת™NÄc³^¦xö•±Q*®8©ë÷>xäɽxËa_UïuƺÃòq=ÕˆH‡Z0Vuqü ÃEP ]{\¸»laRJÂTE]q5»‚më%®fý׳›áýÔMž+£ô'š¶“sVù…e¬©Ý–²˜Ôž×¹ñšÉ:·ðTî#›4ä.‹³/`[ßu6”- þZì²Ìõ¹ŠõÑ;µ¸¼WxúØÊh…‡^ÙIØjúl*.BžbŽæíÍq2R¬u>™Ž†QŠô·5Ïk¤Ih‡æ—’bw²N£ ãsþê¯Koˆ>'ø¬ÛÈO0ÏÍ“hl¸‘œ~Ä>Š?‚9M+´*‡E–üY±ã$ûXåúää“JzØ$žU¦LWi) stE2Ö'[ëHÛ»-@Ò ›1¾'áaòÏ«Ð?˜ºöfJ뙉ٜ‘s\K"KµŸE¤ywoPèôXh…–§Eô¹r©zÎX Èvg}µ¼æ‡Yá5½n[°;äuã¡üíf²Z‰íuCú‘v+ÓuE‹üg¯6¤Äh Ù•NášË 6MýsÛrÌk_YŒi5Øõv¬sË/M#¼ïQ0“‡ÆÊëØ;J—ܯöi£ok‰—Þoò[НÀVþ•ŸO€=ݤ~eØKá¯B£‰$)xwÏ#|~L¿eêi8ÅöÙ?O*I:&ê¡%ŠÀÒvQ@ ò…d»­™¶àÛ0ïÛ`”'j Ö~‰/æoEþÝ_d>vg\Ñú;´MôÒæ9=‚s"eðV1!éÍ=¶öd×L`î®BÃU ˆm´•ø³šzi¡°-¸)8pÐ’DÀá¨HE š.gnÄã"𔺷ú»\ÌZV˜IU8®¿†¾Žz¾›É¸'RÒÛÎËÝŽžçÆ È×X;<¦xV)îiGPËa͘pàÿ0ʼnÏZüVsõ=SV©ÿ#~朓¬^¨~RÎ^…g£ãþŒ’ %›ô"VÂ<Ïd=,Fì*yN.U‘ž¸ÒÏÇFou÷ó±ß©÷Z±©5ônShTyc„ÝÞÿDz‘~SÓÖ¾”Ûÿ<Œ, ,  ‡¨HÂÇÏÆßë r/ânI+E(ÁSA¿:Òtg2NYÄEGéJ9WÒ¹Š„TŽt»jøÝÆ)MÍú7BÜ ·y¼„IÑ#GÜDù´3³ÊkPSµÖHjžñ£Ò=Do¶Úóñ,Ò(8|1~F£Ð·˜ì7~1=uô”nusîØÁ=³ØÕP¿¿äò9¾½š*& š9¼T¤:BÿlYGL@¥²&,Ü}Ûiƒ¶p6LÌUr’±‰ŽÊ|>~9ÿÃ/’lr9h‡ó” *,ª–:=™«ØqøYKkŠ»ÿÄ®ç!1º|jæ¢"¡óç­6áñcò>Zí=Y—‡ìÍ_Ò7¤ÅÂC¼+Ü/;Î!‹Ý4íò׆esë‚¡þ¥JE³ÇÈ7ÓGîwØfFÂÞ®E®ž5œó¢T+ïRŸí ¡ˆ]ê™6(¢ÑÃWJDüšè^ŽÙk#L |ÞsN£+¥©a’ƒ‹[j-ò.›q[À1™›Q±{Œ¾’º<·Ýsm“ d%Ù3žD;è*Æÿk6Õø™*ÈÏѾ֡dÐq®ä\KæaØÂœ-[³.ƒ>%7zêÓçJµ"½éOy»é›ÚÕéT+; ´Œlêv˜EÈh€ƒ¼Ä‚¸[X]}d—ÿ­“LSªoiµøîöӊÇLV±_ØÞ{­¿Š)”Q8ÄPÊ®¡Í…ã løE8F.å  Œ;Ã6F¦b^ee\:¿Ÿ<–½(}åHï@‘ýbcß½úÉls7E„ò¹’îÃ\þ´ŽœŠþ䄨Ÿ‹쌸êhž„³ê¿áyÓ&waÍÕjQÅ››|§à:Åvm{VEµÂâ…¤ö $ndª>yLžW6¡ï˳Ãý$¾É0’îh°FÁνÑÕàõsG {»…÷I~_*—¹„ëøóˆ¤}w ä—úåy&k¿ÔÌËrØ÷iì÷®>jòa¬Æ¨ãO6ÀI]>_4o翵}Áâ’läl&šoõúªOº<ó˼(ŽÏÑ;ž8HÂξXY3‡bÞ:¯›5®Á‚´è!ô6þЭü®—mÖӜń&±H*ìšJLÖÞ£s9J„Cí,þäü³‹i´Éœ¯Wâãëò'jý‚Û‰ OEåÂæš)¢¸~¢ óïäÚTœ‰50t$ÑYbfuÐ'Ði=­!zÙdö“}¤ ‚x?á²ÎZäçÊ‚T}xò´ g‡¶¶æéÊÒ ¢¸ÖoõMy*ÆÀrYP"›iÎîNZ¨fùd:ûêÝlÌÒ€…jO€’éÁÙ »z‰æ…:K•+W·³¶¼~ˆ¿¿¹ÄûëS½±~³¬*æ7VoB?žMiã|“²Aš#pÒùTÖÞd´×ý–¥õ7ÂzÍ":" s˜cBò6E³qÏøy`’±”Z&˜›2 7‡¤a[;Ð~uÏÊAÁÙJÔ™e+¡†¿†#-'vùmrª ¹9Äl¬Ax”\÷ÚZq²£é&9Ö©€ö]Zz «‹ŸVè€ «Ï–õ„yLåj«ÛRîý©Ì’™ÏâEIF÷&ÎÆû:cë”hŸX0DÙ ×U$Óè´’hVv§õ4³}¤š‡ùE\§±Å¢µÐÚe¬­Õ:ù'Vá+>÷[$[R¥DÉHÖJið©ÿÑýî6¤GúêB0ªëæÕR-G ÖÒ–¿*ÅhD¢²ßFZÇ[üjñ· 瓾3©Ö0Qé[íªP • HÁïhY‹<úwÇØ“Sà϶Ÿ8WqXüb.Þå.Ïö6®u¹ÓÖ ¥e•‰^¾Ç,å"¾‘ÇÀä&­D倸¼õOütFJ¹§§¾Ô&H§°qÛ6Ê> ÛÓä|ºT$ê–bDõ"‡÷¦\.c:Ü÷¨¾Ç˜‹r%æb1S ?ý8]ûâ–ðìsz©eÃiñ7ftÔúõGÎ wƒ«dS­ºÑà V<‚Zï£lí#{N*¨8;òÚé;é- öåP °D·+þá±Ê\w™ã:öu|½Á®ÏÃÊ®ÇÖ5O¨ÆÁß(f¾xSä¿SJ%X¢Ô¥Ã{(,=Ô­ÕÊ¿¤ŽÏ"t,ÍåïÚÍœ­ˆÊRt€Ô×9;ÊT—t«K£Üe-!±ß ñÕè"‰ŸJ#g×póÃÐ%I»Ê†¨ðl…YG¥Å(ùŽn Wãp‚È]Ëë°‰˜72(Œœ‘ b9d7£:RSý |ÞHWݺ;{O4šª+ÙõVÊŠÛ‹¹uWî ï‚RzúØq·xøV{íÃíKN¸yÑ$hêâ>@Çäú)W1‘2õ˜†ÐÓï0Œ†Æ˜šG“†¨Ä"U¾mÈRe!Òécº!ÑNÁåwp¼2ÁŠmØWÜ}â®Pãk[¿Ø V!ÜÓ<–1å‘ìÐêNíel½¼rÐ÷ûitWŽƒÆa²«xiÓW†^<ëÖÍPÇ·x00“¾Ö|™ÃúöC‚þn¶íæ ˆ]Þúé R®=tÿþcm9‡)6DH]]OGÎüyz¢=Q¦,šBî,÷ø*”X0,ÐÏÝL;«¡ì°À_T/â!hâ1§Ø®ºð¤ë4avÅDà9½á\r»¬^ºnÙaIÙ-O‡Ûþ­°ÜLHüÏÈBr'ó/]ÓEol¸£÷<“ºç3T:½­µ¼#)à<¦¦D“Õ~Ê¢”’­à;+H2âtD¥>Ðj¤ÆqÞ›'õ®,ûuOã…HðÈ&ÜöKBJIë6±$e¦¼­ô^ÿ'£¦ˆ[ãqnMγy†'´v‹Úl4¦ö¶j$Ú±Ò‹´¹¤=î°N;vJ%%õ«·pj}·­ždÉGÚ<üj]ÔIǽ[R…Q>Îh œÅ&­“ezpAyDEÞl9ª¨â &Ïû0,ÚŹ‹À _ƒ)˜Þ«“ƒñF%›“8Ò‹`ªˆ‹b9AdþkÿêÝ«,DîŌόižzJ¦•ùH½üG×J,ü*¬‘ùbÒj ½©Ëú\³6VØyõåxªˆ(úì¸7ï¿]ðq ÷x,±P‰Š<¯ÍÖ§7”Ø™?¡ÿ:ÎŽÔ²ÐnÏ L BÊYxÓ[‹•I §Pp/"¹§‚~塜€ïwáןinˆñ#WõwºKŠjÂÒ¨ñ¨q OÆ¢gŽ (óm&Þ˜§Ð¯tµƒþ¤3.ƒ“¸k62sÙ$Æ@ã‘Üp0kS©L‡=ù¼×è½Í™]s~wm.˪Pg5#nôùR­@NWÀTìÑÖ9œ³ã¤È-ëpg¦´´éŽîª¸€ŽÉ¯BñÐ’µõ%Ê!=Ô–½ÍôÜP±Ò™¯=|û×ωE< ˆ‰7¶9±PÅÜ Óäwñ •”#Õ\¶g57¾ÎCý(q.¹ýµNS !9¾ 5ïo§ZáJVP‹ø–p&íÿ’HÒCù>ñÒëËîmX_4E)ßm¬XýVQcþp²Æ¹Ž¥`2F£_$gþúƒ1i¼G[¬˜ñ{'?ª•/Y¿›L6ûøYë¦2µ^èi>e2šPÏ.q£»Fä4•·ä¢Œ~ŒÍÒ¤Ç@‹­ÌÙÍ7›“}Ì“¼H%]x¦<Ò°8€¾BÓòóÄÅøC GçMüsÆHû53%® 3vƒèæ™çx“ªªfw¯(=à'as—|J;Í™üÑ]ÖŸ¨ÝàIÖ‘1òv b;pܹv(Ù2ž€+ÊSòÛêöŸ¿–Þ†h ‹šXÆ}$­ž©f¡ÃO»I¬†o{><C±ÿ¹zé:«Šù1¡Ò4¥]6Š[êEaÄÍ'«2L!ôô«&«Áƒà2Hv“¿ßJ¥ÃÐãNi—Š!ÜKz¢‘H×MéÂVÕbuu…£Ù_ÓŸ2x4ìÇ®˜?<ú´uÈÞB ‡7â§d³5êDoOiŸk%Tmº­-’¥¼~#±ÁUT–[³"²_o²2îW—Õlhü\zóëÅ…2=z5EpË)VÿdõMc0iãÒÕfóM×(ñ[…-l¡Þ˜ú¸…€òpV_åE÷ãšèèÌæ©P!±8úÞ•@}!8 _¤ÈŸþ.¼À2Éb¶_åX¦JÀJòüàk¦±îßÉ›šq×8vSàŸg^Úø?Îog endstream endobj 183 0 obj << /Length1 2567 /Length2 17884 /Length3 0 /Length 19370 /Filter /FlateDecode >> stream xÚŒöPÙÖŠâ. Á6www‡àî ¾qw‡@ðàî®ÁÝ݃»Crw÷éÓÉùß«º·¨Æ”±¦®õQ*«2ˆ˜Ù›%ííœX™yb jj,Ìff6FffV$ 5+gàåH@“•½ïb  ±3X&nì 6T°·ȺØXØ,œ¼,\¼ÌÌVffžÿÚƒxâÆ®VfF€¬½Ð ‰BÌÞÁdeaé >ç¿ÿ¨Mi,<<\ô»Dl +Sc;€‚±³%Ð|¢©± @ÕÞÔ èìñ?Ôü–ÎμLLnnnŒÆ¶NŒö Az€›•³%@è¹Í¥ P4¶þ“#@ÍÒÊé? U{sg7cØX™íœÀ..vf@|:@UF ä´û±ü èÿÀÂÈò/Ý?ÞYÙýílljjoë`lçaeg0·²”$åÝéÆvfÛ8Ùƒý]­lŒMÀ‡n ù0gøO~N¦ +g'F'+›¿rdú‹\f ;31{[[ ³Ò_ñ‰[€¦àº{0ýÓ\k;{7;¯ÿ"s+;3ó¿Ò0sq`R·³rtʈÿc!ý–YÌÌÌÜl¬ #ènjÉô×jÀ¿•,‰Á9øx9Ø;ÌÁi}¬Ìà?H^NÆ®@€3Èèãõ§â ÀÌÊÔ`´°²CúÍÍÿƒÁýY¹t™ÁãÇ`þëçßÿôÁffogãñÛüï3©ˆÊÉhiÑý“ò¿JQQ{w€;€• ÀÁÆàäáøü/‹²±Õ?Qüá)cgnàùO°à*ý7`×&€úŸõ ü/—¢=xnêßc®ÇÌÁl þÅòÿyØÿvùÿ7ã±ü¿ŽùÿHÒÅÆæo=õ þôƶV6ÿX€çÖż öàM°û¿¦šÀÿ,®ÐÌÊÅöÿjeœÁ» bgaóo!­œ$­ÜfÊVΦ–ÏÆÄê확PÙÞÉꯛÀÀÂÌütàå2µßNà‘ü[ïÎÿž(agjoö×’±rpŒA c$fð$±rp¼XÀÛhtÿ{ˆLŒvöÎ`8;€¹=鯖rr˜Dþýq˜D#.“ØoÄ `ÿxLÿ".f“äoÄ`’úØL2¿øùßÌ©ø9•þEÜ`Nå߈<ß¿˜Sõ7b0©ýFàŒÔÿE<àŒ#°¥±“©••©ÈÔÅö_9 +ç? g+3à¿rvÖ¿Äàa°r²þMÚäW0§‰1è88±)Ðhîü‡˜ãñVâ_6–ÿˆ­ÎÿcÏÃö¯üÿ8€«dú/âcjoŸcfÿKbkû;ë¿æŠÉì>òwŽà±aþÏ œé]ÀËøÛ\óß.àØÌ­\ÿàøKmïòG˜Á&¿Áz‹¿FàŸ&à@-‡ .¥‡ƒ%Ðî °ÌêŽôãÜZë? ¸¿#æ§ló×âüÖƒëöGÇÁ7$Óï£8À\và…ûC.‚ýïèÀÎöÿ£gäð[ &s¿¤vÿÓBv–¤ÿÛ@ðÌä_Ì?L9ÿ–YÙÿn;¸‚6.dþÚ`rüM.Ÿ£‹½3ÐÌäF±€¥Ô˜\Áß ! ë%æ›;šÇædcìdù8´ß‚¯p&gKðÞƒswv³ÿÃÌáò÷Åõ®¤Û[övÿ‚é=þ€à*{þÌä ýç¨ÿ¹M]@à2;ÿýP¯Èÿâ¿¿;€@w )Òò¢½)_ðǺàöŸ5"n û“sûš©4 ^Ë —G4ø$šêŒÀMÐHÒH] ê[á’g¯Ó–ø°Ö„m¿¼Ÿ ?«Ìì·!}›Æœ*8© B$dP>ð~vôÖ°†nì’¥ÈqtáFSÎ{ûÓ­_ʽ~ lug1l…^:[¬Ÿ<×+ÔXºñÉñuðˆ o1Çg(½D’eq—¼JŠ¢7–²˜i!6ÇH¼ÇºHÏyuåe0q™m@ËmõLZ}(ˆûªF´u§hKxtænn’RyJ_‹ú †ÃïÃAtf ®±ðŠ^ÛË0·Ú§·r§çuSºž£ºæ;ˆH;ØkÍ¢ëâÏaŽ>X p„7ÜÝÞÓKÉk½ú>N9̹¸«v –K|wAC‚/Hú‚þæmAZÅÈçÛÚ·ìzˆÕš~>×Á®€BûIŸÀ•]°8R&WËûó½°ìªY•ðL›ää„BØá}aYî/3Œ÷tu§ÍG‚§‘0ó:™aÆ~_›S4 #o±"¥9´™Vvùuê Ž rà q$& uÇ&)sbd{ÙîïP£÷à’Ññ,¬Í›Ãu+3(pDŸFF¯ª%{…,T¾È•ÖëGLÄñ«Î)~í~E­(¸-ÛÑ'ìKXÖ¯yï›:®3×£óÍcÔ}¸:º.¬v(@“R\÷óÜ1D:%fã~ëa[ˆ²ÏƒOççÍ®¾ãÛÅŒ†Ï“19+cÒ$ëv1'?ÝbGæšçhÝm¿.àhW¥` ž­¡2‚ößVÄ9˜{1‹w{s —fgòéŸ0UwZzOM3þ,VÙ©‘›‡¶Í°¹3X£Ô\óÇZò"nÎûñl+Ùÿný¢œ(³!¥‹`eáË[œ¤œ¯ Nh!—0Ž—ÈšÂ/%e´HF¾OëqÑÒ£tV¡ZµY|>uñ?³°>hkÝJ,¹”“´çs µ9¬Æ‰Ê´mçFªpžJs¸>tİ3›BJ™_`ÿá¢{†ê¦ÝÑ—œ–µŸÉÚ®ë<=;2š¼’Ý!dyó%ò«IÆö í2¹?’Ù`¡Q$9@9%$=‚7à Y`Îe)ͧRoõ™‹ÁÒÓhs\¸‡ò·âÎ?ßÌ›¥ôçT¤gpL\·ûÑ4|ÿÈÕCqj%üš‚³óvƒr&|L bÚ1üúÚ´äqí}\ K¢³ÄTàlózž0êLž?. ~_~¤ŠP2CfRæUo‘#N0¼Aé¯h(Z ·ûCÖî\v¦¢œì¯l]Âå;z5\ž«Æž'3,„Ç4ÍŒ[_~\DI¸jSµ—ÝŸp„Kšú Ø}ìdÝéX€[4Å:ŠscA‰yú9~Äæo’-£–ÙãñµŽ÷ÓøªùbnéÚITÂþÉeѯs‹3Š.‡Ü_üV—$JÄÔT^¥± uchnå/ªªÀt*nñ×˱‚zÖ©Éîâ{ÉJÑ…û¹˜ÖÏço `‚zR¾ëeÃ!Ÿ.¿R%ÅU†¢A*yÍH¦Fôo§küú9ÅDZžQ l+2?L—£±4ê¹>šŸnŠC†gÄf ††”­ìŠDù®¦f·ç¤â³þ½ŠJz™X¡ŒA5Ç3Ïû‘óm:¡!ÑSòõ!šáø:ÞbjMªzè0ˆÑ©2|Pü¸ZnhÒ޶•? z°(½u&tÉ!å¿Ér ²t—˶eí­ÇR£ AŒ#bˆê¤Ê9*8Û/DÈrTèr;s¨T‚Ù[ÊŠô¼ G^‘ªlR¬*hœzÙ[B ? p´b¨üWný$q-Sû`ïµ ²¯~Ù—•¸/+V©;LUVÞì¤)ðÔÂíbÉZÌš¸‘Œ·;õŒªÍ&BTŠwC›Žðj:’êûY 溵%½”ÂÀGSí÷mYÀõ¢¨©ÅÊ”ÛIGmöšò0:&â¯>Ý÷åa®ß-î¤úß-­¨JˆÂ7Ѩ`ʵYZîÊ#rÔ»f*J˜Î”aÕ(Œ(Ͻ‚©ñäxÅά&äxòºÜ¥ÞºîH<ͳ»r‡ïÇæ,·>E¦õÓßd›íØpP™Œ™¬;Ò'Kß1”jޏ¶íîuú¥®`á]&ˆ›‡j¡:oz,~Ï›1AC1ÂÛŸûÒöw$cn·v¢v±~Ž5"±|¯ó±G÷—ƒ8£N¾ðy7í¤°Kd$À@ÉjóÁãy• Yb0»RLýk…¥Ë5[Rëé›ÈÇ8R ˜ë k“AÊtíÜ3+âe·ëÐ1oܼÌPW±ê(e ç®$LíF̱‘dÐŽ,¼iwù‹ç`îP_¾# w¾H†³]ʤýÉòI"BU%ª'–Ñ©÷‹_¥1mÕ„Ù¡:r < £³ ¡¥ã祗pbZfèÇïþ­µþÕ‚‡ÁŠØCêˆlƒ$ñ[\èýþ³ó¬nÙã;vN0lû£¹ï$Ǫ†xg˜ó,Uuk]2º ‹º›K™H<1ºiòý ùbO߈[(*om-×èÏcŽ`añDisì]NÙNà?‹‡¦0lL›?O~AÔåú~­IðŒKýÌôØo¢¯ ¾‚ª +Ìî«"úô—I–è´Ã"ÍÁòø’åW5”ÒTE8:ž×tv.Œ()tê™Þ—ÍMÔ’ÔÞîH²JÏÑ4{¥^ÃDï SBOÑ‚ƒ áf’õ·-aã| {ò>‰PÜ¡ Ù$väë¼vwÈÅ÷ŒE܈cµ" ј·Ë1<êÏ’'²ÕBd˜ºú½È+°£“–Ñßzr&»ãK.CÕ¡¸ý§SC#W"TŸ*¼-Wy?hþÙ_Ìœ0š FxŸò¢UL¯ÒÙ/1tЬ_Â*ïÚÁ ƒr)dIÃM9ŽÍ$jüÆ<è.9·•9¼ñ‡ó›fþ(h-fHÏ–MrNrìfŸ_šü›,÷­v¸8ŸÉ;Ùk5 õ€ÃRù}z×É\5—Gö-¼ëW—>D c%Ô»ª£cÌŒ ]ÕŸX6hÍ~áD½¿•›àkóWÖÇÅìi¼lÁQìzIz:Jj•¦O$JÏL¸Û5Ížš~Zâö^[•šÊÚX¿Ðãk•FA²܆3e ߬v'Ñš„ÃÊa!âÝÂÞÆhIÞƒãüž¸o Gˆ¢eæ>É"8Rµ ¨ë™– œ€ñŒnZÒ¤<ŠŸ¡@dx Aî?S æt½õt)ˆ6 BŒ@´ro0\7­bR‚º QÑdÎNà0cñcWZ 1PYTOTÍ`o ðöµÉ¿‡ÑôVÞÎôã-ñÂFâ|ïJÂÐGþ©‚©?-)S¥fíþ#ý£…I–t‚#5/RÏÎEy!cô4T EƒcWÙ Ž_… Á±§;ýŠ—Aü„©>(}‡Ó¾ª9´±å6wx£ÂY:AmMìyj ¤Ä7í¸ Ïý@ŽåñµY4Ü^„êï%`ÞÝTANü9àC{Dñ@…†ùXöèl攇“.©èiÚÔ–Vü+CÊwÂï[ï×, à„5ŠhÞ¬œ2rWßÄÉ“ªk˜wÊXS¤¡ì‹ ;Ò3T‡Ë¦€,±ÚÕce‚t86$w‰öv3ŽÝ×·ÓS^Oµ èí?²œ_g}”ŸÎû±óŠeÝ듸—†çTW·qõ¼F\Ö_u±Ã H‹o(Ž[ØzÂcŸB¸zõ@v¡Š²$'/QSW_žs$+­+êëa¯:•>v¥t¼«Ú\9 k€×¾[˜v*UXÐH‰¢)û™š|ݳ_&{©­q9–ÎÝpÖÍÒó gö^VžGè­BðÐ[²t“âñ=h„-æ¦ÍÓsÙ †Žjd~ ߘ‹”ÏÚÕrSªû—ú§fHÂáþ†ð ÒN[¿n×°O˜®vZ£Æ­5×],öüŸs£¿¿ñ¡b·IšNÜ~¨î2T’ÙláÂOŸbòŠ3€ñô`0M๣šävŒ“Ð6gú¶t{®µòox¨ˆM ‡¦hç‡d‹ë·ŽmÚºd†NrþòQ:Æ—`T3iÔÁXhñMÃ0d‹ÔÈkøŽŸ×@À®rLK„SP7Ýxòc µÔ>T6å“fev‹·¦õCðÉ´´<âˆðAØ$—™R_þÁh°£fT¨ñç+üêµJÜ,^'\ xWbZ2þq8âTã¥<Š2z°©ƒ1– ëè z ‘{òÄ&óØ=ôÕJvTÜØ#OÃe•U¤¸ï$æC©øˆ^BXpa»¡£~Tø×Æ:ƒ›CÂ’¹Š;®²ÜIµYád²‰n“Ó±,µXîëù¨nK¦a ŠÑù§¨/®ý{8¤º‘ƒÜo ãŒ' H ÍRèlÊÕȼˆ­8k ]AJ«8y¡qæpɇÙe–A›L_ÜÛrkgÎçÔY…®,ľc}(Çzï€ä£-/§ø0Nß9w/’z¡¢8j¹jÆ©“ááÙåSPæØéóÙEmó/?´Š éœYrYiDѼ6K~^ìš-Õä|./ñT¦ý0Vš¢º¤²oFKrh£xŽû-ÖäíÇ‘°R,(·Ãbhh¦£M¿—7õ.æ7;yH—T2ˆŠ0ym;B#o?–]~¡Aýtš6WG—Õ”+‚94C4 ÊÛi+夔žNãY´Áz÷qê0¯¥(xîdA/MüÔåR½ý õ¾ÕîÊÇpþr;óø¸=[ÚÚ!âc d?¿&’c ™7s§¬¤mú`´ÄkíÙ…²=ePíЩ…½¹n}³ÝòHvÆ/Â&’°\Æ/R­v,!x1ð‰âCxÛ\¬Lœ&ödýÝLu¼›z°`Éņugˆ­"—€?‚gÉî!~Õmuò½cóùì)¹­Í~§ ÿM•Pz4Uv»8ë˜Æ÷‹"£ØD· CI¨ïr€;[Å-l³eH¢’#_ˆ,KsßÛŸo¡J†ó{ T¢•žYä‘ÜÓk4¾×·w²'ÎðZ[Ÿ°­Ø\¢U0Ù ÔÒ9>›xûž>Æó³þêæÂ7ñ Èþò®P^k^‰óðÓ*(#^’©ù˨†®†Ï%Ä­Ø—ÜÑ2ä·RôI¯ã F>R'E¸£B4¦ñk°×Éi¯\ÛrȤܢ£Ÿl G×P ìo‰§p\Â]‘䚃U…&˜uøËˆÚ¯ ²ì% ¶/QùµÂÍŒr¨¾C[Íþtˆ¤h[ü¶R-®1Ì<‚Å dÄ,ÇEçz•ÀÉ ™&U'ŒQµæè…y×+ÌeàQc. ¢J›µ« ¹w¥Õý³£Ã¤î3 û]éÇáõ_\=/Ó‚~×/ÙcJ†Æ¥&÷©­BåTÕÆî?°‰Qzi·'p‡r!Û|£öÅÄnò"ªo™gÉ@iN铪bUP½³£(¿tçÍð“2±×pÈ'n(``È0¾à,$Ê|‡` 3{Ÿ)Ëóò‹L,tÈûZÀԀŧÍ&SÚ6Q Hº’Jì5IM;³PŸ)m—/&ÊÐÍ•®i‡¦B† Ö:öýöëX{„%ÙõA³æ9¡Ð¾¸›çR½‚óOßO'Âé³ßäT¤îZXèCIp¿m‚NÍþfd®ÈdäWŒ~8¹sÌÊj]òè<†HͤÛ/¼ëÍ'V´ ¡o âÜ]кE ÖüJÕ. ¡„sñá,BÛ¨äÐHÖP´z‹Ø²xÞñòø-7 )ßãÕÔAm—¼Â}ÅÐÅaºIWb‘‚~б—‰½\ºÌÝŒz°ýW· ¢+¶øž…ïÏ*ŽDB?Ê©KÑ Uíe5ôúáWõ­Õ,†£bt 7u Ï>†Vå¿$rT—P)r»¡+„SÀÓIðºF#EŽ’C+»(õÛN0.rÇá›ÒFùdTo‹r_;9Œ¹º¸(%3qÚ²r¤ï§c7JÔW’ÎvÐ œ§.¬µüfÿ«» @~¦òÐüšÝø²Vñ[M½#Ëkú±Œ­(МI1¾‘—ML,ŽOéͨ+¿Îp½ˆ@×|˜qüÞ°Öã£ÂX[dÓ¥üKf‘^!ûj¶†îøcžaˆÉI ¹ó]yË c“ÏÈâÐ\éÌSµ×^9?ºëÙýÚ×MœqÏÅ›0þGä ˆËäáéüužqÜ^cY†I sÓ—ÑTrãé²Å\3€¾f2^ïâì¼`þú.3tÆ­‰rh|³&-‘ŽØÈ`z¤RÖ‰j€?â)sý±ÿ‚q,nkàäbw+ܾjp-ÇdÒ=ƒWD Âü Î2CO:-îW±ªX/–á–P‘ÈÔMú=ø*|Ògj)äwv©˜œ»$Xí±y–’säɨëH#?y\„™ÑoÈ=”±q­òP¾Y~2‹žÓ%†tÆhõœqÛã›±„0-äI®>ÖBQå>ÃôÊüŒ¶©]!ËníÔòƒŠD—îœövÀEL³iK%¯9þauWž+¦²Þâο9 téúóÄç&2ÆðîöWs@ø‰ôgÚ$ô\…Ñ»@^.ÂêÛïlÓS¡QÊH©Š`º°ØZܱú øuA€ï{å0ß#rðOíâÖ ¾8µŽðf¤(xõñH$ 4cÍBsϬ‹î:ó¯h¾?­×tZEd‹÷é}pà«?¥(ò<ãNZ„rnžøƒâeöKÿÐÏ·ÞeBTÿ³ðÓ¾±zúo]w£4û*¢Ê DzaãÊűˆ«Ðp œcÐX/ú êÇ#D?¥×|•7<ÈGå1AD% ¤t+u­¬ÛbžxÒÐÛ7n\fÏVÃf ¢+¹~•ÜÓ‡¾™ _NÛ×÷+õÌñ5ŽfI?H›Þ#–U¯\qbB¤Z)ïÆ‡¬í=H°ëÂÑRx/ýYtOSÂOÚ³»†¦ Ç€¯‡m´‹ô!MK°áÚ±V=3ê”|´%¦$8PÓ±íL °ø,ó(s]©Q9NYxۘȥºÝ}·@aY©”Y!,¶"‚Ï]ž°ZQ<,|mU,ÛÃýš™ÚKž"u|Þ½MºžQBÔH·+¼E‹Éëx2ÿñ;€¡²h¨;€?›Ð>6‹Ý0ZÜw¾ò)eG˜l"½ê—‰PAa+ÝÒ¾*žÙ:øcÑ¢Ð_sJOÅ­šOf;ã ~äÊU¨lÓ{,}gò‰j^N°Às6B^‘ŸŠ¬öí mÅÆn±‚†B …düjÒÎyF®Å=ЊÈöWp Ômª+ir§1cßÛ˜±´"R,™-U¸§=RÄûÜ"¦’ßÌœõ\c¨ŸšSÌdîöÎTN…â6/“ÇõÜ?ËII0¨¿×X¸iÇ6ž²M¾°öãˆb[ùVrvß±CyÖɹ¾‚%´Œk]›µ:U¢ .Ü"|¼«ŸC%jïì<ü)ÚÃPnµ2lnÙœ6D™—ÃÄÚIXéHÆàt䊼xaÆA¬²°²˜âuÓòóiŠàL-›BôCq©»&ÔíÍGJ×çúdÜSé…ø¶ø#QÛÓ¶ƒ) ªû—Ùþ‰ žs…V%¢KM³7# »t ?=zn‚´,j?Û¥*.¼Ä©Y]Õnzô ²]ùí’ZšÓÂ%ßv•Xu^ÚU]ã61š!wy†s©/ š*ÈýóЉÖ;ûˆã»wuŸ„í—Ñr¬¥M ;™3õã?îsVÉ8EÅZ×\šŽÖ÷¸ËÊ€dúÅg»_Ÿ>dØl®×BímÐd¸®õ\»òl­²}õ¿=üS'þò˜º5C¢Þ¹áàâ1}Y ¶}ïtAË9Ü[ê§fÝXÀ'Ȉ"$›TÑP;>Â*F¨|q7¼û’iLè›°ƒš½NÖö(½´âͳӅ”vŒ )Õóm [iA-ü¸Óš5÷ñAºþ¢øç OQÕ‰èÈÌÌúm1Õ¬7›ž™¡ë4üxg~jd£ûaªeFa'vßcò$ñ$ƒõÕcޱ:ëɾßDÍ^©Ô%¶U¶Ýmœ¤ÔI‡Jpéð¯qÓöGíçW¼wûŽu} çdî#ÌðÆIO½óæa*¨‚Å\xslÑþ¬7’]?3Z@Ÿêé _Ké¢ïEÅ&‹É ™Æ!‹­WP¬VÊõó›Ù1MÒ“‰'äExè®\e,I«¢õÞå¹ßã”rD~š îM¾H|¿yr¬!@/§ó€£Ë)•ß«u‡KÀÕQï/·UL[}(‚ë3÷ÎîÉøp™ËóòçŒk~«— 0VÝh³I‰†(Fª+Êê.ÉУ»U´Y(0 Ê´ûÛv8¬ñŒùÀ,W}9¬^½‹6qÿœéø‹¿ÖL«Ùî|5áû^ÁÇ¡ÚyµX⤯¡Ô—‚[ÁŒ*ÉVì³eKaÉ8¼-+ÚÕÅœ_÷& TØ¿“´>ÆNRŸeCѸ‘±¡Âq'¤¶YUeþ –xyÕÏ&ˆ- ñýTy1Ô×vŒ6Efbî\ñÝ6øûßñà“ô‚Ëý‡Í©û¤ÖH“íTníg‚ïÚuôׯ0þŒ’9Q‚ ïÈàÆ«b\X2kƒ¹Ð,n‰m|¡Ò6ç? ‡‚z’¦.‘<ÃÂè—£OƒÞ·¤d o®_•M¾.Dvç^y ï0ÓÌ…Â^Pnm]þèÑëﲬQ¿(ùÊi‹ ÏóÒ„•˜‘‘~ûY ÅJA÷ø³Hè•ÀæÔzd“Ïý3Ù…­A¯htÁV@>Òk_Źçä¡häûéX=\Û„„';‘Õ1IVH¥'m}‰oUoá<_ ×£vL=2ÙÚPÔÚã32¾öÔ0²°hÃÓ¶âu?w•ùÖL]Œˆ ŒµA7ÍŠ_ä”[ÖåÓñD 4¦?¨“õË,3mOÐhãŒm+šaöŠ&‘<“®„ÓôìÕ[?ø\@î1µxy ÊÀL(œl¸fPEŽ']Ù/ç5«ã9YÃ!j™yÈ溄ªwÛŠ±b­†?• q i3Wz7tüNÐZWåM˜XÞÏÆpº‹?îøø"’†9£°&`^ Ÿ)®‡QºÍ;sÌÛiÐdgÉhxÑ„®(Ó9­—§¢ÄŽñ#1^0p°…ÅgWx{ ]ˆ7Âb1lºÐ蜛=¾vŒø™€mÐUÈ÷ñºäµS̳#«wèûPî3|y¶âçu™hyXzrŒÔpèɹj$š¶Ä·ît•ÚêAPÓ‡› Á9(”)H»ÆôÛgÄŒ\ÛöªzÈå_Òf!ƒ&yvqö ̶æê)zJowJ&.òë¶²ÚͺÖ:¬vžÂºÏP•í£‚÷o¯@S%ï?3$ûdSìÞôg “„ùy@ãÓÈ’½E¹s#2ePÓ¤=4N¾x¡Ao+tëð|%ú–Eº¡Å<{5ÜÖ#l¦)IÁ"FZÖ“êPï®v[Î>êýYÑWWªú¼©F±ˆ[šè+íT7'ÉÇŠ¡OÛ‹è³^;D 9ûáýaþ¬U¾ïÄAþ"—(@H0G|€át#g¨ ëUE®¼§±›²D„Q¬‚@ŽÖ„â`Ei”èlÎjªeœçd ↶2L’¬ù|z©k˜7}rê5nüЂ‹M~kj¸ ÐÛ"ƒP·q±†q²~ ÜØ¾þ`Zi´Û5PHÒàÆq‡ZËE§ŽG$+‚§€\[ZnöNúÜõ]Ÿ÷·;ÃÆ ¦ØFH|­½:µxmÙVÑÅ÷±ùóÊE[Ì›»‰ßül93ú¦Ç˜RÄÚúÊγ‹åœï?Õ’|Ã8È”\Ezüú®±>_M´g/á½'ßëqh%€kçÜ”Ó]»§×ÏoȾšJ]Êœ).Lø<©höêÐIÑÎgƒk8Рíq¡2ÖÕÃ5QcêP M[µƒÑõ» x÷&ÿ¹‚ ÇŸëEÏu¹Eh¥÷`õçþ -.õ„·À¡®þÐJÅg¾{5 ë´zæ¶‘;ùØ{éÄtšª¢×ö‘„”QñçäB0YBµB†6 6µX²¤uXêVk‹™ï*dB’åXŸ¢Ð¢H‚öX‚—Wše '“Ô!5†Ñ½(ÞˆÉ$•?…|Õ-Ì%!‚mq1:/ʘìE}ƒ';Ýq´»TÒ¯¦=³‡œñ®C›àõëÊÕ¡õ áóÎhsœC*Œ¶ƒ_Íç·b?à¼%)¿×”£#X|tQº%O&®’x1òÉç”=ƒëc©cŽOwàR²p© ˆb‹Åœ´;Z öI‰¸Åç±FK|ÁðµE ¤t&'¸§6j£a¢\_b]V¥UGgµÔn%T^H—½ÑÓ‘Ðò8[á7]¨n¨¥€V‡ó®a%fÿHà ª’lT:ÒŒpÔ× á¸þà[nƽ"¦-h^"êKÂXÿWzEÖ¶Ë€Jtw^‰$ÕC`O+9ÖQQ¿ýl*Öƒó!€já¬oèÛ´‘‚Š1м%NI}SS;»Ýç÷ˆR ¸¤!I|&§-v¿þUQòí*¬Ù£ŸñN¾4/¦ÚàQmF;>BaÌôl²Ä$„!^¤WÅ›žò¥ýÛÚ-î×O ƒ4æ|kLé%VFÉ)˜Íœ2ƒ¿ºâ˜e IHâŽí’ƒî±ª·4ÅêOO…_ä·¢I‹””Ë|T;ð³q•׉­Â<Âç‘óŽq\FdšM6O ír)–Ó<€iÚ—É-ÂÊmÜœ¨¿ ùï‹E°iúRžù*êš×3,ÛöTnÚ ’®U#¼(ž_Te+o”8PÛ;C%K ¶«ï•¹Uw‚Ô |‚ÎÂ\ã©+«XÚ=ü»p^GX£ÔYâ±›E»®-*©ln°¾H+ýéÎ5Ý)S„ämæwB*\‹{¯ùµ°†^Ø=Èù·: jù+=7E~cYfæ Ê¢—¸ýZfcB9:‰ÌA¶DË{7WJ!mp?í™d9cç0PÄ‚·‹Ìý^®Â…øÖ¨Ê ¨!ó¯â>/kG%ð4ŽŸ!ùêÆM޳ó &±¡±Áõ9Ê$ v.>Úõ‰«ù*·ë­ i¯4«ËLLµµ“¿è,U£ØÙ°èk”&’´¥†âtSž]eé»äÅ·7‚Ï+?O§Šðq.J¾ç™|úŠ—º¤• óHgÇËVúct¨&hÐÙ|½•íMå‡_yªÉ]ãþ}ëÔà‰/Ÿ6LÊ›Á½`r|m[¨c7ªŸwãø†˜Ì4>"Cˆ\$o#àlfž±ÐíÞZ`p'^CÈa*½8CeBjD›U7¡¶¿º/¶¬Ñ N31ݦˆ<ä_ÜVMò½;ºJžÓ^`‘mB¦§¢ 7”&ûd®à?Å Nj¢AY&àjƒx¦ŽY:Æß®/k|LD9¢Pš\>õrP‹¨ ë˜˜Û¡à὜_èåy…ô"2ŒR=înæ E™-ž¿9Yÿ!·­¢’²öbB¸ŠÌØý)ï¾J»ÒÛPI½îžŠ#š]þõ~¥A‚ýM$ôéȉ»&›Á¸ñq}ä kuOƒm7OÝõ)»‡ÿ¢óI«cÒ““ësœŠÌø‚ç¬~ù(âÂiKyJuäT܉m†Z”J¾ëkˆ…&„C Ÿ?úö©4É¢‹¯v¡Ûy?Ýwÿ›ó ±®™ýé“Ü8æ>Íû7³¾r¤ÃÏ>6Å1 %ôŽÙØ%M—s.«bì./qÇ/ Ù0%’-p”Y‚Qæ7·D=B‰sÖÅâPÊ;ƒ“øï–>°Ì9R§fz4ôB¿BŠ}Ïj‰z"DÕ=,…!¢ºù¢Ø˜‘޶úmf£9'Üõnz–ÖMéÒ˜a²ð¤t5#„eQ½i³Ÿ“›ñõ3ûž¦¦” oscàÙmÐ|2òaßDûzi¶×âÑ æ5?¢ùìD5FV”ªeØrD²Pîìü2~ÃN:tùz l&¨©[‹Ñ´l¤?¾8þÕ:hœqtoNýåê¦Vy·$­$W2Pòø “÷%™A{3¤n>ݤ¹¦«ÿHy¡Ø ç‡-Àîˆô¦£eÜ\X?/Xû˜A3¿-î41|˜ê›Ëi{$ëÑ„!º’#ðŠmŽ‚Ô`¼åg°T7Ps 5t^ÿUl¿8Uh8ªw;G,€¨b|e¼¾Œ…‘%‚V3¦Å·ƒsm P²ìÙô Çàºê#J—ÐÃÆq§CÜëU­½gý—­êÑyá+ÚuÊS§Z뾇òsù¼oqåêÛcQÈXö§ÎCGe¤{(¨çE·YZ¨­ÆŸI-™•ø€µpiQ‚úÔ1Ÿ¤7Q˜cŸ¨™¡hkY }ì×öh0§Ó¦D\à]h {}Љ:]güÑVõlgíÈOßßÛ?Ž”V I:]™Ååz&®ÀrØU7Š¤ê…  ­‚äßÇ™ÌKÑhúÖÓÝ‹Ôk¹Zã„!,°“ç9Þ ô¿ý”åÞ—ïªÇF–ú°Ô¶–;üEÀ[u¢áhã[jÄ­‡%øõ*/âdx)ý•¡Yû…ôͬ»Íãþ…Ÿ®JUI£*œ…v†¹¤ŠÐ»I¦ŒéeôT:,ë3œ#Y‚þˆÏ—(.ôP~vÔÄá÷ª€ί15¾šðíbÑ—7ýӘȊ>4ŸD»~cH£ô¾`ßz1»8º å>^'H<.«TÔ%æôàêf›µV9Öž6á ÎÁÑFP 9¡ ªR³_JCH |*y";ûríGkÚ¾¡\€³|$Kä"¤rt£Á›°1ž&Õ-(wÜÙ>¸…Ñ_cÉMô:Ü2LkI††œÝü¤GžÁYÅ(! û¦Wh®WYj‚ûÇðæ W¬aÞÛT5dÓfºsô,òh¦DhNe‘ã\ {DNäFõ/e¥ Mhˆ@ Û;è^~Œ.Ç# ±oõ "†=–9§tÁT`”¼ z ø(4®“*Õºƒh­tØžzл0å ÌK˜í…µõÆ-˜&ðBÍ¿º"oµ°Ö{Æ£0i?BR@>á‹ÅÚÉJI0Ñ·jàfпÛDJ~±Þ†eîÑ"^‰{Љ¶z6óù{¿RCó™*¤\µKÕ–¼Ô_IÛë*.d­wpxï âQió1œ´Þ6€|„¡ÅÍP*ÈŸ.š}¹Í¨u…ŸÜîŠz¶§]±Hu`¡x¥ •µMH--uç¢äÑdRŠ(ŒÚ ž\Ý“NF:—èíªG¼™±·X|óšÅ(Z¼p| ˆ!V†…ÆVè.–4̽!X!»aØuTèPl)¨ú’+/&Õ¬+¼”·?έ¿k|âØý@çL©t*aßìÞy´ž• ƒOÏÚÒ@$(!ùƒc¢Jƒ§iÁ¤0®òŽHz`„” ®ê ¦ßÔ³>FyÆ€uRM?#ŸG<’ƒèÓˆóíûÎñi&T •¸’ ¤ÒhïÊj ±2ëçŽ44žºPN> d–[€ÞˆÄDò¾A>ÃßæÖšž’„z× r ¾ÅÚûÖJû!“ˆ¯\ɾ2m"Hfäœ1 “ —->k‰ÞU¶`êÈͦ­/³LŒX?“äò½5åëdžx9Ü. ™ø]OTËn`»†e}z|è`oév…}É”qÁSd´ëÓ±Õ·ý kB2‡Œ¶<㟥“!­˜6Pd9 k–à;é<ñ+.!å ‹t¤ôZ÷¤œ‘¡NÒ¹»ÛÊÞȇÉ¡d"h_õ6N5j÷•‰ê’/~¾~$óê„­­Ÿz{úPÞì°ÿ ¨6“M·äó,_ºß“Í|9Jûq­þLºñ˜_A¿®¦|óI©ÑzƒëŒT'ûë̵/ÜBªúKï·•±[ú ©jÓÛñÞA–à°,!ÿödŽ£míã·é~ò^óå×é Ñ>s2o÷— V¯è<N¯4)ºœ½c\NH”)‡¶/”Ö_ÇýÌFçW–ðå+*&ðP Í@¹þ á%=ˆy$/7ꬬ*КÈáúgWÒÙDŽ‚¸Rˆµ|G…y½sµ£è\¾~ÏÒEW® F’á/¼SDÝO·Z©rHîOE !öe;i†KÎÓÍ_#É:8Nñ,µÊQÖ¤äR/c$#½J±¬¨eªùº¸öźLñDm7N/ãmì + ï%ÙÞ^³ÇNâÏs‡o>„èh*s/RôR:/7{ k^ΩÈYÏíºÍµ|èè#}¬rLVÚ}g-gU:©›ëõX«lÅ;n\;縛i…ñfût×ðGdô}†¸;BðýtäW¤°7jö‰ª‚åØÀ›ibd®ëXP¦n,šE`Ê ‹ëMì©ÚãÕÁ*ó™™ã‘M¢âÐÊʰÖDÉ¢Óz u[øUù­ôCá¾Ñ“ú0:C‡Ï®‚ç½Âý¨º&GD핱Qo9›5,ë^ÂØŽ¾aaaUߨ…朄ÀIìšÔFéÀ–eÏôÍÊÄäî• hOn¤]½kW‚¡úUýd¸ÐVŽœ_Ôáhm…`‰pNq߉5|JUä•¶)†•`ÞKŒÀwÔŠ)àt°‹>âŸ[Åw® ño‹_Z0êYm“—¦³f.]f:T˜PõªA— Q@xwý9ƒÞì½&?õ‰ø;†­7µëSíqÂA7]èa$X @‚ÓËöšèöö6Qçó¸MÍä¾öâáç$·,ÿ-òÊ<ªUóU‚ãq*œ7QNÞ0Ϥ”F¶$–á͢笹°…Æ¢çˆ]Ûƒ˜Òå JµÒ\BY´lº6õAêôj—‡FbS5²´3’KF gÈ;ìˆýQ»ü3ÖYœPÊ«¶÷«‚gѧ´±v*pª ÖâP§ý„ãxR3˰öÂó«ÜÅA M•ÕÒq÷inê< žë<ïG +WäùÂù©Ô,äucMHŸø¶ *–9OO)ÞÂj/%'ÁÇߥÛÒ}lC¼+#3)›uôBðZ;ÿe‡äKwâv–ØÅ¿¤Î¹Õ¥)¬G@Šrþk0°§^©pÿ#±ºb·uO¹ˆ*5¿FwTÂMz BI-@Q™fߎ,YÒ¤\cBÜ9óEÐsgPb‰¶7Qd”û¶¨‘™Aªx_ô“6<¢ù¢€FÕÔ‡¨Â Ñ6XÖZÈYÀt™%Ñ •áƒ!ð Iëäç!–zjº'ÑlÊsX‚mî™pÊ5QdNY„qé÷'#Ã_ Ól¡PDMTM \¬ãn)Vѯ÷øªyâÒžïf…„âм/h‘†Œme8ú×y0Ïè}tT—8 øÃC4l7üS=QPã¢ÂW„z´GOFh$›&WªºMe1 Uà(,€D>j,ë‹ðA„mi*»+ÿT{þ!3/ÝbZÂOŠMËቻbô€¸øõšmuó“rá©’@ ©ƒuën»÷[3WûÓ»¬wå™xóúczÓ†¡žßïu•˜™- Ï_ùÂ9rÑFGl’žó}c{©5l­æÏZx=u¶¦#m~õAlôFÎ5_—bæ®\ø¾8Öæº}ñàãPRð‚>srÂëÃè¹™F³`IÚ$Þ°Œ.S¯òÛ¼ ÌBZ'dü·ŠôT®Ó€±Ys×Á9‡RÇ¢Z—Ê’ü&?Øu´Õ}ÔW뛽æ5G:Ìá“C–îüP$4bB1ÔÌñì ï„CÞôuß[ϯñOÉØHÏé‡W?+Þ§}(>«JUÞK0EÏ5rV>JbaÜ–F¿øµomŸ_5mOÕ‹/'=ç=ñ`ëÏ1ÿ¿€Ð%dŠ…ÉøE¼al¥Áƒa‚1ñƒ ËŠ©9ŒÒ§1‚’Dîù›A7[ —TUT clŸŠyÕ·LItøôÆE£†p8€üp‰«¯J…a_|›Ã+ìôÞüløÐì•a»¡YjpJÒ *Ýnßô‚„À¯B/ŽYWƒ)ŽpÒôñ&Ž¼Â·â¡ÒÓço­ =S»I6H1ÈΣ‹ª;·ø§ŸÛ®,æ øÝ^!ÖƒÓý´‘bÏíÎ…Ž¢Ú²ŽI´h‘Nc 7δ³¾uJæ_nõË$ÉE÷í9£-ç™åR²oÎnL´šÞýrب¾á³OØA@K7$fYz¦ ¡y;Ðu‹¯‰WÇ{å^Ö™ÆÄ“ÙûvHV›¢ …‰ì~?ª²êÞqï@èç!T‰V\=¡ú&â¨xz‡&Çÿ~®aH®Kv´òk®I° ¦nig;ès¾ƒXЙϨxø¨r~%ùò­èyÎÑw%reF¯3ò w`ÆÙÿá ö^‘{ t1lºû—J‹µ-GzG+O~üRàM«jpv0€TM!ws«ŸàÛ™=Ÿ÷iŒ#œNø’†…ų·µÆžB¦d¶/’:„„Ë€×…‚3E§OJ xè•sªžnÏN‡IóW¿[´õt^óàyú²ýû´ìmÂI¤ˆÑuܯƒ ¯È|¾^ÛkÑ™8dÌ/£"94¡N.gù˜Ô{|åi` ýùNïëq΋Òtš][$t;.MËÈ`(‘ì>ØaÿY„íg¿³ö.öõ{£s©àï•,²êŒc³¦/C¿{gë9}B›§kj›ú‚óÁmÖªøù4Ìç7­ÉÑ2XŽ  ölcý/ ´·‰` ›ë.ꮇBŠé@å©„R`ºÕÛaUÿ>­R¹ÎHÕ7¤æ,zË&Áò„ìd&\2 j•Ævsä-V¢WPßOü«ª—•4éS)Aœx‡öì¨nÅîôïe[&Ñú?pmt(cð2ñ4e6O™¥\µß J±8ŒIzJµ¦é³Ë÷ød*-›oCÔj}Tç ë#˜Fd>7Üè#çhIÖº1QnDÈWÂ<óÚŽñpÍîgÂ[@n{‰pœ‘wÓ:  V‹{·;–܀斅J~€¥ñ4â¡í¶ á¬IF¾Ø·?ÍÓ*Òc— „Q§PQ'Mr:‹fr{v*F< #£»A}¥uÕÜRÖÓËGDó §d4ÚN?¨.-Íyô‚¨x KQ¹2ԞƋ¶†üR,íu¹ÑŸ3S ×}Ë]"8á©)Ç˽¢BP@B#6é¹Û¦ Õôûètÿ¶.娔I\˜ÊÂÊmÞƒ_±™ÜJ{ËŒL‹¢Ç¥ÊÔKr§ì_€*ÆÏÚÅiÓš”“Ey“G“Jàj±»myÅ©©%[íSh~Š{Cœ\Ï_óªÞ*ÈF’sã|!îÛ!/éuSGŒísT¸€9fužêvËÜ6%ˆàa—–ÇUJÉÇ긂úíÕš@Ñù…JBšË¬¾ÎÛéÙ}°ÑñáÕ4Í#q-%­%I£7-¹:˜£ÇåœãG“5òò¥4ºŸ˜D§€J¹ ‡,n}Xâa“êð¨îv×›u¾t/ß÷ÿ&jÍii]¯½A£Ž…À4ÔdŸÒ/Tj£%hz¡!ƒóœ@Nsž—§4¥•ÊSãÛÈOŽR4£maÀþqâju@ÆóþŠÝFW~ì\ „:ªÌm@þyß`複ç¬=À¡'\×Ò´1§Á õ#R!%Å„³Ÿ¹Ð x(Åy¸Môg}6§A}"as™¼8g!]µ'YÀ#šoVß|hMe«'N¡XìŽ>ôÓ+tq›;“¸ý+÷î“&îr²(ÐZZgݨÒV´0+7#¾mƒk_¶Ÿ§¤ge fªÌÅI3Šnu®àö»+ûø$S_™%!S]’ä¡Z©éXèz¯fÑ\:1 GÏÆk6‹cŒâJÝÇÆ{áO‚¤qø' Áx©ó¤P·Ýb‡zh˜ßoñãu‹Ü15#¿RH!ô;9,l£Úkˆ"G“ˆl'¼sdçÛŠ°7³ÉxšÐ\H™H~dŠ}ŠqÇX°uÏbÓ®tèшÎRY˜D½áP¯ÞÆs„!Ë[¼å”X8äsýLWÊ4¼«ÏÒ»¢mß5/çß IÚidˆ±¸l×aìÌ5•VªîÝyåÑí6‰”»•M\ÔŠâ†ïB"Ôò÷=÷ÂíË6âΤ9%OX´pFCýÄÏ ŸŠ óu?¦«åÙñù†Ïd®Š¦¹?"iÆTƒ×õ# †¸;ŸÛý9Öñ¼qy¾ÄÜ/²ñÖ,»N(!”ki…La†.=ÊY1ŧ»€3&40¨3@ÿáL*CyšíTè9ß?© ºòÕSýg¶G$£©«€’Ú:v½Csx­è‡O ½U~Jå¿ß~P:iȪŽ+WÀí´Å].Ûýð1>\âQÓÈ:ŸOP×ÄUØ j™I^‚fE¡šJz¾,ë)ÄøÏ®†þÜ£ _rÏÃùbþ‹ø< 9×"þÁ4 Fô²bE͈Sv¬'˜ ôF­óU×yi_¯#Tü)DÀàs &§ û(í"•©¥(­™¹‡ýÜï a;{ŒF䀭3øSã#KæÐæ£Ô™x1Oi. ‡P¢¿r‘ð^É›,cG:òzϼõKäBYkˆxÄyuFÊ­+ÛŽÁÕ8   Mó"'].·‘TYg%óh¬&ü`rÎÔm é$ÎÆã¯ùÀ endstream endobj 185 0 obj << /Length1 1535 /Length2 7560 /Length3 0 /Length 8587 /Filter /FlateDecode >> stream xÚ¶T”k6L J ŒHçÐ-Ò’Ò] 02ÌÀ0 Ý ¡ˆ€¤twI‡´RÒJK#R"¡ß¨ç=ç=ïÿ¯õ}ëYkžg_;î×¾×°ßÑ5àWp@ØATp¿H¨¤mh(D@ a;»!ƒüØ!H(.ý_JH…Á”Á(Œ6Ôð„…D€BâÒBÒ P’ú!) T£¡@m ñ°+!Ü|P'gæ˜ÿ|¹ì¹BRR|¿Ý ®$Ô jƒQÎW̉ö`Ða… |þ‚KÖ…r“ôòò»z N÷¸ù€^P”3PâA¢!À_uÀ®?• ؆ÎP?¸ÂåFB€µ‡À=0žpˆ9h ®|èÿ1ÖúcÀü«7@!¡¿Ãýåý+þÛlopuÃ} p' #>TÕ@y£ø€`¸Ã/C0Ìñ£ÁPØcð;s0PUAÆøWyöH¨ÊCÀ ûU¢à¯0˜.«À”®®8Êð+?e(bi»àŸÉºÀ^p¿¿G(ÜÁñWžn‚Fp¨»'D]ù/ øs‚ €b HRDqB¼í…7ôqƒüVþ†1ø¹!Ü€Ž˜" PGæðó£!@Òà÷ߊK!! Ô´ƒ8Aဢc`ˆã3|$ÔhÂpOúõüýe…¡—óùÇü÷|5Í”Ìu5yÿTü·NQá ôãò ‹ˆÅD…âR’À€ÑCÿJô§:Ü”ú“+¦IÿÉý×ø¹þZ nà¿cé 0œ…¹þ¡¸%H dùú&úo—ÿ?~ÿŠò£øÿ&¤ê ƒýVsýÖÿÔ`W(Ìç/ e=Qúk#0Kÿ_SÈŸ•Õ†8@=]ÿW«ŽcÖ@îû»PU¨7ÄAвwþMŒ?°Ñ¯ƒAá]„ô×äþG‡Ù+{̽ááão³6ÿ>Qnpøµ_Âbâ@0 ö€04ú aÑâý›Á@A8…qbª :"€_Å8 þ©ÿAD€‚ŽP ‰ÿ„1Âù „c²û• "þ[ÆuÃŒáðPЂÆ\$#¢Cð¿e!  Ê ù¯ƒAÄ ñOXI  /ùøWì=‘HÌ-𛦘ýGþ}å@ Þ{À‡÷{™ðGuáíç5 Œ^ü£rSì&©Üü~ždIÜÕ¡ËÈ3…¤ÁŠ…5®ÓûY®ý>·ÔD¶&êµ]ú_ÙÄëOl´æÆiÞŒ|VxÕÏDt›ßðþ¦ÿµ»¿qˆ n v§{Ž»§$™nõ¹WŸš÷«þ²ù‘Çï7ô6«Å5‰¯Ê&ùcžZ†O³çÚeÎбÞ@ñ3òPz“OŸžMQeýdшçìÅŠú™¯?û>ã»Xa(ìÑEÏFoNÇ„{J52Á᧸¬A;ëWRôtYn6 Ä-€5ïÎ;Tt°>,¼#̯6ËxTd7%ñ ¨sÎ ûá€åsšºÊŽk:Ñi¾|7ާ[k/µoÄ÷Âìsm(è¾V]çÙVíïC…nÙÝL'÷/»¡w –YÎËÞ2мW ¦- ÙÜAˆº4*Àeåk°úW[ìÂ"…aêî„M?p2´Ü!3ÍêÃ^é}\·;½ó³)2ß;y¯Vöö%Ú/ƒ¸€<®…YÝ“ñy¢¼ô¶<£ú0û*<•W6¸j€øÓ[CmFùSRcçg ï¦ZmJÞ!M1§·Дï°œ±LŠJªË’ÞKÓ‘É`hœ"ÈZØ8ë°fL¼SÈZàbódê1–þÄ”íLê„Sÿ1!É ç3ï’)cmç½i-6]œÔù/7'?ø´‘‰eTÜäëD°ŽKpFmµòÜø¢R.‹WkŽýsj§Ø¾íkÙ;;ÉX$›­j×:áR±`mæòìäK{ÄâyUp¢´âé1%[`ŠÜt|^ýnðXTXSÞ³TšÃ7Ï2:ï¬ï&×u×êuÕðàÙhú¬›9ñtܹ«(£êpÓçBŠ­*ÐêÝÃa²L;¶5i­i1¹óºòâÑI% lá+iݲa¿ó£æÔi¼®Bé÷u»#vöýSyÞŒßǘ]èð@AéÖùæÉV£%õOEDœž~ÙÜõrþ†×õÌMñi†úH0>Y´t`œ{…*ÙÊNh´§ì¢5Ö¡ºŠÜτƸ@¥¹×ãIû}<‘Ê÷’Œ{fµï„(i*xÄÊ´öµ=ûf;ªo=íâ¤'JèÓõli€lƒ¤ñ-‡½gÜ¡ž“*`œ¾ «ÓÍ=h.­Ééî A¶úäÔ|`^o+tA+eÌ|Ž‹NJ„”cÓG¨^»[}OÿÒ„«Þ4JHóèù°*î¼å».#*E,Ï2"i-¦ÈÊ´ð·>Ÿ×óÚã2õ97 ;¢Û"ÆqÆýìC‚‡v{1¾Žž#>§ÍKoèøm4¯?f=hÎâó+š§*ï¹R|“’Ÿ8úÞ¹{]^4÷l_Æ2ßd5î5R̾ðª<¿æ?Á¾u¿-èÆp‡¦ñ¸~ VçM%Öߥé¬ÕMþYôZÆ´] (éøÌô²‹wÿQ4dvÈ¢¡Kâ+í¿õ£ì¼O7?Òœ¢ŸÕH=¡ˆ©$™ëxC«\ÚÍð=*šÈž¤¶y.mÞ§ZCI®Ô÷ÅZÊI –öb¨ô^¨ñf¿H‰kÚÏ*)ÚîÐÃL9·¢(Þ5Øû¸nøl$‹ˆSNÉ]‰7ÒCz!tÝ÷t'ù÷<ïOÕ*[2z”&Èüð–„iTUŒ‘VqºÅ¥`Z}äG~ÄY+ žR}W'md{þ@Í,5eË@NH¾c9O«•ñˆýÚ±"c×ûíΞÁ—Ÿ"÷^—Üý‘Ë‚ÉÔ¬÷çhO¨ßC•vXD®o–^ŵ”©'YKÝzèßé)`ýiB‡rËó˜!ÃËÎvoBªUì^]Áù¡ƒ†FIMß!èËɱéó¢ÃA&·³l<‹QÔñâ 53þ ç6‹5û\Ñ‘-ç)d”K‚§îGÄ!þH.—þgÄ+fŽh°£°óc4aÛp¿ÄcúóÔë×7Ææ÷¨û¿”ö»(ºYJ~šÝ){PßžÆ}”²%÷°Ê± ÏÕÎóŠ9ux9…T7§ ý17heÊA–ôEñÒÛ!UŒém…ãm•×QKU¯•Q+[¾ï¥àÃ>¹ŠÌý}À—k(^¢uѧQx?†n‘óå¸Í²åÝ÷æ¸ög>è+}(JµÿTC¢D1t%]6ïåxOùM¥ÚAÝÍqìŒîOßíÿÌoN½”ØH~štJi†œmÏuìã\ú“‹^åmK ¬éé‚­Ã(Ž9zPÝÙj §FÇÊg è/<¿ÚtõÓíÖ*"àµkPLáÂÝ5 û],"ÕÌ3f³,Dla§BjÑ(õåÔj1Á0÷ç¸k'•s*{}‡'¬Ö­ãïÙ|6ª/óþÔžëŸnžMë©óÛßbó¨N^ÁÓ?ˆ½,¥H~'°ƒþ|Ôb%›™~¦>dPJn̟ʯãløÖ[• tÅö9´ €zl{?IR_;‹a–$,²ù2d [cïR¥u!]^IN¬ÅÂõqšU«wšä's¨\Ì·,ä£KФ¯Ä×~¸Ò®?ý²±?,Ó"tÍVe‡F¡q·nY‹= .­oKH»{­Ö Û´8f-j¡lù¥9d”²û´2*~ËÇN<´ çùÛµñBo|ç™Tâqà#©F_§´ž#ÁÖO¢ª´,ëé1y…óËd/$.oá<碛Ýòïiöê äð6bÞ…vm¨Ç±#hIhJÅæÖ–Ð"T @ª¯×úk¢„˜¦Æ^Mù¿požfÂË »–cùÚß¡ŠÝàq{N­i}¸4p²”6¨qgX1-†ÌÍ:‘›Zö*õ¾rŽÞm·ºKœÅðÁ97ºCòí¹Å<‘·”7~¢w’+„o>ƒÏoèËÔ‹Tƒ%ˆB…ƺv½”Çhl)² ¬[\¨‡U<_u`÷å>¦vÖxà‰˜×7€WÒú%±èEìúdž^NÖ—U‚N¢± ãj9Bøå ;ü‡=?éü&!Á[Bµ§­W´%µ¦ÖÕ'¸Óøeæü{"¹U¤¤ØÄK¾_èÈÃÍ»4Íwó Ðgé…ùãayÔÀ6r¾3(G8øL«éæŠòÜAº­;v:ªÌ¤ÿÎ4®A–ö·ÊÙÍ¢@UÒ“àå]wÃÝQ9e¤¯Î…f>ˆ”Uvû&^Õ•@ÓV¯‹ŽŸV“QÍþ8{æu\þ>½ºxçFæÇbáñÅ™w­¬k3ß:ËížÓ?¸Ñ«*G:ØÕ‘à®y=g7ÄVN&i\ž+“zMháO-rÓ²5abµž:œ ç&£ûà¡€€˜Ò¸!t«Ã´}ë›A¡üÝ-èõ¢Á‰sõ›Vâ $Î\½~Õ'j%Îý '2EÝöšaH”ä–Å •ᘭqO¨ºã¾·[·wÊh NÔ”uáHr>Ë!ÐÏ¥ïëì‡:ä¿.Ï*ê‡=ݹä_¢Ù¥ûBTA0Šâ(¸–ßdu43)óKúä>•uÊâMóuu~©ü÷ý±9ºÕÔô/ á‰ ê‡fkŸ,ådµkÅÞQ –߉tÀÍvz·:ìÍÎ÷mžæK^ºê¸JsSº)³2ë÷)2«œìk)ÕÊ,ºCÀì^@UN­Ñ¥:_Ú °ÄG¹¯¸¥“{$ªŠ/]—8E[ÁÀH\@Ö¾ “uTö—‡t¾ü"ú—ä1›šÌßY¤¤Ä'rL® :+ÿøæ_£ ·¬¦ô(mÉÓl Ž[n9ó“CäÜÃ÷ÄçxºnYn{!y\²2%ì¶/9/ÈxöÊ6=çq¢RŸ†P•`ö„VµÉÒT3{—Áº‚‚èqB|&¢ÓÞûbÉØZJþ%µýNaìífå,ROãä_Ó¥c·A¢ëÆyƒCgÈzu'CÎÔEùîæø`©ÌE¦Y±ŽÜ¹;üHÀ×m@Tp'ˆ'¨[฀„(1ŠÚ—xü혉ւþaS~K­>Þy¹Yc$õãÁ{§ÉÓeb3Y0Þ{dïžµcÕ6ÃÈÅ«7ŒªÌZJ9+K¾Ûä¹±ãÈÕ\YYK»ûéì:ñE&ëО8–?ÂââR\î¤?®Ú‚g^œ < »¯σEKž˜óq]™K?|sZRýª"›¾Þ†<ú8°sg\Íñ‹Vm¯,>QôE(_aå“]¹"±ËsöÜ-Vë*™báƒóÁÞOÞèß®?ºÈÖdálJ d4­}…àë(^ÉžT ؈ Ûî!GÖå¿q“”[ɲ%áV {60Ê^£efut©ýó®Ô\ FˆtÍ*ßLL1?”)iëPÔϸÍ]YЍØ1Þ­é=4ø±)Ûš*î×czêé ŠÒìcgÒDcÃdâýªÐ§.åýŒûãësÑðaë‚è.ÉûKmefgM3Í\s UÞ‡’¸PoY8LÍŽøÛ*%xÊ@Þ‰Ü#*û(¥N/'0«XŸ•…ã+˜ÑʶyìfÁˆºÝ3'šç3^+†±å¥Eæ#Í×ÜÊ*é£Ê $#âyͤ=bßfå3æªrêÇÞâ_®v÷,»D­3EÜF p7&ÁêÏr“¼mêh™å£ô*M&D„#Ò¹`%kŸI™b6'üCÎÚñ«&oMX $ß®ÒÏÔU¾õBvºvMùòáŠ2~óK+垪-|9<Á´¼.²ÓnÍ}Š·§•5¶ïWUÜôl†ÔŸnáÃ/Ýu«ÛZ›Êm¸RæÔ59\ûZQ;=;W•6ØeâY[Ñb_ÑþX B!—r¤ç^%–Þ¤æÙ ’¸õ¤;>–iéú8ŒyË“{‡c0¬‘ûÓÌÁó/#Ž6{êÙðJªßÝ}2ÈØælò›}}E¨ {4±a¬¸ÿu?Ñר>HÐTˆÄ wÝ]®ù‡3‡„çq9žÚ‰qÉ6¡‚Ít·HŸöÕ÷O«=Ö/Q›8 È:5Ù·—Ó³I“t‡çÎK ½OÖ/@áƒö&k>Ç%Ý#Çj<‰GˆGup/ûé)¾¨0µ¸»¤Ô§.ò(ìä8!JP'7»ÕÈ”’·à3=Ö{ÛÈíxÖ| ] Ëˬ°ÖuÓV0ƒ?´/ùÉx%‹K Cñ”¡÷¢¨«þ¯_r¾MÃR@^É?"šîÃO߯b©*Gz-+°§Ú}ž%Àn—EZ±Ûâ¹];e.°H¨2rw >ÕX¬GOè侞ûøö¡uQdêÖÓiR&´mLùÚv"Ò•ÐešãÜ\rrISÛ)&a28ÑQÚ[a³ßœ;g'‰&¹yÊÆÒSÄg˜«}C8fLéáâ•q.$[.éü­ŽÄªg~H’M\8™ŸwiÒG¶=黿GÐ×BC‘e° bÒÞFk½Ë¬Ü­±(ûNúñðîB¢±’¡ïþκ^ºEÒ®€¯d/ÕÏ[µÇNóÞ&™Ìòóò›W|^æsX*óqÌ-qEO¿´BýÁcb´ýH‚¨Ÿ£·zcò ‚ªæËŠîb-§®Žm«§¢# _æÁLÒ”ÖÙôúq“Ü…¹ë++£1!ÅôQ2,$8Êð!EŸ/>«Íj:¶vû,Ľ}Cù™#hÈÕCJž©/+Ý&=nÓþÀvM!Ba–Òu2½•ð~¡2œp—Œµýtÿ‘#|Ähn>íi¯RÖËp>ªIðéÂVßfÖz~avù£®ûm6]k›¡߷ѵÍgŬä†ÙXJÀþ%dE^“!BþT')ŠìS?·CYòiM*cYºVÅ õÔÁß&3“õ«¬Ê¾6È„f|ïN¡žI㦞ámÈ"aïÇ3³•!ŠK‰©»©‰Ð2hKÑ™aN8sÖu^W>üبŸFÇÿ:¼ª…ÁàhgóIøV›`cfdÿrÙìþ¹VLôM¿ ôrk*~ùÕà·güíª •ET17¢TaôÄZD>ѸŽo6Uåµ·ƒmòByÀÝ”ÉO™[æpúºÄfZ×§:’zžÞi«ˆÎw(&&{²6ú’ zQâ%È:&ãîhrÄú,Åš°j ÄFé„?¨›ç¢w]®Þå)Îw ÚßÏò“ît` V¸h¢C[é(òp¸xɜ事/<ž$ó Ãao!µ6žÐzêd•›pÎx1bìZÝT‰]¤íìým=[—ã€kÜ/›qó(Ôé2oÜú}>íÀ5Q_Át°ÿ—ÚV®=— †Î=ÁÜÑ…ÖØÁÓ/pÝÇ48½*÷óQUŒÅÁ)!AYNmÖæ.ÛOŸ´$’TYfhò ¦¾£¼¬§¨j&Lkwz^'e~& B¯+Æ70›hÊ¥­ëÅ[¥(dǺŒeù+µ!vÖþKÁùîŒù]¬}Öc#³0êÿ8]'èÏ =¹F–.*ÊSäÞÐÕ‹‰~R©Å5Õ|6íÉHïU‡5”CbΧ®ƒ½ÞtÐLàÊ›W鸆*=®¿˜#½Š—$ î²Ç“±–+.ûÖ.ˆ5¤r÷óJ„;›Û #£aÁ!-DPÀ]SAå1ó¦xrù×Ê¢áÝ^ÛwzÊ´ ceãLœïáEâxK®Õ&רV •ß%œ°XèµmIzÈê(‹§:IWë$•ÄIƽëðL ÈÕ­ (æH’vsvÆÈ–•<—:R×”é^͸½¿2·œy°Ëb5Å·I'­•ÔªlXrýi#šHvQÍ+íl¸ÏuÍ(h¼Bû¾8ñ’ð†Rï^Ÿ) ¬Ø±¸å¦RÎÚ‰”KiZC,bÅl±«‹b®oèÊ7¤)XÚ‡»¯Ö· }“[÷ »at¾è¸UÚ™¨>ÿÕáC`GHÎ%—ö¶uË=××}[}\WjTã–è]iò×U&ÅfA¶š–r²EšrXÛuAFf]u#µÑ¡ÑGiÂÝYT±fŒË/x‡Ú’#ä~î^ߺJ U7|ó*4ˆ%õÈöfæq5Ÿ¬çÌ€p2 ûm¢t2)a’ù|‹Û×].p•®›ÆÜmÅê’ž4¦×’S‡§3£µ º¬Ø¼+õèjs¦úÄ‹ œäT#ûŒ5,rÛ|ý«é-†ö¦:–¾íI$zH‘ÁËæ¦v¼æ<‡1›LŠê#QCfýéÙFÜb†úêýóç̯vÒT-ï5n½T]-b"¬g“ ô¨ Ã8‰Néª^&o 7‹øñœ•±˜ºPg I…⠢ݙ¼§2í"0  Ü™&ÞÅÄ/~Tq»¯,—ÆRÂ9ßx=&­c^¯Õ¾fƒßÓ8iã½y­[/âê¯7¼³½ûö5QºÀ‡ #¸Í37qŽ^¯6Z†nI§çYô}¯TÄæØÍÑõ‹;Úå{Ȫã¼^æ.åæºù"×Rßß·WšXº¸í¢öµ` ­ˆƒ%BXBŲ¤Mb>Ÿ‚gcgOã2‚ñù0çR6•££¨ö úË[¢ìjè9Æ\ù]8²YìœÔÕÕöFÐ\ò=q^£šéËW’X¿}\ÑŒfiéש>ס :¼cà(æ0ÊÇì‹H•S×­*kXØXË‘:P‘Ñ©ñ~_‹ófgß|ÁM ƒ²²òä–â½ÐBŠËp6‹¥{³ÆÞdC=Öìd#˜nö¬ø$L¸_=®j|×[’[ø4ø>ep’¶´¥½´RK…fÚ·¥Bäj«þE)uµÈ }+ëè“Õ˜Åû±‡G›lR#”lr™v†«ô$~•­^3¨ÀŸ(iù áµÙùþ‚_N’©vnïtoÿèãç º=›Øf©;R£dyóà·~B<”b¾ ÜU]TaúÀS•Ù}NÀ7Ap@Qgþ©ôžr»§Ñ[FªÝ«­~ØP[²Ålßü»Ÿ« gº5BסC zaÔ±(r€éÛB+å;l_ؤ¢ÁIPÈfPZ–ÈÄÈ`¦kó3¨— ×ùp%ø}D5ߤ˜Út°o( ÄͰ>ê3ù™‹>åbO‚6OÓOI6.“5õÛ4O•gxeÚQO-p}æû˜7Ž8¾wÅ5-QûëL\•—Ãõô«QËoˆi(Ó?ÕTÝ6´æ£~$Å@:{@¼¹¦uO‹×açJ׈ÔJZá9uûå=һ׃9D¸Ìå ½¦Ð5:fà#ýb3@Óuæþ³6 f µ ýó¼qw}°_ñ‹¾¨Ù-»e¾ê/¾Ç>!¿ê´{Ùç=ó]UßÄ´è±]¡ÝÛòp¾kÄøYw.v›ÄT›+¶œùeÙ§uáù1¯™[¹zaTž&=‹ i\Ï=€áŽ#cC£Í% çÀLžˆŠƒXµŸC%½Ó¬%§³ ô‘E28͸é½gmö=¬œN…¸=ÀéaìC¶O{­!>¤¤qLÏЖ/^û,‡Z àŒÑôÌ¿c¸oͧ`{ªØ²XO»«2Û IUɨ§û¾eðA)‘Êâ¸ûeCµ<&”{uþ ®‚í˜ßNøíÇ>YàaWpQÍöãºÑ³Ø•åCF3:¨+øŽwØ]—Ñåf©˜ììIé¢DíõÆ'Ø‚–í]Ž‘h-Ç}¶,çÈüÖ¯,ûCEÕÏI‚…/OŠü²Ë9Ãf:ìÝŠßl&;Æéˆ ªHµ¯Å™sî­ ±2™q÷ôŠ5GC¤=‰5EK½V¾a‡ ŸYßÜZ>Œ§xØà í¬öÀÍÒ|Lp_ü?¼¨j endstream endobj 189 0 obj << /Producer (pdfTeX-1.40.18) /Creator (TeX) /CreationDate (D:20191201114219-06'00') /ModDate (D:20191201114219-06'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) kpathsea version 6.2.3) >> endobj 168 0 obj << /Type /ObjStm /N 34 /First 278 /Length 1497 /Filter /FlateDecode >> stream xÚÅX]sÚ8}÷¯Ðãîìdd}[3ÎÒ¤„ ùh§8àÁÔ6iÒ_¿W%Æà6&™Ù—H¶ŽÎ¹ç^I!R!å"*5´ "¡åH 3}ê1èxˆF<3JaÄ£ˆh% Ã%^ô$¢Ê…-]¤saŒ1JàhW#Æ¥D€Ê„fÈCLbˆ#¦A°îjåqJ |¥gfQ.Œpƒ Bk$Wp õƒ¯×f™†‹ ó1hµ‡$ ÿfOËY°þ›ge¤ésj.Vó[Xt8]¬³tYÒ 1™6Œ'6Âßñ÷Uœ“Û(÷u<L>â4òÓ™ÉõY대œÜŸõŠÕ1EkعlŒ)n*-¡!œÒ$”g¥Ä³' j$Àá¿LÁÝJS@çFšy¸X¥ÛÄDb£v»1:ωU$6À j;1^yô-xU›ý—[ç~6ûEr›žªCï¬Ýïœz£VUܘØ.þšÂUà'½j~ù¦ “WéM–Üï”ëõvµÍ½VÉþÒë_´,÷ª}[Ú}.ì­¸³JîMØ«Ì>eö&Cõi‹œGêíGíÖõµ!WY£¹-Ñ‚½ªD»/ªÐõ©äŸB6Uú¼P§ý—Ôf(­¯«ÏoP˜ÿ·jìÕªÆí›æ—~;¾Þ{¹Ž=§7ïÕ±W¼ºçÚf–ák¸Žr¥ƒN]þv‹ªàº=竾? R8ÊÄ+s0rà91Ç ó?Â|Úv8IÑ×\`X}ÞМbëÆ²üýo‡Ln5ËØ&72²µ În¶9|v™û I;‘-ÎÈÞû‘5²¯ƒf÷ìjµOK«“k©ÀerÝþ€UbÌ?Ôlûǹ¨Ú|l¿ávuÒ>iw=‘»g¢¦'ßxêØ7‹wþ÷´ endstream endobj 190 0 obj << /Type /XRef /Index [0 191] /Size 191 /W [1 3 1] /Root 188 0 R /Info 189 0 R /ID [ ] /Length 524 /Filter /FlateDecode >> stream xÚ%ÓËOQðïÌLËãZQ(Äò† (¨¨ äUëðUTø4®Ü¸rgd£Æ„8 ýÜ—lLLLÜ¸Õ ÝcŒ‰öœn~9çÞ¯3w¦­™Ù?ÏÌÌâVLa ÙEê‰# Žœgª‚÷hHs \ó‰«h×Ú^’${`éY®¹ À’ ªóÜ­dŠ()#å°ÎÛá-]%lð§j‰ÁƺUã¤6§á0ÅÊãº,ÿ\k¬»I l¹K«%ÅS­¯«ò®¶y_•wõ°{-ªz¶ìaAui„=~ Ë«î'M°ZsÍ$ {Ý«Þ<ŒÃÞh·“´ÀÞäU[ÉÒFÚIlg[»Ý¤ ö1£ÚKz`Ÿï¨fHìK¿nT<ÁßZmô“ƒ°Tد˜ê 9D“!2 D7´{Œ¿uQ¾«°ŽT“w“ ¡ôJN’@ë-Õ12 d²º€^Î89Œ@#§É0Ñ£:I¦H–L“2KÎ9`꓆È"Y"9r–äÉ9 ûTsÈE²LVÈ*¹D.“+Àté+» ll)]¶sJàÝK¥5à{Dé:<—Rº¯oSé&¼g =ª!Xͼ÷ú™…€÷gTɃŸ|¥äÃ_kR àßýªÿd^) gF© þ·Ò\9‚áq%þ{Â4iF°2Y¼[aËþkH`P endstream endobj startxref 286617 %%EOF survival/inst/doc/adjcurve.pdf0000644000176200001440000164536613570775537016215 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 3 0 obj << /Length 3286 /Filter /FlateDecode >> stream xÚ…ZIÛʾ¿_!ä °h.Í-7çáxrzAœERK,‰ IÍx‚üøÔÚÝ”(û0£f/ÕÕÕµ|Uä__~ùø9-Vq&qfV/»Uíábìþ&Ó‘ÄØSޏŠÓ,Ìò •†i‘ñ¡¾Ô4Nt’ÚqÆò0f›059Ë#.³02«I²¬xm¼ÞÄ1¬ûH¤1m>ô(è ½5øt´Ûü\®ª°Ê“éEÀE–QÉ”è®ðï ‡+‚%Ð* ÞPl®]µr“–íØóàQeüгèf'ľžA]«ßµÐÁéß×|‚Îß`ìÏ·v(|:T?píø5‰÷HáÒàòQVÞDST sTBºTBŽÌN}pûúŒ28³xe &VJÓŸl“š8À™ÇýAY5QÐôga=ÈY çÐñ0mÀòE^‡#MS¦y~¿ãßVUtkç“,&u­U²Õê‘W¾D¼&™qB6ªJ¹çq<éñŽ„z¶jK+^éâ‘IrôNdõá,HŠè oè½Uð &ö ‰žÜ–8†w‚¿j¥Ý‘®ú®*³3Éø{Y™Iäܱ¢Òð¹'ù¡8ëÓ‘8C½¯K„ëM^”žãèÂèžëï^…×–ÅM7ç¶žøyI¬‹B¢E(WTGü1¤9ØßQo|­ÁÓž¨<:ª¨½¼uJ¸Nâ0£Y¡ß¦æ3Ћ¯‹ª`‹„'žbµ—Í…N âÆîZ¯ñ쬉Ëiò t~dâÒŠàœ-ÞÏûãjß ‚¢iä*ÄÏxM5cü‰ØõP÷ÉsÅO±Ê…óê+sYo²¬r£<ùªªuôTËnÚ_xÖ Fߎr'² Ô¬³$nö²­Ä~xG³÷<“ºéþZ&uPZåãÊ=Mù9‡½÷cÇÎsí¹ƒÚ¸éÍÞnÈ>ýkœš¬Ë4À­ÙÍÁW&Ð|îÚOÎØØÅ§ õõ"ó?°0•Œ^ú‰(†4eUŒï²F1_Õ‰{ûí¨úÈaŠ#7N9˜°<0cøE´Ô$[ò‚'îà@-†f$B€/4i¤·LF„s}H4:zÒ$åL¥f lÝj „›H½â2œrRÃ#y(kºäÈìâ7ˆïå9¨:D´×>ÊÁIžr"æ\ %ˆmA|êhI³¶rWäGÓÈ™¶GÚþŸœì{ÙÁ³¾¥Ö®ñ"ÉòkKžÇ[õ)¤8óø‰VsÛvªrw|ú¾)Ìfvd›‰ Ÿ99pGCú´óüñà­°îÌ‚„:b…yéØË?4: ?‹ 8Mn›‡éÄŠ5šá°Ýdà¤7,3þ‡?™=8vÑþ[•á|ºÖìŸDêñAê¥<ê܃#È©–U¨wø{fãA Ñ)háû^’˜uË©gjy!ìHŒµ^œEWµu,ÒÅÑùLø=ØÔŸCÝi™ãÉ‘;höÒqL<$Œä ÓPÃišÅøé¸Ÿk*•µ+özÄÂ8òÌüB$5$dpQõ¶š˜:›²ÉŒîùMC¥ÆRèû&reéhÎÎT•¤ßÐÞñ…"¿7&i§é½CÄ.ñ3ÀÏs‡üi¤˜dC[êÁˆB6wÈùŠüˆMáä9SOºqælp£˜ºxDÃ.þ‚ˆW}–Ùõ¥å!Šã†âx'³yÃô‰›ä±™GY dpv±èvYù±»c´‹2á,¼³éMO‰qhb ±6'`.ixî 5ÅÉ“$†¯Q’Žc¯brlOlrˆ¾¼ý‡I3 Æ0,i0âN u½=c=ogïOÒˆ7"‚¿Za©bæfQ˜IgˆÕÌ¡÷EÓ20¼vã|)Ò‹œï‘%@ÄÃdykÁqNW§‡Ç³õ˲ƒï`Faž9OæÏ$Z|¸*´«7Ï’f‚|i:@èyj¯M^L„IÕ•/Ðýq€bGMoF·îÂMã½|ÐckTCVGËFÇD½Dª œ¢a$ë'wýÅwõl‹9êaß9û6ú¬P¯$¬Ò“ø§iIÕA¢Vã©(aRÈ€G{»ZÁƒÎíMœ´òLØi³’‚ÞàŸ¤Q4—•qðûŽ—èÒþ6QX6ÏB@twFžú¦D<¯&)|àDçÌù;ª‰õßtÝ­àI"A—·Ó¡f&k 8ªûo¸¦¬‘D× ÞdOîXt³|70nA>ØÔ (¿‹v’—\\MAé(Ÿ’7uC©»xí(Ÿ›¬0£&Í‹P¤.½Ì{ÉœIU±Ûrå(ŒؽwØ ¢'Eª5u^>MaÔºÔ³DŒ¾$[ÝË ±.Õ7?Ÿºó³kôⵟࡳjÚ“c¤ß:€Ð »”º´šW§2¶X f¬ñç¹Xš¢ãW.£Ì¹…4Š÷ [Ê «kr°ã\«'ÂÐuU¸Õ×ÖuiøÌâÌc$pCšªƒZx§¦óaï&•ù,ö Ç@%¬ª TNΟu–@ÐGT\“Þ<”›Áì [º•ëÓ»ÄÓ£–¡²Ê1/j‘RYùà§b™™Ù<¶6Ë‚‡yBäM®…>´?à‚”ý@Ú…²ÿ³ìÄUñ9ê>3ÎQŽêXÅN·™gœXÔ“ãK ¶2W/ztBXP¹ ÜxŒÔSÈ ÷tí (%$|Ÿd”´€Ô€¨ä8Äðnìþ#‰¨«yæt8K ®Á’Ï鼞ä‡\%—GìÃpª)8¸Õš@͉D»èu¼ø`ªœ=ñ(ÎT03öO½üj¡ÚI°º"SiÊnkÛ“Ü)ø*Í‚¿£îxn#+·<\åŒÄ¦N±hU°ö¯¹{Ô‚˜§¨SLƒ<°$Î#,§UOpnZFwõ‰2¶Á¶Å£ŽÎ¨†ÎÙªBÃ<1¥’r]pð}yé½í(ãå ð ÒÌÊÒ¹ª’Ê9ªo²ß‚§ã™$Óobò²g¿¤&w»NkW1MÒ|Ö~Èï©×s&øxŸ–a@3:ä±D±÷iŠ ÒK ªø ìo„6…Ô4€-ѳC7Öƒ\T3ñjBר°@ár òõ—Dz^,\ ¯¼øE†%Pã®xƒ½:&N®5+7å‚@±×½=+í¹°Ýo½7 Ôcwo‚]JQ>-g˜â1Û(½T©”W—ïÂ]“`òýmxLpÊ{cûYKÊ|ÌÛ pz°7¨ïÏ oO)w\W½I>´o€qéK{P×pâ¡ÇDV7¦sûûòãrJCK@jQZÎê´¸ÂkJNb_x߉­¦ù&“ÒÙò4Œ M^*ÎhbôÍÄüÔ 8#‹CS]TÓí¹Ám­Cl:î°m…¬ d÷/M±OÜÔ]ÇÐ.±¯_íëÑNjœâêr¦¹w¶u‘©îEx ”¤Ç_LÌpHÒ=ú÷Ù„yeEÃXœyFQ9%ŸW&ŽÂqË}6-„6ùйÃj<:Ä^íW¦q%Îå~¯Š“®¯×Ï_Å!ÅÞÕÕ‡££–ä‘dUWñäQ…Qaåuô û=oè<¾BLË\ù¤GS^%Ê!¢amá:V›Ã¸œYÅR)g):lÍS2÷ÖkrøˆR™Ü˸rÎ|“Ò»6$ôܤÈÛym~…lëÉf–´vÊÚ¡ÊBn°lhð[;þ® †~ùíå—ÿÛ¥ endstream endobj 15 0 obj << /Length 1711 /Filter /FlateDecode >> stream xÚWÛnÛF}÷W¨ P@Dï•—¶/®S-¤E ô!ÎEÑ’QTE)ŽûõÛòb1IaÈ\îÎÎΞ™93Ô3z–§qšd3›«X97+ë«®â<1Ö‘À`HKZ¶ÉÄõoµž½n®þ„¿°´•‹Î_ï²YŽê’Ùýcwl’ÅÚ¤³ûÕì}t7×Ñ~ëóþWó…É}¤œ/œqÑ_0EóŸDêÓÜû¨Ø¡”‹šG~¦Yêxß±™W¨l?7Ytj‡Ò>z+;øÕ-ü;¡ØŠnaÜœyþ{žg.z5_Xe¢%Ñ|ÄiÐJúðNIGÃ*p¸Ù!w)œiŽrZ˳K- ¶‰Î»7·ó÷¿¢ ­ãÜ'ŒÜ:Á[¨82&³Lp¬b1ž/ÒLÑAdC£Z€ ­´~¿ãœóbPPßõÖWiíb›À!¤¼d‰¡/³8uyX¯Éƒ>…/áBI$§T5,F ºÔF´RÀK£Õ†%£ Êp'\ZÌì¦w¢²Aä?‘?P ³Ã%•¨èØ­ÉaË39€$ÈM[v* i©"€ÚØX«|ì T³/ÑêºF·YŸFeA8¸^gÑM˳-ùí|9e×Íct%¢îÈÑ.5@°u‰A*{ZçF*…Ázùu7‡–;´ê6õÑD|M§Xö]ÊŸ›‚ƒù‚¤° ×q¦2ÖüŽ¢…ê3ZWäs£bNVq|G'ñP q2\tÛsIIYs WÓ4}2$!½[~!¥\èŠ\ÄÑçO±÷Qè¤gÖNßF°r 1\­Å> W¢ j|›55¯Ë 2ä‰X)‰;ñ #W±©·¡ì¦üéƒOîøŽBà©,¼¦h¡áÍ~] œ;çu€CrÏÿwaËÛ::ñ&4Ì0&$z Žd}®z#)ÎS7ª~ðúVPƒÐnxævxŽ› š|o>ðÇ–P“.ƒïªGjö&2‚¥Ãßj¶±ÚÉ¥Ñ6 ÙåÕðz S¡Û…µ#G„ Ñ&u@T-–|Oêš1m½Ó˜¨§çÛs é¥H†ÜÏ-Æã7ƒ™ĹМO¼•lç!„uà»m¨SxÈž+ÝIá'“Š£Àí>÷=ŽÛ?ZB¼&ZÔÅÚv}æÏ—É­ »¶Lÿ pƒFžÃèH„æO¡lÀúRǘdI¶ J«)YÝg!Kp×Âd!ƒT§A°Áî²zÎ!OF`€Öîû,gV>Öl/B­¢/X3o[ÂÒÕ¯÷Wÿ@ZT endstream endobj 12 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-flc1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 17 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 18 0 R>> /ExtGState << >>/ColorSpace << /sRGB 19 0 R >>>> /Length 12080 /Filter /FlateDecode >> stream xœ¥ÝÍŽ-Éuàù}Š3dXŒÿÀð€„(€° H}Á4 h0Á¦m6,¿¾Oìµö©ªØë6Ûð@?VVÝs2#3###ÖÎß=òãÏÿõ埞ÿ÷«ÿùýøÍ÷_Ò[Jéññ?¿ÿÍyþ¯³?þÏ—ý·Gzü·/ùñ»çÿýùK><þó—^ßz~ÔýVÇã‡GKé­%ò/ï¯Sí­ã§9Õ·4_?v¾ÿ¼—·QÞN¾~^RyËëõsçûÏ{~›íýçäëç5å·²_?w¾ÿ¼§·ÕßN¾~þéë¾û×Ïý•;÷?ŠûãþúåW¿-Ï#ñõOõÆÿÿaìöqJyKëñõ‡Ç/Òw¯þò_íïþÔ/æçYíÃo–Ÿý›Ý¾Âûo¶Ÿý›{¿íñá7ÇÏýÍÒöi~öoîñù{柽‹jŸ¿hþÙû¨îþù›æ×NBKhë­Y{1•9ÞRA{úück'ÐûOw}ÛóõSèý§ùùÿÚzý˜üðóÕÏG|ý|ÿy©éìkÿ9ùáçø°¯Ÿ¿ö{å}_üò}•yŽE+o;¡µ¾Éƒñ¿»ž»"ówåÑø‰ßÍõ¹§ Y6ÚŸúåùÜ¿,ÛíOür)ímwþ²lº?õË3Ão­è}áXð²ò¥•|>/ªÎò<´ùyhüÀ}¦oü½]áÿ?¯CùyšÍú(oËÚû¿þâ¿~÷ÈÏ“çüýß~|üéoÿã‡Ç÷¿ÿáþåßýÛãëï~Ö·_oã¹Û›ýö'¿ÿßûîñËúü£ÿþßÿý»ç¥úñ‹ßÿåõ÷ž_âññ‹Õe'_iýmŽÇßþøø—Ç_ÿÞ},¿õô÷îcÞü÷~5ÿŸ'þ:lo©K6ðy$Ÿ÷c’ìUñ¹ÿ+)ŽMNIû‡ží£If°Jö Î.iÃv’`Û`«’ ìI2SÒÚvŸo©I0OÅÒÀÒ$íZoe(ÚÖ÷饦–ÙN26Íž‹à9(#{à:eä·œ%+h_0pn°.ÉÎ-™Á]‡}ŒòV«äÙu£ú׿ØÏ®ÏÓªJ6rK&0ÅVÀ:«ýCÏæÖ%84¸†b±]7Þr•Ì`IŠÙvÝô†tÓèòs1m°&ÉvÍ Î‰~É¡ÝÅ—ýC0²‘K2µ(ÎÚA‰,àŠãÐÉûod{“<cf»ïDö¶­Ø&84+¸ªb=»n²ÈNNÉ ¶¦X&¸º¤}Œzšª`Þ`Ý’ìE2‘[1zN‚$YÈYpÃÅ©©˜À±—ýCÝÞÈŽª8¸4m×s´›õ“¶Û#;hÕH; %ÐnÖOŽ!YÁ5íf=­C®ØÁ¥™ÀÝífýìps×], œC²{Jžh%4ïÀ<Àž%Ï]7ú@»•?Y‹dGŠÌ¸Ñ¯†ÎIdk–Ì u>íFÿì÷[2Ò>ÆDg,ÐnåÏ®œ%hÝ€Àa»nŸSS±€EÒnÖOrçÜ<ÿÐNçV#xž“{—Ìà”¬\E±œƒ²3nš‘¬IÑnÇO¶*YÁ½­!í‚_dû–´SÑ…¸˜NÇÑ8›ä9(»¡ ¸ØŠd­ki£c×Z3{>MÚ*2ƒMÒ:Oö"YÉ­Ø7¸†¤}Œ‰}¤}Œ…} áòs³€}(Z÷òɱ%8‡¤íØ}nž‚e€­IÐn@Ö€Ïb.Ú•nCÚº˜Çãîô¬ÚÙœÑ+»<6:šÇå®ô³Ý*[sΩœï-ÝÌÕž•]“´uHÏÞV.ôЋÞKŸcÂ}Ó¹hgz%é†ý9N¯MºÒÜ_·ë¦Ï]¸`ài]¹ÐE;/º}ÞK;Ñ«K'ÿ<ç.«Œýµ|öòö¸¬=+Wúô´„ö×¶>­r§O¯V9Ó³KÏIïoØöw¶WííéVµ=§tôªÒÍŽgÆ„r¥G—F{Ëõܧ¥»{igºiÛcRÎÍÞÍ(WzOéŒÏÓÑÞ…½·6ö'Æ„Ñ^·v¡kžÒÌã Ê^[í5cB¹Óg”Aí1ooáJŸ~ðØô,Ú¶¿ Þs £=<÷+z$i´×’­_ªÜèU´ñy îÑh¯Oï¥míµTëË £½<É+Wºi£½–êû3¸»·6>OÃý<í±4´çÛƒí±Ø(·t£OOI9Ñ«J/ïû½p¦OIíµàͤr¥w–F{-xŠWîôÚ™ÞUºãó,Ü/¢Ù^×ùEéæ^ÒûkŸ†)]èÓGf{Ü6v¦\é>¤Ù··‡`Û_5áz$œéÓ—N“nMÛ¾OÍèÜæ+£ãÓ_Vnôyó£œè5¤Ñ^kAA¸Ðg,Gx.z}ÕÞ]íµÚØœt§í~)œé¤Ñ^+ÆH„Ñ^+Æô•ݳvr/i´çŠQeìÏŽó-ºàó \ï„+ÍãuíùéÞµ;=¿aìÏiïÒ„Ùž1Ú£\é©Ü¼=o´gáF[{¶ýÝÚc4Úsør¡·6ÚsËöÖ\íõé>µm6Œ“+Ûþlý‰h´×ã!öÚ0V£lû«5ßÁɽ¤Ñ^[G]û ã.Âh¯ c+Ê•]íµa [¹»·4Úc›xÞ®ôÊ•íñL=ø†mýaìÏûE4Û#Æb”‹{H³=n\¯„+=µÑ{²ÑiåLÛñŒF{|ºíJOm´×žmÍãyí±W?^ÁÝ=µ3mýh´×ÎñáBÏ%\Ø^{ERû³áx 'Úú‹Ñh¯½¡?!ŒÏÓÑF—3H”+ݵq½íýMáNÛõ\û{àxGãy­ô£Ù^Úƒp£­?"Œý91ÍöÊñ*áLmô‡ŸÞYûsùñ¾Íö¼p¿îôJÚø<60¨Œñ†§y‡v£m¼Nû³y„ÙÞ7ާp¡û’Æûˆóâ£K£=ŸGC;ÓµJã}ÞåIz$i¼8ï>§¶í/¼G–NtíÒh¯x³.é%Üý}Ù™M0´­=L»q(£½bæ†t§ÏýJß§Úx·0Þ—Më8Kc7;žÂh¯g^OÒÆþîv>ã}Ùv¿Vîtÿ†3}Æ…Ñ^§ *Wÿ÷VÓnôÎÒl¯Óî÷Ê…îÚl¯Ó®‡Ê•ÞUïsçòãœé–„ý}ÙÄx£2>¯ý¢2ÞçNŒ7*7úô•}úƒÂlíEؾϙY”¤mⱕ^ÚhOï¬mû{a¼QپϲùQÊ6…áøôç” ½»´McÈ ãyÊæñ¸]6}ú Êø> ç£p¦ÏûaÌg8 cº6ö7Æã„Ó¢ËÔntû†±¿íÅHôÄTãó>]¹ÐM{MÚö—p¥ÏóŒðÜôªÚØß¶ã¤3}Æc…Ç wÑ.î%ݱ¿7Ž—p£OL¸mº íL7í:é^µmî„öñ²m3z¤ݲ´MM<ÚïÚÖq˜€˜9CM¹»·v¦Ïó®0Æ Ž§6>o±þº0Æ»vµþ˜r£§6žÇ6Þ'*wzíì^Ò{zmi<9oEŸã™Ê8Þ ×ÃhŒ»p¾œ0žG[òè¤`kœÏ&lãÕÇg¼P¹Ð§?$lãÑÇ;IÛxtiÅžç”}úÊɽ¤>¯MÌ‘ÎôÒ6^w¼¦6¾¯uü•m¼î¸dé¼éö wº7íDŸþ€0úk­[{æû’ãs=R®´¯èÕÜSý±6¬¿«Üéù 'ziô×8ßOÇÃ>•Ñ_kíA¸ÒU÷Ë3pj7ÚŽ·p¢›6úsÍ^ÌHgz,iÜOÏ)ÚØÛž‡„Ñßã|CaŒ‡œ†½µ]‡v¢{ž¼_6Œ ã~Ù1^¨\h»Dã~Éù†Ê•¶öûe·5âÒîßp¢G’Æý²c¼PÙöì”q½;†C»Ð¥J×JŸñ2a\ÏÎÀBÖÆ÷Åx¢2¾o÷ý};gšûû6Æ{10(]èÙ„¯wgàvjãûìïh<¯žé¦Ýh;_£q=ä|AåNŸ÷ÊØ_Ç;×ÃóâghgzNi\;²”+}Æ‹„q=ìvãÆþÀ|?a\ïÎÄ‹©è3ßO×;Ll‘ÎtYÒxž8“Šv¡W•ÆõpX¦BtçóÄ™xö 7úô÷…ÑŸ×KáLŸçaô×8_QxLz5éŽïSp¼£Û¦ÇÐÆç­8ß…}ž×…q¿;Ë›4ÆÛ0q]ºÐ³Ic¼í, XÚ•>ïã…1rVlíF÷¡hkO·ýÆ…/ʸžùŽS»Ðg<]÷Ã1Ð_.î%=}Þg(WzVi<œ…“I»Ñ»jcM›o.ŒþþYøÚ¤ë »6ÛæS*ãû,´‡h¶'¤|(7zOi¶§íÇ3ØÚ²U¢ý}ç*Ûþ˜û#í™@Ê8Þg>_ÕnôLÒ8ÞH#“îôèÒèïÌŠça|Œ ãxÏîß7ØÚûÄx«0Ž÷èïFãxŸù€ßp£¹¿nãxs¾2¶_8_…½›páõ„óå”3mÏѸެ„þ¤p¦›6ÚÓJø¾Â¶¿Æ#…ÑÞò ”+ݵ»oÆ#…Ñ_Y˜¯¯lûs\o¢ÑŸyÚú3ÂØFæéV´}{ëoF£?³ª¯Ûè¯,äes=Fá|:åFŸù˜O±0Ÿ^Ûc¼P9Ñ#I£¿¼úƒÂØï+…Ñ_^œ i»Gc<þÌwÚ…^Mã¡g¾Y×.tÝÒ}z mkï›ãÑx^ÛX+Œñ*Î÷RnôÚ¶¿·½8SÆýj#¯BÛÛ‹ËhF™[D8Ó6^½|û3Þ­\Ü[׫Ì^µ±=æ› £¿½Æ“„+«4®W»¡¿+Œí;Æk¢Ñ_ß÷+áFï$ñöÍñ¼hŒ§oŽç '÷’Æxèž~¼nc<`síYØÞ7Ö„¼åB.mãMÇgÛý씢Èßp¥Ïx”°õ—k²ÓÊv¼{×öíW‘®¾ýÚÚØ¾Úóªr¢W“¶öRO^YÖNôêÒÙ·çþ Æö¶ötÌýœé6„®GÇçyGÙ·?ýuá…ím`D:Ó]{NÚŽ—0Úã´ëð˜tOÚ¾ýîØ~Ùx r¡×n‹Þ[íó¹…ë¢ËÐöí[’.¾}¯ÒÙ·?ý9aë¯×Œñ&åFÏ.<1^TsÆõH¸Ñ§¿-¼|û¦=Ýv¾ ãïœoÑc»—v§[×¶ó-#©T¸wº7mßþô…›ooÇCØ·ßMºb{›˜'è¢]|û²¤³ûôç•ñ÷ºÍ—N®ßpvOáÁëQ¶àißþôç…—o¿¾al?¬¿&<mí)z¸OW¸»[×öïôç„¶Ÿ6Þ¨œéó÷ ¼¸‘ÆçÅx¤0ÚÃyq¼´3½»4úçÅv–Æó0ç#*WzaæíTLÜÆ÷™¸Fãzp&-mk¯œï'ŒþF³àoeŒ×q¾Ÿr¡×’ÆólÇ|aoLÜVÆñ>×¶ý{=ã~þæYXÒ¤1Þ…3ʸÞẇWNôžÑÏnÎ玻0Ž×Y8Ý´ ݲ4ÎgÎÆóâYX¾¤m¾z=ÁU»ÒK×cÎçÆù†à éJ—&ìã™'ø¥Hc¼©ÛÀ¶t¥w“F ÁHÊèÏs>—r¡W‘n¾½ÕðÆöoÆó‚ù”Ñߘ¯.Œóe /VÏã'˜rûxàÀx–2>/Æ›„W§Ïx„0îwãIʉ¶öÍýÝm¼XçÃÀx’pÿ‡ñ aô‡ª ÛûÌ㚥q>p¾’pò¿wúsÊ™^C˜óIë°‰«ÊÜßå§£¹¿1I˜íãMÊ™ÞCºãó 0ÆKÆ‹„q½šÈƒFU–”í}òñÔÆþD£½MTžFvY°2ÎǧÏx‡0žG—-WÎØ¾ùö·ÑXçëmÞ_X¯.Œç­…õèÂü´„õtîï¿dYtúç–•¶—Èïu¤/Ú!èÍ«_ìܸIÚí뽞óE;92"˜¹±Uɻȉ¥^í9кM}xñØ‹^)úŒÙDZ—µOìº@ëðôéuw/¢êòò:ßÈ0m„š Ú«t&ÝFÚƒxGŽ\¤ Ã!P0sã=­‹50ƒî&’ä)ˆÚÈ½Š´Áa©‚Ö59=ɉ_ã>‘¨#Ô¶ÈÁÛRìܘµ/Ú }`<(Ònç^í9õ*_Lx”¸ÒDÒ*Z7Ñ+6¢4ÆP"37¶ú¨öxLÔ þÌÁxM”y´‡OÖsŽìÜØ’¡íÁÚí±ÃSSmÒ×D¦ÙÍ….édE¥@›ð71ž‰ú·Ù«q]¬¤eyþ©ÓT"­1 >k _£³rrä䯶ëQ)3°"Q;ùa‘ÖTfGu½@ÔUÈÆ ´¦2’­/4•Ã¥hMebÔ!ÒšÊ|ÕܹhMåÌ®ŠÖTVB=³@k*+yµ¤Oäb™…¬­Hk*«x¥”‹ÖTæ9Evn<$+7¶ÌÜÀÂ-A9ÐÒªÈG¾Èò& «Ë"­!-¬-‹ܘ•M.6nl_!ÐÒ³Wê%­!=¹Y­}aFL¤5VåDmUTÇDeÝ‚Æha¯$ñ‰aWÔùô:´–’hawÏпh7 ÝÑQ—ó"93þXi6Òº{Ⲉ¶Óžë#7f*þEÔ7fÍ’@ë~°l¤u?˜x3y¹T¼îînÆeßf¹P< ß~ i–›Åt‚ÛýC9X‹ã‰FÜ䙎¸¤Ç›â¢GžÐ¿f¹ÒîÿÞm”ûHŒû¹íqÆ ‹Â,×9¸TË‹f9×åq··™â²£—›â´¢YN²øöŸÍåÜÙãØ¢ëqlÑ,Ú—¸ÖÜ<îö6â°3Ê £œE¹ÍéR^ŽSqüË„w›âô¢žg¸ÏŒ×iÂÅ·/YqÜyzÜég{9¹¼<Žò6â~óö¸ÈÛ,÷º=Žó¶ 'r—wmÃ!ÇU›å$ñ:LqÊWv›Ã§¥ÅµEÏD3®ñv÷íg‘F\{iˆ»‰¶ÎÃ)7Y–4ÊeŸq¯*ìå¨ ¦Ë #®™å…w_âv¢‡\6ân¢Yî­zÜÞg3îí8wééÛ[Üt4Ëá5ƒ»ë}Åtê`/'ÃrzÂ,w8Gë}Ø_ѸÞWÆ]G#úÌ‹îÒÅ·ßEšåöð:%˜¯3O9»Ü¤Gß0X˜åè°]qï-ã|‰®¾ýÖÎØÓ……÷uoÁm{¹´‚å"Ñ8ßãpnã|d9;a–ÃãrÝhÄÉ#—Eå8ë½—íq#Ñ('ÐQ®^çË¡ #.¿g,—ξ½-wF}/ø¾·½\sG¹yaÄm³\—0ú{åà…‹{'iœÏq¶Á^î—åž„q>£®Œ2ÎçóºoJ³Ü âj…q>³œ”0Ë ¡œR0_Wï.óõ¼®+Ò,§ƒéJ¸Ÿ¾Ç ÜÆýtt,‡Æý”å’‚ãâñl®ŒrÏGÂ,—5°9qýïËõo³\âd…YNÊ:žÊ(×0¸óvõrMˆsFýLXŽþ6dž„Yî…Ë£Ñßž\nëéÄ›a–SéXîzÛËù±œ0úÛ妅q½ôåèѸ^NÄy ³œÑÂõâvör qqÑè¯,,·FÜ>Ë©£ÃÂta”»YÙ—ÛÞÆóÌʈ³¸¼ÜFñ嘷Q®h!®RÏ3 ¯—„YŽ¢ûrÈÛØŸ«ûçùäºy?â“0îG ÓY„¹¿‡/§¼Ír(7"Ìr/Ë—CÞæþÞ¾¼î6ú›kû÷ùl/÷ÃrÂØß;ZþöÁ,ç±#Ï‹»Ø¬0žwÁrÐÛÓËi`:ˆ0ö÷›ªÒ,W1`aìï=18û{/_ŽtûÛ—ËF³œÈöåfŸ=|oL׌æþÞ˜Ž͸ùäËn#Î#%L׋f9äËn¿ÊM åÎ8Œ„þœ0âRöå·YΡ`Fc¹uB›0–ë§fc¢ÂˆIÍ?Ïm–Ãè˜Î{ûUŽ#ÐÂ3ÓcK³ÅÀtíhÄa°Ü0âXn@˜åPn Øãî“ÍëSFœéêÒˆã˯å·_åz–F^FÜ–0âÂrF{¾íqê¹`¹T4ÚSF9Oa´'–;FœÇÓ„g_q½Ær{Ž—s:¶•+Ò,'Ð0½3q¹cºn4âsÇþŽf¹ŒÎ ³œ§ÓGã|Șîìqyút×Û¯rœîzqU¾\0q,W Ìr\Ír('~»ðñqkÒˆ»Ì(—)̸{Œ× ãz[¦F#î¡ØÀ…2ãä3¦Ý^^NËù„q>—ìÓ9oã|~zwiÆñ£œ¥0Îg.÷F\e±ºÙѼŸÛ¼¡&ý^ΠH#î£`–0⮸Nq‰gÞ^•f9 ,g ö¸Ì2}:ßmÄ91N_q÷e¿¦#^~ÅÑ&¸­³®¡K3n;ûçùl[ĺ e\Î…iHãztÖý4iÄÍUÌtf9âš„q=b¼0âJ*ÞGs¼Ú:EqXŒkf¹”+FZE„0â€NnA•fœ9f¨WÃ_˜îëééxgi\OOǾKW[/ÚˆËj(—'Ì8c««íåLZÆtûhÆ¥L׌F‰ã™Â(·pâÈ“4ãœ$Œ8œÖp=½íq\ ³S„q?@®£2â®00¤Ì¸kÄ #.¯ ´‡èäqÝC™ËmÌCšq߈ãÆýªc>Š0ãŒ1Þ ŒÏÓ9]ùrÞŒ›ê˜³"ŒÏ‹ʈsꘙ"ÌÏkë•ùyñ>FýéŽ8žà執Ùù"ÌÏ‹÷1Âü<Ý– óóØÀ¥2?ÞÇ{\8êF*3ÎÓ©…ùy°œF˜Ÿq6ÂÉã’O{ ,×Àå6Â󧼤_q̧?&ŒóåLLHÂ^ÎãáÂÓ㌇6®GŒ;FóŒwOa^60§Ì8WÄÅ#làyH÷ÆýW>Ï<ã~2ðó9·0ãÂŽÏõ@ã]ŒKþ‡*Œç. f¹ìÂrßÂ(÷µ°œ_˜qŸ–[£ŒrY,÷-\^q¤YÇsa~w°ß/Ö²çQáùŠ-Ò¸ž2T¸zÜå™ï%Œëã,…Çi3J£»Çe¢Ü0Îw–SÆù¾QÎFÏ㌫fܨ­t‰n爸JaÜ7)Ü=Žò\o„ñ¼±­®ˆ2÷§ ì+sZÝöèêûïË„j”Ç¿íÄU.gyæc[Ìムã|RÅùåv å>„±1á}”0ã$ñ>J˜qˆ ÎŒ›a9\a»œ8>û÷¢±œŒq|ÂŒ“C9saÆyœOшCÉ׋ۉ˥3–» #Ž$c9©0âбVf\ÝÂù^ÞÁç5–f8T'öüEåæ.ÚhˆSf‘½‰^Œk-6_Fy¸Ÿç“2âXŠõ—”±Ü»XD9¹Wžþy:>oôpï.å˜TFÜâ°”“ûù`íqÅ^<*#.©ØÄ#e,'FÜ”2–k;°ÊÉÝ»0ÇóNTÙÒÃã¨z’nîU¥Ë‡¸)e,W­6Ÿ(º1NqTÊŒ ²|ʈó¨í)Ëi«Í·Ž®§TNÇWyz\’¯Ñ¯¸¢Ö¥«Ç¥!͸([9í÷‹jå6”±ÜqAÊhïÕêÊ)ãz†\\e´'L<ˆæ|Q‹ÒFØ™˜“¥ÇSq½ŠFA³rÅÑ|^a2ãˆ:®Çш“A¹?eÆýØÀ‚2®÷(ç¼<îºYn¨òð8s¼…W…¸åŒïkWÑËã~l5š2Ú êj*ãzÔmEšrñ¸œç+Úã8§£Œó £•‡Ü­.‡2ã`êyðPÆñè Ÿ÷¶Ç±bâ»2âšQ.Mçs·Ž¿rò¸œÙ…¹h¯bXtaœÆ”«»%aC›6ßV™Ÿg¢=D3Nb¢=Üf9‚Šr3ʈ œvbOÎ×>®ÚØß(×ÍõH-ÙxÁËßù¼ÿŸãlâEN`˜(ÙIk„683m2§ÕóæYºb"Ç<ËÒŒ,êh'Î|/ùþ‘ CỂ´SãÙ ±rqyjLs D2 KÁzöˆâ ôt[‡q‘¯±ç@‘Ê@{I2§—`¾h§Ædó‹|0YÎ)Ð:T£×‘…déÖOlè~Ì•U6qŽ™'‘v+_ «Â.ò¥òyç•+QÎÏÈÄÌ“$X˜’½˜ãEël3å&“™yiú«zÀOd•µÕ° *p¶F,ÐAWó`Y™¿ºPÞ;2È<¹Éì …¹‘vÙ\ Áî…=’©™OZhwà wQ´‹êbÁ¡@»¨î„¸ç‹Õ½˜ÇEëîì¥Z.Z·v³PÎEv7ËØ6çRDBHCóņ†´Y@&к={øüÿ‹ÖÌöDøôENn–V $ƒé/Ú~ã=Ed"=„þ#ùн9Ç:°9§bþ—r“Ã…{ûlõ‹Ý¹íaꬔdÃŒ72ÊX(šXÇ%º¾¼¢ÏúÿMÏ*=Ô‚ áê.S:yP s–?ût’‘£…êé}¢÷e,dM9–·™ƒ{¼ª4’¦Š‰Š·‡­0g4 åR c¡fêžóúÙ ÝSÇDÔhEœ¡[¸q¡jš>1÷6ƒ`&rŠ£³Å”!̉¼91G4 ñÓöœÍÛX(šñ\\tqfôLiˆ:¶‰âÑXH›Q§CøTc9½·³ÑŸ˜z -1£+:q!k®>õ6ªf[1¬Ì áÜΔmDRù”“”—ïO,$æþl>Qô6Ò2HG˜û ̓_A?X.ܘ2ò%KLPÆBÃdÏ+ÑÕƒr6&&EW²±‰NÑɃjF.Ô‰ÆÂXÈšíÝŒ2ÒžE8ãÅ‹yK7riE môí é²ÕñQfÐŽ *gj9×»Ûè†üÅ‚RÎõD˜Aöà¯Ì Œlý©àåA˜è/Œ ‹b;N9¿‚J¶ðdÅYѯ…œÅЏ(çIŸöÌ:cg`õLÔFD±Ž¥2b<)šãi… „± A!Êb(6—(š¯•XS ±PÐVA x›͉œöiK#è â~-Œ…ØHÌŠæóvÁxŒ2z£N®2®×ÕʸDg.„?‰~UAÍæ>(c¡"‚t£4l‰¨Y a›×)óïmœ—»4KìWþĽ|¡½%6(wj8í1˜A·A½ÊhOýAáâAg!FðàBtA(c¡9ÆK”q¾¡NjtçùŒ:¨Ê¸tL4æó¬%ªWi,Ôí6#P Å9\d† e\;úƒÂ¸Þ#(!š÷” Ü<(Á¾Otò „Þ…ý~ˆ e +H¢Œûù°óèäA öÎ] uÏœ¸)…ØgV܈n,da…–4úS˜½5±POxúœÂÅ·? ‚9ÅâÌF>ý9aœ¯Ó^ì)ÈS˜ ÕÎ,kÛÑš›öâF÷뉅pÁ9þ^4ú3÷;aôǦ͖n¾ÐÛÞ*£¿ºì}[4'Ô¬¨PæBw›U¢Œë-V¬D3HØ¢oi.ô·ŸÊRÛ61Úƒˆ¶=˜*ãûžoU˜S–ŽÏBa\O÷D{½ìA¸\¨­Œþö¶†­Œ:¦É‚†£½Nq² `e,„HV”*zr! Ÿ·„±Ð+ꕱP/^¢}!g²O¹¸Ÿÿp4ûƒg!öyÞÆB_>¯c¡O¶RRÑ ‰³­èS.nû÷ns¾BÍ¸Þ c!Ÿw„¹Ú‚^¢9áxjc!Y±‹Ñ™ E1q@ å0q!Ú "1L ¡NbÙæBeŒ‡Þ. ‚> …OX¸àóÚŠ¸h¯ó]lžžrõ…²§¿ìu¬¹ÐUu¢¹Ð5Øë4W¼æBR{1¨Œó¹Úƒ]4'qW$J+s!%žGƒž7|¡©pò…¤ç|ö:¸Í&6(g,Äœv?.¾=Z ³Ž<úãÁ”À…ŠÂ\(8­='Ö GéàÌ…¦-ÙŠÈ—¿ÿòë¯_~õã?ÿã¯øñÓ"1üçøë—_ýöù<¾þé±Þø¿ã?ŒçÅJÏëØ×¿øíúÍã?<ÎøÍw¯þò_Ï?«ÿþÝ¿|2U:†®ž{àüeúåã<1~øÓqeÛßÿÓ'®?XµÆ?ôüô—ÿéËÿ4»…´ endstream endobj 21 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 24 0 obj << /Length 4012 /Filter /FlateDecode >> stream xÚ­ZmÛÆþî_! ÊCï.¹| ÒŽ£NSMè‡ÄxOR,‘ )ùrñŸï¼î.%Þ¹E ã,r_gggžyv–¿¼0‹þ™Eš•q‘Ö‹"ÏãÔf‹åþÅï’Å *¿[$qVW‹jºÇæ&®ó|±[üëÅ?_|sûâ‹7Õ¢Žë"-·÷‹470T CUqCÞ®?Fyò1¯¯nÒ*©£"ùXès™|,á93eUÉŸ®ÞÝ~÷âÛÛ¿8ÁL‘ÆIž‘`‰µÏ –Vell ÏOHfŠ*N2³(lÛ²`ÉÞ\™èûW8ñoŒ בÅi†£Q³¯¸Åd8'E© ²ʪË8ÕÚ4®ªúw©Öfq‘”Ó¤y•ƒ³,ú)É–ð`®nŒ©ëÈu2©Í©- ¶Æ*v-“$ÊŒ *o,´/¨–¸¸)ó8nDâP—ÔIôñÑâoižÑK–ÄufŸ^ª8¯*ÊÆyjXkÓÉÚÒ:X¸µÅ3•i6­¬­¤fªmc½Nª$ÎóRtò¿Ù×ן²¯OëÑTq]Öÿ=¦iœ²©&5ÓªLUNU••ijçMô8_Iz4i—¦^ܤ .@ Éq{UeQsMwð×rgó%¦Í¢Wýþ¥ÍÿmGø¯ï¸A¿it„²ï׬åa…àoă¼Üà¿£¼ôÝÈC  À­"j±áGë®ÒŠZ޼4lwßüТDË«´„™©€…ÉÎ…Ñסõekœ¢?á¢Æ˜µc³°ŒKÅUZôqKýLÔá\$ üÅ “G·2ì-ÔØ8ð¾Ùa òŸö8JÇ%$.³¤!®ßŠrZn¦ßV·¥1ñ©]quãY—¼"Z³%A©Q…PÐ(•˜„ý0Œ9«Ð*³$‰ ›/ûŒØdué-Ð>× á&v8Û/ðwRÑQÒ=­š´±FcêiÃñi‹…ã5+€>‘’ ÝØåƒîÏ~Ó“³®ÄH-8áÃÆ12¾‘‹‘© ž;¸­é‚”‘‹q{›{æ;/||ï‡á”íhÝRÄÅRZ7cÇ j4žž#&/ñLU«•#ûAG«*9ÏM=~Z ·˜G.PÒ o:¸S£‡΀´¾iÇsMM.…³è–ñ(;îwp™‰÷Wy!ÙèÕȼ+²ÆÕùÄÛàÈ&¶E®ª{‘p)’4þ/ëYç6ÓŽ’ß°&U§Stþ†hx#LÈX21pxíïÑj¯PL*ÏX6‡âXÞ9#ØùÆgÓ´“Ãäà+äì*=3BÖ<±ŠBÄ»¨—l2>r~d©fÑM§oŽ~=ý~6ª w&ãN–†-`Ñ…TCç22È”èLø›2¨_Ñ´ ¿,{¥DR{'¹!zq|Pˆ±k%p‡"4Kµp2?YË Ã„~v‡×Q‡7/9™RwØ ÉÖM¡•'k†%öc_sÚB@b¤Q²:cEíp²šC9”±s‹ÍS©°Î\$¡VŠ•Jþ Ly=>+¯ïxˆ}³õ×™sjð»­÷è ~Ôvðc‰úÀ)+„K¦ç* QúníìVænº¾cÊV{žÏ)ç-.„{@1Ix¡KG»~/>‚ŤûÛBÝÿ¼œ„a|á ^™ ì‚ÜÛð€Þq9mį<›C}YÐÀŸ$H \ß ^Øø1z~äõ¸ô$>ÂDBË)z¹gTB|á¬KŸD>)k ÆäAüüÖP%>&2Ödi˜eï°†)ÏÈ}2þyÒ{jeXtx‡îvžt¸DŒÐPÂ|'-ýfCu$j…êcqÇmŸ>^¬ü™ñ&­|Ò:H¾3tRÝÊ¥6BÔ³„l/­N0×¬ËÆc§ŒÊKYñ›òª`¤@R36 V.ùtð;Ù-^²&lj&Äé4SŠÅ@Umnh9áºQ‘¦((uPÏ\m%6ƒýlî<( Ü”A¥âWLúh­&gé¹L‡¥7 ÞaíìöBñJÍ5Ìh—9ƒ°.®MΉôãªVå³hOtûèòšŽÀA[¢j#ýOœÓÚÀ»9ó£0‡+žô½(…·ðñÄ´Ò$ÈÁLïi¸åƒ’Ý ¿w § +Té?±î‡›ç±¥ ;gEèH_ùC6X†iPI“`ù½š’4É-üñAø+†°Y:׌cà[XÂ^°Ô$å0ðV’* “FÿÆìú¬æ6:’â\Zžýxt\¤5•GoòË ‘X2žr}³žq'~UUœ$ú…CÉë¦ÑüÌ=›*O^ µî;¦ðAh! •‹¥|Pª6òpŠ øì®"%µ Óp)á$W1ºNç(p”/9‰Ç™ëѯËG-ŒE;/ ôd.4ÌȽ º":”K~@‰&?¾ÿË•-oGùõ-a†gZrp'Ê¥&ù÷9‘Û“ÚÝZa™ê‰o+ãß÷’"¿˜Müý¾‡D¾1à t§8ØãháPz®N𠛪沙`Þg_Üz‘ãtiê¹WšÂ&çÉ—h¥€^ŸzêÎ=øHWaÆá%À¨ü™£«©£ÂLF‰™£Ÿæ¥³é‰aš„VCï—bê™  ¶×¤¦šî ¸/ äö4 °ð^!7¼f¤WÕ;XŸÃ¹æ€CA ¬D £D( -å´>H¡Ä §`þmÐOcrÍ—¾[eþîâc¾Ä-öjÖ u:»~¯ bb :x%íR2t†fT…;Aé­å$©ž×œïZºC¤¦¸‹dªÎœ’ÅBR;ó)ô0ÜpÜ8ø–¡ÂåÀ«œê™O?4óz et ž[ÿ9G.ùö¼>Ÿàâsh²æ¤Öaô‹xÛÍéÊùVfùaír¬¸»YÎüp©w]-rêß_`åŠu:5fúÊYF‘'$À’¡¼$ùäÈá|oäºfðbÈg5P%sí‚ì&¶äO زݥJîÎe¸¤Ž)ÆÜ5Fö9ß©¸l^= *X'Žâ£9ûeáׇja6ù/ Á¦°Ñ_ÃáøSÇܬDƒ¬žL4JàuxÆ1›«"¬¹‹9Îù5Ž^öAóLråÄÌPØà6pð½M)SMaȓӫèåâ’ ™Öråzð93‡ÏoÍdÍïå2„Z0cHÄŸÿÂÇ>±T÷©²è“ô©ugú­»hGdÆ;] —)…O^†å½Ð/$ÃÕ_–RcMLøW.غWªŸ6–'პ±ø"”ë a.A5üXÊ JÑíhÑkgNÁÁ¢—Ö[wâ!/Q) P‰ûˆ¥å›¡“d"X7ÝÙajÆÀ:ùœ v§î1®ðéª2ò_ßÀê]îJ¯$´ñFž÷.½¯ Éu”Îù±GðYV}?¥¡ŽÂe¬I)u:rϹÐÇ^+/d×K=Q›÷šª ù¨èQ25š”ßîÑé;r&H ¡Æ»ý-M­9•ýÛôóœ¬p+Ë$Ïì?¹Û…0[à ï½¹¯&ÈWï\¸(ävä@ý̉ê5'Ö¸ˆMsð°nÅ,£øgé7I¦q¡j%;°>Ië WË Ž6zsp®¯ \g®& <¦øur§e®ŸØBÜÍH¨•\OH‹¿‚Çßbþ"ÃÐÝósõúð Ò=« ‡þÿŒw«DÿLônæ³ß*Ó.žâªªäërýî÷?}ùRí endstream endobj 30 0 obj << /Length 2753 /Filter /FlateDecode >> stream xÚÕY[oã¸~Ÿ_aêì®5")êRtØv€-ºhÑIQ>ȶìk[©eoèoï¹R”¥Éh_úàˆ<¼Ëw.d~w÷æíGŸÍª¤Êm>»ÛÌŒ)’¼Êf¹/ëüìn=ûûüýíÂ[7ßÜšù~5üÎòý•|·ðkàgyêo¡¹àæ šYñ9õ)|^³ÑwýjY•ÕÌ=ü²~v+ʇCy4T„!nWý´rØ5Ð4rmhäw¿Ÿ™4K²´œ-ŒI*/ºÙ ßKáûoôn$ƒLîDð¦Šfù+a}$]µ}$Nµ•^N Q”‰Kó¡ WggÑÙcÍšW¨Õ†³IÈŒzx‡ìúò}Þ$®²³”ùúµL‰êk+°˜Ø'˜Wï0äïF¸FM| ¿›^ú .«’¢ôC~ÅEÕ'øµâ #7ÙÈ앬le…ØÅGŸß|Ý™6FÜ0‰X£ß‹ÁH.¢üÏ·¯FdA÷ÕØ¿ üáÁBÿ~.ìÊâü%çãŨьá÷ø}PÍÓÇ ÷N {3ÄÂp˜Èb®LF aójáÕih¯)%½ïÝõ¾[˜Š:Á×I4Ïe|ºšÙYÃ4®8 ãðZº ƒûtþÍŸ1ÊÃú)™ÓIiÄ íÿ±Â!ÙyøYt}-Ï;±N”_Z9è 5FB™•o6 g{Ùÿ9Âk4ô(2¿ › °.O|æ†?‰\+`1ë¢hŸÈN¾?èI¦«¼\ý-2Ø©ÏI›ÈD&}’Y±˜~3ò:áöù G^#k'_•èfF'ô –×Ôø4´ü•mŒ(Ä Sw*äHGED ~óuÍFÇ%Ê~T÷+†¤ì:æ ÄÌGùöÿ 4ýWž¢ö~û1Ëf&K\–[L Ÿ'Ya.K+jq· %ëçFó#P›¢à¸jn®ð˜ZóðpÙS A„µÇŽ(£ˆµ&)¡X£ïîi7‚ÕÂ97¯ã6èÀGl[<Éó½áBH×(ÒÙ•p…A¡ý†v¾jš»§Ø@´ •>k™ïÐ3rêåÆ?xÔJ¶ÜžZ ¨‰¤ÒÄP RAIjXJ“Ü.²ªšÿ@ž¼OÄïªÞÓÊ…w¥(öÍ3P&ÈùË­-ùÌz¿G:„û]T¥žvâè—H ¼|Ã_ÂÆYo/G‰z G21‘m¬+_”Z=­W%ÎzÇóä8Ò—p¾V³ ùrÏ¥å™ÇH¿øåÏ# Üî›^oK`þ튂u˜¬Ë@·f™º³·µØ´tßAyÈNi¹ÝXÖLa‹óÌØÐÐm—*ˆu/Kêmó¶ãÀG}¶Â92ä2NÑí\ÓUž:[Ô{KóŽTŽÑIäì¸=ÀÐÂW#a'ˆ†Q“ÓµSáŸÁ´ð‰gÓrþÙ¸¬« „4ë†É¨o›4Ü[O{ÀQ‡€K´:J k ÷yž1CVqÿ]«NGÂ33HqdCdŠ(äY¸*s½;8®r¾¦ó>ZœÚoßµñÓ&°p’s”к?¨¤\´N‚ÒQF'±Qdüñˆ€97Âß·ÏRû…ØA–ν›³¸¤¢CHœUo'Þ„ªGÔ;ðÌDôq\Éku>à }…Ž@×DªeHÝ÷%~Ñ™MAìH¸yN>iècÄîyÄtÍY#4å&h#Ä ºƒ×(Œw¡¸¥YÚèÙ,©ÒBB®åsâ¨Ãüµ”5k“áC~T3Є´€U"HG¨éæ ÚeGAó 8Û·ÛgŒR¨à…¢‰z6.¯ù!;Î8„I,‡$vÑr-Æ0N@}Õ]³f&”*ï*[ÙnÚáa|lð›¢bC Fˆ@±¾!¶# ã žôÄý5Gç³L£ltµ•MÓ#Z:ÿ ²¼Óð°fâ'½Ž]X! É: –`ˆiSã&Ž?”óÁ›'tÒ"ÒÏZܳf  c'êN³Vl ª¬eǧ°³ç©â¥R6-ž3žÖ;¸S{”Æ–Šy‚@B(¤Ðƒ–„uAy8‰ÚV¤ï‹,ò¯æ'9'DÒ†e˜ÒJW#žÃMÒA4Æ@l2¡Û>1AyàžprµèJiÀMІÖxâ£&€L$jzϸÀ©Ü†ÔÖ_“ˆ¢y3ó8ð²Â¿² ;Ò–XÇ ^Äi¨©ã‰«š+†‰wŽ€hàèsj²8·‰¬Ó©Ã™HÞßX'Ðå(ôp‰¿#¯]‘Œ0kINÜD;f¶÷·Ô§Ézy°N“%z{ãBšsÖH‹K¨Œ~”º“HÜÁbÀQ…@ý¾ B–Ê3Áýf RZ,šœŠ?S„"6¤^R•Pñ}²4‰Ž_ä<”ŸèAN+y@ö’’GÍ‘vÍ4Î÷Ü¡ÜÉ6+1ˆœÚ2S±M`dßÇ7ê“fá—Õ(Ø‹eµƒ²:«òÊjO/û2ŽP„JøO¤æÉ‹±`˜áŠÏŸ.1WïSÁôE­Jò²æŸR;7Á“©;!ØÒÙ¤4RÖerü)d"Jüš@Bl>PljùéÔ¡ZÃÎÄ îl]"—ÁŒ xóOôlȹ§.“¦L\)׬?¢)¾uÔ¨9á Ä o¸§6¥Ù=&jÊCà€YŠ vú”Ù¬ÎÑE&V9ÑÌG7#/7#½ ò­ÎTìç>9ñÊ f.¡âkº)— ¬•Õ¸ê#8ÐІÔ((Viô<ŒáaÏS@ê1þ-¡. ø^íH3á?ßIåšÈ‰‚åàpÊ]AypðªÞÒ«_½@ç1 ¨ÐÝ÷³ZÞ¶]öQLJtÈ·ßw> stream xÚíXÝoÛ6Ï_!tÃ&c1+’")Ku]0ÝÃм YT[qÜú#µë:±ýíã‘w)KiÐv†@Ñ‘<ÞÇï>HùÙÅÉãó")Y©…N.®^p–'Z¬er1M.ÓóQ‘§õrÄÓjQÛÿÛÑë‹ Ï+d‘Œ9g¥Ržõ§YíǼ(™’y¼zn7¿üy4–R¦³¬w7#ËQ–©Ê*·´È²T©ƒ*‘ÖÙAÓ¼VMó&;š7ê`h¾ÈÑeösòËÅÉûždö'\rf¬«Ú¾¹”Édyrù:K¦vñE’1YÉÞ±.™fJeéEòêä÷“gGX)Á ‰‚)N¾\„I÷ÖK“éÔÈb4Îú†ÊËŒ¨\ %FJžàaiLj ‡jÆr#cL³0ÖS«Í†,å$ð=G¢ ­<#¹œëf®YŠtqÒUHëúun•Í®Gã<3*•UHRš+"$­J‰Šì~P$spŽ…d%o}ªà˜O5›0L ãl½GJIBWBWòSÓ @öC‚‰\?FY÷¢ÌÔi¢AWf†&Dh‰ªôAš@&HeI²8Ä£ C‰Ã•Óc˜°âÇ–¶Â¢¾2­ÞX]h_”â‰U›Ëô9L}€(̉œ—"­fÈZ­ììÔÓ[`¸õ SKÏa¶o`;èØÁë•g»Zo< ×­[ï@ô_· Bèt}³CCª@’ƒP[ KÛh¤}sL õÊKÌ3á„Ápþ%»yžN,“(¼™ëÌeÞ*X„6WM Á®‘&¶õ©qcŸúéóDÕû¹ëŽê¹Sí7a¸¬í ÈÆÐ³`¡ Óоá0¢é™V u^ø0®ýæYí`T²8}+¿1Ùã-vS{p·ö¨ï)î‹6ÂÕò&ÎÇä¹MÐã‚4rY;ÿ­Ôžñõ×Û ö”5.ÆOŸ«<츖tÍ"cšœ{:+á%:­`„ŸúÑ’cOîÑWÒûg¦2ûºrˆXe¸ïÓV^…é»@Ù¸kF¢˜Q7í® —[´Ó[œºõB8½ÂX©È©UÇ)º±l‰ýþ¤Üoüëî"Ï&NRcë-ÓÑß/™|>Ö‚¦­½à{icŸâÓön‡ p©0" Ú]«ïcÇ…5²¹eŸa:Ì0ÛG\œß÷ä bÂÞŒaÑÔ–^GœMÔ¢‡éBή0›(kÏ0Æ”|¬ÓvÈÛ×éqÚœu™ý}MsV¨Þ\5 ¹!ê{ëGXÒ@‚¾'ðK,פÈqü¡Ïí.â&Õ¯ç݃ôÈ=äÖê({º%DO±N !,¡k´wï‡KL½•K¿Fîú¾4îIû~æƒ(ˆ!¯;×¥9š6u]¨¯=Òq0‰[d…ÙÍPÀª1iË=õÛž‰Iz†:ù¿²H–:öá+™ÒíÑ-|dÉÛÐ’ì_1âèDˆ xg„VKBùÜçnó¸u5oÑH*†ÎÙçQÓaV-¹Á ´¹Bëjô ÁާÃõ×ïC·¿µõåü_}ñû‚ü¿¾N!È/)„n¦{ãìg´±'€—U7©ÞÜBðÒLiw~ÞMKr¸9Tæ–ë ³E_fß·ÄíWl>x³ ƒ Žé Õ%Z½ñû:G_$š»€ÿMï*¸¦ÛE7Ó ^ëBn´áU‡%H¾r΃< îGuàðu”‹Å/ÚCúÉ{-uÇõ1†1¸ ².°.&ñ…ú4`Í£ëŸË×J»ÃÝÁÕpán0>ÞgwGÓLåßAnÑÄ :ºú:›¶Âž FE·Áqð·<²Ïöÿ5J9Hh/Ûo–¾“éQcr껕Ý$™ã›> stream xÚÍXKÛF ¾ï¯ðQVZiôtŠôд ¤ÅÈ¡íA+ɶËr${“½ô·—ÏÑÈëm{, [3‡ä)G‹>Ñb•yV,âU„I²¨º›Ï7Á*3qB Ζ"Ù&„»÷Y|ßßü]òE¤ïÈün}sw_,V(.[¬7öج"“/Öõâwï~y-|·ç~›¥ç‘gÞ,ýÔDÞˆþ$\OË4õÊ=r…^uÊð´4…׌¼qƒøöÎWò£R96ðëWý7œ”qÏDz;Ât?éP2wÈ·4¹÷å KrÚØïE¯š 4= Œ~nXàî@!Ëßj4NÇý¹þœéGQ°J3vÛH–ƒÊÇdi?àØ1»†Çg2ï q“_wj.u‰³’Å žÍ‰þÓp)Öé çƒXëíAù¢dvcÀÁæ¦%Á bÀMç[²Þ1·‰3oœ¬OÀ¥ft©&N¯Œ{Ô`“ÁâÕ”B>3MœƒwnÜÌ÷‰wÀÄv^š‡4,ý$мµxzÒ”Ãï_UÜi˜ïx>È|üĶCâŽä>_ýG‘²ÿZvE]J… ØgÛ¦æˆK€:jV oxD%ŸyŒ|؈<íITÄ †rO‰@ã~ƒÏœ­éG¶Øå¥©÷©˜a'Õp…ñ^&þ¡†Ò~ >Ͳ•÷aY$Vl#u\"+…jãIçQu$²›5â+› Ö¶‘Áã8Iá¯<ØQ¨'|äÀ39MølZáfD‡#‡‘œË²$,JöÓnØñÌ*”(*÷(~N¼LžÃkÜÜ^•G´Y #¤‰ !-z¡)•„ADÇ##Që~8q܉`#*F*!Ø+€ñN#'ø?¿ãSÕ_ ŽBPÉW•‘`ÅO’ÐbiìE¡D÷T›R4‹˜¯æ!ï­¯ÅP×;ðfÃQ 𤱉“ Šc½*9fÂY›’—˜ !zG¹õUæõG‰Å‘#RÕäžØNe £³EU8‹›JÝÌÊ„£·uÐ%l»nxpKÕIt¢øÊQüÏ+3 –¼ÕêµzKŶt¦Ë¦ 8Œ"ÞbÄ/;͘P0œ*´k·¶¸”3úÕÌF'R ¯\PÃ¥ŠnÎî)Y*‰°úî>œ%ÎÓ ±­‘TI yS.9Å ]ncC]O–§s×q ”Gäjö’%V?‚mSĬ9Ù¸å'ê>h(¢0TÎ¥õoK5£Z™P/‚ÈX¿ñ©¡‡ã²£ÐèBb>I±T´ÐØÁEBp‚Ìñ…šm<Ù–Ìe¯äš^bÆx`&^Ež¡ý¬ø Z&!´tý(# oܨ.íž%g¸ºSp$ƒ’õ=@%ß9Óíp>rÑ"[~c,vmýÌ:´"ÈÖãzÚ%yXO…üž ]iëh?\Ãk ‰‘ÎcÄ´WÈ¡ðh’©;Ém“6p˜©ÕÛ2×iœ0Rê(_KN9¦“Ê%Å\3I’(ùf«Iî`[æ)”±ÖPÓ…b¤~©Zè² nWº©;­Ó8=†IïþjDÙö·7¶Fĉ÷H÷WN`œL€šòåº:ÊJÂsJų¬yÌ­?f-¨Â{ äîmÓ<=ÇßDšª³ÖFa–Å»Y†Üáà¨q`i’¶Ðܵmå̪§—™ Se®øÉ-Ct$54{ÕcVkÜ:'¯O¶Ï{fv†×Zu‘b¾yÙï‘û–£¹/g øzIú•;H?Î2î mRäš¼ˆH†ÏNóÚµxYæ@i35°¸ÐÊsvg²Q·V‹(Vbhg±•eÒH!Ÿ÷ª)GX·fóÆ÷^}ûC³åmñê›BEi2¸m9¤gEÓm‡áµÞ+ŒlQçîÈÆwÍ{ô=Ç®,jUlo„Ÿp|´yæÿ‚BZŽb°çl‡²c’–žp9A•6ú'ÀIQ[e ZsȽÍ8Z¬Çt„“W‹+q_i'G{Ö³6 —/Õ'd¶Y'÷GÛý¨ýÒ/6º8N49‡aµÑˆüô²Ô.€Új7s¬¸×_ .”Ÿ½§Âö@ºžÄi`"ÂÈ—'¹è[ü†;W÷u]5ÛÈWþ5x¸`òFȶ8‹cnYx-Ór9µôO­þÅ­I–uœï×½ø|+ º4£25 bHù÷éðè»Î›kå÷?z`#*b¦iɪ¾åÇÿÁO®>ÿä­y“iÄ+hvã * û&C¾›Ö7ÚáÛi endstream endobj 27 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-flc2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 38 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 39 0 R>> /ExtGState << >>/ColorSpace << /sRGB 40 0 R >>>> /Length 18982 /Filter /FlateDecode >> stream xœ¥ÝK%ËuàyÿŠ’ãý (HÛ€t/`%&.e›„¥¿ïÜ{­8U{5uDêcŸ®>•™¹ùíoßòÛïßþÏ·¿{þïWúû¿ùõÛ_þð-½§”Þ>ÿçùßžÿuö·ûö›ß¾¥·ü–ßþöù¿ßËö·ÿú­×÷žßê~¯ãío-¥÷–ÈŸÞ~¸þ˜jïšS}OóõLJÞËû(N¾þ¼¤òž×ëÏ?þ¼ç÷Ù>þœ|ýyMù½ìן~üyOï«ü9ùúó/¿îÇoÿúó_ÿȃû»?‰ƒû§ßýË·_ýuyÎÄÿü¶Þù¿ã?œÝ¿N)ïi½ýø‡·_¤_¾ýøûoõ£ÿÜ?÷óóEVûô7ËÏþ›Ý…¿Ù~ößÜû}OsüÜ¿YÚ¶aññ7×Ïþ›{|ý=óÏ>Dµ¯¿hþÙǨîþõ7ͯƒ„‘ÐÖ{óñâ*s¼§‚ñôõ}œ@ºëûž¯?…>þ4?ÿÕÖëÉO¾º}Åןƒ^j²c}þœüôçø²¯?ÿøîŸÊDZø‹T¦‹VÞwÂh}—'ãÏüÝõŠÌ¿+ÏÆŸù»¹>Gªð/ËAûçþò|cã_–ãöÏüåRÚûîüËrèþ¹¿<“~EÇ ç‚·•o­dûv¼©–çÔæçÔœ÷•çÃ?øþÿó>”ŸËlÖ·ò¾|¼ÿæÿã—où¹x~ñOÿðÇ?½ýóÿ×Þ~ø‡?üïŸþé—¿}ûñoÖo¿ÞÇsØ›ÿþ#ø¿üåÛ_Ôç‡þëÿü×_>·ê·_üÃO¯Ÿ÷üoŸ±ºüâ+­¿ÏñöÇzûïoÿòï=Çò{OÿÞsì ÿo½½§þþ/>ÿÙ«bs>g¢)úùå½ÖÈæ×á·Qíz,ÎçkÔÈgä;÷{Ί‰¬%²Ø%÷Ó·É1˜ÏÁÙ‘ù}9çûŠÏñv®©XœÛîoÉn"?}[ÉGzäp>¿¾d%÷|~íç¿N;±‚ùÞëR|ÆÜÃý^FäzŸÆì 6ò™M fçse×H?dν»s¼—9ìQål’ùüjŠô{Èó`ÏIñ¹$~úfs ;ßÁÝ~5Øn .ï¥Hg¸ÚŒnvÿ4ãÚî𰿨\ŽG~.£êž>®„‡Ûî [º·*í·–œ3F×í‚›‹yti¿Ts®ïeIçã¦ÌË5çeW¦²_°ù™çŒ&]àŠ‘vûynwó{Éí¾møšŸ‡K–®Ó=ýç §á~®Î&¼ìÑ%ñTžgÿžOm&$ŒñôL¡ìz.~¾köñ<8ž·!= mOá ?×Ë”ö½yeán‡Ù\}•!Üü|>3Áš¥3Üí‹G?×#<ð}¢Û¦{—Îî–l`GW›ŽÀþùè~¼µ‹§–}þ\p34÷)]áb‹ÂèÌû]«8Ÿ·ŸëÁÏ÷³±ëY¸?[åâç»ù…üü×vÛŠ®K?ßöÅ•3ù90öÔ.þû>'þù‹ÑݳyØ'\àæóÉàÌëÉVK8ñzZï7á1é6¥1_yÖ~¼.?ÓŒyü<”1_~V'ö}„3Žçöë)xñyÂU†0ž'»ø|4xòy²›_oÂxžìîk+a_˜ågµaçK8ûnÛíÅ™í;Î$]í|”g½a÷+át<·p·ËÈœíÄ)Û¾Ýc¬G‚îwåY/Ì%í÷»’–_Â>_,iûx®8ÞfOÂ~¼Í³Iûñ.ëÈà‚õ\É>ñ‰Î¸^Kî>öëµäéÏa¿^˳ް5pÂ|±äñí÷;ÿ†´/¢í‹ÏýüŸÏ؉ÏCºûï[°Þ ^<Þ÷Kaß–ð 'I—Eï&<±^´ ×ÖsÂþ<òGvÀþûFãz¨¸Ÿ ûó¾p=Ìõ¼ÝxýûDã|?6Ûöõ¨=Øm=Ìõ‚M,ì~*ì[(>1ZÒÙ¯Çæ»eÑë9Ÿøi÷BÛ|0¸`=kO›ï —Nï$œ1_)œÏ ãzl ß÷6Ÿ76q·ýá1h[ÏÜ~n3¸^ííK’n…¶ëQØç+¶ð°ûiðĘ/\–4î—ÏÂÈžGÂþ¼2Ûið°Ûˆ¹ÚQ¹'Ú6Ú…q?è¾_Ýy¿~Ö36öç¥-ìíx û|Âl÷“àÆñÂõˆp÷ãñ¬'ìzöù°m¼´&Ìm`³í§ûzÂ7~štÁ¿W|§8¸ðyb»ÐKºlÚöÛ‚3曾17¤~ßQ®ø÷&Ž×ís=Œ…/÷Óç°ï—ØÞtmÁ6Íðõ’í¨?ceß°wö&N8ù¿÷̧Ÿ_ôâýú™//mü¼g¾üŒweü¼•íy=1_2?óeþ¼g=Z¥ùóŠÍ‡¢ÇùyÍ®e<¯Û» à~>ïoY”}½Ql¾=¤q¾žùðjÂçkûÆ®²ï7”ç/–-íóQ³½x ®¼ßÚ˳%íëMó.ÂÅßüÂKÚ׳eûS×Ûö…CtÆ~LMþVEÙ¯g³çÛ ó š¨UÚïGõ¹ðÛŠ~–!~¿«É'ÆÊß§ûÏöýó31ˆ^XïÕçÆ^»´Ïjòý¢è‰ýœúÌ—{•öùJÍ~?ŽX¯Õì_å†Ï[¸)'|¾úõÌýÚšýÅ‹rtÎÒé|þ™ØD7Œ×úL,Ÿõ„²ÏGÌk WŽ'{Ÿ0¤>¿ýzÆx)¸ßì÷šÇ’öçq}6>ž¢ótû/Í÷!ÕvYÚ×Ûî%œ0ŸªÅolÊuѹKûý°Úû„mÛ(þïÕìçSد÷úÌ×g^ØO¯˜¯GO̧Ì{Hã÷­>1Röõt­¸Ž×êÇÊþ<®¶ñ˜…»-“Ì>ßVöõ´mÕ)x‰îûMÑ ÏÛúÌ7í~"ìûiµûÄ'šë‰Úý}†rÃÏ[6°£ ¯—g¾—µ}>k¶ù@pÆ|±>ó9{Þ g|Þ×KÑ ï›ª½ÕöùxµýÞ=ÎxÄ|L9ûù|æ[v>ƒ¹^6ÛxÆýpxìNôäñ˜¾Ÿ=x¿²ˆˆ*Ü1ß4Ûx nx›í~%ŒŸ·üÅL4çËÕöû²0ç«uû~éË?|Ë2¼å?Àb1 ‘'b¥wÅLÚþÍMn?uì>GúäÆÞÝtEô<#¿ÖÈ‚C÷@¹ÀŒÇúÕ}ÑÕ7~…‹‰‘2>cô2|a!XIÛí‰LŸãw¾ò¡“ôè@¿ ¿Ï úe:¢ ..l’ ¿Y ú%`oXªb![Šœx=õüÏUr¶vŽô¡?}‹;p ç¡í+Eú´fÄÑ&rÈŽW&ÏIU±‘ö¾42“þ+\l˜lÌ~bI.ú«f[éeEßè{¸öñfÅenû¦è‹[c-ÅJÚ%™wdÁö¶½=ŠÍ9<–-2“½Gfl¬>÷5[WG"^‰qR¾é°3†ÙEni=K?8ˆWò¯‚¾½;¢Y¾ï€NÄ*6r.L4¶œú4vûS*pbcARmH§J÷-<ø’›AXÂx‰ö,ÒZ–ÆK´gV·pÇ&hNŸ.Çv/ n| ”‚`¢ëñHÒbÉ A·+_ÂÚKŠ$—°¶[«\d’+‚„ng1a7Y¹ÛKFa¼D´Ýî%œpó3[¸¢°_´9ûl:¸m\˜æQ¤3¼ý%Sðb‡½éÒý¸jã%s)<ù’¹ø½IyÛsTA6Ï"­%iuß$ 'Èkø3 ¸3È ø&KtãõX¶oâ ãz|Iö<®¼ímu—n…¶»…0®ÇŠpÖà‚EšaY„0^‚×q‚F¾:ãÁm¶™Šp=Y/ië²ø’Ö¢1ºt…7‚`¢Ó ›=Ú>† ¯Œ ˆÛg<[4Œ6ƳEãi9ñ%Pð¯Íßv)#H¢aZ8WåÁ 2‹Ò APÙçVÂù¸$a¾ÄpOérÜ”Û 2+ø}¢ÄØ+‚(¢q¿ï¾ZWÆýþy0•"\±H7ï$û}߯ ’ËO¶ÚšÂœ¼XWNÒýØæzÂ/ Ò N¼ß-SFŽÍ‹t=fzÏ—Í ›g>Û—4æ¶ÞÒ^H}¹½x¿ûÜî'È*Wiá0Å xb‰f»I¥Kã~5ñ’]ÏÛé³²èÁ ¸g¾m÷+aÁ1!¸Ÿ 1 ·c‰ÆóheïÛ'È}ùn2‚èl·wKãz]A·+¯Çå7e\ ÷kaÜï×>?ï«Ë Òajct=îCó{›Ñ„3–-榜x<6‚„ñ¼·u@~¦I2Ü AÑ8^Ï|¾Ti/{˜¤ñ‰AJÁ‹/ÁðF¹Âù™ÜfSÁ÷½=O^¢ 3È É6ÂAN-=daAN[ºŸ ' R.J¢¸Ý±-aÑ=KûRÜ<µñ’Û¢1”9ß³h»ž„G¡m½%Ì +¬7‚¹Ü·ÿÇVÖÂx‰˜}·Q/9m=¡ÌëÍ£u²pÆ|ÔlAºÂ ?oúKqá´é‘…ž/‰‚qšò 0¢ˆF^")#È'#I)xq¼e¬·…ä“}·Z¹ ˆ ëñà‰ ³í#ˆ£x4µ2‚8ð+zœ ³ì{: 2ó·¹ÊåÁyÐmé›ízÆKf»±7iaì 7¬g ^‚)„góea¼„&¶?$ü ‚M¸ž 8[§\'=‹4‚ mâ7„ ¯{ÉÖ¤q½T)gÌ|⛤}>oo²Šf]GÎí„-P³Ý„~_$é#«úÄé¶=Æ„U=L׫Eówißð…a^ Âz¼´¤—-HZ9#H¯úK¼`æVúÂ}J÷Wà’.'Hпïíq‚=ÚD÷ƒÆ “hÜlã" wy5Ÿø*3ѦÑ\¯1ÈPAb=!ˆ(ºœ ¾­|‚”»Ï7”ùóŠÍ7•ùóÆËí JKBJÒüyç+š?oúK¾à¤ùØ‚8„ùóD"ÌŸ·ü%}p:Çc} ²ùdœ¯g½ê¿ÏågšÍ ?†VÆ|gx¶YôúìSAèãñ¢Ïólx%e~¾yRð¹ø’XAØÃ³Ù”Ë Ò³ë-¸ózžþ¼RÆ|sz’›2î ò æz̼´„:=›Qó•Ùdt»ò~üØÏw4æS³Ÿ ™¯.¼ß#IHÏ“g=½·pÆ~‰!–%çáò¹èt‚ôÆS4Ö; 2¼}‚\,Hp&i̧‘¤½8Ÿ±õ°6æK6ð²4®7{I¿…ùZ´l"WÆóцÊOÛ_œD$‰ž CaŒ‡íïî•1`bð âg¡0Ö“=ˆ(ó­íû)ÑíAn‚FDò÷éÑL¯­œ¤䂉2‚œ’_¸ÑÇÓ‚dsANià|F#È)¿‚t¾:Ÿ ½WÎm9åŠñv; :/ï Ü_AzI:ãûøÂ?ø¹®DÛxfâöëU8!ÈÎLÑ‹A4Å7ö• ‚è|¿"zÚ4¶ Dáã~)œŽWf â+Úåùí.ÜäU<²E¹Á>ñTÆñzÖ+E™û fïÂ%Ó[™IÊî) ´êQ.Ñë5 ò³ Uaßï>A~¹Óv?æ~CµlÚ.ûAõhÄèÄ Ðg½aÏ3a\¯Ï|¿niY6_x[àÿ¾ 2FqÃý4x!àª6/u¥Œ ¶}>|‚0›¿oT®BLvc‰xY¢Waßï¯Ï|šŸÿjîX£W‹»}‚à8_öçQE5ès?ç|SØŸ7Ägóå`îgU‹kÂùé5F¹MšpÂ|½!›äå¯5§òwƒò*j <ò# ïŠÑKŸÃî|†Ø0N_`'‡$¢á¼2B óE­nÇT¬¤%+F"‚¯û®ÖMnztÄŒÜdœµ­Ø–"âû†ï?D²ŽHFðu$ÐGVrTÅDÎx"ø:ÊFzŒž]l3’Qx–&YH/ t‘¯·º?=Yk$óAGÙÈ^}[×n_‚Œ³ëþr]°‘6T"}BfÕ|f$sä:R`#;Y»b!ÛŠäF{ß'’îâ =®0ÐãìÆG᧯Lä)ûô™Y‘Ã×?‚ôøÍ‹|ù#¦‚£!‚/Ð'ÂëÄú4nø*0pâ!7P¸!rk)ú÷¹ø,i7ÒkbWäÀËùáAR‚>u´Ü©è ÿáóžÀŽeÍØˆ: ì¤Å„Eú–¦Ýäv$'¤3áàVrdE¿©2¶÷&CùŒK±‘}D,cl¨(öí˜OLqŠdàô@*ÁNú DäoAÁ³‹¼¬&Ê©E&rŒÀg6è¯mgC©Ÿ@¿pfC!¤‹ [j³!¢+Ð/ [دH^Ów#}±7‘ YI{àFú¥a3’a®–#$é“X–žŒôKc¢,ÜÍŽ ÕC7 ô ÕôÝ ÁBæÉÐWÛ9+Šˆ‘G1ºH”/”š»É—Z+ÂS}ʼ¼–µ ?ʱqÈíÂå»ù‚™åŒ-üÂŒ¥cÕ# ãÍ=Nò"à,Çp)òÄ~¥oA.•q³2²{ù‹~A½ÅHö›|y¼&bûý¶iÅC³b!Gd-‡vS¤ÿ ~SeYÒH¿©î„"Y™ƒ·³GÃFú$p£^¤Okí•M‹ä$pûM]°.E”Cõ‡I s/vÇ×<åPûVôa¶'¢ï.VK]ø’§Xª=¬#ýAÿ°mÅDz)°‹zZl‡SÑo_–4Ö"3n_Û(‚ýp)úbjïW9¬Ïdî”%¤.@<{c\¤ëË+º°Pï©+Œ@={ã­]íE¶0ùª=/’%¿o)#/!ÐB˜ÕkQÝ6x²:^*¨î@½T}Ÿê ©"0š‰´F mê'ò«;i-»>K#P6yºè†…UÏÍI‰ ³¤‘¨<â:ºbºŸÖs½Ó^}*Ú'2§:opa Îfõ_’£ºàã¥Íê¿Åµƒó×DaTDÄW4=¼:°v[´ÝU…™(‚D˜ÛV=kÐö$î0ƒ×9ž ÕŠ¢y<ý©2«+÷(y›ÇÎÁ§zc§úÖm& y Š2Æ;Å‚;‡½IÒýå!ñXP2ø•ˆ‚Õ’0ŽWAj¤0Ž.‰V¥ãß‹Æñ*þ"RÇ«ŒWàâsªiÕŸmJãÕª¯miŒW»1'á|ÎæýÂ<ûTïºóQ}x>jB e4ÎGÅ<\˜Õ½Lžrúœ(t;íSݹ¡úV4ŽwE xðâñ®H£ŒãÍD#aï:Oõ±¯æ‹‹æë £¼¤‘h2 ë¢Ó©Ž]›ðIôA¢–r{%jmi\£!ðvãõˆD.e\£!Ð5×ãè¨.v»žêãÕ»¢Q=o‘”‘è;|7"ºœD6¯Î­ÌD¶ñùö™•ÓI4ÛÊg¾Œ]]eVç.¨Þó2;щëAìÏ*c=ˆ7¥ÊXÎ~ª¥}ñÚ<ßÓÊL¤C °0é†W ^LdŸ^GçÛ"Ò–ô«ºø®ÂÜ f¢²o³º¸2η•ÉÐÆõ>(|®÷éeæ”q½³z¢ð+ÑÏÇí¯‰~ÊH”ÄNj4_Ü›s‘fõrŸX*£Pª£GŸî«âxDã~n1Iã~Ž6cÑg=¼|¾§üJ$d êmì÷ :ztæ~Ïc»Ÿ ³ºº?8”Q(à± ãy¾ÿ üh†XxÛ.ëuú‹=e&V¿>ž‰›èži»…™ˆîÁãy.ü¼h&òáy'ŒùØôhÙè†õNYþ>P¹žD: Ä>…,,£rK£{Äò¨eÜom½6„ 糞²DaÜ/!ÍD8$šŸBÛ¦Êø}Ÿõ’]ÏÁ Y2[utá|é|¼^®Üï5Û~ª0æÛÛ¶2ª»'/4Í륢‡r©´%Ú³;jåzK‰NÉ )§“H7Šð`õèäžr9önð·9¬¨è¡ŒD1®W„Y}ß3Ž¢_Õñ½Ír9öï6ãjÆýV‰J\ïãxe$J3Á<µ}>ê‰xE83ÊH4BàB4ßwš‹6º3Xw®!DJV׿]öI$ôŒXe$ò$2³;pE<åzál¾Ìx«®oó a$*Uß‹æûÈZñ>@‰R‰Ê¸ž«/ì¢Ä]QÑPã¥a=ÌîC^}Iã|4/Ô]?åìy%Œêóö`ÝÂå|~ãß‹öùRå|<˜¡×µc¿Iß·{ÅŽèÄî#3áû\Î,tÒ ¡M û¨Öîå*ÿíÛoÞüö`…¿û–Þþñg'Œ!;å•!v³¹(úÀì åÓ#™Çey>‘þÐC+gA¥}2Ä"ýò[ŠÌòª’>Ùê(",è_%„"‘_„B‚íí#,’™ZSÒ§ÀÈÚP,o¯<®HŸ¾àíª"³­X–ÿ"2‘™˜›dq7Yo‰YO‚ýí•×$h'…D‘‹Do%XAÿ}³Ì²y—dç–Ìo¯Ì¥È“¹T«¤ç®Ôóë_ô-€á[­ŠííUx_0½½òš"ýå¿å5MEäù+bÅÍ®¡X˜›”«d-"-ÒìÌMd~ÎE¿³Y€`»f~{e.ݬÌ[CùÑHßD±5d–lo¯¬'ÁÖ¢ˆ¼µ“Éœ(ϳ ôÐä‰>–‚ ìM’¹Ii)"ÿ${Ìm¤O˜×$XÁU+3—j’ìo¯Ö ‚lMÑâVi£Kú×@ÖS$r±üë(v°ÉDnÅÄœ¨’$ 9#ùê—¦b=Ÿ9ЧýÓgEŠåí•9Ù„bi2'jfE´Õ8ì‘ô›j¤ŸP”àô‡õœü‘Ÿr±"Ñ’c½Å/vpi&pwEX[ý ªˆL<ÏNUlàž’Ì¶jMÑ·m˜‹%è¹:ú@4ìȸEVÐâ1oòuùB™VAæDÕ,™Á½ÑΣŸv<7ýkLLÆ‘mµpCŽL`]ŠÈòBü¦à§¬§HX¯}ÎMÏ\B ’HߨétºÉ|ª)éA+;¡eR g¤3ÛJ¹X5)ú㘽Û+¸—¢¤]ðà‹l`ß’ÌòÊ5’›\1°‚ž_„×ÈÅ,¯V$¸‡¤ ÄÆF¢™ËÀ *2ƒMrœü±"Yß^Ùe‘¾ä܈˜ô¯îµ‚þ5ô¹g<87 ؇¢O/÷Â4 ²½½š×úEfZ$šõ ´®à§Ü³H¦÷ =L¹ÒmH§“6¾ãNϪô§ŒYÙå±^̺ÚÊ•^KáWLÿRöðTQD8Ñ5I#ü,yÝBé“6´™>‡ô0e|ì9#|;a×A9Ó+I3ýk £–p¥y¼nד~fOtaô]HX­+ºh瓾־ãFÏ¥èÕ¥Óù>{kãx­s¼¿zñÈ’,•^SáŸi£ ›ðIŸ³Y­r¦g—fúäöù˜2Ò³ÒékwãéyʉžSšég^÷T™éoùÔÝ >é}£K×ÏéuÊýxigºi#¼6ûö°ôIc‘¡Ûìk…(ÊÞ[ÇóÕ;ð6Æk(E$\èZ…'¶4­oUYÚ^[š}¹°¡Ü鞤1ó>…–‚+móáqÒÿ¬n¸2ÒßÒé®xû•þgÏåB$Íô·Œ|Â'=pm|”*Æxµð®¥ô¿êsyaöÃJ^¹ÒMã•}Á”ûñÖÆ÷ixžG¿ÒsÅw¹¥=‡öI\Ušé‡HTÎôÌÒ¯…%È„+½³ô8é•~>„;=†v¦w•î'ý²6iŽWÿ—nÇKºžôÌÚµ msdaŽG\Q®tÒûŒ‡à“šªv¦m.-ŒôƒŠ}哚º0_™½Ü›p£{ÕNôÒLß,˜/ºei„¿?^ßq¥w—f_9ß›“î´?/…3mé½Â¯hP¦Ìô×öj.{»Ñ=k§ã%ñ̾Ê8ž×[4Ò'Ù÷O¹Ò<_·1ž+{¼ wz~Ç8ž¥ì¢9ž±Û£\é©ÜÎxFß)åFûxFzjÂxŒÆxnØ÷Q.ôÖÆxfú°0ÓƒQ\G齨'WFúmÅ|"š} ë9·1^™¾¬ŒôávŽGp:^Òõ¤/·ª}Ò‹[—Æxez²òI_]ãµa[¹oiŒG‹óKÚ•^Y˜áo'ýY¹ÑshãxnîE»ÒS»ôð4´]¦v¢Ù•ûv=éãµkºiöÍ,ç|ÞÆxìõœ¯à~<µ3Ýš4Ækç~p¡ç.¯½b>)ŒãÙp¾…íóÅhŒ×Þ0ŸÆ÷é˜Gc¾ËåJwíqÒç}¾)Üi¿Ÿ ãxœïh¬×úÀ|0ºôü9´½“6ŽçÄ~`t=éû­igzh—S`gmÏuÎ÷mŽgþT>@ßÇ7•±ß`yM8ŸñÊý(áSžÀ¯wa¤Ç'¬¢±ŸÀ¾¯Ê§<ÁèÒ(O Œñˆ,}Êøó,û £`?V¸Ð^ò7ãÑÖwÜè¡Íò è{«Ü§v¦W‘fùô]WÆñDy(aŒÇѱß+Ü躴Íóyãqt<¯„ ÍóùÕ‰ãup?M¸Ò³Jc?Ì6v²v§{×ÎôÔž§üÃÚÚø> ë­h¼o°Ï¡Ýh߯ÆñF40ÇûÆù>å#ú’Æûˆò^ÂÏ3a¾!œéSCû2ÞGà]žt¡G’Æû¤·H£¼BÆ~´p¢k—Æxe eåS^c ÷ó¾l¢ü˜2Ê;øƒC™å)зR¹Ó^jY¿úV ÏSžc mïæçSã}¹¤q¼»_ÂýSù éN÷ïø”÷ðbÒѯèû¥\Ï¿·šv£w–æxõ:=Ò…îÚù”™ßq¥w•N§¼ÏGp¦[>ïËP~Dß}G…ñ>éSÒ¶ù ò)OâEÈ£97Æ‹0ÊO$Œ‡èqÊ—°<~p¥—v?åQvÖFyì7*£¼‡ÇG)³/zAáxáBï.]Oy“²µÍóq}á-½­jã÷akáLï%x†ÕÏñÆñÆ~œ0Ê-ìÇ)7º}Ç8Þþb$z²<ÓòôéB7íõ©üŠt¥m=#Œò‚Ëÿ@ÇÛœô§ò+Ê(ÿÆ¢Ùʧ¼Ë^Ò(´6Ηp£m>&ÜNù—2´3Ý´ë¤{ÕFy—„ñý²í=Ò‰nYÚCófë†hìwmŸ¸F–ïa„šr?ÞÚ™ö6 ÑØ/Ø^Pß· ÅG4ËïTŸ)Ÿò:Së±÷‰ÊEû”ßKûa(Ï£ŒõØîçxãûb?Sç{á~ý–,WÆñܘ¯Ec=ÆÂäÊ•žIë±½Ïù Fù¯£(hžïÛHOØOT.Ç[˜ïÓ¼Îä”Fy‡äñ²Ò¶òÃÂ(_“PÞR¹/éqÊ/ùó*å%¦œi6”¹¾£¨C*]i6•¹ÍòDóáFóx'z6iô]NÈÇRÎô\Ò(_ôbéJï,ôú4ñ<¹ÝNy*Äs)gÚW4Ê{$Ÿ˜IWÚûÇD£|ãÅ”q¼7·p¢Ùøçö8婯’Fy‹kÚ§üÕîÒ(”}ãEºÑ<ÞÁ(UÐn'ºžòT<^·Q^"{«!åŒïSÏïŒïÓp¿ŽFyÆ{)wºíLÏ$Ì^fŸo £ü•¿¸VFy¤<°Þ®´ßï¢Yþ‹²„Ý´ÑW8{à“t¡‡6Æ[žØ¯Æ÷](Ìñ„ý*åD*]3½§4ÇâÑ” =µ1Þ ö›”݆4Æ[A¼´²Ÿ¯’ÑÊLåµ Æëm–‡5ûóDø”óù|4Æ[A>µr¥÷–Fù¶‚6›Êöùz4Æ[ix ã÷Eþ³0ÆÛcŸoE³¼šf*7ºwíDOmÜÏÊ@c>áLû~B4ÆãÉ„ñ<,ˆ·æxšç|wÚöc•=‹p>ãiáy%œi¿¢ñ<µöS»Ò»IãyZ6îgÂíxIM¯¢íǃñdÊ™öóÍòrh_ \è©ñX¹$Œòtç;}å­½ÁÒn´?£1Ÿ«ÈWÆï[Îù¾ùãÕ”Où¾•¥¾OÅ|ûvÂz×ìû)ÂýxigÚ×ÃÑ(T¹%\h^Gc=òÒ8_ܝЯxdûåF÷¢}ʲ¿ám–WØÏÆzMʤ ½²4Öu`>)Œï;±ÞŠ.›æù îtÚ‰ÞIå¿*›F'ü¾ûœàJó||1Ú‰Ãö¼Æz´!k]ÙÇ#ãÙ„}¿Úlû…Ê…ööѾmÞIšå D 7Ú›" §ã%ò€Ís¤3͆œ·}¿®°ý‡2~_Ÿø+£¼qó* Ê(Æx<åNŸ ·í.£1_CSËèSž¯±¹§p¥ý|E¯v<¥1k- …;=¿ãDï"ùãý”q>|ãSóµ61„+]µñ¼´xÀ©Ýh?߉nژϡ½«t¦Ç’ÆóÔNLÑÆñØhàùã …±b{k7ºíD÷$<ù¼DyWeû…Ê~<:°F³Vû½Ø”.ôlƒ÷;Û¸Úø}Žw4Ö«¶1Ý´í×k4Tî´½/PÆñš8ßѸÚ‹Ÿ¡é9¥Yþµ”+mûE¸vpHãx ÞO÷»îuh¥mñ~¸ß!°E:ÓeIc=aIE»Ð«Jã~8¼¦BtçzÂϾãFÛ|_ó¹‘q¿δ­„1_c¼¢0Ëÿf\ïÑ(¿= Îw4Ê·2žPß·âzN´­×…ñ¼h_,Œý6®Kz6iì·¡¼²t¥Ù;ü6ËC7̧„݇v¢}<Ýfé7&¾(ãyˆòÏÒ…¶ýta<ÇÀ|I¸/é±h{Ÿ¡\éY¥±°ÄɤÝè]µq¼¦Ç› c¾?¼½2Ëg£¾‡0Çâ)•ñû¬ÓLþ6Ǫ|(7zOiާ}Îg°ÔV‰>ï o¨ìÇc¢½²0Æj)ã|£ü¶t£g’ÆùF52éN.ùάX/ã÷Á~°0Î÷ìç÷ öñ>±ß*Œó=æ»Ñ8ß(.Ýh¯Û8ߌ·SÆç®WáDï&\x?a¼œr¦}=ÍòÞ óIáL7mŒ§•ðû ûñF(eŒ·…zÊ•îÚý|Þö#…1_Yˆ×Wöã¹ î7Ñ,¿^0ŸÆñÀ~¤0æ3[Ñ>Ÿ÷ùf4æ3«žóuó•…z™Áù”‡Ç~¥r£-Añ ñôÊø<ö •=’4æËk`>(ŒÏã}¥0æËË 'HgÚŸÇÑØ_ ÷áB¯&ýÐ…öÕÊ…®[û¡Ëû|KûxßÜŒÆzm#V˜åïï¥Üè9´ýxoq¦ŒçÕF½ e|Þ_\F¿Ê÷WÌG„3íû¥Ñë|Þö»•Ëñ–ÆýÊútVm|ñf˜oï†ý$áJç*ûÕn˜ï ãóû5ј¯£}œt£w’Æ~ûæ~^4öÓ7÷ó„Óñ’Æ~èžç|ÝÆ~Àæ~šp¦g®Ìw(ûaÊ…¶ñ,ìï­}ƒ­×” =º´ï7™íxûó¬&´W®´íG û|ÙÚCX¼…°ŸosïÚçó«H×óùµµñùêëUåD¯&ÍöÍ÷#”½ºt>Ÿçñ Æç±%ŒöÖ¼jç·WûŒè…û‘ÙÖ;Êçó6_f{ ß‘Îtמ“öó%Œñèåò•Ǥ{Ò>Ÿ·ý@áŽÏ/ßT.ôÒmÑ{kc¼#ž[¸.º íóù–¤Ëù|¯Òù|ÞæsÂh±ß¤ÜèÙ…'ö‹¬½‰ß„mómáu>ß´ç±_oÂøy×[ôØÇK»Ó­kûõ–Q©Tí2ö{”Ïçm>(ÜÎçý|ŸÏï&]ñyÌ“NtÑ.çóeIçc›Ï+ãçu—f{¬•ÎÇSxð~”½pŽôù¼Íç…×ùüúŽñùáó5a´wÉã)zÛ|W¸·®}þ=›Ï ³½ÐôýFåLÛzB¸â󨢜éÚ¥Ëù¼í(ŸÏÛ|K8ãó¨7¢œé™¥Óùü\ÂlÏkí…|¾!œi?Ñ%ãzδí·Ïóy›Ï)ŸÏ%=`o¤ŒñR¯|>oóaaŒ—‚z¸_Äó+'z4ér>ïóáóù]¤q?)¨«œè1¤ÓùüJÚø<ò‚¹_]©|>ïóÑh< ºÈ(·ã-=Îçm?Vù|ÞÏgt?Ÿ·ý(åóù™¤ÛùüÚøüÄý<ó•‚|eŸoä#—ã1¤3~ºÖ(zvig2¯­íŸ¯éœ¯¯f£ÊxGaÜ/*ö•3í÷ÃhÜ/*úß(gºjc¾R±Ÿ¨œh¿£ûù¼ÏW£q¾+:á¿Ú“µ¤}>?«4æ«ùÊ>*êyc<0ÞQ¹Ð-Kc<à—>ŸßC˜ñæG:oéu>ïóáèÙé:´q>QOD÷‹ŠýLaÜ/Ì[û|ÞÇK4Ö;Œ§T®tÞÒhÿ‡‰…r9öñ$œé^¥1ß°‰ÙÔÆñšxžFãyR‘ÏÌÖÏŸ—Â8^Ø/^‹nß±/Û˜kÒX/ÛÆcÖ.tÑÆ|µ!ßB÷lŒ+ãyÑ žÂöù|4žxq#ï‹ýHaŒ‡Ö0ßÎôîÒ˜o´~Ž×m¬‡¨\éQ„Yo§"pC¿ÏÄó0÷ ^ï'Œùú+c¿Žñ~Ê…^KëÙŽxaœon+ã|÷„ù¼°ÿ{=ãyù¦%–4iìw qF÷ûŽxxåDïýL#p=wÔcÆõŒöæÒ>»wçSÆý¾#ž]ç˧›v¡[–ÆõÌx0a¬-±|I{¼ºµ¿´ýåJ/mÜÏ%Ìöœ¨× \éÒ„Ï~¦~)ÒØoê¾±-]éݤ1_Ca$eÌçÏ¥\èU¤Ûù¼Í7”ñyì· c=‡Â|ʘo Ä« ãz¨+Œõ¸¦Âg?p`?KßûMÂh;Ó\³4®Æ+ §óól>§œé5„Oûàá«Ê<Þ¾ñ¨Ìãx$aŽwì7)gzi´è$ŒýÒý"aܯ&êÁ c¾€.KÊþ>Ù<µq<­X>ûM/4¥×±=ޛ ß'Ç‹ñ@Âýxjc?Ùê‰-iì÷Ìy¾ïmy¾ïmOß݋躼NŸá/d1m5ôWé¬té ñŽ:r‘¾ ‡r€‚™ÞCѧXt7Y …<Ñ»W‘¾90|‘*èS›yÌH~ ìûD¢4ª¶E~¸-Åγ7ãE ìEúãüt{Dã†Æ–wšÈAzã@Ÿ&žŽÍè=”ÈÌ{Ô@<&zå`yM´yôÅ'û9Gv~Ø+Cú Ú}Ùqª¦zÐ×DM³› SÒÉŽJð7±Ÿ‰þ·ùtãºXI¯åXø£l¨Dú`@Ö@¾FgçäÈÉû¡ D§hD`E¢w.ê‡EúP™ÝõÑWy 6n •9PÙúâÀP1.E*»‘>Tæ«çÎE*\}¨¬„~f>TV:Ý’¾É2 µ¶"}¨¬r:¥\ô¡²çÙùá!Yùa¯™Xøa¯ èiUÔG¾Èö& Ùe‘>rË"?ÌÎ&?ì¿B ¤gVî%} =Ü‚ìÖ¾éC…]y#Ñ[Ýq#ÑY·`0ú`Øåt’øÂ‚Á°+ú|ž>´^%9ÐÃþEíŽAˆ¾¬ˆ?ˆLäÌXü±Ól¤O?öÄm3=l§¯ë#?̪øÑߘ=K}úÁ~°‘>ý`=À›é´KÅë~á~ÌrÙ·Ù.ËAár>?†4ÛÍ"œàvÿÔÖËñD£Ü¤…#.i”ãM å¢QŽ_²4ÊqçyÊ~õi'—×)Gyå~ó>å"o³Ýë>å8oûv’µ»ôrÇѾb®Úl'‰×aÂ(§|Ê•Ýæv‡µ£ôrmÑ3Ñ,×x»ŸÏÏ"rí¥¡ÜM´O¬ÝdYÒh—mû^Uø´£*—F¹f¶kF¹û²Pn'åËF¹›h¶{«§ÜÞW³Ü›9wéy>ï妣Ù¯rp·q¿¯§>ídØNO˜íÊFã~_ŽW4î÷•宣QÚ⢻t9ŸßEšíöð:%˜¯3­]nÒ(GßN,ÌvtHGF¹÷–q½D×óù­ñy„ £Ü?òÞ‚Û>íÒ ÒE¢q=~”ùë‘íì„ÙéºÑ('º,ÊhǺ^Ñ‹å²O¹‘h´èhW/ŒëíЄQ.¿g¤ËGçóyOwF9ú^ðûÞ>íš;ÚÍ £Ü6Ûu c¾×Ñ^¸ï$ë¹£œmði÷ËvO¸žÑWF׳½î›Òl7ƒrµÂ¸žÙNJ˜í„ÐN)˜¯+Ì»Kãzµ×uEšít®$ŒçéG¹ÛxžŽŽtØhf»¬täh”ëÿH׿ÍvU('+ÌvR>ñTF»†ÁtÌÛõ´kB9Wa”£Ÿ éxјosoH˜í^˜®ùödºa4î§o„ÙN¥#ÝõöiçÇv6˜oO´›Æýò¤£Gã~9QÎS˜íŒî·ói7‘P..ó•…t;a”Ûg;a´cX‡F»›•Oºím¬gVF9‹Ûé´Û('ó6Ú-”«Æzfáõ’0ÛQô“yÇsõó}¾¸n>¸Ç$ŒçÑB8‹0÷8é”·ÙNíF„ÙîetÈÛ<Þû¤×ÝÆ|síóû|õi÷ÃvÂ8Þ;Iûd¶sÈHLjÆzq߃Æzq¤ƒÞž§ÂA„q¼moªJ³]ö€…q¼÷D8q4Ž÷^'é6Ž÷I—f;‘}Ò;zœã½®Í㽎Íróé¤ÝF9”®Ívé¤Ý~µ›Êå0æsÂ(GòI¸ÍvÇ3éÖ åØ„‘®Ÿšï‰ £œHjçûÜf;ŒŽpÞÛ¯vØž™[ší(µ£Qƒí„Qn€í„ÙŽí‚O¹ûäq}Ê(gjûQ]åøò+]àö«AÏÒ(‡—QnKåÂrÆx¾}Ê©ç‚t©hŒ§ŒvžÂOlw ŒrÜOf9ûŠû}4Òí¹_ÌploW0¤ÙN !¼3årG¸n4ÊæŽãÍvØf;†ÓGãzÈ÷ >å ò<á®·_íîzåªNº`4Êu°]0Û00ší$ÐNüvá bskÒ(w™Ñ.S˜åî±_/ŒûmI7ŒF¹‡âÊ,'Ÿnt{vHçÆõ\ò ç¼ëùñîÒ,Çv–¸ž™î'Œr•ÅûfGóyîqCMú£A‘F¹‚(a”»b:œ0Ê%ZÜ^•f; ¤³Ÿr™ežp¾Û(çÄrúÂ(w_ö+ñò«ýhÒ(·ey ]šå¶óù>_}Ê-"/C÷#»1 iÜ,ï§I£Ü\E¤‹0Ë‘£\“0îG,/Œr%ï#‚¹_íƒ"rX,×.ÌvhW(Œrhå „QÈêTi–3G„Jp=åð£q?µ‰w–ÆýÔ&ö]ºžrëEå²Úå ³œ±÷UŽ>íLZF¸}4Ë¥„kFc¾ÄýLa´[°räIšåœQ.HåpZÃýôö)ÇÕ"Œçê:*£Ü6†”Yî冄Q.¯ Œ‡ètÊue¦Û¸‡4Ë}£·0žWñ(Â,gŒýa|ŸÎpåËy³ÜTGÌŠ0¾/^l(£œSGdŠ0¿¯ç-*óûâ}Œ0æÓåx‚×ù¾Í¯a~_¼æ÷éž.(Ìïã—Êü>x|Ê…£o¤2Ë#œZ˜ßé4Âü>(g#œN¹d/Áƒí˜n#<_å”—ô«³ÍÇ„q½X`B>í ¹.Èr­Â,‹rÂ,çŠv_Âh炘qe¬·Ùî=˜A¿¯>¥YîòÂ,WÛq¼¢Q®qb¾.ŒõÛ½ ã~2ñ>ìv:í`¦ç})ãzž¾1©Ìrº(÷ ŒùÜD»+a¬—-žs ³\˜ÙîÂØïb¹Tá/åP…±^aºH0Ûe¶ûF»¯…t~a–ûôº5Êh—ÅvßÂåUŽ4Kã|.ÄwŸçÅZ¾ž¯r E÷S–®§Ü¥Å{ ã~År–Â,Çé¥Ñý”ËD»a\ïl§,Œë}£0Öã,W)Ìr£žéÝN9G”«Æó˜å&…û)Gi÷a¬7¶÷Qæñô}eOïÛ]ÏñÄû2a– õÀe”ãß~á*—SÎÒâ1„}>vÊ9–óI×c4ÒíÚ}#1á}”0ËIâ}”0Ë=¢œ`pf¹¶Ãöû•ãó/éd,Ç'Ìrrhg.Ìr^×S4Ê¡äŠûÅíÄtéŒtWa”#ÉH'F¹L¬•Y®náz‰N/ï`{ƒtÂì‡Êã”{þ¢r;.Ú(7¦ÌrDþ>&z±\kñxåqü\OÊ(ÇR|¾¤Œtïâóåt¼’ð<ß§ãûFãÝ¥‘މý@e”›C9,åtü,ì£O¹¿â/•Q.©xà‘2Ò‰QnJéÚÅO¬r:î]˜ûyVªléqÊQõ$ÝŽW•.ŸÊM)#]µzRK¾_ðòß>^Èÿáò §¢ÂUo!}.ƒ€¨›§î«1vrHúä¡û"3°bë¡cg*²’ö^!Ò·»W ,ØôîÈI»É-;Û‘_Š~ÁtÏë,d‘L6èãäã_¬ä¨Š‰ôº_‰â4N‹âôM€>ßzqáØQ`5²uE²zyGñ•ÈDÖÉÎŽ¬>ÙÈ^=lÂÒÿ;nzÝ7‚dVõEßðCbb`Ãí®c70²“µ+²­ÈŠäŽ8°Èñ©bF¤O¢ö #ioxn,ðö'#9SdÆâÌžMM±“{F&l< ´•ŠôeÝðîO‚•¬Uщ Ÿ.vöûÌ— l¤gûfÒÎMvª@žº ¿(ÞQЧá»°7DcÁTäZŠþ‚f0ÿ1ðTÛ(+’U[»¢b""=qe,äM]ä²tld•v’9•}Ê9^•_ذ µjS±’žÍè7UÖâ¸ÉJÉ3#Ó4°‘§v“aŒö–©(öí˜YåÃ3/2€a¢}|d'}úæÌôMÈ@^VÏótÅDŽhiiN6u ô g~´|ÿÌ…-eÖ‰ôK㙆x»¸‹¼4&›9¢2 [ÁžÚ#Þˆ/ðTñ<Œ‹|=šTúK’9O æ‹~iL68¿È“íœ}B5±{YH¶ný†éÇÜȬ ôÀ9Ö<‰ôGùJÈ »È—ÊöÎ++VVD±7ž‘‰5O’`a…|š9^ôÉ6+¢Üd%dÖ<‰ô…þª§ à²ËÚjÈ‚ ¤çˆútµÓì3+ë¯.´÷ŽÌŸjžÜdí …ØH¿m®…Âî…=’U3zÑîÀAî¢è7ÕņC~SÝ åž/ÜTw>Í<.ú$pçÓªå¢Ok7å\ä$p³M`;\ЍÒP‚ùbÃ@Úl èÓž=NüÿEf{¢øôEnNn¶V $ Ó_ôýÆ{ŠÈDž"ôŸÉE÷fŒu`;œŠùS½”›Ü.ÜûD«_ì‡KÑS–)#È>‡od”‘(šØÇ%º¾¼¢-ÿÓ³JjA!áz\¦t:…ZXgù«_…N2êhF#Q=}z_F"k*¨cy›upÍ«J#‘4U*Þ§Ð ëŒF#Q>!‘Z‰š©Ÿ:¯_Ý™èž:Q£Q(Â^„náÆDÕ4O`îm‚™¨SO¡˜2„È›ëˆF#?íSgó6E3ÖeÁ…….,¢gJûF”ÙÅ£‘H›Ñ§CøU¨ÆëôÞΧM9©·‘h‰ˆ®èÄDÖ\O êm$ªfÏVf¡¹O¡„ì;’ʯB9Iyã‰DraÏvEo#‘–…t„y<‘hü*ôƒDpáv Éx j4Æ;Y‚Ù‡*o8ªÜ_Ò}ÔƒÛ)ĂՒ0ŽWA9Ba/\xÊ8^}‚¹ËÈPÆñ*„~š±ë)¸œB2„ÆxEF‹2ƫݘ“p>çó~až¢Æù¨è“Ìe晥q>*æá¸_TôaÆù`!›Û‰[’VȦ/iïŠDïàÅã](-ŒãÍB8Â8Þ6§—Í“—4î×,d#ŒBFLÄfôŒ†ªÊx^¢!®ò«ÐLÒ(ôÔ¼ a4ëAš=*ó‘†:ùÁíÒé>n§ÐLMÒ¾t1Ûî`pÅPn˜ £ICñ@aúj¨3ÌéVÈ&eéŽãá»Ê,Ô‚>ÃÁ ¤²B2)K£Ð Í×N{ _ô«PM퉅¤°/¥ì¹{Ä2õ»¿£¹íL(ÔÓ(ÍB= ĉΧÐMVf Rî~á(ã~×}>¦ŒûÊUG³¢­ÒIÚ¸ß ÊD×O…p”1_>‹æëŒ2—Ê,äÂ@•hjñ‚íѯB9Ç;úU‡@·q=Z!Õ*Üx=¢Ž2 5 Eãz´B9E¸òzþF]…”ðI¹Lza&š›íEº0 IŒñ]O!œ¹¥ñ¼¾0Œ>óeìê*³Œ'Ú*ã|Ï‚@­Û ÔÏØŸUn§PŽREc=8½eðÚ<ßÓÊ8ßÓ÷]”q¾'i‚Ù'‡…x”q¾§WäPÆù¶D€*|  ÐŽ2 ¹L/¨Œó=½P 2 1Ðæö¹ÞçF Gt=…~J•Æ~ÀJ8·ÏõŽB?Ê($†Ôh¾¸7{ C4 q.ŸX*£ÐÚ*¨\YeUhúi/ѸŸ¯Žïsû¬‡QèGó©5N Éíú*ô3…YèÁ¼»4 ©¡Ð2 •.o¤Œç¹ LåW¡$O4Vf!$ßßUÆ|…„‚çæ~ÈöBËÊíú±ç™0žH¤ˆfŸ+Þø•1ž¶¿Sf pF¢ƒ2ÆËöŒteZA Xð8…Tªê £ö«”Ë)Dóœ˜hö‘f!eÊñ»2 $Ì—„‘(‘èܘˆ”ü‹)#‘/yÅe$&_¯D×S(g#0)ºžB6èN¡šQ…Ë)Ô@ca$²f7£ŒDZË,Â/^Ü[ºB.­H#Ñ…^¢O"]ö>>Ê,´ã…•ó)Ôb÷»Û˜†üä…Rì~"ÌB¾ðWf!Œìó©àu ] Ð_…,Š8åü*T²…' QXF¿69‹7qQΓ¶ñÌ>c¶±jÚÂ(Q|b©ŒD@ì'Es?­0@‰h(¢ŒB Åc‰¢ùZ‰ 1•‘ˆ…†¶Ê(”€·9Ñ äô÷H[…*ž×ÂHÄFŬh®· öc”‘è>¹Ê¸_Woã™oýª4 4}PF¢" éF³Ð°WDÍÒH„m¾_§ÌŸ·q=^î§ÐAóŠýÊŸ 1D¯“hï”û)Ô`ã1˜…n õ*c'Œëuú‹=år ä)ÌD5‹²öãBsÓ_Ü(ãy=‘| AÎ…ŸùÌÄóNó±éѲÑí$zûû@eÌW—¿o‹f@mAF…2Ý=ªD÷[d¬D³°'¢oi&ú{Ƨ2 ©mEŒ>…ˆ¶/L•ñûZÆ[fÈ’Ùm„q?Ýãõò)„ËDmeÌ··leô1M^h8úô)N^(X‰É›REO&Òp½%ŒD_dÔ+#Q/^¢O"gò O¹?ÿp4烖ˆmë a$úr½"ŒDŸì­¤¢‰³gô)—cÿ÷n3^¡fÜo…‘ÆõŽ0¡½ÐK4ãÌS‰dÅ_,Fg&Š"p@‰r\ˆ>‰‚¨¦ŒD(«X6¤™¨ŒýÐÛ…… -QØæÃÂß×3â¢OŸïâqzÊõ$ÊÚ|3øô±f¢«0úD3Ñ5øôi®x ÌDR1¨Œë¹úÂ.šAÜ¥•™H‰õhpÃzã$š §“Hj×{ðéƒÛ<°A9#súó ¸œÏ#ÑR˜}ä1>…˜¨(ÌDÁéã18±O8úHg&š¶ä‘/M ûèË›mÕøoß~óÛ·ôöeT0JŸ‡Áüð—zû^wß×ßó6eŸþÚ–½}/-íü=ÛÜùü÷`û{¿þñÛ¯þô÷óë·ßýIüúÝ¿|ûÕ_?‡åíÇ~[ïüßñΌ»íÉüÃÛ/þú¿üåÛz³]§_¾ýøûoõ£ÿ?çg Fšý ß³ú‹7[ÑþGˆ=>¾Èþò3þîÛÿAƒj endstream endobj 42 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 45 0 obj << /Length 3002 /Filter /FlateDecode >> stream xÚÅÛŽÛÆõ}¿BMûÀEW\Î…·&1ÂMQg“>Ø.@I”V‰n%¯÷ï{n3œ‘¨]'@Ñ‚s93sæÜÏ!_Þ]ݾÎí¨NëB£»ùHkªL ›§ºÝÍFǹ6É?¯U2§ƒ§…gÏ'iÏä{h~†g'ÃSx1Èû,Ï ‡›áÁ0¤àõx4<·4ü;€¹þp÷÷ÑXe6µY •Öyθ/Ñ-è~IáÁwu;–I íœûFY†±ð(é[™/®ÇºP5aUË>ˆi)ã–Úýþ%a}º'ˆ!®c~Y™)%¸dL<ÆŠ`úùTÖXËeÌÒ¡¿ÓÂ~;ˆå aí šFXl„€e@‡Œ×é¬Îé*™<ýˆ2ˆ°µIk¥ëW0wÏRäø#aM(ºm A/¶á)ͯ™H²»z+OÇÓ¸`ÎÍù ÄLµ†ç†AvýÉßÈE[sEXÀn_[;b¢kTαÎSe‹ÑØ”ie _ɦ´˜£mò¶}¸6¼ÓrAw…Þo»YðŽU ìÈÒ*5•ç; ¼. Éí¾ÅNPIƒ*|Äû4+}¸ÖUÒ\ð#è‚´¼ÁËþŠ+:Ò~?/[ÎÜ– /˜9~„jØ™Åt`g»á•ËŽß<þÑ£Rò}‘3÷ØsË÷Ez=¶V'oZÚHÂÐÓÀ¨"-³hA4xŸuN¨"ÍLÙƒ€QØ(­Jë`š¯!E ¢q¶—²©)l°™ºØ Z~¯ó=ª4W~þ¢Y}¤–¤“C;M^ƒ4±:wC‡”¶ ÛštígnLP)îЩ‘‘VeD÷_´†ÚÔv‡È¬Û—ÈNœŒoəȞ³ç¥O›“|r›®)mºw³»g³(¡Ò½!¦ëÔ(ÏÑÝùåó4SæqœÞ «ç{‚kÕ:â<#.D–Üë'”òÖÝù®¹,b¾¡ÙÓ¢f²*/‰h¬"6ÓÉvŽoC{5SÔ{ž ´â³o{F×½]#ðÄ©Ssˆ’ÑVýt2cíÍ+r“¼ÜÒÜýt b'UOei–{˜‹Õ–?ÁÐ:Í´gxw$cL—Ó…M%(ß¡ µr³%™uæ€Ý5'h‘¤’Ôó//’ˆfÆÀvò>ˆ'jyņ;¤gƒÃ‹%E\(²‰ÀO›®ßiÐ ôv>@8UšÜ+ø–?ñ)˜å«KS! Lð¦*µµÜ¼é–ƒæ Ä€½:™ÍKS?gw‹ÿ™ÝE˜«ïï®>^)ÎFjd „Ìຶ¨ÒJéÑt}õîC6šÁ$@©©«Ñ®G u…·ýtõ¯«—IÇx¹½ÐÜVÕÿÛÒ «"O UY+cƒ!äð0(ói]×$E!¡÷ß™ó¸Nº*ðg8W’S"F…†¾Ð½¤3ìØŽl ÃÓCLœÅê1gWý.l‰Ö–'Î gÏHlë¼Öcª:ÍËòùèÁK1Æ#&O¾ÛˆI©‘%'ÎxKΧ¥ó㸳é?Z•‹sÈë[Íô±Â>Âåuè$vôæ^ˆ[ÕxÊ›shï)Æu.üà#+^9=úTPìŽlIñïÎÂ$‚5íÚô“Q'ã6Y±#€ÍŒ,oÌ×D„¢ò÷™Âôa#‰&YË> JYúAc!žæÅ…„¼dZ xgŠ@g½“˶7<-6•@XÊVÜ‘s÷.ÔÅ­Îâ_£|œ‚í©H•8øŽwr4Øéµ‹”¼üû ÅN¸œ„·YÝ/%U?ÆÞ'c-r»É…t–e’A‡òþü¥_Ê”íùUèØ(àÒeLEØév½–Cu¡YP¹[—m¦|œ—KXM ìÏpÙšÎCÆl @ÊztªÛv”‚ØdâÄY£‡ëeµr y”Tp'9ÚŽÒ©3%6E¿(ÌaðãžQŠ‚x‘-;n‚èÍ‚¡Çt4$®»iõá1i¬«šÕŽ„°éD­9ˆï@°Û‰D1ØH¬xjçMéo4¼%ÁáoS>ó‡¿éðndžø³w Î84¦$Ùçɇ嵓XêSd¿æ  €Xl áY Ô6]W‰Io†ô]B@0Ù5>+·é¬!ÏA¯Ø!BšÌm‘üûº²¤:bopÑ#C“f;sJ#€G'€s~ƒ‡¤7Y$š@pÖÞ= ¿Q¦ŸUºOiD 1äQ>üƒ92Ê‚Ït»ryÔ®c§;DÂ_×Fx¤ú ëIG“áhd2r++xªóFåD£N×ÅvOä±3Ol"•gH‘-ÍÄÉ÷€Žê"J¹™8lÓúrϹŽÚT[ïiùúæBJŸV”°­õÒ̪›e©®N|t/â¢GFE©7øÚÛ#5r&ýƒ,é™ObT³ÛXЇEˆƒ“%hwͺïw|&ârTáe÷½³›3bQ™üØ>0ÜP0×É^û“½¤+ÆåÈöö<&ÊbK1ÑtðÅ@ð«êÔ„E†sI@cW}bǪ“Š2uRþB)tZؼÅÎC:¤tW€1-¼–"¦ó^óÈ[øžd‡ý‰JÞ Š ?u!—„HÍI½|ÏÅîLª¤øþ[t;_ ¿‘•ý• ØŠÍm¼žñœ ¿º0í7õP:8ÒðaÈô|Û—6c&qE5 Ò0)™—,[÷Wºî³–aD)Ö¶ÝN6?!þ6&þ2 ç*øü!Ós)ï6þEÞ|¶ÔÁcÖÝÄEç`èù Oyä¸÷éËωÎeÊ ëÓ)å|±‰Eù ’ܜﻊ 9Ì,¿Ò‘ýs?4ô B(#¯[Ü€OãyF—"¢Ë1Pàï/‰ö®?hÈjÝô_œbd/žŽù³¸á–Ž÷<ðÕááÿ(1áPçTnA~’¢—EÄÙ¬M,—YpÇžJ'„…XÚ–¼Û;¹æÞ5üˆã>)iòÕ­(Êä9y~näÙt£±¤•^8Ø‹Ë%:”6yp—B.½ ¦¹ ߺ?#…Xõ.ȵÝVÒœPÜGŸA›#‡ 4ºSèb‚…ïáZ¹ àžâÀcî8þd§ŸsöŽ ¥§ØX´"k&Ï]Ñ…@%!½Os%²Ì9¯1¥Mf[Ä¢ä/CÛƒÝ7=FI¯²8G¨”Ë(ÁÉ«> stream xÚÅWKoã6¾ûW‹•€-’’,-šÛG€-zØÅº§$Å–¡–åú‘8—þöÎp†eË-P²(r^üæ#g"½þ¤—OÄ$Ícàåœæç&ȾçëÑìm†*ÒÁÃô·ñm»ð)‘E9@¬„žä„ÞA˜(Úf–àQ4õ C¾0j v»0;"Ekàý¹½•¯ÕÂé%O©NcÇSÇn ¥‹Ìà†ŒÈî5&Áµ#ør=>£ÐéB)Ež$=†YÚŸa±å87Ÿ Ã#8Î]·}kéË‘lYníÀÅþ΃<Ù—yœ‘µ;XCïA§gâKÖ“ü`€<¹y·1Ç,ñ£XŒÖüpÔGÉ(:ç=îö–¸nLT Ö,ν ó¢Þ´ÝÛ£´2›É‚Co(íÄr€Ú‚ÍL0ˆ%Ä8‚¬õcÛÃå„gp—Ò>Ëy 66ï#=œTDº”ÇŠ¯ü’‰™Sn»G±_b¦6•{Æ\³täy°"Ódb€9z³Î2v=¿ÿ̦l{€&Y{3 p¸ B•^ê„Pà±0Y˜Ú¹„ Ÿ^a¶ƒÌàm–Ê# ¯JsI¡öD…™álÒÞwÀ+α˗岓Á è½YŒ ë4mE«yxÁ}¬˜°kêèzd½¤&ÇfziN“A#~%Å…¹êÁhLÛï«(Ús·î݈iGÕ'{*¡s›Üï¹9äγêšÐ–öÀc8ïÖ¶”ñÒÞ“¶ la#ºh&Û@ù¿·ÿy¯—ö6[;âä¦_zÐïn}ÞîF®ô}`O; ÿ'.ïxCµó~סá€oú}!Ù½¥óî5)‰*:¹N-Ó(PÊÇ6U‹¦Ýë+·öäsÄíÑ! £jC%ÀBÒ°ñƒc±¯e´ GV8¶…˜NB꜕ ){­?pV¡TnÖ&Pà º+-¶eË¡s†ÿc‡z&sÅr˜ÈÒž­g~¯úÊ—ºÀ ýðp"³DÄÿ}”BòŠ~ŽþHD—– endstream endobj 48 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-flc3a.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 52 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 53 0 R>> /ExtGState << >>/ColorSpace << /sRGB 54 0 R >>>> /Length 811 /Filter /FlateDecode >> stream xœµVMKA½Ï¯¨ãJز»úû%„’]ÈA<ˆQ‰¸®‘üýT÷tOÏšE¦GrØš·oú£ê½* § á»oð* ²åé …Ò…§+ø÷ÝѺ;|þþù.Ÿ;‰B£çóå}wxBüÁõ5xÌïûG ¡@N¡äÿl`q}ëÛîÓ:}ø-¦„AÉ€Æ5RBíAz£&* ‚q'QëFªÑh,Hkц6ªeÜ7' ñ¬Ê´šW hmU ‹Òƒõñ²v˜\9ëÇ«nœïþ¹:þÊo?ÝÙ9øÙI8åßm'Ó׿t}AiŠ[Ûäò"/Ð;¸ƒÕk8Ý[U”‹Q™í£ŠJ⫪pG¸•±ˆ¼+N‚\ñŽp-QºŠ÷áï3àõlcÁü{u;‚©©XÖüC¯ãg}ŸÎør_Fß »´§L¦F²”ɶne³ôÂÀ¶­ì ÐúÂölR UÈlÙziÑ£ÄÀnml›NSò…>¼+!y–/q\jc',^%Y5”Ç^“‘2¹"úþš>Þ\ÁÍÓöåaòi}² Rè)~álqòtÀf ‹‹Ëß¿¶÷°½†‡íÃËÝEŒÎa}šáÿ÷ íˆ,×_ÚÚb3½W°«Ø£ÓT#‘Ø b‡mÔh¾ï6F5RÙé§A'm¢*‘’/¥Ç ©±/2Î5$7¬ëšM: û—9£Žó\`)nhÖ\ ¨˜\ó\\ñ‰æ¹Às…ùys³¨©e.àÞZ©y.àÅ['¯<˜Pt8™™ÌÍÒºy &¡UüYÁ>D5ÎR°ãZ 3ÌÜxÖ¢`v+ag)8ÈèÁ³ÌEøÊ5Þ=ìEÿ“¥EòB)”®ÇÑ.œ£$‰ˆÊ(,3À%¬xTO¨xœ¢DÔ€—°âQ®â9pÅÅNu{%¬¸±ñðžÃß9n=ý€¿³ßsy+*5Û˜5#–fïL¶(6ùÙ,M˜,+­Ò03°­XÚÉKÇI.ˆ1Û,íäµIë4W l'–nòÚt´ËÛ,Ýäµ4f|k^,ýd¶f3ãsñaZ÷"s endstream endobj 56 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 60 0 obj << /Length 2541 /Filter /FlateDecode >> stream xÚÍÙnãÈñ}¾ÂØd9±8<š¤ˆdö!ƲÁ²‹Ùy EÚRFWHɲóoO}ˆ”<l‚}ÙÝU]U]]gûÏwoÞ¾ÏÍUUEZ\Ý=\%I•¹*ò2J³üꮹú0ùæzš§ÙdLjøÝÃ/å¥?ÁpÊÃ# —ðC¬ü~Žó>ðkd£¸Ò[Á¯u»pùQ–R·£—¥g·„Xü¶ð;ÀoÇD÷y ¿‡u¼,íúx÷׫øjš$Q•ŸWBö¿UÂkG£ýoùó˰ ûÁá:oçèûÒ't(ÔJ úÐjÎóõ·rªóòûƒ(~#TÔJ>^O“Ø”“ßð–ZÀ Ow‚Ù9ó:ˆ¨ÿÐܱ>ÊÒRîf!¼{w“[7\6MÃc–¼¿ ‘^.P jhn*0jâé[nè‡Ï0‚‰;Ö"Ï“¸õ¤^6÷ïó®w3vâdòÓì»àþGL·øf+‡Ù½j.7žÍ¢™äef’RÖ•¬m*áÚ:êÈI/Çó²@¿†áïá÷µã³ô"£Ü£zY-ú߉t/¡:Ú|ÞT¾kÏmüÐr9<è…«³eD;ÂxõKi8‹Œ©X²0YLӸʃ þÈt>xg?YÊh I'1Ð +`LW•ÐØHHAÒÁxžÊpN†J`zÔH 6d ç &¯uìeõºeØ=¹WÏç57ÑÀ‡–Ú3 î„ÂÆ j§œÁ„èë%ÊN}eÅ kc§,‚\Î ;ÜûÏ…ŠF‡¬G1×D3Ô-Œÿ&×½>5 ¸¥(,Ñþ¼`Ì?)aL~5‡x"t9ñȶ*.Yq½Å£‚P>ù7[Æ ˜Ý *ÃJe+ƒlZ*á•„(Àý¤ÒþjIµ¿–(üÔF”ä%Ï,ã$›yž cÊV· ·™ŠƒO&EêF#rm»•FiôË2ûâ+V€Kú¦xæž©n**En¬Zè¡Ì¯oä4ß/ÁÖ†¼îEM¸ MOƒLêá6j¥5Ï©LÄìÀÓùv½öXÙ«F#t ȘïühŽõ8!°Ro«,óÄéÝØÓ‘ŠO4BRwhFþÓб£²±™Ô9®/5ƒ†Ñ‘´A U\Ý,í»/!:0¾¼|€Ë8ïý˜4Ö-×ÅjÌM(›ä& *.$·ò:`1{™ìt§¥¹'ùˆˆoaÊ¥ƒÔî¿a´SnÏàím)ˆÒè£tN1Üé¡k•à…HU-wZåä» #ýéìmÕ~Ò/¥I™x¦S/µÁ‹ôõëa’©rÝÀÞº^Ns–yQDiQù¼ýú„ wÈ?ʤÐMC%0{ºÂM£*îåUÉh@ga¾ó³f*á^j“ Jz^œ×½› ÚºÞvÊvmßËžÞ×vI«2âàÈÚÞaVLî¨#è÷NŒR$ãÂã3ô pèZ^Ñj£%Ȩ…:ÏÁr1N)îÀg¬3Ô¨à[MÓÏ8‡3ˆé#Ʊ…Hƒö f·ÞRÆ¢÷±ohˆ–‚—‘wö‘ƒ(¸æ±Üs.±îÚy÷` ÏÏòN²ZWZE‰} Ð X,µ™q­?°ìÚ•Æ^b‹ýj·¡ƒq~œ¦UA² µÿ2ž'5ÿ—xªìÙŽz,‰ÁSUMK¿Ž6qu®:)™Â#l_ ™a†@TÉþ« iÓ¿‘’lœØÚtà®n«µÞ%QŸ[Wˆ+k0 }€;¼°‹ü¼ 3‰_^íÚÛ™,¾é]ݱåÒ æÕ8ÓNúÉ!¶d›Y¢tƒ‘lÿ›¥#¯ êæ˜cM¦/kßm†PûìR³+g82µAs²±Dk4/RI IªŒ6'­È4+¸éÀ/iiõ“Îþ÷¦á?0Ä2‡q?¨TeûŽK>É9‡db$ÞT\¦»wÙEç¬)n47ÜÜÕ²Á0=*tñÎ;®ë^F;ÅPéYpÓ~ŠP ’÷WtÚBæÒ‚óØ·ä4Î#ƒn S’ü· @o¾½{ó 1^ endstream endobj 63 0 obj << /Length 1352 /Filter /FlateDecode >> stream xÚÅWIãT¾çWDGÓv{_šbZ‚:so§;ÇÁK/BÌo§Vû9IÄ µÜ~[}UõUÕs%Xúð,‹ÌËÒ|¾çÇñ²¬-¼" £˜XCÚ DL®¿¯ãåwÍâgøÓ-W ] óÛõâú6_—.×ÛQmš{A˜-×›å¯Îí*pvðÜ-ü¯VnNünåÆqèÜÁ­?Ê©ÇU’:fϧÊVÚÇU˜ƒ\àt¼ºmZô°ö0aö8&²p“f8N¢C'j÷¼Ð"îÓ*ÌœŠl|@]ˆ[møÀÆ Ì#ß1êŒì¡Aá'„d'ÄaËhÞ5{Ñ)ˆ{Ò((µú}ýìW$)SFâ¨$ɦUþHލå@ÀØW‡CÕ˜ý (,Ë›|ë,5õ@t{+7 }g­Ã‡Š¨•°Š§¹ŸŠu˜D ªûíîz‰HÂæ68œ‡¦?Á1êN#m®æê¸rÃÔiŽƒ§`íŒF2hPÍðaªæ"m+o`³9LÕÄsˆw¬mÈÀLf4ƒm@1„ñÐìëÛ$¶ %€!ŒÜ(ðòùÙŽ”A~ C—‡ ßIÞPVSÚÎo~âÃkKB¦ÊðVp)¹DO)bœ®§úJÑñ ÏQœ]wâ¥V­e ê³B¯p#S3V‡XH»Ÿøuoy7fZ~;Ù´—1'DBŒØ „<Óm3só c\‹yä%;ÉžDå‹Xß R+¡èmÎÝK(Â|'>Ôòy™ü˜gôçK‹ŸÂ‚FŠï%Ôp G :òŠ8Ÿn”jäÍM๿…NÓŒbü(¶(ÇŒæŽp–'¥uà ­<©¼#y£ª·²²×¡%ré±E|‰Eµ%ðä‚*‹¸2ŽÇTG¯³³’ÚòPø­$µwV*uýodú(QùS"õf Å”»óë iGöNu[—‡ZG)£­£D¢ÝFÒÎÂìx¸—èIçŠÞHÜ,QÎK¿³Nug5o{¼±òE“þpZg$u£Ì¡“’{­`:)šO'…ó+õìn“¼Ü|öR»ÒÿãR;“?eùFÖìý«É‡Jެáùžð¼ŸÝ>¡ïåy8çæþ Ùíšù”?œ‡s\?6tYPƒæó¼Ô+a£½ µO¹6*çß·<÷ü$ƒðäë7÷™IQáåA¨‚t°%âIßNû¬|Þüår ÂWøù¨½Wæ”fOšÇ†Àªãí]ÏoýÀ *ݤÆÚ£VŒº¼“VKp¨Ÿ‚y«M©c'EdQP #öò´˜GEû] G[Ü سd¾x :†i“}à±ÍL”hÜU-¯uS‹}ô wsy2ó^÷xèEâ%¨l#õ¡ÔO•]ÌnýÛÚÒ¾Áõ­ÑN¬çU,ñÚÙ Ó†®kNYQ_*m"¿Ql¤²ó#{Š]X1†1öOÂÍ{Kا\èDîRÝñ9Š,!¬£èÞ•c›É-ÞÙ ‡ø‰á#Küì&DNÑLq﵇9˜^[ËB9GIåœÖ+­Ÿ]­VT—èR•‰ÏZº†'ZÚóûtÇÑ/*?q¶s‘%¾f¿v ×Ê dÁ€DíM?~h»¡¥jÇucèÃWÜÿ×àÐYœå$"¶Ó¯)-âÄ8LêÆ2kKÄêqâ­µ08>÷[ úøñžëäâ¡Ub|ô®®$Æ´§’õÛÀÈVÙŒÉP=‹ôS`ú¡—g ·VtT>n-Þ¯ÿW塸 endstream endobj 57 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-flc3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 64 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 65 0 R>> /ExtGState << >>/ColorSpace << /sRGB 66 0 R >>>> /Length 35106 /Filter /FlateDecode >> stream xœ¤ÝK¯%ÍrÞ÷ùù=$z•÷ÌšJ° °û0 ‚AÀ)Û$,}}ïŒÄêÞOSGð@ìz×^«.YYY™OÔÿæGýñŸ~ü?ú_¿þß¿ü§ÿíúW?þõŸÿTþ(¥üøõþù_ÿ/_ÿ×=ü×?ýíßý(?þýŸêóõÿþÓŸêÝàÇÿü§Ùÿ˜õGþèëÇ?ü¥ü1ŠóïüùõÏ®ñÇä_ké”ýùçàÏŸíÕ~þ»óóï­´?êùü{ðç¿ÏúÇ?ÿÝùù÷^êíùü{ðç¿ÏòÇ™?ÿÝùù÷o?÷ç¯ÿüû¿úß¹ÿîŸÄÎý§÷Ÿÿô/ÿÇöu$þæ?þ8øÿÿaœöuZû£œó?þªüõ¿ùOúþÆ>÷Ÿûë×9ã—ÿ²ýÅÿå´Ÿðó¿ñù<<ë—ÿrý¥ÿeÏ=-~þ—ç/þ/ŸõýwÖ¿xõ±¾ÿÐúï£þÌï¿´~vgÂ8 ;_Lm¯?Jã|úþÏvž Ÿÿúô?žýùWôó_ë×ÿ7Î矿üû™÷+~þþü÷ÖËÝ×ñïÎ_þ/ûù÷Ÿßý×½òs_ü‹Ÿ;¨í{,Fûã)œ­ȃñÏü·çkWTÿoåÑøgþÛÚ¿öTóÿXž´ÿܼ¿vãðÿXž·ÿÌÜÚøã™þËS÷Ÿûw¹‡ß΢Ÿû‹cáÍÊŸF«÷Ûy£l_‡¶~š8pßÿÙZøÿŸíPýºÌvÿÑþ8v¾ÿí_ýý£~]<õþí?þÓÿøÿ×?üøó¿ý‡ÿûïÿÃ_ÿÝ¿ù7ѯ?¬¯Ý>ìÿ`ùçÿ÷ÿúÇ¿è_ú_þÏÿò×_Mõ¿ú·ÿù¼¯ñã×Ö]|mÌ?öúñÿáÇÿþã?ÿ·îcõYþ[÷±8ý/ŸçsúøuáŸËñG™’ ~ ÁÓáXŠû³KxŠâZÎ-Y/¿Î¡8ì’cÁ=%í'ØNì]rÀYÛ[s^î?Ê,°nÅZaŠ_ý/ž?Ú’´zîÿ9ÑZã×—< ɽཱÞW¹÷ÁuwΪ÷§(6h?0qvØâxà~$'|š¤ý¡öGïŠÝØãç¿Øîn__—U—ìÎG±>°.É ûV´Ã½æý)Š.AîÓ—g);(ëÚ%lEqÛÆ›)Ó6>ìœDN†óG/’NÉùÀ½% ´»X¢5ëá$L´‹ýò(¶ö&Yà˜Šuµ$ïáÞ~ÿM,Î!yÿЮvßy³ÑÔq<Šv¸¿¸4;<]Ñn_ÿ¿²ÌéÜ’ÞþB¦Ý&öúm\íd¸‡î‘,p6E»‰pB)ÚÆƒ“?±oçVlÎ>$;\G±Úážt{ËW—œðhÚiöuóª™õ6ñFÛí™ Z£šÈ‰´9(™ÚÉŸÈ©²é$$ZC±­C®8á‘äd8÷¨h?ìºÄ±á^ŠýÀgKÞs §wb[pVIÛ¸r£O¬ö&9à*’÷>ƒÎIbY°WÉ­óùbáT9“d¦ý„Mg,Ñš‘¯.k3 ´n@¢u Ïs¿¬à\°IŽmçdÞzʽDí6ñÅ9% Ü’Ö øâi’öQ•›f¢u¾Ø‹d‡£'®‡nÀ¿í‚}lÔJqÀÛ0fÚ!{ºu!ÜCòž ϰ.D¦]ìuÙ¼]SAÛíÓv]¦ _O“·Ê´‹ý‹C³ÂÙ»”ïœ7}ã³í6ñl»Ñ Ú=v£ÏäD:±sÞôç’,p=ŠÅ¹WæWcj?Áþ#Á3ámú29U» ÞzGïS«ðzÜciw÷Òž±ýRPfûj½2á;Þen¿ñpŸ#Ýù{í¶ñÒÅÜíyQ¸ w/Òvs¸ö½Ÿ·´ípýíjfÌ!ys¸¶ã•}ŽûŽ(Oóº}gåý¸[ÓŽíï]xò}xZW®î¦=¶{üƱý>Ò=¶?S»¹ï]V¸±¿NìïäéÞ]»¸oOK¸r>Y;$]Ü}H—Ø~OíØþQ^Ü¢ê{¤ÏrÛ.›óáË÷9Q¹»O—¶Îd­ŒAÓ^TëuJóy_O*UšöâúHÓTÆ"”ù¼aïf„9¾ülm;ëä|Ϧ½øòóh³=cÂe‡íîî]Û·ºc|÷××îóh³=#Â~¾0Ê ¼ñÃñnnëd¯íÞMšó¥ñžKy¸íþŸ=bûU´íû6{²‘.îÓ¤;Û7îÂÅýéÆö6º!ÝÝmJ×Ç=~ãáöýùv9áGØ^®÷óì3Üv> ó{'ý¤lî7mÒSŽíO—^ü½Åý>{·õ—²GøŽ„)Çç=U›ïÃS¼°Ÿ<Ç+W÷Ó¥­{[Ûá~‘]§{Uí>Â=Žç×õ:µ‡ÛúÈÂ%üHÓi½háØ~=Òœ½Ð W·õ¥³Wloý akz¥?=§{,íâž]šóåËgi³}£¿Íùòå;–#ÜÂç7nîgJW¶ï6Ò \Ýí‘.±ýS´ù{Œ‘$7?_:cúÂÜoîûíªŸ7ôÞn» ³ýäzËöóeÑÞ WwÛÒ3¶·û‰pl¿µé/÷mïÒ”Ù_ŒöûùrèO ó{Îçl?ŸÎgaÛ~ÎÇìößû6ý™/?ÊÕû³£Ú[sáÓÝsKó<<'æxŽN"›þÆõ’±½Õdw<ØÂ-|¤éŽI]˜ßãã.Ùô†­w÷šÒ\σ1lå~„˽Œ®7ÏûÙ<Ï~ÙÚ+a~=8+ó¼2|¤E˜ýýp¿nîZ¤é^/íî¶ö*{Æö[›þÆ,6:­ÜÜv<³¹ž¿<›vl¿µ¹ž§Xéæn[º·×Ûþ˜þÄËÓB¯oBx÷=žÊ|ŸnÇK˜ëu2¤<Ü·? Ìõ<ïQ®îÛž 3^ñå3´ÙöN]™ëýËki÷Ñæz¿óGºöt÷!]bûùÇö·¿™||<ëË·=Wf-Žwö>îÛf<óÎ5YÚÓ}û#Êv¿œÛÆ…W)ÇöKÛÏ—mÏ ÂŒWÜÿ¥iw÷½ß ó<ðõ¿œ¢Í÷±ñye?ÞÇ3›ûñd<*yûóÀ´·!Òö÷nÃõHÓß¿7Ö*Íx7feŽ÷½±íá>Sz†ïýL˜ãEÇEÙ^jV:FÒÝ=´[l¿~c¾Í`.á-Íñ\6KE™ëõ>8wáåσËf^I÷ïæyï|íØÞŽg¶o8’nî3¥ý|`6ûãØó–0÷ûûâci7÷¯¦½ðÙ<ÊÕíÇóíÛÏ£ÝÜ~<ßæyð¾‰]Â>)óúŽw Ó_d^®tlÇû„wlÇó•íxÜ9UšóiWú3±ýjÒ3¶?¿ñr?KÛÎæÇ(Ó^íÆù \Ýv¿Ê¦¿Âü*éæ>KšñÊ;ÿN›þÈ×S´ù¼ÉõÍxå^ܯ…‡{*¦WŸß£ÜÃ[šöh3^¨Û?UšþÈÞÜï…‹{jó¾äË[›ñ‚Íx¢0÷«}8ÂÃ=Švq¯*Íû´ýØóš0Ï ›ñFåáMºÄçYðíÇóá|¶Ï»3‹ŠvqÛõ}bû£ÍóÌ—íx ³=ã´'§Ùó²òp[.›ñîÃxŸ²]O‡ñõÎeûù<Þ' ÓŸ}ý%á>Òôg¿|iÞwÜ9oM›ÏcÚãq?C»™ýì~ÂG»˜™/&líIóù`ʱýÞÒ6žÞŠ­Ç‘nîÙ²‡OQmÅÖMIW÷ÝŸÂg¹ïû eþ뱄ý|`¾–ruŸ!mý•ëÛR.á#=ø½ÌçRnnß_o÷~´cû;#Ü÷mÏ”9ž8ÉÅ=¶´Ÿ6ð-ÝÝ~¼¾ÛÇ[›ÏS¶ãQm¦»2çCe´°½OmµÙ|åî¶ý•½ªûé‰;¿7{ð}†µ×ÊÍ}û³Â}»ûÒîî]¤m¼îúö·”í|®ÓÆ‹…íy·U˜‘îÛÞ ¼mÒ3|š´‡6ŸO¦\Üv<³{lß·vsomîñ eÛŸw>Ú¶ñëz´c{»gÓtV‰'û|ÏÖoRîá-MÁç£ Ó_¸óÍŽvsßñaÚƒÎ|påØ~<Ò“íRîn»_gó¼ñå]µÙžñ*áþ¸û£=ܳI·ØÞúSÂœËÆs…ër¢]Ý~¼Þ.ÛýLm¶ßö¼•ì ï¯íx w÷/*|bû;ž!¼?^Ò~¾0¥<Üv<²Gl?–¶íïÁªueÛ>ŸM˜ûÅ—GÓnnëes¼Gý‘líÙh<ÏeÓ^ŒF@8¶·ûI6÷£ûvu¯%Üü~Ä•æ÷úÙgºí~‘ÍýÆçã)÷Ò+¶·þ@ödMÎgáâ¶ö({„íxe÷·´ïEW¸º·6íÏ÷.?Úë¸fû|NïøJÇö]ÛÞ÷ÚƒÍÖn;ÞÙ;¶¿ñt[P¸¸íy({Åö§i³ýÃóP6÷Ÿo¨<Üí‘f<‹ e?ýÑ·KìoÆ …šŒ ÓÞÞ»£m¿×ç ó¼7+çƒpw[3ÛÞ—ÛÀ´6ûs²þ_™ßÃx¡0ûó¾8z´›».éÛ·®]Ü6^–]ãóž*M{;O|ûë6Eî¾_ÚÅ}÷·0íé´…KÊ\OLœŽío{®Ìß[¶¿…¹žîÄ’¡]ÝsJÓû|Aåø{ç‘æ~~'NýÆÅ]—4ý¹;±mKûù@Öƒrußñ"aÚë;±²K>ù~ÉÇÛã;±vk7÷ï'Ll‘ ¡ÜÜíHïØþ¾ïQŽíïx›0ï–åm(O>¯r<„‹{ éÛßöR¹»w•niƃ–ݸ¤íx³p#{ûxŽÏ'T¶ó…;ÊÜOï¤-½Ãv¾d¯ð}ß©\Ü{Hs=Þ¼°£]Ü÷}¼0Ï[ËÌ”yÞZž¯)ÜÜv>eÓŸº #‹4ÏãË&NIw÷s´ù=6qN™þÖõÑnîù/ïOû|Gåê¾ãñÂ~=/Ú“l¿^í‡)¯ð}Ÿ®ÜÝS›ñ^ŸO)Ìý|·ì¶ã-<Ü·¿#L{¼Xï¡lÛßù„Ešñ<Ÿo¨lûûÎ'Â1^G"”2ã-Û&~(Û|O“æû0^¬\ÜkJÏÇ}Ÿ”ù<ƃ•ù¼¿÷mÆó7ã­ÂŒÇíEœn6ã%w>ào\ݾ¿ÞöãÅx©2ß÷p½fó¾f3Þ™ãm>_Nyºïó„0ý±S¬?)Ìñ>äA(÷úí÷Æ#…¹^yÂŒ·}yþƱýæ~{˜¯¯lÇë4Ú›lî·_¶þL6÷ÛÃx¤òt&]b{ëo w·¯ïöèÉvÈ˦½ôùtÊÍ}ç#Óß9̧Wf1^(L÷Ë«hÇöÖÌæz<¼¯T.îû>G˜÷i>ßMØ×¡=È.á3´ù¾öâ>»yø0¨ÜÜw>´0íñÃx 0ííÃzXeÛ>ßK˜ñ¨/ï¥mßçæ”mi·‡¼ e¶·=eޗݤ³£Û%Ýcû;Þ­\Â4ý±§Ó¶ãéóÍ„é¯=6°-Û×.]b{ëï ³½Ýx²«÷ÇŸÉý*›÷­ãÊìÆó„é?Œç)·ð‘¦=x6Ç+›þÔÃxšrs[%›ëùaSºÅö¾?“Ù_>•]·Û÷grl?–´‡]ïžÝ|<ìúö×…^v?Rî·û/e¶ßÔÉ^Ç=‹öpßñ@áÉß³…©ÒÍ}ïWÂcºŸGºó}˜Ï­<ÜmI·Ç=ŠvuÏ.]šûöç’ã!½2Þ¤\Ý·=¶þt¯ÕÚ#åâ¾ýma{ßt=´­?wmµ+„ù<»ñ([Ù|¤Çq©mÇ£’T*Ìñ¬Œ÷(7÷í s½×Ç#¹»Ÿ!]Ù_öbYº¹›vÙá#¼ã| OU™ïcvÊç¸ûo<Â[»¸§öžîÛŸWŽíöbÙÄ!e{^¿¶ó)ÛÏ8Qîá1µ»{6i?,8Rº¸Ï‘®|y!Âåq÷©]Üw< yñ¼}}û[ÊlOÞˆ0ýJž«°·ÌG¶÷½‘÷*Ìñºóm¶¯\ÏÙôãMÊÝ=ª4Ç»YÇR™ë¹Ù‹aåzÂG»¸û’¶ñ”ÞÈûHž~½6æó ÓŸkÌçWnîÛŸÞ±ýíÏ(³=y°ÂÜÏyʱý)ÒÜÏë”›ÛŽWöˆíoTØÆSz£ŠŒ0ýµëGÚ'yµÊñy}Iûñd<.ÙÇË®ïx¦rlŸ”9Ÿ6íy¶oÖCûñf=‚ð ¯%M¾QµFy¸÷”öãÅzWeû¾½p¼²m¾Q÷ùŽÂ6ž}íûûmo¹~Š6ÛSÿF˜ç±û`ø—ðîÞwò>„é¯÷J5{c*á(w·õG³¹^ïÀL—æzì¬wPæxç!<–»ižÇx“îî9¥Ûq[ =aö7ë-„é1ð©L‹×ìÇ‹õÊü=òD„éwÆ3…ýxÚ‹éá¶ó%{±=ã¡ÊÕ]i?Þ‹çlúÛ>S¸Çß›];¶·þt6ý©ûbðh÷iÒ•ýI"aúSñRåáÊÕûÛwbÐжï3*ý¹lž·yÂû„4ýáQi/…íxÞ‰qEz.·õç…cû§Jó<=T.îs¤9ÞÃ^ )7>oÆþz»†Ç#]Âw>F²¯g½å;í~(líÙØÜ³éoÝù€G›ßË|?a®×a–Ê´Ç>ßO¹»Ï‘¶÷‘·ÔlßÒô‡'y´Ç,¬Uf¼cVîÂü½F<›ã1­áIþzŒàzšÌ‡Wîîû¾[ØÞWôI«0íé$U™Ï³`e®·É|važg¦½˜—îîQ¥¹ž|>˜0ý™i ”é¯N›X"]ÝG»ð}˜Ï•ìë5Í[šþÊ´……Òü½‡ý™Íõ0mÇ+s=ÜÚ†CÛηeUx”靸|.aîg‹Ú>Â-¶¿ý aÚ£Åx›0ýÅeÁÒÅ=ðöþü"/V˜ñ‚—•9_ãYÂôçãMÂôçn0ø”æyš`yéæ¶ó1›ö~ÙÄ åŸwÛ+aúk6.î6…½ŵlÚŸ¯$¼Â·?'Ìx…/”yZ6qJÙ÷ç¶þ–rqßñNaÆ)ü¢L{¼ÈƒHž>Þ¼¨$Ìýn1^$Ìxß&V˜þÆõ#Íó 5Ç”o¿y`]šóaÛƒGöðöŒ:™Ê\o·Öé#½ù{Ìæ|ØÌ7¦=Ú§<ø¼ß÷mŽ÷Þñ}ßæ~¼m⦲ïÃõð¶çUõMåYaúCÇ^Œ)s?<öbQ™þâ±`}eÚƒ3bû·éÏŸÉõúvóþÂa½º0Çë°]x„í~M{äó’=ÏzÖÓ…ÿü§*‹Nÿ¥e¥mÿgé7 ô*Ä/ÚâÏ:Ò/ZóÿKyçï´Æi²69Ó†fˆ8´«ŸÕž¿Ñ—mNRí2óŽÙdÚåÜìºDêWï(Ãû¢nÄÚ ÚÁš‡“ÈA!éöÍNGg’#—iÙw–»äpZ=çDÛ±‹t™Õéuw_´æ}1zõ¦nܹßMÑ^ ÝžÇV´ËŸO&õœImËl¾ñ8ŠTå¥EÈ,NÛ9/út•¨öœh'Òk]m(”’/‚Ô¯T0N´f**6'Ú ãb %“JÑ+ê£~£? Þûÿ£ÈO°2q‚Qí¹KR¯Û^1 ZÇc1¯,ӺŞššiÎ&Ó,³øÆ£$._гOÉ´×Q»~JS~§ÝLwúŠ/ZSîI¦™ÖQÝ-jQ¾hÝ ¯œœYOÍ<\V4E‚Ôs&?,Óö¤º^"•uµï§sVE{ð¹<Š6-rŸOUÄï´‡Òí5wí‘g?TLzÑ_¾ú^ÏïEëNÜÞBU´‡CÖV¦M59J)‰Óiu.‡sIÚ õaŽSfó­ÂY¢u°N§~È‹^>ï°º,ÓN†ÃÚ²L;ŽWvI\¾±ý„D–øêÕXÕ’DÔýâ#I}cfÄdZ‡Ì«ò¾9éNzuÜL; OãdH´GÙ§}*·}§ÝRŸNDk®žb3©ø:?5Ô¾“ª­““0‘Èüƒ7½<Ù³¢ºÙ‹Ö9‰J³‰6´÷l*_$ÚAy, HÑ7¶ 6Ñ:­Q-öEDˆz°‰vz`&qÃ…×ýÂ^®³|ÊY½L¹‘Âã p‹í×’ör—L'HnwXj” JfûåœÞ&.¾ ~O6q¨eD9£·½錿÷6åzÊŒrLoS.¥ð¸(L\dY´¶Ù^vG9¦ïö鼟r¥Ù^®õPÎ0Û.Ê[®ÓË%½Mðc+Ò#|´‰÷86a/‡9(—“íå,)7q–•rÂ^.rR„;{†½ÑÛïÊraâŒë¢œS6q¢uG9¢·½Ü'¯Ó„–ë¬Ùó‰r››¸ÓlŽw¥)ìåXâ#³)wÁ¸¼2qñ¼÷Q&¼Õ(çó6å*Z‹rx܈ð [Ü~¶—c£š0qå7×ZÛËqY]Be/·Õø½oG9þe{`û”ëʦ\Ť¼0×{”ËÊörgO”#x›8í(÷”]Âw:mróöüÞø·4q鋸Zá¶rRÙ^NÇË)es¼V§\B6Çë¾®kÒ”#¡îovßCÜ€ð§\’•ÓÉößãå’²½ÑŒ¸ò·éÏòL©ìå¦qÚÙ”[ðåú´ç‹8Ùäå¢qëÙôWË1…½Óqäo7Ϙ—2¿×dž„ù½›åŠÂôW·÷7^Ž8íëGÛË M⨲io¼œ0å6妅yñåèÂ^NçDõÛ<ìCÜÙÛçg9“ºµ‹ÛãŽß^á¥=ÃG–ÍýöTâÀ²)§v*q»Ù^N„é0´GÇã*ßÞÇ<®1ÛË̈~{…=ømÎgc¦½:+âœßößK9aaÿ½;â”ߦ¿}è%//·åå6„½œ ÓI„éO{¹ aúËO%Î,ÛË=Tâ ³½œG³1Xaú Oã||{úóöÓ".÷mʵܱ©.Íñ|æyáÙ—û¶ÿÞq¶oûïe¹¬0唼œ„0ý‰/[{òöðrËÏCœX6q^.B˜¸—Rˆ£Íö¸ÊÙ ³œÜ—ã çSèÏ ×RjÄÕ¾Ýø¼q±oÊ5ØþÊ&N¹ âxßîQnr¬ÂÄm”Iܪ0Ÿ·".õmâ2 åP…Glïq§o³œ:Êd{9 /7M\I”x»ùrô/[{™M\T-ÄugSKÄ]¾Íñ®ôç„YN^‰Ûf¹x­œÏÙïÚhÏߎ¸ÊJ9OaâV¢ÜAöŽÏ³rÙÄåÔN{ŸMœ‘— GX­.2ǻⳉ‹«“ûy6qÌÊŽ¸ÈÊè¼°—`:½°ï¦{ {Ü?ýMa®÷;^V¥[øŽ× §å ²KØî7/â+åÄ…¹Þ+£ùÂ+lqÙ\ï^n@Øãê q6ÙG_‰³Èf´JA¶—`9_ò‰¸xÊY ó{ï¼ý)MœM£œ¥°Çù³ÜO˜ö€u!Ê^®r–´w]R“¦=`Ý_öö¸&_'ÌùκIå^Ú´rÊ|“ʦ=h'•íqáôÇ…‰«ë•8ÑìöïóÝ>žgqóÚ'lq9Ù´½˜Íþ WHÙãº=®)›öÐãà…9Þ÷Âw>‰c|Û§sF\»ðŽ8ö;ž$LœO'BØãê­n·2Ç›WÙÞgx®¥²—°º<Ù>Ór=§ôáûxœR6çû \ž0Ç“‡²Ç!Wâ ²=.½‡“ý‰;÷8±ïöñ6‹#/ÒüžáqAÙŸ8qkO³iχÇeˆ_Gš8­Á aÎçáqCÙþ{çCö'Î{)G\¶ÊÄÁy·0çëd>Šð×-M\Ódºr²/'ó7eú«“ça³ffаÇ·ˆ3z›û•ÇE ûïñ8žl⮨««\ûy„ý}ª ìwéO\³ÏlÚ^Œ(â”#úÅÄ-N¦S ûñb9°ÇYgóvóåJ÷ÅØ=_„ýx±ÜFØ×a9i6ýÍÉxˆ0×Ó|ˆ;ÉæyÉÇÓOÄíZÝDe®';æz¿ãÝ[ØÇ«lbÀæyey\L6qê«EÜÇÛ·Kܯ°Ç¥ò<"Ìóæây"ùW;#.ãm›åyA˜ãéË5„=Nöa¹o6÷Ë/?Mšß³y$\#®Õã2¾ÛÇ›lö«6ý/Ç.Ìï¹s˜µy^ô¸VáÛmÿ¾”û¦¿·Ë‘ßÞßórïÂ;>ïliÆ‹|¹‡0Ï3wž}•®áÓ¤ýû2>9ÊÑlÞ‡ Ó_Ýû/ð2Ïsw¼}IÓ_ÙÏg¹ÿËÄ=ï'–û·¿/»q­å‘¦½>…ö ›óÁãR…‰óó8Taž|¹ˆ0ÏÓ^î;9îÇÇ—óg{œí$Ž,{GÜhÛÒ7Ëìnaö÷Ù±Üùm®çsˆ+xÛ—;[h“&îÓã@…=®³Çrè·{øéÒœÏψåÀo—°/wþæåb½œ²°ÊÙψ³ìKšöò±ueÊ×I\¥0÷K›L>~=~yvéÞÚgj¹[Ê-¶?[Ú÷'ïË’··wÍBWf<ä±eâžî|Î*íq{=–s¾íq‹å\Ù—I¹aÓã}T²ÇÅ_*ÍrEf¹¬—Ãf¹v-ñ÷Þ&îÀãø„=îræÉź5e[³õEÊ,7¬¾Ü5›8­êËI³;Ÿg³ö•[Ä‘&ÍrçëGØßçÜ8±¹¥WÄ…•)MÜÁÍÐ&.ÈãÆ„YNßx#\–{láqM•ë)Ûã°è/ ³Ü±Ñf¹£Çi û÷!N+¹ùù~sŦ4qn>(ÌrzÇuÇ›…[ÄQ­)]"nʮ緫ÇíxÜ”°ßÇî§Â7ÇÊ:aö7~Êìï^h¯²KÄUYœÂÛ%â~x_$¼ãïYœE6ËÅ=ŽJØã²XÁ'lÏ{ eâ :ó­ß¦J7¾ã´÷wàkKÓv›˜§ìû“¸¢ä•s‡D¹ áùk\°ÇQÙÄe–“S÷GÙãÀ,w#{ÿŒû)ÚçÓíx ÓߺŠ4q,ƒrÅÂÄMzOòŠ8ât„‰;ðrÂì¯a¹‰Ê¥º÷ޏ€A¹aa®×;1¦Kûß#.G˜ûÑxØßoGß`5š0Ëýó™…‰Sš¬Hæzœ¶ðAÙã\ˆÓIîgÓ8^Ù7cku•¹žîÄÈ.M{5)›qe“¸láOÎío ˆ«¹ó…‰s›Ì®G³”ã~pÇ›i®oö¸ â„…‰X–K—]¼?²™o"LcÓ¦½`øÛwš û{[]åq_Ël/—výucS&Ž{Û|[eÎÇm/þ²#xÛÀœòˆ8‰Ú¤‰#Ù¶ð";úÛûá÷ds¼(בíýáÁ‰óñŸÿôkðBýïŽ_ˆÌÏ[x‘ÜF 2›oìi /’Š@¸ê›þò‰Iâ‚Í7>;³3ñ|Z¾¨ u›¦¥£’™Àš´L{$eê¾ Ù¶ð@C˜ê›Á–I©úÌãß7љù·b÷ [­ÿ¢¿d™¶úV°x¾D,¾±=è ÚôIï6³ýš>‘hMC¤OdúƳ'Þ•ï nIk§ÕFì¾±­ªN´:“þx¦=ŽÌ'Öããáfë™™‘˜1Žâò?´4}c[ËŸH²c‚Ž®h,,䬾ñí=¾é»{oŠÓ¿†­ªN$1ƒ²R™Ý³8ÚR´›Ö"2VоdÕë߸pX¾^2Ñ–°žX±Šü'eXUý"©&3Öz¿ÈngöMDX–¥¥Ø ¯}~Ñn°Ë×C&nOÛh'ÓWF“a èY–‘8[’tž*2­ÓK¾… ÝR+*ßô<Ø]Ø9‰vilf;zbF‘´¡Þ͓Λ>¾™'¹w•©àp>ŠÃ7~Šäm7åã3møñ'ŠvzïÆJÿ ¯F·u±­ã±)+ŸiÓê7³22­°)ùþâôŠÆž"h?ÐÞ»ÓV%Úeµy̬¾ñ½á¾éux71«™6 ¿íqQÐnÇ›1ìÌêÙ#ë(’.ÂüsAûCŒ^¿éƒÓ·ï93}jØ}³ÕíVî™'™6ìrW¥E»iÞw^U²À33=1ãXî­ 5õžˆòæ sâ‰(™Ö ôÌ“LH9¾Ž7Ѩ[ð(ÚŽ½%§¢u]˜ÞìžñByïLëN{æI¦5A‡¹™ìœÃÊÒ›çÒøºÜDëNŸÃªõÄí?M‘$ eÚ¥ñð<›Ù=/ÅV{gV8w¦7¹…rmcÊØdZ#óPYÐ7¶Œ€D{ÅùÌø/Zƒü0?"Ó¦Ç=›S4Ñyž_ò=™ÙW®dÚûð^BÐ7¾·òL{äy˜SiC—[Ñ:6ž—’YÚ,„¾o¬–ôÞîU¤YHZûg!ÕË,®…¸Ù-¶¿­jr‹ ‚p„?ÛŸG¸òxrƒpŠ6A¼QUžÓ=‹´ù0Q]˜…Е…æÂ~C8‚6=caöç <0¹xPÀØQÇöíÃþ¢÷,ìy6o~ê ¿MÐÙlñyoÔãA3oÇDúëÛ&ˆl¶¨ƒûöˆ š]µù¾ƒ‰æoŸø¼AÈlÿ¼IÈlîg“‰8Â\¯ÓëÐeÓ›/šíu6¯ç‘¦¿ïqÕœ¯w$_›þäb¢L²'—FŽ0÷3ù²½ÎaeìOyñ÷èO {Lg¢éÛ>ØA:ÂôgnÎ#="hgtéÛ[η»·k°P"û|‚ršôâï­¨÷öˆ ›R¤¹žA~´©3õö'éá|˦½ðqfa?ѳ 2ôQ]a‚¸v‹:loôsGv‹pùø¬0íÕîÔùË&Èh{Ê·ËÏ û¾Ùœ¯›…lÂ3‚v|"÷Û/â&oêT½ÍýdýÍÕ‡‚#h'ùx{± LÞ±? æ|öha¢N¤0AŸ‡Ø{aúC_ö:4o{LùÔ‘ùæA@Œ¤ ³¿ý9a‚ŽN:3o‚~l¢f6A(§³?ÞŽ ºc®Ù>QéùØ÷Éæ~âA?ÂôWÏŠ:&ßݽ¿zÖg"ìËô'Ïb¢éÛ´ëA?Â\Ïg3<›ñœB­\½½9,4ö &Æw•ù<‚„„=Ȧò}ßö<7¨§niÎg_H!Ìýä¡N¸0íÙ3¸^.ÑŸñ…´u–’=HôÎ]Úžw®m¢^6 ™}¼J˜…ÅÞ¡fo2ñ áù ¢9Ò,„(ô—„YH\.ñyíGPÀ×?ô"ÍBëÂóаé~?ZöâF™ ¬ë-]"¨ áX¨¹lE„2ý±;+nI³¿(דímÆg‘¦=ÛöâDy†ïõ ì Éí}Iö'hÀÆ•Wxui®§¤»¥ *Ùƒýñv m›A­lS¸îÜñ¹¤m²Ü]h?´k,Ä÷ÏûnyÚ÷)M{~¬ã£Ìõrì}›r‰…î÷~‘Üb!¼-S&èážxKšöæX±ìÏB{[Ñ­ÌþzlàD™ëñ«aêE؃žïBr»ž³¹ßÐ0+³?X±¼}!†/ÔV¦¿þXpe_m‰7Ê•…Ê6c3Ûû×§I³P‰ç-eêô V¦Îñ úl›ýÙ‹%+³ñ®ˆÂ>ßá.ÄžMxúBžW”©̓»r…Ô_7žì¨cÊóŽ2uj+ímrÔåyG™…*Õ‚^”k,ÄÞÊþ>Þ27i‚7 šRö…Ð60š]¼n³÷)Ês»ïõ,ÌB¦fã¡É_·‰ÅövcP®ü= *Q.,´¶Ù¤pÂÞþ¦0× ]³£Ž4 ]³=ˆç.tm4× ‰vÊÏn/v²}"çõ½^„9ž£ð}²m¼Æš*s= +D“=b¡å´û•0A ÃÖ)dw¿ÞXh©ì é'·¨3oãMÊ,t›Ö1É®Ìçð:ÒÙ…ñèÁŠÙ¿/ ûY—׆ïþëŸþöï~”ÿþ/^&Æz¥Ïº°7}õVmŠÇéey_ÜþQ¶Ø'1Ö£Y!ÚÌùã纰L[7d9Š‚Qð·kúÆ{*v_ùåõßôX£+¶_W~eúÆ[Ӿƶ•#™Ö¬Äê­D»èýª ý¡óY»÷+½Cè+¡}E’•ÇM´Î†¯uÊdÕ˜—ÎôIÏV´nî">@°Bû‰6D·*kÙ2'¼ï÷ý£ž¦hÔW$eFÁ_ÿù/ÚeÙ ÅùãgÁßL_sTWfÿ î[Ñ)©èë•–äöÏRd]˜ Î,ð¾'ʤì2+’2£¤oé’ëÇÏrÀ™NIÖ(3ý¢u¾½hJfõõJµ*ÚÝ×: xã¬ÞltÚÖÃAÉô•Pk)²ŽÆVR*8‡"«?Xë”i·Ò])Ùœ9|V3 xºâðõJ½HöŸ"Å™ÝW3!9á™’¶Ž†w癬¢"²"³úJ¨Ù$ý£æ£+¡Z‘¬ÎéÞ› ²L»œ½ìr&«·¬/¤X|VBeÚå|oéš¾NêÎBÊ´æú‹¶Û3;´F5‘µ{æ¬p-E<ôX™öjf¹!Øá‘¬¾ñ3%mã'v݋֘o+úèI²ûáÆ—h‹^(sÿ²KÐV÷Tnô™Z”hMÁ±é$жö‡â™ÖP»y*.ø<ŠöúÆËþÚÏßtÆ›¯„ªU±új&_áþbñÕL^þW.TõµN™vÓªF!øí¦¬3;]±ûÆÏQ´؇àÛLŠPóöUо$¡&‚î¡hÞg|–ð¿Øáh™Ç×”Xwÿ¦­WbF¬ ‚ê2m9Åcy{оñlŠË7ž¤¯8;K‘2âÄó ÚÏ'OÐWùÎyqøÆsIúÆëQl¾Zm/Åê«ÆjQ,¾âlŒL¯á+ÎYtÅ¢0åâKšEQ­;{Ç¢²ÝµcÑV)Ò,*ðjKÊÝm‹ÿ³©Æê‹¾„Y”S¬Ï*]ܽH³(¢ôØÛo·X¶~ãø¼çHû¢.Æ”«Û×۾英eþ“j’ý¥PõI5¾(ŽÐa?^<­+7wÓž±(müƱ½U;Ïñ÷ÎÔŽí­šw6‹®¢Zºðpï.MµÞâQ,Âü=Ò…©꓆”cû=¥KlÿüÆ,Êòè”·g,óð”ìÛï-Í¢œJš¢0“žkäXôwŸ»…篋ê”køHªÍߘEuLn±(îÙÒ^­þ{’ÜÜÏ#ͤÞÊØr ?ÂëùV&•+ó}?y(ÉÅ}i¯&Ï„rsßQa¥Û¬¼bÑŸõ „»ûN:öjêÅ& 3)³ñܯÛ¯¢Í¢ºJ¿4ûSÍþ4m¶÷€’ìOµûçh³=i“œoÍCL„»{h³hÀ«Ý+ÇöûŽIÅmp?ÏæzoƒóY˜ELºWn}Ñ!OçÂLªõEÊÍmý¥ìÛ[”ðp?U›ýÁS¼0÷ûÆs¼r,Ê|º´¯Ãýâíæ×{;”\ÃGšö¼yä—pw[9Û71+ÊÃm½háâ^ôŒEÖ W·õ¥³¹Þ;ã ÊlÏ¢á‹FÇ’fQL¯Ä¼ Çç%Íõ̤GéîUšþ^§qrõEM4RåXôZš´/*íÜ/³yè=Â’9^Œ‘ÓÞwÆô…çgÑmÕŽÏ›G»ºŸGzÄ¢\»Þ²é/vÒR•§»méÛÏ©=Üû7æû²èBØ 3Ú#Lñ®^ÿù¾,ªH.Þ߸“V»¶}ßAµfáSÜsJÓ…óQø×EÃÂ\σHaú{ƒqra®7ÊâJ·ðÊž±èÕ- û讀†ðŽEËãhó÷&IÙ´·ƒqåáž4ÕÄÇ"F){ÄçYT’p|ÞóH³(m؃±tuŸ*M{ꋞ•›{/iž·ÆC “ðt×¢]ÃKÚ…?§ Çö[Ù'…Õi“†”y›TÃæ~Mä‘tl¿µÛÛ¤iéán[;•Ÿ#=]ô-ÌþøòhÂÛÇ#ˆì’æûê£\Â[šëm2Þ#Ìýh2Þ#Ìýh¤Ÿw†6Ç{p¼³}Q>ÄÊÝ}´YTǤpéXôÞ‡t‹Eóó7n ;ÌæzñEõÂ%Õûñþn¯s½iB}îÿ²´‡û)Ò´—“EcÊÓmçCö<îõw÷S¥G,úïM»¸ïýV˜þ¨‡3ž1©–#L{8Žg¶Æ£’c<éÞØŽ´/ê§š¡0×3éæ^Sšãá¡ÊÕíaoϰÝϲéï-[Ý%]ܘÍþ^TƒWŽí—6Ï‹«°'ÜÂ[ºDèÂiÂ>í©2ð¢Ìýf %¼#¡ iž÷=X9¶÷èÉ·¹žÖä~%ßçLm~ãi„-[ݤÜ#taTíîžSšñâE5åå>6ûãØó–0‹ž×!0Vxºïx0Ï>›G¹»ýx~w„-[Ý'ÛÛñÌ&ôjúÙ;Ü»4íõæ}–rsßñ>aú»,j‘æïÙƒ—2ãM»ÒŸŽíW“î±ýù‡ûYÒÜ·¥IGèF_Ò5¶_C;B9Êo¡g û¢”ºÇSx¸íxd3Þ°gÄ­&ó{ݦ?¼™©ª¡»JÓ^yµOá¡ÖŸŽÏ{ª´ÏÍý^¸¸§¶ÏM{˜Íõî¡"Â%BCüx$7÷(Â5Ž'ãÊüžç“bû²OÆ•#”d4i¿Þ/T®î£=#´dí-YCzÄöç7îî§Js½G\´0¡„’·-[»¸Ÿ)í¡Œç)·ïŽÐ²»z­KÓß;$¦¿çÕ^…9žg²?„ù{ŒÇ Ó_ðj¯ÊÕ=´=ÔfA.¡'BžÝbûñw·ï¯·=fó<#ÛŸ.Íû‚;Wlkw¯ÚÅý´ì»Ö;¶÷Pãämñã·¹Þ Ì(ÓŸôiÂ\Ï #Lð0^©LèJ!Ô8ÛC[ ¡ÆÂÅ=ª4ýAE*Óß{¬ˆts.ý ½öpßç]aú{×[;BsúöIa¶z½Ks<Ÿ¡ÓÉlÏûDaÚ.WŽÐu¤ÏòPaÚûg²¿…9^Œg ûù`éÒÃ}ûkÊœ/–^«L{ãqäÊݽ‹´ŸO̺U&4‡jiÂ,z¾eÓŽöpï¦]Â4¡ ¥ZµÄ䨆|çƒi{(”mQr!ÔRØúƒæ£ÍöÌžª´†4¡ÅÒ§¥ù½ƒÐëlBy ¡–ÊìoªÍ ·mòý™ÜÜ{H³è¾°Ky¸÷‘&4€EÅÙ+B¥SŽÏóÐõ·ß—ù\Â{»m —ð#MhÁ—ïxŒrw[{–=#4ÊŽ‡ðpßþ†0¡*…²ZʱýÒ„6ù|1eB—j„â¿í¡T5ö÷Û\¯,ÚΞ^í¾2ž%|¶ûŽW {h•‡¦ ª5h¯³9^>ßK¹¹û’&4âË»hw·ÈŠuÇ‹• õ²ÕÉÊʵhﲦ<–òt߸†´ïû;y¸O“&ÔåÎ'{„}>›§WJG(Øí  Q÷³l?ÞÌGS®î­í¡XŒ7)7÷XÒ„J4/º‘Ý Õ²‰ÒÖy¨˜0¡zwÑÿ–æ~ÝMU^îù÷óHÓž7Šk*W·ønŸOfé¾[úDhÙ]ÿ¬\ÝÖßÊÞÍ=ªôzÜsjÇßÛ¿1oÙû`aÚóÆx“ðˆíŸ*íÇ›ùÖÂ\7=ºjw·mÈ&©1^¤Ìþ:ܯÞöùf–žÝµ«ÛîgÙ„nyÈœ0×s{hϲ¹ž Sž±½µGÙôÇ|>™rsÛñ̶ù Í‹(Çö[›öº3¤L(\åxgÓë•¢?ÂÃm÷ãl®ÇÎ*ñäêý±Îx“ò/¡}ʪÇ|4aBÅz§¿ÍõØ;E„WøHÏØ~<ÚìOÆ£”‹Ûî×Ù„ª¨Ìýº3^¥<ÝýÑ®îÙ¤éÏ÷IJ˜ý½(Š“í烽X–.n?^oÓÞwB…“‹÷÷úæyKxºíx 7÷/*|b{ÏÈÞÊø,iú{ÝÇ£²=´òáxdÓ^û|9aEdÕº²íoŸÏ¦\Ü£IÓŸ„ s¿5öG2PdaBµå9•#”Òî'/÷Ç÷½ñ<ÚÓ}ÏWåâö¢=o~¯¥ß(º7mV.î¡ÍóÜ Ô§ðŒÏ»ýaî'·cÝ´»{<ÒÜîƒS‘¦½V]GšÏ³Geî÷÷Á÷7žî§ Ÿ8Œ‡ ó<76Ew„{ø‘Þ±}ÿÙþØ|aîw`«j÷ø‹ûö…y^ôH¸ºO“æy€Weo¼¨K6¡ÈÃN éêîKxÇï}¬?*<ãû<[šön2^(Lˆ/ÊœÏ>ßPyºí|®n+j“M{F¨«2÷«Éúÿä¡£^G˜Ï£ìª0ã‘”:•žî;Þ+Ìùîó…×q?Ušöˆ‰-Ò|ßÉþÎáúhw[Ò„OÆ…ýxOÚsaöÇŠýý6÷³;qmhÇösJ{(1ó•‡û<Â1ž57Ç[xºíxgÓÞ‰§[;Bsízʦ½óù‚´wwbq׿x1ßO˜ûÕ´t@éæ¾óý„¹Þ©ÊÕÝŽt‹íWÓnîÓ¥¹.Bõ…¹ÞWãñÝ^¹Þ† iîW«Ò^f{èo¥hp éßç iú£«q¼³¹^}>¡2¯s½gs¿¹ ç¶4Ï‹¢Åºl#Òñ÷öîjLacaÚÓ5(R&ÜÜÖŸÊæ}…^ñyv> W·õDziOY˜,]ÝÏ‘öÐiŠ&(·ð‘æysyQ:á}/·Øþíá~º4Ï‹7Ø@Ù‹ÎXðÂÐ^î©}ÂÖßf·lî—‹”åá¶þN6ïë=”mîÂþÊomÛ_$>)Ó’€¥ÌýŽÐmeÆãÉO“æû0^œ\ýxíNQÉlîg7»¯ióyŒ Ó^nÖ#(ó{oæyíÎÔ¦¿N(¸2×Û&CÙ®WŸo'Ìýn®×lú넊KÛùæó唋û4iîg^”+9ÆcyÊý~cû{‡ñHaŽç!B˜ãy*ϱ½¥Íæxæë S4å4Ú›lÚÃÓèÏóyŒG*7÷hÒ-¶·þ¦pqŸ&Íxû!/óíöÄþ`¼R˜ûÕ—ï|e¶g>½°ïOÆ •‹{éÛßþ 2Ûó¾R˜ñг£hhru[ÑÆlú#ÇB•é’0•ù>­N>~?"4_º¹ï|ha[¯vCó­(d¶‡Þ—(Jú6÷+Ÿï¥<Ü{iÛïyìÆ¥Ìñ~È«Pf{Ц s¼ŸE[“›{,éÛ{Q×·i/ò(•‡ÛŠ, ó}Gìï·yz½µcûÚ¥Klû»Êl?)júvÌwò¢q¼/{¦?û0ž'Ìû̇ñÏŠ2goöçâ~”mÏë×ó7Žííxe{QM{ \ݳH[µû|:áÎþ°géé>KÚ‹¢Šgûñf>·òt·¥]Ý£H[èzvaÏ«º¾ý9akoÑ’;Þ¤\ÜÖeÛýô5±ö(›¢ µR4X8¶Úv¿¼¶ë-»ó}×›p é¶ÜcjÛþª$• Û|“ë9´«ÛúƒÙ%¶÷ã‘ÜÝÏö¢ÝVô¥j7wÓ>'|¤÷ã¾ýyeŽ×¤h´pqwmÚƒÊxrsOíyÜkhÇ÷9ÚÜOꢿ&\ݵJSTåÎW|¤¹TòH„kü½Ù´ÙÞ&N+St¦nž'ÞŽ¢%•¼åæ¶ö:û„­h|öŽÏ³þ–0Û“7"¼Â»JÓÞû|Da{_x‹ Y#›ö¼އ0ÛW®çìö¸ïx‹òp*]cûu¤¹ž)z”íë ÍGú„­?,Ìç‘÷!ÌõÚ˜Ï/¼·]O±½õg„‹ûiÒÝjäÁ*W÷ZÒ#¶?E›íY ìE§˜©\ÂGš¢MmÅñz»|üŠZ‘W«ÛÛñÌ>Õ}Ç£„w|ÞÏTná%íE±6íy6÷óÆzeÎÖ#ûñb=°_T­Q®î=¥ýzd½«²íO–”io}¾£0ý­^bs}¢hE¯•íûtêßSô­WŠÂgs?îŒ'*ÇçÝëQxÅö·¿ªÌþ ŽðìîQ¤¹Ÿv›¸ªÜcûS¤yÞêäy(ww;Ò5<ªt‰Ï›S;¶¿ïK“=2þ]»ç‹r ?Ò'|ûÃÂ~<^a?^60']Ý÷yUØóý„ïV‘Aº¹G•î±ý9ÒÜO P¦hæ$/B¹¸÷‘æz¼ÁEØó¶:Á!Ê\/ÓŠÒJó÷˜/L{JÑrež7 V’.á#M{Ip•2Ï+“ùìÊv>Ì¿÷mÆ3npZ•æzñù`ɾíú>¯(³¿má®2ý•Éû(a®ŸÏ¥ÜÂ[Ú‡½ØPöãñ°?…«{wi?Ö1Sæx,›8.]ÝíHs½,jû${Qíîóµ”ù<ÆÛ„):ºýÅl®‡Å|uá¶û}6ý¹ü½´‹Ûî·ÙŒ—,Æ›„O[VÍQšÏcH¸†·6Çóæ‰ìòøxÄÍãÚÒ'¼4Ç{[p†²ïc׃0E­7•g…m¾X¿óyš4íÁ±…OÙ‡ù’ýXçL{xFlÿ6ÏÃÇn¼ÊÜ/ëÕ…¹ëÑ“ãyãð¼!ló!ºÏWH^xÖÓ…ÿü§*‹Lÿ¥e¥m'ý¬#ýâvzQâ©ü©#ý¢Ý^~Ös~q8çTìλgÞ츨öœhÃÚÄç Z§Ü3s3­IºÑÅUÑNȹ©»›hÃÁó|ê ÿJŸÌ;;'Ñ¢<é6Ó.”IŽ\¦ c·]—h‹D¢žs"õo™A÷fÔ°e}o¦5ï‹Ñ«LÛuwîwS´G“Õ¨ù™h L©ºLjÛ›•›zÔsN¤62-B¦À‹ñ L;£Ús¢ w®uQ¤5-M&»}PÁøE_›mp1†’i¯`+\3íæÞÿŨº\‹bsvIkd¨³øfÔÞ\Ì+ˤÂm‰ªž/R¥–L³L{¥¼½¢R¢uHwªž/ÚËÁIô0°]?µ(¿sûÆ^‹òEèÛ-jQ¾hÓ¬½rr¦5Œ›1”L{…µ™•YƒGѺ{R]ïE¯Í¸µïíÕÓY\9d‹º%‰²ó©Šø6©u{ÍDëò퇊I‰6 t õÌ­»p{ UÑ^æ²¶Þ\¼Š;J)‰Ö‘8Ìsʤînc·'ÚCêaŽSf÷?dÎíóæW.E‹Ï>¬.{Ó'Ö–e§U6I´ŽßaÜ Ó¦Ý}õj¬jI¢uŠ¿øHÚÍë0#&ÓŒ£*o¢ ÷Guܽð4N†D»$Ÿö©ÜöÔìíÔùL´Ç䇧ØLk6Ÿù©©öÍi'a¢ €?Ì?xÓãežõ­ºÙOZÇ&*Í&ÚÍëÙ4›‰T‹µ§‚vPf%drPNÔ<ûF$z°‰6 áy€™^Ž•×ýÂÄF9Ølʱ…k|ÞZÒ^Ž”éÉ5ÊÍ2]@˜r ¥G9§·½\ìà÷dç^F”7z›rJeÆß{»†½ÓwG9¤Âã¢0qùw:_—&Î<Êfûïñr¥ÙÄ•òÜ¥LÜt-ŸrI/sf{9ö‰Ï}™ãuǦº°/7¹å"ÚæyéÙ—û6÷óçDœíÛ/_.+L-ÊId÷°µ'Ù-ükí/þ”{¨ÚÄ”q´ßí¯š®­ÜAö /í¾ý9aâXJ¸Ú·½œB‹¸Ø·‰»)ı ³¹ âx³KØ¿ÏwGœÆo*ÒÄ”q©oP(‡*LÔ—=îômâ£ÜA6qQn ÛËx¹l/÷ðÐ^¾Ü½\¶Íë˜ÒÄÔq—oGXéÏ (g°µ=.¿——Íñ¬¸Élâà*å<“ý•W”;Þ¿–;ö¸úNœ]¶ÿ^ÆË„½œÀ Î.›åøug”íqÿöà®Ìñ¬“ýývÄTFç…‰#¨L§&Ž z\U¶—Sð¸¨lâ¬îxY•®±½ÅÕeûï¡\Aòò8?_(LÜT¥œ¸°—«`4_˜8ŽJ¹La~¯—&®uKÊÄeÞuYÚ÷_­¿žì/¹š/çæx6ÊY {œ~µç)aâÐå,…‰Söå~ÂÄEÞuEºgO9ËäáqHwÝr“ö¸zfÙGåËá„iÛ"n)›¸)_Î&LN£¤0q'§/ìåJrÄmMÆ„)÷2™®,ìqÇÌY¦=™<s½Mf¦7{ë OéqÎåÞޞǓ}ø{ƒ8²lÚÓÉûáO\³Å¥dSNbNŽg6÷‹ÉûaʉL³y{±Û^ÜmiâÊ|90å–¦ÇÙdó¯JœA6qjëg\ÌËôÏCÉŸ8^â~…Ù‹çaÚ“Åó„°_ž'„=.šçaÆ+|¹†°Ç?Ä9¼劾ü4iÎçÍû aÎçý‰Ëx›þÜ®ì¯lŽ·—c¦½üòP®Þžx\«0Ï+ûgñ¶_Ê} xg…wéÛ¯"Íý`Ûº9e«e†|²ÇAØ<û*íq°ô×…yžòrïÂ=â`Ÿ"Ý"öy¤¹^ö!îêåúDœíËýßö¿÷Ärÿ·=î²°îíó3îuniÆ›<.UxGÜ©/›ëÕ—‹ó<ãå¾…=îó³œÿmâÞ¿|–4ý=/÷¼#®“ÙÝÂþ{™ß-ÌxÔ9ÄdˆûìMšû©Ç GêqšÉ1žàq–œÏÏ`9T6÷›gÄrç·¹_z9eac¤œpù5®29ÊàŽåž­ÐÞd{ÜRá÷dÛx^Ä {œïc„‰#mÌ—n±ýÙåñåÊþ’ðŽ8­Û{\qZÂìOÓ&®¥YÝe;c<09–cz–ð'®êŽ7 û÷e½°__ŽšM܈ÇM ·zsµ•wìoVÖ ³\ól<ÒÄt›Ø£ìq:<ï·ˆ£zŠ4ß·3Ÿ(ÙçsF•ð'.ªk³¿©û ÌþîÌ·n7uÇ#’§/7îƒå®ÙÄ w[+ªìqTÄ â„n/Ùç#Ü8 [.œ½#NÈ–ëfûñ<,'Î&Ž…cÊÄÍR÷N™ãy_¼*÷ˆ³éÏlâÂFgùp6qƒrÅœÇ#ÌýÂãt’}¼¹{¹?aîÇÃr—•[ÄíØrôì¾ã%Éq?ºó-»ô *MÁxØßÙ-|º´/æ3'㜬H&NhZ]Xå>EÚãxÇë»ï4s±ºÇÊœÓ:FÊÄUL+«\Ãg GÜåÒ”¹Þ¦Í§V&N`Ú| åq2K›8©e;³ýy¨3Þ¤LÀ²\WeÎ×eu‰²WÄ)Ø|eŽç¶þ€2ûsw¾ÏÛ>_þÆMìGš8*Ʋ}¾úõ(ÒÄõl›o«L{¶7çÃÛÑŸß›ó!›ór3ÊÄÉìç6<Ùgûå®Mœ(å:²=îd”ÆñtÿùO¿/ÔÿîøVúÿÌ[øÎîy õQ´ÌŸi /OcX‚ƒ/?í&&Øüé¹ÓÓr­Û<í Z£>Y“–i§ô´[» =ðN›x)h““0Õ7}2Ú¤T}¦uu&o¢3»çKxîÁ‹Õ7¶Õú/z §;Ç|gú#Æ$`5“< Ëá´îäwûâòìQOŸÈ´¡sOŸÈ\žM1»b÷·dsž­h·¼Éû7}ÁÙ¤?ž¹=¹Â×ã¿h7kÏÄÈäD"h&Óäçëâ_lN_Ëÿ¢]V‹1È7}nQ€*“ô Æ'3íñrn“i;vÙ$:ÁâõìLïø/ÊJeZS°¬úš -ê[DÆfÚ-oõX½þb÷\‹º2=oX¾ý¢ ¦®«È_äRêMŸÈrÿÏ’ÖXŒÂfOÛ¸Ïè™Ö± ÉÄ`ýc¦ o­Í ü¢>qÊZ×{1s!Ó^ì,ž+Þl<,ž*29 YS™iSN+*3‹gqŒYi‚6³2ϯY‰ËÓ6ÊQ´³™'iÃpÛ¦k(úG­'Ó+¼m ÌgÚŦ||fäxØI˜H2Ic¥"»ÎnboNŸXº)+Ÿi·˜Í¬ŒÌæœ#Ó§x~H¦MXß3Öû¾88²Ö¶%’µò°2íEqà™'™$„V…%O5±5a‰Ö‘;¶t_ÐŽ=˜&–³x"Ê›>Øà‰(™ÖÕöÌ“Lk̯ãM´Så VI'6çš™KãP€)Ó:Û‡òÞ™özÝ3O2­¡8;Öv¾hSCÎaeé‹•-_w’iÍÈ9¬ZO\þQOSd×Qp(Ó&,=ö<+X=/ÅV{'ÚE÷0×âÍB'á¡PN&Ù#”±É´Çô‡"È™öv&›b䥸×xÑ.«‡ù/ÆòÇg[ù“vÑ=D[fg;ŠìXÞKd6ç³mPæaNõ›þJûr+çŠ6ù¦™9<‰eÅâõú@ø J)Sš…È…:.Âãã#ÍB³RXh•ÍB+bI^´ÂDáîCš ‹bY”­Iº~¦´±4Òf³P¼ØSiöŒýÑ9 ÞÔBΨ0 ± ©…=H‡…ÔÂóS…{xq†g‚±ï›ÝšÛ¢½íûƒ‰$É^g»žç„YHX¨#,ÌBÉÊs™0çk­\gÙ£¸Ç”n±ýÑ®TS–´µð"%9Êß7ÊUšóùËM{|‚nšp‰ßÛc¡ÔÛ,ô­6#N™…蕨ķûCwàº/i‚:*aŠÂþ}|¢zöˆ «Ãœíǃ…àÂ,Ô­>‘ûmohk,dÉæ÷R&{{{Ð u³YݼŽz6çCãi)ùÔB¡°oo+2²}!̵/dy›ö´QgA˜ £ÆDáA3uKÔИ“<|¡zÛÔÑÎf¡úñ\¤{wÛÄó·;ÝÆ¢&ïÊt^äs½uúáœo:¬ÉígÎ^Ò“Ï£N0û³³Ð[˜ !œ²ݰÐ;ÙZÔ¾£NýÛ\ïýð}²Wu¯)=bû£ÍBî{á.i‚úß÷m®×Qãû~wa"L…:Ù-Ü…[zñyää¿}O3ÛŸwE}—&Hę“þ6 ÉÇŒ:ào¤6|"qv[·Çƒœya‚†×)̦¿t{»Kš «éu†³ Âà9+Ûs¶#hF˜þʤ?&Ìýb6ê(fתÙUØë0×9˜hžM{w›št‰ ›±…gü&âs=M¯C—MP ‰bÊ•LúcÉ#~qÕÂôóP‡<{EN{¤'A,á÷ÞÂÝÛóU©3™ÍñZô§’[ýô¨ùöø5HG¸²ýà÷d—á¶… oןA;V§3›ön Jd{ÐÌŒ:oW>oq=½í¡¸ÊŸ œÕ¤¹ßܘàGÚƒ~ηlž|œùíúxþ¾åÒæ|òQ]aú‹›…¶Â\ïwd·Hãã³ÉÇï»3‘5Ûƒx¨C)ìA8“ïûööç½½¢N×Û'‚v|"÷Û¾?VÔ9{›þÊö:UÙ´W{3‘ôíWÐN²O4¸ö:NoÓÞo‚…yôèäAAÔ‰^äÓº4íÍ—{‘&hă~’»ß¯}$U˜çíCNxEP›ÒiÆDÓlòéì·[l?8_²¹ß¯cõv­yÐ0ííñ:VÙ¤Ã[µdò¸~¦4í™ý¼]âzý²× y›ç½³™ˆ•]"(¨táçËùÔ y™ B¦¿ÿT¾o¶ ÙŠçl¯SX}!…0íñCpaŽÇ—Ï#ì 1ª/tžáY„#H¡ØÀ2A!¥3Q/›…È>^%ÌBbWÊ,Tò šd¯SfA4Gz.wÒ#‚lZ“nTÓŽtåó¶µ'±pâeÇBÄò0‘1›…¬Å&:e{¶4R&hȃj„YèQ©c&Ü"hæög…ù>ÌÊŽ…|^§^x>n›èœíA1^Ç'›…T• ÁdïïØŠ &½Ø>Ñ7Ûƒ> ³=ÈÄ J+³,&ú·çWá=¥wØ&2f³Ð›‚èÊþ÷ZLô|› ‚H²#è§Yâª2 )› +³P’ñ¤ìA$›‰œÙ,Ô'(${ùB¨fs‰”O…Ì"íAí¾OP˽‡ô'Èc=Ò\Ýî×Ê,Dï>Ñöíß×îÇÊTbAÞÊ,¾«°OõÄ+eZ°¹Ê3‚"ì|Í&ÈkØŠ>e‚Ȇ×eûDRK,-Ò\Ã%”9ßbÈn±PÞ-”ifá|Ìf!7A½Ê,”œ•‰®oG{xq»4 U ‚Pf¡*ã%ÊÑÙo¿_Q5ù<dÀDcaÂÞ]؃PÍt }ñìA6^©ÌBÊiýAe‚dJÈ^~?ð‰äœïóá÷ds?_öb%;’T ìAVlCÙƒºµGÉÃƒŽ–½sW&ÈjYbƒ²5XæÌýtø¼ïö L+¹T¤él{Ÿ¬L{ºí}²2ûsÛû’lŸäfsw§4íá»Õ¥g Ô-Íõ°ûãíêAk²Sæ~²íų2ý­}âóÞ&¨eŸø¼ïöñê»Ð¾Oiî§ÇÞ*Ó^{ߦL{õå{¿x{ûxö]¨~ÓŸ»ÏkKÚƒ¬€Xö‰Ï{îSæzyl.¢2A*­˜ÍÞþy%Ž)ïð]h#LÐÑcÿKöúe!v‘ž±Ðú^ÏÂ,ô-4¬ÌB Òø½oO_HV¬(•2 ]yÞR¦Nu± `e›LtR¯&ìóz±RÊ3|†p,D+¶"(;êøò¼¢ÌB¢Z9ÞÙ,t¥ ovÔ‰åyG™…¨•ööí;ÌÙÜ_Ï;ÊÔa¯vcS.Ž•}*½-dnÒìÏfASÊ•…°¶â.;J5{Ÿ¢Ìù@¢Löò:ÌÍÆC•YˆØ¬Qv,tjT¢ì ¥í‡)ûB\[‘ž=b¡ª½/ÈŽ…˜,tU¦Žv·÷Ê,dâÅxvó…ì7ènIs<» <)ÛûŠNb¯2ç# M³#`ØY™:Í7q| _è7¬bŽòŒ…’ö÷²©“ìýñ·c t,Tf!î´yÙ±Ð:ÒÙ›ñ–Q,¨ðãï Ã~ÖåµÛçýÓßþ°æáNø»åÇ¿ÿ‹Œ=¾ÊËWˆ½9`mŠÖ±úY ÷M_{v×ùdÚ¦*àúu…X¦ý¡iA‚¾B¬KZgbR¤LÐ×q•¦8|-Öèÿ_ewÏkÉÎ\8¿¿â„v`‹,~† –%¶nf8’áÀ”¼ÿ¾†µVí™ÃZH‰€Gèwî>½¹»ÙlÖ*IÖq"YÀ%é—€ÛC©KÚ×Ï:®DŸ>ðíª +¦¢¨ï;}jÀš¨ÌŠ)o”û¯eYõ$8¾~6μ_ +ˆ2ýÕŠ ô?0&Um™¼oúë×§r)s²r‰ý˜_z½M‹?ÿ¡O±ïP“dmR9’åëS×”‰VÇÞR°±6éîìàÔ,àžŠÆÊ¥Ú$+xßeÖ¨\Ú’þ…î89Q‹ÅÆÀ™šõëS¹ô²á6Ãö)™›•KµJö¯OÕ“ k¢n°U¦oŸ¸Í…‡¤s*NÖDÝ•]AÖD.y?«ž2+¦úQô%¾ñd]Ó}˜‰ZÃW–9¾>íŠ+Ø»¢±&jIÖ5™$š#¼Bp€Ã$ y «ž¬H¹2™iŸ¦bùú4`ÎôiãòY‘¢}}j¢2=«øÞ´5ýÔùÆOÁ¨˜òÓž9@¿¨f²žÊ†"jÞ+ؾ>µX™¨Cø†à·fÏPô›õ:ŸêîïôÉãòMÈŠ¬ã:K’ÕV½+¢b µX‚^çSq£Oô[ù®¸e6p–ÌÊÖÎhã!8Àû.L°‚>ùLô= úÇX˜Œ%¢I6Âi èÓ€D_€Ûxÿ)h_Ÿª§L¿Yï'ç¥×Û ¥t¦/,Q¬à’ô‡žã©.‚¾eˆÕV‚õëÓÊ:³²«7Éž­ˆ&ÙˆÀìà8’~r¦ jGöÀ ²Ê˶¢? ¼ßì OM3ýc`ol¦³ƒÈ:Á vIŸ@ž‰›HfûúT—eÖží)éA½‚þ1“—‰A¸ãä¼duÙ˜Š>½<Ó€ÌþõiÝ-øKeZ¦/á°±· }}jÏ2k”wUÓntŸÒ؞ľÝÊQ^¶š6ʃðúýõdî|eß%åF{ @6¶ç³üKåg¾Î#]èV¤±½· YÙè©=£|ìlm|¬9£/gÁªƒr¥w‘Æö1n¯Qn4Ï×k–ß!¾EÛ× žÖ•£üÌ´±=í‡ûoÜéµµ ½‡t‰ÏsŽ6Î׎óýݱ½´0’E¸Ñ{Iï(Ÿ³ßxЭkGyÝÒkÑç7FùÙ'Så5Ë×£"\赤G”÷í&íÛkÊžCãåuÊQ>Çèšä(ßëÚ(­Ø>®Ü賤±ý¼2E¸Óçhã|bí@ãõúhÝšpl_®ŒBîô>Ò,¿Ã „ò G‘Æx¬è»ªåw^ <£üïn?TFù[ñí‡Â†ç~e£g‘fy[õy©r§·iãó0ª$ãÕ ÷a”"wRãÕ˜n"Üè®ñʾ÷Ê#|´ñy:îçÙÖ1ž_s{Ø-_ôá(\S;Êw“Æö–?*WÚÃb²1^ dÊ>UãÕð¯<è9µ+}š4¶?ÛÆý"ûSž9«voi”ÿÿ„î&ÍñˆÀå(ÿSšãñÄxHŽòÐÒ´+}çÒÂþzüºwm”g¢¼ ™¯Œ*ê$¥;íoÂ…ÞSãÛ¥¾k9ÂèkŒdÒ>CãµùÚœô ý~)\éS¤1^ÖH„1^Öô•;=ªv oiŒg4ð“ŽòÜÓ¤ Ÿgâz'Üh~_¯1ž¢p”½~ã(ÿ]Ešã«=Ê^ÊÑP^¡ÜiÏÂ(OEßfa–ïbÝGÙ製~-ÆxEƒ_i”×b\å» ó‰ìåÉ<¯1^Y¾¬Œòâç#¹„·4Æk˜¯ ã|aÝEã•åÉÊžCãµc [y„4Æc_xÞnô®Âã‘åÏÊ^Sçóà~‘Íñˆµe OiŽÇq‚É^Ú÷IWÚ¿ÏlŒGDAI7zic¼bû´t”ÛÒ.ôÞÒ¯,ÿV6º›4Æã°ø>_c<ŽßWò/í(?÷ù@6Æëàz°Ñk s{ѵÏ'…q>;¾oáBû|1ãu ¯¸2>ÏÀ|<ó]î QnôОQ^ïóMáAûõ\ç{âûÎÆóÚ@_saŽ×‰ñ ÜiŸGy~Óæxåz•p¥§6æÃìK¨Œó¹ãû~]#`4íAï¢Ïs"gô5ÖƉïó»kŒW®G G<ÁÞÚ(ŸG_Ca¬'LômW®ôÒë×xaÆ# >J¹ÐǤ±ž0 ë±ÂFÛ”f¼úÂ+wzj·ˆOðù¦ð/íJo“Æxœè¯Œó‰x(aÆ3 ¬÷ wºmíˆWà÷ùãñ>¸˜¶Ñü>¿›}‹êäzšp£}½7›ñ ó5áA¡]é¥ë-ã”ñy6ž·²ñ¾á.|NíNûz0Î7#³9Þ/¡ñcK÷ˆ§˜Cãù¾8šÚ•nMï#ð.OÚèY¤ñ>å-ÒˆO¨X.tÒ¯¡,\é-<â}ÙBü˜2â%üÆ¡ŒñÊxåˆï˜]úŠ ã}Ùò‰³4Îw÷ïSã•}?•#¾ÃƒW³Ç¯ñʃ¿q¥ïz pøµ¤[ü÷v×îô©Ò¯^g+môЮ²~ãˆ9Mïs׎ï#9âEzþijìO ök|ÞƒÛl¼ÏEù”t§ï|P9âKæ‘æxD|‰2âAÐWLx.zvíFoíñ(§jÿo¢Œø Ä“#¾è‡ûÒ6ú éO¼‰íNóûxøž[ÞÖ´ñ÷ 5r¥Ï–®Âó‘ñ(¥H—ˆG±¥ÝéþGüIÂìRqm¦mt×F¼ãW”}Ÿg„סwÓÆùÞŸ\iÛΞßrLÛÂ[ñpûàûîô 3^‡±Ü•îÚ-âcFÓöóy ÆC6ÖËŽïè‘.t¯ÒˆDy¤2Ö»NdüïŽø;îPSá£]éû¼+Œõ‚ãuHÒø¼è‹*Œõ®ã9qÒ^Úx;xŸ¨<èiÚ5¼¥±Æxa<Ý=o¦Ï‹õLe|ß×Ãl¬0²\çó`¾–ç1“+7zi<ßg²—×ï›&]h~߯_R°ž¨lá#Ì÷iÞ@pI3ž§¢ …ð ½µB6ã‘o©lá-¾öÜ/&Œ¾Îܦ\鵤Q<§CºÑ>ßËFüBAßYåNó|&zui‹x¥º´+½¶t]ôîÚ>UºìðfßQæ|IWÚÏW6â!ÊFßáF{Øìµi¿ž Gü”Â…öùFö¬ôÜÒˆ¸ûźv£ÏöëçÈíNó|'#þÉÐn'»E|Ï×kô½¿ ¼‹4⟮ŒÏÓq½Î.oeG{ÐmjWzáÆñVªŒx0q­Œx:ñ¼'Üh¿Þe#¡¢Q–r¡»6â9ªo|’6zj3Þ }}•ñyw4¨yÍñ„õ*åBÏ&Ý*}–4ÇÓù´ÀymôÒÆx3¬7)wºOiŒ7Ã~ieÄoU߯§Œø1Ãx}mof¸Ÿ#¾«Ew×o†zjåFŸ#øC›MåAGß ÇŒ7Cßdeü½¨Æx»9ËC×3CÓLåN³UQr¡—6®gw¿ÙÔ®´¯'d3ŽëAÙ¸ö[ s<­O÷¤×ƒ¾ë±Ê…öùÚëãiã~%\iÿ=dã~j÷3áFû|-÷Ó/Wµ{xKÏCoÓöóÁýdÊ•öï3ñ–l_ ñwKã±q=HØÏG«ø¾³}½ñºníNûý8ó¹V£eV2þ^‹ïû5æsܯ¦lô®Òˆ—ºûͶpa<\kXOá­]é~¤?Ö¸%l´ß¯³ñ<ø@i|_\¯ÊÆxdûåNÓ.´Ï§²ñ<Ò&Ös³ñ¼Ñ&Ös…ÞUÏ ñÂÊø¼+˜½¶CóûLô˜Ú…>Eña Í@… þÞßGr£ù}|3ÚÑÃ÷~/ŒçÑ^>­Ò^#>ûÙ„}½š}†¤¾ó!a_¾>Eñ`ñÈʾóåÞÒˆ—ë¾1GºÒsJûz±ý‡2þ^Ÿø+#>¸#¾Yñ”ܧ<èѵ }瘯õöe¯ù¾Äû”íFû÷•½{xIc>Ö½O†ô ×o\ècÒ˜¯q¿Ÿ2¾…öuÙŒ/]ÂnÚ¸_vot*Ýiÿ¾… ݵ1ŸëþbFºÒsKã~z¿ÓÆù8h÷•ù÷ c=¤{éN·©]èQ„Ùžñ®ÊŒïÄz¡²Ñ~=ÈÆý’û •íã!÷K¶·Qîôø =‹4î—l£ìçvʸÞÝém´5éÖè»^&ŒëÙ@ü»2þ^¬'*ãïq¾_×Jó|¿Æz/¥^]xòz‡Æ½Òø{'Îw6žWïÂt×î´ÿ^³q=ä~AåA{{>aœ¯…ï;×ÃûâgjWz-i\²”}׋„q=~ãÆùÀ~?aÆ W.t´÷|ÌøÜßWr¥mKãyânL2m££èc\'âõ“Ÿ'îÆ³ß¸Ów¾/ÌøÝŠë¥p¥½ul6ækܯ(Œøë»_±K#Þön<5é~è9µñy~ïÂ…¾Ïë¸ßM´/Æz6®K½º4ÖÛ¯,Ýèû>^ë!·°âhwzLíB³½ìw3ú…/ʸ"þYÚèh7û÷Éö ÊÞÒsÓÞÈY¸Ñ«IãyàNíNŸ¦óµÐ^8óý¹Ð>8»MzhsÛ+gc< Hß7â·¥;½Š4¾o¶ßRôÒŒox^ÆßÓ£]ñk|ßkÄß›ìã}a½Uß÷š˜ïf3Þ{âûî4Ï×k|ßÜo§Œã7~¯Â…>]Ø"Þûå”+Íö̯q½a{.åJwmŒ§ö6Ê~¾7Ö#…1Þ6ò ”=´G×#…1_ÙØ¯¯ìçs®7Ù˜ÏlÃ|Fç둘Ïì†õá8Þç›Ù˜Ïìß×kÌW6ÛA¿f=†q?r§½±}6öSlì§WÆñX/T.4Ûk¿füýÄ|Pǯh¯ýóåíÁ Ò•öûq6Öã÷Æõ@ØèÝ¥±ºÑ¾ZÙèv¤±úÃ{jûx?\Ìf|>êa…±^Åý^Ê^SÛÏ÷ñgʸ_äU(ãx´OKf”ÙµÏG„+íë¥Ù;Ž¿ëÝÊ>Ò¸^†ùˆ0ŽÇ~3aÌ·OÇz’p£k“ÆõêtÌw…qüÀzM6æël§ÜéS¤±Þ~¸ž—õôÃõ<áÞÒX=+¾¯×X8\O®ôÙõv°¦l´·ïÎö÷·}Ã}^S6ziÄ—OÝSF<a{qáFßõ(aŸ/ßöw¿…°ß×chÇñÛ¤[¿6Žoþ¼ª\èÝ¥}¼Üöw=B¹Ð{H×8žç3Çc=JØÇÓ5Ïgrýú´ÏÈÞ¸]{ûrá8þÎׅѾ øÂˆt¥‡öZ´_—¯<=Šv×…Žß¾¨lôžÒhðÃçhc¼c?·pÛ´Mí8¾i‹ãG“®qüÏ û|ý¶/ñvòÂ^Cxa½è¶7ñë‘p§ï|[xÇñ]{…ý÷&ŒÏð{Ëž'¼µ݇¶ÿÞ*’J…Ñ^¢b½G9Ž¿óAáÇû÷!ÇŸ.Ýp¼oÌ“.´i[o[º†ï|^ÿž÷QV.ƒn¿q /áÉëQõàé8þÎç…w¿c?}¾&¼&íã){†ï|Wx„ûÐŽÿÞÏ w¿|½Q¹Ò÷yBíg*òB”+݆´Åñw=@9Ž¿ó-a¶BÞˆr¥W•.qüÚƒãÁ÷ª\iÿ>²1¬â÷,\é»Þ"¼âø;ŸSŽãç–ž°·?RÆx1ìÇWŽãï|XãÅ÷!Œë…a?¿r¡g—¶8Þç3Âqü1i\O y°Ê…žSºÄñ»hãxÔ$s½ºq?¤rïóÑl¶—Bå>Ò3Ž¿ë±Êq¼ŸÙ#Ž¿ëQÊqü*Ò=Ž_SÇ/\ϳ1_1ÔC(û|ÃP lá9¥+þ=t­Q6z i´‡3Ô»*ûñw¿£ ³QHã~Ga¶ïÂz r¥ýz˜ëECÿåJ7mÌWÖ• í¿ÇìÇû|5ßwC'a^²ñ¼Ãý”Ê®Gº-Ú¦´…}< Wz4iÌ7îÄliã|-ÜO³q?i¨çHfƒŒÛÏï—Â8_X/F{Á†<`e?_wa®Kãyù.÷ ¼¸‘ÆçÅz¤0ÆCï˜ï Wú iÌ7úˆóõÏÃܨÜèiÂÌÛiظ!¿gá~˜ëÁÝx´µ}¼r¿Ÿ0æ݃¿•±^Çý~ÊFï-çÙýþÂø¾±q[ß÷(˜Ï ûoTܲ1ß¼…%]ë(œQÆõ~`?¼r¡ÏÊþ1Àïy U¿g´7—öñ8¼;Ÿ2ÛOb?»0¾¯[8ݵîU¿gîÆóâ-,ßÒ¾_ý¶¿¼ë5ÊÞÚ¸s?—0~o¾n´uáXϼÁ/&õ¦á ÛÒ>]ó5#)c>Ïý\ÊFo“îqüo(ãx¬· ãyÁ|ʘoMìWÆïe"/VÏã7˜r ÇzàÄz–2>/Ö›„÷ ïz„0îwëIÊ…öñ˜Íó=|½X¿‡‰õ$áŽÿÖƒ„1žè$ìï3¯[•Æïû•„Kü{w>§\é=…¹Ÿ´M߸ªÌóí Ê<ߨ$ÌñŽõ&åJŸ)öÑÝ€„±^:±^$ŒëÕB¬0æ 貤ì—6ÎçÍk±Þt÷ -é¾÷;a<ï­ŽÏ“óÅý@Â#¼´±ž¼¼Ïµ2Ö{ÖŠÏûšçcÅç}ûéòÆ!ÙÌ+¸ößC6ÆÛBçYaÌg·Û)ã÷øÃw½CÏ£Û Ç•Ñ>{÷8þ5æ{à÷ú:ž÷7êÕ…ñ¼µQ.Ìσç aœOîWHæó@/¨§ ÿãU¶›þ÷¶•ö—È?ûH?ô¯`ôèBüpðà.é·¯Ÿýœú!#‚•{—¼‡ÜXÝž}Ú4f4}¢ïšM¦OYÇ©Kô ÏXÑw÷!º.ïè3ü ÓF¨™ ¿JgÒm¦?ˆäÈeú2â+>SѧX;è^2 Až‚èŒÕ«L_˜þ*èS“;óX™Üø5±î“‰>ÒHmËœ<¸oÅÁƒÙ›ñ¡ßÐ'Öƒ2ývÝžÑ߸£ƒñÂG‰‰+Mæ$½ƒq¢O£cs"zAc %³ò`ïšè/€çB¯à×D›'Aød?çÌÁƒ=:ÑÑ MÐ;"55Ñ7}-dš½Ü˜’.vTJô  ë)™è[£×ÃFz–w¢ñŸºC%Óú³&ò5:;'g.ì§.¢±+½s‘–éCe t×KD_å‰lÜD*k"ÙúáÄP¹ÜŠ>TV2}¨¬Oχ>TîŽà¦èCeô3Kô¡²KtKúFËldmeúPÙRúPÙØç”9xð”l<Ø3s{‚r¢¤ÝüíM6ªË2} mÔ–eNÌÎ&;ö?!ÑÒY »–<ôôƒGÝÚ7vÄdúPaWÞLôVEwÜLtÖ5 †D Ç¢“Ä7Ãièó‘}h=%9ÑÑ¡ÿÐo@g`&¢/+ödr V<ü±Ól¦O?ÎÂe3=l—?×gvÌTü‡èoÌž%‰>ý`?ØLŸ~0ðe‰v©xÝ/<ÂŒË~Ív¡x¶8~Ni¶›Åv‚×ã—v°Ç“¸É»qK#Ž·tÄ3d#޼`~-Ìv¥#þ{¯Ñî£0îçuÄ<. ³]çDX6âR#./›í\wÄݾF\dÙˆËÎF\n-ˆÓÊf;I‹ã¿›åÜ5âØ²qlÙlÚ—“¸ÖÚ#îö5â°+Ú £Eˆ»yÍíRÑŽSqüå ˆ»­qzÙˆ ¯Œ3ÉFÜgÅë4a‹ã­J#Ž»®ˆ;ýîh'WwÄQ¾FÜo=ùší^OÄq¾öå¤ÛîÒ㎳}9äºi³$^‡ #N9âÊ^s¹ã¶£ô¸¶ìUhÆ5¾qü2iĵ[GÜM¶On»IÛÒh—}×½šp´£2l—F\3Û5 #îÞ6âv²‡lq7Ùl÷Ö"nï»÷v]‡ôŠã=n:›íðzÄÁ½Æõ¾a;ur´“a;=a¶;œˆ#ÌÆõ¾Mœ¯l\ï㮳}÷Ei‹ãI³Ý^§$óuæmgW»4âè;¶ ³ÊÑ…÷Þ+~/Ù-Ž?ÚÇc»°0âþQ÷–ÜO´K3”‹dã÷ø3ç5~lg'Ìvx,×ÍFœQ^÷óÍ}âïùîh÷ÃvÂ8ß§~+ûÅlçPQŽ‘çÅc¾+ŒçÅc(}½¢¶ƒã|ßµ©&ÍvXÆù> Û‰³q¾ÏŽr¤×8ßQ.›Ív"'Ê;{Æù>Ø®™Íó}°1›qó%Ê^#Σl×Ëf;å@¯?í&¦ò`FÁ|Nq¥FùÃk¶s0œÏl”[ı £\¿t_FœHéñy^³ÆÀvÞןvX^•žGší(&¶kg#ƒí„7ÀvÂlÇ€vÉw_|_Ÿ2âLïzÔF_ý” ¼þ´#Uqxq[ˆ «ãùuÄ©WC¹T6ÆSE;OaŒ'¶;Fœ×Ó„gßp½ÏF¹=×Ë’¹ÛÛLi¶èØÞ™¸ƒ:°]7q‡uà|g³ÝVç…ÙÎÛé³ñ{¨Øî•quÅv×ןvÜîúqUQ.˜¸¶+f»–f³Ú‰¿6¾ ¾î]q—í2…wõza\o­`»a6âÌ.”'_±ÝèõŽv(çÆïÙjlç|ßóŸ!Í8~´³Æï™å~ˆ«4ï›Íû¹ïêÒ?Û˜4â> »l„wÅr8aÄ%Þ}{Mší$PΖq™¶b;ßkÄ91N_q÷v>Ûâèg—FÜÖ­kҌۮñy¾;âQ—¡Œëѽ0Mi\nÝO—FÜ\ÃNaÆ‘#®I×#ÆÁ #®¤á}D2׫}b`ÒˆÃb\»0Û ]¡0âÐâ „ts š4ã̱C%¹EþÆvÇl\OïÄ»Jãzz'öCºEܺi#.«£]ž0㌽¯rv´3éÛí³—nØ®™ù×3…ÑnáÆ‘iÆ9#.Hq8½ãzú:â¸:v§ã~€\GeÄ]aaH™q׈F\^ŸÙ%⺧2ËmÜSšq߈ãÆýj`?Š0ãŒ±Þ ŒÏ3¸]ùq=Œ›س"ŒÏ‹ʈsØ™"ÌÏëu‹Êü¼x#Œùô@OòŽÏÛý÷"ÌÏ‹÷1Âü<ÃË…ùy|áR™Ÿïc’#.}#•gŒíÔÂü<(§æçAœp‰¸ä;^’'Û5°ÜFx}â”·ô'ŽùÎÇ„ñ{¹Šp´3äz¸ðŠ8ã©ë㎅1ß¼ëÝK8ž§/Ì)3Îq1ˆ›xÆý„q¿ÉϳÏ#¸ŸL²°ßEë «â|e׈[õñü:â —?+c>ȸVaÆÁ"ÎB˜q®h÷%Œv.Ø3®Œçm¶{Oæ¦_߯¾¤w‹òÂŒ«8_Ùˆk\˜¯ ãyˆíÞ…q=YxöºD;˜åu_Êø=/_˜Tfœ.â„1Ÿ[hw%Œç廟ó3.ìú^„±ÞŸTáoq¨Âx^a¹H2ÛeÛ} £Ý×F9¿0ã>=·Fí²Øî[Ø>q¤UßçÆþîä¸_ìíÏ£ÂëjÒ¸ž2T¸EÜåÝï%Œëã,…Çé;J³GÄe¢Ý0~ïl§,ŒßûA;a<3®R˜q£^é’Ý#Îq•¸3nRxDå½Þãyãx_ežO_ØWæùô¾íÙ-Î'Þ— 3.Ô7(#ŽÿøWÙ"ÎòîÇöùXÄ9&ã|JÃï1åví>„QŽXð>J˜q’x%̸GÄ &WÆÍ°®°_nŸÿ÷²QNÆ8>aÆÉ¡¹0ã¼ ¿§lġԆëÅëÂréŠrWaÄ‘T”“ #.keÆÕmü^²ËÇ'ù¾ÆA9aõ…Cåqb?þ‡Ê=lÚˆSf‘¿ÉÞŒk5ß/£<Ã?~Oʈc1Ÿ/)£ÜÛ|>¢\»¯ø<Ÿ7{†ÏF9&Ö•7‡8,åþñ`Ÿqæ/•—d¾ñHåĈ›RF¹¶ù«\Âcs=ïÆAÙ‘žG5Štï&m¿ÄM)£\µù~¢ìÎ8ÄQ)3.È+ø”çÑ ã)å´Í÷[g·ˆS²;ñU^—ä¿×ìO\QÒ-âˆÊ”f\”WÎeÇý¢y» e”»#.Hã½y_9e\Ï‹«Œñ„ÙÜ/êq@Úˆ»sª4ãx®WÙˆ#èÞ®8›Ï+ŒãQfÑÀõ8q2h÷§Ì¸_XPÆõíü’wÄ]wÏ Už§s¿oaÄU!.G¹âïõ…«ìq?^¦Œñ‚¾šÊ¸ ¯HS¶ˆËùqãÊŽ8Äé(ã÷„ÑʈCÞ—C™q0í>x(ãûŸ÷uıbã»2âšÑ.M¿çáåq9k³h¯a=K×»»Þt¤‡âëMÙ9ÆS6â¦_˜”§³|¿I6‹áÚÂ|@ß×jø<Ù¯Ë?X¶1N ë Ê-Ü‹pÄ¡-ßo«Ìϳ0²'±0^³AC»eÄ.ÿa&/î×¾nÚ8ßhבÍz¤^|½àãüã×à…úŽ_ˆD…'o¡üƒ€¨—‘{À4†ÄANIŸ< ÈLlXzX™Êlä}¯éËŠÃÓA ‹Þ5i/¹dwWä·¢ÿ`†×õ Ùf&‹ ÆŒzü‡œM±ž{ð§qÞ]¼™¾0&ê[nÜV3l;“éåá+™…l-“™>‘ÙÉÑ}ÛÄ-ÿ¸è ¸ì$«ªú‚ ;.w«™ƒlCÑȾ3’öeÎ_32}5±™YÈû†ç¥áb}2³“«dV<œÝ{SWäY™ m¥2ý±nz÷'ÁF¶¦è·Ä‰†Oû}OÖK&vÒ«ý+yOÎKvª@º ¿(žÞQЧá«°/¹‰æþ–â$÷Vô4“õ‰‘¶a;“©“­Ý‘˜ ™^¸27ê¦ò±tT•&’5•}Ê9?•ߨñ@{Ó6–b#½š-Ñ/ªÌâxɤäUQišØÉ»Oí%·1Þ·L¦8‚G±2åÃ+rÃBûøÌAú Lôř勉üYý¸yÚP,䜉·,ÍɦN‰þÃY?[¾ÿÊ%eæ‡dúOãÇ4ÄÛÅ=äOc±™S"’IØ >1²G¼_b¤‹xÆC¾Æ^M*ý%ÉZÑ‚ù¡ÿ4œ?ä „ÅvN‰>¡ZX½Î4’­[¿±cú±*«}ã3O2ýV¾ ªÂò¥ò}çUQîÏÌÂÌ“"hL©ÑÌñ¡O¶™ˆò’IÈÌ<ÉôýÝ¢ à7²ËÚJœ¤×ˆ%ú#èîÑìW6æ¯n´÷ά¿dž¼dvÐÆÞL¿lî`÷D#çÈdjæzhwâ$)úEu³áP¢_TOAÜóÉ‹ê©ÑÌã¡OOV-}Z{Ø(ç!'‡ml{p+"!¤#‚ùaÇ@:l “èÓž3cÿÿCfg!|ú!'[«$N’ÁôýFðž"³Bÿ+ùÐ}¸Ç:±—bý%/å%— ωÝêGp+úÃÔ­”dŸÃŠ72Ê(-ìã’Ý>ÞÙ·þÿЫIOµ ˆE¸…mI—jaÎòw‚N*r4³Q¨^~nô~ŒBÖbȱ|ÍÜëݤQHZ6*¾ž´ÂœÑlÊR £P³ŒÈyýîÁB÷2°5A÷Eèî,T-+6æ¾fÌBNqv ›ÂÜÈ[ sD³Qˆ_Näl¾F¡hÅsY²1èâîèYÒ¾uíųQH[ѧCøTã9½¯kÑXlL}BKìèÊ.,d­-6¢¾F¡jõŠaeí çu „ê+’ÊŸ œ¢¼ã|¢\˜ç³ÇFÑ×(¤eŽ0Ï' Í“?A?(î$ãQ³1ÞYÈ’Ì>TÕ¼á¨òøxJc<ú¨'÷bÁÓ’0Η!ŽPç ?ŽUT (ã|6‚fîï)Ù"Ha„1^QÑ¢Œñz/ÌE¸Æ÷y¿0¿Ñãûhè“Ìe׫Jãûh˜‡ ãzÑЇU߃l^.IÞ ›±¥q¾ ½“7ÏwÃFiaœoáã|ßùèŽ ®;OÞÒ¸^3ÈFAF,ÄHfzECUeÜ/ÑWù4Ó¦4‚žºf3òÚ7Rec>Ò‘“ŸÜ#Hgø\\¸GÐL+Òþèr}W“–€jÇÌXA$áÂúêÈ™Oæ‹ôdSªôÀùðÕeµ Ïp27RÝ ™R¥tÆ á6hßè—ý ªiC¸0H ëRʾ‘£ßq§ŒBýáïh^ûF&õ lÊfP7âd׺©Ê܈T‡ÿp”q½>SÆõqÕÙL´½A:E×»É2Ùí— eÌW§ÏDzùz£"æR™A.ܨ’Í lÏþå4œïìO7½Æïñ©6áÎß#‚t”Ô±Q(¿Ç”c¿ÇéoÔ•¤„·HʶèiÂ,4¿¾/Ò…$1Æ[v‹ œu¤q¿›þ`˜óe¬ê*3HÆ m•ñ}/ÃF­×ܨ_±>«Ü#(Ç7ReãypyÊä}ø}/¿q(ãû^¾î¢Œï{a#M2ûä0ˆGß÷òDe|ß·  GЂv”ä²<(Pß÷ò @e q£Íëø½¯ƒÙ-‚~¬Ic=`œ×ñ{GÐ2‚İ’šÍ÷×¾‘!AœÛ'–ÊZÛæ5“ƒPvÃùÈfÐOÇxÉÆõ||ž×ñ<Œ ȩöŒ$¯Û'èg 3èáú i©!èGA¥Û)ã~~¦ò'(É •„äë»Ê˜O#H(y®‡ZVîôsïg¸_ "›}®xáWÆx:þN=›+ ”1^ŽW¤+3hÅ’g©4ߨ'Œ ¬W)[Ñüøb²ÙGšA4Ê Êñ»2‚ æKÂ(”(Øè”ÜYˆTüƒ)£¯xb‚2 ‹?¯d·Ê9ؘ”Ý"ÈÆ7:e—ª™MØ"¨…QÈZýÝŒ2 ioE  W¼xqéA.ݤQhƒ —ì(¤«ÞÇG™A;4¨\#¨å^ï^còÏ”r¯' ÊðeaTŸO%ïºÀFaY˜Ÿ8åú *9‹A·¢_…œæM\”ë¢ïxHfŸ±»°z7j #Â|b©ŒB@¬'es=ÍX ŒB4…(#ˆÁ|/Q6_+±!¦2 ±ÐÐVA x›“ÍœþéH#è á~-ŒBl$feóyÛ°£ŒBoôÉUÆõºy—ìÊBø›èפ$Ð}ïƒ2 ¤›Í aOD­Ò(„í¾^§Ìïà÷øxDÐA÷Ä~å_ƒ²wÚ{bƒòˆ †;“tkêUÆx˜ [=ÜBŒäÉBtA(£Ðë%Êø½¡Ojöàï}P•q=ØhœÌçYOToÒ(Ô¾#P…â\In 2CЃ2®ÇóAa\ï”Í{ JPî”àOv‰ „1„ã~ˆ eLoH¢ŒûùôóìA þÎ]…ºwOÜ’F!öÝ7³;Yxã£-ùvÇfoA-ê O£ïïAØâø[HÌ-w7òÏ ã÷ºüÅž²EÐ@]Â,T»»¬ý|d#hnù‹eܯ á’#rmü{Ù˜Ï,Üï„1[¾[6»G¡·¿TÆ|uûû¶ln¨5TT(³ÐÝw•(ãz‹Š•l {!ú‘f¡¿W|*#Híø^Äì":þ`ªŒ¿÷V¼5anYº¾…6¸žž…ñú8‚pY¨­Œùöñ­Œ>¦Åƒ†³£Oqñ `eBoJ•½XHÃç-aú¢¢^…Bxñ’…œÅxÊþñÎæ|ðbßç aúòyE…>Õ[IewW¯èS¶°ÿ÷^s¿B«¸Þ £ŒÏ;Â,„ö —lîG¸^Ú($3±˜]Y(ŠÊ(”ÃÆ…ì(Db˜2 ¡nbÙ”f¡2ÖC_ƒ o¡ð >¯WÄeGŸoó}zÊ- eï|39úX³ÐU}¢Yèš}šÞ³Ô_ *ã÷ÜüÁ.››¸¥•YH‰çÑäŽç(4.QHzïÉÑ·ûÆåŠBÌå÷ƒd‹ãQh)Ì>ò˜'GP …Y(¸|<&ö GéäÊBÓ^¼"òãï…a?ûòÖûÔøÿÿø_ÿû«|ýßed¥?nÿâ§o~üÏ_¿ëîûùßy›²_þwh[öõ»²´øßÝÅ_ÿwðýßýÍŸüÕ_þçßÿÍ×?ýEüù§ýã¯þîÇiùúóÿ~íÿÊÿ?þ³"x·¢=ùŸÿòõŸþîþöë¿}ÝU§ÿüõçÿûã¿ÿéÿ‰Ï¿Œ´ûoøšÕùºO´ÿÑäÞ~~¿þöoü?þ cù endstream endobj 68 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 72 0 obj << /Length 3053 /Filter /FlateDecode >> stream xÚí]ÛÆñý~…°ÔZ4¹ËO¤nQ1ê ÒæŠ>ØÊ“x’l‰¼ˆ’åËC{æsw)ñ».àèƒÄåîììÌìì|-Ÿ]_=yž§“*ªr“O®o'Uy9ɳ"26›\/'/§/Ú™5Ówø×ìgÉ´ofs[Ó;hï;ø»_ømñï0³ÉôžÁN4q³‚î56ØÂßjöúúÛ'ÏË`ù$Ë£¤˜Ä¼ðwÝA.pI›ÓÜu}à—¾4ð×òû±÷˜¡£`hø5üÚÍLl˜rŠ“öõ©å©w³¹É§ÝÝ‘º€Z¸Äu¬PR£4VÍù˜Ì…öy’DU&¢["šž+nDVGe  $I ƒ,Lš« ^Å6¹”SÙ,UòEd™é¢n¹A N;}V#ĽrÞs/Üz($ªóCyÚo„vAX{øáC€ÕñµA¡HrP¢8‰TQ‘–L,1sõÍõÕW 0O’‰1ITT tð4¥,vW/_Ç“% ~;‰# C'ÝM’2Ê,ÎÛN~¸úûÕ3Ôßð.Ú…RÄRŽ'yT¶DÀ"J¬Ò¢´Jªî7c Ù<™”‘5‚ì)±è‹Ä¾Bf¿gq½ᘢd¨3ÚRgJ7­þzlWóÊíjß¼•É£²ªè(®Ä «}w¼{›-#“8à)Ø(µÆkd6¶‰ ýqœ~Ô&ZÀGìb¸œ)€úÔ7ñ‹ øUåŹDðìƒ(ÓiT¦©j -à ¸­(F×Ímdªäl+’ô¡½xsI˜î(û ¸L<¤_T^¦ˆAkÀh‚ÖØØòðõZÌ#X“4/Ø ³…÷<"„&iÁÐBè{T{mvVÞSmeZ1oÔRãÀŽ|@³ä¡›¬ödu+Z×¹)Ø£í\Ñß«#Á›X0–KÜ>†îª"LM½$íÊSß± ³PÔ¨[éXàhhâ;1Ûê¤Ó2žÞíg™™ãðÆ9²S‚‘o¤ƒ<ôAH¸´„6޲ÜmqM;PNëVž[õ{òÈâCÝÂÒèaawHv·ÈÛžÇh—Üž&ܪ;ÄÒÕ t,¨Ñl^¦Õô_³2Uœ ]š@5AÄ{” Á-@´ðFò ‚@gVzgfaSænAѰ•€o§á7èFE;É÷Ýa°Aý'u¥kïn‘*Rq©ã*å<òJýrßKô@˜w³j‰Ö„f|p-ôÅ©•ƒö§Ù<3vŠ!Ü] ùl 2…&K÷“¶Ÿ‹ð§ðûê ‰}/ðHÚ‘äÆý_1z¶ñp;„²ÇrØü#4çܬ…¶HC¤»@õ7² Ð~+kÖB3>'ê¾ú"‚_ g+èt+“ ÚVÂèίÿÂ7Wò{*¿D—¤¹ÿáÇ홌;¡SpÔ‚¹5ƒù¿çGÈý1w³ÿô±<&Þ Åe&ÈYJÔN£|²²~Ó5úo…`…«v°ÙóÁ ±ùL›_¿ˆ³/,bû™"¶ÿñ¹ˆÕGìÈ®œ‹w#„7‚Vyý€•¸xGØÞ–Ù—6ÊÍ>»w‚A98ãa…AŸK¸’, p.Ið†Î£ÁŸBâ”ÛFOÒÖ-çe!Å6CÓô‰Ò4Ÿ%MóiÒLŠ‚Ì߀4Eÿ ™ØO”IœFiükÓ°ðÁ©I RIªÑã­ö`„9?J¡c",DúÄQÔ"8=œ Ó'/v”ب4BÌKAÿšQ]Cóðû'ü¾¹ŒßçRªe¤´w !rœK]g/{\Hq'èèPäÛ{7ÜGñ(¦³»ÇAÅ­ gIFsê—´uœglý Aˆ‹ã.ÄÅy»0kâ®MÏ϶á4Mr5@ä°/<òïeG„d6Ë8`Øó ¦§c‘Žƒ–;5‰CCùC‰èä)E\Iå²á¹AAûæDÏR®D¸î–(€ŽêAŒÝbª˜ÚéiíÎ$eF42.øõÜã2_ÃÚFIÆÒeI_p”S”ÅA2£îššë:LcÌ#’êkÂç¦Ê9¥¥–”ÇTåŒøTê°Ýiľ¢Ê-$ZÔ½Ô²f|ˆëæh-ÜTÓœj¼hRíÚÙt·qÙ¸ˆ!ÞͲœ“»#I¶/µ±T „ZšCÇV3çWq’J!•PÓ9YiîPJ)÷a‚߸JôÒÕS%+©>”>Jæ8"FœµT" )È””J˜#e„¿´\š¢b §UB¤–”“ž"P@¾>t~qìV6¦Þ5dYºý[Æ%yˆËûøN¶Cp“† ®†ÊA>|c‚bÑí‚ ‹Öp™]·÷Ș/*mSEdË$³OŠÖ~,Ì=*gzÍ€kóc˜†CW>Ü4x¯—ËÀon\y†ª»»^°¶¢(ñVX%$<~Kzn÷û4áñÆ&U ¤wõ"¸}fó-MÝÊZ¡bs%›1b[«ÞÈÅL^Ñ„Îé‘IJ$Ú3X-Owô‚&[¸ÂÒÊ©ü‚´=/¹hÔ¸¨ElDæY–À±n,aÿ ’#Ȧ秿q‚—þX^ì¸(½µ{Wn:“Pw«D²±¬PºaðîU†DC ó­î33Zë^&#iÄò[?ïtòÉ.ÙB °C½Ùs‡XÄMþøö¨LÑ»e6>Çv·ç5õ0PÅŠ”v!„žW;{^9\Äe¶„Ü#ö%F—#R|ó>¡ 4ô=.[¼¬[–QšgŠsÑéÈB<¶8âäè ;¥X©¾¦Ld›hNˆÀ©=ÕCùnVº´pŒ°»Z,÷=å‚2†d~Í·¿¡åuW€P± j>ª¼‚fŒœì@N•­,VÜÕˆgÉ€¸öÿWÒ¢ƒ_X>\vn·z†RJ7¾+<øÉôÏp`âxúƒ;t ³á¤UW˨<ø$³5v¯z<˜¹Óñl±K½'+ûÓC–ÐízJV·çœÈ¦)9¸ÔpÌZ÷ä¥ê½¨†K–zi¤ž¦”‹÷ÝîN/Ýu=Ò•TBºîÀ/ž"3&‰Ò;V`µ††êq¯.éæ8ÞÒé.´‰7çI bÊŒ8új}(t{®àQ³¶¤œfüè×$T´ž{œ$‘+”^M#LjóÔóúh좄¯¤`™ ä/ö@ð”ÂÁ³ÅÀÆ]`˜ŽpÈ‹k™”ü­ Ýrz·d½ImE¨)‚G(©üLóà˜ÿsèG¢{`%ðÝ<ËÅ…¬tö÷”Ä;+Úm½)\vŒ¤Uó¼¼w©œFqÛ>‡ÙÝÊW<ÜzST·Û®½'UDêìq|¤"é ¾/êÞsfä(’¥Ó±õ0Π7|Gò,(LãŒUÏí¥RO)Ë$‰…J[NÝHh¯ÑºÔº<Ák>Ëóaùǵ úò¨C'‰ šÂß;©_P¨ì0íc¬U´®‘³Öi˜†(µ0Qf±†#ξ¸±ƒ®Äç¯-ƒ BMÀÒ ÝFž?„VR-]õúuWõ¡ãø£·ÌÜ‹ÃÅ­]m´j_‘åÜ£V´§e˜˼sÇ.6"«V p.<ƒ¨rºÍo4OQçKñ°˜ê^?f:·èmÒ l¸ [¾žÉnÉéÉ™î–…Æølc 6Ó¿mÈçÊX9EZû.xðµd¢>Hný-6eNûÇcÂ’/îP¸t’\UG}sÂMÂl³Æn®½àÓ§«uÐÓpûØêí^ÍÕzÿíùŽç­½Fέ¬º|þcˆFR䃪!í:½OG’tgNîO¼ß»¹ /e’ÿŵíE¶òÛ¸Æ:K–â**s𗞥~²ç>÷ú±aÕ endstream endobj 76 0 obj << /Length 1052 /Filter /FlateDecode >> stream xÚÕX[o›H~÷¯@i¥…Æ`fÆà¡ÚîC»©U_*ù-í‹1¦Šƒ›u¢•ö·ïœ9g`À8Mµ‰Ôʆ9·ï\‡„9¡ú1'Y‹X:" ƒp>w²íä¯IÄ\Ì5ƒµÔ$Fb´1{¿œß«É'õ3$ŸTú–ηËÉìJ: ¨‹åº5Ë€ñ…³\9×î•ÇÜR]ES«{îùóH¸ÑkÏ¥p—½ÁÝ:WDÿèñ… «²Øx\ºX!GZì è{uj ªÿTWs ;Õ-ò7ÀRÞ‚e”»bÑJ–™e¹ÐØöûžáKbÞà{†4ÒX»˜MÕ¨åyΩZIî®»ö¾,?¨úŒIcL€’oÓmTÝ”€H„ÕÇwj- QÕìP1ì°Dàù‘”5!C÷W‘k”š©xÑÁ ã–¤878tÔÎèÍ”ˆ©çó(v?31¿¼ðÜÖ>f˜*m¤ÀX(™Ü‹·) ù ö "•L;†ã‚ë5@ÂÝÄMÄ”( +Õd( Ü˜:СÀì*š[eËÔR­|žRJÄô›r•cѬ àáœ&ý ‹ËB-s«®ÏaªÇûnYÐõ†.Ž$†²ÿâ#%¦_/=L¤ö+¶µw%%uo¸?Õa^ˆ ”Q?ÖkâØ’Sûž4]PäM2+‹/%Þ  øcÎDNï2n—ùç²xn—ÅåòÝ ê¡û¦KV“0ÐÿZ]²C`µžO]j}a„ÝÒPÚÓPïÂÁsi@í¼ÿ¦¦-»9]ѶAÖŸÛÌú{v>÷ߌ  ézÕ9kš®:ç3roFãªé‹g£Þg”Í„ø¨xXHœ–Cÿÿ Lò ™«Ñ,DKFŸ!','ÿM7»ä endstream endobj 69 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-flc4.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 77 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 78 0 R>> /ExtGState << >>/ColorSpace << /sRGB 79 0 R >>>> /Length 1004 /Filter /FlateDecode >> stream xœ¥WËnG ¼ÏWð@B°í&û}Œ$€€p´€¶OòZ¶`)‘#Èß§ú13½’`OGí‚KÕ°šd9LgÄtE·Ókº%“”ñóg¥#‰u*xº;к™^î§÷üú’.î'­´ÖÔÞ_ÜL/~LLgø»š¸<ý·©6THʺní%È)šà ?tÛ\­j­^“¿fw3;¿Jwþj®~—°ú›Ùù+Å¿²hù5™»5Â>°‚²¶¤Õ=Uo ™ãRK=Šõ¢|k¡Ñ¸¢½2+£qÅ£`—¸½¸\OV8g¤š_fS¢S,°[UŽÍùŸÏKK>S‹„Y%DT±^ÏŸ.ty÷ç׿6ŸÚ`Ë-µ>?áíÉ›S2šNŸ/?ý}ø@ï·_7ÿÒ»“Þž¾§ýY»OcJËÿCi½œ:À¡Öa»Ò:ep®(Bó­ EóBƒŠ6¹SÝ Ô‰ Á=5šsùYÜ|ŶC1Ë´¥uf j1ËØÊíµ¯2o«µç\) FIͺÙ\0È 8LÕ Az£1‰âÁ¨¢£rðCj„bˆ{_x79Ý 5г(/iéÐå -a jq™0‡laýùÑb9~`µ]™ì’wƒš»Ÿâò4–µÍl8…\õQ°3ŠQpƒ…Qp^ùPk†,ãªAbÙ`K£`ƒËæu)Ûa0VÇ,-¨¢Œå1²6‹ûvã2…Ù„2XO¯U.æ]X ¾•u˜W›1%K²A&he²-8EÞHq…„³[ j!ÄÙ6è®ú¹ÇBˆf±yÛ\ÂHV”se?žJ™|%ÅÐ$L‚…[> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 84 0 obj << /Length 2648 /Filter /FlateDecode >> stream xÚåËrã¸ñî¯`M’ZzwÄ!‚$NÕìÖNÕæ”d\•ÃÄZ’-Méá%¥Ñ8‡|ûö (R’]³·X"F£ßÝhèÇÛ«wlUI•ë<º}ˆ”*’¼Ê¢Ü‰66ºEŸâ¿]O¬6ñúZÅ5<;xžàYÁ³•ïÿ¤6…Ÿ¯ò9‡g-`oyõóé©© B„7ðL=BEP*Öò›ñßÝþ=²:ÑiM”J*+ô~\Hì½à|Ï{x‰Ú_Ùz/½é<†åßÂÄR°-Æf¼ôA0ãЯ‚ß7ÂÜ3ƒ ò<Û•­Ho]ÐVhK—Àuª£”ùþN@B…ÚDëÊlFp €z1¢å>1Y•¥íK^,å¿B3‹Ž†þ ¯~ÝB]‰dD$CoføûGù}PíÄ…d¤£û?‰V—"sDÕöêÏð”^Ú8”Êó=<}TüN0ìÅzÓ1XgšS±1õ©ªLLa/߸ùNhïÅÊ Üm.–u#âH౞ò•ðõ, =™O´Ê’Ôf£¢ÿÿ¼EμÊÞóö¢—Z >‹dÛž+…úÍ{›ôãÈ9ûBÂ?Iìp±äîŒåœÇÜŠBë¡åž móÀ çP¨<Øb ]dü˜_{zc1Á ÆòUà)óW{Ê Æ/ھ͓\½Üv·ßº¾1Ù¼À/TɨR£w¡|9p Ø#Y;Sø"¿«þâWEKOè»y(¤‰‚wxè*Q:cªÿE†0­‰pâ,UñáÚèx¾äœ¯»–±•²*KÊÒIü}{i"ô~ü<\ë‚3èãâZ—ûS Á–ñŒ]Le!—þ»ÜZ#ŠåV†HÏXs¼mËÎCïÛåý(“3)-?lÙ¢žâø¢[FŠf.{j¦Íp§ªŠ©ªØ? _0²”ߢÌ,P—©¼GÌl¦^ iê<ž7Ý¥Ñ &ÁS•Ñ@ב1‰Ñh¸«èãÕ?¯~Ä“s®—µ‰-4oû4¤Ë&©2ßÀ£ÊN2ùy•ëDºqÈ$3fpºÓªHR8XæIi²€T¨'‚c€-»Ot‘X­íGŒä&Ð÷?p9Lðu]”£F’•À¶¹@«~¡FMAG«3U@vYš¾JË1êŽ;ßÈGOm=F>í)2Ò©½€‡¼g*ÊŒú9ÐοžÁÚ®ºryÄ¥²$/¦¢´N²,1ãM%KuRî Œ.ö3Ã.7©O¨*þ®å¡aæ¤UÀÒF¢|á›-®b•[`ô†UÏŒ¬‹Çð>žhÉ“ëÞp‘E»â—>0\˜iàS’2€‰rý/^°ìZØJ.Y?9ZÛbA¿mÖ]s+=QcB>9%È)]6×\¾²|á+L·ÚË–Hbr56÷>Õ3s+O¤¸“…"Ìq¡}¡héÐ?Ÿ¢ IïWïðÙ“îð¤çÎ0ŠSÈHGÂûÜ9uß]iÚ~üy8ÑäkÏœ©A§©˜ÿ:`cÍJ9×½ë#} ڳϗ7Ä4½õíË—Ò40‚Þ˜:Ó¼q›éX¦¯¡–V|IòÜýy Cw—›'o‚NïØî3¿â‹€ßx‰Í<"/•@¯,ϹàÜœ…E¼ ©¿¹:Þù%†q™¢W`éIòB!öñb9N +›q.)#¥úŠK¥ÅiàÉ¥í¢å7£ß‰²…o…â\!¾W².•Fì€ÄMãAâ†SP=jè[i=It9º._#J Äë"Ö2Ђh}(eç*žýß©ûþÁÓ´éÃ6žˆ¥7“ Ê‚ž§ÂÍ y{>ØŠ§ Lˆ{0á¾—•pÿÿ£û;+a$Ü\Ò@Èá¦n¦ýס³ø¸Ñð¦/ëqŸ_ÚIŒýüTú$ówý~w!¡¡ðÃJ¢G–A¹Ü5Vñ0e¥è½u5MÉRš¥u׃Ç.BéÚ{1jK¨+ÊÓõ_é+'ꈕXèÍùeØ‚Á•#BVsÑ‹¤-k_ŸÐT=uÆÛ A®bo¹—h+à .=¾í“+Uذäõ‹z´ Úp™PR½Vs#šÖâLP  ÊfÖ5ÉàwæºÃ+† Źô²k¢ÊìÔÏâ¡ •Íš£Í–$škɃȼI^3uþÚlÉÑ`Ó‚‹~wŠÀÕgº ×´-tÐR$îØˆÔô.'Ʀ¨Þ2Þ¯‚õäÌŠ;ç0» íCó4÷8õ,ð84SÛËñ+à ï¬Êé:|ÁG$ZN^·Æ€Z7ak̪㶪më)Î-õò3ÚŽlL¸?¸É¼7†i±Ÿõ8pñ Ñ£öÍ6 OÅ`Ð÷ŽmŸk²ºº™1%s§{úâuá.<õ…ˆvaR‡Xõ}ÊÑæ£ƒŸ ›Ø–-Àê6`™}1$ÙêH­Î'QX¤uï$Ÿî÷Ž-mÍ-E-9«•ã„Á«/Gä‚Ôú¸`<.˜á’?˜bë餀J b4 ÞÝe l;çÐ0B)²»„¶ú×|)K*'œÁî}£tÛÅ3Ã1Ô¿—s(T‚؆ËrAäht’J[ÕB]©´’T´™-ùªŠZúÔoȘ–ÝOÔ)_{÷óHŠ7îI™JÁ®‚®TgRø¾æ[…¥C‹cµ;6Ûî ÇEñð®c¹%hD™8}ïܤވá#` Yüœ9s­ù[.”x_NøL£‹ øá#Ã~çP©ãLÇj@œÛO¿uMØ»x4ü«@Xþìjô Sq+&¼üwŽj³eàp[V L²ôÈpü`Þ ‚Aé9у„ rßUr9ŠîÈÈ1¨íÊÍ^b"¬¾õ[ó%¼Ì{ÔQŠ“{8j¯ì¸›ê¤,,]ñ–¥Ø‘2®}ú?¯§ endstream endobj 89 0 obj << /Length 3135 /Filter /FlateDecode >> stream xÚÍZËã¶¿ï_1@zФk­(‰>€dÑEZtÑCè!ÍAckl'¶åXvfçÒ¿½ß“¤dšh›ÃŒøæÇïÍýÕÛwÜÝ2_6es÷ðt·ló¶qwmó²²wë»o³Ë½É¶Ýå~Q¶mÖ­VP®ÇûÒQψí.{Î<à…±+nÛœi(ü;½…ç²nÓsWw\sa„Þþü£K耲ôÑÆØ õîÜXWÁÏ2{¦¦ôn¶÷eKãú°L‡m?Ñ$ÈÓ0ã^ŽwÜðT\¥“UÀX(”Ĥþ‰˜uÌïÜó°ñðAÚxxlæÃ¿û`MdoU Œ(j` ±âyKdѸØ,Ë"_Ö~”?æ(%­EŽ(7Ë‹ª)sW»)³Ç­jÒIo >ÕIt€ÈjüoZâÌ…G{Æ4†l—”ù„ì{á,%2ãM/[Ärêp½â—d†Ôz"qLÔ ;YÃÁö`qkOZ–—µƒÌ'î€u Z„rUµÏBw”ÐL¿pUfãUXô«mÈ`°kå»tsdPUƒ.=[-ÉdÈë—(UØ­ló¦*y7›ÃHs”uöÍ%˜8‚zÕy}¢£Ü¨’îòÊ^ìoìȵ­Ñ‘Ôg6)ªw'÷€§E£ª­U›Æ¢x¼N‰‡¸>bûßœÁòZ íx‚س‹!­; ›…ГþÉNàŽßI ºÚ ë@X; >é€l¼J§ì<ŠÒ³|U& A&%T.ëìy§~’©¦Fì÷ŒÁ†[šªÂ„P#„~ ¤æ?Fª‡riÙʲAŽ &C¯^™ìïèÕûˆ4P¿²Âvº&Ð×ÂßLöޤõ)¢„’™×˜bxmÕêžp$9e$ÓÙƒsmÞÛû’Ë¢Ï0¿g¯ÒŠQ9âIIB{¬Ïf&×ëA½ÿš·ÛJ&Æe<1¯¥¿œŠ„ºèªóÂY †Ž¾[sE}$%kÜ"åGià©;G×”‹xnŸÑxÁŒh8Hn´ö†'IO/©6ÒhjÊ]'„¾'ÉYi+MÍ`zª%³ŸíÛí÷áPê*¶# »É@Gsvòí»‘rV°?ÉÍleS@³+)£r¦bšÿÚX‚[ðQÙUb¢Øõ{(.¸8jF.†FõLß̆HóSÌrÈVßòÂk©j:¸å™†{ÿÉŸz}YëÄÍ¿ey´e^¶ÕÔ˜:/]êhŽGž†'¹* Ò@׎éúvÂ<ͨÓò×É1^wÒÜ—íMö›ˆ¢G–t¬IzLö-eà&ûþšpàU €]ºÉê°éw<è³hßGMH¶Ô­‘XUóÉ程#Í:ÉÚãÚ|YY8U•7-Jw\ÉÒg‘ÓÈ‹ô¢h}D\ÃjqÀ¾Ñ"“ýþ(Àß{ }*J }]`ÝT±x ‰ËukïQÎ,³Ö¯Ìõ’Ê©,ãW@ôG!²‘¡JtMõÿ5Ñ6"zùï9ÝÌ8mi¹_)Ñ#"-­ê.•4ü׈n"õh~žN×r¶âÿÆéÿ€èÑ8½¨Ë ±0P†â¢,r[:>‡^kS°éºŸg°µ‘Pà³TΘ,eLØ;×6ǯýq¶Á9ìÒEåãÀ_Ò@ 66û>X°§Ÿœ×š(¤×äÖŒõ8Ëøüûú€BsÍ[ñÍò½ô\"¤d}+ºªÎËð"Ÿ 5åR }öJ#·tüyÒ›=m`~”²¬nd¥mƒ,ƒs9ä0äëy‡ˆ«Ó鑼7Ù—2‰(¤ŸÙÀ¤|ýïb | ЕXÍ ®™¨‘ Û|+zË\J?ªÛúæYw-Í“3P“W ÞR䵘^lâ-—æmdR²7ºÙ:ü.øcÁç?(¡z4õ¨FPh[Ï#l qäb'û'~ŒÒ¯Ó¡(q…"|SãaT#šÂúü‹"ïÆ«ròë…á²}欪›GÄòw÷ÑcVc8š"c%ùÅlQ4Eö÷ñÛ¯IÂì)”@ ÙO7x .F èl 3Å3ö‘9o"ì\§6๟ x¢ð].‡… ¥¨[zŸ"8æ0Úað"‰ïÁî},ðïªL.§ƒ5³NØcdn_!H¯Òü”äÖ1‚˜žgl‰†(²¼—!Õäõá³ôÛÇN¾ŒÝ{@=ÒÿŒcªá“Š1Á )}|š2 ýl}38F/r)Wäüq蜾~WæËz‰— ºÑ àÒßüéáÍ¿|¬º endstream endobj 93 0 obj << /Length 1228 /Filter /FlateDecode >> stream xÚ­WÝo£F÷_a¥• wxù²9µ÷Põ"]_ªªV¥êšJÔ`›Bp«êÿÞùZvqð]*kÍ2;3;ó›ÙaVÍðSóté/“ÕÖÉü§fö+üô’'*=KçëÙÍíjž¢ºd¾ÞÛ&+_Ëù:Ÿrn]å”0v‡þ × ‘“¼s½(X9: õÈQÃ_†³"G–ÐÙà¥}r«è˜´E MÍ*2~h- ãF.Tdé©× –Nޤ þ®‘œ:Λ‡k9–¢fÏB4m:cð·à­eµàùá^6 ZFþmÈ9 Š5=sg{·þõ”òÓ8aˆÐ¶¬Ûk£ÃÀ©ÐÔ\  > ÝÜÆ‘µ‚)̼ õW+ú½ëÅAè<4ý¦O{‰0Å xlÉTØ_–2†%ôëß0*ñJ¤¼R`$:!=3§2ñ‡"ãøe HÊS‹hé|#O¢»–Šm›‹kœ  0[QÕò«ì/P1â4EƒßÁKúi•¨Y½9æðã à±ì«Â'z'|&ÌþöÌ8Ôà å›_9wÌŒm`U7é÷ΊÃÁ˜\Žצ!»¿™6ì¶`iz›>º—¡ëÄÂZF&–ŸLöŒ0ª÷„Ì(Ka)$M~,=_‘ÂZ.$us[k÷&àê,CuŒ¯e‹»I÷¾ÂýÖ>ÒcïÞ ?Fà[¡›d˜8ušÚWúî CËWÚ ¸þÙ.Qq™@ù_"zS9%KS§ôý”/Sž~–ÕÞdÙ9—âoUàJNΙ»(“p•N’dVQ݈¢J–6F¡’8òŒL•ágÙvcUÍB…rVcÁ>ù5ºÄ£pìÞ³hÐ_ÔrãѪϧUwt¡© ¾™•Úž+còéÂ&¿¸RžÚ­+;.ÞÈüñgÀ>r•(z°jƒ€û…òp~p­BsÇdþn'öw;†ÔLH2黉O{ìAªª ÈðjV‚­*ö?$˜z‘µÊ Á¸3ôÔ*ñÓˆºÜ&øÄõC ­Û±cŠi»îµ0^˜UoE‘:º%„$¹{¤îp7ôd‰´–”>ÀDj|èGÃÈù…‰ Ôê,,I(v²¶°Ì0æN(ãút¶/M?ˆ¡YŽ•ü0TF1®&·©e-Ī‚ÿî®B6óÜiàl2 ÊöÀ½Q›Ó‘ÖÊŽz^^h¶ø ;Òí"z‰vÀ¢c n’÷üb¡€Gí<…soV#Œ„Ìpž¸ÕgUãHÛ6—Ù¬0®îíè%«·®ŸªÊ¸cΟq±«Ô%±Â~›ô#Á—årGƒñ­¸î¥u=¯gL6ÙÚO²T7g0±g6—òÁ[8"KÖJãOX ²m?^E~ ®‘KkÂ^NMDœž8éQ…£aB fƱs¹ˆïC·L®>¹qâd0|N0 ILQÒïÍVÅVß×ô•K‡ÆW7t.{Ü8íE‡\‹ZÎ~"•zcÙ-ú‘¶~ÐÞ™´ƒ×¦¥|Óg?«°ÕÒOC¸³†±Ÿ,CFLŸ6û°žý¸j endstream endobj 90 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-flc5.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 94 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 95 0 R>> /ExtGState << >>/ColorSpace << /sRGB 96 0 R >>>> /Length 12942 /Filter /FlateDecode >> stream xœ¥ÝËŽ-Íqàùÿ=:Êûe*Á6 Àd0 AAÀ%Û",½¾wÄZ±»»bâ7<Å]Ýgï¬Ìª¬¬Èˆúñ—õãŸ>þ÷/õú¿?ûÃýOþñ¿ý¥ü(¥||ýÏßþÅyý¯{~üû/ý7åãï©ùú¿ú¥Úÿù—ÙÌúÑï¾>þùc”òcò÷¿}ü˜?&~ZKÿQöûÇÁÏŸÏöcµÏŸ“Ò~Ôóþyðóç³þØãóçäûç½Ôí¾üüù,?Îüü9ùþù·¯ûùíß?ÿóß±qÿî¢qÿðwÿòËŸýÇö:¿ûÇóƒÿ;þÃ9ýã´ö£œßýóÇŸ”ß|üîŸ~ù¿ó¿ûÇ~±¾>È_~³ýêßœþ>süêß¼÷Ç]_~sýÚßlãZ·øüÍó«ó®ïß³þê&êc}ÿ¢õW·Q¿óû7­ïFBOçÇðþâj{ý( ýéû½Ÿ@Ÿ?½ýÇÝïŸBŸ?­¯ÿ7ÎûÇä—ŸŸiñýsðóç­këø9ùåçø°ïŸ~ö¯­òÙúÙ@mÛ¹íÇ-è­?äÉø#¿{^MQù»òlü‘ß­ýÕR¿,;íûåýjÆÁ_–ýöürkãÇüeÙuÿØ/ïb§ß{Ñg{á\ð²òËhÕ>/ªÁö:µõujâÄ}gü[¿Âÿ^‡êÝ>V~ïïý'ÿý7õõ?üÉ?üí¿þáãÿõþóÇþöŸÿ×ïÿá7óñ»¿üUßþüX¯fþ?øŸüíÿù×ß|üiýÑûÿö›×¥úãOþö÷ï¿÷ú_¿X?>øÚ˜?öúø×øøoÿòkïc¯ïñúëý¥?vG‹`¼÷=Þ|]Žqü(Sr€¯s"øº‹8Ç’¬à슻ƒ§(®KnIÿ‡^=eHV°KÎ î)éÃIp\ptÉÎ"YÀ-é½|îeH6°nÅ6À6$ý:?ÚRô±6¯ÍWËÛÉÖœCs‚v‹´“²ŠÝ”UÔ*ÙAÿ‚‰û‚ýHNp_É Þ¦¸üc´½KZÓ­_ÿÁiM·^êKòJ°.ÅÑÀ¾»ÿC¯î6%¸4 x–bó¦[?j—¬`+ŠÕ›nGGzÒOè‰Æy°\°É NÍ î‰ŠÑïg‰Çÿ¡‹N˜9È#YÀÞ÷ý¤d6p-Åe'tóNœ9À9$ícìêw ÌÙÀqÇ—fOWìÖt»á”eNrKVp ŶÁ3%ýct몂õ‚ýJNp6ÉB^Åb'ÔA‘läÎl¸ábh*pÅãÿÐÄ8³«+îMoºeHA¿Y¿èÍž9A¿¨fú Ý8)‰~³~q-Éž­è7ëíSsÅ ÍÞ©è7ë×Ô›M÷`;à^’¼[Òþ¡Sнëg•´z*nô‰~+±7É®’Yq£?““Ì ö*YAŸ|&úþõàÈLÿ“±D¿•¿½j•, O—7ݵ¡©ØÀ&é7ëÙ8OÚ?t‹Ýjí‰Ù8§d·dïàiŠÍNÊ­¸ifV°E¿¿8ºdïQôŽtn|™œWÒ§c ñ`±‰£sI;)w` ‘x8šä}jšéc¢é½›Ý… Tf‡¤O _œM²“Wq^ð,Iÿ7úLÿ7úDtÂódçRôéå‹ëJp/IoØk7OÁ¶À1$è7 DïÀ¶–X›v§Ç’ö)¦yýÄ“Þ]»º+fe¯‹‰¦¹ýÄ~õ[eïε4ûÞÒÃÝýyQ¹Ð½Hû„Ôl­­Ü襽}6>Ö„ç¥kÓ®ô)Òí¹lÖ&Ýi¶×ÓýÒvGnh<­+7ºi×CŸxÐûhúLéŸÇî²Êh¯íýÝ'úãñþ¬Üi›i ´×õ9­ò¤mV«\é=¥÷¦ïOìí]}à*£¿½<ºv¡÷–ž‹>]zøù¬XƒPîôšÒèoµÛ}Zz†v¥‡¶?&Õ:ü-r§ï–®ø<ý]xÐ÷j£=±v Œþj¾Úî]xcI³V¬/(ú\iô׊åIÛ*ƒ0úc½8ß¶yðºônÚÞ^ o¼„Ñžû•½Š4úk«>/UôiÚø< ÷ƒlô×—ïÑöþÚºÏå…Ñ_žä•;=´Ñ_[öLžá«Ï3p?ÏFlýùéÅþØ|•[zÐ6SR.ôéÒç{á~/\i›/ £¿6¼£Tîô­Òè¯ OñÊ“^K»Ò·KO|žƒûE6ûë±_”á#ÝÑ^×:¦t£mŽ,Ìþx}íL¹ÓsI³?ÞèÉÞ^½àz$\i›K —M¡íß§WÌžæ+#³Í—•mo~” }–4úko˜/7ÚÖr„÷¡ÏOÜé;¥Ñ_»¯ÍIOÚï—•¾EýµcDýµcM_yгj—ð‘FîX…QF{NŒ·ì†Ï³p½î4Ï×ÓèÏ/Ï©=éý£=·¿KfÆjr§·òˆþ|ÑŸ…íýYØÛ{ôÇlôçuåF_môçQýý¹0úëËsk{{¬“+{{ŽŽùD6ú«yI£¿¬Õ({{í‘\ÂGýuLÌ×…Ñ^XwFX[QîôšÒè¯kØÊ3|¥ÑÇÆó¾p§Oîì„ðÚç ÂhÏ‹ûE6û#Öb”[xI³?^\¯„;½µÑgñÕiåJûùÌF|y6íNomô×Y}=XyÐmkÚ×k²Ñ_gÃ|B¸Ñ£I£?¾Ìóù4úãìq¾’gxkWÚçÙ诓ë=ÂÞG¸±¿ÎŽù¤0Úsà| Úç‹Ùè¯s`>!ŒÏ31ÏÆ|—$ÊžÚ¸ÞΉù¦ð¤ýz.Œö^8ßÙx^› óÁlö×…þ EŸÇ•±Þð2Ïçw×è¯\´waoÏUð<õ„×ñùœp¥×”F´ÿr¤Ññ‡¥ í÷³l¬'¬†õXáFÛ3aôGëX?ñ —6ÖÃìÂR´gxkWú4iôG›øtm´çÄzD6úãšXït?Ú…æù|ýÑ\šv£y>¿»°¿.®§ wÚ×{³±f ;U{ÒsjWzkãz»¸'ŒÏsð¼•÷ ¶ð¹´íëuÂhoDó³¿_œOáFÏ#÷öâcJ£?Û‹£¥]éÞ¥ñ>ïò¤½Š4ÞGػϭíí…÷ÈÒ…îSýoÖ¥+}„g¼/³h‚¥íýaûCý‘Ò“¶û•2¾O÷õna¼/Û>q–F{?ŸÂè¯×S´ÑÞÓǃ0Þ—íå÷kåIÏŸ¸Ò¶(Œþº}aP¹Ç¿w†ö o•fÝ~¿WnôÔfÝ~=TîôíÒxŸ»OœäJ"ïË6Ö•ñyý•ñ>wc½QyÐ6T.´Í…Ù/ú‹°‹,*Ò¸`öñ Üé£þøò­ÚÞÞëÊþ}ŽÇG){ƒÙæsʾSÚÃêÁzžò y>žn—¶ù‚2¾ÏÀx®´½F<ƒm‘™Úho¬Ç —C·­=èñ£½ýÅHöF¨ŽÙÞ§+7zhŸM{{ wÚžg„÷¥O×F{{ÃIWÚÖc…×¢oÓná#=ÑÞçKxÐ6—nK»ÒC»ozvmoÏ[в±^v=¢GºÐ£J{h¢yic½ëúÄ5{!±2BMy†¯v¥íyWëæ­ÏÛ|¾.Œõ®Û}>¦<è­ç±‹÷‰Ê“^M»†4ÖÃ^>WÏcóÖ´ñy±ž©Œó}p=ÌÆzÁË>_F{^Ìײñ?ñ¤ïöç)Ûtìó á>Ò>ßlŒž“^C»Ò{K|žáë¹Êöù^vG{MÌ„ÍöL.ôÒ çû±”+½tÝôÚ¾Uºœð¸ß6Æs)WÚÛ+ûìðÕî´­ÇïCûõLí}q>„ íóìUéu¤ç¦ý| wúNi¿Þµê /Òƒf{'ûç­¾_SÙ×£Ìl¯§ýzf>Eºâóôø¾Éø<×ëlgmŒ÷Ržt_Ú•ÞE¸³¿Õù–°_Oª¿¸V>ø> Ï{Âöë]öÆçݾ¡\衽Vøh7zi£¿YOÇ|ûé‚ç]³¯§ÏðÑ®´?g|_®G 7Úï×ÙxžèëÅÂ8_\¯ÊF|¹_íAϦ]hŸOeãy¤/¬çfãy£#ÑŽr£O•ÆóF_˜O ãónÒŸ×s¤+½–´¯×™ÏÖÆ÷õ‰¿²¯×™[•®—?ñ¤çÐ.´Í„1_Óûs2ß—˜íz¤Üi?_Ùg„·4æccù|WyÒû'.ômÒ˜¯1ÞOçÃ>•1_ýA¸Ó]÷K‹ÜÚƒöó-\è¡ùÜð3Ò•^G÷S;1MíqýyHó=Æ c=Ä:öÕt_Ú…žExó~9°^(ŒûåÄz¡r£ýzû%ã •;íý!÷Ëé{Ä¥=âB¯"ûåÄz¡²·ì”q½³Ã¥ÝèÖ¥{§m½L×3[X¨Úø¾XOTÆ÷ÑÞO×J³½ŸÆz/¥½‡ðâõÎn·6¾ïB{gãyÕ¦‡ö }¼fãzÈxAåIÛûe´×ÆùÎÆõÐ^ü,íJï-ëáD®åNÛz‘0®‡ÓoÒhÄû ãzg[»Ðï'Œë[¤+ÝŽ4ž',0©i7úti\—çTÈž|ž°À³ŸxÐ6߯|nU\/…+mϘ¯1^Qxmú é‰ïÓp¾³Ç¥×ÒÆçíïÂ…¶çuaÜï,°|Hc½ ëÒÞCëm¶1àhwÚÞÇ c=Ä6V\íAÏ¥]hïOO3õ7¾(ã~hñŽ[»Ñ¶ž.ŒûáZ˜/ ·ð‘^‡¶÷ÊÞ]϶q²húvm´×öxsaÌ÷mãëÚìOˆ§TÆ÷9èÙìOÈò¡<軥ٟnœÏdïÈ­’ï o¨ìí±+Ú#ý9”q¾-ž¯kziœod#“žôšÒ˜ïìŽça|¬ ã|ïß7ÙûûÆz«0Î÷^˜ïfã|[<àOXF;È¡Üé©=ãx[Æ|å ^_ÙÛó4\o²1ŸyÙç3Âh¬G c>óòhÚq¼Ï7³1Ÿ9=Î×Ó˜¯äËLæ~ŒÆx:åA[<‚0â)âé•q<Ö • ½Š4æËga>(Œãñ¾Róå㉤+í÷ãl¬Ç[¼ÛÒnôÒXµx³©Ýè~¥±úòYÚÞß/׳ñ¼v±VëUŒ÷Rô^ÚÞÞ×_œ)ã~u‘¯BÇû‹Ël¦23û|D¸Ò¾^š}âx[ïVná+ë•¥hïÚ8ñf˜oßõ$áN×.ëÕ˜ï ãø‰õšlÌ×ïÄýJxзHc½ýr=/ëé—ëyÂ%|¤±zwœ¯§±p¹ž&\é=³;÷;´‹õ0åF[ö÷½ ߃r£×”öõ&³µ‡°ßϬ(Eý‰;mëQÂ>_îÅ_L+ûù6ϩǟ&Ýãøsµq|÷çUåBŸ!íý¥[¾²ª]è3¥kÏöLÆñXöþdf{&Wz,áƒë‘Ùžw”ãx›¯ ï #Ò•žÚ{Ó~¾„Ñ·_„צgÑŽãm=PxâøãëÊ>Kzú^môwÄs ÷C·¥Ç"ÝâøÙ¥koó9aŸ¯÷Šõ&åAï)¼±^ÔkÅõHxÐ6ß>qüÐÞaoÂø{ ã-{ÝðÑžô˜Ú>Þ*2• ÏIÏ¡ÇÛ|PxÄñ~>„ãø;¤;Ž÷À<éB7íÇ·#]Ã6ŸWÆß›/)\&ÝâÞ‹ףê‰s¤ãx›Ï Ÿ8þüÄ8~ù|Mx/ÚûSö Û|Wx†ÇÔŽÏæsÂÇo_oT®´=Ow|!Ê•îSºÅñ^‰G8Ž·ù–pÅñÈ7¢\é]¥K¿ðdhÈ÷ª\i?Ùè­b< WÚÖ[„woó9å8~é7×FA'é8Þ 'e£¿4äûÆõ¢!ž_¹ÐkH·8Þç3ÂqümÒ¸ž4äƒU.ôZÒ%Ž?EÇc?@2׫;ã!•ãxŸfã~ÔPEFy„¯ôŠãm=V9Ž÷ó™=ãx[RŽãw‘qü^Ú8~ãzžùJÃ~eŸo4ìGnᵤ+þªÖ(7zOig2Ÿ«íÇ[¼cf¡ÎxGa\/:Ö•+í×Ãl\/:êß(Wºkc¾Ò±ž¨\hÙ3Ž÷ùj6ÎwG%aVaŒç‰|¬ÊÞ§WçSÆõ~"ž]çË6NíF*ñÌx0aÏx.åFŸ&=âx¯æ+Œã±Þ&Œç9$æSÆ|k!^]ãe!_¬0žÇ-1åŽõÀ…õ,e|^¬7 ŸIÛz„0îw ëIÊ…öþ˜Íöž¾^,Œñ°°ž$<ðïa=Hóá…ªAÂþ>ÓÜ«4Æã•„Kü=›Ï)Wú,aÆ“öå«Êlo×f{#I˜ýëMÊ•¾Kzâó 0ÖKÖ‹„q½ÚÈ+Œùª,)ûûdóÖF{Z>°.ëM/´¥OØîwÂxÞÛŸ'íÅx áÞÚXO¶|bGë={Çç}ší±ãó>ûéöÂ!ÙÌW`öñþ¶QyVóÙã‰í”1_¶õa<ß8®\qüˆãŸÆ|àLŒ×§ãyÿ`¿º0ž·ö£ óóàyCíÉx…d>Œ‚ýtáßþReùé_[VÚ_"Ö‘~ÐOÁQ…øÁɃ‡¤ß¾>ë9?èƒIF+ö*y2°4ª='ú´i®(û`Tж5›LŸ²Î¦Kô ÏÜQw÷AT]>Qgø™LIÍýU:3ÝfúƒøD¹L_†C:@ÁʃïRô)ÖBÝ“LŒDž‚¨ŒÕ«L_Xþ*èS›yìL~-¬ûd¢Ž4²¶e.<ŽâäÁ¬Íø ßÐÖƒ2ývÕžQßx ‚ñƒ WšÌEzãDŸ&FÅæDÔ‚ÆJfåÁ^5Ñ_¯ZÁß¹˜^ežýá“õœ3'öÌЉþàˆm‚þØYS=èk#§Ù“SÒÍŠJ‰𷱞’‰ú·5ªq=ØIÏ娸§¬«dzg@}ÖD¾FgåäÌ̓½éQ)X™¨‹üa™ÞUöDu½DÔU^È›è]e/d¶~p¡«¢w•U‡Lï*û]sçAï*ܽ«œ‚zf‰ÞUN‰jIßÈÍ2¹¶2½«œ•Rô®rç”9yð’ì<Øsæ&6씽#ŽüȲ¼ÉÁî²LïH{Ë2fe“ö¯èé5«aÕ’½#½xY­ý "&Ó» «òf¢¶*ªãf¢²nCgHôÎp[T’øÆ†Îp;ê|$FZÏ’œèáÎÈ¡ÿ ß€îD'LD]VÄdr V<ü±Òl¦O?îÆe35l·?×g̬ø¢¾1k–$úôƒõ`3}úÁ|€O–(—Š×ýÂ3ÌtÙO³\(…[¿–4ËÍ"œàéù¥¬§ãÉFºI G<ÒHÇ[Ò3d#yÁüZ˜åJgü{O£ÜGaºŸ§#qÁã¢0Ëu.¤ËFºÔH——Ír®'ÒÝ>t‘å ]v6ÒåÖ‚tZÙ,'Ùâøïævî騲‘.6Ò±e³\è@ºœl¤k­#ÒÝ>tØå„Q΢N¤»yšáRQŽSéø+¶+#Ým]H§—tá•éL²‘î³âušp‹ã[•F:îº#ÝéwG9¹z"åÓH÷[o¤‹|šå^o¤ã|Ú—“¬Ü¥§;Îöås×f9I¼F:åHWö4—;¬¥§kËÞ…fºÆ§g¿›4Òµ·t7Ù>y°r“íH£\¶­{uá(GÕ./ŒtÍ,×(Œt÷í ÝN6Ò!·‹t7Ù,÷Ö#ÝÞw3Ý›¹NéÇ{ºél–Ñîi\ï;©“£œ Ëé ³ÜáB:Âl\ïûB{eãzß™î:é -.zJ·8þ6i–ÛÃë”d¾Î´rvuH#ý@8±0ËÑa;º0Ò½Šñ’Ýãø«]q<Â……‘îûÞ’Çri ÛE²1?Óá<ñÈrvÂ,‡ÇíºÙH'¼,Ê(Ǽ^Ù‡é²#ÝH6Ê L”«Æxc94a¤ËŸÛå³kïÛݳ‘Ž~6|ß§£\óD¹ya¤Ûf¹.aÌ÷&ÊÁ ·ð-ÒÏél“£Ü/Ë= c<£®Œ2Ƴ½îÛÒ,7ƒtµÂÏ,'%ÌrB(§”Ì׿;¥1^íu]“f9„+ ã~ú™nàiÜO×ÄvØlÜOY.)y0]<žÍ•QNcáùH˜å²¶#g#]ÿçvý§Y® éd…YNÊ'žÊ(×°¸óéåšÎUéèwÁv¼lÌ·¹6$Ìr/Ü®˜ùöævÃl\O7Þ³œÊÄv×§£œËÙc¾½QnZ×ËØŽžëåF:Oa–3:¸^<]£ÜDAº¸lÌW¶Û #Ý>Ë©£ÃA8Œ0ÊÝœÛmŸÆóÌ©Hgñt‰r-¶c>rEé*…ñ½£œÂA„ÑÞ¶6Õ¥Y®kÀÂhï»Nœö¾'¶#=öŽí²Ù,'rc»Ùw¯hï‹pÍl¶÷E8b6ÓÍ—Øô4Òy”‚p½l–(±èéw¹‰¥<™£`>'Œt¥Æö‡§YΡ¡=³±Ýº ›0¶ë—ák¢ÂH'RF|ž§Yc"œ÷éw9¬@ ïJ¯+Ír áÚÙH‡ÁrÂH7ÀrÂ,Ç€rÉ‘î¾x\Ÿ2Ò™ÚzÔ”F:¾úÞ.ðô»Á¬ÒH‡W‘nKéÂjE~:ҩ׆íRÙèOå<…ÑŸXî@é$¸ž&Ìtö×ûll·çzY2ñ½\Á’f9ðÎl¤;¨áºÙHwX'Ú;›å°:/Ìr §ÏÆx¨÷JŽtuG¸ëÓïr w}éªb»`6Òu°\0Ëp;`6ËI œøÓ/ˆÍcH#ÝeE¹La¦»Çz½0®·­ Ü0éš/\(3|E¸ÑÓ'Ê `;Ÿ0Æs«Îù4ÆóËwJ3?ÊY c¢l„‘îŠÛá„‘.Ñâöº4ËI`;[r¤Ël;ÂùžF:'¦ÓFºûvßሿÓѯ!t[¶¯aJ3ÝvÏóÝ‘nû2”q=² Ó’ÆõÈöý i¤›ëˆtf:r¤kÆõˆéà…‘®¤ã}D2׫}bФ‘‹éÚ…Y.å …‘­#„0ÒYÞ‚.ÍtæˆPIî‘ÿ Ü1×S›xWi\Omb?¥{¤[oÚH—5P.O˜éŒ½®rv”3áöÙL—Þ®™ù×3…QnÁÒ‘i¦sFº a¤Ã×Ó§#×@tŠ0îÈ먌tWXRfºk¤Fº¼±Ð²K¤ë^ÊÜnã^ÒL÷tܸ_MÄ£31Ö„ñy&Õ®—é¦&bV„ñyñbCéœ&"S„ùy}ߢ2?/ÞÇc>=‘Ž'ùÄç>^„ùyñ>F˜ŸgúvAa~_¸TæçÁû˜äHŽº‘ÊLgŒpja~l§æçA:áé’­¿$/–kàváýN§|¤ßé˜m>&Œñb E8Êr=\xG:ã¥ëÓ c¾iëÝ[8ž—/Ì)3+ÒÅ#ØÂó0î'L÷›Üù<»ð<"ŒûÉÂó„0Ò¥-a¦“C9sa¦ójOÙH‡R;®On—®Øî*Œt$ÛI…‘.ke¦«;/Ùåí›l¯q°°ú¡òŠtb¯_Tá¦þˆtcÊLGäïc²Óµ6—Q^á×xRF:–æó%el÷n>Q.áS„w|ž‰Ï›½ÂwJc;&Ö•‘né°”Køõ`Ÿéþš¿xTFº¤æGÊØNŒtSÊØ®ÝüÄ*—ðœÂ\ϳtPíJ¯HG5‹ôŸ.ݾ¤›RÆvÕîñDÙƒéDŽJ™é‚|Ÿ2Òyô†þ”í´Ýã­³{¤Sj6ñUÞ‘.ÉÇkö;]јÒ=Ò•%ÍtQ¾s.;îÝËm(c»;Ò)£¿w¯+§Œëòâ*£?!ð ›ñ¢žHéÀ,0§J3OÇõ*醗+Îæó Óñ(3ÑÄõ8édPîO™é~|aA×{”óK>‘îzxÞPåétì| #]Òå(W|__¸Ê>‘îÇw£)£¿ ®¦2®GÓw¤)·H—óºqeG:¤ÓQÆxB`´2Ò!O¯Ë¡Ìt0Ý<”q>æÀç}:Ò±"ð]éšQ.MãyúÄ_¹Dºœ=…¹i¯c=K×;[oºÒL‡âëMÙ‘.ruô§l¤kX~aRF:íñ&ÙÜ ×7æÂ8_»ãód£¿nÿ`Ù餰ޠÜãG:´íñ¶Êü<ý!›é$6úÃÓ,GÐQnFé·ÌäÍxms×F{£\G6÷#âëoÿö—¯‰êÿsú…ȨðÈ·P¾¦AÀ Ô“‘÷€Ù'¹$}ò0ý!3±céabe*³“ö^!Ó—§gIlXôžØ“ö$—ìlEþ(ú€™¾¯W°‘}er³Á\±ÿÁN®®XHÏ{ðHNã´(ÞL_˜ û[<¸N$XÍld?™Ì^>‘|%³½g²²#³OdrvE›°í‚½é7‚ƒä®ê}Á.w«™“ìS±‘ãdv,$OÄe®/32}µ°™YH{ÃódÃþÂúdæ wɬx8³{ÓPœäÝ™  e¥2ý±nyõ'ÁNö®è·Ä…‚ONÖû^Ü/™8Hßí—XIkœ'Y©ûÔýEñòzˆ‚> _X…}’A46¶â"ÏQô4‹û#ÛF;™ÌаXÚ=3¹éWÖÁ¾©ùXº.v•&N’{*ô)çzï¨üÆZ˶±;é»Ùý¢Ê\O2Sò®Øiš8H‹S{’aŒö–©)ÎàU¬Ìòá;dÃFùøÌIz'Lôř틉V¯›g›Š…\+Ѷ¥9YÔ)ÑÎþ,ùþ•KÊÌ’éCã5 ñrqrhlsJDf–‚OŒÜ#^ˆ/1²‹ø>Œù{/©Lô—${G æ}hl8/6Ë9%ú„jcõ:³‘,ÝúÓ}±³*Ñç˜ó$Óoå§`W؃|©lJbgF{ã™Y˜ó¤6f©QÌñAŸl3#ʓ̜̄'™þ z”üFVY;» é{ÄýôŒ(ö•ùWÊ{gÖ/9Oždî ƒØL¿lžƒÄî‰\3“Y3_ô¤Ý‰‹¼MÑ/ª‡‡ý¢z Ò=?¸pQ½5Šy<è“À[£T˃>­½,”ó '—elGð("CÈ@ æ:Òe™DŸöÜñÿz7»ɧäâäei•ÄE21ýƒ~£¿xO‘YÈHBÿ•|辌±NÁ­X¿äKy’Ë…÷F´úƒ3xýaÊvʲÎaÅel-¬ã’Ýß>Ù¶ÿÿÒ»K/$jA"án[ºD¢æYþîw¢“Š<šÙب^>½ÆFÖÒÇòiæÁ5Ÿ.¤¥#Pñé‰V˜g4å 6R c£f™‘çõ»'7º—‰@Ôl$а¡Wxp£jÙ˜û4Álä)ή‘(¦-aòÖÂ<¢Ù؈_näÙ|E+žË’]XDÏ–ö…(³Šgc#mEáw¢ÏÓûtD4-SŸÆFKDtend­=QŸÆFÕê;†•™h‰pž®‘(¡úФò;QNQ>ÑžØH.Ìö(ú46Ò2‘Ž0Û͓߉~°\xD"DÍFçF–dÖ¡ªÍ Ž*Ï·—4úcCõä‰Xð´$ŒöjHG(ŒöÂÀSF{5ÔYHæãXÅŽe´WC Œð;ÑŒ§ä‰d#ŒþŠ-Êè¯va.Â5ÎæýÂ<HD#ŒóÑQ'!™/ÊÌ»Jã|tÌÃ…q½è¨Ã*ŒóÁD6O.IZ"›y¤ÑÞ½“Û»#PZíÍD8Âho›.áHÄeóä#ë5Ù#‘7b$3zEAUeÜ/QWùh¦/i$zž0›ù ÍH•ùÈ@žüä‰t¦ÏÅ…G$šéEÚ]̶:˜Ü±TfÆÂHD2iôË~'ªéS¸0‘Ö¥”=£N¸SÆFýéïhžö@&$ê™Êf¢âd×HtS•ˆT§e\ï¦ÏÇ”q½Cºêlf´µD:E×»Å@™ìþ%Ž2æ«ËçcÙ|½Q‘æR™‰\¨’ÍD-ž°=û(§£½³ß‰pô4Æ£%Ríƒã‰t”™(h P(ãÑå4áÎñ¸üº2)á-’rÛôjÂÜhn¶éÂH$±.ú[vD8ûJã~·üÁ0;æËXÕUf"ßh«Œó½µžf ~Åú¬òˆD9H•çÁíu(“ÏåùÞ~ãPÆù޾ó½H“Ì:9LÄ£Œó½=#‡2ηmè‘h‰v”‘Èe{¢@eœï퉕™hˆ6OÇxßÙ=ý´.õ€SÐOÇxG¢e$ÃJj6_Ü›=!‰8O,•‘hí4ÔLîL„r:Ú#›‰~úK6®çgâó<ÏÃHô£ŒùÔYHòt'úÙÂLô`¾S‰ÔèG‰J RÆýÜ:¦ò;Q’o4Vf"$_ßUÆ|‰„’÷åzÈõDËÊ#ýØýL÷ l¤Èf+^ø•ÑŸ®¿SÏf pÅFeô—ë;Ò•™hbÉ+©tÔF"¬W)·HDó:1Ù¬#ÍD4ÊL”ã7ve$(˜/ c£DA SòàF¤âLùŠgLPÆFÃâÏ+Ù=å\&e÷HdãNÙ%Õ¬.Ü"Q…±‘µú»el¤µM¸âÅ‹ûJHä2š46Ú ÑKvl¤«^ÇG™‰v<Ñ rD-v½{Óß{¢»ž3Q†?ø+3FõùTò‰DôF"‹æ §\߉J®ðf" ÛѯœÍ‹¸(×M[Hf1[Xµ@ma$‚h>±TÆF@¬'es=­q#€06¢!Qˆ214%Êæk%ÄTÆF,´UF¢¼ÍÉf §¿GºÒHtÐq¿ÆFldÌÊæóvÃzŒ26z£N®2®×Ý˸dWn„·Œ~]‰†Ç>(c£"éf3ѰgD­ÒØ;|½N™ïb<><#ÑÁðŒýÊ_1dŸØhï”g$j°þ˜ÌD· ‰z•ÑŸ&æƒÂ-=ØFŒäÅèH¡ŒæX/QÆxCÔìÉñŒ:¨Ê¸L'óyÖ3ªwilÔ¨Œâ\IîLd†DʸOÌ…q½G¢„lî1Q‚òˆD þ}²K$J˜S8î‡HT ŒD'Ë ’(ã~¾üÁ<»D¢箌º·¥±Û¢âVö`! /|t¤1ŸBtlöa"¨z«Ñ6„[o ’baÑÈ6ŸÆxÝþbO¹E¢º…¹QÍ¢¬½=²‘hnû‹eܯ76Â%G"È}ð÷²1ŸÙ¸ß c>¶=Z6{ÄFo¨Œùêñ÷mÙ ¨mØQ¡ÌîU¢Œë-v¬d3‘°oD¿ÒÜèï;>•‘Híz,bv$"ºþ`ªŒïk;Þº0C–̶ÑF×Ó»Ñ_ŽD¸Ü¨­ŒùöõŽ­Œ:¦Å gGâ≂•±¢xQªìÍ4|ÞÆF_ì¨WÆF!¼xÉŽœÅžr ¿þálÎm#¶=oc£/ŸW„±Ñ§z)©ìÁÄÕwô)·°ÿ{O3^¡W\o…±ŒÏ;ÂÜí‰^²`ÞÚØHÖüÅbvåFQ(c£²c£ 2†)c#”e,[ÒܨŒõЧAÛFa› 7|^ß—u¾›Çé)÷Ø(kóÍä¨cͮ¨Í®ÉQ§¹ã}€07’ú‹AeŒçîvÙ âîÈ(­Ì”xMxÞˆ¦Â%6’ÚxOŽ:¸Ã”+6bn¿$·8-…YGóñäH”ÀŠÂÜ(¸½?&Ö Géäʦ£øŽÈ·¿o û¬Ë[í©ñßùë¿ù(Ÿ¶‰!Ïր쮉º´\²Ù ÅF#ý`ëSÁÇA¢½ÍÂdvû:¾ç( ÔDtTǾšÅ·mQ¢‹!–3°ÃåD´ÈBA;¬Þ£›{ý7D M´mŒÁÛe‘—e({íe³ðö²EÙ'¬¦ÚÛÂæáû|»…è‘ɧ͊]öЄÕñ´ƒõAmYz¡lÞîìJ‹enîDF§y~–qÀjvODYÏÆ2X-ðz6DŒÙocÚéiQf¨oÎ:öõ˜ÍѰHëȲ(Ñ,¾·iޱz³˜–•eÜ|W£aÛlLsniŒ6¢ñ˜vç -ìøLCS‘Æñ"mJ´ˆï»é@ZAÞýÞÑ]¸šX·f»Ã««õŸº" vÕÛâODçÜ÷6r¤ÃÕs¾£[f;`˜mÛb-­|a4—W‰gZ l Åî€Â4¥ý oD/ôó]à«Ýþö~ûhEQØð¯­¢ÍñÙ¸m†ã³à‘‹ãsñ ãs-ÈQÔï?1>:DŒÏˆ~ˆñY"šãÓV'ê—ñù.“Çñi¿ŽÏo›b|2-Ý{|rËË{|²rqŒÏqù¶–ãsÜÏ·ÇÖ¾ƒý!Ƨ•‰·ð÷c|FÙ­Ÿ &~Ïò}|v¾ˆñÙ7fW1>ûŒÕPŒOK‹Þ¾ŽÏHÃÆñÙxuŽñÙâïw´+W0>[¤äølï§sŒÏO«Ÿ•e‘b|ÖHÌñY;ŸÞ9>k¤iåø¬•ý•ã³Üïã³DÚŽÏÂë]ŒO ºm_Æg‰Ù(ÇgDÏÄø,%î¶iTX6ŠãÓÓ ”ÏñéÑós|úK¦ò9>½šDýŸþ¶{|ŽOi¶?ǧ¿­½ŸãómŽÏ·í6ëÕ}ý–Èñ¹÷î`|N–þàø´Jós|Nn@áø—N1>ÇæøãøLsãó]v„ã³)#èû;Ç3Çg2hŸ¶(Ý¿ŒÏH£ã³ÍˆÂøl|[㳕ˆ¾`ô%Wûb|Öɲ"Ÿµ±ŒÇg¹ñöã³D´5Çg‰·/ŸŸöñéi•îçø|§éáøô´7ós|¾Ó¬p|zµ“/ãÓ£!öçøäKÓ÷øô·ñ_îŸï´ŸuŸH³ˆ§™½#m!Vw”áÀøô·w_îŸı?ǧ5#fçŸö6ˆöñÉjMïñYñ1ÞãÓVÏ‘ãó½ÚÌñi§±|Ÿ¶ZÊ4-Ÿspür|Îxäøœã‹ãÓVç—ñù6Ççäü-Æç§1>ßæø Çø ÿö—¿úåÿä\l¨ endstream endobj 98 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 101 0 obj << /Length 2522 /Filter /FlateDecode >> stream xÚÕYYã6~Ÿ_aÌËÊØ±Fu“V«ŠÔ—w/^¿/UXåI¾¸Û,ª",òr‘gE˜¤Ùân½øW°^ÆA}©—«4Kƒs ­ ¿ïáõ,ä#:Àß ýÀÏ vðk¹Ù-“"¸Bûˆ/÷ËU’­ í7ül »ï6ø#;”c¬,Oì¡Fú1½BJIÏáu=цø€²kü{rC6Ȥ>ã¤ûƒŒø{Y#¾¤ øÛ#À'' VVÊèßým-VqV™èµç/µPbGkÜî˜rFÁ5ÎX@Û¤‰“@ é´–amÝ dað°'° -æÚ¡?öÛ¶C1$ø.W&-‚;µ‚hÙð·fÊÞɦ…á7¨EœÛí©ENÀÏ'–݈E€KšÑ -e')Û5Y´µæòRÅ »?ªMZ\I‚ïŠøaë{!4›«ðúá·²:è 8(‚ ËWmŠ !8rcÍz‰ƒÿöžØu´ǘŒ‰Ï{¤µ,;ËÅ•HÝç Ô§Y?R€y"^Ð*›—ÂûÅ‚ÉQ™²€ŽaÏ(Ž!a¤D‰EH¿¡Dî„ìÏ­AiŒññ"†46 G é62P/®ƒok¤nl.‚Ø_"ü=¥(økç°Ð¹˜ÅIHµUþ#÷ˆrž&ÜHŒ¯aÚ;Ú’K:¥‹«Gs/¸T¸x,”cÅ%l¸ÛOÿDíŒb8ûÍ,;ÊÇjGZÈÔ5¿YÚ‰¦¹ç~CÔDÅŽ²¨)~$ßܶ·œ®©Õiqn\nrL×Üãb¶á$įâýhîÖ±°Él2‘bß™²GÊ;nå¢ôka…Œì;•“= —\¨I€‰Pmö|ÇAq6Ø5'A”¬g/[d¯JžMšdÈTö…ºVê DèºJþ $YskHyÆ&¬Œ3¾[–)W‡\”IIBí–*Y~+P¤YÆ5lð”z(7Z}ÚòÍùO«éJ$îÜX¿¨‘¸ ÔÝp8‚s ½S€zÍ?øzÇÀ£Å.‘ÍAØoé•dvU·‰¨ÅÕH’Ô†¡˜‚ \L"ë™ñrM1crqŸãÞ ¯2Š #%³2לô¶ÜÐÊ8Kß{µ8îýÒ¸Âf{µ¿•vì…é´eî-[6ߌïNc£˜ˆ³i¿] Z7|äJà–mxÒÔ44Eð`?®cÇ¥SÇâ‰$è°þܸõ묦a´'*¯zÆÎÚM¢5ލöIoIÞ#7Ž=ÅjJ‹‡9}‘¿S28ˆãÂFßîí¶`‚ïK)gëú(AA_*Ë×ï3ã”cx…·=EöËU–07·]€ÚÈOÒÅw“aBÞØ¸(õøù+f¾–fí9-9Øû3?¶ۅ׉Évø¬Wé®qðu+R'ø,¤Gh{6²Æ ¯Øš'…-_²ŠÞJÿA~ŸÍúü¯SàFV8ˆ–Ôè5Ãúœ5£&’(,Ëø¹:æ5?Öº¿êOÚ¤,ËU†‰còça s/§ÚÖÓšòN œì@lƒ± ñ "<@½sÀÿ#«}MdÎQæI9^ósÕÆ°´8x¿¯à÷–½áGJ›4¦g¹Ž2xÇ_¿ƒW\ˆ@>-Œ3҉Ŝ—Þ‚8ƒøVü0ÒS"Å‚2!2@LjQ'^;å)ÔŽ=6¿ ÙDy_Ì¢Š³‚ß3ÆO"ÇíDú¡DUFJJ_EÐ*ð±¼ãûuîñv9¿Ë;FV/¥/¡ßÌYùw[Ùê i晘ÿ…ÉhE‰€‰<`†Dea’ÈfwAØ•Âqð #Ήø^,»¨çzˆ»F‘Q·Z‡qwÏç,Aþˆµ¬ïèØÉI~#VhÅ+bBB‰êEÖU‚™w•dal õ¦EX¦)/)c#‚N|M÷Ášª•}·e.þ57j¿ ÓRb‹˜,ÂËw„CB}:©qlEˆt-ðñ/LÝIžtØÆã öÏÜØð¥wkå•EzÔ6Y<©uVÆTö†#õ ìüÑÍ^ËoÄ)²•€ñíº½=ø*xÆ1I5ý•/¨Kwœˆå\=:Ôñ &Ü\x‚ÞÇÇ•Mµözº²M>&^~æöæy|WÆLž_{}]Qù8èÁÀ]¹{«Ê+Ôcºš•ÖÍòë;–å.“ÊYŸ°Ù×gtyÏ'Tª2qôNŸk­ÕkZe’rÄ4sg§¯è–ùOî$Ë…ÿ ëf¨N^Ÿ‚õ ï\ëÅÎ&ÕûÏVõ:{×Ó9`ýúcªx?yHÁ®†fâÚ8ä0W^ÃJËd¶ºnÄ{u£Wû¼¡ÐaGõ^¡²û¿ÔÝ®¦›‚\¿ý†òp.!ØâÏ/â|›V|ŸËºnV‚«9.7Ž1󊞎òM#K™·ØäŒð\¾:a?æ6ËÚI å7n&ëN«mž9®§Âk s4çÑ©?hV–)©ñ6­W#äR i‘‘Y¦y˜™t¼ôG{„á2¹¼„ß?=ï\²=Éb%š©=j{òð¼tŸn™nŒ½÷›qèAú¦–eà`ÖøÞRÇ7pš^Þ"AÓ¼žYp-ÞD¤*T¿¯¢<¼W®™øq(‰øŠRFï6Ê{g'}§7w­'zäS«<ËÈqöjÃËœóÛfþ,à?ó·°“ç‘£ëÖZî`G Tî€]LnG?üò8úÓþ .Àß”î¹nènçên|&”ytˉ¢½ûÛVo5õt(pø+ž ä¡ñ¾MΜ2°“óp–EÅ^š¬`ÅT¾xw÷â’s© endstream endobj 105 0 obj << /Length 2066 /Filter /FlateDecode >> stream xÚuXIoã6¾çW=)@­ˆµõR´™™.h 5ÐÃLŒ­ØžXV*ÙYŠþø¾•¢ƒŒ¹<>¾å{ e ü3‹ºŒË¢Zdu'Ö.ÖíÅ?q]¤™%‚`H[FŽÉÂÕ/m¹øÐ]ü ÿtk),—ÏWWŸªEìŠÅêÎ_[T±IËÅj³ø}º4Ñþ¶çþo.—Y‘Gåw—Ë<©£ë3¬õ—i;&p·ˆî`ØõLy‚ñ® ÆÄE¶8éÎxô[X*³Èm`òõLÌLtB®&¾S–n+ÇÝQ¶´yæñ£ÈëXùéeu¸gª¶»\¦e„—5ø/}¬‰> <(&þ5Â÷÷G\.oV¿‚9—ÆÄu^°†ºnO@Ÿe¬¦Ø ¦k’íØL¯¢Hû–ç­ÃÙe<º®¥¡-g‹<ÈäÄ[k£¿ÇA´Û¼#pë°!aðJÐY´èŒÃ¸81œ™Ìqõ)·„²²Œ šd”äN8àm–C§BÜe&ÎÒLÅdå¥Mª¸(2@¬‰«Tl}³=îI½,î+ëøh>¬5l]ÖêtUý,C‚çQš²\7‰¡ÃXñe écÉÂk÷Ç·¢¹ ºÅW%O©´Å æš±s¦ìªŠ«2}nÞu= ò&Á/•|bNæÏ.>#r¬ G‡IE“tbz®JîHh2ân á¨ÿ–=†Ì¤"ûû86àu.Z§^*`°L«2úb2ë;ˆSºzÛ|ƒ›Õ» GÉEƒc' £3  ÃÑésA9ïž,gA³<£'ÇT¼ãô`;q°¢Î HO;Ñ´—.! „ã¶cÑdPX`ϯî¥%#šp†>›áu{eÆVÀ_²Ö©€4ƒÈ6\•N¸þ«OZn '±Á$mwú¾Ó®ŽÞ®Uæ^˜¸®]&Š öj?Mº÷ŸbMã`=ùÆA{É0göIý¶Ñš±•˜züã²²9æûÆ|må DCíªq¼ÑˆB´×ò]ð¤Å–b«Ñ·åc7`ZsÖŸ2θÑ ¸éËÊê\MbM’8æu•ûâï9¯ÌQl@øÛ£óÛ;(…uþÊg9 G„X6™åżScÕ¢g¦íhMˆp½?m$³Ý°×6-ü¸–Ùjìÿ’HHo÷#é <ý—TUX¾yQ@ï_Á”Žéhð˜&)¼9sú€XÚŠMiJÜ»ø¸ºø7§ž endstream endobj 102 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-flc6.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 106 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 107 0 R>> /ExtGState << >>/ColorSpace << /sRGB 108 0 R >>>> /Length 23927 /Filter /FlateDecode >> stream xœ¤ÝK%½–Þ÷ùû)jØ=P‰÷ËT‚m@€ اÃ4t,œ–ínXúúN®ÿâ®J®ç´ŽàA·ôëŠ73÷FÉ Ÿ•ü«ùÇúñÿüñ¿~ýÏ?ÿÇÿíú?þåŸþH?SJ?~ÿßú—ÿË×ÿuöÿõýo~¤ÿþüã_}ýÏú#Ÿ~üÏôú³çuÿ¬ãÇßÿh¹ÿlÃùçzþÙÕ~vþ5§þ³”Ï?_þú÷>~îúëߟ/iý¿þýò׿ô³¶_ÿîüü{Íågꟿüõï£þœã׿;?ÿþíãþúôŸÿç_î¿ûGñåþã¿ûÏüóÿ±|‰¿û?ÖOÿ¿ó¿Œ=ÿ,ûGùú£Ö¿ûû“þöÇßý§?þ‡¿³ŸûOý‡9•Ÿû÷ÿ²üÕÿeo?gúí¿líYÒøÙòoÿåø«ÿ˾~æòÛ¹þÚÿ²¦ùsüþ׿¿ú+ªýë¤ýþçæ¿ú;j9ÿL¿ÿ½ùó%ÑÚ:Íàï½]”9ÎáÖž¾ÿ³µôë_wý¹çç_ѯÍ_ÿO[Ÿvþö﫟?ñóïð׿—šÎ%xÿÝùÛ¿óÇ~þý×ßþû·òë»øg¿¾ 2®ö£}µ¼Dký)OÆ?ñß®uZÿ­<ÿÄ›ë×7Uü?–öŸúç×רü?–íöŸøKi?w÷ÿX6Ýê?žéœ~kE¿¾/Î…ßVþh%Ÿ¿Îoª—åëÔ~]5¾'î;ïÁ²;üÿÏûPÞãç¬?ÊÏeíý_ÿÍÿñ·?rK?þæ?üÛøÇÿñþ¯¿ÿñ§û÷ÿ÷ŸÿÃßþ›÷¯þªOÿu£þúÚ›ýìGþéÿý‡¿ýñÏê×ý/ÿçùÛ¯{¿ù·þü¼¯ñã÷V—]|¥õsCþ‡ÿðãÿñŸÿ[ϱü³§ÿÖsì6ÿ?¾nƒéÃ?Øîá\’殸ìIq6çTüz®×Pì ~=í#|=[³b›°É WW´6öõTÎU2ÁÞ¿N±qTż¡]#‘öåÌóL ÖÙì~zØ’¤}9ë| ‚Ë>þW,гÃ^Gƒ³)öó¿ú'Eó<òù Ïà°5É ûR¬Î"y>þ(4àÀ2àé¤f8³b>_ΰ{¶âi*Ã>Š`j°÷Èz:>ÆQׂÖ"íËé§QNûr¾š÷’,°nÅ1àX’ήØíË™çU´/g)ØÜM±Ú—³9¡‘ ¶¦X´Ûf`žpnÉ×PLçË™þ”ŒÌÐÿÈo,çIl´¾Ld‚Ö—œÏGœZS çãý¿eJVØ–b÷ƒ­‰Fž/‡/IÐnׇ[2Ã2ív}šÛ’´ƒ¿.¾¬h·ësYwÉëV´Ûõ¹ Åd_l?½bsÎÈ|xF»m® ÏAоØq¾`A»Ø·d†+)ÚÅ>'7ÕÈ­ñÚÅþE{”GÚÁ‹[n ]ì_´æhûw‘´ƒ¿.ö­hûw–<_ûJç´[Á§drî$y¾Ø•iü±/Ž,é[ó´‹ý«Wi02A{”ZWí‹«(ŽóÅ®Î-(²ÁÑíV°¾"š.Iëœ!ÕR´ýÚ÷ËyYàÚŠö ß‰ '2ÕíQ¾3l`ê°ïÀ¯Çƒ=Ê÷× cH6øõQíQþÅóðŠœ ž¯=rL¸›äùr¾ÆégÙ'ôõ2Ã5›}±Í@‚ ®®Xí«ëvÁ ÚÁã|Á‚¥Á¼­+~F„CÒþú‚­+¾—ÝÌ+<Ýé—_7&?øTæ|vÚaôî3FTNîsožÝ½Š6Ç»G æ>}/á¾Ýþ÷¾n|ß“ö,ÌùZÜ+£ër÷¬]Ü»Jg¾/f±”³»OétŸKÛ¾¯œh¯¯C„ã3¢|?O]áÕÜgÆDØ 9g›Qnnk¯Ñãæå•ëõ”¶NCÎ…û·pu·$mCŠãÞ¤ëõNÚv¾r¥=F[÷á¸é|½¶6ç£q=D'ΧͷI§ë)ÜéHä<¸ŸF¯í¶ö,Ìñva*Ïå¶û¡0çcq¾£Çr¯¦]ܧg/Ü9_›û©°_½ƒhÚC±ž­tv¯*mÃÎ\2ç;Ú†–¹Å)'wÍÒù?’´ !s©6›Üèf[@øFŠÂ6Å”Kã~(\ÝgnD˜öP:íE¸º÷–œÁýN¸¸­_Ýïñmkg·Ýo¢Ûp¯¦Íñ“ö]“»$io‹ö$œÜ;Iç{üžÒ‰óÍ,¯rs¯-칦ӟ•®nëGÓ^¾líMøæ…i/53N.ǵÝ£ûpÛx(šó]}4%œÝÖŸ¶¡‹yk'÷Ò´‡ZmþP9¹ë¶!Ìq«Ò´‡Zéos|£?ðº09¶ëA¸ºÏ슰·‡NA¸ºí~mSYÇv½s¾íÁ¬ÌýäËÖ_¾Ç·)íí…ÙneÚÃd¤ííiÚ ƒ°·—Éõ(Ìù^\ÑÞ^|”*|ïEÚÛ 3ãÂÞ^¶½‘Q¾Ç¯)œý~Ò˜W®nkÏÑ´—–éÏ s|á~Íý¤ùxOØÎwcNZ˜öÒ|¼&ÌñísücžGÍÇkÂÙ=»4í¥u{#\¯ëÖ¶óÝxE.L{i“þ„pºžÒ´‡/®mí¡­{>¿;Ýö°¸_ süæ~M{è‰ó)\Ý£JÏ{¼õW…‹ÛÆãÑ´‡žéoF÷ë2´³{'iÎw/öfC9»×–¦=ôÊxC8¹K—¦=tïßã{•Î÷øÝ¥ig%A‰î>z|Þ*ßãO{öö`_iÚƒ½ÿWööÐí~¨ÌñÃîgÂŒwÎʦ]Ü3K3žéóL)3ž9+Šv¾ÞÒÞ¦õ”ïñ{K3>käªvr—$ííñ¢2Ço»ž„/ó‹£×m/ÛÞ¿+7÷ÒëúÛÊv< W™ör.¬­]ÝK›ù’Á;aæKιi·ÿ¾×´—óàÌÚ÷øÝ¥™O¼çPÎîÖ¥i/§ã7µ9ž7ÂÌ·œŽõÔ¶ö2ÚçøÇ´VÑÓçÛÎÀnhߟwÖI {{°U@ÊÌ·‰¥¤ÝܵI{{öæLØÛëš„ÛõyŸ¯\Ü«IûùöEù¿º4óõ¬à‘.îÚ¥iOgmÑÖæøÆõçõÔ¾Ç"M{:Þ¾D3O[«¼®ízNî3ß-Ìûši¯Ò÷x{žEŽç}Œ°·‡Áõ"ÜÜg<#Üîñ{hsü´ñ¬0什ؑ®î^¤y8+süâzæ}àÜ\OÂÕ]¶4ï'«Ë”­=­lï{‚}èñÏ(ßãí~½8¾ÐŸÎî\¥çµ]/ѼO^¬5æ}ñ—ízNî¤dzâL9¹k•.Ûݦvs¯"9¾Ñßnn»¢Ó=Þ^ð=~máêóq‹5fÊÕm×C4ã¡e+É¥«ÛúsÑó_§vqŸ÷±ÂŒ——½ø“æxë)3ž^‹ñpqwmÆÓ‹÷MÊùzK3^Z›ö,œÝ{IÓßݼRNî9¤/íÌýT˜ã í1šþCé{üÂÅÇKgEQ•f¼ôeßãm<=ïñÖß®î1¤oïF{®î<¤û=þ¼U.×SšñÔöùaŽï'×£0íaÝß÷šþìÞôÇ„«ÛîçÑv>Kâ}šrqŸÕ`Â忲6dz'PØÎçqžÒÖ_-g½RÑæøFãµ/s-‰÷=ÊÉmãÑhÛùæxV Ïî®Uûß–´µ—c»ßF[·$XJ·ë%Ý8ž÷5Â6Þ9¶þ¶p½ÞÒåº é|^¯Ò‰ö´¹ß=n›þf9땆vq×$mã™’­áHçë%=ïñó/˜ã‹Ý¯„ÇpŸû•²µ‡³ž§I[µäfýEåäîMºÝãÏxQØÆ3æ-mýÑã9¤3ÇÛÂéê®EÚÁš·ö=¾ a_{¼ÿ‚9~X@x·ÿ¼×sºO{U¾ÇÏ&=8~ÚóX™ö²l<&Üi/ìJRÎîó¼nÉ}æC„í}L)¼¯¶÷1Ççy©Ìñ¬×¶ñÈqmÒ69[û¿šðd¾½”Âõ Ìñ•ömã‘ck/Ñ7[O¥\Ýg¼/<îñg½•rq¯,mã ßd-Íñ6q Ü®ýïymã‰ã•¤ æ}“rvŸñ”pæx[x*Ü}J§îžYû¿·°Ï—–bŽ4Çoî‡Ñ6^8AYÛú“Çg¾Kùæ„Çó¾D¹ºG’¶þ¤yJ7\ìy¯\Ü}KÓ_<뉲tùxi[{8ëŠ4íáËÖ^…ïñcHÓ_¬ìPî~¾«íüU^×}i'·Ý£ý|ò¾EØÏg§? |ŸÚýæ ”iöÁ•ý|Ú»ð=~5ézßY›öb/v”½=LîçÂ÷øU¥½=Ø_:»í~îñ#kßãÏ|Fp»íÅ^ÌJ'·=/¢½½°^ØÛ˾ǿ¦½4ÖK*7wßÒ´‡ÆzHaÚCc¼¦\¯·t½Ç[[ØÎgc×¼0í¡±o^ùoσè|ßUÛÎgã}Ž0íáË­hßãý÷}wõñf«¡7Æ«Ñö>Ë^LumŽç}‰0ó ½ßŸœ¯·ô¸ÇÛõ |·þbt¿Ç[N˜öB€0ó çÅþоǯ)]9~Ò_Nî<¤™è¬'f>‚…)Êéztíêž[8ù|C'±@™ãŸ'z]Ÿõ ÂÌ7tKŒ’¦=mú›ÑÌ7œ…UûoýÍho›û…°µ§³ð²JÛû._¸)}Ešö02óMÂɽªt¹Çï$Í|Ä`?Ÿ0íá,ÜÏÚÏz××u{{8S²ôº>ãyekƒ÷I´‡Á|ƒrqŸëQxÜãÏx_ùæ«„igãÚÔÎîs½ ·{ü,Ú÷øÓŸöö`¥“{4ioóÿšûۉ éæ^MÚÛ ÉÁw¾ò¬+ÚÕm?/zÝã÷Òæ|±^UØÛ ÙÊ÷øs= {üéï Ó¦MüKgwÒÏKaú$‚Is|ãz‹¦¿x<¥Ëu×öóIÞŸru×.íç›D@å{üjÂÃßWMÞ'*Ûõ4™¯ööÀz]åì>ýqáym÷“hod”3˜6ñ*Üg¾E˜ñÀ´…Ëʼoš¼oTnîÙ¥/,Ö» ó¾qñ>P¹º—r÷óµ2×C4ã½Eˆrv[{‹f¼·Xªlß窜ïèq}Ö#3^_¼Of<·÷kaŽ'C˜ñúYÏÕ¤Ër—®]ܵH3Þ_vã.î3Ÿ%Ì|ÎZÜ…³ÛÏ÷w7ïŸl¨®mß÷NÜ¢™ïùò™oR¾Ç÷$Í|à—O[˜ùÀÍû6åæ¶öÍû‚Mž†0ï6ïÛ„y°YÏ©œÝ£Hó>iWÚ‹pv·$»»7íä^EØ÷£—M²Ÿ0ý©Íx_¹ºÏûaÞnÞ§)ó}²ÞQ˜þÔI˜*Ú|Œ—…y^ïIüµð=¾'iž×›¨råä¶çe4÷ëMž†0÷ëM¶žò=þŒW…í~^ï㔫» i›ï«)s?zíó}ÇÖ^„³™÷iÂk¸w×NæJ2ڞǭKÛõ~lýEáæ¶þ^t_nÏ ó}ùx3º-wÚÅÝš´Ý/ŽÏ|¬r¾^Ò…ï“õŒÊÉ=µswŸùáÄ÷9èï½öýæ'‰ÿÌç ¯å¶ñžpqŸùJáÉ÷±¸ŸF>ïæ~)œÜg¾P¸w÷ìÒÖ¨ÙÇcÂÖž2yÂ6ß\—´½ï9C»¸­½FÛû@+]±¤m½@Ívc‘Nî:„}?ø±ÍD¯í>óõÊv½äÆý0z.·=o…‹û¼O|_ÝÞ)g÷jÒ}¸m<"Ì÷AÞ…pëî–¤ëv­ÝÜsH¾ÉóV¸ºm> :O÷*Ú|Ÿ¶qT9 ·ÿ¼àìÞ=ºlÞ×l«•½½ØÆriû> ï“„i/…ñŒr½žÒ´—B£rq.Íù.¼æ|ò•›{iÎwa=¥ru·"Íù.¶ð^™óYÈSTNîÚ„—ŸÏR©þÍùüòiïÊ|^Û8¤ìçÓ‚±¤‹{'i?ŸŒç”­½Ök ó<(¼RNî^¥yÞ7 ×êž]šçÁÉÛú .î1¥yÖc*g÷îÒY¬Ìï³ Ê~>'×›0¿õºÂ~¾­ã¥Ìó¸YÇPººÛ.÷z^6,¼îï;ëõ…çý}g¼¨|ßY¯+ÌýšUÒö}ôÄõÍýúl Òܯ;y*ÊÕ½¦4óm½ÒÞ…³»méÒÝ3Kç}½¤y÷F{În{^¼Îޟ¦?Ýmá»´]ïg½Z–¶õxµ3Ÿ œÜ6ž‰f¾õxJs½,%Ý5Ks¿î‹óÍó¸³^U¹¸w•æy<ýhÎç°Z5ÒÕ]²4ç{ð¾)øÎ· ª6 ÓŸ¼ïQÎnë¯Gs?¬×æz=뙲toé/ÖK*ó÷ð¾F˜ùÁzEaî·ƒõŠÊÖ‡ Œ•ý|,®ÇhæCïc^gÏK<>Ï åâ>çSxf÷™æz™¬æz™äa*'÷y^s?œ¶0UÙöÙ§´½¯ª'¯jkÛçäUçæ.Mšëaò¾G9¹Göõbu’7!ÌxcZ°¸tvÛ?2Y¯'Ì|òd=ž0í}Ú eú“¼JaîGÓî(3^œ6q"ÝÖÞ¢éOLòÔƒ=¯ïøŒW„¹MÆ+Âô'¦-,”.ýz ïA˜÷q§:YÒ¶ö²X'Ìó`Y,eÆë‹÷AÂÌ·-»q*ÓžWæzx=ü~²È‹PÎî¡Íû–ÅxI˜ûý²Ž§²í§8nUšö¼¨K%Ìý~ñ¾G˜çñb½š0ÏÓ58_Ñô‡—MŒEwï¬I{‰¦?´xŸ!Ì|ã¢\¸ð¸žUÚ¿[جLeó>@˜ëý¬7ÒÜO7ï„/nò‚›ÛVÊŒ6ýQaÛ/ulç#ÚÖ3×mÛ•yŸ±Ésö¿ws?}]iï-1_)lëŽOXØæsZ*<£í}IK“ûñkß/ó§?²,:ýW—•N?¾Õ‘þN»%&h îWé‡ÖÜ~Õs~h­÷[uù¡5µÎNÛH;¿ª=£—Iéì’´‡@g e¤ 1:;d#©œÌþØH›¾íŒn#©AÍØ6ÒÝ"6íÆÜ7uV{}Sç0Ð&=o=ç@j“HiÚAKä­Øl#oMf?ø¡uµ;A_úBža*­«‚,h“8·žs 5BJ±Z#¤Œ 5Â[í9Ðn~ƒ½Ÿ‘Ô‘î·:î7úƵѩhðVl´F8ÈÔŒ´FHi4Aëð ÖD«5#­‰ÞzÎÖD;9_zPÔdf¤5ÑiË1m’g’iS8çÏiŠT©¥>Y¤=þ'Õ%"mrŒŠÂ‚T.Ô’ýÎá¯É¾ÊH{åäH{hœKs(R±™D‘H{àyáHÛ®1­Û"h/ó¿úâ¥(Ú«ž“´š©ŒÍ8ù¥¿†ŸûVE|hƒ Å3Ò^±®t~ht+óÕÚðryõ…@*Ízí„@º/F†‘Öñ[õVõüÆÉ´çòª6©½_{ }1FÚ€o±Ÿ,Ò¦«Õ"m°±lS‰ u…Ö¼•*R9Ù b ÚkúÅ*¸—ƒI¤µ©ÁhCÜm·A{~«òÚðêVÇ ´ÉÑÍÞ—HªÅ¶[9ñ¡u™v£nÝÃÎãi>~ =ž6{2"íñtVü6E{<íE½Ž@{m[V"h [i6ІÚ{Ó¼z—é‹öÅÚ0e“ù)Rkßl4!Ó·l4!Œ)ß"s¯ ÑL,2&¤÷¶MDÇþó¾»Þ"¬^$6š÷Ä&aBJÏ"á%MÈmb‘°ÑÜ¥£½H.‹l„½ˆéä.MÈpbtð-ò•˜&$:‚&LÈø-ríE@Ó-BöÚ‹|òD¦ˆV.·HØkBœs¿ïkBÜ3!ÉÂȃ"I¯ó¯"›V.úSD³h’)Â"LHvf‘0!£·g4!ùÙVó)2|f[—4!Õ™")ÁÉCÈ3“Ä„Øç}‹(½&äõ̶'iBzK¾E^{‘ÇÂùŠæzàmŸ2!ð…®0×KaŒ+Lˆr±4÷`ÞÝ`/²óšë¥Œ[Äç5×K„¬Fs½x‘Ka/‚Ê"wa®—²±&ÿ¬Ö\Ò\/¬æU&$Ø‹4¯[$°Ü"-¯½ /A…¹ßŸE@MÚ‹èñQ˜ÿ³È§ Ï[¤"z„೛]™" ^DO˜áÆ"ba/ò–áæ~v¹tiÎi/ÊœÆ"Üàá÷³ÆèD˜óq™$ižçTažç­2M{c”"ìEîIæ|’6§L‘ŽFóà[d¹ Bq£ß§­öU¦=x;aÚC÷öh/òEˆ¦0×멱¥¹^o‘³hB¾©¶}‹DÜ"hÑóþ>û¼Ñ„pw[ͧìEÎXä'L‡sá6iî×·HW´ "2Ø}ŠdESdåtÜ´ ™¿Ež¢)":XÄ$L‘“ÁL§°Qb‰0Ïë[Dêµ/²ùQЦ¿:ØÄ-ìEÊö ùmS*Çv½DSäåÌ',iBîgºE^S„ðIŠö"+é†ð¿¦¿Æ|Uôí¯M^bs?›„à {‘œB{þIòû×<¯˜‰Uæ~6Û ¡íEh˜;ö"DÌâß"›sQÄ#šûÙ\7üµÚ<¢é,6Q {Ž|Cä_Û" +S¤¹_Ý"0Û-"¹*!AÑ^§’Ms±ˆY˜þæây"ìEhÆ IÍýj’þšûÕ„TG{‘ÆÁë²jzÊÜÏEX…½ˆýmaîg›Y5aîW›EÂ^ä$âÍx|ëoOïBÈZô·"#©Ùlrü=Ùö"²húk^$C˜þÚž„tGÓ_ÛÌÄï/o[m¡Ì|Ë&äHØ‹d¬²üšë³É:I³ÉzzˆäÌ„œDó<ñ_až'³Þ×ôgc“f´‡(³ºH˜ëÑCn…=$—ù†`_pUææóF{ˆ-› „ A\‰ÏÝ?!®SšÙÅ*bárC\û”öQæÓƒ}“Å i¦ˆØ¢ÈŒ0ó!‹õÄÂôϼ"M‘žÕ>!Ë ymKšù0æy²èûr¬ã6¥ï,æ;„=Ä–ù aú‹ù a¡]„ŒD3ßµ|“ìëê×Ûb†0×ÛÚ7Dà5Ï»nHÀkÁ$$U˜û©‡  b»oïïNÈDô'„´ui‰å}‚0÷‹Mvaî›÷Â册mž{ñ}½Îþ¼Øl2f‡€ ³‰ËC4…Ù$ê!–ÂlýòÝDý˜MHÉC(¢í~xB&sö"!R™¥ýóR)쟇" Âþy©öÏCȤ0!‰Õ¶ÂlâKÒð8ïûyÖÝdûšM¨iÝM¶¯=Ä”ñ°0!‰"µ_/i6IgŠ  {ˆ¤oâ{½|bæ}‚0!™õ¹ÂÒH‘ga6žÝ˜[šMš"(ì!x̧ ‚{î¾›X=„OØCèï³I›¯r»!töy£Ë 9CÚCÜ(¢˜8|yËÈìÎ $¯ƒ¾c¤5•ÁÊ÷HòX×iÝžá»b-yføžØ‡¾£XÞ¬àôT»Áÿ;ív?(ÁÙ<ãÌ…E’ÈÑÙyhÍ£³·:Ðn#£ß4€oœž@bíÒ”Mž¹qö'E’©BÉ´HëœúÆ‘6õG¾‚àÍÜh-r0,>oÕ†¢ Ê&{Î"í¶I~† ]Γþr¤]ÎÓjM Úd¬'r¼ô­X“òg‘6Q4Y‡i˘'¥Ó#oÖ‡í $ûÂê; &Oä8·ë—¾<÷dçLÅ›õÑ›"åÐ"ù3lƒ¼ »ê^ú¦&R—ùrçÆÖóè’Ý#I=âÑ6¯›û–î÷ø•¤ë¶±­!Ñ\Où×VÖÇ\OgëT^¿Eçé~£qlëX4[k3}@a¢¨ìõ0N´Œ}_ÑœO2”ë¦Y]šhÎóôuÝÑ}ë@4[Ï{¦x4ѧã¥=ú…zzÂxztX_|ŸÑ½C=á~£o¬Þt4σÁÒyazkÂô÷GaëËkÏûÏÌ)3^93LKšhÁÒwaúÃ#Ltݰ5XÑžuž‰ Uæy;x#Ìój¬»µì5ÑL­#ìÑD¼ ö­_Ç¥IÏߣu„?ÑÍÖØjϧtoîÕ¥ëõ.Ò™hæƒï֛ܩ‡ÍÖïl뉔û¶9ý áJ´Ë¼[s^§í¶ëáõÝ›½^zô¸Ñ0­J·îîIÚ£C2õ*£SuÛ÷õ8{ô®}ñUzÜhßšòÚúËÖp´ó^YSxy{*D³ ¢IÊ’&š«0æ|›xSfkh±=6Ñ^‹À|Eš­i…hháFôÑ$Âl­£c=èïûV‹×\oµP/šï£½)ÌÖKfë[eWðÝ:Z¹ß ³õ»%ê©E³õÕ£=„¹_6»0£›_ï’;“è úÛÂíFsœñª0Ñ4þ²0ÑCþn°o­°‰Õ*ÍÖ`&Ö•9_ãýÔ¥‰F9/–¶p¹ÑónmxÍÖÝÎ|ŠpúD3$áìÑjÍ ìÑÔóæ~Þ9gát£=6õТ¹u¯çý‰vÈUšh5†x¶·çÁša>Ïà~(ÌÖß3ÞÏÂëF?T¶Ds>ý)a¶öV§íPªð¼ÑD?÷½Ð§´GK œn´‚mÍxíÑÙ¶ÚL›çñY¹×¤‰Vðè‚à»õý¬JÒô¦e´)³µ{ò~_˜ûõ¤^bð½ÍÎRêhž÷“7õÂD MÞÕ ç]`[^û|Ãñ¹Ÿ ûÖöÄ÷í[×¹Ÿ §M›°W&;žYšçÑâ}°0ý™E‰±`Ÿ8[ó‹ö¸[ë}éýk¢mÑC­@i`¯Ìu¶Æ,ÝïÖõ<¥i¯›hÝÇ™e¶­ë_ _y`›Uö­ïv¿TN×; ûÒÔ³u}'i¶n%+-¡L=çd{ £=šìl ¯CºÜ­á¶õàµG¿úÖmå~·~om¶Vf¯E{´jͶ0A™z›Ùú ÊlÍȶc!Úïgëµý½Ñþó,ÚTÙÿ^˨‹®wë·M¬(ó}d{p)³5¦Øõ]x_[É`Pfk ÊœO¶Ñ™þöÙz]·t¿[³¿¦2õ~‹½оõØ‹õ7”ÙZY3í%Ú·ÞÎ×ãåËðÎÖäs=³õîL oaþ©Õö‡(»5ùëy«ì[Ÿ­4N´—ö8[‡·¶oíµuŒÊD4{_}ë³õU™ë­¯ÑÝÏ÷‰¦ÛÒDœþv‘&ú¡Ûx"ºñ>¸’¯L=énÑ8ѽæ[O•ÙZwjta_à[Y¿¨ÌÖýaÊÔg]mtö­«ÃÊlýeëbôî8û9²´×Ó¶è‰`º!¿¶Š]ß*ö«^¯%±þ×?þõ›Þ<‹ÉþÍôãßÿõu|×ou|úÁçɹ|ß—î}x‹þž^`‚gÌ9|¿™í‹ô]a%+Zwè·úÁßi7£Î»(Ûã™ ÿ‘³ï’ªC2Ù“ïtòjÙ/ÓÏ>¨—åSlø¼3\¿ít¼;ŠâôNYÓw:yÅë— ž™àH{LÐ(í#°*²ûN§Ò%¬[‘É–i§è»¤rRdcÛÈâ,M²þøfŽÌwTQ¼{¨ú–ìp%Ikf“›êCß™?'?²À]iH‹[n¤ï¿²æHSawV¤Ý(&ï¨;ÜY±ûª4$;œ’Íwví¤h][ºŠެhÝ~ß%ha ¥—ËÝý²ÁU$mgo›#m2kk+è;¬ª t?ë4í#P&rú.)ûr"<3ü‘ÖÜéî÷~HùdöAEÚàng.ØÈüãSj:²úªó^A0Á:³ï°jMÒÔèŠÖ ðׂ¶Kª2øÎ±élË@¤¨3¡#‚ögXí=AöŒ5 ÖFÚ×NÖƒ íÎìè¤<ö  {dƒsH&he‚oi휛ï ;ÝiÁìÜŠÕT’~ðlŠö˜ØÌg ²'±õ6Ú+_'vT ßã{Ö¾ÛÕ¼M¼N׳¯»]Šíj¾Ì+G¶»y¬@ðÝ–›ôg;™µ-áêöŸ÷ºßãçÒæx›÷Wöívõ7÷^Òõn«U›ï›ÊFÂ,×L$ÿ ûv>wKߟ·Š´o—c»˜rv—.|+·¥ÁßÍr¸óÞì/øn7ó„ƒ×Þ^íYø¿«t¿ÛÑêÐÎî3"ìÛé6íE˜í\^=Ú·ƒ%¢„‹»vi¶CÜÊêÂl÷"S9¹Ë”f¹[&)Iù?§4Ë13•—”“»%áq+S™IøÛv=aÚC&9S¹ºk‘f9h¶éjeî¹q=óóØn'Ìý"³\Hø³Ïî§ÂÕmí9ÚÛÉÏÊÙ=³4÷‹[y^8»W“N÷ø]´ù{Y®¤Ìv²Dïàõ]nyÖ•mí{üªÒ´—’9ßÑónç+M»¸k–f;I±5å~·Ö¿àæn]ºÝã{Ñæï¥ò¥rrÏ-íÛñ:íE8¹÷–f»<ëf¥«»,iú3eð<nnyMeÑ2n€Ìw7¯{J( éu·CžårÊw»ãªÒOeº$Ýïvå:¥Û=~ti¶£œäí¡]Ü­JûvîÍýHøn7n[šþ€oWV¾Û™g’æz>Ë!–¶µ×žéo¾Nw»®‡rE3ží$+óyØ%Ìx¥îÂlþ•Õõº¸o´×cßîìãáê¶È¹è~÷€¯×¾]ºq?.î1¤¹žO\mÕ¾Çï&ÍõÜ©ì¦üÙNž¥óÝî»öÝn>Ztß÷| â–¢Ùî×'qIÂÅÝŠ4×+A\ÒÍ=—4×s§2ƒ2íÝÖ5*3_q–ó$í»}js½÷M\’ps[\O´_ïT†P¾ÛåçN÷ø=µÙÎmûJ£—Ïgùv{åì^Úl缃w;~iÚÝí¿/8¹='îµÇdâ΄9ž÷´—Ávaæ+†•(—¾qiIûvâ”ù{ÚçøÇœoÊ<¸D{rÞñY'¥Ìï#ôZxݸ’¤™Oƒ8²h?ßÄ(7·µ÷è~=Š´Ÿ¯qCø^{\!×Ê|_¬~æzÔ'ÜÜsh'÷ûù´ae¿^©Ì<|<8>qÁÄ $â΢ïÍO`ð=þ<ï„9ßÇ[»¸g•¦=L ®îÑ¥ûk¨C»¸­½G·ç0³vs¯®Í÷Q êŒö8…jãåân[šûÅ$NI9_Oé|E»\oétã(röEšÇv=DÓ_œDX+ßãÇ’ž÷x{ž s>x#ìí‰Ê‘Ê÷ø3žî÷ø=´9Ÿöâ@:¹ë’æ~åqÊÙ½²t½qv½ ó}îÇùšùÊi‘²ÊôG&«Ë”‰Ã :[˜ùJãPnîÕ„oœÌ¢ò¥ru[.šûÑ*7N3ø_¦´Çi¤­œÜ;Ió¾d±âL˜ùæyµãVnîU´ù{ˆ#æ}Úbý˜0ã…ÕîÏ n×[šçÕbYp½ç“8e~ÑÝÊÉmý¹èu¯SzÞ8’Ö´ïñ}Is?ñ¸eŽ_Œ‡¢™ï^TVW.î]¤Û=~oio/›ö,\ÜûšûÁæ}”0Ï“Í 4eŽÏÜO£yŸ¶ öVÎîÒ…}©è±Çžf>ò¬(ªÚÅmã‘hž7Ç¢|·þNô¸Ç¡Í÷ÑhÏÑMØãt’­S.î•¥­?{ãz„?q&qÎÑÞ¨\-ãý`_oz|Ö[)g÷yž 'Bnž4Çwâò£‰[)ýþ=¯Ç'.,I{Ü½=0žRæïñ8ýhîeÒ^…‹{fér·öíç{Ç-ÌÏ#nL˜ûÁYô\Üc éìáQ¶ö^y_"lqÇ#i·ë)Íý z¹€è±Ü}k7·µÇh¯˜—¶ïJepaž'µÒ^…‹Ûâò£i/•êÂ<ÈVÎ×}I§ë5´‰“ã}K°W¶8¸¥}ŸÚ~>mbVšãqþÑÄYzÜœð¸^Mûþ¼3žîxWMœb¥rºò=þ¼O&N§ÚWº¸í~Íó¢ò>FùÆéù aâ«Õ ‘¾Çï!í÷öÁûzO˵ÚÄá±^R˜þBã}°Çá±RÙþžö)WñšûA£²¼ò=ÞÊ-DwŽg×¼ru—-ÍxÃã•ïñ»J{Ü!ïs”›»ér÷ßÜÝ{K{œb£¿#œÝsJ3Þm¬wT¾Çï%ìñ½n‰ô[´r+ÑëoÏ«èùñ”öö2o¹àæ¶þvt»ÇÛõ"Ì÷ý«¼Èk¾Ö ó¼h¬7T.î¹¥9ßgิ“»iî]øÊ÷xÿ}¯=Ž’¸uåìÞÊÅŸG÷-ÊÅ}棄=.’ÝüÂóþ¼³ÞF9¹W“æyäqœÂĽõJ{NîU¥yÞðâD¹^×"íç›õ”Ê|ß¼/æ~Ðûýy¯ÓÇ[»¸{¾q}}þÊ÷xëÏE§Ì‹wéæ¶þXô¼ÇŸùje¾¯IM8¹ó÷øš´ïñv=Gó<éŸr9ÁÍm×[4óYÄa?ë~žïN÷û&îUx]Ÿõ|ÂÜoϲ¿àäöò:¯Ç=Þú›ÂÕm÷‹hâÐ=îU˜ïó,lLÚÅ=Š4ßçYX<´‹{UérßIÛ¾Á~>aƃ,ãya÷IÂ\Oƒùå{ü¹•“ÛʱD{ü™¯R&.¶Sn'Úãl?å’‚“{ižçgã\ÕæxÊð ÓŸ^.)ú§ëÇgwÉÒܯÏz°&Mœ3³£—ßÏz±¢]Üöó¢×=~/mŽg½ª°Ç“}¡|·r7Ѽo ÛA™8åIÉaåänCºÞã{Õ®n+w]®W‘f>h²VÙÎ7i+ÑóÆÊU[{›¬WæyJ†ò¼Cz\ŸõxÊÉ}ž·Â\·¬œÜçy*Ìxk’é!Ìx‹d.ikO³q½E{Ü´ |”{´òƒ¶ëU8¹k—¦¿5IT.îÕ„‡÷§ÉJ”¦=1_#ìqҬמק?.<®í~"\Ýv=G3ß;'嬢yžO P®×;iÓÞxß(Ìýxz93a;~±ÞU˜ù<ÛVÎî¥|çë–—#‹f¾Å㸅?qÜÖÞ„»ÛËÅ[{\”“&±ÞT¹»WÓæçQîY˜ùüE‡0óqkP.+šù WÎîZ¤ý|QF9¹Ï|–0ïk¯7£‰ÃOñžpv{9Ê×yºÏ|¬ò=¾/iâÆë•³{*gOöàV&n?[Î2˜ïcÚ|¾°õÇÛÒ.n/oùš¸}êÊ(WþžÍýR¸¸­o4qðiÓŸ¶Ï“}<móÕ§œCÖ¶ñîq]Âé–c \Ÿ°õw­½ Ûç¡n’2×+u”Gs×!Mœ;å&¤ïñg¾^ØúÃ57î‡ÂÕmÏÛh®ÇÜ(·*Ìñ^Ž8ºL÷jÚŽ—4×c&ïB¹¸[’¦\A¶aÁÅçÃŽÏ|ž0×[ž”‹®î3 <§{mŽ_·\ëk®×¼îÏ nîs?þUî£h·•£Œ¶ç}-¼O¦ÜAa<£Ü®§´õÇ{ÖÎîÑ¥m¼{<·ð-§QÈ[TÎn+G½ø¼¬§TNîV¤í}Óñ¨ÒÖŸ;åPND9¹Ïý\ØúËVn%KSN¢TÚ»0ç”ý|RnZ¹¸w’æz/Œç”ù{Y¯)ìå\x¥\ܽJó<.¼o ž·=ØÀWš¿gP4šrDÅ&6¤›ÛÊõ '÷îÒô yÊÉ}æ„é–I9ÙhÊ ö {{ñr¦Ñõã©]Ý»I{{ R™ÏC¥0妊—K¦\u¯¥íçUò±ƒãíc»ž…ïñ}HÓ¨Œ‡…¹TÖ£ SŽ¥²U˜óEÝtiŽ/´çhú l¤íû¬Œ‡…9ß•¼árS:ß㽜u0ß§ œ•m>åØËSw÷ëµv®—hús•÷EÊÅÝ—ô¼Ç[¹gá{¼]/Ñ<Ïëày$\Üþû^ó<¯¼/R.î3ß'ÜîñeIÛ|ʱ]/Ñåþ¼]¤ý|²V™ŸG^аŸÏE¹ö×>_vl×›ð=Þž·ÂÉmå“£ý|“Ç"ìç›÷MÂ<Ï›å´+ÓŸ?/æ›vsOm/‡•iïÂö÷¶ÂõmëŽó”¦ _”m¾åxwmޝ”ƒf<ÖÈ3QNîÖ„«ß[ý”WL½‘‡"<¯íz®n{žDs½²ðQ™ë‘…“ÒœÞ SŽ®ñ¾G˜ñX³ _ººg–.ü½TRNî’¤éµÁó,šþVã}Pp¹ç‹õÀÊü>+÷¦Lül\˜Ò~>Y¯«ÜÜ9K{üÙO§œÝmJûù^6,Üîï;ëõ…ëý}«hßã÷¦?Õ˜oQ¶ï³'®÷h›ï>CšþK¥›{Máìýí³1ž}œ·_Oƒõ’Êü½¼¯æ}Å`½¢0÷ÓÁzEe~ž—›æz^.>šñÌà}ŒruŸç…0×ÓðrñÑôg¨ï¢Lu²PÙ®çI¦0å:Ïz*ìû5Ï|‹0ýj1IóûìÁ Ìõ0É«æz˜äU('÷™ï¦¿2+í-šçÙ$oB˜ñ´`eîGÔ7T¦¿8Y¯§ÌßËz¼à[Žú¬gÙÒÌ·Lò*…i¯Ó&”éÏŸzcSºÝã­½E3žžä©+÷¯s¿ŸŒW„½=[p¤2ýµiÏÒÉ}ú#Á^âøÌ s?X¬Ç×µH3Ÿ±x$ÌxhÙÂbe¾Ï•¹„“;OiæW¾?ï5÷ãÅx)¸û|ó²Z‰Ê<ïyçÂÌ÷-êR Óß \¯2ãÁÅz5aæÛ×à|EÓ–m|n~?[“öÍõ¶xŸ!<ù}V5JÙÛƒ=X”¹-«î¥lëêæ}€0盺äÊ<7ï„ù>6y ÁžWU·UÿT¦?´é ó<ÜÌ· Ó_<ë%¶4÷ƒMž›0ýù½¹Ÿ¾.ôZb¾RØÎ×ñé 7\xFÛýÈËKG{žu+~=»ÿôG–å§ÿÚ2Ó6‰ÿ«®ôË­Îc  Õ•~h·ÿßÊ=§ÝœÎÞ˜ªhS3D$ ÚÀêWõçoôm›]³‘ÔÂfMe¤MY½*H=köËFZsëŒv#íduƺ‘œë2zö¾©{hÃì/ZÝÃ@ûbo}ç@ûb ¥‘6Á1Èg‰´Û;1ó>¹1Xi¯†;C#m`y `$Eê;ÛöGÁâ[S ´.Õ 429Ïýæ¥/W¹ÕŸ­! ö‚FÚT(%m©gÝ©h·©[Á9Ð&›‘TŽ&Aó¥P÷ÇH>«7#oõg¯MùúÝì쌴Žõ-­[<-žIÐ.œI&J¤]8| /‡oè™^¯,Ð^GM¯6hÓIf¤ÝÊg¹µ)V?x5Eëfx%åÈìôõ‹Ëj’0I}gÆÇ‘6<:„­H¥Ýic×Èî´äü@øLÆÍ‘¶,rîOUÄï´AébÌiCž•îÁßè/+ßzs­;±¼C  v–×R´¥&‹‘bdwNÉæ´* 6I½_{ Ÿd¤u°–×OxèåóÕ"­1,+‚(ha‘œiÏe mZb±*.Ò&uצ&O -yÚVaXÐ:d^¥÷e§;éÕr#í„nöÂDÚPv{¥¤@{¤ž~¦¤Ý®÷àãR–=‘TžT8 ä.êw<ôòdÛ–ÑR+Ù+ÏÚÔÞWÏ6OE;){ߺ\/ý`«jHèí-ûÚC>Ea£ ü²Ùˆ&t8•[Ôêµíô¢@Ñù²ÿ¼×åoE£½h*›B‚‹‡f&KOæø~‹½&4> îÒÑ„¢&Ý{QÒÉ] š¢=‰MÑÂMILŠ Zö-úôšÐÙ[ôôµ/êý-&ô3óD¶Kóý´¢aÑ„ÎíïþÝ<} a/Ê:nѤ×ùzni/jÉ -ØC-­èæ’¦(OfÑ0¡ý·(g4ç;ÛêCeBÏìð’.÷xëaD{ÑO&…½¨«?Ï÷}‹n&BU£½hb&t3šP×óöoI{ÑÌb׃0¡ñÅ‹†D ^ã S´¢ô[´çu¾ö¢;¯ õ.ãõùîu‹šBW£×=þôZ… Ýfõš²•\|ßÑþ}mBM£í¥Ofu²2EA¼h£0ßW-Ÿ".¹ŸV^ŠÏ[qP!Ú‹Ž[ä5¡¾ìnUæ~ïEõ„¹ßÝíI:][èùëá¡Û-Ý¢¯×µ…òFó¼;‹^º´u+•‰æ~×X”+\ïñ«I\ í&”ºŠ*LÑ‚Ö}‹ö’~¦Lhtë·¨Ãkž‡'©Ks¿l5ö¢wƒPÜhîÍvç+SÀ‹Ú s?èÊÍý²ª|‹ÒöNQšhÚƒ=×ÚíEÙ(Š&Lhy祓°å„þF§k -}‹œG“¶aÛ§hW´U"R˜ëýÍŠ&´}Ô[”à5EEoѧètm÷«×å•b¦S˜þî`S‰0çó•Ц¨Î-ªÍùlêæ|}Cÿ_S”d0VÎ÷ólžÇÑŸ¢IV šÏs‹&E{Q¢Äó$šþì$O˜çÍ䥆0E&¡xÂ^Ô§Ð^_§[4ªzMu²)\Ø‹21ë(LèüdîPØ?/³xÂþyE=¢é¯ÎuCÁ¿ù†j[Ñ›"íE?ØT-ÌýÆ‹ÚSta•šýšñˆ…ö¢:•РhÆ#«š÷zÝ¢&,jVNn Žö¢6l*îךÍóö¼tlÒU[Œ'„¬e÷aîG‹¢¬Á“)ÄSt$gi/ ¬šð¸¶PÐhÚó΄zFs¿ÚööK™Ïûå^¥½¨ ‹6„éoo6½/ºåE7„iÏ_¶Ð²húÓ^4C˜þòž„vGSTf3'ìE=–½t¦¿° = î>ÞÞ„ {Q„ÌõM(`²Õ›Ê„Ú$íŒ&´æl*Ò^ô¢ßPÝ×y¹-t0šMï‰çipóMí‰M•„xÑáy·ßM¨f"ÔE˜P—4 Õöïƒñˆ0¡-g>'K~3}„v$ ªœ¡}¯ë Õg¾N˜Ð³)8i'÷¨Ò„fd6ý :–+í5šÐ„[ô Ú‹ZŒzúšÐ’[tàuñPðÌ|œ°ðÐÄhBaÎ|O•æ|gžÇÂ^´aq>¢½èÂ"41Ú‹vP´.ø†Vf6 ºr‹DÏûóf–&4§ð¶O˜P£’9ŸÑ„%ŒöPúL(o4¡q¥ð¼Š&ô·x(áëYÊ E|íEÊ =|Í÷Áî eýgÑŸ0×{i\ÏÑ^”M_ºïE ¢Óõþ„& s½³{Oy\[èC4×»&´¾°éJØ‹x(J´‹MûÑþy=ÔïõºŸwÛjaÿ¼ö¢­æ~P6›ø£¹ÔtC_{(;ó©ÂÜNºE•æ~P=tîõ¼¡é¬.^·èÀnÒÍ!]H™ûAí7t.˜¿‡M3ÂÜHWSö¢lj&´®2ß)œ®KöùŠ´^Šz {h4ESƒË ÍfŒ°‡6Ê-L{í-n×3Kºy^LuaßTf/µé¯òâQÙCiÙ´!ì¡ÄlÚî×sHóyãyaBÑEI…ï V×ߢƒ¢QŸÐfEzÍýf0_.ü U]šÐÅ3[¤9_cÜP¤×j=Íz\|Ó’­ç)Ò~¾|S|´Ÿ/ßôMs0ß ÌõÄš/eÆKƒ=ÁËÇÓcßP–ך½oèÊk®÷é›Ê_û|•yI3^™6ñ«L¨:«0•=t—Ð_aM­ŸPÇŒ7gcÓæëOh-«‹„=t–P)aΧ‡Ê {¨ìæóFó¼œl:æó¬Äçf<µ˜öù¦êš–ô¼¡®}JóyV¹¡ ¯/zh«°‡¦RtFØÿ^Ö Óß;kðŠpóþÞ¢?#쟧±)6šù"…®7¶ é|ݦ´ÿ½Ìwߢ4‹ù aú«‹ù aÆs§hw‘¦¿²|Ól4¡ÏkßЂïö÷eÇ»Js¿ÞZM{ðÐTaB“=U˜ñÂf¼-ÌxzwB'^ßçñîÜO¢=Ô–÷ Âó†–Ö)í¡³¼/æûÞ¶†U™ëy/¾¯×·¨ïfÓ©ð'ô3iíd>^˜PµÎ×¾©úuº^#:{ÑØ:™»´ÿ=„F÷{¼ÿ¼×lªKMöÐNB+… ðÐÉàå›–«m…ǵoº}í¡¦ënº}]îñ¾éöµŸŒ‡ƒç …¥¨ð¼¡™¾©ò5¡O™¢hÂ|Ÿê(\nh£mŠŽöÐLÖç ª—)úì¡ñЏ¥Ù´è¡‚ÂJÆ|º°‡f6}E{¨ oº‹N7Toá Ez²‡®u>o4í‰t5eBµ Eu…+?oßM—¯?¡g»H³é™ôÊhŸsBÁr•74̾hB*Em„¹yè˜0›êOúq‘æz9Ï,\ohSåzŠöP,Û½¨Ì¦Ç꛺£¹ßx¨–°ÿ=Œ‚‹·wªc(Ï{üY&̦zÅn7«érC©z—N7t*gá|Cwæïm„R ³é´1_*Ì÷Ý ›v£ù¾[!”":ÝÐ*Û´û:ÝÐB§„ç ²ûe4›Æ=”JØC³¥&´ø¼ØìÒ„BPÝ2øë6ïß7ó¹ÂÜïëY…¹6öd û÷Éó.xÝßÇóN˜ÐªÛ+÷ßCƒ„ =éífSyg¾V˜ûY·Ž[ôüúsžgÂêÓù>¢¹wŠF ÊÒ™¯&tÒCy‚Ç µa¿€0¡g¾kK×{üy^ *Þ)*|CX®ì¡*–~­ì¡5„æ{( ¡¹Á7”oPtQ˜MÿƒùPaB•Ïka®Gvô({¨ ¡:Áõ†ÚØNoeÿ>os= Ba…¹_ Šößв1ù¾£?¡8{K·Zsæ«… uô„ó ¥9ïcƒïó`Zõ e®—IQ6ázCWNF˜PÉ|^pòþȲ£LcQ4I˜ûÅb‡Ùã¼}Óë øº±)ñõ¼Šö¢iæ%M(÷¶¢@Ê´ÇSôd ßPà/ï*Ýn¨DÉÒ„’|×˾ýím¡jÊv¾NhÃ×õíýáÆÀâã?ýñ{üBþïa¸É žºðô[Ê#Xü`ÏdxH6³‹/ýåSgìYüà]#+ ÏY .hÝ&–· ’œ`ƒA’vvÌD’A¨b$_«µ^&[:ï‚#—ìI›sgÅzS&V¤¿da³ˆ`ò” ßïÿés°å ÚòNï%²üžAh·†›AéÏHä˜qE»)žÍOI‘“â»Mí…N·]ò‚É>½—‹‡­'cDÞÜ Û8üÙ¾ìÈs°çfD’oØCéϪh,ƒùñHë>Ÿm„9Ò;w#ßýàíÑ=XùInëÚ#mZaø®Ø@{h ßid³//£±£?ж J²Gò£ºÍ…½ì~RúÝyýl“~÷V?äk§ÔúKŸD¶ØC±À3ƒiØa a§|z_/}sô o,hä¦1vgkŠdŒØò}Aëô’½!˜=‘£§HO…ô—#íÒ˜¶-CÑžSѦz'åÐ^úDúdBätžÇ„`s.Åæ-ynŒÓÒ†mú‘Ç” 5ïI€æËÄ«ÑIy´HëxÌÆ­/ЖÕOvÕEZ7`òÎáa÷ºÆž""hõ‘ÕY“¢]VsÜ_ô0ûÁ}Gz5Þi/Lmþ‹u*ÚãxÚ$˜=ÄwÐ>´Çâd³àùE‹Ü/}rzÙ&ê@_¶ÒÝ™ùÐåž|iÓ.Ë–· ÚCseö¼Ež/vY>q çf¬Ï~ćv«÷\”—Ήç¢DZ'ГO"m"eñž'ÒnPë³Ëð!_,A—‘ÖuYöª:°zÒ Eª#­;íÉ'‘v Z‹½¯|9ÄC¾,¼Øß„?F’æAôcäôƒÛP´)ùØh—Æ.ìç ¬žš2º¤LÁâ—~ËÝæ™á”œ~°]V‘v0üH{Ź';Øí†|Þ_E[·mŠ  y6À—éFsPÿV˜è†/·¦}ßÚlmL,¶©ãÜ¥­‹s£S„ÓV™9ºùÔ¬yK |kG´ÿ¾ÂÒþמÿ{œ›4[“R¹[×^ÏO4Ë’fë¶G³{t‰o-‰N÷ø–µoôË^ž¯›OýÆ.ÍÖ°ój»J÷áÞSxÜïƒúQÂÞ¬²2[[ß… íúGÂl=Kl- ö¥3ÇS›­ÿg¿ {ýÞãý|£e†6[K3ù›Â|¹Ü­_¯ù>²o݈æûȾu#šèŠóoßè£lKÊl>ï(“ôäx¢m„ÙZšmŽ[™­Ãí*Žl y]ntŒo]þo[+_g,S¤‰î hY¹w÷¹ß {´¯&…Ùm­²ŸO–&'?_…ú³ÂëFÏô*íÑ/•ëåqõîq¦Ðˆ2ÑZg V’fkoñ­¯ïÖæÂŒž0σ2ïÖ”ïö|½“´‰. P2×ka>JØ£y˜ûfkl%7Ø»Ì'z&iÚKõú§ÑD_P¨6ºûù®¿¶><¶NÌñÔîDã4–ÖGóyëgkÄët÷úóßíõn´0[ëÙã£ìÑ<Ÿ­¯¹ŸŸ†7´Æ ®Öò­oýš­å­°u*Ú£o~m=xLª¶E¢o|kÂëz£mîVƒ×Ö^Ùƒ¬ÌõÚ¨!ìÑ8óÖ'ÿnœh™R¤ýçm¾¯è|£gÎýL8M÷êÂ7z£ó<æû쟭ß¼¿x^méEtLakN´ÿ>êë ûï£>0Ñgý³´þ5Ñ==óú.­?îIšh²ÎXQ¸Ýèš4´“Û—Î÷º?oQ_'ÚÞ¾õG_ó<;óÐ[Ú£k>Ké_Ó^íµ×ßÌà !)Óß^ß,šö:*õý¢éO_úþÚMo4Ž0ϳój» {ýÃÓ–ôà÷ñ&FØ¿O¯ŸõÚ§?n´Ž0ý™Á{áv£wli~t¹Ç×%\ý~q¶VLéõ‰ÎIÒöòDã”"Íópæ[ßí5×Ó,Ÿúl‰š…óñúF#MÞs¿˜^Ÿ7Ú£oúgi÷c¢ ç¸õÅ^Í5½>l´Gÿx}©×7úh.ê÷Es¿šDË 3Þ_éÖïúîô+ZgoiÚëÊwéöë~£w|éökΗGó· ÷«hž'‹¹ð×Ù'‡oôNðòûÅ CnÂӿϳµ¢KÓžõ£„=zˆèOa¢?Ï,c“¦?´ˆž¦?ïÑ?ÁãW4Ð] üØ¿ïq멼öè#¢é„=ú‡¥7ÂD¯-¯/õúF×-fƒ}éRÞé.}ÍóÄ£„é¯îòY ûÍÕû«»Ü¥­¯éOîÂùx}£w=úG˜ëyW–^F{tN¥¾Êëì÷›/ûRÍ×ô·×æç-$ÌxnO꣼öW>g -ÝŽ¦=ïÍ÷ÍÖ—äõ…¢Ùúšò]:úÍÉû3Ç]Ûîǧ½¯ ÄÒxaïØ¦íÑ'‰¥ÑlÍÉ,ž7Ú„ùJá~£i¦v©×Sš­Å™ç™pº?oá@¡e¶^g+Ô¬ìÑ+¶Ç.ºÿŠ®±¥­Ñþ}O–öE×ìžUš­­™ñŒ°Gë0ßÜ|ëf¦¾¹0[CϦ,]otŒ}_Ñ Cý`¯Ÿk{È–ô „¥ùÂíF§œµÂl­*D³ çMR–4[ƒ ã`-d{p‡t¿.IÚ£a6KO£Ó.™C8ßè ¢I„¹_œ_‘&Ú¦&–&GóyÏù.œüóT¢7…ù{=:äñ¹Mz4‰­ñRfk]µû­r½Ñ©Js?$ÚC™¿§Y!Õhn£]Ú£'¬¿­ÌÖÒVÏÿG™û]³þr´/Í´Sšë±->o4ÑÝö*s½ôzßëJ4‚ ¬¢=ºÏ2š‡ô¼Ñ ¥H³õ¹ÛWN×3 ÷ûû¬¾§²G_l–®F¢F•fë.k0¢otݰÕÊý·håv£!F‘æz¤A´Ï‡Ùú¡,\¼½±6IÙŸõ§¢³Gƒ [A Ìó~4–¿öñ’G?(¢'×Kt¹ÑeI§½`÷“Çkßh›R.7:á«c¤L´!ÑÑËŸGg T’&:ëxJ§]p®‡`ߺyVŸïC˜þØ´BÊ|_ÓÞÔGûÒÀ2í]½2÷³i{€”ûõ¹Ÿ ûÖòÄ÷ñú=ÀýT˜­åËÊ\OËÖE*]²ì}pôZVbLÙu­ùEÛ–Ï­õ§½ ç»5*ûûȳµ>wiîçÛÖo+s½pãRNwëûÂån·÷…ÊD?lÛ:¢Ìýfs¿ þl½·=àÊl=L–á¬ÌÖ…d¥%¢=úùl=ÿ:ñÊl}J6ÞSfëFš\/çÝšÁÖme¶Æ%[¤ì[£m¼¦œÙºlõW£½¿q|ú Âl]:{„‹4õ{óàï¦þq¶hÓèéß'…š•ÙÚ˜m5O´¯w¨ÚŽî¾5†‰?eêG“!¡ÌÖ¢bï‹¢o}Ób»#”‰8Ë[¸Ü­Û¶E¹Þ­ÓgOŠpÞîÓßö÷ñ¶µ9I³5¼ÎWt½[›Ïõœ¼>nµ•rgë¶­öSæz¨> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 114 0 obj << /Length 2920 /Filter /FlateDecode >> stream xÚÅkÛ¸ñ{~Å"í¡ÞÃZE=ÝÒ ‹¶¸¢E³ÀµHòAkËk7¶ä“ìxEûÛËy‘ÔûÉ]~°ÅÇp83g†üýí‹W7ùEi”^Ü®.Š,ÈÒü"M² ÒÉÅíòâý,Ëãäråz¶8^ªYûù2Êg•)uÁå<޲ÙšKóÂfêl>š Ð ÛŠ”­©p¹©Myk~T/rúÂõÆüýd~ÇŠ0•÷Õ«0=ÐÞKj;ØÔ½)h @ÐP^™†Âˆ'˜¦ûªta¾˜¡f[ÃäÞdÎúòãíŸ.‹¹RA‘°”dâXEÈJ¬ôì[ªjªÝˆÞPùÑ÷DAÈö‘dCÓà@—D}’yHI0'j"”÷kâIaË’±@›EÝ ›YÑÔ0ûãe Â`Øn©²ãérê¥Õê²Y9šŒ(&„„ÒÖ? yæ·‡aj¶Â•‡u80ÝMm.Öáì´†êæ]Ó‡Âe®:äS- h©üO$ó•ÈóÆï…(C‡¡ªé "+fïP¾-Ò„Àw@Ã#•¨Í¥P “ß{‹y HuÔ`FtZó°ˆb=%-€( ‘:Ž(** âÐ~3õIJ }€¾d|Ø@‹jvÎÔÍnvÐ{çQ\HÒ<`KäП%F^&kÑiËäØ !Ëg·@yU;‚«=ïud¸$MôðÙ"aj¨A  Í~ÃÚÛ]M‰ªì:ÑõÚ[ ­5KN›ÍÔìyñ ™·6ûbӤȳfZ½*rÄm²©¡Ü±lZZó}u“Äž}U¦hJs•I‘í¿»œ'a//.NL:Í¿5Å9OÌ¢Ðñ!LÂKRô%$Wcœ[ *QBÔÄÐWJÉgBÞLó±‡hHo‰zZA Ð;ž£µÚo)ZrÓN4ÓïØXN–Ú÷üƒòGþ8HGRï oÈÅP´‹¼8’+޾žQI;Yá²>ÏÛG\'`D©8Èãb`YíÚùÓzÒ}i~7ü½âïŸùë‰oÁDm¿’¨~š#¯%àÓôf»lóIvÏ®ž«1XÁ)(Y€ í¾¥¦þŽi>³>CLL0ï!í·€€æ*Œ³Ù¯¼m+ÓVN SaÜ{nšg5û5«Wë‰~?’ÅŠGÈ1Ûðfð ‘hÇdå!YãÊþ‰Y1¡Rë0HTŸá­§ëdÇÓ‰5û<è{Â&N hJã|Zúæ¢cÜb†§ uÇØ[À‡¾Tÿs†˜«i£s}F”Þ¢œx¢ c^ÓÉ:°ÃMù„Ii½¹ªÁnñ_³Œeò¥[X<ƒ†G³|º3H™ÙWÆOl”Þù!´Ý¸!¾e»îŸ<²[#þÆ£m½eü¹Xª—_³å~îZ‚ó<Èâ¬/ûÞTäµ§ž×…Až+³9ú7~}DZúë ¦?zf|TÀ†Et¡Ÿµ™«Ðý¸âFD|ä¬ DÒ}ºµ #;jñb¨â ×eLl—édö¦Ùí%&ÞHÈ«Q5×›IÔ{ñý1:7 š>%0*‘ºÙÇ^2†°F…OwM£Èz`ñC¨bä—2N–”²IFQ¡öq¨Œ¤« rJÇXB點 A6tüËÙ°(~±(ÏÈ!•þhAæqšº™)—µäµÒdVchnÏæŠö;6$Kg¨º¥ËÓMÉ&Ž•©p`‹ù¬khT?Üf†/S‰ÓÞËÞzVôE—»ïŽ$)¤³°wázKÇxë%«‘6Zæçr•=tQ‘L¤e£‚Hï˜\ÀüÍM¢©+KQKw$\ª`ÔPJ &™ò"õ7=T»rÇ©ÛX+ʽmU;$çÑC ÎßÖå²'Q¢ƒµe:ÑfÁ€–R{æÐ­¦Ò*ÌÁ¸"3Jn®ÍÙÑ˧%ƒ|[ŘS¸ZǸ@X3åÚÁ{<{`Ap¿oWy —¦¡l^쎇ÖvÆÆ?@;SzE Ãô,vC­ãà3´œTǹêÁS)ðrÇãULZ{G)t#‹N–1ã*A½¡3/…äŽVz0«ŠmÔNçΠX Ø=Ê¡ P;+îE¹ušˆ¬WF·64šöbíU*F{4˜¿~]hG*¨¢%‘‹¢L.Š÷wØ?%±%f[/·»kZ—ž†uD0¨¶ !¯Z¢p1Úƒ"Žû“¼Æ ¼JøŽ\×ÀqÈ)ñƒ¨~mñQï‚Ü¡ãa`Y7a<ôï{º‰íBnÛ\tHÉnw­P¹þuå†!wÏØáé.v½ÈÌ.¤vd¡].—5§}BFN©‡Yí,Pîˆf?\7:tä©;!Ý‚-<9âròîô.k—‘·×QÐ0y©ÕMeâç: Bˆ² J‹Q†Íý\rÇQ9Y<¼`÷4‘Ð9—è¤èƒÁ ì¾æ( ô·ÏçnıôLæ DZNQ˜s?ÿâhgkÏ+«"_|‚'=ÎèEÙÙ|êir¥¿,SýŠi—ÛçFœ_••-Vцj|XCÑÏÈ’;­ÿ¢œ“ ´ 5{g²5ü“áÃ@•Þs™Ò×grûc¥q·/{û2œª¿Ô=Q 37}š)y;„»šÞÓ÷ CdýQ8âSüÖü¾*Ƴ×aÿžˆÉDqÞ70rªG©1Uä*5l±2j‡kJ¼†^:Hñæ`}îèVá;ë¢z„k{|”ÎþHŸØ¬Ë•1´Yç†ûž_Ê$ʆãW€YáéµóF»=ÇÎ3iÍaÄ‚Êò–rðô9$'E2»~âý…¯Æã5ÇƲh9¡›˜§3‚O˜gDç·uMÏs]ìÔˆ½|7ãªRÞ'@­µwô¦Â{Šñërrº—ò>¼JæîwÏÜŸaÑlÅêÔÒb/âËMÝ{•€Vù|¶¢ã”ÃÿuÞò{lÆio–ím¸iè{„%æ§ Æ <ñ,¸÷X48O(É|LjÅ´-î'T"ʲ S6¦<<í|Dq µ=§†Šo™—ÅÐ;TБ JN~‡Q&ƒ¤­ó¶¶Î5›'ÁSkÞ !G¬g?Ó¹ªüÂaEÞÑߨ¯iaûvƒYsç4 ž9 “³‘$ ±‘*ôÔ¤†(ü»"I‡¿}Ò ÇŽpO~䱆*ì»1(»¤0þ?’ÓnýwQxfAÍ È1Àw)y8/¬Åíã¦%®©^Ù—64*hŽ3O­ä4<älлð‡ï!,hÀ|ý2?ï™/¬·œZ|-?y‚¦…rMjÚ"EJ•}ÍeÔª”v13xøâÅÃŒRDиó°-ͱj¸r*pÖʤ%@qRJa»ÿø äñ•Çåa(ê4"ŠÍðíhM(Ô1Ff[Búp™Äx«(F•Cß‹··/þ ì> stream xÚ}SË®Ó0Ýç+²t’ÖŽí8,yTÁ”°p[·½Ü&¹¤í½ð÷ÌÃnS ¡(‘çqfÎOd¾„GæmS5ÖåÊéÊ,›|Óg¿²ªµªÖ”0;RHFXt,>ô.7f_àI¡2–,g5ßtÙbåòËÙ¼Û]ÛZU׿Ý6ÿ&V…ðî/|CQÖZ ÷º(µ•âSßîŒN)žàìôᥠ%6p{ MXæ„öÀUÆߎ…jÄo6ú±(ÁÚb³#»Öˆ>aá-=F^°Ü>=æ…r"2ù¾4Kj„D0<’c/ÈQ¶éø¼Á’Ó3V §»ÞÛâG÷„,¥¬ZcXœCCnïQš=ü‘}ÿ£ˆq¤ˆù÷‡#q”¢*ʦ^ŠîÀrkÕÞ¢n8kÄZ“—©ÃûŒ©”&ì JÀóîBÃϬQ#¿AÔãU(š``Áñ<-ayï™ËdY&¿¯pÊ€7ÜjÚ¦(8'jŽ[F«9çÇéÑ6‚à‹™â‚ytý)œFÅ,Lú•Öôöª<Ñ !®£± í(šcÌ Ä~i E“m##¢–v˜¤±>qfZ·(­ù#ßÖÛMô°á9/Ýè?¶êþ€„ÅÊèÙOªÚÊ4- ({uòñ‚#Ü=@«”Óðt‰ëd)•#ªs!mïîž c…Ç¢B„íbs쫊µŸ±Â@W€ñL$)mJ æ×ñfBE¢H]W®± MÝTµqÌ^¶ÌÞwÙ_À«8u endstream endobj 111 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-flc6b.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 119 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 120 0 R>> /ExtGState << >>/ColorSpace << /sRGB 121 0 R >>>> /Length 44394 /Filter /FlateDecode >> stream xœ¬ÝK¯5Mræù÷+ÎèUå=s*ê°»0 ‚B¤`lÉfàßwe¬µwå Ÿ`ØÍ§Ï~÷µ*ï‘~þú'ýüãÏÿýÛÿzÿß¿ýóÿöŸþÝÏ_ýá·ë×u]?ßÿù‡¿úÏ÷ÿ:ÚÏ¿üö7ûsýüýoéç¯ïÿûÇßÒ~ÀÏÿò[m¿Zú)ëWé?úÉWþ5+ùO?8þLÕ_ íã×ZÏ_©ç¯ëúUûóWêùkJùתϟŸ¿—ö«~^Úùù{¿æçÅŸ¿ÏëWŸ¿“Ïß_õóÉŸ¿ÿ»?ò‹ý/¾Ø?ÿ—ÿöÛ¿ýùþþø_æ/þïøc-¿òúÉù×5þø§Ÿ¿¸þòçÿøÛø£=ï¿ö{û5ú×?Ì¿÷Îù+ׯXï?L÷µ0Ò׿ì¿û_–ò+}Êù»ÿe+¿ê÷»M¿û J£ýZùûŸþî¯(­ù«|¿ßô|I¸êÜéŸxUäž•jWÃñg»J Ï_Ó•~­òü™üú{»/áëówðó÷|Í_s<'¿þŽ·óüýóî¾?÷çÓþ›ÏWǾ¸ë}‹]¸…_÷¿òoWß·þmúŸü·©®ý_øÇáõ¯üã|•_%ñ—ÿÙÜú¯Áð×ñ[óο‚¶/E¶yÎ<Û¯”oó»Óü‡Ý]e9uû¯ioäŸÿáçÿùoÿ_[’¹öer·Nö9þæ/þ¿¼¿Ðëç/þáïþùÏ?ÿõŸÿûŸ~þüwú¿þéþòoþø×¿ë»™¿:~”†_ôßÿÃßý?ÿçŸýÛÙŸèûS¦Þ÷í’«5LüLÿ?ô9¼™¶Fñ›é£¶¨®™Zª5¡»39´~¥D •ýžµÿJ—ª.ª¨z†rSÝ_‚©TÕœP+‡Úý-%¨7UªÐ,ª<¨®*|×+P³w=ö7"ꪕ |J¿® õ®Êöê÷YT5C)PŸPΪ™ ZT»ÞZש»'èTW%{gëוU%SSU”»ªM¨Õ¸ ûîÍý®÷ÕPT«Cyž*¿®Ým¨('ªªê€ö7xª_Ð 4ì%û–NÍ¥¤²;u_ åTźÕU¹B#ÝÅû—»TvßÚWÏ)»‹÷¯šTvï_µ¨æ ú©¶¯`ÓÝ’‰2ßÙýJ¢2©©j UÕ+´[†Sƒ¯°–jÚ7Q웫ï_ÑT§ÊZ›}5tU½ ¨hf•µ6÷7yÕ˜TWYK´¯”ëÔØÿÚ´ïŽS©Cû;e­Ô­ÝBŸª|…ýkžjÚ¿æ©> u©_a•S­éVW%{–fwÕ©rA-µ´[UÕÔ‹ÊZá}5š´¿ùSÖ 7ëEÝ­hƒö¯r*ñö¯rª$¨ª|…û]ˆZ‡öp Ÿhìw!²^æVé‡ú…žd_ Ye=ɾ’ªðYî–ST+ÕUÍ~鹿]Q_TQÍ Ý#ѲWXüDߺ[ôÝw¿Ÿhí«Vd=e·‘ ÈzÊn³Q‘õ†÷çKeïz?[Q­uQÆ»ÞϨðYî‘™ïÌF "ëÑ»õ"¼ë¼[@Ñâ³ÔrªìQ…©*º[G‘¿³ý žòwv·"¼³²¯r‘<ºõ"¼këU¾kkõE6òØÿë¥Â'²–]d3†ý¿&>QÝ£Ñà+ܽ›hòV Yõ¶{¾CŸ¨Ù·t Ÿ¨íÖX„OÔì[:Uù ûŠ<Õø sª_á¾cEøDKMoáYë}¨óõ}7‹ð‰lf#*|…ûÝ‹*_a_­§_án¡Eƒ¯0—Ê?Ñ**|"k½ ~¢±gT"|¢±ï >ÑØ£`>‘ÍlDøDsÈEøDs@DøDh¡O-¾B½NM~"›‰2_aÿ*§ü]¡Â»^{6)»^Öã»^ö-½µøêè-N>r_å§ðÎ֞͋ìËz¼SöζºÊÞÙ­{V ²Öm«ºÿóâ+Ü# Q¾ {(*|…û*U¾Âý.DøD6ËYë=l–%Â'J»%:Ä}X/*Ê|–»•YOyÿ÷=š5>ËÝê‹lT2¬‡Y>l¶$²QɰÙÒ!öèÃz<‘J†õ¦"¼ë²¯d‘ºnÕ¬²‘ã°™­¨óVRÙÈq«ªð‰¬7]¼]²ÕŠÈiÒv?©ËE÷ºfzåÐÍ_oµÐ}¸WèïÃv£#¯ìž+å·ízPçIç+4ÛfÛ ˆÜŠ{„þ|ý ܼ û‡œm÷³šíðÜ+A‘ÙÛzd¶Å¶j™­±í\Df{l##u÷öxâzP³=^hOչѹ„.ƒn)4Ûã…ßKÍöØ:¥È³»Wh›tïH¡y`—RÂõ¤Î…®3´MηûÚ&èÛc…¶Iú¶µWj›¨o¯Ú&ë;íºBÛ„};åÀ«}=&Û*sd¬·d¬ÆzK¶†+2æëÑfkØ"c½%c¼xùëÙõpš‡O·÷x&0ûÃaým`Ì'2Ò4®ÅÝC³¿œø=ÕXÏf‰ñޏz9m=(0V¾³îˆŒùD¶†/rõÏk׃ºùëíñhàŽï{á÷Tc>‘mWDݰQ¸½çc±J~{·ç[v·Ð€šÊ…ûQþ¼\ø¾ÔèÏ Æ+âŽÀmû¾Ôè¯oÛý¤F]Ú[µÜÎ%4æCÅ¢’#£?/v‚0òôh¡Ñ–„ïóôàzRIh/Õ˜/¬gF¸½Bc>Tl§#2úÃb{‘Ñß•ŒûéôdW2ÚK5ú»Ûc„F{^°ýYɸ_ÔèÏ ö3£½/¿·í}Á~‡x±?»]rḣ ÆsÑŒç£?¸=b£?(v/2úƒRЫ§v=©Ñ”Šþøpa¬y…FP,ú/2Úûíí}ÁzO`Ì— ƃ±Þ^°Ÿ#f‹ížB'ÿ<{¾8ûóíõ´Àhï‹EjGÆ|©`¿'0Úû‚ñ^`´÷·÷õëIÛ-pfP°ýAÁx,0Ö£¶{hÌ Æk»?ßþ|ö{©Ù_`?G\8,ØÏ ü¼ßÝ^ÆzZ»ã‰Œù^ø=Ôì-³@dìG”ßCù`±ìêêý!öc§â^¡³¿ÞnO½›ý%ös³¿ÄzV`ö—¯æçø½Oó ͶÝjö—X ŒùpYø=Õü<ØÏ ŒùpÁx+0?ÏÂï­žþzµ…æxû=bßo*X/ ü|û½ÕÕŸo÷1Ÿ/ïÆzh±ŽA= a¡1^©ÒΩñ~ê…þBñH½Ð^¨ñ~*ÖËc½¶b¼)ž\Ø¡‹?ß®þ|{= 0Ö#jÂõ¦æç±ˆ˜ÈX¨Ø Ìσñ¬xqŒ¬Â‘1nß—óáVð}¨¾¯Šööpóó& ûU±ܰžë ëqÞ°áÕXOk׫û)mâûTc½°¡¿ Œój óùÀ¼_p^SìçIæëy¿`¾˜÷ËÂï¡æý‚þ80Ϋ·…ßCñdÃ|=0Æ[ým`Œ·:γˆ}¼Òqž%0Æ+ýÂï¥Æ|Ù#£¿ï~O5úû­°†FŒ…‘±ÞÔ1ß®·uœw Œó&ý}`¬7vô÷«?߯õØ-J72®ÇŽù²xòzì¿§×#RÒGÆõˆl‡‘q=vŒ|Ÿ¡§?~^¡1ßï8¯#f2ð„Ì‹‘ÑvìçÆx«c¼ã-dCŒÜýùì÷Vc=»ã¼M`¬×wœ§=Ý}<Ò±8ùóíö 0ö[º ŒŒxŽñN`œ§è–¡92úãn wäåÏ·Ç;b÷éïÆ|­c= pñçÛýEàêÏ·Û›ÀlpHœÙŸu‹4Žœüñûz Œþ¬c?'0ïw+’ý2KFîþ|½„žþ|»? ¼üùæ̤¥ Y(#c<µ³GÆÆxª[féÈÝ¿Ç ‡?~w³½ÆxJìû%û=Ù^c¿'0/œ· ŒñzÇ~OàîßýM`þ6yùóÍØ×3úÀï¥Æz²WFæý€ó6ÙŸb=&0ƃÈ>yúóÙýzš‰I¶í÷T'>»Õ8‹l”‘«?ßì¡Ùža½%0ÇC8˜ã!ŒžÞÑ-+YäìÏ·ÇÙ-´jœ×éXï ŒýVd錌ýòŽõ À8O5pZÕl¯-SVdŒg&â™c=rZU*õä|gb?&0Æcýy`\OÓæEÆ|y"^)0¾OdñT/öû)±33î5æcñJÑŸOögjܯ;Cd ë}b?ÿôôó–Èâ×2IFÆzËÎ&™B£½˜èoľ0ÑŸÎþ|û~ \üùöý¸ùóíû50ÖÓ'ÚóÀü¾°^ öþYB#c¼=±^˜¿7öCc½uâËl*äD!³S(„ŒBfo1Y³m‘ïpw‰P,×Z>ŠÉZzh²©µŠ"/f™Ù\Å>E6èÖÚZÃa¯]dãgì“‹ìì޶¼5˜7¢[Z5‘õ°(t)²…'±ív&Md½h·4 "°+,ö­Œõ‰në¬"ëa{e°·¬—é–(üלQØQäSUYO‚‚އ*z’n=D…Ï‚BXou>ËÝJ‰llˆ;èÏ…¡ø¢È ,Ö¢²Q^·åÖCŒ•GñEQã#gWáʲ-ôCLšŒ}L®:Â:…«Îâ¿E¸êlnvˆó½nyiD¸êìN᪳eÒCŒqÂ'²ùS_,ôŠVY·öº\ûñB‚"¢³-O‘ò†Å‹l”‡­²C ç̱M&²=¼aS0 §Y.B‘: :Äs³£°ˆÍ[¶ç4ìH”Èæ»¸»1VwX̪EÕPøç V¿yËÖ¯‡¿>ÄôÖEv‹_¡˜-é‰PPÅ}Þâ]ýx埀6XÌr+DÕ ä89™0Ñ\ˆpUÚPi!‰ÒÁ¢[O28t¢ÎÊ“þ ªá“þª™´íE`&MOH:~8û¡&õŒC] ‡v3é9“Þ©œ˜ôî´½&EF{„ì䑇¿ß™ÃyËžC3©6‚zãPBB{˜Ÿ‡bÄÅ?’žæç©Hº§Æ¦r¡Hqõσ¤ôù{¡=Ìß‹I]Õ,*€C‹âæ×#’†Ʀ,²OGæõ8<éæÛÝï·áI#Oó~á‘ÀÝÝFhlJ'´Wb`RúÀÍ=Zhm%õŠY}tßøžäñ0‹*0©ªúIZoI?O//À¤©ju`ÒT5“æ/$ýT³h“ª.4‡ìÒ‘«{ó~fR¬Ó~h Wdå0©|àî.#4“ú^–ô\ì‡Ú2“Z©™ÔI«Ôè/™^ìAéA«»¥ÐLJ V±meÚ \˜I}1žWöãáÀ8ÔY˜Ôætó¤Îhc퇊+ƒvÕL:‹CÕÑTÝž.\cRÒÀè/™ô30æËIAÄÕ“2)ˆã™Ê¤j!»£Úƒ&*Æs1Þ¬ÏfÒʆ öÓÔϤš™T×Öñ##i²+ª}<[~uñ×34æSA—™tI;ÅÔV1Þ Œõœ›ŽŒù|EФ؃*ŠÎfÒÉáAé§±R±ÇqÇT`?Œñ<Î7«}’æûEÒñø<ß¡›'U´ïSÍçCQmñô¤w ºV3)’îÆýÀ¤‚b eRÀÀXojŠ Ì¤q÷ÃaÄÒÂ%…FPuC{xùû鑽hEC{¸ûû™=4úû†¤4b/2é^`&íÄxD\¸žÓ°øI w­ÐÓÎåØ×›™ô-p}’ª]¡™ÔëEâöI:f¿‡ºzÒ5 jSc=­c?RìAƒ½xPàiŒ‡pN<2“Šá~{QÄŽùH`\ó‘Àzì :=íûMA£jv¬·ˆ=i}gШãu&… <=i”}߇×åI«†nž´é¡Ÿ¤L{=GìEí:Æó‡'-j-pö¤[X/Ìëiáý¨?I‹R`/ZˤE»'E² =õò¤D»½WþÞ÷k`&…@,nO]nž”h÷g™TIÄý“Ô'Åîž´‡Azoû|ŒIc=``½'0ö[˜4HìE³˜4(p÷¤5{?Aìû)ëÕ1žÇÀ+ò“Ôf·×‡óåEŸvv—ØÍ}·‘—'}¹Û õ“´Çæ#‘ÇãØç{Ã’GnWèåI_îûI]üýØy‡ÈÓ®Øë®Ÿ¤,ö}ª›'5i#ôr÷¸yR§÷£fR&[Vûxp¬Fè')JËŸûÁ^‘™ôÇöã"3©ÑWOOº³ð}¨‡'=¹ûkõ“ôkáûP7OzR’:ù~À´ó‘«'E™WèéIIîöDíýÅ´ö$ò“¥ÕÀžôzÚzoäîIEî OíAÕ{àVC7üH}¿nZlNdüÞÓ&V‘—'åX9pó¤/6žWw®‡LÜ—'µ¸J`/ªˆ‡Ú÷ÃÝëù˲£©—¥'¼ßÃÙçãH  NŸ¤í =•S<†\-¦Èî·jÛ¡‡2ú’jGeD²ß®SÜÃÇ”¨òÍëTÅÙá´¾A„ú¿ÕОb_JÔ= À<ŘjÛ¢ÎpþÜOq}¢ÚÑâ³ìOûÖDÏ…t‡˜à é[D6"ÛËâSJìÐæ—ÓË æ‰)3¬Õy ‹QN±w÷°Ù·SX´¢²Y·ú§›°e'Qc ‹û®Y+Õ=lö[=l·+L„oÞÖkU¦©°–HdwjDˆúa¬o5¤—é6C!†mi‹ð-ÙLãPÇ^Z·ÐtQgjˆœU‹Ï‚×o ´|ÝrDŠÓbÔujòÊêö žò´=«&ßuo§«‚3"¤ ±»R„«À–øßÚquÖ]tœ_RZãÞx0=95j‹XùBûdŽrò…ú¥ä²OÇ©Q%~"œy:Y˜Y'–Nò@Jg¤£Ð–K¸Û œž›£(™o³ã¤ÑÉŽ…޾<:ó`a†‹ëZ×…\9BæÁØáWÚÉ@‘f¥m/ [¦r¨;p¶H‰Œ qŸóŠ`ß_iîx¢*Z÷ÈÄûÓ…›wàD¦Òº—‘vÇ™_iMò ÉtøJ‹õˆ“:ÉìyÖ#Ú!¤ÁσžýáJk™_‰§«N6æ*±_»gIÊÁ‹Á–Ÿâb`ÔåAýŽ˜Rá“a¤DœdëJ7bÊueg.Æî}ÓCõ˜n]‰·aK'¹O±œL|vìänTOf~98ߨôÌ"ýŠhoùC„œ\MœQžJi—“[Ÿdm÷‰ÒÜJ›êO[Öfl)"?s@:OËq)äv>SB+miiÄÚô‹7¬Ò†ÞȺÙQp èdÃ!€‰3ÂJ› .[ rz…ü"­ Z(Qyr0ë:z¥uåË2î\ÌO²;‘“¦Å¨7¡u¸Ë¦ÌBf\èÊ•È÷€®ü`½˜I"[s­DNl.fFÉ]™pP}Ù«€6T[,µ|0c‰†¹O”v³/œ@>Y˜í·¤²3«ÊœäTj!7‚ÒšMæMQ.ϛҕ¬¶lBpð©,&ë`ÇMÇ´ÒÊά*sÐ/Q4ÊÆœ+kEDnD"Ÿd îBC¡ôü%ö&2wY°N@ü ?è›D¦ÊÎÌ(5+¹µ°› l|ðÌ̸™3Ã2.ÔŽŒmù a]bß½ç]ö9ÔØö½Òæòrõ´,H»xv(N ;-86*Ξ¶Áâw"ãXmi8–|ÚÃ’ŠÍ5#¯¯°µ×/¶³¬nþ}u{W·}§ýXk±ë]íi¡ŠýA=?¯gÇÒÕÃÃêS ¼üû°ñVäåaívìüpzÂÆm7^ͪ# ‹Œc÷Åî'ufØC±Ú`jKCXzd†õZǧöû¹ÚÄ!2ÚËšö«W›ï©=maµ°ŽÈHûQm¾¥fÆþ½¢bÇÎÕËÃÒGìãZüØóÛË?oÅûQã~®¶&Îç;aâäa÷¸ßïWìó}”¾R·kÇûQc¾RíÆQ{í°ji×ÔOØ=Â2óùlTíÇÚ÷‰¾ØÇ›ÍÒ~EÆx¿%|_§'…·„÷{zq<Òl×02Ã^ylüpñùtCX€ØÃ~š¥mQ3Ÿò^Ùa VÙìü¹ÚÓ5[•S7öË<üñ;ìEìa™(7¥–kãiµÏ7Âf#íE³_µ§Ým¿%®¯w”°Q{mõްqæ÷Ñ-m\d¬Ç <”ºxX©M,Õ•asÝnLuãzYÏx½ÓßWGØZ`´7agbf]¶…‘x²=ê6_T/û´•cqó´ƒ׋81¬¨ÛÀ>òô°ÔÝ^‹=-W·R jnýXþ‹¸r<Ðm`¯nþ{ØItuçzѰ"—j;Þ§lkàéaqèïÄ‹óI„5Šûåµé-¬12Ãúp½ˆ½¶ð°õBµ_ÏÃÆ«j_ï¶Þ öñü°XêöñîÄÝŸÏvÕ^Û{XÇ­žþyl>®^þ} ¬îôðñ4ŠT«³‡!,MìaÇ(r¬®¯Ú®êÎûa@î?üfù¶þå·¿ù±‰ÌüíÏõó÷¿/</=<è-Øï ²µkVÑ|‹‡‚«peÚÜc7QaPL*ªÊàÜTÖŽ>U;ß ÐiE5dԛʃ“f9ÔxȃA?§’ýÊ `¹¯ Qù Þ9õï\„ӻʫh"0ë-»¶sˆGMø"ú n5j]ªÎ œÕU6«V¹F„wf™nqý¢Úò˜ÈÖ&Љ2ƒ[ZRáP7ªvžòªyªpH•9O ›ÜW¤h1H¥–S¬ôÖ,]¦•­y°IJ*TEDEÏS8€ì<5¨!ó¾‹EÀ’ó©Êê”vDO”ø,µ¨PéÔK‹¼‚h[ªÁgéYåïúnåµ§ºè¨* ·¾PT(ù½e­p+¬FûV󠘩Â7oGõD“žà–|ŠUl[e¥Ú·’««2ƒ[ö/}ªxàËTU>KíªÆ`šVTƒÜ¿æ©ÉGö¬B°—d<4žO»Š*3@guªÊÚÒ™-ƒõ¾¢Î œ]÷ÔdP 1ßbàË=Ö‹š¬.Š [Ÿ%O•­4ÛšÕOŽ|–=…«A¯§&_®¦Z ÂAÝáo1`tïµgUá³ìoþTcÐÏ(ªÎg]e½¾IÑdÀ «¿´0“Û¡Ît ÍÖ E6†l¶-葉ìŠì6õy•WTD~Ë_ò¥B•I;è}ˆk‘ÝRk‰Ê'ðEÔø,»²ñ)TEðã©É àZP½N1õ3¦Ô¢Ì œÈZ)TŽ¡ºhfpî[:»Âí©É œ«©ìèN·áPa`ˆõ¢ÄGŽ®Â'ªvœBÊS)ú¥ÊG¢Rô[Ö;u;Ø&²D·åKÑä+¬@¨&lð‡<ô‰D™Ai¨ìhno Z~ËFQy ÑœªÎW` ë—¼Ríu©‚®rŠuÀ€$* ÞAô[•A?÷¯#j|…ÞTA?óRM¾Â\*¯î»Ê)®;uk½E¨ükSvQþ„‰P…ØB}Dá8WQ¡³`*Ñâ#S?å•ÑBŸJT½TÙUTÕÆº ÁWâ?Õ2Äô—&C‚îO´¨~bÞÑ[œB`Ëî¢ÆG®¡ê @JEek9ÃÂD0¹,Ñ‚ˆÏ‚ŠäßZ kðÊâo%>!ïoy…ây©ìîv$RÔŽte•ÝýÃfY¢Áð©ÝZ *åиÐ; ;ž!ò°ª]uüT¥FWu¾úœªÁशT“aMHð­„hX'²Ùõ°½$‘]uÃŽŠ<$©fUg0ÓlªÁgYIe½Ì°Ü"‘ ë eV!¶ll¢ÄGŽ¤Ê®¡ÂUg=ž¨1ð©Bø‚ñO >rÜŸZÔl§¸Ï7,XVäUWUe†Q•¡ÂcG¼Eš]…JÊ"²^tX ¾Èz',‹•Ë©Š5\T|%¾zYªÂ ±}7žòw¶¿ùS¨>m=‰h¹æ©ÆÖÍRE¨V>™Vâ-É K#j|–}EžêÔÝ*еºj2˜ló§Ðº¡ý[%쵦»¶ex‚@­W¡¥µãC¢ÉGî+ù¾yëÕ1µß´™”(1Tîþ_E(·œ*|dn*„ÙYX‘t¦eñ >ËìªÉW¿Gr‡&«‡[¨¯ÈfŸÓZqQæ#óRÙ>ëDÏuÊFØ"uùí_úÔ úR-¾ú§˜tZ ®¿Š‹)lªÊGæ©j|díªáÁ„K…°KË ,²™÷´™â[~fuZH€»mæ§ZP_*›ñMë EÍתS5Ð`ÈbË*¯Ô¾DTx4&Âz WUH0§¥Â»¶ÝR½m-Ô}çˆ&Ÿ¥ö@LO±‡E–aQb õþOá.LØõV¡JVÙÈá×¢Fµ¡B¸¸ÍpDÃÕU“ïzSL²‹`oZZ;ÿ/²Qó²ä·"|"•ˆÐ‹ÚQWÑ ZS-¾³žO±Ìزð3Qâ#çRe>ònYDhÁì„-˜fDÌEÕ†^š W«‚T|d«*Œl5õì¸õkD2íË6L•Œ9½˜Éí`óˆó+D<âÙ•ã‰v_—ÇÊ%çá–-¬'_[ÄåœQjî²ü\Êá-àòøÿ©\þµ[t¾²xìü¾å„Õ™ZÄEæˆÝ\K@Ä4]6ÌPNØß7Ø›vy€ð˜ ð¸x@½§Ñ;\=`Ÿ‰ôN#àìBú’À8°}!`1ðô€ý 0ê‚1 _œ>û×–/¤) ŒºY—­—FfB LfB›EÆá«âû>Í¥ûð¿Ó NžPÀ¾o5z®ö$<\<¡À(ÜFF@ÞÅ´šêé¯+°×U½&®uò„Öžªðt1ù¦š¿§­­Dnkh^¯Hhx> /Vh$¤Äö7 sãzMèœýñý €ÕÄtœêê¶öJÍ„ HÈ -2ú 5Æ ÿ§?>ÏÐËo×Ói¯[“,0úã„„>Ñ'öçêîÏ7{h&ü@úÏÀõ%$Ü{@i*ø½Ôü½È30Æo{BÕÃíIhr…îžP„9VOOOhbý±㉄ºª§ŸºR 3¡þæõÌt£j~^›ßGnže··ð”Ðß^þ|û~óh„¹…Ngh$´H¨ÛC ã…À¨NžžPe"ûãËÌ &Û;¡Q`&¤±€úÈü<°¹yÂû=/º¯ÐM6ùR—O–;»K ñlBÝËÀõq€Ùd Gd&ì±iZäá^-4?/êZfƒT°âÊ„TiáûR÷Œ]ÏÐèO“íµGÆx"#Åu`Œ—ó…ßK„ ùz2¿ÜØŸfÛ_Œß+_h¯ÔÍŸoÏw¾=^ Œö2#a^dO¨“K`†nlÛï©Îþ|ö{ªÑ_0!Oàæ sìûRw÷nï#/ºÇæçEx¹W<8Ì×»š l]?2Æ»óáÀÕ]c3¡QA¤žîVcûóíñ¢˜ÛCÛÖŸ¨™° ýy`Œg3êžÆ|:c¾í}FÓÀLHTÑž^~?a<÷ ϼ%WW£®b¶Ì"‘›'TÚó¹ÀL8Äñ†+\LØt:{@{Æx$0Æ#ã‰ÀO¨^Bc½ c=!0ÛÃæÉÉÅþyÖÍÏ‹„‡ùy‘ðMìÑãÀÙŸÏÒ…«ù{¢®u`~^$¼ Ì„d¨ûxúë­Ø×ƒ2’RÆ|:c½ 0Öû2ÒVfB1ŒWW¼]êæÞã™ÀÃßÏl±ñ}"Åm`~˜ï‹‹·7¿§:¹-¹šŸ—)îÕÕm©ÙÕÍ=RhþÞHÈx¸ízPc<”휹ºúç]ø=Õl¯PW<0æ‹Ù&N‘ù{"o`öwO‰ßOAÝñÈ‹)tz\Cg·}_j¬” ÷“š Ó,©qḋ Æ3Ñ_ÛÛŽŒõ°’€ÿ´¯$4 Ì„_ ß§óí‚´å™P ë1BæžÈLhfû‘‘Ђ ëÄžð¨dÜOêì¶öRý$ÄÛ ù¿,pzúó­zyB½4ÏOÂ=û½ÕhO ö;3! M¼"ózÄx.0®a<ýeABØÀL¸fçÏ#?ŸwEöºõãµÀhO™p00O–˜Póû¨{àóåRq=©y?>…&Nc=³`û½ÕìO±ß˜÷›-œG^[àá×ÛBùuö×[#4bZO·‚ ‘Ñ_u”” Ì„ï˜ïŠ'ÛƒŽó®±ŸÓÑ߯|• #WüÆ~i·‰›Ú×ó;æË±ž½óÎÐèO: RªÑ^ ×adœ§ê/FÑ1Ÿ <ýõæ¥Þé%›»„fÂœÇ Œó8ÈMë!ãÀLØó6™ð³`ÎÛF{ÞqžVü,À~P`ÞoÅÚƒÀÅßïî/ózÃx'0ö«û0r°ÞszøzÄÀ~JàìÞ÷k`œg6ñŽŒþy4#c=~à+è®nî}?Æxyâ<‚¸úõVñ{¨ÑžÎ†ßCõê‰xžÀh/wNÅØ×Ó§þEæçE˜¯gÏ"üîOžÞ=qž!0ÆÓç5?ïg×c¿bb¾˜÷£åyŒŒýæ‰ùºxp¼6q^30Æ+ç!w»{¼ÝD0îç…þ$0Æ+ÈS©nÏ-Ëë×ój¸Ôü>°Þ)îÜÏ]hïc>~ÿ?#òàý¸ï˜×Ö Å/²x=¿/Îç3ï<þÃï+ÄjmÍSzõ­EÍvŠc¸§ôê[öû<¥Pß²¾¯Úá­Æs%ÝNù#ï{÷Pz¹Kº²½´Š’n§ì>ÚÇÔŠ ß„ÍåçYîŸWdk¯eÛÞâº}µmq‘µIÕÊb¾ƒŠ"n§ðkN–¨|ËÚÑ}©Ÿb‰§jM¬ÈÆûQS¡ïbÉÈ·l^ƒ_õPÇ=‡’¶"”ñµã`‡ËW^,9øÊlZ9Ñä#÷·ôÖ|Jšî’Ÿ§üÚ¥BÙDK‹th± žõ-"û–XîôJò%–ü’ïS6[æU>r6JZY‘]‘(…zˆûzÍò›ˆ9Ò)î§ís1Y…oÐbnD¶Ž†;Aä¥Bk;Å;Ç»D(Ïi[§‡7Û Ë¨½•©ûêá›@YºSø&P–î-æñhöߢ¯Ò¢F•¢Ô̧:Z>[e>r—Ì:…Rš·!B¹L»ó1Îç-D¶GÞ,VCÔùÈÙT6÷m^Öì[<7cC"”Ù´m^Á¶ƒD“œ×)®c´É2\oá[²VQ„²{^.ìKƒgºµ6"”F´ÖFd½S·2c"[oBiÌCÌõ„£."”¬³4k"”t³%ŒC̯„2”"kÙ{ö’R/¡”Ÿ¥=TpµâH„ÈÖK»…›Šì×ì–6\„Òsovˆe•ºEÙøµ[zÎC¥õ¬Ç¡§ÝÍ"At”Åz«£%Âv¼¯`Kµ¢A•zj°D¥¬D(³iÿB4©yš,Gˆ’Y§PBµ³œÏ[¶Ÿƒ}×C,Ÿ×Që”íÓt+ë#·ksU‘åÁþ–—˜é‹ekÞ²s+Ýæ¯¢ÁG¢lÍ·Z¾nát"›ë¢¡eÔ¬eÙ&¶@e–C³s¾"ki±u&BÙ=”A8å¥õ¦¨ wÖ£‹l4lÎ(B¹7ëµ±´É°¹¤h𑳩ðMTûßbô2@§ld<¬g¡$_õâ"_ê¸s†-ŠlÔ5l½M„2”¶Ä'Bi/”úy‹åDPMdë¶ØŸ¡ô#Êš|dϧXN {&"”FD9ŸSÖ²[ j—9zk¡·ÀÖÈr¢Kû"²;|L–ðx ¯€ò:/-Î"Q¶Mdë ÃÒ ˆ¬›6›8”0£ÖcŠPVÉŽfŠž’`éTf™*Û²ÙzÔ´»ñcÙQ²I„²C('r ¥wl­[4(”œøV}J_¥¬B 9KÛ Â+Ø]%²x=¬KâZδQ³Èö‰öÞU6òŸ(©ñ{Øi=¬(óúR5¾Â„ò]–òàÐÀ sZo(Â+ &ëËË?±ÀK#4-DíËòÌÅdúoájµY¹¥à,íϡŲm‹IößBY³Åûo¡4†•#|ËÙ_ å Ú2èB–%j˜0G°Ð+ð\Y£ë›JTböÛƒLŠº%mkp!òU‰Õó¤´e»Å¬¶Y? ‹Ÿ­s]̰²6RóüÝQ1„Ùâ…¨ùÒðÅäQˆÕ<“÷AÔØažw¡]Ш4#ôº"8C ¬|°eP¢Öó³ ñÅbuõäÀ°a Ïm}Ð&zkàb8È¥¤5—Zˆ ˜YÍ…Öœ,ä´PÚ h!c×ÉÅ/gáG6Ò³-¿ÉdîØÌ?X¯ÑqQn$2‹! XAÌ›å;"#Xëb2P5‹Ed$‹<½˜“qªù|ÉÕ,v€dQbO&s!X>0‹1à0V`$Û¸°˜%YІˆ«'›¯žlö4+\H˜¯‡`vñ“ÌŸÉ®Õ,dÓð~Õý¯ÆÀ8¬qá°¸˜]°‹ÌbÉ8Õ¼P,A<üù°™›],v˜Å.pHì‡u‘õ=2‚].&k>íÁ:×|’—æûµ1xd~Lf¬f²môº§wŽãA[2>5‚ Ûf2l;u™ÉØ‘,DìÁ* íEàê·dfj\ÏLö˜Éîq˜Gì‡Y“á©ÑÞ%&ÃSw|©¡Ÿ×«+pù¼ÞŠÍb–Õ;2‹ Ø'0_í…¸z2x– \ýñ}†îþøÙÛ“„Ã’qØ…Éêã0“ÅÆf.“Å‹ý0cÂaÆÀfJH&&þ~Lí}ž|ð4# á‰Ìû‡IÄÓ“Ù3Y«ººí~R3Y;“¹žöÃ|LV˜Éþ‡'<Íû‡=ã°Eb²ÕÃÅë%sæë!˜#ðóz–ÌMÍb –Zí‡á‚9W|¡§?~æÀù“¬~ÕÐ8,›/O¦w‡å™l^ìÁê™É°ÔÅßsh&Sg²+õóz–ÌêtåõÂdñ™ŒÁùz†ÌdàɓٽÝ<Ù8sîþøÙBãzÈèOćå2ú‹ÀO²úk…f2dôâÁʳÓÀü¾pØ30“ùb<É’2ã‹}¼’q˜>0ÆC3àÀ8ì˜íÔbdŒ—˜ ]ìã™Ìd™ê'™úl¡‘L%Û#®ÓæîɾN|©¡›?žÉ¾N?¯7#³–¼%óž¡Y a ٚɲ‘ìAü• |ÏÉó÷HÆ£ÆxɶÅÅ¿/ÌT£=ËL†¤F{œ—'Û:Ídï(–%®~¿¡˜HàæÉª÷x(ðó|–lç´'‹Ì(6˜ÉZÑžf²ÒË»Š=³ -0“Å2™ÁvÁdbO¦Pì˜ÉJ™,Hñ`A1,ñôdÝÙ“1Æx¸0Ùž‡ “ ©ñ{&:½>ɤízR3)£Ÿ~’ •'YÐiÌ'˜L90“™Ú¾rdþÉ*N{²‚ñp`&ÛD1)±3*˜o~’ ïö00¿o¬Ùf²U ‰‹'#ïHv¤nžÌ·µÐO2_&»y»~’íZ²5“•c<-nžlãáÀï&»Q/÷;Ì÷£=-vÌdÍÓ“§¼íÉR˜ 70Æ3…ÉtÔÃoß÷é'Y9ÆÃ™L{y²“·=˜§`¼øI¦Ûªz]›ôœç“Éjã~«—'£xÛ“QW¬gîn&g8ÍdvŠ ƒI+[f²W㊟dŒXO\Ým†f2H& 9íÅ*“…¨‹'Ë´dj[U$+ûz\Åx.0“Åb<÷{mv?=<™#Ö#7|`ŠÝ±'ÛÙgž[h\¯Á˜ÑVcŠ—¿_$ó ÌdŠožÞÁâ]jh&Ûd0¥úy> 6>íãÍŠd«»¶À™ë‘É&c<ŠsÎêòIÖ¹¯·À|¿H!öb'LvøI†¹ï‡ÀLö†ñšØ“y4$#ŒþY#÷\Ÿd_Ø× \Ü%‡~’Iöx|%ƒ¡™LŽÁò§Ÿdšù N=üI–Ø{Àd„‡'#54“¥!™Îéé÷Cc0÷cC±mqâx…Éóó O`ô‡L6(ΞlÉ3ÙƒåNî§4;Ëó͆`m±'óoh/wwÍd«h/Äý²ÂEFѬFìÁ|LƘÉV§󞞬®÷À~½w$“ ÌdIH&˜É„p¿f2ìWˆ'׫;Ö‹c=œÉÔÄž ¥g~;ß çàÅû¨Å¤[l¬'t¬×ÆzzÇý öd¥ó‘ÀÅ“EY0ššÉÐŒãíŽûAœ=ÙÖ[ĸûë­Ø“iv;×㩎`R±ûÄyØÈÝ“Y°¡zy²"{¿§»'«ÃzyàáÉ„ìýœ~î$ü$J#ô“쨴À_ÉŠf =<е/þžLóÅÁ`Lõ“ìg÷g‡w0“]X²È¸^‡©W{0>ÎçFÆz²êD~’õÜß—:ÞOM¡ûW2¡ÈË“Õ\=pùJö³B3™’%“Vû~à°¬û‘ç“Ì&²'kG²µ—†mlFnž¬å¾_Ôž É^"c½gX2ãÈ8Ï‚³½êÉýÀaUi"wO³j`/¶5:^O]=Ù‹}ŸêåÉNÚP'_ÏÆÜÈË½ßØ‹[Vg®Wì¬%#ôòÇ·¸p¼>l¿0òòd'û~ûxÉN"O¼}§Û£aë ‘‡?Þ¾ÓO2‹ñ‰<<Ùɨ}½ÉPÔÓ“q = ŒñÀD{"^ܯœWyy²”ÕO±XdýˆŒý¤=°­}?cÚ|"òðd W œÙ_N;¸ëÓŠ}¨Ÿd6žWWî—Nܱ0m=TÝx½M»qÕû Óö"c¾¼¬ªŒzp<¹Þ¯ûiH ^ŸdíR†Èlß ³:}’Üã õ“ÌÀ:µïG/K¦ýñ²³éjOÖµ,.LÝ8Ÿ]h/ÅýÅî¸îùòãß<ÿ {ßáò/5fF±Qú„Ò‹ìýU»|%ô]ÕŽ•ÊùØËJå÷Ô°·$òWÈùTE(Sµ5‘c«íg‹*_} Õà³ÌëTÃܪÚO#²}ýj¡)‡:Î0äÿ-†¥V g=4Ÿü»Íx«óœkµmQ£r?ÅùOµÜ+‡X¸©D•ïì¾zD¯p-yªÛÎM>r‡¿ÅÐ SÙMµü¯¢É4)RDؤC ýBµð=Ñ 6ýÖü¤48ÄB¹;¥Á¥*|×;øÔà#wøú[ƒ¿˜±>Äð¨ŠàS™)Ö¥²>w^)*;PmÜvh=©î+L„0æk¯—ŠìWAý›·FzÒ$Ü¿€ÈÆ^;¥A9•1ïn9~«àh6dù«ßßÄ!žEnvTÔ˜Òà†‰y·Â‡Æ?[ý÷Ö˜OMj‡i¿Å„¾¨‡#²«¼Y8å!¶(¨s#Bè¾÷<Ä1:êß¼5Ó QßB„X¾Å¤ð(>"ª|–ûÎY:ŽfûV‡òó,÷»u¾úÛ<…oa›o¦@Øæ)[ûlvÆãÇeت7® ;;ôI¡p5î8[¯M>²\§Z›V%«Ÿ¥ÎSçš…°‰¬·ov¤þÐB/Šó­½hÏb)vDÖk7ëaEÖmu¾AëE1UN³­ûC\wkÖÊÖ'íÄ!ž÷k6=ÄB°ÍzQîÛ†ÙȪÙþ!žÏEJŠC“W+BôNUên1`g/i•Í÷P4C„t*¶•õ–Åï,pôˆƒ+ö*ôInb ÷„GL=& uµ{}¬²{Æ“q‘ö£¼Y¸1pBKiÃéa¹„ÌN3°;{’•‘‡-a +nÉÈÍ“œjޏ!²y ©W"Š =…¬ÇÆtîÊÉü"q] S¹+m³dL¼ƒ u(C¨Dþ•åEØ¿YY£‹)ØOrpàŒ¤²ñÁýR²ú5r‘¹½=yú\ØÉ–#Úѧi!RBNæåE¡_ä¶5&ˆÂΜVy#`'{‹hÓ§‰bJdQÁí|’™V™ˆ\‰ŒÕË ô<$<÷þâÄâݬˆ"V>¸¤ˆ/ÔsD|@Ë&dø/² ÌÎÑÛ“e¿ßlÌj•œÔ,Ûn ˆ,',å"´aÞBCq’™]ˬmÒº&ÎI¬®‰SÒBÜ’, r°!„m!BLi ãBg­ÄÏ)ÀInCàQ@¦f@]z±‡f\ ÌÔ%ÉëœÆÖéÅ:)§½®+S·ÆÑG¤DŠÌÔ;½Ë©xê•ÝKŠ=´ïBêqý¤váÑÕ·½nÅ…Þ?ð“:†GWßfvM[wZ¡›§~¹ràÁ£L #ö£Ó릨»?ß¾þ?©gj ¼>Ï7ghͽЎ^ÉS‡àèµ8»yôó´‡~35Œ˜È–ú¥…~RÓÌøù=z¸}§†Ï/п°.$^žšI¨ÛÑ@wo¡y?Û:Ld~_–ÚX>®Wàìß§¥/ŽÌÔG G O»ld¨æfïöl½®ú…£Qbn¦îÕª;»GÝ·Ð8:•*Ž&žöºXH]¢^žº¥âèçátñh`ª8š¥.Gh¦ž©8º¥žžÚ$÷À‰Gc’Í©#—Ç+páÑ›dG§Õ•í}êx¿êþ•Ú$2ŽÞ Ç’ºñh²Ó‘«§>±£‡jÔKú£öÐI¬á©ÛÃ4ñ~Õèo’ÍáÕ^'ñèàéå©lç5rñÔµ…ÆÑæluã#/÷hê±ÃScÌØë†eËA¢ÎžzGgO-‘rh½Gê 5—¶÷ÑÍÀ ½·™¿ºúãq´KìG»²%ET{ê/¤–P{èSn~tîmﯳ…þEžÚ¡Åfê;í¤öþ8¼ž¡yà󪧻~Žîeô'ù}Úiµ÷÷íy`\ÏÅrhDžžºÀŽæ.ºnã½È8z[¬€›ÚÇ ÅRDz_W`¯ T*Ž&žöºØÝü<Ÿ]<=ŽžŸþ{6„ˆS3 GIä'4¹×À~?7;«öÔ‹ÍVåÔÕŸÏÖ#Õ^—³a>¡I ãiqgj߆ñt`†î"ôFìýÙ}cÕ˜ù·÷x)0Cc#öоŽÐ˜ÀÓ¿öŸÞ[Fm´Nííe·})µ§–êvòS̓bÛöz§Y·ó¿Ýíéýÿ]_ÿù‡¿úÏ¿Y’òùíoþöçúùûÿQøŽî?Õú2µ^õùòÿ¸vêóáà²UªL؈ƒoõo¥ëÇS'!¨À·Fð¥û;ù–Õ Äk¯èG÷ËøêºÚõÒ¿RõÓWˆÁG;¨àKö,™ŸhÚ³T~¢U^²¿5~†FàBàÀ—ÚKó[÷·¼ûøþãÉm«µi óC| õ­oõ×ߺý;; Ãúƒ_zÿm}ëþ^¿´ë~©¾4>š B©<ŸL¶FÉJ…íð®O±RáG%}«Ú³¬ÏÑýoõo¡Ö£k¤—Æ·æëYæë–Ui¼üx¾…Π¢â²ß–YïðKó91þÉë~ÉžÅkûîMÛøÒ}Oû'+#~´¿ù/G¬w˜Ÿù©¿´¾•ÛKÓ*M^P±J“6kG8@ã¶ ®ýoYØPçaýv½ôþ[i}kÿbú­õzÎeωj}v8}wªÚ÷‘WëCÕÄÊc°¶BÝ*â—Ö·î¶ø[ã[£¼dÏb}'**>²…/% aB¸ƒ¶~ T8ŠY«ÓUìyøju¢Ò]SçP{ñ[k+B iš¥•nL>ˆÜ,ߪNŃ}¯|4-œjðÕ×õ’½žù¿ò·Rzi|+_/YˆäÛÆî—j{inyÈ6¾ÕËKö,Õ®—ÊK¨>ʆ~Ç­FøÖüÖn]¶€Ðü ¿eÞo¬Û´¯Åk–ÙZ®Ìo­oåüÒüñíTŒüRµ¦àÐì9+Ú=gc B·çìüw½}k–o-{Ÿl±ï8Öpk6’l<…‡oÍo%TI-P¹^*ߪù¥ù­fÏRü°ï͉ƒLÍf Õgp-~iæÿ·´·iÕ Ù²óæõ+ΰ{ œñ1•° ä¾àÐÀ´å¨6Xmðß÷Ù{­¹WÐ÷Ò¶UÔS™ùžÈÈøÞk íL§ ­>¹1ž>š›a5‘ wGWÕô·¾ñóKÁÃÉwF”³FmÈ4…Ü!aJA$r‡ØÍp‡ggú¹dZ™Ú#¿ØÔÝÛµò }d²à±3Gúq&Z™–ûņèò'L>>³¤S>òQn¢â´ÒÚÍ ‰ê¹ d Ÿ‰Z¦)w®žiKº-éN"¸s~Ô<\ÓÇÂw ^FxE"„r­)tŒàßê ¡AÓƒ~gA Ò ô£V2 ¹sÌLtÜí?d‘i~äÓäDÕïDè†á2ù_„0ß~H„¿ý¥•‰a¬_hÅä,¾¡‰,µ2°ÀûÍIÇÁéý߬ü®c=]/½7œ ûBxF¢á×ðß0#¦³RjïÖÊt<Ÿ…@Àñ%_:F8†Sý|‚áLš¨»O°<àLšhÎLË©ò ô&Ñ_ØÉóžOÀÑ4“ç‚¿¯3¤6nÞñCK±ZƒD¿eidÚ~gŽœ)tܳØß´æ5—SsX™ÑÍ ¾¨™–û3d¤¶Lmfêîƒ<ø„Ñ3Í&t2-¿6¿°“LûuEFÐI&ÂfPÉó¼ÉðSµ@†X¥ó:&#Ü$QsoåTAPòKÓh|Á$‰†Ð¬B¢á¿#DkeÚðdæoÙSÈŸ­µƒ‹­÷9sñïóyj&wh†Ï,ÂÝ?ªPË×çÆP{·MO7*²÷Gè-yžøû¶õÉ“»paä<Þ ØLîóü0û:>¢w4óì_°öôÕ•ô„{l"{+!|28ä™JÉT¡&435þ>_œ<ÓƒÃ}‰¦ûQWÞ9O¦åÔx§}‰<ŒƒÏ)-5Mž–©8! Ãg˜–ú€Ìq—á¡+|¬Ë®’è·–'‚;uežÓsiÌs®ÖËO:¬çý-û|ä³ÁpµFˆK¢â¾Ùø¾ŒÝ­?釛¨yH{e8Ëoý\…¿Å{< €ásfZNë ƒI´=—xúY½¾Ù¤V2!Øþ¥“i¸7öà +3J&-ïãw]Þ’ÈÊ3ÑÉtù<.Ó6j_èJ¦•©¶L þÞÔ=Oo…Ä’igš3Óö;Ëñ§o>áô× |yOi¿¨J:™~Gð‰ZꙺäÙá.>AãdZž þvŸ¹‡Ìt¾'] è&“_Û ª±2ãè¬F&ròÊ\ ´¦ÐÉ´=ÏÆçÏs0ÏãyÎ/H'QiB'“•îG r ÔýNxGûl)Ѭ™6ÄÐiùüÈdväcõ“'…Ö¢»áDœÉsé ÿ±¯ÿ#x°OæÙüÚbžÝŸpx'Ùáƒì+¬™N&+ÏD)ݦ¤DPi™ 0¿ÈUŽ­'¨yž†dõ3‘ç9™Ëò;}^µ¼A©:mOw˜n·LæpÏW+%*îPCïÇ2Í×+~y0Û¢*– ÷‘_L7=ì¹8i¢ã~ð…é¬)l°¼¯²òð ŸI-ZGl?N²¸‚À§DÕ…7|v yŒEQA%êž§¯ *ÓÉô;[\!@ÀS"«Éᇋž‹çB7ú* NîBOûÁÀ¨ §úÔý ›é¬¬XoŸíç ¨šP:. Â<K7“çÒUæëpyû+¨ºxÈææ NÑ?øQožC€V¢ßï)Ñ~„Üžð §5c=ž B¤Ü:Ó2‚û6PùoAÈŸUM4ýy`ó~å%oU7m4앨T¡ã²&ã'B»2Læ#Ÿ¨gêž‹ïÃé~S¤!_‰¬Ì>:~­38ìx.»‚ÌÈGVJéð¿NÔœƒÈL †kØŸL4›ÐÉ´ùliót<®Y}¡ ÂöéM˩톕g¥%š;Óò_¶˜Ëoë¶¹ßì—¼·HTz&«/§DŒ–hº0LaÛr ™Êà²å×:sÙChÿlŠümïB4Ai/ùÌfs]{;¿‹µ=4ès’DVC>úmm6g×÷ãÖíV›óbDl΄é8ùÈj»ï§sŸiì‰v{ë½);¸}åkSdr1!¹ iéDk¾Â7p Ïä9p]÷YH"+%œÀÏe3`ξ¿êÚ™šçy"”n™|‚§¼eß =ìñ¶|‡o³·å!é}|²Ùsß«ÅÛ¼LÇzBguýüÉYÉôû›B¼y™\¼§1h¢?ðâF«Ï>î çÚ6ø2ù5ïIŽï²nöc拨ïe:™Š“÷Çg/›ìÇóîÀ*ŸË샾!™<—Í\¬·8tÛö¹L¦þsh½vü¸Ä¡,âñþáð,ýñþáPÚ a‚‡ç´˜¨L&ôÐqÝM wã÷‡»êÇWïÏö ˜ð%o=NÁ¹O¸º'ú­Ÿ‰~o¦ž©ûó:Ççâ-B OAËw|½îTúyû1´SÑfogNEK{|¯o¡ˆÕÁgÞw¼ämÞÆŸtˆ?•~âÈshÑÅDÃešrꋉ~ÛÏLSèdÚr§ÉP}dâK¡˜ÞZ%*ž.ä‹çé3›ãm×á îò™\@Ê[EˆŸÎÇŽ¯ÐÎÇì˜hÔLöV8Càc¢ßšœÈê.#›à8Ÿé|Ù«D._峸ÍgjFÞ&#t2Qó_†àGïãÏÅÕ>²óœÏbÀåô<}Ž¿úDÇ¥´Ð‚…$ÚVŸç$ú­™'"ÝîPÄa™‰ì%ò'ø¸Ž÷™<´`~öLŒ½¯ÐžR;ÒŠJï íò·O‡6Ë[9{oÏO}fZF›a›Vò“­”+ÖŸ•ÃAO„o{/šÈ¾îßï7-O×úi_ÇG[®í‘ÉÞCÈû>.ÂÍóñ#À‚~u.¢I-ZÛ<ÞíeÜzõÔ„Þ»õÅr–¢¸«ë á`ßã-Þ KâÇ»¸³#ìЉí¶Àa8#(ÕJ4ì”c*ا+§ÅÏøýÂÏ¡•ßã‡8ÎëŒîá¨çPúñˆôsÂ÷ÞûÅŒÅÓ⨠BUýêŽ@ÑÖ»ë²ÑÑr5Ïay¾ºg\#ÌÕÂ,Ÿpà`ت0„Ýè@ïV|Ê'3ÂR…·röÃx¦ú<á@ß –Òq öý1¯/‹la¬VarØjæ~]EÙ%Ó»HZá1ÔÇÛX¯E-x*—¡ìÒ`…ÇPo3G„½väÇ‚ÇGõå «DXlf?‰ý}ðh™‹»uW­CXÀ3Pž•ŽV “Íl’ÂCÙÂf3O*ê•੼Ã:V+|”7îÆ{zf„Õf.¸FXlAþ …c™UÃ{µ°Û§1 Ža¶™½üÃÑþ¡X[8Ä2ì6³¿ŸÌJ•l‚1_Ø*v3¤Ÿ6|p?ŽA?,xå? by¡øþÀ‘÷éÑ~ANͪQÜïï·Gƒ¶ð}$6Ù™§G ʧG#™´gD³£‡Ó=cŠ²á‚‚0„Ùtùþ™¿öIö÷—y(×ý) º_qý?8º!ÌX¹] ½À7ìØßWæëú~”î¯6\ð|“ލ2lYxàþaÉ^Þ3d(ŒÉ¥PgÂQaÌÂ.Z˜y%.{É<Ö´/Cf!³×.ª·£ìßÿŠ0dÈ,Xµ9ÁMyQ ±’©Ðˆ0‹Râïù¿a¥¢>EXcƒyæ©E´Ç•™ëÍ:ŽÜ ɰ^È6dîGyá~´Ï…ýáfû[؆±8þ>á°X âöP7Ûø{á<œÑ>öO‰½üGF…ýU„á"L]y\¼•­>•³+èßÊÃáÂÖ…­¼3»øa„q"Œ]ؾ¿_î†>~Dع M&^åâ~ñRÞò‘üàО¹â~´kîH°›QºŽ}Åg Vm1Ê+¾ÆÏì2“ÔK3ÞÐäœñ|û¾Káà­@§¶wˆ'çgðg„Õ+å‘O´_£®ùDûUЊr^Pö,d™ñüaô” }y-å}”O½¿7…r ‰ëTnãb¤GûYà0_Z´èÏ2ûûÈÜ.žçaÿöý”p„/ôûýWi!ó@1Ðíú§×¨@¸Ï>«ûw×Äc+»ˆk§cWÙ(ÿ̸ŸíÕ2[û$|”òc{GÃ!%(|]/]¹Nå†ôÃ/'4[_ž|e{ GûÒ?Ùƒ]/®ÛÊöö„Ž+ÆoÅWó”t^!CáSûÌ[ðT.Èím…`Z‰0µ ÃÌJ±h?!³ ìíÝd{Y¼ÏÄþ¾f„Ù?øž[’ù }Y…‚ûѾÕÙÉö¬BxM¿‡²½ÞÊþ}%žø{V[ ¾—Äk\¼•w½øº_÷Ÿ’ãáéZ¼hkEû˜ØÛÇÄþ>yÔŒ²ÂýQHO™8^gž¸N Fföï/¡+ƙң¨˜O—Åþ 6|_ ۣ̄°¿Oê¼»X.í}mxŸ›í}…ìdÙ!Û‡îòÊD`<‘y eáÀ} e«'d;:ÞWbÿ¾Û׊ùq Ǹ ñ»²^ÞÂÓ™²$ígâüvä¿ß —Ü}8¿‡È¯æI†Ã?óNv!ÝÄé{’åðÏü;Ò£?€°Æ‘~&Ig—í€Ls–ñ¶ï#³}5Ö#ê€ìq¬7Ô:Ï=d=ì{¨±ÞP1^¨±~P!].<”[¿Ï{eCì{É< ÿŒõÈŽøgxÈ^þ™¡ÝC¦ä =æûÒŸöY`\Ç|¿b>œÙßWfHYc=2&ÊGÙÚ»ßjüÄóT¦ÑŸ@ÆÄ?»‡ìï§EÿùqfªT“1_¶ÏpCòšý æÇ•º·”E¦T5û̇…!t]"?kjÿdVÒ÷WV¥;ø}k)ûû Gæºñ½$¶ñ‚}f(Œj¬'T8°V†¹@õsqS¶ö,³Í2+?W§”a«?dÞH™‹ŠñCõÈÆ| ™eÈ{£¿ièÿ3÷©ìåËCÝÎÝމ 2Šu~²4Öþ g?"g²4^¿#ÌÖvƘ?4?MêŸÑ >Êm(÷¢<ðû°>ÜÐ×Åøå].Æu¬4Ìß…!xÞB6çÄ9Úï†þ¹Æú@Cÿ,Œü)‹âŽÂµ\<\íyóånåéŒö²QÌ=±·O!cÙ(ØÎ@0co¯bþß0¿Ï|aú.ÈícÃzv=!Û‚õìëÍ­mý3¨ÁcGûØ^qv´ ý¹ðR^Ôvßä axÊâÀæÃ>ƒø½öþ¬Úã÷¢ÿnTru>Îhÿ~ÙÞÇ/c}³ù´ñ Y¡†ë/7ôïê½.{ô@>î·÷“yB#ãßæ —ÊÛ¹ÇïYå⮼‘ÿY&ûþ„wfôÿ-Á!s¤¼œ)³„ñ@+Ñ`}½Ñ—Êy8—WÖ¨\Ükä7§òïÌèÿMöê#ý$5Ú·‰÷—ØÚ·ÆÐ.«dï'Ë!³$lý}æ f{7ñ>ïçâ£ìï£E{ˆñ€ðvfûèñ$Æ?CfI¹_¼”+þž2L¿‡í#Ö·Ö­ýl!Ú0>Èló£ÆãÏÎð)h‘Ÿ÷„‘?Æç ã‰Ö£½Çx¢qËÜø¬ÌOd.õbä‡ñyÛxß™·rÃuö_à3ø3d¦„ýý'öï1d!+%|p?Æû ã‡Þg8Ì7¬¿·2\O´¿÷à} ®5×3îåb{þŒß‹õˆÌþýÍèϰ>Ñæ÷ûü}Îèϼ!õj<‚‘ÿû¼½•O¹¸»cæ ë-Ößûƒ÷ý'd¶„+'zðPnÈóŸŽõˆý#d¹”¯ë &-òó÷ÉcÐÆþ=‡ eÇzEãQ0Êvó÷À¦ñ8m'^_ gØ^ÔHïígf:]D~þ¾O<ëí|ÏŸSy åô”)Ãx¦ï÷Ùûè<ÞL1á« þ>ŒOzÈîvŒOúÃýߎý{ ‘¾Ã›cÇýùc¼k×Ãx‚ßüm<)<1ÿëô˜ÿuŒ?zì7CÖLؾ—ó½Žõá©lí™ðÈŒýñóÁNc‹ c2{ù„lgÇx!³›LdF~ïóæVÞ¸~BFíÀf„¿óýÌÖ_dv³”¿û™­>Z±ur¿ùÈo>7¸ òª‹·²››dî™1ßï!ƒ 5$áÖ•;ŒVø÷cþÞéÏE™7-q?Xø÷b? ³×Ï—±?Ýcý·ûÙ1eäÏú˯Ìn›’xáú™¹…ô|ß®ß'|nî™Ñ_ö?úÇÌ^^#Þ?úÃ>¢<°žŸÙmmBFšAÆü1Ÿî#þô&™…ïùØÄÞ_[!˜Ù´¸^á9ÃöÅ' |m`¯_3Ú»ƒò Ù»îê rS†Œž°·+dØž0¦Aûãp-‡Ü`kƒùÜ éOâ~”­?Ê<·òºÒ{}Šù߀Yæƒô'dùž‹KWöö‡£Ýr¦^<œ1Xï *Pññ׾ɳ)¯qñ†ßN!{ý‹õÕÁþæåj'VpGþŸA«G6;BVPxkäïåKY5Ê {ýŠ£h£¡~ΠSB&2„Ân’C©´÷‚hÎù† ¡õŸ#d]Úÿ2õ0ß)#ökæã•IÄþòˆýZc A¦s`>9b~ =$¯ñ¼uóR¶ïu”mDÿ’ùìÌ#̉>^Ÿw‘±•¯U›Ü”;Òc~>üLª½6¬GBᨌ8¯Èæ*™ ŽÐÞ ìg®·rqWõb¤G{<&Ê7ñ£½è„çÅV¾-d8ÑXµ,d/ŸÄö}z÷º¬$îÇx2“ÂnÕ8¿€Þ«WãIöò¥7}&ŒWÓ:â<3dB…ý{Ý|¿PºñjÙƒÛÅx>ÞïÄ|êe\·ùÞˆõˉùÇ ËeF…O½x8cü2±~úq ±—+òÃøf¢ÿ Y«E¯¦q¿—ÿá÷;Ñ?ežø½'ÒO:‘Õà£lý÷¤Ç½óvqÝÚãýÑDöÊ2Cßøu+sÞîO†ýš‰þ̪]Üoïg20Õù8÷¸ =ÆËý™Iµà­lßìQ_џͰM˜Øµj‚òA$Ü~Jˆ(hìÛø(s‡¥Ú7(츧Zä7ŠòDþ;ÒÏyñQ¶öi¶ø†-Ôyµ‰üh¼†þz¢Ë\éÓVƒ‘~Æu/ÿÌÍyÇýþ>zñpÆøy¢¿ËlíÏì\ï˜XïÞΔõÅú¦U“Ü/^Ê庿àþùU<Åõ†ç³|1ÿÊlß›É-5²¿¯ÄÖ_Î8_=lí¸îj:þÚ'ÙÆ3æ;ó­ó‰õÉ9¢½E+ ¿»é½¼)e`¼hž÷[ûÂFÎÓ™ßçAù%öò›ñ½b?rEäå\â~ÿVôOØ¿ÞÎ=Òû÷ó¥‰þ{Æüfº²Ÿ°›ò­h¿0Ÿ›qþcbþöòÂz¡0îÇøz¡Î\»²[nî—@MÇ‹¹“½ýI¼Šò¦§àžÎø>ö;gì‡-Ì×ÂeÐŒý¼~'.W˜¢~CaG¸Ñ—ð Ê^þ”*ÐÝ1Æû_؇ï•0E|Ùúƒûc û£+ÖûhC½â|Ȫáuˆñ&¨…rAþ˜ÿ-ôïVŒ›lï+³½¯çQ¡ëãÅ6ƒ§s‹ü­½Z7(Ðóñ?;~¯}?ög–àåŒùõBr@´KT¦åbäwvfìgÚÏ*Á[ÙÞ‡ýÌÜÑ/ôçøà‰çŸÈeë/ *DÎ-òó÷Gyçå<#½Û6î—.Ì_í²µOÂÓÝÑž/ôÏÂË™õý¯ð¼ødö…(aºG¢½[è¿ÅŒm¼²â¼ÆB™ù =Æ{ÐäILsÎX[Ø_\#žùá+ó¿Ð†ç$ý#YžX´ŸQÈþ÷&>;3ú¯Ì÷£?]ØËìõ!út¯ˆçX˜ï­8?Inû™=xe¦ÑçŒú‡þ+sEú÷×¥<êÅ[y"ý‰üü{Œó‡ óÃiº8ž^ް¿ õhæx1Åuë_VÌ7 ”#|ÊÅ=1to„½½ŠhËýàï§T¯q+w؆òºØ¿‡Íþz£?XÑì×6ûgаnUyô‹a3ŠòÜX3¹ü>œ/ Áç ›ÑJö÷Ÿy+ûßýÉö†¬„ŽñìÊ«(Û÷°ÃÖª5,V°ÍŸ6ÅçÌŸÔÆ‡ûá|ú(Âu*»Ígá÷Ar+ÆÈϾŸ¿)P±)ü/Ú¦ÆýçÉŒöqΡYâÅôç÷Û÷°c}jc=nGü´KüÏžd?·iEÿ³Ê#ÎçmÌ_2Ûûßë±Ð˜)¯ÍÆö†Æ²ÅzåF{ø1ÚöEС¶ú°cü½?af>ÎßmŒÿíψü­ýÛa{´1þßqžmc¼o":“lõßþŒAö÷;9ØÏïØ?ؾðà?ã ^ÉFvc|¿cÙÊ7³}O'âLU£:£|MeeÆø-„@Œ­ýÞÎo¬ïg¦mîÇËßïÁú͉x£ƒõ}á£lõéÄz3tJ˜ øÀvë%¦ÃpœG°ÿ½1>¢Ù÷¡”QæA9a£ í aû¾Mø÷cZEheÚn%â3wZÖ|täÚ™Á²&‘?V7°¬ù¨ºÑ‡¯mѲæ£&×úÎ4J¦åé|‹–5Œ·¢eͤiÅCË ˜:À²†'µhYóQuÓ oÅhYól1¼¢eÍGýj™†_ƒÉÉC—¦Ðùì-`YÃV´¬ùèZMhfÚn)ËXÖ|T!Ï– .m2ËšD­d‚9ÃK3Óp;"¸äI¢Y…v¦‰FêB+,‚Î#t>ò•êÉýhXÖLJyÁ²&Öö±Õž© ÍL0K€±H£mD™%T¬‡Â²fòô/,ký¶|™äÎ%wš w¢!ä& >~eÍdëËšLnà­,k25¡“ÉêD¢©ùó`rÒiÕ«†—N¦Y…F¦-éÎ#¤×Òóm^òßém2,kœ–5™Ür&J.Éœig‚áÃK=Ó”\ÖÉ´=O_ƒeM¢ã¹ø| –5¶Éãï–ÙK$×êÎÔg¦!´%—#¹¹ö Eû‡°‚ýÃK;Ì ^Z™š?Ýg#´¬ù¨W!·@ðq>-k¹å‚Ï)hYóÑjB3Óö<}/„–5A›fAE©eª#S÷;a+kÅv–5Ü‹¦e #MiY³Ø.Á²†³.ZÖ…ÑÚXÖ|dõó£Q2Í–iIºu2/-k>‚­‚·n´¬áj-kL`YF°¬ùèÈl*¿âEÙú—V&ˆØ¿Ô^¡zì gÚ™ [´Ó5ï-25¡“©ÌLöhZ ËšD­dêPš™ Tæ6ÓEìÑÀ RÿÜûÅV{"+¥ÃoúP¨þ%¸Ç·éÆ2‰ÌÂâ#ÈÖÍGr÷ó',kí*´3™ ê‰ ÄïÛOXÖ$2±öD.iïëа¬IÔÏ+…ËšD³fÚPJ¹@:ÑÈTŠÐÊT=o—`Y“¨ïL£dš3ÓR’<·äS¡?j.škÈ<Z‰xKhÍši¡• ¾z¾Â" è$òyœíkÔŸ°¬ITŠÐÊdrÛŒoÁ¾s¢^…\Îßgì°¬Ù4¨Ã6w¢ ýò–5™úG0ø¨´W–5›J°¬IÑ|Ÿ•òfs–5±Ã ðDÃîa­ãÁ¸™V¦íwúø–5/ùŒ(“\ëUhüÀ| ,k2u!—»÷>–5™N¦=2"Ô?‚íÀG¥ Aü¾þ„e̓—Iéý ~2™iº=,€¼¯JôÛ;mîTò&ÓÎTz¦ê‚ú¾‚ s•L.*ïkư¬‰½XÖ$ê;“•õGÓÓáMû|¢S„úG.†±9'eM"k?íL­dê.T÷î}U"«‘‰V¦-é¶ËäãmúŠçKÞ%²Òý¨>B’®K:Ê듆ÿÔ—C±ý— “ÿü„eM¦.´^‚eM¦™©ÌW–5™F¦¶2Al?hHº$¶ËšDÛÚòôÒ¡¯úÈêg"¹³ïL£ ­LÛ÷5,k`Ñ–5‰Dóy§ ^¹eM¦“‰ÒûA;S÷t¾ËšD«gú­ƒ‡ê€ØüOA}˜‡À’à#r¯¯ õƒ ¨ÓØ|4z¦y2YIPy–5™N&ãÃ.¤S?¨Ê5È䇡L+B.š  N)ü HáM¡í‚ú¾C™ÎG¾&w›ž!$íaãs®D±.š+ŸsAû#ŸsÞ–5‡Ú38*ÉeëaŠãýC"+—z:™¦¤[]he‚=ì¼·HTz&«/“FWóÿÈ4Î?ZUH®í!´3"Ô?‚¸ÿGugj+Swa||~ÐÊ„ñÛOXÖ$‚¸üKSèd:‰…åƒzÚ™FÉd­M¢Oz–5‡ç±Ð>FsÀ²ælOù,$‘•RX¬x[~ök6SªÐÉuxßɆeM"HÅ¿´2šiJ:+ÝvËt$Ý™Bç#ˆú'ò'À*’þÕ–©U¡“©K.ó’;×òkɲ&ÑY…4ÿKŸ÷-?xÖdlE± vHëûB<|k ëЏŠbÜ9+h$,]°êÍM±#­ÏÒaa“q>ŠGpMÁÓBY衉ùy…ôᙡ§`]V6¯¬=¼l2vˆÊOf5¦à¬ŠCq ®%¸›àѬN~î€×Á‡”Þ÷ø¼ÊûÞ]pR–þTã½åƒ¹ 4ãa)CIý„PŒø«\€;çqº¼vÂ#X‡`ƒ–5sAÛ“¸”‹—r…Ž=}'pŽ:s»¸×‹ÇÅ[y^ùOèäãœ(Ìr„©Sÿòã\õCŸ€—é™:ø¹ åJú<”[WvÝÙÄã(Ï+¿u¥§.ýÇW~ϧ/|>†oŽ0tâé.ßaêÐ?d×~}fÐË e×Î|]ï×õç#.¾9%tìè›ó1}2ã~ú¦P¸~>8µ*S§þeêÔ‹oNæyñêÊþ>^†NƒðR®rCþôñ@l ]Wúæ”8WNßaè¤ãœ?}s„ÇÅÔm?dꢿ| ÃþúÊ™¡,¼• tÜqN™¾9ÂÈdÐ^ÊÔE‡N}s2SלŒN¼ÌðÕB/.|” tÓirFßÄu+·¢Lú¡Kޏúæd¦î9}mà›cv‹¼eꘓчg®M¹]÷ëþÑ•ç•~å=”Ï•Ÿë’ož£§oN ];úæd^Y'¾9%ÌÞ蛓¹A‡œ¾/ÔÑOìõã$èš#›¾9™wU>Ð!§O uw_¦Î.͵Ã7§>áãAÝ̺ä‡LÝoÄ]Ð7's+Cý}sLî?~Ï*Êû¹¸]ÈÔýFœ;}s2r1òCœ }s^]oúæÏ‹¡ëþ“¾9u1n—¾95tÕ蛓¹]שãýñ¼ø(SÇ»ÛøOÏCÜ.}s2û÷q¢ôÍ©<Ͼ9™Ï¸xÿPžþÏ×7G×wp6}´§›¹ eשù}s2¯¡lßénàqñV>еfBÚòùØ<íâéÜ‚ t¹gpÝÊ ùÑgá Ýï›òÊ:Ú5xõ‹¡[úGßœºcôÍùýyfê@Ó§„º³-|¨;›¸ß¼•t¨Wð|.>IWš¾9ÂÐenÁ»^Lè—·ò¡Î³×oúæ´hè›# åì:Ò‰ëVv÷× ‹Ùm†¯ t&„·ò¼®Ï¡lߟ0t—[ð©ÌXäÎ\r»îï7oåqå7ÛźÐÁ :̯O¿¿ÄÔ}n/¯ÌÔÝgúæd®U¹uåŽôˆ+¦oŽðQUyuåý\,ùAG·íÏ—¦@÷y×çâ¦Ü·òXÊóºßuÔ3_é7t¦wð)¯ÌÔÍÏ|”KU®Ð¥¦ïÆ íp=ƒ¾9íõ%¢®~bê>c|Cßá­¼Ÿ¤+MßœÌgd†oŽð}ùÏà]jÄíÓ7'småÝèúòRžGy‹¡kM_¬y÷СoŽðTvã¾0ÔñML]é—½ü+ûKúædžCy•‹ûÅKy·‹‘ÿ >;3ÆÂK™:ÔôUÂ|ú—[0u¨¡»Dßœ_>ÁºÌ5Øu¼SG™>V?_ש£ ¦oŽðQnx¾øæ¼:ÊôÍîÊ»)è*—Gfêþ&®íâyñQnÔa.äÝeú<@W$³—_âûûËCù =} ¨ûû2æóÂGÙëûâxŒ¾9ÂÐ=~}m\—~…o uéwè*Ÿ—çÅ:È“<¶òZÊÞ^e†N1ÆÃôÍù˜:õ‰ËR¦NóÇS™ºÍ_ùõ‹tŒYŸ^cú¤PÇ>qèWò¹yeFÿ-|”k¹x(·ëzëÊý¹øÊ^éçHºËôÍɼ » :úædvÝÔħ^Œüè#ƒþ_¸_¼”]÷8q«ågú(a}!ó„N3}p0ás@ß‹LÆûEÿo1Æ-x^|”+t‘1¿¡oNæþ\Ü”t˜¡ƒBߜ̫(ïçbè"³}Åzð¸xg†®Lær3t•±¾Aßœº”ôÍ>Êþ¾÷¢<tQè›#|”©KL*¬/dÞ7oåÝä×wæy’Ž1}s„‡2u‹Ù¾ïÐ-¦/×ÝbúíÐ-þ:¿¬ŸØ=·øÐBž[y-åsÝ Ë‹õúæd.7/åz”ò£otu„ÇÅÔ›]^Œé›#|”w¹x\LÝì›3c½š¾9Â+1}s2»Îha}¢oŽ0®cÊ¿o…Ïμx·‹gfŒG2×vñQîEÙuZþ9‘_É«^<2c\ø(Wèôb„¾9ÂÔí]dêè¢?¤oNf/ŸÄûº~jfÌ÷ç_ô~f†î.ƧôÍ™±¿IßÄmþùúæd¦.ÖO蛓ÙË3ó€o †/Æ»ôͱø÷Èÿô̘ï[LäCöúûôÍyul雓™:¹/Ï‹©›ûñ‚Îí"{ý ßcúæd¦Î-ÖG雓ÙÊÓ¢'ytåu]_[™º¶Ø/¦oŽEŽàžýef«Ÿ«p}ˆ¾9™]753uc;Ùu3¯¢LÝÙ—­ü¾ ™KQvÌ×G :Ì™'tn1þ¡oNæÝ/¾®Ÿ•˜¾9™ËVnýbèÐÒw:Ì=¾9™­~­ö¥_Ky·‹³®,}s>ÆüyuêvÓ7'³µ‡™]wóõ©@“y”‹—ò̺²ôÍÞʧ_ Xþê$'îíbêΞà£<‹²×¿Éñ+}s>†îfæú(÷ëú¸Òï¢|äþº³èÔNr-Ê­_¼”û£<ÿÞþêÔÏrqW^Ô¡mÁЕ}óßóbèÚ¾>=^ÿ^FyÝ?_ߜ̕:±+¸Açµ{WÞÐ]EûDßa¹NÝãÄ^Þá;Aßœí-}s^Vúæì8oAßœ¾~ôÍÞÊ“º¬ñ¼u±}ψdûóõÍA¼ÚŸ¯oÎÇè?2wè¬Ò7ë·™çsñT^Uy_é0Ú{áyñQ¦.ìËóʺ°˜Ð7Ç¢âPÐþg.K¹_×G¹øºîå‘yþPN÷Ï×7Gx+ŸrqOLßœÝÂýCæJ]Ú¼•Ûu½?Êóº¾nîÊ{^|2£?^Ê º¶Ø§oNæ~ñ(/剿óiúæåÝÜ×§ç¬ÌXÍ\/öï5tvé›#Ü.>Ês+ï+ý¾Ò{y'v]ÜX¦oŽðÎŒõR“^d×}Nìõ=óVöòÏL]àF¦.ðÇóâ£ì:¼™·òî™ÑŸe®×õº•ÛRîÏÅGy\ég¹×é{‚þLx)ï'3ú#‹Áíâ©ì:͉]Ç8óV¸NÌ„‘?æ/ôÍÙ±¾CßœÌ®ãœØÛ£—©c½Ã‡¾9ÂKÙË?||é›#|œY¿ÙÿeÎôa—xåeúJa}óc¬o CÇ™>`ÐÑ>ÑßÒ7±…¾¾9™©‹ü²µoÂ[¹_éí}eÞ×óöÊ ßœÌ¥^<”kQîHÿúìô£ìºÒáËKß‹IdkŸ„gføæœðá oÎ >úæ/gÌ_雓Ùu¦c¿’¾9™{¹¸_¼”çsqS¶öç„N;}s„ÛÅÇ™¾,ðÍÉlýof/ï¾(Ð?ƒûIôͱh¼‡ìºÜ™§²×÷Ì;3|Îä~.}s,rn‘]ç;³ý¾ð5¢oŽE­µàáLßìž8ßAß‹úŠçÛx)³—bë2ï+½õÏcÿSx:Ó'ë‰ç„ïÖ…·²¿¯Ðu§oNf×]Ï<•­½Ê¼®ôëÊßu×û÷”ùÊåß÷[-L ìEe\Á¿ïC¹_¼”û cú¦xÿ]ŸõÝ×'•‡ò./åÓ3ûüUø·¢¯—í÷Ôð-òþYy)ÿ~/ÊH?^>Îüû|!´>-žïû“ÂõQ^[y_éÏ•ÞÿÞïÏçÊM¹å~Ý?ªòZÊþ÷ö¨õ¥³ƒäpÊ^:ÛCHöÔ'Öw!Ú#ìõ!±ÿ½±?ßœÄbÿ±~‰¼òrÆ|¾9õ‰ó ðÍ1Æx¾9«(ûûùà}gFzúh¼ÿÌV±þ ßáÆø¢<ÕÂ^FpwFyC|G¸ eÿû[ý(á› ßá¦oŠ÷Æ8_ ßáߊ"üÛþ×>“ðÍ1¦O‡·çµTž…œŽ°}ûùRå©lï¿Äþ7|sjiásRñ÷&þŸÛû.-|T¼ý5>qݾá£|Ff—DS¶ü;Ç7ɶö7ó¸îŸ×ýöýd¶ï'óyœ±¾ á~]ïGÙ¾‡Ì³+ïëþcùð™é(—Ê#qµ÷ùúÄ ¼ÿÄþ÷%¶þ ³ÕÿñðÍQ¶üã{„oްõÂGÙÿžÌ’~áïɼ”ëQö÷›ùÊo<_ùͦ¼ªò¾î÷òyÙÇóÂc+ïGYÿ~÷Í©%â!`x#ìßwâ^”­·0ø¼øy|aÿ=‰­?.ÔÖ¤oNb [}²°€F¶ö´>ìà›Skáù6øæ[yf¶ò¬±_ 1ak?ì˜w ÞÊ6¾¨=|k|üfLŸ¿ [ùìëûµŽá›Sëäü ¾9ÂóºnßÿÇãJ?ð÷¾Œï'óºØÚ¿çí ‚‘ãQ?‚ÿºoŽõ¯oŽ÷ý¯oN|süwÀ7g<¯‹Žys$ZyoðÍt)ƒoN&wo©AîÞ’|sGؤMdN‰–»·ÐÆœ:>‚Š÷5ôÍI43Í‘i¹ÏKç_ÿ”‡¿þ)/¹cН®Ð7‡ŒôÍIt~Çeô͘Ñ7'Ñ6” |s¹ŠŸ¦¦oN"÷)|BkB'Óôkð‚oÎGËH Ÿ·ÜQ¤ó ËýL²oW‚蛓ÈýE:ó<î/·&_™OöÍ™TéƒoŽ-jŸŸðÍ™c#øæ$jî¸Ñ˜gwWÉ<‡;næ9f¦é.>ÞÃöó¬XmÃw%ÖðÍÉô9DÀ7‹™á›ó’ûædB;SmB’ Ü#|ÞßœpoÆéÕ)¾9‰NZ/Á7'Q™BîÊàß|s2íL­ùó|ü ß[D|H-ÓkÞä~ áÚcžÍ‘ n…Þ?ÇÝàYâ-ËK®¡‘Èœ:>ªr§•üGMéÁ‡ÁÛ§LëJÜÒ7 rÒ7'ü‘á›ó’¢'çðÍÉÔ2Ùhá ðÍù¨{ºxBŸ™à§ðÒÉdºÞÏû„¹3­"Ô…Ü þ¾ ’è÷­`©êOúæ¼ä(‰JZ™ªçÒé@/‚—ÜÃÀÛ,øæ¬ú¦ëî0‡$_ I4›ÐÌôÛò­öæbºúí»æn>ë…oN¦áªþLÍý hîƒàhhf*߉§»ò¦-}4÷ñþ|%‘i½Ô]oÌÏÜf:™¬$?Ð/þ“¾9‹ÎðÍɤ׿GƒºúøVü`Ù ï‘Aø sã`Œ|su×Ç×—ª/À7'“kÄ>o¶LP…ß|Tá_rÝòÊç.´>ò±M¢òɵº3õ™‰:ðDåwÒ.û!MS‡çÓ¤n9hQ·ü¥!ä*æãóÍ1åÚIZ?áà ßL¢ÿ¤oN"¨˜¿42™"w¢.´\ü€VšFðªYÔ;‚Þ¹à›³§ßœL-“©d:ƃ>g>.Øã3øæ$Z®ží+QðÍÉÔ2A‘Ûלᛓ¨ÍL}g²Rbl|s6Wâᛳýµ\“,Ñq5kÿúᛓ¨ŽLMî~§ýðÍI…ì ãjÏ…éÎüÈÛßDõÉÔœü«Âè+Q‡¾óþ ßœÃy!¶ýc—n†NsÐròâðÍIdZ©AÐèü¨•LýjBÐw>?á›s8Vœ¡Ú´Šë-{]‚oN¦óÑ«ÚL2]ÓDr§)™~4J¦éOðµgøæ$ÚžÎ'ÐpnP‚oN¦&43'8´¼:ÍA=Óp…eïsf(3¿42m¹óL¡tÍ…43¹ú2j– Ë´2Yy2fdІ36ÔAÃ9hJ:Ó‰å¾9‰Lv „oN¢ãªÍ>GÀ†úK>}ÏÔ2è;ŸŸðÍ9Ôñ€oŽMöygë™:T™®»®°¯a»ý°O…oΡ¿$|sOÎÁ7ÇöÕúOøæØ®Yù ßœDûšB'Óq½^¸¾xŸ“¨@¹Ö§uÜgÏ}Y?æ>©ÇùЇzœº!5‰àžã ²ý'ìs\8Ymê¼úÍÑlhe¹Ýžñ–)X«ât©ZŽúæÔBC×yL8Ǥ jàZ !1’°@ØÕg‚ðÓ„”)ÞÐ )Ó@j—ö*8 ™ê³mn­g<‚K‘R¦~ÎÎ:©lêÈM÷‡AU0ל‚µ*ÁP6­?á°“qLÁY÷£Ø¡ì × o&„,¨÷Y«„”é‹K°ÁeSß³\%´KGtM –ÁpGòõ',w2z±Ÿ×X‡Ú™>ŽçÖxa(wÆ3B¨2Lrt"}´(‹ùá*Š©ô/eQ#“³3n—°Ã¡"&1nA—›c8ü¢f£KÅ0?t­¶­¶g¤òâø žŒÔmÄ=]u.aOH ÌKS<‚Ïõ††<‚]0Ô›`h-—fµ–àÖ›OFŸs™Ú–/§Áš'c¯ŠCpP’°ü„=à´ú\¨š¿(¹°Ì ‹žŒ!öØ"”7¶:`Óã‚QGЋýö»Þ<æ'³žŒ[¯ž–·`é‚Ym§ì`›Šzµëƒ†>hjÚ UBûǵ§©AèIŽ„ „X‡âlE°?Šó+Ä^¿àÜb<9+ÊtqÈS+D gàìC q,AêöÀ)xŠbW\ÂÕGp à&Öª8T+‘"„Ô œÐ{ˆs .ðÅÏØSñ$D/™ÐêsF½™Ò‚T|q RGðEÍyjÎ ôÚŽàˆ+J2á¤@à‹Ôç#Rþ/pBÏ;\xþ¸ÆÑk,µY7¥/?t%À@¦&,]q ÖGq zI2FG2záRà2!n†û “*—¸a”±â*Œ… u‘Ò>‚ PF ýŽ*è2Ü@ÚTµüðèÕsŽä ô¢ûÐËêÃô2zI~8›â\¡<‘q Ö-èeõ¡«|ql†C†>Õ‚9KÕðæÕ—  ¬¢{jôí…C©¶À$ ýQBëb ù&A¤ô*s¶ž=á†Þäƒö(‚iЇ8ꜰWÅ-8Šà|§àRÜš3%_„bÞ‰ç ý¿@Êý½5@ƒðrÍ“F„6žïXÃEÈEq RX.Ðëä‡^ìî&x4íæœk<ÂMèCLÄ2nÁ‚_å³§C¹ÇÔÝàü1ç„Ô¦ œ¢Þìïˆ ¨0ʸ«à*œGyŠ2r|Es¡„EÑš‚Œ]Ðõ?´‘jpÜ…æB ç\ЂüU« î™°…°\`é‚7ÃæB½`y‡æB ©8Å#¸4+×Ó¢¾Í…2NÁ:© çÚ ™ôZº²Ò‡c Nè¬yOGs¡Œ[ÐE²>ÜMðhVV½;#$h.”°,AÊÃ6¨·…ç‹]}èÛ±VHs¡ŒóSj£¹P ݵƬ6dÖÓž’p†ˆ™Ïèi.”ñÖ!غâìš³«•%DÎ0bB¬QÂy!”Òà%a†„{ ž¡xaZEÑÄ„KÐßQ¦˜×h.”òkhdV¨™Ž%8Å)¸«àÉi©³¸_  g –¡x©a£’eðVBwœf/Á1ý•}¸4ç­iON åå„&ÃWvB‡,2dT ì%›ÌÊ5 Ö®i.” d.`•ðn\õ…š Ž¾h.æB™Ë¸øºîâS‰WQÞ'ƒx1Í…F st­™)†Ã”4œ@s¡Wì‹æB™ÛÅ^®™ÇÅ[™ba3ž7ÛÅSy å}±u#‚µh.$<•)ör…xÄh.4Bì†æBcR\’æB™­;ÎlÕ=óºÒoˆ‹ñý!¸h¬x5ÄÂ>>ίY¿ÏÍ`Aš eñ°——‹sÑ<ë©Âóâ£Ü î5³¹Ð ñAš Í'ÊÁÈ™]<)±‹Oñã s!á©Lñ¯—í}e¦Ø×ËýÊo\÷O0Íbzˆ}Ñ ûÇGʼ”)æ…`š åñ.š[ïúx*¯z1Ä­h.ƒ>>³µF“öïa.ô1¦¬3Äci.$<”ëÅ.žÁ’4š!îJs!ávñüaÌ󟯹6Rÿ|Í…2OˆK±þ@L1ó©_÷Ÿ“bÊÂ[ÙßoWÒ\Hø(~ñ•~^éç•~ïÌèÄ…çÅG¹Ô‹!žÅú‰uæV”;ž‡`š åQ/¾®ûûáqâ0ú}xfgKÜp?ÍŽ0ÉîÊb[;Ò{ù&ÞËjqÿ8Íí(öLs¡Ìö÷e^=3úÏÌ.n“¸徕çu¿‹)%^Wzû¾3ËßCs¡Ñ 7åR/Êõæ­ÜÊÅ×óûQ^×ýûú}ûú}.>”ùÊïcGPx(Š¡M²—æ©líïŠàš -ît†¹PfЇ‘Ñ¿ CLl†yPÊ­(»ØS 3ôgÂC™bb/{y·0‹¡ØS˜ÓÑ\h…Ø7Í…MÑÃ\ècˆg®ÏÅç¢y ú»Ì£\Ü/^ÊóQöúŸy\|=ïÈó°F»^óˆ/X„¹0Ä­h®‚þ0së/e™§ò¼ò ñ­Föú¾ÃL ýblÿ|Í…>^!¶õ²¿Ä.î–ùJïï'ó•ß|.n.¦õ¼/Fy@üæB™WWv1­Ì33vj÷ óŒ2×çbˆOa½ƒæB™]Ü,ñ¼î_õbˆKõø=ö}d>åâ•óeá£\ªr½y(·~ñõ<³I<®ôÍÕ0>aæIs¡ÌgdÆæ°ð}}+S\ëã®\!6Es,Šm½í!ÆÂKÙÚ»b4ÞÊgeÆ|Yx*ûûÉŒüin‡ñEæþ\<•ç•~]éW¿x¹¸T‰çïvñTvq¨—)Æ•y)×çâ¦ìbP‰m~”y\ùÍ©¼®ôûJ¿¯ë‡bZ^?i.„yòQöúŸ¸_÷Slëã®ì噘b[ÌØ[Î\ÛÅóbü^¬'Ð\(s/Ê£+¯ëþ}Ý¿¯ëçJVfŠke>Ê¥^<.Þʵ\<\l ëÏ4žeoŸ{ýO¼Ÿ‹¯üޤÇõ™aVõì̵]<•]-ó•_¿xô‹¯ç­ë~Ÿ‰ÏÍ’ý·mûà£ìï#óPn×uïO{û•ù¸øÍs žyÂü”æBÂ[™bièOa.T±-v±¦Äba3žçâV/S¼«"òæBÆØ‚¹°‰dn5‰wÁ\Hx@œë¼L1­à9•÷¸xg¦øWæyñQ®E¹-e ËÜ\l«›øIæy±‹e…ùÌ…êûI0>õâábYïóýýìÈâ;™ ˜åOq²Ì¿jÁþ¾2å6”{QW~ó¹øÊÏÅÍ2_ùï›·ò‘çQü,qAþçå¡\ËÅ[¹]×ûsqsq¯æF.žUØŸÂ\HØÅzÊgntÆÅ;ó˜RâróR¦¸ØËíÊÏŇb¿æBÊ[™bd/Ûû>ÊûÊ_ùï+ÿsÝ®ç•æBÂ…be\ËÅ×uûž3ëúDzŒÿ`.db^4ç ø[楼Ÿ‹gæ‚÷Ù)s!áú\Ü”[½øJß¶²¿¯0W„¹ðÊþ~ûûȼ2ûøÅÄŰþs!áZ.¾®·ëz.¾òw1¬Äóâ ñ4šñPœîå†òN\ÛÅ'Cûs!aŠ}<•ľh†ÓBÜ ë/0R>.ÖÅúáµÂ^>™»²·?™¯ü&ò£úûú„ùúû}¾/ìâU%Ì­ Ö)<•]|+q¿y+Ï+?+ßÌÃþ7Ì…”·²µ'ÂâdÈÏçûÂV3·ë~+ÏÌ.f–xBÜ bf0R^ÊV??^(ÏÄö} oå>”­}®¯ùúÏb‡0ÞEùÜÜ]\ù£¿Ìlõ3s»î·ú(|”M\4³—WbSK|äùn.!\Š2Åá^î×ý³)¯­¼¯û7®ÓŒ ýÑË0.[™åóñ•¾_éÄëF°×¯Ä^Ÿb}æBÊGÙÆ|߉ýû~Í_(˜Øëcæ¡lãuá¥<¯üÄñhÎ1Ó̧_¼2»˜´°×·Ìób+Ãó0ª-ö‡ Ÿ¤¼2CœÔ–-ÙêWæ~]KÙ¾·FQ$š %†ø¨ðP®E¹]é­>e¶þ3ó¸ò³ö+ó¼ò71ÓûÝ0R^Êö½ e«­…Y úá¥ì囹)÷+ý¾ØÚ3a¹1G›V²—wæ­\/¶þ¸Å|æBÂÖ¾µs…¹ðìÊëbûž…çÅ'3ú̽+¢<¯ûmüÒBœæBÂ^a´÷Âóbû½‹çç`.TÛ3­ú—Øÿ¾ÄGîGûŸÙëObÿûÅš¡ï£|]÷òÈ<•½<2oģ ¤ÜÃ\H¸låZ.¾®[}³iH°}ß™çu}Ýüû{,V#ØêSïæB‰Ñ/gœƒ¹òVî[ù _ùYù ·‹ò¹ò;’Ä­3[yöåéû›Â^ž™íùýÌ…„­?Îló=á+½—÷ y(Ì…”ÇÅ–ˆ³Ã\HØÆÛ™­¾ _é½ü3_ùyyg¾ò÷òó-0RÞÊÖ÷Åõh˜ ×ëzÝÊÖŸeö÷“ù(+½™¯ëëzþºž·åyè„ÛÅV^›íÌ…êk^s!å­<®ëþ>2Ï‹²µO™Mœ9³µG£Ë\¯ëu){ùgneëÿl˜;ƒ‡²•¿ 3+ÙÚŸÌö}ïÌXßî/årÝ_®ûm¾o’ž…lí›ðvf{‚þ5³½/HJþæBÊ+³¶ñŸðP®E¹_é­ü3+½—wâ}¥·öɆuàƒòKìå—¹_|Ý_¯üì{ÞÊýÊ¿_ù›X¹IE[!Ü”­ýyæBuÄùpè)eûFœ¯†¹°—wbk2¯ë~kO„§²×÷Ì’Ì$2—‹ësñQnõâ¡Ü‹ò¸ùzž—œ÷†¹°×ÿÄÖ?\ñ>2Ï‹í÷Çú=Ì…”·²½/&=d{_™­ýžÊÖ^e^WúuåoýEfûž„-J¦Ó\HØÞïÇ«Ÿ¯™Ì…2Ûûî/eë/„²õÂ×ó÷õ¼}åäù˜¿f¶öIx*[ÿüšÑÓ\(³}/3Ìh.$|2Ã\(³µW™ë£lã•Ìþ÷m|)lïd¼Í…„›²×¿Äýºßë[b¯O‰ýïMìõåeô_!®æB™½>$ž×u¯‰½>$>WþöýÎ0ÿ¥¹Pfÿ‰ý{Ì|¥×ýÖ~fžWzÿûû§Üa˜ weÿ™§²õ/™­ü¬Ùßd«Â=1Í…Vœ§¢¹Pfûû3[ýîÊëbû>F¹,ekÿ3[ûŸÙÚf]4ÊlßÇÇ0žÊöþ…¯ôþ÷&¶ñIæÙ•×uÿ¾žgï?ó‘ü`.$Ü•íý[³WÈÖþföòI<¯ûíûÉlßOf3ùícæ~]ïGÙ¾‡Ì³+ïëþsåäï¹Pf›¿dö÷ŸXÿ>˜ e>ò{Ð 7岕û¼ø(ë߃öïãuý=ïg®GYß/Æó™Çsñ•ßlÊú¾1¾Ï¬åƒñ|f}¿0ʬ?Ì…2ëßs¡Eõ˜0ÊlýûË4Êì¿'±õÇ™—0ÆŸ™kSî×ý^¾‰ý{J¼ªò–ô¿eãâ­<‹òê_ùoÉëûÂG¹ åy]?’~\éÇõ÷òûI¼.ÞSùÈó×õ>Ž<ïþø?ÿ—O‡~§ßÍuÐmJm[@P ù¯ÿùçýù?ÿøïþùùÿíÏ¿û‡?~»—ßßó¤ÿÿûŸÿðÝŒÿçÿøŸ~žŸÿýòóïÿù/Ÿ[ýOTët«™4ü~úÿôGEðÇ¢"Hµ&Èåú} îЉ÷ E=~2foÌ×êñƒöV†£OÇÏÂêk{pÚ4d‡ÛÓ^µÜîŒhe 2}œ43¹úß NOŠ3·2 V0›oÅ5?üP¸=¾U×`÷C®þ|Ûf…ܔ ʶqZ¤U°:ðç7ß&¶M_?-ÔÚp¶M7~C´ÓàiÕfË´ˆÞ÷ÙPëÑù rÕ »Ã¶¨à³ã6 µ t§Ú`´%OC4øqb¼_+xþ,a-í«Åmvœ.­‘iz¥óç/W·°Ó€½Ò ýj§Û\D©…U'•ÛÚÚ°nc4L³Ñ NSøi‹e;Û­÷ÝÁ4Ûíôè›/ÛMóÙRƒJ“íÆ¸bJ³cÊÕWÿý´dƒV‹­þzëØ Þa«™¾ÚÑŸŠÙ.£¹:Ôê`t{¸ÚÄÙeÜ·Âf'~¢—£m˜~ÝÑsþµ}ßÒóÿç[†>ÕúéoX‰þüÃ}=Çíúñ€ª÷:ñ½ÞªÛNÇõÀïºm`~é¿ë6ÀHé‰ïuùÁßï¯ÿÛ¿°|þñŸÿ…òùçümŠþ‡ßýó—ÿãÇgÏû/L<¸_Y­þåŸ~þîßÔ¿ÿùËùã¿ÿ‹çü7“BÞ/%-ÿÚ¤­ðT@$}þÕ)‡»1|)ÿõÏ´‘ðH)ÿÕh·Ãfù™-R²°=èæ•ÇÑ&?\áµëºá¡›«|×›ž¼×麟Ú;ß ä|Çv”ïpºƒÀ{G4 éüîïŽïïÈEôÌ¿ùJË7|º;é­¿QþVZŒLþzEú[iý˜ëúëUéo¦Å”ð¯V¦¿•ÖÎ ýö|µ:ýÍ´°ø—*¿ö?ºEKöh­mà‹)ñÞ.ŽÛ9V)ó{2þ»Bl’C•ÿƤUß*®Ö#üþ-ÿñïþé¿þýïˆáçïþ·ÿû?ÿýúùË¿ÿוIõy™ë0äóÿB>ÿ_»Ãøñ£“¶^÷Wº쵆¤­qÑLÑú:ï´ªyúP¢BxÒ$Ø&Ó½ÞüX¸õhÓ½|\e¼é~V> ¨PÍÝFYlX÷€0[µ)‰›ÓL á|êmãºæÃÆVª= ë)íA|NHí·ñ¥¢¶Þ†Þ8F8Å©Ýp£‡íMŽðì=Y˜‘8,ÞZœ¾ßÊþ/¨_>"úxaÄbñeÍ%Ì0"l0  rþÍâ;ôš0âsg-ßöõôv>ú,ѵЋðóE­So`rÖâ× ÖßlDçñ£”õkc"¾äA¼eÃy‹×òóÍö§anï2Ëûe2>^ûŸ±ÚÂÌkånáü«ëmØîà¼cîâ¼ãÄyíüçÛv=;ÿáŠïÍæw<°9bóýË1B?Ïö}DÞŸ'ö‡`ìù4ì×lšrþ5mþg#2ob ÎK,Žøô*ï7İ» Ãï°„-“Õèá=Æøãÿ+ú¡ endstream endobj 123 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 126 0 obj << /Length 2719 /Filter /FlateDecode >> stream xÚÕZYÛÈ~÷¯Ø¢IF4ïc;H6k ÁúÉóxýÀ!©¦DA”<šM²¿=]W³xH#{$yаÙGuõWW³jþ|ÿâõ»ô&s²Øoî7Yâ$qzG‰ãÑÍ}yóq¶iö·Þ¬ºq<ÃæO®šç¶2Jêß4·s?1of¸¦®ƒi¯Ì/?Ð{^›ø5·fæcK½ èØó z”kÓgö€þþla’‰f-’Ø™íbajA¢ÙaÕqz¸õÓÙ#,l¨£­N8êÍÚ;Ó“„³Ó>2YØYJÌÃCæ¡«®i6]oa}Î{™7|æËʹýtÿ·÷fîyN1l…ñÀ#ž„zàÏv Àx€ÎX¨© §—9lÓ\à¤:Ð@¾¥>8ÀéÀ'ÙKyM3 8,"PÀÙ?ÓüFøqTÔ2YÅ ¨møˆ}¹ŒTÖ,·ü¡fxÍø>s*ÂæÑ÷BÖ6êL¨"9ÍŸ€mOC”B#Æü·¯ \˜ÍWž9æŠæå{^°æ] Xs 55ƒk–-¯² ˜6?Âör4súˆÀ £Ù.gP‘%.Ify Gxý. • ùqèDAl†j™ ¡Œò3?ÐÇü6È/’Ñ–ùŽï†BŇi8»vEb|Vn¢z ˆ HïI‘P¼ç;IØG½0ZbN‡bBY%J+ü'î¨D>€`(yñ’Ù”hYÝ)M>±ad[R£Èke[Z3 Ãîµw&0öLÓ´ææx>áíí<ò²/Æû'7râw5æ÷h~oØøxЇ¬y3ŸºCs‡¸d‘GÒW¤ÚÚˆ9ŸZñ¶cæy8/³ýËÖ~š¹7ÜöÝO¥¦XǤÔi|Kæ‘§®™ÁOkÕraxËc#ŒFº^ó²CA{™‘…Úä W¬/™ã¥‰¸žßN˜_dn2^)QÛcŠ~ìx®ÿ E?“ Ìç‰R0ÞkOl~{QŸÛw¬h™ñžQ³“„1Fȼ4¿¿+‹Ú“C”D‡6öål’;ÅÐËÛ§3›üeÂl[ëì#ˆ( &E]³<·r‡9/n¥ºu®Ï Õб‹ïÌïOæ÷#û¥®×£*NfîŠ× ÷M_,ºŒr4Ýï‰Å÷C'Ì¢É0ðr ™¯kuÍ®núÿ ¬8µzX/tÍÆé¤Â‹·%cQÞÒ^CéÐ*ˆ=úoøSì°ì÷ÏûÜÍ bV_¤ºŸ7ûÈTZî/䢦v(TÜQ7š#K·qÙÿ„û¨[Ÿ.R< ÈŽghýõLìëzœë¹®¢wÅÔ+ÅÈ–w­Î˜ŸŸxN{WÛÊ´jéžtÑóZç´»À1Gk)×HnÊï8axý¹UôJ\'NÃoT’ݳ&œú 2¼ˆ)å8ëgÈÌäjÿ_õ?ÑÊWMzeí³Ç`m=½•ÌÊê”õìbDý£À|°æ‰ÝkñÛglíÕE4„­²‰MÌ­°¡/Ò²‹j û€ ñ³r$eð¼¾µÕŠîÚúA X#N ÊÊbSï.|†DL Ll(/ŠT®e­R—ã´Ô§Î9ÞçnÕƒº…¯~‰éq»«dw/Å.a¹¼ " æ„—°ôÖ~±’zl~O~ÿ@Êè£ü>ùÍ„Ši­;“R=¡DÏñf¯ÏI¦úƒ¯õOBvñÕ<_¹â™Ùc'˜û—¤cÆX¿;‰3Ÿz›ón±¸<4ô–ßYž¯8^–:A]û¥XO€Pò ¡Æ÷BÇÂI ?͵aÄÜîŒÞå€3`…Jáú9»ùTZêžÓ¢ašP2»=2±ƒ$I—4Zà¥ñ‹d¾ZêÅÄ&4À­(wNV ë®)¹LhKÄYà=žíò-gæá­YÐ,Îã/ûŽÅ”w…ü² C–§¼V{qn§ƒ‡,×ÊË5Ì•ì•o§l`Ý%÷ùv–"Aìv£æC<ˆ2Ú©¤6¬9PÛfÀó-¦hM—NLJ;))”úºn¶R€Œþ¶ì¯Íêé~’8Ñ˰úaºÄû“´‘@Ê…Š1WR"X®pÉá\b|ÝbÔ™ûA0[br⸣7ÎCSnØ­ ¸•cÖO0ÃX€ Îþâú½ª#Dêf£-+©M‘ca‡¤”m Ú£Óa/¤~üþš³èû …Ò㳨bÑ„+:«ñ¹!†ýVüÃú¢‘=Øs¼•”´è’ú@Ž>H¬½Ãô=›Á…RNEÍ&t€±ÀS«‡y;]í· ²Ú÷-¯³Úªˆ4Gb¢›QíåÛdx©Êyßx‰¶¶rãò›ŸF“ºc€ì?,fÖ| ‚éR‘ƒ±÷"íTsšCNC¢Gæ6&:?‹:N•ò/Ì'"pÁj«l)×f Q Ÿ$%ìÍÂÁ¥íY‘sè %¸ÙQöªˆ{‰£% {B¿>ÐuÎOV5A3¡‹÷É:7QàÄ(0é{|˜ª¤¯¡JÅ—š–-e#4íòFûL°ú`Ë_Í;¨’¼¯ù‰vÌþ;r¢WKyrÉÛ—Ràá R“„5X^åV\1ÄHÑmÍmíI%Fž¦Dfñ¬¦ó6ŸU_ÂP‚Ú O”^å%%ߢzd€râ,áðÑ^±óAêÇH“}•6 ¼¡_9âË·ö4&ŒëÞRßñaƒ]ͱ úÿÉ{/+áˆ;‹éL§q?ûÌ äÞ˜³»ænáÛõ8< ˜ O(ÂpÃ"Jl&¤–J!/èioÐ÷Њ&Ó±Jê§ ‚ËU=.Çë`û]I•jËÎóÛU)sYN@î`-ÏU ã]ô]ù¹j¼£ul6ÖëüÌŽ× U¹X Aív—/hó™––zÐî ô ¥9n*gR4Hy÷Ô׊÷à‡})†˜ 6·†¡²è|Žb\ï鬈þŒõáÐN¶"Ü>[ zðÆ~d¿®U†ou9[«>Crþ ÙYÇiWNUCïú‰ù¶ÿÁ¤³¦ê’ߪ<-w]¬ö½› EãqÁNgBÿ“Øüú¬ë5߀~9_W£8)ŠE/õ4¦zN×~`öªÓ\µ‰ûrø/kÅ< œÈ'uC6*T¶°ýÚ4i£\¯'”@¥L‡ÿ ‘ÚD&Ô^ ²ªµÒ¶¶Kaöæ9å|¯òO£|—ÁJJ•œÜª´ú ¾6 ˜Îf ’Q‚¿r+ «J+´édú©Œ/|©Ò64ú®_1ž˜ñÞÎŒÈÂz8½T\–g©fô©.þ/ÙëtÿœpŽêĬ÷ºÝ+œŽYÛ%Gõ?;”Ï‹U%mì6y8Iv&Þƒ»—Œ´ʈzî8›Ásnäýùä^ÄI¨9WJCcpQB}P­ËøÝãw÷ùwß5K>¿ƒ÷hœ¨òRßÉÂÌ(sÒ4%¾|&¾øáþÅ¿¥7…€ endstream endobj 130 0 obj << /Length 2468 /Filter /FlateDecode >> stream xÚÝ]ã¶ñ}…p}‘“µN$õÙ´.ׂ¢$È¢/I´¶,»gKÉÞÝCƒüöÎ%J–½×âЇ®Ã<îdzI?Yür÷w/ô–Jy,B$ &°$åG˜†Ñ‘áyÄ4žôÃKBÄŽ—˜^jFsW…0sB¤Ž&ÒM\Zù!GL§BéKBÄŽÓ•éÔ¯Îñ‰ixÁ'ÔHˆ„…ÈMdŸ „zA3ùDˆtÒÏç4‘‹_r¢rÇvÿC&Ì0bþú]æDëRAšK•Q¦Xž»- —093~ù íö»Ž!-tvðë>àøÝ<7þ‘~Uߺ„?kÆ/dÞ@áæç–Híq¡3¿Äù¯‰ÝêÁ/WGÂî Õˆv:àß{€¤4Ö µ IˆÂ²êH4ííÀ÷Ðt8¼‡ßG„h€5š cà E]á:køUsfÛ ûæ€òÞãòÚ0T:X,#¸×) <Ü ÅriIŒL4kz8ŠŠ›šÉ 𙌀Si”‡2×1ÊH»¹¿ÅéÕ–;ï ý·Ì»BÆÍI´ ƒ›¦eJEU ­8üwœ3úÓVDY-@EBa`Õ•<.âÄ/P·§’¼ci€Æ11ø¥8)ÂDIØÔ”·¾‚NÂðmÉøodúÌ×J{‰³¹'Rɪ×)ŽbhÄ rìlv¼³ª>Ó€¦£M$‡žzbOelXgŒë$dôTâÌDÐ)ÃQ¥ÑœÆŠš< ?ŽIïQ˜ºfê(z—Iù?"ûšÝ„fXv;V6‚úfʆèXÑØw„CL+^{Õ´¬+„=!Už}X˜3‘8VèXÿD…$¦ =¢ÔcA…š8ÜéJqêÛ9ÑÌu¦‘1ŒfŒh#±Ÿvë{ÇI ,ØX{ŠFŒIŒ¸bE>õd]/T8ÜVƒß Ü\w±š$âï0FJîv 4Á¡È([7qëffo£„R  CäÑâÿ@4¹¬í–Œ».­ÏO›£Òc°:IB¬Ñ ÙðjÜdO³m”ýNB|=Ö±$L‡ªCÎulÔËA„Û ÙÒÆ)- ^ Dzå#•9wÛËLÚÁ L9x¯MõšâÙØ¤(ÒyÚ“¦ ¢DlïIN°×ã Ù8ñ7%yížB —¶K¦éí$<0îH°•ÝÈ>¸áå¿Ù ´©ÊéÔ>mtÜïЀU%ÑLjFI-ÿR`¢Z>KÎ’ˆÓBH¥dyèXËãoÇ ‚?kYø˜éƒ½Fd¡Èé+æÇW¯Aö\•*•€ü=ÛPVØÈÒŽr.xè/tí±Ü÷i«fa~c<Ëá6`CîqoÜgCqÚ[&¸¶[¢ AÅ£¿óÇz@ë ‹J†aõ`i(ÿÏ‚Y±¾Ø—¥¥,CÙÐŽwF_Í9Ù•Ýÿ!T&X/hN&|^®þÀ üâs+°Î}ž•›A7ˆÐÉqèI®\ W‚¾Ù1˽•þ_á‡iæ ¦Qû·#¥ýiPZ9¬w#|¡Y;íòʲ ÷q¬÷©ËD2|{-‹]¾¿>¼šZÁpfq߈œEutÛ Úpóo¢{ °«\ »ð½d%ÅÖc=½íC‚¦¤k{O^HCý•B<Åõa*Òª0J?w@͘øý™¬DB "ÿ>8Á(ùŒ<ìù ú¿ë§Ë§ÏäûÌ›ÒduŸ.™ùÌ’]Êýg4˜\•3ú¿ÈùÅ9Ïãh/ä+ ôíR¿z;ºÅ*ÿ×!Š% ¿¤ø~¿-Æ“~syCxQ4æ.¹s¹àbYì|ã9Ðóø†+|Ö†:œ"¯eTo=[ µE#%ßRê!Õg¸›«Ü‰|è°NÎYOj’¶ÔÌ…ÖÙjlt™g"t‡ž’Ÿ›–*þ²Ìßt.©ËdË|.J]8“”’/ìNñ§mãv98ÉZ(ŽÅp·Ü‰4‚ÿjrÄx5déW£háüÊðûëÃßÉð Ks¸–¤pai·bÙž¢ 4u²?x¼œsØûØwçñ(ÔþÂÍ¿—ö…kþéspÈuml}-{©¼=®nGñpo•䉠§]¿µRŸj0Tâ2ƒ¹x_¿zr%.–ë'6F×OØ;%¶«Öf©·ë«%Bëe1œAð²ûÿ’zŽô•ªÖR ?¸—f‹[Ïí&¯d¸ÊÓ…ËþF*ì&ÓTð±%©<òïOR…¡bmoìuÅ“:[³.Z«€÷àÖû‘ð¨ŒMⵌ¹±g*)Oô3xÙbª+«¡h"|ÖMÏH–M‡ãÙúG±æÊ-VDÿølÑXæE¿[}3Úy¸øˆ£MmipEdKZ’zBê%AžšŒÊ & Ly&HTb÷´w |ã²±=:/}©‘çq+à بœM«Ç•@=[´›¾ÐàRå…g8å.´v `ا{: àÂN$ÙÖBÐÇKÆj ›ÖðчɳŽ6»µµ¸¥ÖýRšSµ•,ùôXÐ5»\í¼¿ËkÝŸè9@¥>g´J`¶ç¦±« [ ãÊÌ\‘›ÔÖ±f…}jèÙP^'`2•ëZç-"á·­§gÙ¾aÛѾ]ˆ³&mUªS{éê˜K‘®üdbk‡ª™¥e::vV9Fvw*Ð6횃†_7pÐ}ƒè#ÄV¹ROÄ )9öïAB7ßÞÝüz£@þÐS^ži’A$eŠ•·:ÜüôKè­a V˜<óžóà©$ t¦¡½÷~¼ùáæü'­àT›§)W÷Â,È∩ 6£xÔ¡—^¨/VÞR™2îæC ɳà#µénÚ «.Ýý¿`2´WNêèxä¸-$íB‡^?,Lè )Ê*ÒF¥â›iN©‡^¾Ž»Ç©# †`ü#·Ÿ°MÔWØÚöéÙ’_·*# pǃëEëHØ0ôHƒFs:bxœDhç ³•6°ICîJ").óP-lˆÆm†²—}eAأлm¤¨m]ÖÍ:c¤h“<È29he½å? Í endstream endobj 135 0 obj << /Length 326 /Filter /FlateDecode >> stream xÚmPMSƒ0½çWä˜HIÂW¼ikgt¼8ÃM{ÀB‡[ýùî&iåàd›·»ïí[Ic8’š\äYAU®DšJº·ä““)¸‚EèR2´`õ` ÝŒäÎ%ÊhÁyW’Õ¶ é2Z®²i,2à/kú¶\²n{šàÛðHÇš™%ª`·õ;€'¸ófkL+6#2Cç™§«ßy`œ|Œ-Ý©ö?|Zû¸F¤ú@¼UóBh<.˜õ;pØ‘«ÔaÎKýÚA?¾ÉºX«À¯±Là…ŒLê„m tª–Õ|W>ÂJ#)…I3¿¤!X=6aR­ÙÜ]FøöÀÒ.<ÑÔä±s4{°t¥Àe9#ö_[a²uÂn¿Z1aÕà<à¸*V¢ÈS:1BKí§V “ä¾$¿€0 endstream endobj 127 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-flc7.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 136 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 137 0 R>> /ExtGState << >>/ColorSpace << /sRGB 138 0 R >>>> /Length 32743 /Filter /FlateDecode >> stream xœ¤½KË7Ërå7ߟâJ¿]yÏœvûìsÀ¡èVcÄVÛÖ1ô×wÅZU™ч-<Ðå·³Þç_×¼DF¬•~þî'ýüóÏÿóÛÿzÿÏ¿ûËÿö?ýûŸÿð§ß®_×uýìÿûOÿá¹ÿëh?ÿõ·¿ÿ‡Ÿëç?ý–~þîþŸþ-É?ÿóo­üj駬_¥ÿüËO½®_õRüýçOŸf¥ú«±5]å×5žf÷½å_=¿íŠO{¾ò¯4Ÿv÷½¥_£¾íŠO{¹Ò¯¼žv÷½]¿f{ÛŸöãrß«ÚÿýŸõæþÇ¿7÷/ÿñ¿üöïþÇ|?‰?ÿçŸùKÿ;ÿ°átrþuÍŸ?ÿËÏß\ûóçþíø3þî_û‡é>‘Y·™ÿð¿l¸„÷_Ö?ü/×úµúö/ûý—¹.y-Þ9ÿð¿\ý¼Îô‡oQ©ý¼Ðô‡ïQYí¼ÒôÜ$¾ uþªx_@y”_µò}:›ñžÞÖUöVÒÛšÊ}x{š·öYŽvâ۞󔓱vÅ­'û´¿ç¾ß•÷^üwï ÊCžEÍ¿ÖÅ·õWø0þÊ¿ãý·éßøoSÉ¿æÒ>Ê¿öÇxÿqù7þã|¿S?Ð_áçò×þqï?nçk¤ÝÊo5'yÚ©æÙ~¥|³>¸íà?¡‡ÿÿÙ¥5ð­è™þýßüû“îÿð7ÿôÿú—Ÿÿü¯ÿ׿üüåÿåÿþýŸþö~þüwèêç¯~ßvùð.þ¿ÿ§üÿÏ¿Øõßçü³_G™øÖrm¿Fÿù×úùßþ˶îÓÎwŸ}Ó_Àô›Z˾ɗZª¿®æ©7Ò}÷ÝOT»§•I÷_ûÐú•.Ò¼JÃSÆYßoBõT©ÔôÈû–9ê¸ÚþëÊžF"Õâi*µËÓR-¡ñ몺‡¦û%ÝWíˆW;~åê©àÎOù¯Ž*þÊ’™‡£6Hyzš…TZ•´ú—’ܹßë÷žð÷ûÿ&O¹äоT©Ì€i,OxÒ7ÝoŸ#<éž•â O³\í—޼¿Žò¥,_i4I©{ÊúWÊðTp—š¼ÑŽêEêµDšÝSÇ]ê¿RñÄ«í¿òŽxCNºg¶8râN8š¤ryJJ- {Ozäg}ÓÌê:ëZIÞZGøRoºß>Gx#oªÅzï›î_r„žh!²ãi’îÌF®{ýœŠ§ÙH£zÂltUµ=-RÍ_Jz'ª¼íŽ~¡á.} _ñêÒ£8ÂLî¦V!7µì©ë_‘;ñ¥QI³{›|¯öîÖ®hÊ•9Â~ïÄNYfÒ ûÍtÄ;1eôu„/õ¦Ñ=5\VFŽÐƒÝt÷RŽF#Ý#‚#Œè9K9@Œ]‚µ;,ò{„Ép”Ñ[¥+É”Çc™Š9ÂÚïÇá±ñ²¼TGY>yÔË/øx®©(·õƒ•ëÁa¾åóö¸€X\{¬—¢<‡­)Þ/®ÇÎÓèòšyE1ç§|§_l‹Ò…EªÇ<s„¥+Ö«|O-<¶¡xw`»ý©»›ò¨8qcÎKq”—á=è±se“®%or€Kñž zÌvðýi8W„X$ ë¬ysn”Ç!"‚cˆµ½à,bH Ëí/ÎaïE§Gôö)¹RåÁ fï‚5B¾Þ _G½À*Ó<“·®ávˆh†àZñþbBï1Uà ÷¥DˆÇ°œöX ç °òqc¹í‘c¢Úãà%,Ð#æÿ‚3ÈËÏ:=²¹Qºk‡ìFr‘÷Ü#»‘ŒEl€S±F¸ yëv—ݺ"a-zsª ©›áýŠzD<7å&“zK{œvð,.þP—÷‹I;ÆŒ¾Èc¶ƒïqÙ#‘W °òb ës)ÁûÉz솫DÈ“œò¾y\E±'‡ Î3OrI¯î±ÞN5®[Q¼'¤»ÜW€ì6Ë%ÝH€Kñž–z\vð}ÿÄ \’ôŸ_,:¡ºñþr=fÃûZ”sSâk„Íî!â¶K|ø ÓžŽXìÜ$›ä$P¢šÅ¡Ù$2™äâQ"“5@.%29¬†òÈòƒ•èbƒˆD[„äé|qp^ðž"zäç,1±‡â=j{䄹c–â‘K-‰MõõEBÐÉ£¾Hñ=²«—(P P?œ%3úá,<²NíÌ%¢ÒdèþÆûZœŠµÈ©Ú@ÀÊc5œ#@v÷HvÃÒäò± ÓpFÈðÝÀ×—NÒ“<&ÃÒd§:dóÈNõ^ù^!NÅÙd8KÖÅòU‘õé ;I®XNþ©ŽAÓ!'  \—n15Ãczp¨/‚]›¼R€œ¨ÄÒ=òåø¾<ê% ùW_Lv …yäÒRÖ>=@1²B¹dW0(óȉ:W õ"PæQ/kËþÔÝ÷~1Ûë½äeðˆlž$3ö+@v7Þçã‘—?QÁà‘—?±1ï‘‹ô‰@™ÇNÄ/zä”éÆ{Êä‘S≀•G¾ !©/PÉ|¯ÈÝ÷`í‘ÁLάØsá ;3ƒ'bŒÂRp6WÈ?„g‰Ï35 KFÌç‘q3ž#dö’Ï“Bfo‘‰˜ß‹ð ¸Úý¼ßžõ~ ™ÎDÌïEr†VÈ5+ã~{nƽ„<“ò!³ÿgÞ‘çÆÑRxÄŒ™VΈÎDŒ˜ƒpí!;~”9.æ$žˆ1ÇZY¼¯ž1«#äÉãñb†<”[̘‡ ¯pgbr–¼Ÿ˜Ù_d,X".v<Æ#Ïz?P1g7—ò(Êxß=ó}ÉØ\y)˜õ~àÂpæýî2±‹ë}áz…¬÷«óyyæ|ýæÕBÖ÷ Køˆ9_-ƒÏÓ³~²޳Ž×ç‡{Èœ—ÅçðRÆóð<Œk™ãiEenÄü^˜=åY£žÂ5‡Ìñ¤âÆGÌõZM¼ž 9c=p5–ù@À­Ï9Ÿ¯ó€GUî=d¾׈±›”+Â¥žm¾Z±q¶ãkÌÅŽo5äjÇË| `½ÞÆ÷Ù³^ocä™ýEm|^_n:ÞVl^GÌñ¤vÌwæzµ¢ 7b~Ì:‹¸?¼bÆ|¨"Hñxx…oÏœÖÉçí™ýEEˆ*b½_È¸Ž¸Ë|#`ŽÇ’!·Bæ|•YpOã¼Bf<¨RåÈñÐØZEêZÄÓŽÇûôe­TÉ 1Áˆy?%_n†Ìùsâ"fÔßÏÈö–ùfÀعn1soÏìÏ™K1ßW_GÌùªI€«î'°L:âlÇ÷²žoaà™ëŽ?1×R.ÝBÖëAJÄÓŽ—õDÀü;㹎›½(7‰X¯·!0׳µˆõ~ #b}_;ÖûOeÙϸ/åQBÆó ™ýYïìO¾Üu?AJxcÖû1¤cŠXïÇàûä¹Ë|;`}&ßÏÓÏÛ³~ÏŒ';:ž÷Åçé™ïøx¿0ßçÉxdÀŒ§L ¼óyKáA Y¯é³¿(Ðôlóf¶…lÇ÷²ÞolEÌõèd¼0à^•ûò°ãe>0ç‹“û•3Þ!‰ß-`ÌÌG‹˜ñ‰…gÄO椮g~’ÖbžÊ˜ó­‰/b¾¯‹ñ@ÇZU",ñÔ€¹^d¾VÄ|BÆùJÒç™ïëÂÄ5bîÇIzf ¹§r7®=äa,ñî€9/lŒ{Öa™DŒ÷¹c³?!g;>•¯`âdÄ̇Yø‡s?k5ªX{Æë ™ñòÅxžã®ßÃbU$1f†ŒïUã…çbŒñ"`û{¯¸ò~ c‹¸'eô‡ž¹"ð¼”g ñá•ÖJÞr10Å»™Xq.ʵ‡ŒïQx”ñ>&NDÜy?;Ç#Ïc)·˜WRž9f?Ø|¸^쯄åyœ¦²ÄÖ÷zø×KYÆ«€[U^+äÎû…Ü눇qî!Ï®\¯€UZXâ¹—¥,ó¹€Ñß–ÄxSÀ|ß#Æ|¦pc6b¬'…s ™Ï;!ÛsÖç™ï ˜ïsB`,bŒ×à2â¡ÂxÞž±ž. ÷®ÜjÈc*Ë|0à9ŒGÈËþÞª»ë¡€ù¾'î÷œ‡ñ ¹6e™Ï¬÷*Äc>,\bæx‘ x&åó2î5æ¥<#Öx]áÆXÄ9+ã}ò\‹²ÌwÖëí|Ÿ<;^æsOÞÏxcÀz=°ƒð¬ùz%M¾žõz‡1ÇËÄxPÀXË|+bŒˆGS)döwšè¸ëóÊÐÛŒ˜ó…|ñyŒû% %dö÷Ü8ˆµbÂ2Ÿ ù4Â}†¼ø÷ø÷<8_/4‰óqa™œy?X˜Ï+~žõ| ¿'Ï|_%0ÞBžvüÊ!ó{Í•ßÛ—5ßNXâõs¾“QÊqæñ¬˜óE͇ ¸fã²^oçóò¬Ï³s< x)§°Íç2ãu³¿f`7âb,ñÌ€ÙŸgî÷Ìþ<öçžû2!s¾—Yð2îÝsÓ*Þ’á¬q6–ùHÀì¯26n#æ|G{9dÎw4ß1`öÇ…ñÀ€o^WÀªS Ü:"æ÷\ 1ò-À3äš”å{ ù´Â2_ ˜ïs’rÄz½H‹xpÖùHa½CÀ|ŸKáóöÌù¬æ;ŒJnaùžîMYÖ#ª,û¥Oþë-^¯€UÕYXæÃ;^¾÷€õ}m|Þž‘$,ñÌ€ÇÃ+äiŒ÷Å3ûkͧt\¹ß%,ë€SSÎ=dŽ·šp3–õNÀÝÎGæÓëûŒÀIÄs*Ëz4àEÆÀáYãi¥0^p2®1s=* Ã2×ã²ðK!óyW¨\DÌõZe½EÀì¯dá¶îÚ_I¾ä2Ÿ'^g;^ÖãÏxdÀ\¯U<˜ˆÛP–xqÀƒÇ7Þ/Ïì¯4Ññ`¼PXò1fU¡Ï1ßg™Øµ9Ÿ”‰Ý ™ë Í÷ ˜ñ„ w‹ˆù>k¾_Àì¯$_o¬³âp‰çé™ãmƒJCļž¶ˆ¹žn‰ãgÆä[=«bаěæ|¡1>`=ß‚ýî€Ùß4¨{FÌçA7¡ˆù¾5¸ðEÌùbc>û—%ˆ¯ãzæx"F ™óÍ ˜ý¡¨§Í9ÞË‹[BfظåXM-ŠæsÌõJƒ¢BÄ\oË‹WCæ÷Þ0qŽ˜ý]ƒètÄz=(ìð¬ŠÃEnl̼ߚÏ0û󗔈9ßÐ|­€ù½vÆÛòGÌñ¦3_=`Î÷;J#f¼·#±>bÞ¯Îx–ãªë¹ÎxSÀü;\¼"fÙO ¸ee¼ží\DÌxSg<Éq³ûÉxPÀœ¯w8³DÌõ–¤9Ó|¥€9ßì—ð¬ùF¯˜ëá>0_ ˜ý]ÇÀ±¾ÌG ˜ýUg¼Éñ`¾´0ÞgÏì:{#æz¥3^0¿—½RÏ/ï§gƃ”"æó(L‰ûuÂ2:^ú½QÚ:bÎgD(z…ÌïMóf¼l0ßøË"ÉÖ”e<X¯wà|æxGi߈õ~Ày+bΧD¢·œt¼p¯Šù¼EòyrÈ\Lü°g[OЏe ™ñÊYíø/ó}ž˜˜{.oœ¬W˜óJ÷y®:ž\oÌx‹æ+8îœïÕ‹õtÆú-…æ·ÈÔ3€ÇÆö$\}C/ý¡ÅÌ?µ±ý¾êÇVö$ô( ÉŽp5 ZB'5Ý©£å¬£®4†'D()ùú¡ÄìÎÂ!3YfàÍf­´‘ûf,5ÜeGˆ6R¬Õ‘YÇ–ö¥Â¯´án9 [me¿„Ù-Ø>T™yOK4G´OEPÊzdά¡7îØõúPc$¶#㳸Žl%GK¬óKo]ÇÇíˆgÀŽ#ÌÔröK4XíÛÑY8¢¥.,Añ¬i{’*u@ñ¬Qœê;Ó¿äˆOzÊSuD+^ÚÊž´’Q-yÂWÕñ_ÑêôR úVÈÐoÅQÑ#ëå ‘»À‡#Ú®&µãÛI#¦#© ÝIM¤ßIÈôYíøNZJ÷ ù¡Ì½;aö7¥rdö©÷ÿu„Yõ€ÒÛ‡tÆOŸG´HÅ®•#TR MOÈS ãNâÝ…QʇÔGC’s‹'ôÐ+XGu'ÔaFN}ñ©šÉĪÌv:'U=²Ô•ÄöèKSÿÊ\_ÒÈ×D…±#dÝLu9â/ 3Í-D1ëþ*O,ÔáI‹"ðð„ᦾԉä“MŽ´u„U­Zz~‰›Ðu„ÙàÊæƒµ‘î„-̨á.,á®fÆTav¼ExÒP内}G´Oíjµ“fäÐ*Ófs QAGøú*Rñ¬­s„ Z^~H«¿hkéˆg•#<È›-‡Åœ /3:Q½'±¢ò8ìàÞVsÄn¼G*^ØÔòHm諨³Î©]xá¿{¤Wß…ééÍáæjê%óAu[lêŽóÁ>ç °Êp¾ØÍk+êj‰UúCS®Ô£zõ]êas i‹fÙ ux©Xæ‘Z«Ô+󨞈 ¾hZ Em©[šPræ‘*Ì 2ý_\v pô¨—€~ØAG)z êü úÕÉ»K¼Ç3ªšR»Ì#5‹R0<ªS#&fõÆBþæ‹æS’°9UFhÖ#ÆFÖFHEÔŒÝ < ju}Q+a¥äR<R©3#ÏÝ#_~úüyT?6L2<êiÀrõ‹ÅN£Ëd£:Ì!;Ü£Þ${¤²p†g»Gúýdl|Q£–(ÿXR…YŠ?šC Žàî@摾ÙÂ_ìö§  íQæºô«ÜS€ì® v|î•Õ_œ¯‹Øª_ä+=Òå¢"çÕ#Ø+"þ_\ÚÉÈ~k*Õ\<ªO&È©þ\QiúÁué‡S©ÿë.¼ éÎÕÃéÍÐàuýEÍŸQ—)ê«” Hîðñ¯º¯Å#;Š?ò/šÒ}ƒ ¡GN!èäQýœðxT*„¨¾Xì1ŠyäçLßüp:îðÍ1±Ã‚Ô#u¥;<ª }¾ØÌ7ù2tHuz¤[ÇlУú” {拪ݘXûóÓ£z¡‡ôÈ®c‚ñÅ¡{ÇbÂ#ÝÙeë¤È®žõâ9LtôT_Ô½Ù”¸r€ìT;*=ª“ÐRµëR­~`óÅͧd¥ÙÕ¤ª{To ô„|óR^1sþ9å=«ÕìH"Vó–AùÀ/ky«Ú{DÌ/lL“?þ2…Ïâsž³š¸Ì‹òÓžik2YÞ0íiš±š0ý±–ˆ5FY!ëù$Ê»zV« ¦_ÌQ‚ÎksÔœÍ~ïäÇ4‚åM7ãQB¦Íã+ž›“O¦OLëÙ)êY­Eå{=ëõb®âÙú$Ú1DÌÞp2}!`^/m"æý¯™°– ·²ZÀk9b5}È|¿0åm¨Cç9«<@FFÄür¦<Žg•—gyYÀüs¦ü×—Mž$Ç"bʳæJy Ï”·Î×ã™ï£–_9®*¯—;å~<«}Êy¦¼d†¹_Äúžù1¿Öiy6{‘ÖMçËü[?äo6Öóeú®ãG~™å“ï•ùzÀ”?o“ï‹g½–w|™)d)_ ¸Úñ½…Ly]æ›yNz¾ŒpG¬ò°Ös?ò½³œu=À:Ïå•×UyŠ/Sª«<É—Mž¬g“—ø2¿'•— ˜òRëÇÍäk¹ž˜òѽ™<×U>”ëÇÝþËf< /ÊxæûÔå<ÓÞf`àð¬åÂ(ï÷Lùë‘x¿<ózh¢íÙäßòå"VùKʃÜíøñÒxÏ ½TÀ*¿Y)ÿãù‘íWÈœ LL7µÜ6ùÑ€åuž)¯98_wlòÝÌS¸kùü—ù½Žaåë_¦|¢ÄÛ{Àšb yѰÉSÚ+ÌãçeåÝ_æ|Z,­GÀÕäA)ϰÊ/+Oþ2çóZžàØìÝhõ1×{SËÇ=3Þ0¡Ãñ¤|$çËŽ»®·'ísæx5‡•Û~™ýáœ,ÿ²î×C~2‡ÌxŽÊOÌ÷AåÛ|^åVùÅjå¨'Ûxºh¯0åiDZþ=Ú§|YRõ/åÒCæ÷² £±ÊRÑq²ó¥¼aÀ”]¨ÃŠ˜ñØ5¬¼òä¬ë Ùª¼BæxºØò\t½¶¸_0Ç“…\ÒˆÙß/¤„EÌòÊë²òÉ“­üPå¦|Î…ˆõïÑ^±ʫ‹<^ª!ãz„k ™åy*_0˧Õ~Õqg,òo©†Lù• Xå©`‚íÙä‰tn#¦üd‚XÄ*Ÿ¦å•_žZ^œ´|ѳÊwA‡2b•·›ü^<³|-aãÉó2ùµ…þ>`•Bžã¡ñJás1ù«²Bî&O%û1³<;#ãÅs2ù$ÔBDLyÏÌù’ãlòSœÌòl•o ˜÷Så›ëzYX¾ç€)ϨñÀ€Y©òKŽ­ü.S=`½Ÿ¨ûŠXå­´üñËMßG•7 ˜å­ÔYxÚñR¾ïXí›D~(¯›±ôW«| ×;Ž­ç9é÷<;ë9«¼ˆä륀‹ÉC y"æxB{ÏÕ~:Dž›ögcñz¾lò¦´‡ð¬òŸõB¼àá?ý¶ú§K¹ÿ[¨5OÈ­n>9Zz$‹ÿ7zŠñ¡áù¡Äˆ…Øa6ÚŒúî4K ½zÂW"ÑŽñ%ÍÀi(ÞrÄ3ƒi§'ÕC0ÖEPÈù!}â þ现ÚnØuøP{~a O¼ó0øî`4dò}Hk¦ÞGE€áÒ‡tW²aÒê378H¢éÇÄ =²•/iadƒØ„#¬pŒñj±ùîh©(Â5¾¤³¢† ž#ìPhÁÑP1…:=ñN,-ØÞIM‹)ÂàO¥#€è¨©Ã=¸9ÂÌ¿#°ø!ÍÕïÐ@q´”fý’ŠG3ÅßzŽGèå;zÓ™ôDatìðrTU„!õ/iž{GôôCš1Ú1aÿÐboÓ«ŸDÁ„†Âä/¡jµ#HzÒPCFBUv˜Ó"3»#Dåù®¨;ü½á«êØuø ²ÛQQñ)žüŸ4J -¥±¾TùÈU/5ö ŒN8ÂYSØÁVë‹i}Ù@¢²#¼‘=Ž X$´¾4ž¿².O<3ø„;¢`Ì¢áíè=>¤æqŒj8ÂNò@ÆÓ‡4 o ⤩;8™ðŽ}aÃFµÑ´tu§Ä¬¸ ³#žF0GK¼ïȇT˜i@7óC…³ )Ò¼H #Þ]xU;¢( »?T9«eÝð‡4£u,-®ÜI£-²Y”= %¹' ÞÁ‰hŸ£®b÷›åÑ· QÆ©ÑÎÄ ëCZUC“ÖÅ“"Ž0Q(ãC‰oÝD¢…#D1e5?=a´Ÿ0Žw„ÑiÂ+çCZù2áÃü!ÉQ(Ãv\'á ™°øPåhÁB GY¼ÿ…#dN”Ÿ:Bo3!JêˆbXø}H£ Uް#°° t„;¸ýPçh¿ Áà³®ó Gx[v:a–¾°‹ø¡¡¿€ÄG¸ƒ fŽ(”}ÁM½Zs8ÂNÏBÄÄÑÐ#ïÌf ÆÒ„Ðð”ôÈ»×w4õÈ‘>$%gP]4ÀðˆÉÀ‚¹C+w½¸ð2N9`uŸNZNpµãQnäYÿÝ5«’°„³v¼,ÿf¹Ì…¼?Ï›Dˆ„‹f¹è…9Ä,Ǻ×çYÕ5å‡%]/`ô º£cϸ Ÿ—ç¿×XèYeLËå¾¼ìyt„;f¹ÛEw‡/§Ëîòj#Vq¦SÌr³‹ê³0ö¢{«c JC-!³Ì8%–KxÆFþ”;yVa º#8ÎZn'ÿO™2”F‰˜Åè©X9Ñ—)Í uA«;'ê~rÀª>¯uAž›‰¤@?"b~/‰îŽu;W¸ô»I´´+d½^¦k;*ð“ß'Ï,ºNøp"¦äBb:³ãiB/,çp¬î¨û¸eHÌy.ú¾æjnô_æ÷š©n0ûÛLu{ÇÖÒf=âar'ò=Ì÷-3ıÍg¬k"n¼_XÛDÌç™'Ë]¾¬é´*‹âÙžw¡:}À,G.ÜΘÒåb:ý——–ó–ô¸[˜ãÅUË.+îW©æþ|râ46ª+äl,ý ™ýaQwGÏ”Ò(ƒîªžUàeÚùœœí|¸]0û-GX¯w=nËæx[XÎ0ÂÌš×ëYÓW[Cf]¡u1團wë¹i¹rE^]ÄÏ+Õɦ\@¥;ãné´³¿©T÷v<ì|©î0åh³åYÝ·`CÕC¦\N{Ü]¿ÜLEÿÞ—)#AÑÏ&§Õ8 xueu=¸êv;lnRÈ”c=Œ°¦‹"ï2üH³4ºóyfÙ˜ŽâØäšºy.ü=h„x®\ ¯q†LyJG¬×³°]é¸1Ýy…+d–»Sæ%b\á|̱†Â`Ã0ÖrÉûëWÈÝÄ`J XÕ£U,ÆqÓt ÈŬUl6O;¾õ€Õ} y}%d•oiHg˜Ï£wsß:ÙÖ[}ÐdzÞÏAwš/»Ÿƒî>žõ|Þ·€õ|—¹Gl멾˜Ží™ý9ã«« ËM7•Α8ër19u_:ÙÖkãN!s< ª£g›oJÌrlóÁr®€U®†é$ó}U9š€§ÉѤðÒ÷y ¦+¸›l ÊÍ8¶÷i`ßÞ³¦ûϘ9ߥäoįÝù«»ªäMår7¹uÿ8¹éóT¹›€)žÅ8¨g[ïLÎçæ÷4ÓM=SÞtBæ=bŽW¢ïWžö÷ ¿îÙÖó“îA_—ާ*wãXí%o©ÔóT¶tЃm½:;Ó-¿üÈQîÆqÕù°ä=]Û|j¦z¦œÓd¹­c[o0f±O9€ÙŸ­Äóý²ª%K^Q!³?ÐrÇSï÷¢;sÀ|n–ïáËó²ã™î0׋‹î6Žã-’·RKÀYË}®Ât5Ï”óÐxUÀx%ïe䀭VåX~äT4ðäªåLçK³ÜòÂþ_Ä,÷ž›œ‰Þ®Ynrq½0Ëñ®Åt¾/k˜[X¾7Ç“ó9‘cé%dþžÊµL9€D÷¨€§É¡È|6àer+²Þp¬b¸YÝÁ¿¼.~ï&w0Ë1ÝSëzW¸·YŽ-îÜ9àlr$Lw ˜åô6­³ÜIâ5WÈÃä>­FRæôÒ:Ž\Û‘CfSÍJ‹XætéÀjS¹-szIü]_GW#=½Äò¶¥…F¥ìT¶v´ƒæuÐØiÕ—P®ÔÔ°‰J"™ô–$mTÑV´ì¨µúѶP†WµðG²:oÇ~(¯è°˜Ò*C3Ï/ö¡‰ÞLTêã¨ëÛqàw™•ͪ¾Zµf‹'æ“K/òexÑ :•AÎ#N´2½—å;Ê`;µ¸ˆÅ;v`·ÒÁ¹#RÞvì×sG”õí˜ãAœst:Â>Í[vž­2?ˆ@ÂŽ©˜ôLŠ¢ÜÉ ï ßQÞØ ”Q˜žLð$Ê”fÇy`;qá4´fƒ¾´D"a¯AÖ†­L°¤÷úŽ£¸vÄ{~à<0Ÿ­™¢-†rÛ7œ8+v} f«ÿnîê;Þwr\æX펪cXѪ6îTLÙ°Ÿ­­ÝÊEBÅÕ‰ö+ZÙ1f¬þ‡YÀg„èÇ¥…È,T|‘º*¦v`9ñžÝ ³§åÔ°]–0¾ øEüDåÞÕ~Ç{\jÖ e‹÷['!ÃŒßÕZHL/v¬hí†wwºãÀI2:CÓa¨k ì¡.ÊI—âýÆŽ¬”~ñŽïÞìEdÀí¨b=†÷4iG‘—Qó-¸4A½§NœF³ÚËëÄ„Ó膿«OÑòñ˜Úc€Ùž |ê_ÄÒ{{ (âܱõ ùyð^ôŒbžy ¡(·nC‘öyªY±tÅ Vë/¢E½Œo¬”zêBúÈП0ÒBìhÕ‹²Ð ¶"FÕû\°úfNÍÑï!o¨€·Vˆîx/b >ª>–ƒîXq’Ó°á4øh½õ¤º3UÑ„+5’ 'e‘º¢¼„ªÆ¥vCCEûÓ3vLíÀŒÖ¾•¨î(·Nýä@µàw׃CÔ’8'”òÕ$˜„"{‚ûèÌõÐZÖ¥ƒÚð¾i;. ÖÙBfÓœ]»$Ö”ëTÄv\@NÕ*ò v,@NÕ*ºâ1­Öž­;®!)²c9qBëŠÓ<º‚½%Ÿ1µ(¥BŒl˜0k|‡ù˜³¤÷E,üw¬øÝñ ZgRmC,÷w,×­ËpÖ ±¬º¬…¼Cm!àoƒV-CÆZ~G¹ü¥Sñ 1î¡ÒtZÓ»£LÔ0Î5Ipl¾c½õ¾©XNøË,>¡ I‡¡øú¡!ùïV6C¹±º]¦e÷;N´òäþüÔ¼/x¹ÁexßXÙgÊŠí:°CL2ÞÿêE¬1—©‹ ôê;ޣ؎%(NœF1\kC(­K;UºàÉn˜Uõçt`öuà²"›ý;Þ7gÇ‚ÖaÈ›Ãîš›ãËâ*ô¾YLÃû°e±‘%üR#<­ôß1· ”29XH‰.aE92pÞ‹e€ßÈ2I*™f_V`2ÑÈ ïnm©j«Ê¼EÚ¥)R‰Å +k|`¿L ˆ–++Û—‚ÍôÑ:¬î_´7ÌåÀrXë ­Ó°£uÞãÔŽòPžzv^È%Ëÿ¥Âɪ°c>[ïNuÇQ6DŒÈ4Kµ‚z©ô·`OÎN‰Xà[©`Aë4ìøÝe8wD€eG¹“¶_F7ÁeÓN–M{(F°cYÖ~ \þƒXà/›2qÓ~ÇûZ*Rrv¬éDÜ G;pí8dJ³ªé- 5fÙtkÂcÙt‹j¦ÉªâvQW½ 'EZ ï¹è‹Ó$\ tZwÙ‚eó+U›ÝPDd-øÃbíeá 9Òe³/޲m˜q’œnQÿ`i¹žà}[–ͯ& .¬õVWí…"ÚeÓž…8ƒU'Vî,Û¨’Œ‚,²­—a^Š ¯íL-$-MSJìÖvìåÀyØò Tf¹cOµã=²ï(RÄC_†…³ÛÞŠíô N£ {þUU´–ouvì¸ëA(Õ^†â´äÊPµ5,ýÀv(7çA¤qí¸ð—9j,Lð^4Áܥߘ:¦,dZíH•\1 ± îîËu`Çip=¸n.Áp¥©ªK‰ÔB-ÍdÊܣ߱Yoy!°°c?QÆÁ¥Þ£âk©Õú…8Ë,ìØqV,¼¿«²Ô@pAß—®·eÏ®Ëd$…‚„ã|0êµÙ‰ëÒ2D•éØYdm.sá¥^.’ŒWúðÜY‹ €© ‹,Äe.Û*ã±³ÈνL—¾+²;‹‹×e®¢²/_Á™Üy¿vž'§vrÎþ/²L;‹ ÆË¨@fEQ.×Ƀ¯Ožo3^<_,TÀ<že«Ü‡—t –³Ì ²Ê/p6­K#3™[óY&SfdçôiÇý×`ÉŠì,2>Wæ÷¨õåH1õ•m†¬ðÆQ6×Õ„úçƒ{9Yd'î;S6î2—å„ðÂÁãÃëË”VÜHd¬˜l‰Èfî\ûÉx;Žï<¾Ož/?÷ý´ƒ»ÊR›ìÉÅ¿¿ŒEÆãª¯,ŠÈö\º}e2*;÷r²È˜\æèê¾³ÊVWc‘]y¹ñ}ßXdWvóË\§]áwîíäñiŸG;eYv.änÜÖɓ秲4ØÊ^Æ¥ž,®xW3™D„Ù¿Èfú0Û³±ÈN_êâž;#ŸÙDÆx^ZÖ'Ü>Œç¥®º&;³3ž‡ÉZ¤Å÷ãBÙðËÏccÜÿUfKGèP¦<ã}×Ôuaô¿_WÝ™²7“3¿×ãþïüiíd<×Éë8>s¼Ü™Ç÷¦\úɵœŸ¡²@7gÚrãJ®Æ6͸ӦCeã&m[3®D¦íâù,cß̆C÷Ûd»¨o Ìþ¡.ŽwS¿gêŒû¯²ò¢ß‚ñmcô·S×ã”88דñ½hžÊÀ<ÖΉý­–è©ìÛÉ<~Ëü"©3”ÊÀ 'ãN’l ›“‡?JËdÐ/Ú¹x´ Ÿ‡æ` ãyhv¦.ÒMF®]'OžÏ|dæx>»ìÜÆ•ýíÆ2ŸÈ—ÉÀÑæbgØ‚l¼†~3ž%Þq0/&#—y|5†mÊÆ­œ,÷g™dÈêú5_)³ZIÔ—râñ˸ΓåûÉÉdø:mA’~ Ɉ'¯×vFôu.r1Nü÷œ¶A[“eþ½ó¸>¬65Æ+íŒÐóÁ‰íݸð|ÇÃóäÞN^<Îw)³w°ôïYe`2ë8O`Îo™ç"Ìõm¿ÌV§g¶s~ËÌ—ƒñ<6Yü›ÛÃëd%yÝXm{TV/ñydfÊeÖF"}(Ë÷”->¥.í;÷zò mç«j‹-þ$5<žóOÊ\hãÃ÷­3þµs§mç›’)CÎÆ°AÚyœ\ɨï.ÜŒ;m†ø¾tÚ®˜Ê OcŸ³É0÷Êç¥òYm²: ãù˜Œ¨Ô¬]`Æ'¨Ï”¸Ì%Ëx¼óø°Äs³çÍøUVÇm0ÛwYŃÏË|=«Í@fù–¦ð“Ûõù~Ýž?ã]¹Ûó¼ßÝž7RbôOž¼¿'¶/cÜÏaÏŸñ¨<ìù2µsa{1† ÒÆ2y˜2§OûäßWYEµÍ²ùÄ  àθþ¡ïÇ@ÍãÁýöM,dú°Ì·% P•m£Ø0/åà4N.´‰ªÆµžÜÕ6ª)Ïã~M}Ÿã=;cüšú>Q–òàVNî×Ésœ¼êÎ÷Seå…{:yæßɶË6 ï$œ™ëñÁøN¶Í2f¶ŒïóaÆg²ÊU cüxš­V7Îýäúa\¯mÇ1ñDË@”ÇÉ/6.íd¹EeèòDÉâÁ2**Ó(\ÉÙXúû;Û_šŒÏH©‰qQ[0cµ cìŸ&÷'ŠV_ ÚœMãºNýä©¶f|ž“6[Z‚%Œ÷kãI3}¾Œo”¢ë…‰ÀåÉ ¬ÏÚCO2Ÿÿb|£]O3yãàÅßãóg‚†0Ǧ–IÁ¿ʲŒïÁæ+óùWý>Ô&£hÁ–pb;¿…ŠÔe‰—“)^…ï‡æíËøZ4q'3IÍxÐÆ­+'Ú¸%ãRO–ñgçNfÈŽƒçÁŒ?¼^¸¬6¥iÿ¸h˸ó¢û;Z*£HêRF ¢Fà æz›™5Wµ‘+Ê2¾ì<>,ã÷ÁcçÉïkcÜ/Û/Z´ÚYÆëW¦wòýze3'ÓãéZ|ßú+£[ÒÉ•¿7aS8¸¾TÙ݃qÿ« RQér©ÍÎ_Dv·òßwãÆ¿ù®Êö<ù÷ðýƒß¹¸þ.š$<>ŒïòûYßD[½Ü™ßƒ'mö(zU^ß4Ù^®¯Y¿F–ùÈÎjë××Ï#Œ¶Ky°}ãýÐý–ÂɃն/ee¼7¶çòóÈ<É…ÌøsY*ã+_ü}Êîr#ìàYO^üýÎû…œ'ÒŸG–ø`ô—^ü}•IF’TÏ]KYæ+UKÄ…e¼©û·¢ù;Ë÷Wu¼îl§Œ.7zδ1Äþ£ð  ¢Ês½úrÂ÷SM–U6V ˜ï;e”®lG|EXî_M*K›PÌ'Ì÷?e³Qäû®ù;—O{e;¿ÍÇØy•¡„’ª,ýIÕüaØf“m.¼šˆ,,ãù΋ÿžßGB]l§ñ<9³½-c¶Ï¤\iIYÞÔh‹XTæ6Ñ´ªíx€sSnäÒ•;m ù½&Ú„V-¤. 2$”é•|‹æ÷˜:ïÿÆ2¨š¸+Œû¯â5¸ÿª^#²ÔõúðצÜêÉãÓ¶”×C›Q³¥Ï“ ÏgLåš?¼N–õG­œ/ÚPR6:¡r6–I¹“a ªù Eó)ÌÖ²Ðÿá`ªÆ „s;¹|Ú m3Ù¿P¦{ãÄ÷Y³r…óu2l-uÿB¸ò|×2'·zrÿ/ó“Ú9ßRYpa¬GÀlG¼]eÁ–ùIÕñXeÁ7æz¹v;æ/ÖnçÏ|ÅÚí|¸>®–ñ©;¿Êû?ìü¸þÝYæ³uØùUÚœ;æ#Öa÷›ùuØùÑÖ±;µi}˜ùuÚùuöŸÓÎOm[§ŽG™ëã:í}áúxgYÿÕiï6~`cÚy¼žä„6ìO¦¾ï™ù‹u™L:óv–ñéeæ#VÍwNëdÜßq—~ÿ™ëçºôûf ààÖNjÃÚ•'ýU¹xu½^4¢i‘°Ù´ÃæsãN[VÄw„燧LxA¢ÁƼ£*¹+2ûÛÂõ¸‰H«ÌüÁ“¶²”)çB8™|³ÈÊ«+ço²Ð¼Àœ¿É²œÜ?íƒí¯ ó›æ?¨lýÆH¬æø¬ùÍÆç?WÔ;ey^-q}$¼hcKYÿÂüŦE@àæü TÚ–êúYeò†mkV‡%ã¹¾oYm T‰ü}Îç…ù÷9ÿ*Ì7lZ¥S4‚uÕdé_¦m-ßïHTZ7e<_Kçó±ñµÀÕÕü{ÌhEÇûÂxìÎ2_mUÇÚ [×jÏ{òþl<>íãh_´}Ý6·ÕÞ—ÅûYõýàÄÞ—ò:r@(ùÎÆóäœ^Û^0Û9ÿ­Ì×kªWj¦ímÓþ’-T‰e™·¦÷¿~—u2Þ‡‡¹žoZóR8‘8Xæ&#,¼h ÌùZeþ\ÓüË¢ûÿÍlh‹p0l”»¾ÿšð2û´©jë»ñ˜'¯´ó@ÿÜÔ–T8ñxŽg´aؘûùMmJ…S99³]m¸oZ#TÝe™ß4­îžód<ï‡Y?qðzm˜‹îg7µ}+­²¿Ÿj³£û×mjÿߘÿµól;Ó–W~³2®OãñE÷—_î|Ÿ7Æõj%°0žßÒñM÷—ÛÒþ´AÇ6µe÷«³?z˜ù[;WÚDó{hŒG6ÍG,ºÿÛu?<Àì?6R„9~êþïË‹6ź¿.<Ô†º(/þ{Îo¨z I‚¤,ýK×ø¶°ô§=é|¤_´ÞXƯ®ù~¥s½ÛuÿºèþëËPŸI&F+,Ï·Ûz²CŽÚø>;ן;ËøÑ³ý>jÁ–þ¨«@é\/vß:ôg…ù}v®»Æƒ…+m³/k—ùü¬µÃÖZe0Jçú¯›íPçú¯H=‚m6ã1º_Ic²ô¯]ë-…%Þѫ·:•UÙ€\iíçÏõ`×øjé\ïu[oõÉçÓ˜¿Q:óÛ»õçë±n¶Pƒù<;Ëú´«¼Ú¾¤®ù[Â2?èšß^×C/c!.ÜŒ¥¿â6-¹}Xú§®ªPeTþÞÐõû`þÊËÜ_ëƒù¶Â¸?¶s><°°ƒ¾îï`=ÓËÌïè¶‘ý²ôá ›pޝcð}}˜ûg/0×#còý˜ÚŒÅïoãòáÊßãüf^<_͇´)çx;ᛵ¶sÿg¨:P™¬?Ïš¬ÿf[¦û+;W2¿ŸÉùÕÐ2ô¢û "ø&ÏëO¿¥Ðöç¿aôcÖ>4ú¡…Ícôc´vÊ0»Á³Œ~h²bF?FýhG›ýhôC2££t´Ñèy…Ñ~sñý£M„Ý5»ŠF?íâÜF?•¾~ŒhôcÔ¶q´Ñè_ÛcôcD£D.£’ý¥£-m4ú1j0˜Áh¯F?‰k5úy)÷ Œp°êP£ÍÙV£Ÿ—ÆAæ,xÕèç¥U_¢ÑÏK4¦1¢1 ú 5úy©¡ ý¯ý¼Dë|{jôóR†‘ úu5úy©ÆuÐx-WhôóÒÚÚhôóR®;•ôÚ±Ðè祳ŒHjôóÒÚÚhôó’<£—& Q0n¨ÑOå(¨F?s5úQ…j5úQÛI5úy‰v%˜+¨ÑÏF0=A¿¬F?/ÑÊ䡱SƒEæSjôóR¯; ‰•¨ýh^°ý¼$÷ó¥ÚvêÍþ~TFH~^ª ÌëÔèç¥ «ZßÐèLjF?m4(¡E~ÆcØs•h“a†=„5®ý¼Ô޶q´ÍºÓ‚¡z"5úÙhîTòA°A/¥F?/µ¼Sï;÷ß©ÑÏFý1ðP£ŸÅ5¥ý¨‘¨ý¼ÔêN=½”Ôü#¥ý¼”aFA³d‡vÍI¡ÑÏF­ïÔ#ûq¤(r¿´®ƒðW0+¥ÑÍùiô³l$hZ†îÞ{£~´£m¶ÚÌÌ'·Êک僎6Ñõ7BâÀF´¦xèh+u§vPÇ™auI£Ÿžø…Óèg£„³¦‘Ò6ªk§v´õ²ÓÜÁŠ2l+0›¡ÑÏF &˜kÐè§ëµŒ6šm§•_j~aÔûNs¼„0ÅF}î4ÚNó8râHô4úy©¥£-m4±ÀF?¾ÓDæK4ú1¢ÑOWiýlT¶–v ô 4úyëàrß©äúµÓ¢M†¼g4ú镳 ýtÍè¥ÑOW[YýôÊy~zã܆F?˜3`ÆB£ŸJ:hîÔÛN+´^BjÿFu#ä»tÝu£fPWAýt͈¡ÑO×úh*èmTËNbêÒùmÒèÇìVÕèç¥rÒÜ©·ÆÚiå—hôóR>¨Ò°¡ýhíÔúNýh°  ÏT“3å¡GÀCc§JÀúcF?CóTiô³ÓÜi½¤F?;¦|âyp;e6iô3T¬E~†©ØÑèg¨·§ý¼˜ÔYàA: Pé—šBŽK=°BŸ –4úÙqµ ±c¿ã,b#ìÀq`9[k=°áw©úEé¡ÇÙºvDPeÇ”,pxl€hC@(ý¼ˆØÆ#øO£Ÿtø)G£Ÿ'DûyEؽß1çi4ð`/N Åiô³#Ìgk=±ÍåN6sçAHoǵ6Ć>ÃŽ¿›ÑÏŽýzÿ©&´ã.õxP^ ëpm­4úÙ±à$©·L£ŸÇ8pî­ˆîXæµØOœ;ÂègGÚ¨-vÚGW!>ýì˜?8¬'ÞãËh¥T5~^D aÇÔ_GêíXÎÖvØa@YBu¿ˆ˜ÁŽ îÔó¤ÑϪBÉ‚ìå%4É;ýx¶–³µÃXavEŠöSW“F?/B`èvœý ÍžÑ2æ1UPšF?;vˆçS.žF?/"À°c¹^á}5úyF?Ê[·a=[~Wm–*ü?8ÎÖ³¢¾ýìØ¬g«t}ö³U¾î“êÿ?HýŽt4ú™×kåÓNœùÀÕ7ÌjÀa‘F?;RÿŸª×4úyûý;æv`ÁÁK¤ØÎŽ÷p<“JVÒèçÑágIä‹HØ1•+Z)FM£ŸWÛ°©ÀƒfÔÕ¤ÑÏŽ}¨úÿ†³lˆÎgª8ˆV îHÁÿ©ðÿà:[)øÏw’F?;Ö~`?Qn݆«l8UáÿA¹uöôzÐègljV} ØÞ±æ×­ØÏV*üÓ€:;;¦³U,*6¤àÿƒ#8Û†X‚ï˜òµØÊsoEòŽ58O\ûï"Ž ìÔ¨¨uûXýì(/¡™NÒèçE¬Ö¶³µÍ|(°Lu›ûu ˆÉ7³ÔA΋Ȅ˜&„Ka›+–bkv˜ ûS£mˆ°õŽãÚpªß­Ohô³c;±Ã;€“Oýì8ÏÖgÎEiô³cB«º/-µ?x°•dž4ú™ÆW£Ÿ[;Zú§ÑÏ‹(hŸÃÜ[P(¸ã=…ÛqÕRлӴmiô3O£ÆJ~7£ŸåæLó²üõýÀQü±ðß±¦ÏÖÓàœF?;–ëÀ |ŠÓèçE,ëwlëÀ~¶Î~àÊ'îÿY;æëÀ™6ÄŠ~DŽߥ†0~æ2Ë$,Î_¤Ñφé:ñ<¸Œdžjô³am¶³uœÈ›Ãy¬ý˜~IæÆ®K¿*®ìXѪŽB0úy”öiôó"ÔVvLÖçL†F?;–³µž­¢þ ÖÝŽk=°Ÿ8Ò‰óÀy¼ÐÊ~v¤;ÀƒíÄÞœ;BsaÇR¬ãÀ†VZrÐègÇÕ6ìzŸ̰ çs!w¤;Àƒ£¸ é¯^EXwïXÎÖz¶¶y`?[WÚK’[9pî?„UÆŽ4VP¿!Ô€íHc…G;pÎiô³c…à?õÃiô³T\D~VQ+=ý¬b¦*XYïØÒ+ËO£ŸÇ—Ã4úÙ±¡•>’L‡ÛqõŽòNnXæ ¨Æ7MÿÕ# éð;γu­¢ñ®¥¾jô³c)'¢Uœº þ?¸¨ðþ™F?;RÿŸáJýñ|Nhô³#ðgë\NõP›§©Þ–~`»œ”ôçÅîúŽùl¥À0ïžvboŽuàÚ[û;&Èãstfˆ~ÇÚì×"5ÿ rñw¤Jÿƒ=Ÿ¸œgëÚ7«†ÿƒålm×”ôþj^C£Ÿ –bn–t`Ã9s F?Ò€³5úÙ·N‘F?ºcF?öuàÜ‘F?ÊÍٰР(¶G:q8ëk?x¨ÁÁƒœÉ¨ÑφíDÕéWK!¬á7žÔ‘ß8Óg€3{šýÜè0íøžNž/ó=x¸´“k>:ýÏòá½¶?Ød™ÊÐÞXuü®ÔíWÖ‘íÜU׿)«îÿc¤ºÿ«î¿r¢ÎÿÆ)Ÿœ?í…ºÿ\íÒ›7¸ß4:XuûîÔåß}€ ë_•WÛ¹P{ãòiïåäyp¥NùÆåÃkîÜÌ÷àá”OÖëWû™fºüjeC]«hx‡®@«î>‡kÕuÙ¹|Ú+uä9€ÓèàAÝzÃ4ÚxÐwbãœO®VÝþÞ”U·ÿå~òü¿Žã©“»³êø?¬:þ«N¿z[!öpòÜ™º¹;§urî'WêÞ«u vdN èt0žÏƪãÏP‚êμœ¨;¾q¦.¿úèP§ààO{Sü¤ÜËɪûþòØ™º»;g곿 ÐÁªÛÏïBØ%Äû¨:7;C‡|ãq0ëÜvÎéäž?C/S×fçBÝtõ¢ÏP2SÕµ9x¬:ëy÷JMuÎÔg(iN£ù ½Ì:ýU×üáÒO®Ÿãq?_ÖiÜ©ƒnÇÏr²ê¢«O}†’ꀘÏÐÎðQظQwü²ßÛɃíÙŽŸªKÎvê´î\>ܨK®¿Ç:³—‡é ?\ê¦[®>CÏ“;Û³ýû>OžùÃl|….Õʪ‹þp£n÷eÇ÷rò¸NV]neêº&ÓíTŸ¡+u¾›ßÛ¦®º8«ÏÐΕºÛü=õÊ—þ}õÚyÕé3t0ÿ½úªPg`gÕÙv|O¦.õeÇv²ên?¿gºÛÆ‹ÇóûSŸ¡lº—ê3´sé›nµú í<ÆÉ‹:×ü~ÔgHt§«rI'×vrû´·yòZ;Óg(góÍQÝÙs?Yu·•›él?œêÉ¥\?Ç·Oûø0ž‡æÕ›ÏP¶þ_}†vÆý-ªc¯>C;w¶s¼QŸ¡—é3´sù´7ÕÑžÆóäÞNÇñÓt´–ïegÕÑ~xQ'›ãµú åª:¸ê3tðœß¨ÏÐÎ+íLÛÓ<9·“ñ>7ó½¡ÏPÖõ ù åf¾5Ô½Ýyªî6¾Wõ:xœ<¨›Mhõz¹˜nöÃ2ß;øÓ^¨«Íùµú ÉkW×ÉýóìÌxJ6ŸõÚy¤_Ù9Q›º¤ê3ôÿv/׎óP®€çE…`ñÍ0îê4Nþãþ÷(œÜá·èªc˲””ÓãÁž!u¿ÆrÁq>Þ¡ÏÈÕQ3§¹ÛÌÍQ¯Ç½»=Cæå.å2r²q~Æž!õþ]¶qÌŸ¼9Ýì*§gŒ=Coî5{†ÊécÏЛ[Íž!uÙó…Ü]5sª_÷k|W1{†Ôƒ9Ö›Î\âß×#”¹±âVÜÌ~½`öº`þã3æ;Ôý¹¼Ü£¹'Ʊ?fÏP}¸ÿcÏ:s‰Å™#úœÞô }fn/çkOÏ:s™Åí6r°Ñ3Éž!õ@®3ÎOØ3T s»Ù3ô=CµœÞ"æüª™Ýèvyÿ.O5z†*s¬NϺ?îyïry«™ ¬¾ÆëåÁœèzŒiö!—HߟÎ>=CêÞÝc¹WQ3Xü w¹Æë5ÞîyyO1{†*$8=Cf¼ž=1èR÷åÝ=ñ~±ýaÏú)—¯××êî—ÇϽ‘kí{†Ô¹ÒìÅ)'×=쪃ÇÓ쪧'‹=CêRÝ9Òø=²gH½ŸËSž¡:x¼Æž!u_î¹Ý¹ËèEdÏú©—¯×—ëõq<§îø÷ìÍAÏP=½›ìR¯©Æü”úiîÜ~­Ó#ÅÜdñîU¾çÓ3ô=Cêg¸cÿXÏþ‘¹Q'—ùô ™§›9Ë\ŸÐ3T7{ë˜3Õ~§÷=Cfä#ן9Síwz·Ð3ôóUêÞÜ9Çè­`Ïz-1{†ÔåoÈU~{‚zwr¯GO{†Úé`ŽÕgô ©[s÷ßeæ Oš9Â8dÏy¹—½ž¹Îç|…=CfäòbýgÏÐgô ©Ëïòt·ËÌ~=˜#\hæÓíÍ>~º›9¯™#üzJ®ðéR9ÎâŽÜ]ì?Ø3„HÿÞž¡Ïãä ¾ÆãøQÝ‘#ŒãWö ©×Ͻm|¾¹ÃÇÌ~}r„OïÐìjæ6‹Ÿk¼÷žjÌG©ë5ž¹ÀƒÇ«ìjg~‘=Cêç_¿ËSž¡vzÙ3¤fN0z.Ù3ÔæéÂ|Ògô ©GuÏŸó=½§gH]wÃë±~±g¨-®_ìjÒC´‹ó=×ÃNϺ]îÈÆ÷Áž¡¶Ù#Þ¡ÆÜÁÓ3ô9h¹‚§g¨Ÿ^?ö ÜÝÓ3¤®—ûeæþ¾žÈõÅñ({†:sOÏ:sz™sz†Ô9¸èMdÏš¹»4ækÌȹÅñ{†úé¥áý0êUÄìê§gŽ÷·¨ÛåŽ\Zôä±gè3ægÔu¹ûå¹Ý±>}.'W—½EåäâÒõäâb{ž!uïîq/3s‡ÅõçÍ=1¾OOÑ^_.îéRWŒãø’=CêYÜ 9¾ìñaî°¸ ‡–½PÌË 9´˜ObÏÐg\ŸP×înÈÉÅü ï/Qg®çkæ‹ Æq=œ=CŸ™+,®ÈÁÅñ{†Ôc¸Œùö ©ÇãÞ]ýœ\Þ×Óþ?ô ©ût葉'gÛ{ö ©Ûp÷ry»7rr±}ãýæé~®×3×–=@˜¯@BÝßÛ3d^_îéúŒù‡Èº*ÇÛ]‘CËåž¡¾xý’=CŸ™[¼ÏûÅ|‚ÙÆ1Ÿ ÎåyziÙ3Ô÷ù<è:¹³§g)uoÏÐ8ר3¤n»#G–ßî/QÇú…xØ¿·ghœãyö ©çø|z†ÆÃ\Lö ©GwÏåÞEó{uæÈ¾FϺw÷xÜ«\Þjœ‡½0ì­ùoÏÐgô ©3'¶xÏzÛ8ίՙCZNO?¹¹¯ÛpÏk|ýÔ8?œ/;=Cê†\Üç¸wwìÔËŒùg5sx?O÷jîm=Cê^Ü™»[O¯z†>ãþ¿ËÓ½[\ŽwS·“‹üy¹Ë5^®ñVÔèR×ÛÓÝ/æ^fô ©ŸÇ]0Žß#{†ÔígŽ3Íiöèžž!uoîyy-õ›;ý9ÎÈ fÏ:—ç8=Oè'7Ÿ÷_¨cÿøyŸ\é×¹Íè`Ïy‰Ù34x=îô © Æ‘KÍž!3rÑ3ž¡ÏèRÇüËXÌ¥fÏ:·—ê)9Ðì§zz†Ô1¿0™yz†Ô~{…âüO¹ÛêëõË^ž!ót¼ô°°gè3îGTÇþjžÜ|ö ©cù~ÆùódïêéB®çßÛ3„ljþÞž!uï¼fÏ:ÎÔ¯go•½sìRçòz{WpÿálÜ~°g(¦Iò÷Ëž¡ÙO/z†fg¯{†ÔýõWËû5z†Ô±=UwŒ³g =Csœ÷ƒž!õºÆcÿ5ÇùÿÐ3¤Žý“:×q~_â8^øŒûÍÛ]êåk¼^ÿ_ÇûãçÅù½:öGsžÏ‡ó{óv/{=Î÷ç<=Qèšóô¡gH]†;¿q¿þ}O|Æýê\ßÙ3ÓTXÿp~¯Ží£:—xb<¯ž¡¹Ù Áž¡¹Ïïóê¦fÏz›Ñ3dÆÿãuö ™¯ñü}¿FϺN÷¶ÿ=Cëwz{Ð3Óh•Žõá3ÎçÕñý,Þß~z†â1¯BÇöý3îŸSÇñÅzNOz†Ôq>¢ŽíËâõ¢Ó3¤ŽßÇ:½–¼þ¿ÊémÂýoñXÆÑ3¤~–;æ7>ãz¾:Ö÷UOÎÇÕñû_§7‹=CŸÑ3´xÿõéZ c§gh5ö²ðúºº^Žý½:Ž·ÖÙÞ²gè3z†NbÌéZçx‘=Cêñ¸óóp~ëô aZïïíZƒÇGìRÇþá3z†ÌËŸgž^œo¯Éó5ö ©óó‰cþd-ö~²gh1Óüô ©óûÇö[Çwê‰qô²gHËC¼Ì¸þkžîÒÜqü±öé™BÏ:ögêØþ¼fÏ:¶/êU.ÿ÷ýí—¯Ï~Æù®:¶¯ûÇžö ©ãûUÇ÷ùçŸ1 ºé2ܱ¿ÇcooÏÐgœ/ªã|ç3ÎÕ­ºû5¿¯Ï8ÿS—î®×xlOÔ±}UÇ|Çgô ©ÛÏÝíýà|O½íßãþvõÔ׳giÆoÏy»§çCûÌG±gHÛ+u®•ûWö }FÏzÂè½åõµÍçMOÏÐîì­bÏ:¶WŸñ<Ó>½xìRçòáý­§gHëëéMçõ³spz†Ô¥«Ñ3´ùüÃéÚ¼¾xz†^³gHÇ+ŸÑ3ô¹]ãxþä3žÿøœ×Wâ±<œ¡gÈüßöà3®/¼þßÿц¡çÿ×3”÷D²ghc‰²gH´³¿‡*Ùµ“Ñ~èõª9–wÉ£g¨ÿÞ¶¢õ3Íh´Éýz†:# Ñ3ÔÙ¡ž!Q5ý·˜zÁ·Šž!ÑÈV—œaGÏ(zUŽÐ3ô©dOM °gˆóŠìú]ì¦fÏóyÙ3$Ê6˜^3x_z†ÆK0/J—YþcG·þž!š*r¶=C§S­"ƒ í¸‚#Š$y¥¢gèt7 ghT¬‘è-ô%ô§gh0ò=C¢h±øTm¬.Õ,¦­Ú9–['\µ§=(Oµ£€Ð3ô*OƒEµ«šM[Ù{€†™<9~•k»j«ž|eÎJ gh ÌI gHÔmŒÝëßé¼–‰ž!Ñ’±Ì §(Oªc×Üÿž!Ñ0ý·{•'Ë¢òS5Wv ä=CªÌ÷Ï+èè:½vèÜÒ¢gHKwcæ=C¢héøT]3”G HÍCT^<íçSö ©2a?·|èRmUd êùʼÛ=C¢™ö¹gFÏj¨ÊT5{eË1éLßÏs ô M6DãßÏ‚­7z†DÑ Úªž™ïç™ÆFÆÃ£+éa¢ýÑΠõóï¢]à(Ÿ¶ÕŸiªÈ~Ôÿûwz†&Ñ3„ëÓ3$Ú2–ÙFspy惨“ÌôƲÎ÷4'›šrû¤²±ÈkÿÔS¹ž¡gh²Å=C¯:3µsMFÏ(òÅùËAÏÐÜøÅ¡gH42N;·èz•“1÷òûwz†D5ã¡¥gHµTÓÆVWíòi2Eúh ÕÊ¿—[>ô ‰â¦Ë¿Ó3´é àHµT[^™·,6°£gh±/=C‹³Úóçz†Ds¨–íù =C"$gßç:ÉÆG=…Ñ’sbŽrœç׈3Z {_ô ‰"Øó2}þÛÏ£Åçô Ì^ô ‰‚tû¿Ó3¤ÚŸm̆lô ½Êù#Q}LÆ‹&£LÆY¼ÿï0Bzö¿Ó3ô*ßaêPM”·å‹ž¦êH’mÿNÏЫ|Ž]ÄÙýïô ‰¶(÷n¢šÊ}z†Dˆ—|eDÒqGøÏf3z†D%•ó¢èOèEŒß§iZÅ´#ÝM8ù„׿u$ô ‰šõLÍ;6q¦ý*{†Dõ­šåSe†éQù©»™Ç¦èz•—ë7gSÑ3´™]…ž!Qí*d—E$_Å:ˆž¡W™!êÈâüý;=C¢ˆ”;ʉQݪfc½˜2îmLy]D´Æ§y"7Ë¿Ó3$êM5ll­O9Aá›ëßé•̵̼=Cªýoóx=C¢acÓÆv*çkÑ3´9[‹ž¡_‰ž!ÑHmþ»XÖOù¡ghs;ž¡½N;N^ÁÇ›ÿ;=C›÷ϱghór {†”û(ì>:|tfþ Ër29Aùä(»d•¬œ£‡u å_¨t{Ü 1xh@×Pþ³ŒaBÙPÆÚ5š±qHpDÝÐóãiû†ÌõoͱYâqOŒ³e ±C?ÞöËÚ!sÆÐ‰3†N̺×ë§Æe}uÆ"ò±¶™bÌžßñRã²¾º7cÌØO…ËúêeF¬:—ÿ‰AC‘¹]îˆ1+§lh^Ži?uÆ~½ÆeuAì’bÑGdžÕ½¦—ýÕµ¹Þ»¡p€z!æŒ}Hˆzb"3cÐ^7Ƙ:.‹ª—?X¿yhÍz"sCÌYp² È¼`–ãÄtnÜfÅŽ¢|Û?z™ë¶è£`=Eævy0v«#æ ¹¸è* £6eEù¶6ý w¹Æ+b™è‹Â¢|ƒf¬Ó댱yÝ#&~…èp´™;b›XÍ“‘Èb\¶7_ãõÏå/Î+ñ†ÑÃú"÷r—k¼\ãù}ˆ×V#Ö@]înÆeû§3¬÷ĉÛ5~b«Ž3hœ&¯˜6õ£Î(Ë8³„í# ̱=UküÄ6åúˆR£ø˜9!ÅV#s½Ü/3–éõFìR‡q[z4wÆà‰÷Rã6uéîz½¾]ã}»g¹lã¸MAë·¸]ã ïŸ5P¸m!V‹ü¾ûólf¦£ëÈœ±'?nßÐvdžÃ½ªz –Cü ö Ǩ<2¯æÞ×ø^ê‰X1cªÖñ¸<µè]ÕÙ}dÎØ–4³ýÈX&lïÐ$Þ'6éu+—·»÷¸Æ+…ýÿ‰?×xeÌÓ [sOÄ"•ãŒA©Œ™E’ùa Òqî^ÝËÆÛ#n{]Þ]]¥Þîçz}¹Æ'ÞO;Þ?uCL”zºû5ž±Q¼MšýHbÆòœ¸4$åÏâx"&¨o3nãPçò·åîÝ=÷´ñ‰X³Áý)º’ĸMC]—»#Ö§Ä¡D…Iæ\¿ÎI*“Ĉ¥,'¥Iæv÷êž0*PœdÎõMÜ»{^Þf<¦¯®ˆýA ú“Ìóò6ã±u½ÌX¢×¹¼^WlŸÔñX¼8øœ˜ÞÆÂ*¥0bsOŒŽúÏX×9«?sFá¶“úX¡’9c@x0+•̱98žA©’y!†¿Ÿ/öæóVã6“zŽ'Ѭd^·™ÔŠÉV–+™ëå9ÔxL@ÍXŸÏˆ}A1.*–ÌS’%sëî~ÏËKÿÞ;óºü.O7cg°þ mÉ<›{-õ;£Ka6å`~¡2€Kîžý;¥Kæ9Ô˜0Owkîqy>_l »—ÌŒ­y½m<ë—b³‰íú—Ìf[3P/óKóº6wCL êSQÃdÎX+ñFl fÐÄ”›ÝF—ân—Çv3væuÆZ½ÆüCÝÜ ÉÜ®ñŒñá´6;™ÌŒ•¡£îÕ±?\a1Sû_43™3†D̙׳»×£ž)6ë,°ycb^gL†xO5b‹ÛÃãWt4½±1,i2îÎX—Âó'ô4™3&âuAŒ†¸ w»<;3‡ºbùª§»"fÛwÜaŽõ³^Kt6¹ã‚ã7´6™b[0¿òż &ÅMæ…XÔ‰¡ºÉ\š».w¿<º{÷ºÆ7Æó²-+œÄ˜ŸPÇö· IJÅÉ<¯ñÝÔßÏ8Ësž”׃¢^îÞÝs4ÏòŸ'&åuÌ_´y¾ÌO6—k<¿Oqÿ¹WSã1uÁø~èºÜýòèî‰Ø®ïßÇ)„Äý槺ëåv½>?âŒUyÇ Ôµ»G¹¼ÓRèü=‰3Vê5bÕã8ŸCÕSƶl:c6ÄûQ#ÖF± ⌑àc,|ÊX–Ig¬‚x ÷¶ñ†Ø ñø©;b3ıþvÞÈÂâ§<,éô2#v±ï û)3Í’gÑýr?˜§{5÷¶×㱌~¶w¸³Á\‹»_ž—3¦‚7ºœ(uìÿÔírìÿð´Âß[ÕÛ©ÙZ'ÆÇO'GÌØ’×;!ÛÍØ~x¬¯3FðÔ@©óû,óe TŸ\ž¬R÷k<×ïÓYË(õºÆóûzù«qj ú©!c Tßü|¬R3ƒF¬qßüü¬Rçò¯Ë»«1ß¡®×ø¨îXþƒ±{§jüXëÂuÿ~FL±š1Ø¿³J݆{2ÿóê§¹3D\ ùEÖ@™ç#qj Ô1 ¸¾Â(u)îvy fµV˜?•ûÆô¨WuoÆ$àßc¾ð±ÒS¥®|,Ò£»w¹¼Ôû}ÌÿøÙ7׿X¥žjÖ@©ks·Ç=̨R—ínõò5Þ‡{à±}üþYežjÄ"Áëã¬R×ån×x·ñzûÇþ‘5PêiÆü¾º V€µS¨2/÷B,ÖGÖ@©ó±ûs=€5P8lú{k >£J1%¯Qõ5PêÚÝóòjÔ@©ëÏ=š{^ãû¹÷º^¿+€˜RÖ@©+ÃÇö…5Pê~Ä  Æƒ5PêeãˆÑ]'”5Pê¾Ýkªq?†:‹·k<Î'Õã×ø*—m5Pêø¾Ôýr|_ꉘÔ¬°ê3®7¨ër·æÎǬÅS_Ï(uî1Ýóz}>–ý0—5Pëáþ„5Pê²Üíò@ÌktC¤žˆ=XÇù}¨÷cpj >c¾ÄŒ×¯ãü¾Ä ±ïëçt3æ€ïó'êø½¨c¹:c°Ye^_LÁ©úŒûÍ×xîüþ^3Æb0¦’5PêÚÝíz}¿Æçåü>^#I×ÇÔŒYxÇ«êqo{?¸_R]¯ñ^./÷ÀûG,?k >c>E]«»Mwþ&c]Y¥.·×?ž&þ½5P¯yÿ‡úîŒÑwÄB°ˆ±â9ÝûQ#fXý,wéîv¹÷¼½Ýq<øó%f¼_Ö¡ê<4qj >#¶X]Êåk¼vw»^Ÿ±â³fó+ûwj„0Ÿ¢ÎØ1c ~ø¾0¿¢~®ñZ.ow¿ÆÇpOÄBàø±Gê2ÝŒix½÷îêyb>¯ŒIÀñ'k ÌÛûCulOÍ6¾N,ÃëççfLÃëØ¾ª3öà5æKÔårÝî6Ü㨠b Ô®Œ…f ”:öoêeÆý&êXÕ£º×åmóêþ\^îŒ ©¬5c ”z5j Ôc¸×ïòT#VYý4wyÜíör÷ëßëõãz}ÆN°FþÔ@©sýUow»œË_=Õ¸¡Žã7u~? ó[§J½Ëå­Fl³ù¯—ÇïòP#6J]w»Ü»{ ¶µ¬úŒ˜fuìßÔå¯×xÿ¹36dðxŠ5PûÔì±Jý<—gÆœàü“5PñÐÏß‹x ¶ä9Θ—׸goÜǨ˜6bMSÖ@™ÿ;¾0w5¥¨2ÿw¼Q~çø÷ãä´ÒCÿ·¿3Ëÿ­ÿâ¼ßÒüß÷a.ÕÝîÕÜû¹±+¼•5Pæv¹Çû­¬Ñ@ TL#=g|›3¦ÚüÔôlÇñúÎÚ7Ô@™ÛLã|5Pæ\þŒ)d ”yMõÀ÷!~š»-wïî9Üc£Þê‰ïOü wîVÝ3>ß<µMYeÎïs~µN¿æ~®ñZ.¯4jÜÓV¨í@ ”xãû[§f*ïß1ç÷¡žîµÄ¨2—k¼mw~›ç{¨ro÷ªî=Ô¾qkîü=©§{\¯ŸÏåå^öú|Ò6§åº–ËÛ=†ºâ÷%þïx=¦éò¡MÖ@Å4k¥²Êߟú¿¶yÚx>©Æö5Pæø¾ÔÿOšçåø~Ôû§Î˜mN þ(ó¼¼—:ç¯Ü×xiÌ/ VÍ<«{ýÜÛÆ3ÉÅ\›»_Žíýç…å[O-ÕÂòçòÇöûsîè8mùwj Ì«»w£*§-:—_Çý}¬rÏ4k‰¬oâüüâˆS˹<^|~Þ?ʨ˜æûÇöñsÎ÷˜ŸùÓˆ§ÊÜš;¶êu9—×ëœï1ÇþKëש ÁÄ¿9¶—ê\žâ8žx#Ë(s.?qì>çü޹^Îõ‰±;¬2ÇþF¿Ï×9?cŽýÿç…õG\†;–Où±5P9Í™ÛÜïâžîØ_¨ÿ;ÐŒiFÔš£ê3j Ìqü¤n—c{¯6žó3æØŸªûå¹ÝÛÞ_Ö@™‡ýýœO1·âîÝ=0ŽùÔ@‰ÛY¯ëÏ=š{^ã{©s¾$¦a±þ£ÊÛ×óük Ìk¨s~ÄÛuû¥±ÿC^¬y=——1…ê\Äm»cÿU¯7âþqÆD›Ë5ûÿÏ9¿aŽý¿9þ>Ÿob TçG¨úŒ(sl Ÿe ”øÁççç{]°>ðþzÖ@™óû÷_˜Ÿk<ïâ^.owì_?7|>õt?xý[ãÛKuìÔãörçúÂç{XåÞîØ¾ªÛõúØ~~Îùó.—m<çÊ[[Ž(sì_Ôórì¿ëÙ^¢Jœ±Ó¥¾5M9Ÿ`Žãuì¯ÕÛœÙMîíŽõí˜5PæÖÜ£»cùE­ø¦cù}Æù½:Îç?g†’9¶ŸêX?Þÿwj bš1«¨ãü[=/ÇïÿsÖ@™c{XÖgÖ@™·ãüZÇ#êü¼â†×#v5Pæ\?^ãüX]»;×q¿ÆcÿS;žOb ”8çŸÍ¹üÔ±>ŽS»4±üx)k ÄYeŽíKåõyÖ@™ãxåóÆò—áŽýyºã÷§:Ž(s¿¨gwÇù*óü;5PæØ¿¨c{]UÊ(s.¿×ëŸz¹cÿÔ|Å(s»ÆcyÇ4ú¢cûý9ó¢Ì±=QÇþÛ<ݱ?Woû÷™+åŽ÷ûœZªœ¿v_ã±½nå|þ Ž1×ÛÓÝ/Çñ“z™³Ê߇º\ãq< n×x·÷Ÿ1ßîéÎå_Y»‚ ˆ0jp?…xaùª¯ñØ>¨syª·;Î?Ô±üœÏwšsùŠçsYßj ÌOq—k<Ž¿Ÿ§d ”9ŽßC±XeŽùu¨c{ižî~½~\¯ã“ÏY•—-žãåŽã\†ø;5Pæ ³v çËê\ߏ>‹cÿ¤ÞEݰüű}Tá^ö÷:–§8—Ÿ:>/5Y%X>êí~®×çò÷Ëqþ§Žý»ùz}œ´Í Ô@¹§;ŽoÔ±ê?îÿPe~®ñX¾ýaÍj Ä8V—˱ÿVÏËq¼ó5Pæg¸ËõúØ¿«Gu¯ËûzýÖ÷‹(s½½Ü1ˆÇ¢ÿN ”9—÷ë¼ÑÉÛSu¿ÆcÿÕù¼k ÌëýW¯¬AA ”9öOêXÿÕù}‰ãxásÃ÷£ÞîR/Ç8¯²ÊÛßÏ8¿ï1þ¨2Çñ¬y»—½çûêØ¾š·»\¯ÏïGܯÇŸóþóìîeïç÷ýÔ¢ʜˇ÷±Êmãù|¥9öGê¦F ”9ןÅí=j ÜñÿoÖê Ê}çïûu>ØcŽãõ¶ÿ¯â÷(®ÛëC´Åàýã|^ß:Ž?Ô±}ÿœ÷Ï™ãøBÛïÁü5Ö@™cûò9ó’ÌñûPÇñ…:>ÿç|0×ü,wÌoŒÂÚ$\Ï7Çú®.×xüþÕ¹|^g T\¶A &j Ìùyq}½ ÿïÔ@™c¯Žã-óRç…slï>g ”y<îµÜù}¿Î q™çóvÇþás>Xé^îyÇöès>_gÎÏ'^ö÷Ögq~^q{ܽ»ÇrOÏû·ò2V£syˆ—×ÍÓ]š;Ž?>o|~ñ¬î­ÿ5PæØ¾¨W¹¼Ý±ÿúŒó]u×÷(s_5Pæ2Üõö÷Úõy2˜TŒóCµ}?è™0[^ÿ/Ô@™ë5Þ·{÷²Ï—ù<æösw{?8ßSû÷“7bš§¾5Pæ^.ÇûŸ¬ÕC ”çCŸ³ÊœÛ+q¿œÛ§×íú{íú{¸¾¦Îå#ž×ø²ÿà÷ùz^ïobù¨—;××׸~fÞîb¯ßøý‰ëå¦5P機5Pâvw¬¯¶‡¯q}EÝ./ýû¼¾pü¿ÿóÿþçÿ?& endstream endobj 140 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 143 0 obj << /Length 2920 /Filter /FlateDecode >> stream xÚÕYKãÆ¾ï¯|±„Œ¸dó dˆ7ÞØ<€8>p(ŽD[RÚ™¹ä·§žÝMŠÚÙø–AvwuuUuÕWÕÍoîß¼ý˜&‹2(3“-îQ”Y™,²4Lœ.î7‹_–ïWëÔÄËÓ*Zöð4ðlàIá©xèÏð¹æÏ'ølá9óƒç_aÂëQ&U2„ï;ž¡Í“<{x^ÜÌé²È¼.BR˺nz½À‹pB.ïV¿ÞÿÏ<ÅMI-BVùk!ñm“Æ”J€|ž=ž*KyÍ?‰‚ýÌÈl +Ÿg Ô'$aÝ’Õ "Å·u<”v9Vk–©m›I;%QÂk!ROˆ)Ss½ÈkB®Ú¾ ‘y–È>£é-ÍÃW,J[çs–È”>²+“¢(œ ÷ÌļKcS4„®'œÒ]ödÐÓWzO#«uG÷1HT\”Á\bÐôÞbÞLY”#ÔçwâÕ¢0“eÇ«Îx£ÅR°Mkn›föˆ}Ÿøµ‹ì|_ÇŒn…ùO ¥%ö §s%’|Z¡IúVB-«ûÒúQr!Ïa‹¡PÛz; è€c,(ùãVf@!8Â,Þð[¡OÓìÖâ Æ–ÁLàþÂßCŽ-;¶%‡Ð÷7/8±ê¹õ V¿ 怂 Yf7œ Ú*'~;"JI`Ö¸9ò%[JnØ{ð|7òåmV6G'(õ–F,Ìò[YO˜› (”%„À¹ïæRéÑæk¹Tiˆ# †Öè˜È†tó¦ÒÉg¼©0VWä×àUI“WÁd6 dwönFûêÄÓK“XƒV€vÃÕI0|£ê¯„ÕM°ý*ù¡Îü…nÛ¬­-³†Ú$YDI'™A°ÃÅ&(½ô;štùAêÁc½¿j ×`R•W„r<þYQ1Ï`Å¥QÒqkÕTc.—¦ ˆÏa‘NvŠC£Â­ü Ó8×›¡þßñà»u‹PÝr¡B—k8*6ÐÕ¶„€Ð$ËVG¯!|:ë¯=‡RlÌ/QÔjïA‰\ÍOÛJºbnpßJÃñÃÊøÎÝ; øÇöU¡(g~“Ó <íì¬ø5®‹êÙsÅÄ`K™^“ Ãl6éúë|óDÆ>nyÆÕ©ž±FZ¹thí3œ¢•¿2¯”“Ã4{´v äŠP˜Gwö­ºÍä’Sí‰Ü`1¢ðÕ³wFšåõl)²L&—_÷¶þ ¯DmcWJ51ª‹Œ×ÖÛ¾ê,ì±áŽ©-v?(ÖÜq ɹ+Y˜jñMkhË U£I:R '—ú×ðêßК>)|ÒÏQ»–ÃÐŒ±Ô jtîd¾ˆÃ\XZ”b—z ~Wz&÷þ‡!Ÿc’1Âb“ì0¨ÿÖ­¶±ñ«¿ÐÅ\J7*c{û÷—Ђâ¾HrÊ´¨[;ÌÊ€½s'kî÷˜‰I–«;PI­9«(ívÀç60áG±óÐ2Ô"c’ ¾ãyu% \5 ÉãÓ*¹(mýU²‡ÁË–[YŠÂ‰ÿ×Óu®=O§”Š«y‘^~lyúc¥;€n3Èþ g†8—jl¹…Ê [lkÃy°±$zXæƒ=tAUÙñÐÕ ‹zý왎îDÛ?!˜¬Ó’îâŸíï~ y䊎ÜÂyoŠ\J¨œ¹W­›v¥A¤ <蛣ȲèÓad}?$‰l×AJò^®ù6G-,žµL´‡EÇ³Æ .=“’ ˜†Gô~p ç{b.7’'éP£‰aÝá稦Ƒ™²‡”Ñd?4Nš§ÝÍCµ»ÉÐrÌꟿ¸6wÅa8“bü‰¼Õ„á‘ûíµA&7»üOŽW©ÜÅ0÷ؼ›ñµ3ÁíåèZ(sМýU £ÑÅG_õ±ÌØ#˜=18E‡†¾¿m7Ñ׉ãÜ£ ¯Ëßl!,„Z÷‰«6MOŽ?Øó¤¹iÏä%ܨ êíQÀ ûFP„s72Ö_eìîET™cAã²÷Žéˆ/¤¦û‰«7æ¸ÎDRª½ÝÏœýv"• 3÷MZz˜ÐEž.ÖI¥áÉ&Ʊ7ßÞ¿ù/¸Ã} endstream endobj 147 0 obj << /Length 2323 /Filter /FlateDecode >> stream xÚÍXIÛȾûWt<SH·L²¸HF<À àéC‚xÕ$µÄ’¨R«{óÛóÖª"Åv<ÉeRm¯^½úÞZüãý«·7Ëù²H‹›ûÕM’¤ó2Ioмœ§&¿¹¯oþÝofIÔÌîÒeõÐ=Á¯³ø¿…ß§8Ép½F‚<Ú7B±ia¢Œd){fQAw¿¶o°yf‚yà˜+7ì·¼àw™×ù­7³t°{À!Ó}ŠóXfÚsé7Äö]°œÀh>»ËLý 5 Ûx)Ãýµ—‚OÇìüÅV^X†ê§û?ßÜ%Ù|™eÐ&óe.PövÇjŒ!@‘ÇÏ4N£mÏm¿·;ê–g6|¼sóHÿ]›:ë#aþ.š¬èÑ^®Ê¡›fY©ªBJË?홹ÎsÜú„´"f#ÜÅA €n•YôpV!rº'¶v×3)í$VíÁ÷/4ßù‰­¿P 1Je{œhzOpÒ#Šhݾ¬ ²oˆC’½@úgî£à}ˆSb"{à5š¶xÍæßðwv6Ìdc´P¨=ÔÌáq–ÖX‚=T~7Y¤ºÚÞ9]«g÷Ü’­ô-jqËùœwâ`ñÅ"îg CXón9ë ©º(úaQ¢]‘ÍcàþÜE‚“üЇqzïíœv‘ذäœOr•Îe‰S3ì²»óca°Â‰Žû¬ž”­vG8¬ÈE‡\žø9S>QHC²Á–^M·b“²ð+g•hU3¬`À„çñ,êgY±6°&hl¹Q%šFDk^ÅM.«žÃK"Y»â¶RÜcgi'ö¢Qc°‡`ÜqD“y°¥ñÃΪ—lÅUH\:É‚ æqJA× aXö° { ÈÈ.cTŠÄLä]Ù0àÀ²”ÅKXëåF8êð ÏØð„•…ÎjQªÚw’8³—ÃO™V¢sŘi9:krbS„Ø+âÉG´êÞÃ+´`vÙj>}Ñþ"£Às¨Õ)hX<·0Eîý79ÍBŸR´ÄƒïÛL1 hHw[AãÙq£¶yRÓTŸ*'Üy©5Á&’KÐÁ±(³_™rüßVˆïf(.Å>ÊËbOÈa«šY“^[ è”;ß~€4ÙÀdEŠ%ì2é|™Šó–3`’æÑw(FZ í¦ÌÁ¥XøA5  —5ŽÀ𦓋â=Ÿ–\p^šÌñ‚ÏûòÄí¦d§Î"œéu¼Ü·+ZÖªÀvnáô™ÒÊš&³q]„t©¢.…C쨹õ¼Ë™¨(ñD"G¤î„ûµ@’r×W¬ð$ªyLa‰.°W·Û„H0bq¼ohçìyšåÃØú)1Ù Åìép*—ÌkÅ,g#àsÝ—™èG S5S†4Á@B§’:5°rcœBea4;`×rs$EMë8w¸yE8Q¶­|Eø…HóŽÍ§,Ã’½˜'ËP©TLýSšÄ×–†½ìH>ÌPGb)5©_±²Á ð=³Ë&-[¬æ\!pI" òHrU ¡oçù0@³?ÊÉû< HKµ,ô\¶Rr|ÞK4Æb—¤VMáUûk±†™ün*xhz—‚{¤ƒ;†ö×¾(ÈèHçxÔº€Tõ¿ðšú9ÔËA,ò?K°8Úób=„m²b0F«ÌbDê¬{ã ´r¥ƒ¨U„1y8‘„lj÷F!Œ€T(¼}}v•}nЦä¯úè‘ßë û®à¤ÑŠûž¸÷¬Ù',óœ¨Æ!$”Å2úkK|b.: |[} Ö@e˜š‹ÅðµѧÓû’Ç»XÒYVŠ<¤íÜ !Sk}ñU2x}™dÁ±’JŒwø(¢ämÆ+X±=‹ò ÿ…ê3)9‰âŽ+½Ãä"Æv çʼí”|7cgüJ°„W…x¬Ù³ûЉ5À¬¼¡‘KA0-*Ôä3ƒªøé=$VÖ^1Ü w}9úB¿8jlŸ+~#ÑŒ{áUøµÃ”úÚ§~­Iì͉©›.¤ ªGꦊí§õt) ?‹W>ÕÒiÝûÙÉïY5ži$·kî~#Ó=¿Žœ$h#– ‡êkª¾Ü›@V_\&ÆþŒK{CË–fS÷¤"§«,;àDèË× `©ÿ>€Û¦ÎÁLL‹í¾£9²ý³9VG}@à~#+A&¤AÅ ãà;QÏ;ý„—¤ån¥¤Ô•‡ˆL@W‘¼~›*ªA…ö,„®šÒZ5ÏÂÔÏ‘ëÇe"õã·ðÆA¾áÆËã38-wÆ®å†ât©1½•±P^¨êçåÃð]ƒË+­ñ3>†{Y­E O?¸!/ã9ïxé#7•“ž%ŠœÕ‹ÍYä9ÈjUOécU%ÇïäÖ{aÕ{È“×ú»¿ ž=[úšòò±•dhuÚ‚§ÿ@È@¢'Ñ͆¾§ÿ¨êÑO¯´ÒFrý[fX0† ¯þâ-Á=ݤoýë@ÍgL¼øP®å˜”þÞóÕ/L·Þdêëc’©(ßz.Vjù£ˆq¼BîàºÂ3>ODiœ­KHXø+oeN¸ ¯šDÿœåͺy—€c¾Ž_¸Ãñ¢O‹r¾4ùÐö®µGg|ÝQ_P}Øp!3uz Ã‘å'qV† ìGöªG¤ùå‰n…ÛXÑïå2×ÖãÐïFñE·úNÌæÚu'ìvxçcàNCí9Ρ!í½ÿ"|Iè–ú”x3‘òyš.• ÔëN»f™ÂS2N¿š¥ú$÷¨­)#wÊÅ•RéßcfGÅ“Œc²ÁgÂwðû‹„¾ï= ý¼ý,¤3…]Õ&¸3˃m6öž;„w1ªÄŸ´Œ›@¦¯á÷ ®v>eLdD5À½žbõÚKýüÂ!šÞ½¬y¿3Å<Ï̤ Ý\‘Ð ó_a†Ë9øú±ó›¶Â± ¥ÿ¯ ©:†Oÿ¬œ§1~$(ó ä'éÓ _}ÿê?œÍß endstream endobj 151 0 obj << /Length 382 /Filter /FlateDecode >> stream xÚmQMO„0½ó+z,‰t)ô¼©ë&/&ÜÔòµk€*,»þ|gÚ®r0„v˜÷æ½™“NrÍ´ÊH¢5“*%Õ|,WI*,aZˆû2ŸØ< <&[<ÃsÁ"¯­Do‹`³ËHŽzŠí¯¯”L IŠš¼Ð]ÈéÞn™àlÂHˆŒòø:Œ”ô¦þ€ì2ÃqD¸v8~[þÉWŸB)iÙ#ªik&GÃ’ýŸjŠWnŸî\ªC³|Â9»Ì{9¯ŒÌèîÒ]¯1Ggr>øžöªJÛ Nb&ĪK;e×\A¤-Ç:|+aaç,—~è>aemëPƒµÂ(Im±Ë c‰­àµŒ~tœ–ÓÁƒ]³±ýã·iø!Ô ÃÒÃa›Ä*ƒå Úâœn˜÷~l”é= IÍìr–`B;»„¾q±Á @eåWãŒ|}ë)fp3­~ÂC‰`g]asÿ¬i0vthzÛ=’’8a™–@ Kµ£&±à¾~pİõ endstream endobj 144 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-flc8.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 153 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 154 0 R>> /ExtGState << >>/ColorSpace << /sRGB 155 0 R >>>> /Length 33277 /Filter /FlateDecode >> stream xœ¬½KÏ7IvÜ·ïOñ,É…^UÞ3·’llÀž ƒà‚(Dlqèë»NDdUfå=„½˜îùõSÿºæ=ω?ó~þñç¿þö¿Ýÿû×þßÿý¿ùù·øíúu]×ÏúÏ?üÛÿõþ¯­üü÷ßþöï~®Ÿÿø[øù›ûÿø[°~þ—ßJúUÂO¿RýùÓOåW®Âßþðù³(ÿ*ük¸Ê¯Ÿ?O|ÿ^ꯑ޿ Ÿ¿Ç«ÿªïß'¾¯×¯”ß¿ Ÿ¿§]åùûÄ÷ï5ýjõý»ðùûö¸ïÓ?ÿ7ÔËýv^îŸÿÃùí_ÿÏñþüO?ý—þ;ÿ,áW?ñ¾©þóÇ?ýüÕõ×?üÇßþ§?â¼ÿÜÃõ—ñ/þeɿڵü2ÿ¥¿ŒWý•ÃòËúÿ²ô_!.¿ìé/ÓÕ~ÕõnÃ_üŠR¹?Úz»á/~G9„_×z¿áyI, ¹[1ø“ÊE¬õW,OûŸQNHï_ûýúóWÒû×ïž? —¿—ö+§÷ïÄåï#Yu~þN|ÿÓýœíù»pù;æùûûlë[{ßÕ¿z_`l¿zþÉwɼXš¹ëŸùmÖ<ð·á_øÛp×ÍRôc÷Sÿs?¾kboúqú—þ¸ßÅ{èÇnuúg~c¶&“?.ÿÒßí]OúqÝ˨ڬßò]‚òl"Ÿ{±*ùûüê;΃ÿ€îãÿc#Æ]Dï;þÕQ™þö¯þÏ¿þ ÷ø«øûúóÏú§ÿëO?þû?ýß¿ÿÃ_ÿÝÏÿæ/zú»¸_{¿ ¿Ù¿û‡¿ÿoÿùÏóùï{þYŸ#uT䘋5îÿô?ÿÇÏùÿ£OT5ÿínQ¯I¿¿T‡¨Ÿtwr P¾4PÝŒÊuR¢ö¡rÙ™A½žt7„ ûJ•ltwÌá¤ÖH9~)Ø›õrRÄÕ_!Ä·T­²Ä·T­“?hDÒ]î?Üu³jxPj¤”Nê‘tÇ%(ÜtÕvRÁÓÞ_'žÔ"©¤/Ý_¸‘Z>)ÛYî —®áWºNê™”ó— šv£ÒOŠƒtßáAÅJHV"j‰tÿâ QI-|éþúV"ïÖýåâÓÞOÝOâÓf”/ñiñF>Ô~ÅN²ò%|±zßa; _¬â™t×Êu{; ÚOB©»énT*xó͚ǃ:ÞüÝzÔ/_W"ÝwqPÄ |±/¡ÆÝ”óIµ“î/¾Ó]C µqRФ»µ9-JCËy MŒî;;h4Rª_ ,=7Ý%ë ´˜-Ø?¨Ò] >ùÛ]’ÛI±îyÞàMw©;¨â®“õ­õ._º[›AŠõ¤t‘î¯sjjËöuBI¾é¾ûƒÐݔƗ2[Ó›î';(áMÜc‡ë¤REí$~Íb%óCE_³Ø¸ÿ ~Í»·ˆ'ÕK4Nê¢~}©Zo}júA1’¬$)‹î·uPÅìÖ*ÔEVZwj¿®Lº[ŃP‹ïr'åBá¤jÔïWOê•ÔêVÚ@÷hþ ”òP’¿„RÞQ»ê“ú—{§ŽtPݽèA¹“îÞû ´`÷Ø6Õ“ºè~#;5žzµ}Pu‡xõnÿ>ˆWö&>t…û.ÆI¸Â¸¬D”E=œ„+Œ`5îC‘o÷¦»v„·;îÞ¾ž”E©„ÒsÓÝ“|(YiÙÛýJëM#Ÿ„ÒzOaï7rzû‘t–•2kÎM÷]„ÑèÈö&Ê¢^NÂÈc«qaä8ª?TØ¢Üt·ìEÑ]ãÂ(h …8£„Ñ­¥=¨‰î^ø ÑEãK•£ÑÚ|PÝ#Ճвa_î ôèáºl9åDŒŸ ­}°Ùlxwc'bŒahüÀ2ñnÆOlˆŠv⸄÷çÿbg_lxÿêDÔN[œ»»ÉQ_ ­ÐX«§ú`/ûƒ%<\¨Z'Æ$¼+ó‰9Gw°òñ³M˜Nl|ü‚âuàèÂܾx÷$¡ ï&ðÄT…we:±ðQLOlIxnNQ˜âó p5+¢'f>B·fíD}²nEôD}2L÷¿Y¿ÃÅÂKÞSý[Þ…áÄ …Ë áÇs†wãs"«Õw×w"æM†÷àçDÌÞCVsODßoxÂ/fζ Ûå °as8DkbOdxÃ'¶.¼KÔË|9XàÕ9ayö‹ÃÆ«Âî »¶­â˜Pa3bOĪ¢¡Ñ±Þr°vìD¬v…Ñl8†Ðšëmò†%õ±Fêq â»zÌqDÎóø/³ʘÛxÌÙÍÍw™ñ˜#ëŒ5Ë“—RŒÓp9óz¨2^¯Yßî1ÇgÆÍa-ó×â2Û€ÜFà0k”ís&—Y§ò°ÆcÖªrñ{žÌ9@Á‹?yöP¶y¹†xt—Ù³Ú^eq™}ºíWV—9–´½ÇËeÎomÿ18œµ‚aûŒÃeŽ‚K²‚ÇEÌ(<æ\¦`Ná1G¶_™\æLøæQžýší7G—S×ê2Ç”\fûfûÒÙeΘKayÿrÕ¨‹û•>oµ†Ãc¶¶Ç˜]f{qs .s¶XšU,9¾¶ýåèpã²/x¸³¸u—Ym_r¸¬÷Ý­àyÜ.q¼\Öûî¬o_ž³)Û‹,.³½¶ýÈê²Þ÷°†Ãã\Å­º\çñ£¹Ìò^/›@{<‚íñ—ç¼ÌBn|æU ¬¯'sì~sÌ.³¯äž¥Ç}߃Ëcúúa[ðáñXË÷˜ý‘ía—ó<þn˜=æêAÅú¼ÇqWL:ÌÑ­í3&—±=**®Ç-VÄ,x¬ò>XÞ¿œUÞm?o¸Ìòn{zÉe®$ÞlýÜ—Û<¾%—Ùžrÿïä¢öôf¯9ÌÕŽYÞOæxâf”÷“9Þl˜y̵%ÛÛ+.³>[œBw™õ¹aàu²¶Þ­¿s˜ý…íÙ].§krs9g1êËÉO—u¿ˆ”<¹i<Á½:u?øx¬û)Vð=ÖûFœ’Çœi7ìdx¬û­¬/_îó}cNì±Þwµ¸.UžšÍ^=Vyj60ô˜ý·ë[Ü¡#…Ác¶w7‡tr¼¶dlõÅa¶×{þ×y>«#<Íx\.³¿éˆ:YaÆ6ßv˜ã©›ss™{*3¹SÐà1÷Í:b›YåÕ'g‡ÆÅò~2×#⧙㥛Cu™í¡-Þ_.s=Ƹ9\µG9¸Þà0Ç»¶üß]æzÇÍ6q¸Îã‘æsr›ÇÛzšÃlol±>8¬pApw9Íãm¼å0Ç£²¾ÜçùPŸNfcÙÁá®ÄÁõ ‡õ>›=˜Çižõñd¶÷³\V}9¬ú2ØžŸŒ½Šxaìd­±·ì2ÆKÆ6^qã‰x–÷“ÑÞ£¿8ýq´¸žè2æƒñBÃá1Ö£âUØ~8]\ï0¶ù¨Ãaˆí{8œø>çq.bëï.]œ»ËhŒ­½u¸ó}!ÁãÑ&w‡Ë«¥ Ú÷v8±·Î}òp¹e±7îMlëµGÎgã…ë1Ú£h ?ÕeÔãt¹Œúmá%¸Œúî.÷.n'Î7¢-ŒøŒñDäˆǑ×C,¨ÇÏF›¸7—±g\²Ë5‹m¾è0Æ‹àápV}™åñäÈã ús‡ó%Fy:Y÷Ëý$‡kçêr›×>^ßÉe>ç“ëy*ËëÉyž¯e—õ<È»ñXσ‰ŸÇz4¼ëyUwrÏ3°â0ËSä~•ü_›ø —Yžb`{{2ï×&>ÙeöG1°¼}¹©>EÎ'f}Š‘õádÖ§˜XžNf{bçê2Û ø—±_‰|Øè2Û»ˆ-Ç÷àpW{hßâräóbcËc¶×±ð~NÆ~›1ÚÛ“;Ÿ‡ûM³¿‰œO<8߈6°»\ŽAŒòzrJb”דÙßFî9\x?yåWÞÏ`{x2Ö,á<øŒøoãÚOÎs¼‘ƒâ1æÓ1q¿ÄaÌGŒëå2ÖkÀÍåÊëEô÷·..Ãe¶'Öñ‡­Ù1zÌúfct™õÍ:¾ä2ûóÄù–Õϋüe{çäpÔxÈ:žîrœç³öØáÄçå~‹Ã¹Šcw™ãAkØ}n—ØÖ Jy¬òˆ€§“Ó,Üoqóec›Ï8ŒõÒx7\6žu8±µçc?ÅØöSfh±GÙeö' ‰ ³?IÜ98«?¹ÙÖ3f{›0qò˜í­5|Õe¶· ¹Ô³½µ†£ºÌù@F„£ÇØO2.Ãa¥O£>žÌùNæ|Ía¶7ÆÃe¶7yÝs¾—‘‡í1¿gF.¶ÇüžV1šËüžV°“ʧˆ™û9ó{ZÁŒ.ó{ZÁl.s¾t³õ7ÞOÆxÇaÖ猫ǬÏ9³¾Ìù®qw¸q=7òÃzŒýc›;Ìù|.ì¯Næx1s?Ça¶Ç™û)s¾xÿoܹžnŒúrräûâ|ÖáÄú‚?sšÜ]VyEšÇ,Ô®ð˜óÅ‚HÓµŸclㇱž.³?2MŠè2û#jOxÌñRá~‹ÃØï1ÎÁåÚ'w—9^(踶×Ä´9ñf‘Z³¾Y<˜Ïìo 6Þ=f[Sî1×›n¶ùªÃ#ˆ[q8p=:î—8ÌñRá|ØáX&—S[}p87±f{d(Áe¶G?9¶x³êòˆâÞŽó}`bç±Þ&9ž,Œ'u85±Õg‡õ¼Œ'uXÏËý ‡õ¼ÈC÷XÏÛçóì<׃ ~=Ö÷¦xÃzlüzÌñ†éb$—õ¼È»óXÏ;Ð^8Ìç­¨˜óyMær8ë{ßló-‡¹^Q¸ä1¿·Å“%—ù>*ã]æóVdËyÌç5Œà²ž—ñ®ëyëÓ—çzSe¼ªÃzî'9¬çázƒÃüÞ•ñ¬ëy¹ßä°ž—ûIëyqaõ¼…õíËu~oÞxÌú`:7ÉeÖ‡Z)x2ÛÃÊxX‡ÙÖ6ÿ2ûÓ®.s½ Jídö /'7í·X¼Xt™ý]í<ßÉš†Nw™ýae¼ªÃy2ÊóÉìïë`}:™û5•ñªs<Þ°°q²âmm¼ç0Ç3–\æzP»ØßžÌñšiWD—9ßhŒ‡u˜ëu 'Ïõ¬†9ŸjŒWu˜ó©Æõ‡¹ÞjÚ<Õe®G6FxÌñtc¼«ÃÜOjÜosx1úÓ×¹žE ¹^РÝã1×ÓMïâr™ëAÆÍeΗôä<æ|™:÷É©¸Ìöªab{òÏ5lÜ{ÌöŠº³¾6®×8ÌúÚ¯ë0dz *§³>6ÆÛ:Ìõ¾¹Ý0qÕozpV{Ú¹Ÿè0ç“zV³½íаð˜óe&ø{\&Û|ÊaîuÆ{:¬ï…ŽÉcîGt$8zÌöªw´‡++Ößûd}ïÁöìd¶Wãb{t2Û+&›{œ'—ËeŽÇY÷Ûæxƒ©áÉírXÊ Æ(/'3b0žÓa–‡ÙÞœÌò`ñ\Ùe–‹×º\n“Kv™åa0žò`eëÆ‚ï±¾'çû§É¶ßâ°¾'÷Óf}ŒwtXß³²¿<¹‘9_vXß³a½éà9Þåíd¶ƒ¢¸ÇÉè/OVyìÏNΓQOVyà|ÕaŒwÒÅý8‡QŒcuíAºÛ£/®—£¼œŒö ]ÜOs8NÅe”—d‰Ýå<9—Q^Œm¼èplã=‡Ûd›Ï9Œñzº8ßtxLNíä&c‹Çu8N¶õX‡1w—3™ñŒ—ÉÍg¬GÛzà ­DË[ÃzþÁïÛ|Ïá8ÙÖ+N,oí©Ã…å òY×ɶ^èp›ÜŠË˜ï¤Àù˜Ãƒ %Œ“#×ë­<;ŒýBãZ]N“­¼:œÉ‘ßûd¬W¤€I1Þ7NÕå1ÙÖ Nœ¯Ûz½Ã(Ðõ8N¶þÖaÌgm?ÉáLÆÆ˜Ç˜ï÷ìrló‡Ù^¨YxŒþÔ8_.Éu8œÙßÛzžÃlOÄò<Ž“m=Àa¶§¢J³= Øò˜íièó|_®“­=w¸±P/åà4ëCÇ|Üaö'‰ñ´ÇÉÖß:œ&ÛxÓaö'‰z,—ɨ/'³?±À×àò Ö§/+иù&£¼ŸÌú’#ëËÉìO2=Æz‡1ÊóÉu²õW³¾d,\{ŒõnãÔ\“sv¸h=$s½Àá@¦ŠÃØ5F};9O¶þÄaÄsÛ|Ýá:y$—¹Þ‘¹äpŸlýÃg\øäÊý@c›:Èðò8]bÔÇ“óÃÍe®wdî9Ìñzf<°ÃŒÀ=ÙžæÆúöå¦ñzf¼®Ãa²­·:Ìö4cc×ã497—Ùž2pÏc¶§æuÕ]nMlóE‡ûd‹×u˜í)=±NVð˜ó•Îý ‡YÞ:~ù½z`}8™û zs¼ÕÃ<ßÎ]û1œ8{ÌöÒ&®Åe®gtl¬x¬ç“Ç/uî÷8Ìñdg¼ÚÁCõÅÖ—Ë,O½±?<™ë‘6°í.ë}s?ÃaÝÏ`w2÷sl`“†ÌHß'Y^ö«Þ4Ú=¨‹x–•MÓ öqP™)çNÓ¼«•ñêp29ˆ†À v‡;e½ L\⛀hᇔ±Þ1á;(‹xäN4† 2­\I£ðŽ$°ƒÓ‘Àõ!­^vLÎÂȪcãì ôNÑ/RÆrÇÌï ´(“µƒ0“ìHäúzÊŽ»8­[G&ÏN]£³qºƒ0òêP 9¥Ž«w’cWÖ>¤lO f®'¡—¡ÁëA4…šÅ‡áÄ™úA]Œ,³¿•ä\1¡wZÎî>$ÅÉ„‡ƒh€ÚdÅ·FÒ£Ëjo%­ÒDS\D²~H«ãæÓNBKkÞ7ã$”žѵ)£J>¤'Rï—Æ/_œndkO¤Öð…XŽKJ¬t=‘:‰7Ò탯Óh8P{Øð½¤‚ç…¥¢éq!>å‹qz§VkFO¤væ…Ø”/Ng— ['Êï._ÌóÅbúz¢^,4ÃN¤b0½5¿X¤7Oã„é%ОH­{õOV) ¤TœHŸ‰€„‰弉í°/N-‹!Ê/3˜éàOòEŠC†¼8Hï:Bž(SH0|QyàîÊ/á/'R–âÚ sJ míî²l/,y¦1` %ÐÉ´ÚŠÐfô˜’Ær×ÖT ÚÄÝeJG´É³Í‰…–5_N’” ùv˜’·‘!ݳ®YHYrx½Ò’ÑcJ’G†|;LIøØù¾¿\æù-¹N–i· –™·ü~Lö2íðcþƒÃmrÅ–‹Ãº·Ôî²ô²—âð˜ÜiÙt²®7h©t²®GI—/¥¬B›ÍgY†]Ø2q˜ß+ZJ|9è{QÌc–·ÌT‡Yž3%QÖ°É´­lIÐaÖ—LIP‡Ys¦%—%i m¦ËeŽ2%Cf{b’@Åe¶WFØ'gµ…¹óËò{ÏËÒŽ–n+eÚ!ÅeJÒJJ:LIëRhÉòåiS)Ë/‡i9W -~r›–p´s¸ÌëáyOf¿[àMròciÅ7‡eYÕY^O–eC®’Ì®”Dt˜õQ–Q_Ž—Úëš(ɲ,«(¹ç°,©Òã0Ë[-””þò´S¯L©p˜–u²T:xZÊRÈaZT¦4;ÌÑk”¼ÿrÒ÷ªƒ’Ú'Ë2jÐ’ádŽøÚEIü/gYZÈ2Èá4’ô'Ó¯QÎá1¹W‡§$?×/<®“sryLÃáªñcJ´Ã¬O!)Ó2¤QRíài#Þ°6æqž K‹“ÛdX|ù±¼”L?™ï«3¥Øa¾/Yº8L»ÛΔ݃‡FýÓåä6¹†““B®{Ù\fÑÒë°,/ØŸ¬”ºi)â0-½[ç±,7*%›¿õ=éï1Ç#¹±·É9¹Ìú08Þ>XËÀàá2-…F˜’á;KR ±)ÃeY^DJÊŸÌñŽÅ†$‡‹Ê£,7–åS>–¥-'æìo@;òäi™)ˇõK2öâû>™ó•Ê”…ƒ§ä{eÊ‚Ãl$™ì0ÛƒÊùü—-Ä*ŠGu™óÁÊ”q‡% LˤƒƒÚóš) t2ÛóÊõr‡9_¨œï§d.´ë<æx¹Ö) ôeJÂÖJɨ“%i\)Yòå9Þ‘¤°Ãì+S¾–ä2מ’Œ¦V\Ö÷DÌÍÉZäïp™ã%Iþ\e)јRí0×ïæ1ûj_¬”NcI€|Y’¯”¼u˜–?-QÒâËSÒ®eJ6œ¦$íˆ.×UòÕaIs½áà1%aŸ÷d®w4†Ü;LK'Ó~H.³<ökJ‚lÜç|§ÓòÐaIzÒrÅaI’r=ÝaInR²ôà þ®ÓrÅaöws¼Úóê1-Ézž×ÛYû1ƹ»,ÉVJæ8,IRއfÛ S’¿<%ý;×;æ|ºs=Ãa®Çt®WœÕ^÷NÉ“Ù^w¦Œ:Ìñx§åüÁdê˜)õ_.SU)ó_îS’_VÊü”u˜ãÁÁù¶ÃïBÉ…“)émáKÅá¦õÈÁý‡%éJKr‡%YÊý‡IÎê±öcMRïëdŽGS.fÊ­$1fJ˜$%’ô¤£Ã诌m=Ëa¦ä\’d8Y’›´œþ²¥,q .K“’Sòâ*3¥ùË’¬¤dãÁ$#%fÊü…XX%©ÈùìÁŠw2Η˔L¹(ià0%ý.·fÊñEIÿƒeùî.3å-ÐÌa¦ÄKÒÐa¦Äî'œ%Y*ß×ÉLé ´E—ã”\*ÅeIò\ö>=¦$%—NÖzŒ1ÞçÉLiÍX/õ¸MÉ¥\–d¼NÖz±1RVOfJ&%—<~$•®è°bª%Éä±$} Éä1%'2¼±=Sò¨E‡«$Sé é1û“ŒxVû”ü©Ãá6Ÿ§3¥ôd¶§ýÇ/hG{<¦$Nhwõ—%0åödIº¾ï“Ymã¥;¬õ`“´)ÕeJ¦”Â÷q2S† >ÌÁá’dRÁz¥Çi²•w‡ë”„±çqxLI™2ž’ «ÇLÉ.°Tô¸O¶òxpœ’ÐÎö˜å’1·É#:¬xÕTXãqz¸¹\§¤L.K²%Ûxêä<%g°ðâ1ëS…¶˜Ç”¤¨˜oœ\¦ä $Q=æxÞS’È6“Ãu~†xœ§äKÈ.?’/ø_ž’µ ùwó{7¼¸“»Æ‹-³<žœ§¤Hi.³<6¬ç<ç;SSò¦ccïà8%ï;rÂ<~$îŠò”ä¤ä‚Ç”ìîˆç¤Œ 0|(s6A†©¤z„^´t%â¯T%>HúƒÊ¤ö%%,ÛÛŠ'M1ˆ{Ðð¡®RŽ ñƒ0Ú¥±Ü‡d–ÂíƒÊ+±SSÍÞ*¢{–ò¡ðÙÛI<2X ÿP|(Ô/i5¤"XýCʳ¬˜ñTDwýPy޼kÞA<³Œig¥b…ã "jíKuªÈ;ˆb˜u|¨³„T…TD–4¿Óå@ ;%¹Bj'ß¾Hw|P™ÔO˜°dæG;VúÂIC”ó—"W+ÅBíoˆÄøPâè¾á?$s´†ëA5ÒàåCZq¢øÄAX-nðãúÄÄ>$#ІÑôAÐÀNLJ$€OÁˆƒ0r¢Iɇ†Ä'ã¿„ˆš“ì4„•BÏÕ Šü¡È,©†$¶©§lXàÿœ)’qP™BI˜¢1ùK¨4—ø -¬ÆŽ“P;LË®œ4$¼‘Ú—$²Ö°’zµ†U¬iç 1øKu€(ć¦ÀÌ;wBºq ¦ì!>6õ< jvüÛA,Tu$(§I*º;ˆEÄο/&)_ÐÄù‹Y$”h<±è`Ûú¢ô«;÷NNDµïÌÜûbåÂh§tâ§ýf¬Ø=Ä¢§íñ»^]cFøåYkC—‡‡èü`P0ÿ œà‰H…übà@cPJðDªb\Ì2=‘9’ŒlzB9Dá´Àý¢F DðÂ`n൵:p"ÛƒÒÜ_,\vH¯v°J/çƒrÅmtNj÷ئ˜U.SDéª_fº’IïyÜÙEBW »ÌtZ[×.kè/Q{Ûvá—£$ðp™éÓ%V—n.3Ýñ¢#ìÁQéVa¦Œ„ét‡åÈ ùõ=˜®á°¾‹Îó{`^ã±¾tN–jt’ËLG¾Nq°–‹¬5´¶ù`¥3 µ¬w6ÞÖ^"öd¦c±Mâ1%´Ãñê/ÖΙb%Îô—§OI3=åË,Ï…Žg'•çÂpu‡)ç#9—ƒ¥k\.—Ë”ƒ©ÙeŽ-/«:\8¹2FºÃÉ,ï¥Ït“•‚¼¨ËeÉÅ@—éäÆpf|Øà²äZèèu°–=•—äqæùè˜å0åFÌ‘¤;<$—TNî0Çs’›ùòtÌÆ‹+.³?«L—?XËäÈ‹I.³½¦õ»Ç,Ï’«98J®bÂcΧªÂÝ¿œæóP®Æa=Ï ãç—§›å\.³¾Ú:ltYr1é_.ú^áðó{µÈïñåÙ·L‡Ê“9ßkìÎÚÆAÞFq™ãiæUxÜy=9Ž~YŽÈ«h.³¾µ>Mwjoi}ê1å´úÅtšw9®ë{L¹[Û.S¤†CyÊ9IîÆaö'Òû'ÏùzOt$;¹L¹¥ ìœ$§Øót ü2ÛK‹Ë/.÷)w“‚à Ww—%7S¦£áÎSò³SÎÍá²Êé¬mXÏu—)—Ô™ŽwpÓzJ§Ü›Ã•ÏÛnþå)'ØÇt,û2Û³>˜Nr2ç›¶²˜žíµätæzÅ`ÿå¡tÄu—YòJN»œŽÃ,/—]fy‰_–câ¶»Ë\Ïrúr’Ü›äz.SN§&—9áÐ_V8¸Åå®áá 3õ’cÍ—åˆëµ%c\|Æz˜±Â¯¿Ìt³Káæ_–+‚ÅÝeŸ™îèÈ~pW:JP8úÉ’áz¥ÃL‡ ‘Ž\_SN„ó‡™ÎØŸ}Ø^3åtò"=fºuO–¾Å¥õè2Ó¡Œ‡Ëƒ×« ýrT:_€5¤ÇLw¢ÌÉr$3î—ËL ƒŽ6_–œäZ.—™ngN–\KàûúrQ:R”£ËÉ’³€îçÉUß+*Üýä:åJzs¸M¹Èy¬çétì9YÏÓéXóå>Ÿº1KeXÅ>YŽIóˆ.×y¾VO—ÒE)÷áq™r=º,9k†ûî¬ö:¦ÈpΓ™®– Ãa¿•NO9™®˜WuòLWNho=f:]F\òÉoK.ÃcÉU† ŸL¹„.üeí'˜\Â9OîS.£f‡înrWq™í-u“NnS¤óyOf:r¹.úe­›®wr™rÖž9L9€ÒÎýå)GR°žrpT¸8ä.—Û·àp˜rÐuò˜é¸e0ôËSN¨ nöä4åÃ=Of:yE,ÂÉYý5å<ÎSnÁê»Ã’[`{xpázžÉ ÷Ë3µbãÍã>·pŽeláÞ3Ý·2úà>å2ÃO®SîÀêËÁš¯IŽÀcÊ­PŽà`“óäù°ä±¾×°‰ÃÉAß‹r—™î7ls<ÓбŸ,÷%“°úà0ÓåùNNÙÄþrYrØ©?9O9ìÕ{Ìþ¸!oää¢ò`çèrcºûÅ÷ñå:ÓÍÙž:Üfº¿…óܸŸhlíÃl/;þ“åhm\|fÛqc')W]:ëäæp~ä·ã1¯7бt¿–7Ú\f{7 W{ò”`|—Ç”ëLÇ88IŽc°½t˜ãU‹çg¥ ÑÑc¦;]°k8Yv–ÎméP+󽓛Âý™×å1Óé˜}r—cãÕy¿'3"`¾vòà|/,¬xÌtíÀñ—ËLç ÐmóáC–Îl÷{pP:X€\èÉ3<@—Ùc¦‹DóœœXž-ÝÙÒ¹fºYd}>8+*ÂxÇc>OÄ~ÑÉ q3¶ñòÁšO[:s.Ó15"áäéH±ä1Óu#Çw¥“'¦9LÇNê6Ÿ,¹[K÷µúðåz)]Èþá2Ó­kNJwJìo–݃¥ãZ}q˜ŽÀ û%'K.ÚÒq-Éá1ÓQ­>¬Ðö™Nz°ÖSf:©Ã}¦“Zy:¸*ÛÆÛÑá&GÙÂù„ÃJ7D¼ÙÉ]épyÃ'«?™éœ3ï.˜)žØ˜1õŠA1ôýE’+ST T¾P€·6Ö˜–µPÂY°Ë´¬…îóCº/4ÆKa&ÕŠbØ¿Ã, \ µ¶RÇY†Ò«®ºR¼6j–¨Ëä ”…¬,ÔÂLËŠð?3Ik¡û.êù%8·”ü$iü.)-+âwô<Æ&÷B¹­DwòIw†Ñý‰BšUÉ™6llÅq6„ [I¿oª×BcùœÏ‹’j&㥰?2 K8¥Ç7ñk!k…_¢zRÊÖ7+¥íHžsωV‘É]¾¥T¯Žß¡cr×B1®”ÚJVsê+5ü#A ^É:4,”"ofD‹IÂ4,é%–2a¬(Y¤a»¼È¼Œ c õ¼ÒÀYXSá29©#:t:È3}l¡ØVJy¥Wj8KQ²Ø€G=êÝŸBžw”8ÆJ±®TéfŸf™~”RÆ+B¶•Ö—¬|Jb«#ºÈ°¡CojÎO™L¶•È—ÚF6‚˜gè…B])µ•êò7,·í.whãI!3Áì!$”-ûJ ¿cÚBêøÆKt›^¨Ô•F ;Ö Q2#+&™=„Ü‹…r[ɾßLlz×á1‘ £Ò…R\‰ßoRÅÕ‡ÒÒ:d°¿C—ê‡0nâ”nºTY%ôó¥sÞ5°ì\äå=°Ú\´¦Éô´…ìuÎ'én]”`"}=@9cjÚBö»ÁRGçë…¬-Ð×@ÚŒ¨¥1ðBgÁw§öCHv[ÈZÍ^˜ê¶µ “вÍe蟽΂è=&½-Ôp×øÒSEqL€[©­TòKø.²ÿ ÓöB ÷2”6w÷9UFdL¢«—¾4ä32¡Å40¡î!Š.¼t÷U»kôÝ^è.§ ÷HË“»^ ¥Ý­˜pù_#hdÅ»@Õ2d±8³2¤0}©—™÷"¦ õIGBºÝŠ·!ÿk$Û­xw$ÓI@©t/"òdöáÝáT©Ü( nÅwÄ™ÃÌ©«yCÞ†l¸1 ­3à‚˜C o>[¼vÄ]1šÙr+æ°cßpëÌd»Ê†i3On´‘Ö¶bÂó2èû‚fp ²à» …Sµ¥%òïF°Æ™°‰„¸‘ÿVŸtCl§ÔiNy¡Ã®Ó«Žæ¶ÑßÕ¨È9Z–¯Ø¯áO¸áØ0Ô ­<Ï˜É ÞBu¦¨1ÅnÅ»øUmÐÉß|Å»¬Ó½–éw+–B+*ŠuP.ÞƒôF¯Úi1´":ÛM€­2•Véu†µ1moÅ{bñ"41kšÖáX 4¹(L'lŸ¸ GXšÜ%þ}¦û­hÊ5òê2¤XÍ“x7±+ÌÈØaË:}>ædO^óW¼ËªÍ¾³Ð ჅpZ2'pÅz-ˆŒ¿Sß°Œ ;~Ûg¶`Ç…XqBEã–§U:†®+¦kC+u ¶¸ãØÐŠŠ ”Å·b(Þ¯tEk¾ÊÌ0„ÁR-Jè`Bߊ½,ˆp©®+¯÷nýp•t’¨#o¡Ru+Ò’~ÅÜ7¬cöÿ¶ï¿ËoÍR ÷̈ó+òÌ °û²›_ÑJ]Uýe6âŠ&+$©pXчŸZßÔE+9 šÊÑ‚§bu¦Mý‹h"V uÄß2Æ6"·>)¨æU öÊ`\qä±è½bSGWŒ×†7ÉQóDWìc#Ãtò:“¦f6U†wýjÚÔ@n9DÇØª$„ ¶°Ÿ°¡ß.®›!ÓdsW¼»øïûi²ÖPîêŠ ·ÁÌÊ„ܦ@ þÊq{BÜa›u¦¹¶'«Y7m¶™äú">åŠ&s¶`vø^x›ƒmK<‡ÎEþÙ7 ¸ÛÉŒUÙ®Ë!ScWLøm™‰³}E h›T•6»âý†W¼ C›Ì‘]±¦ [Û°ç±,jKº]Èë*{3‚ǵ`ÖoÙÆ2æ¦içÞЊʂV6¦­tÆ2ç‹XÓlqfÅ"j¢)ˆÙì׆=l8Ê‚˜¬ØpWœe,T¾ØP6¢ÔD2šñ¹ù¬äßÕŠ2×÷E4z+&<®YM;HX "¬cÅØ7¼ë~KÖ2Ç÷Aæž7É9)÷%rm7iæÿÞ-Æ8³{/œYɰXg\1B;3¾‚õÖ44eæoK3‘+ˆ+Z»±`Ç=sàÊð–4Å+ŠOéAå ÛrzÞ_gB!5³×(È$xò – §R¡aÃo9P/Ómò–ƒÉåØzˆls¥{Ek7fâ$—WlqA áV ¸ç1“–)®ø`N–kÃEmQÆ–­h†ËDö6GÈë•MâêÀ컚7Y× ‰e—ÊTçïÖf"¾­ ^†´§?åŠw™Y±á`=>’^„†f+3Åz ˜ME .¥µéo^02ouæƒ#ÞgCEòñ+”l›Ø•<ÝêÌõE®ô†}ÃŽƒÙÃV¬…šzrFœ™hË/8˜Yt̲^±ãB|@[Ê b%¾S®W´Þªéy+š&Û3ÉÂíK¥ScÅ´Mu fg·6{€+¶±`Öo9À¨@±M–"L¸>ó¶­¶ùDX9}#¦¥9“´ïÆgEk‘´hAkͬ(W}¾ŠrÕ%oÃôîÖçã#¤)yÀ°Bà³Ìßvü–±Š¨Öçb ¡õù€x¥+f܆ҾÞÆ¼I¼Ã%i|Å TJ>®øâbèƒáÚ±mhÅlAS‹]r£z9^qຌq€×†„:V\Û‹6 ÔW´Vtf-7¬µ66üV9ßÈ9ß°-ˆ×6ʘ€¾bº6¬¸ ¾v-ViAjÒ.˜(·„w+º¢‰•ÎQ.óØWlcå‹e{ŸƒÞs³òÑç(·a‰¬_óÅBà»Ïamƒ1ЋÕ÷¹vÍtø>×®?V¼ËsŸc`C*ÁFaO "¤cÅ»ïîa> ‚:V¼‹wóyÖÑÃ|@íõ0©Ì<ÿ)ö gÖÁЭ‡ùDóÛNcö¸áÀÁz"¸šö0¿>â;úÔZ`®~ó "5iESÐó‰°âºâ]¼-š¿ SÛj¸òBÞåùE8ÂuE²R÷E\WïêQÖe:9%rl}Ã1¤fnTä _±Ô +°Ì¼þŽ'â{îp™ëŠªGú>æ‹íˆÃxsò1¹è ¡–ÀŠ5î8~¦|ÿp*6È1}ªañ¿÷ôŠd\ˆ]jÇ‚ðŠ¿mSi`´±¨Û%Ã/€­&õG=ëTìp;H»rP‘ìß~ºBB%)°a7d‡Û‘аâݳ¯ØÃ†£,ˆÈ Û¿ŽÂ€Så)®qWJÔ‡¡yÏ›QW ç)PuWökÑÄzìŠ È‘ ¥ºBQ )Üü µ¢ Ì‘]õúÇéXQéåÕ"ˆÐr–tb-Vlû_ïÞ¹ÏqìÀªiŸãØ6°Ïq,U ^Ä"ê†cÃÜ6lTŸîÂ>DÄts”œÁ†}ÈSÕ©}PÒ†-o8ðm \8˜/v Tb*]KæÀ° ­Zq˜ôõ55 ¬0T½IJ¬hjâÂ(³Ï3õ ú0,À®håªÎW—­gïs„<0{êu¾‚v²ÎçÅ—ís„La+™S'!ã&YrÞÒ‹p‹ëS”k`y¶Ï1ðÀºtoó®p‹1¶B83Ly mH-pþÁ°‰G¡µ± Z»àÀoõˆ èSù•Ê +ƺ¡]wÊtŒ.Ùñ­}q +ZgÝçDHWT†I „ëÑ,—ÄŠV»Üu/D{t­©J ¢k&kí§kUZ+Z1[°_ "æãEoô™–~Á>ñEÌÇW¬V§E腹튿]hÝ“Vka –6´"·*ËÛ¿p0³Ïè¶"EÜõ®0¹èÓ‰øªºÐƒ ¿Õ«C¼Æ‹ íÆ‚ö•5Ä™õž±ºb bm³Oʼn Ÿ²ù6°<>¤Ghxw|ã’»òË‚!µ_Ãû뿈¸ùï/8E%Ýñ`€¤Ü˜‰«‰•Ö,gaÎÞíÆ†}ADvÅ•ñWIj@ÒcÅœ6l’åÇÔFJH@’*5͆«mxw—6\¯B+“+âTz^DwŒ&U’TäS¦Ð… 鉠 4Ú|Äo¬Øq] P hÚ=›°CÆ…(‘×7´XmØá£„‰˜Mš0Œ SÚ0ÆÂ ‹Æ£ÏÄ¢ñèóaM3¦JNBòßèó¿±b,æýà‚ÛÐó"çoEž™O¹£¡ep©m8̇ŸÎ1¦TEÆäbL婌µÇ¡H (JÔ cÚЊ¨«¥š´¢5Œ"ÚshíZ¸¤˜4¦@†ùãB|ÞŒE°cØOÔ“0ã‰ôø˜Ô ”ù×¼³iy^Òf6‘ Óþ^YnAzCè%üœÄ¦|)*ÜÉ|ßÔB]9ðzzòBG¡… ¯S jð~¨•±Î‹ˆi^¯ÒUhávÎ×Îås|+cµ<Ä)îœeˆ”ŦµÍϨMµ0bB6Æùƒfl…ßnE#ò<&Ór©4±imN &¹¸Â‡y<§±ñÆcja5Ï™k¹x>Å*K+kaj§¯òΦýz)¸Ùx9-8pc³¢¿¢æ{L¿ÜؼPŒÇdzLqÊW¨•x=ÚUÔF\¹ó|œœXúcøp_9±¼ÊzÈX×{¸ðïœÍ•D¿¬…M›ôJSK,O_+jó”Ìò¤à†È$½ç´…¢ —iŒÅ‰K)ó|œ}L¯Œ9£`²[˜ÖëÆæíq¥©%F-ÙK±Ë‰;þ]ZgÔŠ½ÎlÜéÔÅ©Di,Ys j£»Ø´ú¯¬ÙDi,ß2ï2®4óâеP[ö’V®qçù8/}^#Pj­mlÚê¶|óh­µÑ> Ñ©µ¶s_y°üËÛBÚj§²³i«^s¤J-µy~ŽëË`ýQ£´ÕŒ9ЯÛkYóJ[mãÊßK[ŒÚù/h%¯œ¯[sr`a<žZZ5°}–ö„‰œ˜7ÁÊhoe] ”@“ûÎæ]ó²œßdy+m·Q¾nyçÎãõþ¨»2ÚÛ:ßgfùW´¯´Ü6Öõ_î;ý~ˆ+ŸGï«ÕÆœNULc–ÏZXV¶çoó}Ò{àjšCÕÂú±0ëÚ|ZéW›ïãõ¬+â?<%‘+t‰‹xˆáe·ðˆ+cJh¬çÃZ€±´!Mƒä£,n×Îp$ óy±W€ì$jbÚbkÿC˜Ï+ÏÂ0ŸáF!„ù½°%`¬û…°Œš~ŸÚˆ;7ð£8øwÝo§cdœ÷+ßÃ…ÃÔN´ò¶r ;çÏñ%.Üå}(-ti)³¿ìûÙ¸óïuþåéay.,ëIŽ'¨Å¸0½CÔûèô Qï£Ó{båöù»iu‡¤ñFGØÎÂô ij1&–—•y<ÇO=M»Ë‡Q~Ò|~z®âκÞÃÖž®\>¿¼ËWçümåüù{çõô~9_ sq•Z’à©-™x¼ÞoeyZ¸^+7–—¹þÚ¿ÿÂpÚœ+° ÿÆ(O 72ǯ½³üÌñ«q[y°ü, oÌ…ky GGZx\loæøwÀ$Θ æãâ÷_¸ð~8ÞÛŸ¬eð膚§Öe`yÉïÀö¦h¼>ËKÑ& ÷Z“Sc´ò¾2í͋ǧ©Å)TîÈ LDXÄ5ìÜy>η¸¸ÑCNü;çS¶fÝ`ÊùåÀù¸oÚιì\ëÎø¾ÒÚ0–«˜^¡¾Ú ©í _Û…ÑßTÍ_G¥×êÜ…+'žŸ›²\Dâc×¼óH+wö_Šh0N¼®—punáÁþcjzq…—ºsåõ¸þAíÒ‡M«í‰"ƒÑ4®IËtáÀú®EÒÄ… cjã]ô6 ò2“ÖéÆòÆ-¼>&ÆÈßìâÌ¿S+ôBŠR6ÉçY,/\j{^ÿ‡Îþ&qb âÌã©Õxe~ÿ©]IíÕÇKרæ«+Û|õå2½vKËk÷áTwnáÃü}b¿1ÊËÕå¡s;Ö´^½z¯"Fû?¤åxÑ‹1 n Kvaz1†1µg齸²Í/WÎׇÛÎcûû`{£ ãÐw¶õŽ0µ?/ŽÇ7î;7Þ/µ8ƒ<­‡´W9ðÚ8ðï¨/ÆVÞ¢ÖO¥e»±µ/ñR} )€±´_‘å¯cž»ªÈÇMâÄß³¼S wckâ5µfÓôRÆx.hC>^ÉÆ¥îÜè¥L-း8ãÁ÷!£½”©m8>ý£1¼ˆû Óֵ￲µQ‘ÒÞw±Í—b`ÿaÜx<¿W@ÊÆ‰ç—–0ô6¶ùRÔú§´|7îü½¾'ò<Ç%ÖïÙ¾QëwãÞw¶ö(Æù½9^qÓúÝxÐ{ší! ò¢³ØÆ³QºsàÆø=± (SZÜw®¼¬×%šó{FzÓ¬Œò¥D-cODejI‹xãHïkÖÿˆÀ`e_ÿ>µ‰7®ÛçTX~•ÅeœèÏþ6q=4NíùÄñ½ét±¼åY?×7WFû÷h×y>ÖÏÄõK*Q>;÷W¤)ƒ nFyT ¨1Ê£òúÁò¶çý"ejMŒò¸2UŒò9¸žeŒöVëuÒ"ßýõÐø1aà¦wˆqùð¸>ÜÀlòÅò³pþü½êïxÞXþ¤÷eËÎ%ílå)IÌØÊGšã©Œ\í”÷dló¿¤õÓÔ&ÏÈq4fyÍȘØÞö [û›¦·A¦÷z’`–´à7¶òæx*s½2ÍñSF^¤,¢¸ñxÖÏ ™lˆY\b+ÏŒ7ò[Ÿ¦)íù­|§¨ñaÆFÊÂ1–ö=66<žã‹Œð—”udx}ißs¾’¢´Ö3ç+Ûù´^glëIû»Æ6ßHI^ ñãٸĶ¿•ÒÔÒçü%%Íg ¶wæõØßR[ãÊóµÉ#¯Œˆ–CݹôQž´ßkÜyýA¦÷|RÞ»´úwà0ßoáÆßsü[paH…àý—Ìò õ-ckÏ’²áEfY ’b -2¹ŽñýæúâÊ•çcZÚüûÃÖ%…0Ûx-É‹ÜÀ—Î÷[ôý)L¹1Ú#éA%ÊQnÜy¾2y䕲2¾×Âç«“ïŸãIzlÜùû>YNjۇ¢ú]¿¿­IsJeÉßGÞ¥Æ6¿O뙉‚¢É†tÈ1íœx<×SZžçc}hܯ™ûíIñv©q=_Ó˃ãͬýHcë?W¶ö0_šo4î§¿ ScÖïcŽ?÷Çó¥þŒâÆl¿Ç{yŽ/Ç{y®ß4Xmë}q½,ÏñC×1Û“Æñ`žãÎýë¬ýAãÄã9~ë\_ËÚ¿K̇V®×±°± *ü;ûGfeC÷Û9^ËQë»–Ì[À,4é6ÕÖÇŽ¢…±ñ ¡.¶õ²,uûÄdVc]¯Ì¿‹+Ÿö—Á¿!K/Þ8·ñ>çzBçú’…YV±o_æ~(‡}â¾sãï¹Þc)Xü;ç߃û£/s}'Ë›ÖØÚ›•ñ~´ÿclíÏËÜßܸƒÙ>È÷3×Ę6¶ögåÊóÓ+g°¿ÏUïgpý%+»31nÙ˜ã¡Áý¶\U¾¤‰Mæó|qþµ_`líÛÊ6~ÈJ̲H „/ÓÂ|ã¿×Kçà™ƒ1æã™3pþßW¤¤}Ž陳`J޶ =sLqü\Æ ¿•c=suÁ*ÍþcÙ0Å +^õÂå™3¦ý=s¬‹v¾=sV4÷ƒÛ~pë "6fÅxm˜ãŽcÞ7ë…0³Y±Ž ûz“U–ækǶa¡u@šZüÖÊ3çAzæ(e{zæ,ØÃŽë_陳`¸6,ðg•”g΃C.&Êÿwa ;BY_–AôÌ™(ÏENÏœ#5û³Ð ÃôÌY0• i@I]yæ,Û†t ¶í•虳bƒà½ …°¿Ô£ú#zæ¬HÝý3”æÙÅÐ3gÅš7laAèL¯˜ãŽcC“ð_p¬…„ÆŠ!m¯ î*M¤îþƒíÚp„k´b¬–ý¯mÿë¸vÄã?¾7Ú0 ©Ù¿zæôéÎJÏœ©'½`Ì&ªòW!•õ¤²þƒTÖÂçaE*ë?˜÷ƒ{[+¦+¦ý¯eÿ+Åòå©’õÛCÙ0Õ Ëµ!Åò…é ΕgNÏjcé™Óó´£)˧g=s^ÄÞë£pOÏœsß°” kܰï¿ëoÛ¦¬OÏœóµ!5ûéPAÏœûTÖŸXw¤H?mèè™óèßÓ3gCÈÒ¯ž9+&ÈÒs¼AÏœkÛp”陳bLfL{4zæôéEÏœ©Êÿ •õ_Ämp:Ì%…cÜÐÚØ¦é0=sVìž§Ç&=s^DFoÓ¼…ž9 fL¿;yæ¬Ø6laÃ^6¤ ?Þ䙳 %üÌûÁZò\W‘gΊmC*ës!Ež9+Ž {Zž9 †¸#~›«2ü–¼aí޶`•*ÿƒ¹nØÊ†}?x¬7éý?˜ú†%nXÛ†’ÿ'Ò3gz¨Ê3gÁDÍþ,¤Àÿƒ¼Ðƒ¢õœ¶È3gÁ {ZöÉ3gÁ^_”gÎ\–g΂c,HÏœsÜ°Ô éÀeayæ<åð`HÆkǶaÙ[©Ù?&Ž Çµ Öµ¸ùûôÌYÑdb¬Ò§›%=sV8xõÌYÑta¤uÀƒ<Õ‹cA„M¬˜ÂŽ}Ê3Ó”ž9+ö°á€¤=7P虳b€þýc¡“ áÏöŠž9+æ¼aéÖºaßO5ð[6_ôÌÚ@—g΋°æXÑTc§÷=sÆ4/¥gΊ#î8¤èõ‚yÿkÛÿ:ú‹ôÌY±Õ ûrWôÌÊõ’gÎô’9§ËõaÊçÉòâ¼ë@>|rM;±2åDV–úÃ’C¸RŽûzxìŒòõXùPîoe”g¥§Ëcòá“SÚYråžß;JÎyá&yðɃrß”¤ÕÎÆiì\ù÷æ6Ü«¨ â[Ó©—)'NÇg”û˜kv3nº÷êŽxékÆ=Ÿ¸kÖû¨Çp¯ôXã²Yï£NËŽãë}Ôë÷x¨o\4â™Yï“Ê©ßAœä›f½Obœà©÷¹qѬ÷QÆA:Ư¸wjÔû¨ÓÏÍ8é|¼kQÖû˜§{,1ë}pñwë}Ô¥»Ç³>·w=m}Ôû¤zêPï“nÝ ê}ÔËŒzŸÄNìSï£.Œ‡.tM§›qÕŸGûÖû¨¶‡ýë}RççŸõ>êŠå¬ŸA½º#>õT¬÷ùŒzuÉhÖí ŽF=—úÆW_s{ŸŸõ[q÷Ÿ{&5ê}Òàùë}öeY¡[vwÄ9³N©ŸødšqÖâÔÝåçnÓÝ›{,÷´íÍçç!GÝ~ñûâóÎz5ã”ñye½ÏgÄé¨srÄ5ãüƒõ>ê¿êé^YÌzuþ¹ã¡tÏî…ßç#¬÷I“wóXï“ãÍYïƒËÞ¿[ï£>qÌp>ñË8þ±ÞG}â—¯Ÿõã–ñ÷ ÞG]’»÷@ü1Æ/ë}ÌÓ½šñÞê\ÜÛÃøg½Ruÿn½šqÏ×óç^UzŸ¿|ê}Ômº#Î÷1³ÞG½ŠñCêŒõѲÉzŸ‡|ê}Ô½ºã޽oŒßñ˜§e™õ>f‰'>õ>ùÏYïóyžxàkÆÿ^G¿P·âîˆÆù ë}ò©c`½zæÇKzŸÜ8þXí‹ç=õ>ŸQï£.¿ÇÃÝ–»?¯ˆ»‰§Þç3ê}ÔåçîÍ=žõWùâ|O½y¸ÛãˆS?_Y°ÞçÄ÷žzuiîú¬?~î‰x`Ôç±Þçs?qÄ×ùç®ÉÍxáë‰x]Tð²ÞGñÁêá^¶|ž¸ßë¿âaÛG½Oæ§Þ'Þ¯b½ºe1ë}ÔåçXŽ/$XïcfŽ·¬÷Q3î÷z!nu'¬÷ÉóÔ‹÷=õ>ê8]Ô_²Þçs=ñ½× ÛcÝN=q¸¿ÆzŸÂ ‚Sï£^ˆ¯e½®ßÊ©oe½Oùñü‚õ>Ÿq½¦ÎÍ]žõ+¶Ïÿ¾O(çzõ>êøZ_Xïóõ>%¿õ>êñxþ#.–ãqc%õ=ûz_Ý/ÄDzn÷ÿÕyº+âkñùe½zÙòtâs¯—{=~îYÕ¨÷)§NŠõ>Ÿ^ ï?³ÞGÝžå·)>q·0ê}ÔåYÞ‡{`û8g½Ï‰£=õ>êŒ8õ>êxÅ ëãz”õ>ꂸXÖ¡ÞG=²;â Oý(ë}Ô¥»ÛÏÝïŠïkXïóõ>êÒÜ1~Ú©Âýru]î†å¨e½z¥Ï§Þ§°ôÔû¨×O8oõ´×ãþ´šñ¹×Ë^zuÅrÄm²ÞGÍøÜkÆçÒ8ÿWÄÑÆõЩ÷Q·ôxºâg‡ÏzŸÂ:ÐSï£NMâgYEœ2ë}Ôñ­yÑŒ‹EÜ-ë}>£Þ§°9þÔû¨[sÇþãõ>H©ÿ»õ>e~õ?Œw­g}‹we½O™çÿ=O¼+zõ>_.‹ñ¹¬÷QÇþ†Á„§Þ§ðxwê}®Yïó÷‡ ë&O½ºLw{ÖïÏú1Þ®Qïóõ>êÒݵ¸{u¤f\é­B½Oý1.“õ>êµÔ¨÷Q3Nöšq²×Œ¥QïS§Žõ>êús÷å¶>ê}*c†N½ñ´¬ÂýXõjÆÕÒˆÛVûëQӽšç«æåÞû›zâúYï£.¿ÇÃÝÒc¼ñ¿¬÷Q¥F½OMŒÇe½ze5ÎwÕïzâûYïc^î^Ô¨÷QG«8â^ÕÓݳijÞG=ºõ>7.˜õ>êYÜëY¾4n˜õ>53Þ˜õ>ê’/w+îþsÛâÄÕŒ;¾Õ½l}Ôû¨sq×ênÏúŒSf}æß˜‡{Uõ<ñʈg½ÏgÔû¨#NX\º»=ë3Ž™õQ¨÷QÇx.çïA½O-üýXÙÝl9ê}*ÓN½ºTwŒ×úÕõ垌c®tŒ?5¶Ï:Ôû¨c¼ˆcÿvê›Xïóçïê”$~™õ>•P§Þ§ž8Öû¨c<Šc<ŠçR£ÞG]›{N5æÓ¨Ëp·gý¯âùS3n½ŸzÔû¨¹=œ±Þ§vÆy³ÞÇ<ÝÏ~âþYïSÇ©ÂüóBü4~>ê}Ôë³îõ>êŸâØßŠo}½¦šqïâ}¾Wç©bœ»zˆYïSY_~ê}ÔÝ–£Þ§Nžo±Þ§NÆu³Þ§òû‡SñqzuÄÃ‹ãø¾N½ ê}þ9r N½šÛÇù&ë}ÚïÔÑ`¾KûºÔû´§ÞWÿÝzõ_êeËQï£ÞãS½÷ê}¼o‰õ¬÷iŒW<õ>ê½ÿýŒù0ó N½ºfw{Ö¶>ê}Ô{<›‡»>¯ßã[ݺ{Ÿ6Þ9õ>æF]ë}>c~Œz_õ¾^i§.‘õ>íÔ%²ÞGݪ{_o¨gvïï·>ãúåšõ>û¹øz<¨¿e½z_uŒ§kÌoiü~âÔû´[׃zŸý5u¥c<‰÷ñý3柨c|¨—;Þ¿ÊñÆzóT#î_½÷gêeËQï£îøù¸>`½Ok¬c½zïŸ>³û+Öû àþïÖû˜‡õ>íÔá°ÞG]’{_´Îý ë}Ôñ~vÖ»°Þ§už³Þ§ã ë}Ôñy¿õ3˜ÿ¡žÍÍõñy`½:Þÿqêrp?Q½oíÔñ±Þ¡·Þ§MžO³ÞG½¯ÕñùÇç}rÀzŸÏ¨÷i§.õ>ûkøøÿ±ÞGï§xïÿÛ:u8¸ØNÝë}úõά÷ùŒû{êýùR÷æÞïWÿ:ÜßCÁß­÷QéÞç=ÿ/æ#ôs½Çzõþ<ª÷û£žÏë÷ûÙOë}ÔÝ–£ÞG½÷§êú{<Üû|£³DàÔû|F½z¾Ôñþˆ»mõ>êŒíñç£ÞGÍí]ïÏc/¼ßÄzŸÏø~]½Ï7ÕûøÙË©ëA½y†YσzõîYÕ¨÷Q/ÛÎ÷Ôi¹û³þÌîõ³ÞG]²{ß_SwýýYï£NÏr_çkŸQŽÏzýê{öùºzß/SÇûsÝÎrÖù Þç3ê}Ô1žÛ©ëA½ÏgÜ_RïóÛ~êqYïÓ;÷¬÷霟uê}ÔS—³Þ§S¿ƒû;êØßŒSƒzuì&ë„XïÓO)ë}Ôñÿ¹F½O_§Žçãœ?³Þç3Ž÷êýÿýŒzŸÏø¾M½?ǧÞG½÷o#áÿ}ê}>ãù•Ϩ÷9þßÿÑbŸôÿ«÷‰ï,Yï³Xå‚zŸO9êoâÛ“[ïkßzŸ«¡B½JXâìæ\ƒ ÞG´¢r¯‹ïgK£Þ§%Ì…E½¨fÓŠšªÕˆ¢•ÌŸ0›jåO¨÷ùT£æ¿'ê}ø½#ë}>íŸÇÊLÖûþÏPïóiE%Ëàš¨:‰ïXïóIªNXïói×>°"›õ>ŸJJÖ·ÞçÓ,ŸPïÓq§’õ>ŸZԄĨb½OÇ>Ÿõ>u;¨÷atë}>íˆ}ë}fÖ³Þgà¹/Öûð)ÖûLìXï31ãŽõ>ŸV”G >õ>|ö‚õ>,Êc½Ï§5 qUÏzŸ…9=¨÷Á«O½(¡´ þwê}¸tê}DÿÎD½©vò÷Q|Å"JM•£n¥=È×N¬ B¼ö©6Љõ¢ñ3 ÕÊŸbB…jDm@þïÔû¨¦ª5U¸KˆzŸÎ9¨÷¡|ŠéöO÷¡Þ§|W€zÑŽíþÔ"¸?fQ£Þ©Q§Þ窳nà¨,U·e£©P0Åˆî ¨B½¨F<~Qï³ÿ;|ÝŒ5ãÛ.ÔûˆZÄÜÇ“(¨÷ýŸ¢U?E½Oo˜!ƒzQ5c6ê}TS5–jÆO»H¨÷Q ~ÞQŽ û8z¡ÞGÔ"VpÍ‘LSµÖ§˜¢/Êñº8^£ÞG´£¾YEŠzŸÎoŠQïÓ™¥‰zQþ™† Ió¨€É šo\†œùØO ÞGaè(§‰ÇDE³~ŠèÕRå®*‘{~Š€jd¤Ç“i¨÷¬q'õûhôO1ee0'õ>"$~Õ®j¥Â"ä^ò9!Ôû¨†*WUÌiT7Åã¤'½õ>W1•,O½¨ünr5ê}·¨÷QE@tå6‘ñ !þ»à^ê}D%Ò‘ñ׎“ï|4U#«fW1ù94Oh45’jÅVPMµ˜Ü|„¤f”5-5£š*&´¨æ‚FE)òc,¡ÞY§Þg4œ¿ Þgt|„zÑú™æ§ˆÝT-Òyãœõ>ªØJ\ƒ Þç*rm燠Þg VñD½¨ÕÌŸbþ`¶ê}N6.ê}D닳E½(uU‰ˆÙ8V¡Þç*¦½ˆzSíñ²p„zŸÁù¨÷Á;uê}D;?ó‡£=ê}®—ù©uÕŠm¢Ú(&¸ˆª-c0jü¯cêŠ9¨G=©&¢Kë§Þç¡Y“÷GPï3ùéG½ÏÌ8V¡ÞG4#x4ön¨÷¹B¤å§¶>!…òS*¡!5Æ<ê}fÁ±õ>W«ü”#š4Î5Pï#¶löOqé.ªY5›jɲˆ‘™L:B½hDn&þŸ1¹eVPï#JÙ´T±—ë¿Sï#šåÒ%ymzQ«ŸâAAQnª’MKU#°2ÎëPï#U5#3¾iD½¨6U[ªùS­X“Í9L¢DØdÜmc½²FÈ%b´Pï£ìÍ8²qÅkŒzŸ9&ŠzŸ‰zåތӬ’˜¹.‘¶ Uˆþ˜·:&ê}擳­Yïc\Æ^Ã_‹È@äd£ÞG‰$¿u9Œ%Âê‰zŸ=uørW‰¶¨÷Y¼`b½¢ÔþN½Ïb+ë}V>5J1ûEY‡±'ãð×NíŠà7& Þg•óu°]–lü·'4êkƒÐ.¢v9㵬`Šç –S7ÖjD¦Úåˆ×ÖÃU„‹©i—HM»DjÚ8lÃ8¦qEz]¢ÞG™“q'' k6" cõ>c2Œ2ãø9})2ÕPÁ„z%BÔÖ!‚Ð.[5Îbüw^|b‡õ>Ê’ÿ>P‹ÓoYï£\H†=ê}”;‘kàD™õ>‹×K¬÷Ù»ñJ–il_šë}öþ¹a<½¤Ì‘n…Ï ê}Ö: 6qR¸ÖùObBúÞó¦ãå^EÍ@˜ Qñ»ÛBçåîÕ1j0!I=?bĤӸƒ +êYݸqÍq©î:ÝPƒÝÍŸw½¦?æúsÛöQû#ŽÈJsÉj´dî5Pýc.éñt72!’OVº‡: €¶1¸ÐGA—Ÿ›J× PºžXŸóÌ@—ÊLRô™ór·äÏò…À$é3]Ä1Åcº×RwÀˆót×üøy}/î1ÜÓ¶?0^Åùç®ÓÝà„ötűô4ú$ü~l„upu<À~ óú=jL¸W@áä %AŸÑdN¿ÇÃ]›»c9ö¨ c‚þ tâ“_æ¶ÜËñùG_9Æç@ƒÌ½¹G~¼Ü³«à¢Î@Âé%ŠƒÌµ¸ÖÇaÝAâŠñt2¬Ñ§®ù1pf!3ˆè†À,q_nј𯮿ÇÃݪ»'÷hêÄ…/:X&džé±-G ‹:!pûC4 ™Œ°D§PJ§/¥BÛ5Ñ ú<Ýsˆ+ZÄ ºÎÙ]º:€ „Ä¢]È<Í `gê°S'ŸÀì¿1óÝÜ؃‚” ™#€åÄ,W°\‰ópGàJáé ª†Äõ¼þ:,Ä ø¹Ž@qL\7Vð+D6™ûÏ=“{5uG`…x÷´í1E=Ü@üÿ`~ªç÷gÀI;Ë'Ƈ¸÷°õ1?ór4E`N¦ès=Pƒñ‚"sGà 4ðM´y1p¦Ou:<× .8¿@‘yýÔPƒŸÔ™ëpÏ¥fàˆØ_ ð‰À±”ȼšºžÀœkæ\â^UÝNÏ5s®ë³~KX³è‘Õ9âÔÜXÆ !ì(ŠÓôA7Æ$º#ðW6¨)ÇeŽñ¥^î1ÝË–#äÀ°­ÈœîRÝ 0ÈêGc‘y1ð/&P©sw·gùx–/¼äã!Fs‘¹ ÇïÎÄûQ â¹Ô˜P¥ÎÕ]žõ–ã|FæÕÔQò©Wí G ƒ8® ÄËѧ…*£m.Å7Èâz^š»twû¹bpF#sNî½SÄà|­F7†µFæRÝ0lTê?âðGÀƒxÙëcf‹¹0@fÑð!Ý=m}LÏ•Mè82ŸÀ™8¡åÈœƒû è923€×+h:ŠÀ•D×îîdA%ÊŽ>£íÈœ‹»>ë·üøyýx^Ï@‘ø2Š¥GbŠˆ3LP€Þ#soîÙÝ &·’(šÄ¥»ë³~û=fJ¥PrÍ€œŒPB#pR]š»>ëϪ®'àä3~–HaB ºçÇËãõÜGÒ6ÎßQ‡ä^îús·êŽý«x 5(PÇxæžXÇ#‰@©.Óݒݸ‚ý7ڑĘ@©ŽÀq|ƒƒŠ¤}™Œýݸ(4PÄ9?^î(8ž 4lßN *).Óc®$3RX'“`‘Ù+Žº¤8Yô <x"NŇ»!0Ÿ×yS>/÷ú© Ä&8ÿGu’™*× T¹^(Áù0ê“r’ÿNRŒ,ºv÷Ì—š+â‚@ŒG´(mc`ÿy¸ù€=ujn>@fEô/™{S÷óþçé.Ïú|ÿšØÓÈ‹kzü¬ßº»ã÷EY+º˜ÜSÀóÆñ e;fþüÏÓݳza|r9;™Ì3f+“¹`yœO³—É<“÷·kc€:ª™Ì Ëã|ŽåLñ€û ÏïpFÀÃ5Õm¨#îEݘ ÎÃÝšû}ýšêŽÐŹ»Kq×çõíyýx^?íõ ‹Sz<ݹ¹»­ûÇê’/wíîVÜÃ~?<ð£ö÷—2çho2—Ÿ›ã< ” xK ”¹ŽÙûîgyf€Á kq3ÎT ôK ”—æf Áõ@ ÙPæ·5t.ðPÖ9¥óÈ ûœÌýY>Ÿå l¸B`·ºU7·÷y¹GW3@F\òãå®Ïë' Ø“…B§v ˜Pèô…NÈqÿ»…NêÚÝ­¸ûóúa¯GÀ·º" ”,t:ôŸB§–hÉB§Ï¸>Q·éË=»Œê¼ÜåY¿"»,t:&B'õHb:©{q¯¥F€ŒºTw<ÏëƒSèd^îÑݳº÷xÞLÁ(tR Ô3=žj܈sq—Ÿ»%w’ˆc~B'ujîZÜmº§mŸ6âTÝ™ ¿ãéWV#p[Ý`OY褎òÅ (Tc¡“º/÷,jÖ¨ÖÇù Ô T¸îÉ=š{>Û[]ù?êÜÜõY¿wÿ¹mû,tê‰j,têùâà~¼:x¿Æõ’y¹øpÍÀ‡k>\ïñŒ^Š¿[è´P”OàÀõ x8>…^E]N@ÄuN§»f·o è±ø»…NŸq¿]]ª›×+=žjÜ_ï•û:©ˆpÝžõ ðy¨®Þ×gêús·gýi¿î§«# B\»;Ư¸ã÷C¡& ú)pd¡“z<Ë÷ùÄgÌ2Ow4³ÐÉ<ÝûüU=žõßíM¬‚:©SuÇø/3æ©Sq—ê®éñtßãážÏöÖ³½eÛCÀPï,d¡“º=Ë#ÐF<‹÷ÏÕ%»cÿ+Ïú1>O ÔÜÞçgýVܱϤÆýsór·gy¬ˆ§ý~ 8'¬ó:©Ût÷æË=m{óü¼ëD:…,tê§€…NêØ?ŠMp>ËB§~ Xè¤Î(Aà? Ô 4A Æïü¾(tR¯,f¡ÓH ¸g¡“zÏÁùá§Ði0°î:}Fà’zï/Õû|W=Ÿõ—­ûñ꽿U÷ôë³ ÷ã?c~•z_ÏÂû7,tBNÓß-tRïñmžÿñkâ¿[è4øË)tRïã?¾æý»…Næ½=wœB'õþ|¨÷õzŸï~Æ|-óp·éÞŸõÈî}>ñSêœ/wÃÏÇý-:©Çt¯¬çç]ÇçC׳P ÷óÇàý:}Æü­q ×X褎ñ/Žñ/æö®—½ó³Ô{ÿ¬Žñ|î'²ÐɼÜñyïó—k:©÷ù…º·ý<:©÷ñC½¯/Íúû±ÐiðÅS褮Í=l}ÌßRÇø],f¡ÓXܲÐIŸñ>RO{=¾˜çúŠ…NêýyPgýýyøŒB'óp7ç÷,tR¯¬Æõ£º4w}Ößûÿ™ð}ø)tRïñù×—êüsïó%õÿê=?£ÐI]±=l³ÐI½l9¾¿Pïñ;3¯oXèôó·Ô{ª®Xßo±Ði~ÁB'u¼ÿ…÷SX褞Ïò=ž>ãû uÎîOŒ8…N³òøÍB'uŒqŒ—S°ÂB'õ¾þúŒB'uŒõ³þ>ßUÇø¹F¡Ól§p …Njþ¼ë½?U7¼>>…NŸqý¦®Ïò™Õ¸^SïóãÙYHËB'uŒ'ñ>ýŒï Ôñþ‹÷ñþ3 Ôë¯ãxý8?æ/™‡ó™Ôûz²àä:©W³ÐI§;Þqû¹—-Ç÷ê/âñsÇx¹Æü&u·í#^]îö,ßÇ«9ùy`¡Óg:©Ë³|_O«÷ñç3 Ôû|a·ÐI½7sñû:©WScþº ÷¾>_?^¯±ÐI½Ïï>ãzH½¯ÇÕûýU÷çõ{ü,>o{ Ôûx£®Yûåê=>ÔíY¾¯WÖ)Lc¡†Ñß-tRïýz/Ö)Ø`¡“z‡Ï¸?­Þïÿâùÿ)túŒB'u}–ïó õîx®qþ¯.Ã]ŸõãýWïß§0™…Nê}½úóqÔ{ÿ¡ŽñQqÿó:™§{>ëÇx¹Æó©ŸQ褮ӽ÷ÿê½ÿX<¾œB'uŒñ¾¾TW¼…,tRÇxé˜Ïs Ôû|Y½ïw¨÷þÆü¬¿ÏG®Yèô÷‡ÕéY^¦»a}¦³ÐIãíÏ‹~F¡“ºt÷þ~Ó¢þn¡Ó^èôµêø<‹ãýïóÏ(tZ'Е…Nê}¼PïóÓÏ(tRÇþ@ïÿÂ÷§ÐI½ï7|Æ|õ>>˜—{_/©;^ÏÂ.:}FÀºš¯¿þw¾±§]åãç1 ëGÿÛ‰ã|Õ½þÛӬʢÿío>£ÐÉ\~‡ûßþÆý¼¾7÷ПB'ó¿7Ƽ²:Îw·×qžîšïíóü…NâÈ¥1—ê®éñþy,”d¡“{¹GcŒB'sý¹gq¯gùê(t2çæ.ùñþùŒ~b¡“9Æ—xìí5РÐÉ܇{T÷²õ#½Æœ‹»Vw{ÖïÝ=‡{Ùöb~yÙÏçIcÚ_¦óþÿöSÈómÌí÷x¸gsÇxV/1 Ì5»›- sîÏâž/÷|¶·ð÷Åóÿ,tgŒßSȈB'óÌîxýuœ¿›c<«§;7wÉîŒóc¡“y®0 )QèdŽñ½XØ€B'qÃøÇþPÜžõc¼Šc¼^wìÿıÿûöƧ8Ƨúßú˜Fùw Ì{<ª÷x4/u<j®ùñ³þŸê½¿Ulÿï¸ß)ŽçSÍíñ)¯¸ù…N溗çS€÷+ÅQèdÞãK½÷êñ¬¿ÇÇç(t2§á.ɽ÷oê=^Ôïö—ý~1ßÅœº» w­î†íãóŒB'q<Ÿj®Å½÷êÞÜcÿ~ógYèdÞûßÏ1fO3ÍÇ{|«cü‰Û³þ°õcâ–9Ƴz¸ëóúßßw±ÐÉ<†:šdö´Õ~½Ü1^¯'ÆŸ8Ư¸÷ÞßšŸíµg{}ºgv¯®Žë—Ï(trwŒßÎÂZ:™c< <ŸÃB'sŒWqŒGqŒ'ñ>¾.âü~„…NæxÿN²÷ÝS]1ı?/[…NæxÿÅñþ_ÇýŘÆ;èØ?]gùÀþH¼Ï×ÌC=ñÿÿ;°ïi¼(tAª¾y_¨÷ÿ[½ìõ1ļß/õXîýy¿F¡SL+®ôln®OG¡“9'÷>¾¨÷ñmO+Žã ÜCó-bšp¦swïÏ—zÞÍK…NæaÛoøÿ‹÷û©Þûõ²×ã|<Ÿû3˜Ø Žû{æýùR÷æŽ÷Kÿÿ똿`Ó½ìõ1Á\Ÿåûó¨Ž÷G<Ÿ×/ýù(tÚÓž#?Ž…Nâ„÷S¼÷§ê½?5÷²å$$ŽçóÌñù×æî¶½˜`ÎÅ]žõ}{ŸÇëø¾]_œ›ór·áéñTG¡“y ÷´ß'N¬Í˶·ž÷' ÌýYf·½?(t2—ì®ÝÝõ÷G¡“9=Ë}}œ¯}ŽB's-îiëG*´¹ì×7î¯Qè$nÏòŽ¿ÿz`%®ÃÿÏ븿dÞç·ŸöOêéÅ=u9 ĸ¿£Žýxv÷²õ3ö÷êé¶ÿ‚qÍu¹»mÇ{µýQè$ŽïÛÌñù£Yèd?÷JêŒýÓõÀç•þßÿùÿóÉ[™ endstream endobj 157 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 160 0 obj << /Length 1816 /Filter /FlateDecode >> stream xÚXYsÛ6~ϯÐô¥ÔŒ…yó»Ií4«™é$y`$ZR£kDÉGÜß½@J–œäÁˆÅ.»ßðIÿÅËó,ëèLÙÌ›Nÿ¦S|Þñ.(c]§?ì|J>T7]T+ü™*êî—þÛ—çy§P…7ÓNÏh•§9ó|‚]úK·—Er¦`ÌtrL£IN&@œÃße¡X „&ç0EÚZþh߈™N]’{Xù½æ•¥0/–Ý«-®Å¼œò¡ãò;|—«!©MŒ³1àJ5m—ñ’«ÅŒ?jøØ ÄۮɓêW‘¥Ä3JÅpzËÖg*Ï-˜‚Lpu™áA¨Ü ?¿!û¾ý²\¥¾ˆ¼G¸¡Ó³àŽ,tzZ«Â‰7Bñ mk‹G…£nÏZ“è¢0ŠY´SYn`ÑÆµÎ0â t‚ :9íj´žÇÂüû$ú' Ûä6yËþAž?ãõѤ³r>ow} -)my˜Ê……vÖJ¸,Qz½Øâì gLh@JUnZú©ÐO(ö+¢à¡›gÍÁ­ðÓ)yZl,ô a¿"¹C" ¡;m™öšeešï±¡[®XV0¸TbŒ,-XàT0¢Å7„,ù=âµr>ä ‰ÿ(ìÊnϹä_Ñv3#ÝèƒIþ®É‚¤Éâ†fd´Á”OƒÍS¦×Ñg¤.¯¡ûf34ÕFBm1š.¾Ê¦)ÇZ!x6…@%gg!™ Fc”µÆEŸ 0"Æe âš·’xº¤L1Þ°Qür4­X}ЄI5jµº†Û®ó|; Mæ<¢øqÅó5J¡%I˜6ÓˆÒI4ÕÁ`Õ¹ E¬èÍò/à!×j `NÀE¼_u[8\Ù ß+Â/„o0|6ÎX _“Ʂ¯•ð½„X€õ2^ Þ6%~—”Wy~F{Lò¾ ²“Òz¢”¼ëŠ,ùˆÊ÷å|ÀÀýòÓ`#)×QkÞpy—&Ñß„t:©ƒ«ˆñ Ât]µÊ=ãs:s#™ý¥zƒ†*\r«ÃøÙ.ËÜÁ.Pgk#Vã´ªcåÀ=#&`(ÐÕ`>ßÝO7$Á3@"zÍn¬>§Ú¢<´ßúèLê”ËüO*ÄFÆ£¼mñ»7W6[xcå„­<<º¢8b…u‘{Á–É Ùi\™€ “xVäœÄÑã’Ä-(M#­Ïø4Sã–ksÊoEhòÛ·§‰wJE@yO*R¯DÄ{ª# !½mÿ‚)œêþ°å>ú¯¸=I”cl5o»àñ)B†’:Ò/ñÒÍ~³_p±- >yCA—BT2È«ˆ}Í:*æÁ¼pÞç–E²? @µœÍ¨*9&Š»Ì›¹§ZÇ›Ïb↠½]5åû¹˜ œ ÚœpÓÎ«Ìæ‰ïw Ý×лIÚ k¹†"  Q>d¼KèUû8×)$V8oèËrTµá¬­7ðS4é4×yª\Ðûw[Çœs,îÛ>"ɇ䳶٠~ÏÛüîpP“Éâ¹kt!÷PIzâ›ü'ÙñFpR­˜Ã¤8fM‚‚=Öñø@•“ƒ…WØÇз.¦ñhÌ—w= ·åse¯Ð*ý´ìq¹ ^™¼ØÅÃiÓ0H-DÿíÔB˜UÍÏPzöƒo„P¨´íÅ[ž’–ñÖ7)«°â¿"SÎÇŒå[÷yqß9ºÍp–Ü`0pÉ¢@x7‰àG{ÓHáZÔÕ R&!\Åù&KއmùÚ.fçÐT1ljÛ0ª·^5¯r¹òbNU¦ Ròî+8ØBæC¨ØÐ1²ž\¢|¶RHݱMgÑ ãöñsâÅšè¢ã®qØSr!¢P‡Á½œÄÜ,–±)!bD!´çüÂ+Ÿ‡rêàU“ú¼}Ö4Œ é@‚„þVþ•é~©¢œ(©›ú¢,yʦ“ j,©{ÆŽ¹æ~÷±t‘ª\ïY€¬Â $¾^S\·- ¬ÞÆÎ55T¦JW ~wY‘¼¾Ò|Ø<€AÄšÚß”»ÓÅ=/^mŸ·grcŒÒY£Ÿz¾+ŧÉrÕ<¹Éh=¬æØ,)$B›,ópËbëÕ…‹‚ÓŸt´¹8îhP·/eì©ªÉøˆsyòNh˜«‰D «J;;Õ´­N/d<Žå˜+8®°Ý3Yʽݚ^üÆ’Lœ²›e都/˜í†ÙPë{é81»‹j‡[Þõ!1ü9ëµ`¨ŒB1F¾Æ²"ͩ茟?ÈOVZ§ŒHÌQ$¿ms©ps*”Û­î²y ›øu¨éă}¯ÍUÞ´½×kºâ–€Ûšþz[œJÛ¦#¦‹+I°ö1ؼ­%:ÑxåR}0rùG•ñH}ñºÿâTžo endstream endobj 161 0 obj << /Length 149 /Filter /FlateDecode >> stream xÚ31Ô35R0P0Bc3cs…C®B.c46K$çr9yré‡+pé{E¹ô=}JŠJS¹ôœ ¹ô]¢  b¹<]ä00üÿÃÀøÿûÿÿ üÿÿÿÿÿýÿÿ@¸þÿÿ0üÿÿÿ?Ä`d=0s@f‚ÌÙ² d'Èn.WO®@.Æsud endstream endobj 10 0 obj << /Type /ObjStm /N 100 /First 833 /Length 1930 /Filter /FlateDecode >> stream xÚíZ]oÛ6}ׯàãú"ñò›C1`M×­Àº] (ü ÚJª-±;[º¿s)Ù‘#¥õ¬(š M‘Wä½çžKŠJHA""1‚¢ä… QP†J„‰A(),*H o´PZ1%¢™‚°4o "í…Ö‚”qB+Èë 4Z1hY²åw2èÒ“E7øÕ¨·èÍÉÌtç”àŽÈa%z²Jà_iTZ”OUÊâÁ¢kë!…òÐÕâ7äѵ”&CSZ)º È9 Õbªè@–h#QOPU9¦µ‡±^Be…‡|„2ÞCem3ŸQÂ}дQŽ‘ƹÓlT"@%PùÞ PC5)½ˆlZŒY´0 ýFÓdðÕ õ0‘í#èf…@Ö›„6ŒSpдž"4çØ„÷©wd¸J §¡|`c+ þuf¼ì+*+3'¢Ö,|á-ÁÐD¸A°'£g®Â…Ñ3A”èá-"1HÎ8ÍYƒ‹É1¶&RöøqV¼þ÷}%Š_Ë‹*+ÎV˦Z6¡Y¯²âUµYm×ójƒ0K/ªE]>Y}o¤`Ú1•Ô,Ãëk¼¤“Øwߥ–Ÿ¡5ñø±(žAÃ5ÈÂ_¶Ë‚€®ËØ.gßN„KY´Wüº^Í«ñº>}&Š×Õ‡FÌv]Av`…>ÁŒ³uU6õjù´l*ñÍÓo•$Ĩ$â¡Á?Bk«Å­u¯ëæ5¯Äëòý»z¾/·Íûmó(Y´ØÎ«5ך\æòQ×׊‹šÆXfÅoÛ·MzäBÊŠ_Ê+®SYñ¤ÜT ïâ§êòŸª©çeVü°œ¯õò‚ÇÀΠ7Åó³3^`„âÂY¯“|ÛÜþíâ÷zùýrS_W?­ÏÏ+@Ř¾ÁQ\ÕËíÃ@ñ÷vÕT—Õ9@4¦X¬`ýfSëòŸª(çÛ¦*æõz¾½:¿¬>M}¹¨Š«r¾^-‹·ë 2x¥œÏá…bQ£‹M½)òåªYTçÅ}s¸îò²Ü¾Û./Êõöê²Ü6Åêbµ¬þ*æ%··y_Ϋٌ×\Ûìvˆ>w“¢LÁ?^¾ý³š·­<¿B´©)ìTæ&;•šd£vaªÛ…O:nŠÆZ4“4¾ÖyLiô±aÌY§2€^ßôã&ª§èiïçfhd3ê¾`½Që0º‡*|}ú)<4ƒ‰Ô7‘ÿéÀÿT°¾Q' [–ÚÇ´ÿ ¢ÈÚ‘(²îÞGQýYæ`ø>Œ(¬“&Í@n0•ÚpgÕŸJwVžªç`!àè~ÆŽó#±ãÂCìÜ>í`©?‰|^Ý$Ÿ—“‚«c¯›k—£óì|ày7°ÐÜÏð c+Ô@áuÛCÍ 7i«$ VDá¸Qpÿo>Á±MdµöS‹òSŒcý$cG é}×N^yÇÁ4é¿‚q"ŽMÃña>rœàÝåI[ªr°˜Šñ®bglQx²žÃ½_©ï:dÂGB&|1!Ãç)Ø!’AÓ šþ–âaÌð±É¤^ða@FRŸ!júmÝÏ'à‡»Ž§ø‘pŠ_N8uÛô7ÂIé‡pº})Èçë“VJ¤K%Ræ ~ö]{ž“ÐÑ%áÓŸÓ×j÷wøyûŠO¯§ YzäìTß׈ף¨¹çè0Ê#ˆ>iLJÌðâ¡» ±Ñƒ©ròw§ΔÆÞÕ0Õ[RòeóYö¤hx^BG˜Udž¾•·‡~ªûBBߺ±Ðo÷5B¿w‚/á™I¼ž‰Ð‘‡"7xw­ïÇo«è…ôžBÞ·¾(›uÍ æߟõíeo*ôü 0=³¤í³z½iÎÞ•k¾–?—ý§ßëEón“n…%ЮI¼;ÅaYn“.Šíxm(~ãd>`+z)J${xøM]ŸÍ;Š9ßb”¹îÒlnºTE›“ÐÊä|MXæ–ÔC2ãU®v%Îs;Êå¦+‰6ä¼4ó¢mEÛA›¶BmÇý|_ÒFmÚÉôjµ5(ï·6%íëÖ¦1’Ž”¶%­ñÞ*Ètfq^©Ü 5¿«un;I¸Ü‹’ ØFç4J"à‹L×rj¡Ëâ·’“Ú^º~SJ2ÒA3qoDß ¡qÑ©á΃½ü÷Sù+œD_<­ëZ.õä[| &ƽûµ­Am>¥3æ&@įE»¿F;Ö6HFÀØ"%F¥Ÿ(ù¶¦f ¶ùàPv:äé(”dµƒ‹9ßR ©8=´©—ŠDœw½¼å‹¹)×=ÛØ5j“«»¼ò‰†Ô½Ñ–vï¥R'ݾ„ãAïÞÜK·Æ3!ŒM©ñ@«_´db¥|JgÙ‡×Ú endstream endobj 171 0 obj << /Length 104 /Filter /FlateDecode >> stream xÚ31Ö3µT0P04W0#S#…C®B. ‚‘)T&9—ËÉ“K?\Á’Kß(Ì¥ïé«PRTšÊ¥ïà¬`È¥ï¢m¨`Ëåé¢`ÇP„ÿþ7Ô3`‡v(P†ËÕ“+ L5* endstream endobj 184 0 obj << /Length1 1650 /Length2 11333 /Length3 0 /Length 12391 /Filter /FlateDecode >> stream xÚ´Pœ[-Œ„àîÁ:¸»»;wk qw—ÁÝ]ƒwîîî\‚ûãÊÌÜ™ÿ¯z¯ºêë³¶ï³×>dŸ”鄌m Aâ¶6NtLôŒÜ9a &F## =##3™Š¹“è_r825ƒ£¹­ ÷?,D@@§w™(ÐéÝPÎÖ íl`b0±s3qp32˜¹þehëÀ º˜äèÒ¶6 G82[;wsS3§÷<ÿ:(¨L\\´º„¬AæF@€ÐÉ dýžÑhP¶529¹ÿWJ^3'';nWWWz µ#½­ƒ)?-ÀÕÜÉ  r9¸€Œ´ ZƒþnŽ  bfîø—BÙÖÄÉè¼ ¬Ì@6Žï.Î6Æ À{v€²”,à‹Èæ/cÙ¿ h_€‰žéßáþöþ#¹ÍŸÎ@##[k; »¹)ÀÄÜ ø".KïäæD Úÿa´r´}÷ºÍ­€†ï–ˆ )€ïþÝŸ£‘ƒ¹“#½£¹Õ=2üæýšÅlŒEl­­A6NŽpÔ'jî2z¿ww†¿‡kicëjãù/dbnclòGÆÎv ª6æöÎ )Ñ¿mÞEpÿ‘™‚œlŒŒŒìœ=äfdÆðGw;ПJ¦?Äï=x{ÚÙÚLÞÛy››€Þÿà<. €“ƒ3ÈÛóŸŠÿFpLLcs#'€!ÈÔÜî?ÑßÅ “¿ðûüÌÝÚŒïôc0þñû÷I÷aƶ6Vîÿ1ÿsÄ š’âò’J4·üo¥°°­À“Ž@ÇÌÆ`bbgp¼¼ÿ;ŽÐüï:þá+ecb àú«Ü÷{úWÉ.s€òï¡üw,yÛwæ‚”ÿ!º#£Ñû‡éÿ™îºüÿ±ü(ÿW¢ÿoEâÎVVê)ÿ2øÿèÖæVî[¼3×Ùé} älßwÁæMÕA­®°­•ñÿꤜ€ï» dcjõïk4w7w+˜;™ýE—¿äª,𕹠HÁÖÑü§@ÇÄÈø?º÷í2²|>ß9ù§ ô¾<ÿRÌÆÈÖø-c~Ÿ0ÐÁè÷>äwÄðdz_GcÛŸ,0ÐÛØ:½»Þ›ó˜Ø:Àý1QƒÔ¢?'3€Aé߈‹Àüâ0þqŒþþ¨œÁø Àú|ObúÈ `0ûd0˜ÿ¾ç±ú|§2ƒÍ?à{dÛÀ÷‚íþß#;ü¾Gvüd08ý¾'rù|ïÈõ?ù=‘ûŸð¿îÛÈÙÁáýÕùs#Þ‡ñ/üç¹Œà–æmx-jÛî«„ð\éöÆùfÈöÔS¨è<—~:?"A'RUf|Ýp¸JêFYÝ£¼\&zñôíöLöç‡ eÀ) Y¨D°u’eù/XÓcʹÞbJCŽ‘užÚ}o¹ô…wtÁ^…NÖ:ëܽðnœØ ãO† uñç§/ß;b̆´ë«0n0&QôÛ¹Bv&˜_Yâ8.i¥˜±…‘NË29¥S6ç0¬ñU!Ô'5N>ãOõ ͼd¶Ÿ– ¬(ž¡°ž‚”Â%#áugÂèSí|õ'Çð2üw9ϲ¸m¹U?9ˆÆki[§ê1 ëgV÷}çY“aê­®Yãæ°öœdy}ȉÔÓ‚Ê]e\¦h 0]öf[Š~iã9X.STA纎ÕöJÄ/“•A$Ï1 ³N‚ÆÄ‡(-_É‹XñtÞ;1鼚§4¼Í)zyŸã?µ™*{Yiý)‹™ºm8§WM™¥<¢Ÿ g˜TÙ Eû(^µ8)¡ù OG\À6hýu ò#qÑF. µÖï‚.–aCNMôbø^eZyæéoÉVn—âèÜPo Þ{°P’O&²^0'¯~ ë ƒ¢¡L¼N³ô3¨ÁÝxe¨„H´¤DЋжLA±«Dr2¸Õ;îy ÆÙž«Ö‘ô÷9ÒD׿-‰«{Å„yB7"ëDö¡Äø¼ 'í²àˆ„ì2Àe?ïº?¹é¹“Ãþ ­bÜq<U.0öž\‘®Çîë/ŠPò°T9òŽ:ÔfÔ$'­§:¾^l‰rEMlĵ_©Û+‘;N–x«"ÆE£"ji[e¯L,hbO†ÛvŒ€ßge»1vß™‘@–m8k .{o,ÏÀ KÅŠQÃÒ,:öu÷û\軜ܚa0K`Ïã,ź4­ò* ½ƒéé@Òð¿jnDb¡} ùˆJdv°êE-l*¥ˆÝ14‚ñVE¼îÉÛrCzn,ùÌ3Ûº—NPÀ0Ðݪ"Ž ›»ð ¿MUÇ hSÏÕš3=:Ÿ÷„Œ}[%gòúy¬JúÏ'=”E$!«e#‹Ù?d&:õué@¬êNjä Z™ÎBÿ´ŒÓÕ¤šÿà°tÅIqÞ¿±É!™ÓjÞÝæKÑÛ@…êײÝ0U›-14_ ñ=RË']äW2\¸*ýD±p‘Ö-–l(ïy3MRoѶzlùç‘gm·Ñ1· ›n{’zóz”kó{õ†Kó=êƒå¡¬Ü^”¥¼7ïCSžñŽØäòxÁ‚Ÿüó’•~å]ÇOç%+Ö6\£L©tÁw{9O˜%Ú(qàå§}ˆ=¿œ,8àaXúäÖÜ·= ÷i·´.÷•0„Íù¯v'¿ŸŸ¬¸„¨‰Ïé™YVÛ¦4T@m¢dp~ ú‘úáüœúcG?A¨¼Ô'E—".VÖ·PÖ…;kd€ 'hæÑ†¡îÀRôïù˜*¥éÞÍâÃ:eÁæäðæ—œC(Æø‘:µ*϶JØ{}Éó˜p½`ívº•ðÀö6brÁ3k„üe`·ó1«™Ÿ¿ƒ”]Ä¢?I—FÁè>µqZ‚“Er# £`„ÙX ÁãÐy Bsº`«XÅe‰Là#ŠêoÃ]lù€]ŒÜ=省”¶UÍÏæ/‰XšéÐxƒà†bVaæþyÇRmDy°‚#X þ^Ål¨ƒ±f{<äEY nì¨*uÏw®û8“Š"ç5•k,}¯£Yª„T&áî‡ÜÈjL‰²!½ƒßäIŒeõ е¬àTƒK½?¿:ç㛸w¸¨íêùÞRïY»ÝP‚îÊñóéôW}~xÍénÈ2äô›lžÒ@œO•+©úYñm±hÍÎ.j3%œjÀá¼!Çgwé* ¾{!: š—Çט¶Ro†ýûžI&­B§Ýx±×E…e›g Gý5!¿9|Èdžj@¯#°6#S~:_°µÊ í Ó R[X<¸}V–lÖZ?£í½Nä×FMZEdcë¶Å"@¹é¾R#m×ÎÓîŠx J1QåÁe} ¬ÉÂUühÑ|÷XöÑ´5˜È4yÃv}ñ3ê'ŒÎ6³Ðï%­«”³™æ›ƒæ…ìڎꀼ"ZÀVÝfêÏ/8Ú“!qãú:QêN#¼ƒA <Í‘õÄûJø?¬×º+²Ó©*nK0ÒÅ¢tÕ™ºf¦âl¾O¢ƒ¹ï̇.Q †]è´ .›úFLH XÄìí—¯9Yõ槆·‘;¦D³ðÏ\;M“ž?†ŠÒÑÊ´>×éÐ9,[-ESŸ·ÚƒMÇÉÚÅ_jY ËuBø +n: Çmc( ò(ÛÒký)aÀá—›^/d©¼’Z­4ò¯ ÌÍß165d'[Uèšý‰ÎƒNó¾I„+B°Yû›Âwxí‰Õ„uxr…Šï¡tŸóó¡knðLp†\Ýݽ$1r=¾©ú`ñZuŒ_å.  RÀÚýPÏWš7‘õ§ÚzŸÆçøÅÇÃ{“Ã\⃇,³_Q?AÄ=Vd²c’eùA’ øÔÇÀ'‡|Ù‡B„AL‡ÆS—”™Ò~O€‚ûÝâðΈŽzæÄ8‡GAîu®1´ õ>°"ßã|¶•úã Úhñ^,ˆh–Ëe,#Ù°C3†¥J-FžÅ¾]ªP!W"çG~«å¯w=\syªÝò"Ŧg=ЧœqX3¿™°«3ìÛÖq€äB*ëÙÔâ}p¡)þX)+²Ûš8NSL°Â ‘„ÿàNï&2½ÔŸMþµCµ8Ñ{IGjïSˆQæðã0¶´)Bfç÷þŠ¨Î§’a@4eúïO¨]ôI'l‘J +?‹=¡¹ *871‘£Ã·{—ÅÑDÉe¿ŽzéϽÒ•çĹ6•÷’y8TÉF-y wd„… Μ, ¼aź÷ëýtB$•ûLjÅSN5Pª‚½VÝ'Î}öQÍÊ,;\XÕ g rÀ1ÑdÔ[Æ39/‹|»YУÀŸPç4ŸõcéNå—(½S¼áçâé¯bÕÍË0Óx|à®EøeŸ|F3´ YËggõçò(cün<ëHCpE>!F 9’e4„Q£dÂÖ‡ t“XYÊiÌç/ߨ/ûÄlí y:BæZ'öQ£ZØ´‹dQæÏPl›ºðU~¯Â”䊇&Ôðóµ¡\.r^4„‘Ædeï…““0MÙÞ'89k×Í(Ž>‰©|ÆÇéÑ!ZqDw{»º/¯\:ao)S_ˆ„ÿ†®È ‹xZË‹@æfEîW7ýåÌGØl›oS¼.oƒ˜Y§Y—v×w¦ZÐDYŒd%þ‹º/L“ãy)ryÑ ¾ÚNY€¬ÉÜk$üÁÉ LæË÷CŽï!cšÛqhÒ¦þÓ×I”†©RWfÖu”… NcÃ3QmªÊhSÖ¢\–ƒ—5 r0;ù€n2äD‚%žmNñûˆàÉÜà8vGGÝÞ®ri˜¨ `ž°ß'Êýòé K’w,>kíD ò†ì#~½}õpŸ·š¥z{!®¬\ÜÈä¢Oìt®©ZÛN§žÁ,1€A${SùeîüòˆßäÆåE­¾;¿Y  ‚ͱí¾è @)ÉÚ=EvVYæøÍ+¶r¾ýÚiªî#R—÷`­‰{Å÷ ´CoLöˆ°ÏÈÿVȳÞÝØHº{©7‘ÃO«™AO þ´šPž–Mž у݂aÑNKv†¥J>®\^ʈ|”ŠQ–¢ücÌ´]g§©û),õxmê'}0Æç¡¢:Ø7Vo(š¾Ñ¡ëÜ”sc‘Ñù\žÛcB‰Þöª|¿‚þ>-¡º8œÜ’Úói½X3?2D‡’l)ì×W?™EAR¯%Qõ©á3× òµõ&Y¨envý{_Vû©¼g +¤åL‰§IÙ9/õÛMËD™Eê9he2³‘ç²`Æ[Ç'¨röCXבV™HÀ»m[Ê’š±1¥ˆ4Œ2î}B™ù‡0Àß_wõ¾÷±¾`±Ì$PY|)\bzˆz¶î/‘z9eÓä\èÉ¡70¿ÊÈò:xy]·‹ù,Æ!W^-˼ð-o±|YóÅ_O¾9zSk¼ô,ÊZ¥^Ùéúú¤ròv îÄt¥°4ä[4ï1g%Kçâ¿ õð‰Ñëî ƒà·–í‘•ßáºs=®íÂýv.P}œ R}¦¥››çjˬ4aUºe.=šÒhnE„q%!DÖWòÀƒÑu¦²ßÚô<¢ß"ÝÀ°˜í(Ÿl¤ÿRÀÜDî‹sûHÅ 3sÒ O6ŸÜ½£¨Ë;kÛ;j2î3o’ÎgŸñ³Cº·¬\ô³ÖJûœŒ(ÞдQ×ÝåožÎ@ }æѤäa3"‹$VÈXP‰tôM7¤Ç}\"Éa´M“‘êVŠÊ8eQ󘌞ñ Y]'ñïWåpz™¾Òlr/û`×9‰ÜÅôÇ,ÒMµÐ)ùÜöÅW+ëiv{f©o¾›É-«`c'Ä!‚@ª^¸xpyŽiŽZ¢³[L%{ó2uÔb<8Ãc8¨¶dŽ„èCJädXØî]Ø!¥êÉrjKUÞ"%cDc#™¦%&ä´ƒ:‹óçW›¼: ½'~+uy˜?Øãl'Îz¶$ô_×ýržç­/â n«[Oä­>SÎ,e&+=͊εeéÒƒßí*\™PQœ¸<³†M”u‰I«ùŽksuXç9qˆAr€ø :;á©sÓ›> X•HM=,µàP/<"I¯Žû8°0\;4Ð"¬&Aé»i¾‹­½+U¤.Ä+Øt°“ÎWÅ~+P‰~h †AЍ2,QrŒ–ëÏ(ï(Ëv³6~+KtåFÎ>oªïò'»oû]¬²©?ÏGŠªNæ3‹Æå¸ëO4x0YÅ»=4Ï»®§qP=Þ­Q¿L‘P¶PJ‹òº×ZÍΨ ÄîºÚ]S†)åÉÚ”!á¼·x™£üH€ÀkŽ¡m1˜`Ôû¢î"ówp凛†F? „”mG8|Tçí*êÜ|±´Ñ6÷2aG@ëGJ@ò°hãñÉ £.yråʶn†åÕi·rì¹ûɺþ«ÅýHŠÒBïùà÷hóŒCcYvº)tת;ÁκL>-fL·-›²$"‰L62¶69ÂB9ÎþµQB.ÔoÞtãf"”=5ÛýBK‡4øœ‚îîŠÊÇÎèç ¯YÖ‡K,n סæ2Ÿ#8:‡OƇ×.ñ9àˆTk\Yµ$Žªùª»¯­°I#ÇÔNX®3OÝÃ+·´š)¯É4ïFR5aBùú-<–~ M¬·j2Ür¼À«zõ?æ–ò¬3 (Û½ÎÍ"Ô€ç¥ÄVh®›Aòs•ÜMŽPVÆL>pç/`ºnÚ -ó 7'…e`ÓL£º?ÈÇÚ;JþÀ VÉBÕ­ò} ¶Ï¬m­8EI¹yBfxŒûØ’5ÿ cU&É{‰‡…7iåh¸ž÷( ¬ª1mkwR÷fBÌ&(›·ihq®‹Û®>O­ö%šPî‡Óò<­ò…©>Œ¾n}cPXÅİÆÜ½Gí„WL®‰~œƒ®˜DìÊÐ~%#Ê4¦ÈvN·^Î&ÿ-Æ…²J´†¡îzYÖ° Õ÷0|Áxû|IéÏŠDº€PºGMyëÕ]ï`åÇ[£i¾µÏfšAsÄÁÖdˆW8Ԥ箴Q²¢Ò}‚½1å:òJ†{êïÆ[[Ñ1•Ri‘è«W’ÁJÀÕë…çš—ü…”…£Ða·þ ÁÖ׈x9»q^íèHÆ âЄ–ÊÑu4MP‰’vžå½ißDQäfÀv*¨ƒ¸ÔI¯Úpþ¢ª}ci–zçÙ÷õÄáîdéÒ«‚›»E J>FøK—ªÒЪ¤áP¢RT©ò”””ÕI¶­¥RÚ¼®MêL^ Gd>þH/“ŠJÛÿßO$ÎÎ*†ƒ"ËÚ$ž¼Îv˜©o«„;hßüu:¨uÏ™ Ѻk $?áž !ÈÄ~:Á<óÖ¢ÌÅÆS@géç7 Ý…1(½¶v}r‡\,¯ÙìÐ÷–e„±·Ý’^8¤^/oâ²î®©‰ û—ÈþzrcrÔ/)Ç¥ÔaÞÑÚm×¢ŸY…“¸[ÛÆó?}ÊŒ¨snhàQÚÕ¤‚Àóë,î©Y„3AWT´Ú™q :a®@ñY›ÏÃïuø»B.µŒˆª}œeXBÀɆÀ/Ëæ*xD*9ØËÓ' |%ªu)D"b%MŽ‹"õ×ÖÕi°™£ùþªãÐóÔFÁñÚ9•5y•k숂•3`«t™›»O3'î ³]}žb‹Ûyî©6•㋼1o&ITåäæ¡j™Ü,%ç$"aª¡X‡â±$ÚÞG'únö_ŸNæs{T1F×YJqù€ùz-¾>(8";º/W»Å~DÌÓØÄ60à"Å;ú!;âÒœS/=/£CÌž×…ÚF(¨L˜°&àC¡Í`‰hy[ž?¤–ƒÐÄóa‡‹%23:C¶¾äWËÃs7εԋ㲬fféSrfqs¸¹«i‘âeÇ>}ü°f*>Ûðk5ý륡¤¢öŒÉÂËÏ5¶~kéðÄ`”¬Ö—HȘ<+W{üŠVľ©ð|8¼é£a Ì2ù‘åÅË›tûB@md½=r@š†Ñã©Ò';ŸùƒZçs "ݘµO9'äŸ; b÷d¤ÓHAjºƒ–7÷ã6„è§É$Çç– á‡©` d˜àA’7¯þ‘# ßäðõã·^´ŽaŸ((¼ÔC]€ÖÒìq6ð.I3Ð7|u–$Zݶ>v Ù<ð¦„l‹õ`wÁ†ÿ1ï:«rí.u)õ·æf¨¶è ª¤6c±,Ô®92,7‚tLÅ"j>˶ƒCªVŒ·ÃýäW àÒQX8+‡ŒœX³ÌWVRþôî`ԲёÇZì‡D‰”–ºMIåÜ OÄ-2k”0¨/Èþ)¿¡UÎ •× ] ê‘ãë(…Ýd±Ã:Rd˜u…§Êe½ áÖŸQ®ÍbÈ}I’î¯a7® ¾2mQ~òü&Œ!žR!JjÀ«%tÚŠåãyö“X[–jKJÏ„> •F\”Þê¢f;ÓrÎÎ:Îj%q {àà°ùÙ¬Ä7€ÛxI–¹:+m¼–yÎåìòÚ{‰¿Í3?’ æ¤umÛhïÂq}Kíò=ñJ>q¬¼·¢÷;±Ô­²Uw0!òƒÙ/8Ä×áxŒLÛùLkíû髯’"§û‹â!6—¶ˆšlÖ4´³"ö“t|£Ñðwðˆ°)FØV†!‡·ÒRÜìrÇð r½Ä ƒiÍŸ¸ ß 6ƒ_Û_¥à’¤²ä§6G=ŽÚ‚í·Ís}öÕ¹*|#B?äjt m‚æ(Õq-ÑÄSî華»òh“¶­F5‹¿¼¾Ž„žÇêi¾´&þÄ%µiï·»ƒˆ~ew‚NÒè›JšÄ&MÚ½Ôò{PÅ:1%î" ÜfŸêý/µäEo ¿Ckýv³àà6Ý(E^³)qâ*r‡gÁsØÛÛ+Ä ×ÞBÕöQç½ëTýšd’#ðe>`´¡D'ž<"#Z'î¿]£N¾óX dpOj^é"G ‰ýãBôë lƒ¢­½Ü¾Ì:;ë|’œ%“š3ïÊ‚L óVm}¬i‹?íLRo_6¼¨n’m[gDÏmëÛ®¼ÊÍìb¦3r|~ñ§i¤è1fä¦g×KÞ'½Œ 38hüú©” 7‘@sQϰØIƒýüëÔbukÏDž1U§¼-ôŽÄí3Y†PBú´ZÖ±¬esnÊ/óZ{<ƒÉ'ž…¢&j¿+ »@øWLY=‡âWB¿¡‡50à]hÊWD°s’ªÄ*êF_‘€7$à.uþüŠÎÂe‡JSš1ºR¡4v‘vÑé ªZÈtAGœïâx­À@° =ë2’mì¶c¬Ön8e¬‡kx Õ†^lºŠ¡Ê¯M]uv«ÍÁüoNí#nûÔŠXz% Çßj½~»ð¬ý¨ÉøË‹ dÌjÓgFo‰Œå…Sëké4;ŠËWëŽn3 ù²ÍðAëtá¨A¯V^µ Ÿà5!•ÎþA÷XÆ+õæäiÕ­fÎ|Z–nÿ(äŸÎ°épÍ?›p‰íëÜÆá91ÑD–’·­i:HUeLÓÉ4‘¡3ëz¦ø·Bu¼5@Šø%Â÷Å­^}‡`6©¿˜Ÿšœ¦¤ÝàýÌï8(¸ákgQkj‘aÂt*f 3 ü1“hÈú|-Hºó©VãÞÛÿÎÛ…~Ñ¿‘Ó¢‘«›ò~g*æúâ8æ“Òîz>q=Û«s†é¦¦^zh»y +2!øàx³ ÕmÞs‰m7X–©üõ0í)ÜmƆÑþ–é;ÉØ9 Õ2)ŵáV}Döâ¸ÒšÖ9l°é‘KˆSã ¼‘:ÿéé°ÕßRøôZì0Ez5¸Ý«^“Ðò^ 1§›/ï6\*þžÌÔKHk“ÓDþú}y¶ÎGðKô[‚8œ~÷"U0Jɹí´À(M°Sš6“D@#÷]þ­ñä×ö¨çXqÂߨ£0Žwòõ×Ô<ÚE'½^©6;:Ï˨(Ûòn¹Q”ŠÐ3o®ƒaj·TeáB>tq÷­vykº§³µ²9²Úizöz3÷òÛ²Ì"l•µ`{†";„æÅn(ì³Ö‘uKÌ _ûü?^šÆ#ÇÄ]¸ø"šC&,û'7èŽ["®>ë¢JÿÔ”ªpdήžÄ¥õ&aœ×G‹¨‘ÄsüV«d1a†6az?²Ñ+~ìyfð nG5ø56Ý·z1¯§ÝÒ:@™Z$fÑÙm„»'ÖˆÚ] LÌpuÿ •ý™RK5¶.°~Z¾iAƒ2ïÄ !ÈBç˜î³YYˆGÌ—ñK(ú O”ê»1ÂKR>9ÿÖ²G>!´aS“Äõ¡Æ@º>7a¢™´º`ªÂn0pˆ«¿î®] Ö šX±±‘‰b$v¶@÷Âúh‘³™ÃšBjô¶±—Ó—0˜L‡ç¡sÒÂØdsa }ÛA¶Ê>WS›’7Jh óÛ+˜¾R¯]Õž­œrEY! -›Ê`ð«s€ŽoO ËYô4Ã-ŠfA ¤¤×½òÚI‡0YéãÞš·ùhé-§±ÌÓ;µË†ñûÍ+ÖBÄ#¤,tü()p±Už€soíXœzù[©çÀ–ýé ): $ ô§ý ÙFƒ”øj…=Ýø/Uðþ~Ó]É'=!™ãÄT²H„mDX'gI~øX%ru\9wìdQâ•iåRlnNIø°0éCk+˜‰¯ÑEiÆä‰˜!Õ}Ì# 4.•Ê4ÛIð±Ðù=¾@2 νy¬<_¤J‚¦õsÑ×z©îåË ÊÈF¬’ß¹¸bkÛ[LÉW¾d.òMcl÷n ‹+Ôµ‘œ”#˜:_?¨}It.`ÅU‰ÁŽ ˜Bø¤‚¦TÁ…ëï’ÛÞ÷Ú±!â„0¬ÿV µíçºÚ„[7VÙ=ÐP,L¥×‚`y2 Ÿœ‰ u„Ñ­ÙçØÚ“ZáÝ€X³³4¼Zf¼ ï7ˆr£¤éûˆêžÕëí“Çy ù¢œ#„ÓX²n"DØ…3ñ‘o9ò|þ"êzp­Y–²D ¾¢yrºü»ž[{`f]´ŽÔùÚ‹hgír¿hRÆp‘‚%Î*ƒçJ>Ø©Ã!£}í"x·Ÿ2ûIE0ðXø–—ÇæÅ ‡_F¹/ )õ'¯Ícr˜nŽŽÿÏÚÆ›û&µ>…£ÐhÃ\i‡EÆ,7у©vqÏÊeȌϰ¤ä¿¼Ùü& BYI˜(ºÐ¢*’­{×êW9¨Ëf¡1#hb¤¦* ¸8£Q›üª@>*æ[wh88ÂfÆWÚÔ¡ˆâL¿Ê]Šia úÀö#ÞYžitvMÂÅ#Üek:Þ¶¿ÜÑcrzØy¢ËØp×=ÍêØ¹;A=匆À¶àßYÒ€\'àX±³È­gÉK;@-áZ±®åGëã¦PÝYšôÅ…>…ÝÓ½ø>( ÔZSŽ®úå¼=ŸfeI›á4õ/Èá‹Ý+8'5y¤Ú:ëf(N5Îj,f÷]4Ï$”1úN÷¯Þu2„·æuŒ`üyðT¡‹ÇO‹J‹ÎÔš ²wAÔðk${r-59wôÀ1S¥ûÓµ‡~s؇)LËä»´¶$ºÐä¯òj«x.šðåv×É#>}Ùþþðè¾»L£’UÎX‚Ô—† 3C$?Í4gŽÚ€ãŸ/ÖÀM%¡´ä )„mïGã´®Ž”° ‡ü<~ÒD¨Ãå?Èg+~peü&mäóåGÓ¥_¼³¨êöˤ‹»ÆÏß“87a¯­™ºÞ4^»PcŒ¿ˆbj¶¤ã””«¿0pÑaãVß<ì‡%tŠz¶‰™@£о‚7G ¿&þ†f"åg>µî뺜âÖžµöÏ~2Œs$Ê !êÁ'H÷?‚‡f½V¢ËcÊ‚+Š):žÁy¾L¡ùN„µe|&ü*4Q5¾ÍÕ¤@A·˜r˜­vÓxûÎ7+Û¿17ý”ÎÆ8‚¬û:Á—JŽÕˆžD=cË¿˜ˆÍÜÁaQ3ÕΕ vT úÌ~×Ĺ069ŸŸ°ÄîÂ2•àq:å óá‹DHU÷fr;r˃ÄÁgÏHq·öAÌÃ(†èæ5ßp«ÀØÁ'y–[!˜í׸µxiÿ¾ë™»Îþ †‰‹0÷tŽdS‘o|Åô±š˜ÎþѰàÅÎghà P˜ÜL‘D±ác:¿ð;˜oï‚“áM‡þæwgž:䦰 K»2E£|)ÈF‰£§™Ü‡Ýà“WeWcx#ï9#(úLŒ¹k  ×‘ÍEƒÙÉ€öCúWUó²sõXÒJ@Õ+òÞ¼¢z=Ñc<0çxwÊÚØ®?—ãä½L½ö¡ñp™.ø_\öû¨ó=›7F°Z"þÈ­äâX‡¸X]Ï BqÙ( Þ(våì®àeì–X¤«ˆ¦».ƒ,ë9_i«± ˆ*ÜzÝÝþ ÿéd? ds-¼B¶WUË Ðc»Æ3k ´V„‘¼ïÛc-ÍgK¤hÑ‹øubU·V7Ü£ÿí—ë¡é!œRı¹OPÓ>$¶ék-„ó FÀRß™ezF¢­~1Q5-4²Çò<#ƒ¼ù!öHШ\ßž—è8ëNÝK |ÈÁÞD٬æMʪi½B¦'×*+w$&‹Ï7›é]R–xûÛ~6\‡?˜‡1Yl‹®YAŽ «¨zŠò­_ߵІ}^á> stream xÚ´TØ-Š»;Á îîNp î tCã4îA‚‡$XpMp—ÜÝ5XÜá‘™¹3sïÿk½·z­îÞU»êTÕÙuè©5^³IY9Y€äÝØ¸Ø9…2ªÒú\ÜNNvNNn4zzmˆ›=è?v4z]Ôâä(ü/† t{¶ÉÝž‰ªNŽ%w{€‹_˜K@˜“ÀÍÉ)ô¢T ô€XTÙJNŽ W4z'go(ÄÚÆíùœÿü0Z2¸„„XÿH9€ K #@èfrx>Ñhxíd ¹yÿW FQ77gaOOOv ƒ+»ÔZœ‰à q³h\APàwË5 è¯ÖØÑèÚ6×?¯Ànž@(ðl°‡X‚]ŸCÜ­@PÀóé€×Š*ugãŸd•? ¬€¿†àbçú;Ý_Ñ¿AÿZZ:98½!ŽÖ0ÄP—Wawórc­~ö®NÏñ@ ÄhñLø£t @^J|îð¯þ\-¡g7WvWˆýï9~§y³œ£•Œ“ƒÈÑÍíw}²(ÈòyîÞ]®£“§£ïâhþ݆•»3‡Ž#ÄŤ(ûçÙ„öÍäàãääà€\ /KŽßh{;ƒþprý6?÷àïëìä ?·ò‡€AÏ?h¾®@À êò÷ý·ã¿À bé°YCÑþÉþlÿÄÏ÷…xŒ8ŸåÇàüýùûŸÉ³Â¬œí½ÿ¡ÿqÅr²¯Ôõ”Xþjùo§´´“À—ÀÆÍÇàââðqüÿ;òWœÿÄ*:‚B–û<§ÿ”ìñ—ÿZ&ÀçRszV.ÀøÐ9ù8-Ÿ¿¸þŸåþGÈÿŸÊgù¿ ý+’w··ÿÃÏø'áÿã:@ì½ÿb<+×Ýíy TžwÁñ©z ?WWÚÉÞê}ŠnÀç]r´¶ÿ{ŒWyˆÈJâfió§\þ´ëü^4{ˆ#HÃÉòûi°qqrþïy»,힟×gMþá=/Ï)çhédõ{˸ùø@(èÆù,%n>>€/×ó:Z¼þP1€ƒÝÑÉí9ðÜœ?ìEû}£ü|©ß¦?‘€Cæo$À àÿñ8ÿAü•ÐsœêßHÀ¡õzŽ{ý7zfÿABË¿Ñïþ9¬þ¹ Áç´ààoù>ËûzüCçûíwr‡þ+þ™bý/È à°ù|ä_PÀaÿ/ø\¨Ã?ë¹PÇÁçBþ†¼ÏÜç7ÿ_îçRœÿq?OÎùYøNÿê”ë¹–UÊõ\‹ë?üF Ð?ò=Ó]Ÿß‡žsºýã~.ÇÍ ú×0žëuótúWÀó5¸ÿ >—ìù¯Ñ>'ðþþ—Ö,Ý¡Ðç÷×àYˆÿÁ<ï ÈmaÖÉR$ÌöKXëuµ™'Ûö¨Øý¶^:›ï´Íý 9…©ê}ÈôR*e gyKŽñBr‘êÁ÷ ©9²9I³åÎïÞ,Qkb»m~œ¨wìÓTÍ7 Tr6mÉ¿?Ý`;ø&Ø%úwA,<ükϯšo¥Kóۚ;UüÊè÷¥“loubƒ‹¦és->ÌÐ ¹±Q 0ãýòž¾¸œÂË{¢RJdAóÿù–§À×p;îfÆg¥\›Ûµ“”ŽÔ„þox‚ÁWz/U‰xη¸0^)"¦La:Û Þ† táýLݱ Z:4¶1D²o,Sн5o©¹I/=°oÿ:»/§F hòË,ÍU³}÷È'¦bú=4T¢×ÎíPƒ;2ãë;{ʰ F ¤ö½È½Ô9þyÒ¼ÞoB“/kß=J&Îs[äºuù½0Ûá®OüÇÆQ>kŠkÃйl¨³EÌ?êõ÷Vâ=ىÒ•¼€S¶þ¼¦ÔáƒõôUíãe¨Ä¢©èÎ$Üúœ‹ö¶{ؼU©h".ÓVX©ËaHù.š–ûu^µQòÁ·ÒxÃ媰!Na_ªŠÀO©Qy/_4FZŸ]iPÖN”L¾Aß·ª’¶zç7¡X:~þÊÔó*veÙˆVVö˜ëC^R~gûðøY‡;ÿ\å4…hº6©êÀOš:ñ0( #i¹ZHáÇTŒÍPÚ,ñCÛ®K›¼:–tGϪ§“-´ûZº„ï_Ç77ôÔØe u'ÕvvÈsÚºyp±§¥$NíÍp\»JT#4®JÑÛã¼Á¯½‹7f;,ÖqG¾š ¹S8Çõ^jlö'T«¹Cg™TÄÜmJâfB&ûeGr›»4¦cL‹üI©;;§Ñ¾³úè0,Qò”ï\n½*ð$õÙÖ†›@n¡ÂšÝaOž ´ôj.%Ê÷ I+}Á˜‚'j(Í?ŸÉ§¼4Y;Åâs«Ð–Ë ËÔ5(OŠž«"°Ìƒ%’Æ,ÉPÔ ~@œÝÎÑ{jÊÒ2Á¬{/Ôƒhh˜EáàgIìù9!x DÑØ!B &"À1#ùÇö!Æe)§1éX# Š0?‹Ò¬Þ󀲸2r—Uщ /Æ8ørq‡*8­ ü9óž£ÀR/-T6½ï´X6tðV«—Ñ»8¬y?¡ga²#óžÎù~õ8 Åò™PM¬@LÀðÔ¿äýr‚ Ë(œDÙ(cõ’C[;óÚVç:o!ÝB²®¬![UjWeÆ´Þ¢rªs]ÆQ^c}n€¶ûUÁ¯Yõƒ.ÂÄrê›`ò`ƒï§Ð]ÄØýåÉŽoȬbÍ,C¥ºòÄ–;<ßxª‡Hûí¾¡Ûü4CÈÜ©r7æƒVªÄŸ ç“|¯ùÔ»^Ñ>°þh™ƒ7§jŽZ¼…O 2×øQå"ÿ©ä²Bq~'?¥>y…7©•BЧƒÂ¢DrˆxCj‡KŠ!*Îú* Ò´¬VG¼*o5€ Aˆ8U!›À,Œel:)ûº5Á!²s3ú ú9¥äçù7qò£áU‰±¸ÁM CX‡½$Z¬ÆùDfñþf²Ää¡B1¹N3}Æ^ëtdF¡E»ÄV|³¢y«ú¼¥ˆ-|øÔñ¿0ôe²ªå(•.ãÊÚpŒç§Môs HšS)k+³îì™§‡É„ ÈëØÄÉ.SUšïjûæ ?öÉÔôÙ_Ü\”GãµXep}æ¾XS³ô¡µ-û¿ÍÅÒeù…,Ä£ë hOÑ|k?{ PYW¿‰)C-Bëí²±Sv‚9©T›(u€ˆ„ºãqeËŸY|jH¡ÃÄ[ žeQwÖ7{ãàK5Š×2¤µÉ‘YõLo£:¹ãÕÂOö´±è|uÑó ©3Â.pøés•¢ExMG1uo$—Ãë‹Þãì£Å¡w³Å†Ú\ 4SDÜ©Kr°I*O_¶6í¹d5¡°˜•át'×É»¢øÙÆPº½Ä*5êÉFÃÂ[C·Z >Ùô)]Œ¶$©Ì¬×*Uå†`6À¦Ô–܇nA1š™fhÿ«Ä&25áKL|¸—ÚaIÞªóV¼+|á‡&• õñ³ì)§·çS9Å^tÂ,*‰üRb1v@¥"W"½ã'ì¶#Å›u¢ARØËNvµýìÙð{úJa[ŠŠ­Vzøg ckÀȬ¡L2Gû¹JÍ¥ý+÷²œWpQW¼-JzíxóéÛVíÛ@3\æŠuÆ_Ô„7J#÷ƒ.CéJå¸-ç7óëX,ÿË(ˆ‚.¿'°–xƒÎáK„‡(Ž¡&™©ÊÌ.§Ú-—ÌKê%fwõÖQ1‹À‘€£{³%Ô™E Q¾“Dtm ×¢ÚCwóTÕù ÒvÊíSèðGW»-§ß#V½Õ1¾§§ Ÿür<Ì™(»Ùe#ÈÉyrvR”éRH ò÷P3Z¬<_2S'W\¿~%nYŸÒzŠJ*èÖÆ¬¶üŒ\Æý31”>øÞ[ÖXµ÷µÐ«ù_šo[g>@Áç E¦÷Æ||‘)´[ „FácµL„»DÊß_˜’×86eT¨¾Ð¿cdÈböZÑ=¦­¤ ›ºqèáÏ{uvô¡œ•ó6j*û2-ˆÀ„ëɶZ‰·8½ýX4Ìr^Hy caKj¼Sy²ˆ÷+¿¤uF¤áïP~‹¥B¥¡?´æcU˜ma9yåÿ|ÈDO¬2¯ VçÆ^© Þ\0ªM×ê$T±Õ‚žÚ Ù±§îZeMÞ±ÚvöDâÍ/׿¼:œÂXšaKfºé¸sÿŒÖéÎB`_kuñ·n¿Ñ§ÄRÅ52‰èZ[ ÉH±ÜcôÅ}øN¬„^”ÚuŒ*!s3fµ"äøH|–Ÿæ(’@χNvÂ6ŽPç,cnJÿp3¹ð 1n#ÎB,_MÖâÈ€ò~:Ø; R½-N%šÉš“÷ ì?ñ½Œ39 ¬5ìÔ¡t›«/„VIôk$ðGU’^²Á“}C³$Ä-Y¾âQð/І%Ý}™¹˜ïØIÛo*?™3û2‡-«!h5hYþºÝSU];¡JÖU)}H“¬¹ö¶+Ôõ.¸M{µ½áœ»R—4±RÍum2îî;°^:tÑ&öt‰Ž|ŽuãL<{'òřӾrÚ"Í«cUXÓØ9€Æ2îQiœb—JŸë[(ú²&N+,¹4W6®Øís4§amäém³‹5jѸŽZ|,¸*?ë­ª²8(7„5õöYi–9xò{ªDî.Sò8º*ĆœØvµèƒ¢wÖSÉ•¤ëÉ%w`Ÿø¥8÷»m: ´ä…ª³µg1|óÒÑ­…' Ût¼¸zºˆW}²íÜE.ÎÆ˜'ûIŸ G¬ö´øFa³ß£!IÂüµðú°ÈY«w¸~û:pS(« &6ghEÔàÊȱ?­¾â¼o.î…`j½}c6TðÝm- e\ oÆŽâ¼ ËMÍB¯Ä+ ©ÅÐð$“«*º£Sk [Í{(~zCc«Ø¢ï ÿ  }1ÿC®ªö燕{š=êŸÌ`–,jX©¨Ä±A8 V ¼Î-/Ô~Z²Ž' õY´Ø›-Ú~ü»ô”÷⋼Fޤ5…ŽšeZÀ++ãcs‹­ºK¨X;ÓˆDGá‹+¡8Ñ,'|iœ •ì9|%[$Òõ[ZŠ€Œš! ‰.5þ….—õNÑA¹Kº]ŠXjÄÏX6€!WkÄÛªÖ•WFÇ•™ßåðͯ=$'ó!ûõž»“Þ´V™OpÝCÇ8ô®ƒkYÆð ›¨ë)ƸãE4áíS wó'‰ üåeßðœí-…ìÙ(’_„{síËo¿¹w÷Úš'u£Á-çJ¸­¹Ëíʰ¢æMGqlG&"lgDH þ¯é(~WNsõvî/=³pªÒ¼ƒa䤇­:­å¦$hJêñWd^­%––÷–ÈT7€ElåMûÞLùl!·›£kÆU?©ûëÆ‚5”&RÙIžÓÊ"ø¢ù'éÓpö*˜WÁt¸Üî£ïî×áe4”ŒºÇU6Rüŋ”!Ëà ÂÏÙ÷Ã6W®,x£yÑ·½fu®Y{_!þ°GÁ t+ö†À~>™†>6ÑמÊóÞ[ãd¬Æ0ä©úÏ/÷ódËÚõÛ˜¿5Άº[‰¯ˆ\Aš¤ÈÌڢќäÍ&2,í.Ô²¦c®©Íón=æg˜¸3S–2Þ}§£=Ää¿™ð}M¸Ló̗coìæezòG*¦qzÇz½ù÷ê0ª8ÞÓ»g†.m‡%‹Tżð`ºÂl™!í,f¯ÐÒo&w¥»©LçTlXX7^ìT]˜i‡í¨`Ý)˜ÄEõ»¤à Ê‹V&kÈcÚ)=œ’NoޏZ[_`šƒýE¸e$QL0ŠÂÖ+cAÕ<Þ±ä¨>{BÂ[Ã5¶P‹,ó8ZLñw9(A^§-[fW-…C*_{²Ñ½Ë"J“B«ÏÇø°'´$9|Áš2'þeVƒ(ýs—ó[К}ê*xÞ–‡ì‰„‹–X°F¾SÃaP‡ê‹éKÖt¬#~3Ž%=_›ù‘ãލ‰Ìö»5¯ý'•"}Ð'\#¢gê¿GoÌÚ£¯Öød©øºHÃhMÚÐ1Åû¨½VRYñ&·5ýØ“Ü÷Ž¢6¡—œ’iR{<`\Ù^ŠðVƒ1>IIƒ(€Q<@h“ákÁªGצé J(b;S[¤>ß.™˜ ¼ÚdP gþK ý[.ÄÍY$®ek‰Ý ^þàW—‰DÔgujç]¶y›ê¼Åm í+OÛŸšÞºåÊŸzŸîÔl_œ0ûžyj±F+½ËsiDciÚD?Þrpd]³Uu”+b8 k)PTé TÔ`U vg^«…ç?}PƉ&3éù$M]úXM"H‰0úx÷åœû¥]§¯¨FwšÄ6‡EÞ½¥VmpĆc+5sèÖif®`4Õ²¶»™ö‡™\õT G̈ Oj¦ EîŠ~7a,O³œ%u4èÂè° Vį‘U”uóWêx^¨ÓÈÍÝRŒÿ:=“ÿ*ÚK•ƒ=aDîÅIƒ»õ€žqaèëòöëù*{ Æ¡àPßËzCÔÚ®3 ½µf@K`‚ÅÖž²ÞtÙNŽOÄ)ìe^Ì Ú‡ˆ¼KVEÀ8肺 g/^¿[±a¹•щÈÂa/3@ï~Ŷ“ƒÞ®†ø^_ϲ?Ž¿E+Ø­ËjkL'RXîF®­ÕIO *Ø%û3°q\%ÛÕÀ7J¶––ý:TÖXbl+Ò@çX€c5˜ýrdDY#õ¥sÒ6pŠòrÙL—–kÖ ë~ð('‡µÌKÓQ(jôc ÜQ H€~¾9c7ÈŽƒ[±Þ.êeE‘'¼…è°t Þ¥_ŸˆÁf"ze‡}§¼ï|)+áåû!4ü—¬â¡öäù†..’ÕæDQ$21ÕG¬Xü¤‹~§:¤{_Œ¸ûJ|¯‡·w|ÏÍjÈ£ŸÅmÿ¡Õ¨“ñ"}Y®|+<á=C­25;§Û>SyAø×ÅÌô™@ Rœý„c¦ªç¶¾è{t¿ÌŽëÜÆ_«ž$Ü´-ƒÂ~Cã­ü«¹s¼¯nª ¦í 'Ša0rqçÓ'™QU¬ÝF™^¥!Áý8á’ éëPrâ†Î—·T­7ÊýÙt‘ä:ËG¡êðQË™-{xð·™½~¢Y¿c·6¿|!ͯ°‹öÐ Byßo¥”PGpפ/çóùýaxøH¯Ål/ÛÞ^³Ÿÿ âTüN^´&áÏtƽ!üãʦ=Ѫ&’©ç(ÉJhÌWß,¹ŠXá<;1vÔ>ÙI&¹tñçE¿‚´ì€™Å¬*°r ÄΫäÓåP×@Ÿâ¹]¨ p8´CÓÊg+lØ‚¶¼ú|àšºµxoX´]^ÊŽ`òØeBœ'J]OhÃ4 øê—6zEXj¿Á³¸¶È[2H@ß('yß Oï%‹’TñÂ…Ç1:]€ Euí¦æV‚ªr ºTƒ¡ðei{fb¢“?Áp¥¼fîªpÌëX¢¤ ›×ÈD£;‹M™:ùXÁ2’ÅãZ~Ó«ä_ŠÃ_[Ë“BݱÙ3µD»ÖN7ëiŽ…ÙáF3®Q*î"ê´Q“aTÈÔ„jÄX€£mÀ\ŽÛ¹ˆÆZ´'´øÁ©'¨P©MãXÿÅf¾cÛ$=ºr€èòWú¦»7PöDÓ’XpÜñ†.ÕȬ0¤»¢ùÑ3"JǨKÕj÷ð@³=ãq\…<^ç)¼²B;„Å`²§Ú,’ÅÜÀŸxq¿iªÚ=é}§`Õt¡B^ÄOý…žRyÕy=‘5sËѹ‹ˆR%@O–ÅÏuÐJO¿ò‹7²E²>/¢²BÁÚž#‰]ž6(N"/#æ¨TªÒÙRÊ¡{l¼¬ò ìвSˆaá¸H¾§…×YëQ(õ}X·‡CJ÷`G/YšÜz+—Û1 ±‡ OŒêÌ/Sþ«ù±+›ßÚ©k_*®«h7‡Ür{‡°Ù à#—NW±× ¼1±¨ô€Š´mðEÞlö‰O kÞWÿþ¾®É§uü€'Û…‘E‚½ø<6,cîœé Ë„à.Ê35†/›IÅÂ>8SÕÔÈž°1hä]øWàw¢v*¤üŽ%}bäÏû-é¨JDtÆäú×n;)§ßLu¥J÷€Ûô•Ç&UMll&jáý³Çõ ˜zBÎÖ_MTrÊka &‚~˜ç›f è¼ü å©pucÈÃõchcꃖ ¼H×ÓŽßÕI‘;U A²a”ZpѤ)T–0á€þ|áÉPÎd9¦ $—ŠN?‡>U5aÌ‘Iò®‚¹F+.0œÜÜL¤Hbfpxï¯ý‘úW=“òœ;怸*ÃÁD:Ô ¡•ädóóÕMW˜/ý¯Ÿîf¤8Î_fŒ(pÐêZ ùòÌy¸Ä×¶wVNÚ£}?2æMÖ;P”Œú«WŒö‚$û:hå![¨¦BYõ¢I±°ažÈ –\¶"û†6é\«÷YøÇâߥK¸7(hˆ‰ÎHl瀽Ué_Ç@®v¡¼œHø!ØçæssNóñ&ULg@Q¸èê¡ã Àª>ë]8¥-dÍ3EW#ûó‹7ÞŠ!o¨|îÇV½z4ÊÕ ‰¶Ôä ˆÝo¬ ¤î‘b×ÝÒLÈgv1( Ä=Žш5•"·Š„½W‘ ¼©"á<±jC‡¬´“€¿¤`‘]ã‘sJÑëNå,~R>™4›«÷é,ÐÀ³Ø°¿SèòGh†6‰(ô7o@Š|ÓÛ­š—VÚܶYZÞ äì@;g!™$>ÃKÒ®åÁ½q­e¬›.sœ6ä½â[El#åru_*ìÖÕs!4­Óf^ßÅ?¼èG¥ÀY†óH ÖUª!à…a9,ž¼ñ`=÷农œ—×o•Wø 2Æó{ʲ*—ÝPÉLÄ¿ÛÓj•N‚gš¿]Uˆì×ßMãÆŠ_ìÖw¦Á ë(Gô›ù)æ=péðÁN±ò4ô¬öÅc´¾r¥ÚùxZ8U—’ûS‡&L^ è:-;”Ö¹ò©1%?Ù~`/ƒ­ï;u(¤FOšÑBÕ.¤{–=±) «Ï×ÈUÛk‘oæu XRzÍÏ˪âôöö0®Æ—`è“üS´Õ€XøÄ8Á'Á‚ˆA2¦Þ(¯òðÉ$ÖeÆ%®µÜDÊ’íⳫkϵèðžô Ô}ìýOa¹8Ù=QLòoJ±Ð oL½31Õ1Ò›iø™HßU›%pȽjúBi‰wO¶»µ¹I1³IÄ3"ñêgÒÌìàSN8²ÜÞ'}.éV7øäÙ‚[ïwŽzM› îŸéŲLóì FÇeˆ[eXQK²^ð }Åïw+_Tëè‹¡º9\Qd °qP»*ŸG#çüF¹¶[zz¡­»Æ›µ'œ³A1.ܠɰ‘ŒõV'_E°£’_~ñ(nG¸£–.€=E½¢«îȵ;ÚnLÚwÿeYœt¸ÒÏIû+Ÿ·Y »50]ƒZž‚"º®éªŸÃvz§ÙW‡FÒ/ÆEÊ÷yÕ¥i^"l»nG“‡lý›5ˆÌKñYN0²ì=GÈZüs‚nà H’…®ü5~ßl4ÜÍjSb.÷iƒ ¿Ý6µÉU’¹¬ðSîñ\¶©Ën-}¿D•¡òȵ8œdQÝT¥}½€»²¥zBD1ÌÝ0íì/KÙ ØSc~2­ëŠe”ÛŒÔçOSÁÊ™uŧÑUL/!‰@ßm©Ïi«öCïÍ\î—¡ùo4i%sý¦#™g™"œKâ^MïIÐSãC¬HñAøxúkƒ—µÆb€D¬vzuV–Î^Ô\]®Ÿ°k>Ï ïv]iù¤rŸ>Gô*‡©·ÝýݦvÃwŸÏ!~“AÝ$Úþî–k$ÊJ›DH¸NÂS ëâ:úñô ”±U7=Ö«2X¹$ï_ÁÃSgA̬ŽKxù2‡Êj2´ÖÒ–d©¹Ác ƒ³’w7¢S=ÚÇka¾Eõ9…›R®~¨ÖÁ~@PYYâÝFFŽâ “úŠR`ŸÊü®¡†Å‹¬¤ãG|cüëý©´oí Z×ÔÍòúªöØM#Ù¤Á\gx9…â´ùM`ŠØÝ/™Ÿùx’WÑéÓÀäG¹?…ˆêÞwŒ³>¾ˆ©h{¼Øà0m@ ýÙWÊYÞ '^XžY(šFÏLiaf뾦Û7Û»ÏÛÌV'#-Ùi)S°XP`@ g§}¦ö‘ÐtI+d·?•£ôáëækvüèê'NùqÈ)G[m?Fß…ÅèD‘c°m9HÀ·ôÓ9Ë ñåÄÜ\ò„T?¾‹™§}©!-ifØ2…‚E±•].I·¼gb.Mñ¸xQÖí~lþ;e&ƒ¬JŸ%1#ã.¸ÜõLoÑ´q}ú4tU×ýÞ& 'JËi¡Q- ÂÒ0_†ñêî êec3mã›N3½ËºBlü+Ý:OËûË_“Õ9è%ñବC™p ²MœŽ{Ä.2_tߣ~òE.êÌÊ$l韉Ýeiò áóé`iXB¸ºŒ³»W (¨Oà ÐÕf+¨Xì‘r9hLQN8òíƒæ3ìŒñlñmé*ƒFŒÔýkheÎÐÊ,T ŒÖ]®ñõWæA%5òüj û²®oñÓ^°\`öB§zlÖŠzyXeÛí}h=÷Á%è­Œ'¯T½áÁA>ë¡ðä¤ÕÒû‡Þޱ| )\;m%Î…æ}bÊ E]&ƒ³­%¼’=¡¢vŸÌPЕûaŒ)zõ MMš õ JUW›_ÜÛl9ëÖ°bV4âAþéGÓ¡ BÆ+Â8v¸z4ÓïØ‘ ã¸3”ïÆŒ•[& Ã;#,æzy‘“˜ç;QÕ³ ¹¿n黉£á™1#\Å›M›ßÜ–Æ÷H‰‚¹$cÉxÑ4ž6»¶3®[–ášÈv«/{„q÷^O+‘Öùû3Xüšso¯UËíl[çr´5n27ÞÂ~([ZÚ¿•‘7ãp Ë–àN ß‹ß;ÐêIÙ1þ>½|ôËø†|¸˜\âL7R¦¹j±Š9:ãΪÌe›œÁÅ6´—uöz2»ñ tvï³x™Z•’§ûAäFÈrù]Å)³§"ó>g]’OwÍ¥‚1Ó³D$¸o!aV•Á4e! Û&ÁbKñ9yŒI^²ÿÞbèÒ‚;½üÝ¡n`ê4UG’bOs¦èûÉÅì¥, âXÁÅ">XF}¾ŒÇ·WÅø |b_¦Gð(SÓ¯ñlu-,²JJ}GѨ}‘Ü«4”q$ó ºth~OTã¢Ûûžs–»ö{Ç’Wß(®;+®çn'>=tÕ_¼Œæ;øJ¬ÍÑi$è¦Gû³¬:¤¹ñæLÀ üµñnê…Èû¥‚CmŸÜþÄ`0û%žt÷× ]F‘q²Ò€Ã'òGÙQëhä¸ÞûÃwßg–ed”#^”¶mä}5u¬¤ý„Ú êa˜È¹îž»©ôõÀ~wP=µ›SO6ؼ]LÂüyŒÕÏüÀȆ‚²S.SçÚ‘º"žœ’•‘ ¡èb21Ÿ?|¢zóLÚÚ¢8GsŠ0iúîa=/LQ\Z®ÀÖ±Ý6»’ ¿wÔZdõf½lÔ˜ÉÿˆÙËÅ´tyÖ8jR°gýRb,?PÖAËËÕ½h ™®ÂŸ˜ -ÿàÃ~*Š—ù×]4í¬Û+.ºœôJˆ ŠÖ;ªÒW .?õ–…ÙÀÊH]˜…&X3徜šI*Á=¶ÉiMi"~Þ+ ±‡€å#R4m„ïo¶áL=eX** 4Óç~àk[÷ªÚ’šT÷¼¢Àw?eò}£Ü9’·»]ª Òl8!u×jà§E€4Û,Àyà­±?tÙ€Nœwyek‚Å5“$!%ÂMe:¼jÑ[¿+¨ZÌç0ÐßNTÙ0@7Û'ÍàtìƒË,pü(f­°ÿaãqæ…Ö÷X«ÔyAØG½"ðnÍénNÃiï&mŠ@Q䊦Æ1çPeðÈêÅ0Ê*RGñf£3sû%À-œ¿ZêN¦)s³`Oò ̇ŸÈÊ¥j†÷·¬ÊM¥-•‹B¡0Ÿ+ê?F¥ÆÑÝ­ jn½1ØË-¢c@’ “º.ïᾪ ?ë§M~™ q/½œ¿Éí)egzŒØœ˜~‹)}mà.8}\ R¥\¢2™‡0ä kfûa8„Ä·L'DÞ™V>È˃C›Ç™,%ˆádøÃÒ>Æ»ÿ<êÞ‹†øƒé‡)n‚Á&äd‘õ¡o„Ø3o—hì ·¡N¨8Oå§Î bG;窓¨ N“¾Éw üAÙ …Ý®¢~!÷›-³¨{GüÙ}“¶¯¾Í—Z[¹ö E#¸M·ƒêï6ö<¤tók¯n« Âüjï£\Eªr~F~×K‘ E¤PXºF-ÍÎÊ‘ß ‰×Á÷‚ÑáÑAše_"ž¤êR×HPæ{«ßuȰHä¸Î-ZR[B…AqÆ<41¶<Œ}r t§J ùúð2rW[+žýÛ0¶fÛ‹Ö‰:'G><-äºL»Š?¬*\ÅMT~àjâ<2¥ÄÚhô!_"Ìq+ºuG¾„Íñ·ë6ß(¢TÛIÄv -BIE¡´¥ËßLÊŸÆß#3"V‰–•´Â†”O"öÿì•q%l®Ó(^?shÙüe‹Z)3?:F«M¦Á´R®Ð.×À90ÄýÐí¡×ˆFë‚ Ö±§ßТ`:¸/d+ýõP9ËB–VPåÓlb Dú»£nD¤Î= í8ã¡׃ÿ¦Íƒ"„x#Áœ‹¤ÌPz¬×çåÀ‡¶÷NT·Ú’†%½ºó>¦Á–imÝ3C—±´’´éS%jº"U»œ¼òäMýÛ$¤-×Àò4æ/×C.g?2lE´? t.ý„µ n…#$šŽðL1ýIÉσ KÏ`\u8lk߯p<×~×7üýN]÷3óÛ¤;oŒšÂ¯ºë<îµå#Žx«“°©2­¸UIˆêÈø¶Êá±#šQvZéé.Ã;0Ò[š°¶u¶òy‡JƒÛƒ•3ÑŽ§Åæ›Ò KŒU-c‚Ûù:Z{¬ˆ”‡ÇúÈæ¥’,srk*…ãc*ñBà=>)Ìr-ÒŒªÄLnëKÝJ°Tã Á žλ:³Ù´{¹M[â`¾o¨9ÞîÞâŸø¼ø×½”#qh¸ÉÜ3øùxØ–°Õx¢`xȹ|]²žêÉ€ç~wF×…‚´o˜ÚD5&ìH­>å¾Û:ðàú¢˜,÷”X¾³è*S@Ð¥×+¤Œ•æþùB½®Ã>•Ÿq‡4+N’~»á©]öFZÙ*'O‰ƒç‘2J2 áŽè€îtÇëõ¨×óÎÉ™qF˜×dt¹¹KÚt´<’k¨HNM¼ÔåTp:8õ*ÕEö‹L=È›žðØ5€0rSuáfm¶øÊé¤7{±«—÷(wZp6¾,¿ÓÛ‘D0Ù%Ð<é}3GÉʈþ’«¢2vKÉðæ€_Ü€Bç ÔdçÉÓ3ÍV£`™(–ÇJd07æ¬˹ŠiVÿÌÒÍâû8¿§†Ûø>’j+Ok†|jÎì:ºK!{éX•õÄ@Á@–æHFj†õ‡ÎÒÝÎ:ž›ê"G×¼ü¨ bþÂÕÈHՕǵ$£Jã 9瀊×nwÒ#Y1®$_Í…>`V.wé/Ewù;}M£ ‹£^±¼Å@<ÓH‰ý~®Ë^Vžrm.ÀI¥dp×b>g‘ŽwUøùÎ%”üÅ1Z©mzÂ,Ep&Ë~v~ã#Ì-T2ˆRä_”„iñ5å‰ œƒzY£’ÐOœ°ã‡Gí L×~™$aS ÀÃ[éYj“Â)"î7N8¥„÷³¹Ä¶I±€·óî/¶’î?ú½ûÄ}êä# ™&lóÙ+5I˜ZúøTÖéb@˜^o²æ$ð"Œ»¯Ñ\jUpþ¥ÌžóãdÉŠ›uC£„þ‚cÊ•)ªŠ÷© Çûü‚B®±F¨›V·¡/¦»ìEãã1E$ʇۛ¤ÀV6=˜4¡ó{ÁUt®*–ήæ°2¸^+‰Ú¼DbÔÃ,ï_ÇoC“W«7j¢/§©^®Q]%ÐñfÜQuÙÑMxeP–O+åýÚ> “äm|aÏè5í)\S­wïð‘gn2ÙØëv Ù­B¼„hcË›Ïè¹·Û½žR6ýEh±ab`N×c[( 3Ö…»2uÎöVb‡ŠÎ<tn­ƒJ'¥Å2Uö5)¨%ÌræšUö>Yž½/m¬e%CãåAᓃú¡DÇ·›Â‰N$ËÛ(ÛeEtˆŽtðéÃa ›­:ü“‡‘b„IÞ‰ëqé š®ôã²þaÑiÁîx_¿-JóÌ˧w2UqctŒ<̾jàGR-Þ.Ñ€öö6j™´“S@B"Æ™V.s ½n×P¨C× &|#¶D±=òõÇŠë“G¦’^ï´ ß6ò>'E­¼ 9Ûë–ícF|êÔ¯oæz1ÀïëYü¦ÍMS&\m¢Xï5Òtd¢Kœ/ÎL’‰ÂÑ‚:Y Ë<ÍMs3Ô¶H>÷Éæ®ºG¥G¢—®·bÚ‘å¢Z~Ÿ›héXâ+Â~?¡Wm2‹Y‘‹ïꀄeÓÞäa&Ûú¥Á_uÏ߬xäŸbM0Or„nK\Ê ŒQ%ÃBkóç‘—s‚«ÀÖIÊÖv£Â}|ô;šRõ±Jz%ßÒt;@ãŒw×´{ENŠÍe¡ZK ÷m\þtÖׂA"x}ç7Í1ñ·J[ùþÐF]& ijžCF1ÿG·qòò˜@L“àœWŽ”Ôt³›u$Ò|ªb&Æv;õOTÓ_C7½¾÷uŽÈ×õü\‡ÀDù4[“,ê;2zv²Máp¨Ôüx<4âÛQúéÿ¡sˆ£¦“Ö’Ó ÆpÄE¥·oL»®Dõ7—nƒû0Ö&Ϩ1Îy™?΀kh_øB[ï8B½9‹<Ð!ëC½ ˜ÿ CÈ3ûË:• )ǃ ª*¡’Ï2¯¯ä·“€œ{ovp? ÜÆe¢e0fÊÒHç/­| (#¦i:Á\ÎÓ$fËh‹êe^¼aÊ8úûÍÓIãšõ'šÖþ§8_¤‚ü5àZ!¸äìûÓÞøjõûáJàn1¶zä7â7™Tɨ,¼49ß¿;¥ÖĈAÞ:©X¿ÿ%@UG ˜Zè73ýÜZ¡\aê^ÝúýW¾ß+y’ÓoeBæüò†—\·j}ª t¾† Òä~:èN´¬×¬×ìýiâ€ÒÊ`Yt€©ãN©,‹zKNÄpÉÕºëéß|ïž;â®G¡R ‰ ±~P½èzyï4’›¯ì1CTXæ:b}Y#üVÏ˃٠‰ÿáB¸„ø]òhÑV~;ÆÒŽ@פÀefÓØ†ž·•¸ÂÕÙèñ_Ωœú}UQ$ë Í_Ͱ–×óÛ¯0y35û$’è>w‘÷™XªsΤ$™AÐþ=äS ™ öUlåyÛ•xnûŽ×+'‹6ÉX¦ƼIà†ôt¢ úä°WÂû¤òsÃiã(9g£ßžLC¦0РFbé­/Ð33æ°”Ó]¥üM“¤oØó…™Û_òǬKú4Õ£–¾뱚OæW\Ϙ±>š0mP¤OÝ:mŠÌçö­0ý8Þ¶Îe7ã©6R¨]¬ú"SE–9Œúµ2uÝÏ劔°^¹rW5¯¹$®E¶ÞoŠ ‹ìâ-âõ~<Â:ÆìâZ«Ké/ý=±:þ endstream endobj 188 0 obj << /Length1 1630 /Length2 9100 /Length3 0 /Length 10177 /Filter /FlateDecode >> stream xÚ·T”k6Œt‡Ò )!ÝÝÝ ’ 0ÄÌÀŒtw*Ý%-"ÝÒ- " „”t#ðá9ç=ç¼ïÿ¯õ}kÖšy®½¯½ï÷š‡‰N[CÆj R„B<œÜ¢9 n77'77/6“>á ú›ÉäC!¢ÿbȹ€ˆ™<ñ@Ô€Bª/<|AQ!Qnn/7·ÈˆP7Q€<Ðl Ðà¨B! 86“æå¶w@<œóŸG‹ +€GDDèùæØh —‡m€Î=¨ „ðú/,âL”‹ËÃÃè焺ÙK²>x€]äæ²üN  tý•'6@ß ÿS¡µCxÝ@€3Ø?˜¼„؂ܧôTÔZ0äO²úŸ„瀿ŠàáäùÛÝ_Ö¿!ml .0 Ä ±ØA-EuN„'â9±ýM:áö@w Øhý@ø#t @QF|Èð¯üà6n`Î ;ÿΑ뷛‡2+@lå .. Žý;>y°Èæ¡î^\5× õ€øüÙ!¶v¿Ó°} ã2€€]_‚Täÿâ<ˆ°ÿ‘Ùƒna!>aÈò´qàú}€¾ ô‡’ç·ø!?°{Hä¶=ü`ûÀî Âí%ÈÏçߊÿFØ<<[° ` ²C°ÿñþ Ùý‰úïö˜r?Œ€û÷çï'ó‡ ³…Bœ½þ¡ÿÑb.e]-Ue5ö¿Rþ[)+ õøpðñ8x¸<Üü¡‡¿ÿö£ ÿÇ¿lU vPÀog¿ã}(ÔbvÿkXþÚVÀ;Ó„>Œ.ÀòϤ›q pÛ<|ñü?Ïû&ÿcþÛËÿuÒÿ7"Å—ÎÎèYþ$üô@°³×_Œ‡Ñ}‰xX èÃ2@þ—júsw5@¶à—.ÿ«UAÖAbÿ0Ò<üœÜüÊÁpE°'ÈVŒ°qøslþ”ü^8g0¤ …ƒ_1VÜÜÿ£{Ø2§‡kþ0›ª€ð‡•CüÑÈßô°Tÿ‡Äjû{ûx@77 öCóÀ‡çaMmAžL7€‹E<˜röØAݰ7ZPÀ¥ð[ôpÿD„\À¿/€Ë„øG ò`jó7øVõ_ÜvCÁdÿûÖ|(ø?ø 7€Ëùwöë ûò>°aàið?dAžä „;ü‹ð”Ç¿2xðïùü¯Ú¼ts{(òÃÿPàÿà?®3Èdƒýmj#êXÚvY-CéÁ±1&Žv~iÌË1Vd‰èW˜´\MÔËÉžS+WüÖÇ£háØ©)ëz™»4sâ³^G[ïÅÎA«¸eOk?}þh*É炊~š éQª,h©[?’6u a–”­}¿ï³ÚÞÙ$fâ2E!Õ°6ÍŽ®ê²luR*ýﺈë!ý S²gyß]^‡¬ÅšE¥ifÒ«‰w\a'zT® -õQwÇ©ºo2†#ˆƨäù1ª  ð啺ïf>ö±Vz"½kÛÿn™5õ²VóØaýxלŽ%¹KÈÁ*Ù.–gÏûŠš¶@,›î–_¸m;ŸA‹Ò4(™t7ìÍ+÷,½ÿNí¤¦æ57Õ;±òë¥ZšŠéø@(ËsD‰»Šõ=¿¦ö8w»päÖgÕ©Dë ì¤Ù¬;~v!ŒÎ9 ç,aSF¼¦Âémú’% "¡­ÆD||xîàôJ|®†ƒÅ&ç>Þüw'²Ìs®U1¸Ç±Þ+u ¾™Eo®x¸>ÖÛdÔÄÊy{¸¬žûVy®š«º@‹ýÞ{·¹ü\™!z Ðæ¾ÝéŒ#ãl¢?¿ÖyFSo‹T¦™ÿîú4ˆôÓ´ ‰Û½,(öz×ûv9 ‰ «÷F+×&3œì´,èÇA–üöüþH²5M+P•ßE†{ôV—¯qº…xȧƒ½€´uý±ÑjøåƸFòº–4ƒÇ“y–WxÁÄ:C!Û‰¯cÛdVN[òbX¿ÔPNýÄm+“Âäyû#{÷”Ïž’â$[ŸÖ´Ã’öÞújIr(KeX´|=<‚ÑxlDOû“y½1'«gx¼ }¡×J` M.b:°å=nñˆÕüðþ‹²ä™¼ßÙ!æ|NB¿I ~ÛÏúÇ•!öeøè<Ö-Ùªå@_«‡¸RëÖn“SfnÇäÃZc$!¯K{ì'éäzMaÌh~aw“;vÓàÍ´%v?¥3¿·áöÉD÷d¥“Ú2$]Udžì훚bæle}5˜‘%®÷jÎ7þúµSþs‹XëÄÌCï‘L ÎH¿¥,úÚ뫂 7c×<ìsD_ì5ÔòàÙò7Ùï¢P:<%‡íf”ë®MiÍõλ3u‡¢ý¹ØopÖ×Iw™é„‹ÎÂëÞÆ ‰°ÚÓ¼¬e:Ë… ÛFºÆ@1[þ‚Býb‚o¢Ï׮݉lÔ^³-L‹±{“`ÇV=öÆs<-Òù²ìÑ/ t°Üà‰S¹nS#d“}þz‘ ¹c×Ò(~è¨öëÕF§fçó%&ËSFs ‘5޾ü§N@õ‘Š…«týqmŸÏAO(ˆ!ùQ¯¾æ*ÎùXë·¶Ù¡‡ÿ™ÿÞ'J}r—9²« {Ø8Gdm¸dåúb¿aYR*èÉÜz½~þìt_×#ó˪(vM¨å›ë+ªu‹šª›ŒÔëæg3¾_h~bsθ ¤•^(ðغbwí×õxs"™µ:\UO÷‹qŠ×ÓÇâÙðz^Ç-‹¶ÕVB¦.Ü×9­a+>’Sq\ùUoå\ ËÜcL~o`óOmø8òKF?ŽÆ°ð/9”éœÚâ÷¡ìÁ¶&+Ò R˜0\0ŸUml‹ 5èæ†fðô e‚þ½šÍö¦%6ö©ä¯¿ô¡ElTOš?Ž\{~c€=AgÌ0£–Öæèð¾à%Ëi¢7Qšðá¹¼·1T!¯Fd±tÓ ¿ŒB„Ù†,–kî†óšÛ€«çü'÷ÔŸÜ2>¸{ÍW9X°u+«}«ñ5;5‰òxÒ@¡±[È÷œ­¡/Ú]À³¼X¤äiu½ °­žd²é"ø–×O-„{ßÒ°štìC,Æü(W©`—ÿH÷±“lbäÀó¾¤Gâ’ñŽøwe“¸êTO÷ÇíOü×9³è³¬‰éX¼äut­buƒøÛŽEÍ}9N8ëšäçüï¿ ó_eœ.×-Ü;ʰeYÙOFè”×Ôb±”ü ªÖÁ3  •ƒYo}’»ì•Cm3+š²Ä`ü »Š¿*‘#‹sCŠþ™ÞÖjyZ†A4i§…i´ôy­,¯ìå÷âEBœWb%s•ÀîÇɲ«†¯³XA5Ëê&†/Ê­÷øsMG¹_Ž:’J*L9ÕÖÒ÷w©Çw4^¾L0H«>ÏZhD8_ë+S A&ï¼²ú@÷¿àa2¨ ÙÑÐ0>Ú1_sZ@•yÆú&¥wKТf%s E²ÒWé†pN.d±Á •G;ãŠÞÉŒ%³\jÈ(Î3v‚ž®+ùÔX^ص~5ÁÊÊ\ulL×óÖ)NIU¿Lj¼ žŸ+÷Ó< kõÚÓQ̼X!O¥Zs ·‚UÉi®ÐÙi‡(€aù¦¤Þ £vé5ÓfìTØMíÈ%5“ò}aej;z[I˜äZ^٨łÖiÆñ‚.–œ&wWµ[™•ÊMç<¾ZGà¼0@ŸÌZÝKrLÀéñÙ…„ŽGÖ©À¯HJÑ”™ç–¤êÚR ƒÃO5å*7õ4ο‚¾âÍI¦à Œ_Dnànñ±Í82õæÈïoÅ0ñ=Î¥kRŒ^n¾£ØžSO³ À¶ÕIUUallMí5b™%#uÑuÝzrQ¨jJ–èo7Mˆ"ò<õ`Ý÷§–<×…_ü=8vßRé=G“ây-‚‰s2-3Õ¿ìå̼¦þ¨eñ!ŸåÀ þñþÞVù;éI6Ò›x}b‘øy…äb#-{޹ÔéîX‚jåmØ&>P†Ó̻趇kò M¨‚£!šOOÔ Ïhˆ~MŠ¡úí¤€—‘š¯wàäÉZÚ¡ï\#£ÈQÖv;ÌP¢Òûß\—þ´ªÛ¦imGÃÝW>«[÷ü;Ä-ÄWÃШ<ëœóÇÄVFúvõûZ^G ¡ÅHØâz‚žç¾E«Ö™›ÑHy­H*»¤Ô–¬9/2N¦,A„ øz¼b½Or«Ò1ÁÐ~ÂAOuùO2éÑ·ýš%ÔŸu1ê1?³í<7yåYRƒG!ùµsÓÙóà…¸òñ‰·±p¼Þomq!߯9Ý–0«QhNLßr TÜ6íáo…”y·§n¼v«D#ØY™d,–-ÇQG抎ÿ!Ú,Kz˜^šaT¢Ìãy)Èm· ÂN”­½å rjûÐ’;êT¼zzóA¦Ò%fQzɲHæÙæL׋Ö/]1Ÿ3ê‚°\¦äMQÞÇuÅÁüG+£pÐ’dn…]d¼¿ýÈFµíУ_Ïð'CŸH,ë€-·§‘4“Ë)•à&i~Ϋ~Õ·ì+PÃØ$ì’Y¾˜´²ZïpåÂA~Šô¢îuàýA Ûµ ¥ÙìI£ìæjÒ\‚øðΆv,# Åñ}`×À¶G/"Œ\¶®,R-ŸÊmú5h7(î9„o™´æ8†ù`›õ ”åv0†¯h2¸°åW7†±|À ¾5Ü ” ñ7U”;ã·¾=œ>i6ÕΗܯ #YJIçä0ÓÙ÷?Q5S}{Ñ|c0K êÊ•ã\X—Ÿ.ñ¡U –u7ÀYÎŒÜLžNt·r¢"Û?,Ç8>ø9ù«OHÿøYу7¢$ÑgñÎav‡Õ©*«Œ%lý%áRnñôÒSéž3!“`—Lë"<óE̾cÕš"±þBÛg¼çŒÀƒ Ýùêk¸]r}aѬ™K ´†}33bts5°[a'Âú æ¹\¥ëI/sø­ñ“]•¬©tT·v³ùÆžà÷ßotAP+÷ÄÕV7Û§0©½ñ©Êªl»¯rc$è5o§[ŒÐÎaáS'Nè!cC2ù´„,ßÌ5ÖÉgˆ°‰Ïâ-‚ÞO|ÕJ©q^ÿì%AuZfá- DîÍxËèÛÉЬ±ü'¡¯?  ¬í +1EÁÆÚ>î4i‰~I¹†Üö0ÚèîR Е'æ¶r§DŸ“£Kmô_—Çú ,†ðæ¸þþŽJg±S-a/wXP´(uµµ;ã!gižÔææÿð^«œTÅ…ø…Ó{²%(÷VHÉþUKúÕGJQ‚+Y Æ3Œ£Á]2Æ,¶&Á„³ë!7‚3º,ZP…ØÖ~à¤Q?g™­ÿ…Ò·BúêRÑ’4Ïzcqœ'¸:Ú°Ü7a´¹ê]ò{ÂiØû"ÍG^æËÓfÙ p^W—ý;©\ÎÙbµÆës1Ÿ³3ýþ`Â𮼞ץšS„+èN»+}¶+žÝ* ƒ!¥‘Åæ‰ænýÄ.?¼Ö}•à›ŸY¼‹ä• xŨw;ý¦XÕiØ_m^Þzµè9­ Ä?ü#iŽ¢|÷)¨3<Ô·ÍX{*ß°½ŸeÛ{ibÇÅǽýU¯&‚-oô(Ó†I>£f”"ÇR á4µÄ‘•³ÃOÍTZÚˆ¦XvuAŽ{¹ø³–⊌VKe8ü£] Ë lL~^™ž—-£và_e½vÊG'ñRáDg;9 “eW^\¬Î±ºo¸ézù›ÊÆ/œ˜º qùF¦Þ>\)铦Þ`´ÍïÔ¯Ö·Çœá‹kB_å^YÈÉæ¯ÆlUK,ºÅOX¥g;»¾gá5_ìÌÐQæ¨m%s×QïI•NÂxR/Žp,âÒñ‰Iˆ¬´ýõîi%Ô葉6Õ(³²˜ëØO¢ ÝÌy±Mgb¹<§a|H»ßM ÞT¸† 5°![å»Þ^Èà¼O2ì‡Æ³Áà¸TWx ÅçÎN¥ÖÒö“Q1Ý„XHnb¯×xxiè·F?š[jÛ³j†ú! ï„)VcsS` ¢Ã9¹¤ 6q’òz+z%Tζ£JU­?&³êz,%nÇ£ôyb LpÎ9”1`¶Ê+“ïä}ãB¶iðïn!U-Æ] o>*uE%rðR[¬¿S7¹ÏûöË¿×÷ø]Ó2ÖÑ“S}.·ÎÛÚª™>ë¶ÁÂú›uç &gïSîL ?üG’¼¶œ&¿šYãâñ¦”Ñ.dò"…~gÕ‰a1ï4QZ/ÿÚW‡õþTÙ •Øïyò¤»”¼8kàHêyQÖmÑ~ʇÃÄŠïKÛJŸ‰º“К2õ·T4ÎW½b2…Iù¹4¨}«›:ò$¬)ÐÑxOÆ„†iÀ[èâÖW)Ùy-°×òÈ"ÙiÄ$ð²P•æ¼… …ôÜ`ÌᵌQNg럤×0JÒc€‘=©O‰†kA¾7é§ÖUßi2ppêÂ5ÜiѾã_v:´hX—]?o*¦ °Rµò %ŒžoHFšyÓKºý'é÷/Á\èèaÈ]©P®ó׈ Oœ”“3öQR6¡ÆåqËKñS2w¸V`Kˆþ£ºy§¯i¶ÆðëTåW5!¶NF0¡ W/ÝIñAšUO‰SŽl÷HÔ_JãÄ~Õ&-ûÞ6S§Uã¬`ä#Ãée– õÌÔ5#û˜·îÜÆ$¸j:™yõýÌÚøÞ,—ê1Q1k4{ÅšÈ%cY_­5—ıcÉx¨b_´¨Þ'dc*®S;¹Eˆ£óß]j [R˜ëGfø?Kw¯¢¾‘ÒñÂv\ ûœ[´šГîËQm£NˆzZ¯J”·ïí?DD„œ}O©~M.4Uü^‰ýE×HžllÍrtçŽD3&óh¾Ð;aÿ€ˆx†ôÉ•Nç”aZ’FÚÚþöfÕ›¦’î|ªǸ{ë 6R _D,ås›É$îÇýÜÎMÕõŸà↭Hƒ<“ÉohÙh_+’‡§q”õÎ×]xCB†ŠÞÕÙV *$Ý 3÷Ï¢”]¨·pJq×/r|]›Ó³’ÃE rég‘–Š[ãÀ`ˆÚ¦¥Éj„¾‘–U8Õä!?§–'£g¢ç¢£W—ÆÍäù#öÂjJÄ–ûÜutAÓÐSï£ÃÑ°è ºQû1jšZ][ç¯i}Toá®úÁ‚ns;ÇêIÌ¢F&Ñ}m €5ûò¢u[ÉØ¨d5Œ,<龯fûzš¢Âo IŸÙ£n—,cH-±®OéZ3MÜÌAc›Ó·$£ñÖúýYÓ±´±ß½4öøÄE?²êë”QÆ"gä"[R}ס„Ó¼’D3xÖKÅ­qep€Mèo3õo<âÐÍg‘,f»Æš,ÛâˆthÛ:hõUáxÙm¥£]x1Ìjuô6MGg°q›åÆ’YJEiÈRh0±Ær4’S@‰ÍJê“®¢FÞJoàÝ×QûµW;°.»¹edÊR‡ÀmEQKÂOµ¾ÝǦêØ^Í®Xõ²]Œ½ÒÏÈ#‡·éŒvW°Çâ¯HTZ/Ÿß¨èw3FÄÝye}‹ØOz¤œ ·lÞÚ8äš“93Ï/¿Qì]mé!Ô*ÚfdŠÆ¤“-CŠ!B cbEÆ ’­eix&Ý Ò[ª§]KQõØ>f»˜æ>à5òdÙkå‡áTj ·±Qq¢º PçÂG¬ÅÏ^Õ™«ë„s°]6ªýL™ao’–qrÌAË¿¼Þº“#¯$'@M}3è™÷…ä%±Jò¤¾©¦y[ˆayåëà#/PKO¢`xv¾ÑÑÅùH©@aSOuÜh$e´œBOõÅ÷ ·°«ïkt¡?›I÷ŠèóBŒo'{9.YóQ-LðWk|Á¯ºodPî%ˆ´ìw>ÉA€ÂÞl¼ã ;Á¢ ó©`šl؉Í3=3€oíó™/®“$uT¼€Ë˜J&å7úÞ”ÂÑ¿"¦Ÿ¹6 ÃÓÒ¨ 9Gº· [$°OOqz, rÞ¿ÎCÍb5Г¥ÇƒÙÅi9YÌ?Ÿz„¹‡~œ‹ga¼wHñ’7ýV˜Xö,ã¦ã–©ÇÉ_ 4_ÀT©Ë&‰0Ýý‚KYض¹ ,5Ã~eAæÃ¶™1㵦¬hñu³S #&¼„ë΀, ýª-¸49*ÀŽ2²¯Ú œk7q~nzÎèÈ>b]mÏç%5e—<]±®qr( wVÍð¹äÓõÐ^bØý¬æªÃþ‰ô)› v‰Ü:¯¶>ù$!îÊ´©£™u¬! MXº‹0›×bö>–kŒ Õû0ŒòÞçþœæ8€*lrò2oí–SðU»åÁW¯à‰˜ `^EvpŸFeî™2œÎe¼ëŤï‚ÄiÆj{›çb’ºcú”ÁÔm8^”´#1a1I£§œD‘ŠûsÖ»W9öâ$ãUÏŠ<ÝažXÃc®ÖìBÄ^6ðKÜ-ØÒ=¢†Åá ÷%+Ï·»¥çˆ}#¶¯á@ëi¿Õh{q:Tp’Èõ®©ï®Wî“Dùù3Úʈ§Ð§Ý=|f,—dœ-‰íV_…ÞQ7T[دÏë¹”Ñú<@&KçXön7#’Vi¾c{*éu]9Û/þBx®B­¿EÇ6šØFH'„~¦¾›"…KŠèùB걩* ìNR¾£„è+ȦØ%ÑäÚ¼èTh)¨ÉN•?`g²×~½'œ@7¡üà¯vowIþ¦0ïÉb¸‚hÑÒrð‹ùW™*ôl¤-Í›g¦ BeGÚ\+‰¦Ø]fò™ZÎÚ6ëg9½µ|S5 ›å£_ãÉŸIéFÌÙú)°×oŠ ÐèO3?0´Í»}T#¼Ó)º-(ZV«¹]÷FJå~ïÐa(Þ´f!8%ËGJY¯ ýîZLc©Ý7‘G—Ñh4yã·<x¤dSåó¢•|x†k±Ek·î¬åh‘˜1jtyTrSjÕŒÊYÍ mt°O>–ñëÜûaŽeë¦/;ÚxâÀÛ |Q5² ްý¢ÚAÏ)ï%¿ƒ²~¢¦D½²2ÁÍ•#îñyu:\º]Û‡Q+Òeë‚$l½pÎ`ò.Á±Œê®I•ÂõcäHýð’Ì©•oCvt3`/u ^–µ½Çgá–¸áÁ̸^µ]äí±@&Ë= $‡Þ?§ö¼Šg ´‹Œ…ô~ýܰúò'ö¯5ç’8Íwër8[¾uü%8Þ}C)sˆ–Ç駸yÄâFiùqˆ3ö‘È¢ÏÌugÿbû ëÆ‹ºHjü6ä9ß­|º ÚÏQå¼®øT¤›wD$]uçf¤ãƒÖtØRj#‘©}£Ø·£Vƒ7ëD}x^ô^†GÑhR¤#ÖZkŧ%N¶%(a|-T«HZßrÏRŽš+ÇÎü.çLNK®Ó$†RfsÝž36o¹°E¢»+Õè°¼NpΉØbwgù(¦û£/tˆ˜`Ÿíú,–I]ô[Å›ìè×='Ä3~]¦BÆÑ4–nQ5zLãNÉ«ÄùïÜñ¼Š¤-™÷ç à/ùœÏ"Õnó¤@Š*•çvV<°p¼½•XüMšB¢rÞO’F> üz^n9äa™é!ñ¤Q·©¥V9i’ìÑ‘…"M‡ß:8z™\=³îèFVÒŒ!r,|– ùƒn¸<"[ñ"‹táv$@°hõDá´îˆÏ'Ž.ï´é»ÿÛ‹„Mæ1:R‰Še»ó¹: ³g'cÁ­ŸZÛ3gÈçš¡'ö¤ÙqÒ‘¨‚œÜ=aÔ¸[fÝ7¶Ö«ÖÑ‚Â׊n…Õ¼R„p‚9Æ%zH²z>”Áñ"ת'¬WÑý]×Og† ÝÌ6æÃYg|K–ÏÉR®”z{†’IB=ÓêÛ’BÆÝ3©‰`U –h$ãE,…o¹2µ‘eåsw~äBè%±_øcôBÀæ_ôÙÒ°£ïµÊob:ïä IÝø„þŒÝbsðƒ(tô}§ßu 5Sy<Î-I6ïç–G:O“nÑ¿­E»¸áC+೑ó&ÿ×.ó£§ÿ:@†‚ˆ m–ì~&^#[ÁîL€o´üɲÜLknbÄ®XÞOÇñ ?ÅâõÁ»÷~aoøNpÄ%æA+Šù™im(sΕ‹œdÕ¼#áÍ£¸@ZwÀRë“彀覄ÆH,ÉE‡w,Z±ŠBqïš{ð[B¢Ùú-Y¯^¨x“ñ|*Ö©~cöäCµ% 8ŸÉ âÝÜäÝešëxæ´Ûà¶zøEiRîôÈS]3D¶†Ç§ûGªZf†c cçRmOuñ[E_B94¨u=.ð©ºÎ#.rE.Íg¯²Ç“ž0¬¸å×~h¾okºYÖÑ—&îX¼>»ÁƒžWþTqÈ¡gocxfÝu`È@b—ÿÄÁ „­-MñÚ©¦Ð”‚sÖw¥Žc!ýî,䯩U¼OEöìQö”ä>é´ •É21‰~Ä(é>Æ$?|]Ÿz•1àxb?7gx× wem"Ü—š‹ä$:Õ¹÷¢³]D¼í|l]½ùÎUg­ü]n ³»I·Ò³Íad9dô¹™†÷­ZØŒ-|ìÉš¡c©ßé¹>—&oJÌhòiOû¼Í^†ñiÏÔoôƒÞz rF.b]* ¾/b:ø£|ÝLSf.­ùñTÚø]™ÁÓH@³î^Tk¨{QÛüª‚£KõÉ#ö÷~^×2B?ÙBzpÔùTå÷ßsä(‡Úo7²"‹EÝø ?{>AO´ô ¡ž"s!ø‚7­“Ðô åýãÈq{WÅnŒîþ›Ñ§Ì}V*œñÍ*H‘×µòòAèå&Ôôë(¼­Èý¾Vrªó•%ž® ;ÏŽP’R$Kç nÒ«¢ÑÏWÏð.Þ¬©J)æ îY½§/÷|mCh<¸˜¦¾ð¥ænÐû¸jAs²ì~¿GA@fJØFÜmÖY‘3^–büðªÛäx:„ÜÁüBüûGƒqtÕ…±vë©Ê©R:ÐÄAîíX}ky ay¡l`…7*þë©Oä,./Y¨ñn?¶*”Ùº'JŠ•½øpÖöõ*H¸FòU¶YI ÂÉF÷zÀô­tŽ»:Š-ùSó7–ò"gòŸqЬ¾ÙÆÊ°°…ü²ë¸[]ìÃ1Œ:ƒ’“‚Ñí õüQÏÈ)Tûá”D¾/ó2Šwnô ùõ±ìJ‡§ m·ŸÝ_†‚ÔßÛÆÅvÀ¬E%+ÕÛÇ5KðéIÏ.é·¨úœžû´üp âdzÇÁ;ª™ó* W?·!exÒµõO8À`Úç+éDM#K”‹‹éð÷‘\T:‘{û¶:[ÿÐÙ¼Þ endstream endobj 190 0 obj << /Length1 1414 /Length2 6534 /Length3 0 /Length 7505 /Filter /FlateDecode >> stream xÚT4œk·Ö‰(=ˆQFtFoщÞkƒQf0£½÷Þ#:D-:‰è$:Ñ‚ÑÝIrþÿÜó߻ֽkÖúæÛ{?{¿{¿ûy> ƒ–.—Œ5Ü¢‡!¹@ܼb9uuea//?7//>¨E:Bþrã ®(&ößr®0å“#Q8u8  âæñ@Bb a1^^/¯è¿€pW1€<Øj Pç¨Àa>Pîìå µµC¢Žù×+€ÕŠ æüq‚¸B­À0€:iqBhvè­ ¤×?J°JØ!‘Îb<<Ü`'7ÜÕV’àEÚt ˆ«;Äðk`€Ø òg2n| @ÏŠøã×…Û =À®ÊᵂÀ¨ 7˜5Ä€: «¬Ðt†Àþ€Õþ8Ý Ä úw¹¿²‚Â~'ƒ­¬àNÎ`˜f °:BšŠjÜHO$' ³þ;"à¨|°;ê¶D~w(ÊhÀ¨ÿaå uF"¸PÇ_#òü*ƒºe˜µÜÉ C"ðõ'u…X¡®Ý‹çÏf`p˜Ï_† fmókk7g}ÔÅ ¢,ÿåÂÿÛg AyE„ùEøÄÓÊŽçWy=/gÈï è—5Ÿ3Ü`ƒâµ þð}`wéêñóùïZø Àj…XBl¡0ü¿«£Ü›?6jù®PO€ /Š{ ï¯ß¿ßž¡èe ‡9zý ÿ½_C=e%%EŽ?ÿ;&+ ÷øp\|‚¼HF½øý³ŠúW¼§*ÃlàïŸnQ×ô¯ŽÝÿ"ë_â`ü³˜ÅZ€õo’›ò òZ¡ ÿ7Õ§üo ÿUåÿ"ù6¤èæèø;Ìú;þ?Â`'¨£×_iÝ(¨ÃQ2€ý'ÔòG´êk¨›ÓF•‘`”d`¶(2s¸yþø¡E¨'ÄZ Š´²ûC™?~ý_Rs„ Zpô×·•ÅËû1”¾¬Pߊ—B`JlÈßküeCPrúg 0+¸õ/Ýñ À®®`/|ÔêQ– À„¨5Äó7³<Ü08•@Íì°»âÿZ³¨0€üËõÛñ x › ”‰ømþãP+7WWTW¿¹‚êè_öoåC ž+ü¹i¸•xˆ}]HÛY ׯ˜öAÆ™×X‘²OaÂ|%I77g^õ•â\/HÑ̾SCÖåìÅ—™cŸõzú/S.zů¶ô– Ó·§è“É>?i§‰›Ðò ÓdŠ•ºö¡iÑEß{wGÊÚ¶OHìû¨®g6Ùƒ…¬LQX%´M£ã]MYŽ­¨ÁÞª²Ùr@oCð„êQÞªS|ðZŒidºF£ªDÇ9~’Gõ½åþ¡E’^º®è@÷ Cæ0$‰‚ø­¼nµÁbÑU^©ûnÖ}Ë'¤²Jl&lÉe Ù}†»XþáÕCN›±›n…âÝö»¯®rd>‡4Ð ;çXh¼ßøV_{¸¨rB;D…ˆÓ_Å(ýâá^Ñw¥6^ÚjÇÞ "€þ*ícÝ Hì$ëÎ ½·>_Ã뙡jü‘fº~ôâ=¡Å–}#ë“WÏ£{l“?×LœG¥Ûî>½Ñ³¦”jðc§Š”½røT6” ø(7l:Â!S ®>ÛR$‚cKÖÌ#*ª…«ó–þ®ã‘Ma-׉õ³ ¢;¯¯—*ôûh®{Í?R>·ùLŸ»Ë~aÿ“¬ò<‘ðeäs‹V‡D„ôWV¼¬c¥7_Ë#:|¶Ë%ß!&gËŠòDë¿üO×~”ì.2‹¹;^Þù¨òþ¦Ë =ò;“j?d¡5¸Ð#CGòƒvqÎ÷Ej½ZæŠÉÇÄQ«ÃFÏ_ðŠBÃ}ûÊ¿v Óké‰=úÔKºG.±Ô™ô8­“HÑòˆhåµ@^¶F¿ò%šÀÀ„b蛎)¥qL•òb4G-™/á€$­­ÃÝâoýú•ifpã’|€^X@øÅªàÁ ›v‚ïm¬EA…âx›˜Wl–†ÞŒˆ«§Ç¢Õ ,?µqß?`Á¸Ùw§=»â1OæÃð¹¤åŸ(ßþü62Œ„ûQE\$|”0x¿óÖ”Mâhå~”ï+þïòXb«—5=Ì .¹Zy«·ÝÛÛ¹á¥y@…² [ZMßoÞ|®Ÿé´§×?ÉöX]ØfL<~‘tK-½fz?ÎÖ p;F« pŒöD”j“/k}‰AæÓüiD9 MXÝCÐŽv˜CßBcéÁeùQ‚ÄCŸÙõ÷çßKã÷yÒ"hï“c%„¥ª^^ïŠôz íÌ2ο×Ï¿¹Ã‘ÝŸ:/VÙâ_`B&…vE’ã;è$.±¤Î3?m NÜ; „ÛåàgŠº4 .2Þ¾®#f³ÏÈŸÐnÛŽ½*ŸôhÌÊg€4GF‹×ãÎ*j‘ )Õ©ãÆ:=yjt+ªíŽaír³%,gR.0óÂðce2(*ÇJã*JùšÈõííÚ¥$Q}s6Ëðé›¶–“ÑäKLµÒ3ÌãÑÁw ÄjÜD +ó¹®VÇÊŒóL‚ÎŽaÌDmë]áL†W=á»×'3}Uì¤r̸ž*Ù=K8¿ŽPï±g©ñ°¯7>­7÷Ì|£YÐøéì Ü yñ¶xA&ÑÖFª»LÙèÃj?έªcó£óŠœÉ-ì[js÷ZJI:Lglj:%¢W òÆs·sj+ï/$ÿž!=M;ŸF÷ÝÅ&'Š[€Ïj°1ŸëΈ³¢î»j›RŒŸ“¬D¥Õe‚–¡â|-~ÌG´”TÝ$ø˜rä.äfŸ,Ц° <͹ƒ°–ÒMûæ‹ocã.B?Ú L94aR¨5\™ßÅ(myîÀÎa™G˜Fý…ö‘$R5V² ¯W^füh9À¤:Ððˆ£j[F py¦hªúr?èVQJŽf qÛÿ U‚b½º>Ì—t´ýÆr3çQSr:é&(gHÃV“Txñ=btF(ÓÝD€O6B’£¯lbäØå5ðèùšDe¥ç¨€Å ¼g,ß±º3UgVg&—’úkcÒ5E«$9,½õÔ w•(º<ßÝ VŽÌ™ª\Ù|@%o Z¦ÃÌnßu½¡Z({ #¬­Ì„}à&)WoiCÇK­fŽSÑÍ,Oа+X¹ª&|o=ן…‘~:`$ÇÉÃLOOè@ÕN0.ª(8Ö ¤‘Ùx·ô%¼Ó_¸´epyòm­3цtþJE8òö.Çd\i\dÅóÎc¢53ÂVNÊŒ1Ʀ Ccûâa=å9föZ"ák×3úáæo)„¨B Ф›üÔ¯œx%vév4ªG¥ÐJ¿èƒ*tüZšiš/dùáä¹ïw -]n9‰)æÔ™ÔÞ“EkJwÌyÖw´–“®áu f±¤Q¢gM õ=¶¦›åøÊûÝë“ßw8*œ›b¯6C0x³ôõ)1ÛûCi¹›“¢|dÌZ`¡è‚°úÄá^DˆxÉø}¾'ï¶Ö¸jÑDhß‹*ŒtØüíÐuMù|Üze]÷ÛÇû½Nôsº•¸bM†Ø=“bQÄbð‹$ŽHÔ´zÆËKè#ÙüíBÈÖüèOËo¯Ø¥Ìt-7a$Q¬%¡)n½qàd)¸Oÿ©h‚`«ÁÃ\î-6µF¼ØÄ¦ñóH 5í‘ì)ñé½°ùRP}°ÐÁqÕ™èˆNÍ'©œ½)w·»d¾2ogš½[ú56åkÈÉiÌÈÊ.OG•›ƒ0ž¼ÌÚš‡ Ráõ4,[¤UÏdŒS徇ÞF‰Ó´/x aF v¦lÆ”ã¾úðVâÃ0oF‡xàPl¿5ù+XÅþñÛбÜY9§4ÖÙ#JZx“oœ¬‚K ~^k¯‰CÑ_Aí8{]ï!sÚ–$ôDضGÓ*ЫO’/Ç’»NËž[ÑF¯ïò>Ý›ejµÌŒ¾p®u¥¶å±¨‘þðQ ™D§xš^îüjo2Mð ®F%ÈkÿiE†˜Ð´y|©;Ã&|ôïý8¸´îÒ_þØÞS[UÜ|øsÕÆàsÜÏ¢÷ƒßFþ 5lõŽ8pm¹°†ç¨†çjÙ#VüX“ô‰p:Æ{õÍ&%ñ9ޫɺ¹ª˜^ Þ½í=©c/ãqæVaBj Õ¸ä`$* *b¾‡þ%5˜,QW3çƒ&yÁŽtbegtc+ͺ h_±¯b7­'˜-ÊLQ50ÀO…ûìƒ4Ý€7ñÒ<¨#eMžŸÚ3÷°„¼+»Q<-‚•_Au^MK›æ¬õYÛµQ®ú:s`Öᙋìsz–â`²ˆªë)¦oµô Mýµ½ß¹蟗Ëó·H°6&‡M‹p((ú ?Âme9›•"ó ù˜¾ªÐ˜Òx¯Ò¤½g5éÅi“Š$Ë2c¤lÐÑ*]«¬™¨ê‡C~þ‚òNòúimv“Ûªþ u6‡÷‡³xlZ§x@.G_ä.vSÆUû%¥òŠ¹Ý»%»Zô£X‡ïéám‹‰toÂåk'Ë`(‹Ã#ÞöƒŒÆô=‚øƒw㸃(ËÐ,ÿi=Y• ߬Q¿ˆëÕ¨ÿö3¡-»%Ffa¸‘CAâB¿5ŽÂp­!ÑbËt"úÑû›íáýv†Uņ©™6µ"²MÓ6s¡½‹¥¬lhõÕ™ŒÚ±Ë@ËÒT}.IfZo…d>¬»Ñ¿êõ[Æ Ñ{Š…m<¯Ä®âf´Ð™Ÿ4ÏkD öµAÑúÀAó”¸WQjáuïGÈoEµ /`ÊÉVŒÚÁ¹m•Æ|nk1å% ›Š«¤]•ê”i§£âüdÚ¼SŒ4‚è‰Y-öª.É}‘¶¡§Lå 2vlµ;ªL§)£©7M Y’æÓtÝ[No€4ªéÚ;Q«›…þµ¸×Dc™Û§bÉ•ðäy½ìØX‡¶ÄLÄÓÊ2šk>^M’lyq*,/O\ö}Pñ$ýÙwŒ{±®ÉµÈeqÄA>„"ã™gëÆnBïÐPåSLrFømÕI,_˜Œ¯3{ÑõçÍ—sD³±&a{ºðªþXÜî½^ü8ÓŽ¬Œ|‰ÌNN(ic¼Çƒ áQL®œ¾?ìÑ:ÿã2H'ÌaEkHÿ¼à‡%«Ðx„Ôœ•ù˜}Áþ³…vƒ)»Ç\A¬Wæýf¯bèÅ,|F¥Jne;õ/qgpYò[Ðq6ON'oî̉*õºèó}?çÚF¥[•´YÊ¿¹[D-·ñNçLÐ]uSájð…á¢ië¼¹¡VÜ%•8é!1Þ&2áJ(lè|œ¾oÿ¼¶û@ßÖØ¥-dc+>N·‹6­aéÐp”LÂfj ªÙ6²/Yl¤§vÀÇØ')ZÍ™K'öù°R|Í'`‘à€¯ H¨XÓ…NK%kï˜Mâ+8s!ñÊ­¡Cužæ€zññºˆ7?åuk‹Ù, ÷®À‡Ÿ”9Ô›)rÞIÏ?F®â<ˆš<{½ÀßéÃ>í.«Èº/—KaV°jOx¹¹¬¸j[wÔäco¨y‘ùÑGÜÃ*‚̲·Äý@rµè/¾]=ŠóÂnÅ)¾»qqG?äaS8Ò0jÃÙ9Nß1¼~]ü­-gá ÁµRVÜpó±¶Xáà :2‚¯¼ÓßÞÊ­®ªŠõár<¾b=™Ø 1úy°¢¡–m–Ë*ÈèXRÓ ž)Ž>òVïΖÚÇ;wè3åE¨ß÷¥ƒyDÏ O*HI5ŠøÄg³í‰2"¬Ë-!KOÙ| â\Réþ^¡y¡Óðú8ömqÛkÞ’bßi‰¨¾‹u¼XmãØ£ð¯å¿1v:brcjŽR³X|«‰^*óJò"†O7*ãp«1$@¹ÿ¦\c”âªÅÁJÓå,†1*H„¦”…My~'I:éõ˘b|'ÖÇe&.oý]ž>tÚàÕ2çIœ+Ý•šgtKnÞ}Ó^$.Ó¨›šÝÌ‹J‹d´bÕˆ»õ³6`žÒ¬<²+È 9¹7¶ü£Ë† ’à6§¡VÜâE]¾5EÝ¥ŸóDW;¶üË^Þ.Üawc¤R±;Êà\¿*¡‰$êûR¬-ios¢CRúã^×7µ­ý¾Òy¢ÒI<}F©}<k×fyE2å>àöo_7u¢¼ÞG#‹í”rèfKúæ+E|²ì£UÊ K†6‰´pévQÀEÑg:>1—à…nµOˆ·ë»Ô-sªV–;ôQ¶ÄŠ­Ìâ·þÊÁ‘Vsáä×Cö¦“£ŸZ‡Î•–\JÉæ1žß‡:nÈD‚"9™²M¿?©™ â‡o,>fâ"Úª êaã›{Ò‹½ÝDh Éþ•0_ð~aõ±žšuÃÆ˜û±¤V\œ|ã”4Ù—ÿæ•V·}@ÃæOÏ·+å’Ó8g&Údb+I¨Ö‚&–±Z‰™s¤ªè5Ζ¬çDƒ´§À;{›–1ßW«¹™Uc§^«¶³z’'gÌg&•i÷’}äAÛHòC)Õ*÷k@í°ÏMÁLË„ý—œÌ›mòpÆA Ü®Ʊmß+-ªfè´ø}½|uFs n% }ÅŒÙäð£ñˆÞÞˆÔE^L5ÇæûkÚÃ{•.Fd3øuÙ'GÍ w=z¯_iË?£Êîy.-òœ5…ñæéĵ~.¹`W–*#ú„ ¼ÞÍ1>4=Ãí+C˜£"§ý¡Dµ¿•¶§ÜZ[ª‘ØÝãà'Ç€ÔÁV—ᦹ›{°ü{Éø4;MàïÖ½fã{.̸ÔÄ-MvÔ&}q©¾xhMq@クs+Å»^ÇšWý¤c߃,'*@ûs˜ÏDý /ñüï†ñRLV$èÉV· <ÌÂyK©¥ájK†< Žx§«¾½Ú þvv.ÒGÛÇèi+§6ÿiö’±l<ùeüÃqG2¦œ\QŠdÙuûv£Àwþ;ü•ó5§»0ê ½]D™IãÒÑù¼´xuÕKSéûUnù¯Ã÷ÝJ ïòij‡Œ©óNì­t3¬™ÊÎá&Ïö»wý’{±ÅvCØ÷)Ƚx w;ý¾eìîãÜ”Ë?ãDe¶­-§›)ˆí«;é Óö£¡é³TÑ’n”fcî 5Ú­ŸuÛ'Dž·?vê«wƒ˜ÔôE‚ü¹ªm7"¤_n}-sÐVšÐ 5hÛÓ¾èŒë YŠ o¨7Uªø9Ó9û÷ßkÝåà -¦„në®wêÚ_H‹Ngš~¶%;^HW‰¸8œ¦Ì’¤Á{Jx9 –OÈ8˜­mœŒ“öžÅÊv™äû0{^“Ö9™.êcðÓ¡‹Ï‚ëtèM4 ¡Ãçýé™%>BÁÙ8r«ŠÊ.–ËjÎj àpñ«tÚ7•±Ú§mBÃLŸT‘ó.¶ìjf})Rïû£6BŸOõh‰Ï´¸öš[r¥H^ä¼Ðý¶8îÌÚÁ¯„ƒ{WWƒ°Y[Û-¯æ:Üò®Ž "öO3+àL}°œ ëdLlàG§°¶Í“¯²r*p| n5öœœIÌ„&g‘$wVjm˜_¥`Çsļ§¾ÛÔ”ÜÕ5.Õyœ´9ÅBƒËÌYH/ÖZÎ)Šá{¸6ügÒ#l±Œ{¥æIø*-·“âƒÎ'´xU#N…Ù°XÅ74õ¤M_Y¤ˆ3% Ù2}NÆ÷©XŽîÉÞ=_1}ÿ ³ÃÉDO™ÎÂãèè'Q8¦©–b¡,N‘}›èLÙ`:ËÔ;) OWlÚþQtþ—O©C3.¬´„g?z %=4 8œÕ¯ÉƒÎ¥È`¤¦Þ4yƒ+eCl`ý_—܆] endstream endobj 192 0 obj << /Length1 2749 /Length2 23484 /Length3 0 /Length 25020 /Filter /FlateDecode >> stream xÚŒ·P\ ´-ŠCpwi\‚»»»\ îî4HÁ!8Bpwww÷àîð:3s'™ûÕ{EôÚ.kŸÓP’*«1ˆ˜Ù›%íí\X™yb ª,Ìff6FffVxJJu+à?bxJM “³•½ïbN@cLÜØd§`ouµ°°X8yY¸x™™¬ÌÌ<ÿchïÄ 7v³2(0díí€Îð”böžNV–. 4ÿó@cJ `ááá¢ÿË b t²25¶(»XmAMmjö¦V@Ïÿ„ á·tqqàebrwwg4¶uf´w²¤¥¸[¹XTÎ@'7 àWÃEc[àß1ÂSÔ-­œÿ–«Ù›»¸; •)ÐÎäájgt€’ÔdäJ@»¿åÿ6 ü3 #Ë¿áþñþÈÊî/gcSS{[c;O+; €¹•  $)ÏèâáB0¶3ûehlãlò7v3¶²16üU¹1@RD` jðŸöœM¬\œ­l~µÈô+ hÊvfbö¶¶@;gø_õ‰[9MAc÷dú{³ïíìÝí¼ÿæVvf濚0su`Ò°³rtʈÿcÁÿ–Y]ÌÌÌ\kZ…•j”]]W¥ÛðB+Ëvö'@5A/Ævbeq¦¡™VE“a†K%Û{ Ñ~«¹èJóf‡¹õgÂEžÉªWÀ4’¶åa@}‡÷cµãÊÀ`/ÃmØçÆ»ºÁ­_­B¡!B w: KÝÈå%Þ4¢ÏÐ%.#íZ@LTúE·OÜOÐÆ¡üÞAç¢ø,›yÌÌ:ÜÐ]àÄ'Ù>ç±¾e5gŠ­ëÓhs6îèúÁ¯ÁœŠ¯&mŸÏÎòð,Ù$ŒÒÃhrÒ$:>䬯Q«ðýÖL—0­—a3Š{’È'lrÌŸ÷Qä³ËHuíÌ•DêyZßó|e<Ñ,ÓhúÈñU…tû(Šad¿&°_48´›çÆló¦´TÔëÀ^óþ¬Ì=Bt vC+$çC«j@V»³Ò)‘(ˆ‚Û­™®7&äÇê¢n¤¶uq(Zê[#íOîô%2â”Ôù =rüá> úóâù]xß„±?\×°þhQº£CLG]‰¥Lß]‚$7l¨Ó<Á%PS¿Ë%÷Zëš›Ù"šØ¢ð¶)Ó+dï®ðqD´‰§"Û H½\ ‰Ž|1¬_Õp©^$¬L›î®õC‰’ö°1c ŽIòŠ©ÓWåóßb¾Î&fZoze?ÄÕ ”;ëýXżæ-Ðk×§XŠÐøùf|÷‰óSÖ¤‡TŽŠ]_)Aj$Þ¶UålR&éܼ<+N¥nf*ÚÕV¾?-i´yè» 8Ó}´(8°-þjÌþqÉçªÊl9¤! ¼•hÔhë/ã"Ȳ(ŒÐ Ý?ÄdGÁd]JÀ¨º¼¹`>rV“jŽw·ÎÌJÏ$^F1"KÎY¸“Ir$ŹŸ«EPøT¼Ú«ðî~F@˜0ò«åÏ fa.öûòÊßt`{Z]w?Ÿ¾:`y¶š²VvWSóý{šÐž‘Ð%Wò!6‚áp6´î§ÖKne~v–¢K—±;i°E$>Î/ õ¾Nr®,l©b`ÐV©ØÕÒ.e?&¦|oê µÈÐX&“\“¼SÏ1yL‰oÕ Œµ¡±±(ïÈX4™,‹Y!­ß/™IžÒÛx¾7fWaÁù>ì(åÙtÔ̯/Î$8¼?Îu6‹M³CöŠï€ƒ-ûº—Ç;K(Ÿé…§‹vVâ„™Ÿ[ì¦(Þ¥ ÅÅC!#oõB•(2oA°agÃé .û&NR©æ‚_îÍΡòHžR¬ˆî [X¢ÿê¤M.Õ^ÍöÎ\5õÂ(˜ÖâøN0U{.s à+•ÉêÕ¤ë“LüN1xî¾n/éü™,6pxOÆ Ýl†Íײ’ D‘1F]ö¯jó¬&îIoM.Åy'Š@|\KBñá+=d_H‰ý¶KùÞr9èå¹{à¡koJÁ¬pH”,ï'b¡f.7$KÕÜnœÐ‹ ÚÔaLœ°-s»2^º¾=ÙZ {¸ä;£÷÷¨ž „·oªXËö€ìgNqB›íÇC×b‘ô;™Þÿ¼°x±©ñÐô¼®YD›È Ó'÷òÃý\èàvÑ”Aÿåf¾§ˆÑI”ç–]½¶X™ËC·K‰™0ùm7Øø{Åðé(¹ïàÙS|_ÛN'ÚJ>ÐÀ ÌG+^F€ó­o䛽|ë|<O(C}Z£kŽäï-Èù´Õƒ‚QéÜ^ÀÃ_#‡$&aªyk¹Þ2ÐM‰¥’8*™o¯ÜÒ½9ìOQò±…l‚­ùV™gŽçH'Æ™'œÚh«ŒéÈiQëžW1)ÿ¨ßyêº/©ŽDÆ<1Ý€Hk%”Š•Ý½ØÆ a—bšUëã‡ûJhï‘Éë×2¥‚,ŒÁ­.:Itý¦#Ï’h•Ê7Iz*Ÿ: $éJ–­Ô±Ïcö 7f†_Œ‚óÂÔ(Õ«å¸â*àÞª~™=ÒuÊO{ê×¾îÁ8Övú6WÎ"æGÝÎk‡+?\ÁJ‚kHä]¾DŸMÉ·Ï HGSÿ¨×QE‘YXw¡üºýšœÞ®[DËÕMÕú”m9j—X‰w M=½dÜY«ÞuNýÎÉzí “¡Ý'HYùl8šdaø{ÙCã©ðe5ŠDÞr’5kKgïÓLV;í~úaÉW|Õ‡[2ÎÓÈoèñ~Š@wÛ<•_[nÜÍeO¼bI¡ðÇp²y=qþ„ÙÙ{ya§³I÷¥I øvÐùúÌ> ÓDØ;ÞsŽTLŒ$ÊÇŽQË_§öè”x—ÇaÝÄ!ÔÂY9ÅŒ‚aBï¦bt:Jžß¡ ½ÅѧÁ/­š{ÿq ;¹ö­ùhŸ—g‘[0ɆáQ¯òÁð¬°+V!·éf8ˆŸ—Í×sá]ïÀ¿’rãÍäÙÂ'/…ãZ¸/ÂÂÃÝqíH¾ÑöTÓ÷;Í‚øRvoc/:{ð-ñ Ir†)óý~]¤dRâÊÚÃI±Äš±nDù²{€th6–ÏOX­§j¾%)âYLTm 26Ñ+Ž…Ë§Ý» i=²©R]˜;–äÑ/ǦŠw<%‚¬\²M¢Ï—5ÎL'‘µ4WÅX*ôÈ.‚ºå›Ü#‰RÎ=õ¼$ª<úœ˜T¶žå´V5x‘nÖ7ZEQòݪ¢Dª¢Æ6m‡U†ÙsÚ¼?8 + ÖvO–0O#a1b›ÊPjü‹™¬óB×{rH}W’NÅ©´úK¶gUÞ5PÀH¯î¡ »Èä•5¿ñïŸa\Ð&<ž·Ã*uJF5¼:²[ì„CjUzÚrQ„fG²KŽú,m¸Šm`ºd™Pã—‰ÝÇcDü}ü¸HN4|õŒØ]Û±LR_/˜´oÓ¦â†_šë?EÛV›q_“Áë†GhÐpÍ»í%[i-üÓ£´*X‚†Yjo´kIÅ"¶¸/é½:uÃY&*_&ÿGG»ùm×@y1–ÄwÝŽüÏðŽñsÝŽ“ùBÛQã^,bjoÛ ¿*³tù ÔXGØJe“C>ÙМOÕPÀ7Tv˜l9ä¸Àµž‘>´]Kó«Æ‘ÒÉeë: Sì®1¾m=Ý{]WE0˜€ Ò¡díOG?ÁîI§Áe঵wЦ²ðä(÷Mó%*êˆÓD†eô Ô`Xnä—Sh–Èú*aò–%Ú ;A~jN/žÆem©â™q>b¨B}¨â m0ì¨PaŽ€„•µ |ø»ôxA„Œ®àºqiëð\Ô-g,'¬ ådø]ÆNÁÅñÙŠŠœ±÷ŸËmºù¨’+Èù÷S¿_?ÒšOlKz¥ÕõÕ ånɘ‚ «IS%ó¿B7'œ@ÝìÀ¸13$ƒõ¶4+KØz.ËDH==›·xϧÞbfš’~õ8ƒN2Sx™ý°Ádî˶–œv8TзE&UœŒV¶Gm®à<;MòNKãÙ÷馦®^»»&Æ!`zŽÒz¤Tºõ4JIún`$–Äð¾6Šo?üÇè…ü¦l½[ò@ýerxŠØ”%j1K¡@Ž/ü!j¸ÏDMÇCß;Î…Ëp3Þ¤«`Àü"âov`c¯^­@sãVWH¾d47n§ím½dÄæcáFTnÔH-c“ýì¿^IºSý”s=¥Ü9xä” #Q‘r*0ê`¼o€8oy¨ôÒ(£î$mËáÛÕs™Âé"yåò“+¼¹¯©c×[ŽO?Òçý™Œ‚»ö#d ú2ðV—lÚ]+^é‹ìV¥Ðî%šrC Rà‘¤fë‹ã8 ¶à7×ýõn)Þˆón¯àÌÐ4i=Ê8c·ùv0b¤q¯-Üõ!ÑOÊEõÍúZ6Üòw‡ëBͶ˜² wØ Sl!·DV[sÒÂËÍÇ‚Ÿß׫2¦]?»QôÙ2¢S¨muŠ7 /Øx>‘àr%bç"j_ÏŠU•õØÔÔVH¹rJ¥ÁÞÕ,°<¢¸0EO#¼¬Ç ožÁ¯³¨d)³‹0|ôu€y»k^bÁcIAôPÔ®/|ªpo4o0Ù %wÃÇQ “çÞwص-ãäx*RÄf.´¦fåú- se»ë¢eâôh]Û õ€Hüú†7.fÑŒV5r(₆xÈPò‘“v³Ñ¸$o ÑrsŒGwºÐõNm—G./­[]®ØøŶ»Å@b­R°î&„Gc_ðWO(šä×fkTù™vÓ_KâvŠx/ñM ±ÎîMÚ1o[ž¿éðŽžîuåõ¤³´]ÔØø/Û úÀ\ï„!ð} ¾‘`Í.GìW§ö,rœ0ezN<Ÿå ô#EêVŒF¢M¶Kd~ítÇï€>2&&@ÌñÚµº7ÁA÷µü¾7 üø5rÇ·Çße÷T«öËŽ]¸sl ³²7r…N±×eÔ§Aô(Áú=îcù ªþ¯§rF‚£ê"ÊN£äÜ“•¶ç¡F·¡¦^½§t X³Ï*ƒEŠ&æ¡o—š[WC2íÉÞÄ,j¼iöš¸´øi1b¼ûѵZ2{â Æ»Ï•ú’oãtÍý7¯ìBïXõ;?²I§Žä¦Í]¤tŒ;Êí¤§h_ú!Þæ'$Œs Ñöæ]~‘¶û˜ ÑXT&ÂEvà-¦ÊÏÄêò¬ÐÓwuï¼SðøžGæÝU‚ù×âô ÈÍ×±çÇ· ï$Ž “Qûn¶w‘ÑÉ.©q!·/jWÀîCŸZ/!QM.ˆìË"¾-Ýhkh‚C_D¸NVÌÙ¡àtû¡†¯®ö| ·\þó+ûháÉžPØõÍÑm×½¿$Ž™¦”ü,ýÛ=lg¬oR/yëLõÅŽÕ]P7à–Ñ=(ßîïuˆ¿y…ˆ»#²ÝÑSÓ²öæ…­iùµ,¶š#_çr^ý6€ëÇšâ²3>Ÿß¡øNŠ9Eöãôª÷‹ôï#˜ã>C¤|MHRö僎$›j–»™"WÏ®C–¼}ÐÛþ5˜N„$‡Dàûò¦Ýç§*@\¯;IÚušóU¥çy<…:C…­ß„σ¼>–„í’Dm˜·ÄÚíx‰²ÞE6–Ip0Géõ$ÈIs5°ÏCÿ{L³ íæiVG~€MÆ=$‡}+ªî^θ$*½"U5†Uq¤^¥¢J‡Ì…ôôÈÕ8I»:ï±ð¼ä)Ξâ+¬Ú»ŽæJþo´M–ëZ³0-ìæ ’âu–qKŒóUê´jÐ Ä¡vî¾Ïô:ŠõXãbàW·Ú1ªÐÀ¯Îé›3¶æI=øÚy—ã—í £8I?Ã4Ž˜`HLŸ(êw 5}á!RÂ(³¨œ2z$_Bö–oŸx4 !g xèd˜}±§jôȼç±àNÙ4½zÏ\·%ÓÍ!‡òB¯•׊i%>Fp£=iä§?¸Ó–ŸY`Da9Nó®›Y“ç7T,cEXÂ:ö!ä§7;Û#14'ÀËAJqÅm‘•ù¨Œ‡Cì–<ìt.¼œ}Bƒ|¿vËÏT«aDæó˜—ÌØ6vаÆÍž©!°v àÅÏêV™ÕÍ'>ɦë-Wa—^`›-â<Ý£øÀ ¹´Z³Lô¦‰ì9½Db•·O”¿à ˺uÒË‘ø€¿¹¨û¤¹úñc:|ÊSšJHµîò*¿FÇ;^B¨ Å%!Ó·7”ë•oŽ›–EÕ8xÂî‚;ªÀcJ2ɺf»Ó«,öÕšW¶ Lеzà`–h~ÐQ¢Ýa¾ÝíÓbEF'n…`*’:•ui{åóç‡Qá8}æ1“#0bŠô…g°€szé Ù\  ?G¦Ë±ãÓÊ1àÍ­hå«í(G”‹”HQwcw/?àTOKœ²ÎK+suàTkok 0ü@—PˆŸÓOíý°™E¦ÎJɯҰ»é· ii°A¼u0|ôÝÿkùbŸ·YƒûD˜ÕƒÕO{8§Ä o;¯!_N5ýKeícìÀ5ê€fu•|EUÝÂÈ[%û¼g-%ÎF³Þ2|aÒ½¹Ïû"øå8{råËbu|”.Ëó¡MLлjoëµ:të1rH‡ˆïG¥EÉM¦˜áIü¤î$øbKˆû¿@)~ž”lÆj¿Ú6³¿»·ìŸ÷«“fS±ÛÜئF¶ÔÅ£BzSÛ“f•åóòr <¨vY þ@ÎÎE^±A\±Y2+cx’.Û”(¶O”MA(m}š{vR33¦xd{ETÔáÌ9Fð°Á€‡ñÒ'õ±Œ¶áä,=×”Ù94Ì ã Ön5 >ˆ:pß>÷ä‰BT¤Ôx}º¸Ÿ^¬ìŦ·7}òìç¬K’•0¥‡îüóF›Eë\´ÈßJ »™³1eÆ/Oçu‚›lÌR*V8ZO×õö]Nü4›©– â¾¾`nþ`ÓL{ÅšÕ†ˆÚr“Øå1=àòX{}³=ÝóL@]C¬ôÍì®¶D·t—íQÍ.Û=Ô[ØZ]©ð§)ö[ž9 †o:ñÁEBoŽ/‡ð¸Ì†Ò$' ìo/=Àhtë^Ž·òîƒß8|¶ ¬R߈5•ác„ÌP)Ú÷’Óç5K/‹¦q9¸èº+„©,Çò‹£ 6_‘!°¯ôè­¿+*»^Ç$x¿Tw‹>šøm3v³mï»þmƒ Âk®‘yß5¥Kå–vu|šˆ½œÐ ˆÉ"aÆ4p‡ÝüùÔNVºzË(Í4—nMKaD;b~BóJúCÆÅ°ç‘8ì F”dィßÖšèX7ì­¡Ø+€¿n MG‚ ˜PÄù ΕôvÝ&ÃC•ˆr+Aù8üqSyB|}M/IÞ'Òc+—ÊúMKË#˜)—D9õ²3E±«- 5ËÿÐÁ¸ra»w›JL;ì\ïútø#´Âf× B}~±‚`ôÌÖ-65ïVЯ¯*·kIS#6Š-Γ^¦Kcég +Æ'¥/Z8b¬ÀØxZ“¸ìÙöí8"˜w¼Íºþa;ÑS•.î­¼` ˆ‘Ål°K÷?º¹Í¦Ò‚ñ#’l|>s |¼¡C(ÿHÌO5‘~‹Ô«í¦ÞGÆÃ9îÑ.˜ÿ„ ˜0âsÞ/äÃüRõ Úqœê¶j¸Q¾El5ƒØÐ(õRc9"h÷~%78!Df»éî¶'(›ÄÖDqbFà.Ï÷ü@zzŠáˤ^ÑÞxó!aq¶~¡™ïÍ¢—ùžú»Í7>~.äR žÒ7…–zOåÚÚçz#5Ç7/i2H7Ô¬£ïÀ™&³Ò=ýžÌ.-^Im¢ópêÙL ¼xYÉÝŸtoL>°å‹£-¤Zn&¯§R}ļÝÞ=þ´|zøŽ£ôX b<µgC@_úh0϶™{ ¹>Ž[A{2Xñò] cQª¸‚Zâß…{ª…ŸŒ%¶·ŠÐ{åw¿/ضâ\Ãü½hy¢öµö ÑŒj]åAÝCü erìlLÛ¦ŸœjV:…qÈ ®ôiߦwp#¤ny ©#n.»= ï ณ²²?KÝMÐÒR˜D†Kôáî§wžÉÖG¤î¹¢;ÎǾ9µ=ÇËG¦˶ÈûH YS>4²ÂÈîú‚[VÒ“5 ¯ ´T°š±»šµzæd?ˆ²—r×Tµ T2È«^fŸm…ÊÑ$Æ1œMŽ\íh|@y/ËKÜþó°Þ_Z"¯H]  qã?"}'¾•àd”ÀD6yÁ‘ñ ¥u)¥éõ º:>Ï'l:äGŠ#aŽ{Ø3ìÃó†mú©õøÀoýýQñœ»et”©*£Y¾X)‰3Àu£ÝCW¥Ø£šyÄÕ_H4à:âí ¥®öi¬Îr#†ÛErÝ™[8t1ásö¡É3–Aÿp¿é¿Piïò<ƒ< Ý/ïW¡œÏùðx,&dïâ«U/“úô p†vg! *‚~œÙÇÒžÖÇhfjï~•=šg«혥nà¨ù©3@La6œŒvèÜDÂt9ÆNaÿÇ”ÇÎÖÏ2ÅìÁš®cÃ% ÙbÆ¢Üù޳‡ožª#샙n°™š‘-YÈ`AõÁ+¬ŠÜ™„÷„K†_ ßÔ²\>ÐTöþØ™hcJiéª#]b/™Â¶£]P =}§õæþ4‚SàÌad—Û,Ë£¢Ú㢘v­èMÒ:j4¾5ëßv7H¥…Q™SÞ?D°xnaÁ›Ç ÐŽP¹Ër´ZDOÍÇ(6f “þhͪxùù ~µqÝŸŒúyÙ >sgèoöAœ“ç‡cQ.HÞDÔÆ·w?>þ\«b˦¦c'wDÏÒ~R·› òš~Ër¬×#¸ˆØ'Äu1 CÕ3¶òΛ¹*aòu-鯒ës‡j…ЖÂ}ÿ²à9e‘¼ÃrfJè¹j¤ÉÙ@ãd“ yòDºº[êÙl¢†¥Ú^4˺vá wÜP:2¶±÷Á#—æ¤7>ªœóÎq£•JO¯VLè~!ŸäFCéÚ^§{Øþ†ø¨ÝVg2¥à¡»aÜtú'0·-Œ¯S‰\r„þ-­$a®Ñ5Û(eoÇí!ÈM“¦àYè.âÔ l ²t/§EœTlR{HR?3šDã¢T©ŒèKïGžå„Ä =n$1†wf¤Eôj×;Ò®U|ñwÜ÷µA5þ>ñ~Ög³ÏPÍRv«Á±YW7aéT‰qü‹¤ƒïBsÏ•œ?½¦4tÈÃ,Ú’ìø»Ùý{¸Si žv\¡¼ð° õ-ÜëáeMïÀ¨«9,ç÷ŸV¡®>®†{3 (E?èb@^.B~Ãf‚Ëv,(Ä+Ä[ÀÆ|Aü$ï<Ý/Šã¯ŽÛ‚<;dœ1£m¶½rß^ئ§3QÐUÕÁÛ&@„ª~L‰KÓoížš,8NOeQ½.ÒÔÆãÜ)‰a:G–\ÀŸïnŽ,9cô¬?”£hŠböMöj+ÜÖó%ü‡Ã–šŽ[aíÐ{W¶(¹Òêª ‡N×Çád×d…ÇTý¢î%ö‡…nïìN¯iÔIXR!RaÚi¦þhÍó÷TrȺá ý5-êoÄ-\¼Õv„5 2#i`„ŒBß2Z)EŒènÖlTo5¶-ØV©ÒV$ªf•á¸r9J0´j0Ñ.×Sòo‘½–@ d¼!wì]m0vhWDT㛀Ú؉ȫÎÛ?zð<#ndÂþ9B˜6¢’x¸]Ž”d×%2A¹È‹ö:Å'mMîõ¥âZªÙuÐGç'"q,zÒãíd¿˜bTäaDï4>áG‘ß/;£ åë”Á}òkk0u‚ÇX lmšTtäGáIiˆ*Y¦CÔ]^ømyl»9,Ø_O¨ïVñ®ëaStÇ’ˆÅêàŒ5©-’»;t¾Ô–w½-O "aÿ`$MDz[ÁFx‹¼¥ýÓ {0!ÛXRÕ_2·$:f¬½Sç€üZÑæØ:¦ûFp¦Ãz% ï™QºõQäô+6ö2&ÄcǤQ^WØø$h¥hDñHÎ10Ô·|m¥o¢w¨‚ÈqEGØ{©OR³änø‚“xjT?9WædhÞä‹j•6˜¶èí̾Ûmˆ°8S–)x’:Nç8×byõC‘×3Ì–Ò>ÛÔ=$L®JAJ<Žq‹1NlÎsvÌŽ (­{ó))|*E¾úÐMwWGqmÝfRû?Oª»/ ¥ãx›(ølùœšy éAjÒFL®, uœ" ŠVô­Ÿ5¹vðÌ2ø•â¤@[VÈ‚!ƒ±4n óÔ`C¥n¾˜ =c}ÈôV\½Ï¯,b‚DÑqI ¦`·óVëÝ‹ o¦³Ï®Ъl BŽÙÙžP¤|çbP˶òvÿ6LÔ4rÉïœvÄ/‘ZõfTðÍÀóþ–ñܼvS²“rÖSÒ¾BsÃyx²ôG‚u¥&/¶’$<ÖQGœña}švŸÙÔe]uc>¥S˜Áæ¬=4³ÒÑ ™ ›¨K’,áQõù4K<¯°œS>±×2º¤¤ßneÙ”DŠÞ·""ýäÜõZäzEk#ó 0P)ˆö˜ ýðU€`c½›Ë¢Åó}Oµ•ÿž <û íl誡úbÄó}úb 6X„ÀDù„㎸J’}¢^T®L:÷ç¦/{K‹&Æ8’ýW Kï>R+N`“¬’•I7…ë^“â䳤”âø®J¯w)¯å0h`§­Ï]éM+xfÓ;ï#»Â+îþt[ ±×ÕU_š¾ä½Æªv …z¹wþÿ$8V¸Lí~,‹É‚ò†n’‰P`ÑÞb¸àñ¡8?– ͸STëHÜ]•¤ž›U§g5Î'}®Û;«Yò<=›ämÌ×’ž0SŒj‰£ÓHY=ìey^á+H§°Z¬ã)»‡Šþøm Ñ_H„ðÎ¥ÄD0GÁÁò,{˜;¿¯NG±r/îÎu{ȆÂ./¦Í·øQ‡v™Ý ÷AXãâÑ&Æ’W¸Á0ÈsÔÂÕ>€—í¶kœØÏêeÞº¶¶tàm[+µ-re‰^ÑyEðBp,¿W—·-¹v:3+­íEy# CÆ=âÔ¡…|£,â#ÓpReJ\gç¡_œ(åct¥¢2…›Â#¿Êããgô8KwGüèâ†tï,æý𳕢 ƒ1ÂD,5RðZšÊìÞ;—7¥×ãîͺ⋔¶¦…Íy˜…•N73L_æô€iŸlupÚÙœ.Çxë‘j#LoÑùRÛôcÆPµe¶¤€1•¤ ºdáa2±tAò­Ÿù¶diuâ“~|œ©º Ÿ/kˆÄŸí yÃLiD-ߎ(ÊBs¦å¸HA+@ÙÓ5ö¥£ÁûÖ¶\ZùèàC•q¢¸1ESÏ(N à»pp?6†w±­_ÎÊC¦±Fôd¬:'ŽÉÔ-fôœ•[G¹'~Þ€^—Zo-ºìб ÷剮åm*h^럞 7K¢q.­fƒÙëµŽÝ þz|i™²¤=‡æЩRnqQwä"¿ØÅj±Òóލ/$K‘ëÏ$>¥æQÀÜÑ *}Xˆ…ñHÊ4‰@À})-u€›˜¸©CqŒ…_Ic”Ç«¤àÕÉ­¿+çièωҦå©9÷0LÎF~6âÃõ¢( ÉHïkïeØå§.RÙò·Ž¶x›Øä*‰^w!O|Ûs×!­ÄÄ5æÔ)Ý:ùÍd —¥êd¤í€¥Ãüôó)…¡¬ÆölõfŽ7ùYcœl,m¼jçfPŽ*¤//ŸùîšQ_µýOÊ&­j'WªÃ"&LèQ×#y­ÞÑ8‡gÄL~Ê¥t`Ûœ‹@@’ÌéVcÕŸB™’áD¬(,”íNvKb§š&y)—Ⱦզ$ÇUŽ ¤5Aª¼ÌÉupÕ—¿g›:cƒÆÄo]Íú.Y9,Þ“Px`•t>xÔ=ÈKLüªG[R†+Ïù½4AÉu)æ†:Cq±‰!Å?dq;WîçÅ¥xC™¾zÔT®5JõüÝÄ«caÛ¶ÆØÆGsT#;ñµ&½`1Qé¦J“º‚Îö;•]Ž2…íw(ŸD¾qø¶@†Ï6×-è§(ª¾¡à׈…òÍ$ôò0Úe W¬wÖèPš¡èý†*5³\Ì.½´¹%å/6CÎ~+œ1< ›ÑÐp¦¼Äb›¸(ßÊäÄvÑDšDWçsL‹ÇÌÌFÍrÎô ©'ƒ’œ-,.Ž8»ZŠ ‘…óEÃE‹¶šZVwy„‹ÐOc—ý.U #æzˆ±A•i—Ú™RÎ7;¦PÄ!•.+QŸí/aPØœ¯†_%÷‘–ó™í†‘iõaú‡r»õ”wH 4˜XQ\Ú iÇ›ç-’£á7Æúñm¿P¬ou…b _YOÑ7]"Ðß±E8xZGmáéžL†Î2À6}ì1)` Õíð©±w.—»!”À7¬šÍ><V[–ìOAG÷ºm·žâ9‹µVÐ!ÔuYPøñH•U 9i"ʬzym‡ºÝŽÀ‡)ÿ=ýy± WsÕù {ž'àlö1ë" Ìá,ÃÖõ¤ƒ¦qŸv&Ju1"ÅÎjò–ÉýÎé‘®Y¦Ûþcñ»Þã&Ÿ¥YŸ:ŽópqÉ¡6Ý¡ŽêvçZ|É÷UgtòÙйíïàd߸o‹8J;ŸÓ¼«ë&ŒÛ̾F.®j/n}%F+ØÑ:1×c7á!ÇÚOm‡à¬t!IÊ äûDX#ŽÊ_ÔVËÁ{*XE²Äž%bV;[ñÓÁ)§=­ó[ø'B «vÝùççt´$M»ì<ǃõ¹š]”Ù.Оè7¡ûŸ%W¿lÖ°o<%KÑa¶ÅÛ&PGÄ7Ê»/VF\ÛØo{»î–J®nEÕÏ;? ù“‡U=0­t•É#êyX › 1Nnª‰žóÉd;•² ¾yzÁ±Â»ºp,síÎP‰†Ëí,Ãκ5çB݉¡a·mq£Tõ!|ÖÃÏÖ›gÒ[j8JõáƒYš{Õ¨ËiùR6ÙÇþ(q§@ÆBpK`eÓ°V©î ‰ÒyÎC~‰E÷3·M‡:¡í•Ö¿–öàü§VFT¼Lk ËÐŽ0×–è½Ë„ !ëõ"ŒÅ´üö ¦Ç× ðãú4µý$æCvà{ þ|^Ú6·£®"ÊHǘ½3,EÏÁnµKéMQQ?çW˜Gè® ?ªç„`ç½g# WÅŽ,ì"‚‡ùBTù.ü‡¿™[W¥Ö3‘]uWbɧÔ#³DªÎf'ߪ+ üÀÏ™îPw‘ƸHéÇ~‹æ¯ˆV3زVê¨@ÝÎÓ#ãUÍãÜWU^¼.Ô$—à\™ÉI/UNMPØt‰Ü àéJ˜— j, ¥šØ—Îk¸¢þÙÖªTÞÔG¹ZòsÃgÉKÝØ·‹W@v±±Þ2õE\ƒ=ç§Ñ„ím^léð-ß” äNu WÁ6À›eUÃu©»†TÞ‘ìQmy8ùqè†Ai¸qus9lÑ¡•N í'þÁF9"|Õ¾‰ V;ãfÞõñKäŽâ%ÿyïE–gLjJÖ#í†8DÃ6ý¼¸nΓ”Ò£s$š,‡[ý&à}ƒÝvÇœSãšo$òéwIɑ’yxb][#‚ÓÈÖG Yü“6{‹–0b«‘Édên2ð6rëp\ ïw¶H0˜ z|gß³!ÊŒS8­L 9Åâ°²[ˆËU|©½Œ?6¾{Hèço#|÷˜»¢¿e@¯ð§sճלä“ÃÅóò>úPøy~œ•V‘Ò ßD`­w(äž·ZdÃ_oc<¬µœê<é"y'¡ _—†œéÞÎpø’†äëžÀ)\hE=ào¿ w… 7ÒW~ÐC°(wàiÂL* >$\{n¿ªÌŠû\bè䇚™‘>…,("œÕ¦4Ñ‚Q”NLðQ}øC¤™Ò0\Ý¡­RaÂ0µ„»Æ¢‚ "/÷PÊìnü† ò&»h=éôàØuòIÚ´‡Ÿ%)˜ì@PƒS±ÍWáìÈÖIýuTfäO·ñoð^-rò7&a0 *ûÎ8ˆÞ¹qÓ>wZÇ­‰šPˆø¸þƧüOŒYó‚GzIdïbÚðJåPËï›ãÌêÞ¦n±‡É#€Ú¯$· ÷\§Îð:}¯“»^˜R¡%¤þïw·¡Ø6a >cï”O„°U±J/ Ì#w°}÷F!vŸ̶>Z{v fKûÀP–ž……‘&œÿëŸï–xFLÿâàû]¥Üâ5¿Žñ­Uýf{Ì\;UV¿ú`û`—©£Ú~["`ÊcTÂ×ÌXÒ>bÅšËB1:…†·LõÖRê;ÿüÜd†¼1ë«ü wûgÉ ¸â°Ü“¢dcùýǰ¸”0³J¯Âœ:0î ¦ $”†l0AÒîÞÞ®žþq$SLù£A¿d¾ÂB,Û ƒà–{šñ-ÏŽŠÄë%N#óÆ*¿d$áfài[q5ioOLžžÖ9«´l²0¢¨ØWÒ²ïHîÒáT³”"‡<µ¹#qp"èT€ÞGQ ‰ÛTŽ÷Jׄ§;Îa„kÕõo™.i²&:lŠæñ›¯'û…„íˆxH·káàf‡½àöIVÖ°XÒð[tà|šW¡š7j$üóeÔÐs9à|í'¿\'’ÕŸ~^ù•¡¢h‰.´Ô «^Á#2+>Å]d¡Ü×^ï}ÉνÛü°d?_ß6Gûa«÷s¾BºÿyxzúmKwˆxåŸNªÛ[ŠG©Ê:°÷¸`?îwÅ[‰/¤ß”XZ±Â¡é¨96ÔH‰Å£ŸºLbàÈ¿è? o»#§YÖ­”xšt‘6ÎKÌÌÛËÚäJðøâo¢˜gç]}ë-]¬%øòY‹ø[²Ü¶ÒÛ¤®:*U,e–ºåñR¡¬ÄA-bo‘,çgrª ÷Z«¼=p‡ù”ðN_H)a`qêL™Ù+›èø¢¶Æ<4µRR":Ìþá22ͧ@¥·<Ô¦âAé–n¤ŸD´Þ㥃•xËâA‰kF£XŒI›@ÀÇKBh#Ñ’G/,܉€eÓ†³Õûn¦?6 ß¡z}|…ß2¹ôé°.O»câ2M)5¸O·yàº8û®k 7KjÎóŒI$$3§d6«P§ÁJ^¹ ϲ·\)ûVÄ0͘pqÍ«8¶3yÞJ{LãºÃ“* ް—l €‚qE`ªe°~|}ˆŒV–)Ëø±uŠg1GÄ{÷ÓæõnÒKõÈ}_ö]9Øaöìí|‰ÌZý,Ž©’ï÷0mcVœ1§Lð(doá§Ón!çiñ f¶›Y]˜5½ÀdíÃWRÈ-Î1,‚“.pÁ»?·uÈЗ‘õtÍÄž0J4¶Ûê¡Z–ëçò ¾áþÆÅÈC {…´§Î‹y!ƒ|,·«´>¢ì|yrâ>S7tÙÚ›×6ј·Ž"C ¿SGjÁ„G²³ëŽyÑ ¾À®m!L)YµœÙ3J“ý5W¶|Úê,ª.—5âk‘$­˜ºV®(¾ðç¯FÅd\ßR€Ý§ùÂÐß ¥ºe?¨:ÇŠa¿ÂiÒ9Qž®†n ÂÝÉß?«VH@¹óÃÔ‰‡ëŽ·¿;.óÒ\­‚JÉR:û¼ä „hß#E¦Ãq™{ÔØÖ‚Á„W;Œí;¹® |47)¹A4©Ð1`XLQîÀo÷I{>€ ´_Ï8 s«Â¸è’²þèˆdøšýáÙ&àFß Õ…§sr=Kõb0ul »–Ó Hgψ§yW#/Ùú·oÓ¥IÊÙXYù¼™1;¾™6„™3çýæa½p8è¦è&k‰£Ù¸(-™‚'~R|jÇÐõn®N¥ƒ<2Ãa öK$§‡”4ÛD´À똘ƒ¥At­æŽvR¨žk’s ÿîM•™}ÛÏxkóÕ’F:0›Ë²mC 5ô[͹Imß1j~Ÿz¢Òã-ˆ›Ø-å%ÎUCÓûL| ¿óÃM’*øVRî FH<1¼Á¶Ã%ÁµN Úm‰¬TøZûSV'2åmWÁUu'º“ü¸a}ÍÍ„qìCœÜ)žs«|BuáÚá„€R„*Y¿j·vÂdl¯!<5¡•÷N<FVYIñV¶+™´ÑQ¸b>eó¹ªq²/$ï=‚ò¾Ð+&”ÖZÀ«°Zñ?°iê¡Y(ï/†zO#—/&mÒ™î5»·GZD<4ψ9XA|‡“ãmæ2 í–RW¯®É_©æWjB#ãÚqgwï›,§qñ¿ÍdVõ6´BŸ6‹U9m  /“/WÁS4ñè«U¥†®c!°ÄÖpK1­o(@“ÿYt™8Ý1°j·‘yÕS*7…oͰ½¯ìšµhV"6”† zãäãíõ<1ÙÛåDöˆ¯Ý:³@© ÷r&†sc7yÀÛ,.Lò*‰å±ô'ˆF¬4FB  Ô´…wjø´Éï~…„î`$‘^áÊXdŽMë‰×áx`vãe‚18\þjä&mþõÿÛ$à‘Ü6£ º›ó©¦Å5»Á.¡kµÈÏ>ÏÓ¯nÜ⬻†²¨‰Q¬2­ÜcÚ“d¦©þVH+¶Ô#+¤ªeßÇæËi#¯¸Ûw>–€ö”«¾‰·ñ­n“ Ò*DAuÒÉ-ÁæMN²TåŽËÀƶ¥ÅT ø0ÖÅ:yÙÈ´Ù»<¤û ú˜uo —ª=#4s`u4ÞFw¬¨ºmôù¬[5œÄϯ÷TÄGÀúËc€Ã¸C§XÍ“.µ¨˜¦¢f*”Ž^“± &®½0éîß4#/ÕSV#öV.Äæö€±…Q!µí„|BXæ‘Uš#Ž/ùÅ›ð@J6ÛJ ˆãÑm‘7ˆ/ŒeÙ¨·E'ÄÊ&Í%¯|ÓÉV&¯& ¸Õ­h¾‹|s—Jqÿ"îGH¡º’²6Þ§6,Œ2ÀrÁv}Th/Ç…?†=…‡£«'©‘C 7RÒNûÜCŒýŠÿ9¬·ÿf$Ò„ÌX¿ÐUIÀàf>2R ƒHXNO–‚ß\ ùÅ'aFñØ‘«‚E¤âœËÑØ0+9ÑüÄÇÅCb?t5€þHÜ G)µU¾OšÊo´è’÷¿,³é‹Y:»ÆVØ,z{½Êh5@P‹¥ 0bŒK>P±˜Oã/§£×Ê‘Ò_è0 Ö¢;ìûå(ÚG^ØL„|«f+ ó‹Çð(ćûMr€½p×`Ã|Ǻ=+˜¸Â÷¡¥Ha–’ˆJÌÌFqÅ2¯Ù®fcœLYIqí0\¹ü\IE!ÇUÓKIeë.œ*8ƒ|_ H{}Í£Ö ¼ï¬K¸~ÜüOÛÞB°„¬w YÀKx¸9zƒçyߺkKèÖhd•UÍ©i2’ç—¯ËG¤ûÇb{€J8üŒ¸¶]Ç1RT8§*—çQ« ø#žág\*Toˆ]‰GñGŽMQϬ­› ¨>-›¢šâü¬y0Àu•»,@?ß½J¼Æ‹ò1sÓe¦­)}ªXvYó˜À•O¥ "—†¸aÂæ†'Aı1þv!ŽþY˦3ÑÏ/¨™ëd™ ãLº…w>A ÌÇP?µ‡µ…E !¸.¢èb>pa6> Üuä Ud>W¤ÅôëÆÿ¥¬-ØÈïL/Ê ª˜JÊ¡dVh“Õ°u˜f›½Š8u°®Ãæ…aY¶4ÀªÁyþý(]1.­÷†ÑI|ì"^[xmJ¿7o ½DDbα§D0\ø¤¶Í1PÀ`±_š…ËâÓ4¢|WÞAëz‘ü½Ã% 8-•´†!*‘b`ºHƒ‘n1à«êDwgµFntOïhK›¢|q'aOCˤMòš<§QçEf  3¿òàágÄB.,íaâÉ'BÙ:#_ÿÆÛ´tæ»/žÜ{5Ò5`oÿMv>¥ú1ÜÛª²¼70·Â)qÏ€ù'"Àœ²ºŠ°Ø?M-¼TÖÓâs,)=ö̤Fè_–¹]Dx7ûÙóÑÃóT¿-^Â%þÿè5lUXróq4µ ë3o'.6ÎSHCY³(Ê:Å7>Lëãu)\´šÆn"KúuÇóbcÞ¹ðíóžð$ò|‰,ð6«¾æmÈ*€€—µË‘;)d;2•QbtØŒíÉ1Rh8lÊ “˜Ù_q È‹NImÁÁ7sþX²qØÍúŸƒ‚~ô@ú:®ÍQí=™Ï\þª–#ºàŽ”j›^·P´ ì½éäøQa‹¿ÉSIK?`w²o2 öÉÀMÑAªÛ­`6Xçqmrz0õÞ£÷Û‰°?H¯Ž3ØÕŒÆn§ò†"RNÔ›jÝÍd÷š|R³ =¨5$Rãg`:Ù{RTïb5[4„EM3-3)r›E bY4D²oŽýO¢ ¡K$Þ²µË¥{ Õ¤Ú[{eÏ1qó6Í/ú´ÔÐa²õ/­Vý]ô—ƒCE‘rÄm”½AQœ+yÒxÍ3?¼0¼…ÇÆåŽa[‹û¸ñr˜‰©ºÅã"{JŒq’¥çY`øÊ á… Êõ"œ½Q+µµ‚`@‹©*FôWÁZ‘ªù9Xð›÷'Á»>Óƒ˜V¢sßäÙ!#ÖqlØÎ•#ØŸ›}Ú‹G¹>B^•àÿƬDbAâ¡u騱ÞÛ˜Èô¹¶fôøqò´ú >$Û=`N¥)(Ží·=óкã¶0;ò÷R¨Æj¿=š„@?Ür~E÷ÄW”gƒ-JF¦ÍĶÐ=´X™òBLç Ã[æmÀ˜Ï_}ªD‹XɳüH‡Õi—ð|ºÈüð\ð÷˓Ȝp=L‡ Áu}G^mµòÍj“9È[^d¿“>ìc/4rýÚY¿ôŒæ‡Unoæk+¹ô좣Œ¬Ù•ñ\*þÇQ/0qá‹G €JK-¾–ºìzg…&›ž=$²vCA®øñ$ÝÃßÑMD„³ñî¨0ÛáWFÞ^R8óŠ‘Hѱ™ý‹cýrê=:t²Â³%/Æ=qvñ+ÉlDüíòéýi¸ Å÷#´Ú µýÐQ *#ï^¥C‰Öuõ}nÓ|&Z¶ÙdkÂi"×9þA•^¸¬'òÑ·Ê’E6Þœ%ØbÚmØãD4ÖKÛ'5ã-Va>ŠÂÞêxÍWšªå¤¡+R×á`óEšƒ°3uß).±OË8ÌwâÐÝ”![ØmQ`ÔÛ²ä&çÍ%qd5~Í dÀ¼4üð#àãߢz¹­¶ãYÆ?à@¢~ø»§ÀnB$i4ÝU+}ÎÝ2OÊí§”† ¢ë[\ô\-rG:Vîm Çî9„ágᔋ-Òä 3Óý‚Æws‰]À»Ðœ” Ê`U^À9Ær+${êNñ¬Ì)’æCGOÞÐÕ%`€'#ĤJµ×º ¡KOɹ¸™4}'mÂù”Q€ä?!sZCì¸!ûk TNY(Aìùˆžx”bœÊ.ÁÒX”xžÔ•Ü—™ÓfT“7jóé±;²|8b1ª‡À£¢J ¢ ‚fì¸9VIj÷”d±xÉ–2£¼÷» Ó£gkI‹àIÑ !V3 Ξ!Yvå‚̲Có¼Z²+~À©$7ãÄ›g™¼Á gùòÝD~Ê2víÆõëž™Z*´Jª ªçhÝ2Ž ÝÎ8œG¤ÉÊ)×`½¬×åŸæWgÛ¿õðùÁun¤}„ÿâá0/ÿfê:5íé%¼w…×C» rŸâôñÝ>•phø)óÜ8¸Zô`t·êwË^âÅÄÊ´L„«¦›¯D*D ;€Ã¨‰“¨*»+yô"Ä[BD¿S#°Xpçe±ç?Ã’¿aÆl¥¿®ÌE#&0úŸùëØ¤8Ý8Dm¼FªF±wRôòáu}6¢êc\x0ØØ´,ÂËþ1^‡ãæsƒÌ‹îv¶Эv3ò—{%~>AA|ˤ¾üd6ï«ý"·/æ' “ã®x÷›½L!/éç´ákè úQÀ/çE7°‚Ù ŽÞäk¼<¨µlP¹Zj¿ü˜o† ÀûÚ}Ž?ŒÈø)ú¤!Ô`ÐjÞ8c^9«u=ªIÚQñý[ÿ÷sÔlèü´Âø®ä¼L;Å9\¾ò&--Í&E[à–¶9PåvR¬D'$É@S*¾>cì!=Kc¯bo|ô䢾,füŽÂbÒ#•qŸ.1úYRñfGÚfTtªxFvet» èÙÃQ Gñ'X³/¨éŒ¾Ýd¶¥Š«&ŽS¾®ËN, ¼â2"u ö»Ñ ñ„æx4V¿Äsü×$ @¨”s5lÁU6_W‹&¢":ê6qÕK |»f%º/nðy±‹~þê-óËf6áÍí¿Áo*š»§˜å÷{‹WjÅOZ‹ŒÆU»ñ-@èm$eõóËÏ=3‡™|â-7X‹ÚÒ,ëy.ÞFµ¤î¦IÅ–² ñ®´U ÃnÀÉŒ¥¥ÈŒîu‘áÌÎöýÓŽQÌ“ðú(Æöܤ­%£ Ê݉:Ÿ‚~rQò.[°jÍrAU"Ëͦ¤1(´V±zŠlù±t¯“3&« c©½X%¶YüdIK ÃÂk=¤ÇSzF-glÄpÎÖüt#)#^ÒMLà%õbÌtqQ“€z…÷´½ð¬|rÃè#K½­{`VMƒ²LA“@oøÃÖoWm‰ÙR³âÕö4 ¯Ã.T¯‰ö~iÏ’0… Ÿ-ýF!â³ÍÅ"|lJ›LÓGsT[W‹òéX$àΪ4îpXÔ_d}¶¢e^ôˆ|uëlÙîݹ‚¸×¹ÒÝx~ñKvàr#P‡mâf}˜É1sõð/­e#Fì¨Àüo3ezÌÚ"Ï}å}HŸr’ÓŠß³@—ÏZtàY߃Bfïfáïo‡±i¡:wØ÷/àÿ6ÿ¼(¬D%†ÖÂâòi‰ZêN½2œ¤)™y^×¢äL$K~þÔÚ¢‹8Š¿gç¾'ú†˜OU¢bgœì,ìL s…˜J_‚~ŸÙ+NÊXAŸW ÈhöžU(=Œ±c%äle€õêQ…ßÞ9ÇPù^0\gÎS ÎÏÊî`&a%ƒô⊔¹âˆÜ¨¬¼ÜØ5“d¨•™øoj»/”›x¸Xo u*ý-Â.dG´ÄðÓÐ$ƒ¸ÎŒ3S*èwÍDæEwr}ÞæIö#hS¨>ZØB&ö´ “J¬ÉÈûâ[¼ú°Šl”Ö<£ƒþÎ\Hkæ~–ŒWƒPh½U:@R$åÛ“ Â¥`ìK«e é€åàKaò}‘ͱÙC“¬Ž2á©ÓjZužXö{^ ü-›çŽ >TF8ØG8ÿ ãmª¸Ÿ˜°N†-WÜY]JEmuãf[§ÝX׊ž,j=k=Ý ü½±¬‘áÛ‘t §Œ¸,‰ø)U£Ò"ýžlˆío`ôõx kFZ ¢çLìa)¯u–yimÿ6MÙý/ÁüŒOøtU ¹Öé-gé÷R?Ü”¯òj½»èø!þ­lˆq’ 6nïºOœnEµà.ħÝ$ Âô€®5Ú˜ôQ=a)Ha1ó` kõc¸ÁõŒüÍ ¹¹‘ÿ>’JeD»¿tåÏż8hÎÆË)1}½¿(°Îãi) yY¥COö²£¥ùaˆ÷8ºà÷¼é‚ÚQ#©V$G‹é³,°©ªmi”»<_VäOëã½»æìZ}³'£}biÃ3rª°¾Yx«Rò³.X´åYÛ!îþ'¦>†Ek¹~²Ç©»M^›ê§ÛÔÌ0Ö•½!–‚§m=¼®C£zý"M¶Se8%’1ÇÏ|î¡T°˜‰•‰‰gÂ)— lV‰´© 3жÚòÎMa’^Pn»€l*•E0s´QÁ5Ü9ë"¼«§Ë›\^ô(§ÊJ’`˜] @cX<”ÌÊùi=¦è¨­T6ò{Õ j[\÷=.¿‡ng,c–#¬1¤¤ƒT`ñ"XÕÇÁÑ¿‹ø&E;5?é+‚ h…||5aüŠ‚âEÝÖ/e`ü3²3«ߦ¬yqÛ”º`¾b` ±±-ŽGc¹œzxxÎûÓÃÉköP`ˆjeã‰ì¯á œŠNFÖGŠ*p.Z÷Ö2#%ºxƒ¬ivYÕy:l»šÌ±ÅMð‚7»zôò¥aµ³×S­EÔÁº©Ìb»¬9ûMÅÚ^1Ûtȸ]¯ËN6yÅH–6Fêê[jP°bùè±?ì—.Æx™AÍ*¸^™Û ‡ïá@}ýü ¡°E Ñ/qøîò¾òZ@â -û2"p¢yq±Œå8;lMâÙÓj*çòfl_¬+ª_mÔš?©±!6sòÚs${p½Vs;Ƴ® i ëç¾>΄ÃQÕê°¸µ.íˆ9·ÊƒdrjÉæŒÁ<°uÁ)H6íp¼w†À.>¿ˆr¸°n,ijKÎgâøÛ— ^€`‹ñ /t¯\‰€¾³ ú¶ÒAÇüÍpæï*À¤Çâ}ë|$x¨cˆ=ÇŸ‘ˆRÎäûÓªU¤R@™Ÿµw%súƒC!`>œSè5. §ÛRÎèúøˆHy*wÿˆ¢ÛõJ®ý-&898O@Eù_ÒDü ⇶«ÄÔXlp NÈ«AÅ]Ò¥j$ÃÛa² ¡’8>ݨ0Ñ…hRªÕYÌiIqÜÅ  ß»7w}÷VgëÆ~õÉ|‚ Šãk;cÃ. j ©-ˆiUÉ€ëAСÜóƒòå ’ÓSîÉ{åXÁ\­(Æ×$¿ä¶ÁòV"ØH'Nõ—RŠ'ÔødR…¼sþ{Úgp,¶Œ„VÁȾŒòѬôPbU‚¸n" ü«_cÄ4_˜ò½GÒËþH˰³B¸­9Â:-qŽŽJdºh+7Ì:Áô9*'`¸¡Ò.PŽÌ#jUoûHiúßц£¬E·3:!PÚI˜¤Ô=®/w`uMŽÎ£”­¸¾É¢Ëm|¶—Á§ +‰V wÚŸg YäÝ^Éer[iõÝ«÷²Ûèæå`óxö.™!@;€ ñWÜÅ| Óp}Ä#üUO¬¾m½þ¤ºS+üIt"ä.ùó3–ÀëÑAØQ»ìOë ¬þÜxZ£u¤¬;ç§á,Rƒ­vgM¾±„b½š 㽞ðTØ›í â`Ó"`W Þ=RÔqÃ6 °[`c­v´Pä×»ºŸ,ì5ÄSíäÜ z°õÖÂ_îs¢í“ü–4cÓ[fÏÕ?þ· Kyrˆ.§NRè”<³ ~lM.’E~5míoô{R5JõÈŠ¤šiuhç´¯)-ÓV&=³"¿=úÐ[ô*5Œ26YÚ ­^ÖSx¤©¬Ï,MçÎF×(êkL´Û/±ÖgYHÛÔÓ‡gs¯ Ô ªòj0³Œèa–¨ƒˆ…h Èü±ë^Âóÿ/–aë^À€ ݶåpâ1Á·`P•ªU³4$NEüÉþôTXv²ˆl.R=ˆöëœ8Ù’¥ãöÅ"mÕ©Œq“y '€ØIj¢–ûÿ{" X>„ª—â6är¾ÑŸXÈ;|Í~3 çÁìädiDt@ŸDRýì„gñ Éßd¼·¥jr1S¾p¦Ïƒš^ú{Pà*¥Õü÷ j–£Ø¡ÿn5¶Sš×¹O^V¹jgTÁ,í$VÀ{gæ1«T½+?س;Ø\Il48w˜‚®\—Þ ¦d^ŸâïáaKÂÞ³Wz«ÐÞ]c’ä±ë„z›]ùÆXŠ»](ÛÆ£˜bE á§G„J4Jž*E ô ý©T`g©xpŒ3ð5ÕzÒA@ÖƒÁÍØÙ"ø†Š« ;íÓO£Z,nƒµA!a]_‰êRnô¼Û7ɦn=ðô©ËÈ)À8îôð{¸Ü ¶¶¤‹=‹~²TZÀ"µ|¶×‹¦­¨Å(| =/müop¼œúij¨b‰Žëz¯ƒM"®=|£Õ—Ÿh†y¹ŽG˜·_¤ ™’2Ó)+Év¹õ¨ f#* dÃù¶¼§ ±êAì±vð f~í›¶NP^wˆ4sÿãRa…3_ L ì$cG Ù.zíÒ²bT";)ª ÂêIÙ/kК2Jt}íQÌå  Uµ(® ×‘Мð³•òœxÂðÉÖkåÛòŸcTµ,Á85,Z-˜^¼_vêþeÚTö‹’±ueHO[09'¯UCÛCÍ2è4šD  bd‰hb€ÿÿd;ñ<}ãa¥ÊŠ¡RÚs±[ašå]# 7Â58e‹ä±ËøÛÊ!÷M¹M>l6[MŸÌ`^$ÙÚXæ«ÕãæU€}Ðàæd²µÐNߨq, ÏäðÌ_v¨ãtÿÖû#ÿÆÈE¦æ{Œ—;záþ[›z‚‰]&¨1O5k‰".e_¤'é"‹Šë;£U=`s7F;ÜÔaH[ [t0 €ÕÚ. uµ£¬~sç0¿³sÝ…#Oì—$OaÆÕ*]« xf3–™,ÁÊ—¯Ï{ÍÜS)ÐæÜõ6k8±Lr0‰×‡ál“Þb‚ï˜k Ý!é°¼Ë ¢—š=%¤wPM~û4èÙDƒò»±=Òµ4X0O¾¬;(÷ÍÔì°"'ÙH0Ÿ~÷—Úȶô;Œ€?È%o"Á<>;K}ÄÓª&_ò{Šï¯1àc— »D–-…UN5ã„Y/œue®ûåúI$8ÏwYT£’/^ú'ó„Îßxhe$;²U*r ²ñÈz¥ùu™ÿta|ÛwÓHjæ’[©Ÿ¿¤°y!€Ï/–²°Áù›Ï^—±}²/ÀF,`Š_ƒÓ©•'-]L;ÃgØäGßÛ§Â (®ÿÄk vÔÕü –‰€B¥&g˜»ƒ÷_#ïí*“;-È8ª0g®äs^MŒ‹Lœ¢ì¯Í–$sùÙùéYâÒžû8MR1Ø2iãÀ´R]ò[±*<ÈÍÑ\˜Ù˜ ^zŽ~úWLhJHÀêÆé%lû½!ý0¬œÅªNehnYc7p ÚŠ©^áùçîL£:ÖË*›¹ë2£Cµõf2ËôèFñtØæÁÀRHOç‚åõnEoÏßE“[¾š| 6z@;"tú ²V‘nax8‡N„èAZ^ÎÖôä"y#Ðaïå @¬ûA7®·7(ïuì.‚‡0üòêò HÆv }0ÏݾÒÇþjÌï†T¦{¢!Wr/ž1ÐÔ°õÒ74Ó¤ÛÚzÝ_¼ÖÑ8Ü7=¢º£Ù}S=o¹Éµà¡Á‘ 3 "ø3ü endstream endobj 194 0 obj << /Length1 1768 /Length2 10642 /Length3 0 /Length 11765 /Filter /FlateDecode >> stream xÚ·PØ-Š<¸CÜÝÝ%¸'i Fh¬±àîÜÜ5@pÁÝ5HAydfîÌÜûÕ{ÕUt¯½×¶sÖ>UÐÓhê°K[:šƒ!®ìÜ\"Y5mn/:=½.ØÕô—^u;BDþE…‚€®O69 ëOÍPq³pó¸D¸E¸¸<\\Âÿ!:BEr@w°%@ â¹ ÓË::yBÁÖ6®OeþóÀdÁ àdû# í‚‚-€€ÐÕäðTÑhÐq´ƒ\=ÿ+“˜««“'§‡‡ÐÁ…Ãj-ÁÌð»Ú´A. ¨;Èð{`€:Ðôçdèô]°ËŸvG+W x2؃-@—§7ˆ% x*ÐQVh8 ’Uÿ$°þ:7÷ßéþŠþ ù#haáèà„x‚!Ö+°= ¡ Êá se!–¿‰@{ǧx ;l4"üÑ9  ­> ø×x.P°“« ‡ Øþ÷ˆœ¿Ó<²<ÄRÖÑÁquAÿÝŸ ²x:vOÎ?oÖâèñþ X!–V¿‡°tsâÔƒ€Ý@ÊrQžLèÿجA®~...Aa>È‚YØpþN¯ëéúÃÉýÛü4¯·“£Àêi/Ø ôô…îít\¡n _ï;þ¡ss,Á®s5‚þOö'3ÈêOütùP0 `Äõ¤=n×ïÏß¿ŒŸäeé±÷ü‡þÇýrÊ(½R’Vbýsâ¿}22Ž0€7;/€‡Ÿ ,$äçøþwM ø¯.¸þ U†X9„ÿlöé”þÓ°û_÷Ïô×n0þ;—ºã“hA¦4þ†‹ŸËâé÷ÿ³Òÿùÿøï,ÿ7ÿoC nöö¸™þðÿÜ@°½ç_„'ͺ¹>é_Íñi ÿK5ý¹³j K°›Ãÿz•]O{ ±¶ÿûÁ. `ÈRìjaó§Xþ´ëý^2{0¤éèþýªØ¹¹¸þÇ÷´YvO/‡Ë“"ÿpžç¿KÊC,-o¿…=ѹž„ÄÃÏðæ~ZEKì 89 Ž®O!€§ñ|VŽPôß7*Àà”þmú 8eÿAÂNù¿‘ €SåôÄTû ñ8uþAOLÝ¿‘ðøpšÿøž˜O„Ã?~î's‚þ†üO‰­Àî ùŸBlþŸúÿ >³û|ªfÿäæpBþŸJ9þÓËÓ´O¯ô¿ÜO• ÿ‚O•\þœ®ÿôù”ÙÕÃñ_î§FÜþŸ’{üyž*{þ ò8½þiä©i/ôÏdÿuÙnPèÓs÷Ç:>)á?ø·‚,Ðç-Dƒmë‚;®k¤É=Øw¿ˆOÓï¤1³{/B;Ýn±Q“™«³סWÒÉßž¯lË3]J-Qß{µ6 †µ%iµÿò¹3MОÜmG_˜ /:’®ï§D£`וÚó¹wöѰCl…ïR¡ÏsvÂÖ,À¿öèS„Õ÷—/†ÎíjíU ¼Ä¸+ŸbÑ‹~P:CŸož=KòÅ•ò ÞÎÌåÕ4^îø#µJ+ºï·Þbï×<±7³^«º<.ݤt¤¯I(/ñF'¼eöSTˆç½ËŠ×¡£©³Dc›ï¸í÷™¼vÕµ¯¡g& ôã"L¤$œˆÊQÑëmJ‰¥4‰(|Ù?VTÖaÊg‚­æ.l‰àG {Áz~m áÝžÛÜz¯}T&Â:C–0mÂäzjH/%|n=vxá®õà] ñÚ›A‹Õ‘U‚Æal3yÊÖNÿ-ë¬:€ƒU]šáØòÌ©Š×T¸ûÁ6‹=Á ‹LÇ®½1KRødúÆÆ@ñýš¶ä\9 Vò(¢úlJ·+áVrd²Ú䬌¼VÞFMŒASãºÝ# æÌêýö~ôëðþÃm‚r½òGéêÊ<¡,Ü"4%Ը؛f„°Í17"ʼnM¹5¼°M•ðئЂsƒÊOçcÏOŒ Ù¹Ä8Ê­udp0Õíßá¿ÎшW=™Îå'7nè%x)}ÙÆ‚ìó]=0øÑ»7°æ_>'϶Nšó˹X¢Ó–Ë$v”R§ÕÿÀhØ{pìwÑ&Å%õ|=¬yéÚ‚´]€@$ñX»°âô•Š;@G¿Þ7nP¤¤{­xnÉeÓ7ïíç'æ€2Ëãq<š›rJbÍ?ð10eèý&ˆ‚\X1ÐÆ?úíøñù ³¯Î$ Vˆeו^¸9bU*g–¨Ë.zòm1Fî<—€su9÷¦èœçYŠ} :Øë“ïE‰D^Ó™¿8²u¢’Ô.¨™C—ņ›£¿»ßkNÛøÓŠq+Ój˜îº¬µ÷ )ü´v«éÝ>&2ß°]fuE ½~LJÌÿñ +×Aó3Œñv;ŽGÀÛÌÉjÎ'‚øçøÝsÔ0Ò½õ)¥Ú‡ñ7íê¨çاTµ’úeSİ©LCÐw r'pÉÈKÌžtœƒTÁ•O’Zi D™|}¯ûf˜SŠXÉ"´úñ…6”Q €B»ŒrY“/¨ ¹ OGZ2nXÇ-WeR¦°$­KžM'Ò%u“&;Íåf(q—ÂDüàdÖ è*ȰjL‘žÂ½•ñ“W¾Ú_Ç­w…ßVO¸ØëÝzÑ”3†A%I²XQ¯_ûÄÏ^M2È_(ö tI!·câBì2ßz탎—"û 5®$z×¶Ur¢ë¥s™s¾¤}3êCCi¯ È Ô‹è¿Gö<‰!á¿$tz÷£E;WïgË>à WG[~| c ûFæû:!üäIWåGiËh!Ý&ÍŠ5µ6"‰’¿ÅQí}¸c½ ÿo’4ö%1j‹“<ÖøûË!º}‚I$·MãI~Ì’­ˆÅ²ÏÖóRôÍ M¶ì2sÞ_ªˆVX`¡«w¿c9ÇZŒQ¤è.)ÚXôÉLœé¥ ×+z´«Z/ØÇ.³ŸñÛL˜²É@6BãY\oœÈ§¢~½á®w‘±eß¡éCϬ?Ø‚íð£mþC6%ž8CýkÑ…Jl¯KZ°)eáh]b:²g¬ß"™·v`AŒ@_CÎHªLjœ ­òO2Ôâ0ÿ¡4žT²ûz AÄ])=æcš” †Ô#á!S"E‡8üwÀµYΔ £SÅÔ6+,Ù}ÌÐ7´N2jWqŽWŽR$5Ф)®1:7ž…¡•ïÔiº‹¹Ûä!RåÅ™ØàdÚI꘎ÆîRËÚ›˜ Œú.5±; KµM®ƒ×ФjÛJPóš}"=Ô"¡IÂëš„L;9bvBí¨Õ¢É傃JœI…Í|©ÚKJ$íü+§ýQævõ çÙ(|ÆXV‚¢ƒñ+"Ô»NØ$Aê:˜F4 •Èøñ»ýt~>³?è$t;Çíj6Ÿ@ÝBj^I©A"›Ý¾˜ÑK’áh Q^x(òZSú?ˆv`X£´¬Ø8¢‘µòÜc&émž_ºu l¥ÉÎEÑ“õ¿Ò½dÔ¾ˆ$³‚Ëuœã¦T+‡øª>ıÂýHÑxhä5û)ôu:w:v—Žp˜¯%¶áƒ :v° fÔè݇WÀÙ%B4é?k."e­w¤çbk¢(©¿Ü}ÄŽPgw¤\cœ C£%6‡ãœ”‰+ék˜¨ /Ü“Gö}¹„áí?HW¿\ªò‡§(Æ}–’bœÔóœ5ãv£Ö>áÂT€ðœ1…ôh‚wÅÌŽE³‰©ê½qN/Ž¿ö»Q“|å7i^d‹tÁáJá(&òë‡ò!y—õÉh‡‹‰òSŽå ̰OáÓgYZ]a ­ä)ƒ°ªÝ£ÑV/HvWx¨lY•³ûbò}€s„#*Kš+Ç•µ­ýë<(•+yÜI^žb×ÅÓEOr…t±+gêìãšvµilo’÷›¢Ò\[óÄ*I÷>üWê_XUR¶«ñûòè¾eþŠÃðÄ;¤uÂù9^ƒ! º°­áÐÝIÆ€» #Ùgø€&´;“ëUÛŸ­è.Ü=:ó„¸òÆ_ûy>,Ìç5I?ÎGyà¼UíÔ÷áf°ÃcV 9§y•úã7F²ô+Ä—ËŸxw;qOÏj>hØŒ«H¦gÔwH˜”â »çNÇ{²£2*;¸¶LW‰XªÓž¤¾S&ßjÃòziBî,i:µ1àßeú…g4²œæ¡tíïåëTõËYâÛ-ô’%šÓÕÜꟆ–›¸¦ðùÚðƒÖ”Ôá}J•ÊÅlͨŒŤ›ã¸öõÔ¡™èÁ¡ê‡$K´0 Úˆ†nÎ3ý]öv¦f•Ææ×= ×Ñ:ËhŒ«½æW¤æ9šüßßbòGÀ³Ç%É©6ð›B•v*­K«9© _KŸï[UkÒ'EÁ–‡])ݰ¼é{‹£þ´‘¶ñü‚»W–«LÁ,"9׎1–fáÒj·šæÁѡ좄°ƒjW¤DcÚÆâˆ{k†áiPYj%Î~Š9¿%þ$‹†<)sø äР®¯œÎå‡à–ƒ…døXö‚SaN)êù_ršmy :åËåo&-Ån Æ«r Âëü;Ú*ɧÞ͆DZ¤ÞûMׯl"ÊånSn@ÇtŸ%´Î»øÎ3q›-iJê̘u¡)¡3RvÇ«õ‚ëtÀ¥ýM¯ªëåi4ÃlÀÒ9uÍ²Êø•‰nU™šãx´*;uð?ºÏzO[(ˆ‰¹Çp_ CTðp^ ¾V•{,L¾°ÚSæ.£œ±uíeádŠVÎQÌÏ]BEiˆD" Kà bͯ{½\gÁrl>‹‡7øU· wízõ*¤A*h‚â‚Õ» Õ¤#RøPô\ŒÍE­à©bØUE¾Fÿä$¬XªuÂ.¤<ÃÙžà†Ý ¾;Ú1K@ÑïN>e—GÈ l²xN‚=wM€)»œ:˜.(XÇn6¸H‡T]©æ¾ŽzHyHäSÂàÒý³JÀ¦Ïšb9f”ä»a ¶\ŒMuœq¤þYjòí#ö¶Øj{9Bx-Å VUL-^¹Ë½ó¢ÒˆÎRN÷ðõÜóÌ©^Û¾æÀ$°ÇWyas„6—~T¯øÍ¹Œ¡šÆ ëEsweÏ7–ÇÌQ- iÔ­gË dÜØ~Ò/Ö!†£§Üðí|!„€—”=²ìDêÒï7Å…‰­ùÅ L`c£LȰ€†¾Ç¥y?ªšž%W!âç¾ê¹sʱr#ÁïÓ"º>dSwÑÄ“ #¬!û¿0ö…oR èêïNX”×ÅçrЋ¡•|‚ò‰¸úi¨¬¶÷‘Û#u² ½õÉçàªP–M±Ê±7úJ9SÓ ,аv¹“øs=„êÉ91ÛæPôÛ¶«K/K[{ϳŸ³˜(ø’QÓJbj’ïŶø³£Ü¼M!sè}kûã]Vâ3w ýuÄË ÏQß0¾*¸ˆ½x™‹C>糇'Ì€šÕÙ½fÄÙlò×êx if¨òGháísE"tR%úkh»J‰ï$vûÆ1нàn«m5?W³Ù| xG¤½Tå&ØàŒõ­ýÚÖÁ=42ƒ7—få©041øˆ,ŒvðÜÌ­Oˆ¦ŽŸŽ¬Þ©ìFO/ýNcDô­ïrN îµ¥DpäÙ³ìÑ”,j붨ÈðözwŽîÅ÷‘¹¬¸õ/´è½ÄûèÊôààÝÄš U´S¯FVFÃÜÖvê‰é/ozÛsë§Œ+Ä5e}ƒïVLyVgìî/ ðŽ0DAµŠ‚ó‰ÈÅÊ)×Ñ\ZV=œm Wh‘¿¨I×O2s@4:[><±I ¢1sñB^‘KEÛø°ŸÌoí’3FÕ¥£J—µ%d)ÚÖÕL|oC-UeÜZ˜<Ò†ú³Š*,8'3ub¸|öeaŽ]Å`õhÿ—RêRiÑGi?­ªûvVo‚xÖjŠ>ç ù‚“È¡ôø°ÈÉ1¾bÁ¨c¡ÏÍÇÁþµaCüvogE:³å<œ^|µ=­‘Fº­Dûb¦£ý¦év-Ç”‡úñ½lm‚Ý®'þ‡·knJ´LBØãê‚õwœuNeb* kÑý$.5+2ï…Ä_ ¼”hI1A:J'_¹Z®cÔÛ£ ÏË UQY–4¯¤üU,‡öó\løuäÝ€Td‹q=³2ÖV=Jºè¤øbXD|9$þ¾á+¿Ùhr!ÛÆ&ç̨(¿$™ðÈ ­,õyÅ×`Ô ŠõŸY Ö©¡NâÞ¡Ó¦8Cé\3JcLŸÜ :§‹½|2uG¶õ•Õ¶«­XÖ ƒ>¢ŽZ|­Z2KÍÒæsg÷¨bÙUÃYˆ ¿9OáÔ/(Á‡IîªÈX…ä‘fQj—  ‚½w”høl0˜BàóÈ­ûßv  }dŸ‹? é#ºfòý–Ir±G¤›…¢‹¡–š¬YYhvâ4žoæíýÀ˜™ÃŒ8!dÍHDÿL,ö]Ìu>QX=c±gtÝ^Y‰2oÕ%»WüÄ„S3º5ŠD|åWÄ­ò¥ü=KÌ|M×{U£ôæ¾ ëK©…·vVîe²B«#ƒøÁ¡XXºN¯¥âLpƒFKƒóÀ‚NÍxš’µT?Ô Ö9uc5YJ}eÖ6îy´‘\2rq’¤ý+LåbCòØ“tôª?Ël^y¦¼å¦.£„Ãø ¾þG,q¿¾A9a4¡À (ðýœÓÏ×åÚs,;ã˜iÙW˜;⸓«{Çe1-¼å§rÄÞñ×—ÁBE,Ïð7EIJg*pyÌ ëÝjôäHÛy£]¨o¤»z&FÏd+ò UKñŠUdZ¹.¯p/3µßÞ:< ˆÅV¢¹kn1ã+Vßmïj’ÐãÔYÓÇi¸øÅµîn“Ø[uHÛ¡nåãI Ïå†l6Rû6I…›Ž7×m?"¿?7 `øZÆŒL{óeÞ¿&#zîk>1Ýp<ÏØ4ý½L¶—;Ò‰…±ìÁ ±ë¾Àdt[p2KÐÈMcÕ®9WkGèÏüù7cC(ŽÔËç±çmúèïÙŠu:ÎQ ç€Á'ŒýÐØ¥‹Í_ÄYó8\M§ØýK>i2/O”æ@Y¦q7ù Bœæéò0(ô¼)Ù£›Ê&e"ÈϹѡdÎKyéè@3QçíË4äüµÍ/¼dˆÓ½mt›‡œç>SjÚ·ÍìfÑäÕ˜ïEöÔn}ús{­ßžùÿ|p+7ªµ?crìX|D™ °&K·—Çùæ‘ÔÜÒ3Ìêíçta¹TohO'gèFMP£ˆÑJeΣ†ªÄÚ`ÍÏ_¯ƒµ— aB­Òû©ò¼ä7Ú„ù(yž©òÓ›8™ŸÓ?‘ÛŽßé s“œh&•B«›/Œu}ú&ݸҽ6 Ô"u¾Š×Ä'!žCÈáWÉ‚¦ì2o2úbžfbØöcúf¯©¥ ç²ì8Íß\nï×¹+¯þÜFhÆ@Ì×Â[Ã;φ—«9<ÿewí’R`#Ñ”a’ Œy¯YÃôÖ–^³*´ehX½QÑÀ>Y5`R!=;l§ñÇMÉÒjÂ{†žH·K8†N*iøPºçÑ13ô·±Âo41_(2½XÃìß*¿¹¿l Ýü†<ÜÝC<õÎ+‰":7•õEÒŽ?y ÁRKP¹þ–Rdzâåic ·âRîO%XäÖ+œŽݺ±©Ãð.ñì½N:Ñ(zdëëòœEÐ……a cíio/ÙZİ6IO69Ž=Ö ]Z³;³ €´»„,;éL‰]Š “ºÕ}Rm¯Iq+܈ƒækk[éÕ$FX˜¹Œ¦¥Xõv±ÉT,Û4 No¾ûì®Ã† MB-‹XU-§NÂÐ'qµQa_CJ£emÞÍ[iVõ Ë£[îp hò—‰F'8ù_¦_««Ê‘SnúJmCB]èC÷ãåW þ©(~¦—›·„Ó¬¨¡A¬|íž³Re„kÈÙ±2³ß^Q·t¼»D« d7»ÃNŽx—p:–@S\ÊîóþR[_ *€fI‡kóóƒGˆ,·­2昉žÃŒãê ˵; ÝŒätÈ/T¿)ô'ˆÙ~ÕþÒ@OÐñ%_Û`á0m^Ê[0…U¬@> ¤/5Ç:טêîN¡ú»”zŽC±òAøŠïÕ[º ½‡³íù&ƒ9¿_(äÛDoª-w’¹¼DpÊ£’ÈaÔv»‰¡›[D»»^'8ç“q‡iþçuèÓ9:„ÃÚ^âF.³5D’>•RjR©;áU(v\æêGfÒæÌgsLmÊ AG1Åh{'å'í/v!îÛõ5lyÝ(üÝðˆ&vZέ•÷ðt1™<2”¶¿°h&QAz÷3ngN™ö”ýŒ""PÍÒˆž"uAÔËic &¬–¢ãÜ# u@Õ’ÌÒ6µVÄÀÉÊLÔhíiÖÿ’Ã&{ÇÖÏkê!Øt¢±¼+À ¼¦›"ÉjøÃfgGD…L’®¡˜ÜeáÖÄ¥1³/ªâã‰~Ýqši%gÓ{ùX`^0}õv1¿Yä±ý†P:¹œŠ퇣&‡*—\s•¹Ðùé±È^¯q{ Þ\r,©+·“e„êÛðêCq*ù&?Âûü@~_“*cœ§ƒõ{O~f¸]5ƒ~Z÷ýÔWvõ@á’ ¢Iýû¶;/K¥{;K¿ÁÎq.»½Ú1Â-»ÁxžGNï%aÜú‡åMÂÛ2’°QMŽÃŒ”üé®ÅKÉx%†áÚèØ9ÓêHèùªC$ý¾ŸØâ§à¬´~꘹]/9fÜõ7‹¨[/\ìŒ}ÇG^RÔÿÄAÃ4ñ‹€m'T~;ûŠÐ.'…•ø•w¦ì8'ÊknÌ §úu¾¹`YÚúÔûû ޱ’afKa[À1_Cfôº¡Ü³¯i‘.Tç/(÷¤´·²O“!s2UÔe¤äßï™ã¨‹n¸d¦CT2YIH¿F£íi7݈y³Ž¬5¾=zž?þñó›…@¹˜ƒ³>jxχ&×áËY‹ëB'”&å¿nÕ=ŠÎ?ÿêçW•ØÃò«$ô­\¿¼ÏÂ’óÓ‰¯d¿œìb€¥mIç§Ê«¤>*QQÏ÷[.ŸI¾ù!mò-¾Ã`‘öV3É@a§fŸ9Œx^Ëò‰òá“äÌãa¯Ü!`ô2¬ ¦Ô¶HY1Á¼"ýª õU‘f‡Z±¬äÉ?½¶®2¨…ÀŸÜÅio+¸–~Ca”;ìN¿ÌÅtóÅósZÀd!R¨¨ô +Ì/–æ®vÎÃ|i…ÿúgù“^ S¢uõ9Çz’ º¨G»NNî:ÿðºæ@*¸Ö;ò]T"Ë,·JÎUƒœ,Z)×ehlWhýÛ5;•èÚOp‡/<¼Ñìgj›Ü'öÃ"³j‹SÒ=û‡Ô.NEÒ)ºïîÓG½ÍËnqåE EÏÕËð;é¿ò“¸´ën5¡¥d'?’HÚáxàHh@ZPß¹;MÅp¼T ·wÎ5Ås[Š¢ˆžÍ(€K$òÄ$ºAn ³|_™K a†¢ÅmóG7©Ý*ËëP§IF”\Íh UozM°ñÄ\ ö¦L›¤‹*𡒙ç»í ªç·û®2ù_ÜÝ7m–BC»?¡Øf5ÂM¨Uiôœv¥RË»ü4"Ž£Ha÷È|a\§RäÍhqô˜¬«qëçûE=ClìýŠDä1KƒšNðDIt×'ÆM;BÚ¤ºg«_6;7Ì>W ¨=îܱzéB|g˜>6=fXQÕ羄E-ÿ\ÌÓ–>Ñ}m `-V !;”hË3´°®óvHí°Nn²ŸV…X¦sK ÇHð3•uT8.õ(ÝGÅ[ …, Ú{­§>]dž­‘h3ƒI±k5Ô§€b7ÒE¹¨&cÜî©A„”¬Tš3ýŒ!½Ó,ÙuÁºáÛ[ ¤dBà`¯Æ‚Ç÷K½Í(Ë„ãhÁ.'zŸ ¾þ.HáûÖ„¡‘Øxë‰lÀî£Ú]ÒÄÝï)þ0&"G.p­ewY•?û¾6ûðVè†C©Ïêðíióg÷ìSëÙÎpé ²ëÊž-ñ”ž÷Ó-Œ_ˆ¶–— ™Gî^Ûqè…¼B©rXf>4ŒØõÄ8ûn´¯?;8ýò‹ÿ0ã|é*>‘ɇP»fé,.þ:DŠ4õíMØ@ú4¦Ó <½Wû‡tó””þ¨²ËFVwš`Jjê‚–LÜ–AQûWz)†Lª—F¿ï]“S•+qÃÂŽFçýP°«²Ž€k0#D&deVQØWú•b¨•ºÞôºÌñªY¸¯¬µñ=¡-U-õ©!æl—rPÿ¼ä‘ÏwøÜõue6ÁÝwòt>+°÷r-Yè¤Î×6µnÚû±GšW  Ñ0@IÉÄDñ>Kc}Ÿ¨_1Ù7²)÷œd…Š1—h3«C¿®ƒoØUf!;8ãîþL¸ï›°îKõÕY²h&Pü»EÛ‘ã$c‰•«…įbü—­ÝŠwŠ&öÚe¤ÕiÕÃiâHŸ n¿£#ÅݤkéL>Ö¹Ö¦èôvŒÜ’!w×[^¬|x®œÂı›zÅvÓ×Á½ÀÈl³­³ýV£¶îm¨TE½dn=8X%5a)¦ÝÏŒö™Ü ­ø%V©ÅÉ3R5d…ñÆ,¬¶L¾Xž!²U‚ ‰Í#]ÓË5`Ñûr/sÉLò!”ÄA-ª„6Ñ@Ð3¸›Á‡ÞŒb]ZJ}Ó)ï:-úHÜÖÐæn„޵ÃI¦¦W·  Xu¯ÔHj“N!+)SÕzíË8 t_JvÊEÄ òyáÍ1bƒ>¦äËÖw:´Yb¼X7ÄŸixÆbà¦)…¦ÞÔRwUùoóvè:_ÑÐ{T·N³iDL{ªL‚“rèšÄŠÛ°¼[M#‰Ûgi`X³æ(ícjŠ˜/¾ ¤’š¨Zù‚ªªf'‚´ß),)Ä »Ê~¥璦ÀŽ`+¢Î»¥³žXªûïúB"L8®n4‘Y(±ÛV~úh|=¬B@̘Ì;ø”g[“JÒF•‹Áð¾$Y†kHÈÿ•#îÑ»Ho¿FBépÛc§/З ía¨µ ¥$³XèÃz²@‹•›¸)LºtŸ>¾¡ôàG¤H»ÍÉJ6n$ov›Ÿ®¾Êº~Á¡HÓô—Q»g¦ÀÈzzZÛþGÌ…¬æ6wŽ®fÆ(Dæ9 (ŒÒ%GÙ­ƒfg³ë­Óq/w4óªv”ƒBIí>O×4§tÝê[+Êj:pÁVŒ`Fe¿[‡âO÷þÄÿ…£¨ œÜ@áxP3×¹ÛåÝý¸Q]R¢P@ª¶>w¹{\ÒYÂ1ë{Á‡þÒ­¶tîß.›ÃÛ"äó”á½J™[¢ã¼— ÷u­ü!µ„ïŸmù ¨Û‰4Gpëß¶Q!¯‚Ï€réG¯çÓœ“¯‹ËÎ×Eå;ÚYq÷šŠ©N©ÝÊ 3k!o¶ˆyC‹gÃlA(J‚TÇgṨ™¹Ÿ+ï¶«°rÒGÚëŠ+ïdàHõ…ý‡n¡ÜÕ„ÚiyXÖ9#SΡDã4‘…¯rô‰á¾¾U" 94S8<)húÀìºóm‘kd­62 ¾¦–“ äÂ+uø†z‰zÓ’®¸ÓÕjIPñý™ï#†òw"pÖ1 ÝŒ,:;Ðøç°¼×Ž®ƒ¬¿ÀjÝz êü–§\D–¯€áš‘×Ú9E^™œÅ‚ÓÇ¥qØÜA6~Vtº^p÷ík2ùkÃo‹ƒqŒ¿pJ¶b±Õ=n:DZ {ìúÚå>›(r[J3ûºÒ|ˆPøˆöµã¹4¨µoùžÿŠæî§ M±ïç±r̬|ƒ&æ×]3yMñ|Iq­uú*ÖÐàѽùpPå-g C-lµOVÜ^­/La^¥4‚ŽÆb?yصpP§2Scn/¤µo¹Zâ+$"tè®|¬ìÀ´ƒ0’(‹È3}Ýsn¯éMIeÈxW‘«ÅËò¨hë ÄÌQT°uT©KfEî¶„q£92Ë:)PøÎ]³IZ¼ÛóÃ[S…NÁͽ7è,ÈwíB¡õÆH¶왲öó˜‘-Y;Å¿EšÒoxú§!>¦>ìòsÜ ˜Bãgg9Õø8gúµ¥IÃö›Ü‰xnÚâƒkw‡ª˜žÍqò~áºYÈÏÃïè ÜÚ“ƒ)ŸKØ1æi,ôæ?c×ù}ÒO–¦³üÊ…šì<—ŒÌ#ËÍÍ«öºÆ;+«ªúùÙvT:DÔJ‡2ŽÝ*?¾•*­Aº ùÌSùv¹³f.Ídg›KääÐ=6Ó·õ{f¬ºjCŠt…ûHʺOJ-qì_]0Ó³ä/âPïDÎ&ð–—X¨b§a¿âÙÂD/‹= z3#nè ?;’²³Š„’f›.B ßÀ6' sá.‘¿/ǃcÒ¾ \ª·]TkÓ§e{ÓÇ?’üÖ¡ÂFØM÷ªi3kNaTXÕ±ÎE[L´¾€œ˜\š¤¦}õKs½ËEƒOÃ÷ÀÓ f=rBghG$¡æ“¢ _4Õ¼!Ìкf‹¯£h!y8ÐÐ:ªÇ£ÂŒ¨6Û°ÏQ9š¶p;ô-òräâ…­æÌ`Ï¥ Œ¢·ÜÙ>dh†²_ôs ÑUŠ{WŸV2W¥B.ºKäÔÄXh–KàœNÂ%j*_Z6êôJþ’/1®¼¶~¤®¥5øþêæŠü,Fè™ßкÝFsîÒ‚`…åì;‡Oª†Ðø‚ CƒûtJ¹Y½<@ëè¨IÏšjZ=êøE8]=86Y×`³y K©¤OZ?MÒ± Å(Žü'9šÖp*R¸†Ixù^Jxj[ÅU’Z^r@!{;Dëpxjºò.ÀZÀ+‹d|Ñz>–X«yáâ"TΨÃQ\sÓEdd{1ôó¶ûÚqÖ4iýhÙ厶܉²«H’@ ’߃Ë(~‹ÚÖ§HÌ®LÀɘ¢m&è‚ùQQQ,žKÝ3cäú…ñKf%×óâå5§#Tñš~6¸Çz(ÁK×½˜Ñá¤è±éæüEb˜Uæý’½X ëØD‚ŸÝÇÑ—°/M05×6ªÉu5·°’ŸÎãã`KO×p@éa,œªx§Ýü7ˉäJÛ–îV¼\½"æÊ³Êg²jÛÇ=wâÆù~‡¸€â ÎZÞÌœ'‘£ý8a”Tº3Γ¯T† ¬o”"yý'v¬ùsB¯‰¨ùN×¹µDàT¿„ž­€O¾ˆ² +øš@± 6§Æo5Ÿ©'!mˆŒ0ù-Ù;c ¹V«ŠÚ°ÓlJ©4„’n9ë@:^9§tûž^¦o1¶²ã©>|~n4hh²èYÏÎÖýl"þ¹ö_¯–\ ¼ab›5¿$gBó®6aUN&í’6¥À5~˜¯>œâZæHÖÊŠŸN|ô¾¹w„Ê£jG¾–Ù¹\í}Ê*ÑtÙ«€*m]–@.pÄÔ#i»¬OúÞÆ]ͧîÆ°Ï+‹¢YR„9|†å Ãð+Ì|×?]¸uÑ·½*7å¥aâõ‹_Ï¿¨[ÝôáNå(mòìÁÜùUžïàn%îlC` (s,÷%SœAcžyž8êA”°nµç&„ûŽpŽ)ž`$øãHtP‘àÏá矌û÷prÌôj’ÔÊ¡×lèlᡸë=ˆBÍà(K˾ïz¹G_¦oñá"è$:|FÔè^R»‰ÐaÜAç0r;HÊ”èGˆÁ%ù?f…´É endstream endobj 196 0 obj << /Length1 1554 /Length2 8124 /Length3 0 /Length 9146 /Filter /FlateDecode >> stream xÚ¶P\Û.ŒCp .ƒ; îîî6ÀÀ0ƒ»»&Xp— Á݃CÐà\" N <’sî½çÞÿ¯z¯vÕìýµ­î^_w –.‡´ Ì ¤ƒºspsE²ê:Ü‚ —äAg`лC@‹Ñ @®n`Tä²® K÷'™œ¥û“: Pñ€¸yÜ"Ü‚"@ €þ—!ÌU gé ¶¨sT`P:ƒ,ÌÙÇlgïþtÌ¿>ÌÖ,naaAö?îi'+ØÚ P·t·9=hm è¬Á wŸÿ Á,fïîî,ÂÅåååÅiéäÆ sµ“`axÝí: 7«'Èð»`€†¥è¯Ê8Ñzö`·¿äº0[w/KWàI[ƒ nOP+àép€®²@ÓýËXí/vÀß½psrÿ;ÜßÞ¿¡œ-­­aNΖP0Ô` †€š jœîÞîìK¨ÍoCKˆìÉßÒÓ ±´z2ø“¹%@AZ`ùTàßå¹Y»‚ÝÝ8ÝÀß%rýóÔey¨,ÌÉ uwCÿŸØdýÔv®¿nÖ ó‚úý lÁPÛßEØx8séCÁ. e¹¿MžDèÿ‘ÙÜü@ PP˜r€¼­í¹~‡×óqýQrÿ?Uàç sØ> Û‚ž^è~n–ž €»«(ÀÿFèÜܰµ;À d†¢ÿ'ú“dû~º|W°7ÀøÄ=nð÷óï/³'zÙÀ Ÿÿ˜ÿ¹_.9Mm}¶¿*þ·NFæ ðãàåpððÂ|üA>a@ÀGѲÿð?®ÊP[@ø¯dŸºô¯„=ÿ¾æ¿gƒðß±4`O¤˜ÿÃñ@~ õÓ÷ÿ3Óÿ¸üÿüw”ÿÇÿ7!äšùþÿ£¶tC|þ6x⬇ûÿÕaOSý_SCÐ_3«²{8ý¯VÙÝòi¤¡v·ì¦öÙhÝ­íÿ"Ë_rýßCCAZ07ðï­ààÿG÷4YÖŽO›Ã퉑T §Áùï#å¡Ö0›ßÆÃ/°tuµôA>‰‡ŸàÇý4Š6 ï?pqBaîO.€§ò¶0Wôß7*Àà’þ-ú ¸dÿ„x\ºÿFÂO:ˣ߹rÙür¸@ÿ€OaÁÿ€.‡@!ä?›Àåúøäëöøäëþø”†Ç?àS(Ï?ð¿Úbíáêú´þ÷©gÿÂ¶ä ²F_Y„Y‹†;4„wÝÔI“{qìO‰Ï1ìf°pø­¸v{Üa£¾a©Í Ýt½’~ó¡wmWžùRj•úÁï{{jTGŠvçOÿû—I:3ûèˉ†§K¾K7Q>£àГúìÿàâoâˆØÿ^…¡ÀÅC[«ˆàÆkPÑ»q¨òÓDäâ¾öçZUŒûÊYŽýø!eó …V¹ $´(î”h¬ø§Þ8ó—WsøùÓÔ*Ilè‡ ¼¥~&[<¯n|׫ôxÜzIéIMH(/ñ'fýd¾¦©/ù•¿Ãmãç)zPÉ5;ŒA_V¡a6ßðs˜RíC•;¼ÚŠeôEv¾@A;õUè’mB‹ûla¬èÝ'Þá¤MKý€Çi€krõÞÿfÁãHe¦,‹lŒ5ìÙh}õÜ5YÄÀ$¯21€ÝÃ[w¹¤¯çÔ®H~(Æu@¨YÆÏû`SkNòâjQ.ò'­LÁœõì¾Ïéq/Ñ~tu’â'ˆb;…ŠÝÄ/*è©ïüœ6(-WWBئÛ[šñ1QìNµ>‹§Ñ«3ÚN¿°stÎUÂ'>Ä"Jºô«~à’ö‹¾‘¸‰Ô‰8º%LëgÜ5\8¸ä ùzÅê½c?ÛµÉÕL©ì•æŒ5–,–''´xjÌk@üÕ3kd¦æA™Šó>âöq=Z¿ÁL]a …ý~ó`¤Ã°'>ìŒ]¯qÚjÍbƒsLÏ…\àÙæŽBYGNJŒ¥rñ¾ø{8E¯n|Êup[¾åÔªÎ1mŠØ©“bp.KÅÜv#YUÿKi8T‚!ïZy0å Ny»Ã³MÇ_²Çb´Ü¾ˆ":ÙÕ×vå ¯zËë¾ÎL½è (¢·K”²m×€.cgïX¾%´³÷çðÀêBàºÌû¦è•wêG ôk¸‹ºn>Û}¡êÖ:d„¹Mǵ†üˆ÷­0£®F\_€œ'½Æx(MIò‹U½‹½Å÷\áø€%Lˆ?r(Õ†g›i6i¦B¶I2þª»IüzÁÙ²øt‰J «ì2‹‡H£/ÊòRÞÆö$*.¶È$wAnwšÃÏÇüvaê®u°W¢"¶|ЦH÷×\t2‘^óµç— ¾/•½ Æ–mƒ¥~~Þ ª¾gKmX«Ðm©\7}1D~+€77åæE3ªD‚¯É*¬>6K‹P_è)CY3´-Áb[–5 °™y#³ÚHþÕ ÍçM]$PrMw÷ Ö× x¾TQDb^߉ï'”nÉ0]õRµîå ¯4š%r±œhŽÙ®yÂ`4±„cÑ+ýFñ‹’BØË×#ë¾¾'4¨ËݤØ;y"ùAÝ¡‡‰”xº›:öéKåå Úò:¿P—;FÞ–§6}t Å©¬ç0™rú.«Ä-E® )q®ÇdVßz< L_]mÖY$ÀÜy¹Ô—´ (Ý}uŒ“T\ú¡óM¹W™¡±^ÿÆpØnð±;Íÿù)ûQ6TVö™‡ea#{þwAÖ¼ ¥xöYGä‚ìšÞsQ­—kzÑm«=ªÚÚo˜Î”õKá^;—c'/¾é«xží€u^9¯M“«„x¦þ„V® /FEÙt¹5!sÌÇW­ïàxø„dW§Œ³SEÄ—+×Q×ö+8Šb^ëPò/®*U}}áŸxCºE½>  Þg-3̪ŽËEêe¾Ãh\ Wü8~¾¦·v’¾çxƒ"¸40ÏQøöW/â¯fMÛl–zDýY[y!ÎF,eC ßÆÎˆâüÛãˆÔ¯Ïš dê¯c'#dtHéì;×Qð°Þ慨܌º|¯~qµâ¯/»‘ùn!Žuòˆuhå´oVËÛ©'¯Î•êàùvœÐ4—јésÁnp.BL¯#žë@Ã1ƒ¸z@G˜ùµ½øàGSß{Pµžh¹é×b]iåÕRmŸH¡V—ˆãó`í“æá_Åã{ˆñÂtLä(/ÊZ+ò°W1œ§ª’TøùßÕ¡Øù" &†Ø)*UGOË2‡¼Z™û¹ÚÁÉQ¨$¶EŠ6IŠ#Ô)§²±bbµÜ¤8ïM¬ÉØyŒñaÈxxW| oø~Iú˵ôÉÀ\Ái-F¼ø8œ:äîî%¾,Ëq‚óêäç¾Ü[f`9É:Ÿ”‘xð ¯õÎÇu¡†ñ¦}4GÚþ;…Å‚NkB/ßn޶Ç7/˜‹Y“¶à HàtÞïðþ,¸4aúæ” ½‡7tù¨J¢Þ˜cƒn5‘ÙÝ'\ßæ‘ã¦g|o¯\¼Dåaf³Þ/VƒÉGˆOPýñ²òòuœø¯âö«u8/C‡¥ê¯.‹Q/Xï–4ßQvss‰Ýt{·ìã=Êfå·©G©íÒöJTd¬"r)€'F[PÕ½ø_Ï„º”¤vSßZÈ7ÞG8XuèÌtN[¤¿£ 0#I¤ÆKõ.éÕeZáñÉ?!<]bŒ„®òì»w9 ÿÐ.Ó]<:j:c˜:Q©—Xÿ¡ Öû:F×´§úÎ^5kókJ9³Ú åqêAu\:A>gY-± 0’î`0Ý1ÛRþÉî=Ö§!4ðÉ ÃûÎz[jbÄbȨëºN½ÌI:º¥£9“z ùaZìV`º.˜=WHT»ý¢½É T6øæÜ‹wF¯`[›G‘i.h|Tù µ¦Ë¥qØ›•ê5‹ŒQì™,YN¦`©ÀKuqCbFÕ zÿKL“+•Çp9:õ0w!¼g§`gd¶½Ö÷œHbõy=dÚßÑ—ýÑ:âÊù+MÛõyöʯ=ã¹n“LÒc#¿e*{j§dâs™7áìeéJa§•SR•ÚzæÃrØŒKü¬…3ZÒ´Çî=ÃÇ”Oq´1?«˜±©OÕ¾jS"?Ýʬ»OäQöÓŇ|ÐýáL5IÙ¶j&öXeAEY/éò$<2„ׄí·+„µ3ðóžvø74¤zs2ãiAgT½þM‹¢ŠI^<}Ïû1œ)]]Ö×uý2 8HæÇР#Êm7!H `?* ÙEòt'€"Õp‰¿÷(<9WAJâùI?JK?ôh8ýö†ç~î¼-™AñJÛw:bHhÑ Ã6U¾a’s4¾ÐÝf^*‹ö•ëækà7ÐjyJkhŸF®6¹ãÖ»ƒH£|´`HÇ•±dîVùøJzå=!©'Çîªy­2¨t–ƒ1¤5]R²É3òNÑ”6wRV”¾7¨°¥Òù¹Y{¶=y–¿%rCïÝy¯íômÛE–õ„\”°r'’ Ú\ѵ)—lÒµ¾¦$=M6Œ ¹¶ÉÅý×z¤çžHî£gt‡ }go‘-ÏlÜþóU+Q œòˆáŽN[Îðg—Ú<[0?´"Ú}5ª+÷¾¥ËŸùêƒBÞP%¯ zÙPV [Èç¨e† b’YÛx…Ë5IHó [t»wW(fCM¿fQ8bA¦ú™–'µ‹ë]þ†!ã×ã$å—œç›ø©eQ©ÖH5Õ-(ˆhÒMƒ éè:ϋ²G…»_GÊêvª÷Öw\~_ÅþŠŒ¬¢D˜N8:#F¦¨©Ïç`SÝÕh#ôAŽbÿ…Ö6¸¯õïŽHºVKú¨F¡`ú5ݻʡjþzˆKYõàeüI¸äÂüÒü6‚lv›jçšHûšSã³åŒˆ5X4Î/%óú¬=‚ÙŸM:Ä€7 ¨KGÄÞF/°SŽ›éûg^HÈT‡áéʇym†ŠB¦wxÜÐ?fúü Þ“C(„$ 8XšQayëµ Ot^CîûàM$ÀWDcÌâÌ“ð^9~pñÜs–o߆yh«ùÞ¨%Òû÷ÝòþÜIóß¼í~]¸pïi’"¯‰ˆÒóÁn^™äŽmü·s£ž.áǦ­†C9³W=«¤¶uä;¹¶`K¦ó>L]¬hbà…FNù Ьdsû–F f³Zr3/¬é•:f:\îwfÀ™¿4m3Ò³ïÊðçìt ±j:[\oˢВ8×›OÂï1œ²_{oîx¿ÓMpò™r8*ße b_Àµon†¥Jø´6™™Ü€ÕðØ·p[*0q&äÕûŸÕ/‡ !Ýk;âE` «¥¸ÿ,ý*¿UjüJÅó’p/×Û8KÿrÁ»ý•®/×ð½×Pº|Be,¡ñ66DnøûMQfzàŽ}mÜ—ä†÷5ªa¦ úú¢—•ZÜÏvÛ‹cI=¿lµò¥¢R÷8Óz¨2£BíýB@¸—YVÊE'…²´£ÁE»7ù¹iøä»“ºWç•üLåDS§Y€þ&êÜ,ƒ,Þ5hÆœcÝäšÅ…ƒÛ»ã)û=r5Mm÷D4RcŒ«ŒOÐæ&$ŠÜ’- ;-¾:©êtÅ ;t߆âоkž…ËT ˜u¼Ê2¹è5ŰØSɬ&]ÁNvcèô¨Ê‡“7_Ó»ŒÊcÏ¢üdÏc±µœcº$%‰oêŽ;ÅÆu´²~xü¶{@‡î´AJu¹fŸ„luŸùÞQ÷;göž¯2Ü#—xZ§¹¥«oK‰vÕƒ@Á;$Šy¨ìÉàf/ÑËþÔa6ŠFñkæT'â®ü-܆ódîØ%Pu•UMØ\@~*´S!òµ²ÛÃg‰#ªz¼¢tÜpQK–h]Ãs3·âî/#B¢ÿZÊ’-}§ý£pùœ-ÜûºöŠÞáû" o÷u‘¦é^Ó…±Å…vC–~¾1Éàפ_ׇ”¦‚"ÕI“õ+Ø­Y€{ÑlùCrχc6/H ³ŸoÕfþ O~Ø÷–³hrÑö²-wNëV¨üÔv[IǬ’ Å„ð±_üX†ŠÆâþŒå¨¸Çö1D“ æôÖ3æÇ!¦©*òô-¯tÎiõ¸ºá%oø\Lˆlví¶Ï~œ$õ°.öLë³`]c‘øâ@ð÷%‡iƒ„!ªBæ†wE…(j¶~G‘ûIÁ¬¶Ô¾QãÜ.™+ цèìÖ §írOqrKç̽«‘2yŒFp½¨ˆ,±£@†Þè(.1ð™]ÝŠ@7\úø:NDˆóf=ž‘ÛZ2’.›˜&vMF¥þâ×ðΊñÃR”Ȳ¢ô®IÎ%uç;ʽz1Aå¼ö¡ŠîTV¹^ö\3æ€ƒí  cú˲n&îc5:€\Qk6$Uº²ãj.f2/wvì e¨wáOb¥2väê~’X–’æƒ|SmÃåò÷ÒNM\–?yæå’-A’¬'½žŸX,´ÜÏø…ôO7dΉ"ë¹…pòî<ƒpüýÞm4ÜÞMÛÛ\HmT^ __™Bç1ôdñ£ Ò+Dâ#˄Ó¾·øeîÆIw¡è:6~N6ã§{p•÷\Ù¦»c¦Xµ?+ÌÔë…è᪵tgvSªÄ¦ßñÉDŸ¹ŒV°eø8Û’Ž®²†æÕºÐh??qw Õêìõ8øTY÷™<¨M°gΆrV߃-*ç¤ccÄ¿Ïc±å†.B…´ák„|´û&ïÎpè÷1ì;†=ŠSèŽÁWúó‚YÉaE¸õù(³¥DúvȰ‹\Ýn*Æpž,*!({»KÀ\`²8AŽäVŽºÕYµ„8½†Ó¤ßÓ®CP(GÐD=:ùh*ˆpgo¿“qÚ ‹åbÖ™º=‰o!<Ú"}A­&EþŽŽs*üÍò £(Çš¦ þ=Rá)°r‰!Ý[(‰(7ƒÊùü>YöèQW…À…ä‡Sªa]FŽÝÌrÒ/“_-BéJ4¤Èüýa³–&€p¿DX×EÒ ñ€öѯáû1‡a]›<ʵ“éU‚9úÂdô,Ã}¤˜ŽY™-’Ô‘›ÊôûIÙÁ«÷Ô=H|¥Ÿ~¥xÞÊÏ{\*ÏP-/®>§Vü…~y4•ü#²“h<¼¿Ì•|¡6áþi–K“èc“1>ÜcÖgŸr}>´u€I¶Ë·ÈŸ¿•ohꈬB>Û€pJLÑå]¿(؃J¿ÖU)1(È-Çbl¥YÔkPïÀq¾~”íÍ@X»2‰|&ñÆ\õÙÅÖ nžj&¾*µjõ:¬âíŽÆe¿ú „aœ¶“'nWÙœá]Xh‘"t2ÜAÇédžÂžñÃgu…po´ç™‡tq²O$0N{GÒÜNcÛ¡óYÖ£œ1N½ˆ7gs_âc;z7}pwÊw³=(‘+¤¾ä¿²Äæl47Wê÷øUŸÕÓÄLsÔV„Á·%„r_±4DD™¾,§€´Š>õÈâ¼Yä[È›¯Æt:.IY•ªëZ"¿RŒÅšÒg(0…‡–ào|ÿŠËØÈñ¡¦,‚%÷ç ø»ÐQŸo|ƒNnF~0æ«VΟ…¸êbÇó ¾ÒE›n»]7¯×ât© Q _}¯!~sëHéßýbˆÚVäk³i9ÃŒí²jfÑ/eBzï™úöqbRÃÔ¹^Z:8Íq´+fò\}|Øóþ0ÅØ™— v‚{ŽÍ­Ñ.’mp¤fU Ür˜KóF;iïVª:6‹ú=ÏRÕ¤ÑrKêW)ï…’ëf㤵/6'Ð;7J’iÞΫüƒƒ¥®Å Ãâ€%”û¡@ø}ÜÔà R4FÛgÌ”aX+û+zô÷º'%¬‰…J!+“Á<¹±{~±ÉlX±ï4d6ÈéoVY‰¿×û£?óñ8ÒºT»wJF°»×Ïú3Ø«‰¦Ÿóm}öxúŒb3@ŽÜw{©‡•/ÌaÁSÇö/c-÷ͬšª#“¤>'•gÃ`’J™¸°`œœì,.ÅUþUC˜‚sŽfœÛ/ª(Ûpf ĹbYÝô÷¯pTG©m-Ú²Á¸Ì—NâqY«•=[¡K”£(ò¥›=k s Oì1Û‘Š²ì|ß±Ús.‡£ÉËJÒˆàÜ;[Ï4Àþ+R˜ä2•3EÑRstlµù~Æ},™LŽ<\K.pþ&wcUbCcùöÑ4è"€%.”õEfíPë…©lBÜ/áÉO‡&tJ$æÍúHCÄïìoå‹l1ßìølø«Ðxö2Òh×b@áœõPäÍÇÄôÑLºÈÙýð’òhÈ2ÞœA¬vT4A?f,DŒ(»ƒ5¬ƒûjÞ. YôÛÉÚ ±Õ·Åb¾W{·t}U($æ“×QG&ˆP`–U5•Q³=Æ]ÀË8C$3$½=¸Ü{õõˆ_ò¬!£Ç ³¶á±ª:ªQZó>íóÖ~aš…Cjµâ”‚’ƒ@-›¬)­–×Öˆ”Œ¥AÛJÄÞÜDŸ[øF†¿ÎÊ@Œ}. ÓÂÀÎã‘a‡8)­et³ àŠ Þp]^—ëœäõïç` ‡H´É/õ¼ Lݼ3~›´¤ ¨2†é=•®‰¦°ô ÌWˆ¼9Ü'l›LüÜ«Nb»3²”„*äp~Èì9¬)Ó¢ƒ¨Q[>e%Á’i½dÔV9áRWº8“ßFˆ­RFjvZ©>Ÿ1DmÍê†Ä'} “)Eý²º•F]献 óQuU6Éóvüµýœ£üNb'EIFv‹B¦'ýø&’9èsÊ€µÞJ=ÚìRØ k<íõégfïØ> â;fÕjRí•´x) Bßx³2LÒŒ•S³†Â›|ÊMß5óR¬gê.ÄqÄÅIòÌÃÛ¹ oÉŸ× Š6$ÄÉ]1FRÁK㤜m:Ð±Ü +Øžýz.º¥ Q8rcKÎgŒuÜNG:‹“y?‹%ÇÈk³,9-cèV:„ZSܸŽ|&@SçÎ<óˆm§ï‡è&|äÙgÕ[%^¦¸]¡Hpè&/¬7•!-˜Þ@?=AÿVGÅî^|´Ûkg½@ߦqü¦Ø·íÐ,AF~cqÊÊéhZQƒ(oð“æÒ£œÿµ…‰PŠ×džân·\ΨqÚ™8íEçT«!œÌy խоÆxÃ,›¾Â¯bB9r~ZçÓ»KÒÞH©\È%hö¡Vo"©©ÿ y—‡×d’ŒÅ.¬¦ÚT®ãr)¼ã<ßžÛÁp|`Áü™kH “˜©~ožª%4†ùò³ñàË?ðrípÚ¢[¶û¬KÕÇ¿Úø"<´ÇÎ^®ŠE&€jÐ4Èï”öIñèdJÙ_¿z(ä˜Ü|½N_äLý~¶¹T„:~¥ŸëÉêQÚ¨šøUg!ÿû—2îJÚlÅBƒ‘ãz‹ÁPººäºeÊ hlQiïHGéLHþ<ÆŽ wÌØÐÜ<ûõb„Fàü¾Þ¶± `)ös!X´g»¶@÷ý€¼ü¶=wãpÔÕëRPåñGn}7ŸŠo¯6M—h¬Í¨ŸŸ±•ÛLݶ*‹QJ¥&aÇ6° =|åá7>÷RΑaiQ’~µ2ca™ÙKtXcȈ:÷à8q”#ù`iP޻ű{L\‚ ‘ފܬ¢Uì±_‰e»ï=_Uªg`I¤ü2Px¼¸A‘NÓüSôhÏ8ŸLá^lzÈl»³˜w«ºž¬nm×aKiŽûVÓ&bÌ’×pl‘Ðäú€UlxiÙŽ5£’P\öK£ô]Ô BÞs‰ŽÈWÅá®5–Þ$" §raéÇ•9‘8uÇXüÚÕ–G^Cx›†/;±áß¾›œ…a,¶þzœü ¿UãϙΖ"Só1q>TÁ¸uwŒnu’ƒq»¯©c“FÁùaô‘Mµö%¥Ì»gì92DžC|‡"ââ;·š¥ÍâÚ丿.+hi;ûóÓ¡’Vnlå@ªàF¢%¥)-„üó¼ËÆ„¸Ãt_°®Ý›×KÎo ºÄ«Cg"š2Ïù^~®cn)¨ “5í›3™ï1ïihÕñvt®€Ž‚ä5n©?æN·g%j©Ö—æhТ 4é8Ç¢{=»Ìwû Ø$Ã^:A}Î0Ù.ÄÅÝÁ´|þ­ipbeF›(x…e~›Ð¢ nÌÇÁhÉLH¯²ã¢©ÀêeŒ®9å·`º°æ®/d‘„Miä±Ðá÷º5)ÇÃg5´ð²$w'w&XKØÔ¹õà%çðÁ×ã|ä[f»½ëÁiÃé…ôÄÕj¤Æ& üÏ—BFÕ—î£5J˜r}‹\;JnO¸Iüêqª÷“å›ò›Êï¬M,æ¾]½_ÂÓ/j `54=Õ˜Jk¢Ý‘L´‹o ’R…LdGðÐ̆¼$nŠ©?μŸÿ ü:EµÞwvän@3DüìÏu,™Fã§ …åÝYfÇ@›CÉñs›V5š]RX«ã¸«Ep‘BxÏ•Xƒäœ÷›!ßs–e¼_ Ót9ŸjuêaŸR°ñ~Œ7|Näße cú ÌšnîÊXdbr3„óP½?8¤ÌÛgxÈTkw¨úcät*¾iðÝÚåül–Zug– ÖrTG b‘J 4wÝ„ih07'Çü°¼òl“]BÆ4»*?nrÜò#´ª&¯ªð­p ­ÜóJõ¢§ö„›|ªú 9Ç寢töhþX¼¦£E-r7e#¼7=rþqvPé·[&\Q)-Ý ³uE+Ö Ï -|)柋¤Tð)*í1k\4T'êÃ(ßnÉmð_ø´1qs¨ñ‡‘S, åU†?z.ÈÇ|rÈÝU;wL œÊ¹{ÛHõáÌ×Ú£ P»˜Ž-Ä-Ömƒ 3}g!oêb/ôd,?\A*ü¤à³–Õ̹†²MNR¡Ù_|?Ík·YöF:â„þªÝí0—Õ^"¥;2ž~;õ8{ìpSBœ>8>~ TÕ_þøë´‹Â}ðÐYuRˆñíñÖHô–Y›åÿîãÊà endstream endobj 198 0 obj << /Length1 1357 /Length2 5945 /Length3 0 /Length 6875 /Filter /FlateDecode >> stream xÚWTl¿§S@$T1:6º»»QBcÀ66ºCB@B–‘ ƒé–4èP@âN}¿ï½ïwï9÷ž³=Ï¿ã÷{ÎÝØLHÅéÓD"ÐB`a,@ÍÀT‰ ƒ@¢@ 9íû#¥ZÂP^p$Bö¿éÕP0'S‡ qfH@×Û €%eÁR² @’ù—!% P‡øÀÂ]$æETCz`Qpg4.Ë¿Ž^(,##%øÛ âCÁ¡À‚v¹ã2B!n3$Ccÿ‚WÞöñõõ†¸{ #QΊ|‚_8Ú` ó‚¡|`Ž€_í !î°ß Sæ.p¯?b3¤Ú‚‚p78†ðÂ9x#a(.7ÀLG`äCü1Öÿc øk4°0øßáþòþŽøí B‘îŽp8ÁÝ`#M}a4-€ Bܼ8ˆîqÀü.ÐT1@pýýÕ÷@{ {ÁÝ~u(ò+ nÈG5¤»; ö¢øUŸ:ƒâ¦Žù½VWÒáÿçìG8:ýjÁÑÛCÄ÷ô†é¨ÿeQü-s†¡ HJZóÀ0P‘_Áͱ°ßJð/1®þ@¤À ×,îÃýPø{A|`4Êèÿßÿ¼Q€ÁG8 p€9ÃGljaNî¸Í£à€ <0ôëóï“[ŽH„öoóß˱Ò1UWÓøÝð¿UªªH À_H•À`1€îøÏ(Æø_U€þöÕA8!2ŠÅMé_ûüµ}Þ¿ˆÁøg,C$±0ïß·I€ ¸/ðÿæ¿]þ7tÿŠòü?ëÑôvsû­åý¥þZˆ;Ü û—‡Wo4ûHÿijûCW˜#ÜÛý?µ:hŽ*g·î¥ ÇÀáh¨Ë¨ü‘[ü"˜3FzÁ=(!0ô:« ®¸Gà ‡Çß*Ž4ÿL©€"±KTBA¡ X ÜŠq7 €?GCGæ7‚"Â$çÀµpB¢(~íS\ ‚{–~ )þêBáhõ{ñ¸¬ÿºÿæ0 †A)f&‘P¹ˆûõmǵ*7|…–Æ€ËVù„ügP¯¼O©IÓøj²ÃQßUÒú^_û¢Á{¤ü‘íܳ¥4ºõ‘ÉËŸgöɦ#Ë/)¦‡»‡Š6Už¿»E~SÈ\y%àÜ3À2Ô•°¿C˜ïé-Mm\HwìûV óü]ù쇨Ée“•I=ʳòQ¡‹xÛÐÒq`CÎ Zèÿµ= ÍøÑ÷±kyC—lºÉ[ bÅþÖK¢‰'~󕿢^Ì\ÌÖL·®}áöW]K×½>åÿ¬xõ!c‚ñÕÀ'÷T°Û¯ß²¡é1jýÛ]nà,/3“!½N\üb«vŠ{){ ‰xÎÞœî"Fç›T‹ƒ— Q üÒÈMªž¨r¬„}ÅþæãÝÍÅ•‘†A¡ Ej±R´œi¼ü²œÛ¾ìòãb#³´«…ŸÌø”ÞÈ´å-Î|ZÊ8¬½–wÏ6rSè"šøgɱ/ëÌ$§ïu=Ù¬‘Jé©]ë*Rì¦îY¦Xô\Ú˜}Ð’Jã™TEO^éNk­n'õ¾µÅÈUHË~Þö³Y?]-V+ûH?÷ð<5+*ÉEúÔùÉ–¨ I ìú›¢«+§j"—ùùy X~Ž÷%»]yô6Amo^ô^gH¢¾·ØÀ<ÍÒKFõAb2~š µž2 ÖW#™Ë^ã#úáÌ®LîÚW4=gÍÞ[s­îUdέ4‹~À¸}¬6ŠöžÂ´§8k­‰à“Ènq"‚÷¸tû4LVv±g« áâ—ãŠeXž¯¬bÃ/ïÃç…gÏÆXzJnõË=ø28à¢ô^ÉqÓ,—æ5Ö¼C0E¯nLÁ*\D9#ØMB­Ó£‡çÖ–ÁŸÅD}_©z–¤-µ ‘ºw”ž°bo-¿O眳oÝq¾90p­¡ü1Œd1//8x"/Ì3-F$ˆä>xžüFŸ¯³`¯^UHê!5Ò}RÑ@ºA®Ux v›žðV#kR´%­+½ó´HDåᆩò(ÛL€Û¾žZ¨HÛ_X­^«=Qy5\g­BSVÖ{Åx:z½à‡QÈUð+Û^4ÍFa V¿‡V¼1œa†’%?ñOiÈMv\«u3Ö@î‚`%Jç;x\Z°Nu^´W? K‡ÕJTwBá´Z\ýΠ]=s· B³)åE;æK§Ï3V£«³R&µ,7S—*EWƒúóìˆ×­“îÅÓî<Šâ_!’¢\ãÈ¥É'{ø1º2ýÃ÷¨¹€ ôÁ¹…ÿ„ð{{ŒN‡q~Ué;–{/’ˈº Ù‡I1u}ºí».»·òÜT. ]•5Í”ýHÀÎ9¹vƒÎzœ¾/ò‚êéå[þhÍÄ"”/»I:®ºòà³Ê]H"¦;ám¿vX›=âýL^hf\ ó.Ûå\pœ:ë½VΩÊ+£zmLR1¢íN9Uj¹Ópƒ;Ø[),üú„x,wºÝæêÇÇ5Ž—š!sît¤Í×jh\šóÇê󺘹|‹mktI¥:Íò5J;oÇ^"šú-“c³J£5“yZïmÄÃãߨñÍn>$IÜ—OxÁ·ô¸LRz¢\Gß"nór“$·÷4B‰0$Éßo5 —ÓÔ!,*h2UË\Õ;"p:ºßv´“1ç7Hú²©`d˜u½¹uæò%ÞK`‰ÿ³…Pv Û"íÛsÞ›] ê6Ž|Êg @"tÈQ:ç³™”Xƒ™ … C®gL`“ ×*—Š•·×nÖ¿â³î…îÎ1LµÅ)&¥ IvÞ%øà[Äów"Ö®¡ò`Çv’rx±ŸLš=ó˜®÷1Ä#ëÍÀJ§}fåFG3ÒÛo»«K÷4Ç Ökûž»ÄùZyÛw}™|mÃØ˜¢ÐH‘hÙcwóNE³¨°¢ªõÝß=ÓÔ–à˜ÂÎìq9aA¬¾}Äe#Èl-â}ºDëƒH1ðt‡{fE1ýÊÄ㣜SZ†ÚNÖÛì6_Âf¦ó‰ïôù9} üdzšD.ÎÇHÄGKâͰíseQƒË¢"³Ý6î…•Üf|.˨¨êŠäK®ÉâÒ•¸¤*cW¥wØ—ØËñÈV:yâïó {ý)ž jZ\€½ëéÍÊŽ3]uÄMA}*`é0¡€ÅXð=¿ªºûx€†¤ôÙ’3kÛ«…Â=¨Ý²+ùA_{¼:29^8l\·3Åfffr£zÕAW]ô³Ì&ø6*ý$ V>gÐ]pð´­¥_tãæOî/*Æuuì0°V~jéeÊ·÷V÷¾×ŸŒ¿!ï×+ðì%e Nλ”½ùîÚýpfSÍI#;TâTÓîÁp6ápóƒ#ÙuR’aÞŽ î‹ÕNãÚbU™j—˜xŠ“… ò‡@¦O?eòHñi‡ŒÈô¶Æ¶õ™Ïùܤ׌§WMŒ<Œ¿)(ÙJÀ! ÞÝ|€rÑ—·#U\Ñ}­ûBfuy¶#i‡!XôÇ}yv7ÑŠ§¯¿ntH°t§Õu:_Zâ§ô__æ'§_È–ÖÉÕ‚Úfo±å”F%š§oü`˜ÿI'“sS}”w½J0&³[ðØ 6Å™ã»m--5Ï^?X‹LöJiar@§^ R-4,2f;îÚÓ¾íÜ;@Ê©ú8ÈÀš,}U”ÿœ—Ú’ºuxæ\«­n¢ ¸ª ä—T:Œî>O†¿m´s<¤  —åͪm¶.ì–À›”wlrlêH)æŽbÑi£K k ûU{†^Ñt{Âje„÷c%ýQAu+ úñã˜fµ0DÕ¿˜,&öëŒÖK Âè0XºRø’ÖÉ´’æ»L‰÷Ÿ•ß±lç,8ùÜÚœÕbpV¸gWrÌßS8õTæ m ú„I‚åþñ3ÆŒÉ5˜UXš6?*à'QPBÜyΔ;Â[E:õ¶ŸW1«Ä(TÔ—r]^²@ͳ/«´øÝ°6½qÊðV'óåÆt½€¹k'òºLõãYYšÅ>+Û“Ÿ$á«Ø †Ô•î×Îßðœì”îKò]vcž”cgÙ JÆ9 ŽÉŠæÄeÅìh&´ÑW½'4îíToã©®a‚}ñÎ×ôEeq7PßÍ:Ë £3,9²Z«›Í-RéU¥rà&x­ÜÇ34ò8ÊëuxTk”½\+ifeýÏ#^û²óæÙí6áY¾0FV›r%"‡ ô;aý’€Îqã÷îÀ×"1Þ5KœR*oø#Ìm§¬1›ÚT(d RtövÞÈÛ~ˆÈ‰Ïþ«Pu1W‹´C›ÎÑ)ÁÍŠúÉ7¬LL‚ý„dF”ÛâÀÅh.b:mž³wuj$´"×.ã’‰®ÄŸvMú(´ì®Ge³©Å”ggcïIÞ¡6æo^9|HøµÐ)M ¤÷GŠCSÁ+­FfûªìŽ*¤d’›UvV@çNè²yþ·ì…¼Æ2G¢KEƒÑ®–»†÷ƒw¨»l '”Óòù­_|¿µ"Çéâ2§'µÊ)*W£6ßXö³N”ÊWíÚÚÄdŽ1¶n›¬z…n¯ ç€CðëXëˆK~)†vñ±ÞW¹Ü¸ÄáTl¿OHšŒ¤Ÿ9{òÛ ‘g'/¤Û)¼Æ…XÓ®Úp ³§÷¨iäÙNèÙý™äh• wÁÚÂÂWxÕž{«Ô¾ö$bv[3‡zÛ¤S§ÝŸTx¨‘E²?‘Ç,z¬&ì?h®¬epD™ì´Ž2Ò‹Èu%ç'}L> Tûý'T98à’ñ®c7üS§—à¦Q`+¾Ä§nª0vy”ý£Ú}7µ‘™'«4!,}Ä S†4œ%=I‰ÏÅ©S} öÁ«±ö_j·ª@{pã‹´´Ýø°¶Êýè¤fçâvkpÌCÙÈ 8oŠ[üƒ/ ®žÕšÊ=áN0Í×ìéY9¾É;q¶=ÁMÉëÞèªþŒJ$|æ.{Ù¡>5^}l G¾7c.Û“Ï}ÙA ÅCjÃb6ía°ô9þÜ}“Ss£i* “ðK¶ÜTìo±çOÅŽJžÅèÅp‰*VªàËŒù{‚kG>(1ó[‰æcþ‹—¯ÄŒÚgÏwsìå7#ÆÔ·ÈK/ñ\XbëÅXéÞ‡ÑÉZ† oìùj³ÈÖŽ rµ‘‰ªó†6—(TTíTŒ±ê!+s\¹rz¯•vðËÅ<pZiRr“г”ýàýù|–‰P<:°Ðe­Ôw½ó€º”mè [/`™²¼’ïñ#(Î=ëÐ/ùÅ–o=“ìå4c¶ìëxâ¡Ûžz¥ ýˆîÌ©ö:d÷Ld‚N‚ãqÅN†qp8¿5z¢SM!R-ŸY¯a\ÎÏ6µÈ½âç²ò”¦)K½M7fžA8éûûp(3‹zõþgŠˆ–KkøÕÁº‹Þ¹dýÌ·‘g5ï†Õ">&˜ó r„«l¼šþ¶â×Z @SZnÛ²Úå=MËÁo/Vz™cps sõˆ„õØ{ùƒ‘wdµL,óÇü¯ëëgß.Ö¤G6ôƒxîÏ~Ÿ-ܹè&z¢Xäav|Õ’óQ—·¬â+§{CÔöª9HD*»¯a{åVDMâéÊAé#ÞC©ŸƒÊO•"-%â&X‡6oLWWP¨ÆGJ¶¾ÿ¾¼ófß3øíÝ*‰Tk@JpN5åúÝϲ„†ït‰è;_‚¤T†,–¢’'J5ÄóûüTªÖ¨­¢>|Þ›Ôžñ°nýá¡Ð矇 ~#Üé¿ÊÉS~ôÜÛ€v-ѼnéÛ›´wD6aÎ:þoõU SºƒÉo¶¢D4•¨Tší¼s&}úºB+Š<ç%وɉ¨š1x@š–P†¯lª@‘‹gF!tâ¶³Ek5QªÈîæ_²4+)>#ÀË9ŸÝSLéçyGêXÀ´f$q¯æ»Ú«,¾hñ06÷#Ñu5°J§çùX„¨–C¦€fÆîÒæ§4Dtõ³Îf¼›ß[\ŽG&N›ÄsæÑw`²Çé7œÌ;MÜÊ«àŒÊ3Š3Žò”SÈ!ËV¤ #7íP§[šðÙu<Ú«Ñ/-LÒžuU\Açji±_¥!³¸þ6°òÅÔà„t¹d_ÜÎñp:aÜžmx…V5µƒòâ9…€—/çyi cLVUMxÐÂ]n•“dk1“º¤&7Aþ½„¨ —äÜ{­±‚Ûá3aOš˜òyÓÏ`¾@˜Ø`7E±BÜ\QÃÜ“Ûú¡œêã9±¦|5­ŽõjÚ“·Uä)êX¤Ž"êW¶îö4ͰÝú/Cÿ9¦ endstream endobj 200 0 obj << /Length1 1375 /Length2 6127 /Length3 0 /Length 7070 /Filter /FlateDecode >> stream xÚVTÚ²¥I ½w‰¥'¡ Ò{—*EZ$jh‚TQAº Uº"Jé Ò¤HQª4©* U~ÔûÞý÷ý¿Öÿ+k%çÌž™3sfï³"pÅØLLÕí×B£°bq° Ãßz è÷X=PhîÏÚrvùÕ‚³¯È…ðö…ëjüå7þ¶¹Â±@i0,+½ð˜èWró@/øoòËŒ¯?ç…öºà[€‡ \àøÎêb1¾ðÜþ¹@ @g t‚»"P€¿³ãÍp—?{üä1ˆàm0žx ø×çß+;<·œÑ(ÏÀ¿Ýd£o£mb ò»áCjjè NLB(&! B @Yü"äŸYŒ¡ˆ¿ªÿ«‹rAåþ‹¿¥ì÷×ôÿ†🹌ÐxÆÂ‚Ü, †á¿ ÿošÿùߨý+ËÿAðÿ¬GË×Óó7*ø þ(‰ð ü ÇóÕ‹ç¾!¯ÔºZÂÿÈÕîŒðEþ'ª‹…â5 Šrõü÷%"|´pgcæö‡*ì¿æ‰@ÁÑ>ˆ_ P ÿ†WÌÿhøàùø‚ãEóÏ#5Q0´ó/uIHË¡ 4€1~' ÄAð2t†üf0$ŽBcñ!@|{!@4ðkžø П–ðæß)9 ÿPýÞÿã(˜/ƒÚo*àëø×þ·ªáð8 0=‰†Ý¸ëþêîë£*UN±•!Å1Ë !1Ü4¦Å÷„†,UèEvÄ<æP5µ¿“î㲦àÊ Ï9n³±†,¦)Ù¤ù4øÌ!Étt¥05Âòføé¦ju7—˜¹Êjð¹wð­;Ä„mzyÞ¾×iŒ ü»µª{ÊgßEO®˜¬¾Ñ§<+/vß"ÁöNɸ@¾Ó“ 6^R¬7¹0Ã^íøÁáCîð^’ dë¾dÎfAâÁñDЧgæ>íìüì6lÜÄ ïF¯âÔÖÓôX?àJ‹æ Çm}‹ã$?¶Øi‡N.QÈ*"’®¿Tî#¾²êºøc«²a%ª[9“ötõ\´"¬Ò‹Hzuí |ÛF·ƒ›ä.g¨{ÅÛvöTVý¨&“yI&.\ï ‡¢âÁµž=̽?¥í}ö´Ê+Ñ jj-ÚÐò2§p>âž`ïDYG.@?\šQ‰ª§ðŒÂ9YTϾ¢6Š“DtoØ.¾´ÆÊÊñ^˜“â[­H¬‡[Ù‘ûMÿõ–Þ[D{WE“W”Ã3ßýì…]æMF)MXÆ& å$§MÜãalçâ&.¦¸ïÑ•¶Ÿê¸}ßæy}Jhÿ¡5ešð rj-i,˜ìsÊŠe+º5i'é|‚ãmå+§Äu7¸ÏQk• -âän“”V~Ò1£_ÃÛÃÇáÆT·vVJY¦Û½I Žî»{ŸÛ³j;4+,„Ðä;_j-÷(ÝÕŒ\îu̶7D÷›'L‘6¿‡:ðïnÐ=§î÷ÕpfŠž’|`B~˜®Æncæè+EµžSйPÜ´8?jt¬ð372Åù~)ßjÑ#U–uL7«QI€ól=d, 0umvÅ<óB¨,”™_W`èÂ{ᑱ._µ˜!Còðú­!šÎ€ž-•¹×ã³ÙŒ6óz2ná»Ï—fÝTgªæ‡Þ‘ÊÓµñ%¢&ýšæ˜ÀðVÛsž}ÚümÂÎünprÿú¥˜ñ µ \G âüQ3$þË'íÇ×p]í*ÎC¡V˜ÖTÊ›6‰¥šýâÉ7“ìK[@·ÚX…Z9ž|yßÓûYp~o¹ÛÄîÒÄNv‰Ëô˜Íq.®Þܹ"<ülÂøÀàÑ[®ê ý)CnäKžÁ¢—EÙ{gS"ö “~ªÕ¯hÍŸÚ<å~\[ÛVõºªDýß-krŸ’õL(̨w–·mJ’D¦ìï^ñϳßH¦:fšê.šòK$Þ•+Œ€w~}=Ö\H® 2[ÞJW~ Qí ÷îHë¤r¿‚‹¼Z,?¯”<@s{Èð1ã>Kb°$úõbeF„õ¸'b$~r^Þ£4{M1ïN}¯®Þ)WÀÅî]Œ:¯*¢*O"B“ËÓõ¾´š¼h¹rŽû€ÕKBi(ecC>Ú×"}9µv²§z%NâóSžU„"e:InÙë{ó Ýzø£ò)¯fÑuZmº£üÕžÏÝõÝ­j±î-4k¯ã»Ì2míi9.ŸŠÙåðC{¬®«»§Ìh“©ÂErÖüìN§åu†FR3vihs?lr鬺~p9£íQ,§ܽ¸ƒ]x—m—,¹ñ“2Ó"d}š¯’@ñý6ö'»€Â>i¹WëB^%Ð}²Ó¼£PÞ·mÀFç z»œQx*®À<Õ!vÖeˆ‹Ãah/©Xæj»•Ç.f9îåPê‘Òç Z©«äÚ=ʘ"Û`™¬RšÌ>!¸g1[ÒÇ® 5̸Z"lm6'O2ªÃ•¾p¥æ™<çËn¸ÜU0¢z™lÖ=ç-ii¯FPvíÉ'ÁsF6ë"‚>7xÒ²Ûtý¡Ù¢2/Ã1ÁL7Õ9ÑVºMOU]jìCDªfyâ­âtKÃL^o†Ðf2®Öç…â:Ò6âNDj›/½§½¶›QÏ©Êéæ‚ Wz¢uIó‰ sò4×K§Ø;ׄ¿×]#./î‘YQþ¼²‰jSÍkÄeçTeòˆ6gBbqYš‡±[ⓦH#)ö&ùUA&ƬFOI°á1]9q[îìꢭ&A<{5p±NT3Ožyàu¾=ˆÝüDÁ1Þ¦U:âJ~BÒ_Ô›¶w”nkdVˆ§í`Gué3Ø4ÇZv(ãìîÜwé9Y»õ¥r"¹bÎ]öÔÚßþý€W Ç·=¶ÍºZÂ)vç„p(¿Æåt3}ööW!úç¯ÉÆU­ˆf47›Sº/J~X¸æ*xÔz—°wU«U¬N¾v6ÖDïF3©›pŠÿR«ÊŒ«dsÛ…¤—ÀUÖ*¥ÇM}¥Ò'eëtõ8Ý–SDJŒï/­E¼B¨×|ÚŠäQ•PlW;VÞ)|ÝÁkK_èpuè ­;ýá-® D¡ß §›ËÜ@([Å;½“Šü´‚ýÏiÿIÌF4>sQo0 ݼšlàl3²/mù=‹^|SªäA¤øN³½À pÑw5Ë€Ætð®rõö]Ù»,!{„Ï©„©5Œ—!îvÇq ”Az­ŒG©yŸH¿±á§Ç°às­ $µ|]8çŒËš@ò˜WÜ• tCÒLmêÙ•Áôoƒ>s×_Sˆ -ЦNKEd4LohÈ6ö³hœ5W~ç[yq0ÛŽÖ<54½ÊPåïîiÚÞéž®<™â–M{ë@Ùlòƒ<(Ò´;Žz˜ ¡V{”­œ—‡â'–pb¾Õ•Õjɳ¿[Ëdºç»÷Ø~«Ñ®FV‚/úy[ÌÞ3@€,ÓJ½™&K³tUaêÍœ©‘]‹·òÊèçÞTÕt–¶´?ß2]áÉõŽ'*fe5ž'x‹U8`v#\®íì\4õ{!{VÓ‰ ¢gµÉFšI‘ã@©+ë8,s¯g2›é¨¹ÙÍŒÁTµzKI¢{Ž4’ü愲'-¯÷œ í¨Æ—›Ñ1¾ÄR!<³½9|eTEŽFm±'`£ ²ºfõ•gÓj KŠ®›ú7i  hË•í+1ãÉ‚ŽzÏ?°Ë‰Çôš”BÈÜÉŠ¿z¢Ò ª8ž¸³„—G°=Ÿ ,÷mŽ×{éî¯1Ì‘ÛëÓ··”5¸ ¬}ßæ¡³~Óƺ¥J`é%u ªØ]¾ÂHÕr7âÚåê¬ïôõRoEÝéÒ-g´y£C…&tI4p”ÁÀF}óŽÓšº¡‡‰lB%|¾?á…ëŸÈÖ… è¤=!œ¤—Câî)„ÙÔÔChží¥ÚÉÖ¥/£Ö£ÎSWÛhédâ7a¡—ùŸ“  t>?ÒVg‡õ,èÞ7ít¡'¬¡‚Ð*/¥n(‰Yë“qªÛ0E ”§ø0 y½þ1°wx¡s“UÃôƒÛ]ƒS¢¸„˜Yú¥²2e€–è—C•ÙúÄǽ]žbK4Œµ– ¾ko ˆÚÍÓóÒbe¡yƒÒ€•Qö¾ŸqNŠKè£Ñ, ¥°ûÙqП€UŒ±µw]=7c§ 's¼8ÇDÆý™/ÝNÜ•Zê¤blØŠµ(Ÿæ—Ÿ~‘“ç וÃiUF6è/Êe»]w/u6œµY盧¶ËNØ[€cz¿:¶N[‰N÷¢‰‚ŠSPÍÙE—þüxJJ£n¶Wàå490ÖÖwaÛ7Œ‹=îa“…Ìš_Õ3ÝU÷½JqÒ¸ÏWoJ8 ¹¬wzwciL ý„-+èæµyšºÝ*b¼tòæË)PŸÝ¾¶8Ƅڧ~‘K ½A¸ø´Œì®cIÌö €Jµ¥ú§qÖ: t)‰Úü›zÓÝãÉé7k•ôEîPs‰hÍ~§Ðÿ¸]pñÁr†–ffcÎÒæUª/ŒË„®àtÂôSqâšùSHNíSà'¥]ÌzäaVÚv| ­‘ËÚ“%_¯·rË¿ê)+tfÞb±ŠFë¾>°,- ð­±AÈcΚ|ÅFüN^iáï½ê,œÀ|ýIe:Z›{ÇÕ×z?Z³>|Ñ7"Z2_ØÍò6¢Ó¼øÚõæ~¯Ô§~@ŸÔÁ¹nERÕs9òñk“êN6 2¹âŸq¨«ü=Æ9ŸÑûkÉÑ‹BS—齘ê Wl·ÛyFÜZ ÷ÓÍ0LÄŸ˜ÑÔ¾6³†­$~ê¯ ~‚Ì£Ñ#,b–’¸»i‹euŠ=“þ‡â# >=¦‹biܱö‘ª¹O. BR~%Î¥<‰smZ¤ Óé[{··÷Z§ ’~íG 7"qi[œl¡¼™›ˆñÓ°¹ÍA6×ÅŒ¯³Š E j´Ž€ÿª½°ÃƒãõjÐ=·YÛO,»ü¬È«6nFwÈnU×ñÕ¨j˨)×ñôô‚.àöW˜®Ÿí‹Ä9”m §ÓL«¶vèw옇Ñ~ÒukU;~‹hJ­ôÎx1Ò\¾/W…–ÁfKɦ¥M<+˜q÷_œ]§?”^¥|‡],@Îly¬ùZ”°Lñ]b ž5iJ.IÑ´¡—Ú°©ÕqNôë., {ô¹´ê(×à 6‘*‘E¨&3U_2¤xápWY]uÏ©–™"ÀêþNf©(|LÎÄ`-ÿ’'ÔXËQã],YHó’ͤWBÏ^÷Š(¾Cã¿Ñ0(,XÁÛ|ûj…o|¿0ñÌcß±AŠxÅŒÒZ^ŒºÊÇu‚óðî^ö ëØÑ0êUY¹fÐŒ‚Ó«¡ (å÷À é˜%N†Wøÿ8AÃOÆgAZRɉë;ÑŠ2ÏÐ/KŸ±~;~:ASÉí2>èœh½Ù¶Ò)ª1œÕ!Æúo³G:îM †{†ïžy U+<·€%I¢p"¥¸ §áï©à®ÒÇ•Ð臺ŒÏîÅ˶,t Än£îE:„ÝeSt "L&Ïîç» ­‡ •β,—ë+Q‚k±ÅËÔÂŽ7KÈå¥_SÆnå<^I >Z±1j¶èýñ`ó ß<µÉûZõª´Ý6@cè*šó%08‡$~‰_ˆê ËnŠÝž{ºHö 5N¬uºÄªÏ r¡GŽ’²‰‚*Ÿ¹Èy•"¯'ŠÉÑY õ±¹}¡Ë_Óv.X§¹Î᪷Æ, E¡0;Zê96Éè 1°bYë^Þìlx³«ç3AüŠÙ,^ÆÙÉÛÕ2O9¬X€$,—Kއ}wéw ŽŠQž§ZI­Xs›ª´GÙeÔ°K¸>XnFY}õ›mK¶ôŸ›iO¾ÒÏž—k0¸ÓÁ˜P)ÌTáØ$vB.ò’¸ã[zÖ.[¥{ÏÈ»Yoß-±¶ ?vÞŒ|Ón׋tñdßZiÝTÍüæ²ï¢•ÖP§ã/“i\òtMl=O­–Úå 3fp-ó.pVÿD.9ó“U'—ò3€Hà«“ž²PèdzÊXjAÎÉXÛL[«œeÕ¾¶¬0©,Çwv/¶Ó‚“ý¢—#g$ mB)sΣr[dHÄeµš<ÔWA )=iç¬U6x¶v×˸ŽHïˆÊ´ÆpžE¿sÎùöù£Þáõ`Ûâ7dÑpu‡-¥.F~«ƒë0µo ×\pTE¹¨\“˯lŒÞ`(L«¢r‹CL[!sdjAÔ«™¬#Ù ¯u®‰ÑŽ‘kx¸¯o~D¢[vº÷ð@³2Jî{,_‡VÒz¶l-4ØHÃëyº9—¹ŒÀ×Ó ÝYÖ½ü[dnöŒ-3P8…®nâ*’3å¾õ¦@²k´Ûšž,ßN"П;{a_F¹(é´+ Æ¡Â_nè\·Å]pÓ'ùžñ[KX±õÅž¼Dê¨ÑÕoÞô$ƒ¥2ùó¥·¬ýª;ßèÔ‘6²š#ص1”"Ê+Êdú?+-ùàö®ÖW–©P[ÑS}>}Å÷9€AGGDC ÁÏ&Ôòæ}å[ä’=’ÄF”ZQcw²åFÉò·y©x›k1ÈgðìØôÍŒÜÔøOIÙ‡k®ÙOz«Ó_oš’8šè_Éc{´·3“îv;È{ W¨¼¸Î”E9õ ;`ûÚxþxK#ºÑþy/Ä`òî®m?]•z«–ÓîwOC ûâ_ÿ©e':ÑKHár¯çQFI¸f—ý<ÍðX£¼Wš|qnGgÞžÚH¶ÒgÊ¥ú)L“”4{‚™X—S?«CÀc¢… ÇwZ|4ó+m‰¸!‚‡ s¥E>ð0ažôKý®ÑÙbAǪð“—õÈPâ*ù£åHpÏ%Ïy܃”ÅAI±FÏŠqeÖ;{Ó‘v÷‰¨&{j¾_…|oÔ73Ì´½™¹ËФD§Ts|Þ^çûö~Ö4/%ì¤ÌKüöç‹—|î¡|´Ê kAyb»É‰yiþ“q|;P~™#[{¡XÆèÖyÞa¥·'·Me¹Òpñ%HÙKhý{”ªƒ×˜Gb/£e'—ç²tÂ*X#Ø® Ù5ä~ŸØŸyLÎß?"ùˆÍvKgZ.Œaiaõ[$iù ;ÍÞ»–‡ŽPC"–!–«ÄpißíÌ(Ý%"R]Äd›²§ý‰ÀŽY ¥Õ·î/Â#|!m%ŠìwÛÁâ“v{¼±ò#±4¶¾–Œ Y¨´uN'—âh82cÉ€Ïo4.ò5˜Rο‘,·fì©ýBSƒy>QØ[«¨âÅÉè¤ |×¥6étoc±vÔ€ȸGJ~I¬ëÍ{å˜ާÏjkæu1ßMxryÄ©u¿ôå Lc´]”×FÞ‘³æª™‘Q¹Æ$rÉì$ñ¼EBïOƒê 7âçùŸ³Z– »ƒŒ¬HvTøŠv©bý7“u: ™ëÞfÕ ˆÛ!Þð˜KÃÚjP—`>-o+Õû˜T*î#T žät”~ŽQåL “M¨ó>m¡G1íô ÑÓÕj||… ˜Ò%3%‰XÍ¥ù´aí+]é`ŒíþU}Wâ¿H”ö endstream endobj 202 0 obj << /Length1 1722 /Length2 10582 /Length3 0 /Length 11680 /Filter /FlateDecode >> stream xÚ·PZ. A‚»KÜÝÝÝ5 n înÁÝÝÝ‚w'¸.wyäÞݽÙýÿª÷jª˜óµ~}ºûLAIª¢Î(jjk ”²µqbdebáˆ+ªñXXØ™XXØ()5@N`àßRJ- ƒ#ÈֆクÐÈéU&aäôj¦hksXÙ¬\|¬Ü|,,6ÞÚ:ð$Œ\@¦E&€œ­ ÐRÜÖÎÝdnáôšåßG -€•——›á/w€¨5ÐdbdP4r²Z¿f41ÔmM@@'÷ÿ A#`áädÇÇÌìêêÊddíÈdë`.DËp9YÔ€Ž@ )àw¹%#kà_…1!P4,@Ž‹ÕmÍœ\€€Wd´q|up¶1:^sÔeÊv@›¿þ6`üëj¬L¬ÿ ÷/ïß@69™˜ØZÛÙ¸ƒlÌf 0 ,¥ÀääæÄ0²1ýmhv´}õ7r1Œ_ þ"nU½Ö÷¯êM@vNŽLŽ ðï ™‡y½dISq[kk “#Âo~  Éë­»3ÿÕV+Ï¿Ïf S³ß%˜:Û1kÚ€ì²ÿ²x!ü#3:8YXX¸yY@{ÐÍÄ‚ùwp w;à_ʿįü½=ílíf¯%½AfÀ×/OG# ÀÉÁèíù§â¿++Àdâ0šƒlþ‰þ*šý_;ïrè°¼+€å÷ç?'½×Ù2µµ»ÿcþWs™åeÕ5%èÿ*ø?*11[7€'#;€‘“ÀÊÂÍà~=xÿw#пX°üã+kcf àý›ìë-ý›°Ë¿ºOó¯Å üw,%Û׉hþp]N“×?¬ÿÏcþ—ËÿßtÿŽòðÿå#å ÿ¥¥ù­þÿh¬A`÷é_çÕÙéuöm_7ÀæMßÿ^WE )ÈÙúµ²NF¯; jcþÏ%‚¥@n@S“‰Åߣò·\ó÷‚A6@[GÐïÀÈÊÂò?º×­2±z}4_çñ/ðuiþ;¥¤‰­éïíbãä98¹#¼¶øqÃ¥©ë_2G™gœ5GëÄH G‡qê†:wu=‹‘3ùB"Gà}Å^䩽Á}7ï±Z©ÁæØO¯G u…16Må)¶Ÿ,‡»èYZ´î0–2Ó1¾iÈ Þ§ñØUR»u88×§¢œä£ÁÇc†Â’ˆ\o•‰·.!‡åÈ:ý.·î&{ÎÝbìÈ zQsסô_˜O×§v8rñï%õª¤øe¥44Wy;a¸50t˺ȅ³÷„È>úZ¡{Žð øýا¼‘$ ûG–Ì–˜_žoŒÆ-N…Yeä!ñE!ð|hö–ûwÖâá ýø§ÇüfA QsÑóøl¦û“†Ý}·ÓâCstØ™ÁcGé#®ÇÒø8¤°sÊò1Ðb$ÅZ½î†è…E¬+gb©.ê¨847ô£ «s¡©ÎÉè1ت†¬v´ãrîÁià„ѾoðŽ‚VKç×l‚ŒöSö|õƒƒ®ëU^{¼¯3å‰A]º²>b+”`ÁDÜ>VÒ\Öp°x°YG*%ãâJSW½šPûV¸*Ô› T'‘ËÑ¡~–q‡†G¼‚½‰é TÌk wõ!œä$„°¤_Pç•9’ úEÏò>±ñ5 YÐT½†2¤ž¬®_'–èXÆít%ìL¿âx•btRmIŽ›BkgDØŒóÈ;½À6ƒééåÈX¼SL#å"³MïÒ #†˜mo!³e)uò¿d Ç(ê]bK_B¢ý™ûØZö·«¨aÀÇ#Â-’««Ø×:!çí‡k)­ðÄkqIe7¹à{K)ëâO´øF: òˆæ§B"x‡ˆ#–’=·ßö!G™Ðíò—Ž…—wׇ ÀZ•Ï^7è"…ýÓŒèùD–?EͶx¿tj=_æÕÃcð¼ÑxX1­³Äã =ÐjoMÝÖ]9„k»Ìi3µŠg‚¡…Y´ß¬¿.„½syY7`úœ .…Öèp:(„xÛÃiœºX[Š/ìV+öcð™go÷ô…\Ã÷k)ÿÄMìýHX.G}WEî5ín}ÃÈ1ÎÈ0z–‰h$uíöþ%ª£¢ãK”cóÒ(.{ƘOЍÔ'˜Oy1Ëëd¬Cƒ ­Žn#_dÕ R 3ú3o1´^Èô-¹wÙ3%¿ºhÁ¦¥Ñ@çkèŸÈ_3æ[ GžüJŸgÚä7õ¤ß´ƒ³À…£ç¨ÜqÖ„G¤««Ø³ÉwoPÄ/@LéPKʈP´5Âó!cœÞŽŠãÚ2 {¿ñZY¿µ¶HÃÎ%J"H?%«¿ÿ-Idú ò¥Eê—cz3ðåŽ[|~ÞwOµà>«:—á©ö½"aˆ€ccEï9¥`üCZxñÚèwÌÃx6|_˜ÁVÇNg‰Jý{jáíuø'K =ÎíþÛžû«¤švL\¸Ž»Ù„%UIg3J·Þ}k28HH1DcûöøÎz2ÄæCKýx…vܹ ùU|µJKª¢Ø¦íÇÁóó“Îü©ZÑxaOõÜøª0Þð%hÝ SRÛ.»i²E“V•X[pª Ç\ä•Óî…'™SÉåQœ”`¡ûÍ2l ­XªëaS}e=’²Ÿ£>¤[ùN*‡œ«›)%b¦xÚkÁWSC‰ m˜BßÚ€‰›=ŸÈäû%.ó!_Òá8œV4>Æ âò¦¿|ðæ°ª"{ ¸Eѵ‰4ûË:™‹DMZé¦0!ÊD{t9ˆù•f=`I8^Žó¡9¯*wºª{–Iµ8™;³¼ å7ˆqŠìvÔÓ è¨Õî³Qüø:Gœ¤ ¼ý•µñNðý–Оҥâ϶¢‰ùé´sÚ¢>­õ䆣IÛFo$£%D)Ž“©sw‡Ç¨¯­éÀßBííKG „“õãýÎG’[-5ÖDÀLiÈ`SQÊ>BÛSߨrd…HQ_Œ¯îÅÜkoÍçàÀ8ÉeU`Û¥õ¼•»ÌÎK´rs¯#§/¯)c•9R0úiüU!¸––~xµ;ˆøÞ˜¤FV5 }ÑÒÌæm̨…?Ú®SUÿ„nì÷Èk¾CÏк:Á'(9TÉ@6÷Ÿ%Z=%¸¿·óö\RËù­eßLí>³^N²Z¦ðMÛÐ_ÁHç3,L2$aïbú‚ŸÙÛW¤d_4d6bdˆ‚ ã!®Ó]2;“~–í RÎ2í¹CÊÇ„U¹+ŠÝÙv¨;[¹»qÖ®Hx ,”|'¤æ ¹YŸ€ø¤ê…LµPÚ:Ü=ÛÔª†gÂnE5Û¾$—›‹Äa=|¡ó­['aØÂkB8“sg} W®q8ªåÝðÕüÂ,KÊüvŽùù~‘«Íf—çA»ªhŒ TIY‹´y‚¬Lr¤Þ[Iä»”‹8[ß­¬—¦]¿v>š¸QÝmÂ$oºês›7’û”Z„7s†‘Ž‘¨k¾42¦kPA[‹ëºØmß–s6V§,àË"£¿09‹*âöÆp|žvyÜ/rNÏß3ü¸>‡3ÜöUôeÓ裂ß~³²;æ³ôدBîI†Jëº7Û’%‡Í\¼BI³¥Ü2Á¢)óxÀéË*Ïí©Ï¹QÂZ³£J v*× kà‰D3ól~ÙçŽõž$á|²´±Ù…Y ÷©:$…#E!ÉU†“â…¯ï8”P˜]Áû5XãnØÆò'l'oÚÃôwOôßß@kŠjqvSõb“ŸHÊ™1sBª±• Yf¬ ¡4ÌÙˆ¼‘BK—¥Â6õjM¢}ÐŒõƒGZ•Ji²ÔËVèWé{ß°ñÃ?"Wúµ¦*í§™aКpâר…cÓ}ºÞÂ,`b:ÆÖdõǨûzkerÓÇ? Ü_ø»LÂñ섬Zm~/;#îÂËùzìíäÖ>÷ÄÊl8ÈÖ3I.þIº`éS%ìM……fü¡0µÙ~$ÁŽ …égý4s÷ Í5_,yÉ_/¾KÏ'7w–P»y·ê#e ­d^Î '=ѺGy 1¾è_šøåhermg`%Õ}«wm¶+tÌßµC s¼W^Y›=fÏ*Õ£j–Ë ½1Бī›ôëP¤·=ãÉ›å]šP¢FýÈt"Ibè©ú'ÊæZ$39°±mýwˆ ÔIõupoN›Õ lã1ÁFŸÚq†óO>b ,k7ç]>iÎN›™öÁkòÎ2o{å]ÎjMvh`à¬RPdTâ ²¦=x`NH/Joº í#1¿ #«k,®–º¹²…)­` ‹‹ªÆývºD¾øñÌv‘o݈*ÖR|ϸz ÈùïJ¾Ã°¼fÔ¹7fyÅ|é|ïj$é•Ý “úy\ÄV n>e·@F>Y~ Î Å)¡¦ªYì2¢F1½³À*å²€U,²üViRƒ:y=àvOCr êÆ wElƾSkvÞJú†|ýNãä .V°²•K •–ú\HQyªCo»3q¼p”|/¢ã¸`á{Ãa%×v*ÂüY]¹|Òæ£œ.™õ0Á'k^= aTâ—g˜Ì]:(˜P¹Gù“¥x/hšÎ|›NWqÌ…fÀ0ÇÕKƒÎéJô5¦êÑUÆ:§-r{<%Ix§ÜtdT¤~Y•·QTgžÒw'Å1†à´œ¾rÚÀH~*/—`E¼Ö··Ý}Ùº×Ù(êêp’( ¶§VûLO¡ýÓJÙ„QT"†h3ê鑼WÀ‚Ñ«†ä³šàáéÉœ”Æ$“Ì ßUPG6â Òe8d'dgÇ 1ÝÕs)”MöDßC9TšáI: :l[ùŒe²xx +øHzéº,FV,–±ÓƒCˆå“”÷ö7N~Â:² {ÓÍÙ‚®'×hé ß±YéEÊw ½‹glè­ú[àfå3§è[éi %«’†Y郎}j(w©m+bƘ<Õâ‘éf(%ªð&ê;5w0–T{B‹-a¥øÆêWcÍ áu¬~y¾}\lÝE&ä2¢šŒÀÅ90szv!“ÂQáùå…Oåá£äß¹B/(榈ƒ~ãjvùöFˆóaó9$’‹x½ÂWt9]V.‚:Æ“Q\GaÁÿËš¼Jµù'‰©) 3;}9É‚¸‰ù•ö,ÊtÄœk—X¿ÿjãf.²F軚ÖiïΈUÿöà OºËØœFÒ·Êú#œÈüÅÝ\ëƒsý²£q‘iÖŒƒn"ofW¾Æ8Îèt±A´‡ÁG*ň/'§Ò€ö|Û2òéG"o+–mн7²r"?ŸFžX‚Û±%¾Ž@eÃy‡-µ|§c gÞâ-qàœ9­NPwÿ¢k¬9¢uRéÔîVáòˆnRÏ‘ùῊXï(d¹tûì«qÝ?K>1¼¹¤ú•¨ZØà,W¼-~^ÜÌe}jxÎé4 Œ¹ÇÔ!$m쪹i¾l‡W |ÁÆWW††îöÊ*WcN­Ò~³ZZ±ˆr€¡q{2/|Bœ"JJxk“ù]E`¡¯œ_uA¦¾­Ï%ïâ2w'Ê/»6³$Øø©à PºÔ{±>péÈhF!y’ C8.p”Ñ Iqç)“ ¶*5Ð6óB>ÞJۣȂ ÕƒÉÄ€ÞïªÒ©¯êØäÚÑýZT< )–ÿB¶ÎÆ1BöKмpM>³JáE’NìÀºŒè»+bþª ÃHC޹Y›å3ý»uNŽÜ$÷‡ƒ.5¸(òè” uÇæè ú©·—–唃Û ‹û}ö»9r5Yþ]±u5¨=þ;(_oðwßÞÈ¥|ö7ü‹®î•tEm„MÊ­s½ MåÇ$æ"ÏÈáé3^M-™ˆ Þ¹.^_½ãEâ2ï ·QG¥ò>“RÈàt`õþ°ŸÕ&Ì?)3T½N¬¢L'ÉAi0;í¯ê†Éð§gí€ <ýê½æÅ?>¡«ž –—©üJ‰ ;P¨J6÷vgíâ˜RKâ¢,¬2"º5;xf¯Åý˜4”Ÿ§ÄÒ©Œ¤)éæŽ·îûÖ£)-a [5N÷O«i.¹ýÍÚÏ"Ô 'ôÝÖ;"ïøì²g°NàìÛ4 ÝÇØ6àòž}ð©DÆ”œø#sŸo¡&jOc–¯löt}¤/—\Éð —êp òègnòP³òó½Óó`È÷ñ²÷R5 êG#U`E½¸?ôS5Wê"ä…4¸Ð¸|8Älýé,Îv%û9åÖ'ç’À<0-ÞQð–ŒÆnWµ½ä:—LMµû DÝžÕ-l¬˜áÇ«ÙH¨Žt@§žÉxº¯UNj+§äc)5Ò£G´”uÊ}š^UØéwk>ÏÉ‹4Vß~íð¸TšÁwÕO.™NÊÝïøò¬¦òñð38|mñO{T^|æò‘*öksÀü[7«õ«Ï£¬Ã†õ—î²"éáѤf§M Á—%’\‹èô«Û®™¹éÌþEô”.‚µ&º5d…?ïeâ;[q‘ :l˜—¶%†Àã8Ù Þ¡ýP¬~¾wþÁácÁmd)ýRæ ¹\8Z0ŸVódÌóÍ‹û ÏwÿÐ3 £Rô|è ›£È±Ã7«h* ›Ý¹‰B›ª¥.ìˆÉvSy %³ \’ê_.–A?ò6*®„«zÞõÏc³ÏWãÛ¤?+k¾¨Wkò–eS§SIE’ŸjNnŠhE^vô8@ß•hלJÒ¿~(C»Ìî‚ð$6ÞŒºÚ³©'ΚÜHkZ!ñÂß§V6~ÒŸ”»À´£(ozÚâ e‹@÷¶uÄ)Àv8>!îâõ³ú‡¶f‘«ÝÔ•Éz»‰Ó'ŽüÞYÎXܼvTóyŠ‘\@ V÷è‘ñ-Ï@SÙ6J\ß{GïZWøÙbtÝЋƒE¯b¹üãA÷rT¿u”>7³‘›nŸ¾,—ʈ"Å™©Oõn &fýy?yU,©¹JS¯ÓÙEá.*¼¡|T2õ Ë4ȵߟ^¥uÃÙ4°‡…ÙÈqËp‡u& sw4#”Ø»¾Êù+(í|Uü6iäÉÌ0›qc%}|<®M±-õ³ZúÓÜÀغÎZŸ˜§z¯áVe¾–fè”­= zsÎK¤|_%ÎÑ͹´Ð²¥eWù1]¤Ï“‚·Ûv}ÅC$›¯Ž«Z¹ø wfŒu½<²ÁËbŽ‹O3Ó†„À—‰)Úï(®ÉÀÁIÁú\œB¡3Ø fa†FÿRqc`Nzž»ï PÍ"UlŽðCÆþ?Öj­´­zkßÚ‚†³-wUbœc ÝE¶ZðÐíÒÇÜ¢j‘ÅÌ nJø‰u)dÑ6ˆ} ƒ«ñÞˆX’ƒÏÛR¦´I¨ï®?p/éÛó Gö*gâ„Ð †0†´YV¶ö!mò횟¨ *㛵ς»‹öƒãaêšK d—úõ_œ¼øoœ‡­K¿Þ3/ºóTÃ×Õ¬Iz$¦tQ„‘âyEßù¾‡ó_ :†E44ÏÅo´æß6…à„æ0F¥ ÍñƒU‚B,^fø½Î \ƒ…üØJ;ÒÆ;d©øË¨¬RäòH&!©äÇF!Oð0PÍ¿ ‡™ÂË7S ªŒIâ~‘(¹¼ôº¢5â¦ñ©é‰l3˜w¢¿K·ÅˆavHý, ڽ݄Ióçº_1]Ö¾ï÷Jí*xË«£±ÓS[½ñÒ/=lÐûã‚k/ŠŠ3EÈ}1ˉµÙ4s¯:‘[Q®Þµ ÒIâÂiæ&ÜX ÎÌð¥žM‡h¹Ün°¡J „èÎ&0ÿö½f±Oú«ìDµúñc=)ãR+ÚàÑ:TÙ÷9¶*å$Œù—ºîª¢oxöºOa8ñn¹XT‡‘ãðη¹4‹¶ SÈIdú™y¦mPÆøÆõ} ¢PÊò?û Cmôﮞt0‘²¤˜ºÎbšHDæS=©Oß%ÏúûXfFñ·¡±¥9å[r ^…zцHJq¿þë@9”sz…êmœØÒzÍÌ;·iX8„f¡<³FWõrâôéA¢­î†¼¶y Þœi Šz¡„ dD³Îâ´6w^,Ȳâ£Û/.¬ªÒ¦< 2˜o&—ÌÌŸkµX1>(3ã®xãµ—[ûñ#} «kÌŠ_ˆ¥¼‡ ‘;ö«¬8‡¿ÃUl½ë©Œ¬Ù Ñ¡ €Ö©X˜ê ±£PŽVÿàV ‰*>ž}ꛕäQ÷àcœÕ‘\Ñá~8l®ÒÒwOðt<%+±SƒGµ½9|>Á¬¬ºpà F{{ç½òp§hÒu€\çê……²(Àp¥Ô(²ps™[­ð}§÷¾Ä¸lb’§óíìŠfçEákàᚦd‡8ÂQ_{ˆ6û$ ²ã.8úãí]Vø^æ¤THcã•6ÙO.êrs8E|EvTœïzqœ™þšhÇ· ÊgÍÞ ™Áçàˆ`!ƒÌ3D*çƒ Ür*3ÛIZZ–žÌ´³¡Ÿ& W-‡(­ÎGçÛølg˜Õ­®Ò ÔK¥Ú6ªvc28ŸÂ ÷:“Ð\PÜB¡%QOTuQ$Æ•x(í D>!=ŸþÝ|ªé”`)ÖsÓv4¿©|#ŸàÙyð" aï„3É`Õ1³Žx§ƒ~Ÿ€è&wß|±5fßNü®£ÅUH#ÃK²Û1û«ÒxŒïZpš*Òpë5úÎ _KYÆ}h÷…¬ ŒŽ1®Ê(®u‹(-êS'9>á”úN _Îöp´b!Å©ðHîø7陃–p:òþ_7ªÎ>_¦‚×$¹*ó{SÀO²×ÜÑ¥²×÷ÐVKà®&Ò×ÂôÄîëŸY…üY I Yšq³5*œÉÀ÷Q xÏoF—¯¶û¬pêú¬¾ (ù¢! 6 BYEý°ËÕk ?ŸePN¾Çöý Fes–…3ÍB"¦$“ZVN±Üâù¼°™ww’¡2°óÓ*ÃHȵ³_ì–ÑÁ9K¸DÙù Õþñœv~VerïSuy[‚pº]ÖÎU ÄŠKçåãÄOÝ!lÿ~x:}Ä2Ó Å Ì¡Ã1)-ýI# Ÿðx¡áÎ KâÕ{VÈr¨-’ S¡†!Ôƒ—´º ìîÊ rwÅ¡sQGmv6‡HŒæhtFÀñÍWH‰±K6é*›G$Ö jQÓLN&T†¨Ä« %…ØË]©ø§ñÜç/·ÀY3€©¯ânc¥AÛá(ž³rìåS ›C $V`ƒ¹¯x’@çØÚ»}‚p‘Ÿ²0op´#–{º‹ ¹h ŒÈoY:RV,2÷ïá{dæÑâkªGs|ãÇ{óª–V i§¬ø÷L&wÝN;u¼>aðêªôjÙí¡ Z«Zm’0‘L%Ÿ»:‡P“µ?Sç§øT\.®?èÎ…æruhÝ@ö)ÉJ{ጽODÓ&À ¸r%ä?/ÍMç~~°œ¥*P%7{ î(y±‹ó€¨"Scõò`aY›‹Î ÖôaÖqX;2R@ ×4+ÍЀìYD©M»”A@e œßOQáç‹ô9oŸB®¬ÿü&QÔ:z²Áˆ€`<g#c!°È$0å,çvtÒîGÕ6½+dGc±ªÒ«<¼î,ÄcßA³k*g½ÎB^šg޵Ò]q¾°òð¹™*hy¸‚Yˆà9Ú3c£¸†éZijëóº§D_ÖDEA…ªˆ#¥Cƒæ¯Ýç£<ÓýÇfÁdËé/΄ûè§lÝ»³ÓÅRs°48Z˜Â7f(å·ËP(¤j«àä‰Þ¯ï-d”Œž;›ÓÖ©˜*2_ÓÎzë›0Ö%äÙÚ㬠Ö|ñ'ÃÕRÂÌÇb‰ôgÑIƹ׆>/aYë²ú½ƒ1:ó E6¾¹Èå½/¹¥0eùŠ>Bs —ÓLÅð5ûÚÆJù Ù•JòAZD‘¯u÷Ã5Ȥn…bîûè`‡õÛ‰­ý2‘€¹n«L©´~­ŸÙg_‰Çæ: =‹ä’¼Í/&•L‚lЕ¾ÄÛÙ˜)±¼ø*/â.FZDK&;ÃÕ3|O/"Œˆökð]ZrKÈaèÙ54¤hø·À±HKIDN¦Aþ¨ eö!4 pyŽn2D÷ÎKY›¯’êzÏ$¯&¯ú@§ÔC£sfkáfk‡‹ˆ8 â#åyç*ÿ‘wäZò0tÚª•L©`vC1µ$ÞÓÎX—{×°•¬´»îY"ãA%€]ûùGfš4 Jè`¯P6ð&;Øi¶D¸qþs¯ƒ<ée¥ÕÕ¤@à ǜٔXodí…«ó"W«{߯êTˆ¶Q€XƒÖº ®ÊôBmU" .önd ƒ²€‰¦@Q=ꈧ?çQ¸.=Ðexî~g %ÊÓŸÐT²÷$Ä@¸ÈT æ¿£3wÍKŒfÏqóêfæ²"aºs Àj~Ú#Óe'1쉫“E¥ùXòEõÙþð&ñÅo6Ê­ùá~¤¼>Ùxo:~³æ—¯)RÅu0¦¡ß*wœ»· ±6Z™ómf&UÞ'lù$Ì¥ææøü¥]yÓã‚–ês™ÀC=•÷ÉôÀ0€Ö4é˸¡SÖPËfMÏ(¥E-%+éCé§i­¨¶&Z–y Å›xû/:!o¦àƒÉrîÏâZÚª~¼½þÎà\eè=Ò{JPxÙ!eÂçÀ½•Dî±Ðo`! È^ôpd}ÐËá¸^;%cðºƒÂŽEóo‰¹€÷ï/ r›òF+}M±hVöGZfüìš¹ãQ1&µuqL•¡÷ؾQ÷Beho «ÜJXhØÚ!TÆØ,²»~nxÔX¶Ô;’¯c"8™°–X)=vq6‘&rXý0á(‰×}‚.ŒÏìhRt'W4¢Ã] ˆ2ÞøÁIXix,½þ¶ŸlÖ%/8­¡ôÎt)ºš©%ärÝ=Ýw5æR36I m‚w³dV²5WÚG˜«$t©n6¶<"³|ñ?SDF »‰!D²±TÞQ(# 7tÕÅŸ¡i}Q]®eÖfr Ç(nñK…ðÕpãÞœ½â|s7x$BÄ×÷|»³=Ó§i»üXª~F-ñ²ŸŒm;,ý²õæÔÙI¢oÐ"ÃËÕféå…ÓO`÷ÌÍ`WŽ™”dåKÄÄ›ûR3‘E•³@Øùû1K~ÏzÎQÏ9íyX½Sd7´è{kzKÇ4Ž7ZÖâ輋›bljQ£J;رw›GvçƒV­PM×IÁoBfBg8ì Ý«½¯Å[¬„¶R¢p MÊš²Q~ÑÓìç8„NVr•qZ݈%!²çà½OFï7´©äÖƒ¬Ôšw¡ï±²‰@]fM”æ6`¦ê–E÷&ôAËH†©.©û8ÍæÔR^ä%uñ¬•e$êÔ5ëBÔ›³bŒû=I÷ɲ3ç(ñ²fþnéØs’ö¢”Â'Á¬O‚×d&prɉO4<®ö“ÜñHqZ=>Ò+<ûÒ{ mçiéC©…÷d;–>f^³­Bïtª<[íd~]lùÁ»y—•^—Y%‡(¦1ŒÑAú ´@ „;©÷µ½t+Š•I›‰D5-ÂáC\…‰:-eå¼g _ø2”ŒæX¨\‘û#=kè¬R»3Ƥ ÷­‘¸OAñfÂÚôg1_Ø=!ÐYÓÉŽcÖe—ü £¹åù¤jî8f«ý©Æ³œÉT”zòت9¡‡ *?øüÈß¹n“t«YOĵv A¥/Hïü,AóL endstream endobj 204 0 obj << /Length1 1492 /Length2 6588 /Length3 0 /Length 7595 /Filter /FlateDecode >> stream xÚxT“ÛÒ6D:‚R Hïé½÷&RBH $¡÷^¤7éJé]©Ò›4&½# €|Ñã¹÷žûÿk}ßÊZÉ»ŸyföÌžgv²ÂʤgÈ+o‡°« à(^A>I€¢¶¡¹ @@@˜O@@ˆ•ÕŠ‚ÿÆ YMÀ®H(.ù EW0…Æ”€(4Qh¸Á‚ÂA1IAqI€€€ÄßD„«$@ èµhó4p0’Uáâå µw@¡÷ùûÀâJHˆóüvÈ;ƒ]¡   D9€Ñ;‚€0€!£¼þ‚ã‘ å"ÉÏïááÁtFò!\íe8yP”ÀŒ»ºƒí¿JèÁJã#d9@‘ ”Ð @0( G¢]Üàv`Wzw€¡º@× ÿ‹¬õðçp‚|‚ÿ ÷ÇûW (ü·3B8»á^P¸=…º*Z|(O·ûE´?Ð…mфߩ*òú ºÂ?õ!A®P’ …ýª‘ÿWô1+ÃíÎÎ`8 Iø+?%¨+„>w/þ?Íu‚#<à>¯ P¸äWvn.üÆpèS7°ºÒ"ü7fFD$ÄÄDà§°'Èÿ×F^.à߯ß0º?„ ‚.셀ф>H ;€ruûùü§áŸ+BAA€„Ø‚í¡pÂGGÃ`È_ktÿ]¡ž ´ü¿^ÿz²D+̇yý›þ»Åü &újƆÜJþ—QAá ðá’ðJˆ Åâ⢿ÆÑBÿäñ¾êp ñWºèsú;e÷?àø3 œ€ÆÒA • pü[èOD@è7Áÿ³Ü»üÿTþ+Êÿ*ôÿÎHÅ ûmçø‹ðÿØÎP˜×Z¹n(ôh#гÿoª)ø¯ÑÕÛAÝœÿÛªŽ¢§AnV4¯ Ÿ€È_8©õÛéAQ ‡¿TónükÞ`P8X„þºaÐ^ÿeCÈ }‹ ÑÒüm£gèŸû*ÃA»_Ã&$*ºº½ѽF¯D>‚è©´{þ3€ŸŽ@¡]èý„+á¯Æ øÑ^¿Ú…¶ý†Äü¶@×ÿ„Ѐ+†!ÿÉþÿÓ_Àï …»!ÿˆŠøá`ûßw)D:ü¶ü£›«+z®k]çßëß—ì ÎÏ @R¡ŽoBÛ.ªåé1ãKǵ1êùä]vÐbšZ C¹wUá7àûÉ;{0£‚Ö~LüyÔ*ùA¢>©Ž{²éÌU˜x—ðÆë¯¯®;%v΀¢32¦4:T¬|nÇÖ3s&–eÔ ù²8 W‹t7#uã±k¬gиs…¶šï^«qƒ ï³ûzŸ hvW‰U†SÒÜñÖ`ÊJê§¡JÌÖhDb°)ˆž)–¦&0Ó:‡³-bÛˆ/^Nôµ&ö »ÕÛë(ÝÖõnp«EˆÎHçv-Ó[¯e}ç'¾×”åÀSýœEµÊãl0ý J–×CÍÀ«íøt£=…(.97×Âú؃ï"lõuüÞ…Mlf¢ eª4ìaÿ—— bz0F—!ˆéÇ«G©JZVJ=ul&Çe·¡<|ß^öBËÍî'ÃO7›Þ· vE"Xö¨&ƒÌÚ3wz¶ÕEÏ>›p)‹¡j4gÖœñ¹ñSy¹8z­ªRå$æÆ™ãM„IóÈg´60Òun™K†ÉN‘‘P:í—2¼þX!6üB:¸I:õa €ÿ§ñCL%ýÝx²šÕÛú]ßq­l]ù…¬4ó:;Øë°k D  ; W› æ“A‡â3‹y ?¬)KüŸäAb/ã¾mœÖä™É×F>†E¥tN¬Z¿fhÜGŸþv|·»=uÃS­þÇÎ!¥í ªd?sh!¬¼!^´Eq¡*ÊØ¢¨ÕvÚDàÚ5 i8ýN$hq.%²äbµY¯sàrYöTA @AÊ>&!¼Z©È&áƒCi Düí!1p¼>Xh·ái \ƒÉj~¤.ر`yÖM^ûCÕåð¬›~²¥†ž_£ßtŽ]¬òðÒ]Oøó~3]±÷^òˆÎš}ÿ KÓ§tJÁÚÍx‘æ"KÅ'áMäæñÓÃfzʇZ×B«ÖBÍ·+›Kj©>„‚w='iî l³w¶¹Ñø¶"ˆ/Î~˜êÜg0ÈTN9.ÚËhŽŸÂ:½dKYM‡ÝW¹¡~ EŽeà øšQ%×ö¨¨rÌ;F¬xa (*üÔÅAJï™F„pCÆîekïìݯõ;‡ÉÒƒ¸#™÷+­ *¾Z–9‡¯‘}€‡j–éLÆ1©ßŽy3õærãÞ7òŸÖ¨)S©ŒÎá£ô~79Že(®ábÊ©ÛÆ/²}|W¿}Ó÷ ¯«”À°S;NzâTÐῚD%©™Ê—tU®HÕ2}4YÿI¬Ø2x'ÄQûü“{Kîn’lWmÊ}©”ìé¡Ï2<¡}«ÅåO˜Ë¿7¤fÞ0ØÃu7PL+ÄÉÖWr ¤!™’³æÉí§Ê&mw¢ Žµ…À6äÕ/ô¬°Êj3<æ3)‹ìÔÔ¼8@çÂ!ž— ŒÑA»†ƒÆzêµÍÑÒ$mÑþˆyU[þÿ®û»ø1‹üæË9Æ&-VÝ|¹ µðdŠG‹zìq/‡>¸'Nóô±Ô1;kËžÖîÈ.'»pÍ„Š»“ÌÞ•þ¤'ˆô[U%M–{¥“$ju(œe´^ûÒ õÒ/ŠiÖå ­#®Ÿú:ÉJv+T•èÕ$ï—”''-Ÿˆq+r%‡Ï§Ö |22VR‡¶gü~¼í›ÏE AØO¼Wª­û_O½–³1>L®ÓŠ?e¡ùŠ©y%â¤+}wïg¹ÜŒ1 ©ä3ŒgA¡ülñîW'¬\$âO±->2áížÿhÛœz‚h ¶šeid‹Y?9¶$K_kD6³…†¾ãOXY±âÌd2Zï Ÿ`-WìÏ×.Sµ2çKÅo¦^¹YaFÊ‹gˆ)H“*p‡Ê0Z%¨Ìˆ¯kc›8/¥´äÇá ðó‰œèË›Jã~FŸ %Á¼.G]àŸV릾Lû”ë”c8°"¿—mæ0šg—u^Q¯­W˜|\íé–fZžnÊNóaíÛ¢òaÉédb‰7º‘î]ÖÅx[õ †+l½=&}—ó[ïèΛ]ÅÎÛÞIÖ>NÛìì[sŸc”p"ò"£®WKòr‘¢U˜]$;Òì fK„ZV,dÙz«*Ê2³û‚ =˜6kÒFÄb‡ ô6Y¾66KÞ´àhS~0·YhÇ^ѽÞIÇÛÜ@ô^ƒŸ®Àzç1ßI3÷ù.‘óPXÕã+Úž-’‡coOçcAC'õcˆ;óXÑYZj…Z4?Ÿž4är¦ÃšË=û dî•Ú;ÒZ˜—…IHi­=smÃ+W‹/@a‚wMÇ~š=V3~VŠ2,xEj'»PcF…CÉbÖsî¤cZoþvOeîѦ‚_mÚ–Sí§nü%ƒ=ŽÓcVBs¬dXòW׻Ρ­1£¤[0_çÄÔûÝRýõªÊÐ|¯Jßäøî÷)¸ý^å1ö¤(׃â>¼™ÇNÒîÛ™å¯ZŠV-©€‰kBèLïx/ºæYïI_ª2û°—‰ …›iŠ8:ïu§Ö„Ðxó®m˜÷žÔê~êÛ¥„ÉØ'ÂKú}Y@yÏ¥!šö±á¦ùþåˆ ‚ÈÚ÷Ë4sMòk)ÍïÚQ°ŽšQµë| £ Oä¨vC˜^WÝ 0¸4¾RÔááô1âã…š §8AI<”9v¼û ˜E€aîgP]y·‰,´“‚"Êûdãa_¯og¡ŒÝ£—QflPw½‰sÿ×çË4O‹‡íiOæÞ¶dbJxã¶®E*.ð÷ ü[{ÓÃq‹ \{Ï%bú\Ǧ՟å#«Œ÷4Ï(=ó[ønñà\pÛ Vϼ9"êVÏ‚)iè?Æ:oÐã…#NÛŽÛÙ›·/áywù/Hbòăb¸”E<·‹8z…ˆKó±T,“aù‰­rËÛži<’ë%¢c ×1ú¯ÎeÐÞHáH%âøa|¯¦‡¾ýB¬K6— %I0ßLtdÎh×N ‘–I”ÿéû›« gâ;0à(±%ë]>æ"›„ÖRë×úPúÚ5—·g½qŒƒøøÈ$,Q/>³xlúɑלG_é Œò÷0ŠÎì5ó œÊˇ£Ê èàÞwËT_3,ßÕ¿,5Õßbõº§ñ¦yÎìmA—0JÝK §ã%ÎÔƒ¨^‹ä¯B”(Nrq©Rá*/ùV³˜î~àª;e7 ‡ß~E>‰ ‘᪢Û5“üÖ±!Óß–)É5²¨ÅÁ‰¥ê–Hb&9Jq3øPµ DÜâÿ(Ÿdß]­Éµd¦Ù…õɤÝ{þñɰ<ÃGÎ[ðý³±ÛµÓFm)äÝ Ÿ´F—H4vŽ·¬” %×E‡’ÈG9Ÿ›„º˜Žî,GüðÍÂH{€÷]Ô$t2a½ýT/ÈïüjÒWú&&ý{¦KT×W¯o™)qTÌç·¶žÌEÈÀmï"ÈSÍóNÚ×±\H”\q X<ëÛ4QÒAZUýó9z²¾-~•:ºæ!‚4”AörK43½˜È–¦“D/ðxmÆÙåx_#Q'W]³’tc}¸-? \¼¢OµÕ©ÀhrêÏr(¡\ÐBà(MøÌRP¾™ãã[eM**|^¨²o?ÕY+’£±¹–µ+_RN±ÜþôÍØáéý¥·‹"õøÑŒ¯Æ÷_ëAî}¸UqÂ3cØ›'vºÚ†KÿÂõU±EâÂ;w›/Dmõ5—±wO;<ÏUYnòèB ·Çøüò›Go§4–Üý<Ö¡2’‘ª®ÉL –¾WùÂtó>×P{ÿ†^O”Áùùùg™ÞÄ ¦v¹n6uçç¹ /e̘Þ;§‚åFaÔ$¦7Ì“&Šj›9?8ÝNÄ}äu‘­ãF LÁß.,iïå+ê;ÀBéÔöD„Þ59É«[FpÞÕ¾ h0,øzcž6¯§ ŽÅÃˈŸf+ᲊcèOd¿Éa®Ü»bkð}´4Úûêùyãí^5ÅÍö|w ˆ¤2°áQ¾¿»ó.òQ†ñV„ “uV±~ÛÇokìE:Yªu˸é2$X½%#o-ë(à'Âf2ùÞ²óJ{Ò:a˜í¶pb†XŸ§wmÍ9d˜çrm>ëq*ñ¾@¬D_`|žD©­vÇ+y¬4_X¾ $j§K Ú±{ᣜD5XØýÌ#hžf9ƒœ…ÊdyÕ}æíÄâäÄb)²SE…s‚4åÿ¨"kUÄ1M“;:¹Î9{îr¦_õ"YÿkFŽír ¿Ë fýÉ z£ä§*q¬NË“'uÂw(õ?àß8kÆù°yK=šîÌÅ r>^µ€ŠQ×íd¿…l(”sWL»>;P^:°@M|´×Õ¤ÕÉòƒåôÚ/Á³Ù²Ûvr N2Ká2Ú4’íiúi V.m?5únÚŒ­Â\)E»—Ë鸮.í4Õ‚w¯óTÈiÉ:#AaHTêž*ûùŠâ“´NœJÎ3¼ŸÙÖ÷3É 8k¦9šdÖßÖÖn!¬¯ %~ÚçÎÖP5x®¸´.¬ƒÑ õYëa¤çæ“Hlk«¾ÐË}ÆÍ›SYšoüìyÊ7ã =æVÍÑðpîò¶Ió°8¥¬@9GêÔŽŽ.S«NÊÞ _⇹:oB Ìæõ·})›iª¯òãj’u¯_,›«1Ø &ׯ´ªõû4y„ôX™OdÒð¾`Q)ù¦¦4lB+ërŒï5ñ¼ùŽÞ"«ŠtkpWŸBÞÙüY¾ªæœžC­¿NEŽú õvd "Á¡µ÷â$äÖÆ­GSi)1WA˜6"èoeeÁ ö¶ëå?ƒ[x¤Áøž”’¯è9A €'7 qᜲíºc÷åíÎÓÍO¦>ÙÚS‹Â²³ñ±¥ÚÇ–ß%Mi¤î»ßO#KÇ5[‘ U¸Ÿt+ªØŒ2žOoY]J6ÉèU$€ïv#’zûÌØríuH’ô„YôÏÛ×I¢uo£]µQ2^ÒUá\«A¶ŠØþVÄí¨^:yך|{ÃEoQêÕ æ“Óó¹¼z­ ¬|½d6qŠëÌMÕ[JÓ^äãÉD,£T£'óV­Ôφ©i]îíC‡Wßýke;5BZù“T˜ÅŒùªd6ð°N¹?kêO… Ð0N•OHï!·÷B<–˳eLÃWbº |~ÏrQ;C¢ä‡&+C¥µÜä…•o¯Ä£k‘Á™¯gJû¼6Ö{’ñòbE¯T]íWŒñzÈD‡Yâ#žÇ°ùVÇ×wFø§.¨–­Í=Ì}¾Mœ_…§í¾¾ÄáxU²º >+€íeYŽZöêc ›Þ ÓK¤t&á‹yWyxËÀ¢ãîx:Bç‘ワ?Ùƒ7zÚ+)çHÞJùÝ'= {¢šáœÇ×Èž……¯R>ÎaÔŒ´À)íÝ|ÕUºAJ)“mT‘˜fž1³öiúÚèkú})x¿z즞EâwÂxÝóP‚ïz¦¸uÖÖ]Ä ÜÉ-K4 ZÉ“85kÖ“‡ÛŸÞRWÙ”íB¥Ì%à뎂úH…- ¿”ëŠË9™þp*,(mÇ2«by³ÏPDMJÕõȸøÍ¬Î§‡Z;ÇOÈYa²¢Œt´Gi(v³T;* neñšC5<‚ »˜‡>½–Ç1ÎÍ9ü4·ûŽÈr[g㨠íhÝiž™c…ã™§ý¼ïp¡<ÝÊ`ÊPîÑËW‘EÜëqÔ#•X9®dÎzgŸ¬3Ú;¯·w*¥`¥¯[š,ü½“Ká¶pmˆ¼›¥qI½dû&ÏZüÓæáýt–·K6Á~¼Túü=…ëÚµàÀ\Ù¹wýÛ“Õõ˜Œd»kØ–ÑE¶‡·®·Z·Ë­·…M\Œ¤õqãí¢è»Êª-Ʋk"i4ò–êʽbÕNT^Ü"FÕϹㅄO?¡mæ·]è>Ö6Q¡½åvR_2•¤ù•6ÈÆ/zN…Q å7-ùŽeáEݾÌÅu_O÷fóú,¨¦´¢ò°âÌ)¨j9ç¢âNTK?“°à«%=Áà©ðõ=EV!=÷ Õr©h’¯®EÌáŽì9ßn~,6~/ ÙgqÂÁ×ô1E< ö¨Æ=öÆêóAé’µÏ:ë9µ@X™dË…®è’ÞZ¨G·õx”²@4“æ¢pÔø³ÕúÄwû§?%j Ê}R.ÌÒ?! Y¾,'UäÞ´âÐNÐjô-ÝïG;6ƒÅ.Ié>MK%êbwÓ4¯±ù=ªsœïà—4üÀòZÿ’qBQë´à$±‰Ú3ÝãÖ—Ž"†0•¦Å,\6bæÐ5åd™‘pß)Ò^"÷KÖ‹û«Œ,ö@3x–Á`¬hfÕçÆ´Ž±Kåx¡^ч(wÏiI7;ýDj·Ç^ÖwÞÙ1'—½´åÞx§n9«òüÂ.æq¼*föF‘¬SI“QŸæ]$‹Ã^ÎÃRd’1Ôe±à¿#¨ò}‹ÑŠT^ؽâVÿŠn–ûd}ƒ¦;¡÷u£¦ÅCó wlœeaZdy{%M³à€+>9M‹>·3ßµáè “óIÆõ2•é<Œ\“ù‘Xµá%÷µ÷¦ÙxùÁդúA>i‡¼lÅKaLlžñ-‡¸r¥R xíòq>µ»­m?ÁèÁúÊœpÎî¶?èKÅ$óIøR .önwÛK«é×)÷8§3x}u㛫ug~‘”tÕ‘z¾ßÜ!¸©ßKpê¡`?ž¸ÒvmxÝš›Å<[˲=<ó–j®IW÷š~¢<‹ûnh;ÊŵÄI›¨QO® Ìöö…pj:¬{0 exþµ‡•!hs“ßÅ ÿbqþmó=¡z7Âtep’èwÏ|5²øñ1;-Ášæâoé_6l#õßОVÂ(ò{Ï 4´Þøî4d‹+þ¬|”šÞOtîäG‡n\­žS+oãó¬‚M„&É¥µï"(9ïði€úM¾¼’œ¤5žšh’Œœ}ŸÌLÚ©oÚò"D÷úÛD¢—®÷e ¨éÄ”RnÎvµôynnŒ2~w[zGœ"Åü^FÝÙÅûÃmyQø ú’Jt*¶ìÕptÆ2±%ÉW§Ãµñƨ¥0!‘p3Ò +mÄ8Iû…yÓy ÀXaùµìØÝnAÇÕ³ÆáÀ£´˜“u§Ëº¤kÓpÄ눞r9݆{kÞTc'Xþš¾-ã}¹|Žz·yÍÅ)ÜËÃ3‹f?¤·M´³'¶hŠ÷ÃŒ»Ú+çgú¢ C \šÇß·’–Æè&J³dUOO“òÓ+î9b mdáÎÅ:úùn/oÚ‰ ì_/öÇŽB4É%{²j¤.‡Ö_C &,½vM:Vóoó/^t®°/ϪÂëºËyzŒn.8Û¢'æ,5C²•4õ.VïŽëV¤! žÕ7mpg¨¬šÿíL«¾™£Ýþì)Ϙ öÒ<Øñö×»Ýì7}'ìõþò¤&fˆMÿu}zÌ’h×-Œ“iêe³)dEŠngê½É©´­ÌWœó¢#,©ee‰'òÜ©Ç~låoŸmTqŠiìÞ¶}÷Ša54òÎÏYô«g\‡³ç-=ŸÛÆßçO“— L n0o§½4ñà¸ômd~zñjþ¶q˜jÄkËãErjšÅ@×(E(Ý÷zÅ” Ö>é Ü(·æzs£?ÕhžXÁE£[ÎÆÛåѰ©™°ø´pðº=©ç£ ¡UF#Ëè3‘R E”/p:sÚ+NŠ ÇsyjçMñ ‘IÑ<þE@m—ÐVJâédM[šâ4-ÊŠ 3<ÐÑš¦6oBš~"H"èg’Á^SÅHvÄ^ЧbƆÁÆhºeÎOM|Æ6çb‘•ÈÑUè06ë¶í#…~‡Ñ!Cž‚E…–áçéZu 3J3|¶·Y`êv§!i`Dá‚£˜L‰Þ(/JDÚ°yÕÉA¡E­ø£Å{¥·Ð)‹o}Û¢NjtÉû)2«˜²¢<:Ê®ÙÍ‚}Ý gí6ö+C ã»{½ÙÖ:RòÎ ºñ!óɹÁþ.Lã\âQY‹È J^£ÂÒSí©â`WÙ ÷NOqŸ íµ©Cx«ˆa_o÷J)-Ë/_Ï–’¹~z—®1ñ_Kï"6‰3¡-}}CæÙ£7*·èå5èH¡‡·m^Vê’üéZhüºÉs´iÆÈbyÿ-™ZÝ3ˆzrœR¼Rä6Ó!£úJ8SÄp~®bn£ž­¿ÜêÞ ò»ÿ<‘Ìu endstream endobj 206 0 obj << /Length1 1378 /Length2 6059 /Length3 0 /Length 7008 /Filter /FlateDecode >> stream xÚtT”ïö.Ý(Ý1( !ÌÐ!!ÝH ÃCÌÀ0tw#!%%’*(%ˆ¤´¤„ ÝÝ-(ðãœóÿ{׺wÍZß|ïÞÏ®w?ÏÇÁ¦kÀ'gƒ°†*#à(>~$@AËÀD  ñƒ@‚D†0”ô¯™ˆÃŠtƒ!à’ÿ  €„‚Qh›"…Æi!àuw'€€@@TR@L‚@ÿ"’E°Ì ÅPGÀ¡nD o$ÌÎ….ó¯W„ !!vÿw8@Ί„AÀp€euFW„€ ŠòþG .){ÊEôôôä;»ñ#v2Ü÷ž0”=@êEz@m¿hƒ¡&ã'âÚÃÜþØ ¶(O0 @œ`(Ü á·"èâ5M€Ž þ¬ùpð÷nüÿN÷7úW"üw0A8»€áÞ0¸Àæè(kò£¼P÷`¸Í/ ØÉ Ž{€aN`k4àwç`€²œŒðïxn$ÌåÆïsú5"ðWô-+ÁmÎÎP8ÊèWŠ0$‚¾voàŸÍ:žpß¿[ÜÆö×6î.ÀGp˜«;TMñ/m"úÍŠˆ€$DE…ÅPWÔ bü•ÞÐÛúÛ)ðËŒžÀß×á°Eõ‡ÙBÑD¾n`(…t‡úûþoÇ?OD°†ÚÁàDÿÉŽ6CmÿœÑËG¼f 4÷ _¿¿=AÓËwòþü÷~ŠF r†¼&þ·O^áðåðIˆÑ1qA€ÿ?Óè‚aÛý'V n‹Hüé}MÿêØã/¸þŠƒðÏ\Ú4k¡®ÿÜ$‚ ÿßTÿòcø¯,ÿ/’ÿwCÊîNN¿Ý\¿ýÿ‡ì sòþ @“Ö…€-øCCÿˆV jswþo¯ Œ‚ÜMf>a~ð;ÌMæµÑ…¡ ö(óÇþè—Ôœ`p¨. öëÛ‚ŽþˇÖÄýýpCóò· Š–Ï?ë*Á!›_:€‘H°7M'A€¯Z6P¯ßLùá:€žÑ`‹@ýZ«vCÏ ssDoÁþ—“è îH$Zh¿y€®þ¯óoUC¡^PÑä8ò Ì¡*¬ñ{…£'ßêÞübst¢Ig”Šsâ…¯½&þs•Wy+›rº¾tÝo¯"†Çýyö¾z™ÊžKSÍCa(u.Ëðå¾8þde±A0Ø ‰¥G/“ï'é1ß¶2Ã1»—òxüg¸X›Ðú۵«f·uS‰m€3 øŒŒ-/—Û¼kÂÆ¾ˆê51'K @še¸ª=ºÂŠ…%œË7ÆÑ_x/›%döÎÎödwu¦ ½Ôh'ZAIOå£Î–Û—ÜMO”­^ç†Á)/r¦ð*5ñ}‘sç¶sÕ˜{B=ÈPÂäÐ'‹ÂLFêÜVªihîäì‘bûéã÷‚CzàV#Ò0UŒîƒ•sA6½Kz“š×š£UjVç'R=ƒ¶Á&ì91Ýt}»m\ ysƱ®ª·´u.cÖ?e&º4Hß°ê½Q62˜Ö¬"ñÓ…Æ~µ?^3W JAA§pÇéÐxmâ¹Êáö:f𸼀ü>Óöã,Üw÷0”Ö͵,/UµŽ¢úÚE_ñB(­§\rçM­k•¾·æàî÷Y f„Wj6{_Ä©T,€f̯-€3Ç_Ž”^jf €ø!e¢Äø×vå­›õã°*}çV_)aVPuð×HÐâRôÎãñ=?1F© K1Ü­ÝÌšf k(qðiòq]f¹O£†—ZTÛ2U@ã³õÎkñšÓ:ƒï‡¶êS ÚšÞ} p‰,¹OQ,Ùl ÆÏñRVÍxêýë{[îGY7²%\ÛÞ”IªçG/€ì.;á9n3È¡(V… çêÑ® yÓ>–®¼˜õÆeF£¢ÓÛܪŸ«¿Ÿº‚S3d[±ÛL²&$;|ÀªzYÎ&IÞVwË)B0D>Ä’¹Ê­)o”©èEá¾9xÛgì!=ÞÓâÉ€Ôu°v/-âÕ4_¿´¿?_ž9äÔÅqÛúåE½çâ÷/Ö Á@"9Ô¡HÁꊫó]Iu¼ÙäœÈÈ©é—ÁÀÚ©vaÕF]¾#3.ú °X÷œˆ-4Ms,~º²AÐÒËnaQªùÕoÎ’PL²Ó,?ßqÏù"n,¤ó+á[æÇDùÕ@µ†nË«iÛ^9™$+9/FAŸÑ>'’O3¢/f¼üµg*»s·§úÓ fë‡áüGw°.®!8ìsw3o²Æ÷<“³ ]6–øÅS§{-œÎ7‘Üôa¼&* #ÅUŸñ ü²«ß? u±ÿöÜ”ÞÖÇçH6F£—‘˜j’þ’=Êä¢VŒq=êí'ky¶·6@p´Ç,`{Ørþ1Œ4'YJž|Ôóžð‡÷Á²WdþŠGÀLÎ@’°Si£ô´Ôâ¥×ËbuJRP_?³ÐöK@ÏRΰÞÒ\ñ{ó×Qx)Õª"ÂS¼”€xߊñÉt˜& (€Ÿ9ó$ÿ»SÙs}b HqÅA¦Ž0Wi÷æ£Î¸‰õ_yn‰¸j;^Ç? >ÀÉ%çJ⣊’Ä•’†ud¶™°æ^\5IVÑâTo+ÂO•Q’wq{#:%ês8[óä‡%?{’ÔÇÇǽóšëͦ=û¦x;úónÞÙ:.êœñf%¸ûõö4AøfGKÿÛ¸±„¨Ò=©M–Ô­6gNî½õf²Oa6¡ÁšÝ²ÅLor«qú‡ªÃ#Òê·ÔÓV]ï‡&<*7m›5ËRÿÚ¤§AO—Ë£™.þn)¼z´€þ!(¾"­‡úÇõÔ´¾_O…r¥•áâªã~*åÓ4ÁŒœ‘¬†‰ø®Èƒò»1¬ý,9Ÿ7½¬;­BM‚¾ùœ GøæŽÒt­€Ï=~Ã+ÃÙsz(*`ø¸Òø÷ž-þÀÑUÚu»ÃI swí¹V¿±h¹R?y’ê‰Á&§<„÷;?“›À>×Çd†Ê(} ]ÓRƒyµ¸a¹(bœUê}îH_ïûÃ+UÏéfnmÖJd¼mHfÊ-}5²ñ"$cãc4!Èp–†²Ü-GÂáÊ”“b¾»ôL#›èfO¼N¥Åæ ‚º¶Þåag¼ž~ƒa¹z§ŒÒË@ë¨X¥Ï†±à$äoÔDã­gløãAÈ,-#:ù){=Ÿ/ÍXÄN×v1Œéw°ß[«DwA…—^§îìOæpâî•CÇ…‰x¼Éƒ‘<‚‡ >2o§®h‘=0í§]LTÞ圲aÝȪ.Sfz8¿Ï€ïï_ãªDs{€1µÌÛº0üx véãÖ¬qÖ%|Ç­K{ÝÀÔD“ÍíÖx9ô®ÿ*c€9ÍÅçoľ!T§é]8eWüuÔ¸à»i”Zxv|©²f;µ¿|ðø°wŒ„SÈFªìm¤bŒenQQtÚ|•“Ô_œ°w+¯øy  ˜+ßHpªQ›@DFñDó» mŸûsm±pÉŽî§~Â×ÒúÀ¯óÆsÜì˜j_Ó—øˆ´¦ÉŽ9J¤I’?äÈ(b¯ q°qîä ¿K O²ÏwºÜ´ ý©¥ŸÅ·yôJùŽÅLqÏäLÅsxÛ}¯Ï’'þÆz…¥Ú÷­g¹´œ‰«Ì•ùù‚ÉÎ~²šDRž!]·uÉó-ÂOiuÍo¼×_[•àt¥Ç37Vrû¦»Z»Û\ ²nðíD©ƒFh;ùMeD¿°m“®<ñ3êu>Ãǵ.ó0”¾¸Qö¦Í%4é Û‡'ãtkòˆi¥FV#V‘…ÊÇÏ[Ú¿Ü:$3|ª9æq%nÐäLö/Ì1ê\±c t²VUp1Y¨O,¶MÇÒî¯Ô”x'ºŸ7&o=:+SPV,Z¼ÕqÂô‹Òö!ÌÕßa‰u`á«n÷l‘Y×±ºs¯3êŽË…tq<åòJ½·Û‹Ñ|L™v¦ „㙣!TnÀœooÿE-^àgj:wrÑ ëÔªúEÖ}§þV:ð9&n¤ËGúw¤- éÄÌlUObN3*?aõŽ[®mÒoWІòw?´t¸~衈z«R’©Ò,B†+%Wº=¡öFÛy.àqÕrÈKóP:¤þf¹ü·×kOHiÊÌÂg¡älœG=QÛµÑ_ÌaŠ WADZ‡}gY¾£Höµø£ÛåÓ±Ù"ÁQ²}ã ê&ép¹BlY‚§¼"Þœø5q‹8ª¢Ùñ˜|^Æ^}$ëùÎè*IiDelÔV DrÃE›˜nrIƒ’VYD¿½|.MƒTE}nÛšZjâEßÎÁä!ã½fÖ‹”ÓÛÛ1 bûM§%40¾®}¢Fc¼2ýfýk,É\6á³NKýùè¬m‘ÏK‘¢;£–;ÍŶ©Øe‘H3zU™mÞÁþaB#·wo‚: [ÏË7hô€ÞP—б(ÞQ€éL¢H<È´n!äDlÁͯ˜ÓW Jd9|åÐ7뼌¹©#©±Û6ô‰s xêˆR¡šö‹¢<Ôy#DxD_´aK—lLÿþ½Öéüü¼$%B̲ ò„Òjâȹ8ÝiÜ”7!±ª˜Öî‰0=8}÷q”rwŒD¤MNëúnûü¬w_ 0 ìÛ3 ª’˱ ®|Šð!&Ó‚«ÕSµAË߇^k}Åa j|alyEV¥6\U¤ãò¼H¤5\J!¿ÍÑõM¢ôGÁ“-S¶9êoSW/rÉq*‚5b…éuñ­G°¾ÐpLwúâq3ºÕ¤/¹Ö«>+?ÅŽÍêðÌc˜î³ïÞùμïô_¤#¯ªÙ>nÅüÕã⛘#~IAš}ï8™·®e\¸³s Âx¸#Ì\ŽÍ¸òÇ—1uý‘³Ý¹~3`@%“B à,IÕÑö.‡#¡Vmè‚oB­Kè7 :¦°²¯ë"¡žuqL²ÌçY“:~ª¬7§µvG,x+Oïl ¼&=ÐN0Ù;„l;Ù{¦0jÕ.ÕµYP3çdöZt9C±T_´f`m`‚ÿ=tztgˆÍô[c{˜ 4#þ µÏ”êk|úr<ºëØÜ[¢jw¹{§ÛÇ=pž@S Þ_]±ûü° ÏhI|ûàñÏ"dYöudµÔwê>%ÂNIMiwš=EÂ5µùSPsjeðÏM֮쟩î–7ãbCGqSí e}3«ú–¸ŸçSÜñ¼ ’~—O_Á™‚ÓPUŒn ÞCØ%îD~¹ùÑ&=0«ÍI¤r»¯ƒŠ’ÅcÕØ×bÁ\…vþ‰Z#“c4F|Uïx¾_ظR VšmÅ´[ ‘FMD‘­4b'½ii;’H§ï&WÂ*¤LJá@‹)F«Z&ŰWÛ¼=mûj^‘—ß–S’£›ã¸töçÙ±ä"ŒÕ… ×M²^ßáäg e6ñ=sEF84½V˜º‹älaXºUþQ±­VÆØ¨¨•}¤×ò4çû@„9w SöIÔø´`CN¾ƒÍž¸¢4uBãâP 0le¾•–ä'c>çÔÚ‡c¡ÆZ¢'à¡¥b1ñͱ?ùÏo³pcÐøXf…Óýø$SÚT-ùÓ;Y“¶U{Ï0«|ãå¢wšz¿¦¥]z¸~ yñœê¨Ñîqõ2¥F²Ë5ÙaÓË›­Gå:HæU¾¾ïû/QD¹.ާÁ±õeÅtõ(BW…¯2ßëãÆj]ˆ†6M²Œù`„Ó…VYàpÉ~Zz¯M¯£ôŒØÿù.aøÞ`ít~Å7‡àh‚¬ô-ÑyÀZÒé½<*¿…ºTm‘;”û$=Azêä÷GªÁÔ<“ùË «@’àu—t°˜ÁA@&€ OÑn˜«/š®¯ß¢È zàáFÂBÃŽ:”VÉyy:{þ6=Æßeþ“¯£Reàı•[ălã8—€êãd ¥va¡n§i•†ãO Oì3.pvQ~¯Žíòb’z’È&šxî¨ !ªÕVþ¥&üÓ@Ð[zþ¶¶ËX«S…˼ë6-G[= z²zkMN™Â\ÿ¸ý`¯P ÌÆê`ë pÂçoØÃ™ #UÉØ:‹8õüO1$-bŽÃžIiF!ÛTŠÒã%¬¤˜çmj}¯ý:Ã:Èê>O„Éwø]F~üщYôŒ,…´ý¤ø]:tK}f½ž—6g›^,>Ä)Ñ4_kä¸hªZLNø“aŠn¶KEv®Öà«Gú­iøA¶;QøÓ¼ ©IÍq«©-Ý< žƒoBú¼o xNØÞÅ)©Œà^$ñ7„g¼Íe×4^îÖ Äl6IÁÎg 9?ùÂÃæ¦…FÆ!J²êMœ^f¹›ùÝá8˜7ÏH•'ÿȉ’2«ÂÅÈÜyHêyÄÝ!Þ|€Èn™!"œjáâÞUå¶“Þøä;ÿ}ø}^ýY¥ÃÀÚ2®ÓëÃIã(Š{51V†—-K‹½é¥wÚ {ä҃Ń Ø Öù–6¶smGÃØVZ/ tC¼ÓM©¨È7qÝÆ)“ÝÉõ[cü¯ö/&¹(™Q‰é·ŠeÓ¢`–3`úêw~1aåÄ_íkiç}§êßžªß:®âûV½c•âUi¤ø³Œ+ÓÊeŸ˜‰÷p|«£r‰ÁA‡O[¤ìÓ¨RY¥y9§)µeçº$5†'PcúGGA¤y·ã Åî)é"³S¡qµdÙyýÔì Ù@ÆÞ=ÎȲX¶)ðËã·¨òìÓ¦C3äs &ýàzKáÚÉNýbß‚6Ö/B³4ü´¡þóD|ò½¼aýís™7ËÏ~tÁ¦®‚YÛ¾†ÖKi‰½šŒèqzÖ¶;6¤ ä¶‚á&ÙïŸëßÔ!ÔÏí Ç{jøZ\¸»l%@¨ÓP”¬´¤ä¶ÓYöè-ADm=[ï;¢.K×8Nòö:2»¬ÎOÛº‘5„×LŒ$y,òFeÙŸ$’in]¦ÁÄ^튰ˆQe!åW:RM§¥¼kj6#S)dR¯í{Gë<÷Ï€öÕÕºk;+V ¡Ä-Š 'ž–”ö´'€.BPU Z¶ÜëÏܰƒ6Ç»?><"~‚mUΉ ;àêwj’Á95Æáf°ì|–ŽÑÀi"šî =¬•ûâW¥Â;g(»™£¿v0J*¤3~(·,ÿÁ©mØwÍÍéåà¡À¹`yбw„Á2 º2ÌGq“¨¡]¦¬—ô•3‹èÙ^ÚA<¬¹Cz³+tFY|‡§*ŸjCZ«œÑ+¢Õ¬d ÿ –XjH(ps´ï ôY90µ’”¢´ŒÄ2F)ÉLP« 6ˆÏV’Ú~?ŽÔ$>WH¹;lÿœÈSþ˜àvç›LäÐ7¿ï5¾9=†«"ùzˆYÁæÝæíYÝ’ughÔ—°Üi~¾¾¡²Õ'NU]-ŸÊÅóo„ŸcPS]K ªcmó©” w<ô!h9lì+;8µB@r.… BÈMjjjfàw¼‘›Ÿ6ì¡“‹me֣쟹K(sËŠôšÄ§sXôbW÷{mŒG²ˆj”;·T}^Qî- ,ãGžÚFUrèªë‘—M‡2¥ÅCò?ñjcÞéx½Žù©šp{RÈù°Iôå9¹á_?±îîñZÆIó±g“®¶kΪÊ\¼»à áõ³½—³‰>$jÕöE…Ò;j­êÕÄÌD³Çú?³[³×Œqiyki0rÞrÄ“+wŒë œø”áŒ(öHbÑ.ÙUÅùV˜ù …ÜPÈ\î‰îÏ®“wi¤èÙŸ:‘”|ë¼I)fÉ1+i舠ÞÈã·°€øS3ñ»•¼)b^°ÏV‘¹‘=¯¼Þë{¬Þ¿|j =!NÁ‰óå9Ú†wyQøì•z´¦ÑV®½îñž~ƒÒ.ÝxYíµ8 ?]ÇšÌýìáªa¹”Óz!Å·P>íøÁ7d-¨àAßvvñ+Û©ÌÉÂ.±ÅðïT†ŠçÔ_WçI‘”â/&>ú 1åRƒI_”â¶O8QsøÍ{B’öΤì\ïûä:r_ræÔ(>"b*›f Î"˼’<ÓP{d:8=' ‰j¾•KìŸYætçn“½ÛÞj© g{=èÛXã=Šù·í[|v{·Ï·ÀËWºB$Ö¥\Šnnù˜¶$á*^¥IÒg™Ù!j²Y-\zù5öV² óÍP™¬”îh!`§ˆ6'ËRfm£”B(DVå@r¿HÓE¢ë)^aÀ¸( –h8ýp._Õº-™>äÅ.y-‡IZƒäE§y‹àNÊ])Ýн+³èGï*î›>K©5Y /ã³:ýàhm&Žòú˜"JrvT>+mgàœ-e hn-H®³¦wz)ŽlãOp®lŒK~¢ËqÝ?Þ 'Ñ©(ÌRøoc”È endstream endobj 208 0 obj << /Length1 1896 /Length2 14135 /Length3 0 /Length 15315 /Filter /FlateDecode >> stream xÚ÷P\ÛÖ† ãîî4Áƒ»Cpw×` 4ÖHã.Á%àîî .îînÁ —-çì}¾ÿ¯º·¨jÖ3dÎwÌ5Æ„¦¥RÓd·›eÀŽVvA€¤²–<;€‹•…–V ±þÇŽB«tqÿ!é4ƒ¼Ú¤Ì ¯Ê`G€‚›=€ƒ ÀÁ+ÈÁ'ÈÎàdgøO ØE eæ²(³ÀŽ@WZI°“— ÈÚòºÏ Œ>æ?Óâ@…™#@Ù btxÝÑÂÌ  ¶!^ÿ³ƒ° â$ÈÆæááÁjæàÊ v±edx€ 6  +ÐÅh ø£d€Š™ðïÒXQhZ6 ׿š`+ˆ‡™ ðj°Y]_SÜ-.€×ÝšòJU' ã_ÁJ0þ>+Ç—û;û…@Ž&›YX€œÌ½@ŽÖ+= *£Ä ñ„0Ì-ÿ4³w¿æ›¹›ìÍÌ_þ”nW˜½Vøw}®. 'ˆ+«+ÈþÙþXæõ˜¥-%Á@Gˆ+Êú¤@.@‹×s÷bûûåÚ9‚=}þCV GK«?ʰtsbÓv9»å¥þŽy5¡üc³B<ìììüœü 3èiaÃöÇZ^NÀ?˜_kðóq;¬^Ëú¬€¯¿P|\Í܈‹ÐÏçߎÿ%€%È0ZƒQþYýÕ ´ú‹_ß¿ È`ÈþÚ~ö?~þûdüÚa–`G{¯Âÿ|ÅlšZÊ:’ZL—ü_§„ØàÃÂÅ`áäappprø^üþw53Ðß:þ•+ïhü%÷õœþ#Ùýï`ø{@ÿ»– øµs†݈‡Ýâõƒãÿs»ÿ™òÿ¯ËÿXåÿµÑÿ¯"7{û?ý üÿøÍ@ö^G¼v®äu ”Á¯³àøCu®2Ðäæð½ò³×iw´~íhnVvî¿ì W'ÐR ±°ù«kþ²kÿ1oö G ØôÇ óšÅÎþ|¯Cfa÷z‹¸¾¶æŸ.àë ýï¾ÒŽ`Ë?†“‡`æâbæ…òú®_‰àÃñ:•–@Ï?›ÀÆê†¼¦^kôX]Pþx±¼<6ñ?L/€Mââ°IþCü6©HÀ&ý_âã°)üC¯yÊÿÐkžÊ‰ŸÀ¦öq½vïIà5ÏìzÍ3ÿ‡^÷³ø/ñ¼ú,Àö¯‡öËgÇfù/ä°ÿ…œ6«áë¾ÖÿÂWù6ÿÂ×3ý _eÙý _÷¶ÿ¾ sø_í_ª^Gž ü/|•áô_ä~=m§×IÿK÷ë_6çá«2—á«2×áëá«P·á«P÷á«PóU¨ç¿ðU¨×Ÿø?íeáæâòz×þy¼öÞøÏ‹ôZ ,Ì‚-„BmëCÛïjÅI=XvF9¹Ñû.¢®t·¥‰Ý÷Ôƒ%…ï/¹ ¢çÅ¿MïF߯ãq–¾4Ùé°Û™¬ù¦E ,|i‡·2ßböÇy8rUrãÜUìê20år´´&8mÖøéqõnŠ‘Ùù|g&ó@V˜®¹ú¶Ê摾ñ+Ìhl4"??Lh‡xfGµDøÔt§<ëÅ»ÑãDr™ƒû´Cœ<›}‹åÌР4ÒÃCt'Å«ÌCÑÔý^EÓqÀív4Ñï ÁWí¡A æ®ÃšbÔBYòÛãrÛ±òÖÍrýë°?R`%×?¾9[GÏñ4§ß4zÛ%UÚµ¤UäÍÅC_ÞSQ!‹+"ƒŒÚ;,3ñ+´ž5[ÑW©n`"ÁDË5)k*­ˆy(·QMóÒgŽcÂy(:Ä%Ä,ÑA¾ •‹h;gÿ~%x R§]ØþS•– 3êü7Åu°N!™/ïØÉ°¬(?eø7[;=[ËOœ¶#¨ºâþï–¹àYŽË¾^Ý¡è÷²½³(=‘ÙufhîJoœÌ`5’YJKˆò­÷Ãý mï|ˆé’ÊÆõ§®³L#åQB|—ò]±'@VSO-[dCáÆ/¡ Â0DÞu¿@/ÉöYgº)/ȵ놭>E¡Vøå9ÇšX0xW™äÑ0ÄÛãº&¥ ÙU_ÞÛà~Mó¹á Ôð†æ¼^5%?2GgAý“ØÔÊ>'ÔEE%o¹[!téШ©N½›A};Ô&EÕVA²Àu×Î÷:êe‘RD+Vsœ‹©Ÿ[$mè²ShMGe¿¶ƒò¦ß(Râ,>ä”§ÌäÓŒTÞvç.¿…Åê•å&AÀÂÃ!f7` =˜Ñs'y«ã{¤÷¼àXl£÷¬-DRÄúÃŒ’O¯’ÆÇQ9Í{O®µKk3éÚ¶8I,°÷7ùF:‚ ÊŒ’MUuñoy9pq ®sY\­ñSãúì—Š—0 P@yck|o_Ò +JÝó…pLââš¿ŠMU-û©éb¸TÕÎ:SxœóÉù¢#šÐ'¶ó½¯¹¥™ÊP­Ph–µ ®Óè´Ý7L4 <3¾¬Ÿ5nOâLçe +ð=ÇæÉ”\éûùˆœi‘ÞŠÌ5^Ñ&>å`"y'(pɈÓ½ûh—7I¹~9iÉSaœm}ÙÌ9tÓ_,lô;’v-ÑqL—!ÇMž`nrÕ²@¹ÐJ·¶Raœro ßyÈÅIy c~qP– ¯ƒóuBÓ?Põº¬ú+ú>ÝgÓ§›u=WYñ7 [´{˜ŸúFRÞLØœ´ ¿|Óáãé¶¡ÎM¢&MCԋʃ Á)IBSXgM·jh1”³PSHø€€fØF:”îúœ† Õú[ rñûÀl[‘>¼f™¿óç«"üaŒu4rèRUB§ž4ÇnØ™1!®lœm5£·+ÖèiL j¹KÛ=sÔ}8 Ê_¦l~b˜ø¦%ö‰8$m„ÝŒC Žõ‹Gã0È,ìê\UÅóÁ-µd,‹©µ !bµÕ #ŠVb½´lXÀïpB`†¼›4^XL†ÔuŠ'­ÛU üSü ªÀ«qY}—ïÁ4³y»€ÓœK¥ío?îð:ømlÉAÈ™R;dáüvd¬w'öÇ5=˜¾ö¾ØØŸÐÊØ*î–Ó…èÓ8ÕŒ…‘7o§ê¦ïPìz%ç× ’6b2é}Y¦\ƒ½>àÏò@·†¤J>S±KGŽÔs-¦`ç“%Ýõ²çó$9R¶–ºW‰Æ¿¥² #@?:52q û¯ŸŽu¹ 0 )µ¤OD¬+p~=œô2få¸GÚ‚¢æÇгïíA•â(w@É⃬¿­õõíË09º|æš%¨/{‹è)’ºiÀ*QæÂÏb•ý˜æ†Þ‹VsÀÊ굉Úo?wV™ 6¯Þ«h”¹„¶!Ѳ+’¬Ÿö³nµÇý2çïÕÊO“ô‰bVÃw;@…£}ƒÒÙ—Á3Ò;ߊ}e¬¨-¿äÝRš³°mu¿QïºGÕE_–&ò¥ã4/"–֋Ǽ—½í‚uŸž ¾@ÕKá» "ý1M·ñbìÞ©Íu1àœ×Òóh·n`NÁypÖâ gÉáçüÔVñ^“ÀwÅŒÿWÑ€Äа]½ÚÆ 7ø¾øýÑ^8Ö/²M‘lüXäË´"÷ŒéOá—±X—kK#üwÚ<†-ï§0Q»'®€"ƒƒÁ‚/OÍÓ±XæM0èRÅO„~C2¦á°³]Uì·{MÛŽùË!ßäo"œ¾x4ņ½yœ‰ š–Î/À+PÔ ºz–‚oÜFaš(òÈCÇy~~”OÐÞd ;FóÜ¥¬.¨6Ö>üÍèäÛ¨GñMÛ¥û;Ûf‘Ñ—õ÷JIïŠnË=¾«L6#„úÉ,[ê !µ|Œ:ñˆîß=¥m5S.µøžpÄ–BvnnN È„Ÿ‘Áé¼Zae…­ŠÕm ÷ÅqO sÌFﻇŠTiòV7ÿ³Y}iQfD$¸ñüwÔ9FÒgLûNbÆ/t@Üü¦ù/n;­Ÿ 2"PŸ^B;©ê­¿ Ò[}snðh‹„Ìe*æÌü†Ü^ÓÁOÀä2 SC=1nê§2{§ÞÿðŽGÜ-®¡å J*„êÏm¬mÓ}ãä6öøìpe¦áÂQº¶åòøX‹ûN2œÕ$« Ò¸ñ¢aÂ^=¢Á9õ™é´–høýff­äöTÊêŽj}MÄ7:¡L}vKðñ<‘¡ Ù0껩,v¬«;…m@Ú`¢]…ª5ÙÛQƒÂ,æåÍÇ÷ÆÚP¹ÝIÞ‡”‰hZ§Ì4:eض#'Kk_¯â_°È_py6;ךJ ¡3CêÎÃÕÇ i“²v£7'>…YȾ%­÷0OJÐX¨û„}Æxî’â6û4}˜ 箵ÍÀlµ|Ò±s±w7_+€†áð­ÿùݨã=­ÏÙdiƒ(7™<"~æu-†îƒN‡æH[<öT§€ij*æ§”_Zûµìõã~PÄJɳÀt̸ÆŠÎ2‘6½i*o:X–wOÀÙ&=á; ´ÂVlo`rmË“òÎåt=ÿ_úÜxÈÍÔ}ÐÙ¹#(*îàô Å6»ÐL§÷7=P´’·¤ÇüN+äƒGêómÙ4qÎIm¹÷Ïö©’u‚±CoàÌ-ìŠ]‚…ˆwÿÙµÙö½œéŒ) aò w/ö&ÊXô:ŽÜ‚¬I&=I÷E÷ibðqoÔŒç­ùXD"G•ÍØØ/tÓ5~‹MÔYo‘–QfùÂDöÂÙ|¾JéqfNé|£òOùEj÷s€^KYøæDphlu‡¿qE‹¨XÅþeÕ‡aÀŽg "Û×½.Å.#tÑ5òXš”é…¨¹ùã:%Mtž‘UÆÈ>*ê9~h ïÀüHâ´u]Â{•êYu˜fÜëeA’¼Ò¬øÌÄ%#mñÇ®8xKáwï ¿¬TŸ¡lè„ )箎òxCža”N“¿‚úž;"ææëŒ<@Ýûß•†Jòn6,Š•›&ríDää«°%®dïkêÞÿ>Ô?ƒb+Ä[–;£•C²ŠL4xƒöæÃô,ÏG&éñIN­^ÄáæŸ»’_ÎâT[ Ãfp«§îÐ/&¡¬ïEÂ…ÏÞ­7p*q÷™tÁvΔ8˜Äò¯ãq}øvV‘ºyS,ìÕäyd¹ó¨ÕžÇàùäêP±m>°Üˆ»£_±@˜ó ŸÁÔËžkO9ªvÏ'wŠˆÉl­SeÌó¡h<A™ø¯?<#ž´ÿª«+ñâ.´]Hœ– òŒÇ‹0?%ÌvÞÉ}ÿõ;@œöàW37$†Û»[LO:x£Öü+í»ýÛ©ÜѾØ# ð~$ÿ}lÍ£<èžóKÏâùZý‡©H^³­=ª|ñng…¸šÅmfÇ[Ò¸ö‚¼cârß½í¾MükÝïòzXS|cÚþU×ï»á5Néš^À,KWºÉõåË*õY¾À/´:ÀÀïàÖ“ —Ë€VS¦°¸‡JÖË›æûØâ§èºti­‡Uï¢4“‘ŸbðúÖ4¢Ë.ˆXÁâGw¼5› A‡Ë)¼®CàµU‘ zseŲ`'*•úO^öæÎìÕj‚°N—ÊÞ92{ôqÏŒ¸–@ þðTÉøšEx¢¨gÆIý€‚ëñ`h|œ¤ñ…ÿÀ­ÿ²5\´?·‰!ÚÖ·†{Ç,³êxéel%÷þÉDHÃKN;žm…ú #ÅÌ ¤ᔵl(°ìÕXÈ#Ò3û31¹OÀ!š—äÕ š¤¹oôx'Q*VS[šPÝV®]wâçÂí¬Å#MŽ‹ŽÔm3¯Þ+ºß\ †>YJÕÂ#éÉ=àdY.e%Øv0ry.Ó:>ÑÛ :ñUKj4ðŒVäyœ@øªþ<¢ãÖïô—x¶“˜H&zž6›çšÙ¾4ÀÙñ¿ÃxŒ¬@ûpSËŒáœ,>Г¸ #uÙrÀ­"Qî†tñmË ‚9îmìTÙò³ä󛢸dV±žá„‰ši¶eûeCûºÌ=<œH ÿx] ª‚«„ÛߎÆ}üLò<úÆrî¸ËõBÚoúS)¯BÖcTˆ‰º—áqZθ/2ÂÆVÞ® ô^‹ødýÒæ3)ÑŽ¬ˆ<ÕÞ²éÚÜB°Ýü*œ]kƒ¿•2«oÖÊÔˆitÊ:˜eÂwÝ-ƒÖIv²Å¼Ð¼ÌC<Ç­´ •>Æëb«ß¾Ã Ó^fá­.,´´2É4ô%AΨt­ˆ=úNšÄU†Û•6®¶Z`Ÿ fô'”–TÏ‹ o½*Õɾ©AÃrBÑëõ·ÛÐK"«RÔÂcdžP¾4ˆ;"L„ ~ûÏ8-´K²ÆuÜut¦8J¨@±‘à=m0±m9X$óŒ™5 ®—¯LPýÀ F[½ÚTU(=»-¼ixÞ‹uI™ž’‚ ëç§°kyæ 'ÒJƒ;a~P/ÖßC–où}Ú !}¯ÐIçÒn`ŽL0X«ªÙ'4íï,#`ñ“ú®¸ÂÂ"…¸u6­ÓR©¿Ðœ½/y¨ ;:}Õæ‡ÁÜY½FžBI?@ôí´l9ªLüñ–$=Ð^ÞBπ͜9Λ?›F·™/íréH ˪!»õ2"¬/…êÿQxÀ™¦Kî‹¢(”R‡X6¨F…õüøå7Õ=~~\?:ªòˆøuÚ´PÍí|”†ùËzg>çR|„+#£ né2Ü è¦,y5:“_ãÇü5€aŒèGr_u?Yü§æ}Jknʉzn{¶îz°Lã¾òVæ¡>y6£hÒyÁÆ%p\dÄ®&ïå±éÛAÞuæ² ð\Ü{W@¡²XhÂø>§ûq¢AÕ¸i¿¶(íý^ELMˈ(×})T)xx*é —FÜø•Kª­2Ÿ´Ç!ñcŒá7ü´”Oïbq‘ÉÔvv¶(†ÜÔ¡L§E¾äÙê, ˆòÀ5qâl+´1‰¨>f¬Æ‡_œ÷ógEeÒdé[Y'½ìéÜ›­Ü÷Bm$Ûnä„l÷t]¨íõÕF[Á)¹Y¢™/D‰ÏVå¤æÆ¢¾¦/déÃ2®{²·R‹ÓY>ÛÞã¹íÂNñ3¤‚g<„` §˜Êåè›Í¯ø¶*hצæ›Nä/p}¶Q!ç\º»ß4á~‹^=Kçb˜°Â0bô1mûªe…ýc%à&ˆÁ.ñCöX$$DÿD¬á°_¢kR8¯ñÑ®íáá#5žrZ Å’°+@Ì5mtÂ#dÜœ$Ïa<ñþ§ÿf1 Ì—ê1£Ñ4;yܱýÍ•î[:¤kwŸxùçCÒÎò,n2ï”|ñIkÚÓFSE Í—z²~—bð§„åž~=:J0~æÈÅMÅ>üæ¤Û‚û(2zÚV öŽr˜Ò¥¾õ¹GŸs9&Ùê1ÏGPÞ œJc p“òáM!ft'O?Εf< ƒý’®½Ž=#uó†*äƒyQ¸’>÷nTSžánAW”º¦ÿKê%D–ÉÈç+*4´‹ÅKI¨BÑXåNöâç©6ZÊ B† æ7À:¼Ây]dZõñ<Ÿºk ÆDd’˜äã h-2NáHæ\è¾x ?«*ô= ^‡aO>P3ºÊ‰r0/vÛçZUȬ®šÂç¨|Ê dé»bVú®¹.í¿o~‡;ý¨Ø·7!Aç ž©RŸ”c–àq¹™¬ûŽg35sãGètâ=SIå0÷‰#Ä­›L®ûîá<ªýˆË»¨¶ Èäh¦ãdimÐ?dà‹tŠ¡cíº'ð“7ž¿"±à Îvx`àw2B­žìf£:¿‹û¨sžÀ8…FØùã7 SáýÇP˜ÕûòQŸ9;Á~é™ÀæÈ;!á*(ýäböt‹ÎVÌ-'G„÷Úâ hQ¹ÜÕáüzì5“-”"—h™ÖAžñv7³Ü!ú™ô,2÷žßaz¦*%×#é=äŒ!˜Nñ:¥œ>MFÝ; ùKr5Ù¸^ únsÏ£EÉ7ÖMÜéOïqÆ j,U$п”8‚²ªB‹ gXšì!»ƒG=ÓŽ®\IÃhtïHft,O)Á‚ñïKi®zdoG„ŠãžøÆ gů–ž{3g *¼g¸ãk¾Þæû2ÅÊ«¨äÉ ‘=¥ÑÀƒ¹~­‚y t¥¡™cÔH®ç(• O ôRe9/Z}O4Û5ê¸W¦Ây2l[«~ ¨ZBùø‡wd½{_4•g@nb=E;õMó£4Ït7¦¬–^*ïíþ­ï[©0cëÔI*9]±‰0­•ªŸ+=¨÷k¢=Oy°„ RŠ+TŽ_ ~­å˜¤ÆÄçŽôÙ×q¥»Q€4Œý'¢V,sKJOcèÅ7À^p‰l¸–7¸rh&°°n‚gå΢*kϺ«ŠYÓä;ðC>)W›#ʱð¡TÔÑ{f+Ê^ZÐvv’xË…T’ãhŽ‘À™Ç-“œ¹ 9k¥¤«gE·Gäc™ü |‡ÖIw@oÕ:sqj%Þå‘*‹ÿ=¢_ù¶¿]|m޶§ÖÏ"™«ž9ûT!©p³·ˆ÷†Ó³mnnà§x#ßnÓݶª¡ú@Þéš(á¡›ï\½0í¹V“sý%(Eh{k¦ÖG3Ð7\ƒ£Âmä;yyFÛ]I'åïI¿gP«vN aF°?P8åfÅI˜wÜž,ÜPv*¤ ꥹûKǺǭÍ=U‘¥\æJ%+O¯À%%Û%¥V£¬¯k.ÓH2&$hËŒË^´e·JV´•X$ÑŠ2^.Þ+Ñ$ñ“\ÛGéqðÍ ©T¤ÄÄý©ŠÚ1ÊS1~"7-ƒwSU%ɰ"Ã4¥ Æ Dï¿H,w²Ôå.K>=!+RZÎt^/^R;sZgÔ¾ûl`ˆŽäY¨œÎ6r>`Ñz®¾j6öèùÍœÈ8íírbÞðWRÒ2Gú•hjŠM¤dîRŠ1ƒ7YL§Ÿ<ÕüÅW=VŸ¡]çjØ^Ö\¢ýë$VVÆnD ˜¤ŒËÖÀZ¥þh98f¦{’6ÔPªúk_} hn~4ÜðˆÕê¦2ªÿë— S–ÃöÙ ÃñJa: K˜ªÜÙÄcÕ<ãKK:2ž0<Þ÷»s:sß4Ã:è}ú`˜À±ºý$à„"'P«\Vt`mVO+noÒEýxÇ5ñÆËfÆ–¡}4Êõkæ´sJà³>„¥ §QìLi|I5ïŠÎe^Ì=¡ƒp- þÅ+%'+J£ñ õý$®Èç‘ÀýB®9~iž™2¡ô¹\©´å—Ÿ¡î~8Œ)æÃæ=†þ3s­æ!À·|žlÚ|06sG‘‘äP¨ͽögw ɤáF¿[LüV"s¾AHx‘õì“2‘%@ùkÎê2x l¾…8Ês†J+r7Ú÷¼ ±"`®Kp)µ¦`<Õ‚D ó^1rÿ™u?TËUa'$‘_Ëxl ¼›d~çA¦A•}Ñ‹°-¾ÉÚÂê9Ù;ªmI` ¤öØâKzáJY¥.±Gšóë =Y]æ›»ƒ«>mª÷íÕÚVŒèô×èD†“œÊ ’°êtVXi—i!%«¼ý®pœÁ¬žpän>Wr7?/¤}ø´Ïh—·Q>å4_÷Χ×åJÓØûé#>)Ëç¦Åá÷‡Vœ‹Z)G¥’‚~£ŒÁÝž$²V»bVzÈbbˆ§Lð[?˜bEÄ£‹Þà'«bï~Ug$ñÿö‘3aÇìÒb´ý VQÅÀ:2éÉĸ:93üg–L‰q{>a}¦yüµ´óŸ­5öü4ØJG F€ŠÒ·)ø Ëkk”¬£^Î6»Ý°–èemÙ…ÁåÇ`#Ð7e9ÿÆ“Ÿƒ¨vÆùrðnü^]=×gfÅŸBŠŸ@#à*–}¤›¥Ê8,zåJz"®Èä²^°µ’ÑáÊm ¡ë´îQ™Gl:¨Jîã[˜s!.DQ¿¿õaØóÙ[7y¬aÑoäL™5ÐF·¨¤Ãjv-Ñ[Zõ3jøÎÝ >œë!qƒß|ÁlõáOa‡mç)º2ÈÀ§o49>ð¹ì $ëDŒŸ;o¶Úª@»ç°g)Ïœ¿[©ï*+¢ºKÓÐXCÝÐК7wÛK„A@TM]}Å}m×2‹nˆÄ£Jµ¾BY«µ3vÅ{Ù‘ÖdI07Ž>VV¼{%œëE=÷&Ö$ç°d.ñäÁ®K­Þ®ñUç3I*xËÖDn( 57ÔÊí8œ]aÈjÌ$¹½bÇ“‹Gø­¨“nx(ð#"ãqݸOëÕDpmD'ö¾{÷Ãûš *§Ìé—ýŠxcíIÒ –E¨gO–$j°Õ–1Ç b6 Uöjöú)-Ì—¶è$9p€½îìá[îO–LhT ‰[ZJÕ‰úD•f;µb}ŠŒ$¶(©P·ÆœÇl™´Á\³3¢¯_ý÷9Ô~y2Åx ñu’œÌ¿íGŽ08V8ž9矚ñ?WÁvÖ0•¦ ,êL¬pÝ€³ôæÅ`!MZïs"*]0ÆÝ ¿ÜÿðEÝhº gB„õнV—ÖMXhKà|T‡T‹š³¾™lùæ=n˜â£çǧÆb¢àøæÙ“5°\þ£þg¨ú”ü-+¬!/Ð6§Êþ1…D^¦ Þ!•ºd^ûøRRO«ÛAÍwÁe¡ç#Ù&“V19Ç‹ží^ÞT‘Xx‚&ÊZÅ5>¨uäí©3×Oèo]” Åã}²u=”oï~*©4XﮘùI¯¶KžÃÛ=ëIÄKÌ®˜ÉöNÊjC&jz"v£ÄÂyK%Ü}ý€–\K3!>…®;ÐHºr"”m ƒ,¯×sÍï÷3aù£5U `P!óÝØõ Ñ‹$Ë{=÷;¤i•»Î,Ãâ>±)Ÿ·\§ÒˆÞ¤LuÀ~¬wltX sP¶­ŽÐýa®JBSÉ׺ _©¶$s°¬Ø-AÛ>ˆìœ·Ä¿Á;tìI›øWi»kBÏ‹Ïì|ÛJ¥áñƒ`pê9Þ*F¾ó¨Œ 1Ô:ã­‹)$‰á_šê6É£u‘y¥ÔœNºƒÈn¾:’=‡VˆÁÇì‹50Žƒ .­§³¶äü{ûÕÝ‹Sª†Y.\÷yÒÖ§ì].ToŠÆïšÙ¼ÂVäÝÛ¯gô²Y!x½ö«k D +AÜþåŸ-"jjØ1ùr×ä¿ ô,mZç÷!*a²»j¤~iº5Ÿë(Ó—;ù8ôMO}Z}ð\pîWÕ‰1p™Ï=&ùâCҺƽ½aÍ]R}%Ìb-b‹ÿ9–öœ Ž EÌf“Nr˧M³ô£Ì%-’Ó^΋kþƒ¾/Í×,ø¤µ6Û;¾±È ·ëžqp?.©„1Ž“¢¤÷íŒÜ3jÖ­öº÷‘xM„އcÅ×彯W>L{ä}ÌE,²B¡_ñÉoi”™¡¸Õa‡ÆSj1›9Þ² [ºO ð+Ð=4B­ÿ’’ I”íHL>ËV7bÎÕí*òV»ãBC$ŧ‚Ô4E`ïÂ%ï>³;ry•± ”W²ägymQ‘>öVkÁJëQ¦~9ƒY‘ ‘ý,›1^^œkë ·RXòTþ‘?~«¿»º éL¼@1Xš‡Mn^œªæ]¿¿"ÏvÒãFª-wp©ýê îµÔµ¹¦¶Æ"fgøu®î®„¹(„QžÈ¼Ƶ¬UóÀÓ§S¶ù畸!,g©#zêEÐ~šê•0œ]„R9O4qîÖ¤½ÎÑâb^S*á×g{ÿYÆ—¯î67?‡£0!¸g¾cð±Ä#¸õrÑ|õª×8Õ'ÏhêÜá¿ì8]i&Ó=Ð9/=9”.´¹º¨]x0ŒÅ|»Pðμh&Œ(½R@þ¢l:qñýzÚ è"¦¢è¹lEå¶41r5LDÎLÿRe·Y>™ACæÆƒËÌÆT@øn•¬¶/” ߨïçlª{%Aa'“P’jÆŠzwàH=«ò¢v%vcžÍÎW³o¿—cƳíÉÔ´ç/†iZýKG; =U"|ÅasìFd¸Ï?¦ÎBWšf«`E½ $H39ƒ•ÞÒ¨GùÝô ¤\”ºVmM¾kF©À¡åŒŠINí>–÷¸ ÜÈß"Í@¹1¦YQù…¿˜ÎøØ-sZów¨LÖ Ì€É>(`*šÿü÷È74}F°Þ+Óm½\7åê4Ü™'ncŠ¥ÜJ¬n|èä<]Î =óß|ÓNjõ¾išæe·{- Û™t^)_äÓžáiªr0ùêšã÷Ù"ÂÕ(d¨n´HÖ±ô–6U É…þ–¯EgZfz?ùÛ…–”¸ iz$TÛÚ“üÀfM,Nû¹ewä ãS–º Xâ¸ÒÓˆ!¥ä/OûCÊ4bbf9é§uYÜP/ØÎŠYübèoœ¬;“9ð”=‰Îµäy.lÕ¼[‚» Û—H± V¤>éæ—&…ïTÄ›ŽR!ýΰ¬&2Û×Ê–tÐÑ̳ÏyL8§èØ £7Ö¥³+ro>vËœóOÂakëu2`ôm*rélš¸[·†Î„?"‚o)Ó6ª; Ÿ“*0YrE¥×&¦¿p^ž“Ÿ#ÑŠBk"ô´/ú{— {hªª){nÆRâú"gf3C‹õÍßàúÒÉÿ^}ºaoê„éä¨"¶GÑ o¦V^î¼5Qñs‡íàëã›Ko‘B›kà.‘Ë&˜b‹ÆÍŸ¦&-ç·:btQ‚(õöâr¶.¾èöѺVƒt4&ðËþ¬¸ÒxûÖí •ŽbÇ8'lÌ]Š\޾?EÀ1ùØR½Vµô[¦~;¿äªh%4·¤„œÝ£˜UuÏU9»Òðw>šüÝxÎk ö³ÁÅÛSˆŸ+|@,è>,?â–*5­ýhŒàõáŒ>mt Tç¼&µ¨ôÐZf„Ï–:Y3*¡¡à\nz‹¯U­{Öò«‡ &-©³§ìë¡Ì˜¥F|ú¡5T¯!•sR%lßmröD*{FÐÿáw%CEŸm¨jz'ŽçXdþû[Œ8KZàáDÊû›ôÜøT}#_3ÿ;å½´3¶â—ú×— ±­Õ…žÞ–ַÅÉìûÎ"㸛鿹°U0éL…aËm_nœäàa¼ŸÍm)^p×Öœ¼.NZ9¬`j¼z¸6l¯&SÏÓUÓ̦ɾ2.qÑô›šæžHÌïãD~¢ÖÙ;NPdÅgµžÁÕZF9†ãŒŠøÜ×S®•õ~ôÖà‰z©ÑÅXûûeâ‚ãXeÐ!Ï7þ¼Ðü«3l¤¦*lZ“,e28ÙÖ:µ 5Ì[Êï4n«úŽžHÕ¹Ù’ôȆ˚«-ÍY‚ NØðÏzœdÍüa£"ðÍImæcÇ0IöÄÿ”$d³:5_©Z#TäÀ6Æ€NLÄgY–\¤£ó ¯Ý)îÖÒ¦ý™ ߀M÷ÖmYÒfT%ïùZ!&5ÊíP=-_Eg3 óœv×rïdxAí‚íÉ9@"þ=/‘½0ÿÓ ™šÉÝøyß…úQV,KßÓn !2c ¤&‡QjÓ¨)9þÅ–íõ NdÔG…xØÍë6ƒšý¾¡ÉkYtfú8Ó¬/섞:…)nySœ‘Šß»‚`É ë¿lž¬Õua„ VE vÄ œ!Zìk¥²/aËÖë[r•~ÿ¸,?8ìþ†D«Ï–ÛÜka÷×ô1Oàr”õ>u@Ƽ´âmT¿bm&—ðSÊçö€Rp`ZKÐm9r,Ûÿ­p¬EÊß×ëpÆÎõé@N˜1È¥ña¾FùîØH»…ÞŽ‡×Ù‡n*¥»óxXÉÄr*òÆò)pY˜´Å:þ ,¾ãÃÀÁÍŠ!Ü=㯠©ðð¯¶Pägi’$öGÃTè,Å™F­R+É»A`î2- p.QA¿ÂÔ¦&™ ¡3[™_i‚Ú)Â!b뇢xér|°'ô‡O›¸oh>Di0eËN›DÊ4XjoQ/µ?!+&!©à‘!UhÒÄ8Ùv»ñ=ä ‘×ާ _ÒĨ_·]¸HfåêǼþCýÕÝS c¯üÊuU ù¦XéÚòûv넇¶ö¼Ž&ü€¢aîÏ rÆ•Š\€ï¿gª)dU’³#z[‰Ç¥nçýä!:ª¡¤˜Ý§¥Ó?£™s—ðeBƒK/ȼ“/çYJôö‘~“R‡K•9þçÑÉÆŒ®Éq uuP³¥ß‰üa¿>ë>?41âc²#9ñ‹ˆåÄ, }>³0:>SjÑùò˜üÈó‹×—sú$ƒ†Þ&'¡'XgÝÞF^‰áÜp„B—Ò%ƒãݳõ¨Bó¦&„®¼@ÂL6‚£Ò¥¡®\OtJÎ)ÿÒ )78ý Óžïë³ñ-)ŸÜO·UV:æùR|yâóŽ ÷%u \]ÓªòA¤¨á"œHÇ<é’£¿#Ï$A?`åR熙1ÕÕ…¨_ ò†¡ÉÍoKèÁ'»M´7¾ii¦&?Ðʱ×$.úx&¼úH ŸÞ®FW¹~±öþfŤE÷8Á øÊM*òãiÅÚ󵡙B’ž½—ïšþªÆQ!jFKÐ8pìËAj„!»‰Rr>œÈùÉ“>·m5Q½Þ#vêxÎ Xåý­¯ñö \üñ½è6{¿µ²¡1}{*íš×çnŸ }2¨š¨¨z¦¼Û ŠX ÍmŸ*×;åˆûuµ_FL|I+‰\ ð¼`®uh®˜Ž2îm®ª9,Ž7|ï͹'¶«ÐÅv¥³)”áX•Rš³‹Ž\û’aè>›ðg€¾ïXnéa^¾0¼Šqü¤›²Ð Xù—«wóÑkæöäÁJ¥—ÉâÎzyÉkÙ^ò ¿IŽ;Ÿ%¼jc9á8± „Û.¿/€¦Ÿâ5ãSÚÊ6õ|{Xvý.™Ö<Æ7 ‹×¢(þ(Õ° endstream endobj 210 0 obj << /Length1 2687 /Length2 19310 /Length3 0 /Length 20865 /Filter /FlateDecode >> stream xÚŒ÷PÚÒ cÁƒ»www÷ ΃ îw· ÁÝ îînAÁ‚K€àxsÎ=÷$÷ûÿª÷Š*˜Õ¶º{wï=PS¨i2‹›ƒM2`{fv6€¤²–;€“…™šZ äb ü¯™úÐɶøÃBÒ hâ‘I™¸@ •ÁöW[;'€G€W€ ÀÁÆÆÿ_C°“@ÊÄ dPf(€íÎÈÔ’`O'¥• „ç¿tfôv~~^¦¿Ýâv@'™‰=@ÙÄÅ ha43±h‚Í@@Ïÿ A'dåââ ÀÊêîîÎbbçÌv²¡g¸ƒ\¬@g “ÐðWÉ;à?¥± S´¬@ÎÿQh‚-\ÜMœ€ˆÀd´w†¸¸Ú›v€¦¼@Õhÿc¥ÿ0þi€…ýßpÿxÿdÿ·³‰™ØÎÁÄÞdo °Ùª2J,..L{ó¿ MlÁ7­‰)ÄàïÔM2âêH…ÿÔçlærpqfqÙþU#ë_a m–¶7—ÛÙí]œ‘ÿÊO ä4ƒôÝ“õŸÃµ±»Û{ÿY€ìÍ-þ*ÃÜÕõ­=ÈÑ(/õ D„ü[f tp³±±ñqr€Ž ‡™ë_ZžÀ¿•ì‰!5øz;€2€¾ ä²·³‰àâä ôõþSñ¿™`2s˜-AöÈ¿£CÄ@‹ÿ`Èù;<úlñc°ýõóï'È„™ƒím=›ÿ}Ĭ êJ ²ÒŒÿ”ü¯RBìðfæ0spr¸9y<ü<ßÿ¢fú'‹?<åí-Àþÿ$ éÒvûgèþYzÀÿÆRCæ û=æïÙ¸ÙÌ ¿Øÿ?ûß.ÿÿfü¯(ÿ¯cþ3’qµµý[O÷ƒÿ½‰ÈÖó Èܺº@v@ Ùûÿkª üÏâ*ÍA®vÿW+ïbÙq{KÛ r–yÍÕ@.fVÏÆÄoÿÚ3[=P ì úëf0³³±ýd¹Ìl ·‡3d$ÿV!»ó¿ŒÒöf`ó¿–Œƒ›`âädâ‰Ì™$nn€7;dÍ1€•Åìq@ªóX€ÿ:Rn«ø_¢ÿ ^«äoÄ`•úø¬Òÿ"^6«ÌoÄ`•û8¬ò¿€Ué7‚0(ÿF•ß ú/âƒ0¨ýFß ùqXµ~#HEo#û»ß®ýAØu~#»î¿ˆbiò/â„XšØ9@æþ¯Ëë_¯‰³dr2sµûWÎÎÁóÂdküWÎÅñ—2Z g›ßA ¡Mÿp…Ä45qúC)ÕÔÉÄ h ´pùCÌýø? öo4öÿˆm€.ÿcÏÏù¯üÿ8@ª6ûqC’1ÛB†ñßœ¹þ’ØÙýîÅ_SÊú» œZÍÁ¶¶æ ¹¨X— ™KVàÿòü¥wt…lûoHo,~»@Òµ¹ýã/5ØõOˆ‰åå_//ðOHîV¿+tÌÊÓÁ hÿ‡DúB2µþBfÀæiÎïŒy ]°ýk3ë!­üc W0ëo*nH,{ÈFÿî„ÚÞÕÎô¯»Ôò” +øwÒ˜à?¼ØÙ!…:üVC8 /¸ýÿ6û?Òÿ=jÈÅÏ aÈKý‡)Ïß2ø÷rAë`ëúGao9¬Ž¿Ã@ºêè vš›þq~ìé­g‡T÷;÷_èöGç¹!æÎî_RHnζ&ÎV„€¤ö;QÈÓÁêbåüc$ µ»¸ƒÿp€ÄpýBŽËíé¤ûûñöøBÂ{þ!]öú$’Ðé?Tÿsûš¹:AÚìò÷ ¹šÿ‹ÿþ¾zÍW¾€Íƒ­?wÜÕŠ»3ïN ÏSïj§Ñ3{¯8uº> !¤Ð×dn8݈§Œöa¬íHÓ]‹­’ÿò>nm@kKRoôy2JИÝmG^žÁš.<¯$E"aÖÛóùåèó.À¶º[:×Ñ•M-ûÎ}@Ö£~°üëDè—]õ½E”§ò9昷ÑïJ¨óL?-P»0“"2`{ /\ßÌcåL¿+$0"ûžÄpyëmrÄÞ/z­Wjq8÷RêÂ^cMÌÒxK|TÀ_ò.-ŽÞ^Êf£gÚ˜$÷ï¦8ÐW’ÇÂg³uZá— òm¯g ÐéGEÊÚÕ4v`øìpŒ¶DÀháî.#›¯ÚR<`¸7†tîÄh®ì‡ âé½·µw­{|­x|úyZßkLßb yw­Yb]êW˜£/Ž2<ÉÕ_O¡ufUw¿õô‰Ã¼Çž‡fçP…ô™+2BaJ::vaF/õhÂu6×{¤þvS(¤÷½ôú£„«2o¿²8^ì=sæMè¥ñ)>z¹»“4zÚ&OËs›b5“[›%œêáV ¥G2%ñæ~-W¬¸{#¦ðÕ¼Zl¶]æzR9lÿ¶×¨<ïÑó%ãç‡cáæ‘ãH¸½Oa&~-Í©Ú$‘*×8‘rܺ¬«;BzŸ‡  ó“ ñˆ¥'‹ôǧhrcäQú¸oo^G‡ÿˆN`å`cÑ®¢_•E'ñ4:vY#Ó'j©‘®XVo1/¤9¯ØÒó‚WY$|]¾­?AÒŸ´bPûæCÚ„Þ|¯Þ²ç˜ÇHMôç°ºám)ý„ùC¨L¬ÆÝ¶EAJ~’ö5ß{ß®„îþY“ë/Ö,F¿¦brWÇåÈ×í÷b î†ÜãFç•›ç<ìZñöt«Sq&DNÖ^³8íbWÆ;Xx³IõøðˆUìç~48b­é²ò™ža¹+чû6Z«¸k—e{c¸F£½æµ>ìMÖœþËNf€hýG駆ÔnâÕÅôQÎxÅòx¡E¼bxZ¼âkʪjh‘,‚±ëñÑrcŒ PºlAßωwÙ8{Öƒº:×ÒK®äÜÃí_ã%ä;Š·ò"5xOe¹¼ê1\lfÐré ‹\ç®ú'¯Ýu;û?fdï~âèÐw™™û¸ZÝ%ju•Ùbšµõ̰B Cål>TdIP A ÉŒÀ  ̽(£-óy;ûc¨ì8Úþ¾[ª±ÐåcÁ<µ¯$W¸23‹{òg‡#qSá™5o/õ1Hì%o{“žz6|\‹jÆ1œèíÚŒÌaÝm|+{²‹ôtà\óz¾ØëÙ||vÂþ‚Ï2†¢™?¥|ºì+vÄ F0Ì¢xŒ†a`·t¿ÝçèÉãb-ÎÍiáì«Ø~_ËëõÕÄëh–ä>¢™e3ýüg@”´G .mÛHùíw¸Œ™Ÿ°½uÇvç"ü3œƒxwvÔ˜§»‰NÓyƒ°¬È^ϖϱß_[|É+[;ŠJÚ=º(~,µ°<¡îvÈ{]«’ÑÑz—Å-~Gs¯xÖÜÓfÒòI½\ŒÏo×sLOõìù’ÝÊTùK,–‚çcÚN± á‚zSÏôŠsàQŽW^hSâ«BÑ U½geÒ"úM¶2µG惡׳ ÕìÄFsß-y­$fšá‘‡sj¡!稹!ÓÕÖîôU&Üjhd–KIÂÖpÿâs%~ºÅ(:,qLµ¿6L$–øY „N›v 6 êYbP¶•Ù)qB+/4eOä‡,Ádó ¶tŸÃoªBš2Óõ¢}Ewó¡Ìø‡次1T]JÕ<-¼]ú)Š"-ºâöükZ‘Ì,éM5&åïHMNY 41ž÷9›¢Ì狆x:1´þ_®ýdðX­Òú_Ýêç\>Úš”—ºO¬¨T¿u˜,1®ªºÚÎP毃ÿn„£`9gêN±Š:Ñá<0¦5— U%Õk8* íHaàÊsoO2~9(,ƒCˆ¦Ýí3Þ´2„ïCÕÒŠ“¯°—‹Ú~oÊÇìœL¼Œ½íÏ5ÆZ¿ù²æ³´ -%sß@£†«ÐeoÝ»©ˆÈ}Û=[YÊz¢úðJ ™Ú˜æ„Ä;˜Ž@qP€Eò4©ÈŸßí!7ÈŒí¶-ý´ÀåaÄM¾—»Òö™1Àt•]b¾mËMk:nºîÈôQšT{À7¸…¤¢b«7 {ù ÁÑu’¬y¸î‹r2L×U¯åãá‚9+, øôÃ@çG¬­¶.ô±n ŽÃÝx#2ûÙg_0º¿"Ô ÝÇÞâD3ÎÊ;¤Æ¢LÔìÆq_B ¬Ë,,(¬RùÕºÇUön·eh§eqëxŠwp?ƒl¸…†h2uóN@d+î?CÇ}ðK >…ºIÖD©½vdàê¾ÅËm+ ¨RôT<{ å ÷H³Ðóˆg¹3¦NVŽ’««^ûyáïQø<ûU™0TOšï¿E‰‡C gq‘'±rLXz'c`ƒÍu<óo«ó¯ÙVÁ~‹4È9D>·É‹>àϯêÒ¤ÏésÎíÄû³Õahùùq™a#E;ÄQJi°³#Ö{íÔø3NÒˆ¹{2±ÏRðkY…/Öæ¬9Ú.=ªàˆ¨ôeå©B¾˜ÂÍØ¸!=Œ‰ðXèBD!Þ ï%‡o˜ý·ï話±¶lÆÖ8ƒ‚OÒµÀ…O’ö¾\"Íz/N#µÞíNø½oõ^ø¥Ës¾,ÈVo¹&pñ¯Šlƒ »&Y ·>¢ylŒÓ ñɲà'_ªíѹ`q‘ð°5•~bq×| I3õ áI(ÙØ(6z#ð[ ZZ>1AÛúTÐtûÏ )˜0,PÝDv»½Yk9á}{bvè7Ùß„PEÛ ƒfߢ‚>“>ű_¬ým¨â¡tååÝjYšŠ+<#ÿË*:/f”§,:ÝlßóÆÆëÒ€×}=‘”U^cÛh`Õ>£dŸJ3½g/‰Â½ ±f=qòõ®ûM1“ ÇÇ]bSÑø}Ê)Üè—QÝžgY_ð#µŠ-%lá°Wbøßþ’9R¨¥ÄÒw0èCY}5æ0e½Ü›;Õ“Xzú†Ïz1É+oÿ[—R¨h½ÿLþ“™b”`õõCžö õ„Nrð5Õr˜¾é(¿ÃNƒŒ¡y†ÄÙ :h}f-†S.Ь˜YO](cZåÆ_t°(Uˆ5§cÊØjâo†,üµ(-H¢)áD·©Ï:%4‰]ÒÃÇ(¥JþG¡PõAêÖšù!1xàD5˜ÇíÚ˵0^Ì4)j äÑ`6´nìô‹Æ©gŸä5šüÉlåì { áí{¿èdª¢@Þxô5}™þ+W¦Ê¦ò3Jý«Ë.UëîÔN¢êÕ=Æm ÑâŒs™òâ»Ô(úò»´?{7Ê.tß]Œgò5œô°÷þ‚7£ ÄŽ'Š­Ü0"ŠM9˜iZ2¡Þ‹Fò£«Õ¬yf>Ç©¡³EÈÒöCÌÔnÝÅiáÍÝ ƒcsd±ðB#îE9çÍÀÇë5Ü¡#ÖËí¶¨ ›w$ë®{–ßý’åE}9Ãð¥å²M™IÞ»¯é6R•ßhå%ÌœfõŽ7„óòd6wš$ðxmAœ×9Aþ€Å«°1ûåâ.xi¾ç¶AóSÙm±—7aë±icѼ™š)⇡¨ed¶¼º¾þ»âI/âùù*Šà×ZA-QåTóLEd¥'¬¹P…'Û4Òið|½õéÃOÊHîoo³N¸R—W˜²6AÅaºÆ­ Àe]ÆÇ+å„B†æOÚˆ{¼ÖÚ„¾y¼Ý“œ MÕ-%Α2hß°sý:Åóè«zH(Í¢eÚ¨‡¹Øú!Óˆ3ò]~Ãa.|1—Æ!e)^áç™Æ£ó-4´×eàP…ÔXí^šnÜVm=ºûà£9%¤Q±½°)^sÕþ‚½±`Gí¨P“„Kšµ*ülg|j72Je¡ x²4ÏÃ¥mk~ù÷¯Ò†¸c¬×Ñ™ß'EÞW"3]Àíeª±Tµ§åÃ})¯ª¦À'’^¥$}aÇ„í„fùÑþ4ÑØî“”ÎWÞðÞSæM™úk͉}¤T'Nvw˜²ÎÄMZ´Òa¿­¤½.yÕ`Xìˆ.4M÷ã§ßC/·lJ0Ã(ÞdÊ…˜ÜÉ<•ѶB‹Ò› ÄSkäæôNõ+^~("t¼üÇýœÀr«  KÖtö¼Z•ÙÓ¡ù·¢—–’g8ê8o}uåõïÙºæoÅÓ~h¨M#¨Ù€„nµµ w“ ã_o‡»L©†'ª eØNÄÝhy3¼gÓB™$£‘XÝÍUÉEý,úŠ-9ÕðåôYé¼!Y§¡îõê·{©dø]“,§®¥¤E1Â{ó®òÔÞä}·nœz˜£¶,n …c³™°æÅ¹â«NésÆÂŒ]”ÆWA骥£ƒ,9Ÿ*ͤ¾Úº°fÀ›ë‘n„î’ó»qÒ†’ÝýÚžö!ôrÛ}´ëÏÄ÷é;€‘ÛÒË`M4¼ûȽs`áYo7'´?¢„®–%Fü*|/žVž–IÚTx`xNÅ4Œnæ‚eNqûÂó¹N±£K2{½ø4ïÒ»;fAKµ¹ ¥^j êãe©šK»æ äû¶*§øËq¦ØÖ£ae80î®Fƒ%°$lœEFÝvý°¬~êWõ®WÛùÈ´òH*pùíÛ¢£ØŽÖåéôÈc±Ç󟳛òı†gIgœò·ÛËxhäf’%ù¿Ø9½òéçuúŒõSöžZ ìRÁé¹Iè]…¥¬aß@Cý‡µCxCÅío „ø½›ºº!RãI”w-ÉT8¢ͼd©«¾˜­‰:ãßÁáûœOY´ÛŒZ!@Þë9wü2]‰_àÇ’)8®È?Ò’A;ˆVPÈü*.˜„¤‰!üí® ³=çÉï þîÈfz>M½8¯¨$GôgÉ@‘KÀó ”9Ê[¨ÇÏ›]C‚Dœ>â ^2[º\7ÚËš$rci [%Ù‡ô^p¨³JLõ»1UEû/qs4ÜÃ6Z‡¥«¸ D)³µw}ü«åyÎb`’u`hß›G(Þ_9ûrDz«‹Ó»)¹ èlÆâ‚8]£5°8a´2¹L}È>?$ r<öðšŠû†ä¤)é,¨òì?²bРO/\tÂ4t7$”’µAã^ðYFËCS]Ë2¥¼L({úÊgá‰Ò›%®½úöócÆ ï–" ŸÄXg¬-ô(Ë* øšl¯qÑ5Ü Y±9XSt’MO¨œ´ãRÙ0, ³õåGòk!ps âkÃÛÍþŒHh]›Bv²­n1ž–lü"% ”dì‡Å§ï«€S•òM¨šÎ˜£òZÍÑ‹ n—X+ÀƒÆÝÍëb?s0è¾rÁg\:<,3½Mk­xG[câqŽK†Úǰ5‰‡4œÝþ!JyWRò*?¢:ùšmŽÒ)ƒØ9sJS²zF¸oÎs õQáqÁPˆ‚¹˜ª–[)ù›2&¦<³È3Þb²ü{˜ù›,,þ3štù8Ø7u€éAËØ&3†v LhÆÒ*Ü5m{óPeßi ]×tS5ØæÀ*·Œ}3Q#Ken=ðxç;IiN}МEn(ìüSÙ>‘…§åÆãÉp¦ŒÜÊ´K›Qi>ìfQØ´œec“pVcøôý©íCléƒË8«þ€ØŽ dñ”‰Ï΢Îõë`í&˜ɨH((U¼›õ“]ãÒ}c#‰šM2«’Ç‹Cl>T ÁQ–Ëéaân†n%åÛÊáû™¦ÝÉÅÊŠ„©&Þ¦`ÅLù=ûÙ·Áàb÷EKÒKÎÄÞÅŸ.GRQÌó Ú‡2ô=h͇/`ù/ïÞ |5}Ѳ‰ŠÑ7ÚÐk4:±%©.xNæ.¬)¥UásGW§F`”p‹FŽ£ †m™/ÿQæ·•dRì'8­‹k\o‡z[75Œ¹üñ£ŒÒÔyä(Â4@¤g?FÚ_šÉ¹× œ™ +ª³Z?ãv„©N4î›_rŸ×*^ÕäÐÂn+˜Y—sZp «$6 pJJÆ ªbŒ¹Q ùáÔ‹‹ò w/„™$ÎŒxã<<(·G6ÝÐø*íÙ»~*ö#(âúšóNb“‘%ß(Äô¨”Êå¦"žýˆ¥ÉwôËð|¯ÙìS÷÷ !¡L·“Ûµ– ¼ ¯/WaB(“PGf Ö¡ø'œà¿4Pf™º4¥¥QyΔÉ{w0ÐþHÐ÷enA¤`}‡ 6óÚ\­P"±Y›TOrt(3R5ûH3À阭þÐÑ$¿-pêKOü®fp÷TÊ-³/oD âÂÞ so&~‹¼duœ7ûHk¨xdÚ†Þ`ýw„jB'Õ:YD"û4,žrœŽ¸|~Ð÷†)¦Ô/•ÛÏäd´îJ}¯_Cï2a}¶¦L9„Òv«÷Tž2µpËl-¼'¡aZ •C¨ ˜mêÕ´9À¥I*Sëñhi ‘Ç"ÈH9.Œ Ó¡§æx êû2¨ŽD¾ÀÍ4äíËÛºU{ª]­<™GÏë“Áº`¶yͺœµ‚2+âÿXs¨ƒªÉw‚åý)mñ“n¥— ®së9-•c¦KƯ°=^ú`ú ;š(%í õ…×;J¼IôUõ–7þÍ¡K?&š(YÂ{:^,áÒ™¿¶‘Ñkñ•ÇnxIj®­‰ì2Ó`QË)i‹áºq8[=pˆ…ôgß+àÎ"r íã× ÓÛFr S•½ûù¥“›qfI`&øf×%v\„Vµß×k;EâLôíÃØû`0­"þköÃØ‘G™ö›—ÙÙ NÇÁpêy6oà7gчKÌÆÝRê2„͹­ÙæIï:jU) ÿ(L޹ßa¤0‘3'ÛOõüŠcRÐ1+kdžÇz­‘}PQRaТ³@ýI-K| €\„2ÓËøö„¢u…V:^¾'cIvqþÝ·Õ®Neø|“½«Ð9•(‚õ‚”T?sù¹$ lŠU!Wóí`–¡9ç ¶{4%耭ÍFD}‹/3…)€i*5Z”f£ôœiE>¥PDcåýgûiv3u<˜þbmZ±¯¨#pÖ^Ê\ˆÎú-Á^nøC˜é±~–´eMÂsi=ÕDÔdÜ¡tñGçM T"­?yò‘~7˵Ðt?›i®¦>W7äR÷|ûÑ‹OfH¶FÃ>¾ßÙeX¹”/øý–F%Bš4TÎßj¯re%Ö¼š?œÓ­­àòA)DPÊ.-ˆÛÒ9ì&…9|qÜšBRžï¬]‹`\Î t¹{}lçÄ©ú³ñv4•,8''8A¤‹NÞµ¹Ý‘N¥*L|þÂX¼Úø}k£ÛU®Ïr|˜×ü(uù/{c'Ø‹ukÂðdMÃîKÔ}Q'%î«òb6Q»’BÕù—VË6‚=×õ™½täé?’àH`øÞY§õ®Ñ…Àá®ÔôJ"EŒ+‰·\FRågrVˆÎÃØûžÜºH¹ŠRôôö_.Ìu4¼Ç@ß¶Q5˜BíZ#ú»ÕÖ´vb›[|æÆÄ?ùðêâ{ÉIHˆ¹ÍûSø7Æv2W g æ ~ÐwD+žk‰à/_eÚÒÞåÙ¸Ì5*ó–:Œ_(¬qEaªí¨à åÐ4¬^Ö¾ƒ»‚m—Ê!ì¿Éì!Àcç×½ žRãÐ2½¦‡)j‚#LÁK#J=òcSÔ}<<~­9fkK®£ëÒw4p^+«Õ j§˜ ¸O] š: +Kp³„ù´^¯œ¸p­]O •‰CÑ̰ER’ÂA¦ÇKrqÌGgzþkR¬ ¦Ò°¹ŠÂ TlŒRÎ"sD¤Àöþá–™úPç—FÓ„.¡Páº>éIó¥[[A¦®-±»¾ÜêúŽ¡»ZP:ÕÆÓÊåÄ\¤ØöÏÏÝcï?FíYšÊ•0•†ÈZQ«ÀF¸NŽ {Ó+ÍJ»í·¼©§kL¯JÜ·ÉlaÙÓñþIµÏ\ã5i¨ ~¥‹‰Ñ¯‚'øMÖW(¨ÉíFdÞ§òÉEâ/.qºo“äï¬C%OϸÝ6>v’D@+@}jD0AKß =ÙÉû¼z"ÊËJK–ýesD–µ¸k! ZˆÜe,êðæ{EÃß´… ÿžííÜ­úÏ Ù­’nòysQ…Ø¥ñxº•ƒ”T~Õ!ÚÞÅ:švm‡•;ÜË(£0_òþ~UN¯P-äié~_¢WE¿ ÒªUYÝӾˀöãí ‘*»¹*®©Õv<5]*e‹¯„Qu>͘và²ñZ‚’„¡82)ý¹eرŸç£çfFzSœ, mÕì!ׯ)‚à·'tD¬›?ñî\i 9ýêQ~JN4Q ÊTÂJh”"x¶¤3¿Þ 0wüê¢Ö3¶–ë` WU§YÛ̳‘™ûŽéHè™ôåªýu¨ÝºB»ÝÆ0²(G QÕ%øK"‘F4ëf˜-|Gv EðEf,+ÍXÍj×G¥èC€YªbÆ×gù(?õª ßÑ®á:!òȯ¬³Òú"‹ÙÃn°«ØbFóüßÍ©lž´‡kßôÈj‚¸•Xç:MhOÍ—;Œy)‹R²v%YÔS Ƈjš ½ÖiWAAúô–ìV9f0|½dl¡±…Ëø:D±“flB¹ÉÈ`~yQ¼Ä¼þ‘L™'¸Õå{@÷¾þ„~¸Ôz´÷¥ ë{.«øÖJVrú¥˜Wx®'M¯÷ð„ êQ‘Ýù>”žˆ¿]Ét”P³ ‘…ã©g º‡å‰©ŠcÓÜ”Sm©˜Â³X‚ üîdÓRýZ>ÌþS}™Êã‡LõÁtüO[Ýô¬#ê[¨…9¡¢0¥ìk5Þ¯úŽî±Ÿ¨ncÇÉР| ¸b4Y¼öôNйÍúÉáŽaF’+úVcŪ=f „ ?0Æ¥(ùа‹H/§W+n³…ÂMÎ÷Ì~‰, {æÈõ´¨+êèûÕñSPæ U›Õ›S²,Lšj¼ož9FH³^ä •µaZ¬É®1ß>íØ,¦=M¦×^uj#÷£À?©zž_·SJ°ž¢™Ý£ÄÜ|[Œt-7ˆn—›Á±Žªm_2ñFt9,9Þ[V >¿ ëú?Vç]=\Q6̺~¾Üç:^ÁíÚ®–u8Ú` `f.jéc!B$d ×",Õ÷¾ˆ÷Êɇò\î YŽÉ«ÝœNSaÕ–ñ¬H¤ìçRúD)± }ðÚ¬]EJæZzNœ—¾|˜Z¬i$ –ºBIU ààŒ3Å·ŽyëõD»Ù¶î<½ðU&bÕQºéáĬQ¼àÝ(»÷QcM9b % ùÊt]Ý#É’Ë”4 L£KäU¢K|iJKgÐKéó@3yL{Þn;’RcÑU1G9C³Mö÷†Ê ÅP˜m ~t(wæ±ë¹…1ÜÎDÐaC÷ö.º¥Hké KR?9øÍo}¾ @ 5Ž+#j¹Ù½VÐ=Úºº{MEÒ‘ßz›&„ukg.¾ýå`úIýë¬x Þ•ó\§T°Ôit“Ÿs` "OWá/<¡>´‹ ±ÁdúŒĨ=tX¤ÒŠÝî¬ãU¡ÐôX|Ͱ‰v×ú;Ƙº»UQ°s×$’Ã;‡wPÈâ«éŸ¼%MóåűL6Ðß_Ðz±úâ™ñmº¯¯¤;¶­GË"^¼t™+ez‹X)–ÌÍ&záÊS»HõCwù`ÀÐ#W´¯Zý¾YïéÓd9ù…ׯòåûcb’hž¨7VÒÚÀæG\¨*gº’*Wשô(Þ=Ý–“Žf½Výº½3,úfóÀR§â‚q© ÀÈni"5%ÛYÿ kò‡"ÓÅÙ4(†[ÒñMS~\…ÇôÈÇ»Yèà­YÙñI¶Ç%eZ W­ÄJï%Ògþ*ÚåUë¶@£}+³ ¦UµebÂr²³ˆ¶S[£®•—Éë"޾_A£u­s>ÏPoR‚ê ®ù•³Ió±Ü 9¦w[žW{yñïkßMzÆ#Ápà'‹ZÊ1ÒB/(eÌø®‹á[TĪǃJ›Á…;›øJûõÏ9Îgl^#Rý·çÔ¸öð?ù®~Ö FÍ­ dÛgOÇ~þ&5î‹y6ÐÛû6<*aù1^^ÇüáMSQèsèõAì3õ·@gš_‹õ1ÜÑò©í¥¯ì«ò5À|n*t„Sëuq†×5y‚4l?fpMÜ ²ÂÚ±}VÖB /ˆs‘Äßµɲ#ýÄ™E çû™²Å1MŽ<Ș³‹$e„ô‰×–»}–ý‘úlYB%¬C\Yh°IÊ¥1Óî[›Ïë'¯/$D…wîùÖ³ ‘«˜Â+úk<¿V¢ŽÜªô>¨˜MR½}ì´žKn8mä=l ü³Cém8¥¼¾ù3Sâ£s~${ÕØÁ+ 'W†5¥·î®HÃaEôëÈí2Q üWNèѯ¨Ú&2é ÎÎSgCϲ¢]’VÚ×w–Kkì&„÷îùL]=OJl3_ ‹iVçš_Ú:>í[¹Éž{}`ZÑ#‚#%=ÕÒsËÇ«àæü9“y¯Ò˜ƒúº=2#Ôz­¼¶¼5~·d¿'C|ZRís‰b]qÄýl osõp"BŽ©©¹I»J†=”¨ʾöÛ'ä\ Ð2Ì—Oj\[\ÄEPY7ž:«^i\Œ4¹U‹y þñyÎGà}L ‡öpË+p&VBbÝ÷Ÿ¸:0”åHUãYïd®éxZŒd}uìÔé×V¿;`M³e=kwÂùòµ…,Hïf’4¢³?L¸`}Áq7CœzyŠ” ­Éá€E÷9£cÜw‘oFGO~|'Ø~ø¶º à n=\Ú'‡6)j£Ó3“µM%Êl6½? ò°éèo˾'Ýè•ã3X†zéø…Ò¾’kÿÜ,œaîÄoL_¿ß­Þ ´ý«Ô`É`y‘Ÿ_¾‹6F¡GâüµvónSm?’ƒyø„Äz££ûÌZ·µ^â…¡ Îòß×ßB!¢xòtÍ0¥®œð™;Þß•{úl>÷zd”{3Éo2G½2)Z¿9†Û¦_XÖeÖ]¯þI“ÇöK«/0Üq•ˆõRÍ`1DäQ{Ÿ6—¸vêô^ò¼˜øv…gíI’ˈ«¯Í¼üdü¬æê^pÎ\qÓLeÎè#Ö‹¸°u³û“ù¯¶=@Žu¶žœ&\öëRœJrèàªëøàL^+ºžDÔ¾f“{YZàÛ(©°š£ –5lâ-Ä6£üΚ2‘g‘’T²Y‡Ý/³ˆRÌ˲÷Q±Çá”Ö­?_#3ҳȼ;*B‰ÓÓý‚!~¦ÄÕ£ÌØvC;Š„Ž Îgdz# J²Ý{7£óö”Æõ•\2Ùëh ÈàN”¹` 1© ï#qPA°F´„'0-NvD¼fÍ–Ã`)!þ¥ýÙÖ 3ÅÅæ—§šgÃRM¯ ùhU :—åU—³öǤÛ÷áN$ø RCÏæÃGwi9i3›Æ8wïæ³UrT-DL„¹žÿËh)DûDû*©˜@õÝܾ£òÚÒÒu6”þñ6ƒV‘WÔýJÊöä üYa×ÙŸÄv§Óilx<‚Tà1[¸…mzNoXj¿ÇYÕDGÙŽ,ŠÆ½0 2²²q'Ö aþ”¯uRJ‚j¢ƒõ¬È§*|$ìoÒ–#ê:æä[Oh-½,ø‰ùÐ_&Ó;¤EÉãXå{Û îâØVÄÇË–jù€5æc3ê#á;@ ”?¬ÈüÓ¯´|ù°ã¸gþËÆr‘Ý9צaV »÷7qj~‹¢½wp¥ºÛ.›M¾sjº=-*qÃß®8/l÷¶~ѽ„Ü›XØÙ‡\6</&ï¡>+â3ŒöÛƒÚ7úÕw‡-jB°BaH„X«ï{•$ŒÔ{¢)D_«ûbß¾ía-K©@"ôÑ$;T=ø&W†¸÷á›Ï¡WI¶ª'•“ ±ug\i±˜xð ˆ÷ûs½ÑÈS&!kV}Ù3M;Ë9ŽIy‰ë¢%SÎ˱~Ç•WÛAÙ§6w£ ýÔQ8 á‘{újÃO±ïãºKQ)ÿtvàQ£Ë8+¯PT±šAÐû– OØþ3CÒ‚¾ªÇúÆ´²„PHöp‡ædD¥]ý HSÀÄw'Ú ¥$ƒÎq9kËŠ¦ÑØl9)øA{yË`¤Ôoh騋a6Å 7†Î¸úˆJóAô“«¹'õ7;÷?‘m¢€ì Àr¢úæ oº={-A6+'âç}tã+ÓTä5¯ÏˆÀ®ëy#¾Ov¬üöà‡A´|ÏÑÖ ö$ô›¾ò¥æƒ`ƒôcFÁT°§=èÀ2÷Æ zmMF· »ÅΫýª‰ÊZÔm¯¤×ÝÉ’ È<¯~ôó2ݹGi£XáåÒ0Þƒ4W°·7Y‰ØÕóðjh¦|Q¤s)'ñ R¡v!úeÂÂ|ÉÒùNöñ×L¯æFz†ãsazµ&³Ü°†â©Ê#F»êêsx¾Ô­ï;Çp¼µâmê—`›ïÒ+óë#¡(tQsöñw t®lhX›¨²¸ªïËc&VLm¯& #Ò¿»¯ÆLÿpŸ|:s=ïìœ pô\Üí§‹Ä6ëO€—ࢡ9YJšéPû¼H,uñ UÊyê*©5ÈGˆÜ›ƒ«Sâ‹ÐÛ¼Öñ³±Þl¼GbŸÅÖAÚØóf¹°RëñJ­Ú¥šÕ€Ê2Ã{úɘÒOnôn™õåFO6û«ðÜXæ I‚?„û5Ò? D-‘5³ ëçú „ÖrÚ$¼‰„©“íEY ù+’ÆÒ]à°åz— Î9ëP0F#ÕÉkÆÁ!Âhˆ£"År¥ÄÎxOÊÙ¼õcÌ]´©€\Ï·µ[WR¡"J²–t49µ¦q.*vØ–`«0Ï*sC'Nø`¬Wn1óg¶ˆ8*¢|`’§ý€”™<ñÄ’íÞ–~ìa¹S”¨JººnögwáÜ¡"åe\Ë’ïÚîm†*:;‘Ü„tó'ÒvÄ^ñá&IY¡ûQ¨;v"¨›>‹«óq*´ÐelþJ…R±ÙòÑj-ˆfpçKX1ÅAÄ/z"n´–¼SIEY£Îé:)ôzgD)ªéæ4î`á1ž¬+à']·÷5x<Üó`1£?p´#' ¾õR‚]t–·†­âèé™§k÷'+½W+ÈFóØBkm!²3Á)Úy=6÷ƒ`cpër|› ‰û™ØJá5gùéê‰5ühvágóì¾jðÎ4‘9Q}ï.‹zAùþH€ îá­ pG†ûTÁ*W–C¡¥ãš|ðí@°%TË¿M?µ¯_lÈvUEÁö¬8K2ùjäõ|xùŠî—Yã#ÔÙÂZƒ !H—•ómЊP¸i ïg ðþnÇm±ì$˜`]›òlzú¾)¨›W¥w‡Þ<ÊBeaD4!›ÑéÔæíÓÛôjòcXÇãTÂêv;±…‡ª¼j˰â/šsö¢iÞn2»šmVLÆjƒµ0Ï–ãìkí$T³`¨5Ÿûb@mv7.`cÍôEÖQ¡×é²FæU/\ŽwR/ñ&Nh#Ã’uÙèW²?•ïo6Ðà]²é…r¡ß¨k½˜Å,0\[“Û7OLÂø••;G&L¸ñS|2ÌÆ'WøŠô,‘Voɦr0˜'p°îNšåª¤ë§dgüÕañ †ÃìâiÐ'½6/·ŸïsçÒç8Cø.–òÃ7Zº§€¦® Âr‚ N&+‡£@Bfè†Å'®ÇãÊ«ëcñ´¸š‰¨7ܬmïf“˜ñu+Y¸¿o}RCWH™oÊ ¾©iÈÆIá%sô§ès˜ª50%‚q÷ë»Õ³ÇÀ j§!–!ÄΚ™œ<Ì £ì6Guzé,cgÝè Í!#økÍ‹»˜ýŠ›rR©E×…ÙøÑy6&1ÜùUóBôéÝSsFwó$çùÐÖø!êƒMÁ'yj©fÞ`4It¸Ù¹Î0¼3‘=!Cj‘Äýcƒ(g‡9Ù¯°nËàç#°ºãw: ­­®RJß)Û÷†õŸå.g$ÄrQŒÙ§d¯»”¿íZÍ3a$¿m7>ŒOCÀE}¥|æÆ=ÍØ¬A åß¾Y¡Â%¼Ä`Ó<T¥h¿#o¬šþM¡6«Ëˆ5á&¤Â‚¹uPÝúAþñ`\ñÍnÇô5ö=M"Ai-…áûòçûEñÆ@%Ô§vÑdò€<´ÖsYΞÔü´(‚Œú´yNDD'ỄåIãc^-Û½L&&€08yg€Öxš ¥ÜwmŒ§@ `@8Rx¾¾BkË}a8ŸÌ¿5~0T|¹ûPœGn¸~)'Áb²3B3Ðåz óõt@7ëÌ<ó¶±–4» nfK/´‹ýˆbué ÉŽg{\õ¶]ÝÍ=(É€GSàw™„²ƪzÇ%~+̹ú:ʽW{äa]3¸&ÇÊk<Á\æ>A¹ž¾Ti­î/>»À N'˜·(ó†·4ŒT­Â‰åq§GÂ,¡–‘œ`‰>ú»×kõtà´g±AÑ‹>ì$ Þ¬xœÄ.»gä`|ÈRôŸ2èGJ‰ä`Ô?¦N‰*IÏÐÔÆŽØ›Ñ: “k¶Òâ ûH'lqñøµ‡´¤ºËD‹´}jÿ&î]+u[­ì‡¡÷;7Ùidí (‘‹mÛ¨!†é ›q†kמtI &Ç<|–ôP[ô¤„YÞ]Røø2,“ÓdeyÅ$©¦d±ÅüŽF¹æê¹‡FDoÄæÉFí#¾¿ß-Ñè üå_7XwÍâPŠ3»ê¤PùþX™àaÿYõ=ûn¯0y±•³²S‘¯”n©cH;ijQÖ µÌ·—]å{Š~+8O³xGʘOFvnADXJGÛJP†Ä¯V¿ˆ2á :îÙ™Vrj6ß97e‚c„ÒbhŸPÔÿ%2@޳KV£Ñˆˆõü’¸iø½öæù‡ªuÊ'Ž£3?h^½ØÅ·® ÙØA¼s7âbÞ[^“¡ùQ|R£clIŒz_J¿ Ϲî¬:ë™Væ”DYkÅq^OsÖî…ОŸ€¢îk“~väÏúž'ª¢(dà÷¯NHZe§cÞ!zË™Ù*®È BÈkMOvèG6K`°ØIz Wo{™¶ÿú.; LÔkðª´]ùÍ))QZS»¢ZJéC@‰d•]VTi¶ÀFíÅ÷×,©&9Åh8×s(S“î‚ t`庒<¿Èú¶›ç”ýì_}£ˆ×6s¬åÉ3#¡L ê(Ëiˆù©56!y"S½Ö„r¡2'wA Ö¿ŒÝùò]©ðO7¾Íóŧæ×Â|±WômXÓ’>õ²”·L·uŒ×}ƒcìJ1;ËYÞýýz ö¢cÔ8:Ýgpjúš¹ÔXä2ÊÞ ©¾…òâÁÐL⌤i²ùRT$7M°È>Š’ÑOUàÁSòZG䦞a¼EÀpÀ³]¢ßqahvÖ†ƒûðÛ^†Ê_ñ÷¯–çžÍ.>TÔ6®ÁEe~qéyNz1r>ŽÊlS.ñ ¯D.äJB8éÖ+ˆØ¡HÛ©6£ï:4k~Y!LiI÷ ³úlo«›<O/Î}öcIû˜úóí}"Ö¡}Ñâ×´:cqWßÓ™p8UD̃Ð7i5ßÊz´{Rªæ %k–g‹{‚oÄVtV&ËãL,t›ÕùÇò+{Ìs3›¥×­‡ø¥EÌHôW»ÁÙß÷µÛ§ˆßƒ×lù¥—M«UŸp®9j£“Èf,OÕ 1"NFç \^ïß›ü$ Fàiª {Ä.ô_.jrm™m+Ó¿+Â]„m6Îø2þº¬®1yX±ï yç¡Tr÷&dîÈác/Å\EXˆú6›JÚÞ­Md]lmsiŸ¤fc>Uç­v+¿ÔCûübÓ×ô´ëþòi4Üôô7”“È™b_ý Î¾tø:H¯è7TÃì!(K˜Ÿí¶q*<£á¹¹¹pí‰êÜ€KR›~2`–]x«ìØ_³r€ÛŸ÷®Éq¾r+~» kw3ç¿¥Tb;MQˆXQcUeú¤Ÿ=¢v1hÙëþ’Z̃2ùuy¤}ÙÅLÚ•]?VË5-0Õ2k‡€á/HE‡Õý`R£¾³_0›¹/tÇ÷ÞN©lDÎ`ß±øKr›XN×-µ€K£ÚÕ³¸ú…@èP ²C‘ˆG_x¸õÔòûˆ;?TbÕ5Jk¨ sí…¦p»:·ÞÒÞŠÐijÛ`Þ¯¯Áß~†P«'Y~¦¿c(&Ù—Šà&øŒCô>e¨Hý ¢\©×Èx¯‘lÎÎÿS?>Ù1ø³üüÙæ«SäŽÈ»fÂ,I²T¢ÑÅ‘ÕzIÛ]ðˆ‰&KçÝ㉸¬QÇ2÷Šjs@¼¹b¤ÀñQt¦s™Vª| 0QžËE¹:y¦Î“|øP3ç'ãæ¦Š4BuâãiùZMé¯ÓIT6ÐÝrä(ed®ðIT6º|˜RçÐÌ\ÊÇÑvŸbÚ^É3ÙD]b4¤Ôóq©‘Í'5}.P/m _™á¾º¦u¿1tæ«^¢À>­É1îÊÍNU·&îû8À+‹®‰Æ–üÔ%-Û¿áˆòôû ¸À˜[¼î˜ÓÚ¡«¤…É#¸ñs›y³ï4&<šx7”u‰ú(¾V1ÞÏ®.ʵ‡w¦´Jd6RŽEôaHþ‘7º•u9e£"#þ¦;Ýчßll¬0?Þˆ•‚ÍÕ¢àT'±y˜nåÍ]¦›‡iÃäæt¸«‡ió© {F䌫‘ùÇç6^Å S7߈2²t j?1?o¿Ò‘Ä.úR©L¾£vbÅùVöà#—>˜úHÒúÍgþ[žæðñBDGÔ\›ÙÁÙÔ])†»<•zZÿOžaðÐÊfˆýÝÃPfdßèì gÜæ;7ðâ ·úæ|e箵¦„Îç¥Rb êàmáA“.m†¯2m7¯Ë¼·>$æøóú%.°K”u–ß×(Ô±añÜ"˜rG–]´cŽ+&-JÐÛQp0ÐQ’†"Ð6¡XL—o­6œ]$è.²ûÀ±¡íÚž²}kb=Þ ¥j`fý$Œ X¤3óqõ±´’½Ë]¢‘¿\S1Þ4óˆv«ûÖKÕÃL)nÒjCë”z\MêíÁåÚ1†rôˆµ±ê¿‚Œš•¥ë0^ëÖ‘ù•‘ž²M{]z_ÿ ¯Ÿ_G“ä‡7æiœbÏxBw§OR…¤ATkYGU‚Ä0Øaœ@ØãdUg!Ÿ<Åð¸ƒá”ÛÅÁ^Ôa2KÑ=ÚDgJTDUÌgV¸•7#†6ŽÄÞËdév_b^\•< (~B­l*ë‘ _lgðb-2ÝSM¤_þ6wWî>Æ c²ôÏÇKTªš¸>ô*JâjU¯ÉtÐXf¡–".‚ÍýBv\ѱ«´ê¸%{y¯]úp‰'ð6¶¼è»Z<<’E Ë“mpEX(Xœ •¿£üÌOn§cÓó•3T;é&Ž2.Î^c¢?$Qóbì¸~ú¨†'Ü‹qLIká¬Áì휷ËKÍÁiQÚņÁEâËà—±XG+uÍÌ1Þž`¡Ý…·é9¨¹ðpW^i¼ ™Üvsá‹âi3®×s‡,!(ÀÆw`%— 7ÈÈGr&}j’òæ3¬Š˜äNsϳ`h ,A!±Cà¤ð‹‡¹Ø=\sL–à,Ö™gæÜ7¼Us΃m/56†ƒ\>%ƒ8 žïý_¢OgáC­¤¤Ê£¨­_Á×ÁžxWI\»€ªÙÛgø[æ5w®çkvó[jN˜Œtâ‚ÌHUSÚNÓV1OAñ9•? ®ŸFÔ«L¶ÅÅšäX÷›{áQ@67RLi#´/£“S0„VpÍ\¾qJ{ñuÅ€Úôe |AMó3öMAûsB¹Ø6埿{ñu!£3x[Ý‘‹GLDMc^ ‰1æEEÛH‚@mÄz9VHæ+•4Øûÿ€OÊË•D¸ 4°ôBB¡'l<Šì5”„W£ÊÚDÌçÔwñ†.âuÒcÖ <@Qd àÎXVØ»Òß'£”{ºcÒÝx%žé€ñÅÈÛÌ‚×Ú®„0qì’ ¢*Ðt0e#lh¾r`+£)"šlêZkÒÍ­¿ÇÜPÍgãƒP>©( Mtô|Ñh@Ä©Z¦k鉵 )W?yHÎKë6¯Fùo,V¾5t[YåQÈÊ£( €ì»„ÊDÁ‡×.ܬÖhT˜¿E…_Ïú-t¬Ù®Ðõ {Œåoß«XB‡¨çS³Á2z#¬¹X˜`å =8¸ôÐUcÏùB”Ç9zYiýšÄOqkÝu”UhÊ ˜ö¶åëê‹ÉQZoEåŠùsŸêµÆÔ¥°Ø¹˜g&[8n `.wë.¥paÑ1p³" ¹ÞÁבûÑM‘Ggõm›%Töxã'©žÝ¿WÖ¹7YS]à~‰n¾ 8xcr¢Gx¿ÛU ôÃÀ‚Ÿ¦›IÝeaGZK‚Ò¶TÞBîÞ¡Í= ­Ø:Â…©Î2Wºf”§{ÍÝ®°÷9~$úÝÜ¿®Ÿ´ARX‚ü’§Ävâ&ŸJa* Ë÷Kö(3m¿ôÚ:}#6Ÿè_yˆš~YS)3¥åÓh“âèCgÕ¬ßwÈ×ÿÜÒÑ+:ª<Ÿä€u QT£ÿiñD'®móŒ®0¡_÷ë þ :ªœ+Ñ·:ïæNO=xŸ3{<Çã"ò„yÄ€D´ cÜÏÓÙ°½“d€üñ¬«·ÌÆ¢­ƒhØÂϯõ_½·VõÓmiCÕ@4»K/‘q¢æ…å˜ÿ_B¾ªœ/ølÕ6ˆjÿ j¿>Fðû¾cW31/Tt‘ò¢¥XBãHR),cFvŽ·4t§ÂàÇ!˜™Ô;ÛÊh‹½S jÆÑBWªM!U¸qíñ=öÆóJ)VÈÞñÖÏ(÷N¸¹ñg£Æ¾§ÔÉöÆ4ýøúh»§˜Ls ø)¾štý¥å…Õ)ò†F„ƒýÇ9&ùžtœíàAúûbû賄¨½Êj”CuîJEù Ë=Z:qG­å}’‰ÂlðHpí§×±ð»ÞL!ãÜÈÁ±Û¼KUyÒß>º:höZåÁÌ¿®¦Ê}¯YJžþ—'!—VîvW©K[÷p|0H“V_C½;¡j켤`-«î!µëk¨(ç  ““÷‚ŽâGÇÀM^î/k€òyW1ÙA2߲ʔZîv} ¦xמdÆ– ¶°&Fµ¡jg3™ 6úVé¸rSŸáø¢ƒ,vmÏ¿ Zú·Ò°4œ›`ü8ëÚJ=Þ£±˜{^«°ÜA󟱙 ŒÔwŽº{y9S•/S\âìâÿ}iªA¼u^:÷«ÚŸ<hσ{ö´ûOrszSµ´ü¨Q1n7P¤uÐýñ14¢¯6åa~JÖ]DÐ24EGœqvv+jÄ%E¬pß™ùx]¶ñ"1®Ùr å7ÒmПÄ$9³Ì’(tœU…2JÈ ÈáT¦á‹Æf¥\Œb£DDl2£X—ÑD|tÇ¥ß"žâ^ÎßÎ䎢gI_Ô̾5ÃíñoòîHŸP‹—o¸2ììxïÊ…Šë¯?ßìl8}†–_9)•O7£ñï«Ò| ­?ÌQRúî|ñö†0Ë»¾è_,ãÎ-!³Rz{ÜZQ ¥Ñ-™e{XU¸Ò)–a(0Ú©"5w= TNc- ÜWóë}±„S®è³€å%Ä~Z­\°Ã5L†ßÏÕÕgÐÏjnaÉzÕ˜iKå{9p°%E p’™”;Aïžéþç*|}Ä2êU6F¢<õ‡³§î­…[R¨&Ó \­?¿FšRŽ¿l%s}=ÆÝe<©‰ßlpÒ£ùy‰¥+ùÚ3…«ÉûÏ*ÈSÿál}¬ìe2È?TR:*¶‡¡Öf]åg#f œ®™q4žû÷ ¦MxPáT‡ ÷\GÜS‡:»uÐYÛÒ¾ã5âqt]*„1àBj®)Ýüß¨Ê 3É'œ¥cq^3³]¸´¥z¹vH¿¤Ó7µâ†ÌAEË5>8|KF¼ÎýYpÀb©kþˆª›ëeJË-,Â÷5 õ,¨Uöq$u,çÝu'’ÊcX^1gÝ˰¸Î$cR¢€-Ò3ÓâŸÉðÉ„e¢E;•#á®—»Lƒ†¬è}|˜ŽRLPCÅSi3 ëë¶/ìé"å z˜Èø= ‡º³‰Æ’ †¹î3Þ¿À$$³>>1,ª$3—èG½£ëeìâ¬Rzo;™vB€L àûò}ÙâD@×èã(V‹°ÌÀ=Òð¶t›ð73Ó£ÅÀX»Çå<µ1İ:ƒŒfgJ€X`{ÃÓ`b¼!âŸyåo§žx2‚cOš׉èŸñ>)ÜO<™qÑæÅ¯„5Mà`Šn=X¤êšsAýÒŽi;X¬v<ÞÏgr›é¯Ë/ù¨YÕ/§ºF&u¿4RTqÞU\”EùcdÔojÖ;­ÂÐgC¼›ØŠöÊ=ªCÉŸAq×ìßx‹¡:aô\;®Ò÷¯TÏ–ƒï¡E1õOº;£vãx>ßu]vlß4–‚º›×l³£øä©·6 鸹2D_q®¤¶«Bƒ^ • ‚. A<{Áåù½×éÃç’ñåy“ì°†«d+ endstream endobj 214 0 obj << /Producer (pdfTeX-1.40.18) /Creator (TeX) /CreationDate (D:20191201114151-06'00') /ModDate (D:20191201114151-06'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) kpathsea version 6.2.3) >> endobj 170 0 obj << /Type /ObjStm /N 49 /First 418 /Length 3157 /Filter /FlateDecode >> stream xÚíYSGú]¿¢wkËô}U¹RÅa"°Û€¯¸x0­u`I$v~}¾c¤ijŸ¶bZ=Ý_÷Õ“Ñ! %¬Z{¡£ÖEøµÂú¿N8¥à× §3ü³…ß(’Ãß$´s&YåUG'%ŒËp$iÀªgœÑàÄN€Í@Ÿ¢pQŽ”…W8ÉZx¨x­ìEP&ttŽ"xÒ9‹à‚ZÄl”![‡,ˆˆ€FEH`T1£5°îaߊ´D)˜ØÉ"ERÂc–£È Îz‘µvE6Äõd \­ì.‘è rô 0Šœ’ë€ ÏNià¨jà^ Ôª²@)á–s©Ú;Ș˜³¨-Ì,ÎRì| :ïKÊì8áµÚñÂg‡+Îï㎦TÒN{¹ä @…ë6èKüÀRT¶}°; ò”p4v'o¢·yÇœwž>íȳ﷕‡ãѬ#Oï.fôˆ‹¶#ë qχ¼ìÍ&ýoâ“ÚQÚ(þÿ5ós†ÚÛ ¸Š0ô„†“j:¾›\VSñô©¯'ãËÓj`òõÁ¡GÃÞuµ'ÎÅ/¿’þd:Û¿éM„Íù¢W<¼ï_Ín¦ä¿Jœtä³Ñåøª?º&O¦EìSrj\”ŸœÝû–ÏOväAÿóçjR·O6ËžÍçxaaxôÏøÿßÿôï´2ÃCG8c„14òSA{ö㜎lvìHi¸uN¯Y)€›ç 5$ï5Ï2L4&Ê*Ä¿¨:\H§Òg’¤Ž=î0b´‹+É$¬pÞÔGðXZn@ƒ)‚ÁÞõ?ó“@Âr•×ÚG—ˆmÀ `Õ&à(@î‡IÈy²X¡t8t‰ä2j&©¬° “²ˆ‡e‚Ê3îEOp`mÔ&ê=$„`Íf²j´J¸p7,YÇF+Ž|Ìð‰ÉXK-a$otdg—ScmGKnìÀ{ú  ýQ_‰*¶²ä_í öƒuªÙX¡Áf‘lIQ{òMiË*≼󟌌§chcæ•èPQ¡¯"/¨i TŒ'h¾ÈêØ60ôFh9ƒöAmBc²¥\`â(£ó5ƒÑà%¦À4æŒxÊ•@=×ÚµÔJ)¯¸ è¯yâÝf­<ƒ«ÆsŽ!&¾J½>£V‘ßX‚°óÓ!PÔScåP˜È ËDš¬%Ç‘£Çr»'Æ0zšÌS¦\|ÎÊPÒ×d¢"›€f2ͬ„*ß…ö ö¶M ejÀfÔÔc]301(NδJjãp¯Ý‹Ãàêà(ä Ø‡S˜^£³5v¨)&§büžÕ ½ø‚¼ŸÊFÐö¬P!«­QÌ ëÑê’MMƒ£6…_†f›Ñ«l&|lb—à9O`Â7C}N¨|ðh5&ë°çGgökGLµž™Š-„[Q½.†ùSkl–i}ŽS©Oº¦Èг¬1g4 Ë §-•$Ii <B4RŠ×™$Là]àcÑS©xçblc2e=_ÏT1Mæˆ ol)8‚ˤCèqxÊcH­<ݘï—ÈCÉÈ„”®®øËé°°/®.Y=ãÈ+l:·€å}ç‘'Rm¥f5ÄsÁ× ¾"0XÀpVÂ0"–ù_„H‡õ`(‘âÈ+.Òp¿_X(:Šø€¥7XV¿%(l® –Y:i(ÀÁÒ™NÙ9>>Yã¦r mä7BáÅ]©°xðTÍ—gÍ¢qÖS¿6Ÿ™L=ÄbŸNК×òƒÁ¾–O, xÏ’ÛÙD=Í›=f—ç<=L™ê¥wÔGjvÉÔwAÝ€*o°ïbHk"u3šú4ªÊ1àK’z×R}ºž'z ¡±Çc 5M3upå ¾nÐø^éxì¬Vçå cv*Ôo<æs¸· œL}–שdðJŒ†Š-qŒõ˜è¬ç~Ü5¸Û~ýqPM/'ýÛÙxÂï1øåÇÇîáoÝ“ÿì¿Üû l z×SáÊ7O|O –›óŽÜ^V£h ÷{·Ýª})t$’Á½'7f½Aÿrwt=¨ ?UÃw˜‚;òC}ª¿ÕÀ÷%ÿ’GòDöä…¼”W²’×òFöå@ŽäXÞʉœÊ™üCþ)¿ÿ›9<ì^/B"ñ³ƒî«÷Ç,±Y#±E‰ñ]¢Í#±Êk%Þ•ûòä~!_‚ì§ =ËþY~îÿ?`6¾›,T1$eŒG(ä¶šôÇW¤—iõG5’Óþ7ÐÐìfRUröçXÞ­ê*l¢«îÉ«ãîsÐÕË£uÞaMíÊ¥ŸèÊþHWOÐ)X[ÑʲºTÖ3ùÝ£š¡–.ÇÃaôt=©z³j‚ꩦSÔK52èMo@þoËò§MävÔí’üñ~ñõ<6¢~$é“^+}Dœ.‰“Õ&âì¾xûrƒýd5š[Så"ÏÂóC^+Í®Ü×?›Ê_eBàX>§0øM¾’¯)Îä[ùN¾—Aöތܟ~ìp1é]~©fƒêól>Ÿ rŠÁxT»†‘–Õ𠽡ñÏ×»Þ@Vß.½!Æþë7á6h"îæûí ÄU_þW~©ƒoÔ‡Ø[D`oRˆ š1–¨–yxÞî¦ò«üzWMg}àíëÝxV]] èØüOÒS³Î‹ÞÃ>KÖ:;ør¸crü&¿Ë¿ä_Õd¼ì*fWÙë~ìîvÉUÖ$Iè'(Iæ”ÇSüàÞïöQ¬³õm¦_Ĭ{¤F+¤´&ÇÔŽ¼¦Œ{±h/¸?¿^Tž–çmR2×ãeÝl”ÍŽß¼8þõêælmÓªäme„B3Z/iš1ÆlӲͶn}cYmÕ>p³6]L{£+ð‘Ë~ÿ²?¹¼ò|Ö\UKÝܺàyp›w5 É¢Û£þîóÒíi~IXééèΰhìFwà `¼=Ú®Çãn®u%Û¬S3zMuh}À–ÙëM+ÜY½Ç/ù}ªBŸ4ßD[|{ n>>isòíKu›|l“G¨ûÉ'½9ùö=µM>ÿ„¼*>½ØBúÖ5±E=ë6õKêںϛSoÝêÚÔíŠìzIvW¨~ Çk]ÚÔWü_~ÔMAÝlN½Õ™·©¯¸^2 ͧ‚ºÝÂîKMs›øŠÓ¹òsW|îÂæ´—»ÜeÚøEÙhãO ß‚örCÚ¦ý3‡+SßÂáZm`›üŠÇ©’º*E›Sou`mâ+WfY[¾ éV—Ô¦½êoaÞãi¦Ýˆ´È뗳ˑ^*þ³¿î]WSè5Æwعtày‚} ~IHxŸ÷¯¦â=MM³0–HaùÉ’?ŸoƒÜ1Z¯ø‡Ñ&ÉÉ æ|+ìœ`¿€¹–„o‚øö”µÝšÞy‡ñõ/K€ßo²ÖæÚû©ŠÌZµr4kç‡8BÃq‘Ps©SÉ܃i¿éøºÃ(\Ìß ÉóŒ endstream endobj 215 0 obj << /Type /XRef /Index [0 216] /Size 216 /W [1 3 1] /Root 213 0 R /Info 214 0 R /ID [<8E94B38AC11F5A6E306AD5308F5F8337> <8E94B38AC11F5A6E306AD5308F5F8337>] /Length 612 /Filter /FlateDecode >> stream xÚ%ÓIHUqðóÝ{ßÕ®>ç9³4Ó2MÔlÒR,µ4Ë©ÄV¹‰"¡M´*‚ÜDÓ¢k¸ª M-Z4Ð.ÈE‹FA´²î÷½Ísî9÷ÿïðŽ™Ù?Ç,1˜¥[…e¤”¬ «ÈZRïî°Zªa9Œ‚$âÀâM*T0u‰Gbću,¨yI†<­ærR;_¦j `cãªêVq’ ;3¥–l’;û]i:É ™$ öê… ¹$ö¾[G­$5°Ï=ª.'y°OýJóI)$E°/¿¢i,%š9ƒ öã‚ÒÕ¤ö÷©RžpB”W¾p¿HÕ5¤¸®Û‡ÅLkHp{^-•„Ó ªH5ðð’ ëH-ðØ×»ì kùl=©žÏGú0¤æ¤xÓ¦´l ¤ Ž7¦Âf² NZtI§ôœžµ‘-p ³•6“ÒJ¶Â™žŒšou¨ºlƒsõ·ÒÝdœ›tIÝy'ÙEÚIÜ®5w’=pûžÜÉ=ë&]pGèN7ÔÔ’½p'fÕ·ì'HÜo7Tè%‡àþ)1x©žõ“>xöQé0"‡á­úPÓ#d€ ’£ðf.ëãä¼ÙxtèĘFÈ(#ãä9INñPCRË»èp@ßpw!ä.„Ü…Ð'Ü™0™p!€ðϦ’8¼¹Ä"¦Á[ø©(±ÌJEˆ5'ö#±Á*EYˆ=U”Øâ[E9ðS–å¯ìU”¿}BQ>ü©iEðgî)*„?wQQüÅ׊¸)!ÿpa=’š_F?°óšýª>~z endstream endobj startxref 477074 %%EOF survival/inst/doc/timedep.R0000644000176200001440000003035213570775573015447 0ustar liggesusers### R code from vignette source 'timedep.Rnw' ################################################### ### code chunk number 1: preamble ################################################### options(width=60, continue=" ") makefig <- function(file, top=1, right=1, left=4) { pdf(file, width=9.5, height=7, pointsize=18) par(mar=c(4, left, top, right) +.1) } library(survival) ################################################### ### code chunk number 2: testdata ################################################### tdata <- data.frame(subject=c(5,5,5), time1=c(0,90, 120), time2 = c(90, 120, 185), death=c(0,0,1), creatinine=c(0.9, 1.5, 1.2)) tdata ################################################### ### code chunk number 3: fake ################################################### getOption("SweaveHooks")[["fig"]]() set.seed(1953) # a good year nvisit <- floor(pmin(lung$time/30.5, 12)) response <- rbinom(nrow(lung), nvisit, .05) > 0 badfit <- survfit(Surv(time/365.25, status) ~ response, data=lung) plot(badfit, mark.time=FALSE, lty=1:2, xlab="Years post diagnosis", ylab="Survival") legend(1.5, .85, c("Responders", "Non-responders"), lty=2:1, bty='n') ################################################### ### code chunk number 4: timedep.Rnw:201-203 (eval = FALSE) ################################################### ## fit <- coxph(Surv(time1, time2, status) ~ age + creatinine, ## data=mydata) ################################################### ### code chunk number 5: timedep.Rnw:274-275 (eval = FALSE) ################################################### ## newdata <- tmerge(data1, data2, id, newvar=tdc(time, value), ...) ################################################### ### code chunk number 6: timedep.Rnw:320-321 ################################################### cgd0[1:4,] ################################################### ### code chunk number 7: cgd1 ################################################### dim(cgd0) newcgd <- tmerge(data1=cgd0[, 1:13], data2=cgd0, id=id, tstop=futime) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime1)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime2)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime3)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime4)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime5)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime6)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime7)) newcgd <- tmerge(newcgd, newcgd, id, enum=cumtdc(tstart)) dim(newcgd) newcgd[1:5,c(1, 4:6, 13:17)] attr(newcgd, "tcount") coxph(Surv(tstart, tstop, infect) ~ treat + inherit + steroids + + cluster(id), newcgd) ################################################### ### code chunk number 8: cgd1b ################################################### test <- tmerge(cgd0[, 1:13], cgd0, id=id, tstop=futime, infect = event(etime1), infect= event(etime2), infect = event(etime3), infect= event(etime4), infect = event(etime5), infect= event(etime6), infect = event(etime7)) test <- tmerge(test, test, id= id, enum = cumtdc(tstart)) all.equal(newcgd, test) ################################################### ### code chunk number 9: stanford ################################################### jasa$subject <- 1:nrow(jasa) #we need an identifier variable tdata <- with(jasa, data.frame(subject = subject, futime= pmax(.5, fu.date - accept.dt), txtime= ifelse(tx.date== fu.date, (tx.date -accept.dt) -.5, (tx.date - accept.dt)), fustat = fustat )) sdata <- tmerge(jasa, tdata, id=subject, death = event(futime, fustat), trt = tdc(txtime), options= list(idname="subject")) attr(sdata, "tcount") sdata$age <- sdata$age -48 sdata$year <- as.numeric(sdata$accept.dt - as.Date("1967-10-01"))/365.25 # model 6 of the table in K&P coxph(Surv(tstart, tstop, death) ~ age*trt + surgery + year, data= sdata, ties="breslow") ################################################### ### code chunk number 10: pbc ################################################### temp <- subset(pbc, id <= 312, select=c(id:sex, stage)) # baseline pbc2 <- tmerge(temp, temp, id=id, death = event(time, status)) #set range pbc2 <- tmerge(pbc2, pbcseq, id=id, ascites = tdc(day, ascites), bili = tdc(day, bili), albumin = tdc(day, albumin), protime = tdc(day, protime), alk.phos = tdc(day, alk.phos)) fit1 <- coxph(Surv(time, status==2) ~ log(bili) + log(protime), pbc) fit2 <- coxph(Surv(tstart, tstop, death==2) ~ log(bili) + log(protime), pbc2) rbind('baseline fit' = coef(fit1), 'time dependent' = coef(fit2)) ################################################### ### code chunk number 11: timedep.Rnw:583-584 ################################################### attr(pbc2, "tcount") ################################################### ### code chunk number 12: timedep.Rnw:586-588 ################################################### #grab a couple of numbers for the paragraph below atemp <- attr(pbc2, "tcount")[2:3,] ################################################### ### code chunk number 13: timedep.Rnw:669-675 (eval = FALSE) ################################################### ## temp <- subset(pbc, id <= 312, select=c(id:sex, stage)) ## pbc2 <- tmerge(temp, temp, id=id, death = event(time, status)) ## pbc2a <- tmerge(pbc2, pbcseq, id=id, ascites = tdc(day, ascites), ## bili = tdc(day, bili), options= list(delay=14)) ## pbc2b <- tmerge(pbc2, pbcseq, id=id, ascites = tdc(day+14, ascites), ## bili = tdc(day+14, bili)) ################################################### ### code chunk number 14: rep (eval = FALSE) ################################################### ## newd <- tmerge(data1=base, data2=timeline, id=repid, tstart=age1, ## tstop=age2, options(id="repid")) ## newd <- tmerge(newd, outcome, id=repid, mcount = cumtdc(age)) ## newd <- tmerge(newd, subset(outcome, event='diabetes'), ## diabetes= tdc(age)) ## newd <- tmerge(newd, subset(outcome, event='arthritis'), ## arthritis= tdc(age)) ################################################### ### code chunk number 15: veteran1 ################################################### getOption("SweaveHooks")[["fig"]]() options(show.signif.stars = FALSE) # display user intelligence vfit <- coxph(Surv(time, status) ~ trt + prior + karno, veteran) vfit quantile(veteran$karno) zp <- cox.zph(vfit, transform= function(time) log(time +20)) zp plot(zp[3]) # a plot for the 3rd variable in the fit abline(0,0, col=2) abline(h= vfit$coef[3], col=3, lwd=2, lty=2) ################################################### ### code chunk number 16: split ################################################### vet2 <- survSplit(Surv(time, status) ~ ., data= veteran, cut=c(90, 180), episode= "tgroup", id="id") vet2[1:7, c("id", "tstart", "time", "status", "tgroup", "age", "karno")] ################################################### ### code chunk number 17: split2 ################################################### vfit2 <- coxph(Surv(tstart, time, status) ~ trt + prior + karno:strata(tgroup), data=vet2) vfit2 cox.zph(vfit2) ################################################### ### code chunk number 18: split3 ################################################### vfit2$means ################################################### ### code chunk number 19: split4 ################################################### quantile(veteran$karno) cdata <- data.frame(tstart= rep(c(0,90,180), 2), time = rep(c(90,180, 365), 2), status= rep(0,6), #necessary, but ignored tgroup= rep(1:3, 2), trt = rep(1,6), prior= rep(0,6), karno= rep(c(40, 75), each=3), curve= rep(1:2, each=3)) cdata sfit <- survfit(vfit2, newdata=cdata, id=curve) km <- survfit(Surv(time, status) ~ I(karno>60), veteran) plot(km, xmax= 365, col=1:2, lwd=2, xlab="Days from enrollment", ylab="Survival") lines(sfit, col=1:2, lty=2, lwd=2) ################################################### ### code chunk number 20: vfit3 (eval = FALSE) ################################################### ## vfit3 <- coxph(Surv(time, status) ~ trt + prior + karno + ## I(karno * log(time + 20)), data=veteran) ################################################### ### code chunk number 21: vet3 ################################################### vfit3 <- coxph(Surv(time, status) ~ trt + prior + karno + tt(karno), data=veteran, tt = function(x, t, ...) x * log(t+20)) vfit3 ################################################### ### code chunk number 22: vet3b ################################################### getOption("SweaveHooks")[["fig"]]() plot(zp[3]) abline(coef(vfit3)[3:4], col=2) ################################################### ### code chunk number 23: ties1 ################################################### data1 <- read.table(col.names=c("id", "diabetes", "lfu", "status"), header=FALSE, text=" 1 5 30 1 2 10 15 1 3 NA 60 0 4 NA 80 1 5 10 80 0 6 NA 90 1 7 30 95 1 ") data1$d2 <- pmin(data1$diabetes, 300, na.rm=TRUE) #replace NA with 300 fit1 <- coxph(Surv(lfu, status) ~ tt(d2), data=data1, tt = function(d2, t, ...) ifelse(t > d2, 1, 0)) fit2 <- coxph(Surv(lfu, status) ~ tt(d2), data=data1, tt = function(d2, t, ...) ifelse(t < d2, 0, 1)) c(coef(fit1), coef(fit2)) ################################################### ### code chunk number 24: ties2 ################################################### data2 <- tmerge(data1, data1, id=id, dstat=event(lfu, status), diab = tdc(diabetes)) subset(data2, id %in% c(1,7), c(id, tstart:diab)) fit3 <- coxph(Surv(tstart, tstop, dstat) ~ diab, data2) c(coef(fit1), coef(fit2), coef(fit3)) ################################################### ### code chunk number 25: pbctime ################################################### pfit1 <- coxph(Surv(time, status==2) ~ log(bili) + ascites + age, pbc) pfit2 <- coxph(Surv(time, status==2) ~ log(bili) + ascites + tt(age), data=pbc, tt=function(x, t, ...) { age <- x + t/365.25 cbind(age=age, age2= (age-50)^2, age3= (age-50)^3) }) pfit2 anova(pfit2) # anova(pfit1, pfit2) #this fails 2*(pfit2$loglik - pfit1$loglik)[2] ################################################### ### code chunk number 26: expand ################################################### dtimes <- sort(unique(with(pbc, time[status==2]))) tdata <- survSplit(Surv(time, status==2) ~., pbc, cut=dtimes) tdata$c.age <- tdata$age + tdata$time/365.25 -50 #current age, centered at 50 pfit3 <- coxph(Surv(tstart, time, event) ~ log(bili) + ascites + c.age + I(c.age^2) + I(c.age^3), data=tdata) rbind(coef(pfit2), coef(pfit3)) ################################################### ### code chunk number 27: expand2 ################################################### dtime2 <- 1:11 * 365.25 tdata2 <-survSplit(Surv(time, status==2) ~., pbc, cut=dtime2) tdata2$c.age <- tdata2$age + tdata2$time/365.25 -50 #current age, centered at 50 pfit4 <- coxph(Surv(tstart, time, event) ~ log(bili) + ascites + c.age + I(c.age^2) + I(c.age^3), data=tdata2) rbind('1 day grid'= coef(pfit3), '1 year grid'= coef(pfit4)) # c(tdata=nrow(tdata), tdata2=nrow(tdata2)) ################################################### ### code chunk number 28: timedep.Rnw:1176-1183 ################################################### function(x, t, riskset, weights){ obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } ################################################### ### code chunk number 29: timedep.Rnw:1193-1195 ################################################### function(x, t, riskset, weights) unlist(tapply(x, riskset, rank)) survival/inst/doc/survival.Rnw0000644000176200001440000045511613555602207016233 0ustar liggesusers\documentclass{report}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} %\VignetteIndexEntry{The survival package} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} % I had been putting figures in the figures/ directory, but the standard % R build script does not copy it and then R CMD check fails \SweaveOpts{prefix.string=surv,width=6,height=4} \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {surv-#1.pdf}} \newcommand{\bhat}{\hat \beta} %define "bhat" to mean "beta hat" \newcommand{\Mhat}{\widehat M} %define "Mhat" to mean M-hat \newcommand{\zbar}{\bar Z} \newcommand{\lhat}{\hat \Lambda} \newcommand{\Ybar}{\overline{Y}} \newcommand{\Nbar}{\overline{N}} \newcommand{\Vbar}{\overline{V}} \newcommand{\yhat}{\hat y} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\co}[1]{\texttt{#1}} \newcommand{\twid}{\ensuremath{\sim}} \newcommand{\Lhat}{\hat\Lambda} \setkeys{Gin}{width=\textwidth} <>= options(continue=" ", width=70) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=10) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #ensure default library("survival") palette(c("#000000", "#D95F02", "#1B9E77", "#7570B3", "#E7298A", "#66A61E")) # These functions are used in the document, but not discussed until the end crisk <- function(what, horizontal = TRUE, ...) { nstate <- length(what) connect <- matrix(0, nstate, nstate, dimnames=list(what, what)) connect[1,-1] <- 1 # an arrow from state 1 to each of the others if (horizontal) statefig(c(1, nstate-1), connect, ...) else statefig(matrix(c(1, nstate-1), ncol=1), connect, ...) } state3 <- function(what, horizontal=TRUE, ...) { if (length(what) != 3) stop("Should be 3 states") connect <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3,3, dimnames=list(what, what)) if (horizontal) statefig(1:2, connect, ...) else statefig(matrix(1:2, ncol=1), connect, ...) } state4 <- function() { sname <- c("Entry", "CR", "Transplant", "Transplant") layout <- cbind(c(1/2, 3/4, 1/4, 3/4), c(5/6, 1/2, 1/2, 1/6)) connect <- matrix(0,4,4, dimnames=list(sname, sname)) connect[1, 2:3] <- 1 connect[2,4] <- 1 statefig(layout, connect) } state5 <- function(what, ...) { sname <- c("Entry", "CR", "Tx", "Rel", "Death") connect <- matrix(0, 5, 5, dimnames=list(sname, sname)) connect[1, -1] <- c(1,1,1, 1.4) connect[2, 3:5] <- c(1, 1.4, 1) connect[3, c(2,4,5)] <- 1 connect[4, c(3,5)] <- 1 statefig(matrix(c(1,3,1)), connect, cex=.8,...) } @ \title{A package for survival analysis in R} \author{Terry Therneau} \begin{document} \maketitle \clearpage \tableofcontents \chapter{Introduction} \section{History} Work on the survival package began in 1985 in connection with the analysis of medical research data, without any realization at the time that the work would become a package. Eventually, the software was placed on the Statlib repository hosted by Carnegie Mellon University. Multiple version were released in this fashion but I don't have a list of the dates --- version 2 was the first to make use of the \code{print} method that was introduced in `New S' in 1988, which places that release somewhere in 1989. The library was eventually incorporated directly in S-Plus, and from there it became a standard part of R. I suspect that one of the primary reasons for the package's success is that all of the functions have been written to solve real analysis questions that arose from real data sets; theoretical issues were explored when necessary but they have never played a leading role. As a statistician in a major medical center, the central focus of my department is to advance medicine; statistics is a tool to that end. This also highlights one of the deficiencies of the package: if a particular analysis question has not yet arisen in one of my studies then the survival package will also have nothing to say on the topic. Luckily, there are many other R packages that build on or extend the survival package, and anyone working in the field (the author included) can expect to use more packages than just this one. The author certainly never foresaw that the library would become as popular as it has. This vignette is an introduction to version 3.x of the survival package. We can think of versions 1.x as the S-Plus era and 2.1 -- 2.44 as maturation of the package in R. Version 3 had 4 major goals. \begin{itemize} \item Make multi-state curves and models as easy to use as an ordinary Kaplan-Meier and Cox model. \item Deeper support for absolute risk estimates. \item Consistent use of robust variance estimates. \item Clean up various naming inconsistencies that have arisen over time. \end{itemize} With over 600 dependent packages in 2019, not counting Bioconductor, other guiding lights of the change are \begin{itemize} \item We can't do everything (so don't try). \item Allow other packages to build on this one. That means clear documentation of all of the results that are produced, the use of simple S3 objects that are easy to manipulate, and setting up many of the routines as a pair. For example, \code{concordance} and \code{concordancefit}; the former is the user front end and the latter does the actual work. Other package authors might want to access the lower level interface, while accepting the penalty of fewer error checks. \item Don't mess it up! \end{itemize} This meant preserving the current argument names as much as possible. Appendix \ref{sect:changes} summarizes changes that were made which are not backwards compatible. The two other major changes are to collapse many of vignettes into this single large one, and the parallel creation of an actual book. We've recognized that the package needs more than a vignette. With the book's appearance this vignette can also be more brief, essentially leaving out a lot of the theory. Version 3 will not appear all at once, however; it will take some time to get all of the documentation sorted out in the way that we like. \section{Survival data} The survival package is concerned with time-to-event analysis. Such outcomes arise very often in the analysis of medical data: time from chemotherapy to tumor recurrence, the durability of a joint replacement, recurrent lung infections in subjects with cystic fibrosis, the appearance of hypertension, hyperlipidemia and other comorbidities of age, and of course death itself, from which the overall label of ``survival'' analysis derives. A key principle of all such studies is that ``it takes time to observe time'', which in turn leads to two of the primary challenges. \begin{enumerate} \item Incomplete information. At the time of an analysis, not everyone will have yet had the event. This is a form of partial information known as \emph{censoring}: if a particular subject was enrolled in a study 2 years ago, and has not yet had an event at the time of analysis, we only know that their time to event is $>2$ years. \item Dated results. In order to report 5 year survival, say, from a treatment, patients need to be enrolled and then followed for 5+ years. By the time recruitment and follow-up is finished, analysis done, the report finally published the treatment in question might be 8 years old and considered to be out of date. This leads to a tension between early reporting and long term outcomes. \end{enumerate} \begin{figure} <>= oldpar <- par(mar=c(.1, .1, .1, .1), mfrow=c(2,2)) sname1 <- c("Alive", "Dead") cmat1 <- matrix(c(0,0,1,0), nrow=2, dimnames=list(sname1, sname1)) statefig(c(1,1), cmat1) sname2 <- c("0", "1", "2", "...") cmat2 <- matrix(0, 4,4, dimnames= list(sname2, sname2)) cmat2[1,2] <- cmat2[2,3] <- cmat2[3,4] <- 1 statefig(c(1,1,1,1), cmat2, bcol=c(1,1,1,0)) sname3 <- c("Entry", "Transplant", "Withdrawal", "Death") cmat3 <- matrix(0, 4,4, dimnames=list(sname3, sname3)) cmat3[1, -1] <- 1 statefig(c(1,3), cmat3) sname4 <- c("Health", "Illness", "Death") cmat4 <- matrix(0, 3, 3, dimnames = list(sname4, sname4)) cmat4[1,2] <- cmat4[2,1] <- cmat4[-3, 3] <- 1 statefig(c(1,2), cmat4, offset=.03) par(oldpar) @ \caption{Four multiple event models.} \label{fig:multi} \end{figure} Survival data is often represented as a pair $(t_i, \delta_i)$ where $t$ is the time until endpoint or last follow-up, and $\delta$ is a 0/1 variable with 0= ``subject was censored at $t$'' and 1 =``subject had an event at $t$'', or in R code as \code{Surv(time, status)}. The status variable can be logical, e.g., \code{vtype=='death'} where \code{vtype} is a variable in the data set. An alternate view is to think of time to event data as a multi-state process as is shown in figure \ref{fig:multi}. The upper left panel is simple survival with two states of alive and dead, ``classic'' survival analysis. The other three panels show repeated events of the same type (upper right) competing risks for subjects on a liver transplant waiting list(lower left) and the illness-death model (lower right). In this approach interest normally centers on the transition rates or hazards (arrows) from state to state (box to box). For simple survival the two multistate/hazard and the time-to-event viewpoints are equivalent, and we will move freely between them, i.e., use whichever viewpoint is handy at the moment. When there more than one transition the rate approach is particularly useful. The figure also displays a 2 by 2 division of survival data sets, one that will be used to organize other subsections of this document. \begin{center} \begin{tabular}{l|cc} & One event & Multiple events \\ & per subject& per subject \\ \hline One event type & 1 & 2 \\ Multiple event types & 3 & 4 \end{tabular} \end{center} \section{Overview} The summary below is purposefully very terse. If you are familiar with survival analysis {\em and} with other R modeling functions it will provide a good summary. Otherwise, just skim the section to get an overview of the type of computations available from this package, and move on to section 3 for a fuller description. \begin{description} \item[Surv()] A {\em packaging} function; like I() it doesn't transform its argument. This is used for the left hand side of all the formulas. \begin{itemize} \item \code{Surv(time, status)} -- right censored data \item \code{Surv(time, endpoint=='death')} -- right censored data, where the status variable is a character or factor \item \code{Surv(t1, t2, status)} -- counting process data \item \code{Surv(t1, ind, type='left')} -- left censoring \item \code{Surv(time, fstat} -- multiple state data, fstat is a factor \end{itemize} \item[aareg] Aalen's additive regression model. \begin{itemize} \item The \code{timereg} package is a much more comprehensive implementation of the Aalen model, so this document will say little about \code{aareg} \end{itemize} \item[coxph()] Cox's proportional hazards model. \begin{itemize} \item \code{coxph(Surv(time, status) {\twid}x, data=aml)} -- standard Cox model \item \code{coxph(Surv(t1, t2, stat) {\twid} (age + surgery)* transplant)} -- time dependent covariates. \item \code{y <- Surv(t1, t2, stat)} \\ \code{coxph(y {\twid} strata(inst) * sex + age + treat)} -- Stratified model, with a separate baseline per institution, and institution specific effects for sex. \item \code{coxph(y {\twid} offset(x1) + x2)} -- force in a known term, without estimating a coefficient for it. \end{itemize} \item[cox.zph] Computes a test of proportional hazards for the fitted Cox model. \begin{itemize} \item \code{zfit <- cox.zph(coxfit); plot(zfit)} \end{itemize} \item[pyears] Person-years analysis \item[survdiff] One and k-sample versions of the Fleming-Harrington $G^\rho$ family. Includes the logrank and Gehan-Wilcoxon as special cases. \begin{itemize} \item \code{survdiff(Surv(time, status) {\twid} sex + treat)} -- Compare the 4 sub-groups formed by sex and treatment combinations. \item \code{survdiff(Surv(time, status) {\twid} offset(pred))} - One-sample test \end{itemize} \item[survexp] Predicted survival for an age and sex matched cohort of subjects, given a baseline matrix of known hazard rates for the population. Most often these are US mortality tables, but we have also used local tables for stroke rates. \begin{itemize} \item \code{survexp(entry.dt, birth.dt, sex)} -- Defaults to US white, average cohort survival \item \code{pred <- survexp(entry, birth, sex, futime, type='individual')} Data to enter into a one sample test for comparing the given group to a known population. \end{itemize} \item[survfit] Fit a survival curve. \begin{itemize} \item \code{survfit(Surv(time, status))} -- Simple Kaplan-Meier \item \code{survfit(Surv(time, status) {\twid} rx + sex)} -- Four groups \item \code{fit <- coxph(Surv(time, stat) {\twid} rx + sex)} \\ \code{survfit(fit, list(rx=1, sex=2))} -- Predict curv \end{itemize} \item[survreg] Parametric survival models. \begin{itemize} \item \code{survreg(Surv(time, stat) {\twid} x, dist='loglogistic')} - Fit a log-logistic distribution. \end{itemize} \item[Data set creation] \begin{itemize} \item \code{survSplit} break a survival data set into disjoint portions of time \item \code{tmerge} create survival data sets with time-dependent covariates and/or multiple events \item \code{survcheck} sanity checks for survival data sets \end{itemize} \end{description} \section{Mathematical Notation} We start with some mathematical background and notation, simply because it will be used later. A key part of the computations is the notion of a \emph{risk set}. That is, in time to event analysis a given subject will only be under observation for a specified time. Say for instance that we are interested in the patient experience after a certain treatment, then a patient recruited on March 10 1990 and followed until an analysis date of June 2000 will have 10 years of potential follow-up, but someone who recieved the treatment in 1995 will only have 5 years at the analysis date. Let $Y_i(t), \,i=1,\ldots,n$ be the indicator that subject $i$ is at risk and under observation at time t. Let $N_i(t)$ be the step function for the ith subject, which counts the number of ``events'' for that subject up to time t. There might me things that can happen multiple times such as rehospitalization, or something that only happens once such as death. The total number of events that have occurred up to time $t$ will be $\Nbar(t) =\sum N_i(t)$, and the number of subjects at risk at time $t$ will be $\Ybar(t) = \sum Y_i(t)$. Time-dependent covariates for a subject are the vector $X_i(t)$. It will also be useful to define $d(t)$ as the number of deaths that occur exactly at time $t$. \chapter{Survival curves} \section{One event type, one event per subject} \index{function!survfit}% \index{survival curves!one event} The most common depiction of survival data is the Kaplan-Meier curve, which is a product of survival probabilities: \begin{equation} \hat S_{KM}(t) = \prod_{s < t} \frac{\Ybar(ts) - d(s)}{\Ybar(s)}\,. \end{equation} Graphically, the Kaplan-Meier survival curve appears as a step function with a drop at each death. Censoring times are often marked on the plot as ``$+$'' symbols. KM curves are created with the \code{survfit} function. The left-hand side of the formula will be a Surv object and the right hand side contains one or more categorical variables that will divide the observations into groups. For a single curve use $\sim 1$ as the right hand side. <>= fit1 <- survfit(Surv(futime, fustat) ~ resid.ds, data=ovarian) print(fit1, rmean= 730) summary(fit1, times= (0:4)*182.5, scale=365) @ The default printout is very brief, only one line per curve, showing the number of observations, number of events, median survival, and optionally the restricted mean survival time (RMST) in each of the groups. In the above case we used the value at 2.5 years = 913 days as the upper threshold for the RMST, the value of 453 for females represents an average survival for 453 of the next 913 days after enrollment in the study. The summary function gives a more complete description of the curve, in this case we chose to show the values every 6 months for the first two years. In this case the number of events (\code{n.event}) column is the number of deaths in the interval between two time points, all other columns reflect the value at the chosen time point. Arguments for the survfit function include the usual \code{data}, \code{weights}, \code{subset} and \code{na.action} arguments common to modeling formulas. A further set of arguments have to do with standard errors and confidence intervals, defaults are shown in parenthesis. \begin{itemize} \item se.fit (TRUE): compute a standard error of the estimates. In a few rare circumstances omitting the standard error can save computation time. \item conf.int (.95): the level of confidence interval, or FALSE if intervals are not desired. \item conf.type ('log'): transformation to be used in computing the confidence intervals. \item conf.lower ('usual'): optional modification of the lower interval. \end{itemize} \index{survfit!confidence intervals} For the default \code{conf.type} the confidence intervals are computed as $ \exp[\log(p) \pm 1.96 {\rm se}(\log(p))] $ rather than the direct formula of $p \pm 1.96 {\rm(se)}(p)$, where $p = S(t)$ is the survival probability. Many authors have investigated the behavior of transformed intervals, and a general conclusion is that the direct intervals do not behave well, particularly near 0 and 1, while all the others are acceptable. Which of the choices of log, log-log, or logit is ``best'' depends on the details of any particular simulation study, all are available as options in the function. (The default corresponds to the most recent paper the author had read, at the time the default was chosen; a current meta review might give a slight edge to the log-log option.) The \code{conf.lower} option is mostly used for graphs. If a study has a long string of censored observations, it is intuitive that the precision of the estimated survival must be decreasing due to a smaller sample size, but the formal standard error will not change until the next death. This option widens the confidence interval between death times, proportional to the number at risk, giving a visual clue of the decrease in $n$. There is only a small (and decreasing) population of users who make use of this. \index{function!plot.survfit} The most common use of survival curves is to plot them, as shown below. <>= plot(fit1, col=1:2, xscale=365.25, lwd=2, mark.time=TRUE, xlab="Years since study entry", ylab="Survival") legend(750, .9, c("No residual disease", "Residual disease"), col=1:2, lwd=2, bty='n') @ Curves will appear in the plot in the same order as they are listed by \code{print}; this is a quick way to remind ourselves of which subset maps to each color or linetype in the graph. Curves can also be labeled using the \code{pch} option to place marks on the curves. The location of the marks is controlled by the \code{mark.time} option which has a default value of FALSE (no marks). A vector of numeric values specifies the location of the marks, optionally a value of \code{mark.time=TRUE} will cause a mark to appear at each censoring time; this can result in far too many marks if $n$ is large, however. By default confidence intervals are included on the plot of there is a single curve, and omitted if there is more than one curve. Other options: \begin{itemize} \item xaxt('r') It has been traditional to have survival curves touch the left axis (I will not speculate as to why). This can be accomplished using \code{xaxt='S'}, which was the default in before survival 3.x. The current default is the standard R style, which leaves space between the curve and the axis. \item The follow-up time in the data set is in days. This is very common in survival data, since it is often generated by subtracting two dates. The xscale argument has been used to convert to years. Equivalently one could have used \code{Surv(futime/365.25, status)} in the original call to convert all output to years. The use of \code{scale} in print and summary and \code{xscale} in plot is a historical mistake. \item Subjects who were not followed to death are \emph{censored} at the time of last contact. These appear as + marks on the curve. Use the \code{mark.time} option to suppress or change the symbol. \item By default pointwise 95\% confidence curves will be shown if the plot contains a single curve; they are by default not shown if the plot contains 2 or more groups. \item Confidence intervals are normally created as part of the \code{survfit} call. However, they can be omitted at that point, and added later by the plot routine. \item There are many more options, see \code{help('plot.survfit')}. \end{itemize} The result of a \code{survfit} call can be subscripted. This is useful when one wants to plot only a subset of the curves. Here is an example using a larger data set collected on a set of patients with advanced lung cancer \cite{Loprinzi94}, which better shows the impact of the Eastern Cooperative Oncolgy Group (ECOG) score. This is a simple measure of patient mobility: \begin{itemize} \item 0: Fully active, able to carry on all pre-disease performance without restriction \item 1:Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature, e.g., light house work, office work \item 2: Ambulatory and capable of all selfcare but unable to carry out any work activities. Up and about more than 50\% of waking hours \item 3: Capable of only limited selfcare, confined to bed or chair more than 50\% of waking hours \item 4: Completely disabled. Cannot carry on any selfcare. Totally confined to bed or chair \end{itemize} \index{survfit!subscript} <>= fit2 <- survfit(Surv(time, status) ~ sex + ph.ecog, data=lung) fit2 plot(fit2[1:3], lty=1:3, lwd=2, xscale=365.25, fun='event', xlab="Years after enrollment", ylab="Survival") legend(550, .6, paste("Performance Score", 0:2, sep=' ='), lty=1:3, lwd=2, bty='n') text(400, .95, "Males", cex=2) @ The argument \code{fun='event'} has caused the death rate $D = 1-S$ to be plotted. The choice between the two forms is mostly personal, but some areas such as cancer trial always plot survival (downhill) and other such as cardiology prefer the event rate (uphill). \paragraph{Mean and median} For the Kaplan-Meier estimate, the estimated mean survival is undefined if the last observation is censored. One solution, used here, is to redefine the estimate to be zero beyond the last observation. This gives an estimated mean that is biased towards zero, but there are no compelling alternatives that do better. With this definition, the mean is estimated as $$ \hat \mu = \int_0^T \hat S(t) dt $$ where $\hat S$ is the Kaplan-Meier estimate and $T$ is the maximum observed follow-up time in the study. The variance of the mean is $$ {\rm var}(\hat\mu) = \int_0^T \left ( \int_t^T \hat S(u) du \right )^2 \frac{d \Nbar(t)}{\Ybar(t) (\Ybar(t) - \Nbar(t))} $$ where $\bar N = \sum N_i$ is the total counting process and $\bar Y = \sum Y_i$ is the number at risk. The sample median is defined as the first time at which $\hat S(t) \le .5$. Upper and lower confidence intervals for the median are defined in terms of the confidence intervals for $S$: the upper confidence interval is the first time at which the upper confidence interval for $\hat S$ is $\le .5$. This corresponds to drawing a horizontal line at 0.5 on the graph of the survival curve, and using intersections of this line with the curve and its upper and lower confidence bands. In the very rare circumstance that the survival curve has a horizontal portion at exactly 0.5 (e.g., an even number of subjects and no censoring before the median) then the average time of that horizonal segment is used. This agrees with usual definition of the median for even $n$ in uncensored data. \section{Repeated events} \index{survival curves!repeated events} This is the case of a single event type, with the possibility of multiple events per subject. Repeated events are quite common in industrial reliability data. As an example, consider a data set on the replacement times of diesel engine valve seats. The simple data set \code{valveSeats} contains an engine identifier, time, and a status of 1 for a replacement and 0 for the end of the inspection interval for that engine; the data is sorted by time within engine. To accommodate multiple events for an engine we need to rewrite the data in terms of time intervals. For instance, engine 392 had repairs on days 258 and 328 and a total observation time of 377 days, and will be represented as three intervals of (0, 258), (258, 328) and (328, 377) thus: <>= data.frame(id=rep(392,3), time1=c(0, 258, 328), time2=c(258, 328, 377), status=c(1,1,0)) @ Intervals of length 0 are illegal for \code{Surv} objects. There are 3 engines that had 2 valves repaired on the same day, which will create such an interval. To work around this move the first repair back in time by a tiny amount. <>= vdata <- with(valveSeat, data.frame(id=id, time2=time, status=status)) first <- !duplicated(vdata$id) vdata$time1 <- ifelse(first, 0, c(0, vdata$time[-nrow(vdata)])) double <- which(vdata$time1 == vdata$time2) vdata$time1[double] <- vdata$time1[double] -.01 vdata$time2[double-1] <- vdata$time1[double] vdata[1:7, c("id", "time1", "time2", "status")] survcheck(Surv(time1, time2, status) ~ 1, id=id, data=vdata) @ Creation of (start time, end time) intervals is a common data manipulation task when there are multiple events per subject. A later chapter will discuss the \code{tmerge} function, which is very often useful for this task. The \code{survcheck} function can be used as check for some of more common errors that arise in creation; it also will be covered in more detail in a later section. (The output will be also be less cryptic for later cases, where the states have been labeled.) In the above data, the engines could only participate in 2 kinds of transitions: from an unnamed initial state to a repair, (s0) $\rightarrow$ 1, or from one repair to another one, 1 $\rightarrow$ 1, or reach end of follow-up. The second table printed by \code{survcheck} tells us that 17 engines had 0 transitions to state 1, i.e., no valve repairs before the end of observation for that engine, 9 had 1 repair, etc. Perhaps the most important message is that there were no warnings about suspicious data. We can now compute the survival estimate. When there are multiple observations per subject the \code{id} statement is necessary. (It is a good idea any time there \emph{could} be multiples, even if there are none, as it lets the underlying routines check for doubles.) <>= vfit <- survfit(Surv(time1, time2, status) ~1, data=vdata, id=id) plot(vfit, cumhaz=TRUE, xlab="Days", ylab="Cumulative hazard") @ By default, the \code{survfit} routine computes both the survival and the Nelson cumulative hazard estimate $$ \hat\Lambda(t) = \sum_{i-1}^n \int_0^t \frac{dN_i(s)}{\Ybar (s)} $$ Like the KM, the Nelson estimate is a step function, it starts at zero and has a step of size $d(t)/\Ybar(t)$ at each death. To plot the cumulative hazard the \code{cumhaz} argument of \code{survfit} is used. \index{cumulative hazard function}% \index{mean cumulative function|see cumulative hazard function} In multi-event data, the cumulative hazard is an estimate of the expected \emph{number} of events for a unit that has been observed for the given amount of time, whereas the survival $S$ estimates the probability that a unit has had 0 repairs. The cumulative hazard is the more natural quantity to plot in such studies; in reliability analysis it is also known as the \emph{mean cumulative function}. The estimate is also important in multi-state models. An example is the occurene of repeated infections in children with chronic granultomous disease, as found in the \code{cgd} data set. <>= cgdsurv <- survfit(Surv(tstart, tstop, status) ~ treat, cgd, id=id) plot(cgdsurv, cumhaz=TRUE, col=1:2, conf.times=c(100, 200, 300, 400), xlab="Days since randomization", ylab="Cumulative hazard") @ \section{Competing risks} The case of multiple event types, but only one event per subject is commonly known as competing risks. We do not need the (time1, time2) data form for this case, since each subject has only a single outcome, but we do need a way to identify different outcomes. In the prior sections, \code{status} was either a logical or 0/1 numeric variable that represents censoring (0 or FALSE) or an event (1 or TRUE), and the result of \code{survfit} was a single survival curve for each group. For competing risks data \code{status} will be a factor; the first level of the factor is used to code censoring while the remaining ones are possible outcomes. \subsection{Simple example} Here is a simple competing risks example where the three endpoints are labeled as a, b and c. <>= crdata <- data.frame(time= c(1:8, 6:8), endpoint=factor(c(1,1,2,0,1,1,3,0,2,3,0), labels=c("censor", "a", "b", "c")), istate=rep("entry", 11), id= LETTERS[1:11]) tfit <- survfit(Surv(time, endpoint) ~ 1, data=crdata, id=id, istate=istate) dim(tfit) summary(tfit) @ The resulting object \code{tfit} contains an estimate of $P$(state), the probability of being in each state at each time $t$. $P$ is a matrix with one row for each time and one column for each of the four states a--c and ``still in the starting state''. By definition each row of $P$ sums to 1. We will also use the notation $p(t)$ where $p$ is a vector with one element per state and $p_j(t)$ is the fraction in state $j$ at time $t$. The plot below shows all 4 curves. (Since they sum to 1 one of the 4 curves is redundant, often the entry state is omitted since it is the least interesting.) In the \code{plot.survfit} function there is the argument \code{noplot="(s0)"} which indicates that curves for state (s0) will not be plotted. If we had not specified \code{istate} in the call to \code{survfit}, the default label for the initial state would have been ``s0'' and t he solid curve would not have been plotted. <>= plot(tfit, col=1:4, lty=1:4, lwd=2, ylab="Probability in state") @ The resulting \code{survfms} object appears as a matrix and can be subscripted as such, with a column for each state and rows for each group, each unique combination of values on the right hand side of the formula is a group or strata. This makes it simple to display a subset of the curves using plot or lines commands. The entry state in the above fit, for instance, can be displayed with \code{plot(tfit[,1])}. <<>>= dim(tfit) tfit$states @ The curves are computed using the Aalen-Johansen estimator. This is an important concept, and so we work it out below. 1. The starting point is the column vector $p(0) = (1, 0, 0, 0)$, everyone starts in the first state. 2. At time 1, the first event time, form the 4 by 4 transition matrix $T_1$ \begin{align*} T(1) &= \left( \begin{array}{cccc} 10/11 & 1/11 & 0/11 & 0/11 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right ) p(1) &= p(0)T_1 \end{align*} The first row of $T(1)$ describes the disposition of everyone who is in state 1 and under observation at time 1: 10/11 stay in state 1 and 1 subject transitions to state a. There is no one in the other 3 states, so rows 2--4 are technically undefined; use a default ``stay in the same state'' row which has 1 on the diagonal. (Since no one ever leaves states a, b, or c, the bottom three rows of $T$ will continue to have this form.) 3. At time 2 the first row will be (9/10, 0, 1/10, 0), and $p(2) = p(1)T(2) = p(0) T(1) T(2)$. Continue this until the last event time. At a time point with only censoring, such as time 4, $T$ would be the identity matrix. It is straightforward to show that when there are only two states of alive -> dead, then $p_1(t)$ replicates the Kaplan-Meier computation. For competing risks data such as the simple example above, $p(t)$ replicates the cumulative incidence (CI) estimator. That is, both the KM and CI are both special cases of the Aalen-Johansen. The AJ is more general, however; a given subject can have multiple transitions from state to state, including transitions to a state that was visited earlier. \subsection{Monoclonal gammopathy} \label{mgusplot} The \code{mgus2} data set contains information of 1384 subjects who were who were found to have a particular pattern on a laboratory test (monoclonal gammopathy of undetermined significance or MGUS). The genesis of the study was a suspicion that such a result might indicate a predisposition to plasma cell malignancies such a multiple myeloma; subjects were followed forward to assess whether an excess did occur. The mean age at diagnosis is 63 years, so death from other causes will be an important competing risk. Here are a few observations of the data set, one of which experienced progression to a plasma cell malignancy. <>= mgus2[55:59, -(4:7)] @ To generate competing risk curves create a new (etime, event) pair. Since each subject has at most 1 transition, we do not need a multi-line (time1, time2) dataset. <>= event <- with(mgus2, ifelse(pstat==1, 1, 2*death)) event <- factor(event, 0:2, c("censored", "progression", "death")) etime <- with(mgus2, ifelse(pstat==1, ptime, futime)) crfit <- survfit(Surv(etime, event) ~ sex, mgus2) crfit plot(crfit, col=1:2, noplot="", lty=c(3,3,2,2,1,1), lwd=2, xscale=12, xlab="Years post diagnosis", ylab="P(state)") legend(240, .65, c("Female, death", "Male, death", "malignancy", "(s0)"), lty=c(1,1,2,3), col=c(1,2,1,1), bty='n', lwd=2) @ There are 3 curves for females, one for each of the three states, and 3 for males. The three curves sum to 1 at any given time (everyone has to be somewhere), and the default action for \code{plot.survfit} is to leave out the ``still in original state'' curve (s0) since it is usually the least interesting, but in this case we have shown all 3. We will return to this example when exploring models. A common mistake with competing risks is to use the Kaplan-Meier separately on each event type while treating other event types as censored. The next plot is an example of this for the PCM endpoint. <>= pcmbad <- survfit(Surv(etime, pstat) ~ sex, data=mgus2) plot(pcmbad[2], mark.time=FALSE, lwd=2, fun="event", conf.int=FALSE, xscale=12, xlab="Years post diagnosis", ylab="Fraction with PCM") lines(crfit[2,2], lty=2, lwd=2, mark.time=FALSE, conf.int=FALSE) legend(0, .25, c("Males, PCM, incorrect curve", "Males, PCM, competing risk"), col=1, lwd=2, lty=c(1,2), bty='n') @ There are two problems with the \code{pcmbad} fit. The first is that it attempts to estimate the expected occurrence of plasma cell malignancy (PCM) if all other causes of death were to be disallowed. In this hypothetical world it is indeed true that many more subjects would progress to PCM (the incorrect curve is higher), but it is also not a world that any of us will ever inhabit. This author views the result in much the same light as a discussion of survival after the zombie apocalypse. The second problem is that the computation for this hypothetical case is only correct if all of the competing endpoints are independent, a situation which is almost never true. We thus have an unreliable estimate of an uninteresting quantity. The competing risks curve, on the other hand, estimates the fraction of MGUS subjects who \emph{will experience} PCM, a quantity sometimes known as the lifetime risk, and one which is actually observable. The last example chose to plot only a subset of the curves, something that is often desirable in competing risks problems to avoid a ``tangle of yarn'' plot that simply has too many elements. This is done by subscripting the \code{survfit} object. For subscripting, multi-state curves behave as a matrix with the outcomes as the second subscript. The columns are in order of the levels of \code{event}, i.e., as displayed by our earlier call to \code{table(event)}. The first subscript indexes the groups formed by the right hand side of the model formula, and will be in the same order as simple survival curves. Thus \code{mfit2[2,2]} corresponds to males (2) and the PCM endpoint (2). Curves are listed and plotted in the usual matrix order of R. <<>>= dim(crfit) crfit$strata crfit$states @ One surprising aspect of multi-state data is that hazards can be estimated independently although probabilities cannot. If you look at the cumulative hazard estimate from the \code{pcmbad} fit above using, for instance, \code{plot(pcmbac, cumhaz=TRUE)} you will find that it is identical to the cumulative hazard estimate from the joint fit. This will arise again with Cox models. \subsection{Variance} The variance of the AJ estimate is computed using an infinitesimal jackknife (IJ) matrix, which contains the influence of each subject on the estimator; formally the derivative with respect to each subject's case weight. For a single simple survival curve that has $k$ unique values, for instance, the IJ matrix will have $n$ rows and $k$ columns, one row per subject. Columns of the matrix sum to zero, by definition, and the variance at a time point $t$ will be the column sums of $(IJ)^2$. For a competing risk problem the \code{crfit} object above will contain a matrix \code{pstate} with $k$ rows and one column for each state, where $k$ is the number of unique time points; and the IJ is an array of dimension $(n, k, p)$. In the case of simple survival and all case weights =1, the IJ variance collapses to the well known Greenwood variance estimate. \section{Multi-state data} The most general multi-state data will have multiple outcomes and multiple endpoints per subject. In this case, we will need to use the (time1, time2) form for each subject. The dataset structure is similar to that for time varying covariates in a Cox model: the time variable will be intervals $(t_1, t_2]$ which are open on the left and closed on the right, and a given subject will have multiple lines of data. But instead of covariates changing from line to line, in this case the status variable changes; it contains the state that was entered at time $t_2$. There are a few restrictions. \begin{itemize} \item An identifier variable is needed to indicate which rows of the dataframe belong to each subject. If the \code{id} argument is missing, the code assumes that each row of data is a separate subject, which leads to a nonsense estimate when there are actually multiple rows per subject. \item Subjects do not have to enter at time 0 or all at the same time, but each must traverse a connected segment of time. Disjoint intervals such as the pair $(0,5]$, $(8, 10]$ are illegal. \item A subject cannot change groups. Any covariates on the right hand side of the formula must remain constant within subject. (This function is not a way to create supposed `time-dependent' survival curves.) \item Subjects may have case weights, and these weights may change over time for a subject. \end{itemize} The \code{istate} argument can be used to designate a subject's state at the start of each $t_1, t_2$ time interval. Like variables in the formula, it is searched for in the \code{data} argument. If it is not present, every subject is assumed to start in a common entry state which is given the name ``(s0)''. The parentheses are an echo of ``(Intercept)'' in a linear model and show a label that was provided by the program rather than the data. The distribution of states just prior to the first event time is treated as the initial distribution of states. In common with ordinary survival, any observation which is censored before the first event time has no impact on the results. \subsection{Myeloid data} The \code{myeloid} data set contains data from a clinical trial in subjects with acute myeloid leukemia. To protect patient confidentiality the data set in the survival package has been slightly perturbed, but results are essentially unchanged. In this comparison of two conditioning regimens, the canonical path for a subject is initial therapy $\rightarrow$ complete response (CR) $\rightarrow$ hematologic stem cell transplant (SCT) $\rightarrow$ sustained remission, followed by relapse or death. Not everyone follows this ideal path, of course. <>= myeloid[1:5,] @ The first few rows of data are shown above. The data set contains the follow-up time and status at last follow-up for each subject, along with the time to transplant (txtime), complete response (crtime) or relapse after CR (rltime). Subject 1 did not receive a transplant, as shown by the NA value, and subject 2 did not achieve CR. \begin{figure} \myfig{sfit0} \caption{Overall survival curves for the two treatments.} \label{sfit0} \end{figure} Overall survival curves for the data are shown in figure \ref{sfit0}. The difference between the treatment arms A and B is substantial. A goal of this analysis is to better understand this difference. Code to generate the two curves is below. <>= sfit0 <- survfit(Surv(futime, death) ~ trt, myeloid) plot(sfit0, xscale=365.25, xaxs='r', col=1:2, lwd=2, xlab="Years post enrollment", ylab="Survival") legend(20, .4, c("Arm A", "Arm B"), col=1:2, lwd=2, bty='n') @ The full multi-state data set can be created with the \code{tmerge} routine. <>= mdata <- tmerge(myeloid[,1:2], myeloid, id=id, death= event(futime, death), sct = event(txtime), cr = event(crtime), relapse = event(rltime)) temp <- with(mdata, cr + 2*sct + 4*relapse + 8*death) table(temp) @ Our check shows that there is one subject who had CR and stem cell transplant on the same day (temp=3). To avoid length 0 intervals, we break the tie so that complete response (CR) happens first. (Students may be surprised to see anomalies like this, since they never appear in textbook data sets. In real data such issues always appear.) <>= tdata <- myeloid # temporary working copy tied <- with(tdata, (!is.na(crtime) & !is.na(txtime) & crtime==txtime)) tdata$crtime[tied] <- tdata$crtime[tied] -1 mdata <- tmerge(tdata[,1:2], tdata, id=id, death= event(futime, death), sct = event(txtime), cr = event(crtime), relapse = event(rltime), priorcr = tdc(crtime), priortx = tdc(txtime)) temp <- with(mdata, cr + 2*sct + 4*relapse + 8*death) table(temp) mdata$event <- factor(temp, c(0,1,2,4,8), c("none", "CR", "SCT", "relapse", "death")) mdata[1:7, c("id", "trt", "tstart", "tstop", "event", "priorcr", "priortx")] @ Subject 1 has a CR on day 44, relapse on day 113, death on day 235 and did not receive a stem cell transplant. The data for the first three subjects looks good. Check it out a little more thoroughly. <<>>= survcheck(Surv(tstart, tstop, event) ~1, mdata, id=id) @ The second table shows that no single subject had more than one CR, SCT, relapse, or death; the intention of the study was to count only the first of each of these, so this is as expected. Several subjects visited all four intermediate states. The transitions table shows 11 subjects who achieved CR \emph{after} stem cell transplant and another 106 who received a transplant before achieving CR, both of which are deviations from the ``ideal'' pathway. No subjects went from death to another state (which is good). For investigating the data we would like to add a set of alternate endpoints. \begin{enumerate} \item The competing risk of CR and death, ignoring other states. This is used to estimate the fraction who ever achieved a complete response. \item The competing risk of SCT and death, ignoring other states. \item An endpoint that distinguishes death after SCT from death before SCT. \end{enumerate} Each of these can be accomplished by adding further outcome variables to the data set, we will not need to change the time intervals. <>= levels(mdata$event) temp1 <- with(mdata, ifelse(priorcr, 0, c(0,1,0,0,2)[event])) mdata$crstat <- factor(temp1, 0:2, c("none", "CR", "death")) temp2 <- with(mdata, ifelse(priortx, 0, c(0,0,1,0,2)[event])) mdata$txstat <- factor(temp2, 0:2, c("censor", "SCT", "death")) temp3 <- with(mdata, c(0,0,1,0,2)[event] + priortx) mdata$tx2 <- factor(temp3, 0:3, c("censor", "SCT", "death w/o SCT", "death after SCT")) @ Notice the use of the \code{priorcr} variable in defining \code{crstat}. This outcome variable treats complete response as a terminal state, which in turn means that no further transitions are allowed after reaching CR. \begin{figure} \myfig{curve1} \caption{Overall survival curves: time to death, to transplant (Tx), and to complete response (CR). Each shows the estimated fraction of subjects who have ever reached the given state. The vertical line at 2 months is for reference. The curves were limited to the first 48 months to more clearly show early events. The right hand panel shows the state-space model for each pair of curves.} \label{curve1} \end{figure} This data set is the basis for our first set of curves, which are shown in figure \ref{curve1}. The plot overlays three separate \code{survfit} calls: standard survival until death, complete response with death as a competing risk, and transplant with death as a competing risk. For each fit we have shown one selected state: the fraction who have died, fraction ever in CR, and fraction ever to receive transplant, respectively. Most of the CR events happen before 2 months (the green vertical line) and nearly all the additional CRs conferred by treatment B occur between months 2 and 8. Most transplants happen after 2 months, which is consistent with the clinical guide of transplant after CR. The survival advantage for treatment B begins between 4 and 6 months, which argues that it could be at least partially a consequence of the additional CR events. The code to draw figure \ref{curve1} is below. It can be separated into 5 parts: \begin{enumerate} \item Fits for the 3 endpoints are simple and found in the first set of lines. The \code{crstat} and \code{txstat} variables are factors, which causes multi-state curves to be generated. \item The \code{layout} and \code{par} commands are used to create a multi-part plot with curves on the left and state space diagrams on the right, and to reduce the amount of white space between them. \item Draw a subset of the curves via subscripting. A multi-state survfit object appears to the user as a matrix of curves, with one row for each group (treatment) and one column for each state. The CR state is the second column in \code{sfit2}, for instance. The CR fit was drawn first simply because it has the greatest y-axis range, then the other curves added using the lines command. \item Decoration of the plots. This includes the line types, colors, legend, choice of x-axis labels, etc. \item Add the state space diagrams. The functions for this are described elsewhere in the vignette. \end{enumerate} <>= # I want to have the plots in months, it is simpler to fix time # once rather than repeat xscale many times tdata$futime <- tdata$futime * 12 /365.25 mdata$tstart <- mdata$tstart * 12 /365.25 mdata$tstop <- mdata$tstop * 12 /365.25 sfit1 <- survfit(Surv(futime, death) ~ trt, tdata) # survival sfit2 <- survfit(Surv(tstart, tstop, crstat) ~ trt, data= mdata, id = id) # CR sfit3 <- survfit(Surv(tstart, tstop, txstat) ~ trt, data= mdata, id =id) # SCT layout(matrix(c(1,1,1,2,3,4), 3,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1.1, .1)) mlim <- c(0, 48) # and only show the first 4 years plot(sfit2[,"CR"], xlim=mlim, lty=3, lwd=2, col=1:2, xaxt='n', xlab="Months post enrollment", ylab="Fraction with the endpoint") lines(sfit1, mark.time=FALSE, xlim=mlim, fun='event', col=1:2, lwd=2) lines(sfit3[,"SCT"], xlim=mlim, col=1:2, lty=2, lwd=2) xtime <- c(0, 6, 12, 24, 36, 48) axis(1, xtime, xtime) #axis marks every year rather than 10 months temp <- outer(c("A", "B"), c("CR", "transplant", "death"), paste) temp[7] <- "" legend(25, .3, temp[c(1,2,7,3,4,7,5,6,7)], lty=c(3,3,3, 2,2,2 ,1,1,1), col=c(1,2,0), bty='n', lwd=2) abline(v=2, lty=2, col=3) # add the state space diagrams par(mar=c(4,.1,1,1)) crisk(c("Entry", "CR", "Death"), alty=3) crisk(c("Entry", "Tx", "Death"), alty=2) crisk(c("Entry","Death")) par(oldpar) layout(1) @ The association between a particular curve and its corresponding state space diagram is critical. As we will see below, many different models are possible and it is easy to get confused. Attachment of a diagram directly to each curve, as was done above, will not necessarily be day-to-day practice, but the state space should always be foremost. If nothing else, draw it on a scrap of paper and tape it to the side of the terminal when creating a data set and plots. \begin{figure} \myfig{badfit} \caption{Correct (solid) and invalid (dashed) estimates of the number of subjects transplanted.} \label{badfit} \end{figure} Figure \ref{badfit} shows the transplant curves overlaid with the naive KM that censors subjects at death. There is no difference in the initial portion as no deaths have yet intervened, but the final portion overstates the transplant outcome by more than 10\%. \begin{enumerate} \item The key problem with the naive estimate is that subjects who die can never have a transplant. The result of censoring them is an estimate of the ``fraction who would be transplanted, if death before transplant were abolished''. This is not a real world quantity. \item In order to estimate this fictional quantity one needs to assume that death is uninformative with respect to future disease progression. The early deaths in months 0--2, before transplant begins, are however a very different class of patient. Non-informative censoring is untenable. \end{enumerate} We are left with an unreliable estimate of an uninteresting quantity. Mislabeling any true state as censoring is always a mistake, one that will not be repeated here. Here is the code for figure \ref{badfit}. The use of a logical (true/false) as the status variable in the \code{Surv} call leads to ordinary survival calculations. <>= badfit <- survfit(Surv(tstart, tstop, event=="SCT") ~ trt, id=id, mdata, subset=(priortx==0)) layout(matrix(c(1,1,1,2,3,4), 3,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1.1, .1)) plot(badfit, fun="event", xmax=48, xaxt='n', col=1:2, lty=2, lwd=2, xlab="Months from enrollment", ylab="P(state)") axis(1, xtime, xtime) lines(sfit3[,2], xmax=48, col=1:2, lwd=2) legend(24, .3, c("Arm A", "Arm B"), lty=1, lwd=2, col=1:2, bty='n', cex=1.2) par(mar=c(4,.1,1,1)) crisk(c("Entry", "transplant"), alty=2, cex=1.2) crisk(c("Entry","transplant", "Death"), cex=1.2) par(oldpar) layout(1) @ \begin{figure} \myfig{cr2} \caption{Models for `ever in CR' and `currently in CR'; the only difference is an additional transition. Both models ignore transplant.} \label{cr2} \end{figure} Complete response is a goal of the initial therapy; figure \ref{cr2} looks more closely at this. As was noted before arm B has an increased number of late responses. The duration of response is also increased: the solid curves show the number of subjects still in response, and we see that they spread farther apart than the dotted ``ever in response'' curves. The figure shows only the first eight months in order to better visualize the details, but continuing the curves out to 48 months reveals a similar pattern. Here is the code to create the figure. <>= cr2 <- mdata$event cr2[cr2=="SCT"] <- "none" # ignore transplants crsurv <- survfit(Surv(tstart, tstop, cr2) ~ trt, data= mdata, id=id, influence=TRUE) layout(matrix(c(1,1,2,3), 2,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1.1, .1)) plot(sfit2[,2], lty=3, lwd=2, col=1:2, xmax=12, xlab="Months", ylab="CR") lines(crsurv[,2], lty=1, lwd=2, col=1:2) par(mar=c(4, .1, 1, 1)) crisk( c("Entry","CR", "Death"), alty=3) state3(c("Entry", "CR", "Death/Relapse")) par(oldpar) layout(1) @ The above code created yet another event variable so as to ignore transitions to the transplant state. They become a non-event, in the same way that extra lines with a status of zero are used to create time-dependent covariates for a Cox model fit. The \code{survfit} call above included the \code{influence=TRUE} argument, which causes the influence array to be calculated and returned. It contains, for each subject, that subject's influence on the time by state matrix of results and allows for calculation of the standard error of the restricted mean. We will return to this in a later section. <>= print(crsurv, rmean=48, digits=2) @ <>= temp <- summary(crsurv, rmean=48)$table delta <- round(temp[4,3] - temp[3,3], 2) @ @ The restricted mean time in the CR state is extended by \Sexpr{round(temp[4,3], 1)} - \Sexpr{round(temp[3,3], 1)} = \Sexpr{delta} months. A question which immediately gets asked is whether this difference is ``significant'', to which there are two answers. The first and more important is to ask whether 5 months is an important gain from either a clinical or patient perspective. The overall restricted mean survival for the study is approximately 30 of the first 48 months post entry (use \code{print(sfit1, rmean=48)}); on this backdrop an extra 5 months in CR might or might not be an meaningful advantage from a patient's point of view. The less important answer is to test whether the apparent gain is sufficiently rare from a mathematical point of view, i.e., ``statistical'' significance. The standard errors of the two values are \Sexpr{round(temp[3,4],1)} and \Sexpr{round(temp[4,4],1)}, and since they are based on disjoint subjects the values are independent, leading to a standard error for the difference of $\sqrt{1.1^2 + 1.1^2} = 1.6$. The 5 month difference is more than 3 standard errors, so highly significant. \begin{figure} \myfig{txsurv} \caption{Transplant status of the subjects, broken down by whether it occurred before or after CR.} \label{txsurv} \end{figure} In summary \begin{itemize} \item Arm B adds late complete responses (about 4\%); there are 206/317 in arm B vs. 248/329 in arm B. \item The difference in 4 year survival is about 6\%. \item There is approximately 2 months longer average duration of CR (of 48). \end{itemize} CR $\rightarrow$ transplant is the target treatment path for a patient; given the improvements listed above why does figure \ref{curve1} show no change in the number transplanted? Figure \ref{txsurv} shows the transplants broken down by whether this happened before or after complete response. Most of the non-CR transplants happen by 10 months. One possible explanation is that once it is apparent to the patient/physician pair that CR is not going to occur, they proceed forward with other treatment options. The extra CR events on arm B, which occur between 2 and 8 months, lead to a consequent increase in transplant as well, but at a later time of 12--24 months: for a subject in CR we can perhaps afford to defer the transplant date. Computation is again based on a manipulation of the event variable: in this case dividing the transplant state into two sub-states based on the presence of a prior CR. The code makes use of the time-dependent covariate \code{priorcr}. (Because of scheduling constraints within a hospital it is unlikely that a CR that is within a few days prior to transplant could have effected the decision to schedule a transplant, however. An alternate breakdown that might be useful would be ``transplant without CR or within 7 days after CR'' versus those that are more than a week later. There are many sensible questions that can be asked.) <>= event2 <- with(mdata, ifelse(event=="SCT" & priorcr==1, 6, as.numeric(event))) event2 <- factor(event2, 1:6, c(levels(mdata$event), "SCT after CR")) txsurv <- survfit(Surv(tstart, tstop, event2) ~ trt, mdata, id=id, subset=(priortx ==0)) dim(txsurv) # number of strata by number of states txsurv$states # Names of states layout(matrix(c(1,1,1,2,2,0),3,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1,.1)) plot(txsurv[,c(3,6)], col=1:2, lty=c(1,1,2,2), lwd=2, xmax=48, xaxt='n', xlab="Months", ylab="Transplanted") axis(1, xtime, xtime) legend(15, .13, c("A, transplant without CR", "B, transplant without CR", "A, transplant after CR", "B, transplant after CR"), col=1:2, lty=c(1,1,2,2), lwd=2, bty='n') state4() # add the state figure par(oldpar) @ \begin{figure} \myfig{sfit4} \caption{The full multi-state curves for the two treatment arms.} \label{sfit4} \end{figure} Figure \ref{sfit4} shows the full set of state occupancy probabilities for the cohort over the first 4 years. At each point in time the curves estimate the fraction of subjects currently in that state. The total who are in the transplant state peaks at about 9 months and then decreases as subjects relapse or die; the curve rises whenever someone receives a transplant and goes down whenever someone leaves the state. At 36 months treatment arm B (dashed) has a lower fraction who have died, the survivors are about evenly split between those who have received a transplant and those whose last state is a complete response (only a few of the latter are post transplant). The fraction currently in relapse -- a transient state -- is about 5\% for each arm. The figure omits the curve for ``still in the entry state''. The reason is that at any point in time the sum of the 5 possible states is 1 --- everyone has to be somewhere. Thus one of the curves is redundant, and the fraction still in the entry state is the least interesting of them. <>= sfit4 <- survfit(Surv(tstart, tstop, event) ~ trt, mdata, id=id) sfit4$transitions layout(matrix(1:2,1,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1,.1)) plot(sfit4, col=rep(1:4,each=2), lwd=2, lty=1:2, xmax=48, xaxt='n', xlab="Months", ylab="Current state") axis(1, xtime, xtime) text(c(40, 40, 40, 40), c(.51, .13, .32, .01), c("Death", "CR", "Transplant", "Recurrence"), col=c(4,1,2,3)) par(mar=c(5.1, .1, 1, .1)) state5() par(oldpar) @ The transitions table above shows \Sexpr{sfit4$transitions[1,4]} %$ direct transitions from entry to death, i.e., subjects who die without experiencing any of the other intermediate points, \Sexpr{sfit4$transitions[2,2]} who go from CR to transplant (as expected), \Sexpr{sfit4$transitions[3,1]} who go from transplant to CR, etc. %$ No one was observed to go from relapse to CR in the data set, this serves as a data check since it should not be possible per the data entry plan. \section{Influence matrix} For one of the curves above we returned the influence array. For each value in the matrix $P$ = probability in state and each subject $i$ in the data set, this contains the effect of that subject on each value in $P$. Formally, \begin{equation*} D_{ij}(t) = \left . \frac{\partial p_j(t)}{\partial w_i} \right|_w \end{equation*} where $D_{ij}(t)$ is the influence of subject $i$ on $p_j(t)$, and $p_j(t)$ is the estimated probability for state $j$ at time $t$. This is known as the infinitesimal jackknife (among other labels). <>= crsurv <- survfit(Surv(tstart, tstop, cr2) ~ trt, data= mdata, id=id, influence=TRUE) curveA <- crsurv[1,] # select treatment A dim(curveA) # P matrix for treatement A curveA$states dim(curveA$pstate) # 426 time points, 5 states dim(curveA$influence) # influence matrix for treatment A table(myeloid$trt) @ For treatment arm A there are \Sexpr{table(myeloid$trt)[1]} subjects and \Sexpr{dim(curveA$pstate)[1]} time points in the $P$ matrix. The influence array has subject as the first dimension, and for each subject it has an image of the $P$ matrix containing that subject's influence on each value in $P$, i.e., \code{influence[1, ,]} is the influence of subject 1 on $P$. For this data set everyone starts in the entry state, so $p(0)$ = the first row of \code{pstate} will be (1, 0, 0, 0, 0) and the influence of each subject on this row is 0; this does not hold if not all subjects start in the same state. As an exercise we will calculate the mean time in state out to 48 weeks. This is the area under the individual curves from time 0 to 48. Since the curves are step functions this is simple sum of rectangles, treating any intervals after 48 months as having 0 width. <>= t48 <- pmin(48, curveA$time) delta <- diff(c(t48, 48)) # width of intervals rfun <- function(pmat, delta) colSums(pmat * delta) #area under the curve rmean <- rfun(curveA$pstate, delta) # Apply the same calculation to each subject's influence slice inf <- apply(curveA$influence, 1, rfun, delta=delta) # inf is now a 5 state by 310 subject matrix, containing the IJ estimates # on the AUC or mean time. The sum of squares is a variance. se.rmean <- sqrt(rowSums(inf^2)) round(rbind(rmean, se.rmean), 2) print(curveA, rmean=48, digits=2) @ The last lines verify that this is exactly the calculation done by the \code{print.survfitms} function; the results can also be found in the \code{table} component returned by \code{summary.survfitms}. In general, let $U_i$ be the influence of subject $i$. For some function $f(P)$ of the probability in state matrix \code{pstate}, the influence of subject $i$ will be $\delta_i = f(P + U_i) - f(P)$ and the infinitesimal jackknife estimate of variance will be $\sum_i \delta^2$. For the simple case of adding up rectangles $f(P +U_i) - f(P) = f(U_i)$ leading to particularly simple code, but this will not always be the case. \section{Differences in survival} There is a single function \code{survdiff} to test for differences between 2 or more survival curves. It implements the $G^\rho$ family of Fleming and Harrington \cite{FH2}. A single parameter $\rho$ controls the weights given to different survival times, $\rho=0$ yields the log-rank test and $\rho=1$ the Peto-Wilcoxon. Other values give a test that is intermediate to these two. The default value is $\rho=0$. The log-rank test is equivalent to the score test from a Cox model with the group as a factor variable. The interpretation of the formula is the same as for \code{survfit}, i.e., variables on the right hand side of the equation jointly break the patients into groups. <>= survdiff(Surv(time, status) ~ x, aml) @ \section{State space figures} \label{sect:statefig} The state space figures in the above example were drawn with a simple utility function \code{statefig}. It has two primary arguments along with standard graphical options of color, line type, etc. \begin{enumerate} \item A layout vector or matrix. A vector with values of (1, 3, 1) for instance will allocate one state, then a column with 3 states, then one more state, proceeding from left to right. A matrix with a single row will do the same, whereas a matrix with one column will proceed from top to bottom. \item A $k$ by $k$ connection matrix $C$ where $k$ is the number of states. If $C_{ij} \ne 0$ then an arrow is drawn from state $i$ to state $j$. The row or column names of the matrix are used to label the states. The lines connecting the states can be straight or curved, see the help file for an example. \end{enumerate} The first few state space diagrams were competing risk models, which use the following helper function. It accepts a vector of state names, where the first name is the starting state and the remainder are the possible outcomes. <>= crisk <- function(what, horizontal = TRUE, ...) { nstate <- length(what) connect <- matrix(0, nstate, nstate, dimnames=list(what, what)) connect[1,-1] <- 1 # an arrow from state 1 to each of the others if (horizontal) statefig(c(1, nstate-1), connect, ...) else statefig(matrix(c(1, nstate-1), ncol=1), connect, ...) } @ This next function draws a variation of the illness-death model. It has an initial state, an absorbing state (normally death), and an optional intermediate state. <>= state3 <- function(what, horizontal=TRUE, ...) { if (length(what) != 3) stop("Should be 3 states") connect <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3,3, dimnames=list(what, what)) if (horizontal) statefig(1:2, connect, ...) else statefig(matrix(1:2, ncol=1), connect, ...) } @ The most complex of the state space figures has all 5 states. <>= state5 <- function(what, ...) { sname <- c("Entry", "CR", "Tx", "Rel", "Death") connect <- matrix(0, 5, 5, dimnames=list(sname, sname)) connect[1, -1] <- c(1,1,1, 1.4) connect[2, 3:5] <- c(1, 1.4, 1) connect[3, c(2,4,5)] <- 1 connect[4, c(3,5)] <- 1 statefig(matrix(c(1,3,1)), connect, cex=.8, ...) } @ For figure \ref{txsurv} I want a third row with a single state, but don't want that state centered. For this I need to create my own (x,y) coordinate list as the layout parameter. Coordinates must be between 0 and 1. <>= state4 <- function() { sname <- c("Entry", "CR", "Transplant", "Transplant") layout <- cbind(x =c(1/2, 3/4, 1/4, 3/4), y =c(5/6, 1/2, 1/2, 1/6)) connect <- matrix(0,4,4, dimnames=list(sname, sname)) connect[1, 2:3] <- 1 connect[2,4] <- 1 statefig(layout, connect) } @ The statefig function was written to do ``good enough'' state space figures quickly and easily, in the hope that users will find it simple enough that diagrams are drawn early and often. Packages designed for directed acyclic graphs (DAG) such as diagram, DiagrammeR, or dagR are far more flexible and can create more nuanced and well decorated results. \subsection{Further notes} The Aalen-Johansen method used by \code{survfit} does not account for interval censoring, also known as panel data, where a subject's current state is recorded at some fixed time such as a medical center visit but the actual times of transitions are unknown. Such data requires further assumptions about the transition process in order to model the outcomes and has a more complex likelihood. The \code{msm} package, for instance, deals with data of this type. If subjects reliably come in at regular intervals then the difference between the two results can be small, e.g., the \code{msm} routine estimates time until progression \emph{occurred} whereas \code{survfit} estimates time until progression was \emph{observed}. \begin{itemize} \item When using multi-state data to create Aalen-Johansen estimates, individuals are not allowed to have gaps in the middle of their time line. An example of this would be a data set with (0, 30, pcm] and (50,70, death] as the two observations for a subject where the time from 30-70 is not accounted for. \item Subjects must stay in the same group over their entire observation time, i.e., variables on the right hand side of the equation cannot be time-dependent. \item A transition to the same state is allowed, e.g., observations of (0,50, 1], (50, 75, 3], (75, 89, 4], (89, 93, 4] and (93, 100, 4] for a subject who goes from entry to state 1, then to state 3, and finally to state 4. However, a warning message is issued for the data set in this case, since stuttering may instead be the result of a coding mistake. The same result is obtained if the last three observations were collapsed to a single row of (75, 100, 4]. \end{itemize} %-------------------------------------------------------- \chapter{Cox model} \index{Cox model} The most commonly used models for survival data are those that model the transition rate from state to state, i.e., the arrows of figure \ref{fig:multi}. They are Poisson regression \eqref{eq2.1}, the Cox or proportional hazards model \eqref{eq2.2} and the Aalen additive regression model \eqref{eq2.3}, of which the Cox model is far and away the most popular. As seen in the equations they are closely related. \begin{eqnarray} \lambda(t) &= e^{beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots} \ \label{eq2.1} \\ \lambda(t) &= e^{\beta_0(t) + \beta_1 x_1 + \beta_2 x_2 + \ldots} \nonumber \\ &= \lambda_0(t) e^{\beta_1 x_1 + \beta_2 x_2 + \ldots} \label{eq2.2} \\ \lambda(t) &= \beta_0(t) + \beta_1(t) x_1 + \beta_2(t) x_2 + \ldots \label{eq2.3} \end{eqnarray} (Textbooks on survival use $\lambda(t)$, $\alpha(t)$ and $h(t)$ in about equal proportions. There is no good argument for any one versus another, but this author started his career with books that used $\lambda$ so that is what you will get.) % ----------------------------------------- \section{One event type, one event per subject} Single event data is the most common use for Cox models. We will use a data set that contains the survival of 228 patients with advanced lung cancer. <>= options(show.signif.stars=FALSE) # display statistical intelligence cfit1 <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung) print(cfit1, digits=3) summary(cfit1, digits=3) anova(cfit1) @ As is usual with R modeling functions, the default \code{print} routine gives a short summary and the \code{summary} routine a longer one. The \code{anova} command shows tests for each term in a model, added sequentially. We purposely avoid the innane addition of ``significant stars'' to any printout. Age and gender are strong predictors of survival, but the amount of recent weight loss was not influential. The following functions can be used to extract portions of a \code{coxph} object. \begin{itemize} \item \code{coef} or \code{coefficients}: the vector of coefficients \item \code{concordance}: the concordance statistic for the model fit \item \code{fitted}: the fitted values, also known as linear predictors \item \code{logLik}: the partial likelihood \item \code{model.frame}: the model.frame of the data used in the fit \item \code{model.matrix}: the $X$ matrix used in the fit \item \code{nobs}: the number of observations \item \code{predict}: a vector or matrix of predicted values \item \code{residuals}: a vector of residuals \item \code{vcov}: the variance-covariance matrix \item \code{weights}: the vector of case weights used in the fit \end{itemize} Further details about the contents of a \code{coxph} object can be found by \code{help('coxph.object')}. The global \code{na.action} function has an important effect on the returned vector of residuals, as shown below. This can be set per fit, but is more often set globally via the \code{options()} function. <>= cfit1a <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung, na.action = na.omit) cfit1b <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung, na.action = na.exclude) r1 <- residuals(cfit1a) r2 <- residuals(cfit1b) length(r1) length(r2) @ The fits have excluded 14 subjects with missing values for one or more covariates. The residual vector \code{r1} omits those subjects from the residuals, while \code{r2} returns a vector of the same length as the original data, containing NA for the omitted subjects. Which is preferred depends on what you want to do with the residuals. For instance \code{mean(r1)} is simpler using the first while \code{plot(lung\$ph.ecog, r2)} is simpler with the second. Stratified Cox models are obtained by adding one or more \code{strata} terms to the model formula. In a stratified model each subject is compared only to subjects within their own stratum for computing the partial likelihood, and then the final results are summed over the strata. A useful rule of thumb is that a variable included as a stratum is adjusted for in the most general way, at the price of not having an estimate of its effect. One common use of strata is to adjust for the enrolling institution in a multi-center study, as below. We see that in this case the effect of stratification is slight. <>= cfit2 <- coxph(Surv(time, status) ~ age + sex + wt.loss + strata(inst), data=lung) round(cbind(simple= coef(cfit1), stratified=coef(cfit2)), 4) @ Predicted survival curves from a Cox model are obtained using the \code{survfit} function. Since these are predictions from a model, it is necessary to specify \emph{whom} the predictions should be for, i.e., one or more sets of covariate values. Here is an example. <>= dummy <- expand.grid(age=c(50, 60), sex=1, wt.loss=5) dummy csurv1 <- survfit(cfit1, newdata=dummy) csurv2 <- survfit(cfit2, newdata=dummy) dim(csurv1) dim(csurv2) plot(csurv1, col=1:2, xscale=365.25, xlab="Years", ylab="Survival") dummy2 <- data.frame(age=c(50, 60), sex=1:2, wt.loss=5, inst=c(6,11)) csurv3 <- survfit(cfit2, newdata=dummy2) dim(csurv3) @ The simplifying aspects of the Cox model that make is so useful are exactly those that should be verified, namely proportional hazards, additivity, linearity, and lack of any high leverage points. The first can be checked with the \code{cox.zph} function. <>= zp1 <- cox.zph(cfit1) zp1 plot(zp1[2], resid=FALSE) abline(coef(fit1)[2] ,0, lty=3) @ None of the test statistics for PH are remarkable. A simple check for linearity of age is to replace the term with a smoothing spline. <>= cfit3 <- coxph(Surv(time, status) ~ pspline(age) + sex + wt.loss, lung) print(cfit3, digits=2) termplot(cfit3, term=1, se=TRUE) cfit4 <- update(cfit1, . ~ . + age*sex) anova(cfit1, cfit4) @ The age effect appears reasonbly linear. Additivity can be examined by adding and age by sex interaction, and again is not remarkable. \section{Repeating Events} Children with chronic granulotomous disease (CGD) are subject to repeated infections due to a compromised immune system. The \code{cgd0} data set contains results of a clinical trial of gamma interferon as a treatment, the data set \code{cdg} contains the data reformatted into a (tstart, tstop, status) form: each child can have multiple rows which describe an interval of time, and status=1 if that interval ends with an infection and 0 otherwise. A model with a single baseline hazard, known as the Andersen-Gill model, can be fit very simply. The study recruited subjects from four types of institutions, and there is an a priori belief that the four classes might recruit a different type of subject. Adding the hospital category as a strata allows each group to have a different shape of baseline hazard. <>= cfit1 <- coxph(Surv(tstart, tstop, status) ~ treat + inherit + steroids + age + strata(hos.cat), data=cgd) print(cfit1, digits=2) @ Further examination shows that the fit is problematic in that only 3 of 128 children have \code{steroids ==1}, so we refit without that variable. <>= cfit2 <- coxph(Surv(tstart, tstop, status) ~ treat + inherit+ age + strata(hos.cat), data=cgd) print(cfit2, digits=2) @ Predicted survival and/or cumulative hazard curves can then be obtained from the fitted model. Prediction requires the user to specifiy \emph{who} to predict; in this case we will use 4 hypothetical subjects on control/interferon treatment, at ages 7 and 20 (near the quantiles). This creates a data frame with 4 rows. <>= dummy <- expand.grid(age=c(6,12), inherit='X-linked', treat=levels(cgd$treat)) dummy csurv <- survfit(cfit2, newdata=dummy) dim(csurv) plot(csurv[1,], fun="event", col=1:2, lty=c(1,1,2,2), xlab="Days on study", ylab="Pr( any infection )") @ The resulting object was subscripted in order to make a plot with fewer curves, i.e., predictions for the first level of \code{hosp.cat}. We see that treatment is effective but the effect of age is small. Perhaps more interesting in this situation is the expected number of infections, rather than the probability of having at least 1. The former is estimated by the cumulative hazard, which is also returned by the \code{survfit} routine. <>= plot(csurv[1,], cumhaz=TRUE, col=1:2, lty=c(1,1,2,2), lwd=2, xlab="Days on study", ylab="E( number of infections )") legend(20, 1.5, c("Age 6, control", "Age 12, control", "Age 6, gamma interferon", "Age 12, gamma interferon"), lty=c(2,2,1,1), col=c(1,2,1,2), lwd=2, bty='n') @ \section{Competing risks} Our third category is models where there is more than one event type, but each subject can have only one transition. This is the setup of competing risks. \subsection{MGUS} As an simple multi-state example consider the monoclonal gammopathy data set \code{mgus2}, which contains the time to a plasma cell malignancy (PCM), usually multiple myleoma, and the time to death for 1384 subjects found to have a condition known as monoclonal gammopathy of undetermined significance (MGUS), based on a particular test. This data set has already appeared in \ref{mgusplot}. The time values in the data set are from detection of the condition. Here are a subset of the observations along with a simple state figure for the data. <>= mgus2[56:59,] sname <- c("MGUS", "Malignancy", "Death") smat <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3, 3, dimnames = list(sname, sname)) statefig(c(1,2), smat) @ In this data set subject 56 was diagnosed with a PCM 29 months after detection of MGUS and died at 44 months. This subject passes through all three states. The other three listed individuals died without a plasma cell malignancy and traverse one of the arrows; 103 subjects (not shown) are censored before experiencing either event and spend their entire tenure in the leftmost state. The competing risks model will ignore the transition from malignacy to death: the two ending states are ``malignancy before death'' and ``death without malignancy''. The \code{statefig} function is designed to create simple state diagrams, with an emphasis on ease rather than elegance. See more information in section \ref{sect:statefig}. For competing risks each subject has at most one transition, so the data set only needs one row per subject. <>= crdata <- mgus2 crdata$etime <- pmin(crdata$ptime, crdata$futime) crdata$event <- ifelse(crdata$pstat==1, 1, 2*crdata$death) crdata$event <- factor(crdata$event, 0:2, c("censor", "PCM", "death")) quantile(crdata$age, na.rm=TRUE) table(crdata$sex) quantile(crdata$mspike, na.rm=TRUE) cfit <- coxph(Surv(etime, event) ~ I(age/10) + sex + mspike, id = id, crdata) print(cfit, digits=1) # narrow the printout a bit @ The effect of age and sex on non-PCM mortality is profound, which is not a surprise given the median starting age of \Sexpr{median(mgus2$age)}. %$ Death rates rise \Sexpr{round(exp(10*coef(cfit)[4]),1)} fold per decade of age and the death rate for males is \Sexpr{round(exp(coef(cfit)[5]),1)} times as great as that for females. The size of the serum monoclonal spike has almost no impact on non-PCM mortality. A 1 unit increase changes mortality by only 2\%. The mspike size has a major impact on progression, however; each 1 gram change increases risk by \Sexpr{round(exp(coef(cfit)[3]) ,1)} fold. The interquartile range of \code{mspike} is 0.9 grams so this risk increase is clinically important. The effect of age on the progression rate is much less pronounced, with a coefficient only 1/4 that for mortality, while the effect of sex on progression is completely negligible. Estimates of the probability in state can be simply computed using \code{survfit}. As with any model, estimates are always for a particular set of covariates. We will use 4 hypothetical subjects, male and female with ages of 60 and 80. <>= dummy <- expand.grid(sex=c("F", "M"), age=c(60, 80), mspike=1.2) csurv <- survfit(cfit, newdata=dummy) plot(csurv[,,2], xmax=20*12, xscale=12, xlab="Years after MGUS diagnosis", ylab="Pr(has entered PCM state)", col=1:2, lty=c(1,1,2,2), lwd=2) legend(100, .04, outer(c("female,", "male, "), c("diagnosis at age 60", "diagnosis at age 80"), paste), col=1:2, lty=c(1,1,2,2), bty='n', lwd=2) @ Although sex has no effect on the \emph{rate} of plasma cell malignancy, its effect on the \emph{lifetime probability} of PCM is not zero, however. As shown by the simple Poisson model below, the rate of PCM is about 1\% per year. Other work reveals that said rate is almost constant over follow-up time (not shown). Because women in the study have an average lifetime that is 2 years longer than men, their lifetime risk of PCM is higher as well. Very few subjects acquire PCM more than 15 years after a MGUS diagnosis at age 80 for the obvious reason that very few of them will still be alive. <>= mpfit <- glm(pstat ~ sex -1 + offset(log(ptime)), data=mgus2, poisson) exp(coef(mpfit)) * 12 # rate per year @ A single outcome fit using only time to progression is instructive: we obtain exactly the same coefficients but different absolute risks. This is a basic property of multi-state models: hazards can be explored separately for each transition, but absolute risk must be computed globally. (The estimated cumulative hazards from the two models are also identical). The incorrect curve is a vain attempt to estimate the progression rate which would occur if death could be abolished. It not surprisingly ends up as about 1\% per year. <>= sfit <- coxph(Surv(etime, event=="PCM") ~ I(age/10) + sex + mspike, crdata) rbind(single = coef(sfit), multi = coef(cfit)[1:3]) #par(mfrow=c(1,2)) ssurv <- survfit(sfit, newdata=dummy) plot(ssurv[3:4], col=1:2, lty=2, xscale=12, xmax=12*20, lwd=2, fun="event", xlab="Years from diagnosis", ylab= "Pr(has entered PCM state)") lines(csurv[3:4, 2], col=1:2, lty=1, lwd=2) legend(20, .22, outer(c("80 year old male,", "80 year old female,"), c("incorrect", "correct"), paste), col=1:2, lty=c(2,2,1,1), lwd=2, bty='n') @ \section{Multiple event types and multiple events per subject} Non-alcoholic fatty liver disease (NAFLD) is defined by three criteria: presence of greater than 5\% fat in the liver (steatosis), absence of other indications for the steatosis such as excessive alcohol consumption or certain medications, and absence of other liver disease \cite{Puri12}. NAFLD is currently responsible for almost 1/3 of liver transplants and it's impact is growing, it is expected to be a major driver of hepatology practice in the coming decade \cite{Tapper18}. The \code{nafld} data set includes all patients with a NAFLD diagnosis in Olmsted County, Minnesota between 1997 to 2014 along with up to four age and sex matched controls for each case \cite{Allen18}. We will model the onset of three important components of the metabolic syndrome: diabetes, hypertension, and dyslipidemia, using the model shown below. Subjects have either 0, 1, 2, or all 3 of these metabolic comorbidities. <>= state5 <- c("0MC", "1MC", "2MC", "3MC", "death") tmat <- matrix(0L, 5, 5, dimnames=list(state5, state5)) tmat[1,2] <- tmat[2,3] <- tmat[3,4] <- 1 tmat[-5,5] <- 1 statefig(rbind(4,1), tmat) @ \subsection{Data} The NAFLD data is represented as 3 data sets, \code{nafld1} has one observation per subject containing basline information (age, sex, etc.), nafld2 has information on repeated laboratory tests, e.g. blood pressure, and nafld3 has information on yes/no endpoints. Because NAFLD is often a disease of exclusion, a NAFLD diagnosis followed shortly by the diagnosis of another liver disease is considered a false positive. For this study we only consider ``confirmed'' NAFLD, i.e., if someone were diagnosed on 2001-06-20, the index date for confirmed NAFLD would be 2002-06-20, assuming that another liver diagnosis, death, or incomplete follow-up did not intervene. Control subjects are matched on age and sex, and for each their follow-up also commences on the ``confirmed NAFLD'' date. After the case-control set was assembled, we removed any subjects with less than 7 days of follow-up. These subjects add little information, and it prevents a particular confusion that can occur with a multi-day medical visit where two results from the same encounter have different dates. To protect patient confidentiality all time intervals are in days since the index date; none of the dates from the original data were retained. Subject age is their integer age at the index date, and the subject identifier is an arbitrary integer. As a final protection, only a 90\% random sample of the data was retained. As a consequence analyses results will not exactly match the original paper. Start by building an analysis data set using the first and third of these. <>= ndata <- tmerge(nafld1[,1:8], nafld1, id=id, death= event(futime, status)) ndata <- tmerge(ndata, subset(nafld3, event=="nafld"), id, nafld= tdc(days)) ndata <- tmerge(ndata, subset(nafld3, event=="diabetes"), id = id, diabetes = tdc(days), e1= event(days)) ndata <- tmerge(ndata, subset(nafld3, event=="htn"), id = id, htn = tdc(days), e2 = event(days)) ndata <- tmerge(ndata, subset(nafld3, event=="dyslipidemia"), id=id, lipid = tdc(days), e3= event(days)) attr(ndata, "tcount") @ <>= tc <- attr(ndata, 'tcount') # shorter name for use in Sexpr below icount <- table(table(nafld3$id)) #number with 1, 2, ... intervals ncount <- sum(nafld3$event=="nafld") @ The \code{tcount} attribute tells us a lot about the creation process. Each addition of a new endpoint or covariate to the data generates one row in the table. Column labels are explained by figure \ref{fig:timeline}. \begin{itemize} \item There are \Sexpr{tc[1,7]} last fu/death additions, which by definition fall at the trailing end of a subject's observation interval: they define the interval. \item There are \Sexpr{tc[2,2]} nafld splits that fall after the end of follow-up (`late'). These are subjects whose first NAFLD fell within a year of the end of their time line, and the one year delay for ``confirmed'' pushed them over the end. (The time value in the \code{nafld3} data set is 1 year after the actual notice of NAFLD; no other observations have this offset added). The time dependent covariate \code{nafld} never turns from 0 to 1 for these subjects. (Why were these subject not removed earlier by my ``at least 7 days of follow-up rule? They are all controls for someone else and so appear in the data at a younger age than their NAFLD date.) \item \Sexpr{tc[3,1]} of the diabetes diagnoses are before entry, i.e., these are the prevalent cases. One diagnosis occurred on the day of entry (``leading''), and will not be counted as a post-enrollment endpoint, all the other fall somewhere between study entry and last follow-up. \item Conversely, \Sexpr{tc[5,7]} subjects were diagnosed with hypertension at their final visit (``trailing''). These will be counted as an occurrence of a hypertension event (\code{e2}), but the time dependent covariate \code{htn} will never become 1. \end{itemize} Such a detailed look at data set construction may seem overmuch. Our experience is that issues with covariate and event timing occur in nearly all data sets, large or small. The 13 NAFLD cases ``after last follow-up'' were for instance both a surprise and a puzzle to us; but we have learned through experience that it is best not to proceed until such puzzles are understood. (This particular one was benign.) If, for instance, some condition is noted at autopsy, do we want the related time dependent covariate to change before or after the death event? Some sort of decision has to be made, and it is better to look and understand than to blindly accept some programming default. \subsection{Fits} Create the covariates for current state and the analysis endpoint. <>= ndata$cstate <- with(ndata, diabetes + htn + lipid) temp <- with(ndata, e1 + e2 + e3) temp2 <- with(ndata, ifelse(death, 4, ifelse(temp ==0, 0, cstate + temp))) ndata$event <- factor(temp2, 0:4, c("censored", "1mc", "2mc", "3mc", "death")) ndata$cstate <- factor(ndata$cstate, 0:3, c("0mc", "1mc", "2mc", "3mc")) ndata$age1 <- ndata$age + ndata$tstart/365.25 # analysis on age scale ndata$age2 <- ndata$age + ndata$tstop/365.25 temp3 <- survcheck(Surv(age1, age2, event) ~ nafld, data=ndata, id=id, istate=cstate) temp3 @ This is a rich data set with a large number of transitions: over 1/4 have at least one event, and there are a few subjects who transition through all 5 possible states (4 transitions). Unlike prior examples, subjects do not all enter the study in the same state; about 14\% have diabetes at the time of recruitment, for instance. Note one major difference between current state and outcome, namely that the first is a time-dependent variable. If a piece of a subject's time were divided into multiple sub-intervals, time dependent covariates repeat in each interval. An endpoint, however, does not repeat. We see a number of subjects who ``jump'' states, e.g., directly from 0 to 2 comorbidities. This serves to remind us that this is actually a model of time until \emph{detected} comorbidity; which will often have such jumps even if the underlying biology is continuous. The data look like the figure below. <>= @ states <- c("No comorbidity", "1 comorbidity", "2 comorbidities", "3 comorbitities", "Death") cmat <- matrix(0, 5,5) cmat[,5] <- 1 cmat[1,2] <- cmat[2,3] <- cmat[3,4] <- 1 cmat[1,3] <- cmat[2,4] <- 1.6 cmat[1,4] <- 1.6 dimnames(cmat) <- list(states, states) statefig(cbind(4,1), cmat) @ Since age is the dominant driver of the transitions we have chosen to do the fits directly on age scale rather than model the age effect. We force common coefficients for the transitions from 0 comorbidities to 1, 2 or 3, and for transitions from 1 comorbidity to 2 or 3. This is essentially a model of ``any progression'' from a given state. We also force the effect of male sex to be the same for any transition to death. <>= nfit1 <- coxph(list(Surv(age1, age2, event) ~ nafld + male, "0mc":state("1mc", "2mc", "3mc") ~ nafld+ male / common, 2:3 + 2:4 ~ nafld + male / common, 0: "death" ~ male / common), data=ndata, id=id, istate=cstate) nfit1$states round(coef(nfit1), 3) nfit1$cmap @ A list has been used as the formula for the \code{coxph} call. The first element is a standard formula, and will be the default for all of the transitions found in the model. Elements 2--4 of the list are pseudo formulas, which specify a set of states on the left and covariates on the right, along with the optional modifier \code{/common}. As shown, there are multiple ways to specify a set of transitions either by name or by number, the value 0 is shorthand for ``any state''. A '1' on the right-hand side can be used to force a common baseline hazard for two transitions. A common baseline for two transitions that originate from the same state is incompatable with the Cox partial likelihood, however, and will lead to multiple un-estimable coefficients. Here are two forms of the printout. We limit the number of digits to better fit on this document page. <>= options(show.signif.stars = FALSE) # display statistical maturity print(summary(nfit1, digits =3)) print(nfit1, digits =3) @ It is interesting, though not surprising, that the impact of NAFLD on death is largest for those with 0mc and smallest for those with 3mc. \section{Testing proportional hazards} The usual Cox model with $p$ covariates has the form \begin{align*} \lambda(t) &= \lambda_0(t) e^{\beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p} \\ &= e^{\beta_0(t) + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p} \end{align*} A key simplifying assumption of the model is that all of the coefficients except $\beta_0$ (the baseline hazard) are constant over time, which is referred to as the \emph{proportional hazards} assumption. Numerous approaches to verifying or testing this assumption have been proposed, of which the three most enduring have been the addition of an additional constructed covariate, score tests, and tests based on cumulative martingale sums. Each of these is normally applied to one covariate at a time. \subsection{Constructed variables} For the constructed variable approach, assume that the true form of the model for variable $x_1$ is $\beta_1(t) x_1$, with the coefficient having the simple linear form $\beta_1(t) = a + bt$. Then \begin{align} \beta_1(t)x_1 &= ax_1 + b(x_1t) \nonumber \\ & = ax_1 + b z \label{ph1} \end{align} that is, we can create a special time-dependent covariate $z = x_1t$, add add it to the data set, and then use an ordinary \code{coxph} fit. Consider the veterans lung cancer data set, which has often been used to illustrate non-proportional hazards. Adding this special covariate is not quite as simple as writing <>= fit2 <- coxph(Surv(time, status) ~ trt + trt*time + celltype + karno, data = veteran) @ The problem is that \code{time} is trying to play two roles in the above equation, the \emph{final} follow-up time for each subject and the \emph{continuous} time scale $t$ of equation \eqref{ph1}. The solution to to create the special variable explicitly before calling the regression function. Since the Cox model adds a term to the likelihood at each unique death time, it is sufficient to create a data set with the same granularity. <>= dtime <- unique(veteran$time[veteran$status==1]) # unique times newdata <- survSplit(Surv(time, status) ~ trt + celltype + karno, data=veteran, cut=dtime) nrow(veteran) nrow(newdata) fit0 <- coxph(Surv(time, status) ~ trt + celltype + karno, veteran) fit1 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno, data=newdata) fit2 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno + time:karno, newdata) fit2 fit2b <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno + rank(time):karno, newdata) @ The fits give a warning message about the use of the \code{time} variable on both sides of the equation, since two common cases where time appears on both sides are the naive model shown further above and frank typing mistakes. In this particular case we can ignore the warning since the data set was carefully constructed for this special purpose, but it should never be treated casually. Alternatively, \code{coxph} has built-in functionality that will build the expanded data set for us, behind the scenes, and then use that expanded data for the fit. Here is eqivalent code to test the Karnofsky variable: <>= fit2 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno + tt(karno), data =newdata, tt = function(x, t,...) x*t) @ There are 4 issues with the constructed variable approach. \begin{enumerate} \item The choice $\beta(t) \approx a + bt$ was arbitrary. Perhaps the true form is $a + b\log(t)$ (fit2b above), or some other function. \item The intermediate data set can become huge. It will be of order $O(nd)$ where $d$ is the number of unique event times, and $d$ grows along with $n$. \item The coefficients for a factor variable such as celltype can be confusing, since the results depend on how the 0/1 indicators for the variable are chosen. \item Outliers in time are an issue. The veteran cancer data set, for instance, contains a time of 999 days (a particularly suspicious value in any data set). The Cox model itself depends only on the rank order of the event times, so such outliers are not an issue for the base model, but as a covariate these values can have undue influence. The time-dependent coeffient for Karnofsky has $p<.01$ in fit2b above, which uses rank(time), a change that is largely due to dampening the leverage of outliers. \end{enumerate} \subsection{Score tests} The \code{cox.zph} function checks proportional hazards for a fitted Cox model directly, and tries to address the four issues discussed above. \begin{itemize} \item It is easy to specify alternate time transforms such as x*log(t). More importantly, the code produces both a diagnostic plot that suggests the shape of any non-proportionality, along with a test of the chosen time-transform. \item The test statistic is based on a score test, which does not require creating the expanded data set. \item Multi-covariate terms such as a factor or splines are by default treated as a single effect. \item The default time transform is designed to minimize outliers in time. \end{itemize} Shown below are results for the veterans data using \code{fit0} from above. The score statistic for the simple term x*time (\code{zp1}) closely matches the Wald test for the full time dependent fit found in \code{fit2} above, which is what we would expect; score, Wald and likelihood ratio tests usually agree quite closely for Cox models. <>= zp0 <- cox.zph(fit0, transform='identity') zp0 zp1 <- cox.zph(fit0, transform='log') zp1 oldpar <- par(mfrow=c(2,2)) for (i in 1:3) {plot(zp1[i]); abline(0,0, lty=3)} plot(zp0[3]) par(oldpar) @ A test for zero slope, from a least squares regression using data in the matching plot approximates the score test. (In versions of the package prior to survival3.0, the approximate test was used for the formal printout and test as well.) If proporitional hazard holds we would expect the fitted line to be horizontal, i.e., $\beta(t)$ is constant. Rather than show a fitted line the plot adds a general smooth curve, which can help reveal the \emph{form} of non-proportional hazards, if it exists. The first three panels of the plot show curves for the three covariates on a log(time) scale. Since \code{celltype} is a factor, the plot shows the time dependent effect of the portion of the linear predictor associated with cell type; if proportional hazards is true wrt that term a fitted line should be horizontal with a coefficient of 1. The effect of Karnofsky score appears become essentially 0 after approximately 6 months; for this cohort of subjects with advanced lung cancer, a 6 month old assessment is no longer relevant. The corresponding plot in the lower right panel, however, shows that the outlier time of 999 days has an undue influence on any such regression. A test of proportional hazards on that scale must also be treated with caution. The plot using log scale lacks these outliers and is more interpretable. The default time transform is based on a Kaplan-Meier transform, i.e., that monotone transform of the time axis that will cause the KM plot to be a straight line. This is a good default for the score tests, since it essentially guarrantees that there wil be no outliers in the constructed $x g(time)$, while dealing with censoring in a defensible way. That is, the code has opted for a \emph{safe} default. It is not as easily interpreted as other scales for the plots, however. The \code{cox.zph} function does not attempt a score test for random effects (frailty) terms, in fact is not clear what the computation for such a test should be. The function will check other covariates in a model that contains a random effect, however; the estimated random effect per subject is essentially treated as a fixed offset. \chapter{Accelerated Failure Time models} \label{chap:aft} \chapter{Tied event times} \label{chap:tied} \section{Cox model estimates} The theory for the Cox model has always been worked out for the case of continuous time, which implies that there will be no tied event or censoring times in the data set. With respect to censoring times, all of the survival library commands treat censoring as occuring ``just after'' the recorded time point. The rationale is that if a subject was last observed alive on day 231, say, then their death time, whatever it is, must be strictly greater than 231. For formally, a subject who was censored at time $t$ is considered to have been at risk for any events that occured at time $t$. The issue with tied event times is more complex, and the software supports three different algorithms for dealing with this. The Cox partial likelihood is a sum of terms, one for each event time, each of which compares the subject who had the event to the set of subjects who ``could have had the event": the \emph{risk set}. The overall view is essentially a lottery model: at each event time there was a drawing to select one subject for the event, the risk score for each subject $\exp(X_i\beta)$ tells how many ``tickets'' each subject had in the drawing. The software implements three different algorithms for dealing with tie event times. The Breslow approximation (\code{ties='breslow'}) in essence ignores the ties. If two subjects A and B died on day 100, say, the partial likelihood will have separate terms for the two deaths. Subject A will be at risk for the death that happened to B, and B will be at risk for the death that happened to A. In life this is not technically possible of course: whoever died first will not be at risk for the second death. The Efron approximation can be motivated by the idea of \emph{coarsening}: time is on a continuous scale but we only observe a less precise version of it. For example consider the acute myelogenous leukemia data set that is part of the package, which was a clinical trial to test if extendend chemotherapy (``Maintained'') was superior to standard. The time to failure was recorded in months, and in the non-maintained arm there are two pairs of failures, at 5 and at 8 months. It might be reasonable to assume that if the data had been recored in days these ties might not have occured. <<>>= with(subset(aml, x=="Nonmaintained"), Surv(time, status)) @ Let the risk scores $\exp(X\beta)$ for the 12 subjects be $r_1$--$r_{12}$, and assume that the two failures actually at month 5 are not tied on a finer time scale. For the first event, whichever it is, the risk set with be all subjects 1--12 and the denominator of the partial likelihood term is $\sum r_i$. For the second event, the denominator is either $r_1 + r_3 + \ldots r_{12}$ or $r_2 + r_3 + \ldots r_{12}$; the Efron approximation is to use the average of the two as the denominator term. In the software this is easily done by using temporary case weights: if there were $k$ tied events then one of the denomiators gives each of those $k$ subjects a weight of 1, then next gives each a weight of $(k-1)/k$, then next a weight of $(k-2)/k$, etc. The Efron approximation imposes a tiny bit more bookkeeping, but the the computational burden is no different that for case weights; i.e., it effectively takes no more computational time than the Breslow approximation. The third possiblility is the exact partial likelihood due to Cox, which treats the underlying time scale as discrete rather than continuous. When taking this view the denominator of the partial likelihood term is again an average, but over a much larger subset. If there are $k$ events and $n$ subjects at risk, the EPL sum is over all $k$ choose $n$ possible choices. In the AML example above, the event at time 5 will be a sum over 12(11)/2= 33 terms. If the number of ties is large this quickly grows unreasonable: for 20 ties out of 1000 the sum has over 39 billion terms. A clever algorithm by Gail makes this sum barely possible, but it does not extend to the case of (tstart, tstop) style data. An important aside is that the log-likelihood for matched logistic regression is identical to the Cox partial likelihood for a particular data set, when the EPL is used. Namely, set time=1 (or any other constant), status = 0 for controls and 1 for cases, and fit a coxph model with each matched set as a separate stratum. In most instances a matched set will consist of a single case along with one or more controls, however, which is the case where the Breslow, Efron, and EPL are identical. (The EPL will still take slightly longer to run due to setting up the necessary structure for all those sums.) How important are the ties, actually? Below we show a small computation in which a larger data set is successively coarsened and compare the results. The colon cancer data set has 929 subjects with stage B/C colon cancer who were randomized to three treatment arms and then followed for 5 years; the time to death or progression is in days. In the example below we successively coarsen the time scale to be monthly, bimonthly, \ldots, bi-annual; the last of which generates an very large number of ties. What we see is that \begin{itemize} \item The Efron approximation is quite good at dealing with the coarsened data, producing nearly the same coefficient as the original data even when the coarsening is extreme. \item The Breslow approximation is biased somewhat towards 0, the exact paritial likelihood somewhat away from 0. \item The differences are very small. With monthly coarsening, which is itself fairly large, the 3 estimates differ by about .01 while the standard error of the original coefficient is 0.96; i.e. a shift that is statistically immaterial. \end{itemize} <>= tdata <- subset(colon, etype==1) # progression or death cmat <- matrix(0, 7, 6) for( i in 1:7) { if (i==1) scale <-1 else scale <- (i-1)*365/12 temp <- floor(tdata$time/scale) tfit <- coxph(Surv(temp, status) ~ node4 + extent, tdata) tfit2 <- coxph(Surv(temp, status) ~ node4 + extent, tdata, ties='breslow') tfit3 <- coxph(Surv(temp, status) ~ node4 + extent, tdata, ties='exact') cmat[i,] <- c(coef(tfit2), coef(tfit), coef(tfit3)) } matplot(1:7, cmat[,c(1,3,5)], xaxt='n', pch='bec', xlab="Time divisor", ylab="Coefficient for node4") axis(1, 1:7, c(1, floor(1:6 *365/12))) @ Early on in the package the decision was made to make the Efron approximation the default. The reasoning was simply that is \emph{is} more accurate, even if only a little, and the author's early background in numerical analysis argued strongly to always use the best approximation available. The second reason is that the computational cost is low. Most of us would pick up a 1 Euro coin on the sidewalk, even though it will not make any real change in our income. One downside is that no other package did this, leading to a very common complaint/question that R ``gives different results''. A second is that it leads to further downstream programming as discussed in following sections. \section{Cumulative hazard and survival} The coarsening argument can also be applied to the cumulative hazard $\Lambda(t)$. Say that there were 3 deaths with 10 subjects at risk. The increment to the Nelson-Aalen cumulative hazard estimate would then be 3/10. If the data had been observed in continuous time, however, there would have been 3 increments of 1/10 + 1/9 + 1/8. This estimate was explored by Fleming and Harrington \cite{Fleming84}. In the \code{survfit} function the \code{ctype} option selects for 1=Nelson-Aalen and 2= Fleming-Harrington. The Kaplan-Meier estimate is not subject to the coarsening phenominon. In our example, the observed data will lead to a multipilicative increment of 7/10 and the continuous data to one of (9/10)(8/9)(7/8), which are the same. An alternate estimate of the survival is $S(t) = \exp(-\Lambda(t))$. Basing this on the FH estimate of hazard will more closely track the KM when there are tied event times. The direct (KM) vs. exponential estimates of survival are obtained with the \code{ctype=1} and \code{ctype=2} arguments; however, the exponential estimate is quite uncommon outside of the Cox model. \section{Predicted cumulative hazard and surival from a Cox model} Predictions from a coxph model must always be for \emph{someone}, i.e., some particular set of covariate values. Let $r_i = \exp(X_i\hat\beta -c)$ be the recentered risk scores for each subject $i$, where the recentering constant $c = X_n\hat\beta$, $X_n$ being the covariates of the ``new'' subject for which prediction is desired. (We don't want to create a prediction for a baseline subject with X=0, what textbooks often call a ``baseline hazard'', since if 0 is too far from the center of the data the exp function can easily overflow.) The estimated cumulative hazard at any event time is then \begin{equation} \Lhat(t) = \int_0^t \frac{\sum_i dN_i(t)}{\sum_i Y_i(t) r_i} \label{haz:breslow} \end{equation} Equation \eqref{haz:breslow} is known as the Breslow estimate; if $\hat\beta=0$ then $r_i=1$ and it becomes equal to the Nelson-Aalen estimator. If the Efron estimate is used for ties, then the software uses an Efron estimate of the cumulative hazard; which reduces to the Fleming-Harrington if $\hat\beta =0$. Using the hazard estimate that matches the parial likelihood estimate causes an important property of the vector of martingale residuals $m$ to hold, namely that $mX$ is equal to the first derivative of the partial likelihood. residuals hold for both The Cox model is a case where the default estimate of survival is based on the exponent of the cumulative hazard, rather than a 'direct' one such as the Kaplan-Meier. There are three reasons for this. \begin{enumerate} \item The most obvious 'direct' estimate is to use $(\sum dN_i(t) -\sum Y_i(t)r_i)/ (\sum Y_i(t)r_i)$ as a multiplicative update at each event time $t$. This expression in not guarranteed to be between 0 and 1, however, particular for new subjects who are near or past the boundaries of the original data set. This leads to using some sort of ad hoc correction to avoid failure. \item The direct estimate of Kalbfleisch and Prentice avoids this, but it does not extend to delayed entry, multi-state models or other extensions of the basic model. \item The KP estimate reqires iteration so the code is more complex. \end{enumerate} \section{Multi-state models} Multi-state hazards models have a very interesting (and useful) property, which is that hazards can be estimated singly (without reference to any other transition) but probability-in-state estimators must be computed globally. Thus, one can estimate non-parametric cumulative hazard estimates (Nelson-Aalen), the hazard ratios for any given transtion (Cox model) or the predicted cumulative hazard function based on a per transition Cox model without incurring any issues with respect to competing risks. (If there is informative censoring the overall and individual estimates still agree, but they will both be wrong. An example of informative censoring would be subjects who are removed from the data because of an impending event, e.g., censoring subjects who enter hospice care would underestimate death rates.) Now say that we had a simple competing risks problem, 10 subjects are alive and in the initial state on day 100, at which time two of them transition to two different endpoints. A coarsening argument would say that on the underlying continuous time scale these two subjects would not be tied, and then would use 9.5 as the denominator for each of the two cumulative hazard increments. Such an estimate would however then be at variance with the two indiviually computed hazards: global coarsening removes the separability. The survival package takes a moderated view and will apply the coarsening argument separately to each hazard, i.e., it chose to retain the separation policy. \section{Parametric Regression} \subsection{Usage} The \co{survreg} function implements the class of parametric accelerated failure time models. Assume that the survival time $y$ satisfies $\log(y) = X'\beta + \sigma W$, for $W$ from some given distribution. Then if $\Lambda_w(t)$ is the cumulative hazard function for $W$, the cumulative hazard function for subject $i$ is $\Lambda_w[\exp(-\eta_i/\sigma)t]$, that is, the time scale for the subject is accelerated by a constant factor. A good description of the models is found in chapter 3 of Kalbfleisch and Prentice \cite{Kalbfleisch80}. The following fits a Weibull model to the lung cancer data set included in the package. \begin{verbatim} > fit <- survreg(Surv(time, status) {\twiddle} age + sex + ph.karno, data=lung, dist='weibull') > fit Call: survreg(formula = Surv(time, status) {\twiddle} age + sex + ph.karno, data = lung, dist = "weibull") Coefficients: (Intercept) age sex ph.karno 5.326344 -0.008910282 0.3701786 0.009263843 Scale= 0.7551354 Loglik(model)= -1138.7 Loglik(intercept only)= -1147.5 Chisq= 17.59 on 3 degrees of freedom, p= 0.00053 n=227 (1 observations deleted due to missing) \end{verbatim} The code for the routines has undergone substantial revision between releases 4 and 5 of the code. Calls to the older version are not compatable with all of the changes, users can use the \code{survreg.old} function if desired, which retains the old argument style (but uses the newer maximization code). Major additions included penalzed models, strata, user specified distributions, and more stable maximization code. \subsection{Strata} In a Cox model the \code{strata} statement is used to allow separate baseline hazards for subgroups of the data, while retaining common coefficients for the other covariates across groups. For parametric models, the statement allows for a separate scale parameter for each subgroup, but again keeping the other coefficients common across groups. For instance, assume that separate ``baseline'' hazards were desired for males and females in the lung cancer data set. If we think of the intercept and scale as the baseline shape, then an appropriate model is \begin{verbatim} > sfit <- survreg(Surv(time, status) ~ sex + age + ph.karno + strata(sex), data=lung) > sfit Coefficients: (Intercept) sex age ph.karno 5.059089 0.3566277 -0.006808082 0.01094966 Scale: sex=1 sex=2 0.8165161 0.6222807 Loglik(model)= -1136.7 Loglik(intercept only)= -1146.2 Chisq= 18.95 on 3 degrees of freedom, p= 0.00028 \end{verbatim} The intercept only model used for the likelihood ratio test has 3 degrees of freedom, corresponding to the intercept and two scales, as compared to the 6 degrees of freedom for the full model. This is quite different from the effect of the \code{strata} statement in \code{censorReg}; there it acts as a `by' statement and causes a totally separate model to be fit to each gender. The same fit (but not as nice a printout) can be obtained from \code{survreg} by adding an explicit interaction to the formula: \begin{verbatim} Surv(time,status) ~ sex + (age + ph.karno)*strata(sex) \end{verbatim} \subsection{Penalized models} Let the linear predictor for a \code{survreg} model be $\eta = X\beta + Z\omega$, and consider maximizing the penalized log-likelihood $$ PLL = LL(y; \beta, \omega) - p(\omega; \theta)\,, $$ where $\beta$ and $\omega$ are the unconstrained effects, respectively, $X$ and $Z$ are the covariates, $p$ is a function that penalizes certain choices for $\omega$, and $\theta$ is a vector of tuning parameters. For instance, ridge regression is based on the penalty $p = \theta \sum \omega_j^2$; it shrinks coefficients towards zero. The penalty functions in \code{survreg} currently use the same code as those for \code{coxph}. This works well in the case of ridge and pspline, but frailty terms are more problematic in that the code to automatically choose the tuning parameter for the random effect no longer solves an MLE equation. More work on understanding these models is needed. \subsection{Specifying a distribution} The fitting routine is quite general, and can accept any distribution that spans the real line for $W$, and any monotone transformation of $y$. The standard set of distributions is contained in a list \code{survreg.distributions}. Elements of the list are of two types. Basic elements are a description of a distribution. Here is the entry for the logistic family: \begin{verbatim} logistic = list( name = "Logistic", variance = function(parm) pi^2/3, init = function(x, weights, ...) \{ mean <- sum(x*weights)/ sum(weights) var <- sum(weights*(x-mean)^2)/ sum(weights) c(mean, var/3.2) \}, deviance= function(y, scale, parms) \{ status <- y[,ncol(y)] width <- ifelse(status==3,(y[,2] - y[,1])/scale, 0) center <- y[,1] - width/2 temp2 <- ifelse(status==3, exp(width/2), 2) #avoid a log(0) message temp3 <- log((temp2-1)/(temp2+1)) best <- ifelse(status==1, -log(4*scale), ifelse(status==3, temp3, 0)) list(center=center, loglik=best) \}, density = function(x, ...) \{ w <- exp(x) cbind(w/(1+w), 1/(1+w), w/(1+w)^2, (1-w)/(1+w), (w*(w-4) +1)/(1+w)^2) \}, quantile = function(p, ...) log(p/(1-p)) ) \end{verbatim} \begin{itemize} \item Name is used to label the printout. \item Variance contains the variance of the distribution. For distributions with an optional parameter such as the $t$-distribution, the \code{parm} argument will contain those parameters. \item Deviance gives a function to compute the deviance residuals. More on this is explained below in the mathematical details. \item The density function gives the necessary quantities to fit the distribution. It should return a matrix with columns $F(x)$, $1-F(x)$, $f(x)$, $f'(x)/f(x)$ and $f''(x)/f(x)$, where $f'$ and $f''$ are the first and second derivatives of the density function, respectively. \item The quantiles function returns quantiles, and is used for residuals. \end{itemize} The reason for returning both $F$ and $1-F$ in the density function is to avoid round off error when $F(x)$ is very close to 1. This is quite simple for symmetric distributions, in the Gaussian case for instance we use \code{qnorm(x)} and \code{qnorm(-x)} respectively. (In the intermediate steps of iteration very large deviates may be generated, and a probabilty value of zero will cause further problems.) Here is an example of the second type of entry: \begin{verbatim} exponential = list( name = "Exponential", dist = "extreme", scale =1 , trans = function(y) log(y), dtrans= function(y) 1/y , itrans= function(x) exp(x) ) \end{verbatim} This states that an exponential fit is computed by fitting an extreme value distribution to the log transformation of $y$. (The distribution pointed to must not itself be a pointer to another). The extreme value distribution is restricted to have a scale of 1. The first derivative of the transformation, \code{dtrans}, is used to adjust the final log-likelihood of the model back to the exponential's scale. The inverse transformation \code{itrans} is used to create predicted values on the original scale. The formal rules for an entry are that it must include a name, either the ``dist" component or the set ``variance",``init", ``deviance", ``density" and ``quantile", an optional scale, and either all or none of ``trans", ``dtrans" and ``itrans". The \code{dist="weibull"} argument to the \code{survreg} function chooses the appropriate list from the survreg.distributions object. User defined distributions of either type can be specified by supplying the appropriate list object rather than a character string. Distributions should, in general, be defined on the entire real line. If not the minimizer used is likely to fail, since it has no provision for range restrictions. Currently supported distributions are \begin{itemize} \item basic \begin{itemize} \item (least) Extreme value \item Gaussian \item Logistic \item $t$-distribution \end{itemize} \item transformations \begin{itemize} \item Exponential \item Weibull \item Log-normal ('lognormal' or 'loggaussian') \item Log-logistic ('loglogistic') \end{itemize} \end{itemize} % Residuals for parametric survival models % and predicted values \subsection{Residuals} \subsubsection{Response} The target return value is $y - \yhat$, but what should we use for $y$ when the observation is not exact? We will let $\yhat_0$ be the MLE for the location parameter $\mu$ over a data set with only the observation of interest, with $\sigma$ fixed at the solution to the problem as a whole, subject to the constraint that $\mu$ be consistent with the data. That is, for an observation right censored at $t=20$, we constain $\mu \ge 20$, similarly for left censoring, and constrain $\mu$ to lie within the two endpoints of an interval censored observation. To be consistent as the width of an interval censored observation goes to zero, this definition does require that the mode of the density lies at zero. For exact, left, and right censored observations $\yhat_0 =y$, so that this appears to be an ordinary response residual. For interval censored observations from a symmetric distribution, $\yhat_0 =$ the center of the censoring interval. The only unusual case, then, is for a non-symmetric distribution such as the extreme value. As shown later in the detailed information on distributions, for the extreme value distribution this occurs for $\yhat_0 = y^l - \log(b/[exp(b)-1])$, where $b = y^u - y^l$ is the length of the interval. \subsubsection{Deviance} Deviance residuals are response residuals, but transformed to the log-likelihood scale. $$ d_i = sign(r_i) \sqrt{LL(y_i, \yhat_0;\sigma) -LL(y_i,\eta_i; \sigma)}$$ The definition for $\yhat_0$ used for response residuals, however, could lead to the square root of a negative number for left or right censored observations, e.g., if the predicted value for a right censored observation is less than the censoring time for that observation. For these observations we let $\yhat_0$ be the \emph{unconstrained} maximum, which leads to $yhat_0 = -\infty$ and $+\infty$ for right and left censored observations, respectively, and a log-likelihood term of 0. The advantages of these residuals for plotting and outlier detection are nicely detailed in McCullagh and Nelder \cite{glim}. However, unlike GLM models, deviance residuals for interval censored data are not free of the scale parameter. This means that if there are interval censored data values and one fits two models A and B, say, that the sum of the squared deviance residuals for model A minus the sum for model B is \emph{not} equal to the difference in log-likelihoods. This is one reason that the current \code{survreg} function does not inherit from class \code{glm}: \code{glm} models use the deviance as the main summary statistic in the printout. \subsubsection{Dfbeta} The \code{dfbeta} residuals are a matrix with one row per subject and one column per parameter. The $i$th row gives the approximate change in the parameter vector due to observation $i$, i.e., the change in $\bhat$ when observation $i$ is added to a fit based on all observations but the $i$th. The \code{dfbetas} residuals scale each column of this matrix by the standard error of the respective parameter. \subsubsection{Working} As shown in section \ref{sect:irls} below, the Newton-Raphson iteration used to solve the model can be viewed as an iteratively reweighted least squares problem with a dependent variable of ``current prediction - correction''. The working residual is the correction term. \subsubsection{Likelihood displacement residuals} Escobar and Meeker \cite{Escobar92} define a matrix of likelihood displacement residuals for the accelerated failure time model. The full residual information is a square matrix $\ddot A$, with dimension the number of pertubations considered. Three examples are developed in detail, all with dimension $n$, the number of observations. Case weight pertubations measure the overall effect on the parameter vector of dropping a case. Let $V$ be the variance matrix of the model, and $L$ the $n$ by $p$ matrix with elements $\partial L_i/ \partial \beta_j$, where $L_i$ is the likelihood contribution of the $i$th observation. Then $\ddot A = LVL'$. The residuals function returns the diagonal values of the matrix. Note that $LV$ equals the \code{dfbeta} residuals. Response pertubations correspond to a change of 1 $\sigma$ unit in one of the response values. For a Gaussian linear model, the equivalent computation yields the diagonal elements of the hat matrix. Shape pertubations measure the effect of a change in the log of the scale parameter by 1 unit. The \code{matrix} residual type returns the raw values that can be used to compute these and other LD influence measures. The result is an $n$ by 6 matrix, containing columns for $$ L_i \quad \frac{\partial L_i}{\partial \eta_i} \quad \frac{\partial^2 L_i}{\partial \eta_i^2} \quad \frac{\partial L_i}{\partial \log(\sigma)} \quad \frac{\partial L_i}{\partial \log(\sigma)^2} \quad \frac{\partial^2 L_i}{\partial \eta \partial\log(\sigma)} $$ \subsection{Predicted values} \subsubsection{Linear predictor and response} The linear predictor is $\eta_i = x'_i \bhat$, where $x_i$ is the covariate vecor for subject $i$ and $\bhat$ is the final parameter estimate. The standard error of the linear predictor is $x'_i V x_i$, where $V$ is the variance matrix for $\bhat$. The predicted response is identical to the linear predictor for fits to the untransformed distributions, i.e., the extreme-value, logistic and Gaussian. For transformed distributions such as the Weibull, for which $\log(y)$ is from an extreme value distribution, the linear predictor is on the transformed scale and the response is the inverse transform, e.g. $\exp(\eta_i)$ for the Weibull. The standard error of the transformed response is the standard error of $\eta_i$, times the first derivative of the inverse transformation. \subsubsection{Terms} Predictions of type \code{terms} are useful for examination of terms in the model that expand into multiple dummy variables, such as factors and p-splines. The result is a matrix with one column for each of the terms in the model, along with an optional matrix of standard errors. Here is an example using psplines on the 1980 Stanford data \begin{verbatim} > fit <- survreg(Surv(time, status) ~ pspline(age, df=3) + t5, stanford2, dist='lognormal') > tt <- predict(fit, type='terms', se.fit=T) > yy <- cbind(tt$fit[,1], tt$fit[,1] -1.96*tt$se.fit[,1], tt$fit[,1] +1.96*tt$se.fit[,1]) > matplot(stanford2$age, yy, type='l', lty=c(1,2,2)) > plot(stanford2$age, stanford2$time, log='y', xlab='Age', ylab='Days', ylim=c(.1, 10000)) > matlines(stanford2$age, exp(yy+ attr(tt$fit, 'constant')), lty=c(1,2,2)) \end{verbatim} The second plot puts the fit onto the scale of the data, and thus is similar in scope to figure 1 in Escobar and Meeker \cite{Escobar92}. Their plot is for a quadratic fit to age, and without T5 mismatch score in the model. \subsubsection{Quantiles} If predicted quantiles are desired, then the set of probability values $p$ must also be given to the \code{predict} function. A matrix of $n$ rows and $p$ columns is returned, whose $ij$ element is the $p_j$th quantile of the predicted survival distribution, based on the covariates of subject $i$. This can be written as $X\beta + z_q \sigma$ where $z_q$ is the $q$th quantile of the parent distribution. The variance of the quantile estimate is then $cVc'$ where $V$ is the variance matrix of $(\beta, \sigma)$ and $c=(X,z_q)$. In computing confidence bands for the quantiles, it may be preferable to add standard errors on the untransformed scale. For instance, consider the motor reliability data of Kalbfleisch and Prentice \cite{Kalbfleisch02}. \begin{verbatim} > fit <- survreg(Surv(time, status) ~ temp, data=motors) > q1 <- predict(fit, data.frame(temp=130), type='quantile', p=c(.1, .5, .9), se.fit=T) > ci1 <- cbind(q1$fit, q1$fit - 1.96*q1$se.fit, q1$fit + 1.96*q1$se.fit) > dimnames(ci1) <- list(c(.1, .5, .9), c("Estimate", "Lower ci", "Upper ci")) > round(ci1) Estimate Lower ci Upper ci 0.1 15935 9057 22812 0.5 29914 17395 42433 0.9 44687 22731 66643 > q2 <- predict(fit, data.frame(temp=130), type='uquantile', p=c(.1, .5, .9), se.fit=T) > ci2 <- cbind(q2$fit, q2$fit - 1.96*q2$se.fit, q2$fit + 1.96*q2$se.fit) > ci2 <- exp(ci2) #convert from log scale to original y > dimnames(ci2) <- list(c(.1, .5, .9), c("Estimate", "Lower ci", "Upper ci")) > round(ci2) Estimate Lower ci Upper ci 0.1 15935 10349 24535 0.5 29914 19684 45459 0.9 44687 27340 73041 \end{verbatim} Using the (default) Weibull model, the data is fit on the $\log(y)$ scale. The confidence bands obtained by the second method are asymmetric and may be more reasonable. They are also guarranteed to be $>0$. This example reproduces figure 1 of Escobar and Meeker \cite{Escobar92}. \begin{verbatim} > plot(stanford2$age, stanford2$time, log='y', xlab='Age', ylab='Days', ylim=c(.01, 10^6), xlim=c(1,65)) > fit <- survreg(Surv(time, status) ~ age + age^2, stanford2, dist='lognormal') > qq <- predict(fit, newdata=list(age=1:65), type='quantile', p=c(.1, .5, .9)) > matlines(1:65, qq, lty=c(1,2,2)) \end{verbatim} Note that the percentile bands on this figure are really quite a different object than the confidence bands on the spline fit. The latter reflect the uncertainty of the fitted estimate and are related to the standard error. The quantile bands reflect the predicted distribution of a subject at each given age (assuming no error in the quadratic estimate of the mean), and are related to the standard deviation of the population. \subsection{Fitting the model} \label{sect:irls} With some care, parametric survival can be written so as to fit into the iteratively reweighted least squares formulation used in Generalized Linear Models of McCullagh and Nelder \cite{glim}. A detailed description of this setup for general maximum likelihood computation is found in Green \cite{Green84}. Let $y$ be the data vector (possibly transformed), and $x_i$ be the vector of covariates for the $i$th observation. Assume that $$ z_i \equiv \frac{y_i - x_i'\beta}{\sigma} \sim f $$ for some distribution $f$, where $y$ may be censored. Then the likelihood for $y$ is $$ l = \left( \prod_{exact} f(z_i)/\sigma \, \right) \left( \prod_{right} \int_{z_i}^\infty f(u) du \, \right) \left( \prod_{left} \int_{-\infty}^{z_i} f(u) du \,\right) \left( \prod_{interval} \int_{z_i^l}^{z_i^u} f(u) du \right), $$ where ``exact'', ``right'', ``left'', and ``interval'' refer to uncensored, right censored, left censored, and interval censored observations, respectively, and $z_i^l$, $z_i^u$ are the lower and upper endpoints, respectively, for an interval censored observation. Then the log likelihood is defined as \begin{equation} LL = \sum_{exact} g_1(z_i) - log(\sigma) + \sum_{right} g_2(z_i) + \sum_{left} g_3(z_i) + \sum_{interval} g_4(z_i, z_i^*)\,, \label{ggdef} \end{equation} where $g_1=\log(f)$, $g_2 = \log(1-F)$, etc. Derivatives of the LL with respect to the regression parameters are: \begin{eqnarray} \frac{\partial LL}{\partial \beta_j} &=& \sum_{i=1}^n \frac{\partial g}{\partial \eta_i} \frac{\partial \eta_i}{\partial \beta_j} \nonumber \\ &=& \sum_{i=1}^n x_{ij} \frac{\partial g}{\partial \eta_i} \\ \frac{\partial^2 LL} {\partial \beta_j \beta_k} &=& \sum x_{ij}x_{ik} \frac{\partial^2 g}{\partial \eta_i^2}\, , \end{eqnarray} where $\eta = X'\beta$ is the vector of linear predictors. Ignore for a moment the derivatives with respect to $\sigma$ (or treat it as fixed). The Newton-Raphson step defines an update $\delta$ $$ (X^T DX) \delta = X^T U, $$ where $D$ is the diagonal matrix formed from $-g''$, and $U$ is the vector $g'$. The current estimate $\beta$ satisfies $X \beta = \eta$, so that the new estimate $\beta + \delta$ will have \begin{eqnarray*} (X^T DX)(\beta + \delta) &=& X^T D \eta + X^T U \\ &=& (X^T D) (\eta + D^{-1}U) \end{eqnarray*} Thus if we treat $\sigma$ as fixed, iteration is equivalent to IRLS with weights of $-g''$ and adjusted dependent variable of $\eta - g'/g''$. At the solution to the iteration we might expect that $\hat\eta \approx y$; and a weighted regression with $y$ replacing $\eta$ gives, in general, good starting estimates for the iteration. (For an interval censored observation we use the center of the interval as `y'). Note that if all of the observations are uncensored, then this reduces to using the linear regression of $y$ on $X$ as a starting estimate: $y=\eta$ so $z=0$, thus $g'=0$ and $g''=$ a constant (all of the supported densities have a mode at zero). This clever starting estimate is introduced in Generalized Linear Models (McCullagh and Nelder \cite{glim}), and works extremely well in that context: convergence often occurs in 3-4 iterations. It does not work quite so well here, since a ``good" fit to a right censored observation might have $\eta >> y$. Secondly, the other coefficients are not independent of $\sigma$, and $\sigma$ often appears to be the most touchy variable in the iteration. Most often, the routines will be used with $\log(y)$, which corresponds to the set of accelerated failure time models. The transform can be applied implicitly or explicitly; the following two fits give identical coefficients: \begin{verbatim} > fit1 <- survreg(Surv(futime, fustat)~ age + rx, fleming, dist='weibull') > fit2 <- survreg(Surv(log(futime), fustat) ~ age + rx, data=fleming, dist='extreme') \end{verbatim} The log-likelihoods for the two fits differ by a constant, i.e., the sum of $d\log(y)/dy$ for the uncensored observations, and certain predicted values and residuals will be on the $y$ versus $\log(y)$ scale. \subsection {Derivatives} This section is very similar to the appendix of Escobar and Meeker \cite{Escobar92}, differing only in our use of $\log(\sigma)$ rather than $\sigma$ as the natural parameter. Let $f$ and $F$ denote the density and distribution functions, respectively, of the distributions. Using (\ref{ggdef}) as the definition of $g1,\ldots,g4$ we have \begin{eqnarray*} \frac{\partial g_1}{\partial \eta} &=& - \frac{1}{\sigma} \left[\frac{f'(z)}{f(z)} \right] \\ \frac{\partial g_4}{\partial \eta} &=& - \frac{1}{\sigma} \left[ \frac{f(z^u) - f(z^l)}{F(z^u) - F(z^l)} \right] \\ \frac{\partial^2 g_1}{\partial \eta^2} &=& \frac{1}{\sigma^2} \left[ \frac{f''(z)}{f(z)} \right] - (\partial g_1 / \partial \eta)^2 \\ \frac{\partial^2 g_4}{\partial \eta^2} &=& \frac{1}{\sigma^2} \left[ \frac{f'(z^u) - f'(z^l)}{F(z^u) - F(z^l)} \right] - (\partial g_4 / \partial \eta)^2 \\ \frac{\partial g_1}{\partial \log\sigma} &=& - \left[ \frac{zf'(z)}{f(z)} \right] \\ \frac{\partial g_4}{\partial \log\sigma} &=& - \left[ \frac{z^uf(z^u) - z^lf(z^l)}{F(z^u) - F(z^l)} \right] \\ \frac{\partial^2 g_1}{\partial (\log\sigma)^2} &=& \left[ \frac{z^2 f''(z) + zf'(z)}{f(z)} \right] - (\partial g_1 / \partial \log\sigma)^2 \\ \frac{\partial^2 g_4}{\partial (\log\sigma)^2} &=& \left[ \frac{(z^u)^2 f'(z^u) - (z^l)^2f'(z_l) } {F(z^u) - F(z^l)} \right] - \partial g_1 /\partial \log\sigma(1+\partial g_1 / \partial \log\sigma) \\ \frac{\partial^2 g_1}{\partial \eta \partial \log\sigma} &=& \frac{zf''(z)}{\sigma f(z)} -\partial g_1/\partial \eta (1 + \partial g_1/\partial \log\sigma) \\ \frac{\partial^2 g_4}{\partial \eta \partial \log\sigma} &=& \frac{z^uf'(z^u) - z^lf'(z^l)}{\sigma [F(z^u) - F(z^l)]} -\partial g_4/\partial \eta (1 + \partial g_4/\partial \log\sigma) \\ \end{eqnarray*} To obtain the derivatives for $g_2$, set the upper endpoint $z_u$ to $\infty$ in the equations for $g_4$. To obtain the equations for $g_3$, left censored data, set the lower endpoint to $-\infty$. After much experimentation, a further decision was made to do the internal iteration in terms of $\log(\sigma)$. This avoids the boundary condition at zero, and also helped the iteration speed considerably for some test cases. The changes to the code were not too great. By the chain rule \begin{eqnarray*} \frac{\partial LL}{\partial \log\sigma} &=& \sigma \frac{\partial LL}{\partial \sigma} \\ \frac{\partial^2 LL}{\partial (\log\sigma)^2} &=& \sigma^2 \frac{\partial^2 LL}{\partial \sigma^2} + \sigma \frac{\partial LL}{\partial \sigma} \\ \frac{\partial^2 LL} {\partial \eta \partial \log\sigma} &=& \sigma \frac{\partial^2}{\partial \eta \partial \sigma} \end{eqnarray*} At the solution $\partial LL/\partial \sigma =0$, so the variance matrix for $\sigma$ is a simple scale change of the returned matrix for $\log(\sigma)$. \subsection{Distributions} \subsubsection {Gaussian} Everyone's favorite distribution. The continual calls to $\Phi$ may make it slow on censored data, however. Because there is no closed form for $\Phi$, only the equations for $g_1$ simplify from the general form given in section 2 above. \begin{eqnarray*} \mu=0 &,& \sigma^2=1 \\ F(z)&=& \Phi(z) \\ f(z)&=&\exp(-z^2/2) / \sqrt{2 \pi} \\ f'(z) &=& -zf(z) \\ f''(z) &=& (z^2-1)f(z) \end{eqnarray*} For uncensored data, the standard glm results are clear by substituting $g_1= -z/\sigma$ into equations 1-5. The first derivative vector is equal to $X'r$ where $r= -z/\sigma$ is a scaled residual, the update step $I^{-1}U$ is independent of the estimate of $\sigma$, and the maximum likelihood estimate of $n\sigma^2$ is the sum of squared residuals. None of these hold so neatly for right censored data. \subsubsection{Extreme value} If $y$ is Weibull then $\log(y)$ is distributed according to the (least) extreme value distribution. As stated above, fits on the latter scale are numerically preferable because it removes the range restriction on $y$. A Weibull distribution with the scale restricted to 1 gives an exponential model. $$ \mu= -\gamma = .5722\ldots,\; \sigma^2=\pi^2/6 $$ \begin{eqnarray*} F(z)&=&1 - \exp(-w)\\ f(z)&=& we^{-w} \\ f'(z) &=& (1-w)f(z) \\ f''(z) &=& (w^2 - 3w+1)f(z) \end{eqnarray*} where $w \equiv exp(z)$. The mode of the distribution is at $f(0) = 1/e$, so for an exact observation the deviance term has $\hat y = y$. For interval censored data where the interval is of length $b = z^u - z^l$, it turns out that we cover the most mass if the interval has a lower endpoint of $a=\log(b/(\exp(b)-1)))$, and the resulting log-likelihood is $$ \log(e^{-e^a} - e^{-e^{a+b}}). $$ Proving this is left as an exercise for the reader. The cumulative hazard for the Weibull is usually written as $\Lambda(t) = (at)^p$. Comparing this to the extreme value we see that $p = 1/\sigma$ and $a= \exp(-\eta)$. (On the hazard scale the change of variable from $t$ to $\log(t)$ adds another term). The Weibull can be thought of as both an accelerated failure time model, with acceleration factor $a$ or as a proportional hazards model with constant of proportionality $a^p$. If a Weibull model holds, the coefficients of a Cox model will be approximately equal to $-\beta/\sigma$, the latter coming from a \code{survreg} fit. The change in sign reflects a change in perspective: in a proportional hazards model a positive coefficient corresponds to an increase in the death rate (bad), whereas in an accelerated failure time model a positive coefficient corresponds to an increase in lifetime (good). \subsubsection{Logistic} This distribution is very close to the Gaussian except in the extreme tails, but it is easier to compute. However, some data sets may contain survival times close to zero, leading to differences in fit between the lognormal and log-logistic choices. (In such cases the rationality of a Gaussian fit may also be in question). Again let $w= \exp(z)$. $$ \mu=0,\; \sigma^2=\pi^2/3 $$ \begin{eqnarray*} F(z) &=& w/(1+w) \\ f(z) &=& w/(1+w)^2 \\ f'(z) &=& f(z)\,(1-w)/(1+w) \\ f''(z)&=& f(z)\,(w^2 -4w+1)/(1+w)^2 \end{eqnarray*} The distribution is symmetric about 0, so for an exact observation the contribution to the deviance term is $-\log(4)$. For an interval censored observation with span $2b$ the contribution is $$ \log\left(F(b) - F(-b)\right) = \log \left( \frac{e^b-1}{e^b+1} \right). $$ \subsubsection{Other distributions} Some other population hazards can be fit into this location-scale framework, some can not. \begin{center} \begin{tabular}{ll} Distribution & \multicolumn{1}{c}{Hazard} \\ \hline Weibull& $p\lambda (\lambda t)^{p-1}$ \\ Extreme value& $(1/ \sigma) e^{ (t- \eta)/ \sigma}$\\ Rayleigh& $a + bt$\\ Gompertz& $b c^t$\\ Makeham& $ a + b c^t$ \\ \end{tabular} \end{center} The Makeham hazard seems to fit human mortality experience beyond infancy quite well, where $a$ is a constant mortality which is independent of the health of the subject (accidents, homicide, etc) and the second term models the Gompertz assumption that ``the average exhaustion of a man's power to avoid death is such that at the end of equal infinitely small itervals of time he has lost equal portions of his remaining power to oppose destruction which he had at the commencement of these intervals". For older ages $a$ is a neglible portion of the death rate and the Gompertz model holds. Clearly \begin{itemize} \item The Wiebull distribution with $p=2$ ($\sigma=.5$) is the same as a Rayleigh distribution with $a=0$. It is not, however, the most general form of a Rayleigh. \item The extreme value and Gompertz distributions have the same hazard function, with $ \sigma = 1/ \log(c)$, and $\exp(-\eta/ \sigma) = b$. \end{itemize} It would appear that the Gompertz can be fit with an identity link function combined with the extreme value distribution. However, this ignores a boundary restriction. If $f(x; \eta, \sigma)$ is the extreme value distribution with paramters $\eta$ and $\sigma$, then the definition of the Gompertz densitiy is \begin{displaymath} \begin{array}{ll} g(x; \eta, \sigma) = 0 & x< 0 \\ g(x; \eta, \sigma) = c f(x; \eta, \sigma) & x>=0 \end{array} \end{displaymath} where $c= \exp(\exp(-\eta / \sigma))$ is the necessary constant so that $g$ integrates to 1. If $\eta / \sigma$ is far from 1, then the correction term will be minimal and the above fit will be a good approximation to the Gompertz. Alternatively, one could use \code{censorReg} with the \code{truncation} argument to indicate that each observation is restricted to $(0,\infty)$. The Makeham distribution falls into the gamma family (equation 2.3 of Kalbfleisch and Prentice, Survival Analysis), but with the same range restriction problem. \appendix \chapter{Changes from version 2.44 to 3.1} \section{Changes in version 3} \label{sect:changes} Some common concepts had appeared piecemeal in more than one function, but not using the same keywords. Two particular areas are survival curves and multiple observations per subject. Survival and cumulative hazard curves are generated by the \code{survfit} function, either from raw data (survfit.formula), or a fitted Cox or parametric survival model (survfit.coxph, survfit.survreg). Two choices that appear are: \begin{enumerate} \item If there are tied event times, to estimate the hazard using a straightforward increment of (number of events)/(number at risk), or make a correction for the ties. The simpler method is known variously as the Nelson, Aalen, Breslow, and Tsiatis estimate, along with hyphenated forms combining 2 or 3 of these labels. One of the simpler corrections for ties is known as the Fleming-Harrington approximation when used with raw data, and the Efron when used in a Cox model. \item The survival curve $S(t)$ can be estimated directly or as the exponential of the cumulative hazard estimate. The first of these is known as the Kaplan-Meier, cumulative incidence (CI), Aalen-Johansen, and Kalbfleisch-Prentice estimate, depending on context, the second as a Fleming-Harrington, Breslow, or Efron estimate, again depending on context. \end{enumerate} With respect to the two above, subtypes of the \code{survfit} routine have had either a \code{type} or \code{method} argument over the years which tried to capture both of these at the same time, and consequently have had a bewildering number of options, for example ``fleming-harrington'' in \code{survfit.formula} stood for the simple cumulative hazard estimate plus the exponential survival estimate, ``fh2'' specified the tie-corrected cumulative hazard plus exponential survival, while \code{survfit.coxph} used ``breslow'' and ``efron'' for the same two combinations. The updated routines now have separate \code{stype} and \code{ctype} arguments. For the first, 1= direct and 2=exponent of the cumulative hazard and for the second, 1=simple and 2= corrected for ties. The Cox model is a special case in two ways: 1. the the way in which ties are treated in the likelihood should match the way they are treated in creating the hazard and 2. the direct estimate of survival can be very difficult to compute. The survival package's default is to use the \code{ctype} option which matches the ties option of the \code{coxph} call along with an exponential estimate of survival. This \code{ctype} choice preserves some useful properties of the martingale residuals. A second issue is multiple observations per subject, and how those impact the computations. This leads to 3 common arguments: \begin{itemize} \item id: an identifier in each row of the data, which allows the routines to identify multiple rows for a subject \item cluster: identify correlated rows, which should be combined when creating the robust variance \item robust: TRUE or FALSE, to compute a robust variance. \end{itemize} These arguments have been inconsistent in the past, partly because of the sequential appearance of multiple use cases. The package started with only the simplest data form: one observation per subject, one endpoint. To this has been added: \begingroup \renewcommand{\theenumi}{\alph{enumi}} \begin{enumerate} \item Multiple observations per subject \item Multiple endpoints per subject \item Multiple types of endpoints \end{enumerate} \endgroup Case (a) arises as a way to code time-dependent covariates, and in this case an \code{id} statement is not needed, and in fact you will get the same estimates and standard errors with or without it. (There will be a change in the counts of subjects who leave or enter an interval, since an observation pair (0, 10), (10, 20) for the same subject will not count as an exit (censor) at 10 along with an entry at 10.) If (b) is true then the robust variance is called for and one will want to have either a \code{cluster} argument or the \code{robust=TRUE} argument. In the coxph routine, a \code{cluster(group)} term in the model statement can be used instead of the cluster argument, but this is no longer the preferred form. When (b) and (c) are true then the \code{id} statement is required in order to obtain a correct \emph{estimate} of the result. This is also the case for (c) alone when subjects do not all start in the same state. For competing risks data --- multiple endpoints, everyone starts in the same state, only one transition per subject --- the \code{id} statement is not necessary nor (I think) is a robust variance. When there is an \code{id} statement but no \code{cluster} or \code{robust} directive, then the programs will use (b) as a litmus test to decide between model based or robust variance, if possible. (There are edge cases where only one of the two variance estimates has been implemented, however). If there is a \code{cluster} argument then \code{robust=TRUE} is assumed. If only a \code{robust=TRUE} argument is given then the code treats each line of data as independent. \section{Survfit} There has been a serious effort to harmonize the various survfit methods. Not all paths had the same options or produced the same outputs. \begin{itemize} \item Common arguments of id, cluster, influence, stype and ctype. \begin{itemize} \item If stype=1 then the survival curve S(t) is produced directly, if stype=2 it is created as the exp(-H) where H is the cumulative hazard. \item If ctype=1 the Nelson-Aalen formula is used, and for ctype=2 there is a correction for ties. \item The usual curve for a Cox model using the Efron approximate is (2,2), for instance, while the ordinary non-parametric KM is (1, 1). \end{itemize} \item The routines now produce both the estimated survival and the estimated cumulative hazard, along with their errors \item Some code paths produce std(S) and some std(log(S)), the object now contains a \code{log.se} flag telling which. (Before, downstream routines just ``had to know''). \item using a single subscript on a survfit object now behaves like the use of a single subscript on an array or matrix, in that the result has only one dimension. \end{itemize} A utility function \code{survfit0} is used by the print and plot methods to add a starting ``time 0'' value, normally x=0, y=1, to the survival curve(s). It also aligns all the matrices so that they correspond to the time vector, inserts the correct standard errors, etc. This may be useful to other programs. \section{Coxph} The multi-state objects include a \code{states} vector, which is a simple list of the state names. The \code{cmap} component is an integer matrix with one row for each term in the model and one column for each transition. Each element indexes a position in the coefficient vector and variance matrix. \begin{itemize} \item Column labels are of the form 1:2, which denotes a transition from \code{state[1]} to \code{state[2]}. \item If a particular term in the data, ``age'' say, was not part of the model for a particular transition then a 0 will appear in that position of \code{cmap}. z \item If two transitions share a common coefficient, both those element of \code{cmap} will point to the same location. \item The first row of \code{cmap}, labeled ``stratum'', is numbered separately and partitions the transitions into disjoint strata. \end{itemize} \bibliographystyle{plain} \bibliography{refer} \end{document} survival/inst/doc/compete.R0000644000176200001440000003357413570775544015463 0ustar liggesusers### R code from vignette source 'compete.Rnw' ################################################### ### code chunk number 1: compete.Rnw:23-29 ################################################### options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=10) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #ensure default library("survival") ################################################### ### code chunk number 2: sfig1 ################################################### getOption("SweaveHooks")[["fig"]]() oldpar <- par(mar=c(.1, .1, .1, .1), mfrow=c(2,2)) cmat1 <- matrix(c(0,0,1,0), nrow=2, dimnames=list(c("Alive", "Dead"), c("Alive", "Dead"))) statefig(c(1,1), cmat1, cex=1.5) state4 <- c("0", "1", "2", "...") cmat4 <- matrix(0, 4,4, dimnames= list(state4, state4)) cmat4[1,2] <- cmat4[2,3] <- cmat4[3,4] <- 1 statefig(c(1,1,1,1), cmat4, bcol=c(1,1,1,0), cex=c(1.5, 1.5, 1.5, 3)) states <- c("A", "D1", "D2", "D3") cmat2 <- matrix(0, 4,4, dimnames=list(states, states)) cmat2[1, -1] <- 1 statefig(c(1,3), cmat2, cex=1.5) state3 <- c("Health", "Illness", "Death") cmat3 <- matrix(0, 3, 3, dimnames = list(state3, state3)) cmat3[1,2] <- cmat3[2,1] <- cmat3[-3, 3] <- 1 statefig(c(1,2), cmat3, offset=.03, cex=1.5) state4 <- c("0", "1", "2", "...") cmat4 <- matrix(0, 4,4, dimnames= list(state4, state4)) cmat4[1,2] <- cmat4[2,3] <- cmat4[3,4] <- 1 statefig(c(1,1,1,1), cmat4, bcol=c(1,1,1,0), cex=c(1.5, 1.5, 1.5, 3)) par(oldpar) ################################################### ### code chunk number 3: crfig2 ################################################### getOption("SweaveHooks")[["fig"]]() par(mar=c(.1, .1, .1, .1)) frame() oldpar <- par(usr=c(0,100,0,100)) # first figure xx <- c(0, 10, 10, 0) yy <- c(0, 0, 10, 10) polygon(xx +10, yy+70) temp <- c(60, 80) for (j in 1:2) { polygon(xx + 30, yy+ temp[j]) arrows(22, 70 + 3*j, 28, temp[j] +5, length=.1) } text(c(15, 35, 35), c(75, 65, 85),c("Entry", "Death", "PCM")) text(25, 55, "Competing Risk") # Second figure polygon(xx +60, yy+70) for (j in 1:2) { polygon(xx + 80, yy+ temp[j]) arrows(72, 70+ 3*j, 78, temp[j] +5, length=.1) } text(50+ c(15, 35, 35), c(75, 65, 85),c("Entry", "Death", "PCM")) arrows(85, 78, 85, 72, length=.1) text(75, 55, "Multi-state 1") # third figure polygon(xx+10, yy+25) temp <- c(15, 35) for (j in 1:2) { polygon(2*xx +30, yy + temp[j]) arrows(22, 25 + 3*j, 28, temp[j] +5, length=.1) } text(c(15, 40, 40), c(30, 20, 40),c("Entry", "Death w/o PCM", "PCM")) polygon(2*xx + 60, yy+temp[2]) arrows(52, 40, 58, 40, length=.1) text(70, 40, "Death after PCM") text(40, 10, "Multi-state 2") ################################################### ### code chunk number 4: mgus1 ################################################### getOption("SweaveHooks")[["fig"]]() oldpar <- par(mfrow=c(1,2)) hist(mgus2$age, nclass=30, main='', xlab="Age") with(mgus2, tapply(age, sex, mean)) mfit1 <- survfit(Surv(futime, death) ~ sex, data=mgus2) mfit1 plot(mfit1, col=c(1,2), xscale=12, mark.time=FALSE, lwd=2, xlab="Years post diagnosis", ylab="Survival") legend("topright", c("female", "male"), col=1:2, lwd=2, bty='n') par(oldpar) ################################################### ### code chunk number 5: mgus2 ################################################### getOption("SweaveHooks")[["fig"]]() etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) event <- factor(event, 0:2, labels=c("censor", "pcm", "death")) table(event) mfit2 <- survfit(Surv(etime, event) ~ sex, data=mgus2) print(mfit2, rmean=240, scale=12) mfit2$transitions plot(mfit2, col=c(1,2,1,2), lty=c(2,2,1,1), mark.time=FALSE, lwd=2, xscale=12, xlab="Years post diagnosis", ylab="Probability in State") legend(240, .6, c("death:female", "death:male", "pcm:female", "pcm:male"), col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n') ################################################### ### code chunk number 6: mgus3 ################################################### getOption("SweaveHooks")[["fig"]]() pcmbad <- survfit(Surv(etime, pstat) ~ sex, data=mgus2) plot(pcmbad[2], lwd=2, fun="event", conf.int=FALSE, xscale=12, xlab="Years post diagnosis", ylab="Fraction with PCM") lines(mfit2[2,"pcm"], lty=2, lwd=2, mark.time=FALSE, conf.int=FALSE) legend(0, .25, c("Males, PCM, incorrect curve", "Males, PCM, competing risk"), col=1, lwd=2, lty=c(1,2), bty='n') ################################################### ### code chunk number 7: mgus4 ################################################### ptemp <- with(mgus2, ifelse(ptime==futime & pstat==1, ptime-.1, ptime)) data3 <- tmerge(mgus2, mgus2, id=id, death=event(futime, death), pcm = event(ptemp, pstat)) data3 <- tmerge(data3, data3, id, enum=cumtdc(tstart)) with(data3, table(death, pcm)) ################################################### ### code chunk number 8: mgus4g ################################################### getOption("SweaveHooks")[["fig"]]() temp <- with(data3, ifelse(death==1, 2, pcm)) data3$event <- factor(temp, 0:2, labels=c("censor", "pcm", "death")) mfit3 <- survfit(Surv(tstart, tstop, event) ~ sex, data=data3, id=id) print(mfit3, rmean=240, digits=2) mfit3$transitions plot(mfit3[,"pcm"], mark.time=FALSE, col=1:2, lty=1:2, lwd=2, xscale=12, xlab="Years post MGUS diagnosis", ylab="Fraction in the PCM state") legend(40, .4, c("female", "male"), lty=1:2, col=1:2, lwd=2, bty='n') ################################################### ### code chunk number 9: mgus5 ################################################### getOption("SweaveHooks")[["fig"]]() # Death after PCM will correspond to data rows with # enum = 2 and event = death d2 <- with(data3, ifelse(enum==2 & event=='death', 4, as.numeric(event))) e2 <- factor(d2, labels=c("censor", "pcm", "death w/o pcm", "death after pcm")) mfit4 <- survfit(Surv(tstart, tstop, e2) ~ sex, data=data3, id=id) plot(mfit2[2,], lty=c(1,2), xscale=12, mark.time=FALSE, lwd=2, xlab="Years post diagnosis", ylab="Probability in State") lines(mfit4[2,4], mark.time=FALSE, col=2, lty=1, lwd=2, conf.int=FALSE) legend(200, .5, c("Death w/o PCM", "ever PCM", "Death after PCM"), col=c(1,1,2), lty=c(2,1,1), lwd=2, bty='n', cex=.82) ################################################### ### code chunk number 10: cfit1 ################################################### options(show.signif.stars = FALSE) # display intelligence cfit1 <- coxph(Surv(etime, event) ~ age + sex + mspike, mgus2, id=id) cfit1$cmap print(cfit1, digits=2) ################################################### ### code chunk number 11: mpyears ################################################### pfit1 <- pyears(Surv(ptime, pstat) ~ sex, mgus2, scale=12) round(100* pfit1$event/pfit1$pyears, 1) # PCM rate per year temp <- summary(mfit1, rmean="common") #print the mean survival time round(temp$table[,1:6], 1) ################################################### ### code chunk number 12: PCMcurve ################################################### dummy <- expand.grid(sex=c("F", "M"), age=c(60, 80), mspike=1.2) dummy csurv <- survfit(cfit1, newdata=dummy) dim(csurv) ################################################### ### code chunk number 13: PCMcurve2 ################################################### getOption("SweaveHooks")[["fig"]]() plot(csurv[,,'pcm'], xmax=25*12, xscale=12, xlab="Years after MGUS diagnosis", ylab="PCM", col=1:2, lty=c(1,1,2,2), lwd=2) legend(10, .14, outer(c("female", "male "), c("diagnosis at age 60", "diagnosis at age 80"), paste, sep=", "), col=1:2, lty=c(1,1,2,2), bty='n', lwd=2) ################################################### ### code chunk number 14: year20 ################################################### # Print out a M/F results at 20 years temp <- summary(csurv, time=20*12)$pstate cbind(dummy, PCM= round(100*temp[,,2], 1)) ################################################### ### code chunk number 15: fg1 ################################################### # (first three lines are identical to an earlier section) etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) event <- factor(event, 0:2, labels=c("censor", "pcm", "death")) pcmdat <- finegray(Surv(etime, event) ~ ., data=mgus2, etype="pcm") pcmdat[1:4, c(1:3, 11:14)] deathdat <- finegray(Surv(etime, event) ~ ., data=mgus2, etype="death") dim(pcmdat) dim(deathdat) dim(mgus2) ################################################### ### code chunk number 16: pfit2 ################################################### # The PCM curves of the multi-state model pfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~ sex, data=pcmdat, weight=fgwt) # The death curves of the multi-state model dfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~ sex, data=deathdat, weight=fgwt) ################################################### ### code chunk number 17: fg2 ################################################### getOption("SweaveHooks")[["fig"]]() fgfit1 <- coxph(Surv(fgstart, fgstop, fgstatus) ~ sex, data=pcmdat, weight= fgwt) summary(fgfit1) fgfit2 <- coxph(Surv(fgstart, fgstop, fgstatus) ~ sex, data=deathdat, weight= fgwt) fgfit2 mfit2 <- survfit(Surv(etime, event) ~ sex, data=mgus2) #reprise the AJ plot(mfit2[,'pcm'], col=1:2, lwd=2, xscale=12, conf.times=c(5, 15, 25)*12, xlab="Years post diagnosis", ylab="Fraction with PCM") ndata <- data.frame(sex=c("F", "M")) fgsurv1 <- survfit(fgfit1, ndata) lines(fgsurv1, fun="event", lty=2, lwd=2, col=1:2) legend("topleft", c("Female, Aalen-Johansen", "Male, Aalen-Johansen", "Female, Fine-Gray", "Male, Fine-Gray"), col=1:2, lty=c(1,1,2,2), bty='n') # rate models with only sex cfitr <- coxph(Surv(etime, event) ~ sex, mgus2, id=id) rcurve <- survfit(cfitr, newdata=ndata) #lines(rcurve[, 'pcm'], col=6:7) # makes the plot too crowsded ################################################### ### code chunk number 18: fg3 ################################################### fgfit2a <- coxph(Surv(fgstart, fgstop, fgstatus) ~ age + sex + mspike, data=pcmdat, weight=fgwt) fgfit2b <- coxph(Surv(fgstart, fgstop, fgstatus) ~ age + sex + mspike, data=deathdat, weight=fgwt) round(rbind(PCM= coef(fgfit2a), death=coef(fgfit2b)), 3) ################################################### ### code chunk number 19: finegray2 ################################################### getOption("SweaveHooks")[["fig"]]() oldpar <- par(mfrow=c(1,2)) dummy <- expand.grid(sex= c("F", "M"), age=c(60, 80), mspike=1.2) fsurv1 <- survfit(fgfit2a, dummy) # time to progression curves plot(fsurv1, xscale=12, col=1:2, lty=c(1,1,2,2), lwd=2, fun='event', xlab="Years", ylab="Fine-Gray predicted", xmax=12*25, ylim=c(0, .15)) legend(1, .15, c("Female, 60", "Male, 60","Female: 80", "Male, 80"), col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n') plot(csurv[,2], xscale=12, col=1:2, lty=c(1,1,2,2), lwd=2, xlab="Years", ylab="Multi-state predicted", xmax=12*25, ylim=c(0, .15)) legend(1, .15, c("Female, 60", "Male, 60","Female: 80", "Male, 80"), col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n') par(oldpar) ################################################### ### code chunk number 20: finegray-check ################################################### getOption("SweaveHooks")[["fig"]]() zph.fgfit2a <- cox.zph(fgfit2a) zph.fgfit2a plot(zph.fgfit2a[1]) abline(h=coef(fgfit2a)[1], lty=2, col=2) ################################################### ### code chunk number 21: finegray3 ################################################### getOption("SweaveHooks")[["fig"]]() fsurv2 <- survfit(fgfit2b, dummy) # time to progression curves xtime <- 0:(30*12) #30 years y1a <- 1 - summary(fsurv1, times=xtime)$surv #predicted pcm y1b <- 1 - summary(fsurv2, times=xtime)$surv #predicted deaths before pcm y1 <- (y1a + y1b) #either matplot(xtime/12, y1, col=1:2, lty=c(1,1,2,2), type='l', xlab="Years post diagnosis", ylab="FG: either endpoint") abline(h=1, col=3) legend("bottomright", c("Female, 60", "Male, 60","Female: 80", "Male, 80"), col=c(1,2,1,2), lty=c(1,1,2,2), lwd=2, bty='n') ################################################### ### code chunk number 22: hgfit ################################################### hgfit <- coxph(list(Surv(etime, event) ~ age + sex + mspike, 1:2 + 1:3 ~ hgb / common), data = mgus2, id = id) hgfit ################################################### ### code chunk number 23: hgfit2 ################################################### hgfit$coef hgfit$cmap ################################################### ### code chunk number 24: compete.Rnw:1026-1029 (eval = FALSE) ################################################### ## list(1: c("pcm", "death") ~ hgb / common, ## 1:0 ~ hgb / common, ## state("(s0)"): (2:3) ~ hgb / common) ################################################### ### code chunk number 25: c3 ################################################### cox3a <- coxph(Surv(tstart, tstop, event) ~ age + sex, data3, id=id) cox3b <- coxph(list(Surv(tstart, tstop, event) ~ age + sex, 1:3 + 2:3 ~ 1/ common), data= data3, id= id) cox3b$cmap ################################################### ### code chunk number 26: pcmstack ################################################### temp1 <- data.frame(mgus2, time=etime, status=(event=="pcm"), group='pcm') temp2 <- data.frame(mgus2, time=etime, status=(event=="death"), group="death") stacked <- rbind(temp1, temp2) allfit <- coxph(Surv(time, status) ~ hgb + (age + sex+ mspike)*strata(group), data=stacked) all.equal(allfit$loglik, hgfit$loglik) survival/inst/doc/other.pdf0000644000176200001440000012254213570775545015513 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 3 0 obj << /Length 1580 /Filter /FlateDecode >> stream xÚ}WÉrÛF½û+X9Æ ¹)‹³TÉII¬øçà‘C’õ÷é×Ý3-:r¶î7=½ãûÕ›wïc;3ËК4™­63›F¡MÍ,3iv¶ªf¿ÏMÐïè¯>Ïqd‚?i¾ßÒ_ƒÍ¾¯ièæ¯~{÷Þ3cÂ"M-à%*²ÙÂæa^A[ÍsF2~/„hÓ`¥ð YÒßÀÙ" 1„‡ñ2„A²®s›ó…Í‚šÑ) Mß ¨¥i„u!²å³",2›A²…I–aj“Ù"ÎÂ`{tí€{ÖØÂM{–£žövµ’1ÕtD¿§yšJ€»žÑ#oogÏ ä)#7(0Šb€ýNn`pºdrÃ2¨özTCLp·ç9jÜîõd4 ç‹$±b…½3&t ©ˆ-š‰ŠÖí lÀ4­š¹JY‚±éd¿«Y:ºµVyX@:©?ëíçR6žÀ·OÒ£ºsF´,N#”^ÉàRI· .虋~LQPáô•òD@õõe/Pll…mZÝdK™™×íF§æ¡íîn>°®"ÕRú…–èÎ Œ Mž’#•É…Ê@ï…³JúNá_óÊ«4}v~ç«&¨øSdbW¶h{ãÂö(kØòæþš4Ç“ÜÁõl ú݉5Ä=“$áªF;—ҪɽNü«}ësZ¤ñy'~Ï‹û›{"Š–Á''½¤¶QûLŠ\ò/&ÀsÍ’9¸Râ\i¯•Ë›¼‚Ÿ°šëèrø ¯ä²kÊ,e`ÉÀ!MÃå³]zâ׺ˆØrǃ7hÌæ£Z“_­ÖíýÉViq™ç?ÀÝŽ¸àÁû+[z¹‘ŽÊ¥õBK& Œ\cˆ*šp¯¹èj¡Ø+ÇÚxtU·&Gˆ9ªKYVœftÑIæsV k/º,yQÄ—Œ9Q7_‡,KŠ»Q)Ê+…:Ôé¸Çzš-bª×ã+ ¾ÖÑRKÙˆ‹9bî2U4ŠÍ eãºw%–ÓÔå ÍT•¾ì}[BsT²ÓÅ·š Ø`íñ(…R㯺–ÁQµ ­OQ!¨ÆY"ü}Oú2m T’áŠý´OM:µb©ëýè!ܬ6²XK:Öž¶tÊ`{\²qú®7šj²)1MîTvEðMbÃÖáîA=Ã…Í]¶•€¨|-kÍ ¤sMq_‰°8ϸ%¤Á—Ï'N ì^×boékËÁ}aqÔÓ0)Ù¨P8r룒ú*ä›~G‡2[Œ}€cÝq·Á¼éEfsÁ¬tåãDœR‘Ð}PÑÆÁݶ½P—KIÉ9Zσš›ü0%UÜú0÷­È\‘_&‡Üø%7ß•øV}ìï…ØùÑ4®cQ¹öe͹««G,ö^Œ‚À±ºõŸ¦tÀe@í%N y¯ + [{4¦Ê‰™®øXí;ªã4û¡¾LªC GûÇu7®)ÁɵÞÂe­˜ãNORúdÒ/>ޤå†äJ6ýUû;/¨ë꤫šÔÍ1!®û‘‡­§·wµ~Ñ\²]ŒœªJ<ÿ¿ˆcÍmeºå’ÌvVñ‹(L,>î#.sýçø~óÓêÍ;öøý endstream endobj 12 0 obj << /Length1 2239 /Length2 18802 /Length3 0 /Length 20134 /Filter /FlateDecode >> stream xÚŒµP]Û¶-ŠC Á]îîîîîÎÂÝÝ!¸&¸;wnÁÝ]ƒ»ÃcŸ}îÉ>÷ÿª÷jUÍ5[—Öeô>&)¡‚2­ ‰PÌÎÖ™–‘Ž ,«ÄÈ```¦c``‚%%U±p¶þ[ Kªtt²°³åú‡°#ÐÐùC&bèüa'kg r±02ٸٹL œÿchçÈ1tµ0ÈÒ¤ìlN°¤ÂvöŽfæÎaþç@aL `ääd§ù—;@Ðèhalh 5t6Ú|D46´(Û[=þ‹‚‚ÇÜÙÙž‹žÞÍÍÎÐÆ‰ÎÎÑŒ’àfálP:]&€¿ ÈÚÿ®Œ– bnáô·\ÙÎÔÙÍÐøX[m><\lM€Ž€àeI€¼=Ðöoc™¿ hÿî €‘Žñ?tÿöþ‹ÈÂö_Î†ÆÆv6ö†¶¶fS k @^L†ÎÙÝ™`hkò—¡¡µ“݇¿¡«¡…µ¡Ñ‡Á¿27ˆ * ? üwyNÆŽöÎNtNÖ•HÿÍG—EmM„íll€¶ÎN°å'bá4þh»ýß'kekçfëõo`jakbúW&.öôª¶.@I‘›|ˆ`ÿÈÌ€ÎVvNfÐt76§ÿ‹^ÅÃø/%ã_â |¼ìíì¦E},L°^N†®@€³£ ÐÇ럊ÿF°ŒŒ cg€ÐÌÂöû‡hú7þ8|G w€6ÃÇì1þúýçM÷c¼Lìl­=þ˜ÿë|éU5%e¨ÿ®ø?:!!;w€- €–‰•Àø×±¼øü7‚¡Å¿Óø‡¯¤­©€óïl?Úô?»þ{(þ½”€ÿæ’³û˜Z €âÏë0°2<ÿŸGý_.ÿþËÿmÈÿwBb.ÖÖÿRSüKÿÿQÚXX{üÛàch]œ?@Öîc lÿ·©:ð凌šX¸Øüo­¤³áÇ"ÚšYÿ§Nbî@ gcó¿§åo¹ê_[fma T°s²øëZÐ~ÍÿÒ}¬–±ÕÇÕáô1’ÿR?6ç¿CŠÚÛ™üµbL¬lCGGCØCþ@¬/Æ]4ºÿkˆôt¶vÎ.€ò|¦vް(+€^ð/Ñ߈@/üÄΠûƒôâ€^âbÐKþA,²€^î?ˆãƒSáú`Qúƒ>X”ÿ –‰þƒ>8Õÿƒ8?áôÁèâÐÿ±~èŒí¬?Úû?–¿$66üÿê;½É?àG¥ÀÀ$MÿÀ¥é? Ë_ÐâO¼¿Œí\ÿáþQ•Ù?à‡ƒùŸd>Úoîao´ý‡Å‡Ìâ @oùøQºÕ?àG}Öÿ€ÅÛü#×ÂþÁüWîvbØ~|—þ¡þÈÝþúÃ×þãÛ`k 4uþ#eü·ôï½þø#Iûm¶ûÓF–ºí­]œþÁÿ!qøsNÑ\ìœ&FÖÿ‚™åâ¿£0þÕí´–ñ£SøY?”N—æøè”“µ¡“ù?>ÒüC÷qÑ;›;ÿ´àcËèÝìþáðÁáòøÑm×ÀºýLÞîÿ€ô²ùpõ:þÍý_+lìâøÑOç]²ûý?ø_ŸL Ðh »4ogÌlYÜþP-ˆãF»7Î;Cº§žBIëµäØáòý²*#pÃñNðûpâêŽ(Å­À2Á«×qK=ô×ÖDŶgïýx¥©½6ØÅIô‰‚cÁº~¼O¸´*ûÞ¯ÞjVà- ?¥Hs\8àòPÜúÄÝëúËVFCç÷÷«Ø¤á^ʦi£U£tŠgIs2ç0‰ œiñ`¨/Üfoïf³'Þ ¤â©a}N¢™ ½´6™bç<×ÊU˜œº°H°´0ñÀo‘G§È¼„“¤0¼J WÝ[x ²¿Ð$¯Ò"Ò2¥WY(EÚ6õÖ¸Ž.u2îæ|“ã  ì&Ö”6¡ê;É£UµéG¢8×0[ñ;M…ÖÚïÔºM-“q—9§ëÞ³_4Íý›»½žëÖ†GhïC“[†›Fvº}Ô‹ùûùqÍÜ©D͵#VW¸Òñ’!ËœÇÀºÔ’¨ˆ4Ë®ß9^ Cx¼/…ž°· ´8 {AGqÏXs¼/c|*.ä:7g‘¬ÝuƒÞƒØäÞ~&_\`™3‹d„R䦋v‡ç®Ç’+r×fƒÊè/6+ÐéDJ=d¶Y/I Y$Å{÷*‡#t=,9óéÎÔ*TÛâXó wO"idž„‚Bú8ïL·ï~üÒC;²S{¼¨p ŽÙRaÎ ïTòÏîr’OŒ+ºß™ëýdD|ª"äJhÓ‹ ®Âû´3ÖUôâFS&)BJ^¸$Û/}ÄóÕ{IwQ¤°«Ú_=ü¶ÉŸ©¶CþäsâZ iÆþ 8±~Çp“Úå¶޲ÊC±ç&HïÂôØᯩ/ë b–¾f7kT*¸u<áÂŽÚõ/ETÄ›iD󺪛`ý2nMúìpãdhBˆºƒ™•oüDPPJž±.SHú>Ÿ˜e¹í™)ðDÛÌ[é¤S»ŽzËòƒW§K”dC„?Lõ÷§Éý¶ïÙÓî⹊¶ƒ?pÒ"°v-ªHç¿e.LÁÊ0`Ôhg¥!ÝìúQF™†hÂ"E€ìðÌ‘£ÕÆ&]*¡(0‹æÓrÕ ‘#m¾M ÂK!TÑA.õÕ KƒH9—õz±CűÕÀ¨MöNvÏÍKÌá$^GÒ—ŽÀ‹-˜¹‰±~‹u»T#ñ®z°Sä?O†ƒ›2ðmäÉÄgd(õ†I}çi;²9¯oz\ÌX6¿XÏ Þ¨8ò‡ih¨®NçÆ2à¿fO:F‡ÓÍÔþÞyÍá®ÀÃÂ8‡wÍë<ñ ²Œð…›-µ¥ÙÇQÚ…ñˆù9MUÒ" ½^¹¢vjÆçÎþÍןTgÃáÜ_§µuŸEžÅ•P;]ÿ^²5¯ú¼®êm`ß8›aïÇ•¬Ô£l¶&Cùh¬«Ûæ·y‡^˜c¶Ãp3ï=ø·L•iMiºUiÌßÔÝ4â#Ò^†aÂZBâY°øx+ðÒ䡽Lò 3jÉ•l’ $$ÖÏGOåÍ´‰›Ú]˜Ç³À±áȇAl,éÑ2&R³oFUž_ï¥F±Ri\ì|eË™ú0=×]Rs¾Î²Q¥µQ}éïùòcêóçxÉ_¾ô7tcJÌ_÷[:fÙÎdü¥;1}7϶P*Çn‰ûí$9&r:ÂÍéãËòwó…êL2&Ó•;8vǾ»ŒjôQCB¼57O§„ Ýš¹vž$§“÷ƒþ¤}?§†Ñַܶ˜tíÊz7•ú¯ü’æ¿\s…lÎÄ 0¸áa“L`J‡<Øî»–×xb_J‚1elY•¯ÜÈJigª«²Ä=J8cò‘'ìRŒ¾¶K¾˜Ë=ÕÏ{íÊ#àSÁe\çlÐ -ŠºÈ†ˆdO~Ûô 4©Ï…V`Tج‘2,¥@R=¤C÷å&n$Ò›ÞöfZw*ˆ2årá« R* ÉÐïó”¡Ÿ±¢” g æoÜgZsWzýê‚£ n]Ô€´ƒJ ‚‰I æðRZ´K@êîSÁ ØÕW¿3|ó“ö¶“…ÓG™ŸIVGÚxÃïøâ±+{øÎæÿ#§F¯ãÞÐ9‹F@žñ8—>Dì’à[#³>qêŽ1‚¬ì¤x¿Öëš6¸Mù{«çD”˜Ô'dë²ÇD=R|•@ˆE5¡Xu!\Ÿ5Ê8ˆUå¡ ,šÜó€õâs%dôfôÂŽ6±èAð²…LºÃˆ)÷ˆ"L}íq µ0$ŒÁëÅœª/* ï·®A9°Àšû·eì G?óħæDô˸à(jk/l˜{ âý|œ¾€)3¶Ä†‚¡ë”'–êš~uöê€ÖF|ª²ÝÁhäªXYêA#{ÿPn¯µ²ÑOŠÌè‡jjÜ‹¹íca3ð_+åéä³6-hÚ98~Ìãô††˜eóêðn ‰m>I‹=¨ä=§ÄwªÄXSX›Uvg.MWD¯6–Í%ÍýÒÙz}4dQdĨõüàÜvP+l.-$8éYæ9™Ä¤ÛÂ{ÆwÃ@WäpÍãÊdybéÆ ]”9ÂE敹ʉtFÊŠ³s’HÊX¼‘% .šálÙZ³y€~•ú+&ßpÅ#ýiïXa¬@>FPsÄ54Ño}Ú:ì áAso¡ž|iD}yr/ˆ¬+!@ð†…–FoñÉbiÚå“Qv0,Ç`Ÿ§ Dá\63(¬Ý•vŽ{Ëöš3£ KEYæg{Á :m–|åE&#·oÔÆçÒ‚39 6¦9®Èhí\?Q*!¾ïînjv{7w,dÍmqX½5VÑʱÕÃD4dÜlýÕ–$ñ†û­‹# |ÁÏÖM(SgŒ«.t×.Ôg;KDO×|Ü4~žÃõS¤°vmU9îàC )NHóCXÈêŒbîg³‡É³7›øèw5Û†e¤©L"]bO_Ìäb{׫î/™x¡ñ©w‹ý%tŽBœá$h¶ÍšÂÂŒO}Îe&Ä÷% “Vr_g#¥«Asf¸ó»~Ï&Zˆ=Q@Á-FÉ]Gronš¼•÷<Ÿ‚&T ¾lPµGð å~ßéG F)wê*âäiý",j¢v”g¾Ù1ÜGЦ˜8.Vh§ÐÑ·=…äGR×A4ÅÌÜ~¯À¹Ày¢íÄù”Ü`§ÿˉã²ú#—ܷ“!§™ÛÁoMP¦AŸ3ôðÔ×BȘXÜK­=áöIf™ÔÏQjÝÖBNä9Þó÷ˆä‹²QFÆÔ{©Äu×è‹ <Ê¢k>… ÓQüÞƒ#FU¶j¡‚~}¨'¸3ÑÏ—5*U&U©“k•f­‚¡VJ?Ñv,LÒ¼íG9Õtú´×,â~.Œ¼_Ôüªðt;.ª*šwrýu1#Ô5‡ E^ÛÀª¥(0Ž ¹´éLš¿ûž”Ñ¥]BÉÞGÖù’c>n›ù¹ëH“|vۧQ¥÷’\ÃÑov#•ÞVßö;¸”L.: E’líAίÉ4ØŠ9!Ö\ lÒÊWL3·%BhX˜ö=±Ošʺ¾—!Ù`©ÖvBóG剟’2] ›"ľ~^Ûx:+Ý0Ô 4}Ppgñ—ÉAóþ ­þRϽ"Ž?Ѝ‰BÄ,tútý²ÿ°%¡C4óCê1i<õÔ˜Uî³Ìž‰]ªMèõºÁ‰ü,¢ÑŒâ¦ÔM‘Þ™O»r›c,QÜ©¿9€‹@‰„S— •,ìÉÆ£’Ò¢+ÂuøÈ²çN½$R¦OIHOIÈÐúç±{~΂f&W-«lqÄÆþÙ êy4JL[BŽ_É3½eAÈfÿR.¡ÏºÁ·³c2u\ÿ¡²ÝyE(‰â„QgÉ‚ŠöO~CstKš¸—‹¶h?“õoNlWz`¾tÊ¿ì8 ÊAÒÊ|±MŠLæ‡Ô_G×ÓY1CMhðÍBˆåŽ6À¯ž<-‘úº~Áìkì^%¨Šo†åûvhýSÑ>>ûGžß eWhcæcCá}47´2ùg½–[®]g©Kߨî?ê‚D)ÄG¸Ç[ÑVÀbJ¿Y©·\d!rgñÄ9àØ.îº8[Ë3&jôXǰ“aâú¦ øw#'=…•©»pó{}ñÃ`ÊLcpÌ?¤’d—G‚¿[S\Î4Àà·‡÷èmìåX¥ÙAÕ_Þ”½+‹ë†I›Z-3U,.Ѫ>?ûûzoJ PUS„¿’4¿Ÿüy$œ•„™ÕÜ+™ÉÆ’&=4.­j>ÁNçZ•ÔÅñW†b¼_Ï´"™Ãj+†Ê˜—iÒîú*;¾y²d4ÅKç&¹ñ9!¢qu!J§04AÐ#CXýÖ6¦(°a2âùà2{ƒš†E$,¿æ!î8¡9¢º¯&ÁîÓõð-OÎWUåNX%W.[÷q“%Uó,§U_ã(M§vÅ<Ó š›øóv$A”%È’xÞ!ÛÎ €®¶ (™b¸:;j5eÌý׆‚„í;\—3Ô¨YÆ„ùîIF²oóá[ô¦>ÌIéÇ¿ŠwˆÄK“*ÈMe¦ g 4ÔU_}^îšš5û¢õàügH-Ç %:Ï#å%Þa†Çbô#¹¿ÖŽ_ùÅoK5»æÂ×è®Ã’,A—!¬ ›ó°¦ò+c¾âµþªî¾H¬ÀÌü”fX^ïO‹š*ègzdm§Z/Kq åÒTL¼b°0i«ée¹bÀìm æŠWiÐJ.ióê·YC¸Wÿ’{;£Ð3râõ-J´*åœwÜÞðP.`ÑüXÞ Ü ³é,}Çþáés‡‹Ç*‰ãUÒÚõwXSc‡^jÖn_Â×5ݹÌ'œ‡®xUš ÐNçÊ} .‰«œNù¾ŠJ} |Àž˜Zç›Ã$:_¹Ëáf­8WØÖeŸgPVHº„–i¬ê©ëbþ—IÏ=ÌÍ_BѤþr*ÛÍ̼˜•Ç›üí6¨R è´3ÌÁ÷x; «q¦A¯VÍJtÇé·¯®äþƒ6tÈäcÊ;="m£KÖ/˜ì‰èyŸ5oç…ë*úmŽô«Ä]XõÅÓ¡–‹žœé£fáÞ6£G·/`7YÂk+lÃôŸEø|졨÷MËÌ8ÍIðžJúAuÎe õ¦[Ä¥ï¸Y@¸ ·AìJ::œ –0› nh"Y¸”û÷¬íö^uLŸL#k:"á‰ÜÞqÅF/›àC+‚¯‘>Ó–ÅÑ Rn·– ·šoOpjÏ»¼Ã(`rJ'`#õ©H—j캙 '6Êioƒ¹Gâ8 å{@HR$½·["²Ê—Iv7øx›ãw‘Ä{Šl£¨NôŵiFSw¼–kqŸôMôg0þ¼j°ö[vá ‚¸<€a{C”Ÿ Í¯†Ö§ è-³áœÑgyL=^ä" }‰Ð®@4˜îÍÊïqÃî†<1ÄÇùœë¹oq%cŒìc9R}0,ðœ±çÓï现®Þ ºgûÕ)&…Á– Þ ¾Êš_«Ôó:òûr$_óÇ)=­ÌÙPþ3ø¹´À ¾„´Ç )ïlíç°S«ë¯¶=—pª´ùWÅ‘­9#Óê•öÎõà,;¢OÑKŪŸÚ=§®Í~›îÆÄ¹Ô‹åL¥òô¢hS£,iˆž'!ÑýÞ"ìšì%¢’ZQf‡ïZÖį‚Á=„<·\ù‚G6½$x(õ™úÇ~ØÏ–6äedÞÛ$¹Ü=6×ZelM¤pâÌJ™äw–ñâ³þt ò»“ûÞG?1 5q™yêt'´rñ·‚M=úæR‡ú^ˆá;Pó¨~„òÇG-ürÏ`‘RgÏÌ÷@ä´ôìCÙE>KJusƒ]Ùö0¾÷…¼áwß-àæ©šˆÔœwrk«‚ÏT±°cÄÆ€ÊàÐ!œ)æ+XJ~Â7nÈ¢™vé»âñx•œ&x±û'ì×{½ÙDp¿P†cêãÅŠŸ×®3iZL|‘ÊÐY­CǯÀ½B7>YÆôyDð†úåÜiÉ85.xàøVÙ5Uù†5*åÚC#Mà úéª>dâ»Úz\\lÊKºbp½öê:j·.Dàò ¿1õéfͧS¹¶U!eVÎЇ î:Ðè²,¢Þù¾Œ:³C•£öµ]=£Rõ~¨ŠZ*@”TùÃ!%ZDTâNˆª¡cE¯¦g!Oa(†c2· ‰¤0Ž}X€,­%”ÍSç—õÂèkD†4 6ÕX€4-Öšz¡òžBäX¥`™8yPzßêFÝäô¨è9Ó⤄{7Fþ©æ®ú0m­Ø0²¨lü‚nÚPøv6 2ˆî%)bËþ¶ï>¸¹ÞþÎÑèIµ_þ ñò —I‘½ÛT0ˆÅ“Åo;NÇÄ1U/[Ï_>lʺ׼ ú;§èá *€vE{ÅB9%íâˆ{y»‚Wuy¶2:“­ lƒ…äCA=ìJŒi¸ÊUá&nRçÕÑù6zÈ}eêfõ#mì:!«°Xbõz-…:¿ u#Þìg‹t"eó*ëóyt1?Œ6}ȃ”Œ¶ˆ÷ÌËàêµÎ1ä&Üsvu¤²òƒé¶‰Îÿ-å£Y÷«èªv]á>?¡ ÜÇXqf늾RI8&$HO,?ò£],õDÕoôNçz@®Ó- BûR‚é£Ê’‚ëðM~¢Þ'=ž…+=É)ä­@è²,Ó˜VÌ¡pk2P¨vÙű…C<ë$n˜ùÝ] &‡Ò5Z«¢€ø5îV@ã²K}Tԛœœ[„¨?¾]ç…ûPScçv„±ZjñÒÕS6Y³™I5GÛ“²fi2ÓàÇó]3mýwÜð¨;à Ñayß®F­j…ÕÄԲའ)’-.îY‚À¢Û}‡ð^ÚÛ;ŸŒçÔÂv}¯ˆ+ÓµáY–Ð ¯vȦ4ü¤›»›ìFBe~K,ŽCäVÎM[t¿†*UŸÄè QûT9ö¢«ZÍîBS˜5þP¤PÿKlåXÇŽEædåh¾!ÍÇ«l†I3ùñQYïdr'›¬mvO NS2a8ˆPíéF¥ú&ê™›£„v¤­ý =^dŠjVîYãã˜þ=Ñ¿»`a—òçt¤<µ= è ?~¦.¼pD ŒÓS.'×¾# wµœ¨êðmI†µÈnhS68ž'ã½LM¯” ìµ°\ä!œû¢£—ŠZ@dñýÙŒæØ±fl<È42û{x oá– /¯â/gV‡1¿ÖéVQÓæð+¯,C›U0mrÍ5b rk~(R¡³×ÑU+–Æý™p8i׿BGÍÉLœ=Ž®-Äšé¤oÙ±G=6_ñ‹úÙ’È<ú¾Í’Ì—ë9½¬c‹ˆ¿÷šé#€kñÑO³Ý ‚«eQ°Õp1ÒÉCGuIéõ¦-`gîoŒ@ÑŒå²ÖÈ˃Oêúô÷•åóOäÑÀJý=cˆèÉ( •u=Ù}ˆ´ZMXÑ,sÌÏ¿=•Ýke!¬Xk%P"ãZ>GŠúš}âu·¨@êç>u3r+Î@ª·º+ÔéÉ}&—N&3ùJ·obÂV.Ôìž$teý±=+î$a¤è¯Ð‚{ 7Î.®ûê®ÑV’gšÜŸùŽ$°_òHÊgÝ$̦Öì‹‹Ñú©Õ‡$ÿþ¼}N€³°Ìe‰ÆvÇZæpÑ]q]‡Ìi¶_ ›¦gí[n•ÀÒwx“”‘`~Ÿ× …¥jÂ×Ïf¡°šLª±6UERðБ#ÒpÐBK‹·Ü]Fiò`B¡ïàŽbA ›q†Ü1D1‚Ûúåç f¹8äÛ¢ÈKdX–ÎïDiñ} <¥WOÙˆ٦ѳHçŒÆ Ñc}]ïNõ&³‚ÒúDR‰ÈSn5¢ä K‡˜˜V}—–º…#v*måÿ|‡-¦åDD6T¡PìYË*›ÂçVíÊ)©£k% ‡šÓ&úCßUÔ×üª¬ç˜sÆÇ9€†ç.Uü«Gª˜L]½ÿC%6]ÚDSkëV½®®Q©×x"Êw¥ \xÆ •5“·;=E+moJj…ìÞû4P€ï£e骺ÏÃM iWéäuM{O’%žëÏÍÄ’‹u¸‡ë$ÌÝ[Ç€t3ä•E"»³zãT½{(Û‹ªZÀ”ºä¹Í¿-Ÿx”V{žYR…o§.ú7Ì®øf?%ˆ:?a:-`³Î¯×AÛ連tíiqN!÷ÃA¹y*ÎÖ™dÔ¨,‹ 9ÝíÙü@˜›±eWš‰ü^œ©æfœ¬’ü¶-E¹×ô$·\"Ðþ×$š*tÙâQùJét!åF*¼Žæ%E¾.9·Ç;eŠÿ˜»~ßœD>%ÏÆAAN ±ÊÙµü âý vkÑ.ІSª¥”?‡ÆÈò>7Ú¡óºÙ~¯–Q]Oz¶ÓlKî&&*½Ì;‰?)­Rn’Ú¸ ÿƒ™Clq¸µ>ËRžææt×(³ž”ÏcϬp¹ƒ×ƈ@§LlmåšóÝyä34\]ß×±%¶Qµ=<9RdY“HüOJ ¾o>½þîñ“œ¤ú-íV Ú1j¦L„/`"Œ½¯Y|ò`yÄŸ$ÓµË^S«RMè?ç•Q9¥ÆGÚyŠ‹É2‰°wØkê ºå+ž:5 YFc%:1ygµÁ#­v†û‹Ÿ5ùÒ?õýÖ=Ÿ‹å3Z >È 0~ôR\'çìehÙ²&sAÞ{ñÏkOØ3èœ 0Uäi}3ìˆ\ê:rœo¬Ã;oÈ|…¶«%²…¥`Àº+º¤Ux¨Öš±Ù ÊØ—Ôy:Œ2L0qkîµ'tÑD5‹ör¤nM>13XØúŠM9)ü´„žÿRôô0 5vŠOÇ 1Srq}09Š?­c°{ž ‹>Ujžn »µ£Jë¢VÚ±å{rŸW#æð…!åÁ=gÜùã<Ù´Œüèw³‡Â¯!×ÖÑjÞ‘Ë+•5ÜËaÐl s©*½œ‚§%àV‡o4püjë´,Ž-¼¹Q„7H‘@#pÀy/ý¦õ6n¥/]úƯåP0B¦îvk3öwxSo ðO¤P‰_Þ‰êñ2ÂÌjëY±ëÉ^Ç`ÞkL&E”Y~·DK…½½iß\Œ:Ca¶êŽÑ6œÚZdž®çÐoæmõ¡.Pþ€öñNyYî¬géÀRH.BêwäÌ÷]-¿»¶2%|¥Öï§2rp]»,Þ¡­dæÍ÷ ÛÔLYïßW²‰C¨è˜ŽôÁª4gþÙ:˜(4Ò‡O·°s©R’Ý@uú«ãçX-W@â”ým+ng”·Ãr¹ÒerOØöÕt9’õ(z¹vÈß¿D–=u1F˜ŠÓÍ+ûžø™ XFÙú¯Wzy äFÁpÐ$C]7Ý#¬4ò%àÄavó*² 8·.ªCï80™vð ¹ÖúxÇ[¸ÅZýü?•T[¡k˜¹CÌЛû\€!šYf’—®)ßwãU /Ü.˜x¦‘¼‰o/@ªkJ@å¢R|N"¹_Ê^Á¾é¶«5­ •Ž˜ oX vhS1ʃ´\Z%vNz½©½âÙŽ1ÄÁpÖߨ4—EÑ-èØìêð ¥YÉeϧ:üäPå‹ã+ÌGyK@ú|G¬áâ!Õ„æC«æ«…´ƒCÉn‡õ­sÐð„sz™¥Ç?5ƒ6?!–[|Ö¿H'½e†Y>h¼=råƒ5™].Òãf"e‘žéâÌ1ÙÖÛu'Ÿ‡9V쨟:Â$É.›ñBíÀŒÆˆ¶‚„rØ:U½Ê Z l7gj¡¿K9>àš½5\OÊiAØ–6]ð+C¨ÍWI>ZëèQÛ%´©î ÞÜá§óíC<]«ªBÝÉ]ìãÅ’Š’`øÕÕmsv…ÛF^!ËxZƒð×çIM)ÂE Yñ­ˆÂ—~DyìjÏŽƒå ´Z˜ûÝw9Òy"e®¢IjwŒ*DõC7ìvœ™ñ Õ°å3I˜¬»Êê3IjߺVXŸ&.)ÖÅ Ί°$KœÜÒñûšÔ¡åò•g°‘-0½ªtíô…€SAaX¬ÈÂÍôÇ|áÖÔD)Àµ)r¦É³w<}çðVÇÒDp¦àl°X„FB+æ -ÎÙ»©™÷hKqrÞGfcYŠƒöèkŽÍÅ¢>y nu uú·'§yÇ*ЧÆÉû½YB«ȯаÇs˜½©zä¸ú w~Ÿ•^ ú Ù×É–Içwñ(îecŽÿ›š–.«¸<Í6<^ö-ŽƒhL-×u%*ë­B÷ñ¦¨TÿÙ ‡ÞÕ·7Írm±8çkœÊŒC{v•œÔif2%ösžr£iHÜÑ®|*|òðzœÚÍ…ع2“µx£Û]ŽßC„—nªë„¦ò#„±ðæ“ïãáSþKA&׊þ›¸"¸ŒY‚¬xÕpªíÛ>Nu|Ÿðì QÐèlÎØ»© ‚´„Bfß`Í±Š¥±[¢?2¯­†ã'Éæ¼‹‚OÜŠðwÚöTálHåœ&¥^g›©n3•|6d¾W×¥E#e5+7bàM‰r+œ 0yl’s*T5¿Öìpø^¦ŸP ® ¶‰âB^ìÌøv%} êLßS—c©ï"Øå['LµÓÀ’¼‘®Tãþ<‚¦Ê¦·Çú-Lª}I¤[®÷¬„9öx 5¥¶™€³F‚áÄñþKÒŽÿûŒs¿¿`<(ç׎˜ñ·mñd‚H½]Â22Ø/RñÝ­"u”¯?ÒBÞ3©;¸$‘kN„`°óÛ !=¸Þ<¹‘Àw¾ŒŸ2ÛºD5”–~òCˆlÿÌZïå{´g'€Ý?Àb±{ÅN"Éf^úü-<Œõ«”•3©~oÃSüµÃtíìQÞxÛ;µdŠyiús9Þp…c‡vø”YÈîóÐÏà·iñj¦=µÖv†ÈùPAŠìÈeZ*AJòüÍXÕžãW9~h½îŠZ½÷8´ïnúâÊèèµµÌá»§­fr5áÇçá )ä G^jz¸@ß)ͳ.¶š‹b£*üÕÁ1MÅàÀ2¬qQuŒ}Á(u„ÑÂ%~Ö™%v±Çìï@CQT.^%¡œ|½&0‚,BŠz$uü{ÍÆh㜵]H†jÃT³×½4ãCŒMMÂÞDÈÙø8ý{é_78hÝ Ä™pýBlÜ ‘‘4l”¯Šþ÷zç†{0Ñï¡MŒ^dÙæ0ßx lÛ»°†t×V:³š´]1F{ëwÃ^íÉG¡"ÒS28ù„¥â8@ä«ÝûF„3«ÑX¬’CGÎDÜg‹7”5Ðq‘h^"{1†šFiFÞjŒÃ:ã ]¹X«Y&c"ŒJc¼½»†Û•3°}d㺿©¥j­,‰NËð…=z8gßµÇ E¯<â8»CÈ›C˜W=zÃf˜Y$•ijê¿€×ieâ¡·êó¶çüÊäåRÍÙó^اE#à'eç»v—¿]8/^’Š#ׇՀ;EÚÈŒŽNÊ—£ÿbëôC2‚23ÂáJ1W¹ŸÂºµ ”`ãˆÃ‡¹•6JN?âË¥ßX›wšºÉ ª Å'–‰Yúq ½åó8Â"±h,K©»µoÞyQãz¿¼:ép[WçÞ^È1m„ö%‘õ÷††Æ¡£‹S­¦^UCÎU!ú¸~§¯Èsk·£W½¥î¼A‰ÚÅ£y^ ŽÃL‹Üàx@têoY±ûLQÓ üÞ^•Óìxq•ŠdYœÜúv AÓc~jĤú¬žª8”‹?œ¿»4ˆÇÓB¿zs*ßÜŽ&FLͬ E^ì#W H4µªèJœˆ- 7嶬ÛFŒ{kTôë¡'7JÆ™5òpÍ/½ù@˜tLÇɾõskMn¬GáÆÏŠÖîöyhÁÈ57Õ—)VÌe–f=?éƒtÀ£‰kÐÈc˜» _¬¸˸Ȃ¿ÜÞet»²­/×Ôñ½Ù¾Œ,ع%KävźdÈR°Ë/³žÏf¯ è”@,~ O-bHó: “LÏœÉÃiwÑrW’÷: È„Žäœ0a©L¾óZ“w¿% è4ÛŒKüõä›D| šWŒå—A¢M ÁzI±oem Öƒj…7ÅåZçž7Aª}–~ØÌÊZÔDº(4TQÿ2ZñÄ|òèêôÍ?å> Ì2c!Ÿ‰i[ê2ÈÚÂ?¬¸Œ|&¥3‹Ò4ó(NêñRÒ¡Q9ÝÈL÷ê¸HV†‘è{.7-¦ôSÃô†„‚¶C…I•k)#Œþž¿Ù*G_c˜ýÑÌ#´éÙ.ø·žÔÄ­»ˆ£%ZÚÌôãp.yÞïµÛ)£Vø¦EÎÜ=·¦7Þ)ÔˆÐKÅË/îbšI¸ìÔŒa[ð¢ïˆG(¥&/¼¿Òߪãð½£Oƒ‡Ð7©Ê9¯=€ÌBàø2Ó5ayz•cPeéOL‘ŠvpÐ’¸ÃÚ~‚¤ã,á°~ a¥úe×±"¹K¡‘{­úór4Šp Iš?éÓÈŤ[FãvîüÚ±*ãÈçy<“1§¤“ßhv¤ìÐÐH¢„?«”æ3œåÖ<×ßnS8ŒðzÃTe“À¡`áÒ{ðÇÉ~m~—‰&tR&vÀ¸ ’ð=Ðã~GHí]3±2ëëÖÌ=§Ù]‹­TnHêÆÕ¼IÞ¡Ùü:-ëu*= ê£&‰Ç’CËÀ­•µÒ:·cÎ}ø½QuÎѾý¾X€†•NåO´’Ù‘öüÆPûx^‘À3*™ÁÇ’žÉÿ½/v” Iç+«²ùúe»:uz |¾VN2Ŷ¶/¸ÍV­Æ+²Ü/ö€ }{Öq_Wág©]‚û¹Ï±_ƒ™)=\¦M/`S/U$« oo×Ѩ0IýÔ­ÉXN“ÑC=™¥B¤æÉ\{Êã—MÉϱýP^ÔÆ?C:àl}[1“x{4ܨ:º\ý‰hY.Ø_Û#–rÀ—î0î'˜Lù>CcðÚ¾3[i{pظ©Ï2¥ê1+>EkÚ‡_V –Ã2ÃxºH.8HüÐ`jË‹†¿´QrA!ýR²„u^c“L9€ÄÊ'“u‰Ô µWc,óLóKú{}…×2G>âèýú6¡ eJ€b Îù’j>$ÑÊ–°v+ÔHÓi*ÌÍÐÒ JÃðWÃψ‚1–Uf¨¶˜<UlÛOäQö‰YEgfhãŧg¼Gb…Pµ¼?µ9W%Æe—±4=¢Êºßydzm¶Œ] ª=æL'àc“—ðæx`Jóù—yÔŠ9…ÎÛ°sFø¤@ ¢ûÜÛ¹y2ÀÈ GÉ|÷Y Yç/Ú¢âEGša¶²#‰³Üd£Œ¼ÄrEÍÎå¿CÉNâÐÛ*<"àZ‘—ìÉe‹ÊQnz:›Òz‘)LQÒ÷ ·Ai˜ ±Î.åëAŒÕI;œìAÂú'f¨Lˆ|:Z37ôó¦$óJˆÇɱ@º–/’¸Ù8Ë{Îð(=¯ó+Ü®UØ~¹iÞkleγé&öIL·}4‰tžQÚ{Þ_QÑ€:evšZþ}ìP-ñ´†cŸ[y¾ŠM²<Â*A?P‚á)5˳\÷Yàðú:”¶ÉUŸƒÎذ°Ì{ÓÚ´ÂtrìS”Ï¢†qD‘ÞÄHkPú—ˆ2ÕúZ$9t©/L„imr#?2â”\¯A§d7É’¹¢›µ~/Ø@ ‡+åÈ¥=u4òDQxÅSb¡¤2ñœsCQº¾Ê`LižAT Bª6&è:ÜU`è‚Ú±ñ›ÎJá¿Dò5LaZœ 79…õ}žHˆÊ0ÖðrVŸ3 ñH¢ýšÈ•õ:ÎÎ5Hv÷!š7¬ôr¼ÞÔË„³^Ÿ¾.Xø‰% ©½¦' |«¿ˆTYn‚.Ö¨«fGh‡–Ú/×vðŠüš•=é Œjš9nlÍ]0ãj“ @rÙK¡wï€öB“;8ǯ¯‡’•ösË!pTÆìøw: Hº–¢\ô†÷L±ªÆ˜¤}=¦`xy*š€f}ïŒù~èÆDÛÙú‹hi­*„b’Ä'³ôZµÍ¬DC=ˆÔp&.q©±¹ë¢‘‡ö2Ãï%`ÝÊ Œ2ìJ÷¢ÑF @¾´”ùo—}0×øå ÷‰YBéñ=;«íEtpîj?¡€þ­>jÏS*ê=L+£—DZ8ïç‰20á·¼LïpÆÁ †ž;Ÿ(ÍYÜõH“Þ­Õ¥õ+³¤½ Û½/õbÔ{£Ïc ¡wâv(h»ùe"fÃ7Zï÷†úŸí†Régmúᇮ²t†*Ñ1ŠŸ¾à÷ÃvŸá@zoÅäs!©oÉßš]ÝÝ$qHÕO4î$ !êN©&-T¥á‡¨â±Sÿ™þ"é2‘e y«…¶žüYŽu5]˜$­ V ãk†¢ñ]Â/¿Z´æ“àë[÷±kZCü+ïf=edy¿Sÿ¶×©Ùôˆ_¼¢oð×Ü}•1šØ=³žU¹¯Ûñ÷€œ…½Ê4ìRɺ^*‹nöE¦/yµH‘÷ÌIþ3õléI—6>2¡)jTð']æÓKrt½Páîå“ÈEÙQÏFïÆ¿ðK 1ü·hISê~oåË|¿BNnŽŽ5G9=ú³ñ ô¤ÀaTKA»Ù¹“ʃXÝ\Ê}µfþçî øE‘vçˆi‚˜r%<ÄšÔk‰ZÚ=^|ϰ…¬Cë&uZ h…ÞQ §WÌfÛ{ – y®ªKe‚ÞÉ8ê7I‘låÎƤ–dbáíšRþ\¦S0}*„‘rm&=¤›œâÜ›”aÒWJ>Ó0 ajð=ºÛÌW°Ç~lä-*k.ØÃwºC* eå¯XIƒ-#&¾"÷C4¢Ä´¯'ª—#ÐQ¿¨ÉÌlÏRhбžxçê(rùB¤õ±½Mé—¿U3£CºkÔ~hƒ‹yU“76ùœø¹ ¤¶s¾î°ÀW6&Ol"㽺:÷Dqmði8'aÊŽiˆš!B°«·¾^xÐPã5Ä <×Y‚»Õª “G²&D:VìèQLŒÉ•¡ñè7k~œ0Þû´íÜ£w•ç ŠŽÛDGïÊ×NÎiO„ÎßtG3o7`^µw¾JUÅ^›Fd+zái½Ú`ðb>ÑÓeÔõßÇUz(“R2ô¥¾B¢¿Ô4»1*…"}­ŸÍ‘"Sˆ R0xà”gëU&N¹Ýцþá–†¼Äx›ªQG9ýj}uŠ6P¦JáôôB„pð9\BNêwÍIýáBë¢ë¡m-9ž¹EâQ¯Ó—ó—æ•‡XþF‡ž ¯J?+Ø›üò}tÚ›$ü>ºúV0‹~¥6³.$º™½µsœþfw ûü÷¶xê!ÇÀăeh ÔdŒ:9ÁZ‰Z§nøZcÎ'Xo4¡€V|‰Ùjw¦~K¥ÑO_[ŠØÓÈxØ ¼Nk˜¹›iõ¯µ>SÀX¤ÏxåH³=b©ÔíAÁÓOvY¼µ…@¨’@Õ®>`œýÞÔ'wŹˆ%çÞ²…{º¯­ã…SO>I&ï™Ñ<;cÑDvÏ)c Þ’˜à,¯ÇxË/Ú±.ÏÂï÷]í/ Q¢"•€rƒ¯‘îM†O–ÞŒdmǃßrÖ꺡ó§ò«šoh9¼ˆÿÍM’,Ø”ÊÙ«.°)ô lxQ?V{í1˜¸{Ø%A–¦’«+šÃº¼®‘†‡À­#SƒàYT°ÅŸU‚I¶TÉÜ™{ Oúû*i‰ÈNP qüÔ7`ŒU^€¡Mõò†­t*îíÕã$Ñy>zÏ‚çñò”õö××Ýà º'Ñlß×l¢Ÿ˜7zfG¤M.Åeö˜S ¶ôo -©•Îþ„»É áJ$SùÉ)ÖG r-–?ÞÛò GoÕæ'÷ª3V¯` Ã$…=‹á_Ée(Î*[T7Ïåï4lèqQ7-Vؽ³ TgIÎq;q¸öò¢‰)ËŒ“ý¢&¦w›½LJŠœäò‰´¶ô4(¼1â!•$)L•‡Ëܶ¦“kòQ!´‰c›1­\Žrä[2ÓZíÅ8Åp'à-ÝcP0·z²*Ê}C=?Vɼ,‰­ß‚Hæèn& ,"£$N;yŸ“RRQL,mìy-‚„øì~6MÊŸt$>×=ÕäΕ¤ÕWz§3ùÎçP7æx‹Zá²ëXÀÒÁ‡mÈÀÍ~V†v £S»YÑÝ3ûIõîþÅ…žo'I­=Ô,Œ‘nEÌ—ñ&JmXüÊZáÑ"K\®ÿÞë`õ»š°,—sÃÄhÿ Qóò^ÇlÌqñÝ”`P‰šéM}º[[r)µÚ±½ZŸlÑwÏFÒ²óžUmú{MÊv‘<ƒâÕì-åê§9 ,nHM7!:éçÏ*ü²ª1.¾=´$Â¥þX_Ðù.×êÀ‹VM«ýÖæŒÍEZaËìÁî)=䦙”N‘^Ò»ZJ¡Þ&S×À‘ПÈQðŠõô{¥Œ«ÒfÇdÀåj}k³ÐÉC°ÃÆ„é­ïwÿâfVŠ÷¾k}+v,Šrꌽ´Ü.“f=¹­2Æ<ÃG;e\Çh’™kNê‚5‡óGÚä¿­Õ4ŸG™ñ‡ EbOã^ÌNšèM¿¨³Otì’í²Ï–=ß™Ó×Äà\§Úü9Ìò8ÿ= DÔôg$š¸,kÕ§BYÚ×dõ ãG &Z”À…o jÝ ~âXôw`‘ïçÅX0D<Æq¬ü™œa¤ƒ‚lÍS{ˆ®÷iï=sSÌOS¯“:sp¨ëc6w½Õ}lXVt½³!F+bÒ?&¯9T²v)Pž­¥ïaÛÜ `±ãžÓd™tÝ:J®d#ï.’jÄm–Æ-PªFz×¢fé?£»ªå¢C‘ê—› eg€J)-mƒm™¾ƒ@•S¸‡X1™VhÞ›@þ¾ˆÑ“39U¿ÓÅ oÃXlítzõ.{6££€û§ŽlœFfŧù"$dBÛr#­ŠñEEô]€©fö§]Î]ú„M›á[¯éÁÛÂ~#8J_Ùú&’)¡?Nû3y >0»0ÚÅüþÖÛôtœ÷‹ûÓENhÍЈ}I;•¨¦J<*Ùoî¦óçþà'ê²K*;ÁKð«Ua‰t:œ’Í&-KdV^±KlWl |åoAšïæë{íü4¥§Ê’<&2|ŠœÃ›áH¡xP´Ã~ÈÛƒ I@C6ìĺ3aSxûiÚºAØåîí,Jðz§–ˆ6C§XÉsIÛpäÏÑW¿ie}ÌSŽ_ö– ÌÂÔpI{q`ªÕIEý»à$¦ÒœŽcH~NÓÏ~㫊ÙÇ N59;Àpæy£JA¥Mïï…"Öýù*Q€6gaûÔv=É’§1I~³ŸMüöÎã~íꃛn˜å[ª8YóÛRØ™+5øœTÖ`JgiL*óÆX,DVåŒD$xÐâk.Ö7†MP©pÉNýZ¸\SÌçÅÈþß ¾=„&%ƽ`Ý|ov 2Úô*•À£mäå¹8“bO%Ì)ÒÓÄÛwCê@ÊkçÓñÌÄà0Ï@“Éæ…kŠfû=Ä®³îoB=ì¼üfÇîxG@7ßtJÙ‚äŽPÂqæ]v^ž@„ÓºqdHTWé2+ ·’y†.yrz (AĽC’ƒ=ù]ú ÖÃ/í)‚æ !hG±¡û`Áæè RßÖ6·¹ßŽÆh€TF«Yð WA‡NŒ3ÜÔe†/a$³#èLâmüègðѬ MqwËkgˆ+ƱjÍ 2˜³&îG&SðWÆþ¤ud —¯Àa$|w ôñÐÌb’S ¾*w¼Ä6^:R¨ªË»›5ÞOPÉ>ÂKQKk01hH‡šýÎ «î“Êo_<·bEŸÕMÃàÚ†˜ŠÞ1´ƒ6^E ¡ýE>ùѨÌXÈC £›,äP§kº˜á¦&[µ–¨¾*`½2ÇK^rYìHÃaÔ©ôŸƒUD¼rÝMŽÑËWã×EòmÆç85ÝB)¬ íIÍ•~>MpÊßÒ·ÏH W³) <[²òV2Ÿ¢k*¾©RýУéˆÖ§®™…¶žØ¨¨z©±rÝô¹¨W>)­‚»·™7'¾¢Ùt Ò¬=”¢­ëëëò²‹8zÒ=)`«ýZc÷¬µG+÷©Þ}›8ÄBš }¶(I'U½x 9}Mo‘*Q t¨*Ô¨žz%U+ïÙenÉ‹NÖFA‰ÈE|^1Žf (™ÃÈS²„<}Þ åIv7~••M5kÙçènZn¦è‡‡`U«%Qó®•çÌ™‘嘸gÖ²~O{y\L÷˜$³ˆ‘ÚW–&žÓ%-ÞÖ`*¬íý…˜5ÄÙ$ß?@0=‚å§~S{cßPÈå$ƒÆ„þxì‘‚Ú¥Ô·¨ùƒå‘DWS×|¢/k‘u8½è.¥£´ B|ÉÔ"ªí|Î8Å•å+¾Ë¯é‹8^4ÁX‚l”FI<øVw<,œÆyP“6˜íâA0lmªêoR¨Ä½§}Ù }âÖÑ_1àPšäÆVáÅ•Êô‡I-‰­¥lˆÆSX¤×’õî¸I‡~Y©Yð¨#"+zì°!#š¿jPiíͽ¦ø? èòôò´û·Éҽئè7¨Ø­!`ÙÉ@Íj”àž5%{ü)—&žX`â"ÿz¯0¬?3Éc‚ ÜnÌÌödv‘*ùØé9]°\ØŠVŠ/&Á¨ð–Þ$nÁ?ØãTŒ˜Oóe³{i GÙ¨ã_tܧirÌy§ay¼­¬°i.jü5¸öoŠ,B7-YÀ Ÿ:k=pIÚà˜mÄæÝþý‹22SX¿_éÄÀy„ô#ËѺ .ñ†dƒ-^ Þ1§)LèN×GŸ—o–Š0ÃÒ’®ïËv!X/1Ù±—øÎ­)¢“WT\†¾KÆÏ®ºóGÒÇ›Áçõ‰¬R~j"ß÷ˆÐQ™àþf÷± #bŠ/ ;’sÒÄi¯í8Yïa*]e¬Y´Ô–\ê˜þvv×­³Q ù÷]v„Á4“R’ªN{?h¡ZýpR™ø~n;¯)²Úôìl#,ÏÃQò_‡þ÷ÇFIôÔ£=²Ñ¾´°§¡TÙW~¶Jöc¡èË1wÕ®õ-S¯3XžÍÜK]jÎi ¬¥pž?9–.‡ç0É¿Û÷þ@Ëc§Ë¥+ÀD7Cð,ïR’-á¥+¡;Qþ~¿¡_{åÊmI¬×2y’reµ‰¶²þYqéS„u™°.Z²Ï'+—Wd‰0¯ù‚ä+E¨)ø¡ÕÓ|¡„+ÔŸDÚµ›œä¦c“ø èÓãéú㢠ô.ÏýcM ûs/fÕPÀ–Þù¦@`_¤Ì7yȶŽðËc3ýU“çl°ˆ el1P-e¢ó·>¤3DjЦJ›%^ßþ»úm QQ¡¦ÊCíËvªÜžÞ¹¦u `åÉŒä‰ v¸=Ô¦˜>pW)A™’b¹;z³ÅÕz·-DiUg5;D­ËCqc;câ´²>gb!„‰å“ü&t!i°Èå3g·ìzËnð’¢]X—ië’*d‚ÛúÆjdô>@éž9Žil«»k'f¢ï®ß– Ûkƒ6¥~m[ÏŒØUÑíà ú×p]f!U]›h¼üº ͼÜdŒ]PJéþ\<ÀÉÜÁØýÃÙk˜y¯ÙùÂWs( Õ‘=áJwB“ìgÐŽDÉîUuySk•ñAõàÈo\ãù´•&ØÄ¥÷P~'/;ŸŽå²³ÎÄÿ”*‡©°ŸŠCø\JÆ6HéÊ(}—>´Sbˆ^(€ÀÿÍëˆÝÚ¤r,•¶”Ÿb¡¯\ô¢\9«¡ÇçVª™54£Õì6 ¤Y¨ºÃBÔa·DáÁK<’xÂ)» æd²ØÜd $”@±&ªÿ§ñi˜JNq£ŒÏB ;b•òy‰% "2¹û}ôé‡í0›²!K¬¾ï#î§hW¢Ý·(=²îïzÔ›µ«h¥¼è¨•6³îÚ¢^ücµ æ2¡‹W´*‰CœÎ Ô%¾29°i’ØSبÝÅ´’b+XÎ –þ÷´¼ì=º´ýà:p…Æãð›˜)¯§”Ÿ_ÁÉp‚æxt•ó´<{_È[}Rhdç㨳ćPID|­ŒÌrÿkÜ ÁQ=nZ®ÿ.÷tBÓ"‰æˆÇUí¬Ê¾°}Oíì¾›Ž ÇÈsÉ=GÈ›šÖÝwågÇX•ž®1Gahžˆ:¸±Œ¨®—…ÆlÕ?S„y¤œ¯7bÛ_ÁusCȈSôø¹ç쾊-þ½ç»+Ìp¦ÝÇ\„ŽXæÀùÌ#åé _#<*€ÿ,&£®f{ýÈBOp1ãØs(œ/T4ÆÙƒy$“m¨1ùŸ(Žõöcн-]¶ËyL¥EÖ©ƒc±è[) oàVV¦ŒkxYŒž‚`è-PÂ]böAÆHfF“::É7 -"ê0’¼2¼øªÆ“PDEd¸s´f—‘” Ò±õœ 3VÿÕºÅúuÚ±[PÃ]íª@U˜»6¯cªsÿãÊÉç!2CÕRtµBró)§É…çmˆŽ€¸ˆ±Il+oT>Žcþƒ?‹²¯ã#‰Sbö>UË ŠŸ4°ðÁÓ'”?JœèÑ”BN%¯ÝC¹Œ¯LàWl#$3%¼¢zz*q?†pe„Õcþ¸þÈ8Šj•›$Þ¸\©Ä ¢NBnÃeeÏîJù¥"OP éVí ªJ×RåtlþÛÝî"9 VZ¿!8ë•û“C˜H·¾Qý„HOŽÉ„I·š‡ž'2Ï¡ÿ¶mWË0HÈDb¿²£Ê2®¥‡½„0Ùü°<ÇãÂ4wªîK\º1#:=ì¾§°àÞ}Ù¸ \FÎú§®ý*'?n‘c€r0k¦}ŠÑΗäàêoŒc{ڽݒôŒÙT‹™·Ï;—îAÓ‘åá" »ƒNñ}Ò»,o‘ýs„¹ýËš9ûïSˆÀ¥ŽCØwzªÏ‘ã›W†ÙLXyá]'UKZù ãÂlô“Öʲˆß'×”[fF¿ÔÄ ºøíº²Œ‡¯¬ãs;÷içJ$ùý± Ûr‰§´¢­'´í]¯´ËaÛHg¼#<ò<¡Mø¯vΉÈvÉrõ}‚ÖGÇ0ùz‘µáÕ0Ï=À ¤ªQ ’³š CÝÉ„^Bv&ÜÒDEÙxž2îã,j·íâÞjQ¶›+œ–¸…³Ö¥ŽX[¡CçYúGJ–íõp)õ¶>ý³µ~äÝ ø·iîy2ôÌ@L€ˆð[OgæY@>› é”èÇÁAÏ”*û‘åKØN_6züŠ]E}¢j<О×Ý´8þÉ;ŒLÈû®*xk~A”ˆ†;^ßÙLü©ÌB(‚,5ïµp5¼3Ñ­„8PðÞGûU{3/IÂ^f–|pã—g'ÛMòz{É©ª?A°%<ÐtšmA‰ñ5 ˆÖ׋V~sX¿é,ï–s¢3ùŠˆÃµÙ³]M!}a¡ºÑŠ«‘_¦$FïÅ4ïÐÈcN»g-¢ù¥ŠŠ×.ll¤zyaÈ@”žé±sì Ò¬[ààô¼ÿ îï·•ïXÜë“ÂJ|ËõÑÝ%Ùm,R•/ùΠ€ô5 ³ÙüwNŒ".‡ß`²ùêŸs9æ‹ßëfãþ¼$Q»k²1–qtD/Ãsž ²YXºW‘ûBl±KÂ߇îŠxØÔ!)>pû‹¢á¡1ZÉé”D§J†vØo§J€Å›' ¸`s$øòÝ2Ùë:ÉK˜¶ÄjCaðùoeÛÓ²˜L• ¬Œðˆ.Eh„7Æ»›¯+|Q”zÇš»K@¼AÙQÓwr$’²=‚øœ`šÖ`>éAB£ä©éBóÆ·ó3ñiã“A$ÁzÞ`|ß©ΚS:ÏÕ‰ö¾8[g2l¤¥…©\rýÛMã`%ì—ˆÕ‚+×Aºo ’ütš!\˜úEkXeýaœ¥Ck~h:²±J‡%µ/¡Þ³ä ¦h›@æj)X‡ÉZ ×lÀ>añ€5D¨On¦îÙ¶,àù­µ÷¯iG0V;…&Nó º‚|k³ª•ÿVWÇûE›/áY?Àá«2­u‘l‰¿/-6Þ åŒK˜-Írã-Äæ¥üWPRO×(ô;c /ú}=εù[t‰ ·Ê!·‡ˆžH¿Î/Ž`NLÂûÀ“ú“ô¤ -V™B•°V)½WjbkÔæÌg·Òûp#jr}~—õï'(­q¼§>¦8œK{*|Ë]#\o endstream endobj 14 0 obj << /Length1 1607 /Length2 8680 /Length3 0 /Length 9736 /Filter /FlateDecode >> stream xÚ·P›k6Œw§h ¸w‡"ŵ8)„‚»kâP(…âî(ÚJqwo¡@qŠ|ôœóžsÞ÷ÿg¾o2“<×îµ{ïî}í3fm=n9ø ðS8Ì›(PÐÐåã<@ ?63³>Ä þËŒÍlF¸Bà0ñ`ÛƒMäöÀÓ€ÃjîPŸ€OXœODðbÿ!ÂâEÄ ÁPƒÃÀ®ØÌ pgoÄÎÞíá˜ÿ<جÙ|bb"\„äœÀˆ5йكN´AzpkØÍû¿R°IÚ»¹9‹óòzzzò€œ\yà;iv.€'ÄÍ  v#<À6€ß 4ANà?;ãÁfèÛC\ÿ´ëÁmݾ¿Óýý;öG0ÈÚîä ‚yC`v[ ÐzªÎãæåÆÁl~APWøC<È‚^<þ¨x*§=4øW{®Öˆ³›++ú»EÞßi¦¬³Q€;9an®Ø¿ëS„ ÀÖc÷æýófapO˜ï_À³±ýÝ„»3¯ ââVUü‹ò`ÂþÇfv@1AØö²¶çý^ßÛü‡“ï·ù¡_g¸3Àö¡ °?Äüðƒíë òÜî`ß;þaóñl Ön€`; ûŸìf°íŸøáò/€)ðA{|àïÏßOæò²Ã ÞÿÐÿ¸_^Eu5cÎ?;þÛ'/÷ør ¸ù…øb¢¢! Àÿ¿³hƒ Uü'Tf ˆýYìÔþS°Ç_÷Ïö×n°þ;—&üA´`Û?7 ­¾øþŸ•þGÈÿŸÀgù¿iü zê…þáfûÃÿÿqƒœ Pᅳuw{пüa `ÿK5ÿ¹³`ˆ»ÓÿzUÝ@{ ³ƒþ=FˆëSˆØFâfmÿ§Xþ´ü^2(Ö†»B~¿UÜ|@àÿø6ËÚñáÍáú È?\à‡Åùï#•`Öp›ßÆ/$ ! olàƒø…„¾|«höúCÃ^Üí!ðО?ÀŽÀþ}£Â¢²ùmú‰ xõÿFb"^Ð?èùâ$àµþ >Ä=,»Ó?l¾­ò‚ÿöÿ‚áNÿ@> €ö7z8öÐý?éØða>¾‡lˆøÑnžð¹¸ÿùJñþ'ÙC>`ÄŸôÿš¥µ;ñð6ùCíƒþþãÕ{­±ç¦áÖaua—5rÔžÜ[_¤&˜·Œ2ع}çî×ø©ìÕoBVçr©?.n(±ÉÎÓßú~omÀˆlKÖiÿåwc™¨;¶ÕŽ=û•|`´è»\}?- ·¾ì¶ß­‹Ÿa°#j+r—sž‹»(¾vÉ¥gŸ²W}ÙÂpÄô–Îvµð3œ›²qî8ƒX³à’IæüÙS”ŒènÜ´˜ÄG^“gçĹ£÷ôj‰œØþûqž&«üñWS>Kúü®Ý™›PÒ¢ž±øÊ囹QÌø–¯ †Ó§È;GÖœRø »l>[šº—ˆ½Ÿ,Ì£âl)yQIU_Æ®´©$9•0$¡ f-ª­x©þi}áÊ¥•¹×‚ŠÔ éâˆmõ\çÖûìb°‘Õ=çˆÔµ'K­§‡õ EÒ"çÖ³àGnÙ ÞÄQ,› Z/}Z"ml÷R¢mí Z·{Sç¼·¤ÏðqÑkHuòXÍg<ÊcoƒJztjèÚqµqzlœÊÜØ"µ[Ó–š«ˆÃIý’¼>›Öý\¬•*îIê›Ì¼VFmœAKóº­ï8ìYÕ»íýžØ—Qýß6HË Êîåª+óDßa©`¼Š¿jF‰\q'Wþº&®¸L¹¦ÇQpbTùádäýÉ¡y!7P’§ÌNOžWšBb’£• ~8‘/Dm!ÖÐKz'^ò¬ÍïÇSì°{ßÞhÀ|dPÙ´×Êãœ_.(Ò@‹t¯ïiu:ýw¬Ï{÷÷£; q?J<ö6ù¨}æÖòh£…\ú¾vvÑy‡Ž/XϰÙÿÕ øÛîå2Љ оoÆ70PÒ }Šßó`87í:‚,ÜNh 5$mè û*”†ZL9Ä>(6`ôàd’]R@oŒ/ܦ«E­išBÎ…ãåY3uø†¤'+_žkð‰…¦¢GaSláå¾=X‡—Éá¢$rŸ‰¬_<Ùz/“5NéÙ#$?6Çþð¸Õž°z"ɧúDËrËu©¨½oèé…{MïÆù‹U‡N7ôˆËûä¤ü£_x¹NÚåì^¬×¯Xø…}­œm§í ¢).Fo1â níŽi5ÊGÍÚ51*Nðéje 3KÇ)¼Æ³žƒXS;CÞ~z†Ûóš`/]dñƒŒN y– JŸIß${ú]'U´“N+‰˜ðÚ¬ªzHt‹Uñ Ê#ýs`áñ§–Ì+Îo£6Kæò{i¤ãx2ƒIv% ï¦C¹·uc›ÍeVè¯ÎÄÈ3…xö ©œ¡±ïÕмªqÅ{ ·GýuwFí·Äª¿î¹íA ®É|ÊÌY#2¿d8léW.ý¦ÎÇØ ”N•{ºdÑÚq‰`ŽY>»àƒù˜þB­séÞå µœØz¹\öœ/呦}Xèí¤™´ѽR·hÞ‡q”BgdÎ)G-º¹-?IXm¥$ !¬iÜ«YïêDIRÇÜTïå¼8† ™ÖíèuQ)U‚ôhÊ%t{ ‘ Vƒöe oã4æ*ÆøíH´vxHÃõûD’)¯›ý•ˆƒêF0EdÐP:Õm=ˆ4ú¦„÷>CVDGö‰ì› [MòÀ½Uθ=«sÅø§WªÇÈsÿˆ:™—ÃDÊÓDŠ´âé!M¯ó'r8XZgë^q7kB`Tº¼WöY޲Çz–Ãñ[ô P ôaÿù&n1Ù¶±ðý2–lmûÝ[Œ¼f¿OD²5©ØŠ6Ûfޤ£h;FµDj™È  ora³`ºî¼ e»Ðûʉ ôé-ƒF²®§4~#‹¡±a¨$1 ú-çh|ÊPM=ܯ¦ ,•h$ 4[ýL~SNÌ(Òú£Ž5k˜{÷ðcY XL³û#+f*QÚSOe;Ú ;‰›bô–Eè'8ÖU+ÿ-n²ÁÚÉ™{·ðz†ÂôKfª~cý3VÝÓØA*‡q¤\ø4­FÌ_ýî'ÒQ²¸Ö]#ï°Õ…lèÎDîDüÙGÁ–ø†r5lü0yÜ—ÃCL寠©2,¹Ä@; ¹ªNÊãÉe ôô_~’“Ês›²nq.Ï#b¥×>¾rV¥¨d®a£{~ê‘úi[ÄŸ¯A Z.Wýl¾*™^¸˜3-Í<¹‡3ózµšxj)LvšöøûWE+G}Ü&¶ªwæ9½ÂBº³Ü¦=lJ•ûrj ®âh`¹‚o‹…øh&weCJ® šc±N Ö_ËŽyx®¤q#?DMü|#­ÓÉÒJ6èUµõ}¸Õ–ßá¨PZcëbÄ=—z*ì ÇàÈpæä9·s€šä!èìݨ_}‘ç/v›;žóf¡~úšÁSòÜ…þÿ ¦ý)ƾ/å»5‰L9 ìúER•ŒG‰±æNµôj’~a–<¦ý¬_ ’8ÞÄßž8\ŒÖ Â¨BOjxô7SqÎ")wYʉ"E·&s}jû³•áQbÝÓŒ•WAº„E$^‘~& ýï=•@3¶µã?>6CœîßÄ Ró¾¨Ò¼ßg¥z}ŽúláƒÀV'ÑñϽÚàr-ûQ5¹Á×™õÒ%Äb¹ ÞÔ¬ªNn-Uâ6šOÓC SÔ'¨·Aº^y½ á76 º8È)YQ™ÇyèÁ]›bÛyzUýŠ6$޳½TI/˜j® #Ê,ÜÒýí…À‰Ë*šQˆ>•JÕb.­f aÖÕâÇk£DЂzúˆ,ì°ûM­o”óO¼@HXŸ´ôs0 ·¸ÛÙšÔ›MÞ{?_Áê,e0¯ö™Y”ái zwE†+t4Êý*YQ½AÈ1§²µWébRRÍK‡Ø) !ܵ©ÖfN~騰ùÖ•Öí•7)wký½?ãSÛh~Á±Í[‡xÎ%<ÎÆ*ª @NãZûEXl7¬(1r¯ÚíQ’ù“Æâè¨ËÇ piz%ÁnÚ !’1-%,¡¼Z}ûëÇKP.±vjKvä«ÉÇÃLÎ Y™ßi 9‡ÙZ4ⱦ:æµ¾LÒrÎÿ4èf­`Õ6•·ÌŠï« ªª0–cëgÝKŠâSËÄaÇ¥ª&I™ú“QrŽ_¹ĘU_}ceÿl)8GûÞÿ™q~5g£Í´´…õ²áKáb ’É€×Ð-)Écö È9*8 E__9‘+#zK •ºãØK÷Z…uÊÒ÷(ýBQÔ¾—nË3‘ªž-ì[´ÀæºA8ÆeÒd—ùŽOV«­g0"ßG{@Ý}ƒª®gDZ4\,SÁó{Ôô5fT• ‹›_ øÔåkÊG‰Ÿ¨mÖ!7uŸÜõ·Ð:SPÉF¤H_ž‡«%>1QWd¦žÚn«ò•ÒÈL:¸õ²~çe‹UÍQÎÏÇ@GúÔ(3øèqdžd(g~Ý;Ä9àòWάCðg©¨†Àêv±®-Ÿ^Õ÷ Þ4!ˆÀÊš]Ï5å¢ÓÑ \Í_HØ%"ÓÅq«‹ïÄ^ð’UÌW ;“€fÓ0 Ä7¾òy] ¦üÚ´JD7ìN=fQRBÉ –i²&¤ÄŸ¾$ÅUXH|-"RÇm58Çô¨ºRÃcãí7r¿úp×¾Ø/¸UÂÏúìžÀlF#M“=‰6Âala6sñéðI8ýE‰eø~ œCr©½ %ª–f¯‡….ÒK#AµË»ó´Ò”ÉFQÿ›É4áîx¯C_ójH2ÄO‹gGIÌó…J›k¿<†OÂÚtæPCc&¿ÝJÑô ©p)áêÂÈ kD}ëÏ…D#*>ü@9ÆØó‚ác¾FävÁpXbð3Ú-nrM¹wkRbvBRF^#Ãlh^Á }÷ó9Jt5=ón¢„þš¹§ÓªñŠŸÂR’2¢»Ê3‹é»‚(?¢,£1šû#7=%íêïNœSÒ'árÒ…Hb½ý€‘¿÷3ÐÙ®' Çè½a1"ó5¤žFªB_°¼Ç+Ã_í+iäMmdŒ·Å—<+”ë(ZOÍ‹Û6nضQ]r:WÒÚû38$›Ãâ©?ý\mêíø– nô›Ã€4*§Þ‡£”7I˜O=h ôÑÏŽfy1ÌX ÎâOMBbrIâh££¦ý¶‰ÅX0Þtöã/Û"DÖš‚t:`ÍÜu¡hâ­^Ó”NJÓä -]wp Åô–rß(N±Òuµƒöçj.£àrÝù*w‘¼ýöK'(vDL¦@.ÃâÑc1DRØwª8Ö¡•{Ÿ(CU½õ£Ò+ƒ×7ZŸ$üJ Zˆ.m¤Ãb†¨0?á§]áÑÛµ½Ç@C†ÜÀ=Šocr9‰êu˜}¤ú˜J Ý%›ÉÔ„u•ÓÏ?5,Gz8-oÖS0Ÿ]õ¶çÖ“šWHi+ø‡Ý,Zò/N:Þž‘’°|@ÁÙ“×*‹Ì$¡«¦]Ævul{xÛϱb~Ñ?^9ÌÊ3è­ûñÇ'?ý*7# ?SvHˆ¼`pLÍžÓ`•{Y² +­@Ó¶¢aáma£.ïÞÂæ™1ÔϘRVã 8œ|¯ô#ÝUð€wC4cƒžÉjÊfÄ~'͸°­îÛ\º å_®)ú™F䋌¡E0ÓxÅŒ‹¼<ýÜ|T9T ä0%~×™­èéÌX.áp\#÷èºë‹•ž®Y“ñ#üZžqOÍUŠ[…ÚDÇ-o’ò€ew•'{l¢ø£š"õ‚^U :;‰Ýd †-•ïlÒ¯§´XÉq¡zž*0gÅZàÆõ÷Sï³MmQhPé9¥óx]Â\y|ä´­àt4ëQ?­Ÿ¥œ­´L ˆ1©¹Èè„*jXÂmÃŽÕpj!×êïä‘BBH†JìÓì´ÎÍeFhÅÊÅ›D»ôg)߈ K‚¡×ÀI•i¶Ï îFÅ>~Yúà †ªÕ¶+…aÂÈ0†­wªæ-$Óßè xp{VqliÌ¾Šº:Iã 1,x‹ ‰”Ù,Q“· Ï{œýV÷- ÄwSåIƒ =[8rµ]@¶è{îéø™oá#¤²—lþûY”7ÑÛäúoÐõq4Òß„iWÖ†X:OFå[ùÄúÞ±f½‰òÂ>$ãÌLÂþL!ùCÒm&IL3s®gxªªB›·äšÝ+uè &¨^~DqXħö¥ìGÜLM×;uÓ×Í}q®Övg²³N޶¥ ¢KŸIÂ"ððÄôMd_Y… –„åADœ›Ëù›RCtÔËëEꊜ»ñšÉmdwØuÍ{îíeæMÂežì{¦¹ynËÀ}êf5/bª®»kÊ«°î#×ÅSô•‘Å2<žg>o?á ôw½ôÉÎ<`[ðã‹>èvoºÎeDõ¡_¸£EoŸRìÔ¸*ãyG™Q(üTCÊcfYévÒˆf¦~´‘7Ü…‘iöH®«çëðOg…мBõâb5ùVàÙ9ÑY–nÀU¡Ó½°Dh|%–‡ö:;‰rõÍÆ–6%3A­9ó+-·àÀW­[”PÛ9GŒõ|béÓ¹ákôþM²Q–£Íu÷hïNŒHYvJÙÑž\}™ ªÉŒþÅ™OÁô1bùú|¶Ç£C+s…½AskÎÝ à±Ø¶°4ŽÐOWU[ÔÀÖŽˆ‹ü³‘¡;tøýÂIü‰S›!ö;®b}ÓŽô¹iPØ!k?"~þý\ó)Î<ž=7ËÆq.Ö ·´ÙçO¾–ä 8&ˆÖÂg˜òph |i¹c›JÇB䣩O¹±T.óy¯ °AVZÃ~.Ñ6hùËk_ö¨P'zÛ˜Ö¾ñžøkè^7s[ÅR¯V㾓ÞÖ¸öëÏíµ øta p/3­…þdƒwÌÝ£OÛQ½†*ì{&7·ôL‡qÅ:ŸÚÌ×?‡’¾R|îNOZ£ŒÓJ÷‚_\‰·Íž™¹\è.<÷m•ÛMW‚é§šé’å£çy§+M¬g}@}ý!”ÚaôF_ŒòP;¹QÝ4wj®ï×7æ|í³j¤£·#U“Œz£F^¢ w̺ʺë‹ÃOÆqíÆõM]ÒËN?Ížulà}av¶±[硺t±ý¥5_‡x™ø$Y±vòÛÉ/ÇK×´{é¦L«ðÄ\PÜ;í¶fíªˆ–¡ÒØÊFÐTõà1”×Ù‘›GWoÏ-%¾c鉱w?Cb餓CŽ`"Œ ‰›d¾Ž³6ÓÆeTfc\Æí_/»º=kŒXÛGûØÝCš:Nˆäþˆ&67“1y3ˆº…t¾%´Ìp]%æuÒÙüãÆ8>åùÜ ¯˜uc‚Ž=ýº‘ñòÈ® ܽÎz±èå= õuy.âØ!¨bb^`ktsÝ _…ZÔÈ6o­6½ižmÎUý'V7VŒ³€`¬ÇÄ7ŽürYÒ[,4¡uK»u}Ƥl‰¢÷ÒØ/íä–’Y½"_ÈkÛHVo[ŒÇsM0ôæ{Lm9Íâ¨1$ÖrHVÕòêÕ¡ }@‘ÒóNkº +°v-ÇÏ©jóqÝé©0–ÒY’é!Aþ— MÍEjÚ;ôö”d±…~ôÄGÏv¤…Æ_ò±=[»&›æÄˆål÷ž’-%[FËŽÿ*?õÃÔ˜¾¥#å «‚–Ûê†(65:%ñx$‘¡¸„ÛïÝ™®¡Bˆ‰È!î¢Ü³ L•ÛVwÀÆÌcÅsþÏ­;ÛŠòx(0*g÷¼áŒoË@ó[ëf¯=]9m’.kÕ ÜÍEPz~ðÔrçмÄwDò²ŽÉ~}oX8Ù#V¡òÁE´†ÿcÑ(‘ÀqÁ—Ÿ?g§²N By‚õ2Ñ9‡(dY:cÍúÆÌ»³_­ä3h.;Ï‘z“l_u@_-ÁÚ'°•ãpœ1vâÇ5'´D[“û:„¤ 7‘wIׇ³©QÉE}é f›%šuÜî¨7²M«bLVʈ‰2üŒQu釶$ÉLÀ£³?(à›[׊AtLœYI¥™¤rè O»:¦±KÏêÞÇ2ÌÔ²­báî¿Üðí¿å*–lc5ò-n;# J¸mé?Èr Ùcc&oÂ)Ýï ¤ã-3|ÛÂøä+‰•ð^Œ7 ™Ype Q®n³4ô,3•–G umíx&>‡û&éD¤kÿXW€PBN+F”;&ÜdX€É7+n] èGôŽÅíÏ ævc\îpQoÏúŽ™LS¥ø»½©é/’2ß2&Ÿ|bR‡%”ÍŽq²ŽÑdnB ôgœ>Dœ¥xª³‘xwvÕåi9»TB¹Ô̯¹‰‘ßsغª–¹Ú¦wØé Dç™h~H½b¯g«lP`ß@O¯­cÑ¢Ɔ[T³ |•7Ê Û彟Ѻ1nÀ+q÷Pxw0»Í† «ã{Â6‚ÖMøÇ{†éPòyûsñgÜÓœÊ÷^ÉÏ0ט2ê¨YÐÒýtÑɘ9°ó\!Íe…©ÊÆ<üížÛÔØþ)R¤ccٿ̱þY7’Ç2K~†NÎôæI§dlÁ“(–¹Ô'¾ƒþ‘Zh”A››i”²ïPKZy¤gëæ\<¯Í¹„¡Ë:cTÜî%J$RxCϰOu8޶ ŸÈ…QÆÐwºC»|Ðêè^gwí,îÄ! jUk@²÷‹XßÞ"Ú= ¿µ½çJH"p1ò!Þ-3ßuÅçèAµ4-ËOÝ>KÚ]«s§d=¸ùå dåÝæÈ-rîNÇ-üvºQùùMkÊé[@ÑÛ,¨òkŠ)ÞÅ:òï«Ê·¹ãé¢4z©üô ˆ[ø~•ì%OŘ|æHdÌP[?M'9/CÈ㑃Þg¬F{ÙèÒrz„^`»´f;[ÚPêâ c¥ý,û $²mÈ©8·Ò¹´q©0ØfˤÃO³µÌÐê…;=»KœÛZ¼3mÿ‰0ÕÉBB¡œ2{ÕÚ4GÛtT´Ñn±JÆö”±¢TìTqwµÈ+”ÎÁ*ƒPì’²ãbøbæ%qÍêèE¼M"zEp@ù糉ͱqãõ¤óå 9\K<“!.νæ,†œó°«]†Ã¹`ÖuÕÃøLñzaœÛB—o9™:ŧ§õù‚d1®%tŽ+Ÿ½NÌÁ,áR”Rä Ui!bsØE„Y¹ *öÒÞDªy*qŠÍþD×WÂ:¼ñ> †òfãcôÉÖ ÜÉ®«ÀD¾"!\(þȦtŸÚµxa+JìAuÖ:Àg9ø«Ã}̲wà‘Ùý8:ÉxkÖ¨úÏXæ=z1úC2¢D=}¯ r ‚œ£˜~׺\– ®õ÷*ûÇ‘abuŒ×-öÄ4•àuV²]Ýn6ئژ ¥Ð˜é‰Òlu³³!',ÙG6¸€@ÂQ¸<“äE’¯™Q­Ê×F["ª2£˜âRþÃÅ¢b¢ýÕÔMx>ÄyH¯9{o%…ˆC›ˆu¼@ëôZÖz}áâ±°,ã'&ÑûÉÑiO–)Ëåm ´lÃLßÊÒeK¾ ='œ¼lŸðÚ|ndÆÎ3 !ó‡êÛM„ª¹”<7•¢~íö÷ÂgI—6')gÃüRÛ<íWÀ^Ušêv[·”Ma§ôìd20p^/Çxç­i¶¥“ó™WÃÜm£è6ÿ)ñ.Ò€'‰õëÐÑ"£¬‡9ûžõ-ÏÍ‹ÜêóM|<Ÿx|Æ\t{XþåóÔRET€á/‡½mЦ"5+•”!ýù²¾–ÂáÝDzP[Î ™‚œI¿qªdwkæÕK°nû{LÝsÏaƒ{W¹O~}¾N@zè e­nÞb¿Ç4R~oϧ¡²Ä¡¨Ú%¨¯ý•©áà “µ<Û™ò}VÀÕ=”‹8¶q¬álôšÖÄ(A mêkEš§¤n¼×£l»~ŒÔƒ68=Ç…²š}k{xîdü¶i-ðô¾MðzÌ0Ý:IÎ%5¯Á ˜pÖÌÜ}Ë…£N }u:ÈççV % …C«È°ƒãø˜ ¹;tõHÄY=_*5e=q*ûÞžÉÖ+è.)ŸY’)(³“÷ñvÐÿ³oöôSͨ® bÕ…[’¥ª Æ·ß_kêÀB¤*ç—a?âó¸uXÛ0 =y¦ßÛEì_Ô Q$2~]((«(dAÐʯx×ûY{‘‹¹ý !5ÙÆ²Þ"ÈÀpÞ$­.±*”üó$Gî´´ðÒ’íjÑö+¤§0×úq¬“€îøÚõm× : i›³e¢yRÅ¥Þ9µËÄ(o”Ù†–:µ>›õi<…2g¸ß4ÓR\²¸T?”oÌ-9pÂõbm…S½ÃÓ¼g‰`šF ÃC>§Yâ~[#DÚ"únŠ#ß7ž¾¹É^œbÕ»Ô‡° Í—ò¹¶}§ .·@©þ~Fh<ï¾o<ïAo«{"Ç×&ˆ6‡écðkK•5~¥U²íÜQF$£Ÿ3gxÑç#¸çÄ—Ùx)tÕKß÷^:$·*ŒËÙd¤—!];ØK-,‘ˆ²ÿë dqWö’ +ð¹xåIJò5LR¨´ªÈ"F½ŨֶÉË[é«ðæ´8ÃæìÉAe@ !ªR"ÇêÊÔÆ:€nõ}¾£W 2xVÐtÂ? Ù¨KÉ‘ËØv¤|0_ë ÍôN©—äU$q5žÏV”†õìÁ÷¡þ$ti¦Õµ>;–3I'úþˆ®Óo%Z·|À¾åQìŠ;Z"?X;Ê/þO–sfùõWIŒºz±Jepezú˜*j(s¹yê/!¡xVõ`Êk=³T^‰vLü8×¾@MÓh×L¬êÏ´;ñèšàTølÄ—Ž¡µ¨ˆ ã¡e~,ã_ì •ú-̺Üô ~Ò{”N`â>öõ©ßõ;¢X8ô˜ÊêsI;©VMaåøÅÕD®‰néAcùa0ž!yø›_Çyk¶ãgÆ­TOgf¢ò‚CøØÅ\µ¯‘ð¾‡Lß1~Izt󽜵úÆÄÖV}}ö ¥9 q«‰o+µ®‘I<52ºc¡ãã.ê+TØ·a€D¶?P¢6ñ»Þ7­±׬ãYI´wÚfJž,\gçBmnêyBhÞO‰øk WyEpɶ_¯,Λzývô˜o0ɉ¡o³GœùÝ:3•‡ÊÜkH/mí(ÐS«±•/ üjF+˜œÎ³×”îÌ„g†šA1çNŠíÄÍÁ>(j汪’ÓÛ¨«Š_÷O”»™‹bE#RoÊÊ;¡m>;¸ËæØ”aèüÝ`JGîZxÆóéÊç Iš>iA0¥xfÇ5¬Ï5ßÏ"e¨è."ˆÆ»/œ•rXê=Aߘ6ï™åçJ*¢Œ]–F[7c«>Iì4yj;'ÁtòX… ªŠ§„‹>h}I¹ÇG¾Je1!ê%‡Žt…iÌÕl1;µî7<¹ë†œlW+ÕšËT´Á5’å Ó¤¼1y5Sž,Êø<ó$f5§ñ÷MÁŠ8)(–›¨2ÕVTÚÊŸc:\$JàÙD7säæþ™õ‘Í™*9Øvb—á«í—MrÜÆT"#¸á}lo@îüÝômB…zM ³>[âìINùòëð^K`5œç;E Ç„ÎJ˜Ðv¦£Jæ¡v´ze÷ÿ¦ö£g endstream endobj 16 0 obj << /Length1 1496 /Length2 7662 /Length3 0 /Length 8662 /Filter /FlateDecode >> stream xÚ¶P\Û.L‚.Áe°à0¸»»»ËƒÌàîî‚»%H€à܃\‚K  .ᑜsï=÷þÕ{µ«fï¯ûë^Ýk}½jè¨ÔµX%¬a–`YÔ•ƒ $”RÑäà‚@\l '€ŽNâîþÛ  Ó»ºA`PÁ¤\ÁîO6i ÷'ž Tôprp9x9øA '$ð/"ÌU(má ±ª°aP°€N æìã ±µsZæ_Ÿ@+F ‡€ËŸp „ØbeªX¸ÛžV´²pjÁ¬ `wŸÿJÁ lçîî,ÈÎîååÅfáäÆsµedzAÜ퀚`7°«'Øø»a ª…ø¯ÎØt@m;ˆÛ_v-˜»—…+ødp„X¡nOPk°+ðiq –‚2PÍ ý‹¬üø÷Þ9Ø8þîïè߉ Ð?ÁVV0'g ¨j ´8‚j²ÊlîÞî,@ ¨õo¢…£ì)ÞÂÓâhaùDøS¹PVBhñÔàßí¹Y¹BœÝÝØÜ Ž¿[dÿæi—e ÖR0''0ÔÝ ð»>iˆ+ØêiÛ}Øÿ:Y(Ì ê÷7°@­m~7aíáÌ®…¸x€¤ÿ¦<™ÿ±Ù‚Ý< ˆO€v‚½­ìا×öqÿqrü6?uàç sÚ<5€Ø€Ÿ^?7 O0ÐÝÕà÷OÇ#Ðbå´ÛB €ÿd2ƒmþÂO‡ï ñž´Çý~þýeò$/kÔÑç?ô?çË.k(¥©©ÆüWÇÿöIJ¼~¬\\@VNP€›ÈÇ- øï,ê¿«ý'Tj üUìÓ.ý«`ϿϟáïÙ`þw.UØ“hÁ@†ÿhÜIJzúáøVúŸÿ?ÿÎòÓøÿ$ëáèøÇÍðÇÿÿq[8A}þ&­ëþþWsV®®OãýG~Oÿ ÿ¹KÀ`o°`yf%n_Þq]+Aêź7)2K·§—ÉÈê·ìÚéq‹‰œÆø>7tÃõR"m¤{uG†áB|…òÁïÛ‡F䨶×íwþ÷fÉšÓ{퀥OCS¥ß$ÉQÉXµÅ¿ø?¸øë†8ÀxÖ­HWèâÁ©^Œwí5 çÝ0Xùyâöi-Z§ÞDE¶¿™å~ãðc›^W|Ø‹vÃ<¥åGóu¶Qm$RÞ[ë[2M8qaÆÊ…û’_,ád=Zñ¯¯‚™ l-&W4O¨_ w’ Îc "›ÝjÀ"©ê3“€CÆô~/!7f“±=ú1Óx²Ÿ3£î¶/ïd[÷¾#wèdÅ[F+)+õ¼' ˜Öö•¸ÍUèfζÅ["àƒ¾\NXm]‡iï$­Âv@Ýp¡N ;~ñóŽë/¶ûêG/anSq­!?bE|+L(«á׿&¡=¼yì+7|5{ƒ%â¹Ì*:‚!€ûñ7P¼9Î ;ËdÂD‘dƒh,±³Q•Px¶äù¾H!Qv‘ÍI Úeq!cms[ìF”7/½Ž‚‡=Åêçcš¦Ñ†ŸºãD†EìõJS&h]°ó àO"ØcºúâBÖ×LÁ«ptÉ&XüîËfpPõ=pF’Þ{ÙN“H…Ú©óAÒ^œé¸I7/ª©Ty"\5&•ÑêçuEž’xñ5ƒ[¢Œ6eéP“ëé¤É•ȯNhWêž¼½Pj¼»™„j¸VÀ‹Ýˆ Šb"ÓÒgí¸~ütSUfJµfË\(ˆ%ÒB¹&;¦ Ñ„¢ʼn: þ"ç¥E0³¤k¾¾§TÈKĘÛù‚A¡ãG¯ÌÉÈq8ß ©ßK·p圉û»ËG ’Ì}r7ÁwèÕÏÏç³ár6V‘>AÁœ’¡4ztŪ¬c5œtú&%Ï!N*«&ІöS›Þ¤®åd”>¶²Ò$ ¹€‡¾m¶Ø—ásª‚Æ^³PDÄ—+Ô’Ÿ¼ï“uB¿Ò$çYX‘¯:0öu C¸A¾:¤îÿ¼ÇT<¦— R“ŽÔÎz‡Ö°.÷iìçªö|ØiÆ®Ã5ßbÿkÑÛ_=ð¿šÔlr$ëàu¦¥ldøÙ0ô@~ëÛåæÞžD¤ 6áIÖ]ÅNDHâi;ÓØµ¯!á`vo+™mD]t«œ_.ûëHÇ®g½›cš8f\þÞ;£îíÔ•_ëJqøb+ŽŠ]T›ø_§f¸$»>º×µ>gÈU Þ¨n\°-ÌôÊNrø£±·œK©-TntPÂÑE1¿#¡Ð¥ôOƒã¬öa=Ô²]÷~l¢¹uÚ4ô+°dl|>^à‘†žɸ¬¥"sÍyò°*Y‘‡ç]-’­/<ß«[9ùêè))†ÄåÙ»•Æ6Ö"yáMb” b¬þviÅõeCË¥† ¹9oBµ—í'ð¡#ƒC;"›8C÷‹‡>È­dàϺ¦²N«1"%'á”!··×HñeÙãl—§w{Òo@åDkÜâú"ÁÓ\V?Ú×øëÇ÷P¨û®me Û­ðñ¼|;Y[ÓŒéáK˜’7át‰à4»·¹î / é¿z $hìâ F>*©4äZ,dz:{êžµz¼ŽqÓ6¸·S(Ù ¢pŠ0±^ë®AçÆÇÅ«þtQy‘'ò«äÃe¾ÇýIMØÏ9ó2äýõ¼Ý›y’7æ´x좾͖|Ëùôöû ÄH,1´=Ø÷ÝôN_ÛÊì8g)£¸^u ½ªÎ»:¡ÑØŸ+)Ì ÆJ&FõŒe£[ÇF¦­5¸Ÿ7½:r RR5ôæ|˜ÀŒÀ8NÈGŽ2| ù™²âq',PÊ^Éîx-0«-wæÕ¦¡ó¨ì¼ú¹¹êЫåZ „ªæ#Ž`‰Ìô@‰!Ï08öÁ)•ŒV`‘‰);Z²ä»ýÏ2,UgeI˜rÞj÷¨´éFŸ¼“ƒ]øºÓ»yKÿQ*» Uå$J_y‡ºG´"s­ž]2>ÜŒ¬âÅcf0êRšÚIyc#\·lÓœnŸ2/ÌxG=`BôŠ'%<Ö»´G‹~™Ó§àÿûâ˸è çž{‡=bð2­…ããÆ3ºÉSÅ:©¹þµ Ê=I1ZF]Õ·vJٯ˹”ÈOR«ã2ð ØÊª¨ ù@ŽöºSÑm3õ`…;ïÑ^U¾ þϺ™Þ_±ÖZS_E,„ »®©bÕÙÃ$¢›Ûš²(g€b#SÂ7š £5¾œÙ"² ÷[ƽÀei?½¸¦µ ·t¶8åðfƒÆ†ö)Õ\. ÂÒ–«WÍ#Ю…0§³Ir³øÞðšqªˆè¾T ¢õÿ´HÏÚ>±\y" —«YsçÇAý¡²wFdÞméfCh®Ëï"ÑøXõGkŠô+|â©4ú ãtĹ[~åÏ~“l¤Ÿù5KÁSãu.k±iÓ>[cÇkc[õÜÒªÔ–3Æ£&lBÔf&ôh1£.ÛnºO¯?ÇQÇü®¢Ç:N~®öUÆËœ¼s+³ê<•AÚËôøÃ>ª3oÖŒï2I‹³ÍhòE=2Vì¶*42qóŸîð¯(u¦$S|ŒÎÈÚ}æÅþ\8:ž÷£XͼâZZLIµ}’à8ǬO¡AÇä[nüŽÍÀ½¨€YòïÛp@$ñú ÜÝG‰Ù b"ÏÏ:QêB¸¡Ç«„7¿Ð|ØözŸcÏÙè–Ì“ µnr”àCB‹—é¶( ô’£qý@ÎëyZñlêDA¦Aµ$ÐWEðJùë–о^Õ< R‡Íw‡‘ú(ÁŽm—>by›åcË]*•÷øÄž¬;+¦ïÀofXI‘áCZ2ÄÄuÑßÉQçMH Ñö•#Uº#14i̼Á¤Ìð4G®k¿ûÙc3uÓzžm5.% ÐŽ ‰2[|eÄ.•|e«&FK•Ãkz߃àâÇòk-ß±ͧŽ@ú“gt?m{O± çLÜÞ‹CK!*œÂG½U,ÍÖ¬¡9츫0³Ëù…®mÎ4Ññ‡°ï+¸¼ y9»åÏqüÆCAíy&/ˆÓSuë&gz ¬W‰UåS[‚Q=12=E¦ªuðéŠp™ÉR{÷úŒ»Çøã¤_±îAu8äš ”ÑÎb§†+dWTÅ?ŽÐ[‰‘›Á7Í{bÜXyi MøÚOèG7Cl™ä(OÂ^´@ãÚ¢!mß3ªuÅ [B(>âBR±Û8ÛRŽß;··´87­VeÍ™ç$S,WA˜VÚÙj•Äý™R EP˜ý’}òÆua€×ôÈ’`| _[î#pC“ûlúÀ)‰´¾JF lV_V(Uì/`}ÏD/¹ºžˆË3LH÷ Yàs»wWê/a†θb”=fD¤¸KÏ_ŽÅö® O£Ëôr˜ ߯ÇzQ±›Z•j…PSÝŒt"Ñ(:0ŸÐ|Q–8,Й)¥Õ®ÒS×v±/¾‚y€ˆ¨(Ÿ?<-L"§¦Ãmo]ÝÑ`Í?"M¶g¬¾émyǵ-˜¡Þœ1¬ZÄ—qõœÓö]å`µf=O£K:IåÀEüi¸ØüÜâÜÖs?ØÌÅö/Á«NQ/Q—2#>yÖ`P9›‰å÷Zyê³ NÚÇ@Ö )ß|~½€ÇBH>fr¦ãŸu.*Y†}¬%æµ*ò‘Öþq]ç„äó+xW±¿È1É޼ȄœSß[»0Þ~åxß‹ðìÑPrI0Ê *Â0ñÌ+×.žcöÜâ­ÁÛ0uHU Ïašò+ZÿÞ®»ít‘óáΤ¢ù{OÃ×2jðHm1#¶[ψ¾bÙÄý©?͹]Ãî"ÐìиY&e°öªcÓ°Š|'ÝlAÿs»] #št®š[>$%ÖôaS5=„A†<®ÉZVXxH%yëà¿OÛcÔÆR¯<ÖÚj§ìq0$¶ìøsì†z+[êèÜÕû59©ÂÇ’T>,Ž ݨ{@Œú!6ÃbÓCæ-¾Û Õû3ôíž0 åŸãˆÖ‹Ò€ùbUÆêˆ«)ÞŸŸãë „!6qÁUàÐ3àò¾1Ïüu%¨›P¿)<ûÉBs>«¬¹Éþ¶, `ŸÌ¶Öt~»€æÜŸ“ä½±íýN+ÁÉ kÒþ¸|çeË<¶]S,u@Ô§¥ÑÄð¯ŒÃ²‰Ý\Ž5á&¡Ò‡Z·2ˆp¯á€$ œ1rÿE"± E|ìRÑó‚x/ÝÓ0Ck6ïý!QË—}h—Ök0C&¡2ß` ÓQnèÛuqVFà¶]uÜ~J}·nR˜Ñ¼ŽŽÐE¥:/ê·’XbÏýÍÑîTdÊ.gj%d¨_û"ÏR¡Øü´HŠzX4¸xçº@4/—tgBëòg%}9Áä÷l`_#e^¶n6×*4sÖ¡vâ ÅÖüÜÞíÝɤÝ.)²š†û+bM´ËÌÏЦF²¼ÒM2[$uncÍTšºÀmš¯ƒq(Ï¿©}?-‘¬è7$iKÌ6ýxÞc„f¾¡\I¾„îðņQhS”¥l$Ѻ Ë Í Ý±ä3Z YÌÒ_Å×ówAÇœâðãÚZ˜F¿îҜ։).Ví’-ﳺ´¾±åìú*À=²‹¤·›Z¸ú6—šc¦S<ð¾ãM&›ƒJlô˜õ¥1“5ˆ\i6= ;vlb×ÿLáˆ]WWYքͤBÛe#“ܾˆ{TÕŸ)ÃÛBÇôÔ¥ÖT=7òJÝ}žI ©>KwpÌ€– ã(Dÿ(ZúÉî}õþ hó5ÈßI*V3Úmü!;º0ÿA±»YX,8‰ø`mP~2(R…8E§‚ÅŠ´Í\0(ýb(f㜸(;ðÅæû¬Â!‰‘=oióF /›rçôNÙÊÏ­7•4 Š âôðŸúDN$)¨ÌïÏKºlCÔØaNo=c~bÙÇ4ÖC?¿æ¿™uZ9©n~nÆ>"•ó~Óg/NŒrH‹sº5XË@0¾$ò­TÞ~J7a¢ˆ¡þÇm±£l%sŸ®ƒàý+_vkjo¡AÞÇçì’—æBõÑ9-׿N[åž"¤ÎY»—ËdÐ uBª`’Wm…’´úÇq¯i*–xZá'Wq²Dül×kñ/9¬Ä"ir©bW%EêÎ m/›>,F Ž"ÊñCo¥]R·¿!Ý«”àUÎi)ZbOfטjçÌ6¡÷ÛÛüø^7 ½(ë¤ç8Q¦šÀ·ä8¦JTÖ³^ÎÆLäç͌zÝÊw‘° V÷Å2–63iè…(”wK85²7XÜqÎI§8›?‚ŘN{< ?3š«»Ÿñðë|_—üIYgÀ!ÐU0ë„åïïôn½þævÊÎú\|½òRàêÒ:‡¦-…ó2º0£B0>²L <ù[³_ÖNœD’–“^׌`ê¸WÏå½hš[²»³¢ÜíGmlEýæ6¬NrŘÀŒ[nÉè3—á æL‡âá¦ÐãÀü÷.T/NÝ]øCÕÛ{<ÎÐ.×|&ß§ Y²ŽfBÙ*Nî!ý•³±1"ßæ0˜óBç‹ üÏjø}Ô{'nϰhwÑìÚ†ÿzíQt#3çq¡0M±´°ò‚R)òà4òx2åZd;ÁXx_)„#å\yÜýó »Á§F\¸Çì/œ>å:Ü(k@~×AÁ?+Ó¨j ,C¾Xƒ±J2®û²và7µUò/e¥—bÑ6ÓÍëT)·áØ’¥z2Ÿ¯^F¢Š¦™*¡žohå+eá #ƒ‘«V®Â*Þn«.’÷© ˆêÅi8ybw”ÍêÝÒ„…ËA'rpÇì5NçÈì^Ž|Q‘5†OÓ˜cÔÂÊi8…§EûÞó1Ýíô1¶•:—m5ÌãÔ}f?»ÛÖ³ásˆ½s'ÓÉDð O*›oÆsiÉÖ`j*ßçñ«.»«‘긵{“é ·bq€…Þº‘Mqµ_.v,Œë•,²"Ýú?ÛÞG>'Fá|iƒÊ@†±¼·¬MFÛv¯uZÊôª(S>d™l"˜3/v×/6…#öªä:)íõÊ á·:PônNÚ—j÷v±Vœ˜D†ÎvÕ p o^Â]VÉv ÓΡ’ÕŠíê U‡UÒ0‰7ánçY•ŠîçqDªM7LxÅSÒè& Ncé¥V8V1‡¡¼ áÝ©Êz¬ ‚H‚~LeS%¼ ‡Ø‚JL¿%.×Ñ`õk}®×s‡/•îÉEhÆ` èÔÚ†„,f^®—¯´§,épôÎï¦SßÓ8H Rò ·«±™ñ_ôb\Ý£Š‘Ç-_yqÎÃEºì¿L‘¢ß[¿Ø—@‹qhÐÖÛøL;¤öåGç$§† ü4¦Ö;þMkÔ*ád‰ñ¼£t~o(" ‚ïÞEü0߀ʡhxw6·(#qûúè¬ôeU4Ý RÀׯq˜I-x9ÍÝ*¸±(Õ,gS¿Ì\À]xÊÒ軋-Íþ‚w{Ü'œÄ^²kÖ¸´tâ@|Z³ _êÇ$žXï`gà{ªx”; s~h¼YBzi@]%¿Þdýùczźƒ¤ %í¢_f¾±:à+NdÊ4Á˜ÿŽf¸ ÎöµˆfÐk›‡fÚÇæ@†cû¥¯]ªc€¡+©yË;§FØçÓP^¾p³qT MŸu1?‘Õúìyö¢y\†êZqçø«P!G“p[~µCáJβŒjO¢îµA–ë*"c?¬È+áž»°½ÝÚ.ò…vötær±á©”{_j$ £»eFCpQ«r¨ñJ*¥{¬GƒÑ«LýîhO 4^-ùòL uÁÀí¬0e)ÕÅËö5G"ãœèKì׸6!mH.wðm³Èš -³)RÔ.¦Üi:to¨ï¯Ç_ÊNúqÖÃáЫàô­PFx}EÄýU¨º /²¡pB;’oç,ß?¡YáaKÞø³:/š¡F'Šš™Sl-pë&Âüb¥ø«Ÿ‰È¬žëf뜟×)â£‰Š‚!&Fj`ƒGòMW–Õ>Cù†«¼)„/¢¥fÿ-‚&V …ñ¹çø‡¼ð@³ÎHqT“=³6‹)œ‚N¨vâÈ_ÖTúÄŒà›¹Ó 2Ðç„Â$vöüÛÎÉyT¼ÍΪ·Û‚†Ç£ñ0#Š‘/Ž.•³}©IVeEÃßð^•U í¨àSº¸iNyý(W$t Ø Ií¹°^Õp‹Æ›Z8 )vmKàÄSwƒr¸¼ï”ƺ¾é€K¼Ï“wt~•;MTsΰ]MdæÊ?j¤¥‹‹‘Žõ?. Ÿ¹°ö1p„e²{.°v1ïSÌeÖÐϧæâ¦1ˆ€Ld]\2\žÍ½Kº%Ð gá^»üÙ); ׌s¤~Àþu3b Dð°Ìeˆ"$¦9d.G"” àRJez£Se“ꊛ¹zðåÑ®µlòz:5²Yø®{çlüå¤<û‰;ÚT’MYÚ.]NÜ^pûj Ž®-*žR\÷ù² :(hGÜcáÃ5YÎâY·ý 7[5ÏYl••§/ëeEv¢ ®¢LùVJÌCoʺ3œh.Ê’S"éÌÚVõÑÆ³U…h·,L›ý‰îéÆý>¯á†ö/=;IMûi€WÒ(ØÚ±Ç®Ý$ÎV© ûD!JŒKE>×9³CòVäÞëží>62s$kZ9Suü±|;@x‡òfljt`z©:Ÿ3ÅuÎ[>½Ñºã¯ 9H?JdCì)í…Í¿b¬¿¬m]s?…¿Ø'—>B~¾N÷|/ A *±*áÝ V;Z·¥U™•?-'²S¼æ¬_‡'P·ýüƒï{'p2g`Væ¸ùu"‰0ïä׿'=¥œ2©6<)GxþQîÒU„IT=N`'çLCHb"øšZõ RLƒÒ³ÑÂÅ4š<¾üA4dr>'L]Àš12ÁNt~Œmƒ³,³Á,¯ 0}Âà Ϫ2SI'‘9}'“;z[Š ÂÍn)(’3xs&¾Ëš¤W¶Ñšª²v@„;(Š)¥-G’¾a»|­}Íí·±UžüþD ½%ÿäùr–X+‘Aº=W·u¥í9e½Ç3^²•{ÞÛ4Çì“Þ'ùð›U }o2Á#p>.aè ®;eƒX&º Ýg±ãþïéó¢¦-ÌgsHÓ_+?±Ïh§…nxÍi‘Ü—¢%ï_ͧµŸ6Ö¦ñ“+­µè M_r`y¥mg0U½ž2XMÑî%]@«‘7Á­ébâó ÕJïEÕb o § A›=£ÊMÎiD½ñ¯y Ï˶&©Ëgpéc ¿½€ñÀÐÂO†£t˜Ðv– Ï´"èPÝB#†ßëãô'zðÝ\Œ–sÂ5æú%Vl2Ÿ½§+³ÿ©4tòw÷¹ `ŠŒŽYç#f¨¿s“NðÅCPrÜt~Œa²ÿÁå:±æãÿ‚>ë%ÝÒVŽ4å‰âGü¬ŠHÇÙQY5„¼Ø!N -œ1C±O¹Tp¯-*#rªÑ:ÃΣØû“6eüCoï9Ǹï'ɽbµ}M‚R¨Ã7d*~hMî cÄ…¹ë­þ„ À endstream endobj 19 0 obj << /Producer (pdfTeX-1.40.18) /Creator (TeX) /CreationDate (D:20191201114157-06'00') /ModDate (D:20191201114157-06'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) kpathsea version 6.2.3) >> endobj 7 0 obj << /Type /ObjStm /N 13 /First 90 /Length 1077 /Filter /FlateDecode >> stream xÚ­VmoÛ6þî_Á†øøN $¼fKÚÌ Ú5A>(6cks,W’Ûd¿~w¤ËNŒ-؉:ïí¹;R”Œ3Á2Ï<V1Á™£ÀÇY&Ô¿†‰Œ#Ó1ɵc–Ii 3Lª,ëi&,cÒ*”¥¯Ëz‡‡=¸zZù4ô`P.š°hj¦Ð娣P—«jjôçaRäÇå#»áȰhÑyyÛCõ õÐÀŒà®à3äpc—órãÃCp÷ôp¿˜Â fOËYX@ÀŸ0‡X@ å"À–ô™‡û&QËPå–óU _áëªlÂän¥Ö“$XA uñõ<¯gÐ@3«B€æ{ +øßážà¯P•?¦ä „Œ¿¯ÎÿêŸJqröËõõ—X ùz)pƒa)óYöÿTÂì­Ä f}sÊvÀÜR2æ’òYµØ_A­ß‚zx=>FÔnj•ÐkƒšÿרÍÔFuQó.êð ‘Rˆ•JÞl!³¯#CË«»&N‰‰‰<Îëï'»l+t·Š×žaQÕ …W®œåë‰ÄÙçbÒÌj¼›½ÙõNCí¸6»®µÞãZð·ûÞ)ëŽo·ëÛù®oa7¾ÅKßt—¬é2¹BOèõ×bR³›¸×n·%96@9í%•Íõño—ƒ¦ë endstream endobj 20 0 obj << /Type /XRef /Index [0 21] /Size 21 /W [1 2 1] /Root 18 0 R /Info 19 0 R /ID [<95A42477EB5B4F699C7A64F33CB6FDE3> <95A42477EB5B4F699C7A64F33CB6FDE3>] /Length 71 /Filter /FlateDecode >> stream xÚc``øÏÄÀÎÄ Œ ü @š ˆ9˜ƒq~=ˆÏ ÄL@Ì Ä,Œl] 1VÆÐ š±FD³1ã¼Æ%Š öWþ endstream endobj startxref 42017 %%EOF survival/inst/doc/tiedtimes.pdf0000644000176200001440000030070413570775571016356 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 3 0 obj << /Length 1828 /Filter /FlateDecode >> stream xÚµXIoÛF¾çW¹„DM†C·¢è!m´@´zHrK´ÍÖURrbôÏ÷m³P–ìmÒ¬ïÍ[¿7ÃWËg/ßåBÕi®J½X^-T[§U¹¨T™m¾X®o£ßb øÛÂoƒw™*â¤È²¨ÇfF©È¸M´¸ì¡ßÙôûMÿSü~ùãË7ª](•¶e™ãÁU–M½Hò&mZÅ/ãèG⯢{à“—ÑOØTÑò&–5<°Ã“Èw‘ë´Ì+`T¤E]2£_`uµgú<ƒªX/”N ]‘ ‰jtZ·å"ÑyÚ4-«8Q Ù [T§.#ÔZÌ#’-AŒ›E›¶Èl3F¥MÖˆV$yœÀ¡u ïq¸âvS7÷ÑŠÓ„ ÊÄÊl¹s'yÉì„̆&>Èò‡>N<6|è„Ó›üÝzIÐ1Íþw<«¢4Nš"‹¾38±:È~³÷DÌÛ ¯PÜsËb ÇÑ;×rn7Ó¦á`ÓôäN Ý‹ã]\V 0¡û4Ÿ1rB™À¥ŽþìØÅn_¨;Ž­A‰ÕØÈà2f Áæu '1cÓRü|ˆó†ý-‹Ý–|k퉒¨9µ†ÉðÌýAèÞë2üŽ´;ºÛ нÛ÷(}Êj$øh“ôu( Žya7Ø@aN°šØÉ#có&;·¼vå” Ùî\[ó žÜ ÎÈjJ%ÑÚ !t1E©%¾7‚µœ7¼÷púè&Ü5äcŒN}3æØpy—•˜ÝÏ1Ãáׯ†_¿—ðË‚¾’ñs&S§ +2Mr‚qrýG™ð×2µLE(1ÿŠ\ü~šˆBi«™´Ç`UÖêçò#3žs~;ÏÓJnM~Á;õÓ–ïEð»ÁoxAŽë‚J•ˆÆs÷=y®Ý~é0Ò)ó¸HGœ‹´ÕMmçèNˆR’ÅHœÊwkßm¨{‚’íì‚æ\÷AJtÚ69«V‰Ø¯QÄf4ÂJf]¸·õ×B4-cΛ‰û†ôCO¥R:¡‡U( dkI+¢r‰å5o\k:D®¬%ç</ ÍÈ+è[ñÐ=57t¯A¥þvÝLÏ¥ˆ¤¹%Ñ®Ì]#¸L´ZÏÝÑ¡ýšH` <&•”ž0ZŒ‹`¼Û1ä“àS¨Ì£3UîŽq5Ѻˆ~d¦÷ ¿w®H홳´Ÿüx`*³•öºãµieüà> stream xÚÅÛŽÛÆõ}¿B T‹ziïLëNéC€Øûç+Q—X"e’òzÛ¢ßÞsŠTºA‹øA˹ž9÷9çÌ~sóòM±(ƒ2‹²ÅýfQæAž‹,̓(N÷ëÅO˪¿ýùþï/ß$¥·ÐD°°\„¼¤¿5Ë3ü:ø}’o ¿-ïôOH SÝXñÊ»¸(– 4ÛÛù²zš§Vƒ€ZóÄÃm”/Ÿ¸S;ÝŸ/O«}€?Üpd¨ˆÚ~ÍÊd7 l¹n§ JF5ð"Ø#àž¯0bŠÃþi=\y€ßšUÃý–h ²gq—ÆÉ“Å1A™ Ó?ݦٲB(g:3 ¥& Êäbå÷6ʲeOø$Xé~˜Ê¡ÄÄN¹Ñ6<ÐIBî^{¦ûÜ4 ¹æ±]ÕóqðÉ h-Tëµò¬ÇmõšÇ7mÇ ¡›Ú«9õFNÄ^5,hl“J©>“7’σJ•Nƒ?†Ù¢´c'Dy`öÎ1M÷k”¦I@Q7LÊçqi²üe¢€0ÝÖ5wÞ¶ê([»Eø+Ø´gAL 0žŠè&tIæ‡@ýˆûPŒ8ŤaB}=Övtìî&øÒðÀs@ºåŸL”Êyȸpže5èâ]’ÄË{O]â8ƒƒ­jžÐ_¡ÖíH¦Ûš‡|Z¡Û©ôΡŠ@E¬2ØèÛ£[ŽøWBý¾DCg¬#c¬ßÜÉ’°ýã±»ib©¤ŒÊ-N3>d{/GRõµëX6¼Áª/ÎÛɈvÊO·d74¸Wa5È+åðŠì¦Õ’„?º¯™4¯˜9Ì834DÌBù1u·‡ÌUãa±…wƒÓÕC9cB¡ã¹9äDÚífV;F`oAGf®‘hx[sw4¡uG_Áý¯`ÙQ,¦ˆa*þ 4ï¸9žE3Ëø·Š®–Íû0 … ÜòŠÔÁ,¿†rç^°vFi•cN>ÈÎNÚÉAkâñŠ?ª 'wde•ß,¿õ°õ°úJ°)á— F/+méÅÛ !Lg*þvtÆ+Ôb3ä›D##*Œ’ðñ-Ÿ‹/ÿæYçõ˜Û&Íÿ\³ ü^’ísÿ¸Ê ¢…AQ˜±›‘¿î7–V+µ‘ÄîFðR± ag!øºº…ÞqrÔAV±Ót*üÊ“À¯)Ï瑊_ÊŽv²š1«†l–ðКÓËJЭ'Fÿ(ö¨„és‡¼˜*J#|T× .på ýws!¨‚ί»Ë[ù¼Þebì(`:Çúg²o=eY–éáÙúwåS6âÓFÐTŠžøÒûRêsÏñÇ>;®«†’ü$Ѐ\&ù¥×©¡yÁþòç½(Õ]Èן=i~w‘Ëð¼ÞXv\óÂî®ø7>»=—œ}u…ã¿ÒèÿH©S˜Tæ÷ s\e¸ƒ°µˆÆ¡ßkˆ³’p¼àz Ü0âÌ ›+Á*?….åI¼Šë ”þ®(1<ÛŠ­Õ”Hcfbí6RÂúK+‹)Ïo9±§8š¨¢ )lï4؆#eU}µ•³6v®$Æ·©NÃ{qy«¶á¬‡a"uœcîZšqVF31H 3S,_7¼°þLIñI¨ª½å’bвl?q»mÜBÒv 4G”àÐ×.Ÿ ¤ äìn¯é"¬ÙÛ¤ªî¼Š §”´£4.ŠÙ²„hЋ)gÖÇõT ¬]äƒ÷ü=Hýƒ:,ÿÆëÈšk!CUº¥ Œ&NZLZíUA[q¶uèh)l {šEQ@‚oKnN’Ê šùÓø´fWy+€™ #nó_h¯$ÁƒI.B—ʘbMÆÓ0Y­æY&Å´ø°“ª^Tj'²&«c­þm)‡. ]™Ûð½).AE@ÿPU€F€¹ â.ôóþ«MYEf”S¶Ê$Go¤ÿyÊ⸠RSŽÊ¢ÛóÑ7ÁtzhšenÅ;ç¹¹U[‘×0º/'¸ä/$–ˆé/Ž¿Œd ¼±Æ)R‹³40e6•ZËɼ_tåëþJGàÜ«Áá¶!I…DEÆŸ‹Óí¹\JdÝð»Â ¯­¬ÂnyâDî·õ4I†Í•–?÷h}q^€Tt¨îí!ÀÍZÊ0@ˆQn»sˆÉä[¬ÿº*T5¸Ÿ 4Â**qt:åèYú|}f£äãÙÆPeéKYÐþp+E\ñ«mÁyðª4t)'aÆ´‹{}skL—*ø‘GrÔ³ØXONß¿½}ýCÀÍ{­—âéZÇܵâÞÙ{vÎ…÷~ á•€JsQ mT(¥ HÈx&AÜqÄ\Ÿ„ì ‘©^² `ÆSrPWF `@AøW;t{)âÙ{ÿ➦:h$¸w þÉ+9KÅÇìÍmÂøA£í¸Ú¸ X°qxÛNUçŒWuôj¬éWZÚueH¬¸“ט¹ÿøY¤G '¡AÌ“cÙ›‘!¶G†‰zc›Äænr¬Näºôy¡êD ­áæQ®?D¤G¥ïpÛMöxr®S¯Ñ“ NM+Œ0ðÇž´,Œ¢rá:ä%þU¿ºÓ„ã'œ<^°”MŒe~ò´È•á¹o£¢°T­þF*ôºkçvU™aª&Í8(¸ŽÑÛ7M²Õ°œ>ňW‚)g…6¤©Ê<00ŠêOÜ¡è©Öcœ+»à9 Êe  ©©ˆˆÜp%}4þˆ*TÉ¢ð¥AâÌ3”rÕr&N­×•¦ì­xㆤ?°ñµŸ†p Éq6€öE#,V`Ê–N¡ÄÁ-ì.s¦w{œeÈø¡›†kã4l.ž(ŠÔDZ¾0ÀCˆ’Ž™MØkqýÑ¥ôö’¶G®ÊëC =ní%À!ŽyÂ÷ªü°ã½TšêÄ‘S7hÓÛo½R‹ZËN}A[o¦ëQÃëžu¬â(nCd†9£Â1BlZ E}ŸÊ;2Þ)§ƒ¥B¸¨VÓ(PAÑ[yó)tGž-w¼”®g´Ö×Þ”ivþÅ ­ÊWoèŸõz‘-uE¨A¯ß]Ï)z¤iÊ¡‘$¾,ñ 5ÏküíïùCα?±_Z)sÆžòƒ&ŠG­%ŒÝ÷>­î¹šþ[:ˆRÝ ÈQV>?ÙOÞ¢VíƒÍ"õ–?+µxàÍ4㹬×I#vK›ä…*_€EçqAyUÄQºˆƒÌÏgJe`ñÞ[DŠÀñk¾î>²Õä4wÆ{ŽÕ(uªö:˜¬mÞ —ïJÙ³CËßm-ÄY7ˆ[ðÁ[®µ`½7qò(Ÿ89y ÅÁ— üÿQP„Ùôåì¼<;>Q p}€ß=ÍïÖÖó){|ô#6úçŽnT±@Ež‡éé<¦ÿäظ¾º5QŠ×.‘¸t”Ìöz¸P1zЧŠË­‡ 4¬½ùîþæã ¦jáÂè?2HÅVÇ›Ÿ~k˜ b¸GiåqaàZ‰ŠڇŻ›o¾ÁÿŠÌ3Éœ3Ù2Ù4`QæéH;£p‘ÃÂÐ.‰åÿQX+w Þć,Þ„ª$3uí01H È–¿âV%s”"@ÿ.Œ)ø#þ} À¬É ÕóC“ÉöfÍGÜ£ÀèN<ø(PB&3;úß Øs:T¢^r8´^A½‚c ƒ âÈêc05fS†Á§¬îç2gŽE*Êÿ¯Å endstream endobj 25 0 obj << /Length1 1490 /Length2 7452 /Length3 0 /Length 8443 /Filter /FlateDecode >> stream xÚtTU[×6GRZ9tw‡tHwHNÀ!ÎCƒt(’Š ¡ÒÝÝ¥tƒ´€„”HJ ȇÞ{ß{ïûÿc|ߨc콟9Ÿ9לk=s±0èðÈC¶P$ÂG€—_¨¨¥`* äçâåçÄea1„»;Aÿ²ã²CQnp$Bò Eä~kS¹ßµ º‡P@( *) &ÉÏäç—ø‹ˆDI•@žpP‹¨ŽD@ÝpY‘.>(¸½ûí:ýÙÁ@ 1îßá@yg( !€Z w{¨óíŠ`Ð †CÝ}þ•‚]ÚÞÝÝE’ÏËË‹äìÆ‹DÙÉpp½àîö@}¨å …µ Ô9Cÿl—hhwûÃa€„¹{PPà­Á †"ÜnC<( x»:Ð@M¨ãEüAÖüƒÀ üss€¼ÿI÷gô¯DpÄï`Œtv!|à; îê¨hòº{»sAÈ/"ÈÉ yòÁ@¶·„ߥƒ€*òz@Ðm‡öçFÁ]ÜÝxÝàN¿zäû•æv›•E¤³3áî†û«>%8 ¾Ýw¾?×ôBøý…`pö« ˆ‡ ŸîêUSú“skÂýÛfuŠðóó‹‰J¡®@¨7Øžï׆>.ÐßN_æÛüý\.@ØmP8 zûÁõsyBî(¨¿ß?ÿF¸@ì´…ÚÁ¸g¿5CaàÛóGÁ½æü·òòÿzþógy«0áäó7ý÷óéiêë˜qýÙòœ Ho ˆGPD( $áúÿ;.þgüǪ!`H ÄåÞîÓ_%{þ©ö?„øï\ÚÈ[åBì Ý‚_„|ûø?ËýwÈÿO忲ü¯BÿïŠT<œœ~ûÙÿ ü?~3ÜÉçOÆ­r=Üo§@ y; ˆÿ¦š@ÿ]¤ä¿}jî ÛYGØ9ýgán*po(Dî¶ÿC.Ø~ šÕEºÁ]-@~þÿòÝNØñöúp»Õäoôvxþ½¤2Œ„üš2AQ …ùàòßJIPDè'p;ލ÷oùxH÷Ûàmsþ@…ûëDÅ|ú¿L¿Ñ¯ ø ÿ€@>èßðÁ`ÿ€·dÄ?à­ù(,q‹ÿ ò¡þÅ€|¿á¿ú{ P·Sý[q·Íþ…_!P¨7Œ;7K…9T…µœWÈß÷âYyø‘eÝ$™ƒÇoÕêñƒ;‘£üMÈgÔ©|bÿ{â…5eö¹yúk¿Æì§M zÍ—O®¬_è¯7ãÎŽQôŒæìÈWwÓÝ¥å1”ÛxríúÄ8ؽЮΒáê!N¨›EzîÕ¥ê]Ý]ôi(bz]o£\Tïªh‚'Æ(Ú"8’%Óöí#–;'É7ÑäÉéG’ôÑzõ\¸þßb„rýÌ–c/¦|K Ý:¨™©Í¨èÐOH†ÆYý¶’Ô)gü òâÔ#¢ò`tVÓõ2­D WáJ†ö9é¢ÁÑ•Aªmë`Å"¢µñˆ8°Þ*‹Bÿ¶“AzIFµXþĵ€u6®›^Ûæ5…oTéäT¨l£û®®àÓ”/„°Ëbµm=ÝJš¥Îêé–˜`«yy(÷bVÐ6ÓݼÓäM°ÛvGìüÐtTóÎüØðñ®Œám?h@Àž!] Ëf÷I_OÉ£ à~aÌø ‡¡ÊÏêí¾„7´ßí€Ceç­¤7.äðï,ϸ®{„ÍBŠÌ¡ã±©’êŒAËçL‚Yæ¯vºß*Ø’È•hBaUbå PNRdMÃS»ãü3]:É‘šñ‰gxÛrÈË'ãjEc{ᬼži•B™””öÞ ™$dwDò}oWç¥)›¤“N6¤ÖêÿÆX+†¢b§.Ñé%—„¿Ê”&SoæÐyjŸÕ_Ë•lôÓ«üæp ÷ª†9þˇ±U‹m^Å\vã ‹}í ÚŒÖ÷ B÷1'åeœ¬‰Ý: µ"tëÏŠðÚb}`>+Óí¶Ë÷†?ØHxйÄöœê®öÅWh{ ¦94zØÆN…Lô)Ìe6uêNFYåûSÕ7ÐcvtLâ~á)ñ5âþô@¨d3àtíQ®e¨ïºžä©~ìfzÂé•aÞWãä`ï¦"ŠlOª×E4ì©!$ÒfÒÏEgSE4>M¦V>rù^ÝSmÍäpt¢—$<—œ)'ëg( 3ÅÔŒ§‚¯1§×3LnÓô- jßHtaš™¥Ñ9?S"ÞVÆ÷‡¨Y8Gh£E R^}]ßÅ?Í æ· ¾†iâ§¡0f§1[‚uºnpæ‡wcÓJ;ˆèR€0ö¶ù úà×°ÊP‚+¾\°ÉëP¥äÞkêq@èÀýv ¢‚°¦Ò,Œ®¹‰öÔ+f—Ò†1Fº…ïÕÑúÀ‡bfGþ…oâ-¹v|¡áTÆØæ)wi°œkyÚ8?¯u, ç‘1Ͻ2V2ã)Oê,K™4™×Hr©-ÇßËj¨Ë 0ô8Ë=˜ÖÙ© QÂpLJcÎ ÝÄŒÞ^˜hïÆæ~ØÄ5Xd¬B ÞꪤîwìÆ³ÿf¹‹åÔL¾)À‰ÿ J]¯ ©?Õîè%˜l—<ÈÌ7OaN‡HŽÁÁäÓ)׊—Z‚_l†DPešqß%³©¾TçôýX.mXþ Î ™Ñ²¹[°IÊ“°–ÑýZSxZ*ƒ9»‘LšX—Œ½Ž#œÐB'î ½c„Ã¥Nµ‹yAíx_Z†ûQ@™UqÀH¦<àÉR†e’j:™u×èäS¬×‚ç-ñÎ©ð‹‘·h¨ÊÄÂoÇÝ2fÅ{CK²£±Ã⫺fç­x,&g¨’îñxjÁ3Ѧû/^]Häy>´Wî°6eïñ‰Ð>OÆf— Éߤ„ˆLKg-™ a6‹2Äà›*¦aU(?P?-n«'¶˜´4Í$£jJzPS–v5çÄÙ09t_ò1m- ­K¿ØibƒfÓeMï¬Ù»^Å€ê^§“‹“’ç$ÍœaI¾à@;n²^ÜÖÿ˜LB½®l !c?`[¢^ŒÓôŽjYmÝ*ƒý€+×ÊFñ!Á„zMb ü&ÖÝ Ï3>ÔØÔü›P3:]bá Ø4—Ž‹©õ3÷ H’yœ¾³´}†â’Wr+ýᥰ®<é+/{ÛöÀGBpeÿ°Zs¢\ço¾g‰úäçÌt¯ÐÍ•3„ýHû\|õùL.¶ yî6€¬Õ07jœíŠ °#¶–† Ms×´ú|Þ·ÓŠü´FYgtßZY‹Ö?qËßõâaä®f^Ê•™hÌI~ÈT•Óà4¹Ó¢YîŽaÝÏ£ÞúªÏ–n$ûiöw3HÜA¡ýÓ¤øª¨¸.oíݬ%—µ87ô¼·ªšAs:¹ö2ßÓ?"cŽ?îd¼¥é@›W—:Pç²pÆ¡§U§¾¥xïHM;í,Áˆ¥´Qšè4o=nÙ‹zùÉ¥.•yú§ é¢)æ~Æ™à|þÄM~æõ7˜F×q©CpiL~‚â"§{-€)&Ðúg„%Ý»Z øù…ú0üÍ€ë`²³:P£kÍxæÃip ô?„«‹zê”+ÌÎUžÒľfz÷­4§6ùµ¿ê»¦ž2|âë÷ÐÔiyh8°we½¨~÷Z1DMVZä0Ïß×-¿f×ßCÓ&Ik6¨¨QìFÛG<ô½³Íæ£/‹â>:À(¿££øœ'ž6Þó*EÐÒ eÎm$j0'R“eoÝMir V¥&M,º}x«DÙ¼üQÿ&2!÷½!A]и»XðÛ‹P–à+% ­š{fôbZ¦Þ¢`ǪùVW""O™Öæ<ÉÍÃÖpoRh|1ȵ¢­ @4¦”jј^r‹³f‹z Ì?_/&âY¹ó™ÏúŒ¶¶wQåã|/nÐÓðã˜{8Œn¢Ô‘iFÒ@¿Î›¥¹Ì%ÒÀÃx Drº/5olãž”œ2¹`2жkÄjÒëš~öµ%ÌK7‹Oœùßïr°PjÎjÀt‰Ë‚W—ìÚ“5Fñå<5ЛVT`zô‘¾~q£O´¡£…LÛrÕ£ÝøKã!<¯8.Ú/=*q;<¸Èœj '_„k·| ÁšnO(Î Õ±Ì%1K3ÑÁÔg%s'n"cš-ƒ'­#h)hAå¼ÍKKÇ0¾\ÉM=yPï~SÍÎP?ì»—Á­†KmõÇ‚eÆÔ/Ê´Ý>OÄ^¶±(„ÎÛG}b¦á^ù.“¾ñ”æ;r[ãõ<㣷£å„“DÀ†bÁâ£a16õJöºýfºÞ´ñ£R°€®ÚbüʯS†Þ$À¡_…Å!½@·W`¯Ù×V°¿¬Ò$hI‹ËY£>¬±§ÆÍ¸À'ÝU.uyš$–Å'ÖYúpɳ©Ïô|c‘D«®PG+‡ØÜˆÊóo¿·ï ÓW‘¨H7œÆ÷‹gÏbM>`þ(9xlßNsvs§uãб‰]Ž?{ÿK¼ÊJã°›ùgª«}žõ!X²6’Ë;’êPýž¡º~¢óÀU‰´b´èŒÁEéÇg戾×u¥Ç½KwbwpÈ>.·­L‡ŠeþÑÎÄÅ{H2åH‡Gw[‚…e&ÅE§â•‘†ÔàëzÝW®•È?eÖn›—κ.¸yÆè`ŠÙlê†~­…¢™ýª\^óíí”æãÃ7NWÀH>òÅèÀ|nY!’Ž5o±¤CQ¦ûí7 †ïÏ>[cê#½¼ÆëOì÷È¥Œ²ÍjàKø¬Ú^½À|¤{fQhac»²6Å|ŠzØÆ1,Ï—Gs&+†$U0"þº3'VÆ›!R¸F¥P·¦¯L©Î•1R3®±Òyß°ÛÈß)qMvL|˜ñ-šh&ÐSÞ²øÈ|¿,õ‹ ½ÉÀSn"¾]çµ9áÃt I½¹ó~p?‚˜Åmàs@š:ô"òü£%{ìþ<®äúH°)GvœtaÁ/Áh*_“Ö\>Ô> kLèòWã\ª¡TP•ñ‘MÕ±î`¶¿&¹’\M¬´UÞÌ0¶ ¨›0>¸°åe|ªTá‡ØÆƒhš¾Qß ¥/Á„U­†J_²ûm~–\ÀÅI©ý¹dÉU¯Ÿµ¥IOÉ’W¦_ Ù÷Ÿ¹q‘Œd>ÿÑc]ë–ö®Ç Šòí7ȽÀ¨<Býld©9R¢¾²#ÎMÏ]ŠbÍÒòŸýTÐ'”®äØgoc‘Žò€È|>”:ƒ7Êß·nÛ‹$ÇEªX§€O´Ó&£Îé6Y?DM ,´?é9ÆXu&S*otøÐÈ´ˆS|JûÉ&7¾›¹¶îÎÓÃղƒ™óÒ Ó8½C‹º-/‹6“8Žéá逻°YZ’1Ú¤¥ózd°ñG´ó:— ÁAe'-vhðŸ¸G,™øÙÏ÷ï÷óEާ~rج6ðŸø¹«þÔoÜ-âùTÝ—ç+Ó”w –ª|Ó4ý\å-Ðô'ì™9¢$}µ Ô5}h¬Þu½ê}IW ˆï¡}À1a80¦a†.OþC—3.K]—"€]&@b•õCî’gçªÕ #N(fGëSS‘Íûíѵ'B@ÚijU…,1˜«ÓžX vž²›A¢ÕbÁN_Pì0üü^«}|Ý鵪#LWÐJ6×f»x³žÓpÏT9ò9Ú¨^?9dÝ÷ûî¥gÎeö\ýe–k.WãŠÞþš3‚û³ƒB¦†ïŒW ¯JWn„QZó˜°\ü}ê¹v8eAöÍ[ âç’÷-»rŠº)µeƒÔÉŸïo²ÍÈóž:vøIëö½-»ÎÌg›µÆÖ¯ ŽXA´0`p†®¥fJ‘‰?§_Ð&ò°6|û5U Ÿžuš£mÅšï¡öää"Œëfš¿°–O¡4À>(-~/Zfäu¢Ã¨>8]°V¼G ˜†^ \”• „Ûó¤Í¿ö—øcЉ±Ì6¥l9ò ªÕ9F²•æ{¡ÛJ)$’œ>é•z¼ú¯¬Ý©CÅo¶ˆ›üôÍF®.)·L¨Óm¶™««\… E$™bTÅ7¡(õü“##ê­*sÁÞB¿ó†¡õ ¿cëjÚç·âvzÛbÞÁ~’¼ \²ÿ†µFƒ—ß}›£$7žvp25ù],+Öi‘ªåµn*ýïI?AûyfÃÁ’• Só€ä“Á±Ñ¥ÌáG¹“Ž¨Ãµ04åØ\çãÉÃTÏÒÈr[î÷æ©ÞE!Á+}ÄÃåê“—Q´š”õl?è…%mråÅãL¹¬7’Ûô™T¿Èw¹[>WZ‚´Õ0ÜæZå öøŒùÉ÷Øö eEHrÅýbÔãñݼ*íçéu,ßÇ©ípÐŽúhŒLY퇟‰ÆÏê´m~ÿ±q{BbÂ&Ú¬._p©z¢Î·Ç HËP³êŸA°„¡¥Q'_o&yšAÝÖIðâÒŸl¨LE/sI2Ê š"¡^×Þ›bdcÞ³ñ:Õ(^ /¦šß¯µ´:{u 6ô¡¥$!Ôƒ(œ3U_ºóóÑjã¾$/úNÀHÊ9kéeÄ\­áÝWhš÷µ%ªUrFZA™|?f"šÙkpopÛÑ>Þ $ŠìFû6èV³­,xÒ ƒÞÉ«> m¦C=0¥øâ‚9ÉÜ:/ä}iÓO¯ˆH#óN-ÈæîŽ^[ÊÏ%XM$öX­—äâ"Ó !«å–V“Tg½è‹“«U+­÷>—ªÆMÚ|Q†*–K.Ë/¸S×.4L”¸ž¸ @LTE˪|°m‹É°M…15Ts«˜ºöÄÆ7…¦xPÄÄ/„#òIêßçHîc%®Ð“Kñâ”4¦ƒ ȳ¼1©l/[ïï-;¡ WaïMøœß´÷Ü­¼Ü"à¾OA¦Héi‰+¥5uÀe%z6;zfÿ®»¡Æ PmYÓ°!2䇠O=)vÑd9o5Æ3KÛ2O”TëŠHäqåj“o\üý¦m/oj‰[Æv„Ò]Ù¹tèñ Ž£ÃRfŽ9vÒ,É.#Ý’¢D’1Dš¶NÁ©ZVæNä AÃ/Ã?€¾P´aÐcewùóm|2¥Äî÷ºpZãcTˆ,óÇÄcUgà龑xÔme,ï\´Zg)Û·,oäá±Ôï#›Þ¯‹'0‘p±û`鬙Áz]R³‹VêçÛÿ Ž"q ï®s/q¿É`Kªš\xÐ ÐõÉŽvÈ%r"þÝùãDØ)ÁLøã:Ûæï¯íBö4º#éç[—uf=½Ü 'YM”ûSÈ1­ÑAS}«y¦ÕCv6óÖ9ì²o֙ƤÃ\ö§ ÞãUX“Ço?aáa>>ò‹±¸áGJI?ØvˆÖÎ ·Ýñn™EÛ;²õ+_¦È§ï akT~ÙŸHmskc§S"i°i}ùvGBNgõÍ—D«1ù¶p)ÚfXGóýàö³¬ØÜPÔ™‡Íf­'cÐbÎRB¥;™ù©Ì½duKRr¬—šŸßí½ö¦Ù%õÝxwP¾hd\¦’°=}*ŸuÓá|hkݵôlê5Œ%8ã,È.xYìu i]üWÂб¤TÛØ4Æ€zeÛ¶[õj†”îú9§iÂ' ;–GRIUî…:Ã'ù‘*ŸÝo’‚Ð KÓµà¥ö>öÒqç®yÄ××– 3w6 óÅÙäîñ!¤5g;¿/–8W§ =,X†$©Ê&òÞO2Ž÷š|æâ¥o/N·S(þí-¸æÊ]I›¢‘TßA=û*›ýâ˜ØçM0=Ï”5¨“¦K)wwÈ#ä­}Ž¿²Ywä¢â{A0†jS;ëŠùËùŒëB-Ú4ÍùdsQYNLe[|ÎqSOùÚÝîseVÓÜÐUÎ;q2òuR€ºe»–jÒ«Âî7מû€>E7²¦žõî,<¼fÈ !å–šoHgŸO8³>ûb“(()Q«Â狚Ì~\¹\Þè‘—–¾m1®G„×[\&†DgV™{táÜõr’>Åd<ÒÜX>+-à[ h|“ E’§ôí¡ÁR•¬gïaÁaA;{¯©;ŸíM'Šì^•žª´åñ8`΋B}¡dú²‚šÐ_üXùü…îËæ¯ÏäÂtr ©¹])ÒµŠKFú6Ôm‘¬5¡}ò¥ñ¯Ü/×0ÚõÒ$ÞóOeíððv–[cóù8üÈe± ý\wùz:6\ö‡¦9¹wßÈ)´'¡Eßîm¿ÙB·™³ÙyxN¡¬6HD 2ù ½Ì)-ÿQ9©ATY±¨,‰Ÿ…Šét-GDóБœhœ ¤¨¸Âž‡ùl#æ¥zR²5¤•ó9±$GF]^ÖÔ®\öªgãègÛ†è;Þº^Y¢»©5¾R8Ýr:ëãoGn1žmƒLUiX•C[X¾ÙБu"‚=·a¡—ªü™§@ Ðì•&A<  ¨ "/ÎsK&Ú®¾Y’]Ú*û@òœáÈ®£ƒ¨U6|t|[ï±sÿ…(%NBþ M•ýÏ* ÜȦY³H¦_mt Á_ú =úØ2ÎX΋ƛèÕ«_Ò`ËE#}úTî\ 03`Î [LQë˜ÎÖ—Zÿ{¿Ä²ÕRϸk'EiЯÈþmèu™Õ0ãVÄö$& ¦‰~qŒ»+÷ðû<”G*tѽX)z”Zº¶5Ìbh—±=ßìÖ½ß÷¹Xˆpg¡S[—li|Çœ÷é ј£vúâT¾Ã˜`Õg Øf¢Ž~ÚãÁ “ÑC{,2ƒGÿÓß_ endstream endobj 27 0 obj << /Length1 2401 /Length2 19614 /Length3 0 /Length 21000 /Filter /FlateDecode >> stream xÚŒõP]ÙÚŠâ.Á6ÁÝÝÝÝe£w N,¸wîîîî$\\ºûœ“ôÿ^Õ½EÕfOÆüd̵(I•ÕDÌL’ö® ,ŒÌ¼1Uf33#33+%¥ºµ+ø3¥&ÐÙÅÚÁž÷1g ‰ë›MÜÄõ-NÁÁ ë°°X8yY¸x™™¬ÌÌ<ÿ tp戛¸[›²ö@J1G/gkK+×·cþû 1£°ððpÑÿ±:[›™ØL\­€vo'š™€jfÖ@W¯QÐð[¹º:ò21yxx0šØ¹0:8[ ÒÒ<¬]­ª@ ³;ÐðWÃE;à?1"PÔ­¬]þ±«9X¸z˜8oµÐÞå-ÃÍÞè x; &#PrÚÿ,ÿO=à?³°0²üî?ÙYÛÿlbfæ`çhbïemo °°J’òŒ®ž®ô{ó¿M@.où&î&Ö Ó·€¿+7HЍLÞüO{.fÎÖŽ®.Œ.Ö ¿Zdú‹æmÊöæbvv@{W„¿ê·vš½Ý‹éŸÍÚÚ;xØûüXXÛ›[üÕ„¹›#“†½µ“PFü?!o&„ß6K +€ƒ™™™‹‡ t=ͬ˜þ¢W÷rþídùËüÖŸ£ƒ#Àâ­  Ÿµðí‚‹‰;àêìôóùÓño„ÀÂ0·6s˜-­í~³¿™ÿà·å;[{ô˜ß´Ç`þëïOoò2w°yýÿ{¿LbÒ*ºtÿtü?Ÿ¨¨ƒ'À‡ÀÀÊÁ `ùKd\o~ÿ¦Q6±þOäÊØ[8xþ©ömLÿ­Øý? ùÏå ü›KÑáMµ@Ío‘ë3s0›½ý°ü–úß)ÿÿþËÿ›ÈÿoA’n Ðßnš¿ýÿ?n;k×ÞDëæúvÞ®ýÿ Õþsi€æÖnvÿ×+ãjòvDì-Aÿ£µ‹¤µ'Ð\ÙÚÕÌêµüc×øë–¬íÊ.Ö½V o«ù?¾·«efûöêpy“äß.àÛÍù÷‘öfæ]1VN€‰³³‰ÂÛ’ßÀ‡åí.š=ÿ1€‰ÑÞÁõ-ðÖžÀÂÁá¯rr˜Dþ2ýƒ8L¢¿€Iì7â0‰ÿF<&‰ÿ!.f“äoÄ`’ùÞò£·<¥ÿ!î·<å߈À¤ò±˜T£7NµßˆÀ¤þ½Õ©õ?Äó†L~£·ÓM£·ÓÍþ‡8Þ|f ·Ñÿ×ÂÎþ—ÅÎîwþ_;a2ÿ¾ÕüÍð6¯ñ¿Ö7  ¹‰‹Õ¶·âß6÷/ó[{¿á­Åð/§õoø–oú}ê_^7ç?ÈÞ,ÿ€o5ü>ŠýmÅV^ŽV@û?"Þlð3¿õaó|¡íðmN ?àÛíþ¨üm@¿™9ÞRíß”û‡ÿ­5‡ßż%;üËýÖŒão÷™ãÛÉ´ø=Tv–ÿXÿ5kö·ªß^!ìç¯Q9ýÞ÷¹“›ƒ+ÐÜô/F6öߎ“²ñüÇóo3 Ë[Ægy Ëï®ß’\€vÖÿVÇ_1@÷?æÎþ6пtÀòÖÄïcÞ^L®VÎÀ?$ö6W‡?Þ8Üþ€oËqÿ¾Uâñ‡ŽÞ²=ÿ€oô^À·ñxÿ.îÉèüÏQÿzɘ¹9¿ ßõïÏÀ›Žÿ‹ÿþ¨ž@3„å3¾›Ú¶ûj†ý YÊ}­ZŸeçv·GØDÚªŒ Mç[‘Äážwk»47Â+$Ï>'Íu°[TZŸ|Å©Nï·",MaL柈|ë'‚'dP>ð}vòÕ ´…lÌvrãFQΟ÷è“òüÖ_º:¶°¯rPÅ)‡ø«t†!Zã“~`ÑeŽiæ<.Œ+Ü{ô OÔ¹›ÛYô¯“¯$²qt~§Ñl>º[¬Ÿæ½×ËÕY]ºð(ðtq‰ oÐǦ©|D’dq}Š Ö–<›ù H¾"Ó'¯1¼cFøƒ#Û÷çg¿Šú ÅŽ­9´EºAðk0§â«igòÅE>ž›„qFMNºDwDÎF µ _-°~.¸”éb«›Q¼Ä‹D>~‡céç E»ŒTïþbåp¤~—ÍOãÍ ÖXŽ<Ò½Ó(†ñ£úÀ!ÑàÐ>ž[ó£Û²2QC¬ïšá¢ÃŸ·Õ¹Br":T¾v¹(¥J‰DAÞíÎ÷›’Ÿ©‹º“Ú5Æ j© <îŽwþò /•§¤.XVè—ûÎÿÑwÙ`I¼ ¯:@;â¦1€µ¶]éž )ãÝúgÊŒƒUHr£öáFÍŸ/ø¢jê÷¹äÞ[`½‹3㻤£Ó»>  ý"ö¾&ǧTHPéân@ÚզͧȋȦ ‘ºšô¹àæéД(9l;3¦àÄ©4 ¿„:cC¾€óu!!ËfÇ;Sø‘$¦I ÒE¿vó†?´L@¿KœbS\(\ã~êàgâ×O©ûÁ2‚´H¼=ë*Ê…/Y¤‹Óò¬`85zYih×»þ´¤Ÿ,Bµƒà̎ТàÀvùç©1‡jc’~ªb(³Iä†0ðÖ Q£m½L‰ È¢V1B/÷ÕŠÉN€Éº–‚QõúpÁÄrÖ jNõNuÌ/HÏ$\E1•Œ H.ZzIr|‰ñø©Ná[õè Â?q8‘Œˆ8mü¡?“˜…¹Ä.õ•¿õ»Ýy]ãÃRÆÆ°ÕÅFvÈfÅ÷¸úúêêt¡aÎÔæ&?g97–ïlOib`ÐÖiØuÒ®µÓ³~·^¸Ä /̈)õ7Îô[ZØ•ØÝIõÒîdZr«Ï¿UýÂ80‹ÂgÞ$*»T}PøªÃ\>ãîù‰ûeAÿ¾áüÕi8Œ OàòK¦úŒŽãšîñ0m7=ŽÔˆœI¸˜®¨TV;1‘×* J¤uX/«ó¬fr%§Œ2èéûcyCΖ^îÉp|8ê~Onl‘Š•Òò‹i•÷Ç;Ù1¼Tz7‡ å¬}¸Þnñ©Ùç8ß§µ¾/DîïA.›~åéœ(ÞêË“û‚mF‹;:y·­aùÕµ‚J¨d÷ódßõ“=Œú‰G{ÂAE¶¹¢¾XSzþÄŠÒí¤p«'É·©¼ùLå.Ãɇ=M¦OC¢Â5×g¤ÌñÝ:9ÞgSwƒ”}ÓÃXÛÛ¬¥½›€J£g!«QT·£Q»’08¼õ,(pKIæp%C^œwA]+"Iäâ\y{µKª†“Ùêª,)ïûbžc\!êø=š±ç6™_VŠu >{Jè”Hyw³y;,hëúÂ.ª!2…Óc»>áF­ù° Üü »5SJæåè÷Æi'°}9 › L7½™ vJe Ö^bMZ5Qy¦þRì¥bY"y›w™ ¾JŸÑ.Dò–%mh{I˜x2¸(°°nÕ%‡x´î>uš=#­ S‘9_D#Œ…Ùd-´Í¸vd¯=…£W΀²ìÃö;×,8a%–“¦L0ÉŸ$_ؼˆÉSwÍP§¤úuŸ×õ íÊ_[¼'?IúÃÀ£ƒJÊÈzd+PKš¢1Z¢„~‡š´±PkjC«Öxô9çEçªèØMØí­’у¥íÊ™ŒGíòPÓž÷P…¸FzÚšáh8ƒW×*ÙUÈêʯ7îÁÙÀúxÇ—ü`g«„Ǧ7쟱!ŸŒé@>øpw@•»…X#a N6|éMe÷io¥Äuh~Ñ€,+»3WLg*¢×I›ŽJç“æGõ·ŸLØUXpªÇ>Êxvœ4 šŠÆ ñ.†¶g¹.æŸÓíQ¼ãºá`+òóyå³¼ñ >£]”:#Fä–»+ŠwD)HqñPÈÈ[¿P%ˆ,YlÛƒ8½À?ÊÂÇH*Õ_òËÁïŸ(ç+}ÁqKðߘåRÖßëì/ÖQ/O€i­LíSuå2Ê^ð°Ò˜¬á­—gÜàM³ð{ĸû¼E¤ 濲#x1^êe{6כּ²ˆ¸U”f"9ŠL2ê±ç©-±šz|¡3¸–äÿPâãZŠÕ®#ö“¥’Ø+ã£ãrÔÏ÷ðÄC×Ù‘B0\ç¨_;JÀB'üj´Öœ$U·}ñ=€†X Ôˆ1ýƒÅxÛñÊîÇî2Ùã• ß½¿÷pÝ4%‚CkÕf¶'äsŠKÚº‹¤çä¹£äM€å‹]\t½§¦×Mý Út&™¹÷Üä"G÷ËnäL¢°¸ÔÛ¥þbFgQž ,û&± 1–Ç>×Rsaò»bn°)[ÅsQrÕàÙ³|y]Çs  @ÉGÄ¥OŠW‘…à|[Ûæ/å=Ogàñï~m¾o‹ä(ÌIÜíÇÁ(…té*äᯗŠA“0ÕüžkµÕ>ÜG‰¥’0!Yà ÜÞ·3ìOQÛN6ÍÆÖv§Ì³ÈsªíÂóœÚx·‚ùÔyEëWñKÁéËìÍà—Fa‹`¤ C"­õP*Vvô7âÅ«Ö9F­ÇzèÀ©ékÞ>™RáWŒ‘q­Þ÷’èëL…Æ^¥ŸTjàÇ¿è«$öH¾/]³VÇþ}d¨¸57ÊS0ÎS£Tÿ¦Ø"ÇSG§šºpªç\þkHç¦ãLÇ è×V³DˆTu·¤óQùñaB\C"÷ôêåÓŬ\p×<ªô'êÚzAp]á T™å-Wʼ½×¤Œ.½bZ®>ªŽ_ÙVö™H5xßu¨çVMzÔ{Rk;ûÏm¦2ÙÙ'BÊÊç`#ÂÑ$ #ÔfN¥!TÔ+ùÈIÖo®^Ú¦›nôØÀ>3–¯Ê3€[5É×Èoî÷ùŽî¾s.¿¹ÖrËžpÍ’Báál'òúÃ%³gàêÒ^wò}j«@É݈ËÍ…C:¦©°Oœ×"©˜I”Ž£–¿nÃé9ñ3Ž=â–©c¨¥‹rŠ9ôþmÕÄ\:•<¿c'z*É·ùCz÷Ñ#ãp_RÅÄ ·W±{0ɶQ­¨wåÈǯa׬Bîsmp0ÇWm7‹{µÁMòH¹ñæóí’V?âZz,“Â"ÀÝsíKÂë{©|øú"µâä ºð½<ž$)Ó”ùá¨1RòKÒúæã‰M½ð ‹{eOöéÐl,ßcX­_u|«RÄ ˜ït0ÈØD¯9–¯~ÜoKë“Í–éÁܳ$M¤ž™q(Þó”: ²rɶŠ>_Õ»0Aþˆl°¤¹.ñÄR¡GqÔ«ÜáOréo ä%Q¥à1àĤ ´óª¤µ®Ç‹tþnÓs«U%ß§*jH¤*jê<ñüf”½¨“É[Ë¡PTµyðcó<ãskj=ñ“M~èVÿr©ß†ñ—'âTZ„C¥{ *ÚÍ0Ò›E‡¨c®2ùmðþCóŒË:„?…—ì±Êœ“Þ]ŸÚ¯öÀ!w(ýÚuQ„fG¶OŠJ‚6ÚÀ64 ]µÄŒ¯ÿ…=ÃmL\=uV,'úqã‚Ø×нFRׄ øåÔ©â†_–ë?KÛÖùP_pÉÍ«†GdØ|ûç %[c#|ŒéYö-X‚†Yj„o¢kUÅ âsÉà[uêæ‹¬w|Yü±NöK{n® y1–í>Ç8~2‚SÜbŸÓLA Ð^Ô”7‹˜]až2Kïbà0„ë8"[™l’ÂÊHH"ˆæçl=q pXeŸÉÎQ‘CŽ \ëéKÛ»º´a)T±¥Û<[Åî­á×ÙßwØ{] ƒ©˜&MÒI<={ —›ÓÙ/žýŠ'GydV QÕtJü”. º<&c@ Ãr ¿šmA³BÓS “·*ÕaØú æüâeÂPPÖ‘*™Ÿâ#æŠ&4€*™ÆÑÃŽ æˆ_ßœ¦ÁG¸ÏˆDÌì n—¶ù˜ûn×Ë+Ès- ေGpej¡ª*gÒ6¹rÔÇG•TEθ’V} Œ¥µ˜Þ“ôN7nlÊÝ•1V“¦Jâ…n‹ÿt·ãÆÌ” "ÔßÕ¬)eë¿2©!õòjÛåý9K‡™eFšçyd:©ð²±ÍdáǶ™”~2Z8¸K&U’„VqHm¡à2 ;G¢­¥ñì÷ë¶¾±I§¯>Ú1`n‘Òf|Tºã6«Æl¾ w¢JãjPö³ÿV é~ݯœ›Yåž‘SŸ/¹0U)çŽ&G†ˆKV'J¶Æ™?Òwï‘*¸Ý¼Ö(œ/“Ö¯Ý,üÌœzé8º½>>¯Ìg>Üw¢hÐW€w¸fÓXóJ_fw(…ö­ÒT•¿Ijv¼8MÁ` –»mõ1Hñ†oÿìóÎ M—ÖÕ§ŒÑ8s_ê#FžòÞ5ÄÝö¢ PTßij`À­Ô>Ùj³Ã”¿Çf˜e ¹#²Þ]”^‹ ´˜ ~¶mReu¹mŠ=Ëá„¥`½Ï(§Áà§0Û¿GñA© é–x_E%Ž G 6rŸ‘82ÈOS å=AžË ŒëŠ){Œ“r¬w»” µ¸¶êÿŠxµð¬2²]¬hjJ·ÚÖ±’å@½\¤ßæ=}eyl9n²÷9Ö­N2{:•¿CûÑk½©´| âñ}Äåí+»6«AO,{±tÚxnúâeša÷”“<С6#EãìêÒ]A|ü—à)í@þUª´}lDKq…Ùwñ0U~&V×g…þÁë—ý€'[íëx‹¼’ŒiÈ×Éç':ŒåBm‰Ó¢¤wCŒÇÛ¤]S½dïeWÕ¸PºVtˆ«à ÏmV‘‰¨f–EŽd‘èÊÂ;›[áÐWÐn’sö)8ÝkÕðÕuÐ"ÈWq+å“_Ù'Š~ ¥ƒMRßžÞõ>øKâ˜kJÉ/ÐÓb»`•K½äo25•8ÕõB ß‚[}êG-xÐ%.÷/qFb»¢§¥=RX´¡åײ2ÞSh |]Ì~ý° Ü:Ó—÷MniÑFõ›.sŽÂP:B´À}†HÉ‹ÿ¢ìÇI6Û&w;K>§žÝˆ"y÷¨ˆÿ|g8—I„‰È— ßå{¬ ×ï B–v›ã|UéžJ¡ÎTa2åó$oúLÂvE¢6Æ[jcŠv¶JÙä*Ë$8’£ôú#ƒÈYs#°ÏÓ º¦Mvçükw½A(ó’áãÞaΔ$ß;zEªbj ë’HýE•n™Ké¹ñë)’.!uÞ3á%ÉsœCÅWDX5íîuæþrÚV«-­˜Àvv‹fIñF«˜UÆ¥oê´†jÐÓ Ä¡ö~ÏôˆáºŠMXSbà×Uwˆ:ˆÑªÐÀzïž¹Û ¶¶}„†%׳—mãÉFéžÝÑÁY¾QÔÚñõƒC¤„Q5ÞqÊ ê“¤†®Ý þâÖ4z‚œ/äy/Ãì‡=[¯O泄wΦ±â=ðsØmO2Ãrl9?ôFy³x„V"6œ5è—FAÆ£må…%Fä(–Óï–¹ yAsÕV¸¬Ó bAF›‹2C³p<‚¤WÌ.Y…¯ÊÔGˆƒÒÇ}€î¥·‹oh_^Ÿü|Fdo€Eé¼][QÛyÌÂ…"kŸ^Ü‚Þ7󯥄_²úkß°‰+/±ÍNWp~= úÂŒºvذL¤‹:¿DbUvMW¾àɺ÷ÐË‘ø‚Ã_Ö…N&jnÄÆf ¤üJW ©Ó[Ûà×èÖæ%„ ZY2£»¥Üª?Sl]Uãà »îþ]šEֻЗñÍòHý{Ûúž¡i‰V?Ì*Mí{ À'˜òû#Z¬ÈO »¡†˜Š¤Î½:ÞüaT8ÎÉ|"æ2bÆLá~ 6pNoýQÐ%êØsd†;þûñ@9¼Åu­µ}å¨ñJ‘R)êà>ì¾µGœoS3cç¬KSÒÊ\Ý8UÄg:{Zà µ’Ãè q‹iC¢;_)ÐÁ ~²Rò«4ì|8€´2Ü&Þý>vZíŸ7H¾2èc^èè1Bfýh}LâÇãœ0®ácï=êÇ©fp% l´{†Q¯hSQwT)PTÕ+мSrÈÖRâ,e4Ø®À&=\L>1įÄ9”C¬\kä£t][me‚>P£kÒêFÖkÂÈ Ÿ ÙNH‹’›Î2#|z@”àû\J<” ¥˜<#Ù†Õu½gîpÿ`Õ/¾ä.Ö(ͦb¿³0°G?†b¥‡-F… ßÐÿÌú«ïËËð{ëfp9;Cyeø6qUøNé‚h´Ñ ÙÖ„@±#¢¤O„Ò6ç¹?êçǦoQgWza’¢Ôw…mšòŒA*Ÿ”¹µ:‰`DÝ?5¦@èÖ§"qq9Ø•š¢€áîÝÊÒäÈ7V÷ÒMd³_ o“mê'6Dí{½˜wÈcñcªü$kŸ¤ çÒ=aQI,i?zò–bÞÎ’ÀG¸¹]¨=Ź-0Ñ9K©S°~‡ Þ¸¸£H‡ûˆ¬ëSÚÄÀš<<±x° ²5qGÙµ¶C£%a‚áøZ»‰°ò”¬zÈaӴŹwà´O¾c–´°¤§ §CŠ4„ü èãê³P€D/Ö“Íig•nDçç¯è!úÌÏb[ÛÊW"ÃÿeiKËüü°iàµ*ÑС†™,A¨pãç—¤Bºƒ°‘5©I‚‰í¶Wrf‡qÄ~p‹o2ñîadxh[¾ †P,âY"3¦Î”ÃÌ´— ¦Ô‚CzÛa"€–T…uð]¨¡¢ö\½õ?HÌ}2—ÇbÃÊàwuêÎå왪.êR¥­O†S¯Íò¿ba{:D¸Ïùbè¿£9,+˜ÒM÷Ï^WZn³ƒe#YŸfÁURÍ©gt)¾Æ•âp¯ KlzûtÃɇ뙇ŸDšdáQBËr wæ®ñ ï'ØS£ð1°fÁµÉ'ëôØžäÍ{Q8ZL©Pm­…5ÆÖòw;§Gt‚M‡+| ¹¥¦ÑŽ¡õUQ•÷Ù}¯úıðn1rr¢Ús@L6—0À¹E  )×…õç»úޏl5s±¤f8vÉ,Èð«1ÐŽÉß’ýªèû™6 ‹u=#‰š¢(R~foMÊ ?jˆ#oàíÜÄAݽ‡Ø¡ö,§bü#’‡­‘1õ±Ð¼½­9r$—X(µ(w«‡—y‚c=°Jö*êÇgÝ‚“Ú¬+ælwev…*‰ü@‡W¬á•«f˜(R@GI¼_šgKÈ5xxO‡0+*W;™A|1›«—$œÓ‡wÔHå‘£íj8[,,Ï>ÕŒÐ*ž,ù|H€Gc™%ÃÆÛÖÍW™.[ô ­  Úà}¡Ý7#¼ã#\4íþÎw‡I==lΙ­ž›„Há¡+÷-`~bïãû ç]“v`•ð\ô™fl3³1c{k Aó FÑÀöfÕ{ç¡ ¯Zqö:¨Â*åÇb.}[B Eçpë_U_ úW©x>0:güüžrU*ƒ–Ôº¡üa@Â'reµg™p«A’ x¥í mx#„|ñ¸úÁBVOí!ëZþ€èNg%½ ¡2qKªÕ£0Yµióv `ÏÜ£.ñêJ¿ûaT;óË$”¹eR [Í´{ë¶™¢ZbÃÿ‹ÙǃMKßdï:ªÐmœß6·×Ývb©2ø ¦©˜xƒVÚñ1rI¯7UÁCZ‡]#"ó‡a¯È}uæØKå úQñšva¾Ûš^%ñ# ýÊ¥™Aã_Ó Á×冓Æý°ą̃›0ÆÏ™– §„\¨N¯Šªy*v1º«-õ0‰´iè”HV5ñf…Nð^ï_Ð[8dçéˇùÎ Í5§–iHF P)œ¿ÀëÝ( ψñÙ7;õJñ:Kàü•Òf‘T]}PMyR1ðäé‰~Ôb$»=/t«-*ƒßm*C^i×”Ú~É&!w]'á¤C”;r,àh5IO‰ŒpH5Â;'Ù Z<ëç ¶°®Ë¦l#ÅGÁƒ!æñ÷Рإie£Ó½³ÙIéë™W]4Ú8¤%Ç@c©ÔB]õé$ úÁs_ê"~¥õqˆ¶SñÔ*UTàñëÂq[üi¨®ö‚îg»gmÞ2‡ìDœ5›+gQ-³jú>{*°Ç~E0îä»ÙT‰e0¿úžÛÆ*ý owÄIÀ`¬P|:4g¥O–&Ú¬> M0•+V¾{Ï<Ìsì•aºn´#}7©Ÿ§ƒÄR HY&Î’M|éqÐ0åV#sÒ}RMÏ&ÆMqŒáCXÖ¤@ÁÓá#Š“’Ùi`ƒ`>ëq5 jźÔ=%vK»É¯–Í"»a÷Û©_£(8²>{Y´0‡P×ûj‚ÄüÑ*´ ˆpº³@‘]ðã…¯ÉQÿúø$tÆó×{Iã Äg8è§ñá½#4ÌI ™Ãu¯RÎDQ©qˆæ}Þz (7kLŽ¡•>0Cf0À%þP¬ÝªWe³ªÃ‘Ù”'Ýɨï×±geåÜ.Ÿí›:R g‘6¸FyY²ÆéŸxMÛœþ„º¥`µ=ËüD‡ò¼\àœ×âù n"!ùÊ…ÂŽK¢„vîV<;<'ÏWõ}ê6„fØrf°ò!?ý,¬‡uˆiðÔ® ås‰™Äâ#¶òÆêÍ êï é0ë zÔ.RRÈG4:µa×÷9l ç´µy&µvÿØ{;ÕÑ›²Ó¥"9ÅcmE„ÉL‹÷Ö³VŽd„ºVçë~Õ»]‚9IŲ¨%ƒªzé¨Ë°øýš^ùìV’]]è×%à2Rد÷BiÅw­|«a’I1Jb?ÃN`…"²ªb¤œh‹t|¾íÓ9˜!_œÒÅKh) ”LpÔˆN{EBnž”ùy(É76…Ƕ­<\³ßÕÚMp4*DíO}Hï7¡lëmìƒà䀱½DŽ˜ón\2¤Íµ=JÝfÊñsŠ¢9cÙ9}¤µ<Œ=â`¥(òô¬ ï’KŒM˜«j|‡¨¼ùÉ9vÛ"E˜çlu®€¡‹›¾÷ÀÓ”å*¿r1=_ÍX\½Jųf<_RÈ1<P*>ì»d²-Ç}ÜÆp.2–{KŒÁ¼j‹ZP Wµ#:"Y¸,:ÙØäôá­‘1{y›à÷`$Y¢Ú4m6¨§ÆZ9÷ލ¸{ê&7.Ç7zÿæP¬\ËôÌØ¶T?%¼º>¨­íè1T|%¼e·äóB3 BXÈ—þ²×ã5Ü>0áç6 öD–õ/ݲv7>7*NtIX¢©m{Wsk°;_˜…9è´üz%W89”UßMD Îiõ«Ï á|ºC2¸û TƒÑSwÆÏsrÆ ƒW‡<ÝÜXÀ¬ÄíÔbðò±Wš/]鵚ˆVºbÃM¯Xâf-Ž LÜœ½ø§&„ÚšF¥tpbíÜL­Ixêrj~É()Ʊø´^ÐŽý"ûÆð WRqrEÒ æ8 ¼”É”r=ãš°‰GqpGÎó!£Oɯ_CÈ]zªEŠª%Æ+Zü¯©ûpÔÚ]|êì½39#S:ĆfµíܘMÜ /*/±IxýþþU“´kfŽ£:òÅû”SabR Íuæju1›u°”°Ëò k9Õ)º[ó¼ PáŠbp®wYgvÖîŽO5Pm¬4bh‡žcâû!›‘ 㱺éV,e-#¿¡ ½‚hþ)Ô&*˜Úz¿½b#ÇÒéN?¬—êÞ29×Ãë<ø4yá'†Â?‘#¨Ñ-6È;Ý¿(}k"TììjtFø Ò”ÓMxSÓ• ûq—U"\§õðµ(˜aQѧš™J<«¤9·Ó:¥6X&6ÂŽÖP™J‚ õ¾kS6A‹s9Bд¦[½¥0_ld¶œ;7‚ƒ!K'ïÖG$ŠW&0j…@þqü.`äZ×\ÚM«°¦oè“ ±®u{ÉÁ/©^6›Ç‚”ïò™Ìst²ŸØèÃw-¬é,ø²Âj1j™wvs|;Y.×*ÿ¹×éš»”™éC^ƒÜs¥TI`|‰J„lú"„.`äÉ YÖƒ­º#€$þ¼¸)Ú°£¡„Ó_OýøÐ×îkEF#¨QÒæÝ(r5°S÷«Uu"”ÍdÏ*k#脚 wVÊ[³jM£ž—ç% !,ç¸[ŽŸ,¼;Ô78È 2èœU;Y%W‰ü¤kÙµ’$üÜçÝë@ÝVÚŠâEŒ‰IÒ6µ§>´ÂÂJrY—eÐü¤u“ñYÊ3­ÁÉá…Å2ÙH¤ç… ’‰e 8ã]Ç3&ó«•QëcñÇ;gÖa?JÉ™Ð_š•åù§½:F?Îo]&äÜ;›‘.º±í²KIe¨Òü²Ä>JèC{M„Ì4"\Z›Ýãµæ¨Ê(íÈà©3ÿ,…NHLõíОf¥Â ûŒž»ŸócÄÑe¡•=-Ì2ÆZ¾±I>𻡀÷ùGgÇç¨Ó:\÷¡k²BÓ6~o, ¹,àe=!pa bÍ|Љ=Ym/AAð|¹ÓwÖ‰¯ýáD8a¬È£ºü¤½‰Ÿ[Ì×bTÿãî¶£¹óC5w„ÿÖñ÷ˆ£¯·j½tw6ºÝE\„ºŒôŠcõlŸ<æ̑Æ ]ŒÌ+Æ“>b2ÅþÚ("Ч¬:w<ã‹|Xf=/{sÍ_¦°3O[>Z÷éPbšø˜Oc7»œ´«R1IÆÛA9Ô| ɹÛÿ@Ó¨ìTÍUxp?mÒÀ‚ÝšŽæûx®£ÐÌÓ7}¸å[{±‚U¨u©+¢üŠÿà_§škµ­ ®{(è¶“ý4jMÍÇP¶U5:Rat±ïL_ZŽZÇé&ƒ!©I…àYjq©2no,î¹ fn‹W½?üKN´ü%Jú’Á^Ι9Ûä‚ýcüY¹«¡~;rsô 23¹l åQžð%Ë(½—,í[Ë*䇠ÁVJL¡Dß+½3cÁœìnˆÊWᜇ%ô¦x¬bC¦M¦ÀO“$¼2–/?„ö7"ͬ÷"7 Ç¿‚p„Ä’lÉ[Pw[Ì‹tÉáYo‡ª1v,·ØßQòVUª†:È~xïÞö*+žLÀ½n{…@wýý6ÚÓ –,{ý¹ÿöµÈÖZW’GÝë«"kÇ Ø¡Gâ”O) rvXüêrª.6zRÙeíí˜bŽñZoS3<ÀxµÐU4¼`‡LEžfÖûGòMœ;ÂK›ue€™u-‡_c1`aà‡h~Û QY!ÿšùÀý8n+¾³OÄ#´¢väS¡‡lÄÜ—OœÈ+ζ]>Þ”½lÉ,3³ŸUVÜR­óöl._Áp-œª‚#¶ÆQhœlG¾(Ôâ2úŒ­"r•#’¥Ö,²]z +=eò…Îý¨»»¢\ gý>qžÍͼÓÒŽòŸÑöLsÛ>#Ëxð•Lµ~ʧµ>ªþÕÙ_óG\eS¨Ýâ )ƒ» Jo+‡Õ6³”H¤ÐHá6¡TøH3Z[ýK„´a0.x84Â[€1·áš‚šúhl¿§Ü™ž ܃P=5Ó°®Øà-÷°;ðRô ¼Æ<#8<[¨‘IÿÍ6šK€2ÁÎ5¹ês<Û¥N¥Ôé½ “”pÙAY¢Ê‘š?mÃ…¢èÊ_«ÙŒŒ¿ÉÒEh,Ú°-í½óËÎ{$r1dM>ÿo¡á>éÊ£n­Hf!O*{GWpzÕÏïÊѨë˜äžoœØLä¶ץ­eîÓ%˜’ÑhyÅÑ…œ{4a³t>£˜WJ‚ÎH°ËBý€.îÊ+¹ÐFÉÙ+ë†4•ëb6q™h=Ç%$ðAág.ø8,¹20Pt«Xœ„ƒÂ°ô|ÓeUe·HUr-|\~_<™R‚Õ³müa…=x¾ìHµ®Á”&Œí8‹¬‹+\˜\cK1Jh"¾ÙÈÇÓëÚÊa”pÊWš®ŸmÖI QÄN²wÒ¹¶ ßSWÃ…wc]³Üt·³ ˜ÁÌ –g4…4grJÃW»Ð½àm"èü€Ü™}KLnü2aÛa%96ÏÏ‹ì" Å$Vl«+ÛUO†vÀæº=½1‡Ì¯Pªèé+ÅùëÒ:sèµa™"ŠÁ.ψ­ýâަ{ä»TU9±¤‚CáƒA*#§&}3ä-žÑX6'=Ö‰WãëOy^ÒŠ‹MÂð¾ñ’Ë Ö9Œ"ÇÆúÊAY¦U -…[XýŸ\âH¦&Lk•P»Æð.8ñß“ÍÝ_â:Ru,†&fœ?›Å/ø½_ÁÐçÛ˜Ü L3ϵˆÛú†•.'aúM+f2¼àg›Ëƒ8NÀc³˜½."Ìb…>⢱4è!{ê«%q8¢©|ÁÚ ½:Kh¹{—oiÝ€”¢Uô¦„ɤy#PÀÆþcó£eµuöl”_­;× €?ïšn"Õ<è‰Dû[J5Û¦þI“Ê—íɆ”h{MRƒgìl+âÏñäl¢G¥¸`}ÀD‰×^Ð P!4®±Õ™¨+çëPZ¾B´ÏJYDýWx$ b= B§­U;ìØ' [¸ˆÆ¬ðŸý;ĺ¼>˜6µ&ĈM+¡Xvñy¹Vƒb¥ g¥15JÑLð(sùˆÓ±ZCV¼Xõq£SXIlZügt>—é˜#:ï"\S낱JXÚØ\Ð!ØxÑžÙŠ9iŒ6¢N'Ðcà³+RÎ뉞´ï;Õ6~†Çõ˹îC›•CoÜt—|çõNªÍ]ñDa°•ø™Û-Ödí£|x>ú¨À>q~øÝLÈuâ—n³QJ%s²õRŽ*±ª\ ÎRc¼»2?©Ýgu¨ÏšÁÔ¾'HêÏ’¯l9f7k ^‡Õ%=ïÓ»âHÍ5™P>ÆÍDd=¶€«–”aJ÷îŠzŸº}•Ï%LÝz›Xë|(¯A°È~+<‰Ù^]¦½5gýP=¸ò^JÈëù§‚:~âÖö–7'ÁœŽ}”ç(4šœªLùF¯w\G1}ÁBÕA‡ y ÎjRÍzL¢†‰Ø5Þªâ\œaa‡0)çš#•ìÌÈdÔ¢jÔë³ÁEV±ð“û»ƒ#O.gaÄ,W‘dªš‰ŠÊkJÚÄ ÉjAÀTît}ð‘»ú J×/²§.ÞyùE,jÛÓc9FìÓ}ç¶-/w²öÌÉR?üwõÁ³fï­»æb­ ‰PöÏ…ͬÒtÑ´·º+ô0#Ëb¡íBŒVäTܨ©£”B<“üŽI/q“,¸Öì^Ð×$˜›,r‘q±]ù_µ}åeR˜öÂÈQ]“·ÚéQ`üª KZt÷¹áÇJÂmUGÍ/(Œò à_9Q³ªÆ¢ÙÔÜüൿAxdr¦Ë™/aù•”gMµñNÆ) ®ú‡ ²Õžñ´|g*‚à±GñG+‰-GS$Ñë2í`M‘\a|U…òàwP%ÝØòo)\ƒ{.rB8ÿNn¯§œY†šì,^åÔ~Ä$c!FK 7Âb”˜SüÝBú%§XA혇ÿW‘;‰í&ŒfuÅ€ZÄò@hÕŠ¿6Iù;ppÍ’¨É–áL<­Ð$eÅz®}¯½Ïƒ¿8J8"ê?é•<6JI·36ÒVµ÷Q~ÝàfÞ¬ëH?¸¶£ådÕ·Á÷Ããch– ™aÁj‹’ÅÕA/âm‡t³¡ÖØïñBºÞ}¬·¸@@Òšz±ª®‰´Šû¨Í¾‡Ä•õðC,<æŒP$v9ë`t• f/[~ÏñÍB˜–‹#¶¶µŽÈ—qXlca!9Ÿ_3þ)n+zí‚°]<çª+[ÝIÏæîýÒ*yÛ‰‘ÈÁý˜„:GQ ‘m¬ª¾@eiSY âÜèˆ^«Ú¯·:w|Ry:§¿ ôŽâ ðæÃ[yå\LSJwÛ”áà9²Æu%®.€a1,ö5Xdc~þÐ9SÕK]Ä;ØX“áÓ>Kîø­hWÁšìOÀ‡aåŠ;WDcTÏ|¯œ.Ø j“˜v0HÒnÎÅŽ É<ËCflˆ«Ïõ­r†’Ûâ9*¢ÝˆŽ %;VøÈx¬,ÃÙ h£yÿ!xOµ¿çfPZ¸ãžï)[n{Å6 á¹·Ü;)àh{Î.yßÅÖô•L~è»NaBæùh+’ŒgÀÃ}66ÄoÈRœŽZçâ¨K©9¾ìŸ4×tWaËŒè¦~€¢³Øœ:l‹S[ù¥P† 5¡E(Vï‡>¼ …œ;GL§S^ÖMFVr,RÚzã!Áù‡‰-€6¹hãž%:x‡?6ëu)Nj&–¬ ™ç¨þ:§ìˆýRÎÂ&i©ý‰‹»ºxC1Ë‚Í.•K,R £(–Žö§QJž‘Ú_—2òÇÛàYßÍhM¼ŒÂÞ-‚m"y;ت½NÁ[äEðb®äÏN¹„§4Àâ¢ÊØ¡sSû7^EÂU :úÚÒ0´?ãÌÇe|`8‡iÍ-%}öÝ8ý©}ßfsøKz©Ò¥—D ”tF”@‹ÖQ™Ö'´£ÛàaºüXÏõ[·¤i@Ðô <ÛØxWš¿âôô—96¿Až(œWj/9˜ÐeŽðo;ý?zn JÚ¸b‹íÕÐGä…_êdº‰tI?õ>PÃû÷aÕ$'Ãs¤kZ~¦!+cð4ù<üœ$JšnÒC&Z⻕é¤e–¶ÓáT=C2U&òñõÀ§§½N«¼€Íö´ÁŽ”èTGÇÀ›Ž™”´† ©Âyô6­Ö›&Rã9 å5åÿÀ3q ^þ2”‡Ðÿõ@ ÖGlwê(Û‘¾ Î÷Yr©÷]5*ÛéêS^ëyËöâ\ÍòR¢W‰•פÔÅ/Ƶ¬ wsQcÌ6}Úñ¼ê‘Ó­¤zÊ5ê/AUzéIS‘ø9sc‚%ò8ާ%>|ÚØ¨yø¾qÁYÌUº hLÂ@k(Ï7–]÷NÒƒ»§”vBFn$Ù¼½tËó׊^Í v¤OœiÉ—K¼÷]1Þy:˜ Cì}w82ûˆù h‘*rûÆõö“hoNFÑÔãÎ|¸ƒøBQ/Ýy┚eèžuÒG-k €oþÿ bï:$.ëhMQSÁ G^†!2çS³CÁVZ@ûl§šw\áÎQ>!'xu‰œëuž¢¨ˆÙa1ñT|ïµãŒËDDŠÚ5í’$hg°¤ÞXÕÒiZ¼öY…˜xëãàò;9 9[xrÚÌ@<<­Pý'2“«;n¶âô øë‡)t€Tsö—–=å ªGQ «ì0œSon¾>©¨dì­” ’ ¯î‚Žûw­œ+ШÉâƒ$0Ù¯-5éN`rî‡NœãÍ”&[ êhú1‘ XH ÂüÁ¬8¼ÓúÃR•ÃeHó¸á§'9°‡7`€êЀ÷¤VŸ,ºà} ŠñðZè¥cBêø%ªU@xKãÇÅè!ô2Ýk8÷k¿­äù)ÝÐleÓnjÂÈ' 'q”Óö½»HÒs¬Š4æœÀ. j,>U½Ð v¡ò;ùžGL C¢^u’–1œ)c6X²ÕÖqÀ73² ùÿíIgü›òró×Y‡}?*;›Ú~Q+ù%` "×U‹¯*ÿ— óÆ-º4r#€RÎm{8Þ¹¶l§Kì ü? ‚_^?y“SDJFœÖµ¿v Ÿ´›¬$Ѷü‘6ÍÚc¨…‹@—åDbÙû¦ (•Ë ᩇÿñ#Ž‹ yªµfõ_ÿ=Q",“oŒŽEMyÉÙöløG; FÕ›pCkæ)Dg3G ?ð+,ÓJ¤’¼€,u,î¡àÞDA\Ñ o{½Œ#™ÁÝ×ÄqÛúbÔvy`à݋ŧ5S1°Æ„(áE3Ø·C³ù„K6º¿³IùiÙN&êîWÒ´«”µ ukZ¡±Î%)ÐÇÉ@MÕMÀËÜ.÷LU…\7ä¦;Ç.uCoIÔΠõp¼]öÓ®hÄê$´óàe` ŠÄ¢*ûæÄjMMþ²oÛǯgßó\Ië)¬yÂþ#Rß}¾WMŠXÑØ‘e)¢‰Rx7†J‹2\`lІœê_PŸ´Ÿ·æ# ¬ƒ`‘¼ Ê9kssý[ìçó€³­ÖÜ·TŽ­•éÈM\žCu û•þ¶Y«bdHû,ƒÐtóœúƒ3™yËé5;I‡»ºNŸ3—~ÅZ5lÏ)­åܲ{³ÉO*Gbó.¸N#ÜÀÁCl„oœ,Ü¡Næ`)®ýpç™ÉoZòŒy¢*¿›(rrEáü®%©®·ÃÀ:„ËɯÜW9иû_¾}vNQSr=Y/¨é;!°úáà7Ù !š­‹GÑú‰4_Lïa'àÔE¹oVíïsƒE6š¹QM<$%˜fI a…g,T…‹vH-G5{G'rº xW»Ù¡x÷Œ‚”¦±ñX=Nd¶Ókq›$'Eƒ 7ÚÀ…­J±b¥OñýJ¿­oøzT¹ðD<™kŸMd’kcÐ?ô—Pñ—šÕZˆä™ ÛÇqç©Ð-ÞŸþ€t(#qtôº¢uóL¹µÄ’Ê” ‹* ¬ÐD76 µ8<·3Ð<Ù!Ûê÷ƒá®f“ØGao0VZ8¿5˜\:@f.û•½|e›£Èœ*¡œÂ£|CTÛ*W‹u,§øöô÷þ©ä 6Ê.ØÖÄG¯‘7š¡*,T¸Ò¦0X_ }Üpfè.¡é¬y`€+ŠeLÖÈð_ÿ›¤Ê¥äI±oªBGúoðèy„MœÈ“’KÍ5áN®~ ÷½<ÛÚ—òõe—3½@–×Új·Œ­¥Ô ¨…–²»$t­ëOîG¤ŽÛ”ô€ú€@ÁyR[…”J{ÉfOÑ;Ù¯Õ4‹ Á])÷„Ïú–IOÃ8.¯/ê_WÕ7)»E¼¯óÒŸ0˜U›Fò’0ïç,a uê½ZA«‹m߯í÷Tû啾š7–½¦*sk:¡þ;ß?GÕ { ž”ëHQ…K/~€}Z~<¯ª˜È\ç7Ig‡¯úŸÃo«ä²r¼=«ŽùU!Lˆ=ÛÂ.+¸b»WQN盥þ˜‹9teo«=dQc¢YŒ”"F=‹±mààí:ËHÌ<üì–kZ:üh ¾Ñf“’y‰5Ï7„w6;Âì÷2‹ÓbSž¸–k¿=ûB% ~­}R£`ÔÞi˯cf°y?Yé¼8í,¶v@Ç ÎO4rÓŠÎt~ÄúR*•–÷±s;qäKÕú åÎôƒMäµÁ‚Æ.;®Ý¾3{š$æw þKšÈë\ó,L3V~óÄàO‹ŸÓGÓ—ü{F˜ß›GTbƒ(º”i‹7‘î½7—°E€ ž”@H1‰h]Q°8u¢4Ã?ÚRŸx –; Mý5OdºÆ’à”Y÷EÞœ1¦ãkïèÖV”CB´9çP:I$ð÷Ì^Ÿ˜Ž‘‰’7ªæèþÃdÑ#BŠVWî³ ›®¡qÙ°‰©UTádŸŽiJe˜ˆOOºmYãò¯sn?ìó2^”Ù[§h‡$LK[Ò±œïŸ\?œ("XB‡£ÿ¨ajLBÙ3ˆ[aÂCÕa¤>Á©¡©ŠH'èC»ô²Û.u»–º™åuEôZ›ºÞ´îofœÞ|šÙºäèu©DòmÒ†^æð(G¥ÝHì‰0bÚª°ª½Í^hë&*ˆì%Љé_d{†ò…:^E¤C¹châ­ªrmT(ê„‚X©a^û §T|ta´ÇŠn<'GÁØE¬LN„_‹O(õçâ¼±¶µì~5ˆç'd\3'‰ÒlòDâç7=F@„ +7ð øÆxëXM½úøöKŸ Žd6þÂn£F$RœGQ‚!™U’ç#b©Ñù»ù:Égƒ,Ø~«“T|SK>ì uhƒf÷’žà‰…v¼Œ84ö/'_n«Oä?gv¬NñSß?»ÛI€3g,Ðê¬Nã`=ÚA é`v©á˜‰„ƒe(nݲà”9FµÒú‘$j®ÃGµŸÛ°ù¹ºx4¯ ñ %hŠЗY7e; v©4—?„ybèý¬Áéµ½õC¹£Áw؆Mg(ÓÂ-$yfâLˆöÞuPÔóÚ}67È*¡öx-süÑ]®ß¾¿U_ö£ç(Õ}mF:_¢ƒr5UfÝz7¹„ž=8~“ê±ä·yïš<Ñ=*&õ¯@N°/@È8šä- ¹ƒmસw…6ÿL`æˆÙ‰d Ûž²}ZS@òÆYùf iµ=te¸¨gèP*ΑV–o6ö¸£½wBÔI±Ë, ‚qâàü©ík{‰B\÷ù¯_îÌv/ú›Úz„ÌÌ¡öIÑ@(ÏÑ9óÇrç¾ K B¤R¤ËŒØ‹lÔ–7`çI¹ìJ¥ç@rå쑺¢§bžýÿãÜøÞ5­ùdѸúRt@p%`jVý8¥¤u£WV𸹱X„Ä+!rÙ”¿PY›ßµP9¡Íj>Ò—ùìŸAG´ºO³S’ÝiÑòö50 *ß mRmù·OcAÞË‘:ÏØfàáÂ*Ò€_äá<¤šîTf~ f$‡2þÈëå—=\ß/§õ᎜ÇGUѬdR¿_aw-Î3ÆÞ6´ ‡ÕG"åÌ0˜È‘rhÿÓ°€{¶n,hÔ|¶¸[Å,ìÔç-53©´y{IÄ€Æ hFÌ™vL8ßAÙÛàŸ¥ø/¢>Ô @nš ìÞš×$’ÜóC>ÀµÓBÁŽÈoè€Ú”€Š¶ÜRpös<[üŒ”jVoÜ…;FZï}nøð³¯‹t<WEÇK¯™%7*E|æß`Ùòþí®ú”?Xáù}Î/ž ¨‘-ÐzÒ›IPµŸÝÚ}3®{UºÓ:4Z dˆOñø¾b¨¡ÛÔ€ð ’x±òPΧCñ%‚* Dlôm endstream endobj 29 0 obj << /Length1 1588 /Length2 8529 /Length3 0 /Length 9576 /Filter /FlateDecode >> stream xÚ´TÚ.ŒS¤¸K Å=¸[±Bq/  H!¸»w‡"…Bq(^ÜZ(ÅÝÒÅ­<‡ÿå~`Ãÿ†‚ÈåAúÿ¸…<ˆÜ¹î°ÿr?Ôåúä{¨ÄóŸ³D<^`øŸô ÎÒx:þöÃTÿƒÿx§À`°%öÜ4ÌR<Ä®6¤í²Z–Úkë‹äÓ–A:—÷¼Ýõ3…­*;h~.›2ÔM°¸¡Àz&3Owçý­¹3¼%I«õÆçÖ,A{l«{ö+YÿhÑ7Ùº>Z,.]™mŸ;gý@{Ôfä¦|gW<ÍâK÷^%º¾²…á°é-­í*¡8·eã\1zѯK&™ÞXäLQ<Å@pÑ>b':òÀŸ<;Ÿ ʽ§SIàÀö=ˆá/ö6Z勽šòZz¯ËçÒIÉHiDA‹zF4<Æìýl7U…|Æ»´x>œ6EÖ>²æ˜Ìë°Ëêµ¥®} ßûiÊÌ4*ÆJIÁƒJ¢ü:z¥åy¢c }"†@ÎѢʊ‡òOáf NDȽ†ƒp 6ŽèV×u^×.&+i­!{¸¶-iJ´G0œ9¯Ž/¢pËfà6†|ùÕ€åÒ§%’†&QùxrhRÈ”à.³Ñy†«îLl”«¯z8ñ&VÚT´¾‡ä—XÉ‹vtŸŠØA!÷Þ=‘€ùð€²iÎÊÜç6r©v; išÇ·ÔZ­¾_,†={ßý÷B#Û ”¸C┞FCšgˆ&´2©ûšÙE§'¼:úÕȾqbo;—Ë@'V@ÛÞo GŒ)>÷ïÃy©×a¤¡6‚ý~¨A©ƒ‡HØWÁ4Ô¢JA¶Ñ~£ßO&Ù$øuÆ(‡Zu”£¨ô M“«>qf}ÖÁDº!áΛïxbª.ïVø!:— ›[©·^Úæatø£(‘Ìk"ë†;Gçu’Ú)[Ø‚ÄPcô·;Í Û ^e ³-—¥¢ÖÞAÅ ×êžïd«v Œ°Ëû¤Ä7G7ó5ËÙeì)!°ðøSSæÇþ¨Õ’ɳ½T’ñÇÒ‰6% χ²okÇL7ËÌ1âÎDÉ2¹÷ )ÁÑUÐ=ªpź ·G_újïŒÚ l‰úU}ÝCì9è]“zÑ—™°„Ã¥o¤Ù­éV.}â§ÎÇX N•ºú;dÐ[q ¡öY~^»àïóQ}…çR=Ë*¹Ñu²yl¹_ÒËÃ{±0Zß“dÒêEöHÞ¡{ÆPž‘:%5içé]4ý$f¶µ”DZ¤r­f½«!NC(ßËz°2®Ñ/ÚÐi£R<ÐA¢)×îÒGú®·p Mïð6FmîýŸ ±Æî7I¨n¯pÅõ÷Ñ$6éfÔb¹G+ù©ú$¦ëöY¹ïÎTÄß[>ÆVïLf?y<£DÓù¶huÎ'+q²çI„^ѽåHåJÁ.ÞP©Ã¤ÿZ’иm¦º1ßÜJÃ×¼ø'tF«nz§™ëmš>LlúMxŽG-3å9´DD’Ìm ì÷d§*±=.é!f´…õ‰èž±þsT>ÞÚA1B½õ¹ŸÒž¥Å Û)_Pa’‡ ¦ó¥QÝÕH"oK˜pïÓe„pdî‘H÷XiÚ¸%‘FèÌsÇmYœÞopx¤¸ú†ÕJ¿&Tšæ'”§K 2ý×ðf"/ž¹YàØi¾îs»&F}’gj‹Ÿe/s¬c6»E'ç`jŠ1ì;ÿËYT¦el|¿Œ%SÓúë-f~£O”»Z<É’DtE“”u3WÂ^¤³J<¥Lxà9ORa£@šöüsŠVÁÓ[z ¤3œŠ4>#ì‹ÁÑ!¨Äï£@t[N‘xÁê:¸_é™+Љãi¶úý}¦.™P¤tÛGí«×íÁ]C«_ʨA£]¿˜3ISák‰Ðžº+ñÛÐüoñ*ÆhZtøÃ¡jæ»ÃMÒ[;9síZO—›~ÍDÕ÷R÷ŒEû4z€Ên)6ÍK«VõUýÇt”$¦ñ«gØüB&xg"o"v‹‰tH )¶¾\/äîëáAÆò— ©êç¤X² þ6@2e­dʉeqŒ´7‰ïB˜“Js›2ˆgðh©µ¡8'eò ¦jÖ'†§n)Ÿ¶…}yëE‘Êe«^ÌW Ó >JM5Iê"àȼ^­qH85"=aI¥üö•ÑÜž]÷kå;“Ü|!AíY.ã.V…ŠYz~1t0»lÁþbá0.ºÑ¯²A—zõ±hÇz˯eÇÜÜ WR¸áÝ?³¥´:™›©S<*·¾ 7{AÓñ:"ÂìåJ«­ ¸æRî‚…œ#a˜ìéNÜç6vFùð'¶ê¸/Òüb|ň¹ã9OfjÅ zw‰sgºC¼ïÕ­ŠÜjxÞïÖÄ3eÐk‹ÄJi·^â—ê_8TÒú7ªˆû„˜ó²nâ%p<‰öœð/F«Q¡TÁ§vÕܺ›)8Hgá»Ìå„á"[“y^5}9J°ÑÎáɧ¦äWÚEÄá>Fô¦}øÝ@3Ö5ã?†!Ž÷Ù1Ô<•ê÷,Tç¨/ºù·Ú îÕ–kØŽªÈddÖµI™–‰ºåMÄ{²Sc²(;"š&*ŬÔÓ‚ “U'¨·AÚù=ô¡·VôíÚ8ÈÉYþ™ ìÇù›¢Ûùä:•}òVÄö³=T‰ŒÕ×úÇae¦ˆT_[ApÂòsõxïó åbNFL!–ÕbʵQB‡‚:º°,ìû0u}ŠyÖ' ÝÜGú[\­¬ô* F= W°ÚKéMª¼fef¸?¼»"Åü‰4Ê—$¯Z/hŸ{¾µWálTRÅó¾SD°k3R¥É”ôÚðÞj¿#µÓ#RöÎò[_ú§–Ñ7·/­–XCØÅr/a1Væ²jך!Ña\Т„ð½*Z¢ CCqd¿ƒ óи4­7ÕBЊxŒ]CK0þqž®í5å’ƒ[‡h+µòÕ$å0£“\Vfÿ7ZŽaÖ&µX¬©¶yÍý׉No> ,åÌ[¦ò×Y±½µ•"‚ï_ʲö±ì%Fðªdâ°áRU'OH~‚J+8ÅÆ®œ ¢^U]í³°}6˜£ýèûâå›*Ž«i)SËeý×BýD@£~çà 1%Û{È9*Ø AWW1‘'%|K y&ø‹}»?$ÍcÚ.C×¥pƒ"¯y/Õ’f$Q>[80m‚Îu‚p^–I‘^¾)°gX­t—îrêY«¿Iê¹[C4äÑ.tÒ›ñÚ&z­àµÞÅ·V¸‰œIã2?M8f?$´GÉ-à{5ŸA ½Ñö€Úz•/Ž£i8™§ç÷¨éª_QõWÄ/n~-àU}V]>JÄ ²Y‹ÜpÔyò«ç¸‰Ö‰œH: AúbªBD˜ðBØHUþ)¨0åÔz[™·”FzÒÑÃ2$"ÆÃ­œ«ô&oéSƒPÔexúc‰`Ž7µïàç€ËlÜY»ÀÏ’õþU­¢[^=ÊéÑÞö€‚•Ô; Õd#S0ô\L,ÄmŸÄp©ŠíD_𾟯v"ͦ>ÂÛøÊëq5üspÓ<C¿3å˜YA%/Púƒ%Þô% ®ÜBÚ@†°p-—ùÀ#ZU…šÛ æ>í>™O](³KoôÜJ!Cú^¨Õh¸q’;áfH ”5Äj.6 6 £»(1 =H†ñámH,µ–a¡DÔÐ <îÂGyÜaŠÝ~ZaÌh%¯»o4Mp…;Þc×Û¸”ñÑàÞQu·ÐAiqé{†é¿69XOßÉgs„R4}K"TJ°º0bi O§kþ¹`@Å‹ç/ûtjX0|ÌÛ€Ü* M|AÛ¥!ÇE¦.ûnMR”ÜFPò»©ÇÈ0+ºG`}ïý|®‚ÿ“ê®y„9¯zÞé´r¬ü§äÄôÈŽòÌbºúÀxŠ!”eô€§&¾ÈI:ú:æt‰ùµ!Xo»áü 2àÀ·>ú'Ö뉻è­Q:Ṳ̀ÞúÔÓH• f÷ËðV{KxÒ2 ,±oñ&Í æy&ˆÔQóà¶Lcè·lT•œÎ•4÷ü Ê!`7Uô¥¢cÆÕ¤ÞŽm à¸=ôK¥rìñ³;JÎN|¤èF£ß ‹|q4ËM€ùŠåeÁyì©QPTq mdÄ´Ï6‘(3fv{Þ²5\íC€V›´‘  *©E´õÇ8 ¥†Â8)(@CÛ\B~+µ¥Ô;ŠSì…t]e§ù¹ŠÓÎ`'0™L{¾ÒU¸ÞùñA륣vXT&ýâ¥(<1äU kÀܵW„¾V‘ªÎ­ôJO/ãV㓸ŸïB)~ᥕTHÔ Õ£OxéWélZ>b¢#;èÝÂÜŠï¢ò8ëžj1yIö2–ê!!»J4’ªi+¥ª_ws\Þ¬#g:»êiÍ«'1y/©)çr»hÆ·80iwFBÌü­gO\£$<“ˆ^¬œzÝÔ²îâiI8ÇŠº¡£\9ÌÊÓë¬ûðÅ&)~™Ž‡’ð‹)ÙŇ_°ùÙ§dÏ©±È¾.YЖ’£iYQ3õ½6 ³R}æÚÄêž>ØÇ ˜RRaÇ?œü¨ô!Ù•óè‡uCÔ£^ȨˤG#I¿°®êÝ\º æ[®.ê†LÃß¡‡1Ñ{D ¿þ.ò¹ñ{H@Mø` ½ß”دöyw§§åâvÇÕ²h×X_Ìu´_}x‰†WÃ=J~'W“`¿åI\î·ìúœaUoT]¸à†¿Â£LþÇF|7 ¨fMå=›x£ÈO‹•¬ãþêä+_üŽyýíÔóld]Pš-Ë/­pË­M÷ y}+0 ÝrTÏGãg)G³-c=|Lr.<2¾’W¿#h>œRȹºÆ3yd ”¦ý4{„/¥•­>£dÁ ~¿r‘`“æ$é6a†?˜œ|>"Åú¹ÞÕ }¢ØË'Kw¸~C_Ym£Êš}¥0D¨›sØr§rÞT"-[[pÄ˽’}K 6.âê$•7H¿à-.$\z³ Hå™uh>eÎ7Zí·(˜ïÍç õ¶8¬¡ÈùÔ6}~mØ"¹¦cgöCÛGHd.Y}²(n#·Ét³1tqÔÒ²C4+j‚Ì&#Þ˜{E{ÿbÉÊŽðÀ<$åÈLÄþL.ñC1“(ªž9×5¼â üœ6É%§GòÐŒ_=¼>ŒF~î_Ä«ò¥ì{ÌLuÇ;UãŒÆÞvK›3™Y?G{k·R9‘¥OÄ!a‹ê:ÉÄ™÷£–„äC„Ëù>¤i©–× ×9u>n$³’ÙaÓ6麷•ž7v u’f8ð(Lr¢¹oKüê~f5.>R^wUöŸå¹î(–¼Oß Œ4šÞPhœiØzÂãïëré9’“ùuÁW”7ò{;°sÓe.=¢ãÂ=rû”|§Úe Pé±gÄ«"r¹Ÿ*HùlÌ+Žj‘LÔhùØ™¯Ðd;º¾ÿv’{Ÿ_¨ZBT¬ò¬xvNx–¥íwUèx/$[妹ÎF¬Tu»±¥IÁ„_km§ôkÞÚ p°n“µÇ\C$54ºÖ@çûA&Âl´±vãý݉ óN):ÃÕ—™€êÌèéŽ7äŒCñ|Û³ŒwÏr¼ÜÐÍiLäöL,9vÇ¢[BêÑÙƒ?]5Tn©Q›ÛÂ.Þ̼ü…ë§[8‰=qlÑÇ~ÇY¬kÜv‚Q87 9déƒÇΜkü"ɑϽ‡0kçd xÛ­É6òµ$Î>A¸&`ê4ØC£çMËý¡t,èY$õ /:ŒÊy>?£d®1ìã¼i•Žþfyí ÿêDO ãÚ>ωϸšöu#—y4õjî;q¡mµkŸ¾¼¿Ÿ/®eÆ5?Yams÷“6T øîIM]Ó!ÑþN§Vóu†$qò†®t$¹J8ÍO,øÔPÀ·"ÙÁ33—+íC‘fÙÝ4¨QÊ+mÒ7ùži køYݨÝÁÔv£·º¢¼‡šI%ðªs§&º>½c®À ¯Uµ(Éêø$Ô(5òUð¸}ÖUÖ¯Þ˜GàÉÎݘީK:ÙÂiÅœYûz‹Wg»µnÊKÛC(8¨o´ˆ–‰Nråk&÷Onì/]R l¥>dš‡&äbÞiV³úÙ1iV†5 Iác7(8¤¨ŽI£dä„o6]½=G[JxÇÜeëz†ÄÜþD9Œ‘ :(f’é:VÔò•&îS%֧˸}ëeWwg akèC]$)ãH^¡h4ÑyiO“6¨›H曂ËôןGe$žÍS6Äð*Íç]<÷ˆZ‰ß¶§[;2^>„ìÏÕã¤QÞ%WW›ï,†„**ê¶Ä0Ñžðö’«A o‘öÔhÑ™æÞæXÕe0¿5: Äê·Oȶç“Í’Úb¦ 6­]Ú¥Ôö“´&ŒÜKe»´±“]Jbñ·x¦i%QµQl:Ë9AßóÆmjËqG…>¡†]¢²†G§e°ERmXÔ×ÖxA›íZ–C=ØêÛÓu7$E!,…³DãCnü7_&ŒÔÕƒä©i7ºwèl)H£ }舎^ìH Ž¿æd}±vM:!ÅÌ!Ðê9%SJºŒžûõÙÔã—tMmÉgXïi¹Ìo £S"“ŽGè‹K¸|Þië«Á…°¬ íb.ÊÝ+ÁTy-1ßY™¸Í¹Ï>Ft&a›SúGäîž×ÇAy·løP¯±°vÎjôÊq“dY£å×\…{·»†+»úÀ%ž=’‡eTNƽ~ád—èûçÝÎ"Õ|CE£„üÇ_~þœñŸÊ:-æÔÉÄà$—aÆoJxÕ;fÒ™ca°ò†¾@}¹ØiŽÔó˜h׿·mÀVÁ­wÂÜ•ƒ‹WŸÐnMh In"%ì’¬ç4P£’‰x?Ip”Ó›moÔBü¢ÞÈ1®Œ2Z)#"´ëϬ÷y‰ª%@7¸-'AjýAÛܺ–þlÉäŸäOx7_»{eÄ—°çïÖ‰ÊB¢sôdIÆü¿¡ñQú´#à‰rZW¹´ ÷“Ü:»ÔgDüö"˜Á³÷ʾºAjã#¦ü„ó͈Å}[®~îOªR?3žçG[ºð=ýjëG]*×½LÓ7”L­þ¹hXó’˜Öÿç.î²[ j)"Úv8¸LÕ'TL¦¼#@¶f:ÔŸ{ÕøÙŸ–üwrŠ´.xȤà0¦#˜¶·h‹8ÈŠÚÄ }‡ò”GJºÈÆkc|ÿps15‘ç±oë@¨â´v czÏôï…=J1/¶®“Bþ÷–vsn\Ÿ·Ò¹¹Åø½wžDû¿x·Ò9DÞwôŽú¿ÌÅÇ)ξÉ9ïéÑUe iʉHÖp>Çuॠ™üêÜu%VâHPs•6Ö{ŒV>ìàôaXâ†ÜXïZ…{Ä7ÖmaÅÝ:Nùí{‡BMÚ¨­ÑLj_mo_Iý I÷Yê­Ÿ(ã,½eý•¬e£¥¦ºÝà­‡û:ʯA´¡”N¨òH‰Ã,yÛš=l›QlÊß–î…ÖÔ 5veë'«Ó‹Tâ¦ú’Á Ÿ¹Àö.9*FÜbgiæ¹6ºæØ²®X‡ì:Y¡q4xDU:¦ß¶¦=ƒ;º'¾¥UÏ?çHfRo*Ý}‚}l}#ìIóú4ºµºÌç¶¶‘u¢406]yjD‹H\ËFòéXJãGÃ×F…ã,“JÅ+.·Ç3) Kù0Â|Ý€êžð>'¤#!Ù•³vEŽa@/ù×PúwÏÛ˜CN‹R7H‰šÐÞØâ”é¼G2#lð ü&|on{U"?ŽrïÙ¦œž>Š, ™4&¯9ðæ«¼)íÎKqž`mÎÃÑĪS)Å¥½”°b&¼þÈ1·W–u§ y*’ kÝÒ²Úõ-IB­ËgÔ›Çwñ½P€(l=;–NwO²Õy!ýÕ oQÉ€ýåV|O°gۥёS½È?ÖŽT8m±\ÞJü¥rßc$OˆÖ¡Šv…×¹mÕUˆ/y—ÄRDe“ˆx·L4‡³6gN½Fþ¦zy]6Ÿ)ö { ¹ØöªU¤ð¼9A #gÛÍù¢¿'‡l‚H[4ÍǾҥÑØTå]±‰Œy~ê¥LïKª ±Ì}¨-ArÌå‘ԣРFIÓZ\nýú²Ò’R÷ý5g$¹ëø±^͞;c,Ç_b“¸_–7.ËBZ¿Ëª1k§çg”96£™Ç›:Ô} ¶»8e‚K·ëÔnAa2=ó—ˆÜü'ç7|é¾ïÏ`V‘öª¡odÎ(L¥ÑS(7{õåб3xo±¨å?b¼ÓÜ`bº ÅËð.K¼;³ÁM 7¯ÅW±Gí;°30ÄÍewŠMô]Â-"²G]<»­v)Õ?ÛF¯|Cœ›ÞÑÂøÈe††¸ øˆv£ÐÿV® Ï®èÜ0¸wrÓ/õÍøl{Ý Å‹³µÁÌv9æÛZó4ȱ°EঘoÁJ?›‡ó [Hùø1ÒUÏZÄ6JÓfÊb}zzgû«Õ t¢ý=A¿/Æ©ÛÀ½fë}ÔLyäs˜äðÖ©íg+vúsQ™°üT–xBZ ùì‰xË !l[‡®¶YÉÈÌþ±'ƒÇÔ›È:¤ËN—"Ï&Ôµ¾b] …Pʆ’´¤úø’£ðGq¡SrþØÀya'àí´T*Eئ{›ì-ò‘åB‘Ug©Ôûæ ×ïÓ²>ø‰ÈÄ竌]hØÑá¦gÓ3‹³ÒÈ÷¦fÑ!£ ×-iFC‹/²?3bu•¨ïkÑ>7^Kß``\}[Ùº{ dfzœ)ù¤Ð_ªÜ¸d¤¾d–ü²–t¯yŽXsy)!·ñeƱNaFÓšvT¡­>΢ØÂc—¶—Ê’“Z²cRá7J%?Wø Iõ ¬ŸÒi‰ñH—ïgTzˆ©{­};Þ¯¯ôÎ ÙÞÛï®ò+OWÄÆA|¾á;z‹ym†©„m zŸ«K´Ä{{ š,å!]Ë¿8:Òƒ™†ŒŽ¯s·c²Üb,ÐïAšÃ¡œÝêýÙ½€BÚ¡µX—PMR0ÿ$Kr=x½Ó]°=K¥«w³HÀû½èÐzÜtˈ‡ Ó9þ€ÿii13zq1¬a°‡ð·!—HïðzNfol¥–.ÅÎÅf1‰3ëi}qórB»!I«8E yÂÒ|j1ªÄ_gšRÊŒŸ<ªË™øö‹'Ö’Ú€1‰2òÑéX”\<à….·÷:‹xÖ¶XÆ×–k!ZòÛ«ŸBÞ–W¨…•²´»?ºê׃ĎX‚8V³:c ;T<¢î ±¾ÿ¿]»SÒé*ò\@ó™SíÒg nÞɪ7.ÇRI¨Xe‹V¿b‹õdª¥§<½˜¹ã§ŸnpµÓq°’®îƼüÁ $!56Y9g¾ýŒ¯ˆÊ⃲3¤|¤×W5tÒ¥µ¦X™ÃײӜz•˜"q€òñ1–T诂|½â‹Tü×ÓÈ„âqÐ\äŸFFÁ¯uÇIü ìCÄ„N({Aȯ×Xõ‰!q!íŸ>§‰ô$z Ô|N'6wÁÏö_V}\KPEm;i׿îlÄõ•„´VF‚çÓo ¸œ3\aÑkÆ( ûˆ?Ϙ˜£Ãù ±>ÃöHˆBi“L+¸—óÆ9g©Ñ¶2Wá¶A—Üeä9¾®˜‚D¦ð̽ iŽj‰ãX&±ˆ­ÌàÊéÕFfŠþ ¶ —P ï*²d˜»2I2ìPÏ6ºi¬æêT{{Öo£k&Õ†’ƒ+ 1õÀÉCV~8®â¥’»iÜ2ïʾ“pN >˲÷"xîœeÕMYºÊ ûàL¨‚Ùí²ÅãYgív)Ð_$ÍmÅ1|F¯ÝÙé7 \ øÒ^x"O½àÛ]‚WÇ+ªâX@S` 2yUÒ‡ˆ|bª7— Å”h>häLW]Bã¡?®šÈQ؇›Eï¤aKé1(“IZÄê/’92§îŽr Ï5<ð¡Mgηæ½"ì Š¼õ¼9#·BøŸ¨ø÷…Û¢0Ü++0"›ÍÃg3]•Z1_1ˆ3ñÜQT¼”Ñ£ãh­«ë9·ðÓ¶SÁW=zaβGì`F *ikê;èJ~948JßqMÊX‹¤£îLw!lj¿Lı‚v¤FÐðæiÁhÚÌw™A­¡¶«ò˜§Å,0ê±²ˆÆ(â|koˆîKFŸ/„®ƒl3¾TgÚ_rµ¹•205T Ì hBû`¬X'¬¬?ûlëW4Õ ÝJŸ×˜ÊçÐlEú÷ê·5A/’×zŠb(×%g:oàõÜŸÔßìŠàý-C_"Á☂_ýÛ=ao endstream endobj 31 0 obj << /Length1 1540 /Length2 8359 /Length3 0 /Length 9372 /Filter /FlateDecode >> stream xÚ·Pœk.Lp÷ ÁKp îîî. ŒàÜ=‚»Ü!H°@pwÜ5\’sv÷ìþÕ½5U3ßÓöv÷ût×7Œ´Úì’6p+æÆÎÅH«jqñ€@ “‘Qìý-ÆdÔ¹¸‚á0¡H»€,Ýe2–nvªp@Éàâp½ââÜ@ à¿ á.BK° @• ‡\1¥áNÞ.`;{·Çcþõ`²fp ò³ýqHBA.`kK@ÕÒÍ}<ÑÚІ[ƒAnÞÿ‚IÄÞÍÍIˆ“ÓÓÓ“ÃêÊw±cfx‚ÝìZ W‹Èð»`€š%ôWe˜Œ{°ë_rm¸­›§¥ ð(€€­A0×Gw˜ Èðx8@[Q î‚ýe¬ò—àïÞ¸8¸þîoïßÀ°?ΖÖÖp¨“%Ì ³Ø‚! €ºœ ‡›—ÀfóÛÐâ ô·ô°C,­ þdn “ÔX>øwy®Ö.`'7WW0äw‰œ¿ÃNp'€íc ?°-èñÓÇÕÒpsqùùüSñß“‹ `¶vXìÀ0ÌÿDƒlÿ—ïö¹ÇþþüûÉô‘^6pÄû?æî—SSKGVWŠõ¯Šÿ­“’‚{|ØyxìÜ|@€ /€ŸWà÷ßQ4,Ágü«"Ìü+ÙÇ.ý+a¿ïŸéïÙ`üw,5ø#iA¦ÿpÜÈ´~üâúfú—ÿ?‚ÿŽòãøÿ&$çüQ3ýÑÿÔ–P0ÄûoƒGκ»=ò_þ8°ÿ5Õý5³ª °;ôµŠn–s ³ƒü»`W9°ÈFìfmÿYþ’ëþ2Ò€»‚o;ø?ºÇɲv|Ü®Œü£=Î) ³†Ûüž0n¾—KKoLà#‘¸ùø>\£hòúÃa' îöèx,Ï` wÁü}£ÜN­ß¢¿/€SçßHÀiùoô;;N›@.'è?ðÙÚþCËàÿ 8¡ÿ0~ û|t†ÿ>fáòøÊõð1+÷?ð¿aíîâò¸ þPõ±KÿÂö䲯\˜…[ ‡:Ô†¶_UKRx²ïŒŠN1îè§1³û,¸t¸ßà¢%3We¯¹\H&îÁ_Þ’e:—X¤¹÷ùÙRÑúV³íÖ÷ο˜"Ì{ QJ`ÅôÛ‹ãyçc´ÎýúzæÕJ…·k9¹Ò9á—‰ç>RßS”Hç|J‹cð›9†¹ M÷¢0ç•h™Ìv?ù8Œ*w£Éì]¬G?÷…w ½ ôCE?z%×.]óU?ÌPÞ«[´ªI OúLÀaˆotÑé{5㾯4Q’A¶ Äùü¸Úýú©K*1&“žQNÙ?6w/íù¢îGv²}Q.Ÿ¤ qw×4¦Ä“å òðQ–4Òù?â­dvM³ˆ1G?io#'ŒÆ…‹\ÅÎÊé¨nÞŽé½+UU@Ü ßž›ð6’ïH²>Ž¥Õ©6ØH½ô³stÌV $ÝÃ!I8÷©¼ç”ô‰¼» × Û¿&Néy¾¥?³{Îôý‚ÅkÓ~²}7¢JÑ3Å g(Q$GF`öÈGô»GÆÀć{EjŽ»°;øøJ¤n­©ªÜ§F¶»µÝVý±!Çl:u34Vè«C:¶¨/o˜ln(µ$D˜Ëfï ±…RviǾ½ ¬g͵³]Ô: {+r•Ìf œÚ¨Ã{VÑc.‰€FÔçU% ¦2áµÛ;™¬?ø–9¥áúM jWSÕžÕ°è%«ŸžtÖåWÀ`÷F¶E 6›¹iYLha3ìÉâ†W!0¶›u2(núÕ æé~à$.@l¿új÷ºCcï9Üu,¦Ù?è$ZôÕ{SšJ¤•Èi‚I?Öý»· >Ñòƒ—CÑ×x¢ ìbŸq‰ îý%šÑb¬ñÓMGL•ž­‘ ¿î¨ÅàÅÌ;ž÷ÍQ+à”œgp“¨uGXžËÚØFÄD¸’eÏȬ¢á±ûx›%k¶'mA)ñh=ßÈãʬc u|ÏÆô}&Ôe¶üô\¢gÞмm Äí×õÀ€Ê;F‘Ôxý*¹ÓpÅê±³>Šë—1£®ž´cI d„ê,‚ªC“tˆ5ùRD±çú6ĘmKR`¦~6ñQR‹uÏÀ¿:`¹·%—z–èêô¬ö‡l¸ÑžøNÚ²¢±°MÜÏ âØ{ó•Xó0¾#°ÏاXåw`S÷šŠh:_NÓql^ü¨üIS3ÙïÅ©¢î;„x'ÒRœÀÄÙäî÷÷ý“­ð¶ §å1 ÕÝ ¤[XÙrÿÌž~D„M»3I= ûtlÅ"é&ž»wè@fEÀðÛ¡@6ê°ØRÅjªƒª9GaìK-*¾ÙE…Šï&¾oöáÈ×h—»tŸwX úCô³€ÊÃ2á:éåXu‹¡òãçË:3!‡©ÛŽW¨üsŸ¦Ùó‹u!ýjP·Í”b®AÒ¶•à¨ÃQÔú¬nÈO„%}Çh ’ª¹Œ “"Ò"w¢·o[A%ÀÝíÜT6_‹8ïT=»XðÕ•‰^M/Ÿ‰aÙgé[8êžÔð‚~Ì©v¡Þ}º#0Æi0¤Cþ”¿C+TŠÓÛóÊ€;èÒ_H/¦Ðbvi/Þ=©ïîeÑè—/äúH=³%©øQù‘&×qõ-òj°U›Þ9Òð4Xkã°¡ÿ—áð—m¤XÁú¨&%Mïsp±œFw+”øøÊ«Qí^!ñ¿ ²“W¨Œ“f z½0u»XÆÁž¯ ²NŽ>BŽ%Ð&£´º`d5_ ?íEªþ¼í)8ìsŸaÿ–è:AÿÝœä.Ž7Z3%hIÏLº%ZxJtss…[’áø…ãâðvG¦˜ XJ¶Â+a 8Ác}Òö°"P;\¿ƒîH×se'7›×fMLäùªƒ½ù!ÙäR!KÂ:‚‚Vç&Ïm޹ыîÈqšÛ}»áÊdªuY6˜V_Ò;ºkž4»¿rÕ1¼³W,\ ††™Ú¬ôˆ|Àæ%&$ª?/;ýUØr‘ãÞb0*ª?¶(Aû¶šýAïzæÙ; "N±WVü 9÷/¾)’£²E1€wàßyo'¶z>r,N}á.b–Я,|¡¦[¾Æ(<}º˜Æ •e.caÖH]0.´…Ô³Ìj¯ œ^x¶g&’$B4õ§½YîAÌ€Lnð-W¦ ’¿Å±ŠÒ­IÜ_ÚAÙ~Å?½5kòÍ:”ÔiHnFãÌB­ÿÍBµ$rEëW d!î=¶¿d¿Ggߘjj3 ÌÔŒŒL§OSxäpZ‚ OÒ]œ¡™±ÞÞ+j¸6 êàâ¹êðjÜÁ3xÎÈmV=ˆ0PÙ¢ë{Ÿ¶’Ä)þ2؈¦êÉgn8ì\”ÔAsm ']í s°jÕšh³ÈK-§õ3%{CCíUÔ¥ýbÛ;÷øhîyL/l‘{Ç­Ý%ðD³D{v¿þ˜qôP©FzúÓʉ¢ŸJW|”¶ñÇÊ{匵ïoKy™Tz©’v+cR‰r9J*èHù¹T½±ÈÖÉZâ-›×P·À§%½4¯x+ÍIoÂfƒ]VÔðjàŽÈ’‘­ é4“ñÏc"×Z@?ãþÌ©|Ê€ª “–zOPIoò©'Ï„NÞ†î·<òTÀð â7uçsÃä…Êe‹0¬+a܉ ȳ¬tþw/͹UEõIŸ+0øŽÏ½`oY(;CÈÒª» `iœPX·›:9[Ejr>>Óü‰9ì9‹Ôý¤8ÎWfÜ¢ ÝãÞ.½ôˆå¼N06Hÿ‘®è¡ù6½À¬áGsû[Q;¬¢Š¤¦coæ½|RŒFìHqãvŒão—bè¢N‹þØÑÑ¥ÊW*Di£B·®%Ö‡²¨;©¢}Þ˜¾Fêä¬ë¾l³Hƒ 2ÌésÄÜýÒ—í7Þ j¦æ<îðèÈ5fÏ Çø™ÐtzÖ, ÞøòèzÜ á5¾”ÐÖf‰¯î‘Å@Òǃö©6\ €¿Dg9ª£Í\ªDí9áöƒàÈÔ{r2%Ý aÂàýeÒÔë_XÞ;݈øÓ¶Ïô gž¡6¯s•`",0nPçê'8Eú0mf$2è^ ±ô©Ç(Kß6÷t«ekR8®—ï†ä¢BZ/ ½Å³×K‡>ª–Ý“{°o-šU)‚ÞM²S !5¥Š‹×ëaÇAÊåé²G¤…ºòKQËÜPö˜4'ßb&Nò5†¯ê”ŸvÙŽ]7ŸeX‘‰TlC–BŸ*¸4æ”N¸t Tg Í„5Tu!;û°ýZÉby×ÈŒ{D¶ Ð2´uØrOÆì<]4²ò¦"x+è/ãi5ÇáõOóáÇ\†˜_ÌÌ~ÜäNûrr´Hø².;sû¼‘ÀçK00ì¼-ÛôyyJ’^¨Åèd—¡Í2¹šBRS †Nš‡ÓX¥.1c>!+eR÷Nq_ç°@ŒÌö˜.—|c® ÖqôØà{¹å{5ñÝÏ/¬Å©Ì‘g³ õmJŽÄB4¾Wuh2cÚç>OǪoµxO߯&•D$Y#¨lD=CB—¬ëIÅÔzZ’á?(Ø.­Ý¦ÚUÓzþM0t÷; Š’q*ñà„È3yu]^›Êö:Ï2”;&àî¦ržM¡TÆÔAµ|þÔKDn»ò²¾J­Z¾ˆsʳVšÞóØÃPñ™é¹é Døäõæ/t¡–ehÄsŒù´°q÷Ý8´Næâ9ÝÖl#þQàÕ<šw"Å‘³Dl¤TæǺ¾égbR•!øûÚ²!žkÁ¢K( «º/€Þ¿·eP>åCâP,òM©Hp ¼t1¿´]BŸ<‰/H†˜ÔD™Fžxfù ÄrMY‡¸k€+üùv“UÞ0øv_óÜn¦x‹® vÄçÏÜy½•UGBmúl·ñD‘ìžmìSƒ î͜΂Žõëµ{ &ÏqMëðr™æ@˧›ÝØÚ8‘¤À3µ¬Ò Tiñ†–u5ì &Yª˜9‘~Õ„ïç¾íXü:îC¶Vú¥Ñ6Ö[%}AÑ%ûKÑ{8ÍICÓ—U+òÒy½$Â$~Í6PU/â3Jc˜š”Ÿi®á>í†Øõ€v…ó öfWˆ¦Êé›9™@Žx…‰Êr¢×"±.zJ¼þµ*v*BöO&À±¯ž$]2ÆOÅ'§lôg3Ñ*ZëœÅ%˜ + ‡¡7³XNŸ2ã½Ö6½Êµã žx£û¥[ÏØfðíàI½bÞMõ¦FW`$¶uüÆ÷Øx#Ž!’ª=5óA}ÈwšŽaØ‚*©Ÿï¾J¾Îm’¾Pò8gÜÉtÕM2˜Ïxµ¼Ö~ÅÙ¿ÍàÙ—*WMl¸ ‘GèÿyUžê¿iGó-±¶SïƒrˆñŒ®®ðy™ÆK.Œ­–ÂhroëCM¼Ih4èÜ•™Ð`ö>A üó "+Å‹Ã|iºA±À‚­«\±ìBŠ­í‹Ó2¾¥$£G€žzšì ½ žeXÚ”cõÈ1ºÅ™ƒkùÁ¨ý6£Šº¦Ûtr-C¬‹´%XC=2evѺ;¥ª¯‰V’*}!£ÿ&ý¾tÄŸêGûÁ…Rï?=k}a6pÖeŒe±¦–ZL¸€nñG‡PëP—ö'®Å38Êb÷O¢Þ²å0[ [N½8''‹­ø†ÆÇ´6±|~ø±µK ]%§>_¶O@±ºKïtÔþÉ‘¹ýJáS4¥ÍÌÒåUc‘n õý˼ò— ”Ó0éÃÞµ.óž¤~VÊ:ÑK­†{4(i{î:~íi"Wô¨²ÂêCÈ”_n¬M.<^Ñõþ«Ø¾{E à‰ ’lXVCšdEÍc-»âæýDJˆLíI¼„#$V2hB ìy’?ÊêuYu Ãl}eâ—³_ n¼]"74;Ó¢ÏÜÃÛ("Oþ}¥Oa4 \•SíÉMD.‚†µGÏQèn„?£9©;OØ0{‘SêÂB¸62³éʺQê!Ja锾}1P"‹U®V={Óš'Å`°óÆ…SÕŠH;Tòà2FŽL€ãj%ö9—µx8}&)mô²”(jÍÙ¯þÍSÒû¹¡!yØM½ŒsÒæOÔ;ÕB¢²iÍ=%+üÑŒf:™S ØŸlOÆA«† ç%/¸Tè¦M™$ɲZö‹©¨‘œìÉ¡oTÁ^ù·¤ Ÿ±¡TöE352íækê)–vJBë9ë,o¹§e,@â,‡]yKÌnÇ|ºG«R§$á5†\‚Ÿðrgn<ð|}¡å«µ×7cö6g«e‚—F€ài,i‚ç‘y©ï…bÃKC~6ú¤oÅH¶£jCõ뾦šòÑÅÜ»Èz,ìDÒß0Q.ÚçgõêtAtð• [Ó;¨”¢üSox¥"ß³¦y;Ú’.²ïûçT9Ój>=tsÖhër?Æ:WZñÙ­J°¥ïMs¼?¸[~*›’ŒŽý9Ú<“Ð|òAÀ[¥{äæÁi˾µß½ð-ýøBwš?#1¤¢:½aº ð†¡Òï,S½•„ÕŸ#F ÊÜhiör¤0N†ìZ†¦ÉI¹ˆ4õ (ª^·®Y(WŠöEmÿpܘñÆÞîÉfÚÝQ­6ŽOi[ÒÆ¡…à`£äŠE9=ÇhèºånkA–5mÉ“Näü#`Ùcª—@IvµÓé]¢*Ýþ=’¶‘3Ù 4I¿:-K‚~b>á—QØ+ bÉ2täðÜ~ÓÆz€`X3XÛYÜi—îÁ§öç»~+}³,ê%ÔxŽ:Î sf$r’ñ.\DË´Ä–VAbßUi¬sDº÷¢“æ#2ﻥ_oÝó¯e§ÝÏ'¨çgŸÒ(‡ÿÂ< ßM,Ç o#í)óá$ž©|q[šäT'¯7$DxÈøÊí]ªË‹¾0ÊtîãúóZ™L‹\MbôÕ„WdŒ)ëòMÎôî{ou…Âó]9™ùh¬õ‹5šMŽøé®4Äå £p ±d3eŒ³õ^íåtB4ZÅâeÈûâMµ9ªÕ^1ýM¨~{É”þ }Hp0;­¼ªäL×âõBŠÞ.ÊFT·ÏQ\ÈGãŒê²ä^„†þ ã«ë|Íih dÿŒø¡$Œ9ûÖÄýÉMðxÄ×+oǀë“ç¹ÊeÓÇA.Ú¸±¼½¯µÑÇšÏWDÍj4xFœ«‚ä(†ã ÕD¯®©|;Lúhl…ö8×êçÓLYÏ+&f}Þ~‘ÜÆPMÆc&%×Ošê¢£GPF¿`¢ÈÖ%„?í ‘ž0—³ãßvlhŠtoF 7­8á—ÂV[Ȼ֓Tq™Uï¸w*F 擾KxÍÅY7!/³9„ݸR‘ñ´]äîîεÏ~Ñ/ô›c7B½ëó÷}²ƒ?ƒ¶÷…û¹-UÎÂ΂%CëöaË›ü4… Ê‘@îìèmŸèDVœèr5©U †«ÅÒŸ5Þ$Àȯ¼ÜŽ ½Î•nmâaln5“¾Œö*©§¼ë?1Ž0(×üd(^mÌ}dá qXAô]Ó²= H[ÎNž™TQv|!®ËAíQÛ› T"*È##=‰Oy‘{Q"甂ÅŽqýEaÊ$$†4U(­Ú™×úOI/šÌ]äNÇìR'ߢªTx6@!qž‘8±nÝi*¹@¾~žY<{-ÄCû9˜͕ϥ·GzAIG‘E[Ä·üûÈ-ÇÅà”ãçsÍNšÏÚ`Röï‚>Â2²&˜nž¹T<’’­|hù1©V Ô´ç½›Ætu*ÅÓœ ™ô8(濼Jš áÆB O–žŠ c¡¿l²mÀ6¸<튌A4µ†[¼,c.‡$ãxÜr"ÏmΙÎ[¦A|E³…ôqlï«}µ¤±¶[_77 2ÛÓ¾¬¡ë×3Ž“L«…àu'åë§ÆšèeEX”8÷¬Î›UÉO ·ºxêxJóS*Ä•ußÔ]²¦îõ°’3ÆÏjfsý0ë2×ͼ~8¸EtŒeßè‹7“!#³h€s5ÙÞÜí*ç¥A° H²èLNñ©»Õ«âƒ#c†e¿ÝT?Ý!àQÉ1=Pýä{®f^ßõãÙaú¯±¤½=ô4ÏÑ®×^"/žò/ùbÒ± »Õ'ì—¼Ã-£áŽÕ ÝÚðJ(¦0 ´®4Íl òa]Ï$Õ£ÕÇçv!f^÷ÌiX½¡)i’ë~Ž„^}çØÜóÈg^²è·{!Ã8ž‡âxN·ÇR~ã¡óŠ9¤ìâúG•«TŠÑì¢h™¸Þ„N5×v't­ï‰ñWVƒkë/ŽØÅvßžÐv£kÎ °(÷ á]©Ê¹ñÓ@õØ\àãüWË{ÜC¾ã"9sð nÕÐ_dxýƒzØ}W¾W fìÁCs[5éà¿üì[ykä‚qÉ–®2®=ûéì† Ä/fÂù 4žJ §²zy©UÒo/|c<7ˆ’*ص¶>iš³?®¯yºRÉs^Íã6Ç ­L§¨Ê󳇜 Ú”dÎaVWp³Ë(¾Š ÜÕêë÷˜'¯gK¿H¾$ÂFŒß6®rbÛFV &ÒÞG¬3:°Ò@êªýÆÉázìR/ïmR,øîs‡*;}K@ÙŠöÍ0®Ñ~„âÖø4,F/áÙ’»Ø‚ïaºÓS²ocF:°2ÏžrxlC{é~TD³Æµ5ïÜð‹òkieyޮЪžà¼×ìl9œmfèò¨5Œ+1{æÂ¿hKcÖ¨×àUcyÅUš÷øwöÀyþ­œÛê¨- PS€ÞìÓX¤,âg ®a ºY»:ƒ ñ »°3z}Ÿ¦ò®:3²•…RêrÃÏì­ü[9m ¢ËV‘•÷n7¶òé:,e=( 6Uá"÷ ÍS”²Ä-°¿4ýr)o‡Ã—˜b|r-ä󓨰ðì'´“æy>Й Ø£)éËij ——øÄ7÷ 0iÖ³w3Áé/c oY 4Mœ>+ <èa<<½?’ˆ¿ìò9ÚŽÅ7È7H´èËpÕl&šëWÏXfá§@l/ª^Á§ t@+nD§€±<«Òä+Þ»ˆ ™uäjíñß)7}ÖPðaQ—ªÌw'†Ht<%ã Û,¸cå«1¡\×mÿ7z“1RNzwCÚ£pƒe¦ê€÷Rr\dGïQÂt=Nä{üð¶í¹ÖåùÞÉ7°,êÀ$ãæ¹ýÎ8tsô¨«{±QÞ™é®[ n ‘[%&¢³}íÏ£@ÐÆD®X¢/÷ú9ªÈGTNðÖdgHåŒÊ\¨·0ÎÛ|íç/ßJ{¾v"•ÉÖÍ·ØL.lµ¸’É Q´ê9 ©»4\¾‚ÊÚP:e/it&[‹’GÛ²µc,DÆuÝ+u}àX€ðÕ&¡IŠˆ(šX¸ŒüåÖ…0Ž£·†Èû©få÷jÉ6G_TîàHTUÄÕ‰ OµNmÕ÷þ]o‚Sh =ž¶ªçM®p˜¥F»eBH=7Þ®ÀâS!,áî$£y5§Û&œã*lÝç&wÜK½MÏ«„bNÁ«Ì”#8Ø(Þã:‹áß:¿Ö”2‹²]•¸úf6¡à7AœùóúyÖ¸œª=¡É;†„ÌåC7k×ñÊÝI¦ë$ÈÉ/!Ç$ßIlÆ' ÏkÆ?‹é‚«$—êWBõ¡·Íó%ËÃö,ü–ѾËÝDº…ý7R¥T>fVÀó Üç ØízÍXŸú°’Ö$ɾjüµOa†ƒ …'>®õ5ˆ!ŒI2Kw¤E-³e¼ì9i†Üù¤BìPHaìÇ:™òXöK¦„¡€j^ ¹ïBXcŻʲÍ¢+¢`ÊetU²b‹ü–Q°R‡²É]ªwJr;¨•èì-«ê¾ñ³z/Ö§ ŒjÖ_"ÏFÊ(e1 ï1“¾æÜiW™uøç5âËAßà©SdšúõŽw }—c¼3¾hOñã¶«”¥¨¨(šÑ†ÝfáXe¨[ ŹGÄoS)j\Ù£èR˜‘Î]oãJ·:rE"ÕÞ¦óìâ÷ú%]¼=q¯÷ÛºH4Ý+¹È¢¾Žuøîõ_Ò?‰…C `c?Þ÷à]*, ê“u° Y¿¨ôÇÆÚ$ÙæjÌÏW–Ôc“¼ö߇=ñ²«]¼ûp-":ßóê¤ç]VGñÒ–§B:¯'àÉa¹ïãØ¡tÄ<­ä)Ng Å‡JMÔàÍW½Q„Óë%;L²K›ÒœÝ Å3¥QòõÀ Ö­¢½½´Õ埛çiS–AÝc-γÎm!¤gÉÒ͡×nÀ ”¡Hô M5¼þåP࢟³¢Ò·ÂùC±w¯JáH14Æ@3'wgðœTÈáSuƒèû%žÀUa “WçKR1qBÙOø›»±ÛD)¢¦ezˆ­ÐÚPs»&‡m§"÷«ãdà-YEIÛ$®5koÞ¦jÔ7­ã¡FœØ%´yIq7âs:Íï¥#†nä«“& w ÊVâ½Æ „È(¾-­}ؾ4Ý›;Ÿ¥vð"€àn~h®‹“1–iA}¶³z/(>i¿FºcëñãìaJK¸šÅ¤1L÷è^¿Âwq© i@Òù!ž>à”lã)Z{bpÞ ETn-i!y…þú¦¾I*:’>Е¾ªR6røû©z ®Ór”o¨ÌVF¥¥Š¥“sm––í/uœÚI¨±°oKKápüùËŽ»•7„‡0dªÕÔcS—ÿÛÀ>§ endstream endobj 33 0 obj << /Length1 1357 /Length2 5945 /Length3 0 /Length 6875 /Filter /FlateDecode >> stream xÚWTl¿§S@$T1:6º»»QBcÀ66ºCB@B–‘ ƒé–4èP@âN}¿ï½ïwï9÷ž³=Ï¿ã÷{ÎÝØLHÅéÓD"ÐB`a,@ÍÀT‰ ƒ@¢@ 9íû#¥ZÂP^p$Bö¿éÕP0'S‡ qfH@×Û €%eÁR² @’ù—!% P‡øÀÂ]$æETCz`Qpg4.Ë¿Ž^(,##%øÛ âCÁ¡À‚v¹ã2B!n3$Ccÿ‚WÞöñõõ†¸{ #QΊ|‚_8Ú` ó‚¡|`Ž€_í !î°ß Sæ.p¯?b3¤Ú‚‚p78†ðÂ9x#a(.7ÀLG`äCü1Öÿc øk4°0øßáþòþŽøí B‘îŽp8ÁÝ`#M}a4-€ Bܼ8ˆîqÀü.ÐT1@pýýÕ÷@{ {ÁÝ~u(ò+ nÈG5¤»; ö¢øUŸ:ƒâ¦Žù½VWÒáÿçìG8:ýjÁÑÛCÄ÷ô†é¨ÿeQü-s†¡ HJZóÀ0P‘_Áͱ°ßJð/1®þ@¤À ×,îÃýPø{A|`4Êèÿßÿ¼Q€ÁG8 p€9ÃGljaNî¸Í£à€ <0ôëóï“[ŽH„öoóß˱Ò1UWÓøÝð¿UªªH À_H•À`1€îøÏ(Æø_U€þöÕA8!2ŠÅMé_ûüµ}Þ¿ˆÁøg,C$±0ïß·I€ ¸/ðÿæ¿]þ7tÿŠòü?ëÑôvsû­åý¥þZˆ;Ü û—‡Wo4ûHÿijûCW˜#ÜÛý?µ:hŽ*g·î¥ ÇÀáh¨Ë¨ü‘[ü"˜3FzÁ=(!0ô:« ®¸Gà ‡Çß*Ž4ÿL©€"±KTBA¡ X ÜŠq7 €?GCGæ7‚"Â$çÀµpB¢(~íS\ ‚{–~ )þêBáhõ{ñ¸¬ÿºÿæ0 †A)f&‘P¹ˆûõmǵ*7|…–Æ€ËVù„ügP¯¼O©IÓøj²ÃQßUÒú^_û¢Á{¤ü‘íܳ¥4ºõ‘ÉËŸgöɦ#Ë/)¦‡»‡Š6Už¿»E~SÈ\y%àÜ3À2Ô•°¿C˜ïé-Mm\HwìûV óü]ù쇨Ée“•I=ʳòQ¡‹xÛÐÒq`CÎ Zèÿµ= ÍøÑ÷±kyC—lºÉ[ bÅþÖK¢‰'~󕿢^Ì\ÌÖL·®}áöW]K×½>åÿ¬xõ!c‚ñÕÀ'÷T°Û¯ß²¡é1jýÛ]nà,/3“!½N\üb«vŠ{){ ‰xÎÞœî"Fç›T‹ƒ— Q üÒÈMªž¨r¬„}ÅþæãÝÍÅ•‘†A¡ Ej±R´œi¼ü²œÛ¾ìòãb#³´«…ŸÌø”ÞÈ´å-Î|ZÊ8¬½–wÏ6rSè"šøgɱ/ëÌ$§ïu=Ù¬‘Jé©]ë*Rì¦îY¦Xô\Ú˜}Ð’Jã™TEO^éNk­n'õ¾µÅÈUHË~Þö³Y?]-V+ûH?÷ð<5+*ÉEúÔùÉ–¨ I ìú›¢«+§j"—ùùy X~Ž÷%»]yô6Amo^ô^gH¢¾·ØÀ<ÍÒKFõAb2~š µž2 ÖW#™Ë^ã#úáÌ®LîÚW4=gÍÞ[s­îUdέ4‹~À¸}¬6ŠöžÂ´§8k­‰à“Ènq"‚÷¸tû4LVv±g« áâ—ãŠeXž¯¬bÃ/ïÃç…gÏÆXzJnõË=ø28à¢ô^ÉqÓ,—æ5Ö¼C0E¯nLÁ*\D9#ØMB­Ó£‡çÖ–ÁŸÅD}_©z–¤-µ ‘ºw”ž°bo-¿O眳oÝq¾90p­¡ü1Œd1//8x"/Ì3-F$ˆä>xžüFŸ¯³`¯^UHê!5Ò}RÑ@ºA®Ux v›žðV#kR´%­+½ó´HDåᆩò(ÛL€Û¾žZ¨HÛ_X­^«=Qy5\g­BSVÖ{Åx:z½à‡QÈUð+Û^4ÍFa V¿‡V¼1œa†’%?ñOiÈMv\«u3Ö@î‚`%Jç;x\Z°Nu^´W? K‡ÕJTwBá´Z\ýΠ]=s· B³)åE;æK§Ï3V£«³R&µ,7S—*EWƒúóìˆ×­“îÅÓî<Šâ_!’¢\ãÈ¥É'{ø1º2ýÃ÷¨¹€ ôÁ¹…ÿ„ð{{ŒN‡q~Ué;–{/’ˈº Ù‡I1u}ºí».»·òÜT. ]•5Í”ýHÀÎ9¹vƒÎzœ¾/ò‚êéå[þhÍÄ"”/»I:®ºòà³Ê]H"¦;ám¿vX›=âýL^hf\ ó.Ûå\pœ:ë½VΩÊ+£zmLR1¢íN9Uj¹Ópƒ;Ø[),üú„x,wºÝæêÇÇ5Ž—š!sît¤Í×jh\šóÇê󺘹|‹mktI¥:Íò5J;oÇ^"šú-“c³J£5“yZïmÄÃãߨñÍn>$IÜ—OxÁ·ô¸LRz¢\Gß"nór“$·÷4B‰0$Éßo5 —ÓÔ!,*h2UË\Õ;"p:ºßv´“1ç7Hú²©`d˜u½¹uæò%ÞK`‰ÿ³…Pv Û"íÛsÞ›] ê6Ž|Êg @"tÈQ:ç³™”Xƒ™ … C®gL`“ ×*—Š•·×nÖ¿â³î…îÎ1LµÅ)&¥ IvÞ%øà[Äów"Ö®¡ò`Çv’rx±ŸLš=ó˜®÷1Ä#ëÍÀJ§}fåFG3ÒÛo»«K÷4Ç Ökûž»ÄùZyÛw}™|mÃØ˜¢ÐH‘hÙcwóNE³¨°¢ªõÝß=ÓÔ–à˜ÂÎìq9aA¬¾}Äe#Èl-â}ºDëƒH1ðt‡{fE1ýÊÄ㣜SZ†ÚNÖÛì6_Âf¦ó‰ïôù9} üdzšD.ÎÇHÄGKâͰíseQƒË¢"³Ý6î…•Üf|.˨¨êŠäK®ÉâÒ•¸¤*cW¥wØ—ØËñÈV:yâïó {ý)ž jZ\€½ëéÍÊŽ3]uÄMA}*`é0¡€ÅXð=¿ªºûx€†¤ôÙ’3kÛ«…Â=¨Ý²+ùA_{¼:29^8l\·3Åfffr£zÕAW]ô³Ì&ø6*ý$ V>gÐ]pð´­¥_tãæOî/*Æuuì0°V~jéeÊ·÷V÷¾×ŸŒ¿!ï×+ðì%e Nλ”½ùîÚýpfSÍI#;TâTÓîÁp6ápóƒ#ÙuR’aÞŽ î‹ÕNãÚbU™j—˜xŠ“… ò‡@¦O?eòHñi‡ŒÈô¶Æ¶õ™Ïùܤ׌§WMŒ<Œ¿)(ÙJÀ! ÞÝ|€rÑ—·#U\Ñ}­ûBfuy¶#i‡!XôÇ}yv7ÑŠ§¯¿ntH°t§Õu:_Zâ§ô__æ'§_È–ÖÉÕ‚Úfo±å”F%š§oü`˜ÿI'“sS}”w½J0&³[ðØ 6Å™ã»m--5Ï^?X‹LöJiar@§^ R-4,2f;îÚÓ¾íÜ;@Ê©ú8ÈÀš,}U”ÿœ—Ú’ºuxæ\«­n¢ ¸ª ä—T:Œî>O†¿m´s<¤  —åͪm¶.ì–À›”wlrlêH)æŽbÑi£K k ûU{†^Ñt{Âje„÷c%ýQAu+ úñã˜fµ0DÕ¿˜,&öëŒÖK Âè0XºRø’ÖÉ´’æ»L‰÷Ÿ•ß±lç,8ùÜÚœÕbpV¸gWrÌßS8õTæ m ú„I‚åþñ3ÆŒÉ5˜UXš6?*à'QPBÜyΔ;Â[E:õ¶ŸW1«Ä(TÔ—r]^²@ͳ/«´øÝ°6½qÊðV'óåÆt½€¹k'òºLõãYYšÅ>+Û“Ÿ$á«Ø †Ô•î×Îßðœì”îKò]vcž”cgÙ JÆ9 ŽÉŠæÄeÅìh&´ÑW½'4îíToã©®a‚}ñÎ×ôEeq7PßÍ:Ë £3,9²Z«›Í-RéU¥rà&x­ÜÇ34ò8ÊëuxTk”½\+ifeýÏ#^û²óæÙí6áY¾0FV›r%"‡ ô;aý’€Îqã÷îÀ×"1Þ5KœR*oø#Ìm§¬1›ÚT(d RtövÞÈÛ~ˆÈ‰Ïþ«Pu1W‹´C›ÎÑ)ÁÍŠúÉ7¬LL‚ý„dF”ÛâÀÅh.b:mž³wuj$´"×.ã’‰®ÄŸvMú(´ì®Ge³©Å”ggcïIÞ¡6æo^9|HøµÐ)M ¤÷GŠCSÁ+­FfûªìŽ*¤d’›UvV@çNè²yþ·ì…¼Æ2G¢KEƒÑ®–»†÷ƒw¨»l '”Óòù­_|¿µ"Çéâ2§'µÊ)*W£6ßXö³N”ÊWíÚÚÄdŽ1¶n›¬z…n¯ ç€CðëXëˆK~)†vñ±ÞW¹Ü¸ÄáTl¿OHšŒ¤Ÿ9{òÛ ‘g'/¤Û)¼Æ…XÓ®Úp ³§÷¨iäÙNèÙý™äh• wÁÚÂÂWxÕž{«Ô¾ö$bv[3‡zÛ¤S§ÝŸTx¨‘E²?‘Ç,z¬&ì?h®¬epD™ì´Ž2Ò‹Èu%ç'}L> Tûý'T98à’ñ®c7üS§—à¦Q`+¾Ä§nª0vy”ý£Ú}7µ‘™'«4!,}Ä S†4œ%=I‰ÏÅ©S} öÁ«±ö_j·ª@{pã‹´´Ýø°¶Êýè¤fçâvkpÌCÙÈ 8oŠ[üƒ/ ®žÕšÊ=áN0Í×ìéY9¾É;q¶=ÁMÉëÞèªþŒJ$|æ.{Ù¡>5^}l G¾7c.Û“Ï}ÙA ÅCjÃb6ía°ô9þÜ}“Ss£i* “ðK¶ÜTìo±çOÅŽJžÅèÅp‰*VªàËŒù{‚kG>(1ó[‰æcþ‹—¯ÄŒÚgÏwsìå7#ÆÔ·ÈK/ñ\XbëÅXéÞ‡ÑÉZ† oìùj³ÈÖŽ rµ‘‰ªó†6—(TTíTŒ±ê!+s\¹rz¯•vðËÅ<pZiRr“г”ýàýù|–‰P<:°Ðe­Ôw½ó€º”mè [/`™²¼’ïñ#(Î=ëÐ/ùÅ–o=“ìå4c¶ìëxâ¡Ûžz¥ ýˆîÌ©ö:d÷Ld‚N‚ãqÅN†qp8¿5z¢SM!R-ŸY¯a\ÎÏ6µÈ½âç²ò”¦)K½M7fžA8éûûp(3‹zõþgŠˆ–KkøÕÁº‹Þ¹dýÌ·‘g5ï†Õ">&˜ó r„«l¼šþ¶â×Z @SZnÛ²Úå=MËÁo/Vz™cps sõˆ„õØ{ùƒ‘wdµL,óÇü¯ëëgß.Ö¤G6ôƒxîÏ~Ÿ-ܹè&z¢Xäav|Õ’óQ—·¬â+§{CÔöª9HD*»¯a{åVDMâéÊAé#ÞC©ŸƒÊO•"-%â&X‡6oLWWP¨ÆGJ¶¾ÿ¾¼ófß3øíÝ*‰Tk@JpN5åúÝϲ„†ït‰è;_‚¤T†,–¢’'J5ÄóûüTªÖ¨­¢>|Þ›Ôžñ°nýá¡Ð矇 ~#Üé¿ÊÉS~ôÜÛ€v-ѼnéÛ›´wD6aÎ:þoõU SºƒÉo¶¢D4•¨Tší¼s&}úºB+Š<ç%وɉ¨š1x@š–P†¯lª@‘‹gF!tâ¶³Ek5QªÈîæ_²4+)>#ÀË9ŸÝSLéçyGêXÀ´f$q¯æ»Ú«,¾hñ06÷#Ñu5°J§çùX„¨–C¦€fÆîÒæ§4Dtõ³Îf¼›ß[\ŽG&N›ÄsæÑw`²Çé7œÌ;MÜÊ«àŒÊ3Š3Žò”SÈ!ËV¤ #7íP§[šðÙu<Ú«Ñ/-LÒžuU\Açji±_¥!³¸þ6°òÅÔà„t¹d_ÜÎñp:aÜžmx…V5µƒòâ9…€—/çyi cLVUMxÐÂ]n•“dk1“º¤&7Aþ½„¨ —äÜ{­±‚Ûá3aOš˜òyÓÏ`¾@˜Ø`7E±BÜ\QÃÜ“Ûú¡œêã9±¦|5­ŽõjÚ“·Uä)êX¤Ž"êW¶îö4ͰÝú/Cÿ9¦ endstream endobj 35 0 obj << /Length1 1357 /Length2 5946 /Length3 0 /Length 6879 /Filter /FlateDecode >> stream xÚVT“Û²¦I ½HG~)JOB”Þ«T)ÒB „PHQš¨ M©ÒQ¤K'"MŠ¥JQª HçE=÷žwî{k½·²V²÷|3³gö|ß^>oj!©îŠqAè`Ð8I¨D Ð46W )D$,l‰Äy#þXAÂ×X?$­ôßpM,†#Ú´`8¢›1 ø{P*¯UP‚@iDñ_ެ  @ºÆR€ð kb|‚±Hwñ”-¸(UTTø¨£X$†Œa8Šx"æ X`àH.ø)D®xàp>J`p``  å'…Áº«ˆJHœ`ŽðC`®À¯v ñ»1)0`éôûc¶À¸áaX@4x#á´1ÀíŠÀij }#àªýÇÙèƒð×ÕP)è¿Óýý+ý;‡cP>0t0í¸!½ÀU#)\N€¡]9¼ý0ÄxX é s!:ü.訛0buçÇ"}p~R~Hï_‚¥!^²6ÚUƒB!Ð8?Яú´XœxëÁàßcõBcÑø?k7$ÚÕíW ®þ>`+4Òס¯õ—ÑúÛæŽÀrDA |DÜü+¹e°â7ýe&Ö†÷ÁønÄaH7ñ„÷ƒ Ö†ÿïÀ?w (pEÂq€ ‰ýhF¸ýÙ'E×!DâAȯϿWDn¹bÐÞÁ»ÿ.XÛ@ÝÂÒHüwÃÿ†440A^RZ”–ƒP¨´4 @\„ý3‹) ùW¿cõÑn@ñO±Ä[úWÁM_ä/aˆÿÌe‚!2ˆüMp{ˆNü‚þ¿iþ;äc÷¯,ÿÁÿ³oïߨÈ/ø 0Ò;ø/œÈW‘ûÆ¢Ðÿéjø#Wc„+ÒõŸ¨>FÔ€:ÚÝûß—ˆôÓA!\M‘8¸Çªü±[ý˜70Åø!=(€$ùŒ¨*¸ñÑð#òñ7„ ŠæŸGj£á×_ê’–“`X,,D1q'à¡Dº"‚~3K¡18b@l/ pÃ`A¿æ)«€‰ÏÒ/#è‰áþX,QV¿O<õ_ûßF ‚pÐÄ~ù¦çË›¯÷*Õy%û•‡…­ˆJâ'°Mþ Ti¢Ï³¢f°»êi=íL´EvÔ&ùñ«õ¯¨bRÌCœ’͇Aãƒìož¬ªWøhx%-Õ–B}C¯Ez‘ד¶çúú_b0ÍgÝ ìÔ ª"”M½‹[4[z.oH{Tö^òŽU¢}dñˆpžËãQNJœ$µËVãÈÎî0KÎÀ)¿A²8(líŽL!ÞnVúîþhȧ§–Ò~­\B\vœ|ä;,ï†.à5VÒ 8>àK § Fìý‹âe>¶’8è†ÍÓ(\ F&_z¡ÚM~~É}îçZ m]/ZB7®b2ýÉÒ±Dù 2¹¥å#ÈNN÷ ¦ ü_KÍK–£' š{¯ž—0<Ï­¬¼s1• {{2€_e’_w›+½â| ˜žßŒ^‡ÁøU8Á Œ:Ç#–‡¼-’-pYÚ–2ŒcU¡#Ѹ¦H8–Wßâá¢ØpˆrÌ…,spp¿ã¡ù^-çåQ:Læy5p¥é£ï͖׉”%'Õˆ‡ïNzâàçRЪ»Eý£Öq)¢Ù)飷ùY[¹ûùÈ‹hîxu¤/%¤9¯ß±{V›ÚÞ¾gÁBO›.Ö§šVMyJõ9uÑšàŽiNÞH>å~[ñÒ¥ yÉá·×\iƈ<¸ÙÓ +ª“—¼ÏP÷v÷Q„)ݵÅöñ¤V¤Wr³çæèÖgçÖÌê6ír+Q õÆ×jë-ZO ·ÛmS­uѦ=–‰ã” EïaNB›_˜žÑ÷øk¹²ÅŒËÜ5£ÞÍÐಳp ö—¥[É. jŸ-j˜›2Ù¿r’“çy?Ÿg3畦À1¬ŸY¯"Ìs´6|4~qjÑòá©hiøY!}áþSßÙû¦ú‚U’Æ,)+ׂ¼úÚƒkjÓ¯G¦²Xíf ä="6ŸÍO*{¨OVÎô¿£TbjL¸Œ4L³AÍöÇüÛŒyë¤íy>HJÏÊ™¸és<;ßDyf¯Æšðõ“øè‡V5×~­ð`lsšVÅU»¤í©¤Ê«)"ÂŽ%M`ék­u¢uÍÜ¿¾'t}™ÙZGm6p¹5pQaá5¿+ átžŽ¯µ4BmƒIw?›±Þ5ºÿ–7Š>Äpܘõ‚¿¯ðEaÖÖÑ8¸ã—º±õª× Œvï‰nYïÚºM­~:YÏëW9O¨ºFU‚&5ÛËZVå†(¢S·7Ïæ ;~I¡Ûgï,H!ß’•,ˆB´{=ÜX@­ 6_XËP½«Uå‹ðmKog~|§œ—ºJ2/·„:H{}Úùøà{R¾˜ æõ\Ń(Ûq^ÜDêà¸:‚ 2wQ97²¶Kßà·äæð.VSÀÏU™+¥ÁË(kMzV¬’ÉîŒØ™¼•‘<ß1  ŒlP=!Ýf²²!˜þ*7†B±Œûò6è…úÑG¦Á ´ qa«Qþ<:Yã]Ò y©O+ƒÂQòí”W®9z“ó÷‡\»ü³â‰€vá%F]¦½¼%ÂçÎÚÎf8Ï&†å× œ“ì¹OŠ:d Á6M5=S'u©Ôâ E[!.—òšýƒi6s>¬òê-¹p;bìW.cÞ<Ä-ö¾ËrH‘ùrBûÐ*ls˜§–Hóã:ƒî'‡ ‚n9Å—jÂ>ŰmªÃܽp·-À$«+†ÙÉ!{‘†Ï·LsŠ›rëçåvêßJ.’¿Ðj#ɽ‰]ˆÑŸ¶§ò¹œ‘_öµ.A[h*ŸYÂð°ÛHØ^Ä™ü±ã†8vD# ¾<•+s«-”™1{þÕS%ÞŸËt®#PýÕ”gÞWÆÚQƒ¤ôâãO"Ǭœ¶…$ÝhȘu§ùÊ=‹9U–}’ÉNºc²µ ;eMZÜ=d2úÕÂè[剦ºÉÜ®¢«)øj¿çÊ+(û¨È¨´foG]“nþqJµÃÕYÞŒ$?ú ŠÆù³)¼/(\Œc#/²ˆ}¥®¹H^VD_Tý¼¸ŠnQÏ­ÇgeW>ä—h|ÃgjïÆ­I™¡Ld¹¼f–DØHY3ë½e ÆûLeä-9SKsöÚ$ \UXÐé Ù«ê‡;>Çë}¸õàO4Ü3˜uF•})¾øæ”ñ¼Öb·µ­ t]ëa¹TúnHŸù§öpÓi/m¼Cä7ÂÁòµ¯£)åÓž ×`N°žÖ;’xÁõáuŽ¥bÉȃ³ ]¥e^—«S׿‰2oè={M5¢nC6©½Ú˜ÚyZüÓÊ=çŠWµo1‰WG•FùÒØ[1ϧà Ì cú‰é„Î4«M*¡¤¤bÀ¾Âe>Þ€F˜‡ÞÞíË¢¿ü\FƒaÎâÖ#Ô;A(²T9ºõe1ìÆ^zmKâeûK›rþá‹×•øÅu5#”¶_êˆ ˜0‡¹o¬ÆÚ=@qe¨ãÔ,B×vrPSâÊ•e×:Yõ(­sMge¾‡’åú B ›­\–k>4su_¿f“½™&U„kz®ó¶9 ;Z\ož[ðŠÓm²ºipTølwô^ÿÎ-]ãY³ð廦½›ZÞ$Ÿ·˜-}ºlßø,ìÒqÅ9Á§Í+mÌx¦|Y(™Q=ú˳sã™Vzíå”m¬†Ï2óÌwA‡M2kßê¬M»º’ä…ÆˆGm½èáá\MòÇ+›ÁÙñÔ«/=Ż滺íŽáSúRo§-—¥9 61^Ý+âž ÔFÜ÷¡¾vøã0xz¤ï`çút9 R]i^r½f ¤Vºyû\S G"­Ø×îæÌàÀ-öc&f:ÃÆóßóG +«2{ä¾R:N|6êéy:a»·å¬5‚ɘ­UF†¥C®¦ù.Qßð­Œ.HäÈn`õ{Â{>ò «ø-QM¯ïPžTÚª•ì7t—È”®0Õâõ›îŽ“©°¾ >³õ3¨ùêÓZ4¿º´r«Æ¾êFÁë6ó8æJP›»SDxÍáO_)íPy7a)©j“àòN6úÓvî'"»õ„œ“ldò´Öh¾z!ÅÈÕ®/l[:ÆúG&³ÔªlñÝh©FGá>±ÂA¾*ö^­‰ÐM;Õªõ› 7ïZC·HŸÑ‰Ñk]1]€öz:ìÇÏÒ†4³î¥å~¢üz_…ï›wŽª©Óé&n“×÷Ã0!-É(á"¼,a§–dgšæ#ïLlîm'›¥ [›äãÄqÁÐä»t—oôÏ_7‡’/NæßNsÞU«©ajúÑ{¼[¯¥Fׯ>éˆ÷ʰ~ÊÉø,jnÃ(ÈWW´Ÿ¯Xè"ûÍ&^ॠËN£aòŒ„dΓúbæ›Ä\³„‘d\ý.ï¾4ÏËItø†Ôzy4p³¥—'-´Ì‰pŽu‹s&©îÄk@ä™Î) „^¸$–}ÄkK"³/ åNþEÆBcüéù¾Œï}~Ó—^Óˆ÷/|Š¡OOC>¨›ø¢¥PßîuÔ¸_ñCpñùÎT+FûÐØ2 ñ)E—½»­mÙ9Qq(>ΧþÖ‰¶Ñì'uH´yg<ý'R £q?K947-D.íröZGf³5ÿöf5›ù–ÿÖ#ǵz‡W Ò‚1ÏZb·ž‚‚Øk-´Ùå* Ò®fnZ½URÅ<ó¥«b²¶gŠ’ÆCyz.,þö•v¯j¡ O·÷Òj2Ð+·ŽÓ–Z”™äãwWááçŸQ`Œëôg?ß×ÕLà‚fõ‹¸1“¾¢ƒ2ªÎ§}Q§²5¤âÑ´c»%\–êÇ&êó~àçtÐÖî©ÞU-ó7Éâc§˜çKKUA:_wÕ¦j“uuxKÎ 1°V[Ïú/¿1"kµÌÈMS€åöɇ¸ºOâ]”ç1{CwÙëJàw²âa' %¬©­oM-k»ÏÙœq+DQ¶™¼ç}*¦øóÕôÉE¸‹¶F‚Ú_O¢{ÇŽë.©F0ª ^ùÂ|ŠR-Ýì¸ùh¾½îx¸Åv#ƒ£UaÔÑ ÛõÍØ¹yÂFb¢gCRôˆ†nÊÄ!¦ääã!%ƒ¦ÅV¾ËXïpK÷©}÷>nŸÀ)-)°¼``¾©éæ¬uG°ÑÜŸÚ{vÎàðæ—ùaIÌcÎÌ«ý¶–éšKÈ‘.ðÁ›¯‡€!—cuQ¬%¬[ó2ŸHy™tîI) ÕMçâØõË µ*kÍO½?½â¥mõf™R“t…V &:wFR2®V«ŠGÒóŠëLý¢6ü¸žúÁz’‘aòË´µÝº48¯Sþá¨ù]¶¢¤eË'Ðìê'À'•MìJônfúzBâeÁsºcÅß.7ó)½$”¸ž]c·‰@‡ê¿Þqè+)ò/sB©cüE&B.>éï}j¯X¹ì@{’KõtV·ö«.v}$µå¸÷¼{P¢¸7¯ “ýmT»eÑÅK=>iO¿´b0I¤b§2¥ú1…"õÈÅ1M;0•bÑI<ú‚¡Ê:í7tg9%f.Htü³[ lô¼ýz+ÿ G3iýv_†–üÓY = ¿Ý”q3E€æK§ü°e f]ÒZó4}®´F™Ð6¸+5˜èGh7Ÿ“Lç‹ †¶VNr»Ò+*PìZŸ4ÝÒ¦C™8‘±¶u}}«Ùy4+3к—x9Ÿ¾ÆÃ.ðp9òs>½ÚÇ©çå>÷àÛ”2¸wN‹ã‚'ºàç(ætw¥ |ÛcÊþû¦ꂇI$ÕeªªÁWêºòª5ü„.0Ë)Âñ<Û…"ò£mñx§Òµ † õ&Ò6½¢¶ ˌߦN*çïQ i>À¤+ù;е8 X)|ª8˜jü~úèÓüIÏÀÐÑ9)æÃ‰>¹%Úw¸¹|TßäšwﲿU Ç–Ð! &ôjÈùÑòÊH¤÷¿Ð…/ð`^wàØ¹bŽåÔ‡Hxï…pŠWŠÏÁ´ÏÒu§@»Égw7U5Õ·\ªÏÒÙ\„"ÞÉÏF +š-çñ†™ê8kÝuˆ£ Ë>;o÷3ù¥èÓ{—|¢Š®Ç2~©ë)h¼~¡Ü?_©GŒü1ö‘ÿ†dM‚òƒ’j¬¦ÚÏ}”g÷æVVŸûðÞúei™vÈä——ýå0ÚÁ!±ó<â,/‰ÿqNCLudS’V6b”ëåŸb^”<åø¾ÿd”¡‚Ïm¤Ï)%Évµ b£W*,[)n<¥GŽ \çÛnR‹„í{Güèœ| ×(8v ‚'Ë ñâ%ø.?Ò %*`1÷ôY¡Ÿ=‹ìÙ™XÈ=êi¬†ªødŽê;fšTír†ÃìÆŒ¢ä”€ÜS=rSô)A]J’”a²êïæt'ûÊô@jY×5…áv?·ºÁòYaYš+Sƒá%ÞÃc¬NÒ½ë©ÖÕže®ÆW;Zø?“$,ZL¡¥<íM3´Êù(Ò2Å”ø·—Ð[±ª3t‹i5 [>3JµÖh2‡ÌW\¦Ò…àÖ«Q¢6ߦZRlA=Gäß'Ä[S.£ ³fëŒ"ÛX+ÄØÊ$ï@é"Ä_·}ÏÈÜä¬ð$ ¾›ÒûþÃgŸøsãÍàwÝVƒh7o®µÅæUõ‡ßݶÝT`rZšLB¥òõóÞîIÍÇi5b²›à<1Ö¼ BƳ<åE'¨yW!ªª”!H"biÌ[ûxTG/³(gÿ塽Mö‚zwKæ ÙLçwÏ×ÓCSb¢'¥¡-¢÷h³oå¸6ÉSH)è4xi.gI ãr®™Kœˆ,ÝŽñÜѾQéõüs$Q–<3­3Ù&]+¡jöMÂäo¨bšNk*¬B6;—àßë.ºáé sÐ9fç^Ú™¼ÁÒ˜WÝCç…™7%A§©4Bè—¾<äpÌJüðh¹}Y’q˜Z»`ÇËsi`õ# í%pŸçƒ\±ç.X:1üé‚Ëí{;Ú·Ä ¶é¤£l§J—ÃCM´|žeXòZÊÛ ;Ô£3pžeßCdr²&íÏb©LU`Ho¡¢9ßõÌ7ù2£àYøÙ‰±²õdÃé£çŽU7hçd\6…5¸Õ„ÊŒ]kÖ„.‰¬ú¥Ü6}k /²=ÝR’N2¹ðÝ—™¢ï£ìƒ$¡ë‚MCßÝ´¿%DÂT©Ù¬ã²ùÃÛØŒ4äŽCï|Þ–þÔs’ÊKuntå’ý³d“مW#‡5,¯Ý§àÐ+²åoõ1³Íô¼Dù4pÉÄ”ôØÞ:†åûÑ}Êi§¨³0³5jÐ0uº¥gM¡ÁÒiæî¶8o5ó†ó0—Ü]»ônŠü˜‚,Øg”‹¤­SÉ á zË2Þµè?ØëãØÙ¬öPÐ?pðŠì‚ “Ä”XX™Ï³ö[&ÉøF·í\íˆ857“ÜYw†<)>gWBu4 gÉS,íü"ó8·¶AVŽ+ÑB²ÃŠ­‡‰Ã)èÙì©ó;A†™Å–$|?ɽ+VÓ%V…~ˆbüƒ˜†CSE"^Ε/jQáä•J{ ÑÂïüÝÔ¹>yÉXVïòUŽÈ­‰h‡;dt£¤„W?.$ÄAÔ÷éKY?´¿šŒx±É¢Å¤Vq^_üþ~Ê<7õÆA©ÔõÏV/=ÃUÁ¶"Jäc£3rBã{7Ú`Bò{pÎÖ?ÉCkG÷ûìò²Wôß7¼IþÊÃs¨O“ö•ç gõ÷Å‹ ÊÏõ”{ÉsM> ” û’`Sqf]s»UE'Í©¼Z¬ÑxS o¼€<¶`9jÞ1½f»Þ¡‰€P…¬ÜvyÍýSOÁ¼\X4Òd{!"ÖDàù‡§]¶±÷#°MÏÑRë6½“grh0A¹ âšÉ¢vþ¯lŽÝ×(ë ó¶ä8©ºª§`OÏeŠ› ºV}oÌíJM}oÜÇÒDâ„kÈsKOûµšQ‹÷ÈœŸ2N¯þ1™ÐW‚xÐ]øRdg`™¹\3¬0@ÊB€„޽Œô@QMŽ©Âíl/²Í:›o†W¡¹Þÿúï1¹ endstream endobj 37 0 obj << /Length1 1749 /Length2 10837 /Length3 0 /Length 11954 /Filter /FlateDecode >> stream xÚ·PXÓ. Á!¸[2à:¸»»…à>ÀÀ0ƒ Bpw'x $¸»;w‚‚ûewßowßïÿ«î­©š9O?Ý}ºOKÕÐÑhh³IZÁ,@r0(œ ÈÎ)VÕprr³srraÒÑé€áÐ_RL:]³ ú/í 2‡?ÉdÌáOjª0(@Ér€|B@~!NN'§àÿ(œ…2æn`+€*;@ ¹`ÒIÃ=Á6¶ð§[þç`´dùYÿ4H:€œÁ–æP€ª9Üäðt£¥9  ³ƒàžÿå‚QÄwâàpwwg7wpa‡9Ûˆ1±ÜÁp[€Èäì²ü‘.@ÍÜôgbì˜t[°Ë_bm˜5ÜÝÜx@À– ¨Ë“+Ô ä xº ­¨PwAÿRVùKðŸ§Ù»ûõŽÀÐ?Í--aŽæPO0Ô` †€êr*ìp8+Àjõ‡¢9Äödoîf†˜[<)ü¸9@NR`þ”ß²s±t;Â]Ø]À?2äøÃÍÓ#ËB­¤a (ÜóødÀΠ˧W÷äø³¬öP˜;Ôû¯³5jeýG V®Žo `'W¢Ì4žD˜ÿÈl@p/'''¿ r€<,m9þp®ãéú“üSü¿¯·#Ì`ý”Èl zúÁôv1wàή _ïÿ0@€Ø°Ù€¡˜ÿxƒ¬ÿÂO•w{ 9Ÿàüãó÷Éø©·¬`Pˆç?ê—COWÃ@ZŠåÏ„ÿ¦¤¤`o6n>/'ÈÉÏ à:øþ· sð¢àüÇVj þìÓ+ýOÀnÿ©>ムðß¾Ô`O 0þÓàFœ¼œ–O_Àÿç6ÿÓäÿ¯»ÿðòiðÿœ+ò'ËøýÿaÍÀÏÿðOýê ê}UØÓ@ÿ·ê[Ð_㪠²»:üoVnþ4’PÈßv‘{€¬4ÀpKÛ¿Zå/ù›? †‚4`.à? € ÈÉù¿¸§©²´Z.Oýø'zšÿ¾Rj ³úcº¸xùæÎÎæž˜O%~B¼oàÓZ<þì`;2<¥ç °†9cþQO>^‡ä¢??7€Cñ$àPû ]ûò<é>mÜÑO;þCó=¡§öƒý+RàS,Îÿ‚O±¸ü yŸH—§‰ü‡~òÿ‡~ŠîûýºÛ¿àS8îÿ@®§X=ÿ æI× äü—õØÒÕÙùi½ý9€OÕÿüç.<@–˜s30KávÕš®ª$)ÝÙ¶FD'é¶Þ¦2±yÏ97»Þà %1Uf¾_q¾LêïÀ[Üe<—˜yï½_ÿ-¤!A³ñÖçÎ4Nk|«óÇIÏhÁ¾dM75›ŽÄ¶Ï½“n€=R=b«]Ž“«ŽFá•{—¼GMwéÂPðÌ–æv%Ÿ2Ö]é[Ô›H£€OSt¹YÓd´¨p6jtf‚cÜ©ó‹I‚£/•âX0}¢¸ ½ V¹¢¯§½–>ëp¹´‘¿&7 £F:'§÷–ÚIV"õ..\qJ™&i^sHBv½¶Ô´®œw›ÐÓ 1’“q )FD®4(Ä;|¢‰GåÉ:^TZñPüÍ_oáª~T‡ðWã˜vڌפ6»ð o'uh¤øg¥|­+÷…x|emStS çîÒGÈ>(3Fýy+ºxø®ôûË4âŸY ëÎa ¡!F8 þÛÄG•4Êß½ÃQÚWŠ .Ë”ù³ïüR(Q}4Z‘“HÔ,Õ‰ë*Ê%‡?Ÿ‘ªÒíÙè¤eÒ±+5‘ÆÇõx–Lƨµá™ÄÚæÂÄ¢°!¼á€ÐÁL*þSL!³™6dˆN-ªQX€Áât]•0Ê 3©-Á¢×jÛ|ðº¼î¸á,LaŽºHtÉ©íZ^ ”c‚ù¾x¬äÞÔÃŒCÁ¦Vu»B*¦“W;n™í&e(jæxg6vI›q€¤„‚«ÎÅ-0 FD²+Ê¿·Ül¶æßœò/úÍ5;L7Ÿï«ÀyøÙƒ]Ò)qŠAïALDM²RC `‹ùxÎÛÆü+/ÕŠŠï´;Ã;dQõú32K›+õ/{nq‚_ä3¼nˆéðÞ—^áù܇ª§pLZV’‡´ü¸ÝÛÓÅ( PÆ^7©¯ë ˜ iaR-o Š ÞAæ°‚U,<ô39Ž*·ÜWÝ hl =Bôó…ƒF õ0OÕTuª¯jX†FQÿŽ ×X5h5´.w>²›Žók9Ï;E¡Ö÷w¤÷÷O"†øÄT¼`%uýR±ái^$½pƒ*ÿ×Ë@Þø_üˆ«ïêÉÐv ²žQ•Ì'á°½ ’iwÆ=òõ äúÁ5yhK~ýz1¡.Þ(‹Ö¥Ÿü½c¶§ )•¨›‡·£?¥ rÞ%нi§£ei‚€¢‹8 £NnWU͆Q1|">Å„|Ð .Ü$¡J8”(¥¶òY¾EïÇÖ¨˜ÓnêÐÖ[A1´ß¿ˆŒ±é5<‚g¶wž~ycB.w<Ð?nÍ^—=xÂyöÊßãð ÂNg³CCtó¹™]¡e¿ý××®Bu¨Z¥DsAá`ÙŸoð§sGð>Š4­Ÿf7ѧÿ’ºL [¦t+À¾ìll‰kØÂ¬°kñ"Wœ\Ø•N¡ƒ5NÞ•E§«C(kÙ¼J–iJ¤ÌÃãŠcTb <õ™oG—ÏLø´3}˜¹O´j/8_=Ht òÌ£À¿/æèdae³àv¯|{ÅÿÌ7kvo€ƒ¸ï5½–_OUWø0{[vbz—ÄÅSüÓœoÂ¥8>ä' ê”zàÕx6òõrѪ䩣óëXwÞÄb#ÜAGHhN¨>èZàhex4x±oG¡hlºýöà‰4õ"hÚ1}ñšU×ð×-j‚‚Á}ö¥rå­³‘ûynS¼Ÿ+Ý‘iuº¶ V’hþ&BÜQÒTV_°t°us*ÛìBmk–XÓz¸&Ò³\¸ÄÙ`o—H}ˆ´ó×;²Õ#¯üíÍ™ñ TF o垺ì(‚¸¬P˹ ÉsQüÓöùj‹ NÚ ±*'uDcT#ÿL"É¡Œ«ñϨ]ªÃ çªÑIA°²—=TZ"Â&Þ¹ö¿0l4Ÿÿ‰H$8ÆÞ_*1Yû"2¢—v…Ø“­øšÒ0oQŸU!8œ °¥[q^Œ+}î9Ó~Î]CIiká×îw^‘|­E~ A$hzrºá‰Ò²êJÁ7˜vrEl™Èõú›‘r©¦ÇB"¾öRGÌï&{o¸¢ubGYæ3o ‚Äç-¶Vz ºŸ|.Gð% ºÆÙðó¨ìö%­×¿µèÞYœåÖ`<Ó¹]°ª¶#ã¡ÙÕmjHÝUŸ;‡¸M°‚t‹&‚‘Å91 ž-¾í–/@½v{\€|%|·{Ô3ZeÈë¬âë„®sìæ`'=³Uf¡ÚE d“½vØÞrÑ¥«¾OÙþ™0_Šû¢ü•ϸ§Ã%Ï0ëàI&–uÜ…ÇÛœ¨æ²æoQŽ.uz4Q|Nl1TqŽïs»cæWh½=¬§ .ýßµóS3º2¯tiMíø·¸3eÜtQÓÒ‘ótLŽ”/ØòìÅ#Oú¥OƳ¯ [y3M¯9¢KÙ’¢³ð|Þ‰q}ƒÅ\]¶ólMèÆ!¡PX„šÎåý6ÌÂõ~½ŒaGzž »4âMòïê&MÀ/…:ŽnQ2A&)±D]]h/#Ó°Ï<^§~;d±†œmzÄÇ‘çnó·WŠ®“µùÄ(‰oT)C¼<«+œÆØ)ùÃziAÒE˃‹/ ÷Ú1¸ÈýPzL]y]e>›Ü0ˆo¬`ÜÛœH®vÐÚoÎ?¡<¯jb$$Eo¾žL˜Ó”uµ¦óèØat EGD”Âb´pvÒw"wE4)S ¶éëB +päÏIÈ+ú¢6§)Il…Øt<=­ŸtðKӞчx¬ÃôÒO;Ÿ£oðRÀ,·ç„ãÉÃ"A—˜²Ñ³2¬’¯£§©S×{‡¸O¥éì&_ÇíèLÇ DWô\z™S)7VKÁAgÆê@RVÎ>ÀÛÖ^]w"¤¨ŠAN‡—¶cóo Ö§?’ ˜Â•²ÊˆzÓÚєβsí]û¤<«_±”V•TÌ÷-T¢‰[aié'ç[=Xo-^V3iFáÏÚYCÑbmð¶àåiÂ#F±‹‘B{¬Þ¡ÕÕ¢÷HJ¸²\†o+d¼eºù©Û/(”ü—³/Ƕn_ÏFv)BãP–sù<ÖÙîQÖ$â-B?ˆËwÓÒ{9ÅG…Õª ³x„‹t·Ì–¤ý’-QºIvómODåà˜°rOU©k(M³¶«½§-ï—/Ì™O‹” <ý—+#4}°égŠúÚ&k´È,¹íé'›æ”rržó8Œ`Ÿþh3Lè³õ1¦Î$äÝ\ÂTúÞUÿ¢ï|zf“³gzã£ÍïMòvSL*wèZ«÷n“¦d- éSI½¼M‚¢Br¤1š,öuÎi̯[7ë±vË¿‰Gˆ1}ÐhC§@ÿ%š‹HkMNÝjr§Z½ø*¦êÇ¾ç‡Ø» U¦ßÙÒu葤Üר¯Jy¿W¦™Î+bã?²»Jª ’vÄðTŒÃ%îv ]Óó¶ÍôW¦Hú$×üO¡ù]NkŸÛb*ä‡~ð²~v¨~¶!ûi¯ŽOP,iò®˜_!˜B2eš¬4~Vî½1V‘%®;9¨–Ïê¨q¡“° ùˆem“-¬øÐ¼Òž$žG›¶ 593)ã9Vý\å@U Sv‰µ›Ç²h¦Ýg“Â7'eKôægÑ÷ab å#®»£gMá·&[G&o/‘ßHêòWxh¾¿:’U²æàEÔâúôÜ.c¹çëTâ™îTº"=±•OCËÓB³0 îoP+fÌÒÌÛ㟧oÿ ™%ÿˆýÙ¿!ðÙiœ¯–$~™[|6¦'ý]+Ê !a¥KlUVWŒ¶Ÿ¯n&?Kü-ÎÍi€Û(ºÀfÈ’ýÚbÉ M_+ÙÇC_€(¿Áoß@‚Þ̯»ÙÆ–ÉEû43vïJ£Ä}é‰ð,ô RëœfÁ²ܤH„q÷#1×·|ÓE²güy5Ò[,BÊqS{a _Ö®—ÞÉY!«Ù”ÑåG¶é.â†gŠ¿,Œ.ov/=×kH—·PˈB‡Ü›¥!(‡Û¥Ÿ¿d9åÚ5­s€È«ÝI‚FI¿ö$:š2~¾|6¿ÅØJõÝ$2J–y¬æž®î ãsk%¯°¡ “X_’jªÑŸ×bk¾r Ç›h"é Ì;Ò'À™ 6¨Ë=»7  œ· ²êÄx#8ɱá“{6©;Ú¬cJ@²DOñÚ4ã3I(0íÖ‹pD~V~Í£wç9dz0ÚêïE•r—ç0”âV渨JÒ¸s¯fõO`³B+æô±vÒKd}•Ý…®‡dçÊÍf¥Uƒ®Ñ(óã$Ž‹L×wsYxTvà„Æß÷ýilÖÚ}v=bä]ÝàÌP’O Ì -Û-6Ü(ö¶DÅÂQ¶¨ª…°žŸ-+cpG/º=n_ƒÛÈÂݱꈯՆê\ד~`_¼Ð9:G-Flà3覥>¼®F<6¤Š·ŽÝ9œ9H¾‘0t™±Gð»ä±Wj<–à¨ÐV/…ê+Ñ:ôQlyyskP(£¿= dn1#¡„*Ý)ÍÅû 3¶äA[Ü¥ gê}<ýôÏìL[šå?ã/³WêG—ßY×+m |J";æg¦¥§AðÉúLpEÿúÄ[þú¨(FÜ ÒŒ÷±³”)0R˜ÞÇ-X‡¬íª­3Ûè"G[]6Gvl¿Ã~Ú5®–ME/a†ˆ7¡)xÊ<ÿš|RÜ7>A’ò=É23Ão ÜœÕ }~ŽØ‚ØÒ|DKÍ|þPŒäEĨƘ=Òy[Š”fv”ΈÚX:a—,&žd–îO/^Q$ÈŠE'²€ß:‡Ø=³LyëÔr ÷7T¿q²Z›Ì×w?ºÀKÿúu‘ØÈ"Qºhæ[4e±ïªÇ8˜TÎÀc¹sipaa¼E”-O겫&¾«¢Ûb€•Å ±{÷hÅc3OÐÉ”“³ŽÔ´¼ÙÛ$˜Óèi¡,²CM”ªYе¦@Æ0´ÿåmøvðn¶a ›’Ïœ~4‚”d×þàF+G¢!ðˇ(žÉëZ@Ë‹¨”_˜* þ¥»õÚ¥ïíÚCH$õJ™Ÿä|º¢RCŒ7›$¤úµ­ð/‡Wåšu/x_ZYqR¸r³”¾œ‘¶ (=7˜Ä˜ò¶Ju oã~_ËÁÖ }QÕ0îÛ±дwêÍ|ûñ; šºI?ï.¶pQßJÏT—â`\dš[‡Äé³É…— ÃV.„¦0ŒH5ªé9‹äT–|ð¶_cFKäUÙ<ßÕw5ëcdÅq䑤‰(1Qæ›h¿)R6ºoØ\ý"30œ[|]°¤ß™wâ¸2ADÛó›‘Å›~C¤°FKA›ŸWt­v΄ÂÏ€pÄJsç™G…O¬ÎEùä«‘¾…È9ͪJqS€«Rцôï¢:>‡c³ß¼ðqPÌ ¡Q %Í÷֪˦‡³& ÍÀGbruÈçÐЭ.‹Eõ¾J±%¦ö ;{NI~ È/<~oŽ™XcTI hÐÌE ‘™ÎvH^ùY­öÎ… W”²{ˆÛÔµ¤°âòÄœè÷Ï@òž³] sæ*É£ôâqƒlð窛÷™ì¨å©y€vˆµöázÚšÔë,&c”LäÖrÚòæQ^±M£Â/Á}ˆRyTa+\<ý´¿ä^,+g–«<Ê2Kí:”P-ºcå-Y²öWÙ²~yeÝèA÷ÀòbE…—''Éóv·U =êUtÊ©¶K]tËÚ™])]sOßÚÌíìN§³ÓÖG¥ª¬€ÖØê÷U¸í›8—ä[h— )f‹¨øÚ>Iç æÄ4ü†3ôþìRnÊ‚<Þï†+dI!›E+K×R‚Ïùl:¡ڸô¾‡Cr*¼Î@_½¬FqáQ…ÞÊj ufY:ÓÉaäMÏ0Bv@ °1ðxÀw9à\xxÄH;¢,+ñy€Žµ»@“v msùôNWæ´$ìsDtCqðÄv½ç!M¨0'É';3ö’—µI{Œ×‚Õ‹ëwV4Ÿ9…cb’9 »"NÅ^9ÁÖ­¢³ÔÅÚPE½Ø˜Ê˾[Q_Ù¼…ø@ýÑU¦«1N6äbd&2ŒÞA(q&>ÄÕ¯üÙŠu½Ýà{S*ê¾ó;’¯jÖÆt(«…eÝ©SßF¦ƒÎî–P²ý'âö;uÅmaZ¼žÄ—ÒÜrºê $¾±´9x¦ònJ¼rÌž î>ÞEwj|cæ9ŒÉµŠžûðŽœ^bø«\802çáJi¤ ë8fþ¶ßÞªÏRªÜ³.×Ù òêâ¨õÒ²÷÷»6öb͆t rwÐÅ2‰~^FõèyÛE_÷Ù37ä«K¾›Þaþ«4× ’bEÎê»g6iñ.¢W´ŒŽ[šMŸ.rhµ4Ûv?i;=†ŠXî­ûC åß·{пNÂ÷³ÿ˜ÚÀ+{WÌðüÎ+ZÎ!å&͸<ìxÑA§Ó{ô½mÐ¯Ë <.•±çE%Á½[&\½â…P®ýXyŒü¸]ãñÝTÞó²/!Âë—K5KƒÀ>³š3OE‰ôðhëãZ•à³O²|ù³ø"#,Kî™9馅,zj§Áº#*»m:Šâú}Û™ä®ö|/{œWmŠÌC0HàN¢×x?UE+Äo\ò¼³å7·“,qGœI.ÌŸN«º·øáÿÛé·³gJ˜DÐ…(ù»÷—‹˜Ä¡óûhú×Э©‘Jhù\«Ù-QÄh“•²ŒšuPÎËÊM?>ΞWô| ç5<‚+C“çëzòêoµ+uK²Òéå"_¿]“Шªc{%"ktpdž&Ð][²&ôÖÅ÷‹;Æd¾Qèéî¬O‘RÞag)®ÿ ΂«‡uÿeÛ;=?Î3u,‰¢L„ÔûKë®Ü}A ;~óâÔ‹tnIŒ™Ó2_¤w™Æ%:¯ ÞŸ§µ¡Ã:Ä}â\¯HKHû GE r6ßD¨q·(¨¾WÛÐìÙ5Mòæ`̸´—?<6x½!·_)ÿaª{hÅp¹SÊ[»Ãr™èsžî›(ð-8Ûä2z"öì· •úM¹4OïÜLýº®Óõgýt‰Nïׂm°•/‰l¡|t¾Jõ/ ô ¢‹ùþUAN0ûðC\|šµ"¹BLáNsQU I QEQÊkÞ'2þ·²KkGÒ£„ø„ÔMGh·f^jãàx|·?f0¼^ÞPƒ5²Ú†Í©¡dCéü“ÅG äVÚ¥üÛ6·NŽzMÛ,NppmÂ>Ñ™˜mãPüñ ©ZP }–rK"5Q‡}šö–v$Óž–r¡L‹˜"³k²T€—bŒ»Ù¯â^„KAƒ}×Ñùôy9¹‹­×ßï¶Ý¿ôvzdôǼš7Ÿ$êR dIùN4äIÚüÂÙe­ ¶H©±'MµÍ'Ùÿ;¦ò´†›²@M˜ÈƒöήÂýb_VÔMLs˜œÓ³RL ž¨¦'g<a}?I!ó°_›°d’©o˜*wÄl8ÙpVö‹fðÛ÷Z ×_¨ή_FXÜ„¦ƒ)PŠÕÇØqƒ-€Œ˜!eï,ÅMx/û^áåÅP~µ»c£èJu JRÓzškŸÛÇmñÚéøõðY]„òÔç£?½^}€K`yé¢ë‹¼¹ÞN4µ¿éèQÌÄ‚‡†[jKÅÞFÞ8ì;ÿþØ/^M겫µ÷ô§Éôá’V Å+{ÃÚ˜R i¯ö ®Cîe„rUÅ Ù–GAÄúÍÉwMecÀGv–l‹ á }F@t³Õ´D×Þ—Îaåãa"¢ªn“Ê¿M£r4½U6é™e`Pß %ª3‚£I†¸°YÄl]½_*mo1¦Ru¼±¥^<8x¢Yg|·OÇLÿ|ß»ÿæƒ`W¹™k^Ò[d÷`}†Ðb_±u÷^RQjDÓ±lódl‘œ<÷öU aâAÞÍsÏŒfÇ>l¿³›À~‘žuÒuL޲ü¡É.ˆ•>ìËtÓêÝw ñë­œ‘†Ü¹šãÆ:þ7quÄT|RGñ Ý`ÑôrüQ¹g´?Ó#e(o%8©ÃÉhlcLÏ\&©QWéˆ0>Œ{,ßx6v2Úy‹¥Ä€®¦ØEt~;Öàæ;œ2žûËÖ–v{ËHÐ专‘´jOxéá.+“x†–‘×ÁíÞTÖf`«g?ÈÁ[gíΪðÇQ¨Â]‹sîkW¶$”W}-OzÞ¥Iô ÃS9“„mUÅ‚M`-˜ìížLke•ñ»]þB®ÿ‰ý3–$ƩÊŽÃB‡yÁßèÓà­pÿ‹¾‚îLxˆ®;wÍí–ɯ!nÁü‚Ÿz÷Aè&TÃͦ _fDÈE·} +9‰+Ðéf£¡4ß'G9–šÝÊŠ’Äùb-7¿ß 22݆cVÙ¾ÒÍãL]ðm&­‡¹áwÊQ:“2áç,$zøÇ¶õÇb+!ˆäªv òäŒ Tµ7¾1.êHã†Åe½hØT š¾#˜A© †'9Z¯ZÁRs^‚…nœ5|U΃átgq™ØŠúeï÷fèMý›Öoà%M·hx¸¥ç –”umØR^—ÆÐX}jR àÅÎRQíz2œ`…i>ø£’‹—!2o‹Æëî’Ÿ°'†¡¬ÿРÌ( ö,‰ßq8yd“¬•v¹³@€_¢C‚ªDìÒ˜bg"àÎå…g­Û{oFDˆHÐð9Ùk‹¹"S[¸öh è™ëêÙÎâ~æ¾iÈÏÀ¢¸—£!‰"GØ­p"õaˆÃ.Ÿ_ç¼—uÚÜžQ뤹 Wúâã® >>Ô¼zÑiEÝà’Ô«@W#vjûKcÛÝMÀ„yÞÉC3ô0k¶mÿ´•NÑËÆcyÀ,eÁî,QŠ|¯ÆÄlößo‘°õ>Ÿf¬ô`Mò×éowöT½ÐKØ$š¶%%|"à÷Q5É÷ )9XPà½iØ\Î[1,¼jzƵ)G"ÛMìDá–7h$ÑS–pìø†ïU±T1©å¼8‡d$(q¹I‰bb6žhÏŒ°Ì-PÔ§H2 àañ”d3$~gM £j¿²ž”íRÛІ{»´Ö¾Ov+ƒÑë@‡âF£ ÊÒY…AÝ>¼Î_¯Ì%Øíõ '«š²µÚo˜t9”³ü©$™£ó¢1·È‹wãìú¦W},þñ½‡¾6Ä"ë^üç¡H‹WÀˆ QNº][jTý`mÒˆËi6d1¿P¶2'Õ«] –/ƒð9×6'ÌIÛÀ, Y¤„áîÇåžH;RéÖ¾qÒÌŸlØ­¾,G/±œÊ;ôj—Åf‡tß:йa_ºÄ«ð!¦)ÔK_0瑚W_ã”9.Ü®aF´%”7–}"mH!kîíÝè˜Ùh>†,;N]}·›oº%¬ 5²á~M‰’È»‹ä¸¦"ov&.ßu¥U)PJ.“Í[Y<ŸSx—‰`Êç4.röBQ¼Š>ÏJt=B=@2©ªýÊÅúŽ`RRÜv¢&’Ð8+6oð)œ¾ÏV´Ÿö3|¬µu ·©ý)þK#~ÿÍÍc:]º)RÊÆ«dù:ˆëX·æ1Õ—3âu#c9|3†PeBr+íÔeJLÃÇe¹¡ô"—ü‰AJ0CI{<öÅhóòK>P à#²—dß`›’U[Ù'wé,ŠÏó‰ƒáÂLtRÙrÇJdoíW{ùéÝÅ&ö™Ïn…žô,+ZÐÂÏ´‘½M‚ÒZ!(Ìj}6¹µ ‚ºˆ~‰÷í› ÆåùûXq€OYkÎ׌m,× ØÍÍXrö,j>FHûº²ÄK:Sn\äQvó’–uã'\DÓ=Òà ‚š:Ójh,ÂÁ¶¯ÇøáN/ý(~#yèDc}D‘·(½‰YüJ³?¿)K¶N*˜N+¿k- ‡2Ù§Y*n½;±Ê©ød¨¾¹Äº2³½#6*OŽôlENPAÉë;|Geq¦4ñÖ c¶\OçÞFê ¨!|û<ÑÃêµßþZÈ„ÎúÌŠ'\ò4åFlCÚŽ¨^ë2ÄlUÍLï ,Ifõœ=ð‡rj•e¼›@Mêgöl ó4ã[ë²wÿ°>Ù¤U0¦ž£×ÈWÅ*~~êõ2uŸRØÄA•Â$ǘRx›`Ô2a±4œ”ß3x¤å¢"M¼¬°½_ÊâJÔægëŠ%‡R‡¤f˜XCÿ¦­•´ÐN¡•㯣²ÏStB6§{3 GõußÏ£iì꣰ÞÔG<¿Ž£ ™ÓÄ¿A梅mX¶œšo6µùñá’ß}5¼&S¬p§H/+I+v%îp ›þÓò’$2»6h¨ó‘휳×0ïùP #¢˜mI–×òF|«å!WHŽ×tÝÒs÷;[ú"ØDûí‡r—`$Žácò©žZžVVE™K£LD¼üXìíŽ RÎìÇü×\Œ²¢/¹uÀÚ#ÔØåýrh5àçÃõ™A=^=%H.#·£^4º5…=x5*˨9`II!i4eA Ìrh±z·ïV‚tÓï~ƱMÔ2eµåÉuG@õ/Nå¬Úìºî›IõlJ×w×ËÍ¢+Q#ù”(ä¹àSfI©:© {ÏL^õ"HŒojš.È1¾vàË*Û(¡D3f†èȼ”‚—‘Îïd±UäíFŽ'è*M:àyrÍ î¸,Þ³ºu£,Á½é 5¤ß&/¥ýV‰üb¬5û|FºO[†xoÕ,·2ÌO™gr‡T±¯s ¦ú1f8¦NKöSDÞ³Q²cb ­¯9>“9ñûŠ‹»=jâü.üù»HÙ+ÒÔOŸ$5¦Vdn:¿Œ5: ‚¦mÿÑ,´¢³.!Ÿõi³eàKkŒ$•cØ$Š¢Ì“ä'êF×ú¤©![ù]ÒôÍóŒ{¿¥!”)Û^%Ñ—]4YîËèÏ*¶Vm…&*YK`rçß5ô?†ÔdãúÌBûm~Ük«Ëá?˜4#µ±ª Ty¥¬IÇqŒ)Èò.Þ–gïÞw“³ CC…s£c:ô×È)öN)×aÝ'O¦7õÿ¸ñ3&¼ G‡OöšÅ÷ÃRDe^h6$ÒÆÐõy†ÝLî ᕆý´d+¤iÊžp“ù° .ÉÚ@Ʊ«r1æ7µ¥Å¾ü¦Ú§ÏÆwúƒØÕ·ä%¾Ä*A^$kµk:RY¦Ø¥×WüM ½¸Sì™·5½-­mýò¦_œ¶ýSi¢2izçQ_Y“‡Lñ5<:dk$ʈ+ªNsUbx²a<:߸ÚèŸ÷ú{Hš3ÿføCt–™l³O "8gäZÒ¯ Ñþ´ÃÃU÷vjŽÎl<5ºï“ú/îsy.:‡ú½èŽ j­oóü”´f[H–sÆOzΖú¤úìS·‹¾;Eöå!†ýV·î”÷óewnÂ×$G 5€µ“˜Ãe¬¿ü>¼›|ë´xÊÝdnê;÷3fž; YòUŠS¥>Ú–s§Öè…uÚ_#ÿ3êfÃmqý›Þwøó §—"ùáŠb=êéí ÎPÍÁä]*«‰5Ÿ®4+{Ióëšz¿²ZV+nèq*b²ð[ß/ N•hµAŒ¿µSêÚoT^‰qŒÔ ,¬óª27+§æGè$ Kýå––ë­£eTôGêZ`ô|ºR`y¥žúǤşY-ý?U3óM_c¹Qj'¹T6.–ËWçôlf,Þ4¿M¡]—“¯ë`(Áå æ´ÿ(WöZgì0Ê ,®Þ²«ær3ØÐÊìVK'³á2\Öʧüb¦‹_Àt4@ÐzÐùÖZÒ 5¾ÛÑ5ó‘hkqr³¥ãHÁýÅÊ!Z›ál9ñs—?=ée'–„l7š´gbyä²ÕK8ôxüš—DUAŽ4FH£ð‰t¼Ÿ©ÍÃïêœÅ^á,±Ý]ÂS³ƒ´€(2Üê|±¡ñÞ2BóûmßVRMèîÂQ&6 9ù€W©Q¢GìØ•0Ù(œ]¨T˜ÿêʆ=JѼ†«}‚釵Y¨€€¹bµý¢„#S¥žÉ³4ÿé{L ~ç>æ¶CÿÝøˆ±¥);¼Ôõ2µ  yêÙN‚ÜÇ=ãpKª§4ZµÆJžVêèŒÚ/¨Ÿf–·mRâ$Æ­HyÈ»Èy¢`Q'³h0®+"ˇ!vE Ir±¾Î_™ÆÏ½^& |6&h^|fžÎYëA^ô¢6P|,¡¨‹«0÷y@ ‡SuZmx0åöÕ‰9YDм¸ÌJê[ÂH8\PÀE!Ÿ×̮Ԕõ%r§u§`ÙÅ/=í—SÞ4ÖÄ1J힬~ö¢¡'¶ž×߬+œön}‹§ |#0“½¶“zn8ì–®Néã(„_+à3IéâàEQÄWüÞ$‚Ö¥kRH5Œ†ÀÂäî6jª§»-F{JfAŒ!ˆ"ϤÑ>‘€+•ö=|‘FøÝŽ{*ÿ?I» endstream endobj 39 0 obj << /Length1 2216 /Length2 14704 /Length3 0 /Length 16049 /Filter /FlateDecode >> stream xÚ÷PœéÚŠâîî4îîÜÝÝ¥‘ »{pwMî ¸;·`Á-¸ÃafÏž™ýß[uNuU÷·Yï£ïWME¦¢Î$j2J\™Ø˜YùâŠl¬VVfVVv** W;àåTZ@gÿ¿,Ħ®ï2 S×wCE@ÎÍÀÆ`ãægãáge°³²òý×äÌ0u·±(2ä@@*q£—³•µëû9ÿ}КÓØøøxÿtˆÚmÌMЦ®Ö@û÷ÍMíê s «×ÿPÐ~°vuuägañðð`6µwa9[ Ñ1~lÖ?>?¾O˜ÈÁÎëó?[Ì"ª¥¥«¥ÆðWÊ+ÅÄ@ž&N;€‹ƒÀÍÇ ðû_S›¿¢ø—§¬ƒ%À÷Ÿ`ß«ô߀ÝÿšÚ¿Öƒð¿\J ÷¹hÿsV.Vó÷/¶ÿÏÃþ§Ëÿ¿ÿƒåÿuÌÿoDRnvvêiÿcðÿ£7µ·±óúËâ}nÝ\ßw@ô¾ ÿ×TøŸÅUZظÙÿ_­¬«éû.ˆ:XÙý]H)O …Š«¹õŸ³ñ±æ{fgãT¹Øüq³˜ØXYÿî}¹Ìmßo—÷‘üS|ßÿ=QÒÁdñÇ’±sqLM½Xß'‰‹ àÃö¾@Ï?‡ÀÂìr}w¼gç°9#üÑRn^‹Ä¢?/€EýoÄÇ`1ý±±s¿Cs›÷hí,€ÿX½3˜ýƒØÞ‘³©¹-ðýFµtýGÎñ·ü?#ñ·‚Àbþ7âz'3Ù½Wã¿NÎ?$ööÿ ä½L,CŽ÷°,@vv¦Îÿ²xâŸß ÃüŸC¹ÿÐ;¹½Û?.ìË\Þõ´qÿÇjÛ¿Ïx7±ú‡ñ]oõÇÕü·É{ìÖÿdÂõ޼­ÿ²x—Ùü ¾§ÿOLÜïyÚýÑüôïŲÿ¾o9Ë?d\ïírxšéßÓýsþ»3èÔï1;þ£~'s|8üOß8Ùþ’þo×8ßKêø¾¾ úÀù^G;·Eûþvdqú§OïÅpr¹-ÌþUv¶wé¿*Æö^¸þ@@÷ŒëÝÜåýbüûÐ÷œ]ìL]¬ÿEñÚ?¾_9,®ÖÎÀuò=OWпÞ9Üþß{àþ/ø^5-Á»·ç¿à;½×?Ѽ»zÿÃý?kjîæü^C×?oÒ÷þ/þóÅzÍ–@æ¡ëC¿ß׊z0íN ÎRíjgÐ1ù,;w¸=¢À¦ÒÕäo8ߊ¦Žô¢­íHÒÞˆ¬¾ø·6ÂF´%«¶?ù>'ªÍì¶#,Mã N‹6 Ã1iˆìù¾8ùjÙB¶‚wÉQ8¹ñ¢¨|Ƽ÷è—öl(__ØUÝ«á–G|.ÿÁ«cT2GUh–;GãÊD GñÛuîæv#êT.‘Áï$–ã«Þ&{Üü÷z¥»K7>%¾1ä Æø µØAšî¢Oiq̆àb+3ØÆø©ïXÙ)¿¾‚,.«ó2Ÿô8¥_{KN|ήº‰#}½ã1Ê"ƒ¥‡‡”ôgåoÅýF{Ãðw‘Î Šîñ°J^>{[ËP7ºÇ7òǧõSúÞ£ú–ÛðÛØk-bë/N~XŠ0D×{¼Ý¾E³Ë(ë|ú>N8Îzîyªw VHž¹¡ À¥f¢¢ae5óP$ÞÔarÀ×ðµ›ÁôÐéà¯Hi®2;]ì½ržŽëeðÊ?y{x5yÙ¥LËr™a´~4O<Õî„@ÉŒbLæÉ/Z)—¯ã¿§‘[µ¨™i—:ŸPŒØ¿ë1./|²@§°b¨<l9:Ž‚šÓË0 øÖ’®M¥tƒ%å˲²óA¯~°è ¨0b ‡Prâ«þØ$uA¬,b/çÁüÝ-rÌ/˜4TèêÜH.ºU~ÿÂ5Ô &û½x«0J€ó\VÀã¨ÚËÉj.“97ÏùÛMÿÙC·£/-+o7—ý»¾ëô‘Ñ´•/19ÂÖ×™QßÌr¶^é—‰!(,¿šDQT²?ñ¡‘\”ÑÅ•ùjΜ–ÇXâÂ9¦Á6íI ¹6-uXw—ÐÊ–â*9ü£eý³òÌç@\6ü¾/õRFjÂiL¹©¹—½ÅN8¡°F9dO1ôlVwûìÝ…œ,Åùß8ºD*¶ jy¼WM½f؈é>µ0ofþ¾ Š–ô Ö¥i.¿;⊔2tøØÉ¾Ý1³`ŽuàÁ†û|?~Àh–/k‘Õãõ­ž?nü²åBaÙÚQtòîÑEñS©¥Õ U—cáÓ› ReZŸ²øùú1ŠWõ=u`6 ¯ÄÛÅØ ávûÔd÷žÉTU Ø|)h6¶-ñÓ*¤'ýL¯8ñxù&5¡*\ÙgF*ãSŸéV¶öpÐÓý”×zN‘нèÜ0CÖâ¨÷úè—¤lsÒ<# „|wj‚ÚÚž£ÊDÃ;5µìrñ¯âPF5\/|×¢§[ ÂCbÇ”ûkCtG"Iõü%´Ú4{Œ`¯bÒåHøLÎIã…á©ó8º6P¨¡bŒ¶¹¥ûÔh“’äÙní˺›e&çBè3F&$`´©U³40ö™Äˆò4¨òÛ³È4Bùè9’›*JŒüŠ>QêÒìj("Üù›ÂL¿çptbiWn¤p˜¬3ú ït ó/Ÿì‚MËK=Æ—•ª5'JLªª®·³ùê`~cÉYý0ó ÛNGÿîÒ4ªñ#¬J¢Ò,x„_Û‰Ì0Àf°Ð£=Ùäí ¨ 6†f·×dÓÚ¦IC#^¶ÂAæÐîWógôމ¤Ë¸»¾ŒõÛ… ŒÀÛÅuM)‰cä ­ T….[ëÞmŧÍ®™ÊR–åGh *ê"ŸPZ<ù~fñ› y¾Ï]ž2L˜îÛ’ÏsœžÆ\$‘»ñËmÏQYýŒ×y%Ûv\4fcfëNŒi2·ÌåäÚÞ-x%%‡;½~éKhX'· ’–¡ºÅˆÎë«§Ã9 HfXЩ?}GÆV['êhËñ~¬ í¬Þ„(vB›vî#J0í¢¸Cl" @GÊkóÃGóŸÌÁÃ(5ú±RBû´ÂÖ垯®ó¼$ú1L ê*Ä–Kðh:[·ðĆdÙã*|Ì·/7Ü]¼&Zè½#U÷3öÐD*d[V™¬»âÕ{°p¨ï‹$3ïÑW†ôIÐÑòQ \ur`ˆ7–É™ïk@•)}õ„ž&b,³«,‘µSââk$ =+dÓY`[]`Ð~¨ö&üÇ épü&j Ÿ²k³>‡oìo.gVÈ«VÇÁ¥×§%^ØTí "' …Žïq>k§&õXÉÃ)„¾‹¡ÈÒroÞ,-924z”¡Ÿ–Á2—'‹xc‹6ãâõÐÆ#ãÀ‹à>ðløÔ(8þDï»Ó¢£ÂÄØ:°]ã =ÉÔ=‹;øq µè½9×ú´;ãöhê½ñI–ç/ÌIWo¹%rò­mš€ð:'X‚‹¶üQ<·ÓâÕÃ|s,ùH+…»u.˜Ý†Å<-¥Í$Ÿ™=´žÂ2AŒÝð¸_Ålmå›|`ù,ᬬžÁí}+¨¿þÀCQ6¥ÿ2Gyû‰¸Ëb­Yè„GóÄü0`¢¯¶Œ¦+Âá›êtæ$[LÖ~±öÏÁŠWØÒå7­5¤² %7¾·TNôh/iTÚ™Þ× äÒ äÞî(ò*ïÑmr¯qŠo¥¹Þ+‘·XÑ^ˆH‹^ (ézçæˆé gÚ.¡™p¾ù$v*øÛ¬nwØùYÎî§Cb+±F;(ÌåX>Í©#¹ar }GÃ^ÄèQÇI똥ž‚Éî¤Ò‹pMÞÀ©ùdïÂýŸ á ɸÏü$òÑÕ7…ÚoTã:)¡7P”Kü¸f#|Ž;RFYb“$ rj´àÜúLô§œd9±3^º`&4ŠM/´ˆUp5§£Š˜*¢ƒ–‰ä–D1äPÂÀ»ôWê$µÎ~É¡cDÃRv…À£ð~0n(¤ ak:^êql1S4ËÛ´d2Ü6ÖȦ߮h-Š¢!uXÁ½;Ø6(¹)±[üž‚´?l°}ÜµÙæáÞ¡ì䬂×66öËvÝ' 5ÜT@­üë—‚~ÄM’c¥´;ê£c¬ÌÉ]5ql?é-žp¢C(®Fea&ÚU q1:Fš.ZqÔÀ»^SŸRÛd!Sȇ…³s“ƒnwÌÄò§&‡Ÿy}×V¥§ò~®Ÿ´É !8 nÁ˜³GnÔx’êLÂ`°‘ óobo¡·¦í¢á¸RômâSµÎÜ¥Z…F©wõ½³ò`a~€Ñ kºôG‰$ÈLap¡ý'Ê¡Üî7ÞnE "f!ðÑð6žæƒë&ΫÔÎÝûDÈ(²'G0ñøñ+­ÆBèpAÈlêGêÐ×`x»º”ga&tE½U73ýx‹üÐQ8g]©è†ˆ÷j†ÓR²Õ¶ž¿³?Z™åÉ$[À1Óò#ôlŸWä1ÇLC¤S9:u•_ áT z{2®ø%M˜:gosƒª[›Zo ‡VºÊ$k¬‰¿L-R•¦¶ƒ y(±¼¾µˆE‚œ‘}-»›+)iR÷~ô7!TôÑ(å®.Ÿq²ÅÁ•¼Í›Û³Jž‚¹¤ý'–z¿åGìÑÄsDàQ;†f.Þ4]Ãü»S¦Ú¢å™Bœx /Å\n‚r$—UÉ2‘Øà¼¥º[-8ß0§§|žë˜‚P¿ß?Âå¹¾ýðSy>IqíÇþ\"çÙÊ»8<«F´ºÅŒkà3jâ¶þ¦IHÚTrMuØÊÑÿÆÓk0ïì®$GÚtô=u™ùR Ue[YØ}Ù©ü±+½ƒ zce¡VH0?íR¦8¯•MW~Ÿ‘vÕ³ [.w¡«u1–ÍÛxÒÍÖócA!§À†#Œ©Ø8,ŒI>mV2®ÚƒBtÞÙjiÞ2=›ïÜØQƒøÁÊÎ?ö<=‘K·F~J0H}÷ÂðØA$²(Жk^Æe3øéf {ðˆår»-zÜV‹hÝmÏêW@ÊKaôš §]êtÊ®ÈCM—±²ìF+~ö‹O‚”·“…óž'²%aaÇ8é#ÜÆÌÂÅ}èâl÷]£znÙM>¡·~ë±YÓ×Ys[38ÿÁ °%Öº޾ûâ oÂÙÙ*²PdoÑj唳Œ_I‚KOX ÄÀŠN¶ƒ¨%3`x{2‡žá=4ïrN8Ó—Vús6mŠ#tM6ZéK†º ±N׊‰Eô-¹þm„ÝÞkm~ziî‰O‹„§ë~ 'Ì—0lÛ°wË Ÿä~òS>Ä—dÖ0kÒCŸoõÏB7æˆÒúÜx†_ÓHÈ©vHOŒST?Ýtô{ ¹ .—§ÝCÝ…Ýê«­Gûz4-£?"²1Éc¡Ü÷eo4ÔI;:Ü4ñ¿f­ 7ß— Ö„ž\ñÃ8 I†×áâöG>%YèŒA®XëùuT&ƒä¨‡_ $fsØ=Œ5VÊ4¼Ø#ÏÃåUÕd¸’sá4įal8€ˆðœÑü+S½A€Ý>Qélå-Ïyá¤Y Æ‘4rUÂÇÉÙØÉóÖ:lw 47¥ÓÐFÅN¨¦hϯ{¸¤»C¼hÆ ¦“Fˆ„¤Æðé vä>$6ܵÆîÎZÊ«8ŸÃáÀ,aÒöóƒË­C6¬X2=Û k•fNg5Ù…/­ÄϰTƒ*°(üteaåõƒ";gïD3ÎÕTÆIaUlm>Üik€ï&% o›DºN*G&© fÙÇßjøÐ°j NP ‹­ì( Õ C³¦¤;⿾*ünLÑi¬C^ùù ‘bª³+d„áüs1y^ÿÁ¢³<½'eß½† «â¨-‡ ˆÝ/a©ÆÐb.¨bñæR±ª“ÈKüš57mo˜µ* YU£pÔo˜#ã[¥žÜ[[Ñ ¸î‚í*ù}?FÜX²»_ÛÝ>ˆZn·rSOø¹¾+½ UçFÁyˆÚû ,:ëé"ã„ÓÕ°BË€‚Y©óÃÑ(Ô0͘Œ ŽÌ¯˜‚°ÄΞ³Ê/nŸ{ý­SlÌàšÂVÈN'º€â³Qz¾c²X[XQê­B¯:V–®¾¨¶kAOºo§tŠ»o†ùq$¢ £ÃÍx ˆuã«q—}Ÿ $ËÁF€êÅuƒ›åõög„ Yx%¨ÏíÛÂ#˜NË/2éF㎳fëòš E1†fˆ§?o·—qSËL§ˆó-Ø;Cûöñ8×c\I?PñG\Ê9¿6øI[a%mÔÛߨà_ã©rc(¿ýs·gS÷Q7Lb,™üþ[ %–°e IúJÖ†zk’ÎØ/ÐAä>ÇsÍ6ƒFЗçÆ?ßóžOª3if4Šå†0~ž‘b³g †À§äŠŽOœÆÜîfc¾ç2ñK.ÐÁ\Ï·¹ šR|X†Ä&jø;ñùØSýfç ‡¯h¢·Ô–.ç­6ì’:‘Ìh†ÜVIÞ!ÿUN‰™~º²pßÅ€v¾šGÄFëd×aò<í]ß@ùjYî³Xˆ‹¨ù‡k?ö|UQ:¹#WXÍ8l·5 l'®D3_ÿãǤ‡ìOÝ<øf¢~aAù™_t改÷ŸXÐh LøI§æ.: »KIÚÀ±/x­bdÁ)o¤S߯M¼ü¤ŠspG…é̓֠^¥e½ñlÉ#’ñŠvÄÙ0¯!A€nH¦pšæÝ"Ýä[BÕ…'Xõ>”¿T4ÊIBl-œ§ Љ´0Ê#ùm¶2À“¡tn~°—nuõ²bå*i$'a;,>5¨NVÊ6#©» ˆÉj´ÄÌϹ_b,š IáÕÚmÝí(}«lîNXw ¨z‚Í8ƒvdU#2ݽ/ö³B~#—/8ãMJ‡ÆefwmÂZ45¦ž¿±Izé·&pà‡ ÁÛý£wÅů?ªN¹aýAîœEè’=©.^½!ØûÃkéIîiÎèS1e-—BÊOEttY&¡WœùÙ30¶ Š 9¾3êLÙxÈ0Š:ÀÔ€UÜF³9}»:8Ciöš”¶ƒE¸¢ß”š®[¦™ dKp•{Ö¾¹°±•¢-—¨´Žõ‹¨4¿!ä‡eA8¤?îÆ©t¯ÐÜóRÓñD$c>ZAeÆŽ•íˆ!„$/f‹0dFþ’‰i¤‹‰#L êþäö!;» dé£ë<-‹~¿Èޝ€xñ˜¡©3÷μΠr¨ö7FˆïâÑQ``Ê8·ŸTO>éš”î›È‹Õl’X—Ì9]bò"‘ Œ0_N vÑ÷w)(ÞUïg›u¥+Êã§›ú˜ä³e÷f4CAß=æ­ˆ/9’zæc}Õ:ˆ…ÑWÐ<–¡î«?.€d´ úaW m4¬†£cõ7ôšŒO>†UyMá*ª)¥Qâõ@UŒ¤‚eäwAˆ%…ü6[~^°•lZì‰#0¥‹gÒ`tW79Œ½B×äÓ@nËñ›,ç(¶dGPJjâçOPFu'ÿ€3Ü *Ì'Ø5aš4‹7ìƒõø¨8ÖÕ|Kí§°çà–[€÷•s5_K|“ù³q˜ÙQ)¥ëmEÛs³ßÈÂÐlùÌsϯвÝOîÖ¾màŒ{/\G|xDœ»Hžþ²Æ7î ó¯)ˆ<Ç,ص9s4ƒÒëpº|¡Pë`¨†×»ðcNèËú+dúM©J‘XR‹6=±žøÈ`v”rÞ‘zP ü1kÃaà¼ilíá¢Qz ¿`«ñ•i¥á 20¸wH±¾Çæ³ÙáÚ0C—xQº«'%¡ñPèEFßeĨÿHžz¦íÞà¥8iféžÝZô@DÍ8.[‚6Óü]Z?Ø2ì´›:¹L¥Ûó[#µ,^VæÛqQ¼ -êXzÁ7°¾ ‹òèQhjư±p_ÖνÚKåzùÙ"fVŸ2ؽÍ{Æã—ÀŒ5˜ùW¾´šC$uÞ ŸÜD”ù\ÝJ9N[l—Öß4”Î Ù®Y/{›î]Ò­ÚV^YLm¶!zð¨·kœ´pl¡1l,‡¹;K¯¡¤ÉG÷(¿kªÛ’žõ=7u®‡v=þFæ~.}½0ëÐì%ßžðtÕÝ–{_UY¨v³VQ9æj1Ï¥îÎE›MDÖ€$µÃ+Q?ô™†ñ @ðÛ§ûAŽ5}åt½ùXËJYô›ÊÌ€žf»Dø„Êu*ŽËBÃ*ŽF -ò—S¼b¿û:HôÝz”é(ËYC‘/OÚt‡Y-ä 48¸2ªF–Éd9I½;vçGa1b_÷O–ˆª… /™â3†¹å¶JÃð/‚®;cO<{9vðfižàò>nö$½þ’(Q¡èÈ~™‰æ“’5E*âðNQÑ%OÖÁcŸõÌòÂÐwLZ^LZóFo0Î*~Ïø¥Ë=GmžÎÖ—`ú¢¥yö³Ëû‘%플¸¥ZjQ2ûµV`SùÓ÷˜E× ,Ccîñã;ØÌ3÷¡wæk\@Õf±ª4@ìæ5µ¢OhYòöAËs•·_Iý|CíÿNïÜÊaÂùÉj5gT-ßQ+ä#šVÑÏFÄÙ@9á9{»Àj:ïC#"cEF©\[êbÒ©šp}Ä´ŠyTß䪑Œ¹©Þ ñ›©‚3ÃcC:w'åK° a©B6|ôâl4ÁK‡ÃjH=ÿÌô*ôŸ$tgß9Šš Åá 7ž Y µ‚áÍ–ó—W¡Õ±©óĆ© ÖÁ1=G‚F˜ƒÆ<(T]#è2m‚ÓaÙ² Kh× Œ4/}±ØÚÒd±ˆôguú{DÈÄ´eð–¶wXÍŒÏ)ÍâÙS’ 1Œl…w¥U1™.¿D]…uHךòÔÑZM™ Gé:ר /Í)ã VDÏ’UõÚã‚å„VH<@“ˆ©c³øë=0þ½>6‘ºí —¼‰Bԑヾ`ƒkÄj Ê9¬Rz²Êb NZ·^ žÙ†yçøúµÚ5Ÿ‚²´:v#ð>žãïVPÔÁh Ä_׆Áƒ­RÀ}߆q|Ý;“ ¼§“ìÆ‰Eî¢hOdC(͆e‹hH›ÕèóžÓW´2æ;P¹¼T—agT4Õ/Ƹ¾;[YÓZ¶KX›ôoUžK¹OÀøœºþü„ÐD%&Hs“@Ÿ0µ””`µ¬kÖ\ZÇ ÂR%Pßqkö¥žþÈU@¡ß'ï½ *µ%×¾ Ò}öSúmºŒ¤¶¢Uœ­ ñ«Iõ¬o³îu8Ø[xKÝ¡=ÎÐÊG„Pàô—Dw‡ôˆuF?ùpÏh:äy “ÝAÏ 09^½›G…VÞo½=»&ÅCìC…½mfñDasÛC¦ez²܅DÜS àAþÞù#ÍhL®¡(¨œµ–å·;)&LÌ$êô¯R> ¬ôpˆ†æôƒ1zµÞÙ 7Ùí-ÞáBÂ62”YÙ©LõRþL/–÷l‚‰H(“y_ø|€çN>½îÕž•Aì÷aRÔý²F{îüjò*•TÍÔçÓ7?•«,òÅdÉÔŽLx£‚¡”ž¬ClÅžT*uÍ`Í,Õ‚=)Ü&3;<Þ8 ã½{ˆ±üÖ&Ÿ‘˜>°¥ƒÌ–Ý:žg|ž´¡t¼ü5I_®DÑäâ÷änuéźêSÌ ^lÉbÖ3X˼ê„>Ôæ€ÒEaßïÍÇ”æž_µyÝ1öÖ­µ¼¦>çÝ?ïÖŸ`¿ƒU¨‰±€婵Ê!ƒ¿”á0¿M¯Ù˜cÌ……ÆC††9¿bÃÙ[$IÉ•7?òÇHqóëæ«ýüÒUžï*)J€…û0£Í8¥²žvóˆý:LPÈiIÑ£¹ao*“¿¿0pfNËá¸æÈ{Íëy·è »ðÁr ¬èƒðü1™ ZÃW{þdÇû[ùõä‘O›Ãõ¹d!ÈMh,øs½vª-ÃÐü&_ )ºÜŽ—=ùÞÍ¢,"è®eÉÞçí93´¹R6ø:šžPíÁ•œîÍù£Ä&\pˆõƒú~0ºëåO¬Š :ÌÌ”Òñ¡KÿĞءbÕÞ£/ýÍÃEæ×ÁN\©“ú¦Râ® â¡F?òøÅu„”$iV{Éo—;F§ŒÐÅ×¢×ç|F|´abÌ+?Vñj5F©CB+Q®Ð/dbìïbPð>îFaFOHA’Ž·°©ônmY¡Ú¦·³Â`kç¥Àà'Êã Æ‚Ñs–SÓ]nœ.–ôäÛjLÏGÚ…p醠P:¡X¾9ç\ +’ÉJÀ3d¦,±”Z2I&r0éu°Ò÷0 Kr¹¹NÝœ’zk'}Ê|V}œOûbŠ$ÆÜUcÓKØU•g¯¨-¬À¥izÜžôi÷1ma*É¥!?yÏò¶¾>¥X­>Ü6wÔ¾M\£æž±Néw(æ| Y2jˆ2á—ÌœQ§#”Ñfén»Å5^Ô7‰*Ü2ã2)ëþWIJ†W€¨ð /9"—‹yc5n¡'»e)šR޵¸ÓÇÃöG[7é¢s”c;#wöK?5ß>¶Ô„ã©,ÖìöØÖÒó¸‚c½²Ì1“œ©×¤• {å¹[l7{6?á‚ë=€ïµX‡ «â€™å¯Àe’›xõv±RÿRUÜ­Zq¤ƒŠ ÖM½-Në÷#äâ·Œ<çµÇèŠÜÕð, IòýHP,M ¯oÔWޏ:ÞRxëçÂúá¶s=O¦¤¨ƒ™ªÒD]ßþ†@ ¬Ô\‹.¸•×+õìãD§Mž»œxI2eۭ·1 ´—ëgäú3¼B‡€0Ò§|7V1;ìÈ‘@M—¾…²s+u #žZLél" ¨8Æ6äŠs“¯3Šö9ëÓŠÍ´ZHvê^îD#¶ó‘ôžKXñAÞñN4~wõ}¦x}·ªâ/¸ÇzA ò.¤Û›k”XWà%D‚ä3©•¡Ml!¼€d°jóB=?+ˆt›bÎO8ph`Á•g’èC¤E”ù‰øX þüWí›×À/™ö ÷²B…s/0vš.9’dI5Ø1㸿‘±DB3e’QQΙ3ô‡N”< r%8EFDÙ¹'‡0œ'ÏÒ dÍmx%­œÈh¼Õ“ašÏi‹øÂ]êLgLÝ„ÇâOis;’>²¥¿·¿¾oyæ÷-“CæÖr|¯ö… ¦ £Üæ˜{½ñågcxC|Öi­O% gXgqÑ¢³hwN³ÛDÔT¶êç5Íœd 3_T\¤Ç§lÝ׸$Û vȨ¤S&«úiÓ3“x»9 Tc¸v5;›éÙ‰4W¿_oÜÿ2ÉU[’6×Ê–s5ò0¦ÇûÙ}CIxÄéµÅ3\Åæ›¯³®RÎÂUÑä÷éù$ÜMÍŸ9§Ì£Éz{É n2£ÿç /ÇPõ3‰yÇ™pïo;“ßÝW] Fmw¹Hª9öÚõ’¡±JgQ°ØŠ\Ÿ¦²,œÄëµ.»£ÀoGdVDµÃŽW%쯠ê#)šUûÏ¥~bàËÊ ìÄæ7êýDÕ胦süêc¸ÕÄK?M¯‹Ãôš‹äžLkḭñÒÛä;¼g˜ æ>Ù»ÚÕM³ËÞ‰ŸûÐi˜2›(œé<éÛìÆµ0}"ÕéÜžœ¯+‡Y+[Uø€„ªíîA|©q.¦ŒGÄ ‹ü–Òÿý"T7>‘lˆÁ8½ÊyÚÍÞò›oHXÒÿHQÖÝQt ¦rÚŽ •¯ S^$¾•Î×ÙÜŽ÷<ût;ƒ ÇF& Џ–½ÕXrƒK®AhS–Ì+.E,´øŽÎKÖàúÖ«zû`VÔ^ÜLûÕ,jnËÈp£œZ”»ær»lX[N7¶bÛ:#Ó•,#º¹±b‹cu0‰J¡Ñ:£Ôâ80“3åòÊ$EÚ8 Šìjivœä‚!¹ÑŒlù¬&h¬;p²QŠÇ ö‚Êúk«OÚß}ƒ\ó­ï”^t-á=xv,³ê‹1&âÏ.ý;½r¯‡>‰+Q@“,åÖ¶•Ik% #~B¹ Œ*߃C¬üOníÈÛEÃþ˜‹˜“•¿á—bžÊhççâÖñ(@ÂKÄ×TØeqWf>‹—6ΈQÍ•Hæ(÷J gÊiÏ-GsjD> O9_®T¹¿©Ôg˜ë˨¯·ù®Ä‚|=ÃzµpoîP_SGõrtÚ´Ó¼xo´µ^f´(Ø¢§cßÔoŸôGð™°uÕ#&¹NVd kÀå0aĵKB©¦GÄ#•—±e=k†E-Ì݇•·­»-³´¡ž1…¤.¯dcžÇ¥¯Ãœ!É@“ó£ðf.ûž¡ i;»…þ¦õ÷ZC¡á ÌïÞ8…¾2C!~ _Éá^‹,ÏävýªáÖI-Ÿ3~N,Ülˆlàù¬–wÍ}ÐoCRéåEoÕ Šä&–·P¸ÃS„ƒïF_­×Tmí%¡Fgy­_ûĈ6 Ñ0Ðü wÇ1ômÔAv«ì8»h3‰•܆:g‘Ä6QsüyÙ§¶Ó–oÕz¯òy’eÂãã]3Dèô˜fn¤Õqt‰âûÅFB¢=)T2u÷ší-„†\ð¯´ÈTHMID7¸9£ˆ­ùøf’ P7Æ=AÍ^<©Ò\7™Ê N¼^ü´ä<W•=HNF¡¬h V±È:1l”©ñl9nç)ôµÂ›â Šr8«‡q¹c `3Ñ='6F>ú¬ØšV䎊»¹q¯­FÑm2º¿~ºƒi3fö¼nïÔCbÑrpéïÓQúÒ¾”ÅP hü õND¯2;G‘ŒÙ=Ȳìø–Ñ® vÊF”¿ewDù>¢Åx¢$¿Âkˆ‰¶Õ6û9¿j –ÍÊ(s r$ˆ0ù†î\Ö¨e›œ äéÛF—YCû”î¨NÚ¥2 :fWNî‘d'ˆ ™Ï•òÌ¡·F7¹rH–ËF;#5÷Rv¹‘TëP|üÅÃH$ÞÀ:}ŠÑ- j|hž¶Ð]‘L¼©³ÄLí—±­M…O2¶Ï%Â~NNѬ AZÌì<þÕÛ¿:V¦§EedgÈ9îƒë/á" uÄáºìã±AV]¬Ã-MQgÄi˜U,° hšQžÿéLîþUöÄ ¸õ“"ß9Á LWØ»¹ÁasL?Rže£b0Þ4LV@‡§Öìflk°N½Mó"åÐÂ/§ Ž&eÝÏüÃæaÉYl™³-œîs‹à&ÖþÓ)–Ó˜ùl)XE¤öŽ‚•Åô“Íìe9 „FêÓÊW£édX„â,[礌š2ÔD eßý¶˜nnB—ìZƒ ûU˜åGŒƒÕ®`TqÍ™ø”sÌb‰æž×£þEüC¿ëùMf6ê¦÷(Ú/l7¿ M¸›ð>|hG ª7+„þÛPýI˜wŽÑ-¤@Þâk¹Åö&ÔÞ°WÎî´ü‘J›‘‚ÆüiËå·o!2(ƒƒDfT’°ùi×ÆÑ¢”̬î‹:‹-Å”Ÿ•²DAjä->½ÍíI§4Ú¾Gk?²U+\þlX_s/Œ.Ïnp­ÈÆZƒaiÏ*1½ÿ¥Ne‡^`=?ÀóY«oÞk¶ÅQëp/¥ŽÔ^#ãh›NWšçÞ ˆ"Å‹åºpRÒˆšù²±@òõ†ãú»Hæ“%³?Ú«É"q9 *³ÖbªÈкâ‚mõÇAˆ¯LTß •Qš´Ù .£ >îw¹¹FÖHà»5"ŠuæªyHßžÔ ×–?©K„ âðs+©+9˜ÕÕආ\ŠnÓ·œt\f1Qµl¥~ö3n^‚+ªtùjâ¨ê£Ñ ö"CiOÁ%ÂÃâ\¿ªUÙ»I˜ñpÈHÈÙ™IR¨™Î+xð,Âp½òùÀ‡g#ªAS_•íÀÊ8¬­eÔ˜'h†Ö³mçz·=¤ýع`-&X0óvI¢í[ ðŽbîÀáp­»þb,‡@òãËqíè"Ãþ}.i)§Æs¢j:oíR—/VFñ¼é«”~u4 ¿Æ`¦•’{Á XÄó‡ µƒÂ˜Ÿ2vÛe3©¬ùKÈê*YR­•¶ÉœÔ³`6]Ô½«Þ¦[§h`/ d×£T˜?Ž)A³äÒãùJV·.¹bi|KµRÖœfÎ#‰?·(çÏlÉ|ò7÷r…$Ý-²žð^hŒLSûìÞ+Þíˆ<±«UXk¾¹#›-À #ú…7ùòÔ9¤ä¨,AÀŠ’õ¼^” 2<Ђ >TX$âTDÎÿÐå¢/e˛ܥßß™-ÄQäÊ”‚éYuòON2X6FX*Áßʼ­|‡òùÔ»Hj}a¼É½s¦ÿ+ѱÝ&}Ÿ7éöCX1~oýº89–r»æÇíä-vžógÙ‡¼¤ˆ* ÿˆš‡ò¦ì.!Ô³õ›/4Á‚’5KNM©žo]«íx•¿%¥Ø®ÄiwöÕ±í_ ÅQ ýñÉ9ožWßq»É?ÛÓ˜Ëòe ²FÄý­²­Ôh ê{¶ØX(Ï’âñëÖ«ïV®sv~‚l&~›¢`‘ÀI‡´ ¾vwRbÙ4 ôF6ËHÚÊma(g+µÌÝE ½)ég˜~–m"ëÁ¸®mðé ·ºR¤óoÁ®Wz$Ã_©…lËਹkI¤LÁq-fÆÆ¼:&‚(?¦j̺ÉsoTè¯bûP+[%kh+{è4ëZÑZ¹X:©™Ýšv¾C÷A[Upc°<ލæ}?;õù€ˆØòã3Nhr¦¥Ý½ôàî0R€?ˆSFÇæ²JìüÞeu¾¾ï3QGî§·y¢MT¶”7ȸ÷Øí®„7¸‰>Ë Û -àYûd=öh›fØžÂwã]UêŸ>+0)%ø3oùFB»RÍüWW6!Ó×–EíhíÄ,ûüS³ó^¡ ÀšƒqœæºsŠgvÜ÷cR;b LrÆ–LW›ù˜i¹ÊË>u¦­RÄì²tI½mzªðYê­Áa9—u±‘×ûñP¦:Úc[Eš“þ€¼ç¶€ÙŽ=ØAZñ¶ÆÖ¯0Ã:s0­u98;³_‰¤Ò· ÈS}X‘ ý’Í}³ 6Å¥ãÌÌ@ K•åqØ­•ÕÏršÖUír|øëŒòNþ&šŸ?P‘Æ]Ž­ç‡F9ÒÚ©ÈŠë;Z+ØŠÆ/Öºnbyçë$xM¹÷T>〣6?ˆ¶K^mzS}s+¼3Issö`ŽeùÈ®”9tÐ7çB½Ã:öÜ·êUkÈGQ:´üž„ß\qð‹é$~ý|`8µxAY·þËÓuÃÔÍ:!Eh'ƒÆ"¨ _Y—¡C¾Òâˆ.næ*ýEžu­ ó «üæÞÅì«ÞLAqÚô6¯~ÌÔ‘”ä¾™Lx‹Ùw´ç)'—!Mç–>v;›ô¥á³Ù@¬•ÃDçç&¨1¢vížïZO —»cɽ«`Í-· î^y˜_1Ý­¡¿˜UõÄâeœcž  ©ö5`O|Š|_μˆÌIR7`Ž JÄ{|ªßd¯Š¡b—k¤s‰Ì{eE!Á‹±¨qu¥>”ò=0ýî®~°<„Ñâc)ó[˜Ä2“Wrç—² …Ÿ"ÝUFòx¢‚ÏH‹o—"ê–ù_,ˆ|~œ2ÐÏ`¾}UØ»qÍÑëì’‚>"kèCÿzÝjpSb·ay¹!&¹Q¨ü‚=ÝžÂl9÷kü5‰w4-}¸­ äú2šb<, ‹W܉êEó±’3Š èQKÝ`ŠdVÕ·„Àìpšî¤C˜ÃÑ9e=~+Ë%|ÃëJLîÀ+ 秨/W°û ×lŒš›ey?¤˜Éî —]zã„mE3ØÊ+ài{å)a ëÛ:4ÊØ*hÑ…ENg˜é~ƒ¢ÿBIsï÷M6økÖºx•wªM,ÛE¦Ampé<ùsrÔ#´m&#Ñ¢¨øÒõH ÑSûÒ̪B=ëñîì÷!¹–!ªÏÒµé‚Ï@»*jÛ8y†‚l(¯ ÍOe6Rm«U¼Çˆ×Ÿï×k­tƒ¾‚ ’ÌW‘ˆEL0Jº}üRµÜC‡uE!Ípî…´h‹{+îð¡’êñÑw´¬¿Æ@7غ!z›¯kìJñÕÒ+päš³[üí¡ãBÿÝͽöÁgǯQÞÂE=5†Iº&ÌŽŽÛ³Í Æ³óÃlåƒU5è}|Á /‘qT¦d§âPlþò½Ó'Ïù>.\Uì™B+s bµç¹GT.+‹<;iº ¿E> ^GBø#…I•)Y]a´n¹te5ÝE°Í€cγ­xqëÞD.ò‹ ž¤¦´˜JÙf"âJC#òõô¼È…@xjd?fŒ¹8í§kä8Ÿ<ĵQ7y8°¥é¥ÜHzÂè%(½ÑEYÓ¯ ?AÕ7*ì_:ÌîÝBžÊg0`ÏV¤u®ë³ÍõcåÚ}‚È¡ç±î‘AÑaeŽ%Úµ÷ Sâ"mˆvÙï 3Ⴞ§ÜçO(×›Êmë{créŸl͉Ò4¯ñæ—tK ¶Dv~™(ó•»Ò7 ÷ÄÞvÄR7é-öÑv‘ ^yCDØŽ2)¨Æ¡C‡­Ë#¾íTdÓ'ÒZô-ÿXsL¶'î]hhé°CjÎáÇ.ÄVe[vñ|ÿ”ˆ]ÙHÉ|ø6ŸÐñâ8ˆ˜¡ßúv*:m¢¦Wz}íþÓùøËpU»¿Äóé7bU1,†¯OŒLAÜe‰x=Nò_'Öt’ÇÓéɡװlx¡C„ØÛN¶™bˆ®ôW ‚‘Ô¥eÏ4†[iƒ!qú-x5#HõNI Õ6tþúa¶ôÌcÈþ‚×cW`–5ÜÏd`IÕR~ >üÇTøÔqþ @²|ë+½Ñ…†œ(8Ì–Íh‘V{"$ÉdÅ-e¢b›P‘ž¨ž8 æ×ú‘9|UתUñ¥tfªh?ðÑöãàfÇdzª‹ñG½{uÕ,‹p¿ã ñœ]Ôöâ:…mTÖ¦ãC¢#È»rä¢ÃP]Âo?9p“éTL 54ˆÏ$N+ŸXG¸dbªSê\Wâ¹UêóÚüÛi÷Æ€A÷?Òðʱb)¦øÛBEëî—2¥ Ò¿†¸±X?ﯠýÊ$"ðÊÚ˜IßÀe‹µ ù˜~¯¢HÈó±³1™i>CIÒ³¢ÙPÔÒ ÅL™ÕÆÌqçÿ[çMè endstream endobj 42 0 obj << /Producer (pdfTeX-1.40.18) /Creator (TeX) /CreationDate (D:20191201114217-06'00') /ModDate (D:20191201114217-06'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) kpathsea version 6.2.3) >> endobj 9 0 obj << /Type /ObjStm /N 30 /First 222 /Length 2028 /Filter /FlateDecode >> stream xÚíYÝs7×_ÁÇ»¹‰øý5“éŒ-ÇÓÜ%il«NZO6ÒÚÚ«,9Z9Mú×)‰+Y©•dúÔAXð@+)&˜dˆb28&%S>0é™öðXКÉÈ‚ _‘) ÂJ3…+tè!kŒÂJ+Ç´ñð˜vÑ2-˜‘°\+ft0ÉŒ0î˜  f…ˆ TXåmÏ1ë…bžÙ €0­d†9á-“–9#“ð¬ÑÇœ1šæ¬s.‚´dÎÑ{ú´Ç‡ŸïjÆ_W7uæ³e=[¶Lìó?¯ÛùýbT·xY›êxþ‰] pÕ»,_À:Ôb?ü@šOA{ú”ñSmÁA˜be3ks™ 'B,‰%üõb>º¨—ì <9e|XZ²w+ýz.w]ÿ6ßpŸzŒpb1Ê+DPÒ=Âû+m_2«e_MzJ”ë(Ù÷™¦³Å*ñÎÃHy¥úP$QãZ­û6Kê€ãÖX Ê‚¼sF¢Wý˜e²fÒù qUà[²’í•j¯p&®A”€vÁeФ؀ ªÃken!“Våq'ÀVO@(I¦”O2°û¸;"Q½¶’f Ä}×»rDø¶.ö-~+Øÿ|þÎF=hÌ’µX|D±”u¦Ê{,hA³Bì|¼…l mAå ­ÖàsŠJÊ!æaUPIf6\)¥C€u‰’úr®pï!Çö}ÔŽIkÚ ‰¦„æE@Ÿ,‡(\¸ç-ó·Êi‡ýÀ88J—çó­ÍÚµÃð¬ß¦pJ¡Öæ-6[T½ºÍ! e9_dF;9U9¶+$tÄv¨#éK )f€Ä'º© )„ÀÍnˆ`T(2Ú÷WTK…Ôhj7Èï£pC@]óØl­ ~5…ðKÇWº©™-&éÄo¤ =›B¢Ð°æ¾ìáchÖXxF ¡ªLñ9aõ1bbNX µ¨ž £ÔlT1Õx9ؤ±Å:o!ER@וY @F 8] @"4öjL‡‡ 5gH.R Êl¢.lr…vÊh”ˆ¬q¸KTÊ}K,«2¿8ÚÉzDšFRVhÝZ6Í‹~À Ëk%•eáÿ*ª¼Z¼Ãó×8 E¢iÄÃ¥ÏøUÔ½¡½ì¨žu ©&)méØšV*Úº½H«ôJ_Z™u+A7…µn”‚l·~°SŽ.nœîºŸžPÑ]Xs ¨œ§4f¡9z2¯]K¥9M¥¤º›øÍ\r7ñDÓù¡‹x/IÔì‰*“<Æ»‹±C½‡b°AƒÀKQ:†xȸ^4Ú»RÏú‰&ïñÂVò¥¤¶ØBÍ2å,\ÿbGÛ·ÐÒ·D3Ò4’°;‹;£†8@TÀ‚„®‹:Kj…2ÆË¬òïVÏ šÏZiuæ!“¸)nS²m`ÙvF¬Ãëm‰]¾IšSöJ¾Ì|ïT¥96”«¼¶ÔI2«¼!ÖÄÓì»âµ_@Nêv´hî–óEz!yUÝÂÌÙ‹³ËŸ~ýÏàåñ[©`bZÝ´Ì$‰cz¿yb5{¢à­PJÜÛÎ.~ÔŽð-ÇETw?ÖÍ̓ëq4ƒsO$N>_VÓft4»™ÖLôøÅ²¾½Ä›{¿Í‹à\“j/7ÿâç|Ìk~}Íg|Î糚/øý¿“;§ (Q¶|±ú+t??üx†èÎ¥x¼8:”ÿ œ~8WbÓ²ÄvÄù€Ÿðgü”?ç¯øOü5?Ä|ÈßðŠ¿ç#>šOç3 ··E‚ñúv\µ^ÏèëãsÝðë)¿†×R~Ã'|òùnRÏxÃÿÏãS~ ñ›5¾Ä;~‡ï¥Óúz™¸©½«Í|Ì?ð÷óe=~?%ÕC’¡§Ä.xËÛú¶I>¶õG0ØNÑ£%_NuÍ—¿Ïù=ÿÈçŸøgþÿ£^Ì;Ùó‡dïÕðâ—ÁsÊÞžÒ„³€J3†ð}’g÷&ï%¤kIAR&XT›mó ÁìÏ»pã!pÏ·Ï~>&¸~\Š5èm&>®Ý×ê®èîC›÷bCõ4§èìF-øæùùÉàtãS«Í(£þ.ù zo>!$ú$Ïþ{t1$${2…ž‘(õ]øøh$uÈ·—¯PÑ…=5çV Ò‹ïƒÄ}¡Ab[¼ VH¥;­ÉÝlÝÈRÏ¢^´Þ|Øqv·Ÿ>¨Û]^þry‘÷ ?õxïŠHHÙ‰>®#¡”:ü¨8¡(Tí¨i–Ít\C@Þ/ªÑoõ’ZtæS[Þ>4Æóé´ZlÎŽ÷ÕÏŒæc½:/nu]½<7¦|Z·íaÇÝô¾-N|@б©ùâѰª=Buÿ~I81:®Úš~Oݹºt2‹?ŒÓµ§Í¢]b`fåEµ~€û¦/'-þ¶~°ñ­›Å–íðeÛÊllËÃmo‹]ÛZlÛ6¡c[nlë¯z÷Ú²­ss¸íîù±eÚìÀŽ…i|È–e8Ür·ßoYv¶üEÞíÏ[–wÊ̸=©–þpÓÛ ±kÜìÔ™6ãn“k±kÿhiñŸ–{0Uü¿fܲ+ªüw ¾¶þ™TÐBç7½´²øƒåOS`¤L endstream endobj 43 0 obj << /Type /XRef /Index [0 44] /Size 44 /W [1 3 1] /Root 41 0 R /Info 42 0 R /ID [<6F025A55F3AB4B93A0CB6B795283F4EB> <6F025A55F3AB4B93A0CB6B795283F4EB>] /Length 133 /Filter /FlateDecode >> stream xÚ˹ ÂDÑùæ°ÍeÀÜGH®€Š EdtBNP "¢Ðlòôµ£•¤_"å!rMÍÄŒÌØ,áðŽuej&Aé)ns33 S7 Ó4©ÉLnZ¦Jâ·ƒ6»¨.:£zèúˆ*ÐýÕGŸ*jÙ%jÕ-ª4kØ?Ç­þJŒ3 endstream endobj startxref 98373 %%EOF survival/inst/doc/splines.Rnw0000644000176200001440000003241613537676563016047 0ustar liggesusers\documentclass{article} \usepackage{amsmath} \usepackage{Sweave} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \SweaveOpts{keep.source=TRUE, fig=FALSE} %\VignetteIndexEntry{Splines, plots, and interactions} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{prefix.string=splines,width=6,height=4} \setkeys{Gin}{width=\textwidth} \newcommand{\code}[1]{\texttt{#1}} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #reset default @ \title{Spline terms in a Cox model} \author{Terry Therneau} \begin{document} \maketitle This is a trio of topics that comes up just often enough in my work that I end up re-discovering how to do it correctly about once a year. A note showing how may be useful to others, it is certainly a useful reference for me. \section{Plotting smooth terms} Here is a simple example using the MGUS data. I prefer a simpler color palette than the default found in termplot. <>= require(survival) mfit <- coxph(Surv(futime, death) ~ sex + pspline(age, df=4), data=mgus) mfit termplot(mfit, term=2, se=TRUE, col.term=1, col.se=1) @ Note that the \code{term=2} option is passed directly from the \code{termplot} routine to a \code{predict(fit, type='terms')} call. For coxph models, the \code{predict} function allows terms to be specified either by position or name. Other routines, e.g. \code{gam}, respond only to a name. (This can be a bit of a pain since it must exactly match the \emph{printed} call in both spelling and spacing; and the printed spacing may not match what the user typed.) Three questions are whether the curve is significantly non-linear, how the curve is centered and whether we can easily plot it on the hazard as opposed to the log hazard scale. The first question is answered by the printout, the solution to the others is to use the plot=FALSE option of termplot, which returns the data points that would be plotted back to the user. <>= ptemp <- termplot(mfit, se=TRUE, plot=FALSE) attributes(ptemp) ptemp$age[1:4,] @ The termplot function depends on a call to predict with type='terms', which returns a centered set of predictions. Like a simple linear model fit, the intercept is a separate term, which is found in the ``constant'' attribute above, and each column of the result is centered so that the average predicted value is zero. Since any given $x$ value may appear multiple times in the data and thus in the result of predict, and the termplot function removes duplicates, the data returned by \code{termplot} may not be precisely centered at zero. Now suppose we want to redraw this on log scale with age 50 as the reference, i.e., the risk is 1 for a 50 year old. Since the Cox model is a relative hazards model we can choose whatever center we like. (If there were no one of exactly age 50 in the data set the first line below would need to do an interpolation, e.g. by using the approx function.) <>= ageterm <- ptemp$age # this will be a data frame center <- with(ageterm, y[x==50]) ytemp <- ageterm$y + outer(ageterm$se, c(0, -1.96, 1.96), '*') matplot(ageterm$x, exp(ytemp - center), log='y', type='l', lty=c(1,2,2), col=1, xlab="Age at diagnosis", ylab="Relative death rate") @ Voila! We now have a plot that is interpretable with respect to a fixed reference. The approach is appropriate for any term, not just psplines. The above plot uses log scale for the y axis which is appropriate for the question of whether a non-linear age effect was even necessary for this model (it is not), one could remove the log argument to emphasize the Gomperzian effect of age on mortality. \section{Monotone splines} Consider the following model using the \code{mgus2} data set. <>= fit <- coxph(Surv(futime, death) ~ age + pspline(hgb, 4), mgus2) fit termplot(fit, se=TRUE, term=2, col.term=1, col.se=1, xlab="Hemoglobin level") @ Low hemoglobin or anemia is a recognized marker of frailty in older age, so the rise in risk for low levels is not surprising. The rise on the right hand portion of the curve is less believable --- the normal range of HGB is 12-15.5 for women and 13.5 to 17.5 for men, why would we expect a rise there? A monotone fit that forces the curve to be horizontal from 14 onward fits well within the confidence bands, so we might want to force monotonicity. There are two tools for this within the pspline function. The first is to decrease the overall degrees of freedom and the second is to use \code{combine} option to force equality of selected coefficients. Start by decreasing the degrees of freedom. The pspline function automatically picks the number of basis (nterms) to be ``sufficiently large'' for the given degrees of freedom. We fix it at a single value for the rest of this example to better isolate the effects of degrees of freedom and of constraints. <>= termplot(fit, se=TRUE, col.term=1, col.se=1, term=2, xlab="Hemoglobin level", ylim=c(-.4, 1.3)) df <- c(3, 2.5, 2) for (i in 1:3) { tfit <- coxph(Surv(futime, death) ~ age + pspline(hgb, df[i], nterm=8), mgus2) temp <- termplot(tfit, se=FALSE, plot=FALSE, term=2) lines(temp$hgb$x, temp$hgb$y, col=i+1, lwd=2) } legend(14, 1, paste("df=", c(4, df)), lty=1, col=1:4, lwd=2) @ This has reduced, but not eliminated, the right hand rise at the expense of a less sharp transition at the value of 14. The \code{combine} option makes use of a property of the P-spline basis, which is that the curve will be monotone if and only if the coefficients are monotone. We can then use a pool adjacent violators algorithm to sequentially force equality for those coefficients which go the wrong way. Look at the coefficients for the fit with 2.5 degrees of freedom. <>= fit2a <- coxph(Surv(futime, death) ~ age + pspline(hgb, 2.5, nterm=8), mgus2) coef(fit2a) plot(1:10, coef(fit2a)[-1]) @ Now force the last 3 to be equal, then the last 4, and see how this changes the fit. <>= temp <- c(1:7, 8,8,8) fit2b <- coxph(Surv(futime, death) ~ age + pspline(hgb, 2.5, nterm=8, combine=temp), data= mgus2) temp2 <- c(1:6, 7,7,7,7) fit2c <- coxph(Surv(futime, death) ~ age + pspline(hgb, 2.5, nterm=8, combine=temp2), data= mgus2) matplot(1:10, cbind(coef(fit2a)[-1], coef(fit2b)[temp+1], coef(fit2c)[temp2+1]), type='b', pch='abc', xlab="Term", ylab="Pspline coef") @ We see that constraining the last four terms along with a degrees of freedom of is almost enough to force monotonicity; it may be sufficient if our goal is a simple plot for display. This dance between degrees of freedom, number of terms, and constraints has a component of artistry. When all three values become large the result will begin to approach a step function, reminiscent of non-parametric isotonic regression, whereas small values begin to approach a linear fit. The best compromise of smoothness and constraints will be problem specific. \section{Splines in an interaction} As an example we will use the effect of age on survival in the \texttt{flchain} data set, a population based sample of subjects from Olmsted County, Minnesota. If we look at a simple model using age and sex we see that both are very significant. <>= options(show.signif.stars=FALSE) # display intelligence fit1 <- coxph(Surv(futime, death) ~ sex + pspline(age, 3), data=flchain) fit1 termplot(fit1, term=2, se=TRUE, col.term=1, col.se=1, ylab="log hazard") @ We used a \code{pspline} term rather than \code{ns}, say, because the printout for a pspline nicely segregates the linear and non-linear age effects. The non-linearity is not very large, as compared to the linear portion, but still may be important. We would like to go forward and fit separate age curves for the males and the females, since the above fit makes an untested assumption that the male/female ratio of death rates will be the same at all ages. The primary problem is that a formula of \texttt{sex * pspline(age)} does not work; the coxph routine is not clever enough to do the right thing automatically for \code{pspline} interactions. (Perhaps some future version will be sufficiently intelligent, but don't hold your breath). As a first solution we will use regression splines, i.e., splines that can be represented using a basis matrix. <>= options(show.signif.stars=FALSE) # display statistical intellegence require(splines, quietly=TRUE) nfit1 <- coxph(Surv(futime, death) ~ sex + age, flchain) nfit2 <- coxph(Surv(futime, death) ~ sex + ns(age, df=3), flchain) nfit3 <- coxph(Surv(futime, death) ~ sex * ns(age, df=3), flchain) anova(nfit1, nfit2, nfit3) @ The nonlinear term is significant but the interaction is not. Nevertheless we would like to plot the two estimated curves for \code{nfit3}, expecting that they will be approximately parallel. The \code{termplot} routine is not able to deal with models that have an interaction and will bow out with a warning message; we use explicit prediction instead, which is nearly as easy. <>= pdata <- expand.grid(age= 50:99, sex=c("F", "M")) pdata[1:5,] ypred <- predict(nfit3, newdata=pdata, se=TRUE) yy <- ypred$fit + outer(ypred$se, c(0, -1.96, 1.96), '*') matplot(50:99, exp(matrix(yy, ncol=6)), type='l', lty=c(1,1,2,2,2,2), lwd=2, col=1:2, log='y', xlab="Age", ylab="Relative risk") legend(55, 20, c("Female", "Male"), lty=1, lwd=2, col=1:2, bty='n') abline(h=1) @ The \code{ns} function generates a basis of dummy variables to represent the spline, which will work automatically in interactions. The coefficients that result are not very interpretable, but the result of predict is invariant to this. The issues as compared to using \code{termplot} are \begin{enumerate} \item We need to provide our own set of predictor values for the plot, whereas \code{termplot} would automatically use the set of unique age and sex values. \item Keeping track of the indexing. The predict function produces two vectors each of length \code{nrow(pdata)} with a predicted value and its standard error, one value for each row of \code{pdata}. The data set is in order of females, then males. We fold it into an appropriate matrix for use with matplot. \item The vertical centering of the curves corresponds to an average population predictor of$\eta = X\beta =0$; i.e., the average over the subjects in the data set. This is a consequence of the variable centering that \code{coxph} does for numerical stability. To center at some particular (age, sex) pair obtain the predicted value for that fictional subject and subtract the resulting value from \code{yy}. \end{enumerate} To create the same figure with \code{pspline} curves it is necessary to code the males and females as two separate terms. To do this create our own dummy variables to handle the interaction. <>= agem <- with(flchain, ifelse(sex=="M", age, 60)) agef <- with(flchain, ifelse(sex=="F", age, 60)) fit2 <- coxph(Surv(futime, death) ~ sex + pspline(agef, df=3) + pspline(agem, df=3), data=flchain) anova(fit2, fit1) @ You might well ask why we used 60 as a dummy value of \texttt{agem} for the females instead of 0? If a value of 0 is used it forces the pspline function to create a basis set that includes all the empty space between 0 and 50, and do predictions at 0; these last can become numerically unstable leading to errors or incorrect values. Best is to pick a value close to the mean, though any value within the range will do. For this plot we will use a 65 year old female as the reference. <>= # predictions pdata2 <- pdata pdata2$agem <- with(pdata2, ifelse(sex=="M", age, 60)) pdata2$agef <- with(pdata2, ifelse(sex=="F", age, 60)) ypred2 <- predict(fit2, pdata2, se=TRUE) yy <- ypred2$fit + outer(ypred2$se, c(0, -1.96, 1.96), '*') # reference refdata <- data.frame(sex='F', agef=65, agem=60) ref <- predict(fit2, newdata=refdata, type="lp") # plot matplot(50:99, exp(matrix(yy-ref, ncol=6)), type='l', lty=c(1,1,2,2,2,2), lwd=2, col=1:2, log='y', xlab="Age", ylab="Relative risk") legend(55, 20, c("Female", "Male"), lty=1, lwd=2, col=1:2, bty='n') abline(h=1) @ The final curves for males and female are not quite parallel, most of the difference is at the highest ages, however, where there are very few subjects. One thing the plot does not display is that the spacing between the male and female points also has a standard error. This moves the entire bundle of three red curves up and down. It is not clear how best to add this information into the plot. For questions of parallelism and shape, as here, it seemed best to ignore it, which is what the termplot function also does. If someone were reading individual male/female differences off the plot a different choice would be appropriate. \end{document} survival/inst/doc/approximate.pdf0000644000176200001440000024632013570775540016717 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 4 0 obj << /Length 1118 /Filter /FlateDecode >> stream xÚVÝÛ6 Ï_aôIÎ:K²ülÚ[[±íš§u}ðÅÎ%»sœÙNÓìaûH‘òGï ÇEýHþHÑ÷z½º¾5I 2©•M‚õ6PE!sk‚TYi ¬«à“xu •À§kC‰¯{›~”÷adâX ;XÔ(+q"ÙÒú]FÚŠ -ÃÏë·×·ª”’…µýFI,“,ˆt.óB‘Ûxu..øƒð ?Š?@D‹–tJ\¡ÞŠßQwþRQw$©×ë<ý.ÔÜ“…_V| Ì!às!§kvêôh\—'Ì'PZ9Â"m¤É,eð®¤àžŽÁ\”}²HuêrWi.ãÔ‘IežrökOg tŽ\¦±h·(ªÄGÒnÊ wn«¦EyqpJ‘Å¿øÑ˜T3c|ÿÏcâªÅ Ï0Çéù&¶Ëž²0:ß²úÀŽ_¸9OºÆÏønï‹é؆˜1é§;F¨[x^ÁóSøf:Ž1ž9=4Õn ó‚Ï¥Mô2¹¯~¾ð×Þǹ^`$ßDZ™Ô›Å;¦sàwG&ã]ÕS…}¦3.߉éfÆÝif3Æ1¨_fÔ–ì±b˜±ÎÑs„¼œXÜϤŸ*¾™Äx :ÑNKË»ñR•²ÊۨøSDɈ3TÍí-ý>Ek™ž©¾ÛžŽÕ›õ ¿qq ‚"“YšÊ(©2lšÕß+ ðÏ/ÌD·å±âú×F?·«ðç·"†Œf˜¯ñÿéù°1±‘ʘ /¤I¹clÿšE›‹ endstream endobj 1 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-approx1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 12 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 13 0 R>> /ExtGState << >>/ColorSpace << /sRGB 14 0 R >>>> /Length 924 /Filter /FlateDecode >> stream xœ¥–Ën[9 †÷ç)´´eEݵmÐv tb`EAêAØ.§S`ž¾?¥s³ŽÛ&˜E|æ¡D‘?)±ºV¬îÕ×î=þ^žþzûJ]Ýtš´ÖjþÿæêOü½úÞ}ø¨´úÔ±ºÆß}Çòz×yKž•Ídƒ:(™Ðã^Ý4æžùjeäÂhp²ÇLnrp´gÄ2ØíV{²³èzœìóp§èGû«MŸœ»Ó…äœîŽÝË7™Üü£õ¿×=“ÉÊÒImj¥×jsß½Þ”uåÈ:Sœ{²~ºo4ÝÌ×<Ý×XOa¾¯}†oNæûº§ûÚÀäçûúÉ·Ç%QÆ¡/•˜k ÏÍ¥t•&kÎÌh­4YÙCái4÷8ÙfÊn´÷8³×`FûÛüØÓa_L0‘’S.q?È/ΫÍî°U§Ýñn«în?o·jwîþ]#GjµUÜþwûði\SóÃÚTZÅ8O1¨‡­ú[7ÇÑbúws¼ï£Î;Šqè£')›†PWŸ„ *ßB-«À#-)yú_Ç–¹ž0“òd¢¡ì[ ”e÷`%І CÙ=82ÜR’S‚¢d¸!H^Wʹ¡ )”/“Ì•†m‰:êÚé¿Ì¢µ†¬Ìð}µT¥!GÉ ±T !_fS‡;Ú<'x»,ä(sKÜï€b[²¤¥Ùb’Ê5äÈÚJ¨JC¾ž(54« R [‚jd‡¬e§s‚·–U2fll‰ëÙËj Y²² k¤™襙€l%a-ÉЙµ˜Ds‚hÓb†’%ËŒ‹ÕúZyŽ z^f¯lÔbªggiÄÜ"k[[Wn3ôÍ’ñÒ*ßãùçš>†¾²]2„^s¼ÀQ$†^0ªŒ¹^ÊÊ5Ï8HIÁRc·d[žVûÎè(Z]r0À6J` vV&0sZ]°ïÛØ ÷Ø^`´°Œ‹Äù¸d¤ÁI+X< ²^2æ·)7úspÁ¸cM*7œ–ùÚ²1®Ž.‡ó–7fÃHciS¼¡/^çãÍ‚Û9Ùí‡W1§žÎ¤íø°‘{¶ûOHr$ endstream endobj 16 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 19 0 obj << /Length 2612 /Filter /FlateDecode >> stream xÚåZYo#Ç~ß_!ØBÁâìLÏDìÅp^ ò°Þ‡ápxDäŒÌ!W+ðoO×Õǰ©ÕÚŽ$ÔôQ]]]]UÝõµ¾»{õúûꪎêBWw««$QQ™¨«"/#•æWwË«w³ï×ɬkî¯çªÊfG]Ù@Ts¬nõoÏõQ—Ûfg  ³¿V%R^[…m°ÿpç36Ò4‹8uK0ôÎäPuÔОtåø +Ålð¦‚á7º½ÎfM¿$êã$zbÚÐçï ŽG™W¼Æ¿Àg„^êËg[dZx÷׫y’Eu–éoÕ9«LÓ¢Ò4õ²Z(< iªf ~I]Þ_?é'‚Y_ŸyÛ¦‹º4WI”ä ‰ðÍõסs´^Ö¡¼`ŠSóϧq{™™†³g7LBæ½ã(ıäÛëå .ÌB°ƒëƒq'?z_c…Õ„À\¹ TÇfo+çø†L¨»Ò,‰Šä1)ÂáßÑÍœKÈ•®™ºÀaø@}ÊFN-Ú@©@s@­ÞÓ³J˲1·L>¸rðôÁÑ_)ñP3<`>}§xŒÃaË×­ðhÝÚ#¸—à™RÂÔ¯ÔgÌ?è9e\!gðs®˜£kÏíÙíÝãCÉýW ïÝ'è/A·üKÜ[¼›¡~i×x.ªIö:‡õYvê\,ý߯ÅNAqÎà¯â¿~Ën,ÂD˜É å8Ç­ÍÖ[ß!Îõ䡆ï^°ø÷! ÌjÏý`…y˜@"[‡×§,ÙM´Óÿz$JÌ2ÅüA˜PúRLhªýìÿVû.26842Ïï·>t~¸ŒÊ=g·>¬î>!ô*õ} ;ñÚžW  ½pÚìùi~ª**³’Ñ®ì MÊ’:qŒ5j†¼ üû5€ÔËPž@d{C¢”rTˆ((J=°’—ã:wòú™%ðvXòÛ!üð‰0“o„q@üΜDºÞäTg¤àh< [÷’¥Ê­½Œ àBìvpóÁ9„É…WLIt û-F¨a„§Ñ,¦la÷,cÿÚï¿QŽ—Á¸Ù&‘}þ ǃ³ÝI³¨¨ÌÃŽ›X””וô˺„zCŸQ¬k½“°”´ÈOÕ*”̦‹lå"ƒIKW;ç¼° âd[ F tGRÎX΃1yasä|µ90¹MQ¼䦒꬈tz̆³Ò“ª-=¼SERÀ² äN¥Í|¡¼0»gxÇ Àe÷©-h^JÈyõaé`;”w¦n ÂÖnàù£]J×°N°6x€Aé|CóÂ6ütòpXƒâAZY¸Ðb}͈b®ŠœÄÅ~}C6R‹—qê:¿‰u³ùßF?Ù°€>7P"N B·r‰$SÔŽ^æE/¹²UîA}§£hŒÁÆ3ˆŽÏ]³K¨Ð{ÍGÕÈse]¶€©®ø þ¿Á˲šæ$Š^«+Ð~Dã£h@{tq?h0ÿ‚ª&L)÷îf¹õ§n,B"=Íbg9¶nÈÄöh¥QÚ†!MÄÅŽ¤èÎb Ò¹y0Àã/qs!^PžI¼#5s¨I­”ãMÅy”ê;Ö<-#•1¡‚®Woï^ýá¶¿ endstream endobj 24 0 obj << /Length 991 /Filter /FlateDecode >> stream xÚÕWKoÛ0 ¾çWÙ€¥X¬Xò{hvè¶ÝiܺòpÒlM“5]›^öÛ'É”M9rä´ë(ˆÚER?‘ôÉ Õ; '%iÄ"g0s(I”NÆ„ù¡3˜:ç×GnÈüÎäˆvV\~p¹ârÃe“/óG·Ôúâ…(Œ¸Œ¹\rÉÊ¥o\¦°¬Ô|.Ϲ,}±åšË-è\æ&¨úçR/ˆ;Ïr×Nøû ›'z ¹mù˜I¡qWë<ïÏq)%i¨#³åëËâ4UDFÒ=íM+·.@>!wÛJz»ù®G3]Zéí»‚M‰I;lçPêº6`r>>æ`]™¢ú¸…íØ6¹·û¬¡$lP07dòç^H^æÿf¨(ܨץùæ sù-Y°[ ˆqïWv¢4VPET*q¦µ±¯@c¦×™]|‹Òz. Úâ§W*ZÞ/—†1U•ׄ‹âϺOײ×Ð;é…½XvK`Fà ù¹·1¥Ømg°Ör–Õ¾”_ZzðÅÔTQ¯à½’ŽKtAç»ð˜=avK‚Œ³§¥=)ÅŽ jÝZoô%u$Š}ê$"Ô¾¡ÐóMüÀo\éï 6„Bc]h1%AœèÙØ¾j|ésis9³Ð¢]ž÷¾ÆÄg@{‰2œ•ÐÞje·h<#ä´­57?"!‡ÍD&Å9²‰–Áý qÂÙ'C )?Ô·ÆÅ¡½C—u1š•ÐQ(Bm=Ò Ø7Õ*ŽQëÝ %¦Ï¡N“8JyÄ£‰3Y¶¾·=ü@* G¹¤¶Á½³%sÞ®ZùŸZrÁ¤‹lžÔÖÌOHâ;Ý®®“Õ+úؾ<ÔꘚÖVé¼G%—õŠb™ÉŸêë® ã™g¨¦©6½@íce)Æf‘BO¯ª.Þgè¼ö!eü'†”8ž­LVyb,пsF±#5y*¤þÒy¦ÿXæúR#àA`,v‡žúÁK@–ø$ä5Oà ™ã¸ûõìÞEW³Yó’=9Ïþ?Ôt6_×€oàH[éõ/ŠÃÊKÍ«‡ªàž?, (oË•¹h_ pÓú8õhDãÑXï?ÔõÄæÚPÃlt}0ÓF8ØÜ?‹l¿{uz§ÚXø$Šù½`)I’$GÈWCã/µŸ˜% endstream endobj 21 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/adjcurve-approx4.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 25 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 26 0 R>> /ExtGState << >>/ColorSpace << /sRGB 27 0 R >>>> /Length 1361 /Filter /FlateDecode >> stream xœ¥™Mo7 †ïû+x´QDêûš - Eè!È!H·@ Ûù°Ñþý¾‰3ë$0†ÎÁ hég¤¡(Š|—é1]Ñçßô™Bs!ëgç+IL®dúr¤¿èöðâòðüîõ//èýÝÁ;ï=~Þ½¿=<ÿYðÀ˨ºùýøX†‰4ŠÍÅ@—7tÆçtyuøéryî£`u‰©VWŠ ÌX} æDXĵD©ôyM`õŽ µèØøŽµ¸Ð(µ>¯ Ä\™©³ dÏ®ÊÁEo%›ó©{WŒîaÎN åìØ¸#,Xg£Œõ=ƒw…)cÍÖ9Cq-PaçÇ87œ¨ÇÕH&q¡P‰ÝOF²¹Ô¨$¬sb?*cÑÕ¾-X¨TÙ1’`$òL¶†2A,TƒkÖðkÉåF5õ™M¤xé³Õì²ñ` ûž *6ÇøžÂÈ ‰š¸dÜ‘èÒ“Òv¥üd͵‚‹Ã#5'ÆHˆ¤–|ä­ËMÈ (Øô’½Ëhu­YÑâjC2cÇVÇ“qÔxÉf6G%ÀMœúäFÑ7¥'¸©å ,KŠ0¡Á‡îZ\jÆp-î˜ÕŒÖ^`p\¶×† ÒÜ£ý]ƒ¸ 7¡º V+õpSŠýÑÒ§ë™ßü®˜.ÁMy)ðlhFŽ€›P$e3ŠÓ7¡LÊÆ,Jî§QÍycò¸*"#‡³KÆðmY© n‰Ö@DM†à•°Tv&4úÔËAýðu……B}á//¾S„_¼üßbwþ;¼yKžþ>0½ÂßÕ—ÇÿvèɶÍ*ÿ3•mxM_›Ç¡2¬Ü×fÖáfïî:±Ïáj—,=y©]‡«=„ÔÏ‚Úu¸Ú,w[ýjÿÁ•ž,­O÷ºß_ׯ^]n$ïGQSÈ)*»QAcOѰ (Šó)w£¥P=EÓŠŽ}AÔâ–¹™»$8·^Æî>4/»6F›•…{TóžØÑ”ÁÓ«} Oì(—jÞìc¸ÙÙVüjŸÃûXîjßVê—ÍÏ6ÉrÞ{o3 =|)ßsê#ðRD¥“•Æí#yÒßÀÇh”ųÏé>1Ò‚ 0ʤ“™Æ½ —¾}Oó´"bΙ¹J‡‚e3vH÷ïáPÿùbIœ?˜zAÿÊ,¢Þœýz{ürNÏ‚§³ÏqéìÝõù[º|µëÝk?‚ŒŠ;Ìç]|¸ùt}¤ã9<ñx{O˜Auöîþ¸>ݬذý…§b³TEKj2*6k@í‡bÓÛ,¶S±‰ÚBì§bãµ ÚÅåqµS±‰Ú(íU±ñª ȡ؈êûÉ©Ømð÷“S±I=:mäTl²ÖÒrQlz6±¾çTl|×PläTl¸Ÿf#9qÅIUl=ÆŦTmÊö“S±YŒ‘Š «ô»ŸœŠ \d ?Ul¢yNUlJ¯ ŒäPl¼ê.ûɩذ9ÕªbÌyH›¢Ë~r(6­ºj]­ 6Qå°ý¨ 6¹7®Ft6¾jǺUÁÆ÷:Ò†ª`줂Mì#ª‚MÔ_v£«`S{,ÚPl’ùžPÁ¦G£q_WÁ&¨¶¿UÁ¦èÏûQlDår:›Ò¯ ª‚M0ßþ*Øä¦Ê¡‚M)=mèlPÌ%«›†`ÃHMÙ*؈=$ÚÖÉ=ü­`³¢?$Öô Ò´IíWv¦g8Õ÷iIŸÐÆÔ%øWùV—zB—0Ÿ‡cÌßF×Ö×Xë›ÿº÷={‹ë÷Å„ÑTýqN¸jÎ>~¸»ûxKzËöþøé~k¤ÿç?1É endstream endobj 29 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 32 0 obj << /Length 903 /Filter /FlateDecode >> stream xÚÍV;“›0îïWPÂÌÁ!$$hR$“+R¥pª$ÆœíÛ8wNòë³/aüšLºŒ»ÚýöÛ‡ý~öðôlª¨Îj[ØhöJe֪Ȗ.+tÍÑ׸IT¼„¯KR£j{Ú«øgò}ö)Jk Ï]”ÂÓº”'@Ü“Jª­uqû ¾\¾>_%k)«MÒ²Ðq*j™¨r®åCuMÞós¿{ñ»N¦—ó.IUéÔ€¤*7÷9q²æ„ã.–ÛC˜þ‹¾ƒEOœ„;Þ_aq¢Zч÷S,–±ÌÇN0låŒ%¶anÐþ-jÜEÜLÕMjjTÑsƒš¿ÁѷᘠXÁ_q޵|ÂP5Âî1Žá¼Ã˧çiC¦&««"J @­*V›­¤uË¢<]ìWIáâ#˼h–6‹ExÉâf'+ ~züSÔ¶ðrtµOÒÂÆÝnR&­û(Ç«·¤,ãfÃŽDìXŒf[Ü ƒ½L3LØ®ÄO1!e¾;©v¶|^®É%è> stream xÚ31Ö3µT0P04W0#S#…C®B. ‚‘)T&9—ËÉ“K?\Á’Kß(Ì¥ïé«PRTšÊ¥ïà¬`È¥ï¢m¨`Ëåé¢`ÇP„ÿþ7Ô3`‡v(P†ËÕ“+ L5* endstream endobj 42 0 obj << /Length1 1376 /Length2 7685 /Length3 0 /Length 8628 /Filter /FlateDecode >> stream xÚwP›ëÖ.ÐRܽXpwŠ»{q( @°@ÜK)Nq-ZZÜ¥X±âÅÝÝ¡H‹[Ú½÷9ÿ9÷ÎÜ;™I¾w­gÙ»žç› ¦‡´5Ĥq†sðpr‹dÕe y¸ÜÜ|œÜÜ¼è º`¸#è;:ƒ> CœEþB Âmr@ø#Pâ PqsððxDxE¸¹¼ÜÜÂÿ!P€Ðl Pç¨@œA0tYˆ‹lk¬óÏ#€ÙŠÀ#,,Èþ' í‚‚­€Îu ÜäôXÑ èÐXAp¯ÿHÁ,f‡»ˆpqyxxp`œ¨­ ;À ·hƒ` ¨;Èð{d€Ð ô÷hœè ];0ì/‡Äî„‚G°Èöâæl ‚«t”Õ/]@ÎÕþ°þ¾'Ï¿Òýý;ØùO0ÐÊ âätö;ÛlÀŽ ÀK5N¸'œt¶þ : ñ@w ØhùøÓ:  ­>Nø÷|0+(Øã„ÏÈõ;Íã5Ë;[ËBœœ@ÎpúïþäÀPÕã½{qý½\gˆ‡³Ï?'°³µÍï1¬Ý\¸ôœÁ®n e¹¿1&ôÛlApÀ nnnA!Èò´²ãú]@×ËôÇÉóÛü8ƒŸ Ä`ó8ÈlzüA÷ÝA8Ô äçó¿ÿyBçáXƒ­àK-ØýßÙÍ ›¿Îû‡‚=ÆÜôãpÿþüëÉô‘aÖgG¯Ãÿ¬˜Ë𥎖žÛß#ÿË)#ñøp¼pð¾àðððüþ3&üwÿ+VÙÙþ«ÝÇ{ú§e÷¿9Àü·@Xÿ™KòÈ\€ùßD7á~ÁmõøÅóÿM÷?!ÿ7–ÿÎòÿ$úw¤àæèøÇÏüàÿðÀŽ^#™ëT:äQ Îÿ 5ý%]ˆ£õû”áÀG-H;Û:þëÁ0°'ÈZ ·²û‹.Ùõ~ Íì Ò„ÀÀ¿_-nîÿò=ªËÊáñõ{ääèQ<ÿYRÞÙ bý[e¼B¡@/ôÇ%?ž^|xåh òüÃb§3þxÎ`¢ÿÞ¨€ë‘ù°?µ(¡M ZÍ·¾wæqÚc[Íè³£Ä=#ùÒ5Ý”hºRÛ¾÷®¾úAOÛTr\Ý„°5ó®<º=kº‹ßNoimW¨bÜsDëE™L2äZfN‘Ò>ƒsP¢²âŸxâLž_Làgü¢V‰cC÷;Œæûèc´Ês=å½TªË k'£'3"¥|rŽ?8Æè#³›¬B2ãSø)jE|&K0ü]ßü›®ø)U}2ZMRè›"ñŒ@µ6úöl« ¨£¾Õˆ€‘‰ºÕ'„¡PÑ&¡œ®¿Ð<“p}OG©oˆhÍö¥ƒªýðH¯Õ7þ©OôΰÕ…8Ázk¦¿ÀÝõ3®à˜¢r’ Â2ݼÆKâñ!\?yí~Xtm¾q÷¯\ÎO—öOìC}?ÁL–Eº0<…H4‡o-5kwŽ¿ßl‹µë7®«$<' Å5oÛ…ó>ð%Ô ž¾aWæ%‘Áþ^’)Ô§’ºÂ=Eè£ÐC2Õº±6<¤¡ë–Äž¸Ïlý^,¹ u„Èÿ¤©a:Á™æ`>:D!ù>hSè(K²'òYï¹[¾\‚‘±SšW°nbq;`š?µÎñŒ¿/~Šx ®&æÏHmRê¡¶Å×Dípµ[Ó LÎ!n·w/c 96…U¹jÓÞVô†ÐÝÅ‚ŽÚ)?']ß#©h*ÄA2Ä.åUòªoÓEÉWÇ85üŠõ'*]QÕTØÌÇPí'j×Ñá¯ÜUçò¨¿€LÜPÓÔN´\cÄôã•¥§Cžï_ [PÌ—™÷ä> +Òé7¼–rwˆè‡7pÊSøz—´å3D³4ª0_ªRs ÝÑž Žá)IÏ ¶NKJЖd}È$&÷{ˆ²Žm…9¾ÀhÃPPÀ’1ؼá Ñ¡¢yèFÊçe­;$69dA%$bÛôÃQ¯ä9JÃå¼3Ic¤çëƒVhŒF;dcEÙ­Ë•˜0k%§&âVØö.Öøh®µð¤ p5?÷uȼqÌ 0Ž>Ù¶š§ùÎÅd7 …{Mð;P{Ä 9ýNÄî“Ç2o3]³ó7è½oä¯1]üïj(‰ ¦£>%†¿nø»9“<êK7|5¯xeömk=~Z:´+Tfa`i”ØØ‹ÆXKÒÅ:Ò² –PvÚ"m¿ó¹>Çc½^>úžB6†AÀ®£µ‰Íû©9ï¶”‘©Ð¹ŒÌÄ¢ÚT+òM°È.öúRc§€#™3·¥ð['Ó–“Sö®ùÂ&¯èž³éÉGÐõ4D©ç¾¤$füþø˜w©¸.Øp‹ ³=™¯7¡¤ëSU&JAþû¯Ì/оÅ×>¡ÞX1´ãø3ÒÌ£«¸ÏÀ°qüR{…]§=¶GW}6rÞâ—ÆðÔߤ¡]1jq|uy½ÃΑ¦ÎX-X‹×ˆ— 7Z¹}j¥ ð}‘¤^Ðð‚¶æ5kkNåáü¾XeÔp’\LT {³ÚO{¶Ä¸ÃÖ/mß/²û3i=¹;/íèž”¬¸KÍû­íÎÑN£÷[+Çɳ¢±ìÛ¶M·»Ý9;àž¨DEhÇñò¯ó*>ùY‡rr€T0vjzÏec“P>‰S©n×ÉaÙ;W(Óz†’c.ÊÕû^1¶ä†}=wØg¶tÎâ"xVFX6ºuJ’z;Vß`O;Öo„ez·'ÝmI[a4c)RM`æõˆY9õÔSyëÈ*}¶~R¥](ð43yÞÝNm‚´h:j˜Óçh;ùdà‹C¼é+–é§Ð¹sd!¦ã&‰•UA¥ìœf Ä®”–¦®z<(zÓzýxLM¶bÿtÒǼ'Fþ²;)è‘zœO±ä#e›×ø²‘ý¦í@ÎÉ]ëòq¥4×A²wÆžƒCžåβ®tutºà&NÜ3ð•Á ×)x‹5XRÕb¾?+· wîžü—ßž­èp[\5Ni‚Tþ—(‰i¥ŠÀÒŽƒÛëã¢'gáAž´ŽÐË­œ[¢"cÜx$ÄÒïÝX_1wàö‚¨|ÝêK^ëÞŸÞl³¯I|–Ú¾Ñ&Ô”KüÜ=øx|¸à¦¯0e"mçPI­/G^Å}/ô”úRÚÓãcÖgm=”áÊ쵆 „ù‘¼›…óÏ\:ᜅX(å2÷W,M{ç²P~‰é1ÛnÏ^/3ç[¼äM‰l¼Ï']ð¶äCæÞÀøvÎAª«_éÓRve®tijÜ "p”é]_ÇJ‰¡¼ãÒ8 l¶ß„7JH´‰ƒ² ø´F9Ò™¸½ÆV¾‘fÇЫ ¸QW–ÂÈMnCðá'/ÊÉø¢Å©c¾·Í6=%)Äéœö5ÖN_«’x¤Mð¦8úùÓ×®Ü΋fÃAÿ›N_¹`¨2Æ•®]P7áœp rÐtù&†¹ÓÀ¦§|%~lz3‘†«î;œg­reòªX»DÑ+ç3¿53îŠÆ» ŠZbÇk“€©C_¹>zÚâñ‰ô±¸øÈô ¿ipÁºåäyÎ º,¥ø!nÒ3PIsýóU¦>ËR(p´qÌk:M½¨òKmTþlÁ:>Ý%f55’¥z\„™ã¿¹Äó3£sæ]:Š˜h€5{…Ù„ÀÇ-›LvÍv—áBß“r‡m¡&Áº3* 0Fس°ú*À¬íMÍûLñ< ©æJ;üÝL‹ c…ÐÖev5†I'=Š÷-»µ2 ÀVúJjgˆçŸ*÷¼ó§>}«qžqGÔ}Hªž(ÿCdtu™Ö3ûÆŸñ7ojâ"žÙ6‡RÛ¦¬@–±h(õž¶·Ø…,j^džÌðžï6Îd×´Uç°ÖjWÓ¾¼$5 ‹67‘Œ1€ë ámŒÆ¬£ÝÖ¦(sZê,ÏÎ`)¿("Ì1öð`vLŒÅC?Ž xmL‡Ï±È Fœ˜´JÍÛíE¨H:ä]]çßœ ñ›M ¬ã´Ée×Sï„17òÚG}Êú 2ðKŒhjÍ-8 óŽsïX›]_gfmRÌ5ÍFäÂ1ŸªÉ"ÚŽ£‹8[ª …ݨ5u¹¾{žØ ݱaÖ%ü¤XC[¿Fg§LD´ú#Ö¹šápm¤’àUO’[|: ™jái OC䆘+­\ÆD4Wºð ÙôîÃdªêsrÒ~//_%Â\Ÿý·zþÄbŽmƒÀõSJäTL„Ö@¼#ØÂLãì*ŽùXK×íð”„ÂpdWJ„{¼Vh¿=NöÞs¤ø›òL"†,«À'tù½þu±)ß^n#c=!‡Ç…2çtxÒŒ€BÛ nX030-éÞ~ˆW­G,{b]°?šìÉÇxÿuížx‹vò{{Ú`¶¹¾RU‡h,­$á‹í¿ÝÉ¿=µÔe9©ÀÉ¡~[#Qç±·ä~[³æKOÂÉ¿ŸÀ*5“\@_…¸ ÔZv¯›@Ñ¢…±¥K¾®‰]»³<«P“ÝlNf+¤\BzG˜LqíÉé);>×“ÍøºM¯0ÉoÎDyëy”:sàf€DÅ–3³}Md{AN’ôyÑ …9ãÇs¼ÎäCÊцژ\ 7_ }P„-Ê…V‰pÞE®wÍ+àË1ª½ô5Ÿzàì/͉wî¯êl¥ˆ ê1 :ˆ>ÙPÔ‘±8‚;äû¡ÉwnáÔš„)icõ Ñ*¤í7Ä­ õ]ô9vóßÒ³+qhsç×G™ÈÏA$ÚÃW5hÎ:-L èä#ˆA¼Å›zug6Çñ]cŽÙ/•Òc*ógœ¸„˜?þ†\Ñ#¸@’¢ä¹ÿà{£'ü¥€££ºc Ü! OÑeì~ôÿ°÷V\9J»#%lT1ƒ 2N{õ‚£˜ÄY:é¼Ç÷oYO»å{!®T¢maSÍ#\Ûx1MûÆ…˜j¸ÓG¸†òϺ˜?Q‹r«%Ä[pOg…Nê#èc³²­·"é¸©Ç W‰p7ãÚ ­¡Á[y½^ Òîo&Ô˱0ù_?¯J+æšJ f¢1Þh ¡a}¯Ãdðtd "/@Ÿ>+Ã=ò—±[_U¨Í[¡å5i4eß ˜¨’‚‚˜ ±vX»#^ ÞÍEÏÏZäcT¹èH24€}¿E^Ã}ŒQ/‰-Å®ÉÕÅ¯ß ’ÀúG랿ŭ+öàå_Æ i·æ²<’ó7f©¸F±å/ÈåÛ½_RdDàrÑîdÀI¢œ-k'lc!¦ˆ F‘ºìîcî^wúy¨§áq!ø }) üÀÍiY”²aOc´#%™¿õúâÁÛkÚq’å×=m5`áä\5—`d#¸}IÏ 2žv„:Ç›`…”âǘ¹±ã°*B&†Wuy|¾ðFáš-ÒyÒŒ[”µ¹«¨†ã5 ;/øCL~áxý¡Ý5ÜÀ_¶6ïÚéÙOñЧ5à æ6·Ä¯O¢+mï>¦ß<5FÊ‘`õž“Ráv111=›1Qñ+I¡}+;#±ã°Ni17Î~yTIªNÙm«ÉFCçmDÚÁÒØS6;!ÎPBšþ‚Zɸ_ü~Èl݃ýg¹©ÇÖ²ƒÓ¹¢TŠ]­•ó{ºè¤kãIs‹jŽÇqA®ò8HmÚjÅh¯Ug¥è}çä ÊÒ"'θ45jž™&ñ±r«žoíuÝ/ö|fñ›xR®²§nK;NÿâFèÔ¼Õ¶DÆ+['È®š™3•%‰:Ü<<Â’³Æ¿Œyƒ½ÈC‡Ø i*InüLB¤Lmh•©y9ëþ™ðaøãõ¦ÙÇnþ{¢~ʉD{Ê—ŸæD€. –Äë>Ú,§dœQ˜`%%üu§·„!¯MLÌc½PÜA2qøÉƒ½T©¦/…Ãqÿ…‡Ã·0?VÃû¯³ªŸì Ò~Z¹˜ø§ ‰µKmÄv¤òÕ°oÜâÍ }Í„(,¨1|BïíkÖÙ$á¤öUMcCøÒ+ü ¦ƒìí!*8Ãòl„ZïŽEŽSrhaZ¸%³Â†_û‚·ø8f̰±q ÕƒŽ Ç\Û›ÕhÐÅumÕpCp}ŽÊg·¡s¸’±£I´Š'7ÐïùŒEuâ° 5a:¥s+VËTlÒ5h3é?m“!îúþËgB•®’R9£…Ö)U9òþq«ŽË}æ-±%â°^„"•wçO4¯â“è¾Q½Ófk°Ò[+¡ÔÕ]CdÎb¡®¿“W5³^`¨m§ýñ É©Ú]œÍè+èê1¥xO6›q“E¿ª>¦‘Û:ûàè4.àÊk¢ü6`5%ªia¨í0Ÿ6L ÈÇÒ…žƒ¨!¸«"XCýtrG°hkZµÖ›U^”tåz`ˆÏ£"è×–dd &ñê +64HQן«ô“-º¦ú–iÛ¶[dÃÈÞg2;}üsUÌ„«ë0p¡Ö0¨LR 2rôuMÑüa90çnÚé$ò¢ªùPцyb.3ùXûvRnª%Ë”#ñrSó§ Ó¡ûÄHI‡¼Š~À°±p›ÓGQ¤°Ch,6‰&t8t(Zëi6~¼¨œ:˜¶Wg/hðiŸ.£f<þÙJâÌ@Mo“Œ¾"sÀ*x“ÄxS¹À@ZLªaw#C¼RàB²‚`Ï/ŠKw@±è?7ˆ[¦öâ|ax/Nú§[G ¢À´­¹û ºÚ6ä£|ECOž¿2K­* Ÿáé°Ç| 5­Ë-|ŸËŽTø0(‘“üªD޵@:[:µƒ O§ŸÀw©zc ”_ärV#"0RåI½õbµåJ<î*œ,Ý×`Š íû­ºî ÜU?¢‘õ-”yöÐ!)CB#1bÚ/ñ¦Ö0 U¬ÖEúÙt¨Ú‚›Ÿ1Rv]€+Oiû`¦Œ) ë¦ï~~ïÔ©U;ö:\6°¿ú–ª=S/v¼ø1Ø8… åú\ÒA’a‹Ò±èE¹±¬ú(¶BøBG ‹N5‡Ä˜s¦”tû̪3‡ ù‡¨X†u#5îÓ¯Õ+ë=ÒsL{lBR^^Z:nxlj#†ÞYN{s|ž3gá`Ušè2˜[äh¼udÍœ8”T¶ÊPò§cKpÒ ~€µ×Ò œØš±]‡Å+ ¦f;%ÕÆÍh–"ä@ªÀ™›âçáIuŽ –k°òÊÄeŸZ F€ŽËÃÔ$f5b^j\ù«eÛ‚'ÂE—£CÜEè M°È‡"UglêyQœÆ$Àž”ô*Zº¤mLçS8×·û)Oùª…pYºÞé~Bë¶BhÇ_*LÕÖiQ9pàÿð“pQ5ÙoN”O,ya Nl? £g†4ùâr†[ûˆö…”t$ZÞö©¥+á>¢)ÅE«Á4«þËwTêeðùiv[sTsÓºîˆò}Åé+ïš]6EßxÔ\óx¨©¼bÜ Ðuá}ŒmlÚ”iºó‡_)¨îÌ•rÕ\µgój–%x{‘3ÖëÇsÚe¢ Š’’@•¯úº8k^f» e¿>Û~pò_M·¨6âÚ] óDõÙ”V±JÑÒ¾ÊÇtu¶f^ÆYxï•öãóDnÈB·XEöÝÓÅŸJ¡ÞÚÀÅ³Þ JÍ»êû3‰¸3ûáž=ïe¥š¢Ô]†ÅŒßEsHÞƒzE‘Œt÷ÏÞ±…iç9\ÙvDÿ"$ #I"‡´Ñ»b›UYNŸT¶®Ìõ¡±nÜ=B/çN}ËED>ãê#kÄʼìÐóÆî_T²<*VÈ)aW|§ ç‡«µÔáV¨X"Ö¡·(i(“ÊN¿w­rª¦á±÷”aJÊÆ{¡;&¡ 2e9Ù$`0ÖBxº×ŠDB¶Áã!Ex[n”ÕXNK ‘@Äì4$)Q€ŒÌí!Ñ‘Ÿsî$ ¹&_;¢„Mø&ªEñ™“ǭדÙÒêÕ6Ó?5nTWÈšÊÌ÷^@ÚÙÜñ*ÿæ’¾¬ŒLP‘Úέç̼¨”ŒÙ„w`Ãh³Õˆsb]QòriÍE0RÜÑ ‹)ºs[#+J”h*'W寽„„òs*_ëÎXÜ;ðaà£f.«ª¬žk¼CBbð.›#Ë©õu¸Sl¡¾¡VÅ:Æ\ÂA§¦#¡5R=(ªiì›ÅbâÏu šä\uˆõ÷Á|©¡íŠ€@×y'­ôÄ ®",åy9uo"‹ä*#aÂçÐvîÓ6‰+ƒK*æY;¨Á÷;O“ ~Õ: Í|Õþ9:- ,å1Í[Æ ~·ßç:iïùnWƒ*ddË™À'ß—•pìÙ¹n,_“߉×2ÊîÒºŸùo1•Î4Ǧyýóúaê/&¬²ÚéáJˆÛëÍð“ŸLB¨Ì¬q.‚H3£N‡Ñìa†[ÑSôc°¼ŒÔ…,[¥Î÷.ŽË¯±¿lñä ÌÎܶˆé¡ƒÓˆ‰SË?¥Ð÷´:rs=Å«+¹´aìF±.wölÑH‰¥ãæ8¸Õ#R÷ÖšÜ4ºJ÷oÿÀâ tÕ#MþÑ6áÍdzlú+‡·3IÍ.£R¿ ôËéîçUß:úp¡¡¹{» Ô¥2âÔUž'olÎ>ªÚˆ‹Ê‚3€ip¾[àyXêí,ÒBBë̤ä=ír8ëi¦æÈißö)Ͱ¢O‡d ¹–hU&öCpÎKî¯fÅò*eIɧ·³~ã{1²Æ+âZ;Õ<ÙsÈ(ЇXηŒŠ-£t63D ºoÏtu _rÑÔè$¾y-)Z0vfðH㣥 ¯³àÆ;,–À–Hò|c›*ߙӤX^yY› !õJe4/níaÐ~A?‰ºü€ï•bÚaܱ n[CÔ¥çüɇõU*Ù÷/ùÏiì˵ìÚ(Wšί@Cöµ"\€ 6¤‰ÍjÝÀö+^W+OˆhÛ¬ïjiX(«`÷ ®; VÛN×5ßôPšÇ[¹$Ÿ­ãiL価¯qUÙ‘±©\$ßR[ŠðAÓä9«Ä“ÞfªZHu?Ei–°•x+’7¦mUUë%†Íè`f,äÅò‡—ÔWd§Hªƒ1xv/ÖÝÁ þÀ‚S¤ì{þë¡´üÌÊWG½¦Üx”ߤHƒU?›«Zö²¼à\M™%Ãl<•™$ãå$"´‘‘jºSBfßÔa· Udý{¯ÜÙÓ¿è0©¿¯É´óæºG‚´²rq+®Ëþ}Üí`™è+S¢ò°¥0¦õZ FA$aîÒxƒ³ètƒ Ž,Xixšõp䥌”LG:hpŽÉ)fŽ¥ÞŽÓ%³íIÜ´“mPA§Û lXFŒ"˜Ø—Ð8œЖ4Þå)ÆV èΓxr°ÿIj„n6“‚ ç¦J1lݸisìYBôN\ß@‹>iÈÿ[?¡˜9¤LBE2°óŽÍž*ߘJÁ*[‰™¯>…áœÏêF(Ù+\Ù×’IÎÊŸ¾w‰½‡)ôî«jmzà€¢&øåˆÆA-a¯´[¶]g? ›fö×ËtD€/Åüòé¡êKwÚ·–Éq<•¥ŸÕ|ø~âf˜ýz ?dÌñsÇ ë}å[¦;K§y5õà§R?ZÑ=|ÓEÆ|ºqLªDUAõ0`×ò¥:"àk ûÞðA66)é^GKP‚—`å¦(éîQüºÒ„ˆ±øè½\?§ï8v,Ï…bÒ¿,ÉéÐj²½ªR‡÷aâ'ÓIPÙ¿Wî7~r“W}½Ú•as_%C)m&‘S6`–avR²‹à½Æâœ/ m>þ'ݵ×ÇPn‚RL‹{ê§€A{VZ@”t€”:µ¢»hËô£tÊxðµôwë7ý¹LG‡‚rÔé6­ƒ•¢UÑü—èСOô¢½§CÞ¥=xMBÌŒ´Ëaô_.¤³wÔ³ýü˜Ÿ-g\]•êFÜðA²n¦¥ ×Y 3÷_¦W •Økò©'mÜYE9œRùÂL{)"žãg38>£*)¾'cˆõaâ”ò, ïïÓ‰ªï”GyõkÄÞÖó4[T%2ŸØ£]æÒ{>‰ø.N¨­1']í†æN.nEÿñŒK¿|9c!,Êb¥Û¹î|þuÚÍ+©…˜uºÄŠ&1ƒ£BLÆk6Û† Ì—42U‡f§W¼þ¼ä²ïƒúYÙl¦ÛÐö÷ÁcôÛŠ6‹éƒMžˆq꣬c3§\³üœVíÉç)þ‡ƒ—Å endstream endobj 44 0 obj << /Length1 2211 /Length2 18001 /Length3 0 /Length 19315 /Filter /FlateDecode >> stream xÚŒ·pm×6³±½cÛ¶m;;¶m56«±ÆhÐØvÒ¸AÓ8ùrã}Úçýÿ™ï›=³÷u, çZç5›œXI•^ØÌÁ(á`ïJÏÌÀÄ•Waf01±201±À‘“«Y¹ÚÿÑk]¬ìyþ0u»¾ËÄŒ]ßíäì2n¶fV33'€…‰‰û œybÆîVfy€Œƒ=ÐŽ\ÔÁÑËÙÊÂÒõ=Ìÿ<¨L©ÌÜÜœt»„í€ÎV¦ÆöycWK Ý{DSc[€ªƒ©ÐÕë¿(¨ø,]]y=<<Œí\œ-¨éV®–  ÐÙhø«`€‚±ðŸÊàÈj–V.ÿÈUÌ]=Œ€w­•)ÐÞåÝÃÍÞ è xP•–(:íÿ1–ûÇ€ðooÌ Ìÿ¡û×û/"+û¿MMìí½¬ì-æV¶@€¢„ƒ«§+ÀØÞì/Cc[‡wcwc+[c“wƒ¿37H+Œß ü·<Sg+GW+Û¿Jdü‹æ½Ëâöf¢vv@{W¸¿ò³rš¾·Ý‹ñŸ“µ±wð°÷ù˜[Ù›™ÿU„™›#£º½•“PZì_“wÜo™ÐÀÎÄÄÄÉÍ :€ž¦–ŒÑ«y9ÿV2ÿ%~¯ÀÏÇÑÁ`þ^ÐÏÊøþçãbì¸:»ý|þTü7‚cf˜Y™ºL€Vöp¿ÙßÅ@óðûá;[yt™ÞgÀô×ç?Oúïãeæ`oëõÛüïóeTÒÒ’VR£ý§âÿèDD<>ôlLzv&ó_CÆùþà÷ß4JÆVÿ¦ñ‡¯´½¹€ûŸlßÛô?»ÿ;Tÿ.5࿹Þ§ ú=äzLìL¦ï_ÌÿÏ£þ·Ëÿß„ÿÅòòÿ„›­íßjª¿õÿµ±•­×¿ïCëæú¾òïk`ÿ¿M5ÿ,­<ÐÌÊÍîk¥]ßAØÞÂö?m´r‘°òš)Y¹šZþ3-ÿÈÕÿÚ2[+{ ’ƒ‹Õ_× €þýhþ—î}µLmÞ¯—÷‘ü[|ßœÿ)noê`ö׊±°sŒ½àÞù±|˜ßwÑ èù÷ì\ß]ïåùÌœáþ:Qv£ð_¢€Qä7â0Šþq²¥#n£âÓûôýFï–ª¿€Qí7z§þ½GÐüâ~GÆ¿€Ñä7b~GÎÆ¦6À÷[ÚÜõ·œõ?ò&í?Š÷MÿƒØÞ“x¿Žì~ÓÿÕlF³?à{àoÈòÎûÞlcË?LXŒæ¿á»ƒùí/hõÃ;þ ÙYÿ‚î¿#°ÿ¥wpsþƒþÝÄâøNø;8Û{ß,½-ß/ãßï²?2½žõð½›6À÷vÚþßÛc÷G-ïÍøƒù¯Ú~Ç~·}ý¡~ÏÝñ·úÝ×ñý%bÿ_ÃÆü¯ô¿…í=IÇ÷µwø£õï¯PF§?à{á´…ù½J—ßþïU¹Øþ×±0¿Sþð~Å0ºZ:ÿèô{~®8¼s¸ýß;ãþ|¯Öãc|÷öü¾Ó{ýß;áý;¹w&o ó?¡þkMMÝœß[áú÷Eú>Vÿƒÿ~-ž@S¸•ESÞPë†ÐÎû:a<úƒIþ9òÍ jzŸç.·GDèTêÚìà-ç_©£ýÈë{âT·B«D/>§íMÐÉÊ_ž|Ÿ Uf¾À-Oc~*>n"€Å§W:ô}qòÕ²oí‘!ÏwrãBT*D»÷”ôlªX_

¬å…®˜¥UÑ *'/0ÉYÀ&r¥'€¡A½ôDš¿ý5‡š7õF$“H çwËZ⣳Í÷°à½Q¥ÆâÒ‹C†£ƒM~‹:>Cá#r”&ƒµäSV²þuÙ³¯„(.}™áˆ%«ÖJ%Ú¾u Þ}|¥›y??J‰÷m?¹¾¼ÝЙD£ö‹a4šk=« à¨Û\d£ó—FŸ¹u:þ*÷lã`AÛò4°­Ïç©Éictì+ý]xzÇýhëØ^ŸŸf©à ¾…3¸¥nÔúOA:d…ëX¯&P™nÕ=•ëÒ8ŒÏ'øJä—y·˜‰I‡ rtÿ‚=ß÷*ίºùR¡{{eÉÖU?ä-„Cáͤ'ýò²Ç’UÜ(;œª K¼ïcÁf<¥2o°y>¤‚ñr»“A¬Ü‹H.i—}ùj˜¬„MZrà`©f4J/ØËú»ˆáB£ZýK{‘2ñþY4ýÄQsЈHHØ ÷/³£Ý_••"Ç—Õ‘"£q;jœ¡»Uóz]3%…£Á>ßí- Àšž«‰¸ÛµÆ#iªñ?îMô~~ö «#§,Y‘’=æ‹ð]Ñ_+À© ÂüxÛÈÒÐ¥xOò!y#Ž<ûp œÔ°k´UãêWOUí¾Ô{d`ivbøÛÌ™mµ^)Û`€—=&Ü6‘‚xi/ðÓÍ?ULÔ«yTÛ¦º‡pÓ*~}ÖüWàÖÙÈ8„)t+ºÀä™ ¸œ2{S®„ým19×z×;Gè‘(¾¿ÆE¯aý–/¬’_¯W”lKL0Rývúð™#5oÖS²@Ù~¸ïSξU-ùbJ.ñÒ œ V½nî'”Ÿ{%ÔÄ1æaZÁ0¦G(Ñ0 {| ”è# ñiW*hJ¬âÄ¡ô<õ(”(Û¯Óˆ2Hµ +ƒ ¢2“ 2® >œP õp¤AÓÓ½§ ‹R xÉ7ÑŒåcˆK$ì)ñWª‘d¾µoAÊ|“ß'ÓáágŒü[ør™™Ê}a2ßø¾Ûýhj}XÎÞµ¼ÜÌݪ>„in®«ËÅ1¼áL;Å„7χÔMí¾áòTâcc^ ¸áwº—YEBàåÈloós–uc>f}ú¤. iõ ³IʵºafÎï—6áâ«¿)!¹Þ–Ó@½ŽŽC6E6wbÝ,Ã;éŽÂºµÏ_M£q™¶*¯åeä󴙪ÆãÝ}8¶°Sõî`ÎyN£ŸHXqøïÀSrÔfµeÖe±OF©ûè°$Çd}Œ#EuD$s»à ¼Ö¨£d)ÃX™æ4Òk8¤•ÈÈlŸŽ«Ú蓱¶u{±Oç£Ñ÷ø08²ãK,ä)&µÞw2ã8™tnþòU,ƒØÞ›nI™ùó4Ÿ¾Ð|FêG¨œyãî™,Û,’MÁ4¥Æþ6u·£wi‘çZM!X¾75øóÉJíÔ£+ù°“,ßLAO´-«xrUñ×â”P‰&‹'Ñ—±œÙl͞éÿ>³c̈¿PýÏÇsb¦¤>íï²ó‡é»á@òÁêž™Q Í}‡Š-@á‹ ´å7$·£» (,žffD˜å43˜ò/Ž»àÞÕMBY(¶œ=»êµE9ýé\]m®¤÷}÷ 6ÿeÒ>ÕøK§ô³¥ÂcӢϾ"*1ƒ\ÎÝtÁÒªùs/ʼnüىݠP«æBx5vqµÝº 9ÓJ$ͣѧSèÁ‚ä­dFóÛÛ.r%q–B ajU9ÆC¾ Ì v´ Ñ\᢭»[ÞŸo½ðT¤ËZöPI$0Ñ  ¡\>*ËI(}ƒjXTû†š—`&¯²¾òð†h‹séš([¯ø‰]^ûòGo•ùõ]wÆ®¹D0BŠÌ§Œ9 WD)-¬^„¤™{¦HòòKÓ’C:/ºàvUoÞS1P°¨¶•$ý25@ˆe ‘xM|¿ïÔ ëª#kV8t?‚6K¨ b¶a–t}‘ˆ¯èRÊa8ê’ƒ˜ ô¼‡øŒm¨;©¥‰‚5|óS9¿AMéíÖ=$ÿ8F—äøºŠâ`™üØ–ì†y•cDkëƒ sT¾[L02Çâ`Å•ÚR2vŸñÆQŸÀ0¬Ë›@ÿªSÉLHS±?‹Z/O;lâÎë³Q1T­ÌŠy¤¡Á»\Ð99‡ˆ€Z£È ˜»mE×ÉÅU¹Hr6f‘ǯǿ-D"±ý(+q¯V`ò”‘Ø­gKekQÓ—³j2[»AÜvT±¶ðMoçåÁ˜M™«nÜPɽë¤QÒV:^Hr1°9/t1‹Ë²GôN샮.ú^̳ˆ/—룇rYá URXâ® Ö-/ÉÉM&-gõJ‘,¼l·coËá!/¡Ø|Í' {pª4Q¬',Œ=æž°9k[Hñ½ù^û`©‰reDsuú „¢·)HðŠƒñ‰Ñ ÖjeÖ Ö$·_ŽkxÐ[Xªd!΋áZ7ß³}wÕYØ­º"烣ðƒ.[‘ê2‹‰G ­)Àµ¼øBˆ‹m‰/6Þ°?D’ILè¿_ÉKËé¨Wìቃª½+ g°Á.^3±~”ŒŠŸg¸Þž&Ù|·syHE(üÁ¶mæ‚ÙhËáÆöbo…äñF€÷’.À{´i†ÎáKíV¾'øS†K0Êâª&³„çÔÅüQúÀâÕ.1¶ÙSÃë¶ye&‡DŸÔÛ;½ÔÑýº!‡ <1ó×òPƒ³÷G2 û6mÑjQæÇA× 3!Ò»2.i…ˆùhÙ:Ðü9Þ¢Þ“ùdÛ ‰G*(øå…›¨Ï ¼Û;%f¯UýOç IÕÈÏ[4Q|_?¤î ¡…¢U€»ô~ææk–ŒG7 Ó8.´Üî$ÇPNž”(qPêÜA «Hè"™aeí¼Sâ^â>Ó‰uᎥ4Ú«&D8s^Õ|àQH)9q™»Ni%‚2ùm@ ¹FÁÂæZnë H6Ï¢ù­Ác#ìë™"·É[щâç<´± Í Tý ÆÏF^1Êõ°‘£)zÊ©ýx4ëVj˜W±G €_f†EòF!Åáªäj ²œñµ0´*™‹gºÎ%YÏ#Ú·ChçÚN@¿Îúeü%ÑwËÚJ?á&%@ÕÅ Ïn^c.çdCz¤b(š@u”…&‘¤W¶]É‹ößÒ²{u˨9)ºŸó-'ís>ÔãkSί÷·¨ \Qj9Ìoe2ÚÚ§‚ËÈ`ÂÃP¥ Á5|Ïÿ6ý ®ºYÀGV¢ykíÒÀ&Ëd³ßþÄóÜH®¶Hf͸X½´}Èç9Õ}÷‡ÜÖzÇa![òOæ ²4g;á· —Tôþ¯7×ö:[à4™_øËïÆ\n/²ÐM„|½áaˆEE‰¢}°La4tZÎ~2aÙÃo›8†Y¸(e˜‘ÑÏèýªœÏ¢ãsì@mC²EûàÛîŸÕÄuôÈ0:˜ÖBk>9ìíUæB´cØ â]3‘þ“EÐ}¾ ìä¦óv)b@ Ô¸ˆ˜ g¡Ø.m-ÛÂc…æžó@V[ÈKUßÿ*,,³úÁÖAdñ¸*–(-ǘéá¨5J"%øÃÆÖãE¹ø–±nd°ù½’'[ TX>†ï ´æsïš$á":²6 «ÈOö•›çÃû)=’¹J]¨{æ´ÉÌsSv…{î GN™/"/7Í.ŒàQ-T?Ë=1”é]tkv¹&’%]†Ú‚xˆTȸõ9Ð)"í¼j¨­šq¢ÜG­ûi–EË ªˆ¨ˆÛöœz6æ/içð4°Ë—ÖBl^¬¡ÿˆ‚F‹ûRÔŒPöÄh]¶=´R@ì·i”rq*F¡‰8R±¿¨¬ÕN%µUúiÜUº¸º6`daEÿJhÙ£Ò9 Ùðç™ýzP? B·âóž«°$½‚}Ztº ¤á&¦aØšzR³.æ×xÞX#ºéó2Y‘ˆÍKà`Kß:Qmbœ@Ê‘m²cb8neaÀuoxKÎCsÉ5c,/´*åƒö[ž}W™zk¡tÏÊÆq*&É1ÞÉŒ5e'°¸òá5ÊöË\dÞ\¾'<ûå}· W[9Qæd­Aûn:œSâÒ ÓlIà~ô´7³¨*m/~‘ó€?!pL•ežµR&M~u,4Õ–êj®™ †°8ª|Àhç¨À.Ë ªùŒò¥X[Þ4Ž’J«ÞÖiŸ«es‹U÷ëü>ð³ ]0Cü-M;õìäxTf^û l.G–üÈ´D¼¶íŒð)‹_de\Z/PŠù@z3×b‰8®«.gY¡Mì¯êüêeÌWÒ–,_˜æ%䆈Åׇ(ŸÁÒÁŒbLÚØš¡Â…»ÏN€Ïi“²Ž(DÞsÁpÆö\Oƒ;dèX^¬­-˜²I¯Yµä¥H«%åû¾ú©î˜@m>³/áeÔ:Ü*X¸'m "¤*E‘Æ÷Ù™tt·áB Ê‘Æ×ÛÓ¨¯`º1®&öòêÜ㹚£EÏ5%.ò¼„L 6™’]ü¸ÃhîǺ•–uúíóð‰dyJõwJsy—èy"-Mõ¿ç_Í­mڃͱðóKäÖÃÄRÝ?¢¥Þ`F'∠Z¢y"&¯weÚÜ ‚ô×IáÈV +Ö(E-ƒØ3ùBU±_¾œ«ë»J®ÆÎýd\ÕHž)`~lë  Ú$Ouå ÒZJºf´4m¯íc½fÄêk æNPcÔA)m›ÿ°]O|Ðô\p;§Ô?væ“R%^›ñƒÒÑøÈ>hÙòTÑÜ(§õ"kÏñþñC5—›×:™óuÚÆMªœ¹Ÿ©Ó-{Ÿ—?ñˆþBÎ#Þ}ï¢:]5h·k>õ¡Ôu~·bØàU!P1è˜@B£ûÕi S Êíh{^’'rçjÐ;$7,KJG<^ýÜ}¹„aÚ{Ï{û›H¬y ‚Ún[ +?vÖé¶`§ºLÒ=&ýkèÕÞ’”ÐzBùTÈ‹M› ÃiÖí‹;eà°*å„ê^¿Ø—ñ[¯g"lÎdÌÂÚ·‹¢ÕCvÇÍ-µ’n솒YÐ÷Í+ÌŸŸ\cæá_·cÇw/á¶Ù>Ö3WÛG>‰ ø9BÑšWXp[’<– ê ý0Z6˜m—”ýÅË^ Uì1|úb_ÚÙé‡p«¹pð–6Š•[U`ÿÆþÀu×̳YTmgäc±Û_<ñ±«f„Ð*%à€daW”§ô tèÔ»ÆÅ£–»Sܺó¥no0ªß±¹e“pBQÕd˵Èö=,F“[CtwÁ<£ñœ†Cм ¤©ÒÞ:­‘ÙåJ+¤{M›ý|- {ɽÅvÑÔ§ú<¾hÇÒv½TéðLþø>8U<”ÍÜsÝl°ìÅ5r»Ãõ…¨:#ÂX\’®a×È¥¿±M–^|Ì™¢üuv7ð e¦!)·HGûÓ£JòµxÛ€±­Ü©ibô¨eÌRÕÃa•w¨X¹«ÐÖ; ꧬ¼#ùe!kj>MK£}ùÎH·¥ÂÑ7ÿàö¹†˜Ì‚ozG‡’ßL©¨sÔÖWµá‘#xsì°Œ¢¤%?^È(’¹NÙ_s¤“‰jù­ˆwzßq_î æ“Á pÁáy3a{}OTbzƒÁRnóoÊC/Ó”9ʬ#&¼ž¤mqD¬7Dªã<Ö&(çkäm®2‰ÐŒcŠoÙΛAý8žúuíPÔ»?òúšõmsÀÙº‘u¿LKð"Ó)P”Q¢Y•GéÕ+(÷I_KÍOüœ&êTã9Z–øõ]á ZU«oƒ©ž¯Šú‹å¶æ"TP›y»„X«eüÃr£µ*ä =a˜½‡ß |¤ŽB›8Æ´(èÏÚ;xmøXH`³wÿü¯KÖÎY=¸–e×ó×Wív£x, Ã,ϾØpõ\ßhJ­¤æáˆPI!$õEdix=¢ÌÐï뿞yF5 ŸÀF>sÓH3ùaÎ5ë‘ø,cÀü`U_õþz5ê¶/‘m>¾Rv«´U6F-žÉ…ü¬^’ýèA]siõ ÃižgÛÌš´¤½v#ÒÚi¾$»Óž]( N\’3~¤ÚWy:ì°âñ sííâìW4(·Ð¤ŠUÂh^±`×YÚ/Ìú#~ñRže'qQ·Ñ¬u9ùY&[o½“°ÿÓôl;ðùÉê›k·5óÌ×,áïίQ5½35¯8ã2îýt²D¾ °×MaS©› ÙpÏYÊ¡Mºë›|ê}Z<øÁ«k‚¦´¿È·ëaϾ¬‹¨²s‡ß‡ô5‚ÆVä’ ,f7Z©wn옔kÁ@­Q5Ðb< ªî¨1¢b’÷ Ðˆ«´½KøJÂ)°œÓy…ͤEñŒ#ƒüàè­ Þzßl¯‘Æ_¢²eÙpi&‚déq–64KT”¢'j„+$)C1×±§gÇŰ,OK)qöaÕžkïkŽÒ7HŒ¢ŠË'.éù¸›G† ¢ÅBΧÜ~¸ëni°C¸w<~VP4Lº:ìcöÙÑc&”ÄêÑê„ȆÛ9yBÝÇÞû›‡ªþ ¿’áÞ9fÐÇf5@§²š£r‰‚ŠniÔ¢Cñ‹¦"GƒÙ×j\!âïKéG¸5XßeákÖE[yÉ]×Çþ0BªÒ¶iö!è¶¡N?ØLJ‰šÌ1ÁùK>À‹óÆUŽdB(¤ÏJtbôþÜ7s¸°[öm•bU¶ß=€ܧG´ÔÅ¥@€mʱÊó}}½7¹ð³KâŠV¹ð¶ÓšÁ0GŒÜjBj£ò2~ž…”Â7˜7m±³L ‚@"‡JFx#i"8ÃT<ëU; Ð|)_¶#– ‹M fW[Ö™±4åDËʦ:Õº<¥„Ai–@Ýv$«í3¨‚wáEÜN™ 2ôÌš „Km ¾;‚M>AÄÀkè´¬åÐì~á­öõðâ¥÷®ª–Mx@øÑŽ9ÎéiMÂoäNrñÝl¥6gÉ+›È.õkÇÝêØ:âËçÀè:»>y¯&YàT C{À<à­½Õ9ýW.ˆÅ˘a.3…Ã&)ímw˜Ãšhƒ2¨ØŒÓ4Ú|Bþ…ulôJ«vª£¿ô(’sûP #ø¥]J¡Bd|Mç|ë7qe¼ú_.s…*ñ³<„ã#(*h)’ô'V¹ kðýÁu9yl·=I¸´ñÊû—ÊiÖ>ý42<•¦Á/³QªþÎiÛ‡OjÁ[z]‚ˆ9[rb³|P¾èrŸÕØ¢6‚4"6ÚsV#¯v‡"= '¹‡ê/ðU<ä.œìŒöµRM‰!4½ 曉mýF«ì„㻪‹OË;Y7"+°*e9õ6ù>o8Iø˜1ÉTˆÉî[7é:ô ÜFÊÚ)¨n¶Ä¤çí¸µ?è5Ìíßaâ`(× eçÙ㕘¼.s¹Vñqî£ •BèG©$Òºö›Êú©Èìƒ *þ„²Q(ŠBÃÓâÜÒ-jÍOUÜn“¸ø˜‘¡»lY !–A¤\¥`^tOLÔã ÞƒÏ ±å^:°ƒ4ÒV9pHqÇ«*NíºèEbͧÞXÅÙkªþ•2‰ê2ÊܘœN¾Ì_½ ôíi…ƒè‡·yÇ΂uÍï}ÃRpJëWF-cUïÜú)ýøÒ`«Èºˆ³ 颵?ŽYÞ’ÇWÎÍMdì›Û¼aN„¼Â©|öNÈ"`O‚~ƒ7G$T“ítÛ4²\µîåþB­¿f ÇÚÚóã ÎM¬7tVÛó—JæHÊfÉâZZâu9az< wh}=0„ þTU19êÐÌ$žßv)í²À£1ð¿¯ða–†«‡VA›v•¡‰ÆªhÛM F§ºÓD2.íþZl´8)­çB.ƒ›ø.®ÙIyÇæßɯN9Rôz4³vÂaK‘²Öq|ï‰Rn¿q`xŠNiœ6»ßWÃP¡ú&ÊSa‡Jî;‡‘œ1•XÅVJ­7Xò5I¬%Æ.AÌ]ß`Q@¡×=¥r·…ô‰¿zpÇ…c¹ UU«'ÏŽ0X¶‘Žfݳ÷ÄÜýɸ ÕãHè+ýÙó˜ê¾B¢éˆŸÂß1MÜöˆ7ó¦y:lüÚ€HäMç“ÍhôeŽ;é}y>LÈ!ZqÁT©ÄÓ¶f‚ðlRÖ—žá£JŒòéVÌŽõ¨™êš^c5j×ÁÊ5`h2JógZyu¨+YS†.ò÷dñ m5¾Jõ 1O¹›ÈVH¦ýkYnî°£UË@‚O@ŒsŸÇ¹±ö!‰˜Ì2­^˜UêФpV+<–G{ªWrô¾O ð½t/›Ÿ”(L;Rç={{A`V½euâÙ| c”eĵ±Ü,С„Ÿ¡b¶]Óõñ¾#€¬™[³ÔŒ%Ñ}R'‰·$]è0Ù©ùÔÅ»ÉJÜ}@R1IM¡ýC¦7àÎ8u3œ¯å˜l© 8‚usýñKÜqŠW¡ë^&µ~$”ïäÔÚ«Û-=€eÄbkÕ›Z0ÃCÚ¨üçš.[i1úþW>é}¨-ÿìV~Î½× ’Â#n–%àÙ‘ª·†øH…·?¢ã%|þ³‡mÿ烆c¾/þA&QÙ×+ g1¼˜9,eƒÊ_6±“áÍuÆ$t?3œÃÌ–®[«ª4Þ¬?øä ©¢LöÎÆ+]Ò øpô†ñù>­¿º¾6}¬hc^Эì]Æ,íÐö½¨$푬.Oð5‘ïIg8QV SeÄKw1~M6 [[\^MßÑ«Á¶}.ÐYß5¸Q»gl5OÙ‡.#ínzáÔÃ÷«•EÕï‰â¬=¬ýÈRIÙ¥&ös…”T»eÆÝXV™ ¹ƒˆþrV9°=™§ðVÀ™~h3ï¿-ò³ÓוlíÑšÈpîG·/Ÿ%1í9MìY"‹®) ÐQH›X&%Ò¯ïn€ô1RŠ¿i—@«1𠮟ià‚ç°˜µó–’&G?™?–-ÒåºQþ[¤¤9¦>NdŽDdÜ´‚–ˆÜI»Ã=¦:âk1ÛTîÏÈ<;8ÍF:p$sÇÁþ«ó­ÞÖë‡|rêÛïèMˆ“Ñ X§›â‰Xl= ÏÍ£Ó1Fgyæh]ÈLèßUH±O!.™‚ŠgQQíˆHyýLáEx¾a’mÇ11 9yi¥Ç„™Ê‚©êŽ#l!F´,ÌÞ›2 ¥§äÍ7úžÞ÷Å]§*Ù†õ™F\Y³^p%{þÓíOÌÉ f² 6ÄqªÀ &nVeøn±œ>Iº32¾õÒg¾ç9ĉ[-È[šÔ¼OS5?#+ÀàjÁ©ýæ¥ Å>½ÜjOšø¡ËƒVæzä·“Fæ,½>¼/¦¬ÄÅ ™é*NŒî¶øê®oI h©ü Uu3‹hÛüæú¥ø°®ëc˜I:rÐL¸z~lf¹ÀgÕ3.™8¿eÈÃŽGŽóä[¾oúª–g0·®ßÛäô±ô>3Ùù—G‹˜<Ü g” x‰ßWcZ‚°4gø‘tb™–t r žuŒŸµ]rÕ”×X[ƒ­9F¡×(sc(#;ÀEÌsUìž}–å}¢ŽÄ6Õ¬}Ŷtu“dPöZˆ‚bvz¬Ih¿ÁT ¡¾Lm0ENoÄZ1#Ô*d¶ù(°WêÜÓžÚ‰Æ\÷–’÷SM7 &Sâæí,3D{AW] Óâxέ4-Lqm\Z©ÿ£™JcîªÿóËÚúÇŒ*DuLÚ­D$gdø¯¶oä”§¤ÉY±W.Ö©S¹_íû3jèønª z œà.Nôò—Ù{©ƒŸ×xÝ¥ñ¼0cïØ˜n&ÞBaüR»½E&UëoRV†î3’À¸°ÌGØw&½ö}H wî¼²3 vj³¡ÐíjÀ (•íð¾z6 92í¨›J!µµxÈ ?Þ>åÃN,Ò``Møh/Ð2¾ÒðÈÀÁŠÊлk(˜,"î3hö ¡/¥À¤6ÌI¡ÖJ™¦ßEÔÙ:¥@Þí‚¹Òø¹~Ôô¦‡$ XµEExj£’Wa§ôœ›3& eàu:6©wäPƒí‹ÁçRöL’}»õà¯%ϵÃ#Ÿµ™ÍúÅì $ÞŸÇÅ](2½o5‘ˆžºœdˆú‘²¡k8QS®KOi ÝN{Flþú0…â^ß”i{7,FSû£Þ;?Ñ|ý BJB*ÖØ?Š>FÇÓû¥:=͇•;û†Í™'ƒ˜µùO™–Ût?2§f3q?ø}((XbVKiK˜ÔmhòÄ&nć—£ÓcÄ0]¡3ÊÖsðö,aÝ<Ù-Ù{\é4IùÌS¢¼Q®%þË03ƒÚô¦{÷Ý›ØSG;ngsû_ð•ÄB,%~­·X#k’‚.€â‹Qá…zyDÕ? 6WÄ`.¼:|ÜpÒS_¦K?MXÅøœ†wÏ'°'wz3tLbμ«&ã`«„_Ý¡i•ö˽»¼‘“bJ…Àå‡Û5Ù«ú˜ÛŒ²+¤PEÚÎVø9Jó0]d¯U"Ç׉Âü-¬§Í6€^uÚ&÷:Ì'µUßÎZþOÄ*±ú¢•™¡m j¥\Ð¥©(â)˜Îå3%èùq­+¦31ò©"°ß /oûn_Ì—X£6½¡òøÃ§CI ËaÇxsZùʧ Ü5¥X–H6×ý’J3÷zNóì¦æÂZ?` y’WôÛ›t]²`^9¸Í³hÄôÀ†E„ª°­j2׎`ðœNƒ e\êBkÑÊÈòhǧŠ5“Â&ÞÊBf]^ iDz˜³>TõC²…1_G;“cŠ;[µ"J˜ÞysQp‚ou³¢fÀr}¸õº ‘õ0Ó]²¶bXçKþVWèäì1k÷X“äñÐ ‰'`²!ç=‰_¸ƒIÀøB'=Sÿ1Õ75g²\œ³2·f ?|¯p FœH"Eå¬.%N:I0JYÇ¨Šžã% öt—!m’¿lM´`/zí8»è&¡i¢„ðén=Å 9Ê¿Ä4Ÿ#7=¡É{ÅoøsÇyª'éIdÃhÏ£"Œ¬ÖŠÐ1ÇøžŸKu˜†ñmupÜÖ¶;i¿Æ §DìR¬ûɽ”uL>n€Kbg·E½`å7þg!½#ÂdbÔl#06šÓJd§ìÁS熌’ À3E½HªžCR\7æycçe›yT-þØÖ¨Ú±Y”Û ‹Ž÷žža…ìIÒµóíðŒýºs0$ôÞ–U®\™Þ«R³.n™¬f&úz61-ª?N¼bbië[Ùš·K¥P#r2€ò׳´¡qˆá O̬ $]_—üêú”)öÈðÙeZ EŒ¹ë€˜ñœ¿J<Ñ„•|ùj›Õ 52xª>É™Ÿ©Av|¿h8ºX^¤.&äâ‚e+ÚéJ^¹èÃ!SïW.³£fˆY‡‡úØZ­Û´ÄžF–q´(ê˳׮»ðªVêJoøÎ©é_|N*¹ZÅ ÿ‚ˆ™7àiÙ¾j* v!Xhù±kÿð ÄM~Œòü”ˡѡ EŽhMÊ*×N.ÏËË-:‡gf½%Ê($^X÷®ùBK*74VŠ'0RF®\«œ€•¾U[¼ŽÑ€^ɧ™Rž]`aÞÖB,òU¤ ½ÿDEšöv‚© #µ÷ÈãG¿¦5…¶³v˜NŠ+´f®Þ.£›h°ªjÑÎ’`þ£˜ò1ÜËJ>çãÑÊv‡E_•ÏkÚ±9MINT€ÕnpBžßXuÇ76}o¸ÌÓ#Ââê{IÔ¨@7·z*~¢»ÊßÆØ›ƒª 6¢ÎY«žÞëø•¤XZ]ÂÐWš3 á)~›–”d#Cפ¯¸ÌHX²; ‘ƳÁ¿Ø•·zn3ð^ ¶æ6å…©£)§»1!ãÁÌ%wy±yà÷™KMwªšà8ræu®£º PDÃàÅÃQN ám¥ªÎ¤µRø$›(u¬i¡óp?ì–hÚQsŸ×ÞìÙÍ©[¶î‹þ 7ÊêIt< ík¯9’íÖ;äàÐÂáÜ„E"4Ç\L½=4íÀi¨€°.®[Öi¦qMyd‘ü¦CøöLøÁG7ú‘[‡<ï×yØžîvîš+ÏëmM#ä¦ýQ#åS8¹°؃ßJ¸1ÊZ7G6¯¤Ö«†–pN KΟ`ôž¨GjùzO+!G\S‰èI€ÚûräØVvÓ9žðá€'Úl(ô„¦”„@uùˬ–‚WËØº)„£èVñ³5?9ŸÆAt\¦]û,Ö™ ‘1ª×ጠòeÏF-pyÒä¾&Ó¹rvl8"5${Û—&'¥¨Fð(P-\óN̹Rø²°ÀÖbŒ@f%kŸŽ7ýHQâ§ûÈ¢æöˆRt*€¢Ïu 1Ë¢™-rDùÕý«°<'†pM±mvë½xqSù85\„t©*=—óÏ/Ыùs´¶Ž5vaTØÊdm7BN—@ܾfè[m7nKz¤Y£zKsÊL$Ñß\Úo0FƼ ëªØÓneÛ'Û¾H£¢6«‡4Jððýà^¨ì=/ÒãtŠôï-â?´—A?SLjh {Û>¢£üµñ“+û›-,ËRÔÏå‡<>zÙŸ@÷4D÷x´ôe;³7½Íº»«ìµ}*!qALÞs – ²@B7p’R©ê2Õµ7ÊSë⎅ ÔÕúŽH†ÌE‘”â¶#x…ýÞ„4eÎò/N7’°øþ˜"MÖ!K ŽÏçõ-øf‹q$‚Ó—Ðjë¹&²}¥Uöy—r2†z)¿r¡ÉÐxT‰ áìÄÄ5m¦¥z?¡º§ÏŒe혺çFÍÈôÆrÊ¥!Àt–#§˜, 7e<#7,2¯Áýx9X¾ªEÁÇË!‹ ç´HzA»ºž»•/qåÑ ŒÝŠã‹‚f)gÎêïc÷šyxâÈ«°á¹ô° ;Sǜ؇kÒ›ª¤ù¼µìšrúæš®JçÛïTÏKFqê7+Ë #@ÊqÑŸ¬.°®Ñ1c#¢å½t£ÒAgñ¶#n°f¡„!KsôtMµÉè4É+Ø»©‘¥F™‚ªžbœ¤ôè+Þ¯f<Á©†ÓÙ#vwr›]Ùû¥h ‹Ci‘Æúâ7Wß4%QO@¬ÀŸ¶Ä€äP{ÅcÃä• „#®þ–=v¶ÀÞ9~²š+ÎÞ¼²›qŽc"Üë‘Ö†7,Ìy¢Ÿn–6-wiÑT;AÅ›&†è'nD÷#L™ û© îÂ:NR…BJ 'l!¹n•fFäË®òÙwû–4žq=<­E­šk£³M-éÞõõP?º¡³vLœ<½kƒc¯*Œ¢—ô•¾&ææRz‹z-›ZOŒÂ Z–ÁI¼SÏýCúHqØÇ³g)ÒpùÖ@!8ŒÃÅ“±’³¼Í9èÏEzçQ/ž3pþê£`è5Î.Óó·ù/œÐ„V·Š·Ñò=-ž½Å—§ôµ03‘ ­ûˆ˜B®yŒ÷wÔ¾ÑàÚþé%lª½´ü.Þ Ùxa'Ú¥µ™}3þX²+UC€öŠÌðFÓ!&zÀYÀTÒó‹ÿš(§QjNÈ"$D¡‚3½;„¥õ§œoö~¨”Á€t_ÝãššŒ³e¤Æ p¾9uwGfløø…±ÒÕõpðšö¿hHJ/«<žŠ¨M•º·áÙ‰|¯þ3ÍÔ„àÒF?7¢  œéªP{.}£5ÃÖHÏ@Yfv‰ÈÚŒ§âIb¶­Ñ錩Ìfòö-›‘Ð=GœµØÛúç ‘ôVOšù‡Å'HÆ·iã¼Vñ3wJJt—#‰œå6ÖüR¼?UR0™(dLs™åºÌ^ƒåê8ûGóã>‡1=Q$yæ+NÝêÁŸ0ñ\Ää-–D‰ Z"³Ë®žÕU{bWíí^ôc’ªÁ¨ühü…„î#¢g…‘þ@lÀî T!\¤ÅÒj÷ÊåBwÕ³?ô'æ—Xæm„f`ß ûD…ªš5›5=ö .Ü/ ®š8KR¼ƒ ]CQ¤«ãX•‚iBkÓÛÎÿ˶›Þ]WÂÇ…ì—‘ñL|™3I‰SC1*vB{„µ¯h/.|^µ1¶h¾à³XÄîwý£›Pj ~pg¬ãaσO|×ô¥]>ŒÕõ@ç<-¡Ð*I^ˆèÔUºi$ðu *ûü÷T3÷¢…~¶Nu$MçU¾ÛÏp¸_©Eµ(X'[TíÙ[‹ë>6,;h/sÁïäà‘ïKºžz%É4F_Þù9oaÄFŒš@?ÉF”ÁUOÛ¯Ö—Zºä@ ëd3gÖ5¬†ÏÄU¦Òª×Æš(DþÞ_mêÌ]ð“Çe»¼ÇšÎðYÄ º4#Ü驯 ³9½×¶uo#q°`Me+<Ië³Û†CM­¬ñ„oå„ÂlæµË¨r*½’W]P¤½¶ž–×byÙœì—ÖÃûÚ 7”™æ\6ôÏ–[Žuê˜p4*<µ÷(tÚ"ã(ÈÎhC›·ð¶åê݆ŒŽŸÜ§…„V6Þkl1óáDÒÏ` È¥ºP겸m¯¹™—­?2ÄYQ)©®Þ‹$ÚY@ ¸, å§LkòU)ê 3·#×ÂLù!¼T ®¢‚?íÒúF™HqXÏp¥qÒL±‰ÐÝæ "ë=”’¶‰€}q`5ñòÅK^°w;Õ˜ H–°Ú±"^f¥αºb¬ã/6I3of\?w°ÜæP“Ä_k-8 pR‡“ÂÔ»½#ug_ì¹f®nYœŒÐhá¤ÃÈI¹‘süšØ‰ê{¼c€çÜMÌÍàl2ßeøôò¸‰‰ ñ\ÏGüB5ôeÖlHú¦ÇÖøg%Üô7ÍÔòãÌWT³NK¾’{{o2uPŠ˜a¦­ ™ÅÖ색¯k² ü)!ôÐç¹gsÐ[5¼w>Íø4¯™-ƬÄÎQ™]Êð8ÆÑTŸÚ~> Ø#ø†Ëu ¤ Þt;ô ¤S¢ok„ÊÛXQ®FiH_ý“Ç~é‚‚Š|ÃMvR–ØÕcM\õb“RïN¨3%¦Üy#é¢\Á¼°¶gm»†#õé8›¬p†«éËk«b=®#æ£tX®ÃÆ3WKÂÏrËò¬Åñ¯4½"¥êy“®dCü@þ`OÔVDø áà–󇤃¨ ÃèŒWBuKMIö —ûJ¦ML—ùôC<2v#É÷éçKœ«]µ{>YE—Kº:ð †uª–:jM= ¤§}ÐmÀ>¯ ÈŒ´¦õ\ׂ·î988¢€Dî1ÄA˜s|¢Î¤Ñû-øLaJ‡±LÔÙÍæ$šæm’Ž8Uë…~yC5À‘ý×gð=|ÙÅ^…s ¨Ewù4½Ð>.ØõŠ ž×RLJŒ(·§#Lþé«áwy c°»e42ÓDY1×è3Æ«Iå:À z¿©^5ÇYQ^©®ß|lJ¯Oؽ!;Ó¼ÏaËò§œ%Ò)ñ’ Óîkªßö1mÜü8¾C¡¶eX†tAì+PGU|ì#hÇJa³ßVޤɬ«;iÚJ_o8Ã¥Æ[±m 2©n€4wúºþ&ù¤ªâ¤¦-;ÈüSõ‰Z*ŸùÁøóÀ²~x™g‚ˆm‘£O•—qæXŸ…3ù'<šÜÖ› Í¹§O$ûE|¼ï¹â@ûÚî>*.WDÇź™Uvn!÷^‰Ë©?&²Î\©nÛ…™]ƒ&AÞ­z#h¾É ¦v´´–y%«¯êãP™è½èk»PÚ˜}«T÷µÊusGâˆúÁF mOö¤Û<Œ»>Ì5S†y­Œê¨€:l*õ~¾²È{äÞ:«M`p*&RvcÚJî´„ žD\\ŠU6b9àŒüѪ&Ƴ`Çÿ4I®gõHp?Ü´€n­ J5XÀ¬Ù+·û„Ï ÿñA»llµú†ÈäX£4±}HÒág;µZ œmâÁÓtdÈŸI î–»_ <\”g)™A¾;ÆHHþ€y(QH¨4ø|"d“«‰nÝ ÞÎøSXÉ9ô@ˆeÏ.ÿºü1,¼3yá.N\“|†G)€£-ÄÀ E 5 ±S!,o¹Žø'ùÎHG5/Fn’…c[—.¾# … sÉ^ ,‡k8ÕBŠxç>HÿGˆºž5ºŒ;_æšáŒæ–p+xk’¦ÿÏÈš) ?­TÿrDEžjhÉÈ«P_âÊ”æÎ×¹î Av|´ b’”CÝ¥9õÃÚŒ‚1û¾°˜v]îF;-~÷“¨˜û«¯ñÝGh$VlÎ(~i¥'脲 Ö{ÜkúLÄÞÓÔ,`*:ɖ᪰* ·úõK6Ç€ÉV¢œ3t‹»ˆj)i5á¥ë[„Î1kž7x¥²%‡—‘©ë6ÓÔ¾¼ò[S¾ ì1ƒò2žüŒ€57ˆ@Ä%æ+ܾŴ˜éÁºó¶Ÿ\ æV¸Šül¦·V¢>6ÿ–¢®B„ƒC”+ ›Õ`%3h9(ú¤D#Ÿªñ1wõéÄ =Îèr¾YÀ‹ôžÐŽ”rt„aïXÔîÀkH/½òqje5ˆæÍ€ñ¾-7zb{ 7š´)—o{)¦@!8{?ëÞÀ4aÆ‘'ö ¯4ͨ”8–8`žߺrm•¨wM@rcß_CØNHvYer\ës¼¼2½û“¶nä^ØÅFK†¢$éǔůj,V@læ€;ô\}¼û5¿fD¯]’9”žÐ’]qVC—3 ¹Ï‡ÖÚ‹ÑÄÈ „l?mÛJxÛ×a;û5˜ô‡G¦Æ¥i¿ûevÀ2EÙý`ˆyVM *ý¾£‡÷ZÍ÷Â$þ2Í$jažB³Xñ}ÂOw8¢5ýA÷­Ù„I»â ÍDÚÇÕÙÁâ<4_Ö˜ ”ž$‰g“SF4½ÔÀ, š!‹šm{%ÃvÇ+ÁåË‹ÿû±ƒ½U”4'GGçVpŒu¦áÿ ã öÿ׈Zì…:ÖqùD¾‡q`,Œ²íbNß]õ/,1Êÿv|#^T—îT¸’ŽP @å/9`_…ç5ó¢”fÜ/ÃÚÕêÞ‰ÝÀÑ%•<&†tÀŽì %•O7«Ù¤/jXTÁàУ‡¼c){ÖÏ!è´V¥{×öq2³öC¯µ8C& Û¸¹Â_íT6Ý.(vŸSE™!-od/ÇqM;Q f€’XBš¯f9ì+áïŨû>àDœ6 gýçeJuÄnÆl@oª t:ɺHÕ[õ,ø3d$±UXéJ§·eíø†ÌIÎ4¬:˜°Pïû‰ÿò ¼iŒ÷î¾ð¾ƒ—çâFªjŽ˜ž$ ÜÐßž ¥”}Ç럱ÁC=FAÿû»r¨ü,o¡wùjî™ØÁ !ˆÛ’*ˆQÙ#2c¼ëÎO)±”Òh· €”%£Ø¯±u›~ƒJ øæ<‰n†—[$·Ãf¿ž¾Òk4álš\˜ lëÍñí=º£W 2&ôAWI΀e3|ÓJ9öËqqSþ¼ßÿ‘›½t èŸA>X&%àìqfv˜Q/1/Ü[ø»dñ³P—1‰ý° ŸGƒ„J 2gϼî yHßÛåA¼?~{Gm®Wûíç8*<®ã>¢?õy•û)ôÛ)î{“RȶAÑÊ!¤;/ž¬»cÌW76qú¸„Â)xL¬¹ý*^ÑÛ¾Y¨5ƒs.ã¢èƒ€¸àÌ“ï&Ê«0—ÁÍ8“`ÔY„×–4(¾¸ªtûõ».ʦež  ·§(ïi†P¡ªôë^R8óж´Éi÷¯J$8êÈJ1wû«ð\` Ä‰ì¢L£³ÎÛÀŽ==F9d#¿"Z/',ŽbÖœæúÝ&bGÉèQcõÞQ}‚úÌF›CpI–éXµº °´:å‚F)Á{.fejÌŠpóC©Õu$ç­íºs,QZ?.²Î [›~C2v¾GÊÛ–äËIÔõBòÄ¢¤™^égŠ2Ò¤=E_7žn%Å(Èé0Ð^·rÌ;]7ìÉÚÆØ(„g“ÓjScfömÑ‹V‚\¥ì¿ƒ¦¢³ ñFzî¦ÌøÄ—ô-’‰ÌŒ¯G,I˜6™ÜíOpªò9€|çk/kï¡KÈU ºñ©$âÅ1h“6/…¦M1Ð6Ük‰èoÙØZŠ3ƒ:kB‚át{ X‹tJÕ[ÀRû (¦D– µçÎ4€rM]¾Aª.ƒ:bŸüÊsá;ßÄ,› ߊབrp ”;$)ô)BR(Ë ˜ü‡¸ þ$„žûìŃ1\[ló*VÊ/eB“uy®¯"áàw5ëÁ$jô ˶Ä(†áî,!µd4ŒUuÔšçq83­j†¾g±Ô¸¹†[‰Bé f½TÁ¸¸znçͽè¬ÓB¹½w“Ðã¬ÐÏ Ø»c#ëŽÓ•穸.u?‘+¹(ý"=1‘JŒ³›if’…mgĤú)DlÏáΆiغ3%Wò'´IÂq'm1]tKR[y=ú*pRXΦl:\n _.r5鱺Œׯ?h®föØÎm9'V,êýðŠü>)#‘ìô‚Ú½}½ÛsÑ˸‚Ø`Í™?”iÓÉ„ l^ >píÅ઺¡¡5ÃË€Ù($žá&¼p±ˆþ£–¡2G{Zçcs³ÏÀ0»eá°=ˆõªõ(Q Î:¶|ÌiäÁxy2=b ´ ”²LBlë°’å1Ç©{3Yaа€ F*öjöÝÈøñÔKwIIçSi‘$@m”ùÿ¨EŒåøbG¥„ˆbVåJˆ{Kþ,#Mã¾à—ÁòSŒ<2qýd¹Šî\ÝÂÌ!_htõ¿, ë Z¥'!ôë1–t.0âéÿüåy„‘”͇£ei– q_þ8wbÖl:c»Ã_)äŽ\ù5c·ÕØ 0ÆæC)›Ó[ùP)ó„g5,“,ðº!Åjò²×#„sb¿m4uï–¬½ÕsÝt:>wÝXH%4vœäè¨êáÖéǵÀ=ÇÞ©©ãpÙ‚$ëd·ûGä ÿÿî C Ü­’™ê7T7µŸv†[_ú³Í ›Û ÆádÊÀP^ª ¾¤¥2¸¦a@\W´(ßTªbýº§ÿÍß·RœYÖ0_é˜i#Å D÷ùkå…eÏ…\­/ʵf“,¯‘h,5ù¥c[SÍ”~Ö ÿ“ÛÜDóXiÛ×ÙJ„¡hã.ïçÂ: NÈSNÈq¢–)byj^E§P?6ß £iùO]èOîÑð*FU .#S²C#„ßγ3©Àÿº™PYÝQ:ïðæž0D(±Ds…;’ûµ¶o×9Ï+­m­]>¾Ì¡ Ÿ7\”àþ˜çšüƤDrþå¥`ÁEµ|tP|(äþÜHUŒf¾9t'¬,»xh‰Xp«*ÕTúŒÞéÄ 'ÞÇÌ‚ºœgŠ´yuhĉÂa oæc8~³*Ÿ;d}¦$¹²JU—ëÎÀ/5­éºCܤÄRðr€ÔÚÊü&Ú…+,Ý¢Ám³âN>‹Ûíb¿Ì—1ñXô*xÍ×Vwªe%œ2€ó1ȶ„Qy´)¿h†yÚ寚–ZZ«jè«$ÃÖ¬ð¸c”„µïÉP‘8BÛ˜šØƒÏÍ Œj¶½Oµ6;õ+P.Ï3ƇaØì’P§‹ïßçíc[þ²ViÍCá­¯jƬ c ñÉ…°ö5ÞaÛhΓ7øt|ÖxÜ%®¶3½™ätpK–®AµCøÜGÈý-îðg¶èpŸ¹Y&Kjì@ãÜŸ“«à6Y¡ñåtW€©+C‘%'G\?on"#iË”iâ‘ì±ýÂ\ÿÇþJªS×ü)ÄÖc»†2î‚{2:±Æ‹!"0¾Yj#§È†‚5ò¹> †o­éShµÉ½@us•pNøà Ó¶íŠTS*KdÙØß’ÆWšyï—L¹çv5p»ŽÍ“ÿ°±ä<ê_³ÄJ[ƒfAã_ÊPƒ‰}37½ä§¯Ï©oGæø”š]š·kê€î×Ñô ÐßCeÁý1=áùÏäo.»Er>8Xp+Yó°¾WZå ³üPrË ísâ΋}ò¬CCýöÖE­s×M]È~=þ[ìüÔ„ù5#Ô5ðéÞ¿5„˜úëLÁòJc|3…¶Ó:H§ÔI7¾µ”OÂl_¨ÿK6žó²΋ÚY[ÌFÀÀ`zUÁ }¡Š´³f ô4¢ endstream endobj 46 0 obj << /Length1 1710 /Length2 9891 /Length3 0 /Length 10986 /Filter /FlateDecode >> stream xÚ¶Tê.LHH#JÒÝÝ-H·È0 =30 0”tJ#-Ý Ý%Ò)ÝŠÒH\Ü{Ÿ½÷9ÿ¿Ö½kÖbæyãyû[0ÒiérÊZÂ,ÀJ0(‚“—‹G ¯®ÃËàááçâááÃadÔ³E8€ÿã0€áζ0¨Ø¿ äá` â^¦DÜ۩àU/?€WHŒWXŒ‡ÀÇÃ#úC\  tµµ¨sTaP°3£<ÌÑnkmƒ¸óŸŸ+€WTT˜ãw€, ·¡u  ¹:ta [0Âý¿(X$lG1nn777. Ä™ ·–bå¸Ù"l:`g0Ül ø]0@ÿY#@ÏÆÖùO¹.Ì á„ƒ÷[ê|ïáµÃ÷Áº*jMG0ôOcµ? 8õÀËÅû7Ý_Þ¿‰l¡8A Äu·…Z¬lÀM%5.ÁB-œa÷þ@W ­ÐâÞàÌ%Ymð¾À¿ÊsÁmÎ\ζ¿KäþMsßeE¨¥< CÎ8¿óS°…ƒA÷mwçþs²öP˜Ôó/`e µ´ú]„¥‹#·>ÔÖɬ¢ð—ɽç™5äáá€`$Ȇû7½ž»#ø%ïoñ}ÞžŽ0G€Õ}`o[+ðýާ3Ð @À]ÀÞžÿVü7ÂáåXÚ‚ °µ-çö{1ØêO|?|¸-ðŠç~÷x<¿?ÿ2½_/KÔÁýó?æË­öRMÕØ€ýÏŠÿÖÉÉÁON~'Ÿ /@TD ,Èðþo- í_Yðü㪵‚DÿLö¾KÿIØõ¯ù³üu¬€ÿæÒ€Ý/-ÀòÏŽ›ðò€îÿðþ?oú.ÿ þ›åÿ¶ãÿ›’‹ƒÃj–?ôÿ5bëàþ—Áýκ î÷_vÐÿ55ÿy³ê`K[ÈÿjUÀû;…Z;üÝF[g%[$ØR˲ùsYþ”ëÿ>2[(X ælûûUpòòðüîþ²@ö÷/‡óýFþ¡ß·T„‚`–¿/ŒOP„Ãî8<÷‹Ä'(ðä½?EK0òpsAaˆ{À}yÞ+ç÷D…„Üò¿E á{¤þ7ápëüƒÜz#Q·ñ?èÞøp[üîýîÈ?úßur[þ ò¸Áÿ‚ünëÁ{›AA·í?÷ž ú7¼Ïzß·éï¹aÿä"zþK}Oÿ¼'wþp#þ!¿…pƒýK}ÍåÈwÊýŸP÷MðÃÿ4ÿ¯‘\àðûG룺Ÿçð/$Œƒpæga ñ@»êÀÖ‹JYJ7ÎíQÉ)ÆmÃdVNÏyx›Ë>VkÅ{ÿUø™lÂ`áÒ¦"Ë©Ìíç·¦Z¬æxí–_^ׯcu&¶[p>?îËû&[ÓKMÅ©'³ãuãäeàgބڮʘåä"‚¯•CráÖ£Œ¬é-YžÝÖÞ©z{]2É©aâW8͘m‘>óä&‚“ú!ñ!’`úôlŠ8sìŽV5–Ç{?’?ßÓx/êrÆcùƒŸsÇS†§ÆO¨ÑO‰‡'˜<åvUÉç<‹òWáÃI3ÛFÖ!ïxvY<¶5t.à{?͘ÇÄXž>áF'Uy±Úü<RH‡)~¸¤ºŠTù)ÜdáÌ¡g{§é \#¨ƒ+ºÝy•Y㱋ÅBVmÄ¢cC–PC í ¡FͬaÂÍݶ$_1é--“Ö5Šâ›+R7µùnX¿¯vóÛ[Ö£\B¨L©zL†ºîm²9ž€Ò`}í;#Ζ§f¨ Œuuþ’»•Í ™ ¸ì”oפS»œ‰6QbPDÒ'¼OÍjâ¯ÓÂímZ½ý —5­b·¥× ç"´÷ë&i‰~ÉlEY–È{¢<ìçXÑQ— h!ë#.•Ç×ÅVˆCÖUC£nY‚sŽ ËºŽG>˜æròHp•XëÊài8¼#1ÎÐŒQ;˜Êޤ4­í&½+|Ñ̆áõC Ç?ðγ; °â[2«È±ú4ã—S+¹T›Yò[bµvï-³Q÷ÞwŸ½ °VÛ§xƒâOݵN6sÐKÝU}^rüBÃë§kP‰êÝ/VбR<¶ä±é™óôñ‘€`Îð¹}ÎL¼ & ²ì{ƒîŸ8p€‚s@E)ªìoãñfìûñ4«¿îÄ“GA–í¥hªÝ(³äj4NloOÛ)ƒ6%ܘy³œýŽÍ4\së#2ßs)÷ÔêB[‘Æ?òâ{L¥ýâJ×}¯~B˼(1ØñÃõFkÊÆ—^‚W…^óõ¶ór^KÏ€Ò¹µKe÷æ÷Çkv‹ìÌà‹»ø¸ìÃ_2!Z¥¬Hæ«Íh&>!OsG«Y‚0òó±kB¬HÛ7ÖGÔê¥c&-XŽñhª¤ R‹&É‘“iFà JGÛ‚¡x){IÂK]ÒÚÉLÓÐzŒ{¦Y“nóØ) Ú=Ì$¢BëŸU„1s€"ÛÌ ïÑ&žÑñä 5¦^²³\6•ÛK$|$Ýg]t¯?-¨ž0Ûj(1ÇŒ>}œ*ȵg›ÀñQY'Ö™»³4vðÒ[ç˘uÿ¶è›Šñ=Äžƒþ™]‰)s\ú—4›íê…WÌÌÙKŽâ‰rg_» F Ô>íÇ.øûBxo®æ™T÷ʦjFDl&kÆhriÈ«lÌ–¤©ÔúaÝ’7î‘OOÉß6êdêŸ7þ$aêçim."‰ñgNä\K+®!I˜@¨ÜÉ"Ù†sÖé–¬iuП<÷ÕE¡*×é4@ù®¿æ»/MçP©>ÿa‚ÏšDsw‘‹4H¯G8þÉU½ÛX¼«tz¾üÃÕ¬D Ra³ û´ŒâSUñ G8ïØŽÍG*Suä­Í{¥ÅMwÓ„êçÝFÊWsvñ‹¦}Öã…&mR…0^aóͯÖgÆÐЯ¹êŸ¤n8´jy1²ô7âC›çJÓ©‰‰%™Z8_><>QêvN|M;\—‚áå3Oáå©ãŸ)ÔS›1”$—-l§rNåGâ;Ì—DqS$ ».dÄ»K–À•¹C!û*ÀGÕÊ%‰ú0Bkž1iÃìøar“™à:bä\-ýv˜Hy–ŸHZ,É߬>º.{*3†©IàÈñ3|y½.F§ÉŠ6³!H³—9Ò}=µM+ï`f†9ì½PÏé$*Ó<± ¾[Á–©j¹-ÀÊjð wS‡ÇƒHEWµÈX¶2$ìEZ°*ÄJ„ûŸsÇç6$é,<Ò"ø±lÊsv[¿ŽlŽC‰Êk„m) "äC8vÛ1 ÿI€†.Þø+:¦2 ’ªí^¯™s#š”^Û˜}åúÃ=¸KPåKuhxƒË¨¡9£4¶õ‰›2¿5µï­x+®e>fã’à {„¢‰ï/^ýøÔ¥Ch#Y~ö-#EïK½Sf“ˆ~ »I”LØ,/µz Ô[í6šå0^Ló¶Ž{Øü\&àËTæTÔ6 Ù @cTm©*~ ÞÛá†Ò—À™Êçdز±>Öí¨B^ÆXÉBctâš0´#ìÍ[+ŠêP*[ñb¡Ü•V(Ÿèab¢i|'!{êÕZ•CìÉk!²cæÄ§ßÆù—ÌíÙôðêYÊ‹M3º „u>s¾êdQ,Û—U¥ãwÃ³Éæ|]ÊÆÃ0¾-Pt®Õ˜ˆ€Ô‚ÆKޏ¸/¥ðBºB§~¾—Ònaj¢LìG–onò€&ã·‡ÛËUZ9rÎ'Ü9…Á°Ø’ٹά팳à46ÊèQi~1¾|ÄüѼ;¥R ›Ä™íþ÷Ê%.õ)|Ï'Åë⩲<Ð+‹¸ri×’—£ìªI}›$½BLY ûi¿b$p݉¿Ò;œU¢C)Nì*¹ô¶pQNCžì2•…ˆlOgzTõ¦+ÃBE;†§Ÿ™‘—]úêæ‘ C¼ŒéÌz >º)笪& 6ØBîÞG Pr[”kÜí3S¤œ¡¿Xìâßn#:ú¹WåWªi3¦*ÛŸ’ZÓ*eVH,êš9ãÎF‰Å¬A4N•‹YjÐ$ùç¾S›¢Üê ³ºé‚®-éÚtpQߥù„¦Ö±eaúµo‰îd‘ë–÷*X’Ø³`¨¼28ê.1C$ xÛ‚cWžk„Â{ž—©äsh6` 1¯å?]#rÈ©¡ Nà ¼ ÖÐüúd DÁÒÔËxh°ÍÙÂÒ@§Z×`üÑÝh»­ˆÎ´ÂcnIfŽ«Þ·ø’ Oð{Êgt¼‚Z­àkøüóí½2'kÿ nø—BÂ]ë‘ -Æø·HÀ˯í‰ȬiÙзÞ䡿±ìœë—–Ë,lb°HKóМYõ+-‹Àˆ`Nh^lÈ^âAœ)}]~XŸƒ5Óà¸(©Œ`7ÑBÐ’d‚MS[0æQ•¾žÍÕÓe×vÑÊ׬¨—ÓO‡åÓRû¾Q²³4ªGaÏ´.hý2x§é˜=ÔÉ›7Ïdmð¤EõTû–‹~x)ËÒ˼Ê«šŠËŠGQAònJr*­èµt"Ê 7©¸üÊÌúéµÀ<õGï/³+Øë,g¥Ì@+o…úˆyû7¤$OY?Øž¡ƒ}š´5eS™‚P¢J[9Á[¶¾À$ä´M†¶Sñš‚ÖTs˜Tåtq߬:ßÄ}Y"Ev‘cO¿Vî&Ý騽^{7ß}³Ž¨KL½ØA÷šÐ:Õc ¯öÌ¿¶Ä‹Û䈟”ùiÊþ¹>¶-\~‘À£éJäù`Gg_¿¼ýÅQÓŒßÂ%m¥ E_YÌÒÖx¯š\eé1½êV5jÝaÇñm÷Q#µ#99Ù€eÔ(H•˜(ö…°±šÂ3`n‰Վ o•ô´¢›yPDŒ›%B%C9;s e¨N(¼ÿÁÓäGìÙÕÅð3ÀÅ{dÆg;¿O’¡µ>-¢íÛÝ*éôÕÉÀÊíF޲a‰˜úΦâÖ±¨4‘œjb_"ιÉ>,”;’?'>$ÛçE^ö¿û9°e‹iБpĤ¨ˆ–é']"|‚?{AŠ'¿˜ÔŸ",\ÍiÞ?Ïð ¢LÝuë+õ×Ç^5ALÎ=£xåBFt=ÖôP˱WñnD[~P–@Ëù¨$Ø4Œö¼ðuÐþ;þ¦ÄrK 6ZhUÿ£N4š¤zŒJ»NÛIÙ+K½¯Æ³„—x“Ýv= kþñ¶^š\_EÝ,tÑš{å°²ÏV¡F9ÃG¼u¨-AÐX¿Ôšòœ5d‹×%EÉ­%¿š!G†Y0~µ=w Š>4• rBoÌ“Y•(…¡ÀwqÉaí¥©ù´ít~1OÑV0|Ÿ™z£Ö+‘¶÷vÄÎ+ê‘ð @tl%° ºàüÀÇ<ýßzéh¬6âúw1ZÂuß3’yP΢”c.¾¾{T‚¿ÖSXÇ”bÂñ{´ÍÿY0Ó=V¤†’¯yÓ y³¢ðd¾°©û§Ÿ:!›™’7-½4žåNT£/'æõÁ›D H÷»Ãwïã*¹RôhÃ^~æ"Ä2a~™sÖubìžII:ëµC,Ê„õ¾­Å .L°^ï«ÝúÚÀ P Ó&ÞþÎý*­êÉ«x_Mp!ùµÔ¶rÏn¾ÊU…Ö§ ;Ã/~ïë,”»×:=Úo¹°ƒ8à‡§ògÒ->…Ç~£ˆ´ÅÞ#4wé¡«d ¨=(ºÔ×O¹Öã½XDÐHta)>@ñp8ñò­uóG, Týk˜kþMx&;QÍ3mFɆ"}T‰2U!夳¡Ú¥áWÈÊV 9ãéewKfÍ$©éI-yïÀë¥×|KýÓö7§¤$LßúÐp÷ÄÁUÊÂsqù*‰m<ÚVÜͱgØá¿hŸ®¤e€ét7¼ø¢â•ÆÅ#gc d¾üb§Êv1!ç¬oìR‡çÕ™eß.êHÉS5¯ª›y_™[ªÉ¹4²¸%ô2f”UÙ¦?êFòx‘îÊ#û`íù¶¾/d4d’#¾‘&Ÿ[Uôl-_ð­TæuÙγ…'0‚©rHá#ùÂo¿‹|jøè[2#hÿfFì¶-]ÁÍñY©¸ÝQ¥ìƒ«2ìQs]“ú—ð«¸&Ý4ÖÈoä«bí·ÝIJ߬¸<§ßcÁÓ®¸¬r«ÓàZ‹ïÆó¨[Qx~Žû¥ÄO ëöêè­PÅóëêÛ‰ûéÐ*/À·è½,¿´âY—a¦>ê*ƶ_hLßKóg{“>5C-|Br>$,¦œsSûEÐ|8!—cm{úÐ ..(M!:ôù@Jû½Æœ²±-VÀ‡Õó÷±ÖIÁŽ’žÁS¯ Rx¦ŸH±|ªu1l›Ê÷ðJÓ®Ý4PQ߬°b[Í ê"Ã})_0“Hz¯#8âÊéVζ­Nð9:ôò8‘×ß §Ï6Dz+Ç_UÎ*(ëiú7j4,[Ï­çôµ6¸,A¨Y”Ö½oZqD>rÎFÍ} j!•¹`ñÞO{r¶óXï=¦®zÒû@­²*óÇéÐlsÏ[æ´÷¡H¼°2öÔ8œOä?$sq¢©óë*Ï©³–Ó»%œÁ•ÃÃÈÏ|òxUGKŠÙ"ç*Û‹Õ^¥4ôD:³¬Oe>¿Ø[¹É‹,õ“?z$ªçh,mF0܇^˜e+ìØPÊWŸà¯­VZ#\çØñ¨á±¥ÌVÓÎ;é…W Giú}dnÇ·i˜GÍÏ´†¥‡*.rÏ ˜÷Qk£È{ KÈ"茄¦Á©F-ÇÜ>ÞÎî#é©ßY½Eyþ·ñtl9Ï'‡ö`ž»`„휩tîÏU~äj’G.ÿS%‹Õiµ¢ÆHù`3k¸+Õäl{çøðOaGùY¹j…ÄùªrM<§gD§i:o.s!wBâQeØ®Z¬$Ê×›ÛZO ª­L£5~>ÑMÛ›O¬Zeí±6²‰¥g3ƒÖëh½ëeB_5ToÞa’2})bÅ ¿ó­L˜ýÅžMÎ0÷cû:¥X.ÝÃõÁ9•©ü^¿)ˆ}××o"¢9°ƒ-`è²®|[’§©5ø<{ÎddàÖG»xu i6À)æÈ×{ÕzŒ™;? <`î…G-|œo•dÏâÚC¼®›ä`ö-èÒb]8/Ì€³M­ 9Î1dáRé{RsFÔMøË…Q2#‚)œ²Rrp€æšÃ^N›a–ÉÙ+ë£ü{èSÝÍ ë_¹½&Õu®8Í#(×*ðŠÅ…vÔ¯¼z3»­ßüô= p)yUåð“Ö:‡9ígM‘â H°ïßÐØ9Èîáãxb¹Pcä@­`äBKš“¡ŒÛDcÁ§Ž.{´Æž›»XµÕY4BŠ4Éî&)Bu‰LtȲ1³Ü“§Ö üÒºÐSº(íÆ®õDyŸhÅÂ+êçOLõ¼z&\xR<Ö ÕÃu¿HVÆÄ£C)Q—)&íÓ.Ón{"‚§#9v#{f.hesg•Ò?Û×r[˜œnîV»ª,Ÿï ¢5à¢gk¯§£*TM=þe᜘c#UŸj› Œ,ÖªdycǨUÜ80(E€S§lè æ7!–’²UwxYpö`9¶˜©3ÜÆå…©F5˜0Â?ršñ*Jd¢…÷L™åÙ ^ïFÉåÍi]ðú>Æ`G'iÂ$!ŠGЪˆÌ$ögñ[¾”¤ %ÏÃSâNžÖEò*/dž?G†o¼$hÝÓ«™,DuŽáìvÔÀ,픯©ÎrÃñGE‚A˜¦:SžòUè!ÍÒîšÍº³\;ìkzôæ×æÏ>ü°ûìcßÛóɦIm3Q˜U/ï>Õñ˜´" ÛKd½°¶“]ŽgF†XÈiYJTlæ›MFqLÑtg»ÎlC>ãªÒÅV±I”WqëV£ t¡Iª‹zQ¿ZÔá_¿’åc×°üölÃEI[ñ4îÕAöè”±††¿%õf×Z›'d¹^´Ä‡/¾H N¾ådy±~E6%ÅŽÀ.Ðâ>#SD¶‚‘5.7óãÕKÚÆÖw§Ø¨9ͯ‰"ÂÞÅÄÒårzŸê¨Ã…°-ˆì"ÏKÝÊÁ™Íe‘ßY¹Ì¹Î~>BtÄã˜?9ð ÍØ=«†ònÛ ‹`ô5_zè%d‹tE³ív>ø‰[—›¦ ›Fÿ¾= žžrg;Ý)úáy—“H%ß`ÞÿQÎèÏŸs>3i'9\~º©˜ìä2Lmá±&=¦é†«Ùt9+ùŽódÀî% ¹iìýžñßca|Üà‹[´ßæCÃ]©/QÐøŒ~œÄ\h/ÜÐÀ(°:/U³\xÿ0šK}} ãh.*ƒó:îX¸}ÿH‡ŸP\V3\„3<cI3N¡úKNöÚ{´ù—×±€&ÈíC½¨tñ—”Ôœþ•æ¢[2EÁM¹ìžaúD͇õSç˜|ü*ãW^mÖ†ŠìͪöOD˵}µr6µ?ldÛ’X•3‚ø,æßMØŠ³u¾Ûn5:.áL›±´¹äŠš­^ÁèMAì˜ñ}9Ã;JC4íÑ¢)(ëÆÐ¾G|ãfoy´DØk‚ö«íB¸‘zQÚôÜÕMê%…×cŽÄš(tÃ_1x}vV d•?ðXû…zÖ“-Þ™G¼)I|w•+^µù;-²z䬷 Š²MÑ•oÄQ£#LŽm¢‘ºx¤z^ø5¥†Ò»ð8GÀɾí-ÃÁvÿÜb/!zEÑÀÉ-¥ÕŒÑ‚g)6"æÙ»ÑI“ùÑ£vï ×q‰ÜI?,ì˜fµÒœ³H>°­·nz‚©¥Ãg®H*rá}@ºTB³iø®V™K´›@8;7ó¼Û3H¹ÁCé½²K±eÅ…ÑÌhgÙŸk2ë-ÿyïSê²3« cï×£–7ߘ–¿õÒ$a:öf¶½ÜÑçݘ´HgMƒ¬©Ë4rò|œœU'ë ­™•§ÕGÜe¶·~ò½ÚÕ ƒ[ƒcO=ë·|:j6ÛèBªˆ H'_â¤"–¸$šcd0wtÚ®æú×x}à“ªÔ æ=uT{w7”Êx ï‡1(ž8\U>‰âWë«jÍd{šYQ¨4ÔD8ÚµÔ¤ÄG6ò"W¡Ìb¥X'^ïxòß*­|ÍT ÃP# œî–íØÈ]£ŽfëíQ THv5dŸÑ«ÏãÅS¸h-É;˜¢¸ ˆî©c›Ùø«AT ¼°äs¤b/.ÎKiP<ù‘8Ëyê<÷e=›P›/Ýh*ž",7jbóQÊl²aÊ# yGV·Í»ª9—q^Z7½áÞcÖ‹¸L?{¼[ëy^TL15 ‘U÷9­:&ÎRQ2­<¾H¨;XxDÅÃo025è•ÙóS¿í]3æ­Oǵ0FãmiÒ-ç3¦>ÏP+2¼Á‡±¹‰DÙ pâ4 y24çÐóãaÔÇ&‰wú÷ÿH`¹:¾ÈÂPðzç<2¥ÎcrÍéI­>BYŠãÁœf–/¨¾vÂü²30ñ!1b³ëîe× ŽÑðuq/ÜñƒÎ‘q ­1ëìkl Š9ðÕ€éá“z™ ‰tóõTob “³v•ÅõªÄßY';T|O¤Q·®ãÃþ"Q @³¾#ý±O/‡dQdOl ´‡4 ØÎ*ó6œ%1·h¾¡«c±¶ÁAséü©ÅE—­E…¤Ü$)¡ÿ+híéžZ'ÂQu¥^dQiéSñ”ìc7;‡èâî°JJLFYFûÀž'¤ËÆI¯¨_0!¡l-ð'x›¢ïü“YB1ñSO. `S†æ]”b_®jSôöá'¤ÚÛÅS¦«êž†ð—õV¸\Ê~¸sz/G²LTŠ :¾þH‚ÀEZ;=Žd¦&ÂlžH¦ôó®*¯dYÉÛGã ³ñIŽ2Ô1wtçˆ|±hFÔ9ù1mªôœß†µÞ¾lÍK§+l„%¤MÆ ÊV¾Æ•à@ï¡›âìÊ>Q7Ã-/{1kéÁz^ËÄýI€Øþ8Z˜´F¤ö“Ôj V]ß^C½p¼‡è"ÂN’L«ž¶ÞgÙÓb¨©]½uñÃA—lÁÀQ¨\ºÚ÷=âIýý".nt¬—»%í.ûõ{»+„*ÇNP„!â'=°Xì)R7 ÂŽ.+ÈУ6Œ–¾ÝÊ]-ì¥<ºŸËèks[4^°ëHÒ×Q«ãb†¼'ØLø6¶ÅMS)ÎXÿFÝTŽú¦ª”™„&ÿöÙ÷И­ç”‰À;”$½ñDŸ€u©–ÒDO뵚˜1Ç\!_¹†]~×Ñzr(cAW°TüùÑòÐ!wú¼EÍÃ¥œ*M…9?C£:«÷¡S@¾v-™ú±žœ¥Óbœ;¤f·¨=»ìºþbàÆš’6Ôý‡(1Âd^<ð¢ìžý©Dµlræ×Ùô ‡©ÌÂe†uÖ~* )”¼H`? 6–îyÚ´E•:”.6Š:9ß P('ÔämÕÞÜÚµ®‹@2¿ñ’»Öšl!îèpŸ¯½|™ñÙÚ’Šª·(„ XÄ~{dï<ºð97L ¾¨”vØ5LA’îñ†52N‰ªâ&Ž¿u 0Gà¨Cr¶ö¦1©påë ]'‚EÅ)gÿ…MVÎ|<á0kx(yvh-Pmù¶¾4_”}ÐFUH?QmÿIàÍÄÚ ·ð0ÓàB6ìÀ/ø¾§o¼·ƒp>/³ê¡qü4ìÈž¼‘@gNÊ{{`7ž‚+>’˜ü0¶Ó3 çq²tgs^o¡«ÇKv1ÊÇ}Ú‰ËÑêGm¿âéºäj^õ~ÜßÝéÒð¡¸s/™²¢ê±Æýå#nuà‘.àN  ‹8—¦éÙ@¹ú6ä—>é7_ÉݵµÉà«{C=# H^[!ÏÙ¯ ¹  ~@­¡Áð¦ílè9¥6Ât$aÈ4=Õ%j0?EçQ:‹{B‡ga“9ië¯}¥âš £",‰I—¥Ùe1‚hp1;4/Üì<«Ø5÷ÆëMSörŽIb´ÇþàáXÕ¹Þñ/ ;9–·h&­¨8¡™šs%c©nU å½©tu?·ìÜûÆå¢jæž‹ó>€}ÙN~>€˜IÓ,µÂŽ“šËnÞ)`Ɠ݀‘ Ôwb±ÜÏ™æ4ãÙ ·BÜj¸pì°’ø&À° ¾éÏÉh¯Ü OÎI‘é}Ï#Y‹¥…©Ë <V¬¤Ÿ©£fYÄøÚÒHBN#B½Q‰[nïÈí…iEdûóa‰Ÿé5&äÄ¥«è§ÎžJ¬ ÑJá½kãÕzº´v,®dÉCžQº)Ng²Ù2Ú,•7¾„Q’ø@!¯0Û­kây¥&Õ¡q©¥¢>Y)`‚ÊÙAn^͸}؈/°ÂéγCXƒ s±/Ý¡I!y†bƒ!M6ÿ J!Õ×»yy÷Tï̇êÂ÷š¾*áZ/öòÕÚx—$ø©£˜šAˆ¸לÚïC’ÕE¹ôчÊhôã]YŽØâ–-î­zž™ mëŠ\£»Ë§<^ÈŽl€ñLQ!IÈ޶kh*Ã)q» [Ñd†Ë[7øsdTYpå"*ô.yÒgêûztzu33È‚Ž^àuìë½à¥+ “-ßKQHH¯‚Ÿ%g+Š‡Ò¾Ýó)N 8í ÃJ¨6vo=«#­BözÄ‚mh|_ ’¹2¸ Ÿé$N½àSþɺ‘mZÃ[Mqƒ#ø²î,àÓ· ókaù/ªî"åCö õÀ_éc|6<È ì‘Ánäî+çÀWƒõì?ÇŸI8ùÞ„O2/'hòðc¼¬‹Ùˆôöj—ðÜn ãå»ïÏñ)ä)"\ÑáæÆ,’„xøý’x¦Ê§áó–¸VîNÑDË~S¯¨D´ßöNñÿ"~{QLðøCmÏÈó£w\ó¨õ’øMòÖ´é}½‡m‘xŒùy !Áñ–J ÃfëªpÅÒœ½«ª^’Ú˜VF„0ÆÑþ@ÁÒP­Tôîêú~g’®Uu»–TʦŠþ¹°–OÞh•Zv†Ë_6ÑÚͬ½$Ou~Åïl›!¸YÊÁƒ vƒ}€Ål6ë%ªÿÙ` H‡’'/&PáZ€œtmõÃc ŠÄi=×>J¾]ìx+m´ï`ÍOâ9M~Û+Jˆ×ÕÒnL[}Tâ—³ïã÷Ar»JûiÓ—`rFL$k¶rm3»VŸ‹Z2&­ý(äFw$°IJõ)¡î"WZZ$–/Ï› b˜CcïD¦ìã쯀¥ÅòÒ_èm£¢‡½|)ÊÍéùÜÃTêû7ˆ´–(Ú'°á2ûçR jWáWð¢øPÕ 3ëÌÖ?#½üKL©ð…ç™lSl¦ùÛ?ém6Áí·›óà‡²ÒiYEÓrœÄqý@@É—xøûÀ|' §ŠÖÝI }Ônfn·A§bò´Ï͆աû•ÒT}zȇ%Pò ßU'C1CÑn`Wj%äã4½J—ТXÌಟæ:}¼¹À²³-«IU:c ¢/> stream xÚ¶P\Ù. Á]ƒKãîÜÝÝ%Xtãî®A‚œ‚‡àîîî„„ànGfæÎ̽ÿ_õ^ª>ç[¾ÖþÖ®¦¡PÓd·„˜e `WVv€¤²/€‹•™†F äjüKŒL£tvAÀÿ2tš¹¾È¤Ì\_ì”!`€‚›=€ƒ ÀñF€ƒW€ÀÉÎÎÿCˆ³@ÊÌd Pf(@À@dIˆ£—3ÈÚÆõ%Í>ô ~~^æ?Üâ@g… læjtxÉhafЄX€€®^ÿ‚^ÈÆÕÕQ€ÍÃÃÕÌÁ…âl-ÂÀ ð¹Ú4€.@gw %àwÃ3àŸ±"Ó´l@.Ê5!V®fÎ@À‹Àd»¼x¸-΀—äMy%€ª#ü§±ÒŸÌ€¿fà`åø;Ü_Þ¿À8›YX@ÍÀ^ °5À d¨Ê(±ºzº2ÌÀ–¿ Íì] /þfîf {3óƒ?*7Ȉ«Ì^ü«= g£« « Èþw‹l¿Ã¼LYl) qp‚]]×'rZ¼ŒÝ‹íÏ“µC<À>+ØÒêw–nŽlÚ`“P^ê/“ò?2k +€‡—Ÿt=-lØ~‡×òrþ¡äø-~éÀÏÇâ°ziè²¾¼}\ÌÜWg7 ŸÏ¿ÿ98– W€9ÐFþ'ú‹hõ'~9|g'Àý…{ößÏß_Æ/ô²„€í½þ1ÿã|ÙTµõõ$˜þìøo„ÄàÃÂÅ`áäaðsóx¹ù~ÿEÍ ôWìÿ¸Êƒ­ þ?‹}™Ò vÿëüéÿÚ ÀÇR¼ ÿ‡ãFì<ì/?ÿÏLÿÃåÿà¿£üß8þ¿ɸÙÛÿ¡¦ÿCÿÿQ›9€ì½þ2xᬛë ÿ•!/[þ_S]àŸ;« ´¹9ü¯VÞÕìeÄÁÖöä"òZª\-lþ$ËŸríßKfÕ . ß· €…ƒýt/›ea÷rs¸¼0òðeqþ;¥4Øbù{Ã8yÞ̜ͼÙ_ˆÄÉÃðáxYEK ç°±‚!®/.€—öüVgäß'ú†À&þ[ô'â°Iþx_ò߈ÿ™ý~×Êfù/È`þ rجÿ¹l6ÿ‚/IAÿ‚|6ûA~›Ã?ã%ø_ð%ä_Àæø/ø’Èù_ð €ÍõÈùÊóø_3´psv~¹Eþ`ùË€ÿƒÿ¸²€@O òÒ<ÄB0Ô¶&´õ¶JœØƒeo\x†fO7ÅgɹÍí!…áˇà çkñ”¡nÌÕiú+±eò_>?¿Ö!D4¿Woyð}|›¨1µ×‚¼8‰×?QôS¼¶‰„EKì›ï/'_ ;˜¯Ð 4yNn|èj8·½²žµ}¥+£áó{êß¾¼QDy,f‰ÓŽ5 *ž¥É7Ïž# „we!EdÄ>õƽºžÁÎx&WHdBö;Œãúèc°ÉùînÎ{­\‹Ó¥“šÐ€€æ {tŠÖGâ{ªþ‚OɧÌ&Ö΂_ ÙÆ‡QÈ‹ ô&{=>¶ãŠ]R‡×›Ñ´žÀð¶‘o7~ðˆ§Þ2­’uˆ1ßtÃôe=»„›ÔI ÉCX¬¯0 ®;|oçÜŽ¦Š3ñ@æh£ìíë_£ß½vNÃE¦Ð1È)MðcvóÔ\,êj?µ.î‹rîá«—ÐÇÒG?ØP›M‘].ÈÄ[QËàmÇXËêú–&bóñ¼µ…;NÝ!Xè6v^FKyûaBçc‰²Ü«-ªÝ…)/Ù¶d‹³X ­*½­´?k;'þl9lüC4¼Ä+ŸŠ_lâ>‘·"·áaGw¸©Ý´;ºsWÜA߯=·m¦[7¸#êIå=Rц“„r¤øæOõ¹tð¿»gLUþ’'c} {„L®Ej×+Ëô40?n 4ë¶Ç†œ1kÕΑ› š®³kYÁ¿¹Ç¢·¼'‘×à‡b(,|b%éÔŒ}XÇ”km6¾¬qLù^èÔA60›!€df«ƒ¨¼û­8NŸçi©«´õáùtÝñ~Öp”šË¾ Œƒuõ—ÖýÇËžÒšñÉ—~ÔÖ bV_UÀ‹èYÛfŸ_™õ»?pBª‚ hZMºÆ©å·ýªó´+Ùp ^µÞ~³Þ'kS;¤…¸LÄ4ùG {6&¯€Y›³¿H4êGùõñ}¢O´ìàÍpô†°û‹È?.öÀ#¶¿XBŒf†ñ˜±ÑÁÈ»¶:a$nä¼³EÐé™ZñU&'žJW„Ù•´¥ÕIDLt AöœÔ:"æ‹—IŠz3nòŽ y G‚,ºtÀ&ª@Û÷ld_"N“Õ×W2Þoå=ò†­Å¾mT<Ò¥Åë~‘i3—¯š¸ì#¾{ƒ53îâA1‘,G€­Êȯ<FÇH,ü8Ô’RâQ¬«¯Õ½Þ²xìJqî;;n3È„ÀÈ<õk‘CÏÆ‹§,À‚‹æ#–Mæñ:¯-³ªçLDãÕjº–[dÓr»bºzŠÝ…ž¼öG¨xGü´À¤ù”®Ï¿ú§›!-׎«ÄÊAîÉàÒÕþ¹C݈ËV'¼:8–ÙØòeüm 7¯Ð¬ò€‘÷ÃÌda±%òU¤Ç_ºeìQo4Hyæ—åÊ¿ù&A`ïn({÷ úCt?°+ŽH…ke”¡Ô.‡ÊNŽ\¬jÍ…œ¤íÚÝÂó.ô̲äzê„yªWµÊ’`¨†Ñž’´’æc­E“×e÷Yßýt–ü©G¢ú&z,LGƒÐ‘ʦe  ý c[ñíFÄU‡òåõ’¯¶TôzFÙ\ ãØcßÒi×´š§C{N•3ÙÁë­¾ 6½a-Â×¼m¡ln¸¨·zœA7þºÃ:1Õ€æ“)ÐÁy]Wð¹–`‰á÷BŽv²¹qùvÅ8êgU°ëÁæ-:W0#³ ­“úþ'ÿ‘Ñ]˜Xþg*:bx£âÆÏ9èË(Žãå‰ <ŽÐSÚ¡ìùœ¾–Ã&l@Pöày«?ìT”ÜF~gÁ_ï³5oÖ˜j™0ÍK+£÷3&H ÇJ ö,êÔ¤[âôÊ=Á=] é/sî¹¶Úž«kÎÕÑŒŸ(TKÎö¬Ëû)uÆGi¶WÜÛ(fn|_ÂM¯ÔKzœ|P“†“ËZ\N‰ÏËžkŸf«3Ù<]”`öîRá èYÑI÷ü±Ö”œ64輦‚Qm ±ƒlh®Ï ŸˆMÝi°û®ñfÍä“|Ù2úZç,îM¹ðàšÒÊÛÒÞâ”Å ”ß'WuºÒIYªX5 C¹DŸÊ´'úÁûñÍ[Nea]|ZÅjßÉ:––±¥Òc¨ÕW>,¤S…­#Ónc+l³PuN;‘úOäEöîËH áùIžRïÚ‡œ»%7î±lw‰†ziÑá?2äÝÕßg`³˜Ôï³v2´¾6²VûPTžÜxæÅpX‰ÔÀˆ)jØnÝA3ù~%†2ê°ìm?¾Rá­„“>.ðàRlÑv" ¿—&Üç…ì eð¬JÈ´Y9ºË( ,È|K•#âæ—Ë¿Êo³õ™_=;çåÿ[mB¤?ÁËàˆ Õ½aZðyÌ— KÛýq£á˜¦&c|U·0Æ>c28àˆt˅Ͼ°á—ä$Czº €«¹ÂÞ}æ›ùLHྡྷ¡&ˆ|´ŠŸv÷„âź×õ sÖŠH§p޾i“£&(¸`‰f‹,W7Ñ1Û‡ÝÙrŽZ,“òcŸj<ûàrÉûÆàî.•lub»Í²ƒp½\Ä@ûæk}/ÑìÍ’‘¥våÒG\Bw–e“/òÀÓ,Ä0Ai¢¢u:¨qöe²†”Ùc’‚Ôù%ð¥®p‡ôõêÓ±‘“¦yÂ×µÊ.:­&îš.3-F¥"øå[`%g n Ù$ol±UE©)² 8õ_:a|˜ŸÖrì Q¼ªñ¤&Ý#›ù(¨[: ¬8§cö^/˜{ R°CyÉè®bh4ÅaôÏò`ÆÜ„¼½ž›oßæLýrºŒý¦6;k÷ªä–Ïh0{ØUK¶1m-aj²N¨ùøt§¾å*¡Š\rc ’;Zº»ýD…6.M>6Ir×^·a_Ç_ŒTËX›C¶!W å,zbð³Ìê/у!: QÒ·0 †sîhwZ‚cÞ¶cz‘ kFY<òã×ßÁ1Íð‘ æÖÓt» í:1ƒÆ rØlP2f3gsÒÑ»/Ž-Žõ«å³¦Y‰dK?…a§w¶š$°/’*Àðüʽ3ß2?Z"Í÷¾194ÇÛ~׫*ñâ¿£ú=õÝ! ž¸¦\Zø¶¦8O²ГËò…*€Nbuý$Û .Õjž×åÑU±§ f0í®ŸAæˆAŽì!5Gl)Ó³*4…&}¨ÏÃnŒt¿ãõç ìäâˆd ØÊŠøKDñ:‘Þ¹4d×!™þƒümñá’š-ÊÕÍWûü¡ËèßáàäpÓp§„ˆdUµ¹m-+Zk-ù†¤HöŒÔ¶@]e\Ûij iƒ*ù¼i7¯8­ËJû*4jxªíR‰šÉ{¯bOBEçff·^ù@¦·È¶Ÿ¾®:DÐ"-¦‡MºT¢Q8¾Íé²p× dFó·­ç‘ú9ÃŒO:b|¦í›q)"Q‚y¤)â±,¼Gmû¼®}LÇîõ¸+דookšoLЇ®ç©Õ€<ÚrcÿØ ýl ºÆ¦W¦ƒöøàË1siöIÿSˆ›¨ÜŸç E)Ú·ëŽëa;ÕKxãr°->îÑÝུ* |sÔõ´<Á «ØzSœÛ•lNü vu›5‡@bzKjFQu‹ð2©¦@3º‹í.TM´H|öK•%Sð’¢õ_7UüQƒè¥Icê-e„„ú•·¾_ù¶¢ðj¹ [™ë–D[Zì?÷E­D¢©5±&ÏÞ|Y“•Ìëų/LæUÿÊlÏ®¬ñˆ¥6B†…I¿Pÿ+ý×å˜b u»3D]ébÎrAê+ G´ÜH n5Éså®6b\=¤î2jTöOzÀ™¯Ž8e=,ÒOyè fªË¹h%M¶OÅȶ‰¬kõ'¡÷ó(Ž=YñžÛžešqã¶G%;´Ìs˜6õõä^¯Æ:cƒ[Œó&fÃgTŒ1»qån¤êÅ >ØGu;¬0Ô~¥´¡ÇoâïrÅF®ܯ˜RµÓÔoç<¿¾ÓôfëߥöèK“Ž+ÆÕßB·—…êÿy[‘æ¿mG³ŸTÓ¡S©b8§­-xUªö†içka4¡ûþæp#w2y»#¥›"=ØÆ'ˆy•‰c._`z’/I9(X°s›+’ŠM¼3¦y}QÊCW‚7~š è®#ÏÎÔÉäZ§ÏØU!Z›^Úº”ÛìÓ(©ª»& jè£\§¯€ëë`I²‹6ÝH¬áÕ¸4’•© iü·©~ôÅ ¾ú©zz\(ñ¹Ç€¨ù]¦ÉÀe§!ŠéˆLb9ñr²ÃB¦EVÒŸ´Oí4(Ú? ÿÀœÃ`.h6CwEH[Ã×qˆÁindzþ±s@…ì°NHvµj“gþ˜Ña§ù“5k×[ê™M8µÅÄÌÙ»¡È=•ì×›¼²7‰$³`É“ÞN¼·ÝÉýL$µÂ7õ¿ð[s71k.’8¢€åæ•!3~¹Éà™ðxy—_ßDŽÜÊ«ÐJ0ÖàÝy5I¼5÷ì"{W/h èx1;û4pñ –¢_äyþâS¨çÍ—0r³·‘_ÎN|ªánݹÌðüÜW]†nî!ÑÀxÂïk}rãáÊ„IÚŸ™-Øw#™rû¤^÷Gm\ægú¿Þü’q.Úó”2­sR÷°*qLm“)]iº+¥¢Wˆ£ƒñ›ì>– £0}®hxõ–+t&*H2ëË8º×^Œ(y¿&úT#R ¦¾@l¡?èg‘œí„N\Y>}Íù}½L9S·ŽÀã ofSrWž ~öÀ+6‰kSÁšÈ¬Æ[S‡­wab3ÇŒÝëbi”ZPµ  (¡9O‚Zï(&ÁÿŽ YÙG3Tüø&F†€õv-––ÃB4œ* Ÿ"zUB¾úò©{Éÿ×B„À0œ,ø¾NÊ)yû'ü£r!Né¬ú¡‚9æxf¥‰VÖL=j­Õù$p]Ÿúª¸ŽãX‰ ` UИeŸ,^ZÃr=5–“==¼Oì™ÿ€/×NÄ WÑMÍPÔ@k¨®$_Ò!îPÇVköÀ9+•ähú e<étÏ[a0Us=ãáÓ>]—¸À ¯ÖçàïÁÈ»wÀðõu([¯¹»Ÿ°±¼[/½æ¿¹6Ï¢hIbÑFæ¥}ˆ /æMüÙà“±#Þ ¯é [û--И‡2æ—³´ûÒ^$Õ==ɲÍYþ‡^­N{-L½†fþŒ6R…(ÿ´{n‰È3§ÁÏLé^v…V„ƒËŒÁGþ9_œ(Ô_Ÿ¸:ñ«µtº¡\)¬y|I0gN³~>~™õ”ΈGG ÿœEcÊžËó©CWòy©ÁuÝŸaP;î¡Ø4÷»¾§:]kÏòf&…`Ú+Ï®G/É%Pµïw’ªÚIFéÏ‘DÀfmµ¾1y3V'Ep'EÞè¨X„ŸVÉŒªÓn†¨W½’)AUE8:™4ä}uoc ½þxZ£‰ædÜ’¼5†mÊ?Ø ~I®$F\FÅ:zˆhvÐ\ðÁ‚¢º6ÿ”½t&Í“//;Ìñâ1I™ò茦ŽÁ¹C²nUú1ª©ÅÄ'ƒ0o5\ñRDØðܽ~ã†:·HHÓIÔæ€òÙ§æç1‹nU“4üƒáYœ òÜXä4Íc¸†q±…œØ‘‹ÂDǘdïuy;,÷Ç•§÷nùwÒ³nWòSd‹ó˯ÉßOÂÆ“ÊPÂ[ðFB»‹@øìÏ }x¤i‹R2°ËÈãÏ ŽÞU€œÙj~Œ^‡ã¢÷ËÒU­ ÄײÑhãÚŒºÐП"<µïØôÍØY†^U‡1d?¹AßOF|»õ² 8¹8§ÍU,= rÖDåî}§‰8Ñt5¸&lR­Æ5æô%H†xd9[EøöΎԷͨÜJàm£n1ݘéª|jÞçý¨ø.’r ó>¡nòL'%”êâ5=q¶66äuwˆlôÔ[kÞ]»úÆH'Ñ&(BãòK f Ä©~ý+açf²2:ƒò#ç\ù˜ÞbCòw1Ϲ¢8‹zý"ØÕ}Ëð½ )ÁWËuîÁÁBëü¨n¡ß‹ücŸ¿/ôæÂá(!"'­=iÚÒÞ’ uó£æIcB~º\ÐÉX gvô®OtZt™ŠÄ:1õíò1#þÏj/<öÈoÜœvÔ½N®-¢aÌ®ÕÓ¾46J‚iÜ›?‘žO‘H6ü¤ˆ½·Ú¹Cl×^ùnhXc¥¯f§ÌM+)Úщj³’¹×ô&* óóÆHINc’\ç^ׄÈ8¦b8 Æ¸<‘EX…Ò ˆÀÌJj¦uä5¿ÃyGldp¼bo)Ï2B4i‰÷5ÔYyfÝ÷Pf}Ó¸jMV»ÚðXäSä^l¾Wö°<£aǦµÐ5ÿÑÉèÀ†n«_ëi|<~c7:Éå/׃×ËEªæ Þ+«oÃW4ŒSN‚Wx1 UM`Ø3Ó=o B2â¯EWÃòf[Øw/E)eŒ´g«2ׂÑ=Y¶5äÌ:Ùû£s4íÓù;$Wä0ñÒ>3¤ãg¼‚Ã.î–ÇCÀç‰v¾J'•ë{("^¿®ÚÛÖÒ:zªµÃ+¼k5J¬œ×Y©F†§€IÜ*ß±"X¬MáòBm¨%ëWÌ?rX#à” n5ÐwîDO·>©ì‡Äã.Ëvž=wÕ([ªB+¶">Í5Èœ’ál±®Ùé Éìí§GÒç6b‘w÷¥‘íG£±¥aœ@ew:÷¬öRªJšJâAº]‰¤)¸Ýæ÷„ }¯œ*Î$ѤSèÝÂŽÚØåm° ÖÙ»±§c±V¤}®™w/é³]¾ªùjG^NsÅï_]˜KÒVÕÈž2ïÊèPÃ};êÉ‹reøvck–dª!XŸ˜ç‚|^(q U$‚i†TÕbë}'盿A±Ëwo¾WÛŠï¶{¹Ö¾°>ãù8'!ЍÝ«XñóRu@Øwu޶‘º®àa·’¬@ ÆåûÜø ¯4Ai"Ô«¡µ*Òë¦ëƃXî’@'!ì­j:׉îÉ]|Q6öwÙÙš¶‚ø“þM þµshÓJÛm¡5ÅI´5 c p ­[fïÈmQ(ȵ må5µ·ªaËâ.Û“"’ût‡œ¹Õ‚9S©–ÙãÜÇVVϼjYºñ‰/a¸wˆDëZC§œß+<†O5·+·èL*Ü·Ý÷¸^ÞY" 5b>±ÍÓRÙF £p|§æïèú@‚‘²Øþ#!GGËp˜"Ϲr÷Ó[ÁªLUºö^ƒá9îùˆí+Ó] nÿYB¤ÊØyô¾SÛþub¾û6årÓÆ ØX‰ÄÞ[…œ/Þ†Ûƒôéû‘Šhû\« mª.™?bÎa§zNý{¼÷è—Lù~Ÿm–#‘J˜±<èÃåå:©dļqo„òÕÑÝó¢i”³©Æuyo×ÚÈÆkYû峜Ba>õº¡D†ËÿàRðœ¤èõï´ðˆH$pÑv+ãJêyÒyå!*î§§&Âä¼±$•Ïàí4Ù9/‘ûnŸ7…Ó6Õ5þA­:èËáxŸy;¡ÞÜ|¯¹áœ›S—ª+ô¾!¥u)Å×€Cèá$‹ÕÀ›Â=×îî BŠ[¹ ÒŸz^?ËsD“\R¼Ò}¿+me!Ĩ{nšª~ž$X¬yìÿåÕèáí‚ f5?Ö`g ±t°ì ý‰XEi8j4:^ÎþáºÚæUÇñ£¥ä•1­kÊ>Ã韰ÔÉ·ÙãVðíE1"™ z?Úå1K|°¿¾¥`–=c•D‘@íl´I\“~ÛEnHð^ûÛè6w$^ÿ«7Ô_«¶â^ż›¿ÊKý]Ô`¿Êëòéêƒf>³¶d•2%;õ5p¥Ê„ô!¬‘ËïÚ Ò ã’—¾°kf™ æÕn¸ž’ë©$ÌÁÙfñÊS}>ÚÕ†“DL];ÞܸeXi¼;>zÔ%ûÐú&úG¹7Ä»T4Î6ãÍzÑ Iþ(€£Ÿ6/‹ýV«YK(*©Ý*S ¡Ön$: êcÔ\´ã}³ãÝq+4Æ›,…i2Fþx¢ŽcÙÃá:jã3ëS‘Ë8ˆõVµwŬYsWE§ã&ê@îÇ(+ŽøÂ×9rDÄé8A8íLR†@‘=|®Çeø•!ç&;wW öÓ ÖôOøM‰ÂËÍD ÈtHV1@ε j®¸ô6nF¦”è­Àë«4È^qlêÂU4kY†ÄŽ­Q—ÔJq †õÅVë6²³Â„¼£•@cäLuˆ}2t`«19“ÜÒ·9ÕÎ(\áÜð7§(ø“šLìÐv;•¿ô©’³°ãÚ3`:ÃEðYÔsÉ?G»ÈÐÇW¢‘á`ÆõÓ.\Úˆ› ò°íŒ&ÀÎv'e«p,šV¯'}îùHÑÊ—û˺|Æíiy‹Nfwù>°Ö.â2ñŽ9 g¿4ùæ“£ý)Ò{W [Øø#ÂòvÎ;ƒp>ÞékLñ–ç Øþ ^–׋¯Ù˜§ÝÚøœ ?®P­”Å âhsn,Å<ÀMo~’ÃZɨ!è“;ĤÈIÿ´¥Z á’kP}$<Ì« íVtš«QØsãHã8qH¾%°Ö!“šfâ®<ÄØ ¿¹ ÃÑé­M® îE-Ë ñ4¦ÏoçÏ¬ÃÆõŸè<ºê*áY¢“Ÿ Tt+ºœNôÑ2À'´Ë ÄòZo13èý„ Úšç½cWfõ¦å]/+’2CñÍô‘vtì»~áøª•ÀôçÝô*Éza,?ä- †“ÍÈnój…¡‚Í0Ëû©a÷vÖÜ ¡~¡Áð„÷žv7Ñ—éNÓK.h,xb…·Åy‘+ŠÙ,xPfµ¼ôL9ÞâëyØQËÿCñ†2–|‚Ê p.2= ¯cÿôšj'Ÿ‹wÞá”PÉt²9{K=Í;­æ×­Ã“€X-ËZàwÈîÈ_?Âä‹¶¿mB‚ëüjÑÿFW]¶òÈeoÚ<뢪”•×:Nž£ëÌŒ–5ý5wk~0å3XçÀ¢>§Ø%Nß©]ÖøGå÷Vĉæ‡p\ìðcᾓÊóâëáHñìó±h=IÏ©:ð᥎‰«4vöIÚ¢=²ñßly>yÑ›ø[®ÃxX+T–eW£Óι°iÛAG>USµŽ½š± 9æÏ2´Ëœ_–å«à¶Øß®3 ðU]2d!=_;Í¿×WJGAîdcI[ViDn•JíÌ»KÀ(kôutͲtAïI IߨÔäš9·êtnYו6Ý'.åò›ê]Š˜XaL´ «žëéU’Ë7ÉìiÝQhÕÞxß&öAa9ÿm¾¿!ª;ÜÁèX’{Pæà ê-g /6™B¾ðL[›Ü§b'ØF‰®Ü,%²>#ã£ù@Y~Vfö &W•‹hèG‹bÛÃd»ÿ‚ÏçŸ endstream endobj 50 0 obj << /Length1 2410 /Length2 16752 /Length3 0 /Length 18184 /Filter /FlateDecode >> stream xÚŒøT%úþ ç&»©&ìl“mÛµ³=¹&Û˜lMÖdÛ“5Ù¶ëéœ{ÿ÷]ëyVkÕþ|íßÚ‘Ê+Ñ ÛEmmœhé¸B2ÊÊŒ f:&XRRes'+àé°¤ª@Gs[®?$„€Nï4a§wA[€¤³€‘ÀÈÆÅÈÎÅÀ`b`àü¯ ­@ØÀÅÜ C´µ:Â’ ÙÚ}q075sz÷óß #J#'';Íßêk ƒ¹‘ @ÆÀÉ hýîÑÈÀ  dkdtúò?&(xÌœœì¸èé]]]é ¬élLy)i®æNfE #ÐÁh ø+e€¬5ðŸÔè`IÊfæŽÿa(Ùš8¹8ï+s# ã»Š³1Ððî $! ³ÚüGXú?4€Š`¤cü×Ü?Ú2·ù[ÙÀÈÈÖÚÎÀ拹)ÀÄÜ •¦srs¢Øÿ%h`åhû®oàb`ne`ø.ðwèQ€Á{†ÿäçhä`nçäHçhnõWŽô™y/³ˆ±­µ5ÐÆÉö¯ø„Í€FïuÿBÿOs-ml]m<þ‹LÌmŒMþJÃØÙŽ^ÅÆÜÞ(!üÌ; ö7Íè`e``à`fí@7#3ú¿(±þÍdü‹üžƒ—‡­Àä=  —¹ ðý¬‡£ àäà ôòø“ñ¿–‘`lnä0ššÛÀþ¶þNšü¿÷ßÁÜ  Åð>~Œ†¿~þý¤ó>aƶ6V_~‹ÿÝbz eQI êRþ—)(hëð eÐ213X™Ùlœl¯ÿµ"o`þOhJؘØ8ÿì{•þ°Ë?@ñÏzPþ×–¬íûÜ¿Ç\›•Áèýãÿçaÿ[åÿߌÿeåÿuÌÿoD¢ÎVVó)þ#ðÿÃ7°6·úòÄûÜ:;½ï€Œíû&Øü_Q5àWhlîlý¹Nï» `cjõo!ÍEÍÝ€ÆòæNFfÏÆÈ*확¹ PÞÖÑü¯Ë ed`ø?¼÷å2²|¿Žï#ù7 ø¾;ÿëQÄÆÈÖø¯%cbe88|exŸ$&VV€ãû6Ýþb=­Ó» à=;/€‰­ì_-ecÐ üEúbÐ ýFœz‘;€^ô7bЋÿFÌz‰ßˆ @/ý/âxדÿÞõ£w=¥ßˆ@¯ü/â|Åà_ÄÈônÔÀÑÈü½VVÆÀßRzÃ߈ñ9Yß﹉Óo:ó¿ôÿ 俌÷þE¬ïÆŒl­Þ{ñ_ Ë_kë?yo½ñ¿ù=,c[++‡?$Þ£øá{[èÿã”í/¾½óû°ÿVy/‹Éo•÷pMÌ]þ°ñÛÖùOï"¦¿-¾óMÿzx€мÇnö;“÷F›}±3Úü!ñN3ÿ¾Gjñ|o€åð½8¿#f{¯‚Õ_ƒù›ÿ^JëßðýÑÿvÅúnËæ} ×íݵ³µá_§ÄôÞo#½íï ßmÚþ¡ÅÈøž¨Ýoö»»÷ÌæšÍÂøõ[ÍòžÝûűýÝ<–÷"ÚY9ÿ‘ÄûƒNoÿ;È÷ Ú;Û: ÿèã;õ23¾gòÛë_èòG•YßÅßoù¿NßKáheàhö‡‰÷Ð~ú~%éÌ€´ÿ=O'WÛ?Þm8ÿß[ãò|¯šë›ó®íö|7ÿåø^Q÷ßÁ½[r:üÇÕÿ#g‡÷’:ýý¼_¡ÿ⿟v Ð h»8gkÄ`QÐz_%ðÉ•vgüó4éŽZ %­Ç¢C›ó#"t"eeºÿšÃ­@âP7òÊ–Å ÿÁ‹ÇQStps¼BË“ç³^¬âÔN ìÂ$fÿDþ‘@m .­2ÿ®ç‹½§ªŸ%xh‡$i¶½3¢|.Ú½k¯˜[m_éòhÐÜŽÂn%›ÜséOÚH•m¿¢ÒÃŒY,"('Z¼T¨çnH37·Ó¨Yo’±Ô°^Ǒ̚ëLQ³î«ß•™;±I°5±ðÀoPG§È<÷“$?Î{F¬}žÏd ¤Yí#ðé <áÒ’–@ýÈ`å°È)6JâÕRKï§Þ“¾£¤oGUcw„8Emâê**–+÷£°Www0æ.ÄÚXÆ%Zö‹ÇîÆ"ÄÆÑÔÑIÍ„–û°–É& ì&ÆJ£àªðK°½º îõ.G§g¾EZ IµGÅıݴۮ›R[™È©3",t~b*2Zþ·vÒ¡Ø›j4m˜JÎCí.J­!ì%Q•e:û‹ÝW–“œQÍ©'wWWÜú/V …¬†¨F±'šßÁSÃhâÙ³òç†J¥ª¹î‰ù%—+ø§ZDAÇd‚÷îºôJsžŒQˆM©k>7îó…AÌhføühLVà “½AgÕ _ÚâѬéÏßÏÏ î‹Åü$2V 52N–)×Ͳ?{w‹± •„„efgiÒ"«UžNŠ)ø<4|Y)ÚÍgª˜*UR«:ã4-ïÿ£ó )ú{Áç›ÒM­QÜžøE*bï”QÍé.Í…/Ãnƒ•5ÁÕ~jdÂZ±Ó id¨õ;ͳÜDœ¸-ò^^í±k=S7stz/ã‘ÙK#âõ«6»‘º‡÷ý®ÑCÓ2ÓTnÖ?f1w5*’ÑGyWèvÐ¾ÇØ™x0wz²ñ—íedpëÒW¶›yNLÒÝ) @üª’š·N·ºÕ]!S[ñý¾:àߘ{þb-Ú‹³zV†—Q—Üñii6uˆ9FTÊ[3¨€S™]`EæIN1ŒŽ;j5&B|˜Ú}×¢OCýFdÞ¹Œ 5u Ån9FP¢µp#'L €ù\’Ín§ÐÉÂ`*ž:3Ërî¬uŒàªÑÖ“ô-s'ƒ©UËiòçÐpÒR^D]:ŸÙujØÃôWªE<0_Xãþý0€| |`Z(—2‘öE eT‰§ÊÔYÉQ„ÉG¨‡24áú|§{äãäî¢ìÏßÓÒYÇ®Z}¨?5äŸZ°w‘™ó¿%cn¢ ¢PbƒN…Œ(ÓƒLڇਬLŠTßÅ41&8‰Løÿl\ÍåG˜ÊõýȈݓW#ª«È—D›‘˜qÙ]h­›NøFÅhêz·ÇÔ™ÃB_˜õƒ¹ƒ¿lS»ŠÝ}ÙÀýpŠ÷€2´‘n=õüÊ/\ÄÍ_ƒ¼y°ôî5DÔÈç³E;ÓfÛ,Ôœú~Œ+#|äóýè>³¯a–„NpzX×—5\Q£Û&s9%+‡áñ;‡…OÅ&¦Ç¤v9O<ærøä%ѳ5#ˆ®e¯J»JÀ4rá·‹‘©O›µLã»^øw¢å¾‚³Å¶Ó‘ͱ'hº_»’O5 ³ àŽßÈcʃAå<¦DSB{ 6ÒÔýžî'¸YWÓóå­f©³Uç‡ÝW‡óâÒŒ0 ‚±ô™u•a³ä]`Épªª¶º¿ÇêÜ)*¦• AèV²¾p_ œlPó ‘ì­ PòÇÕpQ¨‘ïÒ€ƒ¼ ö‰•ÂcÓ:Ä*ç%Îbj˜ûB ÒXf€ï‘!ûŒ—‰¥9_´,j¬?–èŸñ¢LéêãƒÔQ$–O“CY§>âÁI‘#ImN#óf¡¤‹¬ËËÒpÉì{„)1‹1)"ò³ig­óÑžÏêbªG’û.ïßøˆbÒÙ›¥ô@Þi|ʺ|²ò7(-v]”­P±+Ò//¿Þü&ÃY µ­‡.iúÓЕp3~´Õ±×oXùgH¹p'¸¡ÿ—š=¡ŽyŽkK¼þÛ~~ tùN·þº™.T7¼²r´D™x(Ðj»!¥m,î2ê®'[uõvnË/Å÷v~@^Œo²†Hñ¢Lƒ±i÷¶,4[¥cê{1ý±Ü#¤2,©>Ù1®G–Tбù˜gn‡›x-šË¦Èó ‹›+~ÈNtöbósØ·^šëÌ"ãM+VrÃÃU{š$ñ[:€\|Õ>Gߌ¬¬Íf¯Ø%$´½ó~ã@õœLXûu—éÓÁŒ1=8´í‰7Uo[êFs;ÒpÝî~¤–ñ´ÆËÉW ä˜"éÌCgÒQf OŸ€ŸY?â…ì‰z™Ž ‚Z¬ûs©ˆâi‰±Ã%KTýyAÀ"†Pâê«%ëçÃ~²4œcsüE׫ ÏÅXA.B•áò@÷-Qˆê_‘ú¢_7%¡å;Ë^ÝûszòDè(9òÒô©“Çm>T”#ø~uG×ß%ô|õ)7 ª3ÞS‹€¦¤s’À5³ Á§b϶?õm®ö­äÝ ÅPécî'Œ^gGêõå”sjÐböŒJ[ZJÕ{@sš|05}¦µ:ð,#kýäû QfЀ*o†ä6¯Ã…x¥÷˜]åØèÀg¬§º „¼ =Øæ‡,Òdê8cÄ·½Bµ_ýe¯ÐÅ‹oª+ð%)²ÎPÔœoKH,ì(á_Ä(¦º_×ÖŠýº;ÈÊ݇7måºõ<¿i¾âº æï~åoÔô XmXç7Ⱥ%í|2ä‹Ùã%ÇH}‚Öè <;MŸûz \h*Xg¶É©ò"z(YÉG„ªe§Ó ·9l7n±Ð•=ÞW|¤Æá;1ïž³÷«]:ˆ¯Ö÷,þã3¾T8wÅÍcŽÚé¨zBÀ ÉB0×GÃ!N»­:Q]ão‚ãøs’Š lZ´ÊT',„é‘S_4@ôÉeê_(ÀáÊ?Tž Ë •É ÷›Äú*™àFAðï’_Õ‹ÈâÛ{EŽàtŠ™¤}ƒzAØ à/øÌ(9ÈF1è M¾Þ&Å~lf©?wBn”áé Wguoc\#a#ÁhôzòSãYc´Ø1ßdgÛ{!ig©‚VÕÕöJ¤wh\Æs”öm›¸V/?_xáÕ‹ÔSl) Œ1ÐÅwTF1þ¢„3~ ÿJ|5,5ÆÝâ+¯óµm¨þ¢ S´ã5ñy?±Yœ&h/-#ÞïvËP0kb|ðyžÃseYl"ó×ê™6w³8<¬Mÿ”SÈZ¥ú8z6#!×:ÆJSÒ2¦1~Ï:&iÓÔ]¢i@˜RPËý[p $Ð 0¼fF™ü(| nAûø! ÷X.€ÍåÆÝ9?†ßð+LxŒ¹[Qÿª¾Ã2*™Cç.¢Äñ!j4vôR“/Ê?F¥C%cÈk¬ ’Ó@}Êüîò›©^¬y.È0ÌÓŽD¸{ETIQ‰ eK·ó4 SÃLñxãt\°]›geé¸t“`ɤùvö¥×¼˜>ßyuÜÝh–q™ú’-Znù½®ò²]΢#¹ §bmi—ºZ ˆ3;éX"3«šNYzŸ’tÕµ]*y¡¡z1’ÆQwÜÉØõeL,)͈ɇ&S7ȇFÔ—fX4ªÐ…ˆ{ÖÞdbÔ89åP×V Çcjåy–˪Q)5ñÙOiçBçÈ–?$ßWšuVÜqÝÿéf£ÿþr³9|ÔRwÕy×tÛ'á%'|îÙ‹œÅ*q2a‡ÿ¡²CONb­‰;m‚Þ#FÂý ­±Ã–‚ɧœ¶Q‚GTvɵ©¹‹û€ùéλ:¥Œ’-ò,œOîØMG†õÓF–ò†¼ûý@`rª»{î ÇÜ?mIL— (ý®XJ2MS€ï_|LŸ½/’¼éG&’ÅÑU›:ð,ãªr—~Ì’¼°ÔK“¾n^¬¡¿ÖD\ÐÑ Ž´¿–‰Í§jÌðnþÔé¾ÒÌó닟ʮÐ$P²F^Ч,aæ‘5k猠q¶'/¹l:eÃzM”Ù&ïo(zÌaª¹u§ØÙPuŸXˆ¢ñ0ók&ëÏ7Jlƒ$“£ÔºÈ:0š<Õ4)'Å¥a†øwƒÇÙåzòv‡ìÕƒ b/±+WÊ?fr9~$…vÁ§"’á…ÂOùr0¿iÁ)+¡ ™ÒÏi6»ŠD«ö°-o8ƒÑESi*gCÎ1ôìCŽ}e Ù°ÚÃ-žþ~Ëþ@”3nè«ü“?‰HáS‚«Ý¸EFü¬™:ã]-7ùMñ$dn¡=ÏÅÙ•Ïc«X'\Y/Æ`\îŒq2µU™2‘¾9[•ž‹ƒªÜ2fnÐШ¤½,ÿR³¯k¦ô©n-9U²S'ýÓ*L|—¦B§è ~eèÄv°^ÐRZþ}!4íÓw)gŠò£Ðò–æË›ƒ½9–-«Çrà½~›™´¶÷ý¶Ì-R^)}Ø«“.îY®ß]UÜ ¾ì€î(:¿Á«+ÚÙ«êléG*µÚC¼©ùôº¼+¾ PbCÄ|Û=æŸvu2ƒú~ÔP6EN€Z‚ªöÂTÎQ6HñÉ*›3ÁH›1Í*l™y=W/Ô£vJ`Ìa¢˜CôX+¾?Û2ú:_•[Vì.O¥0R’¬4¯¸cLE°g%{òq!ÚÍb(¸̵ÍY¯¯ —a ‹¹@¯Ãºç38ýþšÂÅu­³Éõf.칌,DnË&ßš½EéE*%ìpÔÑ·éê̆Ô)¼I‡ÜÍ–62ñÉ!Î9kHÏv‡Ô+±R®àKI‡×ž_e¦bºÝ½uµÞ•nòPº¾R›¿f°?v­k²m»²ÇüœN¾I­ôd¿ñÎr»çm›ƒŽ$¢;ÃŽž¥$˜o}0å”uBÁÆ‹ äôoq67ÚuÛ–ôu…5ÒôlèB‡$ÔšÂ7›ž…ûItòT³ÞÞÏÃì)ë.º¡Ár«½ „+>œ"¹Q”y@éý†Nš^d¨Õ"Ç×sÑÇ‘¥è¼Ö4 RΚÇG”©¶ãéË=[!Áv – F®m¶/õpíèÅí¡ @éŠ#yè­¾…aÎì¡ˆÊ ¦œfÏkè‰ï}ôÇsÀôÔÉŽm(àè—•ŠS ­>#Ƕ÷DL¦ÏE01sÑV×Q[Œß ŠqÁa!Jr#F“ø6*£ÿÅKì°0ýã0¥QÜ ä¯«¤ooìRp„‚ÃmQV Ct+ð`¶7ø˜õ³Î!.°RJ|c š<¥x­—2º™¶"`sg <ê!Æ@)]ïõF_jBÄöuk±&—È/¦ œ¼EuDøŒ…'ÚåÀñï ðJŽ(C‚ʳ3.—¨‹ÀýúÅK+Ïró»c{»ó6X7)Û-ñG…ÚT÷‹½´¾¯çÀÅ –hýâQ`‰á]J3_™*y¥Û9>|7ÕÆ&Ì@h‹w¸ÌŽÐunhE ÃO"‡oŸÓÆ•„*vÁ>wÿü2 ÿ¤5ó4£ËCH[ÈHRÅ*ðKE‚–÷s6Aâ„1ؘ8U’ó”,U"<¸0ÑgµÖ`DÕ"ˆJ]\ޱ"ªfc$ã5¡¨áœj(Þè_îòmψOÏTÆ’UÓ¶×v}·8«öëO“ì pïk'bݼ3Ï õGc!4YÈÙßS¶L-‡tÀD8ÐùÀS²ô Bdéõí ŠöÆ7˜˜ÌÁ‹F`(èµzù·<¹… ×@t ضfÕoÔ~Ѐµ …‡€ÈaÞ†*‡jèïéKê V®ã›ÍØ_ qÀrÑ]N |ê êí–¹û>p¶—fØ‘P(#…làah+•&±k3¥`ûã“ë¬)Þ%s\×l¤g¬b»=Êyùc Ò.¨Ò㜭Ĝªv/ô²Žùœ²é`x¤–Þšf½Þ±EnEÞkk~e1¹,‡+’L)4µ—KlØ0QøéÒ³ŸxƒB7Lî ø(ýZkø»êñ~`äåÙY ‘¡ãº¹=/M/ަÍ0^Oqónwpr”¢ Ú´Áö©£ð™äXñ¡ñ-«þuåû#de9ø¦$—‘E)s¡¿ ¬l\=³P ·ò° æ`­ç玙`ƒ¸i¬AôÇG™‘–°†[2/é]çŒB¬–å,U­Ñujº\½@ÃÃb§Û²ÆCº¯¡¹é.£©çJí2ž4—㻕k˜£îs×Á;­úk©½MÆ*×`÷Ú—rÙòû•ñÄz3œ+»R‹šÏ±O#ó2õÚbPÞÝir% yÆ(Šké]}õ†8ä´ç™C ¤ÓðÑb—3±ë¹i›†/R-1OWõ ÷å5h9Š7+eßGœŒgY•\X)ÒˆükáE¶8„krÉ™h®8ç’ Ƀˆ'« Gª¦Ü?ä§ú4UZ„ƒÆl–Ì1çj×0•)òN° ½­«ÁQvj'ÃL¦uÌùóžÔ(¾5I“c~WÐ5‰ç&LëÞ²:;, ¼ˆ,Ø;^„Å­àóѹ¤Nd“Ü(ľð»n‡­ŸLסx"'¹õ2IzÆí  9'š¨’Ðy5•azSêuéû…Wñù,B¢íð{qî¯gyP9pÖÍ¡D «Ñ›~׆ìdÖ· Œ)?¡ïŒ—«ÈfÒQ-–¼£ÂE ®ÊÕí&غ)>8p#rþ­‡«\ÜßÏÞvíŽ.u\½,?ñjDëàˆ:fàq«^|2¼x|¾DïÌ®!U“)Ìq`¿%aËœÀ„§®û΋ý70{uJ™B}•Ik½ZEë’»i{ÈÀ!¸jª“40¾†c Û}Ý­ Ó™è¥åå¡£\½Ø~‚®ÆàJ%¢z˜R¦ðhÁ“ZÀm`x}ªÛCIp.{E ì¹Pgç"„õ¦Õ´ÃRDI.åê…[’¥iH{¼×çèm³&«²‹,‰ÖÕ TÅoÂ/åZoÆ'mKüÖFtϯOÖv'ºµà[5lûÎyÐXgyõj#ïÎèÂÜ;´9üê+¡0ÜžƒˆŸxŒä Ù~@:ï5£,dþœÜdÙµÿê”J<"~Ä(d+etÕ†¨ŽºÍ ü¾€åYÎod¨5ÕÂ(MSßï\òþ´ºÍžŠd6b‹³ÞN'4xš¦Q˜ ªÃÂÅJð@ }=¤ÊIwZaý°cÄðìlBŽîàÏ5z<óÃk Ýßb¨šòÁî Tzz6A͈ï8û‰ÕD?3ØŸÕgk2/å²`õ5„nAÏc[5ü£rÕÇ$“ž ¼×X¤Úi…·äÔ®[6CLÃEøÓ%'ê ÙŸ7˜WB­:Í:gÆäÅkÄÞfP?µ(îQúYÕwŒ†?> èÆ?@‰wÍàœëÝÏnv ÝA?î°H]R–U×R‰”°÷Û§¼„{ÆÂi¹”¯üPí’좵Jñ–æ'¸_)-h¾Gß9cÏ=ƒp>Nû\¬§O öx€DOðò׿/0åàÕ[-ØbŽbïÛë^kéƒðáCýñèXsRÊ«T´å¬HÞØ:‚ŽõØ/³æ¨R«KùÈê-QdõyµYŽÎ:\LñM½S3LcƸÛ2éÑù4®Å·G±qWy.¹n:eOl¯4æq…•þ׆½ò]ê”'¦û¡3ÆEùއ ÖŠJæŽëÕìÅ?˜€K²Ç b«4ö»8G‹Ò«v„;%=¼œ<³æÝv…ðwáñ9H[ù~Ükž½²¡XZMFtÄ@ BŽA#l~¥Füá„È2ãKù=³°ë±*Cê±,k3ÞóNEšoûA®2Ò~šKëí­(Ò²nœÔûÙ̬KþãíÛ¢ë‚ÒÇ›£ì*¥dí_7I5sXCNˆq  Õæ%)<„ê3.“¯ÐÙ7½åÝÇè>¼.q|A”J²„Ç™ÍóV °¯+ƒÛY÷6ó¨¶Ý©{¤™?å+´ÝF¸OtÝóæwT›>rMR4¬çÈ{wæuÄ&@nkó(_ Þ•,=Àu -)‘‡Ð8ÕóD57ñ~|UñMX~"½À<ú@ò8ªf‹›~6— *?žLBgö¼ìÚS³÷œ°Ødñ-E5òc|{‚ŠPÌyæâ(uE Q;y+N˜/Œ×vVØý#ÚÊGI‘²Ücæ(´¦¡Ëø˜F˜Máq.ñ· `ì P%•±›Ò_ÒöU)áÂ_€ÖG œ¨\³½”y¸Ý££ßÅÙÏdçlNÞh1>³@¨pA?‹ØºÈu;q(ùVzHæ”ÀÞ5EÅVzȉ(—‡ëÐæ Uˆvš­žœëá L©5|¢ …½ë®²:W®ÎjO=AÝ7VF¦Fã†\Ë(x®¦ñ¢%).íÊï!šrŠñ±±‡õ1·¥5„|í–ÝšJ I_ìÇ…A >Ñ$$œ5 ”¹òLâŒ=ЪBdKž¢1ILœ¡2(U^˜ËÅ´JÝ£áÞfÞ{Ghðí‘>›@ôápùdÊ£â 2Þ2ËãñF \›ÿŠ\ý`~ºSjâ`æ¡9fRÚ©o0ÂIîáŽLKF‰n›´\†%ð’€}=Oæzõnê¥(_Æ$.THœñÿæT¯-X*Æ›qŒE0×LFqë˜Yr9Fø&B®—ÿ3ˆÚ7|}—ôކ“‘Gú$^a† KJÙ£äó4c·¬CLe†u/Ó—svÑG);<…·ÉàOjÊ÷ÛÆÕCúÐÏŒ›ÂÓÒ<t¸œFØU¹?à!k˜ÑƒB]¢Âðá•ï%FãEŽLëÛs74ÓÓæ@]lv*ÜÞ ñ•3è¦ìÄ%œÒ­jÒ”uÑPîŸã—$™8ZyÈ]a"”&u!¡Ië©%ÏÀ4QPNÚ¸pLRþ¶—ä³çChhQsŠÂ,…Úí†Þ/&ä(yŠ{yŽ-&"ãðpb²¢Vï{ÔdvÍÉ”2’8º——:Þº;ÜxTÈ4f¨,ÍÞÂ8öŒð¤N@ëÔ†ƒ¥Mà9á«Ù7® Æ6!¸%NÎ9c€áyÃTO]1Õä1Çr°Õ\ð³Bð¯ÅTqYÂWJ›¶ÆWı²Ä|Fqó]öÔÜá+šª¬ûžeYŠJ8èqÉíÓF²¶åÍðóø˜·&™¼íåØwAÓþ„ÓtÃs.J%üL .µø´‡ixô }!†º4ÿ)Vy4„Iê‚mð[Hã×´lî:6Ž‚\Ÿ_†ç¶–:»þð0$ç•–®*ÍÞêKožÐø©¸š+“¼ñ½²ŠÑø#C=ïÁŽV³ßåU%'5ŒeWKS+ºÇé›ô!ª#+9™È*¥tY*§ƒ ~,k¦úîJua„fM%›!‰)…Ò/ßoºýÛùˆÜ˜œ¸’²ôÖƒßôU¹U¢Xë› Ž©Ô»övò º¼výÙU„R½o«œl^öyw±ìÚ}n;³+#ú_²!îÙö«ý\ÅhoØc–RfKBâÚ´ï –#º€-„7.Ú m»ª›-«vVz”Âzi‹g…KQé±Ü½sçù¦ž²60ubi“TÓéDÐ:ßlpcÁá•«ò^´'®.®çír« pŠŽé?©‰j "wLÿ1Øð|z£Ì/Ý„3„ Nî×p¢ÒÂ׋ò'ÖŠÆ”}RM‡?l´ŽRûîM_=¥ùPBìó0pÖ3¿ðÙV¬›;L¾dvà g³gRœE‘ Ñz¤n žÓrüÒSJ×¼ƒÔõÕ/“Ó9/–›r™Ü€¦†çhì2¶¨ÆU­Pbsâ°J—Õ< ¦×íBjxU Sg x+:x  yjd Jû/4h‚Z¿ÌcÂJF¼‡ø¦ ‰ý|A€¥ÖF‘¿Nìå`).Äwšd$1+—ṵ̀ÆñÒ»ÑH¡ËÇ“ܦIT§jQU-gЍ‹ôÓükl—Ыõ½¯Â‚ÞßNœ¹€™5–QÏWVЙÍ*Âl,ó¾cNG—%…LxíS'¹ÍuÆ–Åù*‹êŽGÕ_T*¼óíQ˜IèÀyIð«G]î´¤•w¿9Ä«ÖÇÁÍè“g…tÜÿl9œßNŒÁÞ»€ÜºªH›·÷Ø›#¡4HÙA1X ŸV¦\”è¾Õ¢ZïÀÛÕ5JiOwäî ±5ps@f²LˆQ|J¦³NcBÌþõbƒÕ{K¬6K{ .âq(?´ AhbºóbÞ»x£°ªÌ0Rº#c´Ô>[Úþb[ƒ ÌDÑ•e‚7$¸k!ž+.cf§j£½YPÕ“ñÉåáö´ˆ¢Ìžnÿ1*A´©…xdMËút<ùP^gV=”tOî÷hG·8 §µr…SHØÙ”V~¹!³9ás°p× 9”¤´IE“PÍÁË“< ´÷'o܈C2rÅ‘,5i ¤Ë·ùãfIV!F~Æ(†s<úALª·g0œ W³Ê|²×5w%bøsõ}|®ïEßÔËÙfTµ,î'/?R:hñ(dqTµªslÒm„Ù^"Š à\{/(H®æ»24˜„}‰’½ï–r·ÚQ ™ìà¼ØœÕš[Õ>^kâ—’8.¦u.¼}ÓÙafAÊE®µŽ±Ô*XÕÝ;)&ñ™Á+qG}íü \²ªÝ(qØCõk{QL)øþ¤aû¾jygeGÿŒ³ 0é†ÐáÛÍ^7*·Œ•þëàƒÌa èNØ%sÏf3Ã:uȱ›PYhu"S×ÕüWîšØù¦ŠÌ48’²ƒ‡ÛɈ«Ù[É­›&ˆ<øÓ+³ü5ÀR“Ú5Ò29fç–òaî~©¯ù7íÇøãè3'g®uÿÒýf‹.®ÐŸÖ{nY•gæî_ãšÕH9™;^?êÂãœ)Ô»*l  ¥"iIöf™‡ð@Hëé"äíjj ‚o_ß³ë‚Yº¾»§³LmŽgX)É&}²ëÊ…ûkOÈ`+–'ÚÀÀ QFöCPz L†úyIZ=Á“¯Ð-Ñòr')n°y.ȤQðô¥ï:gm"œå¯/ö9ç•>̽èî<ñ·K=èôG‚Œé㽈/Fº£x²ˆŸ³¼(KpHîâ’LMÜ *Ižãª$I‰&cÀ8b DpDÆÈ_IRö™(dÕ‘FCn ƒ­PM²çÆH?½j¾B•M=1'Pèd­©”8NÕêJ‚ÙqhsS~ç …zb¥øl]ô‹˜&|bD¬×&8iæ´ÍVÒ­É ˜”UÇAy £\óô vÒWœ]¯©ŽÃ±2Q¯r'Ì2]ipQdX * :Þ·ƒ‡õæmuU|Ã,n 7 ªàˆSž,¨»Èñq¥¶¤É¡¾jh\¬èÿÙØK ¬­rµlÕ3Åá¦Ù¬!"–s™?°¸)A“Á.ÞZX`:Nfà&Ï#³Ò“× ”–Ÿ]ÖÙZn ‚|yÒÏ¢3™'ñ)ÉjNM ^Èg=lŒ °SÙ‡{N‰9EÁnwèBþ8e‹âÅ™?d+¡Þuþ‰¶è蛹‡Ä}!5Þ` ¿)qÊé"¸°Ç|uM Ÿ˜3â/Ææø¥~UþØ~Ý,iLæ°¹â‡97„1¢ÊW?‰/ &‚ŸÑ8’ᾈ%aº+ÌA³ï  YÉ]α†\9H[jÁn©k4«;wâ·‡ÂJ¡|yB\ü7=Ím¡whB'ßxf¦¾ñ—åtmÂ\®>T«Ú%Ï=¹@wtË ±ž-'¸gÛª W~í¯vàå Ý«Up·ðIn˜2E&9½ÊŸo}~ë5dÝ8ÒëñE'½Ì*øÙcãE7!êpÆØªÿmó‘òÒ:¥"®&R^¼¹á~‚§ßx»x¾ðâ-¹¡$¯iË{DJdÚÜë µâEžúçl–¸–üN­’ÆãëyÜüÀVî´oFmZK+N|ΗC`ð‘`öT3­ûŽ‚YdzææM'šB|…XzÒ¸»éÐm­Qôd,1¥ÊÒbNlFê²ýXd ´q'ÂN?Unñ†Õ¢„DšŒµÙÆô—qWÊ©6õšW4­"ôÆ^qq˜^9êÌx¹";T›õ.žh×wrë 8èUÕ镈5r±×ËÔs²é°ÚrîÅÇð5\­&>ª|ч¨(¶3õ:xµ…r†øšoD)A´œ½hóAk dÓ$iz©’Z] û€1ÕIV¢€·b¼ç¨xçܪïâ¾)v¸ÿ„ôTÒE5ÞLz'’tÝ2 u±Ú¶}ͧBà ®ŒÄQ)’t¾z£ïïs2,jÙw~ŸÌ«56¥Góø5½‚Ë Ù$_™n턬K©ÊÅ·Ïýµ»‚×q—‚zLçB£)(ʦ:@M m*2²Mº~hÒ'%¡œ&ˆG‡6ß¾~ð%câiuøŠF±OR}’8¯ƒ/ã"Üô3A¦¶O]sì(s(ñd¡v ]k»Ø¾„a˜Ç¨uF9¬z8@çÔž± “ç‡ ¥ÿddxÁ×z¯DÎ2V%¤<¢ó ¸Çió×¾ \8.6˜¾ϲTR¤“©vSŸ!ú·B?ÍÖ$Þº¹CèÒ?)¸;š,úµ$xé·lc@3j¡³”"Í‘‹Y§ÐkÙ%F˜²e ÞGS8©r‡´x›e˜Hókÿ Íø&Ô„8o¡d,°+ìçÒ#\rÖ[峸%î8aj©Þå,xÈw"fÉÍá\î×7X ß§Šè7àÛ3'…„ð‰Rgq_ SØ×~Oà&=ôEÃtƒÛ±ÿúÔæO)\þjö¼2•©D˜Iºò%:ë|eB"G¿ë¸@¤‹µ2Íòt·ú8® ظX®ˆma³Eb#HJ?ÓŒìÒ9U)8¯ú=T?äÄüáãfY& ,”LуB_ÂÖk Úpá~jŽ"o}ȳ1c¨5¨9§â !À~S$oò CÁ©2So8e†;ÃPž‘c—,Ád«UJ/v²ƒ“!¿‘`‚›¹ uÅë¶/2‡ûtM3‘âµG  ûZ©$]@±ã€y‰p›‹˜BûáE#] õíUý36h_‰xDÄ~ ·¢|Äk¡GÇù]µ+ ;й$ÀÑÑÐV‚ñúÊÏé˜ø%sFîÞT:šßmÊ¿[ÝaîÎW¼3qu[KÆð"0§½´ÅÕÖGr”Ìä¢~jÿkçŽoÎ=¢@{z‡‘ÌÿÃÓêvcH¥åcŠ$j§ø 8ÚØž™`ÉàÌq¿t®ë£o1•ª¾´4`aƱóÌ+Ã7sÅ6>ņIhg&Ö+iô‹”ú‹1¶€¯dÖ!ªÓºØ:/N?-ï“ôíjþ•:Ïá/;Ú7{º¹°¬sæ×Š'B÷±ò- ;U±rØ"¶Âó[b,^‹b[D!nýQÌÛ¯ìØØ×²b¥ç@â«ÈÝ… ‰]Jp(Òv" 7c*ªv<YsÝ·¾›ÐŽ™~U—ö,Ñ,Ѽ ­ÄDs[8 °|Ü3½ÌE ¯íHÊšíÃï”F½ù…´äÈl«ö“js=)AÓy‹Çv:…Žsï[`žÆ]0 m¿:ßö ¡V…ø,´ÿ½)Ýíàn°ÌOìti{^J zЪš±É6Çþ(Ó£Léý+,¸ñ¬u_ÓrÌé}uÉÌY²§ÀõÝÀ`­JÚgZ×>€ÆØ‡û•ëã\έý\ÐÖc5xV¯Q‡óÁ䔊֫x¥p é~{% I&PÍÕC*·‘â£ÿ°:7O2úÕp²ÇÕ¨Sþ”T´¤y’òÅ ¥ÍËÍRQ¿ãklÐvŒ ¡eÔ\õPð:“—¬2¢ +[j´úçxyŒ±>pޏXÜyòIëΑŠƒP_(nÚ 5·©õHkl,2„–^SåïÕòyþàç^èÕüÓ‡!ešYCˆ°ÃýÈô¶f[3ŽvØÀn–Õ[ nùMWûrÞ²rb“pȨ*V‘ž@­ëw‘8ƒ1q  ¿Úr‹I!¢6¡ôv‚WÐÇ"T|{$mHX¸4ó³ÌÛjÁÌuË‚—Þ#ñ¦A¢‰ÁIh¯îêLÂÉ’Œò 3²“ŸL=<ßCžV{M/<LZ#ßfRÇNö~Æð™*-ù!72¶í¾‘猑k'öY9: Ÿ㳠îA­8COzBÉ¥’DªSkʲÜòd†@»C_,“­Vç½®sSz‚ˆ³›(Hhq4ౕ‰ŠŠÏÐeðâgû²PbªBâDÏ9õVXŽº°-C%s‚lë…Ý4'”þ­,ÉhX÷)¶ÚÜçÚ$Ü3ƒ«:bÇíÎØF{KÔ¿¦pY¡ÊFbììá7»8ãˆù0ö_1¶ÞHYE…¥R+Jç£->b_4®µc·5«F·‡BnÐ"€:Ë$í•ñr/Ì©‘ÆhÓ™Iæ¾R¡}›|àÓ>/b]YˆÈ¼>ô=4£Ê“µ'ns—üJjU‡ûñ«wU­¦ÜjT+· ¤”Ÿqx¾4Ãõž2mñ­mÂŽÒæ0›XpÙ_­M¨ùã‘ì""£­„2K!2³ÂþŠ srµÎ Šu%˳"ŸpŠå©©c•A¼>"pžˆvWB¯ïØi8öö¹É4õ°Ñ,©U£t“¾I2)ªY Û+0DS Õõ·æ¼€·åš¡ÁKÈÔPګ槆ˆ´nî#ã¤Utvqq5¢ÈiŸÊLnd¡?o†À|âk„':À.{9²TÝZÐRÑÊ2NæÂ¿<Òç³L²ÈAy¤]˜£]·Ø¬¶»(û¸ø¯¶0.‡tÓÂu¨y1PшGîœá1(Êt>µ3ã–ˆ~ù­â=üÂÆ^Ãô¨Wj±\ë#»¶3 äqû&ß -êºïÌI½P)ªt’‰º—‚ætV˜e|“ˆœRj ¶Úó1ÝÎ{Ȥᮥ5Ó™[‹äI7²7ëcp7vxò4ê¬rRtzÂÕ„@Ë×B×ÕÙ *1u¶¦§ÔXo0­ÛÜáòšK€X ›ZMUf&_Gõ¸ÄºLZÆœ2SQ9i€·ëU¾§uËÓ+äú-T81>Ø3nMϾ%Ù¸·x°P/\UK(ŠŒ`ÂP/“;ËM(žúµì%²ÔsãRTèÆt-9°'§ãà ’"gª-âÇ>ÄÆˆÈ£®%‚ t1v=ó¤ n²éS:AÖ¥:©ã ùò]ˆC{þ|ìO¼9 žÓ=Ú?ñC#4úŒˆý[ä*ÈjI§25Ü‘‰Ãiºë-@™_d”(ÆÆ'|ëM8õøü‰ë‹Ø|CÝ’1†«Á]çu,ií3e LÆÉh–LÚžqû¼™ÅWòÂq°«’Ä©Žbš±Äëáª`Iðò1ºë8±Vì·íK±£ef$Š\Û®vQÀ±¦B‹¡ëÊu7©S¿HDfES$ú7yD«íwìAS\ÀªxvJénÛtY4ù`Ÿæ…Ž6ã2&|Hì¿Vã}t_½Ó, þÖD=ò!\²ëL¼]$Ë÷,¬÷I-eÏ^<Ý×{B 0ü‘NQ-Öþ²ðq(†@dbo[ª9\ Ùp&Ø;±e—%ðY7¢;©bv v!Ô®¾¬F!Ü»LΞª¦ b×Çmç\©:J}Øg(ôƧžaÓjê rP]#­„ÝjÚ"V-!ü™ŠË5×ñ»:\ù—Œ»h.Ž’ÏL¶°_¡˜Á§ÇÝMø>}©…þå}·âàšDK [Bk½(çæÕÞ I‰l„ ¤è&bÿä“èöXÍ1ãšryTÙù˲IŸ’²Ã¢qÁâƒú}´ ¸°]5Þ±_¸QÇ2-`“o:éeD—‡6éó)-QÊqSî¸?EÁqòêøŸÐg´­GDÆÕcíâé—º&QQ5øÐV.ZØ–%‘—L°¢¯Ðæ:öÉŠQµ¾D¤+DK›ÆÊêw~XÖ„sÏ[¹Ç¡l6 ñ°Ñ=È_zœºHVM(ø2Å;NˆV·;0øÄ\sÑ#>›°0ÿâ,>ÆÐPcµ„Š/¸t÷Öù%·MϰrÜE­Y ¦µ?†œúA/£N(”©ßîÍÅ#˜£˜Q_”"‘Û]IlMÁ:’¢„Õ5†žt^ø'È¡‰¯ð^­ Ü! Þå<}JiD&FRk+ñu˜Ò1Iá^ÐH×HÉ…š‘ÊÏ™‡ï­æ‹ó³w|*X…6¢û‹V¥Á>ñÓ£p•nTøRèňf­¯ý”1ý5ÝW~“¤ Æ|r;éd7ù¨¥¨ÆT2ïr*Jd]º ¸ù²†µf“-mé.Ô<[¶+•»×°!Rv_¼è¥|ÃÐu¬–pÝ!Ï}ìLªÃƒÐ!Ÿ‘ÓŸj«äŒ[êœ>WÑ2c³ªjÕ•…ñÊf®jP'B1_®<©uî3Kè]P¡Á»3ÆHþ5=–j¬Î]št³;ìS¯bbl¬„Q^ê7$|‰U®oòFx¶^TeçW¢“˜ÐzU¡ñ ÑšS!¤,÷ExøCC?U C`ºŠhªNRK'q[à/¶ÕvZaã"gßK¾­3qMcvºB~Š­ÉöÒÂH1ö0C¸Kß|Šÿ¹JÎRC-c%ŸÓyù0—$C‹£îĸÿlKÜF9j¡›öé“ç^ɉrË ¨ÒÿV©úKOp§ÂlzèjÐ#µßc&èž«5²ç`|ò>‰Í–]™'>EŒÐ¨—?p6¼èùB¤::ô°™¥V‰Ó®7a2§È­â{*êR0K\ &éÁ‰D’·áÚ!^A›ì›M|UÂûLá-7LÏäiCŨUöMåäu]§ŸÑÁ7ßåA:.†ÁP=rG:¾eA…ûÁ!âß1˜|r`(cÑBè=h­# añ :a3Ü残.»[‡?"f…£Ú¥ë˜qýºj›ªØ/‡u¾V¥ÔÖžŸ8,O#6Ñæh9¨ï­î«`Ôp%õa]é¦òÙ‘„‹˜­ã%ÚSU™8ã_µ•HÓš—í½(Ì1‘Ò|uKÏrV²“Ù1@•¨ÁÇ8R¡á¦“Ÿ'ÈïcÞ?©ñ¢Ž¸™‘ø°Un|é_UÆd]"2/jC54I‹Ð‚±:ð)ßêÚâáõ˜´—ë{é‡ÃÉ9Ç™tßø~62ï±éŠ ™@Ë ìçŒ ÁLÚ•Û¤[™šù¥ÄGÈA§£Kr[J¤ËØWØUÚžvdcÀµÛÐ8‚î¯ÄRäVŠûÂ6PH—ÿb$¬¿.j×Zq[þ¡Aà•Xâ—³)€À™WºËŽÚYŠž|@{ Œf~º[YJ ‹×OLÔ©Õ@ ”[7c´u)JóK71Ä5õe4ía”HŸ@”µæÃeq¨LzÈÁ‹®ƒðåˆgáé³èN\Œòð´½v«ë+ ­°’?Ss0 ™¬pУ2ŸÛ^ò뢟È!° B[ªÝBF¡ÃÇb’ã,3¹Ïñ¹.[Ô„Z¼®ý€³Ç4 Ï`’óméGÝæ¼_CèÌ*ÜùÓ­pŠ PÛdªíêû‰ºÓyÏà°[ ˆ#¯ûC>ùeÔ0ÃäÓ%'£/¶þص>Òd;uíIWìfÍzÙÓŸÀ¤¨gó)ûD’Ld=Ãكߩ.–'ÑÏtwþ~ºäÕ’¥Si).OÈ ”JºÁR/W÷27ŸvUõ0ˆh%QeîGÕ@Úð+¹¡hpÕ‘ÞË0»&3E'U«ÞµUî^§f§¨)wñ(¨õÒv‰¶þ‹¶ë-§Vfh ‹—‹Ù ¥¸oe‡°>êƒ;V÷ xóÎ,N¿ôéËçÎæÊ–&U«xòEC£bû$-…´Ž&ß(«Å¿EÜßÔ”(NÊQáÐÜü¹^¬p{;Ÿc`;i^²zG+ãÜ«:Å~ËÀú„”¤Gfà^|ëŒAûŠíd‹eÐßb¿Œ'‚»ì*0å[*Ì5Þ +ù'mS€ I9âl>§èAÇä.F'±ð9³„ä)êfåUÀ÷ÖKp“ûm(9{ÕQ•'6‚}¤ž£QÒÇf醹pA\.Ê%ÐP0òć”,Wè5™Â„ØnSÖídµßN˜¹ô¨¤ô%sõm'²Ï{%Êñ<£O ¶±0Õ)a D3ŽÉó1ý7§Ÿ]8²«(ļ¾(\¤Úh¼=øþ‡yó,žëFý,ÚtÚTèôŠb]÷s]Îþ‚Áw^v5Cd²!ˆv-px±Q.Ø£·nÚÏúøºæûô#·DÕ^ Ô´·9çs’â^6{”ÖzpJÅi¹²»Ä´¶G]¯‚\®Ì&§D‹jÆïŸ>£á´¯ÃáÁÞ«—b ¹-šßè±ô;)Wå)TWß 6'ì%«¢-MôÒKRqÄÔ”¾ãY¥±z endstream endobj 53 0 obj << /Producer (pdfTeX-1.40.18) /Creator (TeX) /CreationDate (D:20191201114152-06'00') /ModDate (D:20191201114152-06'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.18 (TeX Live 2017/Debian) kpathsea version 6.2.3) >> endobj 10 0 obj << /Type /ObjStm /N 37 /First 276 /Length 1919 /Filter /FlateDecode >> stream xÚíXmoÛ8þî_Á[êI‘’ų¹¦×^rIºM·ÈEflmmË•änº¿þž!e[v’mÓ.Ü!15šá¼ÏðEZDB*‘aÔBÉDÈX¨,Ò-S¡„‰cÀZ+@M pZ¤“È”(à#£„«Ô`Nñ4 +HL2HÈT &O«­Ð,ÖB‹Á3‰P2“é@CNÆtV$#¡3~¦"Ž`„Ç¥1Ä,‰1D¤)ž‰ˆäÄPn0%±v £À–£a¥…? al‰L˜DÁ)L >ÐM&ÕàÙ³]|^:A§ùÄ hT-Z·h#Xg:sMµª × <ñÚËü ºï# ,â™dêjö|,Ÿ§ýô“—<ª]Þ–Õâ0oøáðGÁo RÆÒÈ'V¤]”í ”3ñ÷:_NË¢'«v¹jA:­«ñªp5Sãa4Œžtº*F=Y«ŽÁ¥¯®[ÿÊH9 æs¦©äã9‚^¸Ù'×–E> ŸE5..ŽÎ¡÷t<ñä1²ÊÈ«ž’õü nÃMoËÅóESnɇåÍC¨8¤ï‘>š—‹U#2KWUëfîAŒcWð¾iJšÔù'Gy±je]¬æ73wKm9;šçE]-èºv˜–¼(—PÑ” U;v7TC7HÝl–oÓÕb’׫ù,_µTMª…û@EÎòše^¸«u}pž=C´¸ÖØs€2¶¹â„BM×`Š’cBèòäú7W!ÇstɆ‚Lç®E(èôðÙq·­¸ÚMà^eÊl¿4eò µ¹õªgÿÚh€·ïw˜©îvÐ_ÞBêOZHý×´Jïi!•ýo¶Ð½%¶­Á»Ý‚íæ»ÚE«ý:ÔÑwµKσ¾Õ_cÚ=u¤7ugAËë¼­K6j¡˜¹‹ð·…¯Â¬o8·¾òÿØÐ®úN²©û&Ïšqåí=*ë¦MóÛî€^å½—·å¸6¼mû8mJQ‡½€x"Ënx'_—v¬‡&÷ôNÅêŒrm"»üFŒÁYãÿ¿ÿèï QGö$?S=ÔÂ3´ÝˆãßPw£J’aŠöñTœ©ö‰‰DÇÃ8¼)5DKy~Ï"HFR³­z#O j¶PN~à £ß§õ̻ϰ‡~êŽAjœ°éa v-‰R¶)¸eÙ ›F…5ìX’ÆÃÄÏÓVqÌìùiù-mGïpž·“®-sø€wòM§ŒÔF½áEŠEo݇z!ðºlôà^ö±˜¥fÛ#í9•7b‘y.½–8;ÙŠÓÈ7§N6Ïâ OÙÍ‹ÉÒ‡w¡í‹‰µª„Ú°O÷gPQ©OeÇ»™h5Æ#›à--˜`?"9$zŽy´ »YvX¥ 4°„Ö©~¦V<'NäЈDfœdܸR.TOg\Úqw0¬À¢##ÓéÇ šÍÆ ÏPð±O¸I9bwà>&HŽ#.°>¬Ã…Ø›Óñ¼ïÝ€Iå»×óöeú9âVjØ×÷©Á#_ímû‡®)êr‰ãeؿæyrþ¯7/þ6z}p)#fùWÏþÿÔXñTñJ mÌkvùç Ñ!ÌåË®œLñšZì´.ОJ&·ù¬,ž/&8Cüyëæ¿@(—Z3ìç|NøH×ðiûI0á¨c¬úç /ytzyy|zÎr·ûàPe_pH•C6ëù£eߟçt@#:¦:¥sº 7ô–rºÆi7/>¸–Êk¸f~*¨¨æóœÆäÈ-Æy3¥ºáÿ’ü?É78bÑ„¦4ý¼œº•ô} ÍiAá LKZòÒ‹÷P¾tuYé#ÕÔP3cá-µÓÚ9j¯hEŸèwº¥Ïôýáêj' ñc’ðêÝ«—¿þâ“ îO%$AŠ,Mÿš˜s0¢×t†Øÿê#¿ /G°DÈ%"âÆqi»X|¾û˜œ¼yw9zéc< 1‹±zÅÙWÇÀ<£û1ˆvë£Ð÷{].K8ÝÒ펟écü|wqôòÍ1ü¼¸x°ãà'œ5+Tf{~J¹ã'¿nüTJ}K¿èg:¢è¹Wè¹3ßu9åMQ–á¾ù…æ›á‘q…»fÍèÉîã*Ÿq;öšpÂWvWßmF¾ùúûòZ¬æ×®nÊÉ×uèr¶jЦþ:=¾ž…~Åý×Úòö‘k¢û³y÷{Âö+Âþ¶°“|þê¯aۜս¿¬opéãuï-à{ªÍ¾j®™j©zº³ÇëÞ[·öt'ûºyïêé–Ýñ7Ä|o½ØÓÝ ¹ÙÑmuËÇëÞïá]åFî+×»ŽÛmГ»Êù{HÃDVPÆ”c¾…û2|®TáMËðMj‡}”c ¨&ƒ §÷Uäß«pLa endstream endobj 54 0 obj << /Type /XRef /Index [0 55] /Size 55 /W [1 3 1] /Root 52 0 R /Info 53 0 R /ID [ ] /Length 163 /Filter /FlateDecode >> stream xÚλÁ`à]$B\âÄ%53Œ’Qy£Qy5ï`<„Ѩ<ƒ^Cö4ßìþ{Š~„sGð]¡Õ‰‹‘HÄ”ÜímMENä…Cx[‹¢@DG«5" ,UD‰HÞV=ዲˆùˆPT‰å9ûÐzeouÑM‰–h‹ŽèfÇ;î§ØRL\]K}ây±4 ¾7KC1#·‡þ %b endstream endobj startxref 84787 %%EOF survival/inst/doc/population.pdf0000644000176200001440000111305513570775562016563 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 3 0 obj << /Length 1159 /Filter /FlateDecode >> stream xÚíXËŽÛ6ÝÏWhI•">D‰K×Í)2Eñ.É‚#qÆlɰ4Iܯï}P~ nâ¢è.$Q|œ{uxt/Éï7¯nµKd•+Yšdñ˜(mr E+Ë\;•,Úä½ø9UVô©[¸žáZ{¸+¸õ]šé¢ 6w©ªÄ¸ÃÆaÒ‹_ÝJ€—¹+KÅð¹®u’©:¯dôEZKv0¯=à©RÜáÊÅ2m<Ù'\cOqÁÛº¬“LêÜ™šqï ³ß÷Tb¾^u«æ’K8ÆâXô­2<ö´Ö„MªjñfàI ÿÈ) ÅïØMÅß]ôªN¤Éµ±ÚªÜX—dÖåUýš3U ‡Rd«Ô‰ËU‡àø)ã8™fL¾… XFò‘{ÑÆIiÆ#Rb Àq0âX¬Ì¦Ú3\Ÿ÷sÛ2å™®•x å/~§~ VVÚ ÍîÖ'ÞÂw;cà›‰ÚÃ(ð[J§~Ä[š•²yšçðQ‚€ŽoWtù‡Àþz³²ã(‰ßð«"¿ïðìPRgOk±aÀOÙbõ:ͪú_ÎæßF¤–g¤ÚRu$õIðZÅ ôÄÜ6aM”bk¦œüO“õ‡{»RØ 1-›ÂE Š×Þ„nŠö~tÿZCëÕ!P`:HÃI'ÁZYˆjšÒÓgØÀmê¬Ø…Àï`Üê nK ¨liŽ Ç³9ˆuÝu±ÎœÆºoÿ‹à°våËûï.ö”˜¢¥ü¦^ât–áö>D¬õg|óxÔ±?v|ˆ$¨¢ãšÇÃh4Ü?²1Šá´;@“+;|¦Ì G¤¨iãwÑï0LbÏ0-­CüÑPéâÂÖeËGˆ¸ôÛioâÄÈâîùÜ¡,,¹rèqòáG˜Ó÷Ñvg: ¦˜ÊKü°=ë©aòŠVI°>¡níɆψ†%él~î¸Ç´Î†Æ…4Èúµ‹vät¶D¢¦]4Ü;ÚÙ¢|šghŸKª(smKPl‘mNŽDn^/n~Î endstream endobj 15 0 obj << /Length 1811 /Filter /FlateDecode >> stream xÚXYÛ6~ß_áGˆQ¤®E‘ Y Ú¢€¢hZ@+ËGjIŽeg³ÿ>s‘¢lµ k“Ãáp8çGëE zQæ*ÏŠ…)c[»¨Û‡OªÌc‰!Ò’–mBxý¾Õ‹û‡ßàÏ-­Dä*ùvýðú±X”(.[¬· ]jë…É ¥“|±Þ,þŒ—::Àÿîz†Ïf¹2ÆDú»åÊZ­—…‰ˆ^]à³ÅQ·LŠè‚|IÔ|ˆµi€ZãòÀ›·0ìÏÌP1i¿Lòèè§å*É¢¹÷¸‡>ª#or…ÿÍ˲°‘Zþµþ .gTb¸œVE¢YñªC.—Úè-~¥Ñ3J#ÙL®v ùf><°ïHÏ+K{á5\[çÑï(nL{|³`û€*¢Œ×:¾>1<‰ò2½"g³⑉ŽÛ¶Âó^˜Ôoù›U'/àtƒâ…ÏøÑÕãê|å<òŒ&nˆ‰l/VZ«2MÙZ(:p$óÁt$8š´iž¼Z·áÁÛøûWÜÔÈâ ½‰»úªFA{¦‹µpˆõ8´d±æˆ5[‡Dð\Ðñ ®nPõ×™‚6É•åçt‘Ó2±'6(ÄÍå@Îäa°Û†ÆmóA)ŠíÝ=v2ذæ ÝY2‚œy‘Iß½âP4`Õ ’sb]‹ëÞ‰GtÝ·'>üÀAÞ¨:^hœÏ¥€¡G^Š»%µ.{º>O$¯îÍ¢%…´U¥uZg¬õÏdT"õY QPEÈ fÿ+\Î!ƒ(ê[¹là€ã1©(IÄŠ¿Ä¿xáK#frÛSün\d@ꥱ…Ôƒ¬O¨|½IÇ‚!˜#04k˜9ÈqàèH*5)¯/RجõŠ<±T=Õ(ƒM‡Qª3­R“O·µÂ/2Uæ¦@ÆBåÙ”--s½¹ÝR%i¾x¾Ÿ;2V©Î\€¿›9+W&µ“³ïÏ*TRØð¬q/WYý=s¨QEnÝ™/Â`†”*µ0|œ‘PŸH¶¹÷N-pCnüIÿÿ+æÊæ^¸•f'i¬ ´Á•ÎUi /?ï]hæt.U\ú£fŒ^·‰?ËÁ *_ß6<ª1Ž÷ýàJî³v 1bØRÉÊ '»$å ͸lÜÎFÎÛë™ ®$UÝ8§~"Í@RŒ“ÐÑûV4;KâT¾W€.ÛÞRäYòÆ¢;Ši\9Ãl¦£OWÖ0ÌÄ—è @Ž<ŽÁXÓlKjö®x'ÖÁ}(lß;ãm˜èÚ"Mpmh°@³¥a7óRí}±F8òÒ]Å+8p •Ìœ4Ó‹oJWuS𴉍ïÈüç¼—ì½ZH|"w5<áK ¬Áò­séå:0CÅ_eÆÃD§Á j§ÛID?–γcj$ð5cš[ÑsƒÓ6a‡ÚÍi •ÖÇ7à …û—ÆtIZhiÐQ¡]Æ;àŒîÀ«]/[\þa„Ýç0Ü-õÓAŽØ|tNÊ蓱cÿ¡ØYG´÷œK¾ÇZrìQD*Ö ˜%­æÀ¶E]„‘G5%)ÅŸEÔ£³;«·aª—‘.Ë£¡v®õEâ ½fŽOh½& •¾Cud+˜Ä#ƒ-›}ö1¨¶#ç%‰+w¸b|·M³ž}N øä¦¡³±lw#b<&/º=58п“·Mߎ°Žw·ÄLužøø†8p–¡ó ëLÖ¨4±ÿÝštœ;†Ö… Ãù’†“-Û=2Ú hçr.ˆ=e ŠË[-1¥ÊŠ$ôˆ&è¯g‰ÑÀ}7‚×+ôþUY½9‹ƒûÁs7†§a§Aûá^ŸèxT•™á(€'ÎAÓt!S–ððe·$ð@Ù¸ÊPñ|h䅇ϋ¸Œ0ì–ÞFn{föðQ'O!*i§ãHläT‘Jdž…WRÆ6Ãé/"/Õ½NAÁå°3 Ñ׃UûxÉ¿Žñv[k(ýðe<Î…cª4pŠ‘»Yd[zô3°4Ωi†ð4´>ÎÙú¯Æmgf.çòp‚ÛˆÍ8€·£ôùw°¼”n¢ke­²A4Ð’ô›ã‹B ¢ŸEzÒð€2æÈ€ï?ð}å…`Èh½w>–`ØwRÃqÂÏï£Ý'ñz#Û¶ü:wm>ºÄv)Öíx àdÀɧãØÍ“ÒA4‘r”3`\³úŒV¸Åâ=1HËÂ5´YÔ¹Rê´!Ü ¥¼kŠÑqD?Ò ¯ôb ç]‹¾{r ­š@KÜé¤yC´Ôš2NpÆAbeBJé´éiøiV²‡. Lw™‡Dn˜Ÿ]ŽzXKc/D¹ô> /ExtGState << >>/ColorSpace << /sRGB 23 0 R >>>> /Length 589 /Filter /FlateDecode >> stream xœ¥UÁŠÛ0½û+æ˜:;I–|Ü,ÛB …6†–=”4)„&ÐM ¿ß‘%KÊ’Í:ô`'ÏOO3z£‘,AÁþ4_å¹;~û´€‡UCHDP¿W_䫳ð·yz‚Ÿ‚¥<»F…ð¹±­Ý¡na†r—àoX½¢2h#«È ÙL°ðVþv…O0óL•Îü o-¶®ð f^S‹\ÒaámŸù3¶Ü²úÌ/údîúxÁÜãúÐÜ}d©D¿é{| ÐtH-0#yè÷0³4‡~×<öÃÄ×”]‡-ÕJ;U©,¡2•´”‰°õµtrT¶ ™+©›U“BW»ä&GÕ–Q×6ùÉQ 1úÚ&Ÿ£ÆÝ`<šaÏ ˆ]‹ÄqOÓÃ^‰¨°ÆÎe6¢Â*ù1>Ó V¼·!ÅÌGXxÖÚp䬸˜læKîµ+ŋŠvÁÃØÑàŠØsÉÑ+Z/V¨¤½XÈ+Z¥Å)ÄúæÀʉ&‰oÌl°³ƒØÜ™…òGñ«m”Ž–Æ° Ù¥ƒu„,¥URš±pçp¼Nùÿ<‹˜5²47ú¸ßïm&/Óc+þJ³Éá,Ú§Ùãv;—Æ…Ùf}š?C¿ ÓH’P'®ýÐ\llèï— |‡Ã{w•BKoßU©¹jNëäaÈ+¶—º8gTyz!«”“Á±i.gÒŠSNzKn-² ïFøv¬¤¯åžÉªo¼PW1âŽÂ>eÍ¡$C-ú9(–R¼l~œö›Ã îsEêÂ^ŽåÎhߘnQ ÜüŠL´Ã endstream endobj 25 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 28 0 obj << /Length 3447 /Filter /FlateDecode >> stream xÚ­ËnãÈñ>_aä¡‹Cvó™Ùv‚µsfæÐ–¨ÇŽ$*¤4ÿ}êÙlJÔd9ØìGuuuu½[Ïï>ü\ÝÕq]˜âîyu—e~Wäell~÷¼¼û½ÌÒÈíÜ>‹þ-gskm´ÂáÅ þ·üÛN™¨ùãlnЍ¡¹=ük3SEϾ<ÿúáç" vžc3½›§ul’‚7þlÒ„AC0aŸÝwĉ„u¦!þ:›g¶ˆ@OZ2=…ÔˆLÆN³ÒáFHSý;3SF¨"×óbÙ42¶Æ]?ôøÿ;-…=ÂÑÑ‘{gÙ~Û AíŠÁ QOÝ=ñô‚h!úREÏÅÌ Üæ'æi×¹ÜÖ¢Efïi'¸Š­|›£¬_"µ{lµÈ©vý6«²ÿç•<Ö‡'¼üÎWþ&ÂPâ1qÔâõ$uôÀÝ•[ÚN¥ÈY´ä3òÍ/OrÄSWŸÚ*®S/B>ð"˜4í¦ˆÓÄüq*ËË{?¨CçчÂ>Þ!+âºÊþðßE`‘îoòÝÝpKEœg6``;ÜÞÌz"”bµØk:Ñ5þ4¶ÆóFܬMLœƒ‡Ýø³^]Áö»õQÐé/÷ ³·@Ñ_Ú¼&+˜©*¦4¯2] Ûim3nâ Ñ‹ >´ÿ=säN*Éý ÚùáN:‚,. =è³nUâÄão³zž!Á®X®XHqò¸“ÓÄBIÈê9sÑ”u\&Ù˜‹h#³v•ÐŒØSE¯¸Vì-žŒ¬xƒ€dí)]°ÃYÄü§HîÆP°–‚ItS¬x8ñìÉ7"“– Å àj“èÒåŒÍ’ÛmEOÖ8š¼öÉâÁ÷L`po/š92DÍ’±™ù+Î:½Z" îÃ?‰™¯BØÈ-v…­Øê"\ÇHL×I (ª8«J‚éðSx¶¦yvÁÁ^úqº–K>Å–¹¢S@g%®º ƒBГåë<¾Zr«b´†î´ £š™Š’“sAµD8¥·˜äøÃ”bvk ?pI”€Äµ/»y#°ä™å@Îé¥ûª–b= êAwO¤ª@”çAš«{õJµ?‚ìG±BÌd jwz>çöNhúÊMr¡ Cp¶¿Aâó(BG$Ìñ–˜„^½›ØÔ)‰ûEÒÇ 2 sŽò‡]s‘öš¤¾g>¸×jÉžR&Ù ©ã)H#/P•!É9¿ÍrgŠšþ:Ó¥4•Á‡¿0Œ2F&Ǧj ÓêÏ‚ÊÖi ©Þ}ÒæÝmä°µè7ñHlÜVj¶„ WƒBâiå 2KÄ’9U/¬0l‘i©¨ãB'O£Ì†ù€9þô#[çc~ÊÈ(R°Ûí¸ƒ–£…óç¶Œ.dÿ½€Ó‘©0°ñqÉsAÌ\H±Òñ9ÄJ+Â0 ×ó?»õœL¢Dá—žDÈ> {ÑýàÕÈRˆ¡ËJÉnGBðOü»Z™“V§sÖ©s'…–­êÅ<ËjÖ¦ÎW|{Ù@kv¸šì©ë‡d¶‰±íØ–ç¢éX  zâŠ$YÉŒ„ýúdP3›’QÖ„Ã[-â91!88.Æ{GÄÑñ=‹$q©ë2)|C‰A›W&ѬóÔTuЬˆ…´±ò’}a˜3gkÕA»áJQû#S2å5‰³ë­@µVYÏEñüÿ„¿ÕäI]Ñò3ÁVs„g-Y¯@øhEt0îïÇ`íy½ ª˜¬žÐµÉ^dÚvÃ丈b#_dinÅãçÑÔ}©2 mx5¿Õå­‡s„øÁÖ‚ÊšG½„Aª05Ö UYj®Aà×óMBgkôPt¥o<øÚ…ñºBÂt>ñ–Vãwšm}ehòsœ^dX“Á(GmoMýezá‚~^Àæ\}ãi§¼nÙÏœ%’ƶc¾9ª¥Ðœ•f/冇õé.Gvž#Úð|h ÒòÖ{Ùr*PÝG[ä áL¤ÏõNëâ5fÐkIÍ¥áÌ~$á\¿×g ·“‚õëÆ3Y~΀ƒ¡ò郈ìDebÙjÙÊ/² C›ë“p.kâ"•ZŠ™Á1!V{jE›–ä™ËœŸá$6=îš ‹"36®FK)áË¢л±»®&T˱U:ÔrlZGi]UË&l”`„¢àð—(¬ŽR=ño)¸þÙóÊÑSëÚWÖÒšU„Äû‰¯àü‰¿í¡‘ÆŠ¿hãŸÿ Ï€Âhø3Ü^£e3Ôéqo’\ö›Þ¹¯Eì¦<ÝnüÓ—ÓTœ+ãƒ:c†RŒ! _faÔ²Úí–Š2Ìa–ê&CJFî­ ^kÿ¾=‡¬»ÀÔhi¡¹h{`1¦ÅôÂ?7ú̲çÕÂ2"ISÙCl g(¹iÌäGø&ǿȨ PÓ'™¬´>×:ú÷ÝîJвÒHf \£Ÿ”¤óˆÄ—ö\¬×$AȘÃ7”‘ž‡:ÍæÆî§V­ýÊ»>#â›"Qš:™OÓùhR%‡±û)ûÆñåvþG üjD¥lƒ—#¾šß¨p"$º9]²B*ÔðMã(úÉÍnXÙëO›–R¤AÍAŽzP¸~zºÇÙ¥: 'Ð͉7ó–GÏZ—c‰Öxâ^ÃïÉÌØöë”<=‘Uó)…jñ"øÝÇ«¸âòÇ:OüùÄÆ1·£'ü,·÷¶¿_ÛÏ<žø¿ ïšÞƒŒ¶ÓÂÒ?™Ó­_¥‰ë²Ò}4òù€|Éïõ³n'•'òèËÝ_IÊ×”ösx#|—fP‹ï~z~÷_hÍZ endstream endobj 33 0 obj << /Length 1114 /Filter /FlateDecode >> stream xÚVKoÛ8¾ûWè°)¨‘))ÀH‘è¢AZÔ·nŠ-ÇFl)õ£iþ}ç%ZŠí¤0hRœáÌ7ÎP)üTPæIîŠÀ”i’fY0Y~Ž’Òi“CoI$%ÇdãüÓJWíè+ü:R,"ãžÌãÑùu”(ÎãY µN”½®H”΃ñ4ø^G*\À¸ß­á¿ŽbcL¨/¢8ËLx [¿"]„õšVÀZÃßsµ3œu¸…­yÍëM»„¯)r­ygZ!½J¢ãÿίíŠUš% J ­Ñû(¶Ú„8µƒ±’Q‘H>Ãø?µ)LÈÒ •„žY€¬P]`­A‹Iʬ`áhÑ£°6b:Î÷Q¬l®ÂoGE>ðÆ @µà Uªð‹ì!ïXбüX§¥õôFd-A–s¹È`ý$ñ¦V%¥µ ö3.`) ‰Šærx"‚/ƒa{|—°V0Ù¿ï¢ÇsEçbíT tò|Ù#«nz¾KdOާ¢‘Ù˜uóf5,ë”U&ÂÜɉ®aä/,r§-Ò'´+‰ì–|•ôK¢¿7ìÛ¡è¼°%!vñ¢+2à$`óJjI½…O3qMú0]¸´Âþð¡/Säóɱ¹3‡èï§‚í%ŸxÌíU»7T»Óª\øéɘå.°y’i{xÑò×-Dë~’3³x+)¤VÝRjq‚êÔ>¸Î‹ˆ•˓Ԛaí’¸앯ûžTQ´ëU¶Ÿò]¿]3ÿ‰^+f«/­©`“6ò]‚÷ƒ1ªÎ”aг¤, "kð«.¡’j zÀýÜgf¨r²ÏHWábÃïªÁ’WOy»þMýY´zU7س¶ÌñéSé™a4ÿò¦*R^´wè7é‚Ö†ÔÓPWÛOéânׂ«š ð9ÝT]½'ñG`ßë'ʤ]K,ꕳüi¯K™< ·-Ïäê(%œ^¡Iw]ý<@ˆ¨cÃ|ëåS"yñï\rôq83Þw8‡¶4HÝlÈ*:÷)g¬ž÷¡¼Í”Á2#õÄ%ß) NÏ嬗æTç¨6(ÄRÎW^SlÅ}õXöä£Ä}IC>©åH-\Ë zr 757¤‘Ï`Þ_^ú¼Ëˆ³ñ\VS½“ Ð‡—Žgº9>rÞfµ“¬ö) 3Êç4ïÞx䢈‹`¢ç b»dÛ·è.,_â"Ã,ɺ”)û¸U¼XvÀ›ñÌ·ä’J Mûrž¾Òwu,{V ©áȸîjyÈï96 ÀG^ÇÚ*qß/|p6¼Íò¤¸ä¾ºþZH<;X³ÿ» ƉÊ,¾ ì–Ç™à4ÖÛ9Í(Ø[¦ãõBgèÔ&†AlUârÃ.É4ú8ý²çÈ1 endstream endobj 30 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/tests-solder1b.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 34 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 35 0 R>> /ExtGState << >>/ColorSpace << /sRGB 36 0 R >>>> /Length 1004 /Filter /FlateDecode >> stream xœ­WKSG¾ï¯è£tðxºç} ÆvI©Êʲ F£¤Rù÷éyí AÁ»Elñ©ûëéí×ô"œÂ |>ðßëýoïàÍjBJ ýsõægþÕøk8ÿ®„þ»0*ÀÙ ‚PŒ*À2"í…—p «‹µ05i0ºQšQ“¢R"ØQ\`'w$H7y†MNì©¡Q^`'ÏÎŽòæûѺ„ær 4ûËÝðúqןÓOàããUz&LNx Æt°Þ‚–°¾Þ®“á Ì „6‰©g2Q¡p*Qí\ªc€‰êgRIZ!󫢜ËÕZ¨ü²8Æ)'(?·ƒ&Zx[!yŽ/ç³fó1¬Ê«Tè3ÚükN:A|„ð>:z¾x·#aqqùÇÝÃ~ù Ö'“ÞØ Ëq&Ae;ÛÍÅvK@6öçö÷ÍÜ}†ý·ëûfôÅ}깬C%(‡"` ×úcqA©!¢Mˆ>Wq…£œ”ZŽò G¹’(Ð¶Ó lòÞæÝ(aâœÎ\¦Ä-~¹ßì®w_•è!:òH`fã¯în¯6SéD2UøH?»Ø›Læzv¡‘Ï¿.AÇ¢»ZsÁÿ÷÷ýæ`í2§,>ò¥™Ûmnûbƒ¾”Oú¤Ù ø»ç„/lÑ„”Ó©qÜà<×F5g“‰Vh~ e÷YJceþÅ%¢[çò"äKŒóÇs­Š ­ jRïâ$«ÒŒš´«âÎö —ïJ>ˆ»Éç ¯¿^_N.=T.ÞñBUºÒw•]f€ÓÂa ÈÙ!,3ƒMÁ*¾ÀN^£BgᇽÁ÷çr± ¢?¡0“ •0¸,e²šI%+T¸oÙg¸ˆ¾LÿÅÑìs‘7¤œÏ£ñÜ2ruÁ´ L\ó2/;D,Û)ð¥ ìäV Mža'/G…§' ¥ÝcÔ(¸·Á/¯Cg#ãI)÷*a©n Çw£ç¸Åúãéi+\Ž—ÏÃãØÍá±°C˜ûèt†Ï‰ËSEçìt†ËùXn’Êí2ñÅ™+üôà2ø ——WS¨a:5Ý3iðäH}œ©ÄÕ6VT¢ŽÇ–uƒsçtÛ>HRo©.ƒ‹S­‰ 5tì°‚{ ´¹¶«Fƽ†¡ò1S42î4ʹ£ÆS?æ‰X2ìÏAPèÎȸ×àF3‰‚û3¬Pý öøæ½…Œ;Τá”VVÆï?ä4È܇85É•ï5ýßßTÏR9ÚyrŒs·¬›(UÜÆõyS <•õq[é4Lü4+¸×Èœ¦ñÔoµÎ÷ GÃ?e )– endstream endobj 38 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 41 0 obj << /Length 2233 /Filter /FlateDecode >> stream xÚÕkoÛFò{~…Ï) Xîò}h äpM‘ƒÝ°Å!ÉZ¢e"©R|ùÒßÞÇ>ødãÒÞÝ™û˜÷ÌîŒÿ¶xöÍë(»ÂÏãX^,î.òÔO“ì"‰S_†ñÅbuñÖ“þLxr6BFÞU¥&uY¨¿íl¦‘·mÔ7ðVåfö~ño^g¹Ÿ'2tÁÅ\d~˜ ÂôJA†‰×ÔéÛNý)÷°{Í}÷jí¾d(5n6êϪdbjq¥†@4Çc¸/Õ8uв#°k8?ÐüUB_†Að0€-÷Œá³Cpé©ÌÔ–ðv³¹Lô* 0毴{gM \TF*ø³²¼Ô BÔš„´ö¯YÒ¿PtóÄÛÌ@«Öþ:›G2¢2O½;#FÓ2µbC§j+ëšV@¶FñIûšy˜t`™Ç^ÕÑB  {W(êÖn Ð[`K”ÌW|…»a°¢e„xðžNij°¶Ý±òKå] "Ò BÖ¨® ±ã€•2C¯¹Õ$+»Ø³dèêU»AèíŒUàà’±T Pî|òð$v\\¨¡Í¥âFdÄÍ÷³y,Cï•¯é¾ â))-²˜+¦vz{bï+õC'f˜ê÷õûŽ8J…ËQ(Å¥"dæÅÓ±/e®^)<ÉžÀ¢Ç£y©Ð¼W¿—$ü6ĺ1ªQÂÏA´T³žà»¶nŽè‚·aä°µÀpµ¡?à-ó,ôã(R>úy”ÃÇ þ¿«ad‡‰¦4¼²WàªÙaNÃ_í±_qLUš vê„<®£ú™Ž+åÚI’¢÷ŒgIÉPáÉ=PUL8ÿØ!ð uÄ}]ÆT¬Æ àÏej>ÅÕõ#Ô&-¦?nøTµýiLõÕÆ^{óÿêmÿµ9Ùè{›6õ!hé[5œÓB}Û¿I>ðÝaõ}Τ¯Oe¢ï¸;g2èªfìÌá ˆ$õ3u¡ôÜgÅÐúîøîÄ­È7løšéx{Gq›•5!ÆÑ4NüDÈ3W_ø¨ ô±HFW–Œb?LӾﲗ|žôŽÏŽêJ–”…ﻕÑÜo»‰w¬ÿ+zãªx¯&PÖù%Ó,œGTÃV«x°\º"“²îœc5£b©>÷¥Y1ÔÚ¶c’šÐ\Qê=ï¹ÆÆQXw—óºil¤|r kÇ÷6v,õÚ.é÷áªÿF$eÀÛŠ3Dvö9€2í89lyÞ1ZU_D©ˆ{n±'–N*„åVxUÐÈ@=ÕY'29F2½0Bá‡2=3.¨JÆ€<•ô Et25‰8…ä …(¥I¡!>ª•ɬ߲” )fSu=àPö9 M†œ»±ä5l>>*Æõ/dúXÆýê`Á5HHog=[¦%2ìÞSÙŠc¬;ªv¨V»¦ªãLšN Wß °Õà J,­à/5S@dš/eqEÉ|aB½&€-B¯µá ¾Äå’ÊGÌ@"ìξ×6¹‰HùuÔ×ò§YœxXAtA–æºæÃ±[À©©ÖÝúž”§3+%LXJŠÚAÙZ¦¬ÞÛ}NïMi ³]Ë.F•¡Ž&fÍa1ú`al +mâ°á®€B[9|Ñ; ”—&wš[Ô:ô$P_{žÜSBMR«±Žmfž1³«-`Cë%æ%.*yÒ8õþY; Ía vø˜Kjãe‘>qKôl7¨$þ×›­ÓþÁ»0.ËËÕN†!-‘³W7>õC¯“^bN%±ñ‡ª£9öÛM­ß·ÜACÐbד°h…nl9ØùDW.ÝÇY=ÁJiÿq¯w5ç¶6]CÝRôõüSîó@g9Ø&Ô‚bqwr˜ˆ8F gt+’o~Xs$©“2Áe÷ç“ ¾Ð¢$ÂÇÕ=Õž øž¸0Ôû¹E·¢a 6Å<ä¤ÂLÄšm ou’vˆ3f¬0¾iLÍÒš²gô*[þ± •—«:«m3c¶ÂT%$¥hR>Ž+wÕz¿ªm~p²6pë9¶¿Õ”ºÕ…N¤‘q™"cu[g¦RÑ/ÙŠcåÁy@–ã7PùišèÃhµ½ñKÅ„¾V?†W±Îo³ O±y¨RÊs?ó¾V‘˪µÙˆZô8@šwçºC?ÞÚåï°“_ »±fû©‡°tyz=$¸FH§ë!è• [Frý)¹ÒР#Ò¡]Ç2-0DNÔ=š“lªî9ÆIHŸÛÖ@ÀàÐ éÚH×G9ÿ÷ÓJ´‰R+s0·ò·ºJLøPd¹Åo>£"3u$Jϱše~ 2gšl¶5²œ*h:ÎÊ\=ƒ|™÷‚ƒïù‰À|ný¼áðÐáÞÚÆ„skèé=Š`Ú:q£…íqº:Öˆà0o¶Ü¼ÓÊ[Ùt¡óÃÿŸ¯9¬bn~‹ÙÆæ¶-ÿ.ùVÜy$¤ ‚òË<“CWöš)lÇK_³ºÉ5Ñ7®®ùìÒŸÒ°sî.—rå€/§z|æä€î8ŠÅ˜R8‘"{¸Gêìߨ- tûØP…/99hŒý÷ŒÈb? Uè…¡Ɉˆàžý°xö;pÒ[ endstream endobj 45 0 obj << /Length 1978 /Filter /FlateDecode >> stream xÚÍY[oÛ6~ï¯ðú$o±*‘¢.ØV  ò«ßÖ=(²³-ϲ›æ¥¿}çFвå¤Y3`Š(^Îß9üè¼™¾xu•šQ©JGÓù(ÎLÇù(5Y¨´Mg£?5ž¥ƒã8h¹'q”d>Qã?§¿Œ&°OÙ4Õäç¾`–Õ^ l6-™=€èßkÜýzçys SØû†ßhÖíA& ©)Àöß™ Cê5#òz޽€‘;FA§®8}°ÝÌŶ·63ʷγNqéìƒéô!B;µ+ë"Jj¿‡Î,9Î?~V ïl€\ÍŠ%·ð»Ù±>gH\•ÙAÚVø®pŒP²¹­¹Ë…Ú’%”mø}sèô,Ê– PXÛÔ«ö|ÕRKaÝ©ø²ò2À;PŽP=ÀW^3ë™ËZ”! ðhN¸¹fõ!2‘ó/Y°íØàg~½•ÞZ\p0äáïøu-ee} Ï;éÃ:7%ˆ[IþJ;k#:VBkW…Fºf664Œ;Ÿfaáèí|+á½Sj‰Á,PîK#ßt“^BóRHäKŽRl_”òCŠ%îv™·Çý´ì¸=èo˜‹Àghžß7m+ÚŠû+OÑRÆ6ä!»ô8›÷\ÈÏ×ÚgѾó§g¨%§·ž»­¦|…&T€ìXCr ²À!]g¶¢m-ßö™Õ5½ ïÙšªG¨âàïÎH¬]Qa¨ëœ„ÔY§ãP+Ýɯ¢WÉ…#ê_O4g¢Ž“S*6ÞMì5ÆŠ”‹wÛ+LÚ,i7<°k×GªS Í•xß©·sÓÓ¥C*“†IZH…ÊXšÏäU–mãÒ{‡=p.Ð_Ê0§0µ½U• ´AÂ{{¬äöœó¢ª²‚JqÔ’ÏÌ£RåE@×Y'ÇžVŸVu¹ñ÷¸"ÚÛlVr€ÃGÉÚ7k˳©MHWç‘%ÊØtyËl ø¤jE›N2¨WI”ÓášDªÃœÂˆ):—-ÐW÷<•/…[rBÀl~bR]Û$^ûç?®•ˆã|wža¿»åáÈ;)©×ü ÉT.’u·ÜÃØ&&UZÒQYBÇÆ2¡Ã¶Æ$—3{9ñè¥t<²»3•窎°®[Á±-?¯® ê°B…@õ о X1äÁ"•×ËVªÇ’x0óª¦ý •èFê<¶ yD…˜Ú¡øC¡„a[¤tùh¯·06wž5»–», QTwWâç² Bއ ÿ®ì4ØAvõ | dû¿`à„µ­¤­ãE—ÙzÕw°Åí‚bºîD‰ ``×Ýö®þ„†údw_2ådr÷ÁYÄåû|aóƒwÔÚþN iÏÀË_Ý/`Ø#lˆ²ÅÐTx[À·9ËÙôÊÙ¾âl>'{?H¼†XÛ³s»Ê‘>?ÁÒ}‚uÌ]/úªZÇ!™meºýMòÎcõÿ‰8e]•ñ¶ùQ²ñÓÉñ–a²t´‘—BWB¢¬>~ˆV0gŠ~­fM©Ò S¼’¬Š!CÅtgŒÂ$‰û;s)5Ý'HYßì.Κ£…1þF×ê’&Y!m²˜Ûð¸Òç-ðÛg4'¢9eNgƒa9›êÿ þÅtñ#!Hž²AF¬çY'¶¥Nþe>ÿ¶¥§´ôóÔólX‰•f}D«³;â“x ÏL¢=Ñeõ`|£^6¹ø*‘þÔ½×g]úxë!¾Zjr60±¸«ûQÞ=êÑ]ªGõÉôIajB ˆÒY˜ØÚ¥8ëÅOÓÿu2=< endstream endobj 48 0 obj << /Length 2936 /Filter /FlateDecode >> stream xÚÍËnäÆñ¾_!øŽ#qÙ|3ÈÐÙØAÖkxu5Ãâ29cE>øÛSÏî&‡²÷˜Ãˆìîê®êzWQïïÞ¼ýP^Ua•ÇùÕÝþʘ8,L|•gE'ÙÕÝîê_ÁÝÃÆÍæ&‰M𴹉‹`x‚™sêüiá7ô0° v8»õ–M0!Hìq<2xSo7q<ðèc=ÁÚ#p[¿…?ˆç¼s4Ô]‡/Q°Ž æ^pôõ¶aÏ»>m˜úñj~lå‚pØOjW½eÖÆaa¤{¯Ö!Nf§Æ†î8%ñQ2@–Ýðdƒ]9B Ö5ñ‚(8PnnÕìj˜µYó",Yg—æyr 1pZB_¥Ï­•ÁÄ~Ú‚ãVÃ]dè$ÍX ø3z“(ú$2ZgÆÆVÌ2þ’'yäÝwàÉ7 ,‡´¨a°$%N\; <ߨ°~T7*€h*g¹ƒÆ˜ÈÌœAd.å6ùWSâjvq æî™¨ª?`ÿÖ»àÞ²PQ0ᤞµ*é\’änéÈãÖ›·¤ NI ¡¬äš§1™Ñ\©`ÓIe×hQÌÔ|'_Øëšàík. ¶à0µw.ÅW‘¤`Ó¯³ELœ'FY;çy¤õÇÈ$²¯XÈÕê c]~Á çÑ9{V}Rñœø¬y¼÷fÂnŠžÍÜÛ­6ZÆå,…«“Lðõ§‹š†AžjÕàIèÖ˜…®€Ïê34-Ys_–ûÉ+§µÑréý|«nÙhݹ=œ1Î3)2mF4 5õ½ÆQp-~‹G¦˜z©3 26ä_-*€¡ª)·UK æ'Õñ§‰'°æ¸wcw¿£Êƒ&¨°âÈæ  X)b=eRù5­¥­j"£/‚`…Ql7"ã©`˜ߨæP§°ó#"ŸÕ!v<&ÎÔyÂ{©¨0“i ™q^„¥‰ç!ÓJ˜Ä¹0²ŸSm/ÅòS¥m1 3;"öA–dŽêéq¦î0s$#š0Q¥±¤v ÙZ±LÉõ±Vƒ"£ìf¥hø 6$´61i´cP’,0®Øœ\aéÈ! kTËJö#¡ÛŠÈ`VýQVZ­·¡žØn2HmÛ—UM®âq…&³Ê´•j÷ïÉsR¶·aÔ@fOÓf%9Ë¢Èô(º õºs¹KoÜ0KÀU§ŽdJy{-ÖjMsp©¾|w+j Ø«dY#Ò¼b‹ '+9/µZ õí`ƒ-Sod–H>’e‰ã3ì³Ý¯I³JF·çgÍ#Éyæ"`VLììN›ˆû¨õB÷ŒYAî{†|ç‰ÆÙV¾0÷¼R_QP§ñšŽëaǹÊçipžk§÷:ñÖ–`Z ßÝ¥õ§€íÔ‘¯ võ«xü²´%„¶sGÊ—¡ÓE–¿h`=Š•¸@ì_•–PáG*ºUEeá 4…Õ1MÂ<‰W4C/F[D¥×Ä»Hë©Ã­»w‚gb5'çÝFVÜáècø"06ó6V÷r]<쮩ï[]À%.çf™Wá©ÊÜÑÎ| Lh80¾…™Ø„E”ªÝüóÒ®ª0Jr¯OÊܹR8–¤F%Сç›åRcò¿L"÷æŠyACõÿèl ëlWÈY®ÀÆ­¯#ܨ.lÈâßÌšˆI°‘_¢Ó’RnÄõ"fr!‘mõ÷õˆ F^H#~{Ñ`¯™—Öæ¥××j%ô¾ðÂÞo)ÓÌ—h>Âq@*¸:ãj'/d{²Ù§áâÓ5s€ó\ó8éìnкWMÔ½›­êð¨þH+ŠNZÉ­$Á 7¬}>,Ê…xâté‰-¤TÁ@\ÈJ‘–X9$i£ZD(I×èM6@cœq£·çv„rô®ä26о©¥Z¤ÔˆM Ðhºuå,`YeT2–ÏZSÆ`æY©Økwî#ÁpR'!µç.6-(ç g£ÔÙç„øJBd±”¼~¦~‰Ë{™ÂkáÙb옮¹'I¹†Vò¢‰,ÇH²|ÕÕ»>È*ÇaôH!‹8S/£[ ËN·ŸI— qHéóàT¼›¥TïTi†Xz­½²I‚ïÉ£<ø–¶q%C'ŸSàýè÷LxêY[ìðîÊþ²°– ¯[›ÕîQN#»–½”×ú±íì¾½š¸ T2%ñòãÀëMɵoÞFJ‹l±f»jÛ‹¯-6ºùßÄwqo§!é¾ùÛ EeÄ(þ‚uL]Ö4ýgx½q´ù¤@±j*_'†ü•Ÿd¶ÑLÂ).ÍbëÒÀ©?òã{YÁÛÜ‘0ô<ê³ÔNŠWØpÍËË–ïÕú”vQ†I”ÏE¾—ÝGuõBÎ;!ið¤6yŸNµb»ºY;UX™ v_ÆVËöÃJmx=cýœ©võõn-¿ãÇW^·—¾ò/­^C×m'G0ßp&“VîѺþ7“0/u¯²0Æt> «Tv¡0&“ï,Gv4Ö-ͤɌ‰rÙ­Vö2ý“£mïôo5 ¼•ëÈGO„½×H¦þœ§uо¸Â/zwˆ£* ¾ƒ÷[ÞvñJ}7H|RsI ÆÎ(-,.LäÊKôýÊmò9 Þûʆ÷+H+B¼Š4^ ,ï)¡¬,×ÏHì Û0ϨCñeÚ÷`L£‡õÉó“Ì[ãú 1æ±ø¿¢2 Ó¤‚Ô*?3 „{ó×»7ÿü±–Õ endstream endobj 52 0 obj << /Length 3047 /Filter /FlateDecode >> stream xÚíÙn#ÇñÝ_A0–J–ãéc®$ °²‚¬m`#pœÀ³äP"ÄËiwõ’oO==ds%¯ó ”ú¬ª®»zúëë/¾z]“&kJ[N®—cmÖ?)‹*³®˜\/&ÿ˜¾¹4Ó~=üî.g&÷Õtí ýf¦¨xî~‹Ë™3ÞQ»»ÔñYaÝtÍ[ø­dø^@sÉÍï¡y¸üçõ_'ùdfLÖBÁ+˜0ðËàWÚ/yo.]üßð0rD¼Í›bú-´_ñ¶“&b7yæ½9%Á j+¸ª1j¤È gŽP ³"¤º× Ù&µ÷ëw!ü)îŠàÄûËa¿°É‹ ,aA0â«×u¤À¶¬ôþ›,ÏÝ ]»>û†ôဠ‘ðüž{0[Oß_Å´]ÃÈŽö¼g íÝÛ÷¢w·—¶ž>l.m5}B+I—dénÉÿI¢ˆjOâ¥1ßãØö†O1Ònëß{èˆóQö#ü+øý¬ç•Á¹“>Ž¿8ePm²ª.0À2©ÊZWí#TkbF(ø­ÉÄNЕyÖä^µ ?ó¹Í¼9Ò]âÈf%ð`ùÌ6%áÙa³B‰0^ZØÞ‹pÕ’ÊvØrÛqA­¶¤ȸ Ü#¬;Ù¹AL³[ d”n+hHp¤<ÙåÌ;þ€X´)†‡JÀ¢<îEGhè絬Eâî^ð࣌ukávÏ'oSöÆàvûåa'Ô·Ýïo‡gmo:'’@Ù#UÆnL ³JÜçÑév–3/Ò˜ªq*é¿_ΪzúSnü©N˜"3MPAä¢)¦×HÈÏqsËä«äu"Ò¸5YQ¶&!¶kîý”9ÍÁi Í[<ÊK„ã§íR=½œ¬]¯‡YœkïˆU<{;¨ªi|VUWµAPäTò\„Ü`Xþ(:ª1LœV ÄÁRV*Zk~Ã丼9Øx*°?õb;™ú=ÞnƒG+Å£uâ~"²†¦ÕiÑèfw*db‰¼Xs„Ä]b‘¸Œé’S´‚ʰH¨í[µÈ9âªÌ輕eãC¡·Š.Üa?Ÿ.Q[¶êˆHëqYpÖÚ&¶Ó8Þ뢎í¿ï#{EÜ+a’ Ü݈f¡€P:uœ cN¿á6ùûÓÓº;ñi¸&-½¯º_$‘ 2/I R€íF7ï-‘0^ÀøAXpb9ÊùˆËOB`PN0ÕªòÓ·ªŠs¡ û¸GÈ ÿ¯w ïƳIžz ÐÈÜBpùxê Š¬lBÌ@Üúct‹ŽµÒoÅû#Õ1GnpÁnÓÝË99^‘)»€;fñ`Êpr"š wäC» wÙš±}'N·K¹CÈ?ìøž:$*VI:ÈZ˜æJÐ{<Rø ‹µ«à|ã# ÃC ¤DQ{ßIºKÀ4„ z»˜®Cpâþ}7l„ ŒŽ¸¢iˬnê1›oºéêX, ™A‡Ï%mÊS&¢'-‘_ ™ìCŒò5s&b+0•åô`tz†@äÓžãÄ5é¾Ó9^y ÃsŠnÁUöäí90¬^ÈÕåpLuwtt ‡¸ìɿ㱗#÷Ø ƒN@@”ô¼éxØ<—µ§€ ºøêpƒ«6ݘhÚ\, Ú1k¤ùè°ºÕ í ¥Ësü{Ë#ku2²z¾9·‡—)HyÒC´ú@w}¤Âöt€b[Ï£·QjÄ#áHÐV­ï‰]adY× ^02$ýÝV0~ú+ѦÙ/{õ5t""ó.Î`iÎB¬Ð¥IÙ–RpZ*˜`eÆ-FQgI5l¹™q>• âòàιé S&zÁ[™Nµ /%!‡ÈÒÔæ%ƒ]I½ÐeÃXˆ¥Î‰ú÷—âÃç`¼Òã«ó€eÍ;5¸9AN<ŒÏïÇìøŽ ´$B.‰¼ÁýØ`b‰+Ô„Ê(Y#Fá$…Ûr¤tØ=É×píQ&w2¥ë)˜AŸ÷2ÄÎ@*ßl…Ø·zÔ–#3Xq î.ŽÕ§eÞ,Şڟ씤áG®Á¿„æïà÷%wßiv@½«áþd'ÚñæZCŒ÷€ @=-*(è+WÄîsA·Aö>ÉPæ[i„\; ¶ØYÑ ‹w>÷¬aHõ¾gÇRÔ3¬Þ00“H%&’WeƲLÜXø¼†zè(V~X…Ê#Ü;Ÿ!…€§ºHU©Á®DWƒj³^¡‚&´ø;ŸÄ½?s%q#_ T R`ü š³aÅZ¾ K1ÒGU·|¦Ã•ÿæßEß¶QqwÃÓ¿çG_py†¯ˆ[)¡¯G_òâÍo£¢i¾TP¶­Ÿ[M¸å`v ²·‚ “—c/e÷Fΰr®¢ˆá¶<ú Heé ªðý1"±—z§" {’ÃaåøK=}!ÛZÙr {Òá¬ç¿dÆõëÅ3>­^>{üVꎿËñŽPAE¬YEЮX³«Qö)æP1¾Hè>„ø(Åõâ”!umž€f›8ªën’®(³¬ÊèêäŒØÒ4ñc zÓ=¶ð•)Ž[Ð;O¿¶ 0Ãs g2g˜ý·£wµ¼(Óo.j™ªÂC„™+ËJÝÄûÁømX_kdÑ ‡àXƒ…Ž|ŒâI8¹7²ÕE¯!ùÕé÷!Žž’pÿ<­NIæç¥üÇg“ûvXkŽÈâ÷#gžv0ÅED±=G±‘…ÕÇó)F=µu3ÎWžð×Ê¥:âRžÌ<2dHÎÇÿÝàç»A†”bÝÅ(ü¸2+ðyÏÿŒS²‘Ù ªž4t3ú=Ç)½‘úo9%5Ç> stream xÚµkÛÆñ»Å¡i 9Ñ\’ËG›pH·@pý”äO¯“-‰ª(ù|íŸï<÷!ò\§H?PÜÇììÌìgmòN9”©^T ñuFP&6ã7ºÚ·Y¢ðN<ñ4‹[ž4¿vNÈäN™Ëlò#¾ªÈ½`_Ô›]‡ üBÕ¤ynÕ/¬…Õ…H¬SFÆ¥hSÛTºUMlšUb`r:~ÙìLÇI=Ê N ‘—Å’;¼õض¢°°œµquòËð²UÂMÕ í[ Ì©èR8jÉ“™ œ¥QOV1‡GÚõ˜IlÍK¶lS°-Ð 6ˆÄ¦>Š„wcé–eÚ¸S¡­Éä>‰mV)z$ëÞdt"÷J„>1GÝVT}XM0 cÃY€—²˜Ü2ˆ!{ÞjOmPv„€ÐÊ ÛQPTÑMI¾m™æ¦u Ýu(¥=ꌭ9Tì‘ÜèÐo(ÓÛ9µ$HwÞ²ê,g]òÂ{aþ°¢5„hM•|¢…•Û½I.ˆ]wWOAº${t*ܯßKÀ?7¨ŠÁ _ ªÃ]?’ÞNXõÈÇ–Ö»wlÃ\ÙN¯þOƒ¤@W·–À—§½ä-8B* .Û–É{”ÜBäŠsî°…wÛúéž9éÀñäâ8šÝe!‡D®©FéDh]à¹bo2!èÀ²Üaò‚}ñŠFCl£T®Mk9äÓÌâ¦6g%«D,HÿÙk¹¦6#WÞµ"T³Q (£ˆò$þñâc!) €ƒXÑæ±Àß`¢¼Ð07°[ÃsGÊò+/ &“‹5˜8Ù°ùD²aÍD²?g< T&ùá5t Ãz[d { ©Gèô¤É½dÕ¼”ÇØ}~Ý¥¥v©Áˆ6Ùø¬Á%6ðKF<¡¦W¾Miæpö„[Pž±g3µY“¼"œ%¯ í¹s n¹Y-¹z`CÆQ—ÿ Q†$ØnRѱ ìšFüP·r¼ókY@¥œsÂéƒs Ðé¾d¥ûP>l‰>0wrAqÈÔT—Üòq=>lIk¹VÂ5\@ÐCý{ÎÖ¹#õLRîIÞ¹?hDÙ0)CF%$ù²O<¼÷NŒøÇ8ÜæÀwÔ£7r͸Iä»Xv:–S‰Áq gBöœÊóï)Ytkâ`?YR,5ÛïÏ+‰èƒÄ‰qq‚Š‹ëH7YrËîO¼\«4j‡B.¤èõÞÔ»–œká=“¢y4OÙ3áîÙѨ#Ë2fè–Ÿ¹T4kv¥ËàÌp2ªMiDÔ›´cG¶qzŠ^£ØDx4®…_6êCv‹­Víä}ÎÜQµåì.¦­ È[©Æ¸2°ÓJƒ‘qàrœhÎ RšÖA¶$Ïò$ÊFç,ª@Êzè$8­IžQTÆaªD.ÙÒÂBÜ#މ8ïf%ÖPY©LPƒË׳¤ŒT¾^t?uHNA Hwr×ê¹&ÇØi ‚T~ÎLAõÓ@.bÂ4†©,ýCYDÚŒs¢{*ÁåäpÅ“JÜ£ôbÒ¹Ä6«A/²"<Ù•¯  1WÂ|¬®œôTœ½¤¥J‰Rˆ„3(½‚:³×7¢ežÞí³n¢gsážršTR;)¶¸úbí‘jS† ïIË€XLå€m_hT¢™$Ùìin¹jòsRõ-NŽ£0²Á -ÙÎûvÚ7Lв:Ê÷²:íTOõ–âfk¢¡Ÿ IÏ»¯·.'½5´I/æ™Ç'¢ÛEË>+öx4à\Ž <™ôd\ÛÒ›w[Ë4[»š Çèl¹0ÙØò¾;­Ÿ-w¡ ‡ˆ\´êNrOz>‡ç]ØE³IŠÈÅèæq¸¥‡8ŽbÄÛ©ªbŽKrd¿êýIç`žÚ¸›Í…úGçÅäŠ e(;Ä™::5…mä¢|ì£òý9Eq¾³”Ë´Œ H I‰Ä(§†ÑáA“•ÇÁ#x`¾h½³Ah£Ï¡yN½E!ÎïEE|Z[Ö.U6èúV~Wµ2î gNõò“dW\ø4£eD|Eܳ ß¹˜£z@•Ý)¡ˆå¢‘# ™—¹èÑŠî|xÉG5‘_O”‚ý¼›`ÛPA{9úl¦´©ü# nŸ¼H©ùìvÌ£»M'n• 4¡5—7‰æ[H óâ3—w&ùýÌóþ 4ç_¶òƒŒåéxÙ×_¶z'c{¹³¦»É©p$|tä´Ùvò­ ÕNŠöTþ7B„·‹¬.áiýŒ»UÜ­ãnw Ql’Œ±—ƒÔEš56æVÅr/”í$…þ³p"äý+8çÒne\¶Åf€TÓ uROƒ4H3 Ò È×2%|Ò‹ŒwŠ×@C7âfz9ÇãoqÂá¼ÐªEo'`j„ê•ÿwÌÁád~4•³ ºõxèJYBá©®4Ejɯî ÜíµÞÒ #©f<ð<ºÃ £.ÝÁó#<ÿ€çßþW¨ß7 ^iƒ½Ò);­vV@Úi,ß^Mt*’Iìõ.üåï•N=ä×¾Ðwät¥;ƒt?yèØw9™öxÓ/2Ü×$Ѻòÿ2@ŽíoþŒª>§´UÜWÃ*¤Ÿ_õuÞ>gt!²æ ‘•WÄTã/æøQINë´F$ù·^ƒ9]Ôµ¿Ý+ê*øš¡ÖDÿåZ¯Ó»ÌD7F§àëšuŸ5ÔþR»n¤þÓúê€/Š+úþ¡Ira—ë?bÃE¿Â¨¢á3PK¹ ›ýÛ¶Ï—DT¬ˆDUY¹¡~àPUá†|›E“OÒv••í Ñf<â¥1‚¸Jþ-¯¢‹ ‘VE²ÓÄZ†8VàeNɃŒ¹p¨~æD{ðv„R©"ô/où‚…•g6›yÂjYV$Æoî^ü"ר endstream endobj 60 0 obj << /Length 211 /Filter /FlateDecode >> stream xÚMŽË Â0E÷ùŠY&‹ÄN^M\Š ºº¥¶UP‹ÏïwšTaœ;s„‚!–ªô´÷Ê•š+»3½66-üIÂél³ÍÕÀr`;ŠŸ$'Kù繨Øl Žvª0Då<‚¶VyGè{¾ÈÏ”ýûAµÒÃÍ\Hk ‰ÁòÄ“ ù%­ž„ü•I#tÉODëó-“pž×Bï–Ê3[Ö¿ž[7Ê”·†Êküa˜Î‡.÷ºo•8T[@DU S:bþ‹Qd«Š}bÝKW endstream endobj 54 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/tests-data.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 61 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 62 0 R>> /ExtGState << >>/ColorSpace << /sRGB 63 0 R >>>> /Length 1125 /Filter /FlateDecode >> stream xœ­VËndE Ý÷Wx™,0e×{ÉD)b -±Í )J†,ø}Ž]u»nP1‹éɹ.Wùí#tCB÷ôùð#}¦Ø9–í·)‡Fš2×BÞÑÏôÇáë§Ÿ¾{GW·‡À!ÚÿÞ^ý€¯5Ó_‡)Я¡ü»?ˆ ÷‡9 ¥Æ©Ðã¡N™Þ ôp(•c£X2PM•²pH@MX eµ[€k Ü"PÏ,‘rbi@p¨RÎvµÁÎA(n.•Ì=Q†jPÕ¾ÃE´sS*ÂÅÇbΔÈÑ¥)réT2×…¥%Rñ3+çB¥q6£¤$Îj˜ºU8%ªÊ꺵q¬T7›[æ(TË”vËdgüæÞíX œ+ †Â¢„Ô´nP†BvCrعwj•»ÖÂ=RÜì*‘[¥ž,&€ ß…zåÔV®‰$ ØŽSBBÑR Œ’…Ôƒ©æl&‘d®8ػŠ6¦H¢y„W›W•DÎëÅ2oaÎv ‘ï'µH£j¤7®Õqe’ì Vø÷Í,s'ââ{a–tLjìE˜›ë'ü÷QLnoDuUØ‹rJÉ1‚½((õóH5 U«(¿é+¸ÍûjçœHQSã¾-PŠ*rS–Ahu\Y;Ú a±2¾µ†ûý4ºõ‘æƒ>Ðí?Ä%.¤³ú7ñ—|ÔáI>áI>ëa“oð$ŸùØä<ÉŸ™»¬?Éßgp>=½œ§O˜E×H/£Æóûøqˆ¹‚ÆPaÇGºÈá’Ž÷‡o~ñkš"Í w©–óUÑy-ìTëÙªŠ ‚r_ªílÕˆ6·J<©öóUQ´hò¥*á¤;2ƒöA<Î<)†p•‘ßçbÏÛ@K*øŒq¹‰'ÜÉñü¨Ž!pÉçs›|÷úÞ±åÎWËGE&|äb˜cñ¥¼¢)Ñǃ©¦·ªvaI£êÞ¨ªX+iVÝó<Ì>9$õ]2»|ƒŠ >EGÜžÃíð9ÿ³±T£-Ÿfç7¿ßídã‚ðŒÅbº×ß_mºocòâ´[ºÿ1-Ñf˜ÒûÀÌïñÄ>ì[:± 4ߢƒ}€øZì»Aû è}±l ¶c`Mû@Iú“sàbkJ]ì£Ö±ç'ûÀÚ—°ØbRûbÈrÙ±˜6˜Ë`¨Âû€©1.öÑû`“}˜é=/ú!ØV²ã"sÍN"RÆu“êÐyܤ b3),bí4Ë !‚íœâb!æ Èކ`í»õ Á-ìhr5ñ !¥Œ°n4¤ÆA6bÛºíhH+V^‹†Àív4nûšž4ÄÝ¸Û;ânÇECÌíV q·ã¢!Óí 1·‡|Ðs{èOÚ7{ÙÑÐE'¢ÿÆŒgyÿx\±¿ñn:a_ð¯êEï–¥7ðXÌ’`[ÐB˜.®/ )¸¸{üåáîò#oÎÚµóžè­`Ó佩oãäð7èLŠˆ endstream endobj 65 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 68 0 obj << /Length 1617 /Filter /FlateDecode >> stream xÚÍXKsÛ6¾çWhì •† ð9mzh¦:tâNºÅ9P-+EE”ê8‡üöb A‘’Yžö »ß>° îoãWoGÉ õÒHFƒñÝ ½8JQ{R…ƒñlðÑÉfCáÌúo«ðüg('º*öB¿—CWÆÎ,×Ã¥þý¬W’©ïan¤Qêdý¢Ç2œ[¡`µJ¢DBý˦FJ¹ªôÿЇHR›]El`\Á|fvTf0Í–°ž8k”  ²Õ¶yC7 ¥s“£l‚µýhüpÊÂZ­€_±f.49C4ŸÆ ü+„—†l+`Un5‘RN6J: æ¦ç¾èáŽAny™í„ã*+x„H2ø{&ã´·£ 8 ÞÒÂeì%1É<ÍH 58Phž¡Uµ£§óùÚKËŠxÙ~5O%‚X½/Qcã0@Ž(›W4QÆZôøÃ{ß6¤C‘ÍòªÑ³d"Ø]¯ ç M?€eHîÈV36†‰>@Pî¶¼ nø¼³öŸ³ ƒBû­…–ÊBõÈÅ'»ïWR¡§ÛÄÄ$?õïÖ}¨&(Œàœç5‰è æ~ÇÛ¦ä.˜úEÝFvÑÈiˆqõ;=*–ö•l·Ïõž1`@ÑA@·>¾þDUcŸaÍ™‘+ƒð<]£ºL.©‹ ^^®º˜é_ÿç¦W3ýë—2ýõ‘qM5Ÿû —«–”Ø ¾í>T|ô0¤!ëýÀ`5p\Å Öx.¯NYù^ ‹âe·¬AÆè»qÖ^ŽÇ2ùÏ´òŸÉ@ïX^ºÒ¿?ÙM0¼á©v¼Ù~>d­ÞeÉ$WLæ#x§6óãfÈY™uÇNù&€fmv<ñÒgž«Øj&J®ˆÛ»§c¨s  Ôºw}ftL”b³½²q͵­uø§u7$+Ö©¬uë¸áYêI†wªŠþÙÚ™åŠ%Ûæ íi%ÂX5Œ‘ &{"š¨YZé¬hß^û0"×>÷²¾Ù“±ˆ¼¿]Æ!‹–Ù7VÒzÒÚdÒš£P¾ ÍVy©þÀB¶ýª ¨›¾©6dŒœš­…ö´â&©c´z\çDs_ó~¢3–ĸlæâ> ½d9 ¤)B¢Ai°‡TaÁ>é¥vWF"m!Œ»Ã„IÂKgiW‰@µÐE]t¢]Ø—t/žpÛðÒþ@”=ðD·Åà^šÈ+5`Á-‹±é(Äø¹ #'ßBo ›#_Ñ"^7¿RÇ !ßúää"Ò๵¨è¹Ã,`¬×‚"³Î°îé-èí{½…‚Ähh[ÚU·9€vNm¥Ä›VŽžm÷8p÷S(;hsAÛ%¨MÍ5 t‘¼®qU¾ß/›Éô¿ô³i$Áø´šßÓ‹X½]ä<4š¯/è B„ØL£B€œëŽ}ˆÀ\n÷[kj Ò×¹/Qh˜PVôNݸºIÖ]fL;3¼ Þòø–€O°ÇXËž“9-Ù=&sijL];0¾´Ú|ÊÇH'äórÓê!öí`0ÃôlrsÑ€L­Þ˜€ISà½îtùõyš¶|‹Z5ÚÔ;–ŽÇoÍzygmcÔ´>¶… ¸ÌAÚc-«÷ŽÓ‡üOø@½³eÝÔ-ÿæ&75×xJKÊÝÒî½–Ü Ìê²Ö±›pŽõá0/$­¢þh]Îö®'G®ªß÷>Oéæ‚)êºÉ¿/UÁØ¡'eû:a55ðþºæœRpŠ5¶šq½²5Þ6hî­lý¥Iàw¼«"@Èñ/Œ ¼Þø^ìÝCF´ÙÎìQýÃ%ߺ}Hk9¦ Z£¶Z5Â"÷¬ºoÕ Ó´,ìþgÍ ç¯zÿP ¾iW Ř$îé…žÖ…T ìzQ´wåëí …çääGòÌk… eÎ$ë3ˆn©Ç4þŸht4@ºø ИIÂþM¹¹d¶Eí5±X$ê"jÚUñáM¾êÞœD{2Iô Jy$EàëÕïãWÿ2‰¾ endstream endobj 71 0 obj << /Length 2225 /Filter /FlateDecode >> stream xÚÍÙŽÛ6ð=_a$/Úf­ˆ¢ i´AEÑ- Ä@Ú>(¶¼vc[Ž-ïf ßÞ¹xÈ–l›y Åcn‡3ôO“GÏ®Š|TÅU‘£É|¤TU6*ò2Nu>šÌFD/.Æyª£'M~%£±Rq•÷×î/TTCë 5ÐöÐþLò>sh+hShÚ[h—ŒõI ミÞB·…†ßƒ`[âKYÛ@ûÚcáP ‡NÖw[ þcH‘yœ¦ †Ž«Ì°^ŠqšT9±^Sk•iZGÒ3X/TÕÓ³c©‘ûB¸âô{žž‘€Œµ§%¦ø; ‰Ò¨$Î2Õ7ë#£½bh¹Ø.…–ðR"KøÍÄ@+i쥭ÁT€–_ŒU’•0GËJRQŸ–¾÷Ho,ÌG\{f±0LåkNE/…‘‘qŠ$Ÿ]™À'aGâ"Óð.J6l² YÆ:ÇÍóFíÖùJG^²ÁÕ < -£[üAÑwõMÃó·€Z¯ÄÇš=Óªwžî߸&;Lküy+›,³vÏoDŸ';q†zŒ…ñ–XÌmê¼Z@ëŽÁòdtÓì†|÷ž$é8¥UAú¶(#­ñ’¢.Пø?N »oÉ+º>ðIt vË:0.»8§EŒ9;è ø=P,L¹³?ˆ]p%´ ŸŠÀ.pG²O‘É‚¹’Çî…¶NqϳUòô¼ÝjÚ0µ«wH°ƒœ¥Æn íFF,ð›'óŠ»§„Tô‰7:.ýÖv »ôt½ËCTnq·v Ÿ4šªñîØß¹ˆà‘Z‘ ?9ùníöÅŠDVÍò½r=µ+]í—rQM›!£i+¶NZ“Zÿ[`x§hƒ;d¾"8#[ç®4ó–$oxÐX­ó{ŸIhby„ÍÕBY,çóýF‚u{sa2ä•)MÑW±CÁvßò€¶Ä‡e\x»}Ø'ÓEz/ÛpÃ~ƒÉC½¶æ&ÜŠƒ -Óݯtè0·ËNh¢»ù¨oéÝ0¸I¹·) Ä2I ðíýY>•§-*«”;Áí< £ˆ/¾ÖØ] <ú+u&Q{ån1˜ráó“Žëkv®MãöÚ{¿ÎmÜâùýV¢Ø’m˜8q!rOõ£ÜRë2N Ç€L°'º•/9Çéí¯³¸¯$ÞºŸ³u©âR•}C·¢>»ØÝRü,…{¨r Zo~GÜ!ÉÑÂ1.µÁóèÝÆ_ l/„)N.x·J"}á2 U€E•ÎðzÅyñc=ÒF•Ç *;äoX:FõÌ*(×’¤ÞoPV“€kÆoÒcS Ä©AÃh“ôcN ÇgOËeås ŽÇÛ!äЀ“Ñ—fjG©ê¥0\I¬€£L^‚ñµJ(;t›E’7Y(ú ï×0ÝÅè$ {Rò&cЗMkS=ЗÇ­gßSŸŽƒbå¸@ƒ.ôÆòý5XÖ`ô©é 3¢¬ +Åe×ÔÓ.¤ø¬²?42$u†K°RÌà$øl V`*ò%K0‘&ØÖªW„%RÅT¶œT2iP€•dgæ²éoÅ€¡µ5Œ+œ*¡UZêk°\$±ìõª4ñ™òT¿\7ÕšÕôõP¬0žlUR¤-ËVôåK‹â¾ƒüϧ†7OC ù™c‡DØÏ:%¿¤SŽO½2cŮӲ®RÊru~U°“JX)ŠhöPgŽ2;aæZŸÏ]¡ÿ`',u ¯ŽxÚPçÒ;Ø€C–‹ò”E˜¥~XÑîQ±Ïø¼ea< k:k£ÂÔã¼ß¨³oB•`Í#²ä?öŸ‘ãC‚> stream xÚÍkÇí»Å¡AasÚìcf­c uêA ðýèž´Ò)'i••äóA{øœ‡´²´@ûa Ù!‡äpHÉ»¿Ü>ûêMi¯š¤)óòêvq•eUR6檴U’öêv~õÃä›ël²…ÑÂXÃx‚±‡±¢ß©Í‹IÓO¿…iã½`´²{Fë„r+ËwB°»~wûÝ•MòüjšeIc…ñk€!å¼m#Ÿsá€[ÿÄ A–P¬ må[˜Š´YjªÉ[˜a "ç©Mé¼|Ñ7Bõ†)(ßVPîygFÒ§±è;“•Hd^äóÏ^>ü*ùG¨Ðç—üƒ‚.~?vñ)Ú/ÆhwW2ùµ_ÊE¡>®§y™5t¯÷΀²ÉÏÞrĈþî/åŒ_a„›~ 5Wš.c2SÀC•×2J#ÊÈcü †•Q{—ÆßF.dZcÓÎyÚØÉK£æ¦nßëâ2ëJhåÂÏœùÆüRÁÉd°èʯH*S3¿WÌï‹H–2‚ñm³'É-Ìâi/'[œ/å•xI¦wåüèwÈ=„Þ;¿D?¬Š/FíUÃBèÔêÁn÷"Çgê[ò”ìgÈÓ¤®³Xë^¨ <Ý ^#Sv[#[æ›MÅÚ*lÌ.¬¨4¢²B†AÊ_½©ƒ(?5ISçÄ­¿%.·÷¬“ç“MVÖ¸”Mƒ#J»åõvٽ؋¶q}EºÊkV/Æ×v¦šï·Œ3'#‡nÏT¶ý'?¦™aÅ#"*èˆÄI´Ž.=+k~ŠhÛS…5A÷¼“èéýÊ1[d¾ lã=rè$ª€’NÃJ¬ÔùÔ”ðžÝËãR¾3…IáèBûØ®ÝÛIHhNxfœ·Œ¼×i7hhì8[‰^C|tÎ5Ó¨'ý‚)ê.Å¡þñ–7¸­\. íAL½×Ý !”ü88•ÈÙýÀr¢uçOÝnçcÁ ý¸ÛÐé‰F J„K)O6¹¿ÛHU%Ÿ³Ü*$‘Y7M ËŽ'pv"þD’»}‚~Rj¤yÛyü¹ÉM¢l(/Ó¤²Êùp˜5„a2ØþÜÛ¬Mª¦Q"x¤þ–ùÓ%nð£ýÂèº5jµ[Ê’èÑ+²2±ö$aR'.Êš£ËœW“Yï<¬œ­DzÐzE,öŒ'ü«3Cß3ÍŒZ‰†ˆ™ó¹Ð.:RÈ¢ïü)”»/ÞçÓumЉ¬©) ¥v&_ò.çcð=÷”ƒ@ÞŽ|Þ_Óyi‘¨nz"#O^–Ðc95©á`ÑñºlmÙÝhðÓ9ðêã=;ƒ¢ðn9¹N—Ûž|hÎh$£`.$àz››v›@Í#K±yCª×ó‚¥EÑ!«&ýZG¾]Âq÷2…{جG¾»µØÝ¡ |ÁdQ3]Ý3—C”&b$‚–â ­ˆò=J»ÛáûJžïdïyz¯¶QG“9ÊÛnF“å ·wpÐsØZ[.M†ƒê–ߺ~6ð2Í'ß Â~:ês¶ hq> vGò÷°a…c[]zσÅ=y7LT?0 Ar‚¿³vÍÕA¶s}Ÿõmå ]m)•!¼ðÒásçÅêNžâ1•u wFoTÎoü¾Åï_ã¼ ”×øñ{ïža+F”å±§ø[5 ¹m”û—•j…®Ur¾øçV ŒjýõÃ9£‘ƒŠóX£TqçÜ  äóQùq~‡”ž>_Uï|%IãUœz€©µ?8~.Bö¼æòѽ µba„£u¾¾‹y oëÖjÅ õÊF ŸMª&W¹mRæ,¾îµßAW Ȭ’?óÛqe2Ž£>F5D´G Õ8§=kþ8rDsà —(O܉Å`ÖS¿RKôî%<9ªÄ‰Õ@¹Íè»`Ó?Þ°mR>Q΃`ZY—Må¤)6§aûÆÚ÷x×!¯ò˜ÐˆÖ;FâÀ‡“Ø8¢þ9@œ€|ßhhmîR“‘(ƒ)̸VÈ¢2ñRÁfü’*ß3ÌïœP.ößmÅ„‹…TeCPÒ!÷²qé+À/OKGÇi!Ê™écØØ¥æèç)ª4¹ ýD­k<ãOB°vê4~ q$ö5Œ?í—m ´A`îÒÁÁ’µñ¹û9gÌS+b»¡áKÙƒÔ¬‰|ð60Òô™sÓ§È w}Žø6)Ë“:ø¥t5Rß0IƒFŒ‘o#ߣ…(eг)…ç…SjUÝz´x µo‡¥MžÔ5]¸)ur+(S×ça‚iPák'•ò}ä€ꆌ؟ö¦‚”žðQ]4òhõ”‚™ÏØ¡^]`ÒÍ1UºgRËy›“&H`Œÿg.5†üðWª?êJÔ¸ \‰ òàJ™3p¾ í™ž4ŸêàVíç¹P!—ðŸ¹PyÑ…´;›œ{~‚ÆÙ*Ÿâs½'d¡}5{ÎB{¯iŽÊÏq$b"Ö©SÉ„¶qA`¤½”VqïŸX‰HA¼ïº ®– ‘*帩Rq‹ì'—¿m‚ü†T÷îRëmJQÊ’*Î~ si¿”öRÊ·"ÒA h»ä•Ը €%u¸É7©\á`µp˜ZSNÞê»7 Oöö¹šEá+ŽŸ%%h×q[LÊë;ùK›kQ‡Z£F\.³"lÇ|À?º9Ú—ȼë’oñ¿ ï/eÁ½g°{.í%. ZîôP;ÿÈ—'ueà‘m [•> stream xÚÍYÝÛ¸Ï_±H œ6X+¢Hê#½¸—‡âîpèmч4@µ¶l«Y[Žeg³}¸¿½œ/’²å½ÜÃ}°E‘Ãá3Ùá请Ï^¾«®ê´.òâêvy¥Tž–*¿*l™æÚ^Ý.®Þ'ß]ÏrS%Cw­’ üÝ»_³§^÷TÉê¸iÝc{—Éúá¡’š56×0å@S–0tܺÿut8—>s˜=÷j^ëÎ=K7× 1/áÝ šǨsÓ £9 ¾Î«¤Äð¨wÕöˆa¬cê ðmÂÜ5>Üþíj¦LZãž*­-Kp„¡N6Í‚[ 8¶7@`JŽŒ¼q›á"ýž'€dØvâÚ´[À °š{"€½ PµQÇ”˜ë±hj§ 'ºÏð×ò>›û{‚²nþ‹eu,œ%Ò‰–ýž85ôØá¦ûÝQ,"¢` ±l,+Ð{‹|ѽ6 ‘uÔ¬¸¿_F䨧"Ì$7Œvµ§vÛÌÏzÌ@Œƒ' Ö7°(+-tUÚ¤Ù.¤--ºlælz®ÿAŽÂ=½Ó‚ ìÏ7„PF›hË e ÌVl0RC»Å¼ž™L“mžA§1Ø-<#éÂëŽÏ¬'è‹O€(;Iz=+¬Mn×xP RÌ{Xwwd16w÷lÜ&ÏN—ÛàÑ¥·0èÙ–‡>(HœDÓÐÝ=µ“¶ÄNFW#k‡×!ÄQW xÊ›–Þ3Ø@–'ä]@`êÌ \î2öK|Œpx^‚–ÇŽÀf…¦3„U릣TÄXžØÁþ(+ùÜ2¨YGóödŽy·e¸ÛÕHx ïâùU *'xp Ê,E|‚æ?´4ê^9²x<ÔÃm+ÑÄuîd‹ q܇ˆók@\Ó±E¿Ìlúµc?æèöÁÄR0Ñ#™£ûùG×÷#Ý5­7a^p0´vÎÄr®“N úí‚,5‡&RmšÃÞ¨Ö8Ô/¶Á$Þí£Äv{6¿CŠ §Ð/`{´L±Pw€!jh[$ó0 jHÃÜz¨ÑiP/•-9͂ްk6´¢ìw⌰ï\õ¯œj52YÇbø=èi J—ÀW±åIß!MpYJ›—¡ÈQêA'ºÈ >¦Ý¬© ~ôLÈUVê$@!” ²È=›Ü$ï®+“œ…j?×ùꥤº-¾äæ<9¾N«¡¼È#Øgcæ8íÝ_Ë!Î:„²Œë ©•ÍGþÞþ;Ž®Ž(˜'âjå8Ãb÷(Ê=­Ž237(Þ¥ßò4ñt6¿x)âñr-(A#™=º¢í ØÚJ.į‰2J±tY{YAç;×üá-´‰²kè} `8§ˆ¾áw¥Ó’zQnèp†¿ptˆACý–ÃO­ŽÆÐ66èÔö;‹0„‹ÖôÒo òߣ&1 ºœÅï+Mï±pÑA¿|WØøJåš®5Sej+E[|s=³¹NþD´4:— ð6(úã°7ƒtõÔ\ˆgö÷ž ;ãõö¼Ð‘ƒ¹ÿÊl&¡Êý¾„®%«a.÷ Øî÷g—L0àSÉû¯˜{ŽZ¹èN?å~†"Ü/é¡]gá~} Jrnßа’9"ºFxïùzRÍ\Êý©‚h =oom™U±v÷9tQ¾ö9nÈ®d~BÒ>¡9‘çG‚]ߺælz±%/xÊüå„$Òñ”o.W¬–_¶•xVæ·óù «ø)ó©0r , ñáB~87ؼ‘›`õ›h#[1²ƒü|º†ÛHà­\švf‰lYo#ð{õÕ*\²|e?>o'¼¥ÿEǘ¾JÝ•N-øÉ\§µRR+Àù­?!Aç ½ˆì‡îf)L™BØæÆ‡‚ñÊX»5k÷÷{‹ÏÉáøaÌ8ekñÁ¾$L°©o™Mv=S¶$Ö†úò¬¶hsÓd¦DSV £ÂùPo¨=´ŒçÑØO®í®DZ=ÑžðFO¶¼È }*."G¬æ.ÅØ-cÑØŽc/½ þì%ãŸñ"YÀ®Xž9c7Lj"ìY„=?Á®Ø'è? û›€– XE€k†ÆT20}lé…}No#ãKƒ °¯)6‘giå2žÑN^ŸÒœàÑç>¸b¾ŸÊè4>DÎqM]"‘SïCj%î® )ÕëHyšr¶¸ îR÷´*´C^¥uU…+6¦› —êø†@µ"LgåJ·³ñÐçœFBî°;-vNî_fˆ]t·ØS/÷néEŠÉʆŠñ ªk O©ÏaC·ÿî'jI~²ÚJUðê7¯Ë¡Uç´yn—Ui¨…©·»I¸ûü »oæÚ*4ãšL”Š×®µòW4dæþfäÚ+<ÇWpMV$koU|7©ó¨’1ßCOïÈi7ôŸÖË‘Hgc°=΀RñÄ©=Ñ3°–г†pÓ_J¦ê5Øû BßÒ;.ÝÑ¥;¤FmT>h½ÁzÈaâb’+›Z—–dmå¸÷Q8ï¢ øœs”ŒóºoÎÏQU¥¥)e.)y=Ú‚áµ3]ë)’uÕÓÑ8ufRUãL1Ï2§&SŒ+½¦ðe¢Î_ïêçô@nÝÐ…ß²Žgßp ì oÿ'–YKËŽJÂ@ápkbÆeœÊù ÛëJc ÜM¤ã»‹®0»¡A2üÀ…2œKþ–…œ­ã uao‡`6¾+´\µ£R%xŒbüñ 0±=mLÙSmSe¬h{ËÞ½ 7ÎsŽ˜Ù¹ÁØ"­r#,‚Ô¸êUé"ù'T½ZÂ8GßW÷Ú¸ß?U:`BÛS˜Ào!{ùJ Š<€a<F}´û U×$\‘´ØGZ'Ò¢‹Ôf —/Àr¬¦C¿ÛññêDÞŽì‰ &¸3g#]Ê®+å^`!!xÈ…c{NA%'h$ãæ/HÒ„ÅåÓ`²üIÉï¦ð$‰ØõbÙ ÈÄA{ÞûS¶ï'Kˆ±Aûºš¨:«YÕß„jP'´­ÔÙC?AžÉÁs/ýY–`µñÆ øO|sŸp”:KMíýØåÛÌ™=•f¥·g*Þ±ÈÑ,Ýâsæ^§?ÊxÀÖ»OäÅΞl0/Uêòµ‰ã½ Š¬/¢Å‘VëË%¿¨ØEßþÅ%žã/þ‚ás.N¸FIBýî¸ CtÊgõlƒ_öT¸Në"OÝ;ßG·ÃOᆨÂ}v%Ü_WcÏÎ îàk¾dgóÀö9³’àó@õ<‚ú…‡˜Ï‡'*%<-TNåó…pÉÆŽT½¾œÔ"L€õ+=QðŸó¢[µd€¯y'OWÊF‚Ç”ñµó†Š”qœ¥a¿ØÄêܲ„ÿéB<Í‘'GaWr¦+R—kI/Ø0uP¼/›Ì¦¶|Ñ`†Mó|\Ö"]ëvŒuÃï²pAªÛÎ!Xõ:Úù§PZòM÷g\ ¿fÚ´(N¼VTÿ€‰†·_°ý¥ãz]Pkª*àv%ÓJæHwVºj9"žªåª@† Q°wÑÀœ ¾Pü0Üm#äfœ‰ždD§6v¡6¡£r“H ¬ëè†^àQØÐßœó5Q½)‚l"¾šy×çAOyšÎ"óÚÝÿùö¬°$ðìûÛgÿ9Õà endstream endobj 82 0 obj << /Length 1730 /Filter /FlateDecode >> stream xÚ½]oÛ6ð½¿ÂÈLjU$õ¹5¶v¶6@ CÛÙVlu¶HN“üûÝ)Ê‘bö ›<÷}GþzýâÕešLаHu:¹¾™(•…iOÒ$ µI&×ËÉÇàb:K´ ¾ã¿åT5||·ðmà+á{äåN–­bÐüØêçë?&Ñd¦TX$óö´®‚-B ×0œñ°…á\(í„Ú§(‰àïL8«ÝfæPXyÃ+B£éyÏÕlØŠ8-1íèÞ¿åeÏÉVx-…›sø|¾å?…//„OË(#Ú÷ðíeûÜq«‚ý)gBiì4\ûL¨¨ÍÜ„ Xr Ò3QC#ÿwžÑö¢ª†¨Ña¥(ô‹ v‚V |¨ºGÁ¸ö¾ŠD•·³öÔºH§sVõVRJ4é¢×~#‡øÁÐTðê„!DËÚ?VEqG9kÂ"ÎùXt‚•jϽ‹¿b;…ÊhèÍ*Èhþì–L¶á–âÛN¹p¨¤Æ^ OÏF h?7äÍJ”–3ñ*ÔŽÿ±<¸žÎLšf$E(†ÐcÑÿŸ¹ę́xÈwÌZå;á;gyˆïB` YÂòí9Æ_]æ^&)£ßjO Þõšlò$èPÈ–ByÉzÇÿ­Ÿ½˜¶^XásKÛýë4IƒrƒJ¨:ͧ3Õ~ªóà~ª3"W >r|¤.ŸŠ”©,K;Ü´G„8¸|ÿ†7®ÈÍînIÛ̱¦²Øì\~'J¥ÍgŒ¾aÝÎß#~@,ºÈ‚m‰Ç®j ðrÃ0 ò:M…Â&Šƒè´W6Ž µs™©¦ôDºâ¥-}E%¡âD£bqRï< psGl,×Y«àÚ»ÒÕÃêU%Ú¨ZÎ2&JÀcÏ]M[­*vçÕ,Ð2k6?`ÂÎØÁMÓâ grMÇæÅ•}!ƒÈ•ážà´ˆ„'œÜ²û × Ï˜¹M¿©¹áÿK½2Wl'vF\Ek¶dërßo>``me_‹ë1ò=\¶†cµ“zÂ1õü)dökòUÒ"w~h³­ï帎©””ãØfq XU×;[ì^E„,•ƒ]½€¼Ì¢ÁÀ…Í$¤p8ÇqÙIFCÈ’ÌxoY§Ð¦ðõ9øQŽ_ë±¶¥ØÐC©¶e'vf"XÇ*†T ‘tÊ(ï ZHÈw:)àLB{Ú<É”& µJí†ü5‰ƒ/(õ‚l£Ùî]ƒ#‰Æzdiîxc·4(×¾f\rȧœª8 ÓØ|¼ |Âr…Ð!Û‹FÚTŒ³gZÍöG2:¸_sèšù«…Oë$uÇóEic„q¾ }kÎt¢ÃLëƒR^±¯›8¦¸4qBõ ¦®¸–㸓œwุä§C<ã9+(§n¡ì|Z¸ÄSÈ:$÷Š÷µ”«5Ïý‚SÛ­IDv~maófœAš»KÙw! :0 ê œÓ”(Ww©-â|Õ1Z¹[ò`I6ZÛNvQÌãROö´œ°¼°Qa f´YEZµ”X:Ê…}ç•p9fP¿mëÀÑÛ7Üxý@u¬ô–ÔTõµM„ÌR‘§ƒåŠKŽÜ1lÛ´ÂLöŠS¶Ü€â@ô$‹ƒ_úÓ‘êÖ &Új³4ñ³ª,c=“]õ€ƒªxÇ×Kn†â8fܼHFg[ñ˜fU9g–š'½ƒS½¡ün”çõ”>”òòG‘†Q–Ûü1Ò=*ªØ%¯8G’g¨¿Z r 犑¼š³Î¯ÝÆšëBÝKÙîyvc¯ÛCqhÚÚ$°g¿ÍŒëÊ~ 6{Áp׬äÝÊÞIòPëd¨g’çn‹4·}T*Íù™’sÙJO õËï§«dpGñëÝi¸ÖŠß0¿dYÏ•ÔÊeŸVÖ‹~-hdxkggçHã‘ÇäÊD©³”ëKckâŽëƒžõOáXÑ’k…üû×a+m#f9ýtñ A¶RgÃãüù›òwç>—K{%ýP%ð½ÀeËBøÚx$?ɵLP6²ëQP´{Õ0i˜Äfè&Þõpîññ—÷>ÒŠˆG¶½õ¶YW?¼CŒ1qÑsîJœ)Ê?ö>rêÉéÕ².Ý˵ÚÀÉ•¼’Gˆêé+LÔ=—z9ÜlÚ UwìqC‚ãßÉó튚S f~7Ê@òŠmŽþa$V“P»¾!ëú™ýÚuÒÖ‡Ï ÐÄ 4ç:×aa FV ¢¾øíúÅ?hý` endstream endobj 85 0 obj << /Length 1736 /Filter /FlateDecode >> stream xÚX[oÛ6~ϯÐÛd bER¤$ }Ø-@tè0£Ðv€"+‰Q_2Ëîåßï\Hв™,Ûyx.ß¹22+áOfm-jÛdº-EYUY¿½úçJ´V銢GÚ’î˜[xùz[e?ï¯~‡?¿U8–EÄóÇåÕËëªÉd%teU¶¼ ‚M-¤l²å*{ŸÛE!¥2ù›…Ì;ø\ÃW?.>.}yÝd-*f‘O™JЦt,–÷@7, ÝTù wðY ðuØÀ×7ø £ÝSôð¼_ªFXÑtfF~é˜jÄS¨ÈÃÆ3×ùÍžOÇiáyúI|‡Ôwûƒ“yDͶbQ˜Öä¯|èC)+$é]å7'G½YáêLRtÿ€r‘uwt´ûÓ­h%Rz8"^‘”¢5†!bEE%ë8ÄðµgnŠ7P±ýwlþyaLÞy[ºF‚TŒù€ô¾vÐ÷Hwò>pÄÿ !›Ž»gIÞU¼?éi™ÿð”*´µ¿Å«&?ÎŽaD€¾ô9HvîÌÎî’h!œu›{¬1 †qË^Åí†mAmzŠXè ¡¼çRó3*51-¢Âø 6YgSwãx JSjâÄÈù‰´‰°å­'*ŠA'‹Ü‰ }ç¬<¸ø¼òåìv: „³p¶Sx}…¯Wð¹æ³Þa‘à ‘dyÅHÉ9®¥ Ü>Léʼn`l­øº³—1ûndxú€‹+ªä(À–2¶ƒ¦I"xŽtC;m™w»oÙŽE¿§Šð”†&ßÝ.R7àuPˆòMÌ`² Ó¸M)D¼ês“¼àïrRøl£ „ÕîàSH è«ˆE+$ùzàb* ø½g øåì©/R‘ Ö7!ð å8®lÅÆë4ñë£mü"Ы9Џ$MÛ'‹ÆdÂ"#0ÖZ‡:DÂtPÓµbÓá@ÔüÙ;öô®ºÙLÖŸœ9luSO™ÔÔOzœ)ÖctÊ÷:©ÎøŠâ7^›¡;¤øû€¨¦)eÔ#•2ð @‘Ò- HPì<—ÝT!'JpGU–[еû-t(žËWhÝÛ$T/-¼ízW:›Yë@˜ e¬s˜·TLwT‹ÖÁQÖ϶.Pºš*¨aôó¾ßûÚî8,(!œÝXaÚf}!±¥6±À .VØJMD)Í[¡UëI^%xÈR´2˜Ö?b)ª:H¢² £ÈmŠ]#ʶò”?%XI¡ƒBk_枆×mç ¤ùÊEÒ—ì!ÝzÅ‹gØcywØSQP˜5íT§ùý–§¬DÝœ…Ï€}¸¡>lš ý¬ÈÜO”ÿ0ÆÕ0î´HÍÖeóy½Ú¥ „ *Ë„eQ«Çâ³Æ\¢Úœë¦Ÿò3}ßÂÚú<Õ &t­jQéf®ë;(‡Jù âµ­SO ÛÊ ¾¥Ãº¼´Ê mÁ#ÑS–…9ˆRžÇir­6JÀˆfŽÁ€Æ!åzú~œ¨™Ñ„•¾ÜÏ'sÒª Yþ.™,¦¾pëÅ´pÖ]'3ŒÏ£¹ Ô•¤•T™  ø;¡c!E¥À Y:¡öZ9«*_ú®b7nŒ‚QËÛaò‘ê÷aH ëW¶BA}š8ÔWè~ô‰«-5DøÅ¹â´v pêÃÜ¡CÅ~ŒYv¨á˩ۤܤ!nKóD±(µ ‰:/]ýàKˆå¡âk7œ 'šÝxþGgÞѰƣD!5\„åÙ0q½€k]x`@Ûýháè§Éðâ®=ðºñ³" Ü ûn¸>UUF8¤u¹ÂæÆK\wª“ìjâaâXñò VoüÌ3 Zwò7Ÿcˆ e£Ê1³NÛI6ÛÀ}.¬`ú³âö‘°üæ­­i§&ªSí¦™^ô÷ß’m»•QÛN1Ó¢©Í¬kFçß/ im²4P«xxá®÷;7Æ×šÂ÷@·/jnÄÄšˆ‹1Ðwƒj;w=do\ˆT•°¥Œ ÏÜ@jÊ<}~Ä>³¼…à5íÍ¥\yª‡x×:ì·©Á "`jŒÏuCf„‚ÑäÿÎ3\4×°Bƒëû)´ÃD?ØÂ­¦Öþ{rC°âƒÓb[è²)ѽ…þkòÔ]T.­­¡ LshÂ#•PS°žW±Î »¹}í šÑmXŸÇ:,l]ŽxšmUHGL³ÉÞŠš­¿CÆ%TϯÜp wÿ˜pÅZC]PAß*Áßm)Œrÿ ”÷®~Y^ý ˜‘ë• endstream endobj 79 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpLOfcnv/Rbuild131725a8c43b/survival/vignettes/tests-surv3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 86 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 87 0 R>> /ExtGState << >>/ColorSpace << /sRGB 88 0 R >>>> /Length 50403 /Filter /FlateDecode >> stream xœ¤ÝK¯-Ëràþù«i7ØTå;»˜‡d $¸WBÈrÃ#dÙH`$þ>•cD¬½gá«cÑÀâ»»N­9kfå;"ﯿüº¿þîëýöŸÿ÷/ÿñ?ý»õõøíúq]×ׯÿ÷ñžÿuö¯ÿûÛ_ýõ×õõß~»¿þòù÷Û}.øú÷¿õú£ß_uÿ¨ãë¾ÚuýhWðï¿þðúçPûÑù¯÷U\óûŸ“?ÿ½—£üü÷à÷¿—«ü¸×÷¿'þ{¿Ìöó߃ßÿ^¯ûGÙßÿžüùïýú±úÏ~ÿûÇ×ýùí¿ÿý_ý1îýGópÿñ¿þÏßþå¿-Ï/ñÇÿþµ~ÄÿÎÿv|œR~\ëëÿðõgןýñï~û7Ä}ÿÔx?dµ_þËò»ÿËŽ¯ðó¿l¿û¿ÜûÇ¿ü—ã÷þ—¥íS,~þ—ëwÿ—{|~Ïûw?¢ÚÆç½÷3ª»~Óûû!±$´õ£¡¼@e]?veyúüg”êç¿®ûǘßÿJýü×ûn?Öúþçà/ÿþÜîÚ?ÿüåߟÖëç¿“?ÿ½<7|~‹ü÷à/ÿÞæY~þ;ùË¿óË~ÿûÏïþëSýù,ÿÅÏ\æù-[ù±/–ööÇüÿí?î;þÛûŸùßÞ×óùKüǶ(ü©ÿøùÔ½Æ\ÿ¹ÿñì§Vâl_·?ñ—kýØ=þãþÏýŸ}øíëú§þãçc×ÿñü|¢Bü­•ûGËú÷ï“eõ÷Sh¾‹Ìóâ? múÿ¬AK¹Pµœ—äù¤õgÿåÏŸëúú³¿ý›ÿýþ×_üËßõ×ñüNOuÜù…ÿõßþÍÿùù•ŸùõëG¯ CiÏÏ:¾þ÷ß~ýç¯ÿù{ÛØç“–§yô§ZÛ¨@ •ÈOõN®•š·ê¼ÈG»¨ÖÚFë¨ý¸ºjOê.oíw£ž7GToêùKªšª†¿þ”̦êƒzµhà¯WQÍJµªZ7Õ/Õ¾¨é„O6\í¥§ý½&uOUÁ'[?ÊP5üõý£,£M5£>©=Tã<¥q_N4Ï_÷©sE«R¥©öMÕõÖ}J94·Ñ¢ž)ºÏ§åG­ªrÞ€QñmߪøÔí4’¢V¨§ŠõóGÿѺjLj ÕÄ?Ê¥ZøëO­SU»Rõzë©lnjNÕ}QÏÝDŸlã{«öÐRµóÉ&j$Q/Toªq>ÙÄ/'š“zJŠh§4ñ—D»QO·ü¥zžÜ£z~qÑ}SÏ'•+´N©›íÇXªŠOÝOÍ"jzj\Qǧ§Bí¢šøÔë¼éªMí®B =÷)}¢}žîÓi;O÷S¨ÑݨmÞº+õt¡Då|êÕP»½u:ŸGO ¯:ŸzÍS ‹P{¯…Zã-ÔÞkÇ'ûjèæV„Zxßxã>ÕY ?jF÷yCOjèG§ô¼UÏ“ØõÔœ"ÔÞ»¡ömê©‘DŸz &z µ÷žxßšøÔ oã[¨½òÖÆ§Þ§fyi°ö>Cѧ{b¸ƒÃ5øáÓÜ*ËÑ@(Q[ÇVƒOÁW¢Æ:ó§È ÇÜË‘_¯†rÎàÓùQ¢æ:\—p²îº¯q —µ×á©N„…r¢ñU®àê†uŸŽž²ñÁ.|AaoÁY G >Ý6åäWب°„è}Þ§K¼W°UCô@—r±zßOÅ~¢æ:#î² ÑG=<#% ÃÝQí ?ä8§²Ïä6=X«áäWX§Kª\ü „=³»`BÈp{nöΟwDyã…}FƒÏàD‰Úáóy”è£Ý¥à¥¢—v4éÊ~KwÜÁæ8VpÃ9’Ûpñ+4TPBôæÏÏýɧ¯}ñ+ôSŸ(ù²Tˆü ¨?•|Ù ºÊ:‚OgQÉ—ýá¾ ;¿Â<V9JpWC¾ìe_ÖpÇmÈ—ýpn~…}Z„7oögŸÎ„ò®ÁóØ…¬ *:JJV÷4ÜÁ5 YÔrº*Jô{w7dUPë)3JŒcŸ©’UAEWLɪ bnÐp'—°DUððùß•¬ jGa²*¨ãtP”•_Ý@%«‚‡Ó‘UAݧsb¸ƒ½²*hr+Y<ìÝUÁÃíȪ Ýçí{³FUÐð_)Y´zªkƬ :£JV­á Y.Cvº¤JVOaòeoèÃ(ù²ŸùîÛ }C·õÍËÜ W%»gêgòe凞|ÙÏôH1l躜I‰é¸‚ÏwQ²ÐQ’•lèÏÐö2DþðTæB¾Îgx4„=ºñ§³ßù!ÑûU²ú·—!»ñ§ŸéȆþôŠ!»ñ§wT ÙT²z ÓqŸ²ªd7þ´øÝpàùÉ„ÅìÔÛ·pD'Ÿõ¶²ÜÁS})wpuÊåÔŸÃsɇͱóCÖó»+1Ö¾Ÿ2óô畘Q¾†ÁÊuë2Äìéáyq”+È/øÁÉÑú=ÐaVÞ=ø´€Ê¯0ñƒ ÙÄŒuž°²ÝÁS] û|þ?†üÉ6Má˜ÁÑ 1sxÏë|%‘yŸÚõÍÈD‹¯ÄüááÓw2ćœåüîJ6"³ž!’È™J» ÙˆÌç݆lD&ÆÔJ6"“W!»—“W!‘9QÉÙˆL¬€¾¹£™ìÖ ÙˆÌç ÃRƒ§±²™ìô ÙˆLvk•;x*d!‘‡Ë3F÷ºPD…˜3:|^I%‹ÙîxtB³î´!?ä:÷T²˜mÔEJ³…S%‹ÙÙ4…•Ŭ\˜»P¢˜žEˆbvøT¹J¬&€ÛqƒX Sb(}¸›!ŠÙÙmv݆³%—áâWÀçQ¢˜Î)l,fåj§4äWÀR±UßáÙ(#,#øüEeíÉe8øØ×)oÊyÏ«¡ä‡Üg§\+ئ°Ÿ¶’|zÎJtäÊ]N;¥ÄjËá3P¢«VNˆ®ÚÙu^+åžêZˆÉr¦g‹!†‡kbQ ÜóôöߌÂas¼Kr–;8ùâÜØIf¸ƒOŸMÙVð(;¿à>õ‰Œ³ƒ§VC¾Vå>=I%_«RÐ ¢ƒqx^«'WÐKÁV%:½‡§ÚTâë¼AJ, ŽiØøûé *1Ô:<²pÖ`» W ÎnÈJæL áŠJ¦`S‹ážŠBÈJ¦`c‹’•ÌÃz²’yø y”­OU/ìüú ÕˆÔÃÝ '¿þÆk%\WpG|ýz·O‰aé!ì7‡¥‡çÑ 1Z*¶¯(1zxš6!¦JJÅ%¦JÊ™^†èBžn­]p²ªض#ý•¬ê>¿¬rÏà¼ß|Æl*:ùJ6ŸšJYZð©m”•gœ{*û\·áà×ÇÁp÷0\ü‚;¾Â‹{ÛÆBFiÜÇ(ÄÀ³´ûTÈJ6‹ }T%›Å†Ùc%›Å‡c8îàš†l[;/Óh…ÎÊ݃½ Kt/>UŸ’ÝËÖñ£Ù½lØr¡¬wðz(¿ fÛ”}§#¦ww1œ#¹ ¿>Z"%»«2vL•†-EJv!Ú>u¾’]ˆ†šJY“e¶+ø”C<ºŽ‚’îlc\†|tgóà0ä£;Û·!ÝÙìW ùèÎv¿KØâÑqsž’îLÎC>º³Ù¬òátŒ ùp0@PÆÃÁL»2ö¦+ãát¼°Âx8#¾à‹ñpÆ©mÞìùp0·¬¼“Ï_Tò•|ø´¼J³³Æ1Ý<@C>º…b&ŒG‡Ee<º}þ?Ê™|Ú8%+·³î²rãÚý›#*7®°+ùè¶¾(Kò4@B6gÜ‘ ÁÀ^%«úAɪþ,d܆lø¸Ì¡dÃ7°uöÍMÛY.†lèÏzå4dCV—a+Á§/¡d7`àíS²0ë#œÉó£(wð41Bv™‚4”ì2U§%\Ñù'*Ùù<\†ì|rEÉÎçYgqlÉçW²?°—LÉn<—f”ìÆŸU GvãÏÚÁ0Ü䯣Sⱟ¹ÖK¸9¹W&¶–+±qx>¤Ëg…óKJñ&4”âM â^ÜW i'¶*oƒ)%6–‰á’!¾þé9WÚŽœX˜yVrràô—áHîbÈæ‰=:åJ>ÿ•’•ê€èÍìNŸ~H1d%sz ެTfꔬFDJĆJÄNMÕ Yøùæ*YøO™qdáß>¼Ýe#°AÉáÿ®ç))Kòùß•5Ù†a›Áç9({rWCN+qr^9¿9 Ù±ÙØª§dQÙ¼Y£0ltò•%y °°~sr¿1ƒ¤dµ¹ÑWŽäS)±d_6:ùJT2õÂZ˜r'G6VA‡ç oò>-¯²åÔÊšìÝݼÃU û7·á ñy”“ļ´áò+¼¸’Óq'ŸwóÍΗ®^Ø÷®¼“ݱóü”5ù .”Äê¼]âý ‰¥FåL>eU¹“§º~qpR½Ñ%VÞ$9”%ùt ••D=¦lÉóõ…üú7Ö³”#Ù›áLò ¾¸H¼AÊ,Ê™a&Êøú °~s²0<|ú0ÊN4‘¼oÙ|J£r'[Ædõái&„|5nôœ•X©7¶*[²vÞ< ÕȽÏÈW9“ó6\ß\†˜Ø¯å:Ýø7wT¹½2%«Ü‚ueI>-‘ÃÃÃÓÄ[ò)çÊA–³¸¦D§·žíýÓp'Oýä %ÂxøøicœoÛAKúé28cÅ¢–~ºÈÎ-ý<g¬9ÃËzÒˆrÆèøøiÄwzã°­K\ά-ËâóP³}(XÊpf¹¯ipF¯µr}Äy¦÷eÍþGED²3ËCÅvuáÌÓñSm8cd[+6š;cÛq»¬]ù{«ÑO=ÞÚíBm|^jÖ…KµÞW¸ã5@ÅLgÖ\ýp.%|oëZÃxjŒþkECäÜù¼ßgõàóÄr˜óœáæÍ^W»Ou¦ŽÝð²æó8ùLnkŒ÷jögÖw·Æ(§¶~~gö*¸>á̶ãñ(Ö|_¢…œ1o[ÛäûþvìÇ8¾—5ë‹¶Î:¤3{ê\opn5¼–5ËC¿NÄ™ïKÇEg¶ž[ìœY_t ‘ÕƒsõDÏ7k~ߎ`g~ߎ¨g¾?¬3닎ä*Îü½ ì¼x¿Áç­f{Á™yuìn¨'0´Z÷;¼¼Ÿšugö|fgŽ0ÏŒv1^ÑK᜶3ß· ¶­Ù‹…Ï[±sePs|ÞzF9Î,O={uÄTÖŠÁ™õÉè¬Õì£3X¹çõ£Y³'~ ºúŽ}ºÇ§=5ƼññÓáwf?ñ„ kŽ©Î†~oÌ—ŸöĘï3ç7?úôê;rßÚc‚¾¹3ëë³9x[³¼OìWtÆž¦z6.ãXÛ®³ñ~jöW¸ É™ÏsμßÛìoÍÅß[ù®º°Yý³ÐÚ­ÙßåB3Û.©s.‡~êÉòÔ.Ld|û¿Ý6AÓïJ¼ô§’+eʤ¹T™©·2-6‰˜ «U"¦>Bg[ÄôFH $BÜÍ(‘NéS˜/X¿þT}4§ò™*<ÙSqtjÍÁP÷·˜nhF £O­HsÙ?•iƒ0Òݑ憩z>Åô?ˆl¡u:1S…žÃd`ü[˜žè¾T8§0±•]„ÑÂÙÑn„šøìþ¾ThŦ #@îu~)ö]Ÿ¿— -ãÑT¡Wuö7æ‡'‚ÑEèMŸ™ý­ÆžâD¸¸­Ø£1TxÃÏþÆ©BïçìÉ»UØ;zö¯Õ·"‚‘{ÌD¨1¹ÓK„yŒ…øuf¸6‡ˆ0Š_ˆ(¡°0ýüÒà>Ô…Ù`R;] C…^ãY—ž*Œ¸¹:,Boea„5ý :oM¶’g5óRa¾™ë‘"Ô¦aÓ"Ô¦;ѯi|>µ"UZfÓñÜH+ñSîÔÌÖñ!¦ÕAÚ(Sç4¤VûÔf-µ±ßE„ZjHSñ)ÔR“–"ÔR*zk)V@ϼeyi\œÙXa-øÌYnzÿg~¯©±·w$žøTä~Á,¥’yÌ)ôfæp¸°UOɨº ³…Ê–¹}êeÈ(¤«FŠƒgt¦š!#‰ž?Æ3³÷(™µàÂjåÈÜ>Íqföf:äóT–Ì:R—!c² :TJ>º‚¼ôÊȳ ô7GfÒ@ø³2re Xù9ä)«ÊïÜ ½Fnœn£Œ\(#öÀð;Û :EJÆì0û‡’¯ó™ «†| ê|åjÁÝ„‘¥9:–!#¦+”5stŒfØ3 Çœ†3³p\ÍqÍ39oe%c“ObÈ\ Ì­dÌlEgL¹#AúElbæç@çÉ™ah¹ISi-7)ªg&¶¸nëHåA®úÎÄ'37ù¾ÉMVnR~›áNg“è´f0Üã~[3à­âØ)u‰ú¡]|žjTq6Ñ™uDC¼ŸºF-Ñn~_5Û®VøyÕ¬)ZlRS3ÑY«ÜĨž™N›¸Õì ´ÆMxogrƒÇã¶fr)&äpŽÄ›ÜÕ‘£s¥zez ”‡·{&™Ü$©.™ãšÖ|Úâ&a5ßËæÌ÷¡a™ïC[ÜÄøöˆ÷i8œÙwm< Ò˜ï“m8ÏLó›TßfËÛon‚{FÛÛÑ;vf›Ñ+?¯š­ÆÙirY3|“©¬ÙrôÆMüo¯L7ѹ‰]Íd½s»š¿ç™Ç¬Ö“ßgä&Ô·ù{žÃ8?qVÑ™¿'w,8÷ÞÕš½ÎK:³?›d_¾3X| Ιï3Ó.8ó}æ£s$„¨ß›<_Ž”HÜ ¾#3Ï;GºLÃ8·L 1›õÈÔ§>6f}>znýtŽLr¬šáög1ô²fÿåäÀ®Öé1á‚3Óä&Xu$Š@ÁT×(œCtfyœhøœYgÉM¢o§9¸šõNç&Ñg{Ã$ ÎLÏÁ ˜Î¿OL=©sl1;Ë‹šõÙ™sÖ¬Ïæàá¾ê‘žÓšíÙɵWŒG”wÎ:³¼Oô[zkŽ€vw8¯ôÙd.ŽU““¸áG’„›› Õ|Ÿv"ªslÀ Î%Ó,œMîÆ¬ïÏ;46©«³ÃÔ9/µ°ÙÁ™ïûÂ’sKŸ c¶G G@:§{À&n5Ó›,öwß.qÄPaž çš)!Ú¶f: Ø¤m<Ó{Yóól¬¨ïü<ìoÇçAì»sOŸ÷U‰ #ƒ3/&cpæïµq‚”s$@Úç•©Îû.Î >¦Npæ&ü‹ý)ã–>åŘA.r~9¯ô.Æ-‚®Îç¡fíÅþ’1ƒh¯ÉÏ«fÅ9hnX£¾<éNN'?Ÿñ®qIŸþžqËg3®$ÚCãRG~DgÙl4qæïAòâ;S ×3ƒ@9›éÌ÷½à¼Qçï y|ß·#¥‚ä/k¾oI×DW°já<ùy°wÖ™); ŽäPÇiÅ$oÌçQ‘rË™Ï#‚à™P¤²?&nœ>Æï­Ž o4\Î=ƒèO§1ß÷ZX^Þ ÌÎl/*ö¡8· ²?ý]c¾O•ýIãH"ÐXžÞŽù˜ Â7®¤ê3c&À¨Xˆp^=|ú£â˜o·uÍûá÷Ró}®8sW½2I&ŽœK^‚X# :îΓ¿×âû¦æûÐp½zG¦aó¥3“0D¿qÉß|ßÔ£ÖÅ-úÃÇg¾Ù8‚Ø•åÌ õ†…7çAú§<‰#àíøÌ³½‹ùLã1ÃgéíÇðŸþ¨1“¼Lüpêˆr:>ï«1ß牽´êIL&Îävfò®˜o×/MäÓrf{?ѱU·Hr°.~ž·3¡ÝÂÄœ3ëØ/ÇzÅqsžÄÎöHýùÆ…«oÿá· '_ÏûòÏ *ÇØÑ~)C¾‘±J„'ßq.‰hEˆùÕ_ÊÐíŽ OZ#†¦‹°RÊíÝ"ôâ;6 ¼ts„Ó±;B„ÑSGçý¥Â7«câS„Yž+*B‹Ù‘nD„Ú¦c÷ÁKÑRtlWa–¥ã—{)ŽaâY£"¬¾v¬ÒˆÐó> /F¨N¥?ÞŠ¤ç+÷"´V£®—b&˜ÇS‹ í"ô@™"@„·‡/ÅÑ8+"ôº‚ñD ¬<¿½ÍQ#ÀöSL;€_@„Vv Á§hEšƒ)Ú윿¦ÂÌI¤2øÐˆ„Ë›&D%R ¬[…ÙŠ"ÌTñPΗ"ñðX¼ú)ôðÒŠf¦Nتi®ñVá[Ì'Q­¨0ç‰~*bN'Ò°‰0JbšÓ1`woøÄäïK1³8qG*ƒ»«ðöŸ³½«Ag1çVáíŸH*ÂÛ?Wœü©é Ú~kðíŸ8nS„‘ÕBÚCÑŒ”[Çç.¤ƒa5o•²üÔÈtE…VxÕ8÷WÅ ÝB”³_ 'Gˆ0³´ø©h•y¼€=r¦9HWÀsX?…™X¦øÔ Æ@¸;¢çD¨ÁÎÞÐòÖáõÈè$bJì9H0oj°™…—b·ÒÆ/.š‘Z`·âèù³ãoª°Â¿g³ø!ôJ6rªŠÐ+ᮺ—Z¤jØþö©é†œ¾°ìôf¤;F¦MLjñ¿"öíEÆ \wľ}pDdÜuça|ŸäÞûÓg܆‘ñݬ7gÆÚçAo/2ÖàʃÞ^d”÷…¾ÿ›+¢E.œ§äaÖÜ×­dÜ÷u+9ÅÍ1oÆŒ7¶† C8~—¸øEÆFÅ1ŽŸ\WD.óG%#‰Î–€aÈh‘á“ÊÈ<€µ7¸‘áPɈxæP2òñ±õÁ}ÎfÈ(Â{+•‘#%#‰î•±Q¿2cfïL/2RìÆ™nJÆeœ¥×.Œùb,¼:ò¨ú‚Ù4%c±yŒ£’q(gõÆ<ða߆Œ$*Èa¤dÌlAÆ¡7GDŠœÈ©Œl ÈÅ­™Ó`܆Œ‹,ØDðæwƃÇÁ¼ÈYkRóÁŒ­8KÉ#ã+ö̽3ª˜¯†ŒmdŒ¿rî`[ožø—|¾¾’Ñ‹3mJÌ3žã„ñVòÁXc:“¹·#¿Bà ®’±Q û›%¾B»±Ÿ\ÈÃŽ«VŽÌ-p߆Œ^l˜·{3RxÝÜU«ŒŒÈ< Œ¯€|IoF².Lœ9Ö_bí•™Ž¨«7{dá2âÇ >†0"ñ+ân^Œ±îÍ %c ;¶Ú(#‚•|ìË oÎø í…’_a0ÎHÈÇÎð7W|…3¤é†|ìgPS Yc…„|5x@Õ›‘øýÄb÷eÈWc iSòe#ÎÿJdgŸalV× ô®Þ 3³§¿ß„¡Äy¢ýØÌ~­fºÙÕ+•ïeœ‰žfýÎ6þ2[†Ó-½­Ù60˜Ù™íÓè©k´i'R¿gK|ºMÓš½‹…Ó^œÙ¯È®¬fcEvå·#»Þ½n–5ûMg#`µfÏiq!I'b/oöp.ìÌ>îêü{êÍç1ñvöÜOp·î¾‹¿§fï}}gGþtd·‹0\g¥3&әɧÆ1ù|Bu[³Žâ4Q#ä}F°U}öG1È3)Î*ŒÃùœœu‚…Ë2Îäp<éÈ™õþFegÖü'Vë²Þé}çi²×ÅòjnDæ1Î+š‡s†^7¢ªy¢ÖUø<Ô#C“KµæFð«}oÄþp‹Ó½qãÜ3ÈÙ™Õ<[ëܨüv$Ÿ9ÞÚõLìÌóã0¬ÎÓ32ìÌ@³Ç|84Ô ¼o¼=c#ö}³¼¨¨ÅÿÎ+}ê ñŠ÷;-Ô<Ë™,72Sï ºm|ŸÕ5}6ºs£ýÝhðrÉ3 o¬x;×ô „3æy‘7û Æ;=nã<½ç93áÌÎ+݇q‰sÊo.dGˆ÷ÎÀo38•ËêXˆ=>qŒY<ìòéÓŸ2æFlžë£Î@¿rçFÞ·¹‘¾ndUïtÆypA®0gº’GÈqççy{Äï§ëó÷(HúâÌ@›Â@ q$÷8A¾§¾7ŽÀå›÷Só}©˜¹U¯Ø¨^±ç!È•uÕ|_*¾wÇFÛOï¨Ï*ò„9³>«<Âxe 06ê¿\£¿P¸#Í™fc£êÛ+}‹s&º8;²në–¼'ØLgGÓ2þ>©Cyg&ShÈÔã°XÁrÆ,,ÎºßÆ5Ru´ÉšjÖ‡mr#ëÛ±€–°Ælï;V œÙ^uŽ7ÄqzLáŽç8±»|oì|™8Ü y*{áF\5û¨jÌ@鳓¢ÇBZ¢ó}îÏ[Í÷¹þÞog Sš³¿Òyúƒ12Äé-ƨºø{½‰AãÄtgÖçge~Y³¾èøÃâ–çw ,ÔwJ^Ü(¨îÈ:¼Yßó|tuö·™ Z]3PôÆxטíqÊŠc£e·5…"PÕ˜Úƒý)qº3o°3ë“5 4ݨ/Å#Y1ìÌò61ŸçÌ@î‰53ç8wûæ÷}{F{5kn|ûûtm|^5ËóDŠu$²:îÕšíál,jž|2pNã¢ìoó}™˜µtæxb""FܯH{3±#Û™‚“§÷‰cãVzG !^Lg~žÉ­.y?dsuŽûÅF?uÜÉàÔ™@iñt;㑚§<Ç¹àØ©£Ž”­'óÔ7Æ,k¡?k÷Ã1&êž'­#]¿3ïÇÓ¶Yžy*¶:ÉN $6¢ªÙœ#”oëýh¹Œ'7Z вX³¿²‘QC½¢>‰@KcÖWhiÌD/çøÙj›DާwË@ÎuYs>aã8ñ¸ò¬tη³½Ø¨œ9Þ>·ã;¹. |HžÆ¨Yñ>‰s#ÿÅDÆ tº8ßiÌìœXUçFýÔ4æFãˆ9­#PGÇ«[žà[PÞ¹úÆîNu@FÌ;Ÿ|Ê«1án'¢Ž=#'ðÔ—Æ TxÆëø{jž^Ɉku¤‡<‚'ÐΘŽåæó|{åyÁloãôW¶‡Æ€âHt’|ƽ…O" ã€g>åíyý Ô;ýIã¤äFuñ€l[ºx¯ ä;dâhïN ÞÇé¦È¬®ˆRÙ_5né}Y3µbuRØqº®ñÈ@¿ó{‹ûÏ@±“ÈŸ¥ïjÍú¨bG°zäçáF}ãtDÁSÇñçtØÓ7ŽÓWqL²3ÏVù<Þ^l¯O ×™o3æézq:¬8Èå鮯|Zçï©f Mc{ùöIYÍÏ‹`ÎL4§³ŠïxÞ »O# ûSÔhÂÈç8ÝõÆ|ƒ1‰ãtVqÂv4<Î+ÕN{+n(Ùñ:³>;Ç‹ÝÆ‘HìøŒ7Œ™ c§Œ:æOy7f hŒ—Å‘Ê1ÁŒ#ŠãYñÊÓ/+˃šïÓÀ1Ïêý…‰ŒQάo&ÙßÞqjÔ9ÝòÌ÷ˆc<’TâÂùÊmÎ+‘îf‰ˆŽ«sôçÛÅñLúg`Ðù¿÷;0½ÄïÀ ýüÓqâaBçL¹OÅÑ"<ãA´âÊ]Þ*¬u&$bHÄ>U9ÛÒ11܇!DŸjœåy"†û ÕëKQú;Ç/ÅÌ\ÇyÔ"Ô i;^ŠC€:¶Î¾Gt›$bÑ8Oë¥Í·¨#{€#¸Ž­÷ŸQ»vžúõÖŠ»œ²>«Ni•^Š%ç4‹B„,/UŽ”Îˆl½Õ¸Ã§£ôRœ÷Í)Q‹0¨s²Ñ[˜9~Ôë[1+Ô±û@„õ„èÌ·boU_Âð©áS×|k±—ijQEy¦jí*¬>uD-¾!}ÿnð-Ìú1”ëS3BÅ92¡6É{éæLÃ…D ­Boö¥!RÈø/bØ:/ÕŸâ #Ÿj’UÎÛ/ŠؙЬ*†]ñ|OŹðµE3B²NƧFœýŠÌ "ŒG‹ƒ^~ÕdË00C*B¯y`ÒHÄO^ŠÕ4q&â§ÆÆì—bÄ3qEüÔ¥çCgR.¼êTñS£ã+â§ÎSM~ÕŸš›Àßâ§æðOÅLÃb^ª,!,Ñ"”†•‰xž,:ß/ÅQ—^Špù3i\Tüd8ƒ÷¥Ÿ YxEüdر#Zªö”¬—"õÆDKûR¤•ãáU/í8»·žVT„7|"[ï§ÎŽéJõöVFÆÐ8ÿ:ÎÆ})V)'V Düë¨ýEŸšØüõRO†7V„sbýK-ÎWÆ„›½±‰Öû¥ÎZb#˜µþÄ$›µþy+û[Ñ:MìŽ)Z'†ð‰6wÅ&à_»|yþ°-ìyc»ŠávØñöR¤eèß§ü|%Nlˆ–c›üŠ´¾BmÜroíci›§Î#cÝbB9%¦EÎðj(#’“Q‚†<Ș+žovvÒxp‹!†Ãöc2âáÜŽ˜jä±.¨ñXCL³nŽâ”äó8daLÑmŽð”ÜÙLœûææôá ¸yÜ01ß¼#0‹¯¡!:í› ß”;ⱫïÅ››vŸçº1¤Û‹; _,\°Éý¢B ‡øj +'kyP!rðn „ƒ·3i ‰o4dÔäæÂ£«´™ZN9ãVÛ0ºK؇߭yŠÏiVçéx¹½UÝò~³Zó;XªcûöéOë8ýøfÞÞ·#¯*öé/ë‘÷Û]]2ªæöôû{ûݧ»%Q‹8sûùIð=Œ³¼1°U\¯é¹+ó–©\sWn¯R3XðÆÛê,o ŽuæÙˆweÞ³·³<Þ‘÷îí,o<‘È9{‘„Ùá ±UÇTÒq_Ö Ðæ>kuß±½O=3¨u8g}u–ß.kžäv<Œ³¾*Ì›nÌ€¯yëÞÎЫ‚äÎ :/îT·+ z9΋‹Î ß)\žG^e¼¸Óšá9|ñÔ%‚¨Ï>ÖmÍð›“Àõ2®ÎÎóÀ¿ÏüÞ—q4Ã7OrføLåò„1OĬ·½1ö‘kž]É\užz{öQ.ãá-g{í¶f¸aåöBã‘ex“xeø-ü:GÀñâçy{G}Qc{Ÿšác±=÷íçNœ‚} kÖ'•áQƬOâ\qä•Å>½f§hWn÷x;òž¾,ãúóôïÓ7%ŒoϨïŸþ¨1ûó ¼VÇòëñªÖq†8>¸zÇûp>xµn>}]Ö|Î+êÓ‹q¶¶sœŽŠ_I8‡ìÌðç*Ô%—9ëÌñϤvfÒšó—ql¸9'ëÌö ΥǴ4ö¹,ë8»ºóó¾é&Ï53æxu2/°xdø9ÃÇ#<|rû‹š)pxNµzÆx1ÂËÙŸ˜ÛVç¹ÁÉNœ'¿·—ˆwž„Î¼éÆ ß]ŸÇË+Çó X9ÇÙÓ oßQ_ržÕyexûéï‰ciûhºõÌðörgbUn¿Q³?Á <ê–ß·óó¨{†ÇŸþ¤q„÷³¿(îù<˜—Ù8ž·‡ŠG”žßíÌò°x.¥8òQÆÞÎ|_âlÔ+Òü,žKi̤H‹ágƬObþX¼?Îëvæxbßü¼/Ÿåüžç°ãiÍú6¶‡‹3ýÅÆš¿3ûã×6.Ñ‹ssÄq.Íñ©O>yq{•1ÃÏÎ|×m¹VK̇óܨ q2ê<·+ÂÓ¾w¡âTçy¾ûcÆ ?¹Ø繉ÇËšáÅ×D}$Îð΋ã!ãxž›Û•ÔñÎýuž~}Þ7qlß8áÕçy Ÿ>ﳸǹ¬ÛƒÕ#Â÷ÏÕúû\ß{gzÎ×83}÷ձÕð„WOïžáÏuï ï^ü=Õ<3¾o~5Û›‰QqÍúŒq^Î,ïP©ï87t ÎÒ™õáÀžu‰÷…‰²ã\bì·Rǹ…q®®3Ó‡ŒÅ¿÷öwx5Véy.üÄz¸ºÇû<±î¼Òkh¯'æ3Wú)Øê™×WÔÆq}ãóz{åõ˜vŽë^¥ÞyýâýÔñ}Ù^¾Ý"=ï ?®Ýš¿®ê˜¯?á½Ï‹íáµåA\¢¼/$íW×<·užŽ©3ßWž›ªŽùúã1¬Yßlì…Tw·ŸsQëeá³ ï»8rÅ??œ:ÃçŸÅ)¯Æ+Ãk×eœçæžý3ÓšáGâXÕ;ÂÙñ÷+ÏåD‚yg†¿p<§¾†¯žòhÌs‘.ÄѨK„^XxpŽsEq½úû\Õ…ñŒ1Ï5‹ñ¸EøËôêá=gS·ŽðVާÄ#“nÖÇÆë ·bõÍ97³7kþÞ§óÊðNL\¨w„Çò€`gþ^q>âqq«ãqñæça-õç^b¾VáÑéÔù¼x€©:ÃÓØð«c>î„_žþ¨1Ãyî¢:Ò{ʼnê‘ç*b½Â9ÂO1°TG}qÂ+ïaÍò|Öƒ§ñŠû5ŽgűU5Â/ŧfx$–œ#¼²£½Çx¬>ÛiÄžÈsïœÃïØ_G{áƒê ¯=ëqÅzgø>ÏÛƒýÁv!=Ö·?ÃÑ~žS…ý¹ÿ÷·¿úë¯ëë¿ý¾S«Z…óCE¨K¸T*Â8Ÿ¡j"<£ï“°>µ#Äíœ}%Š¿pξúÔŽ°¤< ëSyöÕ]Tågˆ›ˆ!=qSÅ_hFþöüÖªõ•¡q¢þ34NŸì©?D#®|º”ª¸òyD˜ËdØœjPwSñCÄ¥*Bêڭ⯉óÂTó+Cñ>uÚüá›Ý(>õ9gL„OÍsÆÞÊsÆNxŸ(BêêP14‡{¨æ×w à[5ÂûF5ŠO6/£ý•a¢Ÿz5£ ¼T,YXËSáSc¯ˆ% ᄪ¸²4Õüj¨ÚT¿U,=<·M„o„EÑŽðEžu÷R„ÖúVœËç½½uÿ _TÅ_ŸF%®<çĉúW†6ªâ.'Üõ­aˆ×4j_Ú(b(,Ï¥í¯ mõ—ä9Ÿñ×Ç2Š¿¾‡BÎö(š¾Xª ý'†DªÆW†Dª"Ìr^ª!‘sÅ'[í­罡©‡¬¢;TšÑüú>¯ï­!˜çÍÕ¯ï³üD#´öW†uŠ*ŠÿBµ¾2¬SÔâÊ5"ä³,j¢8;P4¿¾Ï|‹¡©<;P4¾2ÄTµ¿¾Ï|‹çü!´U5¾¾ÏEˆé=T¨Á¶*ÚÒ:2¤õz+æ#Oý¼yª¸Ë¼TwÜe5#|[ì³Rí¯ “•¯mÝ(Âk‡Ó¢ÖPexí]U.U‹+›S\٦Ѥ֭¼+C}UxòõUý õUE¨oÛ*ìd° O [D3B„ïË(B„«SÜ¥NÖÇŠùÒüʰcæRy2‡jPû~+ÃÍ7jSÑøÊPfÕ¦žšL„QÏÄTExtëªò3µhFŠáW®¢Z‘Êbm#<%$²íHrQ‡Q¤¸à/ýÒ¤êýVìÛdj UÜ匈D‘4ãÔ(oÝ™2cýL˜¡ÚT3ÂèŒçv«ÖWžÛ-b‰DM¦Š»0 Û§0:[Ø·¥j_™¸CÔãÊ3Å•Û)’rÜ·ŠiZVüb/ÐRaõƒIBTq—¹â.ü5_¯‚•fä™:DÕ¿ò¬sÑ §ókî+~é_1E[ŠTqå4ºãÊó6ŠæW&8aæ‹éMTí+Ïk¡'°±GDÔB§„ˆõ|kRž`†O„}cMX5¨¾â.³¨F¤g¹«Q§Êe´¾2­‹hÆ]¦îÒâ—~i}eºö¡n„ÁªU»QÜ¥ÕŽ» §¸ËF(==JÈ/±šÄ´3ªF=#UÜåimD˜1ÛÈ®ªÔÓ»T ªuU‰+ŸR¤Š+û6ÚÔ4ªqå3ªPáJ„аÇo£¢ZTo*¾Hù¯Š»<¿¸ wAl¯=Üí|ªö•©}Tq—VT¿$ýQÅ]ú0šÔØ*ô~7jqUÜe¡wÁ$Bªú•)„^º£$ãT9U\9œöW¦±DâMaF—i…Tˆ cN!Ã|:(JÆ31Ÿá žHØòâ“T™÷mÈ<'ßÙpÌ‹OÆRáw¡óºQž"Ña^\.ÕًÊtÌ‹ksÌÌHí6üλ´–c î.,,]‘ɰŸA“’ñºÌ‡d8’Ó°Ô`½óâÖwðùí”QÌ*^ eÞj.ǼÕvŒBˆ­)†;xÞŸâ­\ÁS¼…#/^—#/ÆF eQä”2ìÁÙóVë6\y«µy1bé”Ì´ÃH:ÃlÛqGfŒâ…i eQlŠ0lÁS€•3XšaÉ[5ËìË1o5kÞêéðŽà34T2b÷Bè‚a >ï—áŽË°çų:ŽàšŽ™¬82Ê›QŒ†#Ø–cÞjvÃÈ_†mO†y«Ý™{ Û”+3—Õᘷj¸óâ9Wøƒ-3¦!£†á 2Oø‹‘í a†=8,óVË‘y ˜GͰOAR®àrd'Ö”Ì_Àüj†-¹ {^Ü,óâ§î5ü%/›rä­ÖväÅXÒT2ãÎM†yqÙ†+/®Ã±û嘷Õpç­ötd6l,0œÁûöè~ÜXì2Ì‹»ãïíÈ-ÊÈì7"kþ›y1óæ¿9‚§ kÞêé æ­¶%o5Q¼…¬Ìo„µÖ`¹óVeö¼Õ)ÞʼÕÚŽ¼¦: w°^†¬êol?0ä­ýOùû¯.Ǽ¸uÇÌ+Ø‹áÊ[šÅpç­æŽÈÆ|„†;9 ™K¨`€aÞêtó”y«q–¼Ïpx“·ÂvÃ<Ý­2^ ,(öà°Ì[Ím8òV»:òVHÏj¸‚§˜ g^*åŽÛpæ­fwä­WØpçeÅl¡iSŽ`]Ž;ØwÞjtǼÕ\oÎÈ$™Œ óâsž–’ úJV¹çÈÒâ8‚m8æ­z5ä°”Ù“ q«vYMÃ|ª %‡¥ K{†y«i™·ÚŽ‘± R†#X#[2ú•#9-ómKL,4 +9 Ó.Ú°YTÞÌ[±¨¼È)š†yZÖŽ38›á΋×ÆÑ”‘÷Ú°OaÞyq[Žyñ) JTȨ̀­ä´!³i¶ Ï×{3ouNʲûÑ04\Ág¸¤ä¤bÈÌ0/~j*%+ó†-¤†ù1öv䋃ÜÞJVæ 'UæÅë6deάà†#xwÃïŒâÕ2/žÃ‘cÇÏý"§ –Ë Gr8æ­ê–ÌÂŽtßJNvä°0œÁST„%/îű§eÞê!§ ™ù˰ËeØòâ2gðœñ(ìy«6Wp6CNtw,CòV½4\Á»r“yâ óâÚ W^ÜŠc^<‡!q «3ÜÉ)¬Ñ…`XšaÞjXæ­žoª¼óV§ë¢ÁÕóV{FÅúŽáÖ⸃Ýñ;ÿ3ü7Ì[-Ç(À˜Ã7¬ÁÚg°MÞ·êÍ1o5nÑŸŽ’ÅËßÊ(À˜k5Ì‹›ãÊ‹ŸZÝpç0Üyñ33d!Ä÷›yÖJG.[ü¸5Ç|j e`¤s6Ì[=ŸÖÅ óJñúo؃ërä­p6‚2Š(6´æÅ§˜ £ˆ"iˆaÞêt™„=/^Ësë 2Nc¸Î´’a öa8óâ=QDy„áLNÕ÷Û1/ÝÓhõ˜ò΋Kw\Á§'©äbÄÃç)â'ã9_†+ø ÿ•5/·ã.G.4/ÌLò'Ã\œ’ ýBÊ6ÃÕq—#zžZfØ‚ÕrŸ‘‘’ ýêñs¿Ù‚ü¹ß\Aþ /®¼Õó” {?÷‹¬–ì wðnÂ;šò…}ìÍ1oõÔTJVª<{ÍpŸÖDÉÅ5žËfÈ‹ÑsV²Ê]è¶`³\ÁSÌ„-o5/Ã8ë¹þ {pUÇÜ—aœBˆ-͆#xOCNY0ñ€aÞjtÕïâØ’Ë‘? v×(9[8€Ñ°Ëp\Á¦,Ñù\Ø¢ dr¡­1ÄcßH‚¦drãPÃ<…_ÈbÆs” Ùxû”ìnĺö`«Ž+¹ ¹]g#¹™aÞjTC•ØOÑœ†,HvlZVrÈÃ3 {ðùu wr~ŸÎøtä ù£ 園žÌhØ‚ýrœÁQ £#ý–a îíÈG7㱿;E {°vÇœŽ3oµ‡#Ý>u‚áÖË0 0ê•Q€q>˜a îÛ1ou^ºcùì¡xߎ-¹ XZöà3B1ÜÁáÈóf.lQ0É혷ZÃôÂÐxÃÓ§ ]hÅ gðyþÊ·ƒm†+¹ G^\,ù±J®œ%X/ÇlÕpÕàhŽyñœ†<ñŠ'®¶ärä£Cy{³gm(HÊ|ú]†+8ï¼Õ)*J`Äèî`sŒŒu%üx6Ã(¢X…1œÉeEë,†-XŠcÞª,Ã(ÀXî7ìÁ=ùØq€’guò¬ZÜËqW3ŒSx±do8’ËpñÑaVSÉóÅx>“aKnÇC‹k…áí†ü‚Øâ«ä©_<µ×pO–+xºµÊ¼ÕÄ)gðt?„<‹ò¡KJžÄw!ù“a~Á3b¨uŽS­–#8ª!OPã Ć59 y:åm†-ØoÇœŽ<—óÆÈȰ'—#ÏôRî<ÓÊlC8ã4;žfØ’ÛqÇ0d•Ë {eœâŒüJVŒ ~7äB¦%+F°¶`Ž+ØŠ!+F°öà¼wr²b¼Ñ.Žàéæ yžò o·œÁ39 äYÁ7Ú Ãì·ã žnž§tÞHˆf؃«;òá`¿Á›‘ýò°ZŽà)¢Âû žnž’_áíJž{|c¹ß°Ûí¸’Ë°–à¸Gr9îà*†< óƯcÈ€õ;%Ï‘½ñ•qJ:Ÿöày5”;x^ aœÿŽã½”l¬o¬þ¶`]Ž3Øš!z†äöà\ŽøA åßÌ{ fË Gðt …lè b@ gð L„lèy¼aKNÇ<]D!‹hAl‚až¬ÜÉeÈ"ÊÓç GðoaÏ/x&C”ùwwäÄ ’Å›gÚö`†¦ñ¼{ÜÓÅ»`ÖË_ ”,À› {°uÇì÷›ûÊŒ¹Ã|þ+%«Ü‚¹†-¹g° CVÈ< Ü_cLe``8‚OIV²ƒQ*Íp{7d¢ Uša®âȯ€ãì”ìÖŒ Gð)„Jv! 60¶à¨†ìB0€!¿z’Jv\ ’—Ž`/ÂÈo .Ç|ÞMÜÅðfaÀ6Ã|ªzÃ|~w%‡Z‡º²¨`#’§l?,ŽjÔÛ†#¸Š!ϯfÀ¾á ž‚$dÅÈ€}Ãì—ã ŽfÈj³"ÚÑp÷mÈj³âw7¬Á{9Î`醬Tyè½á ²ˆ~°DµYñ] GrÞùÖpäƒÅVÙœ†¬6>ïµá>ïµ’cÅjˆ’C­Š5 Õ\†þWl$0ìÁVwr²b¬X0œÁ§T(Y1Vl30lÁÖ 9ü¯8®Ù›”¬+f5 g°a,r¦ 0ìÁ^Wði/”¬™ @ÉÎgE~*Ã<…PÈé+h3ìÁS•;øôp”ì^Vì6ÉeÈîeÅÜ…aKnÇìÃÃÿŠ­†ù1öpäĸXÉáÅÈWÉÆºb£aöÛqW7äð¿b«€áe‹¦¼b¤`؂ϯ£ds\±ÃÍpŸ7HÉæ¸a·˜á >mœ›K—%>$S®à©¾„lÊ–ì Gp9²)oXÐ7äW@‹ dSÞ°WÁ°'—㞦\Ȧ¼!ÆÖpw1dSÞ°JnØ‚c8®àº YD™ÜÀ_G‚îàÝ„=&¬6Î`sdSÎĆ+Ø›!§X~;Ñ\†Q€‘rÁëhÊÖƒ§bTîä6Œ"ŠÿÝpOrÚÿp:òá`û·2 á8oŸáöÛ0 !æÿ [pǙ܆ì^6ä—3ìÉí¸ƒU9²"žÂp&‡a…¯\ÁS¼…Qq¬2вfæ:ET™è j„Q÷™ê4ÜÁ{F1Û(¢Â¨7*seþ¡~9暎Q̰ÙCɂԱ{YÉê«c+ˆáHNa. ãì›ã žª^ÈEŸŽ­ †=x5B6¸LOa8ƒ§ð Ù ìqîठ[þ¡n™è¼Bvó:6Š¢2=…’¹Ž­ J:²Xæ­f7äà¢#çƒáÞà Ü[P W°_Â\|aš%­ÛH kr:ò±#¾^ÉAkÇ6ÃÆz„›7kQù¾çß·õÌ¿7›5ëCbÝÂw·fm1ß'ãîødyÀD„uþ=¼/Æ+¼/ë(/Øüéå{p¬Wxz×¼ß^Þü¾Økãåm°<·pÞ+Ü·u”7dëpù÷ÖåoWoþ½yZ ç(oØÕãåm²<·ðìÖQžËëÛ9Ï´ÙÖ=Œòh¼Ã{Z³=°_Æz†ë´f_ú¤ÉíÞ=¼‹7>ÏÄÉÎÜéÇ”¶Ö3¼.kö¹™Ãšïf}¦f¿{Þü½Õìy3e§3{×óf}fœ÷›Ýšc³Yò÷~›{ï'ª¬[x^Æq¶Saî ë¾§5GiÌ0aÝ­y¯ðèÖ%?Ïò®y?”'cþž˜Ìwæh~bψõ 7oîÐ`’4ë—w~ž5­G~žÝ¼ùy:Ë£šû•ggy3ÞáU¬¹ú=ûkÆ+\½YŸ1I‘:Îb*LDd÷›Óšíál/ù÷°wÙí%“¡Xó÷Z¬oŒw¸ 먯Ë‹ñ ã÷TG}µ9^0Þéiͧ¹9žPs-‘ù'¬Gxk®q/$$·náR­Yž’t[ÏpŸÖœó^W–1~¯u³>3ÞẌGô×tµ^á¹­Y×ÍúHÍñÞ D®Þ;Œñ¦šå…§Î,/ {œ¹J}Â,»w â½ÂË›åi5–5ë#ff°ÞaŒ×ÔQ^Û3ãÞËšý}„Yp”‡Oçì÷ê쯷0êã^Úý±58^3žaôWÔì-ì°îááÍ5–…ÝÖ-½¼ù}ð‡¹^½&ëãnÛší-30X÷0Æ[Æ,O‹í™šííZ¬¯ŒWã}5Ç {¬G¸kŽ'¸-Úº‡Ç°æ^ µ³<‰Q^6&¾Ô9GÏ,ÎìÏmœ¼`çÉlÎ\Åá=k~žÂú@ͽ?g×ôa¼ïjŽW¹µÉº…ïeÍhn²žá^¬9^Ø•õ…ñc¼ªf{Ëm0Ö+=­Y_îÆöÆx†ÑŸT³>Üã·s¦žD¬[zyçç]Þ¬¹}Á™õÝFÇÌz„Ñ_U³¾Ûí¥ñ£¿©æxbΪ9ŸÁ%XgÎWìÁòjÌ¿7ÙUs¼¹'Ë£ñ c¼¢æxò,!þîáuyççÁxæå;çÓ7^lgö—¸xf=Âg¾Å8~oäx°îáí¿7‚t¬[z{¯ð©ÏŒQꙘ¿½g¸5k´w•¹¬Gø”7cì88ÞÅ{ظvž5ü l¬Œ‰=ç5½[ï;»/¶GÆ#¼‡qúì¾ÙÞ÷洖~|úÓÎ+ܪ5úë•/–såó(¬ïŒGzY·;|ÆKÎ=\—u¿Â­{·0ʳñïj=ø}±pb½Â½YÏ—÷LOë•ׯÛ{„w³Žò†äPÖ=½Œ[–7ìV¶néå½Ã§?må­c=ʸÌpõŽòÆõRçîÞQÞ:曜{xyGyCrë¾oï.Ý:ÊŽ&pfì,ïê(/ƒåݘÏc²>UGy™¬OóúÞŒ{–l`´îá3ÞsæóX,¯ê¨Ï¸žêœ×£¿ Žúl±<¯ô¶ŽòÆõXç>ãEãÆëq~õ£¼ªÙ^ž¼·w^?—5ÛËÂõX㙾‹w —î½ÃµXc>ÞÞ+<½Ù+7ëã·GôÇ 6ÞXçõg¾ÃøÎëÑŸ4éiñèqoÞyý¸­ë•^Þx_JáxUÍñ@)|Ô=]Š÷ Ÿùc¶‡¥p¼kÌ빞lÌúªTÖçjÖW¥²>6žaŒ—Ô;¯ßśϻ±¼¿'†£¿hœ×ŸùXcöçKãxǘ¿WgyT—4Ê›º¶ôòÞáÝ­9Þcë•ÞÖ#}wköw ׋WºÿžáQ­w^?/ï‘Æ+O,,YóúÉþˆú¾ÓÓ;¯Ç|º\aŒ—Œù{/–GuÔ‹ã)uK÷êÝÂcx³¼p½Ù8ê‹Íù<õH÷î÷›Þ3¯_Ûå­^,¯j¶'ÌW`×—m½Óý2ÞŒœ:Fy4Îë—7Û“z±?`<ÓÓšýáz³?©f¤ÞœoT·o/kö'*2ÞY0ê[õÈëQžy}á|“z¦Ûe½îp¯Þyý¸¬w^?«º\QTlü³îá3Þ2f}_q~žsIŸñ’sŸúÞ¸æõç}rÎëÏ|‚1냊aÖ=½­{^_ªw^_¶õH×á½Ã}Z³>¨\¯wÞáÖ­Wzë÷›Û;¯_Ý82ÏTæ=°ÞáÓ_5¾¿½­KÞ¯ ï¼þ¼/Æ5Ý«uËûùg^ Îl*÷Ãs¼QÑð[³«ã}ÇñZΜ¯j›¿§šýEÆŽ[¯põæx³#pÌz‡çmÍñDçz·1ç«:ŽÔ±îáuY³?ÙqÜ‹3Ç›ëÕâÈöqŒßÃx‡ñ>«ù>w¤*rf}Þ+ßg5ëkÆQ[ã÷ìØØîÌý Œ–¶^áy[³½ï\Ï6f{ß±±Ûz„ñ{©ù¾2Ùšßg°>Vó}탿§ñ·Ûší=c‘Õqúòñ™¯3æzGì©Ywd™rfŸ‘ÃÖ#¼¼ã}]lWzZÇï¹ÎsŽß‘¾Öü<›¿·:~ÏÍñ˜ñ ïfÍýƒëµÆìÏE<®ó ¯b<ã}û3jÖ·/kÌõ„Áõ\cÎçE¼«1ÛÛŽ™õã}U³¾}Œ÷QÍßcp½Ó˜¿Ç¨oïp­Öìo®w³>\Ot^áÚãÛ:¸^hÌù–Ñù¾¯p¿¬KÞ핚ó-ƒë}Î;\ºuü^ƒ¿§ºçõè¨G^þªšóí'žrXs¼4&Ç«Æ3Ü.kŽ—#^R¼£>\Ïs^a¼/jΧ¤ApæzÞàz˜1ÛÃyñ÷0Þá³^jÌßc^|ÞjÖ‡“ëUÆìÌ;ŸÇÛ|žg¶7³²?õr³M»7÷»=>ý%cîw›èx9ÇóB`™3룈WsÞáS^Œ¹ž0±°èÌö|baЙó}©¦œ¹0g>¯OßQ_ðxpçûÛ˺¤O}jÌñTÄ›·ookއ&*g¾ïçäf=ÓÕ;ʉ8³¾]ŸçÛï~|æSŒY^ΑjÝšý‘ˆ÷1æ|ÁBÇÖ™íÑ 3Çc¯"®ùyq®ƒsIŸþ€1ËsÄ+ãóüá·³qõúº~ù¿ø‹ÿð[Çx¸¡Öÿh…þþ§ð;jEˆ¶z4o£Z*ôr;Q_Šþ ¨ªøëÏ(U„–³caU„YÉŽ¤ð"Œ8:zE˜mՌ0KÐ1ÚTÅ'Cŧ„]6ªøÔO )B­Óô+Úñ©Ÿ–Q…'ˆ¬Ÿê‘ɦcD¨ZT5 eDz*®|/"Ì tdNTmjvvŒv«p,6‹0ÓÜ)Â,QÇhFÕ©§¤ˆ0{Ø©Š+GU¡WÔ±¨¬ŠO=§ ½¥ŽQ‡jRûRíø¶{áWA¤áKÑ:u,>«6Uš ³Ñ{ªF=OY„Úºc1[…+ÑP©õ”"Z¸Ž„ú"ŒN:j@ш¿Ð«Š5z·ª¸òùuTñÉÖTa&¸£G«Â§F ¨ÚTY*ô>:‚³_*Q›¢áÝñzW¡ÇÖQ“©â/<Iu>Ù@ ·½¸ oU£šÞÔànU§Î[%Š¿>§ =šÌP¢ŸlO£SzÊE˜%(íªEÕ[…Ñé@‰VuêiñU;´ßŠÿ€rÕ)¿œ3… éªE’üz¨=F¯«ªAµ¥b A§N5©UT,!X¬VáµóDT+´U¨õO‚¨a´©z©P{Ì€«â¯÷Ë(þzŸ*ì6˜µVuj^FñÉV{+2¸ œž*ÂêáÀ⸪RO«šÔ0ÂŽÆ€v>5³U‹zZK©U;4U诫fh©Ðsèô«Zh-êéՋЃØq¦Â§F’~k"äGU ª±D"G©jRýR±ÔaA[Õ)–¬_Õ¹“vàÜ4KÖFm*ª¡e4©§f¡ç10£ZÔ)­o±–Bä­ªSO«¡ÚÔÜ*”¬‰^·¥gâ,U£Ê4ZT»T¡ü?ºîa’Ý8°ÏUp ]xfÚòåpÒþÝ[ˆŒî©Œq¨ù(°«ÿ.<ïÝ¡U“šÃ(©õT¡ç¹± jIQ…Úmc‚¿9dãê‚´òzc…H•ž0—QR«U!‡ej¢«ª‚:ÑöW]ß,—þ¢†’Z”TÿU1‡`ÑBÕ¦ÞH©ˆ9‘RUPkT1‡´éVé[¿Qiß4O¡FÙˆªÕ³ 5ÊÆUSJ£¤Öúj+÷àƒªE–ä+DA»ˆª6uzÉ_¡åÚ¨ý«‚:¥ê«®§Ÿhû+æœxU„HgãB…ªAõeÔ)U_!ÒÙXØQµ¨ÓÛ-J*Œ0ÚºQòŠ0S¾1cY5¨¾‚šO"êÜ^µ¨ý%ó+Ý'»±3  ÞxFN6~­ªAˆºp1gáJƒª¤ö¬Â¨ÊÆyÝU[Š*Dâ‡!Tá[ã „ª žY….ÎdÍ(©“#¿ÂΑW'×}…žÛÆêß*==zUèé¹Î¯˜©JêD]_a…N`DªjSóùJ#¥…+UAùf$£9U“:=¾¢¤NôôfÁ«-«6uF2¾Âê‚À*Æ"ŒÌ~¨Jja'°²®£8êð+áÄÓ"D3^h~%¬”ªJª?UX¸Ÿ©jSkVaD7°2¨*¤ühé–ÕÀ‘ÿU“Fˆ¨+Mª6õÖHEˆ WªõþÊEˆ­pÕ¢ÞÖ­-^à ƒªM¥ZÃ@[T7B‹8¾jQkV¡¶9÷R§Ñ ²á[ã~ç"´†‘z›MꭋЪ¯ÿH'Ÿ$v(T ê¼Í¯Ðr%$¨šÔ[‹Pk$ºT¿öܬګPk$þojÄáE¨xi•žð– "D¿‰“¹«&õ„QP3«P£$f«Î[I,)BÔÌÛ«5‡Ñ¦¶"êzÓM)Œ’jEQPbMÕ¢Þ·S„žþ9ÜËiPo®­Â¯‹Õ‘E±æm_U‹z[†ª¤Þ¶Rb‘MÕ¦ÞÞKV·óþ¨ª f«B”X”Sµ¨m„/±§ ß 'R¡Uã-IUIÍQ…VíÜE´ô„ˆ*´j‰E;UC £ ZQg‹—؈_µ¤4Jêý%‹ÐòÆœªMíU…Ö·ÖTá 8P½­ab×^¢mÞßR5¨e4õ)''éé;ª˜CeaF ןLÇ)>Í1.Ãsݸ˜$ ‘Sp­Èr¼5³p0êÁ•#Ë1ÅÝ ñvuÝGe›âÓCl?þ.·áø‰}8ñ­X ïƒN‘+D>ÀÓ‘>ªÏJôµpyA7TfèÈÒ•y¹ õº±›¿R¯Üpˆ3C\£P£Ñ8n?ï×HKþ ÈQ•Ê*XœRÙñdïÊûQ'{ö.¾aA¥² jqÇ÷4TV™' 5\—a¸ø ìö7 ±5Ce$\·h8Å77¦ŽÉ¢Ã)>?ÇÛ(\7#mdÑÊ%ž,ZøüÄm9Ä7à¯l÷A§kXÉaqseÿ‰§{Q¹ÅÓ‰(xªÍÊ)¾Á€!: !TÎ.öá¸Å†ë÷tâé¦T†˜Ó‘<Ž)MÇ%öeˆˆ]G|†¸·!3áƒS ñÓÃ)w¡nàÄÑaˆþ~œŽS\–÷AሟŽ44\âÉH…Ì„vÑWþì¸ Çp‰Íqþ.Ã1Äá¸îƒN‡¥r^†cЧ\¸ùR‡TÆ#>Ë1Å–†Ùžïƒæ¯PgàP±î8Å3ìRɯ…•OϰLåº Ã6Äiâ©ú ;„%•l4ì7bïŽ!®Ÿá¼ÚÃq‰é¸ø5p´á¸ Ç-¶ÇMêƒI)Ã)žì]™b¤a0›aºÄp‹ýgÈæø eÂ/ù5°?þK®‚cLÂq‹cªêÃÔ¿á}КŽ)îfØÇe²úâцër²úⱆCÍ1ű 9ðÛ±Æp‹Û‘ÁØÀé†SË–¿ÔÙä‡o\]É`l`üÐÂ(ŸaŠ' (d(>pf~%Cñ©rC>c5†)>?Cê‡znñ …ì<\xVÉÎãÄr5ÃÇ4d÷p¢÷j¸Äí÷A±‘ùÏæ\Ëùº?Ìu¹ u+éáÛšT²‹7Ñ÷1¼u*™Bvñ&¦¡ ù †lV™âÉf…lø¸eµ’MÛ9‡m:Nq4Ãy?êdÑBN'MÄ™†ór;¦8†!í‰IjÃ-îÇ0îרáx¿F Çû52 Ù´M\½bbo…¡¦mb½áO÷¿MÛD»lȯ b†!žî!¾³1k;.qC6‹Üdext›B6‹µk%¾‰Ù[Ã)G.É8ÛuÒ ܰcx?êtÄ*™P6+Ù´MÌÐU²i›˜þ6œâ Ô+ïƒÖ(¼û·˜òk`~§RÕ¶þ.ñ­{+U}ay¾aˆÍ‘“M7.qÃqtB¦Êû S©rua×p‰Ã‘ ßÂX«aй Y}eÁ?Ç}¹ YA-œ"o˜âš_Æ~_8ŽÁð&ŽiÈŠ‚Ûç+Yœ¨Ž¬ ¸ÌÔpˆÃ2Ä÷®dE±0Vcȯ«ß*Y,lþ7 ñý>•¬F¸ÙÞp‹9 YÉœõoÍ1/ÓÕ\g¸Å7Þ«Ìû ¹§¸zá£jä¬C³äƒIêJV#  —ø¾ÙJV# ýÃ!žì]y¿Æ@Vöû ˜†ã>(›ã}Ð[÷òAè T2dZ˜7Ü—iÈ€jáªÃ)æpdFÂ2çJUA8$Óp‹ã1d@uŽSœÓñ~Õ P-œxobd¡n}"«J†L › ‡xŠUeˆoQÙîƒÞÒÙ ›ö+U1&ŠFå{²‹ÇÙjÃ-ž¢Q8q§cŠéȪÛô ·øŸ•ìâmmUÉ.ÞF½m8Äõs ñ­+9!¸q¿áû,Ô-¢·ÑŽËt 1š!Q¹aÞ?æw*9ˆºq·˜áO-d÷à ïƒÞö¢’Ç¿ÔpŠ'{²ÁåFxÃ!öÇ1Ä™†ÎÚX3o¸ÄLCvmÿb8Äõsä×ÀêåJ±n¬"6Ü"³Ê‡l¬7Ñ6ä‹•±†)2«üƒCMùÆêVÃ-NÇç~ÔÃT²9Þ8ÐÍ0ÄS1²9Þ˜v¯ds¼qÓ€aˆ'#2È?£"ÍMêÙ°œâ¶L1»!Möå+9„¾q‰™á‡eˆsÞ!ô)ûÊç~T8r*yãhaÃ-žŠ±ƒ™Sö†S<Ù»2Å^Žû5"ñ5k~*Ù‰ ¸VÉN{(†CÃ1Äù3äPg`uáý§#VÈI½ÀÃûæS¨3ónz7œâ馲 ¼kâ M ö0’4äˆ+u*ö0J1 q=†ìn1§!ÞÀ”½áûtLquCE+N ù5p¨X¥² ŽR3\â[ê+2ÅÔëþrˆ|Ý_†Èú!C&nœ7Ü"_÷?¸o6Ô}¥²öqnñ­m*•Íp…áO·¥PÙ ¹Âpˆ§ëQ8îƒÒ’_{*•Íðm §8,S\ÝPÙ *•UðJeÜua8Äü9òk`Is¥ª/,`0Üb ï2{/PÉN0—áÈì(…ÊHX½l¸Ä3œUȆ/°DÁ0ÅÙ çM¼-ñ Ä!h•l¼ãi†C!+™Äqg•ìŸC š!_hâº<ÃG/L'‰£Í —x¬ ùº_®î˜âÉ¢…í~É7¿"žÃ ùB_žNzåO'½kâÈ2Ã!ÎpäOבE Ö&zs†KÜŽ z‹– §x:5•)žîp!‡•Çxn1ÒÝ¥D[ÉNMâ0¯ó§NMb…á߬RÉʼn㷠§ø>±’Õ‰XC¾PìÄ1 ñÍ3•œ"IÌI.1—!;é‰|n8Åþ3äp%7Ônqÿ Ù O\k¸.·!ºáí‡ßßp\†!É»åÇ4DGûpYNñ­!¿ÔÂr0ï—Œå F¼+1„~øÆŠ†K Ç6Å·i˜ –Tö}†£‰ÍqòÏïÈf•Cì?ÇG7\[\Ãp?âÞŽSÌÇ0î—Ìpä—ÄX†!žŒT˜MœÍq‹»²1ì9C<©°5ñ-_†ÌfècVöç2§øÖŸ†)¶f8úe8†ø¶D•³‰¹ù' —Q¹~bÿ9Nq‡cŠ1 wóqÜ—aü°ç´RvYæeêôô÷f®|îƒÞokÈŸ1[eû‰OwâÉÀ•)¾ameïâÛç2Üâ~TŽû%÷0œ÷kÄc¸îƒÞ_Øzp¡x%‚íÃÕ—˜?CVPŽ73Äó`™A%õÃù8nqWê‡i¹.Ãðá—l§%2œâ[ê S|ßNeëâÉÞ•q™†½‰k9.ñý…+¿öST®&®päGá7¬dãÅ ì†SìË1ÅÑ Ùxq»aˆûgÈÆëÁ¡ê†[Œ^8Õxqk¼!ÿœSÉæéÁزaˆo¿©R™a"{Wnñ„y…l¼œ»b¸Ä˜†ƒÙ{ÒpˆÝ2Å“E gc;òOÀööJe3ŒkU2Ø~0Ýo8/Ã1Åõ2? Ç£*›á5Cþ 8]áËu³&ô+•‘0¢bâ)… Š´[ÙïƒNö®äO‡±‹JeL÷ñdïÊO.TVÁŽrCd•†IùJV_ “ò†K\ÛY¥á`1Ãs2«4ôª ãr2«4¬2\â¨ÜÊ* ko çe8¦x:é…Ìfܰoxÿ„·Õ®l÷ÏÏéÈW†¥•Ì„ Ç<.ñBf³†¨Û0ÅÓÕ*d6k8òÐ T*#a1@%›Enö7œâ| 25¬(0b¦#ÿ@hVÉ€ª!J1Üb[…Z~x NáÃ?­§áOøQÈ`»aÖpˆã1d8ÝpÉá·#.³3ä Å)a•óŸå8Å“ +Sâ™Ö[>×!³Öá¹άYx¯­3ks@óÎë°fýÒ±ÂÀzË£Ysì‡÷æZ/yy³êX¥`Í¿+ªïxwÇa¬Ö)Ÿë YßttûœY§t¬2·ÞroÖŒtxbõ’g³fÞÑ]²òîÖŒx:»´ùµšãF]gÕA‹ùÕxÉ9­ût¹Öó:¼SnÍ:Çuz‡<—±ŽV?Ο÷¾^Ö£ìX—àÜùùyOù\wîœò|¬ûÏuæÎü{“ù½š#Ý=Y_où¹š£Ý<;Á™cÖçô„´æ8@G³b¿gàn7ë”×cÍ>Ýø1¿ã÷àiÎìׇõ¡ñ–W7îêÛ‡õ]5G*ÇÃüfŒßk`€uÊÈÕlïæû­C^ÚíÝÀa3Ö[Îf͘|à‹Y/õ]5ãòahëy½­9£2°èØzÈÏðN¹=ÖlOyNƒ3ÛKžÔ`½å9¬Ù^ŽÁül¼®Ãx¨½äYÖü½p·™3ÇÆd}[ÍQ‚1YßoyxsLü5ò»ñºÞÖƒßw±>­æ ñÀOë!£¼§¼Ãš³2<]Â:®Óš33›þ­÷uZÇ#÷¿xÉëg¿ëe«f{Ìãí­ñ>xX|õÐûÞ8’Å™ñ<2wæûäYÖ[>ã ÆœOã‰ÖKÃzÜôkzßôá­÷Õ™ŸŒQŸn¬À±Nùô·Œõ>ë+ã›~vë¸é×Ïû¦m­ü€ã ¬ù¾'óã×SõÅžÌoÕÊX“cÍ÷½¯U+¿,Œ§÷ëù/ùµz\ŸþŒ±Êób{iÌôX ã¬ü‚›­™_‚õMµêƒ`~1¾é‡wÜô9¼™_°jÆ9ÿx{§|úÅw<çy8?÷óŒ‘ßx 3ã ž½áܯÇ_|?ñ|õ¸éW÷fú‡õY5ǃ·Zoyz¯›~§÷MŸÍšýsÀX÷ÞòÚÖä1SÕw<0¸^Äø¹>ýEçûy«Y·›>þb¦ÌÕýú¬'1æxï9hgX³¿ƒí™ñMŸaÍò\Oâ<åÖû¦Ÿé}Óïf7ýYïäÌô\/bÌþÏÆ°òøy§¼œCóEÁõ$Î7ýï0f}ÈÖ)£¾©n7=úcÆ7=ú[Õý¦G˘éƒíY5ÇÏÝû¦G¿šã ÁõÎ)£¿_½núžÞ7ýZÖ8[é½¹Þ"¹^Ã8¯×c¬“‡·E[ãy<ÝÁ™ý‘|ø¾Œ™¾±>¨f{r6nnï›彚í OT°ù ëq=–õ¼ŸwÖ“9ßô3­×Mþª1Ó¾¯êýÇÛZï{°½1¾éOVçõxªÛ/L®‡p¾éÏ|˜ñsÓÇ_Ìô\ï`Üþ8­õ¾xZßô£Yëoë}s=‚ñºÎf­÷…»çœõ¾¸Á9䱬ó¦?ý•â{&Aâ0~çç¦?ýmç›þôgŒY_ŸmÞ¬¯“ëœoú3ÞbóñÆÓcS¾s»>ñ¦ó”Q_T÷›>š÷MæóŒÑŸì?Îw£?y¼½×õiïùyñ¤ñ~äݼ·Óý…c½¯b¦ç|µq6ùIï›^ïóŸÖMtǨOŒoúÝ­Q£¾¨F{Þœ/vùÄ‹Æý¦G}a|ÓÏi=†|ú;Î)‡÷dz®wvNyþ¬×Mâãý“cxO9ë`úÀz ç)Ïf7},ï%g뜀Ή_çç‘ÏxŠóMú3Æ­]oï-£½«î7ýÚÖhïûóc~¬F{|Æ[œoz´GÕë¦Ïåüò¼•ðÅ­CFy¨V~XÌïÕlÜaò˜Ö¬ï9ðiÍß{³>­ÖûܬO—<‡±Æ#÷_|Ó£¿Wýð÷ æWã}Öí¦G¼`2òc5ã üXßôg¾Ã˜ñÄXùyó}a`Å™ñē̯Õë'ïÇ{^‡5ãÑÆùXã¸~š÷–Û´f¼Ùp¸¡u\§qp<áx{c¼±³cjòYïbÌþ;žÎìo4Î÷:ßô(Õã‘çð^òz¬g»oþÞýÕj¶­±ã±ÆcÊñ³žü½&óc5û›<­Áy·ëð9§uòïYÌ/÷ŸÆ&Ï5œòg½ä“_Œõ{s¾Ø˜õ-Oo°Nùô×Çý{ö²ž÷ï‰îÍ÷……õÎzhx¬—¼¦µÞç£ù{àì?çèò“ÖzŸ¸ý¯ú¹ï'Zóûr¾ÙXï*;³½={z‡¼½UÞ°ðÕï»ÿ˜_«YÞ˜ñœù¾;n tÆ|ogưÞòêÖØØùb¬ï÷ÍŸ5ãíŽ;oñ‡¯Ö¹¢ÇÝ›õiç|¸qò|¼S>õ­1ÛÃóÅÒšíaÇÂBg¶wçÿñóyvkö—:Žö´NywkÆËü‡õ’O˘ñNï,/_k½_×yÎ)ŸúÞø™2ÊS5Ç[;f¬ù}ËK5ûCóùÎ[>ã Æ£_§5ëÓ>ØT3ž}=·7¿/çëYŸ¾Óšõeç|½s^§5ã™>™ß¿·¼q>ßyÉ'^5æxi_¬Ï«UqýŠuÊ(/Õã~ŸÙ½·|Æ#ŒÙ_ÕyÎ!ïiÍþlÇy€Îï윯7æxxG`nòÜÖl{0^0Îëm|Ç»:&®Ùê<ç-oƫǡ[§œÞ¬oǃþ²1ß÷xø¾Œ·Ük¾Ïñ°¾ªæûÛëj¬Çï£1žªæûXXnr>Ö|Ÿç¼gí§=>ýMç%£>¨f{98ï2ÊK5Ëëà|·1û›¯Îo“ïÓ8ä‘ÖO“ñv5ã™×«Y3žÑyÎÌ‹ñp5û“c±½¨ÎGÞá½å|Œ·ÚÓ±/§ŒòZÍþÊÀµ<ÎŒgµß9dÔçÕŒgçÃÇO÷–#¬9ß4’幚íáHÆ£ÕŒ7Ï~÷Ÿ5ûûÚ¯î¼åî|Çs&6fY§|ƳŒù>&ç»ù>Î~ðå2â¹jÖ—û8³«oNÎ';ßÏ›ÓzßÏ[aÍöh.ÆC;Þ2yÞ–ó–O~0æxèäzHcΗh¿¯s\ok•,Üt÷óÖôæça`Ï™ý‰Ιýñ‰ÎõÅâ|­1ã íÇ5f`ac§3Û£ã4~j¿¬1Ç£çsY´ßÕ˜íÅÂeÎü½Ï›rù”Gcö—ç;9_°Ðq´¹wkö—ç;Y_-Î'ßñŒ×g>Ç™Ïã|¡1Û‹5Y^ª-Ü2åÜù´WÎ|Ÿœï3f{½8ßgÌü¾ßgµ~oî§t¾Ï;ñªqÜçõÆìÏ.LÌUßñŠÅùBcöw´_ҙ߇óyÆœ¯]ÁòRÍúfáYgŽ÷.·³¾ß<ǘõÉë3_jÌßû8­ÙoÎWs¾k?÷÷ø§‡úƒ?¬s»>ñ”q¿žÞãúÄKÆœOÚƒOõºÞÞ,ïÚ¯fÌñ”=™_¾žZO¸y^‰1Û«ŽŸ3Ëã^l/«Ù_Ú<¯ÃXùa3¿Ts>uoþ^ÕlOöf}ZÍþªö›s¼as<¿x©<í`}QÍñ‚lïªÙ^ìäû¨V~ÀÂwgö'Î~¯fÍþDà²7gö¢3ÞùZçuí÷1f~çÕÔÎïl¬rf{¦ý*Æìîɨµ'Áñ*cƫگ`Œßë?ÿ:ÝïßgWóø7ÿýŸÿúïMìg˜þ_(¤ÿù?á&6Ôa5àD­T¥”;ªROˆù•vxLL ¡vš8J¿#S«EˆJ&v/aDibCo¢í‰Í¼E)œØÈ[¥§¿¥¹-àÄnZ¿Ó¹éFú”·†ÿ§¦v=Llú-ˆÑÄÈczKç0ªm4¨gT!—MT²U›zå"”މÃÿ‹¦>åí¸TµgZ̉‘»*¼1L6¡§ûêÍ)EˆÂ'&‘«6õpE|c8E®*©Õ¿Ò®ˆ‰Iå"¾1lX®Ò_£ªééù«êú‹rá/•E|c˜|.ÂÌæÄ oE|+X½Tµ¨·&*ÚzÂ[ÛTáDCUÄ7†MÔE˜!›¨)?Ò°èѧÌ^…¨`ⶇªI’Z¤o}JêWh)'6rW!‡`’¼ÆÄJ“"ì>˜Øœ]„–i¢á-Úú”9«qNì«T.£ó×.lôþH§(/lò®ZÔ0ÂèÃÂæîª N©ú £v §ãu=ý”ª¢Iå6Â_„‰ò"Ì2/œ–Tµ¨þTatoaò¼jRïÛ©ÒÓwVaÄh¡$TáWÂ=EèI/L¤a”v¡·W…§cú£ÁÑ¥…_²5ß9*ŒµgJ܆ò*=ýäȯP+žƒ ºÑ–² %ná[¡V\Øœ^´ô„÷Óªô„ù«Bp¡çTµ¨5ªBOß?£AŨÂÉÂIÀU›êñ•ní[˜¯šÔ2BD¾°¡½ ß “ÙUA½QM¢ø…Iê"–pôDª&QJQ…Q… ¿*¤¨bÍ€U»E,ý¸¨  ß ³UI=¿*–~LnW…´«Xú9ò+ŒX.LhW雜õO-Žô,œ8YÄÒŸ¨M‹–Uˆp6ÇW¥”U,ý˜4¯ÚÔlUCßìjªôÍvV¡fدJiU¡ÖxõæèªM_Zô£m´¨9ªBßl=F'—o,¨J)ªPklLð¤ÞùÆå Uú”S:¾Â¨ÄôZFzÂjU8MdcWmÑÐÓßè²*¨m5õô\Fx:n))B ߨ¡Zµ¤]…žé«·Ö© êDÛ_!jÞ¸(¢Jßl?U©oööæ?Òé‹'ªðô~Zè"DÛQT¢í(ªjIY…•+ºªðÍTuZ’¯0zµ1JZ„h{ãàƒ"ÌúmÜNP¥§¯§ 5ôÆaEØI±'JÕWˆÈ6.¨T_FAüJ'wl,ì¨ÚÔéí~õè›…jèÅUƒ:QsQR}W¡öÞ¸¢jKQ…Úûö-êäò¯¦¾õ‰¨‹ð­7ryQRkU±fGɫ·ÆŽ"ÖÞØ¥QÄÚ£xU“ŠÇ(¥¨Bt¸±+£ ¹!üSK·ÈAäi´¨Öª°:õ §QRï¯UÔôô÷)êzBô*Œ$n\ÖPuž¸¨¡*©·+B.ì$¨ êÍ­EU ,\)B¯àUL#|3Ì!f…«Õ›QPëW…—À U'·F^>zØÚ~¨ j¡µœlP„·}(B‹X]5¨÷Q…·9ð¦¿Bk8å²jKQÅ·‰Ó'«•­Šo«J«ðͰ£¹­}à†"¾1Ð_µ¨g|¥™óÀ•ªI7özu±Q35z"¹@U„^]`µX¾5¨ñMÞXQJQÅ7E)U›zß@ßtàmá›aÅT¢¼Àj§ªI½9ºˆ%«Šð¦ÏWmŠoóÿWçÛLÔ,E(ʼnÅ.U!eJq>'ʨÚÔÑ¡'(šú”“CŠ‚z[©"¼•l(áE›z¢ µð™¨K£IíV…Z8±@¦jPígÔUh™§Wá[cgÁGƒ-sb3Õ¢šß4ÑTMê°ª’ZFÌãÔ:Uøkqzmvœ$6ìWm꺋ÐÚ'B¯Â·Æ"›"D€‰ öUƒ³ Q^bc}Õ–² ½ùÄÊè"ô ‹qªð­7Z߯Ð+à-ñUAÍñÕTÙçVmêÍ™Eè$íT-)ªÐcH¬º­ÔÉYE)ez ‰ øUA­¬Bá¶Œô­Ó+²ª¡§È{µ«‚£ =Ås?µv@ðvê¢Ôv%•E‹=}\=C|š!zû`¢¿‹™Óq‰'t)Äø-.eNÃq´–ãý’ïW‰V\×W®%>Ý­5®"þ9æå6Œ.öáâ[YU¢EǼáxÿ„œ…›­:®¯m†ÏO<¦Jþ hþ+[\nþÅþ3x2}åßæ¼rþÄ5‡¸Ãñþ 鏸R°4¥r7ñiŽ[<Ù»0–x²waþÄø9òKb¡Æ—Ú5¡ë C—iˆ^Ž&ÿ9ÎËå˜âøbM,Ž!®Ÿ!Œ†²†xe Ë*~4\Fh¸Ä^©µ‚8HÛrŠoc]Éà¤aàÚ>N0Lñm—+ÛMü¶¼†!¾5d%3CÃÖ&Ã-¶i8šØÃq‰c2›ñHaÃ)îf¨LØ‘E+ùãà ƒÊÝÅS©FÇÏq_nÃ|ÄœŽüó±4íËÁµÀ86§øþ†)¾i¥2¶î†ø– ÊÆË£ C|ãŸJ½ SØ• kî.1C†µ w òÇÁ4·aŠc2èm˜7 q§¡2Ò>­‰!£ŸX©l†ë£+•‘Ð×3\—Q8oVÁdz¥^7–hWêuc1‚á¾LC½î<—†7ñJCeô ñv\ÕQÉWÖ1ÙmâûÄJ¾2²g¸Åýò•uLz21¦½+ùB;6_.q¬B÷‚ƒßºãc9"ówL^V²¢à‘f†!†#³JÇv[Cþù8Œ¿’Y…G…ÞÄÏ4dV9Ç€¥ã÷2d5Ò±œ¼RY“é•Ê*˜Â©TfÀ™†û2 •0©þåíX\©W†{Ãßo[©W6Q}ê¥ ¿nñd¤BýìÓ®ÔÏŽ‰{Ã)žª¯pÝÄ{:òÏÇ2KÃ÷ÏP/㇆!ö0Œ›xZnqMC†¦×b} >;µ5œâû¿ªdðÉQ §ø4ÇÇ2dðÉ£H CÜŽ >ẏaˆ§ *dðÉ#6 ·¸|l©3DèéW²;<°¼ÇpŠoŸº’]Ús¬„#»´=PCþù¸© ’]Zè`¸Ef•0Õ¥è21–7Tr¨d Ú7\âX(äPÉ@\]ÉÁ8Ó0Å“ 9P6pýE%ÊÎæþéÈĘίä@ÙÀy†[ÝÃhgñWr˜t`zÞpЧ»TÈAÔ—k:¦ë˸ä3t†7ñû¿ªä0éÀé•í²ý·øþ¥•lbj9Ã%¾5Uå¸ìŽlb¦Ê ùÃbÁq%›˜yÃq¹S|ÛÇJ6"cé•lD&~‡J6Üm¸ÅÙ 5"9.ñd•Bö‰ÿÞpŠçu¶?܆,ìÜJ\ÉЉ1OÃßJ¦’¡#„†üq°œ°’…}bÏp‰­îË> ±êêáöÚʼÜËib|é˦â<1ÁmâÛå©dqž˜¤6Üâ[U¶vŽ7q ÃþˆŽüé0vQÉ.ÀÄøƒá§#«ž`x‡%öy~¥JV<ÒÀð&ÛÁçÄä¸aˆë1dxÉ­p•ª(0ýýåꜘþ6\âpTaÇõ.• ¹ùË0Å7ŸWª*Àw¥ª‚}šcÃÇ0TU€éoÃ-®a¸nâ·¿fÈ' pë¿áM?CU8±2/›åO6«LqŽÂq«LaWª¢À嬆øÙN¬¯dEÁM †[|còJV\è_ɪ€Ký ×å6da_8E¾’aÀÂ4t%§9Ž’«dS¾0I]É"Éeñ_j½ã³p¾áÛ2dc½pÁ¤áMüþ-•œ¨â"qCþ8™°“ã çɦx*ÆÂ1ÄhŽ!žÊ­AþBŽªd]˜¤6Üb_†û&~kÃ%ÎeÈ ŸËo+Y`r…!X¼»/ïÀ ¢ñíS¦8Ÿ›ødïÊ›ø…ìþ/œ6_ÉîÿYìÙ÷e²û¿ðDÃ-ž²Ýÿ…EÓ†KÜÝpÝÄ9ùR°Ì¹’“ã ‡(ÞÄãqÌË0äÐÁˆ™áM¼š!‡N¼7 1²P§U?gÍ^3äR½³î.·xŠUa»‰ß¨Ìp‰'€,dÉMû†KlÃpüĆórZñÊwrÀ™kœ*r›¾aˆ'ø,d¸qÌV%›˜^³áׯðHnLÊ21Nâ¯d´1ín8Å“E Ùq#½áMÍ1Å÷o©dxyÖWtÇû2dð¹Ñ¨œ—'€¬Üb>†lžÎzƒá¸Å“½ ÷MܦãûcÈæ‰Þ oâX†l¼6"IC¾lëùRg|žlVÉ—‚£4 S<cásŸ¬Rb8r8ëÌ…ýC •7ñv7ñÉ*•|Ýhã*ç#Ë›xmÃu¹‡áæGá¸,Ãy†ñŸéx·f˜7q Ç›ø ,|¨á»ÃS1V2›¡Ô¦x²hásŸ.|åM|ºð…í&>™°ò&Î0ìLŒ5·•#Ä“Í g¿LÇ›x-ÃuyBˆÂÍ,Š%¾†[|ºaÜÄíçx÷a˜7ñØŽ7ñŠ/q€Ë’ÏuIÆÏu<Öíú\GiÌÿÁ6lë%¿qˆó¸éÏu¢ÎózY³æ°êÀ™uÿÃëêoúí½oúü‹oú kÖS¬§|®vNy,k¶"¯ÏudÎ7ýLãGõÁƒµÖ7ý¹Õ˜åúÁvKçž2òcõ`z^7ïrKk–oîw·¾éG³^7=ò£ñM¿Öû¦ßËû¦n7ý¹ŽÕ™éq/¸s^Ÿë®Šµ»úø\‡ç¼åùX?7ý¹®Óù¦ßu»écz3=ΈwfLñ`“õMü\=núsÝ—3Óóº/ãy݇õjòx¼×uX3Âxp^¸õM¿Â:núhÞ7}„u2=îU¶^2ÊÓ׺ÎñxþÅ7=ÊSu»éQžªûOFy0f}™¬ï«ÇOîá}Ó£³ž×Û;åÆZÉx<þâ›ù½ú¹éWxßôçº@ãvÓ£<ßôçº^ã~Óçôfz¬`pf{ÖÛ+ã›å©z^n½îçíí}Ó#žªfÿ¶a­ƒs\÷Ç;å1­ó¦Ÿ÷M?ÃxÞü‚ŒeÍôƒíEµò 2†õM®+6n7=Ê[µò†y­SF–5ãÕÞ˜Ÿ×õ¶Î›~c­™lÙß3¾é{kïõ1ò³ñMñŽêç¦G<]Íþì9¹ay‡ŒüZݯÏuçÆXåzŒüj|Ó#­æxH߬¯ã:¬×Mßš÷MßÒzßôsyßôù³Ž›>—7ÓÛƒê¼~~ÕvgŸöÀ9å¯?7ýÏpfz¬Ápf<Ù±Yßú¦?ùÙ¸ßô§¿h›7Ú“ïœO l¢´¾éãg=oúØÞL»Ùœo tì­oúöXï›~xLJ÷ý¼9¬ó¦_÷¾ã;Þʳ0¬™w»9³=y}ê[ç›þÔ·Æý¦ñMü^=nú3ÞfÌöd,Ö§Æ!÷°^7=Ê‹ñM¿ÃzßôÙ¼oúLk¶'K&¬ã:­ó¦ïqÊëgÜÕÞŒÍòVÍöäœÓ±½SFy¨n7ýðfôõ/0ftó³ñMúkÆìoL-;³¿É3=œ÷uKï%÷e­òŽ£¼­oúí×¹µÆ²MΜ™XããÌò<lOŒoú6¬û5Ú“êq?ïŒ78‡|úkÆ,¯<ƒÄ™åu>,/Õ/:Nï”Ïx…qÜôó/¾éQž¾žjÏ'VY#?òDççúôçŒÙߛ塚ý½ÙXß3}gy¨f{<;ËC5ûs+¬·<Öë:†5ëÓ‰µDÖq½­YŸò^wë‡wÞô3¼SÞi¬½ÖÇéÍútNæçjÆ[ÖåÁxÉ-¬ù>x‹õMòP½oúÕ¼÷uZó}­ûÃÆ7ýo)N•·õ°ýacÆ#‹ë­Œõ¾&Ö#:ó}p½•1ãÍ…ª­oú3Þhió«ñ’‘«ûMâmg¦çz(cöy‰–õ–cZÏ›þŒ·8ã÷Þ¸IÒ™ýÅýc~3¾éãgÍþ$ÏDqfq?¬Ïª¹ž€WUwõ72¾3׳ñRgöçy55~O^eãÌù Æ™óAwH;s<Ÿg™X§|ÆŒ×MßkŽÇll̵žòšÖÙù©šã©ç\“f¬+Ûæzç-Ÿþ–1ãI^‘aòéo·›þÄ“Î)#?V3ÞÜXåÌxfOæGã)#¿U3žá… ÎlO7×ë8/¹{³=Ý‹õQ5ëÓÍõ:Æy½·wÊù3¾ëÁxz‰3çc6nJ´æï¬oª9³ƒùÅxÉÛõñæzgþ^\OcÌñ8îÌñöÍõ4Æ*¯œ­SŽfÍòʃª9dzGœ9_¸ÑzËs/•çà~güÁõ2Æ,ÏÛ­SžÞŒ‡ƒëYŒOÅÃú¨šñûuf<8^™ë-‚ëQœCÍšã©wg¶‡½—<ëhòœÞ!¯fCŽ¿˜×;ë¦Ùcä·êç¹ÞÞ[F~«n]>ó½Îü>˜¸tîC>ñŠñøÉ'žt^r¦õäï™ÌoÕ«Ëmy§<~Ö{^oëxd´wÆ[^ÛXãI »Yß>œÏu^2Ú£jÄ«]çY8ã÷z¶7ÕèŸþŠ1âÕÎ…ÁÎo8Ý{Ë1¬ù>žÆú®šïãá|¨qüä6½—ÜÃ:›<¦wÈÈÏ_¯û>±pÓYï³õ’Të}ba£õ¾ÞÖzŸ·N9‡µÞ7ŽŠtÖûæ|ªó–ÛcÍòú æwã”G³fy|Ppœõ>'ó«q\oã}ßçd}Z­÷‰Që%‡·Þ'6žZ‡ŒòPÍú– ËœYŸ>x±Îó>oLk½ÅünÌ÷±YŸV«¼nÖ§Õz_œuÞòöf<¬ó(œù}‚ùõkÝÊ ‡5ÛÓ'/où±šíéqzßïsæ;Œûý>è/V~܇h½eä×êÙåýxçuX3Þjœ5Æ|ÎñÓ¬1^tܦwʽYç}^OãT<ݸÙ˜ñòYѽS>ë]ŒÛ”1ÞQÝñ¤ñ¾ÞÖã~Ÿ9¬ÙÒyÎë:¬1ÞÐ[cµã pX³=mã)Õy?ã%Æ!oã¡ýt½q>Ù˜õmCÇÄ™åÏÖ)Ÿþ’1Ë[ã|±1Ë[C`n½å/³¼qbÔ:åøY«¼abÑ™ýU÷`œ¿ëð^rNcíGë:ÏÁ˜ã §4œrhòÉ/Æl¯ç‹C>ó}Ækȧ¿nÌþbãzaç%G·V}†ÀÀ:¯·µê3ž÷PÜn}Æùhgæ·`~¬~†ü¤u[2òk5ÇsZ0¿ó÷æ|³1ãÉ3°îÍxñ |OkÆ# ן8ë}a`ÚÏxnÖìïë<ç”[ßñá¼eäÇj¾Îõ´ÆXOpœ?ïû÷œõ\Æ,O×|8ó}œYo–§ÎùpcþÞç%:/õm5ËK˜Ÿù}Æ›ŠµžçøÄ£Î!Ïn­ß7-:³>ëØ8èÌú¬ó¼CcއœÁáÍߣ³¼T³=ÐyÆlÎÀÚc½åÉ8ä3ž`ÌñÎÎóÙžtÎç;o¹uãÉýOÎìOuž×hÌþÔ8ÚÞü{8_oÌöžÎã¦?ã±Æs\§õúÉ1½ù{p>ßxwùéÖŒÇúb}^7}[Þ)£¼|½8wŒòbò0f¼¬ó"Œ/³ãhòO5ü½9_oÌöät¬~Ö릟ÛZõÏt¾Ÿ··µê3\fæ¬òÂõÎKÎÚïÔ&­SNo–§‹èYžÆÃ÷eœr{¬ÇMßÂû¦G{]ÍþÊhŒ§ŒS>ã9Æ8¸Ò™íýèlSîiÍxmtÖ_‡Ú£Áùxç”Q^ªoÎw·ûyˆ×«YŸ ž7g¬÷ÁýþÎ)#Þ®^7ýjÞ7}þ¬œŠc[³¼ŒÅö¢šåEûýïçåcœ·¼lÆËÕìoŽÍòj¼å³^ØómÚoÌúnësã-·m=îçÇzÞÏ‹°f¼0’å¹z§ÝšíÉùǯzþ¸Þ§k¿ºó–»7ã±ÉóÔŒýèw\‡5ËÃÄÁ!Î,¯ãçßcâB3göW&ç«oMáS>åÙ˜ã- û­ó:Ÿû{r?¶±~ÏxÞ9®ÃšóÅ“ç}s¼kr>Û˜ã]÷µY‡Œ÷UÍü¬ýÊÆŒ§&îesæ|Ó\|ŸÆ[5ÛíW.Öy/Çg¼Î¸Ýô{Z³?>yÞ–1ûÚOìrxs½…öû+?Ës5㥉µÖ!¯iÍxv&ßw5뛉ƒÃªoüõ‰wœQçkYŸk?®1ßÇÙÛ¬ù>æwæï­ý²ÆŒGçsw“O¼jÌüº°ñË:äÖl/_£<~­ý0}q¾Ó˜õÅÂÀ„uʽ[3Þ_œï4fyq>јý±×}Z3¿.γ¿üztkýž¸eË:d´WÕì/Î÷ëþ·ãÓ0f}½ßgµò÷Ss<ûì§lÞ)ŸõƬoî;³?»8_hÌxOû%ÙÞ-Îçs½Í –—¯—â¹ÅóÚŸk´GÕœOØ<Ǹ_ŸùRãñÇi=¯·7Û£Íù cþ½g¿^7¾óÙg?Þ¶fâÜ)îÍõ¯/U³<îÁ¿§šùeó¼c®×Ó~5cý½“ù¥šõÑæy%ź ëñT5ÇS÷b{YÍò²y^‡1ãí½™_ª9Þ°7¯jö‡^£>­fTûÍŒOlŽççý{ƒõE5ëãl調Þ`'ßG5ç»6uæû<û½š5ûã‹sŠ—nï¡ÎoÒ~cÆ›ÁûNŒÏïû0f}¤ý*Å:òxx3ŽWs>KûŒ±^â?ÿ:§ß¿ùŸþó?ÿõßÿš8&`3áÿB!ýÏÿ ;¾&VN¥´Ÿ¯´c¢ ¡—41‰Z4õ)oO¤ÑÉÄ*È"ä܉‰ÕjjÕÿÄ¡ýEã*«01±™·*©a„Qî‰IÜ¢Tʵ¾RïéD ½ %‹BråÄêÂ"´~‹øëÎÓk.BO‡A¢”‰J¶JŸòfàÔ;™¸< ˆo7©5=}Ϫ®Oy Dz+“ÍE(©§EΪ­”ï/Yµ©÷—,Bïyâ”üª¤VÿJ³v£ÃEMŸò>©JŸòæ°¢¡OÉ_ÕTÊÜUØÍ–¾µÉÄäsURm|¥UÇlÝ«”ò­‰Š MLf!Òœh¨ª‚:%õ+Dè;튶RŽõ•îYž˜Ø.¨÷ÄE~EMO8%õ+¬–Ÿ8õ¨JO?%õ+̲NL’!œØ‰VÄÚ5nF>'ÞtëÅĤzQSÊFzÂU¡Ö_Øè]„šha5NÑRÊa„šhaU•>唪¯RŸ²÷WZ±¹P‹WéSrW¡–Z˜(/BŽ\¸Í®h*eª[&Ï‹PK-\œP¥'¼AsQè Ùª0²°ªã#E éEèœNþ®B._˜€.BN^8%¶9ya„£héSö¬Úú”Ó"|ú”\U(ç ¨nR~•,瀨UÕô)ï_]„–yá„Õ¢©”óg¤§Ï]µôô5ª=-ºE¡'ĨbéÀN…jýØ¢/ÔVE,9¨­ª6µŒšž« ­ýB¯»­ýBTÄR…IꢥOy#Á¢­Oy[¾ª-EK‚þ"D +·«’z{½):\è±!JX¸¤ *©÷ avh¡T!‚X¸¸ hêSæ¯jéSö®Úú”7g…>%Ÿ¯´Kqa7wV,LW%õ攢®OéY…èbaÒ¼JŸ2[VÓ.l¦/ZzÂÎ*ŒnÌva{c'tFo^µý•F®7JBUJ»êÑæ¨jzÂÛ+/ÂLäÆB€ª¢ 5ûÆLPzÏ—3¥žpJG‘žð¾´cî¨ÕªPC¥‘>åm5І¾õÛjM}J.#|JCIý µ÷ÆÁEÕÚX´P„ÚûÕ[b‹RŸòFÛMÖÞ9³èѧìÇhSo-W4”2#¤Ä HjèEEèyoˆP´õ)3«Ð+ßèá¡Þ8ä *©Ó’üS:Ýyãõ¢¦Oyk–"ôØ7fІ>唪¯¦žþFÛE¨M÷D©ú µéÆiTEÝ8Àà#­ÚÅ/B¯ncaGUPoÄZÔô„0BM»±˜£*¨·Ö)BM{ÛUˆš7v¢m=á-yUzÂ~ªBO8¹ü«ÔÞ\ô‘N«ÙèTuräWˆ¨7v;¡‡¹±€£ˆ5-FñŠmoDÈESŸO¢í!U›ÊY…H|ã „"ŒRŸAäY…H|ã$–mŸÁã¬zô)'×}…Y‰CІRF7Jêíña¤>°#¥­} .B$8 ¡*©“[¿ =aµuªJ ò¬Â§àæ¡"´ö¯ÞRY„ÖþtÖªÐÚ.I¨ÒÞè¤#ÏÑNI(ÂhE`…AznÓ;‹ Væôp¶.°*¿­} ª ê­‹0’¸‰¸‘À9œì©B$˜¡® êmõ‹–ž­*ô)™FÈ!8Q°‘@à†tHà€þªM½-_zn…+Eè¹­!ˆ}j†"DÅ(Eè:¨Ò§¤"À•"´ö[?ÒÎŒ@­ZôèSÎû ‘À«·4Wé çm~…ÞY`f¥QBàƒ"Ì8(ÚJ¹ŒP 'jª¤æüJ7r'$(B”XìR„H ±Ð¥½³|NR„(!qAÑRÊÑ«Ðj'¾¥R¾=‡4œè…VõDjÓ3Q—Uhµ_½µjÓÄ™ª ÞÚªµiâà€"´è‰7^„×Ćþª¢ ½³DϨ5tbMQê £é «hq†ñÕ±¡fOì)B͞ذ_Ô›SŠP³'B/BÍžXdS„š=±Á¾*¨1«¶>e¶ªÐ§Ì4Ò§ì"Eð‰Å8E¨Ù7"¡öN¬æ(BíX€S4ô)kmêý†E¨Ù‹vŠ0B—ˆ‹Pë'N]¬ÚÔÉY_…ž0²*õ„¹¾RŸX…Q¥'ìUõè i„Z?±r¼µ~bÕxjöÄB¥*}Ê2B­ŸXÀTJùö~>JÕìØ¡]„hûùa׿aŠï_‰h CÔUÞ:¡K!êÿÙ†û&^ËíÃá[? EØÏË9*Ÿ%>ݰ ±ý {^nÃq?êm+çý¨÷Wª\÷K¾EÎð>è +ƒ…]ý•ùˆÑ ÖÔϯŸ,]ÙžËmØoâþ3C|ÿQ9ïG½Õ¬aŠk®û †û>(ƒÂPce.ñÍü_j¤ûð}ï•W9|ß{e»õ6•*8X¨aâ›g*çß ®#,‡ñîû “Í U¬°Û¿2»ØZa¿…nRoâû}*Ÿû pìLŒE•*th2+gÛ0T¡ÛÈ¢•÷A'‹îû í÷AocV™÷£2 5&ŽËí§áÓÅ7GU¶ßNDe¿uªÍÂq?êíœV"r•ç–!žª¯pMñÍÉ•»‹{Æ}ÐÛM1¼Êiˆž´®ùþRcì¸d{¢7+¶»a»õ2•ˆ´p}uwäG=¨T Wß|n˜â¤VîûQË‘Íă½ü•ɵÓ"¦x2Ò‡‹Ñ®ÓulLŒ:¡²o±9²y°`¡rÞŽë~ÔûVîûQ+ £‰oÐU™ü(,AøRk¶q9ì2d¸õ`ëDe»Õ—a¿õ–¾ÊÑÄS©V޽߶ròAXXPÉPíÁ)û•»]†aÜšŽy?*³0n‘D²RE{ç+È=Xâ_ÙïG \™â›+*Ç}P:2Ì;WW>†*ÎØOo˜b{ Uœ±X¡2îƒNö.Ìû HG>K¾Ì[œ±0¡òâtl|öÇWª°'*·BvLüWÎûQï? S\Ó$¯÷«Ì?Ì/óÇQ3\­÷sÌËeÈ °a@%‹sCO¡rÜ­Ÿã}Ð[¾*"6,¨dqn8,ª’!bÃкaŠÓ1îƒÞú³2ïƒr> †¼ S|¿m%Ȇ¡æJV w Tv>' ¦øfàJŸ¼Ö«’UAá=•ë>èÍ«†!¾Y´rßí4d°á ÃßJõ˦ð’UU¶ûQohx?ê»*Ùyl­dðÙpL%; §ú†øÖŸ• >†H+÷}PtCŸ ÛÒ C|¶!ƒÏ†)ì/;Çûtaáý¨| Ûý¨“ ;ÿ V24m8ˆÔ0Äå8§x²Yáºzû‰•›Â½†!žlVÈŽgÃåº_Ž‚aøL1C6@ K´+ÇO6+dÔ0êU¹~â[÷Þ­4Ü÷Aù3dhÚ±ÕêË©¡¿ŽÉîJŒ¾ãší¸Å·å­dóÔÑ"TŽû ·saˆj³cÚ»’ÁgÇ•lž:j×JŸ¼xÂð>(–!CS^šPÉæ©c¬æË¥æéœ#f™â©ú Ù<3Äš!›§Ž©ðJ6Oç"é˜bKÃqtª¾Âyt²Y!4:&Ó+ÙÄt” /ug ŸûQo½]ÙîG½1j%›‰sZ˜#‚ŽC½*ÙtÙU¹ïG¥#«úŽS(*YÕó0ð/CUý9Á+·xªÂv?êT}…ìÔtœ=QɪþQ½·øÖÌ•¬êy¼r%;5“ñ•¬êω]–[\Ó0îƒvê®*J<ïG½}ŸJ6ú•ì¶t̤¦8–!‘Ž *Ù©é8ÿ¢’ÈÀé†)ž*¨ÈÀ²€Jw , ¨Œû ´äƒWWr0d`vàCLA ùl˜5n7ýöî7}z³¥¼°À9åîÍÖfðÀ c¶7» Ùâ „RÖy½¬Ùê ^˜^¬ ¡p²æ¶f 1x †1ÛÁ ¿ŒÙF ìâs÷óΆnc¶<Ò™µÁàÎ)nÍaðÀ~cŽl ˜ïœò9ð XòâdÁiÝîç5œïç!?T÷ûy™Ö¬ä0V)ß8PÚXå'÷;«¤ó@c•u^Xn¬òÌ÷‹û-Ϙiwfʓ۬S>«>Hi¬ú€žûyÛ›å}ò@{c–ç³s}z§<›uÜÏÛÞŒ+çùék˜{N¦úýÅ)#?T³¼O^˜nÜoús ñ¼éǶ^÷û ¾2¾Ÿwô0fyžù±šãš“ª³¼Ox_¬ypòÖ´~îçfÍò/ÃXîàd)oŽ—žÝåÍ;åéÍ1SžààÜïó›ã¦g×x÷Nù˜ḇÓ9™ß«9Î11Wï¼ïó΂Æq?ïhÌÑŽÉù‹·fÖ'Ä1fïòœ àÍäÄÍ>Îã¦G~¯ž÷ûœ%9òÁ“ œ9ºqN+øY³§97ËCuÞÏ;¢9‡¼†±.œÁÉD5û£^![z.ô¬úVGï*ϾpÜ+ÖæÉš3ùaooÁê/)‹Àí–³*+ÖïÑUŸßàŒg%äg<+á>¸Wy§¡G•çã)pƳî“OÚû»àŒgØVkÅŽq²U}žÐ”¬ú¶î—Ûï[÷ç{Å»šÕßÒœhK{Â[p«ú鸟n÷*Ï6‚g•w¾p”§ dÅ»¿ØÑŠgÓð Wyc¡O•Ï›Oç#nŸï+ž·4 [ÚÇ{`ų2ÏÊJ@V{¿_=ÀUŸ'<«½÷7ö:Zñ¾u`Xñ¾›âù¶UyÞß+ž•%àöÊxÞ1±ƒÞé¸n«½W¦²â}G ôIû|¸W}>ުﴞþæÜbŸtÄãí¼¦âí¶ž[ºó~™Š'°¥÷Kœl{{×ý¢ÀêùVÛÒ“=êó>ß@ÞåÎx_jooï*ï¼l•§ÀÏ[ñ>iÏ]¶Š×8™•¬ɽ՟Wy~ 1Xk–þÆÒBg<ÅÀ’¼ëóƒ­=+;6&¢-íó—OÅCì˜ k<¶ãdO²Æcû¨½Ÿ´ÏG€5ß°î‡Û³ê‹þðmí«Ú:pŽõ™¼k¾ÁÝ/·µÖí¯ =lKû|ŧuN«ì÷ø­úÖ@k¾Át`xÔ¿ÇZózmˆ¬õ.e, k¾Àb·YóY+ò©ò¼?}¹öZœü€Öõlq?€5ßeñf;¹?iwr•glí 2øÖ|˜Å ²æÃ,²ð¡wzu´æËôÊ Yë9þâȃÖ|™E–<ôNû|ïåzGÊ_§˜h­÷˜!ŸtüÞ·5_¦ìä^õE<ÜÎx×!àŒçè˜5_k±{mé>Ðï:p¬ù\[ŠÇO×{U¦EÀÚ¹`Kñv»©¼ÈOÎx×$dKvÆûV<ÞÖxÃâÁMÞõyŸO[}Þ:û¤ÏƒÎx½í·GÅ«Dg¼F ôIûx Ü«<Ÿ¯k/ÚZÙÐGõEÇ ½Óo—_‡Ý>ß~[zá“öx7Õ/CûHöxÓoà¹Ò¾ ¼TÞR<ÝÞoÙØ–~'ÚVº5ôéeçzŸÛç[ÈUŸ··àW¿WœbAn=ñ|»?émìöù ð¨ú"^oÏV6tÞ/±1„œñnŠGð)tÆ{LìÝÎõº¦œ h•;×Ém¥ßŽÎxÖ~pƳ”"[ÚÇ«àYõy¼«¼=Ð6Ó>ßryTï‚3ž§ÚóÛj/_èF¶´Á»Ê›/ÚzÚû£àSõí—½Ó6Á;û¾pÙÐêoøÂ#»=éˆgðN{ÜUŸ´g3°Õý`q .ù¤ã~ºÝëóó [:î§ÛêO¿¦ûéöªòâ~«<½ÏÎxÖ~pƳDgéˆ÷ÛVõ-CŸªÏç+>=òŸ¦…tÕçóEà·ê;ÝTŸö“€u?´Øx‡>i¿ŸÀ³Ê½ª<O’«<ïO#·EkÚoÖ|HÓ~òI Î|ˆnž€5_Ò"o!¹U}>FV}±p@Ö|‰Èc¤}¾<ß´ßoà¥ò"ÏYýÁ/¾íM÷É>éñ‚s=Ðíû Áz^¶©û\åÅýp[Ï˧N’5žiÑ1"g{³¯à“öùTð¬úVGï*ï¼l•·Ï·³½ØŠçO÷j/´…\åE¼ÞÎö"^€'·ªo7tW}ÚB>iž€ÇNûxœíIœÌH^ªOûMÀ6Ò}êóÍØ'm <²=Pþ ²Æ‹šøCŸ´¿¯Ö|F×~ð¨ú|><«¾½ÙU_Äãm'}âm Õ^øÄš¡5žìÚïA>éA®ñbÏ·ß*oá*Ïç›Á­þ=>V{ѵŸ¬öBYCÐ'íóàUåù|XíAªdµ=N6¸½²=è]ñ ®ò¢=¿­ñ¤Oì4t«ú|½¬þį/\õùx¬þ¶&VÈjz>Yý‰ Ûdõ'ºö«€ÕŸÐÄú¤{g¶“¦œ$äl/¦âùv«ú|¾ƒ\õyœíAdì'«¿ ì$dõzœÞHÞU^Äëm«ò¢? Ö÷Ýj¯oŸU6°U{ ý*`Í'õ­þ,¸êóñ ¸U}ѽëá…Ö|i×~°æC{,Œ’WOÇóàö®ò¢¿ ¶´Ïg€5×À¬ùª~Ô^úäx¼Å3ØÒ>^÷úü<ìú¼ï—«=qz#9öÛ5 <ÈšúaûÂQ_æ3k¼>^µ‡·5^ÚÏÖx}¼jï>ßÖópè}°úÓ#&¶Éz^Ž¥ûå¶úÓc)ÞÁU_ÄûíUõƒÖótÄÄ2YÏÓ±u¿€Oº³õ<ñbþíÌçÒôà'ëy9L÷Ëm=/‡é~¸­þ´ŒäQåù|xVyÏ·W•çã5°úÓ#^<'ëy˜ùf.|Þ£xWy}¡ß*ÏÇs`õ§‡ö{•ñ~[ýቷÈêOí'«?<õ>ت¼6Чʋçɧ3KSÃN~«<¯u?g>°æÓ¦ÞG«¿;_Ý/à*Ïç+À«Ê›lݯóÕýtÛª<ŸÏk=*óá\^9ÞÚOnõùÅÖýæ ËDk<;»î‡ÛzžÏ®ûá¶ž×Sû™À»Ê‹x¿­çq棟*ï¼à|ß-¼Ñzû5Ù–l=¯çP<ßÖxÀoœƒUÞaëy¬ƒ¬þ~泫½šSñ|[ýù ç·ó`Ü–ùnÀo•ñ~»Uyï·{}_Ÿ*Ï6:Û3í—k½aê}òIGëv¶wKÏ›ÛVõí…>U_^«¿3#y*yT}ñ¼¹=«¾½ÙU_Ü·Õß™¦çÑm§¦éyt[ó‰™|ª¼èÏ}xÕxjê} °ÆK3¾dw¦öS³=T¾²¥ý~ï*Ï×sÀVŸ7C«?·â´Û™/ÅíÏ °æK2_ÙÒ~?€[ÕçûåÁzÞ¬Xø#ªÏÇÃä“öù°ús+^ü#k¾tÅÂÚí–ã¹'“µ^²”Ïܪ¼5н¾ÏG‚G•çã ðªïcï[´Ç•‘µŸnÅ©À·ó Ý¦/FV{“ù€ÀÚçø…-íóé`í'Z‘ø‘¬ùœ GäUõÅýv{Wy>^[•·Zû)Vl,¼§y¹}¼ Ö|ÀUžÏG‚ÕŸ]ÚÏV{”ù‚À³êóñ4YõÍx^€Õ-íÇ«?»´ß œíQœ6{»Ö{–ö[³=ZŠgðIû|#8Û#íÇ÷ªÏçÓÁ£Êóù&°Öƒ×Òóâ¶Æ£këyq[ýáÌ÷VxmÅóíSåyþòªöʯ·³½R>X°æ£–öS5µ´Ьú´ ¬þîR>Wp¶w'æ³ÁÙÞ˜o!G};üdµ‡ûQ¼ÝÖ|Ö~ô{:ß7k™¯¬ýÆ[ùXÁj/÷«ßliŸ/¯úüúÂõùˆ‡Ûêïnå[«?»ãàI´¥÷Î|Š-óÉ€ÕnåK%[Ú÷C€Õê”v²ú³?ý½Û³ê3ö®ÏG<ÝÖ|ÜÖ~òIûx ¬þêj¯>»}¼Ö|@æ«!W}·[Õçó`µ‡[ùRÁš/ÐÉædµ‡[ûyÀš/ØÚ¯V{èùjØj÷R{tûTy«ßÞOÎd¾²¥ýy Ö|@æƒk>`Gâ²ú»~juc[Úã¬ùÐg²ž7[ûiÀšOÈ|.༞qÀYÏ›­ý4—ó$¯–ù`Ào•çñÖõ´ØIÖó(óµ€u½,nd]/‹Ä(d­ÇšÞëz™öËOºZó5~D2[×Ó´ŸårWLùDÁy½â¨/r^¯X˜ çõÒ~°ž×¦ý"à¼qœú¤WCçõP>Pp^¡xøtí‡Ë|'à¼#Ækà¼z߬þNæK!ëzi? 8¯—òq‚3Þbbšœ×Sù6É'íûÀy=µ_œ×SûE.Š7í!Ÿôbë~7í'çï‰ÑÈjOMïK€ó÷ØjoÀ–öñ8Ûå+¯ªÏÇ[àü=bâ}Ò­£ÕÞêPrþÚ¯qyÖÈzÞ™ös-íã}p^ï£xº­çÙÑ~ °®gæóëyba×+óq€u½tˆ"YýÓÔ|zå|ÙizÜÖõ:M÷;8®Wæ»k<ªCÉêO'C>ißOVë(Ÿ"Xý-»GÖx?ói€5y´Ÿ¬ñþzÞ|:OSv{¬þêÑ~ °ú«Gû!ÀÚÏ’ù:Ày=‡Ú“ÛšÏ=ÚïÖzàÑ~°Æ ™Ï¬ñ‚ŽÔ#kÚÖxè,Åëm‡Žö#O:âñ¶æûO@>UÞþ–¶|r=ùÄAÔdÍWÓóê¶ÆÛGûÈ;íó-`ÍWf¾°æ+©½º­õª‰óѧ|КÏð|$ ëUý‰È1Ÿáã¶=šÏ虄li7p«ú<ÞÀ]õi½ž|Ò¾Žù¤þDÇ”Ïc÷œèx»½½ Ÿ´5´U}¾žw9÷‹õGëÝà÷Iov<Üþ¼w]ÏýIðhiï‚ç“öù²¥OC/}­WƒwO¿mo:~OðI…>;½;8O8v{{nªOëÅä“öþ"¸ï´·àhÜs¢gOûx¼êûØÖ÷Ñ~gðÞéù m–7:Ûå۸ܫ=Ðz/Yñb±Ÿü®´÷WÀÙ^ÄÆer¶±°NªOùòÀs¥ÛB¯‘öñ x·òFÛ“öç¹¾ÏÚàÌGØup9žçnŸo![ÚŸGà˜/í™ÏýþÆÄ y¶´WÀËÒÞŸï•mUŸ ðÌx{u$ÙʆV¼e> °âíU><°âímŠçÛ£¾OÄ3¸¾÷·ÁŠGÏgÁV<¾Zï+ßX%+Ý›mi{ѧ¾Ïà̇ØßØ8IÎxÖz*8ãYû­ÉV6tƳòm€3^càKÎxÕy–àŒW­—‚3^§ÚÓÛ§ê[¼+žu&YßgÅxœñ¼t?ÜÎx^Š÷Û¯:…\õ‰^U^ÄûíŒÇ­öôvÆãV{ ¶ôèŒÇxݶŠGå£g<ê½là|Ÿ¨+1:9æKÜ1¸­þp{¯·Õn:ï¬þp{Ï·ÕnÚ V×wtì7qû~pì7qû|ø¼éèO‚Oyßöi¶öûüÖ÷õñXíAæ»ëy×bá¬ö )_"xÍtkh2Xã…¦ó:ɺZOk¼ ÄØ·3„ÛÛcpki/û“öñY×#6‘5žmZïÏ™öùX°Æ»žØùAk¼Û”¬ö4ó=\Î|aC«½l:ï¬ö.ó9€ÕÞµxq™¼Zúèý¤#^n[Õ7Ù§êóõ¾ËyWWâcòû–ºÕ÷±ÎÖõŽëdõgšò-‚Õ_Ï|`=/šÖ£Áz^4åC$Ÿô{жҳ£ÏH¯u=µÞ ÎëÈy½NŒ·Áy½t&8¯—ÎëzõGñz[×+óAOº´®Wæƒëzu­G_Îó´ÜÆ~ëûx€\ßÇ÷su½zl&ë~õĪì¼ZÇûÌîù¢­ê‹ööö©ú"ž?½êz´˜oë~ôÄ¢ÛÒ³£Õž)±(9¯G‹ù*°Ú³®|‡à]ßÇÇ[d}Ç Îë¡|—s=¦+1(Yíy×z>8¯Wù²âIùÁy½´ž+íó à9Ê­ç]W¾Fr}ïï‚õ<ìZ¯k¼Ñ#ðoç~8·ÏÇ‚5žPbJ²ú]ù Éú>ZÏ«?á‰%;Zãµ®ó4Á¯õX¸$«?–ù$À§¾Ïìà\Ïqû|øU¼*_¸õt´ç·Õ_íÊWÖx·k½¬ùðnê/ÞÖx ›âå¶Æ]ùÁôx‘5_Ðu^å‡=Íºæ ”Ï}Òƒ­ñ–'fh·Flü"Çzkq°YÏÓ;‘5£Äkdµw#òý¡-ýãyMÖýèùð›í݈Ž)Y÷ëˆóÉŒèø‘u¿*qú¤ÜXd§F¬Ç“c½¿+±Yã­ëÝä=Òg¢ocê÷ütËñ¼Þ÷GŸôþ6¹íôjhõ7”/€¬çéˆïd=F$Î%ëy«÷ýÉz^(qYóU#Ë¢Oú5´ÚCOÜsÀù¾N×ûødçGhÍGè}l²ú3^L"ï_mh=çÐïqû”m‚3_ZŸ‘XŽü–ã÷º­þ˜ÞW&wy©=¾­þ„^Ì'ÏrÜo·WyNöI/CŸòžàZO˜‘o‹ü–#n·²±ÕÕû¾dõG§é~¾=Ëm WyM´æ³çÑï}ÛÊ»£Où °e{¼b½–ü–£¿r»•­¡û¯>hõGõ¾,Yý¡ë¹d+ÏV¼øû¢/øäó|5ݯ·5Ô‹©äØ/ÚW×óêö,·…ÖózÅybdÍ'¯®þÐm­×éÅLò)÷yûÍ÷ÍûŠõB²žÇþbaGçïç}‘u¿èÅBòÐõŽõ>²Ú‹ë}d=oV4\äü÷Æû”·ßú÷Fârþ{—OÜó߉Éê¯X/$«½Ôû’䌇XÏ#g<Äycd­w­Hœ@V{°b=ìvËý^ûÑïq[ã…²ÆSîƒÖx`ÇzYÏÓýêz|ºöóì˜Ø&k=Ä_ŒØhµ÷þb[ëmþb‚¡Õžï¡ÏmÅ£6Γ5¨÷Õng>'wÄËí^Þ=ª<ïOÕŸÛqYûöÖõº­ñÔÞŠ—OWno]¯ÛZ¯óÅ­þ†Þ7#k¿ÉŽù|²æ{¶©½¸­çÅŽÄ&·W¶ûè÷¸ñ~\ïû5°©öðöÔ÷‰ÄFd=Oô¾ÊmËñŠÅydõ‡,æ«Èoê}…ÛGýŸ¾ùÄÐóý·ÿýéŸÿýÛÒ0gÆnÑ¿~ß±<üïï?}{ÿ¯¿R²æ_ÿ*s7ÿ[]öŒû¯”÷׿ûWþß÷ó¯|=ñ7%ú_ýéçoøå?ÿíOßÿü üùóÿ|ûÿ¶ïï÷Ÿÿë»ýcþý'hêÇÌh×þë÷ø§ùüîûÏùö/?GÑÿ¿±•Ìÿv>¿ßóïük_(Ð_ïùûó÷ÖÝâ5ÿë?þíoÿãÛÿCÓ ) endstream endobj 90 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 93 0 obj << /Length 4326 /Filter /FlateDecode >> stream xÚ½;Ûn䯱ïþ !/+†Í&›dà`O'ØI c¯@ÍPïÌP&%¯×_Ÿºö…ÓÒÚŽsv‡ì.vWW×½Jÿ{õÉo>­»3S¶vÕÙÕÍYß­ëÎ\ãŠÚvgW»³¯6íù…1U³¹|}n6—ç¶m6·{x¾‡~<·ÕæÃ¼˜ÍˆCõæ ü”Ñÿ0ô¶lÊË?_ÁgWðhxp€×ý-ü7͸æ#üww8ÿú꯿ù´;ë‹ÞU1+Ï.*St¥ õ'fÅbœa-×Ñó‘iœ^ø}‡;œ_Tífû„xÇó ¡hwox!<¬²=瓸~ó!‡…_¸ñn ›L<®ûÉ7—ðøˆUÕvóÖØú×øƒ„ƒ|o…5í¸<*I‡GAby…$j7Ã^vü ã??Nøò^ˆ_ A¾c  ͘¢o&“fïÚÂ#" ;ò Ž?Ûâü¢mÚ͙ı»Íƒl5lGÆ yÇ”ù›ñ¨óíæZN+xËÖ=Ýbà‘‡vä²ÀO2ðž¿EÊÓûLTC»Í¸ ëúóvžœžôDö阣׀´úoŽøb¸qs ‹ƒKù‹g ÜX]Ë0UG¾š»¨M¹™ã¯å˜8ðÀ—Â8( ýF…¯tÖ…Øø€#$04ƒŒ;áYö` ì7Ó¬}~‰Üˆ^›"̧c–u¶ÄƒøoB™i@Önú)²cÓoô2xº–M¾}’‚ÎâfÖÕ±ák$íÓTIrË3wt{Âé~ÚãmiêhË5ƒ#´W ÖÁæ%y$q¢C¼ KØp Cá›—¼îhX†Y^€òâ©DXP’tß[¡ÔQ¯ o@ ÷u-:þð5bR¶›[„›žˆZÄqÓŒè–.¨€¢[f¡N™Šóôv: êO± ÀãžgoHº•´00\3žyã×û;"òÏsœøº` ×,ቒT©rc"]Ä-œé€LtÊ/Nµ½©Š²ï€¹t–KüžÈua;W8gRJß0K‚Ö4‰F†×k Ù–Þ\À#Óî¸S îø£‰ŸÅ0üöü¢1½+ŽcS@@¤Y¢lɱlu¢}Gà`K:ñÑ+ü^F  ±9R`‘»…§y§†ÏŸÑ…R|y8>B&Ø í<©Z›˜ø5)Z|PîeŽ!œp”Q45X=2˜¸âQ¨ÏÈp³Xa%ë±ð÷7³¨6Œï^÷jŸqü0)à«-)>â¸cÁ|äʘ‘Pªœ†*9õÛÊ”§,‡OF9î³ñ1÷†½#…ù#¤Û|&€öÌ}‹NÓÍYìÛ¹3 \.{f6lŠœ®‹è÷H™ŽÜ¤Üîà¦õf%4ɶ}QÚ&³k²LU´}“lûEŽ¥uº•øj ý×Þy©\rG0zKüêÙoŒóNïüwj¦Æåüÿ‡v[H‘zYTe1çò§hÏüŽcîLUSÔmõ1Ú¸_„6 ›ª®{N7±Ø£±"žsèç–EåêT?Ë]CçÝI-ø}ä{Ì<c1o½{#Ó‘)ÈpVY:ž|ÊÑeD>W´ [Ô½ú’÷§èvE_Ú³HÚ0¨^3Æ„ªô¼öÇ ½MáÊ>C…õVìV‘Y»±…m»ÕÚɹº¢ª?~°¾¨ªø\DMò¸¶(à`ý –`âw„½a¸-‰Å9»Ø»Â4]8é ®hL«óìk¬¯Ò¦l^¶¬Æßô–ÍóÆpEךÔû§ü~öNÿ#sXõüTõ½jâ>ܲj¯0€é£÷9TÈÑN܈ƒ„Œ|¯v<¨x&_>n­ä:à‹ ¦h=|!›áu ûäõé*ÓRÌ82›ùsœ˜Ü1àŦY)ƒãäT“+MIšW! &J$#J`‘ê¦ÿ˜hR_é«W.HyæréÜ (xÎ’ÏId 4œ‚§¬W¾³÷’èûßñÏ7§;U`ƒ©nniøŒÌ×Egü.™u)aìÊgÂ`Z²¬æ—œË ÁHm_ðó,uï¤I<}ÅÃ/åìR1Ç7Ñš-úÙÞ¹Ä@ÅPJƒƒ–*C¸Œ{¸6°d:Xî‘“†6x¹>cãe"Ý´•äè°Š\™D`•$U_’„ìCމóŽ'΢v¨º~ó;æ2Ê A_GØ1Ø5k(zŽT2~CBˆÖçhÙ>RÛK 8»€ƒH5¡s p'kðëð”}8Ë'.àÑ4ûOn‰gw¢-õw\˜’Iž1) ÀÊë¼ÞoyP/ ŸüisI!9õ4Í‘ºÆ)r‘¥Tõ÷d")’aÀÑ7¼á%WŸžAÇ Â!lƬ€ÖG4wíQ‘MD!àð$4ˆÙ4¬©¶gK*¶OsVðzðpeË•å䎡ÓЭï<Äo]ŠÖ©âD_/f®¯˜Tœ¼–í|VfO³Šµät'Yç~-gb&J)¹´Äó—_|—ôÄÓ"gŽ£†\=E•oi$ö¹;´|e™2Z0%]Y¦4‚A>ºÜœ°r=¼9ònZŽÃ=|é0=ºi…=÷!ô^  ^>§ØØkÃw*Ç”å©kB£Ã,kÜkæ•­Ö â8Ë¥dïIŠÛ¢&›Úžç|ü4t.kv­(?/Wès*–ùâD<’Š(¬ ™À„£ú‚eļòR®0ª¹oÊQ©#3òœÆO&ðä"ëzN0üt8èËð&®€ß»´aJ]–¬ºS%ò ¨B ˆÌÂ…ª’Q± ”ŠsQ.ÇI±2â-Zƒ*åçp~Ÿ”s­²˜–À\ka2×úÔª ]8¼SX¬QÓìݰã‡Ð„0u«µ##£'‡[óFWq í¼­â-¼ì.'_iå 0ÊeÕ®Êbƒr žN)˜7å¸*Àx›éš:,f’¥ÆÅéÖ…!Xokî¡ãÌ­p|†vÒvÁ¼éÇïõ$¸ÒQCóu·ã"'°B4¿%* ‘ü£¬¦Ý7Ã2IbáQs{ÝGÌÄi‘ðE×¾ÂXçk *2à*ꨚ’>Ä_`%Ò‹3š‹¹÷Ò0U'Ô›#eÛJTV§Š²yøÙœæÆ‡}Xñ&4nâ¶Ãã¿°«b!¡‘¯ØOjlÒAXùÂÿäR¡uÈa}Í%ﺬ2ËߤýTËК§A~³ÝM|]U¸¶O9M5Ö³¶˜fE9 ¬I3Í·j£‰ Qƒ¤§E™9à3‹ç¹æNt¤èOöEî½Úñð 9FC5_ÙÅ[[dzÓ¯üãµ­]ÒhÔ*Œ7ís„¶œ-y©ÛÄØ(7lØ´?ÿPqÝòìý£?ö¤UÙ¼Úvs§ëCnï3QUŽ'ºé‹‰rúÉÅÜÆÞÌ„‹¨$†¥—'b%L-zó^Þh.§h-jAkÐ3ǰ%óY½jÊ(~ÒÖ·ÜÕâ;P'Qè&;ß¡6éG¯„¢£f&$fèËt¥iŽLή,š²ýË/¦Ië/ë’6àq"‘_‰%)°}Ž(äiÛ4‹ mã,öfï#ÀÙG˜·¡;iÕ÷‡ï«dª÷ŠmðŸì³}À­ÅÇû*\®÷Lï€{±¯¢Iú*Nw³E×6ñnoË2{omU'û½âc®²ÿà:-6š ›× ËŽÁ ëýéÕã 4µum çtUÏ«ü_®·‚uØ,‚ÊWK€íBZÃoÇZ¯àò«4,­iÜÆðŸPï9­šVÚIœM¿‚â…ƒ6½<á çÀMÕÿ?M'§ 9yÆ©ãÝã$"ç¤þ¨Žoråå¶v«†ºál¾•‚>pÃä~‰ÃøLIÙç˜rãmœ—=ŸUuU½¾‚6^_쎩,Ы_a”T<’ZþËÅŽLõ¨*ª¾}Ó\$ZWoþ.ŽŠm]J‡:Q'‘ÿƦnVí¼“ÏÿÍ¢„·ZÄÊœ¾Äó3›_3Ðå¥ö7r¤_Œ"º«¬¡?˜®Uƒw6e£]‡ø]¢«|/Ÿó3+®½Ö%ҊáAAzŸ8!{‰|ÈþÀïÀ<øhŒÜ¶¨s*ã $ùm8ª å[x½EÛkR±ò­ƨoµ¥Sý\(W–3¶ŽåágÛø¶®?bã{—^BïbÌñP’œåŽC»ùG{ låÜä“Ï>ÿž?¡àæø.ÀÐn²Eè›’‰Ú ¤hÑ2qpt9ä×v0õþoÔÓ§˜iV×6¤©LR7VÖªŒ¼Ç6öÄóîˆ (æY£ªK0Â^™¹F4mõOw2¾ÌiÈÆØÿ¦“$z…òÃXMЈM JÍ­{úL{r§Qã9æZeY¹cVsà9×kÏyv™I%ü.¾¹šÿèàéZêG zz‹…þ´•B¥Ɔè™2ð{ð›r¯IbÝŽš+ ßD”¶ð„“R ICVîµç©Ç¦YßQG¹—¤£®î}·Èª&—Íõ䪴"±„¢ {Ùq&ÃöþH\ ±¯ëŽ{%Š1ý#,˜»~’?ØOýšàGþ E1 ­1¼ …|i—?­IW}_Øà |y~ÑTüyÒl1F0¢»GÎ`vá MœÊ˜)º¦Z10•sø‡²?³ïáÒ.KS˜vÅ£\U“‚ó*»¶¥„^ÜmÉI:4Û¬ØYBÎ÷þïêrÆaß Å5Õ²ïÒ9ŸsË5uÃŽtåÈŸæ¤ý2´|VÏt°Zë†çT¥ýénõ3ª²¾Ûšª/ :5v—IcZœüäOWŸüʘ{ endstream endobj 97 0 obj << /Length 3975 /Filter /FlateDecode >> stream xڽɎÇõî¯äb–ºª«·$BàØ±¡@B‚h,Zds†6—1›”dòíy[mÍ"g 9̰»º–Woßþv÷Ù‹¯Û›Nuµ©oîV7ZÕhsSW2eus·¼ùnv÷p«gÃí¼´ÍìíoùáxkÚÙÏðáñvn÷ù½øÿ8´`Ò»BÛü®áï(¿ûOñeûÿ6?ãH=[ôx;¬éX=q´¥u²V†ðq‰³zÞjµÇ…oátÚb©nç¶m’ðœm¿á³ÎÁ‹aógẼìèÄïïþq3×VuÖ¯V]%¨ZÓ”yÙÚÙwðh¾‡L1{§KûB<—³ý w{ñµÖšR5¥¹)xÓ×<#¦S­šV»ïãa«® Þ¯HC¿@2=ð±rÓrX„ã×;þuÈxêvO$$ÜnàP{tÀŒ„þµ[7¥?ž°šÀr~]S¶ª¶õ•ûêBÕ…ŸÑ ¼0Ò"FBâŸè¾ ±{¤ÚLµÒtª©«”lt¾ÉžPA|çÎÑZ [À©{ÄÉa˜Ý=OÙïpôg~‰ñ ¯ÄŽývþaëý*Z"ó¤Îs¤ò ÐãOðx"aÒxÕ%>é‰øÏŸhäÄ‚OÁo‹c‡Àè„­"EÓN1,ˆ½ƒÆT^¨ÿŒ¯€`,S¼ÉR¼íTYèë/Ì”Þp /¸¿ß#YIŽáŽíù±G:lr§VÊ6Ýbå¥J\ñ¯ž]r.º?òû‚‰aš34Å,z]ÑT¢/~#…¤g þþ€TòQ§UÕ¦¤"euÜ8•c¡=üö;ùÅ9÷ûƒ#⃈NSz”¬Ŵì1샼vá Ï1®[«jS]'´í<¥Wxä7\z¼X\Ãû¶G<£Ä5aY2¸Ûùá¡÷Â+ØW±ãEñÐ͆è+È­”Ö`·A`ì5³÷^ù5l,v+'Ý„±%YÉû~ËïGÇð<|"9%ûÇ$§a¦SC ~Èd,öl~h„-qS³>IcR¯N0`Á!ªí Ú†¿cRTeD‹²¨@GŒ¿žS ¨ðô=±ä¼j„˜6Án6mÂöxŸ,¿±jë®Nùx$<–ÐMFžc‹EP‚JÀ,UÝzIF+Õ;Åë(›Þ Œ‚M˜ð´srIAÙª3%2ü ýŒ®›}™ˆ‰Õ%’Ïj;áeü°¥Y„†O9ÁíuPFßf§Tºêb);“M@%¬Å bD´Û`Ì- —¨AÔ 9$:žØx1< êd™7;Þ—LïZΞ¸š|“Ü*ô¸œQ:ФÁ•k=±Ìñ’í0H ±£æ¡wg­‰LèªhrY¨0@2H»¤­œm Ö‰$÷ ´ºŸög–£Y VC°Ë=ˆ‹$rðñÃmU3î×ýûX®e¡8Wƒ3ÞjàðnC5Ñ~Óû´¬Ù2–¹§BA¯oá‘ÔÈÎ7¯ßðÃ#!‚@X°Žv'ÆU"JEˆ¤ö˜ÝEý½3º8gHzrüˆžn]^ASmb4á´÷>} ê!#F«¦ñÞà9P qßi[ÖüQKpÂ:<go‡ Kž j'IaU¥õ”î{ñB3Z–bß·[g«.¢ƒE¨¬Xµ;'úfn,oRV}¯ùZãä…¨?á'‡crœ5ìÇ,è¹µåÌÁöá–b?fqáA²\xRtÌ¥»å8nÎŒ4×ÄWÏf8âÙ¢AiŠUXëqš f›b’¬Á©¦B"[Ýã@+L<°ÝŠÍ+Ζ›ñµ"YçØ•¦r\"'$Õà{•›ªpãÞÇ¢Ó} ¥ƒó¼Í˜£Ú`ÆÏåÁ% dGÚ£¬q'Zê¦kžËxLë%³ÂEaªÁû.»p{8% |H¨R‘‚m“‘PíœÐ”Æ!‰¦8oøGº+]pxGÌðàü˜ûgsd¡`ˆ‚3¯1l¬œQk%K¹ &ë.dœš?ˆkïœ=žc¦U¥W5—UV©ZÓ>s—eð‡3Ä»…„¹¥yÊ‹ikUYÏÐ_eˆ©• ÞÿKä±tRUä ·*°‡8D [kÕ5eËÒQ”õMIN3GN8€qÁLjf}›“3ÜIŽptæ4ÀccãÓÞE‘ )MzÞ…ëñ~ÿ·ëUÉõˆù‚‡äìDŽ m£Úàwîr»›®ý}ùPØL,Çi¥Qe}Í]Nîœ5;e¸¦H/ëê$Ç%¦ç«¬†5!¿ëR€ÒëRz9=FITV90zô¶åîþ´qÞ<\•™½‚ÇûX¢¢ý˜L„3P0qÙl$iÝÕ×BNqp,×äབྷC”þ=²›E³Èu… =ÿø”ÅÀ7¦ÁÇÎÍFÍ+^¥Ï|Á¨J§¤e’"5o ú¿„01¶º®yUÛk8,• Ìê¢Ëî/Û¥­$wì…ŒoŽbw]Qv„„¡à:.1çÓMVx?ºÄ7ZHÏdàõÕÛ:1Ò£8{€=|t‘½l;vbw%/ŽÌߥH ¦HÞ‰ig£øÞ»‘©ÃºöfÈÍLE [û;z”oC^Fàü·ƒ3$ÇPc&Ñ´ÀU ë¼2%Z9üá@]£ÑÌãh^¿åÉÿ…ÇWñ¨½çð¦ÝˆŽìU|5 F©Š¦JÕ[)žÈ+æŸ5;¶ŒÓ_r¢Pª zöuÆLqi P˜©4„~ì<šô2]AtS_ŠVU!·è¾å„ovöö‡¨øÔo6Á‹É%•aÚ/Ô¶ª‹æ™yä,C FWëÔ-|O¾¡0e’ÛÀy©=¬T8o#AÌïÅPB£ö$øá|«ê¦ $È0Œ2Q݆ü»¿ðOf7ì˶‹(jª‚ÍÞÀ÷QÑH®Ó#Â¥„=b·>r˜æÿ£*Ò9ºuušR[ˆHž–×M°ŸÕä]õlc!wŒÓcx¶ÿñR”XiÕ¶v*ÅD³”uÊ.Kþ¤6š“-¬¸Ëî3pPhª‰žÒà4FsÇÞw.„6Æ•ÉHÛHÞ†<£ÅQmýôSÈÒOc«ß<šå§²ÈH#9wWZXžœFyòÊ•ð¥VÜûu£ólpJÞ)« 8%ÍoçƒÉÍöÙ28xçZÿ÷¢±µŠ‹EƒâìUZ}žy`‡.¤ 2*âÇV?eº2Vª!0³ÇW/Ù†Ä~Ð(fe•âuýÜʾJÌyjB´©”nê_ëÕ|j¸>•ŽPïO˜ø)¯$´àºÏ¶l3e‚iúc2ò„gUsܲç™Qi™+OÃÄ upÇÝïÈÍ—„.^ï’Œy{épš‹ª&”¾’Ì…0ÂT©…öIÆJ§ØìUZïsd/)aöæ»ì65Ê´Mâ6Mc€¬ +ÙªH< |?’Óv÷|“ŽˆÇ“/‘Ѩ¯–yeˆ}Ôå Ó ¡v¥}ñg£EèÆ'À¤»‹ãÇœ-§="ôMNç$¤[ôn )&ú¤¬® ]?Á§£L^ñï"W¨à›‚¢ª;ÆûXÈ»µ—ÚB˜ †´!`"sry˜v©f„§œFWP¬¹ XgÚopÔ5Þd*DGßN0ñ“}ðµuÖtp˜Ýˆ<:Ñè!Y‰*¢#Ç7}hT_üý)œ{8xž“[—_í%[°quÍWµÎz`4í5rr›ëÊòí_€"Œê¾¿»;~OêqQ…1”ãrf]pŒÍ¯«0›`®³%f:2ê"ªX¨—§ÍY2Lõ¡ý(·X<§:™Ö™!™:Æô5ÄZeªB…b¨^П?¯lâè)î°ÀÁ»N’î2®I ‹hSÄnŽ šw²ÇAÊ×îyˆ±•wž{™†n0h™—áã¿`è ýùÓ|—5‡[ ˆ×F\}œÛóÏÊÇ‘ ;^Öé> ´6¾„ÅŽŸ­ö—Ú”‘tˆùÖG:çI?DceYÌj(î7iµ„>±œ¤ ëðJXx#«Û°Þz%Äý¨!޽¤¸ ] eèXÇ,âI¸gÇŸòD”?ÖÊ Æ@§$ö¬ë¨ÐÅK¤£–þãµÞ#FåÐ6 ¨]püúí›Ø]Þ„Žl&XL^8íL8±>c)ì˜øŒÜºª;v¨À=> stream xÚ¥KoÛÈùž_a¤‡¥ÛÃ_Án‹lÛt] é¢ö¡@Ó-Q²IÔŠRœäßÞï93”hh´8¯ïýú§»¯ÞÖWMÚ”¶¼º[^5UZ•õUYT©Í‹«»ÅÕ?“íúÚ$Ÿáé×ÿºûë«·e°MêLy•ñÞ=lëáÁß<xZxŽð¬emÏð|Ï-o¤âûëYnš¤E8 |/“vÕ®wüŠ˜p›m|Ù_Ïl©S70¨Â_ÚÕÁ‰áˆƒ€pØ ¼ö¸úþT4Ó ´DÓý’»_…õy_3~¼ìç4ÇW3cÊ4k*|I›B¤þ ¬¿{ûs›|º.J†w"BS:g\Ú87>uT8ëîVh¢=°Lœ-X¡Hú€/»ï˜wQØv®"ûkÒ#þé>!+SÖû]€‰¬!”mï9’ .F:Á!±Fíî áNÄŽ³$ö͆ˆ¨?òû½êA‰ظ¶í=žQ©NˆGmƹ&¥»:YüKøxÛ ëïÛ ¯°%õ{oÜ„$A«ˆ¿º1±-“¤×³ªA{§½Cw1.yoÐò:@öcoÂ8L˜Ì§Î$oýAØ™·BŸßêš0 -‹kN&Ú¢žù‘IÐ ¸ŠqÎÑHÐG\Nrmq,6“…O‹f/ìxJ1 ÒÑêD•efG7|æÉ%YÚ–È(Æ^ «í~/Gú½‡|”¸àijÃZ2‰öätšœv}Uûèe¡Ý-F‚*Å®`5+)ê‘£Y 2ÏFF>"4ö+’¬Wöñ¹®ÚˆË]rƒQ%sdxtÒ¬+@‘ütqΈx|`Ið*mÞuªØµž§Ëã%oµ%Ö9/fÞ˜9C&Ø,‡)늤B½ØÚÒÔ  iyfÙÎElýaÍB£yõD/åÀ Öî$æàîÓ^|¨â°"£Caµ…¯Êäq; +§ƒz4 A!z´99\GK†ŒJø˜`LQ%Lîæ}ð˜ƒb°gÉâL†Q9Gp/RY’ÀÑl“h!™NË–!¶Â5Á(Ðà™›©Szqb!jjŒ©ïGV'å4K¢I¾zßÂYdbÉ8@ 4Š…}ŽÖâÅÁ“ŽÊÜÚÖn·˜’à½&è¼"7Îë„Ò?“½è4ð^§èWJŽ'n¶GzWÔÉO'©`Cð;tŸImG!_ЋPEÌ©O øƒ~Ãû–8ÿÈ{|êÅN!0láí ”î½wäÒÐigBJ»¡i5p“Òµ0|ºyßkÌ-ò`o4ˆê´ÂQøxîîxL¡qÕ|€„Ý[>¹–8]¸) on¥H5Qiê&­³B É•È}{Yqš&-r§GÙ·R>rÆæ 8%Å—\dd¤(*œ0v!„>*>hB(§÷} ^g\ÏXëRãijðîB©XnCσ9­ø´3ýI„¹WÓ„IŠžâ;µ„…Ž JÇàtY‡ä`…ùKÞAÆ=*Š*è©Jv=¡*%ÕPRZU®º@¹¼ã¦vÛ¡$ s™¢ªHÄäjÊjIC¤l9y'Á"!0ÔJÈÅù£:"+C¦Âé÷·j¯0@øý–’ÑqœŒ$›Âž%å0v¤µ»#§y§nôê­«¯˜ ‹ ,Ù*-­e–ª6õJá÷·wHÂ¥£ê4‡Ö‰½áRm ñ Jí+P6±­i1ÔmCM·öÅTDîʉ‚gÏ{*˜zV"ïY‡×Q5á¤!Øöƒ µÈÚvàûGé'¹6P„¥q€Å"ñA¡3âÉt@\ic”Wîqe§’„wmû4Zu<n4VÓ‚×…üê 4ôR ½Êi],÷´Eˆ>\‡¦÷©$nû‡&µŽÎÐFî?«±!éÇBzÆe¦Ó ù ËœÊaÕÅÒÏ!àîå¾µÖ?”ôQ>G©ê½qj”Ô <`R­@>Úp²‡6ÂJ¡ËvÊ‘T‹«Ø i™K}ª6q¸Ô²Þš: ~‘ÁçùðBòTh?$­œ‹Jê2Œ[G5«³ßhXº³åZ‰ºb’áð=¯\FY˜¼‘øÓJ„s¡0±z1‡`À¥javîÁ3¥›Ô,ÁíCVd0”#ò¼MM]P„©*fΠnš†  é¨K='gã"OCŠýÇD¶©­ü†Ëæúþ¥æÞ-I~KIi6¸,‘jVê¶ðª÷$ôNöÈMÉ`Á»ûƒ–RÞGãÁhuÐ(¾?JÄ·ÑE Û¶wA¦¾šwÚ߀ž)Ó6­;Nô#H VËjÕô”WƵã¶N-©;JšÊ]‰M+‹ÐŒèÔŠNßb[z A;3´3ÁÑDE*h¹ÈÙ¨¶ýø2Àøv’a7h;[Ÿ¨_º´ÓÔ ó¼õ¸¼\œVŒ¿#‚)”Ÿ$…,ÚÝé(¶”³Ÿ›ó-† ½ã:õ؉ŽðÒŠœú²¬ÆªÕK€oÓ}=R»×îcºr¹¥È¹S%+×âbÞëmË5 ´s?,†÷NL¯Øp-ðæ+ …Ôÿ+¶àgì&÷vCEDH¡rÚŽû«M„h-ÚXE%—D2R×'„:D—Ñcë×)ªâyë€û©Ø¢„fÆÖÂYÍ»]ì(kÛØ`È8X­‰D4óÏhŽ;l'Èmª´(½©~¼¤¶H‹ÌÛ:Z`µÞ–¥E•ɦãfÜ_dÓÀ÷Î:èøÜÜË‹…r.ü‡c}ûHîƒ$ÐÝB­uì#^¡¯ñj‹‚$ù4³uêŒú­¿°ÉW`/ªÖ+5Ysvï-W-Ÿ¸0°Ëï®I³ÊËôWØ<ùFWRôú[þ¹¿¤Ó9ða7 0Ýøš„RÉ\b.²´_Lî§aløèÑ#3ûV›¼ç¸$EÇÅ»¿Aóh£Ë’˜p [¾¿ðö"7T 4µ—Œ?*Âf&¯Ò*Ë¥ “Fïç.ênµFέ\ßä¡3ÚÆçi]p]4ºY‡/àÄ‚Òp6áWiSÛQqø{ö$ý,xþ)p 2ˆ¤>¦UÞ­l‘°„~äŸy8øò‰ÃiôÞEŸ"·¾óàñKNðõ9Púu“›>&Z¡Ÿ™É\•ü†-ÇRðê£ãTw 2ÚÉ~-% Oÿ@<½n„za%óQ›ˆ ¡oüsÑ»ðÖe ¶™äorBÅ™#ýÿü"Ä/èžÁHÛÀ§D`ÃHH"O³ºð·g Ѧ.¥à‘}“oÅÿaž–EÃoGÜI ËàŽÑñíXmù½4WAaó´1âwïdC|øõä}ýÿ ¯8ý¿ZC’ò2-\>¦ëOü¡G‰8yôã•_é{…Iþ.Џ…´5}Ŀ璤'püàïjøyc¨ò¼Hrx·ò”ðdŒQ§ ±tÂ|J®OHŽüщ¬†§@5=#<¥àÊ.§39e.3ÈLbžÍR}+t§½:Fà²N†‡Ñ-Ìà…C9õÏïÓ`ãÀš–)·”ü=—.ž|y¯æuC|Öx³äšäç§>æçUé?õÊ´Ò£õ0ºL*+(¸òˆSŠX>iB\ðØßæì&>ÐK/ô(Ÿ1ɬ:éZNCᢠOV©þ& VoÅB_‡lxŒî^1ÌóõøÐ…›ßð5È&}ômR²2dáBîr}Nä|l3hÚ¡ó˜åÐáéΘ×^üùîÅ—ãMë endstream endobj 104 0 obj << /Length 2222 /Filter /FlateDecode >> stream xÚíÉŽãÆõ>_!ä¶=â°6.;@¶Ƙq ·âaKlI3’(‹ÒtúâoÏÛªX”¨îqÀ—ØEU½ý½z û³WoÞænR¥U®óÉìa¢T‘æ•ä®Hµq“Ùbò÷ä÷7S§MÒÞ¨dÏž5<ø{OÏ™Ë`™GÛv€§#­Dé–—yø›+È)ðr™1»^±œÊlˆS«ŠdB¿ìyXáQÁc‡¬]„¬ dýæme¬©M«RC0€0Jâm¶â3Z'Í¿ÐÛ}v¸Û­H^]$ïÔ¸òÒAüº­ä;:§ƒöÞ“Ùò!+þͯÍww³Eb('5Eòã.“æ0Ä­üû ÛÿXòM w²ïš4Hf!*´;ö½“X;ôO¯/Àæn hn“9à7Ê¡u”­ñìÑšC ¼ cAž™:S&ooJ›´†©yéÖ’-÷›_³¤|ÄŸxŸïüI¡žÇ÷Ç`›5Ýa´o tqI}O¦!m?¤.SølPðŽv½ží‰9'­À #a\h3v.¼Ç¼˜§zªxM:oOÙc|öc¦ ®ó#Ómøì® —éÀ'}´±©zr¢½åàmIq|Ìå¥lX@úPä/ë‹Q©5å4´›5ç¾Ã»îU_wcf¢,ƒêC‘ËÓý©‘½áxoº#ÿ¨ýê ˜òUv'ð oƒ».Åì1ªV«au«T¯ûêSKnÞGýÂÕÚ07²íïŠ`Ü=Ïïzõý‰@nªˆóî¥0iVºa™}/¥àÃÍÔª …¡t@#ÍÄLki¢>1×,¤xNÇæâ!0-`’Ä)É;Ùs’ͳðŒÄGÌ~'<ÑœòüUÞ6Ñò–ŒT ˆ`}QÅxÏ)­õÞÞA=×¥¡°Ôå ¯ãvç+„Ok3§ÆcÃ?ȵdBé3ðŽAÎòTá[:]éd-|מ€NvmÏ›RW(U]/X\C‚ÜÍÈU2*K ]‚cHÿ—{ï 3Ú*-3í @³‚K*ð\q|n+iK —Úâ¬6¡6]jZ(b>±9vá†ÜÞñy-pGq¾ôî!Íý‘á”)9ÏRQƒ5á†LÍ îPÅ_ nHtVz/ŠZÌD ž‰Ã"²dZê?êbCPÌó¸ÂÈE;rO(€˜iuâèvQJ†š¼ZG ôÒ×¥JóB¿äjÿî³ÎQ*w`/Bªð„?K3£Ø@T®A²“ß6+Êyµ¡w ß3NÝñzűx´ª¥œÖLr‹QvêÃκm¨' 7G¹IMY í,ž†FÆTUò%¯ÊäëúkL§Žm3EQËne DBogY²÷Aä»–9Boꓬwµ¯1„ "ÚHø¥c}ATÇ©=£Ók%ŽüÌòÉFâD åàÚXßeoÛˆr‡Ô’¸a§å ÓB9?b>òepí §Ÿo\ζ@íê{’­cB^wÇ"@ÿ$i-dŒO|ì»ÄœZ*Ç)®eœ…§½Üµ]/–OŒí}}Ý vŠ Fu²ØÕÑÐÆ "î²=ÄÍÅ–áî}ãêð¦Ç6“i‹†%}ÙBdYËI¤éï‰ï„~àÉ÷÷D”©:>ŒØ)-zB>غƷVpò$7ŒÑ /}6:™Xh®§zîÛc¾=OLô4` =¬ C5l“±Ù#Œcpî‘Ùr)=1lÉþà;ÃMÃc/¯DÙs é¼a7Ü¡rh9]»?$lAY®ùª”IsFD¤“ëéZÌ=¹²ŸÝŠÐßshÐß=0Ãv×\ÅB¹39Ôšô·$w?ähÈdl hÌFÒ‡š"ã9Ëø»ÍÖƒßÜyä'xßFcÛ&:ö6#NÞ<“Ÿ öCo†Nui8ñŸò粂負Iéx-Ùts¤¿’Ž,|ÉyóV©xp&-ªbØÆ= `6ÉÓª0%õ)iIÝoj+ËPëÐ7–`. ¸K•Å$‚½c¥Nå}ç£ó‘Ò˜ê¾2~=BßLÔ=™ÑóÔf(ú%'—:Kü%Ìì3—æfh§—ÌòÔ*ý%ÜâÆÐrS®<÷Ê»*ÕFýRvò‘(™* }'˜²L].±ò·Q©Š’çK­ªÅÏ@C‡A[ø }Ùƒîªs˜Ïì$‚¹ÅÐ/yt:SD—iîP,Ò˜ç41Ö 5ù8®I‘åçš¼î™ð¨Ð._¤‰ÉÒªBÛT þ3>לûdT*%N±ÿ“Ø+Ä+öRt€NËúHù§|âO3yeß,ùçÍõo3p<÷ÍÚæ·¼º5xý8ƒG*À3nTïêÝý|¤b ï3ç2¼™Ú¶Ý""ê¿­Åß~PD/}õ J>ûâf4y$ù¨²vA¼VÆmJßæá+êë÷ø•ÿ¿Ÿ¤ z[ŠŸÐáÍÇ} woØjiSˆÛýI„ U—çVW F}dŠ> stream xÚ]ã¶ñý~Å"/±Ûµ"‰ú,Ò¹k/¸ M‹ž ´HT¶e¯{–ä“äÛ\úÛ;Ÿ$eË›>xE ‡Ãá|s´¯×¯¾z›¥ePfqö°Þ?DQdeò¥y›ôa½{øqñ~-Žðkáw€ß ~õr•Æf1Ò0Zôðk´ÐIž£¬î„°üyýýCø°ŠMPF¼ÃŸeÞ_û;Å‹¢ L…•&>Á3£=ÿË÷Bæä‘êyê7üø‹¬«…w,šþ-?þ Jh¬á÷Ù®B–L¤‰™òõ˜Ý;&.NÝtæãr¥y´øŒßÓo‡eºøÆïà÷†¶XMöÈx¯…W$žá›å*7&]ÇòËàòŽ NáÁ/€Ÿ™“ëÉEa’ÃBf1b!ü!»} gô´àDVä²"³Ûƒú“œ·ÿ†ñ?‹ÜÕªPÛ?…i(Þ‹ÂF9Í£*?ºÃ¿E9ËôYtsò6òmó÷ÈÜWoóÈw‰"ò(–‰Õ/eâ5iÇ¥"ì…öVèwÂÊQà§™=’,(‹ÿ IÄv›$(M&Ò,^T&)ñL–IÖgQI" o•DåTô# ò$Ø„ÕÏ÷pE%ì<=q‡¡(ê–q•{Ù©EŽ8À`Ãâêq.!ù*“-nÞõ´‡ šªéŠXA©ÕÃt“JÐhŒ0+Ìø䩜âõ×wÍ$ðKR!¢Gq_´¢óYâUWm‘øÃÿÕ²q!aþËðQÍí,ª"¨ùŸUS€…²s2ýÓÀZÆé¿æÓ2öOG‡Ëî¶ÊPÞÈ\*½ÛG^À È$j–KOŠ#ׂ d’,FçI˜8(c‘Dá!ŠSÈÀ’¶§ -'‡ß É+‹Ðye¤J`éÎÖ´§¢á%Ì‹ÚàDÕ¡v¦Ù#h§r¬E0 JÙ..n¯®çɆLø   ¸¦@~”¨_n¡*F鋳õÎ HõžOBÍÕx´yBüH7Ývâè`£Šÿºäݦ:j H’ënk‚M˜0H£ÈÏ¿Úß—z’ÄÀÊà|Qjƒ­ó¢M#¯2L ÏTüØ IvÙÑœÏ`ùºÊ2Nž¤Q=íøäÆD‰jevŠß#ϩْe<ª>riQz /ØUáñ†ìí~¹Ö7CŸÕÊ`|¶W=W9{(¬§3°wyJ¼7!3 Jº4,9¹‘()=k-¼!©Ÿ½Fš"ž^U iWÑf²ªéú{véb5å ÿÂ:4.àþ@çiJ@‘GŒýÚÁp»ÉRrÔ;̱©´3©—90ã“N ,q|·*£Ù;á,›•¿BCƒ Î6üÊÍ á¨8®™² ®'Ré¨ËÚ§ºªŸ¤ªvgE4{Ͷ(ö•†Iæ'†¿CK› ÕkýÕâ÷ò쵟 êœ6ûùéè>ÉíÝQ‘äÞ5ú$O^šÀYj™nùQN¢h;õuÛî¯6·-Jý‚È_Nòi’¿Z/´yÍ©UÜtmåkÕ@ÑËÿÖÕ’À`ãÇ’µþsL_y½Hä,ã ÈÁ Š0ÈSù÷ˆ˜> ¿úãúÕÿYvë endstream endobj 111 0 obj << /Length 3239 /Filter /FlateDecode >> stream xÚµZIÛȾûW4| qÓ,î #Æô`œèœLœ[bK‚ER#Jîöüú¼µ‰m;‡$_m¯ÞúÕ£~¼{ñú]^_™<Îò2½º{¸jª¸*뫲¨â4+®îVWÿŽÞ,®I‹èýÂDÛ ¾–ݾw-| Ýß§iqUy4ŒGxêpL¼øÏÝϯßÕWMÜ”i‰k'Wש‰ë¤æeÿ68fš&ð·ŠŽ¥ÕQßÒjð9lá«Ý1ù~q–±0.Ò*zd2™¸¹?(ݰH눖Yqß#ŽCÂFÆâò#,Y!È÷užÕÑÛ±ïqçw8º¥´«mn„Õö¤«Ž‡pðA'û˜˜œÄæØd21ù…€ Êʘ¸)D²¬Œfi´n÷·Úƒ‘UË™ì;Q*˜–JU U\W¢Ú†Ñïíée†jíá³ßëYEš:ÎjËüì˜(³ˆ$ß.‘_œ=Lv’€‡üÉ£ í<ÆãwL$¥uÞ¬‘éVØ@žF<ä G˜²"Kiy¨.0òï-mRkjW<°تLôe«C*ÿÜk_;,Õ|poT4‰©“Óåê»9å!§í±}ã’RlŒŽŒ×0wkì&©F‘6MÔ=‰y»$‰Ff¥ýyQ”°¼HŽ)ûˆ›,É4Él`žnŽ6U}4YnE ýÖqN;Ú‘ˆ*PhNØî÷dÆ,±ÄX5Aÿ 9X‘˪ÄIÊ«— ´0r®4ú¥ÃŽhÙgŒ½ý$F‘V©åZAÒJEÚÆ¡ùý¸] ‘å³C)t š´ÎH·ì°4Â:× Ë¬VÜ`þÕ–'m,rtlj\ù#œÑ¤È0vr«ª˜¹ ‡#-ËäI&w{]Ûa™¼"‘¶IäKÇwëæžîYɼÊË@ª%K•õS²’–ä ±×ÀEÖoœðã¬$Qz˜(’Ø)uµ-™âKÞ­Ça'±êõ H6%ÃêÔ~Ë* Ô%û;’ ŽfdøÛiûñ¸¢3ñø3±L<bÎÚ®Ç@ƒCnlÆß‹XÀuQÇu‚èi&|LŠdÆØ20ukJ¿Ê€ìªŒ›*«q@ðœÅ¥‘…æVIãª8áúõÒlq%€3³²“û»}L’är©2®Òp?É>o&Œgù¬¦\ºJi4èÒ€VÒ§äNm*sˆÕKܵ PÂî| ´7·<ˆ–Zº)]”$Õ-U÷.XÁäåh/?‡VÆÄ3ôö¬¤ã´)C ܹ·©#OžTp, þh¡98…lìâû›Àé<©.|÷ľöàÆGµ+¦ö×eȬMã¦>TÀlÓ⺘ˆ¹‘û=£[¯ºó€Äh'œkÆ`tbMôæÒîŠØ”6»b®‚½>W|Lë’¬„/¦¨Q¤X,Ï8z<|Ò_x÷º3w{ÍÎuI¾ýÔögÔ%iE·¸¸”!qÚØ»örBˆžÅž”m5î´®‚€ƒýƒ š=™Ðä®@lˆ¥­@ää=”·©Òàù'´YÝÀä‹+ôÖŒ{IÉEh¿!½=¨Ã@o»&Ю­«ÁGà)~àIè±·¯¸Mî(kó$‰˜*vÜÖ<.AíÄâÖÞñv z)–̘%éC€Š`ÐNðQ§Ø|¼ª%Ђ8¯Éóp¡›#_aؼN’:‘b¡->p•åA³áÕôɽ›' †ñÒÎcJ¶w3©RØv´Iiân¬0Q©Ê èàö8ˆFîO²únåY„Ýb0eE•õËÎ ¦,6yùbbó­K»&Lšoó"0#x´WûÎ^WÜC`zRð IÔ>éÅÆ–Òå·”Aò€‡âoA B[Íkg«yî…b[-eVî²M½íË<;Ž…)—)eݯH9…KJù<.… ¤L†À9N3[-#ìÄœø¤”tPšM.†'í&6™áá¬îq`ª^Ùp¹ž<[†3–²ùʺö-Ù¦)ŸBä/á>ðCÉ(‹úÚƒu%¹0öAc'±B IĈ­•ç¥ \Ê•.Jú冦wUM9ßZ'KßáÃzke4ðb½s»N™ª4?q(™zòb´P4]@{ß*Ot.ÙI V-èÒQ¤`ìk8Añn£¥¢ÂYj‡Ñ£ðë/ECò—šnwZ*Z¹õoÕ‚–[± n´Ïd¢ÌÔqnÎ*`A"*ãªþß‹¤ÿ‹TÔÄ™+­þ‰sL¢—ìÕ{  ÉFg,çøu%MúÿåTÓÄUy–j|‡f[·’ IP̼ÄKU\›1R_Í­8Ü nÈê8©­º–—üçqfŒŸìñµ'½^k”ÒRnÆ1P¢¹6÷^ ½6xžU}).·ëѦk ÍÃúyÕ|£¾ÚXä•¡Iµ"*3[@†®–ª/ëÈÕ‘óèÍŠ’ì‘5¢•dÀ„ô6BÁnúfMù-kfë½QMk—¡±ý h‡ž ~uá{9¾S³Šv;ð´°Pp;Úp™¡“*öõ:Þ1É Ñ–/¡Ðºkák}P¸°—tGŠmOBœx´¦UŠ4[;ãÁþyá> stream xÚXKoÛF¾çW=Q¨År\’zpÓ8ˆ·A¢(Ú‰–ÝP¤JJMüùΓ¤-9éÒrwfö1ß73Ë—O¾»鬈‹`Ãly=36ó³f±uél¹žý]Ì&ñYdæ& ðxx²IŸ…ÇPÿ¤™‰ ‘)äÛéä='ù?——³d¶0&.R™èjb4£É¤OŸT ZÈ8±%yüßNôÝE>ÙäÂ%± a¶°0·Éyîå Wó…wyÔî ½‡çv ?e½Y´›/lÆc‡ûIž¶aµklw,¼j·(Xv"ÓlXf[Ö:OFS´Ø,H·‚g2žGQ³¦‡äoÊ9¬àŸ¹ÍU×¾´¦ß?¡ÉžmÜ6ü_•+´sÃbå¦:å .¿=À,.Mi¹7< ½—]ʼnÉZºÉøðT·Åf`3¢yC´%QÔY±{UbgÏt„¬2.Vh·> ÿ¶“ÑIšv¼1Ï;ØœÏ-l“¶÷CÃ2Ù,ÄEærb@‚Òp ±/<‹sŒ!Ë“l6‘ú¶ï²èÔ´&“"|uVsoV{bÖ<öÞL'…ê„nbÎÅyæá7˜ rIr3>v Ð ¶æl\åhk¯«k¶ ?ÍŠqLÁ„²TžH–ú3àŸ°¯ãÙ™è'9ÚžqTáV?ݪé[^ªÍ]tÉg‚:?+Ì>QÎišQê5‰$$rW dì§ÑÂK¢ißN4—¢ÉtîÑ€¢…ˆ=±§-Z˜¾›ç~˜œãi­)ôèþ\ԯȣk@à@ÅÐ~=o†·Ci‚ì-@|Ë™ø¤`ƒµ¸›ò't¾ |Êï÷%°Aæß‰úkØ'¤§¿dµ*: ™Þö’Õa%í5+pÖ[ÕÓT‰ã½ºŽ–Ë}Ĭ-ÕAÀÜnêö½ÕŒðô¹VJãܱjA„†èÄŠù´Tšô,ªÅ 4w¸’¨¼µv,F:^>*0Ô㪺Îc¶!ª?üX`{C˜U+Ôõ¥bk W¸ŸÛó8+œ¦3ôfy‡6zªƒêŒvšèU7O-ì"ŲãˆxY‡lHŽg’éŠ,öÙý#γï±$5ösj›³ÊK0mÓ‘ÅVX| q&DÏ9J<WÜ¢Ÿ8'Œ³h9 Hæ<`rB”ƒA¾£èG¶†ÔÖKˆBšú  Aßÿ«®]T“4°¬gãÁqü„ž£À ²÷ÖLjŠ:*a©]e"íû1…#Jšãþ:ÎF>¨±ÀȘ"¶!fž¿á¡frÍ%é$€ÄŠNXâ*ÀýÀ\ÀGyÐS¤Òìq Ä7Üúv[dQÆåq³©81¡´Ò(ñÑ7scÓ¯-MKop‹ÕÚh½<Å֥ª}NЇÁÞ9{t¥û®$K[j½Â½<Œ"oðÌ(Ù?<Œ´()™í=È8z%&^Q¾áx!C—£â¯PòûzÔ>—ñÿ“Ë2Ë!7N£$úÂK!ã/qÓƒ¼=ÎØ9æ½Á´H¨tìÆ Ò^)T¬C4Îõ:Ä“ô@ ‚¡M¹%òíJF%ñýž²T¹†+lÚùv(€Ö§PDåÏF¹‡1aE(¦"ðT¤MC wF ¿ 4>r)ù ®¹RÃjÙxÉ#tHo9… !åÔÍ "ojÆÈKÈÞ•›JBZÆû~Š!Þ&AŸ'1Üýòa„¼È¿‰ùÆMÐ÷ ñ±"HÖBˆ.´~äBc"+઀(ÌØ|.¶Ï'ªcí\þ‚;@" 0aó£Ò_ë°À$Úðµ¦fë[ªªšž%$žcsr•ÁWMöMÅeÔcØßŽI‡pŒ—hï°¼–ŠWƒ €ò¨”wC”Ã&bÙïY3ÏßÊNsônår ]6±q õÿùbæV ¬\¡+öå^Ëõý«Rk¡ù¼ˆ³ô¨œÇÔmMøl­‘‚ß †’…lïs=SÒ–¢.D¿aãЋyÐæaøœdñãJ£åÑÞ6zþX€¤Å®ìêÉ=iÇÁ˜Fq[u9ÜT¡”$G¬ˆ¹ée ßê|ö@ͽ úkK‹wXô½nÏ+LYùF5ì%;uY”J‚¢UÙ÷Zsœòï—¢/ŠGý½'ì©T/~—òm˜jêòÂÇ#øÜ\®}að¸óìñÂÅ6Åï‚4½¬ÍÒÄ'Ï–OþÃnìi endstream endobj 118 0 obj << /Length 104 /Filter /FlateDecode >> stream xÚ31Ö3µT0P04W0#S#…C®B. ‚‘)T&9—ËÉ“K?\Á’Kß(Ì¥ïé«PRTšÊ¥ïà¬`È¥ï¢m¨`Ëåé¢`ÇP„ÿþ7Ô3`‡v(P†ËÕ“+ L5* endstream endobj 123 0 obj << /Length 149 /Filter /FlateDecode >> stream xÚ31Ô35R0P0Bc3cs…C®B.c46K$çr9yré‡+pé{E¹ô=}JŠJS¹ôœ ¹ô]¢  b¹<]ä00üÿÃÀøÿûÿÿ üÿÿÿÿÿýÿÿ@¸þÿÿ0üÿÿÿ?Ä`d=0s@f‚ÌÙ² d'Èn.WO®@.Æsud endstream endobj 137 0 obj << /Length1 2016 /Length2 15132 /Length3 0 /Length 16366 /Filter /FlateDecode >> stream xÚ÷päëö GÛN‡Û¶í‰Õ±mÛ¶m;Nlgb;“d&æÜlœ³÷ù_Õ½ÕUÝ¿gùYïZow“+ªÐ ™ØÅílé˜è¹"ršLŒFFzFFfXrrU gkàä°äê@G' ;[îYˆ8 ?d¢†Î†rv¶ik €‰›‰ƒ›‘ÀÌÈÈõC;Gn€¨¡«… @Ž mg t‚%±³÷p´03wþÈóŸG¥1€‰‹‹ƒöOw€ ÐÑÂØÐ gèl´ùÈhlh P±3¶:{üOJ^sgg{n777zC'z;G3~*Z€›…³9@èttšþ  7´þM– jnáô—BÅÎÔÙÍÐøX[m>\\lM€Ž€ì)Y€‚=Ðö/cÙ¿ h7ÀDÏôßp{ÿÈÂöOgCcc;{C[ [3€©…5  .KïìîL 0´5ùÃÐÐÚÉîÃßÐÕÐÂÚÐèÃàÏÒ âBJÆós2v´°wv¢w²°þƒ#Ãa>Ú,fk"bgc´uv‚ý£>Q G ñGß=þ>\+[;7[¯ÿ S [Ó?h˜¸Ø3¨ÙZ8¸¥Dÿ¶ùÁþ#3:Ø9Ø9@ÐÝØœáªöÀ?•Lˆ?8øxÙÛÙL?h},L°^N†®@€³£ ÐÇëߊÿE°LL cg€ÐÌÂöŸèb é_øãü-ÜÚŒãÇ`üãõß'Ý 3±³µöøÇüÏ#fP‘’–Ö” ù›ò•ÂÂvî/:6v3#€‰‰Àññàó¿q -þ®ã_¾R¶¦v®¿ÊýèÓJvý{(ÿ^*ÀÿÆ’·û˜\ €òŸA×adc4þxcúÿ<îºüÿ›ò?¢ü¿úÿ­HÜÅÚúO=å_ÿ?zC k¿->&×Åùc äì>vÁöÿšjÿZ]a;k“ÿ«“r6üØ![3ëÿ¶ÑÂIÜÂh¢hállþ׸ü%WûcѬ-lŠvN\-:&FÆÿ£ûØ.c«ëÃéc&ÿT?–çSŠÙÛ™ü±eÌ'lèèhèûqȈ àÅô±Ž&@÷?§À@okçüáø ç0µs„ýãDÙÙ BˆþB‘€A쿈ƒÀ þb0HüƒX Rÿ vƒì?è#¦Ü燥Ê?ˆÀ ú_ÄõaiøúÈnü_ôGoLþ?òÿ ?¨3üu,ÿ•|ä1µpý— ó‡ÀÎÅñ_!>LÌþ?j1ÿühŒÅ¿ '€Áú_ð£8›àǾ1Øþ“ꃇíÇéýKÿQ­Ý!뇳Ýÿ¨?j³ÿGýÌþã^¶µšþCˆ•éo©ãÿðdý`nÿ±Fvÿô†ýƒ×ÇeæôçPý“ãƒÞ¿È3}Ðsú§â?Ðø/æNWÐ?‰þÕÞjœÍÿêïGÕÎnvÿrøè‚Ë?ùCÿ¯pÌ<þ?:àù'üŸé6vqü`ìüçýó1úÿÁ~¡î@cØÕe;cž`ËÆà¯õBxnt‡Ó| ä‡éTt^«ŽÝ.ψP)TuÙÛŽ÷B)cÈûb”w‚kDo^çÍPaIJ]/Þ¯ú Ês‡]°ßg1‡gŠÏ…š†`ðéT¼ß¼Õ¬À;@{¥Éó\8 ÑÝ%Ü›†*×'C—•ŽêØeà^+çébÔ¢uÊÉ Œr–°I é ©Q¯Ý‘ïîPóf~I'ÐÀú\İ”xií0Ç>-ynV«2;õááha€ß¡NÎQx Ÿ¤Jc­x•—Foó­ärDÄ®&.ɨãø*b;WÐñeùËö¢‘õå¹g9Z«ÏÈ(>5A{…—K˜&Õ’Ž•ëçà[ø=½‘¨$j‚šÐt÷ö]\ªõR{'Æas3ÅOÛÞó¡íõäø²¿>A2TÎIÈ~J1Ù"]“WÀœŸR)ðSsŠi.öÒú]@_ú@g næ]êl£³Å=çΉ¥8ýb¤Ø|’tõã­¤7Þ|L»¥ý#hY¿‡+|Ö™ù%©•ãg0­3–0âªÎQéômÆ%t'|50Y¥gÍ bü¹!Ä…·œž•ëJ—¨¬?€ÊQ’1pº ‘ôö~ú³SøÙœ—¹Üv§Ümj¸.Å¢IZÚ6z £†- G~ˬiÐ-Ö·¬£‰K˜‡Î²¼¾D™!Õn²†\f¨ŠÐýæ»Jþ™Óù˜}–®µsT!WºN Ê$o³u#!¤¯ñÀË>‚¶”§·OZ2~Š’× ŽâY¼bÒ…/™Sœ‰‹¶qIªw•< ºZEŽ9·Ó‹á{{VõjZdñäÊ7À+È1p>ã\CÏ!WH ­qô, ð“Tåå`9_¤Ž¹ñPφ[³Áõ‰‹#k<3…¨¿3S·\àA.NàEsrkÆwü²V«Â…j–*¼Ðv«ÃÝ›4†¡Ð:6(Ù«ÈëÙª‡w2‘Š—¦}Æl§v::A˜Ÿ P5áZ6Ü)ŽB YÓŽ4L K5kdêz5E‚Ò9Ib<…áøAh¨<£‡B™ù*‹e‰B:Alã¶ÅÜEÚe;á¸Kæõ{Nõ‡,Tr’î¬W•f™ÁïgÖ!z‰7´ÖêƒuoÅGfá3³f·#«>ñú\8¸ùê2SKžXÒxkö‹*‚3°£8¯§;ê§­Ëi8sph´*JˆÌ¥]…/ÕŸËmkpt u•¢‚ƒ¸O÷6;Ø­ql¸Bmt¿^ÿ¤=gX+/ÑùBÆŽ«M &I:Ü-W pA‰0ÓH/úº+[·W‰­sG½+øèÉò¹¬”b6…½4øš9m2²—ü eÊm¦•¿A#¶èö;Cã(XŠ%êXblœU:²}¢³Á½Þ©ð·ç0ì½¥Éß³/hú÷‰ÍïÐ/hÆä}H¾”èÄk°Ò®+NˆH>é#\ËnG³;^ûù졨µÓNÓI(rÁ0Jtßì?GPDfÈQ4r4£t ¤:km¿@è8øy³¥È•µ³‘4R÷Ô!õ\¬ñÖGO§ˆÆF7ÑvÉÞ˜ZÒ$'\Œ÷t÷N€ÞŸçå¸3<˜“‚Wm»h ®ù재’,ÁŽ™H%ˆQÃÐ,{t†\éûÝ; 1*`®­Äú¿XÖ•ú˜„Ñӥ᎛FîDâS üJùˆ*dö1[D,më¤H<Ð5Ãðà7D[½)¾„»³â?±Èù:°z ‚Žæ^}nÔá2 €W:×8  Í¸RïpÊñìKy=2FðëB \€/æ5¶®¾ši%ôT‘l3o)g‡ÈItê#ÒÛÐÕ̵6[ï¶JÔýBµ á¸z÷‰óóU'ÿö‡d^~—è`,ÔW¿Ïƒ­T(ް{­ó±MycËu`%…àZ¾Y"Çi°QjôbQ"]»,yŸ|–Ͷ©ƒe{bh ÕÄO"¯Úî“Sîµ¶"¤-¤ªôÈ·+ ?-©ƒd ÖÆr ‘Wßð~ûœšñL÷&4"U' wGó/KÖùW÷Ÿ¿<]U¬ÛØrM2e<Ó…=æ¿`Th#'‚VÿBøìlÉÍ2$·é±çY|D»+ uÝ&xô¬Œ®(lÁs0{^ru±î®.¾¤#dnÕ`—ÞZûi9›‚,âꊲw˜ B^ WɵŒ‹̳ëwëʃMÀ–“Š@4çlÛHwd5ê7ïÕ”¥ÙáÝ÷§-Êbæ´¨Ž·bìuO#–OŒûpwtتêõ^_ë`õ%¯â£ô´{€hÖÂ#{{i±¯¬Ñò?C}Ïá˜üü½|À¼2¥¤YºÌÏŒsÛ?*°óbI嵐5ŒÐÛ›áx:/!¨Î×lµ8,1É|D±ß¦¿â|ï„À*GXöÖVÎÜmàg ŠA ®Ìql»ƒwG6¯5÷ Þ·RŸP­å“‚{T55TMºCß´; xŽ¥¬…×0qR“zä»Ò}^È@–ó^ø”™`"ý¨ó¥R±JÂéՄy[>n¿Ý‹ÓúI' k5ZË©›ñzu-tÅÇ7óèxP?Ðó»§>´q¿£>TãÿâÓ¯'~zÏÿ&ÜškÄé?Û1§‰°œ!WQßÝ]ƒú½lÕÖ>v'=ŠjÄñª>ß÷`“é&n`%.Š—ÇÏ„¶No½äÐ4‡V±Ï~ºÜûºÖê«2g'GË-!¿\8dxk ×Ü”#?_ˆ/ØUoŽz’cP§-,Ö³E+K¾h£†Ÿýõ­Yèÿ•š¬žÈÖÎ}—E€|7p£NÖ£]¨Ýý’nªÆƒÃúÓ˜‹£iÙq“øÜ” iÖFd–¶m·µ@LN †‹Þ÷Õ<¢¤¢kƒr1À|wÒ±’×ÔÛTXF ØmÞÉèVÀÖž OœÖ׈Õpžà aàéˆo!9RƯ±Ù¨ÍË¢ª½¯@Ï‹ÕqÕ`‚ï_˜K´K.™EñØ_ŽX¥žŒ¼Öé\3 8ž‘°ˆ98¬&ßr²ê-Ïï!õΉæµâ¾rqÀï·÷ÍzÕŒ•e¡Vi7ëÐ9®Y¯ÆQ_u9€façà¯v~,p†‡5›‡å¶5’† –ítˆÃMq<¶dÓ䯔WVo’F:®ábìüŠ·m$¿Ø©Gû2œâ2ê¼ì—J¸ŽÅ:ܵÏë@¢á,¬ÃS TþøI÷µ¨èaãž)ö˜›‡‡·$z×Y¨š/&¯uï¤á»ÜO‚Oéð =þ(—Në+ßwôç¾¾L/ñ‹OG ¦Eº&*…Y"å½£à‚%>׿°cçûƒ“ø¶ÄÃ¥EN(}B‚ÍG$„}6\UaÊü5  ˆÃ¹ 8éY`Ÿž…x4»ÅÓ&·ùˆ\—$úî)'|¥Å{³$ ¢Y­–±ŠAPbÊÈ— ª´œx ýi¤Ju‰T‡”OÚÄßâvºéúÒ´ëM†EÏz–D-¸à$°kñ>cÒl4´§ãÃ…(TõmG‹÷É•¦r²NVä +eš¦œ`,=ÿÉ#ŠÞ]d~u8"°W­<ÅgUGê7Ü‘(güyKÚ >§o—ûh]T·bE™õ ¥Ÿ>õ‚€-FSÞ€aý¹»Ü ŠË –s).jopMU”B6pÒ[é~¬:?ÑÕðlGå0‡C|ÒŠ|_^XØàÒÙªØFlà©Å_'\RaxŠD<ãì‡&r}˜÷†ÇÌ•‹ï¡Šy•U¯+«:ÔBq>(Æ)ªŒFçtçÏòd¿´XД¥/¯zßè~ȯRú¤øÀ-%Ñß$hXTaÏãñº• àWáúNfk³V./[®ä‘§øÝy¶Ç`Ë|óò%Ofªhc'É…mN[é8fá1sU2™¯ÞB©‰%Ø9òô†/uÍ0¡Äv²Ÿi—ÃË"/_"Ûµ÷㵩ÂÿÚ€®(HnäçûŠüó;çuk$Y|nžÉa)#ÑœÝc²³‹vó‚ÒÔ䋘Ú1>öЄÑV¼š›Øï›ÇêºÕ öÎ*•¸P4%N„M¼ðäîÖxe°Ë·5È—¾Âæ{|;âÍ…Û$Ì:º´~ ‚Ž@ÊrDkñcê¡È/¯«1kß ŠáìUÈÛ-¼'¢žœ½A´¡0xŸð8äøž²ç9°œÆfm[pg‘[ç*ݘY·WBúLŒ.E}µ©êž ÌXË XNÞ6%(@ìåƒÈ‘RVyj¾:'!€¦qƒFcÛŸœÁŸ¡? ø¸Éeb 0€xÁ”ÌTû1ÒU¤í[kíÇ òF!Þ¿{z,[/Rý~#i¬_ßÉ ÍìõmªÙØÍg\B¯2ƒƒ¥ùPùçì{&ípãð¢4<\Ý­‹?ÁäÛ \!WäœHÈ"yŒ«®qüâ[¿Ú{ïsˆÐði.|²ù‚sÃw ܧ7!†?bäÿ]ʳÖ×ÖFvðSo,ŸŸöK6=øËFr1hf9h²Ä7¬NtËZ KL5Ši•êJF¤³ ¼èªt•š)³ýö—ÈŒóÍ9sNú0tâ±²f„߬>Ÿh†&Çn Ò¯LD&— xîÏ %{ê‹ü‹‡‡´H…š± *𮿑büH`½Ê²•0ïþ2ßɼWE5j2¢nå› õfSX¨eîNß6†Û¨|Àk¥OåÌHæÉØž9ê÷˜U‰81‹´pÐÊää!-å @OwMÏP奄³nÁ?#n0‘‚ØuV¥v´aaHiç(>|÷hcBþ <Ð+b}Ãc'XH¦²$P(]3Ä "èÙy¼ÅèåWÍSp¡m§EÜAT‘öòòºí•óY $Oƒ¯¿[ V+zã[Ýcú±‰¿_„:ùPk¾}û.SjY–qcl¯ëç›ÁÉÛ'¸ߟÎÒZdÙqÈœHžÊÅ!?}Mæé¯7Ð Æo#ûMV~ŸëÁ#⼩'ô`¸B9C¤öJ%J/0µ ²Ìõ5§Î”Uùž¹ò*vN³£cÚ”I_ÙZkÒ…ÊawÇ ðŒvxÍb¾¯r±u¬ˆ±ƒ":>”èIÅ ½p1D¾œ6p¯¤Ë»h78i:å»lšÅçÝ݆.=XU-J¬µÞ³$#Š76oÜÿpFyÈ[¨‰=MŸsB4+yÚÀ"‰>R!w7®Èñ˜˜B:A§LÓn¬¶[E ªº J™KEÔú*&£g²NÞÜGòë]%Š^f¨2›Ã!ÌmIâ ç{Ös.ÙŽzÄœ|AÏ÷wk›yvf©P¿´èÎ ©Þ‹b’pACªAØ|8PyŽiŽ&"ˆÅ]&ŽŠÃe™fOj1ìí§ñ)l;r'B´1e rL,~¬ðJM49õÕz‘Š©'¢©‰³Þ“ S ÚQïËW7;¼: ƒþëÍš…5ì‰v3—ßv%ôß·üó_—m®“îº.ä­‰)VsR¯”_E—¾æêÒ…>(Þ˜R}¾p}eœ©ê“V÷›Öæêµ)á ¿pŒGt#Ž^L]ð4»ëÍ_mÈ¥OfœV'Xrh”ž‘f5Í'B.@%¯Œ7t «KPúíX`iH•iñ ¶ŸìgñÕ³ß Ô¡š D“!¨ŽKTœ£0Ê;ɲݭ‚LŸ&ÈݸDÒÅ‚²/›é»>ƒÁÊÙ•ˆÕµúJQ5˳hþœvëF…‘Uz8DõzèOwž&ÓãÝëÐA— å ¥÷a‘CCóÞlÜßWØß68a éqÊ0¥¿xP›1$_ –¯qTŸ©ày-е-G“ß4\eJ`pF×kÜ55‡IÁ¤ìB8¢àbûî7P–váÊ¥÷¸ÇhT{ƒº )i'ö†eÛ$£Nºiuë{ºÙV7?Tše¯<.¶ôß-'Ò•WZy¯ö¿&;– Úªú±²Ì ú7<ö·dŠh1âìÐÙT$Heò°´)àWª±n‡àóq>ýâáÍ2é B†øÖ¸½7,´úù”ŸSÐÃCIåÜeå*yFÓó=׿t•Å}å6ÂB†8¦ÆÉ%j6Ñ$ªi•Ï[¤ASàÆúkPʤºŸ†‰Çæ:›4R|Ó܉կ9ãùÜ#œJg—¹Ê¦LÇA U;Æ'Bÿ•çJ܈”ëv£]§k¼úw/Ðsn)¯f €ŠýûÒ"|#hazBí—-³2p~®Š‡Ù)ò†ã”)qwÑ †ÛŽ-"ÑRG àTPèY&SÀ,vB>Á!ô, ‚¤‘™j0Nµd fȤu³<]Y¥cFf|ŠûÜŠµè}C:Õg•‡…7uýl¼…÷,  ¢¦6gg‹ÜüÛ”„MP( ¦ðè§‘ú¨.þ}Æ2µºB¡\óÚ2­Êµ™>´¾nK>cHdíĸæÒ£gÓ „w"t©~¢£®˜DÂú¶¡Ãzv¬Y|™ Ì’n‹œmÑï4hWÊzÑF†æÛ5Y£*¿Ó¨“½«Uåžu‰,CéoêªH»ïz'ë5¿ÛÌŠl|w2 µ˜£Ovgý£>ÍzI§))?Ã;ØšPn!­g{düj»·2P­”‰ƒØ¸‘ óT6ܸY P|m|+ZIF^9‹wÎìzN’³ŸæÕŽ‹aœ(Žð€i©žÝÆÑ„T(kZ=š Í”ÅüFÇšÃJ6üÒKR逨×`´|]ß³½: C½ÿê‡ó~áøp±úÓ»–›» Yý“|¼°B¿š'âØ†¤Ñµ¡D¨$bÝ2v2VgÙ¯-ÈuÒF -°_¥.奰E–³Z ée2Ph‡kàùýE=`­S 9>çÚ˜&ÁQ4Û3 íVp‡Y¼Ï‡T º4"ØôoågüAó2À™xÂÂ/—>Z”‹XxŠh,} ü¦Ð•·6n/àß«wzu“|d¡ìv¥W~Œ2nW¯vpX6ÕE„…*d_ܧ˜œô+ªq(u˜Ç÷µz´è6`%6÷ð΀¸9ÑÍ.­­œ§H,;ö©¯œ(¢´IÃ=›HÚ,rð·»NƒÎË h3•ýíªð<Ç—‰/­H"<ɺ¢¢ .Œ›`PEðKÅJ¯Ú|žþïã%ŠÔ2"j‰Vù ÉAû¤3èÇVõpTr0?¼Hà+ÖhH!‘(á¸.ÓxïÚ˜Y8[®?¸ÊØg¤œnZRÝ”W¸ÅŠ.^¿ 0ì’®r÷ðíàÄu±o)ôFè`»ªÇùM¦Måô&o›C[7»sªV%·HÉ9‹@˜a$Ö«t.‰z‰ìL?`Ê~Œ{±\ðM }r‹¥‡Ï°H¯ÓÏ[d_÷íæ ÜŸˆy‹ÄT¤|_?|_\šsîíÛÛä³×mo©¶12 SP4ÆŒ)¨æXDH já®Wo͉ÔZªxá(Ìx9£DNv_øî‰BQƒ<w»ÑRgpP‹8ËFni®>%g.7·»‡º^^ $Äf¤™øbëñFVàO#I%íô٠ŸÄvþ›Yp$ ”¬6?‘0xÖoù• ÖÅC4Nx Nï†hsMkr½yySïߨ-Blö¡&NÈ2Ñ¿y©É.çÔPë!3!ÐMÙøVs²qFTí_ŒuÚ>D˜í£.Õ܇u›Îrwfãùc’GTðL›mLÉ;=Q†&9Z5ì,ä|»TºýœÇ”à¸ïÏŠ_9’.s+Z­WõÜ}\)^– ²ç!è)†GjW–¯vbRûÍõEØQ ]E Œs£ƒ¡ ¤ 9T×w±¬¥XDJ~çÄ>}'sÞ úð’˜ê7§ÖkeÛ¥{y¾GèmÒç !c?m«@Û"Ì'¨¤n”¢`§/}NÓ¸µTS€3=~J4Oê1=¾ËE½_`}/ÈEH¥=ÐÝe—<øõ-0ßY<%.Ç¬ß gë6Î}zà³#‚EÕ ßa„)½Œ1Ó'º}¶TpV=÷«MliôL’—zWOñjEÕÄâØ}Ô›:,¡Æ½H€;å.GÝI†Tƒk¯€hòóÞ–£ß< ޾Qé©[Q:®˜À{²ÜŽðqL¨½`°(ÎAÊÔ2®”%"óН–9ö ÕÝK$¤©‚9Öìá¬BãKç"ɳS'¼\ï ì¸Ôh*Ôhkãꊡ”ÍOI[•óºÁr4TÐøz¥cŸ¯ ¦@ Ž;Ȇ(^2ßfmuC«º¾<#Ï¥¼qŠÍáåÖ$+x'J‚>›ô[sù— 3íMú¸ì°ÄQµâ9tÞ˜M³=aB.IÚ>N×`‚Ô ŠÄŽ—æÆÜÑ;YØùÚŒÏþb'WqA/Tú¡î‘âo7Б¬¿ed¿7]‰MÎ$‰_5n»Õµ ÿ”¹,ÜÆÙÙiu‹|Jkö´50èlG‚<~­î‰IYÂÿÐPUæÜÉ_‚ ý œÇ—œ`»‡l'd´¬<"™ÃfG­G/3w!K$ ’ãêß´‰Ê÷bXd[?òw˜Uç°ËS")™$@3 ¤åŽ2 æêŠ’Þ íUÝ£Tp¶ýú¬î$·!¬Ä^…8¨}î’Ùa»ü­ÔO Wz{‚Žùa]“ä%ñ•Ï76c­ÙÙ)Xä÷ƒvíŸÖAcKßÙÈ‘§ U^"A"h 'v/¼Fv¥ô'îŽCˆì&«p ÐZƒ!ë»#ú›W…/xïˆË ¶·&ƈôjHŠS'³‹ŸÀÜ1g‡¡­8>G””wÁìøý¡YéÛM ­/äŽvØçf £Y#Üëv›ŽbPM 3øÐâE²˜-1ò§í–/‘dºŠÔœŒ(|ù~  ¢p“ƒV¸)K:ÁÚ¢êÃót°BWG·©°©J<]¡ÃßIwt‘Skx*ºÜ3*dÚÆ‘\)_mDß¿$4ùÎò`q5‡ i-4ûqŸ¶Œê¶ÅÜb´VÕª¨ˆ煉˧Œ hÓZŠoJϼՕ_³ÎËËÝÃH$΀ç‘€ôîßÎì3;QŸJ6ý =Œ$L+ûamïSúÀ9c˜\nÛ¡ÄD@Žq¼Ë/Þå)*öCLîšÑÃy×q°Æ¦f¢3^¶ ã%[ô‹w¦¿y`4¥‡åPþéòšpZd:©9å䈯FÝ'·>2ó-ne^jvŸ×GÝ” Â;ç¤MC"Þ£¬ñïBcîžÑjq¨ÍY«$°û¦}>R‹*¯ûXwÜ E³Ç‹ô ëYÂßüȨ~k«*ìn:°Žû˜zÑ5—z9Dî믞›m’ýi¶é•ò x½Õy|ŠI>õ“=T 'H. åí~#Ôçݦòí¦ú¶‰¿1ôÊZöþX„Êêœ24s¨½½q“å–L"m_z­€6—¦VÈukÛCàŒç0þYÙÛÿ¥bžƒN{wçì6ÑçS ©ã1øO©ÇJ:Ê~¢˜Ä¼TŽ çÄ"pštÆ|í™OnQ•D!£z"qq—=‡Š\؉öÍ‘êƒ,ŸrƒÒÀn•~ ¨ú®SB’êæ šIMÍîÓ¸êl$8HÇC"È})Ó?Ù¾å…I°ýV ÉàÉ3$¬ØJ{Ò'€™NÿñG;«±ð>³Fá9µ-;·Éq¾eG©$Þ¹"ÔÝÒWòÈØ~´þC¨`—Œzz­½Ä“ûYÛÔ)›‘­ÃsP TÚkúO·eXžÁÍ&³Û£Up¢0iÖpKË(¤“0è#¡j—¶àLô ¦Ö :ç=š+ ÛÝž›Á§Ï>Æ[T÷ÚYQiJ¥ÆIq^m7ŸÐijrHŠj|¡×ÝB…WäM+ÎÂX¶¹èÈLc{^§¦|æB‘Á÷v×aü¾# -ZžÒŠŒdïGЏž_W[QrBÅdwÖ¨ÊT˜L✈„Äp¹=D¯/`”)GúÜä\ú¬0ê՘ϜçK“Çb½bNt1ÑÜÙ‰ƒÝxÆo!3¨Ð©÷=YJýÁI™j21>Å¢«+fÆ'¶lRÁ&÷øžk´ÑE¿ø‹»/ÒA2:¶ s‘V%½“1‹_Î.!IŽÐÕ2÷ëf‚ØcÎëf?¢æ ÌÓY‚ ‡k"äˆÚjdâûHx%Ÿ(“0çKÐ4®ˆ_ñ{û×hÞTø ÌVÓš%O´x[ͼ]Ï»·žjÑÈŠÐA½èkª£0ìjãÌøSzpãë–²ÒdÚåÛšøñXwÓôÄ`Lþ“„_rÞ|Æ2äÃî0•ÐúÉáªìÚ5Óâ1®#Xæˆ'k²¶’ÌXº» '{SݼëíðÚ™Õ‡þ~lbòq9~NKgkÖýrqÍ¥íÞ•µÚËBËwû¤g”Qá§Á>®Ç3m´¢ 5y÷ìwöíͱ­ðÛŽa2n/%ŠTÊêÏ©åLªy»U‡QÃTa.ªŸ´wå¿•ŒÙGÖîܤ&ÑkG‡€o“QVÒ®»³VP,ª O‹£.MS¼¾Úsl|žÏ^_ª?O(íßûrY â›ZmaG²I@Ù"t%ÏŽ ¾•‹fo€¶Ê%ß”]8ć»}'}Oð(Ër°ãý;Ì~†S<Šÿâ¶À AăDè–&ÊôÂMÐõ&¯§hž€p.ÈÉýKˆ‡A*Bh$Ï42´ eĨÀ­‡‹j ¤BØ•Òèµ»íäø,_ɤ_`ĈYÌ  +fò„Ô/ vÛÒT—¯ªVG{ÝæçÆÊ"Çø×IOºõ}æ¾ðMS£›ÐÅ¡¿ÕÊbª­)ÌäPe¸ƒn"Tî2äªïÔʬâFË–T&aÖÓÞ£%†òVÄàñŠ Á)ö¯ÏÄ©[VÂ:¿A.hÓøá³FË=AŒ~¥¤hn3Æx€Ì7 íâö•{ —EÂÂúC]tIqõ"Ý dãÄ¿ì]¯}g£E6¼k†{¡Û=EzOšžIl™õó ~Ü&5\unó¢•!nf6ˆÂ¥¸¨˜…˜Ná«ÕJØN#˜i¾có,õ¢1¯®üÕP†ö âˆD¥[“Z§@,Óßþ[Ãøƒ‘UQ8í.ý¶iöóºÙb¤Hê|+èw5"N\Š8Ðìà ¶Y{‚ÚŠŒ_äÒ|.ÑeÄÃDKÇѽǥttLþÓáˆúòÎ¥•h sÎ0è~¿“N®ÃȸOìñg{·õn,ñҡئŒèø·ë8f»—âLb†Á>üÕ0NßêH…J ÜŽ§³æ*ج¾ÿh. ÁîëÉÃlÐ.‡lkš³ªÂq.AXQšmnÞõcL⨨SöGC(êX²‰™ÿ1žà>†ŠÎ”¹Ë?Fæ/’ëý¬58ù™Ñ=®|]é«i†»Ñ\2É =îѕڢ/+F@Ür‰PK·o#ä­¨ܨ•C×ïç=éç&¸‘%gÿÈíÛM]ÙË5ìàzÈ ÏŸÎ‡¹bŸ³•†•ñ6̾ݲh!–$:ç^!b—An9–òÏÞhx«‚/îçOÜεŸ¾ÎÞê Tg¹ÃÀ­MtípVZXƒÅÛ4ó¢þ=w@÷¶ñlHS›¯„VV³à}2&KÎMZTp;ÿ}Ö¬gÆÐY11‚zÅô>_Šˆæªh¿r‚ç²%”Ú–c'ŒÅ–⺢ãK ªGÍ®Æuuø¼ Ù0/fdŽWt3š~¹gþ´\ÉÚê@x‚ªécró÷In½Ás„Ê úˆ m0v<Ò3ô…ƒ‹Qðqt6Â+W hæ½¢^¦!^^‹BKß:$eBŸA²Ïº5) ê3–ÄœønÛu æÖMMg‡!2ÌÆÔ9BÆe¢éÍÍÌÙ´‹r‡,8€áyFXy]Pô•géåA-œèÎìiÎuÙ„n}ìÝ€.+¢’~çʳÅ Ëã¼â¹¨+S¼sݬ]W4kåN¶%Q ºW®C5'=Î"G#ǰh#.ô^•_tß¿¢:…‰…u®OñBžþSÖÐ2IÐG£YëlE`¸hN­ã=AJÒàÔos,!û;+æ·Áé¥t?ô㼑ƎG­Fªò›ð¸ª~3ý«øôy×#ÿ¯º´“ñÑfM ß/%Vr r=Ï«L§zv‰þ4%žëñ:.Òqñm5”÷“55ŒlÃYŒ˜†·èk“Èõ,Q¾mAw)¡I¤Þ†~wÞçÂHI´guH¨‚í… ël}z q vçK¶¸4:VÙM§ÇÝ“•(ەе0´¡¾Ð1sûV&†§=µÚª9#m¹³¼N6y뀥È"¤Qz*ÍoÌï¦÷€ð‹Ï¸Ø²´\渀slœ4Øn™ei…Ý*ŸN,Kär“Jí* ±ê:eµð ¹zÃ[Ë­Âh_ßpÇOpi·o9ÏvžÊ#³Ç-Y ³,Þ© ½“ú´UøäõÛ«Þ5§×Ô6f÷­NÓa×–XÏ0WjaŠÕƒ%!;EtŠ%ÆÄþbÃû_Üà+ªs,Þó¦W‰ê}fÒ™4¿¬XêžKÝK^pÞ½B°CZ¹Åqœ‹Í8t 5@2Ç®õIO3˜±îÍÐæ51yŽw£:ÑÁÆèÓqeTµ!”TM°$ÉüÔ SùUsÏ·n[‰›Ù×öíäÎ-àˆ„:0ÈéBÇ£ÙÞ”nDó5‘‡·I3‹ª*ü1¶æE£^áv,«ÿø—ލ6¾d¼ÕÆùSÁÒK.šjp•ÚxËØ>›@´Ú‹afäƒìÌ™Îø‚©›T0õ×Iែֱ=ò& ÷”Âö÷.\ÿØfƇ9_*Ñ]‡N*»f¢1ÿžù˜pa) IãGQráœØ›Ö„R=ž#:Š3'òÝ=˜óê`ÕæÆ*«y{óKÐÓ`ö]]Ìk7ãyD£qè¹ëJÂÓÆ{=üɨ d&Œ¬ÅòHQžΟª:÷E²¡Ö½é§Ëå;q~õ®æšOé Ÿ(rd X ëÐÅó.³¢jVúÏ 6¸³Ž“ŽW°Û8#¿‰Û$ÒnùN‚ô´Ó].º­0¾ßçt˜€4œ¡²—÷ì3 ôø B-ºOÍÜ©ÙÝž@ÿâȶ|[ª…BrD£cHAI›êÍ=>Ý ¢D¿çê…~AAÀ}CV#åS9Gð2 e¤ÙQåþ …ƒyS½âF.ˆîÎ;¯9‰ŸA66Tˆˆ®2f…c¤sYLEèC‘ƒlZËÝê;ÌÑÚ˜rÊø8mèî<“Š=¹‰äœFŠn•ÕÉû¤Ê§UÚ ÖÐáÓlÛƒrûŠ={D÷)ÙŒb/à4·ŸÌ1.ûš$~Rµ³€àÍGòV;ï¡«À-Êom&¡»ŽkÍÇ[>\[ˆðŒÃ;+Hò —½h?¶A6%©Ó•y&™¥^D ][•;¿GªJÙÚ~æt¸¢}ãö ¦ìg<òßNë]O¶Hpƒ¾‹èÜì×ß’%à “Z³2°-žaÎ4‹áñMÅÏËà•U"“½e¤cÀÑ-±¾¾qfåˆä‚åk"×ïÄÀXœ¡Ìæ×‘C¸9ΖŠ5"y½ûå ‡ñ æëÉ¥½€ý†\Òá„uô§AxÈÉ©&~¯£M6æ…5ÂÒâï=îiè­Ð8Ù¹O½Ms ×¢gk,ÇC¾(HoÚ'° –Ã|¿†YÜ|xMÙi·ƒkQ ´ìM»7h-êÆz6üƒŒ·¸ñýøî¡“ö¸"›/z|â®rIJA âíQ2©•@9…‹”:ìW"®!Ük;©[ð>éÚe·ÿ†âCU¸%3§K’ú‡ï/âôF5+pßÓźÂf©§-CÚ* ³cöÑ$>ƒ¯,^ù0§Q3~úT (O¥ÏøÜã@ºÍ†õÀ…¾—åI‚pƒºÀý™*¿œ@˜«;P—Z>õ,EË]ÄÖ;AŽ–%A‰z.º­ÖXD:¯ ¯— ´ê€Q:ãqV ÑzhŸ2½E¾/ú ˆÕ‘îVÓ\Ù÷~@~FZÿ€%“O|ú»ýçRk”R±ëi7rä»”RÐVN– ØFÈl%W™9DA[[_ì:‘ï‹9zäod,TÒSwv8+‡0$®L§í]Y‡;(÷3C«ÕV·¶í¢ ñð¦¾fž0 .ñ Ç3ÈÏáCãçt`_ëTFƺ+ƒjiú†Áĸfq~UŸT5AÛsžC<¾öâJF‡æ3Ül¤_¯Ì“±)FúÐÕÍ¡öÀ‡ e7³ó>d íè…ûĉܕ§Ø_=¬íA }qP-†ÄðT/ìÕd)6Øè`½rÐØÓ¥jÀÏ~’ýwVòå¥?ʵ&x†‡x#-»‚ÍL-«#pqžgVCß<Ò“Dÿ®_9ÄBý±A™Þ¾g0úEŒž`½0ñBeÔù”îñ@™•ŠÛƒN L ñ4*SZIQÎñç«…há`Î"ò¥\Ñ%T–‹ü©½òÅ ûî^ w£ûãhûdÇ Ìø< ;˃xÆ™ÌLÒTO¡¡À=Ÿ2Ÿ¦èDæü-¸å¸ù1XÔhØfø[l1:j¾U©‘l_$ îA/VÈ1¶gF-.{ëõM®LV“Õ‹‹†D6f`E~/Yçkg]½ª¥K¤•ùõP!ãè˸lbœÌ>øÏ…l÷ \^b”|]ÁÚÑÉjDûCŽTÆn È@£RÛLOj(|Ö§’Åú¦Í§W®(š’ŒOMêrMu¼¡Æ”Âæ4Sò:BDô\¬ˆ˜s9 “g4g#ZÍ"ð¥ÛŠ9_È¿Ù"é ]­ýT5 õ6h«6°÷œN£õï¶Xš¾¹Å#¾Ð2s]Ž4)ã§\¬úåe Ó ?k$iL˜€U³{"æñ»7ÖÌ#›9Yɶ¯7aŽ›e(°ÁüÓ Ná5þŠ–kÆa5~"O¾ë’·Ñ-‘8 á³StiOå!«àA!™?#`»íêܸ£ðëkpºRçç®ã;Ÿ–&y”V<>vÓúF ôäî{³žQ·*}ÍLR¥UÏ6~JƂͥ=û­éÙ·zT¶÷E õìs,ÍÑvgt9å?„Uù–{xìFÐ^Œ«AcÊð?@+W~AKQd¤1‰‘C7ÿÕ~»ý‹ñXÍ;rMºjÞ q;†ØÍFëI:®eèûë8Óe‰]°I7K±µÌ©…!-$¡íü› ¤$zy㳟%¤Å¢%ˆ¶µÏX‹Íbùn‡Ê£$˜@ÁnI4ŠX ô}fcÕoEWùýÉ·“¬÷gýRT³ãYFñ.²0ûæŠã߇Ã;ߘsæa9ªrƒu¬*Ã;];Š É s³'¢Íž\ç4£ÿæýò¹ô=Îý ÂÈÌŒ-·•DZLˆ÷3 E,½ec†ÿŽc¨ñS4\ŒYL±shô˜[ïd\³¾Ÿ_ݸê7Gí”ŧ‚-Ôw#Ic˜Ônqަk¾ª¤‚óÄЫ`yZxÓ-}P1uQ¤ U*eº7nÊÜæà¼UW=]°i.wZ튛_={ huÄRâÓ`äMCwݾ²´tTÙªny¶xÏb–œ?£X>ibCXÕWîȬ?†Ž ˜:a§tñ–?n6è0qì¶ °ÐeÇ@Bëı¡Í¦Çß„‘~Ë ž€!Û0rbrÉÿ…6Ž•z!›!áX6Àv5ßD[ÔJ¨R$=omà#U×0ø,EzŒ=ƒ†`ŽHèðYCÄåô¡’ži*ã7sE…‘’ž·EÍ4ÄHòÕì°ö€E)Æów‹šMó°ëè†j}$®2¤Ü¥ Pýò¬ "˶XUu*Uó™]õØYdt[!óº°ã°j~=ž©úJùä#—%³o YôdF‰+ZÊ•!.:`Ò ˆ¿à¶h”8ÈÐÛ96™ÕÚË÷Ò{ðAÊJ!ïÓ‚!Íd´Å­Ñêó`ž·¤,–„v Â"+.T¡i#¶Ãµ%ºëÄdƲq.tì é ߸‡™E‘Ô-mf(KÍN§…‹ºYBÊ÷º£•’Õ½­ö’À…Ì“¶IüœbË[ÒÚ Vó÷Ûœ^J©ô/nfEî™cSCÑjU¦}ƒü|, سiªYºÅ7Ûª9*_¢¶»ÑHMÈ">~|ŒŸÝ³¼×ٸǩ‚5Ax«ð븃)4ý’ÞDÛ‰ãäƒßfeyaøÖ¯½{–_'–­Bh0{ š$5J| õ½ 3Ö“’N%iÏ¡Õ \«Çú ¡läwLÐþÉn]ßHÖ¾Œâ/ ðê¬U¸Ÿ¢3“Wú|-‚ðO‡äöUrõ>iÌã}‡=Oì ¢~DkUô•tàõŠ4ôvæ/ã4€B¡&µ°v÷#Bl›–JŽO6¬yumð<\0¥,:¢Ke©6T´ýä '(·àÄW:ŽkÖ$½2­Ñ§LÏåDôKСˆ"“{oõ©ò³ê›T¦ÆÎ¿•M¢º˜Ì,C¾ 8;ÑDÓ?K"'lmàÅŸ‘ß ÀÆžaÊBcÖ㞨³Â`*}ú²‘ÉU„ò$¬ý-4ã{ÌâªTÊ*Ì éÚ0ÁÃ}媛ˆ¼&Â/¨B² ?_ Þ‚é;<2俺óf@‹{¿Yì`;§þÔC{,„-)wñÄxÐØË)·ò7™‹g,Kî; ¢ÚÈ÷P¿œÜV_±,€½{7¾Lò<†Óz‹È äÐc~‘ ÀÒ>å¯{¡%D”´øTccòÿ¶äÒã endstream endobj 139 0 obj << /Length1 2064 /Length2 13805 /Length3 0 /Length 15053 /Filter /FlateDecode >> stream xÚ¶PÚ-ŠCðàÎàî.àîÜœÁ!¸—$$¸»»KpwNpw‡Ç‘{rîý¿ê½¢ fu¯î½ºw÷¨È”Õ˜DÌìM€’övÎLl̬ü1Qm6v++3++;"•:ÈÙø;"•&ì²·ãÿC 4v~µ‰;¿ìí².667??++€••ï?D{0?@ÜØdP`ÈÚÛ©Äì<À Kç×sþó@kJ`ãããaü3 b ƒLí ÆÎ–@Û×Mmjö¦  ³Ç¥ ´tvvàgaqssc6¶ub¶[Ñ1Ü@ΖU ì 4üQ2@ÑØøwïTuKÓ_5{sg7c0ðj°™íœ^C\ìÌ€`Àëé5y€’Ðî/²ü_FÀßͰ1³ý“îïè?ìþ 665µ·u0¶óÙYÌA6@€’¤<³³»3#ÀØÎ좱“ýk¼±«1ÈÆØä•ð§tc€¤ˆ ÀøµÂ¿ës2ƒœ˜@6ÔÈòGš×6KØ™‰ÙÛÚíœÿÐ'M_ûîÁò÷åZÛÙ»Ùyý™ƒìÌÌÿ(ÃÌÅEÃäè”ÿ›ójBüm³:¸XYYy¸ù@GÐÝÔ’åÔ=€:Ùþ0¿Öàíå`ï0-è 2¾þAôr2vœÁ.@o¯;þ!²±Ì@¦Î ÈñwöW3Ðü/üzÿ`;@—õuüجüüóIÿuÂÌìíl<~Óÿ¼b%ÅŠŠ —üSTÔÞàÅÄÅ`bçb°±qðx¸XÞÿGÙô·Öß±2væö¾¿ä¾öé?’]ÿžÚ¿„ðß¹í_' ý=èz¬\¬¦¯¿ØþŸÇýÏÿ¿)ÿ#ËÿuÐÿW‘¤‹ÍŸ~Ú¿ÿ¿±-ÈÆãoÆëäº8¿n‚ýë.Øý/U ø×êŠÚÛ˜ý¯OÆÙøuDì,lþi#ÈIä4S9›Zþ5.Ù5þX4PÙÞ ôÇÓ`bceýßëv™Z¿>N¯3ù§ øº<ÿ}¤„©½Ù[ÆÎÅ 0ƒ=Y_G‰‹ àÅöºŽf@÷?§ÀÂlgïüx-Î`nFüãF¹¹,"˜þB<±ßˆÀ"þñX$þA<¬É߈ À"õqXd~#n‹üoôz‚Âoôz‚â?ˆ—À¢ú½fQû8,êÿ ¾×,Æ¿Ñk“ßèU§é?èž²˜ý ¾*þ_[Æò×uþ&¼Š0ÿMxarýWÄn{ð¿^)ÿ‚¯B-ÿ_û ú|•jó/øªÕö7d{Õj÷/øªÕþÈùÊ}ý*ù—ûUŠÃo÷k¬Ãëkng4ÿ]'ÛßVðUÉùZ·ÃëòÙÿ«3l¯ÂÿUÛ«p§ßeÿ€®Àßê¸^éN¯oÔï€×œ¿OxÝtgK0ð_{èìfÿ¯€×Ktù|mëoÈþJÿWvö×|ÿ‚¯µ{þ ÿkL]À¯µ:ÿù^½®ÊðŸ_@@ ;ÐqaÖÞT Ȫ*¨å¶B„ÐikôÝÕ–V"“׸Õå>ž®ü{À*øZ$~  }iS‚öêý"é“×Ac ü§¦/*Í ãT'¶šçÇqzÇrDª¿!bR¿ýñÉñ£¦¿5t#d»,U†£ /ªræ­[”{õ¢ŸÃ!³[*ÛåÜrHE“LQ‘zþùÓT™&©3xäpÎLÄô§îhÓW×Séc/¤²q ˆÞ‡Q¹^:kìÑw3žË%êìNø”ø:xÄÐWÃÔ^¢» ²¸s^y1²!yæÄ³õB­hÆŽœ•dí ‚ECcëCx{†þbEh›!1¦*T¢{6jémxÕ<ù“Ol†ÙˆN*m;O8ž¥ÓßÁ½ÖÎGÊ쟒º?Û]Ñ Ãµí~ÚM˜ãžÇÏêýÁç3ISóùÅ÷}Ü<»I¦³n§—±;ÊQÏí™÷ؘ”Bšî¥ú‡#!õq¢ ãA6K²t8££4­þÞ2Œk!H¨ (9«áÊUÙvOÔ—nÅ´Ó@áEÁí»÷ÈPksŽê[.AófEºÀ‰èd+~ÙN;˜!¹‡p vµ¬ ݯ?REM0„‡K 샪xÊ Œs²h>Y\æß(óÖLN†"확‹š}þ8!S4~,m઀VV<¤?aK-æÐú’ÝÆ<<~Ñ.ËŒÃ=W6M,˜¨Ž¯0pH^+Æ£Å/Q èÃNK@Þ¤Hª×±ê¼¶Ì¨eHÔxv+9ÛD|¬¡ŒýÕ=¾¡·®¥È,–K«9©w¢¸½M”ÑÚÕÀñvZDøÜÆÝ©³P!D¹þ¦©-ÚÃ\Í£`}¶ÝdííH·Ÿ ±CtïµòFl…¢ x–Nþ‹eaôLÀd¿øèBfS§òt„A¾7^})lGÇ4â/¦‚QO ú‘Ÿ$%;>×›Ò¹n¸ž[*üP3ðͤ¨³ë#Ì_'°MÝ›Šp²]ñ¾Ð&`ê†sÏ'sÉýœN®†œbð||+ÕšÉ I×á þPò%œ®kÀ4 G¥0“GFsÆÿ vv+Cë¥1EU¥ö;_¬ŽN ±íGS\û O•±þ2z¶!Š!>vI_÷·Ž¯3ðYõðŸÌå‘SÀ0ó³0ñ-þJ=/>‹Ë#GÑ)¥hÐA´ƒ4‹Û¤þß:Í+QYrMµ¾Š'ö=áðBÞ«öÒê¡5bfÁô,L¶'?R:œb~!''^ºà«ŽT¼ãÑ9÷.ü¾«Ïpà ÆÓ„×M|Cg[ËÔF¿ºÙ±Æ™‡E¹ðUS\‡©<¡³,iZkQ.Á¡¶ù8«¡.ÓGÝå&÷tVé š ;®„ìΟÈÇ8…š‡3'p6roi²ý<ã»&†¡"MI\ÓmŽCø}¼Ö?, aàlš±wDìbW“·jê¯;úP¦ÛùO3óu“(GÒÍøÇA¦Ø³IVOb 쿌†¹Àeò1üÙx¿ªsúï×JÛF|ÖžM30æŒÞ¬…a’™ó )ï—{#Hæ^— ÁÎo'bÆ×%Âo!p~i!æõBi 0ÈâÁÞá[¿ÅGb”ö)3(î‡Ô*÷y‹±âCÇ› •΄eÄ06ý îûmK¬m2hûn4• \_xxùCH§øxxEx,z„wCYÒv7ŽÂ(®|9‘\ÊÝD÷õŽ/Ïõ¥D‡¡6m¯Glˆâm"<-Aþ®׬`ÖŠ6gl3&YÌ)²¶X \…‰ìutq[=ºÞü´¾v&^SIMYÊã‚ }Ãô0!ÿ¢Z&!"‡žëøù¦‡š¾y´>1Ÿê>›«»«’pŒf³$¶œ~ÿ{€#Vbë’wT&ªÊ(Ã)<‡¦ -^%Êfö@ª¬¶n…‚L€ ÒÑa}»ø eR¶&ÞWäîͶë x|fñ{ ±2:g…ù,ƒ’ƒ¶a¨³€+A7FU‡RÐ2ClÅ-±•ôìSY󫛥I»¯ôHÂ;( V-×öÐó&^û–’xêZW"ƒÓ 3¸ÇÁS•Eën•éM³±¡ ìví[Ë/E@ósš–¿]Ç”ú|æÔY1V"¬âÃVꢭŸŒ"oܘÈ8«)Wr…&sßQ”ßËÑkAµH„•;Ã0ɶ~íC2!Íþ”}¡csZhù)!¶*"¦GÈ]ñ¨0kÅa3Æ :/µQJÞoA)×Rè"}Ê>êrê £ • bQVàT–AÏq””Hÿo°Ë3zÖÖŸN`$>Ù©Ûz صävóA3|·Ræê2Œ¦ !–»Š0IþÑIdîÛ¡¹\/Ãe)™iTþ5»»œ›>Q¾†oéCô‰Ójõ@§dØw²# ïƒŽC‰¶²¹j€ykF¨½Ú$ª÷uHJ“Û͸wÒ¶*ÄUÝSG…Ð@~f‡Uq_Õ1ùšì'=Ï€‹¼RËè;ߟãGÃeÙ7Ob2‚\g¹°HêÈžNù5GÞ.òF ó~EmäÂE gƒŠœÝ»ˆ`-ñ3¡f{àþ¢NŠÃB<(ˆ ˆö^ù³ü‹IÌÇ’k Xrîv¹(TyReí¡UOÔ¼tÓÉïÿ#:*\ùy9s%v´å2ÿ5­âtFl9S ð¥ì›yZÜè©nmƒ#ÔD³V%}4…¼Â7Àô•î®ýÁ¥±Ã…˦Æìêgí^ƒg¡©¼Ó§/8·ê²pºü°%®£ÁÛ‘ÂZaŠ· ØôM(а “cyó sÉi–|a¤lˆá¯öè£Ã†Æ#dK(¢ûÎúWžz­¸)°%+_UY’Àœ9»8 ÷ 83)s’n¾ý'@.šhýsßå‡~Èè¹¹º*Š^ 1ÂC#[I[wÒLÜ—2q^jʦ,³»~Ãl“¡2 i5 Ie•^ \ƒÈvÜìiÂ>PV©å·¢À`+WÔØÛgÎH¾ÄÂá“ÝS.ðpÀ“ÅÂÓYúnÈžiG•Ê/|{Í.HV´Žè½Ý6ä ·ë^—e–ª$_Eºú,²W,muâ)åjp¬/ÿÐ¥e;ÁÍËUŒÂ‹UÇ|A:ò<á!U¬$®fÐËb¨ÔF¿k}œ°‘ÿÚ¿,ÐAµw¸níÖwƒ/¥"2chYðî]ÿ·ºÒ˾¨è¬©µ¶õÙ@Þ}Êûv r Âø;Œkb$â3óó Ì„˜Èô!¤2ŒÂ€de7B‰Z¾ü«1JÅæ EÁ¬§‚—Pr+mØfm'è'0Áü¾DyÍaêŒü#ù.Ù!½9C ¤†HXÜØ 2£0FǦ;OÂ7aû‹1ÙEø»ÐMŠ~̇'¤ø—\Ü“¬–/«RíÕKiå½B=#“õÍÊkð»6ºáX–<‚¾hÁ{LQ ôýƒž2æ ®ÂM<ѺMU@Ru.Ÿ19ž&æ&5±û[6‹íüƒÇDëøw !‡‘L¶–¨ò–eiÝ“²ä_’ÆÐMj®ï'³A{un;“OfÉ/P]C'!èTNƒ«>)zÐÀ»°Û)}Úè“EDþ­scö¦á Ì¥%¯àŒ­M©ôÙ4„÷Uü½™6%÷?œŒ·ywÚ¤š&5ÃÍ›/eß¶d.µäË@ 5G3 _é 0]àÀIy«Q’D¾Y·Gž«³v¡9qKA*ÿæá!¹Ÿ´âÐ]ÃN‚Õø¥Ç[†~¥WTlLÈC8YÉp¶…óÆ#ÿF|¥‰ÄN†¦~[ݤæé c ù'9{IV3“Xc‚¦Cü—áôsN)ƒáëÏ´^;Ý#üKˆIµÏ+úL@Ùúy‚ø!SÿaìÊôÇaË'ŒÑ,ßðû^ÃZ§”´^µ*ÜÔ]bFcçdåÙÄ0ø¹‘ªæ\’ÿÑ=7=w%‚:KÁ{þgA?Gº¸u¿¥Q”^:ØÅLhõLàÔ(BhØv†h/i8‘dj}¥˜2qKjg”uï:‡=CÇžÿ3éó/JŠ#î» ¯ç„Çâ²:=I×+C-b¤v?›cD*wX]‹šiô£`+nŸ\ 1¤iì%òÏŸ ¬mĪN<К–¨ˆžI鯩ìê´f$¿+±@`) 'y”ú`Mïø\è8¶.’‚d²‚ý)óÒņÔSèÝ‹~è?í$Ð]’‚Ò!!9uR4!¦õm·Âü5§ ╾øû•]µÐY@€žÏ©˜ d5z3tÍ+Ôµy¦Y˜ ‚M?áDø#hÀ„2ÞXòœð*dqŽí½ñÜåãß®^·z¶»^¥(_FS }Î@0ñs?oÞ4¼iÎ’ïnèIGò()úXq9Æ…6¡úžÅËü@EìÌ»Øl°¡îÚg~\½GVÍÙü”>{Õi®œm_ä×®0Å`@؈zÌmÈòSËËr~dàd€%l"yØj§ZÍ{òùHö“'Ò„SHøLݯðõY+Ü7+Õ>ž)ò^Ž"zª“–”tüžŠj²òËDVi=_û>×BÆö‘ÐMªûŒËé@‹`ß+³ÂÆÀÉ*ãøÐ ùðmPw箸vn¼#¶ѵ~ÒæÚ!|g ­8`¬ˆ>_UHÅ»1ë Ƕdá*¼ãÇÉ]Íã/}‡s@ö|Q«xùÔi•µ¡ÄI\ЊµÐf²ü²•Óéœ)yîq¾]½uuF}âuᦢˠ.û9˱‘¡qý=Òɦ­㪕‚„¹ ²-Rªq¹LiÍÔrÞ®ä[Å`Ü‚ì—T9ôp~BýžQ²¢¸ŠÂ~²Øá';4s"Ì×Ö^‚Êý]ß„·(YL²6©LUküCÖíZÈ`è7Ï“3ù°°xÃI—Ñ\ ÕS÷“ÙêI©éa9ŠÔù.2¯î‚^fY kÉ‘ø‘ cÍpÕàOK‹»¸Ë4Ü®”È%æ|‰ÇOÏÞIÆt ö’f Mè’»³bA¼Ý|BJºÒñò ˆê¾\!eÂC>â꣩ÓySÓ9bhLea†âÓìk²¹+§5]| ‘áry1¨˜’uÍ(ƒÞì@ÙÕ=î”®›nf‡tÀ2°ØˆfLø`A{ß0mg µ)Â~×ÂÆÔ2mÇŒcî‡áF ûvi2šùAêQ ä•8©«vPa)ðvŠú6ŒË§;}𠯡àDº ÷2.Ô³¨§´ËE7L§‘“@N qø²…l*ñ¨|z¾c·‘@¢‹BjF}Õ¼&ßã½¶n2z$üž† w³¬HÁƒÔ•,Ë ¥q4Y͆wʦŒ‚\5’H½ÿu~['J\œ½7Öp™¤Jæ „Z$ΗzeK5xœÑíEׯ§dlP5$o1ÞâI ·¾ÁÍ×S™áî–’/.hÁôɪ‚«çuä'üÌÐ>£I·Ô¥! µêo¾BÈ*òUKù¼c0m5Îd¹Ÿ i¦­A|Al‡œzóY6ŒõoodÛµNR!Éù. ¹'n¸x+Rœ©˜âòŽÛÝQ&èæt•6=»…„ièv*˜í¨´%=¯˜×„Á׺ñ//S ¡Rëï*4 ¤Ð×sÇ]=n(tMzÁÁÃuÕGäˆP˜9e0ྙ»±LûÑFV£æ+³&¯Þ‡pÏîÀd‰€ _4]Î\ ªoRæ h]ç »¬ÜhòŒ‰%lÚSúõ½¶Ñ½eü€#Ý‘–A‰˜©à22(iî’î Eë!Ì %!‚+NÞÄÆ?YÁ@×»Áoäsp·ñ/œ6R¸ìo–íŸÚ¸ðnw6›,ä¢aeÞ°H´_ëÔ\·ãÏhŠØíoQ•è—721é+÷cÍžÔÅ¢hñ9XtëÛÊgP?•ÔAäNøíe¤óhÐ¤Š…9|’ò÷¹¹³ôå`ÛZŸ:¥VýˆJ-Ðù²ýq‚ô,ß…´Ç+^§”RDÑ?Ò,Ž{@u¹ð¢£ ¥¿‘IJ©A• a¢Ç’Œ÷¹”¾Z5Ú7˜ÈżÉGÏ2Ü7èÃÑIŒ·zY[Üœ23Ê€–íÁD"ئïl£òæ®3È‹êôÐÅ?Ý¡jF—±¶›+ÛLjã€MÈaõÈø ÔêÁÌ^}´o?‰z^­AV·ÿ¹bYw×ï}_;5…$/hó_Jà—HÈ · x C&S¾M}«h¦Ù÷WÌ¡_¢…ð±ìë$ºä¸8xVsƽå‰U‹c@'ëÀgNV8ÌRá´ËR£¹9û´lŒ‰8yƒ`XÒÛ$¥Àñãò>‹(ÙMx• ']›Ë«P™€PRÏDZ÷žå%œME‰¸.wXp"p‘kÎßô‰fvP`ˆ?¹žœ’¿k,Ƀoú./â{WŽÇzfÖ o°ÜâgnWJx‹AÄ‚/B¥9yœña1GîlÒp®Î³#w@å)Àêóg©No˜&p£€TÓ¶²h S¥„[™»ó~öŽ´ÖmËx{Éb)Ý×Ä‘!üêp¦~\nõz]‚>  ¤Ê š¶”eHÀ3lPq¥WŒfLälc ¬ÄN &S6æü{ ŸfçÏ_”6Ú!=u3S™G>Ô3xÜŠHD÷kb@À B¯\=qq÷º´({ÐŒZß-¢bÎ÷U•93FÂÂØV±ÇsAR’<é~+R]/Ðá¤ëÖsÃË}”¶H… '4Ë<¡àÚ-PLßÏò/ÏÈÌvþþ¡»ÙËGíêàã{«Õu¬…O``à ý²¨ÿ z5èB“¾Ù Ï~bS%#ïÕ÷TŠnö¨ÃU†çæ9N4Ð}Pjç1ÌHúWÈ|Út—(tbMÆŽ«±éé­÷¢=_¸ŽÊWº•^‚I¬·¢›˜Bkƒ³jò«œ/wvÒÞ5‡5/kY›Æ%Ë”«£ÂÛ¦ú!tTo¦â—§'µUq dúµû¬Ò˜çuÓfµ.Ík§»Ü;ædåè¡›îë lzÍ×sXN‰0 ¿Ë•NÐs?#F¯w{)ò#Å^{.×?Ñd¾Ï3MH¤YT`Ž]GÐÃûóYêc]`*¤Æ»¨9˜&3(—§;ÁéXG’–²Eh•­»·s›ÖÚØ0]Ì× ?‘i²™?i_–Îä[ï ªã¤ [\­ OÂØ?Ó4JƦù3ȶØV~\è¢â×*ƒ}ètffbZaЀ L><7I°z6mª·ƒW²äCÜãhîXÂ9Ö_Š6<'+A£®ÿ’ŸyÒ³i¯ÈF.äé»]¬BÃëBÄ,HÌBÚo€áT\½÷ã…¨ê9$5d‰  ³ìµ/E@<›ñwߺÅìCÝ«ŒF­À=kÞÁ§,ÜÓ¸0ÛÌÔô'úÿãåö ±†Èå'<Àfñöwl~Êš­ñA.~8€ã<˜K¢@â®õ ¬­¾û½I-›Ž€ÞÕ°JR'>\à¥Ú‡^Š¥g43-và÷F@k§ÒéhÔ¥b4Û~Í=û“ƯRÄÉ*u#2²Ò%sQWqsÐúha._`¤î?fK½uM­Æ$½?£B¹I·f¥ÒƼA¿•@½[GÓ];ýò-I“Ô'YÖæàV bÇ¥ºfbÙIüD­€”s všÞГ¼Ê ÒcY±5ØŒ¡V™K‚€¾õ“Ùo<‹ÊȱÇ÷Îà­¢•hŠï?›"nDVòÔ슢 ¿£xôAÙù @¾óYFM~¾ÞgÎÍG®ñ›¢˜e;'ʹÈ{ð\»Ôz†Ï9·>+ˆ›O$¹z-é8Ÿ?r™«R2B t2¶õðüâÖtàn£Î·gU“zô¦²©ó„Jk”üK&ÚÓ’8môÉË•IÖÇò”æ)ËT'¾QHÏ{2'¹–]€ýW„ÙÐ~NVœ/$¡n°âäµP^àg?x¬a3Í 8_OûÄJ'Ói¢8=ʼEàfÿ-Wäè¢mú~ž BÒ¯;SËŸm¶Yßîg$6X|…sñåëЈ"S>W€Æ«ÉŒÜDÛ="4ߧωÂõ™¸Ôº.¬2\Í òÁµ¯E +ÇÂÿTF;cHáf¦bf ô43*s‰ÈDõa³IVws ñ¹/‡âP'ÛY¯rDÍÄGNY©6T´áöÙŠÄ[‡g-z?ऀ"‰yNömÚ g¾D"ËÏhwg\ ­2T…rÌbÅ}ܰ„JÍÀ¤_ÙT†Ú îc‘h5kÖ9ýk¯á,›þ£­wŸ‡¿u8Hì´Aƒ ‰ÏoyæöxÙ,Çyr~ØÏÕáÚnô?9ø¸.·÷ëùÿH.aJ9ªÂ‹5à÷Ô“è3u¦6˜œšL§f̬æ!v^™•ã§üÖ¾ü ÂQ¤óº7 Q/ØÚ[Ï8Ò)¶»±¿2ŠÇ{ÈtšûS¶ßqçzŸ©êŸ#˼K0dóGº2Ü)˜ª71-D‹bΑ-l›uà+-g©{¤-háÄðØsÕ·åÈÒÃpzYäåÍ´víd—'î«9¦ÁÍôPµ´Âl‘ŒÃ'†g_üä®HŸL ή*û¬–íÛtòæv•†jíp×6ÔFú–h 4µ2_ˆi}gå´í Ù®ÍÏ Lß¡ žÞN3gÖ°¼û˜ª†aÆ^‡èlt†ûÒ±p/pÛ!)VÃ|‚¦~›Pí 6‹è§ø"¾»gM¦t•&ŸGôpÝQç(¬ÒR5\ªÊ…Óšì‹‚ÜŠ¡÷&FA Odx²u¬ƒól´ÚUÛ.äÊd•¾ŒÄ"Ðz‡Æ«+™»r4ÊÎ;:òmý2%–íݯ °ºƒY@Èt3Þ‚Øtªk웑„9ÿþcE6mȶG?¨’ +ö)Ì›¶Ã À,®ƒ(LŠ$ÓåæÊTäâØŠs­6ûÌ-Š£3ÕA¹˜È­„UÆ._-m ¯fÙFU‚„ýÍ’]¿s­¨Ï p@•b”ï*{ü ¾_«•#8ó°¶Q„"u8ð§Ài¦‘ƒ5¶äHm•"EâMP6€UåïAP/m³›Û#oòê³æT !4>xú¦=ßnÍ\ÇT9B6_- üXï’‰ŸND¤,ÃTЗnUj”ñš‹Q9ä…* áÒ<;^‚Ñ—‰˜D•§îE°•cj EsÎÄq}:ŠÐ«ø¡FŠüSò¾  q.Úv] .{¹OˆBÂÄ'„ª ­î§ü´€_ÕXçEÈ™Z šÎ€O,Áíñ˜~ÜhU­tã⺔sDÁf±Ž¨\ºÚ8O XU¾#¹:¨ Íh>#î<Çߺ Æ`ûHÒ"êñ¦Êvóçø±ÎαQ Žât’F®J绸½âÀ‘œqhñ› ÜxÅk{»ñÕiþ< Ã2*¤šóäU^zI _¿Ä¹æŠš™ÇÒ/E¢NJ{ÆL—‘‹I$8üx»‡`½ É¹OƒK¦Þ®7©ùSÔåô¯-D•2]ŽÅ¬2TXÎã7¬úzíè)üÒ—‡Ò:´µÉzÔ¾\ýŠëš¤¯‰Ôæ/eKux(Ïét6:ì@ó¶® ãÚwdÊÍY1|š!{w5ŸTÛ‹1Çwå€i-Q±AÍŸ›³ þ# !žây m*ú=Üš o6ƒ8I«ô&Zo%‘mŸ@€SŠìWh$êXƒÉ4'`G>=ûq Þ5‰Êœ5Ë'ÞðE É ÂHLns{‚¶ê=-âË狊]“)J~Êèёֹ‰XÁ6ZjH„c°]Ò}R{¨ Â7“̇¾2NÄ<$åƒ.+×ÁϨ(9Ä&¼(¡û½HݲB=gm¤%èÞë$Hòõ+Þ® 3Š©{Ïö”$ü«xroB£KfNäk¶[XeSz0o†µÔ6öŠp: )ÁX(—F§ªÌiìr“UXCZ}TуB{iZy“/õlý ]mö˜¶0‰844S[®o yG>®çˆAV¾›±ã¥K°ß¦ïÖ‡KÒ#nã×F“q²Ô«­È2yŠ:“¶zSøYʆY&ô¹»Ä‚Šü§p-4>ÞÓx"éZå ý’¹o9"õº_òÜKíFú <þ®­gÃJx(X?ª¬cS9ÓFú.¸µ6¾Ëë±å–5 †Sc.{C¨î¥£†–p±jYuH6ø ¨Îþñn\3gk‚=sÕòŒåe0Ø:P5XGÂlý—„@°–§íä5Ìõ„Ê7Є—Y[ŽÔh§âJD(3W¶ç,.ùd‹¯í l_z­±˜’·Åì<ö€*J;äT»PhyW¾k0AC¶ÝtM²jÛÈ—ˆöú‰M ³ZŒ`Š@¸‰4_é«ÛmãÎ.“ð¾Ð"cZõOã{ jkÓ-̉*õ—¾ª_Ðy¢'MEû½òFèM­n‘’-v |åœçŒg#Ù“olö+/ÒWÝ÷ÃÒ%w^l,øà"ɰß$•~÷:gÖôÅwômûó‘õUìõyi ¤m¨öЯÆnŠ.yöj.ÉvqÿrwÖMñ6WhßàµHÆ8”ç™ÁX(îòÛÒ{rµ•eÈ®©Ø… ŠSË£žJ35ÁðÓî‘t­ß"ò`ŸXN·*ì.Îê*z\¦ÎC¥-‹T#l°krd! ÂŽ¿X»sÓa—Èô^µÇ[Í. 1(lÿÁÄO`äD¿ Âa”½–X^ì…Ø$¤æ¤j$Lô¬S„t!$#h:Bëãt>ÙûxØ …2S#ŵUºRJã+ÛG:ºÿ10Œ[È\õÚŒ3„ÆÍ²µgËÉœ-k£ËMil°QWÛ´!QñˆúñEF¥ü®{âÌšþáA—T둌%ÌùShøµÿ;¢¢—uá&:þ·Àˆv2iE–QïZvºëq‚F1 8=~ Óþ¸HBìëbD] ^•UŽ´æÇÜ9ŒÃ_Ðx»-–A©ÃF¬Õ˜î‘~7TÎúÉϺÄñ¹¥,¡GW{²X¨iãŒxçævEÓ%ƒpñ« ªUÌ· ’œ{@íxéªËJíß¶cHBý´ƒTzÏžEÙh[T¸¿»zj ¶ÏU³hã Ë3UD-ÍC½¸›,õ –&ù ý?#V#µ—…‹iYrŒ«â¹˜‰X)â3Š¥%g®[ŠBì­51á<$3¤¸ 1 ž,Þ)Í xg»(Ñ•ï™ò4â¨GPNˆQDGð­Å ÁÑWw­­üþtän’Wîî+«|PÝìŒÁ>𮥰Úddd.LD ü÷³Ú´'ø‡J{-¾¸K • Ú… ŒsŠKAßúÀÎq¶9ÜL˜ o2$ìÁ¡²)² D;JZ†¤yo<•¹ŸÎɾ m‡^¿öøÈ•ì‹t¡}çððyî-Mü®a¯W(‡ 'e°¡œ‘Ùv~“Ê€»R"”s„|JòÏ4‹çõâàߟÈa?â ž”ÀTŸè´žtZ~‰Ë-\x +#±õ-‰)Ú‚ wñ«”É×åŸX|(’4ë–í~¾+±¡fîTí[ß·ˆ¥•|d\oÒ\?CÀç)¬]¼ÑÛh‘3ú ïD`êÆ^ƒú2‘e{1íú|j"—›€}9G"—ÇúͯLÊ H¥gY$NÅyPÕè'2)¤.Tf’.3ž—g?I¾£nÌû‰+ÃòݳÈ`ÐÍ·×ã"KXûßUY[”ÁÁâ›rPÞºFKÀ~Åëœ{hm ]¶Ð u¨µ¥¥KЃ¶jšX3gªÀêTcÚ©÷8NBï‰ÃîñžVƒMRÝ5ê^Mü™†èæ&½áÃÞwðååÆ| +áiSBd&–~¼ãŸt‡{ã d"%yN ƒs÷xßø5ÖÔ>í¾rÅDL°õ‰ÿ ‹`ž¯³ùô%Òª î&Ò³ ñÿO²ºa±÷R}´,‡J)¯/~ÞÜ Î¦b…­Ìxr´ôhG…u9òõyõ:ªêoÛ²ò( Û› ·Ò}ÉÚB¾ÌtŸŠO1GÓwŸ¼QHë[®¸úNÈ6 Ni¶“¥xŒ‘ß@bäÌóŽÀÀëCÜNwJà ÅÛ‘C-Y? ó1ô&”Â:Öܯ„N•#X¨†y~á-¹FÅ>íiŸ'ARÂBÜ’0”¡ùm>\ð~†©\ÁCVÂMjIœï£³SF 9•°ÍƼ{¤H“—{ãë}]¾ƒipÑÍÝÊR }—ÈüLçk3m…zmhdߥ %“yttZç]©‘ÙF¸¥­tf!£)Š¥óUÅuœ¢—ç8^ñ0¹Z°$¤ºµÝN˜ƒžÀj¢œï1Gøü.O_­Ø:…ÓÏ€«9KT+lNêÀÊ Ûv¯-~„b5—ú¯ÛÁÀƲ7áÂC*¾%›6kÊ}º³$¬„¤Èe}*†×²—î¨]\†y Üí!:ÉÁ OønQW¦K$<w?_5ÿÙÀù¢ÔX¢ ³Út²JÒê-U%u‘?YeÓµ¿‡­§ŽýÚM ­šÚ *§ÿP"…{>Û’Þn]3q¼ø¨0†=h²¸V0ß÷ ¾ ߥlhÁTôŠ.˜ó!ƒZÖ[U‹À3k´È˜Â-`³ª K¨“Müa7.å9¢ñŒÛŸÕéÎŒ®~Iû"1¡™ ‹öÄ*ÿ~,Ù0~Žñ‡|r:jdw+ÁíûÆKh}y­X[ï˜R7,aöà ø¥í~ÙaßRê ‹¶I¼rÅ”"KP-o ½ÀZj1‘)ßDUß¶v^7K6ä|3q¬›r§•Ê`RqäÓìçHDgŒ–6H¿ö‹Ç©i-÷Ö‚•h¿ Û º‡-=Êî¶Ò‘Hf™fQªŸA Ó±SÁa¡W+É>~ĸ%­Ø×¯Ú„6|m÷¬4«¸[B6ù£õýb÷Ky¶%xÓÁ¾G±DyôS÷E´šÎÊ1d£9kÇTàF¹ï®¡x”bÞÐÐ… ûˆA’™™ =…em­ŒØæx¹luk̆I©ºø!>>Á΂ÅXk eú±®;zÕbNÕ£*:3K•Šæ^ dóînF#ÅiîÔ¨}¿,vé hã â>'à|ÿ1‚¢r‚IÚ’¨µBðSɽ3R”B¬äÇFÓfyoód™à#VÒ‘ßR{ñôÃ~íÙ.ˆøýöËÏ•³}Þ¾æ ŸH”ÛCl8d˜Ëe­<_Lf£_HNmøë$SŸX³¾ =AæðoKö{àq:忇BÛëÞ®ÞŸÌ\­ÀíÈ A—Â¥)ª…”®·²sõIœj"áŒ/uJ°fŸ§X£ý^pB‚óDµUŸ"èÙÉS²YU ÃÑñ'R©<ÀÐGnßx|g8q}= ÕÍÏQкó|CMMHp€)º°O°^âÓ´Qï¸9Ñô‚¥j;䲌,ÉÊM õxÝõ¬˜5öQíUcÅY–€·æÊí•Ýâèò¬Î›ñÖl û´¿ü~^4c '=Ùs–ǧ´H¾ª=‰âÌñ¬ê^­žŠj¥8o”r¥N‚DÔP”a@^4Úº™;Q¹Ó¢=¿rl«XvÞhïsoÝ_|Äm?l[±,ä„÷Î*#IÐŒú’Âû!A4Àîºk9U±î‹X*‡Óâª3ÆJOaÆRJ Ê/Ø;ÚÎ_aák³KiE"=W &)[…~éL \A°¯ûõŽßz½Hk¬QŠî_õ”À¥øx$Œ -ò¼ 5‚†èŠPdîçR6Eq¦Æ­¢P¨:$¿ùa4Ìþ6£x:Ûès¥zs*$ø|Ù$ŸH”KM:ñ†S®g–áò¨ºyiPʰ|Žª;^ª…#аQöyìØÏƒ^lo›»·V]¹2bÂN¯¢”½Á:ÙìT€y«¯c8öbá)º?û(°D&±÷8ïbÑ,cJÜ„ÛN!3›5à«Ôdöî`ECXb"ÏÐ\óÍÍñz+î\7Oà»Í¼%ýf«g³µ,ã<)…ªÄzÏŽ1ÜÆ[b Dïí›ìè7×Xއ Y÷\ô™¬³{),œ{×®Nƒçµç2 é$‡¾Cï/ ,¡ŸÙÙà¸é¯¥ÇÆhåg-·ß¨b«3E>7꽿&Û pÈ£RèˆIÞÄ¿_:&[IÒßDb{ ±.…I‡Ö<èìphïUtãXí¿1}èdPTvh0‡S|b6¯WŽ~¤ýº¼)í‡öë»4y¶ÀQ«Öéʾ%{ƒ›)EïýRŸ1H­sÍ· ÌëU_÷‹Kà“ŽêwúòÁ8YÔjÖÛF]¹ÅÆ'†*BA7qøÂ‹Â¨JK't/d…¿^Á´é£bí-Mþã“T<íÜ•ç…Ŧflë°Y„­ñ¬Â`h6%ûï±w)uÕÝ OÜìÄî ´/¼^ðÆÞ¼nFè{Œp7û]X»™Îö:ùqGì&lŒƒi’ ‹ÜºòôÂìT£¹¹­öÒØ¬Ó÷If[Iëû›4÷±~§ñ†¶«?çt*ÖŸÍæðs*´KÌ–U0XŒ ÚÅ¡òúØìîp91ÆîgqåjíK{/  x2¡éÆ»ÌÐ~›ù9”-›ê&upxˆQdÐ %0%~Ÿ2ì4 Õh× âM¢¨J÷½m½©À<@”­4¤ Òp‘ÿ‘L_¬ßb­@®dl§N™JØ ®‚þó/Û°óXšÌKóÕhPÏîeX~LâË Á+jaÌGaÅ ØO›~8EkÓŸÕ\!íK¢Ÿ‹¡Ùbàs8·ÿözÄXás¸|ÐÜ…ÙÊ(±øDp7&Mª÷v ßùà\š©ùãRßK(ìdf®·‘WFÞV6W}KÁñ ùKtHç9¢oÚ€>G;6N}) ¢ëÝÝܧ°´õަIü¡378\¾ÿKËWÕ endstream endobj 141 0 obj << /Length1 1387 /Length2 5975 /Length3 0 /Length 6929 /Filter /FlateDecode >> stream xÚtT”ÝÚ6]Ò¡Ä" 3twJw+ÃÌCÌÀ0äÐÝ *]‚4J‰´¢  -( H}èë{ÎyÏÿ¯õ}ëYëyž}ß×]{_׿æ02R"ašHZ$ ”¨ékX€ PL%ãæ6ƒ£ÝaÛɸ-`(o8!û5 Œ¾²©ƒÑW@}$pÇÇ€$eAR²@ @”ùˆDÉÔÁ¾p(@_p‰€y“q«!=PpgôU¿¼>HFFJðw8@ņ‚CÀ€>í󸪻L‘8 ð¼ò.h´§¬ˆˆŸŸŸ0ØÃ[‰rVäøÁÑ.˜7 å ƒ~ 0{ÀþŒ&LÆ 0s{ÿå0E:¡ýÀ(àÊà‡ÀÞW!>( ¸ª0ÕÑzÂõþþl$ úWº?Ñ¿Á¿ƒÁÒÃŒ€#œNpwÀPSOí€Ð_@°»7ò*ì †»ƒ¯¿[4UŒà« ÿÌç AÁ=ÑÞÂÞp÷_3ŠüJsµÍ¨ÒÆ@{“ýêOŽ‚A®ö=@äÏáº!~Ìß+'8êôk ¨§ˆ9îåÓQÿƒ¹2‘ýÛæ C$€2¢R’’˜æqùUÀ,ÀöÛ úe¾š!ã‰ô8] †;Á®>do°/ €FùÀ‚1ÿéøçŠ @á4Àæ Gý;û•æô×úêüQp€-ðŠ~ ð×ó¯?û+†A‘÷€Ã±ˆµñSõ;Fþ—SUéÀ‰Š„De$¸„8@JJüÏDF`øŸFþ#Xá„ÈüÕïÕFýݳïðþQàŸ¹ WÔ…xÿÍt; rõýŸùþ;äÿGó_YþW¦ÿwGš>îî¿ý¼þ?ØîðqE]ô• ô‘Wb@ü7Ôö—võaP¸Ç{uÐà+9¨ œÝÿµ‘poM¸? jGC\þbÌ_vó_Zs‡#`FHoø¯Û ÿËw%0ˆÛÕ â}EËß.Ø•~þYRAB MTBF¡ÀdWÇ|µ’`@WŠ„Âü "Œ@¢¯BWãœ(²_g*- ñöñðø}ÁAáÞžîà€_²Tø PWrûÍ„«þ^ÿÖ6 æƒÍL!!rQ®Ï¢:~Ô«ÜôÂŽ(|àÆZ>äÂÌ :}~RgòÕåF,¡ŽU2ßôPͯjð)ϲŸc¶[›ˆcÛ·ŸÝ»o2†m'›ex_º­ÒØÏJÊ"d¦¼tîdî†ßŠÛu‡»ÐËGšÒ¨˜ö‡_Ÿ–cåÜ»˜)¬ñz¤îµ³Êq¡dó$»ðò î"ǼI&N"´+ ?;ÿõ‰£ã4ï/ÙïÜ ÞI+ÃØ,‹¦œL.T›‰z¿b¾ÅlÃÄŠDónì6Fu#ëãGLEÙbÉGŠ“ç¥–’í±Y8ÚÍ'—G‚ÁÜú:l+\«úF5sG ̦xg$Ù×’ /ùêW°}ó¨ZMªKÌ‚sÛÎÚ Ãå[MáñÐA¤!!Õ¦²TD.!fÛ_ýX*I¬?Aö¶A‘½êéõµÒ‘ ßÓ^šOqxRwpt(5 EÝløÔ𞸅?¬zÄ/Ufåãë÷¸"©|&æ‡óí©Äjó³=:õK•²þ奉F¶]ÖµÁI£<¹n{Tµré2.ñeJu‘qfírØ.6Äéçñ¨mééŒo†¦þañПžsæ„T&Lßò{ì[ýip"ö‚Ô¼}Ñ·­ƒƒCîqÇÊí©A Ýäf¿ˆ^=?9n‘iÀö­%ÒÓ}õ.ïî9úq¿ˆyËsC«y*Ò Ï0ëÇ€(¢9¿¢Á+Êð!ÙOytèÇv3~vÑ<oèç[tðÑ)¡VÉ#vFîp!²°©\ÜgL|zFuµ¢ q/Ëïí0Ùg#,'~~§e‰ìtµ ×~6Ñh­Ÿîê(]6l:‚>²QÅ>æý±_)sÊêo¶5"Õ*åëû¡@pìKòr ÉØËuž!vWEJ;M¢©Ã·:ßµ£ŸÖÜÊ.¾…"$oº9#,Òàï:,-–CE|4··¢¨xc½óºÌwƒ±\_¡Ù¯¾%Ë|gff%êü¬í:zÁ-^,õŸ*æý?*~?fõ¡ îL«½½);²­àn?ɶóh )ûüySìV©ÆƒÄø\ù®mªÊݬ÷çÇqƒ¶Ù"×±&Ãr¯L6“å2(9$yûŸ6êÞTRãV”svá{9I®nýB*ƒ0~ʾðJ>B™q}?&—–]~7.9çf@ _ð¤ÑÀÛX:ÑÛO lY^³%®UJ—g-½XÍc˜Î©Pœi#kþ y;bíó» L„=Î)À7YX{Ú³mïk«t°hCó>~È€Kg¯–×NfÞïÍio´Q-¾gê· Â6‡­NxÍïšè[BfÜ@§²â¯uI*C÷m• ]g‡~2˜ãëBñ•Þ­ÒÐá½;Ÿ®o{} 0ÞùbÛÌ©Âöåv×Í· ›˜Âùk(*µ)ÑÚ.ëoOjý¥ƒ„eýÕl5x'NØsÆß·ˆ³=g3Uç™»NmQ†t¥–Õ×¢©^Šé.8n„ûìoL?€)Þ<>1hNû˜ùƒ¦ú ûw¯ д©ðÛ©bÔàëøPù•ïåö-ï|ók§<ˆm¾ï•¾!Ï©c?Uè´´p±¾~ÛäSÃ!:7ß±Á³m€’d}Óê˜\èVz/’iöéØ*ÉfýCã«§7†W¶y^)Ç1ƒèWÄš1”ûúº ia÷ŽOïÍôi̺Tðq‡†6ª˜µÒ" è¶“HôÎqVíšâ)@ÊäIüˆnµTÒ Áéi$cÓŒÝfTr¯ë7vjlÅÓT¿ñã°dv‘x‰‡ÈI6ª$ð£-•ðL¿·ßþ(–Y1¶x`«‡Ý=©:޿˃I:3â³x×R¤*˜Úسš&Oª‰ÒÁä”?H-"~ÖI’1M²Í jP‡6ÿŒjç®ûvR•b¤MŠ—ïZÌi´?½®ä£Œ3¯ž^ãó}Z÷YÆZÒ'o¼v'¾À ¾Ý3,yI µI÷I_—£K¢ž×{‹ÉI~HHÒ®í·h³­èÜTÞ7¬MTÆ` b7H”áÀÊI_Sž]z$ö¾úö–P*¯z$ø|¿bßÉM•˜Î6¼ 6kÞŸ9iGÁ?¦Û2TûëÓkð2oÊòúój¿Ø“ää’FÃÒÎ0‹­Ú¸hxÎĽe¦?¹Ó3™1“ ñ4q˜Ï8eÉj§A¶ó½_ò®ÛR ¦¼£aù+öBêXᬯs!èÛ÷²Ôúo坿騫O?¨ªä)Nº?òåX]+Ö”¨ÏøÖx˜'îÍÊɨ.bIùËÏ?êCˆ÷9Õ7»œ'óAtË È éoµá+ŠóÖyx7¬rjßnÕ×G¿ŒÙ-ëÄXeE­ß=¿CYÁKS‚& ñOêÛ8„TT:hCî¯ùÒqæ Œâs¬;¯¦à³ºS1Éq»mŒ´RpE$=öÝá$xÁ=§ÿ´‡@%]r*Æýš»-Ó>™Iýô™ƒÜº¢ÎvGãzÉÖ¹…#·H;1Ýûé4:è̘àÎä#‹+ Èb5ß_(þ¸o. dè–#Üáy°ïT¥¼’óÈwúSuÂ…Íyë5Õgö‘etûÂ/àG–b½§¤˜¸¤×·8qhånn~´>³¯Jq(䀃0gÏl¢ê׃¾áTGY˜ úÖIÎ÷{Ü Z妛Qÿ´ËgªÖõ9k³ä¾;Ý*ò™2¿‰ùGÁ”)ɸ5ù›\â=â$Iþêû}¸HY)ôF?J’K66;¦ö±½ßçÅü£5•ÊüLWû"…ÓS]ñ8ÂCÖ= •^…Ò†Ù·ú†àq «7¶«OX=À3ü­ LéÃ’2Ù6 õöC¥íq‘AulCï•èѾšÅ~Ó#(Q¾QVöx¶)‘5¡U|Cß ü~ênå€Ð§‰2û6®ÑKÜc¯O¾áú‡Ä`p¾p¾- |#oƒs„LF;ª:µÝØ7nYÉê)®ç¯6‰ ²#W…ëòpï‡l³RVaîßvœÉwBɳ¬¡ð"nÝ;™¤=ìûùl–,¨(¿K@v‹=åEë!jÔÝr;Œ¡£ÍÈLx.Všß¨¤lÀø³<¸»Žïr³`@'{žËÞôe# ñã É­Kí’|š9'n… î-Ü}OG$Z Þ˜•œ{6Ÿª³=Fñtù#}RÖžˆu–©¾[_óÛwÙzí¢éô)wk Í,mÓÐ=z8Ëëû7^1ËfjÑY¯žGµ}ÕjÄ ÜʼnÇXÚà˜‚l×úZH­8+¨£Ìf‡è›ÊB»^4pÀZõó#>îÖ Õùê˜]{ÂL“ÙeG½–Æ ‚³9ÿmËÂk ihù"̱ñÈŒ¡­µÑ ™”D#½2eòš…磴ío‡Bk¤+o 3c“o®1jÄ6M$ÕȤM24WSØh‚EŠ93,çGÝ;ÈK hœL˜¥ó†¤™-’”èÍôíäÌïucõ²Cûw®¹Ú#g¢Y‹ûPD{ïÇùKƒ~tu¸’>vÎ —+€ ð8-Óî¹Ø¨ããìCÃ[³Ú€ûœ»ëíä>%yPÁûÞF³N|Î{ʱxZ†ºG™dakë¯ZIM‹ïîg§ ²›L:¥í´\hôØåÔ^Áqë9}Ÿšg¿•“Å~±5>0ù€•™fqþŒ9ñ{•9dÿîG;ÅüIŠdÔyÞÀ}hm~ûJ©Z*¢¤^5(ûl+ëËÄ›¿Ÿ×г~u{©¶Ëí7ûЕ̃“’qæUK4ý×H}OÚ˜Bøl8/mÑw;AF O{éç]½Å­5~÷{7v¦Ï^½ ÓÂãºyòqâCCwO ÍVÍc{k)þÜ”)T¤ñ€ÃÒxþCªÿ¨òØwª/Ãöêâ»Ñ3@ÓK–¼ÜåÇ%±¨ªMÕ6‚ë0*òce‰‹¡+áh’è»ï‡U ~”ò(†\T°ææ´?*¥õoÒ4‘fšg’„Ðyn¾Óˆ`¹¾±ö„^¸Ú-tPçAí2DÜY~j³qmNu«íÄfÛ® O•ž­*ZÂ%"ÕsY£¤0Šz—¶ß¯²'oÞüÜP,G|$JÎĩԿEfïp¯á© €‰XÚˆ ×nsäÐïa._8K¤ ·L!5ã·h”©dè³U²RpL’Àj¾ÞëŠ;ïï(ƒN†6(ÙÛ¼.óg7ÎFaϘ=ªv5E kY&X9µ¥n(õ¸’çZGg‰’­»“6¹;òjZKkQÿ\jد™R’à<³¯ox–N稌y÷¦T…WØ4Žâ“bòÕ±^É@‘d¶ÈÂ箌Þ~ZCíZ˜ÊJi,Áàᕬ떬IêZÙ+Éæë,Ök¯Fïšø²¢š6•› ~LYŒëŒÍ‚šŸøßÍ3RÙ™¼\ ©^ÿ‘¯›ÇNèƒN7½¼ï`¹¬eâÀf–é,¶£Ý-¾’÷‘g ¦kBáP9î–'ð¼j‘ye‘ŠÚ5h¥Uj¹Ü®m`DäEŸF}Çy”H|oËúB<Œ‹œØz½µôGGù¶L¬EWúkD¡ñ /"G˜ÛͯgÁv·§Ï¾¶âHÇ(óËó+5¯­s¥¦ ïØ¹¤0LVhßy…õ~YGYÓ:ï=«×Oi2ü$’HI³ÕMvxÏêÍôÈZûËm”Ê’§ŒVàí kbE¯€åW+­Iè—¸ï/m¨Ò)ºª(a¹XÚØK’ˆŒ£ƒŸ¹f­?Šßì~¹Ýãz7Qh}ŒÇQŠ 7´)‘5\»˜P2Oɨ -O{)(§‰¯TR”§‰Ü£ÈZU/àA>ã`1\3æIjÐ9V~HþtZ˜ÃÜôkÈu˜‰«‚¹ÂH™º×zƒî“¥ôÛù>2›§Ã^9#êò²K€æºDê=ÇNa±ŽƒËÐ(ÈÚ!÷¬¿}ÕÇx9‚Úšî>|ò}ÆN,x·å¡I@LŜͬìdr¯ûý”—ÇwÃO©(9ÞŠ ÎÌ“žàM>Ùçëw1|ž®O¬í¦j]O½˜"߉5‰XÆ?÷×39÷Tª¶«›`¨G+-éî)øª× QÒyc õÖŸCP2‰.‰ýJ[—™ü,ŽŸQì2:k‚ÏIцITs?!¥4GóÁ^×_JdgÙµüÌâm ˜ä`H=r÷ÓÌ6>¯^yË5„ØŒ«olà¡KÂ8Ëä¦ÌæóŒÚ„õì›RS´6GjÖÇD¸ØäưÖw†ÝË•²‚ÏÓÏÍé¢ÕnñϺØj…÷pãŠ'oƾä( x%É9ªhb"D-ËõÆJ»Ë:Ÿ¾8íz<´ªFÐv‘謺¶6V³Øl«°4<Îù­$b´¡«S¶”)3›i‡Ù‹ªÙ¿ìpáö•9âA3/˜³©Ò•5•÷gÞŽü©yéÙ?Q67!(m™ˆÝÎn9ÞÖl}¯YþðÁ+!ãR ËŽQugcÞù\ÂfDê *`ÔBBuƒìé­…`HÿfeFh~Î1aØb­¹cW®½F…¯7qP¯’žòYiŠaméÄ|P39>Á?s˜W:>´rBìý)íGL*œwcß1Œ3·ž[—ä.\"ºW¦[-è»=ëÏkxŒâEžh×þ„Þûj_Çf„'“õÕܘÐb‡mÄcE8lá\_éH—”9Àôúì1Ž_5€5Ý9xãÄæJuv€GëÒÛ±ßu"K=†²„iü™¿ LÓF<õ²‘%p]mx²‰¶Ôgê¬×­”®x¢’Kî½sÛëÌéUÑ–báJh à†×й…§ãÜB};bâ¡ëUHÒàâï%³´° ï,ÔY62–Þf ;\=ÇWœX…“OŠ39zöP—zÀOC±‡^Ž 9<³ñˆ~‹®OÍãŒøžú¹ ÛÃÝF„,°ösÔZggæLq¾=Ô\r3~Ô29‚¬yìà¶ÂøPÇÇ|†°»0™õa‚2/R ˢ畞×ïX?1MùyZ$biåÎ`¸™JYkß©pM#{Õà”w/Þ3(»¥`c˜3ÈûE òÜa[›”¬M‚"äqî[¬Ô…ä5^×T•½Å¨ir"j'W´˜zTwÄÒ¶W„­Ef Èàm¦Ø ,,ÐýAP7•¼ÑM])fÑȪx˜¢Wž¸dùL©Y.WáW \\ƒt5n°ªdÕgÌGì ÏëQCÂÛ5Àr«õäò¨iÓ»”ž’ÍOÓðâû¨ÆÈ”Úí´ôTÒ®çܘÀ+lMTð úʳ©®Iåì¨àÎüúÔeÔo(P.U^w÷‰Õ]²ÑÊO·S­µODYت8..|4ßïT®öà~»þ,Ô–}¸ŸïšNò{ÕT!<•ÛŽ)UïW›„ó‹–±½=í¼ÅѪŽÉ½òš÷ÝóÂS'ži/[.qß‹<èëy(Ê ¿'R;PëÞéÕÔHô i‡ÞOÚ{.ùÆ‚fd똔a£I*Ø]…½(O–ò8<ž 2WOX|þd<â]u¸×œ/ ¶_uy.ëvk?/¶= ­CkÁ6#&¸IåòÕ‚d&×µíôÔ|?ël¤¸ÅìE û¿ÜI@Ú3Ý¢4@¨Myñèñ|ÖãóJäÁÁâw~^<„PçÏß0nŸ!ÄadjvÅThˆls)…,P#ibNuð`*7A˅ߘZÅ6%Ä¡õÁßÝß^ñ‚\ í)uC˜Ýh(WŒ$u„J;°_¾‡ãpç¿~qR´æ0=Ú>Øo¡$lj¼s°ßÂK‹S±žQ¯ y,ï³ugòSêGêØ¸½Ë÷Ù•%ô’·‘Øw¤CùùuÉ’E±T\!le'ÅFv`çôP좔x‡Þ…þ—ìef¿"¸ºV³D˜6•Õøíï÷™ü^óüÈ.Jïy»&wskÍ›·&™ËHuæ%ÀiˆæN¸“ÚÞKÚËä3†sL¹(,{vp˜7Iqy¶Šõfó®Ó(ÀŠßeò?º0ÚÊñÍà/s³'‘8ÆQ?•\OVªö_[ÆÌq?­ÓøVÑ ·¸|Uxé:ð¡¢®µ<è$’ÍÀßöññµ/£O‡¡ÔFgA¬\–Ä£¾e9*Ò‹]’EÐÀ/òôvÐZ{ŽFgy~‚Ây©\ÎíDUÑI£š²3¯öð÷ÅÏe}hU-¾+ƒY ±™¢eÝ×<ÛÍüÀQZóR Ž›[Þ£¥¥YÖÊUÉ-ÁøÀŒÌ™êžä­¡ì‰ryŽ„”Ý–ÕåA… ¹åH&ÓHÞˆ¡ÊÚ‚ÕRÍ©–᫃á‡Áåm Ô8n¾Š£‰ŠUC q®  —ó“ÅLñ¯&D÷êÆ±ïH™m·Î•PykÁjóʧÚV\j(>U÷›õ„^‹‡‰×`†¸dÏ/ûqŠê¤ÜÕ› ³4?òŒ¥8’âp@}ætLž|Ƚœ+Q?/8}qc‹¨'É’ÊÑŒ%<ºÁý)]ÇØŠ°µ§³ÃJÏ™òêˆå›(ý4GÜ wËe%áÛÍLRyB‰× ·ÂñßÉ3cqKÕ—n³xt¢Ý¤èøt+Ä:üõz?ø)šÑg+–ö¾ÞtävÂç¾óžÉR¿ÑµþKê®èS’ñÁü¯âÂéBvåOá}yºê”æðk‹°&ÍþÚ‘ï±ñö×3gºbôhä¹ 8ö{7šoCʶþLuÝ ÙvÀÂx:Q.„hr‘1Ô Í‹ÿøRIrîVM…E–Y—NÈñÁk®†~l›0®`ÔÍà Ñÿ=\Ÿ endstream endobj 143 0 obj << /Length1 1888 /Length2 12660 /Length3 0 /Length 13853 /Filter /FlateDecode >> stream xÚ÷PœÛÒ ãÁÝupgpww'@ÐtpO X$¸»»; \ƒ;Á‚>rι7ç¾ÿ_õ}5U3ÏêÕÝ»{ïÕ»ž¡§ÖÔa—²r¶Ë;;¹³sqp dÔÔ”¸8œœ<œœÜ¨ôôºwðì¨ô/Á®ng'áyȸ‚AîÏ6Yû³£š³@ÙÃÀÅàâææäpsr ýÇÑÙU ò„XÔ8ÊÎN`7Tzg¨+ÄÆÖýyÿ<˜,™\BBl…¤Á®K@ än v|^ÑäÐq¶„€Ý}þ'“¨­»;Tôòòâ9ºq8»Úˆ3³¼ î¶m°ØÕløÝ2@äþ§5Tz€®-ÄíoBÇÙÚÝ ä < –`'·ç'+°+àyu€Ž’*@ vúÛYõo6À?›àâàúoº¢'‚8ý ²´tv„‚œ| N6kˆ !¯ÊáîíÎ9Yýv9¸9?ǃNAA>Øö¶´þ^@× þ‹äúm~î!Àê X?·€XƒŸPýÜ@ž`€»«8ÀïßÄÿ"T..€ÄÒ`¶8¡þÉþl[ÿŸÏßâ 0â|–€ó÷ç¿O&Ï ³rvrðùãþ×4å e”Yÿiù¿¤´´³7À‡ÀÎÍÇ àâä]ÃÎ$øý$§™ÅjÉÕO’¦.v€Ñ¤ˆÂîA‘°²СÇòg¬ë›OðbÀ/‘PíPïê©)ÉP%$zyô]Û½ÕbXw›ï’˜1û»ã‡àÍhãˆdõ4Ñ®[Ôx¯jìõ¡‘áeœ~ŠÞ¨ eÏ·Ûgtaî8r"Ãä²¼/ª_.ça>d{¦áúY(àIZ ”¯1'ÝÔ©ŸÛnšP3}ì°5ÿhÍuä{K]Æ—NqÍÉ߉´ZÊ §‚oOøéö²/¢øiµò;…½rx¨ŠÏâLßäúƒ‡J²’ÑÄ`›Z¼ØcÅÖQ@#}ç{Oë0¸6Æš$œ-9V æƒëà¼A:‡Ìåk¦Ð}n#ÁÛ]ñ¢e¡¶@ OHJ•&°qwèE¡áµŸ/ïcÞEW—4âKu”Ó{Ühßõúeÿ´‚Ü»S.àçËÔÚh_/Çkÿjï Õ!Gç€JßG¾ãõ9œ˜hgaUVéAwdÈ{b޶šÊ¥ÍþwW”p±V0%ê9åw—A„_;`xP=K‚¢ï}Â¥ÔQ¡ ¾ˆeš"/§ºmø‡òÐàÄØž~ˆ·%k*ó:JqŽýÒæišmeÁöëbÍ#lÛÂÂÙ…xlO¨}ÜÒIJ `Ç[bŠÁx‹¯5¼ÿ!ºCjý²5;Šyº–læ½£D,™C¨t7ãð’džŒô"C “ʨˌêÉâÉÙŒàLšüeÁÚÝàÛÑMçú4TÇ$p[M™éŸÖAçûίäÝ4â˜C>ПZqŸ·zE«·WN+Š_É\!/eÆ &bv7ÔrÙ½ª ¶)ÁDêæ²èjÍP.ù›wÙ¾/¶xÃÜëe|jiÄÀi÷ñ¬ÎFÀçÆ/Å–D§94ñM.ô‘}êÀzÖºŸ5C sàõ}¹±ç¤}±ÞMaö,Y]Ïç럗¨áhcŽJM—Ó‰Ysã™øðÁ>‡Í4Ú">íÌw´„6Êk&´y€‡ˆ»|?8~ÇuÊ:¹ˆ3 ‹u¤ßXÇ=uνÏ(€ïò±žS¬¿3¢2Ñ•»îµKÓŽ| d½GÛÚ"<¤¥`¯8nù,ÇCë.³Ó3©_þ\²j¢n ±âÍË×-ÄZàfÛ¼óħµTùÀ²<+Âê;Að º×Ã@T 5½æ5 r´àßæz¯t×:®‚Í*þúígœØ»ëÖ&Ñ3;•‡˜i:û‡ëUz³KG:ìT¡Möþàœm"{êèÒåÛÝ M.¿¯Ax¤øN91ß²äý,t;Ç:¬‘¾çTúE¨N2¼ëéA1ÈÚ)Z¿ûyÒ¸&.„·¸Õ ›3?ì|¢í•6½!ŒN™n=Ež£D´íQ÷úÜ·`„ä„»ï,ä·Ñž»¸‡¬[ßôàîL~d® DÐÑž6Hô!ÂÍpkà¶KÔ0íØnæïAÿ —Ùºî'>ó˜SQ]*ãè¼¶Í9N_ ]"²Úõ³%äÄ|aê%[t& Öº´Âì‡?A¬ 'M×%»%¡èòº éV) ðý=åÐå:ü$M¥ŠåþŽ*ê¥øÃç]çI±r¼–Ï£w> ´P<$ºT½qrPQ`]`&Ÿ÷+aâÌf²aQC…I?®›'Ë—J$5ðüLf®j47î¡VÁ+eê‡aÜ&–ÐÆ5ïÅ“Ø)Å×ÔvOŸ¥j[S–^E•…ZãËyÃ/¼FRµÃ|6–ÆþHO¾Ž²B¡"¢šl~PG&Øp?- ž¿”;@%˜óÄìe áx{ô‹¥1`1ÏëÑÎs{éøwƒ'â^ñ«¢ß ß× "x{âvânɳӥӤ[àS35úÚËji[¸‹ÔaîÛ´ôgÚ£m©“\óVN#ñÞ¦^®Õ/?ÙI±¤›ÛL…k•ÕÖ¡0튌ÕhaèQ…È@-ö¾HŠÜôÉÀ÷䘢PóBoco‹$Ɖ߻ÂD§t´™]V…¾À™²Ö@Ö_ý ·Y’]âq˹ò3î½=0¾Š¡šï ýóTÉmã·y” Zö5UׯÊ,Žx ²ŒÆ8=ÆìÅåfìëë¨ zTc»šnr‡âô’k®Ó7jáwºŠäÃNS>éý`½ÁÁ§·P)„åŒHçPªq*@µIêÖ™okЊzC"éG…oz\’a@!8‘¡I%؃ yßtE]zó@8x‡9k~o—õ Ô:¯€Ú·ŠŠÀzú»%‹Dû„êÃZgï¯MvU'ÉÞùu:)ðÆ>ÌNDmY/÷Þ*7‘PÞ"±R “ÙƒBsŒ}—ǬSjq“笕XVŒ¬IÄàÔp y¦™é;~”Va'¸”U5i0!v³¿¢Ž&¡Ì:TîCUd&wÕºŽm¤Ðâ»Î£Kl¡ç³Ç="þ)¦å•§ñ(@È÷ðŽ–L8qŽ-OÏŒPUS"®qh„H]¦jGGíúäôÆ¢x"&ÎàÄÏwÛèÛ?xXæìhõû2e÷¢èΧýϳ¨›å#×FÆ"[I÷UDÌÞ Zi%)+Ñ5µ%õ3Í:j»ìáýÌW6"Žm=‹ /Ä–TÎ_ÿÈŒë.úµ­ý°”\‡ Q‚ëƒD02ÚŬÔÌÀšÓÛMUØÖ ÷ö*øS½XÜ“£=”’rGÉ)ÂûX]|¡Ø%¹V¸B} öŤÙÞh¬Å}è1&H‰’ÙØ·à×'làÔ4eˆœÝKD¿L®ˆ ®±`ÝÚÄ—ª¿¦ø|ôUü}§.6“Ïü›Ü_ØI[퇾«ò]àYìÑU~ݱcT×ÕøøÇü—gÎ#ÔÉ5X]í¥~Yú5Ç.ž!»û^jÊ~Me·oæ·q!…0ᨢ:üî\ý+æíi;‘0Ùm0J‡„“fÌ™¯R/fÌÀØr˜:î…z–|G_d6$£Þ:ðay«Ê~é–J‰lzók@½ˆâ«62@5ê8ÃzÐ{‡[–)éí˜SNÝâlÆdù}ÙÄdi´FßBÇûàïw®«È5ð”rF¥ì𿚮0÷‚K‚|;“¶?¸V!b¬OÑJ—¡©Â#cw…[¤ ¯³«s dYSã\üœ&næA¨ñ—‰þim Lµ„¼ÙkÅLûgÒu¿Øqì;Ú[³“ì 7.ïÛU(«£V$WÍ ¤wæz^µM÷à"³ÑiƒQgdà+ß÷¼‡¾=«:‹@C2XNú%è(å»pµ›`Õ¥.B³•úši2¾¤ ºÖqLÐB"£P„˜ þ5»&¦Í_ òâ„»Gjíç̹ùV—0 ŽæUý‡À§G½"z–;~2ãù‹&é„Å8Ñ‘ƒmÍh:(¼]e`Ïà¾WŸ{(+¤dRU \6“Õü0èÔ+=sÛ3lË´ ÈC5þä®(sðâtä–2ˆ*»± hAñƒ€û7ÑSá+Ds«Éº&~ùâðK¶¬ w¸áŒÉÇTL¸øF9…õä y ù«–G(€á6¨«N®,^^ñ½# óÑjb…ûšö6$ÝŽ“ÞÛžú—Lªp Ðþ®Ù8{{€ýkÕIÉÝãŠO£ bý¦å¶óÌöÕé­A‹é¸I7S¢o…'ޏ0d¬CbŸai¯¢Nìª7åñu—;¾b°ÑNƒIµ—jîܬ?6äÌ;ZÚs9ײî¼AÛYCì•;·8b“©r¹ècûe€w¨”Ÿ>8“‚àÚi¼Ôôéíç§ï÷Ú`gsÏø6W+"¨ÄÑÄLUu†õ7™q¤ÚÒÙV}ÄkhØÌ…=R^ðø°T6Ó‚‰ÚÉ 6þõr¬iPåä7ÄZ‡•‰¯>bä—%¦¾|rÑA$¾toG-W9Gíu"¡:¥Îàl‹]ÝÐB;ß™#*Ix´êhS³aØ“ äã­W‘™'fnJ EQ§8Kª&€t“M´ÝÑŽ°|»«IYzꉄ±ËM’n‡&8·ëZ|_éæÛªnî~èäþØ%^~¤âíÂÓW¸þÙ̽˜¢2}?ö«ÿ¤þý;Îü1±¹8É궧ܦë®õ…ÂÙLŠâà½Eͱ•ú‘êŸóCs¹!Žúûì?Õ6¤Æ}ÝÌÝ,b³¢~õ¹µHâ›%¸uá’³6åßu‡`iÄË}*Ov8‰Zµ5V0·€½Q ¤5Ó1­ž›êñàU»¤5Ì\n^È Ò”?yvGµ\Ù=âÀ¼—Hɾ[•¢˜nÞáã(qî2"Qä® í¬“pèn¨³ÄÇÝz„Ñ,üyI FÎ_:`w犙’‡â,DÖÙß·ýÖö'?:§çà…|ø2¿yT(¨@ïø|8جöCx:ñÎé×':KÀC2>ê²ø¬6ÎÄÈï‹’¡ÔIM¯·dQ¦iEÐßäž7<]¸!Pd›ÔˆÙÈœåÅ5­HÜîÎù¾yof’ÐáúúùŸ½bBuÐý­ïb_¦T@Á&¦5åö3™0Ö­´˜ÝÕ‹C‡Äté,ÍüqWwö®XWÔÁ(Tà ‘½QÌÀ)ýŽ«×?9åR6ÆQ` V%¹¶š ß{Cj"_–¹ ÇµT—¬Äž…îÚ¨Ãzù˜¬Íg,»q»8ž­zÚAöëð±Ïo$#då_‚ºÃBü; 4gr^v0íû®N8úyvÆô©»³dýH³Ä†‘M­#G3q·ŸYeOÏ<ॠ/.nB”/¹=M%A¿Y9®#……—ÒÈfª sûl]KÏ´|—]R¤áf@La‡F¢©œ¾®‰°Ø¼ä¡ó»ÐÚÿ˜ŒÌt(+*RoWÓ?Ò|·¶ ´}Ëí†O‘×´v/Õ`¦ðE]g(Òr{æ¡mΗ#leSà›LŒ©ŒtÎFÔ^ ¾ØŠkì¤yÒ9~†ƒK%·ÉJwª:˜,Seï#g=Å‘Dñ”+éç4Ó÷)ç˜ø8暯už¨ÄTVž$änwTÈÒÓêY/"ò]é¸QèŒæ¢Þ³Pž.˜Ãï†z¹.Áˆ,pæ9®€ÒŸRh• z‚ƒCα,P7tò[ ¹Âkûb I'-Ö‹1í¸h§¬ønŸ‰°jÂ…¦Êö=•ýy•—ºÁ´å‚¤ÑY‰P9á.¯‘̬IB9K\´„쾊>1¥«ýˆbå!ó³Ï ˜µ½OWã÷cáû½Qø&9mKh‘ÛdI²8‡á,_÷¶*¢o†µœ » Ûú¨¬4<Ê‹ˆ>e }xÝç^Þ¼†2ƒƒw© tíþUDU}*ÕoqÐ1”ßp¿åPAïà{É™zí¶› «)£Î«bÜ´r¾#!GûCÛiêg"ÍÁ†=íJöe¼¤Nο2óÓ¥¢1~ÛÇ)O= YQæÀѤS“‚ô_'‰ígñßW÷¾áô& Â4§éÒí)©]oøDÁ¤ òÕ(ükš»i³ÅÌùIáãÜ1ðÆíG(!y{H¢·‰Ù­°¨›ÙÄïX)EÄ0Ò–Þ¼ñÄÐq…2„ÕÑEØ_m}‘ÜDn,J‰©¾û”D„O;Rö¿O¹´¨þN™Š†î®.8YË™<òÎbú Kƒ’yÍåë6¶|¢;J’F6\¾˜w]aÛbÔ"Æ|‘Ù΀ØSö/Öäê) ¡í0©€1â\c´ S,61o³èÞr=Äö=k¹üÈávÒ‹›‚¡!»Û²ˆíïaâÈb.}d?.t¿pÔ/2£·ˆ=%ù{1ã(™¯cUöA@ Р[';‡r¦.”†gXJ’aÇG²ó˜ðûô[ R(\O’3ðúƒû$)š7ZâÅë!‹@Ó©â„Ù–è%1—§›F`k°.lý’ý7¾d+·»$ŘÚ`+{}¨À¶‹ö”èå†7šØ%{†ç;„… ü€ÃÖ_ËÔ™Ëê vfÜÇ—³kLªiI›ú6Q¥°®ãbÀZ¬n.yÝ9“<¹kÅ:ôä j->ïó e >¢XÜn¶½gE‘ò"PÉGýÙ ¯ŒË@É—ãߢpÐw Eâ}¼Q1#5Ñ}—úš1ųšâ^BËÕn=ôkVÁÆÇ7½h)þì5–ªØ!— º8Ù'¾¯‡qpà2žÈTïHÃf +X_õŒfKG×®Evˆµ ³0Œé ” ¾~K›2µ>ØíøIŠ ‰ªn ³ÅVù¾¹¨7‡<Éîý“Å6 ¡˜¿{4›åT'î§CóiMÃ7Ñ—m^0C\SæR±P}' >Of/é[ª¿ÅyãëÌ<\¸\^oU-÷&á~„¡ÿí<Ò`qÁÍÕV Άöo›‹:æ2è0o\Àºi„Å¢…hP¨{]óêT»®¾†yùÔ/‡†7w¼÷.Θƒ’œŠQA|³Îzê YçKß"ýà³±Qˆð’~ë9B²J}G÷ì.‚×n©›K¸nE—í[~×ŃsÕa}ÃÈþŽÔ8À¦MYA£ª•xtD8œÊ‹t É{žoÆ':ꂹù„Œ6ûEkÈz«Ì[3Úô“÷‹ÎÑÍ){â‘ü›ýC¯™SP4âQËK‡ ¼ø¾iF7üíSK˜À$t@âUåò.´–õÊ¡«Þ,rNµ+gZ[è¤î>}ÿù6,»v“x!ËøÊTÉÑ07ß;ÛŽ½Ó6%>^s-ÍüŸ³o™Í”&ki 5í3=¼øÉ›ÀGœXoZ¼ò_m­Úù2Ÿ‹¹ÄmyµŒõ¾ÀÇoc6›1ÐëÅ58'øG˜.¾A.,«Š‚Ö¸c•þC\#UTŸ”éž&º>IF’w#üûÔú‡ë¨ã±wrMƒJ­§ü7l÷Jº½táïÇ}ÒÂO`“ Ö§—–¶Y&Ä Kk¹ò}+­Ÿ°5 öéh‡#‘©e…K`¢p`Bé™á^àƒˆ7ÓÕ¼~ ј©&ßI²Âe¹Ÿå<å6ðf:jã…¢Ui v°s xòQd¹Zˆ^ÅÔ›¨j…qž²Ü4©'α6KŠƒ9Ø˦?ì=ÊT‘`!$å:Œ`ŸN¿&Ñf% óìsN’-L]´ [C~ô º=ÈÙá-ù;e'0‹s%åÖP–æ¿0»õ·õŒ’å«£!Ðt§e<Ûîjà€UÈ“;AÖQžÐM+#UÇBxõ}Ò5ôöû&õgç㣚ì`ƒ_òS}ì7çÌ9t¦†˜µþíÒA)¾'1 ›ƒ/2N A_– î ð#Áò “™·”Ð KFc%€ÛÜ´Ë“*Æ››¨*zÅ\]_A2ÁÈî‡ðY"}—Æ·ädŠ<8ŽÑÞ=ç=è"´O¦N2¾×!ÆÑjH%'Þ²ŠRq0-›|½ô Æñ ù¼ËD÷d›è#½d´_˜zßõ‹æ“ýk-€ÀRþú*mqw£Ãit²üŽ5P±1jŒ)±ËNêœÏ:ä-YE«¿«Õ¸R( £à*ºg-œ ÛÈØ7MþÕ©17ˆÈNJ:¦3Ï¡n}èøk'È{NK–y-¤36U”›ÐœQD´n#Xkï9X쮞ãqÌ¡þDuóÂú¸†}z“'ª!#[1hA¥i;×Õ–‰61}»MT(&^s×J!Í:U+×vNƃO§`÷ˆÊ#¾¢&Ò 0mH°<æ}xªlׄ`Zá3³XOë5úFÑ _µÝy6ÄmkÃOÚjN¨$š±¨ÁuÔ¸ñPycgú1IÔÄ&Ínø›³igqÙCA]1;‹'ì Eôçúß˜îƒØ‡u©0OíCjoüÔ¿Í༩_y¹$˜æ÷ƒòc¾ÃöÜØòB—±H¯ÂŠÝ}0 hðÔÍÐS]·$†š©ûm 4…ÚÂkÈ›W4Þ "Zž¥\ö–ê&ὺZ‡çñÞTÈFÎêû= ˜ëIóeù­ç<Ï'#ùVÁŒ|›Ô)SóL8?B‚w ;ùùÆ0—ô:¢qƒ°©ˆ){aIJêBgý,FÐÔîÄT)ι7O=ÉÓ "£÷ç5¢÷;Ò/w£ûCJ]¨ Ÿ¢ç™µ"_7|rv%L˜Î6‰Ibàjb€%/ b¹³lL~455¸ë¥\g"@_ZN£;\wÊ –R~]êzgƤVëÍØ§?jO[Ro£`æÿ•¹‰¼ÙËy’û·ûÍ$[ï¢D;z›‚Y¨f¾  p¡´d«RO¶‘ùE;êˆó¦ÑNuÊ·j¡0¬SG³‹VvŠ÷í]:ò$Ì¡ÅR•êÓq¢cÕŽ‘—Œ3ZUÕ'pgÇó®ˆ BLË¡Šw‰;K?kf¤JCò„Oï¦WËÒŸ„îíT˜LH7Œ/ÅGŠßF±?-Œô°}[ÈJ i”<勸Td”xÆM?ŸDP˸/wwöbØû2e>¬gÉr§ÍÌÞIk%dná÷¥X7¶KÿÕ¥íENÞŽï0kæö¹ßØ„g&Äm\”½œ1Îä%2µ®lÒŽEm]v@‰ýg„3\ƒ2¾ïÏõØu®ƒIÄ|,9¢[åuîŽWÎ,úm˜åÉ=fR•yñ̲ªyÝàéòÓ€¶mÌD]#ΟüÄ6ªÌ¤3_nÝK{ “ÇŠ*92»‚(' 1K“I©¼<¬¬~¹:f ùµšé a…º\¶m#±^`ô¨Ú*Z½baK¹Y„¬ã0Ûù-ÈòÊ?L)‡Öõ£¢Ší6Ž #~¦>ÿÌí”øš=3›²ÅÕ¯@¶ ©v~~8¥_W¥è4 Tæ§þú) OA²sìE]^ªxK§IºT\!ñŠ·PÔÍ{OOÐPÁL s+AñÊJwTû€K@)Ìb$4¸ÌÄdÖi†vòg{) äòÄÄ×4½~¡*:(+ךR—µX æ‚Óº fË’9ÇÃúØÄD})é~,Ë[sP܆#Ÿð0&ò­ÙNÒ1…C—ì/·”!ž ¸ È•S¡ÒOBüwý¬Ù¾óz[‹Ëî¦ǧ¤Çƒ•ì3÷ÚGÝ6‰§¢uå6š=à§êUgqŸ'‰“¶“ºtbs¤Z à ›A7Ê4Æ£•L×;ñ åC ‚žm÷â/ÆŸP›4ÉŠ¯„¥GACš6ˆïO^Á3EÑ1^+ïð1S*¿A±>]qå(©•ìÙ{»·ÆZåQšã yÙ0±Ÿn×VµËÉÊÚ¿ø¸3T“ïû®7-ü"*(–z;º3ôU˘ˆ± ·]¹-ùâÎeoc¦Z+ÿ~MÓK´•ïûðІ6÷¯©KG*´~(Í„ËsÀDÁm"õDΆÅ;¶>Éû᤯»„Lz/·‡¼Œ²·-tÑ\¸jg-Àšä†fá¹ý±L½³Ë$ ·Ì/Ùë³3¶©ÎnI+§šX«ÄÑoã‡Æ p mE¸ò÷©cÐK 7^¹¤j)kØÃŸkÛÿÚ('Q³²Q\ F-«/bLëŠÞ[Ët(†¸f}÷ôKwÚÿ,#oÍx»ÎÒ„–`#¡Ýû ñÆã€~ubÂbžò¨iqhbu!ÁìGEé`õ$ïkó„™Á 羇OÎSÒH,“ !QòÏë°DuŒ¸±¯’9¼å>ëË<Êa Í»/â­Ñ…™Ô·ŒãIÞ²V¯“X]^…‚‘ýç*•¯öäBÌc…z¸ñ¯HŠîÅ2Òe°g|e­”p˜>’‰i}6É;xUŠík4ÛjcÉÔ õà=å•Ð:6XS8ÙœfüØ @&”\FóŒŸå‚Â|—@Åc£>ÁÒóyϸ֧QØÏsš×éá$z^Š;ÆÀw—"9VïÝêfc=,Ó-{dׂj;ê[— þf¹d¶–€ž^FÆÌL,žBwUð‘æýÕ‚„‹É€˜¨T.9’¬×VGýóþBS‚‚åÖÇý¡¡L7”Ô–¡ê´Ãµ÷:Dé#È|2êµÓU ­Ê_±¦p ކóò{êNÇ)¾ÍC*KWØ2/âI¬Ò¸å,0w˜¶OèTx´ZI(Œ.òjµÝQjö®4¥;ÁÍG=ùÐ|‚Ή3€³:x‚ßø«sqƒ³€¹ö“¬Ù"÷^Yw×Àû`­ æLøú˜+¹6N76£tнÂÑ7uL¢ñâ„ü?öié­!Ù&…\BB›wíǵ0”Hâê )^žo#ƃò¢*…ü¿VKƒ¹©ò?¯µ¦@±â"„DD‹À“¤Ëg&"#H ¿lu¢y­³ØivŠÔšzWƒ2gÚ²ÖSý,3éëöåCùãüÉ;–OîËm„ÞÖÀÀ|XIæl‡ÓkäÀ¦=iÚž!¡=؈~êÇÃ[®j†TEW_¡° ðä–_Upë­«-é8 “•e z’½pâìðˆÇ¼B%þÂÔÇñÆŠÑ4ê.6„žW–×Í—;Ï@ÿfp) dPõºº¥P’ƒQþ‡S@§fi\]ñ÷)'tCûx¢»hÆôR«t¼iö¤S§Iužù¬’ ŒYçµ4/küŒ{5/~àN·ÇKUgH?3ÚM~ZªoQ àTͲ?•Ât¨\…®ºg «µ:“5|µH8 ‰ˆÒm˜¥S߯s‹nüQ‡ÂœO:fªëî˜påZô©K¤YÚíIç4€;,^i]™¦]OýÔ;”m€W­<C‘¢[ïó¹ã¦uv{Þ4€¾8(¯q¹ÿ µrI¬Àz\‡GB Ưµ!šº˜o£<;J]±ðEZíÜ]é„=+ÚÜZû+Q£–é6šŸ\RŸÖ1?°/阢u€ógw±¢IÛè,ÏÞ¯ƒƒ¨º6@ÝJV¢Š¤öú¡jÃ)Õ¡`µww<.ÿz×Þ¥ÛáEØ4/•sÕF×Ëx\ÅE»˜HÌèqȳؚƽh^.D.C–k$fö¹·£2Jl-R.Éù&Z= ò€¯;E¸Žé­¼;[Dñ¢9Õw Ũ0õ–¹|ð2œ[w6CÙä—þÁSš jïü꾬m:ç‚­à—ì÷¶•Õ`¹ƒ­IZ%ï«ÓÖ_Ú¬IêÙhß¼xO¿|kä4ïøÁ©2® Ú\ã¾ m|Þ, Þ Âá(:õÝ„ŒÞìAÄ·“Kw¢:þû)%\šò 'ë ήÕðdT.g’o¿ò)ê“ä‚ÓøDág— ÍY¡o•L¦°ð†t±M# Ÿ˜I æq¿T¦2öÑÑ<¤¼R7t¼ûCZÔfVæ»'`0s”¸Gd÷9-ðZBÖ“íŠÕwænkð:KlLÞªÓ‡G߸¨ Ä'¡K/$criH^:bûQ¶ÙáÀÇ!W ±s‰Ñ“ÑÔý•_ºûU~$¤4êsðpàÉrò+õköÎx.0b¼9ɉ!;…§† ‚{Ÿ¹„ð:sVd}+°Âœ9ë÷nýM"[PéÓô}yè^A͉&5!ÂJfž.̶t1jA˜ÛWÓ]~of#;ÕN˜Jé¹{íïˆQÊpöÒn©¶Ëà`°„ôÈCŽÑìß×ÑP8nê)˜e”ØjåiŽ8­«”‚Çí?ßS³Ð>ñFX¼Ès9è䨰f“#:šìmé;‰æ<¯W¾ pŸ¨O;1Ðj†Ñ]F˜Áù^¨ÇÍÜcåp{þn¦§iû<"[¨#'~–›ÏÆF º°/asã8YŠ®Øô¢ž‹R¦Ø«}X¾Ý/Uð%oÿh÷‘]À/òiê¼Æ«—ö$?bî saK©ÇŽf?ÚØ&m/k´h˜9žš~µ¥‘¨ç·Òöì*ø*V7”d«œ}/¸FõýæëÀlÜ#`û–¦1˜<ò2TŒ—Õ™ÓtPú"¨pÈH†R<)MÚ=%Çå©Ú[ wøæðòècXp~rOB]&¹&Úq ~¸™Ü•¬U˜jrÜ~U|y‘ô=Œ±}‹šéµk¢PÝX—íú´4"%yõ°,“Ó3ŠŽÖï9ÍÊíá0çФKýAoGyNˆJ®’!gJrÒ+x¼«7«ŸŠæ8îòxÚTF¶°Ê„;ìl.î4]\º35zÀ_ZlÝHèrRüm\ŽTç+ ÅÚ;%+Ÿ¬}×+·i ©º¶äïØû^ëÞ¨Ü&PP%îcÎ’Æ×‘ä[Æ]Þ÷6ë£8¾ôsÀª7µ8çjõ mÔd¿éÁüóÙBx“ÇÉþ0+ ‘ü6&ò<Âî«éÖ¨nR'yƃOÑr??9ütþ ë)ãzâÚ˜åR¥'È×DkVÓG¾É/7À0=WЊXªV–9=e¶ghýyÉ,ù1› ¿PZ•ÊA@”v¯óÈ59|@]û§ýñU4þkÇÂ":rìþCQNsÚm\¯~nÝ“«Ÿ—v‰²Å4ôËŸ²< ÜÞ¾ŽˆF¯ìËÖHÁXÒB%ÎÖhKøB¤úåºacc'´}?‚a’¡Và>ò]hŽÃ 6ñÙ ê"sI Á®p*ëÉ…Ç»ñȪ”0 £Lˆä—×YL2=.¦ˆy€áòîê¾0†ƒÍT×Ú ,ÿÄ¡/TJeZ™cÍ2œÞÃÕ]LÛÐ8’‹ejÁ1Å1RÙöñv)Ñz{9sË—´hm‚º,qÙ‰yúü†Ÿ†:¶ÉYÈÝø‡†‰ê×5Ö×.”jaÝpD¸áSæÈŒÞYR8 ^ß!+œˆ•ۙןIåKÝ+®•y¬HEwR6Ì/DϽÞG›ò)’«w’ß —{‘sæT"¾‘pGÙþÊÒ›¢‘Þ1Ýâöù-guëóYoò)í’Cî™C¢gýÛÌ6æ[1ü¼H_¿Œ}KÂp°©÷îV¡Ž§_@«óMÔyûÕÆÙÀ©§Ý¾ø˜ßSCºuÃQˆ»XYy}ð¾¾YU€Gó"ûÉé©s-¥<Û‰¿·zŠ¿~b½ hõä¥IR_ÊY1¥é G<š~Úbì“‘lÝ„*¾0alÈù–eOë+R ÿuã´¿ë˜ãCRâi¨¸FÏ W«+Cã{å©k2BÍù|+­R,Ë›' FeÉ/AÍpÞ#؆¥¡ƒJØ·º%tQ’Uœ*ÀØ-y1ï*|J°Ì?šR,ÃJ6Ä©ÁfçðME"@JÙ>$‰’˜Í%¯w²oö‚Çoçâ_\ãƒUФ@1„K¸C÷ ðØòÔÑkhfI´‹?§m¯ØqSÛ¦!•í=ý{¥r»ÒFtKN£B:”tª1HbªmÎßÍíEŠcÎ;MsØ\ƹãX°úïmªSΰMEŒ¼-üPÓõkeLYrÚ¡•ذ¶ô15À¬! Á'k†|߀ìP-ñh%¿|Ø.ƒ¸8ªžð&Ór‡3£U~j‰Ai¿B=!A25²¢¾spB4Çü…˜O72zýô‰#ëµS®ü"[`ÁL·ôŒ¤´RàûïöšIk.8#úzä­â–\>ïŒ b¬ É³ UŸCÇdÈ,«c ª›”yµÈO³èÙëÖD RåÌçÏëiµ1¿©·ôï½0‘–4M•rŸ1…=>ñ›(˜ÚÅò8ó¦ŽcÂ¥X»nrš2ì6ìØ£†ÇCÜ’«¦3Œ¿&¿™'ª3žOán‘©˜ýb8q™.î25EìukL}‹ ¥ìÈE9Q]XËy¨/¸YŽ¨Ñ»·µ~!jŒÅõifc´$ƸšÁÆïMWAÕmfY`5ðxY¶ ¡½ébs^Ccäÿvr¢± b0? {Ÿ>cÞ‹ƒøEP^5j¢ýǃ{»ö½$`uÆôtmŹk¾¶{¿ m›¼L ©0º퀃õj}Ø é ™£Q*ÚÅõ6= ç’¯4Œ,Ž¼Ãøø’¨îT¨õ°ér¨«˜u°'5Uˆ§©¾ÎÚšO)N˜·/R7r&Mÿ5܃ÙXܼ¹<Ƕ¶x¨FNºYh¤Ùµ=ƒ€ç”KëÒa3Ù\âõuð"Q5Á”ùPÄÇ;Q!mÊ‚'1¨ñEpÓ˜eJÚ™ç¾! Î²Š·&~–×òqÿÝ ¤TбÊu·òô(Æ0•ÉXÞI|Fbý*B‰¶Ðɯ8­fÊkT‚@®—Ó%ᦦjÌ¡Í^•ã¼I˨t۠ɲQ¢]­3kÉR§½XhÐRDÀ"ˆRe¤Ft·}øÑKõËiËúÖ;ñ J‚5‘`óBXåšÝä ޏ»Fãü2ª$ç5¶ØÃ®2´ßþU]¬ã.ײÂzV…x€ïVÅ!ÍQÛÇÜ%Åü€YÏcµGÛëÀ6÷8Ù/|úŠa»6ðNhÝ#¸Íà µBý”8ãƒjDZ~æÇÛz(ÅØtò¹wT™$#$dG¨G{ŸÐë\”›ñ ¼Ò°&Û JB4j4A”;>m‹[Ÿenˆ\+Q$vkå¹.ÂÖÉ:A%|g™]÷Qo(Ãûg”L‚°uÆðÆ?™lùÕÝÎJ‡)’ì$l¹«CÃ>ÆJ¯ÿ–Ô,]¹uGéÊËØ+úlZ—®/ßD9ˆ>[œ¥bQàR?´‰ÕÔ¬–]ó½¯kçf ñ?‰h¤ý ÁF|×,Ýí†Ååù1P˜_Í—´s3¸>b-ÔÞGiùÖÓ¤§ /“B¹ì1KÉüeçk°}¹å;&É þ¤:A‚ÞÍ‘ÏDàôï˜ÊN0B 9Mæi‚0|$»ÍG—îr[6°¡úz¸xôd+þ…:I]=Ùm[Hê‰ù†4ý²ò'q€©ÇÓ¶®Äðƒ5ÁÏLRER¯´_Ší\÷ýb–ðâ@EçéVe¨“2ÉÔþÔ£Í=¿xü œ´aÿ|[¯Ì®–«p{ÏÙo¾”Úbø¿Ë$œÝ?²®ÖM‰èÜñÆ´`]«¿ì ßKÊ+¸-6B¯8w5 "VX2ª².Êé¶bI\µ Trbߦœê=fïX£F+Èݼ¹_†T6Óû€­‹Ö,<²„ZÝBeHPáÐÈšòæš5õõÌûš÷“ËXÒSÐmú8¿Ny8 –²½Jc^çpZ‘ué€Ï0f`§6‡ÕQÚ'G+¦îjû°nè0¿ÎëteêüljÊ,4Ø:÷µùîMÐÛœ}Èdk¹úåaÀ'ZÝÛ¯¼ª„s«ì¶E3_.Ž|còªáÖå`M¾ñFv91/vÛÊM¸ìwÐiäp4câDÎ)–|&¶þPÁyÖ\V—¨ê‡ÄµJKH¨-Ÿ·YžÖ 7Ä›0ßzÊãB²µ³÷>t<¸ÍÛêÆF™9å¹÷E-{›<Ü¥±Ô^\b*Úzq«¯Ù|EèDt\;Ã좈ɂ©¨9¯;cy~ÙÔ€ ùJ÷ñŽ …1zÍž_¥È"Fÿ´\ì)¿ð 1sJÁ-Òdš`z>eâõù RéÚÅqÞ:Ò²Žbå×M·sþݯ Þ®¢~‘¿ATGÌí¬nnˆoþ–¹)Hû膓{hÀ{lX ÜâM0c-ÂûîfîÕ‚ØùKk«†•‰ÛíNH§ã,kyc±±‡«÷×bÛ>*´¥ªÎ}žj.Ù·Øû…ÐÞ×»o—uò:GB7bÆËd¹¬šÙݾ{’³ Ê 6n~Ì{\ëE*ò~›²X¦¹²v8.í'gÿ¹1µj ±/P™BUÉ=}ϰõÐh<¢Åø!LL/à.& ¦¹U*DÓypjX€Å”*o4‡÷áÓX”†l¼Ú [­yqþÐll$uæmaQªB.§£Kž iü6‡ÌãBy3ò7 ø44&7Ó¡^ÒY7bŽ)bgEÓ¥üø¨ ElñVF _u4Ý ‡S l /U¸8%?ÉDÙamè-Ÿ˜Fé~=}¯¡Ò pì Ôûþ5±*ˆÚ£üºüû‘Š!UsÙåúº{ºÒ–£¦›a?T9ß÷É7J¡JÅ„ûÈ$¢©9!ùQ.‚U°Q̇CbÕš«5$±N!“jXþÜ•÷:Ü¢E§ôð޵‡ˆL;;ç~cêÝïþ¦Åˆyê@š—¸ÎÀÇPªËNò[Å9‚AødŸ—öÇójQ`i±ôÐä$ª˜Æ«ë8‘~ ›ÖKiøâCæTZ•`òGйÝdD¥¤ZñòåÈ8p)ï|D@^ˆ[Q•–u‘•jÆR×@3ê»pvRÕ  ‡ÁNî(¾n¸Ã-ñ×l>sWÛ“òˆ¶<'$Á“t™$%™qdÂP²Ø¼Ävš ½ûùv#cD‹Ï_Ý^ÃܺnÕæaÎùi°ÁÍne÷XJ¢‰Ò•‚^m¼ÀšœNbÌô¢YW‡Ã´Vð.½FP¦å…£älU>b/ÊÙšÍËûñ!W\G©‰áΞ8ô+ãâòÙá‡ýeAÓˆ¢¬ÄÝëÿ(‚ëÛ endstream endobj 145 0 obj << /Length1 1443 /Length2 7063 /Length3 0 /Length 8049 /Filter /FlateDecode >> stream xÚtTÔÝÖ>©€„tÃCÇ ÒHwªÄ 1C "HwwwHJKHIIJƒ"HHIЀćúÞûÞ÷þÿk}ßšµ~sžgÇÙûœg ƒ–.·ŒÂªˆ€#¹Á< 1€œºº²0âçøp€@=Òú4€º¸Âp±ÿpsBwœ<yç§Ž€TÜ`~XH ,,ø@ Ñ9"\Äòw˜@ ‚€C]q€r'/˜-òn›-l–ì°¨¨0×ïp€Œ#Ôf Ô!H[¨ãÝŽ–€.ÂEzý#›„-é$ÆËëááÁqtåA¸Øà»µ‚zþV6€—Ž@Þ…îzöX#\p~]³ €Wæõ ƒ¼ŠÿF`ÐöPÀk÷PÀkÿþ£"K7—»’ é®ÜáßÏê µÄY˜EXŠÙÕµŸ×ÊP{poŒI`¤ñq™b!û¦ÌVt³³U+úÀЦv]²Îç9ŸæN|Ö_Ó7x œqÓ+~µ¡·ˆ›½=CNôùAÃ8KЂ’o˜"K'VêÒ¢Eùð-¶”•M¿.À—µ¾w>у…¤LQX%¸]£ómmY–¨ÁÞš²ÕbPoCð”‚5wÍ1öå—¨gᩌª8 5? .öÑvG¨¸n2‡ Äiäî×,à_å–ºïfùX<&–Ub:ÅžX·‘Ùo¸‹áZ3츽éV(ÞóÂn·â*KæcP­S–¹öûwß^×,«œÒßS Ük­æ?”ΡÛ+:VjÑÔ8ôUâô×h$u/á`±Ó ì9zo}¾†WsÃ58ï[iP‹÷…–Xö¬’žV<ìµIüX;uQ‘j³ûäFÏŠ\ªÁƒ"\öÊþCÙ ðÑ‹I¹Ëà÷Üa2êêómE"÷Ì¢IZyEEµ0³ušé8YÖqŸZ™âc¿º^©RÐï§¾î3›$ný‘>{—ãÒîIÕE<^^øsó66ûxWé¯lXqÆJM_ËÃ:}¶Ë½už/+Ê}ýéÇxª6k°§È4êÁxyc8kѺsŽ)ö´ÚwÙx`píý0Ø‘¡éA‡8×»"5‰>-3Ù´$A]MÈèEHêÛ_þµÛH˜^K§HŒõCñ©ÄJOx‚dJ¾¢Åþê+\¬LåŸ(–ƒ§dÃßtžá GU+/GrÖ‘øâ­ØÀ²‘Ú:,ˆW-AþV¯*ž¥¿l\ñ‘oqõ à}²,ÀÆý®aÝ¡QpÜÎVX8"е‰~ÅnaèÍèzõäD´fP8Žå‡öý&R*´›Íqwšó+^³D>4ŸŸ4ü‹/Ê÷G>6‡‡ò°öš' DBGñ^îwÝ>c—8Z%Šð­à?–ÇX3øYÛëÁ¼äœ­•ëjÙܳ½Zš T(«´¡ÑôýæÍçò‘V{výƒl¯å¥MÚ”dNÂ-¥ô—gD16¦€Û1”Ç¢›|‹¨+ 2Ï Ê)(Âú¨‚¶4#œúæ+T?Ëâ$èœ}æ×ß]¼8. ØçM £!"ň "IVýy½+Òç5¼3ϸøN?ÿ›3s yQ¬ª#È¿à)‰Êa–Ċ:ï⬠$~ïa›…“.fèþ¾ah™ñöU=»]Zþ”vûvôUù´GcF>´5†ó+?I×'FŸ9—Ú{¼lEÈö–ÆbÚ%ôEýeƒi4q„èy 4P}=ŒéæslQÏúôñg¥£ë¦XÅf(C_Ÿ½c ˜†§5!ÂwIÆ´ NŒ*?Òç¤Y1~‡ã Ú–ÀW-š îßcQE˜5_×–/Ƭ·“Òö4Kî÷9Òk,èVÝk1Ä”è‹ C\&€ï‰D̪§åý„±Ê~çïB¾Éü`þ¹ùÊžCÊT×B²-¬`­ø+!uñ›{.v‘"úÃS¸[ fr͘”±bS›ÆÏÃVVÙ3‚³‡!‹YÄà×/…NªÏEßëÔ~ÊÚ›qwv{@â+Ó<×êÝ6 ±)_K"HJmJRöólT¹5íq^ÆÖ"tˆ«·áóK󔚹´qŠìw°Ûˆ@±bÚÓŽ%o!ôÁ®¤Í¨r¬ÑЉf‰4{¼Ü9‚ÁC±ý7‰_!*v’ÍÁcÙór„Ž“ÔV™ï•´°¦›-_–ü¸Öþr(C­€Ùrõ¹ÊKì>+{nI¹¾ z²7ÏôÆ"=òÒ©Î…Ò†?ÈŽN#•Ž5€D¢KÄI룶K£\ìUú༽‰³ìsz–â—$aÕ×9IÏšµô Ÿù±¶ â¿ÛyX”ËõÎŽ…J°µ~$}‹Iãj_Pôqt¿A”!è|^ŠÄ3h2uM¡1©ñaÕÓ.ÔÞµ„œ³•G,ŸÃe°)t-3æ"N)é†ýüå6åõSÚm§·UýÁêìöïç±ØµÎ°€Ü¼„¾È]Ì–´ËŽŸäþ‰«z¸f¶oWlëP¢íSC»Ú—ãi›B‡äë§Ÿ!0 {VPÇAZcênìA­»qÂ^”exžÿì5Iµ ߼рˆËÕ¨ÿ¶‰Ð˜C-½0ÔÈ>7~iÀêž9·«á—†xómŒgS‘¬ïn¶Gö;Öf&Ó­ëDd[f­‚û–KÙØQ^פ3jGZLJSô;s&˜j5 ÉL¬»ÑWôù}ÆÒ{̆i÷rQ‰CÅÂh®³8m–ÛˆÄêo{ŒrJ“U‚µë£¾"B/ÏQ¯Ãu¾䮼©&Ô™ý4ëo6^ åݯýÞ~cÃùÞ´:»RÐiºE¶ó¯þ™ƒjln4ZU R˜Éd}· ‚ÈS#YÆ@^˪Ý(SK¨· 2 9 Ëë¥P˜m Þ0³¬ÆÔ‰y˜Éç®AôÎAñS¦>=k˺—ïæ°Jáñ?õm±""ϼÇÄÉ'/<Ø~:´á½$×)„ZôáÕPÚÞç¤'hoŸùÔ·íÊs;iIÄL¶ôKŸP¥¹ÔfÑÇ-Z$»Ç‹Û:#îU”\xÝ7 ¥òVTKó&nE©\ØTk,f¿)&ÿ Ǥ Å(éP¥8cÚ鬼85ë#ÃlZÇŽ¹¦KH$2Ø>ü„©¼AÆ–½nG‚ªúÙ,y$åæ³B–„Å]÷¶³ µjªöNÄ+`³Ð¿îþ5•€h4sÇL4©–üÈØË–mxKüè©xJYZkíäÕ4á–—Â磋Ï3?û'UüÃñGôŸÜ¿\×ä^愱8ÜCÒÁ±Ìóõc7ÁØÔùdÓ\a~›GõŸ/ŸŽ¯3{Ñä.–sF²³%`z:ƒT¿¯l÷]/OÎu «Âó™‰q%íŒy‘A¼ê‰U³D#o¿_à@‡h…9­0h éŸ|·`“Z°4³+¸Ä1Yê0˜±•ä.d»20­ˆ¢3÷•*¹•íÒÿyî>K~ê½åÓ³éìQ¥>g}¾ã împªeÉ‹v«Cù¦E”rouÎÝU7.aŸ.[¶.ZêÄ“ è°6‘qWš@aCïÄ“Ô}»çu=ú6ÆÎíAû[±1ºÝ4) +‡†£$Ö3[0Íö÷ûŠTcÔøû‰Ö0‡gÓŠ}<¬ÿâ/`g£ ˆ§XÛJC!kçIè+0w)QáÖЩºH}@¹Ç(y…*"ÂÉÃO~ý¦ÍtžgW`â¹yåf’œwÂóÉðµ{TÓ篖ø{Ð}˜‡ˆõÛžÿ,K‡mÌð0† Œ5±HR9ÆaëÕÿXâÂÜ:Œš”í)«Ì ’Ë&3-X³Ãû¹ùYqͦþ¨ÅÇxøÂ¡:ëÎë±âÔâóýpl×|üß›Ì4þFzÅîú^~¶i .Ë“DjeƱJ©ÜBIÈ¡ôrHƒÕ»a¿Ìh­pmæ¹iËWWÝ‹ x„=Ê¡ó¸Üq}™/öO´&ß3b"»%ær“UZ½’·Þñ˜ª§á\˜/ÕœNKÇ~â„Y½¦r~imï…T«Þ³p5ª#È›)‘ rÆÐÅQগ5 IÕ"?ù^Ò9;xç†ÜŠ“»qsG'r1ɨµì\ go^½*þVˆ’µ„Mˆ{­”3Òz¢-V8”CK‚û4û­YþxmMU¬ÿ>§äÛé|ØNчx• uü_湟ÁJjû sÅQ0VoõžL©}¬ ûþg Wu"_Z¸GäÂÈ´‚”Ôy£ˆOl&ÇÇàÞ#¼úì’Ô¤M*p ׊JÏqy˜æ¥Në“èæâöW  ±c|Šc1üÎ<€yÑö=;Tþ/ùMÆŽGLnL­jæËÍš¨¥2N¡b8´£2ö·ÃäûMå£d‡mö–šÎçQŒ"Ô¥,ìÊ‹; Ò ¯ò¢ŠqÙ$Ëž 87û;?¡sÞi™ñÆ/”îJ-2º%¶î7u‰KG5jÆfæ7s#RÂ-„Ø4bný¬ X`gÔ«T@ `%I!ÏÆ–dÙˆAÂú,Ø’G¼¨{â[KÄÈodppËß¡,ïv ›Ã‘Bý½í…P×úU u8‰Pÿ§bíGvÖ§:„¥ß©ôº¿©mí÷—.â7Oû`¹âÓ÷£•ÚÅ¢°uo–W&’7ñ·@ý<”ñæˆ×>ìg”ÐC7⦯d±‰²¬kä— Aì)A¡ Òƒ¢€Ë¢®TnÁK‰û5>AÞ.o“·Ì(‚ØXmQ_xŒ‚1%Vmd–¿ T -‰¼13N|E6 åØa:=ú¡uèTeÁ­”hày<ÒÐyC"vÈÅ”ùìøqõûy° NèÆ²$7þVu`/;ßÂã>Ìí¼gp°üË£fKÞTa–Í®k±¡É7ìŒÙ“%uââ¤gĉ¾ü7ZAô©Š1 TÙeÝwÊø²JE„6`üR£ùeyÉÜUàœ©Õü ý"/…RBOƒ03<8Ší+ªŠSµdpÆÖV -.šû'ɲØè™mŠŽ¸EQ/“²]£]uÜÊQyAbï¯oóŠùª0 ;m:(Ø I ¥WØ_d)I“½Û&OAÉˈè~Ç¢øÐë­ùð-U`Ê#ìz—þ%Noaá2ÝÜ\8æJ”…ÔjI4/ÖþäLTÃ<•Ãѳ4»©Øç¯^–#ÙiZSzÕ̸ôÌVÂØò>fÎD íãàÌöœSîá¨pgd&²59dž`š|yj®Ž‡Ví~;hlî*¦‘Ò Wxñ2Kfñ6¹Cº¼»§î(ߤ1ó’Ž2n&’MB™ÀÁFx?Ñw=ª¤h0åCq8~Ìè”§zNDá—ÂãÄå‹DÙ½ØP¹ú>«¾œ§‹K?dìÁW}“c“NÚvg¶XFƘΨÍy]èš+=¨î@Ÿ]0"’Ž¢NzŸèìã[ó+ÆX=éšU;i‹MFåÀ\ý&oB ø O˜¨«—“€½znìü&ìC“t­ïf~„bƒNótQ…åÛ—Ú‘*BÐÇ{•ãþ±I^ã5˜Ô5DNŒïÁ`KÞ©˜.\—$·jê…-ï!}Ò¿»Š¯J&ön<̛ܕÄàCL¶û73ª*‰³ÍÏ>ˆ 4‹D«Û±æú¢Æ“´€–¯¾ˆ¶š, ¨ÉoÀ>°î6§ÕÁ3+L Ÿ¤²§'ÆÅªòB(°,œkšò™Jm_Œ© ¶Š0<ÐM¦.Þhåo®Ä¯âÔœ44m ¥„çY][áµq÷”}Ôíká{Í ½Ç,n}8Æ‚yÚ=1 øÑ'ËçÄšü=² v{Òbƒ`Ég\ÜÜZM7..hd};Ët"<ûxŸ€${‹’W“a‘wo&'Êg÷gçãýrV1X¼«ä Çèa«Ýe(°1tûÁqžà•Ò‚§ãêßSR²½&uˆ7Dh-jRQ¢y5ÓÛ}λ §Q˜–@Há*S–ªž9ŠÆ×;Ñ=i˜Âň¥©*iíYâ3[×±øÜF–´ endstream endobj 147 0 obj << /Length1 2755 /Length2 23709 /Length3 0 /Length 25252 /Filter /FlateDecode >> stream xÚŒ÷T” Û ‚„t÷Ð%ÝÝÝÝÍCw Ò "Ý] Ò-ÝÝÝ-]gÜ{¿[÷÷ÿk³X æº;®ûyJRe5sS ¤ƒ½+ #3/@LA•…ÀÌÌÆÈÌÌŠ@I©rµþ#F Ô:»€ìyÿ0sš¸‚eâ&®`;{€¬›-€… ÀÂÉËÂÅËÌ `efæùŸ¡ƒ3/@ÜÄdP`È:Ø](ŽœA–V®à4ÿû 1£°ððp½ýË bt™™ØL\­€vàŒf&¶53ÐÕë?!hø­\]y™˜<<<Mì\œ-iß<@®VU  ÐÙhøÕ0@ÑÄøwgŒ”u+Ëßr5 Wg ,°™í]Ànöæ@g89@MF ä´ÿÛXþoƒ·€f`adù7Ü?Þ¿ìÿr613s°s4±÷Ù[,@¶@€’¤<£«§ë[€‰½ù/C[°¿‰» ÈÖÄlðWå&I€ ¸ÁÚs1s9ºº0º€lµÈô+ xÊöæbvv@{W„_õ‰ƒœfà±{1ý½Y{{Ÿ€ÈÞÜâWænŽLö '7 Œø?&`Âo™%ÐÀÁÌÌÌÅÃ:€žfVL¿Â«{9ÿR²üƒ;ðõqtpX€›ú‚,€à?>.&î@€«³Ð×çOÅ Àdæ 0Z‚ì~G‹cðòAž=f0÷XÌ¿~þýd¦—¹ƒ½­×oó¿öˤ¬(®¨£HÿwÇÿêDE<> ìÌVfË/’q?øþ7Œ² èŸ2þ𕱷pðü]-xLÿ«ØýÐüs´€ÿÆRt³ ùMr}ff3ð/–ÿÏTÿËåÿÃEù#ùÿ-HÒÍÖö/5Í_úÿµ‰ÈÖë0iÝ\Á à>ûÿkªüûh€æ 7»ÿ«•q5‚ˆ½¥í¿c¹H‚<æÊ W3«¿Ùò·\ãוقìÊ. _x5ÿG>-3ð£ÃLÉ¿T@ðåü7¥„½™ƒù¯cåà˜8;›x!€— Fð-š=ÿ"1€‰ÑÞÁì·ç °ppFøµQN“È/Ñ߈À$úq˜Ä~#n“øoÄ`’øq1˜$#“ÔoÄ `’þØL2¿;€Iö7×"÷k‘ÿÀµ(üFàZ#p-Jÿ"np-Ê¿8»êoήö³«ÿFàì¿8»æoήõóéü‹xÀ:“¸2;GðüzÈýOÊ®ÂÄÌ*‹ÍoG°©éo𩳉™ ü²pý-gûWþ÷)ý«Waö{19›¹ÙYØ‚7þ?18‡™ƒ-˜]ÿ–òËüÜü]ò/Ú1™ÿÁ•GøŸÄ,¬à’ÀD4q±úM‡_>NnàóýܳÅo6°ø²ÿ‚ ?b‚ñoÈÁö ºÿ®‚å—àwpŽ_ænÎdXþÁñWÇ^­•—£Ðþ °ìüÌà6­ÿ€à¥ÚüÁcü³5ðèíþh <¿ß‘9À®öàÛýCîÝáw1`g‡ÿ¨ÁÍ8þVƒƒ9‚_Éöÿa;Ë?Òÿr€ œ Ì5ð«÷Sοd ‡?莣­›Ë9Á§ßÛû…Ü€.=†þeë/¡ƒ+ÐÜÔö?µ°±ÿVüJrþ£ù¯=Ï?Òÿ³üâÀd/äw…`' è¿äåøetÿcà . ß„gOÄÅöOj²°€«úü brµrþÁpðÄ]=þpÇpû‚—ïþWæñqÁÞž@px¯? xˆÞ¿‹Gò:ÿê?q37gðr]ÿzÑ‚Oëø¯¯M@ 'Ð a~ÆÁŒ/ØúKpómµÃöˆÀ$å¶Ö'ZŸyç·{ä×I´Ué«Î×"Iý¨K›4W $O>‡µ¯Ã¾'ª4=¼{4ŠWßnB˜ÃîÍ?ùÚCOÈ .¼óîÉéf€ t#d›,e¶“7²r.Æ­G·”çמÒšЙm•*N9ÄÇÒ †h(ý€¢)ÊÓŒi\2XW"8:ô3O”©«ëIô¬ÑÙxzߣh¶Ý5Ö˜»iïåruV—v< <]\"è+ô¡q*ѽdYœYŸâ‚¥Þ9ÏFþ’,¤·)K ¨Œ{¬iU ÕHûú®÷¡ùV–­ì$@05A/ÆVbMI=¦‘3™VU“Q$†k › h¯ÕBt¹ùZ³ÃÂ:…pgâë ` IÇêп¡Ãç¡Öi¹ —á&4åûmýÀf‡¯V‘P¡¥ „•^ÄÒ"oQ L©ë0T»Põí‚{÷#ŒI¿Oà¹è=>ËF>3³.7Läá Gö»óߊº3ÅÖµ)´Y[tƒ — NÅÓ¶”³³|<+6 ãôPšœ4‰Ž9+±Ô*|_€uSA¥LgkØŒâ%^$ò sç}ì2R]Û³•ýú^Öw´ªúgµ»(¥J‰DBÞlNwÁ›’«‹º“ÚÕÇ¢h© Üo·>z¼-•§¤.˜Wè‘Ûç{7o0'^Ð…Wí/ŒýáªÞŸõK‹Ò- Ä›tÔåÊôEhr£–þzÍóg|Q5õÛ\rï5ˆ®Ù‰áMÒÁñM Û ý"öîGT*´m<éì¦ÿçËUš¨ˆg‹ˆ† ‘Úš´©^àêÑ¡W¢ä¯[ؘ1Gޤù%Ôé+òô˜/3‰™ÖÞÂ÷$± •.ú_V0¯øCÊôÛu )VÅ…Â5àÇv9“²&<¥rTìûÊ>Gàmª(g>f’ÎŽ#ȳBàÔèe~Fû¹Yðž–4Ê"D;Îl-b“šóÇ—ØäsU e6‰Ò`Þ4j´µç1dY”*F˜ùî/b²#²®¥T]>\°qœ5äšc]cí‡Ó3ÒÓ‰—‘L%È’³–d’c=ÎÕÂ)ÞU½8¨ð쎤 "Žû}ãÏ fa.y—úÂß´owZ[7—¾Òou¶’¼Z±ïWWW]&Ôg,tÉ•|ˆh4” £—ÔzÉí©ÌÏÎ2Mt)à:z+ ±€‚ÄÇ™ÚØàë,çÆ²ÏöðYC ô»VÚµâËø¤ïµ.ñ̳Ÿ1¥þªÓ©¿þ÷ï;ìJìî¤ziF72ßs«O¿V=bõî˜Eâ3¯•](ÈÞ)dé0—źûp®â~œÑ¿í@9g9õ&cøþ˜¡>¡#Ǹ$‡{ÐOÛñGj@ÎÇ$\LWT*³˜Èk‘9BŽ:´‹U‰yR3¥’SF™‚Âöaÿ¾¼!gM¯÷p 8ÜyÛ‡‡'74KÅJiùÑ´Ê;ìFv/õ­›ƒŸB9k7®÷Š[BjvØ'Ýç&ºB¤žN¤²ñž¶‘âU¡î<¹Øf´¸ƒ£7ëúg–Y®TB%›1£Ý?ìaÕ=Zwš)²ÍõÅÒòG”®gF… ´X=Iö¸HåÍ'*7 ý¶X4™¢~ˆ ×ü¼?&eNèÐÉqð¾£8¾»éó§ì®hïÇòX_Yg5p(íZT= ÉX ¢¸íåˆÚHÂâðÖ± ÃÍ%›Ã•üðâ¼ l_XI"ãÊÛs¨]xP•0NVWeJyßóà ü NØ¢zj–y´R¼¯ñÙRB b–w7›¶Ã‚Õ¶Sý S8:°ë®×š­Àͯ°[2¥džÿCwoüùðuwNâj"“ÅUW†m ¥²k/±¦­š¨<Ó)ö F©X¦HÞêM†-_¥Ï`;" ù÷9m{IØ2¸HˆOÁÜ>ªs hÝê84[FZgP¦"ÏïåÞ9( aÌL¦h¡­>Æ· ym)ì½pú—e׶ܘ¸f’À +±æ0e@Hž“|üÆæELžºi†¢ 0;&Õ£û´¬mWþòÝ{4Jò=,<ºmé]Y§¬`%ðÕœ¦h¬–(¡ï®&mÜ«%µ‹ ¼·9§+E§ªèØ Ø-M’Ñ}Ð¥-ÊŒ{-ò¯Æý=o_âéhk†£áô]þTÉ®BRW~¹rʾC¼Mp|^Àr~o•xßè†}eLoëƒwT¹™‰3¶Àád×^U6q÷ÆÓÆ2ªÎÆìÕ-c!¦+Ýê‹F¯ŠU ï3uôåóY.‚¨PaÃÞÓÔä›ËiŸDFB¯TbTÊ\½mææ.›!:ê ±ÌÐX&“\»—“¼UÏ1}øߪcKckYÙ‘±`:Q½LÚ°W:<=¨¿þtg®‚S=ä(ãÙpÒ,h(*$¸Ú纘ǤÙ#{ÇwÀ½®ÈÛÍç!”ÏôÆ3ˆA;+uFŒ(È- rWoTââ¡‘=S%ŠÌY¬ÛÛrzA†ÉÂÇJ*Õ]ðËÁo*ç+ňˆà¸‡&¾_™°Í¥Ú­»ÕÙž­¥žÐZÛ¢jÏe<ãa}fÁƒæ'ÜàM3ñ;Ÿûº½E¤ ¦³Ø ¼/ô²=7–]YDÜ*J3Þ8ŠŒ2ê±ç©Í±šz|¤7¸–äŸ(ñq­Ň¾,#ö¥’ûm•ñÑs9êç{xâ¡ëlH!.sHT/í%b¡f-5&KÕݬŸíûÓ‹¼±­Ç?a1^âvc¼t£?Ùœ'»¿ä;{ûÞ»¿vœÁ¡©j5Ûúó'—@´™xèZ,’ž£'S{)«Ëg»øè:OM¯«º´ñ 2ro?Ü”"G÷‹¤ ¢ÐøÔ빞bFgQžXö :bb,÷Ý®¥æÂä7ÅÜc6ŠaS‘rÕÙ“|yíS‰¶’÷4°ˆsQŠ—…|këæÏåÇ ¨«tÍü½…9I›=Á¥Ð.í…<üuR±HbÆ!šû¹Vk-ýÝ”X*‰#’Ê-ÝãhAï)JãZÈÆÙØšo”yfyŽt£]x ©7+ˆ‘Žœ´îx?ýp™¼êûXO" kô&ÝHk9„Š•Ý½ÄÖq‡bŠUëã‹ÇrHï‘éKÞ6™RaÆÀ°V$ºÁ2S¡±Wi”J |xÿG}•¤NIºÒ%:öyôž¡"àÚÜ(OÁ8(?TRý«âw9®Ø*8zÕÔ™#=ç‚´Ç:W=Ç:N@ßæš9Â7‘7s:aÊ÷?F$!5$r.Ÿ£Î&å‚Ú§Q¤£¨¿Ô BꪠÈ̯¹Ræm½$§·ëÓruSµ>f[Øg¼©ÁÛסžZ4éü¦ÞuN­íü~j5•ÉÞÈ> ZV>Ž&YáËnöàØg„Š:E"9ɺÕÅ3C›4Ó•Nû?ìccùª<¸E“|ÈÆŸÇpt÷SùÕ¥ï;¹ì‰?Y>Q¼Çp¶y9qIÂìì½¼°×]…¦Km(¹p¹:sHÃ4ö‰÷šA„##‰ôÁ1ƒcÔz¯ûíè”x‡ÇqÍÔ1ÄÒEù“9øþuÕÈT•<¿cÛ+ô[Œ7ïýÒj¹÷îû»“¿Ñ[Œôy{»‘¬}õ®Ë ýÉ*ä>Õ  upÙ|5Ö¥ i’GÊ7o‡¼†ké1Oúî–k[^GØKÍÀï<$ *µâÎÖAtf¿<ž$9Ôùn¯>Bòcà›åÕû“‰U½ð@‹[eOvél¬w¯µkù¥ˆg0Qu0ÈØDrÌ_>îÜ®Kë“M–éÁÞ²$¤›q(Þò”: ²rÉ6‰>]Ö¹0AŸD|³¤ùY≥òÙUP¯rƒ{8QÊ¥§!€—D•‚Ç€“*üÞΫ’T‡áÞ¿oÝy­U)ß­*jH¤*jbÛvèùÕ({V'ƒ÷ ‡BQÕ«Õ“EÌÓˆ×1M(u¬óCÖzæsH}WŒ?žŠSiúÿ(ÝšQÑn¤€•^-ÚEr•ɯh†ÿcšq^‡ð\xΫÌ9Õèç‘ýR@'R«Ò㦫ˆ" ƒ<’}rdŠŒÑ ¶¡QÈ¢%fB_&vo,_´1qõØq±œhØÊ'°û[ÇIU|‚àÇ=Û6ÇøPü²Ü÷“´í¡ß2îê .˜¢ù^«áQ¿1l¼âÝr}%[c-|€éYö5H‚†Yj€oä;Ö¢ŠTLIßGuêÆ³LT¾Lþ8'û¹-·W[y1–DínÇ0~ ‚Sül·ÓDA€ÐVä˜7‹˜};až2K—1°Ju‘­L6Yaa 8É–æ|²ŽŽø;°_e›ÉÎQ‘CŽ Rë ñ޶kqnÅ$B:¹bM·q²ŠÝ-Z÷­§{·ëg1,¦`œt0Y'éèâŽt RnJg»x2 OŽrϬ@¢ªáˆø!M@t~HÆ€À_ –å@~9ùÍ yHO%TÞªT‡a;ÐOÍùÙË„  ¬#U2=ÆGÌó*šÐàUÉ8Žvdˆ0‡Âòê8 >Âmz¼ bFWP}¿¸´uX.ê¦ –3V çR2Âc§àÂØLUUΨMJå‚m7Ur9ÿîÂçê `­Åø–¤wšq}_½P„°š4U2ÿ LsÂÉ+ »=7F@†d ¡þ¦fM)[Ï¥I…©—Wó&ïù$=f¦ižçLr é¨Âó̇u& _¶Õä´ÃÁ¾M2©’d´Š]j —ñ×S$ÚZO¾×uõ :ÝuцˆþS³”ÖÃ}¤Ò­§‘JÒ/pýÃ1$Fwß"ùö¾Œ\¼ßmpÏAþ`°DŽ@1ÿºe‘ZÌJ(€#•?X ÷‰¨éx°ºã\8±7þ³Iy­?fªÈ{³ˆÐ}[-ÈZš‹XXgˆú"òEãÙ1{ëEc¶w¶PîD•Æß©el³ŸÞ¯Õn×>æ\M*wù|Ì…•¨út*0âh²gˆ0gu¨dmœQ’¶éx{ÿ¦‚ÛÍk‰Âù"yù2É ÁÂ×Ì©‹ž£ÃËôiÙ`:ãžà¶ýYãmd«k6íˆWú"»U)¤{‘¦Ò¨°O$©Ùúì4‹-Xî¶·ÖÍ Å¾~Þí”’&­«O«qì>×AŒ4æ½iˆ»6(íE鯨¾ÑðM·RûpM¨ÙS6á›a’-ø†´9+-¼`1ôdÓ Êx˜võäNíßgLjN=¬¶Ù)Þ44oëõH‚Ë•ˆûFçjFìkEÝ~á·*)7#©´×·uó,…(®LQSˆÏkÑCgkìjX*ìÃÄ}aéw,J-y¬(ˆî‹{ „OîŒç '¥ä®ù8Ê`ó=ú›^mÉ8;гYˆ®ê ÜÊý;—·º.ZÆO&ÐuœQ÷‰Ä¯®yc£̉_«@/E\ÑÞ2”Æ½Å¤ÝønRšßÿÝjc”GoªÈíNm—G./­[]®ÄD›bËò?ñ›RÞ”g$S_Pž×+šä—fkTù¢R™v³:ßwVÄíñÞâ£qM:Ñô-O庼#§»Ý£ù=é,mu¶ïçí}Æn·ÂPøï^•‘`Í,…ïÕ~î5\à$8aÊô069ËA/ü¡W5j<Ñ:$‘™×éßsdBLð&Ç{t!oŒƒîk=P½Û/ü±íÛóÞeçTëÌëÔmû0—˜OÌötÈ>ÈU¶Bº%Þ—‘Iè‘‚ »ÜÇ$Ž òãT?ò OåŒƵŔÆÉ¹'Ëmý.¥BßÝ›z õ?Ð%`Í<© ¬+šZ„Ð/6·®g:ÁGÏiÀ7{_ZX›lÅĹÕJf§òwahß{-7”–AÝÓ5Cý°¼~aÒf5èŒc/–þ<œ›6{ñÙ°cÌIèð%ý“Æñ¥ß››‚„„1.Á#ÚÞüËTiû¸L¨ïÅ"\dû>⡪üL¬®O =}?ï\¶ ýlxd´&X䕤Co¼Œ>=ÐcÌjK%£þ`Qg¨°ý0åó$oˆ!a»$Qâ-µ6E;^¤lp•Í$8£ôr’N䬹ЉçiPÝÛ,H»qšÕQgào›qÍáЊª·›3&ɇúV‘ª˜T¡_£¨Ò!s!=5üsŒ¤]H÷XxNògWññµšvÇ2s 9m“ÕšÖ l@ »E£¤x½Uì"ãÜWu(ZC5˜qâ{ß§·ˆáºŠ Xcb?«nu£Ua€uÞS×glÍúßæ\ŸŸuÖ9Œcq$ýŒÒ<;¢ƒ 52ßERk'Ôõ…K £hÌ rÊ ê“¤ï.] >òök=@õ NòÐÉ0ûbOÖé“ùÌaÁ²i,x÷ž÷»mI¦[@Íç‡\)¯ÐJÄ…s£>j¤ß{ÐVžYbD b9Mñ®™[“4V-a…[½vêC,Hovq@bhN@ƒ–âŠÝ$«x§2µSz¿ нðvyè›×-?]«†QÀëoQ:m×\Ô)Âv;s¦†ÈÚ-€?£÷Õ¼~.ñQ6]é+6qá¶ÙÑ®ÿãÊ;ØA×Vk–ñÞ4‘]çç¬ÊöñÊg¼!Y÷ηr$ï á/jCF“4WââÒ>=¦©×ê-­ðkthó¾ \X2£¿¦\«?VlZUãà ½ êø ]šIÖ5ÓþÕrO}¿yyËдD«v‘æ  Ê¶üv+"*q3ÄS‘Ô¹¢KÇ»€¿ ” Ç9…OÄ\FŒÀ˜)<ÀÁÉé­?h{2ô‘.ÇŽO7 Ç€7»¬U ¶­9\)R*EÔݽtóulbHâ”unLZ™«§ŠøXgK«Ÿá‹d?º„Bü¬Áç¢6²(Ð! ÎY)ùUw6üv ­ ׉7÷‡Žªßçõ‘/ôù˜:zŒA€îA$p<ΉÃ>öÞƒ¾œj—ÊF›ÇØêÔÍ*êŽ*ŠªzE7JùOZJœ¥Œæ½ëøÂ¤»³){"†ø•8»rˆ•Kbõ|”®KC3!ML0;jô ZHz 9¤Ã76#Ң䦓Ì$~Rwˆ|1¥Ä?R_)¦LH6cµÿÜ2w¸½³êŸó‚«—fS±ßØFòßz;„l¥‡-F…ÿ­' ”õîùù¸_ëºôœ!’¼2|¸*|£tF4Úè$]¶)1@l(9Š‚PÚú4÷ì¤nzhüer¡ 6™ R}Sغ!ŸÁØV%J™[«V¤Ï=ªþ”îWº¡––ºBÖ”êŒÊÞ]1 Ï«ñ‚ ݦçŸóZuTh4õÂQñÍ‹ȲõW^­Âr¹öoÛ2²©–¼§rCß³n®ï¢K†·–EEÏ\¢ yÈß|@JRÍhJ®ÃÒwû43‹†9n²ÎÚM ¦ÁUéÛçœ<^„Šô9Þ€.öÀ›•½ÄìæºOžâœuQ²¶ìЃÎx£x‹¹¼Ì¨kþ s6¦ÌØåéœnP“­E㧪eŽÖÓ5ý½c×?M¤fª%‚ؼgÌ/lši/X3:P‘›î;N|`¤°ÓÏrTšm•̓—RmæRÏ9SÞz¸]ÔóLñjÖÕ1‰ŠdêËpÞ²Øëæ‡jãS·>N§‹Õv>J¢ˆØüÄÞ±Ü=F+á4UŠžaKŠüšd`{áÜ`ôl‘÷öÇœqŠà5AÌþá…^>¹h˜œ0±ýóè ÙŸ$.pu%äÆÞ]—Ö8a%€œÄKá´¬ŽóŸ¬ò“·±caÞ¨+™rR©ÁÓ*m Ü §•×%;ž $Cu˜Cu™Š(W“«ä6Øö*ïA0S{r8"AòRÅæšÞ4P~žŸW}͹âÛv—àЉ¯U!晫'!%+*ÏBeœ:†áÅŸÿQËõƒÂƒ[˰©@kØ7Źš»˜IçiŒáHWj‹\«ûÑìå€ü]¿O òŠ t®4W™oõ޼»òªÃ«V­]«¨m;› Òä+î·8xÑt?Ø·øUãQ ¯×âjÈç'­Dè…Ôd"L½ z´#0Eè¨ä Úb¸h^éÇÞÅ?[Ѿ»M'^ÖBãNQчxûššPy IÞô<\·v½ˆ»”òÞ¬eOE}W‘^ßCØèL+ £òfy&¶ê¼Ê4?ò¨³b.ûåš ´ üKöå~ª¸µÙÀ¸"år^ UY.¤M•““zኙæj¿d©Á2)$l… ÜA<±_vtöîq£ÖÑoH ÕJ„ñNÙ¼÷¡ÖÀÞY§a.ÐZûcʪMEA±ôÝÓQ¯1óãâ©„½¤Ž_Ñô¿ty¦“ØÁÚ§%†ÎÜP)núõúøÁ ?²G“- à‡ç~5Çj£“—`ö|˜ŽÜ]Ê7dÆš4fºÓž1Ìe35ß$ãòùg&ÍtË'?îON@~ ÔÔå&þäÒ4òbÕnÕÖ= Òv8ìéZTÚpÜwA°©©dÏ…š‰ÜÎ0L«¬øyÚ ‘¥˜N6!µö¼è QlZÑÍâÙ:Nž,ÛV{i‡Œg‘Ð{T6óoÇ7Atâ0~Pö“ýdåxnv“®Nß?³–øF­ ¹°··ÌcÀ:¼ª3hzQ¿¯=b$öé¶UÃii’»èü…ïµA ³DË ãÅû4¿zŒiC™Wð6R„7hniŠSØìzIŠNÔ…HºÕ2dÏ K¾Æ;éá|M«ENG±_cÀVvémedѯàé×1U[wä RŠP5Ëd÷^¤ @Y—+·é—K9 1ÈDóä ;•(;–<ÿX¯¸.ì_PÜúaƒ®_´!¬s“"ØS×u‚ñ•*º˜ý \| –í $%Tè‡ùÚ%š£™}á®t5kGo ‘„+P1\ß•ˆš<¶Ÿ-gVi²Üè ¶úîÓó{£‡èY3ãeJàÎæ¡f¬äàLÍRwY Ý9>)¾o B%·‰opØŒ¬Kb†ÐúIWˆò©’Ù³øŒ<%½«a »(êÉØV_B)UÖg?§vltmNN“˜TÑc}]büa,âá›´[åŽßÖÁdFÆÐ`¥ @jUü^Š‹X3Z^p¢/yÚ:1ü;­x›²Õ„/Yƒ-4š*Ïâøµ™š™É•s»‡üÀJ›û!]™?úù†Âo8R<"9N8ÓãmÃÚR"»Ï‰Fß1OÍøQö¸ [|¨éÒ CɈš®%Ös‚*rlxcÖ:ì"|œò~ /ŽtMÖvâ8ÎpÍÚ ^[ÌÕÜY¯ ¿[U6*Õud–3²ÏS:@ô‡ß6ùsÔˆº´2â)¶v!Ίï±2kØB³(6ÊR¸Mzßé¯eŠÌ{RñDDa¥FPf¶¸Ït哼uóÏ¡{Ó 7pëáz=0ñX59k üϫתöÇ‘ä¤n `å1×pƒ³Š9¡ÐƒP&‡éKîëw•Sº$¹×k{ôY×¢‡P¶Ä(Ñøä ‡†¢1}¼m7u]R#2Ù|ÆíŒ¡Æt–fO¢)*f_¢A0BbQÔ&'ð‹ ¸¸=ñ‘ÖâñÙl’M¾9jtÒj7ïVd´HÛXÒÚtõO48‘½šÂ›v,¯V ˜†«ùœoæù}[†@Ø¡«’º^IkS•g7fþ8B|%턙ܻy,ÞOþxPÞ èÍÚÆ*)Á€}‹Yï ¾PÍ+¢Ôn¯Õ|ú¨rÛ%j=úŽòâfŠlö]Â7ÏñJÏEÍøKñ \Âd–K˜êQ\›[¤ìN\ØÄ0²Í8Þ“qœîC¿‰Dc¾ÁÎWN®KGîÓ3۟LJ<ÌâÐL‚œ ëJÍ3-št1»¿™›ØŠÜ6õœ¼bK¿cy-&QžhfãD›¿×éxlîžx\ÕÍUe”ÉJ<ÃL™,°£H81¡OÅvR%§J®àNQC_ÛÅŸb„ç÷oTa/w à'ÌBž1Æp¨¾@](ȵOnI:!—éàµ3¶f¥³Ÿõ4WY/ã ?¥tûÒ{{ò»Ûº¾KõÜÆ™Ì²]J’¹0yûãîdRš¯9-b«~yÛÍ›×B:·LÃB-Íé6N¯”ÀøsÑ|Œ¥G‘úk[yì¼Â¢ß÷T›Í·˜Úé”~aܽ½¬96ø½ñÃлT5DôùÓó4/,'Š‘•½ö˜ªkõ@ÖóŸØâáRI¾!¯ ÜÛ iö¬šþœr’£ƒŸJÅíubvêÕüs M¬òqÈl7žPk¢ú D“RÞë*·¤8i^|FÍÖø¾Ð.%Ñ*IH×%Ù‹u¯ì‹\·xçÆŸ?_ ÀÓÖ̺§D–:;ˆCÅu˜”ã/Έ, áÖw<€*ƒãªÆ¹~\ _(Älaoòµ]z mµëEºé‡hwx™ñŽÛq˜ëÏYuÐGQÚãè±Ý :՜ˇ5d%ÅÌ(¸ŸÞ¤* ,Ç¢ÃcÚÍ|É›V¥L,¯„Pa€ŠcÁ;Óšáôu ž]„™»‰¥s•yð—HHƒ‰7šw"Îm¤ÝRž"Òï\ºi `PE_võEt”Ø5Ù¶ì¡ÜZ$|£ðE¸Qà QðB¥—!òqë}L.Ka]¨×ÒŽ?‹3?}_œYÂøôUósl/§LI°^ÛxÏbãÕê§Íf딘qÎ?ºY¹pHïô,imê2T¶ð¤o «û^ÎÁÙKÔ1ÈW§{:ÊGÂLŽ?;kº¦ ? *3™ ªŠÍ9À (6‡z7€æ…lJͤïßE^oŸd]ÄõUìRÙϦ±Ì«>ÆvªµáDœA[ÊàK¯L@;Ý›¤½(9}¡}Ž~Gxpƒs¶=¸¨Vÿš„–×”åmµ)Ž*ÍÄy÷Ï“7*Ø”èH:þõ4Ö-(Z<Ôn4úÛQ–tSÏ£HéZ°)Gtɘk-9ò@ßñ’F8& kHðFb”«] –_:®5W˜¤å<ðåmr¢Ö‘„·Ëß?S  ‡ÀzÕJ™é½ä*nÊ&{ƒOe-•É(dHõ„°`̧†“ºvÕÝ$Møyºï­°î lž™ #«6ñ“éÚ•gŒí‹@“%iR'7 ÖSWF^Øl—í²+bCa ZØÕõuçA¬˜Lÿ”nœg5Ÿ´éªºh _tí—uêvöQHgÀ’É7Xlí¯ª;8}TyôW"$8ì]™þÏor†ì¿î~9r[Þ`§´Ú`–œ%älC×ðÌùˆèóú;|¶3lÿb2 Éù〤ó¶'!ޏ2Ž.¡Ì±¼”¥™„8f85<~P_qãš.sØÛ×À)esi +rÜ*}\àܨ(>ÆHäÇñF,3¤.Àeó·NJ¤‰äÕMºä¾ÄÍ9Ä—hFAÍ.1š‰µ–Ží…m¤ð'ÉI¸&$¥W«Oe+|Qa×\#šD÷¬y9<ô®ÏøŒ0÷×p¸¬Ãºóïpp=á§ÞXBøée½ÁæzAù0SÔé©lÜRÚôÆ^ûÜ÷<B€…,GAõ“µzƒ."FÔ>¸ß]¿WÛÐÕã›ßf;_ÛJ†ïP}ûrVR)ä3@íAà2ða‚/7#§ÑùÆÞ×ét8iR0—Ù¢I“äÐ=¶ T_m¿9õÒðço ÿ8¾L%Šð‰½ o'1 ïÛ‘ÙyHQü‡88XïQgªõ£jŒµü´Jk{ Mõ|C¸,ˆj„T›Š.Ö¥ÚBš³ÇYL]˜òTßׯìÞê? vd°¦%®Qdz¸ ©/ã¯ôjäjxà— ßOˆæ*‹bÕ»òPÚ×¶úb æÈbLo‡÷E“U|<ƒø-Øî‰¼•+›xFÕLmûfñ;<öÜ~²­ó^ìhò›.øº\ x ÕÆ¾u2!² $PøT{Æ x§UÝ®U$³Ü¡ï­YNon°™cwÛiý3ÝÙá _º&µé'ó*¥7ÞX±ðñ˜ZY$2sµ%ÂÚÙ·ˆ&sMõh²*íõÂÛIý|O[ÌÛ:R®„\w.¨i¬¹ÛH©¦Ñoh±^'מªØ»A¸Àw6­âöv§‚…+2kµ ÝïdóоAà—5býL·“€Ûûæj»þ†î~^ö…ýCW°&ÜC¯×õ¸â³Fy,Þô­œ1bßHÀ¢bøQÏ”þÊȼG¾S!¹³`Ž]öú |ðg‚XƒŽlš§Ï) ŠL¥2Îm ØÕþx$¬ˆá/ýùµn£^%ß­iO’·ý:åtocîWÊm“I_/äËq ½{4«H'½©1{¢æuÆC™«±©#O~§×¯çcv(j8”¢½ØÀ<¦x©}à;¼˜pж^¢ÿ™§ùŒ+ÖAo²HžZ[¤¼“,ÂÃm'ï„ÍsÝâFÄÚ}ädm—·FOp”¬W¨i+¨ÊðþJû}xPä§|Þ#j‡ˆÄ×JÕÔŽˆ'±ü³~µmó»— ßÈÆ}­]œ¾UÔÓ¢N©“¿¨¤²kV¬îõ¿iaµE ç§%X¤ní‘3Eð2U(·CvÁ hå‚al" 3úÙSnÍÚòÞ>7fÛù¢£ðãZ{Àq)õê;¢ˆ»Ð)^óxÿ…ïj‹ÑË0Ù¬"lfê¬tÊ=OÎD{EЊ³k«¦¦k²€uÇbí£A73½þml£ÚšÊ¥³û'"Dü£ÎkÝÔx¨C<1ƒ R½âG÷¥Þ-ˆÎƒsæ à AzójÚ,^ëûEKÀd#C€K>~O£©xy;Yš%Ó´$ÓܪúŒ–s.ú+É1Dž}Zʦž|+$Û<ßø’÷í>¬V|m8Ó*ã»eÕy9…Xovd⃡ÏE|R`«ÇWáÛ>XѰð Ú7C»èü -{%D„ˆ£5Þ–¨À‡<"\G öJífËÛ}v6Æ‘^ï~1x¼a’¥ÔYΟ“©b©{c~Tžª47Dè)²Ó*fÄå+ÒÜ-"dëö­¹ñëù 0Г #ïé$_­ŸpF"ï{ œ –Ä!‹Ä|j—#2~²}%ÛÖ€ZULMôÁØ1¬aß´])K·Êê¬NBÛ-\ÈG”Y¬´ìx`ø©ÍO†µ[§¯ÌÂ_D¨úM¡ÔÓ±bÎ¥ý×4KðeUù–¿ éð\ ð,}Hh¯í>x+!3n.]:Çå(Î)*î”8§ñ“éYjqÇ›Y·0œ¿Ö ²¨ƒØç ˆ\±ØC:*¯·¹‚ÜGÿP1R“úòÆ7U\“¹¸p¢zhÜ+Kíྑ!ëg´)BII±Ž òèð÷F6#S‹¹!$kî†òî÷¬i¬‚WOA-á¥)!Y]âü|'F㻓wb~á M×CSÇÆ’Z2Ö¦‹)âºwe:–Ì•±Wbý•¯Ó£âÛˆÚå‚p|z„•^ý¤7c­Ø¶uÜpk%¼O/¬9—ó ß/¬|éi2”²Ö•×¾Îä½î Ék o+ãCFÍ\–í5 xcó9“TÓ¾ìæØà…š©ôóûÍ$•÷Áj7]>á‘n5vô{·2øh–ü‰§ ËÔ1|†8Ú7 >þ9)Œ?ë¿DlÉÓIøúRNS˜-òi`õæÚœOZˆCRwN{{êôQÞá].’áè(÷CÃa0×sC± €àç`^Ýòöð¯LErÌre¾4~91ˆ±~]ÿa\kå£T#Fjd9êUŒk—‰°Ü9Oh¥Ñ/Má;~Uó¶ï|‰í÷ÃúzÎGYûìÕ-´—3/nóGƒx*¦íD+¸3þw'b 5ëÙ;!¡_óbØž92Êól :ç úx"5t·+…æŸ8Žô‰"¯‡¡\Í‹Ü#Gé”eïÛO5áܯÃ.g.£2ˆpÙwJ€pùÝ&ŸKæ S'©ÉP÷« [³bu•¥C Wõ§™´Zu92unÞr~9Å\2›'HR¹8 ÔQ£ (Tïn*éõ“©Dš ד#r2¢ì ¡Rú k›È”úѵ™gþUU#&m¸kÌ[Hh—é)•g÷cq¤k6¹È‘„' 5ï›ybZr£É©ÉÇñ$L—I®•g±žc7ªØÏóéïÏ@¡/h‚Äw¦¾1é(S4€šG"[¯›?µ|¿9žÁM$ b`cÆ÷æ)ýÝ®+NW•&¸J'¹¼O®í§á!½'KÓëw‰ø¤2 k³i¾¯®–’wQp§Än¤rÛ|ð)£,^Wy·¥¤W ì¬s¥“u…ó_Sšb½ÐÀ×gñ—25<\â ÚÌ÷¾"XÐéΕh›26£5síX0h¸5 BÛœ¤†¶áWÁ}€GÊ+|}ƒn–ØÍ„Lõ ½|à¥YÆ ¸È–°®ŒßWUï”Ä…o^?¿“ØÛ­½ÄRZ'\¬ôP˜+ëšÀÉ4º‘*ìV¬âtKOš¶#÷zÕšã½é…’}ÓÍm!¢»„Íçù…œw¤Pæ2oùçAOÉ£ñ•F:Bìó¤(ñpüÜpÎÚŽ=AêÏC*_Ï̘5H‰HÐd¯{ëdmŠ»CÞ¬IV³(渦¼ï–,`ühñ®ZÜ¢,£ÞýÜî»îÆÌE!} ài¢­^ÙÄP œ%óßx-wu“–¾¶r<\KÓë6EóÀyYÈ"y²´ïŠ=ñ%ZJ‰ÑÆÄqŠ!Ÿ ÄO¼e€;³Þ“r~o\h•Ë “ˆX8eûxÚ€ ×/'øu†*¯‡Ý´Kµ„F jRA—}ynT+´ˆÿxE¶Q÷ÅgÐxà&&,€ K©²\>,;¶qÞhµ£1ŒÐ•*(Œ£)lézùµ:§‰EÃøk»þ ±«®èÀ'5D6Åøw?ùžÈõ& ½°TRŠc}8›Oe˜}y'+!^AÚq[e7ö½G­/á›K7ãªûä áý<ú96㜴'ø­˜z€Ô|'6óòEïg¼cOÙ6ˆ„:º†P{í[‚dF¸WRëS ×½æ‹o{QgŒÆÀsu³xª|±mè‹$¼êën=+%÷4=M/Q6‰ƒw~$OXa*OGÏ7Ú.Ä£§_µwj`ÖYá¡hq7ûu·#Ûæ¯'õY«S¹‡<`>$<½Uu1<²;Vpâî| 똌ÉV/Åã> !kÉ¿¼—“HòÔ•.Å˦;x ÈÛ½ ßC÷ˆ ”>—mÁ!äé œØO Œ0°bJcŽ·Oª«³);вëß/ Š0TS«98{a͸ô‚|ÄÑ,å`€aÇò]÷\ÅIu ‰uJÞŸWv´F17u&ˆû³Yå«.«o)娛¥Ï£Ÿ|v<´vb ¼¤\à™¾Úeo âÍ¿GŠÔÄþ©­gt£&K&zV6e²ÇL³fGÃ*·ï¹æ“-],ÈZ3Ö¼†gte4¡G²"¤x¼–µïä+J(ÑGü6ÖGèò!Ê4he%Å|¾¦I¼OÑ¢sŸ‘²ŒñÒ»R9ís·}©ÜŠsˆTçâñœcv­µká .©íÚÒ+ééÕå)÷ì“*qH6IŒÝš›Fž«¦’½K’1ʼž:$bÉ7‘ñ jó M˸.½í ž—ghæúuÙFrÂÏ }üç™"„{š )“ŒQ“¦+BY„cb»z…Þ:÷Õ3—ôàxø»«]† CªñÖ‰ƒ<}ÊÐM=9t©ßß’}'JäYÔö+°V¾Mƒû`ñ0öaî¾@ /y·¶éñÙ›‡Lé-iË>èQ¤{¬a+ë¨fÍIb\96wt‚µÀº‚Güá&¡1ÁæÙ‘v÷Ù³JÖ`Y½XÙ4‘ÆŽ×uO—5Á¿fsó-2µkæ:«gQ„Œ–3ô®#¤¿Ý8Ú«uñ;ösM¬h§9±.+¾\öa †Cxy È b?Ø©_J‹Läõôã›Ç݋ٜFQu ˜¿xg˜Eú³/U²ð®Ž7"ÿGO“×;O2áÕ‘><Œ˜Ø¸Ìd´ks¯™ 7ö&wQí‡ä”Ú—é8§«$²X´wáF434ðÛí;yìÛ uÌUGéR€J}§æ£ ä¤)lh²"Ï~)˜U5ÊcJUñ[jéÍÉDÆT3"™²á4lws.Yˆ‚y  ¯{N*¸ðx 5|?ÖwvpÌa£Dê~ÏtJ^Ùüõ_.ºsÔbqèÙ¼þY… Ÿ|- Â,zG,a úÍM2h}êà f䥫˜4¥ásiÚYX§(ü-EV)èÍtŸØSí–Lš"u,n7S’ÙäKä*b#ê“’¨OdÑd¤Î_<q 찰ìxæ“*D¦È .—Gh):ºß|Ä«éÊLº4 ¾¶ež.ÑàJ,™‹:/ßÅÏ%ŰRzQÏ‹;¼]v%Øó¾ù÷9ù>¡Üþ"¼W§™Ü`Bó9 í¨SýþHú þ?dy‹'4»”žŸ8¤rWvÉrRC¯‡"r3DæÈhp•ŒR¼!=ÔXO†¸C§[è ú½u¨7t ÀÝël£vßûˆ2ñ‘|æF‘Ê©ŸW)íÖ×2ùºÄ¨Ùï’±5&“çéi—Æ×çñý¡Ó ‡ONðZ¼p|‘ÎM` 2»9@LPªuY]¾D—;Ïâıÿ'û ÕT–¢Ñ´¦8kå®ö6Æ_§ùß¹™^—ˆeÿœþ¬IÌ™üñ;ë>Ùí8Šóo>þj.¶À·´X¬^ùH äsÀbÿ?ãífζÅ.¢]–¹SGÈ0‚‹Ñ%rQ3¨\‡“ËÏg¨ÓO<ÉÿD8ôÉnˆ ÍÜ¥ÞU÷h—^™>ÚÉ ˆŽî“ÈçAØ«ð–šUu•…£Áá\­úýùÒÒÐS,¢ÛŽÁÇÆß_,e0ZU5f28|‰æNaêÁáZûäºk–ýZt`Óþ÷Ê…»œBÕ4¹öHé¯ Ë<˜S¦Î⢌ÖÙ³®,ÂÍNØÆkN›=;ØZl²­”CðØáÀÆéo_-ˆ ¬~b%éb·,:×àðQ†¸m£ ¢k}âa_]ÛŠV÷Wúµn}ãþ;ƒE€ÕÌØ!(èp'ÕŒÕh¸ïoÖòΘí‘ñö2<`¡‡§“l¬àª¹vF*¡üœiƒ|©˜×wùž­ºŒÁ‰#l‹˜‰ãî܉îÛãìvtBæ¢çMX žø’’øÒmW´Ô#õ¢†Ä-ç(}­Úª¡x³¢q×Ñ?[ûdâ«ðǰŸ8´w›ù¢%…b¯9#è<¯n ï-¿aãf¾Çùi@Á—ë_YÇ~Ü—†,Y1çµÁH£ë8k_ :Nð7ôõ:ó›@nª+Y·¼¬)ðw’ÚòÔ=™éLž«,µþ††‡a¸¢»aˆ4þx‚`Q)ÛD¦ÄI³1M±³g¸ªzˆs±qÒVÈÔY¨ã€ê^Ê»oaÊôÏ!$tkþå„"M'×bíÒ +DÁ•©Òd‘ν—fTΦ Ì í¨ZèðÌ´çÑò,L1‰9Õ:;C\†˜¿”ŸÅEÖÑ%}E”Œ ×b–Öù%é:íy¼<×›ãéçý]®)Ž¥î \b4Èe% XµmáׇßÑè]ÒÙ¸Óè´|IÒ¬ bÑ=b8§êò1pÔÁ‹×#Ç:íe}‘±— ûôA…\`”‹iÙ3·¼+2›ŠfKÆ—Ð €ËÆh¼H˜-Ìú¯vÖÀcxÖ¡Di¦K4ÇúµS×W3¦ÕhÒ‡ójlýq1Q.v ‰G3Pa)jJbñ¨’Q¯S ÅQ†“pä°ÑdßG?ê674G}'î$d b`oÆS×kªÎД¤ðxq°"]%\n:y”0Ù ?v_zT#0IûwØLG¹0Á%¹7«c×m½(ÊlÓ¤-¬2‰&¦†m™*“\Dxn³ÈñxÃ.VÈ€Ã)—cšŽqÇ*¦Ì~¥ã€õ®JRk™8wLŸ _1H»ý€¶êL*‰¤ðÎÊ2ŸI¢²eNú’Hw:Cí5b#Ýy¢Óäÿ µÄ¦½3€Fb´?ì I«1Û„ç9…N`Üá6à‘Ùe%“°DÔ}õ5] ¡S‹áRÏÄc]˜Â ³"©ç@©~kº(•Ú¯fô2ÁŸáȶßÏ8,ÊçÓh‡¡À1•ñã‘€ÇÑøƒåÔWÌmô¶¶ñ¤!p¦Jþ•^*ã¹4󠃎W¤Ô >ŽqPrDiB}_[¹Þ´—çöo\«%'ÓågÎ_¼Ù¾·€Vq (H÷êz%Mó›MårPl)~j˜9^uÊëŽàÎO>’‡/¶bmM`é÷ÍŠ8ùŒWçí·;þN.ã5æzÝyd€X°µñlBQŽ"ÅM[~þ›ñŒh§æBLÑíñŽ>â÷@çC²P@TÛn‹ß–ÎÄyU(2Òt Ù™©¡{?˜8úDþ+|ÄÙ#›i%&Ë æS“) eÎÞïII¹h©/ºŒ6sU|—ïdOùè}É£.Ž}]ÎOUïN¯èöL›fáï:_imŸ•ßÜü‹“úè,†*Ëy¦à‰¹²º²ÝÞØß Íó^ B³µQöÚþ'G¡sIñhFµ•èƒgˆØÂ.!Yeü‘Cï1PÌ%Qză›ÿ'|>;ý"×¢g×쫸µp ëz/RÆK͸R5,Ó¥©é³øÆµ&S©æ•6¨‚q…bŸcÖ I]O,•d²°5:Zd裾ÚgÛq”%÷[S½óÖfî…#p}¡in¢\·¼M šÙ¦ø½êü“°¿† ÿªóò—e:™Í×â¾3’Kø­°#>ßÐ[_†·eJz8~%\J×þ®¿£ÁŽÄP=?À†ƒ*á´ÍlVÞs!ë;’ºÇ–Ê™l{_/…T˜ß1C·Ú7“¿mèSËP]WÆ8O ~“—7|—-çÙY?¸î’¨qîÖý"LÕ¶2 2Ÿð×b\¯=ʦýÚ¶´RŸ‚›<â"ƒ?r•‡¹Åß)ª)PØx-S¨“Båqç(±,¯âYØæ, 2§†ï´vV>~w}ï8B*qœåJ.Šòpèju&3l¯Ç…ïªK®ö Ó;òK÷íTJáHÐB‘jM+ºq¾ü#òvÒ#òÝëGŠzþØl‡ì»×$™/—’À} ?%ÝgÊ´’"¥Þ=yN¯ ŽÏ²ùÀ–c^nÉZ½N¯÷ß‚ y 7 YÔ'¾z}tÚKæ¬ÖÅkÿx\>>ü-ê¶Ãîñ„dhÉ{3¡VõÝ]î«RY÷µ¶—ÛeÖwËç¾uËò /+εDm¡„$w.à6“hécNÅ8ÓÃgÚ7iº¥"²áÉF¤Undœì pšNàÅìÛÚ\J\ý¥RÏÆîí‹.EƬ’¢í S}ùŸZk«UÑ wtóZW¡`‡¦ÞõUKJec­Ýø^ïêׯ–À Gýz‚¥ã…ÿ÷èHe.\³;±|ÅÊÍŒ‘´w3F¶šÑ ?·2ÞTƒWž:ª»Šäïq«X»íK¨&ÍõäHÓøÉÜgè5ÛÀ cÎF¾Rô.tx¿%®2:˹cQOáà=ÙÅ~(lË—Fëàø²ì²QÓÎzŒ£¥~,€ü¡{2Ý”;L.)•ähOÇ fxå|V¸Ù¦²hñu¢ão8m~%ãqÎÔ´åŠ`#‚õÎÒnÊ\ñ‹…ÇZ¿¶Í®EÁu$ù̃eËâ²@FQØ»|dè§eAÕ(:§·‡¹9¯t‹ÎîT¡ð4´ós«Š˜)6?’lì·Ü©£`3•øgß‚PaV‘®ðˆY õ¬¸É’¾ ßùÂÂ;JÔË´®â0çKLhEãæ¸ AZâ{>v°î_)WJ›o9ɤï¼qÖõÖ›|f–éA‰@ãŸ5_ó¦Ý*ÒòªHk[Ø8Åe¤¨Kü¹Ùv{/Ùߣ<4G0¢Ð ýà ‡ô”œÈ+•ÿ¬Öµ1ð=Ää<Þåúý3¨ñNB}(zÁ|5 t5‘…d2¾gó¢?lôWÆ „9Põ9›²sí7IÞˆ¸Ð0^Ot‰@%‘"âm"¹eð¬¡äÊäÍñc‚ÃaÅ/óç]ÛÁõ“(_sX”R¦6ÁˆÌŠ©©ÛèkBséÇÞ éµææã!ÖÏU•EyZnb‹¼Ý8Ô›ð×é\nð)JðŸ! $p¹§¥ós7(e+´’þe‚EÛ0³ ¬šæ_î#IJÕ°jÇw³ãS•ÓU8ØçQ&,T'5.Ê@²@ Tò¡IS#a ŸöÇrØÔà*£]rÆö¸F§»d¸“ŽâàâÆLI·à£ï°&”[×Ã…üÔ¥Ép«–¹që&›.+ËoÓ³­µÞ92‘ ÙžU84"õ±áÃGº´BVÕÖãßÖH8å@çZ©#ÿÉ×ùö“K=ŽÐòi 4¸Ï«9~Òbûk®Å¥0í&T÷:jQÅqÿo.¹6§a °TA<ùÚý–ÊÕØö\ “O¿ôÄšV·¾Ñ­¼4š+ï8;OµÝ;Ã60¤>ºÛ $œ½Ó;Påà·ä[n½:sï–Çh/Žìà8?hceÜ™iÒØÞO·Û–R4Mô^‰wÀFÚßÉ!TQ¡9'˜šÛ8[Û£¨¡ÇMãĵrkèöìÍ=&º6 Êñb‰’Õbš‘;<Ø*R|‡£Ú£õ¾ÛÅðš>pÊúLÏ %~Øknœ&ªáÙ?ám“WJ¬Tù§«š›8qŴ΀u(ÔN…o²†«lêâš!V|$q8+d3 ÔGñdì37\¶wP4eõv]£nÉ`vë%ðÙ÷œß¤h9òn³ÉÙÂ#×VÀêÖ^|k…¢sS—ȦƊàóÛqÔH')8º<'5DàÄÒXŸò¯Y»{t–ÀE9ŒeÍ%Ø!á¦lšÏþ³ßR ¨O,EÏKÁ¯âu´ VÌ0/éOô±øXŒç;ˆ(ƒÕ £"´;8É~€æÖë[I“¦~ÖÈE¡ƒÒZc´ªý›0tÓÕÇɱSµö¸R5ÙçÛáZE"˜6îN%Çw½IÔJ2 ú758iÇA§rßæ´®ò˜Oè¶µÁ²†ªÇ*#Hã‘9´\¶´k÷+Ñ+ƒoUÖôMR0..rÀzÔÂZ™‚|úCpoã[ 8Y;ã›æ_,‰#§ëÊù€—†pßõåÝjÖÄãÀ(Ín вnþoÑZÈrm£®ÔËR¨i é_ÄbÜÅàjnâÅé¬Üc)·Ã^ê‡0È4·ÐÑÆÜ´ÃŠ\‡#åŒÖᮡ!ŽG ¨ψEDv‰A0›*kŽÓÓµn ±² ¹:ʸeDK±Æmþ_Î]“ßãÊk°§+ë>nj桬¦RQ®ð,Ö¾l¥-{ dJíèp§´¸oWŸÔ¡Î¥w…¡}BÒsÊš~1Ï¿3I8Ÿ€·ñ~­½ä¬à‚bͦ¬i2Ç–¥:&ÆCI‡ò%ˆ‹þòû½ïˆ£‘íàe=žp€XNþ¡XýF!…¶9ñãÕ¢”­CÏ[öˆœO1©®ur   Œžæ°©˜f«7l?aÆoj¦_», C¨ëµ^ÄÞ„ꡦºìf×"ïÒ“·ù€0·à|‹‹S—ž9ƒvè[΀<€Nªþí /fT§E}dÅ*lp³n]¶Eá»­ÁÓ0föÞwÃ5Š€ÖYñZ£…-²,BÚ²I†-eýÑy·‚ðý&Sê²h´¿C7®ý Y¶M²…k¼E«hªükhŽ§ì¤˜™¡y‡0[‡bÓ2¸X®D63B–Vã…jÕ»)LKû¸¼ Š}¥U錰²%€kO²Ð*œvϪÿ~Ý@ÿ !¥uþðSUG‹È‡fd…SDÀ$o‹ {f{©¾p„Ë×·;‹Õ`5Ųr‰{ÀQÍãJîòWæ“o°¯Ä)%QÎûò¯tv°cìÁ+­€D¸‚ο£µ•$ì;ÀR'e›•!¤wwhÁ \öcXK çžÄk¬tüô’]ßݰ‰Y ëjÐßJ4*ô<|n»Èw¸”KŽóF‹´« ÙΩ÷v&1È¥îaÞ û3s›CD—…ÿçˆo++½Î° ™‡½öÔD™» Çû˜ÔL²… ZåbÕ¬Bå¿¡WŽ¡˜4H½ D¢èš©ÞÔþΣŒáP!#ßUþ08}d?{ÊÍ,H8.ðà ,O”Í!EHë(ó ¿k1ðb.›™]‡£}q`A‹™~s‚k“ìãÁ‚e“lwÐ-äpk´4Bð-$7¢E‚LÊ¢ÇÇêT5µŸ¶ÌSf蜤W!rÆè–Hr‹~ë€cRC^àõ}AÒíÌʵ†ùÔ²¤»KµÊý.oš©¸ŒÆ±G¸_µYB&! @ë ##Â…‚Ý$öSÛ7úb²0¨Œ+¬;ó{Æ^î/VH¢Žê:“Ý’ õ}·ÃGrB[J<9È íÔE!俲ñ®Åû™qXŸ7Ǫ5Fž€¯`&äã'P‡ ö¼ÝO‘›ëͨ”B~Ú•žYÍÅȤYÐo”ý³=m¼R4 'TÌ Î7AÆé°#fUÀ…°`~^¹¾ÃÀ‡À ýË-s3)£*ŽV—ÛÊJÞ?8«°¥/ÿ¯$±{jTÔóvw–>™ I-·jˆ%`¼J–f@žˆ†]òš)C5w´ÄB¯Ðí3+PqJ-Ÿu/>¹*@ "íRQ>@‰ÔªØ².c´üŒ¸TÈŸVæà!P£46h»–!üÃdåìâÔzWÿ5š¶Oú·DD嘄¬¥£ü2ì^ûPqŒTq2¹_ÿö 4䉛uÅÇ1:ìÊõ1V$2iq<ضõ! r6/+ó|¡›Tô¤§>ßO|¦ ‚iÆö‰š… 2¾ÁGuó”¢â"‹ ÿ8ï²4K0ÏVÇÏ^ÿtgß2z(hD×&z¼2\sŽÅ8äP+ªJm«$cÿ¹öheT­ÝÉÈpýœÂÙP¸8©*>¦Í+§€9ײ©švNB¡¥3”·:†EÔJõšÐ¶#åñ:)wíXùí}JÂ<…J}®·¯Òc8•£®þÍ|ÅÊL›©¼0…§L–ô‰¯·~§‚€*Lb¡&`?ÿ/SÃÄØ6¿„ÙE é´ÞûÈ+Ul] µ]QSûÁòÒ£»gÐH9^–hlü°Q‘JEW7ÝFHG%Õqšl±åØüPl…»IƦ|réÌ7.³Ô† 9f.›ì]|¶Ôq¿´ÅIͯjÅL€g€Êðæ§dÝÿix> îøëŸ>h–Ô X¶jÛk9fÔýZaGW-.ÿúÌ[ =®üH»´µÔbbå£Ð.;ØImó^ªáwˆËlc•ëÇê‹Ì÷eLLü&¢m(ãwZ°S\Ê€>`k Eµ&øxgHBÞˆƒ?£‚€2‘‚?öð >Ä×:ŒÁ}‹Œ¦êRѽ^Úòìt6 µ¤d”Š#ÃȈ…ÉýmR‡Â«KÚ^¡# 7žýÀUž»¤ñ™Þº13ƒð7ûT'w]æç^•9 2÷¸âAnìdf4.ä‹2|KMɯ¡PpÃ?¥1ÿøÃ{)V¬îó^ñ®ArP‰®ˆ»’ÕvÑa£øñÏʆ;{ùø@¾ùºÿîàd£}×€'Å¿L«ºÆø${IÚúa Ιq”3á(¿ú˜¼pfÈ¡~ Âþ°¾Š=ýr)Ü£µlÂôÜ nê¦xþÿ¬&Îw#¹ÆO*8AãÇÉ$gj“"pM4ÖZµË£1=Á…ƒd,ÖGj(ïK:mü³ñr \\q‘ŪÅ~‹4c¢Ò¶ZVÜ<•]éW¼Þ‡SÜVT0”·MÛGuŒ¥¶8íäVX5ðeý©8 <_NiµÐöpįQŽÆb5È1)é:k›H,i:Ô …’¯ìø UêD/ø>ô 6\–²J‘—m_4fêþ=a;;|òglÒ…lºÑñÏ]\ê¬a˜Y I|ƒÝ¹Š<¡ÖP`}ø,ÁÜ] +?¤^lý¤yíúÜóú¦¦˜K žh–~ê±¹\îÃMô-3m.Ö]TÞæ£®ó¹2Žƒ\…!躿ñ¼ŒCõÍ¢ðÞì Œ§" #¤×Êÿæ‘pP.òfÚ1tâž?¬ý0»°ÀE’z:òr6±6Q%ÏžbN‚B¹—–¿õkŒÎ[¾o…` ¿u4†›JšDs4 Ÿ4p°û,Lû¨ÿ!|Ч¨i endstream endobj 149 0 obj << /Length1 1621 /Length2 8926 /Length3 0 /Length 9989 /Filter /FlateDecode >> stream xÚ¶Pœé.Œ‚ûà:¸»,¸™`‚kp÷àîî$¸%HðBÐ`Kv÷ìî9ÿ_uoMÕÌ÷t?Ýow¿O5 tšÚÒ 'K°‚ÎÁÍ Ȫiqó€@^N “AwÿeÆdÐÃ\!NP‘da` ø£MÎþÈSs‚TÜܼnnA À ÿ‡èÈY¸C@5N€ŠìŠÉ ëäìƒØØÂùÏ#€ÙŠÀ-,,ÈþG8@Ú ƒXY@jp[°ãã‰Vm'+îõ_)˜Ålápg..N GWN'˜ ;À·h]Á0w0ð»a€º…#øÏÎ81:¶×?íÚNÖp ðhp€X¡®nPx< ­¬ ÐpCÿ$«þI`ü57'÷ßéþŠþý#ØÂÊÊÉÑÙêÚ¬!`€†‚*'Üΰ€‚~-\ã-Ü- –„?*·(H¿X<6øW{®V0ˆ3Ü•Óâð»E®ßi§,É:9:‚¡pWÌßõÉA``«Ç±{qýy³öP'¨Ï_ÀYÿnäæÌ¥ …¸¸•åþ¢<š0ÿ±Ù€á~ ((Ì»ÀžV¶\¿Óëx9ƒÿprÿ6?vàçãìä °~lì±?þ`ú¸Z¸ƒp˜ØÏçߎÿF˜ÜÜÄ °Û@ ˜ÿd4ƒ­ÿÄ—ƒxŒÚãþ~2}”È êàõýûåz©©o(£ÀögÇûddœ<>¼|~n€°@ðûï,š¿ªþª µvÿYìã”þS°û_÷Ïü×n°þ;—ºÓ£hÁæ4näZ=~qÿ?+ýÿ?ÿÎòÓøÿ¤àæàð‡›ùÿÿÇmáqðú‹ð¨Y7ø£þÕœ·ú¿T}ðŸ;«AÜÿ׫ ·xÜi¨Ãßc„¸*@<Á MÜÊöO±üi×ý½d(XÓÉòû­ààÿÇ÷¸YVöo×GEþá?.Î)µrýÞ0~€ fá… |??À‡ûqA`Ï?4 àâ„:ÁCíù¬`˜¿oT@À%÷Ûôp©ý„ø\:#áGŸÅ?è1Îò$ à²úñ=Æ=®¾ã?lîGårÿ¶ÿ‚áŽÿ@n € ú7ä<ú8‹Ò?²þ…¹¹³Áþá?FÃ=œþå~Làöäy,ÅëŸd}xƒaÒÿk²Vn0Øã»åí?Žý?øì ¶Â\^p² ±« 鸪‘¦ôàØ™ŸeØÑÇÂá³ ët»ÁEOf©Î Z‡]J'öáÚ’g¾Z¡ýåó­µ=¼-éeû­ïÝ«­évÌ¥$CS…ߤë©1¨8t¤v}¹øêÚ#·"v«0亸 ájæ^y (zÖ–­Ž‡-ì¼Ü­xuW6ãmX<Çg™5Oö ÎAý„õéO¼¹‹ËÙ§9S´* l˜~‡1¼E>F<±×óÞŸ+tx\{ÈéÉȨ‘/žŽO3úÈ짨.ú”­ÃÆSçI:'6ßr;ì3{ï¨k]ÁNͦD˜Éɸ‰”ßD¯·)%:Ó%¢ñeýø¤²î©|*ØjéÊ®‘yÐp¬ç×ÂÞé½É©÷ÞGg&®3` ײ%N®§…öó‡S#æÔ3âFìØ ßÅ®™ [}ûLÔØ"Œk.OÝÚðÅ&³Î#ðà³Ýè'Ïå¹ï™÷ƒ-V¢çVNCÝ»® Gr3Äd†ÆÆ ñýš¶ä9,6Ê7$õYÔn—­”¨1Ï“3Ós[y5±†_™Öí|ÃbɨÞoôÀ¼ŠüºET¦[ö ]]™+”IPˆ¡„{ÝŒ¾9áF¢øqSDníiø¦JDì=sXþ™~eßÙD×Ù±iPŒ³ÌF[[Ýá-¡Q¶F¼êñl^,?¥™pC?ѽHñ‹6VTßï ˜A!>ý‘€•ð€²yöuòì[—$R‰N; Yªç·”º—ƒ÷LýGþ¡‘rìQQr/£QÍ x ÊV>‰ÄCíÒ'ç=î@m½D¿¸a‘÷=keg  íÀ¢¿¿˜#Ú<ÇÑxNÊMq¨ ÿÐkä ”‘cÌë`*JaÅ Û€è×SGgs,b¼ÚÓd8¡ îr$•~„RUÖ7Ý ”¡[bLܹ®gfêrîMÑÙø™œŠ ÚÐO£ãï…‰$Þ³·œYÚo’ÔÎiYÂVÅF›£¿»ÿÒœµ x.Æ­ü\ãÕŽëçÂö…Ÿ6n5ý[G$–v«lp´°«‡¤Ä¼·89Žšå,žL7[qŒ<>æÎÖ ¶x‘¤?§îðÑc (¿lN¨ÕʧLÚÕÑ+ÎpOhj%õÒKfH=g2 Àß­(!ïÇ^`÷¦á¤ ~ê“|ùŽ‘$ƒiÀh`Ž%õ¾"Òñå¡°Àæ’² Z¾…Г\&Òô3Z`ÁÉXKú5Û×)ÐgS™ƒ¢ÉáD›b ¯¦cé÷uÓfÛÍeæhqÂ$éüœd¶àè.TÏjl‘Þ‚ÝOSdž~Z{S6Ã;¯«?Àtoˆ½éÊL™Âa’·’¬Ö´ëW¾ñó—ÓÌùò犽CÝR¨íØPûŒ×Þûࣕ¨ÁK‰þµ-•ìèzé–ìÉwåáÆhíDéÔº‘ýâ¿P½ŽcÈø/ˆßþhÑÊÑýÙrJÈ8 ìh+!ŒbJáØÈ(­"Lž†+?H{²ŽÐoÒ}²¡ÕB&S ÐF *ÕêÕC8ÒÝ8”¤sx£¶\1ÍcC¨±¿ÊIª3 ˜DvÓä1•äÏ"ÙŠ\$ûd=7EÏ’HÐì‹}Fvé…Šh…¦zÏ[Ö3œåEªž÷…˾‰sý4º…VUëùû¸£%sþ›I3¶é¨Æ<Ëësâih6ÜuÏÓ¿8thú2°è ·à:þh[,Ï¢~úTœ±Ãs¯‚ä\%¶ßõ]È+ê‚ñºÄ4T¯Xÿe _­ ü†ì±T™Ô8A;åŸè¤á#ïxR)~Õ[EÞ3`?¼“äÃ’z@ þÊÇœHÕÁ)Žø0Akž=cËä\1³Åæ™ì>aàV'ùfœ@q—@ŽZ$5Ȭ)®1o6'ž•±•ïÄy öÅ3æn“ŒL“gf‹—a/u¢ýjò~2·gÕÁnb®*5ÍîÇà×Zâ0îe–¯<”V¡ãuA³JçýT0Žjt_6"ïÚ >íØ`õ±ì„“sõZ;¼/bö4Sâew8c+eʰgÕηñVoè;Üîˆ0{Ù’k}Žåä_Á.‘Nè¬ïœÙ8/mìŒra4¶pʸII^ž"øòɲ#¥B‡Ø¥ í1îQM»§Ú,®Yé¦hº4zc™X%é>@h¨>ɦ’:´UM8(À˜K˜q/†åõôësg¼ŸS5ÈPŠàs»Níd,„‹p²}Ær‚p¡¹ïÚÁ,E§ážñ¹gf¤•×Zø…„žá¾Ftfƒx]ò‹Öµ3ßG›!Ž™1||”\–Uê‡Li—È/Vûxw: NNjË5l§T¤‡ÓÒë;$ÌŠŸ »çÌÆ{±R¢3);Â[f«D@êÏSƒ ÞªÎRîZhyæöÓ…Þè:µ°ßføG¤7²žä¢vo ïæ’jW Êí—ú)-éknôN†ÃÊÌà)|~¶üà„5%õØ€R¥r»F3ºÓFùæC~=mXfÈC˜ºÆW²•çžc:ÙOôv8Ú™›éT›º¼ Ö1:KèL«½?I-r6”^cóE"LqÄ%É©6ð¿‚-+íTºØWsÑÀöŠƒð÷m&ª5’Þx*@_»Sz•”wŽÝ´p!È2©¾þÊÄòáß2u—ß Ã¼j¶FЂ„™ÕšÞ¡§@y£!8ûÈ/"Br– È%2Ø A[_9›Ã%xO ’á¿gÝ IõÜ€vJÑöÊß"Éi>H´å‚鉔/VÍZ Ë=X†eÄWyùöÏ7ª<${û7&’úm³H¨W{è^q:f@°:Ÿ¢;vâ{Ҍԩ)ÛRSBg”ì*žwë”Àå¨u¨[Õýâ$šŠq>p倒¶Æ„b¨2þÓöÇ|nU™šò©§ÏU¶ëôœÝ÷Ÿ´P;“’‰'D“¡*O ^©Ê=³(H>·ÞUæ.¡’œ³ƒ÷3 ‰p1G+g+æå¬ £!Œ5 D £‡¿Ã fË«+…]®2=³—ì?ˆG4øW· wïx÷+wÑ¡¼j‚€Õ» Ô¥#SøÐt]M-Emib8TEö¢rW¬T;Z,¥<ÁÙúÈíy=üötdÛ<M¯'ù„Q^)'P²É Ÿ wáŠ[v5u8MP°ŽÃ|x™¥ºRÍ}ý+õWßúPF×èIì*º›çPÐT¸q’ÁvH ”9´›ê4çDû³øUèá['Ü-±ÏíeHµTÃ8½xH4ážjñÊÝf˜ç•Æô 9¯F ø×Ø3ývÍAI_ Î=yaKm¤6×AtïøÍ…ô‘ºÆt›H… wD%ø«–èV°w´­§« úܸþÒÏÖ¡ùã'܈í|¡Ð„ÀÔ½²$êÒ¥›â¤6üâGúfžą̃ž +Ùòþ45½+p!R|?õœóåX¹±·‰ï"»ËÓ‹h»éãÉF‘ÖPž™ú!6)uö$,ËëòŒ8jAÄ0Þ÷Áx-H€Ãßéh¬¿$Gig2êûèQ. T¡­¾zÀ)ÃÝ(näJMÓ·Â ÄÙáNZâÏñJª§äÂn[@ÓkÛª.>_.ní? ÊÂg5Sð£ }.‰­I¹ÛÀvwü:…±ÿµÝ·™‰OÜ©ô†´‘/~,q⣛0æ_ÅžEåÆPGF,øî>fDÏìÄ]³† âm6¼ìx mæ¨òG¾|ºsÄe…ÔIEfœ ¡å.&½“ØQ˜Â*òF¸©¶ÓüPÍn§¿ø–Dk¥ÊM°Áç°ýÊÎÑ3,*7‡îÓraXbÈ7ŠÆ¾¹Û€]?=E½Jɵ®nÚÆ˜èk¿Õ¼‚+DHÔÅ“1Üñ”kZ›¶.tTDÝ;'÷¢_Q9lõÏ^2x‹Зè" º‰5«h)¦^Ž5|ww\Û®'e¸¸îoÏ©Ÿ!2­×”õ ¹ûôŠçÓðœý¯ "BÆoCHX¢àZEÁÅDÔ"唫èNàKë^®¶„KŒ¨[ZòõãŒl0ö_žØ$…¢1 ñPâ^‘ E»øðŸ,¯í“ÓÇ—Õ˜¤ß¯jIÈRµ­«™ùݘ†TeÜZ˜=Þ 2æUXñŽçº´c€¾Dû²žCNÝEõè€RêR½ûi]=°ýù:˜g­¦°²ËœF c Ê'ôŒšžà+|s$ô¡ù($ 6|$Ÿßþõ¼È}g–œ‡ó³rQ»“i”›JŒIsm-“&CÜZÎõ Ò_²µ ö;^„å¯×Ü”ž0 áN© ÖÜñÖ¹”Ii°lD÷“€jÖ>K‰· ¼ÔI1ÁÚJPg?¹ZàúÍ·s¯‹m ëÂà€’Li^IùËXN-ü\ÄuÔÀTT«)]_Ó¶V]júØ´ørxd|%4þWÿùxrûÆ&×Ü3˜(¿$…ðØÒ<‰—™ê‹ŠFôàŠõŸ™ 6©aÎâ>a³¯ðFÒ€sJÌÜô;g‹¼}3tƶô”Õ¶ª­Y× BúˆÑÇ­öªVÌÄR3µø'Ü9<ªXwÔð–â"®ÏR¸ƒôòßcCÂ%·óƒTd¬Csɳ¾Qk½GB‡øl+=oà³ÅbEÌ¥´|Ý)Ôű»ø5´s‚HêŠÙï0ƒì.r—D'MK-53D³²6ÈüØy."ÏÜ;Úçž)#3Â;ò˜˜-=ó©Øw1øb¢°zúrïøºƒ²uîg׬~ñcW0^Íø—qÒKÿBn•ɲR֘ŚîRUã´æWV+› ©¥×ŽöÖî%²BŸÇ† CÂpp„uœ¤âÌ‚LJ‹Cr!‚ÎÍå øip+3®u8evêX~@› ´¡HsÇ;ôHjné]a ˆöw>­Ô8ÅɸÑåg+bµÒXò¨!+qv"YÁ‹‹Wë­UO¡VéýTy¨öÓd-â<´\¯TùÙM¼ÀŒ>ä´¾`J»©;an²cͤbXuÓò¹©ŽïÀ´0Í{C_-J{O¼&> ù J‰ø™"xÆ>ã:ã~ æ x.†}?f`þŠVº`A!kɾËÒäbk¿Î]ùóÏÝQ¤f,ä¼—Oמže!ÊÕÎ}=»µ¿rMÉ·•hJ7Mȱˆ)Õ¬a~mÇ YÖ22*‡Ù¨¨ï¬8-‰”–¾Ýøãúý%Êç„RÆÞ([· ÆNiÄ0züè ˜9†›Xa+MìgŠÌÏÖ°¿”]ÿºh ÛýñbO‚æ '?ó‹ÍâY 6ô°`6¾v¯y©â5Ô¬Ø2óß i[:Þ^`TPs˜ßD'G¾M8™H +*æð-½ÐÒSƒ `€è ìb~–{T)rÚ*cŽ˜8Í9/Oqà=I˜æd'#þÙû— qPî[Ô{z¬•µðzí¸M´¦Qƒt¿FæÑç¡áƪ>|…kài••ö W0×+\¡Ôç"TÃ3Z8EÀ{’?yzºè?ŸqžÌ¨ŽÆ6B*ňו`20mÚ“e©¿žG—¯¾Vä¼LlÑÿ˜h×á÷Ú>‹)/ƒÝàŒ¾/ 9©9£&Ø™;|‰"^°°OôeÚ‘]Y1b#ðÔÒwR§í¹z¶ŒÄ’t"i´…îŽÌ’‹º®hºÅZæ ìÃ7[>ƒ÷BìEbmLú>emxÔñ¿Z2ƒ˜Hš°J;ýi¸ÊctÅÞ·<{þ‘Ð\à Ê ÐÌÀ·> +W}y‘ô$™šSysõd16›ã.ñL°ûðD‹_TZ#Jˆ#*Ô8k6ÕœÖ<óÓ×(òÄ/ü‚&raÆÚHa÷_.ÀÉŽ»¡[7dÐÆ;; pE=áŠÞK­½kNè(q€ìæ·ùÓ¢‹mŠ ÑøŽšOb/Ëác¹K#Ÿyji§PÜÇ~†cŠ(/bôá%©âØ[?ЭüN]Àl|½AÁ餣ÛEˆzÔ,J4ßÛbxHgÞGtý”§¥Ÿ4­a×¥ÓRÊ| C.©réž™h6jUÈEc•CÁ»ë;I²ãÙn¤O±U„ÌËÕo6èYô½·ñXëÒWŒpt|Èß± $°›dß‹Îu-¿’Ù8÷ Á}ŸÛG®;ë'øœðí#F#.à'jCZR ŠWzýKñIJ-Í×,…‚cLÞ€ðîL%Ðdo²y/ÉÊÖŠeðbÆX#I^² À…öAq[û£Ò˜ áÕiA‘t+ŸqŽ0Ɖ–= þªÂÖEyÐùɲœ@£*Êþf£üÉÆ•*\禘ñ¿Ždúj—DîÒ„ëE4èT3šðšu$S3[a¤ î–KT÷ÌØõËîO^±X+ÞNÔ/ibAÞès^d`´µ¥cjÖ:¹È3Ëäêtwo"… <#ÞóÑ¢Úüö$=˜Ƨk% 65&Ù·%ãdEöo½&„ä”5üwkÙë%qšJëL3XôR¶Hœ-ŸpQ#^n¦<Õdª`GC­aÌ| \#Ò%KTC;}ššqîæß‰åFþª‚F)ž÷ ܔyåèêmjº|°³Œ¨Í‚lŽŸÁ}„qX+¯'–#æ]ãFD>„UŸQc~b­žÃrTõdžÓ––ÂNhᓱ‚Þn;­ö©Y‡W8ïTRŸ´n‰Ï–¾5Ý!¹?iF£µî¾#K<²äÑûC•œôŠ.#VßÉwAð3t5^È^ˆ>Ëv!Þ•xZpbQ|Èü€ºn®–ç)•žGHl„ T –ì\ûöíÝsøAï °©M‹qõ³>AœEÚ©¾lÏô”Ç_~Ŭa÷lÚ‹ÛªÛóiòcïû‹/„8º„,/*ŒšZù$¬Ë™?ÜÔs²´öŒª“š½ÖP)d'&ª¿ã.펜Àòñ\<ôÌì,BT“KH<ÜŠ`"ìbq´‹/)dú5o˜–‘žC0£Ùyàé!ÜrƒBü滼€3Êi9…IÓxoy¹ —íH0ÔÉ–‡}ë¾pÄÖQwLMQ¢uÍd?µ4àŒV@Óµ¼Í|¶Àüôõí&^] Ü.ô샴оŸG €@¯\3mÝà9<[åÞnû®XÙp±*°ùÏ—KŸ(¶¼Z@ù5’ÎŒöM¥ÙBôÐ^Î&®K§R>‰·KECo­þŒ°]kÔƒ~ADmë$8†vê «‰¼C±ŒËQIZT/|˯é}?aX^{B­BËvü±PÝÞy³+ÉZÓ©áj‚DÏ mÓ16‹úæF{5]©´7“ù´€‘ØSA0ÙÇçf§ìµ2!i”,êv‰ vÎ30˜‹ŠDº V³b•­s8ååF'…˜oÒN\&íV§åßå%D”òµ³z…ô#ºóo­)¾Ý;ëêY3$Ìeæ§¢¹öUòu…h8q²æ,{Îø›ÑÜÂõ—ïç§Ýj?‚qŒÜÞ\†õ^ðË4/æ[gA“ȃÍv«¤×k¿¯ `#Páž §rÒß/j¹hû-Ot¢¾Øz&~¯Î‰]‘(¶èß?ÕÆ[I#‰LdEß}ãêXÔöfÌ û©DÀ6˜¥ ³ú‘ÌrÆø“âë vНH[û6cÞo^„G-˜hhõéAËF·Eë^&93%X|›"³]Ôí¯ˆ%Á¾Ää0IÁ%ß´Ñ^c ¬E*h(Q Ýb±Ïù5é*lµ^…-Ö>Oç/é6XíÓçøÒCU÷%ªÁ¬¼û|âÝ¥rP üõîã¿ÏHóÀ.­›Òi°úJÇK J#¸OÜØígº 8²ó7M&3±N, \ù¹›'öHçlœzµ„JæmÇŸüžõNðÃí¿zÿ‚§ó×µPÍ|,¤?²nQ¡ø¥Ût‡wŽhäçM#Q.¨8\9uiºôt¢ÝÓ;Àv!NVŽè Pw\§±5åiÃó"4rÞáY«L«¢1à¥z´ƒ‘G:kîªWé½Ó}ß÷P¨éC´–Â/ŠizÍO¤¬CÇíRe@B(¢!ÖŽÈ¥AÁ„Aø«c3¬Où7ñŽ¢Ú7®Ô¼w§iÛ‚ÞTïî­öM}¥N)äN÷e#šäûÄN TxdY9ŸÐ·`½³ ­ ¸/Ì(MEü„_ šáµ¬œÀÒ/»ºDÝ8¢C}Â"V«7å»4­T¦Ï"Ü3ÃTNZŒ-z‚’j'lÅ*?}Ͳb:ü[ž ž”†,Mè³Ú!8Z\… ?k-Ÿ~û‹Fø½ÇþdßGôy@À“[…¶Æ8·=§ £ì%gÜvã£Üƒh#æMcÔ®ŒËÉh¯þÔEBØ@—ù³cܦxŠüwk67T-ßÈzà·ƈ–í>Ÿëdý*¹ šíšŒI”ätÒ‘Jp.2g«T:á\nŠêÙ£©6L1ÒC ¨c>·*~Â~%ü —ÜwÅ)ÞÉ÷l‰´/~ÌfEýœ”-®•\l™ÚŽÎ|ÏÇPŠþŽ¢ Öã>ÀæÇ™2 ’U”õAǵd©»‡g| ‘2Œçšz+2%08¦,Ñ*þ­´ñ(ÈKÿE½ƒªé]®½®0eŒt¾¡ ’ú×µ5C/w€ ©Õ7êd«vµ+ƒ‚û–]wÇïôýåò\þ<*.yû ìá8ëu ‚Îï݉‚_§‡PšMÉaψ¹Å|Ê½è¥Æ~Åà¨>hZÉÒëlx-N]þ~FÕ8ý óÁ&E ¹Ïû¨ý»X ’Ya>Æúá9"2óšµ$ˆý®OáADbä<¡8Nõ1½éÍ0·_À+2P¸‚d°úgÆ' ´ƒÔÆ?nä‡C™~éŠÏ |ÿt¬ðüÛ2ØL5J}7Ë•8ÿ<Ž{3§§UŸCXùëQ© ¹CâÍÄ;5q¬|ÏòL_¢Éø‹©7ƒ†á¼OîI’.çÈbªrèD£¬_oaºT‡~;:š!6ƒµ›Ó¢¨³’÷O\½*ÇÓéÈEªd”¾Æg¢NWœ+üR/7‚hö:>Sé¹=—ŸüÃüŽÉ¾&¿v2 dí4–ýâ3T ñ¸‹Ë£_×´ Ô85ŸÙ\€]^DÍýo=ÖP£#»Áà«Wú Ä)Ÿ~…ü´r­¦yÖ>\…žw;]ÀdÑU‡OBkèαjo@“Mk?9£ž±ŒÞtÝú¯éö^/a‰Kðò“vžù åEظ'»v¼‰vÁì f"l/Ÿ©1#¼ÜAƒûNGäü¼:?µ;x1$|äÁ¹‚~¹z6Ƶ®ð•Xã ¹kßZÒù'‰MÏ šn¢I’·ÍÖÄ#;§áBؼë=Y¥¤ Þ…€r0²‰?¶9Š YÏgöy‰%ŽUsöåç}tÛŒg³±õÐI•/¸LÓ;¬ÃÒë<è@[Á8`…÷wÿ ­náQæý$m)qWœÝlþÞY“:Ìsª$WåçÎÛS¢¡i!‚uÌžÛç?Kiý·mšàÍ wf 2 ö'Çi¢+eµ“/[6ê½õ[³úd—»…Õêœr­&íÅ0Ѽ̻Èâ~ÆÏ’êrz¼=ìå§ÇxXÌnà’âw> {ëJ0 'CÐÁ[°óØSýPÜåÌþõOl,d endstream endobj 151 0 obj << /Length1 1525 /Length2 7768 /Length3 0 /Length 8777 /Filter /FlateDecode >> stream xÚ¶T”ë6 ÒRCI7HHww÷ LÐÝJ Ò t7ˆ¤tH—Jwȇî}ÎÙçüÿZß·Þµæ}¯»ž;®ûYÃH«©Ã!e·ÉÃan<œÜ"5mA77'77/&#£.Ø ú[ŒÉ¨rqÃa"ÿ0qÝe²@·G;58  ìððx^ˆðŠpsx¹¹…ÿewÈ=À65N€2rÅd”;y»€íìÝù×'€ÙšÀ#,,ÈþÇ ¹€­0€ÐÍ}<ÑèÀ­Á 7ïÿ Á,jïææ$ÂÅåééÉ „ºrÂ]ìÄYØž`7{€6Èäâ²ü. „‚þªŒ“ kvýK®·uóº€Øs}ôp‡Ù€\‡t”TN Ø_ƪ°þî €‡“çßáþöþ ûã ´¶†C€0o0Ì` †€òªœn^nì Ìæ·!â ôzÁ Õ£ÁŸÌy)-ð±À¿Ësµv;¹¹rº‚!¿Käúæ±Ër08 ‚¹¹bþÎOì²~l»7×_“u„Á=a¾[0ÌÆöw6îN\z0°³;HIöo“Gædv 7€77· °ä yYÛsý¯ëíú£äù-~¬Àß× î°},ä¶=¾0}] €›‹;Èß÷ŸŠÿF˜<<°µÀ d†aþ'ú£dû~¾ Ø `ÂýÈ=÷ïçß_fô²Ã Þÿ1ÿ3_.EY}]CC¶¿*þ·NZîðåàãpð p„ù‚üÂÿÿŽ¢ ÿ÷\•`¶p€ð_É>vé_ {ü=æ¿wƒðß±ÔᤘÿÃqSnnëÇžÿg¦ÿqùÿ#øï(ÿ7ŽÿoBòîÈ5óýÿG „‚!ÞîÌòï6‚]åÁ^ M°›µý_dùK®÷{É `Hî þ}«8x¸¹ÿG÷¸YÖŽ7‡ë##ÿ¨@‹óßGÊÁ¬á6¿7ŒWàèâôÆä~$¯€À—çqm@^8 àâ„ÁÝ]åùlá.˜¿'*Ä àÒü-úƒ„\Àÿ a—õ¿·€ ü(à‚üò<‚ýò¸àÿ€¼.§@~—Ë?àcd×À.·ÀǤÜÿÀÿªÜÚÝÅåq÷ÿpó±-ÿÂ.È d¹0 ·~æPÖq]#Eáɱ=&6ŸmÆÂá»àÒéþ-…¥:+dÕåR*ås/þÒ¦ó…ä"ͽï^kZdÛ­ö[¿;‹Dí‰ívÌù/$ã…{RõýT”º’;~÷Î~úÁŽH­ˆ”ß9» ájæ]{ö)xÕ÷—}‰˜ÝÖÚ©~¡‚uW6ÉñZï•ipÉ4cžUö ª:+á±ÞôÅåaîør"¦ÿþk¾"_ã5Þ¸›Ÿå ]^×nrrc2*¤ ‘‰ç¾Òßß*“Îù–Çâ·póæß+g›íGcÎ+Ó2›o}ôuSéA“Ý¿\‹yîŠèÞ¹ òGE?ö‘ïi@Ý17RðêkƒjQ“?pZ?Á7¾üàw=ã~ ÊWÍtÁ.¼åÌžTqËX ôÓŽvrÂ×/q¡!¢×¯fåuÕ6nÇõ‹JÕŸ¬ÓoÍMx+t&[Ÿ¼¢Õ­1\O½ò·stÎV$$ÝÇ!I¼ð­¼ç’òº¿ŽÐ?¸!~Ûû|Ó`f÷‚?øû%«×†ýdÇ*d#•’ç['œ¡$ÑY¡Ùc#>}ÒïŸ&ªî•¨9ïÂïà_–£ôêÌÔä?6±ß­î~j3èzz®[?Ccõ Ýr…sHוâÅOf›Ÿ”JÚÂ’¢,e³w¿ØÃ(»u^½¹ j`˵Ž-jÒ½=†*e³RN­×ã=«èµB@#ê÷ª–S™rÊÙíŸN6~ËŠÖtýö jW[Ý‘5p¸è%§Ÿž|ÞíŸÏ`— iÛª›ÇÍÜ“ZÙz³xá5ÁŒæ=c Jþµƒïôª¸ˆóŸt\ïØ}£îÔÜwm >óyoFS‰´<9K4Àº/z“è£0x5sƒ'æ±À!þG˜˜ðÓa€d Z¬5~ºÙ¨™ò³U²á¸Î1 ~Ìw'óžàã9jEœ’‹ ^õžHà…œíQdlL¾+YöŒì :þ8‡¯·yŠVqò&”&È3AW.p [¤ó{6¦ß3‘nó¥§ò>Jžï†æmƒ$owÖ‚+ïESã ªå;Í"”jÆÏû)n^LÄŽ¹zÒŽ'+’j° « MÒ=©Íó&zuQÕ¿.Îb[òfæo3-½Xÿ ü«–Ë—)t JìË,³Mó×}Q¤âŽùqzõ~bç…yp‹øOËî>>G´hóä¸9"¹!#û –”T¼Å/5ïd›ù2O$ýÜÃQžMR~q3#vìÑ“ÌÉ´ås2U“=DÇ—£1yp Á+«å0ƒîÉ(òHRÈkˆcaé2™Õ6Nr¿^\lÖž%ÂÞ°˜ë‰MœQê¼<ÄÅK,(úÜžRêYb`¤Û»2ºtèF{ê7=f?ȆÆÊ>q?/Œghï-PhÍÇXD`Ÿq@±"èÀ®á5Ù|±”¦ëղإòQK+ÅŸéÌPI¯!Þ)€´'(i6¥çýýÀd¼ýÒiiœBm7Ø#ùV¶40³oiÓáLÒ€Â1ýªb‘tÏÝ;ìSfEà𛡠vêðW¥J5T‡Õ½òŽ/±¯´©f+¾›ú%À‘oЮvé>~ ÚfÍ5ÈâV–ÐM/Ǫ_ Sø2|¶¤;z”ºåx*8÷qš#¯øW7Ò¯F ÛLi–Z$½ [9!Îz%nß•O ÓŇáÉß1‰¤k¯bFÃ¥‰´ÉèíÛ—Q pw?l¨X¬F^|P;¿\ðÓ“YI/Ÿ‰e=`í_8î™Ôô‚våÔ¸Pï>]ç2Ò%*Ø©&ÍåNŒíymÈ|`0¤[ h 5¿²—ïž6ô|eÑè¾,5ù^ÀÓE=³)¥Ô¥RD¤ÅsRs‹¼bÕ®4< Ö^?jøP0<²…ôJøž‰Õ´¤ù}î"–ÓØnE¢²€@y ª’`B°‚beÔ¸ spÜÂÔíbC8'Gž¢è9ú(9^´P»¬òÊ‚±Õ|} Â´©ÆóöC¤ðÏýF›bkwsR»8Þh-” ¯úæòÐ¥h±‚Ã0šàŸ?¯Q_•d8Žp^ÝnË3s—’-óKŠMðYŸ¶?, Õ 7l£;Òõ^ÛÉϾk·&&òôéähyH1eB*`M\CÐ'CÐþ°Áwûî˜é‡;òk­-‚þ݈2µú,L«‘ôÎáZÄ÷7Ñ®ºFwöJkÔÐp3›å^Ñ*l~bB¢Ê/eñ±b¿ Z/sÜ[ ÇÄ´ágÓ–%hßV²«ôofžY2q‰û4Y .äÜ39|S"GefoÿóßNlövq.Nð²HT0©ë•o†3¾Š9[L gã“c)ceÑL]0)°ƒ4°Îê,#œÝ|òìÈ2J"I‚hL{³ÞƒX™¼à[žLU¤ËUå[ÓNx€ŒƒŠýÁr@z[Öd”ÔiH~FóÜR} a¡F ¹"˜€mŸ'Hª÷;@jÀ#«\-µNffÎF¦3 )8v8+Á„'ë-΋ÒÌXoí6ÞRuòp‰^wz5mã>Èd䶨FªnÒu‹¿O[ÎCâ’ 6¡©y XM„8&wÒÜXÃIW>„;XµiO´[¾K-§ó7#K !H ‹ñ*ìÖaZàõÎ=">ž{Û[äÝvëp@ :Õ*Ñ™=8h8a;R®•™þ¸|ªä¯Ú­cÒUùÓ^%cõû›R~fÕ>ªÃäÝÊØT¢\Î’ :RAî\HªƒþxTÛdHé–Ýk¨G]0ðãWý4¯xË-É á³Áƒ.ËêxµpGd©¨¦¶ÆtšI€ÄçqÑmn“eÁÌ©<ÊÀêuÓÖOPI_Ê™'ß„î»u½u^"ä©ÀáA¥o4ÎF¡) •K–áX×/q'2 ϲÒ‹^Xðª‰>W dðû2ÇÄÑ>ºPv(Ž¥] w"À8Ó:8¡°m5àDn­Íéz¦µ‡9ÏÝ{¥-öQé‹@™I«tŸw«ôÊã×M¢‰ajLÄt%­7é„ùæß8»Y:Þˆ™ÚifV$7Ÿx³ì7â“b4±bGI˜tÙ}`üòæk,]ô)`1;2öµÒG•(mLäֵĺóHu;U¬ßÓÁøAƒœm­jd‹U”ŸaAŸ#î,¼$l¿þ^X+0çñÿŽ\kþÌh\Å M·wÕ2ÿý¨žÇÝ^Ó IÖøš^iP,$ýKHàÕº«¤ °éŸä,Ou¼‘‹@•¬» ÜzzONæñU/Ró%aÈÁiêÍ/,oÎíž'øÓ¶Ïô fž¡¶¬ñ”`"‡ä/0®Sç$:Eúr;aÚÌ0HfÐʼn°ökÄsÿP-–¾iéíQÏÖ¢p\+ß0ÌE‚´]yKd¯•/t©•Ý“{pl.šW+Š&9(Ђ›S%$ô±_CÊLè²Ge^2tæ•¢–¹¡ì37jMb&M 4E¬è–ŸuÛŽß´œgXÈF +µ#K£Oå_™pÉ$^9jH0Ðf‰«»‘}Ù-ç@ °¼kId¿xDµ Ñ2´wçÛòNÆn?]4¶ò~IËà­ôÉ` O»å5ÞÀ´~ìU¨ÅåÌl×oŠøÈ}èñ"á‹úìÌ­‹Ò'¾#!ÜáíÙfÏëÉß&ë‡TŒMvÙ,‘«+&7axà¤yˆ3Wê3æ²Q&÷l÷šôŠ•MàØ†éñ(4åªbÄŒ¾—_ºW—Øýô™ÉZ‚Ê©ÉdÆçÆÚS÷å¨Ã¨aTØŽU„æ0ôiówXlj¸­ã8ͱR¯AÒ¸9˜ù!8¿·-é ®Ú©½¹Ù©q©"}Ú23‘z¡rO yBes½Ešð,©†*¬Ö7µ“qXdƒ1Û÷Â|ߊdôݰ¦Ô[ø†> qâ;4•¢®BNdQWòN¦ð1—£š!Izi%Žžmüú­;ý¬ ë›ÊÇ6¤ÁÔ›ùêÛ·9’ 1ø^5a)ŒiŸû=G©¾Õá=}¿J˜\™l\UÙ„zŽ„.Õ Þ7“Š©ý4?4#`P¸3>BF§]­»¶íâ›pØ"îweEâTâÁ Ñg zü6•õ6BŸe)·M5×Á=Íå|"©šM©ƒêy‚©WOxíÊËú+µëj!ÎoŸµÑô]¼: “˜™ž›^â Ÿ\§Þø….Òº|Ž1ŸþÅ}· ‡ÖÉB"§ÇÚÃ0ˆc4À!¼òަè“hqÔ,;)Õ°Ù‰ž_ú¹¸te(þŽ\¨çjˆØW‡‡½C&nï_A[²(ó ¯Q,ǫ́Hp ½t›0GÚ¯ w=ȈÆâàK’!fu1æQDÏ,_„W¸ùNË‘ ;PX5õóÝŽT\n³äð¥²Ç;àN¶»~’ÁbÆ«5NLJk`‹Á³?UîuY ±Ñ:.Da`ï:?=5`Ãþ5]ì·¤ºúU*¡&3zz//Ê4_ð`l¶Ä{|[jæOF£ér¢sWaFƒÙûƒð/2ˆ¬”ò-òdèŃò7¯sųßRlŽê\ž• 0•’Œgzh²3ô3ø–`iSŽ5£'èv–ç®å‡cö[ŒªZn èäÚFX—i_a Ȕمkî”v¨šü¦ÚÉjôŒô?úcÑŸìi„H¿ÿhü¬-.ÃüÓy· –å*˜Zz1ñ~´)J­K]:´Ïà<(‡=0‰zËžÃbõ8ÅtANöªN¨ 6 %Žmkfýüðcs—ºBN}±dŸˆbu—þÁQg3sËG áKìm»9Ðŧ©Ð÷-õý‹wå/)§a2G}«Ý$½Él”õbWÚ÷hPÒŽÜ5üº³$ž˜9Pe…UUè”n2¬]>"^Éõ~GüÀ½¢€¨Šd6˜Õ”!YV÷XÍ.„¸y#J‹©#ÆK:BRa%ƒ¦*þQ§yógla^WÕW0Ì6SÿœÍø| “­†Sù¡Ù™V–^þ&Q‰ xòïËýŠcjäIzïÙ­Y¸·¢ØrûeŸD¯ž“çe<]«N? ~Þö’µlpÖò´-uzÛ)_öµå¦ŒžYùµ$’ÿ—^±CijZË»–ƒ‚.Û‡` .8´Ø#ú Ï!º¡&òô#§h ºxXÙôÄ‚/l*:X&³z ×{;V‚f@‡w¢#HÇHäUAx¯PÑa\ÿu?usÝéÏ|ˆ|$ [¯¾£ÈÝ(‡`FKrÏ»—FÙŸžpI_Z¾¬‹Êl¾¶„®—zˆQÒ·.?•ÈaÕƒk_ªƒž%´½“f0<ˆMØE¡ÇT³"Ò “:¼Š•'â¼^~õœÇZ"‚>“”6fIZ µöü×ÀÆ‚éý\¤ÈŠ‚ìgƒ¬sòÆêZQÙ´Ö¾²þXF•¹næT#öGÛÓ/ #†‹’N&žCUz€B~s&$Yª¬Žãr*z4'{rèUˆWÞ-©b×3v”Ê^²–Â&æÝ\-ƒ`¥ÒRЮzà-ï´l’“åH‚õ¨ÛãÝWKM·!½ãé3’ˆZ#áx¹3?=ñüü å+u7?ÇímÎ%WÊ.…¯.!ÓXº2Ï£Þ¥¾yQ"–¸×䛾+Õª5¨ßI 2 ‹½w‘óXØŽ¢ÿÉL¹h’—Õ§Û ÑÅW6ljNï¤RŽHýÉ/uâ<øž-ÍÛ±À–|p‘5ä §Ú™Vëé‘›³Pˆf{·û Ö…ò²÷ènuÒ €=}2„óýáø±lJ*&Zlo‡-;d&&¤…X%ä­‰Ò3úóÁi ˾mÀ½à ý!øRoZ0#)4¢6½i¶ ˜ÀÐ p–­ÙLÆÈ‘A#e®w¼01ZðZ–ìF–¦ÙI¥4µŠÝ ×תy"_Š6¢vpôÅDðÉO{;Ä´»ã:ß`³öäõQBKáÁ&©sUIŠrzα°}tàn[~–5m âä¼cî²9ÆT/¡D’ì4j§³»$5ºƒ{$e"g²Sh²AMZ–$ýÄ|â/ãpMb©2täˆÜí³¦€p¯x XÇYÂi—îÁ·nïÃà}‹êÔdŽúµ9æÌhÔ$ã]„¨¶Y‰-­¢ä«òø‡Q™¾Ë4]ÈüE_½qÏ»‘›v¿Pš žŸ]|J£ñ ó(â`,©+¢d8¬·,€“t®:âöu’KƒäKƒ!ÂCƯw©?ú2@È8Ó¹ŸGäÏßÊZä«à^¡ ¦œË7y{PÑ÷¾š Åç»ò²ó1Xko-kÕi68ãdºÓž,]G`ˆ§˜«`œ¯õé䨤Š¢Ð*¯Bßo¨ÏQõªõ‰ÄjA=ð;J¦ ~Ò‡†ä+ÀF3 ‡´¡GÓ”öÏ?ï¨É›"Œ¤hM3÷ëàeÖ!1ŠcwzëzôÓ"›Î°䌆v#]Ÿ8L}{Óֽ꽋¿y+×ÉJr¯H!ŸJl!p Äå¬77WìuÿU›ÑÕÀL{Ð’Å¿&„zEø~®Ÿ„*u^VysìÅi5ß§3]+Œ×=,|³(YÓ1Gq©ƒ3¦Ç g Û ¨ÿÇeäæøü¤ª$œ%ûÖÔñgÈ—ÈkoÇÀ£ëO§ÏsUʦO‚]tp_ñ÷Åé ·\ .‹™×jò:WËS /ƪ‹]ß8RùušöÓØŠìs­6̧™±]TLÌú¾‘ÚÂPKÁc&%7Hžê¦£GÐF¿d¦ÈÖ#„?í Uˆ™°·ÜrllŽr–hA 7«8á—ÂWZÉ»×’ÕpYÔîxw+F ç›’¿Kz;¶n4*D^úfsûéJE6Î×~™»»;×1;bPà?ÇaŒz×à‡¸?ƒ¶?BŽÎû܃™*ga{A—’¡íNç¨5!/M1xr4ˆ7;fË7&‰ '¦\]z…‚ázñ•t¯Ö›„;j‡Ÿ×‘¡Ï¹Ò­]"œÝ­vÒÑ^õeêYÿÚÆÃ1媿,…Ïú\+¨Ãò¿UmÛC‚´¥ì”™IUG& =Njº¾Då1aÁXY™I|ÊËÜ˺Py§·xPìX×_Ô‘¶aÌ"âHS2:©ÞµÅá©î|¯Õ‘+\4£Æ½ø1Ö¡"n3 Ëz)¸Ÿv^|µO(ô6ÐLm/zh:qKä¢Ò0|/[µÊ/¯›×SænŒd§Àoè¶¢¢™ôI€Ԙ׻¹÷­‘K½aÈÖlŒ,peÞ<2òƒ—³\2ú³˜d385î}™KD4ãøn©ŽS÷ð±¾#ãɺ[Ö¹ÜrXÉÈ&†¤qó³Ï t—Ηõ<È“xJ§„Sš§ðÍ^Å’¡6Áìý÷@+/ƒó–—w¾dø—‡=ÏŠ²4éi€ËCÇk¤¾Øñzòö|ç |Ö£½Ö§ÙAr~›|õÖ…W䑱 ^­z«ߦtqŸ_À¤¦S‘!ú~YUÖýëÄH‰Ý-8©4ô͉)ƒ¯??7 zÝ;Á™éy‚ù/roÇä¸õ9Ö[ çôy4«þý=qÒ_Ù÷н&Õ׌#‘9“y‰×Á‡Þãët^§ÉXoñ^xHb¬PÜHÛÅØVL3æøZ¢ë²V[ü@ÖÉm¸¯+Aet8˜2b\äõèim!;öúue¡v>k&‚´µV}!ͦB^ª è‘L·ÑF¡g/MðÃðxwž9‹ñ–7¥|G ü´UT™²¡Åʤ\ÇyV[ðdNwj™ÃÛvM2{»zࢣpjí·Ó'cJ‚ëªky“ÜÝjMÝv×*¨T¡‰ËbŸdU¥žÁ•ÑŒPIÙPgÔê*–/Ä+{‹6îïhMùÈ º1çå<5-oqaqïQÌýÐâ6Õ¿[¦6èËîtÍÃùÖ2¿E«™ÆA‹«]&:li ºJO‚îåånBÔˆBÙ)rÛ˜êÁ‰AðuÔ1q蠟Kú’ úß×6{0Ÿ¤!€õl, l’Ÿ«Gt°:XŒcD¿ñ¬Ë†¿ž[’7‰{j>S{9k²ž›oVeWcQ™Ä¢KîÄšìç—KëvøDF[Û£~ŽêPdAªñŠCƒ–aÛ'§" X|ëGì$í‚¶ Ú§—"%ômãâ~LS¸Ó ªÙ¸î¼¥ YQ<¨<Äö$gS¥1"+¢Ÿ«;”¥4^£F;m!hÐ/!NOUÚík;2Ùn[ó]dã©S’HÞ “e‡ô’øBý€ïæŽAÑÈýæ=Eɯ¢¡ú¶êò¥Ò{H졈Ï$J ¾ù¼)½6w÷B1ÆÄ5Ý>-åô™»“µþ¾«DP:O- úmó®áâN²Ï(ï2è Upj}zã/¶}§wÔŠÌפ—4…ÎI|ë™ Ý²VUûÌAq‘î÷Ü—ñ¯ãYòò«ï7?ë>äÐ`^sꉟ¤©^K¿¸}5O‡BS‚7`ãKOø­­ß…X½A ¸+#=:Æ·Ûn8Õ]^„% òµŒ†BÀy×} Œ\wUnE$íüÙiþ7š ÑÍcýÛrh¹æQ“¬ƒô^Áõ9S™>V#Ú™¾’ZÁsâ·”GOãßß2}l>pdÀ ç$Ú„4ˆNÑR\Ë”eZX@Š®·?²Ê9}Ec2Û·#l —gST:ÍëzÜml¡Ž' Eॴ~DY`·‰ÀKï;--4Z“·¡N–UGû„Ô˜¼ø²ÉKó¨%F³eêtÞu^: (¼nšÚ6Û§(‹ÊÚKPÜž—PRGdžõYq^©cUÓøÂƒ@(A?æyì{Óª¼OIçÑdˆ;iFâll-­¥caGÎâ„h=˜G|boÔkÚ±½¡^_‹[sb/#Ð×{%mŸéË•|®€rYÞ|U;ÉÒyaçKèˆÒL‰V]ŒìÀudÍ7k6ÿI6åRôº=ÇŠ¿C†äGà–†×"´-Í|ÝF›w¡ŽØ÷ðÇï6<ñÉõG}YÓ¢¤©•Š*DLƒ%<ýzGÈËÛ”ºYHEg#ª¨W§„d¤M'lžbêxPÌI\¢0Ó%ÖnŸ^§A§Ó°W+Ì+ü@1¯m÷•½š' -?²sÆ­ž‹ÏÉZé¿!¹g€3n­­ÄåÜ¿¯ŠíaÅ5iKƒ“Q† Zë#'µU5R&¥(a B$›q>Ô‰lЍúϺ æå€w!òSZ‰Q~ ¡ |ÊÚ<ÂùªúæÏl‘‹G;FÓßòPÃ>¹Ÿ7/ŒÙ‚•1êç ]- ´C%vD5¢@Ñ <·a2- ™ ˆÖ§wO –@íîj»Œ¡ÎV0†®^V6­òrÍ£×á!KÏ9j±!ÅÝ<ôzhÝ·_™Þ»±€Î´k“ØU¨b9ê!4 ¾«7¬ü½:ïNæé!¶†wkEŠ5oçh5¢ ÅÙŠw é–¥£øwÌæ‰e;ßmˆÎøÈôÇ÷:îÀäy»ƒç//„qòž6'FãQø"¾¶œnަè> stream xÚvTlû7%1:¤‘I(½énI ©1 Øcäh”$$¥Q¤¥A@¤$$”.%E@RþÓçyß÷ÿ¼ßwÎ÷³ÝW_×}ý~÷ÿuc3QUg´\ ŠBÄÀò@uCS ,!‹øùÍXOø_Zÿ8ÆFÉÿ/»:ÅâuP,ÞÍêùz!@ˆ´©ÍÐ.X(Ä+<08Êà‹r†c€øÚ@3]àm/8ê/gƒ¿D€_ "ùwº¿£'B þCa04Ò Š D \.O8ð¶–6+„¢œ;B=}Ðøx¨á uÂ;üi ÔR5Bñóý= ƒðÂúˆù <OúÉš(gu4 Ga}¿ûÓ@`à0ü­‚þ¬Õ…öGáþ:» PÎ.¿GpöõY Þ¾p]¿=ð*Àt®p,P ËÈpo <æúÜ<Ð þÇù­Æ÷‚óB{]ð#ÀC.püçõƒ±_xîþ)  3†:Á](À²ãÕp—¿düæ1ˆà]0x ø÷çß';<¶œÑ(ÏÀÿ¸ÿY.HËZ[ÓØBøÏÀÿ6©©¡€8Qq ¨¸ˆ‹eð‡f1†"þîüŸX]” (÷W³ø[úWÃ~o_àobÿ™ËG,(ð€Û‚¥À0üäÿæBþoèþåÿðÿîGË×ÓóUà·ùÿ°B‘ÏÀ¿íx¼úbñØ7Dã€úoWKø_t5„;#|‘ÿmÕÅBñPE¹zþû>Zˆ¸³1 sû *é-~Ì‚£}¿ ( þ/žU0ü£áƒÇãOš–ÔDÁÐοÙ%.% „b0Ð@~ÅxI ˆƒàiè øƒ` H …ÆâC€øñB€.h à÷>%å€ ü³ô[ùGÆ×aýÑä‚ùb0xšý¾‹É8 ‡Àa€éI4ìÖ=÷×÷ÞW«rø‹®)Žñ¯Zf Šâ¦1-¾§4dé‚/s"ç1GªéýtŸ—5Uf¸/p›oÈbšRMšÏ‚ÏRLGW›S#ÌmªÖôpQpŠš«¬_x߉ð n$lÓãÏ÷ö•¥1.d<öï֨驘ý=¹j²öRZŸò¼â£h¢E‚mDé8ÓÓ VR¬(¹Ã^íøáÑCÞð%·^Š0 d+Q¢g³ žt2ôå¹¹¸O;› +ñ!ÇÑ8µ =–O¸²â¹¢q[ß’8‰ÏívÚ¡“K2 ˆÙWÊ}Ä××\nµQ6  D´c«f2ž­]ˆT†UyI­­ŸƒóúÂèvp“\ u¯yÚΟɨ¿y|uI:.\÷:»¢âáÍ4î=̃?n¥ní¶ŒªëÑ jnj-Ã7¡=. ä5¡Ä\žëˆòŽ<€~¸£UOÑ9…sªˆž}eí}6‘½a»HûB@Ð: ûG!ŠýZáX·ò1"÷Ûþ-Ÿ½·ˆ(öÝq;ÑæE}Zèà¡5e†Ð rz-i,˜l%mÕ²ÇÝš²“r1Áþ¾êµSBÖ îsÜZmB‹8½×ß$)¨UrÂè×ðþèI¸1ÕÕ2æ©äv/„GJƒ£ûîÄÞŠc{vm‡f¥… š|ç[­å¥»š‘˃ŽÙö†(ã~ó„)Ò¦’P¾Ý¯t/¨û}5œ™¢§$’LÈ2ÕØlÌ\}%©6rË:JšçGN~å%@¦8>.X-z¤Ë°Œéf7*ñsœo„Œ…¦nήš?¾,½Ê§Ë?té½ðÈX—·FÔ!uxãN€ÇMg@Ï–ÊÜÛñÙF›y=i·ðÝK3Šnª3ÕóCHåéÚx“ÑN“~MsL`x«í÷mÁ6agA8µãÊ!Ìø¥Z®‡½Ð…@qþ¸Îÿí‹ö“›¸.ȧvç!Ð@+LkºFÕm›ä2Í~±áäÏŠ›©üöe- ñ;í ,‚ ­ìO¿}ìé]˜ßÛFî6±¹4±‘]aà4M³:ÎÅÕ› @„G+&ŒIÞsFRéOr!_q¿*ÎÙ;Ÿ¢¶ÿÚ0é§Zó€Öø¥À]áǹµmU¯ JÔÿÃòMÞ3²¾Ó ¥€õΊ¶M©Q’¨´ƒÝëþcö_S©N˜¦º‹§üÒˆF%ED‹"áßߎ5‘+ƒLã–·2•“4j¼áÞôO+9ÉkD òËÈ4·w€|‡Ÿ³™“ …$Ðo«²"­Ç…Á8a#±Ó‹Úð¥áØØ›Šùõ½ºzgœ]»1ê<>^¨Èê|ñHNâTQó|ƽj“HòpÜÆè½8€àå¡~¨D“ò/Âæg;¼oò£Iä*ØoÞ¨^|bHC)òÙ¾éË¡µ“3Õ+~_ö¼: )ÝIªpÇ^ß“˜{(èÎÃÀŸUÏx4‹eiµéŽ ÖzVºë»[ÕbÝ[hÖ߯w™e9&ÛÚÓ²_>9.¶ËåƒöXÝ4VwO›Ñ&S… ä¬ùØœÎ*ê> ¤gíÒÐæ}ÚäÔYsýärNÛ%¬XA¸{]øc—*ñõåc‹ôYJÅ»4Ú_ìŠú¤ä^?© Ax•BÈÎòCyÞ·g{(èìrGáé¸Bót‡ØY—!Nv‡¡½”éíV¢ì»˜å¸WCéÇJ+•´Ü’7ȵ{”1ŶÁÒÙe4û áþ%¬)Ÿ»²Ô„1ãjɰõÙÜ|‰û~€ìÌ…ëožËƒq¾l€k]…#ª×ÈfÝCpÞ–öjå7Ÿ~¸`dµ.&èsC'-»M7š-*ø2œÌtS]meÚôpW×¥Ç>D¤ Þ,O¼Wœni˜ÉïÍÜLÅÕú¼TÜ@ÚFFD¦·ùÒ{Úk»õqO‘ªœm.pf&ûP4ŸJ_Mæ|Eâtjq“AèyÝM⊒éUå•ÕMT›j~#.'·ú1·HócH,.[ó(vKlÒ4i$ÉÖä1¿&ÀDàϘÝè)6<¡« nË›][´Õ$ˆg«Á.7ˆÞÌ“?>ôºØÄn~¡`ŸGoÓ*q¥¿ ™/ëÍŽÚ;*w5WŠeì`Gué³X5ÇZv(ãì"]zN×ï|«šH­œs—¹u€ö·ÿ8äÅñnm³¬•rˆFœ^ɯs:ÝΜ½û]~GçÅ[²qU+¢ÍÍæ´îËÒŸ®y µÞ¥l]5j•k“ï…ÜŸ5Ñ»ÑLê&ܤâ»Òª2#‹ygòWxyÕÂAÔ¶._W}õ`×2[hôóV÷ž¸¥%úØ!‰Ò¤¨¶×…x0;Çõm ·lew¥|CwVïÊs k«‡Ë¼Öæ1¢ŒŒ±‡mÆØd!Ù2U±*fÃÁ[GÃyÈYaÅêŠ;ÝŒ:¤–ùÆ# ûÁgDù^ÈÇ`žæâV g™õºO­l}wïXå•`[^j½o ÁLÔ6Z‡æ½au™©m™à¿ÚuÄ}x_ÛpÁ$t\1Éx`WcØ“`åÀ€ÞÜ«×ú—Þò[¬lÎä©üÎ<{ê×å²yù‰SàPen~ÝÆ€­”¼œ•Å(Ð=žÈ4{Þ•×n—ÈÒ»6gצ¡,e¹9üIÇjl,_øéÆn Onùækw^áÞ¥Þ>ÛÇ“¸ÔÁ´°ÀôõŠt»‘ÚÛÇ%ì³þšðG^äwÎ~œ_ŸëÚÙ8?_Ï×Ö¢[לïèñ©Tï>¸ÖÍ’@)ô­Œ½5;Ðù‚ŽžJ?vøú~á ¸jcSâ˜ØÛ$SL«ÊËJ5£@+ä蔥Z =]H‚¥Òø˜xÐítï5’ÒÒ0ïꨢž\àý_ÝþÐþÏÜ|¥J>kdsÛ‡E¤WÀÕÖ*e'M}eR§åtõ8Ý–¤)"%ÆWÖ#_£GÔß|ÙŠâVWlW;QÞ)zÛÁcK_ èpuè ­;ûé-¦ D¡? gšKßB([Å;}Œúr‚ý ÏmÿEÌJ4>sYo0 ݼ‘jàl3r mù#›^lS²4)Jl§ÙžP¨x„«†y@c:x×F¹fûžÌ½$KÈá *!j ãeÈ€»ÝIÜe^+ãqzþÒo”¸¾3i°ç);\îbGЃ?ôãÓ“ âoÂ*âë¹ç(>sÎÇä?@²2™‘*1uˆ>M˜â NI¢º6´t×B¼:Sø ÝñP«¢‚®B»qî½ï¹3ùEKxÀ_‚ñK^抠©-/WCÉI¡\±Oäw«8ž×¼NK´þĸ\A´V¸Ñ ‚Ewò›ÙïòMâÇS°Gœ'âŸÌgP¡;bÛ•QÀ{méÁ=×÷Xç“~y ¼ÐºDP˲B¹çœÖ'ŠXÜéê®ìVKîƒÝZ&Ó=ß½'ö[vodÄy£_´Åì=È0­Ö›i27KU¥ßÎÙµx/¯Œ~áMUCgiKûëýÕï«ÜyÞñD%,,Æóï± ‡WÝ—k;{MEü^Ê< Õt"ˆìYk²‘bRd?TêÊ>É${¼×3™Ãt\Ä{µÙÍŒÁTµfKI¼{Ž4Šüö„²'-÷œí¨Æ·ÛÑ1‡¾‡Ä’!ܳ½¹¼åTÅŽFm±§`£J²HºfõÕçÓj KŠ•®›ú·i  ShËõíë1㩎z/>±É‰Åôš ”BÈÜÉJ¾{¢2 j~:žºœ 3‡WD²¾˜ ¬ðmŽ×{åî¯1Ì ‘ÛëÓ··”1¸$¨ýØæ¡³!‹é cÙR%0÷’:߯ü:º|‘ªå^4ĵËÕXÿÑéû•:ß Šº³¥;ÎhóF‡JM¾èÒhà(ƒúf„Ó7šº¡‡É¬‚¥¼¾¿àE_È6„ é¤=!¤—×Bâ(„Ù¼©‡Ðé¥ ‚¹nERÕ 9òñ›“êN6 2¹’_q¨|=•Æ9ŸÑÄõÔèÅÁ©kô^LuЉë¶ÛíÜ#n­„ƒ™f&â/WÑÔ¾6³†­$~ê¯ Ì£Ñ#Ì¢–¸{—‹åuŠ=“þGb# >=¦‹¢\±ö‘ê¹/. ‚’~¥ÎeÜÉsmZ¤ Ó™[{w·÷Z§ ~íÇ ·¢p[¬¡<7ã?§as›ƒ¬:®‹YßgA‹Ôh'ß {!‡¤“зYÛ/Ì»|,È6nFd·ÈjêxߨjK«)×q÷ô‚.áö×™n”ŸÇ9”o gÒL«¶vè”t옇Ñî麵j÷#›Ò«¼€3^Œ4×åê±"ÐrØli ÙÔ£Œ‰ç…3îþË€ókbôgÓƒRk”°‹…ÈÁ™-Ïu_‹2–)¾KÔ3 &åCÉ)!’1ôJ6µ6Î~Û…ef‹¾R%à|Ä*\-¼Õ¼JÕ— é#^8ÚUVWÝsª½J`uÿ ½T>&gb°^pÅj¬å¨‘dK’{uÉægÊkÁçe½"KîÆÐøm¨äi¾{£Ò·P¾_ˆø)æ‰ïŽè E¼bVY-F] åã:Áqto/gÐuìxõº¼B3hFÁéõP%”òG`Ðṫ0ÃküœË á§ã³ -ÉÔähÅFéçèWeÏYöOžMÐTq¹Œ:¤&[ov€­tÊù%«… guˆ±þÛ¬À‘„Žä!'žá?ºgÞBCÕŠ.ì`)(œp.ËiøG:¸«ìI4ú¡.#dŽdÙ–™ŽØ­‘ÂbÔ¢X‡p »üaš®A¤Éäyb›àF˜ÑÐPÙ,ór…¾%¸[â°L-äx»”\^ê-eœáVî“å”àãU£f‹ÞŸI›×yç©M>¶ÐªWgäê¶C×Ð?)Á¹$ñK|úFTop€\NSìö„ܳE²}Ô8¹Öé ‹> È…9JÊ*~¨|î"çU†”M•¢³êcu%úF—%¶®í\¸Aó œ›]Uoý*¿$…ÂìHh™çØ$£ƒøÀvše­{E³³áí®6î‚øU³Y$¼œ£“§«ežrX±IX!—ûáÒï|?Fyžj5½`ÍeBªÒEd—}ø†ÍXÜ­ôÉr3RÐê»ßl[ª5 ÿœxZ¸=õJ?g^®Á ¢ƒ1¡Jˆ©Ò±I4B.üЏc?3{—µÊ½gäìÎþK¬mÂÏw#ûÚízQ.žl[«­›ª÷]\” Rêt|åÒKž®É­éuB’» !Æ,Îe>ÃŽÊ’_È%g>²šÔ2>p |mÒS ý|^K-À±ã/kûõ±­Uî²j_[v˜d¶ã»—ÛÁ©~ÑËQ3â6Á‡”¹÷óœ[¤IÄd´š<Ô×@ )=)çì5VxŽv׫¸Sö(ïȪŒÆpîE¿HsŽùöù\£Þá`Û~âwdÑpu‡-¥.F>«CY˜Ú~ÃMUq*ÏäÚk£w Óš‡¨¼’Ó–dÈ™ZõÚ×Ç,#9 Ÿž¬w®‹ÒŽ‘kz¸¯ o~F¢_vzððP³ê¾ÜXÞ­ ¤õlùzh°‘†×‹LsNsiþïg#:0ºó¬{Å~D^ÎŒíU P] ÜÄY,gÊu7û]¡D×höUrz²b;…@îü¥}M墄Ó.¿» _…¡sÝŸ¬À¦Oêã÷–°ëË=yñôQ£ûÞô$ƒŸ%³“ù ew¬ýj:ßéÔ‘6²˜#Ù´1”ÂÊ+Ë¥ûW”–|p{7ê«ÊU¨­‚è©VÎ^ó®0èèkð'øÙ„ZÞNT¾C.Ñ#AlD©u,"Gn„,p—‡Š§¹ƒ|ωÍÜÌÀMÿ’0àf—y¸îšó´·&óí¦)‰£‰¾ì+nÛã½™ôp°Ûaþ+`¸BÕ¥,SÁ}êÀ¨©w¹ØÛ·Æó'[Ñö/z!s÷lïóÐU«·j9íþð44! JãnX*ØÓ}IP-ÛàâGU):=´@Ä?“[|;bLÍüÎ#òYkáv/½3À|ÿk¤W«›DtY¿õý h¡Õ—¼N’Z!3kƒ&5c‡»‘:–$j Ý&®.k@ǽVÎPú²¤­»f‰‚Hˆ½–)~ùÊ¥ì ¶€÷ S½«¾#^öÝ­*y}ýG$—èD® …B*¼^tÞ7JÁ5»äk†Çª¸å/¸Òˆq9:óôÔF1°–=ÇP.­ÒO±û`š$¥ØÌD»,˜úéXž-\:~Ð⥙_mKÆ BôCL1+4:JJù9Êùl7ù"P~g)¢8{ånÈ2¶Éž½˜ñ Nâ‘õŠ4'ÚÈÂøB‚¼‰6R¯M¿ÕîT±.XJ¼Vs09L,ųòƒhnðWý'×qûG.Y›‚í,‘DÍæ¹ÝŸªoà·Š;¸óBËôÂÃ޵=ûôÄ!á &Ãm¨ØeE4†íE³¬¼†„1RTmÐw$u»[3x÷Ÿºtˆ®GBˆ<vMSãŸìß¹R´.ѱ¿ì$CDE%~zßKg·ð?Ç1P endstream endobj 155 0 obj << /Length1 1442 /Length2 6187 /Length3 0 /Length 7173 /Filter /FlateDecode >> stream xÚxT“ÛÒ6"Ušô€ôš€tÞ¤w)!„Iè ½JoÒ¤)ÒQª€ti¢ Ez)òEçÞ{îÿ¯õ}+k%ï<óÌ왽ŸÙÉ ;‹®¿¼-Òª‚D ùA@I€¢–…€@!BvvCý'd7†º¢`H„ä0]¡`4S£1D-$ðÐ  @¢’ 1I  JüMDºJ”Àî0[€–à!E²+"]¼\aöhÌ:?¸ Ü„„ßïp€¼3Ô#Z`´Ô³"  !0(Úë)¸¤ÐhIAA°3Jéjÿ€›àC;ô¡(¨«;Ôð«e€6Øú§5Bv€¡ õ—Ãi‡ö»Bƒ@(LˆÂê À¬0P×è¸@‘5ÿ"ðþl$úWº?Ñ¿Á¿ƒÁÒÙŒð‚!ìv08 £¢)€öDóÀÛ_D0…ÄăÝÁ08ØCø]: "¯c:üÓ â sA£P0ø¯¥Ál³2ÂVéì E Q„¿êS‚¹B!˜}÷üs¸N¤Âçoˆ°µûÕ†­›‹ öÄ ª®ô‡ƒÿÙCÑ „¨¨}€zB-`èåýíü czðóqAºì0m@ý`vPÌ¡ ì ]Ý ~>ÿéø§Ela4ÀjCþ;;†ÚýecÎßæ 0bä½þõdQ˜-÷ú7ý÷ êêhÊóþiù_N¤'À‡_HÀ/! €@ Q€˜˜ÀïŸytÁ°?uüG¬: ø«\Ì>ý]²û pýnÀ?si#1Ê…¸þ-ôÇ@ óú?ËýwÈÿO忲ü¯BÿïŠTÜàðß~®¿ÿì ƒ{ýa`”ë†ÆL3 ˆÿ¦š@ÿ]-¨-ÌÍù¿½êh0fäöEóƒî ïÿ…ÃP*0O¨­. qøK5áF¿æ C@u‘(دþ—3d'Ì-‚ÂHó· Š™¡®«Œ€ m ›ˆ(ìê ö"Äœ5Æø€0Si õü-f€ ‰Æ„0=ú쮄¿Ú€]¡¿ @ІpCý ¹D@íß‚(8åð/ƃ‚aöïOø? ƒ¸¹ºb¦ô·‚0Uÿmÿ¾ PO(„pv ‘ q|ÒzV-OïÁÿmoa±=2Þ¬'BÍ1ýÂÇA?Cuü‰‚µmåÝÁçº3¥acS¾ô<»gÞßeΧªå¢±”{–öùóú½³‡2Ù"éìGÄžG.“ï%è1’Z›ãšs&™L]†Šu ¯½Z-¸jG­=’Ø8ŠNÈXRéÑ1ò9í[ØÏÌXØÑfÉb︚§¹ª\a?ƒÅž*´FÓþðZ6Møòå}VoÏsáÃ|®*ÑÊ0 ZJï‡,9ƒ‰}´T Yß °8DNKSâYi Ã8æq¬Åæ/&ò{[ú„Ýêíµoë<ýÐàV‹™’Ééœ?d°ZÉ4ü!H|·11Ò¯ú9›{•-ÖÉ@Ú^•0<· —š €WÛ>w­5,.95ÓÄþÔÿ4XØruôî™uLFHÈ"E.Þ÷õ¥‚¨.œÉeÐÎäÓ¥t €‚ŽBWG›ÅqÑmðŸÀ÷—=°rSæ$ÄñzãûÖÎð}$Û.#Õx`¼i[ÆV÷fÂu‘“äÆ<Ê¢èid‡w\NÜ„¿~n®nK»ªÔ#9‰™QÖ8caÒUˆ~x!Ô(“"|:7ºCIo;ެfù¶^ç›–ñ6®û‚B–¹í¬‹µ9¢ïÇöâ/×ÌÆ÷Ŧæs~ù[Q”<}œksû}í¸~/×T¾6â<2¹cÜÙêåƶG½± ioG·»Ú8SÖ<ÕêÏOp÷)lT%ûXC áå q"ÍŠ_z©"Ì{Áš­Ç®ìŽÌO¥î¯ºX®×kï¹\”=QPÜ!åœ •^®Ô àðÁ%Š0öW"þ.~‡‚u·ÒÒ_¿bÕ¢Ì9l…ì#¬8D£L§<–Eývôë‰×kw¿ë“ÿ´BO˜H¥w|8Hës“ãºW†æùPL1qÛèE–ïò÷ïz~`áo*%pœ”ö#qOÜ zü‚qt¢š‰|Igå’T-Ë'ãùÑŸÄŠÍ”ÁÆÈÚçsîÍ9Û‰²µÉÌRÉY52ƒŸð…ô.—·?f-ÿÑ’A3¦¿sÓ]_1e¦7KOÉ–dBΊ/§z0‹´ÍéuŒ|M^ýL×»¬6Ýc6ƒ¢ÈV½_ÍÛ‰ r*ìyÏÕ¸m0`¤«^kç£1\:„¢ %Ú2«jÍÛÜv7bž×t1ÃԨɮ“'·•®–tGz^—3öáËÁ9÷„I¾^¶:V£b-ÙãÚ-ÙÅ$ž©1w’i™9]ÊoY•4I®@;QÄr_8%Òð[­¸]s€ÎK¯(<¸I‡;¤Ž¸(6±:ÎNz+D•¨àc½ýr¹©¼Ï2`$7®J!àaDÿÜrÝÄ×IŸ2bíÒ ¬=vÔ²ýVÓô¢vuÐÊ· ãO+Ã}ÁàÒ ‹ãuÙI>"ìCt<)ÍL4áZ'½ӪOãC­D¼ÀGw‡EÏåôÖ»xúÓ&WÑÓÖwR…µR×;zWÜg˜$œˆ¼Èc©ëÕ½\¤è”ú§—IŽ´; ¬QÉ}ý‹Š/™6ÞªŠ²¬ìA¾Ð/…,ë5©C¢1ƒ…úºël«oš$¯Û>r÷·Å*ß›Y/´å¬èúÖAÏßÔ@ô^K¾À~ë>ÛA=ó™†Èy0´êÑ%]w¾&‰øÈÛãÙÈàQý’r»"*SS­ðc³Æç㣆î´ïøOrx§ç f^)=C-…¹™7)¬´>D_YóËÕâïã]ÑsgÔŒž”¢ Jú Hme¿Ô˜RáRp›‡vŸ:i›Ô›½ÝQ™‘^Wð«MÝpªëÂ_Ðßáú49b)4ÃNÄ–¿¼ÚviÁŠ&Ý€û:#'Þo—Þ§ÕûÖLU’ç•Má›÷ÉùÎïÓø‚\¦îdåzHìÇ׳8‰Z½[Ó‚•'ŒÔ[è™PœK5hFج®b݆»ö¨QÑ6ñ.~nŽE=(Ož&þmt2¯ïZ5×J“ñäÁB”jI\,HÃŽÞ„Ò{Þ5×jGæB•Õ‡³ìþ`˜© ˆ«ãnWJMØ­·àçÚ†YïqÍ®G!¾M‘J7˜zïó“þX*ï¸4DÑ=28o<’ï[ ¯ ˆ¨}¿H;Ó(¿’Üô® o¯V»Ê3Ç2 ôD kå3†êFòÔ½€BKãŠìŠÚ±<œ>…ße:Sq‹”ÄÁXcF»ö‚Ø€Œ3?ëÊ»ŒeawîDz­‰÷öøv>°½vô2̈ ìª7vî[}¾Hû¤øƒ½âmÂQÂÞÌÛæŒÞ7[¾F(Îû v£Ÿ6'ô¤…Ý,F2òì<—ˆîu™T–‡t¬2ÚÑ8¡ðtÌk¸Å‡7tÆkªžz}@Ô¥ž WÒÜÓ{„#xÚ Ë@·¶qJšµ-àAù·A‚g$ѹbÑ<Ê"÷žÛ† cS},˰ýÄQ¹åmÏ2ÁóÙŒ5qÓ1ê#¿öEàÎPáP%òP<®GÃCÏþKŒKÈ’‚$H`**"{¸s«†HÓ8òéñûëË3gbJ8x˜Ø‚r[€µÈ:¾¥Ôê•Þƒ?ÝŠËÛ“žX¦||T"¶ˆ—€ipÃøÐ+îƒU†|ü¬¢[Fn¾Syù‡(Ç/þåùô 7M™ê+ÆEæ'‘oâ¶À¥&zìÞ!w¾nš1- ËïF«{»Û_ àNÜ‹ì1OºWÀ¬tOùcP¢‹K• OyÉ÷šù4÷=W Ûa„âvù8ŽD0Oý¶©ä÷öµ}­’È3~â¾…Ø=¹];iØšLÞ•?§9¼@òpkïpÃR Vre^´/‰’ÎþÜ(ÔÉr@9o~•zqȖݘQÔæÝ@¿ÓËq_™ëè Ìï™N_Ý.¼uT†ÄA1S¬ßÊ·$BF^{ù¾j¾w2¾ŽåB"äŠýAb™ß'‰÷R«êŸÏ0ù lª”ÐÓ÷7 óSÑúY‹ÍQج P":ÚÝ€Е)g—Ã݇áÈ:¹êš¥ÔÀk«ýMùqáâ%=ª&ãã§lûÊùÍÔñŽ2„Ï,dåëÙ>7«¬HE„O Uví':jïg+¤¯¯dnË—”ßYl{òzd”yáíüØýzü(¦ð‚øÑ]Ð+]»»oUñMôäŠ/·ÞdxáZPlžðå»õW¢Öúš‹šãÏSU¶ë\úÂÍ¿¼¦áÛ’ß”Ð|iWJO†T×d$ÉÜ­|gÇBsƒ™g°­LOpͯ;R_¼™KnvöY†71¤±M®K›CÝùyΗ—LYÞ;§@ä†áÔ$&×¬ãÆŠjëgÙâh&nJ{ei»ƒ“ñ7 KÚzŠz÷°ÑÚu…Ýp¡×dNòêáÜ4Zg¤þ ù«×f©³ˆzº <¼ô¸IŽËXƾÎKˆéÒÝKŽ7ý¾Ò Ã=ÏOÛ™Æèvªï\oΖñ&CH*¤óžzq:o£¤Ó6%\X¬Ú±‹õZ?}_á,ÒÎT­Û[¼™ö€»§dè­£EÝÄ‘°éƒ‡yÞ²³J;2Úg¡7ÚlÄŒ1>Ohl̸°ÎŠó¬?kïr*ñ>C.Ea}Eª-wÇ)y,5YµÑÇSmÙ¾ðQN¤(ìzæ8K»˜N.ÀFe¼¸æ@‡Î:ñvbsrb³¸¿UE…»±kÌ;¯"kQÄ5I•;<ºÎ>yî ׫z‘¤·š‰k³XB%èrt£þèƒaÒ“v•1q\«Ÿ“ò䉈- ½ø×ùα>ÞRÒ“9xÎ‡Ëæ0±#Ôu[Y/8y¨¯ž˜Þ@¢¥é'£ dK…œi¹sG쎛ªvR—òϼîq-WY³ò)£'+fiÕcÊr <›ŽíÖÊy+&]Ÿí)/왣Ç>Ùëh0Äè½d;g{-CI÷5h:KvÓVNÂMf!\F—J²9É0‰ÅÎ£å§ÆÐE—¾Q˜#¥hûr1íf¿«Km5ˆÒñ*W…œŽ¬#ŠbD§ì¨rž.)>NmváÆ­ä>Áû™eÅœAžÏ]3ÉÕtžYX[K«™°¾6„øI¯;GCÕÀ©âÂ7am¬ÍG¨ZC]7ŸjTkóHõ™nÎ3^þìÊÒ<£gÏkT¾é²¶h ‡…ñ–·Ž›µCÅ(då\)'0[zú Í:){'|‰ww¸ÌÔùã£áÖ¯¾ïJYOR­­Ê¨IÖ½z±h¦ÆhJª_jQëóiôîÓ·4Ë %á#|Á¦Rò1UMiöИNÖåßkìy¥î<»ŠLKPg_¯B8ÞÉìIžªÆŒ®CíSí:óF\õ«ÍˆE‚}Cjïùq»[k·¤'R“£/oXßÇ|++ƒ¦r¶^-~a³öÓ¿…G„ÿÉÿqIù’¶“]>øéöPL8ÛŸl³îÐ}q³ãØ_cÎÄ'Kkb^Xv:.¦TëÐ⇤ ­%¹;s|(YÚMÓ%©›! ̉·"‹M)âtÕ¥dsY "·ß ¨·qNŒ,V^'ÊŒ™Fý¼}•(R÷6*À5@ ýÀK¦*Œg9ÐF§ý©%qº‡^Þµ&ÎÙpÖS”rytãññéLn?ƒf öVpžn‡MŠ}â¦ê-¥aÿÓÑX “Ô7nÖZ©óÏ)©îmƒû—ߟÖÊv< nLTa5¨>XÃÃ>æý¬¡7¤e˜(“Ù <@mÌï{"Z,N—±|ð¸Õù"à÷,'½5è/B¾Ÿo¼4XZË[A^ø¦¢òí%£XT­*(ãÕTi¯×Ú·î$|ÃÜhE‘KUWû%#¼n2‘lqáÏ£9|«ãê;¢ž¦|Q-[™Ïy¾IœW…§åþmË‘]¼¼ >ÉGìdZ [ôèa0¹ª3“@áL"ý2¶rÿ–¾y;ÍhR[ÚñÞ*ÁOΠµîVP%Å É[)?fÒýÐÇZþÙ).Éh\ìIhØ2Å£ôûLöḥ=ë¥k¤rÑY†É€INð +{¯†¯µž†ß×ü÷ˇnJaYI‘$~GWÝâWSÅ-k6tî ^å^Y¢~‘¢¸Ä±i“îƒQ„ýñ-u•5IÙNtòL<ž‘Î0¤—ÄQHÑÙ¼ðk¹ŽØƒ@'“s§ÂüÒ6ìAÓ*Îà×»ŒEÔY¤TÒFů§µçÄ5‘¶Žs¨ia²ðDé÷èéRÇМ¦)¶T¼Êb5ûÚ+xé¶Ñâ>=‡ÑÎMÙ‚á´·{ÈrZ¦c© méÜiŸ™a‡á™¥žüdö@ºPo¤³¤+wëf‹©È"ïŽt;ê’J,V²f¾³ORˆÊŽî™ÕÝ=–R°Ô‹Ó)MþÑÁ£p[¸6Ø Ñ‚ÃöfA½—dó:×JúÓú#!sÛÛë ?~ *=ÁîÂoZµÐ€Ù™w}ý›ãÕõ7˜È¶Vp,¢Šlö;n]m´l–[m I ¥öòâ’m£:˪ÍG²j"hæý,Õ‘+`×JPšß FÕϸã‡M>¦k´Yë:Ô2V¡Š\ó:©2‘x`—êWú@6zÖÝp,Œo(¿nÎs, +êòe-®[=ÞŸ"Ìíë7§šÐŒrÈÅŽ5»CUË=ƒs¢Zø™tÝ_-ñ1_…ç°ï1ª å¹S¨–#­¢A¾¼>sshÇ¡øvÓ#ÑÑ»¡XÎ|ócü&îÄ‘à ?¼Ëù¦út@¦d峇ö·ìZ0¼L2’íLGdAw%Ä£Ëj4RÅ¢1/9:Èjùmì‡ý“ŸÀ;å^.)V™ŸviL'UÔΤâàVàrÔ-[ÖwŠ]Ó|JÔEiS5®q=ª³)ñË?|d{¥wÁ4¦¨yœ”ÐHí™æqëk{c¨Jã|æM⧬!+ÊI†Â|¤¬qI{ˆÜ/ØÏ˜?Ušï@¦ð,ö‚ ØQ¬ªÏècÊñB¼¢öÑîž“’n¶z Ôn¼¬(_Ú²&•½´á]{§f1¯òüÊ)êq¸,júZ‘¬CIƒIŸö]¸]&—½œ‡…]‘qú`§ù¦ÿÓ­hÊ &KRya÷Š[}K:™îãU B7܉½Ï¿6Οg¿PÚÜ;ɼažéí5’8Ɇ UÌ9MŠ<·Õ—ß¶æê •ó‰—¹éeò c?båÁyBÕš—ÜjÏu“Ñâ9ÁԤú >©ûÒ^ 6b¥pϸæý›r¥á÷RømópçÚÜV6cua¯²¦ùŸrºíøR±<˜¾ÖÅÐtµ¾´œ|•|—{2ßçN\SµÎÔ¹™~Ig©çûõ-潂cûÑ„¥Ö+ƒ«–œLÖé2x¦Íþ‰·TSMšº×äcåé›ï7#]\Kœ´ˆÞÈáÉuB9Þ¾NIƒw D¢ NW»Ùw¸×]ôûÎægß–±Þªw#LS†&ŠœñvÏV£ŠrÒPÖ4Oûºf¡÷šîx¿Ú~'×±çOKçïN‹E6°ô”]€BÃû±6e^TÈÚåò)µò&>ß2ÔXhœ\F‹IÁMÉøÒgüµ@rœÎhVh¬ñA?(bú}+i‡žIó‹`«ïc ÷yt¼/š GŽär3ŽË…Ï33#qÛ›2[bw’Íî¦×œ½ßßä“A ¨/¨D¥fÉ^~ˆJ_$¶£ê´yÖ^6ׯ$⯇de ™Æé¾²®;/˜*ìo¼p-;t·ý¢í‰î^áràSšÏΤì´*é\w'ò:` XL³æÝ˜5‘EâÚJ”¿bhàÈÁz_.Ÿ­ÞeíD^svŒðòðÌ¤Ý îiéèŽ)šàÿ8§À©öÊþ™vNtfpç&í£‰_\¹ik¤·e‰¿ëÙÿ”N– M„ñÑ9¨ ü° Ü{—s‚Š>ß8[Õ‹(^¹V“0/3m3âßh¬>ºÈ¤LR¤–Òç>#9\¼íäì_k@½_̳M>“Ûxû8²‡cé98=N¼ÁÕpŠ}›Ü>­aŽn¾îê+·fÙ6]ù1þ؇²f¨¢LXÓhd+/ñý‰_yŠýGÍ&¡«Ñ¯}^!mr;Œ¸¸õóhƒÄçtíûKó ‹é±û[’É– ÎÈb{×S÷ªNæg*+ÌIþg"rt-ëÄFrI`  °º¯‹ÉÒô»ñ:×÷ûl¤‡•çNãÃóØ^Ù¢WV=»$­Ã1‡½¡ÙY×—ä2pØŠµÒ‘ âúuó¨è¬9T£Þ¿”Ë>½ŠõR9í¶@äÒZ§Ô’­zÕ_ýj¡ 9$êp* âuAP¾ÞÏIR+ƒ§-Ö¦npH=!Ž|ËdWzüÃxH§ÿ2ÉîyRFE’V|{št‰)-SI s+n:ý'1˜ÄªAWàkR¤@~ôu—jáÊS¬v껕ãá'W&†š3à‡â‡Ý¼#¬qh5´,ǽ²T-HšqkÚƒ—_Çñ×ÓÃ8:A„qx‰ÿßò endstream endobj 157 0 obj << /Length1 1389 /Length2 5990 /Length3 0 /Length 6946 /Filter /FlateDecode >> stream xÚtT”ïö.Ý(¤ƒÂ0´HHw#]Ã0À30 Ý”„t‰”JH "ÝÝÒ)Ý!‚ ÿ1Î9ÿß¹w­{׬õÍ÷>ûÙûÝû}ŸçccÑÒå‘¶FXApˆ—O «®k$àãàåãã'bcÓƒ¡¡a"6}(Ò†€‹ý/‚, F¡190 ÍSGÀ*nŽ$,ããðóñ=úÈÝaÖu^€ u%b“E8{!a¶v(ô6ÿzp@8 GDþNH;A‘0P£ì Nè!`G€.ƒ¢¼þQ‚CÜ…r=<Ø s[¡ ¿;¤µ`ô€Çs… aÎ(W^W˜ã¯¿Ê OYn-‹pr‚ÂQ®D¿ú“ƒ!¡ô±{ÿܬá÷ù»°Á­m~ aíæ | ‡¹¸A•åþRÐÑ0[( Ä÷HXXPu@=!vÀ_åõ¼œ¡¿ƒ _0z?g„3À=ÔfEÿù¸‚Ý¡Ò êçó¿ÿ\@k°‚ÚÂàDÿ©Ž†¡6ÖèËGÂ<&|hí|¿~ÿ~3CËËwôúý÷ýµÕôd4¸ÿLü ÂàÃð<@ü臈(?ÀïŸe´À°¿mðý'Wnƒ<úÓ-ú˜þÕ±û_pü5'àŸµ4hÕBÿ¹)ŸýýKýwÊÿMῪü¿Dþß )¸9:þsüŽÿa°ÌÑë/-Z7Úê´ àÿM5€þ1­:ÔææôßQemi¸-ZÌ< A^>Á?8ÌUæ µÖ‚¡ v$óúËjŽ08T á ûõmAgññýW í/ˆúûáŠÖåïmŸî+‡ ¬ùŒ_HF"Á^D|h9ñ |@hCZC=+ä…#PèzF?€ IôëZù@'ÜÍõú@k茄¡Ïãò½ nH$Ús¿%nä_ë߇B=¡¢™)äq¨}Uhã· iž/CxK+ÍÏâº"…PìÓ/}ìÔð3Ç]d,­Ëî ¤j}~>6åËÀuðmØÓ´-+h1E)…!ßµ&sÄ“×wyÚf e¶FÐÛŽˆ¤>[#?LÐfºmi‚cò É`êG˜H»ÀfùFÁÏf×MãG»'@ÑW2–T¬tNó.V´ ë ªßÈ”,Ži’榧ütä'V4,îB¦1†îÒkÍ$.½a¡7«»+Uàä•jÇ;á²pJ:*o–œÄ:ê„,•:W v¡¯²o’ãïÑ:…³/b;UM‚Yã:éøœÅŒöÒ°HÌD¤æm•‘š†Æ±A~ö^q–Þ^x/Ù$†n5"õ’5ÁXà^XdÛ«¸?¡y£ùø™bÍ—¥éd÷áÀ]°kv”nÏÑývÙÜEÃh—#¥[šWQË›méñÎ °a³»ÚåBrcƳºsjU$¾Ú И‚Ov§¦²tÏ)(îÈÞs<6ܘÎP<ÞÝÄ š’ñ¿ÀgÜ5ÈÄ}÷C~ÓdEÝâJIý$r Cø 7„rÅjÖ9gÉØªV~”¼% ÷pÀ1/¸^³=Üÿ’$F±Bw™oÞôÚ8:z¢À@ÿJ-ËÄÌÏù()»±/cÕ¬ƒUé³øåm `è.1Õ=ˆâJƒÔu2“÷¬®àÕ4_¿²{¸T–>â•ÐÍvÛêÕe½ÇÊ·Q+H ‘4êX(ÿ˺‹Ó}M1{¼…ÄìˆNȹñèp@íì« R£–{>Ï‘¾ ÝX¤gQÈš¢6;WÙÀoái» 7­öÉwÑ‚PD²×Ê[ê|àtwg2¸ëa9“Q^5h¥ªÕòfΦŸYZs>ÁRÚ“‡ß{bÀ‘¤m^øå|¨§ŸÆ|eOÎîì` ÄÝdÓ<ü8Œ÷äÖå5Çòuñ~úMæÔáã 09«ÀUÓy±o,…`ªçòùRÉÍÆ[¢âPò7E±i/ÀO û:ƒspag»ÏÆt6ÞÞ'RQªý ÄT3tW¬‘F—µ*`”ËIÿ YË‹Ãpœ˜!‚“ÞSÍqËÅÇPÒìD*ò ‚ÞIý$ó“;¦³„öK触$­½]©“‡úøš|A;®½«šcÚ«‹EïMßF†ã%å§U+ vÎ nqSb}*¦fRaj€B^¦ô³¼oŽ¥:΢УtMAŽ\Òží§pãë?qÝ!pQv¾}L|„“CΑÀC.* †),. íLo7º›sù³I¬Š§zW~®€»ÛÞõ¨>›½5—^fL¬Ïƒ„H/¿>Ê nŸ¾÷Í%¾¼ˆÚ²ýj†ÕøKsß5˜”ÍØ6Û –2ÐÄú·%£Gr4wè¤&WoÕ ½—ëGt†ã¿qåpÐŽ XÇ÷¬3´Ï.+Ür¦B†‚@súdU¢3QNÙK­¼‹&~âk"?Igbåð¸ÔEüõ \ss$•/+úbcÞù.ögÑ~ý,wûYß~î×M\ÔÃÍzPÏÛÝ9‚°íΖÁ=–)ÃGÂòÄ·™“wÚØ9âTšÉ†t=hY†kööKW†>2–,çTã ŽT‡…§ê×﨤|qy÷´Ì¸#tÁ$SåS“¶*aL—Zªè»Õ°ê‰|º'|±)½Ô߯gçlñ}{+*-õV¾8&S>OáOËÏl˜ŽíŽ8*»uw9»oÛÓªË2Ä(è aI_á“39AÓ½¾pÿn‹¯ s`Í€áãJà?}±òGK~ßõv6;äý õACá2ùAò¥3!‚mv÷7^FWÐ!ÇÇDúÊHG$ZƯu—”cƤ#‰q”¨9#|¼Ž­WeÜ™¿µ]û(­¼!‘1sâõ›ñ­—Ái[Gqz 4”e®¹8ì.ŒÙIúàû«ßÁT0²éÖøëdZl6"¨Kë}.¦)þëÁ Ýô/÷J)=uÕOЬòς۸#§o½ø`MÏˇÌT׿#3k§í=ÚŒõXä|cÃp˜nû½•Ⳟ@¨ âÊóüÈÕl'æAtêi¨‰{I.Œä)<Œ?#Ò´ƒº¢EBøÈ0dv%^aŸ-`ÖúîVfu©ËÈ“¥Cz|?¿×Q.ò4·‡’K½¬ ÂÁË,°+o×fÕ¯Ý2ÀwœZ´× Œ½4YÐÕW#ï¦ 1¥¢xüôY·êÔ¼ fm‹>Mæ_b7MP .L 7L¢g×Ný Žû'Iè1¬Å;ÈÊ#äòa´(S‹ðŠÂÿà›Ü¨„Á¢¸ƒ[¹Eü`Ž\üC}þÙF !I¹3µoÖ´n"a8bþl=Ï}¯%t€Ÿ– 9Y1·”?¥®ò#hü³ÙäIľI“Q<Á*ZacaßË{—–,`#š;åxµmòC]'“gû!ß…K8uÆ£¯Šc»nx\±7VëÌÕ†¸åeÒF.’?MËäÏt ’ÕÄ“rh¹nŠ]ì¶¥Ô5—x9Äo¾4´,ÆéN2dj¬*àôIu±r³¾DdÞàÛ SŽÓ¬t…q K ²ì’®›ùê÷;}Åǵ*õ™òKÜŽß*-iwI¥/yr6ugC.!ßx×Yÿ®Ð<›l¥AFKÇè­c2½7ðÈšS.~Á5öD¿‚t!ýAÀOV,P7_æE\Lfê3ó]ãÉ”‡ë5Å^ñn‰;O¿NÊ*È~‰¸ÕqÄôÔð&ÌQ›Úc޶gæ©î˜òh‘ÜÔ´¼÷ +òžó¥D.q,åÚz½—7Ëˉê;nä²ÂiVÉUõ+w[ï€/0q#œ?Ò½#mYN%fb©2‹:O«þ€Õ;츴?M½á_/ÉÛÿÐÒéò¡—"ò]´âëàtÅf!2\qéúóÝiå §EƒªµàW¦!w:÷˜¤óʯ7ÌHiJMÀø¡ä,ì'½[‘»µÏØFMar ?O£¾fúL Y7bOn—ÍEg EJ LmÑ«¥Â¥ °¥žs y±ã×Ĭà( ƒ>²â1z¿Š¾z‹9Ôó|½SIJ#,icP^ç×Ê nb¼É!uh LX—»{"üùU† R$…êkß™æ;·PÃ{v[0“‹ŒûšI;BZû`‡Ûw.%®ám­™2áJð\Éæ§h’Å,.Â]8:KÏòذj4„úV#„÷&,öš‹l’±K#&tκJ ù]îáÁ1B}×w%­e[4ÚÀ./¨sÈd$÷Àx>^(–ϸn9øLdÙÕ¯ˆÓT%49›Hb‘àŒÑ]“ë}BøÖnç˜ñu§IYNåÊi‡Ã¤lÚs©Ê cå61É–š-ã²ÆæOõSþêÆl:ÂU[ænñD¿N©5{ß"‚Ç«YšÞw[kÌ_Øuu¯¶F§& |n`NRð·•² ýzåsvîf÷Ù“m\0aÕ7°ŸYfa#â oEÖfÿa‚M[Ô¤ë*ê¦vH„¤6ÊvWÏg\(ÆÙÿ¹J‘jÎc2’ò„_³D€ð„®pËæN¢!Ýû÷êçKKßñä5 0KÉã^WG,ÆhÍá&•G+aZ=~ ÄôéèüÝÇ ÊýI¡viõëûK£XïFu1uíÚWÒò«KîÑ .>3I£ÏSõŽëÛ¥µ Õp¥ÉNT‡ùiät$Ùz#pÆ‹–¶3tî^b%¬BÜè5h>Ë`9TË(úf—»·ýPÙ3âêóZRâ³æÍÃ%Vì8épCA½M£Ì·÷ØyC˜Œ|¾º Ãí›ÞÉÎÞG²·Ð¯Þ*û¨†ØU.eh”SÏ:Ò©{˜ò| Â\<‡)xÇ«¶-›ƒÁ³o`3”šfHLìc*#ÁNz¹„/Ó»ú! 5ÙúlòZ$*¶9úïÅí"fN o‹Ì°;ßÛ$_7U‹ýðJT#‡í@•ßÓ/(Üx:kŸ'?¬…©k¼>Þ¼†¼Ì :`°5¨^£TMg¾&;nzu³ó´³LÉ´õ…'ŠçÛá+Q¤›íy¶Ž”ˆ–6EHãÁŸéïup£ Õ/…ƒ šf˜'½1Âî„TOšãpHµ­¾× SQz„þx7|¯»q¾´nƒ›Mp2MöºœhÜ#áüA.•ïr]²†Ð=ÊC’^?uâû¥ pj®™Ë¼µ¸/@àU·D;°ˆÞ$éO…'g;Æ1ðìÎÀ y¡%ôÈÝ•„™†u,!?žýê|áâ14tn’·ÛôO?F¥âÐ1‰C+ ¶;ÙÖiÕÇ™J‚­.ã*U‡æØ_!¸À…™ƒ:–«ËêEH"‹h:ÃAö‘°z{ÙhMXÛ(°Ü›Ž·½ý*Úò\ö*÷º]ÝÁFûY½•Ÿ»dA0®_Ìagˆ9fcuU8®ï3öX:ßž¾¦’XtyŒ½J^[I‹ˆÃ˜GBJ¸~ð.•œÄÔeñ]RÌ‹vå·¾]ádu}Ó¡2¾—Ç¿wa¾ K"í8+z— ÝQ™ß¬ç¦ÍÞ¥‰ vŒ7ÎS?-œ­‘lÓKÒÊr®ÈÊQ~óT§µ"¥?Ðf/Ž»!9¡9ô%¹¥‡«Ác¸$xÀëÖÇ´Í}œâªápÎ?=xZy«šáZVf³QvŽèÝ>'³Qž(6'-4B—?QœYoäø*ÓÍÄ÷޽ió¼xYâ÷ìHq“*\Œô½'¤'œ¢AGˆ¬–yò@ÂÙÎ}%N[‰­6Ÿ¥ocïsëͤäýõjK9ίg #)ÔDYê]µ¬®ô§¾Î¿×AØ+ý„,¨Ëª»¹Â³ö´ ±ƒh÷Œe½õ*_+Dß+Õ˜ŠŠ|×uŠ2Ñ\g¥5Êïçáå %*þ#ÝN‘TJ$ÌbkLWýÎ7*´Œø“]-mØœÏl}ù¹Ê­Ó*žÏÕ{–Iž•úr?JÙ±Ò-‰¹O§·:+Wéí5y4„J/q1õ+›×²›’[ö®‹“£¸Tç¾wæG˜ö8¬óV쟓®09VëBÖ|‘×ÏMÌȆÒ¾k³G”F³Ì‚_õ–£Ê²Î›ŽMªŒ:Aõ‚µ3]:ãÄ>ùI,wGÙ(hxiCü–ˆ¦ydú¹C;ÓoÖ^|ï†Íþ bèðÿR/®.ò>p&¼×ñEûþ䈬€ë:†«Ø _Ž_S§À §ï¹Þ[QÁJìÒu.=a²×ÅÅ·¿fMÜâGÔÖ³är¿#ê¶p‰a'ï¨Ó$³ÍêjÛÖŠ¨!¼fd Ée–Ñ/Íj{´lŸHsë*)&Bÿf_ˆY4*)³Þ™l<'îUSÓ°‘L!™|m78P=ÙäzøhW]­e¿Ñì³nIBÜ"'{æaAiG{öXá,U*gI¿íㄵ;Üÿþá)±¶e;âÎÇ ƒ@“$xÒ±17yïۘij`Uœ&¢%àÀ“ZéQßj,EîE=™èíl£éRÍ©cé5™Žíc>®Ž÷(‡A"€µa‡þqz‹èúÅM¼v¸F©‚vfà':ÌL¢)G±\°æN‰í:¬yÑ=®ª<ªe6 õ2'¬ðV“â¡<3,‘:¥ààöD/^ #ôE0¹’$¿†Ä2DÉKNS+ó7ˆ.Të‘Ú|ž:P#¾Mº?f—Aä!sJp»«Ä:9òÙ÷[O6F¯Þ¡ú.ïyi ú@ ¡Ç)Æí>z"réûyÖ“›•¦ëæ’±ŽÆݳI‚R,Žíëcœýí˜ Ö8”ß±83‘î ²hÏ«ÎHÒ†7娇,ñøNÏjX)ÕÇ»öoýÞRs“Åk•ÛËóæUO~3ü@÷²tÀVTU‘Ê š%h qæ]dòƒKÐ̳i¯óí&f[5áÓq“ð« rË>¯~(mÓÍý­¤£šG!£–†KöÅÅX7þ3Âë7Îâ½;I”«í $ö”[Uª‰™ˆNu~dµfmâÒr×2Ð`d—³Å’+tNé€Î¼K‰ðÆåzŰhWm«¢O|*ŒNü‚o($¯„6Iˆ»US´íÎIŠ?wÝ$1g›7t†Ó=ÛÊå57‡øQ3òº—2-›Oe)JÞH]T^ ¨ ®BψÇRÆqb|¸NváÝžÔãÞ¯Ý[Sh+‡7^ özÍ• ´Ë'7ž–-‚Ï7±frúÜ]T-V³[/Åy–Ëæ>øoæ?äÙíÄ.zc3›F nQLa€œ˜!í×á/ŸK­)1»;FÁmSÄŽË ˆÝîQ,:°ÓŸÐŠË)_°Úžûvz¡Œ˜]# ä”3Uh³ ”½Ž£k„ÖÒ¼o¤ëd@´ƒ3%}vŽ•Æó§X–¾zím2_—Iøg·vxm´'b0¥Y85óžÜžºëp`Vp/¬Á­\®â«r|úQHP½úñ¦Ù|ƒãÀúÍVòNNm±á(²()6ƒž±ªÝO%B°‘(exo4˜ºï…–àõG]i–ôdÑš*mÍ=¯ê4˜xõÇûƒÖšX=Û“¾Ö4«FyíÕê}H¹H´üjog¨?7uÑt÷^:S“Ág¬jC.+öQ’ÿzÐ{X endstream endobj 159 0 obj << /Length1 1868 /Length2 13965 /Length3 0 /Length 15126 /Filter /FlateDecode >> stream xÚõPœÛÖŠ"‚»[ãîÜ‚»kpo¤!и'Hpw—àÜÝÝ!în—-çì}þ÷ªî-ªàSÇ\kÌ™²“¨™½‰¹¤=ÌÄÆÌÊSP—ac°²r0³²²#PQ©Á¶æÿ±#Piš;:íA|ÿŠs47¿ÙÄÁo ö €¬³-€Àö›•ÀÎÊÊûŸ@{G>€¸± Ð  À µ™;!P‰Ù;¸;-­Ào}þó  5¥°ñòr3þ™µ3wšƒ Æ`+s»·Ž¦Æ¶5{S 9ØýJÐ XÁ|,,®®®ÌÆvNÌöŽ–BtŒW Ø  jîdîèbnøcd€¢±ùߣ1#PÔ­€N9Ôì-À®ÆŽæ€7ƒ-ÐÔäô–â 23w¼u¨ÉÈ”ÌAËÿÀøûplÌlÿ-÷wö…€ ?“MMííŒAî@%ÀhkP’”g»Æ ³?mìßò]Œ¶Æ&oR7HŠªŒß&ü{>'SG ؉٠hûÇŒ,”y;f ™˜½9ì„ð?q £¹éÛ¹»³ü}¹6 {WçdfñÇfÎ, àggsñ¿cÞLÿØ,ÍÁ.VVVv€ùg€¹›©Ë ÔÝÌÿt²ýa~›ÁÛÓÁÞ`ñ6†¹7ÐÂüí‚§“±‹9ìèlîíùoÇÿ"66€Ð 01·‚þ©þf6·ø ¿Ý¿#Ð ð‰õM~lÖ?~þû¥ÿ¦03{­û?á^1‹š²š”†<Ãß#ÿ×ùñ£½À“‰ƒ ÀÄÎÅ `ccçp¿}xÿoecàß<þ•+²°ðþE÷íœþCÙåo Ðþ½ t€ÿ­¥hÿ¦\sí?B×cåb5}ûÅöÿYî¦üÿSùUþ_…þI:ÛÚþé§ý+àÿÇol´uÿ;âM¹Îà·-P°ÛÐÿ Õ2ÿkuÌÍ€Îvÿ×+6~ÛQ团™Ø8™Y9ÿ²$næfÊ@°©Õ_ªùË®ñǾÙAæÊöNÀ?^˜·,VÖÿã{[2S›·WÄéMšºÌßvèûJ€LíÍþX6v®cGGcw„·»~C\O¶·­43wûSÌf=ø-ð6£7ÀÂÞá‹ýÀ`ýÃôâ°ˆýƒx,ÿEÜœÙÐ[¤Â?ˆÀ¢ø_Äà `Qþq¼)ôôVEý¿ˆ÷­Šñ?è­ŠÉ?è­»éÑgÃbö/È`1ÿd°Xüßœÿ‚8ÿ ~cdù/øFÉê¿óí@¬Ü¬ÞÞ¿"ÞlÿÎãiû/øFÔî_½ßˆþ+÷.öÿ‚o\þiöá ½í‚ý¿&{ûßÂòù_ðã¿à§Á·àÁ·ótþ|cæú¯cx£âþ'ü ™:;:¾½§îú›¾þƒÿ|¼ÍÍÝÌM–æíMù­k[ïªD ]™~³s"÷_|½z¯µ#ï²§â/&pÉ‘¾(Ú9»~¿‰qÈ^üÚh£Ãjc°á•·³T× ca²Íè5‰!øpè$ï̾+×Ñ¡kÄ2³Ä9mRt½™¡Ãeü|þk.}_J€º©â¶Üêަሠj<2‡‡ *°M4½­âcµèÌl» ¥Ó…Èøq±äþ}Jß;×ÏþåRFHàV áÁ²ƒÜUúPòïîrF“€ªn ¼ÇhZÿ«ÖÀ/´&N£jÂü2;“Ò;‘2ª–MÒ›Ð}IÐb›Ñäg›ð¢Yn&4? øé;Ä‹|]JP/ðàà¢)í.+“”„Gì]„—œ: ¬aÎB—󒯚Š5PwJȘI)`IÃlPV»ô\`›2… pŒ2~l#ÞöU €ÈŒ„³^°5\óŸWkä·ö J#R‘¡~=$9¤ð×Ì'òú0q2*Å ÌÁN}di¥aiĈe9„¨>Áè1{ȶŸg»ìïÕ 7” íGèˬ6Fr‘'w0†V{Hd*.Â˵Ükñ_´l‰xâS'”LêÌ\g…É x­ä:¡O-fž›·‰FBô_k Bñ<žª€¯i‰¶gZI¯AÄÕ£1_˼'r>G˜2‰|Oð ­ùÐísº!üUV­£¦´·Öåš2¾ö XKNy^£›J𥹤#|±öû=;ÄEÙwŽ¥ÎùÅ#ãFÞ5Î>y5­?IÊ·óy¯;~õTSŒ)ÃY0›`\Ì –mø¶ K‘Ì 5–í|É™%—#Í#ÄX~È*Mˤè)ÖÒ·ÿ>SÉ^9¦‡Æâï•â$€EÃÂÀgÕ¥¥ߟÓv! ×ŠpŠ»8]â’«®Yã´[3~J×%õÈ¿©ãž÷­6µ¤DÉk·©öPcúǒȧ¬NZ^ë£4¹¹1*¬(²(SàÔ'&¾æ€‘ÞÉ‹A’XfÌþPU}æÈ]ñV0õ6ê¾HŒÉþ’"UR©Çb5rÔŸw«å¥€ÌâZ{ÇLöQÞgíô""tܘ•LjnéW4”äé ÑEÄrާAXñYªX¦æïÃ7yÉ›) ÅéÏ)J[Ó1~º»ëåŠy• ò%Ð<ÝÉ£3TD]¯XΧ ÙŒóI?Ró >|àâ‹VóCs¤`o¼†€ ‚Gb¸Ô?nïvÁù\±q¸ØÛõ¢)¨¤‚Ëã3:¾³‰X¹¸ã !‡ñãÚã'¾Äéhæ·^Ü– xa¸[l¶Ï ß+-¢se6À|?uõ:k`©h«Éw~(¸ú@›õ@:eMÉ}ƒ)¶‚;$4}g渃ީ“ãÑÍ?&N`@NJû¸Vê["\Z¹òàTì$ˆ®à$á"‚“#º»›}úlZ[¤YÜxè½>Ы¼2"Có¢*aµúcú‘„¨ÅDæp’ç l鈰ý,M“+ôŠýá%±ã}Ͳ¨Ò„m\ { 2Ÿ"îéS áHªS'©}.<ÄGqðÅã¾ñޱߏoŸ÷Z/‹Â’¾Åq ¬ö’­ÅEÓƒä¸×" G€(Êv¬ÒŸ€ZÅÂþÂPÃÞOýÕRrÀb4c¦ùéý'ã!ô|YÚ&éxÖoÎ;Ø~Õ“j+ö,:Fp4–t\XÃ¥û|zUþV¨Y:ñŽRmd ÍîÞê9Ç+HÓŒßuÆõ–¥öøÉ”"¡ú<ˆ¹ß³T÷$®”¯êε¬êz!ÇÚ<ô%Ѱes:ÀÅ’Úb§Õ~?"¡Â$FŠ<æ”(×8û*þ¥ü¢^ *îöƒ™™ÎÊxÔ!o‹B¨J ìx‹æœYíVäûµn†—{«PØ•÷ZøÔ2ç§þ«D2×¢×E˜VôÍ%€F-˜ªžßè„7†¨ùUè6ÅZìóRÔ¿"Á6… Vš”%†ê–Eò‡‹ ÎÏï®L=x…O êfÜŸªiù¿ç°W¯\2-Þùp—ãöé£];p,/¢VIX`ýÔž6%ª Ÿi1§½+Üà¦Ol¾KÙ=i=œ~É]¥nz¦êTŽÁHcÆB6f“Ç\çÚ0 4Z—./{Ù¿¥‹d2²$À…«°X£CP«‘ ö} Á5O“q–À °–$´DœáJérâ-ùV‡Bæw5)¥ãØãO9Ÿ³ 8ͺ”ßéì»Ãj㉳â;´&§‹ÿ2% á±!b¾;±=®ìFõ²õBGA*©e)»[Må§I¡eWÖ€ßÝÎTÏÞ!ØêõŠ=-úmòå%lE¤Óx1Í8ù»aÏsAšoˆÅ“š£?J„MŒÕp,'¡æ%Üõ²ær%€H”ø¹” }£'3 ÃB>940°CúlžNt8ÑñËò7§N…nʲ×L»ë3³Ý¿ß† 1Ï aÝÛƒÐ+>ÀPhó}ûbÙ¹Ñßÿ[’ÁÎÿÀ1žc§¦„ Ö–#tV…–'͆™G;ô).èû8Ë ùë]Ô¨²ZF¯U˜¹íÎKǧrÞá¦õ{EÕÇÀ–÷T¬r›§ÌÛ­QG&<½ê¹)bž_•±yßQ‘#´÷§±aŒõ.þ@¿2ð—Ó@—Yñh.ÎZÚ±¸ßªqÚÃè )I‘ºJQ³›à‹ hC½ž”¿í€v™ñ¿@ÒNâ ¾À#웥Þ"ë»´kp\ }ÎiîŽ6·ÙÔ5!a¿÷=k¶“¶cóþüÜRf¨ÌŽãµfÌsT0ä:2jS£¼uÃi_hx¸‚vDôSPð:v$üeJKÚlLÈe$ÚeÙÐÆÊÏ×§fÔĮ)ºý+sXA»á­‡a¾×ç&¶ÙH4“F(dñBÞg\ïI£èùŽrÖ[Ó½ÆP®êj@§ÌM¨C;PMxÔƒë³y\­šÙç‹Wó+à×Wd• YÍQ[ù)Böà'.jöóóÃ\œÖF]­ Ê—>å‰ÖÑN½“Îq×›–Kë&Áñ×MCù‘à‚ÛR×Åé&Ø@oÉU3mþ÷Í1Ã_O\ÃvOÇ©~+›ödû²äž›˜øÊ1`§¥±^/³°@Wñ Dë2‚yGŽú%º`Ïò5˜Æ5rñýwz-ÌÜxãšâ‚ôÐ0û†óǯ[Ä( ñ¨¶'ìøtuÔæ˜Ø ‹uA·í–/yi¡ˆÏ¯íd5–uÈ~4=Ÿk][ÂÀ ér¹ºsàÛkj˜)¨lF ˆgºŸ:ÉŒÉ÷}á“‘0p»…•Tld ùÙ UµÁZäÎO€x»+cUG¶âmǧ§*L±ZDƒŒFdpÃÖ«ªkapø˜ãÔs®Õòcí#ùÜFÑí©¸ÅÙæ† Wxl‰Êô6ßÓymü§¯=>ÅRè‘N.$Ö¾)Ãq6eʈ–DÛ,gxµ‚°ó¨—7цú$Ù ] ¤qHê§Œ”š%S¼èÖc'+ºõWß^ш_}1¹~¶o4çFT>V/¥LKÙ˜ŽßlxægÀ{©þ¸‡z–‡DCüÛ¯å"&jõ›²•–+ÇWˆçP”‡Çþ•mä.¥ªt0,,GmXiIÔEX8<)>{£ej»9FÓÆIÐÖÅd}"ŠgÈ«f°G¯ÍÊólº¸VˆšÚƒH;ýº EëA³Mí¨!yª™Ç°1K9(î‹Ôz-uýô;Ã\ÐBÞ µÀpL·iža atÓXÚ¸¿*㋱CxÂ}êg.×ZËàÔ’#î‘ÍîtÞSüÒpÀÉеïÛÞö‹OHäëð Î2¿ÔD­ý5;T°–³¢Å(¢ÄïZ†ør[2‹ŸuRUê1Ø:S´‰3qàa>wûzÍ&ÖTÐcàìÚxç^ÚhΈ7ñ†³ýa"|CzIÊ …ü^ëUëyjøioÜ™ˆ‹Þ¤÷Iñçtdõl¥÷r#EýûU„yî‡`Á½¯‡z±möt¿Ù-œN2WѤ#B›Á!uµ)ÿÀÈŠ6e ü²f!á²ß—åA£€_êì~r,õ[{rzÈBÄ‘”I³KC_«åÕ‘¹º%×éÂúÉ(x ͽ†Çâf-«` +æU š0¯WùrŠ3Š`ÒãVô4DŸ:¢`ÌD q‡ëÖ*ζ4ù²×ǹ<À/P v§‰õÀþ—6ÙÐ…ÅjýCW ]×ïù‘¢œ›-ÓB…Æ©l¡Xi™rt‘‘aeµáãÎK>Öªô•ôÄ{‹°8}_C $ò -Èy®h^‰Éi võ^¸Ñ¦Á]±º³(¥æOÁµs˜3wÈÓ–÷‚!g"›µìòœýÐísE (ƒHžM,Ž Î³²äŸ7…în‡f¿žÔCrhÝžŠÖMûf[Qw4k¦° ^!s¨Ú™ ­)cæJ] þ‰í‚Â’Û›di‹Üª/>›/p'­æ**ò܇§˜K-+9ú“¨1±óíwÒ=G¾¢TûGMœàNSô.am ÿ­*û£”[ú™ìñþÈCUûßa$<÷‘•O2hÀ{öºîåóš ™°>’Ʊê{d¹°¢]Ÿe‡ÞU.ï0‚n £ZórŽñK½övúb_kõÈàh£ÍpOhø´•_vÁ¨žÒ ]@­J|w–îÏ•>•ïŸ0{…Y¨·ÅÚ›÷Øÿ8¹p¼ôýaİo¯kß !åÍáAÙ3±^*¡þ°®èñŠ—b06( £jI)´ê‡æ/zx÷1ÈC­x°šä~£¡¯Û›-%œa=õ]~àäuoáÖVÙ®ò zìéJ©ƒˆÑÝ·›ˆsgÌ©r˜¯ÏM1­>w?@NÛ˜âá}´3Ø•¶áiÂÒ‡YS·=Zð{á'ŠPKÿr0æ£ä:èÒ]ßBÚðÙ€_Å]Z#†e‚œŽdîÜ{Ê\2âWÒI6‘t sËŒÇ'öô=@r»ZC3ñ ŸlÇ+GDklIá¯ÞNàÆ´éŠ‹ÏßÉx•;Tc»hKÞ‘5æ­÷XÓêtʉŸ0¯‚y¯-ý€‘®g¶’kÝîKÇá¶Jz¦±@´cûÊ)=TÚ©bé­Ép9±•|¸„&-EtV¸v¦ºyŸ6-4ƱÕÕ¾³áAy «B º©bDùœ(:Ô· %~ּϩø±ÔùýEç¶;uÒCßá{ó`QWÝ2©[j]†нË>;Uùw3ªü¬’¬Vm—²3N‡é¸[nüÊvGr:4 p›´ÐÀ•þ¦…®r›/‚¬±Êô¡Â|e©ùƒ NmøŒLËßµÿ¤ÑNTq´ÕO~ëj»úYwNgJ~Eé¼0ÿÖ]ö»JQ§2$4;¥€ö@«¼IÕ»I|”ôÒ×ZQÐ'Ø©`¾Î˜oÜ€Ó|›KLÐ.è3ÉaLh‚ÕǧµÖÍûËDn3B&Âþ52ßc•‚8í‘Ö¯~*ÉŸÝæßÔ¾ìE:&ÍΈC‡ñðØ4¿° ‡à©§¼;a|P)ÔÙƒ—i~ܬý(±#ÛNíØªk3\¥¤ÖÏ?ëóY’×tâ®°ÌÔ4 ÿÇ|J»™ü@¾ kâHzxêºUŸîÂYj–lÑ@ˆ~VªQòÛþ¶'¿¹­Œ©¶1}1äCî| õÏ\ »¤Kþ»HfU©í×1Ñ`óšÒ@ˆ¾ü}ö-b/9þ¤j¸’)@²´[tÝ#Ù=vnÔ2¢Â˜èuÊ,åíâÀWo“×mäö\ö•o¡Ntt˜Å«ïn€7%‰ëáélت}‹×Ú ¼¾ÄþŠ¢o1M¿I-9I§j8mYºú´U¡&½d,L=s¬Æ‘$rBýõ¹>Ó¼xôI*Ųq[?ÎAj‘Ó+úèÎ6 %YÆW®ÓÕ ?­DÃe(C lɼ¸¤“Ÿ“_Fë^>%PS‡°'+™„Á—ê¥Â© ²,=^=ú9 Nõ]÷u’†ß4€Ë„Å k•-$q‹nRGàW™iÅÈ7 ÅMº®ß¦ÁJ”¸,YS7Mé÷uŸÊi=Dz]¤E®'îå°èØ€EÚ³™y}¹.î]zTˆL¦jо^/)þÞìH•ΆßFM‹{{Êñ)¨èऻ.ù¿óœŠÙI§à7Ôsˆ·|Ï%ì¶‹{E™ }„™÷ì]®Æÿ‚g0±“é‹.„"=s ÙnÚ»¬(Ž-v¶>$ÝwŠ›:ÛlHÀ« …š¨ÔÅàý/§«`E˜h'q+å 9›}³mÈßB°ãLŒË6¤î@l­©ÐÛöOÊÎJmÇK‹{±(u%4Ñò2z}"J’tÚ“ºm_žÍðÜñ˜ÌÆipø6GÈwæË…;eoj@àÑFº~ó³ÛZéÚÈä§ñë»~ë¯çZ»ª¸ï…®^$²QL‚,P†ôè®=øØ1-S÷dÓòðM¥RD²"àvJÿ fà×oJaÓŸ2ôÙÂAÍÃg‚ª«Ö¦ü•Ã9ÐôÝeh[“pã.æÏb@ʹ¹ “³¤ˆ¼6aekÊx²P¾ÉJwÆc1 ORpöiý¾Ì—ÃXý¶l èdôƒN­fôÈ'ÁñÓ–ïö_íf4Æ)n= ¶»Mravý¦ùS˜|ÅÝÇ>$áÓ¹àˆ¦gKÐíA×¥ªBn¢Ï‰ßôA‘e=Q/ò×RD~«ñÁÐvbæu|UQóy`ŠB¼K1èyÖ#BB:š¾ÊL|ÿ•¹?ÓBEš†K»ÅH®k^$ÓA¤^ó+¦«JwBP2Aæ[>/•iÚ©Ü;‚Gjœ:×Ñ%Ùþ‡áë`ôég :'i!6Æå.Ûl‹2™¼õu#˜,Ř ?¦þ+FùµM Ÿßæ˜ðÒ«±_x´óÍ0Q ƒ±«IÍ‹[ÜëÝ”–(2ixü ÃĬ7lüi¬ñ#¹áWD›‚ï·PA–Žü°¤YÙ!÷ÖšRL€m'aç‰ õñaͤS{¨LóH¡Å‹Ø¯5Î^¬Aªõô½¶~D)Ba3¤Mˆå%Ê…œ”ÌÀðŠí¾áîµZÔÔÃØâhSPÒSLv®á@Â'1éò ¯ ´†Îãêp‹;ÕB‰(¤š–êĺÄ;H¹‘{ô–Ç!²eì¡#•%cñ8å1»}L~K}TüúÆë® :±9yl\ $½“ ÊÃ!3=ßU5¸2Y¸›¢À°Ãø}Yÿ§Ê¾ Š¥‡•[™ÈC©Ú !û@<ؼӴñêœÄ{$)}âwN°r>ü]Î=y-ø1Ü=«?nÒYPCç0R»dIû8N¯Ù˜tT\0įB¾iäEÅ_q؉¢Ûp\±Í’÷ÀÂjf¤>åÑñ(¸æ•¸äÈ>òÖ6»©JÁ° ýË|pOŒ¸DAJ¬D®Á±µñq¹8ÑbCPÚìs¨Ⱥ¤¼ „5»h¶-ìî‰è" uÕmÚÊa>)®ä7#E©†P(Á÷ þl§}†y¹ðÏoõœÌ"´Ñð}!û•eD®v¸~åÜæ™ÔåöAXεÅ^¥NIfa×·7ŽÑª¯­3ôÒÄ{õòÙLߪϗƒ? ajLPsM8?þWÍ0¹´²¥\šUmiÔVì;Š«Ÿ5¾RÒµ‚vÉìp™ŠÂªEâ®-“yˆ´X诤Åm6¦éY†Ê¯}8ËÞ/ÒvºfjÒ‘Ÿ¢ƒb69@­W/1pc‹¢ÙŒ'&=³!4ÚW†Ø©-}U:Ì-Ù(¤BGœvjÅÊ•Lå> s¢›/[ž©&;Ô+I †˜É® q› 8•# F`CåŽx×ø¡vSHÔ‹°[ÜF˜LgƧNa–׋œä–é⤿‚H–¿µÞ&´XìZø½\è'[¡¿Åó;kPáz¢À¶eÊv‚A£Pøýq¸ªÄÊŸãs„;)“˜Š1ZHl@™gë—eKf&†}ˆ{+8 ÎÔNåW¹¢Û¡=›3,tÛ²%¨Í¬'Ȧ,.ˆßÆq3"ÁE,—$”é!]2‚üÏpÙw0I]MÏŒ§}$›[b„‹& û=åwd¾–j],_e9¼@¬@XB{q)5çÞd|WC*òfÀWš¥q'°ƒuÁ§ºó–fD=ÝH+o¡XN‹ý£ÓiÇÍÕâ1‰$FšûïnbmbŽù 2:Ê’KVZù7–Ê3ÓþÖ ¿¨TÒFÜÞ‘’„„f'õåóãG‡ÚÁœ´z6& ¿ªP.XžŠ š)hš‹¶;¼?3gŸû¢lÍìy×4bOÀ á¶?—YtK²hAþqr²±TD¥|Ã{¨}`%_ÀËz^Û+ѱiµ÷cs Ñx¾x]mƒÖÙ7øPò&*eiÝE«Ÿl9•A<—×f½äò†Ô"¨à–qT/¹ùk 9™}§…_–®éÓ‰Vu2WdCKš¿b—õØe=^$Ojšø<È Æ  ò9”›EÇû‹Æ(Z?º±™ÂÛFé[5`¥Ãv Ÿ;¶}!¦t e"g’^íw¯ÖOAHÄ]úhÝqDqã’´ÉB‹ºÿ$ê~Ãbmí0ÒmÍÉ{¹Í¾¿$ä’¢‡±\w³¼M¾¾JOoÆùZsåÇnás‹ «ßÃz¤ÉtþY•)S'”½D1•ê»­'jþ iýôbàc·€[ÛÞ¹+MäxTšyº7(ÆUn·©{d–a4ÁoÙÒž~õ!|eÓô« ŠtîÄï;½±1Šý÷1 v¿†¤õ'ݳ¯7ˆ9ð±92ñt%çÒ>n*쟖çÂþ0=©(«bNþ‚ÄF¿Ëeõt ÚÜ%¹—¯³Ï:•?d!謀líùuyÜýËäUÓ§H4Ú‰öˆÉ*zÑqµLLç]ýêÞ“ŠKï û‹óìñ/ŠøöܽSï{_)‹ð脲¥»¼©¡Q=•¢QÆlräX„Îc§ä1ßVP¼“޵78âVGC(ƒåÌS*eæ—mòu»èš( áRï¥Wç0ŒNtûy‡¬g±reÖ/Vòò09÷/gÀ'ݸö¦ŸüeŽÙvöåõÉ´—— ótF‰ÆË}qZÖÂö3Ë9J×SΙïî™X‹Ë;ãÔÆ¯º»%¬Ž’šI¤Û×£ŸbÚ¤U·F…_ºÜŽ‹+"â ÓÈ©&¨m`Õ¿æ¬øËͽã»ÿñ6TÏi°b0:g3^‰{+r›úuTžøæa1ï¾?^çlIncƒ@ÒJ~þ#LÏœAy‰f Íïà`f(*Þ¡£økæ›vȰÈmú´Åf^¦ú`Œ½k §«ïùp¨ä)YLÙCS':þ×O“è>À¯?"׿[ߕɼ礜Yö ý&A43 {¹^—*VÖl÷ó¾8PA[t4ð7ÊáT¼å¦Åø;i1¹ƒs©˜QÚª<šþ–q>~%ª=3˜šbR'ü¹g%OVüƒþA—Í8&I"žü^³óž20ÚAeñ-…tîB Ó*šŠôÚ×eV~ÕåQbž¥Ö5ë’j ©™Î–ÂôŒö$ÄO¼…BeÏÊ*–MIö[—–¿ëÏ-S-ßåh%€;œWäËwŸvë¨y4´ (Z£|Ä£Ôbâvµûå:³×wQ‚_*áí}’ÉOæM•®¹î;Ƽ¤;@„VQÄûrèâðÜ9- vS£Ãø~—@|1_"¶ ¹:¢Ümf·L–Ÿ#Û´þòH±í˜Uå$_Ñ–‰IU–åLÝî#šM¢ukŒM•c?‘à¸09ÔÆL-Ø•ü‘<» uò©ýØ„XÌþæ¨vc±ª~›°Œiñ#pê×QO=(3bÛOáØ m‚XæJ'WðDVÍó‡^æt'å#üìÑ^fÅÄþ–íu¡Ò“ñÀ*÷y—P‚ïYƒg¶arŸXŽòEžÜ^¸r¼ÔêBÁý);H«ƈã’5>:Û¦ ö«ŠöeÁ=5.C”òDÊ’+r…ï%V•òu€GA¢’TôèaƒÍ¤ÕIzø(:bg5´tÏCv%¹®YÇîNïS²n)˰+ýdDFM3Ü'X°%ðõà2+0±¹‚ê·cí‹0C뇿LEØsWý å [³júK¼Ý'Êöß{µ›·[áWÕT¬/i.¡\Mhè—k¬y/éÊ癃;™9GØr?FÊì-k{Py™¦õÃ1È1ÄŠÁWù®%bòÔûŸ%d]`§¡Ø8h"©8}\–D*ðÛIÉØS'¡µdUƒ) ƒ°T¡ ¦°Ú즰ŸÀkYMƒ|DS·‡·Ð`¨SžŠ´å8• –¢8‰’m±'…;´Ý\B¡Á÷¹Zš(}xgøqTYÃ?‰›u¤øßßO— *TÔ>ûº@ð%KÙ³`ZSzfžS[F.>‘M9Ê„×ßÅTËJœíÞÑÇÄ›['’ˆ$Q§Í21x†9{ŒôÈq¡^MwΪU«ÍÖ‚Gõȵ ø9÷Yà­ê×øò?âcÌtl”c¸Õ´¶G.i‰'¿îC@|}‡ð¥ú¼ 1Q²sÈ»·)‚V‘®0È–ù=°™Àl;.ð ´¥Ûu¬ÎGÈô1#ú¢UáØ;öÊÌØšB¨­RÙ%#KÛSxI‰ Û¾>z—àIb|Zš™j,P[ u–¯âõÍn€ß =s­J¶ .ù‘u!u"cºäŽÕ;'‚Í7ÐÅæöØÞ+ï˜ûœŠù »0m} 7çêöÀ.̧x 5æU½›K2¿çn:Eo·(ç”Q[µ¸¸>F«ác4üIXŠ•ÊG޽«XŠ1V™Þx*?üíX°Ã „ȃ¦ Ã?! Ý[ã7ícëØ@ŒjÊßûÒuBXN§Ò‹ 1¯Ça¶Òœ´õÚÒ›o98¦ÝQ©Þº‡&þímæ;Ùê©!„žŽ?€.1¯az°™×7WÏN²9]{Ê‘Ž·¯¹Û Ù¨s½Úu¤¹kW×X&Zúäc[Í Ú¶ 1®Foð¡z¾ls’µ¥è½s°-"Ý™·Ã½œi¦ù¼Ÿ k\åFè¶Aà§ K#_}RèS—u©Í›t¦‡d6Ælìõy–=Þal0xŸå†\ÿ¬x¤ÄšCM‘¨Eûáwò¨~€r&‰ž#ë—#ï°‚uHxŽåck?¯,éH–"N2ÄX¶›êY­^…….à±n=YYñ-•Nëé$žÕuÍÕèvë6WpÊSá¤ßXxÈIE‘OübíØª5·òù‰r™ÒgÏ*ñ–PM'9{²‡Rú‚˜¬9²ÍH[i4)y‡#_@rõeÀîf•`…û®á‚WFìwE¦EÍŒM[ ëˆÀÓNd=ÃWEfÈÉ8 w1y|ò·—hÚe –Ú•ÞÍi2-ÈzãV¾Ð³â1Ïihíxk ¹å$çSÌnåe¼3¾®†Ö6ÿø¥'çÁwWìÂz»u=žÓ 6bí¶±tB‰* ”î‘çaè'—Ρ«€ÚŽ i?=}Ž> CjüåëÐH%W"rÛù »Ù—Ÿ4º©<9—Ñ{ÉÊÛôØ¥ÜòeƒfsÕF7+ªªEܤR”3a»)Ncí&?ï´) jM~m›Üb¹55ZhÄ¥¢' Zr¡^,QÑbÚ°iÙ:îgm¿>WT!Rʈ³©qÂy/p®L7kðZä8~ôù½r먗¸—,ŒIrZÛz™\qŸE-ÔJ>b|@„Ñ™Ú~˜´ÅñqJ’ÍŸÒÊ=?Ç´hõ2ÐLn¹uâ³ûìâçÌòåÍM—ÄDæc¾½£¢¦õ†‘d&øÄË»û1¨àJ¹$öAºR#IËŒ $Òíê«sš/—¾ÑwòÙÊMÈ2nlíŠ4V“êyÄëÖþã$™I<–´ò÷s|x [cßGÕ÷›ŒÜÙ  h9ãÁ‡…“j»-̓ÇïÚ’aXì ·E¢=_Ö¿±÷9OñAe*ÙûV*Èq•?€k‘l+ú&WLùþBQbýël_,e­Âæš’sÓŸšpà°b.=?äbŽÑêIÖè>vÌÔÐ:Õ® —S#ã—»óßáyBØB•¦T“%íu'ÏOû¤ ¾ÉzvO"|í{+àQƒÔ£3«·ˆžŒ<•=íwFþøZðËU‡|"Ï=5¬ Gññ˜þ{ê¨2qí8y:á—«\]ÁÒæSÉò]ò©ð“ºlI}­DL‡*]¹Ué~§ž ,î°g Nrf8è¥b©ËŠ{„lœg¨)1Ó”\áS„òvy™‘›°?±Íû,¬ >îJýTNÞ3,. !BÁ„ôh”½ê¿Ð%ž%÷½ T¼YŸmý3®¤°ScH ^N ;Ôœ“Ù!+úOœœryÍÓˆ”Ó‡)hF#¨å"Ø´%¸rgb•Ÿ9D…Êg´ö:zÈ—-Þ…”e>²†¨I¶É]zü‚NDˆ]€#~¯8Ó6€åj¶=µ‰oòÂwª„ØB¼î~ôÜÍòö™¯$ ¶'k%V ¨ÉDªN[çm`ßÓ<:þM÷²d=ýK¶b‰í#’Oöa™1­ä+×^&Ó·ì[¢¢®–F™GlqXž­Ýx›²ì—ûKmÀùƒC-l¼–S­•=OLÙù¯îƒÃSYÆfÆ{ÖÂûôù÷Åý—¦¿¬7t•¼5@”?qy’”Œ5ßý $½‹ÈÑ3Žï«ÙßG¬óoMþð]ϪïTK †ò J§ÀŒÁê3zlÛ*gù IÇägWDng‚£ƒI<3¤þYB|'÷÷7;­"ˆGtè=êß9«gpŒsûÈèÀ--&za_Ô‘ïÞY"§)¾,Ñßâpzžñì"O ír‘¼•?7EVðo»1smZÕè  Áf%}ËE¥=õéTš¯AV½!yÎÓZy”çu±””Ô|nU˜¢÷ºöŽe  « ÷K™ ,[7¸Ê>d{qž’Y»M‡Î‚ßË?IZš(+ÜAÁ¦_õ鑇 ø¨ÎÁ1yš”ËL—8 Ôüì¢{ŽŽÀ=CΊš>|·…GAŸ­¿Ôó®‚ |±JQŠë.’Š=ü½Ú9@ ô´3.zö†µÙ_Bâ¢û]£1q„"Ï·é•Êýv/ØG3q?_ámã×13ngÃ1 H V4JÆSbB®Á (u£¤i—:]Ü:æ¤T³1P:[œ¿‹B·èÂ2HwŸëÁÈ8ùH1(v¿£crbײ 88ŽPP x†Ö¡n.Ò¤ñ I~Leco̪„ˆÿËk¼ŽŽ,#ˆÙ&…°ò}…c¾uÎ黋°|Њç3>äÕ²´3:3”¬%ÜW„æ[9§“Sñ¡|7½³ì×F–‰Ä6 Ì@ÂEÛéUú—~*¥dºÕ¨ú!®×çäµ§l9Wò)O‹ Ê™O‹œ?Ù`‹l% ßǸ«N0^Ò3¯ª‚•àrÿ³_ãb˜{oBÓ½»4ý S—·'§ûHÜÝŠ&L$‚íÖðéó*%/´°ä]tS®påx¸ærL⯓1¤8ÿÇ+ÿïÆD{7þù\X»Þú½?GTaÃ7ÁØwv¨:j"  ÷ƒáÈ«‚¬›AªL& góÙþl µ ‰•A4´( ‚‚"ß pF!6‹w„“áÛéQ‘äìIûì7Õ>7j˜]†~"ë†Ë8·tÖzÜoçâ åN|x‘Ÿ·í°ÛÉ—ŠÌÅ4ÊÒ »èÔ%aBH#Ê–ø¡7Öæpz"ËøŽ½°°scð<ü8¶—t,.ùÚùS:)ŽlÊë@å‚46à~3_1]Ž+Ék b0¬Õ…pWÙRbO³#-4ÈÜ“‡'ä.ŸáÉ0=kãËÞèc ™ì?0y¯©‹ƒÔ›hÊÀW‹¤ì‰9ɘù°:½ŸÑ.ÀÁ&7ÏðHÇéïÑéïÛ(“â€É  êk’`†M*›ú;ÚTÅkzàÿjá\ endstream endobj 161 0 obj << /Length1 1493 /Length2 7537 /Length3 0 /Length 8542 /Filter /FlateDecode >> stream xÚµT”í6 H—4Ò#=ä ÝH3twÃCÌC#ÝÝ Š4‚(! (JHKw7J ’ú¾ç¼çœÿ_ëûÖ¬5ó\{_{ß÷uß×~†å±–.·ŒÂªˆ€{rƒy@b9u=˜ñó€@|¸,,z0Oè¿â¸,P$ û†œÔÚó>&oíyOTGÀ*^.0?,$| 迈1€¼µ7Ì ÎPAÀ¡H\9„›ŸÌÁÑó~=Øm°¨¨0ןr€Œ+Ôfk ¨[{:B]ïW´µvè"laPO¿ÿjÁ.áèéé&ÆËëããÃcíŠäAx8H¹>0OG€ õð†Ú~KhX»Bÿ–ƃËÐs„!ÿJè"ì=}¬= €û€ Ì GÞ—xÁí €ûÕº5€¦þYí/àïÀyÀÿn÷wõïF0øŸbk[[„«›5ÜwØÃ\ ME5O_O.€5Üî7ÑÚ‰¸¯·ö¶†¹XÛÜþlÝ (£ °¾Wø·>¤­ÌÍɃ„¹üÖÈû»Íý1+Àíä®®P¸'÷÷þäaPÛûs÷ãýûráxÀ¿= ngÿ[†—¯>æî…Èÿ͹áþs€zA Ÿ(ê€úÚ:òþ^@ÏÏ ú' þ¾×à†pØßË€Âì¡÷?¸Hko(ÀÓà ðŸ‰ÿF¸`0Àfë °:Àà¸ÿt¿CíÿÂ÷÷ïó˜‚îí€~þýd~ï0;ÜÅïúŸ+æ5ÑВ׆pþ-ùßIYY„/ €›_ÀÍ'€Á ~€° øß}´¬aïôO-nˆþµÝûsú×–½ÿöûßüw/ Ľs¡öŒnÙÞÿŸíþ§äÿÏå¿»ü_þ¿;Rôrqù“gÿ‹ðÿÉ[»Â\üþfÜ;×Ëó~ Ô÷³ÿ_ª!ô¯ÑU‡ÚÁ¼\ÿ7 ñ´¾Ÿ¸Ã½£¹Á< ¿â0¤"Ìj§ó´uüË5ÅõÏ› ÕB a¿ß0÷U Ðÿäî‡ÌÖùþ-‚¼·æŸô~†þ{]¸-Âî÷°ñ ¬=<¬ýpA÷Žâ€ï§ÒêûÇÌ^8Âó¾p¯1`ðÀý}±BÂ^¹ß¡?Hø©ÿ‰Þ#ë(€×öß ðÂþŠx]þ`€þ àEüùî¡ßø_Zl½<<îûéî…þ ÿy‹@¡¾P[Ü™I„­x„SMDóEµ ÷ÆŸA÷qÜ)¶áº•÷–v˜œÄ¯þ¢øi™öñÍø_Ë${|ew ÎF g‹¥§Ùñb3uÍö6k\OGH$/÷j^|›ªmm&Vüp;Šƒ:½>§OÆ€”\îG9;J¬+Ï+°Øê÷yðц㱉ˆðã£E´Èä´Tʾ—o…0#Ÿ }O§SÜù•ý¥ŸOpµ{¶œ ¶’M³»Kà¦zš³+•µÝ)D­j5cYïTxt•ÂvÚÊnƒЕø¨£“Ì£–l×´ë´I sSæáLØz~”va>g-·:”ß ¬t;•ûEÂæ—^ó­ÐDýñîÉK‡C”·ª“ÕŽ˜Ù9 {«È®P®åÙBå/["Îy5>-JO-ºôŽ'‹uÉÜy-4¸î°ã<_‹Ýiû@f[HñSþ»®%ºJíH¤ÍôUT¨Ð í[éçÇ…ò/B¶â_˜Š=ØhMœÃÐsáÊßx(›è^¬¸¼Gìœ%‡U©Ðý&혅DÏ~û,óWè¶ãÐά8Nažr˾&–@Ü|À˜ë“ǯ§‹T"™we˜Œ:Rhòâ›k¨›Ûô±_¦“|`Äd$©{~…eK£ýNÖ]Œ=Tý›æ$°á)36uÝ_êÇ =2Â^˜¾ì=M݈]¥§…ªÔØ'ÚãɃôÆÉå]’¹ØyD¢ŒËß`aGó`†‹ÙE¬Œ‚¦k^:é#_´´Fˆˆ€òŽÇ6Úëù¡£—󾊱ÜÁ(¨‰”ºÒ·ÐU#džó5›Ý6 ¶l! DH"õw‚¥Ô¼p½…§"ÆsKôiê:<¯j~ Ý2Ó²Ü*þJ ¥„€–W-؆ñš_ÇüB:2j¼ÜGï['g0üñþ—sDû,J4wÆŽæÍÜZße·2ª>c|•¦ôL•FJTM’«âJŒúþŸì[{Øúêä!ÖªòSnõ¥¤‰ZX’O™ìg6 ÛÕÖ $n¨T˜Ç@"“Ý3žvfýò0v¢2£bÉhêOJÜãjHOÉüȺô“ÌψzŒ¢ó…©ÈÂG£[ÑÞñæ'b9¯×lNËÒ#óçûï?ÈcZ¤YòÒXéû™›Àuxs&H¾PÎÈTQÁ:Y¹ß¼s˜§?ì9|ˆbYjv8.ÝeYÕú¶;?¤ÅÅãÔoªOÁ•,6O£zN:Õ î8Œi‘ÿµ¸:p>{N7¹që ­ŽIšš“†ÎvíI„}"!ÚÆ£¤)Ôvõö:;S¶Ç,Ðkò†£›H}L¢+颰{Q2E¨0- s<Î|31ÚÈ÷¡°ÞX¸ žØ³µÃ·ò{"•…êx ò¨ kA¬Âp÷’²Áµb}O„yEbxž‰i|GV}ñÂ&Ä¿&€xfÜ”f¨%ø«‹û¡‡ò”_“ŒöUä*¶^wV/߉ãn†æÜ= ë³pqë.&_Œ[k¢”¥Û4G£ŠÆÅ±¡#‚KÖ?§H-Jº; Ž ç¬Â#ƵazcCŽl]PGèÛr/¥â¼U½Áb©\¦t¬Î@À²&µT·L{*Ÿ íTj<7î’,®|±«þµTÙ¤$ù æÀKZÍÞð"yôìµ™!bâl¹ôÇ"ñæ»õ\¶df:isËÒÉ?¾å6µ:uü’­ƒ¼£Ì—Q*KY5ÖjSU%ï+¹ûÔµ-{Œ´\5m“‰®’çƒ(,íßþTÕÈ{ÏÁ“añ #|ƒ‡Ž÷öSÂ¥‹©—U·ÑQ…ñä­`@$œº;þgY,‹x¤XìLU ¹LzrÄÎeC…> ÿB2úçM1Xèê¤7ÆÁšDh,9ü×Y´ÁØgÈn_LÂów³"©§Õ:xkhU¡®HسdQºCŠÊÆ0uP=êÕ]VB†(ñá;åšX`¹Ò¿žÌ0¿­„¸3à Àìšñe÷ac09n £hTþzº¡¬py€±‰W„ÔónÉLǹú°¯¨ª˜Úæ§>¤õh”öH‰P98:ÖµØ6 ´#ίñmFß ÁN29¡?$ÚÅÇë(–ã…;¼¨S~à fSDgy,áÝâÚ†¨öT·ø1”ÇI'™É³,q1Ÿ±Ù!¯ ©,}´ÒY­ËЈ N¶£¿ðvH)ºìÀmžœo[x$j5ðu7Êy(b§Žpóv/öIgS^†8Ésý¶ê[4'0Kòp½„FÐJZD!|Õ™ÚÞõ¼ïߨ"%hÈ$¢Þ”ˆÚ…þÃw ï7…S¼—ú.~rü—´€°®Ã&’”„]v=ÙãC“  NõÓÄJ;~ø Ž€Å®Ê´‘û\ÀÙ— P·ý2ciÏ— Zç¬N­¤LhäIÒÉ/JqÈâ·“Gø!þO6é÷稢tê?•ȬUL®·0åe”’ü æ?XÙ'Œh¦L¯~ˆí«KžD娨64ãÈö €X`ÛÔ礴o+\ªÄݬì®î y–Mã€Çeø0f[ã›…£#P¨Aý,ýÂášã–´Ö³9oʬ”7Ú‰F`×­>–­½šb¯õ,ïšœ·Ä$`lb>@й¤zíÛBÞåI$÷wwÁ¢nrµXð¥åF~’gÑâˆ.wÈœºùç¬ô)‘tABXLŒl+Up÷*<è|»I\9k\{Ø×ÙúP¯=¯h —-—Æ–-(Ãdeõ-™†[||›ïöír¯Ž´Xåá"+d|àØwzù‚eß–|F¾v€»ùVp=<ãPâ<»3±P$GZuÆöâÙ6ITû³³>Å·“˜­·ëþMݦ³:oWæ0Ì#é%+ã°æÛ V…™Cýƒ¹[‰eÆÇ*ç%öp±G†Eæ_ž;Á!LñNŒ;q²Q²Þ¡Þ3³]#Í^ŠçJâÜ$Dã.ªC!™0vä˜K`¡²R=¼þUÍ£çÕÓõC]N_Œ°5$5”?_Jl`êY~‘¢aKw¬~Ia}–+níÝY™Õ>™ùõ|ëØ‰Uv\´a^AÞñI?¥ó;WÖå¸ÍÙµ„'ù!CÃ/Y' ‡S©yðŒ-4¯â»ˆÚñ­àh­ÅRkpg –‰.BhtDŠûçÆðZxƒ‹›ðæqæ|` ËÓv}ùÄõâ« “ Þ®·]L¯ÁhkóÊsÉ<ÑrISêÑp`ñϥ…Ñj´…ÛGŸ”{ôe9OÙÚ3h¤ü˜Üë:¯7;Gôs?Zoƒ|-;eÒñ1c@“ëy¹»ê~pÉ`·rxuÅ|k~`’\"š^«—ö¥|zV¼ O>ùE044,\2ŽI§û€áçâ“¶!©"µ(óëðÙ/§'%ø#fqÒvè.¶v™ù²ó™§¯Ð\·)ÛñÂp“Ýë)*?>X(’q· /òú²•Ý/X){ôý qûVLÎ`Ï[ëQ Å·¶%ÉuS¶H{‚7:¯6Í/¢$Ð4V[ò)ü“GB'¦€LßAî ý‡M±Jü|ñ½lNQ€V‡Ù›èÙä\çOT™„Ë*8…uI:ä깙΃ò_‹^öˆüJ8¥ |µT‘þð¥×‹ˆe6϶øöPÀZ ³;Œñù•ÃÙ¸B¥85ddy >½ä®#g¥»‚P$Ö-?¦føkWm ЂÑc·ìÛ÷¯—£žº–¤üªŽ¢™Œ9û̯ã R¬3Ø\_•¶ðöEŠÒ_®¿/Þ™{6Œ”Å “½¾ŒË8ãàܳk] 5¢Ô‰è§…˜`‡%”~åWT,ÕØ¾u •‚9~íë”Öà:¹2Eÿ¬…Ðù‹ò³ŠykPëÅ÷}ƒ¹ÑOã»OQ 9Åù§mÛzë¥^R²Uiˆ!_õ8N”ލvo Fâ¤;Yv$£¢|éR¸˜M$ŠœÎÊÏôdþÈ;6¶KÖóCm6mÜŒõ0¤¾)÷g¡›¾+ ÆZcŸgï7«rŸ~¬å‡¯f:s§±2¨Ø¢6lUˆ¼WÝ4BeüDP©NÔë­’-šHˆöÑs•ó0oéyJ–é:)N[R¸) ¬nú/z„VÊž#zN4>ö søYXOsð¯©g4Aa¯³1º|ó‹d#†ÝˆåðSž¸à‘]´LÌ…‰‹§­£yílT€¸ÉZ©h›µÝù›ä¤{ú«Z_d½#Iæ– yÉ6—gA“oÙÏòL s¿žqõ§·š&ãúqTaH/Ô¦)|ËýÀkÙg¢±Uo—þZÁ–1>g'àMã š?Š ü`ô ðÊ©`j§3½×ÙwjµbqÓ l; vF7ujšaղת™NÄc³^¦xö•±Q*®8©ë÷>xäɽxËa_UïuƺÃòq=ÕˆH‡Z0Vuqü ÃEP ]{\¸»laRJÂTE]q5»‚më%®fý׳›áýÔMž+£ô'š¶“sVù…e¬©Ý–²˜Ôž×¹ñšÉ:·ðTî#›4ä.‹³/`[ßu6”- þZì²Ìõ¹ŠõÑ;µ¸¼WxúØÊh…‡^ÙIØjúl*.BžbŽæíÍq2R¬u>™Ž†QŠô·5Ïk¤Ih‡æ—’bw²N£ ãsþê¯Koˆ>'ø¬ÛÈO0ÏÍ“hl¸‘œ~Ä>Š?‚9M+´*‡E–üY±ã$ûXåúää“JzØ$žU¦LWi) stE2Ö'[ëHÛ»-@Ò ›1¾'áaòÏ«Ð?˜ºöfJ뙉ٜ‘s\K"KµŸE¤ywoPèôXh…–§Eô¹r©zÎX Èvg}µ¼æ‡Yá5½n[°;äuã¡üíf²Z‰íuCú‘v+ÓuE‹üg¯6¤Äh Ù•NášË 6MýsÛrÌk_YŒi5Øõv¬sË/M#¼ïQ0“‡ÆÊëØ;J—ܯöi£ok‰—Þoò[НÀVþ•ŸO€=ݤ~eØKá¯B£‰$)xwÏ#|~L¿eêi8ÅöÙ?O*I:&ê¡%ŠÀÒvQ@ ò…d»­™¶àÛ0ïÛ`”'j Ö~‰/æoEþÝ_d>vg\Ñú;´MôÒæ9=‚s"eðV1!éÍ=¶öd×L`î®BÃU ˆm´•ø³šzi¡°-¸)8pÐ’DÀá¨HE š.gnÄã"𔺷ú»\ÌZV˜IU8®¿†¾Žz¾›É¸'RÒÛÎËÝŽžçÆ È×X;<¦xV)îiGPËa͘pàÿ0ʼnÏZüVsõ=SV©ÿ#~朓¬^¨~RÎ^…g£ãþŒ’ %›ô"VÂ<Ïd=,Fì*yN.U‘ž¸ÒÏÇFou÷ó±ß©÷Z±©5ônShTyc„ÝÞÿDz‘~SÓÖ¾”Ûÿ<Œ, ,  ‡¨HÂÇÏÆßë r/ânI+E(ÁSA¿:Òtg2NYÄEGéJ9WÒ¹Š„TŽt»jøÝÆ)MÍú7BÜ ·y¼„IÑ#GÜDù´3³ÊkPSµÖHjžñ£Ò=Do¶Úóñ,Ò(8|1~F£Ð·˜ì7~1=uô”nusîØÁ=³ØÕP¿¿äò9¾½š*& š9¼T¤:BÿlYGL@¥²&,Ü}Ûiƒ¶p6LÌUr’±‰ŽÊ|>~9ÿÃ/’lr9h‡ó” *,ª–:=™«ØqøYKkŠ»ÿÄ®ç!1º|jæ¢"¡óç­6áñcò>Zí=Y—‡ìÍ_Ò7¤ÅÂC¼+Ü/;Î!‹Ý4íò׆esë‚¡þ¥JE³ÇÈ7ÓGîwØfFÂÞ®E®ž5œó¢T+ïRŸí ¡ˆ]ê™6(¢ÑÃWJDüšè^ŽÙk#L |ÞsN£+¥©a’ƒ‹[j-ò.›q[À1™›Q±{Œ¾’º<·Ýsm“ d%Ù3žD;è*Æÿk6Õø™*ÈÏѾ֡dÐq®ä\KæaØÂœ-[³.ƒ>%7zêÓçJµ"½éOy»é›ÚÕéT+; ´Œlêv˜EÈh€ƒ¼Ä‚¸[X]}d—ÿ­“LSªoiµøîöӊÇLV±_ØÞ{­¿Š)”Q8ÄPÊ®¡Í…ã løE8F.å  Œ;Ã6F¦b^ee\:¿Ÿ<–½(}åHï@‘ýbcß½úÉls7E„ò¹’îÃ\þ´ŽœŠþ䄨Ÿ‹쌸êhž„³ê¿áyÓ&waÍÕjQÅ››|§à:Åvm{VEµÂâ…¤ö $ndª>yLžW6¡ï˳Ãý$¾É0’îh°FÁνÑÕàõsG {»…÷I~_*—¹„ëøóˆ¤}w ä—úåy&k¿ÔÌËrØ÷iì÷®>jòa¬Æ¨ãO6ÀI]>_4o翵}Áâ’läl&šoõúªOº<ó˼(ŽÏÑ;ž8HÂξXY3‡bÞ:¯›5®Á‚´è!ô6þЭü®—mÖӜń&±H*ìšJLÖÞ£s9J„Cí,þäü³‹i´Éœ¯Wâãëò'jý‚Û‰ OEåÂæš)¢¸~¢ óïäÚTœ‰50t$ÑYbfuÐ'Ði=­!zÙdö“}¤ ‚x?á²ÎZäçÊ‚T}xò´ g‡¶¶æéÊÒ ¢¸ÖoõMy*ÆÀrYP"›iÎîNZ¨fùd:ûêÝlÌÒ€…jO€’éÁÙ »z‰æ…:K•+W·³¶¼~ˆ¿¿¹ÄûëS½±~³¬*æ7VoB?žMiã|“²Aš#pÒùTÖÞd´×ý–¥õ7ÂzÍ":" s˜cBò6E³qÏøy`’±”Z&˜›2 7‡¤a[;Ð~uÏÊAÁÙJÔ™e+¡†¿†#-'vùmrª ¹9Äl¬Ax”\÷ÚZq²£é&9Ö©€ö]Zz «‹ŸVè€ «Ï–õ„yLåj«ÛRîý©Ì’™ÏâEIF÷&ÎÆû:cë”hŸX0DÙ ×U$Óè´’hVv§õ4³}¤š‡ùE\§±Å¢µÐÚe¬­Õ:ù'Vá+>÷[$[R¥DÉHÖJið©ÿÑýî6¤GúêB0ªëæÕR-G ÖÒ–¿*ÅhD¢²ßFZÇ[üjñ· 瓾3©Ö0Qé[íªP • HÁïhY‹<úwÇØ“Sà϶Ÿ8WqXüb.Þå.Ïö6®u¹ÓÖ ¥e•‰^¾Ç,å"¾‘ÇÀä&­D倸¼õOütFJ¹§§¾Ô&H§°qÛ6Ê> ÛÓä|ºT$ê–bDõ"‡÷¦\.c:Ü÷¨¾Ç˜‹r%æb1S ?ý8]ûâ–ðìsz©eÃiñ7ftÔúõGÎ wƒ«dS­ºÑà V<‚Zï£lí#{N*¨8;òÚé;é- öåP °D·+þá±Ê\w™ã:öu|½Á®ÏÃÊ®ÇÖ5O¨ÆÁß(f¾xSä¿SJ%X¢Ô¥Ã{(,=Ô­ÕÊ¿¤ŽÏ"t,ÍåïÚÍœ­ˆÊRt€Ô×9;ÊT—t«K£Üe-!±ß ñÕè"‰ŸJ#g×póÃÐ%I»Ê†¨ðl…YG¥Å(ùŽn Wãp‚È]Ëë°‰˜72(Œœ‘ b9d7£:RSý |ÞHWݺ;{O4šª+ÙõVÊŠÛ‹¹uWî ï‚RzúØq·xøV{íÃíKN¸yÑ$hêâ>@Çäú)W1‘2õ˜†ÐÓï0Œ†Æ˜šG“†¨Ä"U¾mÈRe!Òécº!ÑNÁåwp¼2ÁŠmØWÜ}â®Pãk[¿Ø V!ÜÓ<–1å‘ìÐêNíel½¼rÐ÷ûitWŽƒÆa²«xiÓW†^<ëÖÍPÇ·x00“¾Ö|™ÃúöC‚þn¶íæ ˆ]Þúé R®=tÿþcm9‡)6DH]]OGÎüyz¢=Q¦,šBî,÷ø*”X0,ÐÏÝL;«¡ì°À_T/â!hâ1§Ø®ºð¤ë4avÅDà9½á\r»¬^ºnÙaIÙ-O‡Ûþ­°ÜLHüÏÈBr'ó/]ÓEol¸£÷<“ºç3T:½­µ¼#)à<¦¦D“Õ~Ê¢”’­à;+H2âtD¥>Ðj¤ÆqÞ›'õ®,ûuOã…HðÈ&ÜöKBJIë6±$e¦¼­ô^ÿ'£¦ˆ[ãqnMγy†'´v‹Úl4¦ö¶j$Ú±Ò‹´¹¤=î°N;vJ%%õ«·pj}·­ždÉGÚ<üj]ÔIǽ[R…Q>Îh œÅ&­“ezpAyDEÞl9ª¨â &Ïû0,ÚŹ‹À _ƒ)˜Þ«“ƒñF%›“8Ò‹`ªˆ‹b9AdþkÿêÝ«,DîŌόižzJ¦•ùH½üG×J,ü*¬‘ùbÒj ½©Ëú\³6VØyõåxªˆ(úì¸7ï¿]ðq ÷x,±P‰Š<¯ÍÖ§7”Ø™?¡ÿ:ÎŽÔ²ÐnÏ L BÊYxÓ[‹•I §Pp/"¹§‚~塜€ïwáןinˆñ#WõwºKŠjÂÒ¨ñ¨q OÆ¢gŽ (óm&Þ˜§Ð¯tµƒþ¤3.ƒ“¸k62sÙ$Æ@ã‘Üp0kS©L‡=ù¼×è½Í™]s~wm.˪Pg5#nôùR­@NWÀTìÑÖ9œ³ã¤È-ëpg¦´´éŽîª¸€ŽÉ¯BñÐ’µõ%Ê!=Ô–½ÍôÜP±Ò™¯=|û×ωE< ˆ‰7¶9±PÅÜ Óäwñ •”#Õ\¶g57¾ÎCý(q.¹ýµNS !9¾ 5ïo§ZáJVP‹ø–p&íÿ’HÒCù>ñÒëËîmX_4E)ßm¬XýVQcþp²Æ¹Ž¥`2F£_$gþúƒ1i¼G[¬˜ñ{'?ª•/Y¿›L6ûøYë¦2µ^èi>e2šPÏ.q£»Fä4•·ä¢Œ~ŒÍÒ¤Ç@‹­ÌÙÍ7›“}Ì“¼H%]x¦<Ò°8€¾BÓòóÄÅøC GçMüsÆHû53%® 3vƒèæ™çx“ªªfw¯(=à'as—|J;Í™üÑ]ÖŸ¨ÝàIÖ‘1òv b;pܹv(Ù2ž€+ÊSòÛêöŸ¿–Þ†h ‹šXÆ}$­ž©f¡ÃO»I¬†o{><C±ÿ¹zé:«Šù1¡Ò4¥]6Š[êEaÄÍ'«2L!ôô«&«Áƒà2Hv“¿ßJ¥ÃÐãNi—Š!ÜKz¢‘H×MéÂVÕbuu…£Ù_ÓŸ2x4ìÇ®˜?<ú´uÈÞB ‡7â§d³5êDoOiŸk%Tmº­-’¥¼~#±ÁUT–[³"²_o²2îW—Õlhü\zóëÅ…2=z5EpË)VÿdõMc0iãÒÕfóM×(ñ[…-l¡Þ˜ú¸…€òpV_åE÷ãšèèÌæ©P!±8úÞ•@}!8 _¤ÈŸþ.¼À2Éb¶_åX¦JÀJòüàk¦±îßÉ›šq×8vSàŸg^Úø?Îog endstream endobj 163 0 obj << /Length1 2671 /Length2 19172 /Length3 0 /Length 20709 /Filter /FlateDecode >> stream xÚŒ÷PÚÒ cA“àlpw—àî»wwwww î.ÁÝIxsÎ=÷$÷ûÿª÷Š*˜Õ¶º{wï=Ê+Ñ ÛEmmœhé¸B2ÊÊŒ f:&xRRes'+àåð¤ª@Gs[®?,„€N ™°ÈPÆÖ él`d0²q1²s10˜8ÿkhëÀ6p17ÈÐ$mm€Žð¤B¶vîæ¦fN žÿ~PQ99ÙiþvXÌ l2Nf@k£‘@ÉÖÈèäþ?!(xÌœœì¸èé]]]é ¬élLy)i®æNfE #ÐÁh ø«d€¬5ðŸÒèàIÊfæŽÿQ(Ùš8¹8 •¹ÐÆäâlc t€ØJÒ9; ÍŒ¥ÿc@ø§9F:ÆÃýãýW s›¿ ŒŒl­í lÜÍmL&æV@€œ¨4“› ÀÀÆø/C+G[¿‹¹•!ÈàïÔ ¢ P…ÿÔçhä`nçäHçhnõWô…µYÄÆXÈÖÚhãäÿW~Âæ@#PßÝéÿ9\KÏÿ"sc“¿Ê0v¶£W±1·wJÿcÁÿ–™¬ ÌL =èfdFÿ²»ðo%ã_bP Þžv¶vP@os è¼§£ àäà ôöüSñ¿ž‘`lnä0ššÛÀÿŽMþƒAçï`îÐb#€á¯Ÿ?é€&ÌØÖÆÊý·ùßGL/.*(-¦AýOÉÿ*mÝž´,Z&ff+3;€“ àý¿Qä ÌÿÉâO [ç’ué¿ »ü3ÿ¬%àcÉÚ‚æ ø=æÚ ¬ F _ŒÿŸ‡ýo—ÿ3þW”ÿ×1ÿ¿‰:[Yý­§øÁÿÞÀÚÜÊý ÐÜ:;v@Æ´ 6ÿ×T øŸÅ•›;[ÿ_­„“hlL­þm¤¹£¨¹ÐXÞÜÉÈìïÙøXå¯=³2·ÊÛ:šÿu³hþ´\F– ÛÃ4’«€ Ýù_F#[ã¿–Œ‰• `àà`àÏš$&VV€'#hn1€žÎÆÖ äUç 0±u€ÿëHÙXô‰þƒØô‚¿;€^è7âÐ ÿFœz‘;€^ô7bÐKüF ©ßÄ ýd~#ƒìobûq€ä#F½ÂoÄ Wü@ìJ¿ €^ù7å¢òØÕ~#»úob×øq‚Ø5#ŸÁ¿ˆ‘ T’£‘9è­ŒÿÊY˜þƒÉÜÑò·+ˆÄðWPv†¿Õ º  Œ, ÷ÈÄé·œù_ùê_(M£+(º‘­h–þM‚å/‰µõ邆ŒÞø_È JÞØÖÊê$A÷ ýï:@cEüR¶¿ôöΠeý7 (?ÐYXÿT¿Éï( s—?Âþ¥¶uþ“dbú›¤7ýë-þi*Çìwq Ó4s·3Úüa’™ÿAÉ[üA'gùõëwl ÆXýµk¿õ îþQèR¥ÿMÅ ŠeÚÑßMQÛ8[þu;šþ‘躧·ý4(¦í^ŒŒ Bí~«Av 7ÙæΟ…ñéÿž>è*§·:€ÞÞ?LÙþ–™Ûþ>cPcí¬œÿ( ô½…ÞþwPWím€Æ†¿»z"þ#üŸD˜9ÿ‘þo"ŒŒ œ#¨¿éXÿB@—?މdîzßþÍTˆ£•£Ù!@ü¿ @/½“™ðù5ÊÉÕöP ç? èl]þ€ Ä]ÿX<·ÛÞýw6 W ÃbÿÏmkäì:§¿DÐUü_ü÷÷ Ð h¿ºdkÄdQÔùP+€ãJ{0õyžô@-•’ÖsÕ¡Ëùé#LeMfÀ–ÃO¤Ñ~¤=Š;þ5‚_žgm0!í Ï^/zqгð+3ÃÓ…g Cxp¸´Êü‡^¿ì½Tý-!ÛÀ{$Isí9>Êç£>¸й5 •¯O/(Ö°I!¼”ÏÑF©Djû—,æf-bA;ÑâÁR¡\»!.ÜýœGÉ™~#Œ£†÷>b.òÔÜfŠ~\ôجTfrìÅ&ÁÖă¼C™˜%óð.ó@IߎªÞîìã2µ‰««¨X¾\kñ îáHÜ}¨µ±ŒK Œ¬»çáÎ*ÔÆÙÔÙEý´–ǘ–É.ü.úF‹à¦ð¯{o4h܇½^…e$užÓçvón‡nJ]Ã"—Îáa “Ò‘P Ó›ÙIGãîêPY´áj8; Áà´û(µF±×DUÖéìo_Y.ò&4S9¤ž=\]q›Ü­§‹%X QZ,Œâ.4Ñ+!>¦…Ó$°ç.–KÕq=óK®WóÏvˆžƒOÊ„Ý÷é•ç=#›R×?}n9æ= ‡ZÐÌ 1ðmmIQà —½C gÕ _ÛãѬ.<.Ì JÇÀ™,ÒŸ"Ë’@èg9^¼ÿù!r:ËÌÎÒ¤%TV«*“Cðetì¶F´ŸÏT1Mª¬A'l2–Gi^> µ÷ 1¦²èó]ù®Öî@ªN-±Oê„æ|ŸæŠû˜ÛHMd}HÝW52a­¸ù° 2”¦ƒöEn"NÜŽ/òÞÞÝq[=³wKtz¿¦¢rׯŠš6m£tO†]cFçeZæ©Ü¬[15ªSÐ&xÏ7>Ð9 VÆÚ™x2÷z±ñWåœdqëœÒ×t›yMÏÐ=”( @}­•Z€´Î´ú©»A¦¶á‡±ùÕ¿%ÿú—µèà§Í« ¼¬Æ”œµÅ´QæXQ) Œà"v~ ev ™g9ùátÜÑ›±‘âcÔæÁêuÙÜÞõñÙh‡Cêw"Ëά_;ìÖc%:‹wò•/e¹ìv ]Q, Fàâi ‹,×ÎZç\5º’Ó³²˜:µœfæFÇ’× "3ùÌ~¤…·fî¼R­âAøÁ釓俼ÿ’ÆåD{SF]æ¥2{5\vi‚ ýX*ÜTèô€´`œÒ_’û¹2#“uò{§/5Nsá¥{é™9ÿ[ Æ.ê2%6ølè¸2=ØŒ}è'•Ñ“ºûØ6ÆD'‘逹–Í|þ³ù~˜ŒØõ¢ºŠ|É´YIY·ýÅöA0º™„Ï‘TŒ¦®÷GL½y,ôŹ9­Ì=ü»Úµìë§³Œ¸'”a-tÛi×ßý#DÜ4ÈÛGÊïOYCE|?ÛXt3ív-B/¡Ǻ2¾zy˜8fö3Ì‘Ð É ïso­çŠžØÿ`²”W¶q‘ppzSü\jbzNÚc—÷Ìc~C ‡OAîY³X?þѵâUéP ˜AÎ!üv3>‹³ÛÀ4=Õ{è/Zå'¸Xj;Õwª Ø—r©Yœp¶úFž[ü\ÎsV45lÀ`'CmÄÿùaš›u3³PÞZ`a„:WuyÌcs¬ >à KŸYWù#|޼ <Ù§ÚÚ½¾ÓÊ8{EÅŒr¡"!(ÝÖ_œÄ?.v¨ù¾ ž‘m|¥<å¯ç*¡P#?¤ {+Më?¡œœ´ˆ¡aî…$Hc™YzD†ä;U!B”á|Ó±ª±ýT¦Å‹<««ÖH‘T5Omö„‡ EŽ(µ;ÿœ79Sd[^–†KæØ3\‰YŒIñ#?›vÎ6íõ¢.†z¹ßúñ¯(½YêÀ»{ œœÛg«ƒòR׉UÙj»Éýªª»é2œuÐûzh’¦s†®„»)ï':ýÇ”çÁª„{! F¹Ôì u|͇ó\;ôߎ Ë `"Éúõ·Ít¡ûß++ÇHT؈‡­ö›ó‘»&ão£ïrõQ6.íù§úý\Þ—âÛ…n}¤ø U¡ÁØvø³",W¥g¶²”þ\îé2<©>Ù9®g–Ôйù¤g~›ø-ªË®ÈË‹›+~èALîjûKxú Íìã]+VrÃqÃM{šdñŸt¹„ÚcŽ¡8YY›{ÍA±Ûw0öΓø-_ë–d!ºô™>Ÿ,ÓCBÐÁØ^øP v%£ì´w#ŽõÑìÆ›à/ë½mý¤ÀÎ)’¯<>Í8Êìáéóßg7{c#y¡Üf¢€¡”êέ•P<¯1ö¸äÈ€«¿¬XĪB}´dý|:L–¡‘wnŽ¿êú=xÜ ³++ØE¨&Bè±' U÷-êD_4pWFް·âÕc8ïë@%G@¦“>uÊ”íéêi"luÕ¿@4ýCB¯Wß*ªêIã#„X(J:' \3û¸å×P|*È\ûK¿ö:¿Þ£ Yô¯*pCÌÃ#1Û숃~œrNÍZÌ^Q׬ ßÛì†W^ŸW8`¶’ÔRqí…¥‡º:£=7.ôëÑFŒ]q¼–ƒ>ˆI¾yзd‹“wk’…­‚¥­ÈLrDnGÇ k"M„FƒÂò°oyÖHÛ}C¸W¥$EEÙ9¶Û` :OS¶-|²ñfámÑ|s©õìpÀìSÑ|ã)ÏYZ«ÞqŽcá\ãÝַŶ(Üñ9ùè¶›£ôÅ+Ó„“`¹’¯Wý†ÎyDÐÍDÌPä…ÎUûùKš-M/f‘ ´¥¥T“' § ¬©é ¸Õ‰WY'ŽßÖG™ª‚’Ÿax=.Äͼçì*çF'¾“Í0`ä-h!6­²ˆ3iSŒ‘éGÅj߆+^aJWßT7Þ—¥Ê:CSs¾­!²°#G¸‹!RÌö¿nm}(õÿÐßNTå1¶ûÑV®_/Ñ«ÒHó×C°ð0¿EÓO€`³ûq›ß è–|€cÈ{ÄK4…žþ6 £Ñûåê2s 3ìD¹ØT°Ñ u5ŠSå—è©d Š–N?ÂÚ»1»)³È•¾Ü©ÞøÒ›`¿éż£oÝÒÁ| ~O ˜/\øRÜÕwOyjo¤ê‰AwP$+!\˜†£œv{¢ºÆé‚SøK’ŠàlZ´ÊT,„™Q³î`úä2M¿( ª`k.ÆdP+䈇Mâü”‰Lp#‰ ø€÷)¯ê%dñŠÝƒ"_ÏtJ™¤ýNƒÁØ Þßð™QrM Ó  ™þLN ÄlgmºvBj‘ኀTg÷èbÜ"a#Aoñ~öWãÙb´80ßeg;úEÒÍR¯ml•IиLå);+Û¶qmÞ~¾ñÆki/¥ØSŸd K詉füF‰`üŒHü}Lz’»ÃO^¥k´é¦ C¼ç5éå8©]’&‘h„/#+Áÿçž¡`ÎôÔÈË2‡×ƺØtö·Í+mîvñ÷ð6Ã;ÐFL¡[5nêSÐh¹Œ„|\Ûè;ÈmÉHNÄøÛ|¤m³÷I¦AáJ=@-ôà$ØoÀØ–eÊ“ðù{H Ú§/°AƒçrAl.wÎ…±ü†pCpænFÛúë(d½G¸>JœŸB£Ä`Ǭµéñ"Ãú`T:U2~÷ ë@ƒäò‹>eaÕÝì Ö2×»pŒËž$d„EQ‰jeK·ë SÃlñcX: .ø¾Ý«ŠL\ºÈˆÒB;ûžò¼¾•¼º'n4kžºñ“F:»l¶Õ-ÁMmwy#ß*Ä”7„~M/’ä¸gìwýu8IÐÜ[[Cm¥>øy~6ém®$!ˆ> ySÝ’>RE|Dy*r2vÌÇÈ—õ0jîH/y`ó™ô]éoÍN™"ðŒ+pQÀÃ÷t =È{F¸¦ ÔËÓxY°¨áA³:o}–ÄW¾}ªJEç(ÕØiÁ°iE™ö|©£õGì|x‚Ívz›ó–9OtDÏ/‘tkHâX™WÄ]ß¡ÃÔöÓwÞ|ÓBÅ!h*ùAzÒÆÜóò…½_{ÑÁ& XV’ éô5bú6íW®h•ee=BûÛn9‹ž”®OÕ[k‡Ô0jÀO‹3Že2‹ª)”å©Éßû¶aÊ%o4ToÆ38Ï{û~AKJ3bð¡Ê4Žð¡ e–L(ô}Ľên31j™™ÏqhìªAà1µò‰ºJ‰cÕ¨‘šþì¯tp£sf ÏZè§ú(î¸ð|·>|J»Û1a©Š»é|hºï›ø+/béÉ›œÅ*i&ñ€ÿ±¦GONb«;cšÞ3VÊÃÖØaËíƒ N^×Á »äÖìÒÍCÐò|ï}£RVÙyÎ'Oì¶3æ¢y#KyCXŸa°x†¼ºþ‡âIœ=‰ù* Ê­Šå$ó4Eø¥çô¹Ç‚`…ç»þd"©Ð} i__dà\Uî3ÏYRVÖi2·Í‹C4ô·Ú¨€+:ÔQö?dâ ©Z²|Úqz=6Úy¾¹û« Íð§hãäë´oY;gO±={Ë`‹Ð)6i"/¶ù¤#ë1‡«æ7^bçB7â°(žÅàaÖÏ4^ï|üø¡Ì6X2%Z­¬½ÍKM“â1ètF\n”ÿ0dŠÝXn àp,È^-"Ø î»f£ 3›Ë“ÆŸŠH†g?ÕýdyׂSVBû]ê0k”Ùâ&"­vBøã¾4¾ázM©œ 9úèËHyU5!æ'‘…`rn¼×/Œ€½àÌ1_rìïšÃ«#ÜÒùÊŸìDyS†~ÊsüÉD 8‰®vSè ‹fêŒ÷ Üäw¥3ïu‹íy¦)®¾û>õ±Šõ"9ôb ¦tpôàŒS¨­*”‰<ñÍÙjõ\TåÖ1òƒaÁcM “rÊÍ·LéÓÜ:òjeg/†çU˜ønM….Ñü+Јíà½5$`¤´‡BiºçïR¯å'`ä-ÍyîÕ”Á c?lŸé‡:MÉ…ÆË§[MÄüTö¤ÒfPF˜Ä'\;È•Í}_Ï÷Ž!1ÅûíâUúº1Q½±îÃÚ·GáDYè^‡N–å„E~ìGãîò”¾Ä#—V´ˆÓöLV ú °‰"u‹Ñgysˆ7ÇŠuõ8¼×ô…kë¿ôun‘ªéÓALq¯*¥„þÚºñÝHLOÉõÃ8^cÉÁQmoÇ0b¹ÕÑÇ»zœÇ´=ÀÈ}émÛGŒÇðÃk`áe_!3¸¬ †²)R*ôt7†rž²AêTh@hNÅ4„ zÆ‚iNqÇÂëµz±µS"c¥ÀÒGÏ­Ò‡«=£ÀåÚܸŠRy*…ñ²¥eÅc*‚#+Ù Ì•CT‹Ñ24×.g½¡H,\†-,æ"½ëÏôÇ[¾ 7?œM~ìæÃßKÀÉBåwìò¢Ú[”ߤQÂEŸ¥Ï×Sg7ç  |Å›qÈßí(c#ŸIâ\²vxç5ÀîPò]ì‘”+äVÒáµ™çE…©˜nÿ`cƒO›ü ´®ŸÔî·l̾m'/Âã D­‰$h|&-ìø)ké[ÞÈmñêãû¶Ç¡GÌ/™ä»ÔÊ_€^ìw>9nœ¢ÝñKÐc €$4gø‰«ÔDó=X30xNY'dl¼ø/œÎæF‡Ž“û’~®ðFš^Í}hïH„F´fñÍ××sD÷`ÏõÛÝÃÜŸ˜½âJ£øwß¾'§¿±ïH!rŽuE[Òm¼‡°½ÃŸÆhZtu—j Râ›dÐä)Ç뼕ÑͶØYºJüÀ£jl”ú ëóu»ÅŽðc÷6µX›K”»)'oI#>ãIñ…vpªR¢ù½’#ò¨ „rKäâ‚Ë-Ê*ð¸)N±ÃÒÅŠÄ«ÊüþœÁÞîº ^Á lÖÁvOüI!´!ÍÅãæ(c(ðºzã_úuXfxŸÚÎW¡J^càvŽÿ¾Ÿjgîkx‡O„ÌÐü°êÄ;†9"‡tÇŒ)%¡êCˆÏýsîcžtyi‹IjY¥¿É #KÐò¾b,&J\‚1†g¢Hr^’¥IÄ@~!®L™Fo5Qu"ƒS—V¡oˆªÙËxO+j8§ÊC¶T¹¤ñé™ÊX²jÚÚn¢íã–æ4ΙäCú`n]ˆõó.¼¬4M†Òä åV¦î™ZŽê@ˆp ¶ðA¦æ¬è„ÊÒëÛA— Míž01™C–>9ÃQÐk òïyq oé8°í-ªß}Rk¥èŠ“Ãø¦p¦¡_z¤/©'X³oV²`s‚Êñž{”îvú+NÕ`´Ì}å׫£ ÞÄb)ìOC[© ‰C›Y• ÛV×ES¼[æø¾Å(¯8Ån{<>äë ò§2ÄCp¥§%[‰%UíA˜uó%eÓ‘ˆ(-½-Í&½s‹`Üê‚×DÖšRrYWD™PRj.—Høð1¢ ÈÖùò«2߃b7 îi÷Ñú Öïï릆Q·WWeD†ŽÛæö¼4ƒŸ4mÆðJ3˜û#3Eu¦Ã+¶ÏÅè€Ï$çŠ-o9M¯•OïjrÈ!w%¹Œ,Ê™‹L˜àe㛸˜…„b¹åÆ\ˆx|1Fø8?÷,„ÄÏcx¢==ÉŒw„7ÿ$ó–>´qÎ*öÅ*bYÏQ՚ئ¦Ë×ûbxZJâô³"–ñ”®Ù{téë|ŸÑìKç~O†ËùýFëÆ„ÇÒž'„I°›ä‘™‚M0Î èoXMþD™†NÍic©$î'3åKyªçµd¬þ¥¹Þ‚Í=Èlä;_ùBÁø5*‚— ÀíÔo] ‡&·T˜eØXÞªd> wáV&÷zlîéºváa F’çÂ=ùUC–²æ “ØV“P‘ÇË”pù¬VËÎóLü ,=“fX¨`pCÆk±ýiUn³jD=tã]V·¿oìI–ØÐ 4ÝÆ†Wô#³½ÎêqõÓ^ˆ Jä0 øþªËGódËU8ðÄÅìcÍ/Ê[‰«{{»¬o-~±¨ ¯!•Ä9ª\!8%@¶fZÀÑ*C°Å’uuÊt’/mZsÅ3#¤R2×SäE b˱zMÇ·/Šu>Ì4f„íHAåëÖò1DAjï‹m˜U_·R“1~ä"EËV ûÉÞÛ‹‹1â S‘8JÄ…2ܺe n{ 0…5–Ë£‘ØÜ[ɲq/Nº•ÀJSF`¸@ŒR¿>°}\ùR=÷.ùMlóQIà¶É+õöŽnâ}ëxt¬¬3ë´×gòU‘|ÚÎÌÜà’%» ”;ø²u†Ði?Ø8½EÞ3î68öÉüqŽ-T$Úp—>»)ÁÑ›‚¥bæGRàòvkÓˆWR(‹RùCê(m\·írœÑfÀUËž }¶Æ¹˜uŠHZ5¼â) ”¢/y<ášÌ ˜¢RÊ¢ 43•×,~ž]³Fê€-¥ÊF—&ÈÞ³0ÚGW;`ŸRX;>7vµµæÚ(ƒPþ¢ô|&ÿñ÷õ†>ÔÞçu‰õáÚïûE‰.†³½„ž\Ñw§îY@UúƒPZ÷“*;ºNÚ—¿8ÄäO•¸sZŒY»òNÝd,Ñ)}BjÖås“Û·TgR±£uéôÅ›UëmR€îhzÇ|b NsèHê],t¨”¡ËvÝnå€9*9Ó#ÄOgy_dï[[(ÅäúLP[«tB-ݰ͸˜à:õã÷C rÞDÙž-`Ôˆ˜n:¡%Vç#αÐAIŽŸ3<LST2rðÔòU‹¦Ï˜r$çCN×bl¬ùj8Ûb‡Bxª÷Ó½KÏW¿<†XÚ,šŸà*fK·8~B@·ý rí58Æu=ªÙ•ª+ÿ^-]Ï€ç)œ¸+?ú¦F”¬q S{‹z²8­²@>qÜ1”ô²É¢# …;è]%®d'ÞdŒ:Z©ˆÚ¦]à犸*Î"ï~‰d.z:BÚÑÃë‰Ïjî÷½=uê[©‰î÷‡ƒ›梦×fì4S\¼_oÎ@~¥¾§Á+´ñ~ᘡjE÷è ¾ãºÉ‡¦ãüigîì¤IŸ†î”/A!kÍâòEDó%D®ÚÜ/¡K;Ÿ'פX5·C1ÛYŵÅÇX$ÂòÕŸX„z¹¦©÷í={¨ÈgœŠ/ ˆû^7üë6`¬"(‰fpcênÕ¡šÍPø®ß¶îd@auÓ¯ÙýÉ„/*¶´ ÖÊçñ¾ce©ö5£@bás¹ì‰+Ï7"xØ´àk•Òê`NÖ3ÈE°sn»i0©€º¹Ê±ã9Ü톯¥é/üäÙx^ ¡ô*¤‘Ëó|ï,ñðCõi᳊Ž˜‘ùJáÜXn²im´ÛsÄ‘Ùá‰Ûy©2*JêwîTíU–D¯Áö–w×y0é¥è'ú+3‡›aªH|QÅ`5ØÍ×^›/¦kleßvÕ{•ðçÚLu‘G 毞¾FÑ$}†2Ó—SjiÀ*¥Îe5%ñï5yÜ>7¾|ÿ\ÐðZöÀÛZ,YYðÁ,êvKu€þÊ<í½‡:Šã³‘v 9^Tg²ñhþ×®5çã3QÐw’†£'08gºN|-~×Fc:Ág¢w˦‹fÙØ‡P5])U»|ÈÉ]P ¨Yªz‘A¾Í-t¡,P\8w?§EÒ>in˜jMU–#!Ú à3ùvîØ™6=Í##»W/FR“eý€…+á ]3È w¦upuRP×…i‚/)‹TVÿÒáð#è`Úùd#öW¢lõ’¬?Ô¸ÿÑ””õõ>2øAJWfªìnÍ•-eÊ1¶ÑA.&‹ÑÖ¡‹I€K¹5B—*ŒKa+óy­&Æ>D ©Çö÷¹»Ѿ؂ؑøŒèK7cëZ·¤×…ޏ³€æü¸©ý ŽíÍœë,Öߺ,Šôýçœ(Ê[|: ¶ðïÓ r&±t˾›¯X®g‰§¡ÜºŠ˜góví“’ ~Ž<ômаÐWJ¼_»`{¿x^ü[:N.e–|Ê7KøÑ”u Û …î4 Xäµ2wP#_”ª¸+çñ>±22ä†~×§kpŒ²ü®†uŠãÑ/bü–{@~”†¾è“6ÊmMý¥Ÿða™œÉmiy²û9òÇwŒ$±Ç(ÑFYÁ7ÚÜ8ñ”üß³Ð/XÇj|~4:ºg%À~e‘vƒ]äÂÀø1/òëô+“-Žì¿EdÚE/ë[;Wù—§(*§“ÑÇ¢Ò@@<àÞ‡jK;H6§€Ê¼íSYG…;ʾʄ¤µ¤~ÄV82KK€xåxœÚp•ñ¢x». B:ìÈÁºŠ’—íÖ**†äÅ5ÊåG–Ð觨1TàÇ1ÉŠñ"½-Ëú"˜¬u{õa™ß+=g¿õlÍ\×|K°ïUAu2hÜÊ`3¿¢Õzrzýü3†òõr,Cav`hKÚ¨øl…Âæî ¢ÃAB.ógÉÇÐ3Õó¾3Ýâ”ãÍ ßUÇÚf&÷ã‹éd!x, ¡ØtXUÕ÷ål¡—ž‚¶®-ÿåódÃÖ°ìîÝC¹½&kÉ5»­Ë(BëR[‘6¤EvʙȃW°´Nwé¶sökÜøÃ µúÆt\mÍÒm ¼vc…v.åfžÑˆ¢àˆ†K1l¶¯0R§·ó†”‚Λ‚ ;äÉ¢ý®Lº–øÁcgÍ-~Ì “Ž)FpdyÌ|¬·3|Ú‹Õ)|ñªÈèþ,÷b{ˆN£šNG¡9eôR+Ó¾N¤Þùíܽ¯þE%µcùÝhO­›4 ÉËXNY4囌}žž)ñ‘pó‘«E«2ËwMýôC Ä ¸&¶¥JP&Ùk³9ó•\–‚±Ÿ:(ä\?ÑÞ,R>FºjrŒPÐä¥3ÿ¸q #hÌ’w?wrèm‹)ËyŸ*¯(â—¥ºä\MYê¹¾H&¾O¸¢ÀØÓ¥ìh {ö˸ «ic0]p6Sâ ¼¿Êµ™<¥Xª|OÇôDŠ+ kjùf‰ýÎv@ÜNßXMwz?»s(uã«}íÜR¿ÈwÌàŒáÇþ±!¡õâ^scýÈcÔ’ªkW$N{ OÞü 5²i~ÀîNiç›i±½Ô”`nn&7Iö™EÎ'U T©½û€k¥&Xym;˜ù%7_ØVQœn9RŸRÍZš‘Îõ1çizzï×¢•|Õ¬tÂ@”2ô½ÊYº¹{ŸC¹–3Å…KÖMÙˆì÷ú9}<÷Ó˜qÔgÃ~Dðά=Í$EfzÈ:‘´þš¤ù¤ú`¦“9ù9¥!Œ–KÍ¡Âàaó)F‰ð»Ï6àHž­9xëY(n»r‹4fÌöQü?Jù"‰Ï'Ѱ'ï=´ç€ó鳇…Xù«r«QFªºà¯üs^4bÀÄÀõäôâ‚’OÁõ£>Ë–Š;»2¸î°Pñáï³ñœÛ|ðž³1ýÆUçFtéë'~ ËF†в\0êKÜK †©Ó¬œy:7|Æï«³Û§$};½ôM4(¦oì¦ì÷,‘¹ÒØ(ê`“+‡v|‹ß’"Óbò¥¨¦ )“Ûd©æcwÃâ Xðå—IäyîN¼w>ylÖ?±;Nñûᥠê›íns“¤µñ"lµlŸJûèYfá&l€…†){kB2+Z?Ó•«fø¤ˆœûvÞ0…[–is½¦éN¥Ï@¸pŒÛ ËShŠ¢1ðkýÖŠÜŽ¨~f< \è‘îq®ÎwtÄ (Û—~fË Vöx‡dÁÀžÇt ¾ìÏ`²ÂÎM„Y¨’)„ q¸ÄDz!’ï"þÛ½ã+¡©—p}½Qãç샧Ñz¤=!IÁݱú3Þ‰¢ |¹=÷æË$Œr<³‘£¶b­ãJ¥ÈùZ£ÔÃmêùp¥×/”¤bà•¶âº_ZðRÎNYðÚôqŠ0í”È2yÀ€A ëGÚ7mn¤2Ö¯.H1˜†WšÙçÄtšøv ?ñîh-õ‘;\ÉË÷…?hzô £RŠ7Á¥go3Ô‰Z(%µÙ(S¼Ž0ñ¥¤B¹ÛÃî3Ð&€•»qð¶Ø@'~aç8€ÇGÊŽÿºõuËìN~w/<8ØÁC`d¼×ˆ¼ù¬5}× .-É‹¥ÎWvxÚœ8,%£PÙ¤=ÔÈù:ñܲY›6`渢¥ë'8M4û³ˆÖ"G,qŸ.ûaÍ“d{üc4»iߨ+’  ‘ÿ}’Ät4Êâ6?=¤Ó3x_­ ³À=F‚¯¶,…ž…3ˆÑ¢Z:a¾å=oRüê.¥óbº*G´<£™ºà Ž:oî±',1òDª°›$™t@/Ï„ûÝ;ês÷OoîÐ'úJ”¨I}ŠÚikŸô•´ëÀ´ŸVl~Ò9»Gùúø^¤¼S”@!w¼—ÜD¿T8ñË.ø†oO?Å€PH6Þ¦?ƒ×ÿ‹—‰Zi{7µñ’¦Ç}:]Yzj~*]V6¾ QW;ÆFá?["ÝxT2ÙRïz /æÓŠÎÍÈÞõ„ÐD5Èw÷Ý; ŒGäì-º#?ð5 É *©ËöãG$©+Í¡ïͦËüÌÉ$41«–{˜Þ ¨x~>·~q …Fp¢¬?º‚VÌhqî<Yzз¡b~ÒØeïÁ–„r{Ê¥s }žk¿óIqÍâ…ì]µSì‘ žà`­ûÑoÁNŽö]÷eàö´Qx ×.¹@éÛ‰Òì ò(ï\ü(‚ÜCÛå_$ °ËgŽæ/õh†‹³8Þ"q½‰Qå¿KIzºMû&Šk×›)TAÐ>RhÉGÂ'®ä§-Cfô@@fòBv)?Þ)éÚ»Ò|™.ƒì´ð÷l¨IB›î¦–óeAü.9%³¼îá7Ô}‰ù®ºµ|~ØD Àæ¡"H¹‘‘ÞTp·¦£$î ‚½rÆñ¥ôðÝ-£ÝÂF ƒE­ -Øà<²Äý.³çÙ“îŒc½uí->´€‰}:¹VU0` ì£|J5jƒä–’Lb 1¤…À)ì .T€‡âÍfƒ/o=Ì؉U]Kpj*î]ÂÑ8]g×Lm€¥;þôytøÊÔ禦TðË’é}ïbL£ÈZøÏxt›ï†uÑWÛà®á}"Š}Ö½Rö7Ʊ3Ö9»³q¡ZÎ#ÔÙM%0Uu=*¿ŽÒf¤ÂwC} Ug½?œqŶFh˜Œ\ŇûËÜž„º8½”ÃdЭÿ@ÛT»ébvÅäN Ç ážN|h!³~œšTÔ¼+:˲&¤ ¾Ö^*¬ÙC³@›FAƒÒÍÿŠÛõÖD¼{,ŸRñÇð!YûDSzÇW*»Du¢µŸ™º<§¡I(í „t“ åU›Ñ?i]²Ú)àð¢ŽG®{Ó–ÒÔµ˜Y¤¸•â­m¯gáˆË?$g!p‡Ë±í”„âÜ‘ð`ÊÓ‚mîUÎΗ§VÚîŽ5Ý6¸¬ªdQ ¹ÌÅ@ð\6¼…#_²ý"^“`—ÞØµ F‘ÄVuT} [ñ‘ôè¯A üÂVYY`<ùã!k×·ËÎ6"ý]¯,¹ÀÁä ,æ^WA%% ë½é>ÊÕž™­·èks¥PïhviÁÃü–oðõÔ·Ä+ˆÖJ™uˆçäW+ßðw¼!š7þr7¶"Š•–´yС4cL9|Í ǃONvµK–taMòC÷šc³゙ù>' –¥^¼5)Nos³™!&e'ÞŒ“8M p0kVì­{L;´`*&JÚî÷+øøÁ›ÛZ…^øº²¥Ù©zð»V¦]&òOI7º9Ñ ë8 :8äx*Ë„+IZÁ2™¶øÇÅV¡y®ø–ÖÁ’íPü»CGž÷Í'A[¿PŠRfŽôJÔT4:$ª¤ß_Ž›Ê;qçs²Í+⹨A%ÏÅ·–ßbæi)7ÄGþ£òÆÙæ:ùidD" !ãN{lShÎ(˜›¶”Íp+h2ûÕÚwnpåy ¯z `|x=zK}å–<®•º¼Í€ÌİYÖIN£í_ˆxl}Ãë(4‡’önI/%ôƒÈ?úýïË×y½Œ6æÇèEÃ'`x·Qµˆu­"Év>š[)æ?xŠy&–—‰M ÒäŒÞÅ‘ëÒ>ˆtÒ}¿Û2C¦áDïur±?Õ§tï;à4¬‚þk· MäÊC-³­'Õ·:°(‚l£þ«ÅW×ìn{z2óG‹,¸Kœp1:\júJ±·/x97*jPX;jiöæ_YÅÝÔ1ÊxŠBK§[FÚ¨ƒóχ9íõkZH´ãÔÝdxÚô^½<æDŠÄžò0œÏwqö;OMb,öùu}š\c·ôúª¢eg¹¹›ørbwhÑV#uý΃y«K –?5eL÷úöt=¡×eLø‡˜p‡®Ì†qoóÔŽ=>ÄyÃ@ôóipf¹@y 3ZßK8ÔZ‡"ŠhÓ ÛœJ¸¿FçÖNó"ŸÖWsa-øk þL /JUâÕ§ËîŠo¡î[Âï¿“èÎKVyêØ "‚¤(V\ßÉmÖ‘¤®ÎÖá,¥%®T|Ïí71$Póeøac&®){ úcwÃW*¿—”js~jv¦]X ×ÖÁuÃo˜nï*?ÃoÚˆ¾¾"1oëcÖŠÀê:¢…Õ±!‡»YC]<¢\‰h´Ø…ð,DÄ™î³0(Ù ¦Z5ôU%F¶uv|¶tÃQ§­E¦'»Šø!ì²<Ò6¢¼»øm!OîäXg5gW%fkÒÚ 0äƒA€I-ñ˰_áaú`ß^J™(X j#ªØ± 8“‘òµ­yl4 ûáùk+5œäþQêR¶|)mªEîåEûyJ£ÁÔ½ 4’ŸÜT¹RÛ|ß¶˜­6T„ˆ¿ç¯£¹ŠŸâ¸Êª‘±Å„‰<ñš±w)«©¯žkäþ€jÖà"mO÷ ]1¢B†0ÛŽ—ØžòHåéø|X¿læ\xÓÔ[¢à/²ó> ô(LÍHÇ–ñª8z¯„£lhj­ÀëW‰»ô,/[MbôP Ïâl*5v í¨î:g˜'Ó ,Fžk EPã›6XbBZ“±N ½ÉS®>íÝÔŨ½XL[FXRÂtå¨Uh³ûî.áJÃÃîÞÈÒ¦"0;/h|áH}°‡€±+’þöNÉädËj]w¼jÙ{0I—bÙî…9¨-ÇŸœØ ³=§±§“”¾øÉ†óÉÈœN혴ܶµÎ#çj i‘ÀrÕC<ÀX"#â@ž(óÆP… ^Y°_-ƒdlqáH.¡fÒ• c—>k…YC c“!È¥ùT˱ô™; ý4ò~pÜóûÅççèÕ¾`>ß±dª’ÕGÌhv‘Ït•ô‰OD0ÈG_!$¾ rPnÛpŸH ÆÒDåú0œÈ›#,¥~Mš=¦Giø¢ 7ú}-íh–ÍAÉ‚=}ì*3í†Ë9‚8^¤Ì(\ Eû)>–B£¥î[¦%6«%ǶÔ¸Ì&V¯C¨¹$DîÛÔ+Á%ÑJh[‘fÖ nV$‰_]÷,ž±eÅýMgm>ZÓ±YŸË¿à‹L‡õÞK9Œ’݈´üÌ%‰Pbûµª(ŠŒÞ·øàè, 3ï¦ Åb÷zí°{žJÉkÀYÊ7«ZÁ.fº<‰˜OÉY­ëÖtg…‚0x_¦Óˆ·ý¸½û4ò~ŽÕ?Ž£ßÌ âyKfªfF¸Ãª){MO5HvÓFúÒ;‹QNii§¦l8g¨šH­`ÈCä=w´êvÛîê0ü-cõi¬/ž. ÌºŒLÐ"¸yRñvÀoG†±˜øü·HN|ù¢-5q`Úk)iÕ“39¯‹PÅ1‚Pq6âŒÉ3 ™ûâ£Suc>­ú)à{ë»@ågh”Fè@¿Â”Å€³bÓQ4‰Ë@ë’ïw<Ïþ§œE¶Z7%ÆtÙXÓîá½· ùãýâ[Y)Îý1%³,Xf›,å~ºØÁ-g ÃC·lÛ „€\H¡».ÅƪâD¦P:Ë’Ôâ‚5­ZÀž· Ò’>Œ¾Q¨ÄS…u›¦U8‚ùEþLó2$O©Õ5rÍPÜHç5ÔD^Œ£ÞÉ`ÿ¤’7ÓÂø¸e:0FlFÜ9O »¸åì9äJášR¾§ïz µ‡cìûÖhË›ìð‘bÎ -±G%`¾øA‚~Ø¿eð |Wl *#óÓE4ª‚§{YT¶F'ñVÅàñ B×*ðøúDç†cZ¸?~«V¸Í±U(ˆVq%#BLM™ª­-”ºRwUÇ#3݇ç_“ÑðŸ Þ)”TøÔ¡Þ$Ü·–æ|8ܤ(æÖ|zºÝÉM,b~LTYŸ+Í0Äv“ÿ±NîGøÍ~E9úC>â)å‹IÄ(™yèÙOìèš–¶Ûñ×NhÀèbO;¸†NúÅÑL\ˆj€)ô€>ù¢/Ìdáóà‰sW¡ÍR»:¥âiàXž½ù¹${C¬Ñ¥^å"ÊÔºú 2NÃëªÇ˜Ïg@­¸˜`là* ÌÎ6ÕwïµÏ‡?¤°Øù8 ¼|1\¢Ð J%ê~27i¡ÕÕDz /Ô¸,[ ‹ªT¢òè“.–qÊœÜÃr×-8äÓÏÌâñ$U2µÍ6¦—¬9OÜU*úÙDŽ–.¼–5ƒG*%’žä'6ªK4˜ìݧã¿Aò‘–× tGD ·žõþ%Ôç1’pk·§[Oþ¼¹Wâr!^÷íW?>šTÅi_&¿zþ(ZSh’!aú¶FgÇ dþD µèµ˜{FdsÈ”QÕ,Y’ZÉGt~p+Œàš6bõ9t»åÖ×{Î`Q.¸Þ+5v†þ¥O\{ÄÈ­èô#¤ŒÎX¼—8…ûãª4âNOü”¿ÍQóFbŽ7ó»¦pÓ?¢v†Là¡&È'U¹É-—ö™‘û\ѰÆJK«êøúšÁz(xjy—Êe ì¤B»oź_÷M´@i6ƒB3ün™ëÎ<PÒÕlèÿÆXˈ§4EÖ5²§Ûî-8øÈégh» :’‚ÄU$ÃðÑHò˜q*µÀ™mSAÅzyog±••Vaˆ~zú¹Ùý.ð£ÔÆ4å.·”±;Þ¶7Ç©E¾€Ðëôžu¬¨¨GÚ]{üJ´©ˆd2v~ú±N´kÖ`eGÞ„ÿz+ØÌNz‰Ë±ú©gîõÓ¸¿F‰øtiÖ¥^‰‘žØóp_—ÝŒHÔ^B°èÆdZر±zÊÈË‚ÔWXq–EÝ6bômt€Gkå*ßA<‘-w¡xÉ×"C-‡·,íàRƒu¬¸ñÍct®‹ï0®™éúßßËhn+G–A…Cª´‡¸ºY"ÛÆÙdO"îÛ9Ö¦&uä^@%Îá#À¬a£¾¡9Î2žc¹²c~˜˜ªaŸã*%éÿª;†ºMˆ=•eœÐÉ¥„M+÷c’³?ý*„"ò³tfj œW^Ecá·ôNl3)Jp>j9^páa³UªzÝAÓ6¿ˆï²YZà‡êaÛ"®J+/<©wìGÛe¸ã‰÷pëw‡^9§Ñeëj¾>-|ŒkRÌd¤’»#ŽªF~ȹ¨Ãá ¾´×FBÀd§Ð-lêìN o+þVPÿ6‘%Ó÷ôu#fì㧶ྲྀÖÍhz›FkÎb¥,ÿ}ßÓ÷ÝMm²}ÚP¾„Fô²õ…C¤èÖ5åÇ¢ßEäôY1¤ThùN$í­GÒJhZJSóX-ûœ¢˜wmˆNÚŒv`?%3¹šÔ]UÉ+H—Ó›«·úºöxü"›pžÙxä·ø¢‚¹VeR{åý-ªÔæ æ\šw*Ã6 '"Íac1bO2Ñ£Ô1êšÆ‹¥jt)ô²º14@\Líü„Ç žšN¥æÚ`É›¸­iîjH„98'õë/ƒÒ&Á(—/TQæÒÎ`ØcÓJòc[f™oÊ <³wÈRo½]Çæcƒh<­•X({‰J `w¶Ü“8„Àɳք±ólŽ‹ÃƒYíÐ0I@Žo¬±%¨€dEûý¾’`§¹y 0‘åͱȪXŽ>[Uí9;é•R%y— ½§(ÜÞ›ƒ’Ö…§B.‘B9=žö!{ç˜ EÐq"‘,ƒÃVï|ØÓRÛãkÇÏgT\ÛžOÛ[¬¬šíñînaoVì#G>® 騧xõT.o D¿9RñGç1ZÅŽ+ºIDÇ.ìrá±T,†éÒ>FJ„ßšCv¨È$qbÖœû.šÞë'2½þ`6x$÷ÚϦ’E$²á”Œ½ù2ŽÀyCÂ-6Bg+ŠI¡°7ƒ¹vWßù#Ô@±á޵Ž`ë²Öðaîù¡ZZíüC5UŠÀ;‚œËÑ%^v]äE–²R篑 fèùô©‚‹ŠÊBÅ«¶·^™ðè€dÖ:Ôø_Ëm³ :–Dd»—×¢³ž_?Ì9¤®9’½mzÕûpÔŽ>P)\¨•èÙ÷š¬ H¸N±Û!‹Z0zðç·dÎÑ¥bÑlD[j–¾~\º•ˆb'ƒ¼­´ÝX?Ìð}¼–€aæT+û~¢ÀkK ‹¢ÓÞœg \­³8Ù8-O²F©Ôó+̆ÁÙ9ª—¹hp¦Ð݉ª&…)1cþŸ óðØÑ6|Ís*æàé/e6”R•ž¹áX6œÏ¯_髈ÅݧíÆ`™Œ£l¯á`ɯ–8ŒXs|U褞Pğ݆òô×w"`V Ì7•žŽˆ3qqøÊó~¾I/ªã£ÿpÐIV ‘WQþ¾4§Å÷¥/¡F)ÃCEÔùEÿ~,t®!¢J Å#7Ôk3QÊ,¬ ˜jt3L›†Ž~Ú¤kšé9#â‹Sk‚ÈÁv37©5Þºˆ— ÀøÛ\ïO"ÏÍc aæôâd+™Í}ƒMÜÙØoI}ñRý>.(JlµÛ®hÄ1Ÿ$GÔ”&t ¼Š ‘{³‘ß²2à Vuí'&>lâ ˆM5GØ%!ßYˆù¬kÙ[ð;]´†€=»@' ›ô}V…Åí­g]jl€¢±<®†ß*²¢¥LÁ­sÝÂÏ¥…CvˆÓ¡”úYŠqÅ܈tN!XΜ9ðJžêY¹Ã—P»°¨•#E’zűµ*õ¥é¨¦k›1#Î (-E¤ç÷«™½5h’­°¼<ÿf6ÌyÊ=p}?>èî†Z¦òxƦ°…¼Äüºü·ØB†jš²»Rþ©äÿÌ )¤(§qBm$ì\t™Át7ÑBžÏÁ·òuÉQ£PGÚ:}9RìËQ`ÒÇÁ…~ÔB ’N7\Ê ¾""ü;v„KTÓY²«Üá=›8Ï»ym]ÌDû… éYJû;\î]|㟬bÛÄ, ¨«És—#CFÚŒ$s*MôñÏ·uËÀí)óÅ!2àæ£«y*†áÂðTÉÙ¥Hi]¶ûSS`Öƒ0Üž fK<“WÙìÌú"%¶àÒK¡Ô¢žF-Þ Nú}kÉí  5xǘÐïÕ ç7Mü™Ác.‡e&;½¨nyÇfAE~ÓŸµS\ gÚ;î…m5N›®H>¥í÷±Ì¹ †ëíº9gþ„ÇÂOÆÛo_¶Î|÷')=S$õçÈ`Û¯@îGîƒoµ@ ¥%Þï¢t%( ™6'á½ s£•^”^jÛ #¯=3ðº¢w6ÒãŽX!O)=·F Ó‘WÀ²À!\â|DY‚YaÄ>åÛ1Kæ2PYïEÝMÔÚßÌY;w_H8±ÇÝE†¸Ä®û—þ+ç‘ÊAïÆI~(Ø¿Zqû—½Áâ!ÁÃ’—¶AþÝ3=ìÚ¡63»ô£ “·n»Lù^”…ÅÀø°–Íðß‚æo*rÐüó i>Í[a~•R5&P+ßÙWG¢W&J¤n÷µ]™8eš¤n‰™kôë+6Ó3Âð_*ÒÌ è•óWqÖ¤(h¢:l]æm„”Ö”Bz±ä„â]*¾/ÁÖîÅ_kyQèˆà€oË´G¬m¯=`Ë‹Lp†§}Ò½eVª­(ärqh&i¤åoï Þ ]-=ÈŠ. ¯jŠ%>þuãWæo‰# a'úÇÌ_í…uI{Äó™àÄ :(xµc7Œ\e Ðãf¤ð,­™ËzµËãÅH—2±þÞ¾¨ aÙ2ßÝ~{©ƒ­¸¼›|[0\ø[»hÁJŸmz9SòéÐcX Ùµ„é[™›Êc‹ |Á<©¼i_ä×åü颟ÃÀ=WÁì¿g3v@D“ðq'@ÈŽo)B?Ο€b/òŒf¶®Ï,CKMaœÑÝßá?ᛩ‡ˆhzIbcå”5qí%¦?j ‹ìÛfcùÅ÷ÙÛòNe®fÎ\ N#TnÚ kd°Y`”Ÿ ˜–¾XHµ¾‚$õ´!PX`ªEµWÒXqãÿ‹£Uä [J©e.R~Xûà/zÄf…õ5’ÆAX­A´JŠéŒSÑl2‘?Ðn;GÍŠÒ$ν»4z.l#>µ´5àŒBâJjC•ìðÇß³(ò¨‘ÒžuS¬ÇØ+®t1µÊä¡1è•÷–$Òî¢Å×C”4œ¯Ž5î8"1ýÆ@§¾æ§Ç­#1BvÑz€2_ØbÈA µŠ!#VšÒÊ}^•o×+òÀïräFÍ`Ôøƒô–R¨Ä Šâ @ mƒªðú޶ÿ¡0¥ÿcs,¿°cé¡Hó˜t¡ðÖfkºt¦nÿ'.d߈y%öž¬§pý«ÖÝ*ùœG9Oç&o†æ¦_·YõE+þé~ÿ™˜Äru×·¿éV[_!{Ç7QáËŽ(iD(‡x¬Ðv ,C®Ë­¡P²ïRç¡›ËeÿáßèþÅ»>Â^ÕXÑþš8a½:´!8gy"ߌ1ÎAì<\pï˜$Ìó\ÀcÙÿ˜xä×Ð1×µVnbAw NwK`†×á•yUÓ¸…¢¦c_|\‘†mü¥uC“u–¸O謜åªXžsAr¿aÅç\‡¬FÛËGT¼©~† ®Ð»óO½Â*2¸ò;Ùá‚Ê«ûìɹÐò +9pù}EFž0ùü¬ÏÖÂcáÏÁŸdÆ?¸` iký ƶì³AdY»ëç|ࣙË_Õã@sQõ³ "ÔA®Å ¸Ú£ÚMƒ»d±µŽb—÷zÉÝBgWå)G³ô(ˆ<¸|ÁxwÀ1ñFF²“‘+1ÊùRx"sV7`²$ѬüØâËŒ2üô;?–ÛiÏû3*'Q¡@©½#¤ÐNJ ïW `übÒâõçuXZ|%x¤²u–ø8ýoïIÙ+u{Xbá«Ñ‰©¤þÔ[XÍi—„”ÒâŽýi[ë/W娜®>Õ^ï9œ¡çê‚¶¿› › ÝB­¸A¹LЮÐt£½Üz–#kwËùVÓPÃb_ºçßLg`¼ð’)Y»¯˜ø(±J©!EäÊ ÊA<´.šR»À ðO0z˜ûbâ~|ŽE&‚õo?FwƒŽ%£ÑŸý¦Öž{ÑÇyÕ2x¶>ëàP}®§[€§  (±|”lå—lAór®³wóqLæÌ{ž;¢ŠÞFg­õX€ræ&>&]¼¿•˜èÄŠXƒð¿`i´ñ\-ÄÊ"Â@µ'àùÑñhDùX= TLjê½("d£™Dz°§ßÀ*ëë-AFpì#-ðì®§ó³†1ü JÔ›>X§/¸ü¿Áèßš?Ñ !õšÃ0¥•lNzHV:¼’ÏtßDSœ³ÚW_‘ìj\\ '¬ådâ0‘[/*cŸÇùJvG€a‚õÔälþ•ŽWˆàåzòM ,hÔUA¨›¹C ¼‰ùÿ³.éF–]»rd.‡‡‹_ßàv Õ‰k£ êöã`†:d¼µ?ªUxZÜ[†ôI'úhD2UÙVWã/ÈÖ g6½S…ÀÓÍŽŸJ×:}¢œäO¾Üñéý]˜„è¥|¨÷нaNõMš®ú\”Ó£¿¢ˆ#“àî•æ¼{ñé¨0¾b,³ÎjC'Ik&áµ "¬ËשöãðŸo1Zg݉ª}Œ3œÛ. 3Ž’'´ÈÿŠíµ•…v€ñ–öæÆ~­`g“ÔÉ@È#IÛc'ëz-¼Bï>‹æîäN ˆ€ó]%‹Fäî,葺çÝ–{¸ÑIo"V•q3õûΡ”ÐãÞlÑ<"e xÁ8Ò’ø ¦/™ º¥¯I¸ÙVëËãæ*—ê<8Ö¥tÜcð èÚêqý‘[GñÅñ"T1 ·¤)ˆÝÏy킞8ðñÉ endstream endobj 10 0 obj << /Type /ObjStm /N 100 /First 846 /Length 4267 /Filter /FlateDecode >> stream xÚí\Ys¹~ç¯Àc\)÷•ÚÚ*K²l9¶V¶´kk]zSci²¼–‡cç×§»1ÃER¦Hm*•M­a0  ¯ð*&˜dÃdôLI¦BdJ1#Sš™˜2ÌJϤfÞh¦< A1åXô¦£“"¦a¾ôŽi tB3íào°LÃ<#à½dÒiÁ låa™ °¢Á}ŒkøUÇÂyf`wi#l ÌØÀ¬n ±0nœbÖ2e-0Ì:#™:¯5ƒW*8Á0ê8á%,¡eð –ÖÊ9?ZàÀ:΋Àº²Ì#ëÀWð7*æÞæ(Z0¡u©X@Q@.Ý  4°…ÑR‚ŠàoÔ ”i Òƒ¨N¤ÆÃbQ2\èD¢Á¾Ñ‚¨ ä"+«¨ÝjP‚]Zc@«…Fõ Z Ìõ¨p z D ³£‘ šu–‘°µ“ T)-褔`W§|@sAù'À>22@Rþ K0” š@¸(lG¡f’æ-¬)Qgž$Â[P§€x‹R ‚JAO`I@` ™8DÓ ?ZÙŽÄ…ˆ3ÄXz(mƒx’VT!_`:‰:PV x‘׀ψ'-À`õ¡5˜^œe½êH‹´>êÆh”@´ KI³”´º8 ´€*‰¿`àÅá|Â÷ ,åq døá‡¿ø6.?+nÊ? gåp6eÜì]‡¿+§£ù¤WNÁçhàMy]£¯ì£€ÆòQ]u`úæÄDöã´ò1¬Æ~øñcpƒo  6³uvMyJ] ¬»€>êÁzül2ê—3öx=:fü¢ü:cWÍVk…vE ½ƒ‡“²˜U£áQ1+Ù_Žþ¦` –±á ¬6ºÞøî¢šõáÍ;öbRŒo«Þ”ý4Ÿç³'$Ñõ¼WNð­éŠ®xRï5¡'Ë¢¡.;ü|þiF8(;ü´à;ÕáÅ´$}ó—eÿK9«zE‡?öF×Õðb-ÐG~rxˆÄ׎pð*Û¤¡OË-fó÷ÕðÙpZµ¯ªÏŸKPêô#3–ªá|Ê¢ã¿ÏG³²_~ž!²ùõ¤ŸN+~3)¾”¼èÍg%ïU“Þ|ð¹_~峪]òAÑ›Œ†üÓ¤˜Rôz`~]ÁÓjÊ»ÃÑìºüÌ'°7ïéúýb1x;Þ“ù _Ìg|t3–¿ñ^ëMÇE¯¼Zcƒ*~Œ¾Ö l.Bx’ )Ï4ôÓÅ‘~úô²—=`ÔØ¬*Ü«r{ù\&æ‚mèCZ'þ:ÜQ½<´üsºökÜN‡?½Û-0¸êFPň}Àgä øâ^n”9Æ: ø±—XìÃòJš2z/–sîZž‚ìÊæJ€2Û(¿ 6¥<&ï˾UwÙ·b/ö×ky)@%¬×¤‘½cýŠ,v/YÖƒ<³Ä²ËîÀ²+,‡XþH n]-æþ䵨j"ÀSä^€[ Wî±ÂUæ-{û…_ÉW.þaißèéÍ]6½ÚŠMo·gsWÞV,íÝ^¼mªTvà-¬d ]oËYgïìVê‘ wàùžP­DܪӻÿŽPâšPÅŸ3T¯­¶)wî+÷ h¬Æ•³f”{ù×w¥ÌÓKgŸxÍ½ŠØÿWJÀh)èåÒfÆ-é[(¡•|×ïÄJÍ·«¥»92û·zØY€•¬‰Šï%Á§ŽÜ°ÝO„°*‚{<Údµ©ÀZ{ÜU)W¥‰ûIóÝ£Ó¦¹wmÉrEù‡Ã+m™4kMv¿`!Õ™®½ê|´.v-£žBTÝÈ´Ž]ü6 û6صýmZ)uXL{èä­–®ÿl~“ï½üfiêò˜ÈS{Ï$­b×\Ý_ñèEÅãe2ö›b6©]eÚþkûW‰ê€„¦Wôc.C"æ®yOÒvE¶?®&ÓÙám1a:vøë"{x_]Ïn§ôvQ5IUG}$ÅÕ§ô­^S‡ݵ‘­¯¾–Ê+y¡ãƒ üþ6ÅEZ¿:ýÿïüwk¤:±Ra ü_ûq*µË€JO RëïÐr¤ÚU¤º©²Kó]¤Â.¼€¦Å*}y¬ôb)ï}7€b›úø%òÝÞ6-ÔT‚¦QÊ€«Dƒû`ÆÂû HŸÖqй0)D \ :&"A£Æã$AìÁx«Á ÚÒV½sú•Y¹±ÍT†ÉÔ¬iíkRQj J˜jm„™ÁiPKIà@epD£ÈÈÕ¦qâ[8äO+8mDLRA£à"‘Ò£ìšÃD‹z NÀT/$éÌîlˆ}¼â ­ï`šó’”{§ºz©]Î&-"#™X¡¤5†‚ƒ·O<È‚mÒi`XÄû, u'`tà4­àH>é¡_k,»h´š‰ ãPLm5ætï`%È^°»SS㥼d D8”F` Éâ`wØßâ[Ä•½Å‘ r óµCd8‹<ßqjTlægÛüªï„«ËÞ˜EçðµÀ¬0ªIóŠÁur´D+&Ñõ5Ë7ÐôÑ Ä”Ð¸N’É`AJ°°D'5iõîR$ÍF²j´Jká[·„åÔ¶Z1ämæ€M :{kZ‘üÒM@N÷µ59´?Jtª`Ä`ðÀ+x5¬UB“§9´+ØÆ WÚ¡ZO¶$J/-¡DzDBy·uŠdEM‡ Q«¥ÔùÖšÞ’Gojkm;´’«÷ru[S„SPßH¡(¦¬$ʼÈÿë>íO4F‡Q›VÌßj‹ôÍj÷qºM[¯™µi¯œ&x£©$Fÿ«e¶R0Z:«ÉG‰NÒ^÷¢äúaˆÙJ)†Òüz¬¦k Õ;$Jjc¤Ð–$‹æz͵’Ë”FÐfd·ÅS­ïÅX>G“å’…jädz¡õ”\X¬Fnf;G‘Ì¡Æ ê[äYyš Z“c›"‚NYjMÜÀˆÐæ•<¡âsŠRº$e!¦ Ri›¶—Såm³´Oï2öv ty¸Ã$ ê¶®0Ø¥SW‹Ô–BX ¯äÚ@W;|&§Ã;‘zh4FsëÕµ£dD JëÛ¤N)Ôb{Û”A­ w{™ h±ÚY?³.ÙTµkÔ¦°ËÔ‰BGD•N‘)${›HýÔ.03=-µj¶:¾Q}¡ }©ï¶ý­g§´”Ö´”ƒR›Fåè ÅIT?ÆXÌdIñ"Ué/…fFAù˜ä–‚þ I `š“u?8 ó.‘‚P‘6†#& '.¨õä‰s—õïJeá\›M¾]÷Ö0šjœ‘F=ÇÂ-F¢¥X˜f.¨…¡Øh,µd›ümÒUê§–¸@k¦ (U6$z α§½ôfŸ¶^1µ³<îcµ¤ˆ†->c]ÕuDüm ÚkÔ5Åx0Ä3O9ï›̈Ò[ª*5`E)Eغ4&Eôg™Ñn,ñVmê¦Ö¿à÷ɵ‘Kd iOÁx€Á¿)wMÕ'AJµòÓhÄ6DÒ?Í[Ц÷Æ"f„ÚJí»¤¡Ô¯[òPÁ•4æÒ†€÷£S$<ù„MãèAŽúÆ E+—(]ÅDECAmÌ稄0Ì|õ¹$ûÛôM¿M_‹ö¹¡Ãg…‘€"Wði.Ém²þìG]½ªñø1£Âó +9ìÕá-®ÒüzHŽN-¦nÓˆ×aô©ÞPšp޼1ÁPž2Ö›4SQVÄGš¥›õÒÌzmª[ádÙ¬Txs\·x°TÖ¶/÷Ú'\ÆÀ‘Oe=©˜^¼§4f¥£¤‚‡Èzî‚*½Óä~:P±Mýö]b7õ©ÅRY*ÁbE-î8๎T¨ë6Òq#±Ó2d‹Ç€Õ~>’V6ÂÕGȦ¯<Öršzn§¨ŸF;?yõêË¿¾9ø ñ#±~q3e&ÿÔë©uì):‚Ä{þà‰WþlŠ_ƒ>€ò°¿,«›[x ®Ãq|÷TâË“Yѯzφ7ý’Áòç³rð ~±ÐáêIØÓ'\øéÙ_ø3~ÈŸócþ‚Ÿð×ü ?ç¼à=~ÍKNøçêKÉ?æ~ÃoyÅû|À‡|X K>â#hÇ|ŒßBà·Ý©7¡yãrR®ùïórŠ×ø„Où´üRù´úÊg|v;)K>ûçˆÏùWþÿëIÒÂq¼Ëöªí6Z}óÓéåéiÒªÚ UZÅd¢ããhUÄ{µz´¤×Sþ®Öí§eínÐï6ª½O£_Öé4>D§—o_½>߈Te@§ÿ…б½¦Uª¹NE¦QÈ4j|¦P-s…NçƒÝ>¹®¦ã~ñmI.#"׋³ãËC”ëÍÉ&¹´ª=ÿÎýXÑ÷aå):^’Í«²µ`A¨œò_øþ+/úã[˧r†þØ7ãiÕ %¿)pà/Ê”€Í?øo/™zsÐáÑ/¦· €Â²Âôƒœë×g¿üL óëõ%›€åå#©+È{ÔuœÄ]É>D¤³Ó# Ò»M0¢€ˆûÈ´·‹÷HtÅ‹—ƒWüïuÔø‰ŸÕ‘ãgÆ{~ ¤@˜Ãk^LÁøÕô7ÄɤèýVÎ(TÔý,zùM£ÞÀÓ‚©BåðRþ>/ú‘ð§âôƒ±©ß†§Ûoã[ˆ75ܶÏt“©[ãþ|ÊoÝ•ºþÔ§iÍCš¹¸F•zi0…½A•di`ƒöå0øÏù¿ÊÉh1Ê0oÏÞ_b6$mR‚‰!<`ìFÀ4šT’lY‚mZcÀï¤VÀ·5‚?( ¼<úåâÃ|ƒ÷k\%‚z·ÜnÜê\p‘ ~Fµ æHÌâÀàó%ñ샲Áñå‹çgÜÞmNù&¸)õ(võ›̶,΃bõÙÛ‹ó×Ï@œóËI;²§”³ñâz<:5t»EkLöDúTLÒ­H>,o(ƒ'7Vƒª_L–E}P ÿõí닃SuSZ² )–|è–pö I7/I9žTƒrYªÅ™ó³ó?¿©.6W'vHóHéÖ…{«“ç0Ý)aSª¨–3CS¿Ž'€ÆM!/×!öA‘è×Ó³£·'I5›b°kŠ|> endobj 165 0 obj << /Type /ObjStm /N 18 /First 134 /Length 555 /Filter /FlateDecode >> stream xÚ•Moâ0†ïùsßC<ñW,U•(l»€I[ÒjÙ-j‘VKEÒÃþûب¤Ä,MNÛã÷ñدd Œ` ‘ä`€k$ PÁÐ’r Ä1¥ cÔ¤È1 Išjy,©Pb‚ÚŠ$4u)C FÚÐdU£bAµ¦dÁÅEf_׎·ª Lß~V¶YwbŠr]@˜/nÒÑÍ—áìj…,°é£uùk·y­¶;@Q5KêßìÊjøRìhÁA8-ûÍSõRÒ*¥M½¼ì@Ÿ$ã|XÓg×^º8¦#6èáO»Õ?{˜$w·¯=tuLW²IgºA»Ó“ùhžÏ‰¾ôÖŸ©èä¨ÎôErŸÆ–µé’Ó…8µó¼ÇÁÝe«•¥{v^¶]Çštlì ] /Length 472 /Filter /FlateDecode >> stream xÚ%йO”Qð{Þ÷@x3À **‹Š(â2(;*à ⸠Œ¢ˆ&$v.…1F ‰H&ÁPPNAC,$FcüˆA*Zl¬I¬,HtαùåœwßÜùòÌÌþ:³b0+±\ÊæOÉÖ~<£+qX¼—)l"æiPH¸/눦=$"\¸>äÃZÀ_„Xù´Ä`)§A °º!Õ‰“"R kÓ I°ŽuÕÓd3)…uÿÑÙV²Ö§ÍY-ØFÊ`é%å¾àY³.ï ÛacPÝEÊaO“ª¤’T‘°ET“ݰ×3ª5dìm›ê>²–i׿³î'µ°¹Ç¹·ÿT¯{HlÞ«!aÊT‘Ã$EêWo4h G‰„Öç³6‘F`¶GWZH30_¥+zÝ6Ò ,éÞ1Ò|+T=AŽKÿ?¨“t«ª]ä$9¬is8CÎ’s¤;7XÕà<é%ÈEr‰\&WHé'ä*¹F®?¿jË ¸ê¥A¸áGJ7ážÿVº·0¡4·üD)¨aRé6¢tL颗ߕ†½ÿ¬tÑÇV¥{ˆ~¬(ÀÇF”îçZ”Fáß}у%H~jÁà3ƒö®;QK endstream endobj startxref 299861 %%EOF survival/inst/doc/approximate.Rnw0000644000176200001440000001362413537676563016723 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \newcommand{\code}[1]{\texttt{#1}} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{prefix.string=adjcurve,width=6,height=4} \setkeys{Gin}{width=\textwidth} %\VignetteIndexEntry{Approximating a Cox Model} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text library(survival, quietly=TRUE) @ \title{Approximating the Cox Model} \author{Chenyang Zhong, Robert Tibshirani and Terry Therneau} \date{May 2019} \begin{document} \maketitle The Cox model can be approximated using Poisson regression, a trick that was well known when Cox models were not yet common in the major software packages \cite{Whitehead80, Laird81}. Start by plotting the cumulative hazard for the data set, and approximate it with a set of connected line segments. The kidney cancer data set, for instance, is moderately well approximated using cutpoints at 45 and 500 days. <>= ksurv <- survfit(Surv(time, status) ~1, data=kidney) plot(ksurv, fun="cumhaz", conf.int=FALSE, lwd=2, xlab="Time since catheter insertion", ylab="Cumulative Hazard") lines(c(0, 45, 500, 560), c(0, .55, 2.7, 4), col=2, lwd=2) @ Break the time scale into intervals based on these cutpoints, and fit a Poisson regression with one intercept per interval. <>= kdata2 <- survSplit(Surv(time, status) ~., data=kidney, cut=c(45, 500), episode="interval") kfit1 <- coxph(Surv(time, status) ~ age + sex, kidney, ties='breslow') kfit2 <- glm(status ~ age + sex + factor(interval) -1 + offset(log(time-tstart)), family=poisson, data=kdata2) cbind(Cox= summary(kfit1)$coefficients[,c(1,3)], poisson = summary(kfit2)$coefficients[1:2, 1:2]) @ We see that the coefficients and standard errors are very similar. If each unique death time is made into its own interval the Cox result can be duplicated exactly. One more correction is needed for perfect agreement, which is to toss away any partial contributions. If there were unique death times at 100 and 110 days, for instance, and a subject were censored at time 103, those 3 days are not counted in the in the 100--110 interval. If there is someone with follow-up after the last event, that is removed as well. After removal, everyone in the same interval will have the same number of days at risk, which means that an offset correction is no longer needed. <>= utime <- sort(unique(kidney$time[kidney$status==1])) # unique deaths kdata3 <- survSplit(Surv(time, status) ~., data=kidney, cut=utime, episode="interval") kdata3 <- subset(kdata3, time == c(utime,0)[interval]) # remove partials kfit3 <- glm(status ~ age + sex + factor(interval) -1, family=poisson, data=kdata3) kfit4 <- glm(status ~ age + sex + factor(interval) -1, family=binomial, data=kdata3) rbind(poisson= coef(kfit3)[1:2], binomial = coef(kfit4)[1:2]) @ The Poisson coefficients now exactly match those of the Cox model. Almost all of the intervals in \code{kdata3} have only a single event, i.e., both the event count and the event rate are low, which is the case in which the binomial and Poisson distributions closely approximate each other. Consequently, the last model shows that binomial fits are also effective. This computational trick can be particularly useful in contexts where there is readily available code for binomial outcomes but time-to-event models are lacking, e.g., machine learning. We can make the connection easier to expliot by pre-centering the data. The plot shows that when this is done, the intercepts are very close to the simple event rate for each interval of (number of events) / (number of observations). We can add this variable to the model as an offset. <>= counts <- c(table(kdata3$interval)) # subjects in each interval xmat <- as.matrix(kdata3[,c('age', 'sex')]) centers <- rowsum(xmat, kdata3$interval) / counts xmat2 <- xmat - centers[kdata3$interval,] kfit4a <- glm(status ~ xmat2 + factor(interval) -1, poisson, kdata3) temp <- coef(kfit4a)[-(1:2)] # intercepts phat <- with(kdata3, tapply(status, interval, sum)) /counts matplot(1:length(counts), cbind(phat, exp(temp)), log='y', xlab="Interval", ylab="Simple event rate") legend(5, .5, c("Rate", "Poisson intercept"), pch="12", col=1:2) @ <>= kdata3$phat <- phat[kdata3$interval] # add phat to the data set logit <- function(x) log(x/(1-x)) kfit4b <- glm(status ~ xmat2 + offset(log(phat)), poisson, kdata3) kfit4c <- glm(status ~ xmat2, poisson, kdata3) kfit4d <- glm(status ~ xmat2 + offset(logit(phat)), binomial, kdata3, subset=(phat<1)) kfit4e <- glm(status ~ xmat2, binomial, kdata3, subset=(phat<1)) rbind(Cox= coef(kfit1), poisson=coef(kfit4a)[1:2], poisson2 = coef(kfit4b)[2:3], poisson3 = coef(kfit4c)[2:3], binomial2 = coef(kfit4d)[2:3], binomial3 = coef(kfit4e)[2:3]) @ The fits show that adding an approximate per-interval intercept via the offset term gives a very close approximation to the \code{coxph} fit with the Poisson and a reasonable one with the binomial. Using no intercept at all produces some bias, the size of which will be related to the correlation between \code{phat} and the covariate in question. The advantage of the offset models is a smaller number of coefficients, particularly for large data sets where the number of intercepts would be excessive. \end{document} survival/inst/doc/multi.Rnw0000644000176200001440000000046413537676603015515 0ustar liggesusers\documentclass{article} \usepackage{Sweave} \usepackage{amsmath} \title{Multi-state models as a data exploration tool} \author{Terry Therneau} %\VignetteIndexEntry{Multi-state survival curves} \begin{document} \maketitle This vignette has been absorbed into the overall `survival' vignette. \end{document} survival/inst/doc/validate.Rnw0000644000176200001440000013625113556034141016142 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{prefix.string=adjcurve,width=6,height=4} \setkeys{Gin}{width=\textwidth} %\VignetteIndexEntry{Validation} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text library(survival, quietly=TRUE) @ \newcommand{\imat}{H} % use H for the hessian rather than script I \newcommand{\Cvar}{H^{-1}} % use H for the hessian rather than script I \newcommand{\splus}{R} % ``the survival package'' would be an alternate \newcommand{\xbar}{\overline x} \newcommand{\lhat}{\hat \Lambda} \def\bhat{\hat\beta} %define "bhat" to mean "beta hat" \def\Mhat{\widehat M} %define "Mhat" to mean M-hat \newcommand{\code}[1]{\texttt{#1}} \title{Validation} \author{Terry M Therneau} \date{Dec 2015} \begin{document} \maketitle \section{Introduction} \begin{quotation} `When I use a word,' Humpty Dumpty said, in rather a scornful tone, `it means just what I choose it to mean - neither more nor less.' `The question is,' said Alice, `whether you can make words mean so many different things.' `The question is,' said Humpty Dumpty, `which is to be master - that's all.' -Lewis Caroll, \emph{Through the Looking Glass} \end{quotation} ``Validatation'' has become a Humpty-Dumpty word: it is used for many different things in scientific research that it has become essentially meaningless without further clarification. One of the more common meanings assigned to it in the software realm is ``repeatability'', i.e. that a new release of a given package or routine will give the same results as it did the week before. Users of the software often assume the word implies a more rigorous criterion, namely that the routine gives \emph{correct} answers. Validation of the latter type is rare, however; working out formally correct answers is boring, tedious work. This note contains a set of examples of this latter type. Although the data sets are very simple, the examples have proven extremely useful in debugging the methods, not least because all the intermediate steps of each calculation are transparent, and have been incorporated into the formal test suite for the survival package as the files \code{book1.R}, \code{book2.R}, etc. in the \code{tests} subdirectory. They also continue to be a resource for package's defence: I have been told multiple times that some person or group cannot use R in their work because ``SAS is validated'' while R is not. The survival package passes all of the tests below and SAS passes some but not all of them. It is my hope that the formal test cases will be a resource for developers on multiple platforms. Portions of this work were included as an appendix in the textbook of Therneau and Grambsch \cite{Therneau00} precisely for this reason. \section{Basic formulas} All these examples have a single covariate. Let $x_i$ be the covariate for each subject, $r_i= exp(x_i \beta)$ the risk score for the subject, and $w_i$ the case weight, if any. Let $Y_i(t)$ be 1 if subject $i$ is at risk at time $t$ and 0 otherwise, and $dN_i(t)$ be the death indicator which is 1 if subject $i$ has an event at time $t$. At each death time we have the following quantities: \begin{align} LPL(t) &= \frac{\sum_i dN_i(t) \log(r_i)}{\log\left( \sum_i Y_i(t) w_i r_i \right)} \\ \xbar(t) &= \frac{\sum_i Y_i(t) w_i r_i x_i}{ \sum_i Y_i(t) w_i r_i}\\ U(t) &= \sum_i dN_i(t) (x_i - \xbar(t)) \label{U1} \\ H(t) &= \frac{\sum_i Y_i(t) (x_i - \xbar(t))^2}{\sum_i Y_i(t) w_i r_i}\\ &= \frac{\sum_i Y_i(t) x_i^2}{\sum_i Y_i(t) w_i r_i}- \xbar(t)^2 \label{H2} \\ \lambda(t) &= \frac{\sum_i w_i dN_i(t)}{\sum_i Y_i(t) w_i r_i} \end{align} The denominator for all the sums is the weighted number of subjects who are at risk, $LPL$ is the contribution to the log partial likelihood at time $t$, and $\xbar$ and $H$ are the weighted mean and variance of the covariate $x$ at each time. The sum of $H(t)$ over the death times is the second derivative of the LPL, also known as the Hessian matrix. $U$ is the contribution to the first derivative of the LPL at time $t$ and $\lambda$ is the increment in the baseline hazard function. \section{Test data 1} This data set of $n=6$ subjects has a single 0/1 covariate $x$. There is one tied death time, one time with both a death and a censored observation, one with only a death, and one with only censoring. (This is as small as a data set can be and still cover these four important cases.) Let $r = \exp(\beta)$ be the risk score for a subject with $x=1$; the risk score is $\exp(0) =1$ for those with $x=0$. Table \ref{tab:val1} shows the data set along with the mean and increment to the hazard at each time point. \begin{table}[b] \centering \begin{tabular}{ccc|cc|cc} &&& \multicolumn{2}{c|}{$\xbar(t)$} & \multicolumn{2}{c}{$d\lhat_0(t)$} \\ Time& Status& $x$& Breslow& Efron& Breslow& Efron \\ \hline 1&1&1&$r/(r+1)$ & $r/(r+1)$& $1/(3r+3)$ & $1/(3r+3)$ \\ 1&0&1&&&&\\ 6&1&1& $r/(r+3)$ & $r/(r+3)$ & $1/(r+3)$& $1/(r+3)$ \\ 6&1&0& $r/(r+3)$ & $r/(r+5)$ & $1/(r+3)$& $1/(r+5)$ \\ 8&0&0&&&& \\ 9&1&0&0&0& 1& 1\\ \end{tabular} \caption{Test data 1} \label{tab:val1} \end{table} \subsection{Breslow estimates} \label{sect:valbreslow} The log partial likelihood (LPL) has a term for each event; each term is the log of the ratio of the score for the subject who had an event over the sum of scores for those who did not. The LPL, first derivative $U$ of the LPL and second derivative (or Hession) $\imat$ are: \begin{eqnarray*} LPL &=& \{\beta- \log(3r+3)\} + \{\beta - \log(r+3)\} + \{0-\log(r+3)\} + \{0-0\} \\ &=& 2\beta - \log(3r+3) - 2\log(r+3). \\ \\ U &=& \left(1-\frac{r}{r+1}\right) + \left(1-\frac{r}{r+3}\right) + \left(0-\frac{r}{r+3} \right) + (0-0) \\ &=& \frac{-r^2 + 3r + 6}{(r+1)(r+3)} .\\ \\ -\imat&=& \left\{\frac{r}{r+1} - \left( \frac{r}{r+1} \right )^2\right\} +2 \left\{\frac{r}{r+3} - \left( \frac{r}{r+3} \right )^2\right\} + (0-0) \\ &=& \frac{r}{(r+1)^2} + \frac{6r}{(r+3)^2}. \end{eqnarray*} (For a 0/1 covariate the variance formula \eqref{H2} simplifies to $\xbar - \xbar^2$, but only in that case. We used this fact above.) The following function computes these quantities. <>= breslow1 <- function(beta) { # first test data set, Breslow approximation r = exp(beta) lpl = 2*beta - (log(3*r +3) + 2*log(r+3)) U = (6+ 3*r - r^2)/((r+1)*(r+3)) H = r/(r+1)^2 + 6*r/(r+3)^2 c(beta=beta, loglik=lpl, U=U, H=H) } beta <- log((3 + sqrt(33))/2) temp <- rbind(breslow1(0), breslow1(beta)) dimnames(temp)[[1]] <- c("beta=0", "beta=solution") temp @ The maximum partial likelihood occurs when $U(\beta)=0$, namely $r^2 -3r -6 =0$. Using the usual formula for a quadratic equation gives $r=(1/2)(3 + \sqrt{33})$ and $\bhat = \log(r) \approx 1.475285$. The above call to \code{breslow1} verifies that the first derivative is zero at this point. Newton--Raphson iteration has increments of $-\Cvar U$. Starting with the usual initial estimate of $\beta=0$, the first iteration is $\beta=8/5$ and further ones are shown below. <<>>= iter <- matrix(0, nrow=6, ncol=4, dimnames=list(paste("iter", 0:5), c("beta", "loglik", "U", "H"))) # Exact Newton-Raphson beta <- 0 for (i in 1:6) { iter[i,] <- breslow1(beta) beta <- beta + iter[i,"U"]/iter[i,"H"] } print(iter, digits=10) # coxph fits test1 <- data.frame(time= c(1, 1, 6, 6, 8, 9), status=c(1, 0, 1, 1, 0, 1), x= c(1, 1, 1, 0, 0, 0)) temp <- matrix(0, nrow=6, ncol=4, dimnames=list(1:6, c("iter", "beta", "loglik", "H"))) for (i in 0:5) { tfit <- coxph(Surv(time, status) ~ x, data=test1, ties="breslow", iter.max=i) temp[i+1,] <- c(tfit$iter, coef(tfit), tfit$loglik[2], 1/vcov(tfit)) } temp @ The \code{coxph} routine declares convergence after 4 iterations for this data set, so the last two calls with \code{iter.max} of 4 and 5 give identical results. The martingale residuals are defined as $O-E$ = observed - expected, where the observed is the number of events for the subject (0 or 1) and $E$ is the expected number assuming that the model is completely correct. For the first death all 6 subjects are at risk, and the martingale formulation views the outcome as a lottery in which the subjects hold $r$, $r$, $r$, 1, 1 and 1 tickets, respectively. The contribution to $E$ for subject 1 at time 1 is thus $r/(r+3)$. Carrying this forward the residuals can be written as simple function of the cumulative baseline hazard $\Lambda_0(t)$, the Nelson cumulative hazard estimator with case weights of $w_ir_i$; this is shown in the `Breslow' column of table \ref{tab:val1}. (Also known as the Aalen estimate, Breslow estimate, and all possible combinations of the three names.) Then the residual can be written as \begin{equation} M_i = \delta_i - \exp(x_i\beta)\lhat(t_i) \label{mart} \end{equation} Each of the two subjects who die at time 6 are credited with the full hazard increment at time 6. Residuals at $\beta=0$ and $\bhat$ are shown in the table below. <>= mresid1 <- function(r) { status <- c(1,0,1,1,0,1) xbeta <- c(r,r,r,1,1,1) temp1 <- 1/(3*r +3) temp2 <- 2/(r+3) + temp1 status - xbeta*c(temp1, temp1, temp2, temp2, temp2, 1+ temp2) } r0 <- mresid1(1) r1 <- round(mresid1((3 + sqrt(33))/2), 6) @ \begin{center} \begin{tabular}{c|lrr} Subject &\multicolumn{1}{c}{$\Lambda_0$} & $\Mhat(0)$ & $\Mhat(\bhat)$ \\ \hline 1& $1/(3r+3)$ & $5/6$ & \Sexpr{r1[1]} \\ 2& $1/(3r+3)$ & $-1/6$ & \Sexpr{r1[2]} \\ 3& $1/(3r+3) + 2/(r+3)$ &$1/3$ & \Sexpr{r1[3]} \\ 4& $1/(3r+3) + 2/(r+3)$ &$1/3$ & \Sexpr{r1[4]} \\ 5& $1/(3r+3) + 2/(r+3)$ & $-2/3$ & \Sexpr{r1[5]} \\ 6 & $1/(3r+3) + 2/(r+3) +1$ & $-2/3$ & \Sexpr{r1[6]} \end{tabular} \end{center} The score statistic $U$ can be written as a two way sum involving the covariate(s) and the martingale residuals \begin{equation} U = \sum_{i=1}^n \int [x_i - \xbar(t)] dM_i(t) \label{score} \end{equation} The martingale residual $M$ has jumps at the observed deaths, leading to the table below with 6 rows and 3 columns. The score residuals $L_i$ are defined as the per-patient contributions to this total, i.e., the row sums, and the Schoenfeld residuals are the per-time point contributions, i.e., the column sums. \begin{center} \begin{tabular}{cccc} &\multicolumn{3}{c}{Time} \\ Subject & 1 & 6 & 9 \\ \hline 1&$ \left(1- \frac{r}{r+1} \right) \left(1- \frac{r}{3r+3} \right)$ &0&0 \\ 2& $\left(1- \frac{r}{r+1} \right) \left(0- \frac{r}{3r+3} \right)$ &0&0 \\ 3& $\left(1- \frac{r}{r+1} \right) \left(0- \frac{r}{3r+3} \right)$ & $\left(1- \frac{r}{r+3} \right) \left(1- \frac{2r}{r+3} \right)$ & 0\\ 4& $\left(0- \frac{r}{r+1} \right) \left(0- \frac{1}{3r+3} \right)$ & $\left(0- \frac{r}{r+3} \right) \left(1- \frac{2}{r+3} \right)$ & 0\\ 5& $\left(0- \frac{r}{r+1} \right) \left(0- \frac{1}{3r+3} \right)$ & $\left(0- \frac{r}{r+3} \right) \left(0- \frac{2}{r+3} \right)$ & 0\\ 6& $\left(0- \frac{r}{r+1} \right) \left(0- \frac{1}{3r+3} \right)$ & $\left(0- \frac{r}{r+3} \right) \left(0- \frac{2}{r+3} \right)$ & (0 - 0) (1-1) \end{tabular} \end{center} At $\beta=0$ the score residuals are 5/12, -1/12, 7/24, -1/24, 5/24 and 5/24. Showing that the three column sums are identical to the three terms of equation \eqref{U1} is left as an exercise for the reader, namely $1- \xbar(1)$, $(1- \xbar(6)) + (0- \xbar(6))$ and $1 - \xbar(9)$. The computer program returns 4 residuals, one per event, rather than one per death time as this has proven to be more useful for plots and other downstream computations. In the multivariate case there will be a matrix like the above for each covariate. Let $L$ be the $n$ by $p$ matrix made up of the collection of row sums where $n$ is the number of subjects and $p$ is the number of covariates, this is the matrix of score residuals. The dfbeta residuals are the $n$ by $p$ matrix $D = L \Cvar$; $\imat$ has been defined above for this data set. $D$ is an approximate measure of the influence of each observation on the solution vector. Similarly, the scaled Schoenfeld residuals are the (number of events) by $p$ matrix obtained by multiplying the Schoenfeld residuals by $\Cvar$. As stated above there is a close connection between the Nelson--Aalen estimate estimate of cumulative hazard and the Breslow approximation for ties. The baseline hazard is shown as the column $\Lambda_0$ in table \ref{tab:val1}. The estimated hazard for a subject with covariate $x_i$ is $\Lambda_i(t) = \exp(x_i \beta) \Lambda_0(t)$ and the survival estimate for the subject is $S_i(t)= \exp(-\Lambda_i(t))$. The variance of the cumulative hazard is the sum of two terms. Term 1 is a natural extension of the Nelson--Aalen estimator to the case where there are weights. It is a running sum, with an increment at each death of $1/(\sum Y_i(t)r_i(t))^2$. For a subject with covariate $x_i$ this term is multiplied by $[\exp(x_i \beta)]^2$. The second term is $c\Cvar c'$, where $\imat$ is the information matrix of the Cox model and $c$ is a vector. The second term accounts for the fact that the weights themselves have a variance; $c$ is the derivative of $S(t)$ with respect to $\beta$ and can be formally written as $$ \exp(x\beta) \int_0^t (\bar x(s) - x_i) d\hat\Lambda_0 (s)\,. $$ This can be recognized as $-1$ times the score residual process for a subject with $x_i$ as covariates and no events; it measures leverage of a particular observation on the estimate of $\beta$. It is intuitive that a small score residual --- an observation whose covariates has little influence on $\beta$ --- results in a small added variance; that is, $\beta$ has little influence on the estimated survival. \begin{center} \begin{tabular}{c|l} Time & Term 1 \\ \hline 1& $1/(3r+3)^2$ \\ 6& $1/(3r+3)^2 + 2/(r+3)^2$ \\ 9& $1/(3r+3)^2 + 2/(r+3)^2 + 1/1^2$ \\ \multicolumn{2}{c}{} \\ Time & $c$ \\ \hline 1& $(r/(r+1))* 1/(3r+3)$ \\ 6& $(r/(r+1))* 1/(3r+3) + (r/(r+3))* 2/(r+3)$ \\ 9& $(r/(r+1))* 1/(3r+3) + (r/(r+3))* 2/(r+3) + 0*1$\\ \end{tabular} \end{center} For $\beta=0$, $x=0$: \begin{center} \begin{tabular}{c|lll} Time & \multicolumn{2}{c}{Variance}&\\ \hline 1 & 1/36 &+ $1.6*(1/12)^2 $ &= 7/180\\ 6 & (1/36 + 2/16) &+ $1.6*(1/12 + 2/16)^2 $ &= 2/9\\ 9 & (1/36 + 2/16 + 1)&+ $1.6*(1/12 + 2/16 + 0)^2$&= 11/9\\ \end{tabular} \end{center} For $\beta=1.4752849$, $ x=0$ \begin{center} \begin{tabular}{c|lll} Time & \multicolumn{2}{c}{Variance}&\\ \hline 1 & 0.0038498 &+ .004021 &= 0.007871\\ 2 & 0.040648 &+ .0704631 &= 0.111111\\ 4 & 1.040648 &+ .0704631 &= 1.111111\\ \end{tabular} \end{center} \subsection{Efron approximation} The Efron approximation \cite{Efron77} differs from the Breslow only at day 6, where two deaths occur. A useful way to view the approximation is to recast the problem as a lottery model. On day 1 there were 6 subjects in the lottery and 1 ticket was drawn, at which time the winner became ineligible for further drawings and withdrew. On day 6 there were 4 subjects in the drawing (at risk) and two tickets (deaths) were drawn. The Breslow approximation considers all four subjects to be eligible for both drawings, which implies that one of them could in theory have won both, that is, died twice. This is of clearly impossible. The Efron approximation treats the two drawings on day 6 as sequential. All four living subjects are at risk for the first of them, then the winner is withdrawn. Three subjects are eligible for the second drawing, either subjects 3, 5, and 6 or subjects 2, 5, and 6, but we do not know which. In some sense then, subjects 3 and 4 each have ``.5 probability" of being at risk for the second event at time 6. In the computation, we treat the two deaths at time 6 as two separate times (two terms in the loglik), with subjects 3 and 4 each having a case weight of 1/2 for the second one. The mean covariate for the second event is then $$ \frac{1*r/2 + 0*1/2 + 0*1 + 0*1 } {r/2 + 1/2 + 1+1} = \frac{r}{r+5} $$ and the main quantities are \begin{eqnarray*} LL &=& \{\beta- \log(3r+3)\} + \{\beta - \log(r+3)\} + \{0-\log(r/2 +5/2)\} + \{0-0\} \\ &=& 2\beta - \log(3r+3) - \log(r+3) - \log(r/2 +5/2)\\ \\ U &=& \left(1-\frac{r}{r+1}\right) + \left(1-\frac{r}{r+3}\right) + \left(0-\frac{r}{r+5}\right) + (0-0) \\ &=& \frac{-r^3 + 23r + 30}{(r+1)(r+3)(r+5)} \\ \\ I&=& \left\{\frac{r}{r+1} - \left( \frac{r}{r+1} \right )^2\right\} + \left\{\frac{r}{r+3} - \left( \frac{r}{r+3} \right )^2\right\} \\ && + \left\{\frac{r}{r+5} - \left( \frac{r}{r+5} \right )^2\right\}. \end{eqnarray*} The solution corresponds to the one positive root of $U(\beta)=0$, which is $r=2\sqrt{23/3}\cos(\phi/3)$ where $\phi=\arccos\{(45/23)\sqrt{3/23}\}$ via the standard formula for the roots of a cubic equation. This yields $r \approx 5.348721$ or $\bhat = \log(r) \approx 1.676857$. Plugging this value into the formulas above yields $$ \begin{array}{ll} LL(0)=-4.276666 & LL(\bhat)=-3.358979 \\ U(0) = 52/48 & U(\bhat) = 0 \\ \imat(0) = 83/144 & \imat(\bhat) = 0.612632. \end{array} $$ The martingale residuals are again $O-E$, but the expected part of the calculation changes. For the first drawing at time 6 the total number of ``tickets'' in the drawing is $r+1+1+1$; subject 4 has an increment of $r/(r+3)$ and the others $1/(r+3)$ to their expected value. For the second event at time 6 subjects 3 and 4 have a weight of 1/2, the total number of tickets is $(r+5)/2$ and the consequent increment in the cumulative hazard is $2/(r+5)$. This $\beta=0$ this calculation is equivalent to the Fleming-Harrington \cite{Fleming84} estimate of cumulative hazard. Subjects 3 and 4 receive 1/2 of this second increment to $E$ and subjects 5 and 6 the full increment. Efron \cite{Efron77} did not discuss residuals so did not investigate this aspect of the approximation, we nevertheless sometime refer to this using combinations of Fleming, Harrington, Efron in the same way as the Nelson-Aalen-Breslow estimate. The martingale residuals are \begin{center} \begin{tabular}{cl} Subject & $M_i$ \\ \hline 1 & $1 - r/(3r+3)$ \\ 2 & $0 - r/(3r+3)$ \\ 3 & $1 - r/(3r+3) - r/(r+3) - r/(r+5)$ \\ 4 & $1 - 1/(3r+3) - 1/(r+3) - 1/(r+5)$ \\ 5 & $0 - 1/(3r+3) - 1/(r+3) - 2/(r+5)$ \\ 6 & $0 - 1/(3r+3) - 1/(r+3) - 2/(r+5) - 1$ \\ \end{tabular} \end{center} giving residuals at $\beta=0$ of 5/6, -1/6, 5/12, 5/12, -3/4 and -3/4. The matrix defining the score and Schoenfeld residuals has the same first column (time 1) and last column as before, with the following contributions at time 6. \begin{center} \begin{tabular}{ccc} &\multicolumn{2}{c}{Time} \\ Subject & 6 (first) & 6 (second)\\ \hline 1&0 & 0 \\ 2&0 & 0 \\ 3& $\left(1- \frac{r}{r+3} \right) \left(1- \frac{r}{r+3} \right)$ & $\left(1- \frac{r}{r+5} \right) \left(1- \frac{2r}{r+5} \right)/2$ \\ 4& $\left(0- \frac{r}{r+3} \right) \left(0- \frac{1}{r+3} \right)$ & $\left(0- \frac{r}{r+5} \right) \left(1- \frac{2}{r+5} \right)/2$ \\ 5& $\left(0- \frac{r}{r+3} \right) \left(0- \frac{1}{r+3} \right)$ & $\left(0- \frac{r}{r+5} \right) \left(0- \frac{2}{r+5} \right)$ \\ 6& $\left(0- \frac{r}{r+3} \right) \left(0- \frac{1}{r+3} \right)$ & $\left(0- \frac{r}{r+5} \right) \left(0- \frac{2}{r+5} \right)$ \end{tabular} \end{center} The score residuals at $\beta=0$ are 5/12, -1/12, 55/144, -5/144, 29/144 and 29/144. It is an error to generate residuals for the Efron method by using formula \eqref{mart}, which was derived from the Breslow approximation. It is clear that some packages do exactly this, however, which can be verified using formulas from above. (Statistical forensics is another use for our results.) What are the consequences of this? On a formal level the resulting ``martingale residuals'' no longer have an expected value of 0 and thus are not martingales, so one loses theoretical backing for derived plots or statistics. The score, Schoenfeld, dfbeta and scaled Schoenfeld residuals are based on the martingale residual so suffer the same loss. On a practical level, when the fraction of ties is small it is quite often the case that $\bhat$ is nearly the same when using the Breslow and Efron approach. We have normally found the correct and ad hoc residuals to be similar as well in that case, sufficiently so that explorations of functional form (martingale residuals), leverage and robust variance (dfbeta) and proportional hazards (scaled Schoenfeld) led to the same conclusions. This will not hold when there are a moderate to large number of ties. The variance formula for the baseline hazard function in the Efron case is evaluated the same way as before, as the sum of $(\mbox{hazard increment})^2$, treating a tied death as multiple separate hazard increments. In term 1 of the variance, the variance increment at time 6 is now $1/(r+3)^2 + 4/(r+5)^2$ rather than $2/(r+3)^2$. The increment to $d$ at time 6 is $(r/(r+3))* 1/(r+3) + (r/(r+5))* 2/(r+5)$. (Numerically, the result of this computation is intermediate between the Nelson--Aalen variance and the Greenwood variance used in the Kaplan--Meier.) For $\beta=0$, $x=0$, let $v= \Cvar = 144/83$. \begin{center} \begin{tabular}{c|ll} Time & \multicolumn{2}{c}{Variance}\\ \hline 1 & 1/36 \\ & \quad + $v(1/12)^2 $ &= \phantom{0}119/2988\\ 6 & (1/36 + 1/16 + 4/25)& \\ &\quad + $v(1/12 + 1/16+ 1/18)^2$ &= 1996/6225\\ 9 & (1/36 + 1/16 + 4/25 + 1) \\& \quad + $v(1/12 + 1/16 + 1/18 +0)^2$&= 8221/6225\\ \end{tabular} \end{center} For $\beta=1.676857$, $ x=0$. \begin{center} \begin{tabular}{c|ll} Time & \multicolumn{2}{c}{Variance}\\ \hline 1 & 0.00275667 + .00319386 & = 0.0059505\\ 2 & 0.05445330 + .0796212 & = 0.134075\\ 4 & 1.05445330 + .0796212 &= 1.134075\\ \end{tabular} \end{center} \subsection{Exact partial likelihood} Returning to the lottery analogy, for the two deaths at time 6 the exact partial likelihood computes the direct probability that those two subjects would be selected given that a pair will be chosen. The numerator is $r_3 r_4$, the product of the risk scores of the subjects with an event, and the denominator is the sum over all 6 pairs who could have been chosen: $r_3r_4 + r_3r_5 + r_3r_6 + r_4 r_5 + r_4r_6 + r_5r_6$. (If there were 10 tied deaths from a pool of 60 available the sum will have over 75 billion terms, each a product of 10 values; a truly formidable computation!) In our case, three of the four subjects at risk at time 6 have a risk score of $\exp(0x)=1$ and one a risk score of $r$, and the denominator is $r +r+ r+1 +1 +1$. \begin{eqnarray*} LL &=& \{\beta- \log(3r+3)\} + \{\beta - \log(3r+3)\} + \{0-0\} \\ &=& 2\{\beta - \log(3r+3)\}. \\ \\ U &=& \left(1-\frac{r}{r+1}\right) + \left(1-\frac{r}{r+1}\right) + (0-0)\\ &=& \frac{2}{r+1}. \\ \\ -\imat&=& \frac{2r}{(r+1)^2}. \\ \end{eqnarray*} The solution $U(\beta)=0$ corresponds to $r=\infty$, with a loglikelihood that asymptotes to $-2\log(3)$ = 2.1972. The Newton--Raphson iteration has increments of $(r+1)/r$ leading to the following iteration for $\bhat$: <>= temp <- matrix(0, 8, 3) dimnames(temp) <- list(paste0("iteration ", 0:7, ':'), c("beta", "loglik", "H")) bhat <- 0 for (i in 1:8) { r <- exp(bhat) temp[i,] <- c(bhat, 2*(bhat - log(3*r +3)), 2*r/(r+1)^2) bhat <- bhat + (r+1)/r } round(temp,3) @ The Newton-Raphson iteration quickly settles down to addition of a constant increment to $\bhat$ at each step while the partial likelihood approaches an asymptote: this is a fairly common case when the Cox MLE is infinite. A solution at $\bhat=10$ or 15 is hardly different in likelihood from the true maximum, and most programs will stop iterating around this point. The information matrix, which measures the curvature of the likelihood function at $\beta$, rapidly goes to zero as $\beta$ grows. It is difficult to describe a satisfactory definition of the expected number of events for each subject and thus a definition of the proper martingale residual for the exact calculation. Among other things it should lead to a consistent score residual, i.e., ones that sum to the total score statistic $U$ \begin{align*} L_i &= \int (x_i - \xbar(t)) dM_i(t) \\ \sum L_i &= U \end{align*} The residuals defined above for the Breslow and Efron approximations have this property, for instance. The exact partial likelihood contribution to $U$ for a set of set of $k$ tied deaths, however, is a sum of all subsets of size $k$; how would one partition this term as a simple sum over subjects? The exact partial likelihood is infrequently used and examination of post fit residuals is even rarer. The survival package (and all others that I know of) takes the easy road in this case and uses equation \eqref{mart} along with the Nelson-Aalen-Breslow hazard to form residuals. They are certainly not correct, but the viable options were to use this, the Efron residuals, or print an error message. At $\bhat=\infty$ the Breslow residuals are still well defined. Subjects 1 to 3, those with a covariate of 1, experience a hazard of $r/(3r+3)=1/3$ at time 1. Subject 3 accumulates a hazard of 1/3 at time 1 and a further hazard of 2 at time 6. The remaining subjects are at an infinitely lower risk during days 1 to 6 and accumulate no hazard then, with subject 6 being credited with 1 unit of hazard at the last event. The residuals are thus $1-1/3=2/3$, $0-1/3$, $1-7/3= -4/3$, $1-0$, 0, and 0, respectively, for the six subjects. \section{Test data 2} This data set also has a single covariate, but in this case a (start, stop] style of input is employed. Table \ref{tab:val2} shows the data sorted by the end time of the risk intervals. The columns for $\xbar$ and hazard are the values at the event times; events occur at the end of each interval for which status = 1. \begin{table}\centering \begin{tabular}{ccc|ccc} &&&Number& \\ Time&Status&$x$&at Risk& $\xbar$& $d\lhat$ \\ \hline (1,2] &1 &1 &2 &$r/(r+1)$ & $1/(r+1)$\\ (2,3] &1 &0 &3 & $r/(r+2)$ & $1/(r+2)$ \\ (5,6] &1 &0 &5 & $3r/(3r+2)$ & $1/(3r+2)$ \\ (2,7] &1 &1 &4 & $3r/(3r+1)$ & $1/(3r+1)$ \\ (1,8] &1 &0 &4 & $3r/(3r+1)$ & $1/(3r+1)$ \\ (7,9] &1 &1 &5 & $3r/(3r+2)$ & $2/(3r+2)$ \\ (3,9] &1 &1 && \\ (4,9] &0 &1 && \\ (8,14]&0 &0 &2& 0&0 \\ (8,17]&0 &0 &1& 0&0 \\ \end{tabular} \caption{Test data 2} \label{tab:val2} \end{table} \subsection{Breslow approximation} For the Breslow approximation we have \begin{eqnarray*} LL &=& \log\left(\frac{r}{r+1}\right) +\log\left(\frac{1}{r+2}\right) +\log\left(\frac{1}{3r+2}\right) +\\ && \log\left(\frac{r}{3r+1}\right) +\log\left(\frac{1}{3r+1}\right) +2\log\left(\frac{r}{3r+2}\right) \\ &=& 4\beta - \log(r+1) - \log(r+3)- 3\log(3r+2) -2\log(3r+1). \\ \\ U &=& \left(1-\frac{r}{r+1}\right) + \left(0-\frac{r}{r+2}\right) + \left(0-\frac{3r}{3r+2}\right) + \\ && \left(1-\frac{3r}{3r+1}\right) + \left(0-\frac{3r}{3r+1}\right) + 2\left(1-\frac{3r}{3r+2}\right) \\ \\ \\ \imat &=& \frac{r}{(r+1)^2} + \frac{2r}{(r+2)^2} + \frac{6r}{(3r+2)^2} + \frac{3r}{(3r+1)^2} \\ && \frac{3r}{(3r+1)^2} + \frac{12r}{(3r+2)^2} . \\ \end{eqnarray*} In this case $U$ is a quartic equation and we find the solution numerically. <>= ufun <- function(r) { 4 - (r/(r+1) + r/(r+2) + 3*r/(3*r+2) + 6*r/(3*r+1) + 6*r/(3*r+2)) } rhat <- uniroot(ufun, c(.5, 1.5), tol=1e-8)$root bhat <- log(rhat) c(rhat=rhat, bhat=bhat) @ The solution is at $U(\bhat)=0$ or $r \approx .9189477$; $\bhat = \log(r) \approx -.084526$. Then <>= true2 <- function(beta, newx=0) { r <- exp(beta) loglik <- 4*beta - log(r+1) - log(r+2) - 3*log(3*r+2) - 2*log(3*r+1) u <- 1/(r+1) + 1/(3*r+1) + 4/(3*r+2) - ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) imat <- r/(r+1)^2 + 2*r/(r+2)^2 + 6*r/(3*r+2)^2 + 3*r/(3*r+1)^2 + 3*r/(3*r+1)^2 + 12*r/(3*r+2)^2 hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 2/(3*r+2) ) xbar <- c(r/(r+1), r/(r+2), 3*r/(3*r+2), 3*r/(3*r+1), 3*r/(3*r+1), 3*r/(3*r+2)) # The matrix of weights, one row per obs, one col per time # deaths at 2,3,6,7,8,9 wtmat <- matrix(c(1,0,0,0,1,0,0,0,0,0, 0,1,0,1,1,0,0,0,0,0, 0,0,1,1,1,0,1,1,0,0, 0,0,0,1,1,0,1,1,0,0, 0,0,0,0,1,1,1,1,0,0, 0,0,0,0,0,1,1,1,1,1), ncol=6) wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat x <- c(1,0,0,1,0,1,1,1,0,0) status <- c(1,1,1,1,1,1,1,0,0,0) xbar <- colSums(wtmat*x)/ colSums(wtmat) n <- length(x) # Table of sums for score and Schoenfeld resids hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time dM <- -hazmat #Expected part for (i in 1:6) dM[i,i] <- dM[i,i] +1 #observed dM[7,6] <- dM[7,6] +1 # observed mart <- rowSums(dM) # Table of sums for score and Schoenfeld resids # Looks like the last table of appendix E.2.1 of the book resid <- dM * outer(x, xbar, '-') score <- rowSums(resid) scho <- colSums(resid) # We need to split the two tied times up, to match coxph scho <- c(scho[1:5], scho[6]/2, scho[6]/2) var.g <- cumsum(hazard*hazard /c(1,1,1,1,1,2)) var.d <- cumsum( (xbar-newx)*hazard) surv <- exp(-cumsum(hazard) * exp(beta*newx)) varhaz <- (var.g + var.d^2/imat)* exp(2*beta*newx) list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard, mart=mart, score=score, rmat=resid, scho=scho, surv=surv, var=varhaz) } val2 <- true2(bhat) rtemp <- round(val2$mart, 6) @ $$ \begin{array}{ll} LL(0)= \Sexpr{round(true2(0)$loglik, 6)} & LL(\bhat)= \Sexpr{round(val2$loglik,6)} \\ U(0) = -2/15 & U(\bhat) = 0 \\ \imat(0) = 2821/1800 & \imat(\bhat) = \Sexpr{round(val2$imat,6)} %$ \end{array} $$ \def\haz{\hat \lambda} The martingale residuals are (status--cumulative hazard) or $O-E = \delta_i - \int Y_i(s) r_i d\lhat(s)$. Let $\haz_1, \ldots, \haz_6$ be the six increments to the cumulative hazard listed in Table \ref{tab:val2}. Then the cumulative hazards and martingale residuals for the subjects are as follows. \begin{center} \begin{tabular}{c|lrr} Subject &$\Lambda_i$ & $\Mhat(0)$ & $\Mhat(\bhat)$ \\ \hline 1& $r\haz_1$ & 1--30/60 & \Sexpr{rtemp[1]} \\ 2& $\haz_2 $ & 1--20/60 & \Sexpr{rtemp[2]}\\ 3& $\haz_3 $ & 1--12/60 & \Sexpr{rtemp[3]} \\ 4& $r(\haz_2 + \haz_3 + \haz_4)$& 1--47/60 & \Sexpr{rtemp[4]}\\ 5& $\haz_1+\haz_2+\haz_3+\haz_4+\haz_5$& 1--92/60 & \Sexpr{rtemp[5]}\\ 6 &$r*(\haz_5 + \haz_6) $& 1--39/60 & \Sexpr{rtemp[6]} \\ 7& $r*(\haz_3+\haz_4+\haz_5+ \haz_6)$& 1--66/60& \Sexpr{rtemp[7]}\\ 8& $r*(\haz_3+\haz_4+\haz_5+ \haz_6)$& 0--66/60&\Sexpr{rtemp[8]} \\ 9& $\haz_6$ & 0--24/60 & \Sexpr{rtemp[9]} \\ 10& $\haz_6$ & 0--24/60 & \Sexpr{rtemp[10]} \end{tabular} \end{center} The score and Schoenfeld residuals can be laid out in a tabular fashion. Each entry in the table is the value of $\{x_i - \xbar(t_j)\} d\Mhat_i(t_j)$ for subject $i$ and event time $t_j$. The row sums of the table are the score residuals for the subject; the column sums are the Schoenfeld residuals at each event time. Below is the table for $\beta= \log(2)$ ($r=2$). This is a slightly more stringent test than the table for $\beta=0$, since in this latter case a program could be missing a factor of $r = \exp(\beta)=1$ and give the correct answer. However, the results are much more compact than those for $\bhat$, since the solutions are exact fractions. %\newcommand{\pf}[2]{$\left(\frac{#1}{#2}\right)$} %positive fraction %\newcommand{\nf}[2]{$\left(\frac{-#1}{#2}\right)$} %negative fraction \newcommand{\pf}[2]{$\phantom{-}\frac{#1}{#2}$} %positive fraction \newcommand{\nf}[2]{$-\frac{#1}{#2}$} %negative fraction \renewcommand{\arraystretch}{1.5} \begin{center} \begin{tabular}{c|cccccc|c} & \multicolumn{6}{c|}{Event Time} & Score\\ Id&2&3&6&7&8&9& Resid \\ \hline 1&\pf{1}{9} &&&&&& $\phantom{-}\frac{1}{9}$ \\ 2&&\nf{3}{8} &&&&& $-\frac{3}{8}$ \\ 3&&&\nf{21}{32}&&&& $-\frac{21}{32}$ \\ 4&&\nf{1}{4} & \nf{1}{16} & \pf{5}{49} &&& $-\frac{165}{784} $\\ 5&\pf{2}{9}& \pf{1}{8} & \pf{3}{32} & \pf{6}{49} & \nf{36}{49}&& $-\frac{2417}{14112} $\\ 6&&&&& \nf{2}{49} & \pf{1}{8} & $\phantom{-}\frac{33}{392}$ \\ 7&&& \nf{1}{16} & \nf{2}{49}& \nf{2}{49} & \pf{1}{8} & $-\frac{15}{784}$ \\ 8&&& \nf{1}{16} & \nf{2}{49}& \nf{2}{49} & \nf{1}{8} & $-\frac{211}{784}$ \\ 9&&&&&& \pf{3}{16} &$ \phantom{-}\frac{3}{16}$ \\ 10&&&&&& \pf{3}{16} & $\phantom{-}\frac{3}{16}$ \\ \hline & \pf{1}{3} &\nf{1}{2} & \nf{3}{4} & \pf{1}{7} & \nf{6}{7} & \pf{1}{2} & \nf{95}{84} \\ &&&&&&& \\ & $\frac{1}{r+1}$ & $\frac{-r}{r+2}$ & $\frac{-3r}{r+2}$ & $\frac{1}{3r+1}$ & $\frac{3r}{3r+1}$ & $\frac{4}{3r+2}$ \end{tabular} \end{center} Both the Schoenfeld and score residuals sum to the score statistic $U(\beta)$. As discussed further above, programs will return two Schoenfeld residuals at time 7, one for each subject who had an event at that time. \subsection{Efron approximation} This example has only one tied death time, so only the term(s) for the event at time 9 change. The main quantities at that time point are as follows. \begin{center} \begin{tabular}{r|cc} &Breslow & Efron \\ \hline $LL$ & $2\log\left(\frac{r}{3r+2}\right)$ & $\log\left(\frac{r}{3r+2}\right) + \log\left(\frac{r}{2r+2}\right)$ \\ $U$ & $\frac{2}{3r+2}$& $\frac{1}{3r+2} + \frac{1}{2r+2}$ \\ $\imat$& $2\frac{6r}{(3r+2)^2} $ &$\frac{6r}{(3r+2)^2} + \frac{4r}{(2r+2)^2}$\\ $d\lhat$ & $\frac{2}{3r+2} $ & $\frac{1}{3r+2} + \frac{1}{2r+2}$ \end{tabular} \end{center} \renewcommand{\arraystretch}{1} \section{Test data 3} This is very similar to test data 1, but with the addition of case weights. There are 9 observations, $x$ is a 0/1/2 covariate, and weights range from 1 to 4. As before, let $r = \exp(\beta)$ be the risk score for a subject with $x=1$. Table \ref{tab:val3} shows the data set along with the mean and increment to the hazard at each point. \begin{table} \centering \begin{tabular}{cccc|cc} Time&Status&$X$ & Wt& $\xbar(t)$ & $d\lhat_0(t)$ \\ \hline 1& 1& 2 & 1& $(2r^2+11r) d\lhat_0 =\xbar_1$ & $1/(r^2 + 11r +7)$ \\ 1& 0& 0 & 2&& \\ 2& 1& 1 & 3& $11r/(11r+5) = \xbar_2$ & $10/(11r+5)$ \\ 2& 1& 1 & 4&& \\ 2& 1& 0 & 3&& \\ 2& 0& 1 & 2&& \\ 3& 0& 0 & 1&& \\ 4& 1& 1 & 2& $2r/(2r+1)= \xbar_3$ & $ 2/(2r+1)$ \\ 5& 0& 0 & 1 & \\ \end{tabular} \caption{Test data 3} \label{tab:val3} \end{table} \subsection{Breslow estimates} The likelihood is a product of terms, one for each death, of the form $$ \left( \frac{e^{X_i \beta}}{\sum_j Y_j(t_i) w_j e^{X_j \beta}} \right) ^{w_i} $$ For integer weights, this gives the same results as would be obtained by replicating each observation the specified number of times, which is in fact one motivation for the definition. The definitions for the score vector $U$ and information matrix $\imat$ simply replace the mean and variance with weighted versions of the same. Let $PL(\beta,w)$ be the log partial liklihood when all the observations are given a common case weight of $w$; it is easy to prove that $PL(\beta,w) = wPL(\beta,1) - d\log(w)$ where $d$ is the number of events. One consequence of this is that $PL$ can be positive for weights that are less than 1, a case which sometimes occurs in survey sampling applications. (This can be a big surprise the first time one encounters it.) \begin{eqnarray*} LL &=& \{2\beta - \log(r^2 + 11r +7)\} + 3\{\beta - \log(11r+5)\} \\ && + 4\{\beta - \log(11r+5)\} +3\{0 - \log(11r+5)\} \\ && + 2\{\beta - \log(2r+1) \} \\ &=& 11\beta - \log(r^2 + 11r +7) -10\log(11r+5) - 2\log(2r+1) \\\\ U &=& (2- \xbar_1) + 3(0-\xbar_2) + 4(1-\xbar_2) + 3(1-\xbar_2) + 2(1-\xbar_3) \\ &=& 11 - [(2r^2+11r)/(r^2+11r+7) + 10(11r/(11r+5)) + 2(2r/(2r+1))] \\ I &=& [(4r^2 + 11r)/(r^2 + 11r +7) - \xbar_1^2] + 10(\xbar_2 - \xbar_2^2) + 2(\xbar_3 - \xbar_3^2) \\ \end{eqnarray*} The solution corresponds to $U(\beta)=0$ and can be computed using a simple search for the zero of the equation. <>= ufun <- function(r) { xbar <- c( (2*r^2 + 11*r)/(r^2 + 11*r +7), 11*r/(11*r + 5), 2*r/(2*r +1)) 11- (xbar[1] + 10* xbar[2] + 2* xbar[3]) } rhat <- uniroot(ufun, c(1,3), tol= 1e-9)$root bhat <- log(rhat) c(rhat=rhat, bhat=bhat) @ From this we have <>= wfun <- function(r) { beta <- log(r) pl <- 11*beta - (log(r^2 + 11*r + 7) + 10*log(11*r +5) + 2*log(2*r +1)) xbar <- c((2*r^2 + 11*r)/(r^2 + 11*r +7), 11*r/(11*r +5), 2*r/(2*r +1)) U <- 11 - (xbar[1] + 10*xbar[2] + 2*xbar[3]) H <- ((4*r^2 + 11*r)/(r^2 + 11*r +7)- xbar[1]^2) + 10*(xbar[2] - xbar[2]^2) + 2*(xbar[3]- xbar[3]^2) c(loglik=pl, U=U, H=H) } temp <- matrix(c(wfun(1), wfun(rhat)), ncol=2, dimnames=list(c("loglik", "U", "H"), c("beta=0", "beta-hat"))) round(temp, 6) @ When $\beta=0$, the three unique values for $\xbar$ at $t=1$, 2, and 4 are 13/19, 11/16 and 2/3, respectively, and the increments to the cumulative hazard are 1/19, 10/16 = 5/8, and 2/3, see table \ref{tab:val3}. The martingale and score residuals at $\beta=0$ and $\bhat$ are \begin{center} \begin{tabular}{cc|lr} Id &Time& \multicolumn{1}{c}{$M(0)$} &\multicolumn{1}{c}{$M(\bhat)$} \\ \hline A&1 & $1-1/19 = 18/19 $&0.85531\\ B&1 & $0-1/19 = -1/19 $&-0.02593\\ C&2 & $1-(1/19 + 5/8)= 49/152 $&0.17636 \\ D&2 & $1-(1/19 + 5/8)= 49/152 $&0.17636\\ E&2 & $1-(1/19 + 5/8)= 49/152 $&0.65131\\ F&2 & $0-(1/19 + 5/8)= -103/152 $&-0.82364\\ G&3 & $0-(1/19 + 5/8)= -103/152 $&-0.34869\\ H&4 & $1-(1/19 + 5/8 +2/3)= -157/456 $&-0.64894\\ I&5 & $0-(1/19 + 5/8 +2/3)= -613/456 $&-0.69808\\ \end{tabular} \end{center} Score residuals at $\beta=0$ are \begin{center} \begin{tabular}{cc|r} Id &Time& Score \\ \hline A&1 &$(2-13/19)(1-1/19)$\\ B&1 &$(0-13/19)(0-1/19)$\\ C&2 &$ (1-13/19)(0-1/19) + (1-11/16)(1-5/8) $ \\ D&2 &$(1-13/19)(0-1/19) + (1-11/16)(1-5/8)$ \\ E&2 &$(0-13/19)(0-1/19) + (0-11/16)(1-5/8)$ \\ F&2 &$(1-13/19)(0-1/19) + (1-11/16)(0-5/8)$ \\ G&3 &$(1-13/19)(0-1/19) + (0-11/16)(0-5/8)$ \\ H&4 &$(1-13/19)(0-1/19) + (1-11/16)(0-5/8) $ \\ && $ + (1-2/3)(1-2/3)$ \\ I&5 &$(1-13/19)(0-1/19) + (1-11/16)(0-5/8)$ \\ & &$+ (0-2/3)(0-2/3) $ \\ \end{tabular} \end{center} {\splus} also returns unweighted residuals by default, with an option to return the weighted version; it is the weighted sum of residuals that totals zero, $\sum w_i \Mhat_i=0$. Whether the weighted or the unweighted form is more useful depends on the intended application, neither is more ``correct'' than the other. {\splus} does differ for the dfbeta residuals, for which the default is to return weighted values. For the third observation in this data set, for instance, the unweighted dfbeta is an approximation to the change in $\bhat$ that will occur if the case weight is changed from 2 to 3, corresponding to deletion of one of the three ``subjects'' that this observation represents, and the weighted form approximates a change in the case weight from 0 to 3, i.e., deletion of the entire observation. The increments of the Nelson-Aalen estimate of the hazard are shown in the rightmost column of table \ref{tab:val3}. The hazard estimate for a hypothetical subject with covariate $X^\dagger$ is $\Lambda_i(t) = \exp(X^\dagger \beta) \Lambda_0(t)$ and the survival estimate is $S_i(t)= \exp(-\Lambda_i(t))$. The two term of the variance, for $X^\dagger=0$, are Term1 + $d'Vd$: \begin{center} \begin{tabular}{c|l} Time & Term 1 \\ \hline 1& $1/(r^2 + 11r+7)^2$ \\ 2& $1/(r^2 + 11r+7)^2 + 10/(11r+5)^2$ \\ 4& $1/(r^2 + 11r+7)^2 + 10/(11r+5)^2 + 2/(2r+1)^2$ \\ \multicolumn{2}{c}{} \\ Time & $d$ \\ \hline 1& $(2r^2+11r)/(r^2+11r+7)^2$ \\ 2& $(2r^2+11r)/(r^2+11r+7)^2 + 110r/(11r+5)^2$ \\ 4& $(2r^2+11r)/(r^2+11r+7)^2 + 110r/(11r+5)^2 + 4r/(2r+1)^2$ \end{tabular} \end{center} For $\beta=\log(2)$ and $X^\dagger =0$, where $k\equiv$ the variance of $\bhat$ = 1/2.153895 this reduces to \begin{center} \begin{tabular}{c|ll} Time & \multicolumn{2}{c}{Variance}\\ \hline 1 & 1/1089 &+ $k(30/1089)^2$ \\ 2 & (1/1089+ 10/729) &+ $k(30/1089+ 220/729)^2 $ \\ 4 & (1/1089+ 10/729 + 2/25)&+ $k(30/1089+ 220/729 + 8/25)^2$\\ \end{tabular} \end{center} giving numeric values of 0.0012706, 0.0649885, and 0.2903805, respectively. \subsection{Efron approximation} For the Efron approximation the combination of tied times and case weights can be approached in at least two ways. One is to treat the case weights as replication counts. There are then 10 tied deaths at time 2 in the data above, and the Efron approximation involves 10 different denominator terms. Let $a= 7r+3$, the sum of risk scores for the 3 observations with an event at time 2 and $b=4r+2$, the sum of risk scores for the other subjects at risk at time 2. For the replication approach, the loglikelihood is \begin{eqnarray*} LL &=& \{2\beta - \log(r^2 + 11r +7)\} + \\ && \{7\beta - \log(a+b) - \log(.9a+b) - \ldots - \log(.1a+b) \} + \\ && \{2\beta - \log(2r+1) - \log(r+1)\}. \end{eqnarray*} A test program can be created by comparing results from the weighted data set (9 observations) to the unweighted replicated data set (19 observations). This is the approach taken by SAS \code{phreg} using the \code{freq} statement. It's advantage is that the appropriate result for all of the weighted computations is perfectly clear the disadvantage is that the only integer case weights are supported. (A secondary advantage is that I did not need to create another algebraic derivation for this appendix.) A second approach, used in the survival package, allows for non-integer weights. The data is considered to be 3 tied observations, and the log-likelihood at time 2 is the sum of 3 weighted terms. The first term of the three is one of \begin{eqnarray*} && 3 [\beta - \log(a+b)] \\ && 4 [\beta - \log(a+b)] \\ &{\rm or}&3 [0 - \log(a+b)], \end{eqnarray*} depending on whether the event for observation C, D or E actually happened first (had we observed the time scale more exactly); the leading multiplier of 3, 4 or 3 is the case weight. The second term is one of \begin{eqnarray*} && 4 [\beta - \log(4s+3+b)] \\ && 3 [0 - \log(4s+3+b)] \\ && 3 [\beta - \log(3s+3+b)] \\ && 3 [\beta - \log(3s+3+b)] \\ && 3 [0 - \log(4s+3+b)] \\ &{\rm or}&4 [\beta - \log(4s+3+b)]. \end{eqnarray*} The first choice corresponds to an event order of observation C then D (subject D has the event, with D and E still at risk), the second to $C \rightarrow E$, then $D\rightarrow C$, $D\rightarrow E$, $E \rightarrow C$ and $E \rightarrow D$, respectively. For a weighted Efron approximation first replace the argument to the $\log$ function by its average argument, just as in the unweighted case. Once this is done the average term in the above corresponds to using an average weight of 10/3. The final log-likelihood and score statistic are \begin{eqnarray*} LL &=& \{2\beta - \log(r^2 + 11r +7)\} \\ && + \{7\beta - (10/3)[\log(a+b) + \log(2a/3 +b) + \log(a/3+b)] \} \\&& + 2\{\beta - \log(2r+1) \} \\ \\ U &=& (2- \xbar_1) + 2(1-\xbar_3) \\ && + 7 - (10/3)[\xbar_2 + 26r/(26r+12) + 19r/(19r+9)] \\ &=& 11 -(\xbar_1 + (10/3)(\xbar_2 + \xbar_{2b} +\xbar_{2c}) + 2\xbar_3)\\ \\ I &=& [(4s^2+11s)/(s^2+11s+7)- \xbar_1^2] \\ &&+ (10/3)[ (\xbar_2- \xbar_2^2) + (\xbar_{2b}- \xbar_{2b}^2) + (\xbar_{2b}- \xbar_{2b}^2) \\ &&+2(\xbar_3 - \xbar_3^2) \\ \end{eqnarray*} The solution is at $\beta=.87260425$, and $$ \begin{array}{ll} LL(0)=-30.29218 & LL(\bhat)=-29.41678 \\ U(0) = 2.148183 & U(\bhat) = 0 \\ \imat(0) = 2.929182 & \imat(\bhat) = 1.969447 \,. \end{array} $$ The hazard increment and mean at times 1 and 4 are identical to those for the Breslow approximation, as shown in table \ref{tab:val3}. At time 2, the number at risk for the first, second and third portions of the hazard increment are $n_1= 11r+5$, $n_2= (2/3)(7r+3) + 4r+2 = (26r+12)/3$, and $n_3=(1/3)(7r+3) + 4r+2 = (19r+9)/3$. Subjects F--I experience the full hazard at time 2 of $(10/3)(1/n_1 + 1/n_2 + 1/n_3)$, subjects B--D experience $(10/3)(1/n_1 + 2/3n_2 + 1/3n_3)$. Thus, at $\beta=0$ the martingale residuals are \begin{center} \begin{tabular}{cc|ll} Id& Time & \multicolumn{1}{c}{$\Mhat(0)$} \\ \hline A & 1 & 1 - 1/19 & = 18/19 \\ B & 1 & 0 - 1/19 & = -1/19 \\ C & 2 & 1 - (1/19 + 10/48 + 20/114 + 10/84)& =473/1064 \\ D & 2 & 1 - (1/19 + 10/48 + 20/114 + 10/84)& =473/1064 \\ E & 2 & 1 - (1/19 + 10/48 + 20/114 + 10/84) &=473/1064 \\ F & 2 & 0 - (1/19 + 10/48 + 10/38\phantom{4} + 10/28)& =-2813/3192 \\ G & 3 & 0 - (1/19 + 10/48 + 10/38\phantom{4} + 10/28) &=-2813/3192 \\ H & 4 & 1 - (1/19 + 10/48 + 10/38\phantom{4} + 10/28 + 2/3) &=-1749/3192 \\ I & 5 & 0 - (1/19 + 10/48 + 10/38\phantom{4} + 10/28 + 2/3) &=-4941/3192 \end{tabular} \end{center} The hazard estimate for a hypothetical subject with covariate $X^\dagger$ is $\Lambda_i(t) = \exp(X^\dagger \beta) \Lambda_0(t)$, $\Lambda_0$ has increments of $1/(r^2 + 11r +7$, $(10/3)(1/n_1 + 1/n_2 + 1/n_3)$ and $2/(2r+1)$. This increment at time 2 is a little larger than the Breslow jump of $10/d1$. The first term of the variance will have an increment of $[\exp((X^\dagger \beta)(]^2 (10/3)(1/n_1^2 + 1/n_2^2 + 1/n_3^2)$ at time 2. The increment to the cumulative distance from the center $d$ will be \begin{eqnarray*} && [X^\dagger - \frac{11r}{11r+5}] \frac{10}{3 n_1} \\ &+& [X^\dagger -\frac{(2/3)7r + 4r}{n2} ] (10/3)(1/n_2) \\ &+& [X^\dagger -\frac{(1/3)7r + 4r}{n2} ] (10/3)(1/n_3) \end{eqnarray*} For $X^\dagger = 1$ and $\beta=\pi/3$ we get cumulative hazard and variance below. We have $r\equiv e^\pi/3$, $V$= %\begin{tabular}{l$=$l|l$+$l$=$r} %\multicolumn{2}{c}{$\Lambda$} & \multicolumn{3}{c}{Variance} \\ \hline %e/(r^2+ 11r+7) & 0.03272832 & e^2/(r^2+ 11r+7)^2 & \section{Multi-state data} \begin{figure} <>= states <- c("Entry", "a", "b", "c") smat <- matrix(0, 4, 4, dimnames=list(states, states)) smat[1,2:3] <- 1 smat[2,3] <- smat[3,2] <- smat[3,4] <- smat[2,4] <- 1 statefig(c(1,2,1), smat) @ \caption{A simple 4 state model.} \label{mstate1} \end{figure} Figure \ref{mstate1} shows a simple multi-state model, while table \ref{mstate1t} shows a data set for the model. Subject 1 follows the path of Entry, a, b, a, with no further follow up after the final transition, while subjects 4 and 5 are 'censored'; they have further follow-up after the last observed change of state. \begin{table} \centering \begin{tabular}{ccrcc} id & time1& time2 & event x \\ \hline 1 & 0 & 4 & a & 0 \\ 1 & 4 & 9 & b & 0 \\ 1 & 9 & 10 & a & 0 \\ 2 & 0 & 5 & b & 1 \\ 3 & 2 & 9 & c & 1 \\ 4 & 0 & 2 & a & 0 \\ 4 & 2 & 8 & c & 0\\ 4 & 8 & 9 & & 0 \\ 5 & 1 & 3 & b & 2\\ 5 & 3 & 11 & & 2 \end{tabular} \caption{A multi-state data set.} \label{mstate1t} \end{table} \bibliographystyle{plain} \bibliography{refer} \end{document} survival/inst/doc/survival.R0000644000176200001440000007370613570775571015703 0ustar liggesusers### R code from vignette source 'survival.Rnw' ################################################### ### code chunk number 1: survival.Rnw:39-83 ################################################### options(continue=" ", width=70) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=10) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #ensure default library("survival") palette(c("#000000", "#D95F02", "#1B9E77", "#7570B3", "#E7298A", "#66A61E")) # These functions are used in the document, but not discussed until the end crisk <- function(what, horizontal = TRUE, ...) { nstate <- length(what) connect <- matrix(0, nstate, nstate, dimnames=list(what, what)) connect[1,-1] <- 1 # an arrow from state 1 to each of the others if (horizontal) statefig(c(1, nstate-1), connect, ...) else statefig(matrix(c(1, nstate-1), ncol=1), connect, ...) } state3 <- function(what, horizontal=TRUE, ...) { if (length(what) != 3) stop("Should be 3 states") connect <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3,3, dimnames=list(what, what)) if (horizontal) statefig(1:2, connect, ...) else statefig(matrix(1:2, ncol=1), connect, ...) } state4 <- function() { sname <- c("Entry", "CR", "Transplant", "Transplant") layout <- cbind(c(1/2, 3/4, 1/4, 3/4), c(5/6, 1/2, 1/2, 1/6)) connect <- matrix(0,4,4, dimnames=list(sname, sname)) connect[1, 2:3] <- 1 connect[2,4] <- 1 statefig(layout, connect) } state5 <- function(what, ...) { sname <- c("Entry", "CR", "Tx", "Rel", "Death") connect <- matrix(0, 5, 5, dimnames=list(sname, sname)) connect[1, -1] <- c(1,1,1, 1.4) connect[2, 3:5] <- c(1, 1.4, 1) connect[3, c(2,4,5)] <- 1 connect[4, c(3,5)] <- 1 statefig(matrix(c(1,3,1)), connect, cex=.8,...) } ################################################### ### code chunk number 2: states ################################################### getOption("SweaveHooks")[["fig"]]() oldpar <- par(mar=c(.1, .1, .1, .1), mfrow=c(2,2)) sname1 <- c("Alive", "Dead") cmat1 <- matrix(c(0,0,1,0), nrow=2, dimnames=list(sname1, sname1)) statefig(c(1,1), cmat1) sname2 <- c("0", "1", "2", "...") cmat2 <- matrix(0, 4,4, dimnames= list(sname2, sname2)) cmat2[1,2] <- cmat2[2,3] <- cmat2[3,4] <- 1 statefig(c(1,1,1,1), cmat2, bcol=c(1,1,1,0)) sname3 <- c("Entry", "Transplant", "Withdrawal", "Death") cmat3 <- matrix(0, 4,4, dimnames=list(sname3, sname3)) cmat3[1, -1] <- 1 statefig(c(1,3), cmat3) sname4 <- c("Health", "Illness", "Death") cmat4 <- matrix(0, 3, 3, dimnames = list(sname4, sname4)) cmat4[1,2] <- cmat4[2,1] <- cmat4[-3, 3] <- 1 statefig(c(1,2), cmat4, offset=.03) par(oldpar) ################################################### ### code chunk number 3: survfit1 ################################################### fit1 <- survfit(Surv(futime, fustat) ~ resid.ds, data=ovarian) print(fit1, rmean= 730) summary(fit1, times= (0:4)*182.5, scale=365) ################################################### ### code chunk number 4: survfit2 ################################################### getOption("SweaveHooks")[["fig"]]() plot(fit1, col=1:2, xscale=365.25, lwd=2, mark.time=TRUE, xlab="Years since study entry", ylab="Survival") legend(750, .9, c("No residual disease", "Residual disease"), col=1:2, lwd=2, bty='n') ################################################### ### code chunk number 5: survfit3 ################################################### getOption("SweaveHooks")[["fig"]]() fit2 <- survfit(Surv(time, status) ~ sex + ph.ecog, data=lung) fit2 plot(fit2[1:3], lty=1:3, lwd=2, xscale=365.25, fun='event', xlab="Years after enrollment", ylab="Survival") legend(550, .6, paste("Performance Score", 0:2, sep=' ='), lty=1:3, lwd=2, bty='n') text(400, .95, "Males", cex=2) ################################################### ### code chunk number 6: survival.Rnw:572-574 ################################################### data.frame(id=rep(392,3), time1=c(0, 258, 328), time2=c(258, 328, 377), status=c(1,1,0)) ################################################### ### code chunk number 7: survival4 ################################################### vdata <- with(valveSeat, data.frame(id=id, time2=time, status=status)) first <- !duplicated(vdata$id) vdata$time1 <- ifelse(first, 0, c(0, vdata$time[-nrow(vdata)])) double <- which(vdata$time1 == vdata$time2) vdata$time1[double] <- vdata$time1[double] -.01 vdata$time2[double-1] <- vdata$time1[double] vdata[1:7, c("id", "time1", "time2", "status")] survcheck(Surv(time1, time2, status) ~ 1, id=id, data=vdata) ################################################### ### code chunk number 8: survival5 ################################################### getOption("SweaveHooks")[["fig"]]() vfit <- survfit(Surv(time1, time2, status) ~1, data=vdata, id=id) plot(vfit, cumhaz=TRUE, xlab="Days", ylab="Cumulative hazard") ################################################### ### code chunk number 9: cgd1d ################################################### getOption("SweaveHooks")[["fig"]]() cgdsurv <- survfit(Surv(tstart, tstop, status) ~ treat, cgd, id=id) plot(cgdsurv, cumhaz=TRUE, col=1:2, conf.times=c(100, 200, 300, 400), xlab="Days since randomization", ylab="Cumulative hazard") ################################################### ### code chunk number 10: simple1 ################################################### crdata <- data.frame(time= c(1:8, 6:8), endpoint=factor(c(1,1,2,0,1,1,3,0,2,3,0), labels=c("censor", "a", "b", "c")), istate=rep("entry", 11), id= LETTERS[1:11]) tfit <- survfit(Surv(time, endpoint) ~ 1, data=crdata, id=id, istate=istate) dim(tfit) summary(tfit) ################################################### ### code chunk number 11: survival.Rnw:692-693 ################################################### getOption("SweaveHooks")[["fig"]]() plot(tfit, col=1:4, lty=1:4, lwd=2, ylab="Probability in state") ################################################### ### code chunk number 12: survival.Rnw:706-708 ################################################### dim(tfit) tfit$states ################################################### ### code chunk number 13: mgus1 ################################################### mgus2[55:59, -(4:7)] ################################################### ### code chunk number 14: mgus2 ################################################### getOption("SweaveHooks")[["fig"]]() event <- with(mgus2, ifelse(pstat==1, 1, 2*death)) event <- factor(event, 0:2, c("censored", "progression", "death")) etime <- with(mgus2, ifelse(pstat==1, ptime, futime)) crfit <- survfit(Surv(etime, event) ~ sex, mgus2) crfit plot(crfit, col=1:2, noplot="", lty=c(3,3,2,2,1,1), lwd=2, xscale=12, xlab="Years post diagnosis", ylab="P(state)") legend(240, .65, c("Female, death", "Male, death", "malignancy", "(s0)"), lty=c(1,1,2,3), col=c(1,2,1,1), bty='n', lwd=2) ################################################### ### code chunk number 15: mgus3 ################################################### getOption("SweaveHooks")[["fig"]]() pcmbad <- survfit(Surv(etime, pstat) ~ sex, data=mgus2) plot(pcmbad[2], mark.time=FALSE, lwd=2, fun="event", conf.int=FALSE, xscale=12, xlab="Years post diagnosis", ylab="Fraction with PCM") lines(crfit[2,2], lty=2, lwd=2, mark.time=FALSE, conf.int=FALSE) legend(0, .25, c("Males, PCM, incorrect curve", "Males, PCM, competing risk"), col=1, lwd=2, lty=c(1,2), bty='n') ################################################### ### code chunk number 16: survival.Rnw:840-843 ################################################### dim(crfit) crfit$strata crfit$states ################################################### ### code chunk number 17: overall ################################################### myeloid[1:5,] ################################################### ### code chunk number 18: sfit0 ################################################### getOption("SweaveHooks")[["fig"]]() sfit0 <- survfit(Surv(futime, death) ~ trt, myeloid) plot(sfit0, xscale=365.25, xaxs='r', col=1:2, lwd=2, xlab="Years post enrollment", ylab="Survival") legend(20, .4, c("Arm A", "Arm B"), col=1:2, lwd=2, bty='n') ################################################### ### code chunk number 19: sfit0a ################################################### mdata <- tmerge(myeloid[,1:2], myeloid, id=id, death= event(futime, death), sct = event(txtime), cr = event(crtime), relapse = event(rltime)) temp <- with(mdata, cr + 2*sct + 4*relapse + 8*death) table(temp) ################################################### ### code chunk number 20: sfit0b ################################################### tdata <- myeloid # temporary working copy tied <- with(tdata, (!is.na(crtime) & !is.na(txtime) & crtime==txtime)) tdata$crtime[tied] <- tdata$crtime[tied] -1 mdata <- tmerge(tdata[,1:2], tdata, id=id, death= event(futime, death), sct = event(txtime), cr = event(crtime), relapse = event(rltime), priorcr = tdc(crtime), priortx = tdc(txtime)) temp <- with(mdata, cr + 2*sct + 4*relapse + 8*death) table(temp) mdata$event <- factor(temp, c(0,1,2,4,8), c("none", "CR", "SCT", "relapse", "death")) mdata[1:7, c("id", "trt", "tstart", "tstop", "event", "priorcr", "priortx")] ################################################### ### code chunk number 21: survival.Rnw:992-993 ################################################### survcheck(Surv(tstart, tstop, event) ~1, mdata, id=id) ################################################### ### code chunk number 22: newevent ################################################### levels(mdata$event) temp1 <- with(mdata, ifelse(priorcr, 0, c(0,1,0,0,2)[event])) mdata$crstat <- factor(temp1, 0:2, c("none", "CR", "death")) temp2 <- with(mdata, ifelse(priortx, 0, c(0,0,1,0,2)[event])) mdata$txstat <- factor(temp2, 0:2, c("censor", "SCT", "death")) temp3 <- with(mdata, c(0,0,1,0,2)[event] + priortx) mdata$tx2 <- factor(temp3, 0:3, c("censor", "SCT", "death w/o SCT", "death after SCT")) ################################################### ### code chunk number 23: curve1 ################################################### getOption("SweaveHooks")[["fig"]]() # I want to have the plots in months, it is simpler to fix time # once rather than repeat xscale many times tdata$futime <- tdata$futime * 12 /365.25 mdata$tstart <- mdata$tstart * 12 /365.25 mdata$tstop <- mdata$tstop * 12 /365.25 sfit1 <- survfit(Surv(futime, death) ~ trt, tdata) # survival sfit2 <- survfit(Surv(tstart, tstop, crstat) ~ trt, data= mdata, id = id) # CR sfit3 <- survfit(Surv(tstart, tstop, txstat) ~ trt, data= mdata, id =id) # SCT layout(matrix(c(1,1,1,2,3,4), 3,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1.1, .1)) mlim <- c(0, 48) # and only show the first 4 years plot(sfit2[,"CR"], xlim=mlim, lty=3, lwd=2, col=1:2, xaxt='n', xlab="Months post enrollment", ylab="Fraction with the endpoint") lines(sfit1, mark.time=FALSE, xlim=mlim, fun='event', col=1:2, lwd=2) lines(sfit3[,"SCT"], xlim=mlim, col=1:2, lty=2, lwd=2) xtime <- c(0, 6, 12, 24, 36, 48) axis(1, xtime, xtime) #axis marks every year rather than 10 months temp <- outer(c("A", "B"), c("CR", "transplant", "death"), paste) temp[7] <- "" legend(25, .3, temp[c(1,2,7,3,4,7,5,6,7)], lty=c(3,3,3, 2,2,2 ,1,1,1), col=c(1,2,0), bty='n', lwd=2) abline(v=2, lty=2, col=3) # add the state space diagrams par(mar=c(4,.1,1,1)) crisk(c("Entry", "CR", "Death"), alty=3) crisk(c("Entry", "Tx", "Death"), alty=2) crisk(c("Entry","Death")) par(oldpar) layout(1) ################################################### ### code chunk number 24: badfit ################################################### getOption("SweaveHooks")[["fig"]]() badfit <- survfit(Surv(tstart, tstop, event=="SCT") ~ trt, id=id, mdata, subset=(priortx==0)) layout(matrix(c(1,1,1,2,3,4), 3,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1.1, .1)) plot(badfit, fun="event", xmax=48, xaxt='n', col=1:2, lty=2, lwd=2, xlab="Months from enrollment", ylab="P(state)") axis(1, xtime, xtime) lines(sfit3[,2], xmax=48, col=1:2, lwd=2) legend(24, .3, c("Arm A", "Arm B"), lty=1, lwd=2, col=1:2, bty='n', cex=1.2) par(mar=c(4,.1,1,1)) crisk(c("Entry", "transplant"), alty=2, cex=1.2) crisk(c("Entry","transplant", "Death"), cex=1.2) par(oldpar) layout(1) ################################################### ### code chunk number 25: cr2 ################################################### getOption("SweaveHooks")[["fig"]]() cr2 <- mdata$event cr2[cr2=="SCT"] <- "none" # ignore transplants crsurv <- survfit(Surv(tstart, tstop, cr2) ~ trt, data= mdata, id=id, influence=TRUE) layout(matrix(c(1,1,2,3), 2,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1.1, .1)) plot(sfit2[,2], lty=3, lwd=2, col=1:2, xmax=12, xlab="Months", ylab="CR") lines(crsurv[,2], lty=1, lwd=2, col=1:2) par(mar=c(4, .1, 1, 1)) crisk( c("Entry","CR", "Death"), alty=3) state3(c("Entry", "CR", "Death/Relapse")) par(oldpar) layout(1) ################################################### ### code chunk number 26: cr2b ################################################### print(crsurv, rmean=48, digits=2) ################################################### ### code chunk number 27: cr2c ################################################### temp <- summary(crsurv, rmean=48)$table delta <- round(temp[4,3] - temp[3,3], 2) ################################################### ### code chunk number 28: txsurv ################################################### getOption("SweaveHooks")[["fig"]]() event2 <- with(mdata, ifelse(event=="SCT" & priorcr==1, 6, as.numeric(event))) event2 <- factor(event2, 1:6, c(levels(mdata$event), "SCT after CR")) txsurv <- survfit(Surv(tstart, tstop, event2) ~ trt, mdata, id=id, subset=(priortx ==0)) dim(txsurv) # number of strata by number of states txsurv$states # Names of states layout(matrix(c(1,1,1,2,2,0),3,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1,.1)) plot(txsurv[,c(3,6)], col=1:2, lty=c(1,1,2,2), lwd=2, xmax=48, xaxt='n', xlab="Months", ylab="Transplanted") axis(1, xtime, xtime) legend(15, .13, c("A, transplant without CR", "B, transplant without CR", "A, transplant after CR", "B, transplant after CR"), col=1:2, lty=c(1,1,2,2), lwd=2, bty='n') state4() # add the state figure par(oldpar) ################################################### ### code chunk number 29: sfit4 ################################################### getOption("SweaveHooks")[["fig"]]() sfit4 <- survfit(Surv(tstart, tstop, event) ~ trt, mdata, id=id) sfit4$transitions layout(matrix(1:2,1,2), widths=2:1) oldpar <- par(mar=c(5.1, 4.1, 1,.1)) plot(sfit4, col=rep(1:4,each=2), lwd=2, lty=1:2, xmax=48, xaxt='n', xlab="Months", ylab="Current state") axis(1, xtime, xtime) text(c(40, 40, 40, 40), c(.51, .13, .32, .01), c("Death", "CR", "Transplant", "Recurrence"), col=c(4,1,2,3)) par(mar=c(5.1, .1, 1, .1)) state5() par(oldpar) ################################################### ### code chunk number 30: reprise ################################################### crsurv <- survfit(Surv(tstart, tstop, cr2) ~ trt, data= mdata, id=id, influence=TRUE) curveA <- crsurv[1,] # select treatment A dim(curveA) # P matrix for treatement A curveA$states dim(curveA$pstate) # 426 time points, 5 states dim(curveA$influence) # influence matrix for treatment A table(myeloid$trt) ################################################### ### code chunk number 31: meantime ################################################### t48 <- pmin(48, curveA$time) delta <- diff(c(t48, 48)) # width of intervals rfun <- function(pmat, delta) colSums(pmat * delta) #area under the curve rmean <- rfun(curveA$pstate, delta) # Apply the same calculation to each subject's influence slice inf <- apply(curveA$influence, 1, rfun, delta=delta) # inf is now a 5 state by 310 subject matrix, containing the IJ estimates # on the AUC or mean time. The sum of squares is a variance. se.rmean <- sqrt(rowSums(inf^2)) round(rbind(rmean, se.rmean), 2) print(curveA, rmean=48, digits=2) ################################################### ### code chunk number 32: survdiff ################################################### survdiff(Surv(time, status) ~ x, aml) ################################################### ### code chunk number 33: crisk ################################################### crisk <- function(what, horizontal = TRUE, ...) { nstate <- length(what) connect <- matrix(0, nstate, nstate, dimnames=list(what, what)) connect[1,-1] <- 1 # an arrow from state 1 to each of the others if (horizontal) statefig(c(1, nstate-1), connect, ...) else statefig(matrix(c(1, nstate-1), ncol=1), connect, ...) } ################################################### ### code chunk number 34: state3 ################################################### state3 <- function(what, horizontal=TRUE, ...) { if (length(what) != 3) stop("Should be 3 states") connect <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3,3, dimnames=list(what, what)) if (horizontal) statefig(1:2, connect, ...) else statefig(matrix(1:2, ncol=1), connect, ...) } ################################################### ### code chunk number 35: state5 ################################################### state5 <- function(what, ...) { sname <- c("Entry", "CR", "Tx", "Rel", "Death") connect <- matrix(0, 5, 5, dimnames=list(sname, sname)) connect[1, -1] <- c(1,1,1, 1.4) connect[2, 3:5] <- c(1, 1.4, 1) connect[3, c(2,4,5)] <- 1 connect[4, c(3,5)] <- 1 statefig(matrix(c(1,3,1)), connect, cex=.8, ...) } ################################################### ### code chunk number 36: state4 ################################################### state4 <- function() { sname <- c("Entry", "CR", "Transplant", "Transplant") layout <- cbind(x =c(1/2, 3/4, 1/4, 3/4), y =c(5/6, 1/2, 1/2, 1/6)) connect <- matrix(0,4,4, dimnames=list(sname, sname)) connect[1, 2:3] <- 1 connect[2,4] <- 1 statefig(layout, connect) } ################################################### ### code chunk number 37: lung1 ################################################### options(show.signif.stars=FALSE) # display statistical intelligence cfit1 <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung) print(cfit1, digits=3) summary(cfit1, digits=3) anova(cfit1) ################################################### ### code chunk number 38: na.action ################################################### cfit1a <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung, na.action = na.omit) cfit1b <- coxph(Surv(time, status) ~ age + sex + wt.loss, data=lung, na.action = na.exclude) r1 <- residuals(cfit1a) r2 <- residuals(cfit1b) length(r1) length(r2) ################################################### ### code chunk number 39: cox12 ################################################### cfit2 <- coxph(Surv(time, status) ~ age + sex + wt.loss + strata(inst), data=lung) round(cbind(simple= coef(cfit1), stratified=coef(cfit2)), 4) ################################################### ### code chunk number 40: cox13 ################################################### getOption("SweaveHooks")[["fig"]]() dummy <- expand.grid(age=c(50, 60), sex=1, wt.loss=5) dummy csurv1 <- survfit(cfit1, newdata=dummy) csurv2 <- survfit(cfit2, newdata=dummy) dim(csurv1) dim(csurv2) plot(csurv1, col=1:2, xscale=365.25, xlab="Years", ylab="Survival") dummy2 <- data.frame(age=c(50, 60), sex=1:2, wt.loss=5, inst=c(6,11)) csurv3 <- survfit(cfit2, newdata=dummy2) dim(csurv3) ################################################### ### code chunk number 41: lung2 ################################################### getOption("SweaveHooks")[["fig"]]() zp1 <- cox.zph(cfit1) zp1 plot(zp1[2], resid=FALSE) abline(coef(fit1)[2] ,0, lty=3) ################################################### ### code chunk number 42: lung3 ################################################### getOption("SweaveHooks")[["fig"]]() cfit3 <- coxph(Surv(time, status) ~ pspline(age) + sex + wt.loss, lung) print(cfit3, digits=2) termplot(cfit3, term=1, se=TRUE) cfit4 <- update(cfit1, . ~ . + age*sex) anova(cfit1, cfit4) ################################################### ### code chunk number 43: cgd1 ################################################### cfit1 <- coxph(Surv(tstart, tstop, status) ~ treat + inherit + steroids + age + strata(hos.cat), data=cgd) print(cfit1, digits=2) ################################################### ### code chunk number 44: cgd1b ################################################### cfit2 <- coxph(Surv(tstart, tstop, status) ~ treat + inherit+ age + strata(hos.cat), data=cgd) print(cfit2, digits=2) ################################################### ### code chunk number 45: cgd3 ################################################### getOption("SweaveHooks")[["fig"]]() dummy <- expand.grid(age=c(6,12), inherit='X-linked', treat=levels(cgd$treat)) dummy csurv <- survfit(cfit2, newdata=dummy) dim(csurv) plot(csurv[1,], fun="event", col=1:2, lty=c(1,1,2,2), xlab="Days on study", ylab="Pr( any infection )") ################################################### ### code chunk number 46: cfit4 ################################################### getOption("SweaveHooks")[["fig"]]() plot(csurv[1,], cumhaz=TRUE, col=1:2, lty=c(1,1,2,2), lwd=2, xlab="Days on study", ylab="E( number of infections )") legend(20, 1.5, c("Age 6, control", "Age 12, control", "Age 6, gamma interferon", "Age 12, gamma interferon"), lty=c(2,2,1,1), col=c(1,2,1,2), lwd=2, bty='n') ################################################### ### code chunk number 47: survfit-mgus1 ################################################### getOption("SweaveHooks")[["fig"]]() mgus2[56:59,] sname <- c("MGUS", "Malignancy", "Death") smat <- matrix(c(0,0,0, 1,0,0, 1,1,0), 3, 3, dimnames = list(sname, sname)) statefig(c(1,2), smat) ################################################### ### code chunk number 48: survfit-mgus2 ################################################### crdata <- mgus2 crdata$etime <- pmin(crdata$ptime, crdata$futime) crdata$event <- ifelse(crdata$pstat==1, 1, 2*crdata$death) crdata$event <- factor(crdata$event, 0:2, c("censor", "PCM", "death")) quantile(crdata$age, na.rm=TRUE) table(crdata$sex) quantile(crdata$mspike, na.rm=TRUE) cfit <- coxph(Surv(etime, event) ~ I(age/10) + sex + mspike, id = id, crdata) print(cfit, digits=1) # narrow the printout a bit ################################################### ### code chunk number 49: PCMcurve ################################################### getOption("SweaveHooks")[["fig"]]() dummy <- expand.grid(sex=c("F", "M"), age=c(60, 80), mspike=1.2) csurv <- survfit(cfit, newdata=dummy) plot(csurv[,,2], xmax=20*12, xscale=12, xlab="Years after MGUS diagnosis", ylab="Pr(has entered PCM state)", col=1:2, lty=c(1,1,2,2), lwd=2) legend(100, .04, outer(c("female,", "male, "), c("diagnosis at age 60", "diagnosis at age 80"), paste), col=1:2, lty=c(1,1,2,2), bty='n', lwd=2) ################################################### ### code chunk number 50: mrate ################################################### mpfit <- glm(pstat ~ sex -1 + offset(log(ptime)), data=mgus2, poisson) exp(coef(mpfit)) * 12 # rate per year ################################################### ### code chunk number 51: msingle ################################################### getOption("SweaveHooks")[["fig"]]() sfit <- coxph(Surv(etime, event=="PCM") ~ I(age/10) + sex + mspike, crdata) rbind(single = coef(sfit), multi = coef(cfit)[1:3]) #par(mfrow=c(1,2)) ssurv <- survfit(sfit, newdata=dummy) plot(ssurv[3:4], col=1:2, lty=2, xscale=12, xmax=12*20, lwd=2, fun="event", xlab="Years from diagnosis", ylab= "Pr(has entered PCM state)") lines(csurv[3:4, 2], col=1:2, lty=1, lwd=2) legend(20, .22, outer(c("80 year old male,", "80 year old female,"), c("incorrect", "correct"), paste), col=1:2, lty=c(2,2,1,1), lwd=2, bty='n') ################################################### ### code chunk number 52: state5 ################################################### getOption("SweaveHooks")[["fig"]]() state5 <- c("0MC", "1MC", "2MC", "3MC", "death") tmat <- matrix(0L, 5, 5, dimnames=list(state5, state5)) tmat[1,2] <- tmat[2,3] <- tmat[3,4] <- 1 tmat[-5,5] <- 1 statefig(rbind(4,1), tmat) ################################################### ### code chunk number 53: nafld1 ################################################### ndata <- tmerge(nafld1[,1:8], nafld1, id=id, death= event(futime, status)) ndata <- tmerge(ndata, subset(nafld3, event=="nafld"), id, nafld= tdc(days)) ndata <- tmerge(ndata, subset(nafld3, event=="diabetes"), id = id, diabetes = tdc(days), e1= event(days)) ndata <- tmerge(ndata, subset(nafld3, event=="htn"), id = id, htn = tdc(days), e2 = event(days)) ndata <- tmerge(ndata, subset(nafld3, event=="dyslipidemia"), id=id, lipid = tdc(days), e3= event(days)) attr(ndata, "tcount") ################################################### ### code chunk number 54: survival.Rnw:2002-2005 ################################################### tc <- attr(ndata, 'tcount') # shorter name for use in Sexpr below icount <- table(table(nafld3$id)) #number with 1, 2, ... intervals ncount <- sum(nafld3$event=="nafld") ################################################### ### code chunk number 55: nafld2 ################################################### ndata$cstate <- with(ndata, diabetes + htn + lipid) temp <- with(ndata, e1 + e2 + e3) temp2 <- with(ndata, ifelse(death, 4, ifelse(temp ==0, 0, cstate + temp))) ndata$event <- factor(temp2, 0:4, c("censored", "1mc", "2mc", "3mc", "death")) ndata$cstate <- factor(ndata$cstate, 0:3, c("0mc", "1mc", "2mc", "3mc")) ndata$age1 <- ndata$age + ndata$tstart/365.25 # analysis on age scale ndata$age2 <- ndata$age + ndata$tstop/365.25 temp3 <- survcheck(Surv(age1, age2, event) ~ nafld, data=ndata, id=id, istate=cstate) temp3 ################################################### ### code chunk number 56: nafld3 ################################################### ################################################### ### code chunk number 57: nafld4 ################################################### nfit1 <- coxph(list(Surv(age1, age2, event) ~ nafld + male, "0mc":state("1mc", "2mc", "3mc") ~ nafld+ male / common, 2:3 + 2:4 ~ nafld + male / common, 0: "death" ~ male / common), data=ndata, id=id, istate=cstate) nfit1$states round(coef(nfit1), 3) nfit1$cmap ################################################### ### code chunk number 58: nafld5 ################################################### options(show.signif.stars = FALSE) # display statistical maturity print(summary(nfit1, digits =3)) print(nfit1, digits =3) ################################################### ### code chunk number 59: survival.Rnw:2177-2179 (eval = FALSE) ################################################### ## fit2 <- coxph(Surv(time, status) ~ trt + trt*time + celltype + karno, ## data = veteran) ################################################### ### code chunk number 60: zphcheck1 ################################################### dtime <- unique(veteran$time[veteran$status==1]) # unique times newdata <- survSplit(Surv(time, status) ~ trt + celltype + karno, data=veteran, cut=dtime) nrow(veteran) nrow(newdata) fit0 <- coxph(Surv(time, status) ~ trt + celltype + karno, veteran) fit1 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno, data=newdata) fit2 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno + time:karno, newdata) fit2 fit2b <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno + rank(time):karno, newdata) ################################################### ### code chunk number 61: zph2 ################################################### fit2 <- coxph(Surv(tstart, time, status) ~ trt + celltype + karno + tt(karno), data =newdata, tt = function(x, t,...) x*t) ################################################### ### code chunk number 62: zph2 ################################################### getOption("SweaveHooks")[["fig"]]() zp0 <- cox.zph(fit0, transform='identity') zp0 zp1 <- cox.zph(fit0, transform='log') zp1 oldpar <- par(mfrow=c(2,2)) for (i in 1:3) {plot(zp1[i]); abline(0,0, lty=3)} plot(zp0[3]) par(oldpar) ################################################### ### code chunk number 63: survival.Rnw:2365-2366 ################################################### with(subset(aml, x=="Nonmaintained"), Surv(time, status)) ################################################### ### code chunk number 64: coarsen ################################################### getOption("SweaveHooks")[["fig"]]() tdata <- subset(colon, etype==1) # progression or death cmat <- matrix(0, 7, 6) for( i in 1:7) { if (i==1) scale <-1 else scale <- (i-1)*365/12 temp <- floor(tdata$time/scale) tfit <- coxph(Surv(temp, status) ~ node4 + extent, tdata) tfit2 <- coxph(Surv(temp, status) ~ node4 + extent, tdata, ties='breslow') tfit3 <- coxph(Surv(temp, status) ~ node4 + extent, tdata, ties='exact') cmat[i,] <- c(coef(tfit2), coef(tfit), coef(tfit3)) } matplot(1:7, cmat[,c(1,3,5)], xaxt='n', pch='bec', xlab="Time divisor", ylab="Coefficient for node4") axis(1, 1:7, c(1, floor(1:6 *365/12))) survival/inst/doc/tiedtimes.R0000644000176200001440000000354413570775571016010 0ustar liggesusers### R code from vignette source 'tiedtimes.Rnw' ################################################### ### code chunk number 1: init ################################################### options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text library(survival, quietly=TRUE) ################################################### ### code chunk number 2: interval1 ################################################### birth <- as.Date("1973/03/10") start <- as.Date("1998/09/13") + 1:40 end <- as.Date("1998/12/03") + rep(1:10, 4) interval <- (end-start) table(interval) ################################################### ### code chunk number 3: interval2 ################################################### start.age <- as.numeric(start-birth)/365.25 end.age <- as.numeric(end -birth)/365.25 age.interval <- end.age - start.age length(unique(age.interval)) table(match(age.interval, sort(unique(age.interval)))) ################################################### ### code chunk number 4: tiedtimes.Rnw:82-96 ################################################### ndata <- data.frame(id=1:30, birth.dt = rep(as.Date("1953/03/10"), 30), enroll.dt= as.Date("1993/03/10") + 1:30, end.dt = as.Date("1996/10/21") + 1:30 + rep(1:10, 3), status= rep(0:1, length=30), x = 1:30) ndata$enroll.age <- with(ndata, as.numeric(enroll.dt - birth.dt))/365.25 ndata$end.age <- with(ndata, as.numeric(end.dt - birth.dt))/365.25 fudays <- with(ndata, as.numeric(end.dt - enroll.dt)) fuyrs <- with(ndata, as.numeric(end.age- enroll.age)) cox1 <- coxph(Surv(fudays, status) ~ x, data=ndata) cox2 <- coxph(Surv(fuyrs, status) ~ x, data=ndata) survival/inst/doc/timedep.Rnw0000644000176200001440000016112113537676563016015 0ustar liggesusers\documentclass{article} \usepackage{amsmath} \usepackage{Sweave} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \newcommand{\code}[1]{\texttt{#1}} %\VignetteIndexEntry{Using Time Dependent Covariates} \title{Using Time Dependent Covariates and Time Dependent Coefficients in the Cox Model} \author{Terry Therneau \and Cynthia Crowson \and Elizabeth Atkinson\\ \emph{Mayo Clinic}} \begin{document} \maketitle \SweaveOpts{prefix.string=compete,width=6,height=4} \setkeys{Gin}{width=\textwidth} \SweaveOpts{keep.source=TRUE} <>= options(width=60, continue=" ") makefig <- function(file, top=1, right=1, left=4) { pdf(file, width=9.5, height=7, pointsize=18) par(mar=c(4, left, top, right) +.1) } library(survival) @ \section{Introduction} This vignette covers 3 different but interrelated concepts: \begin{itemize} \item An introduction to time dependent covariates, along with some of the most common mistakes. \item Tools for creating time-dependent covariates, or rather the data sets used to encode them. \item Time dependent coefficients. \end{itemize} \section{Time dependent covariates} One of the strengths of the Cox model is its ability to encompass covariates that change over time. The practical reason that time-dependent covariates work is based on the underlying way in which the Cox model works: at each event time the program compares the current covariate values of the subject who had the event to the current values of all others who were at risk at that time. One can think of it as a lottery model, where at each death time there is a drawing to decide which subject ``wins'' the event. Each subject's risk score $\exp(X\beta)$ determines how likely they are to win, e.g., how many ``tickets'' they have purchased for the drawing. The model tries to assign a risk score to each subject that best predicts the outcome of each drawing based on \begin{itemize} \item The risk set: which subjects are present for each event; the set of those able to ``win the prize''. \item The covariate values of each subject just prior to the event time. \end{itemize} The model has a theoretical foundation in martingale theory, a mathematical construct which arose out of the study of games of chance. A key underlying condition for a martingale like game is that present actions depend only on the past. The decision of whether to play (is one in the risk set or not) and the size of a bet (covariates) can depend in any way on prior bets and patterns of won/lost, but cannot look into the future. If this holds then multiple properties can be proven about the resulting process. A simple way to code time-dependent covariates uses intervals of time. Consider a subject with follow-up from time 0 to death at 185 days, and assume that we have a time dependent covariate (creatinine) that was measured at day 0, 90 and 120 with values of .9, 1.5, and 1.2 mg/dl. A way to encode that data for the computer is to break the subject's time into 3 time intervals 0-90, 90-120, 120-185, with one row of data for each interval. The data might look like the following <>= tdata <- data.frame(subject=c(5,5,5), time1=c(0,90, 120), time2 = c(90, 120, 185), death=c(0,0,1), creatinine=c(0.9, 1.5, 1.2)) tdata @ We read this as stating that over the interval from 0 to 90 the creatinine for subject ``5'' was 0.9 (last known level), and that this interval did not end in a death. The underlying code treats intervals as open on the left and closed on the right, e.g. the creatinine on exactly day 90 is 0.9. One way to think of this is that all changes for a given day (covariates or status) are recorded at the start of the next interval. The key rule for time dependent covariates in a Cox model is simple and essentially the same as that for gambling: \emph{you cannot look into the future}. A covariate may change in any way based on past data or outcomes, but it may not reach forward in time. In the above simple data set this means that we cannot add a linear interpolation between the creatinine values 0.9 and 1.5 to get a predicted value of 1.1 on day 100; on day 100 the later value of 1.5 has not yet been seen. A an example consider a recent analysis from the Mayo Clinic study of aging (MCSA), a study which enrolled a stratified random sample from the population of Olmsted County and then has followed them forward in time. The occurrence of mild cognitive impairment (MCI), dementia, and death are all of interest. The paper starts out with a table comparing baseline covariates for those who never progress to MCI versus those who ever did, there is also a table of baseline covariates versus survival. Both of these are fine: if you think in terms of an R formula they could be written with future outcomes on the left hand side of the formula and past information on the right. A table that compared the survival of those who did or did not progress to MCI, however, would be invalid. It corresponds to a model with a future occurrence on both sides of the equation. One of the more well known examples of this error is analysis by treatment response: at the end of a trial a survival curve is made comparing those who had an early response to treatment (shrinkage of tumor, lowering of cholesterol, or whatever) to those who did not, and it discovered that responders have a better curve. A Cox model fit to the same data will demonstrate a strong ``significant'' effect. The problem arises because any early deaths, those that occur before response can be assessed, will all be assigned to the non-responder group, even deaths that have nothing to do with the condition under study. Below is a simple example based on the advanced lung cancer data set. Assume that subjects came in monthly for 12 cycles of treatment, and randomly declare a ``response'' for 5\% of the subjects at each visit. <>= set.seed(1953) # a good year nvisit <- floor(pmin(lung$time/30.5, 12)) response <- rbinom(nrow(lung), nvisit, .05) > 0 badfit <- survfit(Surv(time/365.25, status) ~ response, data=lung) plot(badfit, mark.time=FALSE, lty=1:2, xlab="Years post diagnosis", ylab="Survival") legend(1.5, .85, c("Responders", "Non-responders"), lty=2:1, bty='n') @ What is most surprising about this error is the \emph{size} of the false effect that is produced. A Cox model using the above data reports a hazard ratio of 1.9 fold with a p-value of less than 1 in 1000. The alarm about this incorrect approach has been sounded often \cite{Anderson83, Buyse96, Suissa08} but the analysis is routinely re-discovered. A slightly subtler form of the error is discussed in Redmond et al \cite{Redmond83}. The exploration was motivated by a flawed analysis presented in Bonadonna et. al \cite{Bref} which looked at the effect of total dose. Breast cancer chemotherapy patients were divided into three groups based on whether the patient eventually received $>85$\%, 65--85\% or $<65$\% of the dose planned at the start of their treatment. Per the above, this approach leads to a severe bias since early deaths do not finish all their cycles of chemotherapy and hence by definition get a lower dose. A proportional hazards model using total dose received shows a very strong effect for dose, so much so that it could encourage a treating physician to defer necessary dose reductions in response to treatment toxicity. This false result actively harmed patients. Redmond looked at a variant of this: create a variable $p$ for each subject which is the fraction of the target dose \emph{up to} the last entry for that subject. A subject who died after recieving only 6 weeks of a planned 12 week regimen could still score 100\%. This looks like it should cure the bias issue, but as it turns out it leads to bias in the other direction. The reason is that dose reductions due to toxicity occur more often in the later cycles of treatment, and thus living longer leads to smaller values of $p$. A proportional hazards regression fit to $p$ implies that a smaller dose is protective! The proper approach is to code the predictor as a time-dependent covariate. For treatment response this will be a variable that starts at 0 for all subjects and is recoded to 1 only when the response occurs. For dose it would measure cumulative dose to date. There are many variations on the error: interpolation of the values of a laboratory test linearly between observation times, removing subjects who do not finish the treatment plan, imputing the date of an adverse event as midway between observation times, etc. Using future data will often generate large positive or negative bias in the coefficients, but sometimes it generates little bias at all. It is nearly impossible to predict a priori which of these will occur in any given data set. Using such a covariate is similar to jogging across a Los Angeles freeway: disaster is not guaranteed --- but it is likely. The most common way to encode time-dependent covariates is to use the (start, stop] form of the model. <>= fit <- coxph(Surv(time1, time2, status) ~ age + creatinine, data=mydata) @ In data set \code{mydata} a patient might have the following observations \begin{center} \begin{tabular}{ccccccc} subject & time1 & time2 & status & age & creatinine & \ldots \\ \hline 1 & 0 & 15 & 0 & 25 & 1.3 \\ 1 & 15& 46 & 0 & 25 & 1.5 \\ 1 & 46& 73 & 0 & 25 & 1.4 \\ 1 & 73& 100& 1 & 25 & 1.6 \\ \end{tabular} \end{center} In this case the variable \code{age} = age at entry to the study stays the same from line to line, while the value of creatinine varies and is treated as 1.3 over the interval $(0, 15]$, 1.5 over $(15, 46]$, etc. The intervals are open on the left and closed on the right, which means that the creatinine is taken to be 1.3 on day 15. The status variable describes whether or not each interval ends in an event. One common question with this data setup is whether we need to worry about correlated data, since a given subject has multiple observations. The answer is no, we do not. The reason is that this representation is simply a programming trick. The likelihood equations at any time point use only one copy of any subject, the program picks out the correct row of data at each time. There two exceptions to this rule: \begin{itemize} \item When subjects have multiple events, then the rows for the events are correlated within subject and a cluster variance is needed. \item When a subject appears in overlapping intervals. This however is almost always a data error, since it corresponds to two copies of the subject being present in the same strata at the same time, e.g., she could meet herself at a party. \end{itemize} A subject can be at risk in multiple strata at the same time, however. This corresponds to being simultaneously at risk for two distinct outcomes. \section{Building time-dependent sets with tmerge} \subsection{The function} A useful function for building data sets is \code{tmerge}, which is part of the survival library. The idea is to build up a time dependent data set one endpoint at at time. The primary arguments are \begin{itemize} \item data1: the base data set that will be added onto \item data2: the source for new information \item id: the subject identifier in the new data \item \ldots: additional arguments that add variables to the data set \item tstart, tstop: used to set the time range for each subject \item options \end{itemize} The created data set has three new variables (at least), which are \code{id}, \code{tstart} and \code{tstop}. The key part of the call are the ``\ldots'' arguments which each can be one of four types: tdc() and cumtdc() add a time dependent variable, event() and cumevent() add a new endpoint. In the survival routines time intervals are open on the left and closed on the right, i.e., (tstart, tstop]. Time dependent covariates apply from the start of an interval and events occur at the end of an interval. If a data set already had intervals of (0,10] and (10, 14] a new time dependent covariate or event at time 8 would lead to three intervals of (0,8], (8,10], and (10,14]; the new time-dependent covariate value would be added to the second interval, a new event would be added to the first one. The basic form of the function is <>= newdata <- tmerge(data1, data2, id, newvar=tdc(time, value), ...) @ Where \code{data1} is the starting data set and additions to the data are taken from \code{data2}. The idea behind the function is that each addition will be ``slipped in'' to the original data in the same way that one would slide a new card into an existing deck of cards. It is a complex function, and we illustrate it below with a set of examples that sequentially reveal its features. \subsection{CGD data set} Chronic granulomatous disease (CGD) is a heterogeneous group of uncommon inherited disorders characterized by recurrent pyogenic infections that usually begin early in life and may lead to death in childhood. In 1986, Genentech, Inc. conducted a randomized, double-blind, placebo-controlled trial in 128 CGD patients who received Genentech's humanized interferon gamma (rIFN-g) or placebo three %' times daily for a year. Data were collected on all serious infections until the end of followup, which occurred before day 400 for most patients. One patient was taken off on the day of his last infection; all others have some followup after their last episode. Below are the first 10 observations, see the help page for \texttt{cgd0} for the full list of variable names. The last few columns contain the duration of follow-up for the subject followed by infection times. Subject 1 was followed for 414 days and had infections on days 219 and 373, subject 2 had 7 infections and subject 3 had none. \small \begin{verbatim} 1 204 082888 1 2 12 147.0 62.0 2 2 2 2 414 219 373 2 204 082888 0 1 15 159.0 47.5 2 2 1 2 439 8 26 152 241 249 322 350 3 204 082988 1 1 19 171.0 72.7 1 2 1 2 382 4 204 091388 1 1 12 142.0 34.0 1 2 1 2 388 5 238 092888 0 1 17 162.5 52.7 1 2 1 1 383 246 253 6 245 093088 1 2 44 153.3 45.0 2 2 2 2 364 7 245 093088 0 1 22 175.0 59.7 1 2 1 2 364 292 8 245 093088 1 1 7 111.0 17.4 1 2 1 2 363 9 238 100488 0 1 27 176.0 82.8 2 2 1 1 349 294 10 238 100488 1 1 5 113.0 19.5 1 2 1 1 371 \end{verbatim} \normalsize The data set is included as \code{cgd0} in the survival library. Here is the R printout of the first four subjects. <<>>= cgd0[1:4,] @ We want to turn this into a data set that has survival in a counting process form. \begin{itemize} \item Each row of the resulting data set represents a time interval (time1, time2] which is open on the left and closed on the right. Covariate values for that row are the covariate values that apply over that interval. \item The event variable for each row $i$ is 1 if the time interval ends with an event and 0 otherwise. \end{itemize} We don't need variables etime1--etime7 in the final data set, so they are left out of the data1 argument in the first call. <>= dim(cgd0) newcgd <- tmerge(data1=cgd0[, 1:13], data2=cgd0, id=id, tstop=futime) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime1)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime2)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime3)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime4)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime5)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime6)) newcgd <- tmerge(newcgd, cgd0, id=id, infect = event(etime7)) newcgd <- tmerge(newcgd, newcgd, id, enum=cumtdc(tstart)) dim(newcgd) newcgd[1:5,c(1, 4:6, 13:17)] attr(newcgd, "tcount") coxph(Surv(tstart, tstop, infect) ~ treat + inherit + steroids + + cluster(id), newcgd) @ These lines show the canonical way to use tmerge: each call adds one more bit of information to the data set. \begin{itemize} \item The first call sets the \emph{time range} for each subject to be from 0 (default) to last follow-up. If a later call tried to add an event outside that range, at time = -2 say, that addition would be ignored. The range can be set explicitly by using the tstop and (optional) tstart arguments, or implicitly as will be done in the heart transplant example below. This first result has \Sexpr{nrow(cgd0)} rows, the same number as \code{cgd0}. \item Each additional call then adds either an endpoint or a covariate, splitting individual rows of the input in two as necessary. An \code{event} or \code{cumevent} directive adds events, while a \code{tdc} or \code{cumtdc} one adds a time dependent covariate. Events happen at the ends of intervals and time-dependent covariates change at the start of an interval. \item Additions from \code{data2} with a missing time value are ignored. \item The result of \code{tmerge} is a data frame with a few extra attributes. One of these, tcount, is designed to help visualize the process and was printed out after the last step above. Assume that a subject already had 3 intervals of (2,5), (5,10) and (14,40). A new event added at time 1 would be ``early'' while one at time 50 is after any interval and would be recorded as ``late''. An event at time 3 is within an interval, one at 5 is on the border of two intervals, one at 14 is at the leading edge of an interval, one at time 10 in on the trailing edge and at time 11 is in a gap. In this data set all new additions fell strictly within prior intervals. We also see that etime6 and etime7 each added only a single event to the data. \item If two observations in data2 for a single person share exactly the same time, the created value will be the later contribution for tdc() or event() calls, cumtdc() and cumevent() will add. The ``tied'' column tells how often this happened; in some data sets this behavior might not be desired and one would need to break the ties before calling tmerge. \item The last tmerge call adds a simple time-dependent variable \code{enum} which is a running observation count for each subject. This can often be a useful variable in later models or processing, e.g. \code{enum==1} selects off the first row for each subject. \item The extra attributes of the data frame are ephemeral: they will be lost as soon as any further manipulation is done. This is intentional. \item One can verify that the resulting data set is equivalent to \code{cgd}, a (start, stop] version of the CGD data in the survival library which had been created by hand several years earlier. \end{itemize} The \code{tmerge} function processes arguments sequentially, and the above example can be rewritten as below. There is no computational advantage of one form versus the other. <>= test <- tmerge(cgd0[, 1:13], cgd0, id=id, tstop=futime, infect = event(etime1), infect= event(etime2), infect = event(etime3), infect= event(etime4), infect = event(etime5), infect= event(etime6), infect = event(etime7)) test <- tmerge(test, test, id= id, enum = cumtdc(tstart)) all.equal(newcgd, test) @ \subsection{Stanford heart transplant} The \code{jasa} data set contains information from the Stanford heart transplant study, in the form that it appeared in the paper of Crowley and Hu \cite{Crowley77}. The data set has one line per subject which contains the baseline covariates along with dates of enrollment, transplant, and death or last follow-up. We want to create \code{transplant} as a time dependent covariate. As is often the case with real data, this data set contains a few anomalies that need to be dealt with when setting up an analysis data set. \begin{enumerate} \item One subject died on the day of entry. However (0,0) is an illegal time interval for the \code{coxph} routine. It suffices to have them die on day 0.5. An alternative is to add 1 day to everyone's follow-up, e.g., subject 2 who enrolled on Jan 2 1968 and died on Jan 7 would be credited with 6 days. (This is what Kalbfleisch and Prentice do in their textbook.) The result of the final \code{coxph} call is the same from either strategy. \item A subject transplanted on day 10 is considered to have been on medical treatment for days 1--10 and as transplanted starting on day 11. That is, except for patient 38 who died on the same day as their procedure. They should be treated as a transplant death; the problem is resolved by moving this transplant back .5 day. \item The treatment coefficients in table 6.1 of the definitive analysis found in Kalbfleisch and Prentice \cite{Kalbfleisch02} will only be obtained if covariates are defined in precisely the same way, since their models include interactions. (Table 5.2 in the original edition of the book). For age this is (age in days)/ 365.25 - 48 years, and for year of enrollment it is the number of years since the start of the study: (entry date - 1967/10/1)/365.25. (Until I figured this out I would get occasional ``why is coxph giving the wrong answers'' emails.) \end{enumerate} Since time is in days the fractional time of 0.5 could be any value between 0 and 1, our choice will not affect the results. <>= jasa$subject <- 1:nrow(jasa) #we need an identifier variable tdata <- with(jasa, data.frame(subject = subject, futime= pmax(.5, fu.date - accept.dt), txtime= ifelse(tx.date== fu.date, (tx.date -accept.dt) -.5, (tx.date - accept.dt)), fustat = fustat )) sdata <- tmerge(jasa, tdata, id=subject, death = event(futime, fustat), trt = tdc(txtime), options= list(idname="subject")) attr(sdata, "tcount") sdata$age <- sdata$age -48 sdata$year <- as.numeric(sdata$accept.dt - as.Date("1967-10-01"))/365.25 # model 6 of the table in K&P coxph(Surv(tstart, tstop, death) ~ age*trt + surgery + year, data= sdata, ties="breslow") @ This example shows a special case for the \code{tmerge} function that is quite common: if the first created variable is an event then the time range for each subject is inferred to be from 0 to the event time: explicit \code{tstop} and \code{tstart} arguments are not required. It also makes use of a two argument form of \code{event}. Each of the \code{event}, \code{cumevent}, \code{tdc} and \code{cumtdc} functions may have a second argument, which if present will be used as the value for the event code or time dependent covariate. If this second argument is not present a value of 1 is used. If a created variable is not already in data1, the starting value \emph{before} the first definition of that variable is a NA for a \code{tdc} or \code{cumtdc} call that has two arguments and 0 in all other cases. If the variable being created is already a part of data1, then our updates make changes to that variable. Be careful of this. This feature is what allowed for the \code{infection} indicator to be build up incrementally in the cgd example above, but quite surprising results can occur when you think a new variable is being created de novo but its name is already in use. For example, if we name the new variable `transplant' in the third line of \code{sdata} above it collides with an existing variable in the \code{jasa} data set; the result is to not create a time-dependent transplant variable at all. (The author made this mistake himself when creating this vignette, and then spent several hours searching the tmerge code for an error that wasn't there.) The \code{tcount} table for the above fit shows all the deaths at the trailing edge of their interval, which is expected since the time of death or last follow-up was used to define each subject's interval of risk. Two of the transplants happened on day 0 and are listed as occurring on the leading edge of the first follow-up interval for the subject. The other 67 transplants were strictly within the (0, last follow up) interval of each subject. \subsection{PBC data} The \code{pbc} data set contains baseline data and follow-up status for a set of subjects with primary biliary cirrhosis, while the \code{pbcseq} data set contains repeated laboratory values for those subjects. The first data set contains data on 312 subjects in a clinical trial plus 106 that agreed to be followed off protocol, the second data set has data only on the trial subjects. <>= temp <- subset(pbc, id <= 312, select=c(id:sex, stage)) # baseline pbc2 <- tmerge(temp, temp, id=id, death = event(time, status)) #set range pbc2 <- tmerge(pbc2, pbcseq, id=id, ascites = tdc(day, ascites), bili = tdc(day, bili), albumin = tdc(day, albumin), protime = tdc(day, protime), alk.phos = tdc(day, alk.phos)) fit1 <- coxph(Surv(time, status==2) ~ log(bili) + log(protime), pbc) fit2 <- coxph(Surv(tstart, tstop, death==2) ~ log(bili) + log(protime), pbc2) rbind('baseline fit' = coef(fit1), 'time dependent' = coef(fit2)) @ We start the build with a baseline data set that has a subset of the variables. This is due to my own frugality --- I happen to like data sets that are more trim. It is not a requirement of the tmerge function, however, and a user is certainly free to skip the first step above and build \code{pbc2} directly from data set \code{pbc}. The coefficients of bilirubin and prothrombin time are somewhat larger in the time-dependent analysis than the fit using only baseline values. In this autoimmune disease there is steady progression of liver damage, accompanied by a steady rise in these two markers of dysfunction. The baseline analysis captures patients' disease status at the start, the time-dependent analysis is able to account for those who progress more quickly. In the pbc data set the status variable is 0= censored, 1= liver transplant and 2= death; the above analyses were models of time to death, censoring at transplant. (At the time of the PBC study liver transplantation was still in its infancy and it is fair to view the 19/312 subjects who received the procedure as a random sample. In the modern era there are far more waiting recipients than organs and available livers are directed to those patients who illness is most dire; censoring at transplant would not lead to an interpretable result.) By default \code{tmerge} ignores any updates from \code{data2} that have a missing value for either the time or the value. In the pbcseq data set there are several observations with a missing alkaline phosphotase value. A consequence of this behavior is that the pbc2 data set effectively uses ``last value carried forward'' values for alk.phos, replacing those missing values. Subject 6 for instance has a total follow-up of 2503, and alk.phos values of 682 and NA on days 1492 and 2453, respectively; in the final data set it is coded 682 from day 1492 until last follow up. One can change this default by adding \code{options=list(na.rm=FALSE)} to the second call above, in which case the alkaline phosphotase value over the interval (2453, 2503] will become missing. Any \code{tdc} calls with a missing time are still ignored, independent of the na.rm value, since we would not know where to insert them. <<>>= attr(pbc2, "tcount") @ <>= #grab a couple of numbers for the paragraph below atemp <- attr(pbc2, "tcount")[2:3,] @ The tcount results are interesting. For the first addition of ascites we have \Sexpr{atemp[1, 'leading']} observations on a leading edge of follow up, which is all of the baseline lab values at time 0, and \Sexpr{atemp[1, 'within']} further additions within the subjects' follow-up interval. The latter cause a new break point to be added at each of these intermediate laboratory dates, for subsequent additions these \Sexpr{atemp[1, 'within']} times lie on a boundary of two intervals. Another \Sexpr{atemp[1, 'late']} non-missing alkaline phosphotase values occurred after the last follow-up date of the pbc data set and are ignored. Bilirubin is missing on no subjects, so it's addition creates a few more unique break points in the follow-up, namely those clinical visits for which the ascites value was missing. The data for the pbcseq data set was assembled at a later calendar time than the primary data set. Since having lab test results is a certain marker that the patient is still alive, would a better analysis have used this test information to extend the last follow-up date for these \Sexpr{atemp[2,'late']} ``late'' subjects with a later laboratory date? Not necessarily. Odd things happen in survival analysis when risk sets are extended piecemeal. A basic tenet of the Cox model is that if someone is marked as being ``at risk'' over some interval $(s, t)$, this means that ``if they had had an event over that interval, we would have recorded it.'' Say someone ended their initial follow-up time at 3000 days and then had a lab test at 3350 days (subjects returned about once a year). If we only extend the time of those who had a test, then saying that this subject was at risk during the interval (3000, 3350) is false: if they had died in that interval, they would not have had the lab test and would not obtained the extension, nor would their death have been updated in the original \code{pbc} data set. The cutoff rule of \code{tmerge} is purposefully conservative to avoid creating such anomalies. In the case of the PBC data set this author happens to know that active follow-up \emph{was} continued for all subjects, both those that did and did not return for further laboratory tests. This updated follow-up information is included in the pbcseq data and could have been used to set a wider time range. Such is not always the case, however. Automatic additions to a data set via electronic systems can be particularly troublesome. One case from the author's experience involved a study of patient outcomes after organ transplant. Cases were actively followed up for 3 years, at which time priorities shifted and the clerical staff responsible for the active follow-up were reassigned. Automatic updates from a state death index continued to accumulate, however. A Kaplan-Meier curve computed at 5 years showed the remarkable result of a 3 year survival of .9 followed by a precipitous drop to 0 at 5 years! This is because there was, by definition, 100\% mortality in all those subjects with more than 3 years of supposed follow-up. \subsection{Time delay and other options} The \code{options} argument to the tmerge routine is a list with one or more of the following five elements, listed below along with their default values. \begin{itemize} \item idname = 'id' \item tstartname = 'tstart' \item tstopname = 'tstop' \item na.rm = TRUE \item delay = 0 \end{itemize} The first three of these are the variable names that will be used for the identifier, start, and stop variables which are added to the output data set. They only need to be specified one time within a series of tmerge calls in order to effect a change. The na.rm option has been discussed above; it affects tdc() and cumtdc() directives within a single tmerge call. The delay option causes any tdc or cumtdc action in the tmerge call to be delayed by a fixed amount. The final two tmerge calls below are \emph{almost} identical in their action: <>= temp <- subset(pbc, id <= 312, select=c(id:sex, stage)) pbc2 <- tmerge(temp, temp, id=id, death = event(time, status)) pbc2a <- tmerge(pbc2, pbcseq, id=id, ascites = tdc(day, ascites), bili = tdc(day, bili), options= list(delay=14)) pbc2b <- tmerge(pbc2, pbcseq, id=id, ascites = tdc(day+14, ascites), bili = tdc(day+14, bili)) @ The difference between \code{pbc2a} and \code{pbc2b} is that the first call does not defer baseline values for each subject, i.e., any value with a time that is on or before the the subject's first time point, as that will introduce intervals with a missing value into the result. The more important question is \emph{why} one would wish to delay or lag a time dependent covariate. One reason is to check for cases of reverse causality. It is sometimes the case that a covariate measured soon before death is not a predictor of death but rather is simply a marker for an event that is already in progress. A simple example would the the time dependent covariate ``have called the family for a final visit''. A less obvious one from the author's experience occurs when a clinical visit spans more than one day, the endpoint is progression, and one or more laboratory results that were used to define ``progression'' get recorded in the data set 1-2 days before the progression event. (They were perhaps pulled automatically from a laboratory information system). One then ends up with the tautology of a test value predicting its own result. Even more subtle biases can occur via coding errors. For any data set containing constructed time-dependent covariates, it has become the author's practice to re-run the analyses after adding a 7-14 day lag to key variables. When the results show a substantial change, and this is not infrequent, understanding why this occurred is an critical step. Even if there is not an actual error, one has to question the value of a covariate that can predict death within the next week but fails for a longer horizon. \subsection{Cumulative events} The action of the \code{cumevent} operator is different than \code{cumtdc} in several ways. Say that we have a subject with outcomes of one type at times 5, 10, and 15 and another type at times 6 and 15, with a follow-up interval of 0 to 20. For illustration I'll call the first event 'asthma' and the second 'IBD' (a disease flare in inflammatory bowel disease). A resulting data set would have the following form: \begin{center} \begin{tabular}{rcccc} &\multicolumn{2}{c}{cumtdc} & \multicolumn{2}{c}{cumevent} \\ interval & asthma & IBD & asthma & IBD \\ \hline (0, 5] & 0 &0 & 1 & 0 \\ (5, 6] & 1 &0 & 0 & 1 \\ (6, 10]& 1 &1 & 2 & 0 \\ (10, 15] & 2& 1& 3 & 2 \\ (15, 20] & 3& 2& 0 & 0 \end{tabular} \end{center} Events happen at the ends of an interval and time-dependent covariates change the following intervals. More importantly, time-dependent covariates persist while events do not, a \code{cumevent} action simply changes the label attached to an event. \subsubsection{REP} The motivating case for \code{tmerge} came from a particular problem: the Rochester Epidemiology Project has tracked all subjects living in Olmsted County, Minnesota, from 1965 to the present. For an investigation of cumulative comorbidity we had three data sets \begin{itemize} \item base: demographic data such as sex and birth date \item timeline: one or more rows for each subject containing age intervals during which they were a resident of the county. The important variables are id, age1 and age2; each (age1, age2) pair marks an interval of residence. Disjoint intervals are not uncommon. \item outcome: one row for the first occurrence of each outcome of interest. The outcomes were 20 comorbid conditions as defined by a particular research initiative from the National Institutes of Health. \end{itemize} The structure for building the data is shown below. (The data for this example unfortunately cannot be included with the survival library so the code is shown but not executed.) <>= newd <- tmerge(data1=base, data2=timeline, id=repid, tstart=age1, tstop=age2, options(id="repid")) newd <- tmerge(newd, outcome, id=repid, mcount = cumtdc(age)) newd <- tmerge(newd, subset(outcome, event='diabetes'), diabetes= tdc(age)) newd <- tmerge(newd, subset(outcome, event='arthritis'), arthritis= tdc(age)) @ The first call to tmerge adds the time line for each observation to the baseline data. For this first call both data1 and data2 must contain a copy of the id variable (here \code{repid}), and data1 is constrained to have only a single line for each id value. (Subjects have a single baseline.) Each subsequent call adds a new variable to the data set. The second line creates a covariate which is a cumulative count of the number of comorbidities thus far for each subject. The third line creates a time dependent covariate (tdc) which will be 0 until the age of diabetes and is 1 thereafter, the fourth line creates a time dependent variable for the presence of arthritis. Time dependent covariates that occur before the start of a subject's follow-up interval or during a gap in time do not generate a new time point, but they do set the value of that covariate for future times. Events that occur in a gap are not counted. The rationale is that during a subject's time within the county we would like the variable ``prior diagnosis of diabetes'' to be accurate, even if that diagnosis occurred during a prior period when the subject was not a resident. For events outside of the time line, we have no way to know who the appropriate comparison group is, and so must ignore those events. (Formally, the risk set would be the set of all non-residents who, if they were to have had an event at the same age, we would find out about it because they will later move to the county, have a medical encounter here, and have that event written into the ``prior conditions'' section of their medical record.) \section{Time dependent coefficients} Time dependent covariates and time dependent coefficients are two different extensions of a Cox model, as shown in the two equations below. \begin{align} \lambda(t) &= \lambda_0(t) e^{\beta X(t)} \label{tdcovar} \\ \lambda(t) &= \lambda_0(t) e^{\beta(t) X} \label{tdbeta} \end{align} Equation \eqref{tdcovar} is a time dependent covariate, a commonly used and well understood usage. Equation \eqref{tdbeta} has a time dependent coefficient. These models are much less common, but represent one way to deal with non-proportional hazards -- the proportional hazard assumption is precisely that the coefficient does not change over time: $\beta(t) = c$. The \code{cox.zph} function will plot an estimate of $\beta(t)$ for a study and is used to diagnose and understand non-proportional hazards. Here for example is a test case using the veterans cancer data. <>= options(show.signif.stars = FALSE) # display user intelligence vfit <- coxph(Surv(time, status) ~ trt + prior + karno, veteran) vfit quantile(veteran$karno) zp <- cox.zph(vfit, transform= function(time) log(time +20)) zp plot(zp[3]) # a plot for the 3rd variable in the fit abline(0,0, col=2) abline(h= vfit$coef[3], col=3, lwd=2, lty=2) @ Karnofsky score is a very important predictor, but its effect is not constant over time as shown by both the test and the plot. Early on it has a large negative effect: the risk of someone at the first quartile is approximately exp(35*.03377) = 3.2 fold times that of someone at the third quartile, but by 200 days this has waned and is not much different from zero. One explanation is that, in this very acute illness, any measure that is over 6 months old is no longer relevant. The proportional hazards model estimates an average hazard over time, the value of which is shown by the dashed horizontal line. The use of an average hazard is often reasonable, the proportional hazards assumption is after all never precisely true. In this case, however, the departure is quite large and a time dependent coefficient is a more useful summary of the actual state. The cox.zph plot is excellent for diagnosis but does not, however, produce a formal fit of $\beta(t)$. What if we want to fit the model? \subsection{Step functions} One of the simplest extensions is a step function for $\beta(t)$, i.e., different coefficients over different time intervals. An easy way to do this is to use the \code{survSplit} function to break the data set into time dependent parts. We will arbitrarily divide the veteran's data into 3 epochs of the first 3 months, 3-6 months, and greater than 6 months. <>= vet2 <- survSplit(Surv(time, status) ~ ., data= veteran, cut=c(90, 180), episode= "tgroup", id="id") vet2[1:7, c("id", "tstart", "time", "status", "tgroup", "age", "karno")] @ The first subject died at 72 days, his data is unchanged. The second and third subjects contribute time to each of the three intervals. <>= vfit2 <- coxph(Surv(tstart, time, status) ~ trt + prior + karno:strata(tgroup), data=vet2) vfit2 cox.zph(vfit2) @ A fit to the revised data shows that the effect of baseline Karnofsky score is essentially limited to the first two months. The \code{cox.zph} function shows no further time dependent effect of Karnofsky score. This last is of course no surprise, since we used the original graph to pick the cut points. A ``test'' that the coefficients for the three intervals are different will be biased by this sequential process and should be viewed with caution. Survival curves post fit require a little more care. The default curve uses the mean covariate values, which is always problematic and completely useless in this case. Look at the set of saved means for the model: <>= vfit2$means @ The default curve will be for someone on treatment arm \Sexpr{round(vfit2$means[1], 2)}, %$ which applies to no one, and a single set of ``blended'' values of the Karnofsky score, each times the three Karnofsky coefficients. This is rectified by creating a new data set with time intervals. We create two hypothetical subjects labeled as ``curve 1'' and ``curve 2''. One has a Karnofsky of 40 and the other a Karnofsky of 75, both on treatment 1 and with no prior therapy. Each has the appropriate values for the time dependent covariate \code{tgroup}, which is 1, 2, 3 over 0--90, 90--180 and 180+ days, respectively. We will draw curves for the first year. <>= quantile(veteran$karno) cdata <- data.frame(tstart= rep(c(0,90,180), 2), time = rep(c(90,180, 365), 2), status= rep(0,6), #necessary, but ignored tgroup= rep(1:3, 2), trt = rep(1,6), prior= rep(0,6), karno= rep(c(40, 75), each=3), curve= rep(1:2, each=3)) cdata sfit <- survfit(vfit2, newdata=cdata, id=curve) km <- survfit(Surv(time, status) ~ I(karno>60), veteran) plot(km, xmax= 365, col=1:2, lwd=2, xlab="Days from enrollment", ylab="Survival") lines(sfit, col=1:2, lty=2, lwd=2) @ The default behavior for survival curves based on a coxph model is to create one curve for each line in the input data; the \code{id} option causes it to use a set of lines for each curve. Karnofsky scores at the 25th and 75th percentiles roughly represent the average score for the lower half of the subjects and that for the upper half, respectively, and are plotted over the top of the Kaplan-Meier curves for those below and above the median. \subsection{Continuous time-dependent coefficients} If $\beta(t)$ is assumed to have a simple functional form we can fool an ordinary Cox model program in to doing the fit. The particular form $\beta(t) = a + b\log(t)$ has for instance often been assumed. Then $\beta(t) x = ax + b \log(t) x = ax + b z$ for the special time dependent covariate $z = \log(t) x$. The time scale for the \code{cox.zph} plot used further above of $\log(t + 20)$ was chosen to make the first 200 days of the plot roughly linear. Per the figure this simple linear model does not fit over the entire range, but we will forge ahead and use it as an example anyway. (After all, most who fit the log(t) form have not bothered to even look at a plot.) An obvious but incorrect approach is <>= vfit3 <- coxph(Surv(time, status) ~ trt + prior + karno + I(karno * log(time + 20)), data=veteran) @ This mistake has been made often enough the the \code{coxph} routine has been updated to print an error message for such attempts. The issue is that the above code does not actually create a time dependent covariate, rather it creates a time-static value for each subject based on their value for the covariate \code{time}; no differently than if we had constructed the variable outside of a \code{coxph} call. This variable most definitely breaks the rule about not looking into the future, and one would quickly find the circularity: large values of \code{time} appear to predict long survival because long survival leads to large values for \code{time}. A true time-dependent covariate can be constructed using the \emph{time-transform} functionality of coxph. <>= vfit3 <- coxph(Surv(time, status) ~ trt + prior + karno + tt(karno), data=veteran, tt = function(x, t, ...) x * log(t+20)) vfit3 @ The time dependent coefficient is estimated to be $\beta(t) =$ \Sexpr{round(coef(vfit3)[3], 3)} + \Sexpr{round(coef(vfit3)[4], 3)} * log(t + 20). We can add said line to the \code{cox.zph} plot. Not surprisingly, the result is rather too high for time $>$ 200 and underestimates the initial slope. Still the fit is better than a horizontal line, as confirmed by the p-value for the slope term in \code{vfit3}. (The p-value for that term from cox.zph is nearly identical, as it must be, since the tests in cox.zph are for a linear effect on the chosen time scale.) <>= plot(zp[3]) abline(coef(vfit3)[3:4], col=2) @ This same coding dichotomy exists in SAS phreg, by the way. Adding \code{time} to the right hand side of the model statement will create the time-fixed (incorrect) variable, while a programming statement within phreg that uses \code{time} as a variable will generate time-dependent objects. The error is less likely there because phreg's model statement is less flexible than R, i.e., you cannot simply write ``log(time)'' on the right hand side. The use of programming statements to create a yes/no variable deserves extra comment because of a common error. Assume one has a data set with two time variables: the time from enrollment to last follow up and the time to diabetes, say, and we want to use the presence of diabetes as time dependent covariate. Here is a small made up example. <>= data1 <- read.table(col.names=c("id", "diabetes", "lfu", "status"), header=FALSE, text=" 1 5 30 1 2 10 15 1 3 NA 60 0 4 NA 80 1 5 10 80 0 6 NA 90 1 7 30 95 1 ") data1$d2 <- pmin(data1$diabetes, 300, na.rm=TRUE) #replace NA with 300 fit1 <- coxph(Surv(lfu, status) ~ tt(d2), data=data1, tt = function(d2, t, ...) ifelse(t > d2, 1, 0)) fit2 <- coxph(Surv(lfu, status) ~ tt(d2), data=data1, tt = function(d2, t, ...) ifelse(t < d2, 0, 1)) c(coef(fit1), coef(fit2)) @ One might have expected fit1 and fit2 to give the same coefficient but they are completely different. The issue is subject 7 whose time to diabetes falls exactly at one of the event times. In fit1 their diabetes covariate effectively changes just after the event at time 30, in fit2 it changes before the event. The second is incorrect. Stated in the gambling context, all bets must be placed \emph{before} the roulette ball lands. When a data set is expanded into a start, stop format using the \code{tmerge} function ties are dealt with correctly. <>= data2 <- tmerge(data1, data1, id=id, dstat=event(lfu, status), diab = tdc(diabetes)) subset(data2, id %in% c(1,7), c(id, tstart:diab)) fit3 <- coxph(Surv(tstart, tstop, dstat) ~ diab, data2) c(coef(fit1), coef(fit2), coef(fit3)) @ \section{Predictable time-dependent covariates} Occasionally one has a time-dependent covariate whose values in the future are predictable. The most obvious of these is patient age, occasionally this may also be true for the cumulative dose of a drug. If age is entered as a linear term in the model, then the effect of changing age can be ignored in a Cox model, due to the structure of the partial likelihood. Assume that subject $i$ has an event at time $t_i$, with other subject $j \in R_i$ at risk at that time, with $a$ denoting age. The partial likelihood term is \begin{equation*} \frac{e^{\beta * a_i}}{\sum_{j \in R_i} e^{\beta* a_j}} = \frac{e^{\beta * (a_i + t_i)}}{\sum_{j \in R_i} e^{\beta* (a_j + t_i)}} \end{equation*} We see that using time-dependent age (the right hand version) or age at baseline (left hand), the partial likelihood term is identical since $\exp(\beta t_i)$ cancels out of the fraction. However, if the effect of age on risk is \emph{non-linear}, this cancellation does not occur. Since age changes continuously, we would in theory need a very large data set to completely capture the effect, one interval per day to match the usual resolution for death times. In practice this level of resolution is not necessary; though we all grow older, risk does not increase so rapidly that we need to know our age to the day! One method to create a time-changing covariate is to use the \emph{time-transform} feature of coxph. Below is an example using the pbc data set. The longest follow-up time in that data set is over 13 years, follow-up time is in days, and we might worry that the intermediate data set would be huge. The program only needs the value of the time dependent covariate(s) for each subject at the times of events, however, so the maximum number of rows in the intermediate data set is the number of subjects times the number of unique event times. <>= pfit1 <- coxph(Surv(time, status==2) ~ log(bili) + ascites + age, pbc) pfit2 <- coxph(Surv(time, status==2) ~ log(bili) + ascites + tt(age), data=pbc, tt=function(x, t, ...) { age <- x + t/365.25 cbind(age=age, age2= (age-50)^2, age3= (age-50)^3) }) pfit2 anova(pfit2) # anova(pfit1, pfit2) #this fails 2*(pfit2$loglik - pfit1$loglik)[2] @ Since initial age is in years and time is in days, it was important to scale within the tt function. The likelihood ratio of 10.8 on 2 degrees of freedom shows that the additional terms are mildly significant. When there are one or more terms on the right hand side of the equation marked with the tt() operator, the program will pre-compute the values of that variable for each unique event time. A user-defined function is called with arguments of \begin{itemize} \item the covariate: whatever is inside the tt() call \item the event time \item the event number: if there are multiple strata and the same event time occurs in two of them, they can be treated separately \item the weight for the observation, if the call used weights \end{itemize} The underlying code constructs a single call to the function with a large $x$ vector, it contains an element for each subject at risk at each event time. If there are multiple tt() terms in the formula, then the tt argument should be a list of functions with the requisite number of elements. One footnote to this, however, is that you cannot have a formula like \code{log(bili) + tt(age) + tt(age)}. The reason is that the R formula parser removes redundant terms before the result even gets to the \code{coxph} function. (This is a convenience for users so that \code{y ~ x1 + x2 + x1} won't generate redundant columns in an X matrix.) An alternate way to fit the above model is to create the expanded data set directly and then do an ordinary \code{coxph} call on the expanded data. The disadvantage of this is the very large data set, of course, but it is no larger than the internal one created by the \code{tt} call. An advantage is that further processing of the model is available, such as residuals or survival curves. The following reprises the above \code{tt} call. <>= dtimes <- sort(unique(with(pbc, time[status==2]))) tdata <- survSplit(Surv(time, status==2) ~., pbc, cut=dtimes) tdata$c.age <- tdata$age + tdata$time/365.25 -50 #current age, centered at 50 pfit3 <- coxph(Surv(tstart, time, event) ~ log(bili) + ascites + c.age + I(c.age^2) + I(c.age^3), data=tdata) rbind(coef(pfit2), coef(pfit3)) @ The above expansion has resulted in a data set of \Sexpr{nrow(tdata)} observations, as compared to the \Sexpr{nrow(pbc)} observations of the starting \code{pbc} data. A sensible fit can often be obtained with a coarser time grid: in the pbc data there is an event on day 41 and 43, is it really necessary to update all the subject ages by 2/365 at the second of these to reflect an increased risk? Instead divide the \code{max(dtimes)/365.25} = 11.5 years of total follow up into years. <>= dtime2 <- 1:11 * 365.25 tdata2 <-survSplit(Surv(time, status==2) ~., pbc, cut=dtime2) tdata2$c.age <- tdata2$age + tdata2$time/365.25 -50 #current age, centered at 50 pfit4 <- coxph(Surv(tstart, time, event) ~ log(bili) + ascites + c.age + I(c.age^2) + I(c.age^3), data=tdata2) rbind('1 day grid'= coef(pfit3), '1 year grid'= coef(pfit4)) # c(tdata=nrow(tdata), tdata2=nrow(tdata2)) @ We have almost the same result but at 1/20th the data set size. This can make a substantial difference in compute time for large data sets. Exactly how much to `thin down' the list of cutpoints can be based on subject specific knowledge, one could choose selected points based on a \code{cox.zph} plot, or start with a very coarse time grid and then sequentially refine it. In this data set we reasoned that although risk increases with age, a age change of less than one year would have minimal impact. The Cox model requires computation of a weighted mean and variance of the covariates at each event time, a process that is inherently $O(ndp^2)$ where $n$ = the sample size, $d$ = the number of events and $p$= the number of covariates. Much of the algorithmic effort in the underlying code is to use updating methods for the mean and variance matrices, reducing the compute time to $O((n+d) p^2)$. Updating is not possible across a time split and the compuatation starts anew, for a \code{tt} term we never update at all; for even moderate size data sets the impact of $nd$ versus $n+d$ can be surprising. There are other interesting uses for the time-transform capability. One example is O'Brien's logit-rank test procedure \cite{obrien78}. He proposed replacing the covariate at each event time with a logit transform of its ranks. This removes the influence of any outliers in the predictor $x$. For this case we ignore the event time argument and concentrate on the groupings to create the following tt function. <<>>= function(x, t, riskset, weights){ obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } @ This relies on the fact that the input arguments to tt() are ordered by the event number or risk set. This function is used as a default if no tt argument is present in the coxph call, but there are tt terms in the model formula. (Doing so allowed me to depreciate the survobrien function). Another interesting usage is to replace the data by simple ranks, not rescaled to 0--1. <<>>= function(x, t, riskset, weights) unlist(tapply(x, riskset, rank)) @ The score statistic for this model is $(C-D)/2$, where $C$ and $D$ are the number of concordant and discordant pairs, see the survConcordance function. The score statistic from this fit is then a test for significance of the concordance statistic, and is in fact the basis for the standard error reported by survConcordance. The O'Brien test can be viewed as concordance statistic that gives equal %' weight to each event time, whereas the standard concordance weights each event proportionally to the size of the risk set. \begin{thebibliography}{9} \bibitem{Anderson83} Anderson JR, Cain KC, and Gelber RD. Analysis of survival by tumor response. J Clinical Oncology 1:710--719, 1983. \bibitem{Buyse96} M Buyse and P Piedbois. The relationship between response to treatment and survival time. Stat in Med 15:2797--2812, 1996. \bibitem{Crowley77} J Crowley and M Hu. Covariance analysis of heart transplant survival data. J American Statistical Assoc, 72:27--36, 1977. \bibitem{Gail72} M H Gail. Does cardiac transplantation prolong life? A reassessment. Annals Int Medicine 76:815-17, 1972. \bibitem{Kalbfleisch02} J Kalbfleisch and R Prentice. The statistical analysis of failure time data, second edition. Wiley, 2002. \bibitem{obrien78} O'Brien, Peter. A non-parametric test for association with censored data, Biometrics 34:243--250, 1978. \bibitem{Redmond83} Redmond C, Fisher B, Wieand HS. The methodologic dilemma in retrospectively correlating the amount of chemotherapy received in adjuvant therapy protocols with disease free survival: a commentary. Cancer Treatment Reports 67:519--526, 1983. \bibitem{Suissa08} S Suissa. Immortal time bias in pharmacoepidemiology. Am J Epi, 167:492-499, 2008. \end{thebibliography} \end{document} survival/inst/doc/concordance.Rnw0000644000176200001440000006130413537676563016646 0ustar liggesusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} %\VignetteIndexEntry{Concordance} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} % I had been putting figures in the figures/ directory, but the standard % R build script does not copy it and then R CMD check fails \SweaveOpts{prefix.string=compete,width=6,height=4} \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {compete-#1.pdf}} \setkeys{Gin}{width=\textwidth} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=10) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #ensure default #require("survival") #library(survival) library(survival) library(splines) @ \title{Concordance} \author{Terry Therneau, Elizabeth Atkinson} \newcommand{\code}[1]{\texttt{#1}} \begin{document} \maketitle \section{The concordance statistic} Use of the concordance statistic for Cox models was popularized by Harrell \cite{Harrell96}, and it is now the most used measure of goodness-of-fit in survival models. One advantage of the statistic is that it is well defined not just for survival models, but also for logistic and ordinary linear regression. In general let $y_i$ and $x_i$ be observed and predicted data values, in the most common case $x = \hat\eta$, the linear predictor from a fitted model. The concordance is defined $P(x_i > x_j | y_i > y_j)$, the probability that the prediction $x$ goes in the same direction as the actual data $y$. A pair of obervations $i$, $j$ is considered concordant if the prediction and the data go in the same direction, i.e., $(y_i > y_j, x_i > x_j)$ or $(y_i < y_j, x_i < x_j)$. The concordance is the fraction of concordant pairs. For a Cox model remember that the predicted survival $\hat y$ is longer if the risk score $X\beta$ is lower, so we have to flip the definitions of concordant and discordant. For now, ignore this detail and use the usual definition for exposition. One wrinkle is what to do with ties in either $y$ or $x$. Such pairs can be ignored in the count (treated as incomparable), treated as discordant, or given a score of 1/2. Let $C, D, T_x, T_y$ and $T_{xy}$ be a count of the pairs that are concordant, discordant, and tied on the predictor $x$ (but not $y$), tied on $y$ (but not $x$), and tied on both. Then \begin{align} \tau_a &= \frac{C-D}{C+D + T_x + T_y + T_{xy}} \label{tau.a} \\ \tau_b &= \frac{C-D}{\sqrt{(C+D+T_x)(C + D + T_y)}} \label{tau.b} \\ \gamma &= \frac{C-D}{C+D} \label{gamma} \\ d &= \frac{C-D}{C + D + T_x} \label{somer} \end{align} \begin{itemize} \item Kendall's tau-a \eqref{tau.a} is the most conservative; essentially treating ties as failures \item The Goodman-Kruskal $\gamma$ statistic \eqref{gamma} ignores ties in either $y$ or $x$. \item Somers' $d$ \eqref{somer} treats ties in $y$ as incomparable; pairs that are tied in $x$ (but not $y$) score as 1/2. The AUC measure commonly used in logistic regression is equivalent to Somers' $d$. \end{itemize} All three of the above range from -1 to 1. The concordance is $(d+1)/2$. The concordance has a natural interpretation as an experiment: present pairs of subjects one at a time to the physician, statistical model, or some other oracle, and count the number of correct predictions. Pairs that have the same outcome are not put forward for scoring (that would be unfair to the contestant); and if the oracle cannot decide it makes a random choice. This leads to $C + T_x/2$ correct selections out of $C + D + T_x$ choices, which is easily seen to be equal to $(d+1)/2$. Kendall's tau-b has a denominator of the same type, but treats $x$ and $y$ symmetrically. This hypothetical experiment gives a baseline insight into the concordance. A value of 1/2 corresponds to using a random guess for each subject. Values of $<.55$ are not very impressive, since the ordering for some pairs of subjects will be obvious, and someone with almost no medical knowledge could do nearly that well by marking those pairs and using a coin flip for the rest. Values of less than 1/2 are possible --- some stock market analysts come to mind. For survival data any pairs which cannot be ranked with certainty are also considered incomparable. For instance is $y_i$ is censored at time 10 and $y_j$ is an event (or censor) at time 20. Subject $i$ may or may not survive longer than subject $j$, and so it is not possible to tell if the rule has ranked them correctly or not. Note that if $y_i$ is censored at time 10 and $y_j$ is an event at time 10 then $y_i > y_j$. For stratified models, observations that are in different strata are also considered to be incomparable. \section{Examples} The \code{concordance} function available in the survival package can be used to estimate concordance for various types of models, including logistic and linear regression. <>= # logistic regression using Fisher's iris data fit1 <- glm(Species=="versicolor" ~ ., family=binomial, data=iris) concordance(fit1) # this gives the AUC # linear regression fit2 <- lm(karno ~ age + trt, data=veteran) concordance(fit2) # 2*concordance-1 = somers' d @ The primary the focus of this vignette will be on survival data. <>= # parametric survival regression fit3 <- survreg(Surv(time, status) ~ karno + age + trt, data=veteran) concordance(fit3) # 3 Cox models fit4 <- coxph(Surv(time, status) ~ karno + age + trt, data=veteran) fit5 <- update(fit4, . ~ . + celltype) fit6 <- update(fit5, . ~ . + prior) ctest <- concordance(fit4, fit5, fit6) ctest @ As shown in the last example, the concordance for multiple fits can be obtained from a single call. The variance-covariance matrix for all three concordance values is available using \code{vcov(ctest)}; this is used in an example below to formally test equality of two concordance values. The above also shows that addition of another variable to a fitted model can decrease the concordance. Concordance can be visualized using its contribution at each event time as shown below. The vertial axis on the graph is the rank of each of the risk score for each subject who has an event, among all those with at risk. Each rank ranges from 0 to 1, where 1= the subject who died had the highest risk score at that time and 0 = lowest. In a highly predictive Cox model we expect the subjects with the highest risks to die soonest. A log transformation on the x-axis was used to visually spread out the points. The concordance is a weigthed average of these $y$ values. After about 50 days, the baseline data has little predictive ability and the average ranks are close to 1/2. The second panel shows two possible weights, based on the number of subjects available at a given time, where $n(t)$, the default choice, is the number of comparable pairs at each time point. Alternate weights such as $S/G$ are discussed in section \ref{weighted}. For both choices the weights decrease precipitously over time and the final average is based largely on the left hand portion of the plot. <>= par(mfrow=c(1,2)) c3 <- concordance(fit3, ranks=TRUE) c4 <- concordance(fit3, ranks=TRUE, timewt="S/G") # For technical reasons the code returns ranks on Somers' d scale, # from -1 to 1. Transform them to 0-1 d.to.c <- function(x) (x+1)/2 plot(d.to.c(rank) ~ time, data=c3$ranks, log='x', ylab="Rank") lfit <- with(c3$ranks, lowess(log(time), d.to.c(rank))) lines(exp(lfit$x), lfit$y, col=2, lwd=2) abline(.5,0, lty=2) matplot(c3$ranks$time, cbind(c3$ranks$timewt, c4$ranks$timewt), type="l", col=c("black", "red"), lwd=2, xlab="Time", ylab="Weight", log="x") legend("topright", legend=c("n(t)","S(t)/G(t)"), lty=1:2, col=c("black","red"), bty="n") @ \section{Connection to the proportional hazards model} Watson and Therneau \cite{Watson15} show that the numerator of Somers' $d$ for a response $y$ and predictor $x$ can be re-written as \begin{equation} C-D = 2 \sum \delta_i n(t_i) \left[ r_i(t_i) - 1/2 \right] \label{cscore} \end{equation} where $C$ and $D$ are the total number of concordance and discordant pairs, $n(t)$ is the number of subjects still at risk at time $t$, and $r_i(t)$ is the rank of $x_i$ among all those still at risk at time $t$, where ranks are defined such that $0 \le r \le 1$. It turns out that equation \eqref{cscore} is exactly the score statistic for a Cox model with a single time-dependent covariate $n(t) r(t)$. One immediate consequence of this connection is a straightforward definition of concordance for a risk score containing time dependent covariates. Since the Cox model score statistic is well defined for time dependent terms this justifies calculation of the values $C$, $D$, etc in the same way: at each event time the current risk score of the subject who failed is compared to the current scores of all those still at risk. \section{Variance} The variance of the statistic is estimated in two ways. The first is to use the variance of the equivalent Cox model score statistic. As pointed out by Watson, this estimate is both correct and efficient under $H_0: d=0$, a null concordance of 1/2, and so it forms a valid test of $H_0$. However, when the concordance is larger than 1/2 the estimate systematically overestimates the true variance. An alternative that remains unbiased is the infinitesimal jackknife (IJ) variance \begin{align*} V &= \sum_{i=1}^n w_iU_i^2 \\ U_i &= \frac{\partial c}{\partial w_i} \end{align*} The concordance routine calculates an influence matrix $U$ with one row per subject and columns that contain the derivitives of the 5 individual counts: concordant, discordant, tied on x, tied on y, and tied on xy pairs. From this it is straightforward to derive the influence of each subject on the concordance, or on any other of the other possible association measures \eqref{tau.a} -- \eqref{somer} mentioned earlier. The IJ variance is printed by default but the PH variance is also returned; the earlier \code{survConcordance} function only computed the PH variance. The PH variance is a simple sum of the variances for each of the $r_i$ terms shown in the prior plot of the ranks. Under $H_0$ each of these terms will be approximately uniformly distributed between -1 and 1, which implies that the variance of the individual terms will be about 1/3, and indeed this is true as seen in the plot below. The ranks $r$ are discrete rather than continuous, but this does not have any appreciable affect until the number at risk drops below about 5 or there are a substantial number of ties in the predictor. <>= plot(variance ~ time, c3$ranks, ylim=c(0, .34), log="x") abline(h=1/3, col=2) @ This suggests that the most \emph{statisticially efficient} estimate of the average rank would use weights of 1 rather than $n(t)$ when adding up the $r_i$ terms, which leads to something very like an ordinary Cox model or logrank test. However, it is no longer the concordance. One aside to remember, however, is the p-value from a Cox model will almost always be smaller than that for the concordance statistic for that same model, which is one side effect of this difference in efficiency. \section{Multiple concordances} One useful property of using a jackknife variance estimate is that the variance of the difference in concordance between two separately fitted models is also easily obtained. If $c_a$ and $c_b$ are the two concordance statistics and $U_{ia}$ and $U_{ib}$ the corresponding influence values, the influence vector for $c_a-c_b$ is $U_a - U_b$. (If subject $i$ increases $c_a$ by .03 and $c_b$ by .01, then he/she raises the difference between them by .02.) It is not necessary that the models be nested. However, it is crucial that they be computed on the exact same set of observations. Here is a comparison of concordance values from previous models. <>= ctest <- concordance(fit4, fit5, fit6) ctest # compare concordance values of fit4 and fit5 contr <- c(-1, 1, 0) dtest <- contr %*% coef(ctest) dvar <- contr %*% vcov(ctest) %*% contr c(contrast=dtest, sd=sqrt(dvar), z=dtest/sqrt(dvar)) @ \subsection{Missing data} The lung data set has several variables with missing data and shows that care is necessary. <>= colSums(is.na(lung)) # count missing values/variable # First attempt fit6 <- coxph(Surv(time, status) ~ age + ph.ecog, data=lung) fit7 <- coxph(Surv(time, status) ~ meal.cal + pat.karno, data=lung) #tryCatch(concordance(fit6,fit7)) # produces an error # Second attempt lung2 <- na.omit(subset(lung, select= -c(inst, wt.loss))) fit6b <- coxph(Surv(time, status) ~ age + ph.ecog, data=lung2) fit7b <- coxph(Surv(time, status) ~ meal.cal + pat.karno, data=lung2) concordance(fit6b,fit7b) @ \section{Weighted concordance} \label{weighted} An interesting consequence of the equivalence between the concordance and the Cox model is the question of alternate weightings of the risk scores. Let $0 < r_i(t) < 1$ be the time dependent rank then the values of $2 (r_i(t) -1/2)$ range from -1 to 1 and their weighted sum is both the Cox score statistic and the numerator of Somers' $d$. If the original Cox model has a single 0/1 treatment covariate then $d$ is exactly the Gehan-Wilcoxon statistic; replacing these with weights of 1 instead of $n(t)$ will yield the log-rank statistic. There has been a long debate about the "best" weight for survival tests, and we can apply some of the same historical arguments to the concordance as well. We will point out four of interest: \begin{itemize} \item Peto and Peto \cite{Peto72} point out that $n(t) \approx n(0)S(t-)G(t-)$, where $S$ is the survival distribution and $G$ the censoring distribution. They argue that $S(t)$ would be a better weight since $G$ may have features that are irrelevant to the question being tested. For a particular data set Prentice \cite{Prentice79} later showed that these concerns were indeed justified, and almost all software now uses the Peto-Wilcoxon variant. \item Schemper et al \cite{Schemper09} argue for a weight of $S(t)/G(t)$ in the Cox model. When proportional hazards does not hold the coefficient from the Cox model is an ``average'' hazard ratio, and they show that using $S/G$ leads to a value that remains interpretable in terms of an underlying population model. The same argument may apply more strongly for the concordance, since the target is an ``assumption free'' assessment of association. \item Uno et al \cite{Uno11} recommend the use of $n/G^2$ as a weight based on a consistency argument. If we assume that the concordance value that would be obtained after full followup of all subjects (no censoring) is the ``right'' one, and proportional hazards does not hold, then the standard concordance will not consistently estimate this target quantity when there is censoring. It is ``biased''. (The Peto and Peto argument might suggest $S/G$ as an equivalent but more stable choice of weight.) \item Korn and Simon \cite{Korn90} point out the importance of restricting the range of comparison. Though a risk model can be used for long-range prediction, in actual patient practice this will not be the case; the model should be evaluated over the time range in which it will actually be used. For example, a physician is quite unlikely to look up my lab tests from 5 years ago, and then compute a 6 year survival probability forward from that point, in order to predict my outcome one year from today. \end{itemize} The \code{timewt} option allows you to modify weights for the concordance. The options are: \code{n, S, S/G, n/G, n/G2, I}, the last giving equal weight to each event time. The figure below shows the first four weights for the colon cancer data set. This data is from a clinical trial with 3 years of enrollment followed by 5 years of follow. Since there is almost no one lost to follow-up in the first 5 years all four weights are nearly identical over that time. From 5 to 8 years $S(t)$ continues its steady decline, $n(t)$ plummets due to administrative censoring, and $S/G$ explodes. Even with these changes in weights, the concordance values are all very similar. <>= colonfit <- coxph(Surv(time, status) ~ rx + nodes + extent, data=colon, subset=(etype==2)) # death only cord1 <- concordance(colonfit, timewt="n", ranks=TRUE) cord2 <- concordance(colonfit, timewt="S", ranks=TRUE) cord3 <- concordance(colonfit, timewt="S/G", ranks=TRUE) cord4 <- concordance(colonfit, timewt="n/G2", ranks=TRUE) c(n= coef(cord1), S=coef(cord2), "S/G"= coef(cord3), "n/G2"= coef(cord4)) matplot(cord1$ranks$time/365.25, cbind(cord1$ranks$timewt, cord2$ranks$timewt, cord3$ranks$timewt, cord4$ranks$timewt), type= "l", ylim= c(0, 6000), xlab="Years since enrollment", ylab="Weight") legend("left", c("n(t)", "S(t)", "S(t)/G(t)", "n(t)/G^2(t)"), lwd=2, col=1:4, lty=1:4, bty="n") @ A second example where we would expect weights to have a larger influence uses the \code{mgus2} data set. The underlying study has an unusually long median follow-up time of over 15 years, giving ample time for non-proportionality to manifest. Both creatinine and hemoglobin levels are associated with higher mortality, but of course a 10 year old marker is not nearly as predictive. The R data set has time in months, which has been converted to years for plotting purposes. <>= fit6 <- coxph(Surv(futime/12, death) ~ hgb, data=mgus2) zp <- cox.zph(fit6, transform="identity") plot(zp, df=4, resid=FALSE, ylim=c(-.4, .1), xlab="Years") abline(0,0, lty=3, col=2) @ The predictive effect of hemoglobin drops to less than half after 5 years, with a maximum study follow-up of 35 years. Now calculate the weighted concordance using four approaches. <>= c6a <- concordance(fit6, timewt="n", ranks=TRUE) c6b <- concordance(fit6, timewt="S", ranks=TRUE) c6c <- concordance(fit6, timewt="S/G", ranks=TRUE) c6d <- concordance(fit6, timewt="n/G2", ranks=TRUE) c(n= coef(c6a), S=coef(c6b), "S/G"= coef(c6c), "n/G2"= coef(c6d)) par(mfrow=c(1,2)) rfit <- lm(rank ~ ns(time,3), data=c6a$ranks) termplot(rfit, se=TRUE, col.se=1, col.term=1, xlab="Years", ylab="Smoothed rank") matplot(c6a$ranks$time, cbind(c6a$ranks$timewt, c6b$ranks$timewt, c6c$ranks$timewt, c6d$ranks$timewt), type= "l", xlab="Years since enrollment", ylab="Weight") # distribution of death times quantile(c6a$ranks$time) @ Surprisingly, the four weightings still yield almost identical concordance values. A clue to this lies in the quantile result. The concordance is a weighted mean of the ranks, with one term per death time in the sum. The quantile shows that 1/2 the deaths occur before 5 years and 3/4 of them before 9; the larger weights simply play only a small role in the overll sum. So, which weight should we use? As shown in the examples above, it may not matter that much. The fact that we have not found examples where the effect is large does not mean there are no such data sets, however. For survival data, one important issue that has not been sorted out is how to extend the weighting arguments to data sets that are subject to delayed entry, e.g., when using age as the time scale instead of time since enrollment. Since this usage is moderately frequent, and also because it is not possible for the \code{coxph} routine to reliably tell the difference between such left censoring and simple time-dependent covariates or strata, the default action of the routine is to use the safe choice of $n(t)$ and not to impose a range restriction. Further issues to consider: \begin{enumerate} \item Consider setting a time ($y$) restriction using the \code{ymin} or \code{ymax} options, based on careful thought about the proper range of interest. This part of the choice may often have the largest practical effect. \item Safety. If using the usual Gehan-Wilcoxon weights of $n(t)$, the Peto-Wilcoxon variant $S(t)$ would appear advantageous, particularly if there is differential censoring for some subjects. \item Current data versus future invariance. On the one hand assessment of a model should make use of the all available data, ``make the most with what you have'', but on the other hand we would prefer the estimated concordance to stay stable as a study's follow-up matures, which argues for $S/G$ or $n/G^2$ weights. If $G(t)$ approaches 0, however, these weights can become unstable and so may need to be combined with a time restriction. \item Equality vs. efficiency. On one hand we would like to treat each data pair equally, but in our quest for ever sharper p-values we want to be efficient. The first argues for $n(t)$ as the weight and the second for using equal weights, since the variances of each term are the same. This is exactly the argument between the Gehan-Wilcoxon and the log-rank tests. \item For uncensored data $n$, $S$ and $S/G$ weights are all identical. \end{enumerate} Our current opinion is that since the point of the concordance is to evaluate the model in a more non-parametric way, so a log-rank type of focus on ideal p-values is misplaced. This suggests using either $S$ or $S/G$ as weights. Both give more prominence to the later time points as compared to the default $n(t)$ choice, but if time limits have been thought through carefully the difference will often be minor. We most definitely do not agree that the ``proper'' target for estimation is always the $c$ statistic one would obtain with infinite follow-up and no censoring, which is the unstated assumption underlying Uno's assertion that the ordinary concordance is biased and must be repaired by use of $n/G^2$. Proportional hazards never is true over the long term, simply because it is almost impossible to predict events that are a decade or more away and thus the points in the $r(t)$ plot above will eventually tend to 0. The starting point should always be to think through exactly \emph{what} one wants to estimate. As stated by Yogi Berra ``if you don't know where you are going, you might not get there.'' \section{Details} This section documents a few details - most readers can skip it. The usual convention for survival data is to assume that censored values come after deaths, even if they are recorded on the same day. This corresponds to the common case that a subject who is censored on day 200, say, was actually seen on that day. That is, their survival is strictly greater than 200. As a consequence, censoring weights $G$ actually use $G(t-)$ in the code: if 10 subjects are censored at day 100, and these are the first censorings in the study, then an event on day 100 should not be given a larger weight. (Both the Uno and Schemper papers ignore this detail.) When using weights of $S(t)$ the program actually uses a weight of $nS(t)$ where $n$ is the number of subjects. The reason is that for a stratified model the weighted number of concordant, discordant and tied pairs is calculated separately for each stratum, and then added together. If one stratum were much smaller or larger than the others we want to preserved this fact in the sum. Consider a time point $t$ at which there were 3 events out of 40 subjects at risk. For the the ordinary concordance the time weight at this point will be the number of \emph{comparable pairs} for each of the 3 events, i.e., 37 for each. The rank of an event will be 1 if its predictor is smaller than all 37 comparitors and -1 if it is larger than all 37. When using a weight of $S(t)$ the weight will be $nS(t)$ at that point, for $S/G$ it will be $nS(t)/G(t-)$. The Cox model computation takes a slightly different view, in that all 40 subjects are considered to be at risk for each of the 3 events. The upshot of this is that the time weight changes to 40 rather than 37, while the rank becomes smaller by a factor of 37/40. The weighted sum remains the same, i.e., the Cox score statistic is equal to the numerator of the concordance statistic. For other weights $S(t-)$ replaces $S(t)$ in the Cox calculation, the individual ranks again shrink slightly but the weighted sum stays the same. \bibliography{refer} \bibliographystyle{plain} \end{document} survival/inst/COPYRIGHTS0000644000176200001440000000024113537676563014542 0ustar liggesusersCopyright 2000 Mayo Foundation for Medical Education and Research. This software is accepted by users "as is" and without warranties or guarantees of any kind. survival/inst/CITATION0000644000176200001440000000111413537676563014261 0ustar liggesusersbibentry(bibtype="Manual", title = "A Package for Survival Analysis in S", author= person(c("Terry M"), "Therneau"), year =2015, note ="version 2.38", url="https://CRAN.R-project.org/package=survival", key= "survival-package" ) bibentry(bibtype= "Book", title="Modeling Survival Data: Extending the {C}ox Model", author=c(person(c("Terry M.", "Therneau")), person(c("Patricia M.", "Grambsch"))), year = "2000", publisher= "Springer", address = "New York", isbn = "0-387-98784-3", key = "survival-book" ) survival/inst/NEWS.Rd0000644000176200001440000024071013570767322014165 0ustar liggesusers\name{NEWS} \title{NEWS file for the survival package} \section{Changes in version 3.1-8}{ \itemize{ \item For a multistate model which no covariates, the start.time value (if present) was inadvertently omitted from the result. This affects the default plot. \item Per user request, the tmerge function can now use Dates as the time variable for the merge. \item Fix an invalid read (one element past the end of a vector) that could occur in tmerge.c; reported by Brian Ripley. \item A multi-state coxph model with strata would fail when parsing the formula, pointed out by Martin van't Hooft. }} \section{Changes in version 3.1-7}{ \itemize{ \item For a coxph model with covariate*strata interactions the information matrix will be block diagonal, and the cox.zph function would generate a 0/0 when scaling it for plots. This led to a BLAS error on some architectures (reported by B. Ripley within 24 hours of 3.1-6 being published on CRAN). Tests were unaffected, subsequent plots fail due to an infinite axis. Repair, and add more checks to the test suite. }} \section{Change in version 3.1-6}{ \itemize{ \item Repair issues in coxph.getdata and lines.survfit that were found with reverse dependency checks \item Submit to CRAN }} \section{Changes in version 3.1-5}{ \itemize{ \item Update coxph.getdata and coxph.detail to work with coxphms objects. A deficiency in the first affected cox.zph results for multi-state coxph fits. \item Add a formal test suite for the cox.zph routine. }} \section{Changes in version 3.1-4}{ \itemize{ \item Move some vignettes to the vignette2 directory, found on the github website. Add an index to those files. \item Add the timefix option to coxph results, and ensure that downstream survfit calls correctly retain it. \item Expand the main survival vignette. }} \section{Changes in version 3.1-3}{ \itemize{ \item The results of anova.coxph were incorrect for the case of a single model with ties="breslow" and tied event times: the breslow option was not being passed forward to the secondary fits. \item Add more sanity checks to anova.coxph, e.g., all models must have used the same ties option. \item Update tmerge to allow more variable types as the argument to tdc. A user pointed out that Dates were not preserved; now fixed. }} \section{Changes in version 3.1-2}{ \itemize{ \item The cox.zph command now refuses models with tt() terms, before it had an incorrect computation. \item Fix 2 errors in plot, for survfit of a coxph model. (I had not scanned the pdf pages from the vignettes, which is the only way to verify plots.) \item Fix labeling error for combination of pyears, tcut variable, data.frame option. (The numerical values were correct). }} \section{Changes in version 3.1-1}{ \itemize{ \item Fix error in [.cox.zph, when applied to a stratified model }} \section{Changes in version 3.1-0}{ \itemize{ \item Respond to some CRAN queries and resubmit. \item Better documentation of the survfit0 routine \item Add the sas.Rnw vignette to inst/doc: it takes too long to run for inclusion in the vignettes directory \item Fix two edge case errors pointed out on github: coxph on a data set with 0 events, and models with only a frailty term \item Update residuals.coxph to deal with larger matrices, i.e., change two .C calls to .Call }} \section{Changes in version 3.0-11}{ \itemize{ \item Multiple small updates, after running tests for all reverse dependencies \item Send to CRAN }} \section{Changes in version 3.0-10}{ \itemize{ \item Make sure all calls to data.frame explicitly select a value for the stringsAsFactors option. \item Updates to cox.zph for the singledf option \item Add formal test of the cox.zph statistics \item Add the sas vignette to the vignettes2 directory (it takes too long to run). }} \section{Changes in version 3.0}{ \itemize{ \item Major revision of the survfit routines, see the survival vignette. \item Allow multi-state coxph models. \item Rename remaining .S files as .R \item vcov of a survreg object now contains dimnames (important for the stats::confint function) \item Subscripting survfit object removes the na.action. This is a loss in the sense that the printout no longer tells us that observations were removed, but the information about which and how many rows were removed was incorrect after the selection. \item The survexp function, applied to a coxph model with strata, would sometimes produce extraneous y=0 values at the start of a curve. \item Multiple small bug fixes. }} \section{Changes in version 2.44-1}{ \itemize{ \item Fix error in survreg when the init argument was used. \item B. Ripley found/fixed an incorrect size in survfitkm.c, that could lead to memory overwrite and a hard crash. }} \section{Changes in version 2.44-0}{ \itemize{ \item Add several data sets from the reliability literature, which had been used in the tests directory, to the package's data and add a help page of 'reliability'. \item Fix error in residuals.survreg, type="matrix", pointed out by Achim Zelies. Another check has been added to the tests. \item The survfit routine now returns the cumulative hazard along with its standard error, and allows for robust variance. \item For (start, stop) data, the survfit result only includes unique stop times. \item Update plot.survfit to plot the cumulative hazard when fun='cumhaz', rather than plotting log(surv). \item The Nagelkirke R^2 has been removed from summary.coxph. The shortcomings of this measure are well known, concordance is a better measure. \item A cluster() term is not allowed in the finegray function; now give an explicit error message to that effect. \item Track down a failure that occured with some infinite coefficient data sets. When iterations run out, the routine now returns the last successful iterate rather than the last attempt, e.g., if the loglik maximizes at infinity the routine now returns the last step at which the partial likelihood, first and second derivatives were all finite. This stops some downstream "non-finite" messages. \item Add concordancefit function to help pages and exports, so other packages can more easily invoke it. }} \section{Changes in version 2.43-4}{ \itemize{ \item Added a hex sticker. It is found in man/figures. \item Small grammar changes in a help page. \item Fix bug pointed out by A Ruten-Budde. The coxph routine was not passing the timefix option forward to a subseqent concordance call. \item Fine tune the checks for an infinite coefficient. A data set from rehbergT managed to have overflows in the first and second derivative at the same iteration, leading to an update of inf * 0. \item Formally add some small reliability data sets to the package, with a help page of 'reliability'. They had been used in the tests. } } \section{Changes in version 2.43-2}{ \itemize{ \item In concordance, allow y to be an orderable factor (either is.ordered=TRUE or it has only 2 levels), instead of giving an error message. Repair some missing references in the vignette. \item Fix an error check in survSplit, when the response has missing values. The routine would fail with an error message when there was no error. (Pointed out by Daniel Wollschläger.) \item Fix serious error in the finegray function when called with (start, stop) data, e.g., with time-dependent covariates: the censoring distribution G was incorrect which leads to incorrect weights, including NA. Pointed out by Deqiang Zheng along with an example. (The use of time-dependent covariates in a FG model has serious -- I think fatal -- statistical issues, however. The FG approach adds extra 'imputed' follow-up to each subject; but what is the future value of a time-dependent covariate over this new interval?) \item Update the finegray function to allow case weights. If the original data has sampling weights, for instance, this propogates them properly to the created fgwt variable. }} \section{Changes in version 2.43-1}{ \itemize{ \item Minor change to the concordance method to better accomodate another package; add one more test case as well. \item Change coxph to use concordance() rather than survConcordance. Be aware that this changes the default variance estimate (to a better estimator however). \item Add a test to verify that tmerge works with Date objects as the time scale \item Add timefix=TRUE option to survdiff \item Add code for an edge case to coxph: a data set with no events. }} \section{Changes in version 2.43.0}{ \itemize{ \item Finish test suite and vignette for concordance. \item Run the tests for all packages that depend on survival. Submit to CRAN }} \section{Changes in version 2.42-7}{ \itemize{ \item Add arguments to survfit: survfit.matrix did not have start.time, and survfitCI did not have p0. Now both of them have both. \item Fix two small errors triggered by the new checks for the use of && or || with arguments whose length is >1. Pointed out by Martin Maechler. \item Add the concordance function, an upgrade of the older survConcordance function. The latter will be depricated. (The draft vignette still needs some polish.) \item Change survreg so that a returned "y" in the object is the original response, not the transformed y used for computation. This was prompted by the concordance.survreg method, but is also more consistent. It forced a change in residuals.survreg and uncovered a long standing bug for any fit that had specified y=FALSE. \item Fix bug pointed out by C McCort: tmerge with "tdc(time, x)" would fail if x is of mode character. Add this case to the test suite. }} \section{Changes in version 2.42-6}{ \itemize{ \item Remove the cbind.Surv and rbind.Surv methods. The problem is when one is called with mixed arguments, e.g. cbind(Surv(1:4), data.frame(x=6:9, z=c('a', 'b', 'a', 'a')) In the above cbind.Surv is never called, but the \emph{presence} of a cbind.Surv method messes up the default behavior, see the Dispatch section of help('cbind'). }} \section{Changes in version 2.42-5}{ \itemize{ \item Add a plot.Surv method per the suggestion of Goran Brostram. Improve the cbind.Surv and rbind.Surv methods to handle mixed argument lists (when there are some Surv arguments and some not). \item Add a Survmethods.Rd page documenting the added methods. \item Add "F" and "S" to the list of fun= arguments to plot.survfit, they are aliases for "event" and "identity", respectively. }} \section{Changes in version 2.42-4}{ \itemize{ \item Undo a bug that was introduced in tmerge in 2.42-3; an essential line got commented out with the result that if sequential tmerge calls modify the same variable only the final change was retained. Add a check to the test suite to prevent this in the future. \item Improve multi-state survfit when the input data has extra censored rows, e.g., a subject with transitions to state 1 at time 2 and state 2 at time 8 but data of (0,2,1), (2,5,0), (5,8,2); the survSplit routine often generates such rows. Formerly the transitions table in the output would be incorrect for this case, and the life table would get an extra "censoring" line at time 5. The estimated P(state) and its se was correct. \item Fix an edge case in tmerge, when using cumevent and the input data has a 'censored' row. Add a test for this, and for another edge case of repeated updates at the same time point. \item repair xtfrm.Surv: it had returned a partial ordering for survival objects (like order()), it instead needs to be the analog of order(order(x)), a vector of integers with the same sort order as x. Add test cases and a manual page. \item Add more Surv methods: head, tail, rep, rbind, c, rev, t, mean, median, plot, points, lines, levels. }} \section{Changes in version 2.42-3}{ \itemize{ \item Remove the coxph warning "X matrix deemed to be singular". The coefficients are NA, just as before, we simply say less. \item Fix minor bug in coxph: a covariate that was a constant would have its coefficent reported as 0 rather than NA, if (and only if) it was the only variable in the model, e.g., coxph(Surv(1:10) ~ rep(4,10)). }} \section{Changes in version 2.42-1}{ \itemize{ \item Add xtfrm method for Surv objects. \item Fix error in logLik.coxph.null (incorrect class) \item Fix error in pyears, would fail for a model with no predictors and dataframe=TRUE. \item tmerge would fail if an id was missing, give a message instead \item Stronger date checks in survexp, i.e., that the column of a data frame is a date if and only if the matching ratetable dimension is a date. \item Restore the order of the elements of coxph objects; as some other packages depend on both the names and the order. It had been modified when the residual argument was added to coxph.fit. \item Add a more rigorous check for overflow in the coxph iteration: M Tsagris supplied an edge case example where the information matrix fails one iteration before anything else. }} \section{Changes in version 2.42-0}{ \itemize{ \item Fix a bug in the agfit4.c routine, based on data sets from Ivo Sousa Ferreira and Marloes Derks. This was introduced in 2.39-1 and leads to incorrect solutions for selected data sets. Such data sets are a rare edge case, however. In detail: In a start stop data set with strata assume two adjacent event times in one stratum of d1 and d2, say, and a set of k censored intervals (a,b) also in that stratum such that a>=d1 and b= the number of intervals that overlap both d1 and d2, and in the prior stratum the smallest time was an event, some variables that track who is in the risk set got out of sync, and contributions to the loglik, first and second derivative at d1 would be incorrect. I expect such data sets are extremely rare. However, the survSplit routine and mstate packages can generate data sets with a LOT of the unneeded intervals. (The data set in question came from mstate.) \item Use format.pval() and printCoefmat in more of the print functions. This aligns the format with that of base R. \item Update the vcov function to accept the new complete= argument. \item Update statefig to accept vectors of colors. \item The [.survfit routine would complain on the use of fit[1] when fit contained a single curve. This is now legal. \item Change NAMED() to MAYBE_REFERENCED() at the suggestion of R core \item Add the yates() routine for population prediction, and accompanying vignette. \item Update the survival rate tables (survexp.mn, survexp.us, survexp.usr), to add data for more calendar years. \item Bow to user pressure: marks now appear on survival curves for censoring times that are tied with an event time, plotted at the midpoint of the vertical step. Also, replace the outdated \code{mark} option with \code{pch}. } } \section{Changes in version 2.41-5}{ \itemize{ \item Update the survexp.us and survexp.usr rate tables. They now contain years 1940 to 2012. They however lost the breakdown of the first year of life into smaller intervals as the recent US census data lacks that information. Update the code for ratetables: a cutpoint attribute vector can now be of class Date, and names(dimnames) can supplant the dimid attribute. (Only creators of rate tables are impacted by these last two.) \item Change all instances of "1-pchisq(...)" to instead use the lower.tail=FALSE argument. }} \section{Changes in version 2.41-4}{ \itemize{ \item The coxph routine did not check for infinite predictors (these are not screened out by na.action), and these could cause the iteration to fail. Added a check and stop() statement. The example was provided by Glenn Tisdale. \item When conf.times was used in plot.survfit, the bars were not perfectly centered on the target values \item Add the residual and concordance argument to coxph.fit and agreg.fit, at the request of S Venkat. These speed up the function when a calling routine only needs the partial likelihood. \item Fix error in survfit: if timefix=FALSE was specified we forgot to set a key variable and the routine fails. Pointed out by Sarah Streett. 8Apr2017. \item Change the scale argument of summary.coxph so that it affects the coefficient and se(coef), not just the confidence interval. \item Fix an error in survfitCI when using the start.time argument, and add a test case for it. \item Add tail.Surv method per a request from Michael Lawrence. Also add duplicated, anyDuplicated, and unique methods. }} \section{Changes in version 2.41-3}{ \itemize{ \item A check for infinite loglik was incorrect in agfit4.c, and could fail to detect the need for step halving. It required a very unusual data set to trigger this. \item The survfit routine would fail for interval censored data, on a group that had only a single step in the curve. (Needed to add drop=FALSE to a matrix subscript.) \item Minor change to Surv to ensure that its check for difftime objects will not trigger a "length >1 inside an if ()" warning. \item The summary.survfit function had n.censor wrong when there were multiple curves and censor=TRUE (spurious NA values). Added more lines to the test suite. \item Pointed out by Mikko Korpela: the dynamic symbols check added in 2.41-0 requires R version 2.16 or later. Add an ifdef to init.c that checks the version of R, mimicking a similar line in the MASS library. }} \section{Changes in version 2.41-2}{ \itemize{ \item Fix two memory leaks and an uninitialized array, found by B Ripley. \item With Surv(a,b, type='interval2') and a or b infinite, the infinite values were incorrectly retained rather then being transformed into left or right censoring. The downstream survfit and/or survreg results could then sometimes be in error. \item Update cch to correctly deal with nearly tied times, in line with the many changes in version 2.40. \item Update the README.md file, for github users who didn't read noweb/Readme and then get R CMD build errors. } } \section{Changes in version 2.41-0}{ \itemize{ \item Per request if the R-core, add R_useDynamicSymbols(dll,FALSE) to the initialization. This prevents .Call from accessing the library when its first argument is a character string. The reason is to stop accidental linking to the routines. \item Fix a bug in tmerge, if data2 was not sorted by time within id then a tdc(time, x) call's outcomte was incorrect. Add the ability to use a factor as the second variable in a tdc call, and add the tdcstart option. \item Expose the aeqSurv routine, which is used rectify tied time issues. \item The survfit routines now save the start.time option (if used) in the output object. This is then used as a default starting point for the x-axis in any plots. \item Allow survfit.matrix to use different p0 values for different curves. \item Add type="survival" to predict.coxph }} \section{Changes in version 2.40-2}{ \itemize{ \item Fix an error in the finegray routine: with strata() the resulting data sets could have incorrect status values. Pointed out by Mark Donoghoe. Added a strata test to tests/finegray.R. \item Remove many "is.R" and "oldClass" calls (vestiges of Splus). \item The summary.pyears routine now prints pandoc style tables. \item Fix multiple spelling errors in the Rd files; contributed by Luca Braglia. \item For a multi-state curve, the cumhaz component accidentally had the final state removed. All values were correct, simply an overzealous trimming of the final result. \item Add a short vignette describing the issue with round off error and tied survival times. \item Errors in survSplit: a factor status was not propogated, and a missing time gave a spurious error message. }} \section{Changes in version 2.40-1}{ \itemize{ \item For multi-state survival with a big data set and the influence=TRUE option, the resulting object could be so long that it overflowed an integer counter in the C code. Add a check in the R code and a caution in the help file. } } \section{Changes in version 2.40-0}{ \itemize{ \item Code changes to avoid the new warnings for multiplication of a vector * (1 by 1 matrix). \item Add a more thorough test case for multi-state survival: not all subjects start in the same state, delayed entry, and case weights that change within a subject. This uncovered some errors. More carefully document the influence option. \item Consistently deal with "almost tied" survival times in the survfit and coxph routines. Uses the same rule and tolerance as the all.equal function to declare two time value equal. The issue arises due to round off errors, e.g., from cacluations using days/365.25. \item Add the statefig function and a multi-state vignette. \item The rsurvreg function was not exported. NAMESPACE fix. \item Fix some labeling errors in the graphs for the adjusted survival curves vignette (consequences of the xscale change in 2.38-5). \item Update multi-state survival so that the robust (default) variance for a weighted data set treats these as sampling weights rather than case weights. This makes it consistent with the behavior of coxph. (Multiplication of all the weights by a constant now leaves the variance unchanged.) (9/2016) \item Surv(time, status) would fail when status was a factor with only two levels. This was due to an assumption that no user would ever want this, i.e., ever do it on purpose, and so it must be a mistake which should be caught. This was a bad assumption. \item Add the start.time argument to survfit.coxph. 10Sep2017 }} \section{Changes in version 2.39-5}{ \itemize{ \item The summary.survfit routine assumed that the times argument was sorted, contrary to the documentation. Pointed out by Torsten Hothorn. \item The tmerge function would fail if the time variable was a Date object. It was due to the fact that as.Date(as.numeric(x)) fails when x is a date. (A design flaw in Date, IMHO). There were also flaws when both the first and second data set were not sorted by id; added a more complete test case for this. \item An earlier change in dim.survfit had felled the survfit.matrix function: it incorrectly assumed strata when there were none. Unfortunately this didn't generate an error but rather multiple copies of a single curve (and an incomprehensible explanation of this single curve in the vignette). Pointed out by E Lundt. \item print.summary.survfitms would complain if only a single time was returned. A case where drop=FALSE was needed. \item Add a test for survSplit to ensure that it works with both the formula based and old interface. Add documention on how variable names are chosen to the help file. \item Error in subscripting survival curves: if fit was a survfit curve from left-truncated data, fit[k] had an incorrect n.enter component. (An old error, which shows how rarely that component is used.) Pointed out by Beth Atkinson. \item Remove n.enter from the default printout of summary.survfit, to make the printout more compact. It remains in the summary object but was very rarely used. \item Update the points.survfit function to handle multiple colors and/or plotting characters. If a survfit object has multiple curves we cycle through these in the same manner as matpoints would. }} \section{Changes in version 2.39-4}{ \itemize{ \item Create a stronger test suite for summary.survfit, and use it to actually fix the error that 2.39-3 claimed to fix. This uncovered a long-standing inaccuracy with n.risk for in-between time points. \item Add a section on monotone splines to the splines vignette. }} \section{Changes in version 2.39-3}{ \itemize{ \item For multi-state curves, the returned n.event component lost its dimensions if any of the curves had only one observation. \item Fix error in summary.survreg. For multiple curves and requested time points at or before the first time point in the data, the values from curve 1 was used for all. Pointed out by T Eigentler. \item Fix an unitialized variable in C code, pointed out by Brian Ripley. }} \section{Changes in version 2.39-2}{ \itemize{ \item Small updates based on feedback from CRAN }} \section{Changes in version 2.39-1}{ \itemize{ \item Label the output dimnames from pyears with the variable names from the model. This makes it easier to read. \item Replace any refrences to model.frame with "stats::model.frame" (all 38 of them). The model.frame function uses non-standard evaluation rules, and holding its hand like this is the only way to ensure that we don't call a user function of the same name. \item The Surv function would almost always label the columns of the resulting matrix, and the glmnet function depended on this. It now always labels them per a request from Trevor Hastie. \item Add the finegray function and expand the competing risks vignette to document it. \item Add a check to the quantile.survfit function for multi-state models; quantiles are not well defined for this case. \item Changes to the iteration path and convergence tests for coxph models with (start, stop] data, driven by two user examples that failed. The data sets had serious statistical issues of collinearity and/or outliers such that the final fits are not practically useful, but now the routine finishes gracefully instead of dying. The upshot is much more care about the order in which additions and subtractions of large numbers are done so as to avoid cancellation error. \item Fix an error to summary.survfit with the times argument: for intermediate time points it would sometimes choose the wrong value for the number at risk. (Number at risk is a left continuous function.) }} \section{Changes in version 2.38-5}{ \itemize{ \item Add more graphical arguments to plot.cox.zph in response to a user request. \item Remove some of last vestiges of Splus support from the header files for the C code, per a request from R core to remove mention of S.h. \item Multiple updates and corrections to the tmerge function, including improvements to the vignette. (As a result of using it in a class where the TA tried out all manner of combinations.) \item Update survSplit: it now handles all types of status variables (0/1, TRUE/FALSE, factors), the id and episode arguments are useful for start/stop data, the data retains its original sort order (new observations are inserted rather than put at the end), and the function is illustrated in a vignette. \item Add the conf.times argument to plot.survfit. This allows for confidence bars at specified times, which are useful when the plot is crowded. \item Survfit changes that are NOT backward compatable! \itemize{ \item Change the default for mark.time to FALSE \item Change the behavior of xscale so that it matches that of yscale, i.e., it changes only the label and not the underlying scale. Follow on annotations such as legend or locator are in the orignal scale of the data. \item For a matrix of curves, e.g. competing risks, print and plot them in column major order rather than row major, so as to match the usual R behavior. } \item Fix an error in the help page for the cohort argument of survexp, pointed out by Karl Ove Hufthammer. \item The anova and logLik functions would fail when given a null model (right hand side of 1 or only an offset). Pointed out by Karl Ove Hufthammer. \item The recently added code to generate an error when the same variable appears on both sides of a formula in coxph (a good idea) caused a failure if there was offset statement that contains a '-' sign. Pointed out by Abra Jeffers. }} \section{Changes in version 2.38-3}{ \itemize{ \item Add more imports to the NAMESPACE file per a request from CRAN \item Add a length method for Surv objects. Requested by Max Kuhn. (2015/6/17). \item Fix an error in neardate. When both input data sets were unsorted the last match could be wrong. }} \section{Changes in version 2.38-2}{ \itemize{ \item Change print.coxph to use the printCoefmat routine, which l leads to nicer p-values. Other print routines will follow unless there is an outcry. (But I forced signif.stars=FALSE: my tolerance of bad practice has limits.) \item Make those parts of the competing risks vignette which depend on the cmprsk library conditional. Otherwise the build fails for those without the pacakge. \item The coxph function could fail converge for a set of very collinear predictors when using (start, stop) data; revealed in a test case sent by G Borstrom. This was due to deficiency in a check for near infinite coefficients, which had already been updated for some but not all cases. (2015/6/3) \item Update anova.coxph to use the model.frame.coxph function; the current code had scoping errors if embedded in a function. Add an anova.coxph.penal function to correctly handle models with pspline terms. \item Fix an error in the tmerge function. Using the options argument would generate a spurious error. \item Pyears could fail on very long formulas due to a deparse() issue. \item Add the number of observations used and deleted due to missing to summary.pyears. \item Allow the combination of a null coxph model (~1 on the right) and the exact calculation for tied times. No one had ever asked for this before. (2015/3/25) \item Shorten the default printout for survfit. The records, n.max and n.start columns are often the same: if so suppress duplicates. \item Move the anova.coxphlist function from the survival package to coxme. (2015/3/3) \item Change the logLik method for coxph models so that the nobs component is the number of events rather than the number of rows in the data. This is superior for follow on methods such as AIC. \item Add a test to the coxexact.c routine for too large a data set; too many tied times could lead to integer overflow. "Fixing" the error is not sensible: the computation for such a data set would take decades. Add some more explanation to the help pages as well. }} \section{Changes in version 2.38-1}{ \itemize{ \item Fix an error discovered by CRAN, which triggered a core dump for them on a particular manual page (but never for me). The linear predictors from a frailty model contained NA values (incorrect), leading to failure in survConcordance.fit. (2015/2/16). \item An error was found in the mgus data set (a progression after death). Now corrected, and added a little more follow-up time for some subjects. \item Add error check for infitinte weights or offsets. This in respose to a bug report where someone did this on purpose, trying to mimic cure fractions, and then found that survfit.coxph failed. \item Robust variance is not supported for a coxph model with the "exact" approximation. (Rarely requested and a lot of work to add.) Add an error message to clogit(), so users get a more useful notice of the issue rather than a late error from residuals.coxph. \item Update the rats data set: it now includes both female and male litters so as to match the documentation. \item The term frailty(x) would fail if x were a factor, and not all levels were present. Pointed out by Theodor Balan. \item Fix error of "abs" instead of "fabs" in the agfit4.c code; pointed out to me by CRAN. \item Replace all instances of the obsolete prmatrix function. \item Modify pyears to allow cbind(time, count) as the response, giving a cumulative sum of counts, when the counts per observation may be other than 0/1. \item The lines.survfit function was incorrect for data sets that used the start.time option and xscale (it neglected to rescale the start time.) \item An increasingly common error is for user to put the time variable on both sides of a coxph equation in the mistaken belief that this is a way to create time-dependent coefficients. Generate a warning message for this case. \item Update the basehaz function to a simple alias for "survfit". Prior versions called surfit but then only returned part of the object. Update 2/2015: reverted the change. It turns out that 6 different packages that depend on survival also depended on the old behavior. \item Make the default value for the shortlabel argument of strata() more nuanced. If the argument is a single factor, assume that we don't need to prepend the variable name to its levels. \item Return the weights vector, if present, as part of the survreg object. \item For interval censored points and the symmetric distributions (Gaussian and logistic) response type residuals were incorrect. Silly error: needed (x-mean)/scale not x/scale - mean. \item Martingale residuals could be incorrect for the case of model with (start, stop] data and a pspline term. Refactor the code so that all of the possible code paths call the same C routine to do the residuals. Add a new test for this case, and further tests to verify that predict(type='expected') and residuals agree. \item Fix bug pointed out by D Dunker: if a model had both tt() and cluster() terms it would fail with a length error. \item Fix a rare bug in plot.survfit: if a multistate curve rose and then later fell to exactly the same value, the line would be incorrect. \item Add calls to the R_CheckUserInterrupt to several routines, so that long calculations can be interrupted by the user. \item The anova.coxph function would fail if the original call had a subset argument. Pointed out by R Fisher. 11May2014 }} \section{Changes in version 2.37-7}{ \itemize{ \item Remove a dependency on the survey package from the adjusted survival curves vignette, at the request of CRAN. (The base + required bundle needs to be capable of a stand-alone build.) \item Fix error in calcuation of the y-axis range for survival curve plots whenever the "fun" argument could produce infinite values, e.g., complimentary log-log plots transform 1 to -Inf. Pointed out by Eva Boj del Val. (Add finite=TRUE to range() call). }} \section{Changes in version 2.37-6}{ \itemize{ \item The plot for competing risk curves could have a spurious segment. (Found within 3 hours of submitting 2.37-5 to CRAN.) \item The lines method for survexp objects was defaulting to a step function, restore the documented default of a connected line. \item Add a levels method for tcut objects. 14Jan2014 } } \section{Changes in version 2.37-5}{ \itemize{ \item Add vignette on adjusted survival curves. \item Add vignette concerning "type 3" tests. \item Make the tt() function invisible outside of a coxph formula. There was a complaint about conflicts with another package, and there is not really a good reason to have it be a global name. An R-devel discussion just over 1 year ago showed how to accomplish this. \item The modeling routines are set in two parts, e.g., coxph sets up the model and coxph.fit does the work. Export more of the ".fit" routines to make it easier for other packages to build on top of this one. \item Updates to the model.matrix and model.frame logic for coxph. A note from F Harrell showed that I was not correctly dealing with the "assign" attribute when there are strata * factor interactions. This led to cleanup in other cases that I had missed but which never had proven fatal. Also added support for tt() terms to the stand alone model.matrix and model.frame functions. (Residuals for tt models are still not available, but this was a necessary first step to that end.) 26Dec13 \item The Surv function now remembers attributes of the input variables that were passed to it; they are saved as "inputAttributes". This allows the rms package, for instance, to retain labels and units through the call. \item Update summary.coxph.penal to produce an object, which in turn has a print method, i.e., make it a "standard" summary function. \item Add a logLik method for coxph and survfit objects. \item Allow for Inf as the end of the time interval, for interval censored data in the Surv function. \item The predict.coxph function would fail if it had both a newdata and a collapse argument. Pointed out by Julian Bothe. 25Sep13 \item Survexp can now produce expecteds based on a stratified Cox model. Add the 'individual.s' and 'individual.h' options to return indivudual survival and cumulative hazard estimates, respectively. The result of survfit now (sometimes) includes the cumulative hazard. This will be expanded. 29Jul13 2 \item Change code in the coxpenal.fit routine: the use of a vector of symbols as arguments to my .C calls was confusing to a new CRAN consistency check. Both the old and new are legal R; but the old was admittedly an unusual construction and it was simpler to change it. \item Fix a bug in survfit.coxph pointed out by Chris Andrews, whose root cause was incorrect curve labels when the id option is used. 27Jun13 \item Add rsurvreg routine. \item Change survfit.coxph routine so that it detects whether newdata contains or does not contain strata variables, and acts accordingly. If newdata does containe strata then the output will contain only those data-value and strata combinations specified by the user. Retain strata levels in the coxph routine for use in the survfit routine, to correctly reconstruct strata levels. Warn about curves with interactions. 18Ju13 \item Add a dim method for survival curves. \item For competing risks curves that use the istate option, the plotted curves now start with the correct (initial) prevalence of each state. 22May13 \item The survreg function failed with the "robust=T" option. Pointed out by Jon Peck. Test case added. 6May13 \item Kazuki Yoshida pointed out that rep() had no method for Surv objects. This caused the survSplit routine to fail if the data frame contained a Surv object. 3May13 \item Per a request from Milan Bouchet-Valet fix an issue in survfit that arose when the OutDec option is set to ',': it did not correctly convert times back from character to numeric. \item The plot.survfit function now obeys "cex" for the size of the marks used for censored observations. }} \section{Changes in version 2.37-4}{ \itemize{ \item Subscripting error in predict.coxph for type=expected, se=T, strata in the model, newdata, and multiple strata in the new data set. Pointed out by Chris Andrews. The test program has been tweaked to include multiple strata in newdata. }} \section{Changes in version 2.37-3}{ \itemize{ \item Minor flaw in [.survfit. If "fit" had multiple curves, and fit$surv was a matrix, and one of those curves had only a single observation time, fit[i,] would collapse columns when "i" selected that curve, though it shouldn't. \item Changed all of the .C and .Call statements to make use of "registered native routines", per R-core request. Add file src/init.c \item Error in plot.survfit pointed out by K Hoggart -- the "+" signs for censored observations were printing one survival time to the left of the proper spot. Eik Vettorazi found another error if mark.time is a vector of numerics. These are the results of merging the code for plot, lines and points due to some discrepancies between them, plus not having any graphical checks in the test suite. \item Repair an error in using double subscripts for the survfitms objects. \item Add the US population data set, with yearly totals by age and sex for 2000 onward. It is named uspop2, since there is already a "uspop" data set containing decennial totals from 1790 to 1970. \item Not all combinations of strata Y/N and CI Y/N worked in the quantile.survfit function, pointed out by Daniel Wallschlaeger (missing a function argument in one if-else combination). Added a new test routine that verifies all paths. \item The first example in predict.survreg help file needed to have \code{I(age^2)} instead of \code{age^2} in the model: R ignores the second form. (I'm almost sure this worked at one time, perhaps in Splus). It also needed different plot symbols to actually match the referenced figure. Pointed out by Evan Newell. \item Fix a long-standing problem with cch pointed out by Ornulf Borgan leading to incorrect standard errors. A check in the underlying coxph routines to deal with out of bounds exponents, added in version 2.36-6, interacted badly with the -100 offset used in cch. It only affected models using (start, stop) survival times. }} \section{Changes in version 2.37-2}{ \itemize{ \item Two bugs were turned up by running tests for all the packages that depend on survival (158 of them). }} \section{Changes in version 2.37-1}{ \itemize{ \item Add a new multi-state type to the Surv object. Update the survfit routine to work with it. The major change is addition of a proper variance for this case. More functionality is planned. \item Remove the fr_colon.R test program. It tests an ability that has been superseded by coxme, on a numerically touchy data set, and it was slow besides. For several other tests that produce warning messages and are supposed to produce said messages, add extra comments to that effect so testers will know it is expected. \item The code has had several "if.R" clauses to accomodate Splus vs R differences, which are mostly class vs oldClass. These are now being removed as I encounter them; since our institution no longer uses Splus I can no longer test the clauses' validity. \item The fast subsets routine coxexact.fit incorrectly returned the linear predictor vector in the (internal) sorted order rather than data set order. Pointed out by Tatsuki Koyama, affecting the result of a clogit call. 6Nov2012 \item Jason Law pointed out that the sample data set "rats" is from the paper by Mantel et.al, but the documentation was for a data set from Gail, Santner and Brown. Added the Gail data as rats2 and fixed the documentation for rats. \item For predict.coxph with type="terms", use "sample" as the default value for the reference option. For all others the default remains "strata", the current value. Type terms are nearly always passed forward for further manipulation and per strata centering can mess things up: termplot() for instance will no longer show a smooth function if the results are recentered within strata. \item Fix bug in summary.aareg, which was unhappy (without cause) if the maxtime option was used for a fit that did not include the dfbeta option. Pointed out by Asa Johannesen. \item The coxph fitting functions would report an error for a null model (no X variables) if init was specified as numeric(0) rather than NULL. \item Update the description and citation files to use the new "person" function described in the R Journal. Also add the ByteCompile directive per suggestion of R core. \item Allow an ordinary vector as the left hand side of survConcordance. \item Update anova.coxphlist to reject models with a robust variance. \item The survfit function had an undocumented backwards-compatability that allows the newdata argument to be a vector with no names. An example from Damon Krstajic showed that this does not work when the original model has a matrix in the formula. Removed the feature. (This is for survfit.coxph.) Also clarified the code and its documentation about what is found where -- environments, formulas, and the arguments of eval, which fixes a problem pointed out by xxx where the result of a Surv call is used in the coxph formula. \item Fix an issue in summary.survfit pointed out by Frank Harrell. The strata variable for the output always had its labels in sorted order, even when a factor creating the survival curves was otherwise. (This was due to a call to factor() in the code.) The print routine would then list curves in sorted order, which might well be contrary to the user's wishes. The curves were numerically correct. \item Add the anova.coxmelist function to the namespace so that it is visible. If someone has a list of models the first of which was a coxph fit and the list includes coxme fits, then anova.coxph will be the function called by R, and it will call anova.coxmelist. \item Fix a bug pointed out by Yi Zhang and Mickael Hartweg. If a coxph model used an offset, then a predicted survival curve that used newdata (and the offset variable of course) would be wrong, e.g. survival values > 1. A simple misplaced parenthesis was the cause. A recent paper by Langholz shows how to get absolute survival from case-control data using an offset, which seems to have suddenly made this feature popular. \item Per further interaction with Yi Zhang, a few items were missing from the S3methods in the NAMESPACE file: as.matrix.Surv, model.matrix.coxph, model.matrix.survreg, model.frame.survreg. }} \section{Changes in version 2.36-14}{ \itemize{ \item A supposedly cosmetic change to coxph in the last release caused formulas with a "." on the right hand side to fail. Fix this and add a case with "." to the test suite. } } \section{Changes in version 2.36-13}{ \itemize{ \item Add the anova.coxmelist function. This is in the survival package rather than in coxme since "anova(fit1, fit2)" is valid when fit1 is a coxph and fit2 a coxme object, a case which will cause this function to be called by way of anova.coxph. \item More work on "predvars" handling for the pspline function, when used in predict calls. Add a new test of this to the suite, and the makepredictcall method to the namespace. Fixes a bug pointed out by C Crowson. \item Deprecate the "robust" option of coxph. When there are multiple observations per subject it is almost surely the wrong thing to do, while adding a "cluster(id)" term does the correct thing. When there is only one obs per subject both methods work correctly. \item Add documentation of the output structure to the aareg help file. \item Change ratetableDate so that it still allows use of chron objects, but doesn't need the chron library. This eliminates a warning messge from the package checks, but is also a reasonable support strategy for a moribund package. (Some of the local users keep datasets for a long long time.) \item Fix a bug in summary.survfit for a multiple-strata survival object. If one of the curves had no data after application of the times argument, an output label was the wrong length. \item Fix a bug pointed out by Charles Berry: predict for a Cox model which has strata, and the strata is a factor with not all its levels represented in the data. I had a mistake in the subscripting logic: number of groups is not equal to max(as.integer(strata)). \item Changes to avoid overflow in the exponent made in 2.36-6 caused failure for one special usage: in case-cohort designs a dummy offset of -100 could be added to some observations. This was being rounded away. The solution is to 1: have coxsafe not truncate small exponents and 2: do not recenter user provided offset values. \item Fix bug in survfit.coxph. Due to an indexing error I would sometimes create a huge scratch vector midway through the calculations (size = max value of "id"); the final result was always correct however. Data set provided by Cindy Crowson which had a user id in the billions. \item Fix bug pointed out by Nicholas Horton: predictions of type expected, with newdata, from a Cox model without a strata statement would fail with "x not found". A misplaced parenthesis from an earlier update caused it to not recreate the X matrix even though it was needed later. Also add some further information to the predict manual page to clarify an issue with frailty terms. }} \section{Changes in version 2.36-12}{ \itemize{ \item Fix a bug in the new fast subsets code. The test suite had no examples of strata + lots of tied times, so of course that's the case where I had an indexing error. Add a test case using the clogit function, which exercises this. \item Further memory tuning for survexp. }} \section{Changes in version 2.36-11}{ \itemize{ \item Make survexp more efficient. The X matrix was being modified in several places, leading to multiple copies of the data. When the data set was large this would lead to a memory shortage. \item Cause anova.coxph to call anova.coxme when a list of models has both coxph and coxme objects. \item Add the quantile.survfit function. This allows a user to extract arbitrary quantiles from a fitted curve (and std err). \item Fix an error in predict.coxph. When the model had a strata and the newdata and reference="sample" arguments were used, it would (incorrectly) ask for a strata variable in the new data set. \item Incorporate the fast subsets algorithm of Gail et al, when using coxph with the "exact" option. The speed increase is profound though at the cost of some memory. Reflect this in the documentation for the clogit routine. Note that the fast computation is not yet implemented for (start,stop) coxph models. \item Change the C routine used by coxph.fit from .C to .Call semantics to improve memory efficiency, in particular fewer copies of the X matrix. \item Add scaling to the above routine. This was prompted by a user who had some variables with a 0-1 range and others that were 0 - 10^7, resulting in 0 digits of accuracy in the variance matrix. (Economics data). \item Comment out some code sections that are specific to Splus. This reduced the number of "function not found" warnings from R CMD check. }} \section{Changes in version 2.36-10}{ \itemize{ \item 30 Sept 2011: The na.action argument was being ignored in predict.coxph; pointed out by Cindy Crowson. \item The log-likelihood for survreg was incorrect when there are case weights in the model. The error is a fixed constant for any given data set, so had no impact on tests or inferences. The error and correction were pointed out by Robert Kusher. \item A variable name was incorrect in survpenal.fit. This was in a program path that had never been traversed until Carina Salt used survreg with a psline(..., method='aic') call, leading to a "variable not found" message. \item Punctuation error in psline made it impossible for a user to specify the boundary.knots argument. Pointed out by Brandon Stewart. \item Add an "id" variable to the output of survobrien. \item The survfitCI routine would fail for a curve with only one jump point (a matrix collapsed into a vector). \item Fix an error in survfit.coxph when the coxph model has both a strata by covariate interaction and a cluster statement. The cluster term was not dropped from the Terms object as it should have been, led to a spurious "variable not found" error. Pointed out by Eva Bouguen. \item If a coxph model with penalized terms (frailty, pspline) also had a redundant covariate, the linear predictor would be returned as NA. Pointed out by Pavel Krivitsky. }} \section{Changes in version 2.36-9}{ \itemize{ \item Due to a mistake in my script that submits to CRAN, the fix in 2.36-8 below was actually not propogated to the CRAN submission. \item Fix an error in the Cauchy example found in the survreg.distributions help page, pointed out by James Price. \item Update the coxph.getdata routine to use the model.frame.coxph and model.matrix.coxph methods. \item Add the concordance statistic to the printout for penalized models. }} \section{Changes in version 2.36-8}{ \itemize{ \item Unitialized variable in calcuation of the variance of the concordance. Found on platform cross-checking by Brian Ripley. \item Changed testci to use a fixed file of results from cmprsk rather than invoking that package on-the-fly. Suggested by the CRAN maintainers. } } \section{Changes in version 2.36-7}{ \itemize{ \item Due to changes in R 2.13 default printout, the results of many of the test programs change in trivial way (one more or fewer digits). Update the necessary test/___.Rout.save files. Per the core team's suggestion the dependency for the package is marked as >=2.13. }} \section{Changes in version 2.36-6}{ \itemize{ \item An example from A Drummond caused iteration failure in coxph: x=c(1,1,1,0,1, rep(0,35)), time=1:40, status=1. The first iteration overshoots the solution and lands on an almost perfectly linear part of the loglik surface, which made the second iteration go to a huge number and exp() overflows. A sanity check routine coxsafe is now invoked on all values of the linear predictor. \item 1 April: Fix minor bug in survfit. For left censored data where all the left censored are on the very left, it would give a spurious warning message when trying to create a 0 row matrix that it didn't need or use. Pointed out by Steve Su. \item 31 March 2011: One of the plots in the r_sas test was wrong (it's been a long time since I visually checked these). The error was in predict.survreg; it had not taken into account a change in R2.7.1: the intercept attribute is reset to 1 whenever one subscripts a terms object, leading to incorrect results for a model with "-1" in the formula and a strata(): the intercept returned when removing the strata. I used this opportunity to move most of the logic into model.frame.survreg and model.matrix.survreg functions. Small change to the model.frame.coxph and model.matrix.coxph functions due to a better understanding of xlevels processing. \item Round off error issue in survfit: it used both unique(time) and table(time), and the resulting number of unique values is not guarranteed to be the same for times that differ by a tiny amount. Now times are coverted to a factor first. Peter Savicky from the R core team provided a nice discussion of the issue and helped me clarify how best to deal with it. The prior fix of first rounding to 15 digits was good enough for almost every data set -- except the one found by a local user just last week. \item Round off error in print.survfit pointed out by Micheal Faye. If a survival value was .5 in truth, but .5- eps due to round off the printed median was wrong. But it was ok for .5+eps. Simple if-then logic error. \item Re-fix a bug in survfit. It uses both unique and table in various places, which do not round the same; I had added a pre-rounding step to the code. A data set from Fan Chun showed that I didn't round quite enough. But the prior rounding did work for a time of 2 vs (sqrt(2))^2: this bug is very hard to produce. I now use as.numeric(as.character(factor(x))), which induces exactly the same rounding as table, since it is the same compuation path. \item Further changes to pspline. The new Boundary.knots argument allows a user to set the boundary knots inside the range of data. Code for extrapolation outside that range was needed, essentially a copy of the code found in ns() for the same issue. Also added a psplineinverse function, which may be useful with certain tt() calls in coxph. \item 10 Mar 2011: Add the capablilty for time-dependent transformations to coxph, along with a small vignette describing use of the feature. This code is still incompletely incorporated in that the models work but other methods (residuals, predict, etc) are not yet defined. \item 8 Mar 2011: Expand the survConcordance function. The function now correctly handles strata and time dependent covariates, and computes a standard error for the estimate. All computation is based on a balanced binary tree strucure, which leads to computation in \eqn{O(n \log_2(n))}{O(n log(n))} time. The \code{coxph} function now adds concordance to its output, and \code{summary.coxph} displays the result. \item 8 Mar 2011: Add the "reference" option to predict.coxph, a feature and need pointed out by Stephen Bond. \item 4 Mar 2011: Add a makepredictcall method for pspline(), which in turn required addition of a Boundary.knots argument to the function. \item 25 Feb 2011: Bug in pyears pointed out by Norm Phillips. If a subject started out with "off table" time, their age was not incremented by that amount as they moved forward to the next "in table" cell of the result. This could lead to using the wrong expected rate from the rate table. } } \section{Changes in version 2.36-5}{ \itemize{ \item 20 Feb 2011: Update survConcordance to correctly handle case weights, time dependent covariates, and strata. \item 18 Feb 2011: Bug in predict.coxph found by a user (1 day after 36-4!). If the coxph call had a subset and predict used newdata, the subset clause was "remembered" in the newdata construction, which is not appropriate. }} \section{Changes in version 2.36-4}{ \itemize{ \item 17 Feb 2011: Fix to predict.coxph. A small typo that only was exercised if the coxph model had x=T. Discovered via induced error in the rankhazard package. Added lines to the test suite to test for this in the future. \item Removed some files from test and src that are no longer needed. \item Update the configure script per suggestion from Kurt H. }} \section{Changes in version 2.36-3}{ \itemize{ \item 13 Feb 2011: Add the rmap argument to pyears, as was done for survexp, and update the manual pages and examples. Fix one last bug in predict.coxph (na.action use). Passes all the tests for inclusion on the next R release. \item 8 Feb 2011: Change the name of the new survfit.coxph.fit routine to survfitcoxph.fit; R was mistaking it for a survfit method. Fix errors in predict.coxph when there is a newdata argument, including adding yet another test program. \item 1 Feb 2011: Fix bugs in coxph and survreg pointed out by Heinz Tuechler and dtdenes@cogpsyphy.hu, independently, that were the same wrong line in both programs. With interactions, a non-penalized term could be marked as penalized due to a mismatched vector length, leading to a spurious error message later in the code. \item 1 Feb 2011: Update survfit.coxph to handle the case of a strata by covariate interaction. All prior releases of the code did this wrong, but it is a very rare case (found by Frank Harrell). Added a new test routine coxsurv4. Also found a bug in [.survfit; for a curve with both strata and multiple columns, as produced by survfit.coxph, it could drop the n.censored item when subscripting. A minor issue was fixed in coxph: when iter=0 the output coefficient vector should be equal to the input even when the variance is singular. \item 30 Jan 2011: Move the noweb files to a top level directory, out of inst/. They don't need to be copied to binary installs. \item 22 Jan 2011: Convert the Changelog files to the new inst/NEWS.Rd format. \item 1 Jan 202011: The match.ratetable would fail when passed a data frame with a character variable. This was pointed out by Heinz Tuechler, who also did most of the legwork to find it. It was triggered by the first few lines of tests/jasa.R (expect <- ....) when options(stringsAsFactors=FALSE) is set. } } \section{Changes in version 2.36-2}{ \itemize{ \item 20 Dec 2010: Add more test cases for survfit.coxph, which led to significant updates in the code. \item 18 Nov 2010: Add nevent to the coxph output and printout in response to a long standing user request. \item 14 Dec 2010: Add an as.matrix method for Surv objects. \item 11 Nov 2010: The prior changes broke 5 packages: the dependencies form a bigger test suite than mine! 1. Survival curve for a coxph model with sparse frailty fit; fixed and added a new test case. 2. survexp could fail if called from within a function due to a scoping error. 3. "Tsiatis" was once a valid type (alias for 'aalen') for survfit.coxph; now removed from the documentation but the code needed to be backwards compatable. The other two conflicts were fixed in the packages that call survival. There are still issues with the rms package which I am working out with Frank H. } } \section{Changes in version 2.36-1}{ \itemize{ \item{27 Oct 2010: Finish corrections and test to the new code. It now passes the checks. The predict.coxph routine now does strata and standard errors correctly, factors propogate through to predictions, and numerous small errors are addressed. Predicted survival curves for a Cox model has been rewritten in noweb and expanded. Change the version number to 2.36-1.} \item{17 Oct 2010: Per a request from Frank Harrell (interaction with his library), survfit.coxph no longer reconstructs the model frame unless it really needs it: in some cases the 'x' and 'y' matrices may be sufficient, and may be saved in the result. Add an argument "mf" to model.matrix.coxph for more efficient interaction when a parent routine has already recovered the model frame. In general, we are trying to make use of model.matrix.coxph in many of the routines, so that the logic contained there (remove cluster() calls, pull out strata, how to handle intercepts) need not be replicated in multiple places.} \item{12 Oct 2010: Fix a bug in the modified lower limits for survfit (Dory & Korn). A logical vector was being inadvertently converted to numeric. Pointed out by Andy Mugglin. A new case was added to the test suite. } } } \section{Changes in version 2.35}{ \itemize{ \item{15 July 2010: Add a coxph method for the logLik function. This is used by the AIC function and was requested by a user.} \item{29 July 2010: Fix 2 bugs in pyears. The check for a US rate table was off (minor effect on calculations), and there was a call to julian which assumed that the origin argument could be a vector. } \item{21 July 2010: Fix a problem pointed out by a user: calling survfit with almost tied times, e.g., c(2, sqrt(2)^2), could lead to an inconsistent result. Some parts of the code saw these as 2 unique values per the unique() function, some as a single value using the results of table(). We now pre-round the input times to one less decimal digit than the max from .Machine$double.digits. Also added the noweb.R processing function from the coxme package, so that the noweb code can be extracted "on the fly" during installation using commands in the configure and cleanup scripts. } \item{11 July 2010: A rewrite of the majority of the survfit.coxph code. The primary benefits are 1: finally tracked down and eliminated the bug for standard errors of case weights + Cox survival + Efron method; 2: the individual=TRUE and FALSE options now use the same underlying code for curves, before there were some options valid only for one or the other; 3: code was rewritten using noweb with a considerable increase in documentation; 4: during the verification process some errors were found in the test suite and corrected, e.g., a typo in my book led to failure of an all.equal test in book4.R. Similar to the rewrite for survfit several years ago, the new code has far less use of .C to help transparency.} \item{21 May 2010: Fix bug in summary.survfit. For a survival curve from a Cox model with start,stop data, the 'times' argument would generate an error.} \item{24 May 2010: Fix an annoyance in summary.survfit. When the survival data had an event or censor at time 0 and summary is called with a times argument, then my constructed call to approx() would have duplicate x values. The answer was always right, but approx has begun to print a bothersome warning message. A small change to the constructed argument vector avoids it.} \item{7 April 2010: Minor bug pointed out by Fredrik Lundgren. In survfit if the method was KM (default) and error = Tsiatis an error message results. Simple fix: code went down the wrong branch.} \item{24 Feb 2010: Serious bug pointed out by Kevin Buhr. In Surv(time1, time2,stat) if there were i) missing values in time1 and/or time2, ii) illegal value sets with time1 >=time2, and iii) all the instances of ii do not preceed all the instances of i, then the wrong observation (not the illegal) will be thrown out. Repaired, and a new test added. Minor updates to 3 test files: survreg2, testci, ratetable.} \item{8 Feb 2010: Bug pointed out by Heinz Tuechler -- if a subscript was dropped from a rate table the 'type' attribute got dropped, e.g. survexp.usr[,1,,].} \item{26 Jan 2010: At the request of Alex Bokov, added the xmax, xscale, and fun arguments to points.survfit.} \item{26 Jan 2010: Fix bug pointed out by Thomas Lumley -- with case weights <1 a Cox model with (start, stop) input would inappropriately decide it needed to do step halving to find a solution, eventually failing to converge. It was treating a loglik >0 as an indication of failure, but such values arise for small case weights. Let L(w) be the loglik for a data set where everyone is given a weight of w, then L(w)= wL(1) - d log(w) where d=number of deaths in the data. For small enough w positivity of L(w) is certain.} \item{25 Jan 2010: Fix bug in summary.ratetable pointed out by Heinze Tuechler. Added a call to the function to the test suite as well.} \item{15 Dec 2009: Two users pointed out a bug that crept into survreg() with a cluster statement, when a t(x)%*%x was replaced with crossprod. A trivial fix, but in response I added another test that more formally checks the dfbeta residuals and found a major oversight for the case of multiple strata. } \item{14 Dec 2009: 1.Fix bug in frailty.xxx, if there is a missing value in the levels it gets counted by "length(unique(x))" (frailty is called before NA removal.) 2.SurvfitCI had an incorrect CI with case weights, and 3. in survreg a call to resid instead of residuals.survreg, before the class was attached.} \item{11 Nov 2009: The 'type' argument does not make sense for plot.survfit. (If type='p', should one plot the tops of the step function, the bottoms, or both?). Make it explicitly disallowed in response to an R-help query, rather than the confusing error message that currently arose.} \item{28 Oct 2009: The basehaz function would reorder the labels of the strata factor. Not a bug really, but a "why do this?" Unintended consequence of a character -> factor conversion.} \item{1 Oct 2009: Fix a bug pointed out by Ben Domingue. There was one if-then-else path into step-halving in the frailty.controldf routine that would refer to a non-existent variable. A very rarely followed path, obviously, and with the obvious fix. The mathematics of the update was fine.} \item{30 Sep 2009: For coxph and model.matrix.coxph, re-attach the attributues lost from the X matrix when the intercept is removed, i.e., X <- X[,1]. In particular, some downstream libraries depend on the assign attribute. For predict.coxph remove an earlier edit so that a single variable model + type='terms' returns a matrix, not a vector. This is expected by the termplot() function. It led to a whole lot of changes in the test suite results, though, due to more "matrix" printouts.} \item{4 Sep 2009: Added a model.matrix.coxph and model.frame.coxph methods. The model.matrix.default function ceased to work for coxph models sometime between R 2.9 and 2.9.2 (best guess). This wasn't picked up in the test suite but rather by failure of 3 packages that depend on survival. Also added a test. Update CRAN since this broke other's packages.} \item{20 Aug 2009: One more fix to predict.coxph. It needed to use delete.response(Terms) rather than Terms, so as to not look for (unnecessarily) the response variable when the newdata argment is used. Pointed out by Michael Conklin.} \item{17 Aug 2009: Small bug in survfit.coxph.null pointed out by Frank Harrell. The 'n' component would be missing if the input data included strata, i.e., the initial model had used x=TRUE. He also pointed out the fix.} \item{10 June 2009: Fix an error pointed out by Nick Reich, who was the first to use interval censored data + user defined distribution in survreg, jointly. There was no test case and creating one uncovered several errors (but only for this combination). All the error cases led to catastrophic failure, highlighting the extreme rarity of a user requesting this combination.} \item{2 June 2009: Surv(time1, time2, status, type='interval') would fail for an NA status code. Pointed out by Achim Zeilus.} \item{22 May 2009: Allow single subscripts to rate tables, e.g. survexp[1:10: . Returns a simple vector of values. The str() function does this to print out a short summary. Problem pointed out by Heinz Tuechler.} \item{21 May 2009: Create a test case for factor variables/newdata/predict for coxph and survreg. This led to a set of minor fixes; the code is now in line with the R standard for model functions. One consequence is that model.frame.coxph and model.frame.survreg are no longer needed, so have been removed.} \item{20 May 2009: The manual page for survfit was confusing, since it tries to document both the standard KM (formula method) and the coxph method. I've split them out so that now survfit documents only the basic method and points a user the appropriate specialized page.} \item{1 May 2009: The anova.coxph function was incorrect for models with a strata term. Fixed this, and made chisquare tests the default.} \item{22 April 2009: The coxph code had an override to iter and eps, making both of them more strict for a penalized model. However, the overall default values have changed over time, so that these lines actually decreased accuracy - the opposite of their intent. Removed the lines. Also removed the iter.miss and eps.miss components (on which this check depended) from coxph.control, which makes that function match its documentation.} } } \section{Changes in version 2.34 and earlier}{ \subsection{Merge of the TMT source code tree with the Lumley code tree}{ \itemize{ \item Issues/decisions in remerging the Mayo and R code: For most of routines, it was easier to start with the Lumley code and add the Therneau fixes. This is because Tom had expanded a lot of partial matches, e.g., fit$coef in the TT code vs fit$coefficients. Routines with substantial changes were, of course, a special case. The most common change is an is.R() construct to choose class vs oldClass. \item xtras.R: Move anova.coxph and anova.coxphlist to their own source files. The remainder of the code is R only. \item survsum: removed from package \item survreg.old: has been removed from the package \item survfit.s: Depreciate the "formula with no ~1" option Mayo code for [ allows for reordering curves Separate out the R "basehaz" function as a separate source file \item survfit.km.s: The major change of did not get copied into R, so lots of changes. R had "new.time" and Splus 'start.time' for the same argument. Allow them both as synonyms. The output structure also changed: adapt the new one. This is mostly some name changes in the components, removing unneeded redundancies created by a different programmer. \item survfit.coxph.s: TMT code finally fixed the "Can't (yet) to case weights" problem. There must have been 10 years been the intent and execution. \item survexp.s: Add "bareterms" function from R, which replaces a prior use of terms.inner (in Splus but not R). \item survdiff.s: R code had the old (incorrect) expected <- sum(1-offset), since corrected to sum(-log(offset)) . \item{summary.coxph.s: This was a mess, since Tom and I had independently made the addition of a print.summary.coxph function. Below, TMT means that it was the choice in the Splus code, TL means that it was the choice in R 1. Put the coef=T argument in the print function, not summary (TMT) 2. Change the output's name from coef to coefficients (suggestion of Peter Dalgaard). Also change one column name to Pr(>|z|) for R. 3. Remove last vestiges of a reference to the 'icc' component (TMT) 4. Do not include score, rscore, naive.var in the result (TL) 5. Do include loglik in the result (TMT) 6. Compute the test statistics (loglik, Wald, etc) in the summary function rather than in the print.summary function (TL) 7. Remove the digits option from summary, it belongs in print.summary. (neither)} \item{strata.s: R code added a sep argument, this is ok R changed the character string NA to as.character(NA). Not okay 1. won't work with Splus, 2. This is a label, designed for printing, and so it should be a character string. } \item{residuals.coxph.s: R had added type='partial'. (Which I'm not very partial to, from their statistical properties. But they are legal, and I assume that someone requested them).} \item{print.survfit.s: Rewritten as a part of the general survival rewrite. Created the function 'survmean' which does most of the work, and is shared by print and summary, so that the values from 'print' are now available. Fix the minmin function: min(NULL) gives NA in Splus, which is the right answer for a non-estimable median, but Inf in R. Explicitly deal with this case, and add a bunch of comments. R had the print.rmean option, this has been expanded to a more general rmean option that allows setting the cutoff point. R added a print.n option with 3 choices, my code includes all 3 in the output. } \item{lines.survfit.s: The S version has a new block of code for guessing "firstx" more intellegently when it is missing. (Or, one hopes is is more intellegent!)} \item{coxph.control.s: The R code had tighter tolerances (eps= 1e-9) than Splus (1e-4) and a higher iterationn count (20 vs 10). Set eps to 1e-8 and iter to 15, mostly bending to the world. The tighter iteration is defensible, but I still maintain that a Cox model that takes >10 iterations is not going to finish if you give it 100. The likelihood surface is almost perfectly quadratic near the minimum. (Not true for survreg by the way).} \item{: In Surv, the Mayo code creates NA's out of invalid status values or start,stop pairs, rather than a stop and error message. This is to allow for example coxph(Surv(time1,time2, status).... , subset=(goodlines)) succeed, when "goodlines" is the subset with correct values.} } } \subsection{Older changes}{ \itemize{ \item{25SepO7: How embarrassing -- someone pointed out that I had Dave Harrington's name spelled wrong in the options to survfit.coxph!} \item{9Jul07: In a model with offsets, survreg mistakenly omitted the offset from the returned linear.predictor component.} \item{10May07: Change summary.coxph so that it returns an object of class summary.coxph, and add a print method for that object.} \item{22Jun06: Update match.ratetable, so that more liberal matches are now allowed. For instance, 'F', 'f', 'female', 'fem', 'FEMA', etc are now all considered matches to the dimname "female" in survexp.us.} \item{26Apr06: Fix bug in summary.survfit, pointed out by Bob Treder. With the times option, the value of n.risk would be wrong for "in between" times; e.g., the data had events and/or censoring at times 10, 20,... and we asked for printout at time 15. It should give n.risk at time 20, it was returning the value at time 10. Interestingly, the code had a very careful treatment of this case, along with an example in the comments, and the "the right answer is" part of the comment was wrong! So the code correctly computed an incorrect answer. Added another test case to the test suite, survtest2.} \item{21Apr06: Fix problem in [.survfit, pointed out by Thomas Lumley. If fit <- survfit(Surv(time, status) ~ ph.ecog, lung), then fit[2:1] did not reorder the output correctly. I had never tested putting the subscripts in non-increasing order.} \item{7Feb06: Fix a problem in the coxph iteration (coxfit2.c, coxfit5, agfit3, agfit5, agexact). It will likely never catch anyone again, even if I didn't fix it. In a particular data set, beta overshot and step halving was invoked. During step halving, a loglik happened to occur that was within eps of the prior step's loglik --- and the routine decided, erroneously, that it had converged! (A nice quadratic curve, a first guess b1 to the left of the desired max of the curve. The next guess b2 overshot and ends up with a lower loglik, on the right side of the max. Back up to the midpoint of b1 and b2, and this guess, still to the right of the max (still too large) has EXACTLY the same value of y as b1 did, but on the other side of the max from b1. "Last two guesses give the same answer, I'm done" said the routine).} \item{27Sep05: Found and fixed a nasty bug in survfit. When method='fh2' and there were multiple groups I had a subscripting bug, leading to vectors that were supposed to be the same length, but weren't, passed into C. The resulting curves were obviously wrong -- survival precipitously drops to zero.} \item{5May05: Add the drop=F arg to one subscripting selection in survfit.coxph. temp <- (matrix(surv$y, ncol=3))[ntime,,drop=F] If you selected only 1 time point (1 row) in the final output, the code would fail. Pointed out by Cindy Crowson.} \item{18Apr05: Bug in survfit.turnbull. The strata variable was not being filled in (number of points per curve). So if multiple curves were generated at once, i.e., with something on the right hand side of ~ in the formula, all the downstream print/plot functions would not work with the result.} \item{8Feb05: Fix small typo in is.ratetable, introduced on 24Nov04: (Today was the first time I added to the standard library, and thus ended up using the non-verbose mode.)} \item{8Feb05: Add the data.frame argument to pyears. This causes the output to contain a dataframe rather than a set of arrays. It is useful for further processing of the data using Poisson regression.} \item{7Feb05: Modified print.ratetable to be more useful. It now tells about the ratetable, rather than printing all of its values.} \item{8Dec04: Fix a small bug in survfit.turnbull. If there are people left censored before the first time point of any other kind (interval, exact, or right censored), the the plotted height of the curve from "rightmost left censoring time" to "leftmost event time", that is the flat tail on the left, was at the wrong height. Added another test to testreg/reliability.s for this.} \item{24Nov04: Change is.ratetable to give longer messages} } } }